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Diploma Thesis 

 

 

Alexios Tsachalidis 

 

Supervisor: Kyriakos C. Giannakoglou, Professor NTUA 

 

In this diploma thesis, turbomachinery blade shape aerodynamic optimization 

methods are applied in the open case of TU Berlin’s compressor stator. The purpose 

of this diploma thesis is to validate results computed by the PUMA CFD flow solver 

against experimental measurements performed at the TU Berlin and present solutions 

of the shape optimization performed by the Evolutionary Algorithm software EASY 

and the Continuous Adjoint Method. The optimization process is based on software 

entirely developed by PCOpt/NTUA, such as the CFD solver PUMA which runs on 

GPUs, the parameterization software GMTurbo which provides a complete 

representation of the blade, the Evolutionary Algorithm optimization software EASY, 

the Continuous Adjoint solver, the Reverse Parameterization Tool (RPT) that converts 

from a node-parameterized to an equivalent GMTurbo-parameterized blade and the 

surface Grid Adaptation Tool (GAT) which adjusts the initial surface CFD grid to the 

GMTurbo geometry, converting the GMTurbo-based blade representation to a CFD 

grid to perform CFD simulations. Next to them, codes for the purpose of handling the 

case’s manufacturing constraints and the post processing are programmed. 

 

At first, the Metamodel-Assisted Evolutionary Algorithm workflow is structured in 

order to optimize the shape of the blades of TU Berlin compressor stator. The 

optimization process is confined by manufacturing constraints. Shape optimization 

solutions for both the unconstrained and constrained cases are presented. The 

optimization provides satisfying improvements to the objective function values of the 

case by taking the computational budget allocated to this diploma thesis into 

consideration. 

 

Then, the continuous adjoint method to the PUMA CFD software is used to provide 

the sensitivity map that shows the way to change the blade shape and to optimize the 

shape of the blades of TU Berlin compressor stator with significantly less 

computational cost compared to Evolutionary Algorithms. 
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Δζληθό Μεηζόβην Πνιπηερλείν 
ρνιή Μεραλνιόγσλ Μεραληθώλ 

Δξγαζηήξην Θεξκηθώλ ηξνβηινκεραλώλ 

Μνλάδα Παξάιιειεο ΤΡΓ & Βειηηζηνπνίεζεο 
 

 

 

 Βεληιζηοποίηζη Μοπθήρ ηηρ Σηαθεπήρ Πηεπύγωζηρ Σςμπιεζηή 

με Πεπιοπιζμούρ με σπήζη Εξελικηικών Αλγοπίθμων και ηη 

Σςνεσή Σςζςγή Μέθοδο 
 

 

Γηπισκαηηθή Δξγαζία 
 

Αλέξιορ Τζασαλίδηρ 
 

Δπηβιέπσλ: Κπξηάθνο Υ. Γηαλλάθνγινπ, Καζεγεηήο ΔΜΠ 
 

Η δηπισκαηηθή απηή εξγαζία αθνξά ηελ εθαξκνγή κεζόδσλ αεξνδπλακηθήο 

βειηηζηνπνίεζεο κνξθήο πηεξπγίσλ ζηε ζηαζεξή πηεξύγσζε ζπκπηεζηή ηνπ 

Πνιπηερλείνπ ηνπ Βεξνιίλνπ. θνπόο ηεο εξγαζίαο είλαη ε ζύγθξηζε θαη πηζηνπνίεζε 

ησλ απνηειεζκάησλ ηνπ επηιύηε ξνήο PUMA κε ηα πεηξακαηηθά δεδνκέλα πνπ είλαη 

δηαζέζηκα από ην Πνιπηερλείν ηνπ Βεξνιίλνπ θαη ε παξνπζίαζε ησλ απνηειεζκάησλ 

βειηηζηνπνίεζεο κνξθήο πνπ πξαγκαηνπνηήζεθε κε ρξήζε Δμειηθηηθώλ Αιγνξίζκσλ 

θαη ζπγθεθξηκέλα ηνπ ινγηζκηθνύ EASY, αιιά θαη κε ηε πλερή πδπγή κεζόδν. Γηα 

ηελ πξαγκαηνπνίεζε ησλ παξαπάλσ, ε δηαδηθαζία βειηηζηνπνίεζεο βαζίζηεθε ζε 

ινγηζκηθό πνπ αλαπηύρζεθε πιήξσο ζηε ΜΠΤΡ&Β/ΔΜΠ, όπσο ν επηιύηεο ξνήο 

PUMA πνπ ηξέρεη ζε Κάξηεο Γξαθηθώλ, ην ινγηζκηθό GMTurbo πνπ παξέρεη 

δπλαηόηεηα παξακεηξνπνίεζεο πηεξπγίνπ κε ρξήζε πεξηνξηζκέλνπ αξηζκνύ 

κεηαβιεηώλ ζρεδηαζκνύ, ην ινγηζκηθό βειηηζηνπνίεζεο κε ρξήζε Δμειηθηηθώλ 

Αιγνξίζκσλ EASY, ν επηιύηεο ηεο πλερνύο πδπγνύο κεζόδνπ, ην ινγηζκηθό 

αληίζηξνθεο παξακεηξνπνίεζεο RPT πνπ κεηαηξέπεη ην πιέγκα ζε GMTurbo κνξθή 

θαη ην ινγηζκηθό πξνζαξκνγήο επηθαλεηαθνύ πιέγκαηνο GAT ην νπνίν δεκηνπξγεί 

πιέγκα γύξσ από θάζε λέα CAD γεσκεηξία, κε θαηάιιειε παξακόξθσζε ηνπ 

αξρηθνύ, πξνθεηκέλνπ λα πξαγκαηνπνηεζνύλ πξνιέμεηο ηνπ πεδίνπ ξνήο. Η εξγαζία 

ζπκπεξηιακβάλεη ηνλ πξνγξακκαηηζκό θσδίθσλ γηα ηελ επηβνιή ησλ 

θαηαζθεπαζηηθώλ πεξηνξηζκώλ ηνπ πξνβιήκαηνο θαη ηελ επεμεξγαζία ησλ 

απνηειεζκάησλ. 
 

Η δηαδηθαζία βειηηζηνπνίεζεο ηεο κνξθήο ησλ πηεξπγίσλ ηεο ζηαζεξήο πηεξύγσζεο 

εκπεξηέρεη απαηηεηηθνύο θαηαζθεπαζηηθνύο πεξηνξηζκνύο. Παξνπζηάδνληαη 

απνηειέζκαηα ηεο βειηηζηνπνίεζεο κε Δμειηθηηθνύο Αιγνξίζκνπο, κε θαη ρσξίο λα 

ιεθζνύλ ππόςε νη πεξηνξηζκνί. Η δηαδηθαζία βειηηώλεη ηηο ηηκέο ησλ ζπλαξηήζεσλ 

ζηόρσλ ιακβάλνληαο ππόςε θαη ηνπο δηαζέζηκνπο γηα ηε δηπισκαηηθή εξγαζία 

ππνινγηζηηθνύο πόξνπο. 
 

Σέινο, ρξεζηκνπνηείηαη ε ζπλερήο ζπδπγήο κέζνδνο γηα ηε δεκηνπξγία ηνπ ράξηε 

επαηζζεζίαο πνπ παξέρεη ηνλ ηξόπν πνπ πξέπεη λα δηαθνξνπνηεζεί ε κνξθή ησλ 

πηεξπγίσλ γηα ηελ επίηεπμε ησλ  ζηόρσλ ηνπ πξνβιήκαηνο αιιά θαη γηα ηελ 

βειηηζηνπνίεζε ηεο κνξθήο ησλ πηεξπγίσλ κε ζεκαληηθά ιηγόηεξν ππνινγηζηηθό 

θόζηνο ζε ζρέζε κε ηνπο Δμειηθηηθνύο Αιγνξίζκνπο. 
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Chapter 1 
 

Introduction 
 

1.1 Thermal Turbomachines 

 
A thermal turbomachine is a device in which mechanical energy, in the form of shaft 

work, is transferred either to or from a continuously flowing fluid by the interaction 

with rotating blade rows. Interaction between the fluid and blades results in 

aerodynamic forces. A turbomachine produces change in total enthalpy of the fluid 

passing through it. 

 

Thermal turbomachines are classified into two categories; compressors and turbines. 

From a different point of view, depending on the direction of the flow while entering, 

passing through and leaving the machine, there are: 

 

 Axial turbomachines, where the flow direction is almost parallel to the shaft 

axis, 

 

 Radial turbomachines, where the flow direction is almost vertical to the shaft 

axis, 

 

 Mixed flow turbomachines, where the direction of the flow is neither purely 

axial nor purely radial. 
 

Axial Compressor: 

  

An axial compressor stage consists of a row of rotor blades followed by a row of 

stator blades and the working fluid traverses them without significant change in 

radius. The energy level of the fluid is increased by the action of the rotor blades, 

which exert torque on the fluid. A single stage axial compressor has a relatively low 

pressure ratio with a higher mass flow rate compared to a radial compressor. Flow 

enters axially and discharges almost axially. The blade passages diverge from inlet to 

exit and, hence, the flow decelerates. The compression of the fluid is done by first 

accelerating the fluid and then diffusing it to increase pressure. The fluid is 

accelerated by the row of rotating blades, the rotor, and diffused by the row of 

stationary blades, the stator. The diffusion in the stator converts the velocity increase 

gained in the rotor to increase in pressure.  

 

A compressor usually consists of multiple stages. The air passes from one stage to the 

next with each stage raising the pressure. One additional row of fixed blades, the so-

called inlet guide vanes, is frequently used at the compressor inlet to ensure that air 

enters the first-stage rotors at the desired angle. In addition to the stators, an additional 

diffuser at the exit of the compressor further diffuses the fluid and controls its velocity 

when entering the combustors.                                                         .
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A sketch of a multi-stage axial compressor is given in Fig. 1.1. 

 
Figure 1.1: Sketch of an axial flow compressor, from [17]. 

1.2 Parameterization and Optimization of Bladings 

 
Methods for the design and optimization of bladings, based on aerodynamic criteria, 

are a key research topic in turbomachines. In order to design and optimize the shape 

of a blading, geometrical representation is crucial. This is done by parameterization 

techniques. Parameterization is the process of composing a geometry according to an 

algorithm, by firstly determining a set of design variables that correspond to the input 

to this algorithm. Different sets of parameters produce different shapes. In order to 

parameterize the blading, CAD based methods are frequently used and this is the case 

in this diploma thesis, too. A blade is described with one or more NURBS surfaces 

controlled by their control points. Blade shapes can be modified by displacing the 

control points. The number of design variables is reduced in comparison with other 

methods, while the use of parametric geometry guarantees a smooth result. The 

method for parameterizing blade shapes used in this thesis is based on the 

parameterization software GMTurbo as described in detail in Section 4.1. In this 

thesis, the blading geometry is provided as a CFD grid, hence the Reverse 

Parameterization Tool (RPT), described in Section 4.2, is used to convert the CFD 

grid into a set of geometric parameters compatible with the GMTurbo input 

parameters. Such CAD-based methods have to be followed by a surface grid 

generator or morpher before generating the    CFD grid and running a CFD 

simulation. For this purpose, a surface Grid Adaptation Tool (GAT), described in 

Section 4.3, is used. The initial volume grid is deformed to fit the updated geometry 

using    and    spring analogy techniques. The method described before is included 

in an optimization loop as seen in Fig. 1.2. The optimization is carried out using 

stochastic methods such as Evolutionary Algorithms or gradient-based methods 

supported by the continuous adjoint method. These two main categories are presented 

in Section 1.3. The optimization methods used in this diploma thesis are described in 

detail in Sections 5.1 and 5.2. 
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Figure 1.2: Shape optimization of a turbomachinery blade. Flowchart of the tasks that 

should be completed during the evaluation of a single individual, if stochastic 

optimization is performed, or an optimization cycle, if gradient-based methods are 

used. The initial geometry can be provided either in GMTurbo format or CFD grid 

format. In the common case in which the CFD grid is available, the pre-processing of 

the optimization includes the conversion of the geometry from grid format to the 

GMTurbo format. 
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1.3 Stochastic and Deterministic Optimization Methods 
 

Optimization methods are classified into two major categories.  

 

 Stochastic Optimization Methods 

 

Stochastic optimization methods can be used in optimization problems of all kinds. 

Modern stochastic methods with basic representative the Evolutionary Algorithms 

choose randomized candidate solutions, by taking advantage of the evaluation of 

formerly computed solutions and the process of evolution, finally producing solutions 

that lead to convergence of the optimization process. Furthermore, the initial values of 

the variables in an EA do not affect the ability of finding the optimal solution. Hence, 

EAs are able to locate the global extremum of an objective function for every possible 

initialization. However, stochastic search methods require a large number of function 

evaluations. As a result, the computational cost of those methods scales with the 

number of design variables. For more information, the reader is referred to [11], [15]. 

 

 Deterministic or Gradient-Based Optimization Methods  

 

The deterministic optimization methods use information on the direction of reduction 

or increase of the objective function by computing or approximating the first or the 

second order derivatives of the objective function with respect to the design variables. 

Solutions are updated until the convergence of the process to an extremum. Basic 

disadvantage of the deterministic methods is that the extremum in which the process 

will converge may be local, failing that way to spot the global minimum or maximum 

of the objective function. Contrary to the stochastic methods, the initialization affects 

the ability of finding the optimal solution. Furthermore, programming a method to 

efficiently compute the derivatives for the deterministic method is more time 

consuming and more difficult to reform for another objective function than the 

stochastic methods. However, gradient-based optimization can be used in order to 

have significantly fewer function calls, making this method less expensive than the 

stochastic methods. The computational cost of some of the gradient-based methods is 

independent to the number of design variables. This enables the optimization of 

complex geometries described parametrically using parametric analytic geometries 

such as Bézier surfaces. The most common deterministic methods are steepest 

descent, quasi-Newton and Newton methods. The derivatives of the objective function 

with respect to the design variables can be computed using various methods such as 

the continuous or discrete adjoint method. Further details are given in [12], [15]. 

 

The engineer is called to evaluate and decide on the optimization tools according to 

each case’s characteristics. 
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1.4 Constrained and Unconstrained Optimization  
 

Mathematically speaking, optimization is the minimization or maximization of a 

function subject to constraints. The following notation is used: 

 

  ⃗  is the vector of design variables, also called unknowns or optimization parameters, 

  is the objective function that will be maximized or minimized and    is the vector of 

constraints that solutions must satisfy. Both   and   are functions of  ⃗ . The number of 

components in    is the number of constraints that have to be satisfied. The 

optimization problem can then be written as: 

 

    ⃗     ( ⃗ )  subject to {
    ⃗         

    ⃗        
                                   (1.1)  

 

where   and each    are scalar-valued functions of the variables  ⃗  and are given as 

equality and inequality constraints.  ,   are sets of indices. 

 

Problems with the general form presented above can be classified according to the 

nature of the objective function and constraints, the number of variables, the 

smoothness of the functions in differentiable or non-differentiable and so on. Possibly 

the most important distinction is between problems that have constraints on variables 

and those that do not.  

 

Unconstrained optimization problems arise directly in some applications. If there are 

natural constraints on the variables, it is sometimes safe to disregard them and to 

assume that they have no effect on the optimal solution. Unconstrained problems arise 

also as reformulations of constrained optimization problems, in which the constraints 

are replaced by penalization terms in the objective function to discourage constraint 

violations.  

 

Constrained optimization problems may arise from models that include explicit 

constraints on the variables. These constraints may be simple bounds, more general 

linear constraints, or nonlinear inequalities that represent complex relationships 

among the variables. The TU Berlin stator case [16] studied in this diploma thesis 

possesses manufacturing constraints which are presented in Section 6.1. Results for 

the constrained and unconstrained optimization using Evolutionary Algoritms are 

presented in Section 8.2 and for the unconstrained gradient-based optimization in 

Chapter 9. More details on constrained and unconstrained optimization are given in 

[12]. 
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1.5 Outline of this Diploma Thesis 

 
The chapters of this diploma thesis are the following: 

 

 Chapter 2: Presentation of the data and objectives of the TU Berlin stator case. 

 

 Chapter 3: Presentation of the governing equations and of PUMA CFD solver. 

 

 Chapter 4: Presentation of GMTurbo, RPT and GAT software used for blade 

parameterization and grid adaptation. 

 

 Chapter 5: Presentation of the optimization methods used in this thesis. The 

Evolutionary Algorithm software EASY and the Continuous Adjoint method 

developed by the PCOpt/NTUA are presented. 

 

 Chapter 6: Presentation of the methods for quantifying the manufacturing 

constraints of the problem and imposing them to the optimization process. 
 

 Chapter 7: CFD Analysis of the TU Berlin stator case and validation of the 

CFD solver’s results against experimental data. 

 

 Chapter 8: Two shape optimizations are carried out using Evolutionary 

Algorithms with and without imposing manufacturing constraints. 

 

 Chapter 9: The Continuous Adjoint method is used to provide the sensitivity 

map that shows potential changes in the shape of the blade and to optimize the 

blade shape without imposing manufacturing constraints. 

