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Περίληψη

Σε αυτή την διπλωματική εργασία, μελετάμε το πρόβλημα εκμάθησης διατάξεων από δε-

ίγματα με θόρυβο. Αυτό το πεδίο στατιστικής μάθησης είναι εξαιρετικά χρήσιμο στους

τομείς της εκμάθησης προτιμήσεων και της ανάκτησης πληροφοριών. Σε αυτό το πλαίσιο

εργασίας υποθέτουμε ότι κάποιος λαμβάνει ανεξάρτητα δείγματα, τα οποία μοντελοποιο-

ύνται ως μεταθέσεις n αντικειμένων, που παράγονται από μια κατανομή, που αντιστοιχεί

σε ένα θορυβώδες πιθανοτικό μοντέλο. Τέτοια γνωστά πιθανοτικά μοντέλα είναι το μο-

ντέλο Mallows και το μοντέλο Plackett-Luce. ΄Ετσι, θέτουμε ερωτήματα σχετικά με το

πόσα δείγματα είναι απαραίτητα προκειμένου να μάθουμε τις παραμέτρους των κατανομών

αυτών, το κατά πόσο είναι δυνατό να μάθουμε την ίδια την κατανομή μοντελοποιώντας

το σφάλμα με διάφορες f -αποκλίσεις, όπως η TV απόσταση και η KL απόκλιση, και,

τέλος, ασχολούμαστε με την έννοια του εκτιμητή μέγιστης πιθανοφάνειας. Αρχικά,

παρουσιάζουμε αποτελέσματα από την εκτεταμένη ερευνητική βιβλιογραφία πάνω στο

μοντέλο Mallows συνδυάζοντας μερικά κλασικά αποτελέσματα της έρευνας όπως και

ορισμένα πολύ πρόσφατα. Στη συνέχεια, παρουσιάζουμε τη δική μας πρωτότυπη ερ-

γασία, όπου επιλέξαμε να μειώσουμε τις πληροφορίες που παρέχονται από τα δείγματα

μας και να αντιμετωπίσουμε παρόμοια ερωτήματα, όπως εκείνα που τέθηκαν παραπάνω.

Σε αυτό το πλαίσιο, εισάγουμε και μελετάμε το k-Set sampling setting για τα μοντέλα

Mallows και Plackett-Luce, επεκτείνοντας τα προηγούμενα ερευνητικά αποτελέσματα.

Ταυτόχρονα, εισάγουμε και ένα άλλο μοντέλο δειγματοληψίας με θόρυβο, το μοντέλο

k-Gap Filling Mallows.
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Abstract
In this thesis, we study the problem of learning rankings using noisy samples. This
statistical learning field is extremely useful in the areas of Preference Learning and
Information Retrieval. The working setting implies that one is given independent
samples, which are permutations of n alternatives, generated by a distribution, that
corresponds to a noisy probabilistic model. Such known probabilistic models are the
Mallows Model and the Plackett-Luce Model. Having drawn the samples, one could
ask questions concerning the sample complexity in order to learn the parameters of
the generating distribution, the ability to learn the generating distribution itself in
various f -divergence metrics, such as the TV distance and the KL divergence, and the
notion of maximum likelihood estimation. At first, we present the extended work on
that framework for the Mallows model combining some classical research results with
some seminal work. Afterwards, we present our own work where we chose to reduce
the information provided by our samples and cope to answer similar questions as the
ones mentioned above. Hence, we introduce and study the k-Set sampling framework
for both Mallows and Plackett-Luce models, extending the previous research results.
At the same time, we introduce another novel sampling model, namely the k-Gap
Filling Mallows model.

Keywords

Statistical Learning, Machine Learning, Learning Theory, Probability Theory, Infor-
mation Theory, Voting Theory, Social Choice, Algorithms and Complexity
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1. Εκτεταμένη Ελληνική Περίληψη

Δίνουμε μία εκτεταμένη ελληνική περίληψη που συνοψίζει το περιεχόμενο αυτής της

διπλωματικής εργασίας. Θα παρουσιαστούν συνοπτικά τα περιεχόμενα κάθε κεφαλαίου,

χωρίς αποδείξεις και τεχνικές λεπτομέρειες.

1.1 Εισαγωγή

Οι διατάξεις- permutations είναι συνδυαστικά αντικείμενα που χρησιμοποιούνται καθη-

μερινά από τους ανθρώπους. Από την λεξικογραφική διάταξη των λέξεων μίας γλώσσας

και την κατάταξη αθλητικών ομάδων σε ένα πρωτάθλημα μέχρι τις προτιμήσεις ενός

χρήστη στο YouTube και τις απαντήσεις μίας αναζήτησης στο Google, είναι εύκολο

κανείς να παρατηρήσει πως η έννοια της διάταξης ή της κατάταξης-ranking εμφανίζεται

σε ένα ευρύ φάσμα κατηγοριών με ποικίλες αναπαραστάσεις.

Ταυτόχρονα, ο σύγχρονος κόσμος -επιστημονικός και μη- βιώνει μία άνθηση της Ε-

πιστήμης των Υπολογιστών και, συγκεκριμένα, μία έκρηξη γύρω από την Επιστήμη της

Μάθησης. Από την περίοδο που ο Alan Turing πρότεινε την ομώνυμη δοκιμή - Turing
Test [[Tur50], 1950]- , συσχετίζοντας την έννοια της μηχανής με αυτήν της γνώσης και

την περίοδο που ο Arthur Samuel όριζε τη μηχανική μάθηση ως ¨Πεδίο μελέτης που δίνει

στους υπολογιστές την ικανότητα να μάθαίνουν, χωρίς να έχουν ρητά προγραμματιστεί’

[[Sam59], 1959], έχουμε φτάσει στο σημείο οι υπολογιστές να γίνονται ψηφιακοί προσω-

πικοί βοηθοί [TD18], να παράγουν πρωτότυπα δομημένα κείμενα [DP18], και μουσικά

τραγούδια [DP16], να δημιουργούν πίνακες ζωγραφικής [AE17], απλά παρατηρώντας

δεδομένα και περνώντας μία φάση εκπαίδευσης (training phase),προσομοιώνοντας της

ανθρώπινη μάθηση.

Αναπόφευκτα, ο κόσμος των διατάξεων δεν θα μπορούσε να μην απασχολήσει εκείνον

της Επιστήμης της Μάθησης. ΄Ετσι, γεννήθηκε ο τομέας του Machine-Learning Rank-
ing (MLR). Η φιλοσοφία του ”Learning to rank” πεδίου είναι η κατασκευή μοντέλων

διατάξεων για συστήματα ανάκτησης πληροφορίας. Το ranking model εκπαιδεύεται με
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δεδομένα, τα οποία είναι λίστες από αντικείμενα τα οποία κατατάσσονται με κάποιο κρι-

τήριο και ¨μαθαίνει’ να διατάσσει νέες λίστες από αντικείμενα σύμφωνα με τον τρόπο με

τον οποίο εκπαιδεύτηκε.

Εφαρμογές τέτοιων μοντέλων μπορεί κανείς να παρατηρήσει, για παράδειγμα, σε

recommendation systems. Αλγόριθμοι μάθησης αναλύουν το ιστορικό των αγορών

ενός πελάτη με σκοπό να ¨μάθουν’ ένα preference ranking και, έπειτα, να προτίνουν

παρόμοια προϊόντα. Εν γένει, μοντέλα MLR μπορούν να χρησιμοποιηθούν σε πληθώρα

τομέων όπως το διαδίκτυο (μηχανές αναζήτησης), η υπολογιστική βιολογία (protein
structure prediction problem), η επεξεργασία φυσικής γλώσσας και το Data Mining.

Στην παρούσα εργασία, θα προσπαθήσουμε να μελετήσουμε πολλές οπτικές και μο-

ντέλα αυτού του πεδίου της Επιστήμης της Μάθησης. Συγκεκριμένα, θα παρατηρήσουμε

τρόπους με τους οποίους η Θεωρία Πιθανοτήτων και Στατιστικής, καθώς και η Θεω-

ρία Πληροφορίας, εντάχθηκαν στον κόσμο των Αλγορίθμων και της Πολυπλοκότητας,

επεκτείνοντας τα όρια της Θεωρίας Στατιστικής Μάθησης.

Κύριο Πρόβλημα

΄Εστω ένα σύνολο με n αντικείμενα {ai}ni=1, τα οποία μπορούν να διαταχθούν σύμφωνα

με μία μετρική. Για παράδειγμα, έστω ένα πρωτάθλημα n ομάδων, όπου η κάθε μία

παίζει με τις άλλες (n − 1). Τότε, στο τέλος του πρωταθλήματος, κάποια ομάδα ai1
θα είναι πρώτη, κάποια ai2 δεύτερη, κοκ. Εδώ η μετρική σύγκρισης είναι το πλήθος

νικών της κάθε ομάδας. Η διάταξη αυτή, έστω π0 = (ai1 � ai2 � ... � ain), μας

είναι κρυφή και δεν έχουμε άμεση πρόσβαση σε αυτή. Εμείς, όμως, επιθυμούμε να την

ανακαλύψουμε. Αυτό που μπορούμε να κάνουμε είναι να παίρνουμε noisy samples από

αυτή την κρυφή διάταξη. Δηλαδή, κάθε δείγμα μας είναι μία από τις n! διατάξεις και

η πιθανότητα να δειγματολειπτήσουμε κάποια διάταξη συσχετίζεται (is correlated) με

την κρυφή διάταξη. ΄Ετσι, μπορούμε να κάνουμε sampling κάθε φορά μία διάταξη των

n αντικειμένων, η οποία όμως θα έχει θόρυβο, από το πιθανοτικό μοντέλο, το οποίο

ακολουθεί κάποια κατανομή την οποία θα θέλαμε να ξέρουμε.

Βασικά ερωτήματα

• Ποιά είναι η κατανομή που ακολουθεί το πιθανοτικό μοντέλο; Τί μάζα πιθανότητας

ανατίθεται σε κάθε μία από τις n! υποψήφιες διατάξεις-δείγματα;

→ Υπάρχουν πολλά μοντέλα στο Learning to rank setting. Εμείς θα ασχολη-

θούμε κυρίως με το μοντέλο Mallows και το Plackett-Luce model, τα οποία

θα μελετηθούν στα επόμενα κεφάλαια.

• Στην προηγούμενη παράγραφο αναφέραμε πως υπάρχει μία κρυφή διάταξη που επι-

θυμούμε να ανακαλύψουμε. Μπορούμε να μάθουμε την κρυφή διάταξη και, αν ναι,

πόσα δείγματα θα χρειαστούμε ώστε να την μάθουμε με μεγάλη πιθανότητα;

→ Σε κάθε πιθανοτικό μοντέλο που ορίζεται πάνω στο σύνολο των διατάξεων,

αντιστοιχούν κάποιες παράμετροι που το προσδιορίζουν. Στα περισσότερα
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μοντέλα, μία από τις παραμέτρους είναι η κρυφή διάταξη που καλούμαστε να

μάθουμε. Στην παρούσα εργασία, ασχολούμαστε ενδελεχώς με το ερώτημα

΄Πόσα δείγματα θα χρειαστούμε ώστε να μάθουμε τις κρυφές παραμέτρους

του μοντέλου, με μεγάλη πιθανότητα;΄

• Πώς σχετίζεται το παραπάνω πρόβλημα με την θεωρία ψηφοφορίας;

→ Διαβάζοντας το πρόβλημα που αναφέρουμε παραπάνω, μπορεί κανείς να κα-

τασκεύασει μία αντιστοίχιση μεταξύ του προβλήματος και μίας διαδικασίας

ψηφοφορίας. Η κρυφή διάταξη αναλογεί σε μία κρυφή από κοινού αλήθεια,

μία διάταξη των υποψηφίων μίας εκλογικής διαδικασίας. Οι κοινωνιολόγοι

μοντελοποιούν τον κάθε ψηφοφόρο ως ένα θόρυβο γύρω από αυτήν. Κάθε

ψηφοφόρος έχει ως στόχο να μάθει αυτή την κρυφή αλήθεια και έτσι η ψήφος

αποτελεί μία τυχαία μεταβλητή στον χώρο των πιθανών διατάξεων. Η πιθα-

νοτική κατανομή της ψήφου έχει ως κέντρο την κρυφή αλήθεια και αναθέτει

περισσότερη μάζα πιθανότητας σε διατάξεις-ψήφους που είναι κοντά στην κε-

ντρική διάταξη από ότι σε διατάξεις που απέχουν από αυτή. Ποιά πιθανοτική

κατανομή σας θυμίζει αυτή η συμπεριφορά;

1.2 Μαθηματικά Θεμέλια Ι, ΙΙ, ΙΙΙ

1.2.1 Άλγεβρα

Η δομική βάση των πιθανοτικών μοντέλων που θα αναλύσουμε είναι οι διατάξεις-μεταθέσεις

(permutations). Η έννοια της μετάθεσης αποτελεί μία από τις πιο θεμελειώδεις οντότη-

τες του κόσμου της ΄Αλγεβρας. Μία διάταξη των αντικειμένων ενός συνόλου A είναι

μια αντιστοιχία από το A στο A. ΄Εστω A ένα μη κενό σύνολο και έστω SA η συλλογή

όλων των μεταθέσεων του A. Τότε η SA είναι ομάδα με πράξη τον πολλαπλασιασμό

μεταθέσεων. Η ομάδα όλων των μεταθέσεων του A ονομάζεται συμμετρική ομάδα για

τους n χαρακτήρες και συμβολίζεται με Sn.
Αυτό που μας ενδιαφέρει και μας είναι απαραίτητο ώστε να περιγράψουμε το πιθα-

νοτικό μοντέλο από το οποίο θα παράγουμε δείγματα, είναι να ανάγουμε τον χώρο των

μεταθέσεων που παρουσιάσαμε παραπάνω σε μετρικό χώρο. Δηλαδή, χρειάζεται να

ορίσουμε μία έννοια απόστασης μεταξύ δύο αντικειμένω της Sn.

- ΄Εστω δύο μεταθέσεις σ, π ∈ Sn. Πόσο απέχουν οι δύο μεταθέσεις;

Η απάντηση στο ερώτημα αυτό δεν είναι μοναδική. Υπάρχουν πάρα πολλοί τρόποι

να μοντελοποιήσει κανείς την απόσταση δύο μεταθέσεων. Πριν περάσουμε στην περι-

γραφή των αποστάσεων, αξίζει να αναφέρουμε πως πλέον μας συμφέρει να σκεφτόμα-

στε την κάθε μετάθεση στο Sn ως μία διάταξη των n στοιχείων. ΄Ετσι, για πα-

ράδειγμα, η μετάθεση σ =
(

1 2 3 4 5
2 3 5 1 4

)
, που σημαίνει πως η σ ικανοποιεί τις συνθήκες

σ(1) = 2, σ(2) = 3, σ(3) = 5, σ(4) = 1, σ(5) = 4. Η μετάθεση αυτή αντιστοιχεί με

μοναδικό τρόπο στην διάταξη 4 � 1 � 2 � 5 � 3 των 5 στοιχείων.
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Θα λέμε ότι a �σ b, όταν a υπερέχει του b στην διάταξη σ, δηλαδή όταν η θέση του

a είναι μικρότερη από αυτή του b :

a �σ b ⇐⇒ σ(a) < σ(b)

1.2.2 Θεωρία Πιθανοτήτων

Το πιο χρήσιμο εργαλείο που χρειάζεται κανείς από το κεφάλαιο αυτό είναι οι ανισότητες

συγκέντρωσης και συγκεκριμένα η ανισότητα Hoeffding :

Ανισότητα του Hoeffding

΄Εστω X1, ..., Xn ανεξάρτητεςτυχαίες μεταβλητές τ.ω. P[Xi ∈ [ai, bi]] = 1. Ας είναι
Sn =

∑n
i=1 Xi. Τότε για κάθε ζ > 0, έχουμε:

P[Sn − ESn ≥ ζ] ≤ exp(
−2ζ2∑n

i=1(bi − ai)2)
)

και

P[Sn − ESn ≤ −ζ] ≤ exp(
−2ζ2∑n

i=1(bi − ai)2)
)

Από τον συνδυασμό αυτών των δύο ανισοτήτων, παίρνουμε:

P[|Sn − ESn| ≥ ζ] ≤ 2exp(
−2ζ2∑n

i=1(bi − ai)2)
)

Θα χρησιμοποιούμε συχνά αυτήν την ανισότητα για να αποκτήσουμε φράγματα για

την δειγματική πολυπολοκότητα για τα προβλήματα μάθησης που θα ασχοληθούμε. Μια

ευρεία συλλογή άλλων ανισοτήτων συγκέντρωσης μπορεί να βρεθεί στο [BS16] .
Επίσης, κομβική είναι η έννοια της απόκλισης μεταξύ δύο μέτρων πιθανότητας. Συ-

γκεκριμένα, αναφέρουμε δύο αποκλίσεις :

Total Variation Distance

Η πρώτη μετρική απόκλισης είναι η ακόλουθη μετρική απόστασης, η οποία σχετίζεται

με την l1 νόρμα στον χώρο που ζουν τα μέτρα πιθανότητας.

dTV (P,Q) = sup
A∈F
|P(A)−Q(A)|

Ισοδύναμα, ισχύει :

dTV (P,Q) =
1

2

∑
x∈Ω

|P(x)−Q(x)|

KL Divergence

Η δεύτερη μετρική δεν είναι μια συνάρτηση απόστασης, επειδή δεν είναι συμμετρική και

παραβιάζει την τριγωνική ανισότητα. Για δύο διακριτά μέτρα πιθανότητας P,Q

DKL(P ‖ Q) =
∑
x∈X

p(x)log
p(x)

q(x)
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1.2.3 Θεωρία Πληροφορίας

Η ανισότητα του Fano είναι ένα δημοφιλές θεωρητικό αποτέλεσμα του τομέας της Θεω-

ρίας Πληροφορίας που παρέχει ένα κάτω φράγμα στην αναμενόμενη τιμή της TV distance
μεταξύ του εκτιμητή μας και της πραγματικής κατανομής. Πολλές παραλλαγές της ανι-

σότητας του Fano έχουν προκύψει στη βιβλιογραφία. Σε αυτή την διπλωματική εργασία,

θα χρησιμοποιήσουμε την ακόλουθη εκδοχή.

Το ακόλουθο αποτέλεσμα οφείλεται στον Yu.

Ανισότητα Fano

΄Εστω F μία πεπερασμένη οικογένεια κατανομών τ.ω.

1. inf
f,g∈F ,f 6=g

dTV (f, g) ≥ a

2. sup
f,g∈F ,f 6=g

DKL(f ‖ g) ≤ b

Τότε είναι :

Rm(F) ≥ a

2
(1− mb+ ln2

ln|F|
)

ΤοRm(F) αντιπροσωπεύει το ελάχιστο αναμενόμενο σφάλμα οποιουδήποτε αλγόριθ-

μου μάθησης όταν εκτελείται στη χειρότερη δυνατή κατανομή από την κλάση F .

1.3 Θεωρία Ψηφοφορίας και Κοινωνικής Επιλογής

Η θεωρία κοινωνικής επιλογής ασχολείται με την συνάθροιση γνώμεων-προτιμήσεων με

στόχο την εξαγωγή μίας ΄κοινής΄ απόφασης - από κοινού προτίμησης. Η ανάγκη για

συνάθροιση προτιμήσεων και η εξαγωγή μίας καθολικής προτίμησης αναδεικνύεται σε

τομείς όπως τα οικονομικά, την θεωρία αποφάσεων και τα εκλογικά συστήματα.

Πώς ξεκίνησαν όλα ;

΄Ενας από τους πρωτοπόρους αυτού του κλάδου και, συγκεκριμένα, της εφαρμογής

μαθηματικών στο τομέα των κοινωνικών επιστημών, ήταν ο Γάλλος μαθηματικός και

φιλόσοφος Marquis de Condorcet. Το 1785, ο Condorcet δημοσίευσε το έργο του με

τίτλο ’Essay on the Application of Analysis to the Probability of Majority Decisions’.
Στην εργασία του αναφέρει περίφημα αποτελέσματα, τα οποία αναφέρονται ακόμα και

σήμερα ως το Παράδοξο του Condorcet και το θεώρημα των ενόρκων του Condorcet.

Condorcet’s paradox. ΄Εστω μία εκλογική διαδικασία με δύο υποψηφίους, όπου

κάθε ψηφοφόρος έχει μία προτίμηση σε έναν εκ των δύο. Εάν η κοινωνία επιθυμεί να

διαλέξει από κοινού έναν από τους δύο υποψηφίους, η επιλογή πλειοψηφικής ψήφου

φαντάζει εύλογη και σωστή. Το ζήτημα που διέγνωσε ο Condorcet είναι το εξής :

Τί γίνεται αν οι υποψήφιοι είναι τρεις ή παραπάνω; Υπάρχουν προβλήματα με την

πλειοψηφική ψήφο;
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Ο Condorcet έδωσε το εξής παράδειγμα : Συμβολίζουμε με a �i b ότι ο ψηφοφόρος

i προτιμά τον υποψήφιο a έναντι του b. ΄Εστω τρεις υποψήφιοι a, b, c και τρεις ψηφοφόροι

με τις ακόλουθες προτιμήσεις :

• a �1 b �1 c
• b �2 c �2 a
• c �3 a �3 b
Παρατηρούμε εύκολα πως η πλειοψηφία προτιμά τον a έναντι του b, τον b έναντι του c

και τον c έναντι του a. ΄Ετσι, η απο κοινού πλειοψηφική επιλογή είναι η a � b � c � a, η
οποία δεν είναι συνεπής. ΄Οποιος και να εκλεγεί, θα υπάρχει πλειοψηφία ατόμων που θα

διαφωνεί με το αποτέλεσμα. Ισοδύναμα το γράφημα που θα μπορούσαμε να σχεδιάσουμε

θα έχει κύκλο.

΄Ετσι, ο Condorcet διαπίστωσε πως ο πλειοψηφικός κανόνας εκλογής είναι μια αξι-

όλογη μέθοδος για την λήψη αποφάσεων σε συλλογικό επίπεδο, λόγω της απλότητας

του, αλλά παρουσιάζει ένα πλήθος από σοβαρά προβλήματα. Συνεπώς, έκανε σαφές πως

χρειάζεται να σχεδιασθούν μέθοδοι ψηφοφορίας αρκετά πιο σύνθετες, οι οποίες είτε θα

επιλύουν ή θα παρακάμπτουν προβλήματα όπως τα παραπάνω.

Condorcet’s jury theorem. ΄Εστω μία ομάδα ενόρκων, οποία καλείται να α-

ποφασίσει αν ένας κατηγορούμενος είναι αθώος ή ένοχος. ΄Εστω ότι κάθε μέλος της

επιτροπής έχει μία ίση και ανεξάρτητη πιθανότητα ορθής απόφασης p ∈ (1
2
, 1). Τότε η

πλειοψηφία των ενόρκων είναι πιο πιθανό να είναι ορθή από κάθε ένορκο ξεχωριστά.

Ταυτόχρονα, όσο το πλήθος των ενόρκων αυξάνει, η πιθανότητα ορθής απόφαση τε-

ίνει στο 1. Μαθηματικά, αυτό εκφράζεται ως ένα άθροισμα διωνυμικών της μορφής :

Maj(p, n) =
∑n

i=bn/2c+1

(
n
i

)
pi(1− p)n−i −→ 1, όσο το n→∞. Η Maj(p, n) εκφράζει

την πιθανότητα η πλεοψηφία να πάρει την σωστή απόφαση με n ενόρκους και πιθανότη-

τα σωστής απόφασης p. ΄Ετσι, υπό αυτές τις προϋποθέσεις, ο κανόνας της πλειοψηφίας

είναι καλός. Από την άλλη, αν ήταν p ∈ [0, 1
2
], τα αποτελέσματα αντιστρέφονται και η

καλύτερη επιλογή να ήταν κανείς να διαλέξει έναν ένορκο στην τύχη και να δικάσει με

βάση την απόφαση του τυχαία επιλεχθέντος ενόρκου.

Με την πάροδο του χρόνου, ερωτήσεις για την συνάθροιση προτιμήσεων συνεχώς

ανέρχονταν στην επιφάνεια. Η πιο λογική μορφή συνάθροισης προτιμήσεων (διατάξεων)

είναι η ακόλουθη :

Ο κανόνας του Kemeny

Λαμβάνοντας ένα προφίλ - διάνυσμα ψήφων ~σ = (σ1, ..., σn) ∈ L(A)n, ο κανόνας του Ke-
meny επιλέγει την κατάταξη τ που ελαχιστοποιεί την απόσταση KT από τις n δεδομένες
ψήφους, δηλαδή :

τ = arg min
τ∈L(A)

n∑
i=1

dKT (τ, σi)

Βλέποντας αναλυτικά την παραπάνω εξίσωση, παρατηρούμε πως αυτό που επιθυμο-

ύμε είναι να ελάχιστοποιήσουμε την l1 νόρμα πάνω στον μετρικό χώρο (Sn, dKT )των
διατάξεων του Sn με απόσταση την Kendall − Tau Στο ακόλουθο λήμμα, θα δείξου-

με πως η επιλογή να ελαχιστοποιήσουμε την l1 νόρμα αντιστοιχεί στο να βρούμε την
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διάμεσο του μετρικού χώρου.

Ελαχιστοποίσηη l1 νόρμας

Δοθέντων των σημείων p1, ..., pn ∈ R, η l1 νόρμα l1(x) =
∑n

i=1 ||x − pi||1 ελαχιστο-
ποιείται από την διάμεσο των σημείων.

Σημειώστε πως το πρόβλημα αυτό είναι γνωστό NP-Hard πρόβλημα.

1.4 Πιθανοτικά Μοντέλα πάνω σε Διατάξεις

΄Οπως θα δείξουμε ότι το μοντέλο θορύβου του Condorcet αντιστοιχεί στο μοντέλο

Mallows, που ορίζεται αργότερα. ΄Ετσι, θα αναφερθούμε στην παραπάνω διαδικασία ως

διαδικασία θορυβώδους ταξινόμησης Condorcet-Mallows, η οποία περιγράφεται ως εξής:

Algorithm 1 Condorcet-Mallows noisy ranking process

1. Let π0 be the objective ranking and let 0 ≤ p < 1
2 .

2. Initialization : σ ← ∅.
3. For each pair of alternatives a, b ∈ A, s.t. a �π0 b,

3a. with probability 1− p, add a � b to σ,
3b. otherwise, add b � a to σ.

if σ is intransitive then
GOTO step (2 ).

else
RETURN σ.

end

Ο παραπάνω αλοριθμος ήταν η βασική ιδέα που τροφοδότησε το κίνητρο για την

δημιουργία πιθανοτικών μοντέλων πάνω σε διατάξεις. Το πιο διάσημο μοντέλο είναι το

μοντέλο Mallows, που ορίζεται ακολούθως :

P[π|π0] =
1

Z(φ, π0)
e−βdKT (π,π0)

(1.1)

Αξίζει να παρατηρήσει κανείς την ομοιότητα του μοντέλου με την δομή της κανονικής

κατανομής.

f(x|µ, σ2) =
1√

2πσ2
e−
|x−µ|2

2σ2

Η σταθερά κανονικοποίησης είναι:

Z(φ, π0) = Z(φ) =
n−1∏
i=1

i∑
j=0

φj (1.2)

Η διάταξη π0 παίζει ακριβώς τον ίδιο ρόλο με το µ στην κανονική κατανομή.
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1.5 Μάθηση διατάξεων από πληροφορία με θόρυβο

Το βασικό απότέλεσμα αυτού του κεφαλαίου είναι η δειγματική πολυπλοκότητα για την

μάθηση της κρυφής διάταξης π0 του απλού μοντέλου Mallows.

Μάθηση της διάταξης π0

Για κάθε π0 ∈ Sm και κάθε φ ∈ [0, γ), υπάρχει ένας πολυωνυμικού χρόνου εκτιμητής
π̂ τ.ω. δοθέντων n = Θ( 1

γ
log(m

δ
)) i.i.d. δειγμάτων π1, ..., πn ∼ Pφ,π0 ικανοποιεί

P[π̂ 6= π0] ≤ δ. Επίσης, αν n = o(log(m
δ

)), τότε για κάθε εκτιμητή υπάρχει κατανομή
Pφ,π0 τ.ω. P[π̂ 6= π0] > δ.

Επίσης, ένα πολύ σημαντικό αποτέλεσμα αφορά την (αν)ικανότητα μας στο να μάθου-

με την κατανομή Pφ,π0 δοθέντων m δειγμάτων. Συγκεκριμένα, με χρήση της ανισότητας

Fano, παίρνουμε το ακόλουθο inapproximity αποτέλεσμα σχετικά με την μάθηση κα-

τανομών υπό την TV απόσταση :

΄Εστω φ∗ = 1
2
. Τότε ∃π0 ∈ Sn, τ.ω. εάν δειγματολειπτήσουμε το προφίλ ψήφων π =

(σ1, ..., σm) ∼ Pmφ∗,π0 , όπου σi είναι i.i.d. δείγματα και εάν m = o(logn), τότε κάθε
κατανομή P(π) οφείλει να ικανοποιεί την ακόλουθη ανισότητα :

Pπ∼Pm
φ∗,π0

[dTV (P(π),Pφ∗,π0) ≥
1

16
] ≥ 1

3

Συνεπώς, η ανισότητα Fano μας εξασφαλίζει ότι, αν δωθούν ¨λίγα’ δείγματα, ο εκτι-

μητής μας θα απέχει πάντα από την πραγματική κατανομή. Η απόσταση θα μπορούσε

να παραμετροποιηθεί από μία ακτίνα ε, η οποία θα εμφανιζόταν στον παρονομαστή του

αριθμού των δειγμάτων. ΄Οσο το ε θα μειωνόταν, τα δείγματα θα αυξάνονταν και άρα η

απόσταση της εκτίμησης μας από την πραγματική θα μειωνόταν.

1.6 Αναζητώντας τον Εκτιμητή Μέγιστης Πιθανοφάνειας (ΕΜΠ)

Ας υποθέσουμε ότι μας δίνονται r i.i.d. δείγματααπό μία κατανομή Pφ,π0 . Στόχος μας

είναι να βρούμε τον ΕΜΠ - την διάταξη μέγιστης πιθανοφάνειας π̂∗ από τα δείγματα που

παρατηρούμε :

π̂∗ = argmax
π∗

r∏
i=1

P[πi|π∗] = argmax
π∗

r∏
i=1

e−βdKT (πi,π
∗)

Z(β)

Από την εκθετική δομή του μοντέλου μας, παίρνουμε :

π̂∗ = argmax
π∗

r∏
i=1

e−βdKT (πi,π
∗)

Z(β)
= argmax

π∗

1

Z(β)r
exp(−β ·

r∑
i=1

dKT (πi, π
∗))
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΄Ετσι :

π̂∗ = argmax
π∗

lne−β·
∑r
i=1 dKT (πi,π

∗) = argmax
π∗

(−β ·
r∑
i=1

dKT (πi, π
∗))

Τέλος, αφού β > 0,

π̂∗ = argmin
π∗

r∑
i=1

dKT (πi, π
∗)

Ο κανόνας του Kemeny είναι ο ΕΜΠ π̂∗ για την κρυφή κεντρική διάταξη του μο-

ντέλου Mallows.΄Ομως, αυτό το πρόβλημα είναι NP-Hard, όπως έχουμε ήδη παρατη-

ρήσει. ΄Ετσι, θα πρέπει να σχεδιάσουμε έναν αλγόριθμο, ο οποίος με μεγάλη πιθανότητα

να βρίσκει τον ΕΜΠ.

Θεώρημα

Υπάρχει ένας πιθανοτικός αλγόριθμος τ.ω. εάν {πi}ri=1 είναι διατάξεις πάνω σε n αντικε-
ίμενα και αποτελούν ανεξάρτητα δείγματα ενός μοντέλου Mallows με παράμετρο β > 0,
και αν είναι α > 0, τότε η διάταξη μέγιστης πιθανοφάνειας πm μπορεί να υπολογιστεί σε
χρόνο :

T (n) = O(n1+O( α
βr

)2
O(α

β
+ 1
β2

)
log2n)

και με πιθανότητα σφάλματος < n−α.

1.7 k-Set Sampling

Ας είναι A = {a1, ..., an} ένα σύνολο αντικειμένων. Εισάγουμε το ακόλουθο μοντέλο

δειγματοληψίας. Τα δείγματα μας εξακολουθούν να προέρχονται από μία κατανομή Mal-
lows M1(π0, φ), όμως πλέον δεν έχουμε πλήρη πρόσβαση στην διάταξη που προέκυψε

από το μοντέλο.

Η δειγματοληψία μας παραμετροποιείται από μία παράμετρο 0 < k < n. Μέχρι τώρα,

παρατηρούσαμε διατάξεις πj ∼ M1(π0, φ) των n αντικειμένων. Πλέον, από ένα δείγμα

πj = ai1 � ai2 � ...aik � aik+1
� ...ain , μπορούμε να παρατηρήσουμε μόνο τα k κορυ-

φαία αντικείμενα της διάταξης αλλά δίχως να γνωρίζουμε την κατάταξή τους. Δηλαδή

παρατηρούμε ένα σύνολο Sj μεγέθους k των k κορυφαίων αντικειμένων :

Sj = {ai1 , ai2 , ..., aik}

Η μάζα που ανατείθεται στο σύνολο S από το μοντέλο SM είναι :

PSM [S|π0] =
∑

πS∈g(S)

∑
πR∈g(R)

PMM [πS ] πR|π0] =
∑

πS∈g(S)

∑
πR∈g(R)

φdKT (πS]πR,π0)

Z(φ)

Προτείνουμε το ακόλουθο πρόβλημα :
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Mle-MM-k-Set

Είσοδος : r ανεξάρτητα σύνολα S1, ..., Sr μεγέθους k.
΄Εξοδος : π∗ = argmax

π
PSM [S1, ..., Sr|π]

Αποδεικνύουμε ότι :

Θεώρημα 1

Η λύση του Mle-MM-k-Set είναι η διάταξη argsorti∈[n]{v1, ..., vn}.

