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Abstract

This diploma thesis comprises two parts. In the first part, the Incremental Proper
Generalized Decomposition method is developed and used for compressing the solu-
tion fields of multidimensional (including unsteady) fluid mechanics problems. This
part was conducted at National Technical University of Athens. In the second part,
Ionic Liquids are studied and proposed for improved lubrication. This part was
conducted during an 8-month internship at the premises of Toyota Motor Europe
(TME) in Zaventem, Belgium.

In the first part, the Incremental Proper Generalized Decomposition (iPGD) ap-
proximation method (developed by the PCopt/NTUA) is developed, improved with
respect to its current version and programmed. Effort is put on the acceleration
of the method and the improvement of accuracy. The presented mathematical for-
mulations are accompanied by numerical examples for validation. Also, 3D and 4D
flow problems (one dimension may refer to time) are solved and then the solution
fields are compressed by iPGD.

This method was initially developed to be coupled to a gradient-based optimization
software. For unsteady problems, the adjoint equations are integrated backwards in
time and in order to be solved, the primal solution is necessary at the time step of
the integration. Storing the solution field of the primal problem at every time step
increases storage requirements. iPGD is developed to support the adjoint solver
by compressing the solution field of the primal problem at every time step, at the
moment this is computed, thus reducing the store requirements of the optimization.



In the second part, Ionic Liquids (IL) proposed for lubricants are analyzed. Molec-
ular Dynamics computations are carried out to compute IL properties relevant to
lubrication, such as the dynamic viscosity of the fluid and the force carrying ca-
pability of a liquid confined and compressed by two walls. Then, these properties
are optimized by changing the molecular design of liquids. Evolutionary Algorithms
are involved to optimize the lubrication properties in which the molecular dynam-
ics algorithms acted as the evaluation tool. A brief presentation of the theoretical
background is also included.
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Περίληψη

Η διπλωματική αυτή εργασία αποτελείται από δύο τμήματα. Το πρώτο αφορά στη

μέθοδο του Σταδιακού Ιδιο-Γενικευμένου Διαχωρισμού και στην ικανότητα της να συ-

μπιέζει πολυδιάστατα ροϊκά πεδία (συμπεριλαμβανομένων και των χρονικά μη-μόνιμων).

Το μέρος αυτό πραγματοποιήθηκε στο Εθνικό Μετσόβιο Πολυτεχνείο, στην Αθήνα.

Το δεύτερο τμήμα σχετίζεται με τη χρήση των Ιονικών Ρευστών ως μέσων λίπανσης

βελτιστοποιώντας συγκεκριμένες ιδιότητές τους. Το μέρος αυτό συνοψίζει οκτάμηνη

πρακτική εργασία στις εγκαταστάσεις της Toyota Motor Europe (TME), στο Zaven-
tem του Βελγίου.

Στο πρώτο μέρος, μελετάται, βελτιώνεται και προγραμματίζεται η μέθοδος του Στα-

διακού Ιδιο-Γενικευμένου Διαχωρισμού (σΙΓΔ). Επαναδιατυπώνεται το μαθηματικό υ-

πόβαθρο της μεθόδου και αναπτύσσονται νέοι αλγόριθμοι με σκοπό το παραγώμενο

λογισμικό να επιτυγχάνει προσεγγίσεις μεγαλύτερης ακρίβειας, αλλά κυρίως να μειω-

θεί δραστικά ο χρόνος υλοποίησης της συμπίεσης, σε σχέση με προηγούμενες εκδοχές

της μεθόδου. Η παρουσίαση του μαθηματικού μοντέλου συνοδεύεται από αριθμητικές

εφαρμογές για επαλήθευση των παραπάνω ισχυρισμών. Ακόμη, επιλύονται 3Δ και 4Δ

προβλήματα ρευστών (η μία διάσταση είναι χρονική) και τα ροϊκά πεδία που προκύπτουν

συμπιέζονται από τη μέθοδο του σΙΓΔ.

Η μέθοδος σΙΓΔ αναπτύχθηκε με σκοπό να χρησιμοποιηθεί στη συμπίεση των πεδίων

λύσης των εξισώσεων που διέπουν το πρωτεύον πρόβλημα σε μία μέθοδο βελτιστο-

ποίησης βασισμένη στην κλίση της συνάρτησης στόχου. Σε προβλήματα μη-μόνιμων



ροών, το συζυγές πρόβλημα ολοκληρώνεται ανάποδα στον χρόνο, απαιτεί όμως σε κάθε

χρονική στιγμή το πεδίο λύσης του πρωτεύοντος προβλήματος. ΄Ετσι, αντί να αποθη-

κευτεί (κοστοβόρα) όλο αυτό το πεδίο, σε κάθε χρονική στιγμή αποθηκεύεται μόνο

η τρέχουσα λύση μαζί με την ήδη συμπιεσθείσα προηγούμενη και έτσι μειώνονται οι

αποθηκευτικές απαιτήσεις.

Στο δεύτερο μέρος αυτής της διπλωματικής εργασίας, μελετώνται και προτείνονται τα

ιονικά ρευστά ως λιπαντικά μέσα. Η δυναμική συνεκτικότητα του ρευστού καθώς και η

ικανότητά του να μεταφέρει φορτία από στερεά τοιχώματα υπολογίζονται μέσω κώδικα

Υπολογιστικής Μοριακής Δυναμικής. Στη συνέχεια, επιδιώκεται η βελτιστοποίηση

των μεγεθών αυτών με την αλλαγή της μοριακής δομής του ρευστού μέσω εξελικτικών

αλγορίθμων. Προηγείται μια σύντομη παρουσίαση του θεωρητικού υπόβαθρου της

Υπολογιστικής Μοριακής Δυναμικής.
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Chapter 1

Introduction

1.1 Purpose

In gradient-based optimizations for unsteady flow problems, adjoint equations are
integrated backwards in time and, during this phase, the solution field of the primal
problem is needed at each time step. At a first glance, two extreme options exist:
either fully store the solution time-series of the primal problem for use while solving
the adjoint equations or to store nothing and recompute it at every time step. The
first option highly increases the storage requirements and for large-scale unsteady
flows becomes prohibitive. The second one has zero storage requirements but is
totally inefficient since recomputing increases the computational time a lot.

In order to avoid both extreme options, a nice idea is to use an approximative
compression technique after solving the primal problem and to store only the ap-
proximation of the solution field. Proper Generalized Decomposition (PGD)
is a high-accurate approximation method to compress a field that is already avail-
able. So, full storage capacity is required until PGD takes over. But if this storage
capacity was available, there is, practically, no reason for compressing the field. For
this reason, the PCopt/NTUA developed the Incremental PGD (iPGD) that
compresses unsteady fields incrementally by handling each new instantaneous so-
lution and the previously compressed (through iPGD) time-series. The solution
time-series of the primal problem is enriched by a time-marching technique, so af-
ter an instantaneous field is computed, the iPGD compresses this field, stores the
approximation and deletes the original.

The iPGD was first presented and extensively studied in the Diploma Thesis of
Vasilis Papageorgiou (ref. [2], [3]). There, it was presented how it can compress 1D
and 2D unsteady fields, but also its low speed was highlighted. In this Diploma The-
sis, iPGD is extented for compressing 3D unsteady fields, its accuracy is improved
and, the most important, it is noticeably accelerated.
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1.2 Proper Generalized Decomposition
The main idea of PGD (and iPGD) is that any function u = u (x1, x2, ..., xq) of q
independent variables xi, i = 1, 2, ..., q, can be approximated by a M -term sum of
products of q 1D functions as:

u (x1, x2, ..., xq) ≈
M∑
µ=1

X1
µ(x1)X2

µ(x2)...Xq
µ(xq) (1.1)

The fact that a multidimensional field is approximated by 1D functions is called
decomposition. Every 1D function Xi

µ(xi) is called basis function or (just) basis.

A field like u, in order to be fully defined, assuming that every independent variable
xi is discretized in ni terms, demands Q1 = n1n2...nq values. On the contrary, the
PGD of the same field demands only Q2 = M (n1 + n2 + ...+ nq) values. In the
next chapters, Q1 and Q2 are compared to highlight savings in storage capacity.

The PGD method is used for two main tasks. Either for approximating unknown
fields that are the solution of a PDE, or for the post-compression of already defined
fields in order to save storage. The second case is presented in section 2.1 in detail.

In the first case, PGD is used as a solver of non-linear equations, due to the fact
that in real applications the discretization of the computational space demands con-
siderable storage. In short, the requested field u (x1, x2, ..., xq) in a PDE is replaced

by the PGD approximation
M∑
µ=1

X1
µ(x1)X2

µ(x2)...Xq
µ(xq), and the equation is solved

separately for each 1D bases Xi
µ(xi). Thus, the difficult procedure of solving one

PDE is reduced to the easy procedure of solving q ODE. Instead of the expensive so-
lution, PGD produces a much cheaper (and enough accurate) approximation. This
case is not part of this diploma thesis and will not be discussed further.

The Incremental PGD of an unsteady field is:

u (x, t) ≈
M∑
µ=1

Xµ(x)T µ(t) (1.2)

where x is the space (1D/2D/3D) and t is the time. The compression of this field
is performed incrementally; the bases are computed (renewed) for every certain
moment just after the field at this moment is solved. This method is very efficient
especially for fields that result from a time-marching computational technique.

Following chapters include a detailed presentation of the PGD for post-compression
of 2D, 3D and 4D fields (section 2.1), the mathematical formulation of iPGD for the
compression of 2D, 3D and 4D fields accompanied by numerical examples (section
2.2), programming tips for accelerating the algorithm (chapter 3) and applications
of iPGD on unsteady fluid mechanics problems(chapter 4).
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Chapter 2

The Proper Generalized
Decomposition

In this chapter, the standard PGD is presented in order to prepare the reader for
its Incremental variant. After that, there is a detailed presentation of the iPGD for
multidimensional approximations followed by numerical examples.

2.1 The standard PGD

During this section, PGD for compressing 2D, 3D and 4D fields is presented in
detail. In real applications these dimensions may refer to space and/or time.

2.1.1 Post-compression of a 2D field

Having for compression the 2D field u(ξ, η). The ξ and η are the space/parametric
or time coordinates of nodes, where the discretized field is defined. The field is
approximated by a finite sum of M terms. Every µ-th term is the product of the
φµ(ξ) and θµ(η) bases. So, the approximation becomes:

u(ξ, η) ≈
M∑
µ=1

φµ(ξ)θµ(η) (2.1)

Initially, the sum of the equation (2.1) is consisted only of one term and is enriched
gradually to the appropriate M by consecutive steps. Concerning M, it can either
be defined a priori or result during the procedure. The second case is when the sum
is enriched until the approximation residual (or its variation as M is increasing) is
less than a predefined thresshold-value.

5



Termination Criteria of the Enrichment Process

In most of the cases, knowing the appropriate value of M beforehand is impossible,
so the contribution of the new-added term must be compared with a predefined
threshold-value.

This value can either be the importance of the new-added term to all previous, as:

E(m) =

∥∥∥∥∫
ξ
φm(ξ)dξ

∫
η
θm(η)dη

∥∥∥∥∥∥∥∥∥∥
m−1∑
µ=1

∫
ξ
φµ(ξ)dξ

∫
η
θµ(η)dη

∥∥∥∥∥∥
(2.2)

or the difference of the last two terms divided by the first term, that is the greater
(see ref. [2]), as:

E(m) =

∥∥∥∥∫
ξ
φm(ξ)dξ

∫
η
θm(η)dη −

∫
ξ
φm−1(ξ)dξ

∫
η
θm−1(η)dη

∥∥∥∥∥∥∥∥∫
ξ
φ1(ξ)dξ

∫
η
θ1(η)dη

∥∥∥∥ (2.3)

The user is free to choose the most efficient termination criterion for each case.

Progressive Construction of the Separated Representation

The terms of the approximation sum are computed gradually, thus, in order to
highlight the construction process, it will be assumed that the m− 1 (where m ≥ 1)
terms are already known and the bases of the m-th step (φm(ξ) and θm(η)) are to
be computed. The approximation of m terms reads:

umPGD(ξ, η) = um−1
PGD(ξ, η) + φm(ξ) θm(η) (2.4)

where um−1
PGD(ξ, η) =

m−1∑
µ=1

φµ(ξ) θµ(η) is the known up-to-now approximation.

The two bases are coupled (they are in product) so an iterative process is necessary
to solve them, after replacing umPGD(ξ, η) by the known u(ξ, η). This internal iterative
procedure has to do with computing the bases φm(ξ) and θm(η) and must not be
confused with the iterative construction process (cycle).

An iterative technique like the Alternating Direction Strategy is a rational choice for
the above computation. In this technique, for every step p of the internal iterative
process the function φmp (ξ) is computed by the already known function θmp−1(η) and
then the θmp (η) is computed by φmp (ξ). The whole process starts after giving to the
function θm0 (η) an arbitrary initial value.

There are two ways to terminate these iterations. It is up to user’s experience to
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choose between them. The first way is to predefine the maximum number of itera-
tions. By doing that, the user can control the time needed but there is the risk the
two functions are not (fully) converged or converged very quickly and unnecessary
iterations performed. The second way is to stop the iterations when a termination
criterion is met. Such a criterion checks if the change of the value of a basis every
last two iterations is smaller than a threshold-value. This criterion has the form:∫

ξ

(
φmp (ξ)− φmp−1(ξ)

)2
dξ < ε (2.5)

and ∫
η

(
θmp (η)− θmp−1(η)

)2
dη < ε (2.6)

where ε is a predefined positive threshold-value. By this way, the basis functions will
converge but this may make the algorithm very slow. More often a combination of
these two ways is used; a criterion is imposed and the maximum number of iterations
is predefined.

When the internal iterations are over, the values of φmp (ξ) and θmp (η) are stored as
φm(ξ) and θm(η) and the construction process is going on with the next term (m+1).
The construction process ends when M terms are added to the approximation sum.

Alternating Direction Strategy

In order to present the Alternating Direction Strategy in more detail it is assumed
that the process is in the p-th internal iteration of the m-th construction cycle. This
process is performed in two steps. In each step one basis is computed.

• Step 1st: Computation of φmp (ξ)

The approximation of the field u so far reads:

u(ξ, η) ≈
m−1∑
µ=1

φµ(ξ) θµ(η) + φmp (ξ) θmp−1(η) (2.7)

Remember that the field u is available, the compressed field
m−1∑
µ=1

φµ(ξ) θµ(η) has

been found and the basis θmp−1 was computed in the previous step of the internal
iterative procedure, so the only unknown quantity in equation (2.7) is the value of
φmp . Galerkin’s projection method is used in order to compute this value.

According to that, all terms of equation (2.7) are transferred to the left-hand-side,
they are multiplied by Galerkin weight function u∗ and integrated in both directions

7



(ξ and η). If θmp−1(η) is used as weight function, equation (2.7) becomes:

∫
ξ

∫
η
θmp−1(η)u(ξ, η)dηdξ−

∫
ξ

∫
η
θmp−1(η)

m−1∑
µ=1

φµ(ξ) θµ(η)dηdξ−
∫
ξ

∫
η
(θmp−1(η))2φmp (ξ)dηdξ = 0

(2.8)

Because most of the terms of equation (2.8) are one-dimensional and all functions
of η are known (from previous step p − 1), the integrals in the η-direction can be
rearranged to contain only functions of η, while the integrals in the ξ-direction to
contain all the left-hand-side of the equation. After that, equation (2.8) becomes:

∫
ξ

∫
η
θmp−1(η)u(ξ, η)dη −

m−1∑
µ=1

φµ(ξ)
∫
η
θmp−1(η)θµ(η)dη − φmp (ξ)

∫
η
(θmp−1(η))2dη

 dξ = 0

(2.9)

The integral in the ξ-direction can be deleted because the integrated quantity was
initially equal to zero (see eq. 2.7, after all terms are moved to the left-hand-side).
The only unknown quantity in this equation is φmp (ξ) and can be computed as:

φmp (ξ) =

∫
η
u(ξ, η)θmp−1(η)dη −

m−1∑
µ=1

φµ(ξ)
∫
η
θmp−1(η)θµ(η)dη∫

η
(θmp−1(η))2dη

(2.10)

• Step 2nd: Computation of θmp (η)

After computing φmp (ξ), the approximation of the field can be written:

u(ξ, η) ≈
m−1∑
µ=1

φµ(ξ) θµ(η) + φmp (ξ) θmp (η) (2.11)

and the unknown quantity now is θmp (η). Same as before, performing Galerkin
projection method for the equation (2.11), with φmp as weight function and after all
terms are moved to the left-hand-side and integrated, equation (2.11) becomes:

∫
η

∫
ξ
φmp (ξ)u(ξ, η)dξdη−

∫
η

∫
ξ
φmp (ξ)

m−1∑
µ=1

θµ(η)φµ(ξ)dξdη−
∫
η

∫
ξ
(φmp (ξ))2θmp (η)dξdη = 0

(2.12)

Corresponding to the previous step, equation (2.12) can be rearranged and the
integrals in the ξ-direction can be computed separately from the η-direction because
all functions of ξ are known from the previous step. The integral on the η-direction

8



that contains all the quantities of the left-hand-side can be deleted because the
integrated quantity was initially equal to zero. The remaining equation is solved for
θmp (η) which is the only unknown function. Thus, equation (2.12) becomes:

θmp (η) =

∫
ξ
u(ξ, η)φmp (ξ)dξ −

m−1∑
µ=1

θµ(η)
∫
ξ
φmp (ξ)φµ(ξ)dξ∫

ξ
(φmp (ξ))2dξ

(2.13)

The above process is repeated until the two bases converge and then the sum of
equation (2.4) is enriched with one more term increasing the approximation accuracy.