 

 Chapter 10: Conclusions and a couple of proposals for future work. 
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Chapter 2 

The TU Berlin’s Case  
 

The TurboLab Stator [16] is a stator in a measurement rig at the Technical University 

of Berlin, in the TurboLab at the Chair for Aero Engines. The initial stator geometry 

has been designed based on a representative stator geometry used in modern jet 

engine compressors. In this diploma thesis, the initial geometry, shown in Fig. 2.1 is 

optimized to reduce the total pressure losses and the flow angle deviation from the 

axial direction. Details of the CFD domain, flow boundary conditions, optimization 

requirements and manufacturing constraints are stated below. 

CFD Domain: 

Inner radius:          

Outer radius:          

Inlet axial position:         

Outlet axial position:        

The axial positioning of the blades is shown in Fig. 2.2. The zero position of the 

machine axis is defined by the LE as seen in Fig. 2.1.  

Fluid Properties: 

The working fluid is air, assumed as a perfect gas with the following properties: 

 Ratio of specific heats       

 

 Gas constant            ⁄   

 

 Dynamic viscosity                  ⁄  

Optimization requirements: 

Two optimization objectives are used, stated in points (1) and (2) below, leading to a 

two-objective optimization problem. 

1) Minimization of the total pressure loss coefficient between the inlet to the CFD 

domain and its outlet, under the constraint of keeping the mass flow at      

         ,  full annulus. The total pressure loss coefficient is defined as: 

  
         

       
                                                     (2.1) 
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where     is the inlet total pressure,     is the outlet total pressure and    is the inlet 

static pressure. 

All    in Eq. 2.1 are mass-averaged values defined as: 

  
∑  ̇    

∑  ̇  
                                                     (2.2) 

where  ̇  is the mass flow that passes through the     element of the area A, which is 

the inlet or the outlet. 

2) Minimization of the mass-averaged flow angle deviation from the axial direction at 

the CFD outlet. The mass-averaged exit angle is: 

   √
∑  ̇   

 
 

∑  ̇  
                                                     (2.3) 

where    is the total flow angle at the     part of the CFD outlet defined as follows: 

       (
 ⃗⃗    

| ⃗⃗ |
)       (

 

√        
)                          (2.4) 

where         are the three Cartesian velocity components. 

The inlet whirl angle is given in radial distribution. The average value of inlet whirl 

angle is allowed to vary by     . Thus, three operating points are considered. The 

design point DP - OP1 with average value of     inlet whirl angle and two off – 

design points, OP2 with average value          and OP3 with         . 
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Figure 2.13: Initial blade geometry (top) and axial positioning (bottom), including the 

yellow domain for the end wall profiling and manufacturing constraints (bottom), 

from [16]. 
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Figure 2.24: Axial positioning of the stator blades, from [16]. 

 

Figure 2.35: Manufacturing constraints for the casing fixture, from [16]. 
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The assembly of the TU Berlin compressor stator is given in Fig 2.4. 

 

Figure 2.46: Assembly of the TU Berlin stator, from [16]. 

As it can be seen in Fig 2.4, the hub and shroud are cylinders and their radii remain 

constant during the optimization.  

 

Experimental Setup 

 
The experimental setup of the TU Berlin stator is presented in Fig 2.5. 

 

 
Figure 2.57: Experimental setup of the TU Berlin stator - 3D-annular low-speed 

compressor stator cascade, from [16]. 
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The measurement section, seen in flow direction, is presented in Fig. 2.6. 

 

Figure 2.68: Measurement section, seen in flow direction with traversed grid, from 

[16]. 

The grid used in the measurement’s procedure is given in Fig 2.7. 

 

Figure 2.79: Measurement grid, from [16]. 
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The same measurement grid, seen in Fig 2.7, was used for all inflow and wake 

measurements. For inflow measurements, the grid was mirrored at the  -axis.  

The measurement position for both inflow and wake is given in Fig. 2.8. 

 

Figure 2.810: Measurement positions, from [16]. 

As seen in Fig. 2.8, the plane of inlet measurement is          upstream of the LE 

of the blade which corresponds to      of chord length upstream of the LE and the 

plane of outlet - wake measurement is in          downstream of the LE which 

corresponds to     of chord length behind the TE. The validation of the CFD solver 

against the measurements is made in the positions presented in Fig. 2.8.   

The experimental data include values of total pressure    in Pa, static pressure     in 

Pa, absolute velocity magnitude   in   ⁄ , Mach number, whirl angle   in degrees, 

pitch angle   in degrees and the three Cartesian velocity components in   ⁄  both 

over the inlet and outlet measurement planes, for all three inlet whirl angles. The 

comparison of the CFD results with the experimental data is made using mass-

averaged values plotted in the radial section. Hence, a radial grid, as seen in Fig. 2.7, 

is created in order to interpolate the CFD results in radial sections.  
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Chapter 3 

Governing Equations & CFD Solver 

 
In this chapter, the flow equations with their boundary conditions that are solved in 

the TU Berlin stator case of this thesis, using the CFD software PUMA developed by 

the PCOpt/NTUA [2], [3], [5], are presented.  

 

3.1   Governing Equations 

 
Compressible Flow Equations  
 

Let a coordinate system             be defined. The Reynolds-Averaged Navier-

Stokes equations for the viscous flow of a compressible fluid through the stator are 

expressed as: 

 

   

  
 

    
   

   
 

    
   

   
                                            (3.1) 

 

where    stands for the conservative flow variables namely 

   [    
 
   

 
   

 
   ], with   being the fluid density,    (         being the 

Cartesian velocity components with reference to the absolute/inertial frame of 

reference and   the energy per unit mass. 
 

The inviscid fluxes    
    and viscous fluxes    

   
 are defined as: 
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                            (3.2) 

 
where   stands for the static pressure,     is the Kronecker symbol,    is the total 

enthalpy and    is the heat flux. 

 

The stress tensor is given by: 

 

    
    

  
(
   

   
 

   

   
 

 

 
   

   

   
)                                 (3.3) 

 

where    the turbulent viscosity computed by the turbulence model, as described later 

in this chapter and    the Reynolds number resulting from the non-

dimensionalization of the equations.  
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Low Mach Number Preconditioning  
 

The software for solving Eq. 3.1 is reliable for flows with Mach numbers 

approximately higher than    . In various cases, a wide range of velocity values 

appears in the flow field which results in high and low values of Mach number. For 

instance, during the analysis of the flow around a blade, areas where the flow can be 

considered as incompressible may appear while, in other areas, compressibility 

phenomena are important. Hence, the algorithms for solving compressible flows when 

Mach number is close to zero appear to face convergence difficulties by even 

damaging the accuracy of the solution. The difficulty of numerically solving the 

equations is connected with the major difference between the velocity of the fluid and 

the velocity of the acoustic waves. 

 

Aiming at possessing a single CFD analysis software for all flow speeds, the low-

Mach number preconditioning is applied to an existing software for the solution of the 

compressible flow equations. It ensures faster convergence for very low Mach 

numbers, allows the solution even in cases in which the non–preconditioned equations 

fail and provides smooth solution at singular areas such as in the vicinity of the 

leading and trailing edges. Hence, Eq. 3.1 is altered and given by: 

 

   
     

  
 

    
   

   
 

    
   

   
                                       (3.4) 

 

where     is the preconditioning matrix, given in Eq. 3.5, used to stabilize the system 

of PDEs and lead to a robust numerical solution, by giving appropriate values to the 

parameters    and   . 
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     (3.5) 

 

 

where          ,      
 

 
| ⃗ |        ,             ,    

       

  
,   

is the Mach number and   is the speed of sound. 

 

For further details on this topic, the reader is referred to [8] and [11]. 
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Incompressible Flow Equations 

 
In incompressible flows, the flow speed is insignificant compared with the speed of 

sound of the fluid medium,    . This results in: 

 

  
 

 

   
⇒                                                       (3.6) 

 

For low values of the Mach number, high velocity variations are required to produce a 

variation in the density, thus the flow tends to be incompressible. Practically, the 

incompressible behavior of the flow occurs for       which corresponds to a 

change in density lower than    . In fluid mechanics, incompressible flow refers to a 

flow in which the material density   is constant in an infinitesimal volume that moves 

with the flow velocity, called fluid parcel. Incompressible flow does not imply that 

the fluid itself is incompressible. Even compressible fluids at low speeds can, to a 

good approximation, be modeled by an incompressible flow model. 

 

Additionally, the flow is assumed to be isothermal and the last of Eqs. 3.1, the energy 

equation, is identically satisfied. Hence, the terms of Eq. 3.2 become: 
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]                                (3.7) 

 

The unknown flow variables are:    *
 

 
         + where 

 
 ⁄  is the kinematic 

pressure, if density is assumed constant and              are the velocity 

components. 

  

The stress tensor is now expressed as: 

 

    
    

  
(
   

   
 

   

   
)                                 (3.8) 

 

since the velocity divergence vanishes due to the continuity equation.   is the 

kinematic viscosity and    the eddy viscosity. For further details, the reader is referred 

to [2] and [8].  
 

 

 

 

 

 

 

 

 

 



17 

 

The k-ω SST Turbulence Model 

 
In this diploma thesis, all applications are simulated using the k-σ SST [9], [10] 

turbulence model, implemented in the PUMA solver. The PUMA solver also supports 

other turbulence models such as the Spalart-Allmaras [19]. The k-σ SST turbulence 

model is a two-equation eddy-viscosity model. The eddy viscosity is given by: 

 

   
  

 
 

   

            
                                                    (3.9) 

 

where   is the turbulent kinetic energy: 
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[        

  

   
]                     (3.10) 

 

and   is the specific dissipation rate: 
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(3.11) 

 

Auxiliary relations are given below: 
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 √ 
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]                                    (3.12) 

 

A production limiter is used in the SST model to prevent the build-up of turbulence in 

stagnation regions: 

 

 ̅            
                                          (3.13) 
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)                                     (3.14) 
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}                      (3.15) 

 

   is equal to zero away from the surface and switches over to one inside the 

boundary layer. 

        (     
 

 

  

   

  

   
      )                                (3.16) 

where   is the distance from the field point to the nearest wall and   is the invariant 

measure of the strain rate.  

Each of the constants is a blend of an inner, 1, and outer, 2, constant using: 

                                                            (3.17) 
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Coefficients are given bellow: 

 

   
 

 
            

 

  
              

 

   
 

(3.18) 

                                 

 

Boundary Conditions 

 
In order to solve the system of PDEs of Eqs. 3.1, 3.11 and 3.12, appropriate boundary 

conditions should be defined and implemented. The GPU solver is equipped with a 

wide range of boundary condition options. In this section, the boundary conditions 

used in the numerical prediction of flows through stator blades are presented.  
 
Along pairs of periodic boundaries, appropriate periodic conditions are imposed. In 

case of peripheral rows, two points are periodically paired if their projections on the 

meridional plane coincide and their circumferential position differs by the blade row 

pitch. Between paired points all scalar quantities are the same, while every vector and 

tensor quantity is rotated by the row pitch. Wall, inlet and outlet boundary conditions 

are analyzed separately as follows.  

 
Wall Boundary Conditions: 

 

The velocity is set equal to the wall velocity which is zero for a stator: 

 

                                                 (3.20) 

The boundary wall conditions used for the turbulence model [9], [10] are given by: 

        
  

    
                                              (3.21) 

 

                                                            (3.22) 

 

where    is the distance between the wall and the first node off the wall. 

 

Inlet Boundary Conditions: 

 

At the inlet of the domain, total pressure   , total temperature    and inlet velocity 

direction are specified as radial distributions. The inlet velocity direction is given in 

terms of angles   and   in a cylindrical coordinate system. The inlet velocity 

components are written in the form: 

 

   | |      
 

   | |                                                 (3.23) 

 

   | |          
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Thus, angles  ,   and the velocity magnitude   are specified by the user.    is the 

radial velocity   ,    is the peripheral    and    the axial   . In the PUMA solver, 

the flow equations are solved with reference to the Cartesian coordinate system. 

Hence, the velocity components in cylindrical coordinates       ) of Eq. 3.23 are 

transformed to Cartesian. Specifically, Finally, turbulence intensity      ⁄  and 

viscosity ratio 
  

 ⁄  should also be defined. In turbulence intensity  ,    is the root-

mean-square of the velocity fluctuations given as    √
 

 
(  

     
     

  ) and   

is the mean velocity computed by the three mean velocity components as   

√  
    

    
 . 

The inlet boundary conditions, used when solving the incompressible flow equations, 

distributed over the radial height are: 

 Velocity magnitude  , in   ⁄ , from the measurement data 

  

 Whirl angle  , in degrees, from the measurement data 

 

 Pitch angle  , in degrees, from the measurement data 

 

 Turbulence intensity           ⁄  constant 

 

 Viscosity ratio 
  

 ⁄     constant as explained in Section 7.1 

Angles   and   are defined as seen in Fig. 3.1. 

 

 
Figure 3.111: Definition of angles   and  . 
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The inlet boundary conditions of the turbulence model for both compressible and 

incompressible flow are: 

    
 

 
      

                                             (3.24) 

 

    
   
  ⁄

   
                                                    (3.25) 

 

where   is the chord length and         is a constant.  

 

Outlet Boundary Conditions: 

 

At the outlet, one quantity at each node must be specified and the remaining ones are 

extrapolated from the interior. The specified quantity is mass flow which is equal to 

        , full annulus. By taking the number of blades,     , into consideration 

the outlet condition of mass flow of the CFD solver per passage is: 

                ⁄⁄ . From the mass flow, the velocity of the fluid is calculated 

and set at each node. 

 

3.2   The GPU-enabled CFD Solver PUMA 

 
In order to predict the flow field in a turbomachinery blade passage, the compressible 

GPU enabled flow solver PUMA, developed by the PCOpt/NTUA is used [2]. This 

software numerically solves the Navier-Stokes equations along with the turbulence 

model equations in a computational domain, using the vertex-centered, finite volume 

method on unstructured grids consisting of tetrahedra, pyramids, prisms and 

hexahedra. Structured or matching block structured grids like the ones presented in 

this diploma thesis, are treated by PUMA as unstructured.  

 

In the system of PDEs formed by Eqs. 3.1, 3.11 and 3.12, the hyperbolic character of 

the terms dominates over the elliptic. Consequently, these equations are solved using 

a time-marching technique. Hence, the pseudo-time step   is defined. At each pseudo-

time step the system of equations is linearized, discretized and solved for the 

correction of the field variables for the next pseudo-time step. In case of time-

dependent problems, the time derivative remains in the initial equations and the 

pseudo-time derivative is artificially added. The system of equations is linearized and 

then marched in time, with intermediate pseudo-time steps. In case of the 

incompressible flow equations, time marching techniques are not directly applicable. 

Consequently, methods such as the artificial compressibility method can be used.  

 

In order to solve the system of Eqs. 3.1, 3.11 and 3.12, discretization is applied. A 

finite volume is formed around each mesh node at real-time step by connecting the 

edge midpoints, face centers and element barycenters of the edges, faces and elements 

attached to this node, respectively. The discretization of the inviscid terms is made 

using Roe’s approximate Riemann solver [18] while the viscous terms are discretized 
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using a 2
nd

 order central difference scheme involving all neighbours. After 

discretizing all terms of Eqs. 3.1, 3.11 and 3.12, a new system of equations is created 

which is solved using the explicit multi-stage Runge-Kutta method with residual 

smoothing using the point-implicit Jacobi method which does not require 

synchronizations in each iteration when the solution of the system is parallelized on 

GPUs.  

 

The implementation of PUMA on GPUs provides a remarkable speed-up in 

comparison with CPU implemented software, reducing the turnaround time of a CFD 

evaluation. Specifically, the implementation on GPUs is approximately    times 

faster than the CPUs, comparing one card against one core. The GPUs that were used 

are NVIDIA Tesla K40. For further details on the topic, the reader is referred to [2]. 
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Chapter 4 

Blading Parameterization – GMTurbo, 

RPT & GAT  

4.1   GMTurbo - Turbomachinery Blade Parameterization 
 

In order to design and optimize the shape of blading, accurate geometrical 

representation is required and it is done by parameterization. Parameterization is the 

process of composing geometry according to an algorithm, by firstly determining a set 

of design variables that correspond to the input to this algorithm. The blade 

parameterization this thesis is based upon is an intuitive method that exploits 

fundamental notions of turbomachinery to represent a blade. This method is 

developed and used by the PCOpt/NTUA in the GMTurbo parameterization software 

[2] and is presented in detail in this section. This software takes the necessary input 

values and returns the NURBS surface representations of the two sides of a    blade, 

PS and SS, in a neutral CAD format such as IGES, as seen in Fig. 4.1. 

 

 
Figure 4.11 2: The GMTurbo generates the CAD compatible geometry of the blade. 

The implementation of the geometric shapes needed throughout the parameterization 

is carried out using parametric NURBS curves and surfaces. 

 

The first step of the parameterization procedure is to create the meridional contour of 

the turbomachine. For a blading that revolves around the  -axis, the meridional 

contour is an       projection of the axisymmetric parts of the blade, namely, the inlet 

and outlet planes, the hub and shroud and the LE and TE trace as the turbomachine 

revolves. These parts, being axisymmetric, exhibit symmetry around the  -axis, thus 

can fully be represented on the       plane and, then, by revolution by a certain angle 

  around the  -axis, converted into         coordinates through: 
 

                                                               (4.1) 
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Therefore, the first step is the definition of six meridional       NURBS curves. 