Παρόμοια, εισάγουμε την Plackett-Luce εκδοχή του k-Set Sampling, όπου δοθέντος

ενός διανλυσματος αξιών ~w ∈ W, το μοντέλο αναθέτει μάζα στο σύνολο S ίση με :

PPL[S|~w] =
∑
σ∈g(S)

(
∏
i∈[k]

wσ−1(i))(
k∏
i=1

1∑n
j=iwσ−1(j)

)

Προτείνουμε το ακόλουθο πρόβλημα :

Mle-PL-k-Set

Περιβάλλον Εργασίας : Υπάρχουν n αντικείμενα {oi}ni=1με άγνωστες αξίες {wi}ni=1.
Παράγουμε σύνολα από το μοντέλο PL-k-Set και επιθυμούμε να καθορίσουμε την

διάταξη των αξιών των αντικειμένων

Είσοδος : r ανεξάρτητα σύνολα S1, ..., Sr μεγέθους k.
΄Εξοδος : ~w∗π = argmax

~wπ
PPL[S1, ..., Sr|~wπ]

Αποδεικνύουμε ότι :

Θεώρημα 2

Η λύση τουMle-PL-k-Set είναι η διάταξη ~w∗ = wπ−1(1) ≥ wπ−1(2) ≥ ... ≥ wπ−1(n)

όπου π = argsorti∈[n]{v1, ..., vn}.



2. Introduction

Permutations are combinatorial objects, used by humans on a daily basis. From the
lexicographical order of the words of a language and the ranking of sport teams in
a league to a user’s preferences on YouTube and the results to a Google query, it is
easy to notice how the notion of rankings arises in a wide range of fields with various
representations.

At the same time, modern world -scientific or not- is experiencing a bloom of
Computer Science and, in particular, an upsurge of Learning Science. Since the 50’s,
when Alan Turing proposed the famous Turing Test [[Tur50], 1950], associating the
concept of the machine with that of knowledge and of learning and the period in
which Arthur Samuel defined the machine learning as a ”Field of study that gives
computers the ability to learn without being explicitly programmed [[Sam59], 1959],
we have reached a point where computers/machine become digital personal assis-
tants [TD18], are generating structured texts [DP18], are composing music songs
[DP16], are creating art [AE17], just by observing data and being trained and tested,
simulating the human learning process.

Inevitably, the space of rankings could not be neglected by the Science of Learning.
Hence, Machine-Learning Ranking (MLR) field arose. The philosophy of ”Learning
to rank” area is to develop probabilistic models over rankings/preferences for infor-
mation retrieval systems. The ranking model is trained with data, which are lists of
objects that are ranked by some criterion/metric, and ”learns” to order new lists of
objects.

Statisticians traditionally studied the problem of ranking data and designed meth-
ods and tools which have been applied in various fields. More recently, applications
in information retrieval and machine learning have reanimated the interest in the
analysis of rankings and in the value of related statistical tools such as probability
distributions on rankings and correlation statistics.
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Applications of such models can be observed, for instance, in recommendation
systems. Learning algorithms analyze the history of a customer’s purchases in order
to ”learn” a preference ranking and, afterwards, propose similar products. In general,
MLR models can be used in a variety of fields such as the internet (search engines),
computational biology (protein structure prediction problem), natural language pro-
cessing and Data Mining.

In this thesis, we will try to study many perspectives and models on this field
of Learning Science. Specifically, we will observe the ways in which Probability and
Statistics Theory, as well as Information Theory, have been integrated into the world
of Algorithms and Complexity, expanding the boundaries of the field of Statistical
Learning theory.

In the following chapter, we are going to present some mathematical foundations,
beginning from the main concept of permutations, continuing with the ideas of mea-
sure theory and of probability theory as a branch of that field and, finally, providing
an information theoretic perspective.

Afterwards, we will try to connect our learning to rank problem with the fields of
voting and social choice theory. As we will see, the idea of ranking over items, given
a collection of preferences, is completely similar to the idea of electing a ranking over
candidates, given a collection of votes.

In the third part of the thesis, the essential probabilistic models on permutation
spaces are presented and emphasis is given on the notion of learning parameters of
these models using noisy information. In the following two chapters, we analyze the
sample complexity of the learning problem and we present the maximum likelihood
estimator approach.

In the final chapter, we present our work concerning sampling from noisy samples.
We study the behavior of the MLE by reducing the information provided by our
samples. The way that the information provided is reduced will be presented shortly.

Before proceeding to the mathematical foundations of the ’Learning to Rank’
field, it is useful to present the crucial problem that we are going to deal with in this
thesis.

Main Problem

Consider a set of n objects/alternatives {ai}ni=1, that can be ranked with respect to
a metric. For instance, if the n objects are teams in a basketball championship, the
ranking is created with respect to the number of wins of each team. Similarly, this
ranking can express preferences among the n alternatives. Suppose that there is a
true hidden preference among n objects {ai}ni=1, that is expressed by a permutation
over these alternatives ai1 � ai2 � ... � ain . This true ranking is locked to us, we
have no direct access to it and we want to learn it. In our setting, we generate from
a probabilistic model, parametrized by the true hidden ranking, noisy samples that
are rankings of the n objects.
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Main Questions

• What is the probabilistic model that generates our samples? How are these
samples/rankings distributed? What mass is attained to each of the n! possible
rankings?

→ There are multiple probabilistic models in the ’Learning to Rank’ setting.
We are going to deal with the Mallows model and the Plackett-Luce model,
that will be presented in the upcoming chapters.

• In the previous section, we mentioned that there is a hidden ranking that we
wish to discover. Can we learn the hidden ranking and, if so, how many samples
will be needed in order to learn it with high probability?

→ Each probabilistic model, that is defined on the set of rankings, is deter-
mined by a set of parameters. In most models, one of the parameters is
the hidden ranking we are have to learn. In this thesis, we deal in depth
with the question ’How many samples will we need to learn the hidden
parameters of the model, with high probability?’

• Is this problem connected with voting theory?

→ By reading the problem mentioned above, one can link our problem with
a voting process. The hidden ordering corresponds to a ground truth,
a socially accepted ranking over the candidates in an electoral process.
Sociologists model each voter as a noise around this hidden ground truth.
Every voter seeks to learn this hidden truth, so her vote is a random variable
that takes values on the space of rankings over the voting alternatives.
The probability distribution of the vote is centered on the hidden truth
and assigns more probability mass to voting arrangements that are close
to the central ordering than to rankings that are far from it. What known
probability distribution does this behavior remind you?

An example

An everyday life application is the following. Alice watches the same n videos on
YouTube daily. Thus, each day, she watches a sequence of these n videos. On the
other side, Susan, working on YouTube, wants to learn Alice’s video preferences and
propose her similar videos that she will like in order to continue using the application.
In this case, the hidden central ranking is Alice’s video preferences, that exists in her
mind but Susan has no access to it. Alice, watching YouTube, provides to Susan each
day a sample video sequence, that is a noisy version of her inner video preferences. Of
course, each sequence of Alice’s videos is sorted by Susan according to some metrics
that show the preferences of Alice. For instance, a video that Alice watched without
skipping parts is ranked higher than a video where Alice skipped parts or did not
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finish. Thus, each day, Susan gets a ranking of Alice’s video preferences. Also,
note that it is more likely more Alice to watch videos that she likes and, thus, the
probability that Susan gets a ranking that is closer to Alice’s preferences is higher
than the probability that she gets a ranking that will differ a lot. Can Susan, given
these daily samples, create a ranking that will be close to Alice’s video preference
list? How many samples will she need? These type of questions we will try to answer.
But first we need to set the necessary mathematical foundations.

Our contribution

The purpose of this thesis was to study an innovative approach on the concept of
noisy sampling. Specifically, we worked on the k-set sampling case. In our work, we
chose to reduce the information provided by our samples and try to answer questions
concerning the maximum likelihood estimation and the sample complexity. Let A =
{a1, ..., an} be the set of our objects that we are ranking. There is still a hidden
ranking π0, that we want to learn. We still sample a ranking πj = ai1 � ai2 � ...aik �
aik+1

� ...ain , but we cannot access the sampled ranking. We can only access the k
top ranked items in an unordered way, that is, our sample is a set Sj of size k with
the top k alternatives :

Sj = {ai1 , ai2 , ..., aik}

Now it should be clear why we named it k-set sampling. Afterwards, given those
samples, we have to answer questions similar to the ones listed two sections before.
Responses to some of these questions correspond to our contribution.

The study of top k lists was already researched in various works such as [FS03].
The innovative part appears in the set theoretic version of our sampling.

A real-life application of this sampling method is the classical voting (with a cross
† next to the names) of our preferred k out of n alternatives in a voting procedure.
Each vote is just a set of our k top preferred alternatives, without specifying the
order of our preferences.

In our work, we provide the MLE of the k-Set Mallows Model, the MLE of the
k-Set Plackett Luce Model. Also, we introduce the k-Gap Filling Mallows Model and
provide a geometric perspective of sampling from that distribution.

As mentioned in the introductory chapter, the mathematical perspective of the
’Learning to Rank’ field consists of a combination of pure mathematical ideas, that lie
in the intersection of Abstract Algebra, Probability Theory & Statistics and Informa-
tion Theory. Hence, before proceeding to the algorithmic extensions and applications,
we consider that it would be prudent to delve into each of these three mathematical
branches mentioned above in order to discover concepts and tools that will be useful
in the upcoming chapters.
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3. Mathematical Foundations I : Abstract Algebra

3.1 Abstract Algebra

In this thesis, we focus on learning rankings. Rankings can be modelled as combina-
torial objects known as permutations. The theory of permutations is widely studied
as a part of Abstract Algebra [Fra03], [Lan05] and, here, we are going to depict a
general framework on how to use permutations.

3.1.1 Permutations

The probabilistic models - distributions we will analyze and use in the following chap-
ters are based on the notion of rankings-permutations. The concept of permutation
constitutes one of the most fundamental ideas in the area of Abstract Algebra. While
the first references concerning the notion of permutations were reported in the 8th
century, the fundamentals of permutation theory were developed by A.L. Cauchy
(1789-1857). The classical definition follows :

Definition 3.1.1 Permutation of a set A is called a bijection from A to itself.

3.1.2 Symmetric group Sn
Let A be a nonempty set of objects {o1, ..., on} and let SA be the set of all possible
permutations of the elements of A. We will show that the composition binary operator
between a pair of functions is a well defined operator on the set SA.

Let σ, π be two permutations of the set A. The function σπ is a mapping from A
to itself and it defined by :

σπ : A→π A→σ A

For any a ∈ A, the function σπ operates as follows : a is mapped by π and,
afterwards, the element π(a) ∈ A is mapped by σ. Now, we will show that σπ is a
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proper permutation. Hence, we have to show that it is a bijection from A to A. We
show that in two steps :
• injective : Let a, b ∈ A. If (σπ)(a) = (σπ)(b) ⇒ σ(π(a)) = σ(π(b)). But, σ

is injective since it is a permutation and, hence, π(a) = π(b). Similarly, π is a
one-to-one mapping, that implies a = b.
• surjective : Let a ∈ A. Since σ is a permutation, it is surjective. Thus, there

exists an element b ∈ A s.t. σ(b) = a. Additionally, since π is a permutation, it
is surjective too and there is an element c ∈ A s.t. π(c) = b. Hence, a = σ(b) =
σ(π(c)) and σπ is onto A.

In the literature, the permutations’ composition is often referred as multiplication.

Theorem 3.1.1 Let A a nonempty set and let SA a collection of all permutations of
A. Then. SA is a group with operation the permutations’ multiplication.

In this thesis, we will denote the set {1, 2, ..., n} with [n].

Definition 3.1.2 Let A be the finite set [n]. The collection of all permutations of A
is called the symmetric group of the n characters and will be denoted with Sn.

The cardinality of Sn is n!.

3.1.3 Metric Space (Sn, d)

In order to describe the probabilistic models from which we are going to generate
permutations, we have to define appropriate distance metrics between permutations
and, thus, work on a metric space (Sn, d) whose elements are rankings.

Let σ, π ∈ Sn be two permutations. What is the distance between the two rankings?

The answer to that question is not unique. There are multiple ways to de-
scribe the notion of distance between two elements of the symmetric group. Be-
fore proceeding to some useful descriptions, it is worth mentioning that we have to
think of a permutation in Sn as a ranking of the n elements. For instance, con-
sider the permutation σ =

(
1 2 3 4 5
2 3 5 1 4

)
, which means that σ satisfies the conditions :

σ(1) = 2, σ(2) = 3, σ(3) = 5, σ(4) = 1, σ(5) = 4. There is a unique correspondence
between this permutation and the ranking 4 � 1 � 2 � 5 � 3 of these 5 elements.

In general, we will say that a �σ b, when a beats b in the ranking induced by
permutation σ, that is when the position where a is mapped by σ is less than the
position where b is mapped :

a �σ b ⇐⇒ σ(a) < σ(b)

Kendall’s Tau ranking distance

We need to define a metric that measures the distance between elements of the
symmetric group Sn. Kendall’s tau distance is a measure of the similarity of a pair of
rankings. It is named after Maurice Kendall, who developed this distance measure
in 1938. The Kendall’s Tau ranking distance dKT : Sn × Sn → Z≥0 is defined as :
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dKT (π, σ) =
∑

1≤i<j≤n

1{(π(i)− π(j))(σ(i)− σ(j)) < 0)} (3.1)

This function measures the number of pairwise disagreements of a pair of rankings.
Clearly, the minimum value of that metric is 0, when we compare a permutation with
itself and the maximum value is attained when comparing a permutation with its
inverse. For a permutation π ∈ Sn, its inverse permutation maximizes the Kendall tau
distance, that is π−1 = argmax

σ
dKT (π, σ) with value

(
n
2

)
. From an algorithmic point

of view, KT distance counts the number of steps needed for Bubble sort to return the
sorted list. Kendall tau distance can be computed in O(nlogn) with a modification
of the Merge sort algorithm. We note that there exists a faster O(n

√
logn) algorithm

[Cha10] for computing the Kendall tau distance, using the Van Emde Boas tree data
structure.

Kendall’s Tau distance properties

Kendall’s Tau distance is a valid metric function and, thus, satisfies all the classical
distance-metric properties :

1. dKT (π, σ) ≥ 0.

2. dKT (π, σ) = 0 ⇐⇒ π = σ.

3. dKT (π, σ) = dKT (σ, π).

4. dKT (π, σ) ≤ dKT (π, τ) + dKT (τ, σ).

Relabeling

It is worth mentioning that when computing the Kendall Tau distance between two
permutations, it is always equivalent to compute the distance between the identity
element of the symmetric group and another permutation. The Kendall Tau distance
is invariant under relabeling.

Let π be a permutation of Sn. Then,

dKT (σ, τ) = dKT (σπ, τπ)

Specifically, by taking the inverse of a permutation, :
dKT (π, σ) = dKT (id, σπ−1) = dKT (πσ−1, id)
Thus, we can always consider the identity permutation as the reference one π0.

Hence, we can assume that that π0 = id. We will write dKT (π, id) = dKT (π).

Major index and Mahonian number

An interesting question arising from the previous analysis is the following :
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Consider a central permutation σ ∈ Sn, that wlog can be the id, and let
Sd = {τ : dKT (τ) = d} for d ∈ {0, 1, ...,

(
n
2

)
}. What is the cardinality of Sd?

Geometrically, we could think of the central permutation as the center of
(
n
2

)
+ 1

circles with increasing radii and the question is how many permutations lie on the
circle of radius d.

Unfortunately, the cardinality of this set cannot be expressed in closed form.
Suppose that we have a permutation π ∈ Sn. Alexander MacMahon defined the

major index statistic of a permutation, as follows :

MAJ(π) =
∑

π(i)>π(i+1)

i (3.2)

The majority index records the positions (1 ≤ i ≤ n−1,) where we have descents,
and returns their sum. For instance, MAJ(4 � 2 � 3 � 1) = 1 + 3 = 4. Also,
informally, let an inversion be the occurrence of a larger number before a smaller one
(considering that our reference is the identity permutation). Formally, INV (π) =
|{(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}| = dKT (π).

MacMahon showed that the number of permutations of Sn with major index k
equals to the number of permutations of Sn with k inversions. This number is called
the Mahonian number M(n, k). Equivalently, the distributions of MAJ and INV
over Sn are the same, i.e., there is equality of the generating functions. For a positive
integer n, define

[n]x =
1− xn

1− x
= 1 + x+ ...+ xn−1

MacMahon showed that :

∑
π∈Sn

xMAJ(π) =
∑
π∈Sn

xINV (π) = [1]x[2]x . . . [n]x =
n−1∏
i=0

i∑
j=0

xj

In the symmetric group S3, we have the following table. For example, for the
permutation 231, the inversions statistic equals to INV (231) = 2, since 2 and 3
occur before 1 and the major index is MAJ(231) = 2, since the descent occurs at
position 2.

Inversions and Major index statistics for S3.
Permutations of S3 Inversions Major Index

123 0 0
132 1 2
213 1 1
231 2 2
312 2 1
321 3 3
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Thus, we can see that, for both metrics, there are one permutation with value 0,
two with value 1, two with value 2 and one with value 3.

The Mahonian numbers can be expressed as a change of polynomial basis as
follows :

Suppose that we have the polynomial :

n−1∏
i=0

i∑
j=0

xj = 1(1 + x) . . . (1 + x+ ...+ xn−1)

and we want to convert it to the monomial basis xk. The coefficients of this convertion
will be called Mahonian numbers, that is :

n−1∏
i=0

i∑
j=0

xj =
∞∑
k=0

M(n, k)xk (3.3)

Notice that in the above equation (3.3), the RHS sum needs not to run up to
infinity. What is the range in which k runs in the RHS sum? We will show that
M(n, k) is equal to the number of elements of Sn with k inversions. Let I(n, k) denote
the number of permutations of length n with k inversions. Clearly, 0 ≤ k ≤

(
n
2

)
.

Theorem 3.1.2 The generating function of the numbers I(n, k) is

G(x;n) =

(n2)∑
k=0

I(n, k)xk =
n−1∏
i=0

i∑
j=0

xj =
1

(1− x)n

n∏
j=1

(1− xj)

Proof. We will work inductively. Firstly, I(n, 0) = 1 = G(1;n) for all n. Suppose
that the formula holds for n− 1 elements. Hence,

G(x;n− 1) =
1

(1− x)n−1

n−1∏
j=1

(1− xj)

We insert the n-th element at position j ∈ [n] randomly. Since the n-th element
is larger that the other n− 1 elements, its insertion at position j will generate n− j
additional inversions. The previous inversions do not change. Since, each number
of additional inversions is equally likely to be occur, the generating function is 1 +
x + x2 + ... + xn−1. The new inversions that are added are independent from the
inversions in the permutation of length n−1. Thus, the generating function is simply
the product :

G(x;n) = (1 + x+ x2 + ...+ xn−1)G(x;n− 1)

The result follows.
�



32 Chapter 3. Mathematical Foundations I : Abstract Algebra

Thus, we proved that M(n, k) = I(n, k) ∀n,∀ 0 ≤ k ≤
(
n
2

)
and there is no closed

form for the answer of the question posed in the beginning of the section. In con-
clusion, we have that |Sd| = |{τ ∈ Sn : dKT (τ) = d}| equals I(n, d). The Mahonian

numbers sequence is the sequence OEIS − A008302 . The number of permutations
at each possible Kendall tau distance d for n elements S(n, d) can be computed
recursively :

S(n, d) =

{
1, if d ≤ 0
S(n, d− 1) + S(n− 1, d)− S(n− 1, d− n) otherwise

Decomposition vector

For π ∈ Sn, the Kendall tau distance dKT (π) = dKT (π, id) can be decomposed

uniquely to a (n− 1)− dimensional vector ~V (π), where :

~V (π) = (V1(π), ..., Vn−1(π))

where Vi(π) counts the number of elements smaller that π(i) in the tail of the
permutation (so the index runs from i+ 1 up to n.) Formally,

Vi(π) =
n∑

j=i+1

1π(j)<π(i)

This decomposition seems clear if one reconsiders the definition of KT distance.
In the definition, the sum

∑
1≤i<j≤n can be decomposed into two sums

∑n−1
i=1

∑n
j=i+1 .

The first sum corresponds to the n− 1 positions of the vector and the second sum is
hidden inside the definition of Vi for i ∈ [n− 1].

Thus, it is clear that :

dKT (π) =
n−1∑
i=1

Vi(π),∀π ∈ Sn (3.4)

� Example 3.1 For the permutation π = 53124, we have that :

dKT (53124) =
4∑
i=1

Vi(53124) = 4 + 2 + 0 + 0 = 6

�

Note that there is a bijection between permutations π ∈ Sn and decomposition
vectors ~V (π).

Thus, a ranking of n objects can be represented as a data point located in Eu-
clidean space Rn−1. Therefore, only rankings of three or four objects can be repre-
sented in a two-dimensional or three-dimensional graph without losing any informa-
tion. For instance, ranking data with three objects can be displayed on a hexagon,
in which each vertex represents a ranking and each edge connects two rankings that

http://oeis.org/A008302


3.1 Abstract Algebra 33

differ by swapping two objects (not neccesarily adjacent) the values of which differ
by one. Hence, each edge has length

√
2. In general, a permutohedron of order n is a

(n−1)-dimensional polytope, whose vertices are the elements of the symmetric group
Sn.

Figure 3.1: Permutohedron of order 3

In the above figure, we can see the 2-dimensional polytope, generated by the
elements of S3. The other visualizable permutohedron is the one generated by the 24
permutations of S4 and is provided below.

Figure 3.2: Permutohedron of order 4

Swap Increasingness

Consider two permutations σ, π such that a �σ b and a �π b. These permutations
contain the elements of a set A with size n, that is isomorphic to Zn. Then, the set
of these permutations generated by the set A is defined as L(A) and is isomorphic to
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Sn. Suppose that we swap objects a, b in π. Then, the swapped permutation will be
denoted by πa↔b. What is the connection between dKT (σ, π) and dKT (σ, πa↔b)?

We can define a swap monotonicity notion. Specifically, an integer-valued distance
function d, defined on the symmetric group Sn, is called swap-increasing if :

1. ∀σ, π ∈ L(A) and a, b ∈ A s.t. a �σ b ∧ a �π b implies that d(σ, πa↔b) ≥
d(σ, π) + 1,

2. and, if a, b are adjacent in π, then d(σ, πa↔b) = d(σ, π) + 1.

We claim that the Kendall tau distance is swap-increasing. This property will be
useful in the later chapters, but we choose to present it now.

Lemma 3.1.3 The Kendall tau distance dKT is swap-increasing.

Proof. We recall that :

dKT (σ, π) =
∑

1≤i<j≤n

1{(σ(i)− σ(j))(π(i)− π(j)) < 0)}

Let σ, π ∈ L(A) and a, b ∈ A s.t. a �σ b∧a �π b. Suppose that π(a) = i, π(b) = j.
Then, i < j.

We consider the set of elements of A that are between a, b in π, that is :

B = {e ∈ A : i < π(e) < j}.

Since, a �σ b, it follows that σ(a) < σ(b).
Obviously, we have that 1{σ(a) < σ(b)} = 1,1{σ(b) < σ(a)} = 0.

Consider a random element e of the set B.

1. If σ(e) < σ(a), then σ(e) < σ(b). Adding over the elements of B :∑
e∈B

1{σ(e) < σ(a)} ≤
∑
e∈B

1{σ(e) < σ(b)}

2. Similarly, if σ(b) < σ(e), then σ(a) < σ(e). Adding over the elements of B :∑
e∈B

1{σ(b) < σ(e)} ≤
∑
e∈B

1{σ(a) < σ(e)}

Now we study the difference dKT (σ, πa↔b)− dKT (σ, π).
On the one hand, we have that :

dKT (σ, πa↔b) =
∑
e∈B

1{σ(e) < σ(b)}+
∑
e∈B

1{σ(a) < σ(e)}+ 1{σ(a) < σ(b)}

On the other hand :

dKT (σ, π) =
∑
e∈B

1{σ(e) < σ(a)}+
∑
e∈B

1{σ(b) < σ(e)}+ 1{σ(b) < σ(a)}
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Subtracting these two terms, we get that :

dKT (σ, πa↔b)− dKT (σ, π) ≥ 1

Now for the second property, when a, b area adjacent in σ, the above observations 1,2
are simply equalities and thus the last inequality reduces to equality because equal
terms are getting canceled out. �

Dislocation distance - Spearman’s Footrule

Another distance function between permutations is the dislocation distance or usually
mentioned as the Spearman’s Footrule.

We define the distance of the permutations σ, π ∈ Sn as :

dSF (σ, π) =
n∑
i=1

|σ(i)− π(i)| (3.5)

The reader can think of the SF distance as the l1 norm embedded in the symmetric
group.

dSF (σ, π) = ||σ − π||1 (3.6)

Common properties with KT distance

The three distance properties and the relabeling still hold for the Spearman’s
Footrule.

A main difference with KT distance

In the previous section, we observed that KT distance is swap increasing. Is
the Spearman’s Footrule swap increasing? The answer is no. We provide a simple
counterexample. Let σ = a � b � c and π = b � c � a. Then, dSF (σ, π) = 4 and, for
the swapped πb↔c = c � b � a, we have that dSF (σ, πb↔c) = 4.

Comparing KT distance with Spearman’s Footrule

It would be useful to obtain a result that shows the comparison between Kendall’s
tau distance and the Spearman’s Footrule. Diaconis and Graham, in their joint work
[DP77] , provided the following result. We mention that d∗(τ, id) = d∗(τ).

Lemma 3.1.4 ∀τ, 1
2
dSF (τ) ≤ dKT (τ) ≤ dSF (τ)
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4.1 Probability Theory through Measure Theory

Learning rankings using noisy information requires the introduction of appropriate
probabilistic models. The use of probability theory is essential in this thesis and so
we will emphasize on that topic extensively. Modern probability theory consists, on
a technical point of view, a branch of measure theory and so, our exposition of the
subject will begin with some elementary measure-theoretic ideas. In order to acquire
a profound knowledge on the topic of probability theory, we consider crucial to report
some historical background and some fundamental concepts of the extensively studied
topic of measure theory. Some excellent sources for the interested reader are [Tao13],
[Kor07] and [Kal02].

Euclidean Geometry

The roots of measure theory can be found in Euclidean geometry, where one of
the most significant concepts is that of the measure m(E) of a solid body E in d
dimensions, d ≥ 1. When d = 1, 2, 3, we question ”What is the length, area and vol-
ume respectively of E”? Back then, the idea of computing m(E) was to partition the
body, using translations or rotations, into finitely many simpler components, whose
measure was possibly known. Archimedes was the one who also tried to obtain lower
and upper bounds on m(E) computing the measure of some inscribed or circum-
scribed body in E. As we will see, this intuition was crucial for the design of modern
measure theoretic ideas.

Analytic Geometry

Persian mathematicians (11th century) gave a direction to what René Descartes
and Pierre de Fermat independently invented and called Analytic geometry (17th
century). Thus, Euclidean geometry was reconsidered as the study of the space
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Rd = R× ...× R︸ ︷︷ ︸
d times

and rigid bodies of Euclidean geometry began to be thought as

subsets E of Rd. After that change, it was not clear how to define anymore, with
a mathematical rigor, the measure m(E). Some obvious issues were the following.
Firstly, it was logical to think that the measure of a ’point’, of a ’particle’, of a
quantity that cannot be divided into smaller parts should be considered to be 0. But,
a rigid body/ set consists of an infinite number of particles/points, and, thus, its
measure should result to 0 · ∞. Uncountable sets constitute another serious issue.
Two sets that have the exact number of points, need not have necessarily the same
measure. For example, trying to measure the intervals E1 = [0, 1] and E2 = [0, 2],
one can obviously note that the length of the second interval is twice the length of
the first. But, these two sets are in ′1 − 1′ correspondence, thanks to x 7→ 2x, and,
thus, have the exact same number of elements.

Good and bad subsets of Rd

Reading the above paragraph, one could think that the root of the problem is the in-
finite (and uncountable) number of components, partitioning our subset-body. What
if we take only a finite number of partitions? One could think that this would be the
solution to the problem. But, we still run into issues. The most famous way to prove
our intuition wrong was given in 1924 by Stefan Banach and Alfred Tarski, expand-
ing the works of Giuseppe Vitali and Felix Hausdorff. The so-called Banach-Tarski
paradox shows that the unit ball in three dimensions S2 = {x ∈ R3 : ||x||22 ≤ 1}
can be decomposed into five pieces, which can be ’glued’ back together, using rigid
motions, to form two disjoint copies of the initial ball.

This decomposition is not simple and trivial and requires the use of the axiom of
choice, that was formulated in 1904 by Ernst Zermelo in order to formalize his proof
of the well-ordering theorem. The axiom of choice is necessary for the decomposition.
There are models of set theory without the axiom of choice in which the Banach-Tarski
paradox does not occur. To recall the axiom, consider a collection C of nonempty
sets. We will say that a function f is a choice function on C if ∀A ∈ C, f(A) is an
element of A. The axiom of choice states that for any collection C of nonempty sets,
there exists a choice function f on C.

The idea of measuring the ’right’ way is to abandon trying to measure every subset
of Rd and measure only the ’good’ subsets of Rd. We will refer to these sets as the
measurable sets.

Measuring elementary sets

A box in Rd is a Cartesian product B = I1 × ... × Id of d intervals. The volume
|B| of a box is simply |B| =

∏d
i=1 |Ii| =

∏d
i=1(bi − ai), where Ii =< ai, bi > and

<= {(, [}, >= {), ]}. An elementary set is any subset of Rd which is the union of a
finite number of boxes.

Let E be an elementary set. Then, E can be decomposed to a finite union of k
disjoint boxes

⋃k
i=1 Bi Then, we can define the measure of an elementary set E as
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the quantity

m(E) =
k∑
i=1

|Bi|, E elementary,

where the sum is independent of the partition. For the elementary measure m(E) of
an elementary set E, one can see the following :
• m(E) ∈ R≥0 (Non-negativity)..
• If E1, ..., Ek are disjoint elementary sets, then m(E ∪ ... ∪ Ek) = m(E1) + ... +
m(Ek) (Finite additivity).
• m(∅) = 0.
• m(B) = |B| for all boxes B.
• If E ⊂ F, then m(E) ≤ m(F ) (Monotonicity).
• If E1, ..., Ek are elementary sets, then m(E ∪ ... ∪ Ek) ≤ m(E1) + ... + m(Ek)

(Finite subaddivity).
• For all elementary sets E and x ∈ Rd, m(E + x) = m(E) (Translation invari-

ance).

Jordan measure, Riemann-Darboux integral

Towards the end of the 19th century, the French mathematician Camille Jordan came
up with the idea of Jordan measure. Jordan expanded the restricted class of elemen-
tary sets and introduced an approximation scheme inspired by the one Archimedes
used, as we mentioned in the first section. Consider a bounded set E ⊂ Rd. We say
elem(A) if the set A is elementary. In order to provide a further intuition, we try
to link the ideas behind Jordan measure with the thoughts of Riemann and Dar-
boux on the integrability concept. The classical Riemann-Darboux integral is closely
related to Jordan measure. Firstly, the construction behind the Riemann integral,
using Darboux lower and upper sums just like Jordan inner and outer measures and
using piecewise constant functions just like elementary sets is completely similar to
the Jordan meausure.

In parallel with the definition of measurability on elementary sets, one can define
completely similarly the notion of integrability of piecewise constant functions. A
piecewise constant function f : [a, b] → R is a function for which there exists a
partition of [a, b] into finitely many intervals I1, ..., In s.t. f equals to a constant ci in
each one of then. Then, we define the piecewise constant integral of f on [a, b] as :

p.c.

∫ b

a

f(x)dx =
n∑
i=1

ci|Ii| (4.1)

It is worth mentioning that this sum is independent of the partition of the [a, b].
The definition is completely similar to the measure of an elementary set.

Jordan defined the Jordan inner measure of E as :

m∗,(J)(E) = sup
A⊂E,elem(A)

m(A) (4.2)

That is the biggest elementary set that fills E from the inside.
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Similarly, Riemann used the lower Darboux integral, that is the best from below
approximation of f using a piecewise constant function. If g is a piecewise constant
function, we will write pc(g)∫ b

a

f(x)dx = sup
g≤f,pc(g)

p.c.

∫ b

a

g(x)dx (4.3)

On the other side, Jordan introduced the Jordan outer measure of E as :

m∗,(J)(E) = inf
A⊃E,elem(A)

m(A) (4.4)

That is the smallest elementary set that covers E from the outside.
Alongside with the outer Jordan measure, the upper Darboux integral is just the

best from above approximation of f using a piecewise constant function, that is

∫ b

a

f(x)dx = inf
g≥f,pc(g)

p.c.

∫ b

a

g(x)dx (4.5)

It is well known that, in the Riemann-Darboux integrability concept, if these
two integrals are equal, we say that f is Darboux integrable. A function is Riemann
integrable if the Riemann sum with respect to a partition P ,

∑n
i=1 f(x∗i )δxi converges

to a real number as the supi∈[n]δxi goes to 0. This real number is called the Riemann
integral of f. It is known that a function is Darboux integrable if and only if it is
Riemann integrable.

Similarly, if the inner and the outer Jordan measures of E are equal then we say
that E is Jordan measurable and set the Jordan measure to be equal to m(E) =
m∗,(J)(E) = m∗,(J)(E). It is important to note that elementary sets are Jordan mea-
surable and their elementary measure coincides with the Jordan measure. Jordan
only worked with bounded sets and did not consider unbounded sets to be Jordan
measurable (they would have infinite measure). Jordan measurable sets are those
sets that are ’almost elementary’ with respect to Jordan outer measure.

Thus, the question arising is the following : Is the Jordan measure enough?

Lebesgue measure

The theory of Jordan measure works well when one works with Jordan measurable
sets. Nevertheless, there are sets that are not Jordan measurable. One could show
that the countable union or intersection of Jordan measurable sets E1, E2... ⊂ R need
not to be Jordan measurable, even when bounded. Lebesgue extended the Jordan
measures in order to tackle that issue. He tried to solve the problems by converting
Jordan outer measure to a better upper estimator as follows.

One can use the finite additivity property and subadditivity of elementary mea-
sure to rewrite the Jordan outer measure. The outer Jordan measure just uses one
elementary set to circumscribe the set E. We could instead cover it with a finite
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collection of boxes and define the Jordan outer measure as the infimal cost required
for the boxes cover.

m∗,(J)(E) = inf⋃k
i=1Bi⊃E,Biboxes

|B1|+ ...+ |Bk| (4.6)

Lebesgue then proposed, instead of covering with a finite union of boxes, to cover
E with a countable union of boxes and, thus, defined the Lebesgue outer measure of
E :

m∗(E) = inf⋃∞
i=1Bi⊃E,Biboxes

∞∑
i=1

|Bi| (4.7)

Note that m∗(E) may be equal to +∞. But, in most cases, this is a better
approximation. Clearly, m∗(E) ≤ m∗,(J)(E).

