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EuxaploTieg

Apykd Ba Beda va gvxapiothow Beppd tov emPAénovra kabnyntn pov k. Iwdavvn Yo-
Xé&pn yla TV kabodnynon, T ovpnapdaotacn, Tn Pordela Kat TNV EUTOTOOVVN TOV, TOGO
yta TV eknovnon g Sidaktopikng avtng StatpiPrg, 600 Kat apkeTwv AAAwY evitagepod-
VTWV EPEVVITIKWDV AVTIKELLEVWV [LE Ta OTOla Elya TNV gvKatpia va aoXoAnbw to dtaotnpa
avto. H extiunor| pov mpog avtdv dev mmydlet LOvo and Ta emOTNHOVIKA Kat akadnuaikd
emTeLYHATA TOV, aAla Kupiwg amd To 100G Kal To xapakTripa Tov, Ta onoia Bewpw OTL
ovvEBalav KabBopLOTIKAE OTNV EMTUXNUEVT OLVEPYATIA TIOV ElYALE.

21 ovvéyela OaBeka va evxaplotiow ta dAAa §0o puéAn TngG TptpueAovs cupPovievTi-
K1G emtpomng, k. XapdAapumo Movlakn kat k. Mixan\ @paykiaddkn, pe Tovg omoiovg eixa
TN XOPA VO OLVEPYAOTW KAl OTA TAAIOLA TWV EKTAUSEVTIKWY §pACTNPLOTHTWY TOL Epya-
oTnpiov OAa avtd Ta xpovia. eppd evxaploTw Miong Tovg K. ewpyto MmovkoPaAa, .
Nworao Aayapd, k. Avaotaoto Zé€to kat k. HAia Anuntpakomovo yia Tn ovppetoxn
TOUG OTNV enTapeln e§eTaoTikn emtponn TG StdakTopIknG pHov dtatpiPrig.

Agv Oa propovoa BéPata va uny avagepbw kat Tovg avhpwmovg pe Tovg omoiovg pot-
palopaotay kabnueptvéd TpoPANUATIONOVG Kol XapoOueves oTIyHES, K. Iwavvn Taghaumnd,
[édvvn KahvPiotn, Baothikn Kapdovtoov, Xdapn Maviataxn, Aovtoia Kapdmrta, Avdia
[Tavovtoomovlov, Znvpo Atapavtomovio kat Kwvotavtiva Maotpodrpov. To xapdyero
KAL) CUUTIAPAOTAOT) TOVG 0€ SVOKOAEG OTLYUEG OLVEBAAAY OTNV EMITVYXT OAOKANpWOT) TNG
gpyaociag avtrg.

210 onpeio avto BEAw va evyaplotnow Beppd Tov kKakd pov @ilo MixdAn, pe Tov omoio
potpdotnka kabe Kakr Kat KakKr oTypun TG KaBnuepvotnTtag Hov OAn avtiv tnv mepiodo.
H ovveyrig vootrpign kat evBappuvor tov oiyovpa cuvéBalav oto va eival 1 mepiodog
QUTH| TILO XAPOVHEVT Kat STULOVPYIKT).

To peyavtepo evxaploTw, OpWS, To anevfHvw GTOVG TTLO O HAVTIKOVG AvOpWTOVE TNG
{wng pov, Toug yoveig pov MavwAn kat [16mmn, yia Ty aydmn kat v otipién tovg oe kabe
OTLYHN Kat TTTuXn TNG {wng pov.
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Abstract

'This dissertation presents the formulation of finite element algorithms for the prediction
of the response of elastic and inelastic rocking members under static and dynamic load-
ing. Apart from deformability along their height, the proposed formulations take the
deformability of rocking members near their base into account, which is crucial for an
accurate prediction of the response of rocking members under large axial forces, such as
the ones used in earthquake resilient structural systems. Due to the partial loading of
the rocking interface of such members, solutions regarding the semi-infinite strip from
the theory of elasticity instead of the technical theory of bending are employed, since the
latter cannot predict the nonlinear load distribution across the rocking interface and, as a
consequence, the nonlinear stress distribution near the contact area, which is crucial for
the determination of the response of deformable rocking members.

The elastic rocking member formulation is presented first, which is based on a force
beam-column finite element formulation, where additional member end displacements
are considered due to the partial loading of the rocking interface. This formulation is af-
terwards extended to include nonlinear material behaviour under monotonic loading. The
nonlinear displacement distribution of the semi-infinite strip under a concentrated load
at an arbitrary position across its end is examined next, for which analytical expressions
are proposed. These analytical expressions are then incorporated into a macroelement
tormulation for cyclic response, which is based on the determination of a suitable stress
distribution across the rocking interface so that the produced displacements match the
target ones of the rocking surface. Finally, modifications of the previous formulation to
extend its use to dynamic analyses by accounting for damping and other motion modes,
namely sliding and upthrow, are presented.

'The aforementioned formulations can be easily implemented in any finite element
framework, such as OpenSees, and yield very fast analyses compared to conventional two-
dimensional finite element codes. Comparison of the results produced by the macroele-
ment with results from commercial finite element software and experiments show the

generally very good accuracy of the produced results.
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Ektetapévn mepiAnyn

EAaotikn kaw avelao Tk ovpnepLpopa
A VICOUE VOV HEA @Y CELOHLKA avaTAgI LWV

KATAOKELWV

H napovoa didaxtopikn StatpiPr] mapovotdlet tn popeworn akyopibuwv memepacué-
VWV OTOLXEIWYV Ylot TNV TIEPLYPAPT] TNG CVUTEPLPOPAG EAACTIKWY KAl AVEAACTIKWV ALKVL-
(opevwv pedwv vrd otatikr Kat Suvapikr @option. Ilépa anod TV TapapopewotpdTnTa
KATA UKOG TOV UEAOVG, Ol TIPOTELVOUEVEG HOPPWOELG AApBAVOVY VTIOYT Kat TNV Tapa-
HOPPWOLHOTNTA KOVTE 0N BaoT Tov oToLxeiov, N omoia eivat kaBoploTikn yla Tnv agLomt-
ot TPOPAEYN TNG OVUTIEPLPOPEG AKVILOpEVWY HEAWV VTIO peydla agovikd @opTia, OTwG
QUTA TIOV X PIOLULOTIOLOVVTAL OE CELOULKE AvaTAEA OTATIKA CLUOTHHATA. AGYW TNG UEPLKTG
POpTIONG TNG SLEMPAVELAG AMKVIOUOD TETOLWY LAWY, aflomotovvTal ADOELG Yia TNV NULd-
nelpn Awpida and tn Bewpia eAaoTikdTNTAG AVTL YLa TNV TEXVIKN Oewpia kapyng, kabwgn
devtepn Sev umopei va TpoPAEWYEL TN 1N YPAULKE KATAVOUN TACEWY 0TN SLET@AveLa Kal
EMOUEVWG TN UN YPAUULIKT KATAVOUT] TAOEWY KOVTA OTNV TIEPLOXT) EMAPTIG, 1) OTTOia eival

Kpiown yio Tov kaBopLopo TnG CLUTEPLPOPAG TWV TTAPAHOPPWOLUWY AKVI{OUEVWY HEADY.



Eioaywyn

H moAvmAokn Suvapikr CupTepLopd Twv AKVILOUEVWY CWHATWV Kat SOUKWY LEADV
€XEL IPOOEAKVOEL TO EVOLAQEPOV TNG EMOTNHOVIKNG KOLVOTNTAG Ta TEAEVTAIA XPOVLIA, TTaL-
PONO IOV TO PALVOUEVO EIVAL YVWOTO amd THV ApXALOTNTA, ULAG Kot TOAAG apyaia pvnpeia
€XOVV XTIOTEL pe HEAN Trov emiTpémeTal va AikvifovTal.

H Aikviotikn kivion mpokvmtel 6tav éva pélog dev deopevetat 1) deopéveTal pHepikwg
ot PAon Tov, £T0L WOTE Va PNV HTOPovY va HeTaBBaoTovV e@eAKVOTIKEG TAOELG Stapé-
oov Tng Stempdvetag, Onws Oewpeital otV KAAOIKN TEXVIKY pnxavikr. OTtav ol aockov-
pevn optiovtia Suvapn vrepPel Eva dpto, To Atkvilopevo owpa armoondtal and T Paon
KAl OTPEPETAL YVOPpW amo To éva Tov akpo. H katakopuen Svvapn dpa wg dOvapn enava-
QOpPAG TTOL Teivel va @épet To owpa oTnVy apxikn B¢on wwoppomiag Tov.

Ta tehevtaia Xpovia, apkeTég mpoomabeteg £xovv yivel yla va cupmeptAngBoidv At-
kvi{opeva péln oe mpaypatikég kataokevég. Ewg onpepa, Aikvi{opeva péAn éxovv xpn-
otpomnownBei oe Pabpa yepupwv (otdnpodpopkn yépupa tov South Rangitikei, Skinner
K.d., 1980), kapvadeg (Air New Zealand Engineering Base oto Christchurch, Sharpe kat
Skinner, 1983) kat wg vTOCTVAGpATA LOOYEIOL 08 TANBWpa Kataokevwv otn Pwaoia (Polia-
kov, 1974). EmmA£ov, ekTeViG AVAAVTIKT KAl TTELPAPATIKT SLEpEHVNOT £XEL TIPAYHATOTIOL-
Oei oe Aikvi{opeva Totywpata mpokatackevaouévwy ktnpiwv (m.x. Priestley, 1991, Sritha-
ran x.d., 2007, Kam .., 2010, Smith k.., 2010, peta&d aAwv). Kavoviotikég Statakerg
mov avTtipetwmnifovy TNy evallaktikn avtr pébodo avtioelopkov oxediaopov éxovy 8n-
pootevfei amod apketovg opyaviopovs (ACI 2003, fib 2003, New Zealand Standards 2006),
evw otov Evpwkwdika 8 (EN 1998-1:2004), o AkviopUOG avapévetal yia peyaha ehagpda
OTALOUEVA TOLXDHATA OF LoXVPEG oetopikég dieyépoels. Extevng PipAoypagikn emoko-
TINOT| Yl TN CUUTIEPLPOPA TETOLWV ENEYXOpEVWY MKVILOUEVWY peAdV pmopel va Ppebei
oTi§ epyaoieg Twv Chancellor k.. (2014) kat Kurama k.d. (2018).

Ta ovpPoatikd Sopukd peAn oxedialovrat ovuvhwe £Tot wote oTadiakd va Stappéovy
Kat va avantdoooovv PAaPeg o€ £va OelopKd YEYOVOG, OTwG TIPOPAETEL O OXESLATHOG e
Bdaomn TV emTEAEOTIKOTNTA. AVTH 1] TPOOEYYLOT) OUWG ONUALVEL OTL HETA ATIO £V LOXVPO
OEIOMIKO YEYOVOG, 1 Kataokevr Oa mpémel va emokevaoTei, pe onpuavtikd k6otog. Emi-
TAL0V, AV O OELOUOG Elval APKETA LOXVPOG, Umopel va avantvxbovv mapapévovoeg peta-
KIVN0€LG, kavovTtag T Stadikacio emokevng SuokoAdTepn Kat TOAVSATAVT).

AvtiBétwg, Aoelg mov epthapPavouv Aikvifopeva péAn éxovv mpotabei dote va emt-
ABovv ta mapamavw mpoPAnpata. Apxikd, avti yia t Snuovpyia mhactikwv apBpw-
O£V KOVTA 0Ta dKpa, oL omoieg Oa TpETeL va EMOKEVACTOVV HETA TO CELOHIKO YEYOVOG,
Ta Aikvifopeva pehn amhd Ak vifovtat av ot ackoVHEVEG SUVANELS Eivat ApPKETA HEYANEG, TO
OTIOL0 OTHAiVEL OTL 1] ACVVEXELA HETAED TWV SOUKDV HEAWY ELvaL EYYEVHG OTO OTATIKO 0U-
OTNHa, TO OT0i0 €Xel OXESLAOTEL Yla va €XeL TN CLUTEPLPOPE aTH. Me Tov TpOTOo avTo, Tat

Akvi{opeva péAn Aettovpyovv wg pio Hop@r UNXAVIKNAG HOVWOTNG, TtapopoLa e Ta Stap-



péovta otolxeia, kabwg ot Suvapelg mov petaipdlovral 0TV VITOAOLTN KATAOKELT] OeV
UTTOpOLV va vIIEPPOVV TO OPLO IOV ETUTPEMETAL ATIO TO HNXAVIOUO Atkviopov. ITapopoing
pe tn Stappor}, 0 Akviopdg emiong peTaPaAlet Tig L8LOOVYXVOTNTEG AMOKPLONG TNG KATA-
OKEVTG, KAVOVTAG TNV AYOTEPO ETUPPETT) OE GLVTOVIOUO.

Emnpoofétwe, Ta Avi{opeva péhn mapovatd{ouv mold (KpEG Tapapévovoes HeTa-
KIVIOELG 0€ oXéon e Ta oupPatikd Soptkd HEAN. ZVVETWG, UETA TO OELOUIKO YEYOVOG, 1
KATAOKELT] Ttapovatdlet ToAD pikprG éktaoeg PAaPeg kat oxedov kabolov apapévovoeg
KAIOELG, TO omoio onpaivel 0Tt Alyeg emokevég Oa mpémel va yivouv HETA TO OELOUIKO Ye-
YOVOG ylat Vot KAVOUV TNV KATAOKELT| ao@alr| Eavd, eotkovopmvtag Xpovo kat xpripa. e
TEPIMTWON LETATEIOUWDV, OE, TETOLA CVOTHLATA TTOV EMAVEPXOVTAL ATIO HOVA TOVG OTNV ap-
Xtkn 0¢on 1ooppomiag umopovv va avtéEouy KaAvTepa endpeves OelOKEG SleyépOELg and
Ta ovpPatikd cvoTthpata, ta onoia Ba mpénel mponyovpévwg va emdtopBwbovv. Etol, ta
Ak vilopeva péAn TpoTeivovTal wg pia Katvotopog ehodog yia tn Bektinon TnG ELOHIKNG
avVaTAELHOTNTAG TWV KATACKEVWY.

Aopukd pEAn mov €xovv oxediaotel va AikviCovtar cvvodebovtal ouvhBwg amd emi-
npdobetovg TévovTeg mov digpxovTal Stapéoov Twv oTolKEiwV, oL omoiol pmopel va givat
Heptkwg 1 kabolov ovvdedepévol pe avto, ovvnbwg eivat TpoevteTapévol kat oe kabe me-
pintwon avEavovy v agovikn Suvaun Twv pedwv katd tn Stdpketa Tov MKVIopHoD. AvT
1 emunpooBetn SVvaun kavel To péENoG To evotadég kau eptopifet Tov kivéuvo avatpo-
nnGs. H oxéon Svvapng-pHeTtatoniong TETolwy GO THHATWY ExeL KOKAOUG VOTEPNONG HOPPTG
«onuaiog», pe To euPadov TnG avakvKAIKNG CLUTEPLPOPAG Va eival ouviBwg LikpdTEPO O
oxéon pe avtd Twv ovpPatikwv Sopkwv oTotxeiwy. Tia To Adyo avto, Tétota Aikvilopeva
HEAN ovvodebovtal ouyvd and mpdobeteg Stataelg amooPeong.

[Tapoho OV £XOVV TAPOVOLACTEL APKETEG AVAAVTIKEG ADOELG OXETIKA pE TNV Kivion
oV AKVI{OpEVOL 0WNIATOG, OTIwG avTég Twv Housner (1963), Yim x.d. (1980), Psycharis
kat Jennings (1983), Chopra kat Yim (1985), Zhang ki Makris (2001), Prieto kat Lourengo
(2005), Dimitrakopoulos kat DeJong (2012), peta&d dAAwv, kaBwg kat melpapatikés Ste-
PEVVIOELG KAL TTPOOEYYLOTIKEG OXEOELG YL TOV XSO Atk vi{opevwy ovotnuatwy (Priest-
ley k.a., 1999, Sritharan x.&., 2007, Smith k.&., 2010, Lagomarsino, 2015, Kalliontzis kat
Schultz, 2017, peta&d dAAwV), LTEAPYEL N AVAYK Yia Sovpyic TPOCOUOIWHATWY Yia TNV
TIEPLYPAPT] TNG CUUTEPLPOPAG TWV EAEYXOHEVWV AKVILOUEVWY HEAWY O€ aplOUNTIKES ava-
Aoelc.

Tevikég mpooeyyioelg yla tnv aptOuntikr avalvon Akvi{opevwy pehwv anoteovv ta
diodidoTata Kat TPLodLAoTATA TTPOCOUOLWUATA TIEMEPACHEVWY OTOLXEIWY, OTIOV 1 ETAPT|
petald Twv pehwv AapPavetar LITOYN HECW TIEPLOPLOHWY TTOV VAOTIOLODY KATAOTATIKEG
0x£0elG 1) péow oTolyeiwv kOUPov, kal Tpooopotwpata dtakpitwv otoxeiwv (m.x. DEM,
RBSM), ota omoia 1 KATAOKELT) TPOCOUOLWVETAL WG £VA GUVOAO SLAKPITOV CWUATWY, Ta
omoia aAAnAemiSpovv petafd Toug pe kdmolov tpomo (m.). Zienkiewicz kat Taylor, 2005).

Tétoleg mpooeyyioelg, Opwg, Bewpovvtal VTOAOYLOTIKA U ATOSOTIKEG YLa TIPAKTIKEG
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AvaAVOELG KATAOKEVWYV HEYAANG KAIHAKAG Kat TILO ATAOTIONTIKEG TTPOOEYYIOELG OTO TTA-
Ol0 TWV HOVOSLAOTATWY TTIEMEPACUEVWY OTOLXElWV eivat TpoTindTepeG. Ot Belleri k.4. (2013)
TapoLatdlovy kat oLyKpivouv TEToloL eidovg Tpooeyyioelg, ovpmeptlappavopévewy po-
VTEAWV [E GTPOPIKO EAATHPLO 0TN PAoT TOL AKVI{OHEVOL HENOVG e QALVOUEVOAOYIKT} V-
UTIEPLPOPA POTING - OTPOPTG, HOVTEAWV E OTPWOT) KATAVEUNUEVWY EAaTnpiwV 0Tn Pdon
Xwpic epeAkvopo, kabwg kat povtéla mov Xpnolponolovy Slatopég pe VA xwpig OAiyn
ot Pdon. ANAeg mpooeyyioelg mov €xovv mpotabei otn PipAoypagpia cvpmeptlappavovv
avtég Tov Barthes (2012), o onoiog mpoteivel éva oTotxeio undevikov prkovg mov emPal-
A€l TIG KIVIHATIKEG OXE0ELG TOV Atkviopo, Twv Penna kat Galasco (2013) kat Penna x.d.
(2014), ot omoiot avantHooOVV €va LAKPOOTOLXElO pe OLVOAIKA OKTW Babuodg elevle-
plag yla TNV TEPLYPAPr TNG CLUTEPLPOPAS AKVI[OHEVWY TTECOWDY TOLXOTIOLAG, TO OTIOI0
ovpmepAApPAVEL OTPDOELG KATAVEUNUEVWY EAATNPIWV XWPIG EPEAKVOMO OTA AKPA TOV,
Twv Vassiliou k.d. (2014), mov VAOTOLOVV €va GTPOPIKO eAATHPLO UNOEVIKOD UAKOVG pe
voTepNTIKN anooPeon, Twv Vassiliou k.d. (2016), mov mpoteivouv éva ototxeio undevikov
UAKovG pe Statopr} Tov dev avanTOooeL EPEAKVOUO Yla T AKVIOTIKY SlemPaveLla Kot TwV
Diamantopoulos kot Fragiadakis (2019), ot onoiot tpocopotwvovv Stagopeg Statakerg e
AMKVI{OHEVA COHATA PE OTPOPLKA EAATTPLAL.

Ot Roh xat Reinhorn (2009a), Roh kat Reinhorn (2009b) kat Roh kat Reinhorn (2010)
Siepevvnoav tnv epappoyn Aikvilopuévoy pedv («e§aobevnuévwv vTooTLAWpATWY») o8
KATAOKEVEG XWPIG TEVOVTEG, AAAA POVO VT TO 1610 PApog. Aol avayvadploay T onpaocia
TNG N YPOAUULKNG KATAVOUNG TACEWY KOVTA OTHV TIEPLOXT| EMAPTIG, XPTOLLOTIOLWVTAG Lot
YPAUULKOTIOHEVT TTPOCEYYLON TNG KATAVONG aUTHG KatéAn&av o pia popwaon atot-
XELOV yla TN N ypappikn ovunepipopd AtkviCopevwv pedav. EmmAéov, ovvéxioav tnv
EPELVA TOVG e TNV eEETAOT TNG CUUTEPLPOPAG OE OPOVG POTING - KAUTVAOTITAG VLot ALKVL-
Copeva péRn, Aappdvovtag vtOYN TEPLOTOTEPA PALVOUEVA, OTIWG TOTIKT) CUVOALYT KOVTA
ota dkpa Kat T otabeponoinon TG oxEoNG POTHG - KAUTVAOTNTAG O avakvkA{opevn
@opTion peta tn dnpovpyia PAafwv.

AkolovBwvTag TIG YeVIKEG 10€EG TWV TTAPATIAVW TPOCOUOLWHATWY, Uiat VEQ TPOOEY-
yton mpoteiveTatl 0Ty apovoa SLaTpLPr) yia T U YPAUULKT] CUUTEPLPOPA Atkvi{opevwy
pedwv. Xe avtiBeon pe Tig mepLocOTEPEG TPOOEYYioEL oL Tapovatalovtat atn PiBAto-
ypagia, ot onoieg Oewpodv Akvi{opeva péhn pe dkapmtn Paon 1 Aappavovtag voyn
TPOCEYYLOTIKA TNV TAPAROPPWOLUOTNTA KOVTA 0Tn Pdon €8paong, oTnV TPOTEVOUEV
TPOCEYYLOT, Hali He TNV TAPAPOPPWOLLOTNTA KATA UKOG TOV HEAOVG, AapBaveTal vtoyn
aKpLPEOTEPA KL 1] TAPAROPPWOIHOTNTA KOVTA 0TN Pdon édpaong, 1 omoia eivat kabopt-
OTIKN YLt TNV TIPOPAEYT TNG CLUTEPLPOPAG AKVITOUEVWV HEADY O€ OTATIKE CLUOTHHATA.

AOYw TNG HEPIKNG QOPTLONG TNG OLETPAVELAG ALKVIOHOV, 1N YPAHUIKEG KATAVOHES TA-
O£V AVATTOOCOVTAL KOVTA 0TA AKPA, Ol OTI0LEG AapBavovTal LTTIOYN e TO TIPOTELVOUEVO
pakpooTtotyeio (Exnua 1). H un ypappkotnTa auTr onpaivel 0Tt 1) KATAVOUT UETAKLVT-

OEWV KATA KOG TNG SlaTopng Tov péAovg eival kat avthy pn ypappikn. Emopévag, o
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datopég Tov péAovg kovTd ot dtem@dvela Aikviopol dev Tapapévovy emimedeg Kat ot
ovvnBeig mapadoxég Tng TexviknG Bewpiag kapyng dev umopodv va eQappuooTovy. XTnv
TPOTELVOpEVT] 1EB0O, | [N YPAUULKT] KATAVOUT LETAKIVIOEWV a&LloToLelTaL YL TNV Tpo-
BAeyn TV HETAKLVIOEWY OTA AKPOL TOV LEAOVG, OL OToieG CVUTEPAAUPAVOLY TNV eTLppON
TOV AIKVIOHOV, VW deV VTIAPXEL KATTOLOG TIEPLOPLOHOG OGOV APOPA TOVG KIVIHATIKOVG Tre-
pLOpLopoNG (yia apddetypa, E0aywyr o€ TAALOLO0, TAPOLOIA TEVOVTWY).

 % \ Node j
- \

\ ~ ~ (Rocking end)

AN

Rocking
surface

Locally planar

rocking surface
/ Rocking
element

Nonlinear stress
distribution zones

Node i /\

Sections far from

By rocking ends

Rocking
surface

- - | Node j
(Rocking end)

Zxnua 1: Xprion Tov pakpooTolyeiov yia ta THRpata Tov LEAOVG KOVTA oTa Akvilopeva
dkpa. AVO pakpooTolyeio XpnomolodvTaL yio To Atkvi(opeVo VTOOTUAWA TIOV TTAPOL-
otdletat To dxpo j kdBe aTolyeiov avtioTot el 0To AkVI{OHEVO AKPO.

H popewon tov eAaoTikod pakpooTotyeiov mapovotaletal mpwta, 1 omoia Paoiletat
0T HOPPWOT OTOLXEIOV GOKOV - VTOOTVAWDHATOG BACIOHEVO OTIG SUVAELS, dmov AapPd-
vovTal LTIOYN ot TPOOBETEC HETAKLVIOELG OTA AKPA TOV OTOLXEIOV AOYW TNG UN YPOALLHL-
KOTNTAG Tdoewv KovTa 0Tn Baon é8paong. H popewon avtr enekteivetal 0T ovuvexela
yta va An@Oei voyn n un ypappkotnTa vAkod og HovoToVikEG goptioels. H pn ypap-
ULKT] KATAVOUT LETAKIVIOEWYV TNG NULATELPNG Awpidag LTt OVYKEVTPWHEVO QOpTiO OE TL-
xovoa B€om Katd urKog Tov dkpov TG eEeTAleTaL AETITOHEPWDG GTN GUVEXELQ, YL TNV OTTolA
TIPOTEIVOVTAL AVAAVTIKEG OXEOELG. AVTEG OL OXEOELG EVOWUATWVOVTAL 0TI GUVEXELX OE £Val
HAKPOOTOLKEIO Ylot TNV TEPLYPAPT} TNG CVUTEPLPOPAG MKVI[OUEVWY OCWUATWY OF AvaKL-
KA{opevn @option, n onoia Paciletar 0Ttov TPOGSLOPIOUS piag KATAAANANG KATAVOUNG
TAOEWV KATA HIKOG TNG SLeMPAveLag AKVIOUOD, £TOL WOTE OL TAPAYOUEVEG LETAKIVIOELG

va TatpLdfouv e TG 0Toxevopeves. TEOG, TapovotalovTal TPOTOTOOELS TNG TAPATIAVW
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HOPPWOTNG Yla va emekTabel 1) XP1iOT) TOL HAKPOOTOLXEIOV Kal 08 SUVALKEG AVAAVOELG, Ot
omoieg Aappdvouv vtoyn KATAAANAN pop@n andoPeons kat AANEG HOpPEG Kivon G, OTIWG
1 TATPNG aokOAANon Kat i ohicOnon.

Ot apandvw pop@woelg umopovv va vhomotnBodv ebkola oe kamolo meptPaAAov me-
TEPATUEVWY oTOLKEIWV, OTIwG To OpenSees, kat §idovv TOAD ypriyopeg avalvoelg oe oxéon
e ovpPaTika TTPOoTOpOLDpATA SIOSIACTATWY 1] TPLOSLACTATWY TIEMEPATUEVWOY CTOLKELWY.
ZOYKPLOT) TWV ATTOTEAEOUATOV TTOL TAPAYOVTAL HE TO TPOTEIVOUEVO HAKPOOTOLXEIO (e
ATOTEAEOUATA EUTOPLIKADV TIPOYPAUHUATWY KL TIELPAUATWY OELXVOLY TN YEVIKWG TTOAD KAAT|

akpifeta Twv TapayOUEVWY ATOTEAEGHUATWY.

Mop@won eXaoTikov aTolxeiov

[a vao AngBel voYN N YEWHETPIKT 1N YPAUUIKOTNTA, TO OTOLXEO XPTOHOTIOLEL TNV
10€0 TOV CWHATOSETOV GVOTHUATOG CUVTETAYUEVWY, TO OTIOIO Eival £va CVOTNUA XWPIG
KIVIOELG 0TEPEOD OWHATOG, Ol oToieg 8ev GUUPAANOVY OTNV TTAPAUOPPWOT) TOV HEAOVG,.
To ovotnra avtd éxet Tpetg avti yia & fabpois eevBepiag (Zxnua 2). X Bploypagia
gxovv mpotabel amAég oxéoelg ya Tn peTdBaon anod To TOMKO 6TO CWHATOOETO GVOTNUA
(m.x. Neuenhofer ko Filippou, 1998), oL omoieg yia petping pikpég petakivijoelg Sivovtat
and TG oxéoelg (2.1) kot (2.3). ta éva ovpPatikd eAaotikd pélog, n oxéon Suvapewy -
HETAKIVIOEWY OTO OWHATOSETO OVOTNHA elval avTh piag apu@tépelotng dokov kat Sivetat
and v EE. (2.7).

MeTtakivioelg Avvaypelg

Node j \F
(Rocking end) NOdeJT ’

(b)

Zxnua 2: Metakwvnoelg kat Suvapelg oto (a) tomkod kat oto (b) cwpatodeto cvotTnua
OLVETAYUEVWV.



ZNHELWVETAL OTL TO AKPO i TOV CWUATOG AVTIOTOLXEL 0TO AKPO e TN CUUPATIKT) OVLTTE-
PLPOPA, EVM TO AKPO j €ivat TO AKVI(OUEVO AKPO TOV CWULATOG, IOV AVAPEPETAL OUWG OTNV
Kivnon g AKVIOTIKNG empdavetag Kat Ot To i8Lo To AKPO TOL CWHATOG.

Egooov n afovikr SOvaun o1o Aikvilopevo axpo Ppioketat evtog Tov muprva tng Sta-
topng (EE. 2.9), Sev vmapyet Atkviopog. AAwG ot Stem@dvelo auTr} avantiooeTat pn
YPOUULKT] KATAVOT TAoEWY, 1) omoia eivat pndevikr oe €va Tunpa g dtatoung. Tivetat
n mapadoxn OTL N katavoun Twv opfav Tacewv oTn SlemPAavela £XEL TPLYWVIKT HOPQT,
EVW 1) KATavopn Twv Statuntikwv tdoewv éxet mapaPolikn popen. Tia va efetaotei n
EMPPOT| TNG HEPIKNG POPTIONG TNG PAong €8paong, yivetal Slaxwplopos Twv Tapandvw
KATAVOUWY O KATAVOEG TTOV TTpoPAETeL ) Tex Vi Oewpla KapynG, PAoEL TWV CLVIOTApE-
Vv SUVAHEWY, Kal 08 KATAVOUEG AVTOICOPPOTIOVUEVWY TATEWY, IOV AV Kat OEV TTapdyouv
ovVIoTapéveg SuvApeLs, ennpedlovy eVTOUTOLS TIG LETAKLVAOELG KOVTA ot Paor édpaong
(Zxnua 3).

Ny
M:
VAR
. Oré—— +b
Y
(a)
- ] [ M_ -
Om 7 B=2b 7
\ [o0] Tm [70]
_b +b -b/<—— +b
c Y c 7 Y
(b)
U }(____ - Lo ____ }(____ - -
- [b) - (7]
(© M\\p
+ [USC] + [Tse]
(d) ™ _— —
\M \

Zxnua 3: (a) Zvviotapéveg Suvapelg otny em@daveta ena@ns, (b) Katavoués opbav kat
StatunTikwv Tdoewv ot Stemavela, (c) Tdoelg Paoet TG Texvikng Bewpiag kauyng Kot
(d) Avtoicoppomovpeveg TATEL.

T va e§eTAOTEL 1] ETLPPOT| TWV AVTOITOPPOTIOVHEVWY TAOEWYV, HEAETATAL EVOANAKTIKA
10 TPOPANHa TG NLdmtelpng Awpidag oV YopTifeTatL e KATAVOEG AVTOICOPPOTOVUEVWV
Taoewv 010 dkpo NG (ExAua 4). O mapalAnAiopog avtog toxbet yo TNy TepLoxn Kovtd

ot Pdon édpaong, kabBwg oL CLVICTAPEVEG SUVAELG TWV AVTOICOPPOTIOVHUEVWY KATAVO-
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HOV TaoEwV eivat pndevikég, emopévws cuHva e TNV apxn Saint - Venant 1 emippon
TOVG PaKpLd amod Tnv meploxn @optTiong eivar apentéa, dnladn Bewpovpe 6TL Tavel oe
£Val TTEMEPACUEVO UNKOG ATIO TNV TIEPLOXT| POPTLOTG.

AN N
V/\\UW

PN

\@/Txy
-1 +1 f
ay=0 ay—O
Ty, =0 Ty, =0
SR P

2xnua 4: H nuudmeipn Awpida.

Ta va peketnOei Aomov n ovpmepipopd NG nanelpng Awpidag oTiG AcKOVUEVEG av-
TOIOOPPOTIOVHEVEG KATAVOUEG TACEWY, EMOTPATEVOVTAL AVOELG amod Tr Oewpia eAaoTikod-
TNTOG Kat o ovykekpipéva n aptBuntikn pébodog twv Gaydon kat Shepherd (1964), n
oToia TEPLYPAPETAL KAl EMEKTEIVETAL OTO AVTIOTOLXO KEPAAaLo TNG StdakTopikng Statpi-
Brig. Ztn ovvéxeta aflomoteitat yla va Tpoadloptotovv i) tpocdetn HeETaKivion KaL oTpoen
TOL AKVI(OHEVOL AKPOL TIOV TIPOKAAODVTAL ATTO TIG TUTILKEG KATAVOUEG 0pBwv Kkat Statun-
TIKWV TACEWYV TTOV A0KOLVTaL 0Tr Slemipavela MKVIOUOD, WG 1] KEVTPLIKT TIUN Kat 1) KAlom,
avtiotoia, TNG PEATIOTNG YPAUIKNG KATAVOUNG oL digpxeTtal and Tn dnuovpyovuevn
U1 YPAUWUKT KATOVOT HETAKIVOEWY KATW Ao TNV TEPLOXT] POPTIONG TNG AKVIOTIKNG
Baong (Xxnua 2.5). Ot HETAKIVAOEL AUTEG OTO KAVOVIKOTIONUEVO OVOTNHO CUVTETAY[E-
VoV TNG Nanetpns Awpidag mpooeyyifovtat amo mMoAWVUHIKEG OLVAPTAHOELS Kat SivovTat
and v EE. (2.51).

O akyopiBpog Tov edaoTtikob pakpoaTotyxeiov didetat otov ITivaka 2.3, 6mov meptypd-
@etal 1 ekTéleon emavalyewv oe kabe Pripa yia Sedouéveg PeTAKIVAOELG OTA AKPA TOV
oTolxeiov, To omoio TePIAAUPAVEL TTPOTOLOPIOHO TWV TIAPAUETPWY TWV TUTIKWYV KATAVO-
HOV 6T0 Ak VI{OpEVO dKpO TOV OTOLXElOV PAoEL TOV SOKILAOTIKOD Stavhopatog duvapewy,
TOV TIPOTOLOPLOUS TWV TIPOCOETWY HETAKIVATEWY AOYW AVTOICOPPOTIOVUEVWY TATEWY GTO
KAVOVIKOTIOUNUEVO KAl 0TO CWHATOOETO GVUOTNUA CLVTETAYHEVWY, TOV TIPOOSIPIOHO TOV
AVTIOTOLXOL UNTPWOL EVKAUYIAG KAl TO CLVOVAGUO TOVG HE TIG AVTIOTOLKEG UETAKLVIOELG
KAl TO HNTPWO VKApYiag TG OVUPOANG TWV CUVIOTAPEVWY SUVAHEWY, ETOL WOTE TEAIKA
va vapxet ovykAton oto Bewpovpevo divvopa Suvdpewv. Tehikd, To pakpooTolyeio emi-
OTPEPEL OTO TIPOYPAUHA TIEMEPACHEVWY OTOLKEIWV TIG SUVALELS KAl TO AVTIOTOLXO UNTPWO

Svokapyiog 0To TOMKO CVLOTNUA CLVTETAYHEVWY.
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Ta mapadeiypata mov e€etdlovrat agopovv oe éva Akvi(opevo owpa vto otabepo
agovikd @optio (Zx. 5), Mkvi{OHEVO OWpa e TEVOVTA IOV eKTeAEL EAEYXOUEVO AIKVIOUO
(2. 2.10), kaBwg kat £va TAAiOL0 pe evowpaTwEVO Akvi{opevo Toiywpa (Zx. 2.11, 2.12).
To amotedéopata TOL TAPAYOVTAL ATTO TO TTPOTELVOHEVO LAKPOCTOLYELO YLat TIG TTAPATIAVW
Statddelg ouykpivovTal He AUTA TOV EUTOPLKOV TTPOYPAUHATOG Abaqus, OTIOV avePWVETAL
1 TOAD KaAr akpiPela TV AmOTEAEOUATWY TOL TAPAYOUEVOD HAKPOOTOLKEIOV, AKOUA KAl
OTIG TIAPATIAVW TEPITTWOELG IOV LTIAPXEL AAANAeTidpaon TG AKVIOTIKAG Kiviong pe av-
TV TWV oTOoLXElWwV IOV MPAANOVY TEPLOPLOHOVG O€ AVTHV. 211 ovvéxela (Zx. 2.13 - 2.30)
eEetdletaL n emppor| SLapdpwv TAPAUETPWY TWV TAPATAVW SLATAEEWV 0T CLUTEPLPOPA
TOV CUOTAHHATOG, EVW YiVETaAL Kal pia TpwTr SLepedvNoN yia TNV EVVOIKN EMLPPOT| TTOV [UTTO-
pel va éxetn vrap&n Ak vi(OHEVWY TOXWHATWY O TAQIOLA (e YEVSOOTATIKEG AVAAVOELS Yiat
oelopkn Stéyepon.

lN
X [ 5)‘ S
& 300 e |
~ —— E=100 GPa
- 250 —— E=30GPa []
Ay —— E=10GPa
s 200 E=3 GPa
T = E=1 GPa
& 150
=
% 100, ,
N
‘Ia 50 i
il 00 o1 0z 03 02 05
B Horizontal displacement, §,, [m]
(a) (b)
300 ‘ ‘ ; ; = 3.0
— —— Macro-element g
Z 250f7 - — = Abagus = 25|
:‘ o ----  BeamWithHinges element i)
A 200 Zero-length element E" 2.0f
g 2 15
& 150} g
= %’_ 1.0+
g 100 r _g 0.5l '..' —— Macro-element |
E 50 = == == Abaqus
) Q 0.0 ---- BeamWithHinges element| |
- ( D g Zero-length element
% ‘ ‘ ‘ ‘ > > 70.6 ‘ ‘ ‘ :
.0 0.1 0.2 0.3 0.4 0.5 .0 0.1 0.2 0.3 0.4 0.5
Horizontal displacement, §, [m] Horizontal displacement, §, [m]
(c) (d)

Zxnua 5: (a) IIpocopoiwpa Aikvi{opevov owpatog vo otabepr) katakdpven Sbvaun, (b)
KapmoAeg tkavotnrag yia Siagopeg TipéG HETpov edaotikotntag, £, (c) Kapmvleg ka-
votnrag yia £ = 30 GPa, 0nwg mpoPAémovTtal and To TPOTELVOUEVO HAKPOOTOLKEIO, TO
npoypappa Abaqus kat amhonomntikéd pocopotwpata kat (d) Katakdpven petatomnion
OMwG TPOPAETETAL ATIO TA TTAPATIAVW TIPOCOUOLWUATA.
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Mop@waorn avedaoTIKoL GTOLXEIOV VTIO HOVOTOVIKT] OPTION

2T OLVEXELQ, 1] LOPPWOT| IOV TTAPOVOLACTNKE TIAPATIAVW EMEKTEIVETAL, £TOL WOTE VA
UTIOPEL VAL TTEPLYPAPEL T CUUTIEPLPOPE AVEAAOTIKOV CWUATWYV [E EAACTIKO - TEAEIWG TTAa-
0TIKO VOO VALKOV LTI povoToVvikn @opTion. H Paowkn Stapopd oe oxéomn pe mpornyovus-
Vg eivat 0Tt A€oV 1 katavoun Twv oplwv Taoewv mavet va eivatl TpLywVvikr, aAld yivetat
TpaneCoeldng.

T T0 AOyo avTo, etodyetat pia emmAéov mapdapetpog 1 (EE. 3.1), mov meptypdget to
Aoyo g OAPopevng (wvng mov PpiokeTtatl VIO Slappor| oe OXEOT e TO GUVOALKO UAKOG
™6 OAPopevng wvne. H tpameloetdng option umopel va Bewpndei wg Stapopd §vo tpi-
YwVIK@V @opTicewv (Zx. 3.1), VW 1 TAPATHPTOT) AVTH EMEKTELVETAL KAL OTIG AVTIOTOLXEG
SlaTpunTIkEG QOPTIoELG, OOV YiveTal kat 1 emmAéov vtoBeon OTL 0 AOYOG§ TwV UEYIOTWY
opfwv TAcEWV TWV TAPATAV® TPLYWVIKOV KATAVOUWYV LOOVTAL e TO AOYO TWV UEYLOTWY
SatpnTikwy Taoewv Twv avtiototywv napafolikwv. Etol, pmopodv mhéov va ekgpaotovv
oL oLVIOTApEVEG SUVANELG 0TO AKVILOUEVO dKpOo TOV HEAOVG ouvapTroet Tov Aoyou 4 (EE.
3.2,3.3,3.4).

Ot poobeteg peTakIvioelg AOyw TV TOPATAV® KATAVOUWY GOPTLONG TOV GTOLXEIOV
vto Stappor| vtoAoyilovtal e TPOTO TAPOUOLO (e AVTOV TOV ENAOTIKOV LAIKOD, HE TN
Stapopd OTL TAEOV OL TTAPAPETPOL TNG BEATIOTNG YPAUIKNG KATAVOWNG vIToAoyilovTat oxt
Baoel TNG Un YPARMIKNG KATAVOUNG HETAKIVIOEWY OTNV TEPLOXT] EMAPNG, AANA HOVO OTO
TUMHA TNG TIOV TTapaEVeL EAAOTIKO, KaBwG 0TO LTTOAOLTTO epavifovTat Kat TAACTIKEG [Le-
TakLvnoets. Me tov tpomo avto efdyetatn EE. (3.9) ya tnv mpooéyyion Twv mapamdvw pe-
TaKLVOEWV amd avakvTikég ovvaptnoels. H oxéon avtr, 6Twg kat To avtioTolyo untpwo
gukapyiog avtikabotd Tig avtiotowes e§lowoelg mov xpnotpomombnkav otn Hopewon
TOV EAAOTIKOV OTOLXEIOV.

Zta mapadeiypata Tov kePalaiov avTod TAPOLOLACETAL 1) CUUTEPLPOPA EVOG ALK VL-
{Opevov ocwpatog vnd otabepr} KATAKOPLPN POPTLON YL SLAPOPEG TLHEG TAONG Stapporg
(2X. 6), eV T AMOTEAECHATO TIOL TIPOEKLYAV YLat TIG HETAKLVIOELG 0TO OWHATOOETO OV-
OTHHO CUYKPIVOVTAL PE AUTA TIOL TIPOKVTITOVY amd To mpoypappa Abaqus (Zx. 3.6, 3.7),
QAVEPWVOVTAG TNV TTOAD KAAT] TADTION TWV TAPAYOUEVWY ATTOTEAECHATWYV UE TIG TIAPAL-

névw Oewpnoelg.

