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In this diploma thesis, turbomachinery blade shape aerodynamic optimization
methods are applied in the open case of TU Berlin’s compressor stator. The purpose
of this diploma thesis is to validate results computed by the PUMA CFD flow solver
against experimental measurements performed at the TU Berlin and present solutions
of the shape optimization performed by the Evolutionary Algorithm software EASY
and the Continuous Adjoint Method. The optimization process is based on software
entirely developed by PCOpt/NTUA, such as the CFD solver PUMA which runs on
GPUs, the parameterization software GMTurbo which provides a complete
representation of the blade, the Evolutionary Algorithm optimization software EASY,
the Continuous Adjoint solver, the Reverse Parameterization Tool (RPT) that converts
from a node-parameterized to an equivalent GMTurbo-parameterized blade and the
surface Grid Adaptation Tool (GAT) which adjusts the initial surface CFD grid to the
GMTurbo geometry, converting the GMTurbo-based blade representation to a CFD
grid to perform CFD simulations. Next to them, codes for the purpose of handling the
case’s manufacturing constraints and the post processing are programmed.

At first, the Metamodel-Assisted Evolutionary Algorithm workflow is structured in
order to optimize the shape of the blades of TU Berlin compressor stator. The
optimization process is confined by manufacturing constraints. Shape optimization
solutions for both the unconstrained and constrained cases are presented. The
optimization provides satisfying improvements to the objective function values of the
case by taking the computational budget allocated to this diploma thesis into
consideration.

Then, the continuous adjoint method to the PUMA CFD software is used to provide
the sensitivity map that shows the way to change the blade shape and to optimize the
shape of the blades of TU Berlin compressor stator with significantly less
computational cost compared to Evolutionary Algorithms.
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Beltiotomoinoen Mopgig g X1a0epnc [ltepiymong Xopmeot
ne IHepropropovg pe yprion EeMktik@v AdyopiOpov ko
Yoveyn Xvloynq Mé0odo

Amopotikny Epyacio
ALEEog Toayariong
Emprénov: Kupibkog X. INovvérkoyrov, Kadnyntig EMIT

H dumlopatikn oavty epyocioc agopd v epoppoyn HeBOS®V  0ePOSVVOLIKTG
BeAtiotomoinong popeng mrepuyiov ot otabepr] MTEPVYMOY, GLUTIEGTH TOL
[ToAvteyveiov tov Bepodivov. Zkomdg g epyasiog stvar 1 cOYKpIoN Kot meTomoinon
TOV OTOTEAEGLATOV TOV emAvTn pong PUMA e ta melpapatikd dedopévo mov gival
dwbéopa and to IloAvteyveio Tov BepoAivov kot | mapovsioon tov amotelecudtov
BeAtiotomoinong popeng mov mpaypatoromnke pe ypnon Eelktikdv AlyopiBuwv
Kol GLYKEKPLLEVA TOL Aoyiopkoy EASY, adAd ko pe ™ Zvveyr Zoloyn pnebddo. o
TNV TPAYLOTOTOINGCT TOV Topandve, 1 ddikacio Peltictomoinong Paciotnke oe
Aoyopikd mov avamtdynke mAnpwg ot MITYP&B/EMII, 6nwg o gmAvtng pong
PUMA mov tpéyer oe Kapteg I'popikdv, 10 Aoyiopkd GMTurbo mov mopéyet
duvatoOTNTO  TOPOUETPOTOINGNG  MTEPLYIOL HE YPNOT TEPLOPICUEVOL APV
petafAntdv oyedloopol, 1o AOYlopikd PeAtiotomoinong pe ypnion E&shktikmv
AlkyopiBuov EASY, o emddmng g Zvveyovg Xuvluyovg pebddov, to AOYIGHIKO
avtiotpoeng mapapetporoinong RPT mov petotpénet to miéypa o GMTurbo popon
Kol TO AOYIGUIKO TTPOGapUoYNS empavelakod mAéypatos GAT to omoio onpovpyel
mAéyna yopw omd kdbe véa CAD yeoupetpio, pe KATGAANAN TOPOUOPP®GCT TOV
APYIKOV, TPOKEIUEVOL Vo TpaypatonotBodv mporééelg tov mediov pong. H epyacia
oVUTEPIAMOUPAVEL  TOV  TPOYPUUUATICHO  KOOIK®V Yoo v €miPfoAn TV
KOTOGKEVOGTIKOV TEPLOPIGUMV  TOL TPoPApatoc Ko v  enefepyocio ToV
OTOTEAECUATOV.

H dwowasio fertictomoinong g LOpeNg TV TTEpLYI®V TG 6Tafepng TTEPHY®ONS
EUMEPLEXEL  OITOTNTIKOVS — KOTOOKELOOTIKOVS — meplopiopovs.  Tlapovoidlovion
amoteAéopato g Pedtiotonoinong pe E&ehktikovg AlyopiBuovg, pe kot yopic va
MeBovV VoY o1 meplopiopoi. H dradikacio Bertidver Tig TIHES TOV GLVAPTHGE®V
otOY®V AapPdavovtag vmwoyn Kol Tovg OBECIUOVE Yol TN OMAMUOTIKY EPYOCia
VTOAOYIGTIKOVG TOPOVG.

Téhog, ypnowomoleiton 1 cvveyng ovlvyng pébodog yuo t dnuovpyio Tov YapTN
evooOnciog mov mapéyel Tov TPOTO MOV TPEMEL Vo dlapoporondel n popen twv
nTEPLYIOV Yoo TNV Emitevén TV OTOY®V TOL TPOPANUOTOC OAAG KOl Yo TNV
BeAtioTomoinom NG HOPONG TOV MIEPLYI®V UE ONUOVTIIKE AYOTEPO VTOAOYIGTIKO
K60710G 6 oyéomn pe toug EEehitikoug AdyopiBuovg.
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Chapter 1

Introduction

1.1 Thermal Turbomachines

A thermal turbomachine is a device in which mechanical energy, in the form of shaft
work, is transferred either to or from a continuously flowing fluid by the interaction
with rotating blade rows. Interaction between the fluid and blades results in
aerodynamic forces. A turbomachine produces change in total enthalpy of the fluid
passing through it.

Thermal turbomachines are classified into two categories; compressors and turbines.
From a different point of view, depending on the direction of the flow while entering,
passing through and leaving the machine, there are:

e Axial turbomachines, where the flow direction is almost parallel to the shaft
axis,

e Radial turbomachines, where the flow direction is almost vertical to the shaft
axis,

e Mixed flow turbomachines, where the direction of the flow is neither purely
axial nor purely radial.

Axial Compressor:

An axial compressor stage consists of a row of rotor blades followed by a row of
stator blades and the working fluid traverses them without significant change in
radius. The energy level of the fluid is increased by the action of the rotor blades,
which exert torque on the fluid. A single stage axial compressor has a relatively low
pressure ratio with a higher mass flow rate compared to a radial compressor. Flow
enters axially and discharges almost axially. The blade passages diverge from inlet to
exit and, hence, the flow decelerates. The compression of the fluid is done by first
accelerating the fluid and then diffusing it to increase pressure. The fluid is
accelerated by the row of rotating blades, the rotor, and diffused by the row of
stationary blades, the stator. The diffusion in the stator converts the velocity increase
gained in the rotor to increase in pressure.

A compressor usually consists of multiple stages. The air passes from one stage to the
next with each stage raising the pressure. One additional row of fixed blades, the so-
called inlet guide vanes, is frequently used at the compressor inlet to ensure that air
enters the first-stage rotors at the desired angle. In addition to the stators, an additional
diffuser at the exit of the compressor further diffuses the fluid and controls its velocity
when entering the combustors.



A sketch of a multi-stage axial compressor is given in Fig. 1.1.

Guide vane Dif(user
Casing a \
k WERTIHHE B ¢
Bearing,, : Bearing
\ \
/ \
Seal y *Seal

Inlet

s Discharge

pipe
Figure 1.1: Sketch of an axial flow compressor, from [17].

1.2 Parameterization and Optimization of Bladings

Methods for the design and optimization of bladings, based on aerodynamic criteria,
are a key research topic in turbomachines. In order to design and optimize the shape
of a blading, geometrical representation is crucial. This is done by parameterization
techniques. Parameterization is the process of composing a geometry according to an
algorithm, by firstly determining a set of design variables that correspond to the input
to this algorithm. Different sets of parameters produce different shapes. In order to
parameterize the blading, CAD based methods are frequently used and this is the case
in this diploma thesis, too. A blade is described with one or more NURBS surfaces
controlled by their control points. Blade shapes can be modified by displacing the
control points. The number of design variables is reduced in comparison with other
methods, while the use of parametric geometry guarantees a smooth result. The
method for parameterizing blade shapes used in this thesis is based on the
parameterization software GMTurbo as described in detail in Section 4.1. In this
thesis, the blading geometry is provided as a CFD grid, hence the Reverse
Parameterization Tool (RPT), described in Section 4.2, is used to convert the CFD
grid into a set of geometric parameters compatible with the GMTurbo input
parameters. Such CAD-based methods have to be followed by a surface grid
generator or morpher before generating the 3D CFD grid and running a CFD
simulation. For this purpose, a surface Grid Adaptation Tool (GAT), described in
Section 4.3, is used. The initial volume grid is deformed to fit the updated geometry
using 2D and 3D spring analogy techniques. The method described before is included
in an optimization loop as seen in Fig. 1.2. The optimization is carried out using
stochastic methods such as Evolutionary Algorithms or gradient-based methods
supported by the continuous adjoint method. These two main categories are presented
in Section 1.3. The optimization methods used in this diploma thesis are described in
detail in Sections 5.1 and 5.2.
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Figure 1.2: Shape optimization of a turbomachinery blade. Flowchart of the tasks that
should be completed during the evaluation of a single individual, if stochastic
optimization is performed, or an optimization cycle, if gradient-based methods are
used. The initial geometry can be provided either in GMTurbo format or CFD grid
format. In the common case in which the CFD grid is available, the pre-processing of
the optimization includes the conversion of the geometry from grid format to the
GMTurbo format.



1.3 Stochastic and Deterministic Optimization Methods

Optimization methods are classified into two major categories.
e Stochastic Optimization Methods

Stochastic optimization methods can be used in optimization problems of all kinds.
Modern stochastic methods with basic representative the Evolutionary Algorithms
choose randomized candidate solutions, by taking advantage of the evaluation of
formerly computed solutions and the process of evolution, finally producing solutions
that lead to convergence of the optimization process. Furthermore, the initial values of
the variables in an EA do not affect the ability of finding the optimal solution. Hence,
EAs are able to locate the global extremum of an objective function for every possible
initialization. However, stochastic search methods require a large number of function
evaluations. As a result, the computational cost of those methods scales with the
number of design variables. For more information, the reader is referred to [11], [15].

e Deterministic or Gradient-Based Optimization Methods

The deterministic optimization methods use information on the direction of reduction
or increase of the objective function by computing or approximating the first or the
second order derivatives of the objective function with respect to the design variables.
Solutions are updated until the convergence of the process to an extremum. Basic
disadvantage of the deterministic methods is that the extremum in which the process
will converge may be local, failing that way to spot the global minimum or maximum
of the objective function. Contrary to the stochastic methods, the initialization affects
the ability of finding the optimal solution. Furthermore, programming a method to
efficiently compute the derivatives for the deterministic method is more time
consuming and more difficult to reform for another objective function than the
stochastic methods. However, gradient-based optimization can be used in order to
have significantly fewer function calls, making this method less expensive than the
stochastic methods. The computational cost of some of the gradient-based methods is
independent to the number of design variables. This enables the optimization of
complex geometries described parametrically using parametric analytic geometries
such as Bézier surfaces. The most common deterministic methods are steepest
descent, quasi-Newton and Newton methods. The derivatives of the objective function
with respect to the design variables can be computed using various methods such as
the continuous or discrete adjoint method. Further details are given in [12], [15].

The engineer is called to evaluate and decide on the optimization tools according to
each case’s characteristics.



1.4 Constrained and Unconstrained Optimization

Mathematically speaking, optimization is the minimization or maximization of a
function subject to constraints. The following notation is used:

b is the vector of design variables, also called unknowns or optimization parameters,
F is the objective function that will be maximized or minimized and ¢ is the vector of

constraints that solutions must satisfy. Both F and c are functions of b. The number of
components in ¢ is the number of constraints that have to be satisfied. The
optimization problem can then be written as:

_ N c;(b)=10,i€E
min;_.» F(b) subject to{ N (1.1)
ser F () c;(b)=0, i€l

where F and each c; are scalar-valued functions of the variables b and are given as
equality and inequality constraints. I, £ are sets of indices.

Problems with the general form presented above can be classified according to the
nature of the objective function and constraints, the number of variables, the
smoothness of the functions in differentiable or non-differentiable and so on. Possibly
the most important distinction is between problems that have constraints on variables
and those that do not.

Unconstrained optimization problems arise directly in some applications. If there are
natural constraints on the variables, it is sometimes safe to disregard them and to
assume that they have no effect on the optimal solution. Unconstrained problems arise
also as reformulations of constrained optimization problems, in which the constraints
are replaced by penalization terms in the objective function to discourage constraint
violations.

Constrained optimization problems may arise from models that include explicit
constraints on the variables. These constraints may be simple bounds, more general
linear constraints, or nonlinear inequalities that represent complex relationships
among the variables. The TU Berlin stator case [16] studied in this diploma thesis
possesses manufacturing constraints which are presented in Section 6.1. Results for
the constrained and unconstrained optimization using Evolutionary Algoritms are
presented in Section 8.2 and for the unconstrained gradient-based optimization in
Chapter 9. More details on constrained and unconstrained optimization are given in
[12].



1.5

Outline of this Diploma Thesis

The chapters of this diploma thesis are the following:

Chapter 2: Presentation of the data and objectives of the TU Berlin stator case.
Chapter 3: Presentation of the governing equations and of PUMA CFD solver.

Chapter 4: Presentation of GMTurbo, RPT and GAT software used for blade
parameterization and grid adaptation.

Chapter 5: Presentation of the optimization methods used in this thesis. The
Evolutionary Algorithm software EASY and the Continuous Adjoint method
developed by the PCOpt/NTUA are presented.

Chapter 6: Presentation of the methods for quantifying the manufacturing
constraints of the problem and imposing them to the optimization process.

Chapter 7: CFD Analysis of the TU Berlin stator case and validation of the
CFD solver’s results against experimental data.

Chapter 8: Two shape optimizations are carried out using Evolutionary
Algorithms with and without imposing manufacturing constraints.

Chapter 9: The Continuous Adjoint method is used to provide the sensitivity

map that shows potential changes in the shape of the blade and to optimize the
blade shape without imposing manufacturing constraints.

Chapter 10: Conclusions and a couple of proposals for future work.



Chapter 2

The TU Berlin’s Case

The TurboLab Stator [16] is a stator in a measurement rig at the Technical University
of Berlin, in the TurboLab at the Chair for Aero Engines. The initial stator geometry
has been designed based on a representative stator geometry used in modern jet
engine compressors. In this diploma thesis, the initial geometry, shown in Fig. 2.1 is
optimized to reduce the total pressure losses and the flow angle deviation from the
axial direction. Details of the CFD domain, flow boundary conditions, optimization
requirements and manufacturing constraints are stated below.

CFD Domain:

Inner radius: 147.5 mm
Outer radius: 297.5 mm
Inlet axial position: —180 mm
Outlet axial position: 540 mm

The axial positioning of the blades is shown in Fig. 2.2. The zero position of the
machine axis is defined by the LE as seen in Fig. 2.1.

Fluid Properties:
The working fluid is air, assumed as a perfect gas with the following properties:

e Ratio of specific heatsy = 1.4
e Gasconstant R = 287 J/kg - K

e Dynamic viscosity u = 1.785-10"%kg/m s
Optimization requirements:

Two optimization objectives are used, stated in points (1) and (2) below, leading to a
two-objective optimization problem.

1) Minimization of the total pressure loss coefficient between the inlet to the CFD
domain and its outlet, under the constraint of keeping the mass flow at 9.5 +
0.1 kg /s, full annulus. The total pressure loss coefficient is defined as:

w = Pt1— Pt2 (2.1)
Pt1— P1



where p;; is the inlet total pressure, ps, is the outlet total pressure and p, is the inlet
static pressure.

All p, in Eq. 2.1 are mass-averaged values defined as:

_ T
Xam;

(2.2)

where 7i; is the mass flow that passes through the it" element of the area A, which is
the inlet or the outlet.