Finally, Lebesgue introduced the measurability concept with respect to his mea-
sure if, given a set E ⊂ Rd, we say that E is Lebesgue measurable if, for every ε > 0,
there exists an open set U ⊂ Rd that contains E s.t. m∗(U) ≤ ε. In that case, the
Lebesgue measure is defined as m(E) and is equal to the Lebesgue measure of E.

It is useful to note that

m∗,(J)(E) ≤ m∗(E) ≤ m∗,(J)(E),∀E ⊂ Rd (4.8)

ans that Lebesgue measure extends Jordan measure,in the sense that every Jordan
measurable set is Lebesgue measurable.

Abstracting measure spaces

While defining the Lebesgue measure, we only worked on subsets of Rd. The Lebesgue
measurem is the standard way of assigning a measure to subsets of the n−dimensional
Euclidean space. Usually, it is necessary to work with more general spaces X, whose
structure differs from the Euclidean space. Thus, abstraction of the notion of mea-
surability is crucial.

Suppose that we want to work to a general space X and define a proper notion of
measure. It is not enough to specify the set X. One needs to define, also, a collection
B of subsets of X, where the measure will work well and a measure µ(A) that assigns
to every set A ∈ B a value in [0,+∞].

Some questions that can easily arise from the above setting are the following :

What does the collection B consists of?
Does the measure function have to satisfy some axioms?

In this abstract setting, we will build our probability theory concept trying to
answer these two elementary questions.
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Probability theory as a measure theory branch

After this essential presentation of the main ideas behind measure theory, we are
able to work on a specific branch of this widely studied topic, especially probability
theory. We begin by recalling some fundamental definitions.

The first object one deals with in probability theory is the space of elementary
outcomes, usually denoted by Ω. The elements of this non-empty space are the ele-
mentary outcomes ω ∈ Ω. In probability theory, we are interested in the probability
measure (or simply probability) which maps some of subsets of Ω to the interval [0, 1].
But, these mappings cannot be random. For instance, when one says that event ’A
happens’ with probability 0 ≤ p ≤ 1, then the probability measure should also attain
value (1 − p) to the event ’A does not happen’. This event is usually called the
complement of A, denoted by Ac. Hence, it is crucial to create a ’good’ notion of
’collection of subsets’.

Definition 4.1.1 — Boolean algebra. A collection B of subsets of Ω is called a Boolean
algebra if it has the following properties :
1. Ω ∈ B.
2. A ∈ B, implies that Ac = Ω \ A ∈ B (stable under complement).
3. A1, ..., An ∈ B, then the union

⋃n
i=1Ai ∈ B (stable under finite union).

The way we defined the Boolean algebra is too minimal. We only assumed that
it will be closed under two of the basic Boolean operations, the complement and the
finite union.

In order to obtain an well defined measure notion, the finite union axiom of a
Boolean algebra is not enough. The reason that is hidden behind this issue is the
need of good behavior of the measure with limits. The intuition is completely similar
to the finite box covering used by Jordan and the need to extend this notion to
countable coverings by Lebesgue. The idea is the same. We require our Boolean
algebra to be closed under countable unions. Countable union is usually assumed
when one uses the greek letter σ as a prefix and thus we introduce the notion of
σ-algebra.

Definition 4.1.2 — σ-algebra. A σ-algebra F on Ω is a Boolean algebra that is closed
under countable unions, i.e. if (Ai)i≥1 is a sequence of sets in F , then the union⋃∞
i=1Ai ∈ F (stable under countable unions). The elements of F are called mea-

surable sets, or events.

� Example 4.1 From the above definition, we have that ∅,Ω ∈ F . Two basic examples
of a σ-algebra are the trivial σ-algebra F = {∅,Ω} and the powerset of Ω, F =
P(Ω) = 2Ω. In addition, it is obvious that any σ−algebra is also a Boolean algebra
since one can think of any finite sequence of k sets as a countable sequence of these
k sets and an infinite sequence of the empty set as the tail of the sequence. �

Furthermore, it follows that if (Ai)i≥1 is a sequence of sets in F , then
⋂∞
i=1Ai ∈ F .

� Example 4.2 Borel σ− algebra. The Borel σ−algebra of Ω is the σ−algebra σ(A),
where A is the family of open subsets of Ω. �
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Definition 4.1.3 — Measurable space. We refer to the pair (Ω,F) as a measurable
space, where Ω is a space of elementary outcomes and F is a σ−algebra of subsets
of Ω.

Now, we represent the definition of measurable functions that will be useful in the
introduction of random variables.

Definition 4.1.4 — Measurable function. Let (Ω,F) be a measurable space. A function
ξ : Ω→ R is said to be F−measurable (or measurable) if

{ω : α ≤ ξ(ω) < β} ∈ F , ∀α, β ∈ R (4.9)

Right now, it will not be completely clear why we defined measurable functions
this way. But, we promise that issues will be resolved when defining the notion of
Lebesgue integrability in the next section.

� Example 4.3 Let E be an arbitrary subset of Ω. Define the indicator function 1E on
Ω by

1E(x) =

{
1, x ∈ E
0, otherwise

We claim that E is measurable iff the indicator function 1E is measurable. It is
not difficult to see that :

{1E(x) ≤ β} =

 ∅, β < 0
Ec, 0 ≤ β < 1
Ω, β ≥ 1

The sets ∅,Ω are trivially measurable and Ec is measurable iff E is measurable,
which implies our claim. �

Remark 4.1.1 Continuous functions, monotone functions, step functions, Riemann-
integrable functions are all Lebesgue measurable.

Before proceeding to the standard presentation of the probability measure, we
provide the general definition of the measure function.

Definition 4.1.5 — Finite non-negative measure. Let (Ω,F) be a measurable space. A
function µ : F → [0,+∞) is said to be a finite non-negative measure (or measure)
if, whenever {Ai}i≥1 ∈ F are pairwise disjoint

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai) (4.10)

A measure is a σ−additive function on a σ−algebra of subsets of Ω with values
on the non-negative real axis.

If the measure takes values to R≥0 ∪ {+∞}, then it will be called a σ−finite
measure and if the measure maps to the whole real axis, it will be called signed
measure.
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4.1.1 Probability Measure

In modern probability theory, it is usual to link our objects of interest to a probability
space (Ω,F ,P). This space is just a normalized measure space. Consequently, random
variables could then be considered as measurable functions ξ on Ω and their expec-
tation as Lebesgue integrals with respect to measure P. It is of crucial importance
to underline that the reference space Ω is used only for technical convenience. The
choice of Ω plays no role and the interest focuses on the multiple induced distributions
P ◦ ξ−1.

Definition 4.1.6 — Probability measure. A measure P on a measurable space (Ω,F) is
called a probability measure (or probability distribution) if P[Ω] = 1.

Definition 4.1.7 — Probability space. The triplet (Ω,F ,P) is called a probability space,
when (Ω,F) is a measurable space and P is a probability measure.

� Example 4.4 (Normalized measure) Given any measure space (X,B, µ) with 0 <
µ(X) < +∞, the space (X,B, 1

µ(X)
µ) is a probability space.

What does it mean to draw a sample uniformly at random from Ω?

If Ω is a non-empty finite set with the discrete σ− algebra P(Ω) = 2Ω and the
counting measure #, then the normalized counting measure 1

#Ω
# is a probability

measure, that is known as the discrete uniform probability measure on Ω and the
triplet (Ω, 2Ω, 1

#Ω
#) is a probability space, that captures the ’drawing uniformly at

random’ notion. �

Random elements, distribution functions and expectation

Consider the probability space (Ω,F ,P) and some measurable space (M,M). Any
measurable mapping ξ of Ω into (M,M) is called a random element in M.

A random element in M is called a random variable whenever M = R, a random
vector whenever M = Rd, a stochastic process whenever M is a function space. In
the strong majority of the situations that follow, we will refer to random variables.

If S ∈M, then {ξ ∈ S} = ξ−1S ∈ F , and we consider the probabilities :

P{ξ ∈ S} = P[ξ−1S] = (P ◦ ξ−1)S, S ∈M (4.11)

The quantity (P◦ξ−1) is a set function and is again a probability measure, defined
on the range of the space M and called the probability distribution of the random
element ξ.

For a random variable ξ on a probability space (Ω,F ,P), the function

Fξ(x) = P[ξ ≤ x] = P[{ω : ξ(ω) ≤ x}] (4.12)

is called the distribution function of the random variable ξ.
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� Example 4.5 — Uniform distribution. The function

F (x) =

 0, x ≤ 0
x, 0 ≤ x < 1
1, 1 ≤ x <∞

is the distribution function for a measure µ on the Borel σ−algebra BR, that is
concentrated on (0, 1]. The measure µ is called the uniform distribution on (0, 1]. �

Some known, but useful properties are the following :
• Fξ is non-decreasing : x ≤ y implies that Fξ(x) ≤ Fξ(y).
• lim

x→−∞
Fξ(x) = 0 and lim

x→+∞
Fξ(x) = 1.

• Fξ is continuous from the right ∀x : lim
x↓t

Fξ(x) = Fξ(t).

It is interesting to point out that each function defined on R, that has the three
properties mentioned above, is a distribution function.

In some cases, there exists a non-negative integrable function fξ on R s.t.

Fξ(x) =

∫ x

−∞
fξ(y)dy ∀x

Then, fξ is called the probability density function of Fξ.
One of the most important notions of probability theory is that of the expected

value or expectation of a random variable. In order to remain to a measure theoretic
setting, we shall underline that the concept of expectation is identical to the notion
of the Lebesgue integral.

Intuition between Riemann and Lebesgue integration

Given a set X, a σ−algebra B and a measure µ on B, we would like to define the
integral ∫

X

fdµ

of any function f on X of an appropriate class of functions.
If X is a bounded closed interval [a, b] of the real line, then the integral∫ b

a

f(x)dx

is well defined for the class of Riemann integrable functions. We remind that a
bounded function on a compact interval [a, b] is Riemann integrable if and only of it
is continuous almost everywhere (the discontinuity set is of Lebesgue measure zero).

In order to compute the Riemann integral of f on [a, b], we partition the interval
into subintervals and the integral is the limit of the Riemann sum

n∑
i=1

f(ξi)(xi−xi−1),where {xi}ni=0 partition the interval [a, b] and ξi ∈ [xi−1, xi], i ∈ [n].
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One could try to arrange the partition of the set X into a sequence of sets {Ei}
and define the integral sums :∑

i

f(ξi)µ(Ei),where ξi ∈ Ei.

Now, we have to clarify how one should take the limit at which the above sum
will give the desired integral

∫
X
fdµ.

What is the appropriate notion of limit?
What is the class of functions for which that limit exists?

Riemann’s idea is to partition the interval into very small intervals, say ∆i, on
which, thanks to the continuity of the function, the range of the function f restricted
in ∆i is small (the values of f do not change much) and, hence, the restriction of f in
the partition can be well approximated by f(ξi). We should choose Ei’s that respect
that property.

Lebesgue approached the problem considering the following sets :

Ei = {x ∈ X : ti−1 ≤ f(x) < ti}

where {ti} is an increasing sequence of reals that partitions the range of f, say Im(f).
Observe that this choice permits to avoid the use of continuity of f. But, this

requirement is replaced by the necessity that the value µ(Ei) is well defined. Thus,
our measure, that is defined on the σ−algebra B has to be well defined on a large
domain that contains Ei. Similarly, we have to restrict functions f for which the sets
of the form {α ≤ f(x) < β} live in the domain of the measure µ. Now, we propose

the reader to return to the definition of measurable functions 4.1.4 . It should be
clear why we defined measurable functions class this way.

In order to compute the Lebesgue integral of a one dimensional function f, we
partition on the range of f. Thus, the integral should run over each value t ∈ Im(f)
and sum each elementary area contained between y = t and y = t − dt. This area
equals to µ({x|f(x) > t})dt. Then, the Lebesgue integral of f is defined by

∫
fdµ =∫

R µ({x|f(x) > t})dt.

Lebesgue integral

As the piecewise constant functions were the fundamental basis of the Darboux in-
tegrability, we will use the notion of simple functions for the Lebesgue integrability.

Let (Ω,F , µ) be a measurable space with a finite measure.
A measurable function is said to be simple if it takes a finite or countable number

of values. Thus, if f is an (unsigned) simple function taking the non-negative values
c1, c2, ... and we define the sets Ei = {ω : f(ω) = ci}, we can express f as a (finite or
countable) sum of indicator functions, i.e.

f =
∑
i

ci1Ei
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Definition 4.1.8 — Lebesgue integral for simple functions. If the series
∑∞

i=1 ci1Ei con-
verges, then the sum of the series is called the (simple) Lebesgue integral of the
simple function f and is denoted by

∫
Ω
fdµ. If the series diverges, then it is said

that the integral equals +∞.

Lemma 4.1.2 The integral of a simple non-negative function has the following prop-
erties
• Non-negativity, that is

∫
Ω
fdµ ≥ 0

• Full measure, that is
∫

Ω
1Ωdµ = µ(Ω)

• Linearity, that is
∫

Ω
(αf + βg)dµ = α

∫
Ω
fdµ+ β

∫
Ω
gdµ,∀a, b > 0.

• Non-decreasingness, that is f ≥ g ≥ 0 implies that
∫

Ω
fdµ ≥

∫
Ω
gdµ.

In the measure theory literature, it is usually underlined that measurability be-
haves quite well with limits. We proceed by presenting a very important theorem
that binds simple functions with general measurable functions.

Theorem 4.1.3 Any non-negative measurable function f is a monotone limit from
below of non-negative simple functions, that is f(ω) = lim

n→∞
fn(ω) ∀ω ∈ Ω, where

fn are non-negative simple functions s.t. fn(ω) ≤ fn+1(ω)∀ω.

Proof. The proof is based on constructing this sequence of functions. We choose to
define fk by rounding down f to the nearest integer multiple of 1

2k−1 .
For instance, for k = 1, we define

f1(ω) =

{
0, 0 ≤ f(ω) < 1
1, 1 ≤ f(ω)

The next term of the sequence will be f2 with values the integer multiples of 1
2
,

that are less than k = 2, and, thus, will take values 0, 1
2
, 1, 3

2
and 2. Specifically,

f2(ω) =


0, 0 ≤ f(ω) < 1

2
1/2, 1

2
≤ f(ω) < 1

1, 1 ≤ f(ω) < 3
2

3/2, 3
2
≤ f(ω) < 2

2, 2 ≤ f(ω)

In general, we define fk as :

fk(ω) =

{
j−1
2k−1 ,

j−1
2k−1 ≤ f(ω) < j

2k−1 , j = 1, ..., k2k−1

k, k ≤ f(ω)

Notice that, since f is measurable, the sets {ω : j−1
2k−1 ≤ f(ω) < j

2k−1} and {ω :
f(ω) ≥ k} are measurable too. Thus, fk is a measurable function for each k ∈ N.
The construction of the sequence implies that fk(ω) ≤ fk+1(ω) for each ω. Also, it
holds that :

f(ω) ≤ k ⇒ |f(ω)− fk(ω)| ≤ 1

2k−1
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Suppose that f is finite. Then, as k grows, it will eventually exceed f. Let f(ω) ≤
M <∞ for all ω ∈ Ω. For all k ≥M, we have that

supω∈Ω|f(ω)− fk(ω)| ≤ 1

2k−1

Thus, fk converges uniformly to f in Ω.
Otherwise, if f(ω) =∞, then fk(ω) = k, ∀k, so, as k →∞, fk(ω)→ f(ω). Thus,

we have pointwise convergence. �

Remark 4.1.4 The above theorem is an equivalent form of the definition 4.1.4 .

An additional theorem claims that measurability is preserved under limits. That
is the limit of measurable function is measurable.

Theorem 4.1.5 If a function f is a limit of measurable functions for all ω, then f
is measurable.

Let f be a measurable function taking non-negative values and consider the se-
quence fn of non-negative simple functions that converges monotonically from below
to f.

Hence, the sequence
∫

Ω
fndµ is non-decreasing and there exists the limit :

lim
n→∞

∫
Ω

fndµ

which may be even +∞.
Of course, there is not a single sequence of simple functions fn that converges to

f. But, it can be proven that the value of the above limit is independent of the choice
of this sequence. This result is similar to the fact that Riemann sum is independent
of the partition of the real line.

Thus, one can define the Lebesgue integral as follows :

Definition 4.1.9 — Lebesgue integral. Let f be a non-negative measurable function and
consider the sequence fn of non-negative simple functions that converges monoton-
ically from below to f. The limit

lim
n→∞

∫
Ω

fndµ :=

∫
Ω

fdµ

is called the Lebesgue integral of the function f.

The definition can be expanded to all measurable function by introducing the
indicator functions, just like in the Riemann integral case :

1{+,−}(ω) =

{
1, f(ω){≥, <}0
0, otherwise

(4.13)

and working with f+ = f1+ and with f− = f1− .
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Additionally, if f is a measurable function on (Ω,F , µ) and E ∈ F , the integral
of f over E is ∫

E

fdµ =

∫
Ω

f1Edµ

The mathematical expectation is the same as the Lebesgue integral over a prob-
ability space. When ξ is a measurable function and the measure is a probability
measure, we refer to the integral as the expectation of the random variable, and de-
note it by E[ξ] or, if the context is clear, by Eξ.

Before proceeding to the definition, it is important to see the following result :

Lemma 4.1.6 — Substitution. Consider the real-valued measurable function f on
(Ω,F , µ). Let µf =

∫
fdµ. Let (M,M) be a measurable space and f : Ω→M, g :

M → R be two measurable mappings. Then,

µ(g ◦ f) = (µ ◦ f−1)g

whenever either side exists.

Proof. Notice that, in the LHS, g ◦ f is a function via the composition function,
whereas, in the RHS, µ ◦ f−1 is a measure, similar to 4.11 The way of proving this
lemma is quite typical in measure theory proofs and, thus, we consider it would be
usuful for the interested reader. Firstly, we begin with the simpler kind of measurable
mappings, the indicator functions. Then, using linearity, we expand the result for
simple functions. Afterwards, using the monotone convergence property, we get that
it holds for any non-negative measurable functions. Finally, we extend the result to
all real-valued measurable functions.
• If g is an indicator function, then the formula is just the definition of µ ◦ f−1,

since :

(µ ◦ f−1)g =

∫
gd(µ ◦ f−1) =

∫
1Bd(µ ◦ f−1) = (µ ◦ f−1)B

= µ(f−1B) =

∫
B

fdµ =

∫
(g ◦ f)dµ = µ(g ◦ f)

• Then, we can extend the formula to any measurable g ≥ 0, thanks to linearity
and monotone convergence.
• For general g, it is µ|g ◦ f | = (µ ◦ f−1)|g|. So, the integrals exist simultaneously.

If they do, we get the desired equation by taking differences on both sides.
�

The expectation of a random variable ξ is defined as

Eξ =

∫
Ω

ξdP =

∫
R
x(P ◦ ξ−1)(dx) (4.14)

whenever either integral exists. The second equality follows from the above lemma.
The quantity P ◦ ξ−1 is the probability distribution of the random variable ξ.
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In terms of the cumulative distribution function, we have that :

Eξ =

∫
R
xdFξ(x) (4.15)

and when the probability density is well defined :

Eξ =

∫
R
xfξ(x)dx (4.16)

Intuitively, the quantity fξ(x)dx is the probability that the random variable ξ falls
within the interval [x, x+ dx].

In general, for any random element ξ is some measurable space M and for an
arbitrary function g : M → R,

Eg(ξ) =

∫
Ω

g(ξ)dP =

∫
M

g(t)(P ◦ ξ−1)(dt) =

∫
R
x(P ◦ (g ◦ ξ)−1)(dx) (4.17)

whenever at least one of the three integrals exists.
For any random variable ξ and constant p > 0, the integral E|ξ|p is called the

p−th absolute moment of ξ.
Consider a random variable ξ ≥ 0. Then :

Eξp = E
∫ ∞

0

1{ξp > t}dt = E
∫ ∞

0

1{ξ > t1/p}dt = pE
∫ ∞

0

1{ξ > t}tp−1dt

Now, using the well-known Fubini’s theorem, we can interchange the expectation
and the improper integral and get :

Eξp = p

∫ ∞
0

P[ξ > t]tp−1dt (4.18)

This is a useful result connecting the moments of a random variable and the tail
probabilities.

We note that for p = 1,

Eξ =

∫ ∞
0

P[ξ ≥ t]dt

Another crucially important result follows from the convexity of functions. Recall
that a function f : Rd → R is said to be convex if

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y), x, y ∈ Rd, 0 ≤ p ≤ 1 (4.19)

A nice way to see that inequality is the following. Consider a random vector ξ in
Rd with P[ξ = x] = p = 1− P[ξ = y]. Then the above result can be written as :

f(Eξ) ≤ Ef(ξ)

The inequality can be extended to arbitrary integrable random vectors giving the
probabilistic Jensen’s inequality.
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Theorem 4.1.7 — Jensen’s Inequality. Let ξ be an integrable random vector in Rd, and
fix any convex function f : Rd → R. Then,

f(Eξ) ≤ Ef(ξ) (4.20)

Proof. The proof is based on a functional analysis theorem, the Hahn–Banach the-
orem. The convexity condition is equivalent to the existence of a supporting affine
function hs = ax+ b,∀s ∈ Rd s.t.

f ≥ hs, f(s) = hs(s).

This can be easily seen geometrically but the formal proof requires a version of
Hahn-Banach theorem.

Choosing s = Eξ,

Ef(ξ) ≥ Ehs(ξ) = hs(Eξ) = f(Eξ)

�

Remark 4.1.8 The Hahn-Banach theorem is an extension theorem for linear func-
tionals. It states that for a linear functional on a subspace Y of a real vector space
X, that satisfies f(y) ≤ p(y)∀y ∈ Y, where p is a sublinear functional a on X.
Then, f has a linear extension F from Y to X that satisfies F (x) ≤ p(x)∀x ∈ X.

aA sublinear functional p on X is a real-valued functional p which is subadditive p(x+y) ≤ p(x)+p(y)
and positive-homogeneous p(ax) = ap(x)

In the following sections, random variables will usually be denoted either by X or
by ξ. The expectation of the random variable X will be either be denoted by E[X]
or simply by EX.

Types of measure and decomposition

Let µ be a finite measure on the Borel σ−algebra of the real line. There are three
typical types of measures.
• Discrete measure : Suppose that there exists a countable set C = {c1, c2, ...}

(which could also be finite) that is a set of full measure i.e. µ((−∞,+∞)) =
µ(C). Then, µ is a measure of discrete type.
• Absolutely continuous measure : The measure µ will be called absolutely con-

tinuous if for every set of Lebesgue measure zero m(A) = 0, we have also that
µ(A) = 0. Thus, the collection of Lebesgue zero sets is a subset of µ−measure
zero.
• Singular continuous measure : The measure µ will be called singular continuous

if µ(c) = 0 for every point c ∈ R and there is a Borel set B of Lebesgue measure
zero and of full µ− measure.
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Theorem 4.1.9 Given any finite measure µ on the real line, ∃ uniquely a discrete
measure µdisc, an absolutely continuous measure µac and a singular continuous
measure µsc s.t. for any Borel set A of R, we have that µ(A) = µdisc(A) +µac(A) +
µsc(A).

4.1.2 f− divergence

One of our most significant goals is to learn distributions, that is, to try to approx-
imate with the best possible estimators the distribution we are looking for. This
idea is closely related to the classical concept of distribution learning, that can be
informally described as follows :

Remark 4.1.10 A class of distributions P is called efficiently learnable if for every
ε > 0, 0 < δ ≤ 1, given access to an oracle O(D) for an unknown distribution
D ∈ P , there exists a polynomial time learning algorithm (of P), that outputs an

estimator of a distribution D̂ s.t.

P[d(D, D̂) ≤ ε] ≥ 1− δ

Note that the oracle O(D) is just a mechanism that is able to return a sample
from the unknown distribution D.

It is important to obtain some tools in order to answer questions such as :

If P,Q are two probability distributions. Are these two distributions close to each
other?

Thus, we are obligated to define a notion of distance between two distributions or,
in general, a measure of how two distributions differ. In order to define the notion of
f− divergence, it is crucial to refer to the concept of Lebesgue decomposition from
the field of measure theory.

The Lebesgue Decomposition and the Radon-Nikodym Theorem

Previously, we saw a way to decompose any finite measure on a Borel σ− algebra on
R. Now, we will try to introduce a decomposition a given measure into two measures
that are connected (in some proper way) to another given measure. Let µ, ν be σ−
definite measures on a measurable space (Ω,F). We would like to decompose ν with
respect to µ, that is to break ν into (two) components that are somehow connected
to the measure µ.

Firstly, we will expand the definitions presented in the introductory section about
the absolutely continuous and singular types of measure.

Absolute continuity with respect to a measure

Before we proceed to the formal definition, it is useful to introduce an intuitive way
to think of absolute continuity. One could think of absolute continuity as a stronger
version of continuity and of uniform continuity and thus the class of functions being
absolutely continuous as a sub-class of continuous functions. The significance of ab-
solute continuity is that it is the largest class of functions for which the fundamental
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theorem of calculus holds (using the classical derivative, and the Lebesgue integral).
For instance, a counterexample for continuous functions is the Cantor staircase func-
tion.

A function f defined on an interval I = [a, b] of the real line is absolutely con-
tinuous if ∀ε > 0,∃δ > 0, s.t. given N pairwise disjoint sub-intervals {(ai, bi)} ⊂ I

with
∑N

i=1 |bi − ai| < δ, then
∑N

i=1 |f(bi) − f(ai)| < ε. In practice, f is absolutely
continuous ⇐⇒ it has a derivate f ′ almost everywhere ⇐⇒ there exists a Lebesgue
integrable function g on I = [a, b] s.t. f(x) = f(a) +

∫ x
a
g(t)dt ∀x ∈ I (then g = f ′).

Expanding this notion to measures, substituting intuitively sub-intervals with
elements of the σ−algebra and the ε− δ scheme with the vanishing of measures, we
get that :

Definition 4.1.10 — Absolute Continuity. Let (Ω,F) be a measurable space with a
finite non-negative measure µ. A signed measure ν : F → R is called absolutely
continuous with respect to µ, that is ν � µ if for every A ∈ F for which µ(A) = 0,
we get that ν(A) = 0.

From a set theoretic point of view, we could define the measure’s zeros set as Zµ =
{A ∈M|µ(A) = 0}. Then, using the definition, it follows that ν � µ ⇐⇒ Zµ ⊆ Zν .

Remark 4.1.11 An equivalent definition could be given as follows : ν � µ if ∀ε >
0,∃δ > 0 s.t. µ(A) < δ ⇒ |ν(A)| < ε.

Theorem 4.1.12 — Radon-Nikodym Theorem. Let (Ω,F) be a measurable space with a
finite non-negative measure µ and ν be a signed measure s.t. ν � µ. Then, there
is an integrable function f such that, for all A ∈ F ,

ν(A) =

∫
A

fdµ

Any two functions that have this property differ on at most a set of µ−measure
zero.

The function f is called the density or the Radon-Nikodym derivative of ν with
respect to µ. We often write f = dν

dµ
= dνac

dµ
.

� Example 4.6 The normal distribution ν = N (0, 1) has the density f(x) = 1√
2π
e−

x2

2

with respect to the Lebesgue measure µ = m on R. �

� Example 4.7 When the probability distribution P ◦ ξ−1 of the random variable ξ is
absolutely continuous, it has a well defined density fξ, that is Fξ(x) =

∫ x
−∞ fξ(t)dt. �



54 Chapter 4. Mathematical Foundations II : Probability Theory

Singularity

Definition 4.1.11 — Concentrated Measure. The measure µ is said to be concentrated
on E ∈ F if µ = µE, where µE(A) := µ(E ∩ A) for every A ∈ F .

Definition 4.1.12 — Singular Measure. Two measures µ1 and µ2 are said to be mutually
singular, that is µ1 ⊥ µ2, if ∃ disjoint measurable sets E1 and E2 in F s.t. µ1 is
concentrated on E1 and µ2 is concentrated on E2.

One can think of singularity as a distribution property. Two distributions are
singular if there are two disjoint sets A,B on which the first distribution assigns the
whole mass on A and the other on B.

� Example 4.8 If µ = N (0, 1) is the Gaussian distributions and ν = Poi(λ) is the
Poisson distribution with parameter λ. Then, we can notice that µ(N0) = 0 and
ν(R \ N0) = 0. Thus, the two measures are singular. �

Lebesgue decomposition

Theorem 4.1.13 — Lebesgue decomposition of µ with respect to ν.. Let ν be a signed
σ-finite measure and µ an unsigned σ-finite measure on M. Then, there exists a
unique pair of real measures νac and νsing on M s.t.

ν = νac + νsing, where νac � µ, νsing ⊥ µ (4.21)

Especially, for distributions-probability measures P and Q defined on the same
probability space (Ω,F), the Lebesgue decomposition of P with respect to Q is de-
fined as P = Pac + Psing, where Pac � Q and Psing ⊥ Q.

It is worth mentioning that Pac,Psing are sub-probabilities, that is positive mea-
sures with total mass less or equal to 1, and, by definition :

dP
dQ

=
dPac
dQ

Maximal Slope

Let f : (0,+∞)→ R be a convex function s.t, f(1) = 0. Thanks to the convexity
of f, one can well-define : f(0) := lim

t↓0+
f(t) ∈ R ∪ {+∞} and extend the function to

f : [0,+∞)→ R ∪ {+∞}.
Consider such a convex function f and a point x > 0. Then, as t increases, the

slope ∆fx(t) = f(t)−f(x)
t−x is non decreasing (by convexity).

Thus, the limit

lim
t→∞

∆fx(t) = supt>0∆fx(t) ∈ [0,+∞]. (4.22)
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exists and is independent on x. Hence, it equals the maximal slope of f :

Mf := lim
t→∞

∆f1(t) = lim
t→∞

f(t)

t
∈ R ∪ {+∞}. (4.23)

Setting t = x+ y, we get the following inequality :

f(x+ y)− f(x)

y
≤Mf ∀x > 0, y > 0. (4.24)

or equivalently :

f(x+ y) ≤ f(x) + yMf ∀x > 0, y > 0. (4.25)

The convexity of f implies continuity on (0,∞) and thus the above inequality can
be extended, by taking x ↓ 0 and y ↓ 0, giving the next inequality that will be used
as lemma for the following definitions :

f(x+ y) ≤ f(x) + yMf ∀x ≥ 0, y ≥ 0. (4.26)

The f−divergence functional was introduced by Csiszar as a generalized measure
of information.

Definition 4.1.13 — f-divergence. Let f : (0,+∞) → R be a convex function that
vanishes at the point x = 1. The f−divergence Divf (P ‖ Q) between a pair of
probability distributions in the same probability space (Ω,F) is defined as :

Divf (P ‖ Q) =

∫
Ω

f(
dP
dQ

)dQ + Psing(Ω)Mf (4.27)

For the discrete case, the f−divergence on the set of probability distributions Pn
is defined as :

Divf (~p ‖ ~q) =
n∑
i=1

qif(
pi
qi

)

for convex functions f : (0,∞)→ with f(1) = 0.

Why do we need f(1) = 0?

In order to get the non-negativity property for the f -divergence. Firstly, using
the Jensen’s inequality for the convex f :∫

Ω

f(
dP
dQ

)dQ ≥ f(

∫
Ω

dP
dQ

dQ) = f(Pac(Ω))

Secondly, for the pair (x, y) = (Pac(Ω),Psing(Ω)) , from the maximal slope in-
equality :

f(Pac(Ω) + Psing(Ω)) ≤ f(Pac(Ω)) + Psing(Ω)Mf

Using the above results :
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Divf (P ‖ Q) ≥ f(Pac(Ω)) + Psing(Ω)Mf ≥ f(Pac(Ω) + Psing(Ω)) = f(1) = 0.

Thus,
Divf (P ‖ Q) ≥ 0

Property : Joint Convexity

The mapping (p, q) 7→ qf(p
q
) is convex on R2

>0 :

Divf (βP1+(1−β)P2||βQ1+(1−β)Q2) ≤ βDivf (P1||Q1)+(1−β)Divf (P2||Q2), ∀β ∈ [0, 1].

4.1.3 TV Distance & KL Divergence

The two main metrics on how two distributions differ, that we mostly use in this work,
are the Total Variation distance and the Kullback–Leibler divergence. Each one of
these can be expressed as a f−divergence by choosing an appropriate f function.

Total Variation distance

The first metric is a distance function between a pair of distributions P,Q on a
σ−algebra F of subsets of a space Ω.

Reading the relative literature, there are two different definitions of the total
variation distance, a general one and a normalized one. We are going to use different
symbols for the two versions.

The general version is given by :

||P−Q||TV = 2 sup
A∈F
|P(A)−Q(A)| (4.28)

Lemma 4.1.14 ||P−Q||TV =
∑

x∈Ω |P(x)−Q(x)|

The lemma will be proved below for the normalized version.
Notice that the minimum value of ||P − Q||TV is obviously 0 and the maximum

value is 2. The maximum is achieved when supp(P) ∩ supp(Q) = ∅, and, hence the
total area equals 1 + 1 = 2. We remind that supp(P) = {x|Px > 0} is the support of
the probability distribution P.

The normalized version takes values only on [0, 1] :

dTV (P,Q) = sup
A∈F
|P(A)−Q(A)| (4.29)

Lemma 4.1.15 dTV (P,Q) = 1
2

∑
x∈Ω |P(x)−Q(x)|

Proof. From the definition of TV distance, we have that dTV (P,Q) = supA∈F |P(A)−
Q(A)|. Suppose that the supremum is attained at the set A∗ ∈ F and, wlog, let
P[A∗] ≥ Q[A∗].

Note that dTV (P,Q) = P[A∗]−Q[A∗] = (1−P[Ac∗])− (1−Q[Ac∗]) = Q[Ac∗]−P[Ac∗].
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Figure 4.1: TV distance between two probability measures P and Q.

