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Abstract

This dissertation presents the formulation of finite element algorithms for the prediction
of the response of elastic and inelastic rocking members under static and dynamic load-
ing. Apart from deformability along their height, the proposed formulations take the
deformability of rocking members near their base into account, which is crucial for an
accurate prediction of the response of rocking members under large axial forces, such as
the ones used in earthquake resilient structural systems. Due to the partial loading of
the rocking interface of such members, solutions regarding the semi-infinite strip from
the theory of elasticity instead of the technical theory of bending are employed, since the
latter cannot predict the nonlinear load distribution across the rocking interface and, as a
consequence, the nonlinear stress distribution near the contact area, which is crucial for
the determination of the response of deformable rocking members.

The elastic rocking member formulation is presented first, which is based on a force
beam-column finite element formulation, where additional member end displacements
are considered due to the partial loading of the rocking interface. This formulation is af-
terwards extended to include nonlinear material behaviour under monotonic loading. The
nonlinear displacement distribution of the semi-infinite strip under a concentrated load
at an arbitrary position across its end is examined next, for which analytical expressions
are proposed. These analytical expressions are then incorporated into a macroelement
formulation for cyclic response, which is based on the determination of a suitable stress
distribution across the rocking interface so that the produced displacements match the
target ones of the rocking surface. Finally, modifications of the previous formulation to
extend its use to dynamic analyses by accounting for damping and other motion modes,
namely sliding and upthrow, are presented.

The aforementioned formulations can be easily implemented in any finite element
framework, such as OpenSees, and yield very fast analyses compared to conventional two-
dimensional finite element codes. Comparison of the results produced by the macroele-
ment with results from commercial finite element software and experiments show the
generally very good accuracy of the produced results.
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Εκτεταμένη περίληψη

Ελαστική και ανελαστική συμπεριφορά
λικνιζόμενων μελών σεισμικά ανατάξιμων

κατασκευών

Η παρούσα διδακτορική διατριβή παρουσιάζει τη μόρφωση αλγορίθμων πεπερασμέ-
νων στοιχείων για την περιγραφή της συμπεριφοράς ελαστικών και ανελαστικών λικνι-
ζόμενων μελών υπό στατική και δυναμική φόρτιση. Πέρα από την παραμορφωσιμότητα
κατά μήκος του μέλους, οι προτεινόμενες μορφώσεις λαμβάνουν υπόψη και την παρα-
μορφωσιμότητα κοντά στη βάση του στοιχείου, η οποία είναι καθοριστική για την αξιόπι-
στη πρόβλεψη της συμπεριφοράς λικνιζόμενων μελών υπό μεγάλα αξονικά φορτία, όπως
αυτά που χρησιμοποιούνται σε σεισμικά ανατάξιμα στατικά συστήματα. Λόγω της μερικής
φόρτισης της διεπιφάνειας λικνισμού τέτοιων μελών, αξιοποιούνται λύσεις για την ημιά-
πειρη λωρίδα από τη θεωρία ελαστικότητας αντί για την τεχνική θεωρία κάμψης, καθώς η
δεύτερη δεν μπορεί να προβλέψει τη μη γραμμική κατανομή τάσεων στη διεπιφάνεια και
επομένως τη μη γραμμική κατανομή τάσεων κοντά στην περιοχή επαφής, η οποία είναι
κρίσιμη για τον καθορισμό της συμπεριφοράς των παραμορφώσιμων λικνιζόμενων μελών.
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Εισαγωγή

Η πολύπλοκη δυναμική συμπεριφορά των λικνιζόμενων σωμάτων και δομικών μελών
έχει προσελκύσει το ενδιαφέρον της επιστημονικής κοινότητας τα τελευταία χρόνια, πα-
ρόλο που το φαινόμενο είναι γνωστό από την αρχαιότητα, μιας και πολλά αρχαία μνημεία
έχουν χτιστεί με μέλη που επιτρέπεται να λικνίζονται.

Η λικνιστική κίνηση προκύπτει όταν ένα μέλος δεν δεσμεύεται ή δεσμέυεται μερικώς
στη βάση του, έτσι ώστε να μην μπορούν να μεταβιβαστούν εφελκυστικές τάσεις διαμέ-
σου της διεπιφάνειας, όπως θεωρείται στην κλασική τεχνική μηχανική. Όταν οι ασκού-
μενη οριζόντια δύναμη υπερβεί ένα όριο, το λικνιζόμενο σώμα αποσπάται από τη βάση
και στρέφεται γύρω από το ένα του άκρο. Η κατακόρυφη δύναμη δρα ως δύναμη επανα-
φοράς που τείνει να φέρει το σώμα στην αρχική θέση ισορροπίας του.

Τα τελευταία χρόνια, αρκετές προσπάθειες έχουν γίνει για να συμπεριληφθούν λι-
κνιζόμενα μέλη σε πραγματικές κατασκευές. Έως σήμερα, λικνιζόμενα μέλη έχουν χρη-
σιμοποιηθεί σε βάθρα γεφυρών (σιδηροδρομική γέφυρα του South Rangitikei, Skinner
κ.ά., 1980), καμινάδες (Air New Zealand Engineering Base στο Christchurch, Sharpe και
Skinner, 1983) και ως υποστυλώματα ισογείου σε πληθώρα κατασκευών στη Ρωσία (Polia-
kov, 1974). Επιπλέον, εκτενής αναλυτική και πειραματική διερεύνηση έχει πραγματοποιη-
θεί σε λικνιζόμενα τοιχώματα προκατασκευασμένων κτηρίων (π.χ. Priestley, 1991, Sritha-
ran κ.ά., 2007, Kam κ.ά., 2010, Smith κ.ά., 2010, μεταξύ άλλων). Κανονιστικές διατάξεις
που αντιμετωπίζουν την εναλλακτική αυτή μέθοδο αντισεισμικού σχεδιασμού έχουν δη-
μοσιευθεί από αρκετούς οργανισμούς (ACI 2003, fib 2003, New Zealand Standards 2006),
ενώ στον Ευρωκώδικα 8 (EN 1998-1:2004), ο λικνισμός αναμένεται για μεγάλα ελαφρά
οπλισμένα τοιχώματα σε ισχυρές σεισμικές διεγέρσεις. Εκτενής βιβλιογραφική επισκό-
πηση για τη συμπεριφορά τέτοιων ελεγχόμενων λικνιζόμενων μελών μπορεί να βρεθεί
στις εργασίες των Chancellor κ.ά. (2014) και Kurama κ.ά. (2018).

Τα συμβατικά δομικά μέλη σχεδιάζονται συνήθως έτσι ώστε σταδιακά να διαρρέουν
και να αναπτύσσουν βλάβες σε ένα σεισμικό γεγονός, όπως προβλέπει ο σχεδιασμός με
βάση την επιτελεστικότητα. Αυτή η προσέγγιση όμως σημαίνει ότι μετά από ένα ισχυρό
σεισμικό γεγονός, η κατασκευή θα πρέπει να επισκευαστεί, με σημαντικό κόστος. Επι-
πλέον, αν ο σεισμός είναι αρκετά ισχυρός, μπορεί να αναπτυχθούν παραμένουσες μετα-
κινήσεις, κάνοντας τη διαδικασία επισκευής δυσκολότερη και πολυδάπανη.

Αντιθέτως, λύσεις που περιλαμβάνουν λικνιζόμενα μέλη έχουν προταθεί ώστε να επι-
λυθούν τα παραπάνω προβλήματα. Αρχικά, αντί για τη δημιουργία πλαστικών αρθρώ-
σεων κοντά στα άκρα, οι οποίες θα πρέπει να επισκευαστούν μετά το σεισμικό γεγονός,
τα λικνιζόμενα μέλη απλά λικνίζονται αν οι ασκούμενες δυνάμεις είναι αρκετά μεγάλες, το
οποίο σημαίνει ότι η ασυνέχεια μεταξύ των δομικών μελών είναι εγγενής στο στατικό σύ-
στημα, το οποίο έχει σχεδιαστεί για να έχει τη συμπεριφορά αυτή. Με τον τρόπο αυτό, τα
λικνιζόμενα μέλη λειτουργούν ως μία μορφή μηχανικής μόνωσης, παρόμοια με τα διαρ-
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ρέοντα στοιχεία, καθώς οι δυνάμεις που μεταβιβάζονται στην υπόλοιπη κατασκευή δεν
μπορούν να υπερβούν το όριο που επιτρέπεται από το μηχανισμό λικνισμού. Παρομοίως
με τη διαρροή, ο λικνισμός επίσης μεταβάλλει τις ιδιοσυχνότητες απόκρισης της κατα-
σκευής, κάνοντάς την λιγότερο επιρρεπή σε συντονισμό.

Επιπροσθέτως, τα λικνιζόμενα μέλη παρουσιάζουν πολύ μικρές παραμένουσες μετα-
κινήσεις σε σχέση με τα συμβατικά δομικά μέλη. Συνεπώς, μετά το σεισμικό γεγονός, η
κατασκευή παρουσιάζει πολύ μικρής έκτασες βλάβες και σχεδόν καθόλου παραμένουσες
κλίσεις, το οποίο σημαίνει ότι λίγες επισκευές θα πρέπει να γίνουν μετά το σεισμικό γε-
γονός για να κάνουν την κατασκευή ασφαλή ξανά, εξοικονομώντας χρόνο και χρήμα. Σε
περίπτωση μετασεισμών, δε, τέτοια συστήματα που επανέρχονται από μόνα τους στην αρ-
χική θέση ισορροπίας μπορούν να αντέξουν καλύτερα επόμενες σεισμικές διεγέρσεις από
τα συμβατικά συστήματα, τα οποία θα πρέπει προηγουμένως να επιδιορθωθούν. Έτσι, τα
λικνιζόμενα μέλη προτείνονται ως μια καινοτόμος μέθοδος για τη βελτίωση της σεισμικής
αναταξιμότητας των κατασκευών.

Δομικά μέλη που έχουν σχεδιαστεί να λικνίζονται συνοδεύονται συνήθως από επι-
πρόσθετους τένοντες που διέρχονται διαμέσου των στοιχείων, οι οποίοι μπορεί να είναι
μερικώς ή καθόλου συνδεδεμένοι με αυτό, συνήθως είναι προεντεταμένοι και σε κάθε πε-
ρίπτωση αυξάνουν την αξονική δύναμη των μελών κατά τη διάρκεια του λικνισμού. Αυτή
η επιπρόσθετη δύναμη κάνει το μέλος πιο ευσταθές και περιορίζει τον κίνδυνο ανατρο-
πής.Η σχέση δύναμης-μετατόπισης τέτοιων συστημάτων έχει κύκλους υστέρησης μορφής
«σημαίας», με το εμβαδόν της ανακυκλικής συμπεριφοράς να είναι συνήθως μικρότερο σε
σχέση με αυτό των συμβατικών δομικών στοιχείων. Για το λόγο αυτό, τέτοια λικνιζόμενα
μέλη συνοδεύονται συχνά από πρόσθετες διατάξεις απόσβεσης.

Παρόλο που έχουν παρουσιαστεί αρκετές αναλυτικές λύσεις σχετικά με την κίνηση
του λικνιζόμενου σώματος, όπως αυτές των Housner (1963), Yim κ.ά. (1980), Psycharis
και Jennings (1983), Chopra και Yim (1985), Zhang καιMakris (2001), Prieto και Lourenço
(2005), Dimitrakopoulos και DeJong (2012), μεταξύ άλλων, καθώς και πειραματικές διε-
ρευνήσεις και προσεγγιστικές σχέσεις για τον σχεδιασμό λικνιζόμενωνσυστημάτων (Priest-
ley κ.ά., 1999, Sritharan κ.ά., 2007, Smith κ.ά., 2010, Lagomarsino, 2015, Kalliontzis και
Schultz, 2017, μεταξύ άλλων), υπάρχει η ανάγκη για δημιουργία προσομοιωμάτων για την
περιγραφή της συμπεριφοράς των ελεγχόμενων λικνιζόμενων μελών σε αριθμητικές ανα-
λύσεις.

Γενικές προσεγγίσεις για την αριθμητική ανάλυση λικνιζόμενων μελών αποτελούν τα
δισδιάστατα και τρισδιάστατα προσομοιώματα πεπερασμένων στοιχείων, όπου η επαφή
μεταξύ των μελών λαμβάνεται υπόψη μέσω περιορισμών που υλοποιούν καταστατικές
σχέσεις ή μέσω στοιχείων κόμβου, και προσομοιώματα διακριτών στοιχείων (π.χ. DEM,
RBSM), στα οποία η κατασκευή προσομοιώνεται ως ένα σύνολο διακριτών σωμάτων, τα
οποία αλληλεπιδρούν μεταξύ τους με κάποιον τρόπο (π.χ. Zienkiewicz και Taylor, 2005).

Τέτοιες προσεγγίσεις, όμως, θεωρούνται υπολογιστικά μη αποδοτικές για πρακτικές
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αναλύσεις κατασκευών μεγάλης κλίμακας και πιο απλοποιητικές προσεγγίσεις στο πλαί-
σιο τωνμονοδιάστατωνπεπερασμένωνστοιχείων είναι προτιμότερες.Οι Belleri κ.ά. (2013)
παρουσιάζουν και συγκρίνουν τέτοιου είδους προσεγγίσεις, συμπεριλαμβανομένων μο-
ντέλων με στροφικό ελατήριο στη βάση του λικνιζόμενου μέλους με φαινομενολογική συ-
μπεριφορά ροπής - στροφής, μοντέλων με στρώση κατανεμημένων ελατηρίων στη βάση
χωρίς εφελκυσμό, καθώς και μοντέλα που χρησιμοποιούν διατομές με υλικό χωρίς θλίψη
στη βάση. Άλλες προσεγγίσεις που έχουν προταθεί στη βιβλιογραφία συμπεριλαμβάνουν
αυτές του Barthes (2012), ο οποίος προτείνει ένα στοιχείο μηδενικού μήκους που επιβάλ-
λει τις κινηματικές σχέσεις του λικνισμού, των Penna και Galasco (2013) και Penna κ.ά.
(2014), οι οποίοι αναπτύσσουν ένα μακροστοιχείο με συνολικά οκτώ βαθμούς ελευθε-
ρίας για την περιγραφή της συμπεριφοράς λικνιζόμενων πεσσών τοιχοποιίας, το οποίο
συμπεριλαμβάνει στρώσεις κατανεμημένων ελατηρίων χωρίς εφελκυσμό στα άκρα του,
των Vassiliou κ.ά. (2014), που υλοποιούν ένα στροφικό ελατήριο μηδενικού μήκους με
υστερητική απόσβεση, των Vassiliou κ.ά. (2016), που προτείνουν ένα στοιχείο μηδενικού
μήκους με διατομή που δεν αναπτύσσει εφελκυσμό για τη λικνιστική διεπιφάνεια και των
Diamantopoulos και Fragiadakis (2019), οι οποίοι προσομοιώνουν διάφορες διατάξεις με
λικνιζόμενα σώματα με στροφικά ελατήρια.

Οι Roh και Reinhorn (2009a), Roh και Reinhorn (2009b) και Roh και Reinhorn (2010)
διερεύνησαν την εφαρμογή λικνιζομένων μελών («εξασθενημένων υποστυλωμάτων») σε
κατασκευές χωρίς τένοντες, αλλά μόνο υπό το ίδιο βάρος. Αφού αναγνώρισαν τη σημασία
της μη γραμμικής κατανομής τάσεων κοντά στην περιοχή επαφής, χρησιμοποιώντας μια
γραμμικοποιημένη προσέγγιση της κατανομής αυτής κατέληξαν σε μία μόρφωση στοι-
χείου για τη μη γραμμική συμπεριφορά λικνιζόμενων μελών. Επιπλέον, συνέχισαν την
έρευνά τους με την εξέταση της συμπεριφοράς σε όρους ροπής - καμπυλότητας για λικνι-
ζόμενα μέλη, λαμβάνοντας υπόψη περισσότερα φαινόμενα, όπως τοπική σύνθλιψη κοντά
στα άκρα και τη σταθεροποίηση της σχέσης ροπής - καμπυλότητας σε ανακυκλιζόμενη
φόρτιση μετά τη δημιουργία βλαβών.

Ακολουθώντας τις γενικές ιδέες των παραπάνω προσομοιωμάτων, μια νέα προσέγ-
γιση προτείνεται στην παρούσα διατριβή για τη μη γραμμική συμπεριφορά λικνιζόμενων
μελών. Σε αντίθεση με τις περισσότερες προσεγγίσεις που παρουσιάζονται στη βιβλιο-
γραφία, οι οποίες θεωρούν λικνιζόμενα μέλη με άκαμπτη βάση ή λαμβάνοντας υπόψη
προσεγγιστικά την παραμορφωσιμότητα κοντά στη βάση έδρασης, στην προτεινόμενη
προσέγγιση, μαζί με την παραμορφωσιμότητα κατά μήκος του μέλους, λαμβάνεται υπόψη
ακριβέστερα και η παραμορφωσιμότητα κοντά στη βάση έδρασης, η οποία είναι καθορι-
στική για την πρόβλεψη της συμπεριφοράς λικνιζόμενων μελών σε στατικά συστήματα.

Λόγω της μερικής φόρτισης της διεπιφάνειας λικνισμού, μη γραμμικές κατανομές τά-
σεων αναπτύσσονται κοντά στα άκρα, οι οποίες λαμβάνονται υπόψη με το προτεινόμενο
μακροστοιχείο (Σχήμα 1). Η μη γραμμικότητα αυτή σημαίνει ότι η κατανομή μετακινή-
σεων κατά μήκος της διατομής του μέλους είναι και αυτή μη γραμμική. Επομένως, οι
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διατομές του μέλους κοντά στη διεπιφάνεια λικνισμού δεν παραμένουν επίπεδες και οι
συνήθεις παραδοχές της τεχνικής θεωρίας κάμψης δεν μπορούν να εφαρμοστούν. Στην
προτεινόμενη μέθοδο, η μη γραμμική κατανομή μετακινήσεων αξιοποιείται για την πρό-
βλεψη των μετακινήσεων στα άκρα του μέλους, οι οποίες συμπεριλαμβάνουν την επιρροή
του λικνισμού, ενώ δεν υπάρχει κάποιος περιορισμός όσον αφορά τους κινηματικούς πε-
ριορισμούς (για παράδειγμα, εισαγωγή σε πλαίσιο, παρουσία τενόντων).

B=2b

Nonlinear stress
distribution zones

Node j
(Rocking end)

Node i

Node i

Node j
(Rocking end)

Rocking
element

Rocking
surface

Rocking
surfaceE, ν, σy

Sections far from
rocking ends

Locally planar
rocking surface

Σχήμα 1: Χρήση του μακροστοιχείου για τα τμήματα του μέλους κοντά στα λικνιζόμενα
άκρα. Δύο μακροστοιχεία χρησμιποιούνται για το λικνιζόμενο υποστύλωμα που παρου-
σιάζεται. Το άκρο j κάθε στοιχείου αντιστοιχεί στο λικνιζόμενο άκρο.

Η μόρφωση του ελαστικού μακροστοιχείου παρουσιάζεται πρώτα, η οποία βασίζεται
στη μόρφωση στοιχείου δοκού - υποστυλώματος βασισμένο στις δυνάμεις, όπου λαμβά-
νονται υπόψη οι πρόσθετες μετακινήσεις στα άκρα του στοιχείου λόγω της μη γραμμι-
κότητας τάσεων κοντά στη βάση έδρασης. Η μόρφωση αυτή επεκτείνεται στη συνέχεια
για να ληφθεί υπόψη η μη γραμμικότητα υλικού σε μονοτονικές φορτίσεις. Η μη γραμ-
μική κατανομή μετακινήσεων της ημιάπειρης λωρίδας υπό συγκεντρωμένο φορτίο σε τυ-
χούσα θέση κατά μήκος του άκρου της εξετάζεται λεπτομερώς στη συνέχεια, για την οποία
προτείνονται αναλυτικές σχέσεις. Αυτές οι σχέσεις ενσωματώνονται στη συνέχεια σε ένα
μακροστοιχείο για την περιγραφή της συμπεριφοράς λικνιζόμενων σωμάτων σε ανακυ-
κλιζόμενη φόρτιση, η οποία βασίζεται στον προσδιορισμό μίας κατάλληλης κατανομής
τάσεων κατά μήκος της διεπιφάνειας λικνισμού, έτσι ώστε οι παραγόμενες μετακινήσεις
να ταιριάζουν με τις στοχευόμενες. Τέλος, παρουσιάζονται τροποποιήσεις της παραπάνω
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μόρφωσης για να επεκταθεί η χρήση του μακροστοιχείου και σε δυναμικές αναλύσεις, οι
οποίες λαμβάνουν υπόψη κατάλληλη μορφή απόσβεσης και άλλες μορφές κίνησης, όπως
η πλήρης αποκόλληση και η ολίσθηση.

Οι παραπάνω μορφώσεις μπορούν να υλοποιηθούν εύκολα σε κάποιο περιβάλλον πε-
περασμένων στοιχείων, όπως το OpenSees, και δίδουν πολύ γρήγορες αναλύσεις σε σχέση
με συμβατικά προσομοιώματα δισδιάστατων ή τρισδιάστατων πεπερασμένων στοιχείων.
Σύγκριση των αποτελεσμάτων που παράγονται με το προτεινόμενο μακροστοιχείο με
αποτελέσματα εμπορικών προγραμμάτων και πειραμάτων δείχνουν τη γενικώς πολύ καλή
ακρίβεια των παραγόμενων αποτελεσμάτων.

Μόρφωση ελαστικού στοιχείου

Για να ληφθεί υπόψη η γεωμετρική μη γραμμικότητα, το στοιχείο χρησιμοποιεί την
ιδέα του σωματόδετου συστήματος συντεταγμένων, το οποίο είναι ένα σύστημα χωρίς
κινήσεις στερεού σώματος, οι οποίες δεν συμβάλλουν στην παραμόρφωση του μέλους.
Το σύστημα αυτό έχει τρεις αντί για έξι βαθμούς ελευθερίας (Σχήμα 2). Στη βιβλιογραφία
έχουν προταθεί απλές σχέσεις για τη μετάβαση από το τοπικό στο σωματόδετο σύστημα
(π.χ. Neuenhofer και Filippou, 1998), οι οποίες για μετρίως μικρές μετακινήσεις δίνονται
από τις σχέσεις (2.1) και (2.3). Για ένα συμβατικό ελαστικό μέλος, η σχέση δυνάμεων -
μετακινήσεων στο σωματόδετο σύστημα είναι αυτή μίας αμφιέρειστης δοκού και δίνεται
από την Εξ. (2.7).

Μετακινήσεις Δυνάμεις
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θ1
θ2

δ N
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M1

Node j

Node i

(b)

Σχήμα 2: Μετακινήσεις και δυνάμεις στο (a) τοπικό και στο (b) σωματόδετο σύστημα
συνεταγμένων.
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Σημειώνεται ότι το άκρο i του σώματος αντιστοιχεί στο άκρο με τη συμβατική συμπε-
ριφορά, ενώ το άκρο j είναι το λικνιζόμενο άκρο του σώματος, που αναφέρεται όμως στην
κίνηση της λικνιστικής επιφάνειας και όχι το ίδιο το άκρο του σώματος.

Εφόσον η αξονική δύναμη στο λικνιζόμενο άκρο βρίσκεται εντός του πυρήνα της δια-
τομής (Εξ. 2.9), δεν υπάρχει λικνισμός. Αλλιώς στη διεπιφάνεια αυτή αναπτύσσεται μη
γραμμική κατανομή τάσεων, η οποία είναι μηδενική σε ένα τμήμα της διατομής. Γίνεται
η παραδοχή ότι η κατανομή των ορθών τάσεων στη διεπιφάνεια έχει τριγωνική μορφή,
ενώ η κατανομή των διατμητικών τάσεων έχει παραβολική μορφή. Για να εξεταστεί η
επιρροή της μερικής φόρτισης της βάσης έδρασης, γίνεται διαχωρισμός των παραπάνω
κατανομών σε κατανομές που προβλέπει η τεχνική θεωρία κάμψης, βάσει των συνισταμέ-
νων δυνάμεων, και σε κατανομές αυτοϊσορροπούμενων τάσεων, που αν και δεν παράγουν
συνισταμένες δυνάμεις, επηρεάζουν εντούτοις τις μετακινήσεις κοντά στη βάση έδρασης
(Σχήμα 3).

σm
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X
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(d)

(b)
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[τttb]
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Σχήμα 3: (a) Συνισταμένες δυνάμεις στην επιφάνεια επαφής, (b) Κατανομές ορθών και
διατμητικών τάσεων στη διεπιφάνεια, (c) Τάσεις βάσει της τεχνικής θεωρίας κάμψης και
(d) Αυτοϊσορροπούμενες τάσεις.

Για να εξεταστεί η επιρροή των αυτοϊσορροπούμενων τάσεων, μελετάται εναλλακτικά
το πρόβλημα της ημιάπειρης λωρίδας που φορτίζεται με κατανομές αυτοϊσορροπούμενων
τάσεων στο άκρο της (Σχήμα 4). Ο παραλληλισμός αυτός ισχύει για την περιοχή κοντά
στη βάση έδρασης, καθώς οι συνισταμένες δυνάμεις των αυτοϊσορροπούμενων κατανο-
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μών τάσεων είναι μηδενικές, επομένως σύμφωνα με την αρχή Saint - Venant η επιρροή
τους μακριά από την περιοχή φόρτισης είναι αμελητέα, δηλαδή θεωρούμε ότι παύει σε
ένα πεπερασμένο μήκος από την περιοχή φόρτισης.

x

y

σx 0

+1‒1
yτx0

σy=0
τxy=0

σy=0
τxy=0

Σχήμα 4: Η ημιάπειρη λωρίδα.

