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Abstract

Soil Moisture can be described as the level of saturation in the upper soil layer relative to
the soil field capacity, regulated by the precipitation and potential evaporation, while being
highly variable in space and time. It constitutes a key factor for agricultural management
such as optimizing the fertilizer rates and irrigation, applying pesticides or herbicides and
crop management. Moreover, soil moisture is considered as valuable information in many
sectors such as Hydrology, Biogeography, Geomorphology, Agronomy and Climatology.
To this end, the main objective in this master thesis was to evaluate the concurrent use of
satellite multispectral and SAR radar data for estimating soil moisture in large spatial
scales. In particular, Landsat 8 Surface Reflectance data as well as Sentinel 1 GRD SAR
data were employed in the region of Arta across the Amvrakikos Gulf and the Amvrakikos
Wetlands Natural Park. Recent studies have indicated that the amplitude derived by SAR
data in VV polarization along with information about the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI) and the
Moisture Index (MI) from multispectral data can be proxies of soil moisture. In-situ
measurements from the Enhydris project were also acquired spanning three different years.
Google Earth Engine was exploited for mining the satellite data through the Javascript API
services. Then several experiments we performed in order to establish correlations between
the In-Situ and satellite data based on statistical and machine learning tools like Linear
Regression, Polynomial Regression, Generalized Additive Models (based on R Statistical
tool), as well deep learning models, using the TensorFlow Framework in association with
the Keras library in R. Generally speaking, based on the considered relative large,
multitemporal dataset, the statistical approaches did not manage to establish concrete
correlations in any of the performed experiments and combinations. The MI index along
with the V'V backscatter though was closer to the expressed variation in the In-Situ dataset.
Based on the deep machine learning framework, stronger correlations were established
between the In-Situ data from Enhydris and a combination of VV amplitude and NDVI
satellite observations.

Keywords: Remote Sensing, Earth Observation, Radar, High Resolution, Deep Learning,
Correlation, In-situ, Soil, R
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EKTENHX IIEPIAHYH

Booum emdinén e mapovoag epyaciog OToTELECE 1] EKTIUNOT TNG E00PTIKNG LYPACTOG UE
YPNOT TOVTOYPOVO TOAVPUGHOATIKOV Kol POvVTap S0pueOopKaV dedouévov. Ta Pactkd
VTOAOYIOTIKG epyaAeion yioo v extiunon kot avdmtuln ovoyeticemv HeETaEd TV
S0PLPOPIKDOV TOPATNPNCEDV KOl TOV OEOOUEVOV €OAPOVE NTOV 1) TOAVLUETOPANTY|
OTOTIOTIKY] OVAALGY, TEXVIKES UNXOVIKNG HdOnong aAld kot texvoloyieg dtayeipiong Kot
AVAKTNONG UEYOA®V YEOYOPIKOV dedopévav ommg to Google Earth Engine. Xta mlaiocio
™G HEAETNG KOt VAOTToInong a&tomodnkay véeg texvoroyies, akydpifpot kot GuoTiHaTa,
Omov pe ovTOUATO TPOTO Oivouv TN SVVATOTNTO YO GLGTNUOTIKY OVAKTNON Kot
eneepyacio SOPLPOPIKMY KOl YEOYMPIKDOV dESOUEVMV.

Edagwr) Yypaoia
H &dapwm vypaoia opiletor o¢ 10 eninedo KOPEGHOD GTO AVAOTEPO GTPDOUA TOV EXAPOVS
Kot ggoptdton and T kotokpnuvicelg kot v egotpcodomvor. H edagikn vypacia

petafaiietal TG0 GTO YMPO OGO Kol 6TO ¥POVo Kol amotelel Wdlaitepa oNUOVTIKO
ToPAyovTa Yo TNV LYElR Kot TV ovamTuén e PAACTNONG Kot TOV KOAALEPYEIDV, APOD
HEC® OLTNHG OADOVTIOL TO GLGTOTIKA TOL €04QOVE VA TOPAAANAO GLUPAALEL GTNV
ewtocHvOeon. EmmAéov, cuppdiiel omnv dlomvon T@V QUTOV Kot TV EATHICOIATVON
070 £30p0¢, N omoia ennpedlel TV Beppokpacio KaBOS Kot TNV VYPOGIO TOV ETLPAVELNKOD
avépov. Téhog, M extiumon g €0aQIKNg Lypaciag sivor o Wwaitepa GNUOVTIKY
TANPOPOPLN Yol TNV OLAXEIPIOT) TV KOAMEPYELDY KOL TNV ANYT CYETIKAOV ATOPAGEDV OTMG
n épdevon.

[eproyn Meréng

H meproyn perétng g mapovcag Epevvag PpickeTar 6to voTio Tunpe tov Nopov Aptoag,
otV ‘Hrewo, ko meprhopPdvel v mediada e Aptag kabmng kot to EOvikd ITapko
Yypotoénwv Auppakikov, Tov ektetvetor Katd pnkog tov Apppokucod KoéArov. H nedidda
™™g Aptag, 1| omoia elvar Kot 1 peyaddtepn o€ £KTaoT TESIVI TEPLOYT| TOL VOO, BpiokeTat
010 VvoTloTEPO TUNU TG Hmelpov ko amotedel pépog tmv vOPOLOYIKMOV AEKOVOV TMOV
notap®dv Aovpov kot ApayBov. Xapaktmpiletor amd yopnAiés KAGELS Kol VYOUETPAL, TNG
16&ewg Tov 0%-25% wor Om émg 100M avtictoyya, evd T0 KALa ™G mEPLONG ivan
Meooyelokobd THTOL pe NTIOVS, PPOoYeEPOVS YEUMVESG Kot VYNAES Bepprokpacieg kotd v
Bepivn mepiodo. O ApPpakucoc Koiroc cuvoéetar pe to 1ovio TTEAayog ko kotarapPdver
o éktaon 405km? pe péco Paboc ta 26m. To HOPPOAOYIKG TOV YOPAKTHPIGTIKA
opeilovtal 1060 Ge PLOIKOVE OGO Kol oe avOpomoyevelg mapdyovteg Kot amoTeAel
TpooTaTEVOUEVT TEPLOYN HEG® ThG ZvvOnkng Ramsar (Ramsar, 2014). Ot vypotomot Tov
ApBpakikod ekteivovtar otig fopeteg aktég Tov Apppakikov Koimov kat 6to avdtepo
TUUO TOLG GLVOVTOLV TNV Teddda g Aptag. Xapaxtnpilovtor amd iaitepo Kot
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TOAVTAOKO, LLOPPOAOYIKA YOPOKINPIOTIKA EVD QIAOEEVOVV HEYAAN TOKIALL TOVIOOG UE
ondvia kKor vwo eEapdvion €idn. To EOvikd Ildpxo Yypotdmwv tov ApPpaxikod
TeEPAAUPAveEL Eva PeyEAo TULO TNG TEOLAONG TS APTOC KO TOVG VYPOTOTOVS, EVGD Eival
ONUOVTIKO va ovaeepBel 0Tl amotelel (o amd TIC ONUAVTIKOTEPEG TPOGTATEVOUEVES
neployég g Evpanng avikovtag oto diktvo tmv meproydv NATURA 2000 (EEA, 2014,
EKBY, 2014).

leoyopucd Asdopéva

2TV épguva oTh xpnotporoinkay toco ontikd dedouévo 660 kot dedouévo radar. To
YPOVIKO €0p0og oV e€eTAGTNKE KaOMG Ko 01 akp1Peic nuepounvieg Aymge T@v dedoUEVEDV
TPOEKLYOV (G GLVAPTNON TNG SBEGIUATNTOC TOV GLVOAOL TV OESOUEVOV, ONANOT|

COLPOVO PLE TNV SLBESIUOTNTO TOGO TOV EMLYEI®V OGO KOl TOV S0PLPOPIKAOV LETPTCEMV.
O emiysleg perproelg mov ypnowomombnkav oto mAaiclo g mapovoag HEAETNG,
avianOnkov and v Bdon Agdopévov «Evudpicy kol di€betav emiysiec petpnoeig g
€00PIKNG VYpasiog amd 6 otabpovg. Ta dedopéva g Paong «Evudpicy sivar tposPaotpa
HEom ™G avtiotoyng dadiktvakng derapng (http://system.irrigation-management.eu kot
https://enhydris.readthedocs.org) kot meptlopfdavovy xpovooelpés 1060 MeTE®POAOYIKMV

660 kot Yoporoykmv dedopévav. Ot otabpol mov emiéyOnkav Bpiokoviay 6Tig TEPLOYES
Ayioc Znvpidwvag, Kapmn, Koppévo, Kopmoti, TEI Hreipov — Kwotakiol kot TOEB
Aovpov.

Ta dopveopikd dedopéva mov ypnoomombnkay, aviAndnkav amd to Google Earth
Engine, kot meplapfovay gikdveg omd tovg dopvedpovg Landsat 8 wkar Sentinel 1. To
Google Earth Engine extog oamd ta opykd, mapéyer v mpdécPacn kol oe
npoeneEepyacuéva 0e00UEVE GUUPBAAAOVTOS £TCL GE UIKPOTEPOVS OTTOLTOVLEVOVS YPOVOLG
eneEepyaciag. Ta morlvgacpatikd dedopéva mov ypnoiporombnkay, xovv mapoydel and
Tov dopueopo Landsat 8 kot cvykekpiuéva alomombnke N TANPOPOPIo, EMPAUVEINKNG
AVOKAUGTIKOTNTAG. TO GUYKEKPIUEVO GET OEOOUEVOV APOPE OTLOCOUPIKA dlopBmuéva
dedopéva tov opydvov kotoypapns OLI/TIRS. Kabe swcova nepieiye 5 poopatikd kavalio
GTO TUNUO TOV OPOTOV KOl TOL €YyVS LIEPLOPOV, 2 PUGULOTIKE KOVAAN GTO TUNLO TOV
uéoov vEPLOpPoL KaBmC Kot 2 610 Oeppkd vEpLOpo. Ocov apopd to radar dedopéva Tov
emAEyOnkav, Aednkov ard tov dopvedpo Sentinel 1 ko cvykekpyéva and to Radar
YvvBetikod Avoiyuatog (SAR), eved ftav tomov GRD.

Avdivon
Ta dedopéva SAR eiyov vmootel mpoenelepyacio katd v omoia elyav evnuepmbel ta

dedopéva Tpoydc, elyav amarloydel amd Bopvfovg, NTav padlopteTpikd dtopbopéva Kot
téhog elyav vrootel opboavaywyn. EmmAéov ot Tyég tov omobookedaldevoL GNUOTOG
nrov ekppacuévec oe decibels (db). H uebodoroyio mov emdéybnke yio tnv ekmévNnon g
TapoVCG LEAETNG TEPIAAUPave TNV epapproyn Kot aloAdynon nebddwv moAvpetafAntg
OTOTIOTIKNG OvAAvoNG Kou punyovikng pabnong omwg pappikr [HoAwvdpodunon,
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[MoAvovopkn  Tolvopdunon, Tevikevpéva IIpooBetikd Movtéha ko Teyvntd
Nevpovikd Aiktoa. [Tio cvykekpiuéva, apyikd tpoypotoromnke n npoeneiepyacio TV
dopvpopikdv dedopévav oto meplPdiiov tov Google Earth Engine oe yldooa
npoypappatiopov Javascript. Xto Google Earth Engine eionyOnoav to onueio 6mov
Bpickovtar ot otabuoi tov petpioemv agov petatpannkav o Fusion Tables and v
nopo1, Shapefile ypnoyomoidvrag To web-based mepiBaiiov Tov Shape Escape. Exovtog
QULTPApEL TIC GLALOYEG dedouévmv mov Tapéyoviol oto Google Earth Engine pe Bdon tig
eMOLUNTEG TAPAUETPOVS KL £YOVIONG TIC EIKOVEG TOL  avoEEPONKOV  Topamave,
VIOAOYIGTNKAY 01 TIHEG 3 OEIKTOV 0T oNpEia TV oTafU®dV TOV pHeTpicemV, Le Bdon ta
dedopéva Emeoveloknc Avokiaotikotntog tov dopvedpov Landsat 8. O deikteg avtol
nrav o Kavovikoromuévog Agiktng Brdotnong (NDVI), o Kavovikoromuévog Agiktng
Yypaciog (NDMI) kot o Aeiktng Yypaociag (MI). Ztnv cuvvéyeia, ¥pnoiloToidVToS To
dedopéva tov dopveopov Sentinel 1, e&nynoav Kot ot TipéS omobockédacng 6€ TOA®ON
VV, ota onpeio Tov otabuodv Tov HETpRoemv. AQod cLAAEYONKAY OAEG Ol amapaitnTEG
TIEG Yo Tov kaBe otabpd, eEnydnoav 6 apyeio popeng .CSV amd v eneiepyacio TV
dopvopikdv dedopévov Landsat 8 kot dAllo 6 apysion amd v emeepyacio TV
dopvgopikmv dedopévav Sentinel 1. Ot tehikég cvAloyég dedopévav amd to dedopéva
Landsat 8 mepieiyov amd 39 eyypapéc kdbe petafintig yio tovg otafuovg Ayiog
Eropidovag, Kapm kar TOEB Aovpov, 43 eyypapés yu tov otabud TEI Hmeipov-
Kootakiol ko 84 gyypaeég otoug otafuovg Kourott ko Koppévo. To anotéreopo nroav
éva 6T dedopévav 328 eyypapmv. Avtictoya, amd to dedopéva Sentinel 1 eEqybnoav amd
144 eyypagéc tov omoBookédaong towv otabumv Ayog Xmupidovag, Kouppévo,
Kounét, TEI Hreipov-Kwotakiol ko TOEB Aovpov eved yio tov otafud Kaoumn
eENyOnoav 145 gyypapéc, 0dnydvtog oe Eva TEAKO GET 0£00UEVMVY 865 eyypapdv. Xe KGO
EYYPAON TOV TPOAVAPEPHEVTOV GET OEOOUEVOV EVIOMIGTNKAV KOl GLVEVOONKAV Ol
OVTIGTOLYEG TPUYUOTIKEG UETPNOELS €0QPIKNG VYPOACING. XTO TOPUKAT® O1OyPOLLLOTOL
ameikovilovtat ol YpovosEPES TV LETAPANTOV Tov e€nydncav.

NDMI

Ml

Soil Moisture (and scaled Indexes)

S L H o L O & © © & o .0 I 6 L A QD a
' FFF QN F Y F P F QA F Y ¢S K ;
S A R N N ~ R A A A R A B B P R

Figure 1: Exiyeieg uetpioewv edagiig vypaociog (IN-Situ) ko tiuéc molvopaouoticady deikrarv NDVI, NDMI, MI.
2vvolika 328 uetproeig kaa avtiotoryeg tués (x10) NDVI, (x10) NDMI kaz (x3) MI oe éva draotnua +/- 2 nuepcov.
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In-situ

Sail Moisture (and scales VV)
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Figure 2: Ezniysiec uetpijoewv edapikic vypaoiog (IN-situ) kot tiuéc omioboorédaong VV (db). Zvvolira 865 uetprioeic kou
ovtiotoryes tyés (+30) VV e éva drootnua +/- 2 nuepav.

2voyetioelg kol A&loAdynon

A@ov oloxAnpadBnke 1M mpoeTolacio TV Jdedopévev, yopiotnkov oe  dedopéva
ekmaidevong (training set), emiéyovtag 0 80% TV GLVOMKOV OedOUEVOV, KOl GE
dedopéva emainOgvong (validation set), 6mov emléyOnie 1o vedrouro 20% TV GLVOMK®V
OedOUEVDV, KL EQUPUOCTNKE Lo GEPE TEWPOUATOV Yoo TNV aviarTuén cvoyeticemv. H
npm TN peBodoroyio Tov VAoTOMONKE, APopovsE TNV avarTLEN EVOC MovTélov Ipappukng
[MoAwvdpoOUNONG XPNOUOTOIDOVTOS G EEAPTNUEVN UETOPANTN TIG EMLYEIEG LETPNGELS TNG
€00QIKNG vypaciog kot kébe @opd o amd T perofintésc NDVI, NDMI, Ml,
OmcBookédaon VV, og aveEdptnn petafanty. Ot tipég mov eAéyyOnkav e okond v
a&lohdynon tov anotehespatov frav n Tetpayovikny Pila tov Mécov Tetpaywvikon
Tpdrpatoc (RMSE), 0 cuvieleotiic Pearson o610 tetpdyovo (I?) kol 0 GUVIEAEGTNC
Spearman (p-value). v cvvéyela avamtoydnke ki epapudotke o, oelpd Moviédmv
[MoAvovopkng ToAwdpounong yw kédbe pio and 116 oveEdptnteg petofAntég Ko
aSoroynOnkav pe Pdomn TG TIHEG TOV TOPAUETPOV TOL AvAPEPONKOY Kol GTO LOVTEAQ
I'poappucng Hoiwvopdunong. ‘Enetrta, viomomOnke po oepd IN'evikevpévav [pocHetikmv
Movtédwv yia ka0 pia and Tic avedptnreg petafAntés, Ta omoia agoroyndnkav pe Baon
mv Tetpaywvikn PiCo tov Méosov Tetpaymvikod Zedipatog (RMSE) kot tov cuviedeot
Pearson 610 teTpdyovo (r2).

