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by Αθανάσιος Βασιλειάδης

This thesis is going to give a gentle introduction to Mean Field Games. It aims to pro-
duce a coherent text beginning for simple notions of deterministic control theory progres-
sively to current Mean Field Games theory. The framework gradually extended form single
agent stochastic control problems to multi agent stochastic differential mean field games. The
concept of Nash Equilibrium is introduced to define a solution of the mean field game. To
achieve considerable simplifications the number of agents goes to infinity and formulate this
problem on the basis of McKean-Vlasov theory for interacting particle systems. Furthermore,
the problem at infinity is being solved by a variation of the Stochastic Maximum Principle
and Forward Backward Stochastic Differential Equations. To elaborate more the Aiyagari
macroeconomic model in continuous time is presented using MFGs techniques.
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Η παρούσα μεταπτυχιακή εργασία έχει σκοπό να μελετήσει ταMean Field Games. Στόχος της
είναι να παράγει ένα συνεκτικό κείμενο που να εισάγει τον αναγνώστη από τις απλούστερες
ιδέες του Βέλτιστου Ελέγχου με έναν δρων στην τρέχουσα θεωρία των MFGs.

ΤαMean FieldGames (MFGs για συντομία) είναι ένας σχετικά νέος κλάδος των μαθηματικών
και πιο συγκεκριμένα βρίσκονται στην τομή της θεωρίας των παιχνιδιών με τη στοχαστική
ανάλυση και τη θεωρία ελέγχου. Από την πρώτη εμφάνισή τους στο τεράστιο έργο των Li-
ons και Lasry (2006) και ανεξάρτητα από τους Huang, Malhame και Caines (2006) έχουν
προταθεί δύο προσεγγίσεις για τη μελέτη τους, το συνδυασμό Hamilton-Jacobi-Bellman με
Focker-Plank, που προέρχεται από τον δυναμικό προγραμματισμό και τη θεωρία ελέγχου και
PDEs και τις Forward-backward stochastic differential equations (FBSDEs) τύπου McKean-
Vlasov που προέρχοται από τη στοχαστική ανάλυση.Θα εξηγήσουμε και τις δύο στο κατάλληλο
τμήμα, ωστόσο θα βασιστούμε κυρίως στη δεύτερη για την ανάλυσή μας. Το πρόγραμμά μας
για την αντιμετώπιση των μέσων καταθέσεων είναι το εξής:

• Στο πρώτο κεφάλαιο θα εισαγάγουμε τα MFG διαισθητικά και τις βασικές έννοιες από
τη θεωρία των παιχνιδιών για να βελτιώσουμε την αναγνωσιμότητα του κειμένου για
τον μη εξειδηκευμένο αναγνώστη. Επιπλέον, θα συζητήσουμε εν συντομία τα μεγάλα
παιχνίδια για να δικαιολογήσουμε την πιθανοθεωρητική προσέγγισή μας που ακολουθεί
στα κεφάλαια 2 και 3

• Στο δεύτερο κεφάλαιο θα αναπτύξουμε τους αυστηρούς ορισμούς για τα MFG, θα
εξηγήσουμε τη μετάβαση στο όριο με κίνητρο από τη στατιστική φυσική και θα εισαγάγουμε
στοχαστικές διαφορικές εξισώσεις McKean-Vlasov για να περιγράψουμε τη δυναμική
του συστήματος μας.

• Στο τρίτο κεφάλαιο θα ασχοληθούμε με την επίλυση των MFG και στον προσδιορισμό
των σημείων ισορροπίας. Θα χρησιμοποιήσουμε μια εκδοχή της Στοχαστικής Αρχής
τουΜεγίστου, μαζί με το θεώρημα σταθερού σημείου του Schauder για να αποδείξουμε
την ύπαρξη ισορροπίας MFG.

• Στο τέταρτο κεφάλαιο για να δούμε τη θεωρία σε δράση, θα παρουσιάσουμε και θα
λύσουμε το μοντέλο Aiyagari, ένα μακροοικονομικό μοντέλο.

———————————
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Preface

This text started as my master thesis for completion of the M.Sc. program ”Mathematical
Modeling in New Technologies and Financial Engineering” offered by the National Technical
University of Athens (NTUA) but soon exceeded its purpose and transformed into a text that
I hope will provide the foundation for my future research in the Mean Field Games topic.

I aimed through the development of this text, to understand the topic in a sufficient depth
that would allow we to review the most important literature, unify it and explain in a way
that it can be helpful to anyone interested in studying the topic with minimum mathematical
prerequisites.

Mean Field Games themselves are a heavy topic to discuss in any form. The require-
ments I identified as I engaged in this topic were Optimal Control Theory, Stochastic calcu-
lus, Stochastic Control theory and game theory. Even though one can deal with Mean Field
Games without any prior knowledge of Game theory, it enhances a lot the intuition behind
the models.

In the same spirit I would like to advise the non-expert reader or generally anyone who
wants to develop a feeling for MFGs and lack the background to start from the Appendixes
and the move forward to the main text. They have been designed to be able to stand on their
own and provide a quick introduction and review of the related subject without too much tech-
nical details. Nevertheless, I also have references to the appropriate sections of the appendix
throughout the text.

Last but not least, I would like to thank my advisor professor Vassilis Papanicolaou for his
support and encouragement throughout the course of this project. He has been an invaluable
mentor and teacher. Our discussions has provided me with motivation and insight for various
subjects broader than mathematics alone.

Αθανάσιος Βασιλειάδης
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Chapter 1

Introduction

Mean field games (MFGs for short) are a relatively new branch of mathematics and more
specifically they lie at the intersection of game theory with stochastic analysis and control
theory. Since their first appearance in the seminal work of Lions and Lasry (2006) and inde-
pendently byHuang,Malhame andCaines(2006) two approaches have been proposed to study
them, the coupled Hamilton-Jacobi-Bellman with Focker-Plank which comes from dynamic
programming in control theory and PDEs and the Forward-Backward Stochastic Differential
Equations (FBSDEs) of McKean-Vlasov type which comes from stochastic analysis. We will
explain both of them in the appropriate section, however we will rely mostly on the second
one for our analysis. Our program to deal with mean filed games is as follows:

• In the first chapter we will introduceMFGs intuitively, and the basic notions from game
theory to improve the readability of the text for the non-expert reader. Moreover we
will discuss briefly about large games to justify our probabilistic approach following
in chapter 2 and 3

• In the second chapter we will develop our formal definitions about MFGs, we will ex-
plain the transition to the limit with motivation from statistical physics and introduce
McKean-Vlasov stochastic differential equations to describe the dynamics of our sys-
tem.

• In the third chapter we will be involved in solving MFGs and identifying equilib-
rium points. We will use a version of the Stochastic Maximum Principle along with
Schauder’s fixed point theorem to prove existence of a MFG equilibrium.

• In the fourth chapter in order to see the theory in action we will present and solve the
Aiyagari model, a toy macroeconomic model.

Let’s start by addressing intuitively the question “What is actually a mean field game?”

1.1 What is a mean field game and why are they interesting?

As the name proposes it is a strategic game dynamic and symmetric between a large num-
ber of agents in which the interactions between agents are negligible but each agent’s actions
affect the mean of the population. In other words each agent acts according to his minimiza-
tion or maximization problem taking into account other agents’ decisions and because their
population is large we can assume the number of agents goes to infinity and a representative
agent exists (precise definitions for everything will be given later).

In traditional game theory we usually study a game with 2 players and using induction
we extend to several, but with games in continuous time with continuous states (differential
games or stochastic differential games) this strategy cannot be used because of the complex-
ity that the dynamic interactions generate. On the other hand with MFGs we can handle large
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number of players through the mean representative agent and at the same time describe com-
plex state dynamics.

MFG are becoming an increasingly popular research area because they can model a large
variety of phenomena from large systems of particles in physics, to fish schooling in biology,
but we will restrict ourselves here to economics and financial markets. We will devote the last
part of this introductory section to MFG and economics to give further motivation.

We will now see one of the most common examples that accompanied mean field games
since its early development GLL2010.

1.1.1 When does the meeting start?

Suppose that we have N university professors participating in a meeting, which is sched-
uled to begin at t0 (called initial time ). All of them start from different locations to attend
but are symmetric in a sense that they share the same characteristics (for example they have
to cover the same distance to the venue or they are moving with the same speed, they need
the same relative time etc). But because some of them are notorious for being late the organ-
ising committee decided to actually start the meeting only when the 75% of them gather to
the venue. Each one given his or her preferences have a target time of arrival, ti but due to
non-anticipated events (weather conditions, traffic etc) they arrive at Xi (actual time of ar-
rival). Each Xi is the sum of professor’s desired arrival time (ti) which is completely under
his control and random noise.

Xi = ti + σiϵi for i = 1, 2, ...N

• (ϵi)1≤i≤N is an iid sequence with N(0, 1)

• (σi)1≤i≤N is also an iid sequence with common distribution ν

• (ϵi)1≤i≤N is assumed to be independent of (σi)1≤i≤N

So the actual time the meeting starts, T is a function of the empirical distribution µ̄N
X of

the arrival times X = (X1, ..., XN).
The expected overall cost of professor i is defined as:

Ji(t1, ..., tN) = E[A(Xi − t0)
+︸ ︷︷ ︸

reputation cost

+ B(Xi − T)+︸ ︷︷ ︸
inconvenience cost

+ C(T − Xi)
+︸ ︷︷ ︸

cost of early arrival

] (1.1.1)

where A, B, C > 0 constants

Remark. The fact that the choice of the start time T is a function of the empirical distribution
T = τ(µ̄N

X ) is the source of the interactions between the agents who need to take into account
the decisions of the other agents in order to make their own decision on how to minimize their
cost.

1.2 Introduction to game theory

Definition 1.2.1. Game
A (strategic) game is a model of interacting agents (players), who take decisions.

We can separate games in to four main categories:

• Information
Regarding the structure of the available information:
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1. Games of perfect or complete information, and
2. Games of partial or incomplete information usually called Bayesian games.

• Time
Regarding time:

1. Static or one shot games in which the agents take only one decision regardless of
the time horizon.

2. Dynamic games in which the agents take multiple decisions at discrete times.
These games can be specified even more in:
(αʹ) Discrete time, or repeated games where the time is discrete and the dynamic

game consists of multiple one shot games which are repeated in different
time instances.

(βʹ) Continuous time or differential games where the time is continuous and the
agents take actions in a continuous manner i.e. use continuous functions to
represent their decisions

Definition 1.2.2. Some terminology
In order to define a game we need the following

1. P: the set of players (agents)
#(P) = N the number of players

2. Ai: the set of actions for player i
A = A1 × ... × AN

a = (a1, ...aN) ∈ A is an action profile where ai is the action the individual play-
ers take and a−i the action profile including every player’s action except i’s a−i =
(a1, ...ai−1, ai+1, ...aN)

3. (αʹ) C: the set of players’ characteristics
(βʹ) ≺i a preference relationship that partially orders Ai and defines utility functions

4. U : the set of payoff functions ui : Ai → R

5. M: the set of players’ strategies

M := { f : [0, T] → A| f arbitrary function}

6. P(A) The set of probability measures on A

Remark. For this section we will assume that all players desire higher payoffs we will not go
into details about utility functions or preferences or rational behavior of players since these
concepts are broader than the scope of this text. We assume that ui : Ai → R is well defined
and fulfills common assumptions which we will not mention. We refer to the original work
of Von Neumann and Morgensten ”Game theory and Economic Behavior ” and to almost any
textbook in game theory for more information.

Game theory is mostly concerned with the incentives of the agents. The main question is
the existence of a strategic situation from which no one has incentive to deviate, the so called
Nash equilibrium.
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Definition 1.2.3. Nash Equilibrium
An action profile a∗ ∈ A is called a Nash equilibrium if and only if for every player i

ui(a∗) ≥ ui(ai, a∗−i) ∀ai ∈ Ai

where ui(·) is the payoff function of player i.

When we are solving a game we suppose that every player is acting according to his/her
best interests, trying to respond optimally to other players actions. This is the concept of the
best response function.

Definition 1.2.4. Best Response Function (BRF)
The function Bi : A → Ai is called the best response of player i to the actions of the

other players denoted by −i.

Bi(ai) = {ai ∈ Ai : ui(ai, a−i) ≤ ui(a
′
i, a−i) ∀a

′
i ∈ Ai}

Equivalently we can define Nash equilibrium in terms of Best Response Functions

Definition 1.2.5. Equivalent definition
An action profile a∗ ∈ A is called a Nash equilibrium if and only if it is a fixed point of

the best response function B, B = B1 × ... × BN

We will now give simple examples of games to elaborate more on the definitions and
theory.

Example 1.2.1. Prisoner’s dilemma
Suppose a robbery is committed and the police arrests the two suspects. Policemen decide

to question them independently to increase their chances to unfold the truth. Each one can
accuse the other but has also right to remain silent. If both of them accuse each other policemen
will be sure that they are guilty and send them to prison for 5 years. In case both of them remain
silent because of lack of details they will be sentenced only for one year and if one accuses and
the other not then the one who accused the other will be free to leave and become a witness
so the other will be sentenced to 10 years in jail. Policemen inform the suspects of the four
possibilities, and they have to announce their decision simultaneously.

Game formulation
Players: 2
A = {accuse, not accuse}
The preferences relationship is defined as follows: The most preferable situation freedom is
labeled 3, the next preferable situation 1 year in prison is labeled 2, the next 5 years is labeled
1 and the least 10 years in prison is labeled 0. This way we can use the usual order of natural
numbers for the outcomes. Thus an action which yields a higher payoff is more preferable.
We wrap everything in the next table of payoffs

Solution
We have the following strategic situations:
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T 1.1: Prisoner’s dilemma payoffs

suspect 2
accuse not accuse

suspect 1 accuse 1,1 3,0
not accuse 0,3 2,2

• Assume player 2 plays accuse, then player 1 plays accuse since it has the greatest
payoff.

• Assume player 2 plays not accuse, then player 1 players accuse since it has the greatest
payoff.

The BRF for player 1 is accuse (whatever player 2 plays)

B1 = {accuse}

similarly
B2 = {accuse}

we conclude that the Nash equilibrium of the game is (accuse, accuse)

Example 1.2.2. Matching Pennies
Two players choose to show each other simultaneously the face of a coin if they choose

the same player 2 pays player 1 1$ if they choose different player 1 pays player 2 1$.

Game formulation
Players: 2
A = {Head, Tails}
Payoffs:

T 1.2: Matching Pennies Payoffs

player 2
Head Tails

player1 Head 1,-1 -1,1
Tails -1,1 1,-1

Solution
This game has no Nash equilibrium.
Suppose (Head, Head) is a Nash equilibrium, than player 2 will be in better position if he/she
change his/her decision to Tails. So equilibriummoves to (Head, Tails) but then again player
1 will be in better position if he/she change his/her decision to Tails and so on. There is
no stable outcome, each player has incentive to deviate form any situation and so no Nash
equilibrium exists.

Example 1.2.3. Cournot Duopoly
Suppose we have a market with two firms producing the same product. Both of them face

a common demand curve Q = a − P where a, b > 0 with Q the total product (Q = q1 + q2)
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and P the price. Each firm has a linear cost function C(qi) = cqi and try independently to
maximize their profits Πi(qi) = qiP − cqi, for i = 1, 2

Game formulation
Players: 2
A = {q1, q2} (here the actions are continuous variables)
Payoffs: Π1(q1), Π2(q2)

Solution
For each firm the profit function can be expressed as:

Πi(qi; q−i) = qi(a − (q1 + q2))− cqi for i = 1, 2

using the inverse demand curve.
The first order condition for profit maximization of firm 1 yield:

dΠ1

dq1
(q1; q2) = a − 2q1 − q2 − c = 0

q1 = B1(q2) =
a − c − q2

2
(1.2.1)

This is BRF of firm 1.
Similarly the BRF of firm 2 is

q2 = B2(q1) =
a − c − q1

2
(1.2.2)

So for theNash equilibriumwe are looking for an intersection point in the system (1.2.1)(1.2.2)
which yields 

q∗1 =
a − c

3

q∗2 =
a − c

3
(q∗1 , q∗2) is the unique Nash equilibrium, as the following figure shows.

q2

q1

B1(q2)

B1(q2)

F 1.1: BRF functions

Definition 1.2.6. Symmetric game
A game is called symmetric if
1. Each player has the same action set

A1 = ... = AN
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2. And his/her preferences can be represented by utility functions ui, uj such that ui(a1, a2; a−i−j) =

uj(a2, a1; a−i−j) ∀(a1, a2) ∈ A

All of the previous examples, including ”When does the meeting star?” are static, sym-
metric and as we are going to discuss in section 2, symmetry is one of the core characteristics
of mean filed games.

1.3 Nash equilibrium in Mixed Strategies

As we saw in the example (1.2) a game does not always have a Nash equilibrium. But
what would happen if we allow the players to randomize their behavior? Let look again at
”Matching Pennies” while we allow players to choose their actions based on probability.

Example 1.3.1. Matching Pennies with randomized behavior
Assume player 2 chooses Head with probability q (and Tails with 1 − q) then player 1

choosesHeadwith probability p (and Tails with 1− p) and keeping in mind table 2 each out-
come ((H,H),(H,T),(T,H),(T,T)) has probability qp. Now let look at the following situations:

• If player 1 chooses Head with probability 1 his expected payoff would be:

q1 + (1 − q)(−1) = 2q − 1

• If player 1 chooses Tails with probability 1 his expected payoff would be:

q(−1) + (1 − q)(1) = 1 − 2q

So if q < 1
2 then he/she is in better position playing Tails and vice versa for q > 1

2 . For q = 1
2

then p = 1
2 (each strategy gives the same expected payoff). The best response of player 1 is:

B1(q) =


{0} if q < 1

2

p = 1
2 if q = 1

2

{1} if q > 1
2

And similarly we can construct the BRF for player 2. Combining them and noticing the
fixed point we conclude that the unique Nash equilibrium is when each one is randomizing
with p = q = 1

2 .
This equilibrium has a special name called Nash equilibrium in mixed strategies as the

following definitions indicates.

Definition 1.3.1. Mixed strategy
A mixed strategy for a player in a strategic game is a probability distribution, µ ∈ P(Ai)

for his/her actions given the actions of the other players.

In mixed strategies each player randomize his/her actions according to the distribution
µi which is a probability measure defined on Ai the set of player’s actions. While, µ is the
product measure defined on A the Cartesian product of Ais.

Definition 1.3.2. Nash equilibrium in mixed strategies
A mixed strategy profile µ∗ ∈ P(A) is called a Nash equilibrium in mixed strategies if

and only if for every player i

ui(µ
∗) ≥ ui(µ) ∀µ ∈ P(A)
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where ui the utility that player i gets from probability distribution µ

It is rather obvious that a pure-strategies Nash equilibrium is an equilibrium in degenerate
mixed strategies.
Remark. Again we assume ui : P(Ai) → R is well defined satisfying certain assumptions.

Again as we saw in the previous example we can define Best Response Functions in terms
of mixed strategies in the same way as we did with pure strategies. And of course we have the
equivalent definition of Nash equilibrium in mixed strategies as a fixed point of the BRFs.
Theorem 1.3.1. Nash

Every strategic game with a finite action set, has a Nash equilibrium in mixed strategies

1.4 Games with a large number of players

Nash’s theorem is quite general and was proved by himself in a very elegant way but in
order to stress the importance of finiteness in the theorem we will use an example were we
violate this finiteness and highlight the need for measure-theoretic tools to analyse games
with a large number of players.

We consider a game where the number of players is infinite and set-up a rule to introduce
this infiniteness in the strategy profiles. This counterexample is by Peleg (1969) Peleg1969
Example 1.4.1. A game with infinite number of players

This game has no physical interpretation, we suppose the Positive natural numbers is the
set of players, each player is given to options to player 0 or 1 and the payoff he gets depends
upon the choice he made and the sum of the actions of the other players as follows.

Game formulation
P ≡ Z the set of players
Ai = { 0, 1} individual’s action set

ui(ai, ∑
i∈P

ai) =


1 if ai = 1 and ∑

i∈P
ai < ∞

0 if ai = 0
−1 if ai = 1 and ∑

i∈P
ai = ∞

payoff function.

The game does not have a Nash equilibrium in pure strategies nor in mixed. For pure
strategies, suppose that that 1 is a Nash equilibrium, i.e. all players choose to play 1 then
∑
i∈P

ai = ∞ and ui = −1∀i ∈ P. But then everyone would be in better position if they choose

0, to get a payoff of 0 and ∑
i∈P

ai < ∞ but then again everyone would have incentive to deviate

and play 1 to get a payoff of 1 but then ∑
i∈P

ai = ∞ e.t.c.

For mixed strategies suppose that µ ∈ M(A) is an equilibrium probability distribution
and (p, 1 − p) the corresponding mixed strategy equilibrium profile for player i, then his
expected payoff under µ∗

−i over A−i would be:

u(µi, µ∗
−i) = Eµ∗

−i

[
µ({0})ui(0, ∑

k 6=i
ak) + µ({1})ui(1, ∑

k 6=i
ak)

]
= pEµ∗

−i

[
ui(1, ∑

k 6=i
ak)

]
= −p

Then he would would get a payoff −p depending on the convergence of the sum ∑
k 6=i

ak

which is given by µ(limin f
i→∞

({ai = 0})) = 0. This way player i would gain if he play a
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pure strategy (0) and hence µ could not be a mixed strategy and we come back to the pure
strategies case.