Για να μελετηθεί λοιπόν η συμπεριφορά της ημιάπειρης λωρίδας στις ασκούμενες αυ-
τοϊσορροπούμενες κατανομές τάσεων, επιστρατεύονται λύσεις από τη θεωρία ελαστικό-
τητας και πιο συγκεκριμένα η αριθμητική μέθοδος των Gaydon και Shepherd (1964), η
οποία περιγράφεται και επεκτείνεται στο αντίστοιχο κεφάλαιο της διδακτορικής διατρι-
βής. Στη συνέχεια αξιοποιείται για να προσδιοριστούν η πρόσθετη μετακίνηση και στροφή
του λικνιζόμενου άκρου που προκαλούνται από τις τυπικές κατανομές ορθών και διατμη-
τικών τάσεων που ασκούνται στη διεπιφάνεια λικνισμού, ως η κεντρική τιμή και η κλίση,
αντίστοιχα, της βέλτιστης γραμμικής κατανομής που διέρχεται από τη δημιουργούμενη
μη γραμμική κατανομή μετακινήσεων κάτω από την περιοχή φόρτισης της λικνιστικής
βάσης (Σχήμα 2.5). Οι μετακινήσεις αυτές στο κανονικοποιημένο σύστημα συντεταγμέ-
νων της ημιάπειρης λωρίδας προσεγγίζονται από πολυωνυμικές συναρτήσεις και δίνονται
από την Εξ. (2.51).

Ο αλγόριθμος του ελαστικού μακροστοιχείου δίδεται στον Πίνακα 2.3, όπου περιγρά-
φεται η εκτέλεση επαναλήψεων σε κάθε βήμα για δεδομένες μετακινήσεις στα άκρα του
στοιχείου, το οποίο περιλαμβάνει προσδιορισμό των παραμέτρων των τυπικών κατανο-
μών στο λικνιζόμενο άκρο του στοιχείου βάσει του δοκιμαστικού διανύσματος δυνάμεων,
τον προσδιορισμό των πρόσθετων μετακινήσεων λόγω αυτοϊσορροπούμενων τάσεων στο
κανονικοποιημένο και στο σωματόδετο σύστημα συντεταγμένων, τον προσδιρισμό του
αντίστοιχου μητρώου ευκαμψίας και το συνδυασμό τους με τις αντίστοιχες μετακινήσεις
και το μητρώο ευκαμψίας της συμβολής των συνισταμένων δυνάμεων, έτσι ώστε τελικά
να υπάρχει σύγκλιση στο θεωρούμενο διάνυσμα δυνάμεων. Τελικά, το μακροστοιχείο επι-
στρέφει στο πρόγραμμα πεπερασμένων στοιχείων τις δυνάμεις και το αντίστοιχο μητρώο
δυσκαμψίας στο τοπικό σύστημα συντεταγμένων.
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Τα παραδείγματα που εξετάζονται αφορούν σε ένα λικνιζόμενο σώμα υπό σταθερό
αξονικό φορτίο (Σχ. 5), λικνιζόμενο σώμα με τένοντα που εκτελεί ελεγχόμενο λικνισμό
(Σχ. 2.10), καθώς και ένα πλαίσιο με ενσωματωμένο λικνιζόμενο τοίχωμα (Σχ. 2.11, 2.12).
Τα αποτελέσματα που παράγονται από το προτεινόμενο μακροστοιχείο για τις παραπάνω
διατάξεις συγκρίνονται με αυτά του εμπορικού προγράμματοςAbaqus, όπου φανερώνεται
η πολύ καλή ακρίβεια των αποτελεσμάτων του παραγόμενου μακροστοιχείου, ακόμα και
στις παραπάνω περιπτώσεις που υπάρχει αλληλεπίδραση της λικνιστικής κίνησης με αυ-
τήν των στοιχείων που επιβάλλουν περιορισμούς σε αυτήν. Στη συνέχεια (Σχ. 2.13 - 2.30)
εξετάζεται η επιρροή διαφόρων παραμέτρων των παραπάνω διατάξεων στη συμπεριφορά
του συστήματος, ενώ γίνεται και μία πρώτη διερεύνηση για την ευνοϊκή επιρροή που μπο-
ρεί να έχει η ύπαρξη λικνιζομένων τοιχωμάτων σε πλαίσια με ψευδοστατικές αναλύσεις για
σεισμική διέγερση.
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Σχήμα 5: (a) Προσομοίωμα λικνιζόμενου σώματος υπό σταθερή κατακόρυφη δύναμη, (b)
Καμπύλες ικανότητας για διάφορες τιμές μέτρου ελαστικότητας, E, (c) Καμπύλες ικα-
νότητας για E = 30 GPa, όπως προβλέπονται από το προτεινόμενο μακροστοιχείο, το
πρόγραμμα Abaqus και απλοποιητικά προσομοιώματα και (d) Κατακόρυφη μετατόπιση
όπως προβλέπεται από τα παραπάνω προσομοιώματα.
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Μόρφωση ανελαστικού στοιχείου υπό μονοτονική φόρτιση

Στη συνέχεια, η μόρφωση που παρουσιάστηκε παραπάνω επεκτείνεται, έτσι ώστε να
μπορεί να περιγραφεί η συμπεριφορά ανελαστικών σωμάτων με ελαστικό - τελείως πλα-
στικό νόμο υλικού υπό μονοτονική φόρτιση. Η βασική διαφορά σε σχέση με προηγουμέ-
νως είναι ότι πλέον η κατανομή των ορθών τάσεων παύει να είναι τριγωνική, αλλά γίνεται
τραπεζοειδής.

Για το λόγο αυτό, εισάγεται μία επιπλέον παράμετρος µ (Εξ. 3.1), που περιγράφει το
λόγο της θλιβόμενης ζώνης που βρίσκεται υπό διαρροή σε σχέση με το συνολικό μήκος
της θλιβόμενης ζώνης. Η τραπεζοειδής φόρτιση μπορεί να θεωρηθεί ως διαφορά δύο τρι-
γωνικών φορτίσεων (Σχ. 3.1), ενώ η παρατήρηση αυτή επεκτείνεται και στις αντίστοιχες
διατμητικές φορτίσεις, όπου γίνεται και η επιπλέον υπόθεση ότι ο λόγος των μέγιστων
ορθών τάσεων των παραπάνω τριγωνικών κατανομών ισούται με το λόγο των μέγιστων
διατμητικών τάσεων των αντίστοιχων παραβολικών. Έτσι, μπορούν πλέον να εκφραστούν
οι συνισταμένες δυνάμεις στο λικνιζόμενο άκρο του μέλους συναρτήσει του λόγου µ (Εξ.
3.2, 3.3, 3.4).

Οι πρόσθετες μετακινήσεις λόγω των παραπάνω κατανομών φόρτισης του στοιχείου
υπό διαρροή υπολογίζονται με τρόπο παρόμοιο με αυτόν του ελαστικού υλικού, με τη
διαφορά ότι πλέον οι παράμετροι της βέλτιστης γραμμικής κατανομής υπολογίζονται οχι
βάσει της μη γραμμικής κατανομής μετακινήσεων στην περιοχή επαφής, αλλά μόνο στο
τμήμα της που παραμένει ελαστικό, καθώς στο υπόλοιπο εμφανίζονται και πλαστικές με-
τακινήσεις.Με τον τρόπο αυτό εξάγεται η Εξ. (3.9) για την προσέγγιση των παραπάνω με-
τακινήσεων από αναλυτικές συναρτήσεις. Η σχέση αυτή, όπως και το αντίστοιχο μητρώο
ευκαμψίας αντικαθιστά τις αντίστοιχες εξισώσεις που χρησιμοποιήθηκαν στη μόρφωση
του ελαστικού στοιχείου.

Στα παραδείγματα του κεφαλαίου αυτού παρουσιάζεται η συμπεριφορά ενός λικνι-
ζόμενου σώματος υπό σταθερή κατακόρυφη φόρτιση για διάφορες τιμές τάσης διαρροής
(Σχ. 6), ενώ τα αποτελέσματα που προέκυψαν για τις μετακινήσεις στο σωματόδετο σύ-
στημα συγκρίνονται με αυτά που προκύπτουν από το πρόγραμμα Abaqus (Σχ. 3.6, 3.7),
φανερώνοντας την πολύ καλή ταύτιση των παραγόμενων αποτελεσμάτων με τις παρα-
πάνω θεωρήσεις.

Μη γραμμική κατανομή μετακινήσεων της ημιάπειρης λωρίδας

Για τη γενίκευση της μόρφωσης του μακροστοιχείου σε ανελαστικά σώματα υπό ανα-
κυκλιζόμενη φόρτιση, δεν μπορεί να εφαρμοστεί μεθοδολογία ανάλογη με τις προηγού-
μενες, λόγω της πολυπλοκότητας των κατανομών τάσεων και πλαστικών μετακινήσεων
που δημιουργούνται κατά τις ανακυκλίσεις. Για τη μόρφωση του στοιχείου για ανακυκλι-
ζόμενη φόρτιση, λοιπόν, θα πρέπει να προηγηθεί η λεπτομερής εξέταση της μη γραμμικής
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Σχήμα 6: Καμπύλες ικανότητας λικνιζόμενου σώματος υπό σταθερή κατακόρυφη δύναμη
για διάφορες τιμές τάσης διαρροής, σy.

κατανομής μετακινήσεων της ημιάπειρης λωρίδας (Σχ. 4) υπό τυχούσα κατανομή ασκού-
μενων αυτοϊσορροπούμενων ορθών τάσεων στο άκρο της.

Αρχικά, εξετάζεται το απλούστερο πρόβλημα του προσδιορισμού της κατανομής με-
τακινήσεων λόγω αυτοϊσορροπούμενων τάσεων για συγκεντρωμένο φορτίο σε τυχούσα
θέση στο άκρο της ημιάπειρης λωρίδας. Για τον αριθμητικό υπολογισμό της κατανομής
αυτής, εφαρμόζεται και πάλι η μεθοδολογία των Gaydon και Shepherd (1964). Επιπλέον,
εξετάζονται ξεχωριστά το συμμετικό και το αντισυμμετρικό πρόβλημα (Σχ. 4.3), για κάθε
ένα από τα οποία γίνεται προσπάθεια προσδιορισμού αναλυτικών συναρτήσεων που προ-
σεγγίζουν ορθότερα τα αριθμητικά αποτελέσματα. Οι εικόνες των τιμών των μετακινή-
σεων για κάθε θέση μετακίνησης και κάθε θέση ασκούμενου συγκεντρωμένου φορτίου
παρουσιάζονται στα Σχήματα 7a και 7b, αντίστοιχα.

Σημειώνεται ότι η κατανομή μετακινήσεων που θα προκύψει για τα δύο παραπάνω
προβλήματα θα πρέπει να ικανοποιεί διάφορους περιορισμούς. Αρχικά, θα πρέπει να ικα-
νοποιούνται οι περιορισμοί συμμετρίας των αντίστοιχων προβλημάτων, αλλά και η ιδιό-
τητα του θεωρήματος Maxwell-Betti που ισχύει και στην περίπτωση αυτή (Εξ. 4.5, 4.15,
αντίστοιχα για το συμμετρικό και το αντισυμμετρικό πρόβλημα). Οι παραπάνω συμμε-
τρίες φαίνονται καθαρά στο Σχ. 7. Ακόμα, επειδή οι ασκούμενες κατανομές τάσεων που
εξετάζονται είναι αυτοϊσορροπούμενες, δηλαδή οι συνισταμένες δυνάμεις είναι μηδενικές,
αυτό σημαίνει ότι και τα ολοκληρώματα μηδενικής και πρώτης τάξης των μετακινήσεων
θα πρέπει να είναι και αυτά μηδενικά (Εξ. 4.3, 4.4).

Ο προσδιοριμός των ζητούμενων αναλυτικών συναρτήσεων γίνεται σταδιακά, ανα-
γνωρίζοντας σε κάθε στάδιο τη βασική μορφή της κατανομής των μετακινήσεων, οι οποίες
όμως παρουσιάζουν και χαρακτηριστικές μορφές ασυνέχειας. Σε πρώτο στάδιο, αναγνω-
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Σχήμα 7: Συναρτήσεις μετακίνησης της ημιάπειρης λωρίδας για (a) το συμμετρικό και (b)
το αντισυμμετρικό πρόβλημα.

ρίζεται η σχέση που υπάρχει μεταξύ του προβλήματος της ημιάπειρης λωρίδας με αυτό
του ημιάπειρου χώρου που χρησιμοποιείται συχνά σε γεωτεχνικά προβλήματα, καθώς η
βασική μορφή της συνάρτησης που κυριαρχεί είναι η λογαριθμική κατανομή μετακινή-
σεων του ημιχώρου υπό συγκεντρωμένο φορτίο (Εξ. 4.7), η οποία για το συμμετικό και το
αντισυμμετρικό πρόβλημα αντιστοιχεί στις Εξ. (4.8) και (4.17), αντίστοιχα. Αν αφαιρεθούν
οι λογαριθμικές αυτές συναρτήσεις από τις αρχικές κατανομές (Σχ. 4.6, 4.9), φαίνεται ότι

xxvi



εξαφανίζονται οι ασυνέχειες που παρατηρούνται στις διαγωνίους.
Επειδή όμως τα ολοκληρώματα που παράγουν οι παραπάνω συναρτήσεις κατά μή-

κος της ημιάπειρης λωρίδας δεν είναι μηδενικά, όπως απαιτείται, εισάγονται επιπλέον οι
συναρτήσεις των Εξ. (4.10) και (4.19), αντίστοιχα, οι οποίες εξισορροπούν τα ολοκληρώ-
ματα των παραπάνω συναρτήσεων. Αφαιρώντας τις συναρτήσεις αυτές από τις αρχικές
κατανομές μετακινήσεων, προκύπτουν οι εικόνες των Σχ. 4.7 και 4.10, αντίστοιχα.

Για τις εναπομένουσες κατανομές μετακινήσεων, αναγνωρίζεται ότι εξακολουθεί να
υπάρχει μία λογαριθμική μορφή ασυνέχειας για μετακίνηση και φόρτιση κοντά στα άκρα
της ημιάπειρης λωρίδας. Για το λόγο αυτό, δοκιμάζεται η χρήση των συναρτήσεων των
Εξ. (4.11) και (4.20), με τις αντίστοιχες συναρτήσεις εξισορρόπησης ολοκληρωμάτων των
Εξ. (4.12) και (4.21), μαζί με τις συμμετικές και αντισυμμετρικές πολυωνυμικές συναρτή-
σεις των Εξ. (4.13) και (4.22), αντίστοιχα για το συμμετρικό και το αντισυμμετρικό πρό-
βλημα. Για τον προσδιορισμό των βέλτιστων συντελεστών των παραπάνω συναρτήσεων
χρησιμοποιούνται οι αλγόριθμοι βελτιστοποίησης της βιβλιοθήκης επιστημονικών υπο-
λογισμών SciPy σε γλώσσα Python.

Η τελική συνάρτηση που περιγράφει τη μετακίνηση σε μία θέση y της ημιάπειρης λω-
ρίδας για μοναδιαίο συγκεντρωμένο φορτίο στη θέση p παρουσιάζεται στην Εξ. 4.24, ενώ
ενδεικτικές μορφές κατανομών μετακινήσεων παρουσιάζονται στο Σχ. 8, όπου φαίνεται
και η πολύ καλή ταύτιση μεταξύ των αριθμητικών αποτελεσμάτων και της προτεινόμενης
αναλυτικής σχέσης.
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Σχήμα 8: Κατανομή μετακινήσεων για διάφορες θέσεις μοναδιαίας συγκεντρωμένης φόρ-
τισης: Σύγκριση αριθμητικών αποτελεσμάτων (συμπαγείς γραμμές) με την προτεινόμενη
αναλυτική έκφραση (διακεκομμένες γραμμές).
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Στη συνέχεια, εξετάζονται οι περιπτώσεις ορθογωνικής και τριγωνικής φόρτισης (Σχ.
4.13), οι οποίες μπορούν να θεωρηθούν ως ολοκληρώματα συνεχών συγκεντρωμένων
φορτίων (Εξ. 4.29 και 4.31, αντίστοιχα), με τα ολοκληρώματα των συναρτήσεων να δίδο-
νται στο Παράρτημα 4.A. Ενδεικτικές μορφές μετακινήσεων για τις παραπάνω φορτίσεις
παρουσιάζονται στα Σχ. 4.14 και 4.16, αντίστοιχα.

Βάσει των παραπάνω συναρτήσεων μπορεί πλέον να εξεταστεί ακριβέστερα η συμπε-
ριφορά του λικνιζόμενου σώματος. Πιο συγκεκριμένα, ως εφαρμογή του κεφαλαίου αυτού
εξετάζεται η κατανομή τάσεων που ασκείται στη διεπιφάνεια, καθώς και η κατανομή με-
τακινήσεων του σώματος που δεν βρίσκεται σε επαφή με την επιφάνεια λικνισμού. Για τον
παραπάνω σκοπό, πραγματοποιείται διακριτοποίηση της περιοχής επαφής σώματος - βά-
σης, ενώ υπολογίζονται οι τιμές των τάσεων στα ενδιάμεσα σημεία, έτσι ώστε η κατανομή
μετακινήσεων στην περιοχή αυτή να είναι γραμμική, η οποία αντιστοιχεί σε επίπεδη επιφά-
νεια λικνισμού. Για τον υπολογισμό των μετακινήσεων για την τμηματικά αυτή γραμμική
κατανομή τάσεων, γίνεται διαχωρισμός της σε τριγωνικές κατανομές, για τις οποίες οι με-
τακινήσεις μπορούν να υπολογιστούν αναλυτικά βάσει των συναρτήσεων που προέκυψαν
παραπάνω.

Εφαρμόζοντας την παραπάνω διαδικασία για διάφορες τιμές μήκους επαφής σώμα-
τος - βάσης, προκύπτουν οι κατανομές τάσεων του Σχ. 9 και οι κατανομές μετακινήσεων
της βάσης του σώματος που δεν βρίσκεται σε επαφή με τη βάση έδρασης του Σχ. 4.21,
όπου φαίνεται ότι και στις δύο περιπτώσεις οι κατανομές είναι αρκετά μη γραμμικές. Πα-
ρόλα αυτά, επιβεβαιώνεται ότι οι πρόσθετες μετακινήσεις που χρησιμοποιούνται για τη
μόρφωση του ελαστικού στοιχείου με τη διαδικασία προσέγγισης της μη γραμμικής κα-
τανομής μετακινήσεων για γραμμική θεωρούμενη φόρτιση, βρίσκονται πολύ κοντά στις
πραγματικές τιμές (Σχ. 4.23).

Μόρφωση ανελαστικού στοιχείου υπό ανακυκλιζόμενη
φόρτιση

Έχοντας διατυπώσει αναλυτικές εκφράσεις για τη μη γραμμική κατανομή μετακινή-
σεων που παράγει μία τυχούσα φόρτιση ορθών τάσεων στο άκρο της ημιάπειρης λωρίδας,
οι εκφράσεις αυτές μπορούν να αξιοποιηθούν και να ενσωματωθούν στον αλγόριθμο ενός
μακροστοιχείου για την περιγραφή της στατικής ανακυκλιζόμενης συμπεριφοράς λικνι-
ζόμενων σωμάτων.

Όπως αναφέρθηκε προηγουμένως, ενώ για μονοτονικές φορτίσεις η υπόθεση τυπι-
κών κατανομών ασκούμενων τάσεων και η γραμμικοποίηση των παραγόμενων μη γραμ-
μικών κατανομών μετακινήσεων παράγει ικανοποιητικά αποτελέσματα, στην περίπτωση
της ανακυκλιζόμενης φόρτισης, λόγω της πολυπλοκότητας των κατανομών τάσεων και
δημιουργούμενων πλαστικών μετακινήσεων, μία τέτοια προσέγγιση με υπόθεση γραμμι-
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Σχήμα 9: Κατανομή τάσεων για διάφορα μήκη επαφής, c, οι οποίες προκαλούν γραμμική
κατανομή μετακινήσων κάτω από τη φόρτιση. Οι αντίστοιχες γραμμικές κατανομές τά-
σεων για κάθε μήκος επαφής σημειώνονται με διακεκομμένες γραμμές.

κής κατανομής ανηγμένων παραμορφώσεων στη διεπιφάνεια δημιουργεί προβλήματα.
Για το λόγο αυτό, η αντιμετώπιση της περίπτωσης της ανακυκλιζόμενης φόρτισης ακο-

λουθεί μία διαφορετική τακτική: Σε κάθε βήμα γίνεται προσδιορισμός μίας κατάλληλης
κατανομής ασκούμενων ορθών τάσεων, έτσι ώστε οι παραγόμενες μετακινήσεις της διε-
πιφάνειας λικνισμού να ταυτίζονται με τις στοχευόμενες μετακινήσεις για τη θέση αυτή
που απαιτεί το πρόγραμμα πεπερασμένων στοιχείων. Στο Σχ. 10 φαίνονται η αρχική και
παραμορφωμένη θέση του λικνιζόμενου σώματος και της λικνιστικής επιφάνειας. Η γραμ-
μοσκιασμένη περιοχή αντιστοιχεί στην παραμορφωμένη θέση του σώματος, όπου παρου-
σιάζονται μόνο οι παραμορφώσεις παράλληλα στη φόρτιση για ευκρίνεια. Οι ορθές τά-
σεις, [σ], καθώς και οι διατμητικές τάσεις, οι οποίες ασκούνται στη λικνιστική διεπιφάνεια,
προκαλούν ελαστικές μετακινήσεις, [uel], οι οποίες αναπτύσσονται καθ' όλο το πλάτος
(με μπλε χρώμα), ενώ αρνητικές πρόσθετες (πλαστικές) μετακινήσεις [ua] αναπτύσσονται
στην περιοχή υπό διαρροή (με κόκκινο χρώμα) και θετικές πρόσθετες («κενά») μετακινή-
σεις [ua] δημιουργούνται μεταξύ του λικνιζόμενου σώματος και της επιφάνειας λικνισμού
(με πράσινο χρώμα), έτσι ώστε οι συνολικές μετακινήσεις να ταιριάζουν με αυτές της λι-
κνιστικής επιφάνειας (κόμβος j του στοιχείου), [urs] (με καφέ χρώμα). Προϋπάρχουσες
πλαστικές μετακινήσεις δεν θεωρούνται στο σχήμα για απλοποίηση.

Πιο συγκεκριμένα, γίνεται διακριτοποίηση της διεπιφάνειας λικνισμού σε κόμβους
ελέγχου, σε κάθε έναν από τους οποίους είναι άγνωστη μία ποσότητα, ανάλογα με το αν ο
κόμβος αυτός θεωρείται ότι έχει ελαστική συμπεριφορά, βρίσκεται υπό διαρροή ή αν έχει
αποκολληθεί από τη βάση έδρασης. Στην περίπτωση της ελαστικής συμπεριφοράς άγνω-
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Σχήμα 10: Κατανομή τάσεων που ασκούνται στην λικνιστική επιφάνεια και μετακινήσεις
που παράγονται στην ανελαστική, την ελαστική και την περιοχή χωρίς επαφή, οι οποίες
ταιριάζουν με αυτές της λικνιστικής επιφάνειας.

στη ποσότητα είναι η ασκούμενη τάση, ή ισοδύναμα, η ελαστική ανηγμένη παραμόρφωση,
στην περίπτωση της διαρροής άγνωστη είναι η πρόσθετη πλαστική μετακίνηση κατά το
συγκεκριμένο βήμα με την τάση να είναι γνωστή και ίση με την τάση διαρροής, ενώ στην
περίπτωση της απώλειας επαφής, άγνωστη ποσότητα είναι η πρόσθετη μετακίνηση που
απαιτείται να προστεθεί στη μετακίνηση του σώματος ώστε να προκύψει η μετακίνηση
της επιφάνειας λικνισμού, δηλαδή το κενό που δημιουργείται μεταξύ σώματος - βάσης, με
την τάση να είναι γνωστή και ίση με τη μηδενική. Οι παραπάνω ποσότητες σε αδιαστατο-
ποιημένη μορφή μπορούν να εκφραστούν ταυτόχρονα μέσω μίας μεταβλητής w (Εξ. 5.3,
Σχ. 5.3).

