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Abstract 

Mobile robots have tremendous variety of capabilities and mobility. To achieve their 

mobility, robots must be designed in such way that they are able to adapt to their current 

environment. The vast majority of Earth’s surface is covered by uneven, slippery or 

muddy terrains. The wheeled-legged robots have huge adaptability advantages because 

they can change their locomotion method according to the current terrain thanks to their 

design. Therefore, they can traverse both hard and even terrains by alternating between 

legged and wheeled locomotion accordingly. Firstly, this thesis, presents the kinematics 

of a model of a wheeled-legged excavator both on the object-oriented programming 

package, MOBILE, and analytically. The non-holonomic constraints that govern the 

robot and how these affect its steering is studied and analysed, simulated on MOBILE, 

and verified mathematically. Finally, the dynamics of the system are presented and 

simulated on MOBILE. 
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Περίληψη 

Τα ρομπότ που έχουν τη δυνατότητα κίνησης στο χώρο παρουσιάζουν τεράστια 

ποικιλομορφία δυνατοτήτων. Για να επιτευχθεί η κίνηση τους στο χώρο πρέπει να είναι 

σχεδιασμένα έτσι ώστε να προσαρμόζονται στο εκάστοτε περιβάλλον. Η πλειονότητα 

της επιφάνειας της Γης καλύπτεται από ανομοιόμορφα, ολισθηρά και λασπώδη εδάφη. 

Τα ρομπότ που συνδυάζουν πόδια και ρόδες έχουν σημαντικό προσαρμοστικό 

πλεονέκτημα, έναντι άλλων ρομπότ, καθώς μπορούν, λόγω του σχεδιασμού τους, να 

εναλλάσουν τη μέθοδο κίνησής τους ανάλογα με το έδαφος στο οποίο βρίσκονται. 

Συνεπώς, μπορούν να κινηθούν σε ανομοιόμορφα εδάφη, όπως αυτά που αναφέρθηκαν 

παραπάνω, αλλά και σε ομοιόμορφα εναλλάσοντας το τρόπο κίνησης τους μεταξύ 

ποδιών και τροχών ανάλογα. Αρχικά, αυτή η διπλωματική εργασία, παρουσιάζει την 

κινηματική ενός μοντέλου εκσκαφέα που χρησιμοποιεί πόδια και ρόδες, τόσο στο 

πακέτο αντικειμενοστρεφούς προγραμματισμού, MOBILE, αλλά και αναλυτικά. Στη 

συνέχεια αναλύονται οι μη-ολονομικοί περιορισμοί που διέπουν το σύστημα και το πώς 

αυτοί επηρεάζουν την κατεύθυνση του οχήματος, με προσομοιώσεις στο MOBILE και 

μαθηματική επαλήθευση. Τέλος, παρουσιάζεται η δυναμική του συστήματος 

προσομοιωμένη στο MOBILE. 
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1 Introduction 

1.1 Motivation 

Mobile robots are able to move around in their environment instead of being fixed to one 

specific location. Generally, mobile robots can be roughly classified into three 

categories, air-based robots, water-based robots and land-based robots. The latter can 

be divided according to the way they move into legged, wheeled and tracked robots. The 

most common categories are legged robots and wheeled robots, each category has its 

own advantages and disadvantages. 

Wheels are by far the most popular method of providing robot mobility. In contrast 

with legged robots, wheeled robots, have much simpler and cheaper design, production, 

programming process and control. They can also achieve higher velocities and travel 

larger distances. Nevertheless, wheeled robots have two important restrictions which are 

their big disadvantages in comparison with legged robots. This is their need for flat 

surface with adequate friction coefficient to operate and that their obstacle passing 

ability is heavily restricted by their wheels’ radius. 

On the other hand, legged robots are not subject to wheeled robots’ limitations as 

they can navigate in extremely rough terrains and overcome large obstacles. That 

comes with a cost as, compared to wheeled robots, they have complicated design and 

control, they are more expensive and move much slower. 

Over the last years, wheel-legged hybrid mobile robots have become a focus of 

research because they can integrate many advantages of both categories while 

compensating the disadvantages of each other when employed in various applications 

like: 

• Search and rescue missions 

• Working in hazardous environments 

• Assisting people in their homes and/or work places 

• Assisting impaired people 

• Biomechanics field contribution 

• Delivering goods 

• Supplying isolated human teams 

• Agriculture/Mining/Construction 

• Firefighting  

The aim of this thesis is to provide a better understanding of a non-holonomic excavator 

combining wheels and legs, through kinematic and dynamic modelling and simulation, 

making a step towards creating a working platform for the study of these robots’ 

behaviour with the goal of tackling the above applications in a more efficient manner 

than a wheeled or legged robot would.  
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1.2 Related work and state of the art 

In the last years, there has been a significant work on wheeled-legged locomotion. This 

section aims to present a brief overview of the early ideas and the latest approaches, 

regarding hybrid wheel-legged robots. 

Most of these hybrid robots, such as MAMMOTH [22], SHERPA [5], Hylos [1], [10] 

and Justin [9], which can be seen in the following figures, Figure 1-1, Figure 1-2, Figure 

1-3 and Figure 1-4 are Actively Articulated Wheeled Mobile Robots (AAWMRs). They 

are capable of articulating their limbs to actively conform their terrain. Therefore, they 

use their legs as an active suspension system while driving instead of a locomotion 

alternative to the wheels. 

 

Figure 1-1: The MAMMOTH rover: An RGB-D sensor used to collect point clouds of the 
surrounding terrain is mounted on the top of the rover’s mast [22].  

 

Figure 1-2: Sherpa stepping onto a high obstacle. The manipulator was used to support 
the rover while lifting the wheel onto the obstacle [5].  
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Figure 1-3: Hylos robot [1], [10].  

 

Figure 1-4: Overview of the Justin mobile platform system [9].  

On the contrary, the next robots use their legs as an alternative to the wheels locomotion 

method.  

 DRC-HUBO+ [19], as seen in Figure 1-5, is a wheeled humanoid robot which can select 

two types of mobility by transforming the posture of its legs. It can travel on flat land 

using wheels attached to the knees, it can walk and traverse rubble and stairs using its 

two legs. The legs are not used for locomotion or balance while its driving.  
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Figure 1-5: DRC-Hubo+ is a versatile humanoid that won first place at the DARPA 
Robotics Challenge in 2015. The robot can use tools, open doors, and even drive a 
vehicle. It can transform itself from a walking biped to a wheeled machine [19]. 

Momaro’s [16] locomotion concept is based on four compliant legs which end in pairs of 

directly driven steerable wheels. This allows for omnidirectional driving on rugged 

terrain. To overcome larger obstacles and to climb stairs, individual legs are lifted and 

the robot makes steps. Therefore, it can drive and walk without changing its 

configuration. Momaro can be seen in Figure 1-6. Similar to Momaro is H2020 project 

CENTAURO [15], [17], [18] which can be seen in Figure 1-7. 

 

Figure 1-6: Momaro is a mobile robot that can carry out sensing and manipulation tasks 
in disaster sites and other harsh environments. It was designed to compete in the DARPA 
Robotics Challenge, coming in fourth place [16]. 
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Figure 1-7: The legged-wheeled centaur-like robot, CENTAURO [15], [17], [18]. 

The Tri-ATHLETE [11] vehicle system, which can be seen in Figure 1-8, is a new form of 

two cooperative robotic vehicles that can act individually or physically connected through 

a structural pallet to transport and manipulate cargo. The basis of the Tri-ATHLETE (All 

Terrain Hex Limed Extra Terrestrial Explorer) robot is the wheel-on-limb vehicle concept. 

Tri-ATHLETE vehicle is the second generation of a wheel-on-limp vehicle being 

developed to support the return of humans to the lunar surface. This hybrid mobility 

platform enables the vehicle to traverse at high speeds across benign terrain, as well as 

enabling walking, by locking the wheels and using them as feet, on extreme terrain. 

 

Figure 1-8: Tri-ATHLETE robot, a six-legged robot developed at the NASA’s Jet 
Propulsion Laboratory in southern California [11]. 

Τhe hybrid quadruped/wheeled robot that is developed by the Control Systems Lab of 

the National Technical University of Athens in association with the University of 

Duisburg-Essen [28] can be seen in Figure 1-9. This diploma thesis by Elias Zournatzis, 

addresses the methods followed towards the analysis, design and manufacturing of this 

hybrid robot. The design of the proposed robotic system is an attempt to get acquainted 
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with the field of hybrid robots as well as to gain insight into the incorporation of additive 

manufacturing methods in the implementation of low-cost robotic systems for research 

and educational purposes. 

 

Figure 1-9: Τhe hybrid quadruped/wheeled robot that is developed by the Control 
Systems Lab of the National Technical University of Athens in assosiation with the 
University of Duisburg-Essen. 

Hyundai recently unveiled a walking car concept, called Elevate [13], to efficiently, 

rapidly and resiliently assist in disaster situations. It can be seen in Figure 1-10. 

Elevate’s robotic leg architecture has five degrees of freedom plus wheel hub propulsion 

motors. This design is capable of both mammalian and reptilian walking gaits, allowing it 

to move in any direction. The legs can also fold up into a stowed drive-mode, where 

power to the joints is cut, and the use of an integrated passive suspension system 

maximizes battery efficiency. The non-back drivable motors enable the legs to lock in 

any position and this allows Elevate to drive at highway speeds. But Elevate is still in 

concept stage, instead Hyundai is working in the above at 1/8th scale which can be seen 

in Figure 1-11. 
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Figure 1-10: Hyundai’s Ultimate Mobility Vehicle concept, Elevate [13]. 

 

Figure 1-11: Scaled proof of concept for Hyundai’s Elevate [13]. 

Most of the robots using actuated wheels are not taking into account the dynamic model 

of the whole-body, including the wheels, preventing them from performing dynamic 

locomotion during walking and driving. So far Handle [3], [4], which can be seen in 

Figure 1-12, is the only solution that demonstrates dynamic motions to overcome high 

obstacles while showing adaptability against terrain irregularities. Handle is a robot that 

uses legs and wheels to provide highly agile and small-footprint material handling 

solutions for logistics. Using an active counterbalancing system, Handle can pick up and 

move cases weighing up to 15 kg. It can tackle pallet building, depalletizing and truck 
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unloading tasks. Due to the non-existent publications on Handle, there is no knowledge 

about its locomotion framework. 

 

Figure 1-12: Boston Dynamic’s Handle [3], [4]. 

Except for robots, excavators or heavy machines exist that rely on both legs and wheels. 

A walking excavator or spider excavator is a special type of all-terrain excavator. The 

use of a classic excavator requires fairly flat and/or specific terrains. The walking 

excavators can overcome these restrictions and provide a stable and horizontal position 

to the cab regardless of the terrain. Like the regular excavator, it consists of a boom, 

stick, bucket and cab on rotating platform known as the “house”. However, its house sits 

atop an undercarriage consisting of leg extensions with or without wheels. All extensions 

can move and (sometimes with the help of the boom) the excavator can overcome 

obstacles and make walking motions in uneven and extreme terrains, hence the name 

“walking excavators”.  

In 1966, Edwin Ernst Menzi (1897-1984) and Joseph Kaiser (1928-1993) together 

invented the walking excavator for work on mountain slopes. Subsequently, Kaiser AG, 

Schaanwald, Liechtenstein, and Menzi Muck AG, Kriessern, Switzerland, developed 

excavators separately [29].  

Another company is Euromach. Euromach, Montichiari (BS), Italy, appeared in 

1977. Over 2000 excavators Euromach were built since that date. All these machines 

are sold in France by the multi-brand Company Camuc, Alby sur Cheran, HBI Group, 

which also sells among other Kaiser walking excavators. In the next figures below, 

Figure 1-13 and Figure 1-14, two characteristic walking excavator models can be seen. 
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Figure 1-13: Kaiser’s S12 ALLROAD. 

 

Figure 1-14: Menzi Muck A91. 

1.3 Thesis structure 

The work is organized as follows: Chapter 2 contains an introduction to the object-

oriented programming package, MOBILE, and to the basic theory behind it. Chapter 3 

describes how the excavator’s model was implemented in MOBILE and how the inverse 

kinematics were done in it. It also contains the mathematical verification for MOBILE’s 

inverse kinematics. Chapter 4 is about the non-holonomic constraints, how they were 

added to the model and how they were verified mathematically. Chapter 5 describes the 

different steering capabilities that arise because of the non-holonomic constraints. 
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Chapter 6 describes the whole procedure followed towards the completion of the inverse 

dynamics of the mechanism. Chapter 7 concludes this thesis and proposes future work. 

Chapter 8 contains the bibliography. 
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2 Elements of MOBILE 

2.1 Introduction to MOBILE 

MOBILE is an object-oriented programming package designed for the modelling of multibody 

systems. Its main features are 

• Intuitive representation of mechanical entities as objects capable of transmitting 

motion and force across the system.  

• Direct modelling of mechanical systems as executable programs, allowing the user to 

embed the resulting modules in existing libraries. 

• Open, building-block system design, making it possible to extend the provided library 

in any direction. 

• Scalable approach, treating all mechanical systems in a unified manner. 

• Responsibility-driven client-server implementation, simplifying the task of invoking 

the required functions and of implementing own customized modules. 

• Portable and efficient implementation, based on the object-oriented programming 

language C++. 

• Built-in interfaces for three-dimensional graphic libraries for animation with direct 

user feed-back. User interaction includes click-and-drag features for on-line 

kinematics, statics and dynamics (this last feature may depend on system 

complexity and computer resources). 

MOBILE addresses the following topics and more 

•  Basic mathematical objects and related operators for calculations in spatial 

dynamics: scalars, vectors, matrices, orthogonal transformations, elementary 

transformations, inertia tensors. 

• Elementary building blocks for multibody systems: reference frames, angular and 

linear variables, elementary joints (prismatic and revolute), rigid links, elementary 

measurements mapping spatial motion to scalar quantities and tuples thereof, 

objects for creating composite chains of transmission elements. 

• Elementary force elements (spring/damper, gravitation, mass, etc). 

• Objects for the resolution of constraint equations, either in closed-form or iteratively. 

• Objects for the generation of the equations of motion. 

• Objects for the numerical integration of the dynamical equations. 

 

One of the main features of MOBILE is that it allows the user to model systems as 

executable programs that can be used as building blocks for other environments. This is 

achieved by representing each real-world component by a dedicated object that is capable 

of performing some well-defined set of actions upon request. The objects of MOBILE are 

roughly organized in three categories:  
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a) basic mathematical objects, which provide the algebraic resources for 

performing the typical multibody calculations,  

b) kinetostatic state objects, which are used to store and retrieve kinematic or 

load-related information at specific locations of the multibody system. 

c) kinetostatic transmission elements, which transmit the information stored with 

the kinetostatic state objects from one location of the system to the other. 

 

Each transmission element supplies, in analogy to its real-world counterpart, two basic 

operations: 

i. the transmission of motion and  

ii. the transmission of forces 

 

In MOBILE, these two operations are realized as virtual functions, “doMotion()” and 

“doForce()”, respectively, that are shared by all kinetostatic transmission elements. 

Kinetostatic state objects serve as input and output variables for the various types of 

kinetostatic transmission elements. There exist two basic types of kinetostatic state objects: 

a) spatial kinetostatic state objects, or reference frames, which can be imagined 

as interconnection junctures between pairs of kinetostatical transmission 

elements, and  

b) scalar kinetostatic state objects, which represent actuator or sensor data used 

to drive the motors of the joints or to store scalar data extracted from the system 

by measurements. 

 

The overall picture of the approach is illustrated in Figure 2-1 from MOBILE manual. Prior to 

system assembly, reference systems are “floating” in space and possess no mutual 

relationship. Scalar variables resemble “wires” waiting to be plugged into appropriate places 

of the kinetostatic transmission elements in order to generate the desired motion. After 

assembly, the reference systems become attached at specific points of the transmission 

elements, interconnecting them by pairs, while the scalar variables accomplish the task of 

inducing motion at selected joints of the system. The assembly of a mechanical system thus 

consists in connecting the inputs and outputs of the kinetostatic transmission elements in 

appropriate order such that the resulting chains resemble the original system. 
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Figure 2-1: Objects in multibody systems. 