Namely, two meridional boundary curves, inlet and outlet, two meridional 

generatrices, hub and shroud and two meridional edge curves, LE and TE as shown in 

Fig. 4.2. 

 

To make it possible to superpose information about the metal angles and thickness 

profiles, at different spanwise positions of the blade, projected streamlines are 

computed as a linear interpolation between the hub and shroud generatrices, defined 

in the previous step. It is noted that the word ‘’streamwise’’ refers to a distribution of 

data from inlet to outlet, while spanwise refers to a distribution from hub to shroud. 

Therefore, the blade can be seen as a combination of streamwise and spanwise 

distributions of data. The blade meridional contour is given by: 

 

                                                               (4.2) 
 

where shroud, hub, inlet, outlet, LE and TE are given by       ,       ,       , 
                 and         , respectively. 

 

 
Figure 4.21 3: Meridional contour of the TU Berlin stator blade. The streamline 

projections - purple lines lie between hub and shroud. 

Each projected streamline                             corresponds to a revolved 

surface as shown in Fig. 4.3 by adding the angle   using Eq. 4.1. 

 

Conformal Mapping: 

 

Every surface can be described by two parameters, using a transformation from    
coordinates to a    plane. Hereupon, the conformal mapping is introduced. It is 
known that a    surface of revolution can be mapped onto the          plane 
through the transformation of: 

 
                                                             (4.3) 
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where         is given by: 
 

        ∫
√        

            
 

       

 

 
                                   (4.4) 

 

The mapping of Eq. 4.3 is conformal. For more information see Appendix A. The 

most important property of any conformal mapping is the angle preservation property. 

Conformal mappings preserve the magnitude and direction of the angle between two 

curves [4]. This property contributes to a better understanding of the parameterization, 

considering that the angles defined on the       plane, are preserved on the         
surface as well. 

 

 
Figure 4.31 4: Surfaces of revolution of the TU Berlin stator that result from the       

streamlines of Fig. 4.2. 

Mean Camber Line Parameterization 

 
At each spanwise position      [   ], a mean camber line is defined, to add 
information about the blade's metal angles. The mean camber line is chosen to be 
represented by a cubic Bézier curve on the       plane. The four control points of 

the cubic Bézier curve are defined by six parameters that correspond to different 

angles at the LE and TE of the mean camber line, providing the designer with a better 

understanding of the mean camber line's slope along the arc length. These are: 
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•     and     are the peripheral positions of the LE and TE, respectively. 
 
•     and     are the metal angles. These are the angles between the tangent to the 

mean camber line at the LE or TE and the meridional direction. 

 
•     and     are the angles starting from the chord midpoint and intersection of the 

tangent lines in LE and ΣΔ respectively.  
 
According to Fig. 4.4, the control points   ,   ,    and    are functions of    ,    , 

   ,     ,     and     given by: 

 

                                                                     (4.5) 

 

                                                                     (4.6) 

 

where               and               from Δq. 3.4. 

 

 
 

Figure 4.41 5: Definition of control points of a cubic Bézier mean camber line, from 

angles    ,    ,    ,    ,     and    . 

 

Using the     and     angles, control points    and    are given as solution to the 

systems of the following two equations: 

 

                      ‖    ‖  ‖    ‖                     (4.7) 

 

                      ‖    ‖  ‖    ‖                     (4.8) 

 

where   is the midpoint of the       chord. 
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Through this cubic Bézier parameterization, spanwise distributions of    ,    ,    , 

   ,     and     are defined, producing the mean camber line for each spanwise 

position as in Fig. 4.5. 

 
 

 

 
Figure 4.516: Spanwise mean camber lines of the TU Berlin stator, defined on the 

      plane (top) and transformed to the    space through Eq. 4.3 (bottom). Each 

mean camber line lies on the corresponding surface of revolution. 
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Blade Thickness Profiles 

 
By determining the mean camber line on each surface of revolution, a skeleton of the 

blade has been defined. The superposition of streamwise thickness profiles, along 

each spanwise position of the blade, creates the final blade. The thickness profile is 

imposed in two steps, to increase flexibility. First, the normalized thickness profile  ̂ 

with respect to the normalized arc-length   of the mean camber line is defined 

separately for the pressure and suction sides. Then, a thickness factor    , that scales 

the thickness profiles, is specified for each profile, resulting to a thickness distribution 

at each spanwise position      [   ] given by: 

 

           ̂          
  

      

(4.9) 

           ̂          
  

        
 

 

 
Figure 4.617: The blade of the TU Berlin stator without thickness - mean camber 

surface on the left, composed by interpolation of the mean camber lines in the    

space. On the right, the thickness profiles are presented. 

Having determined a mean camber line     for the spanwise section on the       
plane, the imposition of the thickness profiles requires the computation of the normal 

vector  ̂         at each normalized arc length   point of the mean camber line and 

the application of the equation to both PS and SS with the appropriate sign as seen 

bellow: 

 

   
                            

         

           
 

(4.10) 

   
                            

         

           
 

 

where            is the corresponding radius of the       point           of the 

mean camber line, through         and is used to transform the length         of the 

   space to a length on the       plane. For more information see Appendix A. 

These airfoil curves given in Eq. 4.10 are mapped back onto the         coordinates, 

through        , to create the    skeleton of the blade seen in Fig. 4.6. 
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The final step is the skinning of the two sides, in order to create two NURBS surfaces, 

using an algorithm that passes a smooth surface through a set of curves, giving rise to 

the final    blade as in Fig. 4.7. 

 
Figure 4.71 8: The final skinned blade surface.  

The final collection of surfaces is exported in neutral CAD format such as IGES.  

 

Leading and Trailing Edge Shapes 
 

In GMTurbo parameterization, after having drawn the pressure and suction side, the 

shapes of the LE and TE must be defined. There are many available options as seen in 

Fig. 4.8. 

 

 
 

Figure 4.819: Different types of edges which can be produced either for the leading or 

the trailing edge of a blade. (a) Sharp edge (b) Blunt edge (c) Wedge type edge (d) 

Dovetail type edge (e) Circular arc edge is created by extending the blade sides and 

fitting a circle of specified radius between them. (f) General smooth edge, from [2]. 
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4.2   Reverse Parameterization Tool (RPT) 

 
A CFD grid is a common but unhandy form of representation of a blade's shape, 

since, in terms of design, it is not easy to modify the geometry given in grid form. It is 

thus essential that it is converted to a more useful CAD form, so that changes in the 

geometry can be made. In this diploma thesis, the CAD representation is the blade 

design parameterization GMTurbo. A software to transform a CFD grid into a 

GMTurbo compatible form is used in this thesis and presented in this chapter This 

software was developed in [6]. The process is presented in Fig. 4.9.  

 

 
 

Figure 4.92 0: RPT uses information provided by the CFD Grid in order to compute the 

input parameters of GMTurbo. 

A    CFD grid includes the following information: 

 

         nodal coordinates. 

 

 The connectivity of these nodes. 

 

 The boundary patches of the volume grid, namely surface patches formed by 

the nodes that have already been defined. These are the patches where the 

boundary conditions must be applied by the CFD solver. 

 

The RPT is used to reparameterize structured surface grids, composed by quads. The 

boundary patches of these grids must be in a standardized format and contain the 

following: 
 

 An Inlet and an Outlet Patch where the CFD solver applies the inlet and outlet 

boundary conditions. 
 

 Wall Patches: solid boundaries where the wall boundary conditions are 

applied. These usually are hub and shroud patches, pressure and suction side 

patches. In turbomachinery CFD grids, wall patches might be rotating with the 

exception of the shroud that is usually stationary or the stationary blades. 
 

 Periodic Patches. In case the CFD domain has a periodic repeating geometry 

and flow field.  
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The patches of the CFD grid, used in this thesis, can be seen in Fig. 4.10. 

 

 
Figure 4.102 1: Patches of the CFD grid used for the analysis of the TU Berlin stator 

blading. 

Starting with a turbomachinery surface grid like the one presented above, a back-to-

CAD method, converting the CFD grid into a set of geometric parameters, compatible 

with the GMTurbo input parameters, is described below. The meridional contour, 

mean camber lines and thickness profiles of the existing grid are to be computed. 

 

Meridional Contour of the Grid 

 
The first step is the computation of the meridional contour. Having the surface grid of 

the meridional patches, hub, shroud, inlet and outlet, the       generatrices of each 

meridional surface are computed. The edge between the surface grid of a meridional 

patch with one of the periodic patches, as seen in Fig. 4.11 and Fig. 4.12, is a node 

representation of one generatrix of the meridional surface in         coordinates. 

Projecting this generatrix onto the       plane using 

 

  √      

 (4.11) 
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produces the meridional projection of hub, shroud, inlet and outlet patches. Also, 

projecting the grid edges that correspond to the LE and TE onto the       plane, 

produces the meridional curves of the two edges. The hub and shroud generatrices 

are, then, approximated by a NURBS curve. The user defines the degree and the 

number of control points of the NURBS curve. 

 

 
Figure 4.1122: The CFD surface grid and              Figure 4.12: The meridional contour, 

the patches namely hub (black), shroud               as it results from the projection of 

(black), inlet (red) and outlet (green) are              the axisymmetric patch nodes and 

shown.                                                                   the edge nodes onto the       plane. 

 

Next, a user-defined number of    spanwise generatrices are generated. Having the 

NURBS curves of hub and shroud at the meridional plane, in       coordinates, in 

order to produces intermediate streamlines in NURBS representation, a linear 

interpolation of the control points is used. After defining the    generatrices, the 

operations take place for each spanwise generatrix, thus the following are applied to 

each and every spanwise generatrix, in order to attain spanwise distributions of data. 
 

Mean Camber Line and Thickness Data Computation 

 
Based on the       NURBS curve of the      generatrix, a revolved surface in the 

        space and the   transformation function to the       plane are generated. A 

NURBS revolved surface that rotates around the  -axis to a certain angle  , can be 

computed using a single       NURBS generatrix. Rotating this generatrix’s control 

points at discrete angles from   to  , leads to sets of control points of type         . 
These control points generate a NURBS revolved surface with angle of revolution  , 

the generatrix of which is the initial       generatrix. The Cartesian representation of 

the       surface points is given by: 
 

                                                               (4.12) 
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Using the            generatrix a transformation function   that maps every         
point of the revolved surface to the       plane can be computed. 

 

The revolved surfaces of the spanwise generatrices, between hub and shroud and the 

grid of the blade that lies within hub and shroud and intersects the spanwise revolved 

surfaces can be seen in Fig. 4.13: 

 

 
 

Figure 4.132 3: Revolved surfaces of the spanwise generatrices, between hub and 

shroud and grid of the blade within hub and shroud that intersects the revolved 

surfaces.  

Pressure and Suction blade sides: 
 

The intersection between the blade grid and the revolved surface produced results in 

the definition of the pressure and suction side curves that lie on the revolved surface. 

Additionally, the intersection points between a structured surface grid, consist of 

quads and the NURBS surface that intersects it, are found. These points lie on both 

the revolved surface and the blade, resulting to a set of points such as in Fig. 4.14. 

This method is described in detail in [6]. 

 

Having the blade airfoil         points in the    space and using the transformation 

function  , seen in Eq. 4.3, that has also been defined by knowing the       
generatrix, the blade         points can be transformed to       coordinates. The 

analysis changes from the    Cartesian space to the       plane as seen in Fig. 4.15. 

The       points of the two sides of the airfoil are approximated with two NURBS 

curves in order to achieve a continuous representation of the two sides. To do so, a 

NURBS constrained approximation algorithm was used, so that the resulting curves 

respect the continuity of first derivative at the LE. This method is described in detail 

in [6]. 
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Figure 4.142 4: Discrete points (in red) of the blade grid that lie on the surfaces of 

revolution. 

 
Figure 4.152 5: The points of Fig. 4.14 transformed into the       plane and 

approximated by NURBS curves, creating spanwise airfoils on the       plane. 

Mean Camber Line: 

 

The mean camber line of an existing blade airfoil, on a    plane, is computed as the 

exact mean camber line according to the following definition; a line joining the 

leading and trailing edges of an airfoil equidistant from the upper and lower surfaces. 

This method is described in detail in [6]. 
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To produce a mean camber line compatible with a four point Bézier representation, 

the exact mean camber line points are approximated using a cubic Bézier curve that is 

referred to as the four point mean camber line. A cubic Bézier approximation 

technique enforced with constraints is used to approximate the exact mean camber 

line points, while preserving through constraints, the endpoints, LE and TE 

preservation and endpoint tangents such as the metal angles preservation of the airfoil. 

This method is described in detail in [6]. The exact and the cubic Bézier mean camber 

lines are given in Fig. 4.16. 



 
Figure 4.162 6: The exact (green) and cubic Bézier (purple) mean camber lines of the 

TU Berlin stator blades. The blade airfoil contour is also shown in light blue and 

yellow. 

Having computed the cubic Bézier mean camber line,   ,   ,    and   , the angles  , 

  and   are computed using: 

 

                                                                   (4.13) 
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)          (

         

         
)                   (4.14) 
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)          (

   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗||   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
)                    (4.15) 

 

 

Equations 4.13, 4.14, 4.15 applied to each spanwise four point mean camber line, 

result to spanwise distributions of the angles     and   as in Fig. 4.17. 
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Figure 4.1727: Spanwise distributions of the angles  ,  , and   of the TU Berlin stator. 

The discrete green points are extracted from the surface grid, for every spanwise 

position. Then, a NURBS curve interpolation provides the continuous spanwise 

distribution of the angles (purple lines). 

Thickness Profiles: 

 

In order to complete the reparameterization of the blade grid, last step is to compute 

the thickness profiles that are a combination of the non-dimensional streamwise 

thickness profiles for each spanwise position and the spanwise thickness factor 

distribution. Having the PS and SS NURBS representations and the mean camber line 

cubic Bézier representation, the normal distances of the mean camber line to both 

sides are computed, resulting to the two thickness profiles      described in Δq. 4.9. 

Then, dividing each profile with its maximum value that is the thickness factor of the 

profile,        seen in Fig. 4.18, leads to the non-dimensional thickness profiles  ̂    

seen in Fig. 4.19. 
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Figure 4.182 8: Spanwise thickness factor distributions of the TU Berlin stator blade. 

 

 
Figure 4.192 9: Streamwise thickness profiles of the TU Berlin stator blade. 
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Validation of the RPT 
 

The RPT is validated in this section. The results demonstrate the level of accuracy in 

geometry terms. The parameterized basic geometry is studied and presented in order 

to highlight the capabilities of the RPT. The initial and reparameterized geometry are 

plotted together in Fig. 4.20. 

 

 
 

Figure 4.203 0: Initial (grey) and reparameterized (red) geometry of the TU Berlin stator 

plotted together, using      generatrices in the reparameterization. 

In order to quantify the deviation between the two blades of Fig 4.20, the field of   is 

defined by: 

 

  √                                              (4.16) 

 

where          is the       distance between initial nodal positions and the 

corresponding positions on the reparameterized blade. The results of such a 

comparison can be seen in Fig. 4.21. It is obvious that the accuracy of the 

reparameterization is strongly connected to the number of generatrices chosen for the 

reparameterization. 
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Figure 4.213 1: Deviation of the two blades in  , using      generatrices in the 

reparameterization. The blade chord length is approximately         and it is 

repeated for comparison.   

By comparing the two geometries, the initial and the reparameterized, as seen in Fig. 

4.20 and 4.21 the conclusion is they differ by very little and this deviation can be 

reduced further by changing some parameters of the process. 
 

4.3   Grid Adaptation Tool (GAT)  

 
The back-to-CAD method presented in Section 4.2 generates a geometry that can be 

easily modified and optimized, by altering the CAD design variables of GMTurbo. 

However, through this transformation, the nodal representation is lost, when 

modifying the CAD parameters. To make it possible to perform CFD simulations on 

the modified CAD geometry a grid has to be generated around the geometry. To avoid 

mesh generation, the initial grid is exploited. A surface grid adaptation tool, GAT, 

developed in [6], that adapts the initial CFD grid to the reparameterized CAD 

geometry is used in this diploma thesis combined with the    and    Spring Analogy 

Morphers developed by the PCOpt/NTUA in [3], as seen in Fig. 4.22.  

 

Figure 4.223 2: To create a grid around the reparameterized surface, GAT is used. This 

adapts the initial surface grid to the CAD geometry. Then, the volume grid is 

displaced to fit to the adapted surface grid, using the    spring analogy technique. 
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The GAT used in this thesis, adapts the initial surface grid to the CAD geometry. The 

method takes advantage of the availability of an initial grid that is taken for granted in 

this thesis to generate a new one around the CAD geometry. It is performed in two 

steps. First, the surface grid of the reparameterized wall patches is computed; by 

projecting the initial CFD surface nodes onto the reparameterized NURBS surfaces, 

for the various wall patches namely Hub, Shroud, Pressure Side and Suction Side as 

seen in Fig. 4.23. The structure and connectivity of the surface grid are maintained 

and only the coordinates of the nodes are adapted to the reparameterized and 

consequently slightly changed, surface shape. Then, the volume grid of the whole 

CFD domain is morphed with reference to the displacement of the surface grids 

computed in the previous step. 