As seen in the previous example solving games with a large number of players can be
difficult (remember also eq. (1.1.1) from ”When does the meeting start?”) if not impossible
and the strategy behind MFGs, to overcome this difficulty, is to search for simplifications in
the limit N → ∞ of large games. Of course simplifications are not for free we need to rely
on assumptions to achieve them, but we will come to them in the second part where we will
give our formal definitions.

For now we will describe interactions based on empirical distributions of individual re-
sponses intuitively using the example ”When does the meeting start?”

1.4.1 Revisiting ”When does the meeting start?”

We restate the key elements of the model in a compact way.

Game formulation

• P = {1, 2, ...N}

• Ai = [0, E] the players can choose any positive time ti, with 0 representing maybe the
start of the day and E the end of the event but that is not important for our analysis
A = A1 × ... × AN = [0, E]N

• Ji(ti, τ(µ̄N−1
X−i

)) the payoff functions

• P(A) the set of probability measures on A here the nature randomize the behavior of
the players.

As we already mentioned the interactions in the model happen based on a function of the
empirical distribution τ(µ̄N

X ) .

Definition 1.4.1. Empirical distribution
Let X1, ..., XN be independent and identically distributed random variables, with distri-

bution F(x) = µ(X1 < x). The empirical distribution is defined as

µN
X = FN(x) =

1
N

N

∑
i=1

1Xi≤x

Remark. We are going to use µ for the empirical distribution instead of F and save F for
other uses as commonly used in the MFGs literature. We will explain more about empirical
distributions in MFGs in section 2 and the purpose of this awkward notation will be clear.

And as N → ∞ we would like µN
X to converge to a distribution µ by a law of large

numbers. Indeed it is true by the next theorem

Theorem 1.4.1. Glivenko-Cantelli Lemma
The empirical distribution converges uniformly to µ i.e.

sup
x∈R

|µN
X − µ| a.s.→ 0

as N → ∞

In order to define convergence formally we need to equip P(A) with a topology, namely
the topology of weak convergence (W∗) i.e
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Definition 1.4.2. Weak convergence
Given a sequence {µn}n∈N of probability measures in P(A) we say that

{µn}n∈N →
w

µ ∈ P(A)

if and only if ∫
A

f dµn →
∫

A
f dµ ∀ f ∈ C(A)

as n → ∞

Theorem 1.4.2.
If A is compact then (P(A),W∗) is compact and can be metrized by the Kantorowich-

Rubinstein distance
d1(µ, ν) = sup{

∫
A

f dµ −
∫

A
f dν)} (1.4.1)

where f : A → R bounded Lipschitz continuous

Proof. We start with a A being a compact metric space or a compact subset of a metric space
and C∞

0 (A) the space of continuous functions on A that vanish at infinity equipped with
the infinity norm. By the following extension of Riesz representation theorem (tailored for
measures) we have that (P(A) is isometric to C∞

0 (A)∗

Theorem (Riesz-Markov-Kakutani) For any positive linear functional I on C∞
0 (A) there

is a unique regular Borel measure µ on A such that

I( f ) =
∫

A
f (x)dµ(x)

for all f in C∞
0 (A)

From the compactness of A we get that C∞
0 (A) = Cb(A) and the weak* topology on

C∞
0 (A)∗ induced in (P(A) by the isometry coincide with the weak topology of measures.
From Alaoglu-Banach the unit ball in C∞

0 (A)∗ is weak* compact and so compact in weak
topology of measures.

1.5 Solution of ”When does the meeting start?”

We are now ready to solve ”When does the meeting start?”, using the notions from the
previous subsections.

We assume that as N the number of agents approaches infinity a number of simplifications
kick in:

• J1 = ...JN = J

• X1 = ... = XN = X

• t1 = ...tN = t

• (ϵi)1≤i≤N → ϵ ∼ N(0, 1)

• (σi)1≤i≤N → σ ∼ ν
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The law of large numbers together with the symmetry of the model, provide us a way to
reformulate the problem in terms of the representative agent. The first three bullets are just
for notational convenience we could also write whatever follows in terms of agent i.

X = t + σϵ = t + Z

The core of the problem is the distribution of σiϵi (the idiosyncratic shocks) which gen-
erate the uncertainty in the model. Since they are independent their distribution F(·) is going
to be:

FZ(z) = P[Z < z] = P[σϵ < z] =
∫ ∞

−∞
ν(x)Φ(

z
x
)

1
|x|dx =

∫ ∞

−∞
Φ(

z
x
)ν(dx) (1.5.1)

The next step is to compose the best response of the representative agent to the distribution
of actions of the other players. For that reason we notice that the empirical distribution µ̄N

X
approaches a distribution µ and T = τ(µ̄N

X ) approach T∗ = τ(µ) as the number of agents
goes to infinity and the BRF(T∗) is the solution of the minimization problem:

in f
t∈A

J(t; T∗)

Which comes from the first order condition of (1.1.1) i.e.

J(t; T∗) = E
[
A(X − t0)

+ + B(X − T∗)+ + C(T∗ − X)+
]

= E
[
A(X − t0)

+ + B(X − T∗)+ + C(T∗ − X)(1 − 1{T∗<X})
]

= AE
[
(t + Z − t0)

+
]
+ (B + C)E

[
t + Z − T∗]+ C(t − T∗)

= AE
[
(t + Z − t0)1{t+Z−t0>0}

]
+ (B + C)E

[
(t + Z − T)1{t+Z−T∗>0}

]
+ C(t − T∗)

now to find the minimum from the first order condition

d
dt

J(t; T∗) = 0

AE
[
1{t+Z−t0>0}

]
+ (B + C)E

[
1{t+Z−T∗>0}

]
− C = 0

AP
[
t + Z − t0 > 0

]
+ (B + C)P

[
t + Z − T∗ > 0

]
= C

AP
[
Z < t − t0

]
+ (B + C)P

[
Z < t − T∗] = C

using (1.5.1) we get an implicit equation of t

AF(t − t0) + (B + C)F(t − T∗) = C (1.5.2)

and this way we have proven the following proposition

Proposition 1.5.1. If A, B, C are positive constants and X = t + σϵ with σ, ϵ as described
by (1.5.1) then there exists t̂, a unique minimizer of (1.1.1) given by (1.5.2) with T∗ = τ(µ)
being fixed.

Proof. For uniqueness we have to notice that F(·) given by (1.5.1) is strictly monotone, sup-
pose there are two minimizers t1, t2 and show that they are identical.

The next step to identify a Nash equilibrium is to search for a fixed point in the BRFs.
Here we need to be careful because the players interact through the distribution of the states
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(the time the event begins is a function of the arrival times T∗ = τ(µ) in the limit). We are
going to define an operator and then use Banach’s fixed point theorem.

Proposition 1.5.2. Let
t̂ := G(T∗)

then G : A → A has a unique fixed point, i.e.

G(T∗) = T∗ (1.5.3)

Proof. A is closed by definition, and map A to itself, all that remain is to show that G is
contractive to apply Banach’s fixed point theorem.

Let’s use the implicit function theorem on (1.5.2) with respect to T∗

dt̂
dT∗ =

(B + C)F′(t̂ − T∗)

AF′(t̂ − t0) + (B + C)F′(t̂ − T∗)

=
1

AF′(t̂−t0)
(B+C)F′(t̂−T∗)

+ 1

= λ ≤ 1

because A, B, C > 0 and F′ is nonnegative for rules τ(·) that satisfy the following properties:

• ∀µ τ(µ) ≤ t0 the meeting never starts before t0

• Monotonicity If µ([0, t]) ≤ µ′([0, t]) for all t ≤ 0 then τ(µ) ≥ τ(µ′)

• Sub-additivity For all t ≤ 0 τ(µ(· − t) ≥ τ(µ) + t

1.6 Differential games and Optimal control

1.7 MFG and Economics

We end this introductory section by presenting some of the most important ideas in eco-
nomics that led to the development of the MFGs theory.

Technically speaking MFGs are the result of the advances that happened in stochastic
control and stochastic differential games during the last thirty years. However, the ideas be-
hind modelling a large number of symmetric agents which independently try to optimize are
at least two hundred old. The first well known author that spoke about a large number of
agents that collectively appear one representative agent is Adam Smith1 who used the notion
of the ”invisible hand” that brings the market into an equilibrium. There is a famous quote
that is attributed to him ”We don’t eat meat by the kindness of the butcher nor bread by the
kindness of the baker, it is their personal interest to earn money that guide them to sell us
meat or bread.”

Later by the beginning of 20th century the Marginal school appeared in economics and
differential calculus they introduced notions like marginal benefit and marginal cost to study
agents behavior (firms or consumers) in a single market (partial equilibrium models). This
approach is what is usually called microeconomic where the center the analysis is the single

1actually there were other minor authors before Adam Smith that introduced some of the ideas he synthesized
in his theory
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agent. Meanwhile, a different approach was also developed where we could study the aggre-
gate variables of the economy, like total product, inflation, labour etc neglecting the single
agent, usually called macroeconomic.

A first attempt by Leon Walras to provide an explicit analytical model which could com-
bine microeconomic elements and produce laws that govern the whole economy, born the
general equilibrium economic models. His approach was not satisfactory and the problem
remained partially open until the famous proof by Arrow-Debreu which inaugurated a new
era in mathematical economics using abstract analysis techniques. It is worth to mention also
Aumann’s famous article about a market with a continuum of traders that pushed this line of
thinking even further.

In the same spirit game theory- born out of vonNeumann’s collaborationwithMorgensten-
was a mathematical attempt to study in a consistent way human incentives, in situations where
they have to take actions. John Forbes Nash initiated the study of games with many players
with his famous theorem about existence of equilibrium in mixed strategies and unified game
theory with current economic theory.

The history continuous with Rufus Isaac who first studied games in continuous time (dif-
ferential games) using optimal control methods around fifties, to end with the development
of stochastic differential games and finally Mean field games.

In the fourth section where we present a MFG version of a macroeconomic model and
implement exactly the way of thinking that mentioned above, to start from the agent’s level
and end up with a general equilibrium for the whole economy.
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Chapter 2

Mean Field Game Formulation

In this chapter we are going to develop our formal definitions about MFGs and Nash
equilibrium. We discuss MFGs in a continuous time interval [0, T] with continuous states so
that our analysis borrows elements for the theory of stochastic differential games rather than
traditional game theory approach.

We aim to provide functional and conceptual definitions helpful in understanding mean
field gamesmodeling in stead of achieving the greatest mathematical generality. Starting from
a fairly general setting of a stochastic N-player differential game we motivate the need and
usefulness of the mean field games assumptions. (For more information about differential
games and stochastic differential games we refer to Isaacs1965, Card2010 and BF1984)

2.1 General model set-up

Suppose we start with a finite set of players P with #(P) = N and each player i can
choose an action ai

t from an action set Ai this action is a functional which can take continuous
or discrete values is space usually called state space X for our state variables Xi

ts. These
processes Xi

t characterize the position of each player i ( the meaning of ”position” can vary
according to the context of each specific game we study). Each player has also the choice to
randomize his behaviour playing a mixed strategy but we will not consider this case here.

Furthermore, each agents has a functional Ji as his cost or benefit criterion which he is
interested to optimize.

To conclude we assume also (Ω,F , {Ft}t≥0, P) to be a standard filtered probability
space on which we can defined an N-dim (same dimension as our state process) Brownian
Motion Wt) such that {Ft}t≥0 is generated by W augmented with all the P-null sets in F .

We warp everything as our terminology:

Definition 2.1.1. Terminology

1. P: the set of players (agents)
#(P) = N the number of players

2. X: the state space, can be a metric space or a subspace of a metric space (usually
assumed compact)

3. Ai: the set of actions for player i
A = A1 × ... × AN

a = (a1, ...aN) ∈ A is an action profile where ai is the action the individual play-
ers take and a−i the action profile including every player’s action except i’s a−i =
(a1, ...ai−1, ai+1, ...aN)

Ai
adm := {ai

t : [0, T] → X|ai
(·) arbitrary, admissible function}: The set of admissible

strategies for player i
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4. U : the set of payoff functions Ji : Ai → R (Cost/Benefit criterion) for player i

5. P(Ai) The set of probability measures on Ai

6. M = P(A1)× ... × P(AN) The Cartesian product of sets of probability measures
on individual action sets, are called mixed strategies.

Here because we talk aboutMFGs in continuous time i.e. mean field stochastic differential
games we does not distinguish between actions and strategies and use the terms interchange-
ably. An action functional at represent the decisions of the agents at each moment. Appendix
A and B explain more about their role in optimal control problem.

2.1.1 Agents playing pure strategies with noise

In the case where each agent plays a pure strategy then we can formulate the game as
an N-player optimal control problem where everyone interacts with each other through their
controls and/or their states. We model the state variables Xt to evolve according to a system
of coupled SDEs, where the decisions of the agents and the distribution of the controls and/or
their states provide the coupling of the SDEs. This yields a stochastic optimal control problem
for each agent, given the distribution of the actions and/or the states of the rest of the players.
To make everything more precise we assume the following problem for each agent i:

Individual agent’s problem playing pure strategies

in f
ai
(·)∈Ai

adm

Ji(a(·); ν−i
(·)) = in f

ai
(·)∈Ai

adm

∫ T

0
E
[

f (Xi
t, ai

t, ν−i
t )dt + g(Xi

T, ν−i
t )

]
(2.1.1)

subject to {
dXi

t = b(t, Xi
t, ai

t, ν−i
t )dt + σ(t, Xi

t, ai
t, ν−i

t )dW i
t

Xi
0 = ξ i ∈ L2

(2.1.2)

where

νt = (ν1
t , ..., νN

t ) =


ν1

t = L(X1
t , a1

t )

...
νN

t = L(XN
t , aN

t )

(2.1.3)

{νt}0≤t≤T represent the flow of probability measure, i.e each coordinate of the N-tuple
(ν1

t , ..., νN
t ) is a flow of distributions for each player to interact with each other.

Remarks.

• Action sets can be finite or infinite.

• The class of models described by (2.1.1), (2.1.2) are called Second-order MFGs in the
literature because the dynamics are described SDEs and using dynamic programming
principle (DPP) we end up in a second order Hamilton-Jacobi-Bellman (HJB) equation.
If instead we use ODEs for (2.1.2) we end up with First-order HJB equation and so they
are called First order MFGs.

• From a game theoretic point of view it is very natural that the agents interact through
their controls (actions) and their states νi

t = L(Xi
t, ci

t)withL representing the common
law of the state and the control. If the players are interacting only according to states
(as in ”When does the meeting start?”) then νi

t = L(Xi
t). Historically the first models
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that were developed (McKean 1968) were of interacting states both because of their
simplicity and their connection with statistical physics. In the next few subsections we
are going to follow this line of thinking indeed and also explain more about the flow of
probability measures and why it is a natural concept to describe large scale models as
mentioned already in the introduction.

• The random noise W i
t is independent for each player i, there is a possible extension in

our modelling by adding a W0
t common for all the players, these models are known as

Mean Field Games with common noise and are considerably more difficult and require
different treatment than what we are going to present here.

Solving his optimization problem each agent can construct his best response function,
given the distributions of the rest of the players. The intersection of all BRFs is the Nash
equilibrium of the game.

As we have already seen in the introduction this problem is very difficult to solve and this
is where MFGs kick in. We can achieve considerable simplifications if we assume, symmetry
and that the number of agents goes to infinity.

2.2 Limiting behaviour of large systems

In this subsection we present the ideas that opened the way for development of MFGs.
The situation, when the number of players goes to infinity, is of great importance for MFGs
and we are going to borrow the so called propagation of (molecular) chaos from statistical
physics to describe it.

We will start by describing, the simplest case, about what is called as a hard sphere gas,
where everything is deterministic and governed by ODEs and gradually extend the framework
to interacting diffusions which will be described be SDEs and then draw an analogy with a
game of interacting players. This way we will give some intuition for the complex system
(2.1.1)-(2.1.3).

2.2.1 Boltzmann’s theory of hard sphere gases

The simplest way we can imagine the molecules of a dilute gas is, as small hard spheres of
some radius r and mass m that are moving randomly and can collide. Let’s assume that they
live in a position-velocity space S ⊂ R6 (generally it can be any finite-dimensional separable
metric space) and a N-particle system is a point in SN (Cartesian product). Moreover their
dynamics are Markovian in a sense that the future position of the system only depends on
its current position, this way we can define transition functions. Let N be the number of
molecules of the gas and define the density (i.e. the number of molecules per unit volume of
S) as f (x, u, t) where x is the position and u is the velocity. While

1
N

∫
U

∫
X

f (x, u, t)dxdu

is the proportion of molecules which, at time t are located in a region of space X and have
velocities in U.

Nowwe are ready to state Boltzmann’s equation for the evolution of f (x, u, t) (derivation
of the equation escapes the scope of this text but we refer the reader to the original work of
Boltzmann Boltzmann1995

∂ f
∂t

=
u
m
∇x f + C[ f ] (2.2.1)
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where u
m∇x f gives the rate of change due to streaming and C[ f ] is the collision operator

applied on f . which gives the rate of change of the density due to collisions which are gov-
erned by principles of momentum and energy conservation. We need further assumptions to
describe the collision operator C[ f ], but intuitively speaking we can say that depends upon
the rate at which collisions are happening and the post-collision velocities of the molecules.

Vlasov’s theory of plasmas

Anatoly Vlasov proposed his theory about plasmas in 1938 and published it as a mono-
graph ”Theory of Vibrational Properties of an Electron Gas and Its Applications” in 1945.
The primary focus of Vlasov was to describe plasmas where the ions never collide and in-
stead have long range interactions which Boltzmann’s equation cannot describe properly.

We adopt the same setting as before with the extra assumption that all the particles are
of the same kind (for example electrons). Let F(x) be the force that a particle at the origin
would exert at a particle at x. Since the interactions cover the whole space S they generate a
force field Ff (x) (again the technical details about particles escape the scope of this text)

Ff (x) =
∫

S
F(x − x′) f (x′, u′, t)dx′du′ (2.2.2)

The particle density changes through the motion of particles subject to the force filed Ff (x)
and Vlasov’s equation for the evolution of density is

∂ f
∂t

=
u
m
∇x f +

1
m

Ff (x)∇u f (2.2.3)

2.2.2 Propagation of chaos in Boltzmann’s and Vlasov’s theory

So far, we have presented the basic kinetic theories for gases and plasma, now we would
like to introduce also the idea of molecular chaos propagation and use it to better understand
the continuum limit of MFGs.

Suppose we have an N-particles system and a probability measure is assigned to each
particle so we get a sequence of probability measures {µi}N

i=1. We think of the measures as
giving the joint probability distributions of the first i particles, for example µ3 gives the joint
distribution of particles 1,2,3.

Definition 2.2.1. Propagation of chaos
We say that a sequence of probability measures {µi}N

i=1 is µ-chaotic if k coordinates, be-
come independent and tend to ρ as N goes to infinity i.e. for any k ∈ N and g1(s), ..., gk(s) ∈
Cb(S)

lim
N→∞

∫
S

g1(s1)...gk(sk)µN(ds1...dsk) =
k

∏
i=1

∫
S

gi(s)µ(ds)

To elaborate more on the idea of molecular chaos propagation we will discuss the case of
the Vlasov equation and we will show she propagates chaos.

We assume the same setting as previous section with the extra assumptions that F : S → S
be bounded and Lipschitz and we define a deterministic N-particle process in S for each N

d
dt

xN
i (t) = uN

i (t)

d
dt

uN
i (t) =

1
N

N

∑
i=1

F(xN
i − xN

j )
for i = 1, ...N (2.2.4)
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as shown in BH1977 if the initial conditions xN
i (0), uN

i (0) for i = 1, ..., N are such that:

1
N

N

∑
i=1

δ(xN
i (0),uN

i (0)) → µ0 ∈ P(S)

then for t > 0
1
N

N

∑
i=1

δ(xN
i (t),uN

i (t)) → µt ∈ P(S)

where µt is the weak solution at time t of the Vlasov equation
∂ f
∂t

+
u
m
∇x f +

1
m

Ff (x)∇u f

Ff (x) =
∫

S
F(x − x′) f (x′, u′, t)dx′du′

µ0 = f (x, u, 0)dxdu

(2.2.5)

Thus this N-particle system propagates chaos.

2.2.3 Interacting Diffusions

The deterministic particle system can be generalized to interacting diffusions, McKean
in his article ”Propagation of Chaos and a class of nonlinear parabolic equations”McK1967
initiated the study of those systems.