2) Minimization of the mass-averaged flow angle deviation from the axial direction at
the CFD outlet. The mass-averaged exit angle is:

_ [Xamia?
ap = /—ZAmi 2.3)

where q; is the total flow angle at the i*" part of the CFD outlet defined as follows:

— -1 ‘7_7 — -1 w
a = cos <|17|) cos (m) (2.4)

where (u, v, w) are the three Cartesian velocity components.

The inlet whirl angle is given in radial distribution. The average value of inlet whirl
angle is allowed to vary by + 5°. Thus, three operating points are considered. The
design point DP - OP1 with average value of 42° inlet whirl angle and two off —
design points, OP2 with average value 42 + 5 = 47° and OP3 with 42 — 5 = 37°.
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Figure 2.1: Initial blade geometry (top) and axial positioning (bottom), including the
yellow domain for the end wall profiling and manufacturing constraints (bottom),
from [16].
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Figure 2.2: Axial positioning of the stator blades, from [16].

200 mm

Figure 2.3: Manufacturing constraints for the casing fixture, from [16].
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The assembly of the TU Berlin compressor stator is given in Fig 2.4.

Figure 2.4: Assembly of the TU Berlin stator, from [16].

As it can be seen in Fig 2.4, the hub and shroud are cylinders and their radii remain
constant during the optimization.

Experimental Setup

The experimental setup of the TU Berlin stator is presented in Fig 2.5.

y Inlet Section VIGV Stator  Chocking Diffusor Quitflow
Cascade: Disc
= rl
z |
2 Blower
E ' 1 Motor
Inflow g !
E—

I]DDDF

- i M= —
Rotor /
Motor —i 'H

L R S - - —

im

Figure 2.5: Experimental setup of the TU Berlin stator - 3D-annular low-speed
compressor stator cascade, from [16].
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The measurement section, seen in flow direction, is presented in Fig. 2.6.

y-Traverse

5 Hole Probe

x-Traverse

3
Passage Height
150mm

Figure 2.6: Measurement section, seen in flow direction with traversed grid, from
[16].

The grid used in the measurement’s procedure is given in Fig 2.7.

y-Achse
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Figure 2.7: Measurement grid, from [16].
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The same measurement grid, seen in Fig 2.7, was used for all inflow and wake
measurements. For inflow measurements, the grid was mirrored at the y-axis.

The measurement position for both inflow and wake is given in Fig. 2.8.

< 257,50 302,50
yl_v

X
6,60

g

inflow measurement
wake measurement

Plane of
Plane of

Figure 2.8: Measurement positions, from [16].

As seen in Fig. 2.8, the plane of inlet measurement is 264.1 mm upstream of the LE
of the blade which corresponds to 140% of chord length upstream of the LE and the
plane of outlet - wake measurement is in 295.9 mm downstream of the LE which
corresponds to 60% of chord length behind the TE. The validation of the CFD solver
against the measurements is made in the positions presented in Fig. 2.8.

The experimental data include values of total pressure P; in Pa, static pressure Pg; in
Pa, absolute velocity magnitude V in m/s, Mach number, whirl angle « in degrees,
pitch angle S in degrees and the three Cartesian velocity components in m/s both
over the inlet and outlet measurement planes, for all three inlet whirl angles. The
comparison of the CFD results with the experimental data is made using mass-
averaged values plotted in the radial section. Hence, a radial grid, as seen in Fig. 2.7,
is created in order to interpolate the CFD results in radial sections.

13



Chapter 3

Governing Equations & CFD Solver

In this chapter, the flow equations with their boundary conditions that are solved in
the TU Berlin stator case of this thesis, using the CFD software PUMA developed by
the PCOpt/NTUA [2], [3], [5], are presented.

3.1 Governing Equations

Compressible Flow Equations

Let a coordinate system O(xq,x,,x3) be defined. The Reynolds-Averaged Navier-
Stokes equations for the viscous flow of a compressible fluid through the stator are
expressed as:

WUn | Ofak’ _ O _
at dxy axx 0 (3.1)
where U, stands for the conservative flow variables namely
Un = [p pu, pu, pu, pE|, with p being the fluid density, w,, (m = 1,2,3) being the
Cartesian velocity components with reference to the absolute/inertial frame of
reference and E the energy per unit mass.

The inviscid fluxes £, and viscous fluxes £%* are defined as:

PUg 0
pu Uy + pbyy Tik
T =l pusuy + POk |, S = Ty (3.2)
pusuy + pdsy T3k
phiuy WTie + q

where p stands for the static pressure, §;; is the Kronecker symbol, h, is the total
enthalpy and gy, is the heat flux.

The stress tensor is given by:

_ utug (auk n ouym 2 6ul)
" Re 0xm 0xy 3 km dx

Tkm (33)

where u; the turbulent viscosity computed by the turbulence model, as described later

in this chapter and Re the Reynolds number resulting from the non-
dimensionalization of the equations.
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Low Mach Number Preconditioning

The software for solving Eq. 3.1 is reliable for flows with Mach numbers
approximately higher than 0.3. In various cases, a wide range of velocity values
appears in the flow field which results in high and low values of Mach number. For
instance, during the analysis of the flow around a blade, areas where the flow can be
considered as incompressible may appear while, in other areas, compressibility
phenomena are important. Hence, the algorithms for solving compressible flows when
Mach number is close to zero appear to face convergence difficulties by even
damaging the accuracy of the solution. The difficulty of numerically solving the
equations is connected with the major difference between the velocity of the fluid and
the velocity of the acoustic waves.

Aiming at possessing a single CFD analysis software for all flow speeds, the low-
Mach number preconditioning is applied to an existing software for the solution of the
compressible flow equations. It ensures faster convergence for very low Mach
numbers, allows the solution even in cases in which the non—preconditioned equations
fail and provides smooth solution at singular areas such as in the vicinity of the
leading and trailing edges. Hence, Eq. 3.1 is altered and given by:

_10Un

a inv a vis
et = + fnk_ _ 9fnk

axk axk

=0 (3.4)

where I;,,,, is the preconditioning matrix, given in Eq. 3.5, used to stabilize the system
of PDEs and lead to a robust numerical solution, by giving appropriate values to the
parameters a’' and '

1+ % AR —KUy —KU; —Kl3 —K |
%Ifilzkul 1—Kku? —Kkujuy; —Kuus —Kug

Ty = %Iﬁ’lzxuz —Kkugu; 1—ku3 —kuyuz —kuy| (3.5)
> |u|“rus —KUuq U3 —Kuyuz 1—kKu; —Kus
—SliP1=68] [1-68luy [1-6lu, [1-6lus —6 |

-(1-ar)
CZ

where k = (y— 1B, 6§ =a' + % [412(y — DB, «’ = min(1,M?), B’ =
is the Mach number and c is the speed of sound.

, M

For further details on this topic, the reader is referred to [8] and [11].
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Incompressible Flow Equations

In incompressible flows, the flow speed is insignificant compared with the speed of
sound of the fluid medium, V « c. This results in:

v V<L
M="=M«1 (3.6)

For low values of the Mach number, high velocity variations are required to produce a
variation in the density, thus the flow tends to be incompressible. Practically, the
incompressible behavior of the flow occurs for M < 0.3 which corresponds to a
change in density lower than 10%. In fluid mechanics, incompressible flow refers to a
flow in which the material density p is constant in an infinitesimal volume that moves
with the flow velocity, called fluid parcel. Incompressible flow does not imply that
the fluid itself is incompressible. Even compressible fluids at low speeds can, to a
good approximation, be modeled by an incompressible flow model.

Additionally, the flow is assumed to be isothermal and the last of Egs. 3.1, the energy
equation, is identically satisfied. Hence, the terms of Eq. 3.2 become:

Uy
p
Uiy + ;51k 0
. . T
inv vis 1k
= p = (3.7)
nk U, U, + =0, |7 Ik .
2%k p 2k Tok
p T
UzUy + ;63k 3k

The unknown flow variables are: U, = [E Uy Uy u3] where p/p is the kinematic

pressure, if density is assumed constant and u,, (m = 1,2,3) are the velocity
components.

The stress tensor is now expressed as:

v+ (6uk 6um)
Tem = 3.8
km Re \0xm, + Oxy ( )

since the velocity divergence vanishes due to the continuity equation. v is the
kinematic viscosity and v, the eddy viscosity. For further details, the reader is referred
to [2] and [8].
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The k- SST Turbulence Model

In this diploma thesis, all applications are simulated using the k-o SST [9], [10]
turbulence model, implemented in the PUMA solver. The PUMA solver also supports
other turbulence models such as the Spalart-Allmaras [19]. The k- SST turbulence
model is a two-equation eddy-viscosity model. The eddy viscosity is given by:

k
R . LA (3.9)

p max(a,w,SF,)
where k is the turbulent kinetic energy:

da(pk) , 9(pujk) = s A ok
Py ox P, — b*pkw + ox; [(u + oy lit) ax]] (3.10)

and w is the specific dissipation rate:

dpw) | Ipwjw) _ _ K _ POz Ok 0w
o T o%; Pk bpw? +5 [(M"‘%Ht) ]+2(1 F)= o
(3.11)
Auxiliary relations are given below:
2x/_ 5001;
F, = tanh[ max b*wy Voo ] ] (3.12)

A production limiter is used in the SST model to prevent the build-up of turbulence in
stagnation regions:

P, = min(P,, 10b* pkw) (3.13)
ou; (du; |, Ouj
=U 5 ox; (ax] + 6_xl> (3.14)
_ . VE 5000\ 4poy.k 4
F, = tanh {{mm [max (b*wy, yzw) , CDka,yz]} } (3.15)

F, is equal to zero away from the surface and switches over to one inside the

boundary layer.
CDy = max (2p0,,~ ;’: 2:’ 1071°) (3.16)

where y is the distance from the field point to the nearest wall and S is the invariant
measure of the strain rate.

Each of the constants is a blend of an inner, 1, and outer, 2, constant using:

¢ =@F +¢,(1—-F) (3.17)
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Coefficients are given bellow:

9

~ 100
(3.18)

3
. =044, b=,  b;=00828 b

QO| vl

a1:

Or1 = 085, Oy = 1, Op1 — 05, Op2 = 0856
Boundary Conditions

In order to solve the system of PDEs of Egs. 3.1, 3.11 and 3.12, appropriate boundary
conditions should be defined and implemented. The GPU solver is equipped with a
wide range of boundary condition options. In this section, the boundary conditions
used in the numerical prediction of flows through stator blades are presented.

Along pairs of periodic boundaries, appropriate periodic conditions are imposed. In
case of peripheral rows, two points are periodically paired if their projections on the
meridional plane coincide and their circumferential position differs by the blade row
pitch. Between paired points all scalar quantities are the same, while every vector and
tensor quantity is rotated by the row pitch. Wall, inlet and outlet boundary conditions
are analyzed separately as follows.

Wall Boundary Conditions:
The velocity is set equal to the wall velocity which is zero for a stator:
u,=0,k=123 (3.20)

The boundary wall conditions used for the turbulence model [9], [10] are given by:

6v
b1ya

Wyau = 10 (3.21)

kwayu =0 (3.22)
where vy, is the distance between the wall and the first node off the wall.
Inlet Boundary Conditions:
At the inlet of the domain, total pressure P, total temperature T, and inlet velocity
direction are specified as radial distributions. The inlet velocity direction is given in
terms of angles a and g in a cylindrical coordinate system. The inlet velocity
components are written in the form:

u, = |V|sina

u, = |V|cosasinf (3.23)

u; = |V|cosacospf
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Thus, angles a, B and the velocity magnitude V are specified by the user. u, is the
radial velocity u,., u, is the peripheral ug and us the axial u,. In the PUMA solver,
the flow equations are solved with reference to the Cartesian coordinate system.
Hence, the velocity components in cylindrical coordinates (r, 6, z) of Eq. 3.23 are
transformed to Cartesian. Specifically, Finally, turbulence intensity I = u'/U and

viscosity ratio vt/v should also be defined. In turbulence intensity I, u' is the root-

mean-square of the velocity fluctuations given asu’ = \E (up?® +u)® +up?) and V

is the mean velocity computed by the three mean velocity components as U =

The inlet boundary conditions, used when solving the incompressible flow equations,
distributed over the radial height are:

e Velocity magnitude V, in m/s, from the measurement data
e Whirl angle a, in degrees, from the measurement data
e Pitch angle g, in degrees, from the measurement data

e Turbulence intensity I = u'/U = 0.05 constant

e Viscosity ratio vt/v = 20 constant as explained in Section 7.1

Angles a and B are defined as seen in Fig. 3.1.

Figure 3.1: Definition of angles a and .
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The inlet boundary conditions of the turbulence model for both compressible and
incompressible flow are:

3

kin = 3 (Iun)? (3.24)
KL/

Win = C#_L (3.25)

where L is the chord length and ¢, = 0.09 is a constant.

Outlet Boundary Conditions:

At the outlet, one quantity at each node must be specified and the remaining ones are
extrapolated from the interior. The specified quantity is mass flow which is equal to
9.5 kg /s, full annulus. By taking the number of blades, n = 15, into consideration
the outlet condition of mass flow of the CFD solver per passage is:
9.5/15 = 0.6333 kg/s. From the mass flow, the velocity of the fluid is calculated
and set at each node.

3.2 The GPU-enabled CFD Solver PUMA

In order to predict the flow field in a turbomachinery blade passage, the compressible
GPU enabled flow solver PUMA, developed by the PCOpt/NTUA is used [2]. This
software numerically solves the Navier-Stokes equations along with the turbulence
model equations in a computational domain, using the vertex-centered, finite volume
method on unstructured grids consisting of tetrahedra, pyramids, prisms and
hexahedra. Structured or matching block structured grids like the ones presented in
this diploma thesis, are treated by PUMA as unstructured.

In the system of PDEs formed by Egs. 3.1, 3.11 and 3.12, the hyperbolic character of
the terms dominates over the elliptic. Consequently, these equations are solved using
a time-marching technique. Hence, the pseudo-time step 7 is defined. At each pseudo-
time step the system of equations is linearized, discretized and solved for the
correction of the field variables for the next pseudo-time step. In case of time-
dependent problems, the time derivative remains in the initial equations and the
pseudo-time derivative is artificially added. The system of equations is linearized and
then marched in time, with intermediate pseudo-time steps. In case of the
incompressible flow equations, time marching techniques are not directly applicable.
Consequently, methods such as the artificial compressibility method can be used.

In order to solve the system of Egs. 3.1, 3.11 and 3.12, discretization is applied. A
finite volume is formed around each mesh node at real-time step by connecting the
edge midpoints, face centers and element barycenters of the edges, faces and elements
attached to this node, respectively. The discretization of the inviscid terms is made
using Roe’s approximate Riemann solver [18] while the viscous terms are discretized
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using a 2" order central difference scheme involving all neighbours. After
discretizing all terms of Egs. 3.1, 3.11 and 3.12, a new system of equations is created
which is solved using the explicit multi-stage Runge-Kutta method with residual
smoothing using the point-implicit Jacobi method which does not require
synchronizations in each iteration when the solution of the system is parallelized on
GPUs.

The implementation of PUMA on GPUs provides a remarkable speed-up in
comparison with CPU implemented software, reducing the turnaround time of a CFD
evaluation. Specifically, the implementation on GPUs is approximately 40 times
faster than the CPUs, comparing one card against one core. The GPUs that were used
are NVIDIA Tesla K40. For further details on the topic, the reader is referred to [2].
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Chapter 4

Blading Parameterization — GMTurbo,
RPT & GAT

4.1 GMTurbo - Turbomachinery Blade Parameterization

In order to design and optimize the shape of blading, accurate geometrical
representation is required and it is done by parameterization. Parameterization is the
process of composing geometry according to an algorithm, by firstly determining a set
of design variables that correspond to the input to this algorithm. The blade
parameterization this thesis is based upon is an intuitive method that exploits
fundamental notions of turbomachinery to represent a blade. This method is
developed and used by the PCOpt/NTUA in the GMTurbo parameterization software
[2] and is presented in detail in this section. This software takes the necessary input
values and returns the NURBS surface representations of the two sides of a 3D blade,
PS and SS, in a neutral CAD format such as IGES, as seen in Fig. 4.1.

‘ ! UFL O

Input
Parameters
N ,/' N Y

IGES File

Figure 4.1: The GMTurbo generates the CAD compatible geometry of the blade.

The implementation of the geometric shapes needed throughout the parameterization
is carried out using parametric NURBS curves and surfaces.

