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Distributed Cooperation of Multiple Robots under Operational Constraints via
Lean Communication

by Panagiotis VLANTIS

The autonomous operation of robots inside obstacle cluttered environments
constitutes an actively studied research topic and autonomous navigation is unde-
niably a fundamental aspect of it. Moreover, as the tasks that robots are called to
fulfill grow in complexity by the day, the employment of multi-agent robotic sys-
tems, which generally exhibit higher robustness and versatility than their single-
robot counterparts, progressively increases. Thus, the autonomous navigation prob-
lems that need to be addressed become more and more challenging, increasing the
need for more efficient and robust path and motion planning schemes.

In this dissertation, we employ hierarchical decomposition techniques, coupled
with suitably designed adaptive configuration space exploration schemes for build-
ing versatile and complete planners, capable of computing “paths” connecting two
given configurations, or determine the absence of feasible solutions, after a finite
amount of steps. In addition, distributed control laws based on artificial potential
fields, which can elegantly realize the generated high-level plans, are devised for
addressing the navigation problem within complex, planar workspaces with guar-
anteed convergence properties. Finally, we demonstrate the efficacy of the proposed
methodologies for addressing real-world problems, such as coordinating the motion
of multiple robots operating within the same environment, as well as coordinating

the transportation of an object by a team of cooperating mobile manipulators.
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Chapter 1

Introduction

1.1 Motivation

The autonomous operation of robotic platforms inside cluttered environments con-
stitutes an actively studied research topic with autonomous navigation being unde-
niably a fundamental aspect of it. Moreover, as the tasks that robots are called to
fulfill grow in complexity by the day, the employment of multi-agent robotic sys-
tems, which generally exhibit higher robustness and versatility than their single-
robot counterparts, progressively increases. Thus, the robot navigation problems
that need to be addressed become more and more challenging, increasing the need
for more efficient and robust path and motion planning schemes. In addition, in
order to design efficient and provably correct navigation schemes, one inevitably
requires to model and understand the complicated topology of high-dimensional
configuration spaces resulting from robotics systems with several degrees of free-

dom.!

A wide range of techniques has been employed in the literature for designing
control schemes that enable robots to navigate within complex environments, with
configuration space motion planning [33] being among the earliest. Given an ex-
plicit representation of the system’s configuration space, several planning and con-
trol schemes, such as ones based on exact cell decomposition approaches [53, 8] and
roadmap construction approaches [12], can be used for safely steering the robot to-
ward its target configuration, satisfying the prescribed task specifications. However,
describing exactly the configuration space even of trivial robotics systems in terms
of standard geometric and topological models, may prove to be a daunting task, if
not an impossible one. On the other hand, approximate decomposition techniques,
such as Slice Projection (SP) [69, 70] and Hierarchical Approximate Cell Decomposi-
tion (HACD) [10], avoid these issue by constructing instead an approximation of the
configuration space defined as the union of finite, simpler geometrical shapes, such
as hyper-rectangles and polytopes, at the expense of accuracy and completeness. In
addition, the complexity of motion planning is known to grow exponentially as the

IThe configuration space of a robotic system is the set of all possible robot states that are free of
collisions and satisfy any imposed kinematic and dynamic constraints [69].
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dimension of the configuration space increases [12]. As such, configuration space
navigation techniques are generally restricted to very low dimensional and simple

settings.

Sampling-based motion planning [54, 40] constitutes another modern alterna-
tive solution that manages to circumvent the aforementioned issues as it requires
instead an implicit definition of the configuration space, which is generally much
easier to provide. On the other hand, these methodologies tackle solely the cor-
responding path finding problem and provide an open-loop solution that another
class of controllers must track as closely as possible in order to ensure invariance
of the robotic system’s free configuration space. Moreover, this class of planners
are known to have a hard time finding solutions to problems which are subject to
relatively tight constraints (e.g., narrow corridors). Another deficiency of sampling-
based planners is also their inability of determining infeasibility of a given problem,
thus failing to answer connectivity queries within a specified amount of time pro-
vides no insight about the reason behind it.

Finally, another actively researched class of controllers tackles the path and mo-
tion planning sub-problems simultaneously by designing robot commands accord-
ing to an underlying Artificial Potential Field (APF). Originally introduced in [46],
APFs in general provide a simple means of encoding collision avoidance specifica-
tions and devising reactive control schemes, with their negated gradient functioning
as a reference motion direction that drives the robot towards the desired goal config-
uration. Despite its intuitive nature, as shown in [49], this class of controllers suffers
unavoidably from the presence of unwanted equilibria induced by the workspace’s
topology and whose region of attraction may not be trivial. Also, artificial potential
fields admitted in a closed-form expression are generally restricted to geometrically
simple spaces, thus elaborate transformations suitable for navigation need to be de-
signed for mapping real workspaces onto such ideal worlds. On top of that, most
artificial potential fields and transformations alike require tedious off-line tuning of
certain design parameters in order to eliminate unwanted local minima and render
the transformation a diffeomorphism.

In brief, the path and motion planning schemes for robot navigation mentioned
above fundamentally differ from each other. Furthermore, each family exhibits a dif-
ferent set of advantages and disadvantages over the rest: sampling-based methods
can address intricate problems but fail to exploit local properties of the configura-
tion space configuration space decomposition methods use an explicit representa-
tion to ensure completeness at the expense of high computational cost, and artifi-
cial potential fields can produce closed-form control laws with guaranteed safety
and convergence properties for topologically and geometrically simple workspaces.
Hence, the question that naturally arises is whether it is possible to combine the
strengths of these methods in order to design more versatile autonomous robot nav-
igation schemes. In this dissertation, we answer this question in the affirmative as
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we employ hierarchical decomposition techniques, coupled with suitably designed
adaptive exploration schemes, to build versatile and complete planners that can an-
swer connectivity queries, or determine their infeasibility, after a finite amount of
steps. In addition, we equip the considered robotic systems with distributed control
laws based on artificial potential fields which can safely realize the generated high-
level plans, addressing the navigation problem within complex, planar workspaces
with guaranteed convergence properties. We also remark that, in this work, we
design more sophisticated high-level planners by also taking advantage of the pro-
posed low-level control laws” ability to easily handle environments with arbitrary
connectedness and shape, thus eliminating the need for partitioning the configura-
tion space into unnecessarily simple components, such as rectanguloids. Finally, we
demonstrate the efficacy of the proposed methodologies for addressing real-world
problems, such as coordinating the motion of multiple robots operating within the
same environment, as well as coordinating the transportation of an object by a team
of cooperating mobile manipulators.

1.2 State-of-the-Art and Related Work

The autonomous navigation problem of robots in cluttered environments is a well
studied one and various methods addressing it can be found in the vast litera-
ture. Although no clear distinction exists, a categorization that is frequently adopted
classifies the alternative motion planning schemes into three wide categories [53]:
a) Sampling-based Motion Planning, b) Combinatorial Motion Planning, and c) Feed-
back-based Motion Planning.

The first family of planners and, undoubtedly, the most actively studied of the
three in modern literature, includes methodologies such as probabilistic roadmaps
(PRMs) [40] and rapidly exploring random trees (RRTs) [54]. The probabilistic road-
map method, originally developed independently at different cites [79, 42, 41, 74],
was the first to emerge and get adopted, mainly due to its simplicity and versatil-
ity. This approach comprises of two distinct stages. During the first, pre-processing
stage, the configuration space is sampled for collision-free placements, which are
added as nodes to a graph. Pairs of promising nodes are selected and a (usually
simplistic) local planner is employed for connecting such placements with a feasible
path, if one can be found, which corresponds to an edge of the graph. This process is
repeated for a specified amount of time, which is hopefully sufficient for the result-
ing graph to encapsulate the connectedness of the actual configuration space. Then,
during the second stage, queries are imposed to the planner in the form of pairs
of initial and final configurations. The planner then tries to connect the given con-
figurations to the readily computed graph and, if successful, then standard graph
search algorithms are employed for finding a sequence of connected nodes between
the given configurations, assuming they belong to the same connected component
of the aforementioned graph.
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The basic PRM description leaves some details to be filled in, like how to sam-
ple the underlying space or what local planner to employ. Different aspects of
this methodology have been investigated and several improvements have been pro-
posed over the original abstract scheme, such as Gaussian sampling [9], Bridge-
Test sampling [37, 36, 103], the Small-Step Retraction method [93], Lazy PRM [7],
Obstacle-Based PRM [75, 120], and many more [87, 90, 121, 103, 29, 81, 48]. The
rapidly exploring random trees method, which was originally introduced in [54, 52,
55] for coping with dynamical systems subject to Pfaffian constraints, constitutes
a more versatile, sampling-based alternative to PRM allowing one to address the
navigation problem for more intricate classes of dynamical systems and restrictions.
Optimal variants of the aforementioned methods, in the sense of finding the shortest
path subject to a given metric, were initially presented in [39]. On the other hand,
sampling-based methods strongly rely on fast collision detectors, efficient nearest
neighbor and graph search algorithms, effective sampling strategies and informa-
tive metric selection [61, 56] to operate efficiently. Moreover, these methodologies
are generally having a hard time addressing problems with constricted configura-
tion spaces (e.g., workspaces densely occupied by obstacles or narrow corridors).
To alleviate these issues various attempts have been made. In [3], a novel sen-
sory steering algorithm was designed which used local Voronoi decomposition of
the workspace to significantly improve the path planning performance of sampling
based algorithms near difficult regions such as narrow passages. In [95] and [94],
the authors propose a scheme that samples entire manifolds instead of isolated con-
figurations, which are, in turn, used for approximating the configuration space’s
connectivity graph, thus allowing the planner to perform significantly better even in
tight workspaces. In order to address multi-robot scenarios, when a common graph
representation of the workspace is shared among the agents, efficient methodolo-
gies for coordinating their transitions were proposed in [89, 110, 119]. In [104], a
methodology was presented which addresses cases where the motion of each robot
is restricted to a distinct graph by building a composite roadmap (i.e., the Cartesian
product of the individual graphs). Furthermore, more efficient extensions of this
approach, which work on implicitly defined composite roadmaps and potentially,
lower dimensional configuration spaces, can be found in [117, 118, 101, 99].

Moving on to combinatorial planning schemes, exact cell decomposition and
algebraic approaches, such as [77, 76, 43, 96, 31, 98, 102] to name but a few, were
among the earliest to be considered. In arguably the most exemplary works of this
class [107, 97], the authors tackle the path finding problem for a robot which is able
to translate and rotate within polygonal environments by building a graph of critical
robot configurations [57, 44], i.e., configurations at which the robot has at least two
points in contact with the workspace’s boundary, which encapsulates the topological
structure of the configuration space’s projection onto the robot’s workspace. Also, a
similar approach was presented in [106] for coordinating the motion of teams of two
and three disk shaped robots. Unfortunately, careful implementation of such exact
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cell decomposition algorithms, generally achieves a complexity doubly exponential
w.r.t. the degrees of freedom of the robotic system [17]. A more elaborate solution,
known as the Roadmap Algorithm, which reduces this complexity to singly expo-
nential time, was presented by Canny in [12]. For the spacial case of point and ball
shaped robots, operating within a compact, simply connected workspace, a novel
control scheme was introduced in [1, 4] which, by partitioning the system’s configu-
ration space into strata based on nearest neighbor relations and constructing binary
tree representations of those, manages to reduce the computational complexity of
the motion planning problem down to O(n?) time.

Nevertheless, despite their elegance, the complexity of such exact methods ren-
ders them impractical for addressing cases with non-trivial shapes and sizes of robotic
teams. To that end, approximate cell decomposition techniques [71, 10] have been
successfully employed for tackling robot navigation problems with complex, high-
dimensional configuration spacesand generally exhibit fast exploration capabilities
when coupled with hierarchical adaptive subdivision schemes guided by suitable
heuristics. More specifically, Slice Projection (SP) methodologies, like the ones pre-
sented in [69, 70], consist of partitioning the robot’s configuration space into slices,
with respect to a given axis (e.g., the robot’s orientation), and projecting those slices
to obtain safe, lower dimensional under-approximations of the robot’s free space.
On the other hand, Hierarchical Approximate Cell Decomposition (HACD), origi-
nally introduced in [10], constitutes a tool for robot path planning which builds a
decomposition of the robot’s configuration space made of rectangloid cells at suc-
cessive levels of approximation. A major advantage of the former over the later is
that SP generates, in general, a smaller amount of cells since the geometry repre-
sented by a slice does not need to be any further approximated by simpler shapes,
although, this comes at the cost of requiring more elaborate techniques, compared
to rectangloids, in order to safely navigate within a projected slice. Additionally,
heuristics [122] designed for use with HACD methods enable the design of more ef-
ficient algorithms, able to adaptively refine the configuration space’s representation,
that have been successfully employed for addressing various tasks [11, 105].

Feedback-based planners constitute another actively researched class of con-
trollers which tackle the path and motion planning sub-problems simultaneously
by designing robot commands according to some sort of reactive policy. Online op-
timal control strategies, like receding horizon control [35, 78, 50], are an example
quite popular in practice since they can accommodate for realistic robot kinematic
and dynamic models [72, 16, 59], and address systems with several degrees of free-
dom [68, 34, 26]. In addition, examples of artificial vector fields include but are
not limited to methodologies based on Lyapunov-live barrier functions [83, 111, 60],
Prescribed Performance Control (PPC) schemes [116, 6, 112, 115] and dipolar vector
fields [86, 85, 84]. Also, a novel approach based on Power Diagrams which can be
used for designing tune-free vector fields for navigation within sufficiently curved,
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convex workspaces is also presented in [1, 2, 5]. Unfortunately, the majority of the
solutions mentioned above possess guaranteed convergence properties only for ini-
tializations of the problem “close enough” to the desired state or under rather strict
assumptions (e.g., convex obstacles, trivial workspaces, etc), effectively sacrificing
completeness for a reactiveness and safety. Another methodology of this class of
particular interest involves the design of reactive control laws based on Artificial
Potential Fields (APFs). Originally introduced in [46], APFs provide, in general, a
simple means of encoding collision avoidance specifications, with their negated gra-
dient functioning as a reference motion direction that drives the robot towards the
desired goal configuration. As shown in [49], despite its intuitive nature, this class
of controllers suffers unavoidably from the presence of unwanted equilibria induced
by the workspace’s topology and whose region of attraction may not be trivial. In
their seminal work [91], Rimon and Koditschek presented a family of APFs called
Navigation Functions (NF) for point and sphere worlds,?, as well as a constructive
transformation for mapping workspaces cluttered by trees of star-shaped obstacles®
into such worlds. However, certain design parameters required tedious tuning to
eliminate unwanted local minima and render the transformation a diffeomorphism.
The NF framework has been successfully adapted since then to address a variety
of problems for different kinds and number of robots [15, 108, 109, 92, 27, 32, 58].
Although provably correct, this solution suffers in practice by the fact that the al-
lowable values of the design parameters may cause both the potential and the corre-
sponding transformation to vary abruptly close to the obstacles (the issue of “disap-
pearing valleys” [91]), thus pushing the trajectories of the robot very close to them.
Methods for remedying such drawbacks or relaxing some generally conservative re-
quirements of NFs, up to a certain degree, are presented in [66, 18, 23]. Additionally,
attempts to extend the NF framework directly to non-sphere worlds can be found
in [19, 24, 25, 88].

Artificial Harmonic Potential Fields (AHPF) constitute an interesting subclass
of APFs, since they are free of unwanted local minima by construction. However, no
simple way exists for constructing safe, w.r.t. obstacle avoidance, harmonic poten-
tials even for simple workspaces. AHPFs suitable for navigation in realistic environ-
ments were originally utilized in [13, 14], where computationally expensive numeri-
cal techniques were employed to solve the associated Dirichlet and Neumann prob-
lems. Several extensions of the aforementioned methodology have followed [73, 30,
28], addressing issues such as numerical precision and computation, dynamic envi-
ronments, etc. The panel method was employed in [47] and [21] to build harmonic
potentials to coordinate the motion of a single and multiple robots in polygonal envi-
ronments. In [22, 80], well known closed-form solutions of the uncompressed fluid
flow around simple geometries were used in order to safely drive a robot among

2A Euclidean sphere world of dimension N is formed by removing from the interior of a large
N-dimensional ball a finite number of non-overlapping smaller balls.
3A star is a set which possesses a point from which all the rays cross the boundary only once.
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moving obstacles. Harmonic potential fields have also been used in [100, 38] for
addressing the Simultaneous Localization and Mapping problem (SLAM) by coor-
dinating the robot motion in unknown environments. Moreover, a methodology
based on the evaluation of the harmonic potential field’s streamlines is used in [114]
for mapping a multiply connected workspace to a disk, collapsing inner obstacles
to line segments or arcs. In a recent work [62], the problem of designing closed
form harmonic potentials in sphere worlds is addressed by the introduction of a
diffeomorphism [67, 65], which allows mapping such workspaces to the euclidean
plane with some of its points removed. Finally, extensions of this work addressing
topologically complex 3-dimensional workspaces or multi-robot scenarios, by intro-
ducing appropriate constructive workspace transformations, can be found in [63]
and [64], respectively.

1.3 Outline

The organization of this dissertation is as follows.

Chapter 2:

In this chapter, we present a novel control scheme for addressing the navigation
problem for a robot operating within a static, compact and planar workspace with
arbitrary connectedness and shape. Our goal is to design a control law that can
successfully drive the robot to any valid goal configuration, starting from almost any
initial configuration, without colliding with the obstacles occupying the workspace.

To cope with the workspace’s topology, we present a methodology for building a
harmonic map of the workspace onto a punctured disk. This transformation, which
to the best of our knowledge, has not been employed before for addressing the robot
navigation problem, is unlike transformations used in the related literature (e.g.,
[91] and [64]), as it does not require any sort of decomposition of the workspace into
simpler geometries (e.g., trees of stars). Moreover, contrary to [91, 64, 65] where an
explicit representation of the workspace boundaries is required (i.e., as the level sets
of a sufficiently smooth function), our approach only needs a sufficiently fine polyg-
onal workspace description, which can be easily acquired in practice via SLAM. Al-
though the construction of this map relies on computationally expensive numerical
techniques, it only needs to be calculated offline once for a given static workspace
due to the fact that it depends neither on the robot’s initial nor on the final con-
figurations, contrary to approaches where different harmonic potentials have to be
computed for each robot’s destination.

In addition, we design closed-form AHPFs for robot navigation, extending the me-
thodology presented in [62] by the introduction of an appropriate adaptive laws for
their parameters, which enables addressing bounded workspaces and controlling,
up to a certain degree, the tradeoff between high obstacle repulsiveness and conver-

gence rate. Moreover, we exploit novel tools on dynamical systems” analysis to study
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the stability of degenerate equilibria of the closed-loop system. Finally, we adapt our
methodology to the class of differential drive robots, which are commonly encoun-
tered in real-world applications and propose an elegant way to render the problem
of addressing large workspaces tractable.

Chapter 3:

As realistic robots hardly ever can be accurately modeled as disks, in this chapter,
we present a hybrid control scheme in order to address the navigation problem for
a robotic platform whose shape can be adequately represented by a polygon. Like
before, the robot is assumed to operate within a compact workspace with arbitrary
connectedness and shape.

The proposed control scheme consists of two components: a high-level planner,
which is responsible for finding a sequence of configuration space cells that the
robot can safely traverse in order to reach its goal, and a low-level kinematic con-
troller which is tasked with driving the robot from one cell to the next, while en-
suring invariance of the free configuration space. To do so, given an initial and de-
sired robot configuration, we begin with constructing two types of approximations
of the robot’s configuration space based on slice projections obtained by adaptively
refining the range of permitted robot orientations, while searching for sequences
of connected cells in each approximation that contain these two configurations. In
order to successfully find such a path of cells, we design a heuristic used by our al-
gorithm for choosing slices whose subdivision potentially increases our knowledge
regarding the connectivity of the configuration space’s portion directly related to
our problem. Furthermore, the proposed algorithm, which is resolution complete
by design, is also able to determine when a given problem is not feasible in a finite
amount of iterations, assuming that the robot’s collision-free configuration space is
open. Having thus obtained a sequence of connected cells, we design decoupled
control laws for the robot’s linear and angular velocities which can safely drive the
robot from one cell to the next, till the goal configuration is reached. Particularly, in
order to regulate the robot’s position, we employ the harmonic transformation and
adaptive harmonic potential field scheme presented in chapter 2, which integrates
elegantly with the sort of configuration space representation used in this chapter.

Chapter 4:

As the popularity of multi-agent robotic systems grows by the day, due to the display
of higher robustness and versatility compared to single-robot alternatives, the need
for more efficient forms of planning grows by the day. In this chapter, we adopt
the concepts presented in the previous chapters, in order to design a novel control
scheme for coordinating the navigation of a team of disk-shaped robots that operate
within an arbitrary, obstacle cluttered, planar workspace.

More specifically, given an initial and desired configuration for the robotic team, we
design a high-level planner, based on Hierarchical Cell Decomposition techniques,
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which is tasked with the exploration of the system’s configuration space to discover
a sequence of cells, that the robots can safely traverse, towards the desired config-
urations. One of the strong points of the proposed algorithm is the use of a suit-
able labeling mechanism for selecting the regions of the configuration space to be
subdivided at each iteration. Particularly, by computing an over- and an under-
approximation of each robot’s footprint, in a manner similar to the one presented
in chapter 3, our algorithm can determine which cells may contain feasible config-
urations of the system, while automatically discarding cells that are determined to
contain none. Finally, having obtained a sequence of traversable cells, we equip
our system with a distributed low-level control law based on harmonic maps and
adaptive harmonic potential fields, introduced in chapter 2, which guarantee safe
and almost-global convergence from one cell to the next. In addition, as our scheme
does not require explicit knowledge of the entire system’s state in order to compute
control inputs for each individual robot, it significantly reduces the communication

requirements of the robotic team.

Chapter 5:

In this chapter, we present a methodology for planning the motion of a team of
mobile manipulators carrying an object within a compact planar workspace. More
specifically, as the object is allowed to translate and rotate and each robot is equipped
with a manipulator consisting of one or more moving links, our scheme must take
into consideration the varying shape of the robotic system in order to devise a plan
that can safely drive the object to a specified configuration. To this end, we extend
the methodology introduced in chapter 3 in order to built a sequence of configura-
tion space cells, each of which defines an allowable set of configurations of the object,
as well as explicit intervals for each manipulator’s states. Furthermore, appropri-
ately designed under- and over-approximations of the free configuration space are
used in order to guide the configuration space’s exploration without loss of com-
pleteness. In addition, we couple methodologies based on Reference Governors
and Prescribed Performance Control with harmonic maps, presented in chapter 2,
in order to design a distributed control law for realizing the transitions specified
by the high-level planner, which possesses guaranteed invariance and almost global
convergence properties. Furthermore, the proposed low-level control law does not
require continuous information exchange between the robots, which rely only on
measurements of the object’s configuration and their own states.
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Chapter 2

Navigation of Disk-Shaped Robots
on the Plane

FIGURE 2.1: Mobile robot navigating within a maze.

2.1 Introduction

In this chapter, we address the navigation problem for a robot operating within a
static, compact, planar workspace which has arbitrary connectedness and shape.
Particularly, we design a control law which can safely drive the robot to a specific
goal configuration from almost all initial configurations. To cope with the workspace’s
topology, we construct a harmonic map of the workspace onto a punctured disk,
which, unlike the transformations proposed in [91] and [64], does not require the
decomposition of the workspace into trees of stars. Moreover, contrary to [91, 64, 65]
where an explicit representation of the workspace boundaries is required (i.e., as the
level sets of a sufficiently smooth function), our approach only needs a sufficiently
fine polygonal workspace description, which can be easily acquired in practice via
SLAM. In addition, we employ closed-form AHPFs for robot navigation, similar
to the ones presented in [62], but modified accordingly by introducing appropriate
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adaptive laws for their parameters to address efficiently bounded workspaces and
control, up to a certain degree, the tradeoff between high obstacle repulsiveness and
convergence rate. Notice also that, unlike the methodologies presented in [14, 73],
we only need to solve a computationally expensive problem once for a given static
workspace, independently of the robot’s initial and goal configurations. Also, we
elaborate on the construction of the proposed transformation using numerical tech-
niques, and particularly the Panel Method. Finally, we adapt our methodology to
the class of differential drive robots, which are commonly encountered in real-world
applications and propose an algorithm to render the problem of addressing large

workspaces tractable.

The outline of this chapter is as follows. In Section 2.2, we rigorously formulate
the problem and in Section 2.3, we present the methodology for constructing har-
monic maps suitable for navigation. In Section 2.4, we describe the proposed control
law for addressing the robot navigation problem and elaborate on its stability. Fur-
thermore, in Section 2.5, we present methodologies for extending the proposed con-
trol scheme to differential drive robots as well as for reducing the complexity when
addressing large and composite workspaces. Finally, in Section 2.6, we demonstrate
the efficacy of the proposed control scheme via extensive simulation and experimen-
tal results.

Notation: We use D,(x) to denote the open disk with radius r > 0 centered
at x € R% Additionally, D and 9D denote the closed disk and circle with unit
radii centered at the origin of IR?, respectively. Also, let Iy £ {1,2,...,N} and
N £ {0} UJn. Given sets A, B,C R", we use cl(A), dA, int(A), A to denote the
closure, boundary, interior and complement of A w.r.t. R", respectively, and A \ B to
denote the complement of B w.r.t. A. Furthermore, we use 0x and 1y to denote the
all-zeros and all-ones column vectors of length N, respectively, and Oy to denote
the N x M zero matrix. We also define ll’l‘\,X v k € Jum as the N x M matrix whose
k-th column is equal to 1y and every other column being equal to 0y. Given a vector
function f(x), we use Vf to denote its Jacobian matrix. Also, given an arc C, we
use len (C) to denote its length. Finally, we will say that a set A is attractive (resp.
repulsive) under a potential field i when there exists a point py ¢ cl(A) such that if
we initialize at pg and move along the negated gradient of i, we will converge (resp.

will not converge) to dA.

2.2 Problem Formulation

We consider a robot operating within a compact workspace W C R?, bounded by a
single outer and a finite set of inner disjoint Jordan curves!, which correspond to the

LA Jordan curve is a non-self-intersecting continuous planar curve.
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boundaries of static obstacles. It is assumed that VV can be written as

w=Wo\ U W (2.1)

i€dn

where W, i € J% denote regions of R? that the robot cannot occupy. Particularly, the
complement of W) is considered to be a bounded, simply connected region that may
also include a strict subset of its own boundary2 and Wy, W, ..., Wy are assumed to
be closed, simply connected compact sets that are contained in W/, and are pairwise
disjoint. Let p = [x,y]" € R? denote the robot’s position and assume that the robot’s
motion is described by the single integrator model:

p=u (2.2)

where u € R? is the corresponding control input vector.

Problem 1. Our goal is to design a control law to successfully drive a robot with kine-
matics (2.2) towards a given goal configuration py € W, from almost any feasible initial
configuration pinir € VW, while ensuring collision avoidance, i.e., p(t) € W forall t > 0.

Remark 1. The results presented in this chapter can be readily employed for the navigation
of disk robots with radius R > 0 by appropriately augmenting the workspace boundaries
with the robot’s size.

2.3 Harmonic Maps for Planar Navigation

In this section, we present a methodology that maps the robot’s workspace onto a
punctured unit disk, where the robot’s control law is designed. Particularly, our
goal is to construct a transformation T : cl (W) — D, from the closure of the robot’s
configuration space cl (W) to the unit disk D, with the following properties:

1. T(-) maps the outer boundary 0} to the unit circle 0D,

2. T(-) maps the boundary 0W;,i € Jn of each obstacle to a distinct point g; =
[u;, vi]" € int(D),

3. T(-) is a diffeomorphism for all p € int (W).
To that end, we propose a harmonic map T(p) = [u(p),v(p)]T, (i.e., u(p) and v(p)
are both harmonic function), which, to the best of our knowledge, has never be-
fore been employed in a motion planning framework addressing multiply connected
workspaces in this manner. The existence of such map was proved in [20] and suf-

ficient conditions rendering a harmonic map a diffeomorphism were extracted as

2This corresponds to cases when we wish to place the robot’s goal configuration on some part of
the workspace outer boundary which is not physically occupied by an actual obstacle, e.g., the door of
a compartment (refer to Subsection 2.5.2 for more details).
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FIGURE 2.2: Transformation of a real workspace onto a punctured
disk.

part of the proof. We will now summarize those findings expressed for real-valued,
vector functions in the form of a theorem for the sake of completeness.

Theorem 1. (Theorem 2 in [20]) Let W C R? be a finitely connected open domain bounded
by Jordan curves oWy, 0Wj, ..., 0Wy, where OW) is the outer boundary component. Let
Q € R? be a bounded convex domain. Suppose that f is an orientation-preserving con-
tinuous weak homeomorphism of 0Wy onto Q). Then, there exists a harmonic function
f : W — Q) that satisfies the boundary conditions:

f(p) = f(p), Yp €W, (2.3)

o
/awi Zgs =0, viedy (2.4)

where n = n(p) denotes the unit vector that is normal to the boundary at the point p € oW,
i € In, and maps VV injectively onto Q) with N points removed.

What this theorem practically means is that given any orientation-preserving,
weak homeomorphism from the workspace outer boundary WV to the boundary
of any given convex set, we can construct a diffeomorphism that maps cl (WV) to
the target set and which collapses each obstacle onto a seperate point g; within its
interior (see Figure 2.2). Thus, in order to construct the requested transformation
of cl (W) onto the unit disk D, first we need to provide a map T : 9W, — 9D for
its boundary3 (i.e., T(p) = [G(p), ¥(p)]"), and solve the two corresponding boundary
value problems for u(p) and v(p) subject to the constraints (2.3) and (2.4). Notice
that the coordinates of g; (i.e., the images of the internal obstacles) are not explicitly
specified, but are enforced by the problem’s solution as a result of satisfying the
aforementioned constraints.

3This particular transformation T can be easily constructed for any given planar Jordan curve C by
1) arbitrarily selecting a point p, on C, 2) defining £(p), Vp € C as the length of the arc p,p, assuming
one travels from p, to p on C while having the curve’s interior to its left, and 3) choosing T(p) =
[cos(2mté(p)/L), sin(27r£(p)/L)]T, where L = len (C).
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L2

FIGURE 2.3: Discretization of an arbitrary workspace’s boundary

using line segment elements. By convention, the outer boundary

is considered to be clockwise oriented whereas inner boundaries as

counter-clockwise oriented. The normal direction of each element is

depicted using green colored vectors. Furthermore, the values of the

two linear shape functions Gpp41 and Ggo4p are plotted along the
length of the corresponding element E »4.

In order to construct the harmonic functions u(p) and v(p), we employ numer-
ical techniques and particularly the Panel Method.* Accordingly, we approximate
each of the components of T(p) = [u(p), v(ip)1* by a sum of simple harmonic source
distributions as follows:

=

Mz
L3

u(p) 1]l 1]l(p)
i=0j=11=1 (2.5)
N M L
V(P) ~ Z ECZ]Z 1]l(p)
i=0j=1i=1
Hyi(p) = [ Gy &) n(llp = pi(0)lds (2.6)

which are obtained by subdividing separately the workspace’s outer and inner bound-
aries into Mo, My, ..., My number of elements (see Figure 2.3), where L is the num-
ber of control parameters per element, E;; denotes the j-th element of the i-th bound-
ary’s approximation, f;i(s) € E;; is a bijective parameterization of E;; by its length
(ie., pij : [0,len (Ej)] — Ejij), Gij : [0,1en (Ej;)] — R is the shape function corre-
Cl]l
eters that need to be appropriately selected so that T to satisfies Properties 1-3, for

sponding to the I-th control parameter of E;;, and C; € R are control param-

ijl’

alll € 31, j € Ty and i € T It is worth noting that for common choices of G
(e.g., constant or linear shape functions) and simple types of E;; (e.g., line segments),

“Similar formulations can be obtained employing other techniques such as the Boundary Element
Method (BEM), Finite Element Method (FEM) or Finite Differences Method (FDM).
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the integral in (2.6) can be easily evaluated to obtain a closed-form expression for
Hl-]-15. Generally, this comes at the expense of requiring more elements to sufficiently
approximate the exact transformation, as opposed to selecting more elaborate (e.g.,
quadratic) shape functions or element geometries. To obtain the unknown control
parameters as well as the images of the workspace’s inner obstacles, one needs to
solve the two independent linear systems of equations:

AX = B,, AY =B, 2.7)

for the unknown vectors

X= [Cg,l,lf' T Cfl,lr' ’ 2.8)
Y

T
CNMNL/ 1/"'/uN}
,c!

_ [cv cV T
— 011” 1’1’1,.. MN,i’Vll...’VN .

The matrix A and r.h.s. vectors By, B, are constructed by selecting a set of arbitrary
points p; ® such that a) pii € oWiforallj € Ty andi € Ty, where N;,i € J% denotes
the number of points selected on the corresponding boundary components of W,
and b) Ziejﬁ N; is equal to the amount of unknown parameters (i.e., Ziejﬁ M;L), on
which the conditions (2.3) and (2.4) are evaluated as follows:

Ao, Ogyun Bxo By,
1
Al, _:H-leN ONl ONI
A= | ! s Be= 1t |, By=]: (2.9)
AN, _]I%NXN ONN ONN
| Au, OnxN [ On L On |
Ho1a(Px1) -+ Hyowng 1 (Px 1)
Hoa11(Pro) - Hypno1(Pro2)
Ay = R A I (2.10)
Ho,l,l(ﬁZ,Nk) e HN,MN,Z(ﬁZNk)
ZNl aH[)ll( Lk) o ZNl aHNMN L( )
N aHo1 1 NMN L
A, = Xk ( 2,k) Z Con Pz k) (2.11)
ZNN aH01 1 (pN k) o ZNN oHy MN L ( ~N k)

5As an illustration, for a line segment element E;; with two control parameters (i.e., L =2),a
typical choice for linear shape functions is G;j1 (s) = s/len (E,-j>, Gip(s) = (1— s)/len (E,'j) and p; j(s) =
Pija + Pijps/len (Ei]-) for the corresponding parameterization, where f;; 4, ; jp are the element’s
end-points.

A typical strategy is to select the points ; i uniformly on the outer and inner boundaries of the
given domain.
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a(pg,) v(p5 1)
a(pg,) V(P5,2)

Byo = pf"z By, = P02 2.12)
(P ) V(P x,)

Notice that the directional derivatives in (2.11) are computed along the unit vec-
tors that are normal to the boundary at p7; according to the convention depicted in
Figure 2.3. Moreover, by selecting a sufficiently large number of sufficiently small el-
ements, the overall approximation error between the solution of the aforementioned
linear problem and the exact transformation defined in Theorem 1 can be rendered
arbitrarily small.

2.4 Control Design

To address Problem 1, we equip the robot with the aforementioned transformation
q = T(p) from the closure of its configuration space V¥ onto the unit disk D and an
artificial potential field y(q, k) augmented with an adaptive control law k = fi(q, k)
for its parameters k = [ky, k1, ko, ..., kN]T. The robot velocity control law is calcu-
lated as follows:

u=—Kus(q,0] (p)Vqa(q,k) (2.13)

where J(p) denotes the Jacobian matrix of T(p), s(p,k) > 0 is a continuously differ-

entiable gain function given by:

1 gl (Vo) g
o L= o 2.14
s(q,k) Wp( e, ) TRl S gl &
with
x2(3 — 2x), ].f X S 1
) — ! , (2.15)
1, ifx>1
x2, ifx>0
o) (2.16)
0, ifx <0

and KCy, v, €, €, are scalar constants such that K,,e, > 0 and v,¢, € (0,1). More
specifically, s(g,k) consists of two individual terms with the first vanishing as the
robot approaches the workspace’s outer boundary (and its distance from the unit
circle is less than €,) whereas the second vanishes when the robot’s velocity points
away from the disk’s center. The scalar parameter oy can be used for adjusting the
contribution of each respective term of s(g, k). Finally, ¢ is a harmonic artificial po-
tential field defined on the image T(W) of the workspace VW and whose negated
gradient —V;1(q, k) defines the direction of the robot’s motion in the real workspace
W via the inverse Jacobian ] ~(p). By design, the resultant vector field precludes
collisions between the robot and the workspace’s inner obstacles and renders the
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goal configuration almost globally attractive except for a set of measure zero initial
configurations. However, since 1}y may not be repulsive under ¢ for an arbitrary,
fixed selection of k, we also introduce the adaptive law fi(p, k) which, along with
s(p, k), guarantee forward invariance of the workspace without compromising the
convergence and stability properties of the overall system. The following subsec-
tions elaborate on each component of the proposed control law individually.

2.4.1 Artificial Harmonic Potential Fields

Following a procedure similar to the one proposed in [62], we construct an artificial
harmonic potential field on the disk space D from point sources placed at the de-
sired configuration q; = T(p,) as well as at the points q; = T(dW;), Vi € Jy that
correspond to the inner obstacles, as follows:

¢:kdln(llq v/dH> ikl <Hq qu) (2.17)

where k; > 0 and k; > 0 denote harmonic source strengths which vary according to
adaptive laws that are presented later. An interesting property of the above potential
tield, which stems from the maximum principle for harmonic functions, is that, for
tixed k, the only minima of ¢ are located at q; and, possibly, at infinity. As a direct
consequence of this property, the hessian V%(p computed at a non-degenerate critical
point of ¢ in our domain’s interior, has one positive and one negative eigenvalue

with the same magnitude, e.g., A and —A with A > 0.

Next, we define a reference potential field ¢ based on ¢, which is given by

1+ tanh (¢p/w)
N 2

(2.18)

where w is a positive scaling constant. Note that iy maps the extended real line to the
closed interval [0, 1]. As tanh (4) / w) is a strictly increasing function, the only critical
points of ¢ are the ones inherited from ¢ with their indices preserved. Furthermore,
the gradient of ¢ w.r.t. g, given by:

— (tanh (¢/w))?

2w

1
Vo = Vq¢ (2.19)

is well-defined and bounded for all g € D.

If the workspace was radially unbounded, selecting k fixed with k; > YN k;
would render the potential field (18) sufficient for navigation. The author in [62]
addresses bounded workspaces that are diffeomorphic to sphere worlds by simply
mapping the outer bounding circle to infinity. For reasons that will become apparent
later, we would like to be able to place q; on regions of 0D that are not physically

occupied by obstacles (such as passages to other compartments, see for example
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Subsection 2.5.2), thus we cannot follow the same procedure since that would render
the effect of the sole attractor on the robot null. Instead, we design appropriate
adaptive laws for the parameters k of ¢, to render the outer boundary repulsive and
establish the forward completeness of the proposed scheme for all time.

Before proceeding with the definition of the adaptive law, we first state two
propositions that will be used in the subsequent analysis, the proofs of which can be
found in the Appendix.

Proposition 1. Let k; > 0and q' € 0D \ {q4}. There exists k' > 0 such that if k; < K/,
Vi € Jn, then q' is repulsive under .

Proposition 2. If k; are non-negative and bounded, there exists k!, > 0 such that ¢ is Morse
forall kg > k.

2.4.2 Adaptive Laws

We now present the adaptive law k = fx(q, k) that updates the parameters of the
potential field . It’s primary goal is to render: a) the workspace outer boundary
repulsive and b) any critical point of ¢ in the vicinity of the robot non-degenerate; a
property that will be used later in the analysis. In particular, we consider fi of the
form:

ki =EA+(Vollien)

L (% , (2.20)
ki = (ki — ki) wiligi — Kikihiwo (g0 + &1(s;€2)) , Vi € Ty

where w; and g;, i € J}, as well as h;, i € Jy, are functions to be defined later,
ki, i € J, are desired upper bounds for k;, A denotes the non-negative eigenvalue
of Vscp, K is a positive control gain, and €;, €, are small positive constants. The
continuously differentiable switch ¢1(x; €) and functions ¢;(q) are respectively given

by:

Gi(x;€) =1 —0p(x/e€) (2.21)
(n) — Kus(g, k)
&@——mwﬂ). (2.22)

According to Proposition 1, our first requirement can be accomplished by de-
signing fi to reduce k; as the robot approaches 0D. To do so without compromising
the inherent inner obstacle collision avoidance properties of ¢, we need to also en-
sure that each k; does not vanish within some neighborhood of g;, for all i € Jy. To
that end, firstly we define g;, employing the smoothly vanishing function defined in
(16), to serve as pseudo-metrics of the alignment between the robot’s velocity and
the directions towards the goal and inner obstacles, respectively, given by:

gi=0,(3;), Viedy (2.23)
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with

%o = (21l —aall — (Vo) (g~ 40)

8= 5 (Vq¢)T(q —q;), Yiely

(2.24)

| = s =

where & € (0,1] is a fixed constant that is used for selecting the desired alignment
between the robot’s motion and the direction to the goal. We also define the accom-
panying weights w; as follows to ensure that only one term of (2.20) dominates as
the robot approaches a particular boundary of W:

)= C2(wWo; €3)
wo + YN, (kiTo;
0+ L= (k705) (2.25)
wj . ~
w; = — N Vi eIy
Wo + Y2 (kjwj)
with
w; =71i/(ri +71), VieIy, (2.26)
2 L.
1— , ifi=0,
o ( HqHZ) i 227
lg—aqll”, ifiedy

7= ) (r)m, Vieldy (2.28)
\/ i#

0, ifx <e
2
Ga(ve)=q (3=£)7(3-2¢), ife<x<1 (2.29)
1, otherwise

for a scalar constant €3 € (0,1) in (2.25) and some integer m < —1 in (2.28) that
serves as a smooth under-approximation of min;; (r;),i € Jy. Finally, the weights
h;, 1 € Jy are defined as follows:

4 hi
By =1+ 7 ( ) _ (2.30)
1+ Z]’GJN Oy (h])
with .
o=k (1= (sanh (¢/0))°) (u::—_ qu2> ol 231

whose purpose is to accelerate the decay of those k; that contribute the most to the
component of V1 that pushes the robot toward the workspace’s outer boundary.

Regarding the second requirement, as shown in Proposition 1, selecting k; above
a certain threshold is sufficient to render ¢ free of degenerate equilibria. On the other
hand, for a given ki, increasing k; steers the robot closer to the workspace’s inner
obstacles. Nevertheless, since the robot may never actually enter the vicinity of a

degenerate equilibrium, instead of setting k,; sufficiently large a priori, the adaptive
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law for the parameter k; is introduced to increase k; only when it is actually needed,
thus potentially alleviating the aforementioned shortcoming.