Suppose we have N particles, each one is making a diffusion in a d-dim space, the drift
and the volatility of their movement are affected by the empirical distribution of the rest N − 1
particles, but are common for every particle.


dXi

t = { 1
N

n

∑
j=1

b(Xi
t, µ̄N

t )}dt + { 1
N

N

∑
j=1

σ(Xi
t, µ̄N

t )}dWi for i = 1, ..., N

µ̄N
t =

1
N

N

∑
j=1

δX j
t<x

(2.2.6)

where b : Rd × Rd → Rd and σ : Rd × Rd → R bounded and Lipschitz and Xn
i with

values in Rd. The Wiener processes Wi are taken to be independent of each other and of the
initial conditions XN

1 (0), ..., XN
N (0)

McKean in his article assumes that volatility is constant and equals 1 and that drift term
is given by:

b(Xi
t, µN

t ) =
∫

b̄(Xi
t, y)µN

t (dy) =
1
N

N

∑
j=1

b(Xi
t, X j

t) (2.2.7)

with the last equality given by the fact that µ̄N
t is an empirical distribution. This way we

arrive in:

dXi
t = { 1

N

N

∑
j=1

b̄(Xi
t, X j

t)}dt + dWi for i = 1, ..., N (2.2.8)

where b̄ : Rd × Rd → Rd and σ̄ : Rd × Rd → R bounded and Lipschitz and the rest as
before.

InMcK1967 he proves the following theorem:



20 Chapter 2. Mean Field Game Formulation

Theorem 2.2.1. Propagation of chaos for diffusions
If the particles are initially stochastically independent but with common distribution µ0,

then the sequence of n-particle joint distributions at time t is µt-chaotic, µt being the (weak)
solution at time t of the nonlinear McKean-Vlasov equation

∂

∂t
ft = −∇[Vf ft] +

1
2

∆ ft

Vf (x) =
∫

Rd
b̄(x, x′) ft(x′)dx′

f0(x)dx = µ0

(2.2.9)

where the subscript t in ft is used to stress the connection with µt, not to be mistaken by a
time derivative.

From Sznitman Sznitman1989 we get also an alternative statement of the theorem. As
N → ∞, Xi

t has a natural limit X̄i
t. Each X̄i

t will be an independent copy of the nonlinear
process X̄t.

Theorem 2.2.2. (Sznitman)
There is existence and uniqueness both trajectorial and in law for the nonlinear process

X̄t: 
dX̄t = {

∫
Rd

b̄(X̄t, y)dµt}dt + dW̄

X̄0 = x0 µ0-distributed, F0-measurable random variable
µt the law of X̄t

(2.2.10)

Proof. To begin let us assume as usual that C := C([0, T]; Rd) is the space of continuous
functions on [0, T]with values inRd andP(C) the space of probability onC. We equipP(C)
with the Kantorowich-Rubinstein metric thenP(C) is complete as we have already discussed
in the introduction. We take T > 0 and define Φ as the map that associates to µ ∈ P(C) the
law of the solution of dXt = {

∫
C

b(Xt, wt)dµ(w)}dt + dWt t≤T

X0 = x0

(2.2.11)

The law does not depend on the specific choice of the space Ω. If {Xt}t≤T, is a solution of
(2.2.10), then its law on C is a fixed point of Φ , and conversely if µ is such a fixed point of
Φ (2.4.11) defines a solution of (2.2.10) up to time T.

For the fixed point argument using Banach’s theorem we refer to Sznitman1989.

To connect the nonlinear process with the nonlinear PDE (2.2.9) we use Ito’s formula for
f ∈ C2

b(R
d).

f (X̄t) = f (X̄0) + f ′(X̄t)dWt + {(1
2

∆ f +
∫

Rd
b̄(X̄t, y)ut(dy)∇ f (X̄t)}dt

and assuming it is a true martingale we set dt part equal to zero and get (2.4.9)

Remark. If we set Wt ≡ 0 in McKean’s model we get Vlasov’s equation for plasmas.

2.2.4 Propagation of chaos and MFGs

Interacting diffusions can can extend to stochastic differential games if we grant the free-
dom of choice to every particle i and rename the particles as agents or players. In the particular
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case we study each player can decide about his drift, which can affect his position Xi
t and as a

consequence the empirical distribution of the states, µN
t , and these decisions are thought to be

measurable functions, which we are going to define in detail later. Furthermore we introduce
a criterion for the decisions.

For i = 1, ..., N

Ji(a1
t , ...aN

t ) = E

[ ∫ T

0
f (Xi

t, µN
t , ai

t)dt + g(Xi
T, µN

T )

]
(2.2.12)

subject to

dXi
t = { 1

N

N

∑
j=1

b̄(Xi
t, ai

t, X j
t)}dt + dWi (2.2.13)

It is only natural to extend the previous theorems under our current set-up, since we keep
the Lipschitz assumption about b̄, we can repeat the proof with no changes.

We let N → ∞ and Xi
t → X̄i

t. Again each X̄i
t will be an independent copy of the nonlinear

process X̄t as before and also we want to provide a limit for Ji. For this reason we are going
to investigate in the next subsection symmetric functions of many variables.

2.3 Symmetric functions of many variables

Considering (2.2.12) it is not precise the way it is written, Ji(a1
t , ..., aN

t ) is a function that
depends on N variables and on the other hand we have functions of empirical measures. The
definition would hold true only for Ji(ai

(·); µN
(·)) a function that depends upon individual’s i

decision and the empirical distribution of the states µN
t of the rest of the players but what is

special about this dependence is that we have identical players and diffusions. So this func-
tional should enjoy some properties which can lead us to define a limit when N → ∞, in
addition, we would like to be able to approximate functions as Ji(a1

t , ..., aN
t ) by functions of

measures to make (2.2.12) precise.

Definition 2.3.1. Symmetric functional
A function Jn : Qn → R with Qn being compact is called symmetric iff

Jn(c1, ..., cn) = Jn(cπ(1), ..., cπ(n)) for every permutation π on {1, ..., n} (2.3.1)

Theorem2.3.1. For each n ∈ N, let un : Qn → R be a symmetric function of its n variables.
We assume:

1. (Uniform boundedness) There some C > 0 such that

||uN ||L∞(Qn) ≤ C (2.3.2)

2. (Uniform continuity) This a modulus of continuity ω independent of n such that

|un(X)− un(Y)| ≤ ωd1(µ
n
X, µn

Y) ∀X, Y ∈ Qn, ∀n ∈ N (2.3.3)

where µn
X = 1

n ∑n
i=1 1xi and µn

X = 1
n ∑n

i=1 1xi if X = (x1, ..., xn) and Y = (y1, ..., yn)
by d1 we mean the Kantorowich-Rubinstein distance in P(Qn)

Then there is a subsequence unk of un and a continuous map U : P(Q) → R such that:

lim
k→∞

sup
X∈Qn

|unk(X)− U(µnk
X )| = 0 (2.3.4)
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Before we give the proof some remarks are one the way.

Remarks. 1. This map U is going to play the role of our payoff functional in what fol-
lows, we need its domain to be the space of probability measures since the payoff func-
tional depends on the decisions of all players. i.e. the empirical distribution µn

t

2. The assumptions (1),(2) are essential to make use of the Arzela-Ascoli theorem which
is going to give us the uniformly convergent subsequence

Proof. Since we know that P(Qn) is compact and complete we want to exploit this and
construct the map U : P(Q) → R which is going to satisfy the assumptions for Ascoli-
Arzela theorem.

Let us begin by defining (Un)n≥1 on P(Qn) by:

Un(µ) = in f
X∈Qn

[
un(X) + ωd1(µ

n
X, µ)

]
µ ∈ P(Q) (2.3.5)

We need to prove that these functions qualify for Ascoli-Arzela. Boundedness is checked
easily since (uN)n≥1 are bounded from assumption 1 andP(Q) is compact so ∀µ, ν ∈ P(Q)
distance d1(µ, ν) is bounded.

Also easily from def (2.4.5) together with assumption 2, we can show that these functions
(Un)n≥1 extend the original (un)n≥1 to P(Q) meaning that

Un(µn
X) = un(X) for any X ∈ Qn

Furthermore, let us show that (Un)n≥1 have ω for modulus of continuity on P(Q) i.e.
are equicontinuous. Indeed if µ, ν ∈ P(Q) and if X ∈ Qn is ϵ-optimal in the definition of
Un(ν), then

Un(µ) ≤ un(X) + ωd1(µ
n
X, µ)

= Un(ν)− ωd1(µ
n
X, ν) + ϵ + ωd1(µ

n
X, µ)

≤ Un(ν) + ϵ − ωd1(µ
n
X, ν) + ω

(
d1(µ

n
X, ν) + d1(ν, µ)

)
= Un(ν) + ωd1(µ, ν) + ϵ

Now since P(Q) is compact Arzela-Ascoli gives the existence of a subsequence (nk)k≥1
for which (Unk)k≥1 converges uniformly to a limit U and since unk(X) = Unk(µnk

X ) for any
X ∈ Qn we get (2.3.4)

By the means of the above theorem we can approximate Ji(a1
t , ..., aN

t ) by functions of
measures and construct limits, in the sense that when N → ∞ then (Ji)N

i=1 → J̄ with J̄ given
by:

J̄(ā(·); µ(·)) = E

[ ∫ T

0
f (X̄t, µt, āt) + g(X̄T, µT)

]
To make a brief summery up until now, we would like to think of the players as if they

were ions in a plasma where the particles never collide. The key observation is that we can-
not apply directly Boltzmann’s theory of hard sphere gases because the gravity force usually
is modelled as an inverse square potential with a singularity at zero and this would be un-
realistic for systems of interacting players who never collide in a physical sense. So in case
of deterministic games we would stick with Vlasov’s theory and for stochastic differential
games we would go with McKean’s theory for interacting diffusions. Then we need also to
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define a limit for the sequence of criterion functions (Ji)N
i=1 to describe fully the situation at

infinity. In other words we are interested in the finite game:

Individual agent’s problem playing pure strategies (simplified version) For each i = {1, ..., N}

in f
ai
(·)∈Ai

adm

Ji(a(·); µ̄−i
(·)) = in f

ai
(·)∈Ai

adm

∫ T

0
E
[

f (Xi
t, ai

t, µ̄−i
t )dt + g(Xi

T, µ̄−i
t )

]
(2.3.6)

subject to {
dXi

t = b(t, Xi
t, ai

t, µ̄N
t )dt + dW i

t

Xi
0 = ξ i ∈ L2

(2.3.7)

where

µ̄N
t =

1
N

N

∑
j=1

1X j
t<x (2.3.8)

As we let N → ∞ we end up with:

Representative agent’s problem playing pure strategies

in f
ā(·)∈Āadm

J̄(ā(·); µ(·)) = in f
ā(·)∈Āadm

E

[ ∫ T

0
f (X̄t, µt, āt) + g(X̄T, µT)

]
(2.3.9)

subject to


dX̄t = {

∫
b̄(X̄t, c̄t, y)dµt}dt + dW̄

X̄0 = x0 µ0-distributed, F0-measurable random variable
µt = L(X̄t)

(2.3.10)

where X̄t is the nonlinear defined earlier.

Now we ready introduce the concept of Nash equilibrium for MFGs.

2.4 Nash equilibriums for MFGs

Suppose now that we have a well defined Mean Filed Game in the sense of subsection
2.1, with N players, for each i = {1, ..., N} we have a criterion function (Ji)N that enjoy
the properties of theorem 2.3. We are interested to study the strategic situation that each agent
optimize his payoff functional, because as we discussed in the introduction it is not feasible
for all the agents to get their global maximum or minimum we are searching for a situation
that each one plays his best response to other players actions, and the system reaches an
equilibrium where no one has the incentive to deviate. This is the Nash equilibrium as we
introduced it in the previous section for our simple games.

Definition 2.4.1. Nash equilibrium
An action profile a∗t ∈ A is called a Nash equilibrium for a fixed time t ∈ [0, T] if and

only if for every player i
Ji(a∗t ) ≤ Ji(ai

t, a∗,−i
t ) ∀ai

t ∈ Ai

where Ji is the payoff functional of player i.
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The above definition is for fixed time and the action profile a∗ is a vector of functions a∗,i
t .

For the various forms this control function can take and the different information structures
the players can depend upon to adapt their strategies, we distinguish between the following
cases:

• Open loop equilibrium
Apart from the initial data X0 player i cannot make any observation of the space of the
system. There is no feedback, and thus this is an open loop process.

ai
t = ci(t, X0, W[0,t], µN

t )

For measurable deterministic functions ci, i = {1, ..., N}

Definition 2.4.2. Open loop Nash equilibrium
An action profile a∗ ∈ A is an open loop Nash equilibrium, if whenever a player
i ∈ {1, ..., N} uses a different strategy ai

t = ci(t, Xi
0, W i

[0,t], µN
t ) from a∗,i

t while the
other players keep using the same, then Ji(a∗t ) ≤ Ji(ai

t, a∗,−i
t )

• Closed loop equilibrium
Here the player i can also observe the state space and can use this information to update
his strategy (in form of feedback) and thus this is a closed loop process. However he
has no additional information about the strategy of the other players.

ai
t = ci(t, Xi

[0,t], µN
t )

For measurable deterministic functions ci, i = {1, ..., N} and {Xi
t}0≤t≤T the solution

of the state dynamics SDE. Also we notice that this is an implicit, path-dependent form
since Xi

t depends also on the controls.
In case the player can observe the whole space we say that he has perfect or complete
observability and in the case he can observe only the states of some players e.g. being
close to his position, we say that he has partial observability and we take this in to
account in the definition of ci

Definition 2.4.3. Closed loop Nash equilibrium
Suppose {X∗

t }0≤t≤T is the solution of the state dynamics SDE (2.3.13) when we use
the actions a∗ = (c∗,1(t, X∗,i

[0,t], µN
t ), ..., c∗,N(t, X∗,i

[0,t], µN
t ).

An action profile a∗t ∈ A is a closed loop Nash equilibrium, if whenever a player
i ∈ {1, ..., N} uses a different strategy ai

t = ci(t, Xi
[0,t], µN

t ) while the rest continue
to use bt = (c∗,j(t, Xi

[0,t], µN
t ), ∀j 6= i but with {Xi

t}0≤t≤T the solution of the state
dynamics SDE (2.3.13) when we use the actions at = (ai

t, bt). Then Ji(a∗t ) ≤ Ji(at)

In a closed loopNash equilibrium a change in a player’s strategywill result in an change
in the state process. The rest of the players will also adjust their actions because their
payoff functional changes. They will keep using the same c∗,j, ∀j 6= i to compute their
controls but according to the new path of the state process Xt.

• Markovian Nash equilibrium
Markovian Nash equilibrium is a special class of close loop controls which depend only
in the current value of Xt instead of the whole path Xi

[0,t].

ai
t = ci(t, Xi

t, µN
t )
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For measurable deterministic functions ci, i = {1, ..., N}

Definition 2.4.4. Markovian Nash equilibrium
Suppose {X∗

t }0≤t≤T is the solution of the state dynamics SDE (2.3.13) when we use
the actions a∗ = (c∗,1(t, X∗

t , µN
t ), ..., c∗,N(t, X∗

t , µN
t ).

An action profile a∗t ∈ A is a close loop Nash equilibrium, if whenever a player i ∈
{1, ..., N} uses a different strategy ai

t = ci(t, Xi
t) while the rest continue to use bt =

(c∗,j(t, Xi
t, µN), ∀j 6= i but with {Xi

t}0≤t≤T the solution of the state dynamics SDE
(2.3.13) when we use the actions at = (ai

t, bt). Then Ji(a∗t ) ≤ Ji(at)

Using Makrovian action profiles instead of state insensitive adapted processes (open
loop controls) will affect the dependence upon the state variable in the third section
where we are going to search for solutions for MFGs.

2.4.1 Limits of Nash equilibrium

Now we turn to study the situation when we have a Nash equilibrium and send N the
number of agents at infinity, for this subsection we assume that the time is frozen at t and
everything refers to this particular moment and for this reason wewill drop t from our notation
for now. Once we have reach the Nash equilibrium, time is not significant any more as we
will argue later and in the third section where we are going to solve MFGs we will examine
the time frame until we reach Nash equilibrium and see how the various forms of the control
functions and Nash equilibriums described earlier affect the solution of the game.

A natural question to ask is: ”Whenever we have a Nash equilibrium for the N-player
game, is this a Nash equilibrium for the infinite game also?”

The answer is positive and was given by Lions in LL2007, in the form of the following
theorem:

Theorem 2.4.1. Assume that a∗ is a Nash equilibrium for the game (2.3.6-2.3.8). Then up to
a subsequence, the sequence of empirical measures of actions {νi}N

i (different than {µi}N
i

the empirical measure of (Xi)N
i=1) converges to a measure ν̂ ∈ P(A) such that:∫

A
J(y, ν̂)dν̂(y) = in f

νi∈P(Ai)

∫
A

J(y, ν̂)dνi(y) (2.4.1)

Proof. From our game definition we have a sequence {Ji(a1, ..., aN)}N
i=1 which fulfils the

requirements of Theorem 2.3 and can be approximated (up to a subsequence) by an empirical
distribution of the original arguments i.e. the actions.

Ji(a1, ..., aN) = Ji(ai, νN−1) for any i ∈ {1, ...N}

where
νN−1 =

1
N − 1 ∑

1≤i 6=j≤N
δaj

and remembering (2.4.5) for νN ∈ P(AN) and fixed ai we write:

Ji(ai, νN) = in f
a−i∈AN−1

[
Ji(ai, a−i) + ωd1(ν

N−1, νN)
]

(2.4.2)

where
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d1(ν
N−1, νN) = d1(ν

N−1,
1
N ∑

1≤i≤N
δai)

= d1(ν
N−1,

1
N
( ∑

1≤i 6=j≤N−1
δaj + δai))

= d1(ν
N−1,

N − 1
N

νN−1 +
1
N

δai)

by definition of the Kantorowich-Rubinstein

d1(ν
N−1,

N − 1
N

νN−1 +
1
N

δaj) =
f (δai)

N
≤ C

N
for any f bounded and Lipschitz

(2.4.3)

using the definition 2.4 of Nash equilibrium

Ji(a∗,i, ν̂N−1) ≤ Ji(ai, ν̂N−1)

or equivalently

Ji(a∗,i, ν̂N−1) = in f
νi∈P(Ai)

Ji(νi, ν̂N−1) = in f
νi∈P(Ai)

∫
A

Ji(a, ν̂N−1)dνi(a) (2.4.4)

It is obvious that the r.h.s. of (2.4.3) has its minimum at δa∗,i . We can rewrite (2.4.2), for
fixed a∗,i in Nash equilibrium, as:

Ji(a∗,i, ν̂N) = in f
a−i∈AN−1

[
Ji(a∗,i, a−i) + ωd1(ν̂

N−1, ν̂N)
]

Ji(a∗,i, ν̂N) ≤ Ji(a∗,i, ν̂N−1) +
C
N

so δa∗,i is ϵ-optimal also for the problem:

in f
νi∈P(Ai)

∫
A

Ji(a, ν̂N)dνi(a)

assuming N is sufficiently large.
The empirical measure ν̂N = 1

N ∑N
i=1 δa∗,i is also optimal since it is a linear combination

and C is independent of N so∫
A

Ji(a, ν̂N)dν̂N(a) ≤ in f
νi∈P(Ai)

∫
A

Ji(a, ν̂N)dνi(a) + ϵN

Letting N go to infinity and the result follows

2.4.2 MFGs equilibrium

As we just mentioned a Nash equilibrium for the finite game can be extended to infinite
agents and we are going to ask the opposite question in the last subsection of Section 3. Here
we would like to discuss intuitively about the concept of a MFGs equilibrium and the possible
similarities and differences between Nash equilibriums and MFGs equilibriums.
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Definition 2.4.5. MFG equilibrium
A deterministic measure-function t 7→ µt is called a MFG equilibrium if µt = L(X̄t) for

each t ∈ [0, T], for some admissible control a∗t which is optimal for representative agent’s
problem. With X̄t the nonlinear process defined in section 2.2.4

The representative agent cannot influence µt (the distribution of an infinity of agents’ state
processes) and thus considers it as fixed when solving the optimization problem. If each agent
among the infinity is identical and acts in the sameway, then the law of large numbers suggests
that the statistical distribution of the representative’s optimally controlled state process at time
t must agree with µt.

The aforementioned definition is very close to the concept of a Nash equilibrium apart
from the fact that when the number of agents is infinite we cannot distinguish agents as we
cannot distribution points in a continuous line. In a MFGs equilibrium no one has incentive
to deviate since everyone plays his best response.

The biggest difference is that in a MFGs equilibrium little if anything at all can be said
about the actual positions of the agents (states-actions). In the end it is just a distribution.

2.4.3 Games with countably infinite players versus a continuum of players and
Approximate Nash Equilibrium

We would like to end this chapter with a small intuitive explaination about games with
countably infinite players as oposed to games with a continuum of players based on the pio-
neering work of Aumann Aumann1964, Mas-ColellMas-Colell1983 and Aproximate Nash
equilibrium by G. Carmona GCarmona2004

As mentioned before transition to the limit in the case of interacting particles comes natu-
rally using the idea of propagation of molecular chaos. But in the case of real humans it is not
trivial how we should understand a continuum of players and how to intrprete it in a model.

The key observation (made by G.Carmona in GCarmona2004 ) is that a game with a
finite number of players is similar to a game with infinite players (countable or uncountable)
if it can approximately describe the same strategic situation as the infinite. We say that a
sequence of finite games approximates the strategic situation described by the given strategy
in the infinite game if both the number of agents and the distribution of states and/or actions
of the finite game converges to that of the infinite. We will make these statements precise in
the last section of the next chapter where we are going to discuss about solutions of the finite
game given we solved the infinite game.

