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Abstract

In this day and age, the manufacturing industry is constantly seeking to increase its’ products
efficiency. It is, therefore, imperative to minimise friction losses and a thorough analysis is
required for each component. Fluid film thrust bearings have been used extensively to support
axial loads between static and rotating parts. Owing to their low cost and reliability, fluid film
thrust bearings are used in a variety of applications ranging from high load — low speed marine
shafts to high speed — low load turbochargers. Nevertheless, they are being redesigned in order to
be more heavily loaded and achieve higher efficiency, resulting in smaller film thicknesses. As a
consequence, the risk of bearing failure due to contact between the rotor and the pad under
transient loading conditions is increased and a dynamic behaviour analysis should be conducted.
To define its’ response, the bearing is represented as a single degree of freedom model, and the
knowledge of the system’s stiffness and damping coefficients is required.

To calculate the aforementioned coefficients, a common method used is to carry out
experimental procedures using the specific design. However, the coefficients, in the case of fluid
film thrust bearings, are nonlinear resulting in time consuming and expensive experiments for
their calculation. Nowadays, the increased available computing power has resulted in advanced
computational procedures, which are being investigated to find out an accurate alternative
procedure.

In the present work, a computational methodology is proposed to identify the dynamic behaviour
of a tapered-land thrust bearing design. A parametric analysis was conducted to optimise the
geometry’s taper extend and inclination couple. Subsequently, a thermohydrodynamic (THD)
computational fluid dynamics (CFD) method is developed the dynamic coefficients of the
specific bearing are derived. To conclude, the damping and stiffness coefficients that resulted in
the previous step are used in a single degree of freedom model in which a transient load applied
to determine the bearing’s response.

v



Tovoym

2T onuepwvn Moy, M KATOOKELOOTIKY Propnyoavio emOIOKEL GLVEYDSG TNV adENCN NG
Amod0TIKOTNTAG TOV TPOidvTV TG Eival, cuvendc, avaykaio va ehaytotomomBovv ot andAEEG
MOy TpIPoV Kot givon amopaitntn 1 ekmoOvnon €0KNG avdivong yo kdbe pépog. Ta wotikd
£0pava oAioOnong £xovv ypnoiponombei vpémg yioo TV moparafn aEovikdv eoptiov petad
otafep®dV Kol TEPLOTPEPOUEVOV pep®V. To yopmAd Kdotog kot 1 a&lomiotio TV GVGTNUATOV
avTOV €ENYOVV TNV XPNON TOLG G€ UEYAAN TOKIALL EQPUPUOYDV TOV EKTEIVOVTOL LETOED YOUNANG
TOOTNTOG TEPIGTPOPNG GAAE VYNADOV QOPTIOV VOLTIKOV EQUPUOYDOY Kol DYNANG TayOLTNTOG
OAAG younA®V @opTiev vaepmAnpomT®v. Eviovtols, emovooyedialoviol doTe Vo, VTOKEWVTOL GE
VYNAOTEPO EMIMEDA QOPTIONG YOl TNV EMTELEN HEYOAVTEPNG OTOJOOMG, ME OTOTELECUO TO
EAMAYIOTO TTAYOG MTOVOTC VO LEIMVETOL. XVVETMG, 0 Kivouvog vo TpokAnOel emapn HETAED TOL
TEPICTPEPOLUEVOL KO TOV GTaBEPOD HEPOLG OLEAVETOL KADIGTOVTOS avaykaio TNV €KTOVNOT)
peAétng dvvapukng ovumepipopdc. o va mpocdiopiotel 1 amdkpion tov €0pavov, yivetol
aVOTOPAcTACT) G oVt evOg Pabuov elevbepiag, Yoo To omoio omatteiton n yvdoN TOV
OUVTEAEGTOV aKaU\ioG Kol amocfeong.

O VTOAOYIGHOG TOV TOPATAVED GLVTEAEGTM®V YIVETOL GLYVA HE TN JEEay®mY| TEPAUATIKOV
ddactdv yia v kébe oyedioon. Ouwg, oty Tepintmon TV WOTIKOV £dpdvev oMacdnong,
01 GUVTEAESTEG OEV Elvarl Ypappikol Kot o Tepdpota yivovion ypovoBopa kot wdaitepa axpiBd.
H ovénuévn vroloyotikny oyg mov eivar oabéoun onuepo odynce oty mpdodo TmVv
VTOAOYIGTIKOV HEBGOMV Kot £00GE EVOALUKTIKN GTO TEPALLATOL.

Ymv moapovoa gpyoacio mpoteiveton pion vwoAoylotikn pebodoroyio Yoo TOV VTOAOYIGUO T®V
SVVOUIKDV GLVTEAECTMOV €VOG MOTIKOL €0pAvov oAlcOnomng tomov tapered-land. AweldyOnke
TOPOLUETPIKT OVAALGT Y10 TOV TPOSOOPIGHS TOoV BEATIGTOL peyEéBovug kot kKAiong ¢ Cmvng taper
™mg veopetpiag. AkorloVOwc, avoamtuydnke €va BeppodopoduVaKO HOVTEAO VTOAOYIGTIKNG
PECTOOVVOIKNG TOL  GUYKEKPIUEVOL €0PAVOL YO TOV TPOGOIOPIGUO TOV  SUVOK®OV
ovovtedeotwv. Téhog, o1 ovvieheotés okapyiog kot omOGPECNG  TOL  TPOEKLYAV,
xpnooromdnkav o €vo poviédo evoc Pabuod erevbepiog 6to 0moio EQUPUOGTNKE YPOVIKE
HETOPAALOLEVO POPTIO Yo TOV TPOGIOPIGUO TNG OTOKPLIOTG TOV EOPAVOUL.
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C Damping coefficient [N-s/m]
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o
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1. Introduction

Although efforts to manipulate friction appear in the beginning of human history, systematic
studies on the mechanism of friction are relatively recent compared to other fields. Tribology, the
science of the relative motion between interactive surfaces, plays a major role in almost any daily
application of our lives. Two important concepts in tribology are friction and wear. Various
studies have highlighted the cost of friction and wear, showing that even marginal improvements
can result in huge differences on the global scale. Depending on the case, the desired relation
varies. For instance, brake applications need to minimise wear with constant friction while in
bearings both parameters need to be minimised.

Bearings are mechanisms able to carry the load that is transmitted between two bodies that move
relatively to one another. Friction between two moving solids contributes to the dissipation of
energy, increased wear rates and will eventually lead to the bearing’s failure. As a consequence,
a means of lubrication is applied to separate the interacting bodies with a layer that will prevent
their contact, reducing friction and wear. Lubricant oils are the most common types used but
solid and gas lubricants are also used in various applications.

The interaction between the surfaces determines the lubrication type. Hydrodynamic lubrication
involves, in general, two relatively moving surfaces, inclined at some angle to create a
converging wedge, forming a thin lubricating film. Usually, one surface, called pad, is static,
while the other, named runner or rotor moves at a certain speed. Reynolds studied the
hydrodynamic lubrication mechanism and derived analytical equations for infinitely long and
short bearings which could estimate the load carrying capacity and the generated friction. New
designs were introduced, including tapered-land and pocket wedges. The characteristic of
hydrodynamic lubrication is that the surfaces are fully separated and is achieved when the runner
is moving at a sufficient velocity. If this condition is not met, partial or mixed hydrodynamic
lubrication regime occurs. At even lower velocities, as it occurs during engine startup,
hydrodynamic lubrication cannot be formed leading to solid contact, which defines boundary
lubrication. Apart from hydrodynamic lubrication, in many applications hydrostatic lubrication is
used. The main feature is that it is not necessary to have relative motion since the lubricant is fed
under pressure by external means. In this case, the film thickness can be controlled by adjusting
the pressure. Consequently, it can operate under high loads without any contact issues. Finally,
another type of lubrication is the elastohydrodynamic lubrication in which the elastic
deformation of the bodies are taken into consideration.
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FIGURE 1.1: Friction coefficient changes at the limits of hydrodynamic lubrication [2].

Fluid film journal and thrust bearings operate under the hydrodynamic lubrication principle.
Journal bearings are designed to support radial loads and consist of an internal shaft rotating
inside a stationary hollow cylinder. On the other hand, thrust bearings support axial loads and are
commonly used in marine applications to receive the propeller’s thrust.