2.4.3 Stability Analysis

Let us consider the overall system:

2= £.(2) (2.32)

where z = (q,k), f2(z) = (fg, fr) with f; = Ju. Also, let () denote the image of VW
under T, i.e, O = T(W). Notice that Q) consists of int (D), possibly with a subset
of 9D, and with the points g; removed. In this section, we elaborate on the stability
properties of (2.32) under the proposed control scheme (2.13) and (2.20). First, we
formalize the safety properties of the closed-loop system dynamics, which guarantee
that our robot does not collide with any obstacle.

Proposition 3. The workspace VW in invariant under the dynamics (2.32) with control
laws (2.13) and (2.20), i.e., p(t) € W, forall t > 0.
Proof. For the proof, refer to the Appendix. O

Having eliminated the possibility of the robot colliding with the workspace’s
boundaries, we proceed by showing that all critical points of i, where (2.32) may
converge to, are either non-degenerate saddles or g,. Additionally, we show that the
latter is a stable equilibrium.

Proposition 4. The artificial potential  is decreasing along the trajectories of the closed-
loop system and its time derivative vanishes only at its critical points. Additionally, the
preimage of q, is a set of stable equilibria of (2.2).

Proof. For the proof, refer to the Appendix. O

Proposition 5. Let z* = (g%, k*) be a critical point of the closed-loop system dynamics with
q* € O\ {q4}. Then, g* is a non-degenerate saddle point of 1.

Proof. For the proof, refer to the Appendix. O

Finally, we conclude this section with the main theoretical findings.

Theorem 2. The control law (2.13) and (2.20) addresses Problem 1, i.e., system (2.2) under
the control law (2.13) and (2.20) converges safely to q,, for almost all initial configurations.

Proof. For the proof, refer to the Appendix. O
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2.5 Extensions

In this section we present certain extensions of the proposed approach to: a) address
the safe navigation problem for unicycle robots which are frequently encountered
in many application domains, and b) tackle computational complexity issues that
affect the numerical computation of the harmonic map presented in Section 2.3 as

the size of the workspace increases.

2.5.1 Unicycle Robot Kinematics

In this subsection, we consider robots whose motion is subjected to pfaffian con-

straints of the form:

>

(2.33)

p = fngv
0=w

where 0 € [0, 271) denotes the robot’s orientation, 7ig = [cos(6), sin(9)]T, andv,w € R
are control inputs corresponding to the robot’s linear and angular velocities, respec-

tively. First, let us define the robot’s kinematics in the image of the configuration

space via the proposed transformation, as follows:

= g0
=" (2.34)
0=aw
and notice that the robot’s orientations 6 and 8 are related by:
R J(p)ig
iy = . (2.35)
“ 1p)nel

To safely drive the robot to its goal configuration, we consider the following control

laws:

5= —Koso(q,0,6) ()" Vyip(q, k)

T (2.36)
@ = —Ko (7)) Vap(q, k)
with Ky, K¢, € R positive constant gains, ﬁgL = [—sin(0), cos(9)]T and
~ 1—
s0(q,0,k) = 'yUP(HqH> +
€p
. . 2.37)
alv,p)nlq (
0 — )9 )
eo+ [A1,9|lq]

Additionally, we need to employ a modified version of the adaptive laws for the
potential field’s parameters, which is obtained by substituting s with s, in (2.20)
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and (2.22) and g;, i € T}, with

800 = (a\ﬁqutlﬂ) lg—qall = (2§ V) 255 — qd))

(2.38)

= ] =

$0i = 5 (A§ Va¥) A0 —q), Vi€ Iy

respectively, in (2.23). Finally, by expressing the aforementioned control laws to the

robot’s actual configuration space, we obtain:

v =110
(2.39)
W = Wy + wyp

where wy,; and w;; are terms corresponding to angular velocities induced by trans-
lational and rotational motion of the robot in the workspace’s image, respectively,
given by:

(2.40)

with v = ||J~!7,]| and 3879] denoting the directional derivative of ] along 1.

The stability properties of the aforementioned closed-loop system dynamics are

formalized below:

Theorem 3. The workspace VW is invariant under the dynamics of (2.33) equipped with
the proposed control law. Additionally, the robot will asymptotically converge either to an
interior critical point of ¢ or to the pre-image of q,, which is stable.

Proof. For the proof, refer to the Appendix. O

Remark 2. The result of Theorem 3 is weaker compared to that of Theorem 2 since there is
no guarantee that the set of configurations which converge to a critical point of ¢ (other than
the pre-image of q;) has Lebesgue measure zero.

2.5.2 Atlas of Harmonic Maps

As the size of the workspace increases, the problem of computing the transforma-
tion T grows in complexity as well, because the resources required by commonly
employed numerical techniques that can solve the problem presented in Section 2.3
are polynomial in the number of elements used for representing V. Alternatively,
to cope with large workspaces efficiently, we propose instead the construction of an
atlas A £ {(P;,T;) | i € Jn,} obtained by separating the workspace W into N
overlapping subsets P; C W, such that UiejNA P; = W and constructing a sep-
arate harmonic map T; for each P; (see Figure 2.4). This essentially allow us to



24 Chapter 2. Navigation of Disk-Shaped Robots on the Plane

FIGURE 2.4: The partition of a complex workspace into overlapping
subsets along with the corresponding graph and the tranformation T,
of the second partition P,.

solve many small (and computationally less intensive) problems instead of a large
one, thus reducing the overall resources required for addressing a given workspace.
Therefore, given such a partitioning of WV, we define the graph G = (V, £) where
V = {P;|i € In,} denotes the set of corresponding nodes (workspace partitions)
and £ denotes the set of edges between the elements of V, with each edge indi-
cating a feasible transition from one partition to another, i.e., (i,j) € £ if and only
if (c1(P;)Ncl(Pj)) # @. Notice that G is undirected by definition, i.e., (i,j) € &
only if (j,i) € £. Additionally, since the workspace is connected, G should also be
connected. Thus, for a given atlas A, an initial configuration pjni and a final config-
uration p;, we can employ standard graph search algorithms to obtain a sequence of
indices S = {sq, sy, .. .58, } corresponding to partitions that the robot can tranverse to
reach its goal.” Additionally, note that, since the partioning of J/ does not need to be
fine, the size of G will generally be small, rendering the cost of finding S negligible.

We now concentrate on how the transition between two consecutive elements
of S is implemented. Let C;; £ cl(P;) Ncl (P;) denote the common region of cl (P;)
and cl (P;) and B;; £ 9PN P; denote the set of points on the boundary of P; that
also belong to P; and are not occupied by obstacles, for all i € Jy, and all j such that
(i,j) € £. Without loss of generality, we assume that A is constructed such that the
sets By; N By ; are either empty or consist of isolated points. We note that in order to
successfully complete the transition between two consecutive nodes P; and P; of S,
it suffices for the robot to reach any single point of B; ; from P;. We also observe that
each B; ; may consist of one or more disjoint components Bf s ¢ e L(i,j), with L(i, j)
being some valid indexing of those. By exploiting the fact that Theorem 1 imposes a
weak homeomorphism requirement on T;, we can construct each T; such that each
disjoint subset of dP; collapses into a separate point, i.e., Ti(Bf,]-) = qf, j € 0D (see

7In general, more than one such sequence of partitions may exist connecting the initial and the
final configurations. However, the selection of one that corresponds to some sort of “optimal” path is
beyond the scope of this work.
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Figure 2.4), which, in turn, implies that selecting qf j as an intermediate goal config-
uration suffices to render the entire Bf j attractive. Building upon this fact, for each
consecutive pair of P; and P; in S, we (arbitrarily) select a Bf, j and we construct a
transformation T; : P; — D, with gll = T;(p), and artificial potential field ¢;(qll, k[l
with goal configuration ‘7,[1” = qf, j- Additionally, to smooth the transition between
consecutive partitions, when they overlap, we propose the following modified con-

trol law for the robot:
u = ull +eij  Meij - u[j], Vp S Ci,j (2.41)

where ul'l and ul/l denote the control inputs as defined in (2.13) and evaluated using
¢;, T; and ¢;, Tj, respectively, the function #;;; : C;; — [0,1] is any smooth bump
function such that

0, if p E B]',i

Mij(p) = (2.42)
! 1, if p e Bi,j
and .
Gl g >0
ﬂc,i,j(pr k[i]/ k[]]) = E4+(§i’j)2/ gl’] B (243)

0, if Ci,j <0

with g; i = (Vi) T (V) and €4 > 0 being a fixed parameter. What this modifica-
tion essentially does is to increamentally add an extra component, with the direction
of V,1j, to the robot’s velocity when that component is cosine similar® with V, ;.
We note that 77.;; — 1 and 7;;; — 1 as the robot approaches the boundary of the
corresponding partition. We also remark that once the robot has completed its tran-
sition to P;, we do not concern ourselves with ulll anymore, i.e., u = ulll even if p
returns to C;;. The overall scheme employed for navigating a holonomic robot to
its goal configuration using an altas constructed as described above can be seen in
Algorithm 1.

Regarding the stability analysis of the modified system, by following the same
procedure as in Subsection 2.4.3 and by virtue of 7, it is trivial to verify the fol-

lowing statement.

Theorem 4. System (2.2) equipped with Algorithm 1 converges safely to a given goal con-
figuration pg € W from almost all initial configurations pinie € W.

Proof. For the proof, refer to the Appendix. O

8Two vectors u and v are cosine similar if their inner product is positive.
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Algorithm 1 Altas-based motion planning scheme for a holonomic robot.

Require: A, pinit, Pa
S <~FINDPATHTOGOAL(G, Pinit, Pa)
Initialize kl*! for all s € S.
foralliin J,,_1 do
s, s’ < s;,8i11
Select (arbitrary) ¢ such that ¢ € L(s,s’).
Place goal configuration of s at qﬁ,s,.
end for
Place goal configuration of ¢, at Ts,(ps).
{1
loop
if{ =norpePs,\Ps,,, then
Update p using (2.13) and kls! using (2.20).
elseif p € Cs,5,,, then
Update p using (2.41) with i = sy and j = sy4.
Update k!* and k!*! using (2.20).
else
C—L+1
end if
end loop

2.6 Simulations and Experimental Results

In order to demonstrate the efficacy of the proposed control scheme, we have con-
ducted various simulation and experimental studies, the results of which are pre-
sented in this section. The algorithm that computes the harmonic transformation
and its Jacobian was implemented in C++ while the proposed control protocols were
implemented in Python. All simulations were carried out on a PC with an Intel i5
processor operating at 2.2Ghz, 4GB RAM, running a GNU/Linux operating system.

2.6.1 Simulations — Full Workspace Transformation

In the first case study, a single transformation of the entire workspace (see Figure 2.4)
was constructed and the robot was instructed to navigate to various goal configura-
tions starting from the same initial position. The initial configuration and the param-
eters of our controller were selected such as to better demonstrate the guaranteed
collision avoidance properties of our scheme. Particularly, the initial values for the
parameters of the adaptive law were selected as k; = 20, k; = 1 and k; = 20 for all
i € J19. The values of the remaining parameters were K, = 100, w = 20, K, = 100,
«a=1,€,=0.025¢€,=017=07¢€ =001,e =0.1,e; = 0.1. The goal config-
urations and the trajectories executed by the robot, both in the real and transformed
workspace, are illustrated in Figure 2.5. Furthermore, Figure 2.6 depicts the poten-
tial ¢ of each trajectory. The simulations were conducted using the Euler method

with 10ms step. Regarding the computational complexity of the control scheme, the
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construction of the harmonic transformation for this large workspace that was car-
ried out offline once, required 5.4s to complete, for a sufficient approximation of the
workspace boundary with 3680 segments. Finally, the online computation of the
transformation T(p) and its Jacobian J(p) required an average of 6.0ms per step.

2.6.2 Simulations — Atlas of Harmonic Maps

In this case study, we partitioned the aforementioned workspace into separate rooms
(see Figure 2.4) and constructed a harmonic transformation T; for each room. The
robot initialized at the same position with the previous study and it was instructed
to navigate towards the same set of individual goal configurations. The initial val-
ues selected for the parameters of the adaptive law were kIl = NI/l 4-3, kg.i] =land
I

kj

side the corresponding partition. All remaining control parameters were selected as

= Kkl for all j € Iymand i € Jy,, where N l1 denotes the amount of obstacles in-

in Subsection 2.6.1. The trajectories of the robot are depicted in Figure 2.7. The time
spend to construct the corresponding harmonic transformations varied from 0.019s
to 0.211s (depending on the amount of elements required for sufficiently approxi-
mating each room, ranging between 320 and 1000 segments) and was significantly
much less than the full map construction of the previous case. Additionally, the on-
line computation of T;(p) and Ji(p) in each of these rooms required an average time
between 1.0ms and 2.2ms per step, respectively. Finally, it should be noted that in
this case the workspace inner obstacles were mapped to points further away from
the boundaries of the partitions, which is an interesting result as it alleviates possible
numerical issues that may arise in the computation of the transformation near the
obstacles.

2.6.3 Experiments

In order to verify the results presented in Subsection 2.5.1, real experiments were
conducted on a non-holonomic robotic platform “Robotnik Summit-XL” (see Fig-
ure 2.8) operating within the workspace that is depicted in Figure 2.9. The bound-
aries of the workspace were obtained using readily available SLAM algorithms and
were later augmented with the robot’s shape (approximated by a disk). The workspace
was partitioned into six overlapping subsets and the robot was instructed to visit
three different goal configurations, each located in a different room. An off-the-shelf
localization algorithm was employed for estimating the robot’s position and orien-
tation using its on-board sensors (laser scanners and RBG-D cameras), providing
feedback at approximately 5 Hz to the robot’s linear and angular commanded ve-
locities. Notice that our algorithm successfully managed to drive the robot safely to
its specified goal configurations, as one can verify from the trajectories of the robot
executed in the real workspace (see Figure 2.10, Figure 2.12, Figure 2.14), as well as
in the corresponding transformed workspace partitions (see Figure 2.11, Figure 2.13,
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FIGURE 2.8: Robotnik Summit XL

Figure 2.15). However, an issue that needs to be pointed out is the oscillating be-
havior that the robot exhibited in the configuration space’s image — particularly, in
pl and p2 of ?2. Such behavior is attributed both to: a) the relative slow update of
the robot’s pose estimation, and b) the inversion of the Jacobian which is generally
ill-conditioned close to narrow passages of the domain. Nevertheless, such short-
comings can be alleviated by a better choice of partitions, i.e., by partitioning the
domain into more subsets with less complex shapes.
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FIGURE 2.9: Map of the robot’s workspace used during the experi-
ments, obtained using SLAM.
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FIGURE 2.10: Trajectory of the unicycle robot in the real workspace
executed during the first experimental case.
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FIGURE 2.11: Trajectory of the unicycle robot in the transformed
workspace’s partitions executed during the first experimental case.
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FIGURE 2.12: Trajectory of the unicycle robot in the real workspace
executed during the second experimental case.



2.6. Simulations and Experimental Results

35

p0 pl
1.0 A 1.0 A
0.5 A 0.5 4
0.0 A 0.0 A
—0.5 A —0.5 A
_10 L T T T _10 L T T T
-1 0 1 -1 0 1
p2 p3
1.0 A 1.0 4
0.5 A 0.5 A
0.0 A 0.0 A
—0.5 A —0.5 A
_10 L T T T _10 L T T T
-1 0 1 -1 0 1
p4 p5
1.0 A 1.0 A
0.5 A 0.5 4
0.0 A 0.0 A
—0.5 A —0.5 A
—1.0 - . - . —1.0 - . - .
-1 0 1 -1 0 1

FIGURE 2.13: Trajectory of the unicycle robot in the transformed
workspace’s partitions executed during the second experimental
case.
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FIGURE 2.14: Trajectory of the unicycle robot in the real workspace
executed during the third experimental case.
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FIGURE 2.15: Trajectory of the unicycle robot in the transformed
workspace’s partitions executed during the third experimental case.
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Chapter 3

Navigation of Polygonal-Shaped
Robots on the Plane

FIGURE 3.1: Team of mobile manipulators forming a virtual, non-
convex robotic platform.

3.1 Introduction

In this chapter, a hybrid control scheme is presented in order to address the naviga-
tion problem for a planar robotic platform of arbitrary shape that is moving inside
an obstacle cluttered workspace. Given an initial and desired robot configuration,
we propose a methodology based on approximate configuration space decomposi-
tion techniques that makes use of heuristics to adaptively refine a partition of the
configuration space into non-overlapping, adjacent slices. Furthermore, we employ
appropriate workspace transformations and adaptive potential field based control
laws that integrate elegantly with the type of configuration space representation
used, in order to safely navigate within a given cell and successfully cross over to the
next, for almost all initial configurations, until the desired configuration is reached.
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Finally, we present simulation results that demonstrate the efficacy of the proposed
control scheme.

The outline of this chapter is as follows. At the end of this section, we define
some preliminary notions and notation used throughout this chapter. In Section 4.2,
we explicitly formulation the problem addressed in this chapter. In Section 4.3, we
elaborate on the proposed approximate cell decomposition methodology as well as
the hybrid control law designed for ensuring safe transitions between sequentially
reachable sets of goal configurations. An analysis of the completeness of the pro-
posed control scheme is given in Section 3.4. Finally, simulation results demonstrat-
ing the efficacy of the proposed control scheme are presented in Section 4.4.

Notation: GivenasetS,let dS denote that set’s boundary. We also define D and
9D as the disk and circle with unit radius centered at the origin of IR?, respectively.
Given two sets A and B, we use cl(A), int(A), A/B and A © B to denote the closure
of A, the interior of A, the component of B not belonging in A and the Minkowski
difference of A from B, respectively. Finally, given a vector function f(x) we use V, f
to denote its Jacobian matrix.

3.2 Problem Formulation

We consider a robot moving within a compact workspace W C R? occupied by a
set of disjoint, fixed inner obstacles O;, i € 7, £ {1,2,...,N,}. We assume that
the robot’s boundary oR, the workspace’s outer boundary 0, and the boundaries
dWV; of the static obstacles are polygonal Jordan curves, where 9W; £ 90,,Vi € Z,.
Furthermore, the robot R is assumed to be a closed, 2-manifold of R?, whereas the
workspace W is assumed to be a closed subset of R?. We will use Fy, and Fg
to denote two arbitrarily embedded coordinate frames in the workspace and the
robot, respectively, and we will refer to the origin of Fr as the reference point of the
robot. Let z = [x, y, Q]T denote the configuration of the robot, specifying the relative
position p = [x, y]T € R? and the orientation n = [cos6,sin 0], 6 € [0,2n), of Fr
with respect to F)y. A single integrator model characterizes the robot’s oriented
motion as follows:

p=u (3.1)

0=w
where u € R? is the control input vector corresponding to the robot’s linear velocity
and w € S! is the desired angular velocity.

The robot’s configuration space CS is a manifold diffeomorphic to R? x S! and
each obstacle O; corresponds to a closed region O¢ inside that, given by O¢ =
{z|R(z) N O; # @}, where R(z) denotes the subset of VW occupied by the robot
at configuration z (for brevity, R(6) will be used instead of R([0, 0, 8]) wherever is
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deemed preferable). The robot’s free configuration space CSge, is thus defined by
CSfree = CS/ Uiez, Olc

Our goal is to design a control law that can successfully drive the robot to a
given goal configuration zgn, € CSfree for almost all initial configurations zinit €
CSfree, While ensuring that the robot’s trajectory remains safe, i.e., p(t) € CSgee for
allt > 0.

3.3 Control Design

To address the aforementioned problem, we design a hybrid control scheme which
consists of: a) a high-level controller that given an initial (zinit) and final (zgna1) con-
figuration, can compute a sequence of reachable intermediate goals for the robot,
if a solution to the above problem exists, or determine its infeasibility otherwise,
and b) a low-level controller which utilizes harmonic based artificial potential fields
and appropriate workspace transformations in order to safely navigate the robot to
each of these sequentially reachable configurations. More specifically, the high-level
controller, presented in Subsection 3.3.1, constructs a partitioning of CSg.e by adap-
tively subdividing S until a sequence IT of connected cells containing zinir and Zgna
is found (if one exists). Then, for each cell in I, goals for the robot’s position p and
orientation 6 are computed separately, as described in Subsection 3.3.2, and pairs
of independent low-level controllers using harmonic transformations and adaptive
artificial potential fields, described in Subsection 3.3.3, are employed.

3.3.1 Configuration Space Decomposition

In this section, we provide a detailed description of the proposed methodology for
constructing a hierarchical approximation of the robot’s configuration space. More
specifically, we propose an algorithm for partitioning CSgee into non-overlapping
slices which are obtained by adaptively subdividing the set of valid robot’s orienta-
tions. A free configuration space’s slice ST corresponding to an interval Z = [a, b) of
rotation angles is defined by ST £ {(x,y,6)|6 € Z} N CSfee- In general, ST consists
of zero or more disjoint sets of robot configurations with arbitrary connectedness
which will be referred henceforth to as cells. Thus, we associate to each slice ST an
indexing KZ of its cells CkI and we will use £ (SI ) to denote the set of its cells, i.e.,
CF e £(8%),Vk e KT

Two slices ST and SV are said to be adjacent if cl (Z) N cl () # @. Additionally,
we will say that two cells C! and C/, belonging to adjacent slices, are connected if
cl (€Y Ncl (CT) # @. In order to avoid the implications introduced by the geometric
complexity of CS, we will also construct and use two additional, simpler approxi-
mations of the free configuration space, namely an over-approximation CSfree and
an under-approximation CSg,.., which are made similarly of slices and cells and the
purpose of each will become apparent later in this section.
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FIGURE 3.2: WI (blue colored regions) and wt (red colored regions)
of the free space available to the Y-shaped robot (bottom-right) for
7 =[315°,360°).

The method devised in this chapter for constructing the aforementioned ap-
proximations requires the existence of two functions, denoted by f and f, for com-

puting an over-approximation S and an under-approximation S of the free space
corresponding to a given slice ST. Apart from & T cSTc SI, these functions must
be selected such that f(S%) £ EI — 8% and f(S?) & ST — ST as the length of
1 goes to zero. A simple approach for construgting such sets is by first computing
appropriate approximations W' and W of the free space of S projected on the
xy-plane, and then extruding along the 6-axis. Thus, the sets S and ST are given
by
S' = (x0T, y]" e W', 0 € T}

. : . : (3.2)
S ={lxy0l'[[x,y] eW,0eT}

In order to compute W' and WY, several algorithms can be employed, such as the
Projection Method [122] or the Swept-Area Method [122]. In this chapter, the later was
preferred due to its simplicity and computational efficiency over the former. As
such, WI and WY can be computed using

W =We R®@),

s = (3.3)
W =Wo R®D),
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where R(Z), R(Z) are sets given by

RI) ={p|30 € Z:p e RO},

(3.4)
RI)=A{plv0 €T :p e RO},

representing the subsets of IR? that the robot occupies either for at least one or for
every orientation in Z, respectively (see Figure 3.2). The notions of adjacency and
connectedness defined above for exact slices can also be easily extended for their

over- and under-approximations.

@
(a) (b)

FIGURE 3.3: Workspace consisting of two rooms connected via a cor-

ridor. The WI (blue colored regions) and W? (red colored regions)

were constructed via the Swept-Area method for (a) Z = [0°,360°)

and (b) Z = [67.5°,90°). Corresponding R(Z) and R(Z) of the rectan-
gular robot (bottom) can be seen below each workspace.

At this point, it should be noted that as one subdivides the configuration space
into more and more slices, the corresponding approximations CSee and CSy,ee con-
structed using the methodology described above converge to CSgee, Which ensures
that this approach is resolution complete. Thus, by sufficiently subdividing CSee,
a sequence of under-approximation cells connecting any given two configurations
of the robot will be found, as long as one exists in the first place (see Figure 3.3).
Instead of blindly subdividing CS. in search of such sequence, we propose an al-
ternative algorithm, based on the approach presented in [122], which makes also use
of the space’s over-approximation to provide a heuristic for choosing the next slice
for subdivision that can potentially yield a desired path. Additionally, it is also able
to recognize whether such a path even exists.

Let P be a set consisting of N angle intervals 71,7, ...,Z)y. We will say that P is
a partition of CSee if St 8%, .. SV are non-overlapping and CSgee = Uﬁi 1SIk.
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Additionally, given a partition P, a path IT of cells is defined as a finite sequence of
cells such that 7 € P and the cells of each consecutive pair (CI" Ce _":11) are connected
forallk = 1,2,...,N. One can verify from the definitions of S and S that, for any
given partition P of CS and a pair of initial zi,it and final zg,, configurations, the

following statements hold:

1. If there exists a path of under-approximation cells in P containing these con-
figurations, then a solution to our problem exists.

2. If there exists a path of over-approximation cells in P containing these two

configurations, then our problem may admit a solution.

3. If there is no path of over-approximation cells in P containing these two con-
figurations, then our problem is unsolvable.

We can now present Algorithm 2 that is employed for finding a path of under-
approximation cells connecting a given initial and final configuration of the robot.
We begin by approximating CSfee, CSfree; CSfree DY slices spanning the whole S'.
¢, and CJ
contain the robot’s initial and final configurations, respectively. If no such pair of

Then, we search for cells CZ 1 of CSee, potentially subdividing P that

~fina
. T . =L =J . c el .
cells exists, indicated by either C;; and Cg,,, being empty, our initial problem is
obviously infeasible and the algorithm terminates. Otherwise, we try to connect cL
and CJ

~final

~init

using the under-approximation cells in P. If this attempt fails, then we try
instead to find a path of over-approximation cell connecting @ﬁit and @gnal. If such
a path cannot be found, this also implies that no solution exists and the algorithm
terminates. Otherwise, a heuristic is utilized for selecting an interval in P to be
subdivided and the process starts anew.

The heuristic used, which can be seen in Algorithm 3, selects which interval of
P to subdivide by trying to form a new path using cells belonging in CS¢... which
are also subsets of the cells of CS, that belong to the sequence given to it. After
isolating adjacent slices containing cells that cannot be connected, the largest corre-

sponding angle interval gets then subdivided and the function terminates.

3.3.2 Hybrid Control Scheme

Given now a path IT of cells obtained by Algorithm 2, we describe how to build a
sequence of low-level controllers which can safely navigate the robot, from one cell
to another, starting from zj;, till the goal configuration zg,; is reached. Let C* be
a cell in IT and let P(C%) denote the projection of C* on the xy-plane. It should be
noted that P(EI) =W and P(CT) = WZ. We begin by noting that by construction
C? is an under-approximation of the actual free configuration space such that

¢t = {lx,y,00"|[x,y]" € PCH)and 0 € T} . (3.5)
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Algorithm 2 Algorithm that searches for a path of cells containing specified config-
urations.
function CONNECTCONFIGS(Zinit, Zfinal)
P« {[0,2m)}
loop
P, Chit, Cioit < FINDUACELL(Zinge, P)
P, ,Ci 1 < FINDUACELL(Zfinal, P)

~final’

if éiﬁt =Qor @ﬁnal = @ then
return None
end if
solution < CONNECTUACELLS(CL,, Qﬁjnal)
if solution is empty then

path < CONNECTOACELLS(Eiﬁt, @gnal)

if path is empty then
return None
else
P REFINE(P,path,{Q%m}/{thnal})
end if
else
return solution
end if
end loop
end function

This implies that P(C7) is actually a non-empty, compact region of R? with arbitrary
connectedness and that the position and the orientation of the robot can change in-
dependently, as long as they both remain in CZ, without compromising the safety of
the robot.

Exploiting this fact, we can decouple the low-level control laws of the robot’s
linear and angular velocities. Thus, for each intermediate cell of I'l, all we need to do
is find independent goal regions for the robot’s position and desired ranges for its
orientation that can ensure safe transition from that cell to the next. Let us consider
a pair of consecutive cells C* and C7 in IT. Regarding the robot’s position, in order
to safely cross from CZ to C7, it is sufficient that p reaches the set G(C*) which is
defined as G(C%) £ P(CT) N P(CY), which is not empty by construction. Moreover,
G(C?) is generally made of one or more disjoint subsets of arbitrary connectedness.
Therefore, as long as the robot’s position reaches either of these subsets, the robot
can cross to the next cell.

Let F(CT) denote all configurations of C? that do not belong to the goal set
G(Ch), ie, F(CT) = P(CT)/P(CY). When p € F(C?), we need to design an appro-
priate control law for u that can safely drive p to a reachable subset of the boundary
of G(C?). When more than one of such disjoint goal subsets are reachable from the
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Algorithm 3 Heuristic choosing next slice for subdivision.

function REFINE(P, path, src, dst)
if len(path) = 1 then
return SUBDIVIDE(P, path[0])
else
cells + {}
connected < {}
if len(path) == 2 then
cells < dst
else
¢ « path[1]
forall C7 in L (QJ) do

cells « cellsU {C7}
end for
end if
for all C% in src do
for all C7 in cells do
if (2 NC7 +# @ then
connected « connected U {C{}
end if
end for
end for
if |connected| > 0 then
return REFINE(P, path[1 :], connected, dst)
else
return SUBDIVIDELONGEST(P,Z, J)
end if
end if
end function

connected component of F(CZ) that contains p, one of them is arbitrarily (though de-
terministically) selected and assigned as the goal set.! Let 7(C%) and g,,(CI ) denote
the connected component of F(C?) containing p and the assigned goal set, respec-
tively (see Figure 3.4). We consider the following cases of possible goal sets, which
need to be addressed differently during the corresponding low-level control design:

1. QP(CI) is a point in CZ.

2. gp(cf) is an inner boundary of Fc(C%).

3. Gy (CY)isa contiguous, measurable subset of Fc(CT) outer boundary.

4, QP(CI ) is equal to Fc(C*) outer boundary.

Regarding the goal set corresponding to the robot’s orientation, we note that it is
equal to cl(Z) Ncl(J). At this point, for the given combination of Fe(Ch)and QP(CI ),
we can design a vector field based control law f,(p, k) for the robot’s position and,

1A more sophisticated approach for choosing goal regions could be employed but that exceeds the
scope of the current work.



3.3. Control Design 47

accordingly, a simple proportional control law f(6) for its orientation, with overall
guaranteed convergence and safety properties, as described in Subsection 3.3.3. Fi-
nally, when C? corresponds to the terminal cell of I, the aforementioned control law
fp and fg is employed once again for driving the robot to zgna = (pa, 04) by simply
setting G,(CT) = {p4} and Go(CT) = {64}

P(CT)

P
(c7) e

Gg(c*)

P(CT)
FIGURE 3.4: Possible pairs of consecutive cells in IT.

3.3.3 Harmonic-based Navigation Functions and Maps

In this section we provide a brief overview of the transformation and the adaptive
vector field which were originally presented in [113] and are used in the design of

the robot’s linear velocity controllers.

Let F be a given compact, multiply connected domain bounded by N7 + 1 dis-
joint Jordan curves, namely 0Fy, 0F7, ... ,BFNJ, where 0F) is the enclosing outer
boundary of 7. A harmonic map T(p) = [u(p), V(p)]T (i.e., u(p) and v(p) are har-
monic function), is then constructed for F, satisfying the following properties: a)
maps the outer boundary 0%y of F to the unit circle 9D, b) maps all inner bound-
aries d.F; to distinct points q; = [u;, vi]* € int(dD), and c) is a diffeomorphism for
all p € intF. The computation of T requires a orientation-preserving weak homeo-
morphism T : 9Fy — 9D which can be trivially constructed as needed. Then, the
corresponding boundary value problem can be solved, e.g., by employing numeri-
cal techniques such as the Finite Element Method (FEM) or the Boundary Element

Method (BEM), in order to obtain u(p) and v(p).

In this subsection, such transformations are utilized for mapping each con-
nected set Fc(CT) of non-goal configurations corresponding to a cell C. Thus, de-
pending on the type of the corresponding G,(C?) the aforementioned methodology
may need to be adapted accordingly. More specifically, if G,(C?) is a contiguous sub-
set of the outer boundary of F¢(C?), then T must be chosen such that all p € gp(cf )
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get mapped to the same configuration g, on the boundary. When G,(C?) is equal to
the entire outer boundary of Fc(C?), an additional diffeomorphism T* mapping the
unit circle to its center and vise-versa must be applied on the image of T. Thus, the
composition " = T* o T must be is used instead of T for mapping Fc(C%) to D. In
this case, the goal configuration g, of the transformed cell can be placed simply on
the center of D. A simple choice for T* is as follows:

X o X 5 X
ctllxlfxt 1 llx]l

T*(x) = (3.6)
where ¢ some positive constant. Finally, considering the case where G,(C?) is equal
to an inner boundary of F¢(C?), no further actions need to be made as the goal set

will get automatically collapsed into a single point, onto which g; will be placed.

Given now the corresponding transformation (T or T") mapping Fc(C%) to D,
we define a harmonic potential field ¢ by placing point harmonic sources upon
the corresponding goal configuration g; and the transformed inner obstacles q; =
T(0F;), which is given by

b=k (Hq qu) ’ik n (Hq qu> 57

where k; > 0and k; > 0 are adaptively varying parameters. We subsequently define
a bounded reference potential field ¢ based on ¢, defined as

_ 1 4 tanh(w - ¢)

5 / (3.8)
whose gradient is given by
1 — tanh(w - ¢)*
Vo =w- ACK 2 (3.9)

where w is some positive scaling constant. We can now equip the robot with the

following control law for its linear velocity:

u= fplp, k)& =Ko -s0q,0) - T (p) - Votplq, k) (3.10)

where g = T(p), K, is a positive constant, J(p) denotes the jacobian matrix of T, i is
an artificial potential field augmented with an adaptive control law k = fi(p, k) for

its parameters k = [ky, k1, ko, ..., kpr ]T, where N Fe(cT) 18 the number of holes in

FecT)
Fc(Ch), and s¢(p, k) > 0is a continuously differentiable function given by

su(q,6) = (1= qll) + (max ((Vq1)" -4,0))" (3.11)
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Furthermore, the adaptive law designed for the parameters of i can computed by

ks = He,(7)

. B 3.12
ki = (ki — ki) WiCihi — ki (WOhO + Hez(sf)) /Vi € N(-)F ( )

and its purpose is to guarantee invariance of F without compromising the conver-
gence properties of ¢. For a detailed definition of the adaptive laws k; and k;, as well
as for the safety and stability proofs of f,, refer to chapter 2.

Finally, regarding the robot’s orientation, we employ a simple proportional con-
trol law of the form
w = fo(6) = —Ko - ds(6,6,) (3.13)

where ds(-, ) is a continuously differentiable function that calculates the shortest
signed distances between two given angles and 6, is the mean value of the inter-
val Go(C?) (which is either singleton or a non-trivial connected subset of S1).

3.4 Stability Analysis

In this section, we provide an analysis of the high-level planner, presented in Sub-
section 3.3.1, w.r.t. completeness, as well as an analysis of stability properties of the
overall proposed control scheme. Beginning with the former, we shall first state a
fundamental property of the robot’s configuration space.

Proposition 6. The free configuration space CSee 0f the robot R is an open subset of CS.
Proof. For the proof, refer to the Appendix. O

Next, we need to take a closer look at the continuity of the approximation yield-
ing functions f and f. Let dist(p, C,) be the shortest distance between a point p and
the set C, i.e. a

dist(p,C) = min|p — ¢q|.
geC

€

Considering the area R([01, 62]) swept by the robot rotating 2-manifold, it can be
readily seen that the distance between any point p € R(0) and R([6}, 0,]), with 6, <
0 < 6,, is zero, since R(8) C R([6;,0.]) by construction. In addition, we can show

that R([6;, 0,]) is continuous w.r.t. its arguments:

Proposition 7. Givenany 0, € S' and any e > 0, there exists 6 > 0 such that dist(g, R(6,)) <
¢ for all g € R([6,,0]) and 0 such that |6, — 6| < 4.

Proof. For the proof, refer to the Appendix. O

Contrary to R([6;,6.)), it can be readily seen that the distance between any point
p € R([0;,0,]) and R(0), with 8, < 0 < 0,, is zero, since R([0;,0,]) C R(0) by
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construction. Continuity of R([0,0,]) w.rt. its arguments, for sufficiently small
|6; — 0., can also been shown as follows:

Proposition 8. Given any 0, € S and any e > 0, there exists § > 0 such that dist(p, R([6,,0])) <
e (resp. dist(p, R([6, 0,1)) < ¢) for all p € R(6,) and 0 such that |6, — 0| < 6.

Proof. For the proof, refer to the Appendix. O

The main results of this work follows.

Theorem 5. Algorithm 2 is complete, i.e., if there exists a solution to the given navigation
problem, the proposed planner is bound to return a sequence of under-approximation cells
after a finite number of steps. Furthermore, if no solution exists, the planner is bound to
conclude so in finite time.

Proof. For the proof, refer to the Appendix.
t

Theorem 6. The proposed control scheme will drive the robot R to the specified goal con-
figuration zgn, starting from almost any initial configuration Zziniy, assuming that Zinit and
Zfinal belong to the same connected component of CS free, While ensuring collision avoidance
with the workspace’s boundary.

Proof. According to Theorem 5, we know that if the given problem is feasible, then
our planner will return a sequence of adjacent under-approximation cells leading to
Zfinal- The control law employed for the navigation within each cell is locally Lips-
chitz and possesses guaranteed almost-global convergence to the cell-specific goal
configuration while ensuring invariance of the current cell, as shown in Theorem 2.
Since after a transition from one cell to the next has been completed, the robot is by
design guaranteed not to return to it, this concludes the proof. O

3.5 Simulation Results

In this section we present simulation results demonstrating the efficacy of the method-
ology presented in this chapter. More specifically, we consider a scenario involving
a Y-shaped robotic platform which must navigate across a complex workspace to a
desired configuration. The algorithm introduced in Subsection 3.3.1 was used for ob-
taining a valid path of cells connecting the robot’s initial and desired configurations.
A total of 30 slices were used for sufficiently approximating the configuration space
in order to complete this task, corresponding to angle intervals of lengths ranging
from 77 to 77/32 rad. The hybrid control law, presented in Subsection 3.3.2, was then
employed for constructing corresponding control laws for the robot’s linear and an-
gular velocities, as described in Subsection 3.3.3. The motion profile executed by

the robot can be seen in Figure 3.5, verifying the guaranteed convergence and safety
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properties of our control scheme. Additionally, the evolution of the robot’s config-
uration z over time as well as the time instances when a transition between two
consecutive cells took place can be seen in Figure 3.6. Finally, some typical examples
of cells that were generated by the planner can be seen in Figure 3.7.
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FIGURE 3.5: Motion profile executed by the robot. The purple line
corresponds to the path traversed by the robot’s reference point p.
Blue and red poses correspond to robot’s initial and desired config-
urations, respectively, whereas gray and green poses correspond to
intermediate configurations captured at regular time intervals.
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FIGURE 3.6: State of robot over time. Vertical gray lines indicate tran-

sitions of the hybrid controller.
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FIGURE 3.7: Examples of F (C%) (blue) and G(CT) (green) generated
by the planner.
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Chapter 4

Coordinating the Motion of
Multiple Independent Disks

A

FIGURE 4.1: Multiple disk-shaped robots navigating within a com-
plex, planar workspace.

4.1 Introduction

In this chapter, we present a hybrid control scheme to address the navigation prob-
lem for a team of disk-shaped robotic platforms operating within an obstacle clut-
tered, planar workspace. Given an initial and a desired configuration of the sys-
tem, we devise a hierarchical cell decomposition methodology equipped with a suit-
able labeling mechanism which is able to determine which regions of the configu-
ration space need to be further subdivided at each iteration, thus avoiding redun-
dant cell expansions. Particularly, by computing appropriate over- and an under-
approximations of each robot’s footprint, our algorithm can determine which cells
may contain feasible configurations of the system, while automatically discarding
cells that are determined to contain none. Furthermore, given a solution to the given
problem generated by the high-level planner, we employ harmonic transformations
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and harmonic potential fields to accomplish safe transitions between adjacent cells,
thus ensuring almost global convergence to the desired configuration. We remark
that, since the distributed low-level control does not need explicit knowledge of the
every robot’s current position in order to compute control inputs, it requires very
low communication resources as the robots only need to exchange information when
they successfully complete a transition from one configuration cell to the next. Fi-
nally, we present simulation results that demonstrate the efficacy of the proposed

control scheme.

The outline of this chapter is as follows. At the end of this section, we define
some preliminary notions and notation used throughout this chapter. In Section 4.2
we formulate the problem addressed in this work. In Section 4.3 we elaborate on
the proposed planner’s design as well as the velocity control scheme employed for
safely executing the computed plan. Finally, simulation results verifying the efficacy
of the proposed control scheme are presented in Section 4.4.

A

Notation: ~ Throughout this chapter, we shall use Jy = {1,2,...,N} (resp.
J% 2 {0} UJy) to denote the set consisting of all natural numbers up to N, starting
from 1 (resp. 0). Additionally, given sets A and B, we use dA, int(A), cl(A) to de-
note the boundary, interior and closure of A, respectively, and A \ B to denote the
complement of B w.r.t. A.

4.2 Problem Formulation

We consider a team of Ny robots operating within a compact planar workspace VW C
R? occupied by a set of N, disjoint, fixed inner obstacles O;,i € Jy,. We assume that
each robot i has a disk-shaped body R; C R? with radius r; > 0. Let F,, and
Fi,i € TN, be the coordinate frames arbitrarily embedded in W and R;,i € Ty,
respectively. We shall refer to the origin of each F;,i € Jy, as the reference point of
the corresponding robot. Moreover, without loss of generality, we assume that the
reference point of each robot coincides with the center of its body. Let p; = [xi, yi] Te
IR? denote the relative position of i-th robot’s reference point w.r.t. the workspace’s
coordinate frame F,,, and let Ri(p) to denote its footprint, i.e., the space occupied
by R; when placed at position p. Throughout this chapter, we shall use &€ C R?N®
to denote the robotic system’s configuration space and P £ [plT Py p{,n} ' ec
to denote the stacked vector of robot positions. For the shake of brevity, we shall
also use P[i] to denote the i-th component of P, i.e., P[i] = p;. Let WW° denote the
complement of W, i.e., W° £ R? \ W. We also define a configuration P as feasible
iff the following conditions hold:

Ri(Pli) NR;(PIjl) =@, Vi#j€ Ing

(4.1)
RiPL)NW® =@, Vi€ I,
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R;i(Z)

Zf
Ri(Z)
—

Ri(Z)

Z

Ri(Z)

R;

FIGURE 4.2: Over-approximation R;(Z) (resp. R;(Z2’)) and under-
approximation R;(Z) (resp. R;(Z")) of the footprint of robot i when
swept over Z C R? (resp. 2).

and we shall use ¢/ C € to denote the set of all feasible configurations of the robotic
system, whereas its complement ¢° 2 ¢\ ¢/ corresponds to the set all infeasible
configurations. Furthermore, we assume that the motion of each robot i obeys the
single-integrator kinematic model:

pi=uj, 1 € In, (4.2)

where u; denotes the control input.