The first step of the parameterization procedure is to create the meridional contour of
the turbomachine. For a blading that revolves around the z-axis, the meridional
contour is an (r, z) projection of the axisymmetric parts of the blade, namely, the inlet
and outlet planes, the hub and shroud and the LE and TE trace as the turbomachine
revolves. These parts, being axisymmetric, exhibit symmetry around the z-axis, thus
can fully be represented on the (7, z) plane and, then, by revolution by a certain angle
6 around the z-axis, converted into (x, y, z) coordinates through:

(x,y,2) = (rcos6,rsinb, z) (4.1)
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Therefore, the first step is the definition of six meridional (r,z) NURBS curves.
Namely, two meridional boundary curves, inlet and outlet, two meridional
generatrices, hub and shroud and two meridional edge curves, LE and TE as shown in
Fig. 4.2.

To make it possible to superpose information about the metal angles and thickness
profiles, at different spanwise positions of the blade, projected streamlines are
computed as a linear interpolation between the hub and shroud generatrices, defined
in the previous step. It is noted that the word “streamwise’ refers to a distribution of
data from inlet to outlet, while spanwise refers to a distribution from hub to shroud.
Therefore, the blade can be seen as a combination of streamwise and spanwise
distributions of data. The blade meridional contour is given by:

h(u,v) = (r(u,v), z(u,v)) 4.2)

where shroud, hub, inlet, outlet, LE and TE are given by h(u,0), h(u, 1), h(0,v),
h(1,v), h(uyg, v) and h(urg, v), respectively.

Shroud VDZO
Vo= 0.25
Inlet Trailing Edge Outlet
Leading Edge
Vg=0.75
Hub
VO:1
Up=0 Up=Ue Up=UTE Up=1
z

Figure 4.2: Meridional contour of the TU Berlin stator blade. The streamline
projections - purple lines lie between hub and shroud.

Each projected streamline h(u,vy) = (r(u,vy),z(u, vy)) corresponds to a revolved
surface as shown in Fig. 4.3 by adding the angle 6 using Eq. 4.1.

Conformal Mapping:

Every surface can be described by two parameters, using a transformation from 3D
coordinates to a 2D plane. Hereupon, the conformal mapping is introduced. It is
known that a 3D surface of revolution can be mapped onto the 2D (m, 6) plane
through the transformation of:

P(vy) : (r(u,vg)cosh, r(u,vy)sind, z(u,vy)) - (m(u,vy),0) (4.3
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where m(u, vy) is given by:

U 1y, (£,00)2 + 1y (t,09)2
m(u, vy) = fo Y ‘;(t'vo) e dt (4.4)

The mapping of Eq. 4.3 is conformal. For more information see Appendix A. The
most important property of any conformal mapping is the angle preservation property.
Conformal mappings preserve the magnitude and direction of the angle between two
curves [4]. This property contributes to a better understanding of the parameterization,
considering that the angles defined on the (m, 8) plane, are preserved on the (x,y, z)
surface as well.

SHROUD

HUB

Figure 4.3: Surfaces of revolution of the TU Berlin stator that result from the (7, z)
streamlines of Fig. 4.2.

Mean Camber Line Parameterization

At each spanwise position v, € [0,1], a mean camber line is defined, to add
information about the blade's metal angles. The mean camber line is chosen to be
represented by a cubic Bézier curve on the (m, 8) plane. The four control points of
the cubic Bézier curve are defined by six parameters that correspond to different
angles at the LE and TE of the mean camber line, providing the designer with a better
understanding of the mean camber line's slope along the arc length. These are:
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* 0, and 6, are the peripheral positions of the LE and TE, respectively.

* B.g and Brg are the metal angles. These are the angles between the tangent to the
mean camber line at the LE or TE and the meridional direction.

* 6,5 and 67 are the angles starting from the chord midpoint and intersection of the
tangent lines in LE and TE respectively.

According to Fig. 4.4, the control points P, P;, P, and P; are functions of 6, 01,
BLes Bre . 8. and 87g given by:

Py = (Mg, Og) (4.5)
Py = (mrg, O7g) (4.6)

Where mLE = m(uLE, Uo) and mTE = m(uTE, 170) from Eq 34

Mye m Mre

Figure 4.4: Definition of control points of a cubic Bézier mean camber line, from
angles 0z, 01, B, Bre, O1p and S7g.

Using the 6,5 and 875 angles, control points P; and P, are given as solution to the
systems of the following two equations:

(PL—M)-(Py—M) = coségl|lPy — M|| - |[Py — M|| (4.7)
(P, —M)-(Ps — M) = cosdrgllP, — M|| - ||P; — M| (4.8)

where M is the midpoint of the P, P5 chord.
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Through this cubic Bézier parameterization, spanwise distributions of 6,z, 075, BrE,
Bre, 0. and &5 are defined, producing the mean camber line for each spanwise
position as in Fig. 4.5.

") m@ug,0 m@u,,1) m(u ;1)

Figure 4.5: Spanwise mean camber lines of the TU Berlin stator, defined on the
(m, 8) plane (top) and transformed to the 3D space through Eqg. 4.3 (bottom). Each
mean camber line lies on the corresponding surface of revolution.
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Blade Thickness Profiles

By determining the mean camber line on each surface of revolution, a skeleton of the
blade has been defined. The superposition of streamwise thickness profiles, along
each spanwise position of the blade, creates the final blade. The thickness profile is
imposed in two steps, to increase flexibility. First, the normalized thickness profile £
with respect to the normalized arc-length s of the mean camber line is defined
separately for the pressure and suction sides. Then, a thickness factor ¢ ;, that scales
the thickness profiles, is specified for each profile, resulting to a thickness distribution
at each spanwise position v, € [0,1] given by:

tPS(s,v9) = £75 (s, v0)tf* (vo)
(4.9)

t55(s,v0) = t55(s, 1) t7° (vo)

Figure 4.6: The blade of the TU Berlin stator without thickness - mean camber
surface on the left, composed by interpolation of the mean camber lines in the 3D
space. On the right, the thickness profiles are presented.

Having determined a mean camber line p,, for the spanwise section on the (m, 8)
plane, the imposition of the thickness profiles requires the computation of the normal
vector f,,4 (s, vy) at each normalized arc length s point of the mean camber line and
the application of the equation to both PS and SS with the appropriate sign as seen
bellow:

PS
Cﬁl% (5,v0) = Uma (S, Vo) £ Mg (S, Vo) %
(4.10)

o _ t55(s, vo)
Cmp (S, Vo) = Hmo (S, Vo) + Mg (S, Vo) r2(m(s, v,))

where r(m(s,vy)) is the corresponding radius of the (m, 8) point u,,g(s,vy) of the
mean camber line, through @~1(v,) and is used to transform the length t(s, v,) of the
3D space to a length on the (m,8) plane. For more information see Appendix A.
These airfoil curves given in Eq. 4.10 are mapped back onto the (x, y, z) coordinates,
through @~1(v,), to create the 3D skeleton of the blade seen in Fig. 4.6.
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The final step is the skinning of the two sides, in order to create two NURBS surfaces,
using an algorithm that passes a smooth surface through a set of curves, giving rise to
the final 3D blade as in Fig. 4.7.

Figure 4.7 The final skinned blade surface.

The final collection of surfaces is exported in neutral CAD format such as IGES.

Leading and Trailing Edge Shapes

In GMTurbo parameterization, after having drawn the pressure and suction side, the
shapes of the LE and TE must be defined. There are many available options as seen in
Fig. 4.8.

SR

-—__-_-_‘_‘_‘_H“----____ \\
A
(d) (e)

Figure 4.8: Different types of edges which can be produced either for the leading or
the trailing edge of a blade. (a) Sharp edge (b) Blunt edge (c) Wedge type edge (d)
Dovetail type edge (e) Circular arc edge is created by extending the blade sides and
fitting a circle of specified radius between them. (f) General smooth edge, from [2].

(0
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4.2 Reverse Parameterization Tool (RPT)

A CFD grid is a common but unhandy form of representation of a blade's shape,
since, in terms of design, it is not easy to modify the geometry given in grid form. It is
thus essential that it is converted to a more useful CAD form, so that changes in the
geometry can be made. In this diploma thesis, the CAD representation is the blade
design parameterization GMTurbo. A software to transform a CFD grid into a
GMTurbo compatible form is used in this thesis and presented in this chapter This
software was developed in [6]. The process is presented in Fig. 4.9.

a/ Reverse \

] |: Parameterizatiﬂn':u ;

\ Tool | /
CFD Grid ‘ e GMTurbo
‘ Parameters

. S o /

' N

Figure 4.9: RPT uses information provided by the CFD Grid in order to compute the
input parameters of GMTurbo.

A 3D CFD grid includes the following information:
e (x,y,2) nodal coordinates.
e The connectivity of these nodes.

e The boundary patches of the volume grid, namely surface patches formed by
the nodes that have already been defined. These are the patches where the
boundary conditions must be applied by the CFD solver.

The RPT is used to reparameterize structured surface grids, composed by quads. The
boundary patches of these grids must be in a standardized format and contain the
following:

e An Inlet and an Outlet Patch where the CFD solver applies the inlet and outlet
boundary conditions.

e Wall Patches: solid boundaries where the wall boundary conditions are
applied. These usually are hub and shroud patches, pressure and suction side
patches. In turbomachinery CFD grids, wall patches might be rotating with the
exception of the shroud that is usually stationary or the stationary blades.

e Periodic Patches. In case the CFD domain has a periodic repeating geometry
and flow field.
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The patches of the CFD grid, used in this thesis, can be seen in Fig. 4.10.

Outlet

Pressure Side

Periodic Side 1

Suction Side
Periodic Side 2

Figure 4.10: Patches of the CFD grid used for the analysis of the TU Berlin stator
blading.

Starting with a turbomachinery surface grid like the one presented above, a back-to-
CAD method, converting the CFD grid into a set of geometric parameters, compatible
with the GMTurbo input parameters, is described below. The meridional contour,
mean camber lines and thickness profiles of the existing grid are to be computed.

Meridional Contour of the Grid

The first step is the computation of the meridional contour. Having the surface grid of
the meridional patches, hub, shroud, inlet and outlet, the (r,z) generatrices of each
meridional surface are computed. The edge between the surface grid of a meridional
patch with one of the periodic patches, as seen in Fig. 4.11 and Fig. 4.12, is a node
representation of one generatrix of the meridional surface in (x,y,z) coordinates.
Projecting this generatrix onto the (r, z) plane using

= 7 5y?

Z =12

(4.11)
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produces the meridional projection of hub, shroud, inlet and outlet patches. Also,
projecting the grid edges that correspond to the LE and TE onto the (r,z) plane,
produces the meridional curves of the two edges. The hub and shroud generatrices
are, then, approximated by a NURBS curve. The user defines the degree and the
number of control points of the NURBS curve.

Shroud
Inlet TE
Outlet
LE
Hub
z
Figure 4.11: The CFD surface grid and Figure 4.12: The meridional contour,
the patches namely hub (black), shroud as it results from the projection of
(black), inlet (red) and outlet (green) are the axisymmetric patch nodes and
shown. the edge nodes onto the (r, z) plane.

Next, a user-defined number of N’ spanwise generatrices are generated. Having the
NURBS curves of hub and shroud at the meridional plane, in (r,z) coordinates, in
order to produces intermediate streamlines in NURBS representation, a linear
interpolation of the control points is used. After defining the N’ generatrices, the
operations take place for each spanwise generatrix, thus the following are applied to
each and every spanwise generatrix, in order to attain spanwise distributions of data.

Mean Camber Line and Thickness Data Computation

Based on the (r,z) NURBS curve of the N't" generatrix, a revolved surface in the
(x,y,z) space and the @ transformation function to the (m, 8) plane are generated. A
NURBS revolved surface that rotates around the z-axis to a certain angle 8, can be
computed using a single (r,z) NURBS generatrix. Rotating this generatrix’s control
points at discrete angles from 0 to 8, leads to sets of control points of type (r, 6;, z).
These control points generate a NURBS revolved surface with angle of revolution 6,
the generatrix of which is the initial (r, z) generatrix. The Cartesian representation of
the (r, z) surface points is given by:

(x,y,z) = (rcos@,rsinf,z) (4.12)
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Using the N't" (7, z) generatrix a transformation function @ that maps every (7, 6, z)
point of the revolved surface to the (im, 8) plane can be computed.

The revolved surfaces of the spanwise generatrices, between hub and shroud and the
grid of the blade that lies within hub and shroud and intersects the spanwise revolved
surfaces can be seen in Fig. 4.13:

Figure 4.13: Revolved surfaces of the spanwise generatrices, between hub and
shroud and grid of the blade within hub and shroud that intersects the revolved
surfaces.

Pressure and Suction blade sides:

The intersection between the blade grid and the revolved surface produced results in
the definition of the pressure and suction side curves that lie on the revolved surface.
Additionally, the intersection points between a structured surface grid, consist of
quads and the NURBS surface that intersects it, are found. These points lie on both
the revolved surface and the blade, resulting to a set of points such as in Fig. 4.14.
This method is described in detail in [6].

Having the blade airfoil (x,y, z) points in the 3D space and using the transformation
function @, seen in Eq. 4.3, that has also been defined by knowing the (r,2)
generatrix, the blade (x,y,z) points can be transformed to (m, 8) coordinates. The
analysis changes from the 3D Cartesian space to the (m, 8) plane as seen in Fig. 4.15.
The (m, 8) points of the two sides of the airfoil are approximated with two NURBS
curves in order to achieve a continuous representation of the two sides. To do so, a
NURBS constrained approximation algorithm was used, so that the resulting curves
respect the continuity of first derivative at the LE. This method is described in detail
in [6].
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Figure 4.14: Discrete points (in red) of the blade grid that lie on the surfaces of
revolution.

Figure 4.15: The points of Fig. 4.14 transformed into the (m, 8) plane and
approximated by NURBS curves, creating spanwise airfoils on the (m, 8) plane.

Mean Camber Line:
The mean camber line of an existing blade airfoil, on a 2D plane, is computed as the
exact mean camber line according to the following definition; a line joining the

leading and trailing edges of an airfoil equidistant from the upper and lower surfaces.
This method is described in detail in [6].
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To produce a mean camber line compatible with a four point Bézier representation,
the exact mean camber line points are approximated using a cubic Bézier curve that is
referred to as the four point mean camber line. A cubic Bézier approximation
technique enforced with constraints is used to approximate the exact mean camber
line points, while preserving through constraints, the endpoints, LE and TE
preservation and endpoint tangents such as the metal angles preservation of the airfoil.
This method is described in detail in [6]. The exact and the cubic Bézier mean camber
lines are given in Fig. 4.16.

P Cubic Bezier Mean Camber Line

1 Exmct Mean Camber Line
P, P,

.--'/.
- _// i
P
0 7
o
- "_// -
P/

m
Figure 4.16: The exact (green) and cubic Bézier (purple) mean camber lines of the
TU Berlin stator blades. The blade airfoil contour is also shown in light blue and
yellow.

Having computed the cubic Bézier mean camber line, Py, P;, P, and P;, the angles 6,
B and & are computed using:

O = Po,e' Org = P3,9 (4.13)
Bz = atan <—:11:1 ::)":1 ) , Brg = atan (—PZZZ ::Z) (4.14)

MP;-MP, MP,-MP3 ) (4.15)

0 = acos (:) 0 = acos (:
LE [Py |[mpg|) TE |[MP|[MPs|

Equations 4.13, 4.14, 4.15 applied to each spanwise four point mean camber line,
result to spanwise distributions of the angles 8,6 and § as in Fig. 4.17.
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Figure 4.17: Spanwise distributions of the angles g, 8, and é of the TU Berlin stator.

The discrete green points are extracted from the surface grid, for every spanwise

position. Then, a NURBS curve interpolation provides the continuous spanwise

distribution of the angles (purple lines).

Thickness Profiles:

In order to complete the reparameterization of the blade grid, last step is to compute
the thickness profiles that are a combination of the non-dimensional streamwise
thickness profiles for each spanwise position and the spanwise thickness factor
distribution. Having the PS and SS NURBS representations and the mean camber line
cubic Bézier representation, the normal distances of the mean camber line to both
sides are computed, resulting to the two thickness profiles t(u) described in Eq. 4.9.
Then, dividing each profile with its maximum value that is the thickness factor of the
profile, t »(v) seen in Fig. 4.18, leads to the non-dimensional thickness profiles £(u)
seen in Fig. 4.19.
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Figure 4.18: Spanwise thickness factor distributions of the TU Berlin stator blade.
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Figure 4.19: Streamwise thickness profiles of the TU Berlin stator blade.
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Validation of the RPT

The RPT is validated in this section. The results demonstrate the level of accuracy in
geometry terms. The parameterized basic geometry is studied and presented in order
to highlight the capabilities of the RPT. The initial and reparameterized geometry are
plotted together in Fig. 4.20.