Reynolds’ equations and a plethora of studies conducted focus on the static behaviour of
bearings mainly looking for more accurate ways to calculate load and friction values, testing new
designs or optimising existing ones. However, in many applications bearings operate under
constantly transient conditions meaning that the study of their response is imperative.

Literature review

Due to the complex computations involved in the determination of the dynamic coefficients of a
thrust bearing’s response, the available literature is quite recent since the rapid increase of the
available computational power.

Nevertheless, a study conducted by Eskild Storteig and Maurice White [9] on tapered-land thrust
bearings solved the Reynolds’ equation using a 1-D finite element technique taking into account
hot oil carry-over effect to calculate it’s dynamic coefficients. The results showed a relative
agreement with coefficients calculated with 2-D methods.

Zhu and Zhang [10] examined the transient axial response of a sector-shaped thrust bearing using
a finite difference method to solve the Reynolds’ equation. The results highlighted the
significance of a nonlinear analysis and that the dynamic coefficients depend strongly on the
initial film thickness. .



In [11], Jang and Lee explain that two methods are commonly used to calculate stiffness and
damping coefficients. The first, considered as the physical perturbation method, consists in
differentiating the forces with respect to finite displacements (for the stiffness coefficient) and
finite velocities (for the damping coefficient). Regardless of the method’s simplicity, the time
necessary for the calculations is significant. The latter is the mathematical perturbation method
and uses the finite element method on the perturbed Reynolds’ equation. The study continues to
calculate the dynamic coefficients of a thrust and journal bearing coupling.

In [12], Srikanth et al. used a finite difference method to solve the Reynolds’ equation and
calculate the pressure in the oil film of a tilting pad thrust bearing. Variations of the film
thickness and the runner’s axial velocity allow the calculation of stiffness and damping
coefficients.

Papadopoulos et al. [13] proposed a computational method to determine the stiffness and
damping coefficients of thrust bearings using Computational Fluid Dynamics. The method
acknowledges both translational and tilting motion of the bearing. A hydrodynamic model is set
in a steady-state condition (constant rotational speed and minimum film thickness values).
Subsequently, a translational or tilting micro-perturbation is forced altering the axial and tilting
velocities. The damping coefficient can be calculated by the ratio of the difference of load
capacity (for the translational motion) or the average moment (for the tilting motion) and the
velocity alteration. Finally, the model is allowed into a new steady-state which allows the
calculation of the stiffness coefficient using the minimum film thickness variations instead of the
velocity. The proposed method was applied for smooth and textured pad bearing with results that
confirmed published data.

Other studies concerning the dynamic response of various types of thrust bearings were
conducted. More specifically, in [14], the dynamic coefficients of foil thrust bearings were
calculated with CFD tools by imposing a sinusoidal motion to the rotor. The results show
agreement with previously published research [15].

Snyder and Brown [16] compared the dynamic coefficients of a simple 2D infinitely long slider
derived from Navier-Stokes equations, perturbed and transient Reynolds’ equation.

Similar procedures were implemented in [17]-[18], regarding the dynamic coefficient of journal
bearings.

A similar approach to that proposed by Papadopoulos was used in [19] by Vieira and Cavalca
which solved the Reynolds’ equation, instead of the Navier-Stokes equations, to determine the
dynamic coefficients for both axial and tilting motions of a tapered-land thrust bearing.



Charitopoulos et al. [20]-[21], developed a CFD thermohydrodynamic model to analyse the
operational characteristics of different types of thrust bearings (tapered-land, textured pad, open
and closed pocket) and optimise the design. The study examined a set of steady-state conditions
(minimum film thickness between 10-80um, rotational speed between 1-10kRPM) and compared
the load capacity, friction torque and maximum temperature on fluid and pad between types. The
model was used to optimise automotive turbocharger thrust bearings which operate in a wide
range of rotational speeds. In [22], a curved pocket thrust bearing was optimised.

Goals of present study

The main goal of this study is to identify the dynamic behaviour of a tapered-land thrust bearing
using the physical perturbation method proposed by Papadopoulos [12], but accounting only for
translational motions between pad and rotor.

To achieve this result, the Navier-Stokes equations been solved using the Finite Volume Method.
A conjugate heat transfer problem has been simulated that calculated the load and friction forces
of a single pad sector for different minimum film thicknesses. The utility has been enhanced with
mesh motion capabilities to simulate the axial motion of the rotor. This process created stiffness
and damping coefficient maps for the specific geometry.

Ultimately, a single degree of freedom model has been represented using the MATLAB-
Simulink environment which used the derived coefficients to predict the response of the bearing
under transient load conditions. The results have been evaluated by imposing the resulting
displacement history to a transient solver and comparing it with the initial force function used.



2. Lubricants

As mentioned previously, to achieve the hydrodynamic lubrication regime a means of lubrication
is necessary to fully separate the two relatively moving surfaces. One of the most common liquid
for lubrication is lubricants. At first, mineral only oil lubricants were used, which were derived
from the distillation process of crude oil. The properties such lubricant depended mainly on the
process used and the source of the crude oil. Mineral oils were cheap, but they displayed some
disadvantages which led to the development of semi and fully synthetic oils to deal with issues
such as the viscosity drop at high temperatures, oxidation and combustion. Today, semi and fully
synthetic oils are common in many applications due to their enhanced properties. However,
mineral oils are still used in cases with low requirements.

Viscosity

The great variety of lubricants means that careful consideration is required when evaluating the
lubricant selection in any case should. Viscosity is probably the most important property when
considering type of oil. To define viscosity two parallel plaques separated by a fluid are
considered. The proportionality coefficient between the shear stress generated when trying to
move one surface and the velocity gradient across the fluid is the dynamic viscosity u:

_ Ou (1)
M =1 ay
Common units used for the dynamic viscosity are Pa - s and cP.
The kinematic viscosity v, on the other hand, is defined as the ratio of the dynamic viscosity and
the fluid’s density:

_H
V=2 (2)

It is usually measured in ¢St or m?/s.

Viscosity is highly affected by temperature. The American Society for Testing Materials
(ASTM) developed an empirical chart based on Walther’s equation for the viscosity-temperature
relationship, which is:

log,ologo(v+b) =a—clog,, T (3)
Where:
v is the kinematic viscosity [cSt];
T is the temperature [K];



b is a constant which ranges between 0.6 and 0.7.

Depending on the case, b is set arbitrarily. Consequently, the knowledge of the kinematic
viscosity of an oil at two temperatures defines parameters a and c, allowing the calculation of
the viscosity at any other temperature. Fig. 2.1, below, displays the interpolation done by the
ASTM equation for an ISO-VG46 oil.
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FIGURE 2.1: Kinematic viscosity - Temperature relation (ASTM equation).

For applications that operate in variable temperature conditions the temperature sensitivity of
viscosity is extremely important. This feature is measured using the viscosity index (VI). This
index is used to compare the oil with two reference oils that display a significantly different
behaviour in temperature sensitivity. Oils with high VI are less affected by temperature changes
than oils with low VI. Historically, paraffinic mineral oils originating from Pennsylvania had
excellent temperature behaviour and were given VI value of 100. On the other hand, Texan
mineral oils displayed great viscosity difference when the temperature was altered and they were
given VI value of 0. The index for an oil of interest is calculated using the following formula:

L-U
VI =——-100 4
T (4)
Where:
L is the viscosity of VI=0 oil at 40°C;
is the viscosity of VI=100 oil at 40°C;
U is the viscosity of oil of interest at 40°C.



Values for H and U can be found in literature. Owing to the introduction of new generation
synthetic oils, the scale is extended also above VI=100. In that case, the following formula is
used:

10V —1
VI =100 + —— 5
* 0.00715 (5)
Where:
N is a constant equal to: N = logH-logU.
logVv
\Y% is the viscosity of oil of interest at 100°C (V>2cSt).

Viscosity is also dependant on pressure and it increases with pressure. For pressures below
0.5GPa, the Barus equation can be used:

Hp = poe™? (6)
Where:
Wp/0 is the dynamic viscosity at pressure p/ambient [Pa-s];
o is the slope of the natural logarithm of dynamic viscosity versus pressure.