A flowchart of the above algorithm is presented in figure 2.1 in order to provide the
reader with a better understanding of the PGD compression. In this flowchart,
the rounded rectangle, the rectangle, the trapezium and the rhombus refers to
start/stop, process, input/output value and decision, respectively.

This subsection is based on ref. [1] and [2]. The PGD method also extends to
the compression of 3D and 4D fields. These dimensions may be spatial and/or
temporal. Only the equations that compute the bases are listed below since the
method is implemented in the exact same way.

2.1.2 Post-compression of a 3D field
Let the 3D field to be compressed is u(α, β, γ). One possible case is that α, β and
γ are all spatial variables. They correspond, for example, to the three directions of
a structured grid on the nodes of which the field u is defined. Alternatively, α and
β could refer to space (e.g. a 2D structured grid), with γ representing time. In this
case, PGD method compresses the solution of a 2D unsteady flow problem. The
approximation of a field like this is:

u(α, β, γ) ≈
M∑
µ=1

Aµ(α)Bµ(β)Γµ(γ) (2.14)

Same as the 2D field, initially the sum (2.14) is consisted only of one term and
gradually is enriched. Suppose that the enrichment process is at m-th step and the
internal process at iteration p, the basis functions Am(α), Bm(β) and Γm(γ) are
computed by the following equations:

Amp =

∫
γ

∫
β
uBm

p−1Γmp−1dβdγ −
m−1∑
µ=1

Aµ
∫
β
Bm
p−1B

µdβ
∫
γ

Γmp−1Γµdγ∫
β

(
Bm
p−1

)2
dβ
∫
γ

(
Γmp−1

)2
dγ

(2.15)
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Figure 2.1: Flowchart of the PGD algorithm.

Bm
p =

∫
γ

∫
α
uAmp−1Γmp−1dαdγ −

m−1∑
µ=1

Bµ
∫
α
Amp−1A

µdα
∫
γ

Γmp−1Γµdγ∫
α

(
Amp−1

)2
dα
∫
γ

(
Γmp−1

)2
dγ

(2.16)

Γmp =

∫
β

∫
α
uAmp−1B

m
p−1dαdβ −

m−1∑
µ=1

Γµ
∫
α
Amp−1A

µdα
∫
β
Bm
p−1B

µdβ∫
α

(
Amp−1

)2
dα
∫
β

(
Bm
p−1

)2
dβ

(2.17)

In the above relations, for brevity, functions u, A, B and Γ denote u(α, β, γ), A(α),
B(β) and Γ(γ), respectively. The meaning of the indicators does not change.
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2.1.3 Post-compression of a 4D field
Having for compression the 4D field u(α, β, γ, ζ). In fluid mechanics problems the
variables α, β and γ are the three dimensions of space (e.g. the directions of a
structured grid), while ζ is the time variable. The PGD of this field is:

u(α, β, γ, ζ) ≈
M∑
µ=1

Aµ(α)Bµ(β)Γµ(γ)Zµ(ζ) (2.18)

Same as above, initially the sum (2.18) is consisted only of one term and gradually is
enriched. Suppose that this process is at m-th step and p-th internal iteration , the
bases Am(α), Bm(β), Γm(γ) and Zm(ζ) are computed by the following equations:

Amp =

∫
ζ

∫
γ

∫
β
uBm

p−1Γmp−1Z
m
p−1dβdγdζ −

m−1∑
µ=1

Aµ
∫
β
Bm
p−1B

µdβ
∫
γ

Γmp−1Γµdγ
∫
ζ
Zm
p−1Z

µdζ∫
β

(
Bm
p−1

)2
dβ
∫
γ

(
Γmp−1

)2
dγ
∫
ζ

(
Zm
p−1

)2
dζ

(2.19)

Bm
p =

∫
ζ

∫
γ

∫
α
uAmp−1Γmp−1Z

m
p−1dαdγdζ −

m−1∑
µ=1

Bµ
∫
α
Amp−1A

µdα
∫
γ

Γmp−1Γµdγ
∫
ζ
Zm
p−1Z

µdζ∫
α

(
Amp−1

)2
dα
∫
γ

(
Γmp−1

)2
dγ
∫
ζ

(
Zm
p−1

)2
dζ

(2.20)

Γmp =

∫
ζ

∫
β

∫
α
uAmp−1B

m
p−1Z

m
p−1dαdβdζ −

m−1∑
µ=1

Γµ
∫
α
Amp−1A

µdα
∫
β
Bm
p−1B

µdβ
∫
ζ
Zm
p−1Z

µdζ∫
α

(
Amp−1

)2
dα
∫
β

(
Bm
p−1

)2
dβ
∫
ζ

(
Zm
p−1

)2
dζ

(2.21)

Zm
p =

∫
γ

∫
β

∫
α
uAmp−1B

m
p−1Γmp−1dαdβdγ −

m−1∑
µ=1

Zµ
∫
α
Amp−1A

µdα
∫
β
Bm
p−1B

µdβ
∫
γ

Γmp−1Γµdγ∫
α

(
Amp−1

)2
dα
∫
β

(
Bm
p−1

)2
dβ
∫
γ

(
Γmp−1

)2
dγ

(2.22)

where, the functions u, A, B, Γ and Z denote u(α, β, γ, ζ), A(α), B(β), Γ(γ) and
Z(ζ) respectively.
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2.1.4 Verification of standard PGD method treating it as a
minimization problem

The previous relations for computing the basis functions can be proved by an alter-
native procedure. The following is a demonstration of this approximation only for
the case of 2D fields (just for space-saving reasons), emphasizing that the procedure
followed is exactly the same for fields of more than two dimensions.

Suppose knowing the 2D field u(ξ, η). It is approximated as:

u(ξ, η) ≈
M∑
µ=1

φµ(ξ)θµ(η) (2.23)

Initially, the sum of equation (2.23) contains only one term and is gradually enriched
through successive steps to the appropriate M. Suppose the enrichment process has
completed m − 1 steps and φm(ξ) and θm(η) are to be computed. To approximate
u(ξ, η) as precisely as possible, the approximation error (deviation) must be mini-
mized. Such a deviation between the real field and the approximation is defined as:

E = 1
2

∫
ξ

∫
η

 m∑
µ=1

φµ(ξ)θµ(η)− u(ξ, η)
2

dηdξ (2.24)

Quantity E from equation (2.24) will be minimum if its partial derivatives (with
respect to the functions φm(ξ) and θm(η)) are equal to zero. That is:

∂E

∂φm(ξ) = 0⇔

∫
η

 m∑
µ=1

φµ(ξ)θµ(η)− u(ξ, η)
 θm(η)dη = 0⇔

φm(ξ)
∫
η
θm(η)θm(η)dη +

m−1∑
µ=1

φµ(ξ)
∫
η
θµ(η)θm(η)dη −

∫
η
u(ξ, η)θm(η)dη = 0⇔

φm(ξ) =

∫
η
u(ξ, η)θm(η)dη −

m−1∑
µ=1

φµ(ξ)
∫
η
θm(η)θµ(η)dη∫

η
(θm(η))2dη

(2.25)

and
∂E

∂θm(η) = 0⇔

∫
ξ

 m∑
µ=1

φµ(ξ)θµ(η)− u(ξ, η)
φm(ξ)dξ = 0⇔

12



θm(η)
∫
ξ
φm(ξ)φm(ξ)dξ +

m−1∑
µ=1

θµ(η)
∫
ξ
φµ(ξ)φm(ξ)dξ −

∫
ξ
u(ξ, η)φm(ξ)dξ = 0⇔

θm(η) =

∫
ξ
u(ξ, η)φm(ξ)dξ −

m−1∑
µ=1

θµ(η)
∫
ξ
φm(ξ)φµ(ξ)dξ∫

ξ
(φm(ξ))2dξ

(2.26)

Indeed, the two couples (2.10), (2.13) and (2.25), (2.26) are the same. Also here,
the requested bases are coupled, so an iterative process is necessary to solve them.

2.2 The Incremental PGD
The PGD method, presented above, can approximate multidimensional fields with
high precision, significantly reducing storage requirements. The major disadvantage,
however, is that the entire field must be available. Solution to this problem is the
Incremental PGD (iPGD) proposed by the PCopt/NTUA and initially presented
by Vasilis Papageorgiou (ref. [2] and [3]). This approximative compression method
can compress unsteady fields in an incremental way - in each construction-step it
handles the field of only one time step and not the whole time-series. The following
is a detailed presentation of the method for 2D, 3D and 4D fields in space-time.

2.2.1 Compression of an unsteady 1D field
Having for compression the unsteady field U(x, t). This will be approximated by a
M -terms sum of products of the 1D bases X(x) and T (t) as:

U(x, t) ≈
M∑
µ=1

Xµ(x)T µ(t) (2.27)

It must be emphasized that in iPGD M can only be predefined by the user. The
spatial coordinate is discretized in I nodes (i = 1, .., I), while the total time is divided
into discrete steps (k = 1, .., K, ..), where by K denotes the current timestep. After
discretization, equation (2.27) for every node i and every time step k is:

Ui,k ≈
M∑
µ=1

Xµ
i T

µ
k (2.28)

The approximation accuracy can be quantified by the total approximation error:

E = 1
2

I∑
i=1

K+1∑
k=1

 M∑
µ=1

Xµ
i T

µ
k − Ui,k

2

(2.29)
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The smaller the error, the better the approximation. Up to this point the analysis is
not different from the proof of the standard PGD treated as a minimization problem,
where the above error is minimized by setting its derivatives to zero and, then, the
basis functions X(x) and T (t) are computed using the original field U(x, t).

From this point on, iPGD differs from the standard PGD. The fact that the field
only at the new time step Ui,K+1 is known (the field at all previous moments is not
stored and at all next moments is not obtained yet) makes it necessary to redefine
the approximation error. Instead of the field Ui,k (k = 1, ..K), this error is handling
the M couples of bases computed in previous time step and denoted by X̃ and T̃ .

At time step K + 1, every basis needs to be redefined, while new bases TmK+1 (where
m = 1, ...,M) has to be added in order to take into account new change in time.
For that, the total approximation error from equation (2.29) is redefined as:

E = 1
2

I∑
i=1

 m∑
µ=1

Xµ
i T

µ
K+1 − Ui,K+1

2

+ w

2

I∑
i=1

K∑
k=1

 m∑
µ=1

Xµ
i T

µ
k −

M∑
µ=1

X̃µ
i T̃

µ
k

2

(2.30)

where U iPGD
i,k =

M∑
µ=1

X̃µ
i T̃

µ
k , k = 1, .., K, is the previous approximation of Ui,k.

Now, with the formulation (2.30), the total error takes into account both the solution
of the next time step and all the previous ones by their up-to-now approximation.
w is a user-defined weight factor that gives a relative "flexibility" to the extent that
the bases will change from one time step to the next. Its appropriate value depends
largely on how the morphology of the field changes through time.

The need to minimize the error (2.30) indicates the procedure to follow. In order to
calculate the unknown bases Xm

i , Tmk and TmK+1, the partial derivatives with respect
to each of these three bases must be set to zero. That is:

∂E

∂Xm
i

= 0⇔
 m∑
µ=1

Xµ
i T

µ
K+1 − Ui,K+1

TmK+1 + w
K∑
k=1

 m∑
µ=1

Xµ
i T

µ
k −

M∑
µ=1

X̃µ
i T̃

µ
k

Tmk = 0⇔

Xm
i =

Ui,K+1 −
m−1∑
µ=1

Xµ
i T

µ
K+1

TmK+1 + w
K∑
k=1

 M∑
µ=1

X̃µ
i T̃

µ
k −

m−1∑
µ=1

Xµ
i T

µ
k

Tmk
(
TmK+1

)2
+ w

K∑
k=1

(Tmk )2
(2.31)
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∂E

∂Tmk
= 0⇔

w
I∑
i=1

 m∑
µ=1

Xµ
i T

µ
k −

M∑
µ=1

X̃µ
i T̃

µ
k

Xm
i = 0⇔

Tmk =

I∑
i=1

 M∑
µ=1

X̃µ
i T̃

µ
k −

m−1∑
µ=1

Xµ
i T

µ
k

Xm
i

I∑
i=1

(Xm
i )2

(2.32)

∂E

∂TmK+1
= 0⇔

I∑
i=1

 m∑
µ=1

Xµ
i T

µ
K+1 − Ui,K+1

Xm
i = 0⇔

TmK+1 =

I∑
i=1

Ui,K+1 −
m−1∑
µ=1

Xµ
i T

µ
K+1

Xm
i

I∑
i=1

(Xm
i )2

(2.33)

The sums of equations (2.31)-(2.33) have to be rearranged to accelerate the com-
putation. Some identities of summation are used to rearrange them. These are:

∑
i

(CAi) = C
∑
i

(Ai) (2.34a)
∑
i

(
A1
i + A2

i + ...+ Aνi
)

=
∑
i

(
A1
i

)
+
∑
i

(
A2
i

)
+ ...+

∑
i

(Aνi ) (2.34b)
∑
i1

∑
i2

...
∑
iν

(
A1
i1A

2
i2 ...A

ν
iν

)
=

∑
i1

(
A1
i1

)∑
i2

(
A2
i2

)
...
∑
iν

(
Aνiν

)
(2.34c)

where C is a constant and A, Aj, for j = 1, ..., ν, are functions each depending on
the variable in the position of the lower pointer. So, equations (2.31)-(2.33) become:

Xm
i =

Ui,K+1T
m
K+1 + w

M∑
µ=1

[
X̃µ
i

K∑
k=1

T̃ µk T
m
k

]
−

m−1∑
µ=1

Xµ
i

[
T µK+1T

m
K+1 +

K∑
k=1

T µk T
m
k

]
(
TmK+1

)2
+ w

K∑
k=1

(Tmk )2

(2.35)
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TmK+1 =

I∑
i=1
Ui,K+1X

m
i −

m−1∑
µ=1

[
T µK+1

I∑
i=1
Xµ
i X

m
i

]
I∑
i=1

(Xm
i )2

(2.36)

Tmk =

M∑
µ=1

[
T̃ µk

I∑
i=1
X̃µ
i X

m
i

]
−

m−1∑
µ=1

[
T µk

I∑
i=1
Xµ
i X

m
i

]
I∑
i=1

(Xm
i )2

(2.37)

In equations (2.35)-(2.37), the bases appear in coupled form, so an iterative internal
procedure is required. In order to start it, the bases could be initialized as:

Xµ
i = Ui,1, µ = 1, ..,M (2.38a)

T µ1 =
1, µ = 1

0, µ = 2, ..,M
(2.38b)

or:

T µ1 = 1, µ = 1, ..,M (2.39a)

Xµ
i =

Ui,1, µ = 1
0, µ = 2, ..,M

(2.39b)

In both cases, it is ensured that, at the initial time step, the field is reproduced
precisely. For each new time step, the bases Xm

i and Tmk are redefined while the
basis for the next time step TmK+1 has to be computed. The whole procedure is over
when even the last time step is compressed.

A flowchart is used for the illustration of this algorithm, but in order to be more
generic it is presented in the next subsection for the 2D unsteady field.

In order to prove and demonstrate the reliability of iPGD, the approximation must
be compared with the original field. This is achieved through the total relative error:

E(M) =

I∑
i=1

K∑
k=1

Ui,k − M∑
µ=1

Xµ
i T

µ
k

2

I∑
i=1

K∑
k=1

U2
i,k

(2.40)

It is obvious that the value of this error depends directly on the number of termsM of
the approximation sum. As mentioned, storing the original field in real applications
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is non-affordable and some times even impossible (that is why iPGD was developed),
but in the context of this work, however, the storage of the original field is necessary
in order to compute the total error and to highlight the possibilities of iPGD.

Numerical Example

In this example, iPGD is used to compress the following 1D unsteady field:

u (x, t) =
[
sin

(
x3 − 1

)
− 1

]2
log

(
tx2 + π

2

)
sin

( 4π
Tint

t
)

(2.41)

The total length, related with the spatial variable x is equal to 1 and divided in
I = 81 nodes. The studied time interval is Tint = 0.01 and divided in K = 200 time
steps. The presence of t within the logarithm indicates that (2.41) is non-periodic.
For a periodic field, the time interval could well be chosen equal to one period.