Για τη διατήρηση όμως της συνέχειας και ομαλότητας των παραγόμενων από το μα-
κροστοιχείο αποτελεσμάτων, δεν αρκεί ο προσδιορισμός των παραπάνω ποσοτήτων μόνο
στους κόμβους ελέγχου, αλλά θα πρέπει να προσδιορίζονται και οι αντίστοιχες κατανο-
μές στα διαστήματα μεταξύ των κόμβων ελέγχου. Ο ακριβής προσδιορισμός των σημείων
μετάβασης από μία μορφή συμπεριφοράς σε μία άλλη είναι δύσκολος και υπολογιστικά
μη αποδοτικός. Για το λόγο αυτό, στη μόρφωση του μακροστοιχείου χρησιμοποιείται μία
απλοποίηση, η οποία όμως δίδει πολύ καλά αποτελέσματα. Πιο συγκεκριμένα, παρατηρεί-
ται ότι μία απόκλιση ελαστικών ανηγμένων παραμορφώσεων από τη γραμμική κατανομή
στο εσωτερικό του διαστήματος παράγει μία απόκλιση από τη γραμμική κατανομή για τις
μετακινήσεις, οι οποίες συνδέονται προσεγγιστικά με τη σχέση της Εξ. (5.19). Βάσει της
σχέσης αυτής λοιπόν, μπορούν να τροποποιηθούν οι ελαστικές ανηγμένες παραμορφώ-
σεις, ώστε να δημιουργηθεί συμβατότητα με τις πρόσθετες μετακινήσεις. Αποδεικνύεται
ότι αν στη γραμμική κατανομή που παράγεται ενώνοντας τις τροποποιημένες τιμές στα
άκρα του διαστήματος προστεθεί το αντίθετο της απόκλισης της κατανομής πλαστικών
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μετακινήσεων από την αντίστοιχη γραμμική κατανομή, οι διάφορες περιοχές συμπεριφο-
ράς (ελαστική, ανελαστική, αποκόλληση) οριοθετούνται από τα σημεία τομής της παρα-
πάνω κατανομής με τις οριζόντιες ευθείες που αντιστοιχούν στις τιμές w = 0 και w = εy.

Οι δημιουργούμενες από την παραπάνω διαδικασία κατανομές τάσεων ή ισοδύναμα
ανηγμένων ελαστικών παραμορφώσεων παράγουν μετακινήσεις στα σημεία ελέγχου. Αρ-
χικά, παράγονται μετακινήσεις στα άκρα του στοιχείου λόγω των συνισταμένων δυνά-
μεων στις θέσεις αυτές, βάσει της τεχνικής θεωρίας κάμψης. Ακόμα, παράγονται επιπλέον
μετακινήσεις στη διεπιφάνεια λινισμού λόγω των αυτοϊσορροπούμενων ορθών τάσεων, οι
οποίες υπολογίζονται αφού η δημιουργούμενη κατανομή τάσεων χωριστεί σε απλά σχή-
ματα (τρίγωνα, τραπέζια), για τα οποία είναι γνωστές οι σχέσεις υπολογισμού των παρα-
γόμενων μετακινήσεων, βάσει της συνάρτησης μη γραμμικής κατανομής μετακινήσεων
της ημιάπειρης λωρίδας που παρουσιάστηκε παραπάνω. Επιπλέον, η συμβολή των αυτοϊ-
σορροπούμενων τάσεων στις μετακινήσεις λαμβάνεται υπόψη απλοποιητικά, θεωρώντας
παραβολική κατανομή τάσεων με άκρα αυτά της περιοχής επαφής, για την οποία με τρόπο
παρόμοιο με αυτόν που έγινε για το ελαστικό στοιχείο προκύπτουν οι προσεγγιστικές σχέ-
σεις των Εξ. (5.13) και (5.14).

Πέραν των παραπάνω μετακινήσεων θα πρέπει να ληφθούν επιπλέον υπόψη οι πρό-
σθετες μετακινήσεις που αντιστοιχούν στο κενό σώματος - βάσης στην περίπτωση περιο-
χής αποκόλλησης, οι πρόσθετες πλαστικές μετακινήσεις σε περιοχές υπό διαρροή και οι
πλαστικές μετακινήσεις που έχουν δημιουργηθεί σε προηγούμενα βήματα. Το άθροισμα
όλων των παραπάνω μετακινήσεων στη διεπιφάνεια λικνισμού, θα πρέπει να ισούται με
τη στοχευόμενη γραμμική κατανομή μετακινήσεων που ορίζεται για το λικνιζόμενο άκρο
του μέλους από το πρόγραμμα πεπερασμένων στοιχείων. Για την επίτευξη του στόχου αυ-
τού, εκτελούνται επαναλήψεις με διορθωμένες σε κάθε επανάληψη τιμέςw στις θέσεις των
κόμβων ελέγχου.

Στα παραδείγματα του κεφαλαίου εξετάζεται αρχικά ένα λικνιζόμενο σώμα υπό στα-
θερή κατακόρυφη δύναμη (Σχ. 5.10), για το οποίο παρουσιάζονται οι καμπύλες δύναμης
- μετατόπισης για διάφορες τιμές πλήθους κόμβων ελέγχου (Σχ. 11), από όπου φαίνεται
η πολύ καλή προσέγγιση που γίνεται για το εσωτερικό των διαστημάτων. Ακόμα, παρου-
σιάζονται οι κατανομές ελαστικών ανηγμένων παραμορφώσεων και πλαστικών μετακινή-
σεων για διάφορες χρονικές στιγμές στον πρώτο ημικύκλο φόρτισης (Σχ. 12) και οι κατα-
νομές πλαστικών μετακινήσεων μέχρι το τέλος της ανακυκλιζόμενης φόρτισης (Σχ. 5.13).
Επιπλέον, συγκρίνονται τα αποτελέσματα που παράγει το προτεινόμενο μακροστοιχείο
με τα αντίστοιχα πειραματικά για ένα λικνιζόμενο τοίχωμα οπλισμένου σκυροδέματος με
τένοντες (Σχ. 13) και έναν πεσσό τοιχοποιίας (Σχ. 5.15), από όπου φαίνεται ότι παρόλο
που το προτεινόμενο στοιχείο δεν μπορεί να λάβει υπόψη του πολύπλοκους νόμους ανα-
κύκλισης υλικών, είναι σε θέση να προσεγγίσει ικανοποιητικά τη συνολική συμπεριφορά
των μελών αυτών, δεδομένων των πειραματικών αβεβαιοτήτων.

Ιδιαίτερη έμφαση δίνεται, τέλος, στη σημασία της σωστής θεώρησης της παραμορ-
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Σχήμα 11: Λικνιζόμενο σώμα υπό σταθερή κατακόρυφη δύναμη: Καμπύλες οριζόντιας με-
τατόπισης - οριζόντιας επιβαλλόμενης δύναμης σε ανακυκλιζόμενη φόρτιση για διάφορες
τιμές πλήθους κόμβων ελέγχου, nw.

φωσιμότητας και της ανελαστικότητας των λικνιζόμενων σωμάτων μέσω σύγκρισης των
παραπάνω αποτελεσμάτων με αυτά αντίστοιχων προσομοιωμάτων όπου τα λικνιζόμενα
σώματα θεωρούνται άκαμπτα ή ελαστικά (Σχ. 14), από όπου φαίνεται ότι μεταξύ των πα-
ραπάνω μοντέλων παρατηρούνται σημαντικές αποκλίσεις και επομένως αν δεν ληφθεί
υπόψη η παραμορφωσιμότητα ή η ανελαστικότητα των σωμάτων εισάγονται σημαντικά
σφάλματα στην προβλεπόμενη συμπεριφορά.

Στο παράρτημα του κεφαλαίου παρουσιάζεται μία εναλλακτική μέθοδος επίλυσης του
προβλήματος προσδιορισμού της κατάλληλης κατανομής τάσεων στη διεπιφάνεια λικνι-
σμού ως πρόβλημα βελτιστοποίησης, το οποίο όμως δεν προτιμάται γενικώς λόγω υπο-
λογιστικού φόρτου και προβλημάτων σύγκλισης.

Μόρφωση ανελαστικού στοιχείου για δυναμικές αναλύσεις

Η μόρφωση του μακροστοιχείου του προηγούμενου κεφαλαίου αφορούσε στατικές
ανακυκλιζόμενες φορτίσεις. Για τη χρήση του όμως σε δυναμικές αναλύσεις είναι απαραί-
τητες κάποιες τροποποιήσεις, για να ληφθεί υπόψη η απόσβεση του στοιχείου και άλλου
είδους κινήσεις πέραν της καθαρά λικνιστικής, όπως η πλήρης αποκόλληση από τη βάση
έδρασης και η ολίσθηση.

Όσον αφορά στην απόσβεση, γίνεται θεώρηση απόσβεσης παρόμοια με την απόσβεση
ανάλογη της τρέχουσας δυσκαμψίας, η οποία σε επίπεδο τάσεων δίδεται από την Εξ. (6.5).
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(b)

Σχήμα 12: (a) Ελαστικές παραμορφώσεις (μπλε καμπύλες) και πλαστικές μετακινήσεις
(κόκκινες καμπύλες) που αναπτύσσονται στη λικνιστική διεπιφάνεια κατά τον πρώτο ημι-
κύκλο φόρτισης. Παρουσιάζεται το δεξί ημιπλάτος της διεπιφάνειας. (b) Αντίστοιχα ση-
μεία στην καμπύλη φόρτισης - αποφόρτισης.

Ιδιαίτερη μέριμνα πρέπει να ληφθεί έτσι ώστε να ικανοποιείται η συνθήκη περί μη ανάπτυ-
ξης εφελκυστικών τάσεων στη διεπιφάνεια λικνισμού, η οποία σημαίνει ότι το άθροισμα
των τάσεων που παράγουν παραμορφώσεις και των τάσεων απόσβεσης θα πρέπει να εί-
ναι πάντα μη εφελκυστικό (Εξ. 6.8). Ο ρυθμός μεταβολής των τάσεων στη διεπιφάνεια,
όμως, δεν υπολογίζεται από τις ταχύτητες στα άκρα του στοιχείου, λόγω της αυξημένης
δυσκολίας, αλλά αριθμητικά σύμφωνα με την Εξ. (6.9). Με τον τρόπο αυτό προκύπτει η

xxxiii



���� ��� ��� ��� � �� �� �� ���
�����������������
������
���

���

���

���

�

��

��

��
�

��
��

��
��

���
��


�
�
�

	
�

!��� !�� !�� !�� � �� �� �� ���
���� �������������������
���

!��

!��

!��

�

��

��

��

�
��
� 
��

��
��


��
��
�
�

�
�

���������
	������������

(a) (b)

Σχήμα 13: (a) Πειραματική καμπύλη φόρτισης - αποφόρτισης για την ανακυκλική συμπε-
ριφορά του δοκιμίου οπλισμένου σκυροδέματος με τένοντες SRW-B (Twigden κ.ά., 2017);
(b) Απόκριση σύμφωνα με το προτεινόμενο μακροστοιχείο (μπλε καμπύλες) και σύγκριση
με την περιβάλλουσα των πειραματικών αποτελεσμάτων (κόκκινη καμπύλη).

���� ���� ���� ����
���� ����������������������

�

���

���

���

�
��
� 
��

��
��


��
��
���



�

���������
	������
�����

���� ���� ���� ���� ����

��������������������������

�

��

��

��

��



��
��
��

��
��	

��
��
���

�
�

���������
�������

����

(a) (b)

Σχήμα 14: Σύγκριση των καμπύλων δύναμης - μετατόπισης της ανακυκλικής συμπεριφο-
ράς όπως προβλέπεται από το μακροστοιχείο για τα παραδείγματα (a) Σταθερής αξονι-
κής δύναμης και (b) Τοιχώματος Ω.Σ. με τένοντες, με αποτελέσματα προσομοιωμάτων τα
οποία θεωρούν το λικνιζόμενο σώμα άκαμπτο ή ελαστικό. Παρουσιάζονται μόνο οι θετι-
κοί ημιάξονες.

ανισότητα (6.10).
Για να ισχύει η παραπάνω ανισότητα, γίνεται τροποποίηση του τρόπου καθορισμού

των ελαστικών ανηγμένων παραμορφώσεων και πρόσθετων μετακινήσεων βάσει των w
σύμφωνα με τις σχέσεις των Εξ. (6.12) και (6.13), ενώ παρόμοια τροποποίηση γίνεται
και στη διαδικασία καθορισμού των διάφορων περιοχών στο εσωτερικό των διαστημά-
των (Σχ. 6.2). Ακόμα, οι συνολικές κανονικοποιημένες δυνάμεις παραμορφωσιμότητας
και απόσβεσης στο σωματόδετο σύστημα δίνονται από την Εξ. (6.22).

Όσον αφορά στην πλήρη αποκόλληση και την ολίσθηση, θα πρέπει να αναφερθεί ότι
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και τα δύο φαινόμενα αντιμετωπίζονται με τον ίδιο τρόπο, καθώς η πλήρης αποκόλληση
θεωρείται ουσιαστικά ως μία περίπτωση ολίσθησης με μηδενική αξονική δύναμη. Για να
ληφθεί υπόψη η ολίσθηση, εισάγεται μία νέα μεταβλητή s που εκφράζει την κάθετη στην
απαραμόρφωτη θέση του σώματος μετατόπιση του λικνιζόμενου άκρου. Επιπλέον, εισά-
γεται ένα νέο ενδιάμεσο σύστημα συντεταγμένων, όπου η ολίσθηση αυτή έχει αφαιρεθεί
(Σχ. 6.1).

Για τον καθορισμό της ολίσθησης, εφαρμόζεται το κριτήριο ολίσθησηςCoulomb (Ανισ.
6.23). Σε συνήθεις κατασκευές, προκύπτει ότι για να ισχύει το παραπάνω κριτήριο, θα πρέ-
πει ισοδύναμα να ισχύει η ανισότητα (6.38). Σε κάθε βήμα ελέγχεται αν ισχύει η ανισότητα
αυτή με την υπάρχουσα κανονικοποιημένη ως προς το μήκος ολίσθηση s̃, αλλιώς μετα-
βάλλεται ώστε η μία από τις δύο ανισότητες που δεν ικανοποιείται, να ικανοποιείται ως
ισότητα.

Επιπλέον, εισάγεται ένας απλούστερος τρόπος υπολογισμού των μετακινήσεων λόγω
των αυτοϊσορροπούμενων ορθών τάσεων που βασίζεται στη συνισταμένη αξονική και
ροπή κάθε διαστήματος (Εξ. 6.52). Καθώς οι παραγόμενες μετακινήσεις εξαρτώνται μόνο
από τις συνισταμένες δυνάμεις των διαστημάτων, μπορεί μετά την εκτέλεση κάθε επι-
τυχημένου βήματος να γίνεται απλοποίηση (διγραμμικοποίηση) των κατανομών ελαστι-
κών ανηγμένων παραμορφώσεων και πλαστικών μετακινήσεων, καθώς αυτό μειώνει ση-
μαντικά το υπολογιστικό κόστος στην περίπτωση της δυναμικής ανάλυσης.

Στη συνέχεια γίνεται επιβεβαίωση της δυνατότητας του μακροστοιχείου να προβλέ-
ψει την απώλεια ενέργειας που θεωρείται συνήθως για άκαμπτα σώματα, βάσει της αρχής
διατήρησης στροφορμής. Φαίνεται λοιπόν ότι για πολύ μεγάλο μέτρο ελαστικότητας και
συντελεστή απόσβεσης, οι αποκρίσεις σε ελεύθερες ταλαντώσεις, παλμική κίνηση ημιτο-
νοειδούς μορφής και σε καταγεγραμμένη σεισμική κίνηση πλησιάζουν πολύ ικανοποιη-
τικά τις θεωρητικά προβλεπόμενες αποκρίσεις άκαμπτων σωμάτων (Σχ. 15, 6.5 - 6.9). Το
παραπάνω συμπέρασμα επιβεβαιώνεται και από τα Σχ. 16, 6.10, 6.12, όπου παρουσιάζο-
νται οι ισοδύναμοι λόγοι απώλειας ενέργειας κατά την κρούση, οι οποίοι αν χρησιμοποι-
ηθούν στην αναλυτική λύση, δίδουν ίδια μετακίνηση κατά τον πρώτο ημικύκλο ταλάντω-
σης με αυτήν του μακροστοιχείου, από όπου φαίνεται ότι καθώς αυξάνεται το μέτρο ελα-
στικότητας ή ο συντελεστής απόσβεσης, ο ισοδύναμος λόγος απώλειας ενέργειας σχεδόν
ταυτίζεται με τον θεωρητικώς προβλεπόμενο για άκαμπτα σώματα με ανελαστική κρούση.

Η ικανότητα του τροποποιημένου συντελεστή απώλειας ενέργειας να περιγράψει την
πραγματική συμπεριφορά του σώματος, όπως προκύπτει από το προτεινόμενο μακρο-
στοιχείο, εξετάζεται στα Σχ. 17, 6.14, 6.15, από όπου φαίνεται ότι η χρήση ενός τροποποι-
ημένου συντελεστή έναντι του θεωρητικού δίνει αποτελέσματα πολύ πιο κοντά σε αυτά
που προβλέπονται από το μακροστοιχείο.

Ακόμα, παρουσιάζεται η συμπεριφορά ενός παραμορφώσιμου λικνιζόμενου σώματος
σε ελεύθερες ταλαντώσεις, παλμική κίνηση ημιτονοειδούς μορφής και σε καταγεγραμ-
μένη σεισμική κίνηση, ανάλογα με τις τιμές διαφόρων παραμέτρων, όπως είναι το μέτρο
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Σχήμα 15: Στροφή και γωνιακή ταχύτητα για ελεύθερη ταλάντωση άκαμπτου σώματος με
θ0/α = 0.5 για α = 0.2, όπως προκύπτουν από το μακροστοιχείο (μπλε καμπύλες) και
τη θεωρητική λύση (πορτοκαλί καμπύλες).

ελαστικότητας ή ο συντελεστής απόσβεσης (Σχ. 6.16 - 6.18), η τάση διαρροής του σώμα-
τος (Σχ. 6.19 - 6.21) και ο συντελεστής τριβής (Σχ. 6.22 - 6.24).

Συμπεράσματα

Στην παρούσα διδακτορική διατριβή παρουσιάστηκε η μόρφωση μακροστοιχείων για
παραμορφώσιμα λικνιζόμενα σώματα. Αρχικά παρουσιάστηκε η μόρφωση του ελαστικού
μακροστοιχείου, με την οποία φάνηκε ότι ο λικνισμός και η παραμόρφωση δεν είναι στην
πραγματικότητα ξεχωριστά φαινόμενα. Καθώς οι διατομές του μέλους κοντά στη διεπι-
φάνεια λικνισμού δεν παραπέμνουν επίπεδες, η τεχνική θεωρία κάμψης που εφαρμόζε-
ται συνήθως για στοιχεία δοκού - υποστυλώματος κρίνεται ανεπαρκής για την πρόβλεψη
της συμπεριφοράς λικνιζόμενων μελών και για το λόγο αυτό χρησιμοποιήθηκε το πρό-
βλημα της ημιάπειρης λωρίδας από τη θεωρία ελαστικότητας για την εξέταση την επιρ-
ροής της μη γραμμικότητας τάσεων κοντά στην περιοχή επαφής σώματος - βάσης. Τα
αποτελέσματα για την ημιάπειρη λωρίδα ενσωματώθηκαν σε ένα στοιχείο δοκού - υπο-
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Σχήμα 16:Λόγος του τροποποιημένου συντελεστή απώλειας κινητικής ενέργειας προς τον
αντίστοιχο θεωρητικό συντελεστή του Housner για (a) ένα άκαμπτο σώμα με μεταβλητό
λόγο απόσβεσης, ζ , και (b) για ένα σώμα με σχεδόν άπειρο λόγο απόσβεσης με μεταβλητή
αρχική παραμόρφωση, ϵ0. Ο λόγος λυγηρότητας που έχει θεωρηθεί είναι α = 0.2.

στυλώματος βασισμένο στις δυνάμεις για να ληφθούν υπόψη οι πρόσθετες μετακινήσεις
που οφείλονται στη μη γραμμικότητα τάσεων κατά μήκος της διεπιφάνειας λικνισμού.
Η πολύ καλή ακρίβεια του ελαστικού μακροστοιχείου αποδείχτηκε μέσω σύγκρισης των
παραγόμενων αποτελεσμάτων για χαρακτηριστικές περιπτώσεις λικνιζόμενων μελών με
αντίστοιχα αποτελέσματα προσομοιωμάτων στο πρόγραμμα Abaqus. Ακόμα, φάνηκε ότι
για μέλη υπό υψηλή αξονική δύναμη, η παραμορφωσιμότητά τους επηρεάζει σημαντικά
την απόκρισή τους, ενώ κάποια πρώτα αποτελέσματα έδειξαν τη θετική επιρροή που μπο-
ρεί να έχει η ενσωμάτωση λικνιζόμενων μελών σε πλαίσια όσον αφορά στη σεισμική τους
συμπεριφορά.

Για να ληφθεί υπόψη η ανελαστικότητα, η περίπτωση της μονοτονικής φόρτισης μπο-
ρεί να αντιμετωπιστεί μέσω επέκτασης των εκφράσεων για τις πρόσθετες μετακινήσεις
λόγω των αυτοϊσορροπούμενων τάσεων, ώστε να ανταποκρίνονται σε κατανομές τάσεων
έπειτα από διαρροή. Η ίδια διαδικασία, όμως, δεν μπορεί να εφαρμοστεί στην περίπτωση
ανακυκλιζόμενης φόρτισης, λόγω των πολύπλοκων κατανομών τάσεων και πλαστικών
μετακινήσεων που δημιουργούνται κατά την αντιστροφή της φόρτισης. Για να επιλυθεί
το συγκεκριμένο πρόβλημα, θα πρέπει αρχικά να προσδιοριστεί η μη γραμμική κατανομή
μετακινήσεων στο λικνιζόμενο άκρο για τυχούσα κατανομή τάσεων στο άκρο αυτό, το
οποίο επιτυγχάνεται μέσω ολοκλήρωσης των προτεινόμενων αναλυτικών εκφράσεων που
αναφέρονται στη δράση ενός συγκεντρωμένου φορτίου σε τυχούσα θέση στο άκρο της
ημιάπειρης λωρίδας. Μέσω των εκφράσεων αυτών δείχτηκε ότι ακόμα και για ένα ελα-
στικό σώμα, τόσο η κατανομή τάσεων στην περιοχή επαφής, όσο η κατανομή μετακινή-
σεων στην περιοχή που δεν βρίσκεται σε επαφή με τη βάση έδρασης, είναι μη γραμμικές.

Οι προηγούμενες αναλυτικές εκφράσεις ενσωματώθηκαν σε έναν αλγόριθμο για την
περιγραφή της συμπεριφοράς ανελαστικών λικνιζόμενων σωμάτων σε ανακυκλιζόμενη
φόρτιση, ο οποίος βασίζεται στον προσδιορισμό κατάλληλης κατανομής τάσεων στη διε-
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Σχήμα 17: Στροφή και γωνιακή ταχύτητα παραμορφώσιμου λικνιζόμενου σώματος με
α = 0.2, ϵ0 = 5 · 10−6 και ζ = 5% σε ελεύθερες ταλαντώσεις με θ0/α = 0.5, όπως
προβλέπονται από το μακροστοιχείο (μπλε καμπύλες), την αναλυτική λύση του άκαμ-
πτου σώματος με τροποποιημένο συντελεστή απώλειας ενέργειας (πορτοκαλί καμπύλες)
και την αναλυτική λύση του άκαμπτου σώματος με τον θεωρητικό συντελεστή απώλειας
ενέργειας (πράσινες καμπύλες).

πιφάνεια λικνισμού, έτσι ώστε οι παραγόμενες μετακινήσεις, μαζί με τυχόν προϋπάρχου-
σες πλαστικές μετακινήσεις, να ταιριάζουν με τις στοχευόμενες μετακινήσεις στο λικνιζό-
μενο άκρο. Σχολιάστηκε ακόμα η μορφή των παραγόμενων κατανομών τάσεων και πλα-
στικών μετακινήσεων, ενώ τα αποτελέσματα που παράγονται για διατάξεις λικνιζόμενων
τοιχωμάτων που παρουσιάζονται στη βιβλιογραφία συγκρίθηκαν με τα αντίστοιχα πειρα-
ματικά, δείχοντας ότι παρά την απλότητα του νόμου υλικού που θεωρήθηκε, τα βασικά χα-
ρακτηριστικά της ανακυκλικής συμπεριφοράς μπορούν να προβλεφθούν. Επιπλέον, συ-
γκρίνοντας τα παραπάνω αποτελέσματα με αυτά αντίστοιχων προσομοιωμάτων, όπου τα
λικνιζόμενα μέλη θεωρήθηκαν άκαμπτα ή ελαστικά, αποδείχτηκε ότι τόσο η παραμορφω-
σιμότητα όσο και η ανελαστικότητα θα πρέπει να λαμβάνονται υπόψη καταλλήλως για
μία ακριβέστερη πρόβλεψη της λικνιστικής συμπεριφοράς τέτοιων σωμάτων.

Η προηγούμενη μόρφωση επεκτάθηκε, τέλος, έτσι ώστε να εξεταστεί η δυναμική συ-
μπεριφορά, μέσω της ενσωμάτωσης κατάλληλης διατύπωσης για την απόσβεση και για
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άλλες μορφές κίνησης, δηλαδή την πλήρη αποκόλληση και την ολίσθηση, οι οποίες συ-
νυπάρχουν συνήθως μαζί με το λικνισμό. Όσον αφορά στην απόσβεση, χρησιμοποιήθηκε
μία διατύπωση παρόμοια με αυτήν της απόσβεσης ανάλογης με την τρέχουσα δυσκαμψία,
ενώ λήφθηκε μέριμνα έτσι ώστε το άθροισμα των τάσεων που προκαλούν παραμόρφωση
και των τάσεων απόσβεσης κατά μήκος της διεπιφάνειας λικνισμού να είναι πάντα μη-
εφελκυστικό. Αυτός ο περιορισμός ορίζει τη μέγιστη τάση παραμόρφωσης που μπορεί να
αναπτυχθεί σε κάθε βήμα. Για να ληφθεί υπόψη η ολίσθηση και η πλήρης αποκόλληση,
η οποία θεωρείται ως ειδική περίπτωση της ολίσθησης για μηδενική αξονική δύναμη, ει-
σάγεται μία νέα μεταβλητή που εκφράζει τη μετατόπιση λόγω ολίσθησης και ένα νέο σύ-
στημα συντεταγμένων, ενώ η ολίσθηση προσδιορίζεται έτσι ώστε να ικανοποιείται σε κάθε
βήμα ένα κριτήριο τριβής Coulomb.