The Reynolds’ analysis, mentioned previously, was based on the assumption that the lubricant is
Newtonian, which is generally true for mineral oils. Newtonian oils are characterized by a
constant slope between shear stress and shear rate, which means that the viscosity is constant.
Other oil types, however, can have different behaviour. For instance, multigrade oils suffer from
the reduction of viscosity in high shear strain conditions, phenomenon known as shear thinning,
in this cases caused by the alignment of the long polymer molecules added to the oil.

Specific heat capacity

Specific heat capacity is a thermophysical property that expresses the amount of heat necessary
to raise one unit temperature per unit mass.

Q
Cp_m-AT

The value varies linearly with temperature and can be approximated from equation:

(7)




_ 1.63 + 0.0034(T — 273.15)

G, - (8)

Where,

G, is the specific heat capacity [kJ/kg-K];
is the temperature [K];

S is the oil’s specific gravity at 15.6°C.
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FIGURE 2.2: Specific heat capacity - temperature equation.

Thermal conductivity

Thermal conductivity describes the ability to conduct heat and is the coefficient & represented in
Fourier’s law of conduction:

dT
= —fk— 9
1 dx %)
It is also a temperature-dependent thermophysical property which can be approximated from

equation:

(10)

10

. 0012 (1 1.667 - (T — 273.15)>
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Where,

k is the thermal conductivity [W/m-K].
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FIGURE 2.3: Thermal conductivity - temperature equation.

Other properties

When considering the selection of the proper oil to use, other properties are also taken into
account. In case that low temperatures are expected pour point temperature, which is the lowest
temperature that the oil can flow, is evaluated. The cloud point, the temperature at which
precipitations of wax appear, may also be considered. Moreover, neutralisation properties may
be desired. These are measured with the Total Base Number (TBN) and the Total Acid Number
(TAN) for alkaline and acidic oils respectively. The neutralisation number expresses the quantity
of KOH to neutralise alkaline or basic compounds. Finally, other less significant properties
considered may be the thermal and oxidisation stability and the volatility of the oil.

Cavitation

Considering a phase diagram, it can be noticed that liquid-vapour transition may take place either
by changing the temperature or the pressure. The phenomenon that results in the vapour cavity
formation from a liquid fluid through pressure decrease is called cavitation. This happens locally,
in places that the pressure reaches the vapour pressure. The growth and collapse of the bubbles is
usually represented by the Rayleight-Plesset model:



d?R 3 (dR\* 1
- 4 (= i — =0 11

dt? +2R(dt) +pR(p" Po) (1)
The equation describes the bubble radius R change over time ¢ depending on the cavity pressure
pyv and the pressure at infinity py of the fluid with density p. The model results in infinite values

of pressure and velocity at the moment of bubble destruction.
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3. Finite Volume Method

The fundamental physical principles that form the basis of fluid dynamics are:

e The conservation of mass,
e Newton’s 2" law, and
e The conservation of energy.

The equations that describe the fluid flow can be written in different ways depending on the
point of view of the observer. The theory of fluid mechanics introduces a finite control volume
upon which the equations are developed. This control volume may either be fixed in space, or it
may be moving with flow but containing the same particles. The first forms the Eulerian
description and leads to a conservative equation form, while the second represents the
Lagrangian description and results in non-conservative equations. The derived system is formed
of nonlinear partial derivative equations that change in the time and the three dimensional space
domain. In addition, the space that the solution is required is usually complex, meaning that an
analytical solution is impossible. Advances in the technological field have allowed fast
numerical calculations which aided the development of computer simulations as a scientific tool.
The method known as Finite Volume Method is usually applied to solve these equations in fluid
domains and is based on the Eulerian description, therefore conservative forms are preferred.
When the control volumes are finite, the resulting equations are in integral form, while
infinitesimally small control volumes lead to the differential form. Thus, the differential form of
the flow equations is commonly used.

Continuity equation

The conservation of mass is expressed by the continuity equation. 1t states that the net mass flow
that leaves the control volume from its’ boundary surface equals the time rate of decrease of
mass inside. For a compressible fluid, it can be written in vector notation as:

dp
Py (o) = 12
o +V (pu) =0 (12)

However, oils are incompressible fluids therefore the first term can be neglected leading to:

Viu=0=>—+—+—=0 (13)

Momentum conservation equations

The equation that results from the second principle is the momentum equation, which in
Cartesian coordinates is:
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(14a)

(14b)

(14c)

In which, p denotes the pressure, fis the body force per unit mass and z; denotes a stress in the j-

direction acting on a plane perpendicular to the i-axis.

The above equations, however, contain the stress tensor t which is not known beforehand.
Therefore, the introduction of further equations, that relate the normal and shear stresses with the
flow, is mandatory. Newton noted that for many materials, including oils, viscous stresses are
proportional to the strain rates, hence velocity gradients. Fluids that obey this law are called

Newtonian and the stress tensor can be written as:

i - ou dv Jdu Ju Jdw
] ] ] A(V'u)+2[,la ﬂ[&i‘@] ﬂ[gi‘a
o B ] wmend (e
Tyx Tzy Tz ox 0y dy dy 0z

du Jdw dw 0dv - aw

0PSB a7 TR 7

Where:

is the molecular viscosity;

. . . . 2
is the second viscosity coefficient A = — SH-

Energy conservation equation

(15)

The energy conservation is expressed through the energy equation, which states that the rate of
energy change in the element is equal to the net flux heat and the rate of work done, and in total

energy terms is:

%[p(%u2+e)]+V[pﬁ(%u2+e)] =pf U—-V(p-W+VET U -VEK-VT)+p-q

Where,

e is the internal energy per unit mass;

12
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q is the volumetric heat addition per unit mass;

k is the thermal conductivity.

Discretisation

As mentioned previously, the solution to these equations is sought using numerical methods. The
idea behind numerical solutions is to substitute the continuous field with a discrete. Due to the
complex shapes that fluid domains usually have, the Finite Volume Method is usually preferred
and any shape element can be used as those that appear in Fig. 3.1, below. The differential
equations are replaced with algebraic over finite volumes representing the field transforming
them into matrix form M - U = B, which can then be solved.

The comprehend the way that the partial differential equations are transformed into matrix form,
a general transport equation for a scalar quantity ¢ is considered, as follows:

a(pp) .
—~r7 . — (TP —
f R dVv + fV (pup)dv fV (r*ve)dv fS(p(<p)dV (17)
Vp Vp Vp Vp
The term fv %dV represents the temporal derivative and is present only in transient
p

conditions. The convective term fv V- (pug)dV expresses the transportation of the quantity ¢
p

due to the velocity field generated by u, while the diffusion term fv V- (I'?Ve)dV expresses the
14

transportation of ¢ owing to a concentration differential and the diffusion coefficient I',. Finally,
the integral on the right hand side of the equation defines the presence of sources (source term).

The first step in the method consists in the discretisation of the domain of interest in a finite
number of control volumes. These elements can be of various types of shapes.

(@ ) © @

FIGURE 3.1: Types of spatial discretisation, (a) Tetrahedron, (b) Hexahedron, (c) Prism, (d) Polyhedron.
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For every control volume Vp the following details are stored:

- The location of the centroid P calculated from pr (x —xp)dV =0,
- The vectors d connecting P with the centroids of the neighbouring control volumes,
- The centre f of each face Sy calculated from |, s (x — xf)dS = 0 and the location that d

intersects the face, and
- The vectors Ps connecting P and each face.

Variables may be stored either on vertices or the cell centres. Cell-centred arrangements are most
common. The Taylor series expansion is used to calculate variations inside the cell. Cell-centred
arrangements are generally preferred due to their higher accuracy and their mesh generation
simplicity.

Using the Divergence (Gauss) theorem, the volume integrals of the convective and diffusion
terms are transformed into surface integrals:

convection: f V- (pup)dV = jg ds - (pue) (18a)
Vp avp
(18b)
dif fusion: j V-(I'*Vo) = ff) ds - (r'*ve)
Vp aVp
According to the theorem, the volume integrals of the divergence are equal to the outward flux

through a closed surface. dS denotes the normal vector of the face f pointing outwards.
Subsequently, the surface integrals are converted into a series of summations. Firstly, the integral
over the entire element’s surface is split into the sum of the integrals over each face. Finally, the
integral over each face is approximated using the value at the face centre. This is written as:

faces(Vp) faces(Vp)
jg ds - (pug) = Z f ds - (pig); ~ Z S; - (plig); (19a)
avp 7o 7
faces(Vp) faces(Vp) ( 19b )
?5 ds - (F*ve) = 2 f dS - (F*ve), ~ Z S;- (M%),
oV r 7
P

The diffusion term leads to the necessity to calculate gradient terms V. These appear in the
momentum equation as pressure derivatives, in turbulence models or even in non-Newtonian
viscosity models. A commonly used method is the Green-Gauss Gradient which defines:
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1 —
Vop =V_PZSf(pf (20)

Both convection and diffusion terms require face values to calculate the integrals. As stated
previously, cell-centred arrangements store the information at the centroid. Consequently, the
values at the faces have to be interpolated.