The modelling of mechanical systems by kinetostatic transmission elements mirrors the 

client-server paradigm of object-oriented programming. In this setting, objects represent 

individuals that are endowed with specific “responsibilities”. These responsibilities are 

chosen in such a way that the correct functioning of the overall society is warranted. 

However, the particular manner in which each object fulfils its responsibility is left as a 

matter of taste. In MOBILE, the responsibilities of the mechanical elements are to provide 

the aforementioned virtual transmission functions. For these functions, it does not matter 

how an object realizes its task. What matters is only that it does realize it.  

2.2 The concept of kinetostatic transmission element 

A mechanical system can be regarded as a concatenation of kinetostatic transmission 

elements mapping motion and forces from one set of input state objects to a set of output 

state objects. State objects are, in this context, spatial reference frames and/or scalar 

variables, collecting positions and orientations as well as associated velocities, accelerations 

and generalized forces. Let the input and output state objects of an ideal kinetostatic 

transmission element be collected in vectors qin and qout respectively. This allows for the 

element to be represented as the block diagram shown in Figure 2-2. 
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Figure 2-2: Elementary kinetostatic transmission element (from Kecskemethy (1993)). 

The motion transmission behaviour described by the element comprises three sub-

operations: 

Position: 

 
( )out inq q=

 (2.1) 

Velocity: 

 out inq J q=
 (2.2) 

Acceleration:  

 out in inq J q J q = +  (2.3) 

/ inJ q =    represents the Jacobian of the transmission element. Furthermore, since the 

transmission element is ideal, the virtual work at the input and output of the element should 

be the same, i.e. 

 
T T

in in out outq Q q Q =
 (2.4) 

Substituting
out inq J q = and noting that this condition must hold for all 

n

inq  , yields the 

force transmission function: 

 in outQ J Q

=
 (2.5) 

As shown by Equation (2.5), the force transmission takes place in opposite direction to the 

motion transmission and can be computed using transposed velocity Jacobian. This 

relationship is known as the “duality of velocity and force” and holds independently of the 

complexity and nature of the motion transmission function φ(qin). 

One of the most powerful features of the concept described earlier is that a 

concatenation of kinetostatic transmission elements itself can be regarded as one global 

kinetostatic transmission element mapping global input state objects into global output state 

objects, which allows for different levels of abstraction and analysis. In the case of a whole 

mechanism, the global input state objects correspond to the generalized coordinates of the 

system and the output state objects can be set to be e.g. the end-effector frame as well as 

the frames on which the external and inertia forces act. This allows for an efficient 
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computation of Jacobian matrices as well as the projection of applied forces and inertial 

properties on the generalized coordinates. 
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3 Kinematics 

Kinematics is the branch of mechanics that deals with the motion of bodies without 

consideration of the forces or moments that cause the motion. Robot kinematics applies 

geometry to the study of the movement of mutli-degree of freedom kinematic chains that 

form the structure of robotic systems. The emphasis on geometry means that the links of the 

robot are modelled as rigid bodies and its joints are assumed to provide pure rotation or 

translation. Robot kinematics studies the relationship between the dimensions and 

connectivity of kinematic chains and the position, velocity and acceleration of each of the 

links in the robotic system. 

3.1 Basic kinematic model and MOBILE implementation 

The kinematic model of the system comprises of the cabin, the two fore legs (including four 

revolute joints each, three at the hip called ψ1, ψ2 and ψ3 and one at the knee called ψ4) and 

the two rear wheel levers (including three revolute joints each, two at the hip called θ6 and θ5 

and one for parallel wheel guidance at the end of the lever called θ4). In addition to these 

physical entities, there are also some virtual mechanisms: a virtual serial chain of three 

prismatic and three revolute joints connecting the cabin-fixed reference system KC (xC, yC, 

zC, φyaw, φpitch and φroll) to the ground-fixed coordinate frame K0, two virtual mechanisms 

(each constituting of two joints, θ2 and θ3) describing the wheel-ground contact with 

cornering and traction effects neglected because the wheels are regarded as ideally slippery 

and finally two virtual mechanisms for positioning the tips of the feet (each constituting of 

three joints, xF, yF and zF), see Figure 3-1. 

 

Figure 3-1: Kinetostatic skeleton of the hybrid excavator. 
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The above kinematic model from [25] was then implemented into MOBILE as a 

concatenation of frames, links and joints. Firstly, the virtual serial chain of the three prismatic 

joints (xC, yC and zC in green colour) and three revolute joints (φyaw, φpitch and φroll in yellow 

colour) were made as seen in Figure 3-2 in order for the cabin-fixed frame KC to be 

connected with the ground-fixed frame K0 (red colour). The ground level is visualised as a 

white grid. 

 

Figure 3-2: The three prismatic and three revolute joints that model the cabin’s centre 
position and rotation with respect to the ground-fixed frame K0. 

Secondly, the vehicle’s cabin was constructed. It consists of four links that connect the 

cabin-fixed frame KC with the two fore legs and the two rear wheel levers. These links can be 

seen in Figure 3-3, where their end frames can also be seen. The cabin only consists of 

those links that are necessary for motion and force transmission, any other additional link 

except them would result errors in the calculations of forces. This is the reason why the 

cabin does not have the form of a real cabin but only consists of those links necessary for 

motion and force transmission. 

The next step was the addition of the mechanism’s fore legs. The legs are symmetrical 

to the x-z plane that is collinear to the centre of the cabin (frame KC). Each leg consists of 

three revolute joints (ψl1, ψl2 and ψl3 for the left leg and ψr1, ψr2 and ψr3 for the right in x-y-z 

direction accordingly) in series at the hip. These joints are connected to the knee by a link. 

At the end of that link there is another revolute joint (ψl4 for the left leg and ψr4 for the right in 

y direction). The result is shown in Figure 3-4 (xC, yC and zC values are 0 in Figure 3-4). 

Finally, the wheels’ system was added which is also symmetrical to the x-z plane that is 

collinear to the centre of the cabin (frame KC). The wheel levers comprise of two revolute 

joints at the hip (θl6 and θl5 for the left lever and θr6 and θr5 for the right, in y and z direction 
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accordingly) connected with a link. At the end of that link there is another revolute joint (θl4 

for the left lever and θr4 for the right, in z direction) and then follows the wheel’s virtual 

mechanism. It consists of a revolute joint aligned along the intersection of the contact plane 

and the wheel plane allowing for camber inclination of the wheel (θl2 for the left wheel and θr2 

for the right, in x direction) and a revolute joint collinear to the wheel hub (θl3 for the left 

wheel and θr3 for the right, in y direction), connected with a link with the previous joint, 

describing the orientation of the rear wheel lever with respect to the ground normal nG (see 

Figure 3-1), which connects with the end of the wheels’ lever. The complete kinetostatic 

model is visualized in Figure 3-5 where the virtual serial chain is hidden. 

 

Figure 3-3: The vehicle’s cabin attached to the position and rotation joints ,that connect the 
cabin-fixed and the ground-fixed frames, made earlier. 

 

Figure 3-4: The excavator’s front legs attached to the cabin. 
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Figure 3-5: The kinetostatic skeleton implemented on MOBILE. 

3.2 Inverse kinematics 

The robot open chain kinematics can be divided into forward kinematics and inverse 

kinematics. The forward kinematics problem is straightforward and there is no complexity 

deriving the equations. Forward kinematics uses the joint parameters to compute the 

configuration of the kinematical chain. Hence, there is always a forward kinematics solution 

of a manipulator.  

Inverse kinematics is a much more difficult problem than forward kinematics. They make 

use of the kinematics equations to determine the joint parameters that provide a desired 

pose for each of the robot’s end-effectors. The solution of the inverse kinematics problem is 

computationally expensive as singularities and nonlinearities make the problem more difficult 

to solve. The relationship between forward and inverse kinematics is illustrated in Figure 3-6. 

 

Figure 3-6: Forward and inverse kinematics relationship. 
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Two main solution approaches for the inverse kinematics problem is the analytical and 

numerical method. An analytical solution to an inverse kinematics problem is a closed-form 

expression that takes the end-effector pose as input and gives joint positions as output. 

Analytical inverse kinematics solvers can be significantly faster than numerical solvers and 

provide more than one solution for a given end-effector pose. In our case both methods will 

be employed; an iterative method will be used by MOBILE for inverse kinematics while an 

analytical solution will be used for verification. 

Several approaches exist today for both methods, each having its advantages and 

disadvantages depending on the objectives of the simulation. For example, users seeking a 

high degree of efficiency need to access closed-form solutions where possible in order to 

avoid redundant computations, while users requiring a rapid yet maybe not so efficient 

modelling are satisfied with iterative solution procedures.  

3.3 MOBILE iterative method for inverse kinematics 

In MOBILE we apply inverse kinematics by creating closed loops. The basic procedure for 

tackling multibody loops in MOBILE is to first dissect the originally closed loop into serial 

chains and then to bring again the loose ends of the serial chains together by requiring the 

fulfilment of appropriate closure conditions. 

Multibody systems can feature two fundamental types of structure: (i) tree-type structure 

or (ii) single or multiple loop structure (see Figure 3-7). 

 

Figure 3-7: Tree type and closed-loop systems illustration. 

In systems featuring tree-type structure, there is only one path between any component and 

the inertial frame. Thus, the relative motions between any two pairs of neighbouring bodies 

are independent, and it is possible to process the kinetostatics of the elements on a 

component by component basis. A user concerned with the modelling of such a system just 

needs to concatenate its components in an order that is compatible with its topological 

structure, i.e., starting at the inertial system and ending at the tips of the branches. 

When the bodies of the multibody system form closed loops, the relative motions within 

the loop become dependent; a change of relative motion at one place induces a change of 
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relative motion at another place. Such dependencies make it impossible to proceed joint by 

joint or body by body as in the tree-type structure case. Instead, one has to formulate and 

solve the so-called constraint equations or closure conditions that hold the branches of the 

loop together. 

In MOBILE, the closure of loops is accomplished as a two-stage process:  

• In the first stage, a set of “characteristic measurements” is defined whose 

vanishing indicates the closure of the loop. These measurements, also called 

“chords” in MOBILE, are typically generalized distances between geometric 

elements such as points, planes and lines. MOBILE provides a whole family of 

classes for making such measurements, which are derived from the (abstract) 

super-ancestor class “MoChord”. The objects instantiated from these classes 

can be used as any other kinetostatic transmission element to propagate 

motions and forces. The measurement objects of MOBILE are characterized by 

three basic attributes. Firstly, the geometric type, determined by the type of 

geometric elements involved in the measurement (point, plane, line or reference 

frame). Measurements generating tensorial quantities are hereby denoted by 

spatial measurements, while measurements producing scalar outputs are termed 

scalar measurements. Secondly, the topological type, which is determined by the 

number of frames involved in the measurement, as well as the type of motion 

(relative or absolute) regarded in the measurement. Finally, the activity type, 

which characterizes the behaviour (static or self-reconfiguring) of the 

measurement with respect to the motion of the involved frames. There are 

spatial measurements, like measuring the relative displacement between the 

origins of two frames and the relative orientation between two frames, and scalar 

measurements, like the quadratic and linear distance (these will be explained 

later) between the origins of two frames. 

• In the next stage, one or more objects termed “solvers” are defined that are set 

to determine the dependent relative motions within the loop such that the 

measurements vanish. MOBILE supplies two classes for this purpose, which are 

both derived from the (abstract) super-class “MoSolver”. One solves the 

constraint equations by iterative, Newton-based procedures and is called implicit 

solver. The implicit solvers can resolve any number of constraint equations 

iteratively for a set of unknowns. This is the universal, generally applicable 

method. The other takes a scalar equation and solves it in closed form for an 

unknown joint variable and is called explicit solver. Explicit solvers can resolve a 

scalar constraint equation explicitly in terms of one unknown. This method only 

works for special types of measurements and loop architectures. In both cases, 

the resulting solver objects behave again like kinetostatic transmission elements, 

supplying a motion and force transmission function. The motion transmission 

function consists of establishing (and carrying out) the motion of the dependent 

chain such that the loop stays closed. The force transmission function involves 
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the computation of the constraint forces within the loops and their propagation 

within the dependent chain such that static equilibrium is achieved. Constraint 

solving objects in MOBILE can process the kinetostatics of one or more closed 

loops. In order to keep the loops closed, a solver object needs three pieces of 

information: (i) the measurements whose vanishing will signal the closure of the 

loops, (ii) the dependent variables whose variation will lead to the closure of the 

loop and (iii) the dependent chain that will reconfigure the cut frames involved in 

the measurements after perturbing the dependent variables. 

Therefore, the user has to carry out the following steps: 

1. Decide where to cut the loop apart. 

2. Decide which of the joint variable(s) of the loop are to be treated as dependent 

variable(s), and put these together in an object of type “MoVariableList” in case 

there are more than one unknowns. The other variables and motions are 

regarded as independent variables or kinematic inputs of the loop. 

3. Create one or more object(s) modelling the dependent chains of the dissected 

loop. Each dependent chain is typically an object of type MoMapChain 

containing the kinetostatics from the dependent variables to the cut frames. 

4. Create one or more object(s) derived from type “MoChord” that describe the loop 

closure condition(s). 

5. Create an object of type “MoSolver”, passing to it the dependent chain(s), the list 

of dependent variable(s), and the object representing the closure condition(s). 

 

After carrying out these steps, the user can employ the resulting object of type MoSolver 

as a simple kinetostatic transmission element representing the kinetostatics of the closed 

loop(s). The doMotion function of the solver generates the motion of the dependent chains 

so that they follow the input motion while keeping the loop closed; the doForce function 

computes the forces at the cut frames and within the dependent chains so that static 

equilibrium is achieved. Usage of this object is then fully equivalent to the usage of any other 

kinetostatic transmission element such as an elementary joint or a rigid link, i.e., solver 

objects can be used again as constituents of chains of kinetostatic transmission elements or 

even “super loops” exhibiting in their branches other loops. 

3.3.1  MOBILE inverse kinematics for the left leg 

Firstly, following the steps mentioned before, we have to create the closed loop for the left 

leg in order to compute the inverse kinematics. For that purpose, three prismatic joints (S1 – 

z direction, S2 – x direction, S3 – y direction) are created in series begging from the ground-

fixed inertia frame K0 (see Figure 3-8). These joints will be used later to describe the left 

leg’s xyz movement with respect to K0. 
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Figure 3-8: The three prismatic joints in series that will model the left leg’s position with 
respect to the ground-fixed frame K0. 

Afterwards, we need to define the loop closure conditions, the characteristic measurements, 

for the left leg, between the left leg’s end effector frame (KFl) and the end frame of the 

prismatic joints in series (KLLinv) both seen in Figure 3-8. Scalar measurements will be used 

in this situation.  

Scalar measurements are generated by projections from spatial frames to real numbers. 

The basic idea of this projection is illustrated in Figure 3-9 in its most simple form. The 

measurement object takes the motion of two frames, termed the target frame KE and the 

base frame KB, and produces a scalar quantity that depends only on the relative motion 

between both frames. The scalar measurements can be for example the quadratic distance 

between the origins of two frames, the linear distance between the origins of two frames, the 

cosine of the angle between two coordinate planes, the distance from a point to a plane 

where the point is located at the origin of frame KE and the plane is coplanar to a coordinate 

plane of frame KB and the shortest distance from a plane to a point where the plane is now a 

coordinate plane of the frame KE and the point is the origin of frame KB .  