Remark. In most of the economic literature discussing games with an uncountable infinite
number of players Aumann1964 GCarmona2004 Mas-Colell1983 (producing a continuum
) atomless probability spaces (or generally measure spaces) are used which is quite different
from the measuretheoretic structure adopted by MFGs.
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Chapter 3

Solution of Infinite players Mean
Field Games

3.1 Revision of the infinite MFG problem

We will depart from section’s 2 notation for the infinite agents problem, to make notation
more compact since we are devoting the whole section to MFGs at infinity.

Representative agent’s problem playing pure strategies For each fixed deterministic flow
{µt}0≤t≤T on R solve:

in f
a(·)∈A

J(a(·); µ(·)) = in f
a(·)∈A

∫ T

0
E
[

f (Xt, at, µt)dt + g(XT, µt)
]

(3.1.1)

subject to {
dXa

t = b(t, Xt, at, µt)dt + σ(t, Xt, at, µt)dWt

Xa
0 = ξ ∈ L2 (3.1.2)

Equilibrium of the MFG Find a flow µ̂ = {µt}0≤t≤T such that

µt = L(X̂µ̂
t , ât) for all t ∈ [0, T] (3.1.3)

where (X̂µ̂
t , ât) is the optimal pair of state and control processes solution of the Repre-

sentative agent’s control problem

We placed the over-scripts a, µ to keep track with respect to what we optimize at each
step because if we assume the control at has some special (feedback) form as articulated in
section 2 then the equilibrium of the MFG comes as a fixed point of implicit functions and
can be tricky to keep track of the notations.

To make thinks easier we will work in the same set-up as in the previous case where the
volatility is constant and the agents interact only through states, this keeps the presentation
simpler and at the same time wealthy enough to understand the ideas better.

3.2 Preliminaries

We begin our effort to solve the MFG problem by reviewing some notions about spaces
of probability measures which will come in handy.

Definition 3.2.1. The space Pp(A)
Let A be a compact subset of a metric space (S , d) (or the space itself) and P(A) the

space of probability measures on A. We define Pp(A) ⊂ P(A) as the space of probability
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measures of order p, p ∈ R+ with the p-th power of the distance to a fixed point a0 ∈ A
integrable i.e. ( ∫

A
d(a0, a)pdµ(a)

) 1
p < ∞

In the next subsection where we discuss the maximum principle approach to the control
problem we are going to work with flows in P2(A) because P(A) is rather big to achieve
our result. For Pp(A) we have available also the theorems from the introduction.

We would like now to give a representation of probability measures in terms of random
variables which will be our guiding intuitions in the next sections. Our aim is to find a random
variable with a given law on any space. First we will work an example in a subset of R and
then to a general metric space.

Example 3.2.1. Suppose we have
(
(0, 1),B, P

)
a fixed probability space, with B the Borel

σ-algebra, for any distribution function F on R let:

X(t) = XF(t) = in f {x : F(x) > t} 0 < t < 1

Proposition 3.2.1. For any distribution function F, XF is a random variable with distribution
function F.

Proof.

Theorem 3.2.1. Skorokhod’s representation theorem
Let (µn)n∈N be a sequence of probability measures on ametric spaceS such that µn → µ̄

on S when n → ∞ and the support of µ̄ is separable. Then there exist random variables Xn
defined on a common probability space

(
Ω,F , P

)
such that

1. L(Xn) = µn ∀n ∈ N

2. Xn → X̄ P-a.s. as n → ∞

The proof far exceed the purpose of this text and is omitted.

Definition 3.2.2. A random variable X with values in (S , d) is said to be of order p, p ∈ R+

if E[d(x0, X)p] < ∞ ∀x0 ∈ E. Moreover

• For X, Y with values in (S , d) and the Kantorowich-Rubinstein distance we have

d1(L(X),L(Y)) ≤ E[d(X, Y)]

• For µ, ν of order 1

d1(µ, ν) = in f {E[d(X, Y)]|L(X) = µ,L(Y) = ν}

3.3 The Representative Agent’s problem

Now we are ready to solve the Representative agent’s problem. The traditional way to
study these problems is first to check for existence of a minimizer of (3.1.1) an optimal con-
trol process as we may call it and then identify it using the stochastic maximum principle.
Working this way one has to start with an appropriate space of continuous then using Gir-
sanov’s theorem translate the canonical process of the space into the state process and using
convexity and/or compactness arguments retrieve the optimal control as a weak limit. Indeed
a similar method can be used to cope with MFGs problems from a probabilistic point of view
for example [citation]
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However, we will use a different approach. The strategy we present here to find the MFG
equilibrium is to use a form of the Stochastic Maximum Principle (SMP) to connect exis-
tence of a minimizer for the control problem when the µt is fixed with a system of Forward-
Backward Stochastic Differential Equations (FBSDEs). Once the flow of probability mea-
sures giving the fixed point (3.1.3) is injected in the FBSDE, then the equilibrium of the
MFG comes as the solution of a FBSDE system of McKean-Vlasov type.

As usual in control problems first we have to define the Hamiltonian and the associated
adjoint process.

Definition 3.3.1. Hamiltonian
Let H : [0, T]× R ×P(A)× R × A → R with

H(t, x, µ, y, a) =〉b(t, x, µ, a), y〈+ f (t, x, µ, a)

be the classical Hamiltonian associated with control problem (3.1.1-3.1.2) and y the costate
variable

Remark. If we allow for control in volatility we have to make a series of ”corrections” in
our SMP approach

• We have to ”correct” the Hamiltonian with a risk adjustment term since the decisions
on the control can affect the volatility of the state and so increase the uncertainty of the
controller for future costs.

• In the same spirit we have to introduce a second adjoint process to reflect this inter-
temporal risk optimization.

Definition 3.3.2. First order adjoint process
We call the solution of

dYt = −∂H
∂x

(t, Xt, µt, Yt, â(t, Xt, µt, Yt))dt + ZtdWt (3.3.1)

YT =
∂g
∂x

(XT, µT) (3.3.2)

first order adjoint process associated with control problem (3.1.1-3.1.2)

Remark. We use â for solutions of optimal control problems while we same ∗ for Nash
equilibriums, in a later section where we are going to discuss their connection we will revise
our notation.

3.3.1 Assumptions

Unfortunately we cannot continue the discussion at full generality and we have to impose
some assumptions to achieve our existence theorem. Usually to minimize the Hamiltonian
we require some convexity and in this particular case we will demand an affine structure in
b(t, x, µ, a) along with convexity in f (t, x, µ, a)

We list the complete set of our assumptions here and refer to them whenever needed
providing also some motivation. We denote S0 − S3 the assumptions required for retrieving
the stochastic maximum principle and F4 − F6 for the fixed point problem, even thought all
of them have to be fulfilled for the MFG equilibrium to exists.

Assumptions

S0. A ⊂ R compact, convex and the flow of probability measures µt is deterministic.
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S1.
b(t, x, µ, a) = b0(t, µ) + b1(t)x + b2(t)a

where b2 is measurable and bounded and b0, b1 measurable and bounded on bounded
subsets of [0, T]×P2(A) and R respectively.

S2. f (t, ·, µ, ·) is C1,1, bounded with bounded derivatives in x, a and satisfies the convexity
assumption

f (t, x′, µ, a′)− f (t, x, µ, a)− (x′ − x)
∂ f
∂x

− (a′ − a)
∂ f
∂a

≤ λ|a′ − a|2 λ ∈ R+

S3. g is bounded, for any µ ∈ P2(A) the function x → g(x, µ) is C1 and convex.

F4 b0, b1, b2 are bounded by cL. Moreover for any µ, µ′ ∈ P2(R) we have |b0(t, µ′) −
b0(t, µ)| ≤ cLd1(µ, µ′)

F5 |gx(x, µ)| ≤ cB and | fx(t, x, µ, a)| ≤ cB for all t ∈ [0, T], x ∈ R, µ ∈ P2(R), a ∈ R

3.3.2 Stochastic Maximum Principle

We begin with a version of the SMP from Pham to achieve existence and motivate our
strategy.

Theorem 3.3.1. (Pham)
Let â ∈ A and X̂ the associated state process. Assume

1. g is bounded C1 and convex

2. There exist a solution (Yt, Zt)0≤t≤T of the BSDE:
dYt = −∂H

∂x
(t, Xt, µt, Yt, â(t, Xt, µt, Yt))dt + ZtdWt

YT =
∂g
∂x

(X(T), µT)

(3.3.3)

such that

H(t, X̂t, µt, ât, Ŷt, Ẑt) = min
at∈A

H(t, X̂t, µt, a, Ŷt, Ẑt) 0 ≤ t ≤ T a.s.

3. (x, a) → H(t, x, µ, a, Ŷt, Ẑt) is a convex function for all t ∈ [0, T].

Then â is an optimal control.

Remark. Since µt is fixed, it does not affect our calculations, which are pretty standard for
stochastic control problems and we can drop it from our notation without any harm.

Proof. For any at ∈ A we need to calculate:

J(ât)− J(at) = E
[ ∫ T

0
f (t, X̂t, ât)− f (t, X̂t, at)dt + g(X̂T)− g(XT)

]
So we need to get estimates for f (t, X̂t, ât)− f (t, Xt, at) and g(X̂T)− g(XT)

For g(X̂T)− g(XT) we use the assumption 1, along with the BSDE and Ito’s rule

For f (t, X̂t, ât)− f (t, Xt, at) we change f for H and then use assumption 3.
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In the end we combine the estimates with the definition ofH to prove that

J(ât)− J(at) < 0 for 0 ≤ t ≤ T

and taking the inf the desired relationship comes.

We now state and prove a variation of the classical Stochastic Maximum Principle in the
spirit of Pham’s theorem, tailored for our needs. Apart from the FBSDE system which we are
going to use in the next step, we can find a way to compare control as the inequality (3.3.5)
show in the theorem which is also going to be helpful in the next step.

Theorem 3.3.2. Assume (S0 − S1) in addition, if the map t → µt ∈ P2(R) is measurable
and bounded and if the FBSDE system:

dXt = b(t, Xt, µt, â(t, Xt, µt, Yt))dt + σdWt

dYt = −∂H
∂x

(t, Xt, µt, Yt, â(t, Xt, µt, Yt))dt + ZtdWt

X0 = x0

YT =
∂g
∂x

(X(T), µT)

(3.3.4)

has a solution (Xt, Yt, Zt)0≤t≤T such that

E
[

sup
0≤t≤T

(|Xt|2 + |Yt|2) +
∫ T

0
|Zt|2dt

]
< ∞

Then for any admissible (at)0≤t≤T the variational inequality:

J(ât; µ) + λE

∫ T

0
|at − ât|2dt ≤ J(at; µ) (3.3.5)

where ât = (ât)0≤t≤T is the minimizer of the Hamiltonian, holds

Proof. As before we need to calculate J(ât)− J(at)with ât the minimizer of the Hamiltonian
and at admissible. As before we drop µ to lighten notation since it is fixed and doesn’t affect
calculations.

J(ât)− J(at) = E
[ ∫ T

0
f (t, X̂t, ât)− f (t, X̂t, at)dt + g(X̂T)− g(XT)

]
So we need to get estimates for f (t, X̂t, ât)− f (t, X̂t, at) and g(X̂T)− g(XT)

For g(X̂T)− g(XT) we use the (S3), and so we get

g(XT) ≥ g(X̂T) + gx(X̂T)(XT − X̂T)

g(X̂T)− g(XT) ≤ YT(X̂T)(XT − X̂T)

using Ito’s rule we end up with

E
[
g(X̂T)− g(XT)

]
≤ E

[ ∫ T

0
−(Xt − X̂t)Hx̂dt +

∫ T

0
Yt(b(t, x̂, â)− b(t, x, a))dt

]
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and imposing (S1)

E

[
g(X̂T)− g(XT)

]
≤ E

[ ∫ T

0
−(XT − X̂T)Hx̂dt+

∫ T

0
Ŷt

(
b1(t)(X̂t −Xt)+ b2(t)(ât − at)

)
dt
]

(3.3.6)

For f (t, X̂t, ât)− f (t, Xt, at) we use (S2).

E

[ ∫ T

0
f (t, X̂t, ât)− f (t, Xt, at)dt

]
≤ E

[ ∫ T

0
(X̂t −Xt) fx − (ât − at) fa +λ|ât − at|2dt

]
using the definition of the Hamiltonian

E

[ ∫ T

0
f (t, X̂t, ât)− f (t, Xt, at)dt

]
≤ E

[ ∫ T

0
(X̂t − Xt)(Hx̂ − bx̂Yt)− (ât − at)(Hâ − bâYt)

+ λ|ât − at|2dt
]

= E

[ ∫ T

0
(X̂t − Xt)Hx̂ − (ât − at)Hâ + Yt

(
(ât − at)bâ − (X̂t − Xt)bx̂

)
+ λ|ât − at|2dt

]

= E

[ ∫ T

0
(X̂t −Xt)Hx̂ − (ât − at)Hâ +Y

(
(ât − at)b2(t)− (X̂t −Xt)b1(t)

)
+λ|ât − at|2dt

]
(3.3.7)

We sum (3.3.6) and (3.3.7) to get:

J(ât)− J(at) ≤ E

[ ∫ T

0
−(ât − at)Hâ + λ|ât − at|2dt

]
(3.3.8)

All that is left is to prove existence and uniqueness of ât. We take care of that with the
following lemma.

Lemma 3.3.1. Minimization of the Hamiltonian
Assume (S0 − S2) then for each (t, x, µ, y) is the appropriate domain there exists a unique

minimizer of the Hamiltonian H

And so Hâ = 0 and the proof is complete.

3.4 The fixed point problem

The second step for the MFG equilibrium is now to find a family of probability distribu-
tions (µt)0≤t≤T such that the process {X̂t}0≤t≤T solving (3.2.1) admits (µt)0≤t≤T as flow
of marginal distributions i.e.

µt = L(X̂t, ) for all t ∈ [0, T]
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so we rewrite (3.2.1) as a McKean-Vlasov FBSDE system:

dX̂t = b(t, X̂t,L(X̂t), â(t, X̂t,L(X̂t), Yt))dt + σdWt

dYt = −∂H
∂x

(t, X̂t,L(X̂t), Yt, â(t, X̂t,L(X̂t), Yt))dt + ZtdWt

X̂0 = x0

YT =
∂g
∂x

(X(T), µT)

(3.4.1)

and we have the following theorem for solving MKV-FBSDEs.

Theorem 3.4.1. Under Assumptions (S0 − F4) the FBSDE system (3.4.1) has a solution
(Xt, Yt, Zt)0≤t≤T . Moreover for any solution, there exists a function u : [0, T] × Rd such
that Yt = u(t, Xt) a.s.∀t ∈ [0, T] and satisfies the growth and Lipschitz properties:

1. |u(t, x)| ≤ c(1 + |x|) ∀t ∈ [0, T]

2. |u(t, x)− u(t, x′)| ≤ c|x − x′| ∀t ∈ [0, T], ∀x, x′ ∈ Rd

The theorem itself is difficult to prove and the strategy behind it is far from trivial. Let’s
start articulating the steps we need to follow to solve this problem.

1. Given a flow of probability measures µ ∈ P2(C) with µ = (µt)0≤t≤TL(X̂t) and C
the space of real continuous functions, we prove that the FBSDE system is uniquely
solvable.

2. We setΦ : µ 7→ L(X̂x0;µ) the map that associates each µwithL(X̂x0;µ) the probability
distribution of state process, solution of the previous step.

3. MFG equilibrium comes as a fixed point of Φ

In the first step we fix µ and for each particular fixed µwe solve the FBSDE to achieve this
we use a similar approach as in the previous subsection where we rely on existing theory of
FBSDE system for existence and uniqueness. In the second step we associate each solution of
the FBSDE with a flow of probability measures and in the third step we use the compactness
of P(C) to apply the Schauder’s fixed point theorem.

The complete proof of Theorem 3.4 is long and cumbersome so we will prove only the
most important points that are going to help us gain a better understanding of the subject.

For the first step we have the following lemma.

Lemma 3.4.1. Given µ ∈ P2(C) with marginal distributions (µt)0≤t≤T = L(X̂t) and C the
space of real continuous functions the FBSDE:

dX̂t = b(t, X̂t,L(X̂t), â(t, X̂t,L(X̂t), Yt))dt + σdWt

dYt = −∂H
∂x

(t, X̂t,L(X̂t), Yt, â(t, X̂t,L(X̂t), Yt))dt + ZtdWt

X̂0 = x0

YT =
∂g
∂x

(X(T), µT)

(3.4.2)

has a unique solution

We will not attempt a complete proof here but we would rather sketch some arguments.
First we notice that the assumptions (F − F) with µ fixed and bounded and properties of the
driver o the BSDE gives as existence according to the fairly straight Forward 4-step scheme
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we developed in the appendix. Giving just a short reminder here, we suppose a deterministic
function θ such that Yt = θ(t, Xt) and applying Ito’s rule we end up with a quasiliniar non-
degenerate parabolic PDE. However this is only a local result for small time, the idea of the
extension for arbitrary time as proposed by Delarue in Delarue2002 is the following: we
assume it holds in an interval of the form [T − δ, T] with δ sufficiently small including also
t0 of x0. There θ(T − δ, ·) plays the role of the terminal data in the BDSE namely gx.

For step 2 we give the following definition

Definition 3.4.1. For any continuous flow of probability measures µ = (µt)0≤t≤T ∈ P2(C)
and (X̂x0;µ

t , Ŷx0;µ
t , Ẑx0;µ

t ) solution of FBSDE (3.4.2) we define the map Φ : µ 7→ L(Xx0;µ)
and we call MFG equilibrium or solution, any fixed point of Φ.

We take care of the fixed point in the next lemma

Lemma 3.4.2. There exists a closed convex subset E of P2(C) which is stable for Φ with a
relatively compact range, Φ is continuous on E. Φ has a fixed point.

Proof. In the proof we will make use of

Theorem. Schauder’s fixed point theorem
Let E be a nonempty, compact, convex subset of a Banach space and Φ a continuous

(compact) map from E to itself then Φ has a fixed point.

We need to identify a compact convex subset ofP2(C) and prove that Φ defined as earlier
maps this subset to itself and is continuous.

To do this we start by looking for bounds of our solutions. For assumptions (F4 − F5)
we get that

|Hx| = |b1(t)y + fx| ≤ cL|y|+ cB

and so if we write Yt = gx(XT, µT) −
∫ T

t −Hxdt −
∫ T

t ZtdWt and under our assumption
and a comparison principle for SDEs [citation] it is straightforward that:

for any µ ∈ P2(C) and t ∈ [0, T] |Yx0;µ
t | ≤ c a.s.

where c depends upon cB, cL and T.
Remembering Lemma 3.3.1 with our assumptions yields

|â(t, x, µ, y)| ≤ λ−1(cL + cL|y|)

|â(t, Xx0;µ
t , µ, Yx0;µ

t )| ≤ cL

λ
(1 + c) = c′ (3.4.3)

By Theorem 5.4 in CD2013 we have

E( sup
0≤t≤T

|Xx0;µ
t |2) ≤ c′(1 + E(|x0|2)) = K

So we consider the set:

E := {µ ∈ P4(C) : sup
0≤t≤T

∫
R
|x|4dµt(x) ≤ K}

E is convex and closed in the d1.
Now we have to show also that it is relatively compact, and to do so we use a tightness

argument with Prohorov’s theorem for the family of processes ((Xx0;µ
t )0≤t≤T)µ∈E and the

corresponding laws.
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For continuity we need to show that:

Φ is continuous in µ′ ∈ E ⇐⇒ For all ϵ > 0 there exists δ > 0 such that if µ ∈ E and
d1(µ, µ′) < δ then d1(Φ(µ), Φ(µ′)) < ϵ

From Definition 3.2 in the Preliminaries subsection of this section we write:

d1(Φ(µ), Φ(µ′)) = d1(L(Xx0;µ
t ),L(Xx0;µ′

t )) ≤ E sup
0≤t≤T

|Xx0;µ
t − Xx0;µ′

t |

Now to get an estimate for |Xx0;µ
t − Xx0;µ′

t | we need to use (3.3.5) along with the state
process under the ”environment” µ′.

As Carmona and Delarue showed in their original paperCD2013we can relax assumption
(F6) by approximating cost functions f , g by sequences of functions fn, gn that satisfy (F5)
uniformly.

3.5 Analytic approach, Connection of SMP with dynamic pro-
gramming

Here we are going to describe the so called analytical method. Since the initial appear-
ance of the MFGs in the mathematical literature it has served as the primary solution method
and has been intensively studied. It has its roots in the Dynamic Programming Principle as
introduced by Bellman and classical analytical mechanics.

In a nutshell the method uses a value function which solves a special kind of PDE called
Hamilton-Jacobi-Bellman and under appropriate assumptions can produce an optimal con-
trol in feedback form which coupled with the state dynamics (stochastic or not) can give us
solution to optimal control problems.

However in our case we havemany agents that optimize, each onewith his optimal control
problem which are coupled since they interact through their states and/or controls. So when
each agent takes decisions have to take into account the empirical distribution of the states
and/or controls of the other players (in our case only the states for simplicity). This interaction
indicates that when we solve the MFG problem i.e. search for a distribution of states that no
one has intention to deviate, in addition to solving the optimal control for each agent, we
have also to describe the evolution of the state distribution. This idea was first introduced in
subsection 2.3.1 - 2.3.5 where we ended with a Fokker-Plank equation for the evolution of
particle distribution in the case of particles and a states in our MFGs case. Here we are going
to introduce the HJB equation and couple it with the FP equation to derive aMFG equilibrium
as defined earlier.