Mn ypappK KATAVOUN HETAKIVAOEW®V TNG NULATELPNG Awpidag

[a TN yevikevon NG HOPPWONG TOL HAKPOGTOLXEIOV 0 AVENAOTIKA COUATO VIO AVaL-
KUKAWLOpevn @opTion, Sev pmopel va epappootei peBodoloyia avaloyn pe tig mponyov-
HEVEG, AOYW TNG TOAVTTAOKOTNTAG TWV KATAVOUWY TACEWYV KAl TAAOTIKAOV HETAKIVIOEWY
7oL SNuUIOVPYOLVTAL KATA TIG AVAKVKALCELG. Tl T HOpQwoT TOV GTOLXEIOV YL AVAKVKAL-

(opevn @opTion, Aowmov, Ba mpémel va tponynOei n Aemtopepng e€€taon TG Un YPAUUKNIG
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Zxnua 6: KapmdAeg tkavotntag Akvi{opevov cwpatog vmo otabepr) katakdpuen Shvaun
yia Stdpopeg Tiuég Tdong Stappong, oy.

KATAVOUNG LETAKIVAOEWY TNG NLamelpng Awpidag (2x. 4) vt TLXOVOA KATAVOUT ACKOD-
LEVWV AVTOICOPPOTIODUEVWY 0pBWV TATEWY OTO AKPO TNG.

Apxikd, e€etaletal To amhovoTtepo TPOPANUA TOV TTPOGSLOPLOUOD TNG KATAVOUNG LLE-
TAKLVOEWY AOYW AVTOICOPPOTIOVUEVWY TACEWV Ylot CLYKEVTIPWUEVO POPTIO O€ TuXOVOA
0¢éon oto dkpo tng nuanepng Awpidag. Ita Tov aplOunTiKd VIIOAOYIOHO TNG KATAVOUNG
auTrG, epappoetat kat maAt  pebodoloyia Twv Gaydon kat Shepherd (1964). EmmAéov,
efetdfovtal EexwPLOTA TO CUHUETIKO KAl TO AVTICVUHETPIKO TIPOPANHa (Zx. 4.3), yia kdbe
éva and Ta omoia yivetat tpoonddela mpoodloplopod avalvTIKWV CLVAPTHCEWY TTOV TIPO-
oeyyilouv opBotepa Ta aptBuntikd anotedéopata. Ot EKOVEG TWV TIHOV TWV UETAKLVI-
oewv yla kabe Oéon petaxivnong kat k&dBe B€01 AOKOVHEVOL CLYKEVTPWUEVOL GOPTIOV
napovaotalovrat ota Ixnpata 7a kat 7b, avtiototya.

ZnUewVETAL OTL T KATAVOT HeETakVoewv mov Ba mpokvyel yia ta dvo mapamdvw
npoPArpata Ba mpémel va tkavomolel Stapopovg mePLOPLOHOVG. Apyikd, Ba mpémet va ika-
VOTIOLOVVTAL OL TIEPLOPLOUOL GVHUETPIOG TWV avTioTOLXWV TTPOPANUATWY, A& Kat 1) 1OLO-
ta tov Bewprjpatog Maxwell-Betti mov toxvet kat otnv mepintwon avtn (EE. 4.5, 4.15,
AVTIOTOLXA YlOt TO CUMUETPIKO Kal TO AVTIOVUHETPKO TpoPAnpa). Ot mapamdvw cuppe-
Tpieg Qaivovtat kabapd oto Xx. 7. AkOHa, eMELST| OL AOKOVHEVEG KATAVOUEG TACEWYV TIOV
egetalovtal eivat avtoicoppomovpeves, Snhadr ot ovvioTapéves Suvapelg eivat undevikée,
auTd onpaivet OTL kat Ta OAOKANpwpata UNdeVIKNG KAl TTPWTNG TAENG TWV LETAKLVIOEWV
Ba mpémet va eivar kat avtd pndevika (EE. 4.3, 4.4).

O 1poadiopipds Twv {NTOVUEVWY AvAAVTIKOV CUVAPTHOEWV Yivetal aTadlakd, ava-
yvwpilovtag og kdOe 0Tdd10 TN PaOIKr LOPPT) TG KATAVOUNG TWV HETAKLVI|OEWY, OL OTIOLEG

OUWG TTApOLOLALOVY Kol XAPAKTNPLOTIKEG HOPPEG ATVVEXELAG. Z€ TTPWTO OTASLO, AVayVw-
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2xnua 7: ZuvapTioelg HeTakiviong TG nuidmelpng Awpidag yia (a) To ovppetpiko kat (b)
TO AVTIOVUUETPLKO TTPOPAN AL

piletal n oxéon mov vIdpyeL HeTay TOv TPOPARHATOS TNG NaTELpNG Awpidag pe avTo
TOV NULATIELPOV XWPOV TIOL XPNOLUOTIOLEITAL GV VA O YewTeXVIKA TpoPAnpata, kabwg n
Baoikr pop@Pn TNG CLVAPTNONG OV KLpLapxel eival | AoyaplOpKn KaTtavopn HeTakLv-
OEWV TOV NULXWPOL LTI CLYKEVTpWEVO QopTio (EE. 4.7), n omoia yla To CuppETIKO Kat TO
AVTIOVHUETPIKO TIPOPANHa avTioTotel oTig EE. (4.8) kat (4.17), avtiototya. Av agatpefoiv
oL AoyaplOkEéG avTég GLUVAPTAOELG ATO TIG apXLikég kKatavoués (Zy. 4.6, 4.9), @aivetal 6TL

Xxvi



e&apavifovtal oL aoVVEXELEG IOV TTapATNPOLVTAL 0TI StaywViovg.

Eneidr opwg ta oOAOKANp@HATA TTOV TTAPAYOLV Ol TIAPATIAVW CLVAPTHOELG KATA Ui
KOG TNG nuLamepng Awpidag dev eivat undevikd, 6mwg amatteital, eL0dyovTat EMTAEOV Ot
ovvaptroelg Twv EE. (4.10) kot (4.19), avtioTotya, oL onoieg e§loopponodv Ta ONoKANpw-
HATA TWV TTAPATIAVE® CLVAPTNOEWY. AQALPOVTAG TIG CUVAPTIOELG AVTEG ATO TIG APYLKEG
KOTOVOUEG HETAKIVIOEWY, TIPOKVTITOVY Ol £1KOVEG TV Xy. 4.7 kat 4.10, avtioTowya.

[l TIG EVATOUEVOVOEG KATAVOUEG LETAKLVIOEWY, avayvwpiletat 0Tt e§akolovbel va
VTTApPYEL pia AoyaplOUIKr) HOP@T) AOVVEXELAG YLa LETAKIVIOT] KAt QOPTLOT KOVTA 0T dKpa
™G nanepns Awpidag. Iia to Adyo avto, Sokipdletat n xpron Twv CLVAPTHOEWV TWV
EE. (4.11) kat (4.20), pe TIG avTIOTOLXEG OLVAPTHOELG EELGOPPOTNOTG OAOKANPWUATWY TWV
EE. (4.12) kot (4.21), padi pe TIG OLUUETIKEG KAl AVTICVUHETPIKEG TTOANVWVUKEG CUVAPTT-
oelg Twv EE. (4.13) kat (4.22), avTioTOLXQ Ylot TO CUUHETPIKO KAL TO AVTIOVHUETPLIKO TIPO-
BAnua. Tia Tov mpoodioplopd Twv PEATIOTWY CUVTEAEOTOV TWV TAPATIAVW CLVAPTHOEWY
xpnotpomotovvtal ot alyopibuot feAtiotonoinong tng PiPAobNKng emoTHOVIKOVY VTTO-
Aoylouwv SciPy oe Y\wooa Python.

H tehkn ovvdptnon mov meptypd@el Tn petakivion oe pia 6€on y tng nuanepng Aw-
pidag yta povadiaio cvykevtpwpévo goptio otn B¢on p mtapovotaletar otny EE. 4.24, evd
EVOEIKTIKEG HOPPEG KATAVOUWY HETAKIVI|OEWY TIAPOLOLAiovTaL 6To ZX. 8, 0TIV QaiveTal
Kat 1) TOAD KaAT| TadTLon petadd Twv aplOunTikwy anoTeAEoUATWV KAt TNG TTPOTELVOUEVNG
AVAAVTIKNG OXEOT|G.

Displacement, U(y, p)
[N
1
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Zxnua 8: Katavoun petakivioewy yia tagopeg 0¢oeig povadiaiog cuykevIpwHEVNG 9Op-
TionG: ZOYKpLon aplOunTik@v anoTeAeoUATWV (CUHTAYEIS YPAUUEG) HE TNV TIPOTELVOHEVT
avavTIKh EKQpaot) (SLaKEKOUUEVESG YPAUHES).
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2t ovvéyela, egetdfovTal ot TepIMTWwoels 0pOOYWVIKNG Kal TPLYWVIKAG OpTIoNG (ZX.
4.13), ot omoieg pmopovv va Bewpnbodv wg OAOKANPOUATA CLVEXWY OLYKEVTIPWUEVWY
goptiwv (EE. 4.29 ka1 4.31, avtioTotya), (e Ta OAOKANpOHATA TWV CLVAPTHoEwV va dido-
vtat oto [apaptnua 4.A. EVOeIKTIKEG HOPPEG UETAKIVI|OEWY YLa TIG TTAPATIAVW POPTIoELG
napovotalovrat ota Xy. 4.14 kot 4.16, avtioTotya.

Baoet twv mapandvw cuvaptioewv uropel mAéov va efetaotel akpipéotepa n ovpme-
PLPOPA TOL MK VI{OUEVOL OWUATOG. TTlo CUYKEKPLUEVQA, WG EPAPULOYT| TOV KEPAAALOV AVTOV
e§etdletal n Katavopn Tdoewv oL aockeitat 0T SlemPaveLla, Kabws Kat 1 KATAvopn e-
TAKLVI|OEWY TOV OWHATOG IOV Sev BpiokeTal o€ ema@r e TNV empavela Atkviopov. Ia tov
TOPATIAVW OKOTIO, TIPAYHATOTIOLELTAL SLAKPITOTIOINOT TNG TIEPLOYNG EMAPTG CWHATOG - Pdi-
onG, ev LTOAOYIloVTaL OL TIEG TWV TACEWY OTA EVOLAUETA OTUELQ, £TOL WOTE 1] KATAVOLT|
UETAKIVIOEWY OTNV TIEPLOYT| AVTH VA ELVAL YPARWULKT), T) OTIOLAL AV TLOTOLKEL O eMinmedn empd-
vela AKviopov. [a Tov VTOAOYIOHO TWV HETAKIVIOEWV VLo TNV TUNUATIKA QUTT YPOHULKT
KATAVOT TACEWY, YiveTal SLaXwpPLOHOG TNG OE TPLYWVIKEG KATAVOUEG, YLaL TIG OTIOLEG OL [Le-
TOKIVIOELG LTTOPOVYV VL VTTOAOYLOTOVV aVAAVTIKA BACEL TWV OLVAPTHOEWY TTOV TTPOEKLY AV
TAPATIAVW.

Egappolovtag v mapandve Stadikacio yia Sid@opeg TIHEG HNKOVG EMAPNG OWHA-
T0G - PAOTG, TPOKVTITOVY Ol KATAVOUEG TACEWY TOV XX. 9 KAl Ol KATAVOUEG METAKIVI|OEWY
G Pdong Tov cwpatog ov Sev Ppioketal o€ ema@rn pe N Paon édpaong tov Xy. 4.21,
OTIOV QaiveTal OTL KAl 0TIG SVO TEPIMTWOELG OL KATAVOUEG ElvaL APKETA U Ypapkeg. ITa-
pola avtd, emPefatwvetal OTL ot TPOGHETEG HETAKIVIOELG TTOV XPNOLLOTOLOVVTAL YL T
HOPPWOT) TOV EAACTIKOD OTOLXEIOV He TN Stadikacia TPOoEYYLoNG TNG N YPARUKAG Ko
TAVOUNG HETAKIVOEWY Yl Ypappkn Oewpoduevn @option, PpiokovTtal TOAD KOVTA OTIG

TPAYHATIKEG TIHES (2X. 4.23).

Mopewon averaoTikol oToLyeiov VIO avakVKAL(OpEVN
QOpTLON

Exovtag Statvnoet avalvTIKEG EKPPAOELG YL TN [N YPAUUIKT KATAVOUT UETAKLVT-
OEWV TIOL TIaPAYEL piat Tuxovoa POpTIoN 0pBwV TAoEWV 0TO AKPO TNG NLATELPNG Awpidag,
OL EKPPATELS AVTEG ptopovy va atomonBovv kat va evowpatwBoiy 6tov akyoptBpo evog
LLAKPOOTOLKELOV YLaL TNV TEPLYPAPT] TNG OTATIKNG AVAKVKAL{OHEVIG CUUTIEPLPOPAG AIKVL-
(Opevwy cwpdtwy.

Onwg avapépOnke TPonyovUEVWS, EVMD Yl LOVOTOVIKEG POPTIOELG 1] LITOBEOT TVTIL-
KWV KATAVOUWY AOKOVHEVWYV TATEWYV KAL 1] YPAHULKOTIONCT TWV TTAPAYOUEVWYV [N VPO
UKDV KATAVOUW®Y HETAKIVIOEWY TIOPAYEL LKAVOTIOUTIKA AOTEAEOUATA, OTNV TEPITTWON
NG AVAKVKAL(OUEVNG QOPTIONG, AOYWw TNG TOAVTAOKOTNTAG TWV KATAVOUW®Y TACEWV KAl

SnpovpyovEVWY TAAOTIKOV HETAKIVOEWY, (Lot TETOLO TIPOCEYYLOT) e VITIOBEOT Ypapplt-
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Zxnua 9: Katavopn tdoewv yia Sta@opa UK naeng, ¢, 0L OToieg TPOKAAOVV YPOHULKT
KOTAVOUT HETAKIVAOWYV KATW amo TN ¢OpTion. Ot avTioTOIEG YPAUMIKEG KATAVOUEG TA-
oewV yla Kabe UnKog ema@ng onHeELwVOVTAL [e SLOKEKOHUEVES YPAUHES.

KNG KATAVOUNG AVIYHEVWYV Tapapop@woewy o Stemigavela dnpovpyel mpoPAnpata.

T T0 AOYO AUTO, 1] AVTLHETWTILOT TNG TIEPITTWOTG TG AVAKVKALLOUEVIG POPTLONG KO-
AovOei pia Stapopetikn TakTikr: Xe kabe Pripa yivetar mpoodloptopog piag KataAAnAng
KATAVOUNG a0KOVHEVWY 0pBdV TAoEWY, £TOL WOTE OL TAPAYOUEVEG HETAKLVAOELG TNG Ole-
TUPAVELAG AKVIOHOV va TavTilovTal [e TIG 0TOXeVOUEVEG LETAKLVIOELS Yia TN B¢on avtr
TIOV ATTAUTEL TO TIPOYPAUA TIEMEPACUEVWY OTOLXElWV. 21O ZY. 10 QaivovTal n apxikn Kat
napapop@wuévn B¢on Tov Mk VI{OHEVOV CWUATOG Kat TNG AKVIOTIKNG eTpavelag. H ypay-
LOOKLAOHEVT) TIEPLOXT] AVTIOTOLXEL TNV TTapapopwpévn BEon Tov COPATOG, OTTOV TTAPOL-
odfovtal povo ot Tapapopewaoelg TapdAnla otn @option ya evkpivela. Ot opBég ta-
0el, [0], kaBwg kal ot SLATUNTIKES TAOELS, OL OTIOlEG AoKODVTAL 0T AKVIOTIKT SLETPAveLa,
TPOKANODY ENACTIKEG HETAKLVIOELG, [Ue|, OL OToileg avantiooovtal kab' 0o To TA&TOG
(pe pmhe xpwpa), evad apvnTikEG TPpOoBeTeg (MTAAOTIKEG) HETAKIVIOELS [u, ] avamTdooovTal
oty meptoxr vIo Stappor| (He KOKKIVO Xpwpa) kot OeTikég TpooBeteq («kevdn) peTaxivr-
0L [u,] SnuovpyovvTtat peta&d Tov Ak VI(OHEVOL COUATOG KAt TNG EMPAVELAG AMIKVIOUOD
(He TPAOIVO XpWHA), ETOL WOTE OL CUVOALKEG HETAKIVIOELG VA Taplalovv pe avtég Tng At-
KVIOTIKNG empavetag (KOpPog j tov otoiyeiov), [uys) (ue kagé xpwua). Ilpotnapyovoeg
TAQOTIKEG peTakivoelg dev BewpovvTat 0To oxiua yia amhomoinon.

Mo ovykekpipéva, yivetat dtakpiromoinomn tng dem@dvelag AKvIopov o€ KOUPovg
eAéyxov, og kaBe Evav amd Tovg omoiovG elval AyvwoTH fia TOCOTNTA, AVANOYQ LLE TO AV O
KOUPOG avTog Bewpeital OTL £xet EAAOTIKE OLUTEPLPOPA, BpiokeTal VIO Stappor 1 av €XeL

anokoAAnOet and tn Paomn edpaong. Ztny mepINTWOT TNG EAACTIKNG CUUTEPLPOPAG Ay V-
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Zxnua 10: Katavopr Taoewv mov aockovvTal 6TNV AKVIOTIKT EMPAVELX KOl LETAKLVIOELG
TIOV TTAPAYOVTAL OTNV AVEAAOTIKT), TNV EAACTIKY KAl TNV TEPLOXT) XWwpiG EMaQT), Ol OTOiEg
Taptdlovy pe auTéG TNG AKVIOTIKNG ETPAVELAG.

0TI TOOOTNTA EiVAL ) ACKOVHEVT TAOT, | LOOSVVALA, 1] EAACTIKE) AVIYUEVT TTAPAUOPPWOT),
oTnV mepinTwon g dapporng ayvwoTn eival n TpocbeTn TAAOTIKH HeTAKIVION KATA TO
OVLYKEKPLUEVO Prifa pe TNV TAOT) Va gival YVwoTn Kat ion pe Trv Taon Stappong, EVw oTnv
TEPIMTWON TNG ATTWAELAG ETAPNG, AYVWOTN TOOOTNTA gival 1) TpOoOeTn peTakivnon mov
amatteital vo mpootedel 0N HETAKIVIOT TOV CWUATOG WOTE VO TTPOKVYEL 1) HETAKIVION
NG emPavelag Ak viopot, Snhadr| To kevo mov Snuiovpyeitat petagd cwpaToq - fAong, e
TNV Tdomn va eivat yvwotr kat ion pe T pndevikn. Ot mapandvew moodtnteg o adlaotato-
TIOUHEVT HOPPT} HTTOPOVV VA EKPPACTOVV TAVTOXpOVa péow piog petaBAntig w (EE. 5.3,
2x. 5.3).

T N Statnpnon OHWG TNG CUVEXELAG KAl OPAAOTNTAG TWV TTAPAYOUEVWY ATIO TO {a-
KPOOTOLXELO AMOTEAEOUATWY, OEV APKEL O TPOTSLOPLOUOG TWV TTAPATIAVW TTOCOTHTWY LOVO
0Tovg KOUPovG eAéyxov, ald Ba mpémet va poadiopilovTarl Kat oL avTioTolyeg Katavo-
ég ota Staotrpata petald Twv KOpUPwy eAéyxov. O akpiPng mpoodloptopds Twv onueiwy
petafaong amod pia Hop@r ovuneplpopdg oe pia aAAn eivat SOokoAog kat VITOAOYLOTIKA
un armodoTikog. ia To Adyo avto, 0Tn HOPPWOT TOL HAKPOTTOLXEIOV X PN OLHOTIOLEITAL Liat
amAomoinon, n onoia 6pws 8idet TOAL kaAd anotedéopata. ITio ovykekpuéva, mapatnpei-
TaL OTL [ia ATOKALOT] EAACTIKWY AVIYHEVOV TIAPAUOPPDOEWY ATIO TN YPAULKE KATAVOUN
OTO E0WTEPLIKO TOV LA TAUATOG TTAPAYEL [ict ATTOKALOT ATIO TN YPAUMIKT KATAVOT Yia TIG
LETAKIVIOELG, OL oToieg ovvdEovTal TpooeyyloTkd pe tn oxéon g EE. (5.19). Baoet tng
oxéong avTng Aomdy, pmopovv va Tpononolnfovy oL EAACTIKEG AVIYHEVEG TTAPAHOPPW-
o€lg, wote va dnpovpyndet ovpPatotnta pe Tig TPOobeTeg peTakivioels. AmodetkvoeTtal
OTL OV 0TI YPAUULKT) KATAVOLT IOV TIAPAYETAL EVOVOVTAG TIG TPOTIOTIOLNUEVEG TILEG OTA

dkpa Tov StaotApatog mpootedei To avtiBeto TNG AMOKALONG TNG KATAVOUNG TAACTIKWY



HETAKIVIOEWY ATIO TNV AVTIOTOLKT YPAUULKE KATAVOLT, Ol SIAPOPEG TIEPLOXEG OVUTIEPLPO-
pag (eAaoTIKN, aveAAOTIKT], ATOKOAANOT)) oplobeTobvTaL amd Ta onpeia TounG NG mapa-
TAVW KATAVOUNG HE TIG 0ptiovTLeG evbeieg TOV avTIoTOLXOVY OTIG TG w = 0 Kat w = Ey.

Ot dnpovpyodpeves amod Ty mapamavw Stadikacia KaTavopés Taoewy 1 .oodvvapa
AVIYHEVWYV EAACTIKWV TTAPALOPPWOEWY TTAPAYOVV HETAKIVI|OELG 0Ta oTpeia EAEyyov. Ap-
XIKA, TTAPAyOVTal HETAKIVIOELG OTA AKPA TOV OTOLXEIOL AOYW TWV CLVIOTAUEVWY duVd-
Hewv oTig Béoelg avtég, Paoet Tng Texvikng Bewpiag kapyng. Axdpa, TapdyovTat ETTAEOV
HETAKIVOELG 0T SLEMIPAveLa AVIOHOD AOYw TV AUTOICOPPOTOVUEVWY 0pBWV TACEWY, Ot
omoieg vroAoyilovtat agov n SNUIOVPYOVUEVT KATAVOT TAOEWY XWPLOTEL O€ ATAL OX1-
pata (Tpiywva, Tpamélia), ylo Ta omoia eival yVwoTEG oL OXEOELG VTTOAOYIOHOD TWwV Ttapa-
YOUEVWV UETAKIVI|OEWY, PACEL TNG CLUVAPTNONG UN YPAUUIKNG KATAVOUNRG HETAKLVIIOEWY
NG Nudmelpng Awpidag mov mapovotaotnke napanavw. Emiméov, n ovpfoln twv avtoi-
COPPOTOVUEVWY TACEWYV OTLG UETAKIVIOELG AapaveTal vtoyn amlomonTikd, Oewpdvtag
TapaBOAIKE KATAVOUT TATEWYV IE AKPA AVTA TNG TTEPLOXTG ETAPTG, VLA TNV OTIOlA PE TPOTIO
TIOPOOLO LLE AVTOV TIOV £YLVE YL TO EAACTIKO GTOLYELO TTPOKVTITOVY OL TPOOEYYLOTIKEG OXE-
oeig Twv EE. (5.13) xau (5.14).

[Tépav Twv mapamavw petakivioewv Ba mpémet va Anebovv emmAéov voyn ot mpod-
00eTeg peTAKIVIOELS IOV AVTIOTOLXOUV 0TO KEVO OWHATOG - BAOTG OTNV TEPIMTWOT| TIEPLO-
XNS amokOAAnonG, ot Tpdobeteg MAAOTIKEG HETAKIVIOELG O€ TiEpLOXEG LTO dlappor| Kal oL
TAAOTIKEG UETAKIVIOELG IOV €xovv OnpiovpynBei oe mponyovpeva Pripata. To aBpoiopa
OAWV TV TapATaVW LETAKIVOEWV OTN Slemi@avela Akviopov, Ba mpémnel va toovtat Ue
T OTOXEVOUEVT] YPAULLIKT] KATAVOUT| HETAKIVHOEWY TTOV 0pileTat yia To Mkvi{ouevo dkpo
ToL péAovg amd To TPOypappa Temepacpuévwy atolyeiwv. fia Tnv enitevén Tov oTOXOL AWV-
TOV, ekTEAoVVTAL EMAVAANVeLG pe StopOwpéves o kaBe emavalnyn TipéG w oTig B€oelg Twv
KOpPwv eAéyxov.

Zta mapadeiypata tov kegalaiov eetaletat apyikd éva Akvi{opevo owpa vIO oTaA-
Oepr| katakopven Svvaun (Zx. 5.10), yia to omoio mapovotalovrat ot KapmoAeg Svvaung
- HETATOTIONG Yia Stagopeg TiEG TANBoVG KOUPwV eAéyxov (2X. 11), and Omov @aiveTat
1 TOAD KA1} TTPOOEYYLOT TIOV YIVETAL YLt TO E0WTEPLKO TWV SlaoTNUATWY. AKOUA, TAPOL-
OL4{oVTaL OL KATAVOUEG EAACTIKDV AVIYHEVWY TIAPAUOPPWOEWY KAl TAACTIKWV UETAKLVT-
OewWV Yl SLAPOPEG XPOVIKEG OTLYHEG OTOV TIPWTO NIUKVKAO QOpTIonG (2X. 12) kat ot kata-
VOUEG TAAOTIKWYV UETAKIVOEWV UEXPL TO TEAOG TNG AVaKVKAL{OpEVNG @opTiong (XX. 5.13).
EmmAéov, ovykpivovTtal Ta amoTeAEOUATA IOV TTAPAYEL TO TIPOTELVOUEVO HAKPOOTOLKEID
{e T avTioTolya TEPAPATIKA Yia éva MKVILOUEVO TOoiXWHA OTALOUEVOL OKVPOSEHATOG e
tévovteg (2x. 13) kat évav mecod Toromotiag (Zx. 5.15), and 6mov @aivetat 0Tt TapodAo
TIOV TO TPOTELVOUEVO oTOLXElO deVv pmopel va Aafet vtdYn Tov TOAVTAOKOVG VOLOLG ava-
KUKALOT|G VALKV, givatl o€ 0€0n va Tpooeyyioel IKAvOTONTIKA TT) CUVOALKT] OUUTEPLPOPA
TWV HEAWV AVTWYV, Sedopévey TwV TElpapatikwv afefatotntwy.

Idwaitepn épgaon divetatl, TéAog, oTn onuaocia TG cwotrg Bewpnong Tng mapapop-
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Zxnua 11: Awcviopevo owpa vo otabepny katakdpven Svvaun: Kapmdleg op{dovTiag pe-
TATOTILONG - 0pLLOVTLAG eMBarAOpevNg SUvaung oe avakvkA(opevn @opTion yia Stagopeg
TIpéG MARBoVG KOPPBwWV EAEYXOV, 1y

QWOLLOTNTAG KAL TNG AVEAACTIKOTNTAG TWV AMKVI{OUEVWV CWUATWV LECW GUYKPLOTG TWV
TAPATIAV® ATOTEAETUATWV HE AVTA AVTIOTOLXWYV TPOCOUOLWUATWY OTIOV Ta AKVI{OpEVa
owpata Bewpodvrat dkapmnta 1) ehaoTikd (Xx. 14), and omov @aivetat 0Tt peTagd TwV Ma-
PATIAV® HOVTEAWY TIAPATNPOVVTAL OTUAVTIKEG ATTOKAIOELG Kal eEMOMEVWS av Ogv An¢Oel
VTIOYT 1] TAPAUOPPWOLUOTNTA T} T] AVEAACTIKOTNTA TWV CWHATWV ELCAYOVTAL OTJUAVTIKA
o@dApata otV TPOoBAETOUEVT] CLUTIEPLPOPA.

Zto mapdptnua Tov Kegalaiov mapovatdletal pia evalhaktikr pEBodog emilvong tov
TpoPANHaTOG TPOGSLOPLOHOY TNG KATAAANANG KATAVOUTG TACEWY 0T OlemiPdveta Akcvi-
OpOV w¢ TPOPANUa BeATioTOMOINONG, TO OTOI0 OpWG OEV TPOTLUATAL YEVIKWG AOYw VTTO-
AOYLOTIKOV QOPTOL Kat TTPOPANUATWV GUYKALOTG.

Mop@waorn avedaoTIKoL GTOLXEIOV Yia SUVAIKEG AVAADOELG

H poépewon tov pakpooTolyeiov Tov TPonyovHEVOL KeQAAAIOL apopoloe OTATIKEG
avakvkA{opeveg poptioels. Tia tn Xprion Tov Opwg oe Suvaptkég avalboelg eivat amapai-
TNTEG KATIOLEG TPOTIOTIOLNOELG, Yl va AngBel vmoyn n anooPeon tov otorxeiov kat dAAov
eidovg kivnoeig mépav g kabapd AKVIOTIKAG, OTwG 1) TARPNG amokOAANon arnod T Paon
¢dpaong kat n oAicOnon.

Ooov agopd oty anooPeon, yivetar Oewpnon andoPeong mapopota pe Ty andoPeon
avdhoyn tng tpéxovoag Svokapyiag, n omoia o€ eninedo tdoewv Sidetat and v EE. (6.5).
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Zxnua 12: (a) EAaotikég mapapop@woels (UmAe KapmoAeg) kot TAAOTIKEG HETAKIVIOELS
(KOKKIVEG KAPTTOAEG) TTOV AVATITVGCOVTAL 0TI AMKVIOTIKT OLETIPAVELX KATA TOV TTPWTO NL-
kVkAo @opTionG. Iapovotdletat o Sei nuumhdrog tng Stemgavetag. (b) Avrtiototxa on-
peia 0TV KAUTOAN @OPTLONG - ATTOPOPTIONG.

ISwaitepn péptpuva mpémet va AneOei étot wote va ikavomoteitat r ouvOrKkn mept pn avanto-
ENG epelkvoTIKWV TaoewV 0T SLemidveta Akviopov, 1 omoia onuaivet 6Tt to dfpotopa
TWV TAOEWV TIOL TTAPAYOLV TIAPALOPPWOELG Kal TwV Taoewv andoPeong Ba mpémet va &i-
vat évta pn e@eAkvotiko (EE. 6.8). O puBuog petaPolng twv tacewv otn Siemeavela,
Opwg, 8ev vroloyiletal amd TIg TAXVTNTEG OTA AKPA TOV OTOLXEIOV, AOYW TNG AVENUEVNG
Svokoliag, aAAd aplBuntikd ovpgwva pe tnv EE. (6.9). Me tov TpOmo autd TpoKvTTEL 1
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Zxnua 13: (a) Ietpapatikn kapmOAn OPTIONG - ATOPOPTIONG YIa TNV AVAKVKALKE CUTTE-
pLPopd ToL SokIipLiov oTALopEVOL okVpodEpaTog pe Tévovteg SRW-B (Twigden k.d., 2017);
(b) AmdkpLon GVHPWVA LE TO TIPOTELVOUEVO HAKPOOTOLXELO (UTTAE KAUTTUAEG) Ka GVYKPLOT)
pe TNV TepIPAAlovoa TWV MEPAPATIKDOV ATOTEAECUATOV (KOKKLVT KAUTTOAT).
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(a) (b)

Zxnua 14: Zoykplon Twv KapmoAwv SOVAUNG - HETATOTILONG TNG AVAKVKAIKAG CUUTEPLPO-
pag OTwg TpoPAEmeTaL and To pHakpooTotxeio yia Ta mapadeiypata (a) Ztabepng afovi-
k16 Svvaung kat (b) Towxwpatog Q.2 ue TEVOVTEG, Pe ATOTEAEOUATA TTPOCOUOLWHUATWY Ta

omoia Oewpolv To Aikvi{opevo owpa dxapnto 1 edaoctiko. [apovotdlovrat povo ot Oeti-
Kol nudoveg.

aviootnta (6.10).

[la va loxveL N Tapamdvw avicoTnTa, YiveTatl TpOTonoinon Tov Tpdnov kabopiopov
TWV EAAOTIKOV AVIYHEVOY TIAPAUOPPWOEWY Kal TpOoBeTwv petakivioewy Pacet Twv w
ovppwva pe T oxéoelg Twv EE. (6.12) kat (6.13), evw mapopola Tpomomoinon yivetat
kat ot dadikacia kKaboplopoy TwV SLAPOoPwWV TEPLOXWY OTO EOWTEPIKO TWV SLACTNHA-
Twv (Zx. 6.2). AKOHA, Ol GUVOAIKEG KAVOVIKOTIONUEVEG SUVAELG TTAPALOPPWOLHOTNTAG
Kat andoPeong oto cwpatddeto ovotnua Sivovrat and v EE. (6.22).

Ooov agopd oty mArpn amokoAAnomn kat Tnv ohioOnomn, Oa mpémnet va avagepBet ot
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Kat Ta 6vo atvopeva avrtipetwniCovtal pe Tov ido Tpomo, kabwg n TARPNG amokOAAnon
Bewpeital ovolaoTikad wg pia mepintwon oAioOnong pe undevikr afovikr) Svvaun. la va
An@Bei voyn n ohioBnon, eloayetal pia véa petafAntn s mov ek@palet tnv kabetn oty
anapapopewtn B£0n TOV CWUATOG HETATOTILOT TOL Atkvi{opevov dkpov. EmmAéov, elod-
yeTat éva véo evOLAUETO CVOTNHA CLVTETAYHEVWY, OTIOL 1 OAioOnon avTh €éxeL apaipebei
(2x. 6.1).

T tov kaBopiopod g ohioBnong, epapuodletat to kptrrplo odicBnong Coulomb (Avio.
6.23). Xe ouvn 0l KATAOKEVEG, TPOKVTITEL OTL YL Va LOXDEL TO TTAPATIAVW KPLTHpLo, Oa tpé-
net loodvvapa va toxvet n aviootnta (6.38). Xe kdbe Prita eAéyxetal av toxbeL n aviootnta
QUTH HE TNV LTIAPXOVOA KAVOVIKOTIONUEVT WG TIPOG TO KOG oAioBnon s, aAliwg peta-
Baretat wote 1 pio amod TG SVo aviodTNTEG IOV OEV IKAVOTIOLELTAL, VOl LKAVOTIOLEITAL WG
LooTNTA.

EmmAéov, elodyetatl évag amhoboTepog TPOTTOG VTTOAOYIOHOV TWV UETAKIVHTEWV AOYW
TwV avToicoppomovuevwy opbwv tdoewv mov Paciletat otn cvvioTapévn afovikr Kat
portr| k&Be Staotpartog (EE. 6.52). KabBwg ot mapayOpeves HeETAKIVIOELS eEapTWVTAL LOVO
amo TIG oLVIOTApPEVEG SUVANELS TWV SLAOTNUATWY, UTOPEL UETA TNV ekTEAEOT) KADE eTiL-
TUXNUEVOL Pripatog va yivetal amhomoinomn (Stypapikonoinomn) Twv Katavopmy eAaoTL-
KWV AVIYHEVEOV TTAPAHOPPWOEWV KAl TAAOTIKOV HETAKIVHOEWY, kKaBdg avto Helwvel on-
HAVTIKA TO DTTOAOYLOTIKO KOGTOG 0TV TEPIMTWOT) TNG SUVAIKNG avAAvoTG.

21 ovvéxela yivetat emPefaiwon tng SuvatodTNTAG TOV HAKPOOTOLXEIOV Vo TIPOPAE-
YeL TNy anwlela evépyetag mov Bewpeital ovvnBwg yla dkapmta cwpata, PAceL TNG apXhS
Satrpnong otpogoppns. Paivetat Aomov 0Tt yla TOAD peydAo HETPO EAACTIKOTNTAG KAt
oVVTENEOTT) amOoPeoTn, oL anmokpioelg o€ eEhevBepeg TAAAVTWOELS, TAAIKY Kivion NiLTO-
VOELSOUG LOPPTIG KAL OF KATAYEYPAUUEVT] OELOpIKT Kiviion TANoLa{ouv oAb tkavoTotrn-
TikA TIG OewpnTikd MpoPAemOpEVEG ATOKPIOELG AKAUTTOY CwHATWV (2X. 15, 6.5 - 6.9). To
napanavw cvunépacpa eniPefatdvetal kat ano ta Xx. 16, 6.10, 6.12, dmov mapovotdlo-
vTtat ot toodvvapot Adyol anwAELag EVEPYELAG KATA THV KPOVOT], OL OTOLOL AV XPTOLHOTIOL-
nBovv oty avalvtikn Avon, didovv idia petakivion katd Tov TpwTo NKOKAO TAAAVTW-
OTG [E QUTNY TOV HAKPOOTOLXEIOV, Ao Omov @aivetal 0Tt kabwg avEdvetal To puétpo eha-
OTIKOTNTAG 1] 0 CLVTEAEDTNG AMOOPEONG, 0 L00SVVAHOG AOYOG amwAelag evépyetag oXedov
TowTiCetat pe Tov OewpnTIkWG TPOPAETOHEVO YLat AKAUTTO CWUATA [e AVEAATTIKT KPOOT).

H wavotnta Tov Tpomonompuévov CLUVTEAEOTT ATIWAELAG EVEPYELAG VAL TIEPLYPAYEL TNV
TPAYHUATIKT] CUUTIEPLPOPAE TOV OWHUATOG, OTIWG TPOKVTITEL ATO TO TPOTELVOUEVO UAKPO-
otoiyeio, e€etaletat ota Zy. 17, 6.14, 6.15, ano 6mov @aivetat OTL 1 Xprjon £VOG TPOTOTIOL-
NHéVoL ouvTteleoTn évavtt Tov Bewpntikol Sivel amotedéopata TOAD TO KOVTA 0g avTd
Tov TpoPAETOVTaAL ATIO TO HAKPOOTOLXELO.

Axopa, TapovotdleTal | CUUTEPLPOPA EVOG TTAPAUOPPWOLUOV AKVI(OUEVOL COUATOG
o eAevBepeg TANAVTWOELG, TAAKT KiVIOT) NULTOVOELSOVG LOPPTG KAl OE KATAYEYPApL-

HEVN OELOIKY KivNoT), avaAoya Pe TIG TIHEG SLaPOpwV TApAPETPWY, OTIWG elval TO HETPO
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Zxnua 15: Ztpoer| kat yoviakn TaxvtnTa yo eAevBepn TaAdVTWOT AKAUTTOV COUATOG e
0o/ = 0.5 yia o = 0.2, 6nwg TPoKLTITOVY ATO TO HAKPOOTOLXEO (UTAE KapTTOAEG) Kot
™ Bewpntikn AVon (moptokali kapmoAeg).

eAaoTIKOTNTAG 1) 0 OVVTENEOTHG amooBeong (Zx. 6.16 - 6.18), ) Taon Stapporg TOv Cwpa-
106 (2X. 6.19 - 6.21) kat 0 cvvteleoThg TPIPNG (Zx. 6.22 - 6.24).

Yvunepdopata

v mapovoa didaktoptkn SlatptPr) TAPOLOIACTNKE N HOPPWOT) LAKPOOTOLXEIWY Yia
TAPAHOPPWOLUA AMKVIOHEVA CWHATA. APYIKA TTAPOVCIACTNKE 1| HOPPWOT] TOV EAACTIKOD
HAKPOOTOLKELOV, e TNV OTIOla PAVKE OTL O AIKVIOHOG Kal 1} Tapapdpewon Sev eivat oTnyv
TpaypatikotnTa Eexwptotd avopeva. Kabwg ot Statopég Tov pédovg kovtd otn Stemt-
@dvela Aikviopov dev mapamépvouy eminedeg, n texvikn Oewpia kdpyng mov epapuole-
Tat ovvBwg yla oToLyeiot SOKOD - LTTOOTLAWUATOG KPIVETAL AVETAPKIG YLt TNV TTPOPAeYN
NG CLUTEPLPOPAG MK VILOUEVWY HEAWV Kat Yo TO AGY0 auTo Xprotpomofnke to mpo-
BAnua g nuamelpng Awpidag anod ) Bewpia ehactikoTnTAg Yo TNV e&éTaon Ty emip-
PONG TNG UN YPAUUKOTNTAG TACEWVY KOVTA OTNV TEPLOXT| EMAPNG OWHATOG - Baong. Ta
anmotedéopata yla TNV nudmelpn Awpida evowpatwbnkav oe éva ototxeio dokol - vmo-
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Zxnua 16: Adyog TOV TPOTOTOLNHEVOL CUVTEAECTT AMWAELAG KLV TIKHG EVEPYELAG TIPOG TOV
avtiotoi o Bewpntikd ovvteleotr) Tov Housner yia (a) éva dkapnto cwpa pe petaPAnTod
Aoyo andoPeong, ¢, kat (b) yla éva owpa pe oxedov dmelpo Aoyo anooPeong pe petaBAnTn
aApxXIKN TTapapdpewon, €9. O Adyog Avynpdtntag mov éxet OewpnOei eivar v = 0.2.

OTLADPATOG PACIOPEVO OTIG SUVAELS Yia va AngBovy vtoyn oL TPOoOeTEG HeETAKLVIOELS
TIOV O@eilovVTaL OTN UI YPAUUIKOTNTA TACEWV KATA UAKOG TNG OLEMQAVELAG AKVIOUOD.
H oA kalr| akpifela Tov EAACTIKOD HAKPOOTOLXEIOL amodeiXTnke HEow GCVYKPLONG TWV
TAPAYOUEVWY ATIOTEAEGUATWV VLA XAPAKTNPLOTIKEG TEPIMTWOELG MKVILOUEVWY HEAWV (e
avTioTol A AmOTEAETUATA TIPOCOHOLWHATWY 0TO TTpdypappa Abaqus. Akopa, @avnke 0Tt
yta péAn vrd vynArn agovikr Svvaun, N TAPAROPPWOIUOTNTA TOVG EMNPEALEL ONUAVTIKA
TNV aOKPLOT} TOVG, EVW KAToLa Tipwta antotedéopata édeEav tn Betikn emppor mov pmo-
pel va €xeL ) evowpdtwon Mkvi{OHEVWY HEADY 0€ TTAAIOLL OO0V AQOPA GTN GELOLLKT] TOVG
OVLUTIEPLPOPAL.

T va AneBei vtoyn n avedaoTikoTNTA, ) TEPIMTWOT) TG LOVOTOVIKNAG POPTIONG UTTO-
PEL VAL AVTIHETWTILOTEL HEOW ETEKTAOTG TWV EKPPACEWY YLA TIG TPOCOETEG HETAKIVIOELG
AOYW TWV AVTOICOPPOTIOVHEVWY TACEWY, WOTE VA AVTATIOKPIVOVTAL 08 KATAVOUEG TAOEWV
¢nerra anod Swappor|. H idia dtadikaoia, opwe, dev umopei va epaplooTel oty mepintwon
avakVKALLOUEVNG QOPTIONG, AOYW TWV TOAUTAOKWY KATAVOUWY TAOEWV Kal TAACTIKWV
LETAKIVIOEWY TIOL SNUOVPYOVVTAL KATA TNV AVTIOTPOPn TNG ¢opTionG. Tia va emAvOei
TO GUYKEKPLHEVO TTPOPANHa, Oa TTpEmeL apyikd Vo TPOTOLOPLOTEL ] 1N YPAUHLKT) KATAVOT
HETAKIVAOEWY 0TO AKVI{OHEVO AKPO YLat TUXOVOA KATAVOWT] TACEWV GTO AKPO AUTO, TO
om0 EMTVYXAVETAL HECW OAOKAT|PWOTIG TWV TIPOTELVOUEVWY AVAAVTIKWYV EKPPATEWY TIOV
avagépovral oTn dpdon evog oVYKEVTPWHEVOL @opTiov oe TvXoLoa Béon oTo dKpo TNG
nuanepng Awpidag. Méow twv ek@pdoewv avTwv SeixTnke OTL akdpa Kat ya éva gla-
OTIKO OWA, TOOO 1] KATAVOUT TACEWV OTNV TIEPLOXT| ETAPTIG, OTO 1| KATAVOUT] LETAKLVT)-
oWV 0TNV TepLoxn mov dev PpiokeTal o€ emar| pe TN Paon €dpaong, eivat pn ypoppKES.