Let Pinit and Pyes be two given feasible configurations of the multi-robot system.
Our goal is to design a control scheme that drives any robot i, initialized at pinit; =
Pinitli], to the specified desired position pgesi = Pges[i], while avoiding inter-robot
and robot-workspace collisions, i.e., P(t) € ¢f forall t > 0.

4.3 Control Design

To address the aforementioned problem, first, we employ a hierarchical cell decom-
position scheme for partitioning the configuration space of the multi-robot system
¢ into cells, as described in Subsection 4.3.1. Then, we design a high-level planner,
in Subsection 4.3.2, which recursively expands the aforementioned structure until a
sequence of adjacent cells connecting Pinit and Pges is found. Finally, the low-level
control scheme employed to ensure safe transition between cells until the goal con-
figuration is reached, is presented in Subsection 4.3.3.

4.3.1 Configuration Space Decomposition

In this subsection, we present the hierarchical cell decomposition scheme that will
be employed in our approach. We begin with disregarding inter-robot collisions
and considering the configuration space of each individual robot. Particularly, the
configuration space of robot i, denoted herein by .A;()V), corresponds to the largest
subset of V¥ where the reference point of robot i can be placed such that R;(p;) N
W = @, for all p; € A;(W). Also, given a subset Z of W, we shall use A;(Z) to
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or
[ X

AL(W) = As(W) N =,

FIGURE 4.3: Example of a hierarchical configuration space decompo-
sition for a system of two identical robots. The green area corresponds
to the configuration space A;(W) of each robot. For the shake of sim-
plicity, we assume H{1 = H;. The workspace slice S; corresponding
to robot 1 consists of a single simple cell (Cs,) whereas slice S, corre-
sponding to robot 2 consists of two cells (Cs, 1, Cs, 2)- The compound
cell (Cs,,Cs, 1) is labeled as mixed because R| and R, may intersect

when p; € Cg, and p; € Cg, » since R_l(Cgl) ﬁR_2(C52,1) # @, whereas
(Cs,,Cs, ) is marked as admissible.

denote the set of feasible positions of robot i which belong to Z, i.e.:
A(2)E{plpe Zand Ri(p) NW° =D}, Vi € Iny. (4.3)

In addition to A4;(-), which corresponds to the set of feasible positions of robot i, we
also consider two estimations of the area that is potentially occupied by R; when p;
is restricted in a subset Z of V. Particularly, given a robot i € Jy, and a set Z C
A;(W), let Ri(Z) and ‘Ri(Z) be an over-approximation and under-approximation,

respectively, of the footprint of R; when robot i is swept over Z such that:

Ri(2) 2 | Ri(p)
peZ

4.4)
Ri(2) € [ Ri(p)
peZ
and
Ri(2) CRi(2), v2cZ2
(4.5)

Ri(Z2) 2 Ri(Z2"), VYZC Z'.
An example of such approximations can be seen in Figure 4.2.1
We now consider a set S C R? that has the form [x7, x] x [v1,y2]. We shall refer
to such a set as a simple slice of R?. Given a simple slice S and a robot i € Jy,, we

will use Wi £ A;(W)N S to denote the set of feasible positions of robot i (neglecting
inter-robot collisions) that are contained in S. Aset & = { S; | i € Ty, } of Ng simple

IFor disk shaped robots, a valid over-approximation R;(Z) can be computed by offsetting Z by r;,
whereas R;(Z) can be calculated by N,cazR;(p)-
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slices shall be called a cover of W iff

w= U snw. (4.6)

JEINg

We note that a cover & partitions A;(WV) into a set of regions Wi, S € & each of
which consists of zero or more individually connected but pairwise disjoint sub-
sets Cfs’]-, jeqd Ne (W) that shall be referred to as workspace (or simple) cells. A

cover & = {(i,6)) | i€ TIn, } of the configuration space € is respectively defined
by assigning a cover to each robot. Accordingly, a configuration space (or com-
pound) slice S is defined as S = { (i, S;) |i € T, }, where S;, i € Ty, is a set
of simple slices. Likewise, a configuration space cover & = { (i, &;) |i € Ing }
induces a partitioning of ¢ into regions Wg £ W}gl X W§2 X ... X ngn, where
S ={G8)]ie JNg } is an element of S. We note that each of these regions
may consists of zero or more individually connected but pairwise disjoint subsets
C. S/ i€ Ty, (€s) which shall be referred to herein as configuration space (or com-
ponent, i.e., c”[l]i = Céj/i, for all j € Jn,. We remark that, unlike hierarchical decom-

S,
position schemes commonly encountered in the literature, which use cells of simple

pound) cells. Given the compound cell C g we will use to denote its j-th com-

geometries (e.g., hypercubes or hyperrectangles), the configuration space cells con-
sidered in this chapter have, in general, arbitrary geometries since their components
do not possess a pre-specified shape (see Figure 4.3). Although this choice renders
navigation within a cell C more complicated, it generally results in coarser partitions
since each component Cll of C belongs in A;(VV) by construction, thus the subdivi-
sion scheme has to accommodate only for potential inter-robot collisions.

Regarding now the transition between configuration space cells, we introduce
some required notions of connectedness. We begin with considering two distinct
simple slices §; and S; which shall be called adjacent iff their intersection S; N §; is
not empty. Moreover, let Cg ; and Cg ; be two distinct workspace cells. We define
these simple cells as adjacent iff Cg ;N Cg ; # ©. Apparently, Cg ;and Cg ; being
adjacent implies that S, and S, are also adjacent. The aforementioned definitions
can be naturally extended to compound slices and cells, as well. Particularly, two
compound slices Sw =10, Smi)| i€ In, } and Sy ={(, Sui) |1 € Ing, } are adja-
centiff S, ;, S, ; are adjacent, for all i € Jy,,, whereas, two compound cells 51 and é\]
are adjacent iff CAl[k] and CA]U{] are adjacent, for all k € Jn,,. A path IT of configuration
space cells is defined as any finite string of sequentially adjacent compound cells.
Obviously, a path IT consisting of cells that lie entirely in ¢/ and contain both Pin;
and Py, is a valid solution to our path finding sub-problem. In order to discover
such a path, we build a hierarchical decomposition $ = { (i, H) | i € In,, } of the
configuration space € by assigning to each robot i a hierarchical partitioning of the
workspace W, represented as a connected, directed tree H £ (N4, ) such that:
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e Eachnode S € Ny is a simple slice.
e Every child S; of a given node S; (i.e., (S;, Sj) € Ey) is a strict subset of S;.
e The set of leaf nodes must form a cover of W.

Finally, an algorithm was devised for appropriately expanding $) until a solution is
found, as described in the following subsection.

4.3.2 High-Level Planner

In this subsection, we present a high-level planner for finding a sequence IT of ad-
jacent cells in ¢f connecting the initial Pinit and goal Pyes configurations. One of
the main advantages of the proposed algorithm is the use of a suitable labeling
scheme, which allows it to recursively subdivide, at each iteration, configuration
space cells that lie on the boundary between €/ and €°, while ignoring cells that
lie completely inside ¢/ or €°. To do so, this labeling scheme exploits the over-
and under-approximations R; and ‘R of each robot’s footprint, defined in Subsec-
tion 4.3.1, to determine whether a robot may collide with another one while each
robot navigates independently within its respective workspace cell. More specifi-

cally, given a compound cell C, the employed cell labeling scheme works as follows:

o If the intersection of all @(CA[i]), i € Jng is empty, then, by virtue of (4.4), no
robot may come across another while P ¢ C , thus Cis entirely contained in ef.
Such a compound cell is marked as admissible.

o If the intersection of all &(CA[i]), i € Jng is non-empty, then, by virtue of (4.4),
for every P ¢ C there exists at least one pair of intersecting robots, thus Cis
entirely contained in €°. Such a compound cell is marked as inadmissible.

e If C is neither admissible nor inadmissible, it is marked as mixed.

In general, mixed cells encapsulate both feasible and infeasible configurations and
expanding them (recursively) should yield admissible and inadmissible sub-cells.
On the other hand, by virtue of (60), subdivision of admissible (resp. inadmissible)
cells yields only admissible (resp. inadmissible) cells, without contributing any fur-
ther in the configuration space’s exploration.

The planner’s main search algorithm is described in Algorithm 4, which initially
constructs a coarse compound slice hierarchical partitioning made of each robot’s
feasible set .4;()V), thus enclosing all ¢/ (functions INITIALIZEHIERARCHY and INI-
TIALIZECCELLS). Then, the initially computed compound cells get expanded until
admissible ones, containing Pinit and Pyes, are found (function FINDENCLOSINGAC-
CELL), whereas inability to find such compound cells indicates infeasibility of the
given problem and the algorithm terminates. Next, an initial path I'T connecting Cinit

or CAgoal made of compound cells belonging to the exploration’s frontier set S - (i.e.,
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the set of unexpanded admissible and mixed cells), is built (function CONNECT-
STRINGS). At each iteration, the first mixed compound cell of IT (function GET-
FIRSTMIXEDCCELL) is removed from the frontier and is expanded (function EX-
PANDCCELL) by subdividing the widest simple cell C whose over-approximation
Ri(C) intersects with another (functions GETCONFLICTINGSCELLS and SELECTS-
CELLWITHWIDESTSSLICE) into smaller ones, as seen in Algorithm 5. Finally, a new
path is constructed using standard back-tracking techniques, until either IT consists
only of admissible cells or no new path of mixed and admissible cells leading to Pyes
can be found.

Algorithm 4 Planner’s Main Algorithm

function FINDAPATH( Pinit, Pges )
£ < INITIALIZEHIERARCHY
S < INITIALIZECCELLS(S))
Ser <S¢

~

Cinit/ f:)/ Sé\/ Sé\F —

FINDENCLOSINGACCELL( Pinit, , S5, S 1)
Coals 9, 5, S p <
FINDENCLOSINGACCELL( Paes, 9, S5, Sz )

if CAinit is null or CAgoal is null then
return null
end if R R
IT < CONNECTSTRINGS( [Cinit], [Cgoall, 56, F)
while not ((ITis null) or ISADMISSIBLEP(I])) do
I, 9, SCA, Sal__ —
EXPANDPATH(IT, §, Ser Sé,p )
end while
return I'1
end function

Algorithm 5 Path Expansion at Mixed Compound Cell

function EXPANDPATH( 11, $, Sér SE,F )
C«+ GETFIRSTMIXEDCCELL(II)
Lopre, Lsuf <= SPLITSTRING(IT, C)
Se + GETCONFLICTINGSCELLS(@)
i,5,C < SELECTSCELLWITHWIDESTSSLICE(S¢)
56, 91 5¢ Sgp
ExXPANDCCELL(C, i, S,C, 9, Ser S@F )
IT <~ CONNECTSTRINGS(L pref, Lsut, S(?, P
return I, §, Sé, Sé,F
end function

4.3.3 Velocity Control Law

Given now a path Il consisting of N1 admissible configuration space cells, we present
a distributed control law for safely navigating from one cell to the next until the goal
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FIGURE 4.4: Two adjacent compound cells ¢, = (C1,C?) and C, =
«cl, C%). In order robot 1 (resp. robot 2) to successfully move from Cl1
to CJ (resp. from C? to C3) it has to reach any point of Gy 1 (resp. Go1).

configuration Py is reached. First, we consider two consecutive compound cells @
&l
, (41
and CAIEL and is non-empty by con-

and @ 4 in I, for which we compute the goal set G; ¢ = é}i] N of each robot 7,

that contains feasible configurations in both (?g]
struction. Respectively, the goal set corresponding to the last cell of IT consists of
just the desired configuration Py, i.€., CANn = {Pyes} (see Figure 4.4). Furthermore,
let Fy; & @i] \ int(Gy;) and Gy £ Gy N Fy;, for all k € Ty, Notice that Gy, is gen-
erally made of one or more pairwise disjoint subsets of arbitrary connectedness as
well as that robot i should navigate to any of these regions® without escaping é}i] in
order to successfully traverse to the next specified workspace cell. Respectively, the
transition from @ to @ 1 is considered complete after every robot i reaches CAEL. We

also remark that when C/T;] - 5[@11, robot i simply needs to retain its current position

during step £.

In order to fulfill the aforementioned specifications, we equip each robot i with
a controller u; based on suitable workspace transformations and adaptive artificial
potential fields, which were originally presented in [113] and possess guaranteed
domain invariance and almost global convergence properties. More specifically, we
build a diffeomorphic transformation q¢ = T/(p;) that maps F; to the unit disk D,
the outer boundary of F;; to the unit circle 0D and collapses all inner boundaries to
distinct points qf{ s J€T Nt/ where N/ is the genus of ;. We now distinguish the
following two cases of possible goal sets: a) G, ; being an inner boundary of 7, and

2When more than one of such disjoint goal subsets are reachable from the connected component of
F,i that contains p;, one of them is arbitrarily (though, deterministically) selected and assigned as the
goal set. A more sophisticated approach for choosing goal regions could be employed but it exceeds
the scope of the current work.
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b) G, ; being part of the outer boundary of ;. Depending on the case, T! must be
appropriately adapted to simplify the subsequent potential field’s design. Particu-
larly, case (a) can be accommodated by modifying T/ such that G;; collapses to an
inner point qgesli of D, whereas case (b) is addressed by designing T/ such that Gy
collapses to a single point g es,i ON 0D. Next, we define the harmonic potential field
¢! used by robot i during step ¢ by placing point harmonic sources upon the cor-
responding goal configuration qgesﬂ. and the transformed inner obstacles qf i given

by:
l l l {
Yy, qu - qdes,i” . 0 qu B qi,j”
¢; = ki,d In (2 E kz,] In — 4.7)

jEle[

where kf ;> 0and kﬁ ; = 0 are adaptively varying parameters. Finally, the control
law u! of robot i during step ¢ is given by

uf = —Ks(al Ko (1aD) 'V el K @s8)

where K is a positive control gain, J is the Jacobian matrix of T}, s is a factor ensuring
collision avoidance with the outer boundary and ¢! = 1+ tanh(w¢?)/2, with w a

positive constant.

4.4 Simulation Results

In this section, we present simulation results demonstrating the efficacy of the pro-
posed methodology. Particularly, we consider 5 scenarios where a system consisting
of 2, 4, 6, 8 and 10 robots, respectively, initialized within the workspace depicted
in Figure 4.5, is required to reach a specified final configuration. The time required
by the proposed planner, as well as the total amount of compound cells generated
during the solution of each case is shown in Table 4.1. We remark that the planner
expanded mixed compound cells by subdividing the corresponding conflicting sim-
ple slice into four identical overlapping sub-slices. The motion profiles executed by
the robots in each corresponding case can be seen in Figure 4.5, Figure 4.6, Figure 4.7,
Figure 4.8, Figure 4.9. Additionally, Figure 4.10 and Figure 4.11 depict the initial and
goal configurations as well as the computed enclosing cells, respectively, for the 8-
robot scenario. As one can verify from the figures that the robots can successfully
navigate to their individual goals.

Amount of Robots ‘ 2 ‘ 4 ‘ 6 ‘ 8 ‘ 10
Time (sec) 0.088 | 0.240 | 0.845 | 1.36 | 31.1
Compound Cells 51 348 823 | 1014 | 3363

TABLE 4.1: Execution time and amount of generated compound cells
required by the high-level planner for solving each scenario.



64 Chapter 4. Coordinating the Motion of Multiple Independent Disks

_75 -

—100 A [T

—125 ~ '

—150 A

—175 A

—200 A

—225 A

—250 A

100 150 200 250 300
FIGURE 4.5: Executed trajectories of the 2 robot case. Squares in-

dicate initial positions whereas the corresponding goal positions are
depicted using crosses.
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FIGURE 4.6: Executed trajectories of the 4 robot case. Squares in-

dicate initial positions whereas the corresponding goal positions are
depicted using crosses.
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FIGURE 4.7: Executed trajectories of the 6 robot case. Squares in-
dicate initial positions whereas the corresponding goal positions are
depicted using crosses.
_75 .
> N
—100 1 \ I
[
—125 A '
-1504 [ TN ')
] L
—175 A L
) [ ] _x
—200 A
—225 A
—x
—250 A
100 150 200 250 300

FIGURE 4.8: Executed trajectories of the 8 robot case. Squares in-
dicate initial positions whereas the corresponding goal positions are
depicted using crosses.
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FIGURE 4.9: Executed trajectories of the 10 robot case. Squares in-

dicate initial positions whereas the corresponding goal positions are
depicted using crosses.
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FIGURE 4.10: The initial robot positions pinit;, i € Jg and calculated
initial compound cell Cipjt.
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FIGURE 4.11: The desired robot positions pges ;, i € Jg and calculated
goal compound cell Cgpy-
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Chapter 5

Cooperative Load Transportation

FIGURE 5.1: Cooperative object transportation by two robots.

5.1 Introduction

In this chapter, we present a methodology for coordinating transportation of an ob-
ject carried by a team of mobile manipulators which operate within a compact planar
workspace. Owing to the object rotation and the robot’s manipulators, our scheme
must take into consideration the varying shape of the robotic system in order to
build a plan that can safely drive the robotic system to the goal configuration. To
this end, we devise a high-level planner which is tasked with building a sequence of
adjacent configuration space cells connecting the system’s initial and desired config-
urations, each of which defines an allowable set of configurations for the object, as
well as explicit intervals for each manipulator’s states. Furthermore, appropriately
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designed under- and over-approximations of the free configuration space are used
in order to guide the configuration space’s exploration by selecting the cells that
need further subdivision. In addition, methodologies based on Reference Gover-
nors and Prescribed Performance Control are coupled with harmonic maps in order
to design a distributed control law for realizing the specified cell transitions, which
possesses guaranteed invariance and almost global convergence properties. Finally,
we remark that the proposed low-level control law does not require continuous in-
formation exchange between the robots, which rely only on measurements of the
object’s current configuration and their own states in order to compute their respec-

tive control inputs.

The outline of this chapter is as follows. Firstly, we present some preliminary
notation and definitions in Section 5.2. Next, the problem tackled in this chapter is
formulated in Section 5.3. In Section 5.4, we present the control scheme employed
for driving the robotic system to the specified goal configuration while ensuring col-
lision avoidance with the workspace boundary, and we elaborate on the closed-loop
system’s properties in Section 5.5. Finally, we provide simulation results verifying
the efficacy of our approach in Section 5.6.

5.2 Preliminaries

Throughout this chapter, we shall use R to denote the set of real numbers and IN
to denote the set of natural numbers starting from zero. Moreover, we shall use
v = {1,2,...,N} (resp. Ty £ 10,1,2,...,N}) to denote the set consisting of all
natural numbers up to N, starting from 1 (resp. 0). Additionally, given sets A and B,
we use dA, int (A), cl(A) to denote the boundary, interior, closure respectively, and
A\ B to denote the complement of B w.r.t. A.

Given a coordinate frame Fp in R? and two points Py, P € R?, we will use
{ng B to denote the position of point Py relative to point P4, whose coordinates are
expressed w.r.t. Fo. Given frames F4, Fp, Fc, we will use {{ﬁP{C} € R? to denote
the position of the origin of frame ¢ relative to the origin of frame F3, whose co-
ordinates are expressed w.r.t. F4. Accordingly, given frames F,, Fg, we will use
{{/Q{R € R?*2 to denote the rotation matrix corresponding to the relative orientation
of Fgw.rt. Fyu.

Given a rotation angle 6, let R () be the rotation matrix defined as

R(G)é [cosG —sin@]'

sinf cos®
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For two given coordinate frames F,4, Fp, we define {{ﬁT as the homogeneous trans-
formation from frame Fp to F 4, defined as

{B} {A}

{A} Ay
w7 = 0 1

{A}R {A}P{B}]

We recall that the following equation holds for any given point P:

{A} {8}
wP| _ 1417 P
{8}

1 1

where ml’ is the position of P w.r.t. frame F4 and giP is the position of P w.r.t.
frame Fp. For brevity’s shake, we shall abuse notation slightly and write mP =

{{2{7‘ . %P instead of the above when convenient.

5.3 Problem Formulation

We consider a compact workspace YW C IR? enclosed by a static outer boundary
oWy and N, inner static boundaries dWV;, i € Jy,, with N, € IN. More specifically,
we assume that V¥ can be written as follows:

WE0,\ |J O (5.1)

iEjNo

where Oy denotes the area that lies outside of 9V, with Oy £ R2 \ Oy, and O;
denotes the area enclosed by 0W;, for all i € Jy;, (see Figure 5.2). We shall also use
W to denote the complement of W w.rt. R?, i.e, W = R?\ W, which is assumed
to be closed. In addition, the workspace outer boundary dWy £ 90, and its inner
boundaries OW; £ 00;, i € Jn, are considered to be disjoint Jordan curves. Without
loss of generality, we assume that )V is embedded with the arbitrarily positioned
and oriented inertial frame Fyy.

We now consider an object £ C IR? whose body is a compact, closed, polygonal
2-manifold, able to translate and rotate freely within )V as long as it is not in contact
with the workspace boundary. Let F, be a fixed coordinate frame arbitrarily em-
bedded in £. We shall use p, and 6. to denote the current position and orientation
of Lw.rt. Fyy,ie.

Pc = %%P{a} R(6;) = {{VQR.

Object L is considered a rigid body and let Mz, P com, Iz denote the object’s mass,
its center of mass, and its moment of inertia about P, .om, respectively, expressed
w.r.t. frame F,. Assuming that Pr .om coincides with the origin of F, the dynamics
of L is given by:

Mg -pr="1cyp

Ip -0, ="Trp
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FIGURE 5.2: Typical workspace.

where 77, € R? and 7,9 € R are the force and torque applied externally to the
object. Lastly, we define £ (p, 9) as the footprint of £, i.e., the space of W that the
body of £ occupies when p, = pand 0, = 6.

In order to transport object £ from an initial configuration to a desired one, a
team of Np > 2 cooperating mobile manipulators is employed. More specifically,
each robot R;, i € Jy,, consists of a holonomic base platform B; and a manipula-
tor A; which is attached to the base and is equipped with an end-effector A, ¢ that
rigidly grasps object £ at a specified point, and is thus able to exert a wrench onto
it. The kinematics and dynamics of each mobile manipulator R;, i € Jy,, is de-
scribed in detail in section 5.3.1 and section 5.3.1, respectively. It is also assumed
that the bodies of B; and A; can be described by compact, closed and connected
2-manifolds, for all i € Ty, .

Thus, given an initial configuration . init = [pzlinit, 0 L,init]T and a desired con-
figuration g goa1 = [pzlgoal, 0 E,goal]T for the object £, our goal is to design a control
scheme for the mobile manipulators R;, i € Jn, which can drive the object to its
destination, if a path between the two configurations exists, while ensuring that nei-
ther the object not the robots will collide with the workspace boundary dW. In
addition, if the given problem is infeasible (i.e., no collision-free path connecting
the given configurations exists) our control scheme should be able to conclude so in

finite time.

5.3.1 Mobile Manipulator Kinematics

For each i € Jy,, let 5, be a body-fixed frame arbitrarily embedded in B;. With-
out loss of generality, we assume that the origin of Fp, coincides with the center of
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rotation of the base platform B;. For brevity’s shake, let p; and 6; denote the current
position and orientation of Fp w.r.t. Fyy,i.e.:
A A
pi = 0 Psy R@) = 5R
Furthermore, we will use B; (p,6) to denote the footprint of the base platform of
robot R; when it is centered at p with orientation 0.

Regarding the manipulator 4; affixed to robot R;, we assume that it consists
of one or more links A;;, j € N4, which are connected such that they form an
open chain. Furthermore, the first link \A;; is rigidly affixed to the base platform
B;, whereas the end-effector is rigidly affixed to the last link 4; 5 o foralli € Jyy,.
The indexing of the remaining links of each manipulator is such that the body of
link A; ;1 is able to either rotate or slide about the joint it shares with link A; ;. For
each manipulator .A;, we shall use g;; and D, to denote the state and domain, re-
spectively, of the j-th degree of freedom, corresponding to the joint between links
Ajjand A; i, forall j € Oy 41 and i € Jn, 1. We remark that each domain Dy, is
a subset of either R or S! depending on whether the joint is prismatic or revolute,
respectively. The augmented state vector z; of robot R; as follows:

22 [, 6 qf]

where g; is the stacked vector of joint states of manipulator A;, for all i € Jy,.
Similarly, for each i € T, and j € Jn,, let F4,; be a body-fixed frame arbitrarily
embedded in A;;. Additionally, we affix an arbitrary coordinate frame Jf, at the
point of contact between the end-effector of manipulator 4; and the object £. For
the shake of simplicity and without harming generality, we assume herein that a) the
origin of frame F 4, ., lies on the axis of rotation or sliding of the j-th joint, and b) the
origin of frame F§, coincides with the corresponding contact point (see Figure 5.3).

F A1

/ y e Fi Ep
|_ F A,

Fr N—| F 4,

FIGURE 5.3: Example of robotic system consisting of two mobile ma-

nipulators carrying a rectangular object. Each platform is equipped

with a 2-link manipulator, which is able to rotate about the joint with
the base.
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Regarding each robot’s forward kinematics, we shall use 7 5, (p, 0) to denote the
rigid transformation from Fjp, to /)y when the robot’s is placed at p with orientation
9, ie., imP{Bi} = p and ig;R = R(f). Additionally, let 7 4, (qi) be the forward
kinematics of manipulator A;, i.e., T4, (q;) = {?357- . Since the manipulator of each
robot is rigidly attached to its base, there exists a fixed homogeneous transformation,
denoted by T, 4, between the base B; and the manipulator’s first link A;;, ie.

2 (B}

T4 = (1T The forward kinematics T, (p,6,9) of robot R; is given by:

T, (p.0,9) = Tp (P.0) - Tp,a- Ta ()
Lastly, for each i € Jy,,, we shall use Jr, and J 4, to denote the Jacobian matri-
ces of robot R; and its manipulator A;, i.e.:

{W}P{ }
w E;
ey | = TR @)z
{wys 4{E;}

and -
{83 {Ei} | _ . 5.
[{Bi}Q ] - in (ql) i
{B;}* “{Ei}

where ();, is the angular velocity of end-effector A; .

5.3.2 Mobile Manipulator Dynamics

The dynamics of each robot R;, i € Jn, is assumed to obey the standard Euler-
Lagrange model, i.e.:

MR, (zi) - Zi + Cr,(2i, 2i) - 2i + Gr(2i) = T, — (TR, (Zi))T Ty, (5.2)

where Mg, Cr, Gg, € RECHNAXGTNL) are the corresponding mass, coriolis and
gravity matrices, T,,; € RCTNA) is the wrench applied by the robot’s actuators to
the robot, and 7,; € R® is the wrench applied by the robot to the object £ via its
end-effector.

5.4 Control Design

To address the aforementioned problem, we design a hybrid control scheme which

consists of:

a) a high-level controller that given an initial configuration g init and a final con-
figuration g o1, can compute a sequence of reachable intermediate goals for
the robotic system, if a solution to the above problem exists, or determine its
infeasibility otherwise, and
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b) a low-level controller which utilizes appropriate workspace transformations
in order to drive the object and the mobile manipulators from each goal to the
next while avoiding collisions with the workspace boundary.

More specifically, the high-level controller, presented in Section 5.4.1, constructs a
partitioning of the system’s configuration space into cells by adaptively subdividing
the domain of the robotic system’s degrees of freedom until a sequence of connected
cells containing q init and g goal is found (if one exists). Then, for each cell, interme-
diate goals for the object’s position p, and orientation 6, are computed, as described
in Section 5.4.2, and a suitable low-level control law is employed for driving the sys-
tem to the corresponding goal configuration while ensuring forward invariance of
the current configuration space cell.

5.4.1 Configuration Space Decomposition

In this subsection, we present the hierarchical cell decomposition scheme that shall
be employed for designing a sequence of high-level, feasible instructions that de-
fine a “path” leading to the desired configuration. Before doing so, we shall first
take a closer look at the configuration space ¢ of the aforementioned robotic sys-
tem. Throughout this subsection, we shall model this system as one virtual robot R
consisting of Noy =1 + ):l-EjNR N 4, connected components, which correspond to the
object £, the base platform B; and the links A; ; of each mobile manipulator R;, for
allj € jNAl— andi € Jp,.

One can readily see that the components of R form an undirected tree T(n, ¢),
where n is the set of components and ¢ C n X nis the set of connections between the
nodes. We shall use R; to denote the i-th component of Y. A connection (i,]) € ¢
implies that the j-th component is able to move (rotate, translate, slice) relative to
the i-th component about a pivot point %f; ;. Furthermore, given i € Jn,,, we will
use n;, to denote the children of component ;, i.e. the set of components 9; such
that (i,j) € ¢, for all j € Jy,,. Moreover, n; will be used to denote the parent 5)%]- of
component 9, i.e. the sole component such that (j, i) € ¢, if one exists. Accordingly,
we define n; and n, as the set of descendants and ancestors, respectively, of compo-
nent ;. Without loss of generality, we can choose the indexing of the components
such that the first component of i is the root of ¥, corresponding to the object L. For
simplicity’s shake, we will use F,, i € Jn,, to denote the coordinate frames embed-
ded in each component of ?i and we shall refer to their origins as the reference point
of the corresponding component, respectively. Also, let px = [xx, yn) "€ R?and
O € Dy C S! denote the relative position of the robotic system’s reference point and
the relative orientation of its coordinate frame F, w.r.t. the workspace’s coordinate

frame Fyy, respectively.

Regarding the coupling between components, we will refer to the joint between
two connected components as prismatic (resp. revolute) if the child is able to slide
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(resp. rotate) about the corresponding pivot point. We will use q; and D, i € Jy,, to
denote the degree of freedom and its domain, respectively, corresponding to the joint
between the i-th component and its parent, where N, = ZjejNR (N4; — 1), Without
loss of generality, since each component other than the root has exactly one parent,
we assume that each pivot P; ; coincides with the origin of frame F,. Furthermore,
by treating the orientation 6, of the object as a virtual joint state, the state z of the
virtual robotic system R is defined as follows:

z 2 [ph, 00,91 = [pk,q"1"

where q £ [qi]z‘ej}*\] , is the stacked vector of virtual joint parameters with qq £ On
q

and q; £ q; foralli € IN,-

Let us now consider the footprint of the robotic system while it moves within
the workspace. We notice that, for each i € Jy,,, the footprint of the individual
component 9, i.e., the area occupied by it at a given configuration, is defined by
the position of its pivot point and the current value of its (virtual) joint parameter.
We shall use %; (p, q) to denote the footprint when the pivot point is placed at p and
the joint parameter value is q. We also remark that, although each component may
move freely w.r.t. its pivot point, any motion of theirs propagates directly to their
children, thus potentially inducing a translation and/or rotation onto every one of
its descendants n,. Thus, the footprint of component R; can also be defined in terms
of the current position ps; of the robotic system and the (virtual) joint parameters of
every component R; belonging to n}. By remarking that the footprint R (z) of the
robotic system at a given configuration z is simply the union of the footprints of its

individual components, i.e.:

R (pwa) £ U % (povlaj]few) (53)

iejNﬁR

we are now ready to formally define the set of admissible configurations to our prob-
lem. For brevity, R (q) will be used instead of % (0, q) where is deemed preferable.
By noticing that the configuration space € of this robotic system is a manifold diffeo-
morphic to R? x S! x g, x ... Dqy, - and recalling that neither the object £ nor any
of the robots R;, i € Jn,, are allowed to collide with the workspace boundary 0}V,

the set & of collision free configurations of R is given by:
Cr={z| WNNR(z)=Qandz € C}. (5.4)

Finally, let ¢, £ €\ ¢.

Now, in order to design a continuous “path” inside € connecting the two given
configurations g init and g goa1, we extend the methodology presented in Chapter 3.
More specifically, by designing a suitable cover of the free configuration space via
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recursive subdivision of the domain of g, our goal is to obtain a hierarchical parti-
tioning of €. For each implicitly defined cell, we compute over suitable over- and
under-approximations, whose shape is much simpler than the shape of the corre-
sponding exact cell, which are used for both guiding the configuration space’s ex-
ploration, as well as designing a high-level plan will drive the robotic system to its
goal. To do so, we first consider the domain ©, of the joint state q;, for i € Jy,- Fur-
thermore, we shall refer to a set of the form S[q;“, 4] 35 @ simple slice of the parameter
q;, where q;1,qip € Dg,. Also, a set G; = {Sf" |je jNei} consisting of Ng, simple
slices of q; shall be called a cover of ©, iff

gqi = U S]qi

J€INg,

for all k, £ € Tng, with k # £. A compound slice S is defined as a set of simple slices
of the form § = {S% | i e JX, }- Respectively, a set S={6]ic J%, }is called a
cover of the free configuration space &y iff each &; is a cover of D,,. We note that a

cover & induces a partitioning of & into regions
Cs={lpha"l" [pne Wandqe Stne, Se6 (5.5)

each of which consists of Ng > 0 individually connected but pairwise disjoint sub-

sets C S

readily see that two configuration space cells C g and Y 5 are connected iff S, ‘SA'] are
i j

i € Jn,_. Taking a closer look at the connectedness of these cells, one can
S

adjacent and the projections of C S ¢ g onto the plane intersect. We recall that two
distinct simple slices S} and S}* are called adjacent iff their intersection S* N S is
not empty, whereas two compound slices S; = {S™* |k e Iy, } and SA'] = {S?k | k €
Jf\,q }, are called adjacent iff S*, S ;'k are adjacent, for all k € 3}‘\]“.

Similarly to the method employed in Chapter 3, in order to avoid explicitly
computing the shape of a given configuration space cell, we shall define suitable
over- and under-approximations of it, which, in addition, shall be used for guiding
the configuration space exploration in a similar manner. In order to build these
approximations of the set of free configurations corresponding to the compound
slice S = {S% | i € X, }, we first compute an over-approximation R (3 ) and an

under-approximation i (3’ ) of the robotic system’s footprint as follows:

R®(S) = U %@

qGI§
o (5.6)
R(S)= N %@

q€I§

where
Teg=81"x8Mx--- xS (5.7)
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We remark that, although seemingly daunting at first sight, the computation of
R (§ ) and R (§ ) can be significantly simplified by recalling that the footprint of
each component does not necessarily depends on every component of q but only
on those of its ancestors, by virtue of the robotic system’s tree-like structure. An
example of such over- and under-approximation for a robotic system consisting of
two connected components can be seen in Figure 5.4. Following these definitions,
the over-approximation € and the under-approximation € of a given partition €,
can be computed as follows:

[ {[pT’qT]T | pe Wg and g € Ig} 59
c.2 {[pT,qT]T |pe Wgandq € Ig} '
where R
IA) A
Ws2Wen(S) 59

Ws LEWoR (3 )
with A © B denoting the Minkowski difference of sets A and B, and 7 s = S0 x
S% x - x 8%, Obviously, each of €z and € consists of individually connected but
pairwise disjoint cells 631" i€ INg and C Sir ied Ne,/ respectively, which enclose

or are enclosed by the cells of €.

At this point, we remark that the approximation of ¢ £ improves as one subdi-
vides the configuration space into more and finer slices. Thus, choosing a sufficiently
fine partitioning of €, a sequence of adjacent under-approximation cells connecting
q.,init and G ¢0a1 Will appear, as long as one exists in the first place. Instead of choos-
ing such a fine partitioning arbitrary, similarly to the methodology proposed in chap-
ter 2, we design an adaptive subdivision scheme which makes also use of the space’s
over-approximations for choosing which slice to subdivide at each iteration. More
specifically, we design an algorithm which given compound cover S, it tries to find
a sequence 11 of adjacent under-approximation cells connecting the initial and goal
configurations. If no such path can be found, then our algorithm tries to connect the
two given configurations with a sequence IT made of adjacent over-approximation
cells instead. If such a path exists, then a slice corresponding to a cell of IT is selected
according to a suitable heuristic and gets subdivided, producing a new partitioning
of ¢ r. Otherwise, if no such path can be found, then this obviously indicates that the
problem at hand is infeasible (i.e., the two given configurations exist in disjoint com-
ponents of the robotic system’s configuration space) and our algorithm terminates.
In short, one can readily verify that the following statements hold:

1. If there exists a path of adjacent under-approximation cells for a given cover S

containing 4 init and 4 goa1, then a solution to our problem exists.

2. If there exists a path of adjacent over-approximation cells for a given cover
S containing gz init and 7 goal, then whether our problem has a solution is

unknown and further expansion of & is in order.
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(f)

(9)

(h)

(b)

(c)

(d)

(e) (i)
FIGURE 5.4: Over- and under-approximations of a robotic system (a)
consisting of two components corresponding to slices: {0} x [2r —

1,1] (b and f), {0} x [27r1 — 0.2,0.2] (c and g), [371/2, pi/2] x [2rt —
0.2,0.2] (d and h), [277 — 0.2,0.2] x [27 — 0.2,0.2] (e and i).
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3. If there is no path of adjacent over-approximation cells for a given cover S
containing ¢ init and 4 goa1, then our problem is infeasible.

Algorithm 6 Configuration space exploration algorithm.

function CONNECTCONFIGS(G £, init, ] ,goal)
S {Dg iy}
loop
&, Cinits Cinit < FINDENCLOSINGCELLS(q init, ©)

S, Cgoals Cgoal <~ FINDENCLOSINGCELLS(q £ goal, S)

if Cinit is Nil or Cgoq is Nil then
return Nil
end if
II <— CONNECTUACELLS(Cjpit, Cypa)
if I'1 is Nil then
IT < CONNECTOACELLS(Cinit, Cgal)
if IT is empty then
return Nil
else/\ N
S <« REFINE( S, 11, {Qinit}/ {ngal})
end if
else
return I1
end if
end loop
end function

The proposed algorithm can be seen in Algorithm 6. More specifically, we be-
gin the configuration space exploration with a rough partitioning of ¢ induced by a
compound slice covering the entire domain of virtual joint parameters q. Then, we
search for cells Cj; and Cy,, containing the robot’s initial and final configurations,
respectively, by subdividing &. If no such pair of cells exists, our initial problem is
obviously infeasible and the algorithm terminates. Otherwise, we try to connect C;,;;
and C,,, using the available under-approximation cells corresponding to S. If this
attempt fails, then we try instead to find a path of over-approximation cells connect-
ing Cinit and @goal. If such a path cannot be found, this also implies that no solution
exists and the algorithm terminates. Otherwise, a heuristic is utilized for selecting
a compound slice in S to be expanded and the process starts anew. The heuristic
used, which can be seen in Algorithm 7, selects which slice of S to expand as fol-
lows. Given a path IT of over-approximation cells, it essentially tries to construct
a path made of the under-approximation cells that belong in the same compound
slices as the elements of I1. Failing to connect under-approximation cells belong-
ing in two adjacent compound slices S; and 3'] indicates that the connectedness of
the over- and under-approximation cells in this slices is not the same, which means
that these slices need to be further expanded. Thus, the largest simple slice of these

compound slices gets subdivided and the function returns. Finally, we remark that
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the functions CONNECTUACELLS and CONNECTOACELLS employ standard graph
search algorithms for constructing the corresponding paths based on a heuristic that

penalizes cells with smaller slices (i.e., cells corresponding to larger slices are pre-
ferred).

Algorithm 7 Heuristic choosing next simple slice for subdivision.

function REFINE(@, I, src, dst)
if len(IT) = 1 then
return SUBDIVIDE(S, TI[0])
else
cells < {}
connected < {}
if [en(IT) == 2 then
cells + dst
else
for all Qg/ in ggj do
cells < cells U {ng}
end for
end if
forall C 5 insrc do
for all ng in cells do
ingl_ ﬂgg.] 7'é @ then
connected < connected U {Qg}}

end if
end for
end for
if len(connected) > 0 then
return REFINE(S, I1[1 :], connected, dst)
else PR
return SUBDIVIDELONGEST(G, S;, §))
end if
end if
end function

5.4.2 Distributed Control Law

Given now a path IT of cells obtained by the high-level planner described in the pre-
vious sub-section, we shall now design a distributed control scheme for the mobile
manipulators that ensures safe transitions from one cell to the next till the goal con-
figuration g g0, is reached. Let C g be a cell in I and let C g denote its the projection
on the plane. We recall that C ¢ is an under-approximation of the actual free config-
uration space, constructed by extruding Wz, which implies that, as long as q € S,
then p/ can safely occupy any position of &, (Cg). We also note that C5 is a non-
empty, compact region of R? with arbitrary connectedness and shape. Exploiting

this fact, we can decouple the low-level control laws for: a) the object’s position p.,
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b) the object’s orientation 0., and c) the joints g; of each manipulator R;, i € Jn,,, as
explained in the following.