The space Ω is partioned by A∗ and its complement Ac∗. Thus,

1

2

∑
x∈Ω

|P(x)−Q(x)| = 1

2

∑
x∈A∗

|P(x)−Q(x)|+ 1

2

∑
x∈Ac∗

|P(x)−Q(x)| =

=
1

2
||P(A∗)−Q(A∗)||1 +

1

2
||P(Ac∗)−Q(Ac∗)||1 = dTV (P,Q)

�

From f− divergence definition, we can get the total variation distance by choosing
f(t) = 1

2
|t − 1|. Note that f(1) = 0 and that f is convex. Intuitively, TV distance

equals to the half of l1 norm of the measures P and Q. One can think that TV distance
is the largest difference of mass assignment of the two measures among all possible
subsets of Ω, belonging to the σ−algebra. It is worth mentioning that dTV is a valid
distance metric, that satisfies the three classical distance properties, referred to the
dKT section.

Figure 4.2: TV distance between the Poisson distribution Poi(λ) and the Binomial distri-
bution Bin(n, p).
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� Example 4.9 Up to now, we have defined a way to compute the distance between
two probability measures-distributions. We will present an example on how one could
upper bound total variation distance in order to provide a Poisson approximation,
using the useful technique of coupling. Suppose that π1 and π2 are the two projection
functions on a space A× A, where :

π1(a, b) = a, π2(a, b) = b, (a, b) ∈ A× A.

Definition 4.1.14 — Coupling. A coupling of two probability measures P and Q on
the same probability space (Ω,F) is any probability measure C on the product space
(Ω×Ω,F ⊗F) (where F ⊗F is the smallest σ−algebra containing F ×F) whose
marginals are P and Q :

P = C ◦ π−1
1 and Q = C ◦ π−1

2

It is well known that Poisson distribution Poi(λ) with parameter λ > 0 has
probability mass :

pλ(k) = e−λ
λk

k!
, k ∈ N0 (4.30)

Suppose that we have n independent Bernoulli random variables Xi, i ∈ [n], where
P[Xi = 1] = pi, that is Xi ∼ Be(pi). Consider the sum X =

∑n
i=1 Xi. It is well known

in the literature that, if all the pi’s are small, X is approximately Poisson distributed
with parameter

∑n
i=1 pi.

We will ask how well X approximates a Poisson distributed random variable. Here
is where the total variation distance arises. We will study the TV distance between
the distribution of X and the Poisson distribution. The smaller the TV distance is,
the better the approximation.

Suppose that Y ∼ Poi(λ) and fix k ∈ N0. So, we have that :

P[X = k]− pλ(k) = P[X = k]− P[Y = k]

Now, we partition each probability with the complementary events {X = Y } and
{X 6= Y } :

P[X = k]− pλ(k) =

= P[{X = k}∩{X = Y }]+P[{X = k}∩{X 6= Y }]−(P[{Y = k}∩{Y = X}]+P[{Y = k}∩{Y 6= X}])
But, when {X = Y } holds, the first and the third terms cancel out. Thus :

P[X = k]− pλ(k) = P[{X = k} ∩ {X 6= Y }]− P[{Y = k} ∩ {Y 6= X}]

Hence, using the definition of TV distance and that |x− y| ≤ |x|+ |y|, we get that :

||P[X ∈ ∗]− pλ(∗)||TV =
∑
k∈N0

|P[X = k]− pλ(k)| ≤

≤
∑
k∈N0

(P[{X = k} ∩ {X 6= Y }] + P[{Y = k} ∩ {Y 6= X}]) = 2P[X 6= Y ]
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Thus, we have that :

||P[X ∈ ∗]− pλ(∗)||TV ≤ 2P[X 6= Y ] (4.31)

Observing the above inequality, we get that in order to have a good approximation,
it is crucial to obtain an tight upper bound for P[X 6= Y ]. This is where the coupling
method gets involved.

Consider n independent random variables (Xi, Yi) with values on Z2 × N0 with
distribution :

P[(Xi, Yi) = (x, y)] =


1− pi, if x = 0, y = 0
e−pi − (1− pi) if x = 1, y = 0
0, if x = 0, y ∈ N
e−pi

pyi
y!

if x = 1, y ∈ N

where i ∈ [n].
Is this a valid coupling? We have to study the marginal distributions.

1. We firstly compute the distribution of Xi’s.
P[Xi = x] =

∑∞
y=0 P[{Xi = x} ∩ {Yi = y}]. For the two values of x :

• P[Xi = 0] = (1− pi) + 0 + 0 + ... = 1− pi
• P[Xi = 1] = (e−pi − (1− pi)) + e−pi(epi − 1) = pi

P[Xi = x] =

{
1− pi, if x = 0
pi if x = 1

Thus, Xi ∼ Be(pi).
2. Similarly, we compute the distribution of Yi’s.

P[Yi = y] = P[{Yi = y} ∩ {Xi = 0}] + P[{Yi = y} ∩ {Xi = 1}] = e−pi
pyi
y!
.

Thus, Yi ∼ Poi(pi).
Now,

P[X 6= Y ] = P[
n∑
i=1

Xi 6=
n∑
i=1

Yi] ≤ P[∃k ∈ [n] : Xk 6= Yk]

Using the union bound,

P[X 6= Y ] ≤
n∑
i=1

P[Xi 6= Yi] =
n∑
i=1

(e−pi − (1− pi) +
∞∑
y=2

e−pi
pyi
y!

) =
n∑
i=1

pi(1− e−pi)

But, using the convexity of the exponential function (or simply omitting some
terms of the Taylor expansion), we have that ex ≥ 1 + x and thus :

P[X 6= Y ] ≤
n∑
i=1

p2
i
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Now, set P = max
i∈[n]

pi. Then, since :

n∑
i=1

p2
i ≤

n∑
i=1

(piP ) = P

n∑
i=1

pi = λP

we have that :
||P[X ∈ ∗]− pλ(∗)||TV ≤ 2λP

�

Remark 4.1.16 We can easily see that when pi’s are small, P will be small too and
thus the approximation will be good.

Kullback–Leibler divergence

The second divergence is not a distance function, since it is not symmetric and it
violates the triangle inequality. For two discrete probability measures P,Q :

DKL(P ‖ Q) =
∑
x∈X

p(x)log
p(x)

q(x)
(4.32)

KL divergence is an f−divergence metric by choosing f(x) = xlogx, that is convex
and f(1) = 0.

We can expand the RHS sum into two parts :

DKL(P ‖ Q) =
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x) = −
∑
x∈X

p(x) log q(x)−(−
∑
x∈X

p(x) log p(x))

In the next chapter, we will introduce the notion of entropy in the information
theory setting. We will denote by H(P) = −

∑
x∈X p(x) log p(x) and thus express the

KL divergence as a difference of entropies.
Informally, this metric depicts the information gain, that one succeeds if she uses

the distribution Q instead of P.
� Example 4.10 For two Bernoulli probability measures with parameters p and q, we
have that : kl(p, q) := DKL(Be(p) ‖ Be(q)) = pln(p

q
) + (1− p)ln(1−p

1−q ). �

Remark 4.1.17 • In order to convert KL divergence to a symmetric measure, we
can consider the metric

DKL(P,Q) = DKL(P ‖ Q) +DKL(Q ‖ P ). (4.33)

• Since KL divergence is an appropriate f−divergence, from the Jensen in-
equality, we get the Gibbs inequality :

DKL(P ‖ Q) ≥ 0 (4.34)
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Now, that we have presented the total variation distance and the KL divergence,
we can present the very useful Pinsker inequality :

dTV (P,Q) ≤
√

1

2
DKL(P ‖ Q) (4.35)

4.1.4 Concentration Inequalities

Statistical learning is closely related to the notion of concentration of a random
variable. Concentration inequalities play a crucial role to the concept of learning,
by bounding the deviation of a random variable. The main issue in the topic of
concentration inequalities is to study the probability :

P[ξ > t] or P[|ξ − Eξ| > t]

In our learning setting, we will be really interested in proving that our result will
not deviate from the expected value. Thus, we would like to having upper bounds for
probabilities like the above. Ideally, these bounds should be of exponential order, that
is P[ξ > t] ≤ O(exp(−t)). So, we prefer bounds for which the probability decreases
exponentially, as the deviation grows linearly.

Markov’s Inequality

The most trivial, but yet strong, way to bound tails of probabilities is based on
the Markov’s inequality.

For any nonnegative random variable ξ, and for all t > 0, we have the following
inequality

ξ ≥ t1{ξ ≥ t}

One can see why this is true by considering two cases, one for ξ ≥ t and one for
ξ < t and the fact that ξ is nonnegative.

By taking the expectations on both sides, and thanks to the linearity of the expec-
tation operator (technically we integrate both sides under the probability distribution
measure), we will get the Markov’s inequality :

Eξ ≥ E[t1{ξ ≥ t}]⇒ Eξ ≥ t(1 · P[ξ ≥ t] + 0)⇒ P[ξ ≥ t] ≤ Eξ

t

Another way of proving Markov’s inequality (in the continuous case) is the fol-
lowing. For t > 0,

Eξ =

∫ ∞
0

P[ξ ≥ y]dy ≥
∫ t

0

P[ξ ≥ y]dy ≥ tP[ξ ≥ t]⇒ P[ξ ≥ t] ≤ Eξ

t

The second inequality follows from the fact that the tail probability decreases as
y grows. Note that min

y∈[0,t]
P[ξ ≥ y] = P[ξ ≥ t]. The result follows. The discrete case is

similar.
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Hence,

P[ξ ≥ t] ≤ Eξ

t
(4.36)

This upper bound is interesting only if Eξ < ∞, that is when ξ is integrable.
Markov’s inequality is the easiest concentration inequality we can get. Nevertheless,
the upper bound’s decrease rate 1

t
is slow. The reason why this bound is bad, is that

we only have information about the first moment (the expectation of the random
variable).

For signed random variables, Markov’s inequality becomes

P[|ξ| ≥ t] ≤ E|ξ|
t

(4.37)

However, it is not difficult to expand this result. We can consider the extended
version, that is, if φ is a nondecreasing nonnegative function on a interval I ⊂ R, then
for any random variable ξ taking values on R and real number t ∈ I with φ(t) > 0 :

P(ξ ≥ t) = P(φ(ξ) ≥ φ(t)) ≤ Eφ(ξ)

φ(t)
(4.38)

Now, we can choose appropriate φ functions to enhance the upper bound.

Chebyshev’s Inequality

If we choose φ(x) = x2 over I = (0,∞), we can get Chebyshev’s inequality. By
replacing ξ with the nonnegative random variable |ξ − Eξ| and t > 0,

P(|ξ − Eξ| ≥ t) ≤ E[|ξ − Eξ|2]

t2
=
V ar(ξ)

t2
(4.39)

Chebyshev’s inequality is a little better than Markov’s inequality but the rate
1
t2

remains slow. It is worth seeing that the bound is better since we know more
information (the first two moments of the random variable).

More generally taking φ(x) = xm(x ≥ 0), for any m > 0, we have

P(|ξ − Eξ| ≥ t) ≤ E[|ξ − Eξ|m]

tm
(4.40)

A better choice would be to select a function φ that will include all the moments
of the random variable.

Chernoff’s bounds

Another application of Markov’s Inequality is choosing φ(x) = esx, where s > 0.
The reason behind this choice is not only the fact that we will get an exponential
bound. The reason why we prefer exponential functions is because mathematicians
back then were interested in studying sums of independent random variables Z =∑n

i=1Xi. Thus, exponential function behave well with sums since they convert them
to products.
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For any random variable X and any t > 0, we have :

P[ξ ≥ t] = P[esξ ≥ est] ≤ Eesξ

est
(4.41)

where Mξ(s) = E[esξ] is the moment generating function of the random variable
ξ.

The importance of the moment generating function is crucial. It captures all the
moments of the random variable and thus all the information contained in it. It can
be seen as equivalent to the notion of a Taylor series expansion. The Taylor series of
a infinitely differentiable complex-valued function f at c is the power series :

∞∑
i=0

f (i)(c)

i!
(x− c)i = f(c) +

f ′(c)

1!
(x− c) +

f ′′(c)

2!
(x− c)2 + ... (4.42)

This expansion contains all the information of the function f. So, just like all
the secrets of a function are hidden in its derivatives, the information of a random
variable is hidden in its moments.

Mξ(t) = Eetξ = 1 + tEξ +
t2

2!
E[ξ2] + ... (4.43)

� Example 4.11 — or why Normal distribution is so important. Let X ∼ N (µ, σ2). Then
Z = X − µ ∼ N (0, σ2). We have :

MZ(t) =

∫ ∞
−∞

etzfZ(z)dz =

∫ ∞
−∞

etz
1√

2πσ2
e−

z2

2σ2 dz

Notice that :

−1

2
(
z

σ
− σt)2 = − z2

2σ2
+ zt− σ2t2

2

So :

etze−
z2

2σ2 = e−
1
2

( z
σ
−σt)2e

σ2t2

2

Thus,

MZ(t) = e
σ2t2

2

∫
R

1√
2πσ2

e−
1
2

( z
σ
−σt)2dz

But the expression under the integral is the probability density function of the
distribution N (σ2t, σ2), which integrates to 1.

Hence,

MZ(t) = e
σ2t2

2

�

Thus, we can see that the form of the moment generating function is exponential
and completely similar to the density function. This reveals the importance and the
value of a normal random variable. Using the characteristic function, we can see that
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a normal random variable is the identity of the ’Fourier’ frequency transformation
and, this crucial remark is used in the proof of the celebrated Central Limit Theorem.

Another crucial application is the following :

Theorem 4.1.18 Let X and Y be two random variables s.t. MX(t) = MY (t)∀t ∈
(−δ, δ) for some δ > 0. Then X =D Y, that is, they have the same distribution.

This reveals the intuition that the moment generating function contains all the
information a random variables hides.

Returning to the Chernoff’s bound, in order to optimize the upper bound, we
need to find s > 0 that minimizes the RHS of the inequality. Thus,

P[X ≥ t] ≤ sup
s>0

E[esX ]

est
(4.44)

� Example 4.12 — Sums of independent random variables. Consider the random variable
Z = X1 + ...+Xn, where Xi are i.i.d. real-valued random variables.

Then, using the Chernoff’s bound, for s > 0, we get that :

P[Z > t] ≤ e−stEesZ

Consider the logarithm of the moment generating function as

ψZ(s) = logEesZ , s > 0.

Then,

EesZ = Ees
∑
iXi =

n∏
i=1

EesXi

So, if we denote by
ψX(s) = logEesXi , i ∈ [n]

then,

ψZ(s) =
n∑
i=1

logEesXi =
n∑
i=1

ψXi(s) =iid nψX(s)

For the random variable Z, define :

ψ∗Z(t) = sup
s>0

(st− ψZ(s))

in order to obtain the optimal Chernoff bound :

P[Z > t] ≤ e−ψZ(t)

The upper bound is determined by the distribution of the i.i.d. random variables
Xi. �
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Hoeffding’s Inequality

Hoeffding’s inequality is one of the most important techniques, as far as con-
centration inequalities are concerned, in learning theory. It is used for bounding
the probability that sums of bounded random variables deviate from their expected
mean. As we have already seen, we are interested in random variable that have tail
probabilities decreasing exponentially as the tail grows linearly.

Chernoff bounds are closely related to the moment generating function. We have
seen that the moment generating function of a centered normal random variable Y
with variance v is MY (t) = EetY = exp( t

2v
2

). Thus, we need to focus on random
variables whose moment generating function behaves similarly to Gaussian random
variables.

This idea provides some intuition behind the definition of sub-Gaussian random
variables. Hence, we formalize the concept of sub-Gaussian random variables by
setting :

Definition 4.1.15 — Sub-Gaussian r.v.. Let ψX(t) = logE[etX ]. A centered random
variable X, that is EX = 0, is said to be sub-Gaussian with variance factor v if :

ψX(t) ≤ t2v

2
∀t ∈ R (4.45)

Let G(v) be the class of sub-Gaussian random variables, parameterized by the
variance v.

From Chernoff bounding, we have seen how important it is to upper bound the
moment generating function. This is exactly what motivates us to define the above
class of random variables exactly like that. A random variable X will belong to the
class G(v) if its moment generating function is dominated by the moment generating
function of a centered normal random variable Y with variance v, that is Y ∼ N (0, v).

Remark 4.1.19 If {Xi}ni=1 are independent with Xi ∈ G(vi), then the sum
∑n

i=1 Xi ∈
G(
∑n

i=1 vi).

In the next lemma, we establish that bounded random variables belong to appro-
priate sub-Gaussian classes.

Lemma 4.1.20 — Hoeffding’s Lemma. Let X be a centered random variable, taking

values in a bounded interval [a, b]. Then, ψ′′X(t) ≤ (b−a)2

4
= v and X ∈ G(v).

Proof. Since the random variable X lives in the interval [a, b], one gets that :

a ≤ X ≤ b⇒ a− b
2
≤ X − a+ b

2
≤ b− a

2
⇒ |X − a+ b

2
| ≤ b− a

2

Hence,

V ar(X) = V ar(X − a+ b

2
) ≤ (

b− a
2

)2 =
(b− a)2

4
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We have to upper bound the second derivate of the logarithm of the moment
generating function of the bounded random variable X.

ψ′′X(t) =
d2(logEetX)

dt2
= e−ψX(t)E[X2etX ]− e−2ψX(t)(E[XetX ])2

Notice that the RHS looks like a variance of some random variable. Let X ∼ P
and let Pt be the probability distribution with density

x→ e−ψX(t) · xetx

with respect to P .
The density is well defined since∫

[a,b]

e−ψX(t)xetxdx = e−ψX(t)

∫
[a,b]

xetxdx = e−ψX(t)EetX = e−ψX(t)elogEe
tX

= 1.

Then, Pt remains concentrated on [a, b] and, thus, the random variable Y ∼ Pt
has a variance upper bounded by (b−a)2

4
.

Now, observe that :

EY =

∫
[a,b]

xe−ψX(t)xetxdx = e−ψX(t)E[XetX ]

and

E[Y 2] =

∫
[a,b]

x2e−ψX(t)xetxdx = e−ψX(t)E[X2etX ]

Hence, we get that :

ψ′′X(t) = E[Y 2]− (EY )2 = V ar(Y ) ≤ (b− a)2

4

The fact that X belongs to the sub-Gaussian class G( (b−a)2

4
) follows from Taylor’s

expansion theorem since ψX(0) = ψ′X(0) = 0. Specifically, there exists a ξ ∈ [0, t]
such that :

ψX(t) = ψX(0) + ψ′X(0)t+ ψX(ξ)
t2

2
≤ t2(b− a)2

8
.

�

Now, we are able to deduce the Hoeffding’s inequality. Consider n independent
random variables X1, ..., Xn where Xi takes values in a bounded interval [ai, bi].

Then, for S =
∑n

i=1(Xi − EXi), we know that :

ψS(t) =
n∑
i=1

logEet(Xi−EXi)
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By the independence condition and the boundness assumption, one gets, using
the Hoeffding’s lemma,

ψS(t) ≤ t2

8

n∑
i=1

(bi − ai)2

Now, one can take a simple Chernoff’s bound and get :

P[S ≥ ζ] = P[eλ
∑n
i=1(Xi−EXi) ≥ eλζ ] ≤ e−λζe

λ2

8

∑n
i=1(bi−ai)2 = exp(−λζ+

λ2

8

n∑
i=1

(bi−ai)2)

Now, optimizing on the parameter λ > 0, one gets :

λ∗ =
4ζ∑n

i=1(bi − ai)2

Thus, we get the following fundamental inequality :

Theorem 4.1.21 — Hoeffding’s Inequality. Let X1, ..., Xn be independent bounded ran-
dom variables s.t. P[Xi ∈ [ai, bi]] = 1. Let Sn =

∑n
i=1Xi. Then for any ζ > 0, we

have that :

P[Sn − ESn ≥ ζ] ≤ exp(
−2ζ2∑n

i=1(bi − ai)2
)

and

P[Sn − ESn ≤ −ζ] ≤ exp(
−2ζ2∑n

i=1(bi − ai)2
)

By mixing these two inequalities, one gets :

P[|Sn − ESn| ≥ ζ] ≤ 2exp(
−2ζ2∑n

i=1(bi − ai)2)
)

Note that one could use the empirical mean X̄ = X1+...+Xn
n

, where the random
variables Xi are strictly bounded in [ai, bi], and get :

P[X − EX ≥ ζ] ≤ exp(− 2n2ζ2∑n
i=1(bi − ai)2

) (4.46)

We will often use this inequality to obtain good sample complexity bounds for
our learning problems. A broad collection of other concentration inequalities can be
found in [BS16].





5. Mathematical Foundations III : Information Theory

5.1 Information Theory

Statistical learning theory is based on the idea of discovering knowledge using statis-
tics and functional analysis. The discovery of this hidden knowledge is done through
the classical procedure of sampling (for instance, in our problem, we try to discover
a hidden permutation via noisy samples). Samples offer information. Often it is
important to question whether a new sample offers information. Thus, it is crucial
to define a way to measure how much information a sample provides. This measure
is provided through the field of information theory.

The field of information theory lies in the intersection of mathematics, computer
science and statistics. Concepts like entropy, mutual information, codes and sufficient
statistics are broadly studied and applied in statistical learning theory and, hence,
they will be presented in the following sections.

5.1.1 Entropy

The information theoretic notion of entropy was introduced by Claude Shannon in his
classic paper ’A Mathematical Theory of Communication’ [Sha48] in 1948. Entropy
was firstly appeared in the field of statistical thermodynamics through the works of
Ludwig Boltzmann (1872) and of J.Willard Gibbs (1878).

They considered a collection of classical particles, a system, with a discrete set
of microstates X and, for each microstate i ∈ X, with energy Ei, a corresponding
probability pi, that is the probability the system occupy that specific microscopic
configuration during thermal fluctuations.

Specifically, Gibbs defined the measure of entropy as :

S = −kB
∑
i∈X

pilnpi
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where kB denoted the Boltzmann’s constant. In each step, the system is dis-
tributed over a set of |X| microstates, each one with probability pi and energy Ei.
Adding heat to the system, its thermodynamic entropy increases because it increases
the number of possible microscopic states that it could be in, thus making any com-
plete state description longer. This observation is important, since as we will see,
entropy is strongly connected to the length of the description of a random source, in
the information theoretic setting that follows.

In the field of information theory, entropy was introduced by Shannon for a dis-
crete random variable X with range X and probability mass function p(X) as :

H(X) =
∑
x

p(x) log2

1

p(x)
=
∑
x

P[X = x] log2

1

P[X = x]
= E[− log2 p(X)] (5.1)

where x takes values in the essential range of X (that is to say, those values of X
for which P[X = x] > 0).

Shannon expressed the notion of information that is contained in a discrete source
via a functional that quantifies the uncertainty of this discrete random variable. The
essence of uncertainty is hidden inside the probability mass function and the mass it
assigns to the possible output values of the random variable. Shannon proposed the
following function to measure the information of each event A in a discrete source :

I(A) = log(
1

P (A)
) (5.2)

Intuitively, the notion of entropy gives a way to measure the uncertainty of a
random variable, the amount of information it carries. Thus, the smaller the value
of the entropy, the more a priori information one has for the random variable. At
the same time, entropy is linked to idea of the amount of ’space’ one needs to store
the information of a random variable. In classical computer science, data are stored
in bits. Entropy preserves this notion. Entropy is expressed in bits when one uses
the logarithm to the base 2 and in nats when one uses the natural logarithm. In the
information theory literature, the logarithm to base 2 is often used to define entropy,
rather than the natural logarithm, in which case H(X) can be interpreted as the
number of bits needed to describe X on the average.

� Example 5.1 Some examples follow in order to understand better Shannon’s entropy.
• A discrete random variable taking uniformly M different values has entropy
log2M.
• A fair coin can be seen as a random variable, taking two possible values (Heads

or Tails) with equal probability. Hence, its entropy is 1 bit.
• When throwing N fair coins, the number of all possible outcomes is 2N and so

the entropy is N bits.
• A random variable X ∼ Be(p) has entropy HX = H(p) = −plog2p − (1 −
p)log2(1− p). The entropy vanishes when p equals 0 or 1 (since the uncertainty
’vanishes’) and is maximal when p = 1

2
(since the uncertainty is maximal).

�
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Usually, we are interested in the joint entropy H(X, Y ) of the random variable
(X, Y ). That is :

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X) (5.3)

where the conditional entropy H(X|Y ) is defined as :

H(X|Y ) =
∑
y

P[Y = y]H(X|Y = y) (5.4)

where H(X|Y = y) =
∑

x P[X = x|Y = y]log2
1

P[X=x|Y=y]
and for the above

formulae y is ranging over the essential range of Y and x is running over the essential
range of X conditioned to Y = y.

Using Jensen’s inequality and the concativity of x 7→ xlog 1
x
, we get that :

H(X|Y ) =
∑
y

P[Y = y]H(X|Y = y) =
∑
y

P[Y = y]
∑
x

P[X = x|Y = y]log
1

P[X = x|Y = y]

By Jensen’s inequality,

H(X|Y ) ≤
∑
x

(
∑
y

P[X = x|Y = y]P[Y = y])log
1∑

y P[X = x|Y = y]P[Y = y]

The RHS can be written as :∑
x

P[X = x]log
1

P[X = x]
= H(X)

Hence,
H(X|Y ) ≤ H(X) (5.5)

This is intuitively obvious since information (knowledge of Y ) decreases the un-
certainty and consequently decreases the entropy of X. The conditional entropy
H(X|Y ) is a measure of the amount of new information carried by X, given that we
already know the value of Y. When does equality hold?

From the above inequality, we conclude the subadditivity of entropy :

H(X, Y ) ≤ H(X) +H(Y ) (5.6)

� Example 5.2 As we saw in the previous chapter, KL divergence can be expressed in
terms of entropy. Specifically,

DKL(P ‖ Q) = −
∑
x∈X

p(x)logq(x) +
∑
x∈X

p(x)logp(x)

In the RHS, the second term is simply the negative entropy of the measure P.
The first term is called the cross entropy of the distributions P and Q, that is :
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H(P ‖ Q) = EP[log
1

Q
] =

∑
x∈X

p(x)log
1

q(x)

It is important not to confuse the notion of cross entropy with that of joint entropy.
Cross entropy is defined as :

H(P ‖ Q) = H(P) +DKL(P ‖ Q)

and thus, DKL(P ‖ Q) = H(P ‖ Q)−H(P).
KL divergence is usually called information gain achieved if the distribution Q is

used instead of P.
From Gibb’s inequality, we have that :

H(P ‖ Q) ≥ H(P)

This is obvious from a information theoretic point of view. The expected number
of bits required to code samples from distribution from P using a code optimized for
Q is larger than the number of bits required to code samples from distribution from
P using a code optimized for P.

�

We define the notion of mutual information between two discrete random variables
by :

I(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (5.7)

Hence, I(X, Y ) ≥ 0. We could consider I(X, Y ) as a measure of the extend to
which X, Y are not independent. It expresses the amount of information that we
get for the one random variable by observing the other one. Thus, it is a symmetric
measure.

Remark 5.1.1 In the literature, the sums
∑

x∈X usually do not run over the essential
range of the random variable X but in the whole range of X, including those x
s.t. P[X = x] = 0. Thus, it is, in general, a common knowledge that these terms
offer 0 to the sum since lim

a↓0+
a log a = 0.

How one could deduce Shannon’s entropy formula?

We would like to define a useful measure for quantifying the information that we gain
by observing an event of probability p. Let I(p) be that information measure. I(p)
should satisfy the following properties :

• Information is non-negative : I(p) ≥ 0 (1)

• Events with probability p = 1, provide zero information : I(1) = 0 (2)

• Two independent events, whose joint probability is the product of the two
measures, the information gained is the sum of the information measures :

I(p1 · p2) = I(p1) + I(p2) (3)
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• The measure is continuous with respect to p and is decreasing as p increases
(since the more probable the event is, the less information is provided) : I(p) ↓ p

Property (3) offers the intuition that the information measure will have a loga-
rithmic structure. Specifically :

• By (3), I(p2) = I(p ∗ p) = 2I(p).
• Inductively, I(pn) = nI(p).

• I(p) = I((p
1
m )m) = mI(p

1
m )⇒ I(p

1
m ) = 1

m
I(p).

• Hence, I(p
n
m ) = n

m
I(p).

• Since the measure is continuous, for 0 < p ≤ 1 and r ∈ R>0, I(pr) = rI(p)
• Thus, for some base b, I(p) = logb(

1
p
) = −logb(p).

Coding Theory

Another interesting way to link entropy with the term −
∑
pilogpi is via convex

optimization and coding theory using Kraft’s inequality. But, firstly, we need to
introduce the fundamentals of Coding theory.

Let X be a random variable with range X and let D be a D−ary alphabet.
Without loss of generality, suppose that D = {0, 1, ..., D− 1}. Also, let D∗ be the set
of finite-length strings of symbols from D.

Definition 5.1.1 — Source Code. A source code for the random variable X to be a
mapping C from the range X of X to D∗.

For instance, if D = {0, 1} and X = {green}, then C(green) = 01 with length
l(green) = 2.

Definition 5.1.2 — Expected Length. For a source code C of a random variable X
with probability mass p the expected length L(C) is given by

L(C) = El(X) =
∑
x∈X

p(x)l(x). (5.8)

Suppose that Alice wants to send Bob an encoded stream of her color preferences.
Let D = {0, 1} and X = {green, red, blue, purple}.

At first, Alice uses the following encoding C1 : ∀x ∈ X , C1(x) = 0.

It is obvious that Bob, given a symbol 0, cannot decode it in a clear way. This
code is said to be singular. Hence, Alice’s description-encoding is ambiguous. Non
singularity suffices for an unambiguous encoding of the range of the random variable.

Definition 5.1.3 — Non singular Code. A code is said to be non singular if every
element of the range of X maps into a different string in D∗. That is x 6= x′ ⇒
C(x) 6= C(x′).

Alice wants to send Bob a stream of her color preferences. Thus, the code C needs
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to be extended to a code C∗ : X ∗ → D∗, that is, for x = x1...xn ∈ X ∗ :

C∗(x1...xn) = C(x1)...C(xn), (5.9)

where C(x1)...C(xn) denotes codewords concatenation.
Then, Alice uses the following code C2 that maps {green, red, blue, purple} 7→

{0, 010, 01, 10}. This code is non singular since each element of the range X is encoded
using a different codeword. Suppose that Alice sends the stream 010. Then Bob
cannot understand if Alice sent ’red’ or ’green,purple’ or ’blue,green’. This is because
the code is not uniquely decodable. In a uniquely decodable code one has only one
possible source string generating it.

Definition 5.1.4 — Uniquely Decodable Code. A code is called uniquely decodable if its
extension is non singular.

Alice uses the following code C3 mapping {green, red, blue, purple} 7→ {10, 00, 11, 110}.
This code is uniquely decodable.

Suppose that Alice streams the sequence 1100. Then Bob, after seeing the whole
sequence will deduce that Alice sent the message ’blue,red’. This sequence cannot be
decoded in any other valid way. But, suppose that Bob wanted to parse the stream
and do not need to look at the entire string to determine the codewords. Then, this
code would fail since Bob will read ’11’ and then he cannot decide if this means ’blue’
or he has to proceed to the next character and read ’purple’. The problem is that the
codeword 11 is prefix for the codeword 110. Only after reading the whole stream, he
will be totally sure what the unique decoding is.

Thus, in order Bob’s desire to be fulfilled, Alice needs to design a new code.

Definition 5.1.5 — Instantaneous Code. A code is called an instantaneous code (or
prefix code) if no codeword is a prefix of any other codeword.

Finally, Alice uses the following code C4 that maps {green, red, blue, purple} 7→
{0, 10, 110, 111}. This code is instantaneous and Bob can decode each symbol as soon
as he has read the whole codeword corresponding to it. Now, whatever sequence
Alice streams, it will be easily and instantly decoded by Bob.

In general :

Instantaneous ⊂ Uniquely Decodable ⊂ Non Singular ⊂ All codes

Kraft’s inequality

Consider the problem of finding the instantaneous code with the minimum expected
length. Equivalently, we should find the lengths l1, ..., ln that satisfy Kraft’s inequal-
ity and whose expected length is less than any other’s instantaneous code.
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Theorem 5.1.2 — Kraft’s inequality. For any instantaneous code over a D−ary alpha-
bet, the codeword lengths l1, l2, ..., ln must satisfy the inequality :

n∑
i=1

D−li ≤ 1 (5.10)

Conversely, given a set of codeword lengths that satisfy this inequality, there
exists an instantaneous code with these word lengths.

The theorem’s proof can be found in the classical information theory book [CT06].

� Example 5.3 Now, we will see how entropy arises from the minimization of the
expected length of any prefix code. Suppose that we want to find the instantaneous
code over a D−ary alphabet with the minimum expected length.

Optimal Prefix Code
Input : A set of codeword lengths {li} of size n.
Output : L∗ := minimum expected length

Thus, the optimization problem can be expressed as follows.

(Primal) : min
(l1,...,ln)∈Zn≥0

n∑
i=1

lipi

s.t.
n∑
i=1

D−li ≤ 1

This is a constraint optimization problem. Using the Lagrange multipliers, we
can work on the minimization of the Lagrangian function :

J =
n∑
i=1

lipi − λ(1−
n∑
i=1

D−li)

Differentiating with respect to li, we get that :

∂J

∂li
= pi − λD−lilnD

Thanks to the convexity of the problem, we can set the derivative to 0 and obtain

D−li =
pi

λlnD

Thus, the constraint now gives for λ :

λ =
1

lnD
and pi = D−li .

So, the optimal expected length is :

L∗ =
∑

pil
∗
i =

∑
pilogD

1

pi
= HD(X)

�
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Remark 5.1.3 Since li should be integers, in some case a rounding technique will be
needed that will round the lengths near the non-integer optimal lengths set.

Thus, the entropy controls the optimal codeword length of the prefix code.

5.1.2 Sufficient statistics

We continue by presenting in short the notion of sufficient statistics, that was intro-
duced by Sir Ronald Fisher in 1920.

Let {Xi}ni=1 be samples of a distribution D with an unknown parameter θ.
We say that the statistic Y = u(X1, ..., Xn) is sufficient if the probability P[X1 =

x1, ..., Xn = xn|Y = y] does not depend on the parameter θ.
That is, if one knows the sufficient statistic, there is no other function of the

samples that could offer more information for the unknown parameter.

Theorem 5.1.4 — Fisher–Neyman factorization. Let fθ be the density function of a dis-
tribution with unknown parameter θ. Then, the statistic T is sufficient for the
parameter θ iff there are non-negative functions h, g s.t. fθ(x) = h(x)gθ(T (x)).