Convective terms interpolation

Central difference scheme

This scheme executes linear interpolation to calculate the flux at the face. Supposing that face f
connect two adjacent control volumes with centroids P and N. The value at the face is:

0 = frop+ (1 — f)on (21)
Whers, £, = 2
PN

@
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FIGURE 3.2: Central difference scheme.

=

Since the scheme considers that the variation between the cell centroids is linear and the
variation across the cell is also linear in the Finite Volume Method, the scheme is second order
accurate. This scheme derives from the Taylor series, neglecting terms of second or higher order.
However, its’ solutions may be unbounded which means that oscillations may appear in the field
solution. The analytical solution of a typical steady-state problem show that at high negative
values of Pep (Péclet number) the solution tends asymptotically to 1, while at high positive
values approaches 0 asymptotically. As shown in Fig. 3.3, numerical results, on the other hand,
do not follow the same behaviour. The Péclet number expresses the ratio between advective to
diffusive transport. Consequently, this scheme is more suitable in cases with significant diffusion
terms since it considers equally upwind and downwind nodes.
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1 —a——  Exact solution

15 ——a——  (Central difference scheme solution

= —@—— Upwind scheme solution

FIGURE 3.3: Comparison between analytical and numerical solution for diffusion-convection problem [6].

Upwind scheme

To overcome the problems of the linear scheme, the upwind scheme considers that the value at
the face is to the value at the centroid of the control volume that the mass flow originates.

While this scheme is bounded even at high Pe;, Fig. 3.3, it is only first order accurate.

The opposite of the upwind scheme, named the downwind scheme, shows that it becomes
unbounded but it can be used with other schemes for sharp interfaces.
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FIGURE 3.4: Upwind scheme.

Second order upwind scheme

This scheme follows the same idea for the derivation of the upwind scheme, but the face value is
derived by extrapolating linearly two upwind nodes. This scheme is second order accurate.

3 1
Pr = 5Pn ~ 59 (22)
[0}
PN

FIGURE 3.5: Second order upwind scheme.

Diffusion term interpolation

As mentioned above, diffusion terms include gradients. Diffusion interpolation is affected by the
orthogonality of the mesh. This issue derives from the cell-centred arrangement preferred by the
Finite Volume Method. If the normal vector of the interface between two cells is collinear to the
vector connecting the respective centroids then the cells are connected orthogonally. In that case,
the face value of the diffusive term is calculated from the first order derivative:
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S-(V<p)f=ISIT (23)
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FIGURE 3.6: Diffusion gradient interpolation.

However, most meshes are not entirely orthogonal owing to the complex fluid flows. As a
consequence, the interface normal flux vector Sy can be derived from the orthogonal
contribution component Ejy, that is calculated from the first order derivative and a correction
component Ty, named cross-diffusion or non-orthogonal diffusion, as shown in Fig. 3.7:

S =E+T; (24)

The non-orthogonal correction factor can be modeled by one of the following methods:

(Vo)s - (1 — cos 0 €)S,

Wo), Tr={ o @ _18)51‘ (25)
(V(p)f . (ﬁ  cos6 E) 5

The first, the minimum correction method, makes Er and 7y orthogonal to minimise the
correction factor. the second is called the normal correction method while the last is the over-
relaxed method which is commonly used due to its’ stability on highly non-orthogonal meshes.
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FIGURE 3.7: Non-orthogonality correction.

In the case that mesh is skewed, the centroid connecting vector does not intersect the interface’s
centroid, Fig. 3.8, meaning that interpolation techniques fail to approach the correct face value.
The value at the face centre f, is calculated using the value at the intersection f” and a correction
derived from the derivative at f”.

Pr = @p + (V@) - dpig (26)
Where, dpythe vector from f” to f.

FIGURE 3.8: Non-conjunctional elements.

Source term discretisation

The most common source term example of source terms is a chemical reaction. Nevertheless,
source terms appear in various other cases. Usually, source terms depend on the variable of
interest. The term is discretised using a Taylor series which is manipulated to include an explicit
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part that is calculated from the results of the previous iteration and an implicit part that includes
the variable of interest:

S \" S \"
S0 = (540) 0c+ 500 = (5,-) -0 27
(0c) = (3 oc) PcT ) d00) " %c (27)
The first term represents the implicit part, while the other two the explicit part. Terms denoted

with asterisk superscript (*), derive from the previous iteration.

Computation of incompressible fluid flows

The previous discretisation schemes dealt with the linearisation of a general transport equation
which require the knowledge of the velocity field. However, owing to the coupled nature of the
pressure and velocity fields, the solution of the Navier-Stokes equations is not straightforward.
For simplicity, only the continuity and momentum equation are considered in the following
analysis. These form a set of four equations which are used to find the four unknown values (U,
U,, U, p). Nevertheless, after close observation it can be observed that there is no equation for
the pressure calculation. In fact the continuity equation consists in a restriction on the X, y and z
velocity componets’ values derived from the momentum equations, meaning that the solution of
the momentum equations must satisfy the continuity equation restriction. Patankar and Spalding
proposed the SIMPLE (Semi Implicit Method for Pressure Linked Equations) algorithm. The
main features of the algorithm are the derivation of a pressure equation from the continuity and
momentum equations and a velocity field corrector to satisfy the continuity equation. The
momentum equation can be written in matrix form as:

MU = —Vp (28)

In which the coefficients of matrix M are known. Then, matrix M is split into diagonal and off-
diagonal components:

AU —H = —Vp (29)

Where, H = MU — AU, and A the diagonal matrix. Diagonal matrices can be inverted easily,
yielding an equation for velocity:

U=A"1H-A"1vp (30)

Which is subsequently substituted into the continuity equation, resulting in a pressure equation:

V-U=0=V-[AT'H-A4A1p]|=0=V- (A Vp) =V:-(A71H) (31)

The solution procedure of the SIMPLE algorithm consists in the following steps:
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1. The pressure field that resulted in the previous iteration is used in the momentum equation
(28) to derive a velocity field which does not conserve mass meaning that the continuity
equation is not satisfied,

2. The resultant velocity field is used to form the pressure correction equation (31),

3. The velocity field is corrected using the equation (30).

This procedure is repeated until both continuity and momentum equations are satisfied
simultaneously. In this analysis only momentum and continuity equations were considered.
Additional energy, turbulence or other transport equations can be solved inside the iterative
process.

The pressure-velocity coupling, mentioned above, is enforced by using a staggered grid for the
variable values storage to avoid the necessity of interpolations to calculate the pressure gradient
and the velocity. Pressure values are stored at the cell centroid, while velocity values at the faces.

Temporal discretisation

The previous paragraphs were involved with the diffusion, convection and source terms. The
schemes are common for both steady-state and transient simulations. Transient equation differs
from steady-state due to the presence of the temporal derivative which also needs to be
discretised. The finite volume approach is similar to the methodology used to discretise the
convection term. Consider the following transient expression of a variable ¢:

d(pp) B
o +L(p)=0 (32)

In which the function £ represents all the spatial terms. Integration and spatial discretisation
leads to:

d(pcpc)
ot

The finite volume approach eventually leads to:

Ve+ L(pt) =0 (33)

t+4t t—At/2
Ve(pcpe) 2 —Ve(pcpc)
At

Similarly to the convection interpolation, flux values at times (t), (t+At), and so on, are
considered as the values at the centroid while those at times (t+At/2), (t+3At/2), and so on, are
the face values.

+L(pE) =0 (34)
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First order implicit Euler scheme

As in the upwind scheme for the convection term, the flux value at the time-face equals to the
value at the upwind centroid.