Ot mponyodpeveg avalvTikég ekppdoelg evowpatwOnkav oe évav ailyopiBpo ya tnv
TEPLYPAPT] TNG CLUTIEPLPOPAS AVEAACTIKWV AKVILOUEVWY OWUATWV 08 avakvKALouEvn

@OpTION, 0 oToi0g Paciletal oTOV TPOTSLOPIOHS KATAAANANG KaTavopng Tdoewv oTn Ote-
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Ixnua 17: Ztpo@n kat Ywviakr TaxOTNTo TAPALOPPWOLHOL AKVI[OHEVOL OWHATOG e
a =026 =5-10%ka ¢ = 5% oe ehevbepeg Takavtdoeg pe Oy/a = 0.5, Onwg
npoPAénovTal and To HakpooTolxeio (UmAe KapmOAES), TNV AvaAVTIKY AVOT TOV AKAL-
TITOV OCWATOG L€ TPOTIOTIOLNUEVO OLVTEAEOTT| ATWAELAG EVEPYELAG (TTOPTOKAAL KAUTTVAEG)
KAl TNV avaAuTikn ADOT) TOV AKAUTITOL CWUATOG pe TOV OewpnTikd ouvTEAEOTH ATTWAELAG
evépyelag (TpAaotveg KapmoAEG).

TUPAVELA AMKVIOHOV, £TOL WOTE Ol TTAPAYOUEVEG HETAKIVIOELS, Hall e TVXOV TTpoiTapxOv-
0€G TAAOTIKEG UETAKLVIOELG, VA TAUPLALOVV [E TIG GTOXEVOEVEG HETAKIVI|OELG 0TO MK VILO-
HEVO AKPO. ZXOAAOTNKE QKOO 1] HOPPT| TWV TTAPAYOUEVWV KATAVOHWDY TACEWY Kat TAA-
OTIKWV UETAKIVIIOEWY, EVAD T ATOTEAETHATA TIOV TIapdyovTal Yia Statd&elg Akvi{opevwy
TOLWHATWY TTOV Ttapovotdfovtat otn PiPAloypagia cuykpibnkav pe ta avtiotoa mepa-
HaTikd, OeiYoVTag OTLTTAPA TNV AMAGTNTA TOV VOOV VAIKOD Ttov BewpriBnke, Ta Paotid xa-
PAKTNPLOTIKA TNG AVAKVKAIKNG OLUTEPLPOPAG Hopovv va ipoPrepBovv. EmmAéov, ov-
YKPIVOVTAG TO TTAPATIAV®W ATTOTEAETUATA UE AVTE AVTICTOLKWY TIPOCOUOLWUATWY, OTIOL Tat
Akvi{opeva pén BewpriOniav dkapmta ) EAaoTikd, amodeiyTnke OTL TOGO 1 TAPAUOPPW-
OlOTNTA 600 Kat N avedaoTikdtnTa Oa pémet va AapPdvovtat voyn kataAARAWS yia
pio akpiPéotepn mpoPAeyn TNG AKVIOTIKNG CUUTEPLPOPAG TETOLWY CWUATWY.

H nponyovpevn popewon enektddnke, TéNog, £T0t wote va e&etaotel  Suvapukn ov-
UTEPLPOPA, HECW TNG EVOWHATWONG KATAAANANG Statdnwong yia Ty andofeon kat yia
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AANeG Hop@PEG kivnong, dnAadn Tnv mANpn amokOAAnon kat Tnv oAicOnon, oL omoieg ov-
vunapxovy ouvhOwe padi e To Aikviopo. Ooov agopd otny andoPeon, xprotpomnotrOnke
pia Statvmwon mapdpoLa pe avTHY TNG andoBeong avaloyng pe Tny tpéxovoa Svokapyia,
evw AN@Onke Lépiva €ToL dOTE TO ABPOLoUA TWV TATEWYV TIOV TPOKAAOVV TIAPAUOPPWOT|
KAl TWV TAOEWV anmooBeong KAt HKOG TNG SLem@avelag AKVIopoD va givat mavTa pn-
eQEAKVOTIKO. AVTOG O TIEPLOPLOPOG OpieL Tr HEYLOTN TAOT] TTAPAUOPPWOTNG TTOV UTTOPEL VL
avantvyOei oe kaBe Prypa. Ita va Angbei vdyn n oAiocbnon kat n MAfpng amokdAAnomn,
1 onoia Bewpeital wg eldikn mepintwon g ohioOnong yia pndevikn agovikry Sbvaun, et-
oayetat pia véa petaPAntr mov ek@pdlet tn petatomon Aoyw oAicOnong kat éva véo ob-
OTNHA OLVTETAYHEVWY, EVW 1) OAioBnon tpoadiopiletal éToL WO Te va tkavomoLleital oe kabe
Brina éva kpirpio tpiPng Coulomb.

To mpotewvopevo pakpootolxeio pnopei va evowpatwdei oe kabe meptBarlov meme-
PACHEVWY OTOLXEIWY, EKTEADVTAG TIOAD YpYOpOTEPEG Avalboelg o€ oxéom He ovpPatikd
TIPOYPAULATA TIEMEPACHEVWY OTOLKEIWY, EVW Trapéyel TTOAD kaAn akpifeta. Apxika dtatv-
nwOnke yla TN Stepedvom TG GUUTEPLPOPAG AKVILOHEVWY HEAWY TTOV XPTOLUOTIOLOVVTAL
oe Sratakelg oelopkd avatdéipwy kataokevwy mov mapovotaiovtal otn PrpAoypagia, Ta
omoia pmopel va avantvfouvy peydhes afovikég Suvapelg katd Tny Kivior Tovg Kat eno-
HEVWG 1) TAPAUOPPWOLUOTNTA KAl aVEAAOTIKOTNTA TOvG Oa pémet va AngOovv vtoymn yia
pia akpipéotepn mpoPAeyn G ovpumepipopdg Tovg. IlioTeveTal OTL TO TPOTELVOUEVO pa-
KpooTolxeio Ba mpoogépet meplocOTEPN avTomenoiBnon oTovg Pnxavikovg 6oov agopd
OTNV LTTOAOYLOTIKT] AVAAVOT) KATAOKEVWV pe Akvi{opeva péhn, Ta omoia Bewpovvtal wg
pio TOANG& vTooXOpeV ADOT Yla TN BEATIWON TG CELOIKTG OVUTIEPLPOPAG VEWV T EVIOYV-
HEVWYV KATAOKEL@V, CUUPAANOVTAG 0TV TEKUNPIWOT) TWV KAVOVIOHWY YLla TOV 0XeSLaopO
Tovg kat tpowdwvtag tnv emotnuovikn eEEAEN oToV oNUAVTIKO AUTO Topéa.

To mpotetvopevo pakpootolyeio, OUWE, TapEXeL ONUAVTIKA ATOTEAEOHATA KAl OO0V
a@opd 0T SUVALKT AOKPLOT) EAeVOEPA LOTANEVWY CWUATWY, LOLAITEPA OOV APOPA TNV
aAnAemidpaon peta&d Akviopov, ohicOnong, mTANpovg amokOAANoNG, TAPAUOPPWOLUO-
TNTAG, AVEAAOTIKOTNTAG Kat amooPeong katd Tig kpoLoels. [a to Aoyo avto, Bewpeitat 6Tt
Ba ovpPdaret oty e€EMEnN TG Stepebivnong TNG OLUTEPLPOPAS LEpOVWUEVWY Atkvi{Ope-
VOV OWHATWY, kKaBwg ot vitdpyovoeg BewpnTikég AVOELG AKAUTTWY CWHUATWY SV HITOpOovV
va A&Bovv vtoYn TOg TIG Tapantdvw AAANAETIOPATELS KAl TWV ATTOTEAEOUATWY TOVG KATA
TIG KPOVOELG.

Kamota onpeia mov xpnlovy mepattépw Siepevdvnong eivat:

o AvalvTtikotepn Stepedvnomn g aAnhenidpaong peta&d tov Aikviopov, TG oAioOn-
onG, NG MANPOVG ATOKOAANONG, TG TAPALOPPWOILOTNTAG, TNG AVEAACTIKOTNTAG
KAl TNG anooPeong Katd TG KpOUOELG.

o KaBopiopdg tov ovvteleotn) anwlelag evépyelag yla mapapopaaotpa Akviiopeva

HEAN pe Eva eDPOG TIHWV ISLOTATWY Kat SLEPEVLVNOT TNG LKAVOTNTAG TOV VA TIEPLYPA-
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QELTNV AWAELA EVEPYELAG KATA TNV KIVIOT) TOVG YLa TUXOVOEG SUVAIKEG QPOPTIOELG.

Atepebvnon tnG PeATiwonG TNG CELOUIKNG CUUTEPLPOPAG TWV KATATKEVDV LETW XPT-
onG Ak vilopevwy pedawv avti yio ovpfatikd péhn kat e§étaon PéAtioTwy Statdewv

yla Ta PEAN auTd.
Eméxtaon tov pakpooTolxeiov o€ TpLodldoTata owpaTa.

Enéxtaon Tov pakpootoixeiov yla va Aappavet vmoyn peydAeg oTpo@PEG, ETOL WOTE
N ovpuneptpopd xOapadwv Akvi{opevwy CwpdTwy va umopel va tpoodloptotel akpt-
Béotepa.

Enéxtaon tov pakpoototyeiov, dote va Aapavel vmoyn Tuxov xakapo omAlopo N
AANeg pepikég ovvdéaelg ot Slempdavela CWIATOG - BAONG, OL OToiEG TTpOTEiVOVTAL
oe kdmoteg Statd&elg Akvilopevwv pedv mov mapovotdlovtat otr Piploypagia

Kat ennpedalovv T AMKVIOTIKT| Kiviom, dlaitepa KaTd TIG avakVKAIOELG.
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Introduction

'The complex mechanics of the motion of rocking bodies and structural members have at-
tracted attention from the scientific community in recent years, although the phenomenon
is known from ancient times, as many ancient monuments were built with members al-
lowed to rock.

'The rocking motion occurs when a member is unrestrained or partially restrained at
its base, so that tensile stresses cannot be transmitted, as considered in classical structural
mechanics. Given that the imposed forces are large enough, the rocking body detaches
from the ground and rotates about one of its corners. The vertical force acts as the restoring

torce that tends to bring the body back to its original equilibrium position.

1.1 Analytic formulations

'The simplest structure exhibiting rocking motion is the solitary rigid rocking block de-
picted in Fig. 1.1. Observations regarding the state of such bodies after a seismic event
were used by seismologists over a century ago to deduce earthquake characteristics (Milne
and Omori, 1893; Kirkpatrick, 1927, among others). However, a more in-depth exami-
nation of the dynamic response of rocking bodies began with the seminal work by Housner
(1963), who concluded that rocking bodies are more stable that they seem, especially as
size increases.
'The equation of motion of the rectangular rigid rocking block is:

4 , il

i sin [ sgn(0) — 6] — gg cos [asgn(f) — 0] (1.1)
where 6 is the rotation of the block, « is the angle expressing the slenderness of the block
(tana = b/h, Fig. 1.1), ii, is the ground acceleration and p is a frequency parameter

defined for the rectangular rocking block as:

p=+/39/4R 1.2)
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Figure 1.1: Solitary rigid rocking block.

where R is the semi-length of the diagonal of the block (Fig. 1.1).

Assuming that bouncing and sliding do not occur, the transition between the rotational
motions around the two corners involves only an impact which is assumed to be perfectly
inelastic and produces energy loss. Housner assumed that during the impact, the angular
momentum about the next rotating point is conserved, so he concluded that the ratio of
the kinetic energies, or equivalently, the square of the ratio of the rotational velocities after

and before the impact for a rectangular rigid rocking block is

r = (Z—j) = (1 — gsin2 a) (1.3)

where r is called the apparent coefficient of restitution. The notion of the coefficient of
restitution introduced by Housner is still used today. However, experimental results show
that this coefficient of restitution is usually larger than the theoretical value predicted by
Eq. (1.3).

The dynamic response of the rigid rocking block has been of interest for many re-
searchers after the seminal work by Housner. The dynamic response to typical harmonic or
pulse excitations, resembling near-field earthquake excitations, has been extensively stud-
ied by Spanos and Koh (1984), Tso and Wong (1989), Anooshehpoor et al. (1999), Zhang
and Makris (2001), Dimitrakopoulos and DeJong (2012) and Voyagaki et al. (2013),
among others, while other researchers, such as Yim et al. (1980), Makris and Konstantini-
dis (2003), Dimitrakopoulos and Paraskeva (2015), Bachmann et al. (2018), Giouvanidis
and Dimitrakopoulos (2018) have examined the rocking response to earthquake records.
In contrast to conventional structures, the response of the rocking block is highly nonlin-
ear and, as a result, small changes in the rocking body or the excitation characteristics may

produce large changes in the rocking response. It is interesting to note that if a rocking
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body overturns by a ground motion of particular intensity, that does not necessarily mean
that the same body will overturn by a scaled ground motion of higher intensity.

As mentioned above, the solution of the equation of motion of the rocking block re-
quires that each time an impact is detected, the numerical integration scheme is stopped
and a reduction in the rotational velocity is performed, based on the coeflicient of restitu-
tion. Of particular interest is the work by Prieto et al. (2004), Prieto and Lourengo (2005)
and Pefia et al. (2007), where this velocity reduction is performed by introducing a math-
ematically equivalent, highly nonlinear impact force in the equation of motion, which can
be solved in a uniform manner throughout the whole time history.

Despite the importance of the simple rocking model introduced by Housner, its short-
comings regarding its ability to predict the response of structures deviating from the as-
sumptions of the planar rigid block with fixed rotation points on a rigid base, became
soon evident, so more refined models which took into account aspects not included in the
original rocking model emerged. Of high interest are the works by Ishiyama (1982) and
Shenton and Jones (1991), where other rigid body motions are taken into account, such
as sliding, which may or may not be combined with rocking, and translational/rotational
free-flight.

Another aspect of Housner’s model that has gained much attention is the coefficient
of restitution. Several experiments of almost rigid rocking blocks have been performed
(e.g. Lipscombe and Pellegrino, 1993; Pefia et al., 2007; ElGawady et al., 2011; Ceh
et al., 2018; Klaboe et al., 2018, among others), showing that the real apparent coefficient
of restitution is not in agreement with Housner’s prediction, which usually overestimates
the energy loss. Housner’s coefficient of restitution is only dependent on the geometric
characteristics of the rocking block, but in reality it is also dependent on material proper-
ties, since bodies are not absolutely rigid. Furthermore, motions other than pure rocking
are exhibited, such as bouncing, indicating that Housner’s assumption of perfectly plastic
impact is not in agreement with the experiments. A modified coefficient of restitution
has been proposed by Kalliontzis et al. (2016) and Kalliontzis and Sritharan (2018) and
probabilistic analyses have been performed by Chatzis et al. (2017), considering that the
reaction during impact does not act on the corner of the body but on the interior of the
rocking base, implicitly taking into account the deformability of the rocking body during
impact.

Moreover, other impact formulations have been used instead of some form of Hous-
ner’s coeflicient of restitution. One such formulation by Giouvanidis and Dimitrakopoulos
(2017a) uses Newton’s contact law, which is widely used in nonsmooth dynamics, refer-
ring to the ratio of the contact point velocity before and after impact. Other formulations
found in literature include those by Yilmaz et al. (2009) and Zhao et al. (2019), where
alternative forms of the coeflicient of restitution are employed.

Most of the aforementioned works refer to rigid bodies rocking on rigid surfaces. The
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rigidity of both the body and the surface means that impacts are instantaneous and gener-
ally take place on the corner of the rigid body. In reality though, since rocking bodies are
not infinitely rigid, impacts in nature are not absolutely instantaneous and contact between
the body are the rocking surface takes place in a wider region than just a corner of the body
and, as a consequence, energy losses do not happen instantly but more gradually. That is
the reason why many researchers have tried to examine more refined models, which take
into account some form of deformability.

One such attempt was to replace the rigid base with an elastic foundation. Psycharis
and Jennings (1983) studied the dynamics of slender rigid blocks sitting on elastic fouda-
tions in two forms, namely a continuous layer of compression-only springs and dashpots
(Winkler foundation) and a simpler, but equivalent model with compression-only springs
and dashpots at two locations under the rigid rocking block (Fig. 1.2). In a following
paper (Psycharis and Jennings, 1985), the upthrow of the rocking body is also examined.
'The problem of the viscoelastic foundation has been studied by many researchers from
then on, including Palmeri and Makris (2008b), Palmeri and Makris (2008a) and Chatzis
and Smyth (2011), among others.

Figure 1.2: Deformable foundation models (Psycharis and Jennings, 1983).

From early on, it was understood that not only deformability at the foundation, but
also deformability along the height of the rocking body should be taken into account for a
more accurate prediction of flexible rocking bodies, leading to refined models, which take
into account the interaction between the deformations of the structure and its rocking
motion. Several researchers have studied the dynamic response of single- or multi- degree
of freedom systems rocking on rigid or elastic foundations, including Psycharis (1983),

Chopra and Yim (1985), Ichinose (1986), Psycharis (1991), Oliveto et al. (2003), Acikgoz
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and DeJong (2012), Vassiliou et al. (2015) and Acikgoz and DeJong (2016), among others.

Several other models involving rigid rocking bodies have been presented in literature.
Psycharis (1990) examined the rocking response of two-block assemblies, whose response
involves several rocking modes. Ther and Kollar (2018) introduced a computational model
for the prediction of the dynamic response of multi-block assemblies. Another structural
system involving rocking members is the rocking frame, which involves several parallel
rigid rocking columns capped with a rigid beam. This model has been examined by Makris
and Vassiliou (2013) and Dimitrakopoulos and Giouvanidis (2015). Its two-storey coun-
terpart has been studied by Allen et al. (1986), while a structural system with a deformable
cantilever representing conventional storeys on top of a rocking first floor has been exam-
ined by Bachmann et al. (2017).

Tendons can also be used in rocking members to increase their stability. Although
tendons impose large axial forces on rocking members, meaning that the deformability
plays a major role in their response, rigid body simplifications have been presented in
literature, referring to solitary rocking bodies (Vassiliou and Makris, 2015) or the rocking
frame (Makris and Vassiliou, 2014; Dimitrakopoulos and Giouvanidis, 2015; Giouvanidis
and Dimitrakopoulos, 2017b), which can model bridges with rocking piers.

Some other models which have been examined include a masonry arch comprised
of four rocking parts (Oppenheim, 1992), rocking bodies on a seismically isolated base
(Vassiliou and Makris, 2012) and a rocking body with extended base, on which it is able
to roll on (Bachmann et al., 2019). The equivalence of the equations of motion of several
of the models mentioned in the previous paragraphs with the solitary rocking block is
presented in DeJong and Dimitrakopoulos (2014).

All of the aforementioned models involve bodies whose rocking motion is planar. Un-
less the seismic excitation is uniaxial and the body is absolutely symmetric with respect to
this axis, or the width of the body in the perpendicular direction is substantially larger
than the examined one, the three-dimensional motion needs to be taken into account for
a more accurate prediction of the spatial rocking motion, which involves another motion
mode called wobbling, referring to the rotation of the body about the vertical axis. Gen-
erally, neglecting this motion mode by examining only the planar rocking motion gives
unconservative results. The interaction between rocking and wobbling of cylindrical bod-
ies is examined in Stefanou et al. (2011) and Vassiliou et al. (2017), while Vassiliou (2018)
study the response of a group of cylindrical bodies capped with a rigid slab. Regarding
prismatic bodies, Chatzis and Smyth (2012) examine the rocking response of such bodies
on elastic foundation, while in Chatzis and Smyth (2013), the motion of prismatic bodies

on wheels is studied.
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1.2 Structural members exhibiting rocking motion

Although structural members exhibiting rocking motion were extensively used in ancient
temples, many of which have withstood many earthquakes, showing the seismic resilience
of those structures, not many contemporary structures have been designed to rock. Up to
date, rocking members have been applied in case of bridge piers (e.g. the South Rangitikei
Railway Bridge, Skinner et al., 1980) and chimneys (e.g. at Air New Zealand Engineering
Base at Christchurch, Sharpe and Skinner, 1983), while many Russian structures have
been constructed in the last decades with a ground floor consisting of rocking columns

(Poliakov, 1974).

Figure 1.3: The South Rangitikei Railway Bridge.

Although the number of real structures designed to rock during a seismic event is not
large, a significant amount of analytical and experimental work has been performed in
the last three decades regarding structural members exhibiting rocking motion. In fact,
the application of the concept of rocking is particularly suited to precast structures, which
have been gaining attention over the last years. A state-of-the-art analysis of rocking
applications to precast structures can be found in Kurama et al. (2018).

Instead of conventional connections used in precast strucures (called “emulative” con-
nections), which are designed to mimic the response and performance of equivalent cast-
in-place monolithic concrete joints, another type of connections called “jointed” connec-
tions have emerged, which utilize the separation of the structural members at beam-
column or panel-foundation interfaces. In this case, instead of the formation of plastic
hinges at member ends, the connections are designed to allow controlled rocking through
the inherent discontinuity between members, thus reducing member damage. In prac-

tice, apart from this inherent discontinuity between structural members, these connec-
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tions also include unbonded post-tensioned tendons to provide a restoring force. How-
ever, since this configuration alone leads to a nearly nonlinear-elastic behaviour under
reversed-cyclic loading, meaning limited hysteretic energy dissipation and possibly large
displacements, additional supplemental energy dissipation components, such as mild steel
or friction/sliding devices are used.

Jointed connections utilizing controlled rocking have been tested in moment-resisting
frames, usually consisting of multi-storey columns and single-bay beams. Post-tensioned
tendons are used to establish the connection between the columns and the beams, although
as previously mentioned, mild steel rebars may accompany the tendons (“hybrid” frames),
in order to provide energy dissipation during the opening and closing of the connections,
apart from their contribution to the moment resistance. Several experimental projects
have been performed on such frames (Cheok and Lew, 1993, Stone et al., 1995), but the
most known one is the USA-Japan cooperative research program on PREcase Seismic
Structural Systems (PRESSS), whose goal was to develop design recommendations which
would allow confident use of such systems in practice and develop new materials, concepts
and technologies for precast construction, suitable for seismic application (Priestley, 1991).
'The program included the test of a five-storey building, shown in Fig. 1.4, which included
tour different ductile structural frame configurations.

Jointed connections have also been tested in structural walls. Many researchers have
examined the response and design of solitary (uncoupled) precast walls featuring gap open-
ing across horizontal connections using only unbonded post-tensioned steel, such as Ku-
rama et al. (2002), Perez et al. (2007) and Erkmen and Schultz (2009), among others.
As mentioned earlier, the unbonded post-tensioned tendons offer low energy dissipation,
so configurations with supplemental energy dissipation components in uncoupled rock-
ing walls have also been examined by Kurama (2000), Ajrab et al. (2004) and Restrepo
and Rahman (2007), among others. Hybrid wall systems that contain mild steel across
the horizontal joints apart from post-tensioned tendons have also been presented in the
works by Holden et al. (2003), Smith et al. (2011) and Smith et al. (2013), among others.

On the other hand, coupled rocking walls are equipped with ductile vertical joint con-
nections which yield or slip during wall rocking, leading to energy dissipation, while al-
lowing for easy replacement after the seismic event. Such systems have been investigated
by Aaleti and Sritharan (2009), Sritharan et al. (2015) and Twigden et al. (2017), among
others. For the PRESSS research program mentioned above, the jointed wall system
shown in Fig. 1.4 was also part of the study (Sritharan et al., 2007).

'The jointed connection configuration has been also investigated in the case of bridge
piers, where special details have been examined to minimize the damage at the column-
to-foundation and column-to-cap-beam joints (e.g. Mander and Cheng, 1997; Restrepo
et al., 2011; Guerrini et al., 2014, among others). Furthermore, segmental column con-

figurations have been investigated, where all joints can develop rocking (e.g. Hewes and
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Figure 1.4: The PRESSS test building (Priestley et al., 1999)

Priestley, 2002; Kim et al., 2010; Motaref et al., 2013, among others).

Apart from the previous structural configurations, rocking is also expected for ma-
sonry shear walls, which are expected to detach from their base and rock during a strong
seismic event. Several studies have been published presenting experimental results and
design methodologies for such configurations, which consider the rocking motion and
the deformability of these members (Magenes and Calvi, 1997; Madan et al., 2008;
Lagomarsino, 2015; Kalliontzis and Schultz, 2017, among others). Furthermore, steel
moment-resisting frames with rocking beam-to-column connections or rocking horizon-
tal joints have also been examined, which are similar to the concrete systems described
above (e.g. Christopoulos et al., 2002; Kim and Christopoulos, 2008; Lin et al., 2013;
Wiebe et al., 2013, among others). A state-of-the-art review which also includes steel
rocking systems can be found in Chancellor et al. (2014).

Guidelines addressing this alternative seismic design have been published by several
organizations (ACI 2003, ACI 2014, fib 2003, New Zealand Standards 2006), while in
Eurocode 8 (EN 1998-1:2004), rocking is anticipated for large lightly reinforced walls
during strong earthquakes.

Conventional structural elements are usually designed to gradually yield and develop
damage during an earthquake, as performance-based design suggests. However, this ap-

proach means that after a strong earthquake, the building has to be repaired, with signifi-
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cant cost. What is more, if the earthquake is strong enough, large residual displacements
may develop, making the repairing process harder and more costly.

In contrast, the solutions involving rocking members presented above overcome some
of these problems. First of all, instead of the formation of plastic regions near element
ends, which have to be repaired after an earthquake, rocking members simply rock if the
imposed forces are large enough, meaning that this discontinuity between the structural
members is inherent in the structural system, which is designed to have such a response.
'This way, rocking elements act as mechanical isolators, similarly to yielding elements,
as the forces acting on the structure cannot exceed the maximum values allowed by the
rocking mechanism. Similarly to yielding, rocking also modifies the natural periods of the
system, making the structure less prone to resonance.

Furthermore, rocking elements present very small residual displacements in contrast to
conventional structural members, exhibiting a “flag-shaped” hysteretic behaviour. That is
why they are also known in literature as self-centering systems. As a result, after an earth-
quake the structure exhibits little damage and almost no residual drifts, meaning that few
repairs have to be made after the seismic event to make the structure safe to be used again,
saving money and time. Also, in the case of aftershocks, these self-centering systems are
able to withstand sequential ground motions better than conventional systems, which may
need to be repaired to function properly. So, rocking elements are proposed as an inno-
vative way to improve the seismic resilience of structures. This approach may be further
developed to be used as a quick and relatively inexpensive way of strengthening of existing
buildings, as these rocking members can be prefabricated and installed in buildings when

needed.

1.3 Existing finite element modelling techniques for

modelling the rocking response

As described in the previous sections, various analytic solutions exist regarding the motion
of the rocking block, as well as approximate methodologies for the design of rocking sys-
tems. Most of the former assume that the body or at least its base is rigid. This assumption
is, however, far from reality for rocking bodies included in usual structural configurations.
Regarding the latter, several assumptions regarding the stress distributions and member
deformations near their end and the interaction between rocking and deformability are
usually made, which may not be sufficiently documented. Apart from that, in many cases,
the experimental or numerical results of specific examined configurations are used to cal-
ibrate the aforementioned elements of the proposed methodologies, making difficult the
generalization of their application.

In addition, most of these methodologies have not been implemented in finite element
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tormulations, thus few computational models have been proposed, which can be incor-
porated in a general finite element framework, in order predict the response of structural
configurations which include rocking members. From the above, it is evident that there is
a necessity to develop a model able to describe the response of deformable rocking bod-
ies and restrained rocking systems, which can be implemented in a general finite element
framework. This will enable a more accurate prediction of the response of structures with
rocking members in seismic scenarios, allowing for their more confident design, which
will also lead to their more widespread use.

General approaches for the numerical evaluation of the response of rocking structures
include two-dimensional (2D) or three-dimensional (3D) finite element models, where
contact between elements is taken into account using constraints implementing special
constitutive relations or by using explicit joint elements, and discrete element models (e.g.
the discrete element method - DEM or the rigid bodies spring model - RBSM), where
the structure is idealized as an assemblage of discrete blocks, interacting with each other
in some way (e.g. Zienkiewicz and Taylor, 2005).

However, these approaches are considered computationally inefficient for large-scale
practical structural analyses and simplified approaches in the context of one-dimensional
(1D) finite elements are preferable. Belleri et al. (2013) present and compare such ap-
proaches, which have been used by several researchers.

One approach is to use a compression-only fiber section at the end of the rocking
member. However, this approach fails to capture accurately the gradual transition from
a nonlinear compression-only stress distribution at the rocking interface to a linear one
turther from the rocking surface and, as a result, the produced results are highly dependent
on the distance between these sections.

Another approach uses a layer of compression only springs between the rigid rocking
body and the rocking surface to account for the deformability near the rocking interface.
'The main drawback of this approach is that the value used for the spring striffness is not
clear and is usually determined from the equivalence of the axial stiffness between the
original deformable rocking member and the spring layer model, which however fails to
predict correctly the whole rocking motion. In practical applications, the stiffness of the
springs may also be determined so that the results of experimental tests performed are
matched.

Such an approach is used extensively in works involving the response of rocking ma-
sonry walls. In Penna etal. (2014), a simplified macro-element with a total of eight degrees
of freedom is used. Six of them belong to zero-length interfaces above and below the main
element, while the remaining two belong to the central, assumed rigid, panel. The axial
and rotational deformations, influenced by the rocking motion, that is the separation of
the panel from the other members, are concentrated on the two zero-length interfaces,

while the panel maintains only the ability of shear deformations. The formulation of these
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extra zero-length elements is based on the activation of only the compressive portion of
the end sections of the member, optionally also taking into account the yielding of the
material. A similar approach is used by Vassiliou et al. (2016), proposing a zero-length
compression-only fiber section element for the rocking interface.

Another simple model commonly used contains a rotational spring between the base of
the rocking member and the rocking surface, which describes the static moment-rotation
law of the rocking member. The calculation of this relationship is straightfoward for soli-
tary rigid rocking members and presents negative stiffness after rocking inititates. How-
ever, the use of such a relationship for restrained rocking members is deemed problematic,
since such an approach does not allow for the correct prediction of the axial motion of the
member and, as a result, the effect of the restrained imposed on the rocking motion (e.g.
through tendons) is ignored. Vassiliou et al. (2014) use such an approach together with
a viscous damper calibrated so that the energy loss produced for a harmonic excitation is
equal to the one expected for Housner’s impact model. Diamantopoulos and Fragiadakis
(2019) also use various implementations of rotational springs to solve structural configu-
rations including rocking members, where impacts are detected and treated explicitly.

Some other approaches have also appeared in literature. Roh and Reinhorn (2009a),
Roh and Reinhorn (2009b), and Roh and Reinhorn (2010), after recognizing the im-
portance of the nonlinear stress zone near the contact surfaces, use a linearization of this
zone in order to represent the modified force and stiffness distributions along the ele-
ment in a simplified manner, arriving at a stiffness matrix formulation for the nonlinear
behavior of rocking columns. Furthermore, they continue their research by examining
the moment-curvature diagrams of rocking elements taking more effects into account,
such as local crushing near the ends of the rocking surface and the stabilization of the
moment-curvature curve for cyclic dynamic analyses after damage occurs. Barthes (2012)
presents a zero-length two-node rocking element used to represent the behaviour of the
rigid rocking interface between structural elements, which is governed by kinematic con-
straints imposed using the Augmented Lagrangian Method.

What is important to note here is that most of the aforementioned approaches use
classical damping (mass-proportional and/or tangent-stiffness-proportional) to model the
damping of the elements. However, as presented previously, rocking elements also exhibit
loss of energy during the impacts, which is concentrated in a limited amount of time.
Such form of energy loss may be of less importance when constrained rocking elements
are considered, in contrast to solitary rocking elements, however its contribution to energy

damping has not been investigated thoroughly.
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1.4 General concepts and work significance

'The main drawbacks of the aforementioned approaches are that the interface between the
rocking body and its base is assumed to be rigid, the deformability of the rocking body
near the contact area is only approximately taken into account or that the axial motion of
the member is not considered. Such limitations are deemed problematic for the accurate
prediction of the response of restrained rocking members or members under large axial
torces, in general.

In this dissertation, a macroelement formulation for the prediction of the response of
rocking members is proposed, which is able to take into account the deformability both
along the height of the members, as well as near the contact with the base. The main char-
acteristic of rocking bodies is that, in contrast to conventional structural members, tensile
stresses cannot develop across the rocking interface, meaning that the stress distribution
across this interface is nonlinear. This stress nonlinearity means that the displacement
distribution of the fibers across the width of the element is also nonlinear. Thus, member
sections in these zones do not remain flat, so the usual approximations used in the techni-
cal theory of bending (e.g. Housner and Vreeland, 1965) cannot by used. As a result, the
more general theory of elasticity is used instead, which is considered an invaluable tool for
the accurate prediction of deformable rocking bodies.

It is noted that the consideration of the deformability near the contact area is crucial
for the accurate prediction of the rocking motion of rocking members under large axial
forces, such as tendon- or beam-restrained members, where there is an interaction between
rocking and the restraining member, or even solitary rocking bodies during impacts, where
explicit energy loss assumptions must otherwise be adopted.

'The macroelement can be incorporated in a general finite element framework, such as
OpenSees (Mazzoni et al., 2006) and is used for the rocking ends of a rocking member,
where, as described earlier, nonlinear stress distributions are expected to develop (Fig.
1.5). The macroelement can be used to predict the response of solitary rocking bodies, as
well as rocking members included in structures (e.g. tendon-restrained shear walls) in a
consistent manner, without any restriction concerning the kinematic constraints.

With the help of the proposed macroelement, the examination of the response of
rocking members in structural configurations using computational models will be a much
easier task, and as a result it will promote scientific progress in this area. This is considered
important, since, although the use of rocking members is a much promising solution for
the improvement of the seismic performance of newly designed or retrofitted structures,
as explained above, further research is needed in order to gain confidence on their use.

Furthermore, it is considered to provide significant contribution towards the exami-
nation of the response of solitary rocking bodies, especially with that regards the energy

loss during impacts, since a closer examination of the member response during an impact
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Figure 1.5: Use of the macroelement for the member segments near the rocking ends,
where nonlinear stress distributions develop. Two rocking macroelements are used for the
rocking column shown, one for each rocking end. Node j of each element refers to the
corresponding rocking end.

is only possible when the member is considered deformable, both along its height and

across its base, and, as a result, the impact is not instantaneous.

1.5 'Thesis outline

'The macroelement presented in this thesis is gradually built from simpler to more complex
formulations. Each chapter builds upon the formulations and concepts of the previous
chapters, so ultimately the formulation of a macroelement for the prediction of the cyclic
or dynamic response of inelastic rocking bodies is presented.

In Chapter 2, the formulation of the macroelement for the elastic rocking body is pre-
sented, where the main concepts used throughout the thesis are introduced. In this chap-
ter, it is shown that for an accurate prediction of the response of deformable rocking bod-
ies, the nonlinear stress distribution near the rocking surface must be taken into account,
which cannot be considered by the technical theory of bending used in usual beam-column
element formulations. The nonlinear stress distributions across the rocking interface are
separated into technical theory of bending distributions according to the resultant forces

and self-equilibrating stress distributions, which do not contribute to the resultant forces
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but influence the local displacements near the rocking interface, which however are crucial
for the determination of the rocking motion.

For the examination of the influence of the self-equilibrating stresses, the model of the
semi-infinite strip is used to examine the area of the rocking body near the rocking surface.
'The nonlinear stress distribution for the semi-infinite strip is calculated according to the
theory of elasticity and, more specifically, in this dissertation the numerical methodology
proposed by Gaydon and Shepherd (1964) is implemented. Analytical expressions are
thus derived for the additional displacements produced by the self-equilibrating normal
and shear stresses due to triangular normal and parabolic shear stress distributions across
the rocking interface. The aforementioned results are incorporated in a force-based beam-
column algorithm (Neuenhofer and Filippou, 1998), which uses a corotational coordinate
system, and the produced macroelement can be used in any finite element framework,
such as OpenSees.

Three characteristic rocking body configurations are examined: a rocking body un-
der constant vertical force, a tendon-restrained rocking body and a rocking wall inside a
single-bay frame. These examples are analyzed using both the proposed macroelement and
the commercial finite element program Abagus, while comparison of the results shows the
excellent accuracy of the proposed algorithm, which furthermore yields much faster anal-
yses. In addition, parametric investigations of the aforementioned configurations using
the proposed macroelement show the effect of member deformability on their response,
while the positive effect of the inclusion of rocking members in frames on their seismic
response is also shown.

Chapter 3 describes the extension of the previous formulation to account for material
inelasticity for monotonic loading. For this reason, a trapezoidal instead of a triangular
normal stress distribution is taken into account due to material yielding. Analytical ex-
pressions for the additional displacements due to this load are presented, according to the
semi-infinite strip results, which are incorporated into the macroelement.

Chapter 4 examines thoroughly the problem of the determination of the displacements
across the semi-infinite strip under arbitrary self-equilibrating normal loads on its end.
More specifically, analytic expressions are proposed for the displacement function for a
concentrated normal load at an arbitrary position across the end of the semi-infinite strip,
which must exhibit specific properties. The singularities of this function are examined and
its relationship with the displacement function of the similar semi-infinite space problem
is recognized.

For an arbitrary normal load distribution, this load can be considered as the integral of
continuous concentrated loads and thus the aforementioned analytical expressions must
be integrated. The necessary expressions for the calculation of the displacements due to
rectangular and triangular loads are provided. The results regarding the triangular loads

are used next to calculate the nonlinear stress distribution across the rocking surface, so

14



1.5. 'Thesis outline

that this surface remains planar, as well as the nonlinear displacement distribution of the
non-contact region of the rocking body.

In Chapter 5, a macroelement formulation for the prediction of the response of inelastic
rocking bodies under cyclic loading is proposed. In this case, due to the development of
plastic displacements and unloading, typical stress distributions cannot be used as in the
monotonic case, but are determined from the target member end displacements using the
displacement distribution of the semi-infinite strip.

For this reason, the rocking interface is discretized into control points and a target
displacement is assigned to each one according to the member end target displacements.
For each iteration, a stress or additional plastic or “gap” displacement is assigned to each
node, according to whether an elastic, an inelastic or a non-contact response is assumed,
respectively. In order to achieve smoothness of the solution, an approximate methodology
is proposed so that the stress and displacement distributions across the intervals between
control points are determined from the control point values. The sum of the displacements
produced by the resultant forces, the self-equilibrating normal and shear stresses, the addi-
tional plastic or “gap” displacements and the preexisting plastic displacements must match
the target displacement at each control point.

'The response of an inelastic rocking body under constant vertical force is examined
next, paying special attention to the stress distribution across the rocking interface and
the gradual formation of plastic displacements. Furthermore, the results produced by the
macroelement for a tendon-restrained rocking concrete wall and a calcium-silicate brick
rocking masonry wall are compared with experimental results, showing a very good agree-
ment given the experimental uncertainties. Comparison of the previous results with ones
of corresponding rigid or elastic rocking body models shows that member deformability
and material inelasticity must be appropriately taken into account for an accurate estima-
tion of the rocking member motion.

Chapter 6 extends the cyclic macroelement formulation to include the treatment of
damping and other motion modes important for the dynamic response of rocking bodies,
namely upthrow (complete detachment from the rocking surface) and sliding. Regarding
damping, a formulation similar to tangent-stiffness-proportional damping is used, taking
into account that the total stress across the rocking interface is always non-tensile and the
physical constraints of the problem are not violated. Regarding upthrow and sliding, these
motion modes are taken into account in a uniform manner by introducing an intermediate
coordinate system that uses a new internal variable representing the displacement due to
sliding, which is determined so that a Coulomb friction criterion is adhered to.

Using the proposed formulation, the effect of the damping coefficient and the modulus
of elasticity of solitary rocking bodies on the energy loss is examined, where is its shown
that the energy loss of almost rigid almost infinitely damped bodies is very close to the

one predicted by Housner (1963). In addition, the effect of various parameters, such as
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1. INTRODUCTION

the modulus of elasticity, the damping coeflicient, the yield stress and the friction angle
on the response of a deformable solitary rocking body under free oscillations, a sine-pulse

excitation and a recorded ground motion is examined.
Finally, Chapter 7 summarizes the key and novel points of this dissertation and pro-

poses suggestions for future research.
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Modeling of elastic rocking bodies

In this chapter, the formulation for the elastic rocking bodies is presented, which intro-
duces the basic concepts, all more complex models presented in the following chapters
build upon. It is noted that, some of the notation was changed with respect to the original
corresponding paper (Avgenakis and Psycharis, 2017) in order to be consistent with the

notation used in other chapters of this thesis.

2.1 Element coordinate systems

In order to account for the geometric nonlinearity, the macro-element formulation uses
the notion of a coordinate system without rigid body modes, which do not contribute to
the element forces, an idea which has been extensively used in corotational finite element
tormulations (e.g. De Borst et al., 2012). This natural (or corotational) coordinate system
corresponds to a reference system of a simply supported beam, which has three, instead
of six, degrees of freedom (Fig. 2.1b): The axial elongation, d, the chord rotation at the
rocking end, 0, and the chord rotation at the other end, 6,. The forces acting on the
respective degrees of freedom, F,, are the axial force, IV, the moment at the rocking end,
M, and the moment at the other end, M.

Transformations between the local and the corotational coordinate system exist, which
consider large member displacements (e.g. De Borst et al., 2012). However, for moder-
ately small displacements, the following simple transformations between the local and the
corotational coordinate system can be used (e.g. Neuenhofer and Filippou, 1998):

If u, = [u, ug, us, uy, us, ug|” is the vector of the six local system displacements (Fig.
2.1a) and u, = [6,60y,0,]" is the vector of the three corotational system displacements

(Fig. 2.1b), the conversion between the two vectors is given by

u, = Tu, (2.1)
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2. MODELING OF ELASTIC ROCKING BODIES

Displacements Forces

Node j \F
(Rocking end) Node JT ’

(b)

Figure 2.1: (a) Local member displacements and forces, required by the general finite
element framework and (b) Corotational member displacements and forces used by the
element formulation.
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-1 —= 1 =
2 L 0 2 L 0
1 1
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7 7 (2.2)
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0 — 10 —— 0
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where L is the original length of the member and s, us are the transverse displacements
in the local coordinate system (Fig. 2.1a).
Similarly, given the vector of nodal forces in the corotational coordinate system, F,, =
[N, My, M,)T (Fig. 2.1b), the forces in the local coordinate system, F. = [Fy, Fy, F3, Fy, Fs, Fg]"
(Fig. 2.1a), are given by:

F.=TF, (2.3)
where .
B Us — U Us — Ug T
-1 - 01 0
L L
. 1 1
T =10 - 0 0 —— 1 2.4
7 7 (2.4)
0 ! 1 0 ! 0
B L L i

'The corresponding stiffness matrix in the local system, KL, is given by:
K =T, +TK,TT (2.5)
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2.1. Element coordinate systems

where K, is the corotational system stiffness matrix and

0 0 00 0 O]

01 00 =10

N0 0 00 0 0
T, = — 2.6
& Lo 0o 00 0 0 2.6)

0 -1 00 1 0

0 0 00 0 0]

is an additional matrix term due to the geometric nonlinearity with N being the member
axial force.

