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about ship design… 

 

 

This is how you are to make it: the length of the ark three hundred cubits, its width fifty cubits, 

and its height thirty cubits. Make a roof for the ark, and finish it to a cubit above; and put the 

door of the ark in its side; make it with lower, second, and third decks.  

 

-- Genesis 6:15-6:16 
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ABSTRACT 

 

Numerical Simulation of Large Amplitude Ship Motions and 

Applications to Ship Design and Safe Operation 

 

by 

Shukui Liu 

 

In this thesis, a time domain hybrid method is developed to study the seakeeping behavior of 

ships and floating structures in waves (at zero and nonzero forward speed). The thesis deals with 

three different basic solution approaches to the set problem, namely, a time domain transient 

Green function solver and alternatively a time domain hybrid solver for zero speed problems, 

whereas the time domain hybrid solver has been adopted for the nonzero forward speed 

seakeeping problem. Basic constituents of all above approaches are the developed time domain 

transient Green function method, the time domain hybrid method plus a motion simulation 

model, which is capable of simulating both small and large amplitude motions of ships and 

floating structures.  

For the time domain transient Green function method, the constant panel method is used to find 

a numerical solution to the set Boundary value Problem of potential theory. It is validated by 

numerous examples of submerged bodies and floating bodies, either without or with forward 

speed. Obtained results include added mass and damping coefficients, diffraction force 

amplitudes, wave making resistance (steady problem), drift forces and added resistance.  

For the numerical implementation of the time domain hybrid method, the GMRES solver is used 

to solve the resulting set equations, while two different motion models are integrated. For the 

zero speed case, the validation cases cover both simple, mathematical geometries and practical 

ship hulls. Obtained numerical results show that the method is robust and of satisfactory 

accuracy. For the nonzero speed case, the Chimera grid concept is introduced to increase the 

accuracy and efficiency. Whereas all above theoretical approaches have been formulated and 

solved in an earthbound system, an alternative approach that is based on a body fixed coordinate 

system has been also investigated, exhibiting higher computational efficiency with a reduced 

number panel. Validation results include the wave making resistance (steady problem), small 

amplitude ship motions, large amplitude ship motions and added resistance of ships in waves.  



iv 

It is proved in this thesis that by properly selecting a solver, the developed package of methods 

is capable of simulating large amplitude motions of ships or floating structures in waves and it 

can serve as an advanced tool for the assessment of ship design and ship operation. 
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Chapter 1 Introduction 

1.1 Review of the State-of-Art  

The reliable prediction of the seakeeping behavior of ships in real seas is a demanding task for 

naval architects and of great practical interest to ship owners/users, as it affects both the design 

and operation of ships.  

Nowadays, Computational Fluid Dynamics (CFD) products based on solving Reynolds-

Averaged-Navier-Stokes (RANS) equations have demonstrated their capabilities in almost every 

aspect of ship hydrodynamic problems, but they are still very time-consuming and even with the 

most advanced computational power they are still not able to conduct seakeeping assessments 

with proper accuracy and within desirable time. Thus the development of alternative methods 

based on potential theory is still attractive and necessary as they are much more efficient to 

implement.  

Since the early 50ties, many hydrodynamicists addressed the problem of a surface ship sailing in 

waves by approximate analytical and simplified or more advanced numerical methods in the 

framework of linear ship motion theories. The strip theory was the first one which delivered 

accurate enough results for practical applications to ship motions‟ prediction and enjoy a wide 

application even today.  Grim (1953) and Korvin-Kroukovsky (1955) did the pioneering work 

on strip theory, whereas Gerritsma & Beukelman (1967) and Salvesen et al. (1970) further 

improved this theory for practical applications.  But due to some inherent limitations of strip 

theory (linearity of responses, quasi 2D approach, slender body, low speed and high frequency 

assumptions), its application is confined to a certain extent. Note, however, that an exact 2D 

second-order theory for the loads and motion responses of arbitrarily shaped 2D sectional forms 

was presented by Papanikolaou in the late 70ties (1977, 1980). 

With the rapid advance of computer technology in the 70ties, various frequency domain 3D 

approaches were successfully developed for the zero speed problems (Faltinsen et al., 1975; 

Chang et al., 1976; Garrison, 1978; Papanikolaou, 1985). Zaraphonitis (1990) solved the exact 

second-order problem of loads and motions of arbitrarily 3D bodies at zero speed in waves. For 

the nonzero speed 3D problem, Chang (1977) was the first to present a numerical solution on the 

basis of the Green function method, while Inglis & Price (1981) and Guevel & Bougis (1982) 

later followed further improving relevant theory for practical applications. Although results of 

these theories appear closer to relevant experimental data, some intricate numerical problems 

related to the significantly more complex corresponding Green function and the treatment of the 

singularity at the intersection of the body boundary and the free-surface hindered their wide 
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application. Iwashita & Ohkusu (1992) appear to have developed a satisfactory numerical 

solution to the 3D, nonzero speed problem based on the Green function method.  

Another approach is the so-called Rankine source method (Yeung, 1973), which use a 

distribution of simple 1/r term over the body surface as well as on a carefully-chosen part of the 

free surface. Many researchers, including Bertram (1990), Nakos & Sclavounos (1990), further 

developed this method to practical utility. The results show improvement over results from strip 

theory based methods due to taking into account of 3D flow effect and forward speed effect. But 

still they cannot be applied to study large amplitude motions of modern ships with strong flare 

due to their inherent linear character. Kashiwagi (1997, 2009) presented an Enhanced Unified 

Theory and showed good improvement by accounting the forward speed effect properly.  

An alternative to the formulation and solution of the problem in the frequency domain is to work 

in the time domain, enabling the address of large amplitude ship motion problems which is very 

important for the design and the assessment of safe operation of modern ships operating in a 

variety of adverse environmental conditions. Following the pioneering work of Finkelstein 

(1957) and Cummins (1960), many researchers investigated seakeeping problems by different 

time domain approaches and showed promising results for both the linear problem and nonlinear 

problems of different level. Beck & Liapis (1987) and Korsmeyer (1988) investigated the 

linearized radiation problem at zero speed, while King et al. (1988) studied the linearized 

diffraction problem with forward speed. Beck & Magee (1990) and Ferrant (1990) presented 

convincing results on submerged bodies undergoing large-amplitude motions, while Lin & Yue 

(1990), Lin et al. (1994) and Shin et al. (1997) showed the applicability of the method to large 

amplitude ship motions. The time dependent change of ship‟s wetted surface and of ship‟s hull 

displacement due to the incident waves and ship motions could be modeled accurately. But this 

method proved not satisfactory in some practical cases. When it was applied to floating bodies 

with a flare of their sections at the waterline, which is very common to modern ship designs, 

numerical problems may arise and computations fail. Duan and Dai (1999) found that the 

common panel method using transient Green function for a non-wall-sided floating body does 

not satisfy the mean-value theorem of definite integrals for the near water surface panels. More 

recently Duan and Dai (2007) presented their study on an improved scheme for integration of 

the Green function, which shows that by their method the highly oscillatory performance of the 

Green function can be reduced. Further validation of this scheme is not available yet.  

In addition to these alternative time domain Green function methods, the Rankine source 

methods have also been implemented in time domain. Sclavounos, et al. (1997) and Song, et al. 

(2011) developed different approaches, which showed very promising results. The difficulties of 

this method lies in the treatment of the radiation condition in the far-field, which is sometimes 
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approximated by some „damping beach scheme‟ at certain distance from the body; one 

fundamental problem with this is that for the irregular seas case its application is very 

questionable. In all these approaches, the discretized free surface area is quite large so that a 

large number of panels are needed; thus, it is not easy to implement numerically.  

In view of the pros and cons of these two schools of methods, a new hybrid method concept has 

been formulated. The fluid domain is decomposed into an inner and an outer part. The Rankine 

source method is applied in the inner domain to find the dominant equation so that there should 

be not any problem with body‟s flare, while the transient Green function method is used in the 

outer domain to obtain a relationship between the velocity potential and its normal derivative on 

each panel, which forms a boundary condition for the inner domain solution. Duan et al. (1999) 

introduced an imaginary vertical surface which starts from the waterplane, projects downwards 

and encloses the hull surface in the fluid domain. This method works fine unless the body has 

some bulb- like hull form which exceeds the projection of the water plane.  Zhang et al. (1998) 

developed a similar scheme, but introduced a matching surface which is located at some distance 

away from the body and moving at the same speed as the ship. He used an extrapolation scheme 

to simulate the free surface condition and a pre-corrected Fast Fourier Transform scheme (Kring, 

et al., 2000) to speed up the simulation.  

Yasukawa (2003) presented a similar scheme for Numerical Wave Tank (NMT) simulation 

purpose. A damping beach is imposed on the tank side opposing the wave maker. The near field 

free surface panels are arbitrarily shaped and moving with the ship. They are treated as 

additional unknown panels whereas the source strengths of the fixed panels on the same position 

are set to zero. Kataoka and Iwashita (2004) also developed a similar scheme to solve the 

seakeeping problem. Besides the similarity with the other methods in the theoretical formulation, 

at every time step the nodes of time-varying free surface panels are shifted only in y-direction 

and the corresponding matrices‟ elements are updated. Also in this formulation the solution 

domain is fixed so that the radiation condition on the matching surface can be obtained exactly. 

The difference between these methods basically lies in the different ways of treatment of the 

boundary condition in the far field, in simulating the free surface and the numerical schemes. 

More recently, there is a trend of integrating CFD techniques into the hybrid method so as to 

study highly nonlinear phenomena. Iafrati, et al. (2003) presented a hybrid method combining a 

CFD scheme using conventional grids and the BEM for potential- flow free-surface problems. 

Sueyoshi et al. (2007) uses particle methods in the inner domain and a boundary element method 

in the outer domain to study various wave-free surface problems. Lin et al.  (2009) presented 

recently a paper where they combined a viscous flow solver in the inner domain and potential 
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flow solver in the outer domain. There is a slight overlap between the two introduced domains, 

which creates a matching domain.  

The approaches adopted in the present thesis are believed to continue above introduced hybrid 

concept developments and will be elaborated in the following.  

1.2 Overview, Objectives and Innovations  

The main objective of this thesis is to develop in the frame of potential theory a time domain, 

numerical simulation method, which is capable of predicting large amplitude motio ns of ships 

and floating structures in response to incoming waves. Addressed shiplike bodies are assumed 

with zero or nonzero constant forward speed. Developed method(s) and related software tool(s) 

should be applicable to ship design and the assessment of ships and offshore structures in 

seaways.   

In the course of this thesis, the author proceeded with the development of a Time Domain 

transient Green Function method (TDGF) and demonstrated its implementation by applications 

to the fundamental hydrodynamic problems (Liu et al., 2007). Due to the inherent limitation of 

the method, it is not applicable to the study of realistic ships with flares. Thus the hybrid method 

concept is adopted for the calculation of hydrodynamic forces acting on ships advancing with 

constant speed in waves. In this method, the fluid domain is decomposed into an inner and an 

outer part. The Rankine source method is applied in the inner domain while the transient Green 

function method is used in the outer domain. This hybrid method works efficiently with a 

relatively small number of panels compared to a pure Rankine source method, for the free 

surface panelization is restricted between the body boundary and the control surface. A double 

integration algorithm with respect to time, originally developed by Wang (2003) and validated 

on diffraction forces‟ calculation, is herein adopted to simulate the free-surface boundary 

condition. 

For the simulation of the motions, the calculation of the force components is based on the 

following assumptions: if the incident wave amplitude is small (quasi- linear case), then the 

Froude-Krylov forces and hydrostatic restoring forces are calculated based on ships‟ 

geometric/hydrostatic data, whereas, if the incident wave amplitude is large, then both above 

force components are calculated exactly up to the undisturbed incident wave surface. The 

diffraction forces and radiation forces, however, are calculated up to the mean wetted surface by 

the developed hybrid method in all incident wave amplitude cases. Calculated force components 

are introduced into the equations of motions to predict ship motions in the time domain.  

Developed theoretical time domain simulation method was numerically implemented by use of 

the Boundary Element Method (BEM). The boundary of the inner domain is discretized in to 
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quadratic or triangular panels. On each panel the potential value or source strength is assumed to 

be constant. The Generalized Minimum RESidual (GMRES) method is adopted to obtain a 

solution for the equations. After the potentials and its spatial partial derivatives on the panels are 

obtained, the pressure is calculated by Bernoulli‟s equation. Then the hydrodynamic forces can 

be obtained by integrating the pressure over the wetted hull surface. Then the motions of the 

ship are simulated by using an iterative prediction-correction scheme. After the converged value 

is arrived, the simulated will march to next step. In order to yield stable and accurate prediction, 

the Chimera grid concept is introduced so that two panel systems are set up in the beginning of 

the simulation. There will be simultaneous information exchange between the two grid systems.  

In order to validate the developed theoretical method and numerical scheme (computer code), 

many characteristic case studies on the hydrodynamic forces and motions of standard type ships 

have been conducted. Results are compared with those of other authors and available 

experimental data. An important outcome of the presented method is its successful application to 

the assessment of the ITTC standard ship S175, which has non-wall-sided sections at the ends, 

while moving with forward speed in head seas. Good agreement has been observed for all 

studied cases between the results of the present method, other numerical codes and experimental 

data. Thus, the method proves promising regarding its applicability to the more general large 

amplitude motion problem of ships, advancing in waves of arbitrary heading. 

In the course of the conducted research, the hybrid method has also been applied to study the 

seakeeping performance of a basic Wigley hull with different above-water shape, both at zero 

speed and nonzero speed. Obtained results clearly show the effect of different above-waterplane 

shape on motions, thus they prove that the developed method can be used for ship design 

optimization and the assessment of ships‟ performance in high seas. Meanwhile the added 

resistance of ships can also be calculated in the framework of the present method. This 

capability will support the increased importance of this type of tools in ship design, when 

selecting ship‟s engine/propulsion system and considering ship‟s performance in terms of 

sustainable service speed in realistic sea conditions. It also affects ship‟s operation when 

optimizing the sailing route for minimum fuel consumption and green-sailing considerations.  

The main objectives and innovations of this thesis refer to the following: 

 Development and numerical implementation of a hybrid, nonlinear time-domain method 

for the prediction of forces exerted on the ship calm water and in waves (wave making 

resistance, radiation and diffraction forces, added resistance in waves) and of large 

amplitude ship motions in response to incoming small or large amplitude waves. The 

introduced method accounts for the above still water level hull form. 
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 The developed method is called hybrid in the sense of dividing the fluid flow domain 

into an inner domain and an outer domain and using different approach in each domain 

but matching the solution of each domain on the matching surface. Furthermore, the 

force components in motion simulation are calculated based on different assumptions, 

which is also hybrid. 

 Numerical implementation of the GMRES method in the solution of the large scale set of 

equations, which seems not to have been adopted by other authors before.  

 Introduction of the Chimera grid concept to account for the accurate description of fluid 

domain geometry with limited number of panels and to allow small time-step simulation 

which is necessary for accurate time-domain simulations.  

 Simulation of the free surface boundary condition by integration of the linearized free 

surface condition. Though this method was introduced by another author before, its 

validation was limited to the calculation of the diffraction forces only. 

 Introduction of the far field added resistance calculation method into a time domain 

solver and validation thereof in a large variety of study cases.  

1.3 Chapters of This Thesis 

The present thesis describes the development and validation of a time domain hybrid method 

and a suit of software tools for simulating large amplitude motions of ships advancing in waves 

with constant forward speed. It consists of the following contents: 

In Chapter 2, the potential theory boundary value problem is fo rmulated and the time domain 

Green function method is introduced to solve the problem. Numerical scheme is briefly 

described and validation results are presented on the calculation of hydrodynamic forces.  

In Chapter 3, the hybrid method is introduced and motion prediction method is elaborated. 

Specific problems, such as free surface condition simulation and mj term calculation, are 

explained. 

In Chapter 4, validation results for zero speed case are presented, including diffraction problem, 

forced motion problem, free motion problem under the excitation of both small amplitude and 

large amplitude incident waves. Based on the numerical tests, preliminary conclusions are drawn 

on how to determine the optimal matching surface and corresponding panelization. A variety of 

hull forms are used to validate the linear hydrodynamic coefficients, exciting forces, and some 

discussion of large amplitude motions.  

In Chapter 5, validation results for non-zero speed case are presented, including wave making 

resistance problem, diffraction problem, forced motion problem, free motion problem under the 
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excitation of both small amplitude and large amplitude incident waves, also the quasi second 

quantity, added resistance, is calculated.  

In Chapter 6, the formulation is reconsidered in a body-fixed coordinate system so as to use a 

fixed free surface area to improve the computational efficiency. Validation results include the 

forced motion problem and free motion problem of a container ship. By studying a mathematical 

Wigley type hull with different above water shapes it is shown that the developed scheme is 

capable of evaluating the seakeeping character from the design point of view.  
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Chapter 2 Time Domain Transient Green Function 

Method 

2.1 Definition of the Boundary Value Problem 

Consider an arbitrary 3D body floating on the free surface and undergoing 6-DOF motions. An 

earth-fixed Cartesian coordinate system is chosen with the x-y plane coincident with the 

undisturbed free surface and z-axis pointing upwards through the ship‟s mass centroid. The 

origin O is located on the undisturbed free-surface. Ship‟s forward speed U0 is in x-axis direction. 

The fluid is assumed to be homogeneous, incompressible, inviscid and its motion irrotational. The 

water depth is infinite. The unsteady flow field can be described by a velocity potential: 

 ΦT(x,y,z,t)= Φ0(x,y,z,t)+Φ(x,y,z,t) (2-1) 

where Φ0 is the incident wave potential, Φ=ΦT-Φ0 is the disturbed flow potential, t is time, and 

p(x, y, z) is a point in the flow field. In the fluid domain Ω(t), which is bounded by the free surface 

Sf(t), the body surface Sb(t) and the control surface Sc at far field, Φ(p,t) satisfies Laplace‟s 

equation: 

 2Φ(p,t)=0 (2-2) 

The body boundary condition is applied on the instantaneously wetted body boundary Sb(t): 

 ∂Φ/∂n= vn∂Φ0/∂n (on Sb(t), t>0) (2-3) 

n is the unit normal vector pointing out of the fluid domain Ω(t), and vn is the instantaneous 

velocity of the body surface. The linearized condition is imposed on the free surface Sf(t): 

 
2

2
0g

t z

  
 

 
 (on Sf(t), t>0) (2-4) 

where g is the gravitational acceleration. The initial conditions at t=0 are: 

 0
t


  


 (on Sf(t), t=0) (2-5) 

For finite time, the conditions on the control surface at infinite are: 

 Φ, Φ, 0
t





 (on Sc, t>0) (2-6) 

2.2 Integral Equations 

The time-domain transient Green function (TDGF) which satisfies the linearized free-surface 

condition is defined as following: 
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 G(p,t; q,τ)=
'

1 1

pq pq

G
r r

 
  
 
 

 (p,t; q,τ)  (2-7) 

 where G (p,t; q,τ) represents the free-surface memory part: 

        0
0

, ; , 2 sin
k z

G p t q gke J kR gk t dk


 
    

   (2-8) 

where p(x,y,z) and q(ξ,η,ζ) are the field and source points respectively,    
2 2

R x y      

 
22

pqr R z    ，  '

22

pq
r R z    ，and J0 is the zero-order Bessel function.  

Suppose that p is in the fluid domain Ω(t), we apply Green‟s Theorem to Φ(q,τ) and  , ; ,G p t q  . 