AoV viomomOnKay o TOPATAVE® HOVTEAD, GEPA ElXE 1| EPApPLOYT Log TeXVIKNG Babidbg
Mnyavung Méfnong, pe Texyvntd Nevpovikd Aiktoa, ¥pnoyLoroidvtag autny Ty eopd
dvo aveEdptntec petapintés, tov NDVI kon t1g tnéc OmoBookédaong VV. INa va yivet
avtd €QIKTO, Kpidnke okOMUO va evtomioTovy ol €ikovec Landsat 8 kor Sentinel 1 pe
dpopd nuepounvidy +-2 pépec. H ovyydvevon tov eikévov €yve pe v xpnon tov
Google Earth Engine amd to omoio mpoékvyov 6 o€t dedouévmv, Eva yia Kabe otabud,
omov 1o Kabéva teprhappave 19 eyypoeéc. To tedikd anotédecpa ftay £va 6T 0e00UEVOV
pe 114 gyypagés. H viomoinon tov Teyyntdv Nevpovikdv Aktowv mpaypoatomomonke
LE TNV XPNOTM TS TPOYPOUUATICTIKNG YA®GGag R. Apywcd ta dedopéva yopiotnkoy ce
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dedopéva ekmaidgvong Kol dedopEVa ETAANBELONG OTME TPAYULATOTOONKE Kol Kot TNV
EPAPLLOYTN TOV TPONYOVUEVAOV TEXVIKMV, OTOL T0 80% TmV dedopévav ypnoiomotOnke
o¢ dgdopéva ekmaidevong evd to vmoérowmo 20% g doedopéva emainBevong. Xtnv
ouvéyela, Kpidnke amopaitnn 1 Kavovikonoinon twv dedopévov o kiipoka [0,1]. H
dwdkacio aut omotedel omopait)To PRpo TPV TNV EI00YOYH TOV OEOOUEVOV OTO
Teyvntd Nevpovikd Ailktoo. A@EoV JSOKIHACTNKAY SAPOPES TEYVIKEG VAOTOINGONG
Nevpovikdv Aktdmv, 1 To aroTEAECUATIKN fTay 1) xp1ion Tov epyoieiov TensorFlow ce
ocvvdvacuo pe v Pipatodnkn Keras. To apyikd Pripa meplelye 10 Opiopo TOV TOPAUETPOV
ToV HOVTEAOL Nevpovik®dv AKTO®V, KOTE TOV 0moio opiotnke &vag apyikods apluoc
Kpvpov Emmnédwv kot tov Nevpdvmv tovg, kabdg kot 1 cuvaptnon evepyonoinong. H
oLUVAPTNOT EVEPYOTOINONG MOV EMAEYONKE MTAV Ol YPOUMKES HOVAdES avOopBwong,
yvootég pe to akpovopo ReLU. H emhoyn tov mopapétpav dev Paciletal e kdmolov
Kavovo aALd oty dtadikacio Sokiung Kot opdipotoc. H dwadikacio pddnong opiotnke
®ote va mpaypatomolel 100 emavoinmtikd mepdopoto oto dgdopéva (epochs). Aeov
oploTnkay OAEG Ol OTOPAITNTES TOPAUETPOL, EKTEAEGTNKE N dladIKOGIo EKTAidELONG KL
aE10AGYNONG TOV TEAMIK®OV HOVTEAMV.

Ta omoteAéopoato mov mpoékvyov omd To TOAAATAL TEPAQATO HE TN avAALGN
TOAVOPOUNoNG €0€1E0V GE YEVIKEG YPOpUUES OTL Oev LaNPEaV GULGYETIGES Yo TO
YEVIKELIEVO GET OEOOUEVOV Kol TIG dwypovikég mapatnpnoels. Ot tpég tov RMSE
AVAOEIKVOOVVY TIG OOKAIGELG 66 MM UETAED TV TPAYLATIKOV KOl TV VTOAOYICUEVOV
TILOV €30QIKNG vYpaciag. Xvykekpiuéva, ta mewpdpata [poppkng Molvdpdunong ue
xpion tov NDVI o¢ aveEaptnmn petapint, £detéov po iuf) RMSE {om pe 7.48, r? 0.04
kat ovvteheotn Spearman 0.33. H I'pappuixn [oAwdpounon pe aveEdptnen petafintn tov
NDMI &iye RMSE 7.27 xou r? 0.033, evéd 1 Tipn} Tov cvvtedeotr; Spearman frav 0.004.
Ymv ovvéyee, n i ov RMSE mov mpoékuye amd v gpappoyn g Ipoppkng
[ToAwdpounong, pe xprion tov MI og aveEdptnn petafint Nrav 7.22, evéd ot TES TOV
r? ko1 Tov GuVTEAEGTH Spearman ftav 0.043 ka1 0.155, avtictorya. To poviého I'pappticic
[MoAwopounong pe ave&aptnt petafAnm g TéS g omcBookédaong VV, elxe tiun
RMSE ion pe 8.058, n T tov r? frav 0.043, evd o cvviedesthic Spearman rtav
0.00000006. Xta moapakdtom Owaypdupote, TopovoldleTonr 1 GOYKPIoN HETAED TOV
VTOAOYIGUEVAV KOL TOV TPOYLOTIKOV TIUOV EO0PIKNG LYPAGTOS OV TPOEKLY OV 0md KaOe
HOVTEALO.
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Figure 3: 2UyKkpLON UTTOAOYLOUEVWV KAl TPAYUATIKWY TLUWV vypaoia ue aveéaptntn uetaBAntn tov NDVI (apiotepa) ko tov NDMI
(6eéia) ato Movtédo Mpapuikng MaAwvépounong (N = 66 woparnpiiocic twv dedopévwv exolnbevong).
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Figure 4: S0yKpLon UTTOAOYLOUEVWY KOL TIPAYUOTIKWY TLUWV vypaoiag pe aveéaptntn uetaBAntr tov Ml (aptotepa) (N = 66
TopaTnpioels Twv dedouévwy exoiibevong) kat tnv omoBookeébaan VV (deéia) (n = 173 mapatnpiiceic twv dedouévay exalijbevong)

oto Movtédo Mpauuikng MaAwvédpounong.

Oocov agopd 10 povtéro [Holvwvopkng Iakvopounong pe yprion tov NDVI, 1o RMSE
mov mpoékuye Hrav 8.229, to 12 0.016 kot o cuvtekeotic Spearman 0.099. To RMSE tov
avTicTOL(oV HOVTEAOL pe aveldpmn petafinti tov NDMI fitav 7.646, evéd to I Kot o
ovvtereotng Spearman, ntav 0.02 kot 0.012, avtictoya. H xpnomn tov MI g ave&aptn
peTafANT Tov povTéAoL sixe m¢ amotéleopo to RMSE va sivor 7.273, o r? 0.038 kot o
ovvtedeotng Spearman 0.00027. Téhoc, to povtéro IMoAvwvoukng IaAvdpdunong ue
xpNomn To¢ ToV omcbookédaons VV og aveEdptntn HeTOPANTY, €lxe OC ATOTEAEGULA
g RMSE ion pe 8.058, r? 0.042 «xou ovvieheoty Spearman pe Tuq
0.00000000000000022. Ta mopokdT® SoypAUUOTO OTEOVICOVUY TNV cVYKPIoN UETAED
TOV VITOAOYIGUEVOV KOl TOV TPOYUOTIKOV TILOV E00PIKNG VYPAGIOG TOV TPOEKLYOV OO
k@0 povtéro Iolvwvopikng [MoAwvdpounonc.
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Figure 5: ZUykpLon UTTOAOYLOUEVWV KAl TTPAYUATIKWY TLUWV Uypaoiac ue aveéaptntn uetaBAnti tov NDVI (apiotepa) kat tou NDMI
(6eéia) ato MovtéAo MoAvwvupikrig MaAwvdpounong (N = 66 zaparnproeis twv dedouévawv exalnbevong).
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Figure 6: SUyKpLON UTTOAOYLOUEVWY KOL TIPAYUATIKWY TLUWV Uypaoiag ue aveéaptntn uetaBAntr tov Ml (apiotepa) (n = 66
TopaTnpRoELs Twv dedouevav exalibevong) kat tnv omtodookeédaon VV (beéia) (n = 173 moparnpioeig twv dedopévmv
emalnOsvang) ato MovtéAo MoAvwvuuikrig MaAvdpounang.

Ta amoteléoparto g epappoyng tov I'evikevpévov Ipocbetikov Movtédov e yprion tov
NDVI o¢ aveéaptn petafint siyav amotédeopo tg RMSE 7.441 xon r2 0.03 evé ot
Tipéc tov RMSE xon 12 pe yprion tov NDMI ¢ aveEaptntn petafinti frov 7.268 kat
0.033 avtictorya. H ypnon tov Ml ®g avefdptmm petofint oto [Nevikevpévo
[pocOstikd Movtého eixe Ty RMSE 8.985116 won r? 0.085. Téhoc, To RMSE mov
TPOEKLYE A0 TNV EPOPLLOYN TOV TOPATAV® LOVTEAOL LE xpron ™S OmeBookédaone VV
Arav 7.79 evéd 1o r2 frav 0.12. H ovykpion petald ToV LTOAOYIGHEVMV KOl TMV
TPOYUATIKOV TILOV £60QIKNG VYPOSIOG POIVETOL GTO TOPAKAT® OOy PALLLLOTO.
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Figure 8: ZUykpLon UTTOAOYLOUEVWY KAl TIPAYUATIKWY TLUWV vypaoiag ue aveéaptntn uetaBAntr tov NDVI (aplotepa) kat tou
NDMI (8eéia) oto levikeupévo lMpoaBetiko Movtédo (n = 66 wapatnpiioeic twv dedopévav exolibevong).
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Figure 7: SUyKpLON UTTOAOYLOUEVWY KOL TIPAYUATIKWY TLUWV Uypaoiag ue aveéaptntn uetaBAntr tov Ml (apiotepa) (n = 66
TopaTnPRoELs Twv dedouevwy exaljbevong) kat tnv omtoGookébaan VV (Seéia) (n = 173 mapatnpiioeic twv dedouévawv
emaliiBsvong) ato Mevikeupévo Mpoodetiko Movtélo.

To televtaio povtélo mov vAomombnke frav owtd Twv Teyvntov Nevpovikdv Aktoov,
pe xpnomn tov NDVI kot tov tipdv omcBookédaong VV og aveEdptnrteg petafAnTéc, 0mov
1 tn Tov RMSE S1opopedbnke og 6.204. X10 Topakdtom Sidypapiio gaivetot ) chykpion
TOV VTOAOYIGUEVAOV KOl TOV TPAYLOTIKOV LETPNCEDV EOAPIKNG VYPAGIOC.
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Soil Maisture Estimation based on Multispectral and SAR Satellite Data using Loogle Earth Engine and Machine Learming

Measured vs Predicted Soil Moisture using NNs
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Figure 9: Zoykpion vroloyiouévav kou mpoyuatikdv tiudyv vypaciog ue aveldpnreg uetafintéc tov NDVI ko tig tipée
omicOoorédoons VN ato Moviélo Teyvinrdv Nevpwvikdv Auctvwv (n = 114 rapatnpiiceig).

Ytov mopoKato mivoka, cvvoyilovtar To amoteAéopato OAv Tev uefddwvV  mov
EQOPUOCTNKAY GTNV TOPOVCO, EPEVLVAL.

Table 1: Zovoyn twv aroteleaudtmv Tmv epopuocuivmy poviéiwmy

I'pappucy HMorvopopnon

AveEaptntn
RMSE r? -value
Merapinti P

NDVI 7.478 0.040 0.330
NDMI 7.268 0.033 0.004
MI 7.222 0.043 0.155
O"‘“e‘\’/"\'/‘aa““" 8.058 0.043 0.00000006

Horvevopukn Maivopopnon
(N|DAVA 8.229 0.016 0.099
NDMI 7.646 0.020 0.012
MlI 7.272 0.038 0.00027

Omo0Oookédaon

8.058 0.042 0.00000000000000022

I'evikevpéva [pocBeTikg Movtéla

NDVI 7.441 0.030 -

NDMI 7.268 0.033 =

8 985 0.085 :
Omo0Oookédaon

vV 7.789 0.120 -

Teyvntd Nevpovikd Aiktoa
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6.204

ZOUQOVO PE TO TOPUTAVEO OTOTEAEGLOTO, TO GUUTEPAGLOTO TOV TPOKVTTOVV givar OTL
Kapio amd TIG MEPAUATIKEG GVOYETIGELS TOV TPOYUOTOTOMONKAY OEV TAPNYUYE OPKETA
wavoromTikd amotedécpata. Ilapatnpndnke Opwg 0Tl Kotd TOV VTOAOYIGUO T®V
povtélov I'poappkng HoaAwvdopounonc, to axpiBEctepo LoOVTELD TapyON LE TNV YPNOT TOV
Tiudv OmoBookédaong VV ¢ aveEdptnmm petafAnti apov o cuvteAleotng Spearman
ATV 0 YOUNAOTEPOS Kol TO 2 LYNAOTEPO, GE GYECN LE TO VITOAOUTAL LOVIEAQ TTOV
napnyOnoav péow g oG peboddov. IMapdia avtd Kol T AmTOTEAECUATO TOL OEIKTN
NDMI fjtav eriong kavomomtikd ce oxéomn pe avtd tov dsiktdv NDVI kot MI. Ocov
aQOpPd T ATOTEAEGUOTO TNG EQPAPUOYNS TV Moviédmv [Tolvwvopukng [TaAvdpdunong,
ot Tiég omobookédaong VV kabdg kot o dsiktng Ml g ave&dptnteg petafanté,
avédelEav Twég RMSE mov gavépwvay péceg omokiicelg katd 8.058 mm (uéyebog
detypatog, N=865) ka1 7.273 mm (uéyebog deiyparoc, n=328), avtictoya, peTo&d TOV
TPOYUATIKGV KL TOV VIOAOYIGUEVOV TILAV ES0PIKNG VYPasiog, Kot TIéC I ioec pe 0.042
kot 0.038, avtictoya. [dwitepo evolapépov elxe Kot 0 cuvteleotng Spearman tmv dvo
ToPOTave poviéAwv, agold nNtav 0.00000000000000022 o610 HOVTEAO HE TIS TUEG
omoBookédaong VV kat 0.00027 oto poviédo 6mov ypnoponomdnke o deiktng MI. To
aKpPECTEPO LOVTELO TTOL TTPOEKVYE KT TNV EPappoyn TV [Nevikevpévav [lposOetikav
Movtédwv ftav To HOVTELO KATA TO 000 ™G OvVEEAPTNTN HETAPANTY XpNoomoOnkKay
ot Tég omoBookedoong VV, pe RMSE ov avadeikvoe 0Tt 1 Hé€om amoKAon HeTAED TV
TPOYUATIKOV KOl TOV EKTILOUEVOV TIUOV VYpasiog oy +/-7.79 mm ko r? ico pe 0.12
(néyeboc detypartoc, N=865).