At

(Pc‘Pc)H7 = (Pcfpc)t (35a)

First order explicit Euler scheme

As in the downwind scheme for the convection term, the flux value at the time-face equals to the
value at the downwind centroid.

At

(Pcfpc)t+T = (PC(PC)HM (35b)
Crank-Nicholson

As in the central difference scheme for the convection term, the flux value at the time-face
derives from interpolation between the two time-adjacent centroids:

t+£ 1 t+At 1 t 35
(Pcpc) ™ 2 =§(PC<PC) +§(PC‘PC) (35¢)

Initial Conditions

The first timestep represents a temporal boundary as it does not have an upwind neighbour.
Consequently, the lower face value is used instead of the centroid’s leading to a substantial error
since the temporal difference between the two faces is 4¢. The issue is dealt with by introducing
a first iteration that is 4#/2 long.

Under-Relaxation

Eventually, the above discretised equations form a system that has to be solved. An initial
solution is given to start the iterative procedure which is usually a random estimation of the user.
Moreover, many problems involve non-linear physics. As a result, the linearised equations may
fail to approximate the solution if the iterative steps are too fast. To overcome this issue, the
most common method to increase accuracy is the introduction of the explicit under-relaxation.
The solution, after every iteration, is corrected using a relaxation factor A:

p=9¢" +Ae" —¢") (36)

Where, ¢ is the previous iteration solution, ¢ " is the solution of the current iteration and ¢ the
corrected solution.
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Under-relaxation happens when A<I. The new solution is corrected by decreasing the difference
between two consecutive iterations. Obviously, the speed of the solution is reduced. If A=1, then,
there is no relaxation and the new solution is kept unchanged. Values higher than 1 are also
accepted and used in cases that a faster convergence is necessary. However, it can lead to
instabilities of the solution.

Stability of transient simulations

The execution of a transient simulation requires the definition of the time-step 4¢. The selection
of the time-step can be determined by the Courant number, which is calculated by:

U- At
— 37
C P (37)

Where,

U is the velocity magnitude;
Ax is the element’s length.

The Courant number expresses the speed that information travels in one time-step, in terms of
elements. The stability condition states that the Courant number C must be smaller than a
maximum value which depends on the method used. In explicit methods the maximum value is
1, while implicit methods can be solved with a larger Courant number value.

Boundary conditions

Various boundary conditions are available but the most common are the value and flux specified
boundary conditions also known as Dirichlet and Neumann, respectively. The former imposes a
specific value of the variable at the boundary from which the flux can be calculated. On the other
hand, the Neumann boundary condition defines directly the flux at the boundary.

Wall boundary conditions

Moving or stationary walls are represented in general by no-slip boundary conditions. This
implies that the velocity of the fluid at the wall equals the wall’s velocity. The flux normal to
boundary is zero and the shear stresses are tangential to the wall.

Inlet boundary conditions

An inlet boundary can be represented by specifying the velocity field or by specifying the
static/total pressure and the velocity direction.

Outlet boundary conditions
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For outlet boundaries, it is necessary to specify static pressure, mass flow rate or set the
boundary condition as a fully developed flow.

Symmetry boundary conditions

The normal gradient of the scalar quantity is set to zero. The velocity vector, on the other hand,
keeps the same magnitude and direction for the parallel to the symmetry boundary component
while having a zero normal to the boundary component. In other words, the shear stress is zero
while the normal stress on the boundary is non-zero.
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4. Thrust bearings

Principles of operation

As mentioned above, thrust bearings consist of 2 solid bodies separated by a film of lubricant. To
explain the mechanics, a slider bearing is considered, as that represented in Fig. 4.1. Due to the
no-slip condition, layers of the lubricating film near the solid walls have the same velocity as the
boundaries. Consequently, the runner drags lubricant inside the wedge formed by the runner and
the pad, increasing the pressure. As stated by continuity, the mass inflow must be equal to the
outflow. Since the inlet opening is larger, the velocity at the outflow must be higher resulting in a
decrease in pressure that reaches the ambient pressure. Therefore, a pressure distribution as that
shown in the image below should develop.

U

Pmax

» X
FIGURE 4.1: Pressure generation between non-parallel surfaces.

Reynolds derived the following equation to calculate the pressure distribution considering an

incompressible fluid:
a (h30p +6 h3 op _6Udh (38)
dx \ p 0x dy\udy) ~ dx

To derive the equation, Reynolds made the following assumptions to simplify the physics of the

problem:

1. All body forces are neglected which is correct as no external forces act on the fluid apart
from magnetohydrodynamic fluids,
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2. Fluid pressure does not vary across the film thickness. Apart from elastic fluids, the
assumption is valid since the thickness is micrometer small,

3. The oil to rotor and pad interfaces are no-slip boundaries,

4. The fluid is Newtonian, which is not always true, as in cases where a polymeric oil is used as
a lubricant,

5. The flow is laminar, which is not true in big turbine applications,

6. Fluid inertia is neglected. For greater accuracy analysis, this term should be considered,

7. Constant fluid density. Not valid for gases, while it is almost true for fluids when thermal
expansion is low

8. Constant viscosity throughout the film. This assumption is always incorrect but greatly
reduces the complexity.

It can be seen that the pressure distribution is affected from the oil’s viscosity p, the runner’s
speed U and the geometry of the wedge represented by %. The load can be then calculated from

the integral of the pressure distribution:

W=ﬂpdxdy (39)
A

e . d
On the other hand, friction is the result of shear stresses, which are defined as 7 = ,uﬁ from the

viscosity definition of Newtonian fluids. Therefore, the friction force can be calculated from the
integral:

F=ﬂtdxdy (40)
A

The above analysis considers only the continuity and momentum equations giving results for
pressure and velocity. However, due to the shear acting on the fluid, viscous dissipation causes
heat generation which increases the lubricant’s temperature. As explained previously, the
properties of oil lubricants depend on the temperature. Therefore, the energy equation should be
included to account for the variation of the lubricants’ properties.

Dynamic behaviour

Fluid film thrust bearings are an excellent method to support axial load of rotating machines.
While the friction developed is higher compared to ball/roller bearings, fluid film bearings have
no wear when operating under constant hydrodynamic lubrication. In addition, they can support
large loads as well, such as the thrust that a propeller produces. Finally, the fluid lubricant offers
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a significant damping effect that simple ball bearings do not have, leading to lower noise and
vibration.

Methodology

In order to predict its’ dynamic behaviour, the thrust bearing is represented by a single degree of
freedom model. Owing to the fact that the rotor is not supported it may move axially or tilt about
a radial axis. In the present work, only axial motions are considered, thus the equation that
describes the change of the displacement x of the mass due to a transient load F(?) is the
following differential equation:

d?x dx
b g kex= 41
mo—g o tkox F(t) (41)

On the left hand side, the first term represents the inertia forces, the second term expresses the
damping forces, while the third term represents the restoring forces known from Hooke’s law.

As a result, the stiffness and damping coefficients must be calculated. In addition, due to the
fluid nature of oil lubricants, the coefficients £ and ¢ are non-linear and compression-only
meaning that:

k=k(x; w) (42a)
c=c(x,x;w) (42b)

In order to calculate the stiffness and damping coefficient, a thermohydrodynamic (THD) CFD
analysis was conducted. The analysis is separated into two parts: a steady state, in which a
constant minimum film thickness x is imposed to the bearing and the load Fj. is determined,
followed by a transient simulation. Fj,,. is the load that the bearing supports under steady
operating conditions. In this way, damping and inertia forces are absent and the stiffness
coefficient can be calculated for each displacement-load couple, from the Hooke’s law equation.

k(x) = FS’;‘;”C (43)

The second part eventually leads to the damping coefficient calculation. Unlike the stiffness
coefficient, it also depends on the direction of motion and as a result two separate simulations
have to be executed. Both force a perturbation of the minimum film thickness by moving the
rotor with constant acceleration. The rotor is moved to either approach or move away from the
pad, to decrease or increase, respectively, the minimum film thickness. The simulation time #,,
is split into two parts. The first lasts for 1/3 of the total simulation and no motion is applied. The
minimum film thickness stays constant. Subsequently, in the second part the rotor is moved with
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constant acceleration, which is described from the following equation, due to the zero initial
velocity:

1
x:x|t=t0+§jé't2 (44)

The simulation time is set accordingly to achieve a maximum displacement 4x, which in this
case is equal to £0.1 pm. The simulations are repeated for various acceleration values, namely, 1,
5 and 10 m/s”.