Figure 2.2 shows the relation between the approximation error 2.40 and the value of
M . As M is increasing the error is decreasing up to a minimum. After that, using
more terms does not increase the accuracy but wastes storage capacity.

Figure 2.2: Compression of 1D unsteady field (2.41) by iPGD. The relation between
total relative error (%) with the number of terms of the approximation sum.

Figure 2.2 makes clear that, in this application, even for M = 2 the error is very
small (less than 0.0001%), while for greater M it is practically zero. As mentioned
in section 1.2, the definition of the original field requires:

Q1 = I ·K = 81 · 200 = 16200

values, while the compressed one requires:

Q2 = M · (I +K) = 281M

values. For M = 2, the required storage capacity is decreased to the 3, 47% of Q1,
while even for M = 4 (where the error is 10−8%) it is decreased to the 7% of Q1.
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In order to visualize the increase of accuracy when increasing M , figures 2.3 show
the iso-u curves of the original field and the approximation for M = 1, 2, 4, and 10.

M=1 M=2

M=6 M=10

Figure 2.3: Compression of 1D unsteady field (2.41) by iPGD. Iso-u curves of the
original field and the iPGD approximations constructed for M equal to 1, 2, 6 and 10.

Figures 2.3 highlight the ability of iPGD to perfectly approximate the 2.41 field even
forM = 2. For the above construction of the compressed field, the weight coefficient
was chosen equal to 1, the maximum number of the internal iterations equal to 20
and for the stopping criterion of these iterations a threshold value equal to 10−14 is
used. Unless otherwise stated, these parameters are used in all examples.

2.2.2 Compression of an unsteady 2D field
The following analysis is an extension of the above, so it appears more concise.
Definitions are omitted as they were given in detail above. Supposing U(x, y, t) is
a 2D unsteady field to be compressed by iPGD. The spatial coordinate x is divided
in I discrete nodes (i = 1, .., I) and the spatial coordinate y in J discrete nodes
(j = 1, .., J). The total time is divided in discrete time steps (k = 1, .., K, ..), where
K is the current one. The approximation of field U(x, y, t) in discrete form is:

Ui,j,k ≈
M∑
µ=1

Xµ
i Y

µ
j T µk (2.42)

The total error that takes into account both the exact field at the next time step
and all the previous time-series by their up-to-now approximation, is defined as:
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E = 1
2

I∑
i=1

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
K+1 − Ui,j,K+1

2

+ w

2

I∑
i=1

J∑
j=1

K∑
k=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k

2

(2.43)

where
M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k , for k = 1, .., K, is the up-to-now approximation.

Quantity E from equation (2.43) will be minimum if its partial derivatives (with
respect to the bases Xm

i , Y m
j , Tmk and TmK+1) are equal to zero. That is:

∂E

∂Xm
i

= 0⇔

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
K+1 − Ui,j,K+1

Y m
j T

m
K+1+w

J∑
j=1

K∑
k=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k

Y m
j T

m
k = 0⇔

Xm
i =

TmK+1

J∑
j=1

Ui,j,K+1 −
m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K+1

Y m
j + w

J∑
j=1

K∑
k=1

 M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k −

m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K

Y m
j T

m
k

(
TmK+1

)2 J∑
j=1

(
Y m
j

)2
+ w

J∑
j=1

K∑
k=1

(
Y m
j

)2
(Tmk )2

(2.44)

∂E

∂Y m
j

= 0⇔

I∑
i=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
K+1 − Ui,j,K+1

Xm
i T

m
K+1+w

I∑
i=1

K∑
k=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k

Xm
i T

m
k = 0⇔

Y m
j =

TmK+1

I∑
i=1

Ui,j,K+1 −
m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K+1

Xm
i + w

I∑
i=1

K∑
k=1

 M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k −

m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K

Xm
i T

m
k

(
TmK+1

)2 I∑
i=1

(Xm
i )2 + w

I∑
i=1

K∑
k=1

(Xm
i )2 (Tmk )2

(2.45)

∂E

∂Tmk
= 0⇔
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w
I∑
i=1

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k

Xm
i Y

m
j = 0⇔

Tmk =

I∑
i=1

J∑
j=1

 M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k −

m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K

Xm
i Y

m
j

I∑
i=1

J∑
j=1

(Xm
i )2

(
Y m
j

)2
(2.46)

∂E

∂TmK+1
= 0⇔

I∑
i=1

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
K+1 − Ui,j,K+1

Xm
i Y

m
j = 0⇔

TmK+1 =

I∑
i=1

J∑
j=1

Ui,j,K+1 −
m−1∑
µ=1

Xµ
i Y

µ
j T

µ
K+1

Xm
i Y

m
j

I∑
i=1

J∑
j=1

(Xm
i )2

(
Y m
j

)2
(2.47)

Equations (2.44)-(2.47) contain many nested sums of different variables. Computa-
tional algorithms that contain these kind of equations tend to be very slow when
solving large-scale fields. This problem was emphasized by V. Papageorgiou (ref.
[2]) and is the main challenge in the present diploma thesis. The computational
time is reduced if equations (2.44)-(2.47) are rearranged by the use of the identities
of summation (2.44)-(2.47). Thus, equations (2.44)-(2.47) are transformed to:

Xm
i =

TmK+1

J∑
j=1
Ui,j,K+1Y

m
j + w

M∑
µ=1

X̃µ
i

J∑
j=1

(
Ỹ µ
j Y

m
j

) K∑
k=1

(
T̃ µk T

m
k

)
(
TmK+1

)2 J∑
j=1

(
Y m
j

)2
+ w

J∑
j=1

(
Y m
j

)2 K∑
k=1

(Tmk )2

−

m−1∑
µ=1

Xµ
i

[
T µK+1T

m
K+1 + w

K∑
k=1

(T µk Tmk )
]

J∑
j=1

(
Y µ
j Y

m
j

)
(
TmK+1

)2 J∑
j=1

(
Y m
j

)2
+ w

J∑
j=1

(
Y m
j

)2 K∑
k=1

(Tmk )2
(2.48)

TmK+1 =

I∑
i=1

J∑
j=1
Ui,j,K+1X

m
i Y

m
j −

m−1∑
µ=1

T µK+1

I∑
i=1

(Xµ
i X

m
i )

J∑
j=1

(
Y µ
j Y

m
j

)
I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2
(2.49)

20



Y m
j =

TmK+1

I∑
i=1
Ui,j,K+1X

m
i + w

M∑
µ=1

[
Ỹ µ
i

I∑
i=1

(
X̃µ
i X

m
i

) K∑
k=1

(
T̃ µk T

m
k

)]
(
TmK+1

)2 I∑
i=1

(Xm
i )2 + w

I∑
i=1

(Xm
i )2

K∑
k=1

(Tmk )2

−

m−1∑
µ=1

{
Y µ
j

[
T µK+1T

m
K+1 + w

K∑
k=1

(T µk Tmk )
]

I∑
i=1

(Xµ
i X

m
i )
}

(
TmK+1

)2 I∑
i=1

(Xm
i )2 + w

I∑
i=1

(Xm
i )2

K∑
k=1

(Tmk )2
(2.50)

Tmk =

M∑
µ=1

T̃ µk I∑
i=1

(
X̃µ
i X

m
i

) J∑
j=1

(
Ỹ µ
j Y

m
j

)− m−1∑
µ=1

T µk I∑
i=1

(Xµ
i X

m
i )

J∑
j=1

(
Y µ
j Y

m
j

)
I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2

(2.51)

In equations (2.48)-(2.51) the requested bases are coupled, so an iterative procedure
is necessary. In order to start these iterations, it is proposed to initialize the time-
related bases T µ1 as 1 and approximate the field of this first time step as a steady
field via the standard PGD method (not the incremental). That means:

U ′(x, y) ≡ U(x, y, t = 1)

U ′(x, y) ≈
M∑
µ=1

Xµ(x)Y µ(y)

So, the bases Xm
i (for i = 1, .., I) , Y m

j (for j = 1, .., J) and T µ1 are computed from:

Xm
i =

J∑
j=1
Ui,j,1Y

m
j byj −

m−1∑
µ=1

Xµ
i

J∑
j=1
Y m
j Y

µ
j byj

J∑
j=1

(
Y m
j

)2
byj

, µ = 1, ..,M (2.52a)

Y m
j =

I∑
i=1
Ui,j,1X

m
i bxi −

m−1∑
µ=1

Y µ
j

I∑
i=1
Xm
i X

µ
i bxi

I∑
i=1

(Xm
i )2 bxi

, µ = 1, ..,M (2.52b)

T µ1 = 1, µ = 1, ..,M (2.52c)
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From equations (2.52), the first two are the discretized form of equations (2.10) and
(2.13). The discretization technique used here for the integrals is the Trapezoidal
Integration method (ref. 5), so the following integration factors appear:

bxi =


1
2 , i = 1
1, i = 2, .., I − 1
1
2 , i = I

(2.53a)

byj =


1
2 , j = 1
1, j = 2, .., J − 1
1
2 , j = J

(2.53b)

The accuracy of iPGD is quantified by the total relative error (%):

E(M) =

I∑
i=1

J∑
j=1

K∑
k=1

Ui,j,k − M∑
µ=1

Xµ
i Y

µ
j T

µ
k

2

I∑
i=1

J∑
j=1

K∑
k=1

U2
i,j,k

(2.54)

Figure 2.4 shows the PGD algorithm for the initialization of Xµ
i , Y

µ
j and T µ1 from

equations 2.52. Figure 2.5 shows the iPGD algorithm presented above. In this
flowchart, the initialization algorithm is represented by a process box (rectangle)
labeled as "PGD for Initialization" that contains the main body of the first flowchart.

Figure 2.4: Flowchart of the PGD algorithm for the initialization of the iPGD bases.
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Figure 2.5: Flowchart of the iPGD algorithm.

Numerical example

The 2D unsteady field u (x, y, t) to be compressed is the following:

u (x, y, t) =
sin

(√
10 t

Tint
x2 + y2

)
√
x2 + y2 , (2.55)

where x, y are spatial variables and t is the time. The total length in both x and y
directions is equal to 1 and both lengths are divided in I = 21 and J = 21 nodes
respectively. The total time is equal to Tint = 0.01 and divided in 50 time steps.
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Figure 2.6: Compression of 2D unsteady field (2.55) by iPGD. The relation between
total relative error (%) (eq. 2.54) with the number of terms of the approximation sum.

Figure 2.6 monitors the total error (2.54) when the terms of the approximation sum
are increasing. At least 14 terms are required in order for the approximation error
to become less than 0.1%. For this number of terms, the required storage capacity
is 5.8% of the original field u. In order to have an error around 1% (M = 9) the
required storage capacity is only 3.8% of the full storage.

In appendix A, the field (2.55) is compared with the iPGD approximations for
various M numbers. The main conclusion from figures A.1 - A.4 is that iPGD can
accurately approximate this field even with 20 terms, having achieved a percent
reduction of the required storage capacity equal to:

Q1 −Q2

Q1
= I · J ·K −M(I + J +K)

I · J ·K
= 21 · 21 · 50− 20(21 + 21 + 50)

21 · 21 · 50 = 92%

At this point, the dependence of the accuracy to the weight coefficient w of equations
(2.48) and (2.50) must be studied. For this purpose, the total relative error 2.54 is
computed for various approximation terms M and for various w of different orders
of magnitude. The results are given in figure 2.7 where each curve represents the
relation between the error and M for specific weight coefficient w. The weight
coefficients used here are 0.001, 0.01, 0.1, 1, 10, 100 and 1000.

In figure 2.7, the curve of w = 1 seems the most accurate and the curves w = 0.1 and
w = 10 are very close to the first and have the same behaviour. Curves of smaller
weight coefficient (w = 0.01 and w = 0.001) have different behaviour. For small
number of terms (M < 40) the accuracy is almost one order of magnitude worst
than the w = 1 curve, but forM > 40 the accuracy is improved and almost coincides
the w = 1 curve. Using a so small weight coefficient (as w = 0.001) is like neglecting
the up-to-now approximation, and the redefinition of the Xµ

i and Y µ
j bases is based

only on approximating the field of the next time step, but it cannot be achieved
accurately for small M . The accuracy of w = 100 and w = 1000 curves is bad and
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Figure 2.7: Compression of 2D unsteady field (2.55) by iPGD.The total relative error
(%) 2.54 as a function of number of approximation termsM . Every curve corresponds
to a different weight coefficient w.

at large values of M this accuracy gap increases. It seems that the behaviour of
w > 1 and 0 < w < 1 are opposite. The best behaviour of 0 < w < 1 curves is at
large M , while the best behaviour of w > 1 curves is at small M . As mentioned,
the most accurate curve is for w = 1. Denoting the two terms of the approximation
error 2.7 (approximation based on the up-to-now approach and approximation based
on the field of the next time step) equal weight seems the most rational strategy.

2.2.3 The improvement in the iPGD method

The iPGD method was initially presented and extensively studied in V. Papageor-
giou’s diploma thesis (ref. [2] and [3]). There, the equations for computing the bases
were formed, the importance of every term of the approximation sum was studied
and the ability of this method to construct approximations of high accuracy was val-
idated through numerical examples. Apart from all these, a great disadvantage was
highlighted - the algorithms are very slow when compressing large-scale unsteady
fields. The purpose of this subsection is to highlight the improvement on iPGD done
in the present thesis. The greater part of it is related with the acceleration of the
method, but also accuracy was improved. For short, in this section, any reference
to Papageorgiou’s diploma thesis will be referred to hereinafter as VPDT and any
reference to the present diploma thesis will be referred as LKDT.

In VPDT, when compressing an unsteady 2D field, the bases Xm
i , Y m

j , Tmk and TmK+1
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were computed by equations:

Xm
i =

TmK+1

J∑
j=1
Y m
j Ui,j,K+1 + wX̃m

i

K∑
k=1

J∑
j=1
Ỹ m
j Y

m
j T̃

m
k T

m
k −Q1x −Q2x

(TmK+1)2
J∑
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(Y m
j )2 + w

K∑
k=1

J∑
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(Y m
j )2(Tmk )2

(2.56)

where Q1x = TmK+1

m−1∑
µ=1

 J∑
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(Y µ
j Y

m
j )
Xµ

i T
µ
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

and Q2x = w
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µ
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µ
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µ
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µ
k

)
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k
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Y m
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I∑
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Xm
i Ui,j,K+1 + wỸ m

j

K∑
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I∑
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X̃m
i X

m
i T̃

m
k T

m
k −Q1y −Q2y

(TmK+1)2
I∑
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(Xm
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K∑
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(Xm
i )2(Tmk )2

(2.57)

where Q1y = TmK+1

m−1∑
µ=1

[(
I∑
i=1

(Xµ
i X

m
i )
)
Y µ
j T

µ
K+1

]

and Q2y = w
K∑
k=1

I∑
i=1

m−1∑
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(
Xµ
i Y

µ
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µ
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µ
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µ
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µ
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)
Xm
i T

m
k
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I∑
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J∑
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X̃m
i X

m
i Ỹ

m
j Y

m
j −

I∑
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J∑
j=1

(
Xµ
i Y

µ
j T

µ
k − X̃

µ
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µ
j T̃
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)
Xm
i Y

m
j

I∑
i=1

J∑
j=1

(Xm
i )2(Y m

j )2
(2.58)

TmK+1 =

I∑
i=1

J∑
j=1
Xm
i Y

m
J Ui,j,K+1 −

m−1∑
µ=1

T µK+1

I∑
i=1

J∑
j=1
Xµ
i X

m
i Y m

j Y µ
j


I∑
i=1

J∑
j=1

(Xm
i )2(Y m

j )2
(2.59)

The unsteady 2D field of the previous numerical example (2.55) is compressed by
iPGD using equations (2.56) - (2.59). This approximation is compared with those
of equations (2.48) - (2.49). For both versions, the computational time is monitored
and presented in figure 2.8b for M , while figure 2.8a compares the total relative
error (%) between the two versions. In these figures VPDT (or ΔΕΒΠ) refers to
equations (2.56) - (2.59) and LKDT (or ΔΕΛΚ) refers to equations (2.48) - (2.49).
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Additionally, figures 2.9 - 2.11 show the iso-u curves of the original field and of
the approximations of both iPGD versions. The improvement of the method is
concluded by all figures 2.8 and 2.9 - 2.11. For example, for M = 60, figures 2.8
show that LKDT version needs 12% of the time that VPDT needs and the error of
LKDT is 31 times smaller than the one of VPDT version. The form of these curves
indicate that the difference could be even larger for more summation terms M .