Ocov aeopd T0. CLUTEPACLATO TOL TPOKVITOVV OVOPOPIKA HE TNV KavoTnTa KaOe
HeTOPANTAS Vo cOUPAAEL otV eKTIUNON NG €00PIKNG VYpaciag, mapatnpnonke Ot N
xpNomn TeVv TH®V omicbockédacns VV €0moe T KOADTEPO OmoTEAEGLOTA GYEOOV GE KAOE
TOmo  poviéhov. Amd v GAAN mAevpd, TO Aydtepo  emBupnTtd  OmOTEAEGUOTO
napatnpinkav kotd v ypnon tov NDVI og aveEdptntn petafAnt oto poviéha. O
NDMI @dvnke va amodidel kaavtepa oto povtédo g Ipappukng Iaivdopounong evo to
amoteAéopato tov MI ftav apketd wovomomTikd KaTd TV £QOPLOYN TOV LOVTEAOV
[ToAvwvopkng ToAvopounong aird kot tov evikevpévov Ilpocsbetikddv Moviérov.
[Mopdra avtd 10 RMSE 100 Ttelevtaiov ftav apketd vynAd ce oyéom Le O LITOAOUTO.
LOVTEAD (POVEPDOVOVTOG MEYUADTEPEG OMOKAIcElS HeTAE) TOV TPOYHOTIKOV KOl TOV
EKTIUOUEVOV TILOV €00QIKNG vypaciac. Télog m ypnon tov Teyvntodv Nevpovikdv
AKTO®V £00GE TO TTLO IKOVOTOUTIKA OTOTEAEGUOTA GE GYECT UE TIG LITOAOITESG pefddovG,
pue v younAotepn T RMSE, avadsikvimvtog por péon amodkion g taEems Tmv
+/-6.204 mm peta&d TOV TPAYUOTIKOV KOl TV VTOAOYIGUEVOV TILMV EGAPIKNG VYPAGTOC
(uéyebog detypatog, N=114).
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1 INTRODUCTION

1.1 SOIL MOISTURE

Soil moisture is an important variable in earth system dynamics (Famiglietti et al., 1998) and it
can be described as the amount of water that is stored within the pore spaces in between soil
aggregates (inter-aggregate pore space), and within soil aggregates (intra-aggregate pore space).
The soil moisture content is the percentage of moisture contained in a sample of soil at a given
time, ranging from 0 (completely dry) to the value of the soil’s porosity at saturation (completely
saturated). It is mainly regulated by the precipitation, the potential evaporation, the temperature
and the soil characteristics and is highly variable in space and time (Shouse et al., 1995; Grayson
et al., 2002; Zhao et al., 2010; Vachaud et al., 1985; Lin, 2006; O'Geen, 2010).

The term surface soil moisture refers to the water that is present in the upper 10 cm of soil while
the term root zone soil moisture is used to describe the water that is available to plants, which is
considered to be approximately in the upper 200 cm of soil (Famiglietti et al., 1998; Zhao et al.,
2012).

Interaggregate

pore space
(m - mm in size) Intraaggregate

pore space
(nm - pm in size)

Enlargement

-
- - - =
L - -

Aggregate Pore
particle

Figure 10: Pore spaces of soil (Source: https://www.jove.com)

Soil moisture is considered a crucial factor for the health and growth of crops and the efficiency
of plants (Wang & Qu, 2009) as it serves as a solvent and carrier of nutrients while being essential
for photosynthesis. Soil moisture is observed as the water above the water table, whereas the
water observed above the water table is known as ground water.

Soil moisture can be expressed as (Sharma, 2007):
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e gravimetric moisture which is the mass of water/mass of solid material:

weight of wet soil (g) — weight of dry soil (g)

Soil Water = weight of dry soil (g)

mass of water

Gravimetric Soil Moisture(6,,) =
ravimetric Soil Moisture(6,,) mass of dry soil

mass of wet soil — mass of dry soil

mass of dry soil

e as volumetric which is defined as the volume of soil/total porosity:

( mass of water )
volume of water _ ‘density of water

volume of soil volume of soil

Volumetric Soil Moisture (6,) =

The process where the water is entering the soil from sources such as rainfall, is called infiltration
and it is mainly caused by the gravity. Permeability describes the ease of soil to transmit water
and air while porosity describes the space between particles. The process of infiltration depends
on the porosity of the soil.

Pore Space in Sandy Soil vs. Clay Soil

Sandy Soil Clay Soil

Larger
pores

Smaller

pores
Less total pore volume Greater total pore volume
Less porosity Greater porosity

©The COMET Program

Figure 11: Comparison of the porosity of sandy soil and clay soil

The accumulation of moisture in the soil can be classified in three levels: saturation, field
capacity and permanent wilting point. Saturation refers to the condition in which all the spaces
between soil particles are completely filled with water which is slowly transmitted to the lower
levels of soil with downward movements. When the excess water is drained, the downward
movements have decreased and the capillary properties of water overcome the gravitational
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dynamics, the soil pores are filled with both air and water. This stage is ideal for plant growth.
The wilting point is described as the minimum amount of soil moisture that is required for the
plants’ root to absorb water and not to wilt. In case the soil moisture content becomes lower than
the wilting point, then the plants wilt irreversibly due to the fact that the capillary properties of
water outmatch the absorption of water by the plants.

Generalized Soil Moisture Conditions

Saturated Field Typical Wilting
capacity point

particle Air (hydroscopic)

Wet « » Dry
©The COMET Program

Figure 12: Soil Moisture Conditions

Soil moisture plays an important role in many sectors such as Hydrology, Biogeography,
Geomorphology, Agronomy and Climatology (Legates et al., 2010; Liu, et al., 2011).

Soil moisture, referring to the discrimination between wet and dry condition, is a key information
for agricultural management such as optimizing the fertilizer rates, irrigation as well as applying
pesticides, herbicides, crop management etc. For this reason, soil moisture mapping is a powerful
tool for farmers and has encouraged improvements in soil management practices. (Howard et
al., 1992).

Many processes such as surface run-off, mineralisation of organic matter or evapo-transpiration,
but also irrigation scheduling or forecast of the onset of drought, cannot be examined without
investigating the moisture status of the soil (Akinremi and McGinn, 1996, Woodward et al.,
2001).

Soil Moisture is included in the list of Essential Climate Variables (ECV) since 2010, and is
considered to play an important role in the characterization of Earth’s Climate (GCOS 2010).
The major source of water being added to the soil surface is precipitation, where a part of this
water flows down through infiltration, another part is absorbed by plants, in order to perform
photosynthesis and grow, and the rest flows as runoff through streams and surface water.
(Sharma, 2006). Soil moisture contributes in the plant transpiration as well as in the soil
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evapotranspiration, which affect the near surface air temperature, the humidity and the
atmospheric water vapour. Soil moisture though varies from place to place because of the spatial
variability of factors such as meteorological conditions, topography and vegetation cover.
(Dente, 2016).
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1.2 REMOTE SENSING

1.2.1 ACTIVE AND PASSIVE SENSORS

There is always an interaction between electromagnetic radiation and the targets, such as trees,
buildings, soil etc. This interaction can be classified either as reflection, scattering or absorption.
As aresult, the electromagnetic radiation that is emitted by the Sun, interacts with the atmosphere
and the surface of the Earth. Earth observation systems receive the reflected or backscattered
radiation from the targets. It is important to mention though that the Earth Observation systems
are divided into two categories according to the source of the radiation that is received or
reflected by the targets. The Earth Observation systems can be categorized either as active or
passive.

The Passive Earth Observation systems measure the reflected radiation which is emitted from a
natural source, which is the Sun. These sensors, since they depend on another source of radiation,
are able to acquire data only during the day and the part of the spectrum they use is the Visible
and Infrared. The reflected radiation power measured by passive sensors depends on the surface
roughness, the physical temperature, the surface composition and other physical characteristics
of the Earth. Passive Remote Sensing is really similar to how our eyes interpret the world and it
is mostly used in applications related to Climate, Ecosystem and Land Use.

On the other hand, the Active sensors measure signals transmitted by the sensor itself which are
reflected, scattered or refracted by the Earth’s surface or the atmosphere. They use the
microwave part of the electromagnetic spectrum and they are capable of acquiring data during
day as well as during the night in any occurring weather condition. Active Remote Sensing has
a variety of applications related to Meteorology, Topography, Security, Natural disasters etc.
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1.2.2 SENTINEL 1

One of the datasets that was used in the current study was acquired from the Sentinel 1 mission
which is the European Radar Observatory for the Copernicus joint initiative of the European
Commission (EC) and the European Space Agency (ESA). Copernicus is a European initiative
responsible for the implementation of services related with security and environment. The
Sentinel 1 mission is comprised of C-band imaging systems which operate in four modes and
offer products of different resolutions and coverage, short revisit times and dual polarization
capabilities (HH+HV, VV+VH), which is useful for land cover classification and sea-ice
applications. The Sentinel 1 mission is composed of a two-satellite constellation, Sentinel 1A,
which was launched on the 3" of April in 2014, and Sentinel 1B which was launched on the 22nd
of April in 2016, sharing the same orbital plane and they are equipped with a C-band Synthetic
Aperture Radar instrument, operating at a center frequency of 5.405 GHz. It includes a right-
looking active phased array antenna providing fast scanning in elevation and azimuth. As
mentioned in the previous chapters, Synthetic Aperture Radar (SAR) is not affected by cloud
cover or lack of illumination and is also capable of acquiring data during the day as well as
during the night.

s S

Figure 14: Sentinel-1 spacecraft (image credit: ESA, TAS-I)

Each Sentinel 1 spacecraft is a three-axis, stabilised satellite, characterised by sun, star, gyro and
magnetic field sensors, a set of four reaction wheels dedicated to orbit and attitude control and
three torque rods as actuators to provide steering capabilities on each axis. Each satellite has a
total mass of approximately 2300kg at launch and is equipped with two solar array wings capable
of producing 5900 W (at end of life) to be stored in a modular battery. Highly accurate pointing
knowledge (better than 0.004°) on each axis, high pointing accuracy (about 0.01° on each axis)
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and real-time orbit determination together with a dedicated propulsion system for precise orbit
control are provided by the PRIMA (Piattaforma Italiana Multi Applicativa) bus. Some of
Sentinel 1 mission’s specifications can be found in the following table.

Table 2: Sentinel 1 Specifications

Parameter Sentinel-1
April 03, 2014 of S1-A
Launch date April 22, 2016 of S1-B
Orbit type SSO (Sun-synchronous Orbit) 12 day repeat cycle LTAN = 18:00 hours
Orbital altitude 693 km
Sensor complement C-SAR (C-band Synthetic Aperture Radar)
Spacecraft mass Spacecraft size 2300 kg 3.4 mx 1.3 m x 1.3 m 4.8 KW (EOL)
Spacecraft power
Downlink X-band data rate 520 Mbit/s
TT&C S-band 64 kbit/s uplink 128 kbit/s or 2 Mbit/s downlink
Science data storage 1.4 Thit (EOL)
Required data quality BER (Bit Error Rate): < 10-°
Operational autonomy 8 days
Prime contractor TAS-I (Thales Alenia Space-Italy)
Baseline launcher Soyuz (Kourou)
C-SAR Antenna
PDHT Antenna

S-Bant Ant.

S-Bant Ant.

Satellite +Y side (anti-Sun) Satellite -Y side (Sun side)

Figure 15: Overview of a Sentinel 1 mission spacecraft. (Source: https://sentinel.esa.int )

The reference orbit is an Earth-fixed orbital tube of a 100m diameter during normal operation.

FPage 7 of 14



https://sentinel.esa.int/

Figure 16: Sentinel 1 Orbit Tube (https://sentinel.esa.int/web/sentinel/missions/sentinel-1/satellite-description/orbit)

Both Sentinel 1A’s and Sentinel 1B’s orbit is near-polar, sun-synchronous with a 12 day repeat
cycle and 175 orbits per cycle for a single satellite and having both satellites operating the repeat
cycle is 6 days. This means that each Sentinel 1 satellite is able to map the entire world in 12

Figure 17: Sentinel 1 Coverage (Source: https://sentinel.esa.int)

They both also share the same orbit plane with a 180° orbital phasing difference. Approximately
one hour after the acquisition, radar data are delivered to Copernicus services.
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Figure 18: Sentinel 1 Constellation and orbits (Source: https://sentinel.esa.int)

It is important to mention that Sentinel 1 operates in four different imaging modes:

» Stripmap Mode, which provides 5m by 5m resolution over a narrow swath of 80 km.

» Interferometric Wide Swath Mode (IW), which combines a large swath of 250 km with a
moderate resolution of 5m by 20m and employs the Progressive Scans SAR or TOPSAR
technique. This is the default acquisition mode over land.

» Extra Wide Swath Mode (EW), which is similar to the IW mode but with a lower resulting
resolution of 20m by 40m. This mode is intended for maritime, ice and polar zone operational
services where wide coverage and short revisit times are demanded.

» Wave Mode, which results in stripmap imagettes of 20km by 20km, acquired every 100 km
with imagettes of the same incidence angle being separated by 200km. This mode is useful
for the investigation of the direction, height and wavelength of waves in the oceans.
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Figure 19: Sentinel 1 Modes (Source: https://sentinel.esa.int)

In the following table, the specifications of each mode can be found.

Table 3: Description of the four Acquisition Modes

Polarization
Mode Incidence Angle Resolution Swath Width (H = Horizontal
V = Vertical)
Stripmap
Interferometric Wide swath 29 - 46 5x20m 250 km HH+HV, VH+VV, HH, VV
Extra Wide swath
Wave 22-35 5x5m 20 x 20 km HH, VV

35-38
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The format of the Sentinel 1 products is the Sentinel Standard Archive Format for Europe
(SAFE) and they can be produced at SAR Level-0, Level-1 SLC, Level-1 GRD, and Level-2
OCN. The processing levels of the produced data can be described briefly as:

>

>

Level 0 products consist of a sequence of compressed unfocused SAR raw data. For the data
to be usable, it will need to be decompressed and processed using a SAR processor.

Level 1 products can either be Single Look Complex (SLC), which consist of focused SAR
data geo-referenced using orbit and attitude data from the satellite and provided in zero-
Doppler slant-range geometry, or Ground Range Detected (GRD), which consist of
focused SAR data that has been detected, multi-looked and projected to ground range using
an Earth ellipsoid model. There is no phase information in GRD products. The resulting
product has approximately square spatial resolution pixels and square pixel spacing with
reduced speckle at the cost of worse spatial resolution. GRD products are devided into three
kinds of resolution; full, high and medium resolution and the pixel values depict the detected
magnitude. In the current study Sentinel 1 Level 1 High Resolution GRD products in
Interferometric Wide swath Mode were used. The product characteristics are described in
the following table.

Table 4: IW GRD High Resolution product characteristics per beam mode (Source: https://sentinel.esa.int)

Beam ID w1 W2 W3
Spatial Resolution rg x az m 20.4x22.5 20.3x22.6 20.5x22.6
Pixel spacing rg x azm 10x10 10x10 10x10
Incidence angle ° 329 38.3 431
Equivalent Number of Looks (ENL) 4.4 4.3 4.3
Radiometric resolution 1.7 1.7 1.7
Range look bandwidth MHz 141 121 10.7
Azimuth look bandwidth Hz 315 301 301
Range Hamming weighting coefficient 0.70 0.73 0.75
Azimuth Hamming weighting coefficient 0.70 0.75 0.75

Table 5: IW GRD High Resolution product characteristics common to all beams (Source: https://sentinel.esa.int)

Product ID IW_GRD_HR
Pixel value Magnitude detected
Coordinate system Ground range
Bits per pixel 16
Polarisation options single (HH or VV) or Dual (HH+HV or VV+VH)
Ground range coverage km 251.8
Absolute location accuracy m (NRT) 7
Number of looks (range x azimuth) 5x1
Look overlap (range x azimuth) 0.25x0.00

» Level 2 OCN products include components for Ocean Swell spectra (OSW), Ocean Wind

Fields (OWI1) and Surface Radial Velocities (RVL).

(Snoeij, 2009)
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1.2.3 LANDSAT 8

The Landsat Program has been providing its user community with medium spatial resolution,
multispectral satellite data, on a global basis, since 1972. Landsat data are distributed by the U.S.
Geological Survey (USGS), they are available to the public for free and support many land
surface change studies. Moreover, Landsat data constitute the longest remote sensing record of
Earth’s continental surface.

Landsat 8 was developed as a collaboration between NASA and the U.S. Geological Survey
(USGS) and it was launched on the 11" of February, 2013, on an Atlas-V 401 rocket, from
Vandenberg Air Force Base, California. Landsat 8 operates in a near-circular, near-polar, Sun-
Synchronous orbit with a 16-day repeat cycle with a 705 km altitude at the Equator. There is an
8-day offset between Landsat 7 and Landsat 8 coverage of each Worldwide Reference System-
2 (WRS-2) path. Its payload consists of two push-broom instruments; the Operational Land
Imager (OLI) and the Thermal Infrared Sensor (TIRS), viewing at-nadir on the Sun-synchronous
Worldwide Reference System-2 (WRS-2) orbital path. These sensors provide data of the global
landmass at a spatial resolution of 30 meters (visible, NIR, SWIR); 100 meters (thermal); and
15 meters (panchromatic), as well as improved signal-to-noise (SNR) radiometric performance
quantized over a 12-bit dynamic range, enabling finer characterization of land cover. OLI and
TIRS collect data jointly in order to provide coincident images over the same surface areas, with
each scene covering a 190 by 180 km surface area. Furthermore, each Landsat 8 product includes
a Quality Assessment band which facilitates the application of per pixel filters.