Figure 4.20: Initial (grey) and reparameterized (red) geometry of the TU Berlin stator
plotted together, using N’ = 5 generatrices in the reparameterization.

In order to quantify the deviation between the two blades of Fig 4.20, the field of d is
defined by:

A =/Ax? + Ay? + Az? (4.16)

where Ax,Ay,Az is the x,y,z distance between initial nodal positions and the
corresponding positions on the reparameterized blade. The results of such a
comparison can be seen in Fig. 4.21. It is obvious that the accuracy of the
reparameterization is strongly connected to the number of generatrices chosen for the
reparameterization.
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Figure 4.21: Deviation of the two blades in m, using N’ = 5 generatrices in the
reparameterization. The blade chord length is approximately 0.180 m and it is
repeated for comparison.

By comparing the two geometries, the initial and the reparameterized, as seen in Fig.
4.20 and 4.21 the conclusion is they differ by very little and this deviation can be
reduced further by changing some parameters of the process.

4.3 Grid Adaptation Tool (GAT)

The back-to-CAD method presented in Section 4.2 generates a geometry that can be
easily modified and optimized, by altering the CAD design variables of GMTurbo.
However, through this transformation, the nodal representation is lost, when
modifying the CAD parameters. To make it possible to perform CFD simulations on
the modified CAD geometry a grid has to be generated around the geometry. To avoid
mesh generation, the initial grid is exploited. A surface grid adaptation tool, GAT,
developed in [6], that adapts the initial CFD grid to the reparameterized CAD
geometry is used in this diploma thesis combined with the 2D and 3D Spring Analogy
Morphers developed by the PCOpt/NTUA in [3], as seen in Fig. 4.22.

/7 Grid /N
| Adaptation | Sprll\nIg Alll]alﬂi |
R Tool ( \\ orpher /"
ces [ crp |
Geometry lSurface Gl‘ld‘ Volume Grid
. / -~/ \ J

Figure 4.22: To create a grid around the reparameterized surface, GAT is used. This
adapts the initial surface grid to the CAD geometry. Then, the volume grid is
displaced to fit to the adapted surface grid, using the 3D spring analogy technique.
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The GAT used in this thesis, adapts the initial surface grid to the CAD geometry. The
method takes advantage of the availability of an initial grid that is taken for granted in
this thesis to generate a new one around the CAD geometry. It is performed in two
steps. First, the surface grid of the reparameterized wall patches is computed; by
projecting the initial CFD surface nodes onto the reparameterized NURBS surfaces,
for the various wall patches namely Hub, Shroud, Pressure Side and Suction Side as
seen in Fig. 4.23. The structure and connectivity of the surface grid are maintained
and only the coordinates of the nodes are adapted to the reparameterized and
consequently slightly changed, surface shape. Then, the volume grid of the whole
CFD domain is morphed with reference to the displacement of the surface grids
computed in the previous step.

Pressure Side

Suction Side

Figure 4.23: Wall patches of the blade grid of the TU Berlin stator.
Step 1: Surface Grid Adaptation

To compute the surface grid of the reparameterized geometry of each patch, the wall
patch nodes of the initial grid are projected onto the corresponding NURBS surfaces,
obtaining a 2D representation of each surface. Then, in 2D coordinates, the necessary
morphing is performed and the morphed 2D grid is, then, transformed back to 3D
coordinates.

GAT uses the initial mesh and the NURBS curves of the wall patches resulted from

the GMTurbo, seen in Fig. 4.24, to create a new mesh with the same connectivity as
the initial but node coordinates adapted to the parameterization surfaces.
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Figure 4.24: Initial mesh (left) and the NURBS curves of the wall patches resulted
from the GMTurbo (right).

The patches are separated into two categories:

e In the first category, the PS and SS patches are NURBS surfaces, each point of
which is represented by two parameters: (u, v).

e The second category includes the patches Hub and Shroud that can be
represented from a NURBS revolved surface each point of which can be
represented by the NURBS surface (u, v) parameters or the (m, 8) parameters
through the conformal mapping. It is preferable to use the (m,6)
representation instead of the (u,v) representation of the NURBS revolved
surface, since the first preserves the periodicity of the nodes that belong to the
periodic patches.

Two nodes in (x,y,z) coordinates, that have a periodic connection, have a specific
angular @ pitch difference. This pitch is preserved when transforming into (m, 6)
parameters, maintaining the periodicity of the nodes. Consequently, each one of the
four wall patches corresponds to a parametric surface which, by definition, can be
represented by two parameters, (u, v) or (m, 6).

Projecting a single point onto a parametric surface, results to the closest to this
(x,y,z) point that also belongs to the parametric surface. The latter can also be
described with two parameters (u,v), since it belongs to the parametric surface.
Consequently, projecting all the nodes of a wall surface patch to its parametric surface
produces a 2D grid of parameters seen in Fig. 4.25 and 4.26. Repeating the procedure
for each of the four wall patches, four 2D grids of parameters are computed.
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Figure 4.25: The projection of the surface grid onto the NURBS reparameterized
surface on the left can be transformed into 2D (u, v) points, resulting to a 2D grid
(right figure).

Figure 4.26: The projection of the surface grid onto the NURBS reparameterized
revolved surface on the left can be transformed into 2D (m, 8) points, resulting to a
2D grid (right figure).

However, the edges of the grid are not projected onto the edges of the surface, as seen
in Fig. 4.27. To force the surface grid to fit the NURBS surface, a deformation is
applied to the 2D parameters of each wall patch computed earlier. The deformation is
performed using the 2D Spring Analogy Technique. This software takes a 2D grid,
computed earlier by projecting the surface nodes onto parametric surfaces and the 2D
position of the edge nodes of the grid as input and distributes the internal nodes, with
reference to the edge positions.

The position of the edge nodes can be found with the following technique. The edges
of the surfaces are 3D NURBS curves provided by the parameterization, since they
are the intersections of NURBS surfaces resulted from GMTurbo, as seen in Fig. 4.27.
The edge nodes of the adapted grid must belong to those edge curves. Thus, the edge
nodes of the initial grid are distributed onto the 3D edge curve, using the distance
distribution they had in the initial grid. Since they belong to the 3D edge curve, they
also belong to the wall NURBS surface, thus they are represented by two parameters
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provided by the NURBS surface (u, v) or (m, 8). These edge parameters are given as
an input to the 2D spring analogy morpher. The morphing practically slides the nodes
on the surface to make the surface grid fit the edges of the NURBS surface as seen in
Fig. 4.28.

After morphing the 2D grid, the displaced parameters of the surface nodes are found.
It is easy to go back to 3D, using the equations of the corresponding surface, S(u, v)
for the PS and SS and @~ for hub and shroud, attaining the displaced (x,y,z)
surface patches.

Figure 4.27: The projection of the mesh onto the NURBS surfaces is not exact, since
the edge nodes are not projected onto the real edges of the surface. The need to
displace the surface mesh to fit the edges of the parameterization (red line) comes up.

"y
s
™
.
. \\

Figure 4.28: The edges according to the reparameterization (black curves) are
different than the projections of the edges of the initial grid onto the reparameterized
surfaces. Thus, a 2D spring analogy morphing takes place to displace the projected
grid (red grid) with respect to the edge positions of the parameterization.
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Step 2: Volume Grid Adaptation

Using the surface wall patches computed in the previous step, a deformation to the
initial volume grid can be applied using the 3D spring analogy technique [3], to adapt
the internal volume grid, with respect to the position of the surface patches. This
deformation results to a volume grid of the reparameterized CAD blade. This grid has
the same structure and connectivity as the initial one but is displaced in terms of
coordinates as seen in Fig 4.29.

Figure 4.29: The resulting red grid is very close to the initial black of the TU Berlin
case, depending on the user defined accuracy selected for the reparameterization that
is, the number of generatrices and the number of control points in NURBS
approximations.

GAT used in an EA Optimization

To generate a grid on the GMTurbo geometry, during an EA optimization, the method
presented in Section 4.3 is used. However, a part of the method is executed only once,
before the optimization begins, as a pre-processing step and the rest is integrated into
the optimization workflow and creates the grid for every candidate geometry.

To be more specific, the first part of the method, the projection of the surface nodes
onto the NURBS surfaces of the parameterization, is common for every candidate
geometry, since it provides the connectivity of the various patches in 2D coordinates.
Mapping back to the corresponding NURBS surface of the current EA evaluation,
provides the new coordinates of the surface grid. Hence, the 2D parametric grid of
each wall patch, seen in Fig. 4.23, is created once, at the beginning of the
optimization. It is morphed for each candidate geometry, according to the edge
positions of that geometry. The rest of the method follows and is integrated into the
EA workflow to be repeated for every candidate geometry.
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Chapter 5

Optimization Methods

5.1 Evolutionary Algorithms — EASY Software

Evolutionary algorithms (EA) are a class of search heuristics that can be applied to
many different tasks providing a heuristic-based approach to solving problems. The
premise of an EA is based on the process of natural selection. An EA contains four
overall steps: initialization, selection, evolution operators, namely mutation and
crossover, and termination. These steps each correspond, roughly, to a particular facet
of natural selection, and provide easy ways to modularize implementations of this
algorithm category. In an EA, fitter members will survive and proliferate, while unfit
members will die off and will not contribute to the gene pool of further generations.
EAs are controlled by a number of parameters which are crucial for the success and
efficiency of the search. The processes of an EA can be seen in Fig. 5.1. More
information is given in [11].

Initialization

Mutation

4

Selection

Crossover

4

Termination

Figure 5.1: Processes of an EA.
Initialization

In order to begin an initial population of solutions is created. The population contains
an arbitrary number of possible solutions to the problem, called members. It is often
being created randomly or, if some prior knowledge of the task is known, roughly
centered on what is believed to be ideal. It is important that the population
encompasses a wide range of solutions, because it essentially represents a gene pool.
In order to explore many different possibilities over the course of the algorithm, many
different genes should be present.

45



Parent Selection

Once a population of A members is created, these members, called offspring, are
evaluated according to a fitness function. A fitness function is a function that takes in
the characteristics of a member and outputs a numerical representation of how viable
of a solution it is. The members of the population that correspond to the best values of
the fitness function are called parents and are given as u. After selecting the top
members, they are used to create the population of next generation.

Evolution Operators

This step includes two operators: crossover and mutation. Using the characteristics of
the selected parents, new offspring are created that are a mixture of the parents’
qualities. Furthermore, a new genetic material should be introduced into the
generation. This step is mutation and it is done by changing a small portion of the
offspring such that they no longer perfectly mirror subsets of the parents’ genes.
Mutation typically occurs probabilistically, that is the chance of a child receiving a
mutation as well as the severity of the mutation is governed by a probability
distribution.

Termination

Eventually, the algorithm must end. There are two cases in which this usually occurs:
either the algorithm has reached some maximum runtime, or the algorithm has
reached some threshold of performance. At this point a final solution is selected and
returned.

Multiple Objective Optimization

EAs can also be extended to use many fitness functions. As a result, a set of optimal
points is produced instead of a single optimal point. The set of optimal solutions is
called the Pareto front and contains elements that are equally optimal in the sense that
no solution dominates any other solution in the front. Then, the set is narrowed down
to a single solution, based on the context of the problem by the decision maker. The
Pareto front of an example case can be seen in Fig. 5.2.
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Figure 5.2: Pareto front of an example case.

Metamodel-Assisted Evolutionary Algorithms:

Optimization based on stochastic methods and, in particular, evolutionary algorithms
are currently being used. Despite their advantages, all of the population-based search
algorithms require excessive computational time due to the excessive number of
candidate solutions which need to be evaluated through costly computational models.
The reduction of this computing cost, so as to make stochastic optimization both
efficient and effective is an area of active research. Emphasis is laid on techniques
which rely approximation models which may substitute for the exact and costly
evaluation tool. Possible solution to this problem is the use of Metamodel-Assisted
Evolutionary Algorithms (MAEASs) or other methods. MAEASs rely on the smart
management of calls to the exact evaluation tool and its metamodel during the
evolution, leading to a considerable economy in computational cost. Metamodels
serve as surrogate evaluation tools which allow for discerning an approximate ranking
of all the population members within any generation. EAs may use metamodels
trained on samples selected separately from the evolution, in this case, the metamodel
should be updated regularly depending on the deviation between the objective
function values computed on the metamodel and the exact tool. On the other hand,
EAs assisted by on-line trained metamodels can be used. A locally valid metamodel is
constructed on the fly for each new individual, by training it on previously evaluated
neighboring individuals. Through the metamodel-based evaluation, a few promising
members in each population are identified and only these are to be re—evaluated on
the exact tool. This is referred to as the Inexact Pre—-Evaluation (IPE) technique.
Among the most frequently used metamodels, response surface methods, polynomial
interpolation and various types of artificial neural networks, Gaussian processes can
be found. For more information on MAEAs the reader is referred to [13], [14] and
[24].
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The EA software used in this diploma thesis is the EASY platform, developed by the
PCOpt/NTUA. The evaluation code is a combination of the parameterization tool, the
grid morpher, the CFD solver and the post processor code that computes the objective
values from the results of the CFD software as presented in Fig. 1.2.

In this thesis, the geometry of the TU Berlin’s compressor blade is given as a CFD
grid. Before the optimization begins, the RPT generates the GMTurbo
parameterization that describes the given node-based geometry. After specifying a set
of the GMTurbo parameters as design variables, the optimization process starts. The
sequence of tasks, of Fig. 1.2, is called for every candidate geometry. A surface grid
displacement technique is also used in order to perform CFD simulations on the new,
slightly different geometry. Finally, post-processors of the CFD results are
programmed to compute the objective function values used by EASY.

EASY is a general purpose, high-fidelity software for the search of optimal solutions
in single or multi objective problems and has been extensively used in engineering
applications. It gives the freedom to the advanced user to specify every aspect of the
evolution while it provides presets for the beginner. It supports single and multiple
objective function approximation through Artificial Neural Networks for time
consuming problems and a rich set of options that may define algorithms such as
Genetic Algorithms or Evolution Strategies.

In this thesis, two metamodel-assisted optimization runs of the case presented in
Section 8.2 are carried out using the same sets of design variables but in one case the
constraints presented in Section 6.1 are taken into consideration while at the other the
problem is unconstrained. Radial Basis Function networks are employed as
metamodels. The MAEA is based on the Inexact Pre-Evaluation technique.
Metamodels are built for each new candidate solution separately using neighbouring
data collected during the preceding generations of the EA; therefore, the activation of
the IPE is preceded by two generations based exclusively on the exact evaluation tool.
After the first two generations have been completed and stored, in each generation the
offspring population members are approximated based on a local metamodel and a
few of the best among them, based on the metamodel prediction, are re-evaluated on
the CFD tool. The metamodels used in this thesis are further accelerated by exploiting
the Principal Component Analysis (PCA) of the elite members of the evolving
population. PCA is used to guide the application of evolution operators and to train
the metamodels faster than other methods. On-line trained metamodels are used.
Finally, the optimizations carried out are two-objective, as it has already been
presented in Chapter 2, hence, the way fitness score should be assigned to the
individuals is depending on the each objective score. This is done using the Strength
Pareto Evolutionary Algorithms (SPEA) 2, implemented in EASY. The fitness score
depends on the number of individuals dominated and the number of individuals in a
neighbourhood is taken into consideration during fitness score assignment to
encourage Pareto front spreading on the objective’s space.
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5.2 Gradient-Based Methods — Continuous Adjoint

Stochastic search optimization methods, such as Evolutionary Algorithms, require a
large number of function evaluations. The computational cost of those methods scales
with the number of design parameters. On the contrary, gradient-based optimization
can be used in order to have significantly fewer function calls making this method
computationally less expensive. In the adjoint method, there is also another set of
Partial Differential Equations, the adjoint equations and each adjoint variable
corresponds to a variable of the flow field. Solving the adjoint equations has a
comparable cost to solving the primal state equations and the gradients can be
computed from the primal and adjoint fields with minor additional calculations
compared to the CFD iterations. Practically, the gradient evaluation cost does not
scale with the number of design parameters. Adjoint methods are divided into two
major subcategories, the discrete and the continuous [15]. In the continuous approach,
the adjoint equations are derived analytically from the flow equations and are then
discretized and solved numerically. The adjoint equations are derived by adding the
volume integral of the product of the adjoint variables with the state equations to the
objective function. By formulating and using the Green-Gauss theorem, the final
expression of the adjoint flow equations and the boundary conditions are determined

2]

In continuous adjoint the augmented objective function Fg,,, is introduced and defined
as:

Faug = F + [, W,Rpd 0 + [ U Ryd (5.1)

where ¥, (n =1,....,5) are the mean flow adjoint variables and ¥, the adjoint
turbulence model variable. F is the objective function and b; (i =1,....,N) the
design variables. Both ¥, and 7, act as Lagrange multipliers since they multiply the
equality constraints of the flow equations in the problem of minimizing Fg,,. Upon
convergence of the flow equations, R,, = 0, R = 0 and F,,,4 = F. Consequently, the

aug

sensitivity derivatives can be computed from as follows.