As can be seen in Figs. 1.5 and 2.1, node i of the element has a conventional re-
sponse (fixed with the connecting element), while node j is the rocking end of the ele-
ment. The displacements of node j refer to the displacements of the corresponding node
at the rocking surface and not to the node at the end of the rocking member. The rocking
surface is assumed to remain planar throughout the whole response, meaning that these
displacements (translational and rotational) fully describe the linear displacement distri-
bution across the rocking surface.

No limitation is imposed on the displacements of node ; of the element, meaning that
the rocking surface can translate and rotate during the response. For example, in case of
the rocking wall shown in Fig. 1.5, which is placed between two beams in one floor of a
building, the rocking surfaces on the beam sides are considered to remain planar within
the length of the wall, but the beams can move and rotate following the deformation of
the whole building. This allows for a greater flexibility regarding the models that can be
examined using the proposed macroelement.

It should be emphasized that, since node j of the element is attached to the rocking
surface and not the body itself, the rigid body modes assumed for the transformation
between the local and the corotational coordinate systems correspond to the element as a
whole and not just the rocking body. Furthermore, the rigid body rotation assumed for
the element, (u;s — u2)/L, should not be confused with the rotation due to rocking used
in rocking literature. For example, a deformed fixed cantilever does have a rigid body
rotation in the previous context but has no rotation due to rocking. Besides, the proposed
formulation does not treat rocking and deformability as separate phenomena and does not
introduce independent variables for each one.

For a conventional elastic member, which does not exhibit rocking motion, the re-
sponse in the simply supported beam natural coordinate system is linear. Thus, given the
natural system nodal forces of the element, F,,, the natural system displacements according

to the technical theory of bending, u, are simply given by:

U, = fun Foo (2.7)
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2. MODELING OF ELASTIC ROCKING BODIES

with fu, being the flexibility matrix of a simply supported beam, including shear defor-
mation effects (e.g. Przemieniecki, 2012):

L
o 0 0
L o L o
_ _ 2.8
fo=1 0 sgrtGar “omr T Gar (28)
0 L n « L . «
! 6EI " GAL 3EI  GAL |

where E is Young’s modulus, G is the shear modulus, A is the area of the member section, I
is the moment of inertia of the member section and « is the shear shape factor with o ~ 1.2
for rectangular cross sections (the shear deformations contribution can be neglected by
setting v = 0.0).

It should be noted, that in the aforementioned relationships, P — ¢ (element inter-
nal) effects are not taken into account, since they are not considered important for the

formulation of the macro-element.

2.2 Influence of rocking on the element response under

given nodal forces

If one of the supports of the member cannot allow the development of tensile stresses, the
stress distributions across the interface section difter from those of the technical theory
of bending and the response in the natural coordinate system is no longer linear after the
initiation of the rocking motion. More specifically, since node j of the element of Fig.
2.1b is assumed to be the rocking end (Fig. 1.5), this happens if the resultant axial force

at the rocking interface is located outside the kern of the section, that is if

M,y B

where B is the width of the member and M, and N are the moment and the axial force

at the rocking end, respectively.

Let us assume a member with semi-width b = B/2 with the coordinate system and
the forces at the rocking end as depicted in Fig. 2.2a, which has a contact length C'
with the base. For a given natural system force vector, Fy, the forces at the rocking end,

F, = [N,, M,, Qr]T, normalized with respect to the member thickness, d, are given by

F. =S8, F, (2.10)
where
1 0 0
1
S,=-10 1 0 2.11
=3l (2.11)
L L
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2.2. Influence of rocking on the element response under given nodal forces
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Figure 2.2: (a) Resultant forces at the contact side; (b) Normal and shear stress distribu-
tions considered at the rocking interface; (c) Stresses according to the technical theory of

bending; and (d) Self-equilibrating stresses.

Without loss of generality, we can assume M, > 0, thus stresses develop at the interval
[—b, —b + C. 'The following stress distributions are considered at the interface between
the rocking body and the base (Fig. 2.2b):

(a) Normal stresses [0p] which have a triangular distribution. The maximum value is

Om at the edge Y = —0, while the stresses become zero after length C, that is at
Y=-b+C.

(b) Shear stresses [1o] which are assumed to have a parabolic distribution. Their value

iszeroat Y = —band Y = —b + C, while the maximum value 7, occurs at

Y=-b+0C/2

Therefore, the stress distribution parameter vector for these stress distributions, R =
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2. MODELING OF ELASTIC ROCKING BODIES

( ‘Mr’ \
b LE
3( " Nr)

g N,

[C, o, Tm]T, is:

r

353 (2.12)

I Q
92 A
2b+ 5

)
where N, < 0 denotes compression.

As mentioned above, the stress distributions across the rocking interface differ from
those of the technical theory of bending. However, since the element material is consid-
ered elastic, the principle of superposition holds, so the effect of these stress distributions

can be calculated by separating them into two parts:

(i) Stresses according to the technical theory of bending, which act on the whole section and

can be calculated as usual from the resultant section forces; and

(i1) Self-equilibrating stresses, which do not produce resultant forces, but influence the

local deformations of the member near the contact zone.

'The contribution of the technical theory of bending stresses to the member flexibility
matrix and displacements can be calculated according to Eqs. (2.8) and (2.7).

'The influence of the self-equilibrating stresses can be more easily evaluated by exam-
ining the normalized problem referring to a member with semi-width b = 1, which is
loaded in the interval [—1, —1 + ¢|, where ¢ = C/b is the normalized contact length. It is
noted that the stresses at a point (X, Y") of the general problem are equal to those calcu-
lated for the normalized problem at normalized coordinates x = X /b, y = Y /b (Gaydon,
1965).

For the normalized problem, the load parameter vector 7 = [, Oy, T ” is given by:

r=5SR (2.13)
where
1
i 00
Sy = 01 0 (2.14)
0 0 p

with p = sgn (M,) denoting the signum function of M,.

For the forces at the rocking end, F}, the normal and shear stress distributions ac-
cording to the technical theory of bending, [o,] and [7i], are calculated first (Fig. 2.2c¢).
By subtracting these stress distributions from the ones assumed for the rocking interface,

[00] and [79], shown in Fig. 2.2b, one can derive the self-equilibrating stress distributions
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2.3. Self-equilibrating stresses contribution

that need to be considered (Fig. 2.2d). These self-equilibrating normal and shear stress

distributions, given in terms of the normalized problem, are:

1 ¢ 3¢ 2 1
g l(1-=—< <o for —1<y<—1

Oee(y) = 5 (2.15)
o (—E>+ se_ ¢ Yy for —14+c<y<l1
" 4 4 4 -7
?m{(ﬁl(c—gl)_f>+(u)y+(_%+g>yg] for —1<y<—-1+c¢
Foly) = c 2 c c 2
7A:m|:_g+gy2:| for —14+c<y<l1
(2.16)

2.3 Self-equilibrating stresses contribution

Semi-infinite strip problem

In order to examine the effect of the self-equilibrating stresses of Egs. (2.15) and (2.16)
on the normalized simply-supported beam member of semi-width b = 1, it is useful to
notice that, since the self-equilibrating stresses do not produce resultant forces, their effect
far from the loaded area is insignificant, as the Saint-Venant assumption suggests.

For this reason, instead of solving the problem of a simply-supported beam loaded on
its one end with self-equilibrating stress distributions, the equivalent semi-infinite strip
problem, loaded on its end (z = 0,—1 < y < 1) with these self-equilibrating stress
distributions, is solved instead (Fig. 2.3). This is possible, because, as will be shown later,
there is a compatibility between the active degrees of freedom of the two models. It should
be noted, that, in contrast to the well-known semi-infinite space, the semi-infinite strip
is stress-free at its sides (y = *1).

'The stress distribution problem of a semi-infinite strip with semi-width b = 1 is solved
with the method developed by Gaydon and Shepherd (1964), using stress functions of
certain form. This method is then extended in order to solve the rocking body problem.

'The problem considered is that of a semi-infinite strip x > 0, —1 < y < 1 with
self-equilibrating stresses at the end, z = 0, o and 7. These self-equilibrating stress
distributions are decomposed into symmetric (o even and 7, odd in y) and antisymmetric
(0% 0dd and Tgy even in y) parts, since for each one, stress functions of different form need
to be assumed.

The stress distribution produced by the self-equilibrating loads of the symmetric or an-
tisymmetric problem can be derived using a stress function ¢ that satisfies the biharmonic
equation:

Vig=0 (2.17)

23
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Figure 2.3: Normalized semi-infinite strip problem.

and the following boundary conditions:
Dz :gbyy:() ony::tl
¢ - x? ¢xy xy? onx = O

in which ¢, ¢y, and ¢,, denote the second derivative of ¢ with respect to the corre-

(2.18)

sponding variables. Furthermore, as the stresses are self-equilibrating and expected to

vanish as © — 00, the following condition must also hold:
¢ — 0, asx — 0 (2.19)

The stress functions used by Gaydon and Shepherd (1964) to solve this problem have

the form
kjac

o(x,y) :2ZRe[ B S P P,(y) (2.20)

where the functions @,(y) are expanded with respect to some other functions ¥;(y):

Zainz‘(y) (S)
() = § (2.21)

Z bini(y)

for the symmetric (S) and the antisymmetric (A) problem, respectively.

A step-by-step presentation of the procedure proposed by Gaydon and Shepherd (1964)
for the calculation of the terms needed for the determination of the stress function, as well
as for the calculation of the stress components at any point with coordinates (z,y), is de-
scribed in the following:

1. Calculate the constants k; = —a; + ib;, with a; > 0,0; > 0, from the first n;

complex roots of equations
sin Qk'] + 2]{7] =0 (S)

(2.22)
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2.3. Self-equilibrating stresses contribution

sorted in ascending magnitude order.

. Calculate the constants \; and j;, from the first n; positive real roots of equations

tan \; +tanh \; =0 (S)

(2.23)
tan u; —tanh u; =0 (A)

sorted in ascending magnitude order. For the method to give good results, Gay-
don and Shepherd (1964) suggest that more A;s and ;s than k;s should be used
(e.g. n,;=10, n;=20). In the present work, as computers have evolved tremendously
compared to the time the original paper was written, a far greater number of these
constants are numerically evaluated and used (n;=500, 7;=1000), in order to capture
more accurately stress distributions even for small contact lengths.

. For each k; and A; or y; calculated in steps 1 and 2, calculate the constants a;, b

179 V1]
and a.. b". from:

157 Vg
%:af—l—ib’.-:4\/§(k-sink:'—l—/\,;cosk-tanh)\i) L — L (S)
k']2 ij ij 7 7 J (/\22 + k]2)2 ()\22 _ kj?)Q
bij " 11 . 1 1
0 — a4+ i =4v/2 (k; cos k; + pu; sin k; coth p; — (A)
g i R eoshy e psin by cothin) | G~ G-
(2.24)

. For the terms aj;, b; calculated in step 1 and af;, bj;, af;, b}; calculated in step 3,

formulate the 2n; X 2n; matrix A, in the form:

Cij Djj
A= J J (2.25)
LBy By
where
Cij = 2a;j Ci; = 2a;'j
: (9 or ’ N (2.26)
Ez‘j = 2CLjCLl-j + 2bjb1j Eij = 2ajaij -+ 2b]b1]
Ej = 2bja;j — 2ajb;j Ej = ija;'] — Qan;'j
. Formulate the matrix M, which is given by
M= (ATA) AT (2.27)

'The values used until now are independent of the loading, so they can be calculated

once and for all.
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2. MODELING OF ELASTIC ROCKING BODIES

6. For each \; or p; calculated in step 2, calculate the coeflicients «;, /3; regarding the

loading:
I I
i = 17 oY/ dy ;= o oY/ dy
11 -1 ) (S) or ’ | -1 ) (A) (2.28)
_ (3) _ (3)
where . \ A
cos \;y  cosh \;y
Yily) = —= - S
() V2 ( cos \; cosh \; ) () (2.29)
1 [sinp;y  sinh py '
Yily) = —= - A
(v) V2 ( sin 1 sinh y; (A)
The terms «;, 3; are arranged into a vector £:
T
e=lay B - o B o oon B (230)
7. Calculate the load-dependent vector L from the equation:
L=M¢ (2.31)

8. For each k; calculated in step 1, calculate the parameters P;, Q);, R;, S;, Uj, V;,

dependent on coordinate y, using the following equations:

P4 iQ, = {—(Cos 2k;j + 3) cos kjy + 2k;ysinky  (S)
—(cos2k; — 3)sink;y + 2k;ycosky  (A)

R 1S, = {(cos 2k; + 1)sinky + 2kjycoskjy  (S) (2.32)
—(cos2k; — 1) cos ky — 2k;ysink;y  (A)

U, 4 iV, = {(cos 2k; — 1) coskjy — 2k;ysink;y  (S)
(cos2k; + 1) sink;y — 2k;y cosk;y  (A)

the real and imaginary parts of which are arranged into the following vectors:

Yoo = (2.33)

Q; S; Vi

9. For each a; and b; calculated in step 1, form the the 2n; x 2n, banded matrix X,

dependent on coordinate z, as:

0 0
X - 2e7%%cosbjrx  —2e “Tsinbjz 0 (2.34)
0 —2e %"sinbjx —2e %" cosb;x
0 0 ]
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2.3. Self-equilibrating stresses contribution

10. Calculate the stresses at point (x, y) from by the following equations:

0, = L' X Ypq
Tey = LT X Yis (2.35)
o, = L' X Yyv

where L is dependent on the loading, X is dependent on coordinate z and Ypq,

Yzs, Yuv are dependent on coordinate y.

Application to the rocking body

Stressloading at the rocking interface  In order to apply the aforementioned procedure to
the self-equilibrating stresses of Egs. (2.15) and (2.16), the stresses have to be decomposed
into symmetric and antisymmetric parts, as mentioned above.

Then, the necessary coeflicients a; and 3; for the assumed stress distributions are cal-
culated from equations (2.28), which can be carried out with the help of a symbolic algebra
system, such as the Matlab symbolic math toolbox. The results for the stress distributions
of Egs. (2.15) and (2.16) are given in Table 2.1".

Table 2.1: Load coefficients «;, 53;

Problem Auxiliary terms Load coefficients
cosh [A\;(c — 1)]
cosh \;
_ sinh[Ai(c = 1)] g — _Om
Symmetric 7 cosh V2N
problem I — cos [Ai(c — 1)] 5, = 2V/ 2T, (90 — 20, + Nicls — Aicly)
COS \; Aic?

= sin [A;(c — 1)]

11:

(Is = 11)

COS \;
sinh [p;(c — 1)]
sinh p;
cosh [p;(c — 1)] Om
. . lo = — : Q= —F=
Antisymmetric sinh p; V2pite
problem sin [pi(c — 1)] 2V 2T,
p= T g T
sin i pic
cos [pi(c — 1)]
sin ju;

11:

(ls — )
(2[3 — 2[1 + /LiCl4 — ILLZ'CZQ)

l4:

Stress distributions along the member length In Fig. 2.4a, the stress distributions o,

across the member sections at various X/ B values along the member length are shown, for

“In the original paper, there is a typographical error regarding the /2 term of the symmetric problem.
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Figure 2.4: (a) Nonlinear stress distributions at various sections along the member length
for partial normal stress loading at the top side and (b) variation of the ratio of the average
absolute self-equilibrating stresses over the average total normal stress across the section

102 sel /102

with the normalized contact length.
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2.3. Self-equilibrating stresses contribution

a normal stress distribution load with contact length ¢ = 0.2. In order to derive the total
stress distributions, the stresses according to the technical theory of bending and those
produced by the self-equilibrating stresses (Eq. 2.35) have to be added.

It can be seen that the compression-only triangular distribution at X/ B = 0 gradually
approaches the linear stress distribution of the technical theory of bending for sections
far from the loaded area. Theoretically, the stresses produced by the self-equilibrating
stress loading exist up to an infinite length. However, as can be seen from Fig. 2.4a, the
stress distribution is practically linear even for X/B = 1.0. This suggests that, for the
self-equilibrating stresses contribution, the substitution of a member with length L > B
with a semi-infinite strip would not introduce significant error to the expected member
response. In contrast, if the member examined has length significantly smaller than B, the
section at node i of the element (Fig. 2.1) does not remain flat and, thus, a beam-column
element with conventional degrees of freedom may be unsuitable.

'This is better presented in Fig. 2.4b, where the average of the absolute values of the
self-equilibrating stresses 0, s across the member section, normalized with respect to the
absolute mean stress value, are shown for various X/ B values along the member length,
for different normalized contact lengths, c. As can be seen, for X = B, there is about a
2% average error if a linear stress distribution is assumed instead of the real one containing
the self-equilibrating stresses contribution. This suggests again that a choice of a member

with length L > B would be adequate for the problem examined herewith.

Fiber elongations due to the self-equilibrating stresses 'The problem considered is a
plane stress problem, therefore the strain €, is given by:

€r = E(O'I —vaoy) (2.36)

and the elongation of the semi-infinite strip fiber located at coordinate y is:

uly) = /0 " edr = % ( /0 " oudr— v /0 h aydx) (2.37)

As mentioned before, the self-equilibrating stresses are expected to virtually vanish in a
small distance from the loaded edge of the strip (Fig. 2.4), so there is no practical difference
between the elongation at coordinate y of the semi-infinite strip and that of a finite length
member, provided the length is large enough.

Forming a new 2n; x 2n; banded matrix J in the form:

0 0
a; b 0
7 az + b3 a? + b2 (2.38)
Y 4y
al+b  ai+ b
0 0
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Figure 2.5: (a) Deformed shapes and (b) fiber elongation profiles for a conventional and
a rocking element.

it can be proven that the elongation of the fiber at y is given by:

u(y) = %LT J (Yeq — v Yov) (2.39)
Nodal displacements due to the self-equilibrating stresses In Fig. 2.5a, the deformed
shape of a conventional and a rocking element are shown, while in Fig. 2.5b the corre-
sponding fiber elongation profiles are presented, which are the integrals of the deforma-
tions along the member length for each fiber across the member section.

For a conventional element, it can be seen that the fiber elongation profile is linear
across the member section. Its value in the middle of the section, ¢, corresponds to the
relative axial displacement between nodes 7 and j, while its slope, s, corresponds to the
relative rotation between nodes ¢ and j.

For a rocking element, the influence of the self-equilibrating stresses on the fiber elon-
gation profile has to be considered. By applying Eq. (2.39) for various fibers across the
semi-infinite strip for the self-equilibrating loads given in Eqgs. (2.15) and (2.16), it can
be seen that the fiber elongation profile across the element due to the self-equilibrating
stresses is nonlinear. This means that the total fiber elongation profile is also nonlinear, as

shown in Fig. 2.5b for the rocking element.
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2.3. Self-equilibrating stresses contribution

In this case however, only the fibers of the contact area of the element extend to the
rocking base, since a gap forms between the rest of the interface section and the rocking
base. 'Thus, the relative axial elongation and the relative rotation between nodes 7 and
J (node j remains fixed to the rocking base) are determined from the fiber elongation
profile of the contact area only. More specifically, the relative axial elongation corresponds
to ¢, which is the value of the contact area fiber elongation profile, or its extension, in the
middle of the section, while the relative rotation corresponds to s, which is the slope of
the contact area fiber elongation profile (Fig. 2.5b). It is noted that the length of the gap
at a fiber of the element that is not in contact with the rocking base is evaluated from the
difference between the corresponding values of the contact area fiber elongation profile
extension (dashed line in Fig. 2.5b) and the true fiber elongation profile (solid line in Fig.
2.5Db).

As mentioned above, specific stress distributions, [0p] and [7y], were assumed at the
contact area (Fig. 2.2), without imposing any direct constraint regarding the fiber elonga-
tion profile. As a result, the integration of the strains along the fibers results in a contact
area that is approximately flat, but not exactly flat. However, for the real problem involv-
ing a rigid base mat, the sections at nodes 7 and j of the element remain flat. To overcome
this problem, the elongation profile u(y) of the semi-infinite strip fibers across the contact
region [—1, —1 + ¢] is interpolated by a linear function g(y) = dp + 0 y.

Since the self-equilibrating stresses are considered to influence the displacements of
the rocking end only (node j), it is evident that the parameters dy and 6 of the linear
approximation correspond to the normalized problem additional axial elongation and ro-
tation of node j of the element due to the self equilibrating stresses.

In order to calculate the terms ¢y and 6, the square error between the elongation, u(y),

and the linear approximation, g(y):

SE = /_ 1 +C(U(y) —g(y))*dy (2.40)

has to be minimized. Setting the derivatives of SE with respect to the two unknown

parameters dy and 6 to zero leads to:

—1+c —1+c
| Goroma= [ty
! -1 (2.41)

—1+c —1+c
/ y(60 + Oy)dy — / yuly)dy

1 -1
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2. MODELING OF ELASTIC ROCKING BODIES

By defining the following quantities for the symmetric problem:

T, = %((00521@ 1) sin [k (¢ — 1)] + 2k (c — 1) cos [k;(c — 1)])

J

Ty, = i((cos 2kj — 1) cos [kj(c — 1)] — 2k;j(c — 1) sin [k;(c — 1)])

k3
4] (2.42)
ng = p <— sin k'j — sin [k](C — 1)])
J
4 4 . .
Ty = F(_ cos [kj(c — 1)] + cosk;) — ] ((c—1)sin[kj(c — 1)] —sink;)
J J
and for the antisymmetric one:
1
Ty = E(_(COS 2k; — 1) cos [kj(c — 1)] — 2k;j(c — 1) sin [k;(c — 1)])
J
1 .
Ty = E((COS 2k; + 1) sin [k;j(c — 1)] — 2k;(c — 1) cos [kj(c — 1)])
4] (2.43)
Ts; = ﬁ(cos kj — cos [k;j(c — 1)])

J

Ty = %(sin [kj(c—1)] 4+ sink;) — %((c — 1) cos [kj(c — 1)] 4+ cos k;)

J

which are arranged into vectors:

T, — Re(T1;) T - Re(T3;) T - Re(T3;) T, — Re(T4;) (2.44)
Im(7};) Im(75;) Im(75;) Im(7y;)

and setting:

Ty =(1+v)T) + VT
A=+ V)T + VT (2.45)
Tg = (14+v)(Th + (c — 1)TY) + vT}

the fiber elongation integrals involved in the error minimization process (Eq. 2.41), ar-

ranged into vector form, are equal to

c—1 2
[Caow| [
/ yu(y)dy ZLTIL T,
-1 FE
where
0O O
0 -1 0 -
I, = (2.47)
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2.3. Self-equilibrating stresses contribution

is a 2n; x 2n; identity matrix, with alternating sign diagonal entries.
Then, the solution of Eq. (2.41) with respect to the displacement vector of the nor-

malized self-equilibrating stresses problem, ts, = [do, 0]T, can be calculated as:

Uen = GH (2.48)
where
402—33c+3 _60—32
c c
G — (2.49)
c—2 12
=6 3 3

Polynomial approximation Although the displacement vector of the normalized prob-
lem, U, can be evaluated analytically from Eq. (2.48), the programming of the afore-
mentioned procedure is difficult and error-prone. Furthermore, large matrix computations
are needed for an accurate prediction of the rocking response and numerical problems may
arise for extreme loading conditions (very small ¢ values).

For this reason, a polynomial approximation of the results produced by Eq. (2.48)
is proposed for practical purposes, leading to faster and more robust analyses. Since the
response is elastic, it can be concluded that the results are linear with respect to parameters
E, 6., and 7, but nonlinear with respect to c.

In Figs. 2.6 and 2.7, the variation of the terms dy - E and 0 E versus ¢, summed for the
symmetrical and the antisymmetrical self-equilibrating stresses problems, is presented for
the cases 0, = 1,7, = Oand 0, = 0, 7,,, = 1, respectively, as given by the aforementioned
algorithm.

It is seen that, a sixth-order polynomial approximation with respect to ¢ could approx-
imate these results very well. Combining the contributions of the normal and shear stress

loadings and using the polynomial term vector P.:
T
P, = [cﬁ At 3 o 1} (2.50)

the displacement vector of the normalized problem, u., is given by the simple equation:

1 | (e VI+7 V) P
Usen ) (251)
E| (6nRY + 7. RY) P.
in which
V. = Vio+ Vs, o)

RT = RTO + VRTV

and the polynomial constant term V,, and R, (for the normal stress contribution) and

V.0, Voo, Roo, R;, (for the shear stress contribution) vectors given in Table 2.2.
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2. MODELING OF ELASTIC ROCKING BODIES

Figure 2.6: Comparison of the polynomial approximation of the displacements due to the

Normalized rotation, 6 -E

Norm. axial elong., - E

<
W

|

Lol

hn O W O
T T

Polynomial | |
Analytic

2480

05

1.0 15

Norm. contact length, ¢

2.0

Polynomial | |
Analytic

05

1.0 15

Norm. contact length, ¢

2.0

self-equilibrating stresses with the analytical ones for 6,, = 1 and 7,,, = 0.

Table 2.2: Polynomial approximation constant term vectors

Normal stress

Shear stress contribution

Variable o
contribution Initial (v = 0) Poisson contribution
—0.14037854 0.14011255 —0.25429070
1.07433666 —1.03832545 1.50539731
Axdial —3.27895019 3.14663483 —3.32745999
elongation V, = 5.21236946 V.o = < —5.10229407 V., = 3.28199994
—5.03768666 5.24787354 —1.23274655
3.53446688 —4.29185461 0.41773556
—1.54848601 2.32362116 —0.81923393
0.00789778 0.09467078 —0.15256642
—0.02324461 —0.56967025 0.90318091
0.01957321 1.40705038 —2.01631572
Rotation R, = < —0.05687364 R, =< —1.77499182 R., = 1.95898230
—0.29653127 1.46712861 —0.53950050
1.58546022 —2.19739528 0.21059622
L —1.60460828 2.38392243 —0.81153594
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2.3. Self-equilibrating stresses contribution
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Figure 2.7: Comparison of the polynomial approximation of the displacements due to the
self-equilibrating stresses with the analytical ones for &, = 0 and 7, = 1 (¥=0.2).

Generalized width and load direction problem  Up to now, the normalized semi-infinite
strip problem was examined considering a semi-infinite strip of semi-width b = 1 loaded
in the region [—1, —1 + ¢| at = 0. In order to use the results for the general case, the
relationship of the displacements between the normalized and the general problem has to
be identified.

Since the stresses at point (X, Y') of the general problem equal those at point (z, y) of
the normalized one (Gaydon, 1965), taking into account Eq. (2.37) and suitable variable
substitutions, it can be concluded that the fiber elongation profile of the general problem,
U(Y),is given by: U(Y') = b - u(y). Likewise, by following a linearization procedure for
the contact area fiber elongation profile of the general problem similar to the one presented
above for the normalized case and by considering the symmetry between the opposite load

direction cases, it can be proven that the following relationships hold:

Aozb'50
©O=p-0

(2.53)

where A, and © are the axial elongation and the rocking end rotation of the general

problem due to the self-equilibrating stresses, respectively, and p = sgn (M,).
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2. MODELING OF ELASTIC ROCKING BODIES

Furthermore, since the effect of the self-equilibrating stresses is local and only the de-
grees of freedom of the axial elongation and the rotation of the rocking end are considered
to be influenced, it is evident that there is a direct compatibility with the simply-supported
beam natural coordinate system considered for the element. Thus, the contribution of the

self-equilibrating stresses to the natural system displacements is given by:

Uge = 53 Usen (254)
where
b 0
0 0

Self-equilibrating stresses contribution flexibility matrix  For the formulation of the rock-
ing macro-element, the flexibility matrix of the self-equilibrating stresses contribution is

necessary. This matrix is evaluated from the following expression:

_ Ouge  Oug Ougy Or OR OF,

Y= 9F, ~ Quw. or OROF, 0F,  0f®2505 (2.56)
where ~ _
_3% 3ﬁ 0
e N,
OR |4 6b P
Si=3r=lc- @ Sz O (2.57)
9IMQ: 9 pQr 3
|2 N2C2  2N,C? 2C ]

and fi., is the flexibility matrix of the normalized problem, which is defined as:

o 05 on
ou Jc 0o, OTnm

sen — = = 2.58

R E ) -
Jc 00, OTm

Although the analytic evaluation of this matrix is possible (Avgenakis, 2015), it will
not be presented here, since the polynomial approximation method is preferred. Then,

defining the polynomial derivative term vector P!

T
P = |66 5t 4c® 3 2¢ 10 (2.59)

the normalized problem flexibility matrix is simply given by:

(CaVi+mVH P, VIP. VIP

fscn = (260)

1
E\(G.RL+7.RN)P. RI!P. RIP

T
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2.4. Combined response of the rocking member

Summary of the self-equilibrating stresses contribution

Given a vector of forces in the simply-supported beam natural system, F},, the following
steps must be followed to calculate the contribution of the self-equilibrating stresses to

the member response:

1. Calculate the rocking end forces F; using Eq. (2.10)

2. Calculate the stress distribution parameters R using Eq. (2.12)

3. Calculate the normalized stress distribution parameters r using Eq. (2.13)

4. Calculate the normalized problem displacements ug, using Eq. (2.51) (or Eq.
(2.48))

5. Calculate the normalized problem flexibility matrix fi., using Eq. (2.60)

6. Calculate the natural system displacements u,. using Eq. (2.54)

7. Calculate the natural system flexibility matrix fi using Eq. (2.56)

2.4 Combined response of the rocking member

In order to obtain the total response of the rocking member, the contribution of the stresses
according to the technical theory of bending and that of the self-equilibrating stresses
have to be combined. The input required to predict the member response according to
each contribution is the same vector of natural system nodal forces, F},, meaning that
the formulation of the macro-element is force-based, while each contribution produces a
different natural system displacement vector, u,, and flexibility matrix, f,. Due to the
principle of superposition, the total natural system displacement vector is the sum of the
displacement vectors produced by the two contributions and consequently the total natural
system flexibility matrix is also the sum of the flexibility matrices of the two contributions.

The general algorithm for the combined element is presented in Table 2.3, referring
to an iteration step i of a Newton-Raphson solution strategy. Subscript 724 refers to the
contribution of the stresses according to the technical theory of bending and se refers to
that of the self-equilibrating stresses. As a force-based formulation is used, part of this
algorithm follows the algorithm used for the geometrically nonlinear force-based beam-

column element proposed by Neuenhofer and Filippou (1998).

2.5 Examples

In this section, the proposed macro-element is applied to three characteristic examples
and the results are validated by comparison with the ones obtained using the commercial

finite element program Abaqus.
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2. MODELING OF ELASTIC ROCKING BODIES

Table 2.3: Rocking macro-element algorithm

Step description Related equations qu number
in text
1. Displacements and displacement
. . Uy = Euei
increments with respect to the last ’ ’ (2.1)
. . A'u/ni:u’ni_u'nifl
iteration ’ ’ ’
2. Nodal force increments AF,; = f' | Au,,
3. Nodal forces estimation F,,=F,, 1+AF,;
4. Flexibility matrix and displacements
according to the technical theory of Uy, ; = fev Froi (2.7)
bending
5. Check whether there is rocking or M b
. Li :
not. If not, ignore steps (6)-(9) and set ’ N > 3 = rocking
u,, =0and F.; = 0. !
o F.,=S,F,, (2.10)
S o
HHonp r =8 R (2.13)
7. Displacements and flexibility matrix Useni = Usen(T) (2.51)
of the semi-infinite strip problem fieni = Feen(Ti) (2.60)
8. Displacements due to the _—
self-equilibrating stresses contribution Use = 53 Usens @2.54)
9. Flexibility matrix due to the B
self-equilibrating stresses contribution Foei = S5 fueni 52 54451 (2.56)
10. Total predicted displacements Uy, = Uy, + Uy,
11. Displacement residuals UL = U — Uy
12. Total flexibility matrix Jfoi = fivi + feeii
13. Additional nodal forces F.,=f. Lt
F? lz'd = F;
14. Updated nodal forces Fl,— Fod 4 F
15, Check |F, - return to
. Check convergence Fov error step (4)
16. Local coordinate system nodal forces F.; = T, F,; (2.3)
and stiffness matrix K,=T,+T, ./ T" (2.5)

Rocking body with constant vertical force

In this example, the response of a simple rocking body with a constant vertical force on
its top side (Fig. 2.8a) is examined. The rocking body has height H = 4 m, width B =1
m and thickness d,,=1 m and is loaded on its top with a vertical force N = —2, 500 kN.

'The proposed macro-element is used to model the whole rocking body, with its rocking

end at the bottom. The polynomial approximation method is used for the self-equilibrating
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2.5. Examples

stresses contribution, which leads to a faster and more robust analysis. Although not im-
portant for slender bodies, shear deformation effects are also taken into account. Regard-
ing the Abaqus model, 2D plane stress elements are used with a dense mesh near the
contact region (Fig. 2.8b). The contact interface is modelled with contact interactions in
order to allow only compressive stresses to develop, assuming though that a horizontal slip
is prevented.

In Fig. 2.8c, the pushover capacity curves (applied horizontal force, P,, versus hori-
zontal displacement, §,.) produced by the proposed macro-element model are shown for
various E values and v = 0.2. 'The theoretical rigid block case is also shown for com-
parison (dashed line). It can be seen that, due to the nonlinearity of the response, the
maximum strength achieved and the ultimate displacement at overturning decrease with
decreasing E values.

In Fig. 2.9 the E = 30 GPa case is examined more analytically and the results are
compared to Abaqus, as well as other simplified models. More specifically, apart from the
pushover capacity curve (Fig. 2.9a), the curves presenting the vertical displacement (Fig.
2.9b) and the rotation (Fig. 2.9¢) at node A are shown. It can be seen that, generally,
there is very good agreement between the macro-element and the Abaqus results. The
only notable difference between the two models can be seen in the vertical displacement
response for large displacements. This is because the geometric nonlinearity formulation
used is not exact for large displacements, as explained in the relevant section.

Additional comparisons are also conducted with simplified beam-column element
models. One such model consists of a beamWithHinges element, which is included
in the element library of OpenSees, with a compression-only fiber section at its rock-
ing end, assuming a plastic hinge length equal to the section width (fine dashed line in
Fig. 2.9). An additional comparison is shown with a simplified model consisting of a
layer of compression-only springs with stiffness k; = E//H at the base of a rigid element,
modelled as a zero-length fiber section element (fine dashed-dotted line in Fig. 2.9), an
idea that has been used by several researchers (e.g. Penna et al., 2014). These comparisons
show that the results of the proposed macro-element are superior to those of the simplified
approaches, which cannot capture the response accurately (Figs. 2.9). It is noted that the
discrepancy of the results of the simplified models from the theoretically correct solution
(Abaqus results) increases with the value of the axial force IV, while the accuracy of the

proposed model is very good independently of the applied axial force.

Tendon-restrained rocking body

In the second example, an elastic tendon with axial stiffness F;A.=1,200 MN is installed
at the center of the body of the previous example (Fig. 2.10a), which imposes an initial
prestressing force N = —2500 kN. It is noted that, in this case, the axial force of the
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Figure 2.8: Rocking body under a vertical and a horizontal top force: (a) Model de-

scription and body deformation; (b) Corresponding Abaqus model; (c) Pushover capacity
curves for different £ values.
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Figure 2.9: Rocking body under a vertical and a horizontal top force: (a) Pushover capacity
curve; (b) Vertical displacement; (c) Top rotation for E=30 GPa. The macro-element
results are compared with the corresponding Abaqus, beamWithHinges and zero-length
element model results.
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2. MODELING OF ELASTIC ROCKING BODIES

tendon does not remain constant, as the length of the tendon increases with the body
rotation.

Regarding the modelling of the tendon, a tendon element is used for the macro-
element model, which is essentially a geometrically nonlinear truss element with a pre-
stressing force. In Abaqus, a truss element is used, together with a suitable predefined
stress field in order to model the prestressing force (Fig. 2.10b). In both cases, the tendon
element simply connects the base with the top node of the rocking body, modelling thus
an unbonded tendon, which does not interact internally with the body.

'The response of this system is shown in Figs. 2.10c,d. Fig. 2.10c shows the pushover
capacity curve (applied horizontal force, P,, versus the horizontal drift, d,) and it can
be seen that the post-rocking branch is ascending, as expected, since the tendon offers
stability to the system. This happens, since, as the body rotates, the tendon elongates and
the stabilizing force applied to the rocking body increases. The increase in the axial force
of the tendon with the body drift is shown in Fig. 2.10d.

The comparison of the macro-element results with the ones obtained using Abaqus
shows that the proposed macro-element is capable of modelling restrained rocking sys-
tems, in which the axial force changes during the rocking motion, as the axial degree of

freedom is taken explicitly into account.

Single-bay frame containing a rocking wall

In this example, a single-bay frame containing a rocking wall, able to rock at both its
ends (Fig. 2.11a), is examined. The frame dimensions are Ly = 6.5 m and Hf = 4.5 m,
the columns have cross section 0.60 m x 0.60 m, the beam has cross section of height
0.50 m and thickness 0.25 m, while the rocking wall has width B,,=1.50 m and thickness
dw=0.20 m. The material of all elements has properties £=30 GPaand v=0.2. A uniformly
distributed vertical load ¢ = 60.0 kN/m is applied along the beam and a self-weight load
is assumed for the rocking wall corresponding to density p,,=25.0 kN/m?3.

For the macro-element model, conventional linear elements along the centerline of
the columns and the beam are used, while practically rigid elements are used to model the
beam-column joints (Fig. 2.11b). Since the rocking wall is able to rock at both its ends,
a rocking macro-element is considered at each end. In order to capture the deformation
of the beam, the top rocking element is connected to the beam through rigid elements
and hinges able to transmit the axial force of the rocking wall to an approximately correct
location along the beam. The self-weight of the rocking wall is applied on its central node,
so that the axial forces of both rocking ends approximately correspond to the real ones.

Regarding the modelling of the frame with Abaqus, 3D brick elements are used for
the whole model (Fig. 2.11c) with practically rigid elements for the frame joints, while

contact interactions are used between the bottom surface of the rocking wall and the base,

42



2.5. Examples

tendon

=
=
Q
g= —— Macro-element
é 100 = = Abaqus |

8.0 0.5 1.0 15 2.0

Horizontal drift, d, [%]
(c)
5000

Tendon force, P, [kN]
(O8]
()]
S
(=)

3000}
2500 —— Macro-element| |
= = Abaqus
200 ‘ w ‘
8.0 0.5 1.0 1.5 2.0
Horizontal drift, d, [%]

(d)

Figure 2.10: Tendon-restrained rocking body: (a) Model description and body deforma-
tion; (b) Corresponding Abaqus model; (c) Pushover capacity curve; (d) Tendon force.
In plots (c), (d), the macro-element results are compared with the corresponding Abaqus
results.
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as well as the top surface of the rocking wall and the bottom surface of the beam, which
however do not allow a relative slip between the surfaces.

The results are depicted in Fig. 2.12, where the horizontal force, P,, and the rock-
ing wall axial force, N, are plotted versus the horizontal drift, d,. For comparison, the
pushover capacity curve of the bare frame is also presented.

The results show that the stiffness and the lateral resistance of the frame increase with
the inclusion of the rocking wall (Fig. 2.12a). As depicted in Fig. 2.12b, in which a
zoom of the pushover capacity curve is shown for small drifts, the nonlinearity of the
rocking response is mainly located at the beginning of the response. The increase of the
stiffness and the lateral capacity of the frame is associated with the increasing axial force
of the rocking wall, shown in Fig. 2.12¢, which is attributed to the beam restraining of
the rocking motion.

Is can be seen that the results obtained with the macro-element almost coincide with
the ones produced by Abaqus. Small discrepancy is observed only in the axial force of the
wall: for a horizontal drift of 2%, the error is about 6%. It should be noted though that a
precise match of the results between the two models could not be achieved, even for the
bare frame.

'The previous examples generally show that the proposed macro-element can produce
very accurate results compared with those of equivalent Abaqus models, while requiring

extremely lower runtimes and showing a much more robust behavior.

2.6 Examples: Parametric investigation

In this section, the effect of various parameters on the lateral load bearing capacity of
the rocking configurations presented in the examples of the previous section is examined
tor monotonic loading, so that the influence of member deformability on the response is

investigated.

Rocking body with constant vertical force

First, a single rocking body, on which a constant vertical force is acting (Fig. 2.8a) is
examined. The body has height H, base width B and thickness d,,, while a vertical force
N is applied on its top central node, A. The body is considered to be deformable with
modulus of elasticity E. The effect of the Poisson ratio v is not taken into account, as it is
not considered important. The base mat is considered rigid, thus, any deformation takes
place only in the body.

'The response of the body is governed by two normalized quantities:

B
s tana = 7L which expresses the influence of the slenderness of the body
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Figure 2.11: Single-bay frame containing a rocking wall: (a) Model description and de-
tormation; (b) Numerical model with the proposed macro-elements considered at the top
and bottom sides of the rocking wall; (¢) Corresponding Abaqus model.
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Figure 2.12: Single-bay frame containing a rocking wall: (a) Pushover capacity curve; (b)
Zoom of plot (a) for small drifts; (¢) Rocking wall axial force. The results of the numerical
model using the proposed macro-element are compared with the corresponding Abaqus
results.
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Figure 2.13: Rocking body horizontal force - horizontal displacement response curves.
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Figure 2.14: Rocking body horizontal force - horizontal drift response curves.

* €= , which corresponds to the initial axial deformation of the body due to

N
EBd,
the vertical force and measures the flexibility of the body and the magnitude of the
vertical force.

Also, in the following, the results are shown normalized, specifically:
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Figure 2.15: Rocking body contact length - horizontal displacement response curves.

* 'The horizontal force is normalized with respect to the quantity N tana: P, =
Py

—————. 'Thus, for the rigid block, rocking starts for P,, = 0.5.
N tan a

* 'The horizontal top displacement is normalized with respect to the base width B:

8, = —. It is noted that, for typical cases of slender bodies in which tan o ~ «

B
0 0

do~ =05, ~ —.
an H’ a

Oz

* 'The amount of rocking is measured with the horizontal drift: d, = —.

. . . . c
* 'The contact length is normalized with respect to the base width B: ¢, = 5

In Fig. 2.13, the normalized horizontal force versus the normalized horizontal top
displacement is shown. Response curves are given for various values of the body slen-
derness « and the initial deformations €y. For comparison reasons with the models of the
next sections, in Fig. 2.14 the initial region of the response is shown in terms of horizontal
drift. As can be seen from these curves, the response converges to the rigid body solution
(a straight descending line starting at P,, = 0.5) for ¢y — 0, as expected.

Figures 2.13 and 2.14 show that the effect of the deformation on the response of the
rocking body is noticeable. More specifically, as the body becomes more flexible or the
axial force becomes larger (larger €), the maximum normalized force that can be attained,
P, 1naz, reduces. Note that, for given €y, P, yma. also reduces for smaller tan a, i.e. for

slenderer bodies. It is reminded that P, = P, /(N tan«), thus, for any value of P, the
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actual horizontal resistance P, is proportional to the vertical force /V and the slenderness
tan a.

The effect of the deformability of the base of the body on the normalized contact length
¢, is shown in Fig. 2.15, in which ¢, is plotted versus the normalized top horizontal
displacement, ¢,,. It can be observed that for slender or flexible bodies, as well as for
large vertical forces, the contact region during rocking is not detrimental, so the base
deformability cannot be neglected. It is interesting to note that the contact length attains

a practically constant value for large displacements.

Tendon-restrained rocking body

In this case, the configuration where a prestressed unbonded elastic tendon is installed at
the center of the body (Fig. 2.10b), which produces a stabilizing force, is examined. This
system simulates real configurations encountered in practice, such as rocking columns and
shear walls in which insertion of tendons is common. In contrast to the previous case,
where the stabilizing force was constant for the whole response, the force applied to the
body by the tendon constantly increases as the body rotates, due to the tendon elongation.
Also, the direction of its application follows the tendon rotation.