A new force Fy,s results from each transient simulation and the dynamic part can be calculated
after a new steady state simulation at the final minimum film thickness.

dx d*x

dx d?x
E;W; w) = Fstatic(x + Ax; w) + denamic (x + Ax, w> (45)

Firans (x + Ax, Erﬁ;

At this point, it should be noted that another steady state simulation is required at the position
x+4x. Eventually, the dynamic coefficients for approaching and distancing motions are
calculated:

2
dx d X _ denamic,approaching . denamic,approaching
Capproaching | % dt’ dt?’ N X B X total (46a)

(46b)

2
. N dx d“x o) = Faynamic,distancing _ Faynamic,aistancing
distancing | *» dt’ dt?’ X X" total

Single degree of freedom setup

The knowledge of the stiffness coefficient k(x, w) and the damping coefficient c(x, X, w) allows
the setup of a single degree of freedom model using MATLAB/Simulink software. Given a
transient load F(z), the model calculates the response of the bearing by the single degree of
freedom equation stated previously which can be written as:

¥(t) =%[F(t) —c-x(t) —k-x(t)] (47)

The bearing setup is always under a state of compression and the rest position is supposed to be
where the minimum film thickness is equal to 4,.;,. Two distance vectors are used by the model.
Initially, the rotor is placed at the rest position and no external force is acted upon. Any load
displaces the rotor from this position at a distance x, depending on the magnitude, compressing
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the rotor. Consequently, the minimum film thickness /# decreases by x. Thus, as depicted in Fig.
4.2:

h(t) = hypse — x(t), x, hinum (48)
F(t)
o " l
>
o 0000 —— < X
5 5
] Q
— | ~
C
X, X <«—
h g .
hrest g

FIGURE 4.2: Single degree of freedom model represantation

Equation (47), above, is used to calculate the acceleration at each time-step. Zero initial
conditions are set for the displacement (x(0) = Oum < h(0) = h,,,;) and the velocity. Time
integration calculates the velocity and the displacement at the specific time-step. Subsequently,
as explained by the algorithm in Fig. 4.3, stiffness and damping coefficients are extracted from
the maps created and the restoring and damping forces are defined. This procedure highlights the
fact that acceleration is not known beforehand. While the stiffness coefficient only requires the
minimum film thickness to be defined the damping coefficient is also a function of the velocity
and acceleration as stated above. To deal with the issue, all the interpolations for the damping
coefficient relationship with acceleration are done considering that acceleration is equal to the

RMS value of the load’s acceleration a;oqq(t) = F(t)/m. Both distancing and approaching

coefficients are calculated but the correct is selected by determining the motion direction
(x > 0 - approaching, x < 0 — distancing).
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FIGURE 4.3: Single degree of freedom calculations algorithm
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5. Case study

Geometry

The geometry considered in the present study consists of an eight-sector pad tapered land thrust
bearing. The number of computations necessary is decreased by exploiting the rotational
symmetry of a thrust bearing, thus considering only one sector, whose regions are displayed in
Fig. 5.1. The fluid region (oil) separates the two solid (rotor, pad). Each of the eight pad sectors
consists of an initial groove, a taper region where the film thickness decreases linearly until the
land where the pad-rotor distance is constant and equal to the minimum film thickness, as shown
in Fig. 5.2 and Fig. 5.3. Rotational periodicity conditions are applied to account for the symmetry
of the problem. This requires the inclusion of the following sectors’ groove.

Rotor

Pad

FIGURE 5.1: Domain geometry of rotor and pad separated by fluid film.
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FIGURE 5.3: Geometric characteristics of: (a) rotor, (b) oil.

A parametric analysis has been conducted to define the optimum couple of taper extent and
inclination. The analysis has been performed on the minimum film thickness of H,;, = 20 um,
which has been considered to be the operating condition. It examined values of inclination 4AH
between 40 and 95 microns, and for each one the taper’s extent varied between 55% and 75% of
the sector’s total angle of extent. For every value of AH examined, the design with the best Load
to Friction Torque value is selected, as it appears in Fig. 5.2. The results indicate that while the
maximum pressure increases as AH increases after the optimum point, the load — the pressure
integral over the rotor surface- decreases. Moreover, friction torque keeps increasing, eventually
leading to the decrease of the load to friction torque ratio.
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FIGURE 5.4: Results of parametric analysis: (a) Maximum load to friction torque ratio value for every taper inclination
value, (b) Load to friction torque ratio for optimum taper inclination case.

Thus, the geometric characteristics finally selected are listed in Table 5.1.
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TABLE 5.1: Geometry characteristics.

Description Symbol Unit Value
Number of pads Npad 8
Diameter (Inner/Outer) Dinner / Douter mm 50790
Taper inclination AH pum 65
Groove extent angle Qgroove ° (deg) 2.45
Taper extent angle Qraper ° (deg) 33.75
Height (Groove/Rotor/Pad) Hgroove / Hrotor / Hpad mm 4/10/6
Mesh

A structured mesh totaling approximately 720000 hexahedral elements has been generated,
consisting of 121 equal length elements across the circumferential direction, 65 across the radial
direction and 92 elements across the height, 10 out of which across the film thickness. Details of
the mesh are represented in Fig. 5.2.

(2)
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(b)

(©)

FIGURE 5.2: Mesh details: (a) Pad, (b) Fluid, (c) Rotor.

Boundary conditions

The boundary conditions used are listed in Table 5.2 for the fluid domain and Table 5.3 for the
solid domains and the locations are depicted in Fig. 5.3. Regarding the fluid domain, the internal
boundary (named inlet) is considered a pressure inlet. The oil is fed at a constant pressure,
however, depending on the pressure distribution in the fluid domain, oil may be pushed out in
locations where the pressure is higher than the feeding value. On the other side, the fluid is
allowed only to exit through the outlet. In reality, air may enter through this boundary in
locations that the pressure inside is lower than the ambient. The outer side of the grooves is
covered from the pad’s body, thus a wall is placed which does not allow oil outflow. Since only
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one pad is considered, the sides are modeled with a rotational periodicity interface to account for
the adjacent pads. Finally, the two walls that are on the top and bottom side are the rotor and pad
interfaces, respectively. In both cases, thermal effects have been taken into account by
considering that the heat flux on either side of the interface is the same. In addition, while the
pad is fixed in space, the rotor rotates, dragging the fluid’s upper layer due to the no-slip
condition. Consequently, the fluid has the same velocity field as the rotor.

TABLE 5.2: Fluid domain boundary conditions.

Fluid domains Oil

Type: Opening
Inlet Pressure: 1 bar

Temperature: 40°C

Type: Outlet
Outlet P

Pressure: 0 bar

. No-slip wall

Wall outlet Type: boundary
Sides Rotational periodicity

Pad interface  Heat flux and temperature continuity

Angular velocity: 6000 RPM

Heat flux and temperature continuity

Rotor interface
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FIGURE 5.3: External boundaries and interfaces.

The thermal boundaries on the solid domains have been set by defining the ambient temperature
and a heat transfer coefficient. The pad’s inner and bottom sides are in contact with hot oil. Due
to the higher velocities on the external side of the inner boundary, the coefficient is greater than
that at the bottom side. The pad’s outer side is in contact with ambient air, hence the lower
ambient temperature. The rotor, usually, is a solid shaft and as a result in the inner side an
adiabatic boundary is set, which means that there is a zero temperature gradient normal to the
boundary. The remaining boundaries are in contact with ambient air.
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TABLE 5.3: Solid domains boundary conditions.