3.5.1 Hamilton Jacobi Bellman

We use the same definition of the Hamiltonian as before in addition we letH the Legendre
transform of H i.e.H = in f

a∈Aadm

H

We define the value function of representative’s agent problem u as:

u(x, t) = in f
a∈Aadm

J(a(·); µ(·))

As pointed in the appendix if u is sufficiently regular it solves the HJB equation:
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{
ut +H(x,−ux,−uxx, µt) = 0

u(x, T) = g(x)
(3.5.1)

Remark. The usual way to relax the assumptions about (3.5.1) is to look for viscosity solu-
tions but this is a concept that we are not going to discuss.

Once we have a solution of the HJB, using also the SDE we can compute ât ∈ Aadm the
optimal control function were the specific form depends also on the modelling we use namely
open or close loop controls. To make everything rigorous we need a verification theorem.

As explained in the previous sections the in order to solve the Representative’s agent
problem we fix the flow of probability measures, µt. We use the fixed point condition as
earlier:

µt = L(X̂t) for all t ∈ [0, T]

and this implies coupling with the Fokker-Plank equation.

3.5.2 Fokker Plank

Definition 3.5.1. Infinitesimal Generator

• For a general Markov process {Xt}0≤t≤T starting from x0 we define the Infinitesimal
generator of the process as:

lim
t↓t0

Ex0 [ f (Xt, t)]− f (x0, t0)

t − t0

• For a process that satisfies our state SDE we have the following definition

A[ f (t, x)] =
∂

∂t
f (t, x) + b(t, x, µ)

∂

∂x
f (t, x) +

1
2

σ2 ∂2

∂x2 f (t, x)

Definition 3.5.2. Adjoint operator
Let A be an operator we define the adjoint operator of A as:∫

R
ϕ(x)A[ f (x)]dx =

∫
R

f (x)A∗[ϕ(x)]dx ∀ϕ ∈ C∞
0 (R)

As already seen in section 2 but with alternative notation now the evolution of the popu-
lation’s distribution, given an initial distribution µ0 is given by:{

A∗[µt] = 0
µ0 = L(X0)

(3.5.2)

While in our case (3.5.2) becomes∂tµt + b(t, x, µt)∂xµt −
1
2

σ∂xxµt = 0

µ0 = L(X0)
(3.5.3)

Combining (3.5.1) with (3.5.3) we have a system of coupled PDEs the solution of which
provide us with a MFG equilibrium distribution as in Definition 3.5.
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ut +H(x,−ux,−uxx, µt) = 0

∂tµt + b(t, x, µt)∂xµt −
1
2

σ∂xxµt = 0

µ0 = L(X0)

u(x, T) = g(x)

(3.5.4)

We can see an analogy with the MKV-FBSDE system (3.4.1) since here also we have the
HJB equation backward in time and the FP forward in time. But here we are dealing with
infinite dimensions problem while the MKV-FBSDE problem is in finite, which also the big
advantage of the probabilistic method, apart from the interpretation.

3.6 From infinite game to finite

We have already given, in the introduction, some motivation about our strategy to pass to
the limit of infinite players. Now that we have study the infinite game enough, we would like
to ask the question, ”What can we say from the situation at infinity (infinite game) about
the N-player game?” or in other words can we reconstruct the finite game from the infinite?

First let us recall the finite game from section 2.
For i = 1, ..., N

in f
ai
(·)∈Ai

adm

Ji(a(·); µ̄N
(·)) = in f

ai
(·)∈Ai

adm

∫ T

0
E
[

f (Xi
t, ai

t, µ̄N
t )dt + g(Xi

T, µ̄N
t )

]
(3.6.1)

subject to {
dXi

t = b(t, Xi
t, ai

t, µ̄N
t )dt + dW i

t

Xi
0 = ξ i ∈ L2

(3.6.2)

where

µ̄N
t =

1
N

N

∑
i=1

1Xi<x

Now suppose that we have solved the infinite game () using the SMP then we have aMFG
equilibrium ¯t and a value function θ(t, Xt) = Yt from theorem () as pointed also in the ap-
pendix for FBSDE systems. Then we can define players control strategies â(t, Xt, µt, θ(t, Xt)
for the infinite game in feedback form.

We would like to set each player’s strategy in the finite game as

ai
t = â(t, Xi

t, µt, θ(t, Xi
t)) (3.6.3)

and prove that this collection of strategies at = (a1
t , ..., aN

t ) is indeed a Nash equilibrium
for the finite game. As we have already mentioned â(t, Xi

t, µt, θ(t, Xi
t)) is a feedback func-

tion for control ai
t and we are will restrict ourselves into closed loop Nash equilibriums and

specifically Markovian in the spirit of Definition 2.7. As pointed in the introduction the most
natural way to approach this problem is through the idea of an Approximate Nash Equilib-
rium (ANE). We combine the notions of Markovian and approximate Nash equilibrium in the
following definition.

Definition 3.6.1. Markovian Approximate Nash Equilibrium
Let

ϕi : [0, T]× C([0, T]; R)
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be a measurable feedback function and {X∗,i
t }0≤t≤T the solution of the state SDE (3.6.2) for

i = 1, ...N if we use the admissible controls:

ai,∗
t = ϕi(t, Xi

t) 0 ≤ t ≤ T

Given ϵ > 0 the action profile a∗t = (a∗,1
t , ..., a∗,N

t ) is an Markovian ϵ-approximate Nash
equilibrium if, whenever a player i uses a different strategy ai

t = ψ(t, Xi
t) while the rest

continue to use bj
t = ϕj(t, X j

t) ∀j 6= i but with {Xi
t}0≤t≤T the solution of the state SDE

(3.6.2) when we use the actions at = (ai
t, b−i

t ). Then

Ji(a∗t ) ≤ Ji(at) + ϵ

for each i ∈ {1, ..., N}

Theorem 3.6.1. Existence of MANE
Under assumptions (S0− F6) there exists a sequence (ϵN)N≥1 with ϵN → 0 as N → ∞

such that the strategy profile a∗t = (a∗,1
t , ..., a∗,N

t ) with a∗,i
t defined in (3.6.3) is a Markovian

ϵN-approximate Nash equilibrium for the finite game.

The proof of this theorem is rather long and we will omit it but can be found in [citation].
Instead some remarks are on the way to elaborate more on this interesting result.

Remarks. • Theorem holds true also for open loop controls and for closed loop controls
with light modification.

• .....
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Chapter 4

The Aiyagari Model

In this section we would like to present and ”solve” an actual macroeconomic model
Aiyagari1994, as an application to the theory developed so far in this text. As already dis-
cussed in the introduction macroeconomic models are typical examples of MFGs since they
incorporate a large number of symmetric agents usually separated in sectors who share the
same incentives.

This chapter is organised as follows. At first we will make a brief introduction to the class
of macro-models with a large number of agents subject to idiosyncratic shocks and present
shortly some stylized facts to motivate the key features of the model that follow. Then we will
present the model itself and derive existence according to chapter 3.

4.1 Introduction to models with a large number of agents subject
to idiosyncratic shocks

We are going to discuss about an economy with two sectors commonly refereed to as
households and firms. Households provide factors of productions to firms in order to produce
and gain back income as compensation. In our particular case we will assume we are dealing
only with labour (lt) and capital (kt). We have N workers working in N perfectly competitive,
identical firms that we will not distinguish and consider them as one representative firm (This
is a common practice inmacroeconomic literature). The representative firm produces only one
product (Yt) consumed by households and pay wt as wage and rt as compensation for capital.
Since all workers are identical they get paid by the same amount, same goes for capital. We
will describe the position (state) of each agent with a vector Xi

t = (ki
t, li

t) and use an empirical
distribution for the states

µN
t =

1
N

N

∑
i=1

δXi
t≤x

The mean capital and labour are defined as:
KN

t =
1
N

N

∑
i=1

ki
t =

∫
kdµN

t (k, l)

LN
t =

1
N

N

∑
i=1

li
t =

∫
ldµN

t (k, l)

Households can control their consumption (ci
t) and as a general rule aim to maximize their

discounted utility i.e. each unit of product they consume offers them a certain satisfaction and
they have specific preferences regarding the time horizon of the satisfaction. We represent
their preferences with a utility function U(ci

t) satisfying certain assumptions which we are
going to specify later. They face a budget constraint:
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wtli
t + rtki

t = ci
t +

dki
t

dt
where on the l.h.s we have the income of agent i and on r.h.s. we have the expenditure

namely consumption and rate of capital accumulation or decrease.
Firms on the other hand aim to maximize their profit while they control the mean capital

(Kt) and labour (Lt) they enter in their production. This is a reasonable assumption since all
of them are identical and appear as one representative firm.

Some stylized facts provided byAiyagari1994will guide us to specify our model further.

Stylized Facts 1. Barsky, Mankiw, Zeldes 1986 and Deaton 1991
Individual consumptions are much more variable than aggregate. This indicates
that heterogeneity may be important due to incomplete markets.

2. C. Carroll 1991
Individual wealth holdings are highly volatile which is hard to explain in absence
of temporary idiosyncratic shocks.

3. Mankiw Zeldes 1991
Considerable diversity in portfolio compositions for households with different
wealth levels.

4. Avery, Elliehusen Kennickell 1988
The top end of the wealth scale owns stocks while low end owns liquid assets,
which is hard to explain when the markets are frictionless.

Remark. The situation described by the above empirical research represents U.S. econ-
omy during the late 20th century and currently might seem obsolete but we are present-
ing it for completeness and educational reasons.

Model’s Key features 1. Endogenous heterogeneity
2. Aggregation through mean field interactions
3. Finite horizon
4. Borrowing constraint
5. General equilibrium (endogenously determined interest rate)

In a nutshell we are dealing with an income fluctuation problem: households face uncer-
tain earnings.

4.2 Model formulation

In order to solve this income fluctuation problem households take decisions on consump-
tion or alternatively assets accumulation or decrease in order to maximize expected value of
the discounted utility of consumption.

Let’s introduce some notation to specify our model.

Definition 4.2.1. The following will be useful

1. ci
t: agent’s i consumption

2. ki
t: agent’s i capital

3. li
t: agent’s i labor
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4. wi
t: agent’s i wage

5. Ui(ci
t): agent’s i utility function

U : A → R

6. β: utility discount factor

7. λ = (1−β)
β > 0: time preference

8. rt: the return on capital

Assumptions

(A1). We we model labour endowment shocks by allowing lt to be a solution of an SDE:

dli
t = b(li

t)dt + σ(li
t)dWt

We can specify as:

(B). Geometric Brownian Motion
(OU). Orstein - Uhlenbeck process.

Also, (li
t)

N
i=1 is is iid with bounded support given by [lmin, lmax] with lmin > 0

(A2). Utility function is of Constant Relative Risk Aversion type (CRRA) given by:

U(c) =
c1−γ − 1

1 − γ
(4.2.1)

for γ > 0 with U(c) = ln(c) if γ = 1

Also, β, the utility discount factor is constant and time invariant

(A3). The production function is Cobb-Douglas type.

F(Kt, Lt) = Ka
t L1−a

t (4.2.2)

(A4). We normalize Lt to 1 i.e.
E[li

t] = 1

for all t > 0 and i ∈ {1, 2, .., N}

Individual agent’s problem
The households are interested in maximizing:

max
ci

t∈Aadm

E0
[ ∫ T

0
e−βtU(ci

t)dt + Ũ(ci
T)
]

(4.2.3)

subject to a budget constraint

dkt = [−ct + wtlt + rtkt]dt (4.2.4)
ct ≥ 0 (4.2.5)
kt ≥ −b a.s. (4.2.6)

ct ≥ 0 seems logical since there is no meaning in negative consumption,
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kt ≥ −b is a limit on borrowing since in real world there is no such thing as an infinite
credit line.

The limit on borrowing is no enough to rule Ponzi strategies, we need a borrowing con-
straint: 

kt ≥ −ϕ

ϕ =

{
min{b, wlmin

r } if r > 0
b if r ≤ 0

(4.2.7)

To incorporate the borrowing constraint in the model we need to define:

k̃t = kt + ϕ

so the budget constraint becomes:

dk̃t = [−ct + wtlt + r(k̃t − ϕ)]dt (4.2.8)
ct ≥ 0

k̃t ≥ 0 a.s.

Representative’s firm problem
The firms has to solve

max
KN

t ,LN
t

Π(KN
t , LN

t ) = f (Kt, Lt)− (rt + δ)Kt − wtLt (4.2.9)

with 
K̃N

t =
1
N

N

∑
i=1

k̃i
t =

∫
kdµN

t (k, l)

LN
t =

1
N

N

∑
i=1

li
t =

∫
ldµN

t (k, l)

Mean Field Game set-up

First we solve Firm’s problem, which by taking first order conditions on (4.2.9) together
with assumptions (A3),(A4) yield:{

a(K̃N
t )a−1 = rt + δ

(K̃N
t )a = wt

(4.2.10)

then we inject (4.3.1) in (4.2.8) which gives us:

dk̃i
t = [(K̃N

t )ali
t + (a(K̃N

t )a−1 − δ)(k̃i
t − ϕ)− ci

t]dt

dli
t = b(li

t)dt + σ(li
t)dW i

t

K̃N
t =

1
N

N

∑
i=1

k̃i
t =

∫
kdµN

t (k, l)

µN
t =

1
N

N

∑
i=1

δXi
t≤x

(4.2.11)

the mean capital K̃N
t in the above equation gives us the mean filed interactions.
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Now as explain already in previous chapters we send the number of agents to infinity and
try to solve the representative’s agent problem.

4.3 Solution of Aiyagari MFG model

Once we have N → ∞ we would like the flow of empirical measures µN
t to converge to

some flow µt by a law of large numbers.
We restate the optimal control problem for the representative household.

max
ct∈Aadm

E0
[ ∫ T

0
e−βtU(ct)dt + Ũ(cT)

]
(4.3.1)

subject to 

dk̃t = [K̄a
t lt + (aK̄a−1

t − δ)(k̃t − ϕ)− ct]dt
dlt = b(lt)dt + σ(lt)dWt

K̄t =
∫

kdµt(k, l)

µt = L(Xt)

(4.3.2)

Our strategy here is going to be the same as in chapter 3 we are going to solve the optimal
control problem when µt is fixed, but here things are a little bit easier since the state dynamics
depend only on the mean capital.

Minimization of the Hamiltonian First we define the Hamiltonian

H(t, c, k, l, yk, yl , q) = U(c)+ 〈[K̄a
t l +(aK̄a−1

t − δ)(k−ϕ)− c], yk〉+ 〈b(l, t), yl〉+ 〈σ(l, t), q〉

we take
∂H
∂c

= 0

U′(c)− yk = 0

ĉ = y
− 1

γ

k (4.3.3)

ĉ is the optimal control rule which is independent of l and yl and so we can simplify
our formulas by removing the from the definition of the Hamiltonian and the adjoint
process and drop the subscript k from the y variable. This way we end up with one
dimensional deterministic adjoint process since we ruled out the stochastic part.

Adjoint process and forward-backward system We define the first order adjoint processdYt = −∂H
∂x

dt = −(aK̄1−a
t − δ)Ytdt

YT = 1

Together with the state equation (4.3.2) (but independent of lt) we end up with the
forward-backward system
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dYt = −(aK̄1−a
t − δ)Ytdt

dk̃t = [K̄a
t lt + (aK̄a−1

t − δ)(k̃t − ϕ)− ĉt]dt
YT = 1

K̄t =
∫

kdµt(k, l)

µt = L(Xt)

(4.3.4)

in order to calculate the mean filed interactions we take the expectation in k̃t, remem-
bering also assumption (A4) so we end up in a system of ODEs

dYt = −(aK̄1−a
t − δ)Ytdt (4.3.5)

dK̄t = K̄a
t − aϕK̄a−1

t − δK̄t + δϕ)− Y
− 1

γ

t dt (4.3.6)
YT = 1 (4.3.7)

We have to work using numerical approximations to solve (4.3.5)(4.3.6)
To be continued...

Remarks. 1. System (4.3.4) is a direct consequence of assumption (A4) which restricted
mean filed interactions to the capital and so we could use ODE methods to explore it.

2. Equation (4.3.5) can be solved explicitly and together with the numerical approximation
for the system we can substitute in the optimal control rule (4.3.3) and get the optimal
consumption rule for the economy. This is a very important variable for economists
since they can study the growth path of the economy and decide about optimal macroe-
conomic policies.
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Appendix Αʹ

Optimal Control

Αʹ.1 Introduction

We are interested in studying a phenomena that can be described by a set of variables
called state variables and a system of differential equations (dynamical system) which define
the path in which the state variables evolve.
We are interested in answering the following questions:

• What is the asymptotic behaviour of our system?

• Can we add specific variables which we have under our control to the system to steer
it to a target set?(Controllability)

• Canwe find a path (trajectory) whichmakes a certain pre-decided criterion optimal?(Existence
of optimal control)

• How can we design the variables(controls) to achieve this optimum? (Approximation
of the optimal controls)

Let’s introduce some notation:

Definition Αʹ.1.1. Some terminology

1. x ∈ Rn be the state variables

2. Ω be the unit cube in Rm i.e. Ω := {c|c ∈ Rm, |c| ≤ 1, i = 1, 2, ..., m}

3. u(·) ∈ Um the controls belonging to a set of measurable functions i.e. Um[0, t1] =
{u(·)|u(·) ∈ Ω and u(·)measurable on [0, t1]}

4. T (t) the target set

5. ẋ(t) = f (x(t), u(t)) the dynamics of the system under control u(t) , x(t0) = x0

6. x[t] ≡ x(t; x0, u(·)) the response, i.e. the solution id the dynamical system when using
the control u(·)

7. J[u(·)] =
∫ t1

0 f 0(x[t], u(t))dt the criterion or value or cost function under which we
are interested in finding the optimal path

Remarks. 1. In this appendix we are going to calligraphic capital letters for our sets, for
emphasis.

2. T (t) represents a time varying set in which we would like our response x[t] to be
included
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Optimal control problem We want to find the control u(·) (if there exist one) which steers
the system

ẋ(t) = f (x(t), u(t)) (Αʹ.1.1)

in a way that x[t1] ∈ T (t1) with the minimum cost(or maximum value)

J[u(·)] =
∫ t1

0
f 0(x[t], u(t))dt (Αʹ.1.2)

Αʹ.2 Controllability

Now in order to solve our basic optimal control problem we turn to the controllability
question.

Definition Αʹ.2.1. Controllable set The set

C(t) = {x0 ∈ Rn|∃u(·) ∈ Um such that x(t; x0, u(·)) ∈ T (t)}

contains all states which can be steered to the target at time t

The basic questions that arise are from the above definition are:

1. to describe C

2. to show how C changes if we use special classes of controls

Two desirable properties of C are:

• 0 ∈ IntC

• C = Rn in this case the system is completely controllable

Definition Αʹ.2.2. Reachable set and Reachable cone

• The set
K(t; x0) = {x(t; x0, u(·))|u(·) ∈ Um}

contains all states which can be reached in Rn at time t, from initial point x0 and is
called reachable set

• and the set

RC(x0) = {t, x(t; x0, u(·))|t ≤ 0, u(·) ∈ Um} =
⋃
t≥0

{t} ×K(t; x0)

is called reachable cone

There exists a connection between reachable sets and controllable sets via the time re-
versed dynamical system x(t) solves (Αʹ.1.1) with x(0) = x0 and x(t1) = x1 if and only if
z(t) = x(t1 − t) solves:

ż(t) = − f (z, ũ) (Αʹ.2.1)

z(0) = x1, z(t1) = x0, ũ(t) = u(t1 − t)

The two systems have the same trajectories, traversed in opposite directions

Theorem Αʹ.2.1. For the system (Αʹ.1.1) C is arc-wise connected. C is open if and only if
0 ∈ IntC
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Remark. A set (or a topological space) X is arc-wise connected if ∃ f : [0, 1] → X s.t.
f (0) = a and f (1) = b for a, b ∈ X with continuous inverse

Again we will investigate (Αʹ.1.1) with the extra assumption that f (x, u) is continuously
differentiable in x,u and f (0, 0) = 0 ∈ R Therefore expand f (x, u) about (0, 0)

f (x, u) = fx(0, 0)x + fu(0, 0)u + o(|x|+ |u|)

with fx, fu the appropriate Jacobian matrices.
We expect the controllability of the nonlinear (Αʹ.1.1) near 0 ∈ R to be determined by

the controllability of the linearisation:

ẋ = fx(0, 0)x + fu(0, 0)u = A f x + B f u

and define the controllability matrix:

M f = {B f , A f B f , A2
f B f , . . . An−1

f B f }

Theorem Αʹ.2.2. If rankM f = n then 0 ∈ IntC for (Αʹ.1.1)

Theorem Αʹ.2.3. For (Αʹ.1.1) suppose rankM f = n if solution x(t) = 0 of the free system
ẋ = f (x, 0) is globally asymptotically stable then C = Rn for (Αʹ.1.1)

Remark. We can use the Hartman-Grobeman theorem for topological equivalence of the
linearised and the nonlinear system

There are three subsets of Um that have some interest:

• Piecwise Constant

UPC[0, t1] = {u(·) ∈ Um[0, t1]|u(·)piecewise constant on[0, t1]}

• Absolutely continuous

UAC[0, t1] = {u(·) ∈ Um[0, t1]|u(·)absolutely continuous,

u(0) = u(t1) = 0|u(t)| ≤ 1 and |u̇(t) ≤ ϵ a.e. on[0, t1]}

• Bang-bang (uses full power)

UBB[0, t1] = {u(·) ∈ Um[0, t1]||ui(t)| = 1[0, t1], i = 1, ...m}

Αʹ.3 Existence of optimal controls

Existence theory is in a nutshell is a study of a continuous or lower semicontinuous func-
tion C[u(·)] on a compact( in some sense) set of controls Um

The problem (Αʹ.1.1)-(Αʹ.1.2) is in essence a mapping

C(u(·)) → C[u(·)]

from Um into R

Thismapping can be extremely complicated since the cost functionalC[u(·)] usually involves
the response x[·]
The general approach should be:



50 Appendix Αʹ. Optimal Control

1. Show thatC[u(·)] is bounded below, hence there exists aminimizing sequence {uk(·)}k∈N

with associated responses {xk[·]}k∈N

2. Show that {xk}k∈N to a limit x∗[·] (not necessarily a response)

3. Show that there is a u∗(·) ∈ Um for which x∗[·] is a response

Theorem Αʹ.3.1. Existance For the problem (Αʹ.1.1)-(Αʹ.1.2) on a fixed interval [0, T] with:
x0 given, T (t) = 0, f (t, x, u) and f 0(t, x, u) continuous. Assume:

1. that the class of admissible controls which steer x0 to the target set in time t1 is nonempty

2. satisfy an a priori bound:

|x(t; x0, u(·))| ≤ a ∀ u admissible

3. the set of points f 0(t, x, Ω) = {( f 0(t, x, v), f T(t, x, v))T|v ∈ Ω} is convex in Rn+1

Then there exists and optimal control

Αʹ.4 Pontryagin’s Maximum Principle

In the previous section we gave the sufficient conditions about the existence of at least
one optimal control. Here we are interested in the necessary conditions, which collectively
are known as the Potryangin Maximum Principle.