Το προτεινόμενο μακροστοιχείο μπορεί να ενσωματωθεί σε κάθε περιβάλλον πεπε-
ρασμένων στοιχείων, εκτελώντας πολύ γρηγορότερες αναλύσεις σε σχέση με συμβατικά
προγράμματα πεπερασμένων στοιχείων, ενώ παρέχει πολύ καλή ακρίβεια. Αρχικά διατυ-
πώθηκε για τη διερεύνηση της συμπεριφοράς λικνιζόμενων μελών που χρησιμοποιούνται
σε διατάξεις σεισμικά ανατάξιμων κατασκευών που παρουσιάζονται στη βιβλιογραφία, τα
οποία μπορεί να αναπτύξουν μεγάλες αξονικές δυνάμεις κατά την κίνησή τους και επο-
μένως η παραμορφωσιμότητα και ανελαστικότητά τους θα πρέπει να ληφθούν υπόψη για
μία ακριβέστερη πρόβλεψη της συμπεριφοράς τους. Πιστεύεται ότι το προτεινόμενο μα-
κροστοιχείο θα προσφέρει περισσότερη αυτοπεποίθηση στους μηχανικούς όσον αφορά
στην υπολογιστική ανάλυση κατασκευών με λικνιζόμενα μέλη, τα οποία θεωρούνται ως
μία πολλά υποσχόμενη λύση για τη βελτίωση της σεισμικής συμπεριφοράς νέων ή ενισχυ-
μένων κατασκευών, συμβάλλοντας στην τεκμηρίωση των κανονισμών για τον σχεδιασμό
τους και προωθώντας την επιστημονική εξέλιξη στον σημαντικό αυτό τομέα.

Το προτεινόμενο μακροστοιχείο, όμως, παρέχει σημαντικά αποτελέσματα και όσον
αφορά στη δυναμική απόκριση ελεύθερα ιστάμενων σωμάτων, ιδιαίτερα όσον αφορά στην
αλληλεπίδραση μεταξύ λικνισμού, ολίσθησης, πλήρους αποκόλλησης, παραμορφωσιμό-
τητας, ανελαστικότητας και απόσβεσης κατά τις κρούσεις. Για το λόγο αυτό, θεωρείται ότι
θα συμβάλλει στην εξέλιξη της διερεύνησης της συμπεριφοράς μεμονωμένων λικνιζόμε-
νων σωμάτων, καθώς οι υπάρχουσες θεωρητικές λύσεις άκαμπτων σωμάτων δεν μπορούν
να λάβουν υπόψη τους τις παραπάνω αλληλεπιδράσεις και των αποτελεσμάτων τους κατά
τις κρούσεις.

Κάποια σημεία που χρήζουν περαιτέρω διερεύνησης είναι:

• Αναλυτικότερη διερεύνηση της αλληλεπίδρασης μεταξύ του λικνισμού, της ολίσθη-
σης, της πλήρους αποκόλλησης, της παραμορφωσιμότητας, της ανελαστικότητας
και της απόσβεσης κατά τις κρούσεις.

• Καθορισμός του συντελεστή απώλειας ενέργειας για παραμορφώσιμα λικνιζόμενα
μέλη με ένα εύρος τιμών ιδιοτήτων και διερεύνηση της ικανότητάς του να περιγρά-
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φει την απώλεια ενέργειας κατά την κίνησή τους για τυχούσες δυναμικές φορτίσεις.

• Διερεύνηση της βελτίωσης της σεισμικής συμπεριφοράς τωνκατασκευώνμέσωχρή-
σης λικνιζόμενων μελών αντί για συμβατικά μέλη και εξέταση βέλτιστων διατάξεων
για τα μέλη αυτά.

• Επέκταση του μακροστοιχείου σε τρισδιάστατα σώματα.

• Επέκταση του μακροστοιχείου για να λαμβάνει υπόψη μεγάλες στροφές, έτσι ώστε
η συμπεριφορά χθαμαλών λικνιζόμενων σωμάτων να μπορεί να προσδιοριστεί ακρι-
βέστερα.

• Επέκταση του μακροστοιχείου, ώστε να λαμβάνει υπόψη τυχόν χαλαρό οπλισμό ή
άλλες μερικές συνδέσεις στη διεπιφάνεια σώματος - βάσης, οι οποίες προτείνονται
σε κάποιες διατάξεις λικνιζόμενων μελών που παρουσιάζονται στη βιβλιογραφία
και επηρεάζουν τη λικνιστική κίνηση, ιδιαίτερα κατά τις ανακυκλίσεις.
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1
Introduction

The complex mechanics of the motion of rocking bodies and structural members have at-
tracted attention from the scientific community in recent years, although the phenomenon
is known from ancient times, as many ancient monuments were built with members al-
lowed to rock.

The rocking motion occurs when a member is unrestrained or partially restrained at
its base, so that tensile stresses cannot be transmitted, as considered in classical structural
mechanics. Given that the imposed forces are large enough, the rocking body detaches
from the ground and rotates about one of its corners. The vertical force acts as the restoring
force that tends to bring the body back to its original equilibrium position.

1.1 Analytic formulations
The simplest structure exhibiting rocking motion is the solitary rigid rocking block de-
picted in Fig. 1.1. Observations regarding the state of such bodies after a seismic event
were used by seismologists over a century ago to deduce earthquake characteristics (Milne
and Omori, 1893; Kirkpatrick, 1927, among others). However, a more in-depth exami-
nation of the dynamic response of rocking bodies began with the seminal work by Housner
(1963), who concluded that rocking bodies are more stable that they seem, especially as
size increases.

The equation of motion of the rectangular rigid rocking block is:

θ̈

p2
= − sin [α sgn(θ)− θ]−

üg

g
cos [α sgn(θ)− θ] (1.1)

where θ is the rotation of the block, α is the angle expressing the slenderness of the block
(tanα = b/h, Fig. 1.1), üg is the ground acceleration and p is a frequency parameter
defined for the rectangular rocking block as:

p =
√

3g/4R (1.2)
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Figure 1.1: Solitary rigid rocking block.

where R is the semi-length of the diagonal of the block (Fig. 1.1).
Assuming that bouncing and sliding do not occur, the transition between the rotational

motions around the two corners involves only an impact which is assumed to be perfectly
inelastic and produces energy loss. Housner assumed that during the impact, the angular
momentum about the next rotating point is conserved, so he concluded that the ratio of
the kinetic energies, or equivalently, the square of the ratio of the rotational velocities after
and before the impact for a rectangular rigid rocking block is

r =

(
θ̇2

θ̇1

)2

=

(
1− 3

2
sin2 α

)2

(1.3)

where r is called the apparent coefficient of restitution. The notion of the coefficient of
restitution introduced by Housner is still used today. However, experimental results show
that this coefficient of restitution is usually larger than the theoretical value predicted by
Eq. (1.3).

The dynamic response of the rigid rocking block has been of interest for many re-
searchers after the seminal work by Housner. The dynamic response to typical harmonic or
pulse excitations, resembling near-field earthquake excitations, has been extensively stud-
ied by Spanos and Koh (1984), Tso and Wong (1989), Anooshehpoor et al. (1999), Zhang
and Makris (2001), Dimitrakopoulos and DeJong (2012) and Voyagaki et al. (2013),
among others, while other researchers, such as Yim et al. (1980), Makris and Konstantini-
dis (2003), Dimitrakopoulos and Paraskeva (2015), Bachmann et al. (2018), Giouvanidis
and Dimitrakopoulos (2018) have examined the rocking response to earthquake records.
In contrast to conventional structures, the response of the rocking block is highly nonlin-
ear and, as a result, small changes in the rocking body or the excitation characteristics may
produce large changes in the rocking response. It is interesting to note that if a rocking

2



1.1. Analytic formulations

body overturns by a ground motion of particular intensity, that does not necessarily mean
that the same body will overturn by a scaled ground motion of higher intensity.

As mentioned above, the solution of the equation of motion of the rocking block re-
quires that each time an impact is detected, the numerical integration scheme is stopped
and a reduction in the rotational velocity is performed, based on the coefficient of restitu-
tion. Of particular interest is the work by Prieto et al. (2004), Prieto and Lourenço (2005)
and Peña et al. (2007), where this velocity reduction is performed by introducing a math-
ematically equivalent, highly nonlinear impact force in the equation of motion, which can
be solved in a uniform manner throughout the whole time history.

Despite the importance of the simple rocking model introduced by Housner, its short-
comings regarding its ability to predict the response of structures deviating from the as-
sumptions of the planar rigid block with fixed rotation points on a rigid base, became
soon evident, so more refined models which took into account aspects not included in the
original rocking model emerged. Of high interest are the works by Ishiyama (1982) and
Shenton and Jones (1991), where other rigid body motions are taken into account, such
as sliding, which may or may not be combined with rocking, and translational/rotational
free-flight.

Another aspect of Housner’s model that has gained much attention is the coefficient
of restitution. Several experiments of almost rigid rocking blocks have been performed
(e.g. Lipscombe and Pellegrino, 1993; Peña et al., 2007; ElGawady et al., 2011; Čeh
et al., 2018; Klaboe et al., 2018, among others), showing that the real apparent coefficient
of restitution is not in agreement with Housner’s prediction, which usually overestimates
the energy loss. Housner’s coefficient of restitution is only dependent on the geometric
characteristics of the rocking block, but in reality it is also dependent on material proper-
ties, since bodies are not absolutely rigid. Furthermore, motions other than pure rocking
are exhibited, such as bouncing, indicating that Housner’s assumption of perfectly plastic
impact is not in agreement with the experiments. A modified coefficient of restitution
has been proposed by Kalliontzis et al. (2016) and Kalliontzis and Sritharan (2018) and
probabilistic analyses have been performed by Chatzis et al. (2017), considering that the
reaction during impact does not act on the corner of the body but on the interior of the
rocking base, implicitly taking into account the deformability of the rocking body during
impact.

Moreover, other impact formulations have been used instead of some form of Hous-
ner’s coefficient of restitution. One such formulation by Giouvanidis and Dimitrakopoulos
(2017a) uses Newton’s contact law, which is widely used in nonsmooth dynamics, refer-
ring to the ratio of the contact point velocity before and after impact. Other formulations
found in literature include those by Yilmaz et al. (2009) and Zhao et al. (2019), where
alternative forms of the coefficient of restitution are employed.

Most of the aforementioned works refer to rigid bodies rocking on rigid surfaces. The

3



1. Introduction

rigidity of both the body and the surface means that impacts are instantaneous and gener-
ally take place on the corner of the rigid body. In reality though, since rocking bodies are
not infinitely rigid, impacts in nature are not absolutely instantaneous and contact between
the body are the rocking surface takes place in a wider region than just a corner of the body
and, as a consequence, energy losses do not happen instantly but more gradually. That is
the reason why many researchers have tried to examine more refined models, which take
into account some form of deformability.

One such attempt was to replace the rigid base with an elastic foundation. Psycharis
and Jennings (1983) studied the dynamics of slender rigid blocks sitting on elastic fouda-
tions in two forms, namely a continuous layer of compression-only springs and dashpots
(Winkler foundation) and a simpler, but equivalent model with compression-only springs
and dashpots at two locations under the rigid rocking block (Fig. 1.2). In a following
paper (Psycharis and Jennings, 1985), the upthrow of the rocking body is also examined.
The problem of the viscoelastic foundation has been studied by many researchers from
then on, including Palmeri and Makris (2008b), Palmeri and Makris (2008a) and Chatzis
and Smyth (2011), among others.

Figure 1.2: Deformable foundation models (Psycharis and Jennings, 1983).

From early on, it was understood that not only deformability at the foundation, but
also deformability along the height of the rocking body should be taken into account for a
more accurate prediction of flexible rocking bodies, leading to refined models, which take
into account the interaction between the deformations of the structure and its rocking
motion. Several researchers have studied the dynamic response of single- or multi- degree
of freedom systems rocking on rigid or elastic foundations, including Psycharis (1983),
Chopra and Yim (1985), Ichinose (1986), Psycharis (1991), Oliveto et al. (2003), Acikgoz
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and DeJong (2012), Vassiliou et al. (2015) and Acikgoz and DeJong (2016), among others.
Several other models involving rigid rocking bodies have been presented in literature.

Psycharis (1990) examined the rocking response of two-block assemblies, whose response
involves several rocking modes. Ther and Kollár (2018) introduced a computational model
for the prediction of the dynamic response of multi-block assemblies. Another structural
system involving rocking members is the rocking frame, which involves several parallel
rigid rocking columns capped with a rigid beam. This model has been examined by Makris
and Vassiliou (2013) and Dimitrakopoulos and Giouvanidis (2015). Its two-storey coun-
terpart has been studied by Allen et al. (1986), while a structural system with a deformable
cantilever representing conventional storeys on top of a rocking first floor has been exam-
ined by Bachmann et al. (2017).

Tendons can also be used in rocking members to increase their stability. Although
tendons impose large axial forces on rocking members, meaning that the deformability
plays a major role in their response, rigid body simplifications have been presented in
literature, referring to solitary rocking bodies (Vassiliou and Makris, 2015) or the rocking
frame (Makris and Vassiliou, 2014; Dimitrakopoulos and Giouvanidis, 2015; Giouvanidis
and Dimitrakopoulos, 2017b), which can model bridges with rocking piers.

Some other models which have been examined include a masonry arch comprised
of four rocking parts (Oppenheim, 1992), rocking bodies on a seismically isolated base
(Vassiliou and Makris, 2012) and a rocking body with extended base, on which it is able
to roll on (Bachmann et al., 2019). The equivalence of the equations of motion of several
of the models mentioned in the previous paragraphs with the solitary rocking block is
presented in DeJong and Dimitrakopoulos (2014).

All of the aforementioned models involve bodies whose rocking motion is planar. Un-
less the seismic excitation is uniaxial and the body is absolutely symmetric with respect to
this axis, or the width of the body in the perpendicular direction is substantially larger
than the examined one, the three-dimensional motion needs to be taken into account for
a more accurate prediction of the spatial rocking motion, which involves another motion
mode called wobbling, referring to the rotation of the body about the vertical axis. Gen-
erally, neglecting this motion mode by examining only the planar rocking motion gives
unconservative results. The interaction between rocking and wobbling of cylindrical bod-
ies is examined in Stefanou et al. (2011) and Vassiliou et al. (2017), while Vassiliou (2018)
study the response of a group of cylindrical bodies capped with a rigid slab. Regarding
prismatic bodies, Chatzis and Smyth (2012) examine the rocking response of such bodies
on elastic foundation, while in Chatzis and Smyth (2013), the motion of prismatic bodies
on wheels is studied.
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1. Introduction

1.2 Structural members exhibiting rocking motion
Although structural members exhibiting rocking motion were extensively used in ancient
temples, many of which have withstood many earthquakes, showing the seismic resilience
of those structures, not many contemporary structures have been designed to rock. Up to
date, rocking members have been applied in case of bridge piers (e.g. the South Rangitikei
Railway Bridge, Skinner et al., 1980) and chimneys (e.g. at Air New Zealand Engineering
Base at Christchurch, Sharpe and Skinner, 1983), while many Russian structures have
been constructed in the last decades with a ground floor consisting of rocking columns
(Poliakov, 1974).

Figure 1.3: The South Rangitikei Railway Bridge.

Although the number of real structures designed to rock during a seismic event is not
large, a significant amount of analytical and experimental work has been performed in
the last three decades regarding structural members exhibiting rocking motion. In fact,
the application of the concept of rocking is particularly suited to precast structures, which
have been gaining attention over the last years. A state-of-the-art analysis of rocking
applications to precast structures can be found in Kurama et al. (2018).

Instead of conventional connections used in precast strucures (called “emulative” con-
nections), which are designed to mimic the response and performance of equivalent cast-
in-place monolithic concrete joints, another type of connections called “jointed” connec-
tions have emerged, which utilize the separation of the structural members at beam-
column or panel-foundation interfaces. In this case, instead of the formation of plastic
hinges at member ends, the connections are designed to allow controlled rocking through
the inherent discontinuity between members, thus reducing member damage. In prac-
tice, apart from this inherent discontinuity between structural members, these connec-
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1.2. Structural members exhibiting rocking motion

tions also include unbonded post-tensioned tendons to provide a restoring force. How-
ever, since this configuration alone leads to a nearly nonlinear-elastic behaviour under
reversed-cyclic loading, meaning limited hysteretic energy dissipation and possibly large
displacements, additional supplemental energy dissipation components, such as mild steel
or friction/sliding devices are used.

Jointed connections utilizing controlled rocking have been tested in moment-resisting
frames, usually consisting of multi-storey columns and single-bay beams. Post-tensioned
tendons are used to establish the connection between the columns and the beams, although
as previously mentioned, mild steel rebars may accompany the tendons (“hybrid” frames),
in order to provide energy dissipation during the opening and closing of the connections,
apart from their contribution to the moment resistance. Several experimental projects
have been performed on such frames (Cheok and Lew, 1993, Stone et al., 1995), but the
most known one is the USA-Japan cooperative research program on PREcase Seismic
Structural Systems (PRESSS), whose goal was to develop design recommendations which
would allow confident use of such systems in practice and develop new materials, concepts
and technologies for precast construction, suitable for seismic application (Priestley, 1991).
The program included the test of a five-storey building, shown in Fig. 1.4, which included
four different ductile structural frame configurations.

Jointed connections have also been tested in structural walls. Many researchers have
examined the response and design of solitary (uncoupled) precast walls featuring gap open-
ing across horizontal connections using only unbonded post-tensioned steel, such as Ku-
rama et al. (2002), Perez et al. (2007) and Erkmen and Schultz (2009), among others.
As mentioned earlier, the unbonded post-tensioned tendons offer low energy dissipation,
so configurations with supplemental energy dissipation components in uncoupled rock-
ing walls have also been examined by Kurama (2000), Ajrab et al. (2004) and Restrepo
and Rahman (2007), among others. Hybrid wall systems that contain mild steel across
the horizontal joints apart from post-tensioned tendons have also been presented in the
works by Holden et al. (2003), Smith et al. (2011) and Smith et al. (2013), among others.

On the other hand, coupled rocking walls are equipped with ductile vertical joint con-
nections which yield or slip during wall rocking, leading to energy dissipation, while al-
lowing for easy replacement after the seismic event. Such systems have been investigated
by Aaleti and Sritharan (2009), Sritharan et al. (2015) and Twigden et al. (2017), among
others. For the PRESSS research program mentioned above, the jointed wall system
shown in Fig. 1.4 was also part of the study (Sritharan et al., 2007).

The jointed connection configuration has been also investigated in the case of bridge
piers, where special details have been examined to minimize the damage at the column-
to-foundation and column-to-cap-beam joints (e.g. Mander and Cheng, 1997; Restrepo
et al., 2011; Guerrini et al., 2014, among others). Furthermore, segmental column con-
figurations have been investigated, where all joints can develop rocking (e.g. Hewes and
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1. Introduction

Figure 1.4: The PRESSS test building (Priestley et al., 1999)

Priestley, 2002; Kim et al., 2010; Motaref et al., 2013, among others).
Apart from the previous structural configurations, rocking is also expected for ma-

sonry shear walls, which are expected to detach from their base and rock during a strong
seismic event. Several studies have been published presenting experimental results and
design methodologies for such configurations, which consider the rocking motion and
the deformability of these members (Magenes and Calvi, 1997; Madan et al., 2008;
Lagomarsino, 2015; Kalliontzis and Schultz, 2017, among others). Furthermore, steel
moment-resisting frames with rocking beam-to-column connections or rocking horizon-
tal joints have also been examined, which are similar to the concrete systems described
above (e.g. Christopoulos et al., 2002; Kim and Christopoulos, 2008; Lin et al., 2013;
Wiebe et al., 2013, among others). A state-of-the-art review which also includes steel
rocking systems can be found in Chancellor et al. (2014).

Guidelines addressing this alternative seismic design have been published by several
organizations (ACI 2003, ACI 2014, fib 2003, New Zealand Standards 2006), while in
Eurocode 8 (EN 1998-1:2004), rocking is anticipated for large lightly reinforced walls
during strong earthquakes.

Conventional structural elements are usually designed to gradually yield and develop
damage during an earthquake, as performance-based design suggests. However, this ap-
proach means that after a strong earthquake, the building has to be repaired, with signifi-
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1.3. Existing finite element modelling techniques for modelling the rocking response

cant cost. What is more, if the earthquake is strong enough, large residual displacements
may develop, making the repairing process harder and more costly.

In contrast, the solutions involving rocking members presented above overcome some
of these problems. First of all, instead of the formation of plastic regions near element
ends, which have to be repaired after an earthquake, rocking members simply rock if the
imposed forces are large enough, meaning that this discontinuity between the structural
members is inherent in the structural system, which is designed to have such a response.
This way, rocking elements act as mechanical isolators, similarly to yielding elements,
as the forces acting on the structure cannot exceed the maximum values allowed by the
rocking mechanism. Similarly to yielding, rocking also modifies the natural periods of the
system, making the structure less prone to resonance.

Furthermore, rocking elements present very small residual displacements in contrast to
conventional structural members, exhibiting a “flag-shaped” hysteretic behaviour. That is
why they are also known in literature as self-centering systems. As a result, after an earth-
quake the structure exhibits little damage and almost no residual drifts, meaning that few
repairs have to be made after the seismic event to make the structure safe to be used again,
saving money and time. Also, in the case of aftershocks, these self-centering systems are
able to withstand sequential ground motions better than conventional systems, which may
need to be repaired to function properly. So, rocking elements are proposed as an inno-
vative way to improve the seismic resilience of structures. This approach may be further
developed to be used as a quick and relatively inexpensive way of strengthening of existing
buildings, as these rocking members can be prefabricated and installed in buildings when
needed.

1.3 Existing finite element modelling techniques for
modelling the rocking response

As described in the previous sections, various analytic solutions exist regarding the motion
of the rocking block, as well as approximate methodologies for the design of rocking sys-
tems. Most of the former assume that the body or at least its base is rigid. This assumption
is, however, far from reality for rocking bodies included in usual structural configurations.
Regarding the latter, several assumptions regarding the stress distributions and member
deformations near their end and the interaction between rocking and deformability are
usually made, which may not be sufficiently documented. Apart from that, in many cases,
the experimental or numerical results of specific examined configurations are used to cal-
ibrate the aforementioned elements of the proposed methodologies, making difficult the
generalization of their application.

In addition, most of these methodologies have not been implemented in finite element
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1. Introduction

formulations, thus few computational models have been proposed, which can be incor-
porated in a general finite element framework, in order predict the response of structural
configurations which include rocking members. From the above, it is evident that there is
a necessity to develop a model able to describe the response of deformable rocking bod-
ies and restrained rocking systems, which can be implemented in a general finite element
framework. This will enable a more accurate prediction of the response of structures with
rocking members in seismic scenarios, allowing for their more confident design, which
will also lead to their more widespread use.

General approaches for the numerical evaluation of the response of rocking structures
include two-dimensional (2D) or three-dimensional (3D) finite element models, where
contact between elements is taken into account using constraints implementing special
constitutive relations or by using explicit joint elements, and discrete element models (e.g.
the discrete element method - DEM or the rigid bodies spring model - RBSM), where
the structure is idealized as an assemblage of discrete blocks, interacting with each other
in some way (e.g. Zienkiewicz and Taylor, 2005).

However, these approaches are considered computationally inefficient for large-scale
practical structural analyses and simplified approaches in the context of one-dimensional
(1D) finite elements are preferable. Belleri et al. (2013) present and compare such ap-
proaches, which have been used by several researchers.

One approach is to use a compression-only fiber section at the end of the rocking
member. However, this approach fails to capture accurately the gradual transition from
a nonlinear compression-only stress distribution at the rocking interface to a linear one
further from the rocking surface and, as a result, the produced results are highly dependent
on the distance between these sections.

Another approach uses a layer of compression only springs between the rigid rocking
body and the rocking surface to account for the deformability near the rocking interface.
The main drawback of this approach is that the value used for the spring striffness is not
clear and is usually determined from the equivalence of the axial stiffness between the
original deformable rocking member and the spring layer model, which however fails to
predict correctly the whole rocking motion. In practical applications, the stiffness of the
springs may also be determined so that the results of experimental tests performed are
matched.

Such an approach is used extensively in works involving the response of rocking ma-
sonry walls. In Penna et al. (2014), a simplified macro-element with a total of eight degrees
of freedom is used. Six of them belong to zero-length interfaces above and below the main
element, while the remaining two belong to the central, assumed rigid, panel. The axial
and rotational deformations, influenced by the rocking motion, that is the separation of
the panel from the other members, are concentrated on the two zero-length interfaces,
while the panel maintains only the ability of shear deformations. The formulation of these
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1.3. Existing finite element modelling techniques for modelling the rocking response

extra zero-length elements is based on the activation of only the compressive portion of
the end sections of the member, optionally also taking into account the yielding of the
material. A similar approach is used by Vassiliou et al. (2016), proposing a zero-length
compression-only fiber section element for the rocking interface.