Figure 3-10 illustrates the two geometrical types of measurements most used in 

multibody analysis. Figure 3-11 summarizes the scalar geometric measurements and the 

underlying measurement expressions at position level. In these expressions, rB and rE 

denote the distance vectors between the reference frames KB and KE and the inertial system 

accordingly, and RB and RE are the corresponding transformation matrices from the 

reference frames to the inertial system. The vector uB is a unit vector normal to the plane 

involved in the measurement. In MOBILE, only coordinate planes are allowed in 

measurements. Thus, unit vectors can only have one of the three values, xAxis, yAxis and 

zAxis. 
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Figure 3-9: Scalar measurements idea. 

 

Figure 3-10: Geometrical entities involved in the measurements between points and planes. 

 

Figure 3-11: Basic geometric types of scalar measurements. 

In the left leg’s case three “distance from a point to plane” measurements will be used. The 

measurements expression at position level is, as seen in Figure 3-11: 

 

 ( )E E B B B BR r R r R u−  (3.1) 
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The measurements (Equation (3.1)) that the solver will have to bring to zero for the left leg 

are the distance of the left leg’s end effector frame, KFl, with the three coplanar planes of 

KLLinv in x,y and z direction as seen in Figure 3-12. 

 

Figure 3-12: The characteristic measurements for the left’s leg loop closure. 

Next an object for constraint solving needs to be added. An implicit solver is going to be 

used for our problem.  

Out of all the variables affecting the left leg’s position (xC, yC, zC, φyaw, φpitch, φroll, ψl1, ψl2, 

ψl3, ψl4, xFl, yFl and zFl, as seen in Figure 3-1) we select ψl2, ψl3 and ψl4 to be treated as 

dependent and the remaining as generalized (input) variables. We have to consider that the 

number of dependent variables must be the same with the constraint equations 

(characteristic measurements) for the solver to be able to solve the inverse kinematics. This 

is satisfied in our case as we have three constraints and three dependent variables, ψl2, ψl3 

and ψl4. Thus, having decided for the dependent variables, the closing conditions and the 

solver, the inverse kinematics of the left leg are complete. By changing the cabin’s pose (xC, 

yC, zC, φyaw, φpitch, φroll), the left leg’s roll angle (ψl1) and the left leg’s tip position (xFl, yFl, zFl), 

which are the independent variables, we can observe the dependent variables values (ψl2, 

ψl3, ψl4) needed for that change (see Figure 3-13). 
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Figure 3-13: The inverse kinematics of the left leg are complete and by changing the 
independent variables we can observe the dependent values needed for that change. 

3.3.2 MOBILE inverse kinematics for the right leg 

As on the left leg, we firstly create the closed loop for the right leg in order to compute the 

inverse kinematics. For that purpose, three prismatic joints (S4 – z direction, S5 – x direction, 

S6 – y direction) are created in series starting from the ground-fixed inertia frame K0 (see 

Figure 3-14). These joints will be used later to describe the right leg’s xyz movement with 

respect to K0. 

 

Figure 3-14: The three prismatic joints in series that will model the right leg’s position with 
respect to the ground-fixed frame K0. 
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Next, we need to define the loop closure conditions, the characteristic measurements, for 

the right leg, between the right leg’s end effector frame (KFr) and the end frame of the 

prismatic joints in series (KRLinv). Scalar measurements will be used, as before, measuring 

the distance of the right leg’s end effector frame with the three coplanar planes of KRLinv in 

x,y and z direction as seen in Figure 3-15. These are the measurements that the solver 

needs to satisfy (bring to zero). 

  

Figure 3-15: The characteristic measurements for the right’s leg loop closure. 

Finally, an object for constraint solving needs to be added. An implicit solver is going to be 

used like on the left leg.  

Out of all the variables affecting the right leg’s position (xC, yC, zC, φyaw, φpitch, φroll, ψr1, 

ψr2, ψr3, ψr4, xFr, yFr and zFr, as seen in Figure 3-1) we select ψr2, ψr3 and ψr4 to be treated as 

dependent and the remaining as generalized (input) variables. Again, we have to consider 

that the number of dependent variables must be the same with the constraint equations 

(characteristic measurements) for the solver to be able to solve the inverse kinematics which 

happens in this case too as we have three constraints and three dependent variables. Thus, 

having decided for the dependent variables, the closing conditions and the solver, the 

inverse kinematics of the right leg are complete. By changing the cabin’s pose (xC, yC, zC, 

φyaw, φpitch, φroll), the right leg’s roll angle (ψr1) and the right leg’s tip position (xFr, yFr, zFr), 

which are the independent variables, we can observe the dependent variables values (ψr2, 

ψr3, ψr4) needed for this change (see Figure 3-16). 



 
43/149 

 

Figure 3-16: The inverse kinematics of the right leg are complete and by changing the 
independent variables we can observe the dependent values needed for that change. 

3.3.3 MOBILE inverse kinematics for the left wheel 

Moving on to the mechanism’s left wheel, we also have to create a closed loop in order to do 

the inverse kinematics. For that purpose, we create a prismatic joint (S7 – z direction) 

beginning from the ground-fixed inertia frame K0 (see Figure 3-17). That joint will be used 

later as the left wheel’s z movement with respect to K0. We don’t need prismatic joints on x 

and y direction like we did with the legs because the wheels’ exact x-y position in of no 

concern. 

 

Figure 3-17: The prismatic joint that models the left wheel’s height (z) with respect to the 
ground-fixed frame K0. 
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Next, we define the loop closure conditions, the characteristic measurements, for the left 

wheel, between the left wheel’s end effector frame (KWl) and the end frame of the z -

prismatic joint (KLWinv). Scalar measurements will be used, as before. The first measurement 

is the distance between the left wheel’s end effector frame and the coplanar plane of KLWinv 

in z direction. The second measurement is the cosine between the x axis of the left wheel’s 

end effector frame (KWl) and the z axis of z-prismatic joint end frame (KLWinv). The third 

measurement is the cosine between the y axis of the left wheel’s end effector frame (KWl) 

and the z axis of z-prismatic joint end frame (KLWinv). The vanishing of the last two 

measurements that indicates the closure of the loop means that the cosine will be zero, 

which means that x and y axis of KWl will be perpendicular to the z axis of KLWinv (see Figure 

3-18). With these three constraint equations we obtain a rolling behaviour for the wheel end 

effector frame throughout the x-y plane of the S7 prismatic joint which gives us the flat rolling 

motion of the wheel on the z level of S7 joint later on. 

 

Figure 3-18: The characteristic measurements for the left wheel’s loop closure. 

An implicit solver is going to be used as on the legs. Out of all the variables affecting the left 

wheel’s position (xC, yC, zC, φyaw, φpitch, φroll, θl6, θl5, θl4, θl3, θl2 and zWl, as seen in Figure 3-1) 

we select θl6, θl4, θl3 and θl2 to be treated as dependent and the remaining as generalized 

(input) variables. In order to ensure parallel wheel axes to the chassis for arbitrary straddle 

angle θl5, a constraint θl4 = -θl5 simulating a parallel guidance mechanism is added to the 

overall closure conditions so the dependent variables become three (θl6, θl3 and θl2). Like 

before, the number of dependent variables is the same with the number of constraint 

equations. Both of them are three, so the solver is able to calculate the inverse kinematics. 

Thus, having decided for the dependent variables, the closing conditions and the solver, the 

inverse kinematics of the left wheel are complete. By changing the cabin’s pose (xC, yC, zC, 
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φyaw, φpitch, φroll), the left wheel’s lever straddle angle (θl5) and the left wheel’s tip height (zWl), 

which are the independent variables, we can observe the dependent variables’ values (θl6, 

θl3, θl2) needed for this change (see Figure 3-19).  

 

Figure 3-19: The inverse kinematics of the left wheel are complete and by changing the 
independent variables we can observe the dependent values needed for that change. 

3.3.4 MOBILE inverse kinematics for the right wheel 

Finally, we move to the mechanism’s right wheel, creating a closed loop in order to do the 

inverse kinematics. For that purpose, we create a prismatic joint (S8 – z direction) beginning 

from the ground-fixed inertia frame K0 (see Figure 3-20). This joint will be used later as the 

right wheel’s z movement with respect to K0. We again don’t need prismatic joints on x and y 

direction like on the legs because the wheels’ exact x-y position in of no concern. 

 

Figure 3-20: The prismatic joint that models the right wheel’s height (z) with respect to the 
ground-fixed frame K0. 
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Next, we define the loop closure conditions, the characteristic measurements, for the right 

wheel, between the right wheel’s end effector frame (KWr) and the end frame of the z -

prismatic joint (KRWinv). Scalar measurements will be used, as before. The first measurement 

is the distance between the right wheel’s end effector frame and the coplanar plane of KRWinv 

in z direction. The second measurement is the cosine between the x axis of the right wheel’s 

end effector frame (KWr) and the z axis of z-prismatic joint end frame (KRWinv). The third 

measurement is the cosine between the y axis of the right wheel’s end effector frame (KWr) 

and the z axis of z-prismatic joint end frame (KRWinv) (see Figure 3-21). The vanishing of the 

last two measurements that indicates the closure of the loop means that the cosine will be 

zero, which means that x and y axis of KWr will be perpendicular to the z axis of KRWinv. That 

is how we obtain a rolling behaviour for the wheel end effector frame throughout the x-y 

plane of the S8 prismatic joint which gives us the flat rolling motion of the wheel on the z 

level of S8 later on. 

 

Figure 3-21: The characteristic measurements for the right wheel’s loop closure. 

An implicit solver is going to be used as before. Out of all the variables affecting the right 

wheel’s position (xC, yC, zC, φyaw, φpitch, φroll, θr6, θr5, θr4, θr3, θr2 and zWr, as seen in Figure 3-1) 

we select θr6, θr4, θr3 and θr2 to be treated as dependent and the remaining as generalized 

(input) variables. In order to ensure parallel wheel axes to the chassis for arbitrary straddle 

angle θr5, a constraint θr4 = -θr5 simulating a parallel guidance mechanism is added to the 

overall closure conditions so the dependent variables become three (θr6, θr3 and θr2) as on 

the left wheel. Like before, we make sure the number of dependent variables is the same 

with the number of constraint equations. Both of them are three, so the solver is able to 

calculate the inverse kinematics. Thus, having decided for the dependent variables, the 

closing conditions and the solver, the inverse kinematics of the right wheel are complete. By 

changing the cabin’s pose (xC, yC, zC, φyaw, φpitch, φroll), the right wheel’s lever straddle angle 
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(θr5) and the right wheel’s tip height (zWr), which are the independent variables, we can 

observe the dependent variables’ values (θr6, θr3, θr2) needed for this change (see Figure 

3-22).  

 

Figure 3-22: The inverse kinematics of the right wheel are complete and by changing the 
independent variables we can observe the dependent values needed for that change. 

Complete kinematic model 

Thus, the input coordinates of the mechanism are regarded to be the full cabin pose (xC, yC, 

zC, φyaw, φpitch and φroll), the three feet tip coordinates for both legs (xFl, yFl, zFl and xFr, yFr, zFr), 

the legs’ roll angles (ψl1 and ψr1), the wheel levers’ straddle angles (θl5 and θr5) and the 

height of the wheel’s contact point for both wheels (zWl and zWr). Altogether, the position of 

the system is described by the generalized (input) variables q and dependent variables β: 
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All of these variables can be seen in Figure 3-1 which is repeated here for better 

visualization in Figure 3-23. There is a total of 18 degrees of freedom. The other 20 

variables can be determined (as said, iteratively or analytically) from the generalized 

coordinates. Together with the first and second time derivatives, the dependencies are thus:  
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Jq Jq

 





=

=

= +

 (3.3) 

The ground is considered to be flat throughout this work. 
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Figure 3-23: The variables of the kinetostatic skeleton of the hybrid excavator. 

3.4 Analytical verification of the inverse kinematics 

In this chapter MOBILE’s iterative inverse kinematics are going to be compared with the 

analytical inverse kinematics of the mechanism. The closed form expressions of the 

analytical method are solved in MATLAB. 

3.4.1 Analytical verification for the left leg 

We begin by constructing the closed form equation that expresses the left leg’s position with 

respect to the ground-fixed frame K0. This distance can be calculated from the following 

Equation (3.4): 

 
0 0 4 8 10

0 4 8 10 10Fl Flr T T T r=     (3.4) 

In Figure 3-24 the left leg’s frame distribution can be seen, regarding Equation (3.4) 

 

Figure 3-24: Frames distribution to the components regarding the left leg tip distance from 
the inertia frame K0. 
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In Figure 3-25 the 2D diagram of the left leg can be seen with all the joints and links that 

construct it and in Figure 3-27 the cabin’s geometry can be seen. 

 

Figure 3-25: 2D diagram of the left leg tip distance from the inertia frame K0. 

 

Figure 3-26: 2D diagram describing the geometry of the wheel levers and wheels. 
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Figure 3-27: Vehicle’s cabin geometry. 

In Table 3-1, the geometrical values for the mechanism are listed. If not stated otherwise, 

these are the values used throughout the thesis. These values can all be visualized in Figure 

3-28. 

 

Figure 3-28: The robot’s geometrical values. 

Table 3-1: Excavator’s geometrical values. 

cxd (m) cyd (m) thighD (m) legD (m) wl (m) w (m) 

3.0 3.0 2.0 1.5 2.5 0.5 
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The homogeneous transformation matrices stated in Eq. can be expressed therefore as: 
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And the final transformation matrix along with the distance vector from K10 to KFl with respect 

to K10 are: 
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And so, Equation (3.4). becomes: 
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Therefore, the x, y and z position of the left foreleg with respect to K0 can be calculated from 

the next three equations, Equation (3.9), Equation (3.10) and Equation (3.11): 
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The next step is to compare and validate the MOBILE iterative inverse kinematics values 

with the calculated values from the above equations. That is done following the next 

procedure. We input the independent variables (xFl, yFl, zFl and ψl1) in a width of values and 

we store the output values of the dependent variables (ψl2, ψl3 and ψl4). Afterwards, we input 

the values of these dependent variables to the above equations in MATLAB and we get as 

output the position of the left foreleg tip in the xyz space with respect to K0, numerically. 

Afterwards, we compare the xFl, yFl, zFl values that we chose to input with the numerically 

calculated values xFlcalculated, yFlcalculated, zFlcalculated and we check the divergence between them.  

1st Verification test 

We input to MOBILE the next range of xFl values, [1.80m, 4.30m] with a step of 0.01m. For 

every xFl value we get a value for each one of the dependent variables and store them. 

While doing that, we keep the rest independent variables, except xFl, that affect the left 

foreleg’s position at a fixed value. The values of the variables that affect the left foreleg’s 

position can be seen in Table 3-2: 

Table 3-2: The values of the independent variables affecting the left foreleg’s position for 
the 1st verification. 

xFl (m) yFl (m) zFl (m) ψl1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

[1.80, 4.30] 1.50 0  0o 0 0 2 0o 0o 0o 

As a result, we get the following diagrams: 
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Figure 3-29: MOBILE’s ψl2, ψl3 and ψl4 values for xFl range [1.80, 4.30]. 

Then, we will input the ψl2, ψl3 and ψl4 values that we got as an output from MOBILE, to 

Equation (3.4) and calculate the xFlcalculated, yFlcalculated, zFlcalculated values using MATLAB. After 

the calculations we get the following diagrams in Figure 3-30:  

 

Figure 3-30: MATLAB calculated values for xFl from MOBILE's output ψl2, ψl3 and ψl4 values. 
xFl to ψl2 diagram. 
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Now having the calculated left foreleg’s tip position values, we can compare them with the 

initial left foreleg’s tip position values we inputted to MOBILE and get the next error diagrams 

on Figure 3-31: 

 

 

Figure 3-31: xFl, yFl and zFl errors calculated as (xFl-xFlcalculated), (yFl-yFlcalculated) and 
(zFl-zFlcalculated) accordingly when the varying value is xFl. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

2nd Verification test 

For the 2nd test, much like the previous one, we input to MOBILE the next range of yFl 

values, [-0.5m, 3.50m] with a step of 0.01m. For every yFl value we get a value for each one 

of the dependent variables and store them. While doing that, we keep the rest independent 

variables, except yFl, that affect the left foreleg’s position at a fixed value. The values of the 

variables that affect the left foreleg’s position can be seen in Table 3-3: 

Table 3-3: The values of the independent variables affecting the left foreleg’s position for 
the 1st verification. 

xFl (m) yFl (m) zFl (m) ψl1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 
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3.5 [-0.50, 3.5] 0  0o 0 0 2 0o 0o 0o 

 

Following the same procedure as before, we use the ψl2, ψl3 and ψl4 values we get from 

MOBILE to calculate in MATLAB xFlcalculated yFlcalculated zFlcalculated and then compare these with 

the values we inputted to MOBILE in the first place. Below the error diagrams can be seen in 

Figure 3-32. 