SFay ORy Ry
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(5.2)

Term % can be developed after having defined the objective function F. After

differentiating all terms resulting from the mean flow and turbulence model PDEs,
during the mathematical development of Lavg “”9 , volume integrals containing the partial

%, where Q, (n = 1,....,6) Wlth Qm = Up for (m=1,...,5) and

Q¢ = U are the flow variables, arise. These integrals will be collected to one and the
factor multiplying the total derlvatlve WI|| be set equal to zero. By doing so, a new

derivative

set of PDEs, called field adjoint equatlons (FAE), arise. The total and the partial
derivative are linked through:
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From Eq. 5.3, it can be noticed that changing % with % and eliminating the factors

multiplying % leads to the same FAE. Upon convergence of the FAE, the extra term,

. . . 9Qnéb
arising from the last term of Eq. 5.3, vanishes since 90n Ok
Bxk 6bi

themselves. The mean flow field adjoint equations are:

is multiplied by the FAE

v,
~Anmic 5~ Km + Ka + By + Bt =0 (5.4)

where the terms K,,, and K352 result from the differentiation of the mean-flow viscous
terms and the differentiation of the turbulence model Spalart-Allmaras [19] which is
used.

Satisfaction of the FAE leads to elimination of the volume integrals associated with
high computational cost. Similar approach is followed for the surface integrals leading
to the introduction of adjoint boundary conditions (ABC). However, for surface
integrals the factors multiplying strictly the total derivatives of Q,, must be set equal
to zero. By using the adjoint boundary conditions for the mean flow and the
turbulence model, the system of Eq. 5.4 and the turbulence model adjoint equations
can be solved. Finally, the second and the fourth integral of Eq. 5.2 do not contain any
variation in flow quantities and consequently, contribute to the expression of
sensitivity derivatives. For further details on this topic, the reader is referred to [1],
[2], [20], [21], [22] and [23].

In this thesis, the continuous adjoint method, developed by the PCOpt/NTUA, is used
to produce the surface sensitivity map of the blades, which provides the potential
changes in the shape of the blade, and to optimize the blade shape without imposing
manufacturing constraints. The continuous adjoint method is included in the GPU-
enabled solver PUMA.
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Chapter 6

Implementation of Constraints

6.1 Presentation of Manufacturing Constraints

The following manufacturing constraints are taken into account:

The number of blades is fixed ton = 15.

The axial chord of the blade should be kept constant in every spanwise
position.

The casing end wall cannot be changed.

The thickness of the blade should satisfy the following conditions: 1) The
minimum value for LE and TE circle radius is 1 mm. 2) The two holes for the
fixture in the middle of the blade have a radius of 2.5 mm and a depth of
20 mm. The blade thickness at these positions has to accommodate a cylinder
of material with a radius of 5 mm and a depth of 20 mm to allow cutting of
the thread at both hub and casing. The two holes can be placed arbitrarily
inside the profile shape, but should be at least 60 mm apart from each other.
The above thickness conditions are given in Fig. 6.1 and 6.2.

The blade has to be mountable on a plate of dimensions 200 mm x 80 mm
as a part of the cylindrical casing, shown in Fig 2.3. On the hub there is no
location or dimensional constraint for the fixture.

The reduction in the radius due to the hub contouring has to be 5 mm or less

and the increase of the radius due to the hub contouring has to stay below
10 mm.

51



Figure 6.1: 3D view of the blade, depth of 20 mm will allow cutting of the thread at
both hub and casing.

o2

60

Figure 6.2: 2D view of the blade, minimum value for LE and TE circle radius is
1 mm, the blade thickness at the positions where the two holes in the middle of the
blade will be created has to accommodate a cylinder of material with a radius of
5 mm. The two holes should be at least 60 mm apart from each other.
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6.2 Inclusion in the EA Optimization Process

The fixed number of blades, n = 15, is fulfilled by the outlet boundary condition of
the flow solver. The stator is adjusted to achieve a mass flow of 9.5 kg/s, full
annulus. By taking the number of blades into consideration, the outlet condition of
mass flow of the flow solver is: 9.5/15 = 0.6333 kg/s

The axial chord of the blade is kept constant by the parameterization of the GMTurbo
which enables the user to fulfill such conditions.

The casing end wall will not be changed during the optimization process.

The minimum value for LE and TE circle radius of 1 mm is also fulfilled by the
GMTurbo parameterization which enables the user to define the shape of the LE and
the TE as presented in Section 4.1. In this thesis the circular arc edge is used where
the two sides are linked with a circular arc with specified radius. The generated airfoil
sides are extended and, then, a part of them is truncated in the process of modifying
the edge shape, fitting a circle of specified radius between them. The radius of the arc
is specified as a spanwise distribution.

The constraint that demands the blade thickness, at the positions where the holes will
be created, to accommodate a cylinder of material with a radius of 5 mm and a depth
of 20mm and distance between the two holes at least 60 mm is fulfilled using the
process described below:

The range of the thickness factors for both PS and SS is defined in order to fit holes
with at least 5 mm radius as explained in Section 8.1.

Additionally, a code is programmed that creates a grid inside the blade. Then it
creates straight lines in the direction of the LE in the whole surface of the blade that
start from both the hub and shroud as seen in Fig. 6.3 and 6.4. LE direction is defined
as the line that connects the tip of the LE at the hub with the tip of the LE at the
shroud and can be seen as a purple line in Fig. 6.1.
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Figure 6.3: The red lines start from the hub (blue shade) towards the shroud (yellow
shade) and the black lines start from the shroud towards the hub.

Figure 6.4: The lines intersect the surface.
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These lines that intersect the blade have different lengths and constitute the depth of
the holes measured either from the hub or the shroud. As a result, different areas of
the blade can be intersected by lines of different lengths, that is, depths of holes as
seen in Fig. 6.5.

d. 001 002 003 004 005 006 007 008 009 01 011 012 013 014

d. 001 002 003 004 005 006 007 008 008 01 011 012 013 014

Figure 6.5: Isoareas of the depth of holes d in m for hub (top) and shroud (bottom).

From Fig. 6.5 can be seen that for 20 mm depth for holes the surface that can be
created is surrounded by the light blue area. The area of the appropriate depth is
extracted in (m, @) coordinates consisting of isolines for the mean camber line, PS
and SS. These points are interpolated by spline curves in order to extract 300 points
for each curve. Furthermore, the coordinates are converted to (x,y,z) coordinates
using Eq. A.11 of Appendix A where r(u) = ryyg = 0.1475 m for the hub and
r(u) = rsyroup = 0.2975 m and the distance between the points of PS and SS in
calculated as seen in Fig. 6.6 for the initial geometry of the hub. The s direction is the
direction of the mean camber line. This distance has to be at least 10.5 mm as a safety
factor of 5 % is applied.
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Figure 6.6: Distance between PS and SS for the initial geometry of hub (purple
points) and limit of 10,5 mm (green line) defined by the constraint.

Finally, the distance between the second and the second to last point of the Distance
PS-SS (m) - s direction (m) diagram, that fulfills the distance of 10.5 mm constraint,
is calculated and has to be at least 60 mm.

The constraint that demands the blade to be mountable on a plate of dimensions
200 mm x 80 mm as a part of the cylindrical casing is fulfilled when defining the
range of the z variable for both LE and TE and the range of 6;z, 01k, Bie: Bre: OLg
and &1 as defined in Section 8.1.

The radius of the hub is not changed since hub contouring is not used. The radius of
the hub is defined by the GMTurbo parameterization which enables controlling of the
hub generatrix.

Using the techniques described above, all manufacturing constraints of the case are
taken into consideration.
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Chapter 7

CFD Analysis of TU Berlin’s Case -
Validation

In order to analyze the CFD results and validate them against the experimental data,
post processing codes have been programmed and used.

7.1 Mach number

The absolute Mach number is given as follows:
M= % (7.1)

where c is the speed of sound in the medium and V is the velocity of the flow.

A comparison of the inlet Mach number computed by the PUMA solver for
compressible flows without preconditioning and experimental data, for all three inlet
whirl angles, 42°,47° and 37°, is given in Fig. 7.1. The radius r in mm, spanning
from hub to shroud, is given in the horizontal axis. The inlet whirl angle will be given
as an.
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Figure 7.1: Comparison of CFD and experimental inlet Mach number, from [16],
for 42°,47° and 37° inlet whirl angle.
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A comparison of the inlet Mach number for «;, = 42° computed by the PUMA
solver for compressible flows, with and without low Mach preconditioning, is given
in Fig 7.2.
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Figure 7.2: Comparison of inlet Mach number for a;,, = 42° as computed by the
PUMA code for compressible flows, with and without low Mach preconditioning.

A comparison of the outlet Mach number computed by the PUMA solver for
compressible flows without preconditioning and experimental data for all three inlet
whirl angles, 42°,47° and 37°, is given in Fig. 7.3.
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Figure 7.3: Comparison of CFD and experimental outlet Mach number, from [16],
for 42°,47° and 37° inlet whirl angle.
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A comparison of the outlet Mach number for a;, = 42° computed by the PUMA
solver for compressible flows, with and without low Mach preconditioning, is given
in Fig. 7.4.
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Figure 7.4: Comparison of outlet Mach number for a;,, = 42° as computed by the
PUMA code for compressible flows, with and without low Mach preconditioning.

In Fig. 7.1 for the inlet and Fig. 7.3 for the outlet, it can be seen that the CFD results
from the PUMA compressible flow solver are very close to the measurements with a
relative error less than 1 % for all three inlet whirl angles. The relative error is defined
as:

__ Experimental—CFD
=

-100% (7.2)

Experimental

It can be seen that in all three inlet whirl angle cases, Mach number is lower than
0.135 for both inlet and outlet. From Figs. 7.2 and 7.4, it can be seen that the values
of the Mach number are very close compared the two CFD methods of compressible
flow, with and without low Mach preconditioning and the experimental results in
account of the fact that the Mach number of the flow is low. As a result, low Mach
preconditioning can be used and the flow can be sufficiently approximated by an
incompressible flow model as it will be presented in figures for whirl and pitch.

From Fig. 7.1 and 7.3 it can be seen that, in all three inlet whirl angle cases, the Mach
number is decreased in low and high radius, that is near hub and shroud due to the
flow deceleration that occurs as a result of the hub and shroud boundary layer and the
flow mixing, as seen in Fig. 7.5. Furthermore, as the inlet whirl angle increases, Mach
number decreases at the same radius as a result of the lower velocity.
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SHROUD

Figure 7.5: Stream traces of flow.

A comparison of the outlet Mach number for a;,, = 42° computed using the code for

compressible flows, without preconditioning, for different values of viscosity ratio, is
made in Fig. 7.6.
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Figure 7.6: Comparison of the outlet Mach number for a;;,, = 42° using a
compressible flow model, for different values of viscosity ratio, at the inlet.
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The value of viscosity ratio v’-‘/v that is needed for the inlet boundary conditions for
the k- SST turbulence model is unknown, hence, a comparison of the outlet Mach
number is made for three values of viscosity ratios as seen in Fig. 7.6. The minor
differences of Mach number values between the three viscosity ratio scenarios lead to
the conclusion that the case is almost independent from the inlet viscosity ratio.
Viscosity ratio equal to 20 is used in all CFD cases.

7.2 Outlet Whirl angle a

The task of the stator is to turn the incoming flow with a whirl angle of 42 + 5° into
axial flow that is, a flow that has an outlet whirl angle value very close to 0°. The
whirl angle is calculated through:

= cos () = cos™ (7o)
a = cos (|‘7|> Cos™ | s (7.3)

where (u, v, w) are the three Cartesian velocity components.

A comparison of the outlet whirl angle computed by the PUMA solver for
compressible flows without preconditioning and experimental data for all three inlet
whirl angles, 42°,47° and 37°, is given in Fig. 7.7.
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Figure 7.7: Comparison of CFD and experimental outlet whirl angle «, from [16],
for 42°,47° and 37° inlet whirl angle.

A comparison of the outlet whirl angle for a;, = 42° computed by the PUMA solver

for compressible flows, with and without low Mach number preconditioning, and the
corresponding code for incompressible flow is given in Fig. 7.8.
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Figure 7.8: Comparison of outlet whirl angle a for a;, = 42° as computed by the
PUMA code for compressible flows, with and without low Mach number
preconditioning, and the incompressible variant of the same code.

From Fig. 7.8, it can be seen that the outlet whirl angle distributions are very close
comparing the three methods and the experimental results in account of the fact that
the Mach number of the flow is low as it has already been explained. From Fig. 7.7 it
can be seen that the CFD results from the PUMA Compressible flow solver are very
close to the experimental results with relative error less than 1 % for all three inlet
whirl angles. It can also be seen that the outlet whirl angle increases as the inlet whirl
angle increases.

The outlet whirl angle varies from (—4°,8°) for a;,, = 42°, (-=5°,8°] for a;, = 47°
and (—3°,6°] for a;;, = 37° as the radius increases. The flow needs to be as close to
axial as possible which is one of the objectives of the optimization.

7.3 Outlet Pitch angle g

The pitch angle is calculated through:

ﬁ _ tan‘l (Radial Velocity) _ tan‘l (ﬁ) (7.4)

Axial Velocity Ug

Comparison of the outlet pitch angle computed by the PUMA solver for compressible
flows without preconditioning and experimental data for all three inlet whirl angles,
42°,47° and 37°, isgiven in Fig. 7.9.
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Figure 7.9: Comparison of CFD and experimental outlet pitch angle g, from [16],
for 42°,47° and 37° inlet whirl angle.

A comparison of the outlet pitch angle for a;, = 42° computed by the PUMA solver
for compressible flows, with and without low Mach number preconditioning, and

incompressible flow is given in Fig. 7.10.
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Figure 7.10: Comparison of outlet pitch angle g for a;,, = 42° as computed by the
PUMA code for compressible flows, with and without low Mach number
preconditioning, and the incompressible variant of the same code.
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In Fig. 7.9 it can be seen that the CFD results from the PUMA compressible flow
solver are very close to the experimental results with relative error less than 1 % for
all three inlet whirl angles. The outlet pitch angle varies from (—5°, 3°] for a;,, = 42°,
(—6°,3°] for a;;,, = 47° and (—4°, 3°] for a;,, = 37° as the radius increases. The pitch
angle is almost constant as the radius increases but in high values of radius, near
shroud, a dramatic increase in pitch angle appears as a result of the secondary flow
effects.

7.4 Outlet Total Pressure and Static Pressure

The experimental data for the outlet pressure must be corrected, according to the
corresponding ambient pressure value, using the following equation:

Pin

PEOTT = Py - Pzgg; (7.5)
The ambient pressure for each case is:
Inlet -5°: 101290 Pa Outlet -5°: 101570 Pa
Inlet 0°: 101240 Pa Outlet 0°: 101530 Pa
Inlet +5°: 101150 Pa Outlet +5°: 101570 Pa

A comparison of the outlet total pressure computed by the PUMA solver for
compressible flows without preconditioning and experimental data for all three inlet
whirl angles, 42°,47° and 37°, is given in Fig. 7.11.
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Figure 7.11: Comparison of CFD and experimental outlet P;, from [16], for 42°,47°
and 37° inlet whirl angle.
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A comparison of the outlet total pressure for a;, = 42° computed by the PUMA
solver for compressible flows, with and without low Mach number preconditioning, is
given in Fig. 7.12.
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Figure 7.12: Comparison of outlet P, for a;,, = 42° as computed by the PUMA code
for compressible flows, with and without low Mach number preconditioning.