'The response is now governed by three normalized parameters which, apart from tan o

and €y mentioned above, include the parameter /i, defined as:

 EA
"= EBd,

of the tendon, respectively,

, in which E; and A, are the Young’s modulus and the cross section area

which measures the ratio of tendon to body axial stiffness. It should be noted that ¢, in
this case refers to the initial value of the prestressing force, Nj.
Concerning the response, the following normalized quantity is additionally used:
. N — NU . €t — €0
E, A tan o tan o

n

which represents the additional deformation of the tendon due to its elongation.

The response of this system, for several typical values of the nomalized parameters, is
presented in Figs. 2.16 to 2.21.

In Figs. 2.16 and 2.17, the normalized horizontal force is plotted versus the drift
dy = 0,/H foreg = 5-107° and 5 - 107 respectively, and for several values of y and
tan av. Itis seen that the prestressing tendon influences the response significantly, resulting
in a positive post-rocking stiffness. It is noted that © = 0 (blue curves) corresponds to the
case where no tendon exists and the vertical force maintains a constant value equal to .
'The curves in this case correspond to the response of the constant vertical force rocking

body shown in Fig. 2.14.
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Figure 2.16: Tendon constrained body force - displacement response curves for ¢g =
5-107°. The case 1 = 0 corresponds to a rocking body with a constant vertical force Ny
without tendon.
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Figure 2.17: Tendon constrained body force - displacement response curves for ¢y =

5 - 107*. The case u = 0 corresponds to a rocking body with a constant vertical force N
without tendon.
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Figure 2.18: Tendon constrained body tendon force - displacement response curves for
€0 = 5 - 10_5.
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Figure 2.19: Tendon constrained body tendon force - displacement response curves for
€0 = 5 - 1074.
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Figure 2.20: Tendon constrained body contact length - displacement response curves for

€0 = 5-107°. The case y1 = 0 corresponds to a rocking body with a constant vertical force
Ny without tendon.
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Figure 2.21: Tendon constrained body contact length - displacement response curves for

€0 = 5107 The case u = 0 corresponds to a rocking body with a constant vertical force
Ny without tendon.
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It can be seen that the normalized resistance P, increases significantly with the drift
of the body, especially for smaller values of €y. Note that €y decreases for smaller values
of the prestress force Ny or more rigid bodies (larger £). This increase in the horizontal
resistance should be attributed to the additional axial force developed in the tendon due to
its elongation (Figs. 2.18, 2.19). Interestingly, the normalized additional tendon’s force is
almost independent of €, 1 and tan «, in contrast to the P,, which is significantly affected
by these parameters.

Finally, Figs. 2.20 and 2.21 show the progressive reduction in the normalized contact
length, c,,, during the response. Similarly to rocking bodies with constant vertical force,
the contact area rapidly decreases with the drift and attains a practically constant value for
large displacements, especially for relatively small €y values, that is, for stiffer bodies. It
is noticed that almost constant values of ¢, are associated with constant stiffness of the

system (Figs. 2.16, 2.17).

Single-bay frame containing a rocking wall

The effect of the rocking of a shear wall placed at the middle of the span of a single-story,
single-bay frame (Fig. 2.11a) is examined next. The wall is rocking on both the bottom
and the top sides.

Results are presented for a RC frame with columns of cross section 0.50 m x 0.60
m and beam of cross section 0.25 m x 0.50 m, while the thickness of the rocking wall
perpendicular to the frame is assumed 0.25 m. The Young’s modulus of the main frame is
E ;=30 GPa, while the Young’s modulus of the wall, F,,, is considered a varying parameter.
For the structural members of the frame (columns and beam), the cracked stiffness was
considered, and, according to the usually made assumption (e.g. Eurocode 8 - European
Committee for Standardization (CEN), 2004) the effective stiffness was taken equal to
one half of the geometric one: El.g = 0.5FI,. The vertical loads acting on the system are
a distributed load ¢ = 60 kN/m along the beam and the self-weight of the rocking wall.

In Figs. 2.22-2.24 the response of the frame under monotonically increasing hori-
zontal load, P, is presented for various frame height to span length, H;/Ly, and panel
width to span length, B/Ly, ratios, assuming £,, = Ey. Note that the case B/L; = 0
corresponds to the bare frame without the wall.

In Fig. 2.22, the classical capacity curve is shown and it is evident that both the
capacity and the stiffness increase with the ratio B/Ly, i.e. as the width B of the wall
increases in comparison to the span length L. This behavior was expected, since rocking
of the wall is more constrained by the beam for larger B’s due the larger required vertical
displacements of the beam, which also occur closer to its ends. Similarly, the capacity and
the stiffness of the system increase as the ratio Hy /L decreases, i.e. as the frame becomes

stiffer. Note that smaller ratios H /L also correspond to less slender walls for constant B

53



2. MODELING OF ELASTIC ROCKING BODIES

2000
—— B/IL=04 —e— H/L~=06
1750 1 —— B/IL=0.2 —A— H,JL=0.8
— B/L~=0 —a— H/L=1.0
. 1500 - & ™
=z
x,
Q1250 - /
085 /
S 1000 - /
S
S 7504 =
N
e
500 - e _
250 ‘ / // —
0 %
0.0 0.2 0.4 0.6 0.8 1.0

Horizontal drift, d. =6,/Hy [%]

Figure 2.22: Horizontal force versus drift (capacity curves) for frames with varying B/ Ly
and Hy /Ly ratios (E,,/E; = 1).
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Figure 2.23: Normalized contact length at the bottom side of the rocking wall versus drift
tor the cases examined in Fig. 2.22. Similar are the contact lengths at the top side.

(larger tan «), since the height of the wall, H, is associated with the height of the frame,

Hy.

It is interesting to note that the non-linearity of the response is mostly limited at the
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Figure 2.24: Compressive axial force of the rocking wall versus drift for the cases examined

in Fig. 2.22.

beginning of the response (at small drift ratios), while the post-rocking response shows a
practically constant stiffness. Thus, the overall response could, in most cases, be approxi-
mated by the response of a linear system with the post rocking stiffness. This behavior is
associated with the stabilization of the contact length, as shown in Fig. 2.23.

'The beneficial effect of the rocking wall to the lateral resistance of the system shown in
Fig. 2.22 is accompanied by the disadvantageous development of tensile axial forces in the
columns to balance the compressive axial force induced to the wall due to the kinematic
constraints imposed by the beam. The axial force N,, that develops in the wall during
rocking is shown in Fig. 2.24 and, as expected, it increases with B/L;. The ratio Hy/Ly
affects IV,, in a much smaller degree. It is expected that, in real structures, the tensile
forces induced to the columns due to the rocking wall will not increase significantly the
required reinforcement, because they will be over-balanced by the gravity loads, especially
at the lower stories.

In order to examine the possible benefit of the inclusion of such a rocking wall in the
original frame to its seismic behavior, a response spectrum analysis is conducted, using the
ECS8 design spectrum for a, = 3.6 m/s* and ground type B. The mass of the structure
is derived taking into account the distributed load and half of the rocking member self-
weight. In each case, the secant stiffness at the maximum displacement was used, which
was derived after iterations, similarly to the procedure suggested by FEMA 440 , with the
difference that no additional hysteretic damping was considered, since rocking does not

produce such damping as the unloading path practically follows the loading one.
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Figure 2.27: Effective system stiffness for different B/ L ratios.
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Figure 2.28: Earthquake scenario: Axial force induced to the wall versus B/ L ratios.
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Figure 2.29: Earthquake scenario: Axial force induced to the columns versus B/ L ratios.
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Figure 2.30: Earthquake scenario: Shear force induced to the columns versus B/ L ratios.
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In Figs. 2.25-2.30, maximum attainable values for various quantities for this earth-
quake scenario are presented with respect to the panel width to span length ratio, B/Ly.
Various analyses have been performed for different frame height to span length ratios,
Hy /Ly, and different panel to frame moduli of elasticity, £,,/E;.

Concerning the base shear force (Fig. 2.25), itis seen that the insertion of the wall does
not alter it significantly, which was expected, since the total mass is about the same in all
cases examined and the periods of the structure generally fall in the constant acceleration
region of the design spectrum (15 —1¢). Only for very stiff configurations (H;/Ly = 0.6
and B/L; > 0.30), for which T.¢ < 15 a reduction is observed in the base shear (Fig.
2.25).

Concerning the horizontal displacements and the produced drifts, they significantly
decrease as the width of the wall increases (larger B/ L ratios) or the stiffness of the frame
increases (smaller Hy/L; ratios) (Fig. 2.26). 'This is associated with the corresponding
increase in the overall effective stiffness of the system depicted in Fig. 2.27.

The axial forces induced to the wall, V,, (compressive) and the columns, N, (tensile)
are shown in Figs. 2.28 and 2.29, respectively. Fig. 2.28 reveals that larger axial forces are
imposed on wider rocking walls, due to the frame constraining their motion. Concerning
the axial forces induced to the columns (Fig. 2.29), the ones of the column which is more
influenced by the rocking motion are shown. It is seen that they become tensile even for
relatively narrow rocking walls and increase as the width of the wall increases. They are
also larger for larger H /L ratios (less stiff frames). Such tensile forces are not expected
to be a problem in a real structure where the columns bear significantly large compressive
loads from upper floors.

The main benefit of the inclusion of the rocking wall in the frame concerns the reduc-
tion in the shear forces induced to the columns, which is shown in Fig. 2.30. Although
for a relatively narrow wall the columns’ shear force is not affected significantly or can
even increase, wide walls result in a significant decrease in the shear forces of the columns,
which is more pronounced as the ratio B/ Ly increases.

Concerning the effect of the modulus of elasticity of the wall, the results show that,
in general, differences between E,, and E in the order of £25%), as the ones expected in
realistic situations, do not influence the response significantly. On the contrary, Hy/Ly

and especially B/ L ratios are considered very important.
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Modeling of inelastic rocking bodies under
monotonic loading

Rocking members in structural systems are expected to behave inelastically for large seis-
mic excitations. In this chapter, the macroelement presented in the previous chapter,
which considered the element material to be elastic, is extended to also take material non-
linearity into account. It is noted, though, that only the monotonic case loading can be
considered in a similar manner as the elastic case, since cyclic loading is more complex and

needs a different treatment, which will be presented in Chapter 5.

3.1 Stress distributions for monotonic loading of the

inelastic rocking body

For the solution of the inelastic material case, new stress distributions acting on the rocking
interface have to be assumed. As a simplification, the area inside the element is considered
to behave elastically, so that the existing solution of the semi-infinite strip stress problem,
based on the theory of elasticity, as well as the principle of superposition hold. However,
as discussed in the ensuing, this assumption does not lead to results far from the reality,
since only the elongations of the elastic portion of the section are taken into account.

For the normal stresses, a trapezoidal stress distribution is assumed to act on the rock-
ing interface, after yielding occurs (Fig. 3.1). In order to examine the response of the
member under the trapezoidal loading, a new parameter 4 is defined:

C
p=- (3.1)
C

where ¢, is the length of the contact area which has yielded.

'The resultant axial force and moment can be expressed as:
1
N, = 5(1 + p)bco, (3.2)
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Figure 3.1: Normal stress distribution acting on the rocking interface after yielding and
decomposition into triangular distributions.

1

6u2b2020y} (3.3)

1
M, =p [5(1 + p)bc (g — 1) oy, +

where p is the signum function of M,.

The trapezoidal distribution can be expressed as the difference of the two triangular
distributions with parameters (o,/(1 — p),c) and (noy, /(1 — p),uc) shown in Fig. 3.1.
Assuming that the shear stress distribution results from the difference of two parabolic
distributions corresponding to the aforementioned triangular normal stress distributions
and that the ratio of the maximum shear stress values is the same as the maximum normal

stresses ratio, the resultant shear force is
2 2
Q. = pg(l — )bt (3.4)

where ¢ is the maximum shear stress corresponding to the distribution of contact length

C.

Given a vector of resultant forces acting on the rocking interface, F}, the load distri-

bution parameter vector, ry, = [c, f1, 1|7, is calculated from:
( Now 3\
ayb
¢ 2
’]"‘y = H‘ = ; - 1 (3.5)
t
3pw?Q;
L 8(w — 1)bc )
where
200,  2pM.o,
w:\/3<Nr+ v —1>+1 (3.6)

The corresponding derivative matrix of the load parameters to the rocking end forces
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1s

i 2(c+ 2uc —3) B 6p 0
(n — 1)bcoy (n — 1)b%coy
g, 9 _ 6(p+1) =41+ p+p?)c 6p(p +1) 0
T oF (n — 1)bc*oy (n— 1)b%ctoy
2ct(2p° 4+ 3p° + 6u+ 1) = 6t(1 +p)*  6pt(p+1) 3p
T G- 0% Db, (- 1%, el — i)
(3.7)
It is noted that the material yields when
2N,
oy > (3.8)

3.2 Additional displacements due to the self-equilibrating

stresses

Similarly to the elastic material case, the self-equilibrating stress distributions originating
from the previous interface stresses are examined using the semi-infinite strip problem
solution. However, the additional displacements due to these self equilibrating stresses
are not calculated by approximation of the whole contact area fiber elongation profile with
a linear distribution, but only of the portion of the section that remains elastic, that is in
the interval [—1 + pc, —1 + ¢|. This can be applied, since the fibers under this area are
assumed to remain elastic, in contrast to the fibers under the yielded contact zone.

Using the aforementioned procedure, the self-equilibrating stresses normalized dis-
placement approximation formula presented next is produced, giving very good results for

¢ < 2/(pu+ 1), which includes most of the usual cases:

S 1 Joyds(c, p) +to:(c, n) (3.9)
B 0,0,(c, 1) + 10, (c, 1) '

where the functions 0, (c, it), 0, (c, 1), 6:(c, 1), 6:(c, it) are presented in the following.

Normal stresses Introducing a normalized contact length ¢, = c(u + 1), functions

do(c, ) and 0, (c, p1) are given by:

05 = da(ca) + 0p(p)(ca — 2) (3.10)
O = 0a(ca) +05(1) + 0c()0p(cn) (3.11)
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where the various functions appearing in these equations have the forms:

dalcn) = ag [1 — (c,/2)%2]" (3.12)
op(p) =ay tan(gu) + agp + azp® + agp’ (3.13)
Oa(cn) = a1 [1 = (ca/2)"]™ (1 — cy/2)° (3.14)
Op(p) = a1 tan(gu) + agpt + asp® + agp® (3.15)
Oc (1) = arp® + agp® 4 asp® + (—4ay — 3ay — 2a3)p (3.16)
Op(ca) = arc® + asc® + asch + ayc® + (—16a; — 8ay — 4as — 2a4 + 0.25)c2  (3.17)

The constant parameters appearing in these equations are given in Table 3.1.

Furthermore, the following derivatives are calculated, which are needed in the follow-

ing:

e = (ur (G 45 619
%_‘ij - c(ﬁf +0p) + %(cn ~2) (3.19)
% = (n+ 1)(2%3 - Hcilfcf) (3.20
S e 00 + 0 020

Itis noted that for ¢ > 2/(u+1), due to the symmetry of the self-equilibrating normal

stresses, the following equations hold:
do(cy 1) = —05(2 — pe, (2 —¢) /(2 — pc)) (3.22)
O,(c, 1) = 0,(2 — pe, (2—1¢)/(2 — pe)) (3.23)

A comparison between the semi-infinite strip problem results and the ones predicted

from the aforementioned equations can be seen in Fig. 3.2.

Shear stresses

0r = d1(c)d2(p) (3.24)
0. = 01(c)02(n) (3.25)

51(c) = ar [1 — (c/2)%2) (3.26)
d2(p) = (arpp — 1)(p — 1) (3.27)
01(c) = ar [1 — (c/2)]" (3.28)
O2(p) = (a1pe — 1)(pp — 1) (3.29)
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Figure 3.2: Normalized axial elongation and rocking end rotation for o, = 1.
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3. MODELING OF INELASTIC ROCKING BODIES UNDER MONOTONIC LOADING

Table 3.1: Approximation functions constant term vectors

Function ay as as ay
0a -1.61868182 0.74341712  2.38990044

0B 0.02707282  0.71805567 -0.42532673 0.64748945
04 -1.60601045 2.71616773  0.52133449

Op -0.05393963 -1.54431579 0.98577157 -1.35812515
Oc -0.4009598  1.46727493 -2.19487061

Op -0.03040586 0.15378978 -0.33644138 0.38440043
01 2.48001601 0.68431159 1.80867566

09 -0.43362038

0, 2.35842517 0.98635297  1.52894546

0, -0.45228844

'The constant parameters appearing in these equations are given in Table 3.1.

A comparison between the semi-infinite strip problem results and the ones predicted

from the aforementioned equations can be seen in Fig. 3.3.

Derivative matrix The derivative matrix, fs.,, of the normalized displacements due to

the self equilibrating stresses, s, , With respect to the normalized load parameters, 7y is:

fsen,y = 873, E

Oy——
Yy
OUgeny 1 dc

O‘_
Y 0c

00,

00,
+ 1

Oc
00,

e

o
O'ym
00,
O'ya—lu

+1

+1

6.
o
90,
o

5
(3.30)
6,

Changes in the elastic macroelement algorithm due to yielding After the calculation of

the rocking interface forces, F;, the yielding condition of Eq. (3.8) is checked. If the

material has yielded, then the following changes are performed in the original algorithm:

* 'The load parameter vector, 7, of Eq. (2.13) is substituted with 7, of Eq. (3.5).

* 'The derivative matrix of the load parameter vector r with respect with the rocking
interface forces Fy, that is the product S35, of Egs. (2.14) and (2.57), is substituted

with Sy, of Eq. (3.7).

* 'The normalized displacement vector due to the self-equilibrating stresses, U, (Eq.

2.51), is substituted with ., , of Eq. (3.9).

* 'The corresponding derivative matrix, f.,, of Eq. (2.60) is substituted with fi., ,

of Eq. (3.30).

The rest of the algorithm steps remain the same as in the original elastic material

algorithm.
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3.2. Additional displacements due to the self-equilibrating stresses
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Figure 3.3: Normalized axial elongation and rocking end rotation for ¢t = 1. The approx-
imation is accurate enough for ¢ < 2/(p + 1).
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3. MODELING OF INELASTIC ROCKING BODIES UNDER MONOTONIC LOADING

3.3 Examples

Rocking body with constant vertical force and varying yield stress

In this example, a simple rocking body is examined, with height # = 4 m, width B =1
m and depth d = 1 m and Young’s modulus £ = 30 GPa. The body is loaded on its top
central node with a constant vertical force, N = —2500 kN (Fig. 3.4a).

Fig. 3.4b shows the pushover capacity curves (horizontal force versus horizontal dis-
placement) of this body for varying yield stress values. It can be seen that the maximum

strength and the ultimate displacement decrease for decreasing yield stress values.

300 x x T w
lN 5 — 0,100 MPa
T T = 250 — o0,~75MPa |1
= — 0,=50 MPa
8
A 200 — 5,=35MPa ||
S 1501 —  0,/25MPa
- < ‘V 0,~15MPa ||
<
5 100} .
N \
3
T S0f i
0 I I I >
= 0.0 0.1 0.2 0.3 0.4 0.5
B Horizontal displacement, §, [m]
(a) (b)

Figure 3.4: (a) Rocking body with constant vertical force model and (b) pushover capacity
curves for varying stress yield values.

Comparison of results with Abaqus

In the following, the results produced with the macroelement are compared to those of
the commercial software Abaqus . Unfortunately, pushover capacity curves for rocking
bodies are very difficult to obtain with Abaqus for a yielding material due to convergence
problems. For this reason, comparisons are performed for a simply supported beam with
a rocking end, which corresponds to the macroelement natural coordinate system (Fig.
3.5).

The simply supported beam examined has length L = 8 m, width B = 2 m, depth
d = 1 m, Young’s modulus £/ = 30 GPa, yield stress 0, = 20 MPa and is loaded with a
constant axial force N = —1000 kN.

In Figs. 3.6 and 3.7, the axial elongation and the rocking end rotation are shown

for increasing values of the applied moment on the rocking end of the simply supported
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3.3. Examples

Figure 3.5: Simply supported beam with rocking end.

beam. Fig. 3.6 refers to the case of a beam with equal applied moments on both its
ends, meaning that there is no shear force along the beam, while 3.7 refers to the case of
an applied moment only on the rocking end of the beam, leading to the development of
shear forces. In both cases, it can be seen that the results of the macroelement are very
close to the ones obtained using equivalent Abaqus models.
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3. MODELING OF INELASTIC ROCKING BODIES UNDER MONOTONIC LOADING
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Figure 3.6: (a) Axial elongation and (b) rocking end rotation of a rocking simply supported

beam loaded with equal increasing moments on both its ends (no development of shear)
and comparison with Abaqus.
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Figure 3.7: (a) Axial elongation and (b) rocking end rotation of a rocking simply supported

beam loaded with an increasing moment only on its rocking end and comparison with

Abaqus.
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The nonlinear displacement distribution of the
semi-infinite strip

In this chapter, the problem of the semi-infinite strip with traction-free lateral sides is
revisited, in order to examine the displacement profile across the semi-infinite strip under
an arbitrary normal load distribution on its end. Although the solution of this problem
is important even for practical applications (e.g. the prediction of the rocking motion of
deformable bodies), only numerical solutions exist until now, which are cumbersome to
implement for such cases.

'The displacement profile of the semi-infinite strip under a concentrated normal load
is approximated with analytical functions, which must exhibit specific properties. These
results are then extended to arbitrary normal load distributions and characteristic cases are
presented. Finally, the problem of the determination of the stress distribution across the
interface between a deformable rocking body and its base is solved based on the previous

derivations.

4.1 Introduction

The determination of the stresses of a semi-infinite strip (z > 0, —1 < y < 1) with
traction-free lateral sides (y = £1), for any admissible combination of given tractions or
displacements applied on its free end (z = 0) (Fig. 4.1) has been a topic of interest for
many decades among engineers. Unlike similar problems for the semi-infinite space for
which analytical solutions exist, the problem of the semi-infinite strip presents additional
mathematical difficulties which do not allow for closed-form analytical solutions, espe-
cially in what concerns the determination of stresses for given normal and shear tractions.

Many approaches for the solution of the problem have been proposed over the decades,
such as those of Horvay (1957), Theocaris (1959), Benthem (1963), Gaydon and Shep-
herd (1964), Johnson Jr and Little (1965), Bogy (1975) and Gregory (1980). Most of these
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP
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Figure 4.1: 'The semi-infinite strip

involve solving singular integral equations or infinite systems of coupled linear equations
which result from the expansion of the stress function to the Papkovich-Fadle eigenfunc-
tions (Papkovich, 1940; Fadle, 1940), which are not orthogonal.

Although this problem is particularly interesting for the theoretical analysis of struc-
tural members, it has lost attention during the last decades, since the technical theory
of bending, which assumes that the element’s cross section remains plane, is considered
sufficient for conventional elastic structural analyses. However, there are practical cases
where the technical theory of bending is inadequate. One such case is the prediction of
the response of deformable rocking members.

Rocking members cannot develop tensile stresses across the interface with the rocking
base and as such, nonlinear stress distributions develop near the contact area where mem-
ber sections do not remain plane, phenomena which cannot be captured by the technical
theory of bending. In the previous chapters, it was proven that for the prediction of the
response of such members, the solution of the semi-infinite strip problem can be used.
‘The numerical solution of the semi-infinite strip problem proposed by Gaydon and Shep-
herd (1964) is utilized in order to calculate approximate additional nodal displacements
due to the partial loading of the rocking interface.

It is evident that the calculation of the displacement profile of the fibers of the semi-
infinite strip is necessary for practical cases like this. However, the aforementioned exist-
ing numerical solutions are cumbersome to use in practical applications. The objective of
this chapter is to provide analytical expressions which can be used for the determination
of the displacement profile of the semi-infinite strip in practical engineering applications.
First, the basic case of a concentrated normal load applied at an arbitrary point on the
semi-infinite strip end is examined. Having solved this problem, the displacement distri-
bution due to an arbitrary normal load can be calculated, since any load distribution can

be expressed as the integral of concentrated loads across the end section of the strip.
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4.2. Decomposition of the problem

4.2 Decomposition of the problem

'The method proposed by Gaydon and Shepherd (1964) for the determination of the
stresses inside the element for given semi-infinite strip end loads is based on the decom-
position of the applied stress distribution in two parts: (i) the contribution of the resultant
forces and (ii) a self-equilibrating stress distribution (Fig. 4.2). For the calculations, only
the self-equilibrating part of the load distributions needs to be examined thoroughly, as
the contribution of the resultant forces can be calculated according to the technical theory
of bending.

More specifically, given an arbitrary stress distribution [o] (Fig. 4.2a), the resultant
normal force and moment are calculated. According to the technical theory of bending,
these give rise to a linear stress distribution which acts across the whole member section,
[own] (Fig. 4.2b) and for which the stresses induced inside the element can be calculated.
'The difference between the original stress distribution and the resultant forces contribu-
tion is a self-equilibrating stress distribution, [oe.] (Fig. 4.2¢). Since the resultant force
and moment of this distribution is zero, its effect far from the loaded area is negligible,
according to the Saint-Venant’s principle. However, its effect near the loaded area on
the stresses and the displacements is significant. In order to employ the aforementioned
methodology, these self-equilibrating stresses are decomposed into a symmetric and an

antisymmetric part, for which different stress functions are used.

[oo] [O'tb] [Ose]
\\ M t \ _—
Yy Y N Yy
= +
N N PN x a
(@) (b) (©)

Figure 4.2: Stress distribution decomposition: (a) Original distribution; (b) Resultant
forces contribution and (¢) remaining self-equilibrating stresses.

'This methodology enables us to examine the local effects of a self-equilibrating stress
load on the semi-infinite strip. Apart from the determination of the stress distribution
near the loaded end, the methodology by Gaydon and Shepherd (1964) can be easily
extended for the calculation of the fiber displacements across the semi-infinite strip due
to the self-equilibrating stresses, as the integral of the corresponding fiber strains. The
extended methodology for the determination of the fiber displacements is rather involved
and not repeated here, but can be found in Chapter 2.

For the evaluation of the displacement profiles across the ends of a finite member
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

length due to an arbitrary nonlinear normal load distribution applied at one of its ends,
the same decomposition presented above is applied: The displacement distributions due to
the resultant forces contribution is linear and calculated according to the technical theory
of bending for given resultant forces at the member ends. Regarding the displacement
profiles due to the self-equilibrating stresses contribution, since their effect is local to the
end with the nonlinear load distribution, the solution produced for the semi-infinite strip
displacements can be used for this end even for a member with finite length and no ad-
ditional displacements are produced for the linearly loaded member end, given that the
length of the member is sufficient (Chapter 2). Finally, the results of the two previous

contributions need to be superimposed.

4.3 Displacement function for a concentrated load

Problem statement

In order to calculate the displacements due to an arbitrary stress load applied at the semi-
infinite strip end, the concentrated load problem is solved first (Fig. 4.3a), since any
load distribution can be considered as a summation of concentrated loads across the strip
end. As mentioned previously, only the displacements due to the self-equilibrating stresses

corresponding to the concentrated load need to be thoroughly examined in the ensuing.

Symmetric problem Antisymmetric problem
1 | 1 |
T v A » 3
-1 JZ +1 -1 P P +1 -1 % P +1
2
= +
RN N N x
(a) (b) (©)

Figure 4.3: (a) Unit point load acting at location p of the semi-infinite strip end; Decom-
position into (b) the Symmetric problem and (c) the Antisymmetric one.

A concentrated load at the strip end can be considered as a Dirac delta function for
the calculation of the necessary load parameters of the methodology used (Gaydon and
Shepherd, 1964). Although the concentrated load introduces a singularity which does not
guarantee convergence of the solution (Gregory, 1980), the produced results regarding the
fiber displacement distributions exhibit convergent response. A large number of expansion
functions are used in order to produce results that are as accurate as possible, however small

inaccuracies persist for concentrated loads applied near the corner of the semi-infinite
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4.3. Displacement function for a concentrated load

strip and for the displacements at locations close to this area, which however do not create
notable problems.

'The results produced for various values of the location p across the strip end for a unit
concentrated load (Fig. 4.3a) and location y at which the displacement is measured, and
for the normalized case of unit Young’s modulus, £/ = 1, are shown in Fig. 4.4. Itis noted
that, for £/ # 1, the displacement values shown have to be divided by E. Furthermore,

the displacement at y, considering plane stress conditions, is

u(y) = /000 e(z,y) de = é (/Ooo o.(z,y) doe — 1//000 oy(z,y) dx) (4.1)

However, since no shear loading is considered at the strip end and, also, the shear stresses
are zero at an infinite distance from the strip end, the integral of the transverse normal

stresses along the x-axis of any fiber is zero due to equilibrium in the y-axis. Therefore,

/ oy(z,y)de =0 (4.2)
0
which implies that the results are independent of Poisson’s ratio, v.
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Figure 4.4: Displacement at location y for a concentrated load at location p

As can be seen in Fig. 4.4, the displacement function, U, is doubly symmetric with
respect to the two diagonals. The symmetry about the main diagonal means that the
displacement at y for a load applied at location p is equal to the displacement at p for
a load applied at location y, which is equivalent to the Maxwell-Betti reciprocal work
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

theorem used in structural analysis (e.g. Timoshenko and Goodier, 1951). Furthermore,
symmetry about (0,0) exists, since the displacement at —y for a load at —p is equal to
the displacement at y for a load at p. These two symmetries produce a doubly symmetric
function, meaning that only one of the four quarters can be examined.

For the approximation of the displacement function, apart from the aforementioned
symmetries, the following condition must also hold: Since this displacement function
refers to displacements produced by the self-equilibrating part of the loading, the zeroth

and first moment of the displacement distribution for a given load location p must be zero:

/_1 Uly,p) dy =0 (4.3)

1
/1 y U(y,p)dy =0 (4.4)

In order to facilitate the implementation of the aforementioned conditions, it is prefer-
able to examine the symmetric and the antisymmetric problem individually, which refer
to the calculation of the displacement distribution for half concentrated loads at locations
p and —p with the same and the opposite sign, respectively (Figs. 4.3b and 4.3¢). 'The
displacement functions produced for the symmetric and the antisymmetric problem are
shown in Fig. 4.5. It is evident that, due to the additional symmetries, only one eighth of

these two functions is unique.

Approximation of the symmetric displacement function

'The symmetric displacement function, Uy, depicted in Fig. 4.5(a), is symmetric about
both main axes and both diagonals. As such, the following condition must hold for the

approximating function:

Us(y,p) = Us(~y, p) = U(~y, —p) = Us(y, —p)

(4.5)
= Ui(p,y) = U(=p,y) = U(=p, —y) = U(p, —y)

Although only one eighth of the domain can be examined, it is more convenient to
examine a quarter of the domain, namely 0 < y < 1,0 < p < 1. For this region, the
following condition must also hold due to Eq. (4.3) and the symmetry about the y-axis:

1
/ Us(y,p) dy =0 (4.6)
0

It is noted that Eq. 4.4 is satisfied by default due to symmetry about the y-axis.
As can be seen from Fig. 4.5(a), there is a singularity along the diagonals, with the
values of the displacements approaching infinity. After more careful examination and try-

ing various functions, this singularity seems to be logarithmic in nature. This is consistent
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

with the result regarding the displacement distribution produced by a unit concentrated

load on a semi-infinite space (e.g. Das, 2013):
u(y,p) =2AIn|p—y[+C (4.7)

where £ = 1 and v = 0 are considered, A = —1/7 and C'is a constant.
Considering the symmetric problem which refers to symmetric loading about 0 with

point loads equal to 1/2 and ignoring the constant term C, the corresponding function is
Uai(y,p) = Aln|p —y[+ Aln[p+y| (4.8)

By trying to approximate the logarithmic singularities of the symmetric displacement
function with a function of the form of Eq. (4.8), it was found that the best approximation
was attained by keeping the coefficient A = —1/7, as in the theoretical solution of the
semi-infinite space. The difference between the original symmetric function, U, and the
tunction Usay, is depicted in Fig. 4.6, where only one quarter is shown for clarity. It can

be seen that the remaining function is now smooth across the diagonal.
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Figure 4.6: Symmetric displacement function after removal of diagonal logarithmic sin-
gularities.

Although this function satisfies Eq. (4.5), Eq. (4.6) is not satisfied, as:

/O Uai(y,p) dy = A[(In(1 +p) = 1)1 +p) + (In(1 —p) = 1)1 —=p)] (4.9
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4.3. Displacement function for a concentrated load

Furthermore, it can be seen that a singularity remains at (1,1). For these reasons, a new
function is sought, which eliminates the non-zero integral introduced by Eq. (4.8) and
includes a singularity at (1,1). A function that satisfies these conditions, as well as the

symmetry conditions of Eq. (4.5), is:
Ua(y,p) = —A[In(1 = yp)(1 — 2yp) + In(1 + yp)(1 + 2yp) — 2] (4.10)

'The difterence between Us and Usa; + Usaz can be seen in Fig. 4.7. 'This function has
significantly smaller values than Uj, however further approximation is considered neces-
sary. Furthermore, it can be seen that the singularity at (1,1) remains, but now extends in

a small circular area around (1,1).
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Figure 4.7: Symmetric displacement function after removal of diagonal logarithmic sin-
gularities and corresponding integral equilibrating function.

In order to eliminate this remaining singularity, a function of the form

Ui = B [In((1 —y)* + (1 = p)*) + In((1 — ) + (1 + p)*)

(4.11)
+In((1+9)*+ (1+p)?) +In((1+1)* + (1 —p)?)]

is introduced, which satisfies Eq. (4.5). However, again, Eq. (4.6) is not satisfied. For this

reason, the following function which satisfies Eq. (4.5) and negates the non-zero integral
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

is also used:

Up, =B [—2In((1 —y)* +4) —2In((1 + y)* + 4)
—2In((1 —p)®+4) — 2In((1 + p)* + 4)
+2(1 — y) arctan((1 — y)/2) + 2(1 + y) arctan((1 + y)/2) (4.12)
+2(1—p) arctan(( —p)/2) + 2(1 + p) arctan((1 + p)/2)
— 27+ 12In(2) + ]

'The coefficient B in Egs. (4.11) and (4.12) is defined in the ensuing.
Finally, a polynomial function satistying Eqs. (4.5) and (4.6) is introduced, which has
the form:

Up = q22/9 + 2qa2/15 + qua/25 + 2q62/21 + 2q64/35
+ G66/49 + 2qs2/27 + 2¢s4/45 + 2qs6/63 + qss/81
+ q225°P? + qaay'p" + 4o6y°p° + sy
+ @y’ P (V" + %) + 62’0’ (" + 1Y) + a0 (0° + 1%)
+ qeaty ' 0 (V° + %) + asa ' (" + ") + a5’ 0°(V° + 1) (4.13)

— (1 +1°)(q22/3 + qa2/5 + go2/ T + ds2/9)
— (y* + ") (qu2/3 + qua/5 + 464/ 7 + Gs4/9)
— (4° 4+ P°)(g62/3 + q64/5 + qe6/ 7 + Gs6/9)
— (° +1°)(gs2/3 + sa/5 + gs6/T + dss/9)

'The coefficients ¢ in this function are defined in the following. Powers up to 8 have been
used in this function in order to achieve sufficient accuracy.

In order to determine coeflicients B and ¢ of the aforementioned functions, a least
squares approach is employed which minimizes the difference of the function shown in
Fig. 4.7 with respect to functions Ugg1, Uspz and Ugp. 'This is achieved using the curve_fiz
tool of the SciPy Python package, which can implement least squares fitting for functions
of higher dimensions. The resultant coeflicients which match the target function in the
best way are given in Table 4.1 and the correponding approximation is shown in Fig. 4.8.

Finally, the resultant approximation of the symmetric displacement function is defined
as:

Us = Ua1 + Usaz + U1 + Uz + Ugp (4.14)

Approximation of the antisymmetric displacement function

'The procedure followed for the approximation of the antisymmetric displacement function

is similar to the one described above. As can be seen in Fig. 4.5(b), the antisymmetric
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Figure 4.8: Approximation of the symmetric displacement function after removal of di-
agonal logarithmic singularities and corresponding integral equilibrating function.

displacement function is symmetric about both diagonals and antisymmetric about both

main axes. As such, the following condition must hold for the approximating function:

Ua(yap) = _Ua(_yvp) = Ua(_y> _p) = _Ua(ya _p>

(4.15)
=U(p,y) = —Us(—=p,y) = Uu(—p, —y) = —U(p, —Y)

Examining again the domain 0 < y < 1,0 < p < 1, the following condition must
also hold due to Eq. (4.4) and antisymmetry about the y-axis:

/0 y Uu(y,p) dy =0 (4.16)

It is noted that Eq. (4.3) is satisfied by default due to the antisymmetry about the y-axis.
'The solution of the corresponding antisymmetric semi-infinite space problem has the
form

Uami(y,p) = Aln|p —y| — Aln|p + y| (4.17)

with A = —1/7. 'The difference between the original symmetric function, U,, and the
tunction U, 41, is depicted in Fig. 4.9, where only one quarter is shown for clarity. It can
be seen that the remaining function is now smooth across the diagonal.

Although this function satisfies Eq. (4.15), Eq. (4.16) is not satisfied, as:
1
/ y Uai(y,p) dy = A[=p + (In(1 — p) — In(1 +p))(1 — p*)/2] (4.18)
0
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP
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Figure 4.9: Antisymmetric displacement function after removal of diagonal logarithmic
singularities.

Furthermore, it can be seen that again a singularity remains at (1,1). For these reasons, a
new function is sought, which eliminates the non-zero integral introduced by Eq. (4.17)
and includes a singularity at (1,1). A function that satisfies these conditions, as well as the
symmetry conditions of Eq. (4.15), is:

Uurz(y,p) = —A [(In(1 — yp) — In(1 + yp)) (1 — 2y°p?) — 4yp] (4.19)

The difference between U, and U,a1 + U,as can be seen in Fig. 4.10. Again, a singu-
larity extending in a small circular area around (1,1) remains, but the remaining values of
the antisymmetric problem are lower than the corresponding ones of the symmetric case.
Nevertheless, the same procedure is followed again in order to approximate the remaining
function.

'The singularity at (1,1) should be captured using a similar function as the one used for
the symmetric problem, since it can be shown that these singularities cancel out if they
are subtracted. This also means that the coeflicient of this function should be common
between the symmetric and the antisymmetric problem. The corresponding function used

tor the antisymmetric problem is

Ut =B [In((1-y)*+ (1 —-p)*) —In((1 —y)* + (1 +p)?)

(4.20)
+In((1+y)* + (1+p)*) = In((1+9) + (1 - p)°)]
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4.3. Displacement function for a concentrated load
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Figure 4.10: Antisymmetric displacement function after removal of diagonal logarithmic
singularities and corresponding integral equilibrating function.

which satisfies Eq. (4.15). Eq. (4.16) is not satisfied, so the following function satisfying
Eq. (4.15) which negates the non-zero integral is used:

Uiz = B[5p((1 = )" ({1 = 4)? +4) = (1 +5) In((1 + )? + )

oy — ) In(1 = p)* +4) — (1+ ) (14 p)? +4))

+3p((L+9)*In(1 +y) — (1 = y)*In(1 - y))

+3y((1+p)* (1 + p) — (1 - p)* In(1 - p) (421
+ 6p((1 — y) arctan((1 — y)/2) — (1 + y) arctan((1 + y)/2))

+ 6y((1 — p) arctan((1 — p)/2) — (1 + p) arctan((1 +p)/2))

+ 6yp(m + 21n(2) + 1)]

The polynomial function of the antisymmetric problem, which satisfies Eqs. (4.15)
and (4.16) is

U = gs19p(y” + 1°) + as1yp(y* + p*) + anyp(y® + 1°)
+ 453y’ (V" + 0%) + amy’p’ (y* + 1Y) + a5y’ (v + p?)
— 3yp(gs1 /5 + @51/ 7+ a71/9) — 59°p° (4s1/3 + @53/ 7 + ar3/9)
— Ty°p°(g51/3 + ¢53/5 + a75/9) — 9y "p" (471/3 + G3/5 + qr5/7)

(4.22)
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

Similarly to the symmetric case, in order to determine coefficients B and ¢ of the
aforementioned functions, a least squares approach is employed which minimizes the dif-
terence of the function shown in Fig. 4.10 with respect to functions U,p1, U, and U,p.

In reality, as mentioned above, the coefficient B of the symmetric and antisymmetric
problem must be the same. By approximating the functions of the symmetric and anti-
symmetric problem individually, the values for B are close to each other, but not exactly
equal. So, its value is fixed to the average of the two aforementioned results and then a
least squares fitting is performed again in order to determine the remaining coefficients ¢
of the polynomial functions. The resultant coefficients which match the target function in
the best way are given in Table 4.1 and the correponding approximation is shown in Fig.
4.11.

Finally, the resultant approximation of the antisymmetric displacement function is

defined as:

Ua - UaAl + Ua.AZ + UaBl + UaBZ + UaP (423)
1.0 — 10.000
- 0.500
0.8 0.250
D
E 0.100
% 06
2 - 0.050
=
b}
= - 0.025
g 0.4
& 0.000
[
0.2 -0.025
-0.050
0.0 -0.100
0.0 0.2 0.4 0.6 0.8 1.0

Load location, p

Figure 4.11: Approximation of the antisymmetric displacement function after removal of
diagonal logarithmic singularities and corresponding integral equilibrating function.

Total displacement function

Adding the symmetric and antisymmetric displacement functions, the total displacement

function is as follows:

U(y,p) = AUr+ B U+ Ugp + Uyp (4.24)
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4.3. Displacement function for a concentrated load

Coeft. Value Coeft. Value Coeft. Value
A -1/m Q64 18.273236 431 0.74952005
B -0.19532775 ges | -38.99971412 51 -0.08175407
g2 | -1.23991592 qs2 0.74180336 q53 5.10578057
Qa2 1.08897876 (84 -9.64366612 qr 0.04700608
a4 -9.7265530 qs6 22.03387365 473 -2.9709584
ge2 | -1.50465044 gss | -13.05630027 q7s 9.15391675

Table 4.1: Approximation function coeflicients

where
Uy =2In|p —y| +2In(1 — yp)(y*p* +yp — 1)

— 2In(1 4+ yp)(y°p* + yp) + 2(2yp + 1)

Up =2In((1-y)*+ (1 -p)*) +2In((1 +y)* + (1 + p)?)
+3p((1+y)* (1 +y) — (1 —y)*In(l —y))
+3y((1+p)°In(1+p) — (1 —p)*In(1 —p))
+ (3p/2 = 3yp + 3y’p/2 — 2) In((1 — y)* + 4)

(—3p/2 = 3yp — 3y°p/2 — 2) In((1 + y)* + 4)
+ (3y/2 = 3yp + 3yp?/2 — 2) In((1 — p)* + 4)
(—=3y/2 = 3yp — 3yp*/2 — 2) In((1 + p)* + 4)

(4.25)

(4.26)

)1
2(1 —y + 3p — 3yp) arctan((1 — y)/2)
+2(1 4y —3p—3yp) arctan((1 + y)/2)
2(1 — p+ 3y — 3yp) arctan((1 — p)/2)
+2(1+p— 3y — 3yp) )/2)
1)

+ 6yp(m + 2In(2) +

arctan((1 + p)/2
—2(m—61n(2) —2)
and Ugp, U,p given by Egs. (4.13) and (4.22), respectively.