For each intermediate cell of I1, we can obtain goal sets corresponding to pg,
0, and q separately, by computing its intersection with the next one (which is non-
empty by construction of I1 ), Let us consider a pair of consecutive cells C 5 and C 8
in I'l. Regarding the object’s position, in order to safely traverse from C s toC 5/ it is

sufficient that p, reaches the set
De (C5/C5) 2 Ppe (C5) N Py (Cs)- (5.10)

We also note that &4, <Q 5 ,C s ) is generally made of one or more disjoint subsets
of arbitrary connectedness and that, as long as the object’s position reaches either
of these, the system can cross to the next cell. Respectively, a goal set correspond-
ing to the object’s orientation can be obtained by computing the intersection of the

corresponding simple slices of S; and §j, ie.
G, (ggi,ggj) 2.5008P. (5.11)

Goal sets for the joints of each mobile manipulator can be computed in a similar
manner. Particularly, let &4, (C5) denote the projection Cg along the dimensions
corresponding to the degrees of freedom of Ay. Obviously, 24, (Cs) is equal to the
product of the simple slices of S corresponding to gx. Then, the corresponding goal

set of gy is given by
G, (Qg.i,ggj)éa@Ak (Q@)ﬁ:@/lk (Qg}), Vk € Tng- (5.12)

Thus, for successfully driving the robotic system from Cg to Cs, we need to
i j

design decoupled control laws for the mobile manipulators which:

e ensure invariance of the current cell, i.e. p; € &), (Q 3,), 0y € 8?0 and gx €
P, (Q §) , Vk € TNy, until the transition is complete, and

e ensure convergence of the system’s states to the corresponding goals sets ¢, (Q s.C 3) ,
¢ ]
e (C5.C5) and 9 (Cg,Cs ), K € T

Finally, the transition is considered complete after all states have reached the cor-
responding goal sets. We remark that, regarding the last cell of I1, the goal sets
corresponding to the object’s position and orientation can taken equal to {p, goal }
and {07 goa1 }, respectively, while the joints of the manipulators need only to remain
within the bounds imposed by the last cell.

Before we proceed with formulating the corresponding control laws, we must

tirst formally state the following assumptions about our system.
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Assumption 1. Each robot Ry, k € Jn,, has exact knowledge of the object’s and its own
dynamic model, i.e., M, I, Pr com and Mg, , Cr,, Dg,, Gg, are known.

Assumption 2. Each robot Ry, k € T, has full knowledge of its own state zj and the
current configuration q of the object L.

Assumption 3. The plan generated by the high-level planner is available to all robots.
Furthermore, each robot Ry, k € Jn, is able to communicate with the others only for

announcing that it is ready to transition to the next cell, i.e., that py € 9, (Q S C 8 ),

0c € %, (Cs,Cs ) and as € 94, (C5,C5 )-

Assumption 4. Each mobile manipulator Ry, k € Jny, is sufficiently redundant, i.e. it can
independently apply a desired wrench to its end-effector while keeping qy in & 4, (Q 5 ) Ad-
ditionally, the lower diagonal N 4, —1 x N 4, — 1 block of (MRk) ! (I — (ij (zk))+ - IR, (zk))
is non-singular.

Object’s Position

First, we shall design a suitable vector field for safely driving the object’s position
pcto9,, <Q g_,Qg,). To do so, we construct a transformation T; of .7, (Q s.C §> =
i fi t ]

Py, (Q 3) \ %, (Q 5.C §]> to the unit disk and collapse the selected component of

%p . (Q S C 8 > to a point, using the procedure described in Subsection 3.3.3. By recall-
ing that T; is a diffeomorphism that collapses all inner obstacles of to isolated points,
one can readily verify that the chance of a line connecting the image q[ﬁi] £ T (pc) of
the object’s current position to the image q[L'] ; of the current cell’s goal is zero [67, 65].
Therefore, the following velocity control law would safely drive the object’s position
to the goal set for almost all initial configurations:

ol (pc) & (Jnpe) " - (a8, — 41 (5.13)

where J7, is the Jacobian matrix of T;. In order to design a law for the desired force to
be applied to the object £ by the robots, we employ a novel methodology presented
in [2] which allows us to extend the vector field Equation 5.13 to second-order dy-
namics. The corresponding control law for the desired force applied to the object is
given by

s = Mg (K- (pe— pl) + ¢l )

[i] ( [i] ) 5.14
. . vy, (P . , . ‘ - (5.14)
S il Pe \FLG ; [] [i] [i] [i] [i]
Prc=Xpc va] (P%]c) || - min (Hvrj£ (Pc,c) H,\/AEW (pﬁ,}?ﬁlc) /Km)

C

where

SR pe, o) 2 KL -d (P 09, (C5.C5) ) — ER ey (619)
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i i i 2
E (e, o) 2 2 - (Ipell + KEL - 1pe — pls]?) (5.16)

p [l: c is the (virtual) state of the reference governor, d (x, X) is the distance of x from
the set X, K,[;l, K[l .G are fixed, positive gains and ZH p, 18 a virtual damping.

Object’s Orientation

To drive the orientation 6, of the object to the specified goal set %, (Q s.C §) while
i j

ensuring that it remains within S* = [Ol[i], Glm} , we design the desired torque .
applied to the object based on the Prescribe Performance Control (PPC) methodol-
ogy. We assume that ¥, (Q S C 5 ) is of the form [91%, QBJG} which can be ensured
by designing the partitioning scheme of the configuration space planner described
in Subsection 5.4.1 such that the compound slices which form a valid cover are over-

lapping. We now define the following two performance functions
o) 2 0fL ¢ (617 — L) - o
*[1] [1] [l plil B (5.17)
Tty 20l + (01— 0l ) - e

where t is time and Ay, is a positive constant. The corresponding control law is given

. . 0; — Pm
=1 [ =Ky, (6, — o)) + 0 —al -In fpi[z (5.18)
0c
. . 0 —p[i]
b([;] - Kg] 1In j} —c
il & £ Ls p9£70£ (519)
%, = i
¢
lil A 1 1
A, = o
pe‘ boc (5.20)
1] -
([;‘] é p Peﬁ
‘ PBZ P, — 6

with Kg] , and K[l] , being positive gains.

Manipulators

Considering now the control scheme for the mobile manipulators, we remark that,
by virtue of Assumption 1 and Assumption 2 and assuming a common initialization
policy for the virtual states of the reference governors corresponding to the object’s
position and orientation, respectively, each robot is able to compute the desired total
force 1, and torque 74 that should be applied to the object. Thus, the wrench T,
that each robot Ry, k € Jn, should apply to the object via its end-effector is given
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by
1 Tr,
Tek = 4

) J (5.21)
Ngr e — (Tﬁ,p) ’ {Ek}pJE_,com

where P . = R (%) -R(0r) - 1, Pr,com With (., Pr com being the position of the
object’s center of mass relative to the contact point of manipulator Ay. Furthermore,
each robot must also ensure that g, € 74, (Q 5 ) while driving g; to ¥4, (Q S C g )
To do so, we shall exploit the redundancy of each robot to design a force in the
null-space of Jr, which can ensure that the aforementioned specifications are met
without affecting the force applied to the object. We now recall the dynamics of

mobile manipulator Ry:
Mg, (zi) - 2k + Cr, (zk, Zk) - 2k + Gr,(2K) = Tp — (TR, (Zk))T “Tek (5.22)
Assuming known dynamic parameters and state, we can design
Tk = Cr, (Zk, Zk) - Zk + GRr(Zk) + T + (I — (Ir, (Zk))Jr IR, (Zk)) “Tyko  (5.23)

where T, 11 and T, » are new virtual inputs to be defined later and (ij)Jr denotes
the pseudo-inverse of Jx,. Substituting the above in Equation 5.22 yields:

M, (z) - 2k = Tug1 + (1= (Tr, @) T, @) Tk — (T, (@) T (524)

We now consider the above dynamical model in the robot’s task-space:

) +
+Cr, - [Z?] = (TR) ~ Tuk1 — Tek (5.25)
k

where jig, and g, are the position and orientation of the corresponding end-effector’s

contact point and

M'/Rk - (j%k)-r Mg, - (ij)+

ot . . (5.26)
C;?'k = (ij) Mg, - (ij) IRy (ij) :

T
Let [p}gk 9Ek:| = Tk (pc,0r) be the rigid transformation between the positions
and orientations of the corresponding points. It holds that

[’;E] = Je,e, (P Oc) - [Z‘] (5.27)

E, L

[ZEk] = Ik (pc,bc) - Zﬁ +Jr,e (P 0c) - [ZE] (5.28)
E, c C
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with ] , denoting the Jacobian matrix of this rigid transformation. Therefore, Equa-
tion 5.25 can be re-written w.r.t. to the object’s state as follows

1 ﬁﬁ "
MRk . 9 + CRk .
L

\, )
P ] = (T£)" Tus — T (5.29)
O
with

Mz, = M J.E,

Y . . . (5.30)
Cr, = Cg, " Jeg + Mz, - IzE-

We notice that achieving our indented behavior, i.e., the object obeying the dy-
namics imposed by Equation 5.14 and Equation 5.18 while distributing the load
equally between the robots, is equivalent to

1 Me-pr 1 Pr
Tek = .. . = 7M£,E . (531)
7 Ne [k e =M (pe)' - o Pheom] NROC |0c

where M/ r, is the fragment of the object’s inertia, as perceived by the manipulator
Ry. Substituting the above into Equation 5.25 yields
P

1
(M;gk + No M£,5k> : +Cx, -

’:"3] — () Tt 632)

0
Pr
95] ) (5.33)

will achieve the desired behavior, assuming all N robots execute the same control

As such, we can see that selecting

1 Tdes M,
Tkt = TR, - ((M%k + = Mﬁ,&) ‘ [ Ey/

+ C// .
Nr Tgfg av R

law.

Considering again the Equation 5.24, we shall now design 7, x» appropriately
in order to satisfy the manipulator joint limit specifications. We recall that the pro-
jection of T, ko w.rt. I — (ij (zk))Jr - IR, (zx) has no effect on the wrench applied to
the attached object. Now, let Lay, Lg, Lcx, Lpy be matrices such that Ly, € R3*3
and

N L L
Ly = MR; - (I — (IR, (Zk))Jr IR, (Zk)) = [L?;I: LZ] : (5.34)

By recalling that Lp ) is assumed to be invertible according to Assumption 4, we
employ the Prescribed Performance Control method along with back-stepping to
design T,,, x » as follows:

(1>
o

T k2 (5.35)

(LD,k)_1 " Uk
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where
- Tk1—p, 1

_ . _ . _ . AJM

(k1 — VK1) + Okpy — gy, - In (,;M q,ﬂ)
qk2—P

o . o . _ . _ —k,2

. (dk1 = Okp1) + Okp2 — dgy, - In (p qklz—qu)
Ok,B =
qk,NAk—l _E"k'NAk .

— g -1—0 ,) 0 _1—4a ‘In | =—— "%k
(qk,NAk 17 Ok Ny 1)t OhbNy ~1 — gy a4 (qu,NAkl‘?ka e

(5.36)
Gk, ¢ *Qqu
N bgie —In (P.M%z>
Okt = p : (5.37)
Gk,
1 1
iy £ _ + = _
Tt = Lg Pay — ki
- ' - (5.38)

b s BQk,z + p qk,1
Tk — _ —= .
k1 — P g, — ki

—qk,1

is the reference velocity control law, p and p, = are performance functions which
Akt .0

smoothly “shrink” & 4, (Q 3) to 94, (Q g,Qg_), given by
i i j

o () EGg,+ (ﬁk,e - %,k,f) et

—k,¢
— A - .
gD =0qg, ,+ (ﬂk,e ﬂc,k,f) €

with g, ,, Ty and G4, q Gt being the lower and upper bounds of the joint param-

o (5.39)

eters of Ay corresponding to & 4, (Q 3,) and 94, (Q s.C 3) respectively.
i i j

5.5 Stability Analysis

In this section, we provide an analysis of the robotic system’s stability properties
under the proposed control scheme.

Proposition 9. Given two adjacent under-approximation cells Cg and Cg, the object’s
i j

configuration will asymptotically converge to 4, (Q s.C 3) X 9, (Q s.C 3) for almost
i j i j
all initial configurations under control laws Equation 5.14 and Equation 5.18. Furthermore,
the set F, (Qg_,Qg_) x S is invariant.
i j

Proof. We begin this proof by first recalling that, as long as object’s orientation and
robot joints remain within the bounds imposed by C 5, control of the object’s position
and orientation can be safely decoupled. Regarding the object’s position, one can
readily verify that since T; is a diffeomorphism in .7, (Q S C 5 ) (see chapter 2), the
reference velocity control law i is Lipschitz, has exactly one critical point which is
located at the transformed goal configuration and is inward pointing at the outer
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boundary of 7, (Q S C 3) . Then, by invocation of Theorem 2 in [2], the control law
i ]
Equation 5.14 ensures invariance of cell and convergence to the goal set of p, for

almost all initial configurations.

Regarding the object’s orientation, we define the following coordinate transfor-

mation: ‘
N

T ST, 5.40

Po, — VL (5.40)

zpi =0 — U([;l[]:

and consider the following Lyapunov candidate:

1 1
V=3 23+ 5 -3 (5.41)

The time derivatives of z; ; and z, ; are given by

; (1] il Ll _ plil

21, = Ay, " 2 + ag. Uy, o,
2,i — I[; 0,
Thus, computing the derivative of V w.r.t. time yields
V=21 21+ 22 2,
, L , o i (5.43)
= el 21z 2 (] -of) 1) 4y (T2 i)

Noting that agl]: . vgg — bg[]: = —Kgﬁ],lzii and substituting the control law for 7,4 to
the above, we obtain

V=— (k! -2, +kl, 2. (5.44)

Since V is negative definite, assuming that the initial value of 0. lies within the

specified bounds, the proposed control law ensures that S{° remains invariant and

that 6, will asymptotically converge to (91[123 + 95,](;) /2. O

Proposition 10. Given two adjacent under-approximation cells Cg and Cg, under the
! ]

control law Equation 5.23, the joint states qy of mobile manipulator Ry will converge to

G, (Qg_,ng). Furthermore, the set & 4, (Qg) is invariant.

Proof. We consider once again Equation 5.24. Since Mg, is an inertia matrix, we
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know that its inverse exists, thus multiplying both sides with (Mg, ) ~! and substi-
tuting Equation 98 yields:

g = (Mp,(z0) " (1= (T, @) "+ Tr, (@) Tz +
(1\/172,((210)71 T (MRk(Zk)Y1 (TIr, (Zk))T *Tok

Lpy - (LD,k)_l -1 1 T
= O+ (MRr,(20) " Tuger — (Mr,(z0) - (Tr, (26) " - Tex

I
(5.45)
We note that the term T, », which is designed to ensure satisfaction of joint pa-
rameter specifications, has no effect on the stability properties involving the object’s
position p, and orientation 0, by virtue of I — (ij (zk))+ - IR, (z). Therefore, the
last two r.h.s. terms of Equation 5.45 are bounded by design and vanish as the object
approaches the specified configuration corresponding to the current cell. As such,

the dynamics of the joint parameters can be written as:
fk = Uk + Wa (5.46)

where the term wp corresponding to T, 1 and 7, x and can be viewed as a bounded
and vanishing disturbance. We now define the following coordinate transformation

for each joint value gy, £ € In, —1:

Gt — P
Zq,l,l =In <’7k,€>

qu’( - qk,é (5.47)
Zg2,0 = Gkt — Uk,

and consider the Lyapunov candidate

1

1
Vg == E . 25,1,[ + E . Z$,2,£. (548)

Following the same procedure as above, we derive that

Vi=— (23,1,4 + Z;,z,e) +2zg00 - Wpy
< —2Zg10— Zgou + |2g20] - [w| (5.49)
2
< =200 = |Zg00] - [wp ] + (wgy)

which implies that z;1 4,2z, ¢ and the control law are globally uniformly bounded
(Lemma 2.28 [51]), and, thus, concludes the proof. O

Theorem 7. The robotic system under the distributed control law Equation 5.23 will suc-
cessfully drive the object L to its goal configuration qr init, from almost all initial configura-
tions.

Proof. First, we note that, by virtue of Assumption 4 and the design of Equation 5.23,
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the total force and torque applied to the object’s center of mass by the robotic system
is equal to the desired ones specified by Equation 5.14 and Equation 5.18, since the
remaining terms either cancel the robot’s dynamics or are projected along the kernel
space of Jg,, respectively. As such, according to Proposition 9, the object is guar-
anteed traverse from one cell to another till it arrives to the desired configuration
q.,goal, Starting from almost any initial configuration q init, as long as the robots do
not collide with the workspace boundary. But, according to Proposition 10, the con-
figurations of the mobile manipulators remain within the bounds specified by the
under-approximation cell Cs, which, by design of the high-level planner, implies

that the robotic system’s footprint cannot intersect the workspace’s boundary. [

5.6 Simulation Results

To demonstrate the efficacy of the proposed control scheme, we consider a robotic
system consisting of two mobile manipulators holding a rectangular object, as de-
picted in Figure 5.3 operating within the workspace seen in Figure 5.5. The robotic
system was initialized at q.init = [0.9, 2, 1.57]T and 11 = q21 = 0 whereas the
desired configuration of the object was set to g g0a1 = [5, 8, 4.663]T. The intervals
for the object’s orientation and robot joints generated by the high-level planner can
be seen in Table 5.1, whereas the control parameters selected during this simulation
are given in Table 5.2. Figure 5.6 shows the trajectory executed by the robotic system
under the proposed control law, whereas plots of the object’s position, orientation
and corresponding rates can be seen in Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10,
respectively. Accordingly, Figure 5.13 and Figure 5.13 show the evolution of each
manipulator’s state, as well as the computed lower and upper bounds correspond-
ing to each cell. The total force and torque applied to the object is also displayed
in Figure 5.11 and Figure 5.12, respectively. As one can verify from the aforemen-
tioned figures, the robotic system successfully reaches the goal configuration while

satisfying the specifications corresponding to 0., 41,1, 42,1-
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FIGURE 5.5: Initial and goal configuration of the robotic system and
object, respectively.
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CllD| 6| 6| G| a,| @il 9,
1 1.470 | 1.867 | -0.100 | 0.567 | -0.100 | 0.567
2 1.667 | 2.065 | -0.100 | 0.567 | -0.567 | 0.100
3 1.863 | 2.456 | -0.100 | 0.567 | -1.035 | 0.367
4 1.863 | 2.456 | -0.100 | 0.333 | -1.870 | -0.835
5 2.256 | 2.652 | -0.100 | 0.333 | -1.503 | -0.835
6 2.452 | 2.849 | -0.100 | 0.333 | -1.035 | -0.368
7 2.649 | 2.947 | -0.100 | 0.217 | -0.567 | 0.100
8 2.747 | 3.045 | -0.050 | 0.108 | -0.050 | 0.108
9 2.895 | 3.191 | -0.050 | 0.108 | -0.050 | 0.108
10 3.091 | 3.388 | -0.050 | 0.158 | -0.158 | 0.050
11 3.287 | 3.584 | 0.067 | 0.284 | -0.284 | -0.067
12 3.484 | 3781 | 0.184 | 0518 | -0.518 | -0.184
13 3.681 | 3.977 | 0418 | 0.985 | -0.985 | -0.418
14 3.877 | 4172 | 0.651 | 0.984 | -0.984 | -0.651
15 4072 | 4370 | 0418 | 0.985 | -0.985 | -0.418
16 4270 | 4576 | 0.184 | 0518 | -0.518 | -0.184
17 4476 | 4762 | 0.067 | 0.284 | -0.284 | -0.067
18 4564 | 4762 | 0.067 | 0.284 | -0.284 | -0.067
19 4564 | 4.762 | -0.050 | 0.108 | -0.108 | 0.050
20 4564 | 4.762 | -0.050 | 0.108 | -0.108 | 0.050
21 4564 | 4.762 | -0.985 | 0.050 | -0.108 | 0.050
22 4564 | 4.762 | -1.453 | -0.885 | -0.108 | 0.050
23 4564 | 4762 | -1.687 | -1.353 | -0.108 | 0.050
24 4564 | 4.762 | -1.687 | -1.528 | -0.108 | -0.050
25 4564 | 4762 | -1.687 | -1.528 | -0.168 | -0.008
26 4564 | 4762 | -1.687 | -1.528 | -0.284 | -0.067
27 4564 | 4762 | -1.687 | -1.528 | -0.518 | -0.184
28 4564 | 4762 | -1.687 | -1.528 | -0.985 | -0.418
29 4564 | 4762 | -1.687 | -1.528 | -1.453 | -0.885
30 4564 | 4762 | -1.687 | -1.528 | -1.687 | -1.353

TABLE 5.1: Lower and upper bounds of the intervals corresponding
to each cell, as generated by the planner.

Parameter | Value
M L 1 kg

Ir 1 kg m?
Ky, 50

CPL 5

KerG 5

Ao, 2

Ko, 1 1

Ko, 2 1

Ag 2

TABLE 5.2: Simulation parameters.
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FIGURE 5.6: Path executed by the robotic system during the simu-
lations (blue line), as well as the footprint of the robotic system at
various instants.
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FIGURE 5.7: Evolution of the object’s position p, over time. The ver-
tical dashed lines indicate transitions between consecutive cells.
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FIGURE 5.8: Evolution of the object’s orientation 6, over time (solid
line), as well as the corresponding performance functions p 0 and py ..
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FIGURE 5.11: Total force Tge; applied to the object by the robots.
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FIGURE 5.13: Evolution of joint value q;; with corresponding lower
and upper bounds.
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Conclusions and Future Work

In this dissertation, we successfully employed hierarchical decomposition techniques
coupled with suitably designed adaptive configuration space exploration schemes
for building versatile and complete planners, capable of computing “paths” con-
necting two given configurations, or determine the absence of feasible solutions,
after a finite amount of steps. Moreover, distributed control laws based on artificial
potential fields, which could realize the generated high-level plans, were devised for
addressing the navigation problem within complex, planar workspaces with guar-
anteed convergence properties. Simulation and experimental results validating the

efficacy of the aforementioned schemes were also provided.

More specifically, we employed harmonic map theory to build a transformation
of complex planar workspaces directly to point worlds that are proper for robot nav-
igation. In addition, we presented a novel motion planning control scheme based
on closed form harmonic potential fields coupled with appropriate adaptive laws
for their parameters that can safely navigate a robot to its goal state from almost
all initial configurations. This control scheme was also extended to accommodate
the navigation problem of non-holonomic robots and keep the numeric computa-
tions tractable for large workspaces. Subsequently, we presented a methodology for
designing a hybrid control scheme to tackle the navigation problem for a robotic
platform of arbitrary shape. Given an initial and desired robot configuration, we
designed an slice decomposition scheme which adaptively refined the configuration
space representation until either a path connecting these two configuration could be

found or recognize that no solution exists.

Furthermore, we adapted the aforementioned schemes in order to address the
navigation problem involving a team of disk-shaped robots operating within an
obstacle cluttered planar workspace, by designing a high-level planner capable of
adaptively subdividing the system’s configuration space exploiting over- and under-
approximations of each robot’s free space to select the most promising cells for sub-
division. Finally, we presented a hybrid control scheme for addressing the cooper-
ative object transportation problem involving a team of mobile manipulators. Par-
ticularly, the planner originally designed for the navigation of a planar, polygonal
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robot, was extended for exploring configuration spaces of higher dimensions, result-
ing from both rotation of the object as well as reconfiguration of the robotic team. In
addition, a distributed low-level control law was employed for realizing the given
plan with guaranteed collision avoidance and convergence properties.

Considering future directions, a challenging one is extending the transforma-
tions and artificial potential fields devised in chapter 2 to higher dimensional spaces
since building harmonic transformations for domains other than the plane is not a
straight-forward process. Particularly, one hindering factor is that convexity of the
transformation’s image is not sufficient for rendering such a transformation a diffeo-
morphism in higher dimensions, such as R3. Furthermore, to the best of the authors’
knowledge, the classification of domains with dimension greater than 3 w.r.t. their
genus has no general solution, which renders even the problem of selecting the im-
age of the corresponding transformation unclear. Regarding the configuration space
exploration methodologies introduced in this work, a direction involves combining
the planner presented in chapter 4 with the ones presented in chapter 3 and chap-
ter 5 in order to enable coordination of multiple polygonal-shaped or articulated
robotic platforms operating within the same workspace. In addition, by exploiting
the fact that most communication specifications can be readily expressed as regions
about each robot where its corresponding neighbors must reside at all times, the
aforementioned planner can be also extended in order to accommodate for connec-
tivity constraints between cooperating robots. Moreover, due to the generality of
the high-level planner presented in chapter 5, extending the proposed scheme for
addressing the cooperative transportation problem involving non-rigid objects (i.e.,
deformable objects such as sheets) should be straight-forward. Also, it is possible
to enable this planner to take inter-robot collisions into consideration by employing
a scheme based on mixed cells, similar to the one presented in chapter 4. Finally,
on the topic of cooperative load transportation, we aim to reduce the unnecessarily
high control effort required by the employed Prescribed Performance Control laws
and smooth the transitions between consecutive cells in terms of the forces applied
by the mobile manipulators, as well as relax certain requirements about the object’s
and robots” dynamics, such as exact knowledge of the model and commonly avail-
able exact knowledge of the object’s configuration.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Proposition 1

By construction, it holds that 1 — (tanh (¢/ w))2 > 0 forall g € 9D\ {g4}. The
gradient of ¢ w.r.t. qis given by
9—40 o, 93
Vop = kg1 _yp, 170 (A1)
lg —qall™ = llg —aill

Computing the inner product of V¢ and g yields:

2_ T N AT
(Vop) g = kL i k. q)j
lg—aqal™ = lla—ail (A2)
_ 4T N ’
> k189 max(k) )
lg — g4l P A g —ail

Given that all g; lie within int (D), the second term in the rh.s. of (A.2) is finite
for all g € JD. Similarly, the first term in the r.h.s. of (A.2) is positive for all
q # qq. Letq € 9D\ {g4}. Additionally, the continuity of (1—q7q)/lq — qal®
and (1 — tanh (cp / w)z) /(2w) implies that there exists a closed neighborhood F(g’) of
', not containing g, where both are positive. Hence, selecting

1— T
K =k, min/ ( 72 qz N ! 1 ) (&.3)
9€F@) \ ||lg — q4]|” Xoizq Ta=al

ensures that (ngb)Tq > 0 for all g € F(q'). Moreover, computing the derivative of

d = 1— |g||* w.rt. time for all ¢ € F(¢') and assuming k; < k', Vi € Jy, yields
d = 2K,sV pTq > 0, thus the distance from the workspace boundary increases,
which concludes the proof.
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A.2 Proof of Proposition 2

Similarly to the proof of Proposition 3 in [62], we proceed by defining 4; £ g — qg,
§; £ q—gq; foralli € Jy. Letalso §; = §s/||dal and 4; = §;/||g:||. Accordingly, the
hessian of ¢ can be computed by:

ka - .
Vip = 5 (T2 —24ad ) - 5 (T2 —24:4] ). (A4)
174l icay 14l
Notice that at a critical point of ¢ it holds:
Qd %
ky k; -
a0 = & STl
Ko Ko7
1 Gady = 2 id] (A5)
174l i N14il)®
kik; T
L (aa] +g;a7).

Enjetaey 19151

Substituting (A.5) into (A.4) and re-arranging the terms yields:

k k;
vz¢:(f2—z ~2)z+

17all™ iy 4l
kitka—k) 1
2(2 ol - (A.6)
iy ko ||gil

1 kik; o AT )
— _|_ ; .
e & o Tl (09 +090)

Next, we argue that for any given set of radii p; > 0 such that D,.(q;), i € Ty
are disjoint disks that lie entirely within our domain, there exists k/; > 0 such that no
critical point of ¢ exists within D \ U,cy,, Dy, (q:), for all k; > ki;. This implies that,
by choosing k4 sufficiently large, each critical point of ¢ belongs to a single D,,(q;).
Let ¢* be a critical point and ¢ = argmin,_; ||4* — gi|. To show that VZ¢(q*) is not
degenerate, it suffices to show that its eigenvalue A(g*) is positive. We recall that A
is lower bounded by the quadratic form £7 V2, for all [|£|| = 1. By considering the
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direction of 4, and after some tedious calculations, we obtain:

. . k
a1 V2p(g)a = —
| gall
ke (kd—zkg Al ki
+ —4 Y 2604
l3* \ ke ki ieanioy 191
kitky —ki) 1 /.7.\2
+2 ) . — (dfa:) (A7)
€I\ {0} d gl
ki
o 12
icanvgey 11l
2 kki
—— Y Y e2040@0a)).

ka iean\{¢} jean\{it} quH Hq]H

The first r.h.s. term of (A.7) is strictly positive. Since all k; are bounded and non-
negative, choosing k; sufficiently large renders the second and third r.h.s. terms non-
negative. Furthermore, note that the forth and fifth r.h.s. terms are bounded for all
q* € Dp,(q¢). Thus, by choosing k; sufficiently large, the first three terms of (A.7)
can be made dominant, thus rendering q{vgqu ¢ positive at g%, which concludes the
proof.

A.3 Proof of Proposition 3

Firstly, we will show that the robot cannot escape through the workspace’s outer
boundary. Let us assume that ¢ — g’ € 0D \ {q;}. Then, § — 0 by virtue of (14),
since s(q, k) = O for all ||g|| = 1 with (Vq(p)T g < 0. Additionally, wy — 1 and w; — 0,
foralli € Jy. Thus, k; < 0 holds within a neighborhood of 0D, while k; > 0, which
implies that k; — 0, for all i € Jy. Moreover, Proposition 1 dictates that there exists
k' > 0 for which any point in 0D \ {g,} is repulsive under ¢. Since (2.20) dictates
that all k; become less than k’ in finite time, this contradicts our supposition.

Next, we consider collision avoidance between the robot and the inner obsta-
cles. Let us assume that the robot approaches obstacle i. By construction, w; — 1
while V¢ — 0 and w; — 0, for all j € 73, \ {i}. Notice that there exists a neighbor-
hood \; of g; such that wy = 0 for all ¢ € N; due to continuity of @y and & (@Wy; €3).
Additionally, since the robot is assumed to approach g;, 47(q — g;) cannot be identi-
cally zero inside NV;. As such, as long as k; < k;, k; > 0 inside \; without k; = 0 for
all g € N;. This implies that k; / 0 as ¢ — g;, thus rendering ¢; a local maximum
of 1. Thus, there exists a neighborhood of g; inside which (V)7 (g — g;) > 0, which
contradicts with our assumption.
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A.4 Proof of Proposition 4

Let V £ (g, k) be a candidate Lyapunov function, which is non-negative and van-
ishes only when q = g,. Differentiating V along the system’s trajectories yields:

o

len(!lq cmll) Zln<Hq qZH>> (A.8)

i€dn

Given that § = Jp, the first term of (A.8) can be further expanded as follows

1 — tanh 2
(V,0) Tq C Ky tanzw(fP/W) ||Vq¢”2/ (A.9)

which is non-positive for all g € () and becomes zero only on the critical points
of . The second term of (A.8) is non-positive since k; > 0 by construction and
invariance of W (see Proposition 3) implies ||g — g4/ < 2 which, in turn, implies
In (Hq—ziqdﬂ) < 0. Similarly, the sign of each term of the sum is determined solely by
the sign of the corresponding k;. Substituting (2.20) yields:

_le;l (IIq %H)Z
Zl (HEI ’71”) (Ei—ki) wilig:.

i€dn

(A.10)

Given that g; < || Vqt,sz and Y ;5. kiw; < 1by construction, expanding ; into the
right hand side of (A.10) leads to:

Y (Hq ﬁh”)(k ~ k) wilig

i€In
< Kus||Voyl* ¥ (Ei - ki) w; (A.11)
i€dN
1 — tanh (c])/w)z )
< .
=~ ’Cus 2w HVF](PH

Thus, (A.8) is non-positive. Therefore, by invoking Lyapunov’s Stability Theorem
(Theorem 3.1 [45]) we may conclude that g, is stable. Finally, LaSalle’s Theorem
(Theorem 3.4 [45]) dictates that the system will converge to the largest invariant set,
which, in our case, consists of the critical points of ¢, thus concluding the proof.

A.5 Proof of Proposition 5

At the critical point z* of system (2.32) the hessian Végb of ¢ is non-degenerate, since
otherwise k; # 0. Additionally, 4* € Q\ {g4} implies that 1 — (tanh (¢/ w))z # 0.
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These two facts mean that Vélp has two eigenvalues at z*, namely A and —A, with
A > 0. Computing the Jacobian of f; w.r.t. g at z* yields:

T
Vofo=—Ku(Va9) Vgs — lCusV§1p

(A.12)
= —ICusvstlJ

since V,¢(q*) = 0. Furthermore, by construction of the adaptive law (2.20), the
Jacobian of fi w.r.t. z at z* is 014 nyx(3+N). Thus, linearization of the system f, at z*
yields

1 — tanh (¢/w)?

V. f2(z¥) = —Kys

2 (A.13)
d d d .
Vip & & - &

01+ N)x3+N)

Since the top-left block V§¢ is invertible at z*, using the well known property of
block matrix determinants we can see that V.- f, has two non-zero eigenvalues, par-
ticularly the eigenvalues of V%w and a zero eigenvalue with multiplicity 1 4 N.
Thus, V.f.(z*) has exactly one positive eigenvalue, rendering z* a saddle point
of (2.32) (Theorem 3.7 [45]).

A.6 Proof of Theorem 2

In Proposition 4, we have proved that ¢ < 0 forall g € O\ {g,}, except for the criti-
cal points of ¢ that lie in it. Lasalle’s Invariance Theorem (Theorem 3.4 [45]) dictates
that system (2.32) will converge to: a) either the desired configuration g4, or b) the
obstacles g;, or ¢) a critical point z* = (g%, k*) with ¢* € O\ {g9;}. We know from
Proposition 3 that critical points of case (b) are repulsive; therefore no trajectory
of the system may converge to them. Regarding the critical point z* correspond-
ing to case (c), Proposition 5 dictates that it must be an non-isolated, degenerate
equilibrium of the whole system (2.32), since V.f, has one positive, one negative
and several zero eigenvalues. Let k; be the upper bound of k; that the closed-loop
system can possibly attain, as indicated by Proposition 2. In order to prove that
the set of initial conditions leading to these points has zero Lebesgue measure, we
will study the properties of the gradient-like system! (1(z), F; +(z)) in the domain S,
where the scalar potential 1(z) is treated as a function to be minimized, the map
F.:(z) : S: = RN*3 s given by

t+T
Foe(2() 2 2(t +7) = 2(f) + /t Fu(z())ds (A.14)

By definition, a gradient-like system is a pair of a scalar cost function and a dynamical system for
which each non-equilibrium initial condition moves the state towards a new one whose cost is less
than that of the initial state.
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forany T > 0, and S, £ D x[1,kg] x [0,k1] x ...[0,kn]. Notice that S, is convex
and closed. Additionally, the map F, :(z) is a locally Lipschitz diffeomorphism in
S, and S, is forward invariant under F, .(z) (by virtue of Proposition 3 and design
of adaptive law (2.20)), for all T > 0. Furthermore, the unwanted equilibria of F; -
are strict saddles. Thus, following similar arguments with the proof of Theorem 3
in [82], we conclude that the set of all initial conditions that converge to these saddles
has zero Lebesgue measure, which implies that almost every trajectory of the system
converges to g, i.e., the only stable equilibrium of (2.32), thus completing the proof.

A.7 Proof of Theorem 3

We begin by noting that, by virtue of (2.39), we only need to study the trajectories
of (2.34) in the workspace’s image since that motion is traced exactly by our robot.
Considering the first part of the theorem, we note that by following the same argu-
ments as in the proof of Proposition 3 we may conclude that the robot cannot escape
throught the workspace’s outer boundary. Likewise, assuming that g — g;, for some
i € Jy, implies that (ﬁqulp)T i} (q — g;) cannot be identically zero in a neighbor-
hood of g;. As such, since k; > 0in the neighborhood of g;, k; cannot vanish as the
robot approaches q; which contradicts our original supposition.

To prove the second part of the theorem, first we show that the only equilibria of
the closed-loop system coinside with the critical points of ¢. Assuming that s, # 0,
it is readily seen that both inner products in (2.36) vanish simultaneously only when
V¢ = 0. Considering now the case when s, # 0, we note that this can only happen
when g € 0D and 7 is tangent to dD. For @ to also vanish when s, # 0, the gradient
V¢ should also be tangent to dD. Recalling that the adaptive laws for k ensure that
V¢ will eventually point inwards, we conclude that no equilibria other than the

critical points of  exist.

Next, we consider ¢ as a lyapunov candidate function, whose derivative along
the systems trajectories is given by (A.8) (note that i does not depend on 6). Substi-
tuting (2.36) in the first term of (A.8) yields:

2
(V)74 = —Kysa— tanzhw((”/ ©) ()" Vp)* (A.15)

Regarding the remaining terms of (A.8), given that g, ; < (ﬁqulp)z one can readily

Y <||q qu|>1

€N , (A.16)
1 — tanh (¢/w) ((ﬁe)T qu))z .

2w
Thus, invoking Lyapunov’s Stability Theorem (Theorem 3.1 [45]) and LaSalle’s The-

verify that:

< —Koso

orem (Theorem 3.4 [45]) concludes the proof similarly to Proposition 4.
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A.8 Proof of Theorem 4

chapter the robot’s safety under the closed loop system, we note that when the p €
Ps, \ Ps,,, or p € P, forall £ < n, the individual control laws render every point on

the corresponding partition’s boundaries repulsive. When p € C we note that,

S0/S0+17
by construction, both u!*1 and u!*+11 vanish when the robot approaches any point of
dPs, NP, ,, preventing the robot from escaping. Additionally, the adaptive laws
of each individual potential field will eventually render both V,¢s, and Vs,

inward looking w.r.t. W, rendering 0P, N 0P, , repulsive.

While p € Ps,, we consider V £ ¢, as a Lyapunov function candidate and we

examine its time derivative along the system’s trajectories when p € Cs,5, .-

V= (Vpl/)w)T P+t (Vk[sﬂlpsz) s
= (vPle)T (u[S/] tNesispia 771254/5“1”[5”1]) +
(Vs )" kL] (A.17)
= (vplpsf) ! ulsd 4 (Vk[sé]lﬁs() ! Kol 4

T [seil
HesspseaMtsesea (vl’wsi) us

We recall that the first two r.h.s. terms of (A.17) are non-positive as shown in Propo-
sition 4. Likewise, the last term is rendered non-positive by virtue of 7¢s,s,,,. Addi-

tionally, we note that the equilibrium points of the system in p € C correspond

Se/Se+1
only to critical points of ¢5,. By virtue of 7.5, 5,,,, which vanishes at a critical point of
s, along with its derivative, one can easily verify that the Jacobian of (2.41) is equal
to the one of u!*l, whose properties were studied in Proposition 2. Finally, following
a similar procedure as in the proof of Theorem 2, we conclude that the system will

converge to the specified goal configuration for almost all initial configurations.
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Appendix B

Proofs of Chapter 3

B.1 Proof of Proposition 6

We note that since the workspace W is an open subset of R?, its complement must
be closed, which implies that O;, i € Z, are closed subsets of R2. By recalling that
R is assumed to be closed, Of, i € Z, must be closed subsets of CS. Thus, CSe is
open, being the complement of Of, i € Z, w.rt. CS.

B.2 Proof of Proposition 7

Let p € R(6,). We now consider the open disk %, ,(p) with radius ¢/2 about p
and note that the intersection of %, ;(p) and the interior of R(6,) is also an non-
empty union of one or more open 2-manifolds. In addition, the distance between
any two points of %, ,(p) is at most e. Let €'(p) be the connected component of
intR(0) N % /»(p) whose distance from p is zero; p € ¢(p) if and only if p € intR(6),
otherwise p lies on the boundary of ¢’(p). We now consider the image r(p,0) of p
which is obtained by rotating p about the pivot point p* of R by an angle df = 6 — 6,.
It is easy to see that the co-domain of 7(p, 0) is the circle centered at p* with radius
dist(p*, p) and that r(p, 0) is a continuous function of 6. Since r(p, 6,) € %, >(p), then
there exist 0;(p) and 6,(p) such that 6;,(p) < 6, < 8,(p) and

1(p,0) € ZBe(p), V6 < (6:1(p), 0u(p)).

Thus, by construction, it holds that

dist(&(p), 1(p, 6) < &, V0 € O1(p), 6u(p)).

Noting that
R(@6.,60= U U rp0

PER(6,) 6<[6,,0,,)

and

R(06)= U U rpo

PER(8,) 0 (6,6,
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concludes the proof.

B.3 Proof of Proposition 8

We note that if a point p € intR6, does not belong to R(6,,0),0 # 0,, there has
to exist 6 € [6,,60] such that p € dR6'. As such, we consider a point p that lies
on the boundary of R0,. Let €(p,d) be the set of point inside intR0, at exactly
distance d < € away from p. Given that the robot’s body is a 2-manifold, by selecting
sufficiently small d, we can ensure that €' (p, d) is non-empty, for all p € 9R6,. Now,
let #(p) be the point of €(p, d) that is farthest away from 0R6, and let d(p) be that
distance. Since p(p) is an interior point of Rf,, then d~(ﬁ) > 0. Similarly to the
proof of Proposition 7, we can show that either a) there exists 8(p) # 6, such that
p(p) € R(9"), for all 0’ € [0,,0(p)), or p(p) € R(O'), for all ¢’ € S'. As such, selecting
6 = min; 6(p) concludes the proof.

B.4 Proof of Theorem 5

We first consider the case that the navigation problem presented to our planner has
at least one solution. Then, since CSfee is Open, as shown in Proposition 6, one
can find a continuous curve P of configurations that lies entirely in CS,e with the
initial and goal configurations being its end-points. As such, each configuration
z = [pT,0]T € P is well separated from the free configuration space’s boundary,
which implies that d, = dist(p, W*(6)) > 0, where

W) £ {q € R”* | WNR(q,0) # D} .