Solid . Rotor Pad
domains
Heat transf fficient: 750 W/mK
Inner Adiabatic boundary ca .rans et coethicien o m
Ambient temperature: 40°C
Outer Heat transfer coefficient: 25 W/mK  Heat transfer coefficient: 25 W/mK
u
Ambient temperature: 25°C Ambient temperature: 25°C
. . 1000
Top / Heat transfer coefficient: 25 W/mK  Heat transfer coefficient: W/mK
Bott . .
OO Ambient temperature: 25°C Ambient temperature: 40°C
Sides Rotational periodicity Rotational periodicity
.Oll Heat flux and temperature continuity Heat flux and temperature continuity
interface
Setup

The effect of the moving rotor on the fluid’s velocity field was established by setting the same
velocity field at the interface. However, the temperature condition is different. Due to viscous
dissipation, the oil is heated in high pressure gradient regions. Therefore, the temperature differs
both along the circumferential and the radial direction. As the rotor is spinning, a finite area at a
specific radial direction encounters different temperature values and eventually reaches a steady
state value. However, the solid motion feature on the rotor is extremely time consuming since it
requires approximately ten times more steps to reach convergence. In addition, its’ effect on the
fluid temperature is minor, therefore, it has been neglected.

Additionally, in regions where the pressure drops below the vapour pressure, cavitation occurs.
To account for this phenomenon, a Rayleigh-Plesset homogeneous multiphase model has been
utilised, in which the vapour is represented by a dispersed fluid.

As for the oil’s properties, the difference of the density, specific heat capacity and thermal
conductivity values is negligible in the expected temperature range and can be ignored. Thus,
they have been considered to be constant. On the other hand, the viscosity has been calculated
through the ASTM equation, mentioned above. The details for both the lubricant oil and the
vapour phase that has been considered when cavitation occurs are listed in Tables 5.4 and 5.5,
respectively.
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TABLE 5.4: Oil material details.

Description Symbol Unit Value
Thermodynamic state Liquid

Molar mass M kg/kmol 383.92
Density p kg/m’ 870
Specific heat capacity Cp J/kgK 2100
Thermal conductivity k W/mK 0.13
Kinematic viscosity, 40°C V40°C cSt 47.26
Kinematic viscosity, 100°C Vi00°C cSt 7.17

TABLE 5.5: Vapour material details.

Description Symbol Unit Value
Thermodynamic state Gas

Molar mass M kg/kmol 383.92
Density p kg/m’ 1.185
Specific heat capacity Cp J/kgK 1004.4
Dynamic viscosity 0 N-s/m* 2.10E-05
Thermal conductivity k W/mK 0.0261

Both rotor and pad have been considered to be made from steel whose details are listed in Table
5.6, below.
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TABLE 5.4: Rotor and pad material properties.

Description Symbol Unit Value
Thermodynamic state Solid

Molar mass M kg/kmol 55.85
Density p kg/m’ 7854
Specific heat capacity Cp J/kgK 434
Thermal conductivity k W/mK 60.5

Regarding the dynamic analysis, the moving mass has been considered to be equal to m = 4 kg,
while the rest position has been set at a distance of 4,.;, = 50 um. As for the load, the bearing has
been initially set at the nominal minimum film thickness distance of 20um and then the
following sum of sinusoidal functions has been applied:

wt
F(t) = A; - sin (7 + <p1> + A, - sin(wt + ¢3) + As - sin(Qwt + @3) + Ay - sin(4wt + @,)
+ Ag - sin(8wt + @s) + Ag - sin(16wt + @)
Where, @ = 600 rad/s and the amplitudes and phases those listed in Table 5.5.

TABLE 5.5: Transient load amplitudes and phases

Amplitude Value Phase Value
A, 30 ol 5.353297
Ay 40 03 3.878171
A; 20 03 0.085219
A4 15 P4 2.010225
As 15 05 1.152626
Ag 15 D6 3.710464

40



CFD Results

The steady-state simulation indicates —as expected- that as the minimum film thickness decreases
both pressure and temperature increase, as depicted in Fig. 5.4. Both infinitely long and infinitely
short assumptions for the Reynolds’ equation solution indicate that pressure increases as the film
thickness parameter decreases. This is due to the fact that the bearing creates a Couette type
flow. The fluid mass dragged into the bearing is mainly affected from the film thickness on the
taper inlet. Owing to the decrease in the film thickness in the circumferential direction, pressure
must increase as it appears in the contour Fig. 5.5. The greater the film thickness differential, the
greater the pressure increase.

90 150
QOil maximum
temperature
130
85 = == [Maximum Pressure
\
\ - 110
_ 80 +—D
o \ -
o \\ "0 8
2 [«
2 75 NI g
o \ S
g R 70§
8 N :
70 < ™\
N \ - 50
~
~
—
T \>\ I 30
60 10
10 15 20 25 30 35

Minimum film thickness Hmin (um)

FIGURE 5.4: Maximum pressure and temperature - minimum film thickness diagram.

In Fig. 5.6, the pressure distribution along the circumferential direction at the middle of the
bearing’s width at the oil-rotor interface is displayed. Inside the groove there is no pressure
buildup. In the taper region, pressure increases, reaching its’ maximum value at the end of the
taper region. Then, it drops quickly to satisfy the periodical boundary conditions.
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FIGURE 5.5: Pressure contour on oil-rotor interface.
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FIGURE 5.6: Circumferential pressure distribution along midline.
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Fig. 5.7 displays the pressure distribution across the bearing’s width at the circumferential
position near the location of maximum pressure. Oil is fed at a pressure of 1 bar. Across the
width, pressure increases and reached the maximum value at the middle of the width, then
decreases to satisfy the outlet’s atmospheric pressure boundary condition.

45.0

N
35.0 / \

b \
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w / \
o \

0.0

40.0

Pressure p (bar)

25 27 29 31 33 35 37 39 41 43 45

Radius (mm)

FIGURE 5.7: Radial pressure distribution.

The pressure that has been built up at the end of the taper region prevents the free entrance of the
relatively cool oil fed at the inlet. Oil enters through the left side of the pad and is heated as it is
dragged circumferentially reaching its’ peak value at the right corner of the outlet, as it appears
in Fig. 5.8. As a result, the pad’s temperature, Fig. 5.9, is greater near the right side where the
oil’s temperature is higher.
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FIGURE 5.8: Temperature contour on oil-rotor interface.
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FIGURE 5.9: Pad temperature contour.

44



Similarly, load and friction torque increase as fluid film thickness decreases as shown in Fig.
5.10. However, friction torque increases less rapidly leading to a greater value of the load to
friction torque ratio, which justifies the choice to design more loaded bearings in order to benefit
of higher efficiency.
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FIGURE 5.10: Load and friction torque - minimum film thickness diagram.

Regarding cavitation, the solution indicates that there is no cavitation occurring.

Regarding the transient simulations, for each minimum film thickness evaluated the steady load
and the transient load after a displacement of 0.1 um to either approach or move away from the
pad, are calculated and is listed in Table 5.6. The transient simulations are repeated for three
different acceleration values.
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TABLE 5.6: Transient load results.

Steady Transient Load (N)
(H“‘i'; Load Approaching Distancing
m
: N 1ms? Sms 10ms 1ms' Smist 10 mist

10 1683.95 1,717.29 1,742.51 1,750.00 1,651.75 1,628.28 1,618.76
14 1158.63 1,182.57 1,198.26 1,210.00 1,134.82 1,119.59 1,110.00

16 984.23 1,005.05 1,017.03 1,030.00 964.86 951.77  941.36
18 847.736 864.23  877.22  887.00  831.04  818.62  809.37
20 738.938 754.50 764.68  774.00  723.56  713.50  704.28
22 650.945 663.75 67429 683.00 637.83 62790 619.61
24 578.893 590.59  599.81 608.00 567.96  558.18  550.49
26 518.837 529.06  537.92  545.00 508.78 49994  492.98
30 424883 43281 44029 447.00 417.08  409.62  403.18

34 355928 36233  368.92 37449 349.60 343.06  337.56

The stiffness coefficient has then been calculated and plotted in Fig. 5.11, according to equation
(43). It should be noted that as the minimum film thickness decreases the stiffness coefficient
decreases non-linearly, since the load also follows a non-linear decrease, as explained above. In
addition, the zero value at the minimum film thickness of 50 um has been set due to the fact that
it is considered as a rest position. This is not exactly true since a small load would be calculated
if the simulation was conducted. However, this assumption has to be done in order to achieve the
correct response in the single degree of freedom and it as been explained below.
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FIGURE 5.11: Stiffness coefficient k - Minimum film thickness H,;,,.

In order to calculate the damping coefficient according to equations (46a) and (46b) the steady
state load at the final position x+4x is required. An extra set of steady state simulations have
been conducted, whose results are listed in Table 5.7.