After certain transformations, we get the integral equation for the disturbed potential Φ(p,t) as 

following: 

 
 

 
 

' '

0

1 1 1 1
2 ( , ) ( , )

1
    

b

b

q

q pq pq qS t pq pq

t

q N q
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q qS

p t q t ds
n r r r r n

G G
d G ds G V dl

n n g 





 

     
          

         

        
             



  
 

 

 (2-9) 

where p Sb(t),wl(τ) is the intersection line of the instant ship surface and XOY plane and N is the 

normal vector of wl(τ), and VN is the velocity of wl(τ) on N direction. This integral equation 

features a mixed distribution of dipoles and sources over the body surface and it leads directly to 

solutions of velocity potential on the body surface. An alternative integral equation which features 

a source distribution takes the following form: 

 

 
 

       
 

 

'

0

1 1 1
( , ) ,

4

1 1
, , ; , , , ; ,

4

b

b

q

pqS t pq

t

q N n q
wl

S

p t q t ds
r r

d q G p t q ds q G p t q V v dl
g 






      


 
    
 
 

 
 

  



   

  (2-10) 

where σ(q,t) is the source strength and pΩb(t). Notice that vn=(N∙n)VN and apply the body 

boundary condition for p so we obtain the equation for σ: 

 

  '

( )

0
( ) ( )

1 1 1 1
, ( , ) ( , ) ( )

2 4

1 1
  ( , ) ( , )       ( )

4

b

b

I
n q

p p pS t

t

q N n q b

p pS wl

v p t p t q t ds
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d q ds q V v dl p S t

n g n
 

 


    


 
     

  

  
  

   



  
 

  (2-11) 

After finding the solution of σ, Φ and ∂Φ/∂xi can be easily evaluated.  
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2.3 Hydrodynamic Forces 

The unsteady pressure exerting on the body is given by Bernoulli‟s equation: 

 
1

2
p

t


 
     

 
 (2-12) 

Integrating the above equation over the instantaneous wetted surface Sb(t) we can obtain the 

hydrodynamic forces acting on the body: 

 
 bs t

F pnds  
 

 (2-13) 

t




 is usually evaluated by introducing the material derivative of the potential on the body as: 

 
D

V
t Dt

 
  




 (2-14) 

The material derivative is obtained by finite-differencing of the potential on the body panels to 

time (Lin et al. 1990; Yasukawa, 2003). V includes both the forward speed and wave induced 

motion speed. In the present work, only the forward speed part is accounted. In fact, with some 

transformations (Duan, 1995), we can obtain a more convenient expression for numerical 

computation, especially when studying a floating body whose instantaneous wet surface is 

varying with time: 
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

 

  

  

   

 (2-15) 

For a submerged body undergoing large amplitude motions, the waterline integral term vanishes. 

Once the time varying forces are obtained, we can conduct a harmonic analysis as below: 

 
0

( ) ( ( ) cos ( )sin )ij ij ij

n

F t A n n t B n n t 




   (2-16) 

in which Aij(1) and Bij(1) correspond to the linear frequency domain concepts of added mass and 

damping coefficient. 
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2.4 The Quasi-Second Order Problem - Calculation of Added Resistance 

As a physical phenomenon, the added resistance is a steady force of second-order with respect to 

the incident wave amplitude, occurring when a ship advancing with certain speed in a seaway and 

which is acting opposite to ship‟s forward speed in longitudinal direction, thus increasing ship‟s 

calm water resistance. The prediction of added resistance is of high practical interest recently due 

to economic and operation considerations, thus it grasps many researchers‟ interest. For a time 

domain method, the direct way for obtaining the added resistance is to calculate both the wave 

making resistance in calm water and total resistance in waves and then subtract the difference 

between them; but it basically needs two runs and the accurate and robust calculation of partial 

derivatives, which is not easy. In the present study, Maruo‟s far field theory (1963) based on the 

Kochin function concept is adopted for added resistance prediction and the corresponding scheme 

is imbedded into the present code for validation purpose.  

The complex function H(k j,θ), known as Kochin function, describing the elementary waves 

radiated from the ships is given by: 

    ,j j

S

H k G ds
n n


  

  
  

  
  (2-17) 

where: 

        exp cos sinG k z ik x yj j j       
   (2-18) 

and  , 1,2jk j  are the unsteady wave numbers: 

   0

2

 : j=11 2 cos 1 4 cos
  

 : j=22 cos
j

K
k

 




     
  

 
  

In the above equations, θ is the angle of elementary waves generated by the body, Ω=ωeV/g is the 

Hanaoka parameter and K0=g/V2 is the steady wave number. From the above expression the 

following expressions may be derived for k1(θ) and k2(θ): 
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Following Maruo (1963), the added resistance may be expressed by the above Kochin function as:  
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 (2-19) 



Numerical Simulation of Large A mplitude Sh ip Motions and Applications to Ship Design and Safe Operat ion 

13 

where ρ is the density of sea water and α0 is the critical angle (α0=arcos(1/(4Ω)) for 1/ 4 and 

α0=0 for Ω≤1/4). When V=0 then Ω=0, k1(θ) and k2(θ)=k. Thus the wave systems are reduced 

to the ring wave only. For the zero speed case, the drift force may be expressed as following 

(Maruo, 1960): 

    
2

2 2

0
 cos cos

8
AW

k
R H d


   


   (2-20) 

where      exp cos sin cos sinz x y

S

z i x yH k k k n i n i n ds
n

 


    
 

          
  

 

2.5 Numerical Scheme 

To solve the above integral equations, the normal panel method (Hess and Smith, 1964) is used. 

The wetted body surface is divided into Nb quadrilateral panels and the waterline intersection is 

divided into NW segments. The velocity potential and its derivatives on each panel and segment 

are assumed to be constant while the equations are satisfied on the geometrical center. Take Eq. 

(2-9) as an example, the discretized form is: 

  
1

     i 1,2,..., N

bN
M M b

ij nj ij i i

j
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

      (2-21) 

the influence matrices are:  
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          

where m, M are the indices of history time τ and present time t; i, j and k are the indices for field 

point p, source point q and waterline segment Δl. For instance, 
m

njG  means the normal velocity 

G

n






 on j-th panel at time τ.  

In the computation, the body surface is usually discretized by 100~400 panels (for added 

resistance calculation, finer panels will be absolutely necessary) so that the influence matrices are 

not large. A Gaussian Elimination method is a good choice to find the solution. But as MMi is a 

convolutional integration, the solution must be done with a time-marching technique thus burdens 

the calculation. After mapping the quadrilateral elements into standard unit squares the integration 
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of the memory-related terms may be obtained by one-point or four-point Gauss quadrature. The 

computation of G  related terms is based on Huang‟s work (1991).  As to the submerged case or 

floating bodies at zero speed, the waterline integral vanish automatically. For the cases with 

floating bodies, the waterline integral is not included in the present work. 

For added resistance problem, the calculation of Kochin functions is of first importance. In head 

waves for the symmetric potentials 1 ,
3 , 

5  and the symmetric part of the diffraction potential
7c , 

the Kochin function takes the following form: 
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where, m= 1, 3, 5, 7c. For the anti-symmetric potentials, i.e. 2 , 4  6  and 7 s , the Kochin 

function takes the following form: 
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where, m= 2, 4, 6, 7s. 

 

2.6 Numerical Results and Discussion 

2.6.1 Radiation Problem of a Floating Hemisphere 

The first set of numerical results obtained include added-mass and damping coefficients for a 

floating hemisphere studied by Hulme (1982). At this stage, we use the linearized body boundary 

condition. Starting from rest, the hemisphere is undergoing a sinusoidal motion z=A sin ωt in 

deep water. Results from present method, obtained by use of 256 panels and 40 time steps per 

period, are compared with those of the frequency domain code NEWDRIFT (Papanikolaou, 1985; 

Papanikolaou & Zaraphonitis, 1987; Papanikolaou, et al. 1990) with 100 panels and of Hulme‟s 

semi-analytical method. Figure 2.1 shows the comparison of the added-mass and damping 

coefficient in heave, noting that A33 is divided by 2πρR3/3 and B33 by 2πρωR3/3 non-

dimensionalization. The agreement between all methods over the entire frequency range is very 
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good, except for the irregular frequencies problem appearing in the results of the frequency 

domain code NEWDRIFT that is herein not treated. 

 

Figure 2.1 Comparison on added-masses and damping coefficients 

 

2.6.2 Radiation Problem of a Submerged Sphere 

Ferrant (1990) presented results on the heaving problem of a submerged sphere, with a mean 

depth of submergence equal to the diameter (z0/R=2.0, Figure 2.2). In order to compare with 

Ferrant‟s results, the same number of discrete panels, which is 200 on the whole surface, is used 

by NEWDRIFT and present method. Figure 2.3 shows the comparison on heave induced added-

mass and damping coefficient, noting that results are divided by 4πρR3/3 for A33, and 2πρωR3/3 

for B33 for non-dimensionalization. The agreement among the various methods is good, despite 

that depending on the methods used (linear or body-exact) a clear deviation is observed. 

  

 

Figure 2.2 Panelization of the S phere and its motion Z=Z0+Acosωt 
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Figure 2.3 Comparison on added masses and damping coefficients 

 

2.6.3 Radiation Problem of a Wigley Hull 

A Wigley hull is defined as: y/B0=[1-(2x/L)2][1-(z/H)2] where the beam-to-length ratio 2B0/L=0.1 

and draft-to- length ratio H/L=0.0625. Here a hull with L=50.0m is investigated.  

First, the linear case, that is, small-amplitude heaving about the equilibrium position so that the 

hydrodynamic force is simulated up to the mean wetted surface, is studied. 240 quadrilateral 

panels are use to represent to hull and the time step is determined by ∆t=2π/40ω. The results are 

plotted against the results from NEWDRIFT in Figure 2.4. 

Secondly, the large-amplitude heaving induced “added-mass” and “damping coefficient” are 

calculated and plotted. We choose the case k=0.1 and change the amplitude of the heaving motion. 

After obtaining the velocity potential, two different methods, the so called differential method 

(noted as DIF) and the integral method(noted as ITG), are used to calculate the forces and then the 

same procedure is carried out to get the added-mass and damping coefficients. Figure 2.5 shows 

the results from this calculation. For comparison purpose, the linear results of NEWDRIFT are 

also plotted.  

From Figure 2.5 it is clear that if the amplitude is relatively small, added mass and damping 

coefficients don‟t change significantly. But after the amplitude arrives some value, say 

Amp/B0=0.3, the effect of the amplitude becomes very clear. Similar trend has also been observed 

by other researchers (Kataoka et al, 2002). What‟s more, the deviation between the results from 

traditional differential method and integral method is obvious, which indicated the necessity to 

employ the concept of integrating form expression (2-15) when dealing with the large-amplitude 

problems. 
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Figure 2.4 Comparison on added masses and damping coefficients 

 

 

Figure 2.5 Results at different heaving amplitude for k=0.1, the linear results are denoted by ■  & ●   

 

2.6.4 Diffraction Problem of a Submerged Sphere  

A submerged sphere advancing in regular deep-water head waves at constant forward speed has 

been analyzed by Wu et al. (1988) with a linearized potential method. A distribution of sources 

over the surface of the sphere is expanded into a series of Legendre functions, which is an 

extension of the method used by Farell (1973) in analyzing the wave resistance on a submerged 

ellipsoid. Wu‟s calculation was in frequency domain, while present calculation is in time domain. 

In order to compare the force amplitude results, a harmonic analysis of the diffraction forces is 

performed:  

    3cos sin /real imagF t F t F t A g r k    
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Freal and Fimag are the so-called non-dimensional real part and imaginary parts of the wave exciting 

forces. The results from present TDGF method are obtained with a 100-panel meshing of the 

semi-hull and 52 time steps‟ calculation per period.  Good agreement among results from different 

numerical methods is observed. The abscissas in Figure 2.6 are the reduced wave number kR.  

 

Figure 2.6 Comparison on wave load F1 and F3 

 

2.6.5 Diffraction Problem of a Wigley Hull 

The experiment data of a Wigley-hull form with a mid-ship section coefficient Cm= 2/3 and 

length-breadth ratio L/B= 10 were published by J.M.J. Journée (1992). A perspective view of the 

Wigley hull discretized with 250 panels is shown in Figure 2.7. The test results refer to 

hydrodynamic coefficients for heave and pitch, vertical motions, wave loads and added resistance 

in head waves. In order to validate the code, calculations are carried out herein on the wave loads 

acting on this Wigley hull. The dimensionless results are defined in accordance to Journée as: 

0 00

3 51
1 3 5

33 55

, ,
a a a

F FF
F F F

k g C kC   
  


. Results obtained from present method are shown from 

Figure 2.8 and Fig 2.9, compared with results from the frequency domain code NEWDRIFT.  

 

Figure 2.7 Panels used to represent the Wigley hull 
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Figure 2.8 Calculated reults of wave load F1, F3 and F5, Fn=0.0, head seas  
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Figure 2.9 Calculated reults of wave load F1, F3 and  F5, Fn=0.2, head seas 
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2.6.6 Resistance of a Submerged Spheroid 

An ellipsoid with its major axis parallel to the free surface and moving with forward speed has 

been studied by Farell (1973) and Chen et al. (2000). In this paper we present results in 

comparison to those of Chen for an ellipsoid with the lengths of major and small axes 2a=2.3 and 

2b=0.4 respectively, and different submergences and speeds. 

The cosine-panel scheme is used to approximate geometrically the ellipsoid‟s ends more precisely. 

A perspective view of the semi-ellipsoid with a mesh of 288 panels is shown in Figure 2.10. The 

Froude number and wave making resistance coefficients are defined respectively as: Fn= 2gc , 

Cw=-1000F1/πρgc3, where focal distance is c=1.132475. Calculated results for different speeds 

and different submergences are shown in Figure 2.11 to Figure 2.14. 

 

 

Figure 2.10 Panelization of the Ellipsoid 

 

 

 

Figure 2.11 Wave making resistance Fn=0.45 d=0.252c  
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Figure 2.12 Wave making resistance Fn=0.45 d=0.5c  

 

Figure 2.13 Wave making resistance d=0.252c Fn=0.35  

 

Figure 2.14 Wave making resistance d=0.252c, Fn=0.6  
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2.6.7 Resistance of a Wigley Hull 

The Wigley hull is defined as: y/B=[1-(2x/L)2][1-(z/H)2,where the beam-to- length ratio 2B/L=0.1 

and draft-to- length ratio H/L=0.0625. The Froude number is defined as Fn=U/ gL . Here a hull 

with L=50.0m will be investigated.   

An impulsive start-up mode is used in the present study with the expression of V(t)=U0,t>0. 

Wehausen (1964) gave some general conclusions on the effect of the initial acceleration upon 

wave resistance problem based on his study with an asymptotic expansion scheme. From his study 

the decaying period takes a time of T0=8πU0/g, which is also confirmed by Lin&Yue (1990). 

Thus in the present study, we average the forces over the last T0 time to get the resistance value. 

The panel size is determined according to two principals. The first is from length of ship 

generated waves length λ=2πU2/g. In order to describe a wave profile (assuming a sinusoidal 

form), there should be at least 5 control-points in one wave- length, which means 5 panels. The 

second principle is related to taking into account the memory effect. From a physica l view, the 

distance the ship travels on the advancing direction in a time interval should be less than the 

panel- length on the same direction. Generally the first criterion is easy to meet. So we mainly use 

the second as our criterion. If Δl and Δt denote the panel-size and time interval respectively, the 

choice for Δl /ΔtU0≈2~3 generally yields good results according to our experiences.  

A convergence study is carried out regarding to time intervals and panel sizes which are shown in 

Table 2.1 and Table 2.2 for Fn=0.3 and 0.4 respectively. At last 320 panels on the whole hull 

(which is shown in Fig 2.15) and Δt=2π/80 are chosen for the calculation. This choice also meets 

the condition ΔtU0Δl, which is considered as the necessary condition for time-domain 

calculations. Figure 2.16 is a comparison among results from the present code for a fixed body, 

the average experimental results from Chen, et al. (1983) and SHIPFLOW (2005) results by using 

the standard “linear” “fixed” option. Clear deviations from experimental data and high oscillatory 

behaviors are observed, especially for Fn>0.3. This may be due to the neglect of the integration 

term on the water line, which appear in Equations (2-9) and (2-10). 

The free-mode resistance results, which takes into account the sinkage and trim effect, is plotted 

in Figure 2.17 against the experimental data and SHIPFLOW results by using the standard 

“nonlinear” “free” option. During the calculation, it is assumed that sinkage and trim due to the 

steady motion are small thus a correction is performed by the following formula after a run: 

3 0

wT F gA  , 2 2

wM gA   (assuming GML ≈ BML) 

Here ΔT is the sinkage at the center at mid-ship and α is the trim angle, 3F  and 2M are the heave 

force and pitch moment respectively. 0

wA is the water-plane area while 2

wA the corresponding 
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moment of inertia about y -axis. Theoretically, the correction should be performed iteratively 

after each calculation until an equilibrium condition, which means net vertical force
3F  and pitch 

moment
2M equal to zero. In the computation, it is observed that the resistance results arrive a 

practically converged state after 3 times‟ iterative, as shown in Figure 2.18. 

 

Table 2.1 Wave resistance coefficient of the Wigley hull at Fr=0.3  

 Nb=240 Nb=280 Nb=320 

Δt =2π/40 0.23432312E-02 0.25856605E-02 0.22632792E-02 

Δt =2π/60 0.22777479E-02 0.21452351E-02 0.22144091E-02 

Δt =2π/80 0.22542330E-02 0.21653600E-02 0.21444915E-02 

 

Table 2.2 Wave resistance coefficient of the Wigley hull at Fr=0.4  

 Nb=240 Nb=280 Nb=320 

Δt =2π/40 0.51212753E-02 0.49944389E-02 0.50244194E-02 

Δt =2π/60 0.46899258E-02 0.50901936E-02 0.50283135E-02 

Δt =2π/80 0.47532834E-02 0.47532834E-02 0.49778008E-02 

 

 

Figure 2.15 Perspective view of the Wigley hull with 320 improved progressional panels  
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Figure 2.16 Wave making resistance CWW results, hull fixed 

 

 

 

 

 

Figure 2.17 Wave making resistance CWW results, with sinkage/trim correction 
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Figure 2.18. Wave making resistance calculation of a steadily moving Wigley hull, Fn=0.4  

 

2.6.8 Added Resistance of a Submerged Spheroid 

Iwashita et al. (1992) studied a shallowly submerged spheroid with a length to breadth ratio 

L/B=5 and draught to breadth ratio d/B=0.75, where the draught d is measured from the free 

surface to body center. In the following, we investigate the behavior of the wave systems created 

by this spheroid with Fn=0.2, k=2.5m-1, ωe≈7.14sec-1 in head waves. The corresponding values of 

Hanaoka parameter, steady wave number and critical angle are: Ω≈0.64, K0≈12.7m-1, α0≈67o. The 

unsteady wave numbers of two wave systems are plotted in Figure 2.19. From this graph it may 

be observed that the wave number k1 approaches infinite when θπ/2, while the wave number k2 

grows larger (although still remains bounded) as the wave direction approaches the critical angle. 