Another simple model commonly used contains a rotational spring between the base of
the rocking member and the rocking surface, which describes the static moment-rotation
law of the rocking member. The calculation of this relationship is straightfoward for soli-
tary rigid rocking members and presents negative stiffness after rocking inititates. How-
ever, the use of such a relationship for restrained rocking members is deemed problematic,
since such an approach does not allow for the correct prediction of the axial motion of the
member and, as a result, the effect of the restrained imposed on the rocking motion (e.g.
through tendons) is ignored. Vassiliou et al. (2014) use such an approach together with
a viscous damper calibrated so that the energy loss produced for a harmonic excitation is
equal to the one expected for Housner’s impact model. Diamantopoulos and Fragiadakis
(2019) also use various implementations of rotational springs to solve structural configu-
rations including rocking members, where impacts are detected and treated explicitly.

Some other approaches have also appeared in literature. Roh and Reinhorn (2009a),
Roh and Reinhorn (2009b), and Roh and Reinhorn (2010), after recognizing the im-
portance of the nonlinear stress zone near the contact surfaces, use a linearization of this
zone in order to represent the modified force and stiffness distributions along the ele-
ment in a simplified manner, arriving at a stiffness matrix formulation for the nonlinear
behavior of rocking columns. Furthermore, they continue their research by examining
the moment-curvature diagrams of rocking elements taking more effects into account,
such as local crushing near the ends of the rocking surface and the stabilization of the
moment-curvature curve for cyclic dynamic analyses after damage occurs. Barthes (2012)
presents a zero-length two-node rocking element used to represent the behaviour of the
rigid rocking interface between structural elements, which is governed by kinematic con-
straints imposed using the Augmented Lagrangian Method.

What is important to note here is that most of the aforementioned approaches use
classical damping (mass-proportional and/or tangent-stiffness-proportional) to model the
damping of the elements. However, as presented previously, rocking elements also exhibit
loss of energy during the impacts, which is concentrated in a limited amount of time.
Such form of energy loss may be of less importance when constrained rocking elements
are considered, in contrast to solitary rocking elements, however its contribution to energy
damping has not been investigated thoroughly.
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1.4 General concepts and work significance
The main drawbacks of the aforementioned approaches are that the interface between the
rocking body and its base is assumed to be rigid, the deformability of the rocking body
near the contact area is only approximately taken into account or that the axial motion of
the member is not considered. Such limitations are deemed problematic for the accurate
prediction of the response of restrained rocking members or members under large axial
forces, in general.

In this dissertation, a macroelement formulation for the prediction of the response of
rocking members is proposed, which is able to take into account the deformability both
along the height of the members, as well as near the contact with the base. The main char-
acteristic of rocking bodies is that, in contrast to conventional structural members, tensile
stresses cannot develop across the rocking interface, meaning that the stress distribution
across this interface is nonlinear. This stress nonlinearity means that the displacement
distribution of the fibers across the width of the element is also nonlinear. Thus, member
sections in these zones do not remain flat, so the usual approximations used in the techni-
cal theory of bending (e.g. Housner and Vreeland, 1965) cannot by used. As a result, the
more general theory of elasticity is used instead, which is considered an invaluable tool for
the accurate prediction of deformable rocking bodies.

It is noted that the consideration of the deformability near the contact area is crucial
for the accurate prediction of the rocking motion of rocking members under large axial
forces, such as tendon- or beam-restrained members, where there is an interaction between
rocking and the restraining member, or even solitary rocking bodies during impacts, where
explicit energy loss assumptions must otherwise be adopted.

The macroelement can be incorporated in a general finite element framework, such as
OpenSees (Mazzoni et al., 2006) and is used for the rocking ends of a rocking member,
where, as described earlier, nonlinear stress distributions are expected to develop (Fig.
1.5). The macroelement can be used to predict the response of solitary rocking bodies, as
well as rocking members included in structures (e.g. tendon-restrained shear walls) in a
consistent manner, without any restriction concerning the kinematic constraints.

With the help of the proposed macroelement, the examination of the response of
rocking members in structural configurations using computational models will be a much
easier task, and as a result it will promote scientific progress in this area. This is considered
important, since, although the use of rocking members is a much promising solution for
the improvement of the seismic performance of newly designed or retrofitted structures,
as explained above, further research is needed in order to gain confidence on their use.

Furthermore, it is considered to provide significant contribution towards the exami-
nation of the response of solitary rocking bodies, especially with that regards the energy
loss during impacts, since a closer examination of the member response during an impact
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Figure 1.5: Use of the macroelement for the member segments near the rocking ends,
where nonlinear stress distributions develop. Two rocking macroelements are used for the
rocking column shown, one for each rocking end. Node j of each element refers to the
corresponding rocking end.

is only possible when the member is considered deformable, both along its height and
across its base, and, as a result, the impact is not instantaneous.

1.5 Thesis outline
The macroelement presented in this thesis is gradually built from simpler to more complex
formulations. Each chapter builds upon the formulations and concepts of the previous
chapters, so ultimately the formulation of a macroelement for the prediction of the cyclic
or dynamic response of inelastic rocking bodies is presented.

In Chapter 2, the formulation of the macroelement for the elastic rocking body is pre-
sented, where the main concepts used throughout the thesis are introduced. In this chap-
ter, it is shown that for an accurate prediction of the response of deformable rocking bod-
ies, the nonlinear stress distribution near the rocking surface must be taken into account,
which cannot be considered by the technical theory of bending used in usual beam-column
element formulations. The nonlinear stress distributions across the rocking interface are
separated into technical theory of bending distributions according to the resultant forces
and self-equilibrating stress distributions, which do not contribute to the resultant forces

13



1. Introduction

but influence the local displacements near the rocking interface, which however are crucial
for the determination of the rocking motion.

For the examination of the influence of the self-equilibrating stresses, the model of the
semi-infinite strip is used to examine the area of the rocking body near the rocking surface.
The nonlinear stress distribution for the semi-infinite strip is calculated according to the
theory of elasticity and, more specifically, in this dissertation the numerical methodology
proposed by Gaydon and Shepherd (1964) is implemented. Analytical expressions are
thus derived for the additional displacements produced by the self-equilibrating normal
and shear stresses due to triangular normal and parabolic shear stress distributions across
the rocking interface. The aforementioned results are incorporated in a force-based beam-
column algorithm (Neuenhofer and Filippou, 1998), which uses a corotational coordinate
system, and the produced macroelement can be used in any finite element framework,
such as OpenSees.

Three characteristic rocking body configurations are examined: a rocking body un-
der constant vertical force, a tendon-restrained rocking body and a rocking wall inside a
single-bay frame. These examples are analyzed using both the proposed macroelement and
the commercial finite element program Abaqus, while comparison of the results shows the
excellent accuracy of the proposed algorithm, which furthermore yields much faster anal-
yses. In addition, parametric investigations of the aforementioned configurations using
the proposed macroelement show the effect of member deformability on their response,
while the positive effect of the inclusion of rocking members in frames on their seismic
response is also shown.

Chapter 3 describes the extension of the previous formulation to account for material
inelasticity for monotonic loading. For this reason, a trapezoidal instead of a triangular
normal stress distribution is taken into account due to material yielding. Analytical ex-
pressions for the additional displacements due to this load are presented, according to the
semi-infinite strip results, which are incorporated into the macroelement.

Chapter 4 examines thoroughly the problem of the determination of the displacements
across the semi-infinite strip under arbitrary self-equilibrating normal loads on its end.
More specifically, analytic expressions are proposed for the displacement function for a
concentrated normal load at an arbitrary position across the end of the semi-infinite strip,
which must exhibit specific properties. The singularities of this function are examined and
its relationship with the displacement function of the similar semi-infinite space problem
is recognized.

For an arbitrary normal load distribution, this load can be considered as the integral of
continuous concentrated loads and thus the aforementioned analytical expressions must
be integrated. The necessary expressions for the calculation of the displacements due to
rectangular and triangular loads are provided. The results regarding the triangular loads
are used next to calculate the nonlinear stress distribution across the rocking surface, so
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that this surface remains planar, as well as the nonlinear displacement distribution of the
non-contact region of the rocking body.

In Chapter 5, a macroelement formulation for the prediction of the response of inelastic
rocking bodies under cyclic loading is proposed. In this case, due to the development of
plastic displacements and unloading, typical stress distributions cannot be used as in the
monotonic case, but are determined from the target member end displacements using the
displacement distribution of the semi-infinite strip.

For this reason, the rocking interface is discretized into control points and a target
displacement is assigned to each one according to the member end target displacements.
For each iteration, a stress or additional plastic or “gap” displacement is assigned to each
node, according to whether an elastic, an inelastic or a non-contact response is assumed,
respectively. In order to achieve smoothness of the solution, an approximate methodology
is proposed so that the stress and displacement distributions across the intervals between
control points are determined from the control point values. The sum of the displacements
produced by the resultant forces, the self-equilibrating normal and shear stresses, the addi-
tional plastic or “gap” displacements and the preexisting plastic displacements must match
the target displacement at each control point.

The response of an inelastic rocking body under constant vertical force is examined
next, paying special attention to the stress distribution across the rocking interface and
the gradual formation of plastic displacements. Furthermore, the results produced by the
macroelement for a tendon-restrained rocking concrete wall and a calcium-silicate brick
rocking masonry wall are compared with experimental results, showing a very good agree-
ment given the experimental uncertainties. Comparison of the previous results with ones
of corresponding rigid or elastic rocking body models shows that member deformability
and material inelasticity must be appropriately taken into account for an accurate estima-
tion of the rocking member motion.

Chapter 6 extends the cyclic macroelement formulation to include the treatment of
damping and other motion modes important for the dynamic response of rocking bodies,
namely upthrow (complete detachment from the rocking surface) and sliding. Regarding
damping, a formulation similar to tangent-stiffness-proportional damping is used, taking
into account that the total stress across the rocking interface is always non-tensile and the
physical constraints of the problem are not violated. Regarding upthrow and sliding, these
motion modes are taken into account in a uniform manner by introducing an intermediate
coordinate system that uses a new internal variable representing the displacement due to
sliding, which is determined so that a Coulomb friction criterion is adhered to.

Using the proposed formulation, the effect of the damping coefficient and the modulus
of elasticity of solitary rocking bodies on the energy loss is examined, where is its shown
that the energy loss of almost rigid almost infinitely damped bodies is very close to the
one predicted by Housner (1963). In addition, the effect of various parameters, such as
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the modulus of elasticity, the damping coefficient, the yield stress and the friction angle
on the response of a deformable solitary rocking body under free oscillations, a sine-pulse
excitation and a recorded ground motion is examined.

Finally, Chapter 7 summarizes the key and novel points of this dissertation and pro-
poses suggestions for future research.
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2
Modeling of elastic rocking bodies

In this chapter, the formulation for the elastic rocking bodies is presented, which intro-
duces the basic concepts, all more complex models presented in the following chapters
build upon. It is noted that, some of the notation was changed with respect to the original
corresponding paper (Avgenakis and Psycharis, 2017) in order to be consistent with the
notation used in other chapters of this thesis.

2.1 Element coordinate systems
In order to account for the geometric nonlinearity, the macro-element formulation uses
the notion of a coordinate system without rigid body modes, which do not contribute to
the element forces, an idea which has been extensively used in corotational finite element
formulations (e.g. De Borst et al., 2012). This natural (or corotational) coordinate system
corresponds to a reference system of a simply supported beam, which has three, instead
of six, degrees of freedom (Fig. 2.1b): The axial elongation, δ, the chord rotation at the
rocking end, θ1, and the chord rotation at the other end, θ2. The forces acting on the
respective degrees of freedom, Fn, are the axial force, N , the moment at the rocking end,
M1, and the moment at the other end, M2.

Transformations between the local and the corotational coordinate system exist, which
consider large member displacements (e.g. De Borst et al., 2012). However, for moder-
ately small displacements, the following simple transformations between the local and the
corotational coordinate system can be used (e.g. Neuenhofer and Filippou, 1998):

If ue = [u1, u2, u3, u4, u5, u6]
T is the vector of the six local system displacements (Fig.

2.1a) and un = [δ, θ1, θ2]
T is the vector of the three corotational system displacements

(Fig. 2.1b), the conversion between the two vectors is given by

un = Tue (2.1)
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Figure 2.1: (a) Local member displacements and forces, required by the general finite
element framework and (b) Corotational member displacements and forces used by the
element formulation.
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where L is the original length of the member and u2, u5 are the transverse displacements
in the local coordinate system (Fig. 2.1a).

Similarly, given the vector of nodal forces in the corotational coordinate system, Fn =

[N,M1,M2]
T (Fig. 2.1b), the forces in the local coordinate system,Fe = [F1, F2, F3, F4, F5, F6]

T

(Fig. 2.1a), are given by:
Fe = T* Fn (2.3)

where

T* =
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T

(2.4)

The corresponding stiffness matrix in the local system, Ke, is given by:

Ke = Tg +T* Kn T
*T (2.5)
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where Kn is the corotational system stiffness matrix and

Tg =
N

L
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(2.6)

is an additional matrix term due to the geometric nonlinearity with N being the member
axial force.

As can be seen in Figs. 1.5 and 2.1, node i of the element has a conventional re-
sponse (fixed with the connecting element), while node j is the rocking end of the ele-
ment. The displacements of node j refer to the displacements of the corresponding node
at the rocking surface and not to the node at the end of the rocking member. The rocking
surface is assumed to remain planar throughout the whole response, meaning that these
displacements (translational and rotational) fully describe the linear displacement distri-
bution across the rocking surface.

No limitation is imposed on the displacements of node j of the element, meaning that
the rocking surface can translate and rotate during the response. For example, in case of
the rocking wall shown in Fig. 1.5, which is placed between two beams in one floor of a
building, the rocking surfaces on the beam sides are considered to remain planar within
the length of the wall, but the beams can move and rotate following the deformation of
the whole building. This allows for a greater flexibility regarding the models that can be
examined using the proposed macroelement.

It should be emphasized that, since node j of the element is attached to the rocking
surface and not the body itself, the rigid body modes assumed for the transformation
between the local and the corotational coordinate systems correspond to the element as a
whole and not just the rocking body. Furthermore, the rigid body rotation assumed for
the element, (u5 − u2)/L, should not be confused with the rotation due to rocking used
in rocking literature. For example, a deformed fixed cantilever does have a rigid body
rotation in the previous context but has no rotation due to rocking. Besides, the proposed
formulation does not treat rocking and deformability as separate phenomena and does not
introduce independent variables for each one.

For a conventional elastic member, which does not exhibit rocking motion, the re-
sponse in the simply supported beam natural coordinate system is linear. Thus, given the
natural system nodal forces of the element,Fn, the natural system displacements according
to the technical theory of bending, uttb, are simply given by:

uttb = fttb Fn (2.7)
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with fttb being the flexibility matrix of a simply supported beam, including shear defor-
mation effects (e.g. Przemieniecki, 2012):

fttb =
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(2.8)

whereE is Young’s modulus,G is the shear modulus,A is the area of the member section, I
is the moment of inertia of the member section andα is the shear shape factor withα ≈ 1.2

for rectangular cross sections (the shear deformations contribution can be neglected by
setting α = 0.0).

It should be noted, that in the aforementioned relationships, P − δ (element inter-
nal) effects are not taken into account, since they are not considered important for the
formulation of the macro-element.

2.2 Influence of rocking on the element response under
given nodal forces

If one of the supports of the member cannot allow the development of tensile stresses, the
stress distributions across the interface section differ from those of the technical theory
of bending and the response in the natural coordinate system is no longer linear after the
initiation of the rocking motion. More specifically, since node j of the element of Fig.
2.1b is assumed to be the rocking end (Fig. 1.5), this happens if the resultant axial force
at the rocking interface is located outside the kern of the section, that is if∣∣∣∣M1

N

∣∣∣∣ > B

6
(2.9)

where B is the width of the member and M1 and N are the moment and the axial force
at the rocking end, respectively.

Let us assume a member with semi-width b = B/2 with the coordinate system and
the forces at the rocking end as depicted in Fig. 2.2a, which has a contact length C

with the base. For a given natural system force vector, Fn, the forces at the rocking end,
Fr = [Nr,Mr, Qr]

T, normalized with respect to the member thickness, d, are given by

Fr = S1 Fn (2.10)

where

S1 =
1
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 (2.11)
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Figure 2.2: (a) Resultant forces at the contact side; (b) Normal and shear stress distribu-
tions considered at the rocking interface; (c) Stresses according to the technical theory of
bending; and (d) Self-equilibrating stresses.

Without loss of generality, we can assume Mr > 0, thus stresses develop at the interval
[−b,−b + C]. The following stress distributions are considered at the interface between
the rocking body and the base (Fig. 2.2b):

(a) Normal stresses [σ0] which have a triangular distribution. The maximum value is
σm at the edge Y = −b, while the stresses become zero after length C, that is at
Y = −b+ C.

(b) Shear stresses [τ0] which are assumed to have a parabolic distribution. Their value
is zero at Y = −b and Y = −b + C, while the maximum value τm occurs at
Y = −b+ C/2.

Therefore, the stress distribution parameter vector for these stress distributions, R =
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[C, σm, τm]
T, is:

R =
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(2.12)

where Nr < 0 denotes compression.
As mentioned above, the stress distributions across the rocking interface differ from

those of the technical theory of bending. However, since the element material is consid-
ered elastic, the principle of superposition holds, so the effect of these stress distributions
can be calculated by separating them into two parts:

(i) Stresses according to the technical theory of bending, which act on the whole section and
can be calculated as usual from the resultant section forces; and

(ii) Self-equilibrating stresses, which do not produce resultant forces, but influence the
local deformations of the member near the contact zone.

The contribution of the technical theory of bending stresses to the member flexibility
matrix and displacements can be calculated according to Eqs. (2.8) and (2.7).

The influence of the self-equilibrating stresses can be more easily evaluated by exam-
ining the normalized problem referring to a member with semi-width b = 1, which is
loaded in the interval [−1,−1+ c], where c = C/b is the normalized contact length. It is
noted that the stresses at a point (X,Y ) of the general problem are equal to those calcu-
lated for the normalized problem at normalized coordinates x = X/b, y = Y/b (Gaydon,
1965).

For the normalized problem, the load parameter vector r = [c, σ̃m, τ̃m]
T is given by:

r = S2R (2.13)

where

S2 =


1

b
0 0

0 1 0

0 0 ρ

 (2.14)

with ρ = sgn (Mr) denoting the signum function of Mr.
For the forces at the rocking end, Fr, the normal and shear stress distributions ac-

cording to the technical theory of bending, [σttb] and [τttb], are calculated first (Fig. 2.2c).
By subtracting these stress distributions from the ones assumed for the rocking interface,
[σ0] and [τ0], shown in Fig. 2.2b, one can derive the self-equilibrating stress distributions
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2.3. Self-equilibrating stresses contribution

that need to be considered (Fig. 2.2d). These self-equilibrating normal and shear stress
distributions, given in terms of the normalized problem, are:

σ̃se(y) =


σ̃m

[(
1− 1

c
− c

4

)
+

(
3c

4
− c2

4
− 1

c

)
y

]
for − 1 ≤ y ≤ −1 + c

σ̃m

[(
− c

4

)
+

(
3c

4
− c2

4

)
y

]
for − 1 + c ≤ y ≤ 1

(2.15)

τ̃se(y) =


τ̃m

[(
4(c− 1)

c2
− c

2

)
+

(
4(c− 2)

c2

)
y +

(
− 4

c2
+

c

2

)
y2
]

for − 1 ≤ y ≤ −1 + c

τ̃m

[
− c

2
+

c

2
y2
]

for − 1 + c ≤ y ≤ 1

(2.16)

2.3 Self-equilibrating stresses contribution

Semi-infinite strip problem
In order to examine the effect of the self-equilibrating stresses of Eqs. (2.15) and (2.16)
on the normalized simply-supported beam member of semi-width b = 1, it is useful to
notice that, since the self-equilibrating stresses do not produce resultant forces, their effect
far from the loaded area is insignificant, as the Saint-Venant assumption suggests.

For this reason, instead of solving the problem of a simply-supported beam loaded on
its one end with self-equilibrating stress distributions, the equivalent semi-infinite strip
problem, loaded on its end (x = 0,−1 ≤ y ≤ 1) with these self-equilibrating stress
distributions, is solved instead (Fig. 2.3). This is possible, because, as will be shown later,
there is a compatibility between the active degrees of freedom of the two models. It should
be noted, that, in contrast to the well-known semi-infinite space, the semi-infinite strip
is stress-free at its sides (y = ±1).

The stress distribution problem of a semi-infinite strip with semi-width b = 1 is solved
with the method developed by Gaydon and Shepherd (1964), using stress functions of
certain form. This method is then extended in order to solve the rocking body problem.

The problem considered is that of a semi-infinite strip x ≥ 0, −1 ≤ y ≤ 1 with
self-equilibrating stresses at the end, x = 0, σ0

x and τ 0xy. These self-equilibrating stress
distributions are decomposed into symmetric (σ0

x even and τ 0xy odd in y) and antisymmetric
(σ0

x odd and τ 0xy even in y) parts, since for each one, stress functions of different form need
to be assumed.

The stress distribution produced by the self-equilibrating loads of the symmetric or an-
tisymmetric problem can be derived using a stress function ϕ that satisfies the biharmonic
equation:

∇4ϕ = 0 (2.17)
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2. Modeling of elastic rocking bodies
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Figure 2.3: Normalized semi-infinite strip problem.

and the following boundary conditions:

ϕxx = ϕyy = 0, on y = ±1

ϕyy = σ0
x, ϕxy = −τ 0xy, on x = 0

(2.18)

in which ϕxx, ϕyy and ϕxy denote the second derivative of ϕ with respect to the corre-
sponding variables. Furthermore, as the stresses are self-equilibrating and expected to
vanish as x → ∞, the following condition must also hold:

ϕ → 0, as x → ∞ (2.19)

The stress functions used by Gaydon and Shepherd (1964) to solve this problem have
the form

ϕ(x, y) = 2
∑
j

Re

[
(Aj + iBj)

ekjx

k2
j

Φj(y)

]
(2.20)

where the functions Φj(y) are expanded with respect to some other functions Yi(y):

Φj(y) =


∑
i

aijYi(y) (S)∑
i

bijYi(y) (A)
(2.21)

for the symmetric (S) and the antisymmetric (A) problem, respectively.
A step-by-step presentation of the procedure proposed by Gaydon and Shepherd (1964)

for the calculation of the terms needed for the determination of the stress function, as well
as for the calculation of the stress components at any point with coordinates (x, y), is de-
scribed in the following:

1. Calculate the constants kj = −aj + ibj , with aj > 0, bj > 0, from the first nj

complex roots of equations

sin 2kj + 2kj = 0 (S)
sin 2kj − 2kj = 0 (A)

(2.22)
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2.3. Self-equilibrating stresses contribution

sorted in ascending magnitude order.
2. Calculate the constants λi and µi, from the first ni positive real roots of equations

tanλi + tanhλi = 0 (S)
tanµi − tanhµi = 0 (A)

(2.23)

sorted in ascending magnitude order. For the method to give good results, Gay-
don and Shepherd (1964) suggest that more λis and µis than kjs should be used
(e.g. nj=10, ni=20). In the present work, as computers have evolved tremendously
compared to the time the original paper was written, a far greater number of these
constants are numerically evaluated and used (nj=500, ni=1000), in order to capture
more accurately stress distributions even for small contact lengths.

3. For each kj and λi or µi calculated in steps 1 and 2, calculate the constants a′ij, b′ij
and a′′ij, b

′′
ij from:

aij
k2
j

= a′ij + ib′ij =4
√
2 (kj sin kj + λi cos kj tanhλi)

[
1

(λ2
i + k2

j )
2
− 1

(λ2
i − k2

j )
2

]
(S)

bij
k2
j

= a′′ij + ib′′ij =4
√
2 (kj cos kj + µi sin kj cothµi)

[
1

(µ2
i + k2

j )
2
− 1

(µ2
i − k2

j )
2

]
(A)

(2.24)
4. For the terms aj, bj calculated in step 1 and a′ij, b

′
ij, a

′′
ij, b

′′
ij calculated in step 3,

formulate the 2ni × 2nj matrix A, in the form:

A =


. . .

...
... . .

.

· · · Cij Dij · · ·
· · · Eij Fij · · ·

. .
. ...

...
. . .

 (2.25)

where

Cij = 2a′ij

Dij = −2b′ij

Eij = 2aja
′
ij + 2bjb

′
ij

Fij = 2bja
′
ij − 2ajb

′
ij

(S) or

Cij = 2a′′ij

Dij = −2b′′ij

Eij = 2aja
′′
ij + 2bjb

′′
ij

Fij = 2bja
′′
ij − 2ajb

′′
ij

(A) (2.26)

5. Formulate the matrix M , which is given by

M = (AT A)−1AT (2.27)

The values used until now are independent of the loading, so they can be calculated
once and for all.
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2. Modeling of elastic rocking bodies

6. For each λi or µi calculated in step 2, calculate the coefficients αi, βi regarding the
loading:

αi =
1

λ4
i

∫ 1

−1

σ0
xY

′′
i dy

βi = − 1

λ4
i

∫ 1

−1

τ 0xyY
(3)
i dy

(S) or
αi =

1

µ4
i

∫ 1

−1

σ0
xY

′′
i dy

βi = − 1

µ4
i

∫ 1

−1

τ 0xyY
(3)
i dy

(A) (2.28)

where
Yi(y) =

1√
2

(
cosλiy

cosλi

− coshλiy

coshλi

)
(S)

Yi(y) =
1√
2

(
sinµiy

sinµi

− sinhµiy

sinhµi

)
(A)

(2.29)

The terms αi, βi are arranged into a vector ℓ:

ℓ =
[
α1 β1 · · · αi βi · · · αni

βni

]T
(2.30)

7. Calculate the load-dependent vector L from the equation:

L = M ℓ (2.31)

8. For each kj calculated in step 1, calculate the parameters Pj , Qj , Rj , Sj , Uj , Vj ,
dependent on coordinate y, using the following equations:

Pj + iQj =

{
−(cos 2kj + 3) cos kjy + 2kjy sin ky (S)
−(cos 2kj − 3) sin kjy + 2kjy cos ky (A)

Rj + iSj =

{
(cos 2kj + 1) sin ky + 2kjy cos kjy (S)
−(cos 2kj − 1) cos ky − 2kjy sin kjy (A)

Uj + iVj =

{
(cos 2kj − 1) cos kjy − 2kjy sin kjy (S)
(cos 2kj + 1) sin kjy − 2kjy cos kjy (A)

(2.32)

the real and imaginary parts of which are arranged into the following vectors:

YPQ =


...