In Fig. 7.11 it can be seen that the CFD results from the PUMA compressible flow
solver are very close to the experimental results, with relative error of 0.5 % to 1 %,
for all three inlet whirl angles.

A comparison of the outlet static pressure computed by the PUMA solver for
compressible flows without preconditioning and experimental data for all three inlet
whirl angles, 42°,47° and 37°, is given in Fig. 7.13.
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Figure 7.13: Comparison of CFD and experimental outlet Py, from [16], for 42°,47°
and 37° inlet whirl angle.
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A comparison of the outlet static pressure for a;, = 42° computed by the PUMA
solver for compressible flow, with and without low Mach number preconditioning, is

given in Fig. 7.14.
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Figure 7.14: Comparison of outlet P,; for a;,, = 42° as computed by the PUMA code

for compressible flows, with and without low Mach number preconditioning.

7.5 Total Pressure Loss Coefficient

Total pressure loss coefficient is a dimensionless quantity. In 3D geometries, it
usually needs to be computed along isospan blade sections, from hub to shroud. It is
given by Eq. 2.1. A comparison of the total pressure loss coefficient computed by the
PUMA solver for compressible flows without preconditioning and experimental data
for all three inlet whirl angles, 42°,47° and 37°, is given in Fig. 7.15.
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Figure 7.15: Comparison of CFD and experimental w, from [16], for 42°,47° and
37¢ inlet whirl angle.

A comparison of w for a;, = 42° computed by the PUMA solver for compressible
flow, with and without low Mach number preconditioning, is given in Fig. 7.16.
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Figure 7.16: Comparison of w for a;,, = 42° as computed by the PUMA code for
compressible flows, with and without low Mach number preconditioning.

The total pressure loss coefficient varies from (—0.05,0.2) for a;, = 42°,
(—=0.05,0.2] for a;, = 47° and (—0.15,0.2] for a;,, = 37° as the radius increases. The
total pressure loss coefficient has to be minimized which is one of the objectives of
the optimization.
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Chapter 8

Evolutionary Algorithm Optimization

8.1 Design Variables

When using the RPT, presented in Section 4.2, to create the input file for the
GMTurbo, patches such as the hub and shroud, the surface of which is a revolved
surface around the z- axis, are given as meridional generatrices, inlet and outlet are
given as meridional boundary curves, LE and TE are given as meridional edge curves
and variables such as 6;z, 01k, BLe, Bre, OLg, O and thickness factors for both PS
and SS are given in spanwise distribution, using NURBS curves. The control points of
those NURBS curves are the design variables to be determined during the
optimization process. The design variables are:

e The LE and TE are given in (r, z) and three out of the seven r variables of the
NURBS curve for both LE and TE are used as design variables.

o 0O,p, Org, Big, Bre, 6., 675 and thickness factors for both pressure and
suction side are given in spanwise distribution with five points for every
NURBS curve. All five points for 8,g, 0rg, BLg, Bre, 0.k, O and thickness
factors are used as design variables.

The total number of design variables is 46.
8.2 Optimization using EASY

In this section, two optimization runs of the TU Berlin’s stator case are carried out
using the same sets of design variables. In one case, constraints are taken into
consideration while in the other the problem is unconstrained. The objective
functions, in all runs, are total pressure loss coefficient w and the flow angle deviation
at the CFD outlet from the axial direction. Both must be minimized. A (u,1) =
(8,12) EA with 8 parents and 12 offspring, assisted by metamodels performing
inexact pre-evaluation of the offspring population, is used. A termination criterion of
100 evaluations on the CFD was set. Each evaluation has a total duration of
approximately 4 hours and the CFD solver runs on one NVIDIA Tesla K40 GPU. The
basic parameters of the metamodel-assisted optimization using EASY can be seen in
Table 1.
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TABLE 1

EASY Settings

Number of Demes 1
Coding Real

Parent population size u 8
Offspring population size A 12
Evaluations before termination 100

Parents that create one offspring 3
Elite population size 20

Elite individuals to force as new offspring 1
Probability to select an elite 0.08

Tournament size 3
Tournament probability 0.85
Crossover probability 0.9
Mutation probability 0.05
Metamodel type RBF

Minimum data base size for IPE 20
Exact evaluations per generation (IPE) min-max 2-5

The front of non-dominated solutions is given in Fig. 8.1 for the unconstrained case
and in Fig. 8.2 for the constrained case.
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Figure 8.1: Front of non-dominated solutions of different generations for the
unconstrained case.
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The Pareto fronts for the constrained and the unconstrained optimization using
MAEAs are given in Fig. 8.3. The values of the objective functions for the basic,
initial, geometry can also be seen in Fig. 8.3. All the optimization runs are for the case

of 42° inlet whirl angle.
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Figure 8.3: Pareto front for unconstrained and constrained case.
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As far as the unconstrained case is concerned, some members of the Pareto front
result in reduction of one of the objective functions while the other is increased.
However, one possible solution manages to minimize both the objective functions
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significantly. Similar results appear in the constrained case. The possible solution in
purple circle, as seen in Fig. 8.3 achieves slight decrease of the total pressure loss
coefficient and major decrease of the outlet angle. Specifically, the total pressure loss
coefficient is decreased by 0.25 % and the outlet angle by 1.5° which corresponds to
32.8 %. The improvement i of the objectives is defined as:

Optimized—Initial

(%) =

. 0
Initial 100% (8.1)
The resulting optimized geometry compared to the baseline for the case without

manufacturing constraints can be seen in Fig. 8.4 and for the constrained optimization
in Fig. 8.5.

Figure 8.4: Initial (grey) and optimized without manufacturing constraints (red)
shape of blade.

Figure 8.5: Initial (grey) and optimized with manufacturing constraints (blue) shape
of blade.
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The optimized blade shape is significantly deformed, in comparison with the initial
shape, for both cases, as seen in Figs. 8.4 and 8.5. The optimized shape for the
constrained case corresponds to the purple circle while the optimized shape for the
unconstrained case corresponds to the orange circle as seen in Fig. 8.3.

The comparison between the constrained and unconstrained optimized blade shapes
can be seen in Fig. 8.6.

Figure 8.6: Optimized without constraints (red) and optimized with manufacturing
constraints (blue) shape of blade.

The optimized geometries appear to have a spanwise displacement because the design
variables are spanwise parameters of the blade. Any manufacturing constraint can be
applied to the geometry shape by bounding the shape deformation that EASY can
handle. The great value of the GMTurbo parameterization software, within an
optimization, is highlighted here. The design variables have a physical sense that can
provide the designer with the ability to roughly predict the displacements the blade
will undergo during the stochastic optimization and, thus, chose to optimize those
variables that are significant for the application.
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Chapter 9

Unconstrained Gradient Based
Optimization

In this chapter, optimization runs using gradient-based optimization [1] of the TU
Berlin’s stator case are carried out using the set of design variables presented in
Section 8.1 while the manufacturing constraints are not taken into account. The
objective function is the total pressure loss coefficient w to be minimized.

The gradient-based method that is used is the steepest descent method where the
design variables update is given by:

SF

bift = bl =15 CE
where i is the counter for the optimization cycles.
The sensitivity derivatives are computed using the chain rule as follows:
SF SF  &xit
= .2k (9.2)

8b,  6x* &by

where F is the objective function, b, n = 1, ..., N are the design variables.

6F . . . .. . .
pyis computed using the continuous adjoint method. In Fig. 9.1, the sensitivity map
k

IS given using the adjoint method in comparison with the result of the unconstrained
EASY optimization for minimum of total pressure loss coefficient.

Figure 9.1: Optimized solution computed by the EA without constraints (left) and
sensitivity map (right) using adjoint. The red color represents pulling the blade
surface vertically while the blue color represents pushing the blade surface vertically
to improve the objective function value.
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The two shapes have many similarities which indicate that the adjoint method can be
used to propose changes to alternate the shape of the geometry with significantly less
computational budget. The differences between the two shapes are due to the
parameterization method used in EA optimization which smoothens the shape of the
geometry.

m

S5 - . . . : .
;Tk are the derivatives of grid nodal positions with reference to the design variables
n

and are calculated from the differentiation of the parameterization model by creating
N geometries, where N = 46 is the number of design variables, which differ by a
small quantity, e = 1078, from the initial.

The derivatives are computed using finite differences by the following equation:

Sxg' _ x'(by,by,...bp+e€,...bN)—x) ' (b1,bs,....05,...DN)
6by £

(9.3)

where k =123 and x; =x,x, =y, x3=2z,n=1,..,Nand m=1,...,M are the
number of the nodes

The values of the objective function w that is minimized using the steepest descent
method for unconstrained optimization are given in Fig 9.2. The horizontal axis
corresponds to optimization cycles. The initial solution is presented in cycle 0 and is
also given in Fig. 9.2.

0.18 T T T T T
) Unconstrained Adjoint Optimization 4

0.17 - Initial 4 =

.

Total Pressure Loss w
[
el
Lad
T
1

0.1 .

0.09 = 4

0.08 1 1 A - 4

Optimization Cycles
Figure 9.2: Total pressure loss coefficient evolution for unconstrained continuous

adjoint optimization. w is decreased to 0.0825 which corresponds to 52.8 %. The
improvement of the objective is defined by Eqg. 8.1.
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The convergence history of the primal equations for optimization cycle 2 is given in
Fig. 9.3.
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Figure 9.3: Convergence history of the primal equations for cycle 2. The horizontal
axis corresponds to the primal solver iterations.

The convergence history of the objective function for optimization cycle 2 is given
Fig. 9.4. It can be seen that the solver has successfully converged.
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Figure 9.4: Convergence history of the objective function for cycle 2. The horizontal
axis corresponds to the primal solver iterations.

75



As it has already been stated in Section 3.2, the system of equations is solved using
the explicit multi-stage Runge-Kutta method with residual smoothing using the point-
implicit Jacobi method.

The resulting optimized geometry compared to the baseline, for 46 design variables,
for the case without manufacturing constraints is presented in Fig. 9.5.

Figure 9.5: Initial (grey) and optimized without manufacturing constraints (blue)
shape of blade.

By comparing the results of the gradient-based optimization with the unconstrained
EA optimization, can be seen that the gradient-based reduces the objective function w
even more than the Pareto point of the unconstrained case with the minimum w. As it
can be seen from Fig. 8.3 this point corresponds to w = 0.114, yielding 34.5%
reduction in comparison with the initial, while in the adjoint optimization w is
decreased to 0.0825 which corresponds to 52.8 %. The computational cost of the
adjoint optimization is significantly less than the EA optimization. However, the EA
is used for two-objective optimization, while the adjoint optimization is single-
objective. It is possible that the adjoint method does not give that low value of the
objective function if used for the same two-objective optimization.
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Chapter 10

Overview and Conclusions

10.1

Overview

The work presented in this diploma thesis concerned the application of shape
optimization methods to the open case of the TU Berlin’s compressor stator.
Specifically, the following tasks were implemented:

Validation of the PUMA CFD solver with experimental data published by TU
Berlin. Comparison of the experimental data with the results produced from
the versions of the PUMA CFD solver for compressible flow, with and
without low Mach number number preconditioning, and for incompressible
flow. The results demonstrate that the PUMA solver efficiently handles the
case and that the flow can be approximated as incompressible. By
approximating the flow as incompressible, the solving time is reduced for 4
hours to 3.5.

Application of the RPT as a node-to-CAD method is used to transform the
blade geometry, given in CFD grid format, into a GMTurbo format. Validation
of the RPT was also performed. Comparison between the initial and the
reparameterized geometry, show that the shapes are very close, thus the
reparameterization is accurate enough.

Application of the GMTurbo parameterization software, which is ideal for use
in optimization workflows, since the parameters it uses are few and have
physical meaning. Thus, optimization that can be carried out using GMTurbo
is expected to work.

Application of the GAT, to adapt the initial CFD grid to the GMTurbo
surfaces using the 2D and 3D Spring Analogy Morphers. Hence, CFD
simulation can be performed on the GMTurbo parameterized geometry. The
validation of the GAT in terms of geometry and CFD results shows that the
grid adaptation is accurate and can be integrated in the optimization workflow.

Programming and application of codes in order to handle the manufacturing
constraints of the case. The tough constraints of the case were sufficiently
handled and applied in the optimization.

Application of shape optimization using the Evolutionary Algorithms software
EASY. The results of the optimization were satisfying taking into account the
computational budget available for this thesis. The results would be even
better for both the constrained and unconstrained cases if more computational
means were used. The EA optimization, for the constrained case, lasted about
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10.2

one week and resulted in reduction of total pressure loss coefficient by 0.25 %
and the outlet angle by 1.5° which corresponds to 32.8 %.

Application of the continuous adjoint method in order to produce the
sensitivity map that shows how shape can be changed to optimize the
geometry. The representation of the sensitivity map was accurate and slightly
different by the EA optimized blade. As far as the optimization is concerned,
w Is decreased to 0.0825 which corresponds to 52.8 %. The results of the
adjoint optimization are better than the unconstrained EA optimization. The
computational cost for the four optimization cycles is approximately 24 hours,
significantly less than the cost of the EA. However, the EA is used for two-
objective optimization, while the adjoint optimization is single-objective. As a
result, it is not guaranteed that the adjoint optimization will provide as good
results for the two-objective optimization.

Proposals for Future Work

As far as ideas for future work are concerned, the following are proposed:

Implementation of a grid generating tool to create grid different from the one
used in this diploma thesis in order to test the independency of the results form
the size, the type and the quality of the grid.

Use of higher computational budget for the EASY optimization and
comparison with the results presented in this thesis.

Application of two-objective gradient-based optimization, with and without
taking the manufacturing constraints into consideration, and comparison with
the results produced by the EA as presented in this thesis.

Handling of the constraints using Sequential Quadratic Programming or other
methods. Some of the TU Berlin case’s constraints are non-linear. Hence, SQP
method which is one of the most effective methods for nonlinearly constrained
optimization can be used to handle the constraints with low computational cost
and high accuracy.

78



Appendix A

Conformal Mapping

For a mapping of a surface S(u,v) to a surface P(u,v) through the transformation
function @ : S(u,v) - P(u,v) to be conformal, it is sufficient to prove that a
function c(u, v) > 0 that satisfies Eq. A.1 exists.

gijwv) = cw,v)gi;(wv), forij=12 (A1)
where g;; and g;; are the coefficients of the first fundamental form of S(u,v) and
P(u,v) [4]. The most important property of every conformal mapping is the angle
preservation property. Conformal mappings preserve the magnitude and direction of
the angle between two curves. [4]

The mapping of a surface of revolution S(u, 8) = (r(u)cos6,r(u)sinb, z(u)) to a
(m, 8) plane is given by the transformation:

®: (r(u)cosl,r(u)sinb, z(u)) = (m(u),0) (A.2)

where m(w) is given by:

U /1y ()% 424 (t)2
m(u) = fo s (A.3)

The mapping of Eqg. A.2 is conformal according to Eq A.1.

For a point s that lies on the revolved surface S(u, v) = (r(u)cos8,r(u)sing, z(u))
the partial derivatives with reference to u and 6 are given by:

Js ((’)r(u) p or(u) . p az(u)>
ou” Uauw % Tau MY oy
(A.4)

0
£ = (—r(u)sin8,r(u) cos6,0)

and for a p point on the (m,0) plane p(u, 8) = (m, ) the partial derivatives with
reference to u and 6 are given by:

0s [ (“Vru()? + z,(t)? 0
au - \J, 0 ’

(A5)
dp
30 = (0,1)

79



while the first fundamental coefficients of s are given by:

_ s ds (ar(u))z . <az(u))2

ST 9u ou_ \ ou ou
ds 0Js
S—a'ﬁ—o (A.6)
_as as_ 5
=39 99 W

while the first fundamental form coefficients of p, by:

(6r(u)>2 +(62(u)>2
£ _Op dp _\du Ju
P ou ou r2(u)
_ 9% 9p _
E, = S0 30 = 0 (A.7)
dp Odp
Gy = FTRET I 1

from Eqgs. A.6 and A.7 the relation between the coefficients is given by:

E, = Es
P rZ(u)
Fs
D = 2 (A.8)
G, = Gs
* T r2(w)

1
r2(w)’
The square of the distance between two points s and s + ds on surface S is given by
the first fundamental form of s seen in the following equation:

That proves that the mapping of Eq. A.2 is conformal with conformal factor

Iy = 1% = ds-ds = E;du® + 2F,dudf + G,d6? (A.9)

and the square of the distance between two points p and p + dp on the (m, ) plane is
given by the first fundamental form of p seen in the following equation:

I, = 1, = dp - dp = E,du® + 2F,dudé + G,d6> (A.10)

Combining Eqg. A.9 and Eq. A.10, is easily proved that the relationship between the
magnitudes on the two surface representations S(u, 8) and (m, 8) is given by:

Iy = r(Wl, (A.11)
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Consequently, the mapping used to transform a revolved surface into a (m, 8) plane,
given by Eq. A.2, being conformal, preserves angles and scales the magnitudes by a
factor of r(u) as seen in Eq. A.11.
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EOviko Metoofio IToAvteyveio

XyoA Mnyavordywv Mnyovikdv

Epyaotmpilo Oepukdv Xtpoftlopnyovodv

Movaéoda [TapdAining Ymoloyiotikng Pevotoduvapuxkng
& BeAtiotonoinong
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Avp¢oro

NPOMHEEY
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Beltiotomoinon Mopong ¢ Xta0eprig [Itepiymong Zopmest) pe
Iepropropovg pe ypfiion ELeMmktik@v AlyopiOpomv kot ) Xoveyn
Yvluyn M£0odo

Amlopotikn Epyacio
ALréErog Toayariong

Emprénov:
Kvpidrog X. INavvékoyiov, Kadnynmg EMIIL

Abnva, 2019

Ewayoyn

O 0epodLVOLIKOS GYESOGHOG Kol 1 BEATIGTOTOINGCT TTEPLYDGEWV GTPOPIAOUNYAVDV
amotelel avtikeipevo épevvag peydang onuocioc. H Beltictomoinon g popeng tov
TTEPLYIOL Elvan Kaipla Yo TIC EMOOCELS TOV.