 

 
Figure 4.233 3: Wall patches of the blade grid of the TU Berlin stator. 

 

Step 1: Surface Grid Adaptation 
 

To compute the surface grid of the reparameterized geometry of each patch, the wall 

patch nodes of the initial grid are projected onto the corresponding NURBS surfaces, 

obtaining a    representation of each surface. Then, in    coordinates, the necessary 

morphing is performed and the morphed    grid is, then, transformed back to    

coordinates. 

 

GAT uses the initial mesh and the NURBS curves of the wall patches resulted from 

the GMTurbo, seen in Fig. 4.24, to create a new mesh with the same connectivity as 

the initial but node coordinates adapted to the parameterization surfaces. 

 



41 

 

 
 

Figure 4.243 4: Initial mesh (left) and the NURBS curves of the wall patches resulted 

from the GMTurbo (right).  

The patches are separated into two categories: 

 

 In the first category, the PS and SS patches are NURBS surfaces, each point of 

which is represented by two parameters:      .  
 

 The second category includes the patches Hub and Shroud that can be 

represented from a NURBS revolved surface each point of which can be 

represented by the NURBS surface       parameters or the       parameters 

through the conformal mapping. It is preferable to use the       
representation instead of the       representation of the NURBS revolved 

surface, since the first preserves the periodicity of the nodes that belong to the 

periodic patches.  

 

Two nodes in         coordinates, that have a periodic connection, have a specific 

angular   pitch difference. This pitch is preserved when transforming into       

parameters, maintaining the periodicity of the nodes. Consequently, each one of the 

four wall patches corresponds to a parametric surface which, by definition, can be 

represented by two parameters,       or      . 
 

Projecting a single point onto a parametric surface, results to the closest to this 

        point that also belongs to the parametric surface. The latter can also be 

described with two parameters      , since it belongs to the parametric surface. 

Consequently, projecting all the nodes of a wall surface patch to its parametric surface 

produces a    grid of parameters seen in Fig. 4.25 and 4.26. Repeating the procedure 

for each of the four wall patches, four    grids of parameters are computed. 
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Figure 4.253 5: The projection of the surface grid onto the NURBS reparameterized 

surface on the left can be transformed into          points, resulting to a    grid 

(right figure). 
 

 
 

Figure 4.263 6: The projection of the surface grid onto the NURBS reparameterized 

revolved surface on the left can be transformed into          points, resulting to a 

   grid (right figure). 

However, the edges of the grid are not projected onto the edges of the surface, as seen 

in Fig. 4.27. To force the surface grid to fit the NURBS surface, a deformation is 

applied to the    parameters of each wall patch computed earlier. The deformation is 

performed using the    Spring Analogy Technique. This software takes a    grid, 

computed earlier by projecting the surface nodes onto parametric surfaces and the    

position of the edge nodes of the grid as input and distributes the internal nodes, with 

reference to the edge positions. 

 

The position of the edge nodes can be found with the following technique. The edges 

of the surfaces are    NURBS curves provided by the parameterization, since they 

are the intersections of NURBS surfaces resulted from GMTurbo, as seen in Fig. 4.27. 

The edge nodes of the adapted grid must belong to those edge curves. Thus, the edge 

nodes of the initial grid are distributed onto the    edge curve, using the distance 

distribution they had in the initial grid. Since they belong to the    edge curve, they 

also belong to the wall NURBS surface, thus they are represented by two parameters 
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provided by the NURBS surface       or      . These edge parameters are given as 

an input to the    spring analogy morpher. The morphing practically slides the nodes 

on the surface to make the surface grid fit the edges of the NURBS surface as seen in 

Fig. 4.28. 

 

After morphing the    grid, the displaced parameters of the surface nodes are found. 

It is easy to go back to   , using the equations of the corresponding surface,        

for the PS and SS and     for hub and shroud, attaining the displaced         
surface patches. 

 

 
 

Figure 4.2737: The projection of the mesh onto the NURBS surfaces is not exact, since 

the edge nodes are not projected onto the real edges of the surface. The need to 

displace the surface mesh to fit the edges of the parameterization (red line) comes up. 

 
Figure 4.2838: The edges according to the reparameterization (black curves) are 

different than the projections of the edges of the initial grid onto the reparameterized 

surfaces. Thus, a    spring analogy morphing takes place to displace the projected 

grid (red grid) with respect to the edge positions of the parameterization. 
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Step 2: Volume Grid Adaptation 

 
Using the surface wall patches computed in the previous step, a deformation to the 
initial volume grid can be applied using the    spring analogy technique [3], to adapt 
the internal volume grid, with respect to the position of the surface patches. This 
deformation results to a volume grid of the reparameterized CAD blade. This grid has 

the same structure and connectivity as the initial one but is displaced in terms of 

coordinates as seen in Fig 4.29. 

 

 
Figure 4.293 9: The resulting red grid is very close to the initial black of the TU Berlin 

case, depending on the user defined accuracy selected for the reparameterization that 

is, the number of generatrices and the number of control points in NURBS 

approximations. 

GAT used in an EA Optimization 

 
To generate a grid on the GMTurbo geometry, during an EA optimization, the method 

presented in Section 4.3 is used. However, a part of the method is executed only once, 

before the optimization begins, as a pre-processing step and the rest is integrated into 

the optimization workflow and creates the grid for every candidate geometry. 
 
To be more specific, the first part of the method, the projection of the surface nodes 

onto the NURBS surfaces of the parameterization, is common for every candidate 

geometry, since it provides the connectivity of the various patches in    coordinates. 

Mapping back to the corresponding NURBS surface of the current EA evaluation, 

provides the new coordinates of the surface grid. Hence, the    parametric grid of 

each wall patch, seen in Fig. 4.23, is created once, at the beginning of the 

optimization. It is morphed for each candidate geometry, according to the edge 

positions of that geometry. The rest of the method follows and is integrated into the 

EA workflow to be repeated for every candidate geometry. 
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Chapter 5 

Optimization Methods 
 

5.1   Evolutionary Algorithms – EASY Software 
 

Evolutionary algorithms (EA) are a class of search heuristics that can be applied to 

many different tasks providing a heuristic-based approach to solving problems. The 

premise of an EA is based on the process of natural selection. An EA contains four 

overall steps: initialization, selection, evolution operators, namely mutation and 

crossover, and termination. These steps each correspond, roughly, to a particular facet 

of natural selection, and provide easy ways to modularize implementations of this 

algorithm category. In an EA, fitter members will survive and proliferate, while unfit 

members will die off and will not contribute to the gene pool of further generations. 

EAs are controlled by a number of parameters which are crucial for the success and 

efficiency of the search. The processes of an EA can be seen in Fig. 5.1. More 

information is given in [11]. 

 

 
Figure 5.140: Processes of an EA. 

Initialization 

 

In order to begin an initial population of solutions is created. The population contains 

an arbitrary number of possible solutions to the problem, called members. It is often 

being created randomly or, if some prior knowledge of the task is known, roughly 

centered on what is believed to be ideal. It is important that the population 

encompasses a wide range of solutions, because it essentially represents a gene pool. 

In order to explore many different possibilities over the course of the algorithm, many 

different genes should be present. 
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Parent Selection 

 

Once a population of   members is created, these members, called offspring, are 

evaluated according to a fitness function. A fitness function is a function that takes in 

the characteristics of a member and outputs a numerical representation of how viable 

of a solution it is. The members of the population that correspond to the best values of 

the fitness function are called parents and are given as  . After selecting the top 

members, they are used to create the population of next generation. 

 

Evolution Operators 

 

This step includes two operators: crossover and mutation. Using the characteristics of 

the selected parents, new offspring are created that are a mixture of the parents’ 

qualities. Furthermore, a new genetic material should be introduced into the 

generation. This step is mutation and it is done by changing a small portion of the 

offspring such that they no longer perfectly mirror subsets of the parents’ genes. 

Mutation typically occurs probabilistically, that is the chance of a child receiving a 

mutation as well as the severity of the mutation is governed by a probability 

distribution. 

 

Termination 

 

Eventually, the algorithm must end. There are two cases in which this usually occurs: 

either the algorithm has reached some maximum runtime, or the algorithm has 

reached some threshold of performance. At this point a final solution is selected and 

returned. 

 

Multiple Objective Optimization 

 

EAs can also be extended to use many fitness functions. As a result, a set of optimal 

points is produced instead of a single optimal point. The set of optimal solutions is 

called the Pareto front and contains elements that are equally optimal in the sense that 

no solution dominates any other solution in the front. Then, the set is narrowed down 

to a single solution, based on the context of the problem by the decision maker. The 

Pareto front of an example case can be seen in Fig. 5.2. 
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Figure 5.24 1: Pareto front of an example case. 

Metamodel-Assisted Evolutionary Algorithms: 

 

Optimization based on stochastic methods and, in particular, evolutionary algorithms 

are currently being used. Despite their advantages, all of the population-based search 

algorithms require excessive computational time due to the excessive number of 

candidate solutions which need to be evaluated through costly computational models. 

The reduction of this computing cost, so as to make stochastic optimization both 

efficient and effective is an area of active research. Emphasis is laid on techniques 

which rely approximation models which may substitute for the exact and costly 

evaluation tool. Possible solution to this problem is the use of Metamodel–Assisted 

Evolutionary Algorithms (MAEAs) or other methods. MAEAs rely on the smart 

management of calls to the exact evaluation tool and its metamodel during the 

evolution, leading to a considerable economy in computational cost. Metamodels 

serve as surrogate evaluation tools which allow for discerning an approximate ranking 

of all the population members within any generation. EAs may use metamodels 

trained on samples selected separately from the evolution, in this case, the metamodel 

should be updated regularly depending on the deviation between the objective 

function values computed on the metamodel and the exact tool. On the other hand, 

EAs assisted by on-line trained metamodels can be used. A locally valid metamodel is 

constructed on the fly for each new individual, by training it on previously evaluated 

neighboring individuals. Through the metamodel–based evaluation, a few promising 

members in each population are identified and only these are to be re–evaluated on 

the exact tool. This is referred to as the Inexact Pre–Evaluation (IPE) technique. 

Among the most frequently used metamodels, response surface methods, polynomial 

interpolation and various types of artificial neural networks, Gaussian processes can 

be found. For more information on MAEAs the reader is referred to [13], [14] and 

[24]. 
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The EA software used in this diploma thesis is the EASY platform, developed by the 

PCOpt/NTUA. The evaluation code is a combination of the parameterization tool, the 

grid morpher, the CFD solver and the post processor code that computes the objective 

values from the results of the CFD software as presented in Fig. 1.2. 

 

In this thesis, the geometry of the TU Berlin’s compressor blade is given as a CFD 

grid. Before the optimization begins, the RPT generates the GMTurbo 

parameterization that describes the given node-based geometry. After specifying a set 

of the GMTurbo parameters as design variables, the optimization process starts. The 

sequence of tasks, of Fig. 1.2, is called for every candidate geometry. A surface grid 

displacement technique is also used in order to perform CFD simulations on the new, 

slightly different geometry. Finally, post-processors of the CFD results are 

programmed to compute the objective function values used by EASY. 

 

EASY is a general purpose, high-fidelity software for the search of optimal solutions 

in single or multi objective problems and has been extensively used in engineering 

applications. It gives the freedom to the advanced user to specify every aspect of the 

evolution while it provides presets for the beginner. It supports single and multiple 

objective function approximation through Artificial Neural Networks for time 

consuming problems and a rich set of options that may define algorithms such as 

Genetic Algorithms or Evolution Strategies.  

 

In this thesis, two metamodel-assisted optimization runs of the case presented in 

Section 8.2 are carried out using the same sets of design variables but in one case the 

constraints presented in Section 6.1 are taken into consideration while at the other the 

problem is unconstrained. Radial Basis Function networks are employed as 

metamodels. The MAEA is based on the Inexact Pre-Evaluation technique. 

Metamodels are built for each new candidate solution separately using neighbouring 

data collected during the preceding generations of the EA; therefore, the activation of 

the IPE is preceded by two generations based exclusively on the exact evaluation tool. 

After the first two generations have been completed and stored, in each generation the 

offspring population members are approximated based on a local metamodel and a 

few of the best among them, based on the metamodel prediction, are re-evaluated on 

the CFD tool. The metamodels used in this thesis are further accelerated by exploiting 

the Principal Component Analysis (PCA) of the elite members of the evolving 

population. PCA is used to guide the application of evolution operators and to train 

the metamodels faster than other methods. On-line trained metamodels are used. 

Finally, the optimizations carried out are two-objective, as it has already been 

presented in Chapter 2, hence, the way fitness score should be assigned to the 

individuals is depending on the each objective score. This is done using the Strength 

Pareto Evolutionary Algorithms (SPEA) 2, implemented in EASY. The fitness score 

depends on the number of individuals dominated and the number of individuals in a 

neighbourhood is taken into consideration during fitness score assignment to 

encourage Pareto front spreading on the objective’s space. 
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5.2 Gradient-Based Methods – Continuous Adjoint 

 
Stochastic search optimization methods, such as Evolutionary Algorithms, require a 

large number of function evaluations. The computational cost of those methods scales 

with the number of design parameters. On the contrary, gradient-based optimization 

can be used in order to have significantly fewer function calls making this method 

computationally less expensive. In the adjoint method, there is also another set of 

Partial Differential Equations, the adjoint equations and each adjoint variable 

corresponds to a variable of the flow field. Solving the adjoint equations has a 

comparable cost to solving the primal state equations and the gradients can be 

computed from the primal and adjoint fields with minor additional calculations 

compared to the CFD iterations. Practically, the gradient evaluation cost does not 

scale with the number of design parameters. Adjoint methods are divided into two 

major subcategories, the discrete and the continuous [15]. In the continuous approach, 

the adjoint equations are derived analytically from the flow equations and are then 

discretized and solved numerically. The adjoint equations are derived by adding the 

volume integral of the product of the adjoint variables with the state equations to the 

objective function. By formulating and using the Green-Gauss theorem, the final 

expression of the adjoint flow equations and the boundary conditions are determined 

[2].  

 

In continuous adjoint the augmented objective function      is introduced and defined 

as: 

 

       ∫        ∫  ̃   ̅    
                                (5.1) 

 

where               are the mean flow adjoint variables and  ̃  the adjoint 

turbulence model variable.   is the objective function and               the 

design variables. Both    and  ̃  act as Lagrange multipliers since they multiply the 

equality constraints of the flow equations in the problem of minimizing     . Upon 

convergence of the flow equations,     ,   ̅    and       . Consequently, the 

sensitivity derivatives can be computed from 
     

   
 as follows. 
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(5.2) 

Term 
  

   
 can be developed after having defined the objective function  . After 

differentiating all terms resulting from the mean flow and turbulence model PDEs, 

during the mathematical development of 
     

   
, volume integrals containing the partial 

derivative 
   

   
, where               with       for            and 

    ̃ are the flow variables, arise. These integrals will be collected to one and the 

factor multiplying the total derivative 
   

   
 will be set equal to zero. By doing so, a new 

set of PDEs, called field adjoint equations (FAE), arise. The total and the partial 

derivative are linked through: 
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                                                (5.3) 

 

From Eq. 5.3, it can be noticed that changing 
   

   
 with 

   

   
 and eliminating the factors 

multiplying 
   

   
 leads to the same FAE. Upon convergence of the FAE, the extra term, 

arising from the last term of Eq. 5.3, vanishes since 
   

   

   

   
 is multiplied by the FAE 

themselves. The mean flow field adjoint equations are: 

  

     
   

   
      

        
                                     (5.4) 

           

where the terms    and   
   result from the differentiation of the mean-flow viscous 

terms and the differentiation of the turbulence model Spalart-Allmaras [19] which is 

used.  

 

Satisfaction of the FAE leads to elimination of the volume integrals associated with 

high computational cost. Similar approach is followed for the surface integrals leading 

to the introduction of adjoint boundary conditions (ABC). However, for surface 

integrals the factors multiplying strictly the total derivatives of    must be set equal 

to zero. By using the adjoint boundary conditions for the mean flow and the 

turbulence model, the system of Eq. 5.4 and the turbulence model adjoint equations 

can be solved. Finally, the second and the fourth integral of Eq. 5.2 do not contain any 

variation in flow quantities and consequently, contribute to the expression of 

sensitivity derivatives.  For further details on this topic, the reader is referred to [1], 

[2], [20], [21], [22] and [23]. 

 

In this thesis, the continuous adjoint method, developed by the PCOpt/NTUA, is used 

to produce the surface sensitivity map of the blades, which provides the potential 

changes in the shape of the blade, and to optimize the blade shape without imposing 

manufacturing constraints. The continuous adjoint method is included in the GPU-

enabled solver PUMA. 
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Chapter 6 

Implementation of Constraints 
 

6.1   Presentation of Manufacturing Constraints 
 

The following manufacturing constraints are taken into account: 

 The number of blades is fixed to     . 