Two are the reasons that the LKDT version of iPGD algorithms is faster. The first
one is that the equations of this version do not contain multiple summations due to
the use of summation identities (2.34) (in contrast with equations 2.56 - 2.59). This
is an advantage, because in programming multiple summation means loops nested
inside other loops and this produces very slow algorithms. The second reason is
that the equations of LKDT version are solved in specific steps that accelerate the
algorithm even more. These steps are presented in details in Chapter 3.

The reason that equations 2.56 - 2.59 produce less accurate approximations can be
found in their birth process (see ref. [2]). In both versions, during the process of
computing the m-th bases for the new time step (K + 1), in the equation of the
approximation error the real field at all previous time steps is replaced by the up to
that time approximation. That is the equation (2.43) and is repeated here:

E = 1
2

I∑
i=1

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j T

µ
K+1 − Ui,j,K+1

2

+ w

2

I∑
i=1

J∑
j=1

K∑
k=1


m∑
µ=1

Xµ
i Y

µ
j T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k︸ ︷︷ ︸

up to Kth time step approach


2

(2.60)

But equations 2.56 - 2.59 instead of using all the M terms of the approximation
sum, exploit only the m first. This means that, for these equations, it is assumed

that Ui,j,k ≈
m∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k , for k = 1, ..K (and not Ui,j,k ≈

M∑
µ=1

X̃µ
i Ỹ

µ
j T̃

µ
k ) and thus,

relations 2.56 - 2.59 ignore the contribution of
M∑

µ=m+1
X̃µ
i Ỹ

µ
j T̃

µ
k terms.
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(a) Error (b) Time

Figure 2.8: Compression of 2D unsteady field (2.55) by iPGD. The total relative
error (%) (eq. 2.54) (left) and the computational time (right) of iPGD for VPDT
version (eqs. 2.56 - 2.59) and LKDT version (eqs. 2.48 - 2.49). x-axis the terms of
the approximation sum.

M=10 M=20

M=30 M=40

Figure 2.9: Compression of 2D unsteady field (2.55) by iPGD. Iso-u curves of the
real field (2.55) and the approximations by the VPDT version of iPGD (eqs. 2.56
- 2.59) and the LKDT version of iPGD (eqs. 2.48 - 2.49) at the 1-st time step for
M=10,20,30,40.
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M=10 M=20

M=30 M=40

Figure 2.10: Compression of 2D unsteady field (2.55) by iPGD. Iso-u curves of the
real field (2.55) and the approximations by the VPDT version of iPGD (eqs. 2.56 -
2.59) and the LKDT version of iPGD (eqs. 2.48 - 2.49) at the 15-th time step for
M=10,20,30,40.

M=10 M=20

M=30 M=40

Figure 2.11: Compression of 2D unsteady field (2.55) by iPGD. Iso-u curves of the
real field (2.55) and the approximations by the VPDT version of iPGD (eqs. 2.56 -
2.59) and the LKDT version of iPGD (eqs. 2.48 - 2.49) at the 25-th time step for
M=10,20,30,40.
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2.2.4 Compression of an unsteady 3D field

The extension for unsteady 3D fields of the previous analysis is concisely presented
in this subsection. U(x, y, z, t) is the field to be compressed. The spatial variables x,
y and z are discretized in I, J and L nodes respectively, where i = 1, .., I, j = 1, .., J
and l = 1, .., L. The total time is divided in discrete time steps (k = 1, .., K, ..),
where K is the current one. The approximation of U(x, y, z, t) in discrete form is:

Ui,j,l,k ≈
M∑
µ=1

Xµ
i Y

µ
j Zµ

l T
µ
k (2.61)

The total error taking into account both the solution of the next time step K + 1
and the time-series of all the previous time steps by their up-to-now approximation
is defined as:

E = 1
2

I∑
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J∑
j=1

L∑
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 m∑
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i Y

µ
j Z
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+ w

2

I∑
i=1

J∑
j=1

L∑
l=1

K∑
k=1
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X̃µ
i Ỹ

µ
j Z̃

µ
l T̃

µ
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2

(2.62)

where: U iPGD
i,j,l,k ≈

M∑
µ=1

X̃µ
i Ỹ

µ
j Z̃

µ
l T̃

µ
k , for k = 1, .., K, is the up-to-now approximation of

the Ui,j,l,k time series.

In order to compute the bases Xm
i , Y m

j , Zm
l , Tmk and TmK+1 the partial derivatives of

the error (2.62) (with respect to these bases) have to be equal to zero. Moreover, by
using the familiar general identities of summation (2.34), the bases Xm

i , Y m
j , Zm

l ,
Tmk and TmK+1 are computed by:

∂E

∂Xm
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∂Y m
j

= 0⇔

I∑
i=1

L∑
l=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
K+1 − Ui,j,l,K+1

Xm
i Z

m
l T

m
K+1

+ w
I∑
i=1

L∑
l=1

K∑
k=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
k −

M∑
µ=1

X̃µ
i Ỹ
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k=1

(T µk Tmk )
]

I∑
i=1

(Xµ
i X

m
i )

L∑
l=1

(Zµ
l Z

m
l )
}
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TmK+1

)2 I∑
i=1

(Xm
I )2

L∑
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(Zm
l )2 + w

I∑
i=1

(Xm
i )2
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(Zm
l )2

K∑
k=1

(Tmk )2
(2.64)

∂E

∂Zm
l

= 0⇔

I∑
i=1

J∑
j=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
K+1 − Ui,j,l,K+1

Xm
i Y

m
j T

m
K+1

+ w
I∑
i=1

J∑
j=1

K∑
k=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j Z̃

µ
l T̃

µ
k

Xm
i Z

m
l T

m
k = 0⇔
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Zm
i =

TmK+1

I∑
i=1

J∑
j=1
Ui,j,l,K+1X

m
i Y

m
j + w

M∑
µ=1

Z̃µ
l

I∑
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(
X̃µ
i X

m
i

) J∑
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(
Ỹ µ
j Y

m
j

) K∑
k=1

(
T̃ µk T

m
k

)
(
TmK+1

)2 I∑
i=1

(Xm
I )2

L∑
l=1

(
Y m
j

)2
+ w

I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2 K∑
k=1

(Tmk )2

−

m−1∑
µ=1

Zµ
l

[
T µK+1T

m
K+1 + w

K∑
k=1

(T µk Tmk )
]

I∑
i=1

(Xµ
i X

m
i )

J∑
j=1

(
Y µ
j Y

m
j

)
(
TmK+1

)2 I∑
i=1

(Xm
I )2

L∑
l=1

(
Y m
j

)2
+ w

I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2 K∑
k=1

(Tmk )2
(2.65)

∂E

∂TmK+1
= 0⇔

I∑
i=1

J∑
j=1

L∑
l=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
K+1 − Ui,j,l,K+1

Xm
i Y

m
j Z

m
l = 0⇔

TmK+1 =

I∑
i=1

J∑
j=1

L∑
l=1
Ui,j,l,K+1X

m
i Y

m
j Z

m
l −

m−1∑
µ=1

T µK+1

I∑
i=1

(Xµ
i X

m
i )

J∑
j=1

(
Y µ
j Y

m
j

) J∑
j=1

(Zµ
l Z

m
l )


I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2 L∑
l=1

(Zm
l )2

(2.66)

∂E

∂Tmk
= 0⇔

w
I∑
i=1

J∑
j=1

L∑
l=1

 m∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
k −

M∑
µ=1

X̃µ
i Ỹ

µ
j Z̃

µ
l T̃

µ
k

Xm
i Y

m
j Z

m
l = 0⇔

Tmk =

M∑
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T̃ µk I∑
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(
X̃µ
i X

m
i

) J∑
j=1

(
Ỹ µ
j Y

m
j
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(
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l Z
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)
I∑
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(Xm
i )2
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(
Y m
j

)2 L∑
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(Zm
l )2

−

m−1∑
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T µk I∑
i=1

(Xµ
i X

m
i )

J∑
j=1

(
Y µ
j Y

m
j

) Z∑
l=1

(Zµ
l Z

m
l )


I∑
i=1

(Xm
i )2

J∑
j=1

(
Y m
j

)2 L∑
l=1

(Zm
l )2

(2.67)

In equations (2.63)-(2.67), the desired bases are coupled, so they can be solved by
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an internal iterative technique. The initialization of this technique is as follows: the
field at the first time step is considered a steady field (the time variable is neglected)
and approximated by the standard PGD, and the temporal bases are set equal to
1. This strategy is explained by:

U ′(x, y, z) ≡ U(x, y, z, t = 1)

U ′(x, y, z) ≈
M∑
µ=1

Xµ(x)Y µ(y)Zµ(z)

and the bases Xµ
i , Y

µ
j , Z

µ
l and T µ1 are calculated by:

Xm
i =

j∑
j=1

L∑
l=1
Ui,j,l,1Y

m
j Z

m
l bzlbyj −

m−1∑
µ=1

Xµ
i

J∑
j=1
Y m
j Y

µ
j byj

L∑
l=1
Zm
l Z

µ
l bzl

J∑
j=1

(
Y m
j

)2
byj

L∑
l=1

(Zm
l )2 bzl

(2.68)

Y m
j =

I∑
i=1

L∑
l=1
Ui,j,l,1X

m
i Z

m
l bzlbxi −

m−1∑
µ=1

Y µ
j

I∑
i=1
Xm
i X

µ
i bxi

L∑
l=1
Zm
l Z

µ
l bzl

I∑
i=1

(Xm
i )2 bxi

L∑
l=1

(Zm
l )2 bzl

(2.69)

Zm
l =

I∑
i=1

J∑
j=1
Ui,j,l,1X

m
i Y

m
j byjbxi −

m−1∑
µ=1

Zµ
l

I∑
i=1
Xm
i X

µ
i bxi

J∑
j=1
Y m
j Y

µ
j byj

I∑
i=1

(Xm
i )2 bxi

J∑
j=1

(
Y m
j

)2
byj

(2.70)

Tm1 = 1 (2.71)

From equations (2.68) - (2.71), the ones that compute the spatial bases Xµ
i , Y

µ
j and

Zµ
l are the discretized form of equations (2.15) - (2.17). The discretization technique

used here for the integrals is the Trapezoidal Integration method (see ref. [5]), so
the following integration factors appear:
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bxi =


1
2 , i = 1
1, i = 2, .., I − 1
1
2 , i = I

(2.72a)

byj =


1
2 , j = 1
1, j = 2, .., J − 1
1
2 , j = J

(2.72b)

bzl =


1
2 , l = 1
1, l = 2, .., L− 1
1
2 , l = L

(2.72c)

Numerical example

The 3D unsteady field u(x, y, z, t) is given by the function:

u(x, y, z, t) = cos
(

6π t

Tint

)
sin

(
2π t

Tint
− 4πx

)
cos

(
2π t

Tint
− 1.6πy

)
cos

(
2π t

Tint
− 2.8πz

)
(2.73)

Both x, y and z are spatial variables, their total length is equal to 1 and are dis-
cretized in I = 10, J = 10 and L = 10 nodes respectively. The studied time interval
is equal to Tint = 0.01 and is divided in 40 time steps.

The approximation of the discrete form of field (2.73) is:

ui,j,l,k ≈
M∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
k (2.74)

The approximation deviation is quantified by the total relative error (%), defined
as:

E(M) =

I∑
i=1

J∑
j=1

L∑
l=1

K∑
k=1

Ui,j,l,k − M∑
µ=1

Xµ
i Y

µ
j Z

µ
l T

µ
k

2

I∑
i=1

J∑
j=1

L∑
l=1

K∑
k=1

U2
i,j,l,k

(2.75)

Obviously, the approximation accuracy is strongly depending on the number of terms
M of the approximation sum. This dependence is presented in figure 2.12 where the
accuracy is represented by the value of total relative error (%) (equation (2.75)).
This figure shows that 16 terms are needed in order the error to be less than 1%
and, for an error less than 0.001%, 20 terms are enough. For more than 32 terms the
error has reached a minimum at 1 · 10−7% and adding more terms does not decrease
this error.
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Figure 2.12: Compression of 3D unsteady field (2.73) by iPGD. The relation be-
tween total relative error (%) (equation 2.75) with the number of terms M of the
approximation sum.

In Appendix B, figures B.1 - B.20 shows the iso-u curves of the original field and the
iPGD approximations. This figures make it clear that for M = 32 the two groups
of curves coincide, while, even for M = 24 (where the error is 1 · 10−4%) when they
are not, they behave similarly.

Thus, for M = 24 the storage percent reduction is computed as:

Q1 −Q2

Q1
= I · J · L ·K −M(I + J + L+K)

I · J · L ·K
= 10 · 10 · 10 · 40− 24(10 + 10 + 10 + 40)

10 · 10 · 10 · 40 = 95.8%

Main conclusion made after all these numerical examples is that the Incremental
PGD can efficiently approximate multidimensional unsteady fields with insignificant
storage requirements. In the next chapter, iPGD is used to compress the flow fields
in fluid mechanics applications.
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Chapter 3

Software Acceleration

In a previous diploma thesis on the same subject (ref. [2]), the major disadvantage
of the iPGD method, in the code programmed by that time, was that it was very
slow when used to approximate large-scale unsteady fields. Changes made to the
code developed in the present diploma thesis made it run much faster. In the
numerical example of the previous chapter, the improved method approximates the
2D unsteady field by a sum of 60 terms almost 10 times faster than the previous
version.

The greatest part of this acceleration is due to the use of summation identities
(relations 2.34). When these identities are applied in the iPGD equations, nested
loops (that model the multiple sums) of the software are replaced by loops in row
(that model products of simple sums).

In addition to the aforementioned modifications, software acceleration is also achieved
with some additional in-code design, the most important of which are described be-
low.

Suppose that the 3D unsteady field u(x, y, z, t) is to be approximated and the K first
time steps have already been compressed. Also, assume that in this approximation
process the only thing defined at present is the original field at time step K + 1
(Ui,j,l,K+1) and the bases of the up-to-now approximation (k=1, ..., K) of the previous
time series (X̃µ

i , Ỹ
µ
j , Z̃

µ
l and T̃ µk , for all i, j, l and µ = 1, ...,M). In the m-th cycle,

bases Xm
i for i = 1, ..., I, Y m

j for j = 1, ..., J , Zm
l for l = 1, ..., L, Tmk for k = 1, ..., K

and TmK+1 will be found by solving iteratively equations (2.63) to (2.67). At this
point, the important part is how these bases are computed inside only one iteration,
so the iteration index (p) will be neglected. The computations during one iteration
can be separated in 5 steps.

• Step 1st: Computation of basis Xm
i
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Basis Xm
i , for i = 1, ..., I is computed by the relation:

Xm
i =

TmK+1

J∑
j=1

L∑
l=1
Ui,j,l,K+1Y

m
j Z

m
l + w

M∑
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(
Ỹ µ
j Y

m
j
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(
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m
l
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(
T̃ µk T

m
k

)
(
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)2 J∑
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(
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j

)2 L∑
l=1

(Zm
l )2 + w

J∑
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(
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K∑
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−
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i

[
T µK+1T

m
K+1 + w
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(T µk Tmk )
]

J∑
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(
Y µ
j Y

m
j

) L∑
l=1

(Zµ
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m
l )


(
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(
Y m
j

)2 L∑
l=1

(Zm
l )2 + w

J∑
j=1

(
Y m
j

)2 L∑
l=1

(Zm
l )2

K∑
k=1

(Tmk )2

There is not any term in the denominator containing the Xi, so the terms
J∑
j=1

(
Y m
j

)2
,

L∑
l=1

(Zm
l )2 and

K∑
k=1

(Tmk )2 are computed only once and used for every i. The numerator

is computed separately for every i and, divided by the constant denominator, gives
the corresponding Xm

i .

• Step 2nd: Computation of basis Y m
i

Basis Y m
j , for j = 1, ..., J can be found by the relation:

Y m
i =

TmK+1

I∑
i=1

L∑
l=1
Ui,j,l,K+1X

m
i Z

m
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M∑
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[
Ỹ µ
j
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(
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m
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(
T̃ µk T

m
k
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(
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(Xm
I )2

L∑
l=1

(Zm
l )2 + w

I∑
i=1

(Xm
i )2

L∑
l=1

(Zm
l )2

K∑
k=1

(Tmk )2

−

m−1∑
µ=1

{
Y µ
j

[
T µK+1T

m
K+1 + w

K∑
k=1

(T µk Tmk )
]

I∑
i=1

(Xµ
i X

m
i )

L∑
l=1

(Zµ
l Z

m
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(
TmK+1

)2 I∑
i=1

(Xm
I )2

L∑
l=1

(Zm
l )2 + w

I∑
i=1

(Xm
i )2

L∑
l=1

(Zm
l )2

K∑
k=1

(Tmk )2

Similarly, the denominator is not depending on Yj and, moreover, the terms
L∑
l=1

(Zm
l )2

and
K∑
k=1

(Tmk )2 are defined in the previous step. So, in order to compute the denom-

inator here only
I∑
i=1

(Xm
i )2 needs to be computed, only once.