The Operational Land Imager (OLI) is a push-broom sensor with a four-mirror anastigmatic
telescope, collecting data in nine spectral bands, including visible, near infrared and short wave
infrared spectral bands. It is equipped with long linear detector arrays with thousands of detectors
per spectral band. The data produced by OLI are quantized to 12bits, compared to the 8-bit data
of TM and ETM+ sensors and they are collected over a 190 km across-track ground swath. OLI
also offers a panchromatic band in addition to two new spectral bands; a shortwave infrared
channel (band 9; 1.36-1.38 um) for cirrus cloud detection and a deep blue visible channel (band
1; 0.435-0.451 pm) for coastal zone observations (USGS).
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Figure 20: The OLI Instrument (Source: https://landsat.usgs.gov)

The Thermal Infrared Sensor (TIRS) was added to the satellite in order to enable tracking of land
and water use. It has a focal plane with long arrays of photosensitive detectors and is able to
measure longwave Thermal Infrared (TIR) energy emitted by the Earth’s surface, the intensity
of which is a function of surface temperature. This instrument is capable of collecting data in
two thermal bands, with a 100 m spatial resolution over a 190 km swath, for the wavelength

covered by a single band on the previous TM and ETM+ sensors.
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Figure 21: The TIRS Instrument (https://landsat.usgs.gov)
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Figure 22: Spectral Bands of Landsat 8 and Landsat 7 (Graphic created by L.Rocchio & J.Barsi., accessed through
https://landsat.gsfc.nasa.gov)

Table 6: Description of Landsat 8 spectral bands (created by B. Markham, accessed through https://landsat.gsfc.nasa.gov)

Landsat-8 OLI and 77RS Bands (um)

30 m Coastal/Aerosol 0.435-0.451 Band 1
30 m Blue 0.452-0.512 | Band2
30 m Green 0.533-0.590 | Band3
30 m Red 0.636-0.673 | Band 4
30 m NIR 0.851 -0.879 Band 5
30 m SWIR-1 1.566 - 1.651 | Band 6
100 m TIR-1 10.60 — 11.19 | Band 10
100 m TIR-2 11501251 | Band 11
30 m SWIR-2 2.107-2.294 | Band7
15 m Pan 0.503 - 0.676 | Band 8
30 m Cirrus 1.363-1.384 | Band 9

Landsat 8 data are derived in several processing levels as described briefly below:
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Level 1 products are radiometrically and geometrically corrected, free from distortions related
to the sensor, satellite or Earth. The Level 1 Images are in units of DNs which can be scaled to
spectral radiance or Top Of Atmosphere (TOA) Reflectance.
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1.3 LITERATURE REVIEW

During the past years, numerous attempts have been made to estimate soil moisture with the
contribution of innovative Remote Sensing techniques.

Wagner et al (1999) investigated the potential of using ERS Scatterometer data for soil moisture
monitoring over Ukraine. The algorithm applied required remote sensing data as well as wilting
level, field capacity and porosity derived from soil data.

Magagi and Kerr (2001) used NOAA/AVHRR visible and NIR daily reflectance data (in order
to obtain the vegetation fractional cover parameter) and ERS-1 Wind Scatterometer (WSC) data
in VV polarization. Soil moisture content was retrieved by using empirical models for bare and
vegetated soil.

Verstraeten et al (2006) estimated Soil Moisture Content using optical and thermal spectral
information from METEOSAT imagery, based on thermal inertia, as well as ERS Scatterometer
(for Soil Water Index computation) and EUROFLUX data.

Baup et al. (2007) retrieved Soil Moisture over a semi-arid environment in Mali, by using
ENVISAT/ASAR Wide Swath mode products (in HH polarization) and ground data. Correlation
and error analysis was conducted.

Zhang et al. (2009) used L1B ENVISAT/ASAR Alternate Polarization mode products (in VV
polarization) and In-Situ data for soil moisture retrieval and mapping over LOPEXO5 area in
China, by applying inversion methods.

Lakhankar et al. (2009) examined the implementation of non-parametric methods to retrieve soil
moisture using remote sensing data. In this study two RADARSAT-1 ScanSAR Narrow Mode
backscatter products along with one Landsat image for the derivation of NDVI, were used. As
long as the training and the validation of the methods are concerned, ESTAR and STATSGO
soil classification data were used. The method applied includes the computation of the Grey
Level Co-Occurence Matrix (for the extraction of 8 eight textural images: Homogeneity,
Contrast, Dissimilarity, Mean, Variance, Entropy, Angular Second Moment, Correlation) and
the use of these images as inputs into Multiple Regression, Neural Networks and fuzzy logic
algorithms.

Brocca et al. (2011) examined the retrieval of soil moisture using AMSR-E and ASCAT data.
Using the AMSR-E data, Land Parameter Retrieval Model (LRPM), standard NASA algorithm
and Polarization Ratio Index were applied. ASCAT data were used in the application of the TU
Wien change detection algorithm. Also, algorithms based on Linear Regression Correction and
Cumulative Density Function (CDF) were employed.

Gherboudj et al. (2011) estimated soil moisture by applying semi-empirical backscatter models
using RADARSAT-2 SAR data over agricultural fields in Canada.
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Van der Velde et al. (2012) proposed soil moisture retrieval using ENVISAT/ASAR Wide Swath
(WS) mode products in VV polarization and In-Situ data. The retrieval method was based on the
IEM surface scattering model.

Ahmad, Runping and Jing (2012) used MODIS and In-Situ data for soil moisture retrieval in a
region of China. More specifically MOD11A2 (Land Surface Temperature) and MOD13A2
(NDVI) products were used in order to calculate the TDVI which was used in the equation for
Relative Soil Moisture retrieval. Ground data of soil moisture from 98 stations were also used.
These data were divided into two groups: data from 75 stations were used for the development
of the model and data from 23 stations were used for the validation.

Kolassa et al. (2016) conducted analysis of the daily retrieval of soil moisture by the fusion of
active and passive microwave data, acquired from ASCAT Scatterometer and AMSR-E
Radiometer, using Neural Networks.

El Hajj et al. (2016) developed an inversion approach to estimate surface soil moisture over
irrigated grassland areas in Southern France, using time-series of TerraSAR-X, Cosmo-SkyMed,
SPOT 4/5 and Landsat 7/8. Neural Network techniques were applied.

Gilewski et al. (2017) retrieved soil moisture using VH/VV Sentinel-1 backscatter and In-Situ
data. Multiple Linear Regression Model (MRM) was applied.

Wang et al. (2017) investigated three model-based polarimetric decompositions (Freeman-
Durden, Hajnsek and An) for soil moisture retrieval over agricultural fields covered by several
crops. UAVSAR polarimetric Multi-look product and SMAPVEX12 ground campaign data were
used.

Kolassa et al. (2017) used Neural Networks to estimate soil moisture using SMAP Brightness
Temperature products and GEOS-5 Catchment land surface Model soil moisture field. In
addition, SMAP L2, AMSR2 and ASCAT Soil Moisture products, In-Situ SMAP core validation
sites and International Soil Moisture Network (ISMN) data were used for validation.

Santi et al. (2018) estimated soil moisture over Italy using Ground Range Detected (GRD)
Sentinel-1 Images in Interferometric Wide Swath (IW) mode, SMAP L1B Radiometer Half-
Orbit Time-Ordered Brightness Temperature and AMSR2 L1B V2 Multi-frequency products, as
well as SMEXO02 In-Situ data. Disaggregated microwave data, generated using Smoothing Filter
based Intensity Modulation, were implemented into an Artificial Neural Network.
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1.4 STUDY AREA

The study area includes the plain of Arta and the Amvrakikos Wetlands National Park, which
are located at the Southern part of the municipality of Arta in the region of Epirus.
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Figure 23: The study area including the Arta plain and the Amvrakikos Wetlands National Park. (Source: http://arta.irrigation-
management.euy/)

The region of Epirus is located at the North-West part of Greece. Epirus has a total area of
9.203km? of which the 14% corresponds to agricultural land and a population of 353.820 people
(Malamos et al., 2015).

The plain of Arta is located at the southest part of Epirus and is part of the Louros and Aracthos
hydrological basins. The plain was created by the silts of the rivers Louros and Aracthos and is
considered the largest plain of the region with an area of 45.329 ha and it intersects with the
Amvrakikos Wetlands National Park.

The plain is almost flat with slight slopes between 0% and 25% and its altitude lies between Om
and 100m. The water table of area is very shallow and its climate is of Mediterranean type with
rainy moderate winters and hot summers. (Tsirogiannis et al., 2015)

As long as the Amvrakikos gulf is concerned, it occupies an area of 405 km?, is a marine lake
connected to the lonian sea through a narrow and shallow channel whose form is the result of
both natural and man-made factors. It has an average depth of 26m with a maximum depth of
65m. The submerging of land was caused by the intense tectonic activity of Pleiocene and lower
Pleistocene periods, but it was filled up with sediments carried by Aracthos and Louros rivers
while water from the lonian sea flood into the land cavity due to the graduate increase of the sea
level during the Holocene. These processes gave the gulf its present shape. It is also important
to mention that the Amvrakikos gulf is protected by Ramsar Convention (Ramsar, 2014)
(Tsirogiannis et al., 2015).

The Amvrakikos Wetlands are located at the north coast of the gulf, is adjacent to Arta’s plain
and consists of a total area of 20.000 ha (Tsirogiannis et al., 2015). The wetlands consist of a
complex landscape with hills, peninsulas and lagoons as well as rich vegetation including crops,
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oak woods, cliff forests and pasture lands. Also many rare and endangered species can be found
in this area (Rigas et al., 2003).

The Amvrakikos Wetlands National Park includes a big part of Arta’s plain and the wetlands
and is one of Europe’s most important protected areas being a part of the EU NATURA 2000
network (EEA, 2014; EKBY, 2014). The park is managed by Amvrakikos Wetlands
Management Body (AWMD, 2014) (Tsirogiannis et al., 2015).
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Figure 24: The irrigation scheme of the plain of Arta (white lines;Arta (west part); black lines; Peta-Kompoti (east part)), the 3
rivers (blue lines; from left to right: Louros, Aracthos and Vovos) and the 3 main drainage canals of the plain (yellow lines;
from left to right: Salaoras (DC1), Fidocastrou (DC2) and Neochoriou (DC3)) (Source: Tsirogiannis et al. 2015)
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2 GEOSPATIAL DATA

In order to train the Artificial Neural Network, real measurements of Soil Moisture were needed
to be used as output data. For this purpose, In-Situ data of Soil Moisture were derived from six
stations through the Enhydris database. Enhydris is a free software, available under the GNU
Affero General Public License, and it can run on UNIX or Windows. It is written in
Python/Django and includes a database in which hydrological and meteorological time series are
stored and managed. The time series can be accessed through a web interface with tables, graphs
and mapping capabilities and they can also be downloaded in plain text format or they can be
directly loaded to Hydrognomon. Hydrognomon is a free tool for analysis and processing of
meteorological time series. The Enhydris database web interface also includes a map that
provides information about the location of each station, together with the identification numbers,
water basin, water division, owner and type of the meteorological stations. The database can be
accessed in http://system.irrigation-management.eu or https://enhydris.readthedocs.org through
a webservice API. Enhydris is being used by openmeteo.org, Hydrological Observatory of
Athens, Hydroscope, the Athens Water Supply Company, and WQ DREAMS (Christofides et
al., 2011a; Christofides et al., 2011b; Malamos et al., 2015).

The selected In-Situ data were measured from six meteorological and hydrological stations
which were located in Agios Spyridonas, Kampi, Kommeno, Kompoti, the Technological
Educational Institute of Epirus in Kostakii and the TOEB Lourou. A more detailed description
of the stations can be found in the following table.

Table 7: Description of In-situ Measurements’ stations (Source: http://openmeteo.org)

Decentralized
Administration

TEI Epirus- 39.12208, ADCON

Western
Macedonia
Decentralized
Administration

Kostakii Epirus Epirus 20.94737 30.00 S08 Meteorological — of Epirus and
Agios . . 39.14904, ADCON . .

Spiridonas Epirus Epirus 20.87591 10.00 S06 Meteorological = of Epirus and
. . . 39.21634, ADCON . .

Kambi Epirus Epirus 20.91295 20.00 S12 Meteorological  of Epirus and

Western
Macedonia
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Figure 25: Map of In-Situ Measurements's Locations (Background Image by Bing Maps).

Except for the aforementioned In-Situ data, satellite data were also used which were derived
from Google Earth Engine. The dataset included both optical and Radar data acquired from
Landsat 8 and Sentinel 1 accordingly. Both datasets are already preprocessed to a certain level
when used in Google Earth Engine. The purpose of using Landsat 8 data was to compute the
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NDVI, NDMI and MI in each station location. The Image Collection that was used in Google
Earth Engine was the Landsat 8 Surface Reflectance one which are provided by USGS. This
dataset is the atmospherically corrected surface reflectance from the Landsat 8 OLI/TIRS
sensors. These images contain 5 visible and near-infrared (VNIR) bands and 2 short-wave
infrared (SWIR) bands processed to orthorectified surface reflectance, and two thermal infrared
(TIR) bands processed to orthorectified brightness temperature. These data have been
atmospherically corrected using LaSRC and includes a cloud, shadow, water and snow mask
produced using CFMASK, as well as a per-pixel saturation mask. Strips of collected data are
packaged into overlapping "scenes" covering approximately 170km x 183km using a
standardized reference grid.

In order to obtain the most suitable data, the collection was filtered according to a starting date
and an end date and the study area extend. The starting and end date were decided according to
the range of dates observed in the merged In-Situ data.

In the following table, a description of the available bands and masks is provided.

Table 8: GEE Landsat 8 Image Collection Band Description (Source: GEE Documentation)

Name Units Scale Wavelength Description
Bl 0.0001 0.435-0.451 um Band 1 (ultra blue) surface reflectance
B2 0.0001 0.452-0.512 um Band 2 (blue) surface reflectance
B3 0.0001 0.533-0.590 um Band 3 (green) surface reflectance
B4 0.0001 0.636-0.673 um Band 4 (red) surface reflectance
B5 0.0001 0.851-0.879 um Band 5 (near infrared) surface reflectance
B6 0.0001 1.566-1.651 um Band 6 (shortwave infrared 1) surface reflectance
B7 0.0001 2.107-2.294 um Band 7 (shortwave infrared 2) surface reflectance

Band 10 brightness temperature. This band, while
originally collected with a resolution of 100m /

B10 Kelvin 0.1 10.60-11.19 um . . . .
pixel, has been resampled using cubic convolution
to 30m.
Band 11 brightness temperature. This band, while
. iginally coll ith lution of 1
B11 Kelvin 0.0001 1150-12.51 pm _orlglna y collected with a reso utlc_)n 0 OOm_/
pixel, has been resampled using cubic convolution
to 30m.
sr_aerosol Aerosol attributes

Bitmask for sr_aerosol

e BitO: Fill

e Bit 1: Aerosol retrieval - valid

e Bit 2: Aerosol retrieval - interpolated

e Bit 3: Water pixel

e Bit 4: Water aerosol retrieval failed - needs interpolated
e Bit5: Neighbor of failed aerosol retrieval
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e Bits 6-7: Aerosol content
o 0: Climatology

o 1:Low
o 2: Medium
o 3:High
pixel_ga Pixel quality attributes generated from the
CFMASK algorithm.
Bitmask for pixel_ga
e Bit0: Fill
e Bit1: Clear
e Bit2: Water
e Bit 3: Cloud Shadow
e Bit4: Snow
e Bit5: Cloud
e Bits 6-7: Cloud Confidence
o 0: None
o 1:Low
o 2: Medium
o 3:High
e Bits 8-9: Cirrus Confidence
o 0: None
o 1:Low
o 2: Medium
o 3:High
e Bit 10: Terrain Occlusion
radsat_ga Radiometric saturation QA

Bitmask for radsat_qga

e Bit0: Data Fill Flag
o 0:Valid data
o 1: Invalid data
e Bit1: Band 1 data saturated
e Bit2: Band 2 data saturated
e Bit 3: Band 3 data saturated
e Bit4: Band 4 data saturated
e Bit5: Band 5 data saturated
e Bit 6: Band 6 data saturated
e Bit7: Band 7 data saturated
e Bit8: Unused
e Bit9: Band 9 data saturated
e Bit10: Band 10 data saturated
e Bit1l: Band 11 data saturated
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The script that led to the selection of the dataset is presented below:

// 1. functions to add NDVI, NDMI and MI
var addNDMI = function(image) {
return image.addBands(image.normalizedDifference(['B5', 'B6']).rename( 'NDMI'))

}

var addNDVI = function(image) {
return image.addBands(image.normalizedDifference(['B5', 'B4']).rename( 'NDVI'))

}
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. var addMI = function(image) {
return image.addBands(image.select('B5"').divide(image.select('B2"))
.rename( 'MI"))
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. // 2. define start/end dates
. var dateStart ='2015-03-04"'
. var dateEnd='2018-04-12"

[ Y
0 N O

. // LANDSAT 8 DATA
. var 1l8data = ee.ImageCollection('LANDSAT/LCO8/CO1/T1_SR")

N NN
N PO

. //Fetch the data

. var 18 = 18data

.filterBounds(stations2)
.filterDate(dateStart,dateEnd)

.map (addNDVI)

.map (addNDMI)

.map (addMI)

.map(addTime)

.map (function(img){

return img.addBands(ee.Image.pixellLonLat())

w w w NN NDNDNDNDDNDDN
N R O® V0N UV b w
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Another Image Collection that was imported in Google Earth Engine contained the Sentinel-1
C-band Synthetic Aperture Radar Ground Range Detected (GRD) scenes, which were processed
to backscatter coefficient (¢°) in decibels (dB). The backscatter coefficient represents target
backscattering area (radar cross-section) per unit ground area. Due to the fact that it can vary by
several orders of magnitude, it is converted to dB as 10*logl0c°. It measures whether the
radiated terrain scatters the incident microwave radiation preferentially away from the SAR
sensor (dB < 0) or towards the SAR sensor (dB > 0). This scattering behavior depends on the
physical characteristics of the terrain, primarily the geometry of the terrain elements and their
electromagnetic characteristics. This collection included the S1 Ground Range Detected (GRD)
scenes, processed using the Sentinel-1 Toolbox to generate a calibrated, ortho-corrected
products. Each scene has one of 3 resolutions (10, 25 or 40 meters), 4 band combinations
(corresponding to scene polarization) and 3 instrument modes. Each scene also contains either 1
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or 2 out of 4 possible polarization bands, depending on the instrument's polarization settings.
The possible combinations are single band VV or HH, and dual band VV+VH and HH+HV: 1.
VV: single co-polarization, vertical transmit/vertical receive 2. HH: single co-polarization,
horizontal transmit/horizontal receive 3. VV + VH: dual-band cross-polarization, vertical
transmit/horizontal receive 4. HH + HV: dual-band cross-polarization, horizontal
transmit/vertical receive. An additional 'angle' band is also included in each scene where the
approximate viewing incidence angle in degrees at every point is contained. This band is
generated by interpolating the ‘incidenceAngle’ property of the 'geolocationGridPoint' gridded
field provided with each asset. Imagery in Google Earth Engine is preprocessed with Sentinel-1
Toolbox. The preprocessing steps that are implemented are the following:

1. Apply orbit file: Updates orbit metadata with a restituted orbit file.

2. GRD border noise removal: Removes low intensity noise and invalid data on scene edges.
(As of January 12, 2018)

3. Thermal noise removal: Removes additive noise in sub-swaths to help reduce
discontinuities between sub-swaths for scenes in multi-swath acquisition modes. (This
operation cannot be applied to images produced before July 2015)

4. Radiometric calibration: Computes backscatter intensity using sensor calibration
parameters in the GRD metadata.

5. Terrain correction (orthorectification): Converts data from ground range geometry,
which does not take terrain into account, to ¢° using the SRTM 30 meter DEM or the
ASTER DEM for high latitudes (greater than 60° or less than -60°). The final terrain
corrected values are converted to decibels via log scaling (10*log10(x)) and quantized to
16-bits.

In the following table, a description of the available bands is provided.

Table 9: GEE Sentinel-1 Image Collection Band Description (Source: GEE Documentation)

Single co-
polarization,
HH -50* 1* 10 meters 10 meters 5.405GHz horizontal
transmit/horizontal
receive
Dual-band cross-
polarization,
HV -50* 1* 10 meters 10 meters 5.405GHz horizontal
transmit/vertical
receive
Single co-
polarization, vertical
transmit/vertical
receive

\YAY/ -50* 1* 10 meters 10 meters 5.405GHz
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Dual-band cross-
polarization, vertical

VH -50* 1* 10 meters 10 meters 5.405GHz . .
transmit/horizontal
receive
Approximate
angle  Degrees 0* 90* viewing incidence
angle

* estimated min or max value

In order to obtain the most suitable data, the collection was filtered according to a starting date
and an end date as done while filtering the Landsat 8 data, the study area extend, the
Transmitter/Receiver Polarisation, the instrument mode and the desired Resolution.

The script that led to the selection of the dataset is presented below:

1. // SENTINEL 1 DATA

2. var collectionVV = ee.ImageCollection('COPERNICUS/S1 GRD")

3 .filterDate(dateStart,dateEnd)

4, .filterBounds(areaOfInterest)

5. .filter(ee.Filter.eq('instrumentMode', 'IW'))

6 .filter(ee.Filter.listContains('transmitterReceiverPolarisation’, 'WV'))
7 .filterMetadata('resolution_meters', 'equals' , 10)

8 .select(['W'])

9 .map(addTime)
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2.1 GEOSPATIAL FRAMEWORKS AND COMPUTATIONAL
TOOLS

2.1.1 GOOGLE EARTH ENGINE

Google Earth Engine is a cloud — based platform, were measuring and monitoring the changes
in the earth's environment as well as accessing high-performance computing resources for
processing very large geospatial datasets are made easy. It offers a multi-petabyte catalogue of
earth observation data and intrinsically-parallel computational access to thousands of computers,
meaning massive CPUs, in Google’s data centers.

The main goal of this initiative is to put this platform into the hands of scientists, in order to
advance the broader operational deployment of existing scientific methods, and strengthen the
ability for public institutions and civil society to better understand, manage and report on the
state of their natural resources.

Earth Engine is accessed and controlled through a web Application Programming Interface (API)
and an associated web-based Interactive Development Environment (IDE) that enables rapid
prototyping and visualization of results.

Google Earth Engine  Search places and datasets.
Seripts andsat - Phenology Model js
i

~ Examples 37
- Image 38- funct

I From Name 39

I Where Operator

& Normalized Difference 2

b Expression 43

& HOR Landsat 44

& Hillshade 23

I Landcover Cleanup b

I Reduce Region pre

& Canny Edge Detector
s Center Pivot Irrigation Detec... 51
b Clamp
& Connected Pixel Count
& Download Example

& From Name Landsat8
I HSV Pan Sharpening
& Houah Transform

Figure 26: The User Interface of the Google Earth Engine Code Editor

Its large repository offers a variety of observations including numerous earth observation data
from both active and passive sensors, weather and climate forecasts, topographic and socio-
economic datasets, environmental variables and land cover. The data are pre-processed and ready
to use while information-preserving, removing data management associated barriers and
facilitating fast and efficient access. It should also be noted that all the images are always
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maintained in their original projection, resolution and bit depth, avoiding the data degradation
that would be inherent in resampling all data to a fixed grid that may or may not be appropriate
for any particular application. The data can be accessed by the users through a library provided
by the Google Earth Engine API.

Table 10: Available data in the Google Earth Engine Catalogue (Source: GEE
Documentation)

Dataset

Landsat
Landsat 8 OLI/TIRS

Landsat 7 ETM +
Landsat 5 TM
Landsat 4-8 surface
reflectance
Sentinel

detected
Sentinel 2A MSI
MODIS
MODO08 atmosphere
MODO09 surface reflectance
MOD10 snow cover
MOD11 temperature and
emissivity
MCD12 Land cover
MOD13 Vegetation indices
MOD14 Thermal anomalies
& fire
MCD15 Leaf area
index/FPAR
MOD17 Gross primary
productivity
MCD43 BRDF-adjusted
reflectance
MOD44 veg. cover
conversion
MCD45 thermal anomalies
and fire

15/30/90 m
100m

Nominal
resolution

30m
30m
30m
30m

Sentinel 1 A/B ground range [leNy

10/20 m
10

500 m
500 m
1000 m
500 m
500/250 m
1000 m
500 m
500 m
1000/500 m
250 m

500 m

Temporal
granularity

16 day
16 day
16 day
16 day

6 day

10 day
Daily

1 day/8 day
1 day

1 day/8 day
Annual

16 day

8 day

4 day

8 day

8 day/16 day
Annual

30 day

1 day
Once

Temporal
coverage

2013-Now

2000-Now

1984-2012

1984-Now

2014-Now

2015-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now

2000-Now
2000-2010

Spatial
coverage

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Global
Global
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PROBA-V top of canopy 100/300 m 2 day 2013-Now Global
EO-1 hyperion hyperspectral el Targeted 2001-Now Global
1 km Annual 1992-2013 Global
im Sub-annual 2003-2015 CONUS
Shuttle Radar Topography [Relol Single 2000 60°N-54°S
USGS National Elevation 10 m Single Multiple United States
7.5" Single Multiple 83°N-57°S
30" Single Multiple Global
I Single Multiple Global
300 m Non-periodic 2009 90°N-65°S
USGS National Landcover [l Non-periodic 1992-2011 CONUS
30m Annual 2000-2014 80°N-57°S
30m Monthly 1984-2015 78°N-60°S
30m 5 year 2000-2010 Global
USDA NASS cropland data [eloNy Annual 1997-2015 CONUS
Weather, precipitation &
Global precipitation 6 3h 2014—Now Global
15’ 3h 1998-2015 50°N-50°S
3 5 day 1981-Now 50°N-50°S
NLDAS-2 7.5' 1h 1979-Now North
15' 3h 1948-2010 Global
2.5° 6h 1948-Now Global
ORNL DAYMET weather RN Annual 1980-Now North
4 km 1 day 1979-Now CONUS
15' 6h 2015-Now Global
NCEP climate forecast 12’ 6h 1979-Now Global
30" 12 images 1960-1990 Global
NEX downscaled climate 1 km 1 day 1950-2099 North
projections America
100 m 5 year Multiple 2010-2015
30" 5 year 2000-2020 85°N-60°S
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Each image is accompanied with metadata in a key/value format, containing information such
as the acquisition time, the location, and the conditions under which the image was collected or
processed. Moreover, related images, such as the images produced by a specific sensor, are
grouped together and can be accessed as an “Image Collection”. Collections provide fast filtering
and sorting capabilities. This is crucial as it makes it easy for users to perform queries through
millions of individual images and select data that meet specific spatial, temporal or other criteria.

tEarth Engine Code EditorJ [ Third-party Web Apps ]

’ Client Libraries ‘

(JavaScript / Python)
Web REST APIs
' On-the-Fly Computation 1 | w
Front Ends
Compute Batch Computation
Masters
Caches
Compute
Servers
Data Stores
Fusion Tilestore Asset
Tables Servers Database

Figure 27: Google Earth Engine's System Architecture

2.1.2 RSTATISTICAL PACKAGE

R is a free and open source software environment and programming language for statistical
computing and graphics visualization, developed in 1995 at the University of Auckland as an
environment for statistical computing and graphics (Ihaka and Gentleman, 1996). Open source
means that the source code of R is accessible to everyone and anyone is allowed to contribute to
the software. This, in fact, expands the capabilities of R dynamically. R comes as a base package
with some basic statistical functionality but people contribute by creating packages which can
be downloaded and implemented in R and expand the capabilities. R along with the additional
packages are stored in ‘Comprehensive R Archive Network’, which is most commonly known
as CRAN. CRAN is ‘mirrored’ at different places across the globe.
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Since 1995 R has become one of the dominant software environments for data analysis and is
used by a variety of scientific disciplines, including soil science, ecology, and geoinformatics
(Envirometrics CRAN Task View; Spatial CRAN Task View). R is particularly popular for its
graphical capabilities, but it is also prized for its GIS capabilities which make it relatively easy
to generate raster-based models. More recently, R has also gained several packages which are
designed specifically for analyzing soil data.

Mirrors Big Brains
; ff': 3 g‘
‘? Lot 7 s 2. Y
. * e p 6" . ’d

Your Computer CRAN

Figure 28: Users download R and install Packages (uploaded by Statisticians around the
world) to their own computer via their nearest CRAN

R can be used along with RStudio which is a free, user friendly and open-source integrated
development environment (IDE) for R.
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R Bk [t Wew Mec Packeges Windows Hep
=l a] r[a[<] 6] (&]

R wermiom 2.12.2 (2011-02-2%}

Copyright (C) 2011 The R Foumdation for Statistical Computing
ISEN 3-300051-0T7-0

Platform: 1386-po-mingw32/i386 (32-bic)

R is free scitvare and comes with ABSOLUTELY RO WARRANTY.

You are welcome To Iediscribuce 1T under cercain copditions.

Iype "licens=(}" or "licence [}’ for distributicn decails.

Marural language Support bur running in an Englisk locale

R ir a collaborative project with many comtributors.
Type 'comcribatorsi)’® for more informacicn and
"cicatiom()' on how To cite R or R packages in publicatioms.

Type 'demc()' for some demcs, "helpl)' for on-line help, or
"melp.atarci)® for an HIML browser incerface ¢o help.

Type "q()’ to quit R.

> metallica<-c{"Lars®, "James", "Jascn", "Rirk")|

N\

metallica <-c¢("Lars", "James", "Jason", "Kirk")
R

_T—'\-__ Y

Object Function

Figure 29: The R environment
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Copyright (C) 2016 The R Foundation for Statistical Computing
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You are welcome to redistr tions.
Type ‘license()' or 'licen: 1s.

R is a collaborative proje

Type 'contributors()’ for
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Type ‘demo()’ for some demos, ‘help()‘ for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type ‘()" to quit R. !
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>

Figure 30: RStudio User Interface
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3 METHODOLOGY

In this chapter, the applied methodology is going to be analyzed. In order to make the processing
steps perfectly clear to understand, a flowchart exhibiting the methodology is presented below:

Enhydris Data -
In Situ Soil Moisture
Measurements

/ Import In Situ Data Fusion

Table in GEE

|

Filter Sentinel 1 GRD
Image Collection

Get VV Band values

l

Filter Landsat 8
Surface Reflectance
Tmage Collection

Calculate NDVI/
NDMI / MI

l

Get Common Dates of
Measurements in all stations

Join Sentinel and
Landsat Data

Export VV and
NDVI values on the
In Situ Data
Locations

H

Merge VV, NDVI and
Measured Soil Moisture
values

l

Split Data into Train
(70%) and Test (30%)
Datasets

I

Normalize Data

Create Model

Fit Model

|

Evaluate Model

|

Merge VV, NDVI and
Measured Soil Moisture
values

Split Data into Train
(70%) and Test (30%)
Datasets

l

Normalize Data

Linear Regression Model

P

Fine Tune Model until the
Results are Satisfactory

Polyynomial Regression
Model

Generalized Additive
Models

Figure 31: Flowchart of the applied methodology (purple
color indicates the processing steps in GEE, yellow color
indicates the processing steps that were executed in R)
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The methodology which was implemented in the current study was divided into two parts. The
first part included the preparation of the dataset that is going to be used as input and output in
the statistical and machine learning techniques and the second part included the execution, the
refinement and the evaluation of the selected statistical models and machine learning techniques
which included Linear Regression Models, Polynomial Regression Models, Generalized
Additive Models and Artificial Neural Networks. The available data that were ready to be
processed included the pre-processed In-Situ data and the Sentinel-1 and Landsat 8 satellite
images as obtained through Google Earth Engine.

During the preparation of the dataset, the selected Sentinel 1 and Landsat 8 satellite images were
processed in Google Earth Engine using the Google Earth Engine Code Editor. The processing
script was developed using the Javascript API. Before processing the satellite data, the locations
of the stations were imported into Google Earth Engine. This was done by creating a Shapefile
(ESRI format) from a CSV file with the stations’ coordinates using R. A shapefile is a simple,
nontopological format for storing the geometric location and attribute information of geographic
features. Geographic features in a shapefile can be represented by points, lines, or polygons
(areas). The workspace containing shapefiles may also contain dBASE tables, which can store
additional attributes that can be joined to a shapefile's features. (ESRI, 1998).

Then Shape Escape was used in order to transform the shapefile into fusion tables which are
supported by Google Earth Engine. Google Fusion Tables is a web service provided by Google
for data management. Fusion tables can be used for gathering, visualising and sharing data tables.
Data are stored in multiple tables that users can view and download. (Halevy and Shapley, 2009;
Gonzalez et al., 2010).