 

Figure 3-32: xFl, yFl and zFl errors calculated as (xFl-xFlcalculated), (yFl-yFlcalculated) and (zFl-zFlcalculated) 
accordingly when the varying value is yFl. 

We see that the errors are of the order of 10-5 m, which is acceptably small. 

3rd Verification test 

Moving on to the third kinematics verification test, we input to MOBILE the next range of zFl 

values, [-0.5m, 3.50m] with a step of 0.01m. For every zFl value we get a value for each one 

of the dependent variables and store them. While doing that, we keep the rest independent 

variables, except zFl, that affect the left foreleg’s position at a fixed value. The values of the 

variables that affect the left foreleg’s position for the third test can be seen in Table 3-4: 
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Table 3-4: The values of the variables affecting the left foreleg's position for the third 
verification. 

xFl (m) yFl (m) zFl (m) ψl1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

3.5 1.50 [-0.50, 3.50]  0o 0 0 2 0o 0o 0o 

 

We again use the stored MOBILE values of the dependent variables ψl2, ψl3 and ψl4 to 

calculate the analytic values of the left foreleg’s tip position xFlcalculated yFlcalculated and zFlcalculated 

and compare them with the ones we inputted to MOBILE. The error diagrams can be seen in 

Figure 3-33. 

 

Figure 3-33: xFl, yFl and zFl errors calculated as (xFl-xFlcalculated), (yFl-yFlcalculated) and (zFl-zFlcalculated) 
accordingly when the varying value is zFl. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

4th Verification test 

For the last verification test, we input to MOBILE the next range of ψl1 values, [-30o , 30o] 

with a step of 0.1o. For every ψl1 value we get a value for each one of the dependent 

variables and store them. While doing that, we keep the rest independent variables, except 
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ψl1, that affect the left foreleg’s position at a fixed value. The values of the variables that 

affect the left foreleg’s position for the fourth test can be seen in Table 3-5: 

Table 3-5: The values of the variables affecting the left foreleg's position for the fourth 
verification. 

xFl (m) yFl (m) zFl (m) ψl1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

3.5 1.50 0  [-30o, 30o] 0 0 2 0o 0o 0o 

 

Next, the error diagrams can be seen in Figure 3-34, made following the procedure 

described in the previous verifications. 

 

Figure 3-34: xFl error calculated as (xFl-xFlcalculated) when the varying value is ψl1. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

3.4.2 Analytical verification for the right leg 

We proceed by constructing the closed form equation that expresses the right leg’s position 

in respect with the ground-fixed frame K0. This distance can be calculated from the following 

Equation (3.12): 
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0 0 4 8 10

0 4 8 10 10Fr Frr T T T r=   
 (3.12) 

 

In Figure 3-35 the right leg’s frame distribution can be seen, regarding Equation (3.12). 

 

Figure 3-35: Frames distribution to the components regarding the right leg tip distance from 
the inertia frame K0. 

In Figure 3-36 the 2D diagram of the right leg can be seen with all the joints and links that 

construct it. The cabin’s geometry is the same as described in the case of the left leg and 

can be seen in Figure 3-27, in Figure 3-28 the robot’s geometrical variables can be seen in 

MOBILE environment. 

 

Figure 3-36: 2D diagram of the right leg tip distance from the inertia frame K0. 

The homogeneous transformation matrices stated in Equation (3.12) can be expressed 

therefore as: 
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The final transformation matrix along with the distance vector from K10 to KFr with respect to 

K10 are: 
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Then, Equation (3.12) becomes: 
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Therefore, the position of the right foreleg can be calculated from the next equations: 
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Afterwards we proceed with the validation of the MOBILE iterative inverse kinematics values 

for the right leg, using the above equations, Equation (3.17), Equation (3.18) and Equation 

(3.19), with four verifications following the exact same procedure that was followed on the 

left leg. 

1st Verification test 

We input to MOBILE the next range of xFr values, [1.80 m, 4.30 m] with a step of 0.01 m. For 

every xFr value we get a value for each one of the dependent variables and store the results. 

While doing that, we keep the rest independent variables, except xFr, that affect the right 

foreleg’s position at a fixed value. The values of the variables that affect the right foreleg’s 

position can be seen in Table 3-6: 

Table 3-6: The values of the variables affecting the right foreleg's position for the first 
verification. 

xFr (m) yFr (m) zFr (m) ψr1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

[1.80, 4.30] -1.50 0  0o 0 0 2 0o 0o 0o 

 

 

Figure 3-37: xFr, yFr and zFr errors calculated as (xFr-xFrcalculated), (yFr-yFrcalculated) and (zFr-
zFrcalculated) when the varying value is xFr. 
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We use the values of the dependent variables ψr2, ψr3 and ψr4 we got from MOBILE, and the 

rest that are on a fixed value to get xFrcalculated yFrcalculated and zFrcalculated and receive the above 

error diagrams in Figure 3-37, between the MATLAB analytically calculated position of the 

right foreleg’s tip and the one inputted to MOBILE. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

2nd Verification test 

For the second verification test we input to MOBILE the next range of yFr values, [0.50 m, -

3.50 m] with a step of 0.01 m. For every yFr value we get a value for each one of the 

dependent variables and store the results. While doing that, we keep the rest independent 

variables, except yFr, that affect the right foreleg’s position at a fixed value. The values of the 

variables that affect the right foreleg’s position can be seen in Table 3-7: 

Table 3-7: The values of the variables affecting the right foreleg's position for the second 
verification. 

xFr (m) yFr (m) zFr (m) ψr1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

3.5 [0.50, -3.50] 0  0o 0 0 2 0o 0o 0o 

 

 

Figure 3-38: xFr, yFr and zFr errors calculated as (xFr-xFrcalculated), (yFr-yFrcalculated) and (zFr-
zFrcalculated) when the varying value is yFr. 
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In a similar way like before, we use the values of the dependent variables ψr2, ψr3 and ψr4 we 

got from MOBILE, and the rest that are on a fixed value to calculate analytically xFrcalculated, 

yFrcalculated and zFrcalculated on MATLAB and get the above error diagrams in Figure 3-38. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

3rd Verification test 

For the third verification test we input to MOBILE the next range of zFr values, [-0.50 m, 3.50 

m] with a step of 0.01 m. For every zFr value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the rest independent variables, 

except zFr, that affect the right foreleg’s position at a fixed value. The values of the variables 

that affect the right foreleg’s position can be seen in Table 3-8: 

Table 3-8: The values of the variables affecting the right foreleg's position for the third 
verification. 

xFr (m) yFr (m) zFl (m) ψr1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

3.5 -1.50 [-0.50, 3.50]  0o 0 0 2 0o 0o 0o 

 

Figure 3-39: xFr, yFr and zFr errors calculated as (xFr-xFrcalculated), (yFr-yFrcalculated) and (zFr-
zFrcalculated) when the varying value is zFr. 
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We use the values of the dependent variables ψr2, ψr3 and ψr4 we got from MOBILE, and the 

rest that are on a fixed value to calculate analytically xFrcalculated, yFrcalculated and zFrcalculated on 

MATLAB and get the above error diagrams for the third verification test in Figure 3-39: 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

4th Verification test 

For the fourth verification test we input to MOBILE the next range of ψr1 values, [-30o , 30o] 

with a step of 0.1o. For every ψr1 value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the rest independent variables, 

except ψr1, that affect the right foreleg’s position at a fixed value. The values of the variables 

that affect the right foreleg’s position can be seen in Table 3-9: 

Table 3-9: The values of the variables affecting the right foreleg's position for the fourth 
verification. 

xFr (m) yFr (m) zFr (m) ψr1 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

3.5 -1.50 0  [-30o, 30o] 0 0 2 0o 0o 0o 

 

Figure 3-40: xFr, yFr and zFr errors calculated as (xFr-xFrcalculated), (yFr-yFrcalculated) and (zFr-
zFrcalculated) when the varying value is ψr1. 
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We use the values of the dependent variables ψr2, ψr3 and ψr4 we got from MOBILE, and the 

rest that are on a fixed value to calculate analytically xFrcalculated, yFrcalculated and zFrcalculated on 

MATLAB and get the above error diagrams for the fourth verification test in Figure 3-40: 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

3.4.3 Analytical verification for the left wheel lever and wheel 

Firstly, we construct the closed form equation that expresses the left wheel’s tip position in 

respect with the ground-fixed frame K0. This distance can be calculated from Equation (3.20)

: 

 
0 0 4 7 10 12

0 4 7 10 12 12Wl Wlr T T T T r=      (3.20) 

 

In Figure 3-41, the left wheel’s frame distribution can be seen, regarding Equation (3.20): 

 

Figure 3-41: Frames distribution to the components regarding the rear left wheel end frame 
distance from the inertia frame K0. 

In Figure 3-42 the 2D diagram of the left wheel lever and wheel can be seen with all the 

joints and links that construct them. The cabin’s geometry is the same as described in the 

previous parts and can be reminded in Figure 3-27, in Figure 3-28 the robot’s geometrical 

variables can be reminded in MOBILE environment. 
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Figure 3-42: 2D diagram of the left rear wheel end frame distance from the inertia frame K0. 

The homogeneous transformation matrices stated in Equation (3.20) can be expressed 

therefore as: 
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The final transformation matrix along with the distance vector from K12 to KWl with respect to 

K12 are: 
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Combining the above expressions, we get the following system of equations: 
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Therefore, the three equations expressing the left wheel’s tip position with respect to K0 are: 
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Following a similar procedure as with the forelegs, the next step is to validate the MOBILE 

iterative inverse kinematics values with the analytic equations, Equation (3.26), Equation 

(3.27) and Equation (3.28). We do that by inputting the independent variables of the left 

wheel lever and wheel system (zWl and θl5) on MOBILE in a width of values and then store 

the according output values of the dependent variables (θl6, θl3 and θl2). Also, we measure 

the xWl and yWl values for these widths, using MOBILE’s measurements capabilities and we 
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store them too. After that, we input the dependent values (θl6, θl3 and θl2) we stored in the 

above analytic equations on MATLAB, which gives us the calculated values of the rear left 

wheel tip position. Finally, we compare these calculated values to the zWl values that we 

inputted on MOBILE and xWl, yWl that we measured from MOBILE and observe their 

divergence. 

1st Verification test 

For the first verification we input to MOBILE the next range of zWl values, [0.90m, -0.70m] 

with a step of 0.01 m. For every zWl value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the other independent variable, θl5 

at a fixed value. The values of the variables that affect the rear left wheel’s tip position can 

be seen in Table 3-10: 

Table 3-10: The values of the variables affecting the rear left wheel’s position for the first 
verification. 

zWl (m) θl5 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

[0.90, -0.70]  0o 0 0 2 0o 0o 0o 

 

Figure 3-43: xWl, yWl and zWl errors calculated as (xWl-xWlcalculated), (yWl-yWlcalculated) and (zWl-
zWlcalculated) when the varying value is zWl. 
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We use the values of the dependent variables θl6, θl3, θl2, xWl and yWl we get from MOBILE, 

and the rest that are on a fixed value to calculate xWlcalculated, yWlcalculated and zWlcalculated on 

MATLAB. Figure 3-43 represents the error diagrams between the calculated and desired 

position for the first verification test of the left wheel system. 

We observe that the errors are of the order of 10-5 m, which is acceptably small. 

2nd Verification test 

For the second verification we input to MOBILE the next range of θl5 values, [-40.0o, 15.0o] 

with a step of 0.1o. For every θl5 value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the other independent variable, zWl 

at a fixed value. The values of the variables that affect the rear left wheel’s tip position can 

be seen in Table 3-11: 

Table 3-11: The values of the variables affecting the rear left wheel’s position for the 
second verification. 

zWl (m) θl5 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

0  [-40.0o, 15.0o] 0 0 2 0o 0o 0o 

 

Figure 3-44: xWl, yWl and zWl errors calculated as (xWl-xWlcalculated), (yWl-yWlcalculated) and (zWl-
zWlcalculated) when the varying value is θl5. 
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Similar to the previous verification, we use the values of the dependent variables θl6, θl3, θl2, 

xWl and yWl we get from MOBILE, and the rest that are on a fixed value to calculate 

xWlcalculated, yWlcalculated and zWlcalculated on MATLAB. Figure 3-44 represents the error diagrams 

between the calculated and desired position for the second verification simulation of the left 

wheel system. 

We observe that the errors are of the order of 10-5 m or even smaller, which is 

acceptably small. 

3.4.4 Analytical verification for the right wheel lever and wheel 

Firstly, we construct the closed form equation that expresses the right wheel’s tip position in 

respect with the ground-fixed frame K0. That distance can be calculated from Equation (3.29)

: 

 
0 0 4 7 10 12

0 4 7 10 12 12Wr Wrr T T T T r=      (3.29) 

 

In Figure 3-45 the right wheel’s frame distribution can be seen, regarding Equation (3.29). 

 

Figure 3-45: Frames distribution to the components regarding the rear right wheel end frame 
distance from the inertia frame K0. 

In Figure 3-46 the 2D diagram of the right wheel lever and wheel can be seen with all the 

joints and links that construct them. The cabin’s geometry is the same as before and can be 

reminded in Figure 3-27, in Figure 3-28 the robot’s geometrical variables can be reminded in 

MOBILE environment. 
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Figure 3-46: 2D diagram of the right rear wheel end frame distance from the inertia frame K0. 

The homogeneous transformation matrices stated in Equation (3.29) can be expressed 

therefore as: 
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The final transformation matrix along with the distance vector from K12 to KWr with respect to 

K12 are: 
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Combining the above expressions, we get the following system of equations: 
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Therefore, the three equations expressing the right wheel’s tip position with respect to K0 

are: 
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Following the same procedure as with the left wheel, the next step is to validate the MOBILE 

iterative inverse kinematics values with the above analytic equations, Equation (3.38), 

Equation (3.39) and Equation (3.40). We do that by inputting the independent variables of 

the right wheel lever and wheel system (zWr and θr5) on MOBILE in a width of values and 

then store the according output values of the dependent variables (θr6, θr3 and θr2). Also, we 

measure the xWr and yWr values for these widths, using MOBILE’s measurement capabilities 

and we store them too.  

After that, we input the dependent values (θr6, θr3 and θr2) we stored in the above 

analytic equations on MATLAB, which gives us the calculated values of the rear right wheel 

tip position. Finally, we compare these calculated values to the zWr values that we inputted 

on MOBILE and xWr, yWr that we measured from MOBILE and observe their divergence. 
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1st Verification test 

For the first verification we input to MOBILE the next range of zWr values, [0.90m, -0.70m] 

with a step of 0.01 m. For every zWr value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the other independent variable, θr5 

at a fixed value. The values of the variables that affect the rear right wheel’s tip position can 

be seen in Table 3-12: 

Table 3-12: The values of the variables affecting the rear right wheel’s position for the first 
verification. 

zWr (m) θr5 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

[0.90, -0.70]  0o 0 0 2 0o 0o 0o 

Next, we use the values of the dependent variables θr6, θr3, θr2, xWr and yWr we get from 

MOBILE, and the rest that are on a fixed value to calculate xWrcalculated, yWrcalculated and 

zWrcalculated on MATLAB. Figure 3-47 represents the error diagrams between the calculated 

and desired position for the first verification of the right wheel system. 