5.1.3 Fano’s Inequality

Fano’s inequality is a popular information-theoretical result that provides a lower
bound on worst-case error probabilities in multiple-hypotheses testing problems. Mul-
tiple variants of Fano’s inequality have been derived in the literature. In this thesis,
we will use the following version.

Let (Ω,F) be a measurable space, and D(Ω) be the set of all probability distri-
butions on it. Consider the set Am = {A : X n → RX} is the set of deterministic
learning algorithms A that take m samples and output a hypothesis distribution DA.

Let F ⊆ ∆(Ω) be a family of distributions and assume that we have access to m
i.i.d. samples drawn from a distribution x = (x1, ..., xm) ∼ Dm ∈ F . Let D̃ be an
estimator of D, given the m samples and define the risk of the estimator D̃ :

Rm(D̃,F) = sup
D∈F

Ex∼Dm [dTV (D̃,D)]

We will introduce the notion of the minimax risk of a family of distributions
F ⊆ ∆(Ω) and m > 0 :

Rm(F) = inf
A∈Am

Rm(D̃A,F) = inf
A∈Am

sup
D∈F

Ex∼Dn [dTV (D̃A, D)]

Rm(F) represents the minimum expected error of any m−samples learning al-
gorithm A when running on the worst possible target distribution from the class
F .

The following result is due to Yu.
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Theorem 5.1.5 — Fano’s inequality. Let F be a finite family of densities s.t.

1. inf
f,g∈F ,f 6=g

dTV (f, g) ≥ a

2. sup
f,g∈F ,f 6=g

DKL(f ‖ g) ≤ b

then it holds that :

Rm(F) ≥ a

2
(1− mb+ ln2

ln|F|
)

Thus, in order to lower bound the minimax risk of a family of distributions, and
essentially the total variation distance, we just need to consider a finite family of
densities and bound their TV distance and their KL divergence from below and from
above respectively. Variations of the Fano’s inequality and techniques in deriving
Fano-type inequalities can be found in [SGS17].





6. On Voting & Social Choice Theory

6.1 Foundations of Voting Theory

For further understanding the problem we want to deal with, it is crucial to discover
the foundations of modern voting theory. Thus, in order create the links between
that domain and our problem concerning preference learning will begin by answering
some crucial questions that could easily arise.

How is our problem related with Voting Theory and Social Choice Theory?

Our goal is to discover a hidden true ordering among m alternatives from a set A,
given a collection of samples, where each sample is a permutation of the elements
of A. One could easily think of a voting process the exact same way. Each voter
proposes her own perspective on how she believes this hidden global preference list
is ordered and, afterwards, an appropriate voting rule is applied, that aggregates
each vote (noisy sample) and outputs the final result, a global ’socially-acceptable’
ranking. Hence, intuition and tools offered by the voting theory field will be useful
to our analysis.

Reformulating the problem.

There is a true hidden preference among m objects {ai}mi=1, that is expressed by a
permutation over these alternatives ai1 � ai2 � ... � aim . For instance, these m
objects can be candidates of an election process and the hidden ordering could be
the ’socially-acceptable’ ranking. Each voter offers in the election process a noisy
sample, her own point of view considering the true ordering of the m alternatives.
We play the role of a voting rule that has to output a ranking of the m alternatives.
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What are the points of interest of the social choice field?

Social choice area is interested in the aggregation of preferences-perspectives in or-
der to output a ’common decision’, a ’social preference’. The need of techniques
and results from that field appears other closely related areas, such as economics,
management and voting systems.

How dit it all start?

One of the pioneers of that field, and specifically in the forefront of the application
of mathematics in the area of social sciences, was the French mathematician and
philosopher Marquis de Condorcet. In 1785, Condorcer published his work ’Essay on
the Application of Analysis to the Probability of Majority Decisions’. In that work,
he mentions two crucial results, that are nowadays known as the Condorcet’s Paradox
and the Condorcet’s Jury Theorem.

Condorcet’s paradox. Consider a voting procedure with two candidates,
where each voter has a preference to one of them. If the society, as a whole, wants
to choose in common one of the two candidates, based on social acceptance, the
majority voting rule seems to be a logical and correct choice. Condorcet questioned
the following :

What happens if there are more than two candidates? Is the majority voting still a
good choice?

Condorcet proposed the following (counter)example : We denote by a �i b, when
the voter i prefers a over b. Consider a setting with three candidates a, b, c and three
voters with the following preferences :
• a �1 b �1 c
• b �2 c �2 a
• c �3 a �3 b
We can easily observe that the majority of the voters prefers a over b, b over c and

c over a. Hence, the socially acceptable preference, according to the majority rule is
a � b � c � a, which is obviously inconsistent. Whoever candidate will get elected,
there will be a majority of citizens that will disagree with that choice. Equivalently,
the graph generated by this ranking will have a cycle.

Hence, Condorcet deduced that the majority voting rule is a valuable technique for
social decision making, thank to its simplicity, but it deals with a considerable amount
of issues. Consequently, Condorcet clarified the necessity of designing methods in
the field of voting and social choice theory, that will encounter issues like the one
mentioned above.

Condorcet’s Jury Theorem. Consider a group of juries, that is called to
decide if the defendant is innocent or guilty. Suppose that each member of the group
has a common and independent probability p ∈ (1

2
, 1) of making the right choice.

Then, the majority of juries is more likely to make the correct choice than each
jury individually. Additionally, as the size of the group increases, the probability of
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making the right choice tends to one. In a mathematical perspective, the probability
is expressed as a sum of binomial random variables :

Maj(p, n) =
n∑

i=bn/2c+1

(
n

i

)
pi(1− p)n−i −→ 1, as n→∞

Maj(p, n) expresses the probability that the majority of the n juries makes the
right choice, when each member decides correctly with probability p. Under these
circumstances, the majority rule works well. On the other side, if p ∈ [0, 1

2
], the

results get reversed and the best choice would be to choose a jury at random and
judge according to the decision of the randomly chosen jury.

Is there a fair voting method?

One of the most important results concerning the fairness of voting methods is the
famous Arrow’s impossibility theorem. The economist Kenneth Arrow demonstrated
the theorem in his doctoral thesis and popularized it in his 1951 book ’Social Choice
and Individual Values’.

No voting method is fair, every ranked voting method is flawed.
The only voting method that isn’t flawed is a dictatorship.

Arrow states that, when the number of alternatives is grater that 3, there is
no ranked voting electoral system that, given the ranked preferences of voters, can
deduce a community-wide ranking (complete and transitive) which will be ’fair’ in a
sense of satisfying a set of logical criteria.

The voting setting will be formally presented in the following section. Never-
theless, we are going to present the main setting here in order to refer to Arrow’s
impossibility theorem.

We will consider a set of n voters and a set of alternatives A (the candidates).
We denote the set of permutations on A with L(A). It is worth mentioning that if
�∈ L(A), then � is transitive (a � b, b � c⇒ a � c) and antisymmetric (a � b∧ b �
a⇒ a = b). Hence, � is a total order on A. The preference of voter j is denoted by
�j and j prefers a over b if a �j b.

A voting method or voting rule is just a function that aggregates the preferences of
all voters into a total social order on the alternatives. This function f : L(A)n → L(A)
is usually called a social welfare function.

From our experience in our everyday lives, it seems natural to think that such a
function, in order to be ’good’, should satisfy some criteria.
� A ’good’ voting method f should satisfy unanimity : If each voter has the same

identical preference ranking �∗, then the socially acceptable order should be
that exact ranking. Formally, unanimity can be stated as :

∀ �∗∈ L(A), f(�∗, ...,�∗) =�∗
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� A ’good’ voting method f should not be a dictatorship : A voter is a dictator
when the final resulting preference is independent of the other n − 1 voters
and only the dictator chooses the social preference. Specifically, a voter j is a
dictator in f if for all voter preferences �1, ...,�n∈ L(A), f(�1, ...,�n) =�j .
Hence, f is not a dictatorship if no dictator exists.

� A ’good’ voting method f should satisfy independence of irrelevant alternatives.
That is the social preference between any pair of alternatives x, y ∈ A, depends
only on the preferences expressed by the voters’ only between these two candi-
dates. Hence, ∀x, y ∈ A, ∀ �1, ...,�n,�∗1, ...,�∗n∈ L(A) where f(�1, ...,�n) =
�, f(�∗1, ...,�∗n) = �∗, we have that if :

(x �j y ⇐⇒ x �∗j y ∀j)⇒ (x � y ⇐⇒ x �∗ y)

A simpler way to develop an intuition with that rule is the following question :
Why should a voter’s preferences about candidate z 6= x, y, influence the social
ordering between candidates x and y?

These three rules would be crucial to hold in order to have a ’good’ voting method
in common sense. Arrows’ theorem clarifies that it is impossible for a voting method
with more than 3 candidates to satisfy these three rules at the same time.

Theorem 6.1.1 — Arrow’s Theorem. Every social welfare function over a set of at least
3 alternatives (|A| ≥ 3) that satisfies unanimity and independence of irrelevant
alternatives is a dictatorship.

Arrow’s theorem states that for any non trivial voting procedure, there is no votes
aggregation algorithm that can output a ranking that will successfully aggregate the
individual voting preferences of each voter to a common socially optimal order of
preferences, without violating a collection of axioms. These criteria, presented above,
correspond to some properties that a ’good’ voting scheme should satisfy. [NN07]

In conclusion, one could think that the impossibility theorem of Arrow could be a
terminating point to the field of social choice and of voting theory. This is exactly the
point where computer science and statistics arise in order to expand the framework of
social choice theory. In order to deal with the weaknesses of ballots and voting rules,
one could think that voting rules act like estimators. In this modern voting scheme,
we consider that there is a hidden global truth, that each voter is coping to estimate.
Thus, each vote corresponds to a noisy version of that underlying truth. Hence, voting
rules, trying to output a social acceptable ranking, are connected to the notion of
maximum likelihood estimator. This idea will be presented in the following section.
But, before proceeding to the statistical perspective of voting rules, we present the
main framework of statistical voting theory.

6.2 Statistical Foundations of Virtual Social Choice

After revisiting the foundations and the main results of voting theory, we are able to
introduce a voting setting with a statistical point of view. This setting will be closely
connected to our ranking learning framework. One could think of these two setting
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in parallel, since our ranking models can be seen completely as voting procedures the
way defined as follows.

6.2.1 Voting Setting

The main setting of voting theory consists of whom we vote (alternatives) and how
we vote (votes).

Definition 6.2.1 — Alternatives. A set A = {a1, ..., am} of alternatives - options, that
voters want to rank.

A vote is just a ranking among the alternatives.

Definition 6.2.2 — Vote. The vote of each voter is a bijective function σ : A →
{1, 2, ...,m}, that is each vote is a permutation of the elements of A.

For alternatives a, b ∈ A, if σ(a) < σ(b), then the voter prefers a over b. This is
denoted by a �σ b.

Definition 6.2.3 — Voting Profile. The set of all votes, that is the set of all possible
bijective functions (permutations) σ, is denoted by L(A). A voting profile of n votes
is denoted by π ∈ L(A)n.

6.2.2 Voting Rules

We can think of a voting rule as a function that takes as input a vote profile, that
is a list of the preferences of voters, and outputs a ranking. These rules can output
either deterministically or randomly.

Definition 6.2.4 — Deterministic voting rule of n votes. A deterministic voting rule of
n votes is a function, that takes as input a voting profile of n votes and outputs a
winner vote.

rDetn : L(A)n → L(A) (6.1)

Collecting all the n-votes deterministic voting rules for all n ∈ N, we can define
the deterministic voting rule as the union of all the n-votes deterministic voting rules.

Definition 6.2.5 — Deterministic voting rule. A deterministic voting rule is a function

rDet : ∪n≥1L(A)n → L(A), (6.2)

which operates on a vote profile and outputs a ranking.

Note that we define the voting rule to output a ranking over alternatives rather
than a single alternative; such functions are also known as social welfare functions in
the literature.

The models that we are going to introduce in the following chapters are proba-
bilistic, so it is unavoidable not to introduce a probabilistic notion of a voting rule.
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Definition 6.2.6 — Randomized voting rule. A randomized voting rule is a function

rRand : ∪n≥1L(A)n → D(L(A)), (6.3)

where D is the set of all distributions over an outcome space.

Given a profile π, the probability of a (randomized) rule r to return a ranking σ
is denoted by P[r(π) = σ].

Thinking of voting rules as estimators

In 1959, John Kemeny developped the following rule in order to answer to the
question

If I am given a preference of each voter on a set of alternatives, what is the
’socially-wide’ acceptable preference?

Suppose that we are given a set of m rankings. We have to choose a permutation in
the symmetric group that will represent the socially acceptable order of preferences.
If one thinks of each permutation as a point on a metric space, we have to choose the
point that minimizes the distance between the m given points. But, as we saw in the
introductory chapter, we can define appropriate distance metrics in order to convert
Sn into a metric space (Sn, d∗), where d∗ is a valid distance metric on the symmetric
groups. From now on, we will work with the Kendall’s tau distance.

Definition 6.2.7 — Kemeny’s Rule. Given a voting profile - voting vector ~σ = (σ1, ..., σn) ∈
L(A)n, Kemeny’s rule choose the ranking τ that is the closer under Kendall-Tau
distance to the n given votes, that is :

τ = arg min
τ∈L(A)

n∑
i=1

dKT (τ, σi) (6.4)

During 1980-90, Peyton Young developped a technique for the study of preferences
aggregation. Specifically, he considered that there exists a ’true’ but ’hidden’ ranking-
preference among the alternatives. We get noisy signals-samples from that true and
locked ranking. Young, using a probabilistic model on that exact idea, proved that
the Kemeny rule is the maximum likelihood estimator of the true ranking given i.i.d.
noisy samples generated by the model. Thus, in the literature, Kemeny’s rule is
usually referred as the Kemeny-Young method.

If we observe the above equation, it should be clear that we want to minimize the
l1 norm of the given elements on the metric space (Sm, dKT ) of the permutations in
Sm with the Kendall’s tau metric. In the following lemma, we are going to show that
the choice of minimizing the l1 norm is equivalent to the choice of finding the median
of the elements of the metric space.
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Lemma 6.2.1 — l1 minimization. Given the points p1, ..., pn ∈ R, the l1 norm defined
as l1(x) =

∑n
i=1 ||x− pi||1 is minimzed by the median of the given points.

Proof. • Let ε > 0 and let x ∈ [pk, pk+1]. Then, pk ≤ x ≤ x+ ε ≤ pk+1.
• The l1 norm’s sum becomes

l1(x) =
n∑
i=1

||x− pi||1 =
k∑
i=1

(x− pi) +
n∑

i=k+1

(pi − x)

• We transpose x to the point x+ ε and we observe how the sum is changed :

l1(x+ε) =
n∑
i=1

||(x+ε)−pi||1 =
k∑
i=1

(x+ε−pi)+
n∑

i=k+1

(pi−x−ε) = ε(k−n+k)+l1(x)

• Hence, the discrete difference equals to l1(x+ε)−l1(x)
ε

= 2k − n.
• We let ε ↓ 0, and we get, for x ∈ [pk, pk+1], l′1(x) = 2(k − n

2
).

• The monotonicity of the l1 norm can be simply derived : For k < n
2
, the function

is decreasing, for k = n
2

is constant and for k > n
2
, is an increasing function of

k.
• Thus, the minimum is attained at k = n

2
and hence the element chosen corre-

sponds to the median of the collection of the given points.
�

Remark 6.2.2 It is useful to note how Kemeny’s rule works when the solution is not
unique. In that case, the set T = argmin

τ

∑n
i=1 dKT (τ, σi) will have more than one

element and, hence, the rule chooses uniformly at random an element from T.

An algorithm for computing a ranking according to the Kemeny rule in polyno-
mial time in the number of candidates is not known, and unlikely to exist since the
problem is NP-hard even if there are just 4 voters.

An election (V,C) consists of a set V of n votes and a set C of m candidates. The
score of a ranking σ with respect to election (V,C) is defined as

∑
v∈V dKT (v, σ). A

permutation σ∗ that attains the minimum score is usually called Kemeny consensus
of (V,C) and the corresponding score

∑
v∈V dKT (v, σ∗) is called the Kemeny score of

(V,C). The problem is defined as follows :

Kemeny Score
Input : An election (V,C) and a positive integer k.
Question : Is the Kemeny score of (V,C) < k?

This consensus ranking problem is known to be NP-hard ([BT89]). From a graph
theoretic point of view, the NP-hardness is expressed as follows : The election can
be seen as a tournament problem. The tournament requires each alternative to play
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every other of the n − 1 alternatives, but there is one more round (set of pairwise
contests) to be played. We ask whether there exists a set of outcomes for the final
round that will guarantee tournament victory for a particular competitor.

Tournament Outcome
Instance : A simple clique Kn where each edge can be either directed (i beats j) or
undirected (the pairwise winner between i and j is not decided) and a distinguished
player x.
Question : Is there a way of assigning directions to the undirected edges so that x
wins the tournament?

The Tournament Outcome under the second-order Copeland is NP-complete
and the reduction is via the celebrated NP-complete problem 3,4-SAT.

As we will see in the following chapter, when the rankings are i.i.d. samples from
a special noisy model, namely the Mallows distribution, consensus ranking arises
during the computation of the maximum likelihood ranking.



7. On Probabilistic Models of Permutations

7.1 Prelude

Data ranking appears in a wide variety of applications, as we have already referred to
the introductory chapter, but remains too difficult to model, learn from, and predict.
Working with ranking data creates significant computational challenges that stem
from the structural complexity of the symmetric group Sn, the space of permutations
on n elements. Models of ranking data are mainly parametric families of distributions
in the symmetric group.

There are many distributional models of rankings that have been developed in
order to explain choice behavior. Two of the more popular in the machine learning
community are the Mallows model and the Plackett-Luce model. The Mallows model
is a distance-based ranking model and was firstly introduced by C.L. Mallows in 1957
in his paper ’Non-Null Ranking Models’. The Plackett-Luce distribution derives its
name from the independent work by Plackett (1975) and Luce (1959).

Despite the fact that these two seminal ranking models were first develloped in
the 20th century, a probabilistic perspective of preferences was studied two centuries
earlier (1785) by Condorcet, while he was questioning the issue of political decision
making. Thus, in order to link the past with the present, we choose to present the
first recorded attempt to draw a ranking sample.

7.2 Condorcet’s Decision Problem

In the previous chapter, we presented a review of some fundamental results from
the theory of voting and social choice. One of the most influential people, working
on that field of science, was the French mathematician and philosopher Marquis
of Condorcet. During his life, Condorcet was questioning constantly the political
decisions, that were deviating from the social benefit. In 1785, Condorcet worked on
a probabilistic view of making the ’right decisions’, where one chooses from a set of
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policies and deduces a ranking that maximizes social welfare.

He considered a set of choices, from which the members of the society, the voters,
express their opinion, their preference, that is a ranking over this set of choices. He
considered that there is an underlying objective ranking that is the most beneficial
to the society. Condorcet’s model has the following properties :

• Each player votes independently from each other.
• The comparison between any pair of alternatives is independent.
• If, in the objective ranking, the choice a is preferred over choice b, that is a � b,

then a voter ranks a over b with probability 1 − p > 1
2
, (and hence the error

probability p < 1
2
).

It is easy to think of the ranking generation process as a directed graph, whose
vertices are the set of alternatives A and, in each step, we add a directed edge between
alternatives a, b. The direction of the edge is determined by the error probability
p < 1

2
. If the objective ranking is π0 and for a, b, we have that a �π0 b, then we add

the edge a→ b, with probability 1− p, otherwise we add the edge b→ a.

Equivalently, we can think that the directed graph is initially the tournament
graph induced by the objective ranking π. Afterwards, we iterate over each edge and
with probability p, we flip the direction of that edge.

As we will show the Condorcet’s noise model corresponds to the Mallows model,
defined later. Thus, we will refer to the above procedure as the Condorcet-Mallows
noisy ranking process, that is decribed as follows :

Algorithm 2 Condorcet-Mallows noisy ranking process

1. Let π0 be the objective ranking and let 0 ≤ p < 1
2 .

2. Initialization : σ ← ∅.
3. For each pair of alternatives a, b ∈ A, s.t. a �π0 b,

3a. with probability 1− p, add a � b to σ,
3b. otherwise, add b � a to σ.

if σ is intransitive then
GOTO step (2 ).

else
RETURN σ.

end

It is clear that the way we generate the ranking σ, there is a significant probability
that the generated directed graph will have a cycle and, thus, the permutation will
be intransitive. But, this is unacceptable. We cannot output, for instance, the
permutation a � b � c � a. Hence, we have to restart the generative process.

Now, we will try to deduce the Mallows probabilistic model by analyzing the
Condorcet-Mallows process.

The Condorcet-Mallows process independently decides for each pair a, b ∈ A by
flipping a random p−biased coin. Thus, with probability p, the objective ranking π0

and the generated π will have a pairwise disagreement on a, b and with probability
1− p, they will agree on that pair.
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Consider the probability measure PCM over rankings σ :

PCM [σ|π0, p] =
1

ZCM

∏
a�π0b

{
p if σ, π0 disagree on a, b
1− p otherwise

(7.1)

The probability that one generates, using the Condorcet-Mallows process, a rank-
ing σ, given π0, p is exactly equal to the PCM [σ|π0, p].

We note that ZCM is a normalization constant that will be computed later.
We have already described a notion of distance between permutations that counts

the number of pairwise disagreements. Thus, the Kendall’s tau distance naturally
arises to the context of Mallows model.

Set the number of alternatives to be |A| = m. It is already known that the

number of pairwise agreements equals
(|A|

2

)
−d, where d equals the number of pairwise

disagreements. The number
(
m
2

)
equals the number of edges of the clique Km.

The measure PCM can be expressed as follows :

PCM [σ|π0, p] =
1

ZCM
pdKT (σ,π0)(1− p)(

m
2 )−dKT (σ,π0) =

1

ZCM
(1− p)(

m
2 )(

p

1− p
)dKT (σ,π0)

(7.2)
Set φ = p

1−p . Since 0 ≤ p < 1
2
, we get that 0 ≤ φ < 1. In the Mallows model, we

will set the normalization constant ZMM to be :

1

ZMM

=
1

ZCM
(1− p)(

m
2 )

It can be shown that :

ZMM = 1 · (1 + φ) · ... · (1 + φ+ ...+ φm−1) (7.3)

and thus :

ZCM = (1−p)(
m
2 )(1+

p

1− p
)(1+

p

1− p
+(

p

1− p
)2)...(1+

p

1− p
+...+(

p

1− p
)m−1) (7.4)

7.3 The Mallows Model

The importance of the Mallows Model for permutations is equivalent to the impor-
tance of the normal distribution on the real line. In order to understand the notion
of this noisy model, it is worth reminding the reader the problem we want to solve.

Main Problem: There is a true hidden preference among m objects {ai}mi=1, that is
expressed by a permutation over these alternatives ai1 � ai2 � ... � aim . Our goal is
to learn this true hidden ordering, given noisy samples in the sense that each sample
is an element of the symmetric group generated by these m elements. Thus, each
samples is one of the m! possible ranking and is drawn by a distribution parameterized
by the true hidden ranking.
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How many samples will be needed in order to learn the true hidden ranking with
high probability?

This question is of significant importance but we firstly need to clarify our setting.
Hence, the most useful question is the following :

What is the distribution of our model?

7.3.1 The Mallows model M(π0, φ)

The simplest form for the Mallows model is the M(π0, φ). Let π0 be the ’underlying
truth’, the hidden central ranking parameter of the Mallows models and let φ ∈ [0, 1]
be the spread parameter or the dispersion of the model. One could think of φ as the
swapping probability of each pair of adjacent elements. The higher the value of the
dispersion, the more noisy are the samples generated by the model, since swaps are
more likely to occur in the initial central ranking. The lower the value of φ, the more
stable our samples will be, since the sampling procedure will not cause, with high
probability, vaste of swaps.

In the previous section, we showed that the probability of drawing a ranking π of
size n, given the true order π0 is proportional to :

(1− p)(
n
2)−dKT (π,π0)pdKT (π,π0)

Thus, using a standard normalization and setting φ = p
1−p < 1, we get that :

P[π|π0]1 =
1

Z(φ, π0)
φdKT (π,π0) (7.5)

where dKT : Sn × Sn → Z≥0 is the known Kendall’s tau ranking distance

dKT (π, σ) =
∑

1≤i<j≤n

1{(π(i)− π(j))(σ(i)− σ(j)) < 0)} (7.6)

The probability P[π|π0] corresponds to the probability of drawing π as sample
from a Mallows model M(π0, φ). Equivalently, in the corresponding literature, we
use a parameter β instead of φ such that φ = e−β. Thus :

P[π|π0] =
1

Z(φ, π0)
e−βdKT (π,π0) (7.7)

In this way, it is easier to see the connection between the Mallows model and the
normal distribution.

The normal distribution N (µ, σ2) has density

f(x|µ, σ2) =
1√

2πσ2
e−
|x−µ|2

2σ2

1The correct notation would be P[π|π0, φ], but for simplicity reasons, we omit φ. The majority of the
related literature makes this assumption too.
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The support of the above density is R. It is not difficult to notice the similarities
between the two probability measures. The normal distribution assigns mass to each

x ∈ R, that decreases exponentially to a distance measure x → |x−µ|2
2σ2 with center

the mean µ, whereas the Mallows measure assigns mass that decreases exponentially
with the Kendall Tau distance from the central ranking π0. One can think of the
Mallows distribution as an embedding of the normal distribution to the symmetric
group. This dimension reduction via the embedding alters some properties of the
normal distribution, like the symmetry property and the existence of a turning point.

Figure 7.1: Informally, the Mallows model can be seen as a discrete version of an one-
sided normal distribution. Intuitively, each point in the discrete x-axis is a set Sd =
{σ|dKT (σ, π0) = δ} for δ = {0} ∪ [

(
n
2

)
].

The more a permutation deviates from the central ranking in dKT , the less is the
probability of being chosen. In the same notion, the more a value deviates from the
mean of the normal distribution, the probability of being drawn falls exponentially
in the square of the distance.

Figure 7.2: A distribution D that follows the monotonicity property. Such an example
is the Mallows measure, where one can observe an exponential decay as the KT distance
grows.

This is an important characteristic of the Mallows model. We refer to that prop-
erty as monotonicity. Mallows model is monotonic since, given two samples σ, τ, one
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has :
dKT (σ, π0) < dKT (τ, π0) ⇐⇒ P[σ|π0] > P[τ |π0]

We remind that KT distance counts the number of pairwise disagreements of a
pair of permutations. Considering a fixed ranking π, KT distance is maximized by
comparing π with its inverse permutation π−1 = argmax

σ
dKT (π, σ) and the value

attained is
(
n
2

)
. This value is the maximum number of swaps needed when one sorts

with bubblesort.
The normalization constant is :

Z(φ, π0) = Z(φ) =
n−1∏
i=1

i∑
j=0

φj (7.8)

This expression was firstly observed in the Mahonian numbers M(n, k) section,
as this function is the generating function

∑∞
k=0M(n, k)xk.

Lemma 7.3.1 Z(φ, π0) = Z(φ) =
∏n−1

i=1

∑i
j=0 φ

j

Proof. Informally, since we can express the normalization constant as,

1(1 + φ)(1 + φ+ φ2) . . . (1 + φ+ ...+ φn−1) =

(n2)∑
k=0

M(n, k)φk

one can easily notice that summing the Mallows probability measure over all possible
permutations of size n will produce the exact same sum and this sum will be equal
to :

1 =
∑
π∈Sn

P[π|π0]⇒ Z(φ, π0) = Zφ =

(n2)∑
k=0

M(n, k)φk

Notice that k runs over the possible number of inversions needed. We now proceed
to a more formal proof.

We remind the reader the decomposition vector defined in Chapter 2 for the KT
distance. There is ’1-1’ correspondence between every permutation σ ∈ Sn and the
vector of numbers (V1(σ, π0), ..., Vn(σ, π0)), where Vj(σ, π0) ∈ [0, j − 1]. Let Ωk

n =
[k]× [k + 1]× ...× [n− 1]. This ’1-1’ correspondence allows us to write the partition
function Z(φ) in the following way

Z(φ) =
∑
y∈Ω0

n

n∏
j=1

φyj =
∑
y1∈[0]

φy1(
∑
y∈Ω1

n

n∏
j=2

φyj) = (
∑
y1∈[0]

φy1)(
∑
y∈Ω1

n

n∏
j=2

φyj)

Continuing this process recursively, the lemma follows. �
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Remark 7.3.2 For each pair of alternatives, let p(i, j) = P[i � j] =
∑

π∈L(π(i)<π(j))

P[π]

the probability that i beats j in a ranking randomly drawn according to the Mal-
lows measure P. Notice that the probability matrix P = [p(i, j)] is Toeplitz.

Afterwards, we will provide a way to deduce why one chooses this normalization
constant and how the Kendall tau distance naturally arises for the definition of Mal-
lows model. These observations come from the so-called RIM process. But, firstly,
we present a different way to think of the Mallows model.

7.3.2 A different point of view

Kernelization has been proved a remarkably useful technique for the machine learning
community. The main notion behind kernel-based methods is to define a positive
definite kernel K : X × X → R over the input space X . Thus, for two input vectors
x, y ∈ X , K(x, y) can be seen as a measure of similarity. Our purpose should be to
design an embedding Φ : X → H of the input space to a Hilbert space H (space with
a well-defined inner product) in which the kernel reduces to an inner product, that
is:

K(x, y) =< Φ(x),Φ(y) >H,∀x, y ∈ X (7.9)

Probably, the most famous kernel is the N−dimensional Gaussian kernel defined
as :

G(x;σ) =
1

√
2πσ2

N
exp(−||x||

2

2σ2
) (7.10)

and

KG(x, y) = exp(−||x− y||
2

2σ2
) (7.11)

It is well mentioning that the Fourier transform of the Gaussian function is again
a Gaussian function on the frequency domain. The Gaussian function is the only
function with this property.

The Mallows kernel plays a role on the symmetric group similar to the Gaussian
kernel on Euclidean space.

The Mallows kernel is defined for any β ≥ 0 by :

KM,β(σ, π) = exp(−βdKTσ, π) (7.12)

We can show that KM,β is positive definite for any β ≥ 0. Define the mapping :

Φ : Sn → R(n2)

σ
Φ−→ (sgn(σ(i)− σ(j)))1≤i<j≤n

Mallows kernel corresponds to a Gaussian kernel on a
(
n
2

)
−dimensional embedding

of Sn. For more extensive results, we refer the reader to [JV15]. Thus, we can see
how complex is the structure of the symmetric group. In order to project σ ∈ Sn to
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a {±1}−valued vector, one needs to map to the
(
n
2

)
−dimensional space. Thus, the

increase is Θ(n2).
For instance, for n = 2, Φ(1 � 2) = −1 and Φ(2 � 1) = +1. For n = 3, we have

an embedding in R3 such that Φ(a � b � c) = (sgn(a− b), sgn(a− c), sgn(b− c)).

7.4 The Repeated Insertion Model

The Condorcet/Mallows sampling procedure for drawing rankings from the Mallows
distribution can be very inefficient in a computational point of view. For instance,
the sample a � b � c � a should be rejected. In general, it is inefficient since it
relies on the rejection of partially constructed rankings as soon as a single circular
or non-transitive sample is drawn (once the directed graph of the permutation has a
cycle).

Efficient sampling is essential for a variety of inference and learning tasks. A com-
putational perspective of the efficiency of sampling concerning the Mallows Models
can be found in [LC14]. The main question that one could have is the following :
Suppose we have a Mallows model and we want to draw a sample permutation.

Is there a process that offers a computationally efficient way to sample rankings?

Doignon proposed a generative process, called Repeated Insertion Model (RIM)
that gives rise to a family of distributions over rankings and provides a practical way
to sample rankings from a Mallows model.

The main idea is that we create a ranking by inserting each alternative one after
another. The process in completed after n steps where n is the number of alternatives.

The model assumes a reference ranking π = a1a2...an and insertion probabilities
pi,j for each i ≤ n, j ≤ i. RIM generates a new output permutation using the following
procedure. We remind that we denote with i � j when the alternative i is ranked
above j.
• At step 1, the alternative a1 is added to the output ranking.
• At step 2, the alternative a2 is inserted either before or after a1. The item a2 is

inserted above a1 with probability p2,1, generating the permutation a2 � a1 and
below a1 with probability p2,2 = 1− p2,1, generating the permutation a1 � a2.
• At step i, a permutation of alternatives a1, a2, ..., ai−1 will be created and the

alternative ai will eventually be inserted in position j ≤ i with probability pi,j.
• After n steps, the output ranking on the n alternatives will be a (valid) permu-

tation ∈ Sn.

Remark 7.4.1 The insertion probabilities are independent of the ordering of the
previously inserted alternatives.

Doignon showed that one could choose the pi,j appropriately in order to create a
generative process that corresponds to the Mallows model.
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Definition 7.4.1 — Repeated insertion function. Let π = a1...an be a reference ranking.
Let an insertion vector be any positive integer vector ~j = (j1, ..., jn) s.t. ji ≤ i∀i ∈
[n]. Consider the set J of all possible such vectors. A repeated insertion function

Fπ : J → L(A) (where L(A) is isomorphic to Sn) maps an insertion vector ~j into

a ranking Fπ(~j) by placing each ai, in turn, into rank ji for all i ≤ n.

� Example 7.1 For instance, consider the reference ranking π = a1 � a2 � a3 � a4.
For the insertion vector (1, 2, 3, 4) we get that Fπ(1, 2, 3, 4) = a1 � a2 � a3 � a4 and
for (1, 1, 2, 3) we get that Fπ(1, 1, 2, 3) = a2 � a3 � a4 � a1. �

Given the reference ranking π, there is a ’1-1’ correspondence between rankings
and insertion vectors. That is Fπ is a bijection between J and Sn.

Suppose we are given an insertion vector ~j. What is the dislocation it creates?

It is easy to observe that whenever ai is inserted at position ji, it creates (i− ji)
pairwise misorderings with respect to alternatives a1, ..., ai−1. All pairwise misorder-
ings can be accounted this way. Thus, summing over all i ≤ n gives the Kendall tau
distance.

Lemma 7.4.2 For any insertion vector ~j = (j1, ..., jn) ∈ J, we have that :

n∑
i=1

(i− ji) = dKT (Fπ(~j, π)). (7.13)

Suppose we are given an insertion vector ~j that is mapped to a ranking r under Fπ.
What is the probability of generating r under RIM?