Pj

Qj

...

 YRS =


...

Rj

Sj

...

 YUV =


...

Uj

Vj

...

 (2.33)

9. For each aj and bj calculated in step 1, form the the 2nj × 2nj banded matrix X ,
dependent on coordinate x, as:

X =



. . .
. . . 0 0

. . . 2e−ajx cos bjx −2e−ajx sin bjx 0

0 −2e−ajx sin bjx −2e−ajx cos bjx
. . .

0 0
. . .

. . .

 (2.34)
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2.3. Self-equilibrating stresses contribution

10. Calculate the stresses at point (x, y) from by the following equations:

σx = LT X YPQ

τxy = LT X YRS

σy = LT X YUV

(2.35)

where L is dependent on the loading, X is dependent on coordinate x and YPQ,
YRS, YUV are dependent on coordinate y.

Application to the rocking body
Stress loading at the rocking interface In order to apply the aforementioned procedure to
the self-equilibrating stresses of Eqs. (2.15) and (2.16), the stresses have to be decomposed
into symmetric and antisymmetric parts, as mentioned above.

Then, the necessary coefficients αi and βi for the assumed stress distributions are cal-
culated from equations (2.28), which can be carried out with the help of a symbolic algebra
system, such as the Matlab symbolic math toolbox. The results for the stress distributions
of Eqs. (2.15) and (2.16) are given in Table 2.1*.

Table 2.1: Load coefficients αi, βi

Problem Auxiliary terms Load coefficients

Symmetric
problem

l1 =
cosh [λi(c− 1)]

coshλi

l2 = −sinh [λi(c− 1)]

coshλi

l3 =
cos [λi(c− 1)]

cosλi

l4 =
sin [λi(c− 1)]

cosλi

αi =
σ̃m√
2λ4

i c
(l3 − l1)

βi =
2
√
2τ̃m

λ4
i c

2
(2l3 − 2l1 + λicl4 − λicl2)

Antisymmetric
problem

l1 =
sinh [µi(c− 1)]

sinhµi

l2 = −cosh [µi(c− 1)]

sinhµi

l3 =
sin [µi(c− 1)]

sinµi

l4 = −cos [µi(c− 1)]

sinµi

αi =
σ̃m√
2µ4

i c
(l3 − l1)

βi =
2
√
2τ̃m

µ4
i c

2
(2l3 − 2l1 + µicl4 − µicl2)

Stress distributions along the member length In Fig. 2.4a, the stress distributions σx

across the member sections at variousX/B values along the member length are shown, for
*In the original paper, there is a typographical error regarding the l2 term of the symmetric problem.
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Figure 2.4: (a) Nonlinear stress distributions at various sections along the member length
for partial normal stress loading at the top side and (b) variation of the ratio of the average
absolute self-equilibrating stresses over the average total normal stress across the section
with the normalized contact length.
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2.3. Self-equilibrating stresses contribution

a normal stress distribution load with contact length c = 0.2. In order to derive the total
stress distributions, the stresses according to the technical theory of bending and those
produced by the self-equilibrating stresses (Eq. 2.35) have to be added.

It can be seen that the compression-only triangular distribution at X/B = 0 gradually
approaches the linear stress distribution of the technical theory of bending for sections
far from the loaded area. Theoretically, the stresses produced by the self-equilibrating
stress loading exist up to an infinite length. However, as can be seen from Fig. 2.4a, the
stress distribution is practically linear even for X/B = 1.0. This suggests that, for the
self-equilibrating stresses contribution, the substitution of a member with length L ≥ B

with a semi-infinite strip would not introduce significant error to the expected member
response. In contrast, if the member examined has length significantly smaller thanB, the
section at node i of the element (Fig. 2.1) does not remain flat and, thus, a beam-column
element with conventional degrees of freedom may be unsuitable.

This is better presented in Fig. 2.4b, where the average of the absolute values of the
self-equilibrating stresses σx,se across the member section, normalized with respect to the
absolute mean stress value, are shown for various X/B values along the member length,
for different normalized contact lengths, c. As can be seen, for X = B, there is about a
2% average error if a linear stress distribution is assumed instead of the real one containing
the self-equilibrating stresses contribution. This suggests again that a choice of a member
with length L ≥ B would be adequate for the problem examined herewith.

Fiber elongations due to the self-equilibrating stresses The problem considered is a
plane stress problem, therefore the strain ϵx is given by:

ϵx =
1

E
(σx − ν σy) (2.36)

and the elongation of the semi-infinite strip fiber located at coordinate y is:

u(y) =

∫ ∞

0

ϵxdx =
1

E

(∫ ∞

0

σxdx− ν

∫ ∞

0

σydx
)

(2.37)

As mentioned before, the self-equilibrating stresses are expected to virtually vanish in a
small distance from the loaded edge of the strip (Fig. 2.4), so there is no practical difference
between the elongation at coordinate y of the semi-infinite strip and that of a finite length
member, provided the length is large enough.

Forming a new 2nj × 2nj banded matrix J in the form:

J =



. . .
. . . 0 0

. . .
aj

a2j + b2j
− bj
a2j + b2j

0

0 − bj
a2j + b2j

− aj
a2j + b2j

. . .

0 0
. . .

. . .


(2.38)
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Figure 2.5: (a) Deformed shapes and (b) fiber elongation profiles for a conventional and
a rocking element.

it can be proven that the elongation of the fiber at y is given by:

u(y) =
2

E
LT J (YPQ − ν YUV) (2.39)

Nodal displacements due to the self-equilibrating stresses In Fig. 2.5a, the deformed
shape of a conventional and a rocking element are shown, while in Fig. 2.5b the corre-
sponding fiber elongation profiles are presented, which are the integrals of the deforma-
tions along the member length for each fiber across the member section.

For a conventional element, it can be seen that the fiber elongation profile is linear
across the member section. Its value in the middle of the section, t, corresponds to the
relative axial displacement between nodes i and j, while its slope, s, corresponds to the
relative rotation between nodes i and j.

For a rocking element, the influence of the self-equilibrating stresses on the fiber elon-
gation profile has to be considered. By applying Eq. (2.39) for various fibers across the
semi-infinite strip for the self-equilibrating loads given in Eqs. (2.15) and (2.16), it can
be seen that the fiber elongation profile across the element due to the self-equilibrating
stresses is nonlinear. This means that the total fiber elongation profile is also nonlinear, as
shown in Fig. 2.5b for the rocking element.
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2.3. Self-equilibrating stresses contribution

In this case however, only the fibers of the contact area of the element extend to the
rocking base, since a gap forms between the rest of the interface section and the rocking
base. Thus, the relative axial elongation and the relative rotation between nodes i and
j (node j remains fixed to the rocking base) are determined from the fiber elongation
profile of the contact area only. More specifically, the relative axial elongation corresponds
to t, which is the value of the contact area fiber elongation profile, or its extension, in the
middle of the section, while the relative rotation corresponds to s, which is the slope of
the contact area fiber elongation profile (Fig. 2.5b). It is noted that the length of the gap
at a fiber of the element that is not in contact with the rocking base is evaluated from the
difference between the corresponding values of the contact area fiber elongation profile
extension (dashed line in Fig. 2.5b) and the true fiber elongation profile (solid line in Fig.
2.5b).

As mentioned above, specific stress distributions, [σ0] and [τ0], were assumed at the
contact area (Fig. 2.2), without imposing any direct constraint regarding the fiber elonga-
tion profile. As a result, the integration of the strains along the fibers results in a contact
area that is approximately flat, but not exactly flat. However, for the real problem involv-
ing a rigid base mat, the sections at nodes i and j of the element remain flat. To overcome
this problem, the elongation profile u(y) of the semi-infinite strip fibers across the contact
region [−1,−1 + c] is interpolated by a linear function g(y) = δ0 + θ y.

Since the self-equilibrating stresses are considered to influence the displacements of
the rocking end only (node j), it is evident that the parameters δ0 and θ of the linear
approximation correspond to the normalized problem additional axial elongation and ro-
tation of node j of the element due to the self equilibrating stresses.

In order to calculate the terms δ0 and θ, the square error between the elongation, u(y),
and the linear approximation, g(y):

SE =

∫ −1+c

−1

(u(y)− g(y))2dy (2.40)

has to be minimized. Setting the derivatives of SE with respect to the two unknown
parameters δ0 and θ to zero leads to:∫ −1+c

−1

(δ0 + θy)dy =

∫ −1+c

−1

u(y)dy∫ −1+c

−1

y(δ0 + θy)dy =

∫ −1+c

−1

yu(y)dy
(2.41)
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By defining the following quantities for the symmetric problem:

T1j =
1

k2
j

((cos 2kj + 1) sin [kj(c− 1)] + 2kj(c− 1) cos [kj(c− 1)])

T2j =
1

k3
j

((cos 2kj − 1) cos [kj(c− 1)]− 2kj(c− 1) sin [kj(c− 1)])

T3j =
4

k2
j

(− sin kj − sin [kj(c− 1)])

T4j =
4

k3
j

(− cos [kj(c− 1)] + cos kj)−
4

k2
j

((c− 1) sin [kj(c− 1)]− sin kj)

(2.42)

and for the antisymmetric one:

T1j =
1

k2
j

(−(cos 2kj − 1) cos [kj(c− 1)]− 2kj(c− 1) sin [kj(c− 1)])

T2j =
1

k3
j

((cos 2kj + 1) sin [kj(c− 1)]− 2kj(c− 1) cos [kj(c− 1)])

T3j =
4

k2
j

(cos kj − cos [kj(c− 1)])

T4j =
4

k3
j

(sin [kj(c− 1)] + sin kj)−
4

k2
j

((c− 1) cos [kj(c− 1)] + cos kj)

(2.43)

which are arranged into vectors:

T1 =


...

Re(T1j)

Im(T1j)
...

 T2 =


...

Re(T2j)

Im(T2j)
...

 T3 =


...

Re(T3j)

Im(T3j)
...

 T4 =


...

Re(T4j)

Im(T4j)
...

 (2.44)

and setting:
TA = (1 + ν)T1 + νT3

TB = (1 + ν)(T2 + (c− 1)T1) + νT4

(2.45)

the fiber elongation integrals involved in the error minimization process (Eq. 2.41), ar-
ranged into vector form, are equal to

H =


∫ c−1

−1

u(y)dy∫ c−1

−1

yu(y)dy

 =


2

E
LT Is TA

2

E
LT Is TB

 (2.46)

where

Is =


1 0 0 · · ·
0 −1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

 (2.47)
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2.3. Self-equilibrating stresses contribution

is a 2nj × 2nj identity matrix, with alternating sign diagonal entries.
Then, the solution of Eq. (2.41) with respect to the displacement vector of the nor-

malized self-equilibrating stresses problem, usen = [δ0, θ]
T, can be calculated as:

usen = GH (2.48)

where

G =

4
c2 − 3c+ 3

c3
−6

c− 2

c3

−6
c− 2

c3
12

c3

 (2.49)

Polynomial approximation Although the displacement vector of the normalized prob-
lem, usen, can be evaluated analytically from Eq. (2.48), the programming of the afore-
mentioned procedure is difficult and error-prone. Furthermore, large matrix computations
are needed for an accurate prediction of the rocking response and numerical problems may
arise for extreme loading conditions (very small c values).

For this reason, a polynomial approximation of the results produced by Eq. (2.48)
is proposed for practical purposes, leading to faster and more robust analyses. Since the
response is elastic, it can be concluded that the results are linear with respect to parameters
E, σ̃m and τ̃m, but nonlinear with respect to c.

In Figs. 2.6 and 2.7, the variation of the terms δ0 ·E and θ ·E versus c, summed for the
symmetrical and the antisymmetrical self-equilibrating stresses problems, is presented for
the cases σ̃m = 1, τ̃m = 0 and σ̃m = 0, τ̃m = 1, respectively, as given by the aforementioned
algorithm.

It is seen that, a sixth-order polynomial approximation with respect to c could approx-
imate these results very well. Combining the contributions of the normal and shear stress
loadings and using the polynomial term vector Pc:

Pc =
[
c6 c5 c4 c3 c2 c 1

]T
(2.50)

the displacement vector of the normalized problem, usen is given by the simple equation:

usen =
1

E


(
σ̃m V T

σ + τ̃m V T
τ

)
Pc(

σ̃m RT
σ + τ̃m RT

τ

)
Pc

 (2.51)

in which
Vτ = Vτ0 + νVτν

Rτ = Rτ0 + νRτν

(2.52)

and the polynomial constant term Vσ and Rσ (for the normal stress contribution) and
Vτ0,Vτν ,Rτ0,Rτν (for the shear stress contribution) vectors given in Table 2.2.
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Figure 2.6: Comparison of the polynomial approximation of the displacements due to the
self-equilibrating stresses with the analytical ones for σ̃m = 1 and τ̃m = 0.

Table 2.2: Polynomial approximation constant term vectors

Variable Normal stress
contribution

Shear stress contribution
Initial (ν = 0) Poisson contribution

Axial
elongation Vσ =



−0.14037854
1.07433666

−3.27895019
5.21236946

−5.03768666
3.53446688

−1.54848601


Vτ0 =



0.14011255
−1.03832545
3.14663483

−5.10229407
5.24787354

−4.29185461
2.32362116


Vτν =



−0.25429070
1.50539731

−3.32745999
3.28199994

−1.23274655
0.41773556

−0.81923393



Rotation Rσ =



0.00789778
−0.02324461
0.01957321

−0.05687364
−0.29653127
1.58546022

−1.60460828


Rτ0 =



0.09467078
−0.56967025
1.40705038

−1.77499182
1.46712861

−2.19739528
2.38392243


Rτν =



−0.15256642
0.90318091

−2.01631572
1.95898230

−0.53950050
0.21059622

−0.81153594


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2.3. Self-equilibrating stresses contribution
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Figure 2.7: Comparison of the polynomial approximation of the displacements due to the
self-equilibrating stresses with the analytical ones for σ̃m = 0 and τ̃m = 1 (ν=0.2).

Generalized width and load direction problem Up to now, the normalized semi-infinite
strip problem was examined considering a semi-infinite strip of semi-width b = 1 loaded
in the region [−1,−1 + c] at x = 0. In order to use the results for the general case, the
relationship of the displacements between the normalized and the general problem has to
be identified.

Since the stresses at point (X,Y ) of the general problem equal those at point (x, y) of
the normalized one (Gaydon, 1965), taking into account Eq. (2.37) and suitable variable
substitutions, it can be concluded that the fiber elongation profile of the general problem,
U(Y ), is given by: U(Y ) = b · u(y). Likewise, by following a linearization procedure for
the contact area fiber elongation profile of the general problem similar to the one presented
above for the normalized case and by considering the symmetry between the opposite load
direction cases, it can be proven that the following relationships hold:

∆0 = b · δ0
Θ = ρ · θ

(2.53)

where ∆0 and Θ are the axial elongation and the rocking end rotation of the general
problem due to the self-equilibrating stresses, respectively, and ρ = sgn (Mr).
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2. Modeling of elastic rocking bodies

Furthermore, since the effect of the self-equilibrating stresses is local and only the de-
grees of freedom of the axial elongation and the rotation of the rocking end are considered
to be influenced, it is evident that there is a direct compatibility with the simply-supported
beam natural coordinate system considered for the element. Thus, the contribution of the
self-equilibrating stresses to the natural system displacements is given by:

use = S3 usen (2.54)

where

S3 =

b 0

0 ρ

0 0

 (2.55)

Self-equilibrating stresses contributionflexibilitymatrix For the formulation of the rock-
ing macro-element, the flexibility matrix of the self-equilibrating stresses contribution is
necessary. This matrix is evaluated from the following expression:

fse =
∂use
∂Fn

=
∂use
∂usen

∂usen
∂r

∂r

∂R

∂R

∂Fr

∂Fr
∂Fn

= S3 fsen S2 S4 S1 (2.56)

where

S4 =
∂R

∂Fr
=



−3
|Mr|
N2

r
3
ρ

Nr
0

4

C
− 6b

C2
−6

ρ

C2
0

9

2

|Mr|Qr
N2

r C
2

−9

2

ρQr

NrC2

3

2C


(2.57)

and fsen is the flexibility matrix of the normalized problem, which is defined as:

fsen =
∂usen
∂r

=


∂δ0
∂c

∂δ0
∂σ̃m

∂δ0
∂τ̃m

∂θ

∂c

∂θ

∂σ̃m

∂θ

∂τ̃m

 (2.58)

Although the analytic evaluation of this matrix is possible (Avgenakis, 2015), it will
not be presented here, since the polynomial approximation method is preferred. Then,
defining the polynomial derivative term vector P ′

c :

P ′
c =

[
6c5 5c4 4c3 3c2 2c 1 0

]T
(2.59)

the normalized problem flexibility matrix is simply given by:

fsen =
1

E

(σ̃m V T
σ + τ̃m V T

τ

)
P ′

c V T
σ Pc V T

τ Pc(
σ̃m RT

σ + τ̃m RT
τ

)
P ′

c RT
σ Pc RT

τ Pc

 (2.60)
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2.4. Combined response of the rocking member

Summary of the self-equilibrating stresses contribution
Given a vector of forces in the simply-supported beam natural system, Fn, the following
steps must be followed to calculate the contribution of the self-equilibrating stresses to
the member response:

1. Calculate the rocking end forces Fr using Eq. (2.10)
2. Calculate the stress distribution parameters R using Eq. (2.12)
3. Calculate the normalized stress distribution parameters r using Eq. (2.13)
4. Calculate the normalized problem displacements usen using Eq. (2.51) (or Eq.

(2.48))
5. Calculate the normalized problem flexibility matrix fsen using Eq. (2.60)
6. Calculate the natural system displacements use using Eq. (2.54)
7. Calculate the natural system flexibility matrix fse using Eq. (2.56)

2.4 Combined response of the rocking member
In order to obtain the total response of the rocking member, the contribution of the stresses
according to the technical theory of bending and that of the self-equilibrating stresses
have to be combined. The input required to predict the member response according to
each contribution is the same vector of natural system nodal forces, Fn, meaning that
the formulation of the macro-element is force-based, while each contribution produces a
different natural system displacement vector, un, and flexibility matrix, fn. Due to the
principle of superposition, the total natural system displacement vector is the sum of the
displacement vectors produced by the two contributions and consequently the total natural
system flexibility matrix is also the sum of the flexibility matrices of the two contributions.

The general algorithm for the combined element is presented in Table 2.3, referring
to an iteration step i of a Newton-Raphson solution strategy. Subscript ttb refers to the
contribution of the stresses according to the technical theory of bending and se refers to
that of the self-equilibrating stresses. As a force-based formulation is used, part of this
algorithm follows the algorithm used for the geometrically nonlinear force-based beam-
column element proposed by Neuenhofer and Filippou (1998).

2.5 Examples
In this section, the proposed macro-element is applied to three characteristic examples
and the results are validated by comparison with the ones obtained using the commercial
finite element program Abaqus.
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2. Modeling of elastic rocking bodies

Table 2.3: Rocking macro-element algorithm

Step description Related equations Eq. number
in text

1. Displacements and displacement
increments with respect to the last
iteration

un,i = Tiue,i
∆un,i = un,i − un,i−1

(2.1)

2. Nodal force increments ∆Fn,i = f−1
n,i−1∆uni

3. Nodal forces estimation Fn,i = Fn,i−1 +∆Fn,i

4. Flexibility matrix and displacements
according to the technical theory of
bending

u*
ttb,i = fttb Fn,i (2.7)

5. Check whether there is rocking or
not. If not, ignore steps (6)-(9) and set
u*

se,i = 0 and Fse,i = 0.

∣∣∣∣M1,i

Ni

∣∣∣∣ > b

3
⇒ rocking

6. Self-equilibrating stresses
contribution parameters

Fr,i = S1 Fn,i
Ri = R(Fr,i)
ri = S2,i Ri

(2.10)
(2.12)
(2.13)

7. Displacements and flexibility matrix
of the semi-infinite strip problem

usen,i = usen(ri)
fsen,i = fsen(ri)

(2.51)
(2.60)

8. Displacements due to the
self-equilibrating stresses contribution u*

se,i = S3,i usen,i (2.54)

9. Flexibility matrix due to the
self-equilibrating stresses contribution fse,i = S3,i fsen,i S2,i S4,i S1 (2.56)

10. Total predicted displacements u*
n,i = u*

ttb,i + u*
se,i

11. Displacement residuals ur
n,i = un,i − u*

n,i
12. Total flexibility matrix fn,i = fttb,i + fse,i

13. Additional nodal forces F *
n,i = f−1

n,i u
r
n,i

14. Updated nodal forces F old
n,i = Fn,i

Fn,i = F old
n,i + F *

n,i

15. Check convergence
|F *

n,i|
|F old

n,i |
> error ⇒ return to

step (4)
16. Local coordinate system nodal forces
and stiffness matrix

Fe,i = T *
i Fn,i

Ke,i = Tg,i + T *
i f

−1
n,i T

*T
i

(2.3)
(2.5)

Rocking body with constant vertical force
In this example, the response of a simple rocking body with a constant vertical force on
its top side (Fig. 2.8a) is examined. The rocking body has height H = 4 m, width B = 1

m and thickness dw=1 m and is loaded on its top with a vertical force N = −2, 500 kN.
The proposed macro-element is used to model the whole rocking body, with its rocking

end at the bottom. The polynomial approximation method is used for the self-equilibrating
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2.5. Examples

stresses contribution, which leads to a faster and more robust analysis. Although not im-
portant for slender bodies, shear deformation effects are also taken into account. Regard-
ing the Abaqus model, 2D plane stress elements are used with a dense mesh near the
contact region (Fig. 2.8b). The contact interface is modelled with contact interactions in
order to allow only compressive stresses to develop, assuming though that a horizontal slip
is prevented.

In Fig. 2.8c, the pushover capacity curves (applied horizontal force, Px, versus hori-
zontal displacement, δx) produced by the proposed macro-element model are shown for
various E values and ν = 0.2. The theoretical rigid block case is also shown for com-
parison (dashed line). It can be seen that, due to the nonlinearity of the response, the
maximum strength achieved and the ultimate displacement at overturning decrease with
decreasing E values.

In Fig. 2.9 the E = 30 GPa case is examined more analytically and the results are
compared to Abaqus, as well as other simplified models. More specifically, apart from the
pushover capacity curve (Fig. 2.9a), the curves presenting the vertical displacement (Fig.
2.9b) and the rotation (Fig. 2.9c) at node A are shown. It can be seen that, generally,
there is very good agreement between the macro-element and the Abaqus results. The
only notable difference between the two models can be seen in the vertical displacement
response for large displacements. This is because the geometric nonlinearity formulation
used is not exact for large displacements, as explained in the relevant section.

Additional comparisons are also conducted with simplified beam-column element
models. One such model consists of a beamWithHinges element, which is included
in the element library of OpenSees, with a compression-only fiber section at its rock-
ing end, assuming a plastic hinge length equal to the section width (fine dashed line in
Fig. 2.9). An additional comparison is shown with a simplified model consisting of a
layer of compression-only springs with stiffness ks = E/H at the base of a rigid element,
modelled as a zero-length fiber section element (fine dashed-dotted line in Fig. 2.9), an
idea that has been used by several researchers (e.g. Penna et al., 2014). These comparisons
show that the results of the proposed macro-element are superior to those of the simplified
approaches, which cannot capture the response accurately (Figs. 2.9). It is noted that the
discrepancy of the results of the simplified models from the theoretically correct solution
(Abaqus results) increases with the value of the axial force N , while the accuracy of the
proposed model is very good independently of the applied axial force.

Tendon-restrained rocking body
In the second example, an elastic tendon with axial stiffness EtAt=1,200 MN is installed
at the center of the body of the previous example (Fig. 2.10a), which imposes an initial
prestressing force N = −2500 kN. It is noted that, in this case, the axial force of the
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Figure 2.8: Rocking body under a vertical and a horizontal top force: (a) Model de-
scription and body deformation; (b) Corresponding Abaqus model; (c) Pushover capacity
curves for different E values.
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Figure 2.9: Rocking body under a vertical and a horizontal top force: (a) Pushover capacity
curve; (b) Vertical displacement; (c) Top rotation for E=30 GPa. The macro-element
results are compared with the corresponding Abaqus, beamWithHinges and zero-length
element model results.
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2. Modeling of elastic rocking bodies

tendon does not remain constant, as the length of the tendon increases with the body
rotation.