It has been found that the wave number k1 is much larger than k2, indicating that k1 waves are very 

small and can be neglected in the calculation of added resistance in head waves. Figure 2.20 

shows the weighting functions in added resistance formulation. Since k1 wave system is neglected, 

only the weighting functions for k2 wave system have been shown. The weighting functions are 

defined by the following expressions: 
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Figure 2.21 shows the non-dimensional Kochin function amplitude in the range α0 < θ < π and 

Figure 2.22 shows the integrand of the second term in expression (2-19). A more detailed analysis 

can be seen in Naito, et al. (1988). 
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Figure 2.19 Unsteady wave numbers of two wave systems  

 

 

Figure 2.20 Weighting function of k2 wave system 

 

 

Figure 2.21 Kochin function of a submerged s pheroid 
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Figure 2.22 Integrand in Maruo’s formula 

 

This case has been addressed with two different approaches: The first one is using the present 

time-domain Green function method presented for the calculation of the first-order potential. The 

second approach is based on a frequency domain 3D panel method NEWDRIFT for the solution 

of potential calculation. The deduced first-order results either from the time-domain or the 

frequency domain approach are introduced in equations (2-22) and (2-23) for the calculation of 

the Kochin functions, from which the added resistance is calculated according to equation (2-19). 

In addition to the above, the drift forces and added resistance are calculated also by applying the 

near-field, direct pressure integration approach (Pinkster, 1979; Faltinsen, 1980), implemented in 

the NEWDRIFT code (denoted as NDnear in the graphs). Results from the first approach (denoted 

as LIUfar in the graphs) for the drift force at zero speed, and for the added resistance when the 

body is moving at forward speed in incident waves are presented in Figure 2.23 to Figure 2.25. 

Good agreement may be observed between the present results and the results of Iwashita and 

Ohkusu (1992), denoted as Iwashita in the graphs, both for the zero speed and nonzero speed 

calculations. 

The same spheroid has been also tested at a deeper submergence of d/B=1.25. Comparisons have 

been herein made between the two time- and frequency domain potential solvers at zero and at a 

forward speed corresponding to Fn=0.2. Good agreement between both solvers has been obtained, 

when using the far- field method, noting that the 3D panel method corresponding to the 

NEWDRIFT code is essentially based on a zero speed Green function and forward speed effects 

are taken into account in an approximate way by exploiting slender body theory assumptions. 

These results are shown in Figure 2.26 and Figure 2.27. 
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Figure 2.23 Horizontal drift force on a submerged spheroid at Fn=0, d=0.75B 

 

Figure 2.24 Added resistance on a submerged s pheroid, Fn=0.2, d=0.75B 

 

Figure 2.25 Added resistance on a submerged s pheroid, Fn=0.3, d=0.75B 
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Figure 2.26 Horizontal drift force on a submerged spheroid at Fn=0, d=1.25B 

 

Figure 2.27 Added resistance on a submerged s pheroid, Fn=0.2, d=1.25B 

 

2.7 Summary and Conclusions 

A potential flow theory based time domain transient Green function method is formulated and 

numerically implemented by using a constant panel method. It is validated by applications to 

wave making resistance problems, diffraction problems and radiation problems of simply bodies 

and ship- like bodies undergoing small amplitude motions or large amplitude motions. 

Furthermore, it is also validated by calculating the quasi-second order force – drift force or added 

resistance. Good agreement has been achieved when compare with the results from other well 

established numerical methods and experimental data, showing the method and numerical scheme 

are correct and promising.  

But there are also some problems being brought into attention, as indicated in Table 2.3: 
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Table 2.3 List of studies cases 

 ω=0, steady case ω≠0 

V=0 -- 

Floating hemisphere, linear solution √ 

Wigley hull, linear solution √ 

Series 60,linear solution × 

Submerged sphere, large-amplitude solution √ 

Wigley hull, Large-amplitude solution √ 

V≠0 

Submerged ellipsoid √ submerged sphere, in body-fixed system √ 

Wigley hull √ submerged sphere, in earth-fixed system × 

Series 60 × Wigley hull √ 

 

 

As we see here, the problems lie in two categories. The first category refers to those applications 

to non-wall-sided bodies and the second are to those of floating (surface piercing) bodies with a 

forward speed. Further investigation shows that the first problem arises because of the transient 

Green function‟s problematic performance with this kind of bodies, which has also been noted by 

other researchers (Zhang et al., 1998; Duan et al., 1999; Kataoka et al., 2004). The second 

problem appears to be due to the neglect of the numerically intricate waterline integral term that 

appears in Equations (2-10) or (2-11).  

Overall, in this chapter we have shown the development and validation of a robust solver for 

submerged or surface piercing bodies with vertical-walls at the waterline and at zero forward 

speed.  
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Chapter 3 Time Domain Hybrid Method for Modeling 

Seakeeping Problems 

In order to better treat the problem when dealing with non-wall-sided bodies by the Time 

Domain transient Green Function (TDGF) method, we decompose the fluid domain by 

introducing an imaginary vertical matching surface which is located away from hull; in this way 

the TDGF method can be better applied to practical shiplike bodies, thus introducing the idea of 

the “hybrid” method.  

In the hybrid method, the fluid domain is decomposed into an inner domain and an outer domain. 

In the inner domain, the Rankine source method, which does not have problem with applications 

to non-wall-sided body or the waterline integral problem in the forward speed case, is used. In 

the outer domain, the time domain transient Green function method (TDGF) is used to find a 

relationship between the outer domain potential and its normal derivative, which is a boundary 

condition for inner domain equation. On the free surface, a double integration regarding to time t 

is performed to numerically simulate the linearized free-surface condition. The validated TDGF 

method is used to find the matching surface condition, which is a precious heritage from the first 

step in this thesis study. Furthermore, the matching is fixed in space, i.e., vn=0 in equation (2-10) 

and equation (2-11), so that the difficult-to-treat waterline integral term trivially vanishes. 

 

3.1 Problem Formulation  

Consider a 3D body floating on the free water surface, advancing at constant forward speed and  

 

Figure 3.1 Coordinate system Definition and Decomposition of the fluid domain 
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undergoing 6-DOF motions in response to an incident wave. An earth- fixed Cartesian coordinate 

system O-XYZ is chosen with the X-Y plane coincident with the undisturbed free surface and Z-

axis pointing upwards through the ship‟s mass centroid, as shown in Figure 3.1. The origin O is 

located on the undisturbed free-surface. Ship‟s forward speed U0 is in X-axis direction. 

Potential theory is used to determine the flow field. The fluid is assumed to be idealized and the 

water depth infinite. First, the flow field is decomposed into two parts, i.e. the inner domain 

denoted as I, bounded by the wetted body surface Sb, the control surface Sc and a part of the free 

surface Sf, namely between Sb and Sc; and the outer domain denoted as II, enclosed by the 

control surface Sc, the remaining free surface and the boundary surface at infinity.  

Let ηk(k=1,2,…,6) represent the displacement of the oscillating motion on k-th direction, i.e. the 

translating displacement ξ=(η1,η2,η3) and the rotary displacement θ=(η4,η5,η6), then the velocity 

are expressed as: 

 ,   
d d

u
dt dt

 
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 


 (3-1) 

Thus the linear displacement on the wetted surface is: 

 d=ξ+θ×r (3-2) 

where r is the position vector of a point (x,y,z). 

In the framework of small amplitude hydrodynamic problems, the velocity potential Φ 

describing the whole flow field can be divided into the incidental wave potential, steady wave 

potential and unsteady disturbed wave potential: 

 ΦT=Φ0(x,y,z,t)+Φs(x,y,z,t)+Φ(x,y,z,t) (3-3) 

On the instantaneous wetted surface, the total velocity potential satisfies the following boundary 

condition: 
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where n is the normal vector of the ship body pointing inward of the body and  1,2,3je j 


are 

the unit vector of the x, y, z axes. The expression (3-4) can be rewritten as: 
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where n=(n1,n2,n3) and r×n=(n4,n5,n6). 

The body boundary condition is satisfied on the exact instantaneous wetted surface. If we further 

expand it with respect to terms on the mean body surface S0 and neglect the higher order terms, 

we get the linearized body boundary condition: 
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where (m1,m2,m3)=-(n∙) Φs/U0 and (m4,m5,m6)=-(n∙)[r×Φs]/U0. This boundary condition 

works fine when the motion amplitude is relatively small. For the large amplitude case of those 

geometries that vary much around the water-plane, it‟s important to take into account the 

nonlinearity effects associated with the geometry.  

 

3.2 Integral Equations 

As elaborated in Chapter 1, the boundary value problem will be solved by a time domain hybrid 

method which is a combination of Rankine source method and transient Green function method. 

As the Rankine source method has been interpreted thoroughly by other authors and the time 

domain transient Green function method has been explained in Chapter 2, in this chapter we will 

not elaborate the mathematic modeling of these two methods but use directly the resulting 

control equations.  

In the inner domain I, the Rankine source method is used to solve the flow field. The integral 

equation takes the form of: 
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 (p I) (3-7) 

where n is the unit normal vector pointing outward of the inner domain.  Let p approach the 

boundary then we will get: 
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where q(ξ,η,ζ,τ) is the source point, p(x,y,z,t) is the field point; rpq=(x-ξ)i+(y-η)j+(z-ζ)k; the 

denotation Sb, Sc and Sf represent respectively the body surface, the control surface and the free 

surface.  

In the outer domain II, the transient time-domain Green function is employed to solve the 

disturbed potential on Sc. The integral equation is expressed as: 
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In the present formulation, the matching surface is fixed, thus VN is essentially zero and the last 

integration term on the waterline vanishes. 

On the control surface, the potential solutions from the inner domain model and the outer 

domain model should match each other. Considering the definitions of the normal vectors in 

different domains we have: 

  ,    I II
I II con S

n n

 
    

 
 (3-10) 

The velocity potential in the inner domain can also be expressed by a simple source distribution, 

namely as: 
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Having obtained  through the aforementioned hybrid solver, the source density  can be 

obtained by solving Equation (3-11).Thus the spatial derivatives can be evaluated as: 
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3.3 Free-Surface Condition 

The linearized free-surface condition can be expressed in earth fixed coordinate system as: 
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2
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 (3-13) 

Integrating the above equation with respect to time t twice and taking into account the initial 

conditions, we will get the following expression: 
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This formulation, initially developed by Wang (2003), is simple and also proved to be a robust 

free-surface numerical simulator (Liu et al., 2009). 

It should be noted in relation to the development and implementation of the above expression, 

that the integration with respect to time is from moment 0 to moment t and the initial condition 

is set
0

0

0
t

tt



  


. This is valid only for the area that is free from disturbance/occupation 

by the advancing ship hull, or the whole free surface area for zero speed problems. In case of 

forward speed for the area that is in the wake of the hull or the area which is occupied by the 
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hull at the very beginning but gradually becomes free, special treatment of the free surface 

boundary condition and corresponding panels is needed (Figure 3.2).  

 

 

Figure 3.2 Ship crossing free surface panels  

 

As shown in Figure 3.2, if the intersection point between the ship‟s waterline WL and some 

y=const line is x=x0 at moment t0, then for a point at x=x1 which is occupied by the hull at the 

moment, it will take some time, (x1- x0)/U0, for this point to become active (wetted). The free 

surface condition on this point is simulated as following: 

1. Do the 1st integration of the expression regarding to time  ,t t  0 : 
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2. Integrating the above expression with respect to time for a second time, we obtain the 

following expression: 
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The initial conditions on this point, i.e.  0,p t and 
 

0

,

t

p











, can be approximated by the 

corresponding values on the adjacent hull panel or by the value on its adjacent panel in the 

downstream. Similar procedure is followed for reference points and panels being at some time 

instant upfront the hull, then for some period of time being occupied by the hull, until the ship 

hull passes by.  

This formulation is different from other similar schemes. In Zhang‟s formulation (Zhang et al., 

1998), a fourth order Adams-Bashforth-Moulton formula is used for the time integration and the 

second order upwind finite difference for the gradient calculations to solve the resulting 

hyperbolic equations for the disturbance velocity potential and the disturbance free surface 

elevation. In Kataoka and Iwashita‟s scheme (2005), the near field free surface panels‟ nodes are 

shifted only in y-direction and the corresponding influence matrices‟ elements are then updated.  
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The free surface condition is simulated by using a Milne finite-difference method which has 

second-order accuracy. Finally, in Yasukawa‟s method (Yasukawa, 2003), the wave height and 

velocity potential on the free-surface are integrated by Newmark‟s β method. 

 

3.4 Body Boundary Condition and mj Term Calculation 

Following the formulation in Section 3.1, mj term which appears in the boundary condition (3-6) 

is expressed as following:  
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 (3-16) 

It is clear that during the procedure of linearizing the body boundary condition of radiation 

problems to the mean wetted surface, the contribution of the steady potential results in this mj 

term which requires the computation of the second gradients of the basic steady potential. It has 

been shown by other researchers (Zhao et al., 1989; Duan et al., 2002) that it is difficult to 

obtain good results by the direct computations. Two different methods for mj term calculation 

are implemented in the present study, as elaborated in the following. 

3.4.1 Neumann-Kelvin Simplification 

According to the Salvesen-Tuck-Faltinsen (S.T.F.) method‟s simplification, the basic flow 

corresponds to an undisturbed stream –U0x, thus 

 (m1,m2,m3)=-(n∙)(-U0x)/U0=(0, 0, 0) (3-16) 

 (m4,m5,m6)=-(n∙)[r×(-U0x)]/U0=(0, n3, -n2) (3-17) 

This is consistent with Neumann-Kelvin linearization and easy to implement.  

3.4.2 Direct Calculation 

There are research groups who compute the mj term on the basis of a double-body linearization 

(Chen et al., 2000). However, as extra integral equations will have to be solved, it is not adapted 
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in the present study. Instead, the procedure which is proposed by Wu (1991) and followed by 

Chen et al. (1996) and Kim (2005) is implemented in the present hybrid method‟s framework. 

The velocity potential in the inner domain can be expressed in the source distribution form as: 
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Since we got s through the aforementioned hybrid solver, the source density  can be 

evaluated by the above expression. Afterwards, the spatial derivatives can be evaluated as:  
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The partial derivative of the velocity potential in the inner domain can also be expressed in the 

source distribution form as: 
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Since 
 ,s

k

p t

x




 has been obtained through the previous calculation, the source density k can 

be evaluated by the above expression. Afterwards, the second order spatial derivatives can be 

evaluated as: 
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3.5 Large Amplitude Ship Motions in Regular Waves with Six Degrees of 
Freedom 

The general ship motion formulation has been addressed by many researchers in the past. In the 

present work, Jan Otto de Kat‟s methodology (1990) is followed to model the ship motion.  

In order to study the motion of a ship advancing in wave, three coordinate systems are defined. 

The OXYZ system is earth-fixed, with Z-axis pointing positive upwards and X-Y plane coincident 

with the calm water free-surface. The X-axis is set in the centre plane pointing to FP. The origin 

is in the center plane, in the calm waterplane and at some convenient for-and-aft location. The 

OXYZ axis system is also used to define the incident wave system.  The second coordinate 

system O’xyz coincides with OXYZ at the beginning but travels with the body at speed U0. It 

doesn‟t move with the motions of the ship. These two systems are shown in Figure 3.1. 
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The third coordinate system Gx’y’z’ is body-fixed, thus moves with all the motions of the ship. 

The initial position of x’-y’ plane is parallel to ship‟s calm water plane, with z’-axis normal to it 

and x’-axis pointing to the bow. The origin of this system is fixed to the gravity centre G. In 

present work it is assumed that the ship has and only has port/starboard symmetry about the x’-z’ 

plane.  

The motions of the ship are determined by the orientation of system Gx’y’z’ relative to Oxyz 

system. A total of six components are needed to uniquely define the motion, typically three 

translations, i.e. surge, sway and heave, and three rotations, i.e. roll, pitch and yaw. The six 

degrees of freedom motion of a rigid body in space is determined by the following two 

equations: 

 

 

HS I R D

HS I R D

dP dv
F F F F F

dt dt

dL d
I I M M M M M

dt dt


 

      

         

      

       
 (3-22) 

where P=mv, L=I∙ω. F and M are the total force on the body and the total moment about a 

suitable point, Δ is the mass and v is the absolute velocity vector of the gravity center in the 

Oxyz system, and I and ω are the inertia tensor and angular velocity about the rotating point, 

which is assumed to be ship‟s gravity center G. The moments and products of inertia in I are 

constants in the moving and rotating system Gx’y’z’. In this thesis, the conservation of linear 

momentum equations will be solved in the earth-fixed reference system, while the conservation 

of angular momentum will be expressed in the local body-fixed system. The location of a rigid 

body in space is fully determined by the position of G in the fixed system O’xyz and the angular 

orientation of the Gx’y’z’ system with respect to the earth fixed system. In order to solve these 

quantities, first the position of the mass centre in the earth fixed system is defined by the vector 

xG(t)=[xG,yG,zG]T , and the velocity of the mass center is expressed by a time derivative: 

v(t)=dxG(t)/dt. The rotation of the ship coordinate system is uniquely defined by the following 

order of rotations, characterized by the Euler angles: first rotate by the roll angle η4, followed by 

the pitch angle η5, and finally by the yaw angle η6. The Euler angles are represented by the 

vector θ= [η4, η5, η6]T. 

In order to express a vector in the system Gx’y’z’ with respect to OXYZ system, the 

transformation matrices associated with Euler angles are needed. The angular velocities about 

the body coordinate system axes given by ω can be related to the time derivatives of the Euler 

angles,  , as follow: B 
  where B is also a function of the Euler angles. It is noted that with 

large motion simulations the Euler angles must be retained, so that the various transformation 

matrices are time dependent.  
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The translational position of the gravity centre in earth-fixed system xG(t) can be obtained by 

integrating the velocity vector v(t). The velocity vector is related to the linear acceleration vector 

by the following expression: 

 
d

v a F
dt
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 (3-23) 

 1 2 3, ,
T

v v v    can be obtained by solving the motion equations; and then [v1,v2,v3]T  can be 

obtained by an integration regarding to time.  x(t) can be calculated afterwards by integrating 

[v1,v2,v3]T  regarding to time. The rotational velocities of the body with respect to earth- fixed 

system, , can be related to those corresponding velocities in the body system by the following 

expressions with transformation matrices: 
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 1 2 3, ,
T

     can be obtained by solving the motion equations; and then [ω1,ω2,ω3]T  can be 

obtained by an integration regarding to time. θ can be obtained afterwards by using the above 

expressions. Transformation for a vector between the two coordinate systems is straightforward: 

 x=xG(t)+[T]x’ (3-25) 

where [T] is the transformation matrix given by the product of the individual transformation 

matrices in the sequence of the Euler angles(Spanos, 2002).  

On the right-hand side of the motion Equations (3-22), there are force components due to 

diffraction, radiation, incident wave, and restoring. Basically these forces/moments are 

calculated by integrating the pressure expressed by Bernoulli‟s equation on the body surface. 

Since an exact, fully nonlinear model is quite time-consuming and complicated for numerical 

computation, we restrict ourselves in this thesis to the consideration of some of the more 

important and tractable nonlinear effects. In particular, in this thesis for simulating small 

amplitude ship motions, all the force terms in the motion equation will be calculated up to  mean 

wetted surface. For simulating large amplitude ship motions, the incident wave forces (Froude-

Krylov) and restoring forces will be calculated up to undisturbed wavy surface and transferred 

into the motion equations.  

3.5.1 Radiation Forces 

The determination of the radiation forces is based on the developed time domain hybrid method 

which is valid for arbitrary motions. In the simulations, the radiation forces are calculated 
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system by assuming the vessel to be upright at each time. Another possible approach is to 

assume that the radiation force is exerting on the hull at the instantaneous position which is 

consistent with the motion formulation but inconsistent with radiation problem formulation.  The 

forces are computed up to the mean wetted surface by using the velocity and acceleration 

information relative to the earth-fixed coordinate system. Since in this work, the conservation of 

linear momentum equations will be solved in the earth-fixed reference system, these forces will 

be converted into the equations of translational motions without any transformation. After the 

linear and angular accelerations in OXYZ system have been determined, assume the vessel to be 

positioned in the upright position when calculating the radiation forces and moments in OXYZ. 