It is noted that the following limits hold:

lim(l —z)In(l —z) = lim (1+2)In(l +z) =0 (4.27)

r—1 r——1

so function Up has a removable singularity at y = £1 or p = £1 if y # p.

In Fig. 4.12, a comparison between the displacement distribution of the numerical
solution and the proposed approximation is presented for various values of the location of
the load, p. Only cases 0 < p < 1 are presented for clarity, since the opposite sign cases
are symmetrical to the ones presented. This figure shows that the proposed approximation

predicts very well the numerical values.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

Displacement, U(y, p)

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Displacement location. y

Figure 4.12: Displacement distributions for various values of the location of the load:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).

4.4 Extension to rectangular and triangular normal load

distributions

After the determination of the displacement distribution for the self-equilibrating stresses
of a concentrated load applied at an arbitrary location on the semi-infinite strip end, the
displacement profile due to the self-equilibrating stresses of any normal load distribution
can be calculated, since an arbitrary load can be considered as the superposition of con-
centrated loads across the the semi-infinite strip end. Thus, if the normal load distribution

is 0(y), the displacements across the strip are calculated as:

u(y) = /_ a(p) Uy, p) dp (4.28)

1

In this section, two characteristic cases are considered: a rectangular load (Fig. 4.13a)

and a triangular load (Fig. 4.13b).
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4.4. Extension to rectangular and triangular normal load distributions

Figure 4.13: (a) Rectangular load and (b) Triangular load cases examined

Rectangular load

'The displacement distribution due to the self-equilibrating stresses of a rectangular load

with unit stress value in the region [—1, 7] of the strip end (Fig. 4.13a) is calculated as:

Ur(y,r) = / T Uly,p) dp (4.29)

-1

'This integral is easy to calculate given the function U (Eq. 4.24). 'The analytical ex-
pressions of the non-polynomial terms are given in 4.A. The displacement distributions
for various r values are shown in Fig. 4.14, where both the numerical results according
to the method by Gaydon and Shepherd (1964) and the approximation of the aforemen-
tioned integral are presented. It can be seen that there is very good agreement between
the proposed approximation and the numerical results.

In Fig. 4.14, only results for » > 0 are presented for clarity, however the conclusions
of this comparison are easily extended to cases 7 < 0, due to the following property:

Since only the self-equilibrating stresses are considered, a rectangular load in the region
[—1, 7] is equivalent to a rectangular load spanning the whole section, which does not give
rise to self-equilibrating stresses, and an opposite sign rectangular load in the region [r, 1].
Thus, further taking the symmetry about y = 0 into account, the following symmetry

holds for the rectangular load displacement distribution:

UR(_y7 _T) = _UR(y> T) (430)

It is noted that although the value of function U does not exist for y = p, the integral
of Eq. (4.29) does have a finite limit at y = 7. The displacement at the load tip (y = r) is

presented in Fig. 4.15, for both the numerical solution and the proposed approximation.

Triangular load

Similarly, the displacement distribution due to the self-equilibrating stresses of a triangular

load in the region [—1, 7] of the end section with unit maximum stress at y = —1 (Fig.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP
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Figure 4.14: Displacement distributions due to rectangular loading for various r values:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).
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Figure 4.15: Displacement due to rectangular loading at y = r for various 7 values: Com-
parison between numerical results and proposed approximation.
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4.5. Application to the elastic rocking body

4.13b) is calculated as:

r r 1 T
Ur(y,r) = T+1/1U(%P) dp—H—l P Uly,p) dp (4.31)

'The analytical expression of the non-polynomial terms of both integrals can be found in
4.A. 'The displacement distributions for various values of r are given in Fig. 4.16, where
both the numerical results according to the method by Gaydon and Shepherd (1964) and
the approximation of the aforementioned integral are presented, again showing very good
agreement with each other.

Similarly to the rectangular loading, the following symmetry holds for the triangular

loading displacement distribution:

147r
1—7r

UT(_y7 —T) = UT(y>T) (432)

So, although only cases with r > 0 are presented, the aforementioned identity implies
that the depicted comparison of the results also holds for cases with r < 0.

Again, Eq. (4.31) does have a finite limit for y = r and the displacement at the load
tip (y = r) is presented in Fig. 4.17, for both the numerical solution and the proposed

approximation.

4.5 Application to the elastic rocking body

One important practical application of the semi-infinite strip results is the prediction of
the response of rocking bodies. In contrast to conventional members, rocking bodies can-
not develop tensile stresses at the rocking interfaces, but only compressive stresses acting
partially on the rocking end sections. Due to this partial loading, nonlinear stress distri-
butions develop near the contact areas (Fig. 1.5). This also influences the displacement
distributions across rocking body sections near the contact area, which are nonlinear.

As explained in Section 4.2, in order to examine the influence of the nonlinear stress
distributions, the stresses at the rocking interfaces must be decomposed into stresses ac-
cording to the technical theory for the respective resultant forces and self-equilibrating
stresses. Since the effect of the latter is negligible far from the rocking interfaces, the
displacement distribution at sections far from the contact areas is almost linear across the
element, as predicted by the technical theory of bending.

For a body rocking on a rigid surface, since the rocking interface is planar, the dis-
placement distribution of the fibers corresponding to the contact region must be linear
also at the rocking end. Since the displacements according to the technical theory are
linear across the whole section by default, this means that the displacements due to the

self-equilibrating stresses must also be linear for this contact region (Fig. 4.18).
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

0.20
\ 7
\, 7
\, /s
0.15 A \, 7/
\, 7/ /./
\ /
\, /7 /7
N " 4 4
: \ /7

0104 ™ - ;
. N \, 7
& N\ N\ 7/ /

-~ . \ ;
= \\ \ / /
Y SN !/
= 0.05 7 RN !/ -
- A /7 /./'
45 Ny / /./ e
g I L/ //,,/_.—-"_:
5] 0.00 p===—————=== ’.T-'\—.'\——'=:=::::.':.':.':.!f.!f.!f.=f.======:=:=:=:=====/-’f/.-f.=f.':-"_ ''''''' =
O N\ e
\,N / f
< ) \ 4/
= | - r=0.00 \\ N // /
7 \ N 7
=< — - \ \ /
5 0057 —— r=0.25 NN /.
\, . //'
r=0.50 \ S Vs
0.10 0.75 ) o~ 7
— H — r=0. N S —— 7
\. /
N\, 7/
————— r=0.90 N 7
N //
0154 —— r=0.95 ~—

T T T T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Displacement location, y

Figure 4.16: Displacement distributions due to triangular loading for various 7 values:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).
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parison between numerical results and proposed approximation.
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4.5. Application to the elastic rocking body

Considering that the effect of the self-equilibrating stresses vanishes at sections far
from the contact area, their contribution can be equivalently examined using the semi-
infinite strip model, which is much easier to solve. In terms of the semi-infinite strip
problem, and assuming that the contribution of the shear stresses on the normal displace-
ments is negligible compared to the one of the normal stresses (e.g. relatively slender
bodies), this means that a suitable normal stress distribution must be found, so that the
produced displacement distribution under the corresponding semi-infinite strip end load-
ing is linear.

'The aforementioned problem can be stated mathematically as follows: Given a contact
length, ¢ of the normal load (meaning that 0 = 0 aty = —14-¢) and n control points across
the contact region, assuming without loss of generality that the stress value at y = —1 is

o = 1, the stresses at the intermediate n — 2 points must be determined, so that

Ui41 — Uy _ U; — Uj—1 (4.33)
Yiv1 — Yi Yi — Yi—1

fori = 2,...,n — 1, where u; are the displacements at the control points y; (Fig. 4.18).
This gives us n — 2 equations with n — 2 unknowns. It is noted that in order for the
calculated stresses to be meaningful, they should all have the same sign as the one assumed

fory = —1.

| c V

A A

Rocking
interface

¥

Un +r

[u]

A

Figure 4.18: Stress distribution acting across the rocking interface, [¢], and induced dis-
placement distribution, [u]. The displacement distribution under the load must be linear.
Only deformations parallel to the load are shown for clarity.

'The respective displacements can be calculated numerically in many ways. The numeri-
cal method used must take into account that the displacement under the concentrated load
is not finite. However, it is helpful that these singularities regarding the displacements do

not exist for the rectangular and triangular load cases. The easiest integration scheme is
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

to consider a rectangular load which has its center at each point y; and extends until the
middle of the distance between neighboring points.

Here, the more accurate decomposition of the stress distribution into a sum of triangu-
lar loads is used with the corresponding displacements calculated as stated in Section 4.4.
'The singularities of the displacement distributions due to a triangular load are removable,
thus no problems arise in the numerical solution of the problem.

The first step is to decompose the unknown stress distribution (Fig. 4.19a) into “hat”
functions, H (y), that is n functions, each one of which has unit value at a point y; and zero
values everywhere else, with linear transition inside the intervals [y;_1, y;] and [y;, y;+1]

(Fig. 4.19b). In this way, any piecewise linear stress distribution can be expressed as

o(y) = o;H(y) (4.34)

Sj+1

— JZU]" ()ijfd
A\

(a) (b) J (c)

Figure 4.19: Decomposition of the stress distribution: (a) Original distribution; (b) De-
composition into hat functions; (c) Decomposition of the hat function around y; into
three triangular distributions starting at y = —1.

at function H;(y) around point y; is composed of three linear parts in the inter-
A hat function H;(y d point y; posed of three 1 parts in the int
val [—1,y;41] and thus can be decomposed into three triangular distributions starting at
y = —1 (Fig. 4.19¢). The vector containing the maximum stresses, S, of the triangular
istributions ending at points y; can be proven that is connected to the stress values a
distribut ding at points y; be p that ted to the st 1 t

points y;, o, through the relationship:
S=Ho (4.35)

where H is a n x n matrix with zero values except for the following entries:

I Ity
gy =il
I Y —Yj—1
1 14y
Hy; =— 2 - Ui (4.36)
Yi —Yj—1 Yi+1 — Y;

Yjy1 + 1
Hjp =217
T Yj+1 — Yj

for j = 1,...,n, where fractions containing v, or y,1 are ignored.
A new n X n matrix Uy is formulated next, whose entry U, ;; refers to the displacement

at y; due to a triangular load with its tip at y; (meaning a load length of 1 + y;) and unit
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4.5. Application to the elastic rocking body

maximum stress, using the formulas found in Section 4.4. The first column referring to
a triangular load with tip at y = —1 is set to zero. Then, a new matrix U, is produced,

whose entry U, ;; refers to the displacement at y; due to the stress at y;, which is given by:
U,=U.H (4.37)

Afterwards, a (n — 2) x n matrix K is formulated, whose entry K;; gives the contri-

bution of the stress at y; on the difference between the slopes of the intervals [y;11, Yio]
and [y;, Yi+1], given by

. = Yoivej = Usiv1y  Usit1j — Usiy (4.38)
iy — .
Yit2 — Yit1 Yit1 — Yi
'The stress at point y = —1 + c is equal to zero, thus the final column of K is removed.
Furthermore, the stress at the leftmost point, y = —1, is assumed to have a unit value.

Thus, if the first column of K is denoted as K¢ and the n — 2 remaining columns form
the matrix K,,, the stresses o,, at the intermediate n — 2 locations are calculated as the

solution of the linear system:

K, o, =-Kj (4.39)

After the calculation of the stress distribution, the displacements u at various locations

y: across the whole section due to the self-equilibrating stresses can be calculated as

u=U'Ho (4.40)
where o = [1,0,,,0]" and U} is a matrix whose entry Uy, refers to the displacement
at y; due to a triangular load with its tip at y; and unit maximum stress at y = —1, as
previously.

Applying this procedure for many values of the contact length, ¢, the stress distribu-
tions shown in Fig. 4.20 are produced, where the corresponding linear stress distributions
are also presented in dashed lines. It can be seen that the stress distributions produced are
nonlinear and may in reality even contain singularities at points y = —landy = —1+c.
For the limiting case ¢ = 2, corresponding to full contact at the base interface, a linear
stress distribution develops, as expected, since the technical theory of bending can be used,
which predicts linear stresses and displacements across the section by default.

'The lever arms produced by exact stress distributions shown in Fig. 4.20 with respect
to the center of the section are presented in Fig. 4.22. In the same figure, the lever
arm corresponding to a triangular load with the same contact length, ¢, is also shown for
comparison. It can be seen that, generally, the lever arm produced by the exact stress load
is lower than the one for triangular load.

Regarding the displacement distribution across the rocking section, the previous stress

distributions were calculated so that the displacement profile under the load is linear.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

There is, however, no constraint regarding the displacement distribution across the (up-
lifted) non-contact region of the rocking section, which is nonlinear. This is due to the
nonlinearity of the displacements produced by the self-equilibrating stresses, which influ-
ence the whole section (Fig. 4.18). The deviation of the displacement distribution of the
non-contact region from the linear distribution for various contact lengths, c, is presented
in Fig. 4.21, where the distributions have been normalized so that the displacement devi-
ation at y = 1 is equal to unity. The shapes of these distributions correspond to the shape
of the gap formed between the rocking interface and the body (e.g. across the uplifted
non-contact regions at the top and bottom rocking interfaces of Fig. 1.5).

It can be seen that the displacement distribution across the non-contact region is in-
deed nonlinear, so the assumption of a bilinear displacement distribution composed of
two linear segments across the contact and non-contact regions of the rocking interface
would be only approximate. This approximation neglects that the displacement distribu-
tion must be first-order continuous across the whole section, which is accounted for in the
methodology presented in this thesis and reflected on the derived displacement deviation
distributions of Fig. 4.21. Interestingly, though, as ¢ — 0, meaning that the rocking body
can be considered almost rigid and contact takes place almost at the corner of the rocking
body, the displacements across the non-contact region are essentially linear, which agrees
with the assumption of non-deformability of a rigid rocking body.

'The central displacement, dy, and the slope, 0, of the linear displacement distributions
under the load produced by the exact stress loadings (Fig. 4.20) are presented in Fig. 4.23.
In the same figure, the predictions according to the formulas proposed in Chapter 2 are
also presented for comparison. As explained in that chapter, ¢y and 6 are the parameters of
the best-fit line that approximates the displacement distribution under a triangular load.
It is noted that for a triangular load, the contact length, ¢, and the maximum stress, s,

for given axial force, N,,, and moment, M,,, at the end section of the semi-infinite strip

M,
Ct — 3 (1 + F) (441)

2N, 2 N,
¢ 3 1+M,/N,

For compatibility reasons, the results of the two methods are compared for the same axial

are:

(4.42)

St:

torce and moment acting on the rocking section and the results are presented in terms of
parameters ¢, and ;.

It can be seen that the assumption made in Chapter 2 gives very good results. The only
discrepancy between the results can be observed for small values of the equivalent contact
length, ¢,. For such small contact lengths, the numerical solution by Gaydon and Shep-
herd (1964) does not converge well even for a fairly large number of eigenfunctions used,

so the results in Chapter 2 have been extrapolated to cover this area. Furthermore, the
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Figure 4.20: Stress distributions for various contact lengths, ¢, which produce linear dis-
placement distributions under the load. The corresponding linear stress distribution for
each contact length is shown with a dashed line.
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Figure 4.21: Deviation of the displacement distribution across the non-contact region
from the linear displacement distribution of the contact region for various contact lengths,
¢, normalized so that the displacement at y = 1 is equal to one. The corresponding linear
distribution for each contact length is shown with a dashed line.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP
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Figure 4.22: Lever arm of exact stress distributions with respect to the center of the section
and comparison with that of triangular loads with the same contact length, c.

respective values of the results obtained using the methodology proposed in the present
chapter (“exact” distributions) might be sensitive to even small errors included in the pro-
posed approximation functions. Thus, it is difficult to decide on which values are more
accurate. Nevertheless, the discrepancy between them is not expected to have a significant
effect on practical applications.

It is expected that the establishment of an analytical function for the displacement
distribution of the semi-infinite strip under a point load will provide significant help in

future works regarding the prediction of the response of deformable rocking bodies.

4.A  Analytical expressions for the non-polynomial terms

of the displacement integrals

'The polynomial terms of Eq. (4.24), that is functions Up and U,p, are easy to integrate for
the derivation of the displacement due to a rectangular or triangular load. The indefinite

integrals regarding Up and Ug are given here.

Iy = /UA(?J7P) dp =2 fi(y,p) — 2y°p* + Byp — 1) p fo(yp)/3

+ (1+yp) 2yp— 1) p fo(—yp)/3 + 4yp*/3

(4.43)
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Figure 4.23: (a) Normalized central displacement and (b) normalized slope of the lin-
ear displacement distributions under the load produced by the “exact” stress loads and
comparison with the results of equivalent triangular loads with the same axial force and
moment. ¢, and s, are the contact length and maximum stress of the equivalent triangular
load, respectively, while E is the modulus of elasticity of the member.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

Ja = /p Ua(y,p) dp = (p+y) fi(y,p) — [(3yp + 7) fi(yp, 1) + f2(yp) + f3(yp)] p*/6
— [Byp +1) fil=yp,1) + fo(—yp) + f3(—yp)] P*/6 + yp® + p* /3 — yp
(4.44)
Iy = /UB(y,p) dp = —4fi(y,p) — 2f5(y, p) + 4fs(~y, —p) + 2f5(~y, —p)

31+ fi(-y1) = (1 =y hAly, D] p*/2+[1+p) fi(=p, 1) + (1 =p)*filp, D] y
(1—y)*+ H3yp 6yp + 3p — 8) p/4
(14 y)* +4] (3y°p + 6yp + 3p + 8) p/4
+In[(1 —p)* +4] (2—y/2 = 2p+ 3yp/2 — 3yp* /2 + yp®/2)
—In[(1+p)* +4] (2+y/2+2p+ 3yp/2 + 3yp*/2 + yp°/2)
+ arctan(y/2 — 1/2) 3p+2) (y — 1) p — arctan(y/2 +1/2) 3p—2) (y+ 1) p
—arctan(p/2 — 1/2) [(3y + 1) (=54 2p — p*) +8 (1 + y)]
— arctan(p/2—|— 1/2) [By—1) (5+2p+p*) +8 (1 —y)]
2(6In(2) —m) p+32In(2) +7+1) yp’

+In

[
In|
[

(4.45)
Jy = / p Us(y,p) dp = —4£1(5,9) + (1 — 9) fo(p, ) — (1 + p) (v, )
—4fi(~y, —p) + 1 +y) fs(=p,—y) — (1 — p) fs(~y, —p)
+[(1+y) fil=y, 1) = (1 —y) fi(y,1)] p’
+[(Bp—1) 1 +p)? fi(—p, 1)+ (Bp+1) (1 —p)* fi(p, )] y/4

+In[(1—y)* +4] (v°p —2yp+p—2) p°/2

—In[(1+y)* +4] (V’p+2yp +p +2) p*/2
FIn[(1—p)2 +4] (=1/3 — p* + 15y/8 + 3yp?/4 — yp® + 3yp*/8)
+In[(1+p)* +4] (—1/3 —p* — 15y/8 — 3yp® /4 — yp® — 3yp"/8)

+ arctan(y/2 — 1/2) (2p + 1)(y — 1) p* — arctan(y/2 + 1/2) (2p — 1)(y + 1) p*
— arctan(p/2 — 1/2) [(y +1/3) (=13 + 3p* — 2p*) + 8(1 + ¥)]
—arctan(p/2 + 1/2) [(y — 1/3) (=13 + 3p” + 2p°) — 8(1 — y))]
)

2 (2In(2) + 7+ 1) yp® + (61n(2) — 7 +2/3) p* — 2yp
(4.46)
'The functions fi, ..., f5 are given in Table 4.2. 'These functions contain removable

singularities at the points given in the table, for which the corresponding limits are given.
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4.B. Incorporation of the rocking interface stress determination procedure into the
macroelement algorithm of Chapter 2

Function Definition Singularity point | Limit

fi filz,2) =(z—z)In|z — z| =2z 0

5 fz(l"):(l_m)l;(l_x) S 1
z=1 0

1+ 1

fy fila) = D) v =0 :
rz=1 1

1—2
fa faz,z) = (1 — z) arctan | — " r=1 0
fs fs(r,2) =(1—=2)In[(1 —2)?+ (1 — 2)?] r=z=1 0

Table 4.2: Functions for the calculation of the displacement integrals containing remov-
able singularities.

4.B Incorporation of the rocking interface stress
determination procedure into the macroelement

algorithm of Chapter 2

In Chapter 2, a macroelement formulation for the prediction of the response of elastic
deformable rocking bodies was proposed. In this formulation, the normal stresses devel-
oping across the rocking interface are assumed to have a triangular distribution. Since a
triangular load does not produce linear displacements (Section 4.4), a best-fit linear ap-
proximation of the induced displacements is performed, so that there is compatibility with
the observation that the displacement distribution across the loaded region of the rocking
interface is linear.

As explained in Section 4.5, this approximation does indeed give very good results
(Fig. 4.23). More specifically, given a set of an axial force and moment acting on the
rocking end, the central displacement and rotation produced by the equivalent triangular
load, whose parameters are calculated using Eqgs. (4.41) and (4.42), are in very good
agreement with the ones produced by the exact nonlinear stress distribution.

'This means, that the macroelement procedure proposed in Chapter 2 does not need
to be altered regarding the calculation of the additional displacements produced by the
partial loading of the rocking interface. However, if one wants to determine the exact stress
distribution acting on the rocking interface at the end of a converged step, the procedure
presented in Section 4.5 can be incorporated as follows:

For given axial force, IV;, and moment, M, acting on the rocking end of a member
with semi-width b, normalized with respect to the width d, and for n control points across

the contact region:

* Calculate the normalized forces referring to the semi-infinite strip dimensions, N,, =

N;/band M,, = M,/1?.
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4. THE NONLINEAR DISPLACEMENT DISTRIBUTION OF THE SEMI-INFINITE STRIP

* Calculate the lever arm for a stress distribution acting on the left side of the semi-infinite
strip end, 7 = —|M,,/N,,|. If || < 1/3, the whole section is loaded with a linear stress
distribution and the technical theory of bending applies, otherwise continue to the next

SthS.

* Estimate the normalized contact length, ¢, from Fig. 4.22, or from the following ap-

proximation:

¢ =3(r+1)+(10.49+41.93r 4 74.22r* +63.13r* +-20.79r*) (r + 1) (r + 1/3) (4.47)

* Calculate the coordinates of the control points, y; = —14c (j—1)/(n—1),j =1, ..., n.

* Formulate matrix U, whose entry U, ;; refers to the displacement at y; due to a triangular

load with its tip at y;, using Eq. (4.31).
* Formulate matrix H using Eq. (4.36).
* Formulate matrix U, using Eq. (4.37).
* Formulate matrix K using Eq. (4.38).
* Formulate and solve Eq. (4.39) to determine o,,.
* The vector of stresses corresponding to points y; is o = [1, o, 0]7.

e Calculate the axial force of the calculated stress distribution:

[y

DN | —

n—

Ny = (Y1 — ¥i)(0j41 + 05) (4.48)

<.
Il
-

* Scale the calculated stresses to match the given normalized axial force:

N,
c=—o0 (4.49)
Ny

The stresses corresponding to the normalized semi-infinite strip have the same value as

the ones corresponding to the original member with arbitrary semi-width b.

* If p = sign(M,/N,), the points of action of stresses & on the original member rocking
end section are Y; = —b p y;, while the contact lengthis C' = b c.

* 'The additional displacements due to the self equilibrating normal stresses at points Y;*
across the rocking interface are calculated using Eq. (4.40) for y = —(p/b) Y;* and &
instead of o, which additionally need to be multiplied with (b/E).

It is noted that the determination of the stress distribution inside the member for the
calculated stress distribution at the rocking interface is a much more involved process. In
order to do so, the maximum stresses of the triangular loads, S, are needed, which are

calculated using Eq. (4.35) with & instead of o. Afterwards, the procedure described in
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4.B. Incorporation of the rocking interface stress determination procedure into the
macroelement algorithm of Chapter 2

detail in Chapter 2 must be followed for the determination of the stresses inside the body
of the member induced by each individual triangular load, all of which must be finally
superimposed with the stress distribution predicted by the technical theory of bending for
the given resultant forces at the member ends.
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Modeling of inelastic rocking bodies under
cyclic loading

In this chapter, the macroelement formulation for inelastic rocking bodies under cyclic
loading is presented. In contrast to the monotonic loading examined in Chapter 3, cyclic
loading, which is examined herewith, is much more complex and needs a different treat-
ment.

It should be noted that the formulation presented in this chapter is developed for static
analyses. The dynamic motion of rocking members, though, is more complex, since it also
involves other motion modes (sliding and upthrow) and requires a suitable treatment of
damping, especially during impacts. The proposed formulation herein can serve as the
basis for the extension of the macroelement for dynamic analyses; however, the necessary
modifications to incorporate the aforementioned phenomena are considerable and will be

presented in the following chapter.

5.1 Problem statement

'The material of the rocking body is assumed to be elastic-perfectly plastic with Young’s
modulus F, Poisson’s ratio v and yield stress oy, while the same modulus of elasticity is
assumed during unloading. As usual practice in beam-column elements, material yielding
is assumed only for the normal stresses, due to the increased difficulty of implementing
another yielding criterion combining all stresses.

As will be explained in the ensuing, a stress - strain material relationship is not di-
rectly used, because inelasticity is introduced in the form of inelastic displacements under
constant yield stress. It is also noted that, modifications to account for more complicated
material laws are difficult to implement with the proposed formulation, as they would
require additional assumptions for the calculation of the inelastic strains.

'The main characteristic of rocking bodies is that, in contrast to conventional structural
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5. MODELING OF INELASTIC ROCKING BODIES UNDER CYCLIC LOADING

members, tensile stresses cannot develop across the rocking interface. As a result, little
tensile stresses can develop inside the body close to its rocking end. This means that the
plastic deformations developing in this area cannot be reversed by sufficient tensile stresses,
so they can be considered almost irreversible for the formulation presented herein.

Since tensile stresses cannot develop across the rocking interface, the stress distribution
across this interface is nonlinear. However, the technical theory of bending used in usual
structural analyses cannot predict such response, meaning that this theory cannot be used
for rocking members. As extensively described in Chapter 2, the following approach,
based on the more general theory of elasticity, is used instead, which is considered an
invaluable tool for the accurate prediction of deformable rocking bodies.

It is reminded that the displacements produced by the nonlinear stress distribution
across the rocking interface can be examined by decomposing it into two distributions:
(i) A stress distribution according to the technical theory of bending for the given rock-
ing end resultant forces and (ii) Self-equilibrating distributions, which influence the local
displacements but do not produce resultant forces and moments (Fig. 4.2).

'The self-equilibrating stresses developing near the contact area have no resultant forces
and moment, so, according to the Saint-Venant principle, their effect far from the contact
area is negligible. This means that the displacement distribution across member sections
far from the contact area is almost linear across the element, as predicted by the tech-
nical theory of bending (Fig 1.5). Furthermore, the additional displacements induced
to the rocking body across the rocking interface by the self-equilibrating stresses can be
equivalently calculated as those corresponding to a semi-infinite strip (Fig. 4.1), since
this problem is much more easily solved. The semi-infinite strip examined is loaded with
self-equilibrating normal and shear stresses across its end (x = 0, —1 < y < 1) and, in
contrast to the well-known semi-infinite space, is stress-free at its sides (y = £1). 'The
results for the semi-infinite strip loaded with self-equilibrating normal and shear stresses
can be easily translated into ones referring to the rocking body, as it will be shown in the
ensuing.

Although the theory of elasticity used to solve the aforementioned semi-infinite strip
problem can only be rigorously applied to elastic bodies, it would be useful to use it ap-
propriately also for inelastic ones. To this end, the following assumptions are made: (i)
'The behavior defined previously for the inelastic material is considered as is for the rock-
ing interface, where, however, only compressive stresses can develop (Fig. 5.1). (ii) The
stress distributions on the rocking interface produce elastic displacements, [ue], which
are calculated according to the elastic theory of the semi-infinite strip. (iii) Fibers with
inelastic behavior or fibers which are stress-free at the rocking interface may develop addi-
tional displacements, [u,], beyond the aforementioned elastic ones. In the case of inelastic
behaviour, these additional displacements are negative (u, < 0) and correspond to the

additional plastic displacements that develop during the current step, while in the case
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5.1. Problem statement

__0'y

Figure 5.1: Elastic-perfectly plastic material law assumed for the rocking body at the
rocking interface, where only compressive stresses can develop.
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Figure 5.2: Stress distribution acting across the rocking interface and displacements pro-

duced across the yielded, elastic and non-contact regions, which match the displacements
of the rocking surface.

of stress-free fibers at the rocking interface, which do not belong to the contact region,
additional displacements are positive (u, > 0) and correspond to the gaps formed be-
tween the body and the rocking interface (Fig. 5.2). It should be noted that, in addition
to all of the aforementioned displacements, each fiber may also have a preexisting plastic
displacement, wy,,, from previous steps, which is almost irreversible, as explained above.
For a given linear displacement distribution across the rocking end, u,(Y"), which
corresponds to the planar rocking surface (Fig. 5.2) and is determined from the displace-
ments at node 7 of the element, the stress distribution at the rocking interface has to be
determined, so that the following condition holds for each fiber located at Y

ua(Y) + (V) + ttprpe(V) = g (Y) (5.1)

with
u,(Y') > 0, for regions which are stress-free (o(Y) = 0)
u,(Y') = 0, for regions with elastic response (o, < o(Y) < 0) (5.2)

u,(Y') < 0, for regions with inelastic response (o (Y') = oy)
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5. MODELING OF INELASTIC ROCKING BODIES UNDER CYCLIC LOADING

where ug(Y') is the elastic displacement at Y induced by the normal and shear stresses,
u,(Y') is the additional plastic or gap displacement at Y, depending on the response of the
respective fiber at the rocking interface as defined above, 1, (Y') is the preexisting plastic
displacement at Y from previous steps and o(Y") is the normal stress of the fiber located
at Y at the rocking end.

Fig. 5.2 shows the original and deformed position of the rocking body and the rocking
surface. The shaded area corresponds to the deformed rocking body, where only deforma-
tions of the body parallel to the loading are shown for clarity. The normal stresses, [0], as
well as the shear stresses, acting across the rocking interface produce elastic displacements,
[ue1], which develop across the whole section (in blue), while negative additional (plastic)
displacements [u,| develop across the yielded area (in red) and positive additional (“gap”)
displacements [u,] form between the rocking surface and the body across the non-loaded
area (in green), so that the total displacements match those of the rocking surface (node ;
of the element), [u,] (in brown). Preexisting plastic displacements are not considered in
the figure for simplification.

It should be mentioned that this problem statement does not make the assumption of
linear strain distribution across the contact region, which has been proven to be incorrect
even for elastic bodies (Chapter 4). As also shown in the next section, this is because such
a linear strain distribution produces nonlinear displacements across the contact region,
which comes in contrast to the assumption of a planar rocking surface (Fig. 5.2).

In addition, it is evident that only displacements parallel to the deformed member
axis are considered in the proposed formulation, while small relative displacements of the
individual control points perpendicular to the member axis, for example due to Poisson’s
phenomenon, are neglected, as is the usual practice in beam-column formulations. Nev-
ertheless, and despite the fact that a planar rocking surface is assumed, some kind of stress
singularity may still exist at the corners of the rocking body, as shown in Chapter 4, but

does not affect the solution convergence.

Elastic strain and additional displacement distributions

For the numerical solution of the aforementioned problem, the rocking interface is exam-
ined in the same coordinate system as the one used for the semi-infinite strip, —1 < y < 1,
meaning that coordinates Y of the actual rocking end section are normalized with respect
to the semi-width of the member section, b, and is discretized into a number of control
points with fixed normalized coordinates, Y.

Each of these control points is assigned a stress value, o, or more conveniently an elastic
strain of the rocking body at the rocking interface, e = o/F, as well as an additional
displacement, the normalized value of which, with respect to b, is denoted with ,. Eq. 5.2

suggests that these quantities cannot take values independently from each other. Although
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5.1. Problem statement

e
Sy &

<

Figure 5.3: Unified representation of both the elastic strain, £, (in blue) and the nor-
malized additional displacement, u,, (positive values in green and negative values in red)
under variable w: Forw < ey, eq = ey and 4, = w — &, < 03 fore, < w < 0,69 = w
and @, = 0, while forw > 0,4 =0 and @, = w > 0.

the dimensionless quantities €. and @, are not directly comparable with each other, a new
dimensionless variable
W= Eq + U, (5.3)

is introduced for algorithmic reasons, which represents the sum of the elastic strains and
the normalized additional displacements. This variable is able to represent the whole al-

lowable range of €. and @, values at each fiber as follows (Fig. 5.3):

0 ,ifw>0
Cd=qw ,ife,<w<0 (5.4)
gy Hifw <egy
and
w ,ifw >0
Uy =40 yife, <w <0 (5.5)
w—eg, ,ifw<eg
where ¢, = 0,/ E.

'The previous relationships express the assumptions in Eq. (5.2) and more specifically

(Fig. 5.3):

* if w > 0, the fiber does not come in contact with the rocking surface and does not
develop an elastic strain (¢4 = 0), but only a positive additional (“gap”) displace-

ment, 4, = w > 0.
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5. MODELING OF INELASTIC ROCKING BODIES UNDER CYCLIC LOADING

* if e, < w < 0, the fiber behaves elastically, so an elastic strain at the interface

develops with e, < & < 0 and the additional displacement is zero, i, = 0.

* ifw < gy, the fiber behaves inelastically, so it develops an elastic strain equal to the

yield strain, £ = ¢y, and an additional plastic displacement, 1, = w — &, < 0.

If n,, is the number of control points used, W is a vector with length n,,, which
contains all of the w values and S,, and U, are the same length vectors containing the
elastic strains and additional displacements for all control points, respectively. In addition,
U, is the vector containing the normalized plastic displacements at the control points

retained from previous steps.

5.2 Prediction of elastic displacements for given stress

distributions across the rocking interface

Before continuing with the problem treatment, the displacements induced by the self-
equilibrating stresses that develop across the rocking interface are derived in this section,

which are used next in the proposed algorithm.

Normal stresses

After uplift, the stress distribution across the rocking interface is nonlinear due to its partial
loading. As previously mentioned, the effect of such nonlinear loading can be considered
by decomposing it into (i) a linear loading as predicted by the technical theory of bend-
ing for the resultant forces produced and into (ii) a self-equilibrating load. Regarding the
displacements produced by the self-equilibrating part of the normal stresses, the displace-
ment distribution across the rocking interface for an arbitrary stress distribution has to be
determined.

This displacement distribution can be more easily calculated for an equivalent semi-
infinite strip, as mentioned before. The solution of this problem is presented in Chapter
4, where an analytic expression for the displacements across the member for a concen-
trated load at an arbitrary location is given, by approximating the numerical results of the
methodology proposed by Gaydon and Shepherd (1964). Function U(y,p) (Eq. 4.24),
refers to the displacement of the semi-infinite strip at location y for a unit concentrated
load at p, normalized with respect to the modulus of elasticity of the body, E.

In the proposed formulation, the normal loads across the rocking interface are decom-
posed into triangular or trapezoidal loads. As any stress distribution can be considered
as the integral of concentrated loads across the load surface, the displacements due to a

triangular load with unit negative slope, maximum value at y = —1 and load tip at r (Fig.
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5.2. Prediction of elastic displacements for given stress distributions across the rocking
interface

5.4a) are given by:

r

Us(y,7) Zf/_z Uly,p) dp — /1pU(y,p) dp (5.6)

'The integrals required in the previous equation are given in Appendix 4.A. Furthermore,
the displacements due to a trapezoidal load with constant value between y = —1 and

y = 1 and unit negative slope between y = r; and y = r, (Fig. 5.4b) are given by:

Utrapz(y7 , Tr) = Utr<y7 rr) - Utr(ya 7”1) (57)
r+1 re-r;
I\IA 1
-1 7 +1 -1 n I'r +1
(a) (b)
!
!
|1 |
| I
-1 7 e+l -1 Y Yo Y2+l
(c) (d)
Figure 5.4: (a) Triangular normal load with maximum value at y = —1 and slope equal

to -1; (b) Trapezoidal normal load with elastic stress boundaries at 7 and r, and stress
slope between them equal to -1; (c) Parabolic shear load with unit maximum value and
boundaries 71 and r,; (d) Triangular normal load with maximum value at 3y and boundaries
at y; and ¥s.

Shear stresses

'The real distribution of the shear stresses is unknown, since in reality there is an interaction
with the normal stresses and an accurate prediction of its shape requires special solution
methods based on the theory of elasticity. However, the contribution of the shear stresses is
assumed here to be that of an equivalent parabolic distribution (Fig. 5.4c), independently
of the exact normal stress distribution. The normal stress distribution determines the
boundaries of the contact region across the rocking interface, r and r,, which coincide
with the the boundaries assumed for the parabolic shear distribution.

Generally, the displacement profile produced by a parabolic shear loading is nonlinear.
Nevertheless, for simplicification, this distribution is linearized across the contact region,
as in Chapter 2.

In order to calculate the linearized displacements for the self-equilibrating part of the

parabolic shear stress distribution, the methodology presented in Chapter 2 is followed,
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5. MODELING OF INELASTIC ROCKING BODIES UNDER CYCLIC LOADING

with the difference that both parabolic distribution boundaries, 7| and r,, corresponding
to the contact region boundaries, need to be considered. For this loading, if 7,, is the

maximum shear stress, the shear stress distribution is:

0, fory <

_ At

T(y) = m(rr—y)(y—ﬁ), forr <y <, (5.8)
0, fory >r,

'The terms /3; associated with this distribution, which are necessary for the calculation
of the elongation integrals as in Chapter 2 are:

For the symmetric problem (antisymmetric shear distribution):

227 sinh (A;r,)  sin(Ajr)  sinh (A7) sin (A7)
= | i (1 —
b M (rp = 1p)? [ (rr = m1) < cosh \; + cos \; + cosh \; + cos \;
_y cosh (Airy) cos(Airy)  cosh(A;m) 4 cos (Nirp)
cosh \; COS \; cosh \; COoS \;

(5.9)

and for the antisymmetric problem (symmetric shear distribution):

2V@h;n)2 {ui(rr——7*) <cosh(uirr)__cos(pirg)+_cosh(uir0 _»cos(ﬂi77)>

Bi

- pd (ry — g sinh p; sin p; sinh p; sin pu;
_y sinh (p; ) sin (i re)  sinh (pim) N sin (p; r7)
sinh p; sin p; sinh p; sin p;

(5.10)

'The parameters of the derived best-fit line according to this methodology correspond
to the central displacement and rotation of the rocking end due to the self-equilibrating
shear stress loading.

The results are produced for a unit value of ¢ = 7,,/E, where 7, is the maximum
shear stress and E is the modulus of elasticity. It is noted that, for simplification of the
approximation of the results, only the results for Poisson’s ratio v = 0 are derived here,
meaning that only the contribution of the normal stresses inside the element parallel to
the member axis on the displacements is considered, since the results for v # 0 do not
differ significantly from the ones presented here.

For the approximation of the results, the following two parameters were found to

produce a good fit:
q:1+”;”"r (5.11)
L+r
P=1 (5.12)

which correspond to the distance of the center of the parabolic distribution from y =
—1 and to the ratio of the distances of the parabolic distribution edges from y = —1,
respectively. Results are presented only for the cases where —1 < (1 +1,)/2 < 0, or
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5.3. Approximate determination of region boundaries

equivalently 0 < ¢ < 1, since the results for 0 < (r; + 7,)/2 < 1 are antisymmetric to the
former ones, as explained below.

'The central displacement and the rocking end rotation are approximated by

Sin(r72) = ar(p) (1 — @)™ (5.13)
Oun(r1, 1) = di(p)(1 — )P + fi(p) (5.14)

respectively, where the individual functions are:

a(p) = a1 + agp + asp’®
bi(p) = a1 + asp + asp® + asp® + asp*
c(p)=ar (1 —p)*” +1 (5.15)
di(p) = (1 = p)(a1 + asp + azp?)
ei(p) = a1 + az(1 — p)™ + asp
fi(p) = arp + asp® + azp® + asp® + azp’

The aforementioned functions were chosen to approximate the numerical results as
well as possible and do not have any physical meaning, while the respective coeflicients

are given in Table 5.1.

Coetf. a:(p) be(p) ci(p) di(p) ei(p) fi(p)
a, 243622225 0.69820019 0.81346044 234041769 1.40432262 0.43434583

ay  -2.38180594 -1.09830807 3.77005753 -1.95923561 0.13024245 3.10747649

as 0.70789987  1.92667568 0.89142605 3.65641634 -6.96783698
a4 -1.12706668 -0.05492961  6.5017201
as 0.68886705 -2.28427661

Table 5.1: Coeflicients of shear stress loading displacement functions.

In Fig. 5.5, a comparison between the values produced by the numerical solution by
Gaydon and Shepherd (1964) and the proposed approximation are presented, showing
that the latter gives practically indistinguishable differences in the results.

For the case 0 < (1+7,)/2 < 1, the displacements are calculated due to antisymmetry

from equations:

5tn(T17 Tr) = _6tn (—’f’r, _Tl) (516)
Qtn(rla Tr) - gtn (_Tr’ _Tl) (517)

where the parameters g =1 — (r; +r,)/2and p = (1 — ) /(1 — 7) are used.

5.3 Approximate determination of region boundaries

By assigning a value w at each control point across the rocking interface , elastic strain, e,

or additional normalized displacement, ,, values are assigned to each one. Connecting
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Numerical solution Approximation
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Figure 5.5: Comparison of (a) the central displacement and (b) the rocking end rotation
due to the self-equilibrating shear stresses, as given by the numerical solution and the
proposed approximation.
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5.3. Approximate determination of region boundaries

these values with linear segments, the corresponding elastic strain and additional displace-
ment distributions across the rocking interface are created (Fig. 5.6). However, it can be
seen that this procedure creates regions that develop both elastic strains (¢, < € < 0) and
additional displacements, which violates the assumptions described previously.

'This is why specific points between the respective control points must be chosen, cor-
responding to boundaries of regions with different behavior, where the additional dis-
placements become zero and the elastic strains become either zero or equal to the yield
strain. If such boundary points between regions are not explicitly considered (Fig. 5.6),
the accuracy and continuity of the produced forces for given continuous displacements
is not ensured, leading for example to non-smooth force-displacement curves, even for
dense control point locations and to discontinuous function for the contact zone of the
body with the base, leading to numerical problems. In addition, region boundaries may
exist between two control points, even though these two points have the same elastic or
inelastic response, since existing plastic displacements between them influence the shape

of the produced stress distribution.

%

Sy /
/ [iz,]<0

Figure 5.6: Creation of distributions [@,] and [g¢] from W values. It can be seen that, if
explicit region boundaries between control points are not considered, some intervals may
develop both elastic strains (¢, < € < 0) and normalized additional displacements, .

°-
&

®
[ ]
[ ]
[ ]
[ ]
[ ]
®

The exact determination of such points is difficult and computationally inefficient,
often leading to numerical problems. It should be noted that if the crossings of the lin-
ear segments created by the w values with the horizontal lines w = 0 and w = ¢, are
used, significant errors are introduced, since the strains and the additional normalized
displacements are incomparable quantities, which are unified together under variable w

for numerical purposes only.
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5. MODELING OF INELASTIC ROCKING BODIES UNDER CYCLIC LOADING

'The accuracy of results between the control points is not of main concern, so an approx-
imate methodology may be chosen, as long as it ensures the consistency and continuity of
the produced results. To this end, the region boundaries between two control points are
determined on the basis that the total displacement distribution, that is, the sum of the
elastic, the additional and the preexisting plastic displacements, is linear inside the inter-
val. The nonlinearities in the displacement distribution in this interval are assumed to be
mainly caused by the nonlinearities of the normal stress and the additional displacement
distributions in the same interval, while the contribution of the shear stress distribution is
assumed to be insignificant.