 

Figure 3-47: xWr, yWr and zWr errors calculated as (xWr-xWrcalculated), (yWr-yWrcalculated) and (zWr-
zWrcalculated) when the varying value is zWr. 
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We observe that the errors are of the order of 10-5 m, which is acceptably small. 

2nd Verification test 

For the second verification we input to MOBILE the next range of θr5 values, [-40.0o, 15.0o] 

with a step of 0.1o. For every θr5 value we get a value for each one of the dependent 

variables and store the results. While doing that, we keep the other independent variable, zWr 

at a fixed value. The values of the variables that affect the rear right wheel’s tip position can 

be seen in Table 3-13: 

Table 3-13: The values of the variables affecting the rear right wheel’s position for the 
second verification. 

zWr (m) θr5 (deg) xC (m) yC (m) zC (m) φyaw (deg) φpitch (deg) φroll (deg) 

0  [-40.0o, 15.0o] 0 0 2 0o 0o 0o 

Then, like the previous verification, we use the values of the dependent variables θr6, θr3, θr2, 

xWr and yWr we get from MOBILE, and the rest that are on a fixed value to calculate 

xWrcalculated, yWrcalculated and zWrcalculated on MATLAB. The next figures represent the error 

diagrams between the calculated and desired position for the second verification of the right 

wheel system: 

 

Figure 3-48: xWr, yWr and zWr errors calculated as (xWr-xWrcalculated), (yWr-yWrcalculated) and (zWr-
zWrcalculated) when the varying value is θr5. 
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We observe that the errors are of the order of 10-5 m or even smaller, which is acceptably 

small. 

All the errors between the MOBILE values and the expected values from the analytical 

equations are of 10-5m order or even smaller. Compared to the dimensions of the model 

(see Figure 3-25, Figure 3-26, Figure 3-27 and Table 3-1) these errors are insignificant and 

therefore we can conclude that MOBILE’s iterative method for the inverse kinematics is 

acceptably accurate and also easier to apply than the closed-form solution. 
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4 Non-holonomic constraints 

These constraints arise in systems such as multifingered robot hands and wheeled mobile 

robots, in which rolling contact is involved, as well as in systems in which angular 

momentum is conserved. 

Non-holonomic behaviour in robotic systems is particularly interesting, because it 

implies that the mechanism can be completely controlled with a reduced number of 

actuators. On the other hand, both planning and control are much more difficult than in 

conventional holonomic systems, and require special techniques. 

In many interesting cases, the system motion is subject to constraints that may arise 

from the structure itself of the mechanism, or from the way in which it is actuated and 

controlled. Various classifications of such constraints can be devised. For example, 

constraints may be expressed as equalities or inequalities (respectively, bilateral or 

unilateral constraints) and they may explicitly depend on time or not (rheonomic or 

scleronomic constraints). Motion restrictions that may be put in the next form are called 

holonomic constraints. 

 
( ) 0,

1,...,

ih q

i k n

=

= 
 (4.1) 

A system whose constraints, if any, are all holonomic, is called a holonomic system. 

Holonomic constraints are typically introduced by mechanical interconnections between the 

various bodies of the system. For example, prismatic and revolute joints commonly used in 

robotic manipulators are a source of such constraints. If we consider a fixed-base kinematic 

chain composed of n rigid links connected by elementary joints, the composite configuration 

space of the system is 
3( (3))nSO . Since each joint imposes five constraints, the number 

of degrees of freedom is 6n-5n=n. 

System constraints whose expression involves generalized coordinates and velocities in 

the form of Equation (4.2) are referred to as kinematic constraints. 

 
( , ) 0,

1,...,

ia q q

i k n

=

= 
 (4.2) 

These will limit the admissible motions of the system by restricting the set of generalized 

velocities that can be attained at a given configuration. Of course, the holonomic constraints 

(4.1) imply the existence of kinematic constraints expressed as: 
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=

 (4.3) 

However, the converse is not necessarily true: it may happen that the kinematic constraints 

(4.2) are not integrable, i.e., they cannot be put in the form (4.1). In this case, the constraints 
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and the mechanical system itself are called nonholonomic. For a mechanical system with n 

generalized coordinates and k nonholonomic constraints, although the generalized velocities 

at each point are confined to an (n-k) dimensional subspace, accessibility of the entire 

configuration space is preserved. 

Now regarding the robot under study, in addition to the holonomic subsystem described 

in the “Complete kinematic model” chapter (see Figure 4-1 for the kinematic model), the 

interaction of the wheels with the ground gives rise to two nonholonomic, i.e., non-integrable 

kinematic constraints:  

• Velocity of immaterial contact point (cornering constraint):  

  0 =
W W

v n    (4.4) 

• wheel rate (traction constraint, no slip condition):  

 / 0W Wv r − =W Wω n   (4.5) 

where rw is the wheel radius and   represents the Euclidean norm. The terms in Equation 

(4.4) and Equation (4.5) can be seen in Figure 4-1. Equation (4.4) restricts the values of the 

generalized speeds q , while Equation (4.5) affects only the wheel rotation. As the wheel 

rotation angle does not appear in the 38 variables, only the first nonholonomic constraint per 

wheel needs to be regarded. Moreover, as the velocity vW of the immaterial wheel contact 

point depends only on the generalized coordinates of cabin and wheel levers, the cornering 

nonholonomic constraints affect the next subset of input velocities: 

 5 5[ , , , , , , , ]T

I C C C yaw pitch roll l rq x y z     =
 (4.6) 

 

Figure 4-1: Robot’s variables. 

Of these, the operator can command a restricted subset of six independent commanded 

velocities because of the two nonholonomic constraints that confine two generalized 

velocities. These other two generalized velocities result as linear functions of these 
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velocities. Put together, one obtains a set of ordinary differential equations ( ) ( )I Iq A q t=  

which upon being integrated (numerically) yield the values of generalized coordinates qI. 

Once these variables are known, they can be used in conjunction with the other generalized 

variables to compute the complete configuration of the vehicle at any point. 

4.1 Calculation of the dependent velocities on MOBILE 

4.1.1 Velocity constraints 

Let’s assume for now that the dependent variables  are the sway of the cabin (side to side 

motion along the y axis of the cabin-fixed coordinate frame KC) and the yaw of the cabin 

(rotation of the cabin about the vertical axis z of the cabin-fixed coordinate frame KC).  
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=  
 

 (4.7) 

The constraints that the wheels add, as mentioned before, are that the wheels cannot move 

in the y direction of the wheel-tip-fixed coordinate frame, therefore: 

 
1

2

0





 
=  
 

 (4.8) 

 

Figure 4-2: The dependent velocity variables, β1 and β2, due to the nonholonomic 
constraints φ1 and φ2. 

The Equation (4.9) describes the wheel tip velocity : 



 
82/149 

 0J  = + =  (4.9) 

In this equation is the partial wheel tip velocity due to inputs (independent variables Iq ) and 

J  is the partial wheel tip velocity due to the dependent variables. Thus, we can calculate 

the dependent variables’ values from the following Equation (4.10):  

 
1J −= −  (4.10) 

Using the computational capabilities of MOBILE, we will calculate the   and the J values. 

4.1.2 Force-based determination of Jβ 

Computations in object-oriented multibody libraries are typically based on a Jacobian-free 

formulation, since this simplifies considerably the implementation of new elements and the 

expansion of the library. In order to compute the Jacobians, the following derivative-free 

methods proposed by Kecskemethy and Hiller (1994) are available. Regarding the general 

kinetostatic transmission element depicted in Figure 2-2, the velocity Jacobian Jφ can be 

computed using (a) the element’s velocity transmission or (b) the element’s force 

transmission. 

a) Velocity-based determination of Jacobians 

Setting all velocity components at the input of the transmission element besides 

the jth-one equal to zero, and the jth-one equal to one, yields an output velocity 

vector which is identical to the jth-column of the Jacobian: 

 
( ) 1,

0,

i
in

in for i j
q

otherwise

J q =
=


=  (4.11) 

b) Force-based determination of Jacobians 

Setting all force components at the output of the transmission element besides 

the jth-one equal to zero, and the jth-one equal to one, yields a vector of 

generalized forces at the input of the transmission element which is identical to 

the jth-column of the transposed Jacobian, thus to its jth-row: 

 
( ) 1,

0,

j
out

in for i j
Q

otherwise

J Q =
=



=


 (4.12) 

In our problem we want to calculate the Jacobian (Jβ) that connects the velocity dependent 

variables   with the wheels’ tip velocity   (see Figure 4-3). Then the kinetostatic element 

becomes:  
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Figure 4-3: Kinetostatic transmission element connecting the dependent variables β and the 
wheels’ tip velocity φ. 

Where λ is the force at the wheel tip y direction. Firstly, we input  1 0
T

 = in order to find 

the first row of the Jacobian that refers to the left wheel and then we input  0 1
T

 = to find 

the second row of the Jacobian that refers to the right wheel. After inputting each λ value we 

do a force transmission in MOBILE and read the Qβ values (force or torque of the dependent 

variables) which are the force/torque values required for static equilibrium if at the output the 

force acting on the wheels’ tip y direction is λ(N). By following this procedure each time, the 

position of the mechanism changes we can calculate the required Jacobian in each position.  

We now only miss   to be able to calculate the dependent velocities values in every time 

step.  

4.1.3 Calculation of partial wheels’ tip velocity due to independent variables 

From Equation (4.10), we see that the last thing missing in order to calculate the values of 

the dependent velocities is the calculation of  . That term expresses the effect that the 

independent velocities Iq  have to the wheels’ tip velocity on local y direction. In order to 

compute that term, we instantaneously set the dependent velocities to zero so the Equation 

(4.9) becomes:  

 =
 

And then we do a velocity transmission in MOBILE and read the   values. 

4.1.4 Calculation of the dependent velocities 

Now having both the Jacobian Jβ and the   values we can calculate the values of the 

dependent velocities, by doing the above in every time step, from the following equations 

derived from Equation (4.10): 
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We observe that it is possible for the denominators of 1  and 2 to be zero. That happens 

when both wheel axes are collinear. In that occasion the two non-holonomic constraints of 

the wheels collapse into a corresponding single one at the midpoint of the common axis. In 

this thesis we only analyse the more complex behaviour of non-collinear wheel axes, e.g., 

when the vehicle is in operation in uneven terrain. 

4.2 Analytical verification of MOBILE’s dependent velocities values 

In this chapter the dependent velocities values, calculated following the procedure of the 

previous chapter, will be checked analytically in terms of satisfying the nonholonomic 

constraints. 

4.2.1 Left wheel verification 

We have the same notations for the left wheel variables and distances names as described 

on the inverse kinematics chapter (see Figure 3-42) and also the same frames distribution 

(see Figure 3-41) and vehicle geometry. The equations that describe the left wheel’s tip 

position with respect to the ground-fixed coordinate frame K0 were derived in the inverse 

kinematics chapter and are the following: 
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 (4.14) 

 

By deriving the Equations (3.26), (3.27) and (3.28) summarized above, we get the velocity of 

the left wheel end frame with respect to the ground-fixed coordinate frame K0: 

 

Wl

Wl Wl

Wl

x

r y

z

 
 

=
 
  

 (4.15) 
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For the velocity constraint to be satisfied, the y component of velocity on the wheel tip-fixed 

coordinate frame (KWl) must be zero. To calculate that velocity we multiply Wlr  with the 

orientation of the y unit vector of KWl, ˆWly  (see Figure 4-4), with respect to the ground-fixed 

frame K0. We get that orientation vector from the second column of the rotation matrix 
0

12R  

that connects K0 and K12(=KWl) and has been calculated on the inverse kinematics chapter. 

 
( )

0 0 4 7 10

12 4 7 10 12

6 5 4 3 2( ) ( ) ( ) ( ) ( ) ( ) ( )z yaw y pitch x roll y l z l z l y l x l

R R R R R

rot rot rot rot rot rot rot rot       

=    =

=       
 (4.16) 

 

Figure 4-4: The y unit vector of KWl, yWl. The wheel’s velocity must be zero in that direction 
for the nonholonomic constraint to be satisfied. 
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 (4.17) 

Thus, the constraint we must test if it is satisfied by MOBILE is: 

 ˆ 0T

Wl Wlr y =  (4.18) 

Using Equation (4.18), we run some verification tests in order to ensure that the velocity 

values that MOBILE calculates for the dependent variables, with the procedure explained in 

the previous chapter, comply with the nonholonomic constraints. For the verification tests we 

input to MOBILE a velocity in variables that affect the cornering nonholonomic constraints 

the most (these are the cabin roll angle and the left and right wheel straddle angle), then we 
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read and store all the values involved in the above constraint equation for a period of time 

and then we check in MATLAB if the MOBILE values satisfy the constraint. 

1st Verification test  

For the first verification test we input to MOBILE a cabin roll velocity, 5deg/roll s = . The 

chosen step, for acceptable accuracy, of the MOBILE integrator is 0.001 s. Then we observe 

this scenario for 2001 velocity integrations, that means approximately for 2 s. At every 

integration (step in time), we store the values of all the variables involved in the constraint 

equation and then we input these values to this equation in MATLAB and check if they 

satisfy it. In Table 4-1 the initial conditions and fixed values for the first verification test of the 

left wheel can be seen. 

Table 4-1: Initial conditions and fixed values for the first verification test of the left wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 5.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   
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Figure 4-5: Verification of the constraint equation, ˆ 0T

Wl Wlr y = , with the MOBILE variable 

values for 5deg/roll s = . 

We see from Figure 4-5 that the MOBILE variable values satisfy the constraint equation for 

the left wheel as 10-6-10-5 values can be considered as zero. 

2nd Verification test 

For the second verification test we input to MOBILE a left wheel straddle 

angle,
5 0.5deg/l s = . The chosen step, for acceptable accuracy, of the MOBILE integrator 

is 0.001 s, as before. Then we observe this scenario for 451 velocity integrations, that 

means approximately for 0.451 s. At every integration (step in time), we store the values of 

all the variables involved in the constraint equation and then we input these values to this 

equation in MATLAB and check if they satisfy it, exactly like the first test. In Table 4-2 we 

can see the initial conditions and fixed values for the second verification test of the left 

wheel. 

Table 4-2: Initial conditions and fixed values for the second verification test of the left 
wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 
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xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.5   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   

 

Figure 4-6: Verification of the constraint equation, ˆ 0T

Wl Wlr y = , with the MOBILE variable 

values for 
5 0.5deg/l s = . 

We see from Figure 4-6 that the MOBILE variable values satisfy the constraint equation for 

the left wheel as 10-6-10-5 values can be considered as zero. 

3rd Verification test 

For the third verification test we input to MOBILE a right wheel straddle 

angle,
5 0.5deg/r s = . The chosen step, for acceptable accuracy, of the MOBILE integrator 

is 0.001 s, as before. Then we observe this scenario for 451 velocity integrations, that 
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means approximately for 0.451 s. At every integration (step in time), we store the values of 

all the variables involved in the constraint equation and then we input these values to this 

equation in MATLAB and check if they satisfy it, exactly like the previous tests. In Table 4-3 

we can see the initial conditions and fixed values for the third verification test of the left 

wheel. 

Table 4-3: Initial conditions and fixed values for the third verification test of the left wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.5   
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Figure 4-7: Verification of the constraint equation, ˆ 0T

Wl Wlr y = , with the MOBILE variable 

values for 
5 0.5deg/r s = . 

We see from Figure 4-7 that the MOBILE variable values satisfy the constraint equation for 

the left wheel as 10-6-10-5 values can be considered as zero. 