Let Fπ(~j) = Fπ(j1, ..., jn) = r. Then the probability to generate ranking r under
RIM is

∏n
i=1 pi,ji .

Theorem 7.4.3 — RIM ∼ M(π, φ). By setting the insertion probabilities pi,j =
φi−j

1+φ+...+φi−1 for i ≤ n, j ≤ i, the distribution induced by RIM with insertion function

Fπ is identical to that of the Mallows model M(π, φ).

Proof. LetM(π, φ) be the Mallows model and r be any ranking in Sn. Let (j1, ..., jn)
be the insertion ranks s.t. Fπ(j1, ..., jn) = r. If we multiply the factors φi−ji across
i ≤ n, we get φ

∑n
i=1 i−ji = φdKT (r,π). This term is exactly the proportional probability

to draw r in Mallows model. The denominator of
∏n

i=1 pi,j = (1+φ)(1+φ+φ2)...(1+
φ + ... + φm−1), that is independent of r. This is exactly the normalization constant
Z(φ, π) = Z(φ) of the Mallows model. �

7.5 Generalized Mallows Model

In 1986, Fligner and Verducci introduced a generalization of the simple Mallows
model. In the KT distance section, we mentioned that each permutation is in ’1-1’
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correspondence with a vector of numbers, namely the decomposition vector. The
idea behind the Generalized Mallows Model exploits this correspondence.

Let σ, π ∈ Sn. We define Vj(σ, π) to be the number of discordant alternative pairs
involving alternatives i < j and alternative j, that is, for j ∈ [n],

Vj(σ, π) =
∑

1≤i<j

1{(σ(i)− σ(j))(π(i)− π(j)) < 0}

The generalized Mallows family of distribution is

Mn = {P~φ,π0 : ~φ ∈ [0, 1]n, π0 ∈ Sn}

parametrized with central ranking π0 ∈ Sn and n-dimensional dispersion vector ~φ =
(φ1, ..., φn) ∈ [0, 1]n.

The probability mass function is defined as :

p~φ,π0(σ) =
1

Z(~φ, π0)

n∏
i=1

φ
Vi(σ,π0)
i

It is clear that if φi = φ, we get the single parameter Mallows Model since
dKT (σ, π) =

∑n
i=1 Vi(σ, π).

Another important property of the generalized Mallows Model is that, when the
distance metric is the Kendall tau distance, the random variable Yj = Vj(ξ, π0) where
ξ ∼ P~φ,π0 are independent.

This follows from the following decomposition lemma of the partition function

Z(~φ) :

Lemma 7.5.1 Z(~φ, π0) = Z(~φ) =
∏n

i=1 Zi(φi) =
∏n

i=1

∑i−1
j=0 φ

j
i

The proof is completely similar to the normalization constant’s proof in the single
parameter Mallows Model by substituting each φ with a φj.

Hence, one can write :

p~φ,π0(σ) =
n∏
i=1

φ
Vi(σ,π0)
i

Zi(φi)

Studying the random variables Yj

The random variables Yj = Vj(ξ, π0) where ξ ∼ P~φ,π0 are the sufficient statistics for
the distribution P~φ,π0 when the central ranking is known. A very important question
that arises is how each variable Yj is distributed. Observe that the probability mass
of the random vector (Y1, ..., Yn) equals :

P[Y1 = d1, ..., Yn = dn] = (
φd11

Z1(φ1)
) · · · ( φdnn

Zn(φn)
) =

n∏
i=1

P[Yi = di]

Hence, it is clear how the above lemma decomposed the normalization constant
in order to provide us with the desired independence of the random variables. If we
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isolate the term Yj, we can observe that the distribution of the random variable is
quite similar with a geometric distribution. The main difference is that the geometric
distribution has an infinite tail, while the tail of the distribution of Yj is finite. This
distribution is known and is called a truncated geometric distribution.

Definition 7.5.1 — Truncated geometric distribution. A random variable ξ follows the
truncated geometric distribution T G(φ, k) with parameters φ ∈ [0, 1] and k ∈ N ∪
{∞} if it has the following probability mass function

pξ(i) =
φi∑k
j=0 φ

j
, i ∈ {0, 1, ..., k}

with support {i : i ∈ {0, 1, ..., k}}.

� Example 7.2 For k = 1, T G(φ, 1) =D Be( φ
1+φ

) where the success probability φ
1+φ

=

1 − p if φ = 1−p
p
. For k = ∞ and φ < 1, T G(φ,∞) =D Geo(φ). Note that if we fix

k, then Ek = {T G(φ, k) : φ ∈ [0, 1]} is an exponential family with natural parameter
θ = lnφ. �

So, it is not difficult to see that :

Yj = Vj(ξ, π0) ∼ T G(φj, j − 1), where ξ ∼ P~φ,π0

A useful lemma

Consider the distribution P~φ to be the multivariate distribution (Y1, ..., Yn), where

Yj ∼ T G(φj, j − 1). We need to link this distribution with the initial distribution
P~φ,π0 when the central ranking π0 is known.

Lemma 7.5.2 Let π0 ∈ Sn and ~φ ∈ [0, 1]n. Let R~φ be the support of the distribution
P~φ and let R~φ,π0

the support of P~φ,π0 . Then, there exists a bijective map g : R~φ,π0
→

R~φ s.t. for any σ ∈ R~φ,π0
, it holds that :

Pτ∼P~φ,π0 [τ = σ] = P~y∼P~φ [~y = g(σ)]

Also, it holds that :

dTV (P ~φ1,π0
,P ~φ2,π0

) = dTV (P ~φ1
,P ~φ2

)

and

DKL(P ~φ1,π0
‖ P ~φ2,π0

) = DKL(P ~φ1
‖ P ~φ2

)

Proof. The bijective mapping is given by the structure of the Generalized Mallows
model, since one can define, for any σ ∈ R~φ,π0

:

g(σ) = (V1(σ, π0), ..., Vn(σ, π0))
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We have already seen that (Y1, ..., Yn), where Yj = Vj(ξ, π0), are independent if

ξ ∼ M(π0, ~φ). Thus, the joint distribution of the n-dimensional random vector is
equivalent to the probability mass of the Generalized Mallows model, that is :

P(y1,...,yn)∼P~φ [~y = g(σ)] = P[Y1 = y1, ..., Yn = yn] =
n∏
i=1

φ
Vi(σ,π0)
i

Zi(φi)
= Pτ∼P~φ,π0 [τ = σ]

This bijective mapping preserves the mass and, hence, we get the other two equalities.
�

Remark 7.5.3 Note that if we consider the case where φj = φ ∀j ∈ [n], the above
results still hold for the single parameter Mallows model.

7.6 The Plackett - Luce Model

The Plackett - Luce probabilistic model is another model for permutations. The
difference between the Mallows and the PL model is the way one creates the permu-
tation. The intuition behind Mallows model could be the idea of the construction of
a tournament as we referred to previous sections. The idea of PL model looks like a
generalized version of repeated insertion model.

Firstly, we provide an examples of how a permutation will be generated by the
PL model.

Assume that we have a box with m balls. Each ball ai values wi. We can normalize
the values of the balls in order to get

∑m
i=1 wi = 1. We create a permutation of the

m balls in m steps, as follows :
In each step, we choose a ball and we pick it out of the box. The probability

for each remaining ball to be chosen equals its value over the sum of values of the
remaining balls inside the box. The way to pick the m balls induces a unique ranking
of the items. We note that, in the first step, the probability to draw ball i equals its
value 0 ≤ wi ≤ 1.

Before formalizing the PL model, we introduce the fundamental idea behind
Plackett-Luce model, that is due to the work of Duncan Luce in 1959.

The Luce’s choice axiom

Luce’s choice axiom consists of two parts. Let C be a choice set.

Luce’s Axiom 1

Assume that C contains two elements x, y such that x is never chosen over y
when the choice is restricted to only x and y. Without affecting any of the choice
probabilities, x can be deleted from C.
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Luce’s Axiom 2

Assume that S ⊂ C. Then, the choice probabilities for the choice set S are con-
sidered to be identical to the choice probabilities for the choice set C conditional on
S having been chosen

PS(α) = PC(α|S), α ∈ S

The axiom can be restated as, if we assign masses wi on the items, the probability
of selecting item i from a pool S of j items is :

PS[i] =
wi∑
j∈S wj

This formula is completely similar to the known softmax function.

PL model

Let A = {ai|i ∈ [m]} the set of m alternatives and let W = {~w = {wi|i ∈ [m], wi ∈
[0, 1],

∑m
i=1wi = 1}} be the set of all possible values of these alternatives. The m

values could be represented by a m−dimensional vector.

Remark 7.6.1 Since we require that the sum of values is fixed, we only need m− 1
values, but for simplicity, we prefer to have a m−dimensional vector.

Given a value vector ~w ∈ W, the probability to generate the ranking

σ = ai1 � ai2 � ... � aim

equals to :

P[σ|~w] = wai1 ·
wai2∑
p>1wip

· ... ·
waim−1

waim−1
+ waim

Alternatives with a higher weight tend to occupy higher positions in the induced
ranking. The most probable ranking can be obtained by sorting the alternatives in
decreasing order with respect to their weight :

σ∗ = argmax
σ∈Sn

P[σ|~w] = argsorti∈[n]{w1, ..., wn}

Note that PL model is more flexible that the simple Mallows model since the
parameter size is linear to the number of alternatives. There is a vaste collection
of probabilistic models over rankings. In this chapter, we presented the two more
fundamental noisy models, the Mallows model and the Plackett-Luce model. These
two models are those that one first encounters when working on that topic. For sake
of completeness, in the following section, we present some other probabilistic noisy
models.
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7.7 Other noisy models

In the previous sections, we have seen three noisy models-distributions : The single
parameter Mallows model (Mallows, 1957, [Mal57]), the generalized Mallows model
(Fligner & Verducci, 1989, [Fli86]) and the PL model (Plackett, 1975, [Pla75]- Luce,
1959, [Luc59]). In the current section, we shortly introduce some other more rare
noisy models for sake of completeness ([AEMP18], [YR08], [LDSR16]).

The Babington Smith Distribution

The Babington Smith (BS) model was introduced in 1950 by B. Babington-Smith
[BS50]. Consider a collection of n alternatives A = {a1, ..., an}. The probability of
sampling the permutation σ ∈ L(A) equals :

Pθ(σ) =
1

C(θ)

∏
1≤i<j≤n

pσ−1(i),σ−1(j)

where pi,j is the probability of observing the preference ai � aj when comparing the
two alternatives. The quantity C(θ) is just a normalization constant. The BS model
is parametrized by θ, which consists of all pairwise probabilities pi,j = 1 − pj,i. The
parameter θ consists of

(
n
2

)
values.

The BS distribution results from a process quite similar to the Condorcet-Mallows’
model. The order of each pair of alternatives ai and aj is determined independently at
random by flipping a pi,j-biased coin ∼ Be(pi,j). If these comparisons generate a valid
and consistent ranking, the BS model outputs the induced permutation. Otherwise,
we repeat the generating process.

It is not difficult to observe that BS model has a much richer parametrization,
compared to the Mallows model and to the PL model. The parameter size of the single
parameter Mallows model is far more restricted since it contains only two parameters
π0, φ. The PL model is more flexible since the parameter size grows linearly to the
size of alternatives. BS model is even more flexible since the parameter size grows
quadratically with the number of elements in A.

The Average-Precision Distribution

The Average-Precision (AP) model was introduces by Yilmaz, Aslam, and Robertson
in 2008 [YR08]. In the area of information retrieval (IR), a fundamental part of the
ongoing research is crucially linked to ranked lists of items. For instance, the output
of search engines is a ranked list of documents. Thus, it is important to be able to
compute the correlation between two ranked lists. One of the most commonly used
statistics is the Kendall’s tau statistic-distance. However, in the field of IR, it is quite
common that inconsistencies among alternatives having higher rankings are far more
important that those between low ranked items. A ranking mistake at high positions
of a Google search should be penalized more than a ranking error in the third page
of the same Google search. The Kendall’s tau statistic is ’blind’ in this property,
since it make no distinction in the position of the mistake but just in the mistake



7.7 Other noisy models 101

itself. Thus, it would be useful to introduce a statistic that penalizes in a different
way errors at high rankings and at low rankings.

This is exactly why Yilmaz et al. introduced the AP distance. Consider a reference
ranking π ∈ Sn. The AP distance of a ranking σ from the ranking π is :

dAP (π, σ) =
n−1∑
i=1

n∑
j=i+1

Eij
n

2(j − 1)

where Eij = 1 ⇐⇒ π(i) is ranked after π(j) in σ. Otherwise, Eij = 0 ( ⇐⇒
σ(π(i)) < σ(π(j))).

Remark 7.7.1 AP distance is not symmetric since it is computed with respect to a
central ranking π.

Remark 7.7.2 AP distance constitutes a generalization of KT distance since if one
replaces the weights n

2(j−1)
with 1, one gets the KT distance (that is symmetric),

dKT (π, σ) =
n−1∑
i=1

n∑
j=i+1

Eij = dKT (σ, π)

It is not difficult to observe that AP distance assigns weights to the inverted pairs
in σ with respect to π which are dependent on their positions in π.. An inversion in
σ for the two alternatives π(i) and π(j) for i < j costs n

2(j−1)
.

The cost can be seen as
n
2

j−1
. Thus, the cost assigned by AP for j < n

2
+1 is higher

than 1 and the cost for j > n
2

+ 1 is less than 1.
The AP model corresponds to a probability distribution over the symmetric group

Sn, parametrized by a central ranking π0 and a dispersion parameter β > 0. The
probability of drawing a ranking σ is :

P[σ|π0] =
1

Z(β)
e−βdAP (π0,σ)

where Z(β) is a normalization constant.

Remark 7.7.3 The MLE of the simple Mallows model is NP-hard. The same holds
for the AP case.

Ap-mle problem

Given a multiset R of elements of Sn, find the permutation π∗AP ∈ Sn such that :

π∗AP = argmax
π∈Sn

∏
σ∈R

P[σ|π]

The Ap-mle problem is NP-hard too. The proof can be found to the complete
version of [LDSR16].





8. Learning to rank from noisy information

As referred previously, a noise model defines the probability measure P of observing
a ranking π given an underlying true ranking π0, that is P[π|π0] for all π, π0 ∈ L(A).
In this section, we will focus on the Mallows noise model.

8.1 Sample Complexity in Mallows Models

The main question in this section will be the following :

How many samples are needed by different voting rules in order to determine the
true (hidden) ranking of a Mallows model with high probability?

Firstly, we need to describe a metric of ’counting samples’. We use as criterion
the sample complexity to distinguish between voting rules.

Definition 8.1.1 — Accuracy of rule r. For any randomized voting rule r, true ranking
π0 ∈ L(A), and m samples ∈ N, let :

ACCr(m,π0) =
∑

π∈L(A)m

P[π|π0]P[r(π) = π0] (8.1)

Accuracy of rule r is the probability that rule r returns π0 given m samples from
Mallows model with true ranking π0.

In order to let ACCr(m,π0) be independent of the true ranking π0, we consider
the worst case scenario that is :

ACCr(m) = min
π0∈L(A)

ACCr(m,π0) (8.2)

That is rule r returns the underlying true ranking with probability at least
ACCr(m).
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Let ε > 0, small enough. We need to define a quantity that denotes the required
number of samples in order to get the true ranking from rule r with high probability
(that is at least 1− ε) :

Nr(ε) = min{m|ACCr(m) ≥ 1− ε}. (8.3)

We call Nr(ε) the sample complexity of rule r.

Claim : Kemeny rule (where ties are broken uniformly) requires the minimum
number of samples from Mallows model to determine the true ranking with high

probability.

This claim is not completely random. There is a profound reason why Kemeny
rule is that ’strong’. Before we proceed, it is worth reminding that Kemeny rule is
the maximum likelihood estimator for the true ranking given samples from Mallows
model.

Given a profile π = (π1, ..., πm) ∈ L(A)m, where each sample is drawn indepen-
dently from a Mallows distribution πi ∼ Pπ0,φ, the MLE τ of the true ranking is that
ranking that maximizes the probability of drawing the profile π :

arg max
τ∈L(A)

P[π|τ ] = arg max
τ∈L(A)

1

Zm

∏
1≤i≤m

φdKT (πi,τ) = arg min
τ∈L(A)

∑
1≤i≤m

dKT (πi, τ)

The first equality follows from the independence of our samples and the second
follows since 0 < φ < 1 and x 7→ logx is an increasing function with logφ < 0. This
result is proved in detail in the beginning of the next chapter. We show that the
Kemeny’s rule is optimal as far as sample complexity is concerned for the Mallows
model.

Theorem 8.1.1 — Optimality of Kemeny’s rule. The Kemeny rule with uniform tie-
breaking has the optimal sample complexity in Mallows model, that is, for any ε > 0,
any number of alternatives n and any randomized voting rule r, NKEMENY (ε) ≤
Nr(ε).

The above theorem arises two natural questions :

Are there any other rules that have the same asymptotic sample complexity as that
of Kemeny’s rule?

What is the value NKEMENY (ε)? That is how many samples Kemeny’s rule
requires?

Both questions will be answered in the following section.
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8.2 PM-c Rules

Kemeny rule belongs to a large family of voting rule with optimal samples complexity.
This family relies on the concept of pairwise-majority graph (PM graph) and of
pairwise-majority consistent rules (PM-c rules).

Firstly, we should expand our intuition of a voting profile π ∈ L(A)m to a graph
theoretic concept. Consider a graph G = (V,E) such that each vertex is just an
alternative, that is V = A and there is an edge from alternative a to b if a is preferred
to b in a strong majority of the votes of π. That is (a, b) ∈ E iff |σ ∈ π : a �σ b| >
|σ ∈ π : b �σ a|. In case of ties between alternatives, there is no edge between them.
Note that there can never be an edge in both directions, but a PM graph can have
directed cycles.

Thus, each voting profile π generates a directed graph Gπ, which is called the
pairwise-majority graph (PMg).

Given a PM graph G, can we deduce a unique ranking from G?

When a PM graph is complete and acyclic, there exists a unique σ ∈ L(A) such that
there is an edge a→ b iff a �σ b.

Then, we say that G reduces to σ. Thus, there exists an isomorphism between a
subset C∩A of PM graphs and the symmetric group Sn, where C∩A = {G : E(G) =(
n
2

)
, acyclic, G ∈ PMg}.
Hence, a ’nice’ voting rule r would be one that agrees with the PM graph. That

is given a voting profile π, which generates a PM graph that reduces to a ranking σ,
then the ’nice’ voting rule would give the same ranking σ. This is exactly the notion
of PM-c rules.

Definition 8.2.1 — Pairwise-Majority Consistent Rules. Consider a profile π. A determin-
istic voting rule r is called PM-c if r(π) = σ whenever the PM graph of π reduces
to σ. A randomized voting rule is similarly called PM-c whenever P[r(π) = σ] = 1.

The main result of this section follows. We claim that PM-c rules have logarithmic
sample complexity.

Theorem 8.2.1 — Sample Complexity of PM-c rules. For any given ε > 0, any PM-c
rule determines the true ranking of the n alternatives with probability at least 1− ε
given O(log(n

ε
)) samples generated from the Mallows model.

Before proving the theorem, we should note that the number of samples behaves
naturally with n and ε. The increase of alternatives (increase of n) and the increase of
the probability being correct (decrease of ε) require more samples. As we will see, the
log factor appears due to the inversion of the exponential generated by Hoeffding’s
inequality and n appears when using the union bound technique.

Proof. Let π0 be the hidden true ranking of the n alternatives. We will show that,
given m = O(log(n

ε
)) votes generated from the Mallows model, the corresponding

PM graph reduces to π0 with high probability (at least 1− ε).
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Let m samples drawn from Mallows models and let V P ∈ L(A)m the voting
profile. For any two alternatives a, b, we will count the number of votes in which
a beats b and denote that counter with nab. Thus, nab = |{σ : a �σ b, σ ∈ V P}|.
Obviously, nab + nba = m,∀a, b ∈ A.

The PM graph of the voting profile V P reduces to π0 ↔ ∀a, b ∈ A for which
a �π0 b, we have that nab − nba ≥ 1.

In order to learn π0 using m samples, we need to provide an upper bound on m
s.t.

P[a �π0 b⇒ nab − nba ≥ 1,∀a, b ∈ A] ≥ 1− ε
Equivalently, we have to upper bound the probability of the ’bad’ event and then

use the classical union bound technique.
For any a, b ∈ A with a �π0 b, we have that :

P[nab − nba ≤ 0] = P[
nab − nba

m
≤ 0]

Set Xab = nab−nba
m

. Observe that if pa�b be the probability that a �π b in a random
sample π, then E[Xab] = pa�b − pb�a, using the linearity of the expectation.

So,

P[nab − nba ≤ 0] = P[Xab ≤ 0] = P[Xab − EXab ≤ −EXab] ≤ P[|Xab − EXab| ≥ EXab]

The last inequality follows from the properties of the absolute value function.
Now, we have a classical tail inequality. We could use any known inequality that

we have seen in the concentration inequalities section. We will use the Hoeffding’s
inequality 4.46 and get :

P[nab − nba ≤ 0] ≤ 2exp(−2(EXab)
2m)

In order to take a general upper bound, we pick the minimum value that expec-
tation can take, setting δmin = min

a,b∈A:a�π0b
EXab and getting :

P[nab − nba ≤ 0] ≤ 2exp(−2δ2
minm)

We can use the union bound technique to upper bound the probability that ’bad’
events happen :

P[∃a, b ∈ A : {a �π0 b} ∩ {nab − nba ≤ 0}] ≤
(
n

2

)
2exp(−2δ2

minm) ≤ n2e−2δ2minm

We want that this probability is at most ε and, thus,

P[∃a, b ∈ A : {a �π0 b} ∩ {nab − nba ≤ 0}] ≤ n2e−2δ2minm < ε⇒ m ≥ 1

2δ2
min

log(
n2

ε
)

Hence,

m ≥ 1

2δ2
min

log(
n2

ε
) (8.4)
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Additionally, we have to show that δmin = Ω(1). Thus, it is lower bounded by a
constant independent of n.

We have that, for any a, b ∈ A, s.t. a �π0 b :

δab = pa�b − pb�a =
∑

π∈L(A):a�πb

P[π|π0]−
∑

π∈L(A):b�πa

P[π|π0]

Now, recall the swap increasingness section from the introductory chapter 3.1.3 .
We can unify this two sums into one using the πa↔b permutation by simply observing
that :

δab =
∑

π∈L(A):a�πb

(P[π|π0]− P[πa↔b|π0])

By the swap increasing property,

δab ≥ (1− φ)pa�b

But, since δab = pa�b − pb�a and pa�b + pb�a = 1, we get that :

δab ≥
1− φ
1 + φ

and this holds for all a, b ∈ A with a �π0 b. Thus, it holds for δmin too, and this
completes the proof. Notice that the equality holds when a, b are adjacent. �

The following result states that no randomized voting rule can do better. Hence,
we provide a matching lower bound and, so, PM-c rules can learn the central ranking
with Θ(log(n

ε
)) samples with high probability.

Theorem 8.2.2 — Matching lower bound. For any ε ∈ (0, 1
2
], any randomized voting

rule requires Ω(log(n
ε
)) samples generated from the Mallows model to determine the

true central ranking with probability at least 1− ε.

Proof. Consider any voting rule r. Assume that for some n ∈ N, ACCr(m) ≥ 1−ε. We
would like to show that m = Ω(log(n

ε
)). Obviously, for any σ ∈ L(A), ACCr(m,σ) ≥

1− ε since accuracy considers the worst case scenario.
Let σ ∈ L(A). We will call a permutation π a neighboor of σ if dKT (π, σ) = 1.

Let N (σ) be the set of all neighboors of σ. Firstly, from the triangle inequality, we
have that, if σ′ ∈ N (σ) and π ∈ L(A) :

dKT (π, σ) ≤ dKT (π, σ′) + dKT (σ′, σ) = dKT (π, σ′) + 1

Hence, φdKT (π,σ) ≥ φdKT (π,σ′)+1, since φ < 1.
Thus, for any σ′ ∈ N (σ) and a voting profile V P = (π1, ..., πm) ∈ L(A)m of m

i.i.d. votes, we get that :

P[V P |σ] =
m∏
i=1

φdKT (πi,σ)

Z
≥

m∏
i=1

φdKT (π,σ′)+1

Z
= φmP[V P |σ′]
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Now,

ACCr(m,σ) =
∑

π∈L(A)m

P[π|σ]P[r(π) = σ] =
∑

π∈L(A)m

P[π|σ](1− P[r(π) 6= σ])

= 1−
∑

π∈L(A)m

P[π|σ]P[r(π) 6= σ]

The probability that r(π) 6= σ is less than the probability that r(π) returns one
of the neighbors of σ.

Thus,

ACCr(m,σ) ≤ 1−
∑

π∈L(A)m

P[π|σ](
∑

σ′∈N (σ)

P[r(π) = σ′])

Then, using the derived inequality,

ACCr(m,σ) ≤ 1−
∑

σ′∈N (σ)

∑
π∈L(A)m

φmP[π|σ′]P[r(π) = σ′]

= 1− φm
∑

σ′∈N (σ)

ACCr(m,σ
′) ≤ 1− φm(n− 1)(1− ε)

The last inequality follows because ACCr(m) ≥ 1− ε and |N (σ)| = n− 1.
Hence, in order to obtain an accuracy ≥ 1− ε, we need :

1− φm(n− 1)(1− ε) ≥ 1− ε⇒ m = Ω(log(
n

ε
)).

�

8.3 Non-Robustness of PM-c Rules

In this section, we will study how robust are PM-c voting rules under noise.

Informal Theorem

There exist profiles in which the PM-c graph is acyclic and all edge weights are large
(the difference between pairwise preferences is large), but the noisy profile will, with
high probability, have an acyclic PM-c graph too, that reduces to a different ranking.

We firstly introduce the setting to the reader. As always, suppose that we have
a set of n alternatives A and that preferences over this set are permutations on A,
that is each sample will be a ranking σ ∈ L(A). Given a preference profile π =
(σ1, ..., σm) ∈ L(A)m of m votes, we say that a ∈ A beats b ∈ A, that is a � b when :

|{i ∈ [m] : a �σi b}| >
m

2
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Hence, a beats b in pairwise majority comparison, when the strong majority of
voters prefers a over b.

In previous sections, we referred to the concept of PM-c graph. Now, we will
expand that notion to the weighted PM-c graph. The weight of the directed edge
a→ b is just the difference of votes where a � b and the votes where b � a.

Definition 8.3.1 — Weighted PM-c Graph. The profile π = (σ1, ..., σm) ∈ L(A)m

induces the weighted pairwise majority graph Gπ = (V,E,w), where :
• V = A
• a → b ∈ E ⇐⇒ a � b, ∀a, b ∈ A, a 6= b and the weight of the edge will be

equal to

w(a,b)(π) = |{i ∈ [m] : a �σi b}| − |{i ∈ [m] : b �σi a}|

Under a PM-c voting rule, given a voting profile π, when the weighted PM-c graph
is a tournament and, furthermore, is acyclic, it reduces uniquely to a ranking τ. This
output ranking is simply the topological ordering of the PM-c graph Gπ.

We claim that there exist profiles in which the PM-c graph is acyclic and all edge
weights are large (the difference between pairwise preferences is large), but, with
high probability, the noisy profile has an acyclic PM-c graph too, that reduces to a
different ranking. This implies that any PM-c rule is not robust under noise, since it
would return a different ranking when applied to the true and to the noisy profiles.

Theorem 8.3.1 For all δ > 0, φ ∈ (0, 1) and m ∈ N with n ≥ 3, ∃n0 ∈ N s.t.
∀n ≥ n0, ∃ a voting profile π∗ ∈ L(A)n s.t. Gπ∗ is acyclic and all edges have
weight Ω(n), but, with probability at least 1− δ, one could sample a noisy profile π,
where Gπ is acyclic and there is a pair of alternatives on which the unique rankings
induces by Gπ∗ and Gπ disagree.

The intuition of the theorem is that even if a PM-c rule provides big gaps between
alternatives, that is the pairwise preference differences (which are expressed via graph
weights) are significant, some alternatives will possibly flip under that rule with high
probability. Extended results concerning the robustness of PM-c rules and of other
rules, such as Borda’s count, can be found in [AK19].

8.4 Learning the parameters of Mallows model

The Mallowss model can be parametrized by the set of distributions

M1 = {Pφ,π0|φ ∈ [0, 1], π0 ∈ Sn}

with probability mass function pφ,π0(π) = φdKT (π,π0)

Z
, where φ and π0 are the param-

eters of the model. If we fix the permutation parameter π0, the family M1(π0) =
{Pφ,π0|φ ∈ [0, 1]}.

In this section, we will try to answer the following question :

What is the sample complexity for learning the parameters φ, π0 of a single
distribution Pφ,π0 ∈M1, given i.i.d. samples π1, ..., πm?
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Learning the central ranking π0

In section 8.2 , we have shown that given Θ(log n
ε
) samples, one can learn the hidden

central ranking with high probability.
We restate the central ranking learning theorem :

Theorem 8.4.1 For any π0 ∈ Sn and any φ ∈ [0, γ), there exists a polynomial time
estimator π∗ s.t. given m = Θ( 1

γ
log n

ε
) i.i.d. samples π1, ..., πm ∼ Pφ,π0 satisfies

P~π∼Pmφ,π0 [π∗ 6= π0] ≤ ε

Moreover, if m = o(log n
ε
) then for any estimator π∗ these exists a distribution

Pφ,π0 s.t.
P~π∼Pmφ,π0 [π∗ 6= π0] > ε.

It is worth noticing that the sample complexity is a function of the error parameter
ε (where the smaller the probability of being mistaken, the larger the samples needed)
and of the size of the permutation n.

Now, it remains to estimate the parameter φ.

Learning the spread parameter φ

Having learned the central ranking, one wants to further discover what the spread
parameter is. But, since in general φ ∈ [0, 1], the probability to learn exactly its value
is 0. So, we introduce an additional estimation error ε, that controls the interval in
which the predictor will be correct. So, for the learning of the spread parameter, our
learning algorithm is an ε, δ algorithm, similar to the classical PAC learning concept,
and the sample complexity is a function of these two parameters and of the size of
the permutation.

Theorem 8.4.2 In the case where π0 is known, for φ ∈ [0, γ), ε, δ > 0 there exists an
estimator φ∗ that can be computed in polynomial time s.t. given m i.i.d. samples
~π ∼ Pmφ,π0 with m ≥ Ω( 1

nε2
log 1

δ
)

P~π∼Pmφ,π0 [|φ− φ∗| ≤ ε] = P~π∼Pmφ,π0 [φ∗ ∈ [φ− ε, φ+ ε]] ≥ 1− δ

• ε controls the boundaries of the accuracy of the φ estimator. The higher the ε,
the larger the accepted deviation from the correct values and thus the less the
required samples.
• δ controls the error probability. As δ grows, the probability of being mistaken

grows and thus the number of samples required drops down.

Proof. The proof uses similar techniques to the proof of theorem 8.6.1 . Hence, for
the complete proof, we refer the reader to [RBF19]. �

Thus, combining the above results :
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Theorem 8.4.3 For any π0 ∈ Sn, φ ∈ [0, γ), ε, δ > 0 there exist estimators π∗, φ∗ that
can be computed in polynomial time s.t. given m i.i.d. samples ~π ∼ Pmφ,π0 with

m ≥ Ω( logn
γ

+ 1
nε2
log 1

δ
), then

P~π∼Pmφ,π0 [(π∗ = π0) ∧ (φ∗ ∈ [φ− ε, φ+ ε])] ≥ 1− δ

Learning with 1 sample

How well one would estimate the spread parameter given only one sample? From
the above theorem, requiring that m = 1, one could let the probability δ of being
mistaken free and lock the boundary of the estimation :

1

nε2
log

1

δ
= 1⇒ ε =

√
1

n
log

1

δ

Thus, one gets the following :

Theorem 8.4.4 In the case where π0 is known, any φ ∈ [0, 1], δ > 0 there exists an
estimator φ∗ that can be computed in polynomial time from one sample π ∼ Pφ,π0
s.t.

Pπ∼Pφ,π0 [φ∗ ∈ [φ− ε, φ+ ε]] ≥ 1− δ, where ε = O(

√
1

n
log

1

δ
)

8.5 Learning Mallows model in TV Distance

In this section, we provide a lower bound for learning in TV distance in the setting
of the simple single parameter Mallows model.

We will use the Fano’s inequality mentioned in the information theory section
5.1.3 . We will show that, fixing a bad spread parameter φ∗, there is a central

ranking π0, such that, whatever we sample from the distribution Pφ∗,π0 , given that
the number of samples is small, then the distribution that we will construct cannot
be close to the initial in total variation distance.

Theorem 8.5.1 Let φ∗ = 1
2
. Then ∃π0 ∈ Sn, s.t. if one samples a voting profile

π = (σ1, ..., σm) ∼ Pmφ∗,π0 , where σi are i.i.d. samples and if m = o(logn), then any
distribution P(π) has to satisfy :

Pπ∼Pm
φ∗,π0

[dTV (P(π),Pφ∗,π0) ≥
1

16
] ≥ 1

3

Proof. We have to consider an appropriate family of distributions in order to apply
the Fano’s inequality. Pick φ = 1/2. Consider the following collection of permutations
with l = bn/2c.

π1 = (1 2), π2 = (3 4), ..., πl = ((n− 1) n)

Above we used the cycle notation for the permutation. Informally, the first ordering
swaps the two first elements, the second swaps the third and the fourth, etc. Thus,
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we study the family F of distributions parameterized by these permutations and
dispersion φ∗,

F = {Pφ,πi}li=1

whose size is obviously bn/2c.
Now, we have to upper bound KL divergence and to lower bound the TV distance.
For any pair of the above family,

DKL(Pφ,πi ‖ Pφ,πj) =
∑
σ∈Sn

φdKT (σ,πi)

Z
ln
φdKT (σ,πi)

φdKT (σ,πj)
= ln(φ)

∑
σ∈Sn

φdKT (σ,πi)

Z
(dKT (σ, πi)−dKT (σ, πj))

Hence,

DKL(Pφ,πi ‖ Pφ,πj) = ln(
1

φ
)Eσ∼Pφ,πi [dKT (σ, πj)− dKT (σ, πi)]

Applying the triangle inequality, we get that

dKT (σ, πj) ≤ dKT (σ, πi) + dKT (πi, πj)

But, dKT (πi, πj) = 2, which indicates the reason we chose that collection of permu-
tations. Thus,

DKL(Pφ,πi ‖ Pφ,πj) ≤ 2ln2

since we chose φ = 1
2
.