The moments in local Gx‟y‟z‟ system are assumed to be equal to the moments in OXYZ system. 

3.5.2 Diffraction Forces 

The diffraction force can be estimated by considering the vessel fixed in its mean position and 

the waves impinging upon it. The hybrid method is applied to determine also the diffraction 

forces. The ship is considered in its upright position and the body boundary condition is 

determined by using the incidental wave defined in the earth- fixed coordinate system. Taking a 

similar approach to which is used for the radiation forces, the force components given in the 

OXYZ system are considered as dependent on the instantaneous angles of rotation, while it is 

assumed that the vessel‟s gravity center is located at O‟, thereby neglecting the linear 

displacements due to surge, heave and sway. The time dependence is affected through the 

transformation matrix [T].  

3.5.3 Incidental Wave Forces and Hydrostatic Forces  

It has been observed in experiments and numerical studies that the nonlinear forces due to 

incident waves and buoyancy have large magnitudes relative to other components such as 

radiation forces. Thus it is important to include these effects in the motion simulation as 

accurately as possible. 

The Froude-Krylov forces are the forces associated with the pressure in the undisturbed 

incoming wave; in the classical linear seakeeping theory the pressure is integrated over the mean 

wetted surface of the vessel. In this work the wave pressure is calculated up to the instantaneous, 

undisturbed wave surface, so that the Froude-Krylov force is obtained by integrating the 

pressures over the instantaneous wetted surface. It should be noted that in the evaluations the 

wavy surface is based on the undisturbed incident wave. Thus, free surface changes caused by 

waves generated by the hull due to forward speed or motions or body-wave interactions 
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(diffraction), are neglected. Thus, what are called accurate Froude-Krylov forces in this work, 

are not the exact hydrodynamic wave forces since these would depend on the actual free surface. 

By neglecting the quadratic term in Bernoulli‟s equation, the wave pressure is given by: 

 I
s dp gz p p

t
 


    


 (3-26) 

where ps and pd are the “static” and “dynamic” pressure respectively. The force associated with 

ps is the static part of the Froude-Krylov force or the vertical hydrostatic force. The vector 

comprising the static force and moment components is given by  
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n is the generalized six-component outward normal as defined in the local system. 

n4,5,6=r’×n1,2,3. At each time instant, the wetted hull surface is determined by using ship‟s 

position data at previous time step and the wave position at the present step. Then the total 

hydrostatic force and moment components are calculated by integration. Theoretically it is good 

to use iterative scheme so that a more exact motion data of current time step is ensured, however, 

if the time step is small this delay will not play a dominant role in the computation.  

For the gravitational effects, the mass of the vessel is given by Δ=ρV, where V is the 

displacement of the vessel in calm water. The resulting static balance in the static vertical force 

is given by subtraction of the weight from the vertical component of the static Froude-Krylov 

force. It should be borne in mind that what is called the static Froude-Krylov force for heave is 

actually the change in vertical static force with respect to the still water equilibrium condition. 

For momentum calculation, it is simply the direct integration effect. 

The dynamic Froude-Krylov forces associated with the pressure pd in the wave field is  
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In the present thesis the integration is carried out over the instantaneous wetted surface at each 

time instant, so what are called herein the dynamic Froude-Krylov forces are in fact the exact 

forces associated with I

t




term of the incident wave. 

 

3.6 Numerical Scheme 

The Boundary Element Method (BEM) is adopted to numerically solve the formulated integral 

equations. The potential value over each panel is assumed constant.  
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The discretized form of the linearized free-surface condition is: 
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Here j is the free-surface panel index while M t and m t denote for the present moment t and 

the historical moment τ respectively, 
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on j-th panel at time τ. 

The discretized form of the integral equation in the outer domain is: 

  
1 1

1,2,...,

C CN N
M M c

ij j i ij nj

j j

A Memo B i N
 

        (3-30) 

where 

 

 

'
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j
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j
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n r r
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



  
      

   
 

  
    
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


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1 1
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ij j

ijs ij

B ds
r r



 
  
 
 

 ,  

1

1 1

C

m m
j j

M N
m m m m

i m nj j j j nj j

m j s s

Memo t G ds G ds


   

 
    
 
 

     where the integration on water- line is 

neglected due to numerical reasons. Thus we have   

  
1

1

1,2,...,

CN
M M c

j ij i ij nj

j

A Memo B i N




 
        

 
  (3-31) 

The discretized form of the integral equation in the inner domain is: 

  ( ) 0 1,2,3,...,

1

c f b

c f b

n

N
M MC D i N

ij j ij j
j

 

      


 (3-32) 

where 

2

1
( )

i j

C ds i jij jn r
s j ij

j

  
 

    
 



 and
1

( )D ds
ij jr

s ij
j

 


. cN , fN and bN denote for 

the panel numbers on control surface, free-surface and mean wetted surface respectively. The 

boundary condition is known on body boundary; from the free-surface condition we know that 

f is a function of
f

n




; from Equation (3-31) we get the relationship between c and c

n




; 

then for the inner domain integral equation, we will have 
c f bN N N   unknowns and 
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c f bN N N  equations. Substitute Equation (3-31) into Equation (3-32), taking into account 

matching condition (3-10), we get: 

 

 

 

1

1

, 1 1 1

1 1 1
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j j N j N
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



  




              
    

             
    

                              1, 2,3,..., c f bi N  

 (3-33) 

where the subscript o indicates “outer domain”. This equation, which is formulated on the 

control surface, body surface and free-surface, features much larger influence matrices. In 

consideration of the matrix‟s structure, the Generalized Minimum Residual method (GMRES) is 

chosen to solve the equation. After finding the solution of the equations, we get the velocity 

potential and the normal derivatives on control surface, free-surface and mean wetted hull 

surface. 

For the zero speed small amplitude problems, once the panelization is set up, there will not be 

any update, thus the matrices are constant. For nonzero speed problem or large amplitude 

problems, the panelization needs to be updated at every time step, thus it results in time-

dependent matrices which need to be updated at every time instant.  

 

3.7 Summary and Conclusions  

The large amplitude ship motion problem is formulated in this chapter and the hybrid method for 

calculating radiation and diffraction potentials is elaborated. This time domain hybrid method, 

which is a combination of time-domain transient Green function method and Rankine source 

method, is formulated to investigate the hydrodynamic forces. It is a further development of the 

time domain transient Green function method, as introduced in Chapter 2, in the sense that it still 

uses it to form the boundary condition on the matching surface but overcomes its main 

shortcoming on dealing with floating bodies with flared sections in the near field. Furthermore, 

it does not need so many panels over such a large free-surface area, as when applying the 

Rankine source method, since a robust boundary condition can be obtained on the control 

surface with the previously elaborated Green function method. The matching surface is fixed in 

space so that the difficult-to-treat waterline integral term vanishes. During the formulation, a 

free-surface simulator which is based on the linear free-surface condition is adopted. A 

systematic study will be needed to see the validity of this scheme in practical applications, 

which is also necessary for determining the position where to locate the matching surface.  
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The GMRES method is adopted to solve the resulting equations with large scale influence 

matrices. For the calculation of mj terms, a multi-step method is chosen so that to avoid the 

problem on calculating second order spatial derivatives of the velocity potential on body surface.
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Chapter 4 Simulation of Ship Motions at Zero Speed by 

Time-Domain Hybrid Method 

4.1 Small Amplitude Ship Motions in Regular Waves with Six Degrees of 

Freedom  

The large amplitude ship motion in waves theory has been formulated in the last chapter. 

Traditionally the ship motion is studied based on small amplitude assumption where the motion 

is assumed small so that when integrating Bernoulli‟s equation for calculating forces/moments, 

the contributions from the difference between the calm water level and the instantaneous wavy 

water surface will be of a higher order. Thus the calculation can be done up to the calm water 

level, which results in a fixed panelization on the mean wetted body surface. 

As elaborated in the last chapter, the equations of six degrees of freedom motion are based on 

Newton‟s second law, which is written in an inertial coordinate system. But the moments acting 

on the body are conveniently defined in a body-fixed coordinate system, thus transformations 

are necessary in order to write the equations of motion in the body-fixed system. These 

transformations lead to the so-called Euler equations of motion for a rigid body, which are exact 

and fully nonlinear. For small amplitude motions, such a complicated system is not preferred 

and a linearized system of equations is more suitable for attempting a solution. The theory of 

linear (small amplitude) ship motions in regular waves is briefly reviewed here (Lewis, 1988). 

The general form of the linearized equations in six degrees of freedom using body axes is,  

    
6

1

( ) 1,2,...,6jk k j

k

t F t j


   


  (4-1) 

where Δjk are the components of the generalized inertia matrix for the ship, in which the mass 

and moment of inertia terms, Δ and I, and all possible couplings are included. k are the 

accelerations in mode k; jF


represent the total forces or moments acting on the body in direction 

j. In linearizing the equations many of the terms in Δjk become zero, and Abkowitz (1969) has 

shown that for a ship with lateral symmetry (4-1) reduces to the following six explicit equations: 
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   

 
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c c
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z x F z x I F

x F x I I F

    

     

    

      

        

       

 
    

 
     

 
    

  (4-2) 

where  

Fj(t), j=1,2,3 are the total forces in the x, y, z directions respectively; 
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Fj(t), j=4,5,6 are the total moments acting about the x, y, z axes respectively; 

 is the total mass of the ship and Ijj, j=4,5,6 are moments of inertia around the x, y, z axes 

respectively; 

46 is roll-yaw product of inertia and vanishes if the ship has fore-and-aft symmetry;I46=I64; 

(xc, 0, zc) is the coordinate of gravity centre of the ship in the O‟xyz system; 

 j t is the acceleration in j-th degree of freedom, where j=1,2,…,6 refers to surge, sway, heave, 

roll, pitch and yaw.  

Comparing (4-1) and (4-2), the generalized inertia matrix can be obtained as: 

 
44 46

55

       0      0      0           0

 0            0    -     0      

 0      0            0     -     0
 

 0    -     0          0      -

    0    -     0           0

 0     

c

c c

c

jk

c

c c

z

z x

x

z I I

z x I

 

  

 
 



 

64 66    0     -     0       cx I I

 
 
 
 
 
 
 
 

  

  (4-3) 

This matrix can be readily evaluated in any specific case. If the origin is vertically in line with 

the gravity centre, all terms related to xc will be zero.  

As presented in Equation (4-1), Fj(t) represent the total forces or moments acting on the ship in 

body-fixed system. Likewise,  j t  are the accelerations resolved in body-fixed coordinate 

system. In the formulation and solving of the hydrodynamic problems associated with ship 

motion it is usually more convenient to work in earth fixed system. As far as the linearized 

equations of motion are concerned, the resolution of the forces, moments and motion amplitudes 

into one system or the other does not matter. The distinction between the two systems has been 

lost in the linearization.  

The forces on the right hand of Equation (4-2) can be subdivided into the gravitational and fluid 

forces: 

        1,2,...,6j Gj HjF t F t F t j   
  

 (4-3) 

Here the gravitational forces are due to the weight of the ship applied at gravity center and are 

usually combined with the hydrostatic part of the fluid forces as to give the net hydrostatic 

forces. The fluid forces acting on the ship, which contain the hydrostatic and hydrodynamic 

parts, are obtained by integrating the fluid pressure over the underwater portion of the hull. Thus 

the components of the fluid forces acting in each of the six DOF are given as  

    1,2,...,6

b

Hj j

S

F t Pn ds j  
 

 (4-4) 
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where jn


is generalized normal vector of the hull, P is the fluid pressure and 
bS is the wetted hull 

surface. 

Assuming the flow is inviscid and irrotational, the pressure on the body can be found by 

Bernoulli‟s equation as  
2

0.5P gz
t

  


    


, where the first two terms are the 

hydrodynamic contributions to the pressure and the third term represents the hydrostatic 

contribution. When this expression is substituted into Equation (4-4), the fluid forces may be 

divided into two parts as: 

        1,2,...,6

b

Hj j HSj HDj

S

F t gz n ds F t F t j
t


 

       
 


  

 (4-5) 

where 

  
b

HSj j

S

F t g zn ds  
 

 (4-6) 

  
b

HDj j

S

F t n ds
t




 


 
 (4-7) 

In order to find expressions for the above to insert into the equations of motion, the hydrostatic 

and hydrodynamic forces will be considered separately. 

To find the hydrostatic forces we must calculate the integral in Equation (4-6). The z value must 

be replaced by its equivalent values in the Gx‟y‟z‟ system and the integrals evaluated over the 

instantaneous wetted hull surface. In linear theory the contributions from the area between calm 

water level and the actual wavy water surface are of a higher order, thus the integral is evaluated 

up to the calm water level.  

The details of the integral evaluation have been explained in last chapter. Since the mean 

hydrodynamic forces are cancelled by the mean gravitational forces, the two are combined to 

give the net hydrodynamic forces. The final results for a vessel with port/starboard symmetry are 

given in a matrix notation as follows: 

          
6

*

1

1,2,...,6HSj HSj Gj jk k

k

F t F t F t C t j


     
  

 (4-8) 

where  *

HSjF t


is the net hydrostatic force on the body in jth direction, Cjk are the hydrodynamic 

restoring force coefficients and ηk(t) the arbitrary motions.  

The hydrodynamic restoring force coefficients jkC give the net hydrostatic force acting on the 

vessel in jth direction due to a unit displacement in kth mode of motion. Cjk may be evaluated as 

following: 



Chapter 4 Simulation of Ship Motions at Zero Speed by Time-Domain Hybrid Method 

50 

 

 

 

 

33

35 53

44

55 11

0     except for the valuesjk

T

C

C g B x dx

C C g xB x dx

C g GM

C gS g KB KG







 





  

 

   



  (4-9) 

The calculation of hydrodynamic forces acting on the vessel has been discussed separately in 

previous chapter, thus we will assume them as solved here and no further details will be given.  

Substituting the forces expressions into Equation (4-2), we finally get the governing equations of 

motions: 

        
6

1

1,2,...,6I R D

jk k jk k j j j

k

t C t F t F F j 


      
  

  (4-10) 

The components on the right-hand side, i.e.  ,  and I R D

j j jF t F F
  

, represent incident wave forces, 

radiation forces and diffraction forces.  

Equations (4-10) are the linearized equations of motions for an unrestrained vessel. There are six 

coupled, linear equations for the six unknown motions. They have been extensively used during 

the years and proved to be robust for studying ship motions under small amplitude waves‟ 

excitement. For an arbitrarily shaped vessel the six equations must be solved simultaneously. 

However, for the case of an unrestrained ship with port/starboard symmetry the six equations 

may be uncoupled into two sets of three equations. The vertical-plane or longitudinal motions 

(surge, heave and pitch) are uncoupled from the horizontal-plane or transverse motions (sway, 

roll and yaw). It should be noted that the lack of coupling between the vertical and horizontal 

modes is a consequence of linear theory. In nonlinear theory such cross-coupling will be present.  

 

4.1.1 The Simplified Head-Sea Case 

As illustrated in the preceding section, the longitudinal (vertical plane) motions of a symmetric 

ship in regular waves can be studied separately from the transverse motions. For longitudinal 

motions, we have the equations 

 

 

 

 

1 5 1

3 5 3

1 3 55 5 5

c

c

c c

z F

x F

z x I F

 

 

  

  

  

   


 


 


  

 (4-11) 

Furthermore, it has been found that for most comparatively long and slender ships surge has a 

minor effect and can be neglected. Mathematically, this can be achieved by removing the first 
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equation (η1≡0) and setting zc=0. If we further set xc=0, which means that the origin is vertically 

in line with the gravity centre, the equations of motion will be simplified to : 

 
3 3

55 5 5

 F

I F





 









 (4-12) 

Substituting the forces components into the above equation, we finally get the governing 

equations of motion for simplified head-sea case: 

 
             

             

3 33 3 35 5 30 33 35 37

55 5 53 3 55 5 50 53 55 57

t C t C t F t F t F t F t

I t C t C t F t F t F t F t

  

  

      


     




 (4-13) 

Note that in this simplified case, the origin of the coordinate system is at the gravity (mass) 

center of the body, which is assumed to lie on the calm waterplane. Solving the above equations 

in the time domain, we will get the time histories of the longitudinal motions. Then the steady-

state part can be taken for a harmonic analysis: 

 
0

1

( ) cos( ) sin( )
2

n nk
k k k

n

A
t A n t B n t  





    (4-14) 

Actually, for linear case,  0,  and , 1
k

n n

k kA A B n N n  are zero, thus the expression (4-14) 

becomes  

 1 1( ) cos( ) sin( )k k kt A t B t     (4-15) 

So the motions‟ amplitudes and phase angles with respect to the incident wave are extracted as: 

    
2 2

1 1

k k kA B    (4-16) 

 
1 1arg( , )k k kA B    (4-17) 

 

4.1.2 Beam-Sea Case 

The transverse motions‟ equations are expressed as:  
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
  


  

 (4-18) 

Under small amplitude beam seas condition, if we assume I46=0, then further simplification can 

be applied. There is still coupling terms between sway and roll. For sway motion, its prediction 

is often involved with maneuvering problems which is not in the scope of the present study. 
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Thus in the present study for validation purpose it is assumed  zc=0. Then we have a very 

simplified model for roll motion: 

44 4 4I F 


  

Furthermore, it is well known that in roll motion the viscous effect is very important for a good 

prediction. Mathematically, this is taken into account by introducing the viscous damping term 

(Ikeda et al., 1978). Substituting the forces components into the above equation, we finally get 

the simplified equations for simulating roll motion at beam-seas: 

            44 4 44 4 40 44 47 4dpI t C t F t F t F t F t       (4-19) 

where F4dp(t) is the force component related to viscous damping term and estimated as: 

   4 4*dp dpF t B t    

where Bdp is the viscous damping coefficient. 

 

4.2 Large Amplitude Head Seas Condition 

Following the discussion in Section 3.5, we continue our study on large amplitude ship motions 

under head waves‟ excitement. As the ship is port/starboard symmetric, we assume that for sway, 

roll or yaw: 2 1 30, 0, 0v      . Thus the aforementioned motion equations can be further 

simplified. If we neglect the surge motion, then the above equation becomes  
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 (4-20) 

Here it is assumed that 
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This is very similar to the linear equation (4-12) in head-sea case, but it is important to notice 

that the equation is formulated in the body-fixed coordinate system. 

The transformation matrices in head seas condition become:  

 
2 3 1 3 1 2 3 1 3 1 2 3 2 2

2 3 1 3 1 2 3 1 3 1 2 3

2 22 1 2 1 2

 +     +       0     

    +  +   0     1      0

    0                         

c c c s s s c s s c s c c s

T c s c c s s s s c c s s

s cs s c c c

   
   

  
   
      

 
  

1 2 1 2 2

1 1

21 2 1 2

1              1     0        

0              0     1        0

0     0    1/0   /     /

s t c t t

T c s

cs c c c



   
   

  
   
      

 (4-21) 

The transformation between two systems turns to: 
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1 2 34 2 1

5 2 2 5 2

2 3 3 26

1     0        

0     1        0       

0     0    1/  /

tt

c c

  

    

 

      
      

   
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

 



 (4-22) 

 1 2 3, ,
T

v v v   and  1 2 3, ,
T

     can be solved by the motion equations; then  1 2 3, ,
T

v v v and 

 1 2 3, ,
T

   can be obtained by an integration regarding to time. Afterwards rG and θ can be 

obtained by using the above expressions. 