4.2.2 Right wheel verification 

We have the same notations for the right wheel variables and distances names as described 

on the inverse kinematics chapter (see Figure 3-46) and also the same frames distribution 

(see Figure 3-45) and vehicle geometry. The equations that describe the right wheel’s tip 

position with respect to the ground-fixed coordinate frame K0 were derived in the inverse 

kinematics chapter and are the following: 
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By deriving Equations (4.19), we get the velocity of the right wheel end frame with respect to 

the ground-fixed coordinate frame K0:  
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Wr Wr
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x
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z

 
 

=
 
  

 (4.20) 

For the velocity constraint to be satisfied, the y component of velocity on the wheel tip-fixed 

coordinate frame (KWr) must be zero. To calculate that velocity we multiply Wrr  with the 

orientation of the y unit vector of KWr, ˆWry (see Figure 4-8), with respect to the ground-fixed 

frame K0. We get that orientation vector from the second column of the rotation matrix 
0

12R  

that connects K0 and K12(=KWr) and has been already calculated on the inverse kinematics 

chapter. 
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Figure 4-8: The y unit vector of KWr, yWr. The wheel’s velocity must be zero in that direction 
for the nonholonomic constraint to be satisfied. 
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 (4.22) 

Thus, the constraint we must test if it is satisfied by MOBILE is: 

 ˆ 0T

Wr Wrr y =  (4.23) 

Using Equation (4.23), we run some verification tests in order to ensure that the velocity 

values that MOBILE calculates for the dependent variables, with the procedure explained in 

the previous chapter, comply with the nonholonomic constraints. For the verification tests we 

input to MOBILE a velocity in variables that affect the cornering nonholonomic constraints 

the most (like on the left wheel these are the cabin roll angle and the left and right wheel 

straddle angle), then we read and store all the values involved in the above constraint 

equation for a period of time and then we check in MATLAB if the stored values satisfy the 

constraint, exactly like the left wheel. 
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1st Verification test 

For the first verification test we input to MOBILE a cabin roll velocity, 5deg/roll s = . The 

chosen step, for acceptable accuracy, of the MOBILE integrator is 0.001 s. Then we observe 

this scenario for 2001 velocity integrations, that means approximately for 2 s. At every 

integration (step in time), we store the values of all the variables involved in the constraint 

equation and then we input these values to this equation in MATLAB and check if they 

satisfy it. In Table 4-4 we can see the initial conditions and fixed values for the first 

verification test of the right wheel. 

Table 4-4: Initial conditions and fixed values for the first verification test of the right 
wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 5.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   
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Figure 4-9: Verification of the constraint equation, ˆ 0T

Wr Wrr y =  , with the MOBILE variable 

values for 5deg/roll s = . 

We see from Figure 4-9 that the MOBILE variable values satisfy the constraint equation for 

the right wheel as 10-6-10-5 values can be considered as zero. 

2nd Verification test 

For the second verification test we input to MOBILE a left wheel straddle 

angle,
5 0.5deg/l s = . The chosen step, for acceptable accuracy, of the MOBILE integrator 

is 0.001 s, as before. Then we observe this scenario for 451 velocity integrations, that 

means approximately for 0.451 s. At every integration (step in time), we store the values of 

all the variables involved in the constraint equation and then we input these values to this 

equation in MATLAB and check if they satisfy it, exactly like the first test. In Table 4-5 we 

can see the initial conditions and fixed values for the second verification test of the right 

wheel. 

Table 4-5: Initial conditions and fixed values for the second verification test of the right 
wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 
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xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.5   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   

 

Figure 4-10: Verification of the constraint equation, ˆ 0T

Wr Wrr y =  , with the MOBILE variable 

values for 
5

0.5deg/l s = . 

We see from Figure 4-10 that the MOBILE variable values satisfy the constraint equation for 

the right wheel as 10-6-10-5 values can be considered as zero. 
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3rd Verification test 

For the third verification test we input to MOBILE a right wheel straddle 

angle,
5 0.5deg/r s = . The chosen step, for acceptable accuracy, of the MOBILE integrator 

is 0.001 s, as before. Then we observe this scenario for 451 velocity integrations, that 

means approximately for 0.451 s. At every integration (step in time), we store the values of 

all the variables involved in the constraint equation and then we input these values to this 

equation in MATLAB and check if they satisfy it, exactly like the previous tests. In Table 4-6 

we can see the initial conditions and fixed values for the third verification test of the right 

wheel. 

Table 4-6: Initial conditions and fixed values for the third verification test of the right 
wheel. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.5   
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Figure 4-11: Verification of the constraint equation, ˆ 0T

Wr Wrr y = , with the MOBILE variable 

values for 
5

0.5deg/r s = . 

We see from Figure 4-11 that the MOBILE variable values satisfy the constraint equation for 

the right wheel as 10-6-10-5 values can be considered as zero. 

4.2.3 Complete verification test for both wheels simultaneously  

For the complete verification test we input to MOBILE a right wheel straddle angle 

velocity,
5 0.5deg/r s = − , a left wheel straddle angle velocity,

5 0.5deg/l s = and a cabin roll 

velocity, 10.0deg/roll s = . The chosen step, for acceptable accuracy, of the MOBILE 

integrator is 0.001 s, as before. Then we observe this scenario for 2001 velocity integrations, 

that means approximately for 2 s. At every integration (step in time), we store the values of 

all the variables involved in the constraint equation and then we input these values to this 

equation in MATLAB and check if they satisfy it, exactly like the previous tests. In Table 4-7 

we can see the initial conditions and fixed values for the complete verification test of the 

non-holonomic constraints for both wheels. 

Table 4-7: Initial conditions and fixed values for the complete verification test of both 
wheels. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 



 
101/149 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 10.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.5   

θr5 (deg) 0.0 dθr5 (deg/s) -0.5   

 

Figure 4-12: Verification of the constraint equations, ˆ 0T

Wl Wlr y =  (left) and ˆ 0T

Wr Wrr y =  

(right) with the MOBILE variable values for the complete verification test. 
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We see from Figure 4-12 that the MOBILE variable values satisfy the constraint equation for 

both wheels as 10-6-10-5 values can be considered as zero. 

We observe that the MOBILE dependent velocity values are satisfying the 

nonholonomic constraints, as they verify the analytical constraint equations. Hence, we can 

conclude that MOBILE’s iterative method for the satisfaction of the non-holonomic 

constraints is acceptably accurate, except from easier to apply than an analytical way. 
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5 Steering behaviour 

In this chapter, the steering behaviour of the excavator is analysed as a result of the non-

holonomic constraints that characterize the mechanism. As stated in Chapter 4, Equation 

(4.6), the cornering non-holonomic constraints of the system affect the next subset of input 

velocities:  

5 5[ , , , , , , , ]T

I C C C yaw pitch roll l rq x y z     =
 

Out of these velocities, six are controllable and two are dependent because of the two 

wheels that insert the constraints. Throughout the analysis until now  ,C yawy  where 

considered to be the dependent velocities. Depending on which two variables we consider to 

be dependent, different relationships arise between the above velocities.  

In this chapter two characteristic choices for the dependent velocities are going to be 

checked in terms of the different steering abilities they give to the mechanism or how the 

cabin yaw angle can be influenced.  

5.1 For dependent variables ẏC and φ̇yaw 

For this choice of dependent variables only φroll, θl5 and θr5 can influence the cabin yaw 

angle φyaw by bringing the non-holonomic constraints to the test and these are going to be 

examined. 

5.1.1 Steering influence of cabin roll angle φroll 

In order to examine the steering influence of the cabin roll angle φroll, we input to MOBILE a 

velocity, 5.0deg/roll s = and then a velocity 5.0deg/roll s = − . The chosen step, for 

acceptable accuracy, of the MOBILE integrator is 0.001 s, as before. Then we observe these 

scenarios for 2001 velocity integrations, that means approximately for 2 s. At every 

integration (step in time), we store the values of φroll, yC and φyaw for each velocity and 

express their relationship in the following diagrams. In Table 5-1 we can see the initial 

conditions and fixed values for the cabin roll angle steering test for both velocities. 

 

Table 5-1: Initial conditions and fixed values for the steering influence of cabin roll 
simulation, for dependent variables ẏC and φ̇yaw. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   



 
104/149 

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 5.0/-5.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   

 

Figure 5-1: Effect of cabin roll angle to cabin yaw angle for positive (left) and negative (right) 
roll values, for dependent variables ẏC and φ̇yaw. 

We observe that as we increase the cabin roll angle, the yaw angle and y distance of the 

cabin with respect to K0 decrease. The exact opposite happens as we decrease the cabin 

roll angle. This means that the vehicle turns towards the roll direction and also moves along 

the y axis towards the roll direction. That is a very interesting behaviour that looks similar to 

the steering of an airplane. 
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Figure 5-2: Effect of cabin roll angle to cabin y distance with respect to K0 for positive (left) 
and negative (right) roll values, for dependent variables ẏC and φ̇yaw. 

 

 

Figure 5-3: Mechanism’s pose for positive (left) and negative (right) roll value, for dependent 
variables ẏC and φ̇yaw. 
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5.1.2 Steering influence of left wheel lever straddle angle θl5 

In order to examine the steering influence of the left wheel lever straddle angle θl5, we input 

to MOBILE a velocity,
5 0.5deg/l s = and then a velocity

5 0.5deg/l s = − . The chosen step, 

for acceptable accuracy, of the MOBILE integrator is 0.001 s, as before. Then we observe 

these scenarios for 451 velocity integrations, that means approximately for 0.451 s. At every 

integration (step in time), we store the values of θl5, yC and φyaw for each velocity and 

express their relationship in the following diagrams. In Table 5-2 we can see the initial 

conditions and fixed values for the left wheel lever straddle angle steering test for both 

velocities. 

Table 5-2: Initial conditions and fixed values for the steering influence of left wheel lever 
straddle angle simulation, for dependent variables ẏC and φ̇yaw. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.5/-0.5   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   
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Figure 5-4: Influence of positive (left) and negative (right) left wheel lever straddle angles to 
cabin yaw rotation for dependent variables ẏC and φ̇yaw. 

 

Figure 5-5: Influence of positive (left) and negative (right) left wheel lever straddle angles to 
cabin y distance with respect to K0 for dependent variables ẏC and φ̇yaw. 
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Figure 5-6: Mechanism’s pose for positive θl5 value (left) and negative θl5 value (right), for 
dependent variables ẏC and φ̇yaw. 

In this situation, we observe a similar behaviour to the previous one. For positive θl5 velocity 

values we get the mechanism steer to the left with yC and φyaw velocity values combining to 

achieve the airplane like steering. The exact opposite happens for negative θl5 velocity 

values. This time the mechanism steers without changing its roll angle, as it is an 

independent variable and we don’t change it. 

5.1.3 Steering influence of right wheel lever straddle angle θr5 

In order to examine the steering influence of the right wheel lever straddle angle θr5, we input 

to MOBILE a velocity,
5 0.5deg/r s = and then a velocity

5 0.5deg/r s = − . The chosen step, 

for acceptable accuracy, of the MOBILE integrator is 0.001 s, as before. Then we observe 

these scenarios for 451 velocity integrations, that means approximately for 0.451 s. At every 

integration (step in time), we store the values of θr5, yC and φyaw for each velocity and 

express their relationship in the following diagrams. In Table 5-3 we can see the initial 

conditions and fixed values for the left wheel lever straddle angle steering test for both 

velocities. 

Table 5-3: Initial conditions and fixed values for the steering influence of right wheel lever 
straddle angle simulation, for dependent variables ẏC and φ̇yaw. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 
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yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 - -   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.5/-0.5   

 

Figure 5-7: Influence of positive (left) and negative (right) right wheel lever straddle angles to 
cabin yaw rotation for dependent variables ẏC and φ̇yaw. 
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Figure 5-8: Influence of positive (left) and negative (right) right wheel lever straddle angles to 
cabin y distance with respect to K0 for dependent variables ẏC and φ̇yaw. 

 

Figure 5-9: Mechanism’s pose for positive θr5 values (left) and negative θr5 value (right), for 
dependent variables ẏC and φ̇yaw. 
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In this case, we observe that the results are exactly symmetrically opposite from the θl5 case 

of Chapter 5.1.2. 

5.2 For dependent variables θl5, θr5 

For this choice of dependent variables only φroll, φyaw and yC can influence the dependent 

variables by bringing the non-holonomic constraints to the test and these are going to be 

examined. 

5.2.1 Steering influence of cabin roll angle φroll 

In order to examine the steering influence of the cabin roll angle φroll for this case, we input 

to MOBILE a velocity, 5.0deg/roll s = and then a velocity 5.0deg/roll s = − . The chosen step, 

for acceptable accuracy, of the MOBILE integrator is 0.001 s, as before. Then we observe 

these scenarios for 4001 velocity integrations, that means approximately for 4 s. At every 

integration (step in time), we store the values of φroll, θl5 and θr5 for each velocity and express 

their relationship in the following diagrams. In Table 5-4 we can see the initial conditions and 

fixed values for the cabin roll angle steering test for both velocities. 

Table 5-4: Initial conditions and fixed values for the steering influence of cabin roll angle 
simulation, for dependent variables θl5, θr5. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 dyC (m/s) 0.0 cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 dφyaw (deg/s) 0.0   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 5.0/-5.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 - -   

θr5 (deg) 0.0 - -   
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Figure 5-10: Positive (left) and negative (right) cabin roll angles influence to left wheel lever 
straddle angle, for dependent variables θl5, θr5. 

 

Figure 5-11: Positive (left) and negative (right) cabin roll angles influence to right wheel lever 
straddle angle, for dependent variables θl5, θr5. 
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Figure 5-12: Mechanism’s pose for positive (left) and negative (right) cabin roll value, for 
dependent variables θl5, θr5.  

In this case of dependent variables, we observe that we can alternate the cabin’s roll values 

without changing cabin’s yaw angle or yC like before. 

5.2.2 Steering influence of cabin yaw angle φyaw 

In order to examine the steering influence of the cabin yaw angle φyaw for this case, we input 

to MOBILE a velocity, 5.0deg/yaw s = and then a velocity 5.0deg/yaw s = − . The chosen 

step, for acceptable accuracy, of the MOBILE integrator is 0.001 s, as before. Then we 

observe these scenarios for 4001 velocity integrations, that means approximately for 4 s. At 

every integration (step in time), we store the values of φyaw, θl5 and θr5 for each velocity and 

express their relationship in the following diagrams. In Table 5-5 we can see the initial 

conditions and fixed values for the cabin roll angle steering test for both velocities. 

Table 5-5: Initial conditions and fixed values for the steering influence of cabin yaw angle 
simulation, for dependent variables θl5, θr5. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 dyC (m/s) 0.0 cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 dφyaw (deg/s) 5.0/-5.0   
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φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 - -   

θr5 (deg) 0.0 - -   

 

 

Figure 5-13: Positive (left) and negative (right) cabin yaw angles influence to left wheel lever 
straddle angle, for dependent variables θl5, θr5. 

In this case, we note that having as dependent variables θl5 and θr5 we can steer the vehicle 

by changing its cabin’s yaw angle without any other cabin movement. 

 



 
115/149 

 

Figure 5-14: Positive (left) and negative (right) cabin yaw angles influence to right wheel lever 
straddle angle, for dependent variables θl5, θr5. 

 

Figure 5-15: Mechanism’s pose for positive (left) and negative (right) cabin yaw value, for 
dependent variables θl5, θr5. 
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5.2.3 Steering influence of cabin y distance with respect to K0, yC 

In order to examine the steering influence of the cabin y distance with respect to the ground 

fixed frame K0, yC, for this case, we input to MOBILE a velocity, 0.5deg/Cy s= and then a 

velocity 0.5deg/Cy s= − . The chosen step, for acceptable accuracy, of the MOBILE 

integrator is 0.001 s, as before. Then we observe these scenarios for 2001 velocity 

integrations, that means approximately for 2 s. At every integration (step in time), we store 

the values of yC, θl5 and θr5 for each velocity and express their relationship in the following 

diagrams on. In Table 5-6 we can see the initial conditions and fixed values for the cabin y 

movement test for both velocities. 