Yxomdg TG OWMAMUOTIKNG OLTNG  epyaciag stvar 1 epapuoyn pebddwv
BeAtiotomoinong Hopeng mrepLyimV oTpoflhounyavayv ot otabepn mTEPHY®ON
ovumeot Tov [loAvteyveiov Tov Bepoiivov, pe yprion E&ehktikdv AdyopiBuwv, kot
OLYKEKPIUEVA TOL Aoyiopukoy EASY, aAld kot pe ™ yprion pebddov khicemv dnme n
Yvveyng Xvluyng pébodog, ta omoila avamtdydnkav ommv MITY&B/EMII, kot
napovcioon TV omoteAecpatwv. [lapdAinia, mpaypatomoleital cUYKPIoN Kot
emoAnbevon TtV omoteAecpdtov Tov emAvtn pong PUMA pe 1o mepapotikd
dedopéva mov mopéxovtal amd to [loAvteyveio tov Bepodivov.
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Y100epn Itepvymon Xovumeotn IoAlvteyveiov BepoAiivoy

H apyum yeopetpia dlvetoan oto Xy 1. Opilovran tpion onpeia Aettovpyiog g
punyovng: to onueio oyedoopol pe 42° mepipepelokny yovia oty €i6000 Kot dVO
dAlo onueio pe avtiotoyn yovie 47° ko 37°. Ot dVvo otoyol PertioTomoinong
TOPOLGLALOVTAL BT GLVEXELL:

1) Elayiotomoinon Tov GUVTEAESTH OMOAEWDV OMKNG Tieong HETAED €10600V Kot
€€6d0v tov ywpiov YPA. O cvuvieheotg anmAelidv oAMKNg Ttieong opiletol adidoTota

g &8¢

Pt1—DPt2
—_— 1
Pt1—P1 ( )

w =

OOV Pprelvarl M OMKN wieom €16000V, Pyy M OMKY Tigon €£0J0V KOl P; 1 OTATIKY|
mieon €10600v OAec palikd oAokANpouUEVES otV ekdoTote BEom.

2) EAlaylotomoinon ¢ amdkiong g yoviag €£660v g pong amd v a&ovikn
devBvvon. H yovia e£66ov opileton wg:

_ |Zama?
qp = [RATCE 2)
XAm;
6mov Kabe yovia a; dlvetarl og:

_1 (V1 1 ( w )
a = CosS =7 ] = COS — 3
<|V|) Vu?+v24+w? @)

omov (u, v, w) givar ot tpelg Kapteolavég cuvieT®ES TG ToOTNTOS

0.0mm 182.15mm

Yompo 1: Apyikn| yeopetpia kot SlaoTdoelg TTEpLYiOV oTafEpNC TTEPVYWOONG
GLUMIESTN TOL TOoAVTEYVEIOV TOL Bepoiivov
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EmAdtne Ponc PUMA

IMo ) pedétn g pong yop® amd ) oTabepn TTEPVYWOCT YPNOYLOTOIEITOL O EMAVTNG
pong PUMA mov tpéyet oe kdpteg ypapikdv. To Aoyiopikd ovtd emdvel aptOuntikd
115 e&lodoeig Navier-Stokes pali pe tig elodoelg tov poviéhov tpPng k-0 SST, mov
YPNOUOTOIEITOL GTNV EPYACIN OVTN, G £VO. VTOAOYICTIKO YMPIO LE YPNOTN KEVTPO-
KouPikng pebddov memepacuévov Oykov o un-dounpéva mAfypata. O emAidtng
PUMA yepileton to dounuévo mAéypa g epyosiog cov pun-dounuévo. H epappoyn
o€ KOPTEG YPOAPIKAOV TPOGOIOEL GNUOVTIKY aOENCT] TNG TOYLTNTOS EKTEAEONG TOV
VTOAOYIGUOV.

Ot e€lomwaelg mov emdvovton divovrtan otig EE. 4, 6, ko 7.

Ik Wm y Ohnil”_ Ok _ ()
nm- 5t dx dx

lym, €lvat 1o untpdo mpoctadepomoinong kot divetal o¢ £ENG:

1+ % %%k —KU, —KU, —Kuj —K |
%Iﬁlzkul 1—xu? —kwu, —Kuuz; —KuU

Lym = %Ifilzkuz —Kuu, 1—kui —kuyu; —ku, (5)
%|ﬁ|2l€u3 —KU Uz  —Kupuz 1 —kKku: —Kug
—[iPP[1-6] [1-6lwy [1—-6lu, [1-6lu; —5 |

apk) , Apwk) _ 5, kA Ok
o T ox; Py — B pkw + o, [(# + oxHe) ax}] (6)

d(pw) |, 9(pu;w) D d 0 w2 Ok 0
2e) 204D = 2By~ Bpo? + |t o) T + 201 - )2 L2 (7)

w 0x;0x;

IopoueTpomoincn TV TTEPLYIOV

[Tpokepévov va oyedlaotel kat va PertiotomomBel n popen| Tov mrepvyiov amarteiton
aKkpPnG  YEOUETPIKN avoamapdotocn. Avtd  yivetow pe  ypnomn  KOTEAANANG
TOPOUETPOTTOINONG. ZTNV TOPAUETPOTOINCT TPEMEL VAL P GLULOTOLOVVTOAL TOPAUETPOL,
N evon tev onolwv oyetiletan dueca pe ™ Bewpio TOV oTpofrlounyavody OTMG M
peonuppwvn toun, ot yovieg petdAlov kot 1 katovoun méyovs. H mopaperpomoinon
mov Oa ypnowomombei yivetar pe ypnion tov Aoyicpukod GMTurbo mov éyet
avantoydet amd t MITYP&B/EMII.

GMTurbo
To Moywopikdo GMTurbo Aappdaver Tic amapaitmreg peTafAnTég 16660V TPOKEWEVOD
Vo ONUOVPYNGEL TNV EMPAVELN TOV dVO TAEVPAOV, VTEPTIEGNG Kol LITOTTiESNS, £vOG 34

ntepuyiov pe yprion avamopdctacns NURBS, oe popen copfot pe Aoyiopkd CAD.
H dwodikacio mov akoAovBeitor meptypdpeTon 6T GLVEKELD.
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Apyd, opilovioan ot NURBS xoaumolec mov meprypdpovv T peonuppivég tomv
TOYOUATOV TOOOC KOl KEPOUANG, €16000V, ££000V KOl TOV OKUAOV TPOCTTMOONG Kol
EKQPLYNG TOV TTTEPLYIOV. XTN GLVEXELN, ONULOVPYOVVTOL Ol EVOIAUECES KAUTOAES GTO
peonuPpwvo  emimedo ot omoleg OMOTEAOVV €K TEPIOTPOPNG EMPAVEIES  TOL
petacynuotilovror  cOppopea. X1 ovvExew, vmoAoyiletor m péom  yYpOouun
KuptoéTTag pe pion kuPikr kapmoAn Bézier. 'Exovtag opicet pio péon ypopun
KUPTOTNTOG O€ KOOE €K TMEPLOTPOPNG EmMPaveln, €xel Onpovpyndel to mrepvHylo
UNOEVIKOV TTayovs. ['ivetatl vépOHeon KaTavor®Y TaYoVG 6TIG V0 TAEVPES VITEPTIECTC
Kol VTomieon, Katd UNKog Tov mrepuyiov. TEAOC, Tpayuatomotleiton TapePoAn He
ovo NURBS emopdvelec tov agpotoudv koTd HAKOS TOL TIEPLYIOL Yo TNV
OAOKANPMOT TNG KOTAGKEVNG TOV TTEPVYIOL OTMC PAivETOL GTO XY, 2.

L
=:::::........- e .
R LA
Yympa 2 Telkod ntepvylo otabepng TTepHY®ONG GUUTIEGTI] TOL TOAVTEYVEIOL TOV
Bepolivov

Aoyiopiké Avtictpoong lapaperpomoinong

[Mpoxeyévov va mpaypotomombei | Tapapetporoinon péow GMTurbo npémel mpdta
va ypnopomomndei to Aoyiopikd Avtiotpoong Iapaperpomoinong RPT to omoio
petatpénel €va mAéypo YPA oe mopapétpovs €16660v cupPatés pe to  AOYIOUIKO
GMTurbo. H pébodog mov axolovbeital meptypd@etal 6T GLUVEYELO.

Ye TpOTN GAom, vroioyiletar n peonuPpvny Toun TOL TAEYUOTOC. XTN GULVEXELD,
yivetal VTOAOYIGUOC TV TAELPAOV VIEPTIEGNC KO VITOTIECNC KO TNG HECNG YPOUUUNG
KUPTOTNTOG HE TPOcEyylon onueiov omd pio koPikn xopmoAn Bézier. Télog,
VIOAOYICETOL 1] KOTOVOUT TTOXOVG KATH UKOG TNG YOPONG TOV TTEPLYIOL.

Aoyiopiko Mpoocappoymg MMréypatog GAT

[Tpokeévov va axorovOnoet avaivon YPA pe xpnon kdmolov Kddka, amorteiton 1
TPOGOPUOYT TAEYHOTOG YOP® amd v mapayouevn amd tov GMTurbo yewpetpio.
Avto yivetar pe yprion tov Aoyiopkov Ipocappoyng IMiéyuatog, GAT, pe to onoio
10 apykd mAEypa mpocsopudletar otn véa yeopetpio pe xpnon tov 24 wor 34
Aoywopkod Tlapopopewong IMiéypatog pe ™ pébodo towv Ipappikdv Edatnpiov
mov &yet avoamtuyfel amd v MIIYP&B/EMIL. H mpocappoyn mAEYHOTOC
TPOYLOTOTOLELTAL, OPYIKE, SNUIOVPYDVTOS EMPOVELNKO TAEYHO Thve oty GMTurbo
YEOUETPIOL KO GTN GLVEYELD, TOPOULOPPAOVOVTAS TO OPYIKO 0YKIKO TAEYHa pe Bdor To
EMLPOVELNKO.
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o ™ Oonuovpyio empavelakod mAEypatog maveo oty GMTurbo yeopetpioa,
TPOGOUPUOLETOL TO OPYIKO EMPAVELOKO TAEYLLO TTAV® GTO GTEPEN OPLAL TNG YEDMUETPLOG.
Ta oteped Opro eivan ta €€ng: 1) ITAevpd vrepmieong, 2) ITievpd vmomieong, 3)
KéAvpog 10d6g, 4) Kélvpog kepainc. o kabéva akorovbeitar 1 e€ng dradikooio:

To apyikd empavelaxd mA&ypa mpofairetan oty NURBS empdveia mov mpokvmtet
a6 to Aoytopuikd GMTurbo. Qotd6c0, and avty TV TPoPoAn, Ta OPLOL TOL TAEYLUTOG
dev tavtilovtar pe ta Opia ¢ emeaveag. ['a v enilvon avtod Tov TPOoPANUATOC,
TPOYUATOTOLEITOL TOPAUOPP®SN TOV TPOPREPANUEVOL TAEYUATOG MOTE VO eQapUOleL
ot Oplo. NG EMPAVEING HE TN ¥PNOTN NG HEBOSOV ypappk®dv eratnpiov. AQov
VTOAOYIGTOUV TO £YKVPOL EMLPAVELNKE TAEYLOTO TAV®O GTO GTEPEA OPLOL, LETATOTILETON
TO EC6MTEPIKO TALYHO UE TN YPNON EVOS KOdIKA TAPAUOPPmonG 34 TAEYHOTOC LE TN
néBodo TV ypapukov elatnpiov. ‘Etot, mpokdntel éva £ykupo oyKikod mAEyp. XTO
Yy. 3 diveton 1o TEAKO EMPOVELNKO TAEYIO OAWV TOV GTEPEDV Oplv oL PpiokeTal
navo otn GMTurbo yewpetpia.

Yympoa 3: Tehkd (kéxkivo) mAéypa Kot apyikd (Lovpo)

Ilocotikonoinon tov Ilepropicumv

O otabepdc apBudg tov mrepuyiov n = 15, AopPdvetor vwoyn oty €mPoAn ™G
ouvOnkng €£6dov ¢ pong pdlag m omoia eivar ion pe v cvvorkn palo £6d0v
drapepévn pe tov apdpod tov ttepuyiov: 9.5/15 = 0.6333 kg/s

H a&ovikr yopdn tov mrepuyiov dwautmpeitor otabepn pHEG® TG TOPAUETPOTOINGNG
Tov GMTurbo mov emtpénel tétoleg EMAOYEG.

H eldyot tyn axtivag 1 mm yu v akun tpocPoAng Kot tnv aKpn EKQUYNG TOV
ntepuyiov mAnpeitan emiong péom g GMTurbo mopapetporoinong mov diver
dvvatdtTo 0TOV ¥PNoTN Vo Kabopicel TO oynuo TOV dV0 AKUMV.

O meproplopdg mov amontel, otig 0E0e1g KATAoKELVNS TV OV0 0TV, TO TAYOS VAKOV
vo emTpEneL TV VIapEN KVAIVOpov aktivag 5 mm kot faBovg 20mm dote va pumopet
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Vo KOTAOKEVAOTEL oTeipmpo avTneTomiletal LM TNG S10dOIKAGING TOV TEPTYPAPETIL
OTNV GUVEXELN, TANPOVTIOG TOPAAANAC KOl TOV TEPLOPICUO TNG OTOCTAONG TWV dVO
OTMV OV TPEMEL Vo Elvar peyaAdtepn omd 60 mm.

ApyiKd, T0 €0POG TOL GUVTEAESTN TTAYOLS YO TIG TAELPEG VIEPTIEGNG KOl VITOTIEGNG
kaBopileton dote va emtpénel TV Vmapén mayovg peyaAvtepo amd Smm. Emmiéov,
KOTOOKELALETOL ALY €0MTEPIKA TOL TTEPLYIOL Kol Kataokevdalovror gvbeieg
YPOUUES, 0T 01e0BVVeN TNG OKUNG TPOGROANG, GE OAN TNV EMPAVELD TOV TTTEPVYIOL
ot omoieg ektvobv 1660 amd 10 KEAVPOC 000G OGO Kol a0 TO KEALPOG KEPUANG
Omw¢ paivetor oto Xy. 4.

Yympa 4: Ot kOkKiveg Ypoppég Eektvodv amd 10 KEAPOG TOd0G (LUTAE EMPAVELD) LE
KatevBuvon mpog 10 KEAVQPOG KEQOANG (KiTptvn em@Aveld) Kol Ol HOOPES YPOLUES
EEKIVOUV a0 TO KEALPOG KEPAANG Le KaTevBuVeN TPOg TO KEAVPOS TOSOG.