Subsequently, the damping coefficients for each acceleration value of the approaching and
distancing conditions have been calculated and displayed in Fig. 5.12a and 5.12b. The damping
coefficient when the rotor is approaching the pad is higher than that when it is moving away
from it. The difference between the various acceleration values is slight.
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TABLE 5.7: Steady load at position x+A4x.

Hin Steady Load (N)

(nm) Approaching Distancing
10 1,701.23 1,666.95
14 1,168.57 1,148.82
16 991.96 976.59
18 853.83 841.71
20 743.84 734.09
22 654.93 647.00
24 582.14 575.63
26 521.60 516.10
30 426.89 422.89
34 357.42 354.45
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FIGURE 5.12: Damping coefficient - minimum film thickness Hmin and acceleration a: (a) distancing, (b) approaching.

Single degree of freedom results

After the calculation of the stiffness and damping coefficients the single degree of freedom
model has been setup. As mentioned above, it is necessary for the stiffness coefficient to be
equal to zero at the selected rest position. The rotor’s displacement x is evaluated from the rest
position and then the minimum film thickness is calculated. When the external load is zero, the
single degree of freedom model should be at the rest position. If the stiffness coefficient is non-
zero then a restoring force will cause the rotor to constantly move away from the pad. This
inaccuracy of the stiffness coefficient does not affect the bearing’s behaviour in normal
conditions, since the bearing has been set at the nominal minimum film thickness before starting
the transient loading.

The loading condition imposed on the model lasts a total of 40 ms. In Fig. 5.13, the transient load
is displayed. During the first 10 ms, there is only the steady-state load applied to set the initial
minimum film thickness condition. Subsequently, the transient loading is applied. The RMS
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acceleration value is approximately 9.4 m/s>. The maximum compression additional load reaches
almost the value of 100 N.
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FIGURE 5.13: Single degree of freedom transient load.

The fixed step Runge-Kutta (ode4) solver was used for the solution of the differential equations
with a time-step of 0.0001 s.

In the following figures, Fig. 5.14 and Fig. 5.15, the initial steady state condition —lasting 10 ms-
has been ignored. Fig. 5.14 displays the variation of the minimum film thickness Hy,, and the
stiffness coefficient k over time due to the transient load. Fig. 5.15 displays the variation of the
rotor’s velocity x and the damping coefficient c.

50



23

minimum film thickness
22.5 o Stiffness coefficient 4
1)
R
22 S AR 43
A
E 215 ; : _
1 .
s : : - 41 E
: AN 8 2
- N : <]
2 2 \ Y \V : 4. x
c o : : s 2
35 \ P 3 : Pl 39 @
= 205 R : : 1Fan S
= ’ ) : %..' ¥ 3 . ” [ £
€ .. H H $ b o : ° . ]
= R 3 ’ M : B 9
4= . 8
20 “N 37 4
A\ Dy : M} | g
€ N : : . s |, : &
= '\-’-'. '\, M . .'d. :\, . =
s 19.5 S +V s i W i\ &a
R : £ HE - 35
': l. ; .’ .: .' :‘
19 i : x ey .
i NP ;
4 R v - 33
18.5 ‘_‘_..;- R
18 31
0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time (s)

FIGURE 5.14: Minimum film thickness and stiffness coefficient variation due to the transient load.

When the load decreases, the minimum film thickness increases, causing a reduction in the
stiffness and damping coefficients. The damping coefficient plotted in Fig. 5.15 is the one that

has been selected depending on the direction of the rotor’s motion, which has then been
multiplied with the velocity to calculate the damping force.

At this point, it should be highlighted that the velocity function’s frequency is higher than the
minimum film thickness function’s. This is due to the transient load function selected. Velocity
is calculated by integrating acceleration which has the same frequency as the load. The load is
composed of a sum of sinusoidals with different frequencies. When integrated, each component

is multiplied by a factor of ﬁ, in which a = 0.5, 1, 2, 4, 8 and 16. Hence, the high frequency

terms become less important while the amplitude of the term with o = 0.5 is enhanced. The same

occurs in the case of the minimum film thickness which is calculated from the velocity
derivative.
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FIGURE 5.15: Velocity and damping coefficient variation due to the transient load.

Fig. 5.16, below, displays the rotor’s free body diagram at four separate time-steps representing
four different cases. On the top two diagrams, the rotor is approaching the pad while on the

bottom two, it is moving away. The two on the left have positive acceleration, while the two on
the right, negative.
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FIGURE 5.16: Free body diagram.

To evaluate the results a final transient CFD analysis has been conducted. The displacement that
resulted from the single degree of freedom modeling has been imputed as a forced displacement
to the rotor on a transient CFD simulation. The resulting force history has been compared to the
initial transient force used for the single degree of freedom calculation in Fig. 5.17. The results
from the ANSYS transient analysis indicate good agreement with the load set in the single
degree of freedom model initially. There is a slight delay which is however negligible. The most
important difference is that the resultant force does not capture the high frequency variations
imposed in the initial load.
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6. Conclusion - Future work

Conclusion

Taking everything into account, in the present work, the dynamic characteristics of a tapered-
land fluid film thrust bearing have been defined permitting the prediction of the bearing’s
response when loaded with a transient force.

Initially, parametric analysis has been conducted to define the tapered-land’s geometric
characteristics. The analysis examined which couple of taper extent and inclination led to the
optimum bearing at a specific minimum film thickness, which was decided by looking at the load
to friction torque ratio. Increasing the inclination, increases the taper opening area, thus, allowing
greater lubricant’s flow in the bearing. Increased flow translates into increased maximum
pressure. However, after the taper inclination optimum value the load appears to decrease. On
the other hand, friction torque keeps increasing as the taper inclination increases, leading to the
decline of the ratio.

Having determined the optimum geometry for the bearing, the stiffness and damping coefficients
have been calculated through a thermo-hydrodynamic (THD) computational fluid dynamics
(CFD) analysis which solved the Navier-Stokes equations. The analysis started with a steady-
state simulation, in which the rotor has been set at a specific minimum film thickness.
Subsequently, a perturbation of the minimum film thickness has been imposed. The rotor’s
perturbation consisted in a constant acceleration motion to either approach or move away from
the pad. Three acceleration values have been examined according to the expectations. A new
steady-state simulation has been conducted at the final perturbation position. The results of the
analysis yielded a map for each coefficient.

After the determination of the bearing’s dynamic coefficients, a single degree of freedom has
been utilised to predict the response of the bearing under a transient loading condition. The
single degree of freedom model developed consisted in a mass supported by a non-linear couple
of damper and compression only spring. The stiffness coefficient of the spring is calculated
depending on the current minimum film thickness. The damping coefficient, on the other hand, is
calculated for both approaching and distancing conditions as a function of the minimum film
thickness. Depending on the value of the velocity, the correct set is selected and then the final
value derived by interpolating over the acceleration. The transient force imposed on the system
was a sum of sinusoidal wave function of different amplitudes, wave lengths and phases.

Finally, to evaluate the single degree of freedom results, the displacement derived has been set as
a motion of the rotor in a new transient CFD analysis. The load function that resulted agreed with
the initial loading force applied to the single degree of freedom model, validating the results.
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Future work

The methodology proposed in the present work consists in an important step towards the
dynamic analysis of thrust bearings. Nevertheless, many more aspects could be investigated in
future work, such as the topics suggested below.

1.

Temperature dependent lubricant’s properties: In the present work, only viscosity was
considered to be temperature dependent. However, all other properties are affected by the
temperature, especially the lubricant’s density, and should be considered.

Rotor’s tilting motion: A similar procedure should be developed for the tilting motion of the
rotor to examine its’ behaviour

Other thrust bearing geometries: Different pad geometries should be analysed and compared
to determine which displays the best dynamic characteristics

Pivoting-pad bearing: Marine thrust bearings used to support the propeller’s thrust are have a
pivoting pad. The methodology could be applied to such bearings to determine their
behaviour. In extreme conditions, such as in cases of propeller ventilation, there may be huge
thrust load differences, which could be of great interest

Open source CFD code: During the course of this thesis, the use of the open source CFD
code OpenFOAM was investigated. While it provides the user with many capabilities, at the
moment, there is no conjugate heat transfer transient solver available. In addition, there are
no cavitation models that can be applied. These features could be developed in future

versions or generated by users allowing this kind of computations.
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