Table 5-6: Initial conditions and fixed values for the steering influence of yC simulation, 
for dependent variables θl5, θr5. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 dyC (m/s) 0.5/-0.5 cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0   

yFr (m) -1.5 dyFr (m/s) 0.0   

zFr (m) 0.0 dzFr (m/s) 0.0   

zWl (m) 0.0 dzWl (m/s) 0.0   

zWr (m) 0.05 dzWr (m/s) 0.0   

φyaw (deg) 0.0 dφyaw (deg/s) 0.0   

φpitch (deg) 0.0 dφpitch (deg/s) 0.0   

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 - -   

θr5 (deg) 0.0 - -   
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Figure 5-16: Positive (left) and negative (right) yC values influence to left wheel lever straddle 
angle, for dependent variables θl5, θr5. 

 

Figure 5-17: Positive (left) and negative (left) yC values influence to right wheel lever straddle 
angle, for dependent variables θl5, θr5. 
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Figure 5-18: Mechanism’s pose for positive (left) and negative (right) yC value, for dependent 
variables θl5, θr5. 

Finally, in this case where the dependent variables are the wheel lever straddle angles the 

cabin can move in the y direction (green arrow in the above Figure). Scenario that wasn’t 

possible with the previous choice of dependent variables. 

We observe that by selecting different pairs of dependent velocities, we can achieve 

different behaviours between the velocity set of Equation (4.6): 

 5 5[ , , , , , , , ]T

I C C C yaw pitch roll l rq x y z     =   
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6 Dynamics 

Robot dynamics is concerned with the relationship between the forces acting on a robot 

mechanism and the accelerations they produce. The two main problems in robot dynamics 

are forward dynamics and inverse dynamics. 

In the forward dynamics problem, the motion is calculated from known applied control or 

reaction forces and/or torques. Forward dynamics is used primarily for simulation, for 

example to test the response of a robot to a control strategy. 

On the other hand, in the inverse dynamics problem the required input forces and/or 

torques are reconstructed from the current or desired movements and from known external 

forces. Humans can perform very complicated and precise movements. Before the body 

moves, the brain calculates the necessary movement of each muscle involved and tells the 

muscles what to do as the body moves. In the case of a robot arm, the "muscles" are the 

electric motors which must apply the desired torque at a given moment. Each motor must be 

supplied with just the right amount of electric current, at just the right time. Inverse dynamics 

are used for various applications, including: on-line control of robot motions and forces, 

trajectory design and optimization, design of robot mechanisms actuator sizing, and as a 

component in some forward-dynamics algorithms. 

Setting up the kinematics is the most difficult part; as soon as this has been done, both 

inverse and forward dynamics calculations can be done very easily by matrix multiplication 

and matrix inversion, respectively. In this chapter, we will go through how we can construct 

the equations of motion for the hybrid excavator model using MOBILE and solving them to 

get the inverse dynamics using MATLAB. 

6.1 Calculation of the dependent accelerations on MOBILE 

Firstly, we have to implement the non-holonomic constraints at the acceleration level. The 

two velocities β̇ (see Equation (6.1)) that were chosen to be dependent are the sway of the 

cabin (side to side motion along the y axis of the cabin-fixed coordinate frame KC) and the 

yaw of the cabin (rotation of the cabin about the vertical axis z of the cabin-fixed coordinate 

frame KC) as seen in Figure 6-1. Therefore, the accelerations of these two variables are 

dependent too.  
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:
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sway

yaw






 
=  
 

 (6.1) 

The constraints that the wheels add, as mentioned before, are that the wheels cannot move 

in the y direction of the wheel-tip-fixed coordinate frame, therefore at velocity level: 
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 (6.2) 
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The equation that describes the constraints that the wheels add (see Section 4.1.1), is 

Equation (6.3): 

 

 0J  = + =  (6.3) 

In this equation  is the partial wheel tip velocity due to inputs Iq  (subset of independent 

variables affected by the non-holonomic constraints, see Equation (6.4)) and J  is the 

partial wheel tip velocity due to the dependent variables.  

 5 5[ , , , , , , , ]T

I C C C yaw pitch roll l rq x y z     =
 (6.4) 

By differentiating this equation, we get Equation (6.5), that yields the wheel tip 

acceleration  in the y direction of the wheel-tip-fixed coordinate frame, which must be zero 

in order for the non-holonomic constraints to be satisfied (see Figure 6-1): 

 0J J    = + + =  (6.5) 

 

Figure 6-1: The non-holonomic acceleration constraints φ1, φ2 and the dependent 
accelerations β1 and β2 because of them. 

From Equation (6.5) we only need to calculate  and J , as the J Jacobian and the   

velocities were calculated in Chapter 4. Capitalizing on MOBILE’s capabilities, we don’t need 

to compute these missing terms separately, conversely, we can compute them in a unified 



 
121/149 

manner. In order to do that, we set instantaneously the values of the dependent 

accelerations,  , to zero and we do an acceleration transmission, reading   which is now 

equal to: 

 J   = + =  (6.6) 

Having the value of  we can now calculate the dependent accelerations, by doing the 

above in every time step, as: 
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 (6.7) 

6.2 Adding mass properties to the robot 

In MOBILE, mass elements model the inertia properties of a rigid body, i.e., its mass m and 

its inertia tensor Θs. The inertia tensor is assumed to be defined with respect to the center of 

gravity of the body. The center of gravity itself can be offset from the origin of a reference 

frame K by a vector Δs, as seen in Figure 6-2. The linear and angular velocity vectors (u and 

ω) as well as the force and torque (f and τ) are collected in the vectors t and w accordingly 

as seen in Equation (6.8) All tensorial quantities are always assumed to be decomposed 

with respect to the actual frame K as seen in Figure 6-2.  

Inertial forces in MOBILE are modelled as d’ Alembert’s forces. Under a general motion 

of a frame K, the d’ Alembert’s forces exerted by the mass upon the origin of that frame K 

are computed from the linear acceleration α, angular velocity ω and angular acceleration ω ̇

of frame K. They can be seen in Equation (6.9): 

 t and w
u f

    
= =   
   

 (6.8) 

 
( )

 

,

s s

f m a s s

s f

  

   

= −  +  +    

= −  +  +  
 (6.9) 
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Figure 6-2: Model of a mass element on MOBILE. 

The material used to calculate the mass properties is Cytec Thornel® Mat VMA Carbon 

Fiber and the some of its properties can be seen in Figure 6-3. 

 

Figure 6-3: Cytec Thornel Mat VMA Carbon Fiber properties. 

6.2.1 Cabin mass properties 

The cabin of the excavator was modelled in Solidworks as a 3mx3mx0.5m solid rectangular 

cuboid of the before-mentioned material (see Figure 6-4). Then the mass properties of that 

model were extracted and can be seen in Figure 6-5. The center of mass and the output 

coordinate system used by Solidworks for the mass properties are the same. 
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Figure 6-4: Solidworks model of the cabin. The pink system of coordinates denotes the 
center of mass while the blue one is the output coordinate system for Solidworks’ mass 
properties calculations. 

 

Figure 6-5: Mass properties of the cabin.  

Next, we insert a mass object with the above mass and inertia matrix to MOBILE in order to 

model cabin’s mass, called M1 (see Figure 6-6). The rigid body’s center of mass is located 

at the center of the cabin’s kinematical chain. It should be mentioned here that the center of 

mass is located higher that than in reality, but for the purposes of this work, it’s considered to 

be at the center of the cabin’s kinematical chain. 
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Figure 6-6: Rigid body modelling the cabin in MOBILE. 

6.2.2 Left and right leg mass properties 

The thigh part of both legs was modelled in Solidworks as a solid cylinder with 0.2m 

diameter and 2.0m height of the before-mentioned material (see Figure 6-7). Then the mass 

properties of that model were extracted and can be seen in Figure 6-8. The center of mass 

and the output coordinate system used by Solidworks for the mass properties are the same. 

 

Figure 6-7: Solidworks model of thigh for both legs. The pink system of coordinates denotes 
the center of mass while the blue one is the output coordinate system for Solidworks’ mass 
properties calculations. 
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Figure 6-8: Mass properties of the thighs of both legs. 

Next, we insert two mass objects with the above mass and inertia matrix to MOBILE in order 

to model left and right leg thigh mass as M3 and M2 accordingly (see Figure 6-9). The rigid 

bodies’ center of mass is located at the midpoint between the hip and the knee of the 

kinematical chain for both legs. 

 

Figure 6-9: Rigid bodies modelling the left and right leg thighs in MOBILE. 

The part between the knee and the ankle for both legs was modelled in Solidworks as a 

solid cylinder with 0.2m diameter and 1.5m height of the before-mentioned material (see 

Figure 6-10). Then the mass properties of that model were extracted and can be seen in 

Figure 6-11. The center of mass and the output coordinate system used by Solidworks for 

the mass properties are the same. 
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Figure 6-10: Solidworks model of the rigid body between the knee and the ankle for both legs. 
The pink system of coordinates denotes the center of mass while the blue one the output 
coordinate system for Solidworks’ mass properties calculations. 

 

Figure 6-11: Mass properties of the rigid bodies between the knees and the ankles of both 
legs 

Next, we insert two mass objects with the above mass and inertia matrix to MOBILE in order 

to model left and right leg rigid bodies between the knees and the ankles, as M5 and M4 

accordingly (see Figure 6-12). The rigid bodies’ center of mass is located at the midpoint 

between the knee and the ankle of the kinematical chain for both legs. 
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Figure 6-12: Rigid bodies modelling the left and right leg parts between the knees and the 
ankles in MOBILE. 

6.2.3 Left and right wheel lever and wheel mass properties 

Because the wheel’s mass is so much smaller that the other masses of the mechanism the 

whole lever wheel and wheel system was modelled as one rigid body at the wheel lever. The 

wheel lever was modelled at Solidworks as a solid cylinder with 0.2m diameter and 2.5m 

height of the before-mentioned material (see Figure 6-13). Then the mass properties of that 

model were extracted and can be seen in Figure 6-14. The center of mass and the output 

coordinate system used by Solidworks for the mass properties are the same. 

 

Figure 6-13: Solidworks model for each of the wheel lever and wheel system. The pink system 
of coordinates denotes the center of mass while the blue one is the output coordinate system 
for Solidworks’ mass properties calculations. 
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Figure 6-14: Mass properties for each wheel lever and wheel system of the mechanism. 

Next, we insert two mass objects with the above mass and inertia matrix to MOBILE in order 

to model left and right wheel lever and wheel system mass, as M6 and M7 accordingly (see 

Figure 6-15). The rigid bodies’ center of mass is located at the midpoint of the wheel lever 

kinematical chain for both wheel systems. 

 

Figure 6-15: Rigid bodies modelling the left and wheel lever and wheel systems in MOBILE. 
All the rigid bodies of the system are now visual. 

6.3 Inverse dynamics of the mechanism 

6.3.1 Equations of motion 

The inverse dynamics of the mechanism, with its n degrees of freedom and its closed 

kinematical topology, can be regarded as a function mapping the generalized coordinates q 

and their time derivatives to a set of generalized forces Q at the input of the kinetostatical 

skeleton. The equations of motion for the hybrid excavator can be written as, 
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 ( , ) External

q qMq b q q Q J Q 
− − + + =   (6.10) 

where M is the nxn mass matrix of the mechanism, b is the n-dimensional vector containing 

the centripetal and Coriolis terms, Qq
External is an n-dimensional vector containing the 

projection of the gravitational forces and external forces on the generalized coordinates, 

Jβ
Ττβ is the contribution of the dependent variables to the generalized forces and Qq is an n-

dimensional vector collecting the generalized forces, these are usually referred to as 

“residual forces”. 

 

Figure 6-16: Model of the inverse dynamics of a multibody system. 

The generalized variables q of Equation (6.10) are the degrees of freedom that the operator 

will be able to command regarding the vehicle’s movement. These are selected to be the 

next four virtual joint variables (these can be seen in Figure 3-1): 

 , , ,
T

C C roll pitchq z x   =     (6.11) 

The dependent variables β of Equation (6.10) are selected to be the kinematically dependent 

real joint variables of the robot (these can also be seen on Figure 3-1): 

  2 3 4 2 3 4 6 6, , , , , , ,
T

l l l r r r l r        =   (6.12) 

6.3.2 Jacobian calculation 

To solve the equations of motion we will need the Jacobian that connects q  and  , the 

derivatives of the above variables. We will do that by using MOBILE’s kinematical 

capabilities. As mentioned in Section 4.1.2, there are two options, a force-based Jacobian 

determination and a velocity-based Jacobian determination. It is important to be able to 

select between these depending on the situation as choosing the better can simplify a lot the 

calculations and the computational cost.  

In the force-based method you construct the Jacobian matrix row by row while in the 

velocity-based method you construct the Jacobian matrix column by column. Hence, the 

choice depends on which of the above is smaller, the rows or the columns of the output 

Jacobian matrix. If the matrix is square there is no difference. 

In our case the Jacobian connects our variables as shown in Equation (6.13): 
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 ,8 4xJ q =   (6.13) 

As a result, this Jacobian has 8 rows and 4 columns and therefore the velocity-based 

method would be a better choice. As stated in Section 4.1.2, that is done by setting all 

velocity components at the input of the transmission element besides the jth-one equal to 

zero, and the jth-one equal to one. This yields an output velocity vector which is identical to 

the jth-column of the Jacobian. By this procedure we calculate the required Jacobian at 

every time step. 

6.3.3 Calculation of torques at dependent joints 

The next step is to calculate the torques of the dependent joints β, so that the residual forces 

Qq are zero. This is necessary because the joint variables q are virtual and consequently 

their forces must be zero. As a result of the above, Equation (6.10) becomes: 
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− − + + = 

= + − 

=

= + −

   (6.14) 

Hence, in order to calculate the required τβ we need to calculate the Q* term. We will do that 

by using MOBILE’s capabilities. From Equation (6.10) we see that if we set τβ to zero, Q* is 

then equal to Qq. Therefore, by setting the dependent forces τβ to zero instantaneously at 

every time step and then reading the generalized forces Qq we have -Q* at every time step. 

Finally, we are ready to solve the system (6.14). Let’s consider the next system of linear 

equations: 

 y Hx=  (6.15) 

Frequently, when matrix H has more columns than rows with linearly independent rows the 

system is “underdetermined”. In this case, it is common to seek a solution x with minimum 

norm. In other words, we would like to solve the following optimization problem: 

 
2

2
min

x
x   (6.16) 

such that y=Hx. Minimization with constraints can be done with Langrange multipliers. 

Following we have the definition of the Langrangian: 

 
2

2
( , ) ( )L x x y Hx = + −   (6.17) 

Next, we take the derivatives of the Lagrangian: 
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TL x x H
x

L x y Hx






= −




= −



  (6.18) 
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Setting the derivatives to zero we get: 

 
1

2

Tx H =   (6.19) 

 y Hx=   (6.20) 

Plugging (6.19) into (6.20) gives: 

 
1

2

Ty HH =   (6.21) 

Assuming that HHT is invertible, we have: 

 ( )
1

2 y
−

=    (6.22) 

Plugging (6.22) into (6.19) gives the least squares solution: 

 ( )
1

T Tx H HH y
−

=   (6.23) 

Next we verify that x in this formula does in fact satisfy y=Hx: 

 ( ) ( )( )
1 1

T T T THx H H HH y HH HH y y
− −

= = =   (6.24) 

Hence,  

 ( )
12

2
min . . T T

x
x s t y Hx x H HH y

−

→ → =  =   (6.25) 

In some situations, like ours, it is desirable to minimize the weighted sum, i.e.,  

 
2

n nn
w x  (6.26) 

where wn are positive weights. This corresponds to minimizing, 

 
2

1/2

2
W x   (6.27) 

where W is the diagonal matrix,  

  
, nn n

W w=  (6.28) 

The derivation of the solution is similar, and gives: 

 ( )
12

1/2 1 1

2
min . . T T

x
W x s t y Hx x W H HW H y

−
− −→ → =  =   (6.29) 

In our case we are using the weighted problem because we want to be able to determine the 

involvement of each actuated joint to the mechanism’s movements. To apply the above to 

our problem we just replace y with Q*, x with τβ and H with Jβ
Τ. Then the problem and the 

solution in our case is:  

 ( )
12

1/2 * 1 1 *

2
min . . T T

x
W s t Q J W J J W J Q        

−
− −→ → =  =   (6.30) 

The above Equation (6.30) is then solved for each time step in MATLAB. 
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There are a lot of ways to approach the choice of the weights, two of them are the next: 

• Divide the actuators as strong and weak, hence deciding which actuators will take 

bigger part in the movements of the mechanism. Small weights should be put to the 

strong actuators and large weights to the weak actuators. 