Regarding the modelling of the tendon, a tendon element is used for the macro-
element model, which is essentially a geometrically nonlinear truss element with a pre-
stressing force. In Abaqus, a truss element is used, together with a suitable predefined
stress field in order to model the prestressing force (Fig. 2.10b). In both cases, the tendon
element simply connects the base with the top node of the rocking body, modelling thus
an unbonded tendon, which does not interact internally with the body.

The response of this system is shown in Figs. 2.10c,d. Fig. 2.10c shows the pushover
capacity curve (applied horizontal force, Px, versus the horizontal drift, dx) and it can
be seen that the post-rocking branch is ascending, as expected, since the tendon offers
stability to the system. This happens, since, as the body rotates, the tendon elongates and
the stabilizing force applied to the rocking body increases. The increase in the axial force
of the tendon with the body drift is shown in Fig. 2.10d.

The comparison of the macro-element results with the ones obtained using Abaqus
shows that the proposed macro-element is capable of modelling restrained rocking sys-
tems, in which the axial force changes during the rocking motion, as the axial degree of
freedom is taken explicitly into account.

Single-bay frame containing a rocking wall
In this example, a single-bay frame containing a rocking wall, able to rock at both its
ends (Fig. 2.11a), is examined. The frame dimensions are Lf = 6.5 m and Hf = 4.5 m,
the columns have cross section 0.60 m × 0.60 m, the beam has cross section of height
0.50 m and thickness 0.25 m, while the rocking wall has width Bw=1.50 m and thickness
dw=0.20 m. The material of all elements has propertiesE=30 GPa and ν=0.2. A uniformly
distributed vertical load ql = 60.0 kN/m is applied along the beam and a self-weight load
is assumed for the rocking wall corresponding to density ρw=25.0 kN/m3.

For the macro-element model, conventional linear elements along the centerline of
the columns and the beam are used, while practically rigid elements are used to model the
beam-column joints (Fig. 2.11b). Since the rocking wall is able to rock at both its ends,
a rocking macro-element is considered at each end. In order to capture the deformation
of the beam, the top rocking element is connected to the beam through rigid elements
and hinges able to transmit the axial force of the rocking wall to an approximately correct
location along the beam. The self-weight of the rocking wall is applied on its central node,
so that the axial forces of both rocking ends approximately correspond to the real ones.

Regarding the modelling of the frame with Abaqus, 3D brick elements are used for
the whole model (Fig. 2.11c) with practically rigid elements for the frame joints, while
contact interactions are used between the bottom surface of the rocking wall and the base,
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Figure 2.10: Tendon-restrained rocking body: (a) Model description and body deforma-
tion; (b) Corresponding Abaqus model; (c) Pushover capacity curve; (d) Tendon force.
In plots (c), (d), the macro-element results are compared with the corresponding Abaqus
results.
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2. Modeling of elastic rocking bodies

as well as the top surface of the rocking wall and the bottom surface of the beam, which
however do not allow a relative slip between the surfaces.

The results are depicted in Fig. 2.12, where the horizontal force, Px, and the rock-
ing wall axial force, Nw, are plotted versus the horizontal drift, dx. For comparison, the
pushover capacity curve of the bare frame is also presented.

The results show that the stiffness and the lateral resistance of the frame increase with
the inclusion of the rocking wall (Fig. 2.12a). As depicted in Fig. 2.12b, in which a
zoom of the pushover capacity curve is shown for small drifts, the nonlinearity of the
rocking response is mainly located at the beginning of the response. The increase of the
stiffness and the lateral capacity of the frame is associated with the increasing axial force
of the rocking wall, shown in Fig. 2.12c, which is attributed to the beam restraining of
the rocking motion.

Is can be seen that the results obtained with the macro-element almost coincide with
the ones produced by Abaqus. Small discrepancy is observed only in the axial force of the
wall: for a horizontal drift of 2%, the error is about 6%. It should be noted though that a
precise match of the results between the two models could not be achieved, even for the
bare frame.

The previous examples generally show that the proposed macro-element can produce
very accurate results compared with those of equivalent Abaqus models, while requiring
extremely lower runtimes and showing a much more robust behavior.

2.6 Examples: Parametric investigation
In this section, the effect of various parameters on the lateral load bearing capacity of
the rocking configurations presented in the examples of the previous section is examined
for monotonic loading, so that the influence of member deformability on the response is
investigated.

Rocking body with constant vertical force
First, a single rocking body, on which a constant vertical force is acting (Fig. 2.8a) is
examined. The body has height H , base width B and thickness dw, while a vertical force
N is applied on its top central node, A. The body is considered to be deformable with
modulus of elasticity E. The effect of the Poisson ratio ν is not taken into account, as it is
not considered important. The base mat is considered rigid, thus, any deformation takes
place only in the body.

The response of the body is governed by two normalized quantities:

• tanα =
B

H
, which expresses the influence of the slenderness of the body
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Figure 2.11: Single-bay frame containing a rocking wall: (a) Model description and de-
formation; (b) Numerical model with the proposed macro-elements considered at the top
and bottom sides of the rocking wall; (c) Corresponding Abaqus model.
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Figure 2.12: Single-bay frame containing a rocking wall: (a) Pushover capacity curve; (b)
Zoom of plot (a) for small drifts; (c) Rocking wall axial force. The results of the numerical
model using the proposed macro-element are compared with the corresponding Abaqus
results.
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Figure 2.13: Rocking body horizontal force - horizontal displacement response curves.
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Figure 2.14: Rocking body horizontal force - horizontal drift response curves.

• ϵ0 =
N

EBdw
, which corresponds to the initial axial deformation of the body due to

the vertical force and measures the flexibility of the body and the magnitude of the
vertical force.

Also, in the following, the results are shown normalized, specifically:
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Figure 2.15: Rocking body contact length - horizontal displacement response curves.

• The horizontal force is normalized with respect to the quantity N tanα: Pn =
Px

N tanα
. Thus, for the rigid block, rocking starts for Pn = 0.5.

• The horizontal top displacement is normalized with respect to the base width B:
δn =

δx
B

. It is noted that, for typical cases of slender bodies in which tanα ≈ α

and θ ≈ δx
H

, δn ≈ θ

α
.

• The amount of rocking is measured with the horizontal drift: dx =
δx
H

.

• The contact length is normalized with respect to the base width B: cn =
c

B

In Fig. 2.13, the normalized horizontal force versus the normalized horizontal top
displacement is shown. Response curves are given for various values of the body slen-
derness α and the initial deformations ϵ0. For comparison reasons with the models of the
next sections, in Fig. 2.14 the initial region of the response is shown in terms of horizontal
drift. As can be seen from these curves, the response converges to the rigid body solution
(a straight descending line starting at Pn = 0.5) for ϵ0 → 0, as expected.

Figures 2.13 and 2.14 show that the effect of the deformation on the response of the
rocking body is noticeable. More specifically, as the body becomes more flexible or the
axial force becomes larger (larger ϵ0), the maximum normalized force that can be attained,
Pn,max, reduces. Note that, for given ϵ0, Pn,max also reduces for smaller tanα, i.e. for
slenderer bodies. It is reminded that Pn = Px/(N tanα), thus, for any value of Pn, the
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actual horizontal resistance Px is proportional to the vertical force N and the slenderness
tanα.

The effect of the deformability of the base of the body on the normalized contact length
cn is shown in Fig. 2.15, in which cn is plotted versus the normalized top horizontal
displacement, δn. It can be observed that for slender or flexible bodies, as well as for
large vertical forces, the contact region during rocking is not detrimental, so the base
deformability cannot be neglected. It is interesting to note that the contact length attains
a practically constant value for large displacements.

Tendon-restrained rocking body
In this case, the configuration where a prestressed unbonded elastic tendon is installed at
the center of the body (Fig. 2.10b), which produces a stabilizing force, is examined. This
system simulates real configurations encountered in practice, such as rocking columns and
shear walls in which insertion of tendons is common. In contrast to the previous case,
where the stabilizing force was constant for the whole response, the force applied to the
body by the tendon constantly increases as the body rotates, due to the tendon elongation.
Also, the direction of its application follows the tendon rotation.

The response is now governed by three normalized parameters which, apart from tanα

and ϵ0 mentioned above, include the parameter µ, defined as:

• µ =
EtAt

EBdw
, in which Et and At are the Young’s modulus and the cross section area

of the tendon, respectively,

which measures the ratio of tendon to body axial stiffness. It should be noted that ϵ0 in
this case refers to the initial value of the prestressing force, N0.

Concerning the response, the following normalized quantity is additionally used:

• Nn =
N −N0

EtAt tanα
=

ϵt − ϵt0
tanα

which represents the additional deformation of the tendon due to its elongation.
The response of this system, for several typical values of the nomalized parameters, is

presented in Figs. 2.16 to 2.21.
In Figs. 2.16 and 2.17, the normalized horizontal force is plotted versus the drift

dx = δx/H for ϵ0 = 5 · 10−5 and 5 · 10−4, respectively, and for several values of µ and
tanα. It is seen that the prestressing tendon influences the response significantly, resulting
in a positive post-rocking stiffness. It is noted that µ = 0 (blue curves) corresponds to the
case where no tendon exists and the vertical force maintains a constant value equal to N0.
The curves in this case correspond to the response of the constant vertical force rocking
body shown in Fig. 2.14.
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Figure 2.16: Tendon constrained body force - displacement response curves for ϵ0 =
5 · 10−5. The case µ = 0 corresponds to a rocking body with a constant vertical force N0

without tendon.
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Figure 2.17: Tendon constrained body force - displacement response curves for ϵ0 =
5 · 10−4. The case µ = 0 corresponds to a rocking body with a constant vertical force N0

without tendon.
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Figure 2.18: Tendon constrained body tendon force - displacement response curves for
ϵ0 = 5 · 10−5.
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Figure 2.19: Tendon constrained body tendon force - displacement response curves for
ϵ0 = 5 · 10−4.
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Figure 2.20: Tendon constrained body contact length - displacement response curves for
ϵ0 = 5 · 10−5. The case µ = 0 corresponds to a rocking body with a constant vertical force
N0 without tendon.
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Figure 2.21: Tendon constrained body contact length - displacement response curves for
ϵ0 = 5 · 10−4. The case µ = 0 corresponds to a rocking body with a constant vertical force
N0 without tendon.
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It can be seen that the normalized resistance Pn increases significantly with the drift
of the body, especially for smaller values of ϵ0. Note that ϵ0 decreases for smaller values
of the prestress force N0 or more rigid bodies (larger E). This increase in the horizontal
resistance should be attributed to the additional axial force developed in the tendon due to
its elongation (Figs. 2.18, 2.19). Interestingly, the normalized additional tendon’s force is
almost independent of ϵ0, µ and tanα, in contrast to the Pn which is significantly affected
by these parameters.

Finally, Figs. 2.20 and 2.21 show the progressive reduction in the normalized contact
length, cn, during the response. Similarly to rocking bodies with constant vertical force,
the contact area rapidly decreases with the drift and attains a practically constant value for
large displacements, especially for relatively small ϵ0 values, that is, for stiffer bodies. It
is noticed that almost constant values of cn are associated with constant stiffness of the
system (Figs. 2.16, 2.17).

Single-bay frame containing a rocking wall
The effect of the rocking of a shear wall placed at the middle of the span of a single-story,
single-bay frame (Fig. 2.11a) is examined next. The wall is rocking on both the bottom
and the top sides.

Results are presented for a RC frame with columns of cross section 0.50 m x 0.60
m and beam of cross section 0.25 m x 0.50 m, while the thickness of the rocking wall
perpendicular to the frame is assumed 0.25 m. The Young’s modulus of the main frame is
Ef=30 GPa, while the Young’s modulus of the wall, Ew, is considered a varying parameter.
For the structural members of the frame (columns and beam), the cracked stiffness was
considered, and, according to the usually made assumption (e.g. Eurocode 8 - European
Committee for Standardization (CEN), 2004) the effective stiffness was taken equal to
one half of the geometric one: EIeff = 0.5EIg. The vertical loads acting on the system are
a distributed load q = 60 kN/m along the beam and the self-weight of the rocking wall.

In Figs. 2.22-2.24 the response of the frame under monotonically increasing hori-
zontal load, P , is presented for various frame height to span length, Hf/Lf , and panel
width to span length, B/Lf , ratios, assuming Ew = Ef . Note that the case B/Lf = 0

corresponds to the bare frame without the wall.
In Fig. 2.22, the classical capacity curve is shown and it is evident that both the

capacity and the stiffness increase with the ratio B/Lf , i.e. as the width B of the wall
increases in comparison to the span length Lf . This behavior was expected, since rocking
of the wall is more constrained by the beam for larger B’s due the larger required vertical
displacements of the beam, which also occur closer to its ends. Similarly, the capacity and
the stiffness of the system increase as the ratio Hf/Lf decreases, i.e. as the frame becomes
stiffer. Note that smaller ratios Hf/Lf also correspond to less slender walls for constant B
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Figure 2.22: Horizontal force versus drift (capacity curves) for frames with varying B/Lf

and Hf/Lf ratios (Ew/Ef = 1).
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Figure 2.23: Normalized contact length at the bottom side of the rocking wall versus drift
for the cases examined in Fig. 2.22. Similar are the contact lengths at the top side.

(larger tanα), since the height of the wall, H , is associated with the height of the frame,
Hf .

It is interesting to note that the non-linearity of the response is mostly limited at the
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Figure 2.24: Compressive axial force of the rocking wall versus drift for the cases examined
in Fig. 2.22.

beginning of the response (at small drift ratios), while the post-rocking response shows a
practically constant stiffness. Thus, the overall response could, in most cases, be approxi-
mated by the response of a linear system with the post rocking stiffness. This behavior is
associated with the stabilization of the contact length, as shown in Fig. 2.23.

The beneficial effect of the rocking wall to the lateral resistance of the system shown in
Fig. 2.22 is accompanied by the disadvantageous development of tensile axial forces in the
columns to balance the compressive axial force induced to the wall due to the kinematic
constraints imposed by the beam. The axial force Nw that develops in the wall during
rocking is shown in Fig. 2.24 and, as expected, it increases with B/Lf . The ratio Hf/Lf

affects Nw in a much smaller degree. It is expected that, in real structures, the tensile
forces induced to the columns due to the rocking wall will not increase significantly the
required reinforcement, because they will be over-balanced by the gravity loads, especially
at the lower stories.

In order to examine the possible benefit of the inclusion of such a rocking wall in the
original frame to its seismic behavior, a response spectrum analysis is conducted, using the
EC8 design spectrum for ag = 3.6 m/s2 and ground type B. The mass of the structure
is derived taking into account the distributed load and half of the rocking member self-
weight. In each case, the secant stiffness at the maximum displacement was used, which
was derived after iterations, similarly to the procedure suggested by FEMA 440 , with the
difference that no additional hysteretic damping was considered, since rocking does not
produce such damping as the unloading path practically follows the loading one.
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Figure 2.25: Earthquake scenario: Maximum horizontal force versus B/Lf ratios.
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Figure 2.26: Earthquake scenario: Maximum horizontal drift versus B/Lf ratios.
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Figure 2.27: Effective system stiffness for different B/Lf ratios.
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Figure 2.28: Earthquake scenario: Axial force induced to the wall versus B/Lf ratios.
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Figure 2.29: Earthquake scenario: Axial force induced to the columns versusB/Lf ratios.
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Figure 2.30: Earthquake scenario: Shear force induced to the columns versusB/Lf ratios.
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In Figs. 2.25-2.30, maximum attainable values for various quantities for this earth-
quake scenario are presented with respect to the panel width to span length ratio, B/Lf .
Various analyses have been performed for different frame height to span length ratios,
Hf/Lf , and different panel to frame moduli of elasticity, Ew/Ef .

Concerning the base shear force (Fig. 2.25), it is seen that the insertion of the wall does
not alter it significantly, which was expected, since the total mass is about the same in all
cases examined and the periods of the structure generally fall in the constant acceleration
region of the design spectrum (TB−TC). Only for very stiff configurations (Hf/Lf = 0.6

and B/Lf > 0.30), for which Teff < TB a reduction is observed in the base shear (Fig.
2.25).

Concerning the horizontal displacements and the produced drifts, they significantly
decrease as the width of the wall increases (largerB/Lf ratios) or the stiffness of the frame
increases (smaller Hf/Lf ratios) (Fig. 2.26). This is associated with the corresponding
increase in the overall effective stiffness of the system depicted in Fig. 2.27.

The axial forces induced to the wall, Nw (compressive) and the columns, Nc, (tensile)
are shown in Figs. 2.28 and 2.29, respectively. Fig. 2.28 reveals that larger axial forces are
imposed on wider rocking walls, due to the frame constraining their motion. Concerning
the axial forces induced to the columns (Fig. 2.29), the ones of the column which is more
influenced by the rocking motion are shown. It is seen that they become tensile even for
relatively narrow rocking walls and increase as the width of the wall increases. They are
also larger for larger Hf/Lf ratios (less stiff frames). Such tensile forces are not expected
to be a problem in a real structure where the columns bear significantly large compressive
loads from upper floors.

The main benefit of the inclusion of the rocking wall in the frame concerns the reduc-
tion in the shear forces induced to the columns, which is shown in Fig. 2.30. Although
for a relatively narrow wall the columns’ shear force is not affected significantly or can
even increase, wide walls result in a significant decrease in the shear forces of the columns,
which is more pronounced as the ratio B/Lf increases.

Concerning the effect of the modulus of elasticity of the wall, the results show that,
in general, differences between Ew and Ef in the order of ±25%, as the ones expected in
realistic situations, do not influence the response significantly. On the contrary, Hf/Lf

and especially B/Lf ratios are considered very important.
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3
Modeling of inelastic rocking bodies under

monotonic loading

Rocking members in structural systems are expected to behave inelastically for large seis-
mic excitations. In this chapter, the macroelement presented in the previous chapter,
which considered the element material to be elastic, is extended to also take material non-
linearity into account. It is noted, though, that only the monotonic case loading can be
considered in a similar manner as the elastic case, since cyclic loading is more complex and
needs a different treatment, which will be presented in Chapter 5.

3.1 Stress distributions for monotonic loading of the
inelastic rocking body

For the solution of the inelastic material case, new stress distributions acting on the rocking
interface have to be assumed. As a simplification, the area inside the element is considered
to behave elastically, so that the existing solution of the semi-infinite strip stress problem,
based on the theory of elasticity, as well as the principle of superposition hold. However,
as discussed in the ensuing, this assumption does not lead to results far from the reality,
since only the elongations of the elastic portion of the section are taken into account.

For the normal stresses, a trapezoidal stress distribution is assumed to act on the rock-
ing interface, after yielding occurs (Fig. 3.1). In order to examine the response of the
member under the trapezoidal loading, a new parameter µ is defined:

µ =
cy
c

(3.1)

where cy is the length of the contact area which has yielded.
The resultant axial force and moment can be expressed as:

Nr =
1

2
(1 + µ)bcσy (3.2)
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Figure 3.1: Normal stress distribution acting on the rocking interface after yielding and
decomposition into triangular distributions.

Mr = ρ

[
1

2
(1 + µ)b2c

( c
3
− 1
)
σy +

1

6
µ2b2c2σy

]
(3.3)

where ρ is the signum function of Mr.
The trapezoidal distribution can be expressed as the difference of the two triangular

distributions with parameters (σy/(1 − µ),c) and (µσy/(1 − µ),µc) shown in Fig. 3.1.
Assuming that the shear stress distribution results from the difference of two parabolic
distributions corresponding to the aforementioned triangular normal stress distributions
and that the ratio of the maximum shear stress values is the same as the maximum normal
stresses ratio, the resultant shear force is

Qr = ρ
2

3
(1− µ2)bct (3.4)

where t is the maximum shear stress corresponding to the distribution of contact length
c.

Given a vector of resultant forces acting on the rocking interface, Fr, the load distri-
bution parameter vector, ry = [c, µ, t]T , is calculated from:

ry =


c

µ

t

 =



Nrω

σyb

2

ω
− 1

3ρω2Qr
8(ω − 1)bc


(3.5)

where

ω =

√
3

(
2bσy

Nr
+

2ρMrσy

N2
r

− 1

)
+ 1 (3.6)

The corresponding derivative matrix of the load parameters to the rocking end forces
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3.2. Additional displacements due to the self-equilibrating stresses

is

S24y =
∂ry

∂Fr
=



2(c+ 2µc− 3)

(µ− 1)bcσy
− 6ρ

(µ− 1)b2cσy
0

6(µ+ 1)− 4(1 + µ+ µ2)c

(µ− 1)bc2σy

6ρ(µ+ 1)

(µ− 1)b2c2σy
0

2ct(2µ3 + 3µ2 + 6µ+ 1)− 6t(1 + µ)2

(µ− 1)2(µ+ 1)bc2σy
− 6ρt(µ+ 1)

(µ− 1)2b2c2σy

3ρ

2bc(1− µ2)


(3.7)

It is noted that the material yields when

σy >
2Nr

3
(
b+ ρMr

Nr

) (3.8)

3.2 Additional displacements due to the self-equilibrating
stresses

Similarly to the elastic material case, the self-equilibrating stress distributions originating
from the previous interface stresses are examined using the semi-infinite strip problem
solution. However, the additional displacements due to these self equilibrating stresses
are not calculated by approximation of the whole contact area fiber elongation profile with
a linear distribution, but only of the portion of the section that remains elastic, that is in
the interval [−1 + µc,−1 + c]. This can be applied, since the fibers under this area are
assumed to remain elastic, in contrast to the fibers under the yielded contact zone.

Using the aforementioned procedure, the self-equilibrating stresses normalized dis-
placement approximation formula presented next is produced, giving very good results for
c ≤ 2/(µ+ 1), which includes most of the usual cases:

usen,y =
1

E

{
σyδσ(c, µ) + tδτ (c, µ)

σyθσ(c, µ) + tθτ (c, µ)

}
(3.9)

where the functions δσ(c, µ), θσ(c, µ), δt(c, µ), θt(c, µ) are presented in the following.

Normal stresses Introducing a normalized contact length cn = c(µ + 1), functions
δσ(c, µ) and θσ(c, µ) are given by:

δσ = δA(cn) + δB(µ)(cn − 2) (3.10)
θσ = θA(cn) + θB(µ) + θC(µ)θD(cn) (3.11)
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3. Modeling of inelastic rocking bodies under monotonic loading

where the various functions appearing in these equations have the forms:

δA(cn) = a1 [1− (cn/2)
a2 ]a3 (3.12)

δB(µ) = a1 tan(
π

2
µ) + a2µ+ a3µ

2 + a4µ
3 (3.13)

θA(cn) = a1 [1− (cn/2)
a2 ]a3 (1− cn/2)

2 (3.14)

θB(µ) = a1 tan(
π

2
µ) + a2µ+ a3µ

2 + a4µ
3 (3.15)

θC(µ) = a1µ
4 + a2µ

3 + a3µ
2 + (−4a1 − 3a2 − 2a3)µ (3.16)

θD(cn) = a1c
6
n + a2c

5
n + a3c

4
n + a4c

3
n + (−16a1 − 8a2 − 4a3 − 2a4 + 0.25)c2n (3.17)

The constant parameters appearing in these equations are given in Table 3.1.
Furthermore, the following derivatives are calculated, which are needed in the follow-

ing:

∂δσ
∂c

= (µ+ 1)(
dδA
dcn

+ δB) (3.18)

∂δσ
∂µ

= c(
dδA
dcn

+ δB) +
dδB
dµ

(cn − 2) (3.19)

∂θσ
∂c

= (µ+ 1)(
dθA
dcn

+ θC
dθD
dcn

) (3.20)

∂θσ
∂µ

= c(
dθA
dcn

+ θC
dθD
dcn

) +
dθB
dµ

+ θD
dθC
dµ

(3.21)

It is noted that for c > 2/(µ+1), due to the symmetry of the self-equilibrating normal
stresses, the following equations hold:

δσ(c, µ) = −δσ(2− µc, (2− c)/(2− µc)) (3.22)
θσ(c, µ) = θσ(2− µc, (2− c)/(2− µc)) (3.23)

A comparison between the semi-infinite strip problem results and the ones predicted
from the aforementioned equations can be seen in Fig. 3.2.

Shear stresses

δτ = δ1(c)δ2(µ) (3.24)
θτ = θ1(c)θ2(µ) (3.25)

where the functions appearing in these equations have the forms:

δ1(c) = a1 [1− (c/2)a2 ]a3 (3.26)
δ2(µ) = (a1µ− 1)(µ− 1) (3.27)
θ1(c) = a1 [1− (c/2)a2 ]a3 (3.28)
θ2(µ) = (a1µ− 1)(µ− 1) (3.29)
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3.2. Additional displacements due to the self-equilibrating stresses
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Figure 3.2: Normalized axial elongation and rocking end rotation for σy = 1.
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3. Modeling of inelastic rocking bodies under monotonic loading

Table 3.1: Approximation functions constant term vectors

Function a1 a2 a3 a4

δA -1.61868182 0.74341712 2.38990044
δB 0.02707282 0.71805567 -0.42532673 0.64748945
θA -1.60601045 2.71616773 0.52133449
θB -0.05393963 -1.54431579 0.98577157 -1.35812515
θC -0.4009598 1.46727493 -2.19487061
θD -0.03040586 0.15378978 -0.33644138 0.38440043
δ1 2.48001601 0.68431159 1.80867566
δ2 -0.43362038
θ1 2.35842517 0.98635297 1.52894546
θ2 -0.45228844

The constant parameters appearing in these equations are given in Table 3.1.
A comparison between the semi-infinite strip problem results and the ones predicted

from the aforementioned equations can be seen in Fig. 3.3.