The numerator is computed for each and every j and, then, the corresponding Y m
j
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results by a division.

• Step 3rd: Computation of basis Zm
l

Basis Zm
l , for l = 1, ..., L is computed by the relation:

Zm
i =

TmK+1

I∑
i=1

J∑
j=1
Ui,j,l,K+1X

m
i Y

m
j + w

M∑
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I∑
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(
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) J∑
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(
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j Y

m
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(
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i X

m
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(
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j Y

m
j

)
(
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)2 I∑
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(
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+ w

I∑
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i )2

J∑
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(
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j

)2 K∑
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(Tmk )2

Similarly, the denominator does not contain any Zl term, so it can be computed

only once and used for every l = 1, ..., L. Also, terms
I∑
i=1

(Xm
i )2 and

K∑
k=1

(Tmk )2 are

defined in the two previous steps, and in order to compute the denominator here

only the term
J∑
j=1

(
Y m
j

)2
needs to be computed and just once. This term could not

be considered already defined from the first step, because in the second step the
basis Y m

j is redefined. The numerator is computed for each and every l and after
that every Zm

l derives by division.

• Step 4th: Computation of TmK+1

The value of TmK+1 is computed by the relation:

TmK+1 =

I∑
i=1

J∑
j=1

L∑
l=1
Ui,j,l,K+1X

m
i Y

m
j Z

m
l −

m−1∑
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(Xµ
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m
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m
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) J∑
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(Zµ
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m
l )
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I∑
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i )2

J∑
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(
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j

)2 L∑
l=1

(Zm
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Also in this step, terms
I∑
i=1

(Xm
i )2 and

J∑
j=1

(
Y m
j

)2
are defined in the two previous

steps and in order to compute the denominator here only the (unknown after the

second step) term
L∑
l=1

(Zm
l )2 needs to be computed and just once.

Then, the terms of the numerator are computed and by division results the value of
TmK+1.
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• Step 5th: Computation of basis Tmk
The basis Tmk , for k = 1, ..., K is computed by the relation:

Tmk =

M∑
µ=1

T̃ µk I∑
i=1

(
X̃µ
i X

m
i

) J∑
j=1

(
Ỹ µ
j Y

m
j

) L∑
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l Z

m
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)
I∑
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(Xm
i )2
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(
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j

)2 L∑
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l )2

−
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µ=1

T µk I∑
i=1

(Xµ
i X

m
i )

J∑
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(
Y µ
j Y

m
j

) Z∑
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(Zµ
l Z

m
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I∑
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i )2

J∑
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(
Y m
j

)2 L∑
l=1
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Here, the denominator is not only constant for every k = 1, ..., K and independent
of basis Tk, but is also defined in the previous step. So, in order to compute basis Tmk
only the computation of the numerators and the division with the already computed
denominator is required.

It is worth noting that the above steps can also be implemented in standard PGD to
accelerate it, whether it is a separate software or for the initialization of the iPGD
construction.
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Chapter 4

The Incremental PGD in Fluid
Mechanics Problems

In this chapter, unsteady multidimensional fluid flows are solved and then the flow
time-series are approximated (compressed) by the Incremental PGD method. The
purpose of this chapter is to illustrate the use of this method in CFD problems and
the accuracy of the corresponding approximations.

4.1 Compression of unsteady flow fields through
a 2D S-shaped pipe

In this section, the flow through a 2D S-shaped pipe is solved and then approximated
by iPGD method. A structured grid of 221× 111 = 24531 nodes is used. Figure 4.1
shows the computational space and the structured grid.

Figure 4.1: Flow through a 2D S-shaped pipe. Computational space and the struc-
tured grid.

The computational software used to compute the flow field is called PUMA (Parallel
Unstructured Multi-row Adjoint) and is developed by the PCopt/NTUA. PUMA is a
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GPU-enabled Reynolds-Averaged Navier-Stokes equations’ solver using the Spalart-
Allmaras turbulence model. The solver can use structured or unstructured meshes
on which the governing equations are discretized by the finite volume technique with
vertex-centered storage of the flow variables (see ref. [6]). PUMA computations are
performed on a NVIDIA-SMI 346.46 GPU. The iPGD software enables only one
CPU, the Intel(R) Xeon(TM) CPU 2.66GHz. The flow fields computed directly
from PUMA are ρ, ρu, ρv, ρw and ρE, where ρ is the density, u, v and w are the
velocities in x, y and z directions respectively (in this case w = 0), and E is the
total Energy. The velocity fields u, v, w can be found by division and the pressure
field P by the simple:

ρE = P

γ − 1 + 1
2ρ
[

(ρu)2

ρ2 + (ρv)2

ρ2 + (ρw)2

ρ2

]
(4.1)

In this case study, the compressible fluid chosen is air (perfect gas) with gas constant
R = 287 J/kg · grad, heat capacity ratio γ = 1.4 and dynamic viscosity µ = 1.716×
10−5 kg/ms. At the inlet of the pipe there is constant total pressure Ptot = 101325
Pascal and total temperature Ttot = 288 K. The gas enters the pipe with zero
angle in x-direction. This 2D flow inside the pipe is unsteady because of the time
dependent pressure at the outlet of the pipe, which value is given in Pascal by the
periodic function 4.2 for A = 101000 Pascal and studied time interval equal to one
period Tint = 0.01 seconds.

Pout(t) = A+ (101325− A) sin
(

2π t

Tint

)
cos

(
4π t

Tint

)
cos

(
π

t

Tint
+ 0.2π

)
(4.2)

This period Tint is divided in 21 equal steps. Figure 4.2 shows the values of outlet
pressure, given by equation 4.2, for all the discrete 21 moments of a period.

Figure 4.2: Flow through a 2D S-shaped pipe. The outlet pressure, given by equation
4.2, for all the 21 moments of a time period.
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The flow fields ρ, ρu, ρv and ρE are compressed by M = 10, 50, 70 and 100
summation terms. The total relative error (%) (eq. 2.54) is computed for every field
and presented in figure 4.3. In this figure, it is shown that the approximation of ρ
and ρE fields is performed much more accurately than approximating ρu and ρv.

Figure 4.3: Flow through a 2D S-shaped pipe. Total relative error (%) (eq. 2.54) of
approximating the ρ, ρu, ρv and ρE for M = 10, 50, 70 and 100.

In Appendix C, the following properties of the flow can be found (as coloured maps):
density ρ, pressure P , velocity u in x-direction and velocity v in y-direction at the
1st, the 7th, the 13th and the 19th time step. In figures C.1 to C.16 the original
field is compared with the iPGD approximations for M = 10, 50, 70 and 100. In
these figures, it is clear that even for M = 50 the flow fields are very similar to
the recorded data by CFD analysis, while for M = 100 approximated solutions are
exactly the same with the reference data. ForM = 100, the achieved storage percent
reduction is:

Q1 −Q2

Q1
= I · J ·K −M (I + J +K)

I · J ·K
= 221 · 111 · 21− 100 (221 + 111 + 21)

221 · 111 · 21 = 93.1%

4.2 Compression of unsteady flow fields through
a 3D U-shaped pipe

In this section, the unsteady flow through a 3D U -shaped pipe (with square cross
section) is computed and then the flow property fields are compressed by the iPGD.
PUMA software is solving the fluid equations on the 233× 51× 51 = 606033 nodes
of the structured grid. Figure 4.4 shows the external surface of the computational
volume and the structured grid on it.

The air of the S-bend case is flowing through this pipe with exactly the same prop-
erties. Conditions at the inlet of the pipe are given total pressure Ptot = 101325
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Figure 4.4: Flow through a 3D U -shaped pipe. Computational space and structured
grid of the U -shaped with square cross section pipe.

Pascal and total temperature Ttot = 288 K. The gas enters the pipe with zero angles
to both directions. At the pipe outlet, pressure is defined in Pascal by the periodic
function (4.3) for A = 101000 Pascal and period Tint = 0.01 seconds. This period is
divided in 51 equal time steps.

Pout(t) = A− (101325− A)
√

sin
(

2π t

Tint

)
cos

(
4π t

Tint

)
cos

(
π

t

Tint
+ 0.2π

)
(4.3)

Figure 4.5 shows the value of the outlet pressure, given by equation (4.3) for a time
period.

Figure 4.5: Flow through a 3D U -shaped pipe. The outlet pressure, given by equation
(4.3) during a time period.

As already mentioned in previous chapters, the accuracy of iPGD approximations
is strongly depending on the number of terms of the approximation sum. In figures
4.6, the approximation accuracy is quantified by the relative total error (%), defined
by equation 2.75 and computed for various summation terms M . The compressed
flow fields, the errors of which are presented in figures 4.6, are the properties taken
directly from PUMA (ρ, ρu, ρv, ρw and ρE). Figures 4.6 shows that approximating
fields ρ and ρE can be achieved accurately enough with small M . Even for M = 10,
the total error on ρ is less than 0.002%, while the total error on ρE is less than
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6 · 105%. On the contrary, ρu and ρv need at least M = 50 for a total error around
5% and for M = 200 (where the error curves are almost flat) the total error is
around 1.3%. The ρw field is the most difficult to approximate. For M = 50, the
total error is around 10.5% while even for M = 220 the error is not less than 2.9%.

Figure 4.6: Flow through a 3D U -shaped pipe. Total Relative Error, defined by eq.
2.75 for various approximation summation terms.

Figures (D.1) to (D.16) in Appendix D present the five original flow fields (density
ρ, pressure P and velocities u, v and w) and two corresponding approximations
constructed by 135 and 200 terms. The case of M = 135 was chosen because
compressing a field at one time step needs exactly the same computational time
that PUMA needs to solve the fields of one time step (9 minutes). Figures 4.6 show
that the accuracy of this case is very satisfying. This can be noticed also in the
figures of the appendix D. The case of M = 200 was chosen because it represents
the best possible approximation. From figures 4.6 it seems that (around that values
of M) the curves are (almost) flat and this means that adding more terms will not
further improve the accuracy. The figures in the appendix verify that the compressed
fields of this case are the same with the original ones.

The storage percent reduction of the iPGD approaches are:
for the M = 135 case

Q1 −Q2

Q1
= I · J · L ·K −M (I + J + L+K)

I · J · L ·K
=

= 233 · 51 · 51 · 51− 135 (233 + 51 + 51 + 51)
233 · 51 · 51 · 51 = 99, 83%
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for the M = 200 case

Q1 −Q2

Q1
= I · J · L ·K −M (I + J + L+K)

I · J · L ·K
=

= 233 · 51 · 51 · 51− 200 (233 + 51 + 51 + 51)
233 · 51 · 51 · 51 = 99, 75%

Practically, the storage requirements are eliminated in both cases.

The speed of approximating the fields at each time step, as well as the reduction of
storage requirements, are decreasing functions of the used number of approximation
sum terms M . On the contrary, the accuracy of the approach is an increasing
function of M (see also figures 4.6), so it is of great importance to find where these
three conflicting objectives are sufficiently met.

PUMA software needs 9 minutes to solve the ρ, u, v, w and P fields at every time
step. The process of compressing one of these fields is not related with any of the
others, so the approximations of the five fields at every time step can be constructed
simultaneously. If these fields are compressed by the same M , their approximations
will demand exactly the same time. So, if the five fields are compressed simulta-
neously (thus, on 5 CPUs), the time needed is of a single approximation, but the
computational cost is five times higher. The flow fields at the ν-th time step can be
compressed just after they are solved and simultaneously with the computation of
the next fields at the (ν + 1)-th time step.

In the approximation case of M = 135, compressing a field at a random time step
takes exactly the same time with solving the flow fields of this moment (9 minutes).
If computation and compression are performed simultaneously as described in the
previous paragraph, the whole process needs the same time with approximating one
time-series for all the 51 time steps plus the time of computing the flow fields at the
1st time step. This means that the approximation of all the flow problem solution
will be available 9 minutes after the computation is over. In contrast with PUMA,
iPGD software is not running in parallel, so even if it needs the same time, the
computational cost is much lower. PUMA computations are performed on a GPU
that contains a lot of processors and these iPGD compressions are performed on just
five CPUs. Figures 4.6 shows that fields ρ and ρE can be approximated accurately
enough with less terms. For example, for M = 80 terms, the compression of a field
at a random time step needs 3 minutes and 25 seconds. During the 9 minutes of
the computation, the fields ρ and ρE can be compressed the one after the other, on
the same CPU, and thus reducing the computational cost (4 instead of 5 required
CPUs).

Previous works on iPGD considered this method deterrently slow but in this chapter
it was illustrated how it can approximate unsteady large-scale fields fast and accu-
rately. Thus, iPGD may be considered as an efficient approximative compression
method for large-scale unsteady flow solutions.
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Chapter 5

Conclusions and Perspectives

To summarize, in this part of the Diploma Thesis, the mathematical formulation
and the algorithms of the Incremental Proper Generalized Decomposition method
were improved. Three are the main interventions done to this method. Firstly,
the correction on the definition of approximation error (2.43), in order to use all
the M , and not only m, terms of the up-to-now approximation. The second is the
replacement of the several summations (nested loops) with products of simple sums
(in-raw single loops) in respect to the identities of summation. The third is the fine
design of the algorithm in order to make the least possible computations. Also, this
method was extended to compress 3D unsteady problems. The main conclusions of
this study are:

• iPGD is indeed improved. The 2D unsteady field 2.55 was compressed 31 times
more accurately and 10 times faster than by the previous version of iPGD.

• It was shown in section 4.2 that iPGD can compress with high accuracy large-
scale 3D unsteady flow fields minimizing the storage requirements to less than
0.5% of the initial. If computation and compression are performed simultane-
ously, the approximation is ready just 9 minutes after computation.

There are interesting things to be studied, that are not included in this diploma
thesis. Some of them are:

• A valid way to choose the appropriate value of M . Remember that this must
be defined a priori. An appropriateM produces accurate approximations with
low storage requirements in acceptable computational time.

• Further acceleration of the method, likely by creating software that runs in
parallel or enables GPUs.

• Direct coupling with the solver.

• A valid method to choose the appropriate weight factor w, maybe by the
time-derivative of the function.
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Part II

Molecular Dynamics computations
and optimization of coarse-grained

Ionic Liquid lubricants
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Chapter 6

Introduction to Molecular
Dynamics and Lubrication

The following part of this Diploma Thesis resumes a project conducted in the Ad-
vanced Material Research division of Toyota Motor Europe (TME). The topic is
the use of Ionic Liquids as lubricants. Properties of lubricants are computed during
MD simulations and then optimized by EA. In chapter 6, there is a brief presen-
tation of the necessary theoretical background and in chapter 7, calculations and
optimizations are conducted and the results are presented and discussed.

6.1 Lubrication
Lubrication is usually applied to a tribological system to mitigate friction and wear
by interposing a substance providing reduced shear strength between two surfaces
to help to carry the load. Lubrication regimes (see ref.[27]) will differ in accord with
the conditions in practice. The three most common beyond them are:

• Boundary lubrication occurs when the solid surfaces are so close together
that interactions between solid asperities dominate the contact. In this kind
of lubrication, friction is increased.

• Hydrodynamic lubrication is also known as full-film or thick-film lubrica-
tion. The fluid film is thick enough to prevent contact between the solid parts
and all the load can be carried by this film. It enables the coupled elements
to function without any wear over a long operating period.

• Mixed lubrication is an intermediate regime where both previous mecha-
nisms are functioning. There may be frequent solid contact, but some portion
of the bearing surface remains supported by a partial hydrodynamic fluid film.

The above lubricant regimes are distinguished in the Stribeck curve. A typical
Stribeck curve (ref. [7]) is presented in Figure (6.1). In this curve for a fluid-
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Figure 6.1: Stribeck curve from ref. [7] and the three lubrication regimes.

lubricated system, the friction coefficient (µ) is a function of the Hersey number:

Hersey Number = ηN/P ,

where η is the dynamic viscosity of the lubricant, N is the relative velocity between
the parts and P is the normal load applied to the lubricant.

For the hydrodynamic region of figure 6.1, for constant load (P ) and velocity (N),
decreasing viscosity (η) minimizes friction. But if viscosity is over decreased, lubrica-
tion exits hydrodynamic region and friction is increased. So, a situation of minimum
viscosity but inside the hydrodynamic region (in order not to have contact between
the lubricated parts) is favourable.

Ionic liquids (IL) are neutral (in total) liquids consisted of positive and negative
charged molecules called ions (cations and anions respectively).Nowadays, more and
more often, IL are proposed as lubricants due to some beneficial properties such
as negligible vapor pressure, non-flammability, high thermal-oxidative stability and
reasonable viscosity-temperature behaviour (ref. [28]).