• By the contribution of each actuator force to Q*. If the contribution is big the weight 

should be small and vice versa. So,  

 
1

iW
ith row of J

=   (6.31) 

6.4 Simulation results  

6.4.1 1st Inverse dynamics simulation  

For the first simulation we impose to the robot a forward velocity of 3 m/s ( 3 /Cx m s=  ). In 

Figure 6-18 the variables of the system are reminded, in Figure 6-17 the start and end 

position of the robot can be seen, in Figure 6-19 the dimensions of the robot are visualized 

and in Table 6-2 the initial conditions, geometry and mass values of the system can be seen.  

We begin by using the strong-weak actuator method for weights. The weight choice can 

be seen in Equation (6.32). These weights from upper left to downright they affect the 

torques of the actuated joints in Equation (6.33) accordingly. 

 

0.01 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0.01 0 0 0 0

0 0 0 0 100 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0.01 0

0 0 0 0 0 0 0 0.01

W

 
 
 
 
 
 =
 
 
 
 
 
     (6.32) 

  2 3 4 2 3 4 6 6, , , , , , ,
T

l l l r r r l r        =  (6.33) 

Hence, joints 2 2 6 6, , ,l r l r     were chosen to handle most of the loads while 3 3,l r   the 

least. Joints 4 4,l r   are between the before mentioned. The robot begins its motion from 

0Cx m=  and stops at 1.482Cx m= .  

In Table 6-1, the total weight of the robot can be seen along with the approximate total 

length, the approximate total width and the approximate total height (these varie in relation 

to the legs’ and wheel levers’ extension). These apply to all the next dynamic simulations. 

Table 6-1: Total weight and approximate total length, width and height of the robot. 

Total weight (kg) Total length (m) Total width (m) Total height (m) 

6153.98 ~7  ~3 ~(0, 2.6] 
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Figure 6-17: 1st Simulation start (left) and end (right) robot pose.  

 

Figure 6-18: Robot’s variables. 

 

Figure 6-19: Dimensions of the robot. The whole system is symmetrical. 

Table 6-2: Initial conditions, geometry variables and mass properties of the robot for the 
1st inverse dynamics simulation. 

xC (m) 0.0 dxC (m/s) 3.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 
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zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0 M1 (kg) 5400 

yFr (m) -1.5 dyFr (m/s) 0.0 M2 (kg) 125.66 

zFr (m) 0.0 dzFr (m/s) 0.0 M3 (kg) 125.66 

zWl (m) 0.0 dzWl (m/s) 0.0 M4 (kg) 94.25 

zWr (m) 0.05 dzWr (m/s) 0.0 M5 (kg) 94.25 

φyaw (deg) 0.0 - - M6 (kg) 157.08 

φpitch (deg) 0.0 dφpitch (deg/s) 0.0 M7 (kg) 157.08 

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   

θr5 (deg) 0.0 dθr5 (deg/s) 0.0   

 

The masses M1 to M7 are visualized in Figure 6-15 and the mass properties are shown in 

Figure 6-5, Figure 6-8, Figure 6-11 and Figure 6-14 accordingly. Also, the acceleration of 

gravity is set at approximately 9.81 m/s2. In Figure 6-20 and Figure 6-21 the torques of the 

actuated joints β, needed for the cabin x movement with the first weight method, are shown. 

 

Figure 6-20: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin x movement of 1.482 m using 
the first weight method. 
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We observe from Figure 6-20 and Figure 6-21 that the torque distribution is how we planned 

it with the weights. Also, the direction of the torques seems right if we look the start and end 

pose of the robot (Figure 6-17). 

Now we are going to repeat the above simulation but with different weights. The weight 

matrix is going to be calculated by the contribution of each actuator force to Q* (see Equation 

(6.31), so it is changing for every time step. In Figure 6-22 and Figure 6-23 the torques of 

the actuated joints β, needed for the cabin x movement with the second weight method, are 

shown. 

 

 

Figure 6-21: ψr3, ψr4, θl6 and θr6 torques needed for a cabin x movement of 1.482 m using 
the first weight method. 
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Figure 6-22: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin x movement of 1.482 m using 
the second weight method. 

 

Figure 6-23: ψr3, ψr4, θl6 and θr6 torques needed for a cabin x movement of 1.482 m using 
the second weight method. 
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We observe that the two methods for the weights are quite close in terms of results except 

for the torques of ψl3 and ψr3. 

We also observe from Figure 6-20, Figure 6-21, Figure 6-22 and Figure 6-23 that the 

torque values are of magnitude 104 Nm. We are going to test this by comparing to the static 

ψ2 torque of the 2D problem seen in Figure 6-24. 

 

Figure 6-24: Static torque of ψ2 to check the torque magnitude of the simulation results. 

In Figure 6-24, ΣΜ is the total weight of the robot and g the gravitational acceleration. 

Hence, the static torque of joint ψ2 is: 
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  (6.34) 

Thus, we can see from Equation (6.34), that the order of magnitude of the simulation torques 

are valid. 

6.4.2 2nd Inverse dynamics simulation 

For the second simulation we impose to the robot a cabin roll velocity of -10 deg/s 

( 10deg/roll s = −  ). In Figure 6-25 the start and end position of the robot can be seen, the 

variables of the system are reminded in Figure 6-18, the dimensions of the robot are the 

same as before and are visualized in Figure 6-19 and in Table 6-3 the initial conditions, 

geometry and mass values of the system can be seen.  

Like before, we begin by using the strong-weak actuator method for weights. The weight 

choice can be seen in Equation (6.32). These weights from upper left to downright they 

affect the torques of the actuated joints in Equation (6.33) accordingly. Hence, joints 

2 2 6 6, , ,l r l r     were chosen to handle most of the loads while 3 3,l r   the least. Joints 

4 4,l r   are between the before mentioned. The robot begins its motion from 0o

roll =  and 

stops at 5.41o

roll = − .  

The masses M1 to M7 are visualized in Figure 6-15 and the mass properties are shown 

in Figure 6-5, Figure 6-8, Figure 6-11 and Figure 6-14 accordingly. Also, the acceleration of 

gravity is set at approximately 9.81 m/s2. In Figure 6-26 and Figure 6-27 and the torques of 
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the actuated joints β, needed for the cabin roll movement with the first weight method, are 

shown. 

 

Figure 6-25: 2nd Simulation start (left) and end (right) robot pose. 

 

Table 6-3: Initial conditions, geometry variables and mass properties of the robot for the 
2nd inverse dynamics simulation. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) 0.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0 M1 (kg) 5400 

yFr (m) -1.5 dyFr (m/s) 0.0 M2 (kg) 125.66 

zFr (m) 0.0 dzFr (m/s) 0.0 M3 (kg) 125.66 

zWl (m) 0.0 dzWl (m/s) 0.0 M4 (kg) 94.25 

zWr (m) 0.05 dzWr (m/s) 0.0 M5 (kg) 94.25 

φyaw (deg) 0.0 - - M6 (kg) 157.08 

φpitch (deg) 0.0 dφpitch (deg/s) 0.0 M7 (kg) 157.08 

φroll (deg) 0.0 dφroll (deg/s) -10.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   

θl5 (deg) 0.0 dθl5 (deg/s) 0.0   
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θr5 (deg) 0.0 dθr5 (deg/s) 0.0   

 

Figure 6-26: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin roll movement of -5.41o using 
the first weight method. 

We observe from Figure 6-26 and Figure 6-27 that the torque distribution is how we planned 

it with the weights. 

Now we are going to repeat the above simulation but with different weights. Like before, 

the weight matrix is going to be calculated by the contribution of each actuator force to Q* 

(see Equation (6.31), so it is changing for every time step. In Figure 6-28 and Figure 6-29 

the torques of the actuated joints β, needed for the cabin roll movement with the second 

weight method, are shown. 

We observe that the two methods for the weights give quite different results and the 

second’s method torque values seem to agree more with the movement of the robot. 
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Figure 6-27: ψr3, ψr4, θl6 and θr6 torques needed for a cabin roll movement of -5.41o using 
the first weight method. 

 

Figure 6-28: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin roll movement of -5.41o using 
the second weight method. 
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Figure 6-29: ψr3, ψr4, θl6 and θr6 torques needed for a cabin roll movement of -5.41o using 
the second weight method. 

6.4.3 3rd Inverse dynamics simulation 

For the third simulation we impose to the robot a cabin z velocity of -3 m/s ( 3 /Cz m s= −  ). In 

Figure 6-30 the start and end position of the robot can be seen, the variables of the system 

are reminded in Figure 6-18, the dimensions of the robot are the same as before and are 

visualized in Figure 6-19 and in Table 6-4 the initial conditions, geometry and mass values of 

the system can be seen.  

Like before, we begin by using the strong-weak actuator method for weights. The weight 

choice can be seen in Equation (6.32). These weights from upper left to downright they 

affect the torques of the actuated joints in Equation (6.33) accordingly. Hence, joints 

2 2 6 6, , ,l r l r     were chosen to handle most of the loads while 3 3,l r   the least. Joints 

4 4,l r   are between the before mentioned. The robot begins its motion from 2.0Cz m=  and 

stops at 0.2570Cz m= . 

The masses M1 to M7 are visualized in Figure 6-15 and the mass properties are shown 

in Figure 6-5, Figure 6-8, Figure 6-11 and Figure 6-14 accordingly. Also, the acceleration of 

gravity is set at approximately 9.81 m/s2. In Figure 6-31 and Figure 6-32 the torques of the 

actuated joints β, needed for cabin’s z movement with the first weight method, are shown. 
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Figure 6-30: 3rd Simulation start (upper) and end (down) robot pose. 

 

Table 6-4: Initial conditions, geometry variables and mass properties of the robot for the 
3rd inverse dynamics simulation. 

xC (m) 0.0 dxC (m/s) 0.0 cxd (m) 3.0 

yC (m) 0.0 - - cyd (m) 3.0 

zC (m) 2.0 dzC (m/s) -3.0 w (m) 0.5 

xFl (m) 3.5 dxFl (m/s) 0.0 wl (m) 2.5 

yFl (m) 1.5 dyFl (m/s) 0.0 thighD (m) 2.0 

zFl (m) 0.0 dzFl (m/s) 0.0 legD (m) 1.5 

xFr (m) 3.5 dxFr (m/s) 0.0 M1 (kg) 5400 

yFr (m) -1.5 dyFr (m/s) 0.0 M2 (kg) 125.66 

zFr (m) 0.0 dzFr (m/s) 0.0 M3 (kg) 125.66 

zWl (m) 0.0 dzWl (m/s) 0.0 M4 (kg) 94.25 

zWr (m) 0.05 dzWr (m/s) 0.0 M5 (kg) 94.25 

φyaw (deg) 0.0 - - M6 (kg) 157.08 

φpitch (deg) 0.0 dφpitch (deg/s) 0.0 M7 (kg) 157.08 

φroll (deg) 0.0 dφroll (deg/s) 0.0   

ψl1 (deg) 0.0 dψl1 (deg/s) 0.0   

ψr1 (deg) 0.0 dψr1 (deg/s) 0.0   
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Figure 6-31: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin z movement of -1.743 m using 
the first weight method. 

We observe from Figure 6-31 and Figure 6-32 that the torque distribution is how we planned 

it with the weights. 

Now we are going to repeat the above simulation but with different weights. Like before, 

the weight matrix is going to be calculated by the contribution of each actuator force to Q* 

(see Equation (6.31), so it is changing for every time step. In and the torques of the actuated 

joints β, needed for cabin’s z movement with the second weight method, are shown. 

We observe that the two methods for the weights are quite close in terms of results 

except for the torques of ψl3 and ψr3. 
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Figure 6-32: ψr3, ψr4, θl6 and θr6 torques needed for a cabin z movement of -1.743 m using 
the first weight method. 

 

Figure 6-33: ψl2, ψl3, ψl4 and ψr2 torques needed for a cabin z movement of -1.743 m using 
the second weight method. 
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Figure 6-34: ψr3, ψr4, θl6 and θr6 torques needed for a cabin z movement of -1.743 m using 
the first weight method. 

In this chapter we saw how mass properties and gravity were added to the MOBILE 

model and how we used MOBILE’s iterative calculations capabilities along with MATLAB to 

be able to compute the robot’s needed torques for certain movements. Two different choices 

for the weight matrix were made allowing us to decide how the torques are distributed to the 

robot. We conclude that there are differences in the actuator torques for the different weight 

matrices, which depend on the robot’s movements, as the first method uses a fixed weight 

matrix while second method matrix changes in every time step. 
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7 Conclusions and Future Work 

In this chapter the conclusions of the work described in this thesis are presented. Also 

recommendations for future work than can be done to further develop this project. 

7.1 Conclusions  

The aim of this research was to provide a better understanding of a non-holonomic 

excavator, which combines wheels and legs, through kinematic and dynamic modelling and 

simulation, making a step towards creating a working platform for the study of these hybrid 

robots’ behaviour with the goal of tackling a big variety of applications in a more efficient 

manner than a wheeled or legged robot would. 

Firstly, towards that goal, a basic kinematic model of the hybrid excavator was 

implemented in the object-oriented programming package, MOBILE. Next, the inverse 

kinematics of this model were built. This was done using MOBILE’s iterative method by 

creating closed loops. This method was verified by the analytical equations describing the 

robot’s kinematics. The verification process showed that MOBILE’s iterative method values 

for the inverse kinematics are very close to the analytical solutions and therefore accurate 

and acceptable. The non-holonomic constraints were addressed and implemented into 

MOBILE model. The right implementation was verified analytically and the results showed 

that the MOBILE dependent velocities’ values satisfy the non-holonomic constraints thus 

completing the kinematic model.  

The robot’s steering behaviour due to its non-holonomic constraints was studied for 

different choice of dependent variables. The results showed that different sets of dependent 

variables result different steering behaviours which were presented for the choices made. 

Finally, the dynamics of the robot was addressed. Mass properties and gravity were added 

to the MOBILE model. By using MOBILE’s iterative capabilities and MATLAB, the inverse 

dynamics of the robot were completed thus enabling us to know the robot’s actuator torques 

needed for certain movements. The simulations present the actuators’ torques needed for 

some typical movements. Because we want to be able to decide the involvement of each 

actuated joint to the robot’s movements, a weight matrix was used in the inverse dynamics 

solution. Two different choices for that matrix are presented and compared. The results 

show that there are differences in the actuator torques for different weight matrices and the 

extend of these differences depends on the robot’s movements. 

In conclusion, a “platform” is created for the kinematic and dynamic study of a non-

holonomic wheeled-legged robot. It is essential to mention that this “platform” has been 

made parametric, meaning that every value regarding the robot can be easily altered to 

study different scenarios. 
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7.2 Future Work 

There are many ways this thesis can further continue; some of these are going to be 

mentioned here. 

Future research should examine ground contact impact and also implement control for 

the robot. It would be extremely interesting to compare all the MOBILE values with 

experimental results and check how well this simulation meets real life results. Future 

research also should address gait and stability analysis of the robot as it would be 

interesting to study which gate methods are best for moving and steering this wheeled-

legged robot and why, and also to find the boundaries of its movements so it is always 

stable. Additionally, it would be useful to compare MOBILE methods for kinematics and 

dynamics with other similar programs in terms of computational speed and ease of setting 

up the models. Different combinations of geometries, masses and materials should be 

studied also to yield which is better for different goals. Also, different choices, than the ones 

studied, for dependent variables could be made to allow one to examine how these affect 

the mobility and performance of the robot. Finally, other weight matrices could be used with 

different criteria, like the stability of the robot, and study how these affect the dynamics of the 

robot. 
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