But, since R(Z) and R(Z) are continuous for sufficiently small Z, as shown in Propo-
sition 7 and Proposition 8, respectively, one can find 6;(z) and 6,(z) sufficiently close
to 0, for each z = [pT, 0]T € P, such that

d. = dist(p, W'()) > 0
and
d. = dist(p, W*(6)) > 0

where

WO 2 {4 e R’ | WNR@[6,0),0.)]) # D}

W O) £ {q € R | WN R, [6,z),6.2)]) # O}
with R(q, [61(2), 0u(2)]) and R(q, [6,(2), 0.(2)]) denoting R([6;(z), 0(2)]) and R([6(z), 0 (2)])
translated to g, respectively. By recalling that our algorithm prioritizes subdivision

of the largest slice in a sequence of cells (Algorithm 3), it is bound to obtain a solution

after a finite number of iterations.
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We shall now consider the case where the problem given to our planner is in-
feasible. This would imply that the initial and goal configurations lie within two
disjoint configuration space cells. Furthermore, since CSe is open, these two cells
have a positive distance from one another. By following a procedure similar to the
above, we can show that after a sufficient amount of subdivisions, the distance be-
tween each cell and its over-approximation, as computed by the planner, can be ren-
dered arbitrary small after a finite number of iterations, thus resulting in the over-
approximating cells corresponding to each disjoint component of CSgee becoming
also disjoint. As this would imply that no path made of over-approximating cells
can be found after that point, the proposed algorithm would automatically termi-

nate, which concludes the proof.
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List of Publications

My research has resulted to 6 peer-reviewed papers for international conferences
world-wide and 5 journal papers. The list of publications up to date is as follows:

Journal Papers

[J1] Constantinos Vrohidis, Panagiotis Vlantis, Charalampos P. Bechlioulis, Kostas J.
Kyriakopoulos, “Reconfigurable multi-robot coordination with guaranteed convergence in
obstacle cluttered environments under local communication”, Auton Robot 42, 853-873
(2018) d0i:10.1007 /s10514-017-9660-y

[J2] Constantinos Vrohidis, Panagiotis Vlantis, Charalampos P. Bechlioulis, Kostas
J. Kyriakopoulos, “Prescribed time scale robot navigation”, in IEEE Robotics and Au-
tomation Letters, vol. 3, no. 2, pp. 1191-1198, April 2018.

doi: 10.1109/LRA.2018.2794616

[J3] Panagiotis Grontas, Panagiotis Vlantis, Charalampos P. Bechlioulis, Kostas ].
Kyriakopoulos, “Computationally Efficient Harmonic-based Reactive Exploration”, IEEE
Robotics and Automation Letters (RA-L) (accepted for publication).

[J4] Panagiotis Vlantis, Constantinos Vrohidis, Charalampos P. Bechlioulis, Kostas
J. Kyriakopoulos, “Robot Navigation in Complex Workspaces Using Harmonic Maps and
Adaptive Artificial Potential Fields” (under preparation)
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[J5] Panagiotis Vlantis, Charalampos P. Bechlioulis, Kostas J. Kyriakopoulos, “Coop-
erative Load Transportation using Hierarchical Cell Decomposition and Harmonic Maps”

(under preparation)

Conference Papers

[C1] Panagiotis Vlantis, Constantinos Vrohidis, Charalampos P. Bechlioulis, Kostas
J. Kyriakopoulos, “Robot navigation in complex workspaces using harmonic maps”, 2018
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD,
2018, pp. 1726-1731.

doi: 10.1109/ICRA.2018.8460695

[C2] Constantinos Vrohidis, Panagiotis Vlantis, Charalampos P. Bechlioulis, Kostas
J. Kyriakopoulos, “Prescribed Time Scale Robot Navigation in Dynamic Environments”,
2018 European Control Conference (ECC), Limassol, 2018, pp. 1803-1808.

doi: 10.23919/ECC.2018.8550556

[C3] Michalis Logothetis, George C. Karras, Shahab Heshmati-Alamdari, Panagiotis
Vlantis, Kostas J. Kyriakopoulos, “A Model Predictive Control Approach for Vision-Based
Object Grasping via Mobile Manipulator”, 2018 IEEE /RS] International Conference on
Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 1-6.

doi: 10.1109/IR0S.2018.8593759

[C4] Panagiotis Vlantis, Constantinos Vrohidis, Charalampos P. Bechlioulis, Kostas
J. Kyriakopoulos,

“Orientation-Aware Motion Planning in Complex Workspaces using Adaptive Harmonic
Potential Fields” 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 2019, pp. 8592-8598.

doi: 10.1109/ICRA.2019.8794053

[C5] Michalis Logothetis, Panagiotis Vlantis, Constantinos Vrohidis, George C. Kar-
ras, Kostas J. Kyriakopoulos, “A Motion Planning Scheme for Cooperative Loading Using
Heterogeneous Robotic Agents”, 2019 International Conference on Robotics and Au-
tomation (ICRA), Montreal, QC, Canada, 2019, pp. 9660-9666.

doi: 10.1109/ICRA.2019.8794323
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Eiooymy

Kivnteo

H autdvoun Aettoupyio pounotinmy TAATQopu®y YEoa TEQYBAANOVT YEUATA UE EUTODLAL
ATOTEAEL €Val EVEQYO EQELVNTING AVTIXEIUEVO UE TNV QUTOVOUT TAOHYNON VO ATOTEAEL o
vop@ofBriTnTo o Yepehiadn ntuyn tne. Emmiéov, xodng to xodxovia mou o pounot
XOUAOUVTAL VoL EXTANEWCOUY AUEAVOVTOL OE TOANUTAOXOTNTO Uépa UE TN Pépa, 1 Yehon
TOAN)-POUTOTIXDY CUCTNUATKY, Ta omolol euPavilouy YeEVIXE LPNAGTERT EupKOTio XaL Eu-
ehéio and yovo-poumotxd cucTAUNTY, TEoodeuTxd auidvetal. 'Etol, ta mpofifuata
QUTOVOUNG TAONYNONG TOU TEETEL VO AVTHIETWTLOTOLY YIVOVTaL OAO XOU TIO OTOLTNTIXG,
QUEAVOVTAC TNV OVEYXT] YId TILO OTOTEAECUOTIXG Xl GUEVOQRE OYHUNTA OYESLUGUOV To-
eelog xan mpoypaupatiopol xiviong. Emlong, ye oxond 10 oyedlacud anoTEASCUATIXGDY
X0l ATOOESELYUEVO CWOTWY CUOTNUATWY TAONYNONG, AVAUTOPEUXTH AmoUTE(TOL 1) HOVTE-
Aomolnom xou xotavonoT TG TERITAOXNG TOTOAOYS TWV YWenY Blade@wons VPGV
OLO TACEWY TOL TPOXVTTOUY AOYW YEHONS POUTOTIXMY CUCTNUAT®WY UE TOAOUE Barduoic

eheudeplac. COVPLYLEATIOV

Yn BiBhoypapio xavels umopel var Bpet éva eupld pdoua uedoB0AOYLOVY Yiar GYEDL-
OUO CUCTNUATWY EAEYYOU TOU ETUTEENOUV GE POUTOT va Thonynioly eviog civietwy
YWPWYV, PE ToV oyedlooud xivong otov ydhpeo dtapdppnone [33] va eivor and Tic mohou-
Otepec.  AeBOUEVNG UG PNTAC TEELYRAPNC TOU YWEOL BLadR(PmONS TOL GUC THUATOC,
oy fuata oyedlaopon xaL EAEYYOU, 6Twg auTd Tou Basilovton ot uedodoug ‘anocivieong
oe xeMd’ [53, 8] xou xataoxeuviic ‘0dxol ydptn’ [12], umopolv va yenotponoinel yio Ty
AGPUAT OO YNOY EVOS POUTOT TEOS TOV OTOYO TOU TANEMVTUSG TAURdAANAL TIC TEOPBAE-
TOUEVES TROBLYPAPES epyaaioc. £26TO00, 1 axElB3HC TEPLYEAPY| TOL YWEOU SLORPLCTS
oXOUN XL YL ATAG CUCTHUOTY, amd amOewS YeEWUETplog ot ToTohoylag, umopel va
amodety Vel apxeTd BUOXOAT, av Oyt adOVUTN. Ao TNV dAAN TAELEE, TEOCEYYIOTIXES Te-
VS amocivieone, 6mwe ‘Teofolt tepoyiny’ [69, T0] xou ‘tlepapyixh xon TEOCEY YO TIXH
anocVvieon oe xeld’ [10], uneppotayyilouy 1o Topandve CRtnua xoTaoxeudlovTag (o
TEOGEYYLOT] TOU YWPOS SLUORPWOTS WG EVMOT) TEMEPAUOUEVLY, ATAOUC TEPWY YEWUETOIX,
OYNUETWY, OTKC LTep-opUoymVIa XaL TOAUTOTA, €i¢ Bdpog axpifetag xou TAnpdtTnTag. E-
TUTAE0V, 1) TOAUTAOXOTNTO TOU OYEBAoUOU Xivnomng elvol YKo To 6Tl audveTton exdeTind
0¢ TPOS TNV SldoToon Tou yweou dloapbppwone [12]. Q¢ ex toltou, oL TexVIXES Tho-
YNONG X W0 dloaudppwone yYevixd meptoplleton oe TOAD Younhy| SLacTACEWY Xl ATAES
euduioeic.
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O oyediooude xivnong uéow derypatohndiog [54, 40] amotehel wior dhkn obyypeovn
evoloxTixy) Abom ou xotapépvel va mapaxdude to tpoavagepdévta Yéuata, xodog ou-
OLO TIXG amouTel Evay EUUECO 0PLOUO TOU Y(OEOU SLORPLONS, O OTolog Elval YEVIXA TTO-
A0 o e0xolo vo xotaoxevacTel. AT TNy dAAN, auTéc oL yedodoroyieg avTipeTwTilouvy
uovo To LTO-TEOPRANUA oyedLIoUo) Topelog xou ToEEyouy it AOan avoixTtol Bpdyou
TOL [lal GANT xoTNYOoplar EAEYHTWV TEETEL VoL aXOAOUUHCEL 600 TO BUVITOV axpUBEc Tepa,
TpOXEWEVOL Vo e€ao@ahloTel Tapopovy) evTog Tou eheliepou yhpou Blaudppwong. E-
mlong, auth 1 xatnyopla OYEBACTGY Vol YVWOTO OTL BUGKOAEVOVTAL XATd TNV EVEECT)
ANOoMC OE TROPBAAUOTO TOU LTOXEWTOL GE OYETIXOS AUOTNEOUE TEPLOPLOHOUE (T.Y., OTE-
voug dtadpduouc). ‘Eva dhho yetovéxtnua twv oyedlactav Bdoet derypatoindloc eivar
enlong 6Tt Sev BUVavTan var avTingdoly avunapgia Aooews evog dedouévou mpolAruatog,
UE amoTéAEoHA 1) adLVAULN ATAVTNONG EPWTNUATMY GUVOEGHUOTNT EVIOS CUYXEXPUIEVOU

XEOVIXOU BLAC TAUNTOS VoL U1 ToREYEL xolar yeroLun TAnpopopia.

Télog, pla xatnyoplo EAEYXTOV TOU aVTHETOTILOLY Tol TEOBAAUATE GYEDLAOUOY BLo-
BPOUNC Xl XWACEWY w¢ éva BaclleTon 0TOV GYEBLICUO EVIOAGY XIVNONG CUUPLVOL UE EVal
Teyvnto edlo Auvouxol. Ta Teyvntd Hedla Auvouixod, to onola apyixd TEoTaI XY
ond [46], yevixd mopéyouy €va amhd PEGO Yo TNY XOXOTOMGT TEodLaY papeY amoQuUYNS
OUYXEOUCEWY, UE TNV Ao TOUG VoL AELToupYEL we BlebuvoTn avopopds Tou xaTeLYUVEL
T0 poundT TEog TNV emuunTy dtaudepwaon. Iapd tnv npoocinuatiny @ion Toug, OTWS
patveton oto [49], auth 1 xoTyoplar EAEYXTOV LTOPEREL AVUTOPELX T O TNV ToPOLGIXL
avemIUUNTWY ONUElWY LoopEOTIag Tou ETdyEToL Amd TNV ToToAoYio TOu YWeou epyaciog
X0 TV onolwyv 1 teploy ) EAENG unopel vo uny etvan aoruovtn. Enlong, teyvntd Suvouxd
nedio Tou expdlovion o *AEWOTH Yop®Tn, YEVIXE, TeploptlovTal G YEWUETEXE AmAOUG
YWEOUC, UE AMOTEAECUA TNV AVAY XY OYEOLAOUOU TERITEY VWV UETACY NUATIOUDY TOU OTEL-
%x0vICouV TEAYHATIXY YWEOUS EQYACIAS O ATAOUGTEQOUS LOEATOUS XOOUOUC. 2LV TOLG
GANOLC, TOL TEQLOGOTEQO TEYVYNTA OuVoLXd Tedlor xaL UETAoY NUaTIopol anoutoly eninovn
eVOuLon TopopéTewy oyEdloUol TpoxeWEvou Vo e€ahetpioly Tor avemtdlunTa TOTIXA

ENAYLOTAL 1 VO XUTAC THOOUY TOUG PETACY NUATIOUOVS OLPEOUORPIOHOUC.

Ev ouvrtopia, ta oyfuata oyedlocuod Topelag xal XWWACEWS VLo TNV TAOHYNOT| PO-
UTOT oL ovapERUNXOY TORATAVE BLAPEEOUY OUGLAOTIXA TO €va amd To dhho. Emmiéoy,
xdde owxoyévela Topouctdlel €va BUPORETIXG GUVORO TAEOVEXTNUSTWY XL UELOVEXTY-
udtwv: pédodol Bdoet derypatolnhlogc uropoly vo avtyetwnicouy nepimAoxa TpoBAfuo-
T AAG BEV UTOPOUV VO EXUETIAAEUTOUV TOTUXES IOLOTNTES TOU YWOEOU BLaOpPOoNg,
uédodol anociVIEong YOEWY BLIHORPKOTS YENOWOTOVY Uldl PNTY AVATAEEC TUCY) TOU
dlacparilel ThnedtnTa ot Bdeoc LPNAOY LTOAOYLOTIXG XOGTOC, oL TEYVNTA Tedlar duva-
o0 ToEdyouy VOUoug eAEYYOL XAEIGTON Bpdyou UE EYYUNUEVES LOLOTNTES aopuleiog
%L GOYXAIONE VLol TOTOAOYIXA XAl YEWUETEIXA amAog ypoug epyaciag. §2¢ ex tolTou,
TO EPWTNHA OV QPUOLXA TEOXVTTEL EVOL XATE TOCOV ElVoL BUVATOV VoL GUVBLUGTOVY Tl
TAEOVEXTHUATOL OUTWY TV UEVOBWY UE GXOTO TO OYEDAOUO THO EVENXTWY QUTOVOUWY
CUCTNUATOY TAOHYNONG POUTOT. Xe auTH TNV JlTE3Y], ATAVTIUE UTO TO EPETNUO X0

TAPATINE xS YENOHLOTOLVUE HEVOO0US tEpapy XN amocUVIESTE, OE GUVOUAOUS UE
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XATAAANAAL OYEBIACUEVOL TROCUQUOC TS Y AUATA EEEPELYNOTNE, VIO TNV XUTAUGHEVY) EUEAL-
ATOV XU ONOUATPOUEVWY CYNUATWY OYEdlIoTE TAORYNONE TOLU UTOPOUY VoL ATOVTAGOLY
OE EQOTAUATA CUVOECIUOTNTAC, 1) Vo Teoodlopicouv Ty amoucta AOong, UETd and éva
TENEPAOUEVO apiud Brudtwy. Emniéov, epodidlovye pouTOTING CUC THUNTA UE XAUTOVE-
unuévoug vououg eréyyou mou Bacilovto ot Teyvntd nedla duvnTixol To onola unopel va
TEOYUATOTOLCOUV UE OOQIAELRL To ToporyOuevaL oy€dlar uPnhol emmédou, avtuetwnilo-
VoG TEoPBAAUaTH TAOHYNON EVIOC CUVUETWY YWewY ERYACIOC UE EYYUNUEVT WOLOTNTES
obyxhong. Eriong, oe auth v epyaota, oyedidlovye mo e&ehypévoug akyopituoug
unhol emmédou haufdvovtog enione TIC WLOTNTES TWV TROTEWOUEVOY VOUWY EAEYYOU
YOUNAoU eEMTEBOL, Yo VO AVTIETWTICOUUE EUXONOTERX TEpBdANOVTA awalpETNS CUVDE-
OWOTNTAG XAl OYAUATOS, EEUAELPOVTAC ETOL TNV OVAY XY YLOL XUTOUXEQUATIONG TOU Y (HEOU
OlaopProNg o arhoLoTepa TUata. TEAog, emBEVIOUUE TNV AMOTEAEOUATIXOTNTA,
TWY TEOTEWOUEVWY UEVOBOAOYLOV avTWETWTILOVTAS TEaxTixd TEoBAAUATA OTWE GUVTO-
VIOHO TNE XVNONE TOAAGY POUTOT TIOU AELTOURYOLY EVIOC TOU (BLOU Y(MEOU, X0 CUVTOVI-
OUEVNG HETOUPORAS AVTIXEWEVOU OO Uid OAON GUVERYALOUEVKY XIVOUUEVKY POUTOTIXGDY

Beoytovov.
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[Thorynon Awoxoedowv Poundt oto

Erireoo

Ewoy oy

Ye autd 1o xEPIAoto, oVTIHETOTILOVUE TO TEOBANUN TAOHYNONG Yiot VAL POUTOT TOUL
Aertovpyel evidg evog oTaTixoL, cuumayols, eminedou ywpou gpyaoiaug ue audalpeTn
ocuvdeotuoTnTa Ko oy e, o var Srayelplotodue Ty Tomoloyia Tou yweou epyaciag,
XATAGHEVACOUPE LA APUOVIXT| ATELXOVIOT) TOL YWeoL EpYaciog ot didtento dioxo, 1 omo-
{o, oe avtideon pe toug petaoynuatiopols tou tpoteivovtar oe [91] xou [64], Sev amoutel
NV anocVIEST) ToL YWpou epyaciuc ot dEvipa aotepty. Emnmiéov, o avtideon ye [91,
64, 65] 6mov amouTElTOL PNTH AVATAPAC TACT, TV 0PIV TOU YWEOL EPYUGIIS, 1 TEOCEYYI-
o1 pog yeetdleTan Wi ETUEXOS 03NS TOAUYWVIXT] TEOGEYYIGT| TOU Y®OEOL epyaciog, 1
omola unopel ebxoha var amoxtroel otny Tpdln yéow SLAM. Emmiéoyv, yenowonolobue
TEYVNTE appovixd Tedia XAELoThC Hop@hc Yl TN ThoRynom, mapduote Ye autd ot [62],
oA TPOTIOTIOINUEVOL XATUAAAANDGS UE GTOYO TNV VECTION TEOGUPUOC TIXWY YOUWY YId TIC
TOUEUUETEOUE TOUS YLOL VO AVTYETWTICOUUE AMOTEASOUATING GUUTIAYELS YOPOUS epyaciag.
Enlong, napoucidlouye AenTouep®s TNV dLadxacior XATUOXEUTIC TOU TROTEWOUEVOL UETA-
CYNUATIOUO) YENOHOTOLOVTIG ApLIUNTIXES TEYVIXES, Xou EdWwoTepa Tn MéYodo Empa-
velowy Utoyeiwyv. Télog, npocoapudlovye 1 pedodoroyio pac oe dixuxa pOUToOT, TOU
amavVTOVIOL CUVADWS OF TEOYUATIXES EQPUPUOYES, Xl TEOTEVOUNE évay ohyoeLiuo yia
VO AVTWETOTICOUUE AmOBOTIXd TO UTOAOYLOTIXO XOOTOC TOU ETLPEPOLY PEYAAOL Y WEOL

gpyaoioc.

Ynueoypoagpie:  Xenowomowlue Dy(X) yior vor SNAGCOUPE Tov avolyto dloxo Ue o-
wtiva ¥ > 0 xou xévtpo x € R2. Emmpoodétoc, D xu 9D dnhédvouv 1o xhetoté dioxo
xou xOxho pe povadabor oaxtivor xou x€vTpo TNV apy’| TV aovwy, avtictowyo. Eriong,
opioupe In = {1,2,...,N} xou 0% £ {0} UTn. Acdopévev ouvérev A, B, C R,
yenoworotolpe cl (A), dA, int (A), A yio va Srhdcoue TV XSG TETNTY, GUVORO, EGG-
Tepd xou ouuTAprua Tou A we tpoc o R", avtiotowya, xau A\ B yia vor dnhédooupe
TO cLUTATIPWUA ToL B w.p.T. A. EmmAéov, yenowonooiue On xou Iy yio vo dnicdcouue
Toug Tivoxeg-oThHAN uhxoug N pe otouyelor undév 1 éva, avtiotouya, xon Onxpm Yo va
dndooupe 10 N x M pndevixd mivaxa. Eniong opiCoupe w0 15, 4 kK € Tnm ¢ tov
N x M mivaxo tou omolou 1 k-ooth) otiAn eivan {on pe Iy xon xdde dhAn othin elvou
fon pe On. Aedouévne plog dravuouotixic ouvdetnong f(x), yenowonowlue Vi f yio va
onAodoouue v Toxwplavy e f(x). Enlong, yio 8edouévn xaunidn C, yenowonotolue
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len (C) vy vo dnhcdcouue to urxog tou. Téhog, Yo Aéue 611 éva ohvoho A elvon eEAxTixG
(avtioTotya. anwoTixd) utd éva Suvauxd medlo P, dtav undpyet éva onuelo Py ¢ cl(A)
TETOLO WOTE AV OPYLXOTIOLOUUE TO POUTOT oTo Py xou xvoluacte avtideta mpog tnv xhion

0L P, 10 poundT Vo cuyxhiver (avtiototya. dev Ya cuyxAivel) oto JA.

Oplopoc HpoPAAuatoc

@ 7 Z 4 )\ 7 4 Z 4 7’ 7 W R2
ewEOLUE €va poUTdT ToU ActtoupYel Uéoa GE €va GUUTOYY) YORO EQYACTAC C R7,
oplo¥eTnUéVo amd €va eviafo EEMTEPLXO X EVOL TETEPAUOUEVO GUVONO ECOTEPLXWY XAUUTU-
A6V Jordan!, mou avTIoTOL 0OV GTOL TERLYPUUUATY TWY OTOTIXGOY EUTODIOV. OewpoUuE

ot 10 W umopel va ypoptel wg

W=\ U W, 1)

[ISAIN]

6mou W, i € TJ% dnéver meployée tou R? mou to poundt urmopel var xotodoufdver.
ISwitepar, To ouumApwua Tou Wy dewpeiton oTL elvon plar amAd GUVOESEUEVT TIEELOYT) TTOU
uropet enfone vo mepthouPdve éva auotned utocivoho Tou oplou Tng? xaw Wi, Wha, ...,
Wi Yewpoiviar xAelod, amhd ouvdedepéva, cupnayt| oOvoha evioe Tou Wy to omola
oev téuvovtar Yetoll touc. Optloupe p = [x,y]T € R? ¢ v Yéomn tou popndT xou

uro¥écoupe 6Tl 1 xivnom Tou POUTOT TEPLYPAPETOL aNtd TO LOVTEAO AmAOU ONOXATEWTY:

p=u (2)
6mou u € R? eivor 0 avtioTolyo didvuoua e166B0U eEAEYYOU.

poBAnua 1. Xtoyo¢ pag eivon Vo oYeBIACOUUE Eva VOUO ENEYYOU XIVNONE TOU UTOPE-
{ vou odnyfoeL emtuy®e €va poundT Ue xwvnuotxd| (2) mpog uior BeBopévr Blopdepwon
YXON pg € W, and oyedov xdie e@inth apyix| Sladdp@wo Pinit € WV, dtacpolilovtog
TEEAANAL amopLY T cuYXEoUGEWY, dnhadh, p(t) € W yia xdde t > 0.

Yyoho 1. Ta anoteréopata TOU TopouctdlovTol GE AUTO TO XEQPIAALO UTOPOLY VoL YT
owornotndolyv ebxolo Yl TNV TAONYNOY EounoT dloxou pe oxtiva R > 0 auvgdvovtog

xaTdAANAa Tor GUYOPAL TOU YWEOL pYaciag UE TNV BIACTACT) TOU POUTOT.

Appovixol Metaoynuatiopol yia IThorynon oto Eninedo

Ye authv TNV evoTnTa, Tapouctdlouue Wi pedodoloyio mou aneixovilel Tov yweo pya-
olag Tou poundT o€ éva BLdTENTO 6ioX0, O0TOV OTolo Vo GYEDIAOTEL TUPUKATL O VOUOG

eENEYYOL.  LUYXEXQUEVA, OTOYOC oG elvon 0 oyedlaouds evog uetaoynuatioyod T :

Mo xoumdnn Jordan efvon wlo ouveyfc entnedn xaumdln mou dev téuvel Tov eoutd TNC.

2Auth avtioTolyel oe TepinTdoeic 6mou YENOUUE Vol TOTOVETHOOUPE TOV TPOOPLOUG TOU POUTHT GTO
e€wTtepxd oUVoPO Tou YWeou gpyactiac, N omola dev xatadouBdveTar and *ETOO TEAYUATIXO EUTOBLO,
.Y, Wo topTa evoc Sapeplopatoc.
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(W) — D, and v xAEIGTOTNTA TOU YWEOL BLopde(pnang Tou pounot cl (W) otov

povadiolo dloxo D, pe Tic mopaxdte: WLOTNTES:
1. T(-) anewovilel to e&w1epind clvopo AWy oTov povadiaio x0xho 0D,

2. T(-) anewovilel to civopo OW;,i € Ty xdie eunodiov o éva Eeywptotd onueio
T _ .
qi = [u;,vil" € int(D),

3. T(-) eivou Supeopopplopoe yia xde p € int (V).

T T oxond authd, mpotelvouue évav opuovixd petacynuatious T(p) = [u(p), v(p)l”
(Onhadn, u(p) xou v(p) etvan appovixée ouvopthoeic). H Onapn autod tou yetooynuo-
Tiopol anodelydnxe oe [20] xou emopxelc cuviixes mou Tov xohoTolv dipeouop@iond

TOEOVGCLAG TNXAY WS PEPOC TNG AmMOBEENC.

Ochpnua 1. (Bewprua 2 oe [20]) Eotw W C R? évac menepacpéva cuvdedeuévoc o-
Vol TO¢ Y Gpog Tou oploveteitan and xounieg Jordan oWy, oWy, ..., 0Wy, 6mou W)
avtiotoyel 010 e€wtepnd olvopo. ‘Eotw, emlong, ) € R? évoc CUUTAY TS XUPTOC
yopoc. Yrodétoupe 6L f elvor évac ouveyfc, aoVevic OPOLOUOPOIOROC TOU BloTnpe-
{ Tov mpoocavatohoud and Wy oto dQ). Tote, undpyel dpUOVIXOS UETUOYNUATIONOG
f W= Q tétoog Gote:

f(p)=f(p), Vpe o, (3)
9 .
/a . %ds —0, Viedy (4)

omou n = n(p) etvar To povadiao didvuoua xddeto oo chvopo ent Tou onueiov p € W,

i € I, o onolog anewxoviCel o W oto (), minv N onueiwyv.

¢ ex T00TOU, YLoL Vo OYEDBIACOUUE TOV EV AGYW UETUCYMUATIOUS OTO TOV YOEO
epyaoioc cl (W) oto povaduio dioxo D, mpénel mpdta Vo OyeBIACOUUE Ulal ATEOVION
T : 9Wy +— 9D yia 0 6%vopo tou ydheou. (BX3. T(p) = [G(p), v(p)]T), xon petd va
Aooouge 800 TPOBAAUATE GUVOELIXGOY TGOV U(p) avd v(p) urd Toug Teptoptopole (3) xau
(4). T vor AMoooupe autd o TpoBAAUTY, YeNoYLoToloVuE aptiuntinéc uedddouc xat, To
ouyxexpiéva, Ty Médodo Emgavelaxdv YNtotyelwy, npooeyyilovtag xdde cuviotdoa

tou T(p) = [u(p), V(p)]T and €va apotopa TNG LOpPHG:

gl

o

N

up)~ ) CinHiji(p)
i=0j=11=1 %)
N M,‘ L

v(p) = Y CiiHin(p)
i=0j=11=1

Hip(p) = [ Gy ©n(lp = piy(s) s (6)
if

TOU TPOXUTTOUV LTOBlatp®VTG Ta olvopa o Mo, My, ..., Mn mAfjdog otouyelor 6Tou

T ’ / ’ / ’ ’ ’ . ’
L ebvou 1o mAfdoc twv onuelwv eleéyyou avd otowyelo, Ejj dnhovel to j otolyelo tou
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i oplov, P;i(s) € Ejj ebvon pio mapapetporoinon tou Ej wg mpog 10 ufxog tou (OAS.
pij : [0,len (Ej)] — Eij ), Gy : [0,len (Ej)] — R ebvan n ouvdptnon popphic mou

avtiotolyel oto I onuelo eéyyou tou Ejj, xou Cl?‘]-l, Ciyjl € R elvon mapdueTpot Tpog emAOYT
t€tooL Hote o T v ixavorotel Tic wotnteg 1-3, v xdde | € Ty, j € Ty xou i € T§.

Ot ev AOYw TOPdUETEOL TROXUTTOUY amtd TNV AUCT) TWV YROHUULXMY CUCTAUATOVY
AX =By, AY =B, (7)
WS TPOC TA Y VWO TA dlayOouaTa

T
X = [Cf)c,l,l/' o Clyge e G ,UN}
y y y T (®)
Y = [CO,M,. e g Vi /VN] '

O mivoxar A xon ta Sraviopata By, By mpoxintouv emhéyoviag eva 6Ovoro audolpetwy

’ ~% 7 ’ . ~% . ’ . ~ . . ~k , N L ~k
onueloy Pi; tétol GoTe: o) pii € OWi yia xde j € T, xau i € Ty, omou N, i € T
dnhodvel o Thdog onueiwy ent Tou avtiototyou oplou Tou W, xau B) Yieay Ni ebvou (oo

ue 0 mAflog TwV dyvwoTwy TapapETewmy (SRS, Yicgy M;L) 6mou:

Ao, ONQXN Bxo Byo
1
Al’ _]lleN 0N1 ONl
A= : , Bx = , By=| : 9)
AN, _R%NXN ONN ONN
| Ay, Onxn | On | | On |
Hopa(PE1) -+ Hyng,(P1)
Hopi(Pro) - Hyowry L(Pro)
= R (10)
Hoa(Pr ) -+ Hwny 1P g,)
N, 0Ho11 Ny OHN L,
Le' 5t (L) - L 5
N, 0Houi ¢ Ny BN wg L i
A, = Ly o Prp) - Lk o (Pax) (11)
N 0Ho11 /5 Ny OHN i L
Zzlc\] Nt (P lec\[ N (PN )
a(p,1) v(p5 1)
a(pg,) v(P5,)
By = Byo = . (12)

ﬁ(ﬁ(*),]qo) V(f’aNO)



Extevic ENanvuer| Tepihndn 145

Lyeodwouoe Nopou Eréyyou

It va emAboouye 1o mpofBinua HpdBrnua 1, e€omhilovye 0 poundt ue pla opUovixo
amewxovion g = T(p) and v xhelotdnta T0L YWeou epyacioc VW atov yovaduiio dloxo
D xau éva texvntd duvapixd edio (g, k) pall pe évav tpocapuootiné vouo k = fi(q,k)
yio e mopaétpouc k = [kg, ki, ka, ..., kn]". H tomta tou pounét unohoyileta omé
TOV TORUXATL TUTO:

u = —Kus(q, k)] (P)V (g, ) (13)

omou J(p) dnhédver v ToxwpPravh touv T(p), s(p, k) > 0 elvon pa cuveyde topaywyiown

cLVdETNON *EEOOUS Tou BiveTon amd

1- Hqu) (Vo) g
s(g, k) = yo,| ——— |+ — 7)oy 14
@9 =1 "( & ) TR (14)
[JE
x’3—-2x), wx<1
0y(x) = ? , (15)
1, wx >1
X2, x>0
(%) = (16)
0, wx<0

xon Ky, 7, €p, €y ebvon otadepéc tétoec Bote Ky, €5 > 0 xau 7y, €, € (0,1). Iho ou-
Yxexpyéva, to P elvon €va apuovixd medio mou opiletoan otnv exdva T(WV) tou yodpou
epyaotac W xou n xhion tou =V, 9P(q, k) opiler tnv diebduvon xivnong otov mparyuat-
%6 Ypo péow oL avtieTeéwou e laxwPlavic J~1(p). Ex xataoxeufc, o medio mou
TEOXUTITEL AMOXAELEL TIC CLYXEOVUCELS UETAEY TOU POUTOT X0 ECWTERPIXDY EUTODIWY EVED
eCaogarilel oyedov xotohixy oOYXAon oTov emuUNTO TEoOoEIoUO. (26THG0, xadde TO
Wo uropet va uny ebvan amwo ixd yor pio avdalpetn, otadepn emioyn v k, o tpocoguo-
otxoe vopog fr(p, k), pall pe v cuvdptnon s(p, k), e€acpaiilouvy Topouovr| Tou POUTdT
EVTOC TOL YOpEoL epyaciog ywelc va ywelc va dtaxufebovion ol 1toTNTeG 0YXAONS TOU
oLVOAXOU cuoTAUATOS. Ol axdhoVDEC UTOEVOTNTES EMUXEVTRPOVOVTOL OE Xdde GToLyElD

TOU TROTEWVOUEVOU VOUOU EAEYYOU EEYWELOTAL.

Teyvntd Appovixd Avvouxd [edia

Axohovddvtac uor dadixactia mapbpola pe exelvn mou mpotelveton oty epyaocia [62],
XATAOHEVACOUPE EVAL TEYYNTO OPUOVIXO DUVAUIXO TIEDIO GTOV UETACY NUATIOUEVO Yweo D
and onueloxéS TNyEé mou totodeTouvTon oty emduunTy Slodppwon gg = T(pg) xadde

xou ot onpela q; = T(OW;), Vi € Ty mou avTioTolyoly oe EoWTEPUY EUTOBLL, WS EEAC:

p—kn (190} Zkl (la~ail) n
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émou kg > 0 xou ki > 0 dnAdvouy Bden appovixdy Yoy tou ahhdlouv clupomvL
UE TOU TROCOQPUOCTIXOL VOUoUg Tou mapouatdlovial oTn cuvéyelo. Mia evilagpépouca
WBLOTNTA AUTOY TOL BUVOULXOL TEBlOU, 1) OTolo ATOPEEEL amd TNV APy 1| TOL PEYIOTOL Yia
OpUOVIXEC CLUVUETAGELS, elvon OTL, YioL oTodepd k, To uévo eldyloto Beloxovtal oTo g4 xou,
evdeyoUEVLC, 0To dmelpo. )¢ dueon cuvénela, o Ecalovdg nivaxag Vs(p UNFEXPUAMCUEVOL
xplowou onuelov g ¢ 0TO ECWTEPKO TOU YWEOoL, Exel uio Vet xou ulo apvnTixy

WoTn Ye To (Blo uéyedog, 6A8. A xan —A pe A > 0.

Y1y ouvéyela, opiCouue to medio P Bdoel Tou ¢, mou diveTon and

1+ tanh (¢p/w)
N 2

(18)

6mou w etvan wor Vet otadepd. Kodde to tanh (¢/w) ebvor abZouoa suvdptnon,
uovadd xplowo onuela Tou P elvan auTd TOL XANPEOVOUEL antd To ¢. Emmiéov, n xhion

TOU P S TEOS TO g, TOU diveTon omo:

1 — (tanh (¢/w))?

2w

Vo = V¢ (19)

elvon xahd oplopévn yia xdde g € D. Emnhéoy, yio vo UTopécoule Vo TOTOUETHCOUUE TO
gq o€ meptoyéc tou 9D ol onoleg Bev xatahapPBdvoviar and Puoxd eunddia (yLor AGyYoug
mou Va yivouv xotavontol otny cuvéyela), oyedtdloupE TEOCUPUOGTIXOUE VOUOUS YIoL TIC

ToEop€TEoUS k ToL @, oL XAGTOVY TO EEWTEPIXG GUVOPO AMWOTIXO.

ITpwv TEOYWEHOOUUE YE TOV OPLOUO TWV TROGUQUOCTIXWY VOUWY, ToeoUctdlouue 600

Tpotdoelg Tou Yo yenoylonotdody oTny UETETELTA AVAAUOT).

Hebtaon 1. 'Eotw kg > 0 xou " € 0D\ {g4}. Trdpyet k' > 0 tétoo dote edv ki < K/,

Vi € Jn, téte g’ elvon anmotixd und tou 1.

Mpdtaon 2. Edv k; eivon pn apvnuixd xon nenepaopéva, urdpyet k; > 0 tétoo dote

’ 7 /
etvon Morse yia xdie kg > k.

ITpocapuootixol Nouor EAéyyou

E8¢ napousidlouye tov vopo k = fi(q, k) mou mpocapudlel tic mopauétpoug tou . O
ox0TOC TOU Elval VoL XaTaoTACEL: o) TO EEMTERIXG GUVOPO AMWOTXG XAl [3) OTOLOBATOTE
xplowo onuelo tou ¢ oMV yeIToVId TOU POUTOT un-expulicpévo. Ilo cuyxexpyéva,

Vewpolye fi pe popp:

ki = 1A+ [ Vagll;en)

. . (20)
ki = (ki — ki) witigi — Kikihiwo (0 + €1(s7€2)) , Vi € Iy

6mov T wy, g xou hy, 1 € Ty, dnh@dvouv cuvapTioelc Tou Vo 0ploTOUY TEAUXETY,

ki, i € I, elvon emduuntd dve opla tov ki, A Snhdver Ty un-opvntixy Wty Tou

V%cp, K etvon évor Yetind xépdoc, xau €1, €2 elvon wixpés Yetinée otadepés. H ouveyae
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Topaywylown cuvdptnon ¢1(x; €) xou ot £;(q) divovta amd:

Gi(x;€) =1 —0p(x/e€) (21)
_ Kus(g,k)
ti(q) = —W- (22)

Lopgova ye Hpdtaon 1, n medtn npodlorypapt uag urnopel va emteuydel oyedidlo-
VTOG T ff WOTE VoL YEWvouy ta k; xode to poundt minoidlet to 0D. Eniong, Yo npénet
va e€acahicouye OTL ta k; Oev undevilovton oe pla yertovid tou g;, v xdde i € Ty. Qe

ex ToUToU, opiloupe ta §; we eEAC:
gi=0u(g;), Viely (23)

ue

%= 4 (21l —aall ~ (Vo) (g 40)

(24)

[ ] =

8i=5 (Vq’ab)T(q —qi), VYieln

omou & € (0,1] otadepd. Enione, opiloupe cuvodeutixd Bden w; yio var e€aopolicoupe

oTL p6vo évocg bpog (20) xuptapyel xadode to poundt tAnodlel xdmow civopo tou W:

_ Ga(wo; €3)
wo + Z]‘Ii1 (kjw;)
T (25)
wi . ~
wo + 3= (kjwj)
tJ.E
w; =7i/(ri +7), VieTy, (26)
1—||gl)? eavi=0,
ri = ( q 2) . N (27)
lg —qill*, edviec Iy

ri= Z(”j)mz Vie Iy (28)
\/ j#i

0, v x <€
2
Ga(re) = q (5)"(3-25¢), eve<x<1 (29)
1, OTNEPWLOE

yio pio otodepd €3 € (0, 1) xon axépano m < —1 nou Aettovpyel we pla opaky) extiunon
Tou minj; (r)),i € In. Téhog, o Bden hy, i € Ty opllovran we:

hi =1+ ) _ (30)
1+ Ly, 0o (1))
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ue

T
Fi= ki (1. (s (¢/0))°) <H;:__ :HZ) P (31)

TV oTolwy 0 aTdy0¢ elvan Vo emLToyOvouy TNV UEWoT TV K TOU GUVEIGPEROLY TEPLO-

0OTEQO OTIC CUVICTOOES TOU Vqlp TouU WYOUV TO POUTOT TEOS TO GUVOPRO.

Yyetixd ye v deltepn amaltnon, omwe gatveton ond Ilpdtaon 1, emioyn tou ky
TV Ao €vo OPLO aEXEL VIOl VO XUTAOTHCEL TO ¢ AMOANAYUEVO amd EXPUALCUEVOL OTUEla
wopponiag. And TNy dAAN TAeupd, xS TO EOUTOT UTOPEl Vo Unv TANGCLAcEL TOTE
xdmolo exguliopévo anuelo, avtl va Yécouue to kg EToEXMS YEYHAO EX T TROTEPWY, O

avtioToly0C TEOGUPUOCTINGS VOUOS aWEAVEL TO kj novo Otay Tporypotind yeeldleTa.

Avdhvon Evotdietag

Oewpolue 10 axolovdo chGTNUL
= fi(2) (32)
onov z = (q,k), f2(2) = (fg, f) ue f3 = Ju. 'Eotw Q newdva tou W péow tou T, SAS.

Q = TW). Hopatneolue 6tL Q) anoteieiton and int (D), xou lowg and éva Yépog Tou
0D, My twv onuelwy g;. LTV cUVEYELX, DIUTUTOVOUUE To YAPUXTNRIOTIXG oo@ahelag
TOU GUOTHUATOS XAElGTOU Bpdyou, To omolo eyyudtor 6Tl T0 POUTHT OEV Vo GUYXEOUCTE!

UE XAmolo eUTOBLO.

[pétoon 3. To poundt Yo mopauéver evtoc tou W und v duvapixry (32) pe vopoug
ehéyyou (13) xou (20), OXS. p(t) € W, v xdde t > 0.

Agot anoxheloTnxe 10 EVOEYOUEVO TNG GUYXEOUOTIC UE To OPLAL TOU Y(MEOL ERYGLAS,
TPOYWEROCOUPE HE TNV amddelln 6t dha o xpiowa onueio Tou P, 6mov (32) pmopel vo
OUYXAIVEL, VOl UN-EXPUAICUEVO CaYUATIXG onuela 1} TO 4.

Ipbtaon 4. To duvouxd P UeldVETOL ETL TNG TEOYLEC TOU POUTOT XOL 1) YPOVIXT] TOU
Topdywyog undeviCetoar povo ota xplowo onuela. Emmiéov, 1 mpo-eixdva tou g4 eivo
éva olvolo evotaddy onuelwy wopporiog Tou (2).

Hpétoon 5. 'Eotww z* = (%, k) éva xplowo onueio tou cucstiuatog xhelotod Bedyou ue

g€ O\ {q4}. Torte, o g* elvon un expuliopévo caypatid onueio Tou 1.
TéNog, xAelvoUUE TNV CUYXEXPWUEVT] EVOTNTO UE TO XEVTEXO VEWENTIXG ATOTEAECUAL.

Ocipnuo 2. O vopol ekéyyou (13) xau (20) anoteholv Aoon tou mpoPfifuatog TIpdBArn-
uo 1, 8A3. to clotnua (2) UTd TOV TUEUTEVE VOUO EAEYYOU GUYXAIVEL ACPUADS OTO 44,

yior oyedOY xdde apyixr| cuVIRxn.