In this sectionwe suppose the target set is T (t) = x1 and the cost isC[u(·)] =
∫ t1

t0
f 0(x[t], u(t))dt

where t1 is unspecified

Definition Αʹ.4.1. Dynamic cost variable We define as x0[t] =
∫ t1

t0
f 0(x[s], u(s))ds the

dynamic cost variable

Remark. If u(·) is optimal, then x0[t1] is as small as possible

If we set x̂[t] = (x0, xT[t])T and f̂ (t, x̂) = ( f 0, f T)T then our original problem can be
restated as:

Restatement of the original problem Find an admissible control u(·) such that the (n+1)-
dim solution of

˙̂x[t] = f̂ (x̂, u(t)) (Αʹ.4.1)

terminates at
(x0[t1]

x1

)
with x0[t1] as small as possible.

In the linear case ẋ(t) = Ax(t) + Bu(t) with cost function C[u(·)] =
∫ t1

0 dt = t1 we
know that the optimal control is going to be extremal(there exists a supporting hyperplane).
We would like to use the same mechanism in the general nonlinear case. So we make the
following definitions

For a given constant control u(·) any solution x̂[·] of ˙̂x[t] = f̂ (x[t], u(t)) is a curve in
Rn+1 If b̂0 is a tangent vector to x̂[·] at x̂[t0] then the solution b̂(t) of the linearised equation:

˙̂b(t) = f̂x(x[t], u(t))b̂(t)

will be tangent to this curve at x̂[t] for all t.
Thus the linearised equation describes the evolution of tangent vectors along the solution

curves of the resulting autonomous equation.
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Definition Αʹ.4.2. The Ajoint system
For a given admissible control u(·) and associated response x̂[·] we consider the (n+1)-

dim linear system
˙̂p(t) = − f̂ x̂(x[t], u(t))T p̂(t) (Αʹ.4.2)

The solutions of this system are called extended costates

with f̂ x̂ the usual Jacobian matrix of f̂ with respect to x̂
Thus if b̂(t) is tangent to x̂[·] at x̂[t] for all t and if p̂(t0) is perpendicular to b(t0) then p(t)
will be perpendicular to x̂[·] at x̂[t] for all t.

Remark. The Adoint describes the evolution of vectors lying in the n-dim hyperplane P(t)
attached to the extended response curve x̂[·]

Definition Αʹ.4.3. Hamiltonian
For a given control and extended response (x̂[·], u(·))we take any costate p̂(·) and define

the Hamiltonian as a the real-valued function of time:

H( p̂, x̂, u) =< p̂, f̂ >=
n

∑
j=0

pj(t) f j(x[t], u(t))

and for system (Αʹ.4.2) we have:

x̌ = grad p̂H( p̂, x̂, u) =
( ∂H

∂p0 ,
∂H
∂p1 , · · · ,

∂H
∂pn

)T (Αʹ.4.3)

p̌ = −gradx̂ H( p̂, x̂, u) = −
( ∂H

∂x0 ,
∂H
∂x1 , · · · ,

∂H
∂xn

)T (Αʹ.4.4)

Definition Αʹ.4.4. Legendre transform

H( p̂, x) = sup
v∈Ψ

H( p̂, x, v)

H is the largest value of H we can get for the given vectors ( p̂, x) using admissible values
for v

Theorem Αʹ.4.1. Pontryagin Maximum Principle
Consider the extended control problem (4) with measurable controls u(·) taking values in

a fixed bounded set Ψ ⊂ Rm Suppose (u(·), x̂[·]) is an optimal control-response pair. Then
there exists an absolutely continuous function p̂(·) solving the adjoint system a.e. on [t0, t1]
with:

H( p̂(t), x[t], u(t)) = H( p̂(t), x[t]) (Αʹ.4.5)

H( p̂(t), x[t]) = 0, (Αʹ.4.6)

p0(t) = p0(t0) ≤ 0 (Αʹ.4.7)

Remarks

• If u(·) is optimal for (4), then there is an associated response-adjoint pair, (x̂[·], p̂[·])
such that for each t H( p̂(t), x[t], v) ≤ 0 for any v ∈ Ψ

• The PMP assumes that an optimal control exists. There maybe be a non empty set of
candidates and yet no optimal control for a given problem.
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Αʹ.5 Hamilton-Jacobi Equation

Note
We will change the notation to be closer to the PDE literature. We will use u for the solution
of the Hamilton Jacobi and other letters for controls whereas needed

Definition Αʹ.5.1. Hamilton Jacobi
The partial differential equation

∂u(x, t)
∂t

+ H(Dxu(t, x)) = 0 in Rn × (0, ∞) (Αʹ.5.1)

u = g on Rn × {t = 0} (Αʹ.5.2)

is called Hamilton Jacobi equation

Αʹ.5.1 Derivation of HJE using calculus of variations

Let L : Rn × Rn → Rn → R be the Lagrangian with L = L(q, x), q, x ∈ Rn (q
represents velocity, x represents state){

DqL = Lq1 , Lq2 ...Lqn

DxL = Lx1 , Lx2 ...Lxn

We introduce the action functional

I[w(·)] =
∫ t

0
L
(
ẇ(s), w(s)

)
ds

for w(·) belonging to the admissible class A = {w(·) ∈ C2|w(o) = y, w(t) = x}
After defining the action functional the basic problem in calculus of variations is to find

a curve x(·) ∈ A satisfying
I[x(·)] = min

w(·)∈A
I[w(·)]

we are asking for a function x(·) which minimizes the functional I(·) among all admissible
candidates

We assume next that there exists a x(·) ∈ A that sastisfy our calculus of variations
problem and we will deduce some of its properties

Theorem Αʹ.5.1. Euler-Lagrange
Given a minimizer x(·) ∈ A it solves the Euler-Lagrange equations

− d
ds

(
DqL(ẋ(s), x(s)

)
+ DxL(ẋ(s), x(s)) = 0 0 ≤ s ≤ t (E-L)

Proof. Choose v ∈ A it follows that v(0) = v(t) = 0 and for τ ∈ R we set w(·) =
x(·) + τv(·)
w(·) in C2 and w(0) = w(t) = 0 so w ∈ A and I[x(·)] ≤ I[w(·)] We set also i(τ) =
I[x(·) + τv(·) we differentiate with respect to τ noticing that i

′
(0) = 0 and we get the

result

Remark. Any minimizer solves the E-L equations but it is possible that a curve x(·) ∈ A
may also solve E-L without being a minimizer. In this case x(·) is a critical point of I
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We now assume that x(·) is a critical point of I and thus solves the E − L. We set

p(s) = DqL(ẋ(s), x(s)) for 0 ≤ s ≤ t

p(s) is called the generalized momentum

Assumption Suppose for all x, p ∈ Rn that the equation p = DqL(q, x) can be uniquely
solved for q as a smooth function of p and x q = q(x, p)

Definition Αʹ.5.2. Hamiltonian The Hamiltonian associated with the Lagrangian L is

H(p, x) = pq(p, x)− L(q(p, x), x) p, x ∈ Rn

Example Αʹ.5.1. Let L(q, x) = 1
2 mq2 − ϕ(x) be the Lagrangian. The corresponding E-L is

mẍ(s) = f (x(s))

for f = −Dϕ this is Newton’s Law with the force field generated by the potential ϕ
Setting p = DqL = m|q| the Hamiltonian is

H(p, x) = p
p
m

− 1
2

m
p
m

2
+ ϕ(x) =

1
2

mp2 + ϕ(x)

The sum of kinetic and potential energies

If we rewrite E − L in terms of p(·), x(·) we arrive in the next theorem

Theorem Αʹ.5.2. Hamilton’s ODE The functions x(·), p(·) satisfy Hamilton’s equations

ẋ(s) = DpH(p(s), x(s))

ṗ(s) = −Dx H(p(s), x(s)) for 0 ≤ s ≤ t

and the mapping
s → H(p(s), x(s)) is constant

(The sum of kinetic and potential energy is constant and these systems are called conser-
vative)

Proof. (only the third statement)
d
ds

(
H(p(s), x(s))

)
= ∑n

i=1
∂H
∂pi

ṗi +
∂H
∂xi

ẋi =
Hamilton′sODE

∑n
i=1

∂H
∂pi

− ∂H
∂xi

+ ∂H
∂xi

∂H
∂pi

= 0

Αʹ.5.2 A candidate for the HJE

Retuning to the initial-value problem, we will investigate a connection between the PDE
and the calculus of variations.
If x ∈ Rn is given and g appropriate initial data we should presumably try to minimize the
action functional, taking into account the initial condition for the PDE.∫ t

0
L(ẇ(s))ds + g(w(0))

Finally we can now construct a candidate for the initial-value problem in terms of the
variational principle.
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u(x, t) = in f {
∫ t

0
L(ẇ(s))ds + g(w(0))|w(0) = y, w(t) = x} (Αʹ.5.3)

With w(·) ∈ C2, w(t) = x.
We are going to investigate the sense in which u solves the initial-value problem.

Assumptions (They come naturally given the previous discussion but they are not sufficient
to guarantee uniqueness)

• H is smooth, convex and lim
|p|→∞

H(p)
|p| = ∞

• g : Rn → R is Lipschitz continuous

Definition Αʹ.5.3. Hopf-Lax formula

u(x, t) = min
y∈Rn

{tL
( x − y

t
)
+ g(y)}

is the so called Hopf-Lax formula

Theorem Αʹ.5.3. The Hopf-Lax formula solves the minimization problem (14)

Proof. u(x, t) ≤
∫ t

0 L(ẇ(s))ds + g(y) and let us define w(s) = s
t x + (1 − s

t )y = y +
s
t (x − y) the convex combination of x,y with ẇ(s) = y−x

t∫ t

0
L(

x
t
+ (1 − 1

t
)y)ds = L(

y − x
t

)
∫ t

0
ds = tL(

y − x
t

)

For the other hand-side by Jensen’s inequality we get

L
(1

t

∫ t

0
ẇ(s)ds

)
≤ 1

t

∫ t

0
L(ẇ(s))ds

adding g(y) to both sides and taking in f over all y ∈ Rn we get the result. We have also to
show that the in f belongs to the set so it is actually a minimum.

Remark. Convex duality of the Lagrangian and the Hamiltonian
We hereafter suppose the Lagrangian L : Rn → R satisfies:

• q → L(q) is convex

• lim
q→∞

= L(q)
|q| = ∞

Definition Αʹ.5.4. The Legendre transform of L is:

L∗(p) = sup
q∈Rn

{pq − L(q)}

H = L∗ the Hamiltonian is the Legendre transform of the Lagrangian and vice versa
L = H∗ (Theorem)

Theorem Αʹ.5.4. Solution of HJ PDE
The function u defined by the Hopf-Lax formula is Lipschitz, differentiable a.e. in Rn ×

(0, ∞) and solves the initial value problem
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Proof. First we prove the theorem for a point (x, t) where u is differentiable by construct-
ing the PDE. After we use Rodemacher’s theorem to extend the result a.e. We will use the
following lemma and double nesting.

Lemma Αʹ.5.1. Lemma

u(x, t) = min
y∈Rn

{(t − s)L
( x − y

t − s
)
+ u(y, s)}

In other words to compute u(·, t) we calculate u at the time s then we use u(·, s) as the
initial condition for the remaining time interval

u(x + hq, t + h) = min
y∈Rn

{
hL

( x + hq − y
h

)
+ u(x, t)

}
≤ hL(q) + u(x, t)

hence
u(x + hq, t + h)− u(x, t)

h
≤ L(q)

u(x + hq, t + h)− u(x + hq, t) + u(x + hq, t)− u(x, t)
h

≤ L(q)

and for h → 0+ we get (x ∈ Rn)

qDu(x, t) + ut(x, t) ≤ L(q) for all q ∈ Rn

max
q∈Rn

{qDu(x, t)− L(q)}+ ut(x, t) ≤ 0

and finally by remembering the Legendre transform we arrive in

H(Du(x, t)) + ut(x, t) ≤ 0

For the other hand-side we need to consider the differences u(x, t)− u(y, s) with s =
t − h, y = s

t x + (1 − s
t z)

and z s.t. u(x, t) ≥ tL( x−z
t ) + g(z) x−z

t = y−z
t

u(x, t)− u(y, s) ≥ tL(
x − z

t
) + g(z)− [sL(

y − z
t

) + g(z)] = (t − s)L(
x − z

t
)

u(x, t)− u(y, s)
t − s

≥ L(
x − z

t
)

we change the y, s variables so

u(x, t)− u((1 − h
t )x + h

t z, t − h)
h

≥ L(
x − z

t
)

we add and subtract u((1 − h
t )x + h

t z, t) to form the derivative and sending h → 0+ we get

x − z
t

Du(x, t) + ut ≥ L(
x − z

t
)

and again using the Legendre transform we get the PDE
So

Du(x, t) + ut(x, t) = 0

for fixed (x, t) and using Rodemacher’s theorem we extend the differentiability of u a.e.
Reminder
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(Rodemacher) Let u be locally Lipschitz continuous in U ⊂ Rn. Then u is differentiable
almost everywhere in U

Example Αʹ.5.2. Counter Example of uniqueness

ut + |ux|2 = 0 in Rn × (0, ∞)

u = 0 in Rn × {t = 0}

This initial value problem admits more than one solution i.e.

u1(x, t) = 0

and

u2(x, t) =


0 if |x| ≥ t
x − t if 0 ≤ x ≤ t
−x − t if −t ≤ x ≤ 0

We need stronger assumptions to get uniqueness of the weak solution as the next theorem
proposes

Definition Αʹ.5.5. Semiconcavity and Uniform convexity
We define the following notions:

• Semiconcavity
A function u is called semiconcave if there exists a C ∈ R s.t.

g(x + z)− 2g(x) + g(x − z) ≤ C|z|2 for all x, z ∈ Rn

• Uniform convexity
A C2 function H : Rn → R is called uniformly convex (with constant θ ≥ 0) if

n

∑
i,j=1

Hpi ,pj(p)ξiξ j ≥ θ|ξ|2 for all p, ξ ∈ Rn

Theorem Αʹ.5.5. Uniqueness HJE
Suppose H is C2 and satisfies the assumptions made earlier along with g. If either g is

semiconcave or H is uniformly convex the u defined by the Hopf-Lax formula is the only weak
solution of the initial-value problem

Αʹ.6 Dynamic Programming Principle

Here we will derive a connection between the HJE and control problems In the rest of the
presentation we will use α for for the controls and A for the class of the admissible controls.
We define the value function as:

u(x, t) = in f
α(·)∈A

I[α(·)]

The least cost given we start at x at time t.
In essence we are embedding our given control problem into a larger class of problems.
The idea is to show that u solves a certain HJE and conversely that a solution of this PDE
helps synthesize an optimal (feedback) control.
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Theorem Αʹ.6.1. The value function u is the unique (viscosity) solution of the terminal value
problem for the Hamilton-Jacobi equation:{

ut + H(Du, x) = 0 in Rn × (0, ∞)

u = g on Rn × {t = T}
(Αʹ.6.1)

with H(p, x) = min
α∈A

{ f (x, α)p + f 0(x, α)} (p, x ∈ Rn)

Remarks. 1. If u is the (viscosity) solution of the above problem thenw(x, t) = u(x, T−
t) is the (viscosity) solution of the initial-value problem{

wt − H(Dw, x) = 0 in Rn × (0, ∞)

w = g on Rn × {t = 0}
(Αʹ.6.2)

2. H(x, p) = max
α∈A

H(x, p, α) = max
α∈A

{ f (x, α)p + f 0(x, α)}

Αʹ.6.1 Dynamic Programming Principle

Here with the DPP we use HJE to solve the control problem.

1. We solve the HJE and thereby compute the value function u.

2. We define for each point x ∈ Rn and each time 0 ≤ t ≤ T

α∗(s) = α ∈ A

α = argmax{ut(x, t) + f (x, α)Dxu(x, t) + f 0(x, α)}

3. Next(assuming α(·, t) is sufficiently regular) we solve the ODE:

ẋ∗(s) = f (x∗(s, α(x∗(s), s)) t ≤ s ≤ T

x(t) = x

and define the feedback control

α∗(s) = α(x∗(s), s)

We need also a so called verification theorem to prove that α∗(s) is indeed an optimal
control.

Theorem Αʹ.6.2. Verification Theorem
The control α∗ defined by the DPP is optimal.
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Appendix Βʹ

Stochastic Optimal Control

Βʹ.1 Introduction

We are interested in the stochastic version of the control problemwe discussed in previous
chapter and this reads as follows

Definition Βʹ.1.1. Given an SDE{
dXt = b(t, Xt, ut)dt + σ(t, Xt, ut)dWt

X0 = x ∈ Rn (Βʹ.1.1)

and a payoff functional

J[u(·)] = E
[ ∫ T

0
f (t, Xt, ut)dt + g(XT

]
(Βʹ.1.2)

we are interested in finding an optimal pair (if there is one) Xt, ut that makes the payoff
functional optimal(max, or min).

The goal is to optimize the criterion by selecting a non-anticipative decision among the
ones that satisfying all the constrains
But in this particular setting where the dynamics are described by an SDE and Xt is a stochas-
tic process (and probably ut), we need to define it properly by a probability space (Ω,F , P, {Ft}t≥0)
where we can define m-dim Brownian motion Wt.

We can make also the following remarks to motivate further definitions

• At any time we need to determine which information is available to the controller,(the
easy answer is at most Ft, he should not be able to foretell what is going to happen af-
terwards) but we will see that the “flow” of information can be subject to modification.

• The control can be either a deterministic function or a stochastic process. In the first
case the control will not be of much use because the Ito integral of a deterministic
function is a Gaussian random variable. In the second case is has to be non-anticipative
because otherwise the integral will not be well defined. This non-anticipative nature of
the control can be represented as “u(·) is Ft adapted”

Βʹ.1.1 Formulation

Definition Βʹ.1.2. The strong formulation
Let (Ω,F , P, {Ft}t≥0) be a filtered probability space satisfying standard conditions, let

W(t) be a given m-dim Brownian motion. A control u(·) is called strongly admissible (s-adm)
and (x(·), u(·)) a s-admissible pair if:
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1. u(·) ∈ U [0, T]

U [0, T] := {u : [0, T]× Ω → U|Utime invariant metric space, u(·) measurable}

2. X(·) is the unique solution of the SDE on the given probability space. (In this sense we
do not distinguish between the strong and the weak solution)

3. Xt ∈ S(t) ∀t ∈ [0, T] P-a.s. where S(t) is a set that vary along time (state constrains)

4. f (·, X(·), u(·)) ∈ 1
F (0, T; R) and g(XT) ∈ L1

FT
(Ω, R)

The set of all s-adm controls is denoted by As

Problem (Ps)

min
u(·)∈As

J(u(·)) = min
u(·)∈As

E

[ ∫ T

0
f (Xt, ut, t)dt + g(XT

]
Subject to {

dXt = b(t, Xt, ut)dt + σ(t, Xt, ut)dWt

X0 = x ∈ Rn

In certain situations it will be more convenient or necessary to vary (Ω,F , P, {Ft}t≥0)
as well as W(·) and consider them as part of the control

Definition Βʹ.1.3. Weak formulation
A 6-tuple π = (Ω,F , P, {Ft}t≥0, W(·), u(·)) is called a weakly admissible control sys-

tem and (X(·), u(·)) a w-adm pair if

1. (Ω,F , P, {Ft}t≥0) is a filtered probability space satisfying standard conditions

2. W(·) is an B.M. on the probability space

3. u(·) is Ft-adapted on (Ω,F , P) taking values in U, with U being a time invariant
metric space

4. X(·) is the unique solution of the sde on the given probability space under u(·). (In this
sense we do not distinguish between the strong and the weak solution)

5. f (·, X(·), u(·)) ∈ 1
F (0, T; R) and g(XT ∈ L1

FT
(Ω, R)

Symmetrical the set of all w-adm control systems is denoted by As

Problem (Pw)

min
u(·)∈Aw

J(u(·)) = min
u(·)∈Aw

E

[ ∫ T

0
f (Xt, ut, t)dt + g(XT

]
Subject to (1)
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Remarks. • The strong formulation stems form the practical world while weak formu-
lation sometimes serves as an auxiliary but effective model aiming at solving problems
with the strong formulation. Intuition The objective of a stochastic control problem
is to optimize the expectation of a certain random variable that depends only on the
distribution of the processes involved. Therefore if the solutions in different proba-
bility spaces have the same pdf then one has more freedom in choosing a convenient
probability space to work with.