At this project, IL are proposed as lubricants for two reasons. The first is that
viscosity can easily be tuned by changing the molecular design of the IL. This
is how viscosity can be decreased in the hydrodynamic lubrication. The second
reason is that when confined in very small gaps (of some Å) they create a strong
alternating ion-layers formation capable to carry great amounts of load (ref. [30],
[26] and [25]). This "thin-film" can be used as a protection between the two parts
and prevent contact on the asperities (ref. [28]). In order to optimize lubricant
behaviour of IL the viscosity must be minimized and the force-carrying capability
must be maximized.

In order to minimize viscosity, molecular design must be changed. The computation
technique that solves total properties by using information from the molecular level
is Molecular Dynamics computation. The search for the optimal molecular design
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of the IL can be performed by Evolutionary Algorithms.

6.2 Molecular Dynamics (MD)

Molecular Dynamics (MD) simulation is a a time-marching computational
technique based on Newtonian mechanics. The central idea is that for a given system
of particles (atoms, molecules, etc.), Newton’s second law (F = ma) is solved for
every particle, and thus each new instantaneous position can be computed. More
specifically, a given system is consisted of N particles. For every single particle i
with mass mi, situated at xi position, Fi is the resultant force from every other
particle in the system. The Newton’s second law is written as:

Fi = mi
d2xi
d2t

. (6.1)

The material of this section is based on ref. [9] and [10]. Especially the subsections
Thermodynamic Ensembles, Controlling Temperature and Controlling Pressure are
based also in ref. [11], ref. [12], [13], [14], [15], [16][17] and [18].

Interatomic pairwise potential
The most time-consuming part of almost all MD simulations is the computation of
the atomic force of every particle. The atomic force of a particle i is the reaction
(opposite) to the resultant of all the forces acting on the particle i from every other
particle j. This resultant derives from a potential energy, and the atomic force reads:

Fi = −ϑUi(xi)
ϑxi

, (6.2)

where the potential energy is not a real total potential but represents the addition

of pairwise interparticle potentials between all particles as Ui(xi) =
N∑
j=1

uij.

Regarding pairwise potentials, the most common and the one used in the present
thesis is the Lennard-Jones 12 − 6 potential in addition with long range Coulomb
interactions. This potential (LJ-C potential) has the following form:

uij = 4εij

(σij
rij

)12

−
(
σij
rij

)6


︸ ︷︷ ︸
Lennard−Jones

+ qiqj
4πε0rij︸ ︷︷ ︸
Coulomb

, (6.3)

where rij is the distance between particle i and particle j, εij is the depth of the
pair-wise LJ potential curve (a measure of how strongly the two particles interact),
σij is the finite distance at which the inter-particle LJ potential is zero, qi and qj are
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the electric charges of the interacting particles and ε0 is the vacuum permittivity.
All the above terms are properties of the materials in the system and are known in
advance, while rij = |xi − xj| is computed at every time step. At any time step t,
knowing the position xi of a particle i, all the forces acting on it can be computed
by equation 6.2. These forces are used in equation 6.1 to compute the new position
xi of the particle at t+ ∆t time step.

The Lennard-Jones (LJ) potential is an empirical model widely used to describe
molecular interactions between neutral particles. The attractive term is assumed
to decay with distance as the inverse sixth power (dipole-dipole interactions) and
the repulsive term is assumed to decay more rapidly (inverse twelfth power)(see
Eq. 6.3). The attractive interactions are due to fluctuating dipoles (van der Waals
interactions), and the repulsive interactions are due to overlap of the electron clouds
(Pauli exclusion principle) which forces electrons into higher energy states. The
form of a Lennard-Jones potential can be found in figure 6.2. In this figure, the
Lennard-Jones potential between the Carbon atoms (C) of two Methane molecules
(CH4) is computed for εCC = 0.066 kcal ·mol−1 and σCC = 3.5 Å.

Figure 6.2: The Lennard-Jones potential between the C atoms of two CH4 molecules.

For electrically charged particles, Coulomb’s law is the experimental model describ-
ing the electrical pairwise interactions. The force of the interaction is attractive
between opposite charged atoms and repulsive between like-signed charged atoms.

Verlet Algorithm

After computing all forces between all particles, next step is to compute their new
positions. For this purpose, Verlet Algorithm uses the Taylor expansion of the
position xi of a particle i, around an arbitrary moment t, by a small time step ∆t.
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So, the positions of a specific particle i, in time t+ ∆t and t−∆t are:

xi(t+ ∆t) = xi(t) + ∂xi(t)
∂t

∆t+ 1
2
∂2xi(t)
∂2t

∆t2 + 1
3!
∂3xi(t)
∂3t

∆t3 +O(∆t4) (6.4a)

xi(t−∆t) = xi(t)−
∂xi(t)
∂t

∆t+ 1
2
∂2xi(t)
∂2t

∆t2 − 1
3!
∂3xi(t)
∂3t

∆t3 +O(∆t4) (6.4b)

By adding equations 6.4 and replacing the second derivative of position by Newton’s
equation 6.1 derives:

xi(t+ ∆t) = 2xi(t)− xi(t−∆t) + Fi

mi

∆t2 +O(∆t4) (6.5)

In order to estimate the new position of the particle with an error of order ∆t4, only
the present and the previous positions are needed.

Energy, Temperature, Pressure

The total energy of a MD system is the addition of potential and kinetic energies.
The potential energy derives from the addition of the pairwise potential of all (N)
particles and the kinetic energy from the velocities of all particles as:

E(t) = U(t) +K(t) =
N∑
i=1

N∑
j>i

υij︸ ︷︷ ︸
Potential Energy

+ 1
2

N∑
i=1

mi

(
dxi
dt

)2

︸ ︷︷ ︸
Kinetic Energy

(6.6)

In Newtonian dynamics the total energy 6.6 is a conserved quantity. As time
marches, energy flows back and forth between kinetic and potential energy, causing
K(t) and U(t) to fluctuate while their sum remains fixed. In practice, there are
some small fluctuations also in total energy caused by errors in time–integration.
By monitoring the total energy over time evolution, useful information about the
state of the system can be obtained. If total energy does not change over time, it
means that the system has reached equilibrium. After equilibrium, the microscopic
properties (positions, velocities, etc) still change, but the thermodynamic ones (tem-
perature, pressure, heat capacity, etc) remain fixed or fluctuate over a fixed value.
The computations of these properties should be performed after equilibrium.

Useful thermodynamic properties of a system are the temperature and pressure.
These quantities are measured frequently in experiments and are, thus, important
for comparison between experiment and computation. After computing the instan-
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taneous kinetic energy, temperature derives from the equipartition theorem as:

T (t) = 2K(t)
3NkB

, (6.7)

where N is the total number of atoms of the system and kB is the Boltzmann
constant. Pressure can be computed by the virial function of Clausius (ref. [31]) as:

P = NkBT

V
+ 1

3V

N∑
i=1

xiFi (6.8)

Temperature and pressure derive from (6.7) and (6.8), after averaging over time.

Thermodynamic Ensembles
A thermodynamic ensemble is a collection of a large number of indistinguishable
replicas of a studied system, which interact with each other, but are isolated from
the rest of the universe. These replicas could be in different microscopic states,
as determined by the positions and momenta of the constituent molecules, but the
macroscopic state determined by the pressure, temperature and/or other thermody-
namic variables are identical. Although a mechanical system certainly evolves over
time, the ensemble does not necessarily evolve. A statistical ensemble that does not
change over time, can said to be in statistical equilibrium. Some information about
common thermodynamic ensembles is given below.

The micro-canonical (NVE) ensemble is used to represent the possible states
of a mechanical system, in which the Number of particles, the Volume and the total
Energy remain constant through time. The equations used in the micro-canonical
ensemble have already been presented above. It should be mentioned that NVE is
not corresponding to experimentally realistic situations because it is hard to perform
measurements that satisfy exactly the requirement of fixed energy.

The canonical (NVT) ensemble is the statistical ensemble that represents the
possible states of a mechanical system in thermal equilibrium with a large heat bath
at a fixed temperature. Practically, this is achieved by introducing a thermostat to
the system. The Number of particles, the Volume and the absolute Temperature
are fixed during the MD. The system can exchange energy with the heat bath, so
that the states of the system will differ in total energy.

In the isothermal-isobaric (NPT) ensemble, apart from fixed Number of parti-
cles and Temperature, Pressure is also fixed, and thus volume is dynamically chang-
ing during the simulation. This can be achieved by introducing a thermostat and a
barostat in the system. This ensemble is useful when density must be measured.

In the study cases of the next chapter, MD computations are performed in the NVT
and NPT ensembles. The MD software used for these computations is LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator, ref. [29]). In the fol-
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lowing subsections there is a brief presentation of the equations solved by LAMMPS
during a NVT and NPT ensemble.

Controlling Temperature

In the NVT ensemble, a thermostat determines the equations of motion of particles.
In LAMMPS, a chain ofM Nosé-Hoover thermostats is implemented. The equations
of these thermostats are:

dxi
dt

= pi
mi

(6.9a)

dpi
dt

= Fi −
pξ1

Q1
pi (6.9b)

dξk
dt

= pξk
Qk

(6.9c)

dpξ1

dt
=
(

N∑
i=1

p2
i

mi

− 3NkBT
)

︸ ︷︷ ︸
G1

−pξ2

Q2
pξ1 (6.9d)

dpξk
dt

=
[
p2
ξk−1

Qk−1
− kBT

]
︸ ︷︷ ︸

Gk

−
pξk+1

Qk+1
pξk (6.9e)

dpξM
dt

=
[
p2
ξM−1

QM−1
− kBT

]
︸ ︷︷ ︸

GM

, (6.9f)

where xi, pi, mi are, respectively, the position, momentum and mass of particle i, ξk
(for k = 1, ...,M) are the additional degrees of freedom, due to the thermostats, Qk is
a parameter with dimensions of energy ·(time)2, determines the scale of temperature
fluctuations and behaves as mass for the motion of ξk, pξk is the momentum of ξk
and T is the temperature imposed by the chain of M thermostats. The Gk terms
are considered as heat-bath ’forces’.

For the above equations of motion, the conserved quantity is:

ENV T = E +
M∑
k=1

p2
ξk

2Qk

+ 3NkBTξ1 +
M∑
k=2

ξk (6.10)

where E is the total energy of equation 6.6.
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Controlling Pressure

During an isothermal-isobaric simulation, Newtonian equations of motion are re-
placed by Nosé-Hoover thermostat–barostat equations of motion. In this case, two
chains of thermostats are implemented; one is {ηk, pηk , Q} coupled to the particles
and the other {ξk, pξk , Q′} to the barostat {ε, pε,W}. The ε is an extra degree of
freedom due to the barostat, defined as ε = ln(V/Vt=0), pε is the momentum of ε and
W has units energy · (time)2 and behaves as mass of the barostat. The equations
of motion in this case are:

dxi
dt

= pi
mi

+ pε
W

xi (6.11a)

dpi
dt

= Fi −
(

1 + 1
N

)
pε
W

pi −
pξ1

Q1
pi (6.11b)

dV

dt
= 3V pε

W
(6.11c)

dpε
dt

= 3V (Pint − P ) + 1
N

N∑
i=1

p2
i

mi

− pξ1

Q′1
pε (6.11d)

dηk
dt

= pηk
Qk

(6.11e)

dpηk
dt

= Gk −
pηk+1

Qk+1
pηk (6.11f)

dpηM
dt

= GM (6.11g)
dξk
dt

= pξk
Q′k

(6.11h)

dpξ1

dt
= p2

ε

W
− kBT︸ ︷︷ ︸
G′
k

−pξ2

Q′2
pξk (6.11i)

dpξk
dt

=
p2
ξk−1

Q′k−1
− kBT︸ ︷︷ ︸
G′
k

−
pξk+1

Q′k+1
pξk (6.11j)

dpξM
dt

=
p2
ξM−1

Q′M−1
− kBT︸ ︷︷ ︸

G′M

, (6.11k)

where Pint is the instantaneous internal pressure and can be computed as:

Pint = 1
3V

[
N∑
i=1

(
p2
i

mi

+ xi · Fi

)
− 3V ∂U

∂V

]
(6.12)
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In this case, the conserved quantity is:

ENPT = E + p2
ε

2W + PV +
M∑
k=1

(
p2
ηk

2Qk

+
p2
ξk

2Q′k

)
+ 3NkBTη1 + kBT

M∑
k=2

ηk + kBT
M∑
k=1

ξk

(6.13)
where E is the total energy of equation 6.6.

Boundary Conditions

Figure 6.3: 2D Simulation box
with periodic boundaries in all
directions. Figure taken from
ref. [19].

In order to represent bulk liquid in MD simula-
tions the computational volume must have periodic
boundaries. This means that a particle can exit the
box from a point of the one side of the boundary with
a specific velocity and re-enter from the symmetric
(with respect to the center of the box) point of the
opposite side of the boundary with the same velocity
(see Figure 6.3). It also means that a particle close to
a border interact with its neighbours inside the box
and, also, with fictitious particles outside of the box
– replicas of atoms close to the opposite border and
inside the box. When using periodic boundaries the
original volume is called unit cell and all the others
are called images of this unit cell.

In a case in which the liquid is confined between
walls, it is more realistic to use fixed boundaries

in order not to have interactions with replicas of the whole geometry. In most cases,
it is convenient to use fixed boundaries only in the vertical-to-walls direction, and
periodic to the other(s).
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Chapter 7

Calculations of Ionic Liquid
lubricant properties

As already mentioned, in this diploma thesis Ionic Liquids (IL) are proposed as lu-
bricants because of the strong ion-layers formation when confined and the molecular
design freedom to tune viscosity. Before optimizing this properties, the MD algo-
rithms that compute them must be verified. To do that, these algorithms are used
for the properties of a specific ionic liquid with known properties. The chosen IL
is the 1-Butyl-3-methylimidazolium tetrafluoroborate ([BMIM+][BF4

-]) with
chemical formula C8H15BF4N2 and molecular mass 226.04 gr·mol−1 and is presented
in Figure 7.1a.

Coarse-Grain MD
When molecules consisting of many and various atoms are inserted into a system,
the computation cost is higher. In order to avoid this a whole molecule (or parts
of it) can be seen as one solid bead with its own properties. This model is called
coarse-grain model (CG) and reduces a lot the computation effort in a simulation.
Another benefit of coarse-graining is that reduces the number of possible degrees of
freedom for the optimization that will follow. The procedure of obtaining the coarse-
grain model from the all-atoms one is not part of this project. In the following cases,
the [BMIM+][BF4

-] is used in its coarse-grain form, presented in Figure 7.1b. In this
model the anion [BF4

-] is represented by one bead A and the cation [BMIM+] is
represented by the rigid 3-bead molecule C2-C1-C3. The properties of the CG
model are proposed by Merlet et al. ([20]) and are presented in Table 7.1.

In the next chapters, the main properties related with lubrication that are computed
are viscosity and the load capacity of IL. At first, these properties are computed
only for coarse-grained [BMIM+][BF4

-] and then the same algorithms are used in a
procedure of search of custom IL with optimized lubricant behaviour.
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(a) All–Atoms Model (b) Coarse–Grain Model

Figure 7.1: [BMIM+][BF4
-] molecule. Pictures drawn with Jmol package

particle x(Å) y(Å) z(Å) M (gr ·mol−1) σi (Å) εi (kcal ·mol−1) qi (e)
A 0.000 0.000 0.000 86.81 4.51 0.773 −0.7800
C1 0.000 −0.527 1.365 67.07 4.38 0.611 0.4374
C2 0.000 1.641 2.987 15.04 3.41 0.086 0.1578
C3 0.000 0.187 −2.389 57.12 5.04 0.437 0.1848

Table 7.1: Properties of coarse-grain particles of [BMIM][BF4] from ( ref. [20])

7.1 Case 1: Viscosity of bulk ionic liquid
In this case, 3D MD simulation is used to compute density ρ and dynamic viscosity
η of the bulk neutral ionic liquid [BMIM+][BF4

-] at four temperatures: 500, 400, 375
and 350 K. For all simulations, the time step for integrating equations of motion is 2
fs. 3 chains of Nosé-Hoover thermostats with a time constant of 10 ps are employed
for both NVT and NPT ensembles. Additionally, only for the NPT ensemble the
system is barostated at 1 atm with a time constant of 20 ps. Initially, the N=400
ion-pairs are inserted randomly in the simulation volume, and they are allowed to
relax in the NPT ensemble for 1800 ps.

During an NPT relaxation, the volume of the unit cell is equal to the volume oc-
cupied by its particles, therefore density computations are easily performed. Thus,
instantaneous density ρ can be defined as:

ρ = total mass

volume
(7.1)

where total mass is fixed and known in advance and volume derives from the equa-
tions of motion for NPT ensemble.