 
3 5 2

0 0

,   

t t

Gz v dt dt     

4.2.1 Diffraction Forces and Radiation Forces  

The forces and moments in the motion equations are defined in the body-fixed system, while the 

forces and moments arising from the disturbance wave-field are solved over the mean wetted 

body surface. These forces are computed as though the ship is undergoing small amplitude 

sinusoidal motions in calm water.  The radiation problem is solved by using the velocity and 

acceleration information relative to the earth-fixed coordinate system. The diffraction problem is 

solved by using the incidental wave defined in earth-fixed coordinate system.  

These forces/moments are exerting on the hull at the actual position under instantaneous wave 

profile, though the computation will be done up to ship‟s mean wetted surface at upright 

position to reduce computational burden. In the present work, these forces need transforming 

into body-fixed system by using the transformation matrix.  

3 3 5 5

3 3 5 5

           

          

R R R R

D D D D

F f F f

F f F f

 

 
 

This treatment is consistent with the hydrodynamic force simulation in the present study.  

4.2.2 Incidental Wave Forces and Hydrostatic Forces 

The calculation of the Froude-Krylov force component is explained as following: 

 Update the panel information (geometric centre coordinates and normal direction) 

according to the motion results  

     

     

' ' '

2 2 2

'

' ' '

2 2 2

G G

G G

x x t c x s z x t s z

y y

z z t s x c z z t c z

    



     

 

 Determine those panels under the instantaneous wave profile by z≤ζ(x,y) for the 

computation; 
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 Calculate the incidental wave forces in body-fixed system 

 
 

 

, ,
 

b

I p p pI

S t

x y z
f t nds

t



 


 

 

 Transform the forces into earth-fixed system and insert them into the motion equation; 

3 2 3 5 5        I I I IF c f F f   

The hydrostatic forces computation is similar. 

 

4.3 Numerical Procedure for Time-Domain Ship Motions’ Simulation 

As explained in the previous chapter, the formulated boundary value problems are solved by 

using the ordinary panel method. Since the forces are assumed calculated by integration of the 

time dependent pressures, the motions are now simulated as following: 

1) Arrange the panelization for hydrodynamic computation; 

2) Set up the influence matrices; 

3) Calculate panel characters and arrange the mass matrix; 

4) SOLVE SMALL AMPLITUDE MOTION PROBLEM; 

5) Arrange the panels for calculating Froude-Krylov forces; 

6) SOLVE LARGE AMPLITUDE MOTION PROBLEM; 

7) Output the results. 

Regarding Step 4), the numerical scheme is explained by an application to the head-sea case as 

following: 

 The initial conditions are set as:      0:  0 , 0   for  3,5k kt k   , thus  0k can be 

calculated as:  

       

       

3 30 33 3 35 5

5 50 53 3 55 5 22

0 0 0 0 /

0 0 0 0 /

F C C

F C C I

  

  

       


     




 

 First prediction of displacement and velocity at the end of i-th step: 

     

   
   

1

1

1

1 1

1
1

2

k k k

k k

k k

i i i t

i i
i i t

  

 
 

     

  

   


  

   

  Update free surface condition and matching surface condition by using historical 

information,  1 i is calculated; then  1

jkF i are obtained. Using Equation (4-13), we 

get the first estimation of  1

k i as: 
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             
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  The displacement and velocity at the end of the -thi time interval are re-estimated as: 

       

       
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  
        

   

 
 

  If the difference between  2

k i and  1

k i are small enough, we store  2

k i  as  k i . 

Then the displacement and acceleration at the end of the -thi time interval are set as:  

   

   

2

1
* ,    

k k

k k

i i
t i t

i i

 

 

 
  

  
 

Otherwise, by setting these results as first prediction and returning to previous steps, the 

calculation is repeated until converged results are obtained.  

  The calculation will march to the next step and be returned to step 2. 

For the large amplitude motion simulation, the main difference is to calculate the hydrostatic and 

Froude-Krylov forces and moments on the instantaneous wetted surface. 

 

4.4 Results of Small Amplitude Radiation and Diffraction Problems 

In order to validate the hybrid method and the implemented numerical scheme, numerical tests 

have been carried out for small amplitude forced motion and diffraction problems of different 

bodies. The results from present method have been compared with available experimental data, 

numerical results of NEWDRIFT (3D frequency domain panel method code, Papanikolaou, 

1985) and other well-established methods. 

4.4.1 Rectangular Barge  

The first test has been done with a rectangular barge, which has been also investigated by 

NEWDRIFT as an example case and is known from previously published work of O. Faltinsen 

et al (1974). The results for the barge, which is 90m×90m×40m, are obtained by NEWDRIFT 

with 4×153 panels. In the present stage, since it is the very beginning of numerical test, we do 

not want to burden the work with many panels. So at first we use 150 panels on the control 

surface (CNP), 150 panels on half of the body (BNP) and the panel number on the free surface 

(FNP) changes as the enclosed free surface changes. Figure 4.1 is the view for 1600 panels on a 
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3L×1.5L free-surface area. The results from different free-surface settings are shown in the 

following tables. 

As can be seen from Table 4.1, the results reach a converged state as we increase the size of the 

free-surface. On vertical direction, the results are quite stable and agree well with NEWDRIFT. 

On horizontal direction, the results approach to NEWDRIFT results as we increase the density 

of grids on free surface, which indicates that the accuracy of free surface simulation is important 

for the simulation. It should be noticed that due to the fact that the velocity potential decays on 

vertical direction exponentially and the contribution on vertical forces are from the panels on the 

bottom only, the free surface simulation has much less influence on A33 and B33 than on A11 and 

B11. 

 

Figure 4.1 Pers pective view of the panelization scheme  

 

Table 4.1 Hydrodynamic coefficients of the barge with di fferent free-surface panelization, T=10s 

 Added Mass Damping Coe. 

A11 A33 B11 B33 

PRESENT STUDY 

BNP=150 

CNP=150 

FNP= 800 0.12719 0.66537 0.40587 0.00854 

FNP=1600 0.21525 0.67236 0.46757 0.01405 

FNP=2112 0.18837 0.67156 0.48862 0.01357 

NEWDRIFT  RESUTLS 0.17724 0.66787 0.47024 0.01672 
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In order to see the influence of the free-surface size, the force histories from different settings 

are also compared, shown in the following. From Figure 4.2 we observe that the results from 

using 1600 panels is very close to the results from using 2112 panels on free surface. 

Considering the seriously increased computing burden due to the increase of panel numbers, we 

may say that 1600 panels on a 3L×3L free-surface area can be used to yield good results for the 

present case. 

 

  

 

Figure 4.2 Force histories on a barge with different free-surface panelization, T=10s 

 

The next step is to investigate the influence of the panels on the matching surface, in other 

words, to check if 150 panels are enough or not. For this reason, we employ another meshing 

plan, in which we increase the number of panels on the vertical boundary but retain the same 

meshing on the bottom (assuming that memory effects decrease exponentially with depth). The 

hydrodynamic coefficients‟ results are shown in Table 4.2. Although very limited, we do 

observe some improvement from using more panels on the matching surface meshing.  

For this case, since the body has a double symmetric character, there is not any essential 

difference between head seas condition and beam seas condition. Yet though, an attempt has 
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been done for “beam seas condition” without using any symmetric/antisymmetric character, 

which means the full fluid domain is panelized and simulated. Results on diffraction problem are 

shown as following in Figure 4.3. The Froude Krylov moment amplitude from both the present 

method and NEWDRIFT are identical, proves that the integration process is correct. The 

agreement on exciting force is also good, which indicates that the results for diffraction 

problems agree well. 

 

Table 4.2 Hydrodynamic coefficients of the barge with di fferent control-surface penalization, T=10s 

 Added Mass Damping Coe. 

A11 A33 B11 B33 

BNP=150 

FNP=1600 

CNP=150 0.21525 0.67236 0.46757 0.01405 

CNP=210 0.20082 0.67181 0.47085 0.01399 

NEWDRIFT  RESUTLS 0.17724 0.66787 0.47024 0.01672 

 

 

 

Figure 4.3 Froude-Krylov moment and wave exciting moment of a barge at beam seas  

 

4.4.2 Hemisphere Case 

The second application has been done to a floating hemisphere with radius R=1.0m to test the 

quality of free surface simulation. This case has been also studied by the TDGF method in 
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Chapter 2. The panels are distributed on the matching surface, free surface and body boundary. 

Figure 4.4 is a perspective view of the case k=3.0.The matching surface is placed one wave-

length away from the body boundary and 8 panels are used in a wave length on radial direction. 

 

Figure 4.4 Panelization for the simulation of the hemisphere  

 

On the matching surface fixed numbers of panels are used. The matching surface is a 

combination of a vertical cylinder x2+y2=RM
2 (-R ≤ z ≤ 0) and a semi ellipsoid 

 
22 2

2 2
1

M

z Rx y

R R


   (-2R ≤ z ≤ -R). Here RM is the radius of the matching surface. As can be 

seen, the panels on the ellipsoid are rather rough because it is believed that the influence is very 

limited due to its depth. According to our experience, 126 panels are far more enough for a 

quarter of the sphere surface. The panels here are fixed and distributed kind of evenly. On the 

free surface, different schemes are used. In the present study, the length of free-surface panel‟s 

edge is set so that ∆l≈λ/N, (N=4, 8, or 12) and the distance between matching surface and body 

boundary is set as 0.5λ, 1.0λ and 2.0λ respectively. The hydrodynamic coefficients‟ results from 

different cases are shown in the tables (Table 4.3 to 4.5).  

From the first two tables we see that, when the matching surface is half wave-length away, 

which is case RM=R+0.5λ, the final results is not stable, especially when the panel size is large; 

When the matching surface is one wave- length away, which is case RM=R+λ, the final results is 

not only stable, but also a convergence trend is observed when we decrease the size of the panel. 

When the matching surface is two wave- lengths away, which is case RM=R+2,0λ, the final 

results is stable and convergent but it‟s clear that more panels are preferred. Similar 

phenomenon is observed from the results of k=3.0 case. In general, to set RM=R+0.5λ does not 
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yield satisfactory results while the other two can give stable results if the suitable panel size is 

used. 

Table 4.3 Added mass and damping results of a barge, k=1.5  

 0.5MR R    
MR R    2.0MR R    

A11 B11 A11 B11 A11 B11 

N=4 0.3393 0.3799 0.2830 0.3413 0.2554 0.3355 

N=8 0.3353 0.3968 0.3419 0.3851 0.3323 0.3783 

N=12 0.3299 0.3968 0.3584 0.3862 0.3512 0.3837 

Chen‟s results 0.3687 0.4019 0.3687 0.4019 0.3687 0.4019 

 A33 B33 A33 B33 A33 B33 

N=4 0.4027 0.1827 0.3877 0.1543 0.3716 0.1379 

N=8 0.3895 0.1657 0.3826 0.1688 0.3794 0.1575 

N=12 0.3866 0.1599 0.3848 0.1687 0.3847 0.1579 

Chen‟s results  0.3894 0.1605 0.3894 0.1605 0.3894 0.1605 

 

Table 4.4 Added mass and damping results of a barge, k=3.0  

 0.5MR R    MR R    2.0MR R    

A11 B11 A11 B11 A11 B11 

N=4 0.1829 0.2050 0.1613 0.1843 0.1493 0.1764 

N=8 0.1793 0.1926 0.1752 0.2136 0.1728 0.2100 

N=12 0.1806 0.1878 0.1807 0.2161 0.1796 0.2149 

Chen‟s results  0.1718 0.2234 0.1718 0.2234 0.1718 0.2234 

 A33 B33 A33 B33 A33 B33 

N=4 0.4162 0.0577 0.4073 0.0441 0.4061 0.0412 

N=8 0.4113 0.0503 0.4009 0.0479 0.4039 0.0475 

N=12 0.4109 0.0494 0.4015 0.0493 0.4054 0.0484 

Chen‟s results  0.4115 0.0454 0.4115 0.0454 0.4115 0.0454 
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The first impression of k=6.0 case will be that, stable added mass results can be obtained by any 

of these settings, although the converged added mass results deviate a little from the “standard 

results” while the damping coefficient results oscillate obviously. This might be due to the fact 

that the disturbed-wave length is relatively short so that an accurate simulation of the wave is 

more difficult. But the shorter the wave length becomes, the less will be our interest.  

 

Table 4.5 Added mass and damping results of a barge, k=6.0  

 0.5MR R    MR R    2.0MR R    

A11 B11 A11 B11 A11 B11 

N=4 0.2034 0.0636 0.1802 0.0655 0.1787 0.0667 

N=8 0.2057 0.0489 0.1852 0.0786 0.1845 0.0807 

N=12 0.2065 0.0467 0.1869 0.0791 0.1864 0.0828 

Chen‟s results  0.1784 0.0779 0.1784 0.0779 0.1784 0.0779 

 A33 B33 A33 B33 A33 B33 

N=4 0.4475 0.0076 0.4483 0.0079 0.4484 0.0084 

N=8 0.4462 0.0056 0.4468 0.0089 0.4485 0.0098 

N=12 0.4460 0.0055 0.4467 0.0090 0.4482 0.0097 

Chen‟s results  0.4575 0.0065 0.4575 0.0065 0.4575 0.0065 

 

If we examine all the results together, we will see that for Ν=4 cases, the results are not stable. 

And the longer the wave length is (smaller wave number), the worse the results become. This is 

an indication that for very long waves, more panels in a wave length are preferred.  

From the comparison among the results of those three cases, we may draw some preliminary 

conclusions. For the case RM=R+0.5λ, the results are not very stable. But if we use smaller panel 

size, this setting can still produce some acceptable results. For the case RM=R+λ, the results are 

generally stable. They are not very sensitive to the change of panel size, which is usually 

preferred in the calculation. For the last case RM=R+2,0λ, it gives, if not better, as good results 

as the second would do. But since the free-surface area is much larger than the second case, it‟s 

not the optimal choice. 

The optimal setting which is recommended here for a good simulation of the free-surface is to 

set RM=R+λ and ∆l≈λ/N, (N=8). 
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4.4.3 Wigley Case  

A Wigley type ship model, the hull form of which has the mathematic description of y/b=[1-

(2x/L)2][1-(z/D)2][1+0.2(2x/L)2] where 2b/L=0.1 and D/L=0.0625, is studied.  

For this hull 256 panels are distributed on the half-body. On the matching surface 148 panels are 

used. On the free surface, which is a wave length far away from the hull border, different 

schemes are employed. Figure 4.5 shows a perspective view of a case for L=2m and wave 

number k=7. Notice that the panels on the vertical matching surface are not evenly distributed.  

The added masses and damping coefficients of forced surge and heave motions are plotted in 

Figure 4.6. Results include those from the present hybrid method, NEWDRIFT and the linear 

version TDGF method.  

A good agreement is observed throughout all the studied range except some deviation at low 

non-dimensional wave numbers for the vertical direction motion. This might be due to the fact 

that, at low wave-number, which means a long wave, the present free-surface penalization is not 

sufficient for yielding accurate results. For the longitudinal d irection surge motion, although the 

trend is exactly the same, the deviation is more obvious. This is partly due to that the Wigley 

hull is very narrow in this direction so that it is more difficult to obtain very accurate results, 

because the resulting pressure gradient in the longitudinal direction is very small. As indicated in 

the box-barge case study, indeed the longitudinal direction results are more sensitive with 

respect to the free surface panelization. Recalling to the panelization used in that case, we may 

note that the panelization in the present case is comparatively rough. It should be expected the 

results can be improved if a denser panelization is used.  

The results from forced roll motion are plotted Figure 4.7. Although the Wigley hull still has the 

left/right (bow/stern) symmetric character in beam seas condition, this is in general not the case 

for a real ship, thus we did not use this advantage in the computation. Instead, the whole fluid 

domain is panelized so that the panel number is actually doubled compared to the head seas 

condition.  

From the comparison with respect to the added mass and damping coefficients (wave making 

part), we observe that in high frequency range, as the wave length is quite small (comparable to 

ship beam), it is difficult to reach a converged value. It is recommended that the free surface 

width should be at least 2B+2λ.  

The diffraction problem has been also studied. In Figure 4.8 we have the RAOs of both Froude-

Krylov force and total wave exciting force. The Froude Krylov RAOs from both the present 

procedure and NEWDRIFT are identical, proves that the integration process is correct. But there 



Numerical Simulation of Large A mplitude Sh ip Motions and Applications to Ship Design and Safe Operat ion 

63 

is some slight deviation in the exciting force results, which indicates differences in the results 

for the diffraction problem. 

 

Figure 4.5 Panelization for the Wigley case, with 1215 panels in total  

 

 

 

Figure 4.6 Added mass and damping coefficient results of the Wigley hull, Fn=0.0  
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Figure 4.7 Roll added mass and damping coefficient of the Wigley hull, Fn=0.0  

 

Figure 4.8 Froude-Krylov moment and total  wave exciting moment of the Wigley hull, Fn=0.0 
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4.4.4 Series 60 Case 

The model to be studied is a Series 60 hull with block coefficient CB=0.6 (hull form data taken 

from SHIPFLOW example cases, 2005). The general dimensions are 1.0158×0.1333×0.0533. On 

the matching surface 148 panels are distributed while on the half-body 238 panels are distributed. 

On the free surface, different schemes are used. Fixed panels are used near the hull in a very 

limited area in order to minimize the panelizing work. Figure 4.9 is the perspective view of a 

case with wave number k=10. 

The added masses and damping coefficients are plotted in Figure 4.10. Results include those 

from the present hybrid method and NEWDRIFT. A good agreement is observed for every 

motion mode throughout all the studied range. Considering that the previous TDGF method, 

which uses the transient Green function, cannot deal with hulls that have flared sections at the 

waterline due to numerical problems, the hybrid method presently developed has a definite 

advantage at this point. 

 

 

 

Figure 4.9 Panelization for the Series 60 case, with 1224 panels in total. 
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Figure 4.10 Added masses and damping coefficients of Series 60 hull, Cb =0.60, Fn=0.0  
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4.4.5 Diffraction and Radiation Problems of S175 Ship 

Exploiting the experience and knowledge gained from the preparatory studies, reported earlier, 

the diffraction and forced motion problem of the ITTC benchmark containership S175(ITTC 

Seakeeping Committee Report, 1978) in beam seas condition is studied in this section. During 

the computational analysis of the S175 ship, the width of the free surface area is set about 2B+2λ 

(e.g. as shown in Figure 4.11) except for the very short wave range. Obtained results for the 

added mass and damping coefficients, are shown in Figure 4.12 and for the diffraction moment 

amplitude in Figure 4.13, plotted against the results of the panel code NEWDRIFT; good 

agreement between the results is generally observed.  

 

Figure 4.11 Panelization for S175 ship computation; with 3394 panels in total  
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Figure 4.12 Roll added mass and damping coefficient of S175 ship, Fn=0.0 

 

Figure 4.13 Froude-Krylov moment and wave exciting moment of S175 Ship, Fn=0.0  

 

4.5 Motion Simulation under Small Amplitude Incident Waves 

The waves excited small amplitude ship motions are studied and results thereof are shown in this 

section. As the wave excited motions are assumed small, hence the hydrodynamic forces are 

calculated up to ship‟s mean wetted surface and restoring forces are approximated by ship‟s 

geometric parameters. 