Enextdosic

Ye auth) TNV evoTnTo TaPOUCLILOUUE OPLOUEVES ETEXTACELS TNG TROTEWOUEVNS pedodo-

Aoyloc e oxond va avTETWTIoOUUE: o) To TEOBANua e aogaholc ThoRyNong yio
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ditpoy o pOUTOT Xat B) TNV UTOAOYLOTIXH TOAUTAOXOTNTA TOU UETAOY NUATIOHOU Xt TO

uéyedog Tou YWEoL EPYUCIAS UEYUAGDVEL.

Atrpoya Poumotind Oyruota

Eexwvdue YewpdVTIC POUTOT TOU 0Tolou 1) (Vo1 UTOXELTAL GE TEQLOPLOKOUS TNG UOp@PNS:

>

) v

6mou 6 € [0,277) Snhdver Tov mpocavatohoud Tou poundt g = [cos(f),sin(8)]”, xou
v,w € R elvon €loodol EAEYYOU TOU AVTIGTOLYOVY OTNV YEOUUULXT XAl YWVIOXTH TOU To-
yutnta, avtiotowyo. Ipwta, opllovye TNY XVNUATIXH TOU POUTOT TNV ELXOVOL TOU YMEOU

OLILOPPOONG UECEL TOU TEOTEWVOUEVOU UETACYNUATIONOV WS EENC:

] = 7150
T (34)
0=w
Ol TAUPUTNEOVUE 6TL oL Tpocavatohoyuot 8 xa O oyetilovtu and:
. J(p)ig
Ny = = . 35
e )
O vouog éheyyou opileton we e&Xg:
. ~ A \T
0 = —Kos0(q,0,k) ()" V(g k) 36)
T
@ =—Key () V(g k)
ue Ko, Ko € R otodepd 9etind %épdn, Ay = [— sin(6), cos(0)]" xau
_ 1—
50(g,8,k) = pr( GHGH) n
p
(37)

(75 Va¥) Aga
eo+ |7V |lg]

(1 - 'Y)O'v

Emmiéov, Tpomonololue Toug TEOCUQUOCTIXOUSC VOUOUS avTXaloTOVTIS TO § UE Sp
otic (20) avd (22) xou g;, i € Ty, Ue

8o0 = (“’ﬁqulp’ lg = qall = (A5 Vqp) 2} (q — qd))

(38)

N — ] =

0 = 5 (MFVep) AT(g—q), Vi€
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avtiotoya, otny (23). Téhog, exppdloviag Tov Topamdve VOUO EAEYYOU GTOV TEOYUd-
X YOPEO, TEOXUTTEL:
v =v0
(39)
W = Wyg + Wyg
OTIOU Wy AL W45 EVOL OPOL TIOL AVTIOTOLYOUY OE YWVIOXES ToUTNTEC AGYE YPOPIXT|C

X0l TEQLOTEOPIXAC XIVNONG GTNY EIXOVOL TOU YWEOL ERYCLAC:

T
Wag = —ov? ((] [ﬁg vﬁ(ﬂ)_l 88 ]ﬁ9> °

g 1
(40)
_ ) LA T1|0
Wi =@ ((] [I’l@ vneD né) .
— —14 d % 4 z ’
e v = [|J 7 gl xeu to 53] vor Snhédver Ty mapdywyo Tou | xotd Ty xatediuvon Tou

flg.
INot Ty euotdiela Tou ToEoTdve GUGTAUNTOS XAeloTo) Bpdyou toylel To e€ng:

Ocwpenua 3. To popndt Yo mapopeiver evtog tou W und v Suvoixd] (33) epodiacuévo
UE TOV TOEAmdve vouou eAéyyou. Emmiéov, to poundt Ja cuyxhivel acuumtmtind eite
0€ %Amolo E0WTEPO xplowo onueio Tou ¢ elte oTNY MEo-EdVa TOu g4, 1 omola elvou

sucTadC.

Yyoho 2. To anotéheopa tou Yewphuatoc Ocwpenua 3 elvon AyOTERO oY LEG GE GYEo
ue autd Tou Ocwpenuo 2 xodwg dev eCoo@aiilel OTL T0 GUVOAO TWV XATACTUCEWY TOU

oLYXAvoLy o€ xdmoto xpioyo onuelo Tou ¢ (extoc Tou q4) éxer Lebesgue undevixd yétpo.

‘Athoc Appovixdyv Metooy nuatiopdy

Koo to péyedoc tou ywpou epyaciog auidvetal, T0 TEOBANUL TOU UTOAOYIGHOU TOU
uetaoynuotiogod T audvel o ToAUTAOXOTNTY, EMEWSY) OL TOEOL TOLU MOUTOUVTAL OO
oerduNTES TEYVIXES Elva TOAUGYLULXOL ¢ TPOS ToV aELiud TwV GToLElkY Tou Yenot-
HomoloUVTAL Yo TNV avamoedotaon WW. EvohhoxTixd, yio Vo avTUETWTICOUUE UEYIAOU
YOpoue gpyasiac, mpoteivouye TV xotaoxeuh evoc dtha A = {(P;, T) | i € Jn,} mov
npoxuntel ywpeilovtag to W oe Ny adinlosmxoiuntoueva utocbvora P; C W, tétowa
woTe UiejNA Pi = W xou xataoxeudloviag €vay ey mploTo opUovixd uetacy nuatiops T;
yio xdde P; Autd pog emtpénel ouctaoTind vor AOGoupE TOAG uixpd (ot UTONOYLO TG,
AMybtepo amowtnTixd) teoBiiuata oavtl evog UEYEAOU, UELDVOVTOS €TOL TOUC GUVOMXOUS
TOPOUC TOU AMOUTOUVTAL YO TNV AVTWUETHOTICT EVOG OE00UEVOL Ypou epyaciog. Onote,
OEBOUEVOL EVOC XATAXEPUATIONOY Tou ywpou W, opllouue tov ypdgo G = (V, &) 6nou
V ={Pi|i€In,} dIdver 1o ohvoro 1wy xouPuv (Sropepiopata Tou ywpou epyaciog)
xou £ SNAGOVEL T0 0OVONO TV oxu®V petald otolyelnmy Touv V, ue xdle axurh va avTio Tot-
yel o yerrovixd Supeploporta, SAS. (4,7) € € av xau ubvo av (cl(Py) Ncl (P})) # @.
Hopatnpolue 6t yio éva Sedouévo dtha A, apyixf Xotdo TaoT Pinit X0t TEAXT XUTEOTAON

Pd, UTOPOVUE VO YENOWOTOCOUUE EVal XAMEPWUEVO aAYORLIUOU TROCTENACTS YRA(POU
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Yoo Ty ebpeon pag alknrouyioc S = {s1,Sp,...S,} TOL AvTIGTOLOVY OE dlopepiopata

TOU UTOPEl TO POUTOT VO TEOGTEAACEL YL VoL PTACEL GTOY GTOYO TOU.

Topa Yo emxevipwiolue oty petdBacn yetol dVo Sadoyixwy xouBwy. ‘Eotw
Ci;j £ cl(P) Nl (P;) n xowh meproyh petadt el (Pr) xou cl (Pf) xau Bij = 9P; N Pj 0
olvoro TV onuelwy Tou cuvbpou Tou P; ta omola aviixouv otov P; xou dev xortothop-
Bdvovtan amd epmodia, yio xdle i € Ty, xaw xdde j o dote (i,]) € £. Xwplc PAdpN
e yevixétnrog, utodétoupe 6Tt o A xataoxeudletoan wote tor obvora By N By, etvou
elte xevd elte amoTeAOOVTOL OO UEUOVOUEVO OTUELD. MNUELOVOUUE OTL OOTE VO ONOXAT-
pwiel emtuyoe N petdBoon petadd 80o dradoyxadv xopBwy P xou Pj, apxel to poundt

v ptdoel onolodiimote onuelo tou B ;. Enlong, xde B;; unopel va amotedeiton and éva
4

i
Exuetahhevdyevol 1o yeyovog 6t Ospnuo 1 anoutel €vay acVeVH OUOLOUOPPIOUO TOU

1 neplocdtepa Eeywplotd tuhuota By ., £ € L(i,]), ue L(i, j) va dnhdvel xdmoto apldunom.
T, umopolue vo xotaoxeudooupe xdde T; ot (ote ta TpApaTa 9P; Vo xoTappeloouy
ot ZeywploTé omnuelo, OAD. Ti(ij) = qf,j € 9D, 10 onolo onuoivel 6Tt eTAEYOVTOC qf,j 8%
EVOLIUETO GTOYO apXEl Vo XATUC THOEL OAOXANEO TO Bﬁ j erxtxd. Omore, v xdie Cebyog
Pi xon P;, sm)\éyouge (awdoupétnc) éva Bfi]- xau xgraq%sud{oups Evay y;rozoxnpomopé
T; : Pi—= D, ye q[l] = Ti(p), xou éva medlo ¢i(q[’],k[l]) UE TEOOPLOUO qg] = qf,j. Em-
TAEoV, yio Vo e0PoNOVOUNE TNV UETAPBaoT, OTay UTdEYEL dIAANAOETXGALYT, TpoTEVOUNE

TOV TORUXATL VOUO EAEYYOU:
u =yl Feij Mtij- u[j], Vp € Ci/]‘ (41)

6mou ulll yon ulll Snrdvouy eleb6douc eréyyou drwe opictxay oty (13) xon utoroyilo-
viow ypnoworowdviac T P;, T; xon ¢j, Tj, avtiotorya, 17+ Cij = [0, 1] ebvou plo opodn

cLVAETNOTN TETOLL WOTE

0, edvpeb,
Mtij(p) = ] (42)
1, edvpe Bl'/]‘
O 2
(¢i)) cév G >0
e KO = § e 62 (

0, Y gi,j <0

T 4 4 e 7
ue Cij = (Vi) - (Vptpj) »an €4 > 0 otadepd. Autd mou emtuyydver 1) ev Aoyw
TpoTOTOMNOT) Elval VO ELGYYEL PLol ETLTAEOV CLVIOTWOA €T TNE Slebduvong Tou Vpij, oty
To OTNTAL TOL POUTOT HTAY AUTH 1 CUVLGTWOX elvan opdponn pe V1. O akydpriuoc tou

ev AOYw oyrfuatog eAéyyou qalveton oto Alyderuog 1.

Avagopixd ye TNy EUGTAVELNL TOU TROTOTONUEVOU GUGTHUATOS, lvol EUX0A0 XATOLOg

VoL ETBEBADOEL TNV TOUEOXATE TEOTACT:

Ocwenua 4. To cbotnua (2) ye tov vouo eréyyou Alyopriuog 1 cuyxhivel oto emduunté
TEo0oPLoS Pg € W Yo o)edov xdde apyxry cuvIxn Pinit € W.
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Arnoteléopota

[t var Bel€ouye TNV AMOTEAEGUATIXOTNTA TOU TEOTEWOUEVOU VOUOU EAEYYOU, TOQOUGH-
Gloupe Tar ATOTENEOUATA TPOCOUOIWOEWY Xot TELRoUdTOY. O ohydplduog LTOAOYIGHO
Tou PeTaoyNpaTiopol vhorolfinxe oe C++ eved 0 TEOTEWOUEVOS VOUOC erEYyou o Py-
thon.

Ipocouowoeg — ITheng Metaoynuotionode

e AUTO TO OEVAPLO XATACKEVACTNAE UETACY NUATIOUOS OAOXATIOOU TOU YOEOU Epyaciog
(Ewéva 2.4) xou 6710 poundt 869nxe eviorr va mhonyniel oe dapopetixoie emtduuntoie
TEoOoEIoUoUE EextvivTag xdde gopd and tny dla apyxn V€on. H apyunr| draudpponon xo
Ol TOEAUETEOL TOU EAEYXTY| Yo EMAEYUNXaY €Tl KOoTe v emdelouy 6oV T SuVATHY
AAAVTEQA TIC EYYUNUEVES WLOTNTES amouUYC 0UYXEOUGTS Tou cuc THUATOS pog. Il ou-
YHEXQWEVDL, OL 0pYXEC TYWES TV TopoETewY eTAEYUNXay we e€nc: kg = 20, k; = 1 avd
ki = 20 yio %8¢ i € Tpg. Ot Tipéc TV UTONOTEY TapauéTewy ETAEYINXaY avticToyo:
Ky = 100, w = 20, K = 100, « = 1, €, = 0.025, ¢, = 0.1, v = 0.7, ¢ = 0.01,
€2 = 0.1, e3 = 0.1. Ot npoopiopol xaL oL TEOYLEC TOU EXTEAECE TO POUTOT, TOCO GTOV
TEAYHATIXO OGO X0l GTOV UETACYMNUATIOUEVO Ypo epyaciog, mapouatdlovtoar otny Ei-
xova 2.5. Emmiéov, n Eudva 2.6 Selyvel tnv €€€MEn Tou Suvopxol 1P yia xdde TpoyLd.
Or mpocopoinaeig Biegiydnxay yenoyoroidviag ohoxhipwon xatd Euler ye Brjua 10ms.
‘Ocov a@opd TNV UTOAOYLO TiXY| TOAUTAOXOTNTA, 1) XATUCKELY| TOU ARUOVIXOU UETACY NUTI-
ouo0 Yio AUTO TO UEYEAO YWRO epYaoiog yeeldoTnxe 5.45 yia vor ohoxAnpwiel, dedouévng
Hlo ETAEXAC TROGEYYLOMG Tou cuvopoL antd 3680 ctoyelo. Télog, o unoloyiouos Tou
uetaoynuatiopol T(p) xou tne LoxeBiavic tou J(p) yeealdtay xatd uéco 6po mepinou
6.0ms oavd Briuo.

Ipocopowmoeg — Athag Apuovixey Metaoynuatiopody

e auTh TN UEAETT) TEQIMTWONG, YWEICAUUE TOV TPOTYOUUEVO Y0 EpYCias OE EEYWELOTA
dwpdtior (Ewdva 2.4) xou xataoxeudoope €va appovixd petaoynuatiopde Ti yio xdde do-
udto. To poundt apyixomoifinxe otny Bl Véomn ye Ty mponyoluevrn uekétn xau elye
evioh| va mhonyTdel mpog o Blo ohvoho emuuntey npoopiopmy. Ot apyixes THES TwY
nopapétewy frav kil = NI 43, kg.i]
6mou N 5nhdver tov apdud tov eunodioy ot xdde dapépiopa. Ot Tiée Twv uTdhoL-

=1 xou EEZ] = k1 via xdde j € Ty xou i € Ty,

TV TOPUPETEWY NTaY (BleC Pe TNV Teonyoluevn UEAETT. Ol TpOoYIEC TOU POUTOT PUVOVTOL
otnv Ewova 2.7. H Sudpxeior xataoxeuiic TwV YETUoY NUATIoU®Y xudavotay ord 0.019s
¢ng 0.211s (avéroyo pe to mAdog Twv oTotyelwy Yo va TpoceyyloTel emopxnde xde
dwpdtio, To onoio Hrav and 320 £nc 1000 tuAuata) xon Aoy dpXeTd UixpdTERN and auTH
NS XATAOXEVHS TOL eviadou ydptn. Emmiéov, o utohoyiopdc twv Ti(p) xou [i(p) o xdde
dwudtio Aoy yeewolotay and 1.0ms éwg 2.2ms avd Brua, avtiotorya. Télog, npémel va
onuetwVel 6TL o aUTH TNV TERITTWON To ECWTEPXS EUTODLA TOU YOPEOU EPYAGIAS ATEXO-

vioTnxoy oe onuela o paxpeLd and To 6LYVopa, To oTolo elvor Eva EVOLAPEROV ATOTEAEGUA,
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x9S eENaTTOVEL TR ovd TpoBAruaTo aptdunTixnc QUoENS Tou uTopel var Tpox oLy xaTd

TOV UTOAOYLOUO TOU UETACY NUATIONOU XOVTE GTOL EUTOOLIL.

Hewpopatind Anoteréopoata

[Mo v emBefoucdcouvpe Tor AMOTEAECUATA TNG EMEXTACTC YOl UN)-ONOVOULXA QOUTOT, TEAY-
HOTOTIOLAOAUE TELRSUAT UE TNV popToTixh Thatgdpua “Robotnik Summit-XL” (Ewxdva 2.8)
7 omolo AettovpyYNoe eviog Tou Yweou mou gaivetoun oty Ewdva 2.9. Ta clhvopa tou
Y WEOU EQYAGLAS XATAOHEVEAS TNXOLY dueca Slordéctuoug ahydpripoug SLAM xou emouwgAdn-
xov Pe To oyfua Tou poundt (to omolo mpooeyyiotnxe and dloxo). O yopoc epyaciug
YwploTnxe ot €EL EMXAAUTTOUEVA UTOGUVOA Xl TO POUTOT ELYE EVTOAT Vo ETLOXEPUE-
{te Tpewc dlaopeTinéc Véoeic. 'Evag €toyog ahyoprduog yenowwomotjinxe yia extiunon
VE€oEWS XA TROCUVITOMGHO) TOU POUTOT YENOWOTOLOVTAS otoUnTAees el Tng TAaTQOE-
uog, o onofog avavéwve Ty extiunon avd tepitouv S5Hz. Ilopatneolue 6Tt 0 ahyopriuog
HOG XOTAPERE UE ETULTUYLA VoL OONYAOEL TO POUTOT UE ACPAAELL GTOUS TROOPIGUOUS TOU,
OTWE UTOPEL XAVELS VoL SLATLO TWOEL OmO TG TPOYLES TOU POUTOT OTOV TRUYUATIXG YWEO
(Ewéva 2.10, Ewdva 2.12, Ewxdva 2.14), ahhd xou oty exdva outod (Ewdva 2.11,
Ewéva 2.13, Ewxéva 2.15). And tnv AN, Topatnoolue Uil ToAVTWTIXY CUUTERLPOPH
GTOV UETACYNUATIOUEVO Yo — edd ota dtauepiopata pl xou p2 — n onola mia-
votoTor ogelheton oe: o) TNV OYETIXA 0EYTH AvVaTEOPOBATNOT, Xou B) Xou TNV AVTIOTEOYH
e ToxwPlavic Tou yetaoynuatiopoy, 1 onola lvon o6V LOLOUORYT XOVTY GE GTEVA
nepdopata. [loag” Oha autd, TéToL Pouvopeva umopel var ETELIGVOUY Ue XAAUTERT ETAOYY

TWY XATATUACEWV.
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[Thonynon Hoiuvywvixwyv Pounot oto

Erireoo

Ewoy oy

Ye autd 10 %EPIALO, Tapouctdlouue Eva UBELOXG GUCTNUA EAEYYOU UE OXOTO TNV TNV
AVTWETOTLON TOU TEOPAAUNTOC TAOHYNONG YLO UL QOUTOTIXY| TAAT(QOpUA oUolpETOU
oy NUATOC Tou xivelTon Yéoo oe éva YOpo epyaciog e eowTepnd eunodia. Aedopévng
plor oyt xan emuunTy| SladEPHONG TOU POUTOT, TEoTelvoupe o uedodoloyia Tou
Baolletar oc uedddoug MEOCEYYIOTIXAC AmocUVIECTC TOU YWEOLU GE XEMA TOU YENOl-
potolel EUPLOTXOUE XAVOVES Ylal VO BEATUOCEL TROGUPUOCTIXE TNV SLOERLOT TOU Y WEOL
OLAULOPPOONG OF UN-ETUXUAUTTOUEVES, DLadoyLxd Tuuata. Emniéov, yenowwonoolue xa-
TAAANAOUG UETACY NUATIOUOUE TOU YOPEOU EQYACLIG XAl TEOCUQUOC TLXA BUVOLXS TEdloL YiaL
TOV GYEDLIOUO VOUWY ENEYYOU TIOL EVOWUATMVOVTOL XouPd Ue TO €B80¢ TNS AvVaToedo Ta-
ONC TOL YWEOU SLORPWOTC TOL YENOWOTOLELTAL, UE GTOYO TNV AoQUk) TAONYNoT Héoa
oe BedoUEVO XeEL, Yot OAeg OoyEBOV TIg apyxéc pululoele, Ewg dTou emteuydel 1 emduun-
) Sldepwor. Téhog, mapouctdlouue AmOTEAEGUOTO TROGOUOIWONG TOU ETLBEWYOOLY

TNV AMOTEAECUATIXOTNTO TOU TROTEWOUEVOU GUC THUATOS EAEYYOL.

Ynueoypoagpie:  Aedopévou cuvohou S, €otw 0S T0 cUvopo tou. Enioneg opilouue
D xou 0D ¢ tov dloxo xou xOxAo YE povadtaor axtival ue xEVTEo TNV oy 1 TV aZOVewY Tou
R?, avtiototya. Acdopévev cuvéhev A xau B, yerowonowolue cl(A), int(A), A/B xo
A © B ylo var SNAOGOUKE TNV XAEIGTOTNTA TOU A, T0 E0WTEPO Tou A, T0 UTOGUVOAO TOU
B mou dev avixet ato A xou Ty Minkowski duagpopd tou A and to B, avtiotorya. Téhog,
dedouévng Slavuouatixic ouvdptnong f(x) yenowonoolue Vyf vy va SnAOCoUE Ty

ToxwpProvy) Tou.

Ogptouoc tou ITpoBhruotoc

Oewpolie éva popundT Tou xvelton péoa oe évay cupTayh yoeo W C R? tou xotohoy-
Baveton améd otadepd eunddia O, i € I, = {1,2,...,Np}. Trodétouue 6T 0 el ToU
PouToT IR, TOoL YWpou epyosiog AWV xaL TV OTATIXGY EUTodiwyY W elvon TOAUYWVL-
wéc xoumilec Jordan, 6mou OW; = 90;, Vi € I,. Emmiéov, utodétoupe 6L 10 poundt
R eivor o xheto T, 2-tolhamhétnta Tou R2,) xon 611 0 ydpoc epyacioc W eivor éva
¥helo 16 LTooHVoro Tou R2. Oa yenowonowcouue o Fy xon Fr vl va dnAOGoUUE

000 avdonpéTwe ToTOVETNUEVA TAUICLO CUVTETAYUEVKY EVTOS TOU YWEOU EQYACIAS X0k TOU
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eouUToT, avtioTouya, xat Vo avapepoUdoTE GTNV dpy Y| TwV a&ovwy Tou Fr w¢ To ornuelo
avaopds tou pounot. Eotw z = [x,y, 01" 1 SLOEPWST) TOL POUTOT, TOU amoTEAELTAL
ané v oyt Véon p = [x,y]" € R? xau tov npocavatohous n = [cosf,sinf]”,
8 € [0,2m), Tou Fr wc mpog 1o Fy. H xivnon tou pourndt yopaxtneileton and to

HOVTERO £VOC amAol OAOXANEOTH K¢ axohovdwe:

p=u (44)

6mou u € R? eivor 1 eloodoc ehéyyou T ypouuneic toydTnToc ot w € St oebvon n

emdLUNTH YoV Tay 0TI,

O ydpoc dupdppnone CS tou poundt eivon i TOAMATAOTATO TOL UTOREL VoL O-
removiotel 010 R? x S xau xdde epnddo O; avtioolyel oe pio xhewoth mepoyr OF
uéoo oe autéy Tou dideton amé OF £ {z|R(z) N O; # D}, bmou R(z) drrdver o -
nocUvoho tou W nou xatodauBdvetar ond To poundT otny dlopdppwon z (i Aeyoug
ouvtopiog, Vo yenotponowolue R(0) avti vy R([0,0,0])). Qc ex toltou, o eheddepoc
% p0C Blopbppwone CSfree T0U popmdT 0piletor ¢ CSfree = CS/ Uier, 0.

O otdyoc pag elvon 0 oYEBACUOC OYAUATOC EAEYYOU TOU UTOREL ETUTUY WS VAL 00T-
YHOEL TO POUTOT GE it BEBOPEVN BLUUOPPWOT Zfinal € CSfree A6 OYeBOV OTOLOYTOTE
oEY XN XATAOTAOT Zinit € CSfree, EVO e€ac@ahilel 6Tt 1 TpoxiTTOLCA TROYLE Elvol ooa-
Mg, te., p(t) € CSfree Yot x&0e t > 0.

Yyfua EAgyyou

Lot Ty avTHETONION ToL ToEaTdve TEOBAfuaTog, oyeddlouue Eva UBEWOXG GUGTNUA
ehéyyou, 10 omolo omotehelton and: o) évav eheyxth uPpnhol emnédou mou dedouévng
wlog apAC (Zinit) X0t TEMXAS (Zfinal) Otopdppwong, Uropel va utoloyloel uLot axohou-
Vot EVOLIUECWY GTOYWVY YIA TO POUTOT, oV UTHEYEL AUCT] OTO TOEATAVG TEOBANUA, 1) Vo
ouunepdvel avurapéio authc, xat B) évav eheyxtic younhol emnédou o omolog yenotuo-
Totel apuovixd TeYVNTA TSl ot XATIAANAOUC UETUCY NUATIOLOUE TOU YWEOL epyaciog
Yo VoL OBNYHOEL UE ACPUAELN TO POUTOT OLBOYIXE O xAUE EVal amd TOUG EVOLIUEGOUG
otoyouc. IIo cuyxexpwéva, o ekeyxthc LPnhol emnédou xataoxeudlel wio Sauépion
70U CSfree Pé0w TpoOUpULOGTIXHC UTOBIdpECNC ToU ST uéypt var Beedet wa adhnhouylo TT
omd GUVOEBEUEVOL XENE TTOU TEPLEYEL TIC Zinit XU Zinal (E4V UTEEYEL). LTNV CUVEYELR, VLo
xade xehl oe I1, emduuntéc Véoeic p xau mpocavatoliopol 8 vroloyilovian EeywpeioTd

xou oyedalovton xotdhhnho Lebyn and aveldeTnToug eEAEYXTEC YUUNAOL EMITEGOL.

Arnocivieon tou Xwpou Aludegpnorng

Y aUTY TNV EVOTNTA, TOPEYOUUE UL AETTOUERT] TEQLYEAPY| TNS TEOTEWVOUEVTS HeEY0d0AO-

yiog YLor TNV XATAOHELT] Lot LERUPYIXAC TTROCEYYLOTS TOU Y MEOL BLIUORPEOTE TOU POUTOT.
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ITio cuyxexpyéva, tpotelvoude évay olyopLduo yia Ty Stouéplon ToU CSfree OF UN €T
XAAUTITOUEVOL TUAUATO Tot OTtOld TEOXVOTTOLY UE TPOCUPUOG TIXT) UTOBLALPEST] TOU GUVOAOU
TV BUVATGY TPOGAVATONGUGY Tou poprdt. Eva tpipa ST mou avtiotoiyel 6to Bidotnua
T = [a,b) yowdy opileta we ST £ {(x,1,0)|0 € T} N CSfee- Tevind, ST anoteheiton
ATO XAVEVAL 1) TEQLOCOTEQRN UN-CLUVOESEUEVA GUVORA BLOORPOCEWY UE avdalpeTr cUVOESL-
poTNTa, Tor omola Var avarpépovtan oto e€Xg we xeAd. g ex TolTou, cuoyetilouue xdde
tufpa ST e pio aptdunon K% twv xehdv tou CF xon Yo yenorponototpe o L (ST) yio
va S dooupe To olvoho autey, SWS. CF € L (S7), Vk € KT,

Abo TufpaTo STy 87 Yo héyovron yerrovind edv cl (Z) N el (J) # @. Emniéoy,
Yo hépe 611 800 xehid Cl xon 1 mou avixouy oe yertovind tufata, eivon cuvdedeuéva edv
cd(ChNne (C)) # @. Do vo anoplYOUYE TIC ETMTOCELC TOU EICEYEL 1) YEWUETPLXN TO-
Aumhoxdtnta tou CS, Yo xotaoxevdoouye xou Yo yenotponotioouyue 800 emimhéov, amho-
UoTepEC TpooeYYioel Tou EAEOIEPOU YOPEOU BLoOEPWOTS, dNANDT uiot UTER-TPOCEYYLON
CSree xo1 Pl UO-POCEYYION CSfree, OL OTOLEC XUTAOHEUELOVTOL TOPOUOLWC Lol TUALTOL

XL XENLA ot 0 o%0TO¢ ToL xadevog Va yivel eupavic mopaxdte.

H uédodoc mou oyedidletar o€ auTh TNV €pYsio Yol TNV XATACKEUT] TWV EV AOYW
npoceyyioswy ypewdletor TV UnapEn 0o cuvaETAGEWY, f X f, Yio T0 UTOAOYIOWG Wog
UTER-TROCEY YIOTG S v uloc un6-mpocéyyione ST tou eretiepou Yheou dedouévou
tuhpatoc ST, O nopomdve ouvaptioeic ebvan tétoiee dote ST C ST C 317 f(shH £
S 8T £(ST) & ST — ST xaddc o phxoc ou dothgotoc I mnydivel 610
undév. Mo O(Tt)\Y’T TPOGEYYLON YLOL TNV XATUOXEUT] AUTOV TWY GUVOAWY elvar utoroy(lovTag
XATIANNAES TTpOCEYY(oEIC W o w? e mpoPolric Tou ehehiiepou yhpou Tou ST Tdve

<=L
670 xy-eninedo. Mo ouyxexpwéva, o otvora S xon ST divova

S ={lxy 0y e W, 61} .
S'={lx,y,01"|[x,y]" e W', 0 € T}
[ va utoloyioToly Tal W xen WZ | Bidgopor ahydprduor umopotv vo yenouoroumndoiy,
omwe n MéYodoc TlpoBoric [122] eite n MéYodoc Ldpwone [122]. Le autd to xepdhoto,
1 OeUTEEN TEOTWAUNXE AOYL AmMAGTNTE %ol UTOAOYIGTIXNC AmOBOCNS OE GYEOT YE TNV

tpd. Q¢ ex toUtoy, Ta W xaw W urnopoiv va unoloyiotody omé

W =WeR®D),

_ (46)
Wr=WeR@D),
6mou R(T), R(T) eivan ohvora mou divovton and
REI)={p|30cT:pcRO},
@) ={p| p € R(O)} ()

R(IZ)={p|V0 €T :pc RO},

TOU AVTITPOCKTEGOLY Ta UTosUVOAX Tou IR? Ta omola To popndT xotoahapBdver site yia

TouldytoToV Wio elte yio xde tpocavatohoud evitde tou Z, avtictorya. (dec Ewdva 3.2).
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Ot €vvoleg Tng YerTviaong %o GUVBEGULOTNTIS TTOL 0RICTAXAY AVKOTER® Yot AXEBT TUH LT

UTOPOUV VX0 VoL ETEXTAIOUV YOl TI UTER- X0l UTO-TROCEY YIoES Toug.

e autd To onuelo, TEETEL Vo ONUEIWIEl OTL XIS O YOEOS BLALOEPEONS UTOOLUL-
peiton oe dho xou meplocdTepa TApaTe of TooeY Yot CSfee %ot CSfree OUYXAVOLY
070 CSfree, T0 0TO0 SLoc@olilel Tnv mhnpdtnta authc Tne mpocéyytong. ‘Etot, unodiou-
ewvTog emopxds T0V CSfree, Vo Bpedel plo odAnhouyla amd xeld uno-npoceyyiong mou
GLVBEOLY BUO BEBOPEVES BLIUOPPOTELS, Qv UTdpyEL €€ apyhc. Avtl TuPAAC uTodLalpEaTG
T0U TOU CSfree, TpOTEVOLUE EVay EVUARAXTING OAYOEWIUO, pE Bdomn TNV TEOGEYYIoT TOU
nopovotdleton oto [122], 1 onola xdver eniong yphom TS UTER-TPOCEYYLONS TOU YMOEOU
YL VO TUEEYEL EVOLY EURLOTIXG XAVOVAL YL TNV ETLAOYT] TOU ETOUEVOL TUARATOS TIPOG UTO-
owdpeor. Emnpociétng, etvon eniong oe H€on va avaryvwploet av pior tétolor ahhniouyta

UTIAEYEL.

Eotw P olvolo mou anotehelton and N Swothata yovoy Iy, Ly, ..., Iy O
Mue 61 P etvan pia Sropépion 10U CSiree €dv ST, 8%, ..., STV eivan pn-emixahuntépeva
%ot CSfree = U{(\ilSI’f. Emmiéov, Sedopévne drapéplone P, évo povondt IT and xeld
optleton wg uLor memepacUévn ahhnhouyior xehwyv tétota Hote L € P xon tor xehid xdde
Ty

Sradoytxol Lebyoug (CkI",Ck+1

pavéc and Toug optopolc Twv S xa S 6T, yia dedopéva dapepiopata P tou CS xou éva

) elvon ouvdedepéva v xdde k = 1,2,..., N. Eivaw npo-

Cebyog apytnAS Zinit X0 TEMXAS Zfinal OLUOPPOOTNS, Ol axOAOVIES TPOTATELS Loy DOUV:

1. Av urndpyet éva povordtt and UTO-TREOGEYYLOTIXY XEMA Tou P Tou Tepléyouy auTég

TIC OLUOPPWOELS, TOTE UTEPYEL ADOT 0TO TEOBANUAL.

2. Av undpyel €vo LOVOTITL a6 UTER-TIPOCEY YIGTIXE XEALA ToL P Tou eptéyouy auTég

TIC 6V0 BLOPPWOELS, TOTE (0wg UTdEYEL AUoT) 6TO TEOBANUE UaC.

3. Av Bev untdpyEl LOVOTATL A6 UTER-TIPOCEY YIOTIXA XEMA TOL P Tou meptéyouy auTég

TIC 800 SLopopP®OoELS, TOTE To TEOBANUA pag dev ADVeETaL.

Topa unopolue va tapoustdoouue Tov Alydprluog 2 Tov onolo yeNnoWonol0UE Yia
VoL BpoluE Vol JOVOTIATL Ad UTO-TROCEYYLOTIXG XEALSL TTOU GUVOEOUY BEBOUEVT) aEYIXT| Kol
e Blobpwon Tou poutdt. Zexwvdue mpooeyyilovioc 10UC CStees CStrees CSfree
and TPt Tou XAADTTOUY oAGXATEo to St Metd, pdyvouue yia xehd CLy, xau anal
T0U CSfree, mBavOTaTA UTOBLNEGVTOS TO P, Tar omola teptéyouv Tic dedopévee dopop-
pooeic. Av dev urdpyel tétolo Lelyog, To onolo umodevieTa and To 61t glte 0 Cipyt
eite 10 Cipa €VOL XEV6, TO apyIxd Woc TEOBANUA dev Aovetor.  ALagopeTind, TpooTa-
Yolye va ouvdécoupe ta CLy xou anal YENOWOTOUDVTAC UTO-TROCEYYLOTIXG XEALS TNG
P. Edv auth n mpoondiela anotdyel, 1ot mpootadolue v Boolue éva yovomdtt ond
UTER-TIPOOEY YIoTIXd xed. Edv o0te éva TéTtolo povomdtt undpyetl, TOTE T0 TEOBANUS Yog
0ev €xel Aoom. AlopopeTixd, €Vag EVPLOTIXOC XAVOVIC YENOWOTOLETOL Yiot TNV ETAOYY

Tou SloTHUNTOS TN Olopéplone P mpog unodladpeot xou 1 Sladixacta Eexwvdel and Ty

U
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O euplotinde xavovag, mou umopel xovel vo del otov Alydprduoc 3, emAéyel To
didotnua e P Yo unodlonpedel TpooTaddVTIC Vo XUTACKEVATEL EVaL VEO HOVOTIATL oo
xeNd Tou avixouy 010 CSpee MG %ot 0Tal XEME T0U CSfree TNC 0AMNIOUYiOC TOU TOU
00UNxE W dptopa. METE TNV AMOUOVOOT) YELTOVIXOY TUNUATWY TOU TERLEYOLY XVTTUEA
oL GeV unopoly Vo cLVEEYoLY, To PeYahlTERO avTioTolyo didoTnua Taipvel uTodtatpe(ton

X0l 1) CUVAETNOT) ETULOTEEPEL.

TBewoind Yy fua Eréyyou

Aedoyévou povoratiot T1, auth n unoevotnTa Mepypdpel Twg Vo cUVIEGOLUE i oh-
Anhouyio amd eEAEYATES YoUNAOU ETUTEBOL OL OTO(OL UTOPOUY AGPAADS VO 0ONYHCOLY TO
EoUTOT, amd €vol XEAL GTO ETOUEVO, EEXVWVTAS OO TNV OLOLOPPWOT Zinit, MEYEL VAL PTICEL
v emduunt Blodppeon Zgna. Eotw CT xeli tou IT o éotw P(CT) 1 oot tou
C? 670 eninedo. MHapatnpolue L P(@I) =W PCH) = W xodde xau, ex
xataoxeuhc, To CT elvon pia uTG-Tpocéyyion Tou eheidepou Ypou BlaubpPronc TéTola
(@lopd>

¢r = {lx,y,00"|[x,y]" € PCH) s 6 € T}. (48)

Autéd ouverdyetan 6t P(CT) eivan un-xevi, ocuumayfc mepoyr tou R? pe avdaipetn
GLVOECILOTNTA XaL OTL 1) VECT XAl O TEOCUVATOMOUOEC TOU POUTOT UTopel VoL oARSEEL ove-
EdpTnTa, epdoov xon ot dlo mapauévouy evide tou CT, ywplc va BlouBeletan 1 aopdheta

TOU POUTOT.

Exuetahheudyevol authy TNV WOLOTNTA, UTOROVUE VO ATEUTAECOUNE TOUS VOUOUS E-
AEYYOU YL TNV YROUUIXT XL YOVLOXY ToyLTNTAL Tou poUnoT. ¢ ex TolTou, Yo xdie
eviudpeco xehl I, apxel va Bpodue avelopthitewg emiuuntéc neployéc Héone xan emvduun-
T £0pn YWVIGY Tou e€acpoiilouvy petdPoon oto enduevo xell. Ag Yewprooupe topo Eva
Letyoc BLadoydv xehdv CT xon C7 tou T1. Avapopixd pe Ty 9éom Tou pounéT, Yio vol
ohoxhnpwiel emtuye 1 petdBaon ané 1o CT oto C7 | eivon apxeté 1 Véon p va gtdoet
70 6voho G(CT) nou opileton we G(CT) £ P(CT)NP(CT), xau ivon un-xevd ex xoto-
oxeutic. Emmiéov, 10 G(CF) yevixd amoteheiton and éva 1 neplocdTepa un-cuvdedeuéva
urocUvola. Emouéveg, e ‘'6cov @Tdoel xdmota and autég TI TEPLOYES, TO POUTOT UTOPEL

vo. Slaoyloel 0To emOUEVO XEAL.

Eotww F(CF) bhec or diopopphoeic ou CT ol omolec dev avixouv 6Tov ohvoro-
otéyo G(CT), 5xs. F(CT) £ P(C)/P(CT). Otav p € F(CT), npénel v oyedidoouyue
XATIMNAO oy uo eEAEyyou U Tou umopel va oonyrioel Ty ¥€on p oTo UTOGUVOLO TOU
opiou tou G(CF). 'Eotw Fe(CF) xou QP(CI) o cuvdedepéva pépn tou F(CT) mou me-
PLEYOLY TO P %ot TO ETAEYPEVO GUVORO-GTOYOG, avTioTold. OEWEOVUE TIC TOQOXATE

TEQLTTWOELC:
1. Gp(CT) eivan éva ompeio tou C*
.Gy .
2. QP(CI) ebvou éva eowtepd bpto tou Fe(CF).

3. Gp(CT) ebvau éva ouveyée, petpriotuo unocHvoho tou eZwtepxol opiou. tou Fc(CT).
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4. QP(CI) ebvau {00 Ue to eEwtepd dpto tou Fe(Ch).

‘Ocov apopd 10 6OVORO-GTOYO TOU AVTIOTOLYEl GTOV TPOCUVATOAGUO TOU POUTOT, Off-
uetdvouye 6t toutileton pe cl(Z) N cl(J). Aedopévou ouvduacuot Fe(CT) xon gp(CZ),
UmopoluE va oyedidooupe évay vouo ehéyyou fp(p, k) yio tnv 9éon xau évav amhé avo-
Aoywo eheyxty fp(f) Yo TOvV TEOCAVATONGOUO, UE EYYUNUEVES WOLOTNTES ACPIAELNG Xl
oUyxhorng. Téhog, 6Tay CT civar to TeheuTado xeM TOU I, ot topoamdve vouoL erEyyou fp
XL fg YENOWOTOVVTAL YioL TNV 00HYNoT TOU POUTOT GTNV SLUORPWOT Zfinal = (P4, 04)
Vétovrac amhd Go(CT) = {pa} xu Go(CT) = {64}

Apuovixéc Yuvaptrioeic IThorynone xouw Metaoynuatioyol

XNV evoTnTaL ouTY| TUEEYOVUE WUidt GOVTOUY ETULOXOTNGT) TOU UETUCY NUATIOUOD X0l TGV
TPOCUPHUOC TIXWY OPUOVIXGDY TEDIWY Tor omolol TopovaldoTixay Tewmta oto  [113] xou yern-

OLLOTIOLOUVTAL OTO GYEBLICUO EAEYXTOV YIoL TNV YRUUUIXT Tar OTNTO TOU POUTOT.

‘Eotw F éva 0e00pévo cuUTayE, TOAMATANS GUVBEBEUEVOS Y 1RO Tou oplodeTeitol
an6é NI + 1 xapndrec Jordan, dnhad 0F, 0., . . ., dF N7, 6mou dFy etvan 10 e€wTeEpNd
60vopo tou F. ‘Evac aguovixée petacynuatiopéc T(p) = [u(p), v(p)lT (3)23., u(p) »a
v(p) eivon appovixée cLuVOPTAOELS), XataoxeLdleton Yia T0 F, IXAVOTOUDOVTOS TIC Tapo-
xdtw WotnTee: o) amewxovilel 1o eEntepind 6plo dF tou F atov povadiaio dioxo 0D, B)
anewoviler Gha ta eowtepxd bpra dF; ot Eeywpiotd onuela g; = [u;, v;]" € int(@D), xou
yY) ebvan Supeopopglouds yia xdde p € intF. O unoloylopog tou T amoutel évoy opolo-
LoppLou6 ou dlatnpeet Tov tpocavatohous T : dF) — 0D mou propel Vo xataoxeuo Tl
eixola. 'Etot, 10 avtioToryo mpdBAnua cuvoptaxmy cuvinxoy uropet vo Auietl, T.y., Yen-
owomolvTog aptiuntiée texvixéc omwe Ilenepacuéva Xtowyeio ¥ Xuvoptaxd Xtoryela,

YL TNV XoTaoXeLY) Twv u(p) xou v(p).