Of course, in order to obtain reliable results, density must be computed after equi-
librium and must be averaged for a sufficiently long period of time. Figure 7.2a
presents the time evolution of the total energy for a system of 400 [BMIM+][BF4

-]
in the NPT ensemble. It is safe to assume that after 1300 ps the system has reached
equilibrium and density computations can be performed. Figure 7.2b is a snapshot

59



of the relaxed bulk IL in the xy-plane. The boundaries of the simulation box are
coloured yellow in order to distinguish the unit shell from its images. The [BF4

-]
anions (bead A) are the red spheres and the rest are the beads of the [BMIM+]
cations.

(a) Time-evolution of the total energy. (b) Snapshot of the equilibrated system.
In yellow the unit shell and around it
its periodic images in the xy-plane. Red
spheres represent the [BF4

-] anions.

Figure 7.2: [BMIM+][BF4
-] relaxing in the NPT ensemble.

The second property obtained in this case is the zero shear viscosity η of the bulk
liquid. During viscosity calculations simulation box is fixed and the system is allowed
to relax in an NVT ensemble.The dynamic viscosity (or just viscosity) η derives as
the mean value of the three shear components ηxy, ηyz and ηzx calculated by the
Green-Kubo formula as:

ηαβ = V

kBT

∫ ∞
0
〈σαβ(0)σαβ(τ)〉dτ , (7.2)

where T, V are the temperature and the volume of the system and 〈σαβ(0)σαβ(τ)〉
the autocorrelation function of the off-diagonal components of the stress tensor.

As already mentioned, every instantaneous value computed in MD must be averaged
through a long period of time. But for Green-Kubo viscosity this is not enough, the
averaging must also take place over different trajectories because the calculations
have a lot of noise [21]. For this reason, the same case has been solved many times
but from different initial positions of particles. In Figure 7.3, time evolution of
viscosity is monitored. The different curves represent different trajectories (produced
by different initial positions) of the same mentioned system at temperature of 350
K. It is clear that after 10 nanoseconds viscosity converges to a value within a fixed
range. This fact makes the averaging through different trajectories necessary.

The reliability of these computations can be verified after comparing the results with
corresponding experimental databases (ref. [22], [23], [24] and [20]). In Figures 7.4a
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Figure 7.3: Time-evolution of Green-Kubo viscosity measurements. Different curves
represent the same thermodynamic case but with different particle trajectories.

and 7.4b, the obtained results from the present coarse-grain model and experimental
ones from literature are indeed very close and behave similarly. In Figure 7.4a, most
of the experimental points of density fall inside the range of the errorbars of the
present calculations. Regarding Figure 7.4b, viscosity calculations at temperatures
500, 400 and 375 K are very accurate. The calculated value of viscosity at 350
K is corresponding better to experimental measurements at 340 K of Ciocirlan et
al. and Gao et al.. At 350 K, the difference of this work with the corresponding
experimental measurements is from 3 to 5 mPa · sec. The point AA-MD Merlet et
al. is an all-atom MD simulation and its results appear to be more accurate but
the equations of motion in this case are solved for the 5 atoms of [BF4

-] and the 25
atoms of [BMIM+] than just for the 4 particles of the coarse-grain [BMIM+][BF4

-]
and it is much more expensive.

Initially, the number of ion-pairs N is taken equal to 400 (as in Merlet et al.), but
in order to accelerate the process (in order to use it with Evolutionary Algorithms)
it is important to use the smallest N that produces reliable results. For this reason,
five different systems for N = 400, 200, 140, 110 and 80 are simulated multiple
times. The ion-pairs dependence of viscosity is presented in Figure 7.5b for the four
temperatures. Every point represents an average over 50 results and every result
is taken after relaxation in the NVT ensemble for 10 ns. The errorbars represent
the standard deviation only of the red curve (110 ion-pairs). It is clear that only
for N = 80 viscosity is not converged to the others. So, for every next case N
is consider equal to 110 molecules unless mentioned otherwise. Similarly with the
viscosity figure, in figure 7.5a the temperature-dependence of density is presented
for various N ion-pairs, but there is not any important change of density results
when the number of ion-pairs is decreasing.

The computational time needed by the MD described above (2 ns in NPT and 5
ns in NVT) is presented in Figure 7.6 for different N . In Figure 7.6 the black solid
line represents the time of this simulation performed on 16 CPUs and the red line
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(a) Density

(b) Viscosity

Figure 7.4: Density and viscosity of [BMIM+][BF4
-] over temperature. Compare of

present results (red) with corresponding from (ref. [22], [23], [24] and [20]).

(a) Density (b) Viscosity

Figure 7.5: Temperature-dependence of density and viscosity for N = 80, 110, 140,
200 and 400 ion-pairs.

on 8 CPUs. Having available only 16 CPUs, two runs consuming 8 CPUs can run
simultaneously so the red line represents also the time that these two runs need to
finish, but if the run is consuming 16 CPUs, multiple runs can only be performed
one by one. Thus, for two runs of 16 CPUs the time is double of the black solid
line and this is exactly what the black dashed line represents. So, as long the black
dashed curve of Figure 7.6 is above red, running on 8 processors is more efficient.

So, the conclusion of figures 7.5b and 7.6 is that 110 ion-pairs are enough for reliable
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results and the faster way is to run these simulations on 8 processors.

Figure 7.6: Computational time of measuring density and viscosity at 500 K for
various ion-pairs using 8 or 16 processors.

The structure of the bulk liquid can be understood by looking at the pair radial
distribution functions (RDF) gαβ (r). These curves are the probability of finding
the particle β at distance r from α, with α taken as the origin of coordinates where
α,β can be either anions or cations. The area around α is separated in discrete
chunks and every chunk is represented by a discrete r. The RDFs are computed
by equation 7.3 where δ is Kronecker’s function and rij the distance between the
i-th α and the j-th β. This radial distribution curves can be found in Figure 7.7
and refer to equilibrated [BMIM+][BF4

-] at 400 K. Every curve in this figure is an
average over 40 and the maximum standard deviation (error) of this results is 0.018,
so errorbars are neglected from this figure. These curves reveal an ordered structure.
As expected, molecules of the opposite charge of a central one are found closer to
it than molecules of the same charge. Also, in Cation-Cation curve there is not a
specific peak but a wide flat area with maximum g(r). This is happening because
the [BMIM+] cation is consisted by three particles and they occupy more than one
consecutive chunks.

gαβ (r) = 1
NαNβ

Nα∑
i=1

Nβ∑
j=1
〈δ (|rij| − r)〉 (7.3)

Figure 7.7: Radial distribution functions of equilibrated [BMIM+][BF4
-] at 400 K.
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7.2 Minimization of viscosity

It is important for a lubricant to have low viscosity (in hydrodynamic lubrication) in
order to reduce friction between two surfaces. The purpose of this section is to study
how MD simulations can be used during optimization with Evolutionary Algorithms
as an evaluation tool. Also, the importance of every possible design variable is
studied, in order to reduce the degrees of freedom for the final optimization that
will follow in next section.

Evolutionary Algorithms are population-based optimization methods that imitate
the evolution of biological populations. The optimal solutions are these that are
better adapted to the objectives. All the optimizations here are conducted in par-
allel by EASY (Evolutionary Algorithm SYstem), an optimization software
developed by the PCopt/NTUA. EASY is a high-fidelity optimization software that
can deal single- or multi-objective problems subjected to constrains. It can reduce
the needed evaluations by growing Radial Basis Function networks that imitates the
evaluation tool. It also offers the choice of coupling the Evolutionary Algorithms
with a Gradient-Based method in multiple levels of various fidelity.

As already mentioned, MD simulations and especially viscosity computations are
very time-consuming because they require averaging over time and over different
trajectories. Also, optimizations by evolutionary algorithms tend to converge slowly
especially when the number of design variables is increased, because this number
represents the dimensionality of the search space of the problem. For this purpose
an initial study of the importance of each design variable is conducted. Multiple
optimizations are conducted with a group of design variables as free parameters and
all the others kept fixed.

In this optimizations, the objective function is the IL’s viscosity at 500 K. The
evaluation tool is the LAMMPS algorithm written for and used in section (7.1).
All the design variables refer to IL properties and are grouped in four categories:
LJ parameters, Geometry of Cation, Masses and Charges. The first eight design
variables (first group) are the σ and ε parameters of Lennard-Jones Potential for
beads A, C1, C2 and C3. The second group contains the lengths from C1 to C2
(l1) and from C1 to C3 (l2) and the angle C2 − C1 − C3 (φ). The Mass category
contains the four CG particle masses mA, mC1 , mC2 and mC3 . The design variables
in Charge group are only two. During optimization anion’s and cation’s charge are
fixed in -0.78 e and 0.78 e and the design variables are defined as α1 = qC1/0.78e and
α2 = qC2/0.78e, where qi is the charge of particle i. The charge of the third bead is
defined as qC3 = 0.78e− qC1− qC2 . The evaluation tool also calculates density to use
it as a constrain. This kind of constrain is imposed to make sure that the optimized
design variables do not refer to a gas that obviously will have much lower viscosity.
The imposed constrain is ρ > 0.6 gr/cm3. For each of these groups an optimization
is conducted with the design variables of it as free variables and the variables of
the other groups remaining fixed. The Table 7.3 contains all design variables, their
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range of definition and their order of discretization, where i = A,C1, C2, C3 and
j = 1, 2.

εi (kcal ·mol−1) σi (Å) lj (Å) φ (degrees) αj mi (gr ·mol−1)
min 0.001 1.0 1.0 5.0 −0.5 1.0
max 2.0 10.0 5.0 180.0 0.5 200.0

discrete step 0.016 0.07 0.125 0.7 0.008 1.55

Table 7.2: Deign variables and their definition range.

The results are gathered in figure 7.8a. There, the value of the best objective
function (minimum viscosity at 500 K) is monitored during the optimizations. The
main conclusion is that changing the charge ratios or particle masses is not having
as great impact in viscosity as changing LJ and geometry parameters so from now
the design variables of these two groups (Charge and Mass) will be fixed. Another
reason for this is the observation that some charge combinations produce candidates
that their evaluation is very slow.

As already mentioned in section 7.1 reliable viscosity computations demand av-
eraging over a range of different trajectories, but it will make optimization very
expensive. For increasing the reliability of the results a new optimization is con-
ducted, where viscosity of every candidate is computed in three runs. The difference
between these three runs is in the initial molecular positions that consequently de-
velop different molecular trajectories. Of course, three runs are not enough for a
reliable statistical quantity and this is a compromise in order to keep low cost. The
objective function is the same (min(η500)) and the design variable set is:

{εA, εC1, εC2, εC3, σA, σC1, σC2, σC3, l1, l2, φ, α1, α2,mA,mC1,mC2,mC3}

but only the first eleven are not fixed.

(a) Minimization of viscosity with different free
design variables groups.

(b) Minimization of viscosity. Converge of best
objective function.

The results of this optimization are shown in Figure 7.8b (y-axes in logarithmic
scale). First thing noticed is that the best solution founded is worse than the ones
found in Figure 7.8a (0.13>0.06) but this is not very strange. Viscosity is computed
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(a) Viscosity over temperature. (b) Density over temperature

Figure 7.9: Comparison of the new IL with [BMIM+][BF4
-].

only once for every candidate in optimizations of Figure 7.8a and thus the algorithm
can easily get trapped in an extreme non-realistic solution. The best solution found
is:

εA εC1 εC2 εC3 σA σC1 σC2 σC3
0.026 0.088 0.245 0.543 7.38 2.06 3.48 1.14
l1 l2 φ α1 α2 mA mC1 mC2 mC3

3.84 5.00 154 0.561 0.202 86.81 67.07 15.04 57.12

Table 7.3: Parameters of optimized Ionic Liquid

As already explained masses and charges are fixed so they are the same with
[BMIM+][BF4

-] but the parameters of Table 7.3 represent a different Ionic Liquid.
Of course, the properties of this new liquid must be computed in a more detailed
way. For this purpose LAMMPS algorithm of chapter (7.1) is used again for mea-
suring new IL’s density and viscosity. The results are printed in figures 7.9 with
the same properties of [BMIM+][BF4

-]. Y-axes of viscosity figure is in logarithmic
scale for a better compare. Figure 7.9a shows that viscosity is minimized not only
at 500 K (that is the objective function) but in all the temperature range. An other
interesting thing to observe is that the gradient of the η(T ) curve is reduced. For
the new IL it is found that η500 = 0.18 mPa · sec and η350 = 0.37 so their ratio is
η350/η500 = 2.1 and the same ratio for [BMIM+][BF4

-] is equal to 12.6 (see section
7.1). The additional benefit of this fact is that it makes easier to design the function
of an engine in a wide temperature range.
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7.3 Case 2: Force of confined ionic liquid

In this case, 3D MD simulations are used in order to compute the force of the con-
fined ionic liquid [BMIM+][BF4

-] between two metal walls of iron (Fe) and gradually
compressed by the upper wall. The force computed here is from the liquid to the
upper wall. In figures 7.11, snapshots of this case are presented. The y-direction
is vertical to the page, z-direction is opposite to the move of the upper wall and
x-direction is pointing from the center to the right of the volume. The boundaries
are periodic only in the y-direction. The volume of the liquid and the walls is small
enough compared with the total volume in order to have space for the squeezed out
molecules. The particles of every wall are behaving as a single entity on which the
external force or motion is imposed. The wall particles are situated on a BCC lattice
(2 basis atoms, one at the corner and one at the center of the cube) of 2.87 Å length
and their Lennard-Jones parametres are εFe = 0.0022 kcal/mol and σFe = 2.49 Å.
Every wall consists of 3 uncharged layers of atoms and one (neighbor to the liquid)
of positive charge. The total charge of every charged wall-layer is equal with the
charge of 15 cations, thus 11.7 e but the whole system is neutral.

Initially, the gap between the walls is 23 Å. The wall is compressing the liquid with
a constant velocity of 38 m/s for 2.5 ps and then stays still and let it relax for 25 ps.
This is happening multiple times until the final gap becomes equal to the diameter
of an anion. These alternating compressions and relaxations are performed in a
NVT ensemble of time constant of 100 fs with a time step of 0.01 fs for integrating
equations of motion. During this run the normal force applied from the IL to the
wall is computed by the following formula:

F =

Nw∑
j=1

NIL∑
i=1
Fij

Nw

, (7.4)

where Nw is the number of particles of the upper wall, NIL is the number of IL
particles and Fij the force on z-direction from the liquid particle i to the wall particle
j and derives from Equation 6.3.

In Figure 7.10 this normal force is presented as a function of the gap between the two
walls. The red line monitors the normal force during the run and the black points
are the normal force computed at the end of every relaxation and are interpolated
by the black visual-guide line. These black points represent the average of normal
force over the last 50 fs of each relaxation. The black line is considered as the real
force curve and is behaving similar with experimental measurements of ref. [30].

As expected when the ionic liquid is confined, its molecules are placed in layers of
alternating charge (ref. [30], [26] and [25]). This is pointed in following Figures
7.11. By looking on the relaxed points in force curve at Figure 7.10, it seems that
as the IL is compressed the force is increasing until some topical peaks and then is
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Figure 7.10: Normal force of liquid to the wall during compression of the IL.

falling. This is happening because after these peaks some molecules are squeezed
out, the number of ion layers is reduced and the force is falling and even becomes
negative in certain regions. The negative normal force is happening because the
ionic liquid is striving to reduce the gap due to adhesion phenomena(ref. [26]).
After some compression this procedure is repeated. This fact can be confirmed
by both snapshots and number density curves of figures 7.11. In these figures red
beads and curves refer to anions, blue curves and both blue and light blue beads
refer to cations. Black curves and grey uniformly placed beads refer to the walls.
In these figures, the number density of wall particles is divided by 40 in order to
fit well in figures. From both snapshots and number density curves the layering of
[BMIM+][BF4

-] molecules is distinguishable. In point A, there are four anion layers
and three of cations. Then two layers are squeezed out, the force drops and before
point B it starts increasing. At points B to D there are three anion layers and two
of cations. After point D the force drops so two ion layers are squeezed out and in
point E there are two anion layers and one of cations. The same layering condition is
presented until point G. Until that time the latest number of layers is compressed but
not squeezed out and thus force is increasing. After point G some ions are squeezed
out and at point I there is clearly only one layer consisted by similar number of
cations and anions. At final point J almost all cations are squeezed out and the
one remaining layer is mostly consisted of anions. For engineering applications the
steep rise of the normal force at small gaps can be beneficial for protecting against
solid-solid contact and consequent wear. The last safe point that a lubricant should
work for hydrodynamic lubrication is assumed to be point G. If the gap between the
walls becomes less than that it is not ensured that the walls will not get in touch
and for this not to happen the force on point G must be maximized.
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(a) Point A (b) Point B

(c) Point C (d) Point D

(e) Point E (f) Point F

(g) Point G (h) Point H

(i) Point I (j) Point J

Figure 7.11: Snapshots of the system at points of figure 7.10 accompanied by number
density curve.
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7.4 Optimization
The purpose of this section is to find the CG IL with optimized lubricant properties
by using the CG model of [BMIM+][BF4

-] as template.