In order to examine the displacement nonlinearities produced by a nonlinear normal
load, let us first consider the extreme case of a concentrated load at a location p with
—1 < p < 1. For this load, Eq. (4.24) presents a displacement singularity at y = p,
which originates from the first term of the expression, U; = —2/7 - In |p — y|, while the
rest of the expression is continuous at this point. In fact, U; is symmetric about y = p,
meaning that for symmetric ys about y = p, the slopes are opposite, attaining infinitely
large values as y — p.

Let us now consider the triangular normal load shown in Fig. 5.4d, with maximum
value at yo and load boundaries at y; and y2. The displacements produced by this load
can be calculated by considering the triangular load as the integral of concentrated loads
over the loaded area. This integration removes the singularities of the concentrated load
described above. However, as y1 — o and y» — o, this triangular load approximates a
concentrated load at y. So, even for a triangular load, for small y; — yo and y, — yo val-
ues, U; is considered to be the crucial function for the determination of the displacement
nonlinearities in this region.

Taking only the aforementioned function into account, it can be shown that the ratio
between the difference of the displacement slopes in the intervals [yo, y2] and [y1, o),

AK,, and the difference of the elastic strain slopes in the respective intervals, AK,, is

AK,
AK,

_ —% Ay [8 n(8) + (1= B)In(1 — B)] (5.18)

where Ay = yo —y1 and 5 = (yo — y1)/Ay. The plot of the function in brackets is shown
in Fig. 5.7. It is obvious that parameter 3, which practically determines the location
of the peak of the triangular load with respect to the total loaded region, influences the
result. However, as an approximation, the mean value of the aforementioned function for
B € 10, 1], equal to —1/2, can be assumed, regardless of the exact location of the maximum

elastic strain, therefore:

A
AK, ~ 27 AK. (5.19)
T

'The previous equation practically means, that, for a triangular load profile in any in-

terval [y;, yo] with zero strain values at the boundaries, the deviation of the shape of the
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Figure 5.7: Function SIn(5) + (1 — 8)In(1 — ) (solid blue line) and its mean value
(dashed green line), equal to —1/2.

induced displacements from the linear displacement distribution (AK,,) can be obtained
by multiplying the load profile with Ay/m. By further assuming that the previous remark
can be extended to a strain distribution of any shape, a direct relationship between the
deviations of the strain and the displacement distributions from the corresponding linear
distributions can be established. More specifically, if the values of the strain distribution
are multiplied with Ay/7m (Eq. 5.19), the shape of the modified strain distribution in-
side the interval, [¢/], equals the one of the induced elastic displacements, making the
modified strain and additional and plastic displacement distributions directly comparable.

Equivalently, modified w’ values at the interval boundaries are defined as follows:

w ,ifw >0
w = w% yifey <w <0 (5.20)
T
w—l—sy(%—l) yifw < e,

so that modified strains are immediately produced for e, < w < 0, while the additional
displacements remain the same for the other two cases.

Let us now consider an interval [y;, y»] with values w/| and w) at the interval bound-
aries (Fig. 5.8a), which has no preexisting plastic displacements. For the case shown in
Fig. 5.8a, wj > 0 and &/ < wj < 0, so the left boundary develops a positive additional
displacement (gap) and the right boundary develops an elastic strain, meaning that a re-
gion boundary must exist between them, for which w’ = 0. The line connecting the values
w) and w}, at the interval boundaries crosses the horizontal line w’ = 0 at yy. The vertical
orange lines in Fig. 5.8a represent the deviation from the linear modified strain distribu-
tion (red line). As previously mentioned, it is considered that the linear strain distribution

does not produce significant nonlinearities inside the interval; therefore, since modified
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Figure 5.8: Schematic representation of the methodology used to estimate region bound-
ary points and correct region distributions: (a) Interval with w} > 0 and a’y < wh < 0; (b)
Interval with €] < wj < 0 and wy < &} (c) Preexisting plastic displacement distribution;
and (d) modification to account for the preexisting plastic displacements.

strain values are used, the shape produced by the vertical orange lines corresponds to the
deviation of the elastic displacements from the linear elastic displacement distribution.
However, additional displacements also exist, shown with vertical green lines. The sum
of the orange and green displacement distributions is linear, implying that this proce-
dure does not create any deviation of the displacements from a linear distribution. This
means that g, is indeed the correct region boundary and the distributions shown in Fig.
5.8a with vertical green and slanted blue lines are the actual additional displacement and
modified strain distributions, respectively. The same procedure can be applied to any w’
combinations at the interval boundaries, such as the case presented in (Fig. 5.8b), where
gy <wj < Oandwy < ey

If a plastic displacement distribution exists inside the interval from previous steps (Fig.
5.8¢), a modification is necessary to account for it. In such a case, the deviant plastic
displacement distribution is calculated (vertical purple lines in Fig. 5.8¢) and its opposite
is then added to the line connecting the interval boundary values to create a new curve

(brown curve in Fig. 5.8d), so that the summation of the elastic, the additional and the
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5.3. Approximate determination of region boundaries

preexisting plastic displacements produces a linear displacement distribution. In order to
locate the region boundaries and the actual distributions inside the interval, the procedure
described previously is applied again, but the aforementioned curve is used instead of the
linear one to determine .

From this procedure, it follows that the elastic strain distribution inside each interval
is generally nonlinear. The actual elastic strain distribution is calculated by dividing the
modified strain distribution found with the previous procedure with Ay/7 (Eq. 5.20).
Applying the previous procedure for all intervals across the rocking interface, vectors S and
Y are created, containing the values and coordinates of the actual elastic strain distribu-
tion, respectively, for the whole section. Furthermore, the difference between this strain
distribution and the linear segment connecting the strain values at the interval boundaries
defines additional loads which must be taken into account (e.g. the distribution in vertical
orange lines in Fig 5.8a, divided by Ay /7). The opposite of the slopes of this distribution
difference, as well as their left and right boundaries are stored in vectors K, Y kg and
Y ko1, respectively.

To summarize, the necessary region boundaries and correct elastic strain and addi-

tional displacement distributions inside each interval are calculated as follows:
1. Calculate w’ at the region boundaries using Eq. (5.20).
2. Draw the line connecting the aforementioned values.

3. Calculate the differences between all linear segments of the plastic displacement
distribution with the line connecting the plastic displacement values at the interval

boundaries.
4. Add the opposite of the aforementioned deviant distribution to the line of step 2.

5. Determine the region boundaries from the points of the crossings of this curve with

the horizontal lines corresponding to w' = €| = &,(Ay/7) and w’ = 0.

6. 'The regions between the aforementioned horizontal lines correspond to the correct
modified strain or additional displacement distributions. The additional loads due to
the nonlinearity of the strain distribution are calculated as the difference between the
modified strain distribution, divided by Ay/7 (Eq. 5.19), from the line connecting

the strain values at the interval boundaries.

It it noted here that due to the existence of plastic displacements, a new region may
form inside an interval, although none of the interval boundaries suggests that such a re-
gion exists. For example, a common phenomenon during unloading is that decompression

does not happen uniformly across the contact region, as one would intuitively think, but
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the yielded region remains and translates towards the center of the element. The proce-
dure described above is able to predict such a response, even if this yielded region is formed
between two control points behaving elastically.

Furthermore, the ratio between displacement and strain slopes derived above, equal
to Ay/m on average, is much less than unity. On the contrary, if the crossings of the
[w] distribution with w = 0 and w = &, were used as region boundaries, meaning that
the aforementioned ratio would be assumed equal to one, the introduced error would be

significant, even if no plastic displacements were present.

5.4 Calculation of displacements for given W values

As described previously, convergence of the algorithm is achieved when the sum of the
elastic, the additional and the preexisting plastic displacements equals the values of the
given target linear displacement distribution. This equality is checked explicitly only at
the control points, Y,,, and implicitly between them, with the procedure described in the
previous section for the determination of the region boundaries.

For given W vector, containing the w values for all control points (Eq. 5.3), the
aforementioned displacement contributions are determined. The contribution of the elas-
tic displacements induced by the loading is the most difficult to calculate and originates
from three sources: The resultant forces at the rocking interface, the self-equilibrating nor-
mal stresses and the self-equilibrating shear stresses. Regarding the other contributions,
vector U,, calculated using Eq. (5.5) for each control point, contains the normalized ad-
ditional displacements at the control points, while U, contains the normalized plastic

displacements induced at the control points from previous steps.

Elastic displacements due to the resultant forces

As already explained, the element is examined in a corotational coordinate system of a sim-
ply supported beam. For a conventional elastic member, the relationship between nodal

displacements and nodal forces in this coordinate system is (e.g. Przemieniecki, 2012):

. o o _
A
L o L Q
o _ F 5.21
" O 3EITGAL T6EI T GAL (5:21)
0 B L n Q L n Q
I 6EI T GAL 3EI | GAL |

where u, = [0, 01,1, 02:f] is the vector containing the central elongation and the rotations
at the two member ends due to the resultant forces, F, = [N, My, M,]T is the vector
containing the axial force and moments at the two member ends, E is Young’s modulus,

( is the shear modulus, A is the area of the member section, I is the moment of inertia
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5.4. Calculation of displacements for given W values

of the member section and « is the shear shape factor with a =~ 1.2 for rectangular cross
sections (the shear deformations contribution can be neglected by setting o = 0.0).
'The forces at the rocking end, normalized with respect to the semi-width, b, and the

thickness, d, as well as the modulus of elasticity, F, are:

N
N, = — )
"= T (5.22)
M,
M, = HaE (5.23)
QM+ M
@n = bdE bdLE (5.24)

These normalized forces, Fy,, = [Ny, M, Q,]7, are introduced, so that compatibility with
the resultant forces produced by the stresses acting on the coordinate system of the semi-
infinite strip (b = d = 1) is achieved, where the stresses are also normalized with respect
to E.

Using these quantities, the nodal displacements at the member ends due to the nor-

malized resultant forces on the rocking end are calculated as:

u =1 F, (5.25)
with
L . . -
2
L L?
=0 20 T-a(lty) (5.26)
3L L?
i —E —@ — Oé(l + V)_

Normalized axial force and moment at the rocking end Given the vectors S and Y of
length n;, containing the values of the elastic strain distribution at the respective coor-
dinates, including those between the control points, the normalized axial force and the

normalized moment are given by:

ns—1
1 S
Ny = 2 ; (Yi+1 — ¥i) (Siv1 + i) (5.27)
1 ns—1
n - 6 yz+1 yz ZSzyz + SilYi+1 + Si+1Yi + 232+1y2+1) (528)

=1

where s; and y; are the elements of vectors S and Y.
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Normalized shear force at the rocking end Since the self-equilibrating stresses have a
local influence on the area near the rocking end according to the Saint-Venant principle,
the rotation at node 7 of the element (Fig. 1.5), which corresponds to the non-rocking
end, is unaftected by the self-equilibrating stresses formed at the rocking end. As a result,
rotation 0, is determined only from the resultant forces of the member ends. Given 0,
the normalized shear force is calculated from
Q, = 0> — fr32Mn

fr33
where f;3 = —(3L)/(4b) and f;33 = —L?/(2b°) — a(1 + v).

After the calculation of @)y, the first two rows of Eq. (5.25) are used to determine

(5.29)

the contribution of the resultant forces to the rocking end displacements, d,s and 6.
Alternatively, the value of the shear force calculated using Eq. (5.29) can be condensed
into Eq. (5.25), so vector U, = [d,f, 01| can be directly calculated from

fr,ll 0 N 0
Uy = ) "Ll f 5.30
f 0 fim— Jr23 - fo32 { Mn} ; g, (5.30)
fr’33 r,33

where additionally, f,11 = L/2, fizx = (3L)/(4b) and f,3 = L*/(4b*) — a(1 + v).

Elastic displacements due to the self-equilibrating shear stresses

If yq and y,, are the boundaries of the contact zone, as determined by the approximate
calculation of the region boundaries, since an equivalent parabolic shear stress distribution
is considered between them, the maximum shear stress, normalized with respect to the

modulus of elasticity, E), is:

. (531)
2(Yer — Yo1)

For given shear stress distribution boundaries, the parameters U, = [0z, Oin]” of the
linearized displacements induced to the contact region of the rocking end with normalized
semi-width b = 1 by a parabolic distribution with ¢ = 1 are given by Eqgs. (5.13) and (5.14)
or Egs. (5.16) and (5.17). For the value of ¢ calculated using Eq. (5.31), the respective
vector containing the displacement parameters due to the self-equilibrating shear stresses
is:

w; = Uy, (5.32)

It is noted here that, using the aforementioned methodology, the contribution of the
self-equilibrating shear stresses can be approximately considered for slender rocking bod-
ies only. For squat rocking bodies, e.g. bodies with length approximately equal to their
width, the self-equilibrating shear stresses contribution becomes important and, since it
usually produces displacements which are of opposite sign to the normal self-equilibrating

stresses, convergence problems may occur.
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5.4. Calculation of displacements for given W values

Elastic displacements due to primary self-equilibrating normal stresses

'The primary normal strain distribution is the one formed by linear segments between the
elastic strains S,, located at points Y. This stress distribution differs from the actual one
tormed by taking into account the nonlinearities between the control points; however, it is
examined separately because the control points remain fixed across the rocking interface.
As aresult, the following formulation remains unaltered throughout the analysis, meaning
that the respective matrices need to be formulated only once, at the beginning of the
analysis.

'The purpose of the following derivations is to formulate a matrix V, whose entry (i, )
is the elastic displacement induced at location y; due to a unit elastic strain at location y;,
with the elastic strains at the other control points being equal to zero. In order to derive
this matrix, the elastic strain distribution (Fig. 5.9a) is first decomposed into triangular
hat loads (Fig. 5.9b). Then, each hat load is decomposed into three triangular loads with
maximum values at y = —1 (Fig. 5.9¢), for which the displacements induced across the

section can be easily calculated.

0000 Y

YirYijrr ijjﬂ

(a) (b) (c)
Figure 5.9: (a) Elastic strain distribution; (b) Decomposition into hat triangular loads; (c)
Decomposition of each hat load into triangular loads with maximum value at y = —1.

More specifically, matrix H is formulated, whose entry (k, j) refers to the contribution
of the elastic strain at y; to the opposite of the slope of the triangular load with maximum
value at y = —1 and load tip at y;. It can be proven that the non-zero entries of this

matrix are given by the following expressions:

1
Hj | =
Ty — i
1 1
H;; =— — (5.33)
Yi —Yi-1 Yj+1 — Yj
1
Hi =
7 Yit1 — Yj

tor each j = 1, ..., n,,, where fractions containing 3 and ¥, +1 in their denominator are
ignored.
In addition, matrix G is formulated, whose entry (i, k) is the displacement induced

at location y; due to a triangular load of maximum value at y = —1 and unit negative
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slope (Fig. 5.4a) with load tip at yj. 'This matrix is formulated using Eq. (5.6). It is
worth noting, that, since the aforementioned triangular loads are produced from the elastic
strains and not the corresponding stresses, the displacements of Eq. (5.6), which generally
correspond to Ef = 1, are produced directly for the correct modulus of elasticity of the
rocking body, E.
Finally, matrix V is given by
V=GH (5.34)

which remains constant throughout the analysis.
Vector U,;, which contains the displacements at the control points due to the primary

normal stresses, is formed during each iteration as:

Usg=VS, (5.35)

Elastic displacements due to secondary self-equilibrating normal stresses

Apart from the primary normal stress distribution, which is linear between control points,
secondary normal stresses need to be taken into account, expressing the nonlinearities
of the normal stress distribution between the control points due to region transitions or
nonlinear plastic displacements between them.

As mentioned above, vectors K, Y kg and Y g, are created during the procedure of
the approximate determination of the region boundaries, which contain the opposite of
the slopes of the deviant strain distribution, as well as the corresponding left and right
interval boundaries.

'The displacements induced across the rocking end section for each one of these seg-
ments is calculated by multiplying the slope of each segment, ks, with the displacements
at the control points produced by a trapezoidal load with negative unit slope in the elastic
region (Fig. 5.4b), which has boundaries s and yys,, calculated using Eq. (5.7).

Adding the contributions of all elements of vector K on the control point displace-
ments, vector U,, is created, which contains the displacements at the control points due

to the secondary normal stresses.

Target displacements

If u, = [0, 01,627 is the vector containing the element displacements in the corotational
coordinate system, namely the axial elongation, the chord rotation at the rocking end and
the chord rotation at the other end, then a new vector u,, = [4,0;]7 is formed, which
contains the two first elements of u,. These are the parameters of the target linear dis-
placement distribution of the rocking surface, which must match the displacements pro-

duced by all aforementioned displacement contributions. It may be recalled that the third
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element of u,,, which is the chord rotation at the non-rocking end, is satisfied by default,

since Eq. (5.29) is used to calculate Q),,.

Combination of the control point displacements

Until now, the following vectors regarding displacements have been derived:

* U and Ug,, which refer to the contribution of the self-equilibrating normal stresses

on the displacements of the control points across the semi-infinite strip end.

* U, and U, which contain the normalized additional and preexisting plastic dis-

placements of the control points across the semi-infinite strip end.

* w;, which refers to the contribution of the self-equilibrating shear stresses on the

central displacement and rotation of the semi-infinite strip end.

* u,;, which refers to the contribution of the resultant forces on the central displace-

ment and rotation of the member rocking end.

* u,, which refers to the central displacement and rotation of the planar rocking sur-

face.

Itis clear that various incompatibilities exist between the aforementioned vectors. First
of all, vectors U1, Uey, U, and Uy, contain values referring to the control points, while
uy, u,r and u,, contain only two values, referring to the central displacement and rotation
of the rocking end. In addition, vectors Uy, Ue, U,, Uy and uy refer to normalized
displacements of the semi-infinite strip (b = 1), while u,s and u, to displacements of the
actual member rocking section.

'The displacements of the semi-infinite strip due to the self-equilibrating stresses have
to be multiplied with b to derive the displacements of the actual member at the respective
points (Chapter 2). However, it is more convenient here to examine all displacements in
the semi-infinite strip normalized coordinate system, thus, all actual member displace-
ments are divided by b, instead.

Coordinate Y; across the actual member rocking end section, corresponding to nor-

malized coordinate y; of the semi-infinite strip, is determined by:
Yi=by (5.36)

Also, given a central displacement, , and a rotation, 61, of the rocking end of the actual

member, the displacement at point Y; of the rocking end is given by:
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Since the conversion of the actual member rocking end displacements into ones com-
patible with the semi-infinite strip displacements demands that U (Y;) be divided by b, this
is achieved by dividing the term referring to the central displacement by b and leaving the
rotation unchanged, while using the normalized coordinates contained in Y ,,. Using the
previous remark, new vectors Uy, U, and U, are formed, containing displacements for

the control points across the normalized rocking end section:

Urf =CB U.f (539)
U, =C B u, (5.40)
with _ .
1 Yuw1
1 Yw2
C= . (5.41)
L Ywn,
and

i oo
o[ ] s

Finally, the difference between the resultant and the target displacement vectors is

defined:
Uy =Uqg + U+ U, + Uy + Up + Uy — Uy (5.43)

As a sidenote, it is understood that a modification of the macroelement to consider an
arbitrary rocking surface displacement distribution instead of a linear one that corresponds
to a rigid base surface that remains planar, is a rather simple task: instead of using Eq.
(5.40) referring to a linear target displacement distribution, vector U, may be formed

using the actual target displacements at each control point across the rocking surface,

divided by b.

5.5 Algorithm convergence

'The algorithm converges if the norm of Uy is less than a convergence limit defined by
the user. Usually, an iteration procedure is needed, in which a better estimation of W is
derived in each step so that Uy ultimatelly fulfills the convergence criterion. To this end,
the derivatives of all quantities mentioned in the previous section with respect to W are

needed.
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These derivatives are not presented here for space reasons, but can be easily derived
using the chain rule on every quantity dependent explicitly or implicitly on W. This way,
matrix OUy4/OW is formed and a better estimation of W is given by:

-1
Wiew = Wiy — (%) Uy (5.44)

It is worth noting that, due to the high nonlinearity of the problem, the increment
prediction of W denoted by the second term of the right-hand side of Eq. (5.44) might
be so large that the solution is not approached. Thus, if the algorithm does not converge
after some iterations, in order for the update of W to follow better the nonlinearity around
the solution, this increment can be reduced using a parameter A, with 0 < A < 1, so the

previous equation then reads:

oUg\ !

Wiew = Wprev - A (W Uq (545)

After convergence is achieved, the forces and the respective stiffness matrix in the
corotational coordinate system are calculated as follows:

The produced forces in the corotational coordinate system, F,, are calculated by in-

verting Egs. (5.22), (5.23) and (5.24):

1 0 0
F,=bdE |0 b 0 |F, (5.46)
0 —b —L

where F, = [N, M,,, Q,]" is the vector containing the normalized rocking end forces.
'The corresponding stiffness matrix is defined as OF,, /Ou,,. The force vector, F,, though,
is not dependent only on u,, but also on W, which also changes when vector u, does. In
order to calculate OW /Ou,, it is necessary to calculate OUg4/0u, by derivating all the
quantities using again the chain rule. Then, since the value of Uy should remain close to

zero with a change in u,, the following equation holds:

(5.47)

oW _ (0U4 1 ouy
ou, OW ou,

So, finally, the stiffness matrix in the corotational coordinate system is derived as:

DF, 0OF, OF,0W
K, = Du, Ou, + OW Ou, (5.48)

Iteration procedure for given nodal displacements 'The input given to the macroelement
by the global finite element framework is the vector of local system displacements, u..
These are converted to corotational system displacements, u,, using Eq. (2.1). After-

wards, iterations of the procedure presented above are performed, in order to find the
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vector W that satisfies the convergence criterion, Uy ~ 0. Specifically, given the coro-
tational system displacements of the last committed step, U, ey and the corresponding

matrix OW /0u, (Eq. 5.47), the new estimate of vector W for the next step is given by:

oW,
Wiew = Wprev + a—un (un - un,prev) (549)

After convergence of W is achieved, the force vector F,, and the stiffness matrix,
K., in the corotational coordinate system are calculated using Eqs. (5.46) and (5.48),
respectively. The output of the macroelement to the general finite element framework are
the local system forces, F. (Eq. 2.3), and the local system stiffness matrix, K. (Eq. 2.5).

After convergence of the whole model containing the rocking macroelement when a
condition demanded by the finite element framework is achieved (e.g. the displacement
at a node equals a given value), the current state of all the elements contained in the model
is saved. For the rocking macroelement, this means that the normalized additional plastic
displacement distribution across the rocking interface, [@,] < 0, calculated during the
determination of the region boundaries (e.g. Figs. 5.8b and d) at the current step, must
be added to the existing normalized plastic displacement distribution, [ty ), so that the

next step begins with the actual plastic displacements induced to the element until then.

5.6 Examples

In this section, the response of three rocking body configurations is examined using the

proposed macroelement formulation.

Rocking body with constant vertical force

'The response of a solitary rocking body with a constant vertical force on its top side (Fig.
5.10) is examined in this example. The rocking body has height H = 4 m, width B = 1 m
and thickness d = 1 m, modulus of elasticity &/ = 30 GPa and yield stress o, = 20 MPa
and is loaded on its top with a vertical force N = —2500 kN. The whole body is modeled
using one macroelement with its rocking end (node ;) at the bottom.

In Fig. 5.11, the loading - unloading curves (horizontal displacement, d,, versus ap-
plied horizontal force, P,) are shown for varying number of control points, n,, used in
the analysis. It can be seen that even the model with only 11 control points (red line) pro-
duces results that are very close to more dense control point configurations, meaning that
the proposed algorithm can capture well the actual stress and displacement distributions
between control points.

In Fig. 5.12, the elastic strains (blue curves) and plastic displacements (red curves) at
the base of the member at several steps during loading - unloading of the first half-cycle
are presented. It can be seen that gradually the element yields, starting to develop plastic
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/%/

Figure 5.10: Rocking body with constant vertical force.

displacements, before reaching the maximum displacement of the quarter-cycle, where
the elastic strain distribution becomes almost rectangular.

Interesting to note that, contrary to what one would imagine, i.e. that the whole
contact region would decompress during motion reversal, the actual response is totally
different: The element continues to yield while returning to its original position, with the
yield strains gradually moving towards the center of the element, before becoming elastic
again. This means that the formation of plastic displacements does not stop at the max-
imum displacement, but continues during unloading at regions a little further from the
base edge. This can be seen more clearly in Fig. 5.13, where the plastic displacement dis-
tributions that develop across the rocking interface at characteristic quarter-cycles during
the cyclic loading are presented. The formation of the plastic displacements described in
Fig. 5.12 is also presented in the first two plots of Fig. 5.13. In a similar manner, plastic

displacements continue to develop for the remaining cycles of the analysis.

Structural configurations with restrained rocking members

'The ability of the proposed macroelement to predict realistically the response of restrained
rocking bodies is discussed in the ensuing.

First, a rocking concrete wall which is tendon restrained is examined and more specif-
ically the model SRW-B examined in Twigden et al. (2017). In brief, the rocking wall has
height H = 2.86 m, width B = 0.8 m and thickness d = 0.125 m and is restrained with
three prestressed tendons located at the center and about 0.2 m from the center. Regard-
ing the material properties, concrete strength is f. = 35.0 MPa, its modulus of elasticity
is assumed E, = 4700+/f. = 27.8 GPa, while each tendon has stiffness EA, = 28529.0
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Figure 5.11: Rocking body with constant vertical force: Horizontal displacement versus
applied horizontal force curves for various number of control points, n,,, used.

kN/m and initial prestress 96.1 kN, which is reduced to 89.1 kN due to prestress losses
equal to 7.3%. As mentioned in the paper, the sum of the tendon forces is further re-
duced with respect to the expected value, approximately following the simplified analysis
by Aaleti and Sritharan (2009), as the lateral displacement increases. For this reason, in
the present analysis, the tendon stiffness is calibrated so that the sum of the tendon forces
at the maximum lateral displacement matches the one measured at the experiment (about
440 kN). Additional weight is added on top of the wall equal to 31.35 kN, while the self-
weight of the wall equals 7.15 kN. In order to apply the self-weight at the center of the
wall, the wall is modeled using two elements: one rocking macroelement for the lower
part, with its rocking end (node ;) at the bottom, and one conventional element for the
upper part.

'The experimental response of wall SRW-B is presented in Fig. 5.14a", while the results
produced by the model which includes the proposed macroelement with the aforemen-
tioned properties is shown in Fig. 5.14b. It can be seen that the results obtained with the
proposed algorithm match very well the experimental backbone curve. A notable discrep-
ancy between the results can be seen during unloading for large displacements, where the
experimental curve does not pass close to (0,0) as in the numerical analysis and contrary to

what one would expect for typical rocking systems. According to Twigden et al. (2017),

*“The author would like to thank Prof. R. Henry for providing the experimental data.
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Figure 5.12: (a) Elastic strains (blue curves) and plastic displacements (red curves) devel-
oping on the rocking interface before the end of the first half-cycle, where yielding occurs.
'The right half of the element section is shown. (b) Corresponding points on the loading
- unloading curve.
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Figure 5.13: Plastic displacement distributions across the rocking interface at character-
istic quarter-cycles during the cyclic loading. The distribution at the beginning of each
quarter-cycle is shown in red and at the end in blue. Different scales are used for the
horizontal and the vertical axes.

this can be attributed to several reasons, such as prestress loss, debris underneath the wall
or damage near the wall toes. It should be also noted that an armouring steel base frame
was positioned under the wall and foam strips were used under the concrete rocking edges,
so that local concrete spalling could be avoided, influencing the wall response.

'The second restrained rocking member configuration examined is the calcium-silicate
brick masonry wall EC COMP 1 investigated experimentally in Graziotti et al. (2016),
which exhibited mainly flexural behaviour. The masonry wall specimen under considera-
tion has height = 2.75 m, width B = 1.1 m and thickness d = 0.102 m. Regarding
material properties, accoring to the paper, the masonry ultimate strength, f,,,, was equal to
6.20 MPa. However, a smaller value is used here for the yield strength, f, = 4.0 MPa, as
a mean value for the bilinearized material response. The modulus of elasticity of masonry
is taken equal to E,, = 4.2 GPa. An applied vertical load equal to 58.34 kN is considered,
while the self weight is taken equal to 5.71 kN. The rotation of the wall is restrained at
its top edge, but no restraining along the vertical axis is applied according to the paper;
however, some kind of such restraining should exist, as evident from the ascending post-
rocking backbone curve. A vertical spring with k; = 3500 kN/m is assumed in order
to model this behavior. It should be noted that, since both ends of the member are ex-
pected to detach from their bases and develop damage in this configuration, the specimen
is modeled using two macroelements, with their rocking ends (nodes ;) at the top and the
bottom of the specimen and their non-rocking ends (nodes 7) joined in the middle.

The experimental results of wall EC COMP 1 are shown in Fig. 5.15a%, while the
results produced with the proposed macroelements are plotted in Fig. 5.15b. The experi-
mental response, however, shows a large hysteresis at later cycles that cannot be explained
for purely rocking response and, evidently, cannot be captured by the proposed macroele-
ments. Fig. 5.15 shows that, in general, the model with the proposed macroelements can
predict the response adequately, with discrepancies concerning the reloading-unloading

curves, especially at later cycles, due to the aforementioned unexpected hysteretic be-

TThe author would like to thank Prof. F. Graziotti for providing the experimental data.
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Figure 5.14: (a) Experimental loading - unloading (force - displacement) curves for cyclic
response of member SRW-B (Twigden et al., 2017); (b) Response according to the pro-
posed algorithm (in blue) and comparison with the envelope of the experimental response
at the last cycle (in red).

From the previous examples it can be seen that, although the bilinear material model
assumed for the macroelement cannot account for the precise material response, such as
that of concrete or masonry, the main characteristics of the cyclic response can be ade-
quately predicted. Thus, the proposed macroelement can be used for a quick and ade-

quately accurate estimation of the response of structural systems with rocking members.
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Figure 5.15: (a) Experimental loading - unloading (force - displacement) curves for cyclic
response of member EC COMP 1 (Graziotti et al., 2016); (b) Response according to
the proposed algorithm (in blue) and comparison with the envelope of the experimental
response at the last cycle (in red).

Comparison with corresponding models containing elastic or rigid

rocking bodies

In order to assess the implications of not considering the material inelasticity of the rock-
ing body or even the rocking body deformability altogether, the results produced by the
macroelement for the previous examples are compared with results for corresponding

models considering the rocking body to be elastic (by setting a very large o, value) or
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the rocking body to be rigid (by additionally setting a very large £ value).

The results are presented in Fig. 5.16, where it can be seen that, apart from the fact
that the elastic and rigid models do not present any hysteresis, there are also notable difter-
ences between the backbone curves produced for an inelastic, an elastic and a rigid rocking
body. Regarding the difterences between the inelastic and the elastic response, it can be
seen that the inelastic one may attain considerably lower force values in the post-rocking
branch, as expected, especially for larger displacements. However, there are also notewor-
thy differences between the responses of the elastic and the rigid body. Obviously, these
differences are larger at the pre-rocking branch of the elastic body response, however in
the case of restrained rocking bodies (cases (b) and (c) in Fig. 5.16), this discrepancy
continues even after rocking initiates.

The previous comparisons underline the importance of appropriately taking into ac-
count the deformability and inelasticity of the rocking body in applications where large
axial forces are expected, such as tendon- or beam-restrained rocking body configurations.
'The proposed macrolement is particularly suitable for the analysis of such cases, whose ac-

curate analytical modeling is very difficult.

5.A  Appendix: Alternative method based on quadratic
programming optimization

In this Appendix, an alternative formulation is presented for the solution of the problem
of the determination of vector W, that is the elastic strains and additional displacements
at the rocking interface. Instead of considering region boundary points between control
points as a function of W, these boundary points are considered the main variables of
the problem, while the values of the stresses or additional displacements in between are
considered secondary ones, instead. These stresses or additional displacements need to
obey specific inequalities as before, depending on the region they belong to. In fact, given
the region boundaries, the calculation of the region internal values can be formulated as a
quadratic programming optimization problem, which can be easily solved using existing
algorithms: The values of the stresses and additional displacements inside the regions need
to be determined, adhering to the respective constraints, which minimize the distance
between the produced and the linear target displacement distributions.

Despite the mathematical convenience of such a formulation, it is not chosen as the
main formulation of the proposed algorithm, since it leads to many problems: Firstly, it
is computationally taxing, since it requires the calculation of second order derivatives and
additionally all the quantities involved need to be first-order continuous, which is diffi-
cult to implement for the plastic displacements. Secondly, whether the points where the

stresses or additional displacements are calculated are considered fixed across the section or
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Figure 5.16: Comparison of the force - displacement curves for cyclic response produced
by the macroelement for the (a) constant vertical force, (b) SRW-B and (¢) EC COMP
1 models (in blue) with results for respective models considering the rocking body to be
elastic (in green) and rigid (in red). Only the positive semi-axes are shown for clarity.
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moving together with the region boundaries, numerical problems arise when the distance
between any of the points becomes very small. Thirdly, the creation of new regions during
yielding or uplift or removal of existing ones is not straightforward and the continuity of
the solution is not always guaranteed. Finally, even when all of the aforementioned prob-
lems are addressed, the solution may get stuck inside a local minimum instead of the global
one, so random steps are sometimes needed to overcome them. However, it is presented
here as a suggestion for future research.

The determination of the stress distribution at the rocking interface is divided into
two steps: The first step is the determination of the elastic, inelastic and compression-free
regions and the respective boundaries across the rocking interface and the second step is
the calculation of the stresses or additional elongations of the internal points. As will be
seen, the first step is a nonlinear problem, while the second is one is a simpler one.

Assuming that the rocking interface has been divided into non-contact, elastic and
inelastic regions, the boundaries between regions are gathered in a vector R. Points Y,
which have no fixed locations for the current formulation, are inserted inside the regions,
including the points at the edges of the section, where the stresses and additional displace-
ments are controlled. Vector Y contains both R and Y, in ascending order. A vector
q is introduced that contains the corresponding region identifier (“0” for a non-contact
region, “1” for an elastic region and “2” for an inelastic one) for each point in Y (region
boundaries are considered either “0” or “2”). The unknown stresses or additional elonga-
tions are expressed in a vector W for each of the points in Y ,,. For formula simplification
and computational reasons, the stresses and additional elongations are normalized with

respect to the modulus of elasticity, F.

Stresses

'The elastic strains S at points Y can be expressed as linear functions of W:
S =B,W + b, (5.50)

where By is a n, X n,, matrix and by is a n, vector (n, being the length of vector Y), with

zero entries everywhere except for the following entries:

* By;j = 1forj =1,...,n, if ¢ = 1 where 7 is the index of Y that corresponds to
Yo

* byi=¢fori=1,...,n,if g =2.

Since stresses are constant for non-contact and inelastic regions, it can be concluded
that the whole stress distribution can be described using the boundaries of these regions,

as well as internal points of the elastic ones (point vector Y,,), so the calculation of all
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entries of S is not necessary. The stresses at these main locations Y, are given by:
S, =B,W + b, (5.51)

where B,, and b,, are the reduced Bg matrix and bg vector, keeping only the rows corre-

sponding to points contained in Y.

Additional elongations
Similarly to the stresses, additional displacements are expressed as linear functions of W:
U, =B,W (5.52)

where B, is a n, xn,, matrix, with zero entries everywhere except for the following entries:
B,;j =1forj=1,...,n, if ¢ # 1 where ¢ is the index of Y that corresponds to Y, ;.

Additional elongations at region boundaries R are considered equal to 0.

Resultant forces at the rocking interface

Having expressed the stresses at locations C as linear functions of W, the nomalized

resultant axial force V,, and moment M,, at the rocking interface are expressed as:
N, = ByYW + by (5.53)

M, = ByW + by (5.54)

Regarding the axial force calculation,

By =A% B, (5.55)
by =A% b, (5.56)

where Ay is a vector with length n, with:

AN,i _ Ym,i+1 ; Ym,i—1 (5.57)

tori =1,..., ny,, where n,, is the length of vector Yo, Ym0 = Ym1 a0d Umn,t1 = Y, -

Regarding the moment calculation,

By =A%, B, (5.58)
by =A%, b, (5.59)

where A )/ is a vector with length n, with:

Ym,i+1 — Ym,i—1
Ay =

; 6 (Ym,it1 + Ymi + Ymi-1) (5.60)

tori =1, ..., 1y, where Ymo = Ym,1 a0d Y nt1 = Y, -
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Contribution of the resultant forces on the rocking end displacements

According to Eq. (5.30), the displacements due to the resultant forces are functions of W

as follows:
f r,11 0 N. 0
Uy = i "L+l f = B,W + b, 5.61
£ 0 fum— fr,32f 20\ 23 0, f f (5.61)
fe33 fi33
where
fnll 0 B
B, = : N 5.62
f 0 fin— fr,SQQ By G.62)
fr,33
and
fo1 0 by 0
b, = fi23 + < fi3 (5.63)
0 fr,22 - fr,32_ bM 92
fr,33 fr,33

Maximum shear stress

Using Egs. (5.29) and (5.31), the normalized maximum shear stress, ¢, can be expressed

as
where
B, = — Je32 By (5.65)
fr,33 “Q
b, = b fw bas (5.66)
Je33 70 fe3z g
and 5
Q= g (ycr - ycl) (567)

Contribution of self-equilibrating shear stresses on the rocking end

displacements

If wyy = [Oin, 0ia)”, the additional displacements induced to the contact region are ex-

pressed as linear functions of W as follows:

with
Om O B
Bu=|" ! (5.69)
0 etn Bt
and
by = by - uy, (5.70)
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Contribution of self-equilibrating normal stresses on the rocking end

displacements

The contribution of the self-equilibrating normal stresses is taken into account with a
formula similar to Eq. (5.35):
U.=V,S, (5.71)

where S, contains the stresses at the main locations Y, and matrix V, is formulated in
the same manner as matrix V of the original formulation (Eq. 5.34), but is not constant
in this case and is formed using the elements of Y, at each instant.

Combining the previous equation with Eq. (5.51), the following equations are formed:

U.=BW + b, (5.72)

with
Be = Vw BO’ (573)
b. =V, b, (5.74)

Difference between target and predicted elongations

Similarly to Eq. (5.43), the difference between the target and the predicted elongations is

given by
Uy = B4W + by (5.75)
with
Bi=B.+B,+CB;+ CBBy (5.76)
and
by = b. + Uy + Cb, +- CB b — C B u, (5.77)

with matrices C and B given by Egs. (5.41) and (5.42), respectively.
It it noted that vector Uy, in this formulation does not refer to constant points, but

to the locations corresponding to Y.

Convex Quadratic Problem formulation

Since matrix By is not square, meaning that the number of equations is greater than the
number of unknowns, W, the problem cannot be solved directly. Furthermore, the in-
equalities regarding the unknown stresses and additional displacements, depending on the
regions of the corresponding locations, must be taken into account for the values in W to
have meaning.

One possible solution would be to reduce By and by to include only elongation dif-

terences on points not being region boundaries, and the elongation differences at region
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boundaries could be checked at a later stage. However, the problem regarding the afore-
mentioned inequalities would persist.

'This is why a more elegant solution to the problem is to express it as a convex quadratic
minimization problem. More specifically, the convex quadratic minimization problem is
defined as:

minimize [ = %WTGW —al'w (+d) (5.78)

subject to
D'W >b (5.79)

where matrix G is a positive definite symmetric matrixt.

Here, the function that has to be minimized, f, is half the sum of squares of the

elements of Uy:

1 1 1
f= §U§ Uy = 5WT Bl B4 W +B] by W + §b§ by (5.80)

meaning that
G = B! By (5.81)
a=—BJ by (5.82)

while the constant term (with respect to W)

d= %bf by (5.83)

can be dropped for the minimization procedure. Eq. (5.81) shows that G is indeed a

positive semidefinite symmetric matrix as a product of the transpose of a matrix with
itself. It turns out that det (Bg) # 0, so G is positive definite.

Furthermore, each column of D and entry of b refer to an inequality constraint, so for

each element y,,; in Y, new columns and entries are added in D and b respectively, as

follows:
* Di; = 1, by, = 0 for points with ¢; = 0
* Dy =—1,bp, =0and D; y41 = 1, by1 = €, for points with ¢; = 1
* D;r, = —1, by, = 0 for points with ¢; = 2

where k is the current column/entry to be added.

Convex quadratic optimization problems are quick and easy to solve, for example
with the guadprog package for Python, which uses the algorithm by Goldfarb and Idnani
(1983).

¥This symbol is widely used in the respective literature and should not be confused with the matrix used
in Eq. (5.34).
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Apart from finding the optimal solution W and the minimum of the objective func-
tion, f, the algorithm also returns the inequality constraints that are active, that is, they
hold as equalities at the optimal solution. It is evident that the minimum of the original
function, f is

f=Ff+d (5.84)

where f is the minimum of the function without the constant term. The minimum value
of f should be close to zero in order to consider the result the solution to the problem

under examination.

Changing the region boundaries

‘Throughout the previous analysis, the region boundaries, R, are kept constant, so that
all the quantities are linearly dependent on W and a quadratic programming problem is
tormulated, since by changing R and as a result Y,,, the problem is nonlinear. However,
the minimum value of f resulting from this approach is in the initial steps not zero. The

next step in order to further minimize f is to change R.

If f has a minimum value with respect to R, this means that —= is an array with n,
zero entries. If that is not the case, vector R must be updated with the addition of AR

given by solving:

ORZ ~ " OR
It should be noted that since entries in R have a specific order, special attention should
be paid that the addition of AR does not alter this order. A suitable fraction of AR can

O’ A 2 (5.85)

be used instead for the new step to ensure this.
2

'The aforementioned procedure of course requires the calculation of matrices ——= and

oR?
%, which is not an easy task, considering that most quantities used are dependent on R.
However, by sequentially differentiating all quantities used as presented in the previous
steps, these matrices can be calculated successtully.

Listing all the necessary calculations would be cumbersome, however the general ap-
proach is as follows. Since most quantities are expressed with matrix calculations, matrix
differentiations must be applied with respect to vector R, which produces new matrices
with one extra dimension for first order differentiation and two extra dimensions for sec-
ond order differentiation. This way, matrices up to the fourth dimension are created. In
order to calculate the derivative of a product of matrices, the chain rule is used as in usual
calculus, but paying special attention that the rows and columns multiplied between ma-
trices are the correct ones. To aid in this task, a very helpful function is the “einsum”
tunction provided by the NumPy python package, which describes the multiplication of

matrices using matrix axis indices, along which matrix multiplications take place. By fol-
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0G #G oa a
OR’ OR?’ OR’ OR?’

lowing the aforementioned procedure, one can arrive at matrices

od d 0%d

— and —.

OR  —~ OR? . . . . .
Knowing the active constraints of the QP problem at the optimal solution, matrix D,

can be constructed, which contains all columns of D that refer to active constraints. The

derivatives of the optimal solution, W with respect to matrix G and vector a are given by

(e.g- Boot, 1963):

%—Y -G'-G'D, (D'G'D,) " D' G (5.86)
and p 9
We _ Wk,
3G, ~  oa wj (5.87)
Therefore, 5 S S
Wy w; dag wy Gk’l
= — 5.88
or; Z Oay, Or; * Z Z 0Gy Or; (5.88)
k kool
and by calculating
0%w; ow; 0Gy,, Own,
= — 5.89
Or; Oay, Oa; Orj Oay -89)
*W i . .
and RIC from applying the chain rule to Eq. (5.87) respectively, the second order
2
derivative SR2 0 be calculated from Eq. (5.88).
2
Finally, derivatives ﬁ and 8_ can be calculated by differentiation of Eq. (5.78), so

OR OR?
Eq. (5.85) can then be used.