Google Fusion Tables provide a relatively easy way to display geographic data on top of Google
Maps. Data can be uploaded in .csv, .tsv, or .txt file formats. The data is geocoded based on a
field (or fields) were location information (address, city, country, lat/long, etc.) is stored. This
process works well for point data and for creating heat maps based on countries.

One way to import a shapefile directly into Google Fusion Tables is to use Shape Escape. Shape
Escape was developed by Josh Livni (source code: http://code.google.com/p/shpescape/) and
provides options to convert shapefiles to either Google Fusion Tables or GeoJSON and
TopoJSON.

After the above steps were executed, the Normalized Difference Vegetation Index, the
Normalized Difference Moisture Index and the Moisture Index were calculated for each one of
the selected Landsat 8 Images and were added as separate new bands. Then the backscattering
values were also added as a band in the corresponding images.

The Normalized Difference Vegetation Index (NDVI), as described by Rouse et al. (1974), is
very effective in the determination of the density of vegetation in a specified area. It is based on
the fact that chlorophyll, strongly absorbs visible light (from 0.4 to 0.7 um) for use in
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photosynthesis while, on the contrary, the leaves’ cell structure strongly reflects near-infrared
light (from 0.7 to 1.1 um). This means that the more leaves a plant has, the more these

wavelengths of light are affected.

Vegetation Reflectance

HEa iy VRS

Figure 32: Vegetation indices with percentage of radiations emitted (Source: www.agricolus.com)

The mathematic formula of NDVI is formed as:

NIR — Red

NDVI = SR T Red

The application of the NDVI equation on a given pixel results in a number that ranges from -1
to 1. A value of NDVI which is equal to zero is interpreted as no vegetation while NDVI values
close to +1 indicate the highest possible density of green leaves.

HEALTHY STRESSED
VEGETATION REFLECTANCE VEGETATION REFLECTANCE
50% NIR 8% RED 40% NIR  30% RED
NDVI =0.72 NDVI =0.14
NIR - RED

NDVI = NIR + RED

Figure 33: NDVI value interpretation (Source: www.agricolus.com)

It is important to note that NDVI was used in the current study, as according to Wang et al
(2007), remotely sensed vegetation indices could be used effectively in order to estimate root
zone soil moisture. Wang et al (2007) investigated the potential of NDVI to estimate root zone
soil moisture using an 8-day average of NDVI and soil moisture.
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Except for NDVI, Normalized Difference Moisture Index (NDMI) was also used as described
by Vermote et al. (2016). The NDMI is able to describe the crop’s water stress level and it is
expressed as the ratio of the difference and the sum of the refracted radiations in the Near-
Infrared (NIR) and Short-Wave Infrared (SWIR).

NIR — SWIR

NDMI = e T SWiR

NDMI’s values vary between -1 and 1 where the positive data values correspond to typically
moist areas while the negative values represent non-water features.

The SWIR reflectance reveals changes in both the spongy mesophyll structure in vegetation
canopies and the vegetation water content, while the NIR reflectance depends on the leaf internal
structure and leaf dry matter content but it is not affected by the water content. Combining the
NIR with the SWIR leads to the removal of the variations induced by leaf internal structure and
leaf dry matter content, which results in improved accuracy in retrieving the vegetation water
content. The amount of water available in the internal leaf structure largely affects the spectral
reflectance in the SWIR interval of the electromagnetic spectrum. SWIR reflectance is therefore
negatively related to leaf water content (Gao, 1996). The bands of Landsat 8 that were used to
compute the NDMI were Band 5 (NIR) and Band 6 (SWIR).

Last but not least, Moisture Index (MI) was also calculated as proposed by Dupigny and Lewis
(1999). According to Dupigny and Lewis (1999), this index best captured the difference between
urban areas, water bodies and full-leaf versus leafless conditions. MI can be calculated using the
following formula and it has a native scaling of 0 to 1.

B NIR
" Blue

The Blue band is able to differentiate between soil and vegetation as well as between deciduous
and evergreen species. It is also known to provide water penetration properties. The NIR band
is capable of determining the biomass while detecting the water bodies and vegetation.

The next processing step included the extraction of all the VV Backscattering, NDVI, NDMI
and MI values on the stations’ locations. This was implemented by using the ReduceRegions
functionality of Google Earth Engine. The result of the aforementioned procedure was then
exported in .csv format for each station.

Having the satellite data filtered, pre-processed and collected they needed to be joined to the In-
Situ measurements in order to obtain two resulting 3D data frames (one for each Landsat 8 data
and one for Sentinel 1 data, each consisting of 6 tables, one table for each station) with Date,
NDVI, NDMI, MI and Measured Soil Moisture data for each station. In order to achieve this, all
the available data, including the csv files exported through Google Earth Engine and the In-Situ
measurements from Enhydris were imported into R and they were joined together by date.
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As long as the Landsat 8 dataset is concerned, the stations Agios Spyridonas, Kampi and TOEB
Lourou included 3 tables of 39 observations of each variable, the station TEI Epirus Kostakii
included 1 table of 43 observations of each variable and the stations Kompoti and Kommeno
included 84 observations of each variable. As a result, the final dataset included 328 observations
of each variable derived by Landsat 8 data.

The Landsat 8 Images that led to the extraction of the values on the point locations are presented
in the Appendix A.

The same procedure was also applied on the Sentinel 1 data. Each one of the stations Agios
Spyridonas, Kommeno, Kompoti, TEI Epirus Kostakii and TOEB Lourou included 144
observations of the VVV Backscattering while the station named Kampi included 145 observations
of the aforementioned variable, resulting in a final dataset of 865 observations of the VV
Backscattering derived by Sentinel 1 data. The Sentinel 1 Images that led to the extraction of the
values on the point locations are presented in the Appendix B.

At this point the datasets were fully prepared to examine the potential of each variable to estimate
and predict the soil moisture. Before applying any statistical or machine learning methodology
on the data, all the variables were plotted versus the measured soil moisture values, in order to
assess and detect any preliminary trends and correlations between the data. The following plot
presents the comparison between the NDVI, NDMI, MI and measured soil moisture time series.

NDVI
NDMI
Mi

In-situ

Soil Moisture (and scaled Indexes)

S

0.0
JE R e e I I JIC N
& & IS (S S R R B N § S &
R A A AR A R

P e R B T R I I IV OF U
& S NS & &F & & PR S Y S SR R R
TSI TS

Figure 34: Soil Moisture In-Situ Measurements and values of NDVI, NDMI and MI, retrieved by Landsat 8 data. A total of 328
measurements of (x10) NDVI, (x10) NDMI and (x3) MI during a time range difference of +/- 2 days.

The following plot showcases the comparison between the values of the VV Backscattering and
the measured soil moisture.
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Figure 35: In-Situ Measurements of Soil Moisture and VV Backscattering values (db). A total of 865 measurements and the
corresponding values of (+30) VV Backscattering during a time range of +/- 2 days.

The time series plot of the VV Backscattering and the measured soil moisture reveals a higher
correlation between the two variables than the ones detected in the timeseries plots of the NDVI,
NDMI, MI and measured soil moisture.

The next step of this research included the application of several statistical and machine learning
techniques on the data, in order to identify the ability of the independent variables (NDVI,
NDMI, Ml and VV Backscattering) to estimate the soil moisture. The first technique that was
applied was the most basic and commonly used model when it comes to statistical and predictive
analysis and this is the Linear Regression Model. Linear Regression attempts to model the
relationship between two continuous (quantitative) variables -one dependent and one (or more)
independent variable(s)- by fitting a linear equation to the observations. The Linear Regression
Model Equation is of the form:

y=b0+b1x

At this point, the dataset was partitioned into training and test datasets in order to evaluate each
model’s results using each time the 80% of the observations as training set and the remaining
20% as test dataset. After splitting the data, Linear Regression Analysis was performed using
each time a different variable as the independent one and the measured soil moisture as a
dependent one. The values of RMSE, r? and p-value were examined in order to evaluate the
accuracy and predictability of the models. Except for the aforementioned information, the plots
of the fitted model as well as of the plot of the predicted versus the measured soil moisture were
also crucial to evaluate the models.

Except for examining linear models, nonlinear models were also examined. The next model that
was examined was the Polynomial Regression Model.

In Polynomial Regression Analysis, the relationship between the independent variable and the
dependent variable is modelled as an nth degree polynomial in x. Polynomial regression fits a
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nonlinear relationship between the two variables and is capable of describing nonlinear
phenomena. The form of the Polynomial Regression Model equation is:

y ES bO + b1x1 + bzxg + -+ bkx’k(

It has to be noted that the fitted model is more reliable when a large number of observations is
available. The determination of the order of the polynomial model applied using each of the
independent variables, was a result of trial and error until the plotted models’ fit was satisfactory
and their significance was high.

The next model that was implemented, was the Generalized Additive Model (GAM). In case a
nonlinear relationship is detected, the polynomial terms may not be flexible enough to capture
the relationship, and spline terms require too detailed configuration. The Generalized additive
models are capable of automatically fitting a spline regression. Generalized additive models are
considered a powerful technique as the usual Linear relationship between the independent
variable and the predictors is replaced by nonlinear smooth functions in order to capture and
model the nonlinearities of the data. Using this model, the regression equation becomes:

y=a+ fi(x) + fo2(xz2) + -+ fre(xg)
where f1, fo...fk are different nonlinear Functions on variables X«.

Having examined the previously mentioned techniques, it was considered useful to examine the
possibility to estimate soil moisture using both the NDVI and VVV Backscattering as the predictor
variables, using Deep Machine Learning Techniques such as Artificial Neural Networks. In order
to achieve this, using the two satellite image datasets, Landsat 8 Surface Reflectance and Sentinel
1, ajoin algorithm was executed using again the Google Earth Engine API, in order to keep only
the Landsat images which were acquired with a maximum acquisition date difference of 2 days
in accordance to the Sentinel 1 Images. After executing this join procedure, 19 Sentinel 1 GRD
and 19 Landsat 8 Surface Reflectance Images were kept in the dataset and the values of the two
variables (NDV1 and VVV Backscattering) were exported in .csv format. After implementing the
exported .csv in R and joining the extracted data with the corresponding In-Situ measurements
the resulting dataset for each station included 19 dates of observations (19 dates x 6 stations
resulted in 114 observations in total).

The 19 Landsat 8 Surface Reflectance Images that were joined to the Sentinel 1 Images are
presented in the following table.

Table 11: Landsat 8 Metadata of the Joined Images

CLOUD COVER WRS WRS

IMAGE ID Date (LAND) SATELLITE PATH ROW
LC08_ 185033 20150317 2015-03-17 99,91 LANDSAT_8 185 33
LCO08_185033_20150402 2015-04-02 12,9 LANDSAT_8 185 33
LC08_185033_ 20150504 2015-05-04 1,35 LANDSAT_8 185 33
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2015-03-16

2015-04-03

2015-05-03

2015-05-21

2015-06-20

2015-08-25

LC08_185033 20150520
LCO8_185033_20150621
LCO8_185033 20150824
LC08_185033_20151128
LCO8_185033 20151230
LC08_185033_20160216
LCO8_185033 20160303
LC08_185033_20160404
LCO8_185033 20160420
LCO8_185033_20160522
LCO8_185033_20160607
LCO8_185033_20160709
LCO8_185033 20160725
LCO8_185033_20160826
LCO8_185033_20160911
LCO8_185033_20161216

2015-05-20
2015-06-21
2015-08-24
2015-11-28
2015-12-30
2016-02-16
2016-03-03
2016-04-04
2016-04-20
2016-05-22
2016-06-07
2016-07-09
2016-07-25
2016-08-26
2016-09-11
2016-12-16

18,15
46,58
11,29
77,52
27,74
96,32
82,08
0,66
2,69
45,06
16,35
0,23
28,73
OES
59,84
18,56

LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8

185
185
185
185
185
185
185
185
185
185
185
185
185
185
185
185

33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33

The 19 Sentinel 1 Images that were joined to the Landsat 8 Images are presented in the following

table.

Table 12: Sentinel 1 Metadata of the Joined Images

Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar

SAR

Standard GRD

L1 Product
SAR

Standard GRD

L1 Product
SAR

Standard GRD

L1 Product
SAR

Standard GRD

L1 Product
SAR

Standard GRD

L1 Product
SAR

Standard GRD

L1 Product

Descending

Ascending

Descending

Ascending

Descending

Ascending

80

175

175

80

175

H—10m

H—10m

H—10m

H—10m

H—-10m

H—-10m

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]
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2015-11-29

2015-12-29

2016-02-15

2016-03-04

2016-04-03

2016-04-21

2016-05-21

2016-06-08

2016-07-08

2016-07-26

2016-08-25

2016-09-12

2016-12-17

Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar
Synthetic
Aperture
Radar

SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product
SAR
Standard
L1 Product

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

Ascending

Descending

Descending

Ascending

Descending

Ascending

Descending

Ascending

Descending

Ascending

Descending

Ascending

Descending

175

80

80

175

80

175

80

175

80

175

80

175

80

H—10m

H—10m

H—10m

H—10m

H—10m

H—-10m

H—10m

H—-10m

H - 10m

H—10m

H—10m

H—10m

H—10m

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

The next step included the configuration and the execution of the Artificial Neural Network. The
processing steps were executed using R programming language in the RStudio IDE. Before
importing the data in the Artificial Neural Network, the data had to be split into train and test
data. It is crucial to use the majority of data to train the network, thus a percentage of 80% of the
data was used as train data. Accordingly, the rest of the data were used for testing the predictions.
After splitting the data, it is considered best practice to normalize them, so the input dependent

FPage 41 of 14



and independent variables were scaled to [0, 1]. Normalization or scaling is not really a
functional requirement in order to train the Neural Network, but it significantly helps as it
transposes the input variables into the data range that the activation functions lie in (i.e. for
logistic [0, 1] and tanh [-1, 1]. The method that was used to scale the data was the standardization.
Standardization or Z-score normalization is considered the most commonly used scaling
technique. In order to be calculated the arithmetic mean and standard deviation of the given data
are used. It is really important though to keep in mind that both standard deviation and mean are
sensitive to outliers which implies that this technique does not guarantee a common numerical
range for the normalized scores.

Generally pre-processing the data before importing them to the neural network has several
advantages as making the training of the network faster, more memory efficient and resulting in
more accurate forecasting. (Rotich, 2014)

As long as the training of the Neural Network is concerned, several packages were tried in order
to tune it and get satisfactory results by trial and error. Firstly, the package ‘neuralnet’ was used.
The results were not satisfactory enough and another package was to be tried for experimenting.
The second approach included the introduction of TensorFlow and Keras.

TensorFlow, a novel open source deep learning library based on computational graphs. It was
developed by Google Brain Team and it was released in 2015 (Goldsborough, (2016).
TensorFlow can be used with Python and with its low-level programming interface it provides a
large scale of machine learning methods, especially powerful methods to build deep and complex
neural networks, giving fine-grained control for their construction (Kallio, 2017).

Another tool that was used was Keras. Keras is an open source neural network library which is
written in Python and is capable of running on top of TensorFlow, Microsoft Cognitive Toolkit
or Theano. ("Keras backends", keras.io). It was developed as part of the project ONEIROS
(Open-ended Neuro-Electronic Intelligent Robot Operating System), by a Google Engineer
named Frangois Chollet ("Keras Documentation", keras.io) Keras is user-friendly, modular and
extensible, offering a high-level set of abstractions which make it easy to develop deep learning
models.

The first step of creating a Neural Network with Keras, was to define the model. A sequential
model was created by calling the keras_model_sequential() function and after that several layers
were also defined. A sequential model is basically a linear stack of layers. The definition of the
layers should include several information such as the output dimensions, which is the number of
the neurons that consist in the next layer, and the activation function. When creating the first
layer it is compulsory to define the input dimensions, which in this study is 2 since 2 variables
will be the input. The activation function of a node defines the output of the node given an input.
This output is then used as input for the next node and so on until a desired solution to the initial
problem is found. The activation function that was chosen in the current study was the Rectified
Linear Units (ReLU). ReL.U can be described with the following mathematical formula.

FPage 42 of 14



R = max(0, x)

This activation function has gotten extremely popular the last years as it is proven that avoids
and rectifies vanishing gradient problem. For this reason, almost all Deep Learning Models use
RelLU nowadays. Sigmoid and Tanh are two other possible alternatives but nowadays they are
not suggested due to the vanishing Gradient Problem, which causes problems to the training
process while it degrades the accuracy and performance of a Deep Neural Network Model.

After defining the initial properties of the network, it should be compiled which in fact means
defining the learning process. The arguments that should be defined to compile the model are 3.
The first argument is the Optimization algorithm or the Optimizer. Optimization algorithms help
us minimize (or maximize) an Objective or Error function E(x) which is simply a mathematical
function dependent on the Model’s internal learnable parameters, such as Weights and Biases,
which are used in computing the target values(Y) from the set of predictors(X) used in the model.