 

 The axial chord of the blade should be kept constant in every spanwise 

position. 

 

 The casing end wall cannot be changed. 

 

 The thickness of the blade should satisfy the following conditions: 1) The 

minimum value for LE and TE circle radius is     . 2) The two holes for the 

fixture in the middle of the blade have a radius of        and a depth of 

     . The blade thickness at these positions has to accommodate a cylinder 

of material with a radius of      and a depth of       to allow cutting of 

the thread at both hub and casing. The two holes can be placed arbitrarily 

inside the profile shape, but should be at least       apart from each other. 

The above thickness conditions are given in Fig. 6.1 and 6.2. 

 

 The blade has to be mountable on a plate of dimensions                

as a part of the cylindrical casing, shown in Fig 2.3. On the hub there is no 

location or dimensional constraint for the fixture. 

 

 The reduction in the radius due to the hub contouring has to be      or less 

and the increase of the radius due to the hub contouring has to stay below 

     . 
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Figure 6.14 2:    view of the blade, depth of       will allow cutting of the thread at 

both hub and casing. 

 
Figure 6.243:    view of the blade, minimum value for LE and TE circle radius is 

    , the blade thickness at the positions where the two holes in the middle of the 

blade will be created has to accommodate a cylinder of material with a radius of 

    . The two holes should be at least       apart from each other. 
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6.2   Inclusion in the EA Optimization Process 

 
The fixed number of blades,     , is fulfilled by the outlet boundary condition of 

the flow solver. The stator is adjusted to achieve a mass flow of         , full 

annulus. By taking the number of blades into consideration, the outlet condition of 

mass flow of the flow solver is:                 ⁄⁄  

The axial chord of the blade is kept constant by the parameterization of the GMTurbo 

which enables the user to fulfill such conditions. 

The casing end wall will not be changed during the optimization process. 

The minimum value for LE and TE circle radius of      is also fulfilled by the 

GMTurbo parameterization which enables the user to define the shape of the LE and 

the TE as presented in Section 4.1. In this thesis the circular arc edge is used where 

the two sides are linked with a circular arc with specified radius. The generated airfoil 

sides are extended and, then, a part of them is truncated in the process of modifying 

the edge shape, fitting a circle of specified radius between them. The radius of the arc 

is specified as a spanwise distribution. 

The constraint that demands the blade thickness, at the positions where the holes will 

be created, to accommodate a cylinder of material with a radius of      and a depth 

of      and distance between the two holes at least       is fulfilled using the 

process described below: 

The range of the thickness factors for both PS and SS is defined in order to fit holes 

with at least      radius as explained in Section 8.1. 

Additionally, a code is programmed that creates a grid inside the blade. Then it 

creates straight lines in the direction of the LE in the whole surface of the blade that 

start from both the hub and shroud as seen in Fig. 6.3 and 6.4. LE direction is defined 

as the line that connects the tip of the LE at the hub with the tip of the LE at the 

shroud and can be seen as a purple line in Fig. 6.1. 
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Figure 6.34 4: The red lines start from the hub (blue shade) towards the shroud (yellow 

shade) and the black lines start from the shroud towards the hub. 
 

 
 

Figure 6.44 5: The lines intersect the surface. 
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These lines that intersect the blade have different lengths and constitute the depth of 

the holes measured either from the hub or the shroud. As a result, different areas of 

the blade can be intersected by lines of different lengths, that is, depths of holes as 

seen in Fig. 6.5. 

 

 
Figure 6.54 6: Isoareas of the depth of holes   in   for hub (top) and shroud (bottom). 

From Fig. 6.5 can be seen that for       depth for holes the surface that can be 

created is surrounded by the light blue area. The area of the appropriate depth is 

extracted in       coordinates consisting of isolines for the mean camber line, PS 

and SS. These points are interpolated by spline curves in order to extract 300 points 

for each curve. Furthermore, the coordinates are converted to         coordinates 

using Eq. A.11 of Appendix A where                    for the hub and 

                      and the distance between the points of PS and SS in 

calculated as seen in Fig. 6.6 for the initial geometry of the hub. The   direction is the 

direction of the mean camber line. This distance has to be at least         as a safety 

factor of     is applied. 
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Figure 6.64 7: Distance between PS and SS for the initial geometry of hub (purple 

points) and limit of         (green line) defined by the constraint. 

Finally, the distance between the second and the second to last point of the Distance 

PS-SS ( ) -   direction ( ) diagram, that fulfills the distance of         constraint, 

is calculated and has to be at least      . 

 

The constraint that demands the blade to be mountable on a plate of dimensions 

               as a part of the cylindrical casing is fulfilled when defining the 

range of the   variable for both LE and TE and the range of    ,    ,    ,    ,     

and     as defined in Section 8.1. 

The radius of the hub is not changed since hub contouring is not used. The radius of 

the hub is defined by the GMTurbo parameterization which enables controlling of the 

hub generatrix.                                                                                                                 .   

 

Using the techniques described above, all manufacturing constraints of the case are 

taken into consideration. 
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Chapter 7 

CFD Analysis of TU Berlin’s Case - 

Validation 
 
In order to analyze the CFD results and validate them against the experimental data, 

post processing codes have been programmed and used.  

7.1   Mach number 

 
The absolute Mach number is given as follows: 

 

  
 

 
                                                         (7.1) 

 

where   is the speed of sound in the medium and   is the velocity of the flow. 

 

A comparison of the inlet Mach number computed by the PUMA solver for 

compressible flows without preconditioning and experimental data, for all three inlet 

whirl angles,         and    , is given in Fig. 7.1. The radius   in   , spanning 

from hub to shroud, is given in the horizontal axis. The inlet whirl angle will be given 

as    . 
 

 
Figure 7.14 8: Comparison of CFD and experimental inlet Mach number, from [16],  

for         and     inlet whirl angle. 
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A comparison of the inlet Mach number for         computed by the PUMA 

solver for compressible flows, with and without low Mach preconditioning, is given 

in Fig 7.2. 

 

 
 

Figure 7.24 9: Comparison of inlet Mach number for         as computed by the 

PUMA code for compressible flows, with and without low Mach preconditioning. 

 

A comparison of the outlet Mach number computed by the PUMA solver for 

compressible flows without preconditioning and experimental data for all three inlet 

whirl angles,         and    , is given in Fig. 7.3.  

 
Figure 7.35 0: Comparison of CFD and experimental outlet Mach number, from [16],   

for         and     inlet whirl angle. 
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A comparison of the outlet Mach number for         computed by the PUMA 

solver for compressible flows, with and without low Mach preconditioning, is given 

in Fig. 7.4. 

 

 
 

Figure 7.45 1: Comparison of outlet Mach number for         as computed by the 

PUMA code for compressible flows, with and without low Mach preconditioning. 

 

In Fig. 7.1 for the inlet and Fig. 7.3 for the outlet, it can be seen that the CFD results 

from the PUMA compressible flow solver are very close to the measurements with a 

relative error less than     for all three inlet whirl angles. The relative error is defined 

as: 

 

   
                

            
                                            (7.2) 

 

It can be seen that in all three inlet whirl angle cases, Mach number is lower than 

      for both inlet and outlet. From Figs. 7.2 and 7.4, it can be seen that the values 

of the Mach number are very close compared the two CFD methods of compressible 

flow, with and without low Mach preconditioning and the experimental results in 

account of the fact that the Mach number of the flow is low. As a result, low Mach 

preconditioning can be used and the flow can be sufficiently approximated by an 

incompressible flow model as it will be presented in figures for whirl and pitch. 

 

From Fig. 7.1 and 7.3 it can be seen that, in all three inlet whirl angle cases, the  Mach 

number is decreased in low and high radius, that is near hub and shroud due to the 

flow deceleration that occurs as a result of the hub and shroud boundary layer and the 

flow mixing, as seen in Fig. 7.5. Furthermore, as the inlet whirl angle increases, Mach 

number decreases at the same radius as a result of the lower velocity. 

 

 



60 

 

 
 

Figure 7.552: Stream traces of flow. 

 

A comparison of the outlet Mach number for         computed using the code for 

compressible flows, without preconditioning, for different values of viscosity ratio, is 

made in Fig. 7.6. 

 

 
 

Figure 7.65 3: Comparison of the outlet Mach number for         using a 

compressible flow model, for different values of viscosity ratio, at the inlet. 
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The value of viscosity ratio 
  

 ⁄  that is needed for the inlet boundary conditions for 

the k-σ SST turbulence model is unknown, hence, a comparison of the outlet Mach 

number is made for three values of viscosity ratios as seen in Fig. 7.6. The minor 

differences of Mach number values between the three viscosity ratio scenarios lead to 

the conclusion that the case is almost independent from the inlet viscosity ratio. 

Viscosity ratio equal to    is used in all CFD cases. 

7.2   Outlet Whirl angle   
 

The task of the stator is to turn the incoming flow with a whirl angle of       into 

axial flow that is, a flow that has an outlet whirl angle value very close to   . The 

whirl angle is calculated through: 

 

       (
 ⃗⃗    

| ⃗⃗ |
)       (

 

√        
)                        (7.3) 

where         are the three Cartesian velocity components. 

A comparison of the outlet whirl angle computed by the PUMA solver for 

compressible flows without preconditioning and experimental data for all three inlet 

whirl angles,         and    , is given in Fig. 7.7.  

 

 
 

Figure 7.75 4: Comparison of CFD and experimental outlet whirl angle  , from [16],  

for         and     inlet whirl angle. 

 

A comparison of the outlet whirl angle for         computed by the PUMA solver 

for compressible flows, with and without low Mach number preconditioning, and the 

corresponding code for incompressible flow is given in Fig. 7.8. 

 



62 

 

 
 

Figure 7.855: Comparison of outlet whirl angle   for         as computed by the 

PUMA code for compressible flows, with and without low Mach number 

preconditioning, and the incompressible variant of the same code. 

From Fig. 7.8, it can be seen that the outlet whirl angle distributions are very close 

comparing the three methods and the experimental results in account of the fact that 

the Mach number of the flow is low as it has already been explained. From Fig. 7.7 it 

can be seen that the CFD results from the PUMA Compressible flow solver are very 

close to the experimental results with relative error less than     for all three inlet 

whirl angles. It can also be seen that the outlet whirl angle increases as the inlet whirl 

angle increases. 

 

The outlet whirl angle varies from          for        ,        ] for         
and        ] for         as the radius increases. The flow needs to be as close to 

axial as possible which is one of the objectives of the optimization. 

7.3   Outlet Pitch angle   

 
The pitch angle is calculated through: 

 

       (
               

              
)       (

  

  
)                        (7.4) 

Comparison of the outlet pitch angle computed by the PUMA solver for compressible 

flows without preconditioning and experimental data for all three inlet whirl angles, 

        and    ,  is given in Fig. 7.9.  
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Figure 7.95 6: Comparison of CFD and experimental outlet pitch angle  , from [16],  

for         and     inlet whirl angle. 
 

A comparison of the outlet pitch angle for         computed by the PUMA solver 

for compressible flows, with and without low Mach number preconditioning, and 

incompressible flow is given in Fig. 7.10. 

 

 
 

Figure 7.1057: Comparison of outlet pitch angle   for         as computed by the 

PUMA code for compressible flows, with and without low Mach number 

preconditioning, and the incompressible variant of the same code. 
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In Fig. 7.9 it can be seen that the CFD results from the PUMA compressible flow 

solver are very close to the experimental results with relative error less than     for 

all three inlet whirl angles. The outlet pitch angle varies from        ] for        , 
       ] for         and        ] for         as the radius increases. The pitch 

angle is almost constant as the radius increases but in high values of radius, near 

shroud, a dramatic increase in pitch angle appears as a result of the secondary flow 

effects. 
 

7.4   Outlet Total Pressure and Static Pressure 
 

The experimental data for the outlet pressure must be corrected, according to the 

corresponding ambient pressure value, using the following equation: 

  
        

    
  

    
                                                (7.5) 

The ambient pressure for each case is: 

Inlet -5°: 101290 Pa Outlet -5°: 101570 Pa 
  

Inlet 0°: 101240 Pa Outlet 0°: 101530 Pa 
  

Inlet +5°: 101150 Pa Outlet +5°: 101570 Pa 
 

A comparison of the outlet total pressure computed by the PUMA solver for 

compressible flows without preconditioning and experimental data for all three inlet 

whirl angles,         and    , is given in Fig. 7.11.  

 

 
 

Figure 7.115 8: Comparison of CFD and experimental outlet   , from [16], for         
and     inlet whirl angle. 
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A comparison of the outlet total pressure for         computed by the PUMA 

solver for compressible flows, with and without low Mach number preconditioning, is 

given in Fig. 7.12. 

 
Figure 7.125 9: Comparison of outlet    for         as computed by the PUMA code 

for compressible flows, with and without low Mach number preconditioning. 
 

In Fig. 7.11 it can be seen that the CFD results from the PUMA compressible flow 

solver are very close to the experimental results, with relative error of       to    , 

for all three inlet whirl angles.  
 

A comparison of the outlet static pressure computed by the PUMA solver for 

compressible flows without preconditioning and experimental data for all three inlet 

whirl angles,         and    , is given in Fig. 7.13.  

 
Figure 7.136 0: Comparison of CFD and experimental outlet    , from [16], for         

and     inlet whirl angle. 
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A comparison of the outlet static pressure for         computed by the PUMA 

solver for compressible flow, with and without low Mach number preconditioning, is 

given in Fig. 7.14. 

 

 
 

Figure 7.146 1: Comparison of outlet     for         as computed by the PUMA code 

for compressible flows, with and without low Mach number preconditioning. 

 

7.5   Total Pressure Loss Coefficient 

 
Total pressure loss coefficient is a dimensionless quantity. In    geometries, it 

usually needs to be computed along isospan blade sections, from hub to shroud. It is 

given by Eq. 2.1. A comparison of the total pressure loss coefficient computed by the 

PUMA solver for compressible flows without preconditioning and experimental data 

for all three inlet whirl angles,         and    , is given in Fig. 7.15. 
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Figure 7.156 2: Comparison of CFD and experimental  , from [16], for         and 

    inlet whirl angle. 

A comparison of   for         computed by the PUMA solver for compressible 

flow, with and without low Mach number preconditioning, is given in Fig. 7.16. 

 

 
Figure 7.166 3: Comparison of   for         as computed by the PUMA code for 

compressible flows, with and without low Mach number preconditioning. 

The total pressure loss coefficient varies from             for        , 
          ] for         and           ] for         as the radius increases. The 

total pressure loss coefficient has to be minimized which is one of the objectives of 

the optimization. 
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Chapter 8 

Evolutionary Algorithm Optimization 

8.1   Design Variables 
 

When using the RPT, presented in Section 4.2, to create the input file for the 

GMTurbo, patches such as the hub and shroud, the surface of which is a revolved 

surface around the  - axis, are given as meridional generatrices, inlet and outlet are 

given as meridional boundary curves, LE and TE are given as meridional edge curves 

and variables such as    ,    ,    ,    ,    ,     and thickness factors for both PS 

and SS are given in spanwise distribution, using NURBS curves. The control points of 

those NURBS curves are the design variables to be determined during the 

optimization process. The design variables are: 

 

 The LE and TE are given in       and three out of the seven   variables of the 

NURBS curve for both LE and TE are used as design variables. 

 

    ,    ,    ,    ,    ,     and thickness factors for both pressure and 

suction side are given in spanwise distribution with five points for every 

NURBS curve. All five points for    ,    ,    ,    ,    ,     and thickness 

factors are used as design variables. 

The total number of design variables is   . 

8.2   Optimization using EASY 
 

In this section, two optimization runs of the TU Berlin’s stator case are carried out 

using the same sets of design variables. In one case, constraints are taken into 

consideration while in the other the problem is unconstrained. The objective 

functions, in all runs, are total pressure loss coefficient   and the flow angle deviation 

at the CFD outlet from the axial direction. Both must be minimized. A        
        EA with   parents and    offspring, assisted by metamodels performing 

inexact pre-evaluation of the offspring population, is used. A termination criterion of 

    evaluations on the CFD was set. Each evaluation has a total duration of 

approximately   hours and the CFD solver runs on one NVIDIA Tesla K40 GPU. The 

basic parameters of the metamodel-assisted optimization using EASY can be seen in 

Table 1. 
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TABLE 1 

EASY Settings 

Number of Demes 1 

Coding Real 

Parent population size   8 

Offspring population size   12 

Evaluations before termination 100 

Parents that create one offspring 3 

Elite population size 20 

Elite individuals to force as new offspring 1 

Probability to select an elite 0.08 

Tournament size 3 

Tournament probability 0.85 

Crossover probability 0.9 

Mutation probability 0.05 

Metamodel type RBF 

Minimum data base size for IPE 20 

Exact evaluations per generation (IPE) min-max 2-5 

 

The front of non-dominated solutions is given in Fig. 8.1 for the unconstrained case 

and in Fig. 8.2 for the constrained case.  

 

 
 

Figure 8.16 4: Front of non-dominated solutions of different generations for the 

unconstrained case. 
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Figure 8.26 5: Front of non-dominated solutions of different generations for the 

constrained case. 