In order to lower bound the TV distance, we use the following result from Liu
and Moitra, [LM18] :

Lemma 8.5.2 For any π 6= σ ∈ Sn and any φ1, φ2 ∈ [0, 1− γ], we have that

dTV (Pφ1,π,Pφ2,σ) ≥ γ

2

Proof. Let φ2 ≥ φ1. Since π 6= σ, there is at least one pair of elements a, b that
a �π b and b �σ a. Hence, the total variation distance is at least the difference
between the probabilities that a is ranked higher than b, say this event A, that is :

dTV (Pφ1,π,Pφ2,σ) ≥ |Pφ1,π(A)− Pφ2,σ(A)| = 1

1 + φ1

− φ2

1 + φ2

≥ γ

2

where the event A = {τ : a �τ b} is an element of the σ-algebra F of our
probability space and, by definition, the TV distance equals the supremum over
the elements of F . �

Hence, it follows that :

dTV (Pφ,πi ,Pφ,πj) ≥ 1/4

Also, notice that :
ln|F| = ln(n)− ln2
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Hence, by Fano’s inequality 5.1.3 ,

Rn(F) ≥ 1

8
(1− m2ln2 + ln2

ln(n)− ln2
)

If m = o(logn), it follows that Rn(F) ≥ 1
16

and, consequently, we cannot learn
Pφ,π0 ε-close in TV distance unless m = O(logn). �

Lemma 8.5.3 A result similar to the above lemma is the following : Consider two
Mallows models M1 =M(φ1, π) and M2 =M(φ2, π) with the same central ranking

on n ≥ 2 alternatives. If |φ1 − φ2| ≤ σ2

10n3 , then dTV (M1,M2) ≤ σ.

8.6 Learning Mallows model in KL Divergence

Finally, we provide a sufficient sample complexity lower bound in order to learn
in KL divergence (and as we see in TV distance) in the setting of simple Mallows
model. We claim that if enough samples are given, where the samples complexity
depends on the permutation size n, on the accuracy parameter ε and on the confidence
parameter 1 − δ, we can learn the distribution of the generating noisy model, with
high probability/confidence 1− δ, and with small error both in KL divergence and in
TV distance.

Theorem 8.6.1 For any π0 ∈ Sn, φ ∈ [0, 1], ε, δ > 0 there exist estimators π∗, φ∗ that
can be computed in polynomial time from m i.i.d. samples ~π ∼ Pmφ,π0 such that if

m ≥ Ω( 1
ε2
log 1

δ
+ logn), then

P~π∼Pmφ,π0 [DKL(Pφ∗,π∗ ‖ Pφ,π0) ≤ ε2] ≥ 1− δ

and hence
P~π∼Pmφ,π0 [dTV (Pφ∗,π∗ ,Pφ,π0) ≤ ε] ≥ 1− δ

Firstly, it is easy to notice that the TV distance result follows from the Pinsker’s
inequality, mentined in the mathematical foundations chapter 2.2.3 . For the sake
of completeness, we remind it below :

dTV (P,Q) ≤
√

1

2
DKL(P ‖ Q)

Hence, if DKL(P ‖ Q) ≤ 2ε2, it implies that dTV (P ‖ Q) ≤ ε. This is why Pinsker’s
inequality is very significant in learning theory. Learning well in KL divergence,
implies that one also learns well in TV distance. This link is thanks to the above
inequality. At the same time, if one cannot learn in TV distance (dTV ≥ ε), then
she cannot even learn in KL divergence (DKL ≥ 2ε2). This can be applied to the

previous section 8.5 .

In order to prove theorem 8.6.1 , we have to introduce the notion of exponential
families.
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Exponential families

Let µ be a measure of Rd, h : Rd → R≥0 and T : Rd → Rk. Suppose that both
functions are measurable.

Definition 8.6.1 — Logarithmic partition function. The logarithmic partition function
with parameters h,T is a mapping αT,h : Rk → R≥0 where :

αT,h(η) = ln

∫
h(x)exp(ηTT(x))dµ(x)

The variable η is usually referred as natural parameters and is a vector in Rk. We
are interested for the space where the logarithmic partition function exists (is finite).
Thus, we define the following space :

Definition 8.6.2 — Range of natural parameters. The range of natural parameters for
the logarithmic partition function αT,h is the space :

HT,h = {η ∈ Rk : αT,h(η) <∞}

Thus, we can define a family of distributions parametrized by η. (that is why η is
called natural parameters). This kind of family will be called an exponential family.

Definition 8.6.3 — Exponential family. The exponential family E(T, h) with sufficient
statistics T, carrier measure h and natural parameters η is the family of distribu-
tions :

E(T, h) = {Pη : η ∈ HT,h}

where the probability distribution Pη has density :

pη(x) = h(x)exp(ηTT(x)− α(η))

� Example 8.1 — Single parameter Mallows Model. The Mallows φ−distribution is a
parametrized distance-based probability distribution that belongs to the family :

M1 = {Pφ,π0 : φ ∈ [0, 1], π0 ∈ Sn}

with probability mass function

pφ,π0(π) =
1

Z(φ)
φdKT (π,π0) =

1

Z(φ)
edKT (π,π0)lnφ

The parameters correspond to a two dimensional vector (φ, π0). Observe that the
family of distributions as stated is not an exponential family because of the central
ranking parameter π0.

If we fix the central ranking, then the family

M1(π0) = {Pφ : φ ∈ [0, 1]}

is an exponential family with natural parameter θ = lnφ. Then, the sufficient statistic
is T (π) = dKT (π, π0) and the logarithmic partition function is a(θ) = lnZ(eθ) =
lnZ(φ). �
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Lemma 8.6.2 Let E(T, h) be an exponential family with sufficient statistics T and
carrier measure h. For any Pη ∈ E(T, h), let Dη be the distribution of the corre-
sponding sufficient statistics T(x) when x ∼ Pη. Then for all η, η′ ∈ HT,h

dTV (Pη,Pη′) = dTV (Dη,Dη′)

&

DKL(Pη ‖ Pη′) = DKL(Dη ‖ Dη′)

Proof. We postpone the proof for the end of the chapter Proof − 8.6.2 . �

For any α, β ∈ Rd, let L(α, β) = {c ∈ Rd : c = pα+(1−p)β, p ∈ [0, 1]}. For the one
dimensional case, this space corresponds to the closed interval [min(α, β),max(α, β)]
and for d = 2, this definition corresponds to the parametric representation of a line.

Lemma 8.6.3 Let E(T, h) be an exponential family parametrized by η ∈ Rk with
sufficient statistics T and carrier measure h. Let α be the logarithmic partition
function of the family. For all η ∈ HT,h, it holds that :

Ex∼Pη [T(x)] = ∇α(η)

V arx∼Pη [T(x)] = ∇2α(η)

Ex∼Pη [exp(sTT(x))] = exp(α(η + s)− α(η)), s ∈ Rd

Also, for all η, η′ ∈ HT,h and for some ξ ∈ L(η, η′), it holds that :

DKL(Pη ‖ Pη′) = −(η′ − η)T∇α(η) + α(η′)− α(η) = (η′ − η)T∇2α(ξ)(η′ − η)

Proof. We postpone the proof for the end of the chapter Proof − 8.6.3 �

We continue with the proof of the main theorem.

Proof. 1. Observe that we can use O(log n
δ
) samples to learn the central ranking π0.

2. We remind that φ is the true unknown dispersion, that we want to estimate.
Once we know the central ranking, we can assume that our samples are coming from
the distribution Pφ and that we want to learn Pφ in KL divergence. This is due to

the lemma 7.5.2

3. Applying the lemma 8.6.2 , we can assume sample access to the distribution
Dφ of the sufficient statistics of Pφ.

4. We have that Dφ is a distribution in a single parameter exponential family
with natural parameter θ = lnφ. Let α be the logarithmic partition function of the
family.
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5. From lemma 8.6.3 , the KL divergence between a distributionDφ′ parametrized
by a dispersion parameter φ′ and the true distribution Dφ equals :

DKL(Dφ′ ‖ Dφ) = −(θ′ − θ)α̇(θ) + α(θ′)− α(θ)

This KL divergence can be seen as a function of θ′. Consider the function

f(x) = −(x− θ)α̇(θ) + α(x)− α(θ)

6. Analyzing the function f, it is easy to see that f is convex with minimum at
x = θ. Hence, f ↓ {x ≤ θ} and f ↑ {x ≥ θ}.

7. Note that α(θ) = lnZ(eθ) = lnZ(φ) ≥ 0, ∀θ ∈ (−∞, 0], since Z(φ) ≥ 1. Then
it is easy to observe that :

lim
x→−∞

f(x) = +∞ = lim
φ′→0

DKL(Dφ′ ‖ Dφ)

and

lim
φ′→∞

DKL(Dφ′ ‖ Dφ) = +∞

when φ <∞.
8. Define the set

Q = {θ ∈ R : DKL(Dφ′ ‖ Dφ) ≤ ε}

Since f is convex, the space Q is an interval s.t. θ = lnφ ∈ Q. Define

θ− = infQ, θ+ = supQ

Because of the limits observed before, Q is a closed interval with Q = [θ−, θ+] ⊂
(−∞,+∞). Define φ{−,+} = exp(θ{−,+}).

9. From the above, we have that :

DKL(Dφ{−,+} ‖ Dφ) = ε

10. Once the central ranking is known the distribution is an exponential family
and let T (π) be its sufficient statistics. From the lemma 8.6.3 , we know that h(θ) =
Eπ∼Pφ′,π0 [T (π)] = α̇(θ). Thus, h is an increasing function with respect to θ. and the

better we estimate Eπ∼Pφ′,π0 [T (π)], the better we estimate φ. So, the estimation of the

true parameter θ = lnφ is equivalent to the estimation of the image of the function
h.

11. Since h is injective, given any real number r in the image of h, we can find θ∗

s.t. |θ(r)− θ∗| ≤ ε, where θ(r) is well defined from the equation h(θ(r)) = r.
12. Suppose that we sample ~π ∼ Pmφ,π0 . In order to get an estimation for the true

θ, it suffices to find a real value r(~π) s.t.

h(θ(r(~π))) = r(~π) ∧ |θ − θ(r(~π))| ≤ ε.
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13. We have to choose an estimator for r. Notive that h(θ) is expressed as an
expected value. Thus, it seems logical to choose

r =
1

m

m∑
i=1

Ti(πi)

We need to bound the probability that this estimation is far from the expected value
of the sufficient statistic T when drawing a random sample, that is :

p = P~π∼Pmφ,π0 [
1

m

m∑
i=1

Ti(πi) ≥ Eπ∼Pφ′,π0 [T (π)]]

We will try to prove the ≥ case. The case ≤ can be handled similarly.
14. We will use the Markov’s inequality to upper bound p. Choose s > 0. Then,

we get that :

p = P~π∼Pmφ,π0 [exp(s·
m∑
i=1

Ti(πi)) ≥ exp(s·m·Eπ∼Pφ′,π0 [T (π)])] ≤
Eπi∼Pφ,π0 [exp(s ·

∑m
i=1 Ti(πi))]

exp(s ·m · Eπ∼Pφ′,π0 [T (π)])

By the independence of our samples, we have that :

p ≤ (
Eσ∼Pφ,π0 [exp(s · T (σ))]

exp(s · Eπ∼Pφ′,π0 [T (π)])
)m

From lemma 8.6.3 , the RHS becomes :

p ≤ exp(−m(sα̇(φ′)− α(φ+ s) + α(φ)))

Now, we have to find the minimum value for the RHS by seeing it as a function
of s. It is not difficult to see that we get the optimal bound for s = φ′ − φ. Hence,
again by lemma 8.6.3 ,

p ≤ exp(−m ·DKL(Pφ′ ‖ Pφ))

15. Thus, for any upper and lower estimations θ− and θ+ ≤ 0,

P~π∼Pmθ,π0 [r(~π) /∈ [h(θ−), h(θ+)]] ≤ 2exp(−m min
θ∗∈{θ−,θ+}

DKL(Pθ∗ ‖ Pθ))

or equivalently, by the monotonicity of h,

P~π∼Pmθ,π0 [θ(r(~π)) /∈ [θ−, θ+]] ≤ 2exp(−m min
θ∗∈{θ−,θ+}

DKL(Pθ∗ ‖ Pθ))

16. From step 9,

P~π∼Pmθ,π0 [θ(r(~π)) /∈ Q] ≤ 2exp(−m · ε)
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Now, we pick the estimation φ(r(~π)) = exp(θ(r(~π))) and we get that :

P~π∼Pmθ,π0 [DKL(Dφ(r(~π)) ‖ Dφ) ≥ ε] ≤ 2exp(−m · ε)

and going back to the distribution P :

P~π∼Pmθ,π0 [DKL(Pφ(r(~π)),π0 ‖ Pφ,π0) ≥ ε] ≤ 2exp(−m · ε)

Hence, we want 2exp(−m · ε) ≤ δ and we solve for the number of samples m. To
that result, we have to add the samples we need to learn the central ranking.

By reversing the result, we get that with m ≥ Ω( 1
ε2
log 1

δ
+ logn), we get the desired

bound :
P~π∼Pmφ,π0 [DKL(Pφ∗,π∗ ‖ Pφ,π0) ≤ ε2] ≥ 1− δ

�

8.7 Appendix

Let E(T, h) be an exponential family with sufficient statistics T and carrier mea-
sure h. For any Pη ∈ E(T, h), let Dη be the distribution of the corresponding
sufficient statistics T(x) when x ∼ Pη. Then for all η, η′ ∈ HT,h

dTV (Pη,Pη′) = dTV (Dη,Dη′)

&

DKL(Pη ‖ Pη′) = DKL(Dη ‖ Dη′)

Proof. We will only prove for the TV distance for the discrete case. The proof for
the KL divergence and for continuous distributions is similar. Let S be the support
of the exponential family, let ST = {y|∃x ∈ S : T(x) = y} be the range of sufficient
statistics T and Ny =

∑
x∈S 1{T(x) = y}.

Then,

dTV (Pη,Pη′) =
1

2

∑
x∈S

|pη(x)−pη′(x)| = 1

2

∑
x∈S

|h(x)exp(ηTT(x)−α(η))−h(x)exp(η′TT(x)−α(η′))|

The summation over the support is equivalent to the following :

dTV (Pη,Pη′) =
1

2

∑
y∈ST

∑
x:T(x)=y

|h(x)exp(ηTT(x)− α(η))− h(x)exp(η′TT(x)− α(η′))|

=
1

2

∑
y∈ST

Ny|h(x)exp(ηTT(x)− α(η))− h(x)exp(η′TT(x)− α(η′))| =

=
1

2

∑
y∈ST

|Nyh(x)exp(ηTT(x)− α(η))−Nyh(x)exp(η′TT(x)− α(η′))|
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But this is exactly the TV distance of the sufficient statistics distributions. Thus,

dTV (Pη,Pη′) =
1

2

∑
y∈ST

|dη(y)− dη′(y)| = dTV (Dη,Dη′).

�

Let E(T, h) be an exponential family parametrized by η ∈ Rk with sufficient statis-
tics T and carrier measure h. Let α be the logarithmic partition function of the
family. For all η ∈ HT,h, it holds that :

Ex∼Pη [T(x)] = ∇α(η) (8.5)

Also, for all η, η′ ∈ HT,h and for some ξ ∈ L(η, η′), it holds that :

DKL(Pη ‖ Pη′) = −(η′−η)T∇α(η)+α(η′)−α(η) = (η′−η)T∇2α(ξ)(η′−η) (8.6)

Proof. The log-partition function is defined as :

α(η) = log

∫
h(x)exp(ηTT(x))dµ(x)

In the range of natural parameters, g(η) = eα(η) is continuous and has continuous
derivatives of all orders, which can be computed under the integration sign. Let
η ∈ Rk. Then,

eα(η)∂α(η)

∂ηj
=

∫
∂

∂ηj
h(x)exp[

k∑
i=1

ηiTi(x)]dµ(x) =

∫
Tj(x)h(x)exp[

k∑
i=1

ηiTi(x)]dµ(x)

But, we have that pη(x) = h(x)exp(ηTT(x)− α(η)). Thus, for a single dimension,

∂α(η)

∂ηj
=

∫
Tj(x)pη(x)dµ(x) = Ex∼Pη [Tj(x)]

So,
∇α(η) = Ex∼Pη [T(x)]

For equation (8.6), one has :

DKL(Pη ‖ Pη′) =

∫
pη(x)ln

pη(x)

pη′(x)
dµ(x)

=

∫
pη(x)((η − η′)TT(x) + α(η′)− α(η))dµ(x) = (η − η′)TEx∼PηT(x) + α(η′)− α(η)

But, from (8.5), DKL(Pη ‖ Pη′) = −(η′ − η)T∇α(η) + α(η′)− α(η).
From the multidimensional Taylor’s theorem, there is some ξ ∈ L(η, η′) s.t.

DKL(Pη ‖ Pη′) = (η′ − η)T∇2α(ξ)(η′ − η)

which completes the proof. �





9. Finding the maximum likelihood ranking

In this chapter, we will ignore the sample complexity and focus on the idea of solving
the maximum likelihood ranking estimator problem. That is, given r samples drawn
from the hidden central ranking, we have to find which element from the symmetric
group maximizes the probability of being given those r permutations. We will refer
to the solution of the MLE as the maximum likelihood permutation.

9.1 The goal, a technique and a promise

Goal

Suppose that we are given r i.i.d. samples drawn from a Mallows model. Our
goal is to find the maximum likelihood permutation π̂∗ given the samples observed,
that is :

π̂∗ = argmax
π∗

r∏
i=1

P[πi|π∗] = argmax
π∗

r∏
i=1

e−βdKT (πi,π
∗)

Z(β)
(9.1)

But, thanks to the exponential structure of the model, the above product can be
converted into a sum :

π̂∗ = argmax
π∗

r∏
i=1

e−βdKT (πi,π
∗)

Z(β)
= argmax

π∗

1

Z(β)r
exp(−β ·

r∑
i=1

dKT (πi, π
∗))

Firstly, we can just ignore the normalization constant for the optimization prob-
lem. Also, using the fact that x 7→ lnx is an increasing function, the problem reduces
to the following :

π̂∗ = argmax
π∗

lne−β·
∑r
i=1 dKT (πi,π

∗) = argmax
π∗

(−β ·
r∑
i=1

dKT (πi, π
∗))
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Hence, since β > 0,

π̂∗ = argmin
π∗

r∑
i=1

dKT (πi, π
∗) (9.2)

The Kemeny’s voting rule is the Maximum Likelihood Estimator π̂∗ for the un-
derlying hidden truth of the Mallows model.

Technique

The problem of finding the MLE given r samples is reduced to the one of finding
the median for r permutations in the metric space (Sn, dKT ). One could think ge-
ometrically that the permutations create a polytope inside that metric space. It is
well known that we cannot attack this problem in a straightforward way since the

problem is NP-hard, as mentioned in a previous chapter NP − hard−Kemeny .

Of course, the solution to the problem will be one of the n! permutations in the sym-
metric group. We have to choose the correct one. Obviously, an exhaustive search
approach is not a good choice since, besides the computational inefficiency, we do
not exploit the knowledge offered from the r samples. It would be a good idea to
somehow deduce a ranking from these r samples that will be ’close’ to the one that
we are looking for. An obvious idea would be to aggregate those rankings. This
is exactly the technique that we will use. Specifically, we are going to create the
so-called average permutation π̄, that will map each alternative to the position she
appeared on average in these r samples. We will break ties uniformly. We will show
that this average permutation is not completely bad. Afterwards, the idea is that we
will find a value ρ and create a ball B(π̄, ρ) of center π̄ and radius ρ in the metric
space (Sn, dKT ). This ball will contain with high probability the maximum likelihood
permutation. Our exhaustive search will be executed only inside this ball, whose size
will be significantly smaller than the order of n! and the search will be quite fast.

Figure 9.1: Slicing the solution space of the S3−permutohedron with a ball B(π, ρ).

For instance, in order to visualize the above technique, if we sample rankings
of size 3, the permutohedron will be the 2-dimensional convex hull of the 6 points.
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Suppose that the average permutation is the ranking (213). Then, the solution space
will be reduced to the collection of rankings only inside the circle with center the
average ranking and appropriate radius ρ, that will be explained in the next sections.
The visualization is provided in the above figure.

Promise

The main result, trying to solve the Mallows Reconstruction Problem, is the
following. One can compute the maximum likelihood permutation, with high proba-
bility, in time T (n), where n is the size of the permutations.

Theorem 9.1.1 There exists a randomized algorithm such that if {πi}ri=1 be rankings
on n elements independently generated by Mallows model with parameter β > 0,
and let α > 0. Then a maximum probability order πm can be computed in time :

T (n) = O(n1+O( α
βr

)2
O(α

β
+ 1
β2

)
log2n)

and error probability < n−α.

The parameter α controls the error probability. As α increases, the error proba-
bility falls, and, consequently, the time T (n) increases.

As r grows, the algorithm tends to almost linear. This remarkably different than
anything one sees in other fields of algorithms. In classical algorithmic theory, as the
input grows, the algorithm usually becomes slower. Now, in the theoretical machine
learning concept, as the input grows and, thus, the provided information is larger,
one can note that the algorithm accelerates as the number of samples grows.

In the next section, we will prove that one can find the MLE in a computationally
efficient way. Then, another question naturally arises.

Suppose that we have found the MLE ranking π̂∗. How close it will be to the original
ranking π0?

9.2 Mallows’ Reconstruction Problem

We will begin with some notation :
• Each permutation has size n and the set of elements of the permutation A is

isomorphic to [n].
• π0 is the initial hidden ranking and β = ln 1

φ
, where φ is the (unknown) disper-

sion.
• {πi}ri=1 are the r noisy samples drawn from the Mallows model M(π0, β) with

distribution Pπ0,β
• π = Avg(π) denotes the ’average’ ranking, which we will explain later.
• π̂∗ is the MLE ranking we want to find.
Under the Mallows probabilistic model M(π0, β), the probability of drawing the

ranking π equals :

P[π|π0] =
e−βdKT (π,π0)

Z(β)
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9.2.1 Computing the MLE ordering

As a first step, we show that, under this model, the locations of individual elements
j ∈ [n] are distributed geometrically. That is, the probability that the element j is
transposed ’far away’ from its original positions decreases exponentially, as the length
of the transposition grows linearly.

Thanks to the relabeling property discussed in the introductory chapter, one can
assume that π0 = id.

Lemma 9.2.1 Suppose that π0 = id and let k ∈ [n]. Obviously, π0(k) = k. Then,
for a ranking π ∼ Pπ0,β, we have that :

P[|π(k)− k| ≥ i] < 2
e−βi

(1− e−β)
,∀i.

Proof. From the RIM process, it is already known that π can be sampled by inserting
the elements 1, ..., n into the ordering one-by-one, each time conditioning on the order
so far. Hence, for the kth element, suppose we have sampled the relative ranking of
the first (k − 1) alternatives under π and we want to insert k. By the definition of
the Mallows model, the probability that k is mapped to position k− i is bounded by
e−βi. This indicates the truncated geometric distribution we have already mentioned.
During the insertion of the elements k+ 1, ..., n, the location of k may only increase.
Hence,

P[π(k) ≤ k − i] <
∞∑
j=i

e−βj =
e−βi

1− e−β

Hence, by symmetry of the dislocation, we get the factor 2 for the wanted upper
bound. �

Secondly, we construct the ’average’ ranking given r samples and create a similar
lemma for the locations of the individual elements of the average permutation.

Suppose that the permutations π1, ..., πr ∼ Prπ0,β. Consider k ∈ [n] and let π0 = id.

Let π(k) be the average index of k under the samples drawn, that is :

π(k) =
1

r

r∑
i=1

πi(k).

Lemma 9.2.2 Suppose that π0 = id and let k ∈ [n]. Then, for the average ranking
π, constructed by the aggregation of r samples π1, ..., πr ∼ Prπ0,β, we have that :

P[|π(k)− k| ≥ i] ≤ 2(
(5i+ 1)e−βi

1− e−β
)r,∀i.

Proof. We will study the item k. In each one of the r samples, suppose that its
dislocation is at most di, for i ∈ [r]. We choose di ≥ 0. Consider the dislocation
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vector ~d = (d1, ..., dr). We consider the event E(~d) that is πi(k) ≤ k − di, for i ∈ [r].
From the previous lemma, we get that :

P[E(~d)] ≤ exp(−β
∑r

i=1 di)

(1− e−β)r

We have that, for the event Di = [π(k) ≤ k − i] :

Di ⊂
⋃

∑r
j=1 dj=ri

E(~d)⇒ P[π(k) ≤ k − i] < P[
⋃

∑r
j=1 dj=ri

E(~d)]

By union bound, we get that :

P[π(k) ≤ k − i] < #{~d :
r∑
j=1

dj = ri} e−βri

(1− e−β)r

But, the cardinality of this set is exactly the number of ways to place ri balls into r
bins, that equals

(
ri+r−1
r−1

)
. Hence,

P[π(k) ≤ k − i] <
(
ri+ r − 1

r − 1

)
e−βri

(1− e−β)r

and, using a known binomial coefficient inequality, we get that :

P[π(k) ≤ k − i] < (5i+ 1)r
e−βri

(1− e−β)r

Working for the symmetric event D′i = [π(k) ≥ k+ i], we get the desired 2 factor and
the desired concentration bound for the average ranking. �

We assume that r is fixed. From the above lemma, we can easily get the follow-
ing result, that bounds the probability of the ’bad’ event, that is that it will exist
some element k that, in the average ranking, it will make a jump of length at least
Θ(logn). Thus, with high probability, each element in the average ranking will be
Θ(logn)−close to its original position.

Lemma 9.2.3 Let π0 = id and let α > 0. Fix the number of samples r. Then, for
sufficiently large n,

P[∃k : |π(k)− k| ≥ α + 2

βr
logn] < n−α (9.3)

Note that the error margin for each element decreases proportionally to r.
We have shown that, with high probability, the average ranking will be close to

the original ranking.

Result 1 : The average ranking π is more likely Θ(logn)−close to the original π0.
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We continue by showing that the maximum likelihood ranking is close to the
original. Suppose that we would be able to prove that, with high probability, the
MLE π̄∗ is Θ(logn)−close to the original π0. Then, it would be Θ(logn)−close to the
average permutation too. This is our goal and we will try to prove it afterwards. A
good question would be why prove that? How this will help find the MLE? The idea
is that we could get the MLE ranking from the average ranking, using as a black
box a sorting algorithm. Specifically, there is an dynamic programming algorithm,
that given a pre-sorted ranking, can sort it fast to a desired one. The notion of
pre-sorting corresponds to the idea that each element in the given ranking will be at
most k positions away from the correct position. Note that, if k = Θ(logn), we could
say that the average ranking is a pre-sorted ranking for the MLE goal permutation.
This idea is not yet completely clear, but it will be soon. But it must be clear that
we should prove that the maximum likelihood ranking is close to the original, and,
hence, to the average one.

Before proceeding we introduce some notation. We define the score of a permu-
tation as the value it attains when used on the MLE, as follows :

Definition 9.2.1 — Ranking score metric. The Mallows reconstruction problem can be
restated as follows :

π̂∗ = argmin
π∗

r∑
i=1

dKT (πi, π
∗) = argmin

π∗

∑
i<π∗j

|{k : πk(i) > πk(j)}| (9.4)

Thus, we try to minimize the pairwise disagreements. We will denote with :

q(i < j) = |{k : πk(i) < πk(j)}|

Then, MRP is equivalent to :

π̂∗ = argmax
π∗

Score(π∗) = argmax
π∗

s(π∗) = argmax
π∗

∑
i<π∗j

q(i < j) (9.5)

Hence, we try to maximize the pairwise agreements.

For simplicity, we will let π0 = id and let

L = max(6
α + 2

βr
logn, 6

α + 2 + 1
β

β
)

Intuitively, L controls the margin that we proved before for the length of the jump of
an element under the average permutation π. Also, consider a error parameter a > 0.

Lemma 9.2.4 Except with probability n−a we have that for any i, j s.t. j − i ≥ L,

q(i < j) >
2r

3
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that is, less than 1/3 of the permutations π1, ..., πr order i and j incorrectly.

Proof. Suppose that j − i ≥ L. We study the probability that a sample ranking
πv, v ∈ [r] swaps this pair.

P[j �πv i] = P[πv(j) ≤ πv(i)]

Now, notice that in order to swap these elements, it must hold either the event
[πv(j) ≤ j − L

2
] or the event [πv(i) ≥ i + L

2
]. If neither of them holds, the swap is

impossible. By union bound, we get :

P[j �πv i] ≤ P[πv(j) ≤ j − L

2
] + P[πv(i) ≥ i+

L

2
]

By the lemma 9.2.1 , we can upper bound each term :

P[j �πv i] ≤ 2
e−β

L
2

(1− e−β)
≤ n−3(a+1)/r

for sufficiently large n. There are two cases :
• If r ≤ logn, the probability of having at least r

3
samples having swapped i, j is

bounded by n−(a+1)2r < n−a.
• If r > logn, we have that : P[j �πv i] ≤ n−3(a+1) and, hence, the probability

of having at least r
3

samples having swapped i, j is bounded by n−3(a+1) r
3 2r <

e−ar < n−a.
�

Now, we are capable of analyzing the proximity of the MLE π̂∗ to the original
ranking π0.

Lemma 9.2.5 Except with probability < 2n−a, for any optimal π̂∗ and for all k, we
have

|π̂∗(k)− π0(k)| ≤ 32L

Proof. Let p0 = id. Firstly, we make the assumption that our samples {πi}ri=1 satisfy
the previous lemma with probability< n−a. Suppose that ∃k : |π̂∗(k)−k| = M > 32L.
We will get a contradiction.

Without loss of generality, let π̂∗(k) = k + M. Our goal is to find a permutation
that scores higher than the MLE optimal and, thus, get a contradiction.

Let T ≥ M/4 − L > 7L. We will show that there must be at least T i’s from
below k that are mapped above the k-th position by π̂∗. That is :

|i : i < k ∩ π̂∗(i) ≥ k| ≥ T

Define the set of items that are mapped between position k and k + M by the
MLE optimal, S := {j : k ≤ π̂∗(j) < k +M}.

It must hold : ∑
j∈S

(q(j < k)− q(j > k)) > 0 (9.6)
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Otherwise, the permutation that maps k to k scores better.
Now, we partition S into three disjoint subsets S = S1 ∪ S2 ∪ S3, where :
• S1 → (j < k), |S1| < T
• S2 → (k < j < k + L), |S2| < L
• S3 → (j ≥ k + L)
Now, we study the above equation (9.6), by breaking the sum into sums over the

three partitions :∑
j∈S

(q(j < k)− q(j > k)) =
∑

j∈S1∪S2∪S3

(q(j < k)− q(j > k))

< r|S1|+ r|S2| −
r

3
|S3| < r(T + L)− r

3
(M − T − L)⇒ T > 7L

So, we get the desired :

|i : i < k ∩ π̂∗(i) ≥ k| ≥ T ≥M/4− L > 7L

So, there must exist at least T i’s with i ≥ k and π̂∗(i) < k. We, then, define the
sets T1 = {i < k : π̂∗(i) ≥ k} and T2 = {i ≥ k : π̂∗(i) < k}.

We now are able to create a ranking πm obtained by the OPT by concatenating
its restriction to {1, ..., k − 1} with its restriction to {k, ..., n}. Next, we count the
pairs i < j on which the two permutations disagree.
• Case A : |i − j| < L. To get a disagreement, either i or j has to belong to
T1∪T2 and in each case we have at most L choice for the other. So, |P1| < 2TL.
• Case B : |i − j| ≥ L. Note that q(i < j) > 2r/3. Each t ∈ T1 participated in

such a pair with each t′ ∈ T2 except |t− t′| < L. Thus, |P2| ≥ T (T − L).
Finally, we show that πm will score higher than the MLE optimal.

s(πm)− s(π̂∗) =
∑
P1

(q(i < j)− q(j < i))−
∑
P2

(q(i < j)− q(j < i)) >

> (−r)|P1|+ (r/3)|P2| ≥ (−r)(2TL) + (r/3)T (T − L)

But, we have that T > 7L and, hence, we get that :

s(πm) > s(π̂∗)

that is a contradiction. �

Result 2 : The MLE ranking π̂∗ is more likely Θ(logn)−close to the original π0.

Thus, combining results 1 and 2, one gets that :

Result 3 : The MLE ranking π̂∗ is, with high probability, Θ(logn)−close to the
average ranking π.
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Now, we are able to perform the pre-sorting trick that we mentioned before.
Our goal is to find the MLE ranking. We know the average permutation π and,
additionally, we proved something remarkably useful. We have shown that these two
permutations are close. That is we can create a ball B(π̄, ρ) of center π and radius ρ
in the metric space (Sn, dKT ). We will pick radius ρ = Θ(logn). This ball will contain
with high probability the maximum likelihood permutation π̄∗, that we want to find.

Figure 9.2: Ball B(π, ρ) reducing the solution space of the S4-permutohedron.

A 3D visualization of this concept is provided in the above figure. Also, we provide
a layout of the figure, that is a projections to the xy plane.

Figure 9.3: xy-projection of the ball B(π, ρ) and of the S4-permutohedron.
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Now, we will execute an exhaustive search only inside this ball. Our search will try
to maximize the score function defined above. The permutation that maximizes the
score is obviously the requested MLE ranking. Thus, we design a sorting algorithm,
based on dynamic programming that exploits Result 3.

Sorting an almost sorted list

Lemma 9.2.6 Let [n] be a set of n elements together with a scoring function q.
Suppose that we are given that there is an optimal ordering σ(1), ..., σ(n), that
maximizes the score s(σ) =

∑
i<σj

q(i < j), such that |σ(i)− i| ≤ k for all i. Then

we can find such an optimal σ in time O(n · k2 · 26k).

Remark 9.2.7 A brute force approach over all possible solutions would require time
kΘ(n), whereas a dynamic programming approach reduces the time complexity.
Notice that when k is small (o(logn)), the algorithm tends to be linear.

Proof. Let i < j be any pair of indices. Then, the optimal ranking σ maps the
interval [i, j] into the elements I = σ([i, j]) = {σ(i), ..., σ(j)}. This set of elements,
by the assumption that |σ(i)− i| ≤ k, satisfies the following subset coverings :

I− = [i+ k, j − k] ⊂ I ⊂ I+ = [i− k, j + k]

All the elements inside I− are obligated to be contained in I and each element of
[i, j] is mapped at most k positions apart by the optimal ordering.