• We shall make a distinction between the information available to the controller and the
information about the system. We denote Gt ⊂ Ft the sub-filtration of the information
available to the controller i.e. Ft is the information of the system. The idea is that only
the specific path X(·,ω) might be seen by the controller

• It was clear relatively early in the research of stochastic control systems that in the case
where we have no control over the volatility the results are parallel with those in the
deterministic case

Βʹ.2 An existence result

We will present a simplified existence proof according to Benes Benes1970. It has very
strong and restrictive assumptions that limit lot the applicability of the result but it is relatively
straightforward to follow and focuses on the important issue of the availability of information
for the controller and the system. All of our work will happen under weak formulation as we
are going to start from a general space of continuous functions and then change the probability
measure using an extension of Girsanov’s theorem to translate the canonical process of the
space i.e. the Wiener process into an equivalent that would be useful for our control problem.
Also we will depart slightly from our notation and use small letters for Stochastic processes
and to stress the dependences.

Assumptions

(A0) σ = 1 we have no control over volatility
(A1) b(y, u, t) the drift part of the SDE grows with y either slower than linearly or

linearly at a slow enough rate

|b(y, u, t)|2 ≤ k(1 + |y(t)|2a) a<1

(A2) Gt = Ft the system depends on no more than what the controller knows.

Βʹ.2.1 Construction of the state process

Let Γ be a compact metric space of control points andC = C[0, 1] the space of continuous
functions y(·) with y : [0, 1] → Rn . For 0 ≤ s ≤ t ≤ 1 we introduce a filtration St of σ-
algebras of C-subsets generated by the sets {y(s) ∈ A| A Borel, y(·) ∈ C}. This filtration
represents the knowledge of the past from 0 to t. We suppose also that the dynamics are
given by a function b : [0.1] × C × Γ → Rn satisfying usual assumptions. We introduce
an admissible control as a function u : [0, 1]× C → Γ Lebesgue for x and Gt-adapted (Gt
represents the information available to the controller, Gt ⊂ St) for t, U the set of admissible
controls.
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We assume as given a probability space (Ω,B, P) on this space is defined a n-dim Brow-
nian motion w with continuous sample paths. There is a set Ω0 ∈ B of full measure such that
w(·, ω) ∈ C for ω ∈ Ω0 and we define w(ω) = w(·, ω). So

U := {y(t1) ∈ A| A Borel, y ∈ C}, U ∈ S1

W := {ω|w(t1, ω) ∈ A, A Borel} W ∈ B

but
W ∩ Ω0 = w−1U

and so w−1S1 ⊂ B The classes Gt := w−1Gt and Ft := w−1St are filtrations and they
will provide us with a way of doing all of our work in the probability space and then return
for our controls to the space C.

In order to construct the SDE for the dynamics of the stochastic control problem, with
translation of the canonical process of (Ω,B, P) we will need the following:

Definition Βʹ.2.1. Admissible drifts
A := {g : [0, 1]× Ω → Rn|g(t, ω) = b(t, w(ω), u(t, w(ω))), u ∈ U}

Definition Βʹ.2.2. attainable densities
D := {ζ : [0, 1]× Ω → Rn|ζ(ω) = eζ(g), g ∈ A}

Admissible drifts are random processes while attainable densities are random variables

We will introduce the new measure

dP̃ = eζ(g)dP g = b(w(t), u(t, w), t) and P̃(Ω) = 1

where

ζ(g)ω =
∫ 1

0
b(w(ω), u(t, w(ω)), t)dw(t)−

∫ 1

0
|b(w(ω), u(t, w(ω)), t)|2dt

this procedure provides a solution of (1) in a sense that under P̃

w(t, ω)−
∫ t

0
b(w(ω), u(s, w(ω)), s)ds = W(t, ω) is a Wiener process

If we change name x(t, ω) to w(t, ω) we have

x(t, ω) =
∫ t

0
b(x(ω), u(s, ω), s)ds + W(t, ω)

The above result is based on:

Theorem Βʹ.2.1. Girsanov
Let ϕ be a non anticipative Brownian functional with ϕ ∈ L2 a.s. the following are equiv-

alent:

1. w(t)−
∫ t

0 ϕds is a Wiener process under dP̃ = eζ(g)dP

2. E[eζ(ϕ+θ)] = 1 ∀θ ∈ Rn



Βʹ.2. An existence result 63

Proportional to the deterministic case we will introduce the dynamic cost variable to elim-
inate the dependence of the criterion on the control.

We replace n-dim vector b by n+1-dim vector f , b and we add another 1 dim Brownian
motion w0 independent of w to get:

z = (w0, w) = (w0, w1, ..., wn), h = ( f , b)

ξh =
∫ 1

0
h(t, z)dz(t)− 1

2

∫ 1

0
|h(t, z)|2dt

then under P̃ if E[eξ ] = 1 then

z(t)−
∫ t

0
h(s, z)ds

is a n+1 dim Wiener process.
We can cover also with similar arguments the case where x(0) = a the initial data is

non-zero.
The following statement can give us a hint of how we can restate our problem in a more

friendly form.
Statement

E[
∫ 1

0
f (w(ω), u(t, w(ω), t))dteζ(b)] = E[w0(1)eξ ]

In this manner we can restate the minimization problem as:

minE[w0(1)eξ ] (Βʹ.2.1)
subject to
g(t, ω) = b(w(ω), u(t, ω), t) being an admissible drift (Βʹ.2.2)

In this form of the problem we minimize the average of the value of x0(·) at the endpoint
1, the functional eξ determines what this averaging is.

Βʹ.2.2 Optimal controls

In the deterministic control theory it was enough to assume convexity of b(t, y, Γ) (in the
case of a system ẏ = b(y, u, t)) and show that a certain function obtained as a weak limit by
a compactness argument was indeed an admissible optimal control.

In the stochastic case things are much more complicated because control can depend on
available information. We have already described the structure of the available information
by the appropriate σ-algebras, the problem is that the information (Gt) which is available to
the controller may differ from that on which the system depends(Ft). Unfortunately the only
case that can be solved by our approach is the case Gt = Ft

Leaving out technical results we will present the main propositions for the existence of
optimal control in the stochastic case.

Theorem Βʹ.2.2. The following hold for problem (B.2.1)-(B.2.2):

1. If for each t, u, b(·, t, u) is Gt-measurable and if for each t, y, b(y, t, Γ) is convex then
A is convex.

2. If Gt = St and if b(y, t, Γ) is convex for t, y ∈ [0, 1]× C then D is convex

3. If |b(y, u, t)|2 ≤ k(1 + |y(t)|2a) a<1 then D is a bounded set of L2
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The previous theorem stems directly from our assumptions
WhenD is a bounded subset of L2 the following closure and existence results are proved

in a natural way using strong and weak L2-topologies.

Theorem Βʹ.2.3. L2 ∩D is closed in L2-norm topology

Theorem Βʹ.2.4. Existence of an optimal control
If Gt = St, b(y, t, Γ) is convex and D is L2-bounded, then an optimal control exists.

Βʹ.2.3 Reachable set of stochastic control systems

Βʹ.3 Stochastic Maximum Principle

We come now to the necessary conditions for an optimal control, which collectively are
known as the stochastic maximum principle. Unlike the previous section where we limited
ourselves under strong assumptions for educational purposes and simplicity, here we will treat
a more general case applicable to a large class of problems.

We consider the stochastic control system:{
dXt = b(Xt, ut, t)dt + σ(Xt, ut, t)dWt

X0 = x ∈ Rn (Βʹ.3.1)

and cost
J[u(·)] = E

[ ∫ T

0
f (t, Xt, ut)dt + g(XT)

]
(Βʹ.3.2)

We will make the following assumptions

Assumptions

(S0) {Ft}t≤0 is the natural filtration generated by W(t) augmented by all the P-null
sets in F

(S1) (U, d) is a separable metric space and T ≤ 0

(S2) The maps b, σ, f , h are measurable, ∃L > 0 and a modulus of continuity ω̄ :
[0, ∞] → [0, ∞] such that b, σ, f , h satisfy Lipschitz type conditions

(S3) The maps b, σ, f , h are C2 and satisfy growth conditions

U [0, T] := {u : [0, T]× Ω → U|u is Ft − adapted}

Given u(·) ∈ U [0, T] the SDE (1) has random coefficients

Βʹ.3.1 Adjoint equations

In the deterministic case we had the adjoint system that described the evolution of vectors
lying in the n-dim hyperplane attached to the extended response curve. Here we will use the
same mechanism introducing a pair of stochastic processes instead.

We introduce the terminal value problem for an SDE:

dpt = −
[

bx(t, X̄t, ūt)
T pt +

m

∑
j=1

σ
j
x(t, X̄t, ūt)

Tqj
t − fx(t, x̄t, ūt)

]
dt + qtdWt (Βʹ.3.3)

pT = −hx(X̄T) (Βʹ.3.4)
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This is a Backward Stochastic Differential Equation (BSDE) of first order. Any pair
(p(·), q(·)) ∈ L2

F (0, T; Rn) × (L2
F (0, T; Rn))m satisfying the BSDE is Ft-adapted. Under

our assumptions (Adj) admits a unique solution. The existence theorem is in Appendix C.
Interpretation In the deterministic case p(·) (the adjoint variable) satisfies a Backward

ODE, that is equivalent to a forward equation if we reverse time however in the stochastic
case this cannot happen. In addition p(·) corresponds to the shadow price of the resource
represented by the state variable. On the other hand in the stochastic case the controller has to
balance carefully the scale of the control and the impact of it to the uncertainty. If a control is
going to affect the volatility of the system p(·) does not characterize completely the trade-off
between cost and control gain in an uncertain environment. Things can very quickly turn ugly
in partially observed systems, or when the whole path of the state process is not available to
the controller(Gt ⊂ Ft).

One has to introduce another variable to reflect the uncertainty or risk factor of the system.

dPt = −
[

bT
x Pt + Ptbx +

m

∑
j=1

(σ
j
x)

TPtσ
j
x

+
m

∑
j=1

(σ
j
x)

TQj
t + Qj

tσ
j
x + Hxx(t, X̄t, ū, pt, qt)

]
dt

+
m

∑
j=1

Qj
tdW j

t

(Βʹ.3.5)

PT = −hxx(X̄T) (Βʹ.3.6)

where the Hamiltonian H is defined by:

H(t, x, u, p, q) =< p, b > +tr[qTσ]− f ,
(t, x, u, p, q) ∈ [0, T]× Rn × U × Rn × Rn×m (Βʹ.3.7)

The above equation is also a BSDEof second order inmatrix form, the solution (P(·), Q(·) ∈
L2
F (0, T; Rn,n)× (L2

F (0, T; Rn,n))m and (X̄t, ūt, p(·), q(·), P(·), Q(·)) is called an optimal 6-
tuple (admissible 6-tuple)

Where Rn,n is the space of all n × n real symmetric matrices with the scalar product:
< A1, A2 >∗= tr(A1, A2)∀A1, A2 ∈ Rn,n

To get formal motivation for the first and second order adjoint processes we refer to the
original proof of the SMP by S. Peng 1990 Peng1990

The last ingredient before we state the Maximum Principle for stochastic systems is the
so-called Generalized Hamiltonian.

Definition Βʹ.3.1. Generalized Hamiltonian
Let H(x, p, u) be the classical Hamiltonian with p(·) the adjoint process satisfying the

first order (adj) we call Generalized Hamiltonian the function:

G(t, x, u, p, P) = H(x, p, u) +
1
2

tr{σ(t, x, u)TP(σ(t,x,u))} (Βʹ.3.8)

with P given by (10),(11)

The term 1
2 tr{σ(t, x, u)TP(σ(t,x,u))} reflects the risk adjustment , which must be present

when the volatility depends on the control.

Theorem Βʹ.3.1. Stochastic Maximum Principle
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We assume (S0-S3) and (X̄t, ūt) be an optimal pair then there are pairs of processes

(p(·), q(·)) ∈ L2
F (0, T; Rn)× (L2

F (0, T; Rn))m

(P(·), Q(·)) ∈ L2
F (0, T; Rn,n)× (L2

F (0, T; Rn,n))m (Βʹ.3.9)

as defined before, satisfying the first and second order adjoint equations such that the varia-
tional inequality:

H(t, X̄t, ūt, pt, qt)− H(t, X̄t, ut, pt, qt)

− 1
2

tr{[σ(t, X̄, ū)− σ(t, X̄, u)]TPt[σ(t, X̄, ū)− σ(t, X̄, u)]} ≥ 0
(Βʹ.3.10)

holds

Βʹ.4 Dynamic Programming

With the dynamic programming principle we are trying to solve our stochastic control
problem by embedding our problem into a larger class of problems which we solve collec-
tively. We are going to define the value function of the control problem and with it form a
second order nonlinear PDE the famous Hamilton-Jacobi-Bellman equation. Under assump-
tions the solution of the PDE problem helps us synthesize an optimal control in feedback
form.

Βʹ.4.1 Principle of optimality

Introduction

We are going to make the same assumptions as in section 3 with the addition that the U is
complete and the functions involved to be continuous in (t,x,u). We are going to refer to them
as (S1’-S3’) for the needs of this section. Also we are going to use the weak formulation

As in the deterministic case we are going to define the value function as:
V(t, x) = in f

u(·)∈Uw[t,T]
J(t, x; u(·)) ∀(t, x) ∈ [0, T]× Rn

V(T, x) = g(x) ∀x ∈ Rn
(Βʹ.4.1)

Remarks. 1. V(t, x) exhibits continuous dependence on the parameters under proper
conditions. Such dependence will be useful for approximations in cases of degener-
ate parabolic problems.

2. If we assume the the function g on the boundary, along with f are semiconcave they
“push” V(t, x) to be semiconcave.

Dynamic Programming Equation

We will state the Bellman’s principle of dynamic programming. We begin from:

V(t, x) = in f
u(·)∈Uw[t,T]

E
[ ∫ t+h

t
f (s, x(s, u(s)), u(s))ds + V(t + h, x(t + h))|Ft

]
for t ≤ t + h ≤ T

(Βʹ.4.2)
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which is simply the sum of the running cost on [t, t + h] and the minimum expected cost
obtained by proceeding optimally on [t + h, T] with (t + h, x(t + h)) as initial data.

Also the Legendre transform of f gives:

H(t, x, p) = sup
u(·)∈U

[< b, p > − f ] (Βʹ.4.3)

With these remarks in mind we can prove the following theorem:

Theorem Βʹ.4.1. Hamilton-Jacobi-Bellman Equation
Assume (S1’)-(S3’) andV ∈ C1,2([0, T]×Rn). ThenV is a solution of the terminal value

problem of a (possibly degenerate) second-order partial differential equation:− Vt + sup
u∈U

G(t, x,−Vx,−Vxx) = 0 (t, x) ∈ [0, T]× Rn

u|t=T = g(x) x ∈ Rn
(Βʹ.4.4)

where G(t, x, p, P) is the Generalized Hamiltonian defined in the previous section.

Optimal control in feedback form

Here with the DPP we use HJB to solve the control problem.

1. We solve the HJB and thereby compute the value function V.

2. We define for each point x ∈ Rn and each time 0 ≤ t ≤ T

u∗(s) = u ∈ Uw

u = argmax{−Vt(x, t) + G(t, x,−Vx,−Vxx)}

3. Next(assuming u(·, t) is sufficiently regular) we ’solve’ the SDE:

dX∗
s = b(X∗(s, u(X∗

s , s)) + σ(X∗(s, u(X∗
s , s) t ≤ s ≤ T

xt = x

and define the feedback control

u∗
s = u(x∗s , s)

Alternative

If we let Vs(t, x) = in f
u(·)∈U s

J(u(x); π) then Vs = W a natural way to proceed is to select

a Markov control ū s.t. for each (t, x) in the corresponding sets.
ū(x, t) ∈ argmax{−Vt(x, t) + G(t, x,−Vx,−Vxx) if ū together with any initial data

determine a process x̄(s) that satisfy (1) then

ū(s) = ū(x̄(s), s)

Once the corresponding control system π̄ is verified to be admissible, is also optimal.
The main difficulty is to show existence of π̄ with the required property.
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Βʹ.4.2 The verification theorem

Solving an optimal control requires finding an optimal control and the corresponding
state trajectory. The main motivation of introducing dynamic programming is that one might
be able to construct an optimal control in feedback form via the value function.

Connection between SMP and DP

In the case where V(x, t) is sufficiently smooth.

TheoremΒʹ.4.2. Let (S0’-S2’) hold and (x, s) ∈ [0, T)×Rn be fixed, (x̄(·), ū(·), p(·), q(·))
be an optimal 4-tuple for Ps and the value function V ∈ C1,2([0, T])× Rn then

Vt(t, X̄t) = G
(
t, X̄t, ūt,−Vx(t, X̄t),−Vxx(t, X̄(t))

)
= max

u∈U
{G

(
t, X̄t, ut,−Vx(t, X̄t),−Vxx(t, X̄t)

)
}

a.e. t ∈ [s, T], P-a.s.

(Βʹ.4.5)

Furthermore if V ∈ C1,3([0, T]× Rn and Vtx is also continuous then{
Vx(t, X̄t) = −pt, ∀t ∈ [s, T] P-a.s.
Vxx = (t, X̄t)σ(t, X̄t, ūt) = −qt ∀t ∈ [s, T] P-a.s.

(Βʹ.4.6)

Corollary
Along the optimal trajectory x̄(t) the map

t → V(t, x̄t) +
∫ t

s
f (r, x̄r, ūr)dr

is a martingale
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Appendix Γʹ

Backward Stochastic Differential
Equations

Γʹ.1 Introduction

In the classical stochastic analysis we are interested in modelling the dynamics of a phe-
nomena that is evolving in time and is subject to random perturbations. This gave birth to the
classical SDEs which represent the dynamics as a sum of the deterministic part called drift
term and the random part called diffusion term.

dXt = b(t, Xt)dt︸ ︷︷ ︸
drift

+ σ(t, Xt)dWt︸ ︷︷ ︸
diffusion

Usually we start the system from a specific point X0 = x and we allow the time to move
forward. However, here we are interested in asking the opposite question i.e. How can we
describe the dynamics if we start from a given point and start moving backwards in time?

A crucial point is the availability of information. In the ODE and PDE world it is very
easy to answer the above question we can make the transformation t → T − t and we have
reversed the time (we can move across a smooth, or not so smooth curve in one direction or
in the opposite without any problem). On the other hand in the SDE world when the SDEs are
in Ito sense we demand the solutions to be adapted to some filtration generated by the driving
process of the SDE and so if we just reverse time we would destroy the adaptability of the
process. To elaborate more on the concept of adaptability we will use an example taken from
Yong and Zhou ”Stochastic Controls” YZ1999.

Γʹ.1.1 An illustrative example

To begin with we assume (Ω,F , {Ft}t≥0, P) to be a standard filtered probability space
on which we can defined an m-dim Brownian Motion Wt such that {Ft}t≥0 is generated by
W augmented with all the P-null sets in F . We will keep this setting for the rest of the notes
but for the sake of our example we will assume that m = 1.

Consider the following terminal value problem of the SDE:{
dYt = 0, t ∈ [0, T]
YT = ξ

(Γʹ.1.1)

Where ξ is an L2 random variable with values in R and FT measurable, T > 0 given
(we will also keep the assumption that the terminal time T is deterministic and known a priori
for the rest of the notes). We want to find an {Ft}t≥0-adapted solution Y(·). However, this is
impossible since the only solution of (1) is
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Yt = ξ ∀t ∈ [0, T] (Γʹ.1.2)

Which is not necessarily adapted, the only option isξ to be F0 measurable and finally a
constant. Thus if we expect any {Ft}t≥0-adapted solution, we have to reformulate (C.1.1),
keeping in mind that new formulation should coincide with (C.1.2) in the case ξ is a non-
random constant.