The Pareto fronts for the constrained and the unconstrained optimization using 

MAEAs are given in Fig. 8.3. The values of the objective functions for the basic, 

initial, geometry can also be seen in Fig. 8.3. All the optimization runs are for the case 

of     inlet whirl angle. 

 

 
 

Figure 8.36 6: Pareto front for unconstrained and constrained case. 

As far as the unconstrained case is concerned, some members of the Pareto front 

result in reduction of one of the objective functions while the other is increased. 

However, one possible solution manages to minimize both the objective functions 
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significantly. Similar results appear in the constrained case. The possible solution in 

purple circle, as seen in Fig. 8.3 achieves slight decrease of the total pressure loss 

coefficient and major decrease of the outlet angle. Specifically, the total pressure loss 

coefficient is decreased by        and the outlet angle by      which corresponds to 

      . The improvement   of the objectives is defined as: 

 

     
                 

       
                                         (8.1) 

 

The resulting optimized geometry compared to the baseline for the case without 

manufacturing constraints can be seen in Fig. 8.4 and for the constrained optimization 

in Fig. 8.5. 

 
Figure 8.46 7: Initial (grey) and optimized without manufacturing constraints (red) 

shape of blade. 

 

 
 

Figure 8.56 8: Initial (grey) and optimized with manufacturing constraints (blue) shape 

of blade. 
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The optimized blade shape is significantly deformed, in comparison with the initial 

shape, for both cases, as seen in Figs. 8.4 and 8.5. The optimized shape for the 

constrained case corresponds to the purple circle while the optimized shape for the 

unconstrained case corresponds to the orange circle as seen in Fig. 8.3. 

 

The comparison between the constrained and unconstrained optimized blade shapes 

can be seen in Fig. 8.6. 
 

 
 

Figure 8.66 9: Optimized without constraints (red) and optimized with manufacturing 

constraints (blue) shape of blade. 

The optimized geometries appear to have a spanwise displacement because the design 

variables are spanwise parameters of the blade. Any manufacturing constraint can be 

applied to the geometry shape by bounding the shape deformation that EASY can 

handle. The great value of the GMTurbo parameterization software, within an 

optimization, is highlighted here. The design variables have a physical sense that can 

provide the designer with the ability to roughly predict the displacements the blade 

will undergo during the stochastic optimization and, thus, chose to optimize those 

variables that are significant for the application. 
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Chapter 9 

Unconstrained Gradient Based 

Optimization 
 
In this chapter, optimization runs using gradient-based optimization [1] of the TU 

Berlin’s stator case are carried out using the set of design variables presented in 

Section 8.1 while the manufacturing constraints are not taken into account. The 

objective function is the total pressure loss coefficient   to be minimized. 

The gradient-based method that is used is the steepest descent method where the 

design variables update is given by: 

 

  
      

   
  

   
                                                  (9.1) 

 
where   is the counter for the optimization cycles. 

 

The sensitivity derivatives are computed using the chain rule as follows: 

 
  

   
 

  

   
  

   
 

   
                                                       (9.2) 

where   is the objective function,            are the design variables. 

  

   
  is computed using the continuous adjoint method. In Fig. 9.1, the sensitivity map 

is given using the adjoint method in comparison with the result of the unconstrained 

EASY optimization for minimum of total pressure loss coefficient.  

 

Figure 9.170: Optimized solution computed by the EA without constraints (left) and 

sensitivity map (right) using adjoint. The red color represents pulling the blade 

surface vertically while the blue color represents pushing the blade surface vertically 

to improve the objective function value. 
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The two shapes have many similarities which indicate that the adjoint method can be 

used to propose changes to alternate the shape of the geometry with significantly less 

computational budget. The differences between the two shapes are due to the 

parameterization method used in EA optimization which smoothens the shape of the 

geometry. 

 
   

 

   
 are the derivatives of grid nodal positions with reference to the design variables 

and are calculated from the differentiation of the parameterization model by creating 

  geometries, where      is the number of design variables, which differ by a 

small quantity,       , from the initial.  

The derivatives are computed using finite differences by the following equation:  

   
 

   
 

  
                       

                  

 
                    (9.3) 

where         and     ,     ,     ,         and         are the 

number of the nodes 

The values of the objective function   that is minimized using the steepest descent 

method for unconstrained optimization are given in Fig 9.2. The horizontal axis 

corresponds to optimization cycles. The initial solution is presented in cycle   and is 

also given in Fig. 9.2. 

 

 
 

Figure 9.27 1: Total pressure loss coefficient evolution for unconstrained continuous 

adjoint optimization.   is decreased to        which corresponds to       . The 

improvement of the objective is defined by Eq. 8.1. 
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The convergence history of the primal equations for optimization cycle   is given in 

Fig. 9.3. 

 
 

Figure 9.37 2: Convergence history of the primal equations for cycle  . The horizontal 

axis corresponds to the primal solver iterations. 
 

The convergence history of the objective function for optimization cycle   is given in 

Fig. 9.4. It can be seen that the solver has successfully converged. 

 

 
 

Figure 9.47 3: Convergence history of the objective function for cycle  . The horizontal 

axis corresponds to the primal solver iterations. 
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As it has already been stated in Section 3.2, the system of equations is solved using 

the explicit multi-stage Runge-Kutta method with residual smoothing using the point-

implicit Jacobi method. 

 

The resulting optimized geometry compared to the baseline, for    design variables, 

for the case without manufacturing constraints is presented in Fig. 9.5. 

 

 
Figure 9.57 4: Initial (grey) and optimized without manufacturing constraints (blue) 

shape of blade. 

 

By comparing the results of the gradient-based optimization with the unconstrained 

EA optimization, can be seen that the gradient-based reduces the objective function   

even more than the Pareto point of the unconstrained case with the minimum  . As it 

can be seen from Fig. 8.3 this point corresponds to        , yielding       

reduction in comparison with the initial, while in the adjoint optimization   is 

decreased to        which corresponds to       . The computational cost of the 

adjoint optimization is significantly less than the EA optimization. However, the EA 

is used for two-objective optimization, while the adjoint optimization is single-

objective. It is possible that the adjoint method does not give that low value of the 

objective function if used for the same two-objective optimization.  
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Chapter 10 

Overview and Conclusions 

10.1    Overview 

 
The work presented in this diploma thesis concerned the application of shape 

optimization methods to the open case of the TU Berlin’s compressor stator. 

Specifically, the following tasks were implemented: 

 

 Validation of the PUMA CFD solver with experimental data published by TU 

Berlin. Comparison of the experimental data with the results produced from 

the versions of the PUMA CFD solver for compressible flow, with and 

without low Mach number number preconditioning, and for incompressible 

flow. The results demonstrate that the PUMA solver efficiently handles the 

case and that the flow can be approximated as incompressible. By 

approximating the flow as incompressible, the solving time is reduced for   

hours to    . 

 

 Application of the RPT as a node-to-CAD method is used to transform the 

blade geometry, given in CFD grid format, into a GMTurbo format. Validation 

of the RPT was also performed. Comparison between the initial and the 

reparameterized geometry, show that the shapes are very close, thus the 

reparameterization is accurate enough. 

 

 Application of the GMTurbo parameterization software, which is ideal for use 

in optimization workflows, since the parameters it uses are few and have 

physical meaning. Thus, optimization that can be carried out using GMTurbo 

is expected to work. 

 

 Application of the GAT, to adapt the initial CFD grid to the GMTurbo 

surfaces using the    and    Spring Analogy Morphers. Hence, CFD 

simulation can be performed on the GMTurbo parameterized geometry. The 

validation of the GAT in terms of geometry and CFD results shows that the 

grid adaptation is accurate and can be integrated in the optimization workflow. 

 

 Programming and application of codes in order to handle the manufacturing 

constraints of the case. The tough constraints of the case were sufficiently 

handled and applied in the optimization. 

 

 Application of shape optimization using the Evolutionary Algorithms software 

EASY. The results of the optimization were satisfying taking into account the 

computational budget available for this thesis. The results would be even 

better for both the constrained and unconstrained cases if more computational 

means were used. The EA optimization, for the constrained case, lasted about 
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one week and resulted in reduction of total pressure loss coefficient by        

and the outlet angle by      which corresponds to       . 

 

 Application of the continuous adjoint method in order to produce the 

sensitivity map that shows how shape can be changed to optimize the 

geometry. The representation of the sensitivity map was accurate and slightly 

different by the EA optimized blade. As far as the optimization is concerned, 

  is decreased to        which corresponds to       . The results of the 

adjoint optimization are better than the unconstrained EA optimization. The 

computational cost for the four optimization cycles is approximately    hours, 

significantly less than the cost of the EA. However, the EA is used for two-

objective optimization, while the adjoint optimization is single-objective. As a 

result, it is not guaranteed that the adjoint optimization will provide as good 

results for the two-objective optimization. 

 

10.2    Proposals for Future Work 

 
As far as ideas for future work are concerned, the following are proposed: 

 

 Implementation of a grid generating tool to create grid different from the one 

used in this diploma thesis in order to test the independency of the results form 

the size, the type and the quality of the grid. 

 

 Use of higher computational budget for the EASY optimization and 

comparison with the results presented in this thesis. 

 

 Application of two-objective gradient-based optimization, with and without 

taking the manufacturing constraints into consideration, and comparison with 

the results produced by the EA as presented in this thesis. 

 

 Handling of the constraints using Sequential Quadratic Programming or other 

methods. Some of the TU Berlin case’s constraints are non-linear. Hence, SQP 

method which is one of the most effective methods for nonlinearly constrained 

optimization can be used to handle the constraints with low computational cost 

and high accuracy. 
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Appendix A 

Conformal Mapping 

 
For a mapping of a surface        to a surface        through the transformation 

function                  to be conformal, it is sufficient to prove that a 

function          that satisfies Eq. A.1 exists. 

 

 ̅                                                                      (A.1) 

 

where     and  ̅   are the coefficients of the first fundamental form of        and 

       [4]. The most important property of every conformal mapping is the angle 

preservation property. Conformal mappings preserve the magnitude and direction of 

the angle between two curves. [4] 

 

The mapping of a surface of revolution                                 to a 

      plane is given by the transformation: 

 

                                                                   (A.2) 

 

where      is given by: 

 

     ∫
√     

        

    

 

 
                                               (A.3) 

 

The mapping of Eq. A.2 is conformal according to Eq A.1. 

 

For a point   that lies on the revolved surface                                 
the partial derivatives with reference to   and   are given by: 

 
  

  
 (

     

  
     

     

  
     

     

  
) 

 (A.4) 
  

  
                        

 

and for a   point on the       plane              the partial derivatives with 

reference to   and   are given by: 

 

  

  
 (∫

√             

    

 

 

  ) 

(A.5) 
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while the first fundamental coefficients of   are given by: 
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)
 

 (
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                                               (A.6) 

 

   
  

  
 
  

  
       

 

while the first fundamental form coefficients of  , by: 
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                                               (A.7) 

 

   
  

  
 
  

  
   

 

from Eqs. A.6 and A.7 the relation between the coefficients is given by: 

 

   
  

     
 

 

    
  

     
                                                   (A.8) 

 

   
  

     
 

 

That proves that the mapping of Eq. A.2 is conformal with conformal factor 
 

     
. 

The square of the distance between two points   and      on surface   is given by 

the first fundamental form of   seen in the following equation: 

 

     
            

              
           (A.9) 

 

and the square of the distance between two points   and      on the       plane is 

given by the first fundamental form of   seen in the following equation: 

 

     
            

              
           (A.10) 

 

Combining Eq. A.9 and Eq. A.10, is easily proved that the relationship between the 

magnitudes on the two surface representations        and       is given by: 

 

                                                          (A.11) 
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Consequently, the mapping used to transform a revolved surface into a       plane, 

given by Δq. A.2, being conformal, preserves angles and scales the magnitudes by a 

factor of      as seen in Eq. A.11. 
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Δηζαγσγή 
 

Ο αεξνδπλακηθόο ζρεδηαζκόο θαη ε βειηηζηνπνίεζε πηεξπγώζεσλ ζηξνβηινκεραλώλ 

απνηειεί αληηθείκελν έξεπλαο κεγάιεο ζεκαζίαο. Η βειηηζηνπνίεζε ηεο κνξθήο ηνπ 

πηεξπγίνπ είλαη θαίξηα γηα ηηο επηδόζεηο ηνπ.  

 

θνπόο ηεο δηπισκαηηθήο απηήο εξγαζίαο είλαη ε εθαξκνγή κεζόδσλ 

βειηηζηνπνίεζεο κνξθήο πηεξπγίσλ ζηξνβηινκεραλώλ ζηε ζηαζεξή πηεξύγσζε 

ζπκπηεζηή ηνπ Πνιπηερλείνπ ηνπ Βεξνιίλνπ, κε ρξήζε Δμειηθηηθώλ Αιγνξίζκσλ, θαη 

ζπγθεθξηκέλα ηνπ ινγηζκηθνύ EASY, αιιά θαη κε ηε ρξήζε κεζόδνπ θιίζεσλ όπσο ε 

πλερήο πδπγήο κέζνδνο, ηα νπνία αλαπηύρζεθαλ ζηελ ΜΠΤ&Β/ΔΜΠ, θαη ε 

παξνπζίαζε ησλ απνηειεζκάησλ. Παξάιιεια, πξαγκαηνπνηείηαη ζύγθξηζε θαη 

επαιήζεπζε ησλ απνηειεζκάησλ ηνπ επηιύηε ξνήο PUMA κε ηα πεηξακαηηθά 

δεδνκέλα πνπ παξέρνληαη από ην Πνιπηερλείν ηνπ Βεξνιίλνπ. 
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ηαζεξή Πηεξύγσζε πκπηεζηή Πνιπηερλείνπ Βεξνιίλνπ 

Η αξρηθή γεσκεηξία δίλεηαη ζην ρ. 1. Οξίδνληαη ηξία ζεκεία ιεηηνπξγίαο ηεο 

κεραλήο: ην ζεκείν ζρεδηαζκνύ κε     πεξηθεξεηαθή γσλία ζηελ είζνδν θαη δύν 

άιια ζεκεία κε αληίζηνηρε γσλία     θαη    . Οη δύν ζηόρνη βειηηζηνπνίεζεο 

παξνπζηάδνληαη ζηε ζπλέρεηα: 

1) Διαρηζηνπνίεζε ηνπ ζπληειεζηή απσιεηώλ νιηθήο πίεζεο κεηαμύ εηζόδνπ θαη 

εμόδνπ ηνπ ρσξίνπ ΤΡΓ. Ο ζπληειεζηήο απσιεηώλ νιηθήο πίεζεο νξίδεηαη αδηάζηαηα 

σο εμήο: 

  
        

      
                                                       (1) 

όπνπ    είλαη ε νιηθή πίεζε εηζόδνπ,     ε νιηθή πίεζε εμόδνπ θαη    ε ζηαηηθή 

πίεζε εηζόδνπ όιεο καδηθά νινθιεξσκέλεο ζηελ εθάζηνηε ζέζε. 

2) Διαρηζηνπνίεζε ηεο απόθιηζεο ηεο γσλίαο εμόδνπ ηεο ξνήο από ηελ αμνληθή 

δηεύζπλζε. Η γσλία εμόδνπ νξίδεηαη σο: 

   √
∑  ̇   

 
 

∑  ̇  
                                                       (2) 

όπνπ θάζε γσλία    δίλεηαη σο: 

       (
 ⃗⃗    

| ⃗⃗ |
)       (

 

√        
)                          (3) 

όπνπ         είλαη νη ηξεηο Καξηεζηαλέο ζπληζηώζεο ηεο ηαρύηεηαο 

 

Σσήμα 175: Αξρηθή γεσκεηξία θαη δηαζηάζεηο πηεξπγίσλ ζηαζεξήο πηεξύγσζεο 

ζπκπηεζηή ηνπ πνιπηερλείνπ ηνπ Βεξνιίλνπ 
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Δπηιύηεο Ρνήο PUMA 
 

Γηα ηε κειέηε ηεο ξνήο γύξσ από ηε ζηαζεξή πηεξύγσζε ρξεζηκνπνηείηαη ν επηιύηεο 

ξνήο PUMA πνπ ηξέρεη ζε θάξηεο γξαθηθώλ. Σν ινγηζκηθό απηό επηιύεη αξηζκεηηθά 

ηηο εμηζώζεηο Navier-Stokes καδί κε ηηο εμηζώζεηο ηνπ κνληέινπ ηύξβεο k-σ SST, πνπ 

ρξεζηκνπνηείηαη ζηελ εξγαζία απηή, ζε έλα ππνινγηζηηθό ρσξίν κε ρξήζε θεληξν-

θνκβηθήο κεζόδνπ πεπεξαζκέλσλ όγθσλ ζε κε-δνκεκέλα πιέγκαηα. Ο επηιύηεο 

PUMA ρεηξίδεηαη ην δνκεκέλν πιέγκα ηεο εξγαζίαο ζαλ κε-δνκεκέλν. Η εθαξκνγή 

ζε θάξηεο γξαθηθώλ πξνζδίδεη ζεκαληηθή αύμεζε ηεο ηαρύηεηαο εθηέιεζεο ησλ 

ππνινγηζκώλ. 