The gradient descent optimization function that was chosen was RMSprop, which is an

unpublished, adaptive learning rate method proposed by Geoff Hinton in “Lecture 6e” of his
Coursera Class (Hinton, 2012).

The next parameter that was introduced in the model was the Loss function. The Loss function
IS an important part in artificial neural networks, which measures the inconsistency between the
actual and the predicted value. Neural networks are trained using gradient methods by an
iterative process of decreasing a loss function, which is a non-negative value, where the
robustness of model increases along with the decrease of the value of the loss function. The loss
function that was chosen in the current study was the Mean Square Error (MSE). This function
calculates the difference between the predicted and actual values, squares the result, making all
the values positive, and then computes the mean value. The last argument that was required in
order to compile the model was the metrics. A metric is basically a function that given the
predicted and actual values of the sample, provides a scalar measure of how well the model fits
the data. The metric that was selected in order to evaluate the model was the Mean Absolute
Error (MAE). MAE measures the average magnitude of the errors in a set of predictions, without
considering their direction. It’s the average of the absolute differences between prediction and
actual values where all individual differences have equal weight. It is computed through the
following equation.

n
1
MAE = — F—
nZD’j yjl
j=1

At this point the training process should be defined and executed. In order to achieve this a set
of 100 epochs was defined, which is the number of passes through the entire dataset, in order for
the backpropagation algorithm to converge on a combination of weights with an acceptable level
of accuracy. Moreover, setting the batch size is really important so that smaller parts of the data
are training separately during an epoch. This results in updating the weights more than once
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during each epoch. After having all the above parameters set the training process was initiated
and the model was fine-tuned by changing the number of the hidden layers and their neurons’
and by setting a dropout rate. Dropout is a regularization technique for neural network models
proposed by Srivastava, et al. (2014) and suggests a way to prevent Neural Networks from
overfitting.
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4 EXPERIMENTAL RESULTS

In this chapter, the results of the implemented methodologies, as described in the previous
chapter, are going to be presented. It should be noted that the RMSE values indicate the mean
deviation between the measured and the predicted soil moisture values.

The first approach to estimate and predict soil moisture in the study area included linear
regression analysis using soil moisture as dependent variable and the indices that were calculated
using Landsat 8 data, which were the NDVI, NDMI and M, as independent variables. Linear
regression was conducted using each independent variable separately while each variable was
partitioned into training and test sets.

Firstly, linear regression using the measured soil moisture as dependent variable and NDVI as
independent variable was performed. Before performing the linear regression though, the two
variables were plotted in order to seek for any trends in their distribution. The resulting plot is
presented below.

Measured Soil Moisture vs NDVI plot
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Figure 36: Plot of Measured Soil Moisture versus NDVI.
According to this plot, the two variables seem to have a nonlinear, though weak, relationship. A
linear regression model was applied though in order to examine all the cases and exclude the
poorly-fitting ones. The training set was used to train and compute the corresponding model,

while the test set was used to predict and evaluate the results. The visualization of the resulting
model is presented in the next graph.
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Linear Regression Model using Measured Soil Moisture and NDVI
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Figure 37: Linear Regression Model using Measured Soil Moisture and NDVI.

The metrics of the model accuracy, the RMSE and the r?, were 7.479 and 0.04 respectively.
RMSE indicates a deviation of about +/-7.479 mm between the predicted and measured soil
moisture values. Moreover, the p-value was 0.33, implying that there is weak evidence against
the null hypothesis and that the result was not statistically significant. After applying the linear
regression on the training dataset, it was also applied to the test dataset in order to evaluate the
model and compare the predicted soil moisture values with the measured ones, as shown in the
next graph.
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Figure 38: Predicted vs Measured Soil Moisture using Linear Regression Model and NDVI (n = 66 observations of the validation

set).

Accord

ing to the images presented above as well as the values of r> and RMSE, the linear

regression model using the NDVI values, does not seem to be the most suitable one.

The next linear regression model that was calculated, included the soil moisture measurements
as dependent variable and the NDMI as independent. The plot of the two variables showcased
an almost linear relationship between them.
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The RMSE and r? that resulted from the application of the linear regression model were 7.268
and 0.033 respectively. It should be noted that the p-value of this model was 0.004 which is
lower than the p-value of the previously implemented model and suggests that the result is
statistically significant. The visualization of the model is presented below.

Linear Regression Model using Measured Soil Moisture and NDMI
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Figure 40: Linear Regression Model using Measured Soil Moisture and NDMI.

Moreover, the application of the model on the test dataset in comparison to the measured soil
moisture values, is presented in the next image.
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Figure 41: Predicted vs Measured Soil Moisture using Linear Regression Model and NDMI (n = 66 observations of the
validation set).

According to the results as presented above, it appears that this model is more accurate than the
previous one thought the results are still unsatisfactory.

The last variable that was used as a predictor in Linear Regression, being derived from Landsat
8 satellite data, was the MI. The result of plotting the dependent variable (measured soil
moisture) with the independent variable showcased that the possibility of deriving a relationship
between the two variables is low.

Measured Socil Moisture vs M| plot
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Figure 42: Plot of Measured
Soil Moisture versus MI.
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After applying the linear regression model using the MI as independent variable, the resulting
RMSE and r? were 7.222 and 0.043 respectively, while the p-value being 0.1549, indicated that
the result was not statistically significant. The visualization of the resulting model is presented
below.

Linear Regression Model using Measured Soil Moisture and MI
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Figure 43: Linear Regression Model using Measured Soil Moisture and M.

After applying the resulting linear regression model equation on the test dataset, the results were
not found to be satisfactory.
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Figure 44: Predicted vs Measured Soil Moisture using Linear Regression Model and MI (n = 66 observations of the validation
set).

After applying linear regression models using the indices derived by Landsat 8 data, linear
regression was also implemented using the VV backscattering values derived by Sentinel 1 data.
Before applying the linear regression model, the two variables were plotted.

Measured Soil Moisture vs VV Backscattering plot
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Figure 45: Plot of Measured Soil Moisture versus VV Backscattering.
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The above plot suggests a nonlinear relationship between the two variables. The RMSE and r?
of the resulting linear regression model using the VV Backscattering values were 8.058 and
0.043 respectively. Moreover, the p-value was 0.00000006. Being that low, it suggests a
statistically significant result. The visualization of the model is presented below.

Linear Regression Model using Measured Soil Moisture and VV Backscattering
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Figure 46: Linear Regression Model using Measured Soil Moisture and VV Backscattering.

The calculated regression model equation was also applied on the test dataset in order to evaluate
the results. The comparison between the predicted and the measured soil moisture values is
presented below.
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Figure 47: Predicted vs Measured Soil Moisture using Linear Regression Model and VV Backscattering (n = 173 observations
of the validation set).

According to the metrics and the plots, the linear regression model using the V'V Backscattering
seems to fit better than the models using the indices derived by Landsat 8 data. The r? seems to
be extremely low, but there are cases in the literature where r? is low and the models are accurate
and vice versa. The RMSE in all cases ranges between 7 and 8 which is acceptable considering
the range of the soil moisture values.

The use of linear regression models resulted in mainly unsatisfactory results. For this reason,
polynomial regression was also applied using the same variables.

Firstly, the NDV1 was used as independent variable in polynomial regression model. After many
attempts, the model that was found to be more significant to use was a fifth-order polynomial
regression model which is visualized in the next graph.
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Polynomial Regression Model using Measured Soil Moisture and NDVI
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Figure 48: Polynomial Regression Model using Measured Soil Moisture and NDVI.

0.8

The RMSE of the model was 8.229, while the r? and the p-value were 0.016 and 0.099
respectively. The application of the model on the test dataset resulted in the following plot.

Predicted vs Measured Soil Moisture
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Figure 49: Predicted vs Measured Soil Moisture using Polynomial Regression Model and NDVI (n = 66 observations of the

validation set).

Both the plots and the metrics, reveal that this model fitted poorly.
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The next independent variable that was used was the NDMI. This time a second-order

polynomial regression model was implemented. The visualization of the polynomial

using NDMI is presented below.

Polynomial Regression Model using Measured Soil Moisture and NDMI
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Figure 50: Polynomial Regression Model using Measured Soil Moisture and NDMI.

The RMSE of the model was 7.646 while the r? was 0.02. The p-value was 0.012, indicating a
not statistically significant result. The following plot presents the comparison between the

predicted soil moisture values and the measured ones, in order to evaluate the model.
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Figure 51: Predicted vs Measured Soil Moisture using Polynomial Regression Model and NDMI (n = 66 observations of the
validation set).

Afterwards, the MI was used as independent variable in a third-order polynomial regression
model. The RMSE and r? of the model were 7.273 and 0.038 respectively. The p-value was
0.00027, indicating a statistically significant result. The visualization of the model is presented

below.
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The results of the third-order polynomial model on the test dataset compared to the measured
soil moisture values, can be evaluated by the following plot.
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Figure 53: Predicted vs Measured Soil Moisture using Polynomial Regression Model and MI (n = 66 observations of the
validation set).

As a next step, polynomial regression was also applied using the VV Backscattering as
independent variable of the model. This variable appeared to produce better results than the
previous ones while applying the polynomial model. The model that was applied was a third-
order polynomial model and the resulting RMSE was 8.058 and the r? was 0.042.
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Polynomial Regression Model using Measured Soil Moisture and VV Backscattering
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Figure 54: Polynomial Regression Model using Measured Soil Moisture and VV Backscattering.

After calculating the polynomial model equation, it was applied to the test dataset. The predicted
and the measured soil moisture were compared and the result is presented in the following plot.
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Figure 55: Predicted vs Measured Soil Moisture using Polynomial Regression Model and VV Backscattering (n = 173
observations of the validation set).
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Apart from Linear Regression and Polynomial Regression Analysis, Generalized Additive
Models were also implemented using each independent variable that was used in the previously
implemented models.

Firstly, NDVI was used as the independent variable in the Generalized Additive Model. The
resulting RMSE and r? were 7.441, 0.03 respectively. The model is presented in the following
plot.

Generalized Additive Model using Measured Soil Moisture and NDVI

0.8 - - - ]
[ .® '~ .
- - L] * s o.
- : . . . M . o
» & - ®
.- . .:‘ L -®
— -
E 0.6 t. LI fa * . * *
E ...‘. N .. L] - *
E’ - - [ 1] o . . " * L] * .0 . .
.
é ] * * .mo. * .. * L) et '. .. * ) ..
o 2 . 8 . -
(=] .. w L - o .
% 0.4 - L] rl. . - - L] L] L X
K= . . 4 °
w . . . . **
=] L] .
o o e .
a LI . -
g 02 - LA L] -
= < ...- * .. .. -t - -
[
L] 'I. L ."‘. . . .
* - - L _— .
0.0 . "% . L, RO, e
10 20 30 40
NDVI

Figure 56: Generalized Additive Model using Measured Soil Moisture and NDVI.

In order to evaluate the model, the calculated model equation was applied to the test dataset and
the results were compared to the measured soil moisture. The results are presented in the
following plot.
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Figure 57: Predicted vs Measured Soil Moisture using Generalized Additive Models and NDVI (n = 66 observations of the

validation set).

Afterwards,

the same methodology was applied using the NDMI as the predictor variable of soil

moisture. The RMSE of this model was 7.268 while the r? was 0.033. The resulting model is
presented in the following plot.
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Figure 58: Generalized Additive Model using Measured Soil Moisture and NDMI.
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The comparison of the measured and the predicted values of soil moisture seemed more
successful than the previous two methodologies, as it can be observed in the following plot.
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Figure 59: Predicted vs Measured Soil Moisture using Generalized Additive Models and NDMI (n = 66 observations of the
validation set).

Generalized Additive Model was also applied using the M1 as the independent variable which
led to an RMSE value of 8.985 and an r? value of 0.085. The model is presented in the following

plot.
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Generalized Additive Model using Measured Soil Moisture and M|
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Figure 60: Generalized Additive Model using Measured Soil Moisture and MI.

After calculating the model, the evaluation of its performance took place by applying it to the
test dataset. The comparison between the predicted and the measured soil moisture values was
still satisfactory and can be observed in the following plot.
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Figure 61: Predicted vs Measured Soil Moisture using Generalized Additive Models and MI (n = 66 observations of the
validation set).
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The Generalized Additive Model was also applied using the VV Backscattering information as
the predictor of soil moisture. The resulting RMSE of the model was 7.79 while the r> was 0.12.
The resulting model is presented below.

M easured Soil M oisture (mm)

I
n
I

-10 1

Generalized Additive Model using Measured Soil Moisture and VV Backscattering
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Figure 62: Generalized Additive Model using Measured Soil Moisture and VV Backscattering.

A comparison between the predicted and the measured soil moisture values was also performed
and the results are presented in the following plot.
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Figure 63: Predicted vs Measured Soil Moisture using Generalized Additive Models and VV Backscattering (n = 173
observations of the validation set).

Despite the low r? values, the Generalized Additive model appeared to fit better than the previous
models in every case examined.

After executing the Linear Regression, the Polynomial Regression and the Generalized Additive
Models, a Neural Network model was also developed. Using TensorFlow API along with Keras,
better results were achieved compared to the package neuralnet. The training of the Neural
Network was time consuming and based on trial and error, since there are no rules in terms of
setting the numbers of hidden layers and neurons in order to achieve satisfactory results. This
resulted in experimenting with the model parameters several times and going back and forth in
the procedure until the output indicated that the parameters were right.

During the training of the network, the following two plots were produced.
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Figure 64: Performance plots of Artificial Neural Networks.

According to the first plot, the value of the loss function using the training set was really high at
the beginning of the training process but it started decreasing fast. Since the 20" epoch the value
seems to be stable with a slight decrease. The same observation was made on the test dataset too.
However, the test dataset seems to achieve even lower loss function values.

Moreover, the Mean Absolute Error seemed to follow the same pattern. The training is initiated
with a high MAE value, whereas until the 10" epoch it is being decreased dramatically. It
becomes almost stable since the 20" epoch using both the training and the test datasets.

FPage B5 of 14



Soil Moisture Estimation based on Multispectral and SAR Satellite Data using Loogle Earth Fngine and Machine [earning

Measured vs Predicted Soil Moisture using NNs

30-

[yl
o
1

Predicted Soil Moisture

]

=1
1
-
.

-

15-

10 20 30 40 50
IMeasured Soil M oisture (mm)

Figure 65: Predicted vs Measured Soil Moisture using Artificial Neural Networks, along with VV Backscattering and NDVI
(plotted n = 114 observations of the full dataset).

As soon as the training process was completed, an evaluation of the model took place, by plotting
and comparing the predicted Soil Moisture values with the measured ones. The model seemed
to need further tuning thought the result was better than those of the previously mentioned
methodologies. The RMSE was 6.204.

In the following table the metrics of all the applied models are presented.

Table 13: Comparison of the results of the applied methodologies.

Linear Regression
predictor p-value
NDVI 7.479 0.04 0.33
NDMI 7.268 0.033 0.004
MI 7.222 0.043 0.1549
VV Backscattering 8.058 0.043 0.00000006
Polynomial Regression
NDVI 8.229 0.016 0.099
NDMI 7.646 0.02 0.012
MI 7.273 0.038 0.00027
VV Backscattering 8.058 0.042 0.00000000000000022
Generalized Additive Models
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7.441 0.03 -

7.268 0.033 -
8.985 0.085 -
7.79 0.12 -
6.204

According to the table above NDVI did not produce well-fitted models in any applied method,
NDMI produced more satisfactory results in Linear Regression and M1 produced good results in
the Polynomial Regression and Generalized Additive Models but the RMSE of the last-
mentioned technique was too high, indicated high mean deviation between the measured and the
predicted soil moisture values. VV Backscattering appeared to produce the most satisfactory
results among all the predictors, especially in Generalized Additive Models, the use of VV
Backscattering as the independent variable resulted in an r? value of 0.12 and an RMSE value
that indicated a mean deviation of +/-7.79 mm between the measured and the predicted soil
moisture values (sample size, n=865). Moreover, the neural network that was applied using
NDVI and VV Backscattering, resulted in an RMSE value which revealed a mean deviation of
+/-6.204 mm between the measured and the estimated soil moisture values (sample size, n=114),
which is better than the RMSEs produced by the previously implemented models.
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5 DISCUSSION

The aim of this study was to examine the correlation between soil moisture In-Situ measurements
and the indices derived by Landsat 8 surface Reflectance data along with Sentinel 1 Images, by
applying Statistical and Machine Learning Techniques. Moreover, this study showcases the
capabilities and advantages of using the Google Earth Engine. During the course of this study,
several limitations showed up which should be mentioned, along with several useful findings. It
is worth mentioning that using Google Earth Engine in order to process Remote Sensing data
makes processing time extremely less, as the data are already preprocessed up to a specific point.
Its usage also helps saving time as the processing is not being executed locally but using large
remote CPUSs. This decreased computational time dramatically. It should be noted though that,
in spite the fact that a high-level programming language is used, good programming skills are
highly required in order to fully understand all the functions and use them efficiently, but also to
be able to customize and create new ones which would be fully adapted to each research question.
The documentation provided by Google is complete with really good and helpful examples, but
the lack of programming skills could make them confusing or incomprehensible as well as
difficult to customize. One more thing that can make the life of a scientist using Google Earth
Engine easier, is the existence of the Google Earth Engine Developers’ List. In this group,
experts of Google Earth Engine and other scientists discuss related topics but also answer to
many questions in detail.