Y auTy| TNV UTOEVOTNTA, TETOLOL UETUCY NUAUTIOUOL YPNOYOTOOOVTOL Yol TNV ATEL-
%xOVIoT) xGE UTOGUVOAOU Fc(CF) tou xehot CL. 'Etor, avéhoya pe NV TepinTwon Tou
QP(CI), N ev Aoy yedodohoyio mpénel vo npocapuoctel xotdhinia. Ihio cuyxexpyéva,
£Qv QP(CI) ebvor éval ouveyéC UTOGHVOLO Tou eEwTepiol oplou tou Fe(CP), téte 10 T
npénel vo emAey Vel €0l wate Oheg oL Yéoelg p € QP(CI) VoL OTEXOVIO TOVY 70 {Blo onuelo
g4 oto alvopo. ‘Otav to gp(CI) Tawtileton pe ohdxhnpo To eEwtepind bplo tou F(CF),
évoc emmiéov dipeopoppiondc T mou aneixovilel Tov yovadiodo xOxAo GTo *EVTRO TOU
xou ovdmoda Tpémel var egoppootel oty exdva Tou T. ‘Etot, 1 o0vdeon TV = T*o T
pénet v yenowornomdet avti tou T yia ™y anewévion tou Fo(C) oto D. Ye authy
NV TERIMTWoT, 0 6ToY0¢ G4 anAd Tonoveteiton 6To %€évtpo tou D. Mo amhr} emhoy

vioe To T* eivou:
X X X

= [e) (@]
cHllxlfx)t 1 llx]]

T*(x) (49)
6mou ¢ Yetind otadepd. Téhog, avagopuxd pe v mepintwon émou 10 G,(CF) Toutileta
ue xdmoto ecwtepd bpto tou F(CF), dev ypedletor emmiéov dpdomn xadie o otéyoc

TomodeTeltan amADS TEVK GTNY EXOVAL TOU €V AOY W GUVOEOU.
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Aedopévou thpa tou petacynuatiopol (T A T'), opiloupe éva apuovind duvouixd

nedio ¢ TonodetdvTog TNYéS oTov aTéy0 g4 xou eunddia g; = T(9F;), mou opileton and

lg—aally Ny o (lo—ail
= kgt (122 840) 3 (122800 50
omou ky > 0 xou kj > 0 elvon mapduetpol mou npocapuolovia and xotdAknho vouo
ehéyyou. Xtnv ouvéyela optlouye €va TENEpAoUEVO Tedlo avapopds P Bdoel Tou ¢, Tou

Otvetan ard

1 nh(w -
_ I +tanh(w cp), (51)
2
omou w et otadepd. H yoouuiny| taydtnta Tou pounot eMAEYETU WS:
= fyp(p,k) = =Ko 5,00 ] (p) - Vatp(g, ) (52)

onou q = T(p), Ko elvan Yetinn otadepd, to J(p) dnidver v Toxwpivol tou T, t0 ¢
ebvar To duvopxd Tedio epodlacpévo e Tov TpocupUuooTXG Vouo k = fi(p, k) v Tic

napapétoue tou k = [kg k1, ko, ... k. 17, 6mou Nx (cry evan To IAAdog TV ondy

Fecl)
Fc(CT), wou sy(p, k) > 0 eivon pio cuveyde dlaywplon cuvdptnon Tou diveton and Tov
T0TO

s(a,0) = (1— [lg])) + (max (V)" -4,0))". (53)

Emmiéov, 0 npocopuootinds vOuog tTwv Tapauétemy Tou P utohoyiletar and

ka = He,(A)

ki = (k (54)
ki = (ki - ki) Wicih; — k; (Woho -+ Hez(sf)) ,Vi e No]:

7 7 7 4 7 7,
X 0 oxomog Tou ebvan va eyyunlel to avallolwto Tou Fywelc vo ahholdoEL Ty gu-

otddeto.

Télog, avapopixd YE TOV TEOCUVATOMOUO TOU POUTOT, YEMNOWOTOWVUE €Va AmAd

AVOAOYIXO VOUO ENEYYOL TNG LOPYTS
w = fo(6) = —Ke - ds(6,6) (55)

omou ds(-, -) elvan yrot cUVEYHS TaEAYWYIGIUN CLVAETNOT TOU BIVEL TNV WXEOTERT] TEOCT)UA-
ouévn ando Toon YETOED 500 BEBOUEVKDY YWVLGY xou B elvan 1 uéom Ty Tou Blao TAUATOS

Go(CP).

IIpocouownoelc

X1y evotnTor auTH ToeoucldlovToL To ATOTEAEGUATA TNE TEOCOUOIWOTE TOU ETOEIXVUEL
TNV AMOTEAECUATIXOTNTA TN peVodoloyiag autol Tou xegoiaiou. Ilio cuyxexpiuéva,
Yewpolue €va oevdplo mou epthopfdvel pounot oyfuatog ‘Y’ to omolo mpénel va Thon-

ynUel oe €vor TOAUTAOXO Y WO pyaciag. O TEOTEWOUEVOS ahYOpWIUOS YenoLoTotUnXe
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YO TNV OmOXTNOY) EVOS EPIXTOV HOVOTIATION OO XEAY TTOU GUVOEOLY TNV EYIXT] XU TNV
emduunTy SlopdEPKOT ToL EOUTOT. Muvohxd, 30 TuAuata Teoéxuday amd TV entAuon
TOU TPOBAAUATOS, TOL aVTIOTOLOUY OE dlao ThUaTa Yoviae ue pixog ond 7 éwe 71/32.
To mpogih xivnong Tou poundT gatvetar oty Euxova 3.5, mou emPBefoudvel tnv obyxhion
X0l AoPIAEL TOU OYHUaTOS EAEYYoL. Emniéov, n e&éMEn Tng Slodppwons z ToU pounoT
%o0OS %L OL YPOVIXEC OTIYHES ONOXAHPWONS TWV PETUPBACENY UETAEY YEITOVIXWY XEADY
gatvovton oty Ewdva 3.6. Téhog, pepind Tumnd mapadelyyota XAy Tou taphydnooy

am6 Tov aAyoeriuo gatvovton oty Ewdva 3.7.
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Y uvtoviopog Kivnorne HoAhov

Aloxoelowyv Pounot

Ewoy oy

Ye auto To xEPdAato, Topouctdlovue Eva UBEIXG oy rua EAEYYOU Yol Vo AOGOUUE TO
TEOBANUA TNG TAOHYNONG UG OUAOUS ATtO DLOXOELDT) POUTIOT TIOU AELTOLEYOUV GE YWEO
e eumodia. AeBopévemy Wag opyIxAc xat plag emduunTrig SLoWoe(mong ToU GUC THUNTOS,
oyedidlouue po tepapyxr) uedodoroyio arocivieons e XEAd EQOBIACUEVY) UE EVOL Kot
TIAANAO Unyaviold ofyavong mou ebvar o Vé€or va xadoploel TolEC TEPLOYES TOU YWEOL
Oladpprong TEENEL vor uTtodlanpetoly Tepattépw o xde enavdindn, anogpebyovtag €Tol
TepltTég unodtapéoetle. Idwiitepa, unoloyiCovtog xatdhhnha UTER- oL UTO-TPOCEY YioELS
TOU AMOTUTOUATOS XAUE POUTOT, 0 ahyopLiuog pog propel vo xadopioel molo xehid Umo-
E0UV Vo TEQLEYOLY EPIXTES DLUUOPPAOCELS TOU CUC THUNTOS, EVE AUTOUITA ATOPEITTEL XEMA,
ToU elvol 6lyoupo Twg OEV TEPIEYOUV xaveéva. Emmiéov, dedouévne uog Abong tou ou-
YUEXPWEVOU TEOBAAUUTOC oo ToV €V AOYw ohyopLduo udhniod emnédou, YenoLLOTOLOUUE
APUOVIXOUG UETACYNUATIOUOUS %ol OUVOLXS TEBIAL YL VO TTEOYHATOTIOLACOUUE ACPUAELS
petofdoeic uetall yertovixwy xekwy, eCac@aiiloviag €tol oyeddv xodohixy cUyxAion
oty emduunty dpoppwon. Ilopatnpolue OTl, xS TO XATAVEUNUEVO Oy AUd ENEY-
YOU YouNnAoU eTNEDOL BeV yeeldleToL ENTH YVWOON Tng Teéyovoag Véong xdlde poundt
TPOXEWEVOL VoL UTONOYIGEL TIC EL0OB0US EAEYYOU, AmAUTEL TOAD YoUNAOUC TOPOLS GTNY
emxovwvia, apod To POUTOT yeetdletal Vo avTahhdocouy TAneogopia Lévo dtay oho-
XANPAOVOLY ETUTUY WS TN HETEPoom amd To €va xeAl oTo emduevo. Télog, napoucidlouue
ATOTEAEGUOTA TTROCOUOIWOTG TTOU ETUOEXVUOLY TNV ATOTEAECUATIXOTNTO TOU TPOTEWVOUE-

VO OYAUATOC EAEYYOU.

Snustoypagio: Y autd o xepdhoto, Yo ypnoonootue o Iy = {1,2,...,N}
(avtioToya, T0 % £ {0} UJy) yio va Snhdooue to 6Uvolo Tou aroteheiton ané Ghouc
T0Ug PuUOoolS aprlole Eexvovtag and to 1 (avtiotoyo. to 0). Emmiéov, dedoyévmv
cuvohwv A xau B, yenowonowlue ta 0A, int(A), cl(A) v va dniodcouye o 6UVoEO,
gowTEPS XU xhetoTdTNTA A, avtioTotya, xow to A\ B Y1 Vo SMAMGOUUE TO GUPTAH PG

Tou B w¢ mpog 10 A.
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Ogploudc tou ITpofhruorog

Ocwpolye pla oudda and Nr oundT Tou AELToUEYOUV EVIOS €VOS GUUTOYO0)S ETUTEOOU
ypou gpyacioc W C IR? mou xotohapBéveton amd éva 60voho N, otodeptv 6LTepIndY
eunodiov O;,i € Jy,. Trodétouue 6Tt xdie poundT i éyet éva dloxoadéc ohpa R; C R?
ue oxtivor; > 0. 'Eotw Fy xou Fi, i € Ty, 0LoTAUATE GUVTETAYUEVLY EVTOC TV W xan
Ri,i € Ing, avtiotorya. Oo avopepduaoTe 6TNy oy Twv alovey xdlde Fi,i € Tn, ¢
70 onuelo avagopds Tou aviioTtotyou poundt. Emmhéov, ywels BAISN tne yevixodtnTag,
UTOVETOUUE OTL TO ONUELD AVaPORAS TOU XGVE POUTOT GUUTITTEL UE TO XEVTPO TOU OOUATOG
tou. Eotw p; & [xi,yi]T € R? 1 oyetwed Yéon Tou onuelou avapopdc Tou i popTdT KC
mpoc 10 Fy, xou éotw Ri(p) 1o amotimwud tou, SAS. 1 meployf mou xatahaudver to
Ri otav elvon tomodetnuévo otny ¥éon p. Xe autd To xe@dhao, Yo YENoLOToI00UE
70 € C R*MR yio va Bn)\d)oou]ge TOV YWEO OLIUOPPWOTNS TOU POUTOTIXO) GUCTAUATOS
xon 0 P & [plT, pZT,...,pZY:]R} € € yo to ddvuopa Yéoewyv autwv. [a ocuvtopia,
Yo yenowonotioouye enione to P[i] yi vo dnhdoouye v i cuviotdoo Tou P, 5AS.
P[i] = p;i. "Eotw WP 10 cupmipwus tou W, 538. W° £ R2\ W. Opiloupe enionc i

OLoopPeoN P o e@uxt edv oL TapaxdTey cLVITXES Loy bouy:

RAPL) N R(PLl) = @, Vi#j € Ing

56
Ri(PL)NW’ =@, Vi€ In, (56)

xou Yo ypnoronootpe 10 & C € yio va SMGOOUPE T0 GUVORO BBV TV EPXTEOV

’, ’ / 2 / A ’
SLILOPPACENMY TOU POPTOTIX0U GUOTAUNTOS, EVK To cuuThfpwua €0 = €\ ¢/ autol
avTioToL el 0T0 GUVORO OAWY TWV UN-EQPIXTOY Slopoppvoewy. Erniong, unolétouue ot 7

xivnon xdie poundT i UTOXEITAL GTO LOVTEAO ATAOD ONOXATEWTY:
pi = ui, 1 € Ing (57)

omou u; etvon 1) elcodog eAéyyou.

'‘Ecte Pinit %0t Pges 000 0ed0UEVES EPIXTES BIAUOPPWOELS TOU TOAU-pOUTOTIXO) GU-
otipatog. O otdyog pag elvon 0 oYEdBIAOPOS GYAUATOS EAEYYOU To omolo Yo odnyhoel
xd0e POUTOT 1, AEYIXOTOMUEVO GTNV V€N Piniti = Pnitli], oty emduununs déon
Pdesi = Paesli], evéd mopddinio amogedyel cuyxpoloell POUTOT-pOUTOT XAl POUTOT-
xweou epyoctag, 68, P(t) € ¢f yio xdde t > 0.

Yyedtaouoe Lyfuatoc EAeyyou

[t TV avTWETOTLON TOU TUEATEVE TEOBAAUATOS, TEMTO YENOLOTOLOVUE €V LEQUOYLXO
oo anocOVIESTC OE XEANA YO TNV XOTAXEPUATIONO TOU YWOEOU dloudppwons € ot
XEMA. LNV cLVEyeLa, oyedldlovpe éva oyrua Lhniod emmédou, To onolo eMEXTEVEL TNV
rpoavagepVeion dopn uéyel va Peedel pia ahAniouyla GUVBEBEUEVKDY XEAWY TIOU 001 YOLY
a6 T Pinit 071 Pges: TéM0g, ypnowonololue €va oyfuo eEAEYYOU younhol eminédou yia
va e€ac@aicovue TNV ao@ohy| UETEPooT) UETAC) XEAWY UEYEL.
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Anocivieon tou Xopou Awaudppuwong

e auTy| TNV UTOEVOTNTA, TUEOUGIALOVUE TO LEROEY X CUGTNUA ATOGOVIESTC TOU YWEOU
dladppuong mou Yo yenowworoinoly oTny TEOCEYYIoN HaC. ZEXWVIUE TopoBAETovTog
TEOCWEWE GUYXEOVUCEIC UETAEY OUTOT Xal AouBdvovTag LTOPN To YWEo SLdEPHONS
ToL X&le uepovwuévou pounot. o cuyxexpéva, o YOEOog BLWOEPHONE TOU POUTOT i,
mou oupPoriletan pe A;(W), avtiotoiyel oto peyahltepo utocivoho tou W émou 1o
onuelo avapopds Tou poundt i unopet va torodetniel wote R;(p;) N W = @, i xéde
pi € Ai(W). Eriong, 8edopévou unocuvérouv Z tou W, Ja yenowonoolue 10 Ai(2)
YL VO ONAGOCOUUE TO GUVORO TOV EQIXTWY VEGEWY TOU POUTOT I TOU AVAXOLY CTo Z,
OAG.:

AEZ)E{p|lpeEZad Ri(p)NW° =@ }, Vi € Tny. (58)

Emmiéov, dewpolue 800 extiufioelg tng empdvelas mou mioveg xatohouBdvetan amd
10 R; 6tav 1 9o p; elvan nepropiopévr oe €va unocivoho Z tou W. Ilo cuyxexpyéva,
0edopévewy poundt i € Iy, xau cuvdhou Z C Ai(W), éotw Ri(Z) xon Ri(Z) umep- o
UTO-TROGEYYLOT), avT{OTOLYO, TOU OMOTUTWUATOS Tou R; OTAY TO POUTOT I GUPWVEL TO

ocVUVONO Z TéTOLo OOTE:
Ri(Z)2 | Ri(p)
peZ

(59)
Ri(2) C () Ri(p)
peZ
pdels
Ri(2)CRi(2'), vZ2c 2 (60)

R{(Z) 2 Ri(2"), VZCZ.

‘Eva tét010 mopdderyya golveton otny Euxova 4.2.

BOewpolpe thpa civoho S C R? popoic [x1, x2] X [y1,y2]. Oa avagepdpacte oe
Té7010 GUVOAX WC amAd TAUaTa Tou R2. Aedouévou amhol tprpatoc S xou pounét i €
INg, Vo yenoponotodye 0 Wh £ A;(W) NS vyio va SiAdooUuE T0 GOVORO TV EPLXTEY
Véoemv Touv poundT 1 (AUEAMVTOS CUYXPEOVOELC HETAE) POUTOT) TOU TEPLEOVTOL EVTOS
tou S. 'Eva olvoro & = { S; | i € Tng } and Ng omhd tuhporta Yo héyeton xdhupuo
Tou W €dv

w= U Snw. (61)

j€Ing

Topotneodye 6L éva xdhuppa & ywpllet to A;(W) ot éva olivoro ané eptoyéc Wi, S €
S ue xdie pio and autéc va anoteAeltan amd xavéEva 1| TEQIOCOTERN Y] ETUXUAUTTOUE-
VO UTOGUVOAQL Cg,j, j € jNg(Wg ) T omola Yo amoxahoLpe amAd xehid. ‘Evo xdivy-
ot S = {(,6)]i€Tn, } tou € opileton avtioToyilovtog évor amhd xdhuuua oe
e pounét. ‘Eva oivdeto tuhua S oplletn oc S = { (,S) | i € In, }, 670U
Si, i € Ty, evan éva cOvoro and omAd tuAuata.  Iopouoing, €va xdhuuua S =
{ (1, 6) | i€ TN, } TOU prou &ocpop(pcoong emupépet uio dlopéplon tou € oe nsptoxsg
WA WS X WS . X WS , bTou S = {8 ]i€Tn, } eivou otoryelo Tou .
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Hapatneolue 6Tt xde pla amd autég TI¢ TEpLoYEC unopel var amoteheiton amd xavéval 1 me-

ELOGOTEROL U1 ETUXOAUTTOPEVEL UTOGUVOR C 5 1€ Ing(eg), O oTOl Yo owocq)e:pogozo-te
€00 w¢ abvieta xehd. Acdouévou cUvieTou xeEMOY CAZ,, Yo yenotdomololue To ég]‘ yio
S, i

VoL ONADGCOVUE TNV j- CUVIGTMOOO TOU, OAD. C el & CS i Y xde j € TNy Enueiwvoupe
oTL, oe avtideon ye oyfuaTa LEpapytxig omoouvﬂsong TOU CLVAYKC CUVAVTOVTOL OTT|
BiBhoypapla, ta omola Yenoomoloty xeAd and aniéc YEWUETpIES (T.Y., utepxlPol ¥ U-
nepoploydvia), o xehd ou e€etdlovial 6TO TaEOY XEPEAUO EYOUY YEVIXMDS oUDalpeETr
yvewpeTpla. Av xou quTH) 1) ETLAOYT) TEQITAEXEL TNV TAOHYNOT) UECH OE AUTA, ETLPEREL YEVIXGL

o YovopeY| Slopéplon xadoe xdie oTolyelo Cll wou C avhixet ato A;(W) ex xotooxeuic.

‘Ocov agopd twpa 1 peTdfaon and xeil o xehl, elodyouue T xdmoleg anapoltn-
Teg évvoleg ouvdeEaIOTNTAUC. Eexiviye Yewphviag 800 Eeywplotd amAid tuipata S; xon S;
o omota Yo amoxoholpe yertovixd edv 1 Tour toug §; N S ebvan pn-xevi|. Emniéov, éotw
CS ;xan Cg j 000 ZexwploTd omAd xehd. Oa Aéue 6TL auTd Tl xehid elvon YEITOVIXG €4y
Cs, NCs J # @. Ipogavag, yerrvioon twv Cg ;%o CS . oLVETAYETAL OTL To Spyy XU
Sn ebvon eniong yertovind. O mopamdve optopol urnopel vo ensxwﬁsi e0xola yia oOvieTa
TuAuoTe xou xeld. ‘Evo povordtt IT and olvideta opiletan wq o tenepacuévn oaxohoudio
YEITOVIX®Y cUVIETWY xeAwV. TTpogavae, éva povondtt IT nou anoteheiton and xehid mou
Beloxovton eEohoxhApou evibe tou € o mepiéyer Tic Bloop@doelc Pt 0t Pyes ivan
uloe Aoom tou mpofAfuatog pag. I vo Bpolue éva tétolo povondtt, xtiloupe uio tepap-
ywh amocOvdeon $ = { (i, H) | i € In,, } tou € avuiotoyilovtac oe xdde poundt i pio
tepapy i) dlawépion tou W, mou opiletor w¢ éva dévipo H = (N, Ex) tétoto Gote:

o Kdéle x6ufoc S € Ny eivon évar omhd tpriuo.
o Kdbe moudi S evic xouPou S (BXS. (S;, S;) € Ey) ebvou éva unootvoro tou S;.

e To clvoho GhwV TV UMWY TEENEL Vo opilel Evar xdhuupa Tou WW.

Eheyxtic Tdnhot Emmnédou

Y quTH TNV UTOEVOTN T, ToEOVGLELOUKE Evay eEAeYXTY) LPNAoL emimédou Yo Ty edpeo
wovorotiol IT mou cuvdéel Ty apy ) Pinit xan tehiny| Pyes Oloudppwor. 'Evo and ta
%x0pLoL TAEOVEXTAHUOTA TOU TROTEWVOUEVOL ahyopliuou etvor 1) Yprion XATIAANAOL Gy ATOG
OHUAVOTC, TO OTOLO ETMITEETEL AVAdEOULIXY| UTOBLLPEGT), ot Xdde enavdAndr, Twv cOVIeTwY
xehbdy Tou Beloxovtar 610 6hvopo petefl € xon €0, evdy ayvoel xehd Tou Beloxovra
e€ ohoxMfipou evtdc Tou € # tou €0, Tia va o emiThyEL QUTH, YENOULOTOLE! Tic UTiEp- Xaou
mo-tpoceyyioee R xou R T0U anoTuneuatos x4e poundt yio vo Tpocdloploet edv éva
EOUTIOT BUVATOL VO GUYXEOUCTEL UE XATOL0 GANO EVE ThoTyouvTal aveEdpTtnta To xodéva
eVTOC Tou amAod xehol mou Toug avtioTotyel. o cuyxexpéva, dedouévou civieTtou

xeho) C:
o Edv n topun 6oy twv ﬁ(@il), i € TNy ebvon xevi, tote, Moyw g (53), xovéva

popnor 0ev umopel var cUYXEOUCTEL PE xdmolo dAlo evey P € C, UE amOTEAECHA TO

C va AVAXEL OTO ¢/, 'Eva této10 clvieto xehl Aéyeton anodexo.
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e Edv 7 toun 6hwv twv R; (@il), i € TN, ebvon un-xevi, tote, Aoyw e (55), yio
xide P e C uTdpyEL £va ToUAdytoTov (VYOS POUTOT GE GUYXEOUGT), UE AMOTENECUA

70 C vo avixet ato €°. Eva tétoio alvieto xehl Ayetan un-omodexto.
e Edv to C dev elvan 00te amodextd oUTe un-amnodextd, TOTe AEYETOUL OVIUELXTO.

Ye YeEVXEC YPOUUES, UIXTA XENA TEQLEYOUV EQPIXTEC XL AVEPLXTES DLUUOPPMOOELS Xl U-
Todtaipeot] Touc (avadpoutnd) avouéveTal Voo SHOEL AmOdEXTE Xol UN-0modeEX T UTO-XEMAL.
Ané v dhhn TAeupd, UTOBLUEEEST) ATOBEXTWY (UN-ATOBEXTMV) XEALDY ETLPEREL UOVO ATO-
OexTtd (Un-omodextd) xed, ywelc Vo GUVELCPEREL TEPAUTERL OTNY EEEPEVYNOT TOU YWEOU

OLALOPPOOTC.

O ahyodpriuoc e€epebvnone mou mapovctdletar oto  Alyodpriuoc 4, apyind xota-
oxeudlet plo Tpayid dlapéplon mou mepiéyet ohbxhnpo tov € (cuvapthceic INITIALI-
ZEHIERARCHY xou INITIALIZECCELLS). Xtnv cuvéyeLla, To apytxd UTONOYIOUEVA XE-
A umtodtonpolvTar U€yet va Peedoly amodextd xeMA ToU TEPLEYOLY TIC Prit %ot Pyes,
(ouvdptnon FINDENCLOSINGACCELL), 61ou aduvopia €0peoNC TETOLOY XENMY OU-
vendyeton avurnapiilo Aong. ‘Emreita, xatooxevdleton povondtt IT mtou cuvdéer ta CAinit
Ol CAgoal xan omoTeAElTon amd oOVIETO XEAE TTOU avixouy 6To Glvopo TNg e&epelvnang
S¢r (ouvdptnon CONNECTSTRINGS). Xe xdie emavddndn, 0 mpmT0 avduento xeAl
tou IT (ouvdptnon GETFIRSTMIXEDCCELL) aonpeiton amd To 6UVopo xat LTodLoupeitat
(ouvdptnon EXPANDCCELL) xotddnia (cuvapthoeic GETCONFLICTINGSCELLS xou
SELECTSCELLWITHWIDESTSSLICE) o€ uxpdtepa xeAd, 6mwe gaivetar oto Alydprl-
pog 5. Téhog, éva véo povomdtt xataoxeudletar €wg 6tou To IT anoteelton amd uoévo
amodeEXTA xeALA 1) Oev pnopel va Bpedel TAEoV HOVOTTL Ao AVAUELXTA XU ATOBEXTA XEMAL

mou 00NYel OTNY Pyes.

Kwnuotindg Nopog Eréyyou

Acedopévou povornatiol IT tou anoteleiton amd Nip anodextd xehd, napouctdlouue T
EVOLY XOTOVEUNUEVO VOUO EAEYYOU YLl TNV 0GPAAY|) TAOHYNON TwV poundT. Apywd, de-
wEoLKE 800 Bladoyxd cUVIETA XEALS @ xou é\fﬂ tou I1, vy to omoior unohoy(louue
10 6Ovoho-GT6Y0 Giyp = CA[;] N @11 Tou xdde PouToT 1, TO OTOl0 TEPLEYEL EQPIXTES Ola-
HOPPAOCELC TTOL OV XOUV OO XOWVOU GToL @i] xau 5,[311 xa efVaL UN-XEVO EX HATAOKELY.
To clOvolo-ctoyoc Tou Tereutalou xehol tou IT anoteeiton pévo amd tny emduunty
SLau6ppwot Pyes, OND. 5Nn = {Pjes} (Ewxéva 4.4). Eotw Fp; = CAF] \ int(Gr;) o
Gy £ GyiN Fri, Yo xdde k € Ty, Topatnpolye 6t Gy ; anoteheiton and éval 1 meplo-
06TERPU EEYWELOTA LTOCUVORA XOME Ko OTL TO POUTOT i TEEneL Vo TAonyndel oe xdnolo
and auTdywpelc va dlapdyel and To @i] €tolL WoTe v YeToBel 6TO EMOUEVO XEAL ETLTUYOC.
AvtioTouya, n uetdPBaon and to @ oTO @ 11 Vewpeiton ohoxhnpwuevn otay xdde pounot i
(pTdoEL TO 5[6111'

It va ixavontotioouy Ty opandve tpodlaypapt|, eonhilovye xdlde poumoT i e

évay eheyxTh #; mou PBoctleton o8 XATIAANAOUE PHETACY NUATIGUOVS TOU YWOEOU EQYACTOC

X0l TEOCOPUOCTIXG TEYVNTA BuvVoXd Tedla, To omolo SLETOUV EYYUNUEVES OLOTNTES
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acpdetoc xau ohyxhone. Mo ouyxexpéve, ytiloupe évay dupeopoppioud qf = T'(p;)
mou amewxoviler 1o Fy; otov povadiolo dloxo D, to e€wtepind clvopo tou Fy; oTo
wovodtoto x0xho 0D xou xdie ecwtepnd eumodlo oe Eeywpelotd anueio qﬁj, j € JN,@,
6Tou Nf elvon t0 yévog tou Fyi. Alaxplvoupe TIC ToQoxdTe TEQITTMOEL: a) To gé,i
ebvon ecwTepd GOvopo Tou Fy i, xou B) To Gy ; ebvan pépoc Tou eEwTeEptNol GLVGEOL TOU
Fui. Avaléyoc, o petaoynuotioudc TY mpocopuéletor xotdhhnha yio. Vol amhoToloeL
ToV oyedlaopd Tou avtioTotyou Suvaixol mediov. Xuyxexpwéva, otny tepintwon ()
TEOTOTOLELTOL O Tf €tol Hote 1o Gy ; anewoviletal o€ e0wTEPUS ONUElD qges,i Tou D, eve
oty mepintwon (B) oyediéleton T Gote to Gy ; voaneixoviletan o€ onpelo qﬁles,i Tou dD.
Sy ouvéyeta, oplloupe éva appovixd medio Pf, yio To xdde poundt i xotd o Brpa £,

ToMOUETMVTOG 0pUOVIXES TNYES ETTL TOU qflesi AL TV qu, 70 omolo dlveton TEMXOS ATo:

00 gt —qt.
4)15 _ kf,d In ||q1 qdes,z“ . Z klg] In qi qz,] (62)
2 , 2
]GjNig
oTou kf/d > 0 xon kf,]- > 0 etvon petoPintéc napdueteol. Télog, o vouog ehéyyou uf TOU

7 : 4 4 7. 7
eoundT 1 xotd o Priue £ divetan amod

—1
uf = —Ks(qf, ko) (J7@h) Vil k) (63)

6mou K eivan detind xépdoc, J! eiven 1 ToxcwProv tou TY, s eiven ouvéptnorn mou eZacpo-
MZer amoguy olyxpouonc pe To efwtepixd bplo xou i = 1+ tanh(wg!)/2, émov w
Yetr) otadepd.

Arnoteréopota Ipocopoidoeny

Ye auth) TNV EVOTNTA, TUEOUGLALOUUE ATOTEAECUATO. TEOCOHOIOTE TOU EMBEVUOUY
TNV OMOTEAECUATIXOTNTA TNE TEOTEWVOUEVNG peVodoloyiag. Muyxexpuuéva, Yewmpolue 5
oevdpla OTou €var oUoTNUA ToL amoTeAeltan anod 2, 4, 6, 8 xou 10 poundt, avtictorya,
OEYLXOTIOINUEVA EVTOC TOL YWEoU gpyactac mou anewxoviletar oty Ewxdva 4.5, to onolo
npénel va thonyniel oe cuyxexplpévoug TeAxols tpooplouols. O ypdvog mou amouteiton
amb TOV TPOTEWOUEVO UAYORIIUO0, XS %ol TO GUVOAXS TAUOC GUVIETWY XEALGDY TOU
TapyUnooy xatd T mpocouowwoelg gatveton otny Ilivaxag 4.1. To mpogik xivnorng
TwV pounoT aivovtan avtioTtolya otig Ewdva 4.5, Ewova 4.6, Ewodva 4.7, Ewova 4.8,
Ewoéva 4.9. Emniéov, o Eidva 4.10 xou Eudva 4.11 delyvouv tnv apyixr] xou emduunty

Vé€on Twv poundT xad®e xaL ToL avTIoTOLYO XEALE YId TO GEVAQLO UE Ta 8 POUTOT.
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Yuvepyatixny Metagopd Avtixelugvou

Ewoywy

e autd T xEPAAO, ToEOLCLELoUUE Uia HEVOBOAOYIX Yot TOV GUVTOVIOUS TNG UETUPORACS
EVOC AVTIXEEVOL OO OB POUTIOT TOU AELTOLEYOUY HECA VAl GUUTOYY| YOO EpYICLS.
Abyo Tng TERPLOTROPHC TOU AVTIXEEVOL Xal TNS Blapdppwong xdde Beayinva, n uedodo-
hoyio pag Yo mpénet va AdfBet unddn To PETUBUANOUEVO Gy iU TOU POUTIOTIXO) GUC THUATOG
yior vou xTioel €va Thdvo Tou Yol 001 YHOEL UE AGPIAEL TO POUTIOTIXG GUG TN OTNY ETLHU-
UnTh Tehxn Slopdppwaon. ¢ ex touTou, oyedldlouue Evay ahyopLiuo uhniod eminédou o
0TOl0C MEETEL VO XATAOKEVAOEL iot IAANAOLY (0l XEALWDY TOU Y WEOL Bloudppmwang, xadéva
and To omolor optlel €val EMTEENOUEVO GUVOAO XATAG TACEWY YL TO ovTXelueVo, xaddg
xa NTd dloo THaT Yo Toug Boduolg eheudeplag Tou xde Bpaylova. EmnAcov, xotdh-
ANhot GYEBLAOUEVES UTIO- Xoll UTER-TIPOCEYYIOELC TOU EASOUEQOL Y (PO YPNOUOTOLOLY T
yior T xadodhynomn g e€epedvNONE TOU YMOPOU TWV XATACTACEWY, ETAEYOVTIS TOL XE-
A& ou ypeeldlovton tepantépw urodlalpeot. Enlong, yedodohoyle ye Bdon xateuduvtoy
aVapoRAC xou EAEY Y OU TEOdLOYpapouEYNC eNiBoaTE Yenoulonotovvton yall e apuovixolg
YYETEC TPOXEWEVOL VO OYEDUOTEL EVAC XATAVEUNUEVOS VOUOC EAEYYOU YIoL TNV TTEAY M-
TOTOMNGOT TV PETOPBACEWY YETAL) BLUBOY XMV XEMWY, 0 OTOlOG EXEL EYYUNUEVES IBLOTNTES
oUyxhong. Téhog, mapatneolue OTL 0 TEOTEWVOUEVOS VOUOS EAEYYOU YOoUNAOL ETUTEDOU
oev anoutel cuveync avtahhayr TAnpoopiag PETAE) TwV poundT, ta onola Bacilovto
ATOXAELO TIXG. OE YETPHOELS TNS TREYOUCUS SLOORPUWOTNS TOU OVTIXEWEVOU XOL TWV DXV

TOUG XATAC TUOEWY, TROXEWEVOL Vol UTOAOY{GOLY TIg avTioTolyeg eloddoug EAEYYOU.

Optoyol

Ye auTo 10 xEPIA0, Yenoudomoolue To R yio va SnAdcouUe To GOVORO TWV TEAYHo-
TV ooy xar To IN yior 10 6Ovoho TV TEayUaTixdy optdumy Eextvivtog and To
undév. Enione, yenotwonootue to Iy £ {1,2,...,N} (3N £ {0,1,2,...,N}) vy va
ONAOOCOUPE TO GUYOAO TOL amoTEAE(TOL amd GAOUE Toug Puatxolg apLiuole uéypl o N,
Eexvarvtog and to 1 (0). Emmiéov, dedouévwy ocuvdbhwv A xou B, ypnowonooue to
0A, int(A), cl(A) vy va Snhdooupe T0 GOVopo, ECWTERIXG, XAEWCTOTNTA avTioTOLY D,

xot T0 A\ B yiot var dnhédooupe to cupmhfpmuc tou B we mpoc to A.

Aedopévou cuothuatoc cuvietayuévey Fo evioe tou IR? xou 80o onueio Py, Pp €
]Rz , {O}P ’ , 1{) , , P ,
, Xenowomoloye to p Pp yior vor Sniwooupe v oyetxh Yeom tou onpelov Pp and

10 onueio Py, ol cuvtetaypéveg tou omolou expedlovial we Teog 0 Fo. Aedopévewy
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mhauolwv Fa, Fp, Fc, xenowwonoloue to {{Q{P{C} € R? yia va SOGOUKE TNV oYETINN
Véomn e apy e Twv a€ovey Tou Fe and Ty apyr| Tov aovey Tou FB, eEXPEAcUEV 6
Tpog 0. Fa. Avoldyng, dedouévewy mhaiciwy Fa, Fp, yenoulonotoouue {{giR € R?*?
Y1 VoL ONAGDCOUUE TOV TVAXOL TERLOTEOPTC TOU AVTIOTOLYEL OTOV OYETIXO TPOCAVATOMOUO

Tou Fp w¢ mpog 10 Fa.

Acdouévne yoviog otpoghc 0, éotw R (0) o mivaxac otpophc mou opileton ¢

R(G)é cosf —sin6
sinf cosf

T dedopéva mhaiolo Fa, Fp, opiloupe 1 (8} T TOV OHOYEVH] UETACYNUATIONO GUVTETAY-

uévwyv and to mhalolo Fp oto Fyu, mou oplleton g

(Ap  (4)
) s mR (P
w =1 1

YNUEWOVOUUE OTL OL ToROXATe EELOWOELS Lo VoLV Yia dedouévo onuelo P:

{A} {B}
mPl _ Ay wP
1 {8} 1

(opiéoll {A}P elvor 1) Véom Tou P w¢ mpog to mhakoto F4 xan {B{P elvon 1 Yéomn Tou P w¢ mpog
To mhafoto Fp. Tt Moyoug ouvtopiog, Yo yenoylomololue 1o {A{P = {{';{7-- %P avti Tou

e ’ 7 7z
ToEATAVEL GUUPollouol 6tav eivar BoAixo.

Oploude tou Ipofirfuartoc

BOewpolye cuutayh yopeo spyacioc W C IR? tou nepiheieton amd évo otatind eEoteptnd
olvopo dWp xau N, eowtepnd obvopa dW;, i € Tn,, ue No € IN. ITio cuyxexpyéva,
uro¥étouue 6Tt W umopel va ypaptel wg e€ng:

W20\ |J 0. (64)

1'631\]0

6mou Oy dnhdver Ty emipdveto mou Peloxeton extég Tou OWy e Oy £ R? \ Op, xou
O; dn\dvel Ty emgdvelo tov Tepxheietar and o WV, 'YLO( x&e i € Ty, (Emdva 5.2).
Eotw W 10 cupmhfiemus tou W e tpog w0 R?, 5)8. W 2 R? \ W, 7o omnolo Yewpeiton
whelot6. Emmiéov, 1o eEwtepind bplo Tou yopou epyacioc Wy £ 90 xa 10 e0WTEPXE,
Tou eunédle IW; £ 90;, i € Ty, Vewpohvion pn-tepvopevee xapnviec Jordan. Xwpic
BAEBN tne yevixdTnTag, utodétoupe 6Tl o W €yel éva avdaipeto adpaviond mAaicto Fyy.

’ ’ . ’ 2 ’ ’ ’ ’ /
Ocwpolpe thpa éva avtixelpevo L C R” 1o oopa tou omolou elvon plo cuunayhc,
4 7 7 7 4
XAELOTY), TOALYWVIXT| 2-TOAAATAGTNTA, PE TNV SUVATOTNTO VoL UETATOTCETOL XL VoL TEQL-

oteégeton evtog Tou W und tnv mpolnddeon 6t dev Pploxeton ot emagy| pe o cLVopa
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oL yWeou epyactag. ‘Eotw Fp otaldepd mhoioo tonodetnuévo oto L. Ou yenotuo-
TOLOVUE TO P xou To O Yo vor SnAdvoude TNy Teé€youca YE€aT xal TEOCUVITONOUO TOU

L o¢ mpoc to Fyy, ONS.:
pec = WP RO = TR

To avtxelyevo L Yewpeiton oteped adua xar €0tw Mg, Preom, Iz 1 pdla, 1o xévtpo
udlog, xar 1 pomr adpdveiog YOpw and T0 Preom, avtioTtoryd, expeaouéva we Tpog To
mhaioo Fz. Trovétovtag 6Tl 10 Preom OLUTINTEL Pe TNV opyn Twv aldvey Tou Fr, 1
duvaux Tou L diveton and:
Mg -Pr="1cyp
Ip -0 =1z

6mou Tz, € R? xau Trp € R ebvon 1 S0van xou 1 pomd| mou aoxetton eEwTepixd 6o
avrixelpevo. Téhog, opiouue to L (p,0) oc o amotinwua Tou L, dA3., Tov 3¢eo Tou

W nou 1o odua tou L xatahapBéver dtav pr = p oavd O, = 6.

[ v yetagopd tou avtixewévou L and pio apywnh oe uio telxy| Swpdppwon,
yenowonololue uio ouddo amd Nr > 2 cuvepyalduevoug xivouuevous Bpayloveg. Su-
Yxexpwéva, xdie poundt R, i € Iy, anotekeiton and pia ohovouixn Bdon B; o vy
Beayiwva A; o onoiog elvor cuvdedepévog atny Bdom xou eQodlacUévos pe Tehxd ototyelo
dpdone A; g to omolo mdver otodepd to avtixeipevo L oe ouyxexpuévo onueio. H xavn-
portier) xou Suvoxy) xdde pounot R;, i € Iy, TEPLYPAPETUL OTIC ETOUEVES UTOEVOTNTES.
Trotideton enione 6t to owpata v B xou A; neprypdgpovton and cuunayeic, xAelotég

avd CLUVOEBEUEVES 2-TOAMATAGTNTES, Yiot xdE 1 € Tny, -
7 7 _ T T 4 z —_—
Aedopévng apy e 4z init = [P f it O,inie]” o emiduuntic Slopdppwons . goal =
[pz/goal, 9£,g0a1]T yioo 1o aviixelyevo L, o otdyoc pog ebvon vo oyedidoouye oyfua -
Aéyyou Y To pounét Ry, i € Ty, T0 omolo umopel vo odnynoel o avtixeluevo otov
emduunTéd TEoOoELoUS €4 o TETOL TEOYLE UTLAEYEL, EVE Tapdhhnia e€acpaiilel 6Tt 00Te

TO OVTIXEIUEVO 0UTE ToL pOUTOT Vot GLYXEOUGTOVY UE To 6Uvopo IV Tou ywpou epyasiog.