A lubricant is introduced between two moving parts to reduce friction. For this
purpose, in case of full-film lubrication its viscosity must be minimum and in case of
thin-film lubrication it must be capable to carry very strong forces in order to avoid
solid-solid contact. So two quantities are optimized here: viscosity of the thick film
must be minimum and force capability of thin film must be maximum.

The full-film is modelled as the bulk liquid of Case 1 and the thin film as the confined
liquid of Case 2. So the first objective function is directly defined as the viscosity
of bulk IL at 500 K. For the thin film, it must be ensured that at least three ion-
layers are always between the two iron plates, so the normal force at this gap (point
G in Fig. 7.10 for [BMIM+][BF4

-], point ”G” for every random candidate during
optimization) must be maximized. EASY is only minimizing so the two objective
functions are defined as: min(η500) and min(−F”G”).

Finding the point ”G” automatically for every candidate is not so obvious. The
upper wall is compressing (and relaxing) the liquid until the gap is equal to the
diameter of one anion. This diameter is equal to σ = 0.5(σA + σFe) (according to
Lorentz-Berthelot mixing rules). When monitoring force, after point ”G” (or G in
figure 7.10), two layers are squeezed out and the force drops because of the produced
vacuum. After some more compressions, the increase of normal force is very steep.

In order to find point ”G” (last point with three ion-layers) the normal force curve
(black point-line in Fig.7.4) must be read from the opposite direction that is created.
Starting from the point of the smallest gap (point J in Fig.7.4), automatically the
force of every point is compared with the force of the next point corresponding to
bigger gap. As long as the first point of this couple is greater than the second, its
force is set to zero otherwise this procedure stops. For this modified force curve, ”G”
is the total maximum point. This statement is in agree with experimental results
(ref. [30]). Even in the case that the total maximum is somewhere else in the curve
(for some irrational reason) the existence of at least three ion-layers is ensured.

εi (kcal ·mol−1) σi (Å) lj (Å) φ (degrees)
min 0.001 1.0 1.0 5.0
max 2.0 6.0 6.0 180.0

discrete step 0.016 0.08 0.08 0.7

Table 7.4: Design variables, their definition range and their discretization.

The design variables are the same with the final optimization of Section 7.2. They are
presented in Table 7.4 accompanied by their definition range and the order of their
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Figure 7.12: The Pareto Front accompanied by the [BMIM+][BF4
-] point.

discretization. Again, the bulk liquid density is calculated and used as constrain
(ρ > 0.6 gr/cm3) in order not to end up with a vapour.

Figure 7.12 shows the Pareto front (red points) of this optimization and the initial
liquid [BMIM+][BF4

-] (black point). The three new liquids are having almost half
viscosity and more than double force from [BMIM+][BF4

-]. The design properties
of these three optimal liquids are presented in table 7.5. These properties do not
correspond to real atoms; the particles are CG beads that must be translated to real
all-atom models but this is not part of this project. Chemistry will indicate which
of these can be translated to a real IL, but the fact that the three optimal solutions
are so different (see the angles in table 7.5) allows to be optimistic.

εA εC1 εC2 εC3
(kcal ·mol−1) (kcal ·mol−1) (kcal ·mol−1) (kcal ·mol−1)

min 0.01 0.01 0.01 0.01
max 2.0 2.0 2.0 2.0

Best A 0.261 0.433 0.229 0.605
Best B 0.0.621 0.558 0.088 0.621
Best C 0.308 0.417 1.295 0.135

[BMIM+][BF4
-] 0.773 0.611 0.086 0.437

σA σC1 σC2 σC3 l1 l2 φ
(Å) (Å) (Å) (Å) (Å) (Å) (degrees)

min 1.0 1.0 1.0 1.0 1.0 1.0 5.0
max 6.0 6.0 6.0 6.0 6.0 6.0 180.0

Best A 5.84 5.21 5.37 2.90 5.44 4.73 177.2
Best B 4.89 5.37 4.41 2.27 3.54 5.37 109.7
Best C 4.73 1.63 1.08 4.89 3.38 3.46 29.8

[BMIM+][BF4
-] 4.51 4.38 3.41 5.04 2.71 3.82 116.0

Table 7.5: Parameters of optimized Ionic Liquid
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Chapter 8

Conclusions and Perspectives

Conclusions
To summarize, in this part of the Diploma Thesis viscosity and force of the CG
[BMIM+][BF4

-] were computed and then this CG model is used as a template for
the optimization of these quantities. The main conclusions of this study are:

• CG models used for computing properties of IL produce accurate results and
reduce significantly the computational cost.

• By the coupling of MD and EA, three new IL are found with optimized lubri-
cation properties.

Perspectives
The results of this internship, opens the way for new interesting studies on this
subject. Some of them are:

• The "translation" of the three new coarse-grain IL to their chemical formula
in order to be studied more detailed and evaluated as possible lubricants.

• A more complicated study can be achieved. The molecular model of the cation
could have more than three beads in order to model longer molecules. In the
optimization procedure all masses and all charges (in respect of zero total
charge) could be used as design variables for a better optimization. Of course,
all these increase the computational cost of an evaluation and the optimization
cost.
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Appendix A

Appendix: Numerical Example of
2D unsteady field

Figures related to the numerical example of subsection 2.2.2 are presented here.
These figures visualize the original field (eq. 2.55) and the compressed ones, in
order to help the reader realize the high accuracy of the approximation method.

In the following figures, the iso-u curves of the original field and of the iPGD ap-
proximations (for M = 5, 10, 15, 20, 25, 30 and 40) are presented at the 1st, 15th,
25th and 45th time step.
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M=5 M=10

M=15 M=20

M=25 M=30

M=40

Figure A.1: Numerical example - function 2.55. Iso-u curves at the 1st time
step. Comparison between the original and the iPGD approximations for M =
5, 10, 15, 20, 25, 30 and 40.
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M=5 M=10

M=15 M=20

M=25 M=30

M=40

Figure A.2: Numerical example - function 2.55. Iso-u curves at the 15th time
step. Comparison between the original and the iPGD approximations for M =
5, 10, 15, 20, 25, 30 and 40.
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M=5 M=10

M=15 M=20

M=25 M=30

M=40

Figure A.3: Numerical example - function 2.55. Iso-u curves at the 25th time
step. Comparison between the original and the iPGD approximations for M =
5, 10, 15, 20, 25, 30 and 40.
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M=5 M=10

M=15 M=20

M=25 M=30

M=40

Figure A.4: Numerical example - function 2.55. Iso-u curves at the 45th time
step. Comparison between the original and the iPGD approximations for M =
5, 10, 15, 20, 25, 30 and 40.
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Appendix B

Appendix: Numerical Example of
3D unsteady field

In this Appendix are presented the figures of the numerical example of subsection
2.2.4 in order to highlight the efficiency of the iPGD method. The iso-u curves of
the original field (eq. 2.73) and of the iPGD approaches (for approximation sum
terms M = 10, 16, 24 and 32) are presented on the xy-plane at the 1st, 10th, 25th
and 35th time step for the discrete values of z spatial variable (z = 0.1, z = 0.3,
z = 0.5, z = 0.7 and z = 0.9).
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Iso-u field for l = 1 and k = 1

M=10 M=16

M=24 M=32

Figure B.1: Numerical example - function (2.73). Iso-u curves at the 1st time
step and l = 1. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 3 and k = 1

M=10 M=16

M=24 M=32

Figure B.2: Numerical example - function (2.73). Iso-u curves at the 1st time
step and l = 3. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 5 and k = 1

M=10 M=16

M=24 M=32

Figure B.3: Numerical example - function (2.73). Iso-u curves at the 1st time
step and l = 5. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 7 and k = 1

M=10 M=16

M=24 M=32

Figure B.4: Numerical example - function (2.73). Iso-u curves at the 1st time
step and l = 7. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 9 and k = 1

M=10 M=16

M=24 M=32

Figure B.5: Numerical example - function (2.73). Iso-u curves at the 1st time
step and l = 9. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 1 and k = 10
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M=24 M=32

Figure B.6: Numerical example - function (2.73). Iso-u curves at the 10th time
step and l = 1. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 3 and k = 10
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Figure B.7: Numerical example - function (2.73). Iso-u curves at the 10th time
step and l = 3. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 5 and k = 10
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Figure B.8: Numerical example - function (2.73). Iso-u curves at the 10th time
step and l = 5. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

x



Iso-u field for l = 7 and k = 10
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Figure B.9: Numerical example - function (2.73). Iso-u curves at the 10th time
step and l = 7. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 9 and k = 10
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Figure B.10: Numerical example - function (2.73). Iso-u curves at the 10th time
step and l = 9. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 1 and k = 25
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Figure B.11: Numerical example - function (2.73). Iso-u curves at the 25th time
step and l = 1. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 3 and k = 25
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Figure B.12: Numerical example - function (2.73). Iso-u curves at the 25th time
step and l = 3. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 5 and k = 25
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Figure B.13: Numerical example - function (2.73). Iso-u curves at the 25th time
step and l = 5. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 7 and k = 25

M=10 M=16

M=24 M=32

Figure B.14: Numerical example - function (2.73). Iso-u curves at the 25th time
step and l = 7. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 9 and k = 25
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M=24 M=32

Figure B.15: Numerical example - function (2.73). Iso-u curves at the 25th time
step and l = 9. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 1 and k = 35
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Figure B.16: Numerical example - function (2.73). Iso-u curves at the 35th time
step and l = 1. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 3 for k = 35

M=10 M=16

M=24 M=32

Figure B.17: Numerical example - function (2.73). Iso-u curves at the 35th time
step and l = 3. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 5 and k = 35

M=10 M=16

M=24 M=32

Figure B.18: Numerical example - function (2.73). Iso-u curves at the 35th time
step and l = 5. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Iso-u field for l = 7 and k = 35
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M=24 M=32

Figure B.19: Numerical example - function (2.73). Iso-u curves at the 35th time
step and l = 7. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.

Iso-u field for l = 9 for k = 35

M=10 M=16

M=24 M=32

Figure B.20: Numerical example - function (2.73). Iso-u curves at the 35th time
step and l = 9. Comparison between the original and the iPGD approximations for
M = 10, 16, 24 and 32.
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Appendix C

Appendix: Unsteady Flow
through a 2D S-Shaped Pipe

In this Appendix, the CFD results of density ρ, velocities u, v in x and y directions
respectively are compared with their iPGD approximations for various summation
terms (M = 10, 50, 70 and 100). The fields are plotted at the 1st, 7th, 13th and
19th time step.

The comparisons are plotted in 2D coloured maps. In these figures the values of the
flow field are represented as a colour-scale in the xy-plane.
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Density ρ at the 1st Time Step
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Figure C.1: Flow through a 2D S-shaped pipe. Density at the 1st time step. Original
field and iPGD approximations for M = 100, 70, 50 and 10.
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Density ρ at the 7th Time Step
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M=50
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Figure C.2: Flow through a 2D S-shaped pipe. Density at the 7th time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Density ρ at the 13th Time Step
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Figure C.3: Flow through a 2D S-shaped pipe. Density at the 13th time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Density ρ at the 19th Time Step
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Figure C.4: Flow through a 2D S-shaped pipe. Density at the 19th time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Pressure P at the 1st Time Step

Full Storage

M=100

M=70

M=50
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Figure C.5: Flow through a 2D S-shaped pipe. Pressure at the 1st time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Pressure P at the 7th Time Step
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Figure C.6: Flow through a 2D S-shaped pipe. Pressure at the 7th time step. CFD
results and iPGD approaches for 100, 70, 50 and 10 summation terms.
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Pressure P at the 13th Time Step
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Figure C.7: Flow through a 2D S-shaped pipe. Pressure at the 13th time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Pressure P at the 19th Time Step
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Figure C.8: Flow through a 2D S-shaped pipe. Pressure at the 19th time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity u at the 1st Time Step
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Figure C.9: Flow through a 2D S-shaped pipe. Velocity u at the 1st time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity u at the 7th Time Step
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Figure C.10: Flow through a 2D S-shaped pipe. Velocity u at the 7th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity u at the 13th Time Step
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Figure C.11: Flow through a 2D S-shaped pipe. Velocity u at the 13th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity u at the 19th Time Step
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Figure C.12: Flow through a 2D S-shaped pipe. Velocity u at the 19th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity v at the 1st Time Step

Full Storage

M=100

M=70

M=50

M=10

Figure C.13: Flow through a 2D S-shaped pipe. Velocity v at the 1st time step. CFD
results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity v at the 7th Time Step

Full Storage

M=100

M=70

M=50

M=10

Figure C.14: Flow through a 2D S-shaped pipe. Velocity v at the 7th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity v at the 13th Time Step
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Figure C.15: Flow through a 2D S-shaped pipe. Velocity v at the 13th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Velocity v at the 19th Time Step

Full Storage

M=100

M=70

M=50

M=10

Figure C.16: Flow through a 2D S-shaped pipe. Velocity v at the 19th time step.
CFD results and iPGD approximations for M = 100, 70, 50 and 10.
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Appendix D

Appendix: Unsteady Flow
through a 3D U-Shaped Pipe

For the flow in a 3D U -Shaped Pipe with square cross section, the flow fields of
density ρ, pressure P and velocities u, v and w (in x, y and z directions respectively)
are computed and then approximated by iPGD with 135 and 200 approximation sum
terms.

In the following figures the CFD results are compared with the iPGD approxima-
tions. The visualization of the fields is achieved in 2D coloured maps. In this figures
the colour scale represents the value of the field in xy-plane for specific time steps
(1st and 25th) and specific value of the variable z (at 1/2 and 1/8 of its total). It is
impossible to fully visualize such a large-scale 4D (3 spacial and 1 temporal) field on
the paper, for this reason figures presented here are the ones with the most abrupt
changes of their values, thus the most difficult to be approximated.
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Density ρ in the 1st Time Step and at the 1
8 of the Pipe in z direction.

Full Storage

M=200

M=135

Figure D.1: Flow through a 3D U -shaped pipe. Density for the 1st time step at the
1
8 of the pipe in z direction. CFD results and iPGD approximations for M = 135 and
M = 200.

Pressure P in the 1st Time Step and at the 1
8 of the Pipe in z direction.

Full Storage

M=200

M=135

Figure D.2: Flow through a 3D U -shaped pipe. Pressure for the 1st time step at the
1
8 of the pipe in z direction. CFD results and iPGD approximations for M = 135 and
M = 200.
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Velocity u in the 1st Time Step and at the 1
8 of the Pipe in z direction.
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Figure D.3: Flow through a 3D U -shaped pipe. Velocity u for the 1st time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Velocity v in the 1st Time Step and at the 1
8 of the Pipe in z direction.
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Figure D.4: Flow through a 3D U -shaped pipe. Velocity v for the 1st time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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Velocity w in the 1st Time Step and at the 1
8 of the Pipe in z direction.
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Figure D.5: Flow through a 3D U -shaped pipe. Velocity w for the 1st time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Density ρ in the 1st Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.6: Flow through a 3D U -shaped pipe. Density for the 1st time step at the
1
2 of the pipe in z direction. CFD results and iPGD approximations for M = 135 and
M = 200.
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Pressure P in the 1st Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.7: Flow through a 3D U -shaped pipe. Pressure for the 1st time step at the
1
2 of the pipe in z direction. CFD results and iPGD approximations for M = 135 and
M = 200.

Velocity u in the 1st Time Step and at the 1
2 of the Pipe in z direction.
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M=135

Figure D.8: Flow through a 3D U -shaped pipe. Velocity u for the 1st time step at
the 1

2 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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Velocity v in the 1st Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.9: Flow through a 3D U -shaped pipe. Velocity v for the 1st time step at
the 1

2 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Pressure P in the 25th Time Step and at the 1
8 of the Pipe in z direction.
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Figure D.10: Flow through a 3D U -shaped pipe. Pressure for the 25th time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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Velocity u in the 25th Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.11: Flow through a 3D U -shaped pipe. Velocity u for the 25th time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Velocity v in the 25th Time Step and at the 1
8 of the Pipe in z direction.
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Figure D.12: Flow through a 3D U -shaped pipe. Velocity v for the 25th time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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Pressure P in the 25th Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.13: Flow through a 3D U -shaped pipe. Pressure for the 25th time step at
the 1

2 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Velocity u in the 25th Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.14: Flow through a 3D U -shaped pipe. Velocity u for the 25th time step at
the 1

2 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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Velocity v in the 25th Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.15: Flow through a 3D U -shaped pipe. Velocity v for the 25th time step at
the 1

2 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.

Velocity w in the 25th Time Step and at the 1
2 of the Pipe in z direction.
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Figure D.16: Flow through a 3D U -shaped pipe. Velocity w for the 25th time step at
the 1

8 of the pipe in z direction. CFD results and iPGD approximations for M = 135
and M = 200.
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