 

Οη εμηζώζεηο πνπ επηιύνληαη δίλνληαη ζηηο Δμ. 4, 6, θαη 7. 

 

   
     

  
 

    
   

   
 

    
   

   
                                         (4) 

 

   , είλαη ην κεηξών πξνζηαζεξνπνίεζεο θαη δίλεηαη σο εμήο: 
 

    

[
 
 
 
 
 
 
   

 

 
| ⃗ |                

 

 
| ⃗ |         

                 

 

 
| ⃗ |               

           

 

 
| ⃗ |                     

     

 
 

 
| ⃗ | [   ] [   ]  [   ]  [   ]    ]

 
 
 
 
 
 
 

           (5)                                          

 
     

  
 

       

   
  ̅        

 

   
[        

  

   
]                (6) 

 
     

  
 

       

   
 

 

  
 ̅       

 

   
[        

  

   
]         

    

 

  

   

  

   
    (7) 

 

Παξακεηξνπνίεζε ησλ πηεξπγίσλ 

 

Πξνθεηκέλνπ λα ζρεδηαζηεί θαη λα βειηηζηνπνηεζεί ε κνξθή ηνπ πηεξπγίνπ απαηηείηαη 

αθξηβήο γεσκεηξηθή αλαπαξάζηαζε. Απηό γίλεηαη κε ρξήζε θαηάιιειεο 

παξακεηξνπνίεζεο. ηελ παξακεηξνπνίεζε πξέπεη λα ρξεζηκνπνηνύληαη παξάκεηξνη, 

ε θύζε ησλ νπνίσλ ζρεηίδεηαη άκεζα κε ηε ζεσξία ησλ ζηξνβηινκεραλώλ όπσο ε 

κεζεκβξηλή ηνκή, νη γσλίεο κεηάιινπ θαη ε θαηαλνκή πάρνπο. Η παξακεηξνπνίεζε 

πνπ ζα ρξεζηκνπνηεζεί γίλεηαη κε ρξήζε ηνπ ινγηζκηθνύ GMTurbo πνπ έρεη 

αλαπηπρζεί από ηε ΜΠΤΡ&Β/ΔΜΠ.  

 

GMTurbo 

 

Σν ινγηζκηθό GMTurbo ιακβάλεη ηηο απαξαίηεηεο κεηαβιεηέο εηζόδνπ πξνθεηκέλνπ 

λα δεκηνπξγήζεη ηελ επηθάλεηα ησλ δύν πιεπξώλ, ππεξπίεζεο θαη ππνπίεζεο, ελόο    

πηεξπγίνπ κε ρξήζε αλαπαξάζηαζεο NURBS, ζε κνξθή ζπκβαηή κε ινγηζκηθά CAD. 

Η δηαδηθαζία πνπ αθνινπζείηαη πεξηγξάθεηαη ζηε ζπλέρεηα. 
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Αξρηθά, νξίδνληαη νη NURBS θακπύιεο πνπ πεξηγξάθνπλ ηηο κεζεκβξηλέο ησλ 

ηνηρσκάησλ πνδόο θαη θεθαιήο, εηζόδνπ, εμόδνπ θαη ησλ αθκώλ πξόζπησζεο θαη 

εθθπγήο ηνπ πηεξπγίνπ. ηε ζπλέρεηα, δεκηνπξγνύληαη νη ελδηάκεζεο θακπύιεο ζην 

κεζεκβξηλό επίπεδν νη νπνίεο απνηεινύλ εθ πεξηζηξνθήο επηθάλεηεο πνπ 

κεηαζρεκαηίδνληαη ζύκκνξθα. ηε ζπλέρεηα, ππνινγίδεηαη ε κέζε γξακκή 

θπξηόηεηαο κε κία θπβηθή θακπύιε Bézier. Έρνληαο νξίζεη κία κέζε γξακκή 

θπξηόηεηαο ζε θάζε εθ πεξηζηξνθήο επηθάλεηα, έρεη δεκηνπξγεζεί ην πηεξύγην 

κεδεληθνύ πάρνπο. Γίλεηαη ππέξζεζε θαηαλνκώλ πάρνπο ζηηο δύν πιεπξέο ππεξπίεζεο 

θαη ππνπίεζεο, θαηά κήθνο ηνπ πηεξπγίνπ. Σέινο, πξαγκαηνπνηείηαη παξεκβνιή κε 

δύν NURBS επηθάλεηεο ησλ αεξνηνκώλ θαηά κήθνο ηνπ πηεξπγίνπ γηα ηελ 

νινθιήξσζε ηεο θαηαζθεπήο ηνπ πηεξπγίνπ όπσο θαίλεηαη ζην ρ. 2. 

 
Σσήμα 276: Σειηθό πηεξύγην ζηαζεξήο πηεξύγσζεο ζπκπηεζηή ηνπ πνιπηερλείνπ ηνπ 

Βεξνιίλνπ 

 

Λογιζμικό Ανηίζηποθηρ Παπαμεηποποίηζηρ 

 

Πξνθεηκέλνπ λα πξαγκαηνπνηεζεί ε παξακεηξνπνίεζε κέζσ GMTurbo πξέπεη πξώηα 

λα ρξεζηκνπνηεζεί ην Λνγηζκηθό Αληίζηξνθεο Παξακεηξνπνίεζεο RPT ην νπνίν 

κεηαηξέπεη έλα πιέγκα ΤΡΓ ζε παξακέηξνπο εηζόδνπ ζπκβαηέο κε ην  ινγηζκηθό 

GMTurbo. Η κέζνδνο πνπ αθνινπζείηαη πεξηγξάθεηαη ζηε ζπλέρεηα. 

 

ε πξώηε θάζε, ππνινγίδεηαη ε κεζεκβξηλή ηνκή ηνπ πιέγκαηνο. ηε ζπλέρεηα, 

γίλεηαη ππνινγηζκόο ησλ πιεπξώλ ππεξπίεζεο θαη ππνπίεζεο θαη ηεο κέζεο γξακκήο 

θπξηόηεηαο κε πξνζέγγηζε ζεκείσλ από κία θπβηθή θακπύιε Bézier. Σέινο, 

ππνινγίδεηαη ε θαηαλνκή πάρνπο θαηά κήθνο ηεο ρνξδήο ηνπ πηεξπγίνπ.  
 

Λογιζμικό Πποζαπμογήρ Πλέγμαηορ GAT 

Πξνθεηκέλνπ λα αθνινπζήζεη αλάιπζε ΤΡΓ κε ρξήζε θάπνηνπ θώδηθα, απαηηείηαη ε 

πξνζαξκνγή πιέγκαηνο γύξσ από ηελ παξαγόκελε από ηνλ GMTurbo γεσκεηξία. 

Απηό γίλεηαη κε ρξήζε ηνπ Λνγηζκηθνύ Πξνζαξκνγήο Πιέγκαηνο, GAT, κε ην νπνίν 

ην αξρηθό πιέγκα πξνζαξκόδεηαη ζηε λέα γεσκεηξία κε ρξήζε ηνπ    θαη    

Λνγηζκηθνύ Παξακόξθσζεο Πιέγκαηνο κε ηε κέζνδν ησλ Γξακκηθώλ Διαηεξίσλ 

πνπ έρεη αλαπηπρζεί από ηελ ΜΠΤΡ&Β/ΔΜΠ. Η πξνζαξκνγή πιέγκαηνο 

πξαγκαηνπνηείηαη, αξρηθά, δεκηνπξγώληαο επηθαλεηαθό πιέγκα πάλσ ζηελ GMTurbo 

γεσκεηξία θαη ζηε ζπλέρεηα, παξακνξθώλνληαο ην αξρηθό νγθηθό πιέγκα κε βάζε ην 

επηθαλεηαθό. 
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Γηα ηε δεκηνπξγία επηθαλεηαθνύ πιέγκαηνο πάλσ ζηε GMTurbo γεσκεηξία, 

πξνζαξκόδεηαη ην αξρηθό επηθαλεηαθό πιέγκα πάλσ ζηα ζηεξεά όξηα ηεο γεσκεηξίαο. 

Σα ζηεξεά όξηα είλαη ηα εμήο: 1) Πιεπξά ππεξπίεζεο, 2) Πιεπξά ππνπίεζεο, 3) 

Κέιπθνο πνδόο, 4) Κέιπθνο θεθαιήο. Γηα θαζέλα αθνινπζείηαη ε εμήο δηαδηθαζία: 

Σν αξρηθό επηθαλεηαθό πιέγκα πξνβάιιεηαη ζηελ NURBS επηθάλεηα πνπ πξνθύπηεη 

από ην ινγηζκηθό GMTurbo. Ωζηόζν, από απηή ηελ πξνβνιή, ηα όξηα ηνπ πιέγκαηνο 

δελ ηαπηίδνληαη κε ηα όξηα ηεο επηθάλεηαο. Γηα ηελ επίιπζε απηνύ ηνπ πξνβιήκαηνο, 

πξαγκαηνπνηείηαη παξακόξθσζε ηνπ πξνβεβιεκέλνπ πιέγκαηνο ώζηε λα εθαξκόδεη 

ζηα όξηα ηεο επηθάλεηαο κε ηε ρξήζε ηεο κεζόδνπ γξακκηθώλ ειαηεξίσλ. Αθνύ 

ππνινγηζηνύλ ηα έγθπξα επηθαλεηαθά πιέγκαηα πάλσ ζηα ζηεξεά όξηα, κεηαηνπίδεηαη 

ην εζσηεξηθό πιέγκα κε ηε ρξήζε ελόο θώδηθα παξακόξθσζεο    πιέγκαηνο κε ηε 

κέζνδν ησλ γξακκηθώλ ειαηεξίσλ. Έηζη, πξνθύπηεη έλα έγθπξν νγθηθό πιέγκα. ην 

ρ. 3 δίλεηαη ην ηειηθό επηθαλεηαθό πιέγκα όισλ ησλ ζηεξεώλ νξίσλ πνπ βξίζθεηαη 

πάλσ ζηε GMTurbo γεσκεηξία. 

 
Σσήμα 377: Σειηθό (θόθθηλν) πιέγκα θαη αξρηθό (καύξν) 

Πνζνηηθνπνίεζε ησλ Πεξηνξηζκώλ 
 

Ο ζηαζεξόο αξηζκόο ησλ πηεξπγίσλ     , ιακβάλεηαη ππόςε ζηελ επηβνιή ηεο 

ζπλζήθεο εμόδνπ ηεο ξνήο κάδαο ε νπνία είλαη ίζε κε ηελ ζπλνιηθή κάδα εμόδνπ 

δηαηξεκέλε κε ηνλ αξηζκό ησλ πηεξπγίσλ:                 ⁄⁄  

Η αμνληθή ρνξδή ηνπ πηεξπγίνπ δηαηεξείηαη ζηαζεξή κέζσ ηεο παξακεηξνπνίεζεο 

ηνπ GMTurbo πνπ επηηξέπεη ηέηνηεο επηινγέο. 

Η ειάρηζηε ηηκή αθηίλαο      γηα ηελ αθκή πξνζβνιήο θαη ηελ αθκή εθθπγήο ηνπ 

πηεξπγίνπ πιεξείηαη επίζεο κέζσ ηεο GMTurbo παξακεηξνπνίεζεο πνπ δίλεη ηε 

δπλαηόηεηα ζηνλ ρξήζηε λα θαζνξίζεη ην ζρήκα ησλ δύν αθκώλ.  

Ο πεξηνξηζκόο πνπ απαηηεί, ζηηο ζέζεηο θαηαζθεπήο ησλ δύν νπώλ, ην πάρνο πιηθνύ 

λα επηηξέπεη ηελ ύπαξμε θπιίλδξνπ αθηίλαο      θαη βάζνπο      ώζηε λα κπνξεί 
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λα θαηαζθεπαζηεί ζπείξσκα αληηκεησπίδεηαη κέζσ ηεο δηαδηθαζίαο πνπ πεξηγξάθεηαη 

ζηελ ζπλέρεηα, πιεξώληαο παξάιιεια θαη ηνλ πεξηνξηζκό ηεο απόζηαζεο ησλ δύν 

νπώλ πνπ πξέπεη λα είλαη κεγαιύηεξε από      .  

Αξρηθά, ην εύξνο ηνπ ζπληειεζηή πάρνπο γηα ηηο πιεπξέο ππεξπίεζεο θαη ππνπίεζεο 

θαζνξίδεηαη ώζηε λα επηηξέπεη ηελ ύπαξμε πάρνπο κεγαιύηεξν από    . Δπηπιένλ, 

θαηαζθεπάδεηαη πιέγκα εζσηεξηθά ηνπ πηεξπγίνπ θαη θαηαζθεπάδνληαη επζείεο 

γξακκέο, ζηε δηεύζπλζε ηεο αθκήο πξνζβνιήο, ζε όιε ηελ επηθάλεηα ηνπ πηεξπγίνπ 

νη νπνίεο μεθηλνύλ ηόζν από ην θέιπθνο πνδόο όζν θαη από ην θέιπθνο θεθαιήο 

όπσο θαίλεηαη ζην ρ. 4. 

 

Σσήμα 478: Οη θόθθηλεο γξακκέο μεθηλνύλ από ην θέιπθνο πνδόο (κπιε επηθάλεηα) κε 

θαηεύζπλζε πξνο ην θέιπθνο θεθαιήο (θίηξηλε επηθάλεηα) θαη νη καύξεο γξακκέο 

μεθηλνύλ από ην θέιπθνο θεθαιήο κε θαηεύζπλζε πξνο ην θέιπθνο πνδόο. 

Οη γξακκέο απηέο νη νπνίεο ηέκλνπλ ην πηεξύγην έρνπλ δηαθνξεηηθά κήθε ηα νπνία 

απνηεινύλ ην βάζνο ησλ νπώλ πνπ δύλαηαη λα θαηαζθεπαζηνύλ μεθηλώληαο ηόζν από 

ην θέιπθνο πνδόο όζν θαη από ην θέιπθνο θεθαιήο. πλεπώο, δηαθνξεηηθέο πεξηνρέο 

ηνπ πηεξπγίνπ ηέκλνληαη από δηαθνξεηηθά κήθε γξακκώλ δειαδή δηαθνξεηηθά βάζε 

νπώλ, όπσο θάηλεηαη ζην ρ. 5. 
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Σσήμα 579: Ιζνεπηθάλεηεο ηνπ βάζνπο νπώλ   ζε   από ην θέιπθνο πνδόο (πάλσ 

ζρήκα) θαη από ην θέιπθνο θεθαιήο (θάησ ζρήκα).  

Από ην ρ. 5 πξνθύπηεη όηη ην βάζνο ησλ       κπνξεί λα θαηαζθεπαζηεί ζηελ 

πεξηνρή πνπ πεξηθιύεηαη από ηελ γαιάδηα γξακκή. Η επηθάλεηα πνπ επηηξέπεη ην 

δεηνύκελν βάζνο εμάγεηαη ζε       ζπληεηαγκέλεο πνπ απνηεινύλ ηζνγξακκέο ηεο 

κέζεο γξακκήο θπξηόηεηαο θαη ησλ πιεπξώλ ππεξπίεζεο θαη ππνπίεζεο. Σα ζεκεία 

απηά παξεκβάιινληαη κε θακπύιεο SPLINE. Οη ζπληεηαγκέλεο κεηαηξέπνληαη ζην 

επίπεδν         θαη ππνινγίδεηαη ε απόζηαζε κεηαμύ ησλ ζεκείσλ ηεο πιεπξάο 

ππεξπίεζεο θαη ηεο πιεπξάο ππνπίεζεο. Η απόζηαζε απηή πξέπεη λα είλαη 

ηνπιάρηζηνλ         θαζώο επηβάιιεηαη ζπληειεζηήο αζθαιείαο    . Σέινο, ε 

απόζηαζε κεηαμύ ηνπ δεύηεξνπ θαη ηνπ πξνηειεπηαίνπ ζεκείνπ, επί ηνπ πηεξπγίνπ 

πνπ πιεξεί ηνλ πεξηνξηζκό ησλ         ππνινγίδεηαη θαη πξέπεη λα είλαη 

κεγαιύηεξε από      . 

 

Ο πεξηνξηζκόο πνπ απαηηεί ην πηεξύγην πξέπεη λα κπνξεί λα ρσξέζεη ζε πιάθα 

δηαζηάζεσλ                πιεξείηαη κε ηνλ θαζνξηζκό ηνπ εύξνπο κεηαβνιήο 

ηεο ζέζεο ησλ αθκώλ εθθπγήο θαη πξνζβνιήο θαηά ηελ   δηεύζπλζε θαη ηνπ εύξνπο 

ησλ    ,    ,    ,    ,     θαη      

Σέινο, δελ ππάξρεη κεηαβνιή ηεο ζέζεο ηνπ θειύθνπο πνδόο θαηά ηελ αθηηληθή 

δηεύζπλζε πιεξώληαο ηνλ αληίζηνηρν πεξηνξηζκό. Η αθηίλα ηνπ θειύθνπο πνδόο 

ειέγρεηαη από ηε GMTurbo παξακεηξνπνίεζε κέζσ ηεο γελέηεηξαο ηνπ hub. 