Kwnuotua Kivoluevovy Beayldvwy

o xéde i € TNy, éotw Fp, oouatédeto mhaioo eviog tou By Xwpeic PAIEN tne
YevoTnTag, utovéTouue OTL N apyY| TwV alOVwY Tou Fp; CUUTINTEL UE TO XEVTPO TE-
plotpophc tne Pdone B;. T Adyoug cuvtopiog, éotw p; xau B; n tpéyouca Véon o
TEOCAVUTOMOUOC Tou Fp, ¢ TRog T0 Fyy, OND.:

A (W} A W)
pi = Py R(0:) = 5,R.

Emmiéov, da ypnorponowotpe 1o Bi (p,0) v vo dnhdvoupe To anotimwyua e Bdong

7 4 / 7 4
Tou pounot R dtav auty| Peloxeton 6TO p UE TEOGUVATONOUO 6.

Avogpopd ue tov Beoylova A;, vtodétoupe dti amotedeiton amd évay 1| TeplooOTE-

pouc ouvdéopoug A;j, j € Ny, mou eivar ouvdedepévol étol Bote va oynuatilovy pla
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avouy th ahuoido. Emmiéov, o npdtog ovvdeopog A; g elvan otadepd ouvdedeyévos otny
Bdom B;, eved 1o tehix6 oTotyeio dpdong elvan otadepd cuvdEdeUévo GTO TEAEUTOO GUV-
deopo A; N IR xdde i € Tn,. H apldunon twv uvtéromeny cuvoéouny eivar tétola
(OTE T0 GOUA ToL GUVBESUOU A; i1 Vo umopel Vo TepioTpépeTon/ueTatonileton ¢ Tpog
™V xowi dpdpwon pe tov ovvdeopo A;j. T xdde Bpayiova A;, Yo yenowornololue
0 ;j xou Dy, Yiaw var SHAooLPE TV xatdoTaot xa ebpog, avtioToya, Tou | Batuod
ehewdeplac, mou avtioTotyel oty dplpwon petall Twv ouvdéopwy A; ;i xa A; i1, v
x&e j € TNy, 1 o i € TIngi. Xnuewdvoupe 6t xdie evpog Dy, eivan €var utoouvoro
eite Tou R A tou 8. To emauinuévo didvuoua xatdotaonc z; Tou pourdt R, oplleton
oC:
z 2 [pl, o, lﬂT

6mou g; elvan To BLEVUGUA TOV XATACTACEWY TwY apdpwoewy Tou A;, v xdde i € Ty, .
Hopopolwe, yio xde i € Ty, xou j € Ty 4y ot F Ay VAL OOUATEdETO TAAlO0 EVTOS
tou A;j. Emniéov, tonodetodue avdaipeto mhaioto Fg, ota onpeio enagrc uetald tou
tehxol ototyelou Spdong tou Peayiova A; xar tou avtixewévou L. Trodétoupe bt o)
M apyf TV alévey Tou Fy, ., Peloxeton otov dlova tepiotpogric e dpdpwong f, xou

B) n oy Twv 0€évev tou F, ouvunintel pe to avtiotouyo onueio enagric (Pryupe 5.3).

Avagopixd pe tnv eudeta xavnuomind xdide poundt, Yo ypnowonowiue 1o T, (p,0)
Y10 VoL SMADCOUUE TWY PETACY NUATIONS a6 To Fp, 070 Fy 610y To poundt elvon tonove-
TNUEVO OTO P UE TEOCAVATOAGUO 0, GAS. %{P{Bi} = p xau }?ﬁR = R(9). Eoto T 4, (4i)
N eudeio xavnuatied tou Beoylover A, M. T 4, (qi) = {1")’5157'. Kodog o Beaytovog etvan
otadepd Tonodetnuévog oty Béom, undpyel opoyevic petaoynuatiopds T g, 4, UETALD
e Bdone B; xou tou mpwtou ouvdéopou A;1 tou Beaylova, SA8. Tg 4. = {ji’iT. H
eudelo xovmportie, Tr, (p,6,9) tou poundt R; diveton and:

TRi (p’ 9’ q) é TB{ (p’ 9) ’ TBI',.A,‘ ’ TAI (q) .

Téhog, yia xde i € Ty, , Yo ypnowonootue To Jr, xou J4; Lol Vo SNAGCOUYE TNV
Toaxwprov Tou poundét R; xaw tou Beoylova Aj;, SAS.:

V) s

P
witH{E} |
iWiQ = IR, (zi) - zi
{wys 2{E;}

el .
By AEY | ) .
(5;) = Ja (i) - i
[B;}* HE;)

omou (g, ebvon 1 yowwviond TayOTnTe Tou TeEAxol GTotyelou dpdong A, k.
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Avvopur) Kivoluevoy Bpayldovwy

H Suvauixr xdde poundét R;, i € Ty, umoxertow oto xohepwuévo uoviélo Euler-

Lagrange, 0A0.:
MR, (zi) - Zi + Cr,(2i, 2i) - Zi + Gr,(2i) = Tw,i — (TR, (Zi))T “Toi (65)

omov Mg, Cg,, Gg, € RO FNAXCTNA) ey v unTeoa udalac, x0ploAng xou PapdtnTag,
T, € RENA) efyon 1) POTA TOU UOXOUY OL ETEVERYNTEC TOU POUTHT, X T,; € R3 elvan
n pony| mou aoxeltan and o poundt oto avixelyevo L peow tou Tehxol oTtotyeiou

opdong.

Lyfua Exéyyou

[t TV avTETOTION Tou TaEaTdve TEOBAAUNTOS, oYedLaloupe éva LBELOLXG oy €-

Aéyyov, To ornolo anotehelton and:

o) évav ahydprduo udnhol emnédou o onolog dedouévng opyxAc BIUOPPWONS L init
xow TEMXAC BLUOPPWONG (1 goal, KTOPEL Vo umopel var uTohoyioel piat axoroutia
EVOLIUECHY GTOYWY YL TO POUTOTIXO CUCTNUA, av UTdpyel AOOT OTO TUQUTVE

TeOBANua, 1 va xadopioel avurtopio Aoong, xau

B') évav eheyxth younhol emTEdOU 0 OTOlOC YENOULOTOE! XUTEAANAOUS UETATY T
TIOPOUC TOU Y(MEOU EPYUCLUS TEOXEWEVOU VO OONYHOEL TO OVTIXEIUEVO XL TOUC
xwvoLuevoug Beaytoveg amd xdie xeAl GTNV ETOUEVO ATOPELYOVTUC GUYXPOVCELS e

TAL PUOIXE EUTIOBLAL TOU Y WEOL £pYIGLAS.

ITio ouyxexpéva, o eheyxThC UPNAOL eNEBOU XATUOKEVALEL Uiol SLEQLOT TOU YWEOL
OLILOPPOONC TOU CUCTAUATOC GE XEALE UTOBLUEMVTAS Tol Do THUOTA TV PBadumy e-
Aevdeplog Tou poumotol cucThuaTog péypeL va Beedel uior aAAnhouylor cUVOEDEUEVLY
HENGV TOU TEPLEYEL TIC £ init X0 L goal (EGV UTdEYEL). YNy cuvéyela, yiot xde xeli,
unohoy{CovTon XATIAANAES TEOCWEWVES EMIUUNTES VEGES Pz X TposavaToAcuol 8, xou

XATIAANAOL VOUOL EAEYYOU YENOWOTOO0OVTOL YLl TNV X{VNom TOL GUC TAUATOC.

Anocivieon tou Xodpou Awudppuwong

e auTH TNV UTOEVOTNTAL, TUEOUCIALOUUE TO LERUEYIXO Ty Ua amocUVIESTC OE XEALY TTOU
Yo yenowonotniel yior To oyedlaoud PG oelpdc and LPNAoY emESoU, EPIXTEC EVTONEG
Tou opllouv éva ‘wovondtt’ mou odnyel atny emduunTy dlaudppwon. Ity tpoywercouue
TOEOXATE, TEOTA Yo PIEOUUE ULol O TROCEXTIXT| HATId OTOV YWeo Sloudppwons € Tou
QOUTOTIXOU CUCTAUATOS. XE AUTY TNV UTOEVOTNTA, Vo HOVIEAOTIOLACOUUE TO POUTOTIXY
CUCTNUA KOS €V EVLXLO EwoVixd poundT R mou amoteheltar and Ny = 1+ ZiejNR Ny,
OLVBEGUOUS, TOU avTLoToLYoUV 6To avixelyevo L, otnv xwoluevn Bdon B xou atoug

CUVOEOUOUC .Ai,]' xde xvoluevou Beaylova R, yio xde j € Ty, xan i € TNy,
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EexWVUE TopaTNenvTag 0Tl ol cuvdeouol Tou R oyrnuatiCouv éva 8évdpo T(n,e),
6mou 1 elvar T0 GUVORO TV XOUPWY ot ¢ C N X 1 elvor T0 GUVORO TWV aXU®Y UETAEY
TV xO0UPwv. Oa yenowonoolue o R; Yo vor SNADOCOUNE Tov i cLVOECUO Tou R. Min
oxu”) (i,]) € e ouvendyeton OTL 0 j x0uPog unopel va xivnliel oe oyéon ue tov i x6pfo
YOpw and to onpelo B, ;. Emnicov, dedopevou i € Ty, Yo ypnoytonotovue to nl v va
dnAwoouue Ta moudld Tou x6uPou R;, BAS. 10 chvoho TV xopfwy R; Tou (i, ]) € ¢, Y
xdle j € Tn,,. Eniong, 1o n; Onhwver Tov yovea R; Tou R;, OAD. TO LOVADIXO GUVOECUO
yi Tov onolo oyVel (j,i) € e, €dv undpyel. Avohdywg, oplloupe Ta Yy xou Ny WS T
oUVOAO amd AmoyOvouC Xt TRoYOvous, avtioTtorya, Tou x6ufou R;. Xwpic BAILN g
yevxotntag, enAéyoude opidunon tétola Mote o Tpohtog xoufoc tou R (BAS. 1 pila
tou T), va avtiotoiyel oto aviixelpevo L. T yden amhémrag, o yenowonolobue to
Fr;s 1€ TNy, Yo Vo SNAOCOLUE TO GWUATOBETO Thaloto xdde cuVBEaUou Tou R xan Ho
AVOUPEPOPAOTE OTIC UpYéC TwY 0EGVKV w¢ onuela avapopds. Eotw pg = EZB2 TeRr?
o O € Dy C St 1 oyetied Yéon Tou onueiou avapopdc Tou POPTOTIXOY GUGTAUATOS Xol

0 OYETXOC TPOCAVATOMOUOS Tou Thalciou Tou Fi, w¢ Tpog to mhaloto Fyy, avtictoya.

OplCoupe a0 q; xow Dg;, 1 € TN, ©¢ Tov Padud eheudepiog xou 10 €0POC THIWY
auTo) TOL AVTIoTOLYEl TNV delprwon PeTadd TOL GUVOECUOU 1 XaL TOU YOVEX TOU, OTOU
Ny 2 ZjGTINR (NA]. — 1), Xowplc anmdheta tng yevixdtnrag, apod xdie abvbeouog tépa and
™ pila €xeL axpBex Eva yovea, urolEtoupe 6Tl o onuelo meploTtpogphc P oupnintel
e TV opy Twv agovey Tou Fx. Emmhéov, dewpdvtac tov mpooavatohoud O Tou
AVTIXELEVOU WE EXOVIXT| dp¥pwoT), TO BLAVUCUN XATAGTACTS Z TOU ELXOVLXOU POUTOTIXOU

cuothuatog R oplleton we:
z £ [pg, Om,0" " = [pga’l"

, A ‘ ; . . , ,
omou q = [qiliesy, .7 Ehvon o GTOWBUYHEVO DLAVUGUA XUTACTACTS TWV ELXOVIXGY AUROCENDY

UE qo £ O nou qi L q; v wdde 1 € qu.

E¢etdloupe thHpa T0 amoTUTWHUN TOU QOUTOTIX0) GUC TAUATOS EVE AUTO XWveltal Yéoa
otov Yweo gpyaciog. Hapatnpolue 6T, yia xde i € Ty, , To anoTdNWUA ToU xdde cLV-
0éouou R;, OAS. 1 emupdveia Tou xotohopBdvel oe dedouévn dlaudepwar, xadopileton and
v Véom Tou oNuelou TEPLETEOPAS Kol TIC XATAC TAOELS TWV (EXOVIXGOY) aplpthoewy. O
xenoornowlpe w0 R; (p,q) yio vo SNAGGOUPE To amoTUTwua dToy To oTelo TEpoTEo-
ophc Beloxeton oto p xou oL xatacTdoel; Twv aplpwoewy eivar . Iapatneodue enilong
oTL, eve xdde ouvdeoUog umopel va xvniel we Tpog o onueio TEploTEOPTC, OToLBNTOTE
xbvnom owtol YeTapépeTon XaL OTA TTOUSLE TOU, TROXOADVTAG UETUTOTLOT Xol/ 1) TEQLO TEOYT
xdde evhc amd TOLC ATOYOVOUC nfi autol. ¢ ex TOUTOU, TO ATOTUTWUO TOU CUVOEGHOU
Ri unopel va oploTel o oyéor pe TNV TeEyouca VEon P, TOU POUTOTIXO) GUCTAUATOS
xan TNe xatdotaong e (ewovinic) dpdpwong Tou xde R; mou avixel GTOUE TEOYEVOUC

ni. Tlopatnedvtac 6Tt 10 amotinwus R (Z) ToU EOUTOTIX0) GUCTAUATOC Gt dedopévn
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OLAORPWON Z Elval AmAO 1) EVWCT] TV ATOTUTWHUATOY TWV ETYEQPOUS CUVOECHUWY, OAD.:

R (p%/ q) = U R (p% [q]']};n{lui) (66)

iGij

UTOPOUKE Vo 0p{COUUE TO GOVORO TWVY ATMOBEXTOV BLUUORPOCEWY TOU TEOBAAUATOC HaC.
I yden ouvtoplag, to PR (q) da yenowwomoteiton avtl Tou R (0, q) dmou Yewpeltar mpo-
Totepo. [oupatnpwmvrag 6TL 0 yheog dlaudepnwaong € Tou POUTOTIX0) GUGTHUNTOS Elvor

WO OLVOXOADVTOC OTL

wlo ToMamh6TnTa Bupeopoppxd oo R? x S x D, x Dy,
oUte 1o avtixelpevo £ olte ta poundt Ry, i € T, emitpénctan vor TEUVOLY To 6UVORO

W, 10 olvoro €5 Blopoppmoeny ywplc ouyxpoloelc dideto amd:
Cr={z| WNR() =D xuzcl}. (67)

Téhoc, opiloupe €, £ €\ €5,

Topa, Yo vo oyedidooupe eva ouveyec ‘povordt’ eviog tou &5 Tou GUVDEEL TiC
OLLOPPAOCELS 7 init XOL 1,goal, ETEXTEIVOUPE TNV pedodoloyia Tou TopouCLUcTNXE OF
TEOMNYOUUEVO XEPAhouo Yiol Evar ToAUYwVix poundt. Ilio cuyxexpiéva, oyedidlovtog
€vo XATAAANAO xdALUPA TOU EAEDVEPOU Y WEOL BLoORPWCTC UTOBLALOOVTIS AVAUOQOUIXS,
Tor €0pn TGOV TV [, 0 OTOYO0G LIS EVOL VO XUTAOXEVAGOLUE Ui tepapy ] Slopéplon
tou €. To xdie euueca oplopevo xell, umohoyilovye plo xatdAANAT) UTER- Xou UTO-
TEOGEYYLON AUTOU, UE AMAOUGTERO GY UL, Ta OTOlaL YENOWOTOLOOVTAL VLol TNV XordodHyN-
on TNg €EEELYNONE TOU YWEOL BLAUOEPLOTNS XS Xl YLt TOV OYEBLAOUOS EVOC TAAVOU
vPnhol emimédou mou Yo 0dNYNoEL TO POUTOTIXG GG TNUA GTOV TEOOELOU6 Tou. Me autd
TOV 0TOY0, TEOTA VEWEOUUE TO TED(0 0ploUol Dy, TN XATACTAONE q;, UE 1 € Jﬁ,q. O
avapeEEbUacTE ot cUVola TNe popdhc St

[gi1,9i2]
i1, Giz € Dg,. Enlong, éva olvoro &; = {5]91' |je jNG,.} mou anoteleiton and Ng, omAd

WS ATAS TUAUATO TNE TOEAUUETEOU ¢, OTIOU
Ut TG q; Yo amoxaAeltan xdAvyuo Tou Dy, by

Q%‘ - U S;Ii

J€IN,

i xde k, £ € Ing, pe k # L. "Evo cdvieto ufpo S optleton wg évol GUVOAO amd oAl
TuAuate, A0, S = {S% | i€ I} Avuotolyeg, éva ohvolo S={6lic I} Ve
AeyeTon xdhuppa Tou ehediepou yopou dapdppwone Cr edv xde &; etvar xdAuppa Tou
Dy;- LNUELOVOUUE OTL EVoL XUALUUL S avioTolyel o€ pla dopepion tou & oe mepLoyEe

o= {[p&,qT]T | pm € W xou q € §} Ne&y, Ses (68)

wde plo omd Tic onoleg amoteheiton and Ng > 0 amopovepéve utooivora Cg, 1 € TN, -

4 S
[apatneolye otL 600 xeMd C«§i avod ng elvon ouvoedepéva edv S, S; elvon YeIToVIXd xou
oL TEOPBOAEC TwV C§i’ C'g]_ 070 eninedo TEuvovTal. OuUONAOTE 6TL 8VO BLIPORETING ATAL

Tuhuoto ST xau S;'" ebvon yertovixd €&v 1 Topr Toug SN S]q" elvon un-xevr, eved 6o
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cuvdeta tphpota S; = {S¥* | k € TN b orn S = {S]qk | k€ I}, }, Myovru yerrowxd
edv S, S]F"‘ elvan yertovixd, yio xde k € J*Nq.

INo vor amog@iyouye TOV dUECO LTOAOYIOUO TOU GYAUATOC EVOC xeAOU, optlouue
XATEAANAES UTER- X0l UTO-TIPOCEYYIoEC auToU. T'lal TNV XATUGKEVY| QUTWY TWV TEOCEY-
yioewv T0U GUVOAOU TV EAEVVERHV BLAUOPPHOCENY TOL AVTIGTOLYEl 0T0 GlvieTo TUra
S={8%]|ic I, 1> mpeTa unohoyilouye pior unep-TpooEyYIoN ﬁ(g') xou o uTo-

npocéyylon R (S) TOU OMOTUTOUATOS TOU POUTIOTIXOU GUC TAHUATOS ¢ eENC:

%(S)= U %@

qelg

o (69)
R(S) = R
qug
6Tov
Ig=81"x8Mx .- xS (70)

‘Eva mopddetypa TETOIOV TEOGEYYICEDY Yol pOUTOTIXG GUGTNUN U0 GUVBESUWY (alve-
Tan oty Ewdva 5.4. H unep-npocéyyion Eg. xou unto-TpoceY Yo Lg eviog dedouévou

Spepiopatog Cg, utohoyiletan amno:

Egé {[pT,qT]T | peWsxuqe Ig}
& [r,T TqT (71)
§§:{[p,q] |p€ﬂ§quelg}
(opiéelV ., -
We=WOR(S

A A

Ws=WoNR (8 )
ue A © B va dnhwver tnv Minkowski Siapopd twv ouvérwy A xau B, xou Tg = ST x
S X;- - x §9. Ipogavae, xdde évo amd ta @3 Ol gg ATOTEAOUVTOL OO ATOUOVWUEVL
xeMd C§i'
xENLE TOU Cs.

i€In; xuCg;, i €TIN,_, aviloToya, Tou TEPIEYOLY A TEPLEYOVTOL oMo TaL
S ¢ -S

Ye aut6 10 onuelo, onuewwvoupe 6Tl N TpoceY Yo Tou & BehTiwvetar xoog uTo-
OLOLEELTOL O Y WPOG BLHOREPWCTE GE OAO Xal TEPLEGOTERA XEALY. ()¢ €X TOUTOU, ETAEYOVTOG
emapx®OS AemTH Otapépion tou €, por ahAnhouyla amd YEITOVXES UTO-TPOGEYYIOELS TTOU
OUVBEOLY TIC L init X0 1,goal VO EPRPaVIOTEL, LTS TNV TpolTOVEST Var uTdpyEL Abon €€
apyNc. Avti Tic emhoyrg audalpetng, enoex®de AenTrc dlauéptong, oyedidlouye éva Tpo-
COPUOCTIXG Gy U UTOOWEPESTC TOU YENOWOTOLEL UTER-TpooEYYIoE Yot TNV ETAOYY
Tou TUAUaTog Tpog utodwiipeot) oe xdde Brua. Iho cuyxexpyéva, oyedidlouvue évay oh-
Yopuuo Tou dedouévou GUVIETOL XUAVUUATOC @, npoomadel va Beet ahinrouvyta IT and
YELTOVIXEC UTER-TIROCEYYIOELS XEALWY TTOU GUVOEOUY TIE OEDOUEVES BLUOPPOOELC. AV aUTO
dev elvo E@ixTo, TOTE 0 alyopripog TpooTadel Vo evioel Tig 800 SLUHOPPWOELS UE Lol oh-

Anhouyia IT ané yerrovixée unep-Tpooeyyioeic xehdv. Av wo tétola diodpour undpyet,
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TOTE TO TPAUA ToL avTioTolyel ot xdmolo xehl Tou IT emAéyeton Bdoel xatdhhniou eupt-
oTX00 xavOvaL xou LTodLULpELTOL, ETIOTPEPOVTUC o vea Dlopépton tou &f. AlapopeTixd,

0eV LUTdEYEL AUCT GTO BEBOUEVO TREOBANUA Xou 0 alyoprluog emoTeéet. Ev cuvtoula:

1. Edv undpyet Stadpour| and YEITOVXES UTO-TROCEYYIOELS XEALWY TOU TEPLEYOLY TIC

qL,init X0 (£,goal, TOTE TO TEOPANUL oG ETOE ETAL ADOT).

2. Edv undpyel Sladpour| amd YEITOVIXES UTER-TROCEYYIOELS XEALDY TOU TEPLEYOLY TIG
qL,init X 7 goal; TOTE DEV elvon Cexdapo oxdpa av To TEOBANUA Exel AIoT xou

xeerdleton mepautépw enéxtaon Tou &.

3. Edv dev umdpyel dladpour| amd YELTOVIXEG UTER-TPOCEYYIOELS XEALWY TIOU TEQLEYOUV

TS £,init X L goal; TOTE TO TPOBATUO pog Sev ETLOEYETOL ADOT.

O mpotewvodpevog ahyoprduog gatveton oto Ahyoprduocg 6.

Kotaveunuévog Nououg Eréyyou

Aedoyévou yovorotiol IT and xeld oyedidloupe xaTaveunuévo oyfua EAEYYOU Yio T
EOUTOT TOL EYYLATOL TNV ACPUAT) HETAPBaOT) amd xEAL OE HEAL U€YPL VoL PTATOLY TOV TEAXO
TEOOPLOUO 1 goal: EoTw C g xel Tou I xou € g 1 mpofolt| Tou oto eninedo. Ouuodpacte
61 C g ebvon piot uTO-TPOGEY YoM TOL EAEUYEPOL Y WPOL BIOUOPPWOTE, TOU XAUTUOHEVULETL
Bdoer tou Ws, 10 onolo GUVETdYETOL OTL, oV q € S, téte n prc unopel va Beloxeton
acalee o€ onotodfiote onuelo Tou Cg. Enlong, to C g ebvor un-xevi, ouurayrc neploxn
Tou R? pe avdaipetn cuvdeoiudTnTo xon oy e Q¢ ex T00TOU, UTopOUKE Vo areuTAéZouue
TOU VOUOLC EREYYOU Yo o) TNV VEOT TOLU AVTIXEWEVOU P, B) TOV TPOCAVATONOUS TOU

avtixeuévou Oz, xau ) Tig apdpnoet g; xdde pounot R, i € Ty -

[Mo xdde evdidueao xel tou 11, vnoloyilouye chvoha-cToyOUC Yior To Pr, O xou g
EexwploTd, and TS ToUH Tou PE To EMOUEVO XEAL. Otwpolue (elyog BLaboy XMV XEADY
Cg nou ng v I Avagopxd pe tnv 9€on tou avuxeévou, apxel To pr va QTdcEL GTOo

1

cUVONO

L0 ~
D (C5/C5) 2 C5NCs. (73)
AvtioTtolya, 0 6TOY0C YIo TOV TEOGUVATOACUO TOU OVTIXEWEVOU TEOXVTTEL AN TNV TouN
TV TUNUdTLY Tov S; xou S;, OAS.:

% (C5/C5) 2 ST NSP. (74)

9

Ta cOvora-ctoyoL yia Tou Paduole erevdepiog xdde poundT TEOXVTTOLY UE TOPOUOLO
TpbmO. Tuyxexpyéva, éotw Py, (C §) n mpoPord C g xatd tov dEova Tou Paduol ereu-
Veplag tou Ar. Tlpogavie, Py, (C 3) l00TOL UE TO YVOUEVO TOV ATADY TUNUITWY S

ToU AVTIGTOLYoVY 670 gk. 'Etol, T0 aviioToryo cUvolo-oTdyog Tou g diveton and

N (g@,g@) 224 (Cs)N Py (le) Vk € Ty, (75)
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(2¢ ex To0TOU, YO TNV AGPUAT} TAOHYNOY TOLU POUTOTXO) GUOTAUATOS AUTO TO le_

oTOo Qg}, TEETEL VoL OYEBIOTOVY EAEYXTES Yol TOU Xvoluevoug Peayloveg mou:

o doarilouv avarholwto Tou TpéyovTog xehol, BAD. pr € Py, (Qg,), Or € Sz%
xo Gk € P4, (Qg) , Vk € Ony, éwg 6Tou 1 ueTdBacT ohoxinpwiel, xou

o Bloporilouv GUYXAIOT TWV XATUCTAGEWY OTA GUVORA-GTOYOUG %,ﬁ <Q§,Q§>,
it Oj
ggﬁ (Qg.’,gg.]) nou gAk (Q@,ng) , ke INR -

[Towv ouveyicouye pe TOV OPIOPO TWV TOEUTAVE VOUWY EAEYYOU, XAVOUUE TIC TOPOL-

XATe UTOVECELS Yot TO GOOTNUG UaC.

Tréeon 1. Kdde poundt Ry, k € Tn, yvepeiler axpiBde duvouxd poviého autod xou
TOL AVTIXEWEVOU, OAD. o My, Iz, Prcom xou Mg, , Cr,, Dg,, Gr, Yewpolvior yveoTd.

Tnodeon 2. Kdde poundt Ry, k € Tn, yvwpllel axpBog Ty xotdotact Tou Zg xou Thy

TEéy0UcA BLoOEPWON 2 Tou avTixewévou L.

Trddeon 3. To mhdvo tou ahyoplduou udmiol eminédou etvor Slondéaiuo o dAa Ta POUTOT.
Eniong, xdle poundt Ry, k € Tn, umopel vo emxowmvel Ue Tol UTOAOITOL HOVO YlaL VoL

Onhooel e elvar €toylo vo petofel 6To emduevo xell, M. OTL pr € Gy, <Q§i,Q§j),

0c € %, (C5/Cs ) % ax €9a, (C5.C5).

Trodeon 4. Kdde poundt Ry, k € T, umopel vo aoxfoel aveZdptnto ma emeduun-

T OUVoUTN xou ot HECW TOu TEAXOU GToLyElou dpdong eve dlatneel To gx EVTIOC TOU

P4, (le) Eniong, o xdrw diaywviog uno-nivoxag Ny, —1 X Ny, —1 7ou (MRk)_l (I — (ij (zk))Jr - TR,
elvol un-1LopopQocC.

©¢om tou Avuxeévou

Hpwta, oyeddlovpe xatdhinio diavuopatixd medio yioa Ty obyxhion tng ¥éong Tou
avTixeévou pr 610 9, (C g_,Qg_). INo autdy Tov AOYO, XoTaoxeLdLoVUE Evay UETa-
t ]

, ] o N R A R N N ’ ’
oynuotiowd T; tou Fp, (QS,-’QS]-) =Py, (Qsi) \%pﬁ (gsi,gsj) otov yovadaio dioxo
%01 AmEOVILOVUE TNV TEPLOY T TOU ¥, (Q 5.C 3.) o€ €vol oNUEio, YENOWOTOLOVTUS TNV

i j
otadaota Tou meplypdpeton oty Troevotnta 3.3.3. O mopoxdte VOUOg EAEYYOU Yid

™V yeauuxr toyLtnTo Yo 0dnyoloe acPoADS TO avTiXelueVO 0To GOVORO-GTOYO oo

oyedoV xdde apyxr SladePwaon:

ol (p) 2 (Jr(po) " (g2, — gt (76)

omou J, ebvan 1 ToxwBiavr) Tou T;. T v oyedidooupe Ty emduunty dOvan Tou Teénet
vo ooxnUel 0TOU AVTIXEIUEVO amd ToL POUTOT, YENOWOTOOVUUE TNV Uedodohoyla Tou mo-
EOLGLAGTNXE OTNY Epyaoio [2] 1 omola Lag EMTEETEL VoL ETEXTEVOUUE 0GQPUADS TO BLovu-

ouatxd nedlo EZlowon 76 oto Suvouixd cbotnua debtepng tdne. o cuyxexpuéva, 1
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emdupn T S0VoUY TEOXUTTEL and:
Tge; = —M,- (K[i] . (Pﬁ p[l]G) +€[l] )

o ( [i] )

[l glil Prc [i] [i] [ [

p/‘iG Kplg,G. Hv[z] ( fl )H mn(Hv[l] pﬁlG I, \/AEI Pﬁzpﬁl,c) /Kplﬁ)
rc \Pr,G

(77)

61OV

AL (pe, pll) 2 KL -d (P 07, (Cs.C5) ) — Eblpeplle)  (19)

1 1 1 . 1
E (e p) 2 5 (Ipel® + KL lpe — w2l (79)

T0 p[ﬁl]c ebvor n (exovixy)) xatdotaon tou xuBepvity avagopds, to d(x, X) eivon 1 o-
TOGTACY) TOLU X and To cUvoro X, Ta Kg]ﬂ, K[Z] G elvan Yetinéc otadepéc xou to gm elvon

uor oTordepd EoVIXAC amocBeoTC.

[Tpocavotohopdg tou Avtixeyévou

Mo var 081 yicoupe Tov mpocavatohoud 8, 6to avtiotolyo oOvoro-otoy0 9, (Q@_,ng)
eve e€oogpahilovye 6Tt mopapével evtog Tou S = [GZ[i], 91[”} , oedLdloupe emduunty| po-
T Tz, Bdoel Tne pedodoroyiog EAeyyou TpodlyEYPAUUUEVNS amdxplong. TrovéTouue 6Tt
0 Y, (le,gg) elvon NG Lopprc [91[%,0[ } 10 omnolo unopel va eEacpolio el oyEDL-
alovTag To oy a BIUERIONE TOU YMEOU BLORPLOoNS ETOL MOTE Tot GUVUETA TUAUNTA VA,

arknhemxohinTovtar. Opllovpe T TIC TUEAXETEL CUVAPTACELS ATOXELONG

Pl £ 6L+ (61 — o) e e

[ (i [ ol \ gt (80)
ﬁ@g(t) - Hu,G + (91 - Gu,G) e e

4 e 7 7 / 4 7 7 Z 7
omou t elvon 0 ypdvog xau Ag, elvan Yetnr| otadepd. O avtiotoryog vouog eréyyou divetan

amod:
[ il Wi 0c — g
des __ 3 i i
=1 | —K, (6, — o)) +9)) —a) -In m (81)
Po, L
. . 0 —p[i]
b([;] - K([;] 1In j}
ma - 7 Po, ~Oc (82)
%o, = f]
ag,
[Z] A 1 1
A, = Mo
~Po, Py, —
p[Z] ]i] (83)
plil & For Peg
o — o
6 _
L~ Pe. Py, —
e K[l] R Kgﬁl ’ Yetxég otadepéc.
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Kwoluevor Pourotixol Bpoyloveg

OWEOVTIC TWE TO GY U EAEYYOU TWV XVOUUEVWY Bpaylovev, ToviCouue 6TL, AOYw TV
Accuuntiov 1 xou AcouunTiov 2 xot UTOVETOVTAC UL XOWVT| TOALTIXY 0PYLIXOTOINONE TV
EXOVIXWY XATACTACEWY TV XUBERVNTMV avapopds, xde poundt unopel vor utohoyioet
TNV emupnTA GUVOAXY SOV Tr,p %o POTT| Tr 9 TOL TRETEL Vot aox Vel oTo avTixelpevo.

'Etot, xde pounot Ry, k € T, apxel va aoxoel 6T0 avTIXEEVO:

1 Tz,
Tek = No TP pL (84)
R | Tce — (Tll,p) "{E ) Lcom

4 1 — z L 7
OTOL {Ek}Pﬁ,wm = R (%) -R(Or) - {Ek}Pl;,wm ue {Ek}PL,com n 9¢on tou xévtpou udlag
TOU AVTIXEWEVOU ¢ Teog To onuelo enaghc e tov Peayiova Ax. Emmnhéov, xdde po-

6T Tpénel va dlacpaiioel 6Tl gy € Py (Co ) eved odnyel Tic xaTtaoTdoelc g 010
M e ¢ q A (s ny q

G, (Qg_,Qg_). [ autdv Tov Moyo, oyedidloupe pio dOvaun oTo undevoyweo e Jr,
! )
ToU eE0oPUMTEL TIC TUEATEVL TEOdLYPUPES Ywpelc Vo enneedlel TNV BUVouN TOU ooxelToL

oTo avTixelyevo. OuuouaoTe OTL 1) Suvouxr) Tou xivoluevou Bpaytova Ry etvau:

Mg, (zi) - 2k + Cr,(zk, 2k) - 2k + Gr,(2k) = Tk — (TR, (Zk))T “Tek (85)

Trodétovtag YVOOTES SUVOULIXES TOROUETPOUC XOl XATAGTACT), OYEDALOUYE
. . t
Tk = Cr,(Zk, Zk) - Zk + GRr,(2k) + Tini1 + (I — (TR, (1) - TRy (Zk)) “Tuk2 (86)

7 7z Z Z 7 7 4 +
OTOU Ty k1 %O Ty 2 EbvaL VEES EovixéC elcodot mou Ba optoTtodv mapoxdte xau (Jr,)
Onhovel Tov Peudo-avtiotpogo tou Jr,. AviadioTidvTag TNV Tupandve oyéon oTny

E&iowon 85 divel:
M, (z1) - 2 = Tug1 + (1= (TR, @)+ Ty @) * Tk — (T, @) Tex (87)

OewpOoVUE THEA TO TAUPATAVE BUVAUIXO UOVTEAO GTOV YWOEO EPYACLUC:

. . N
M;Qk . I?.Ek + Ckk . PEk — ("77%1) Tkl — Tek (88)
eEk eEk

omou P, xau O, elvon 1 Véon xou 0 TEOGAVATOMGUOSC TOU GNUEloL ETMAPTC TOU TEMXOU

oTolyelou dpdong xou

M'/Rk - (j%k)Jr - Mg, - (ij)’r
Cr, = — (T8 Mz, - (Tr)" - Tr, - (TR,
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T
‘Eotw [p%k BEJ = Tr.5 (Pr,0r) 0 petooynuationds uetodl twv Yéoewy xa Tpoco-

VOTOAGUOY TwV avTioTolywv onuelwy. Ioylel 6Tt

]
[ZE"] = Je (pe.be) - Zﬁ +JcE (Pe.bc) - [Z'C] (91)
E c c

ue to Jgp, vo dnhodver Ty ToxeBiovy| tou yetaoynuoatiopon. Enopévae, n Edicwon 88

UTOREL VoL YRUPTEL OC TEOS TNV XATAGTACT) TOU OVTLXEEVOL WG EEAC:

Pr

My - |P
k 9[,

., )
+Cl, - [gﬁ] = (TR,) Twk1 — Tek (92)
ue

M%k = MZR, ]ﬁ,Ek

1 / !/ 7 (93)
Cr, = Cx, " Jeg + MR, - Iz.E-

Hapatneolye OTL emTUYYdVOVTOC TNV emuUNTY CUUTERLPOEE, OAD. TO avTixeiuevo
VoL UTXOUEL TNV SuvopXT| TTou Tpodlarypd@ouy ol Eélowon 77 xou E&icworn 81 eve 1o

poptio xatavéuetar e&icou 0T poUndT, LIoOBUVOEL UE

1 M, -pr 1 Pr
Tok = 7= . AT = Mg, | (94)
‘ NR [Iﬁ ) 95 o Mﬁ ’ (pﬁ) ) {Ek}Picom NR *

omov My, €lvor T0 u€pog TNE aBEAVELNS TOU UVTIXEWEVOU TOU AV TLAUBAVETOL TO POUTOT

Ri. Avtiohotodviag Ty mopoamdve oyéon otny EZlowon 88 divet

(v, £ ) [

+Cg, - [p‘C] = (j%k)Jr T - (95)

O
+Ch, - [Zj) (96)

uno¥€tovtog 6Tt egodidlouue Too Ng poundt ue tov Blo vouo eAéyyou.

Enopévae, apxel va emAéloupe

. 1 Tges / M,
Tk = TR, ((M%k T Mer) | e,

Ocwphvtoag Lavd tnv Ellowon 87, Yo oyedldoouue Thpa TO Ty k2 XATIAANAA ETOL
(OOTE VA LXAVOTIOLOUVTAL OL TROBLIYPUPES TV YOOV TwV aplpwoewy Tou PBeoyiova.
7 7 / + 4
Ouuduacte 6T N TEOBOM TOU Tyko ws weoc T I — (TR, (2k) - TR, (2k) Bev emdpd
oTNV dUVaUT %ot poTh mou aoxelton oTo aviixelyevo. ‘Eotw, howndy, Lak, Lpk, Lek,

Lp x mivoxeg tétool vxote Ly € R3%3 s

(97)
Lex Lpg

L £ Mgz, - (I — (Ir, @)+ T, (Zk)) = [LA’k LB"‘] :
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Kade 1o Lp x Yewpeitan avtioteéduto Bdoel tng Tnodeon 4, yenowonowolue tny pedo-
doloyla ehéyyou mpodlayeypoupévng anddoone woli ue backstepping yio v oyedidcoupe
TO Ty k2 WS €CAC

0

0

0

(Lpy) 1 oep

(1>

Tin k2 (98)

oToU
- Tk1—p 1

— (g, — : _ . 5

(k1 = Vkb1) + Vkb1 — gy, - In (p% —w)
2—p

— (g, — : — . I

N (k1 — Vkp) + Okp2 — dg, - In <p’4k,2qk’2>
UkB =

kKN, —17—
TN 4 qu,NAk—l )

— (g 1—0 _) v 1—a -In | =
(Qk,NAk 1= UkbNa—1) F OkbNy 1 TN 4, -1 (‘Dqk,N_Ak_l_qk’NAkl

(99)
Tkt —pP
by, —In (ﬁ :;]Z'i)
A e TRt
Vk bt = (100)
a‘ik,z
1 1
a%,z < — += —
el qu,z Py, — Tkl
P - (101)
b Ny —k1 P qk,1
k1 —

elvol 0 VOUOG EAEY YO avapopdc TNG ToyUTNTAG, B‘W XL O, , EbVOL GUVHPTATELS anodoomNg

ot onoleg ahhdlouy ouakd and to Ky, (Qg.) 070 Yy, (Qg_lgg), xan optlovtar wg
i i g

Bqu(t) 260+ (%e - %,k,e) et

(102)
— A
p qu(t) ey, + (ﬂk,z B ﬂc,k,@) ¢

Ayt

ME Gy ps q;. ot doie q e T HATE AL VG PEAYUOTA TWY YOVLOY TV apUp®OE®Y TOU

Ay mou avohoyolv oto P 4, (Qgi) xou G4, (Q@,Q@j) avtioTolya.

Anoteréopota Hpocouoidoeny

[or vou 8elouye TNV AmOTEAECUATIXOTNT TOU TEOTEWVOUEVOU OYAUATOS EAEYY OV, Vewpo-
UUE POUTOTIXG GUCTNUA amd B0 xvoluevoug Peayioveg mou xpatdve éva opdoymvixo
avTixelyevo, onwe gaivetow otn Ewdva 5.3, mou Aettoupyel evidg tou yweou epyaciog
mou amewxovileton oty Ewxdva 5.5. To pounotind clotnua apyonotinxe ye diouodp-
]T

pwon Grinit = [0.9, 2, 1.57]" xou g11 = g21 = 0 eved 1 el emduunty Stoaudppwon

TOU OVTIXEWEVOU 0pIGTNXE O 4L g0al = [5, 8, 4.663]". Ta TUALATO TV XEALDY TOU
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urohoylotnxay and Tov alydpriuo gatvovtar otov Ilivoxag 5.1, evey ou mapdueteot e-
Aéyyou mou emAéydnxay dtvovton otov Ilivoxag 5.2. H Ewdva 5.6 delyver tnv tpoyid
TOU POUTOTIXO) CUCTAUNTOC UTO TOV TROTEWVOUEVO VOUO EAEYYOU, EVE LY QUUHTA TNG
V€N ot TEOCAUVATOMOUOU TOU OVTIXEWEVOU X0 TWV TUYUTHTWY AUTOY, QoVoVTaL OTIG
Ewoéva 5.7, Exoéva 5.8, Ewoéva 5.9, Ewdva 5.10, avtiotorya. EmnAiéov, n Ewdva 5.13
xou 1) Ewova 5.13 8elyvouy tny eZéhén twv aplpmoewy twv 800 Beayldvwy, xadog xou Ta
UTIOAOYLOUEVOL XATE xo Ve 6pLaL ToU avTLoToty oV o€ xdde xehi. H cuvohixr 60vopun xou
eomy| mou acxfinxe oo aviixelyevo gaiveton otig Euxova 5.11 xon Ewdva 5.12, avtictor-
yo. Amé ta mopandve Slarypdupota, urnopel xoavele va emBeBoultdoel 6Tl TO POUTOTIXG
UG TN CUVEXAVE ETUTUY WS GTNY EMIUUNTY SLoORPWOT BATNRMVTS TIC TEOOLOY PAUPES

v Oz, 41,1, 21-
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