Except for Sentinel 1 and Landsat 8 Surface Reflectance, Sentinel 2 data were also queried.
However, they are not atmospherically corrected and no atmospheric correction algorithm for
S2 products is still implemented in Google Earth Engine. So, in order to avoid downloading this
dataset and processing the images using another tool, the S2 Images were not used.

After processing the data in Google Earth Engine though, the retrieved values should be exported
in .csv format as, unfortunately, there is still no implementation for Neural Network applications
in Google Earth Engine. This is something highly asked by the Google Earth Engine community
which will probably be implemented in the near future. At this point the results were exported
from Google Earth Engine and implemented in R statistical package. R is a user friendly and
easy to learn programming language with many capabilities. In the R environment, several
machine learning techniques were executed, including Linear Regression, Polynomial
Regression and Generalized Additive Models. The computation of these models led to extremely
low r? values, along with low p-values. The observed RMSEs thought were not bad considering
the value range of soil moisture. After examining the aforementioned methodologies, a Deep
Learning technique was also implemented using TensorFlow and Keras. The installation of
Keras though was more time consuming than expected though as there was a bug in the
installation process and the solution was not straightforward. Moreover, the creation of a neural
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network is a time-consuming process, as it implies trial and error when it comes to determining
its architecture parameters. Despite that, neural networks are a powerful Deep Learning
technique. The results of this technique appeared to be more satisfactory than those of the
previously implemented techniques.

It should be noted though that, despite the literature, none of the combinations of the
implemented statistical and machine learning models, managed to produce satisfactory
correlation results. However, Alvarez-Mozos et al., (2005) also observed low point scale
correlations® between soil moisture and backscattering coefficient, with r? values ranging
between 0.25 and 0.37. This could be due to the heterogeneity of the dataset by means of different
In-Situ measuring instruments as well as the different properties of each station. Alexakis et al.,
(2017) applied Artificial Neural Networks on a sample of 640 measurements, consisting of the
following variables as inputs: backscattering coefficient, NDVI, Thermal Infrared Temperature
values and incidence angle 6, derived by Sentinel 1 and Landsat 8 data, and they observed r?
values ranging between 0.400 and 0.914 and RMSE values which indicated a mean offset
ranging between 0.022 m* m= and 0.058 m® m 2 between the measured and the predicted soil
moisture content values. In the current study, the results of the Deep Neural Network that was
implemented were the most satisfactory ones but the values of the r? were lower than the ones
reported from Alexakis et al..

In a future related research, more indices could be used in order to estimate soil moisture, such
as the combination of Surface Temperature and NDVI in order to retrieve the Soil Moisture
Index. Also, models per station could be implemented to overcome the limitations that the
heterogenous data caused as well. Models per dry and rainy seasons could also be estimated. It
could be considered a good practice to calculate the mean of a 5x5 pixels’ kernel as the
independent variables’ value instead of the individual pixel’s value. Moreover, Soil Moisture
products could be used as validation datasets along with the In-Situ measurements. Last but not
least, the use of Sentinel 2 could be an interesting addition in the examination of the soil moisture
estimation.

1 n the research mentioned (Alvarez et al., 2005), point, field and catchment scale correlations where
implemented.
2 Referring to the Soil Moisture Content.
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6 CONCLUSION

The purpose of this study was to examine the correlations between soil moisture In-Situ
measurements and indices, derived by multispectral data, as well as VV Backscattering values,
derived by SAR Images, by applying statistical and machine learning techniques. The data that
were used included Landsat 8 Surface Reflectance and Sentinel 1 Images. Firstly, In-Situ data
were collected from the Enhydris project, were soil moisture measurements from 6 stations were
found. The stations where soil moisture was measured were Agios Spyridonas, Kommeno,
Kompoti, Kampi, TEI Epirus — Kostakii and TOEB Lourou and they were located in the broader
region of Arta. Having the In-Situ data, the satellite data where chosen through Google Earth
Engine, which appeared to be an extremely helpful and time-saving tool. When all the images
were processed, the values of NDVI, NDMI, Ml on each point location were extracted, using the
Landsat 8 data, as well as the VV Backscattering values of the stations’ points, using the Sentinel
1 Images. Those data along with the In-Situ measurements were imported in R, where they were
processed and merged. The resulting dataset included information of the NDVI, NDMI, MI, VV
Backscattering and In-Situ Soil Moisture of each station.

The first technique that was applied was Linear Regression using soil moisture as dependent
variable and each time one of the rest parameters (NDVI, NDMI, MI, VV Backscattering) as
independent variables. In Linear Regression, the best results were produced when using VV
Backscattering as an independent variable as well as NDMI. The Linear Regression using VV
Backscattering as the predictor resulted in an extremely low p-value, the highest r? in comparison
to the other variables, though still low, and an RMSE indicating a mean deviation of +/-8.058
mm between the measured and the estimated soil moisture values (sample size, n=865), which
was higher than those of the other variables. In Polynomial Regression, VV Backscattering
(sample size, n=865) and MI (sample size, n=328) produced the best models with RMSE values
revealing mean deviations of +/-8.058 mm and +/-7.273 mm, respectively, between the measured
and the predicted soil moisture values, r? values of 0.042 and 0.038 respectively and p-values of
0.00000000000000022 and 0.00027 respectively. Generalized Additive Models produced better
results when VV Backscattering (sample size, n=865) was used as the predictor with an RMSE
value indicating a mean deviation of +/-7.79 mm between the measured and the predicted soil
moisture values and an r? value of 0.12.

The models that were implemented using statistical and machine learning techniques, did not
manage to reveal strong correlations between the examined data. The main reason of this
problem could be the heterogeneity of the data, since the instruments of the In-Situ stations as
well as the environmental properties of each station were different.
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Evaluating the results of each predictor, it was observed that NDVI did not perform well as a
sole predictor of soil moisture in any of the applied statistical and machine learning techniques
whereas NDMI produced better results in Linear Regression model. Moreover, the use of Ml as
the predictor was found effective when Polynomial Regression but also Generalized Additive
Models were applied. However, the RMSE of the application of Generalized Additive Models
using M1 was too high, indicating a high mean deviation between the measured and the predicted
soil moisture values. As long as VV Backscattering is concerned, using it as the sole predictor
led to the most efficient results and the best fitted models, in comparison to the other predictors.
Especially the application of Generalized Additive Model using VV Backscattering as the
independent variable, resulted in the highest r? value of 0.12 and an RMSE value indicating a
mean deviation of +/-7.79 mm between the measured and the predicted soil moisture values
(sample size, n=865).

Last but not least, the application of the neural network model using NDVI and VV
Backscattering as independent variables, led to an RMSE value revealing a mean deviation of
+/-6.204 mm between the measured and the predicted soil moisture (sample size, n=114), which
was the lowest RMSE value observed among all the previously implemented models.
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APPENDICES

APPENDIX A — Sentinel 1 Metadata of the Selected Images

Transmitter

Instrument Product Product . Relative . .

Date Instrument Mode Platform Class Type Orbit Pass Orbit Resolution Recglve_r

Polarisation
Synthetic St:rﬁjir q

2015-03-04  Aperture W A L1 GRD DESCENDING 80 H-10 [VV, VH]
Radar Product
Synthetic St:r'lb(\jzr d

2015-03-10  Aperture W A L1 GRD ASCENDING 175 H-10 [VV, VH]
REGE Product
Synthetic St::(‘;r q

2015-03-16 = Aperture W A L1 GRD DESCENDING 80 H-10 [VV, VH]
Radar Product
Synthetic St:rft\jzr q

2015-03-22  Aperture W A L1 GRD ASCENDING 175 H-10 [VV, VH]
REREL Product
Synthetic St:rﬁ;:r q

2015-03-28  Aperture W A L1 GRD DESCENDING 80 H-10 [VV, VH]
Radar Product
Synthetic St:rﬁjlzr q

2015-04-03  Aperture W A L1 GRD ASCENDING 175 H-10 [VV, VH]
REREL Product
Synthetic Stir':;:r d

2015-04-09  Aperture W A L1 GRD DESCENDING 80 H-10 [VV, VH]
Radar Product
Synthetic St:rﬁjzr q

2015-04-15  Aperture W A L1 GRD ASCENDING 175 H-10 [VV, VH]

Radar

Product
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2015-04-21

2015-04-27

2015-05-03

2015-05-09

2015-05-15

2015-05-21

2015-05-27

2015-06-02

2015-06-08

2015-06-14

2015-06-20

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

DESCENDING

ASCENDING

DESCENDING

ASCENDING

DESCENDING

ASCENDING

DESCENDING

ASCENDING

DESCENDING

ASCENDING

DESCENDING

80

175

80

175

80

175

80

175

80

175

80

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10
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2015-06-26

2015-07-20

2015-07-26

2015-08-13

2015-08-19

2015-08-25

2015-08-31

2015-11-23

2015-11-29

2015-12-05

2015-12-11

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
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Radar
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Standard
L1
Product
SAR
Standard
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SAR
Standard
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SAR
Standard
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SAR
Standard
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SAR
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Product

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD
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ASCENDING

DESCENDING

ASCENDING

DESCENDING

ASCENDING

DESCENDING

DESCENDING

ASCENDING

DESCENDING

ASCENDING

175

175

80

175
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175

80

80

175

80

175

H-10
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H-10
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H-10
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2015-12-17
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2015-12-29
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2016-02-03

2016-02-03

2016-02-09
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Radar
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GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

DESCENDING 80

ASCENDING 175

DESCENDING 80

ASCENDING 175

DESCENDING 80
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ASCENDING 175

ASCENDING 175

DESCENDING 80
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2016-02-15

2016-02-21

2016-02-27

2016-03-04

2016-03-10

2016-03-16

2016-03-28

2016-04-03

2016-04-09

2016-04-15

2016-04-21

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
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Radar

Synthetic
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Radar

Synthetic
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Radar

Synthetic
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2016-04-27
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2016-07-08

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar
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Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product
SAR
Standard
L1
Product

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

GRD

ASCENDING

DESCENDING

ASCENDING

ASCENDING

DESCENDING

DESCENDING

ASCENDING

ASCENDING

DESCENDING

DESCENDING

ASCENDING

175

80

175

175

80

80

175

175

80

80

175

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

H-10

FPage 85 of 4

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]

[VV, VH]



2017-06-03

2017-06-03

2017-06-09

2017-06-09

2017-06-15

2017-06-15

2017-06-21

2017-06-21

2017-06-27

2017-06-27

2017-07-03

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar

Synthetic
Aperture
Radar
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APPENDIX B — Landsat 8 Metadata of the Selected Images

IMAGE ID

LCO08_184033_20150310
LCO8_185033_20150317
LCO8_185033_20150402
LCO8_184033_20150411
LCO8_185033_20150418
LCO8_184033_20150427
LC08_185033_20150504
LCO8_184033 20150513
LC08_185033_20150520
LCO8_184033 20150529
LC08_185033_20150605
LCO8_184033 20150614
LC08_185033_20150621
LCO8_184033_20150630
LCO8_185033_20150707
LCO8_184033_20150716
LCO8_185033_20150723
LCO8_184033_20150801
LCO8_185033_20150808
LCO8_184033_ 20150817
LCO08_185033_20150824
LCO8_184033 20151121
LCO08_185033 20151128
LCO8_184033 20151207
LCO08_185033 20151214
LCO8_184033 20151223
LCO8_185033_ 20151230
LCO8_184033 20160108
LCO8_184033_ 20160124
LCO8_185033 20160131
LCO8_184033_20160209
LCO8_185033 20160216
LC08_185033_20160303
LCO8_185033 20160319
LCO08_184033 20160328
LCO8_185033_20160404
LCO08_184033 20160413

Date

2015-03-10
2015-03-17
2015-04-02
2015-04-11
2015-04-18
2015-04-27
2015-05-04
2015-05-13
2015-05-20
2015-05-29
2015-06-05
2015-06-14
2015-06-21
2015-06-30
2015-07-07
2015-07-16
2015-07-23
2015-08-01
2015-08-08
2015-08-17
2015-08-24
2015-11-21
2015-11-28
2015-12-07
2015-12-14
2015-12-23
2015-12-30
2016-01-08
2016-01-24
2016-01-31
2016-02-09
2016-02-16
2016-03-03
2016-03-19
2016-03-28
2016-04-04
2016-04-13

CLOUD COVER
(LAND)
93,24
99,91
12,9
2,62
22,31
12,89
1,35
7,67
18,15
45,75
16,98
2,13
46,58
81,8
3,2
17,65
0,89
1,21
45,63
12,86
11,29
98,42
77,52
6,48
49,05
1,3
27,74
3,25
28
52,15
30,96
96,32
82,08
24,27
56,8
0,66
12,61

SATELLITE

LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8

WRS
PATH
184
185
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
184
185
184
185
185
185
184
185
184

WRS
ROW
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
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LC08_185033_20160420
LC08_184033_20160429
LC08_185033_20160506
LCO08_184033_20160515
LC08_185033_20160522
LCO08_184033_20160531
LC08_185033_20160607
LCO08_184033_20160616
LC08_185033_20160623
LC08_184033_20160702
LC08_185033_20160709
LC08_184033_20160718
LC08_185033_20160725
LC08_184033_20160803
LC08_185033_20160810
LCO08_184033_20160819
LC08_185033_20160826
LCO08_184033_20160904
LC08_185033_20160911
LCO08_184033_20160920
LC08_185033_20160927
LC08_184033_20161006
L C08_184033_20161123
LC08_185033_20161130
LC08_184033_20170603
LC08_185033_20170610
LC08_184033_20170619
LCO08_185033_20170626
LC08_184033_20170705
LCO08_185033_20170712
LC08_184033_20170721
LCO08_184033_20170822
LC08_185033_20170829
LC08_184033_20170907
L.C08_184033_20170923
LC08_185033_20170930
LC08_184033_20171009
LC08_184033_20171025
LC08_184033_20171110
LCO08_184033_20180129
LC08_185033_20180205

2016-04-20
2016-04-29
2016-05-06
2016-05-15
2016-05-22
2016-05-31
2016-06-07
2016-06-16
2016-06-23
2016-07-02
2016-07-09
2016-07-18
2016-07-25
2016-08-03
2016-08-10
2016-08-19
2016-08-26
2016-09-04
2016-09-11
2016-09-20
2016-09-27
2016-10-06
2016-11-23
2016-11-30
2017-06-03
2017-06-10
2017-06-19
2017-06-26
2017-07-05
2017-07-12
2017-07-21
2017-08-22
2017-08-29
2017-09-07
2017-09-23
2017-09-30
2017-10-09
2017-10-25
2017-11-10
2018-01-29
2018-02-05

2,69
96,95
38,13
29,36
45,06

8,12
16,35

0,81

0,86
10,46

0,23

1,64
28,73

5,89

7,63

1,69

3,5
11,16
59,84
25,21
23,17
10,01
56,78
76,87
48,97
16,31
40,02

1,43
41,19

0,06

4,83
64,29
61,04

0,06

1,05

49,7

0,13
75,77
10,92

1,85

2,73

LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8

185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
185
184
184
185
184
185
184
185
184
185
184
184
185
184
184
185
184
184
184
184
185

33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
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LCO08_184033_20180214
LCO08_184033_20180302
LC08_185033_20180309
LCO08_184033 20180318
LCO08_184033_20180403
LCO08_185033_20180410

2018-02-14
2018-03-02
2018-03-09
2018-03-18
2018-04-03
2018-04-10

47,63
94,35
83,75
97,52

1,54
32,15

LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8
LANDSAT 8

184
184
185
184
184
185

33
33
33
33
33
33
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