Αλάιπζε κε ινγηζκηθό ΤΡΓ 
 

Πξαγκαηνπνηήζεθε αλάιπζε ηεο ξνήο κε ρξήζε ηνπ επηιύηε PUMA πξνθεηκέλνπ λα 

επαιεζεπηνύλ ηα απνηειέζκαηα από ηα πεηξακαηηθά δεδνκέλα. Η αλάιπζε γίλεηαη κε 

κνληέια ζπκπηεζηήο ξνήο, κε θαη ρσξίο ρξήζε πξνζηαζεξνπνίεζεο ρακειώλ αξηζκώλ 

Mach, θαη αζπκπίεζηεο ξνήο. ην ρ. 6 δίλεηαη ν Mach εμόδνπ, από ηνλ ΤΡΓ θώδηθα, 

γηα ηηο ηξεηο δηαθνξεηηθέο πεξηπηώζεηο γσλίαο, καδί κε ηα αληίζηνηρα πεηξακαηηθά 
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δεδνκέλα. ηνλ νξηδόληην άμνλα, δίλεηαη ε αθηίλα   ζε    ε νπνία απμάλεηαη από ην 

θέιπθνο πνδόο ζην θέιπθνο θεθαιήο. 

 

 
 

Σσήμα 680: ύγθξηζε Mach εμόδνπ γηα θώδηθα ΤΡΓ θαη πεηξακαηηθά δεδνκέλα γηα 

        θαη     γσλία εηζόδνπ 

Από ην ρ. 6 πξνθύπηεη όηη ηα απνηειέζκαηα ηνπ θώδηθα ΤΡΓ ζπκπηεζηήο ξνήο είλαη 

πνιύ θνληά ζηα πεηξακαηηθά κε ζρεηηθό ζθάικα κηθξόηεξν από    . Σν ζρεηηθό 

ζθάικα νξίδεηαη κέζσ ηεο: 

 

   
               

           
                                               (8) 

 

Πξνθύπηεη επίζεο όηη γηα νιεο ηηο ηηκέο γσλίαο εηζόδνπ ν αξηζκόο Mach είλαη 

κηθξόηεξνο από       γηα ηηο δηάθνξεο ηηκέο ηεο αθηίλαο. πλεπώο, είλαη δπλαηόλ λα 

ρξεζηκνπνηεζεί πξνζηαζεξνπνίεζε ρακειώλ αξηζκώλ Mach αθόκα θαη λα 

πξνζεγγηζζεί ε ξνή από αζπκπίεζην θώδηθα όπσο θαίλεηαη θαη ζην ρ. 7 γηα ηελ 

γσλία  .  

 

ην ρ. 7 δίλεηαη ε γσλία   εμόδνπ γηα     γσλία εηζόδνπ γηα θώδηθα ΤΡΓ 

ζπκπηεζηήο θαη αζπκπίεζηεο ξνήο θαη κε ρξήζε πξνζηαζεξνπνίεζεο ρακειώλ 

αξηζκώλ Mach: 
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Σσήμα 781: Γσλία   εμόδνπ γηα     γσλία εηζόδνπ γηα θώδηθα ΤΡΓ ζπκπηεζηήο ξνήο 

κε θαη ρσξίο ρξήζε πξνζηαζεξνπνίεζεο ρακειώλ Mach θαη γηα αζπκπίεζηε ξνή 

Βειηηζηνπνίεζε κε Δμειηθηηθνύο Αιγνξίζκνπο 
 

Οη κεηαβιεηέο ζρεδηαζκνύ πξνθύπηνπλ σο εμήο: 

 

 Η αθκή πξνζβνιήο θαη ε αθκή εθθπγήο δίλνληαη ζε      . Σξεηο από ηηο εθηά 

κεηαβιεηέο   ησλ θακππιώλ NURBS ηόζν γηα ηελ αθκή πξνζβνιήο όζν θαη 

γηα ηελ αθκή εθθπγήο ρξεζηκνπνηνύληαη σο κεηαβιεηέο ζρεδηαζκνύ. 

 

 Οη κεηαβιεηέο    ,    ,    ,    ,    ,     θαη ζπληειεζηήο πάρνπο γηα ηηο 

πιεπξέο ππεξπίεζεο θαη ππνπίεζεο δίλνληαη ζε θαηά κήθνο ηνπ πηεξπγίνπ 

θαηαλνκή κε πέληε ζεκεία γηα θάζε θακπύιε NURBS. Όια ηα ζεκεία    , 

   ,    ,    ,    ,     θαη ζπληειεζηή πάρνπο ρξεζηκνπνηνύληαη σο 

κεηαβιεηέο ζρεδηαζκνύ. 

Ο ζπλνιηθόο αξηζκόο ησλ κεηαβιεηώλ ζρεδηαζκνύ είλαη   . 

Σν κέησπν Pareto γηα ην πξόβιεκα κε θαη ρσξίο πεξηνξηζκνύο δίλεηαη ζην ρ. 8. 

Δπίζεο, δίλνληαη θαη νη αληίζηνηρεο ηηκέο γηα ηελ αξρηθή γεσκεηξία. Η 

βειηηζηνπνίεζε αθνξά ην ζεκείν ιεηηνπξγίαο κε γσλία είζνδνπ    . 
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Σσήμα 8: Μέησπν Pareto γηα βειηηζηνπνίεζε κε θαη ρσξίο πεξηνξηζκνύο 

Η ηειηθή ιύζε γηα ην πξόβιεκα κε πεξηνξηζκνύο, θπθισκέλε κε κσβ ζην ρ. 8 

επηηπγράλεη κείσζε        ζηνλ ζπληειεζηή απσιεηώλ νιηθήο πίεζεο θαη κείσζε 

     πνπ αληηζηνηρεί ζε        ζηελ γσλία εμόδνπ. Η ηειηθή βειηηζηνπνηεκέλε 

γεσκεηξία δίλεηαη ζην ρ. 9.  

 
 

 
Σσήμα 982: Αξρηθή γεσκεηξία (γθξη), βειηηζηνπνηεκέλε ρσξίο πεξηνξηζκνύο (θόθθηλε) 

θαη βειηηζηνπνηεκέλε κε πεξηνξηζκνύο (κπιε) γεσκεηξία ηνπ πηεξπγίνπ 

Βειηηζηνπνίεζε κε πδπγή Μέζνδν 

 
Η ζπδπγήο κέζνδνο πνπ αλαπηύρζεθε ζηε ΜΠΤΡ&Β/ΔΜΠ ρξεζηκνπνηείηαη γηα ηε 

δεκηνπξγία ηνπ ράξηε επαηζζεζίαο πνπ παξέρεη ηνλ ηξόπν πνπ πξέπεη λα 

δηαθνξνπνηεζεί ε κνξθή ησλ πηεξπγίσλ γηα ηελ επίηεπμε ησλ  ζηόρσλ ηνπ 

πξνβιήκαηνο αιια θαη γηα ηελ βειηηζηνπνίεζε κνξθήο ησλ πηεξπγίσλ κε ζεκαληηθά 

ιηγόηεξν ππνινγηζηηθό θόζηνο ζε ζρέζε κε ηε ρξήζε εμειηθηηθώλ αιγνξίζκσλ. ην 

ρ. 10 δίλεηαη ν ράξηεο επαηζζεζίαο κε αληηθεηκεληθή ζπλάξηεζε ηνλ ζπληειεζηή 

απσιεηώλ νιηθήο πίεζεο. 
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Σσήμα 1083: Βειηηζηνπνηεκέλε ρσξίο πεξηνξηζκνύο κε ρξήζε ΔΑ (αξηζηεξά) θαη 

ράξηεο επαηζζεζίαο (δεμηά) κε ρξήζε ζπδπγνύο κεζόδνπ. Σν θόθθηλν ρξώκα 

αλαπαξηζηά ηξάβεγκα ηεο γεσκεηξίαο πξνο ηα έμσ ελώ ην κπιε ζπξώμηκν πξνο ηα 

κέζα πξνθεηκέλνπ λα επηηεπρζεί ε κείσζε ηνπ ζπληειεζηή απσιεηώλ νιηθήο πίεζεο. 

 

Η δηαθνξνπνίεζε κεηαμύ ησλ δύν ζρεκάησλ νθείιεηαη ζηελ κέζνδν 

παξακεηξνπνίεζεο πνπ ρξεζηκνπνηείηαη ζηελ βειηηζηνπνίεζε κε ΔΑ ε νπνία 

πξνθαιεί νκαινπνίεζε ηνπ ζρήκαηνο ηνπ πηεξπγίνπ. 

 

ην ρ. 11 δίλνληαη νη ηηκέο ηεο ζπλάξηεζεο ζηόρνπ   ε νπνία ειαρηζηνπνηείηαη κε 

ρξήζε ηεο κεζόδνπ απόηνκεο θαζόδνπ. ηε βειηηζηνπνίεζε δελ ιακβάλνληαη ππόςε 

νη θαηαζθεπαζηηθνί πεξηνξηζκνί. ηνλ νξηδόληην άμνλα δίλνληαη νη θύθινη 

βειηηζηνπνίεζεο.  

 

 
 

Σσήμα 11: πληειεζηήο απσιεηώλ νιηθήο πίεζεο   γηα ηνπο δηάθνξνπο θύθινπο 

βειηηζηνπνίεζεο ρσξίο θαηαζθεπαζηηθνύο πεξηνξηζκνύο 
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Ο ζπληειεζηήο απσιεηώλ νιηθήο πίεζεο   κεηώλεηαη ζε        ην νπνίν αληηζηνηρεί 

ζε        κείσζε ζε ζρέζε κε ηελ αξρηθή ηηκή.  

 
Η ηειηθή γεσκεηξία κεηά ηε βειηηζηνπνίεζε δίλεηαη ζην ρ. 12.  

 

 
 

Σσήμα 1284: Αξρηθή γεσκεηξία (γθξη), βειηηζηνπνηεκέλε ρσξίο πεξηνξηζκνύο (κπιε) 

γεσκεηξία ηνπ πηεξπγίνπ 

ύλνςε 

 
ηε δηπισκαηηθή εξγαζία πξαγκαηνπνηήζεθε ππνινγηζηηθή κειέηε θαη 

βειηηζηνπνίεζε κνξθήο ησλ πηεξπγίσλ  ηεο ζηαζεξήο πηεξύγσζεο ζπκπηεζηή ηνπ 

Πνιπηερλείνπ ηνπ Βεξνιίλνπ. πγθεθξηκέλα, πινπνηήζεθαλ ηα αθόινπζα: 

 

 Δπαιήζεπζε ησλ απνηειεζκάησλ ηνπ επηιύηε ΤΡΓ PUMA κέζσ ησλ 

πεηξακαηηθώλ δεδνκέλσλ πνπ παξέρνληαη από ην Πνιπηερλείν ηνπ Βεξνιίλνπ. 

Δπίζεο, έγηλε ζύγθξηζε ησλ πεηξακαηηθώλ δεδνκέλσλ κε ηα απνηειέζκαηα 

πνπ πξνέθπςαλ από ηηο δηάθνξεο εθδνρέο ηνπ επηιύηε PUMA νη νπνίεο 

αθνξνύλ ζπκπηεζηή θαη αζπκπίεζηε ξνή θαη ρξήζε πξνζηαζεξνπνίεζεο 

ρακειώλ αξηζκώλ Mach. Πξνθύπηεη όηη ν επηιύηεο PUMA δίλεη 

απνηειέζκαηα εμαηξεηηθά θνληά ζηα πεηξακαηηθά. Δπίζεο, ε ξνή κπνξεί λα 
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πξνζεγγηζζεί ηθαλνπνηεηηθά από ηνλ αζπκπίεζην θώδηθα. Η ρξήζε ηνπ 

αζπκπίεζηνπ θώδηθα κείώλεη ηνλ ρξόλν επίιπζεο ηεο ξνήο από   ζε     ώξεο. 

 

 Δθαξκνγή ηνπ Λνγηζκηθνύ Αληίζηξνθεο Παξακεηξνπνίεζεο γηα ηε 

κεηαηξνπή ηεο γεσκεηξίαο ηνπ πηεξπγίνπ, ε νπνία δίλεηαη κνξθή πιέγκαηνο 

ΤΡΓ, ζε ζπκβαηή κε ην ινγηζκηθό GMTurbo κνξθή, ηνπ ινγηζκηθνύ 

GMTurbo γηα ηελ θαηαζθεπή ηνπ πηεξπγίνπ θαη ηνπ Λνγηζκηθνύ 

Πξνζαξκνγήο Πιέγκαηνο γηα ηε δεκηνπξγία πιέγκαηνο γύξσ από ηελ 

GMTurbo γεσκεηξία κε πξνζαξκνγή ηνπ αξρηθνύ. Η παξακεηξνπνηεκέλε 

γεσκεηξία ζρεδόλ ηαπηίδεηαη κε ηελ αξρηθή. Όκνηα εηθόλα πξνθύπηεη θαη από 

ηελ ζύγθξηζε ηνπ αξρηθνύ πιέγκαηνο κε απηό πνπ πξνθύπηεη από ην 

Λνγηζκηθό Πξνζαξκνγήο Πιέγκαηνο. πλεπώο, ηα παξαπάλσ ινγηζκηθά 

κπνξνύλ λα εληαρζνύλ ζηελ βειηηζηνπνίεζε. 

 

 Δθαξκνγή θαη πξνγξακκαηηζκόο θώδηθα γηα ηελ πνζνηηθνπνίεζε ησλ 

θαηαζθεπαζηηθώλ πεξηνξηζκώλ ηνπ πξνβιήκαηνο. Οη πεξηνξηζκνί 

αληηκεησπίδνληαη απνηειεζκαηηθά θαη εληάζζνληαη ζηε βειηηζηνπνίεζε. 

 

 Δθαξκνγή βειηηζηνπνίεζεο κνξθήο κε ρξήζε ηνπ ινγηζκηθνύ εμειηθηηθώλ 

αιγνξίζκσλ EASY. Σα απνηειέζκαηα ηεο βειηηζηνπνίεζεο είλαη αξθεηά 

ηθαλνπνηεηηθά ιακβάλνληαο ππόςε ηνπο δηαζέζηκνπο γηα απηήλ ηελ 

δηπισκαηηθή ππνινγηζηηθνύο πόξνπο θαη κπνξνύλ λα βειηησζνύλ πεξαηηέξσ 

αλ ρξεζηκνπνηεζνύλ πεξηζζόηεξνη ππνινγηζηηθνί πόξνη. Η βειηηζηνπνίεζε κε 

ΔΑ δηήξθεζε πεξίπνπ κία εβδνκάδα θαηαιήγνληαο ζε κείσζε        ηνπ 

ζπληειεζηή απσιεηώλ νιηθήο πίεζεο θαη      πνπ αληηζηνηρεί ζε        ζηελ 

γσλία εμόδνπ, γηα ηελ πεξίπησζε πνπ ιακβάλνληαη ππόςε νη πεξηνξηζκνί. 

 

 Δθαξκνγή ηεο ζπδπγνύο κεζόδνπ γηα ηε δεκηνπξγία ηνπ ράξηε επαηζζεζίαο 

πνπ δείρλεη ηνλ δξόκν γηα ηελ αιιαγή ηνπ ζρήκαηνο ηνπ πηεξπγίνπ γηα ηελ 

βειηηζηνπνίεζε ηεο γεσκεηξίαο αιια θαη γηα ηε βειηηζηνπνίεζε ηεο κνξθήο 

ηνπ κε ρακειό ππνινγηζηηθό θόζηνο. Σα απνηειέζκαηα ηνπ ράξηε 

επαηζζεζίαο ήηαλ αξθεηά θνληά ζην ηειηθό, βειηηζηνπνηεκέλν κε ΔΑ, 

πηεξύγην. Όζνλ αθνξά ηελ βειηηζηνπνίεζε, ν ζπληειεζηήο   κεηώλεηαη θαηά 

      . Σα απνηειέζκαηα ηεο βειηηζηνπνίεζεο ρσξίο πεξηνξηζκνύο κε ρξήζε 

ηεο ζπδπγνύο κεζόδνπ είλαη θαιύηεξα από ηα απνηειέζκαηα ηεο 

βειηηζηνπνίεζεο κε ΔΑ ρσξίο πεξηνξηζκνύο. Παξάιιεια, ην ππνινγηζηηθό 

θόζηνο γηα ηνπο ηέζζεξηο θύθινπο βειηηζηνπνίεζεο ήηαλ πεξίπνπ    ώξεο, 

εμαηηεξηθά ρακειόηεξν από απηό ησλ ΔΑ. Ωζηόζν, νη ΔΑ ρξεζηκνπνηήζεθαλ 

γηα βειηηζηνπνίεζε δύν ζηόρσλ ελώ ε ζπδπγήο κέζνδνο γηα βειηηζηνπνίεζε 

ελόο ζηόρνπ. πλεπώο, δελ είλαη βέβαην όηη ε βειηηζηνπνίεζε κε ζπδπγή 

κέζνδν ζα δώζεη θαιύηεξα απνηειέζκαηα από ηνλ ΔΑ γηα βειηηζηνπνίεζε 

δύν ζηόρσλ.  