4.5.1 Wigley Case, Head Seas Condition 

The first set of results has been obtained for the two Wigley-hulls investigated by Journée 

(1992). The two hulls are mathematically defined as: y/b=[1-(2x/L)2][1-(z/D)2][1+0.2(2x/L)2], 
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where 2b/L=0.1 for Wigley-III, 2b/L=0.2 for Wigley-IV, and D/L=0.0625. The hulls‟ surfaces 

have been discretized by 256 panels in the port part, while 148 panels are used on the control 

surface. The free-surface has been discretized according to the incident wave length.  

The numerical results of ship motions in head-sea are plotted in the following figures. Figure 

4.14 and Figure 4.15 show the nondimensionalized time series of incident wave, heave motion 

and pitch motion at λ/L=1.0. Very stable results have been reached after two wave periods. 

Figure 4.16 and Figure 4.17 show the heave and pitch motion results, including amplitudes and 

phase angles for both hulls. A good agreement is observed for all the cases among the two 

numerical methods and most of the available experimental data, except for the pitch motion, for 

which some unexpected deviation at large wave lengths (quasi-static case) appears. 

 

 

Figure 4.14 Motions’ histories of Wigley III at zero speed, λ/L=1.0 

 

Figure 4.15 Motions’ histories of Wigley IV at zero s peed, λ/L=1.0  
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Figure 4.16 Prediction of heave and pitch motions of Wigley III at zero s peed 

 

 

Figure 4.17 Prediction of heave and pitch motions of Wigley IV at zero speed 
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4.5.2 Series60 Case, Head Seas Condition 

The second computational example refers to a Series 60 hull with block coefficient Cb=0.6 

which has been also studied extensively by many researchers (e.g. Stefun, 1960). The hull‟s 

surface has been discretized into 363 panels on the port part, while 148 panels are used on the 

control surface. The free-surface has been discretized according to the wave length.  

The numerical results for the motions in head-seas are plotted. Figure 4.18 shows the heave and 

pitch results, including amplitudes and phase angles. The plotted experimental data of heave and 

pitch amplitudes are reproduced from Fig 13&14 of Stefun‟s paper (1960). The phase angles for 

heave and pitch are taken from the same source (there from Fig 6 to Fig 12). A generally good 

agreement among different numerical methods and the experimental data is observed for all the 

cases, though some shift for the heave and pitch phase angles, which are very sensitive, is noted. 

 

 

Figure 4.18 Comparison for heave and pitch motions of Series60 at zero s peed 

 

4.5.3 Roll Motion of a Barge  

The barge, which was studied on diffraction and forced motion problems in the previous section, 

is chosen for the first application to roll motion simulation. Considering the characteristic 
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rectangular body type, some viscous damping should be actually introduced in the motion 

simulation. Lack of this treatment is expected to lead to deviations from experimental data and 

other numerical results which include viscous damping around the resonance region. 

 

Figure 4.19 Linear motion history of the barge with an incident wave λ=60m 

 

Figure 4.20 Linear motion history of the barge with an incident wave λ=90m 

 

Figure 4.21 Linear motion history of the barge with an incident wave λ=135m 
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Figure 4.22 Linear motion results from NEWDRIFT and the hybrid method 

 

It is observed that the roll motion of this barge takes much longer time to arrive at a steady state, 

if we leave the body completely free to respond to the incident wave. However, if we proceed 

with a preliminary estimation of the velocity amplitude and implement it in the initial conditions 

(noted as Condition 1 and 2 as following), the oscillation time to reach the steady state is 

reduced rapidly, as revealed in Figure 4.23. On the other hand, these results show the influence 

of initial conditions in a time domain simulation. In specific nonlinear problems, e.g. nonlinear 

roll motion problems, with different initial conditions, the motion may reach a different steady 

or even unsteady state (Spyrou and Thompson, 2000), at last. 

Condition 1: a(t=0)=predicted value; v(t=0)=0; η(t=0)=0;  

Condition 2: a(t=0)=predicted value; v(t=0)= predicted value; η(t=0)=0; 

 

 

Figure 4.23 Dis placement of the barge, small amplitude incident wave, λ=60m 
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4.5.4 S-175 Ship Case 

The S-175 container ship, which has been investigated thoroughly by ITTC members in 

seakeeping benchmark studies since late 70ties (ITTC seakeeping committee, 1978, 1981, 1984), 

is chosen as another validation case. The ship‟s hull surface was discretized by 380 panels on the 

port side, while 148 panels are used on the control surface. For this zero speed case, only the 

numerical results from the panel code NEWDRIFT were available and have been plotted against 

the present HYBRID method results. The numerical results for the motions in head-seas are 

plotted in Figure 4.24. A good agreement is observed throughout the whole computational range, 

except for some slight deviation when the wave length is long (quasi-hydrostatic case).  

For the S175 hull, using proper initial conditions and introducing the viscous damping 

correction by Ikeda and Himeno‟s method (1978), the roll motion can be predicted quite 

satisfactorily. Figure 4.25 and Figure 4.27 show the roll simulation under the excitation of 

different wave conditions. For the viscous damping correction, an iteration scheme is needed, 

which is time-consuming. If experimental data are available, this part can be simplified.  

 

 

 

Figure 4.24 Prediction of heave and pitch motions of S175 ship at zero s peed 
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For the case of λ=169m, an additional simulation has been carried out, i.e., replace the linear 

restoring moment with instantaneous restoring moment calculated on the actually wetted surface. 

Of course, under such a condition, the roll amplitude may become quite large so that the 

estimated viscous damping coefficient based on Ikeda & Himeno method may substantially 

deviate from the true value. It is, however, of interest to see how the time varying instantaneous 

restoring moment performs in a non-harmonic way, as shown in Figure 4.28.  

 

 

 

Figure 4.25 Roll dis placement of S175 ship with an incident wave λ=120m 

 

 

 

Figure 4.26 Roll dis placement of S175 ship with an incident wave λ=400m 
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Figure 4.27 Roll dis placement of S175 ship with an incident wave λ=169m 

 

Figure 4.28 Nondimensional time varying restoring moment of S175 ship at beam seas, ζα=0.02λ, λ=169m 

 

4.6 Large Amplitude Ship Motion Simulation in Head Seas 

The large amplitude ship motions in waves are studied in this section. As the motion amplitude 

is assumed to be large, the following treatment will be necessary:  

1) the incident wave forces and restoring forces should be exactly calculated;  

2) the hydrodynamic forces should be also calculated up to ship‟s instantaneous wetted surface.  

In the present study, we calculate the incident wave forces and restoring forces up to the non-

disturbed incident wave profile, not the exact wave profile affected by diffraction and radiation, 

while the diffraction and radiation problems are calculated up to the mean wetted surface thus 

we can avoid re-panelization at each time instant.  These assumptions are good for fast 

computation in potential flow framework.  
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4.6.1 Wigley Hull Case 

The Wigley-hull which has been investigated by Journée(1992), is mathematically expressed as 

y/b=[1-(2x/L)2][1-(z/D)2][1+0.2(2x/L)2], where 2b/L=0.1 for Wigley-III.  

The hull surface was discretized by 256 panels in the port part while 148 panels are used on the 

control surface. The hydrostatic and Froude Krylov forces due to incident wave at different 

wave heights are calculated up to undisturbed incident wave profile; 3650 panels are used on 

half body, whereas 1393 panels are used to represent the deck closing the top of the ship above 

waterline. The deck height is set as Dm/D=0.1/0.0625. The panelization is shown in Figure 4.29. 

This hull surface panelization is independent and used for calculating Froude-Krylov force and 

hydrostatic force. 

Figure 4.30 shows the numerical results of motion amplitudes and phase angles in head seas. It 

is noticed that for moderate sea state (A/λ=0.008, 0.02), the large amplitude simulating results 

are very close to the results based on small amplitude assumptions, which were obtained in 

previous study presented earlier. But for the high waves case, with A/λ= 0.04, the large 

amplitude computational results show a larger amplitude. One point which deserves our special 

attention is the excellent agreement with experimental data with respect to the phase angle. In 

the experiment, the nominal wave amplitude is ζa=0.02m for a 3m long model.  

Figure 4.31 to Figure 4.34 show the nondimensionalized histories of heave and pitch motions for 

λ/L=1.0&1.5 under different wave excitation, namely, Froude-Krylov linear, Froude-Krylov 

exact with A/λ=0.008, 0.02 and 0.04 respectively. It is observed from these time histories that, 

as the wave amplitude increases, the nonlinearity becomes stronger, that means flatter wave 

trough and sharper wave crest.  

During the simulation, it is observed that for long waves, the motion results become unstable 

and the simulation crashes after several wave periods. A similar phenomenon was noticed for 

shorter wave cases after longer time simulation. A deeper study showed that the fixed control 

surface is responsible for this error. As the wave length increases, the control surface sho uld be 

placed deeper, say at least 0.5λ. Figure 4.35 shows a long time simulation for / =1.0L  case 

with the new setting. A stable performance is observed. But when simulating / =1.5L case, it is 

observed that the computation becomes unstable after 30 wave periods (not shown here). 

Although the simulation eventually also crashed, a great improvement was observed. It is 

believed that if we increase the depth of the control surface, we will have better results for the 

state of longer waves.  
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The impulsive motion phenomenon of slamming, are not considered in the present simulation; 

however, the likely flooding of ship‟s deck is considered by forming the upper boundary of 

ship‟s hull; the resulting downward force and related moment are calculated by integrating the 

Bernoulli pressure. The instantaneous wetted surface used for the hydrostatic and Froude-Krylov 

force computations are shown in Figure 4.36 to Figure 4.39, noting that the motion data, or the 

actual ship position, is not revealed. 

 

Figure 4.29 Panelization for Froude-Krylov force computation 

 

 

 

Figure 4.30 Results on heave and pitch motions of Wigley-III, Fn=0.0  

 



Numerical Simulation of Large A mplitude Sh ip Motions and Applications to Ship Design and Safe Operat ion 

79 

 

 

Figure 4.31 Nondimensionalized heave motion at λ/L=1.5 at different wave amplitudes  

 

 

Figure 4.32 Nondimensionalized pitch motion at λ/L=1.5 at di fferent wave amplitudes  

 

 

Figure 4.33 Nondimensionalized heave motion, λ/L=1.0, with di fferent computation setting  
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Figure 4.34 Nondimensionalized pitch motion, λ/L=1.0. with di fferent computation setting 

 

 

Figure 4.35 Nondimensionalized nonlinear heave and pitch motion, λ/L=1.0, H/λ=0.04 

 

 

Figure 4.36 Wetted surface at t/T=6 for Froude-Krylov force calculation (λ/L=1.5, H/λ=0.04) 

 

 

Figure 4.37 Wetted surface at t/T =6.25 for Froude-Krylov force calculation (λ/L=1.5, H/λ=0.04) 
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Figure 4.38 Wetted surface at t/T =6.5 for Froude-Krylov force calculation (λ/L=1.5, H/λ=0.04) 

 

 

Figure 4.39 Wetted surface at t/T =6.75 for Froude-Krylov force calculation (λ/L=1.5, H/λ=0.04) 

 

4.6.2 Series60 (Cb=0.6) Case 

The large amplitude ship motion model has been applied to the Series 60 hull with block 

coefficient Cb=0.6. For comparison purposes, the same panelization as for the small amplitude 

motion simulation is used. The numerical results for the motions in head-seas, including 

amplitude and phase angle against the incident wave, are plotted in Figure 4.40. The plotted 

experimental data of heave and pitch amplitudes are reproduced from Fig 13&14 of Stefun‟s 

paper (1960). The phase angles for heave and pitch are taken from the same source (there from 

Fig6 to Fig 12). A good agreement among different numerical methods and the experimental 

data is observed for all the cases. What is more important, the agreement between experimental 

data and large amplitude computation is better than the agreement between experimental data 

and small amplitude computation. Figure 4.41 shows the nondimensionalized histories of 

incident wave, heave motion and pitch motion at / =1.0L . It is seen that for the zero speed case, 

heave and pitch motions arrive at a steady state after about 3 wave periods of excitement.   

An interesting phenomenon was observed for the short wave range computation, as shown in 

Figure 4.42. It appears that the nonlinear pitch motion is around another position which is 

different from the upright position. It is confirmed by further analysis that at upright position, 

the trim moment due to hydrostatic pressure is non zero, but takes a quantity which will induce 

about 0.9◦ trim. This should be the actual mean position about which the pitch motion takes 

place. The trim is estimated by α=M2/ρgA2
w

 

(Assuming GML about equal BML). Here α is the 

trim angle, M2 is the pitch moment. A2
w is the corresponding moment of inertia about y-axis. 
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Figure 4.40 Results of Series60 heave and pitch motions at zero speed 

 

 

Figure 4.41 Nondimensionalized nonlinear heave and pitch motion at λ/L=1.0 with H/λ=0.04 by setting the 

bottom of control surface at d/ λ=0.9  
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Figure 4.42 Series60 pitch motion in a wave λ/L=0.5, small amplitude  and large amplitude with A/λ=0.01 

 

4.6.3 S175 Ship Case  

The S-175 container ship has been investigated in various benchmark studies by ITTC members 

since the late 70ties and until today it is still a very good model for validation purpose due to the 

richness of relevant data. The herein plotted numerical results include those from NEWDRIFT, 

HYBRID method linear simulation and HYBRID method large amplitude simulation. The 

numerical results for the motions in head-seas are plotted in Figure 4.43. Besides the good 

agreement between NEWDRIFT and the small amplitude HYBRID simulation, the results from 

large amplitude simulation show a significant decrease on motion amplitude response operator 

where the wave length is about the same as the ship length, especially for the heave. 

Unfortunately, for this zero speed case, we did not find experimental data for comparison.  

Figure 4.44 shows the nondimensionalized histories of heave motion and pitch motion at 

λ/L=1.25, compared to the Hybrid method linear simulation results. It is observed that the 

nonlinear simulations‟ character is quite different from the linear simulations‟. For this case, 

which corresponds to 250 steps in the code, for the linear simulation it  took about 15 minutes on 

a regular PC hardware with Intel Core 2 QUAD CPU(Q8200 2.33GHz); the following 250 steps 

of nonlinear simulation, with the diffraction problem pre-solved, took about 14 minutes CPU 

time. This time record refers to the motion subroutine only, thus not including the entire 

calculation effort. 
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Figure 4.43 Comparison for heave and pitch motions of S175, Fn=0.0  

 

 

Figure 4.44 Nondimensionalized nonlinear heave and pitch motion at λ/L=1.25, head seas, Fn=0.0  
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4.6.4 Modified Wigley Hull Case 

As shown in the previous studies, at different incident wave states, though the hydrodynamic 

forces are still taken into account up to the mean wetted surface, due to the fact that the Froude-

Krylov and hydrostatic force computation include the effect of the actually wetted body surface, 

the predicted motions agree better with the experimental data than results based on small 

amplitude motion assumption. In other words, the large amplitude model is able to deal with the 

effect of the actual wetted-surface, though not entirely exactly. This capability allows us anyway 

to draw important conclusions about the effect of the above water hull shape, which is 

interesting both from the design and ship‟s operation point of view. 

In this section, we apply the motion models to a Modified Wigley III, which has the same 

underwater geometry as the Wigley-III hull, but a flared above-water hull shape, as shown in 

Figure 4.45. The definition of the above water hull is as following: 
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Heave and pitch motions‟ results are shown in Figure 4.46. From this comparison, it is clear that 

the motion amplitude of this modified hull shows a clear decrease when compared to the original, 

wall-sided hull, which is consistent with a common conclusion on the effect of the above-

waterplane hull‟s flare; thus, the importance of the exact calculation of Froude-Krylov force and 

hydrostatic restoring force during motion simulation is confirmed. 

During the simulations (the results of another hull which has more flare in the middle body but 

less flare on the ends are not shown here), the following phenomena are observed:  

1) the nonlinearity is more obvious when the incident wave length is between 0.8L and 1.4L, 

which corresponds to the region of ship‟s increased motion response due to heave-pitch 

resonance; 

2) the nonlinearity is more obvious when the body has flare in the bow and stern area;  

3) the nonlinearity is more obvious when the body does not have bow-stern symmetric shape. 

The first observation is more related to the wave-body interaction while the other two points are  

more about above waterplane geometry‟s influence through the hydrostatic and Froude-Krylov 

forces‟ calculation. The heave and pitch motion histories of two hulls in head seas with λ/L=1.0 
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are shown in Figure 4.47. The motion amplitudes of the modified hull are smaller than those of 

the original hull. Furthermore, the motion histories of the modified hull, which features slight 

flares on the ends, have a more obvious nonlinear behavior.  

 

 

 

Figure 4.45 Body plan of the modified Wigley hull 

 

 

 

 

 

 

Figure 4.46 Comparison for heave and pitch motions of Modified Wigley Hull at zero s peed 
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Figure 4.47 Nondimensionalized nonlinear heave and pitch motion at λ/L=1.0, head seas, Fn=0.0  

 

 

4.7 Conclusions  

The time domain hybrid method, which was formulated in the previous chapter, has been 

validated by extensive case studies on simulating hydrodynamic forces and ship motions at zero 

speed.  

During these studies, a free-surface simulator which is based on the linear free-surface condition 

was adopted. Systematic studies show that it can yield good results. Based on the detailed study 

of a hemisphere, a general conclusion on choosing the size and paneling of the free-surface is 

achieved; subsequent successful applications to a variety of body cases prove the feasibility of 

the concluded concept. 

Regarding the computational time, with 1000-2000 panels distributed on the boundary of the 

inner domain, it takes a few minutes to set up all the necessary influence matrices. Then during 

the time-marching simulation, a few seconds are needed for every time step, if the motion is 

prescribed (forced motion). Else, an iterative scheme is needed to arrive at a converged state, 
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thus more time will be consumed. For simulating the motion for about 10 wave periods at zero 

speed, it takes less than one hour on a regular PC hardware with Intel Core 2 QUAD 

CPU(Q8200 2.33GHz). 

For the validation of motions, results for both small amplitude and large amplitude simulations 

are shown. In the large amplitude motion simulation, the hydrostatic and Froude-Krylov forces 

are calculated up to undisturbed wavy surface, while the hydrodynamic forces are calculated up 

to mean wetted surface so as to reduce the computational burden. According to the obtained 

results, these assumptions appear to be rational simplifications for fast computation in potential 

flow framework. On the other hand, the fully nonlinear computation is still not affordable, or the  

efficiency is questionable.  

Obtained results include the added mass and damping coefficient of different bodies at different 

forced motion modes, diffraction force amplitude of different bodies, and ship motions by 

assuming small amplitude and large amplitude. Comparisons have been made between the 

results obtained by the present hybrid method, available experimental data, and other numerical 

methods. Good agreements are observed throughout the studies. When the large amplitude 

motion model is applied, nonlinear phenomena, either by checking the RAOs or the motion time 

history, are noted, compared to the prediction based on small amplitude assumptions. The 

present model proves to be capable of studying the above water hull shape‟s effect on ship 

motions. 

The present hybrid method has been successfully applied to floating bodies which have flared 

sections, thus it overcomes one of the main shortcomings of the time-domain transient Green 

function method. Furthermore, it does not need so many panels in such a large area as the 

Rankine source method, since a stable boundary condition can be obtained on the control surface 

with the previously introduced Green function method in the outer fluid domain. That is to say, 

it inherits the advantages from both methods and becomes a more efficient solver. 

 



 

89 

 

Chapter 5 Simulation of Motions of Ships Advancing in 

Waves by the Time-Domain Hybrid Method 

In this chapter, we will focus on the motion simulation of ships with constant forward speed. 