By these two conditions, the set SI = {σ(i), ..., σ(j)} contains j − i+ 1 elements.
Thus, a possible selection of such a set requires choosing j − i + 1 containing the
elements of I− and be contained in I+. Since the set I− contains j − i + 1 − 2k
elements, it remains to pick 2k elements from the collection I+ \ I− = [i − k, ..., i +
k−1]∪ [j−k+1, ..., j+k], which contains 4k elements. Thus, the number of possible
SI ’s is at most 24k.

Let I be an interval and denote by LH(I) and RH(I) the left and right half of
the interval. Without loss of generality, we choose the number of elements be n = 2m

for some m ∈ N. Let I0 denote the interval containing all the elements, I1 = LH(I0),
I2 = RH(I0), I3 = LH(I1), ..., In−2 = I2m−2 = RH(I2m−1−2). In total, we have
n−1 = 2m−1 intervals, where there are 2m−1 intervals of length 2, ..., 2m−j of length
2j and 1 of length 2m = n = |I0|.

For each such interval It = [i..j], let St be the possible sets of the elements
Jt = [σ(i), ..., σ(j)]. We will use dynamic programming to store an optimal ranking
σ′ of each such Jt ∈ SI . In total, the number of Jt’s is at most (#It) · (#St) < n · 24k.
The optimal ordering satisfies the assumption : |σ′(i) − i| ≤ k for all i. Hence, the
score of an optimal ranking σ′ and a processed interval Jt :

s(Jt, σ
′) =

∑
σ′(i′)<σ′(j′)

q(i′ < j′) =
∑

σ′(i′)<σ′(j′),i′<j′<i′+2k

q(i′ < j′) +
∑

j′≥i′+2k

q(i′ < j′)
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Now, notice, from the optimality of σ′, that the second term in the RHS is inde-
pendent of σ′. Thus, we can define a score s′ that is the sum over pairs i′, j′ ∈ Jt that
are less than 2k apart. These are the only pairs that may get swapped. Hence,

s(Jt, σ
′) = s′(Jt, σ

′) +
∑

j′≥i′+2k

q(i′ < j′)⇒ max
σ′

s(Jt, σ
′) = max

σ′
s′(Jt, σ

′)

We apply the dynamic programming technique from t = n−1→ t = 0, producing
and storing an optimal ordering for each possible Jt.

1. If n − 1 ≤ t ≤ n
2
, the length of Jt is 2 and, thus, the optimal ordering can be

found in O(1) steps.
2. If t < n

2
, we have to find an optimal ordering of a given Jt = [i, i + 2s − 1]

for some appropriate s > 0. In order to achieve this, we study the two halves
LH(Jt) and RH(Jt) and sort them independently.
• For the LH(Jt) : It must contain all the elements in Jt that come from

[1, ..., i + s − 1 − k] and must be contained in [1, ..., i + s − 1 + k]. Thus,
there are at most 22k choice for the elements of LH(Jt).
• The choice of the elements of LH(Jt) determined uniquely the elements of
RH(Jt).
• For each of the 22k choices, we search for an optimal ordering for the two

halves, that we have already stored in the dynamic programming table.
From the possible choices for the left half, we pick the best one. This is
done by recomputing the score s′ for the joined interval and takes at most
O(k2) time. The only new pairs (i, j) : |i− j| < 2k are along the boundary
between LH(Jt) and RH(Jt).

Hence, the total cost is :

logn∑
d=1

∑
j:|Ij |=d

costDP (Ij) =

logn∑
d=1

O(
n · 24k

2d
· 22kk2) = O(n · k2 · 26k)

�

Sorting the almost sorted average ranking π

We have shown that the known average ranking is pointwise close with k = 33L
to the MLE ranking, with high probability. Thus, we can apply the pre-sorting
algorithm presented above for appropriate k and get the following theorem.

Theorem 9.2.8 There exists a randomized algorithm such that if {πi}ri=1 be rankings
on n elements independently generated by Mallow’s model with parameter β > 0,
and let α > 0. Then a maximum probability order πm can be computed in time :

T (n) = O(n1+O( α
βr

)2
O(α

β
+ 1
β2

)
log2n)

and error probability < n−α.
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9.2.2 Proximity between the MLE ordering and the original ranking

Right now, we have fulfilled half of our promises. We have shown that we can find the
MLE computationally fast via a pre-sorting technique on the average permutation.
But, we have talked nothing about how close the MLE is compared to the central
ranking π0. This is our final goal.
→ We have to prove that the l1 norm between the MLE ranking and the original

permutation is of order n. The l1 norm corresponds to the so-called Average
proximity.

→ We have to prove that the l∞ norm between the MLE ranking and the original
permutation is of order logn. The l∞ norm corresponds to the so-called Pointwise
proximity.

Equivalent setting

In order to prove the the two results, we need to modify our setting by viewing our
samples as noisy comparisons. Suppose there is a hidden ordering π0 on n alternatives.
Specifically, the input is no more an ordering of n alternatives but a collection of

(
n
2

)
queries q(i, j) for i < j. These queries are expressed as binary signals such that, for
a constant λ > 0,

q(i, j) = {+,−} with probability (
1

2
+ λ) if {π0(i) > π0(j), π0(i) < π0(j)}, (9.7)

that is, the probability the signal has the correct sign is higher than 50%. It is
assumed that the signals are independent. The parameter λ controls the bias of
our noisy model. The higher the value of λ, the more robust to the true order our
signals are. For each pair, the correct order is observed with probability greater
than 1

2
. This idea is completely similar to the directed graph idea presented in the

Condorcet-Mallows model 7.2 .
For each unordered pair {x, y}, we receive a signal sx,y = sy,x. The signal distri-

bution D for the pair {x, y} depends on how these alternatives are ordered in the
true hidden ranking π0. Thus,

D = 1(π0(x) < π0(y))Dx<y + 1(π0(y) < π0(x))Dy<x

Signals are independent conditioned on the true order. The mass that the distri-
bution D is assigned to the signal sx,y depends only on the position of x, y in the true
ranking. Choose a set of pair of indices I = {(i1, j1), ..., (i|I|, j|I|)} such that (x, y) /∈ I
and define the |I|-dimensional signal vector ~s = (si1,j1 , ..., si|I|,j|I|). Then,

D[sx,y = ∗|π0, ~s] = D[sx,y = ∗|1(π0(x) < π0(y))]
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Definition 9.2.2 — Noisy Signal Aggregation (NSA). Given the signals si,j for all pairs
{i, j} ∈ [n], the NSA is the maximum likelihood permutation π̂∗, assuming uniform
prior. Thus,

π̂∗ = argmax
π∗

P[{si,j}|π∗] =
∏

i,j:π∗(i)<π∗(j)

Di<j(si,j)

We have already defined the mass assigned by the signal distribution. We define
the signal ratio, assuming uniform prior, for the signal sx,y and a ranking σ

Dx<y(sx,y)

Dy<x(sx,y)
=

P[x <σ y|sx,y]
P[y <σ x|sx,y]

Using this ratio, we can define the score q(x < y) with the decision to rank x to
below y as the log-ratio :

q(x < y) = log
Dx<y(sx,y)

Dy<x(sx,y)

Note that q(x < y) = −q(y < x). Observe that this log-ratio reminds the KL

divergence and thus by Gibbs’ inequality 4.34 , we have that

E[q(x < y)|σ(x) < σ(y)] ≥ 0

Definition 9.2.3 — From NSA to Score. The NSA is equivalent to the problem of
finding a ranking σ such that

σ = argmax
σ

sq(σ) = argmax
σ

∑
x,y:σ(x)<σ(y)

q(x < y) (9.8)

Main result

The main task it remains to point out is that the MLE optimal ranking and the true
ranking are close in two norms, the l1 and the l∞. The following result holds.

Let π0 be the true hidden ranking. Consider the NSA problem on biased signals
parametrized by a bias λ > 0 and let π̂∗ be any MLE optimal order. Let α > 0 be a
confidence parameter. Then, there exist two constants ci(α, λ) for i = 1, 2 such that
except with probability O(n−α) the following inequalities hold :

||π̂∗ − π0||1 =
n∑
i=1

|π̂∗(i)− π0(i)| ≤ c1n (9.9)

||π̂∗ − π0||∞ = max
i
|π̂∗(i)− π0(i)| ≤ c2logn (9.10)

Hence, we can see that the MLE ranking with high probability will be close to
the central ranking. The proofs of the two inequalities can be found in [BM09].





10. k− Set Sampling

10.1 Setting & Idea

In this thesis, we have analyzed in depth the field of rankings learning using noisy sam-
ples. This well-studied setting implies that one is given (independent) samples that
are permutations of n alternatives, generated by a distribution, which corresponds to
a noisy probabilistic model such as Mallows Model (MM) and Plackett-Luce Model
(PL). Afterwards, one could ask questions concerning the sample complexity to learn
the parameters of the model, the ability to learn the generating distributions in vari-
ous f -divergence metrics (TV distance, KL divergence) and the concept of maximum
likelihood estimation.

In our work, we chose to reduce the information provided by our samples and try
to answer similar questions. This information reduction idea will be clear shortly.
Firstly, we will introduce some helpful notation and, afterwards, we will present our
results.

k-Set Sampling

Let A = {a1, ..., an} be the set of our alternatives. We are now ready to explain how
to choose to reduce the information provided by our samples. We will use the single
parameter Mallows Model as an example. Our main question remains to learn the
central ranking π0 in L(A). Our samples are still generated by a Mallows distribution
M1(π0, φ), but we do not have full access to the permutation sampled.

Our sampling will be parameterized by a natural number 0 < k < n. In the
previous chapter, we were observing a ranking πj ∼M1(π0, φ) of the n alternatives.
Now, we again sample πj = ai1 � ai2 � ...aik � aik+1

� ...ain but we cannot access the
sampled ranking. We can only access the k top ranked alternatives in an unordered
way, that is, our sample is a set Sj of size k with the top k alternatives :

Sj = {ai1 , ai2 , ..., aik}
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The study of top k lists was already researched in various works such as [FS03].
The innovative part appears in the set theoretic version of our sampling.

Thus, our samples will be the sets S1, ..., Sr and, for instance, we question whether
we can learn what the central ranking π0 is.

A real-life application of this sampling method is the classical voting (with a cross
† next to the names) of our preferred k out of n alternatives in a voting procedure.
Each vote is just a set of our k top preferred alternatives, without specifying the
order of our preferences.

An important remark

The way we have converted the nature of our samples is crucial. In the classical
setting, one can easily observe that both input and output live in the symmetric group
Sn. They are both permutations. However, in our setting, we have not respected
this property. The input consists of a collection of sets and the desired output is
a permutation. This problem can be generalized to the quite interesting problem
where the input and the output live in different metric spaces and one should create
an interconnection between these spaces.

10.2 Notation

Let A = {a1, ..., an} be the set of our alternatives. A ranking π ∈ L(A) will be a
bijection from A to itself.

We will denote with r the number of samples drawn from a distribution. Each
sample will be a set S of size k and will be generated by a distribution SkPφ,π0 ,
where firstly we draw a sample ranking from the distribution Pφ,π0 and, afterwards,
applying a k-set filtering Sk.

In the next section, we will work with two probability measures. We will denote
with PMM the distribution of the single parameter Mallows modelM1(π0, φ) and with
PPL the distribution of the Plackett-Luce model. We have to expand the definition
of these two measures from permutations to sets. Before that, we introduce the
following notation. Each sample is a set of k alternatives. Thus, given r samples, one
could aggregate them and get a vote counter random variable for each alternative.
This vote-counter will be denoted by

va =
r∑
i=1

1{a ∈ Si},∀a ∈ A

Obviously, 0 ≤ va ≤ r and
∑

a∈A va = r · k. Note that, if we define pa = P[a ∈ S],
va ∼ Bin(r, pa), where S is drawn from SkPφ,π0 .

Suppose that we have the sequence of vote-counters {va}a∈A. We will be interested
with the ranking of the n alternatives sorted in decreasing order of their vote-counters.
This ranking will be denoted by argsorti∈[n]{v1, ..., vn}

Also, given a set S of size k, we will denote by g(S) the set of k! permutations
generated by the elements of the set. The set g(S) will be called the generator of S.
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Finally, given A1 ⊂ A and two permutations π ∈ L(A1), σ ∈ L(A \ A1) of sizes |A1|
and n− |A1|, we will denote by π ] σ the concatenated permutation of size n.

Now, we are ready to expand the definition of the two probability measures defined
above for the k-set setting. Let S be a set of size k and let R = A \S. We denote the
probability measures as follows :
• PMM : Simple Mallows Model (on Rankings)
• PSM : Set Mallows Model (on Sets)
• PPL : Set Plackett-Luce Model
The probability to draw a sample S in the SM setting is :

PSM [S|π0] =
∑

πS∈g(S)

∑
πR∈g(R)

PMM [πS ] πR|π0] =
∑

πS∈g(S)

∑
πR∈g(R)

φdKT (πS]πR,π0)

Z(φ)

Notice that the normalization constant is the same since the space of n! possible
permutations is decomposed to

(
n
k

)
possible sets, each of which generates a collection

of k!(n − k)! permutations and each pair of such collections will be disjoint. Let Sk
be the collection of all possible k-sets among n elements.

ZSM =
∑
S∈Sk

∑
π∈g(S)

∑
σ∈g(R)

φdKT (π]σ,π0) =
∑
π∈LA

φdKT (π,π0) = ZMM = Z(φ)

We remind that we represent a ranking as a bijection σ : [n] → [n], where σ(a)
is the rank or position of the alternative a in the ranking. For i ∈ [n], σ−1(i) is the
alternative that is ranked at position i.

For the PL setting, we have that, given a value vector ~w ∈ W :

PPL[S|~w] =
∑
σ∈g(S)

(
∏
i∈[k]

wσ−1(i))(
k∏
i=1

1∑n
j=iwσ−1(j)

)

Notice that the values product
∏

i∈[k] wσ(i) are the same in each term of the sum∑
σ∈g(S), since it only permutes the elements of the set S and, hence, the above

formula can be written :

PPL[S|~w] = (
∏
i∈S

wi)
∑
σ∈g(S)

(
k∏
i=1

1∑n
j=iwσ−1(j)

)

10.3 MLE Analysis

Mle-MM-k-Set

Input : r independent sets S1, ..., Sr of size k.
Output : π∗ = argmax

π
PSM [S1, ..., Sr|π]
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Theorem 10.3.1 The solution to the Mle-MM-k-Set is the argsorti∈[n]{v1, ..., vn}

Figure 10.1: Our proposed MLE for the Mle-MM-k-Set problem

Proof. The k-Set Mallows probability measure is defined as:

PSM [S|π0] =
∑

πS∈g(S)

∑
πR∈g(R)

PMM [πS ] πR|π0] =
1

Z

∑
πS∈g(S)

∑
πR∈g(R)

φdKT (πS]πR,π0)

Suppose that we are given r set samples. We define the product of these r terms
(where each term contains k!(n− k)! summands) as score of the ranking.

We claim that the permutation πm = i1 � i2 � ... � in, s.t. ij = arg max
w∈[n]\{i1,...,ij−1}

vw

(decreasing sequence of votes) is the MLE optimal ranking.

We proceed via contradiction using the swap-increasingness of the KT distance.
Suppose that πm is not the optimal ranking. Then, there exists another ranking, say
OPT, that scores higher than πm. Then, there must be some indexes i, j such that
i �OPT j and vi < vj. We analyze two cases (inductively) :

Case 1. Say that i, j are adjacent. The MLE score of the OPT solution is then
given by :

score(OPT ) =
r∏
i=1

PSM [Si|OPT ]

There are 4 distinct cases for the r sets drawn from the k-set Mallows model. There
is a collection C1 of r1 sets that contain both i and j, a collection C2 of r2 sets that
contain neither i nor j and collections C3 and C4 of r3 and r4 sets that contain only i
and only j respectively. Obviously, r1 + ...+ r4 = r and r4− r3 = vj − vi > 0. Hence,
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Figure 10.2: Case 1 : A possible OPT MLE for the Mle-MM-k-Set problem.

the score that be expressed as :

score(OPT ) =
4∏
i=1

∏
S∈Ci

PSM [S|OPT ]

Notice that if a set S contains both i and j,

PSM [S|OPT ] = PSM [S|πm]

The same holds for sets of the collection C2.
Intuitively, this means that we cannot deduce preference over the alternatives i

and j if we vote in the k-election system both i and j or neither of them.
Now, we study how sets of the collection C3 behave on the score of the OPT.

Notice that
OPT = πmi↔j

Thus, for S ∈ C3,

PSM [S|OPT ] =
1

Z

∑
πS∈g(S)

∑
πR∈g(R)

φdKT (πS]πR,OPT )

Let
∑

π∈g(S)∪g(R) f(π) =
∑

πS∈g(S)

∑
πR∈g(R) f(πS ] πR) be the sum of k!(n− k)! sum-

mands. Remind that i �σ j ∀σ ∈ g(S) ∪ g(R). Then, by the swap-increasingness
property of the KT distance and the fact that i, j are adjacent :

dKT (OPTi↔j, σ) =i�σj dKT (OPT, σ) + 1

Hence, since OPTi↔j = πm,

PSM [S|πm] =
1

Z

∑
σ∈g(S)∪g(R)

φdKT (σ,πm) =
1

Z

∑
σ∈g(S)∪g(R)

φdKT (σ,OPTi↔j) =i,j adjacent, i�σj, i�OPT j
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=i,j adjacent, i�σj, i�OPT j
1

Z

∑
σ∈g(S)∪g(R)

φdKT (σ,OPT )+1 = φPSM [S|OPT ]

Similarly, for S ∈ C4 :

PSM [S|OPT ] =i,j adjacent φPSM [S|πm]

Hence, since r4 − r3 = vj − vi > 0,

score(OPT ) = score(πmi↔j) = φvj−viscore(πm) < score(πm)

We have reached a contradiction.
Case 2. Suppose that OPT is any ranking with dKT (OPT, πm) = d > 1. Then,

there is a finite sequence (of length d) of adjacent Case 1 swaps of elements that finally
gives OPT. In each swap, from Case 1, the MLE decreases. Let OPT (i) be the candi-
date optimal ranking after i swaps from πm, i = 1, 2, ..., d. Obviously, OPT (d) = OPT
and set πm = OPT (0). The pairs (πm, OPT (1)), (OPT (1), OPT (2)), ..., (OPT (d−1), OPT (d))
all belong to Case 1.

Hence, if we consider the sequence (ai, bi)
d
i=1 with vbi > vai and ai adjacent to bi

in the pair of rankings (OPT (i−1), OPT (i)) for all i ∈ [d], we get that :

score(OPT (i)) = score(OPT
(i−1)
ai↔bi) = φvbi−vaiscore(OPT (i−1)), i ∈ [d]

Hence :
score(OPT ) = φ

∑d
i=1(vbi−vai )score(πm) < score(πm)

Cases 1 and 2 provide the optimality of the proposed MLE argsorti∈[n]{v1, ..., vn}.
�

Remark 10.3.2 Notice that we have a closed form for the ratio of how the MLE
score is changed for each proposed ranking σ with respect to the optimal solution.

Afterwards, we provide a TV distance result between the measure SkPφ,π and the
measure Pφ,π.We denote

∑
π∈g(S)∪g(R) f(π) =

∑
πS∈g(S)

∑
πR∈g(R) f(πS]πR).

Lemma 10.3.3 For any πi, πj ∈ L(A), dTV (SkPφ,πi ,SkPφ,πj) ≤ dTV (Pφ,πi ,Pφ,πj)

Proof. Let Ak be the set collection that contains all the possible
(
n
k

)
sets of size k.

dTV (SkPφ,πi ,SkPφ,πj) =
1

2

∑
S∈Ak

|SkPφ,πi(S)− SkPφ,πj(S)|

=
1

2

∑
S∈Ak

|
∑

π∈g(S)∪g(R)

φdKT (π,πi)

ZMM

−
∑

π∈g(S)∪g(R)

φdKT (π,πj)

ZMM

| ≤

≤ 1

2

∑
S∈Ak

∑
π∈g(S)∪g(R)

|φ
dKT (π,πi)

ZMM

−φ
dKT (π,πj)

ZMM

| = 1

2

∑
π∈L(A)

|PMM [π|πi]−PMM [π|πj]| = dTV (Pφ,πi ,Pφ,πj)

�
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Remark 10.3.4 When we want to learn the whole ranking π0, we can just consider
k < n

2
. When solving the problem k-Set with samples S1, ..., Sm and k > n

2
, then

it is equivalent to solve the problem (n− k)-Set with samples [n] \ S1, ..., [n] \ Sm.

Mle-PL-k-Set

Setting : There are n objects {oi}ni=1 with unknown values {wi}ni=1. We generate
samples from the PL-k-Set Model and we want to determine the elements ranking
with respect to their value. Hence, our goal is to be able to answer the

(
n
2

)
pairwise

comparisons {wi > wj}.
Input : r independent sets S1, ..., Sr of size k, each one containing k objects.
Output : ~w∗π = argmax

~wπ
PPL[S1, ..., Sr|~wπ]

Theorem 10.3.5 The solution to the Mle-PL-k-Set is the ~w∗ = wπ−1(1) ≥ wπ−1(2) ≥
... ≥ wπ−1(n) where π = argsorti∈[n]{v1, ..., vn}

Proof. The likelihood function we want to maximize can be written as :

L({S1, ..., Sr}|~w) =
r∏

m=1

(
∏
i∈Sm

wi)
∑

σ∈g(Sm)

(
k∏
i=1

1∑n
j=iwσ−1(j)

)

The space that our maximization problem is defined is the following :

SW = {~wπ = wπ−1(1) ≥ wπ−1(2) ≥ ... ≥ wπ−1(n)|π ∈ Sn,
∑
i

wi = 1}

We do not care about the value of each object but only to determine between any
pair of objects which is the most valuable. Of course, according the PL model, the
values have to satisfy the normalization condition

∑n
i=1wπ−1(i) = 1.

Hence, we want to solve the optimization problem :

~w∗π = arg max
~w∈SW

L({S1, ..., Sr}|~w)

Firstly, we have to gain some intuition, we can simplify the above expression by
using the log-likelihood function and get :

logL({S1, ..., Sr}|~w) =
r∑

m=1

{
log(

∏
i∈Sm

wi) + log(
∑

σ∈g(Sm)

(
k∏
i=1

1∑n
j=iwσ−1(j)

))

}
=

=
r∑

m=1

∑
i∈Sm

log(wi) +
r∑

m=1

log(
∑

σ∈g(Sm)

(
k∏
i=1

1∑n
j=iwσ−1(j)

))

We have to maximize this function.
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The first term can be rewritten as :

RHS1 =
r∑

m=1

∑
i∈Sm

log(wi) =
m∑
i=1

vilog(wi)

Hence, it seems logical to think that argsorti∈[n]{v1, ..., vn} is the MLE we are
looking for. Return to the first likelihood function. We have to maximize the following
function :

L({S1, ..., Sr}|~w) =
r∏

m=1

(
∏
i∈Sm

wi)
∑

σ∈g(Sm)

(
k∏
i=1

1∑n
j=iwσ−1(j)

)

Notice that :
r∏

m=1

(
∏
i∈Sm

wi) =
m∏
i=1

wvii

For the part after that product in the likelihood function, consider the function :

f(x1, ..., xn) =
r∑

m=1

log(
∑

σ∈g(Sm)

(
k∏
i=1

1∑n
j=i xσ−1(j)

))

exp(f(w1, ..., wn)) = f1 . . . fr =
r∏

m=1

∑
σ∈g(Sm)

(
k∏
i=1

1∑n
j=iwσ−1(j)

)

Suppose that we score A > 0 if we order the weights according to the appearances
vi. Now, suppose that this is not optimal. Then, suppose that we change the elements
with appearances vi > vj. We will show that this choice decreases the score. We
choose a vector with wj > wi. We will show that is choice scores less than setting
wi > wj.

Let I, J be the collections of the sets where the elements oi and oj appear respec-
tively. Then, |I| = vi, |J | = vj, |I ∩ J | = t ≤ vj. Then, the likelihood function can be
partitioned into four disjoint products :

f1 . . . fr = (
∏

Sv∈{S1,...,Sr}\I,J

fv)(
∏

Sv∈I∩J

fv)(
∏

Sv∈I\J

fv)(
∏

Sv∈J\I

fv)

The first two terms remain the same after the swap. The first term contains
neither i nor j and, thus, there is no impact in the score. The second remains the
same since we have all the permutations over the elements contained in the sets
S ∈ I ∩ J and, hence, each element goes around all possible positions. Thus, there is
a symmetry between the appearances of i and j. The third product has vi − t terms
and the last vj − t, and there is the score difference we want to observe,

We can show that :

f1 . . . fr(vi > vj ∧ wi < wj) < A
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Obviously, if f, g > 0 and increasing in an interval I, then f · g will also be
increasing. We study the function that is the product of k terms :

f(x1, ..., xk) =
k∏
i=1

1∑n
j=i xj

=
k∏
i=1

1

1−
∑i−1

j=1 xj
=

1

1− x1

1

1− x1 − x2

1

1− x1 − ...− xk−1

For ~x ∈ [0, 1]k, f is increasing. If we fix the k − 1 values and let one variable run
free, then :

0 < x < y < 1⇒ f(x|w1, ..., wk−1) < f(y|w1, ..., wk−1)

The same holds for F (x|w1, ..., wk−1) =
∑

σ∈g(Sm) f(x|w1, ..., wk−1, σ).

For a set S = {i, i1, ..., ik−1}, let ~wS\{i} = {wi1 , ..., wik−1
}. Hence, by picking

wj > wi : { ∏
S∈I\J

F (wi|~wS\{i})
}

︸ ︷︷ ︸
(vi−t) terms

{ ∏
S∈J\I

F (wj|~wS\{j})
}

︸ ︷︷ ︸
(vj−t) terms

<vi>vj ,wj>wi

<

{ ∏
S∈I\J

F (wj|~wS\{i})
}{ ∏

S∈J\I

F (wi|~wS\{j})
}

= A

Note that the weights can only be swapped because the sum should remain fixed to
1.

So, any swap that does not respect the relation between vi and vj for any pair
i, j, will only decrease the score of the MLE. Hence, the MLE optimizer is the values
ranking argsorti∈[n]{v1, ..., vn}, that is to assign values in decreasing order of the
appearance frequency of the alternatives. �

10.4 The Mallows k-Gap Filling Model

Finally, we propose another noisy sampling model. Here, we draw a ranking π ∼
Pφ,π0 and afterwards apply a uniform filtering in order to hide k elements. Thus,
in the given sample, we will only access (n − k) elements and in the positions of
elements missing we see a ? symbol. Suppose that the given ranking that is missing k
elements is drawn from a distribution UkPφ,π0 . At first, we will define the appropriate
probability measure PGF .

Denote by Sn,k the set of all rankings of size n, that are missing k elements. Given
a τ ∈ Sn,k, we define the setMτ of the missing elements. Obviously, g(Mτ ) contains
all the possible permutations of the k missing elements. Define a filling function
f : Sn,k × g(M) → Sn, which fills a partial ranking τ with (n − k) fixed objects
and k stars, with the k missing items fromMτ , according to a ranking from g(Mτ ).
For instance, if τ = 1 � ? � 2 � ?, Mτ = {3, 4} and 3 � 4 ∈ g(Mτ ). Hence,
f(τ, 3 � 4) = 1 � 3 � 2 � 4. Now, we have the necessary notation to proceed to the
definition of the measure :
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PGF (π?|π0) =
∑

σ∈g(Mπ? )

φdKT (f(π?,σ),π0)

ZGF

For simplicity, let GF (π?) be the set {f(π?, σ)|σ ∈ g(Mπ?)}.

PGF (π?|π0) =
∑

σ∈GF (π?)

φdKT (σ,π0)

ZGF

The set GF (π?) contains k! permutations and, hence, generates all the possible
samples drawn from the distribution Pφ,π0 before applying the filter Uk.

In order to understand this sum, we have to study the cardinality of the Sn,k (the
set of all possible samples drawn from the distribution UkPφ,π0).

The size of Sn,k is

|Sn,k| = supp(UkPφ,π0) =

(
n

k

)(
n

n− k

)
(n− k)! =

(n!)2

(k!)2(n− k)!

since, at first, we can place k stars and, then, for the remaining n − k positions,
choose n−k among the n elements and create all the possible rankings. For instance,
for n = 4, |S4,2| = 72, whereas |S4| = 24.

As far as the normalization constant is concerned, in this case, there is no 1 − 1
correspondence between the samples and the times each ranking of size n will be
appeared. For instance, in the (n, k) = (4, 2) case, the ranking 1 � 2 � 3 � 4, can be
generated from many samples such as ? � 2 � 3 � ?, 1 � ? � 3 � ?, etc. In the 2-set
case, the only generator was the set {1, 2}. Now, the normalization constant can be
expressed as :

ZGF =
∑

π?∈Sn,k

∑
σ∈GF (π?)

φdKT (σ,π0)

This sum contains (n!)2

(k!)2(n−k)!
k! = n!

(
n
k

)
summands and, thus, it offers us a hint of

how many times each permutation of size n appears in the sum. Notice that each of
the n! possible permutations appears in the sum the same number of times (due to
symmetry) and the number of appearances is

(
n
k

)
. Hence,

ZGF =
∑

π?∈Sn,k

∑
σ∈GF (π?)

φdKT (σ,π0) =

(
n

k

)∑
π∈Sn

φdKT (π,π0) =

(
n

k

)
ZMM

It is easy to verify the extreme cases k = 1 and k = n.

Geometric Intuition

In this setting, we would like to apply a generalized version of the techniques applied
in Chapter 9. Thus, we consider crucial to obtain a geometric intuition of our sam-
ples. Firstly, notice the recursive structure of the permutations and permutohedra. If
one fixes a coordinate of a permutation of size n, then one gets a permutation of the
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remaining n− 1 elements. Similarly, for fixing some k elements of the permutation.
Thus, the same geometric intuition holds for the Sn-permutohedra. For instance,
if n = 4, the corresponding permutohedron is constructed via the S1-permutohedra
(trivially), the S2-permutohedra (fixing two elements) and the S3-permutohedra (fix-
ing one element). Notice, in the following figure, that the edge between (123) and
(132) is a S2-permutohedron, that corresponds to the sample 4 � 1 � ? � ?.

Figure 10.3: For n = 4, the sample 4 � ∗ � ∗ � ∗ corresponds to the green subspace, that
is one of the S3-permutohedron sides of S4-permutohedron.

Now, suppose that we are given a sample π, drawn by the k-Gap Filling Model
UkPφ,π0 . This sample contains k stars, put uniformly at random among the n elements.
Hence, our sample is just a ’side’, a projection of our Sn polytope. This ’side’ is a
Sk-permutohedron, lives in the space Rk−1 and corresponds to the collection of the
k! possible permutations of the missing elements.

Finally, we provide a TV distance result between the measure UkPφ,π and the
measure Pφ,π.

Lemma 10.4.1 For any πi, πj ∈ L(A), dTV (UkPφ,πi ,UkPφ,πj) ≤ dTV (Pφ,πi ,Pφ,πj)

Proof.

dTV (UkPφ,πi ,UkPφ,πj) =
1

2

∑
σ∈Sn,k

|UkPφ,πi(σ)− UkPφ,πj(σ)|

=
1

2

∑
σ∈Sn,k

|
∑

π∈GF (σ)

φdKT (π,πi)(
n
k

)
ZMM

−
∑

π∈GF (σ)

φdKT (π,πj)(
n
k

)
ZMM

| ≤

≤ 1

2

∑
σ∈Sn,k

∑
π∈GF (σ)

|φ
dKT (π,πi)(
n
k

)
ZMM

−φ
dKT (π,πj)(
n
k

)
ZMM

| = 1

2

∑
π∈L(A)

|PMM [π|πi]−PMM [π|πj]| = dTV (Pφ,πi ,Pφ,πj)

�
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10.5 Future Work

As a future step, we propose the following three different directions. Firstly, it is an
interesting question to expand our learning framework concerning problems whose
input and output belong to different metric spaces. Secondly, we have thought a
connection between a classical NP-hard problem and our k-set sampling setting. The
problem is called Min Sum Set Cover (MSSC). Our idea links the learning problems
we are interested in with the optimal solution (or a good approximation) of the MSSC
problem. The MSSC is a problem related both to the classical min set cover problem
and to the linear arrangement problems and is defined as follows :

Min Sum Set Cover
Input : A hypergraph H(V,E) 1, a linear ordering, that is a bijection f : V 7→

{1, ..., |V |}. We, then, define for a hyperedge e, the cost f(e) := min
v∈e

f(v).

Output : f ∗ = argmin
f

∑
e∈E f(e)

It is well known that the greedy algorithm approximates MSSC within a ratio no
worse than 4, and that this is the best possible approximation, that this for every
ε > 0, it is NP-hard to approximate MSSC within a ratio of 4 − ε. This result can
be found in [UFT02]. Another good source is the [Im16]. How this problem is
linked to our k-set sampling? The problem’s structure is quite similar to our learning
framework. Note that the linear ordering f is just a ranking of the elements of the set
V. Thus, we are given sets (of different sizes) and we want to learn a ranking. This is
quite similar to our k-set sampling setting if we do not fix k. It would be interesting
to see MSSC as a learning problem. However, there are some difficulties one has
to deal with. For instance, if one chooses to cover a vertex v, we should afterwards
delete all the hyperedges covered by this vertex. Thus, each choice we make, causes
a deletion of a subset of our sets.

Another interesting direction would be to be able to answer towards the following
kind of questions : Suppose that there are two models, a single parameter Mallows
model M1 and a generalized Mallows model Mn. Let π be a voting profile of size r
generated by one of the these models. Can we determine from which distribution we
have drawn our samples, and, if so, how many samples are needed? These are some
potential directions for study in the field of learning theory for ranking distributions.
Finally, another fascinating problem is to bound the fluctuations of the length of the
longest increasing subsequence of a sample π, drawn from a Mallows distribution.
[CM11], [NB14].

1Let S be a set of points and F = {S1, ..., Sr be a collection of subsets of S. The hyperedges of H
correspond to the points in the set system and the vertices of H correspond to the subsets. Note that E is
a a set of non-empty subsets of V and constitutes a generalization of the classical edge (that is a two-set).
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