We start with (C.2.2). A natural way to to make Y(·) adapted is to redefine it as:

Yt = E[ξ|Ft], t ∈ [0, T] (Γʹ.1.3)

Then Y(·) is adapted and satisfies the terminal condition YT since ξ is FT measurable, but no
longer satisfies (C.1.1). So the next step is to find a new equation to describeY(·) and this will
come from the martingale representation theorem since Yt = E[ξ|Ft] is a martingale. So the
theorem states that:

Theorem Γʹ.1.1. Under the above setting the {Ft}t≥0-martingale Y can be written as:

Yt = Y0 +
∫ t

0
ZsdWs ∀t ∈ [0, T], P − a.s. (Γʹ.1.4)

where Z(·) is a predictable, W-integrable process.

Then

ξ = Y0 +
∫ T

0
ZsdWs (Γʹ.1.5)

and eliminating Y0 from (C.1.4) and (C.1.5) we get

Yt − ξ =
∫ t

0
ZsdWs −

∫ T

0
ZsdWs

Yt = ξ −
∫ T

t
ZsdWs (Γʹ.1.6)

This is the so called BSDE. The process Z(·)is not a priori known and is a part of the
solution. As a matter of fact the term ZtdWt accounts for the non-adaptiveness of the original
Yt = ξ. And the pair (Y(·), Z(·)) is called an {Ft}t≥0-adapted solution.

Also in this particular example the solution is unique. (The proof is rather straightforward
we apply Ito’s formula to |Yt|2 take expectations, then assume a second pair satisfies (C.1.6)
and we have to show that P{Yt = Y′

t , ∀t ∈ [0, T] andZ(t) = Z′
t a.e. t ∈ [0, T]} = 1 )

Γʹ.2 Linear and nonlinear BSDEs

Here we will state an existence theorem for the general linear case and for the nonlinear
case with a Lipschitz condition. To save some time and space with notation, we introduce the
following definition:

Definition Γʹ.2.1. L2
F (Ω; C([0, T]); Rk):= The set of all L2, {Ft}t≥0-adapted processes

with continuous paths
In the rest when we use the subscript F we mean {Ft}t≥0-adapted and when we use FT we
mean only FT-measurable

For the general linear case we study the problem:
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The general linear problem In k dimensions


dYt = {A(t)Yt +

m

∑
j=1

Bj(t)Zj
t + f (t)}dt + ZtdWt, t ∈ [0, T]

YT = ξ

(Γʹ.2.1)

where A(·), B1(·), ..., Bm(·) : [0, T] → Rk×k bounded, {Ft}t≥0-adapted processes,
and f ∈ L2

F ([0, T]; Rk), ξ ∈ L2
FT
(Ω, Rk)(ξ is only FT-measurable by our notation)

Theorem Γʹ.2.1. Existence
Let A(·), B1(·), ..., Bm(·) ∈ L∞

F ([0, T]; Rk×k) Then for any f ∈ L2
F ([0, T]; Rk) and

ξ ∈ L2
FT
(Ω, Rk), the BSDE (C.2.1) admits a unique adapted solution (Y(·), Z(·)) ∈

L2
F (Ω; C([0, T]); Rk)× L2

F ([0, T]; Rk×m)

Proof
.........

The general nonlinear problem{
dYt = h(t, Yt, Ztdt + ZtdWt, t ∈ [0, T] a.s.
YT = ξ

(Γʹ.2.2)

Where h : [0, T]× Rk × Rk×m × Ω → Rk and ξ ∈ L2
FT
(Ω, Rk)

Theorem Γʹ.2.2. Existence
If for any (y, z) ∈ Rk ×Rk×m and h(t, y, z) {Ft}t≥0-adaptedwith h(·, 0, 0) ∈ L2

F ([0, T]; Rk)
there exists a L > 0 such that:

|h(t, y, z)− h(t, ȳ, z̄| ≤ L{|y − ȳ|+ |z − z̄|}
∀t ∈ [0, T], y, ȳ ∈ Rk, z, z̄ ∈ Rk×ma.s.

(Γʹ.2.3)

Then the BSDE (C.2.2) admits a unique adapted solution
(Y(·), Z(·)) ∈ L2

F (Ω; C([0, T]); Rk)× L2
F ([0, T]; Rk×m)

Γʹ.2.1 The Stochastic Maximum Principle and Duality of BSDEs and SDEs

Here we will try to motivate a connection of SDEs and BSDEs as it appeared in the proof
of the SMP.

For starters assume we have the following stochastic control problem.

Problem
min

u(·)∈Aadm
J(u(·)) = min

u(·)∈Aadm
E
[ ∫ T

0
f (Xt, ut, t)dt + g(XT)

]
(Γʹ.2.4)

Subject to {
dXt = b(Xt, ut, t)dt + σ(Xt, t)dWt

X0 = x ∈ Rn (Γʹ.2.5)

First, we assume (Y(·), u(·)) to be an optimal pair, then we introduce the so called spike
variation of the control uϵ

(·) and Yϵ
(·) the corresponding trajectory.
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uϵ
t =

{
v if t ∈ [τ, τ + ϵ]

ut otherwise
(Γʹ.2.6)

Then with a little bit of effort we can get an estimate for ∆Yτ := Yτ −Yϵ
τ and get the first

order variational equation:
dY1

t ={bx(Yt, ut)Y1
t + (b(Yt, uϵ

t )− b(Yt, ut)}dt

+ {σx(Yt, ut)Y1
t )}dWt

Y1
0 = 0

(Γʹ.2.7)

using (C.2.4) we can get an estimate of the criterion using uϵ
(·)

J(uϵ
(·)) =E[

∫ T

0
fx(Ys, us)Y1

s ds] + E[gx(YT)]Y1
T

+ E[
∫ T

0
f (Ys, uϵ

s )− f (Ys, us)ds] + o(ϵ)
(Γʹ.2.8)

we will use Riesz Representation theorem to exploit (C.2.8):

Reminder

Theorem. Riesz Representation Theorem
Let H be a Hilbert space, and let H* denote its dual space, consisting of all continuous

linear functionals from H into the field R or C . If x is an element of H, then the function φx,
for all y in H defined by:

φx(y) = 〈y, x〉

where 〈·, ·〉 denotes the inner product of the Hilbert space, is an element of H*.

Here we will work with the functional:

I(ϕ(·)) = E[
∫ T

0
fx(Ys, us)y1

s ds] + E[gx(YT)]Y1
T

and ϕt is (b(Yt, uϵ
t )− b(Yt, ut) for notational economy. And so (since I(·) is linear con-

tinuous)
from Riesz there a unique p(·) ∈ L2

F ([0, T]; Rk) such that:

I(ϕ(·)) = E

∫ T

0
〈pt, ϕt〉dt

E[
∫ T

0
fx(Ys, us)Y1

s )ds] + E[gx(YT)]Y1
T) = E

∫ T

0
〈ps, (b(Yt, uϵ

t )− b(Yt, ut)〉ds (Γʹ.2.9)

and by defining the Hamiltonian:

H(x, u, p) = f (x, u) + 〈p, b(t, x, u)〉 (Γʹ.2.10)

we can get from (C.2.9):
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E

∫ T

0
〈pt, (b(Yt, uϵ

t )〉+ f (Yt, ut)− 〈pt, (b(Yt, ut) > − f (Yt, ut)dt

= E

∫ T

0
H(Yt, uϵ

t , pt)− H(Yt, ut, pt)dt (Γʹ.2.11)

Finally:

H(Yτ, v, pτ)− H(Yτ, uτ, pτ) ≥ 0
∀v ∈ A a.e. P-a.s.

(Γʹ.2.12)

This proof even though it is simple and parallel to the deterministic case can give us the
important hint about how to transform the criterion and form a BSDE from it.

Now we can come back to our linear BSDE
dYt = {A(t)Yt +

m

∑
j=1

Bj(t)Zj
t + f (t)}dt + ZtdWt, t ∈ [0, T]

YT = ξ

(Γʹ.2.13)

and show how (C.2.13) is dual to an SDE similar to (C.2.5) in theHilbert space L2
F (Ω; C([0, T]); Rk)×

L2
F ([0, T]; Rk×m) using Riesz Representation Theorem

I(ϕ, ψ) := E
[ ∫ T

0
〈Xt,− f (t)〉dt + 〈XT, ξ〉

]
∀(ϕ, ψ) ∈ L2

F (Ω; C([0, T]); Rk)× L2
F ([0, T]; Rk×m)

(Γʹ.2.14)

where X(·) is the solution of the SDE:
dXt = (−A(t)TXt + ϕt)dt +

m

∑
j=1

(−Bj(t)TXt + ψt)dWt

X0 = 0

(Γʹ.2.15)

I(·, ·) is linear bounded, hence byRiesz there is a unique (Ȳ, Z̄) ∈ L2
F (Ω; C([0, T]); Rk)×

L2
F ([0, T]; Rk×m) such that

I(ϕ, ψ) = E

∫ T

0
{〈ϕ(t), Ȳt〉+ 〈ψ(t), Z̄t〉}dt (Γʹ.2.16)

On the other hand, if (Y(·), Z(·)) is the solution of the BSDE (C.2.13), then by applying
Ito’s formula to Xt · Yt and assuming the local martingale part of it is a true martingale we
can derive that (C.2.16) holds with (Ȳ(·), Z̄(·)) replaced by (Y(·), Z(·)). Due to the uniqueness
of the Riesz representation (Ȳ(·), Z̄(·)) = (Y(·), Z(·)).

Remark
The SDE for Xt appears in the proof of the SMP with control over volatility as the variational
equation (in our case (C.2.5)) and the corresponding first order adjoint process reads as the
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following BSDE.

− dpt = Hx(Xs, ut, pt, qt)ds + qtdWt

pT = gx(XT)
(Γʹ.2.17)

Γʹ.3 Systems of coupled Forward and Backward SDEs

In the stochastic optimal control problems, the stochastic Hamiltonian system as intro-
duced in the relative chapter is a system of coupled forward and backward SDEs (FBSDE)
where the forward component X(·) (state process) and the backward components (p(·), q(·))
(first-order adjoint process, shadow price) and (P(·), Q(·)) (second order adjoint process, risk
sensitivity) are coupled through the maximum condition.

So here we are interested in studying those systems and more specifically the case where
the SDE is n-dim and the BSDE is 1-dim where we can prove existence and uniqueness for
a fairly general system. In general coupled FBSDE are not necessarily solvable and there are
very few classes of certainly solvable systems.

First, followingYZ1999 orMPJ1994 orDelarue2002wewill introduce a heuristic deriva-
tion for the (n,1)-dim system and then state the existence and uniqueness theorem. We con-
sider: 

dXt = b(t, Xt, Yt, Zt)dt + σ(t, Xt, Yt, Zt)dWt

dYt = h(t, Xt, Yt, Zt)dt + ZtdWt

X0 = x ∈ Rn

YT = g(XT)

(Γʹ.3.1)

Suppose (Xt, Yt, Zt) is an adapted solution of (23) and Y,X are related by:

Yt = θ(t, Xt), ∀t ∈ [0, T], P − a.s.

where θ is deterministic and belongs to C1,2. Then by Ito’s formula we have:

dYt = dθ(t, Xt) ={θt(t, Xt) + θx(t, Xt)b
(
t, Xt, θ(t, Xt), Zt

)
+

1
2

tr
[

θxx(t, Xt)σσT(t, Xt, θ(t, Xt), Zt
)]
}dt

+ {θx(t, Xt)σ(t, Xt, θ(t, Xt), Zt)}dWt

(Γʹ.3.2)

by comparing (24) with (23) we get:h(t, Xt, θ(t, Xt) = θt(t, Xt) + θx(t, Xt)b
(
t, Xt, θ(t, Xt), Zt

)
+

1
2

tr
[

θxx(t, Xt)σσT(t, Xt, θ(t, Xt), Zt
)]

θ(T, XT) = g(XT)
(Γʹ.3.3)

θx(t, Xt)σ(t, Xt, θ(t, Xt), Zt) = Zt (Γʹ.3.4)

The above argument suggests that we design the following four-step scheme:

Step 1 Find z(t, x, y, p) satisfying the following:

z(t, x, y, p) = pσ(t, x, y, z(t, x, y, z(t, x, y, p))

∀(t, x, y, p) ∈ [0, T]× Rn × R × R1×n (Γʹ.3.5)
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Step 2 Use z obtained above to solve the parabolic problem for θ(t, x):

θt(t, x) + θx(t, x)b
(
t, x, θ(t, x), z(t, x, y, p)

)
+

1
2

tr
[

θxx(t, x)σσT(t, X, θ(t, x), z(t, x, y, p)
)]

− h(t, X, θ(t, x), z(t, x, y, p)) = 0 (t, x) ∈ [0, T]× Rn

θ(T, x) = g(x) x ∈ Rn

(Γʹ.3.6)

Step 3 Solve the SDE{
dXt = b

(
t, Xt, θ(t, Xt), z(t, Xt, Yt, pt)

)
dt + σ

(
t, Xt, θ(t, Xt), z(t, Xt, Yt, pt)

)
dWt

X0 = x
(Γʹ.3.7)

Step 4 Set {
Yt := θ(t, Xt)

Zt := z(t, Xt, θ(t, Xt), θx(t, Xt))
(Γʹ.3.8)

And this way the triple (Xt, Yt, Zt) will provide an adapted solution to (23)

Γʹ.3.1 Implementation of the scheme

The main challenge to implement the above scheme is the solution of the boundary value
problem (28). For this we are going to use the results from the thoery of quasi linear parabolic
equations and systems for the general case (where the BSDE is k dim, and the SDE n). We
refer to the original work of Ladynzhenskaya Solonnikov and Ural’tseva 1968 LSU1968 and
Edmunds and Peletier 1971 EP1971 for a review. Ma et al. 1994 MPJ1994 were first to
discuss the 4-step scheme and use the PDE approach to solve it for local times and Delarue
2002 Delarue2002 extended their result.

The method to use the scheme in practice, in case the PDE (28) cannot be solved explicitly
(which is the most probable scenario) is:

1. Prove existence and uniqueness of (28)

2. Solve (28) numerically

3. Use a numerical scheme for the SDE (29)

4. Set Yt, Zt according to (30)

For the sake of illustration we will give examples in the next section for the scheme’s
Implementation

Existence and uniqueness of Quasi Linear Parabolic PDEs

Wewill now discuss briefly the existence and uniqueness result for (28) without too much
involvement with the PDE theory.

The solvability of the boundary value problem is proved on the basis of the Leray-Schauder
theorem and a priori estimates of the norms in the spaces involved in the general case in the
original work form Ladynzhenskaya Solonnikov and Ural’tseva (1968). We will state the the-
orem as a lemma and use it to provide existence
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Now we have to make some assumptions to gain our result.

needs revision!!!!!!!

Assumptions

1. m = n for (23) and b, σ, h, g are smooth with uniformly bounded first-order
derivative taking values in Rn, Rn×n, R, R respectively

2. The map z → −|σ(t, x, y, z)T|−1z is uniformly monotone.

From step 1 we get

z = σ(t, x, y, z)T p

which used in step 2 yields

Γʹ.4 Examples

Γʹ.4.1 Application to Option pricing and alternative proof of the Black-Scholes
formula

Here we will apply the theory that was developed in the previous sections in pricing a
European option. What follows is rather classical for the mathematical finance literature and
can be found in several textbooks, we will follow El Karoui et al. (1997) EKPQ1997 and
the book YZ1999. We will mainly focus on the BSDEs and the mathematics rather than the
finance theory with market’s completeness etc for the rigorous formal approach we refer to
EKPQ1997

We will study a complete market we two assets one riskless Bt called bond and and one
risky asset St called stock. Also we will assume an investor who has a total wealth Yt and
invests πt in the risky asset. The dynamics are described by:{

dBt = rtBtdt t ∈ [0, T]
B0 = b0 ∈ R

(Γʹ.4.1)

{
dSt = µ(t)Stdt + σ(t)StdWt t ∈ [0, T]
S0 = x0 ∈ R+ (Γʹ.4.2)

{
dYt = NS(t)dSt + NB(t)dBt

Y0 = y0 ∈ R
(Γʹ.4.3)

We need to make some remarks here:

• We assume the same probability space as it was introduced in the introduction

• (31) is anODEwhile (32) is the familiar Geometric B.M. and (33) gives us the evolution
of the wealth process NS(t) the number of shares of the stock and NB(t) the number
of shares of the bond

• rt, µ(t), σ(t) are predictable bounded processes for the sake of simplicity.

• πt = NS(t)St and Y(t)− πt = NB(t)Bt
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• We have control over the number of shares for both of them but because we can express
the wealth process as a function of πt and we assume no risk preference we will use as
control variable π(·), we can always translate our strategy in terms of NS, NB.

We further manipulate (33) and get:

dYt =
π(t)

St
dSt + rt(Yt − πt)dt

dYt = {rtYt + [µ(t)− rt]πt}dt + σ(t)πtdWt (Γʹ.4.4)

Suppose now that the investor wants to sell a European option, the payoff of this option
at maturity T is ξ ∈ L2. The aim of the investor is to define the minimum initial amount of
capital y0 such that he can cover the payoff ξ at time T.

So this is a BSDE problem and we can use the 4-stem scheme from section 3 to solve it.
The FBSDE system reads as follows for Zt = πtσ(t)

dSt = µ(t)Stdt + σ(t)StdWt t ∈ [0, T]

dYt = {rtYt + [µ(t)− rt]
Zt

σ(t)
}dt + ZtdWt

YT = ξ

S0 = x0

(Γʹ.4.5)

In this particular case the FBSDE is decoupled since dS(t) involves no Y(t) and dY(t)
involves no S(t)

Step 1 Set
z(t, s, y, p) = σ(t)xp, (t, s, y, p) ∈ [0, T]× R3

Step 2 Solve the PDEθt +
σ(t)2s2

2
θss + r(t)sθs − r(t)θ = 0 (t, s) ∈ [0, T]× R

θ|t=T = ξ

(Γʹ.4.6)

Step 3 Solve the SDE {
dSt = µ(t)Stdt + σ(t)StdWt t ∈ [0, T]
S0 = x0

Step 4 Set {
Yt = θ(t, St)

Zt = σ(t)Stθs(t, St)
(Γʹ.4.7)

Then the option price, at t=0 will be given by

Y0 = y0 = θ(0, s)

An alternative proof of the Black Scholes formula

To illustrate more on (35),(36) suppose we have a put option so YT = (K − ST)
+ and

rt = r, µ(t) = µ, σ(t) = σ are positive constants. Then (36) is the classical Black-Scholes
PDE
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θt +
σ2s2

2
θss + rsθs − rθ = 0 (t, s) ∈ [0, T]× R

θ|t=T = (K − s)+

and at s = 0 we have {
θt − rθ = 0
θ|t=T = K

and so θ(t, 0) = Ker(t−T). Therefore θ(t, s) for s > 0(as stock prices can never be zero)
solves: 

θt +
σ2s2

2
θss + rsθs − rθ = 0 (t, s) ∈ [0, T]× (0, ∞)

θ|s=0 = Ker(t−T) t ∈ [0, T]
θ|t=T = (K − s)+ s ∈ (0, ∞)

(Γʹ.4.8)

To solve (38) we can consider the successive changes of variables:

• First the state x = lns and ϕ(t, x) = θ(t, es) satisfiesϕt +
σ2

2
ϕxx + (r − σ2

2
)ϕx − rϕ = 0 (t, x) ∈ [0, T]× R

ϕ|t=T = (K − ex)+ x ∈ R

(Γʹ.4.9)

• Then time τ = γt and ψ(τ, x) = e−
ατ
γ −βxϕ( τ

γ , x) with

α = r +
1

2σ2 (r −
σ2

2
)2

β = − 1
σ2 (r −

σ2

2
)

γ =
σ2

2

then ψ(τ, x) satisfies {
ψτ + ψxx = 0 (τ, x) ∈ [0, γT]× R

ψ|τ = e−
αT
γ −βx(K − ex)+ x ∈ R

(Γʹ.4.10)

Nowwe have transform (38) into (40), a simple heat equation which can be solved explic-
itly by common techniques (separation of variables etc) which in the end yields the familiar
formula: 

θ(t, s) = Ke−r(t−T)N(−d2)− N(−d1)St

d1 =
1

σ
√

T − t
[ln(

St

K
) + (r +

σ2

2
)(T − t)]

d2 = d1 − σ
√

T − t

N(x) =
1√
2π

∫ x

−∞
e−

z2
2 dz

(Γʹ.4.11)
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Γʹ.4.2 A linear case of FBSDE

Here we will study a linear one dimensional FBSDE to elaborate more on the 4 step
scheme. The particular example is only pedagogical with no interpretation in finance or
physics. We consider

dX(t) = {X(t) + Y(t)}dt + {X(t) + Y(t)}dW(t)
dY(t) = {X(t) + Y(t)}dt + Z(t)dW(t)
X(0) = x0 ∈ R

Y(T) = g(X(T)

(Γʹ.4.12)

We will think about the terminal condition later to ensure the wellposedness of the prob-
lem. We apply the 4 step scheme.

Step 1
z(t, x, y, p) = p(x + y) (t, x, y, p) ∈ [0, T]× R × R × R

Step 2 We will solveθt +
1
2
(x + θ)2θxx + (x + θ)θx + (x + θ) (t, x) ∈ [0, T]× R

θ(T, x) = g(x) ∈ R
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