Ot ypoppég avTég 01 0moieg TEUVOVY TO TTTEPVYIO £YOVV SLUPOPETIKA UNKN T OToid
anoteAovV T0 BAO0G TV OTTOV TOV dVVOTOL VO KOTACKEVAGTOVV EEKIVAOVTOS TOGO 0md
10 KEAVPOG 0O 65O Kot amd TO KEAVPOG KEQPUANG. ZVVETMS, SUPOPETIKEG TEPLOYES
TOV TTTEPLYIOL TEUVOVTOL A0 SLOPOPETIKE UNKN YPOUUADV ONACOT SopopeTIKd BAON
OT®V, OTWG PAVETOL GTO 2. S.
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Yyqpae 5: loogmodveieg tov fabovg onmwv d oe m and 10 KEAEOS TodOS (Tavm
oynpel) Kot omd To KEAVPOS KEQAANG (KAT® oynua).

Amd 10 Zy. 5 mpokvmtel 61l to Pdbog twv 20 mm pumopel vo KOTOOKELAOTEL TNV
TEPLOYN TOV TEPIKAVETOL amd TNV yoAdlo ypouun. H emedvelin mov emtpénel 1o
{nrovuevo PBabog e&ayeton oe (M, 8) GUVIETAYUEVES TTOV OOTEAOVV 1GOYPOULIES TNG
HEOTG YPOLUUNG KLPTOTNTOG KOl TV TAELPAOV LITePTieong kot vrormieons. Ta onueia
avtd mopspuParrovion pe kopumoreg SPLINE. Ot cuvtetaypéveg petatpénovior 6to
eminedo (x,y,z) ko vrmoloyiletanr M amdotaon peETaLd TOV onueiov TG TAELPAS
vrepmieong kor G mAEvpdg vmomieong. H amdctoon avt mpémer vo givon
tovAdyiotov 10.5 mm kabog emPdiietor cvvtereotg aceoieiog 5 %. Téhog, N
OmOCTOCT HETAED TOL OeVTEPOV KOl TOV TPOTEAELTAiOV oNUEiov, eml TOV TTTEPLYIOL
mov mAnpel Tov mepopiopd tewv 10.5 mmvnoroyiletan ko mpémer va  givon
peyoAvtepn and 60 mm.

O meplopopdc mov omortel to MTEPVYIO TPEMEL Vo UTOPEL Vo, yPECEL 0E TAUKOL
dwotdoewv 200 mm X 80 mm minpeiton pe tov kabopiopd tov 0povs HETABOANG
g B€0MG TOV aKUAOV EKEVYNG KOl TPOGPOANG KaTd TV Z d1ehBuvon Kol Tov EVPOVS

TV HLEi HTEi BLEI ﬁTE, 6LE Ko 6TE

Téhog, dev vrdpyer petafoin g BEong Tov KEADQEOLG TOOOC KATO TNV OKTIVIKN
devBvvon minpavtag tov avtictoyo meplopicpd. H axtiva tov xeld@ovg moddg
eréyyeton oo T GMTurbo napapetporoinon péow g yevéteipag tov hub.

Avdivon ue Aoyiouikd YPA

[Ipaypatomomnke avdivon tg pong pe xpron tov emAvtn PUMA mpokeipévovn va
emoAnOevtodv ta amoteAéopata amd To TEPApaTiKd dedopéva. H avaivon yiveton pe
HOVTELO GUUTIEGTNG PONG, ME KO Y®PIC xpNon TpooTadepomoinong YaunAmy aptOudy
Mach, kot acvpumieotng ponc. Xto Xy. 6 divetar o Mach e£6dov, and Tov YPA kddika,
Y0 TIG TPELS OLUPOPETIKEG TEPIMTMGELS YWVIag, Hall Le To ovTIoTOU(0 TEPOUOTIKA
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dedopéva. Ztov opilovtio dEova, divetal n axtiva r e mm 1 onoio avEAveTol omd To
KEAMPOC TOOOG GTO KEAVPOG KEPUANG.
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. +
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Yympa 6: Zoykpion Mach g£650v yuo kddka YPA kot meipopatikd dedopéva yio,
42°,37° xon 47° yovia 160000

Ao 10 Xy. 6 TpokLITEL OTL T AMOTEAEGLOTO TOV KOO Y PA cuumiestig pong ivan
TOAD KOVTO GTO TEWPOUOTIKA UE CYETIKO o@aApo pikpotepo amd 1 %. To oyetwcd

oc@aApa opiletorl péow tng:

__ Heapapatikd—YPA

r Melpapatikd -100 % (8)

[Mpoxbdmtel emiong OTL yioo Oleg TIG TWEG ywviag €06dov o apBudg Mach eivor
pikpotepog amd 0.135 yia Tig dS1hpopes TYES TG OKTIVOS. ZVVETMGS, £ival duvatdv va
ypnowomomBei  mpootabeponoinon younAov opbpumdv Mach okopo kot vo
mpoceyyolel 1 pon amd ACLUMIESTO KOOWKO OT®MG PAiveTOL Kot 6TO XY, 7 Yo TNV
yovio a.

Y10 Xy. 7 dtvetar m yovie a €£60ov yio 42° yovia €c6660v yuo k®dka YPA

CLUTIECTNG KOl OCLUTIESTNG PONG Kot He ypnon mpootabepomoinong youniov
apBumv Mach:

91



8 T T T T T

¥ Compressible  +
i # Low Mach Preconditioner =
65 L . ¥ Incompressible

- Experimental

Whirl a (degrees)
%]
T
|

-4 - I I I I I I I
140 160 180 200 220 240 260 280 300

r {mm)

Yype 7: Tovia a €£660v yia 42° yovia £166600 Yo Kodika YPA coumiestg pong
L Ko xopic yprion mpootadepomoinong yauniov Mach kot yio acvumieotn pon

BeAtiotomoinon ue EEsktuconc AAyopiOuovc

O petafintég oxedlaspod TpoKOTTOVY WG £ENG:

e H axun mposPoing kar n axun ekevyng divoviat oe (7, z). Tpelg and t1g eptd
petafintés r tov kapmviov NURBS 1660 yio v axpun tposfoing 6co kot
Yo TNV KUY EKQVYNG XPNOYLOTOLOVVTOL O LETARANTES GYESUGLOD.

o O petapntéc 0k, Org, Brg, Bre, OLg, Orp KOl GUVTEAEGTNG TTAYXOVG Y10 TIG
TAEVPEC VIEPTIEGNC Kol VTOTiEoNg OlvovTol GE KOTé UNKOG TOL TTEPLYIOV
Katavoun pe mévte onpeia yu ke kopmvin NURBS. Oia ta onpeia 6,
Org, Pre, Bre, Oig, Orp KOU GUVIEAESTH TAYXOLG YPNOLLOTOLOVVTOL MG
HETOPANTEG OYESOGLOD.

O ocvvolikdg aplBpog TV HeTafANTOV oXeOOGHOV gival 46.
To pétomo Pareto yio to mpOPAnpa pe kol yopig mePlopiopovg divetal 6to Xy. 8.

Emiong, oivovtar kot ot avtiotoyyeg Twég Yoo v apykn yeouetpio. H
BeAtiotomoinom apopd to onpeio Aettovpyiag pe yovia eilcodov 42°.
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Yyqpo 8: Métmmo Pareto yio feAtiotomoinon pe Kot Yopig TEPLOPIGLOVG

H tehucn Adon vy to TpoPAnuo Pe TEPLOPIGUOVS, KUKA®UEVN pe uoP oto Xy. 8
emtuyydver peioon 0.26 % o010V CUVTEAESTH OMOAEL®V OMKNG TEONS KOl HEImo
1.5° mov avtotoyyet oe 32.8 % omv yovia e£6dov. H tehikr| Peitictonompévn
yvewpetpia divetar oto Xy. 9.

Tympa 9: Apywn yeopetpia (ykpt), BeAtiotonompuévn ympic meptoptopos (kokKvn)
Kot BeATiotomomuévn pe meploptopoVs (UmAE) yewpeTpia Tov mrepuyiov

BeAtiotonoinon ue Xvlvyn M£0oodo

H ovluyng puébodog mov avamtoydnke ot MITYP&B/EMII ypnoipomoteiton yio
onuovpyia ToL YApTN evaucHnciog mov TmapExel TOV TPOMO TOV TPEMEL VO
dwpoportombel N pope| TOV TTEPLYI®V YL TNV EMITEVEN TOV  OTOYWOV TOL
TPOPANLOTOG OAAL KOt Y10 TNV PEATIGTOTOINGN LOPPNG TOV TTEPLYIMV LLE CTUOVTIKE
MYOTEPO VTOAOYIGTIKO KOGTOC GE GYéom We TN ypNom eEeMKTIKOV aiyopiBuwy. 1o
Yy. 10 dlveton o ydptng evaucnciog pe OVIIKEWWEVIKT] GUVAPTNGT TOV GLVIEAEGTY|
OTOAEUDV OAIKNG TiEONC,
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Xyqpae 10: Bektiotomompévn yopic mepropiopotg pe ypnon EA (apiotepd) won
xaptng evarcnoiog (8e&ud) pe ypnon ovloyovg pebddov. To KOKKIVO ypduaL
aVaTOPLeTa TPAPN YO TG YEOUETPLOG TTPOG T £EM EVM TO UTAE CTPOEYLO TPOG T
HEGO TPOKELUEVOL VO EMLTEVYDEL 1 LEIDGT) TOL CLVTEAEGTI] OTWAELDY OAMKNG TLEGNC.

H Jdwopoporoinon peta&d twv V0  oynuatov  opsidetar oty péB0do
TOPOUETPOTTOINGNG 7OV  Ypnotpomoteiton otv Pertictomoinon pe EA n omoia
TPOKOAEL OUAAOTOINGN TOV GYNLOTOC TOV TTEPLYIOV.

Y10 Xy. 11 divovton ot Tipég ™G cLVAPTNONG GTOYOV W 1M omoia EAayloTOMOlEiTAL UE
xpNon g nebddov amdToung kabddov. Xt Pedtictonoinon doev Aapfdavovior voymn
Ol KOTOOKELOOTIKOL Teplopopol. Xtov opldvtio a&ova divovioar ot KOKAOL
BeAticTomoinong.

0.18 T T T T T
Unconstrained Adjoint Optimization 4
0.17 - Initial 4

013 - T

0.12 - a

Total Pressure Loss w

0.11 - <

0.09 - -

0.08 1 L
] 1 2

Optimization Cycles

Leld
i

Yympo 11: Zovtedeotg anmAeldv OMKNG TEONG W Y10 TOVS O1APOPOVS KOKAOVG
BeAtioTomoinong ympig KaTaoKELAGTIKOVS TEPIOPLGLOVG
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O ocvvteleoTNC am®AELOV OMKNG Tieonc w pewwvetar o 0.0825 10 omoio avrtiotoryel
oe 52.8 % pelwon o oyéon pe TV apyLkn Tn.

H el yeopetpio petd ) Pertictomoinon divetan oto Xy. 12.

Yympa 12: Apykn yeopetpio (Ykpt), BeAtiotomomuévn ympig meploptopovg (UTAE)
YempeTpiat TOL TTEPLYIOL

20ovoyn

2m  OmMAOUOTIKY  €pyocio.  TPOYUATOTOMONKE  VTOAOYIGTIKY]  HEAETN KOl
BeAtioTomoinom HOpPNG TOV TTEPLYI®Y TG OTUOEPNG TTEPVYMONG CLUTIEGTI] TOV
[Tolvteyveiov Tov Beporivov. Zuykekpiuéva, viomombnkay to akdAovba:

e EnaAnbevon tov amotelecpdtowv tov emdvtny YPA PUMA péow tov
TMEPOLATIKOV 0£00UEVOV TTov TTapEyovton amd To [ToAvteyveio Tov BepoAivov.
Emiong, €ywve ohykpion TV TEPAUOTIKOV OEO0UEVOV LE TO. OTOTEAECUATOL
OV TPOEKLY AV Amd TIC OPopeg €KO0YES Tov emAvtn PUMA o1 omoieg
aQOPOVV GLUMIECTN KOl OCLUTIESTN PoN Kot ypnon mpoctadepomoinomng
youmiov opbpumov  Mach. Tlpokdmter 6tt o emAdmg PUMA  divel
amoTeEAESHATO eEOPETIKA KOVTA ot epapatikd. Emiong, n pon pmopel va
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npooeyylobel wavomomtikd omd TOov ocvumiecto Kddka. H ypnon tov
ACLUTTIEGTOV KMOKA PelDVEL TOV YpdVo emilvong ¢ pong omd 4 o€ 3.5 dpeg.

Epappoyn tov Aoyiocpukov Avrtictpoeng Ilapaperpomoinong vy 1
LETOTPOTN TNG YEMUETPIOG TOV TTEPLYIOV, 1 oMol divETO HOPEY| TAEYLLOTOG
YPA, oe ovpPaty pe 10 Aoyiopkd GMTurbo popern, tov Aoyiopkol
GMTurbo vy TV KOTOOKELY] TOV TTEPLYIOL Kol TOL  AOYIGHIKOD
[Mpocappoyng IMAéyuatog yi T Onuovpyios TAEYHOTOS YOP® OmO TNV
GMTurbo yewpetpia pe mpoooppoyn tov apykod. H mapaperpomoinuévn
yvewpeTpia oxeddv TavtiCeton pe v apykn. Opota gidéva TPoKLATEL KoL 0Td
TNV GUYKPION TOV OPYIKOD TAEYLOTOG HE OVTO 7OV TPOKVATEL OO TO
Aoyiopikd Ipocappoyng TTAEypatog. Xvvenmg, To TOPATAVE AOYICUIKA
umopovv vo. evioyfovv oty PerticTomoinon.

Epappoyn ot mpoypouUoTiopog KMOIKE Yol TNV TOGOTIKOTOINGN TOV
KOTOGKEVOOTIKOV — TEPLOPICUOV  Tov  TpoPAnuatog. Ot mepropiopol
AVTILETOTILOVTOL ATOTEAECUOTIKA Kol EVTAcooVTOL 6T BeATicoTomoino.

Epappoyn Peitioctomoinong Hopeng HE XPNON TOL AOYICUIKOU EEEMKTIKMOV
alyopibuwv EASY. Ta amoteléopata tng Peltictomoinong eival oapketd
KovomomTikd  Aapfdavoviag vmoyn Tovg JfECIHoNg YL aQUTHV TNV
OUTAMUATIKY] VTOAOYIGTIKOVG TOPOLG KOl HUropovy vo. BeAtiwboldv mepantépm
av xpnoomroinfovv teptocdTEPOL LoAoylotikol Tdpot. H Bertictomoinon pe
EA dumpxeoe mepimov pio efdopdda katainyovtog oe peimon 0.25 % tov
OULVTEAEGTI] AMMAELDOV OAKNG Tigong kot 1.5° mov avtictoyet og 32.8 % oy
yovia e£600v, ylo TV TEPITT®OT TOL AAUPAVOVTAL LTOYT] Ol TEPLOPIGLLOL.

Epappoyn g ocvluyovg pebddov yuo tn onpovpyio tov yaptn evoicOnciog
oL OElYVEL TOV OPOUO YLl TNV OAAOYT] TOL GYNUOTOS TOV TTEPLYIOL Yo TNV
BeAtiotomoinom tng yeopeTpiag ailo Kot yio T PeAitioTonoinon g Hopeng
TOV HE YOAUNAO VLWOAOYIOTIKO KOotog. Ta  amoteAéopata Tov  YOPTN
evooOnciog Mrav opKeETA KOVIA o©TO TEAMKO, PeAtictomomuévo pe EA,
ntepvy10. Ocov agopd TV PEATIGTONOINGT), O GUVTEAEGTIG W LEUDVETOL KOTA
52.8 %. Ta amotedéopato TG PEATIOTONOINGONG YOPIC TEPLOPIGLOVS LE YPNOT
™™g ovluyodg upeBoddov egivor  KoOAVTEPA OO TO  OMOTEAEGUOTO  TNG
BeAtiotomoinomng pe EA yopig mepropiopote. IapdAinia, to vIoAoyloTIKO
KOGTOG Y10 TOVG TEGGEPLS KUKAOVG PerTiotomoinong Ntav mepimov 20 dpeg,
eEautepikd yoapnAotepo amd avtd tov EA. Qotdco, ot EA ypnoporomOnkay
v BeAtiotonmoinom Vo oTOYWV evd M cvluyng nEBodog Yo PertTicTonoinon
evOg 61OYoL. Xuvendg, dev eivar PEParo 0Tl M Pedtiotomoinon pe ocvluyn
pébodo Ba dmwaoel kadlvtepa amoteAéopato ond tov EA yio Beitiotonoinon
Vo oToOYWV.
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