. ) . . OR .
A similar procedure can be used for the calculation of the derivative PR where u,, is
u

the vector of target displacements at member ends, which is needed for the formulation of
the stiffness matrix of the element. The following derivatives are calculated for a change
OW O0*°W  90*°W d finall 0*f

ou,” 0u,0G” duoR Y GuoR

Since by changing u,,, the minimum value of f needs to remain close to 0, the follow-

only in u,:

ing equation holds:
2*f OR _ O*f

OR2 Ou,  Ou,0R (5.90)

from which is calculated.

ou,
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Modeling of inelastic rocking bodies under
dynamic loading

In this chapter, the cyclic inelastic macroelement formulation is extended, in order to take
into account phenomena associated with the dynamic rocking motion. To this end, a
suitable treatment of damping is introduced, which does not violate the physical contraint
of compressive-only stresses at the rocking interface and other motion modes usually ob-
served together with the rocking motion, namely sliding and upthrow, are predicted by
introducing a new internal variable regarding the sliding of the member on the rocking
surface. Thus, a macroelement is created, which is able to take into account the interaction
between rocking, deformability, inelasticity, damping, energy loss during impacts, sliding

and upthrow in a uniform manner.

6.1 Macroelement coordinate systems

Usually, finite element frameworks demand the forces, F., and stiffness matrix, K., of an
element for given displacements, u., in the element local coordinate system, which is the
system aligned with the initial position of the member and has 6 degrees of freedom (Fig.
6.1a).

The static formulation proposed in previous chapters, like other nonlinear finite ele-
ment formulations, uses internally a corotational (natural) coordinate system (Fig. 6.1c¢),
from which the rigid body motion of the element as a whole has been removed. This
coordinate system, which is associated with the deformation of the member, is aligned
with the deformed position of the element and has three independent degrees of freedom
(forces F, and displacements u,,).

In order to account for sliding in the dynamic marcoelement formulation, another in-
dermediate coordinate system is considered, from which the sliding motion has been re-

moved (Fig. 6.1b). This intermediate coordinate system has six degress of freedom (forces
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*Nodei <+Node; =Nodej '

(@) ) ©

Figure 6.1: Displacements and Forces in the (a) Local; (b) Intermediate and (c) Corota-
tional coordinate systems. Node j corresponds to the initial position of the rocking end
of the body on the rocking surface, while node ;° corresponds to the displaced position of
the projection of the rocking end on the rocking surface due to sliding and upthrow.

F; and displacements u;), which are aligned with the local coordinate system of the body.
It can be understood that the usual conversions between the local and the corotational co-
ordinate systems applied when no sliding is present now apply between the intermediate
and the corotational coordinate systems, instead.

For the introduction of sliding, a new internal variable s is introduced, which is the
displacement of the rocking end of the element perpendicular to the original member
axis due to sliding, with respect to the initial reference node of the member end (Fig.
6.1). This means that the conversion of the local displacements, u,, to the intermediate

displacements, u; is performed as follows:
u =u,+s-[0,0,0, —ug,1,0]" (6.1)

where ug is the rotation of the rocking end (Node ) in the local coordinate system.
Correspondingly, the forces in the intermediate coordinate system, F; are converted

into local coordinate system forces, F., as follows:
Fe = Fi +5- [07 07 07 07 07 _E,4 — Ug E,S]T (62)

where Fj4 and F}s are the forces parallel and perpendicular to the undeformed member
axis in the intermediate coordinate system without sliding. It can be seen that only the
moment at the rocking end difters between the intermediate and the local coordinate
systems.

This formulation is considered adequate when sliding is small considered with the
other dimensions of the member. As will be later explained, since additional displace-
ments (“gaps”) may develop between the rocking end of the member and the rocking
surface, the node at the rocking surface (Node ;°), which is translated with respect to the
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6.2. 'Treatment of damping

original position of the rocking end on the rocking surface (Node 7), does not necessarily
correspond to the base of the member, but to its projection to the rocking surface if the
body has completely detached from this surface (upthrow).

For moderately small deformation-induced displacements, the following formulas can
be used for the corotational system displacements and the intermediate system forces re-

spectively (Fig. 6.1):

d Ui g4 — Ui1 + %(Ui,S - Ui,z)Q/L
u, =<6, 0= Ui — (Ui,s - Ui,z)/L (6.3)
0 U3 — (Ui,s - Ui,z) / L
(F’i,l \ r _N \
Fi, —N - (w5 — wia)/L+ (M + M)/ L
F M.
F={""% = > (6.4)
Fi4 N
Fis N - (wis —wip)/L — (My + Ms)/L
E,é) \ Ml

6.2 'Treatment of damping

Of main interest for the dynamic analysis of rocking bodies is the treatment of damping,
since damping generated during impacts plays a significant role on the predicted response.
Although Rayleigh damping is well-documented for linear systems only, it has also been
used for rocking systems (e.g. Barthes, 2012; Wiebe et al., 2012; Belleri et al., 2013,
among others). Both mass- and tangent-stiffness-proportional formulations have been
used, however there are drawbacks to each one (e.g. Abaqus/CAE: Users Manual (6.11)
2011): 'The former greatly affects the rigid-body motion, which corresponds to lower fre-
quencies, while the latter reduces the theoretical time-step required for convergence, since
it mainly influences higher frequency motion components.

Another promising approach (Barthes, 2012; Vassiliou et al., 2016), which is also used
in commercial finite element software (e.g. Abaqgus/CAE: Users Manual (6.11) 2011), is
the use of the HHT integration scheme, which introduces numerical damping to damp
high frequency components. The results produced for rigid blocks are in excellent agree-
ment with Housner’s damping model. However, the damping introduced is numerical,
with no physical meaning and, furthermore the experiments generally show that Hous-
ner’s damping model generally overestimates the actual damping of rocking blocks as men-
tioned above. Thus, a more flexible damping mechanism would be preferable, especially
for deformable bodies. In order to implement Housner’s damping, another option is to in-
troduce an equivalent Dirac-like damping force (Prieto et al., 2004; Prieto and Lourenco,

2005) or, regarding finite element analyses, to perform an “event-based” analysis (Dia-
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6. MODELING OF INELASTIC ROCKING BODIES UNDER DYNAMIC LOADING

mantopoulos and Fragiadakis, 2019), where such damping is explicitly introduced when
the algorithm detects impact, similarly to analytical formulations. For typical harmonic
excitations, damping can be also introduced using a continuous viscous damper, which
is calibrated, so that it provides the same loss of energy as the one expected theoretically
(Vassiliou et al., 2014).

It is observed that most of the aforementioned approaches do not have a direct physical
meaning and may, in fact, violate the assumption of a compression-only rocking interface.
In this dissertation, an approach similar to tangent-stiffness-proportional damping is em-
ployed, which regards damping as a material property and which complies with the pre-
vious fundamental assumption of the compression-only rocking interface. The damping
considered in the proposed formulation is defined first at stress level. More specifically,

in order to incorporate damping in the macroelement, a damping stress equal to
o4 = B -0 (65)

is applied at each point of the member, which is proportional to the rate of change of the
corresponding point stress. Such damping stresses are commonly used in finite element
frameworks instead of resultant damping forces.

An advantage of using the previous damping model is that by applying and integrating
the damping stresses corresponding to the rate of change of the normal stresses across
the two member ends, an equivalent expression for the resultant damping forces in the

corotational coordinate system is produced:
F,=08-F, (6.6)

The previous damping model, when applied to a linear elastic system, is equivalent
to stiffness-proportional damping. When applied to nonlinear systems, it corresponds to
stiffness-proportional damping based on the current stiffness of the system instead of the
initial one, which is commonly used in finite element software (e.g. OpenSees, Mazzoni
et al., 2006).

Although this damping model is easy to implement for linear systems, a physically
consistent implementation for rocking bodies is not straightforward. The main character-
istic of rocking bodies is that tensile stresses cannot be transmitted through the rocking
interface with the base. However, the stresses applied to the rocking interface are actu-
ally the sum of the deformation-inducing and the damping stresses, so both contributions
have to be taken into account in this limitation. This means that, at each point at location

y across the rocking interface, the following inequality must hold:

os(y) +oa(y) <0 (6.7)

where 0¢(y) and 04(y) are the deformation-inducing and damping stress at y, respectively.

By incorporating Eq. (6.5), the previous equation becomes:

oy(y) + B -6(y) <0 (6.8)
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6.2. 'Treatment of damping

The exact calculation of the stress rate, &, appearing in Eq. (6.8), through the veloc-
ities at the element ends is difficult and computationally inefficient. So, the stress rate is

approximated by the following relationship:

Os — Us,pr

A7 (6.9)

Os =
where 0, is the stress at the previous step and At is the time step. This backward dif-
ference numerical approximation of the derivative is widely used, as for example in the
backward Euler method for the solution of differential equations. The drawback of us-
ing such an approximation is that At¢ needs to be sufficiently small during the analysis,
especially when rapid changes in stresses occur, e.g. during impacts.

By substituting Eq. (6.9) into Eq. (6.8), the stress inequality becomes:

Os S v Us,pr (610)

with 5/AL
= A1
V=1 5/A (6.11)

'The previous inequality means, that, for the dynamic problem, the deformation-inducing
stress must not only be negative, but also lower than 7y - o, < 0. For the limiting case
of At — o0, meaning that the problem is almost static, v — 0, so the condition of Eq.
(6.10) reduces to o5 < 0, as normally used for a static analysis.

In order to account for the previous condition, a modification in the calculation of £

and @, is performed compared with the static formulation (Chapter 5):

€lim > if w > Elim
ca=qw Sife, <w < e (6.12)

€ yifw < g

Y

and

W — Ehm  if W > €
Uy =40 yif ey < w < eji (6.13)
w—¢g, Gitw<e,

where € = 7 - €elpr-

'The previous definition ensures that the maximum value of attainable elastic strain at
the control points is €}, and when that holds, a gap may form between the rocking body
and the rocking surface (@, > 0). In order to satisfy the previous conditions also between
control points, an approximate procedure is applied, similar to the one used in the static

formulation (Chapter 5). This procedure uses modified w’ values at the control points at
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the boundaries of each interval, which for the dynamic case are defined as:

A .
W + Efim (Ty—l) ,ifw > epm

A
w = w=Y Jif e, < w < e (6.14)
s
w—l—z—:y(%— ) yifw < g

where Ay is the distance between the control points.

A new distribution [w’] is created inside the interval by adding the linear distribution
tormed by connecting the aforementioned values at the interval boundaries with the op-
posite of the deviation of the preexisting plastic displacements from the corresponding
linear plastic displacement distribution (purple line in Fig. 6.2a). For the static case, the
boundaries of the non-contact and the yielded region, as well as the respective modified
elastic strain distributions, [e.,] and additional displacement distributions, [&,], are de-
termined by the intersections of distribution [w'] with the horizontal lines w’ = 0 and
w' = 5; = &, (Ay/m), respectively (Fig. 6.2a). It is noted that, in order to obtain the elas-
tic strain distribution, [g,], the modified elastic strain distribution [g.,] has to be divided
by (Ay/T).

For the dynamic case, though, the maximum values of modified elastic strains are

determined by the distribution [€jiy ,]:

A
[glimyn] =" ?y : [gel,pr] (615)

So, for regions where w’ > €y, , these develop both the maximum elastic strains

[5lim] =7" [gel,pr] (616)

and additional displacements %, > 0, meaning that, although the body has detached from
the rocking surface, it still maintains deformation-inducing stresses in these areas, which
however cancel out with the damping stresses; thus the externally applied stresses from
the rocking surface are indeed zero.

After the determination of the elastic strain distribution with the aforementioned pro-
cedure for the whole rocking interface, the normalized deformation-inducing axial force,
N,, and moment, M, at the rocking end can be calculated by numerical integration of

this distribution, which are defined as:

N

N, = —= A1
bdE (6.17)
M,y

M, = B (6.18)

where b is the semi-width, d is the thickness and E is the modulus of elasticity of the body.
Since Eq. (6.9) equivalently holds for the elastic strains and both N, and M, are linearly

related to the elastic strains, similar equations also hold for N, and M,
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W =&

(b)

Figure 6.2: Determination of region boundaries and the corresponding modified elastic
strain distributions, [£.,], and normalized additional displacement distributions, [t,] for
the (a) static case and (b) the dynamic case.

The normalized shear force, (),,, defined as:

Q My + M,
- 7 "2 A1
@ bdE bdLE (6.19)
is calculated for given rotation of the non-rocking end, 65, from
9 — Jr Mn
Q, = = Jeln (6.20)
fr,33

with fi30 = —(3L)/(4b) and f.33 = —L?/(20?) — a(1 + v), where L is the original
length of the member and « is the shear shape factor with v ~ 1.2 for rectangular cross
sections. By assuming that the approximation of Eq. (6.9) also holds for 65, which is the
rate of change of the chord rotation of the non-rocking end, it follows from Eq. (6.20)
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that this approximation also holds for the rate of change of the normalized shear force at
the rocking end, Q,. So, the rate of change of the normalized forces at the rocking end,
an - [Nm Mm Qn]T) is

1
A_t (an - an,pr) (621)

Finally, the sum of the deformation-inducing and the damping normalized forces at

an ~
the rocking end is

_ 0 _ B B
an,tot - an + B an - (1 + At an - Atan,pr (622)

6.3 'Treatment of upthrow and sliding

'The dynamic response of rocking bodies usually also involves other motion modes, namely
upthrow, which is the complete detachment of the rocking body from the rocking surface,
and sliding, which results in a translation of the rocking body with respect to the rocking
surface.

In this formulation, upthrow is considered as a special case of sliding where the resul-
tant axial force is zero, that is when the whole rocking interface develops positive additional
displacements (gaps with respect to the rocking surface), [@,] > 0, so these two phenom-
ena are treated in a uniform manner as described in the following. It is noted that the
variable s introduced above measures the displacement of the projection of the rocking
end of the element (Node ;) perpendicular to the original member axis with respect to its
initial position on the rocking surface (Node ;), and as a result also takes into account the
corresponding body displacement during upthrow, while displacements perpendicular to
the rocking end section during upthrow are taken into account using the additional (“gap”)
displacements, @, > 0 (Fig. 6.3).

A Coulomb friction law is implemented, which demands that
| Fpes < 1| P (6.23)

where jis the friction coefficient and F}, ;s and F,, ;, are the forces parallel and perpendicular
to the rocking surface, respectively.

'The aforementioned forces are related to the element forces with the relationships:

Fn,rs = F4,tot + Fs,tot + Ug (624)
Fp,rs - FS,tot - F4,tot * Ug (625)

where Fj . and F5 . are the sum of the deformation-inducing and damping forces in
the local coordinate system of the element parallel and perpendicular to the undeformed

member axis and g is the rotation of the rocking surface.
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Node i
Node j
‘ [1a]
@
>
s \Node J

Figure 6.3: Description of the translation of the body in space during upthrow using

sliding, s, and the additional displacements (“gaps”), [u,] > 0.

By introducing variables:

p=(us —u2)/L
§=s/L

it follows from Egs. (6.2), (6.4) and Eqgs. (6.17), (6.19) that

F4,tot = deNn,tot
F5,tot =bdE [Qn,tot + (P + 5) Nn,tot]

Using also that
Qn,tot = (1 + B/At> Qn - (B/At) Qn,pr
and due to Eq. (6.20),

Qn = k1 (uz —p) — ko My — k1 5
where ky = 1/ f,33 and ko = fi32/ fi33, it follows that
Fie =bdE(A+ B - 3)
where
A= (14 B/A8) [k (us — p) — ko My] = (B/A8) Quge + p Nog

B = Nyt — k1 (1 + B/AY)

If one assumes that F, ,; < 0, Ineq. (6.23) translates to

,an,rs S Fp,rs S —H Fn,rs

(6.26)
(6.27)

(6.28)
(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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For ug = 0, it is evident from Eq. (6.24) that the assumption F, ,; < 0 holds, since
Forxs = Fitor = bdE N, o and N, is always nonpositive as the integral of nonpositive
strains. For ug > 0, it can be proven that if the right part of Ineq. (6.35) holds, it follows
that )

F n,rs S F. 4,tot M
' 1l pug
Similarly, for ug < 0, it can be proven that if the left part of Ineq. (6.35) holds, it follows

that

<0 (6.36)

1 2
FnrsSFALtot +UG
y I 1_/,Lu6

<0 (6.37)

From the previous remarks, it is clear that if Ineq. (6.35) holds, the assumption F, ;s < 0
always holds as a consequence.

For the usual case |ug pt| < 1, Ineq. (6.35) can be alternatively expressed as follows:

L1 <A+B-5<1L, (6.39)
where
Ly = Ny 81 (6.39)
I — ugp
Ug —
Ly = Nyt ——— 6.40
2 ,tot 1 + Ug L ( )

Ineq. (6.38) is checked at each iteration for the value of § of the last committed step.
If the friction inequality holds, then 5 remains the same. Otherwise, § is redetermined, so
that, out of the two inequalitites, the one that does not initially hold, holds as an equality.
After the value of § is established, Eqgs. (6.31) and (6.30) are used to calculate ), and
Qn,tor, respectively. It is noted that the rather extreme case B = 0, which means that the
aforementioned inequalities may not be satisfiable, corresponds to (N, — k1) = 7Ny <
Nipry which can emerge when N, — N, . < ki with k; < 0, but such a large change in
the axial force can be prevented by using a smaller time step if necessary.

For the special case ug = 0, meaning that the rocking surface does not rotate, and for
a very large value of y approaching infinity, Ineq. (6.38) may not hold only if IV, r = 0,
meaning that the rocking body has completely detached from the rocking surface, and
§ = —A/ B corresponds to the horizontal displacement of the body from its initial position

during free-flight.

6.4 Calculation of displacements

As mentioned above, the elastic displacements induced to the member generally originate
from three sources: The resultant forces at the member ends, the self-equilibrating normal

stresses and the self-equilibrating shear stresses.

154



6.4. Calculation of displacements

For the static formulation (Chapter 5), the contribution of the self-equilibrating shear
stresses was taken into account using proposed approximate formulas and some further
assumptions, which however are not suitable for the dynamic formulation and may lead
to computational problems. For this reason, the contribution of the self-equilibrating
shear stresses is neglected here, which nevertheless is not considered important for slender

rocking bodies.

Contribution of resultant forces

As explained in the static formulation (Chapter 5), given the normalized axial force, N,,
and the normalized moment, M, at the rocking end, as well as the chord rotation of the
non-rocking end, 6, the linear displacement distribution parameters of the actual member

rocking end are calculated as

f[’,ll 0 N 0
U = . T4+ f (6.41)
f 0 fim— Jr23 - fo32 { Mn} ; 50,
fr,33 r,33

where fr,ll = L/Q, fr,22 = <3L)/<4b) and fr,23 = LQ/(4b2) — Oé(l + I/), fr,32 = —(3L)/(4b)
and fr,33 = —LQ/(2b2> — Oé(l —+ I/).
These correspond to normalized displacements at the control points located at nor-

malized coordinates v, across the rocking interface, which are contained in vector U,

Urf =CB U, (642)
with
1 Yuw1
1 w
C— Yuw2 (6.43)
L Ywn,
and
1/b
B= [ / O] (6.44)
0 1

Contribution of self-equilibrating normal stresses

Given the elastic strain distribution across the rocking interface, the displacements due to
the corresponding self-equilibrating distribution can be calculated similarly to the static
formulation (Chapter 5), which involves the decomposition of the elastic strain distribu-
tion into basic geometric shapes (triangles, trapezoids) at every step, for which the dis-
placements produced are calculated using proposed analytical expressions. However, this

procedure is rather inefficient for dynamic analyses, due to the increased number of steps
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and the complexity of the elastic strain distributions created due to damping. This is why
a simpler procedure is proposed here:

'The generally nonlinear strain distribution inside each interval between control points
is approximated with a linear distribution with the same normalized axial force, N;, and
the moment, M;, as the original elastic strain distribution of the interval. The values of this

linear distribution at the left, y;, and right boundary, y,, of each interval are respectively:

Ni (y +2y,) — 3 M;

S] = 2 3 (645)
(yr - yl)
5y = —oNi@uty) —3M (6.46)
(yr - yl)

Similarly to the procedure followed in previous chapters, in order to calculate the ad-
ditional displacements due to the self-equilibrating stresses originating from such a linear
distribution, it is decomposed into primary shapes, for which the calculation of displace-
ments has been established. More specifically, analytical expressions regarding the non-
linear displacement distribution of the semi-infinite strip are used, since the area of the
rocking body near the contact region can be equivalently examined using the semi-infinite
strip with what regards the effect of the self-equilibrating stresses, as explained in previous
chapters.

If U(y, p) is the function giving the displacement at fiber y for a unit concentrated
load at p, which has been previously derived in Chapter 4, the displacements induced by

a rectangle with unit value in the interval [—1, 7| and a triangle with maximum value at

y = —1 and unit negative slope in the interval [—1, 7] are respectively:
Urect(yv T‘) = / U(yvp) dp (647)
-1
U(y,7) = 7‘/ Uly,p) - / pU(y,p) dp (6.48)
-1 -1

'The integrals required for the calculation of the previous expressions can be found in Chap-
ter 4.

It can be proven that the displacements due to the self-equilibrating stresses corre-
sponding to a linear distribution in the interval [y, y,| with values at the boundaries equal

to 51 and s,, respectively, can be calculated as

Sy — 81
Y — Y

[Utr(y7 yr) - Utr(ya yl)] + s; Urect<ya yr> — 81 Urect(ya yl)
(6.49)
Combining Egs. (6.45) and (6.46) with Eq. (6.49), it follows that the displacement at

y due to a unit normalized axial force, IV;, or moment, M;, at the interval [y, y,] is equal

Uin (Y, Y1, Y, S1, 8¢) = —
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to:
Y+ U Yr + 24
U ) ar:6—‘ Ur 7r_Ur s _Z—Urec s Yr
v (Y, 91, 9) R Uy 4r) = Une(y, )] e — o) (v, 9r)
2yr + U
—2 Uree Y, Y (650)
(yr - y1)2 t( )

12 6
Un (Y, 1, %) = — 5 Uy, 9r) — Uy, w)] +
(

Yr — Y1) 2 [Ure“(y7 Yr) + Ureee(y, yl)]

(yr - yl)
(6.51)

respectively.

Using Egs. (6.50) and (6.51), two n,, X (n,, — 1) matrices, Uy and U, are formed,
the element (¢, j) of which refers to the induced displacement at the i-th control point,
due to a unit normalized axial force or moment at the j-th interval, respectively.

If N; and M; are the vectors containing the normalized axial forces and moments at
all intervals, respectively, then the induced displacements at the control points due to the

self-equilibrating normal stresses are given by:
U.=UyN; + Uy M, (6.52)

'The main benefit of this approach is that matrices Uy and U, are constant and are
formulated at the beginning of the analysis, greatly reducing computational times. An-
other benefit is that the induced displacements are now dependent only on the resultant
forces of each interval, meaning that the elastic strain distributions may be simplified in
order to further reduce computational times, as long as their resultant forces remain the
same to ensure the continuity of the solution. For example, after every step convergence,
the elastic strain and the plastic displacement distributions may be bilinearized between

control points and in different behaviour regions (non-contact, elastic or inelastic).

Target displacements

Similarly to the static formulation (Chapter 5), iterations are performed with respect to
W, which is the vector containing the w values at all control points, for given local dis-
placement vector, u., until vector Uy, containing the differences between the achieved

and the target displacements of the rocking surface:
Uj=Us+ U+ U, + Upl,pr — U (653)

is almost zero, where U,¢ is the vector of elastic displacements induced by the resultant
forces (Eq. 6.42), U, is the contribution of the elastic displacements induced by the
self-equilibrating normal stresses (Eq. 6.52), U, is the vector containing the additional
displacements at the control points (positive for “gap” displacements in non-contact re-

gions and negative for additional normalized plastic displacements in inelastic regions,
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Eq. 6.13), Uy, is the vector of preexisting normalized plastic displacements at the con-
trol points and Uy is the vector of the normalized target displacements of the contact

surface given by:

Urs =CB Uy (654)

where C and B are the matrices given by Eqs. (6.43) and (6.44), respectively and u,, =
0,61]" (Egs. 6.1 and 6.3).

After convergence has been achieved, the local force vector F\ is returned to the finite
element framework (Egs. 6.4 and 6.2), as well as the respective stiffness matrix K. =

OF/0u,, which is obtained though successive differentiation of all involved quantities.

6.5 Validation of the predicted response for rigid rocking
bodies

In order to assess the capacity of the prosposed macroelement to predict the response of
rigid rocking bodies accurately, the results produced by the macroelement are compared
with existing analytical or numerical solutions.

First, the response of free-standing blocks under free oscillations is examined. Three
rocking blocks are considered with width B = 1 m, thickness d = 1 m and heights H,
which correspond to slenderness ratios & = 0.1, 0.2 and 0.3, with tana = B/H *. In
order to model these with finite elements, each block is modelled using two parts, with
the lower part being the proposed macroelement and the upper part being a conventional
elastic element. Very large values are considered for the modulus of elasticity, F, and
the damping parameter, 3, in order to model the perfectly inelastic impacts assumed by
Housner (1963). The mass of the body is assumed concentrated at the center of the body,
together with the moment of inertia corresponding to that point. It should be noted here
that the inclusion of distributed mass in the macroelement is difficult, while the division
of the mass and the respective moment of inertia into more nodes is not obvious and not
necessarily more correct, since the rocking node of the macroelement corresponds to the
rocking surface and not the rocking end of the element. However, in the case of almost
rigid bodies the concentrated mass approach is considered accurate, due to the very small
deformation of the bodies. Furthermore, the friction coefficient between the rocking body
and the rocking surface is assumed infinite, which means that as long as a non-zero axial
force exists between the rocking body and the rocking surface, there is no slip between
them.

'The results produced for an initial rotation 6, corresponding to 6y /a = 0.5 by the lin-

ear solution by Housner (1963) and the respective results by the macroelement are given

*Not to be confused with the shear shape factor.
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in Figs. 6.5, 6.6 and 6.7 for a = 0.1, 0.2 and 0.3 respectively. It can be seen that, gener-
ally, there is very good agreement between the analytical solution and the one produced
by the macroelement model for very large £ and [ values. The only notable discrepancy
regards the rotational velocity at the end of the rocking response in Fig. 6.7, which may
be attributed to the very large 3 value used (overcritical damping in the dynamic analysis
of conventional structures) or numerical inaccuracies due to the very large parameter val-
ues used, which may require extremely small timesteps to capture the rigid body response
accurately for such small oscillations. Similar numerical problems also exist in rigid body
solutions and assumptions regarding the end of the rocking motion may be used to over-
come them. It should be emphasized that the produced energy loss seen in Figs. 6.5, 6.6
and 6.7 is determined automatically during the response for these very large £ and 3 val-
ues and an energy loss ratio, such as the one used in analytical solutions, is nowhere used
in the finite element model. In addition, in order to capture the response during impacts
as accurately as possible, the timestep is greatly reduced when abrupt axial force changes
are detected.

'The rigid body solution and the response produced by the macroelement for a rocking
body with a = 0.2 are also compared for ground excitations. Two ground excitation
cases are considered: (a) a sinusoidal pulse with angular frequency w,, = 6p and maximum
acceleration a, = 2ag (Fig. 6.8) and (b) the Castaic North Ridge Route (CDMG Station
24278) ground motion from the 1994 Northridge earthquake (Fig. 6.4).

Regarding the sinusoidal pulse response, generally there is very good agreement be-
tween the two solutions, especially at the beginning of the reponse. It should be noted
that small rotations have been assumed for the formulation of the macroelement, which
may demand smaller rotations than the linearization performed by Housner (1963), so a
small discrepancy regarding the maximum attained rotations and oscillation periods ex-
ists, which accumulates during the response. Regarding the recorded earthquake ground
motion, very good agreement exists during the strong ground motion duration, however
discrepancies begin to show when the ground motion subsides, possibly again due to the
very large value of 5 used or numerical problems due to the very small timesteps needed
for such extreme parameter values, which cannot be practically used.

From the previous examples, it can be understood that in the limiting case of very large
E and [ values, the energy loss produced by the macroelement matches very well the one
predicted by Housner (1963). It would be interesting to examine the energy loss produced
by the macroelement for the cases where not both these parameters have very large values.

In order to examine such cases, two dimensionless quantities are introduced:

¢ = % (6.55)

which is the initial strain at the rocking surface due to the self-weight of the body (¢y =
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Figure 6.4: The Castaic North Ridge Route (CDMG Station 24278) ground motion from
the 1994 Northridge earthquake.

107° was assumed for the rigid bodies of the previous examples) and

_ fBw
(=" (6.56)

which is the damping ratio, as used in conventional dynamic analyses implementing stiffness-
proportional damping, where the first angular eigenfrequency of the fixed body, w, is used
(¢ = 10000% was assumed for the previous examples).

Two cases for rocking body free oscillations are examined here: (a) A rigid body
(€0 = 107°) with varying ¢ values and (b) very large damping (¢ = 10000%) with varying
€o values. In these cases, a modified (kinetic energy) coefficient of restitution, 7, is deter-
mined, so that when used in conjunction with the rigid body solution by Housner (1963),
the same displacement is attained at the end of the first half-cycle. In Figs. 6.10, 6.11,
6.12, the ratio of this modified coeflicient of restitution with respect to Hounser’s original
coeflicient of restitution, 7y, is shown for three slenderness ratios & = 0.1, 0.2 and 0.3,
respectively, and three initial rotation cases, #y/a = 0.25, 0.50 and 0.75.

Regarding the rigid body with the varying damping ratio values, it is interesting to
note that the energy loss is not monotonic with respect to  and it is lower than the one
predicted by Housner for realistic ¢ values, which is in agreement with most experimental
results showing that Housner overestimates the energy loss. Regarding the almost in-
finitely damped body with varying €, values, it can be seen that elastic bodies (larger €,
values) present a complicated response, where the energy loss can be either lower or larger
than the one predicted by Housner. It is clear that in all cases, as ¢g — 0 and { — oo, the

modified energy loss ratio matches the one by Housner.
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6.6. Effect of parameters on the deformable rocking body response

6.6 Effect of parameters on the deformable rocking body

responsc

In this section, a deformable body with width B = 1 m, depth d = 1 m and slenderness
ratio = 0.2 is considered. The basic model examined has ¢y = 5 - 107% and ¢ = 5%,
while it is considered elastic (0, — —00) and the friction coefficient between the rock-
ing body and the rocking surface is assumed infinite. For simplification, the concentrated
mass approach is followed again, as in the rigid body cases examined previously, since the
deformations are still small enough, so that the mass distribution is not altered signifi-
cantly.

'The response of the aforementioned rocking body to free oscillations with 6, /o = 0.5
(the rotations are measured at the center of the element), a sine pulse with w, = 6p
and a, = 2ag and the Northridge excitation are shown in Figs. 6.13, 6.14 and 6.15,
respectively. In the same figure, the response of a rigid body with Housner’s coefficient of
restitution, 7y = 0.8851, is shown, as well as the response when a modified coefficient of
restitution 7, = 0.9256 is used, so that the rotation at the end of the first half-cycle of the
free oscillations is matched.

From Figs. 6.13, 6.14, 6.15 it is clear that, although the rigid body solution can-
not fully match the response produced by the macroelement, it is much closer than the
rigid body solution with Housner’s coefficient of restitution. As mentioned above, small
discrepancies between the macroelement and the modified rigid body solution are also
expected due to the linearizations performed in the macroelement formulation. It should
be also noted that due to the more realistic values used for € and ( in this model, the ro-
tational velocity becomes almost zero at the end of the earthquake excitation (Fig. 6.15),
in contrast to the infinitely damped rigid body response (Fig. 6.9).

In Fig. 6.16, 6.17 and 6.18, the response of the deformable rocking body under the
same excitations is shown for different ¢y and ( values than the ones used for the basic
model described above. It is evident that generally both parameters have an effect on the
response. Regarding the parameter ¢, it is interesting to note that, regarding the earth-
quake excitation, higher values (more flexible bodies) may either lead to larger rotation
values (¢g = 5+ 107°) or even a much different response, where the body stops rocking
and sticks to the rocking surface (¢ = 107*). Is is noted that the transition between
rocking and sticking is determined automatically by the macroelement and does not need
an additional assumption usually used in literature (e.g. Oliveto et al., 2003; Acikgoz and
DeJong, 2012). Regarding the damping ratio ¢, it can be seen that the energy loss is not
always monotonic with respect to ¢, a phenomenon was also mentioned earlier regard-
ing the curves of Figs. 6.10, 6.11, 6.12. Furthermore, it can be seen in the earthquake
excitation that the (not practically used) cases ¢ = 1000% and ¢ = 10000% (overcriti-

cal damping in the dynamic analysis of conventional structures) present a response that
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cannot be fully damped at the end of the response, just like in Figs. 6.7 and 6.9.
In Figs. 6.19, 6.20 and 6.21, the response of the rocking body is shown for different

yield stress values, which are presented using the dimensionless parameter o,:

o= 291 (6.57)
Ty

which is the ratio of the initial stress at the contact interface due to the self-weight of
the body to the yield stress. In addition to the rotation at the center of the rocking body,
the plastic displacement distributions at the base of the rocking body at the last time of
the response shown is also presented. It can be seen that, although inelasticity does not
significantly alter the rotation of the body, at least for the free rocking and sine pulse
cases, the induced plastic displacements are different. It should be noted that the plastic
displacement distributions are bilinearized between control points as explained previously
for computational reasons.

The effect of the friction coeflicient, y, is examined next. The cases examined until
now correspond to ;t — 00, meaning that relative displacement between the rocking body
and the rocking surface is allowed only during complete separation (upthrow), when no
axial force develops between them. The central rotation, as well as the horizontal slip
of the body, which also includes its horizontal displacement in mid-air, are presented in
Figs. 6.22, 6.23 and 6.24 for different values of the friction coefficient, y. Generally, it can
be seen that complete detachment of the body from the rocking surface happens during
impacts, since horizontal slips are present even for i — 0o, which allows slips only during
upthrow. Furthermore, the response corresponding to 1+ = 0.2 is interesting, since a large
horizontal slip due to friction is evident at the beginning of the sine pulse and earthquake
excitations, changing its response, which continues to diverge from the other responses
until the end.
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Figure 6.5: Rotation and rotational velocity for free oscillations of rigid rocking blocks
with 6y/a = 0.5 for @ = 0.1, as given by the macroelement (blue lines) and the analytical
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lines) and the rigid body solution with the original coefficient of restitution (green lines).

171



6. IMODELING OF INELASTIC ROCKING BODIES UNDER DYNAMIC LOADING

0.05 1
sl
)
M
g
2 0.00
oy
3
~
—0.05 1 / —— Macroelement
e RB (1 = 71p)
m— RB (r = rp)
0 2 4 6 8 10
Time [s]
. 0.3-
<
’g 0.2 1
2z 0.1-4
g
< 00
=
T —0.1-
2
'g —0.21 —— Macroelement
e RB (1 = 711)
= —0.3 1 — RB (r = 7ry1)
0 2 1 6 8 10
Time [

Figure 6.14: Rotation and rotational velocity of the deformable rocking body with €y =
5-107% and ¢ = 5% under a sine pulse excitation with w, = 6p and a, = 2ayg, as given
by the macroelement (blue lines), the rigid body solution with the modified coeflicient
of restitution (orange lines) and the rigid body solution with the original coeficient of
restitution (green lines).

172



6.6. Effect of parameters on the deformable rocking body response

0.10 A
=  0.05 -
<
M
4
£ 0.00
[ay]
s
ot !
—0.05 A u
— Macroelement
e RB (r = 1)
0.10 - | | — oo
0 10 20 30
Time [s]
. 04-
<L
=
s
— 0.2 A
e
2
2
S 0.0-
=
g
.8
= —0.2 1
'8 —— Macroelement
~ —— RB (r = rm)
—0.4 A —— RB (r = ry)
0 10 20 30

Time [s]
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Figure 6.16: Central rotation of the deformable rocking body with different €, (top) and
¢ (bottom) values under free oscillations with 6y /a = 0.5

174



6.6. Effect of parameters on the deformable rocking body response

0.05 1
=)
&
M
- \ I
2 0.00 |
@ - “
S N /f
s
/)
—0.05 - \} J
— o= 10 J = — =
— )= 5 - -6 1 _ =
0 2 4 6 8 10
Time [s]
0.05 1
=)
g
=
2 0.00
<
IS
o'
—0.05
0 2 4 6 8 10

Figure 6.17: Central rotation of the deformable rocking body with different €, (top) and

¢ (bottom) values under a sine pulse excitation with w, = 6p and a, = 2ag

175



6. IMODELING OF INELASTIC ROCKING BODIES UNDER DYNAMIC LOADING

0.10 A
= 0.05
<
M
g
2 0.00
as]
IS
~
—0.05 A
—0.10 A
0
0.10 A
= 0.05 A
<
=,
g
2 0.00
<
IS
e |
~0.05 - “
u —(¢=0.01 —(¢=1 —¢=100
_010_ — = 0.05 — ¢ =10
0 10 20 30
Time [s]

Figure 6.18: Central rotation of the deformable rocking body with different €, (top) and
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Figure 6.19: Central rotation and plastic displacement distribution at the base of the de-
formable rocking body at the end of the presented response for different o, values under
free oscillations with 6y /a = 0.5

177



6. MODELING OF INELASTIC ROCKING BODIES UNDER DYNAMIC LOADING

0.05

Rotation [rad]
o
=
[a=)

—0.05 1

0.0
g
B 021
=
Q
§ 0.4 -
<
&
i —0.6 A |
'4% —o’i;2.5- 1073
E@ —0.8 - o, =5-10"3
[al — o0, =7.5-1073
— o0, =10"72
—1.0 r T T T T
—0.4 —0.2 0.0 0.2 0.4

Coordinate Y [m]

Figure 6.20: Central rotation and plastic displacement distribution at the base of the de-
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Figure 6.21: Central rotation and plastic displacement distribution at the base of the de-
formable rocking body at the end of the presented response for different o, values under
the 1994 Northridge ground motion.
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Figure 6.22: Central rotation and horizontal slip for different y values under free oscilla-
tions with 6y /a = 0.5.
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Figure 6.24: Central rotation and horizontal slip for different y values under the 1994
Northridge ground motion.
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Conclusions

In this dissertation, a macroelement formulation for deformable rocking bodies was pro-
posed. 'The elastic formulation was presented first, showing that rocking and member
deformability are in reality not separate phenomena. Since near the rocking interface
member sections do not remain plane, the technical theory of bending usually used in
beam-column finite element formulations is insufficient for the prediction of the response
of rocking members and the semi-infinite strip problem solution based on the theory of
elasticity was used to examine the effect of the stress nonlinearity locally near the rocking
interface. The results of the semi-infinite strip problem were incorporated into a force
beam-column finite element formulation to account for the additional displacements pro-
duced by the nonlinear stress distribution across the rocking interface. The excellent accu-
racy of the elastic macroelement was proven by comparison of the results produced using
the macroelement for characteristic rocking body configurations with the ones of corre-
sponding models using the commercial finite element program Abaqus. Furthermore, it
was shown that for members under large axial forces, the deformability of the body plays
an important role on their response, while some first results showed the beneficial role of
the inclusion of rocking members in frames on their seismic response.

In order to account for material inelasticity, the monotonic case can be easily treated
by extending the expressions of the additional displacements due to the self-equilibrating
stresses to correspond to the yielding stress distributions. However, the same procedure
cannot be applied for cyclic loading, due to the complex stress and plastic displacement dis-
tributions created during motion reversal. In order to solve this problem, the displacement
distribution of the rocking end under an arbitrary stress distribution must be determined
first, which is achieved by integrating the proposed analytical expressions regarding the
action of a concentrated load at an arbitrary position of the semi-infinite strip end. It was
shown using these expressions that even for an elastic body, both the stress distribution
across the contact zone and the shape of the rocking end not in contact with the rocking

surface are nonlinear.
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7. CONCLUSIONS

'The previous analytical expressions were incorporated in an algorithm for the predic-
tion of the response of inelastic rocking bodies under cyclic loading, which is based on the
determination of a suitable stress distribution across the rocking interface, so that the pro-
duced displacements, in addition to the preexisting plastic ones, match the target member
rocking end displacements. The shape of the produced stress and plastic displacement dis-
tributions under cyclic loading was discussed, while the results produced for rocking wall
configurations found in literature were compared with experimental ones, showing that
despite the simplicity of the material law assumed, the main characteristics of the cyclic
response can be adequately captured. Furthermore, by comparing the previous results with
ones corresponding to models where the rocking members are considered to be rigid or
elastic, it was shown that both deformability and inelasticity must be appropriately taken
into account for a more accurate prediction of the rocking response.

'The previous formulation was finally extended to examine the dynamic response by
including a suitable treatment of damping and other motion modes, namely upthrow and
sliding, which usually coexist together with rocking. Regarding the treatment of damping,
a damping formulation similar to tangent-stiffness-proportional damping is employed,
while paying special attention so that the sum of the deformation-inducing and damping
stresses across the rocking interface is always non-tensile. This constraint limits the maxi-
mum deformation-inducing stresses that may develop at each step. In order to account for
sliding and upthrow, which is considered as a special case of sliding for zero axial force, a
new variable denoting the displacement due to sliding and a new intermediate coordinate
system are introduced, while sliding is determined so that a Coulomb friction criterion is
satisfied at each step.

'The proposed formulation can be implemented in any finite element framework, yield-
ing much faster analyses than conventional finite element codes, while providing very
good accuracy. It was mainly formulated for the investigation of the response of rocking
members used in earthquake-resilient structural configurations found in literature, which
develop large axial forces during their motion and as a result their deformability and in-
elasticity must be taken into account for an accurate prediction of their response. It is
believed that the proposed macroelement will provide more confidence to the engineers
regarding the computational analysis of structural configurations involving rocking mem-
bers, which are considered a much promising solution for the improvement of the seismic
performance of newly designed or retrofitted structures, assisting the documentation of
the codes regarding their design and promoting the scientific progress in this important
area.

However, the macroelement can also provide interesting results for the dynamic re-
sponse of free-standing bodies, especially with what regards the interaction between rock-
ing, sliding, upthrow, deformability, inelasticity and damping during impacts. This is why

it is believed that it will contribute to the advancement of the investigation of the response
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of solitary rocking bodies, since existing rigid body solutions cannot take into account the
aforementioned interactions and their outcome during impacts.

Some aspects worth researching further are:

* More thorough investigation of the interaction between rocking, sliding, upthrow,

deformability, inelasticity and damping during impacts.

* Determination of the apparent coefficient of restitution for deformable rocking
members with a wide range of properties and assessment of its ability to describe

the energy loss during their motion under arbitrary dynamic loads.

* Investigation of the improvement of the seismic response of structures by using
rocking over conventional yielding members and examination of optimum rocking

member configurations.
* Extension of the macroelement to three-dimensional rocking bodies".

* Extension of the macroelement to take into account large rotations, so that the

response of squat solitary rocking bodies can be determined more accurately.

* Extension of the macroelement to take into account mild steel rebars or other par-
tial connections at the rocking interface, which exist in some of the rocking member
configurations found in literature and influence the rocking motion, especially dur-

ing cyclic loading.

*A simple elastic three-dimensional rocking member with interaction of the rocking components about
the two perpendicular axes only along the member parallel axis has already been implemented by the author.
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