Only some specific points will be elaborated in this chapter, as the general formulation and 

numerical scheme have been explained in the previous chapters.  

 

5.1 Hydrodynamic Forces 

The unsteady pressure is given by Bernoulli‟s equation: 
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Integrating this equation over the wetted surface Sb we will obtain the forces acting on the body. 

Here, the unsteady term is evaluated as: 
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For simulating small amplitude ship motions in response to small amplitude incident wave 

excitement, all the force terms in the motion equation will be calculated up to the mean wetted 

surface and the hydrostatic restoring forces are approximated by using the ship geometric 

parameters as shown in Section 4.1. For larger amplitude ship motions in response to large 

amplitude incident waves, Froude-Krylov forces and restoring forces will be calculated exactly 

over the wetted surface of the moving body up to the undisturbed incident wavy surface and 

transferred into the motion equations.  

 

5.2 Calculation of Added Resistance in Short Waves 

Before we proceed with the motion problem, we briefly address and discuss the solution of the 

quasi-nonlinear added resistance problem of ship advancing in waves. As elaborated in Section 

2.4 and preliminarily validated in Section 2.6.8, the prediction of added resistance can be 

calculated by using Maruo‟s far field method. Extensive validations (Liu, et al. 2011) by using 

potential and motion results from NEWDRIFT have proved the method‟s simplicity and 

accuracy, though in the short wave range the numerical results are not very satisfactory. In this 
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section, two semi-analytical methods are introduced for the correction of added resistance in 

short wave range.  

Faltinsen et al. (1980) derived the following asymptotic formula for the added resistance, 

assuming that the incident waves are perfectly reflected from the non-shaded part of the ship 

surface that is exposed to the waves: 

 1 sinn
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where    2 2 021
sin 1 cos cos

2
n a

V
F g

g


      

 
       

 


  

The integration in equation (14) is performed over the non-shaded part of the waterline. 

 

Figure 5.1 Coordinate system for the short waves range added resistance calculation methods  

This expression yields good results for relatively full bodies; however, some poor results were 

obtained for fine hull forms like those of containerships. In order to improve this drawback, 

Kuroda et al. (2008) further investigated Fujii and Takahashi‟s semi-empirical method (1975) 

and proposed an improved expression for the added resistance in short waves, which takes the 

following form: 
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B and d are the beam and draught of the ship; Bf is the bluntness coefficient, αd accounts for the 

effect of draught and frequency and 1+αu for the effect of forward speed. The two integrals in 

Bf(χ) expression are calculated over the A-F section (integral I) and B-F (integral II) section of 

the non-shaded part of the waterline. I1 is the first order modified Bessel function of the first 

kind and K1 is the first order modified Bessel function of the second kind. Note that in the 

original proposal, the determination of CU was more complicated and required the use of 

experimental data. 

 

5.3 Consideration on Time Stepping and the Overlapping Grid Concept 

As the ship is travelling in water, the intersection between the hull and the free surface will be 

moving accordingly. This will result in a time varying free-surface geometry. In order to solve 

the corresponding equations by the hybrid method, we need to update the influential matrices at 

every time step; to partly update the elements related to the panels which are disturbed by the 

moving hull and partly to update those elements related to the panels on the moving hull itself. 

For the panels on the free-surface, which are crossed or occupied by the moving hull, special 

attention is needed. 

The herein applied gridding concept is explained in the following: the free-surface area is 

panelized by splitting it into four zones, as shown in Figure 5.2. Zone I to Zone III will not be 

disturbed by the moving hull so that the panelization will remain unchanged. For Zone IV, the 

so-called Chimera grids concept is introduced for accurate and efficient simulation. 

 

Figure 5.2 Overview of the different zones of free-surface panelization 

 

The Chimera grids method is being widely used in aerodynamic engineering problems 

(Weatherill et al., 1999). Generally, it involves panelization systems, which discretize the 
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domain boundary by separately generated but overlapping grids that exchange information 

between each other through certain interpolation scheme. This method has been previously used 

successfully in solving problems with dynamically moving bodies. In this thesis, a very 

simplified Chimera grid system is constructed to simulate the near-ship free-surface condition.  

The Chimera grids system involves three major steps:  

1) overlapping grids generation; 

2) an algorithm for cutting holes;  

3) to interpolate data in overlapping grid area. 

A brief introduction and example can be found in J. Guerrero‟s paper (2006). Following this 

concept, two sets of panelization are created for the free-surface area Zone IV in the present 

program: the Parent Panel System and the Sub Panel System. The parent panels are in the same 

level of the panels in other zones so that they will participate in the influential matrices (not 

directly, as treatment is needed at every time instant). The sub panels have two functions. First, 

they are used to give a good representation of the area occupied by the hull. Secondly they are 

used as a bridge to find out proper information for their parent panels, as shown in Figure 5.3.  

 

 

Figure 5.3 Example of free-surface panelization 

 

At the beginning of the procedure, a control loop is conducted to check for all the sub panels 

whether they are inside or outside of the ship‟s waterline intersection, thus to cut the hole. Since 

the sub panels are in defined locations and the advancing speed is co nstant, it is possible to 

adjust the time interval so that the ship will pass one sub panel in x-direction during each time 

interval. Thus the occupied panels, or “the hole” geometry, can be captured/predicted. As the 

active sub panels are determined, the status of the parent panels can be classified as: 0, means 

occupied /passive; or 1, means free/active. Those marked as 0, they will not participate in the 

influential matrices; those marked as 1, they will take their original geometry information to 

participate in the computation. After this matrices‟ update, the influence matrices can be 

determined. 
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Regarding the free-surface condition of the parent panels: if a panel is marked as 0, it is passive 

so that we simply skip this panel; if it is marked as 1 and located behind of the hull, then we 

compute the free surface condition of every sub panel by using their historical information and 

store the average value (current interpolation scheme); if it is marked as 1 and located ahead of 

the hull, then we compute the free surface condition directly. 

For the free-surface condition of sub-panels, if one is marked as 0, it is passive so that we simply 

skip this panel; if it is marked as 1 and located behind of the hull, then we compute the free 

surface condition by using their initial conditions when they became active and historical 

information since then; if it is marked as 1 and located ahead of the hull, then we compute the 

free surface condition by using their own historical information in recent steps and their parent 

panel‟s historical information in previous steps. Once the influence matrices and free surface 

condition are determined, Equation (3-33) in section 3.2 can be solved. 

 

5.4 Numerical Scheme  

As the detailed formulation has been interpreted in Chapter  3, here we recall directly the final 

equation for the velocity potential in the inner fluid domain: 
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(3-33) 

As explained in Chapter 3, the Generalized Minimum Residual method (GMRES) is chosen to 

solve this equation. For nonzero speed problem, the panelization needs to be updated at every 

time step (by using Chimera grid system in this chapter), thus result in time-dependent matrices 

which need to be updated at every time instant.  

For ship motion problem, we use in general about 200-600 panels to discretize ship‟s surface, 

about 400 panels on the control surface, and 3000 panels on the free surface. When addressing 

more refined nonlinear effects (like higher order forces, added resistance etc.) are investigated, 

more panels on the hull are needed. The free surface panelization is restricted between the body 

boundary and a control surface, which forms the border between the inner and outer domains. 

The extent of the discretized free surface depends on the wave length, ship speed, a nd target 

simulating time. Typically the size of the inner domain is (5L-15L) × (B/2+λ) × λ/2 for 

simulating 10-20 wave periods with moderate ship speed. The flowchart of the numerical 

procedure and implemented code is shown in Figure 5.4. 
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Figure 5.4 Flowchart of the HYBRID method program, with forward s peed 

 

5.5 Results and Discussions 

The developed hybrid method has been numerically implemented as a computer code developed 

at the Ship Design Laboratory of NTUA. Some typical results are presented and discussed in the 

following. 

5.5.1 Wave Resistance of a Wigley Hull 

As a demonstration of the above procedure, the hybrid method together with the preliminary 

Chimera grid scheme is applied to the steady free-surface problem, namely the ship advancing at 

constant forward speed in calm water; herein, the calculated wave making resistance of a  

standard Wigley hull is presented and discussed. As stated (Shahshahan, et al., 1990), the 

Wigley model has no vortex system shed from the bottom because of its sharp keel and due to 

its sharp bow there is no wave-breaking resistance, either. Furthermore, it has been shown that 

there is no separation zone at the stern. Thus the total resistance may be considered to be 

composed exclusively of wave-making resistance and viscous-frictional resistance, free of 

vortex formation or separation (very small viscous-pressure resistance). 

The studied Wigley hull is defined as y/b=[1-(2x/L)2][1-(z/H)2], where 2b/L=0.1 and 

H/L=0.0625. The Froude number is denoted by /Fn U gL . In the shown example, the 

panelization used in the computation includes in total about 3000 panels (Figure 5.5). The length 

of waves generated by ship‟s travelling is determined by λ=2πU0
2/g. In the computation, we set 



Numerical Simulation of Large A mplitude Sh ip Motions and Applications to Ship Design and Safe Operat ion 

95 

the travelling distance as about (6-10)λ and it takes more than 8 hours to arrive some steady state 

for each point. The final value is evaluated as the average value of the last 8πU0/g time interval. 

 

 

 

Figure 5.5 Example of runtime panelization 

 

Figure 5.6 shows the solution of velocity potential Φ and boundary condition ∂Φ/∂n on the 

downstream wetted free surface panels at the end of a simulation. The results appear to be stable 

and reasonable, despite some gap between results on the Parent Panel and Sub Panel, which can 

be readily improved by introducing some more advanced scheme to interpolate data in the 

overlapping grid area.  

Figure 5.7 shows the results for the wave making resistance of the studied Wigley hull, without 

sinkage/trim correction. The comparison has been made with available experimental data (Chen 

et al., 1983) and corresponding SHIPFLOW results (SHIPFLOW, 2005). A good agreement is 

observed, with respect to both the magnitude and the hump/hollow trend. 

Recalling the results (Figure 2.16 and 2.17) obtained by the TDGF method in Chapter 2, it is 

observed that results from the present hybrid method do not have the highly oscillatory 

performance which is very common for results based on Green function methods. Instead, the 

results are quite smooth which is very similar to the Rankine source method based results. More 
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validation cases need to be done if we like to apply this method on wave making resistance 

evaluation. 

After introducing the Chimera grid system, the time step can be set very small so that the saw-

tooth-curve problem (e.g. Kataoka & Iwashita, 2004), which is very often observed, has been 

addressed. Furthermore, as the local panelization is very fine, it is relatively easy to calculate the 

spatial derivatives accurately. Figure 5.8 shows the time history of wave making resistance of 

this Wigley hull at Fn=0.25. 

 

 

Figure 5.6 Downstream potential results along longitudinal direction, Fn=0.275 

 

 

 

Figure 5.7 Wave making resistance of a Wigley hull, without sinkage/trim correction 
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Figure 5.8 Time history of the wave making resistance of a Wigley hull, Fn=0.25 

 

5.5.2 Diffraction Problem of S175 Ship at Fn=0.275 

The diffraction problem of ITTC S175 hull is studied by present method. Figure 5.9 shows the 

wave exciting force/moment results compared with the results from the 3D frequency domain 

panel code NEWDRIFT. The agreement is overall very good, though the results from present 

method are slightly lower than those from NEWDRIFT. It should be noted that the NEWDRIFT 

code is based on the zero-frequency Green function method and forward speed effects are taken 

into account in an approximate way via slender-body theory assumptions. 

 

Figure 5.9 Wave exciting force of S175 ship at Fn=0.275 

 

5.5.3 Motion Simulation of S175 Ship at Fn=0.275 with Different Wave Conditions 

The present method has been applied to simulate ship motions, under both small amplitude and 

large amplitude assumptions. The Froude-Krylov and hydrostatic restoring forces/moments are 
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calculated dependent on the motion model. Figure 5.10 shows the comparison of results from 

the present hybrid method against available experimental data (15th ITTC, 1978) and results 

from 3D frequency domain panel code NEWDRIFT. For small amplitude incident wave 

simulation case, the present method gives some results lower than NEWDRIFT and is actually 

closer to experimental data. For large amplitude simulations, the incident wave steepness varies 

systematically, namely A/λ=0.01,0.02 and 0.04 (noted as CS1, CS2 and CS3 respectively in the 

graph) where A is the wave amplitude. The motion amplitudes decrease gradually as the wave 

steepness increases. This is physically meaningful, considering the quickly increased damping 

and restoring due to the above water flared hull form of S175 ship. On the other side, for A/λ= 

0.04 the resulting peak values of heave and pitch motions are much lower than experimental 

results and the steepness of the RAO becomes smaller. For A/λ=0.01 case, in long wave range 

the heave motion is very close to experimental data while the pitch motion amplitude is higher. 

Considering that this wave is quite flat, the deviation of RAOs from results based on small 

amplitude motion assumption clearly shows the importance of using different models. It should 

be noted that the wave steepness of the experimental data, which was done for validation of the 

linear numerical methods then, is not known.  

Interestingly, taking reference to another source (Ogawa, 2007), the experimental data of a 

similar container ship under different wave conditions are revealed (shown in the following as 

Fig.3 and Fig.9, reproduced from the original paper). When studying these data, it is observed 

that as the wave amplitude increases, especially when the amplitude is very large, there is in 

general, a trend of RAO‟s shift („bending‟) to the longer wave‟ side and the amplitude decreases, 

which is similar to observations in the present study. 

In this case study, the mj terms based on Neumann-Kelvin assumption are used to account for 

the steady potential effect on the oscillatory motions.  

  

Figure 5.10 Motion amplitude  of S175 ship at Fn=0.275 
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5.5.4 Added Resistance of S175 Ship at Fn=0.275 

The added resistance of the ITTC S175 ship in head seas was also calculated based on Maruo‟s 

far-field theory by using the potential and motion data obtained from present hybrid method 

(noted as HYBRID). Results calculated by the panel code NEWDRIFT (noted as NDfar) and 

short wave range corrections based on Faltinsen‟s formula and Kuroda & Tsujimoto‟s formula 

respectively are also shown in Figure 5.11 for comparison (noted as SW1 and SW2 respectively). 

The calculated results agree well with the experimental data (Takahashi, 1988) and other 

numerical result. 

 

 

Figure 5.11 Added resistance on S-175 ship at Fn=0.275 
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5.6 Conclusions 

The time domain hybrid method for simulating large amplitude motions of ships advancing in 

waves with constant forward speed has been validated in this chapter. Preliminary validation 

results include the estimation of wave making resistance, wave exciting forces, simulation of 

ship motions, either under small amplitude or large amplitude assumptions, and the estimation of 

ship‟s added resistance in head sea condition. Comparisons are made mainly with results of the 

code NEWDRIFT (Papanikolaou, 1985, 1992), which is a 3D constant panel method code based 

on frequency domain theory and available experimental data. Good agreements are observed for 

all case studies, which indicate that the present formulation and numerical scheme are correct 

and working properly.  

During the conducted time domain simulations, a preliminary numerical scheme based on the 

Chimera grid concept is designed to reduce the computational burden and give accurate 

description of the near field free surface. Results come out satisfactor ily, thus they show that the 

Chimera grid concept is indeed a feasible choice for extensive time domain simulation. In the 

future, further development of the Chimera grid concept appears recommendable. Also, during 

the simulation, as the near field panels and body panels are time-varying, at every time step, the 

corresponding influence matrices are to be set up and consume a lot of time. For a motion 

simulation of 10-15 wave periods, it takes 5-10 hours with about 4000 panels in total. Thus, in 

further development, the computational efficiency needs to be improved.  

Finally, for the calculation of added resistance in short waves, the asymptotic method of 

Faltinsen and an improved derivative of it introduced recently by Kuroda et al. and Tsujimoto et 

al. are employed. The theoretical methods and implemented numerical procedure for the 

calculation of the added resistance in waves proved to be reliable and robust thus may be 

employed within a ship design optimization procedure as well within a ship operation 

assessment and routing optimization procedure (Papatzanakis, et al. 2011). 
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Chapter 6 Further Development of the Time Domain 

Hybrid Method 

In the previous chapter, the ship motion problem was formulated in an earth-bound coordinate 

system and simulated by the developed hybrid method. Good results were achieved despite the 

quite time consuming procedure. Significant effort was devoted to the improvement of the 

efficiency of the developed approach by introducing the Chimera grid concept; however, in 

view of the nature of a forward speed problem formulation in an earth bound coordinate system, 

the influence matrices must be updated at every time instant, which is inevitably time consuming.  

Furthermore, one major advantage of a time domain method over a frequency domain method  is 

its capability to study the instantaneous motion response to random sea conditions, which needs 

very long time simulation. However, due to the limitation on the panel numbers, it is not 

possible to do this kind of simulation by the hybrid method in an earth-fixed coordinate system, 

as the free surface area will be huge, so will be the number of panels.  

In this chapter, we will formulate the same problem in a body-travelling coordinate system. The 

matching surface will be set at certain distance away from the hull and travelling with the body, 

thus the free surface area will be fixed, which is actually quite the same with what we did in 

Chapter 4 for zero speed problems; however, now the matching surface is travelling with the 

body at the same forward speed. Under such situation, the panelization will be fixed, thus there 

will not be any update of the influence matrices, so that the simulation time will be greatly 

reduced, making the simulation in random sea states also possible. 

 

6.1 Free Surface Condition  

The linearized free-surface condition can be expressed in the body-fixed coordinate system as: 
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0 0U g
t x z
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This expression can be rewritten as:  
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It has been shown by Wang (2003) that by using Laplace transform, Φ can be expressed as 

following:  
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where H(t) is the unit step function. It should be noted that the initial conditions for panels 

located in the area that is free from disturbance/occupation of a sailing hull or not are different.  

The above expression can be derived from the free surface condition expression (3-15) by 

carefully treating the corresponding term in the body-fixed coordinate system. For a point p, let 

(X,Y,0) be its coordinate in earth-fixed system and (x,y,0) be the coordinate in body-fixed 

system at time t, then we have X=x+ut.  

In the body-fixed coordinate system, Equation (3-15) should be re-written as: 
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For x0=x+u(t-t0), then 
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Let ξ=x+u(t-τ), i.e., τ = t-(ξ-x) /u, then the free surface condition can be expressed as: 
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This expression is valid only for the area behind the stern when t>(x0-x) /u. Thus the H-function 

should be included as in Equation (6-3).  
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6.2 Discretization of Free Surface Condition  

In the body fixed coordinate system, the inner domain free surface is discretized as following: 

 

Figure 6.1 Wetted free surface panels’ simulation  

 

In the area that xr<x<x0 (shown in Figure 6.1) where xr is the coordinate of the rear matching 

surface and x0 the intersection of waterline and free surface; the center of each panel is marked 

as xi and xi-xi+1=∆x=u∆t. 

At time instant t=tn=n∆t, the velocity potential of a point at x=xm is denoted as Φm
n=Φ(xm,y,0,tn) 

The first three terms on the right hand of Equation (6-3) can be discretized respectively as: 
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For n+m>i, there are still two cases: 

1) n≤m, which means the initial effect at x0 has not arrived xm yet. 
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ξ-x=ξ1 

then the above expression will become 
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In short, the discretized form of the free surface condition is as following: 
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6.3 Integral Equations 

In the body fixed coordinate system, under the assumption that the motion is small, the velocity 

potential can be solved up to the mean wetted surface with either mixed singularity model or 

source distribution model as following: 
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6.4 Numerical Results and Discussions 

6.4.1 Forced Motion Problem of S175 Ship at Fn=0.275 

Numerical experiments were carried out to determine the optimal size and paneling of the free 

surface area. Based on our experience, we change the width, depth and length of the solution 

domain systematically and compare the resulting added masses and damping coefficients. 

Finally we set the width as max(3B, 0.5λ), depth as max(5D, 0.4λ), and length max(3L, 

2λ+L).With this setting, the following results are obtained(denoted as HYBRID II), as shown in 

Figure 6.2 and Figure 6.3. Also plotted are the results from the panel code NEWDRIFT (denoted 

by ND), a 3D body exact formulation (Zhang et al., 2010, results denoted by 3D B.E.) and the 

Hybrid method developed in last Chapter(denoted as HYBRID I). Obvious deviations among 

different methods have been observed in this study.  
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Figure 6.2 Added masses and damping coefficients due to forced heave motion, S175, Fn = 0.275 

 

 

 

Figure 6.3 Added masses and damping coefficients due to forced pitch motion, S175, Fn = 0.275 
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6.4.2 Motion Simulation of S175 Ship at Fn=0.275 with Different Wave Conditions 

The motion of the S175 container ship is again studied by using the present method. For small 

amplitude motion case, we assume the gravity (mass) centre is on the calm waterplane at the 

mid-ship, that is xc=0 zc=0, then the motion equation is reduced and all the forces are estimated 

about the assumed gravity center to obtain the motion prediction. For large amplitude motion 

case, we estimate the radiation and diffraction forces up to the mean wetted surface but the 

hydrostatic and Froude-Krylov part exactly about the actual gravity center to obtain the motion 

prediction. The mj term is calculated either based on Neumann-Kelvin simplification or directly 

as elaborated in Section 3.4. 

The numerical results on heave and pitch motions are shown in Figure 6.4 and Figure 6.5. 

During the simulation, the wave amplitude is set as constant A/L=0.01. By using a small 

amplitude model, with either mj term computation, the heave motion is overestimated in long 

wave range. By using large amplitude model, which introduces the exact computation of 

Froude-Krylov force and restoring forces, the heave motion in long wave range is improved and 

get closer to experimental data. For mj term, the effect is mainly around the peak range, which is 

also observed in others‟ computations (Bingham & Maniar, 1996). During the computation, it is 

confirmed that the mj term estimation based on Neumann-Kelvin simplification is quite 

reasonable. Problem of present simulation is that, when compared to experimental data there is a 

shift in the range where λ is comparable to L and the shift appears in heave amplitude curve 

hasn‟t been improved by applying large amplitude model. 

 

Figure 6.4 Heave motion amplitude calculation of S175 ship, Fn=0.275 
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Figure 6.5 Pitch motion ampli tude calculation of S175 ship, Fn=0.275 

 

For pitch motion, when the small amplitude model is used, we observed some shift when 

compared to experimental data. The different mj term assumptions appear to only affect the peak 

value. But by applying the large amplitude motion model, the p itch motion results were 

obviously improved, the shift becomes weak and the results in all the studied range closely 

match the experimental results. Furthermore, when the Froude-Krylov force and restoring forces 

are exactly calculated, it will introduce some serious differences, compared to the linear 

calculation in the small amplitude model, around bow and stern where the flare of sections is 

significant. This effect is more visible in the pitch response, thus it improved the prediction. 

Figure 6.6 shows the heave and pitch motion histories of the S175 ship with λ/L=1.4, either with 

small amplitude simulation or with large amplitude simulation. Due to the fact that the wave 

amplitude is small, A/λ=0.01, the nonlinearity is not strong. However, there are still obvious 

deviations between the two curves from different models. This indicates the importance of 

applying a more exact model even when the wave amplitude is small.  
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Figure 6.6 Heave and pitch motion histories calculation of S175 ship, λ/L=1.4, Fn=0.275 

 

It is understood that around the resonance range, the hydrodynamic forces are comparable to the 

hydrostatic part and the interaction is quite complicated. When we drop the line- integral term in 

integral Equation (6-8), for sure some error will arise which cannot be estimated numerically. As 

shown in Chapter 2 in the calculation of the wave resistance of the Wigley hull, despite the 

highly oscillatory performance which is common to TDGF based calculation methods, there is a 

definite deviation from experimental data, which seems to be responsible for the present shift. 

And indeed although the calculated heave exciting force presented in the last chapter agrees 

pretty well with NEWDRIFT results, in the present exciting force calculation a shift shows up, 

as shown in Figure 6.7. 

 

 

Figure 6.7 Wave exciting force in heave direction of S175 ship, Fn=0.275 
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Finally, as pointed out by Lin and Kuang (2009), the dissipating far field boundary condition is 

no longer suitable for strongly nonlinear cases. Since the ship generated wave energy is 

proportional to the Froude number, computational instabilities will occur if the far field 

boundaries do not accurately estimate the radiated ship wave energy for high Froude numbers. 

This may be also the reason for inaccuracies in the prediction of relevant phenomena.  

6.4.3 Motion of a Wigley Hull with Different Above-Water Hull Shapes 

From the previous studies, it is noted that the developed hybrid method is capable of studying 

the effect of above waterplane hull shape changes. This indicates its ability to be applied to the 

optimization of the design of ship‟s above water hull shape. In this section, we will apply the 

developed numerical method and computer code to the basic Wigley III hull, a second modified 

hull as used in Section 4.6, and a third modified hull (noted as V2) which is defined by the 

following expression: 
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The heave and pitch motions in small amplitude incident head waves with forward speed are 

calculated and plotted in Figure 6.8. It is observed that for the heave motion there is a peak 

(indicating a resonance) point in the NEWDRIFT results and the motion amplitude decreases for 

larger wave lengths. For present hybrid method the main deviation is due to some shift, when 

compared to either NEWDRIFT or experiment data, despite some reasonable agreement 

between the two numerical methods. The shown experimental data of pitch motion are 

unexpectedly comparably very high and both numerical methods failed to predict the peak 

values. This phenomenon was also observed in the original report (Journée, 1992). One thing 

worthy of attention is that since this experiment was designed to validate a linear motion theory, 

the nominal wave height was set as a small constant value, which changes in terms of wave 

steepness with the various wave lengths. 

Figure 6.9 shows the panelization of the modified Wigley hull V2, with some slight flare 

introduced in the bow/stern regions and a small over-hang at the stern, which is similar to a real 

ship. The hybrid method is applied to predict the heave and pitch motion of this hull and the 

results are shown in Figure 6.10 to Figure 6.13. Figure 6.10 and 6.11 show the heave and pitch 

motions at small wave steepness, A/L=0.01. At this condition, the results from applying the 

large amplitude model are almost identical to the results from the small amplitude model. The 
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results of both modified hulls slightly deviate from the results of the original hull, because the 

wave amplitude is small and the flare is also limited near the waterplane, so that the exact 

calculation of incident wave forces and restoring forces does not affect much the computation.  

 

 

Figure 6.8 Heave and pitch motion of Wigley III hull, Fn=0.2, small amplitude  

 

 

Figure 6.9 Panelization of the Modified Wigley III hull  

 

At a steeper wave condition, A/L=0.02, more obvious deviations show up for both heave and 

pitch motions, as shown in Figure 6.12 and 6.13. For heave motion, the amplitude of the 

modified hull has decreased compared to the other two hulls due to its large projected area on 

the vertical direction. On the other hand, the pitch motion of the modified hull V2 is obviously 

smaller than for the other two hulls in the long wave range. These calculations, offer some 

valuable information regarding the applicability of these methods in the preliminary design stage. 

When considering the actual sea conditions encountered in ship‟s service route, we may be able 

to determine the optimal routine or even the optimal hull shape for specific routes.  
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We should keep in mind that all the three Wigley hulls are actually very narrow, with L/B=10, 

compared to actual shiplike forms and the introduced flares are also quite conservative 

compared to a real ship. Due to this reason, the mj term based on Neumann-Kelvin simplification 

is employed. During these computations, the wave steepness was kept constant. If we use other 

settings, say constant wave height, the results will be of course different.  

 

Figure 6.10 Heave amplitude of three di fferentWigley hulls, Fn=0.2, Amp/L=0.01  

 

Figure 6.11 Pitch amplitude of three di fferentWigley hulls, Fn=0.2, Amp/L=0.01
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Figure 6.12 Heave amplitude of three di fferentWigley hulls, Fn=0.2, Amp/L=0.02  

 

 

Figure 6.13 Pitch amplitude of three di fferentWigley hulls, Fn=0.2, Amp/L=0.02  
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6.5 Computational Time  

An important aspect of this chapter‟s work refers to the computational efficiency. Looking 

backward at the work in this thesis, we started with a TDGF method for simulating the 

hydrodynamic forces. In that case, the most time-consuming parts of the work are:  

1) to invert the influence matrices that correspond to the panels on body surface;  

2) to calculate the memory part that is based on the historical information.  

As the panel number on the body surface is limited, the first problem is not very serious. For the 

second aspect, as long as the linear problem is considered, this also does not pose serious 

problems.  

When we proceed to the hybrid method, things change as following. For zero speed problems, 

the panelization is fixed and the matrices are pretty large, in the order of 2000×2000; however, 

we need to set up the matrices only once at the beginning. The main burden at each time step is 

to update the free surface condition and matching surface condition, followed by the effort in 

solving the equations by the GMRES method, which take a few seconds. In case of the motions 

problem, an iterative scheme is applied so that additional time is needed. In this case, if the 

partial derivatives need to be calculated, this is another few seconds‟ work. Thus, for a 

simulation of about 300 time steps (corresponding to 6-8 wave periods) it takes less than one 

hour to complete the simulation on a regular PC hardware with Intel Core 2 QUAD CPU(Q8200 

2.33GHz).  

In case of the forward speed problem, as shown in Chapter 5, the situation is very different. At 

every time step, the hull will be moving thus the free surface near the ship will also change, so 

that the influence matrices need to be updated at every time step. It takes about 30 seconds for 

preparing the matrices, depending on how complicated the problem is. After the Chimera grid 

concept is introduced, though the panels that are far away from the ship are fixed, thus do not 

need to be updated at every time step, due to the fact that near field panels are very small so that 

the number of panels that need to be updated is still quite large, there are still a considerable 

amount of data processing at each time step. For one simulation, it takes more than 5 hours for 

forced motion problem or even more than 10 hours for more complicated large amplitude 

motion problems. As a method that is based on potential flow theory, this is not efficient. 

There are other possible ways for improving the simulation efficiency, e.g. Precorrected-FFT 

scheme (Kring, et al, 2000), but in the present study I did not try in that direction, instead I tried 

to formulate the problem in the body-fixed coordinate system, which results in a panelization 

system that is quite similar to the zero speed problem. By doing so, the efficiency has been 
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improved. For a typical motion simulation in head seas condition, it is possible to finish a run 

within 2 hours. But the now occurring problems are is in two points: 

1) the free surface condition update is complicate;  

2) the matching surface condition update is not accurate due to the omission of the waterline 

integral term which appears in Equation (6-8) or Equation(6-9). 

The second point also affects the first point internally through the solved integral equations. This 

is reflected in the results, where some shift shows up in the motions‟ RAOs. As pointed out 

before, recently other researchers argue on the effect of far field condition and propose some 

new type of far field condition. 
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Chapter 7 Summary of the Research and 

Recommendations for Future Development 

In this thesis, for studying the seakeeping behavior of floating structures and ships in waves (at 

zero and nonzero forward speed), a time domain transient Green function method was developed, 

by formulating the basic hydrodynamic problem and by numerically solving it through the 

implementation of the theoretical method (new code development). During the systematic 

validations the developed method and numerical scheme proved to be quite robust. But when it 

was applied to practical shiplike forms (floating bodies) with flared section at the waterline, 

numerical problems arise, thus they prevent us from further practical numerical tests.  

Due to this reason a hybrid method was formulated subsequently to overcome the problem. In 

the hybrid method the fluid domain is divided into two regions, namely the inner domain, where 

the Rankine source method is used, and the outer domain, in which the transient Green function 

method is employed to form a boundary/matching condition for the inner domain equation. In 

the hybrid method, part of the free surface is included in the inner domain thus it needs to be 

panelized and proper condition needs to be assigned. A double integration scheme is used to 

numerically simulate the linearized free-surface condition. In the numerical implementation of 

the developed approach, the normal constant panel method is used to solve the relevant 

boundary value problem of potential theory. The panelization is done for the whole domain 

leading to about 4000 panels in total. The resulting discretized integral equations are solved by 

using GMRES method at each time step. The simulation of the free surface condition by the 

adapted method proves quite satisfactory. Furthermore, a Chimera grid scheme has been 

developed to improve solution of near field velocity potentials and also give us flexibility on 

choosing the time interval, which is very important for a time domain simulation method.  

Numerical results cover investigations of various hull forms (mathematical and ship- like hull 

forms) on the wave making resistance problem, forced motion problem, diffraction problem, 

heave, roll and pitch motions, either of small amplitude or large amplitude, either with zero 

speed or nonzero speed forward speed, and added resistance in waves. It can be seen from these 

validations that the hybrid method has been successfully applied to different type of bodies, 

either of simple geometry or real ships and different operational conditions.  

In order to reduce the computational time, some further development was carried out so as to 

formulate the problem in a body-fixed coordinate system. The solution procedure is quite similar; 

however it is a more complicated procedure with respect to the simulation of the free surface 

condition and the matching surface condition. Numerical tests were carried out successfully 
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despite that some error shows up probably due to insufficient treatment of the outer domain 

solution, which internally affect the inner domain solution through the matching condition.  

From a practical point of view the hybrid method overcomes the numerical difficulties met in 

time domain Green function method when studying real ship hulls with flared sections at the 

waterline. For the zero speed case, the results are very satisfactory with decent efficiency. With 

some further development it can be easily applied to offshore engineering problems. The hybrid 

method was also validated by studying the large amplitude motion problems of ships with 

constant forward speed, thus proved that it can be used as a valuable design tool for hull form 

assessment and optimization, as it is capable of studying the seakeeping characteristics of hulls 

with different possible above-water shape. A by-product of the present method is its capability 

to calculate the wave-making resistance to a good accuracy, even though some more systematic 

validation is herein needed.  

For the solution in the body fixed coordinate system, some shift in the RAO curve is observed 

when predicting ship motions. This is perhaps due to the insufficient treatment of the outer 

domain solution when neglecting the tricky line integral term along the water-hull intersection 

line. Further developments may rely on an improved scheme to deal with the waterline integral 

term, or the formulation of another condition on the matching surface.  

At present stage, in the motion simulation, Froude-Krylov forces and restoring forces are 

calculated exactly over the wetted body surface up to the undisturbed wave surface, while 

diffraction and radiation forces are calculated up to the mean wetted surface. For the former term, 

since the radiation and diffraction solutions are available, correction can be done so that the 

disturbed wave surface can be estimated at each time step, thus a better prediction can be 

expected. For the latter term, since to set up large scale time-varying influence matrices are quite 

time consuming and this almost eliminates the advantage of a potential theory based method, it 

is concluded that maybe other type methods, e.g. CFD methods, should be considered. 
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Appendix-1 Time-domain hybrid method for radiation 

problems, with impulsive function 

In hybrid method due to the difficulties in updating the instantaneous meshes on free-surface 

and body surface, its application is constrained in linear problems. As a matter of fact, the linear 

problem has been investigated in time domain by Beck following Cummins‟s pioneering work. 

In this theory, solution of the velocity potential due to an impulsive motion has been obtained. 

Then the potential due to any motion can be found by an integration of the impulsive potential. 

With this theory, the time-domain method can yield good results for linear cases with an 

efficiency comparative to frequency domain method.  

In this section, we will introduce this idea into the hybrid method in hope for solving the 

radiation problems with a better efficiency.  

A1.1 Radiation Problem 

Here we concentrate on the radiate problem. By adopting the concept proposed by Cummins, the 

radiation potential due to a k th direction impulse motion can be decomposed as: 

          , ,          1,2,...,6k k kp t p t p t k       (A1-1) 

where k and k meet the following conditions: 
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 (A1-2) 

k and k can be physically interpreted as a radiation potential, an instantaneous effect, by the 

impulse motion and a subsequent diffraction potential, a memory effect, by the body due to the 

initial impulse. 

Since the hybrid will be used here to solve the problem, the same concept which has been 

explained in Chapter 3 will be adopted without any further explanation. Substituting the 

expression (A1-1) into equation and gathering terms proportional to  t separately, we will get 

two sets of equations: 
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Combining the equations for  and  respectively, we get the equations to be solved as: 
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On the control surface, the matching conditions are expressed as: 
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   
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 (A1-7) 

Solve the above equations we will get  and  ; then the velocity potential due to arbitrary 

motion in k th direction may be obtained by the superposition of the impulse response function, 

which can be written as an integration: 
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 
 (A1-8) 
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The forces exerting on the body are calculated by substituting the above expression into linear 

Bernoulli‟s equation. Thus we get the forces in j th direction due to k th direction motion as: 

 

       

     

0

0

 ,    

=  

b b

t

jk k k j k k j

S S

t

jk k jk k

F t t n ds t p n dsd
t

t K t d

       

     


     

  

  



  

 

 (A1-9) 

where  
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      =  
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b
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S
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S

n ds

K t p t n ds

  

 







  

It is clear that jk and  jkK t are functions of the body geometry and time while they are 

independent of the history of the motion. For a given hull, they can be calculated once only and 

be used later wherever or whenever in need. From Wehausen‟s formulation, jk and  jkK t are 

related to the frequency domain added mass and damping coefficients by a Fourier transform:  
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 (A1-10) 

where    &jk jkA B  are the added mass and damping coefficients in the frequency domain.  

A1.2 Free-surface Condition 

The linearized free-surface condition for  t  is: 

2

2
0g

t z

  
 

 
 

This expression can be rewritten as:  

2

2
g

t z

  
 

 
 

Integrating the above equation with respect to time t twice and taking into account the initial 

condition for  on free surface, we will get the free-surface condition as: 
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A1.3 Numerical Scheme 

The panel method is used to solve the equations (A1-5) and (A1-6). The domain boundary, 

which consists of the body boundary bS , the free-surface boundary fS  and the control surface cS , 

is divided into , ,b f cN N N plane quadrilateral elements.  

From the second equation in (A1-5) we find: 
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The discretized form of the first equation is: 
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 (A1-13) 

where 
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On the body boundary k

n




 is known; on the free surface k is known as zero; from the former 

equation set we have got the relationship between k and k

n




on the control surface; Noticing 

the matching condition in (A1-7), we will have the following equations: 
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(A1-14) 

Solve the equations set we will get the unknowns on control surface, wetted surface and free 

surface. 
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As to  part, we have to solve equation (A1-6). From the second equation we find that: 
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Thus we have   
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In the inner domain the discretized form of the linearized free-surface is: 
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Here j is the free-surface panel index while M t and m t denote for the present moment t  and 

the historical moment  respectively, 
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
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on panel j at time . 

The discretized form of the integral equation in the inner domain is: 
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where 
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. The boundary condition is 

known on body boundary; from the free-surface condition we know that f is a function of
f

n




;  

from (A1-15) we have the relationship between c and c

n




; then for the inner domain integral 

equation, we will have 
c f bN N N  unknowns and 

c f bN N N  equations. Taking into 

account the matching condition on the control surface and substituting the former conditions into 

the above equation we will get: 
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(A1-18) 

where the subscript o indicates “outer domain”. Solve the equations set we will get the velocity 

potential result on control surface, free-surface and mean wetted surface.  

A1.4 Summary 

If this method can be fully validated, it can serve as a fast time domain code for linear radiation 

problem, which is useful for preliminary investigations. More research into the theory is needed.  
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