Derivative matrix The derivative matrix, fsen,y of the normalized displacements due to
the self equilibrating stresses, usen,y with respect to the normalized load parameters, ry is:

fsen,y =
∂usen,y

∂ry
=

1

E

σy
∂δσ
∂c

+ t
∂δτ
∂c

σy
∂δσ
∂µ

+ t
∂δτ
∂µ

δτ

σy
∂θσ
∂c

+ t
∂θτ
∂c

σy
∂θσ
∂µ

+ t
∂θτ
∂µ

θτ

 (3.30)

Changes in the elastic macroelement algorithm due to yielding After the calculation of
the rocking interface forces, Fr, the yielding condition of Eq. (3.8) is checked. If the
material has yielded, then the following changes are performed in the original algorithm:

• The load parameter vector, r, of Eq. (2.13) is substituted with ry of Eq. (3.5).

• The derivative matrix of the load parameter vector r with respect with the rocking
interface forces Fr, that is the product S2S4 of Eqs. (2.14) and (2.57), is substituted
with S24y of Eq. (3.7).

• The normalized displacement vector due to the self-equilibrating stresses, usen (Eq.
2.51), is substituted with usen,y of Eq. (3.9).

• The corresponding derivative matrix, fsen, of Eq. (2.60) is substituted with fsen,y

of Eq. (3.30).

The rest of the algorithm steps remain the same as in the original elastic material
algorithm.
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Figure 3.3: Normalized axial elongation and rocking end rotation for t = 1. The approx-
imation is accurate enough for c ≤ 2/(µ+ 1).
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3. Modeling of inelastic rocking bodies under monotonic loading

3.3 Examples

Rocking body with constant vertical force and varying yield stress
In this example, a simple rocking body is examined, with height H = 4 m, width B = 1

m and depth d = 1 m and Young’s modulus E = 30 GPa. The body is loaded on its top
central node with a constant vertical force, N = −2500 kN (Fig. 3.4a).

Fig. 3.4b shows the pushover capacity curves (horizontal force versus horizontal dis-
placement) of this body for varying yield stress values. It can be seen that the maximum
strength and the ultimate displacement decrease for decreasing yield stress values.
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Figure 3.4: (a) Rocking body with constant vertical force model and (b) pushover capacity
curves for varying stress yield values.

Comparison of results with Abaqus
In the following, the results produced with the macroelement are compared to those of
the commercial software Abaqus . Unfortunately, pushover capacity curves for rocking
bodies are very difficult to obtain with Abaqus for a yielding material due to convergence
problems. For this reason, comparisons are performed for a simply supported beam with
a rocking end, which corresponds to the macroelement natural coordinate system (Fig.
3.5).

The simply supported beam examined has length L = 8 m, width B = 2 m, depth
d = 1 m, Young’s modulus E = 30 GPa, yield stress σy = 20 MPa and is loaded with a
constant axial force N = −1000 kN.

In Figs. 3.6 and 3.7, the axial elongation and the rocking end rotation are shown
for increasing values of the applied moment on the rocking end of the simply supported

68



3.3. Examples

Rocking
end

Figure 3.5: Simply supported beam with rocking end.

beam. Fig. 3.6 refers to the case of a beam with equal applied moments on both its
ends, meaning that there is no shear force along the beam, while 3.7 refers to the case of
an applied moment only on the rocking end of the beam, leading to the development of
shear forces. In both cases, it can be seen that the results of the macroelement are very
close to the ones obtained using equivalent Abaqus models.
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3. Modeling of inelastic rocking bodies under monotonic loading
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Figure 3.6: (a) Axial elongation and (b) rocking end rotation of a rocking simply supported
beam loaded with equal increasing moments on both its ends (no development of shear)
and comparison with Abaqus.
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Figure 3.7: (a) Axial elongation and (b) rocking end rotation of a rocking simply supported
beam loaded with an increasing moment only on its rocking end and comparison with
Abaqus.
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4
The nonlinear displacement distribution of the

semi-infinite strip

In this chapter, the problem of the semi-infinite strip with traction-free lateral sides is
revisited, in order to examine the displacement profile across the semi-infinite strip under
an arbitrary normal load distribution on its end. Although the solution of this problem
is important even for practical applications (e.g. the prediction of the rocking motion of
deformable bodies), only numerical solutions exist until now, which are cumbersome to
implement for such cases.

The displacement profile of the semi-infinite strip under a concentrated normal load
is approximated with analytical functions, which must exhibit specific properties. These
results are then extended to arbitrary normal load distributions and characteristic cases are
presented. Finally, the problem of the determination of the stress distribution across the
interface between a deformable rocking body and its base is solved based on the previous
derivations.

4.1 Introduction
The determination of the stresses of a semi-infinite strip (x ≥ 0, −1 ≤ y ≤ 1) with
traction-free lateral sides (y = ±1), for any admissible combination of given tractions or
displacements applied on its free end (x = 0) (Fig. 4.1) has been a topic of interest for
many decades among engineers. Unlike similar problems for the semi-infinite space for
which analytical solutions exist, the problem of the semi-infinite strip presents additional
mathematical difficulties which do not allow for closed-form analytical solutions, espe-
cially in what concerns the determination of stresses for given normal and shear tractions.

Many approaches for the solution of the problem have been proposed over the decades,
such as those of Horvay (1957), Theocaris (1959), Benthem (1963), Gaydon and Shep-
herd (1964), Johnson Jr and Little (1965), Bogy (1975) and Gregory (1980). Most of these
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4. The nonlinear displacement distribution of the semi-infinite strip
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Figure 4.1: The semi-infinite strip

involve solving singular integral equations or infinite systems of coupled linear equations
which result from the expansion of the stress function to the Papkovich-Fadle eigenfunc-
tions (Papkovich, 1940; Fadle, 1940), which are not orthogonal.

Although this problem is particularly interesting for the theoretical analysis of struc-
tural members, it has lost attention during the last decades, since the technical theory
of bending, which assumes that the element’s cross section remains plane, is considered
sufficient for conventional elastic structural analyses. However, there are practical cases
where the technical theory of bending is inadequate. One such case is the prediction of
the response of deformable rocking members.

Rocking members cannot develop tensile stresses across the interface with the rocking
base and as such, nonlinear stress distributions develop near the contact area where mem-
ber sections do not remain plane, phenomena which cannot be captured by the technical
theory of bending. In the previous chapters, it was proven that for the prediction of the
response of such members, the solution of the semi-infinite strip problem can be used.
The numerical solution of the semi-infinite strip problem proposed by Gaydon and Shep-
herd (1964) is utilized in order to calculate approximate additional nodal displacements
due to the partial loading of the rocking interface.

It is evident that the calculation of the displacement profile of the fibers of the semi-
infinite strip is necessary for practical cases like this. However, the aforementioned exist-
ing numerical solutions are cumbersome to use in practical applications. The objective of
this chapter is to provide analytical expressions which can be used for the determination
of the displacement profile of the semi-infinite strip in practical engineering applications.
First, the basic case of a concentrated normal load applied at an arbitrary point on the
semi-infinite strip end is examined. Having solved this problem, the displacement distri-
bution due to an arbitrary normal load can be calculated, since any load distribution can
be expressed as the integral of concentrated loads across the end section of the strip.
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4.2. Decomposition of the problem

4.2 Decomposition of the problem
The method proposed by Gaydon and Shepherd (1964) for the determination of the
stresses inside the element for given semi-infinite strip end loads is based on the decom-
position of the applied stress distribution in two parts: (i) the contribution of the resultant
forces and (ii) a self-equilibrating stress distribution (Fig. 4.2). For the calculations, only
the self-equilibrating part of the load distributions needs to be examined thoroughly, as
the contribution of the resultant forces can be calculated according to the technical theory
of bending.

More specifically, given an arbitrary stress distribution [σ0] (Fig. 4.2a), the resultant
normal force and moment are calculated. According to the technical theory of bending,
these give rise to a linear stress distribution which acts across the whole member section,
[σttb] (Fig. 4.2b) and for which the stresses induced inside the element can be calculated.
The difference between the original stress distribution and the resultant forces contribu-
tion is a self-equilibrating stress distribution, [σse] (Fig. 4.2c). Since the resultant force
and moment of this distribution is zero, its effect far from the loaded area is negligible,
according to the Saint-Venant’s principle. However, its effect near the loaded area on
the stresses and the displacements is significant. In order to employ the aforementioned
methodology, these self-equilibrating stresses are decomposed into a symmetric and an
antisymmetric part, for which different stress functions are used.

x

y

[10]

x

y

x

y

(a) (b) (c)

= +

[1ttb] [1se]

Figure 4.2: Stress distribution decomposition: (a) Original distribution; (b) Resultant
forces contribution and (c) remaining self-equilibrating stresses.

This methodology enables us to examine the local effects of a self-equilibrating stress
load on the semi-infinite strip. Apart from the determination of the stress distribution
near the loaded end, the methodology by Gaydon and Shepherd (1964) can be easily
extended for the calculation of the fiber displacements across the semi-infinite strip due
to the self-equilibrating stresses, as the integral of the corresponding fiber strains. The
extended methodology for the determination of the fiber displacements is rather involved
and not repeated here, but can be found in Chapter 2.

For the evaluation of the displacement profiles across the ends of a finite member
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4. The nonlinear displacement distribution of the semi-infinite strip

length due to an arbitrary nonlinear normal load distribution applied at one of its ends,
the same decomposition presented above is applied: The displacement distributions due to
the resultant forces contribution is linear and calculated according to the technical theory
of bending for given resultant forces at the member ends. Regarding the displacement
profiles due to the self-equilibrating stresses contribution, since their effect is local to the
end with the nonlinear load distribution, the solution produced for the semi-infinite strip
displacements can be used for this end even for a member with finite length and no ad-
ditional displacements are produced for the linearly loaded member end, given that the
length of the member is sufficient (Chapter 2). Finally, the results of the two previous
contributions need to be superimposed.

4.3 Displacement function for a concentrated load

Problem statement
In order to calculate the displacements due to an arbitrary stress load applied at the semi-
infinite strip end, the concentrated load problem is solved first (Fig. 4.3a), since any
load distribution can be considered as a summation of concentrated loads across the strip
end. As mentioned previously, only the displacements due to the self-equilibrating stresses
corresponding to the concentrated load need to be thoroughly examined in the ensuing.

x

y

+1Å� p

1

x

y

+1Å� p

1
2

x

y

+1Å� p

= +

1
2

1
2

1
2

Symmetric problem Antisymmetric problem

(a) (b) (c)

Åp
Åp

Figure 4.3: (a) Unit point load acting at location p of the semi-infinite strip end; Decom-
position into (b) the Symmetric problem and (c) the Antisymmetric one.

A concentrated load at the strip end can be considered as a Dirac delta function for
the calculation of the necessary load parameters of the methodology used (Gaydon and
Shepherd, 1964). Although the concentrated load introduces a singularity which does not
guarantee convergence of the solution (Gregory, 1980), the produced results regarding the
fiber displacement distributions exhibit convergent response. A large number of expansion
functions are used in order to produce results that are as accurate as possible, however small
inaccuracies persist for concentrated loads applied near the corner of the semi-infinite
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4.3. Displacement function for a concentrated load

strip and for the displacements at locations close to this area, which however do not create
notable problems.

The results produced for various values of the location p across the strip end for a unit
concentrated load (Fig. 4.3a) and location y at which the displacement is measured, and
for the normalized case of unit Young’s modulus, E = 1, are shown in Fig. 4.4. It is noted
that, for E ̸= 1, the displacement values shown have to be divided by E. Furthermore,
the displacement at y, considering plane stress conditions, is

u(y) =

∫ ∞

0

ε(x, y) dx =
1

E

(∫ ∞

0

σx(x, y) dx− ν

∫ ∞

0

σy(x, y) dx
)

(4.1)

However, since no shear loading is considered at the strip end and, also, the shear stresses
are zero at an infinite distance from the strip end, the integral of the transverse normal
stresses along the x-axis of any fiber is zero due to equilibrium in the y-axis. Therefore,∫ ∞

0

σy(x, y) dx = 0 (4.2)

which implies that the results are independent of Poisson’s ratio, ν.
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Figure 4.4: Displacement at location y for a concentrated load at location p

As can be seen in Fig. 4.4, the displacement function, U , is doubly symmetric with
respect to the two diagonals. The symmetry about the main diagonal means that the
displacement at y for a load applied at location p is equal to the displacement at p for
a load applied at location y, which is equivalent to the Maxwell-Betti reciprocal work
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4. The nonlinear displacement distribution of the semi-infinite strip

theorem used in structural analysis (e.g. Timoshenko and Goodier, 1951). Furthermore,
symmetry about (0,0) exists, since the displacement at −y for a load at −p is equal to
the displacement at y for a load at p. These two symmetries produce a doubly symmetric
function, meaning that only one of the four quarters can be examined.

For the approximation of the displacement function, apart from the aforementioned
symmetries, the following condition must also hold: Since this displacement function
refers to displacements produced by the self-equilibrating part of the loading, the zeroth
and first moment of the displacement distribution for a given load location p must be zero:∫ 1

−1

U(y, p) dy = 0 (4.3)

∫ 1

−1

y U(y, p) dy = 0 (4.4)

In order to facilitate the implementation of the aforementioned conditions, it is prefer-
able to examine the symmetric and the antisymmetric problem individually, which refer
to the calculation of the displacement distribution for half concentrated loads at locations
p and −p with the same and the opposite sign, respectively (Figs. 4.3b and 4.3c). The
displacement functions produced for the symmetric and the antisymmetric problem are
shown in Fig. 4.5. It is evident that, due to the additional symmetries, only one eighth of
these two functions is unique.

Approximation of the symmetric displacement function
The symmetric displacement function, Us, depicted in Fig. 4.5(a), is symmetric about
both main axes and both diagonals. As such, the following condition must hold for the
approximating function:

Us(y, p) = Us(−y, p) = Us(−y,−p) = Us(y,−p)

= Us(p, y) = Us(−p, y) = Us(−p,−y) = Us(p,−y)
(4.5)

Although only one eighth of the domain can be examined, it is more convenient to
examine a quarter of the domain, namely 0 ≤ y ≤ 1, 0 ≤ p ≤ 1. For this region, the
following condition must also hold due to Eq. (4.3) and the symmetry about the y-axis:∫ 1

0

Us(y, p) dy = 0 (4.6)

It is noted that Eq. 4.4 is satisfied by default due to symmetry about the y-axis.
As can be seen from Fig. 4.5(a), there is a singularity along the diagonals, with the

values of the displacements approaching infinity. After more careful examination and try-
ing various functions, this singularity seems to be logarithmic in nature. This is consistent
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Figure 4.5: Displacement functions for (a) the symmetric and (b) the antisymmetric prob-
lem.
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4. The nonlinear displacement distribution of the semi-infinite strip

with the result regarding the displacement distribution produced by a unit concentrated
load on a semi-infinite space (e.g. Das, 2013):

u∗(y, p) = 2A ln |p− y|+ C (4.7)

where E = 1 and ν = 0 are considered, A = −1/π and C is a constant.
Considering the symmetric problem which refers to symmetric loading about 0 with

point loads equal to 1/2 and ignoring the constant term C, the corresponding function is

UsA1(y, p) = A ln |p− y|+ A ln |p+ y| (4.8)

By trying to approximate the logarithmic singularities of the symmetric displacement
function with a function of the form of Eq. (4.8), it was found that the best approximation
was attained by keeping the coefficient A = −1/π, as in the theoretical solution of the
semi-infinite space. The difference between the original symmetric function, Us, and the
function UsA1, is depicted in Fig. 4.6, where only one quarter is shown for clarity. It can
be seen that the remaining function is now smooth across the diagonal.
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Figure 4.6: Symmetric displacement function after removal of diagonal logarithmic sin-
gularities.

Although this function satisfies Eq. (4.5), Eq. (4.6) is not satisfied, as:∫ 1

0

UsA1(y, p) dy = A [(ln(1 + p)− 1)(1 + p) + (ln(1− p)− 1)(1− p)] (4.9)
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4.3. Displacement function for a concentrated load

Furthermore, it can be seen that a singularity remains at (1,1). For these reasons, a new
function is sought, which eliminates the non-zero integral introduced by Eq. (4.8) and
includes a singularity at (1,1). A function that satisfies these conditions, as well as the
symmetry conditions of Eq. (4.5), is:

UsA2(y, p) = −A [ln(1− yp)(1− 2yp) + ln(1 + yp)(1 + 2yp)− 2] (4.10)

The difference between Us and UsA1 + UsA2 can be seen in Fig. 4.7. This function has
significantly smaller values than Us, however further approximation is considered neces-
sary. Furthermore, it can be seen that the singularity at (1,1) remains, but now extends in
a small circular area around (1,1).
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Figure 4.7: Symmetric displacement function after removal of diagonal logarithmic sin-
gularities and corresponding integral equilibrating function.

In order to eliminate this remaining singularity, a function of the form

UsB1 = B
[
ln((1− y)2 + (1− p)2) + ln((1− y)2 + (1 + p)2)

+ ln((1 + y)2 + (1 + p)2) + ln((1 + y)2 + (1− p)2)
] (4.11)

is introduced, which satisfies Eq. (4.5). However, again, Eq. (4.6) is not satisfied. For this
reason, the following function which satisfies Eq. (4.5) and negates the non-zero integral

81



4. The nonlinear displacement distribution of the semi-infinite strip

is also used:

UsB2 = B
[
−2 ln((1− y)2 + 4)− 2 ln((1 + y)2 + 4)

− 2 ln((1− p)2 + 4)− 2 ln((1 + p)2 + 4)

+ 2(1− y) arctan((1− y)/2) + 2(1 + y) arctan((1 + y)/2)

+ 2(1− p) arctan((1− p)/2) + 2(1 + p) arctan((1 + p)/2)

− 2π + 12 ln(2) + 4
]

(4.12)

The coefficient B in Eqs. (4.11) and (4.12) is defined in the ensuing.
Finally, a polynomial function satisfying Eqs. (4.5) and (4.6) is introduced, which has

the form:

UsP = q22/9 + 2q42/15 + q44/25 + 2q62/21 + 2q64/35

+ q66/49 + 2q82/27 + 2q84/45 + 2q86/63 + q88/81

+ q22y
2p2 + q44y

4p4 + q66y
6p6 + q88y

8p8

+ q42y
2p2(y2 + p2) + q62y

2p2(y4 + p4) + q82y
2p2(y6 + p6)

+ q64y
4p4(y2 + p2) + q84y

4p4(y4 + p4) + q86y
6p6(y2 + p2)

− (y2 + p2)(q22/3 + q42/5 + q62/7 + q82/9)

− (y4 + p4)(q42/3 + q44/5 + q64/7 + q84/9)

− (y6 + p6)(q62/3 + q64/5 + q66/7 + q86/9)

− (y8 + p8)(q82/3 + q84/5 + q86/7 + q88/9)

(4.13)

The coefficients q in this function are defined in the following. Powers up to 8 have been
used in this function in order to achieve sufficient accuracy.

In order to determine coefficients B and q of the aforementioned functions, a least
squares approach is employed which minimizes the difference of the function shown in
Fig. 4.7 with respect to functions UsB1, UsB2 and UsP. This is achieved using the curve_fit
tool of the SciPy Python package, which can implement least squares fitting for functions
of higher dimensions. The resultant coefficients which match the target function in the
best way are given in Table 4.1 and the correponding approximation is shown in Fig. 4.8.

Finally, the resultant approximation of the symmetric displacement function is defined
as:

Us = UsA1 + UsA2 + UsB1 + UsB2 + UsP (4.14)

Approximation of the antisymmetric displacement function
The procedure followed for the approximation of the antisymmetric displacement function
is similar to the one described above. As can be seen in Fig. 4.5(b), the antisymmetric
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4.3. Displacement function for a concentrated load
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Figure 4.8: Approximation of the symmetric displacement function after removal of di-
agonal logarithmic singularities and corresponding integral equilibrating function.

displacement function is symmetric about both diagonals and antisymmetric about both
main axes. As such, the following condition must hold for the approximating function:

Ua(y, p) = −Ua(−y, p) = Ua(−y,−p) = −Ua(y,−p)

= Ua(p, y) = −Ua(−p, y) = Ua(−p,−y) = −Ua(p,−y)
(4.15)

Examining again the domain 0 ≤ y ≤ 1, 0 ≤ p ≤ 1, the following condition must
also hold due to Eq. (4.4) and antisymmetry about the y-axis:∫ 1

0

y Ua(y, p) dy = 0 (4.16)

It is noted that Eq. (4.3) is satisfied by default due to the antisymmetry about the y-axis.
The solution of the corresponding antisymmetric semi-infinite space problem has the

form
UaA1(y, p) = A ln |p− y| − A ln |p+ y| (4.17)

with A = −1/π. The difference between the original symmetric function, Ua, and the
function UaA1, is depicted in Fig. 4.9, where only one quarter is shown for clarity. It can
be seen that the remaining function is now smooth across the diagonal.

Although this function satisfies Eq. (4.15), Eq. (4.16) is not satisfied, as:∫ 1

0

y UaA1(y, p) dy = A
[
−p+ (ln(1− p)− ln(1 + p))(1− p2)/2

]
(4.18)
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4. The nonlinear displacement distribution of the semi-infinite strip
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Figure 4.9: Antisymmetric displacement function after removal of diagonal logarithmic
singularities.

Furthermore, it can be seen that again a singularity remains at (1,1). For these reasons, a
new function is sought, which eliminates the non-zero integral introduced by Eq. (4.17)
and includes a singularity at (1,1). A function that satisfies these conditions, as well as the
symmetry conditions of Eq. (4.15), is:

UaA2(y, p) = −A
[
(ln(1− yp)− ln(1 + yp)) (1− 2y2p2)− 4yp

]
(4.19)

The difference between Ua and UaA1 + UaA2 can be seen in Fig. 4.10. Again, a singu-
larity extending in a small circular area around (1,1) remains, but the remaining values of
the antisymmetric problem are lower than the corresponding ones of the symmetric case.
Nevertheless, the same procedure is followed again in order to approximate the remaining
function.

The singularity at (1,1) should be captured using a similar function as the one used for
the symmetric problem, since it can be shown that these singularities cancel out if they
are subtracted. This also means that the coefficient of this function should be common
between the symmetric and the antisymmetric problem. The corresponding function used
for the antisymmetric problem is

UaB1 = B
[
ln((1− y)2 + (1− p)2)− ln((1− y)2 + (1 + p)2)

+ ln((1 + y)2 + (1 + p)2)− ln((1 + y)2 + (1− p)2)
] (4.20)
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4.3. Displacement function for a concentrated load
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Figure 4.10: Antisymmetric displacement function after removal of diagonal logarithmic
singularities and corresponding integral equilibrating function.

which satisfies Eq. (4.15). Eq. (4.16) is not satisfied, so the following function satisfying
Eq. (4.15) which negates the non-zero integral is used:

UaB2 = B
[3
2
p((1− y)2 ln((1− y)2 + 4)− (1 + y)2 ln((1 + y)2 + 4))

+
3

2
y((1− p)2 ln((1− p)2 + 4)− (1 + p)2 ln((1 + p)2 + 4))

+ 3p((1 + y)2 ln(1 + y)− (1− y)2 ln(1− y))

+ 3y((1 + p)2 ln(1 + p)− (1− p)2 ln(1− p))

+ 6p((1− y) arctan((1− y)/2)− (1 + y) arctan((1 + y)/2))

+ 6y((1− p) arctan((1− p)/2)− (1 + p) arctan((1 + p)/2))

+ 6yp(π + 2 ln(2) + 1)
]

(4.21)

The polynomial function of the antisymmetric problem, which satisfies Eqs. (4.15)
and (4.16) is

UaP = q31yp(y
2 + p2) + q51yp(y

4 + p4) + q71yp(y
6 + p6)

+ q53y
3p3(y2 + p2) + q73y

3p3(y4 + p4) + q75y
5p5(y2 + p2)

− 3yp(q31/5 + q51/7 + q71/9)− 5y3p3(q31/3 + q53/7 + q73/9)

− 7y5p5(q51/3 + q53/5 + q75/9)− 9y7p7(q71/3 + q73/5 + q75/7)

(4.22)
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4. The nonlinear displacement distribution of the semi-infinite strip

Similarly to the symmetric case, in order to determine coefficients B and q of the
aforementioned functions, a least squares approach is employed which minimizes the dif-
ference of the function shown in Fig. 4.10 with respect to functions UaB1, UaB2 and UaP.

In reality, as mentioned above, the coefficient B of the symmetric and antisymmetric
problem must be the same. By approximating the functions of the symmetric and anti-
symmetric problem individually, the values for B are close to each other, but not exactly
equal. So, its value is fixed to the average of the two aforementioned results and then a
least squares fitting is performed again in order to determine the remaining coefficients q
of the polynomial functions. The resultant coefficients which match the target function in
the best way are given in Table 4.1 and the correponding approximation is shown in Fig.
4.11.

Finally, the resultant approximation of the antisymmetric displacement function is
defined as:

Ua = UaA1 + UaA2 + UaB1 + UaB2 + UaP (4.23)
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Figure 4.11: Approximation of the antisymmetric displacement function after removal of
diagonal logarithmic singularities and corresponding integral equilibrating function.

Total displacement function
Adding the symmetric and antisymmetric displacement functions, the total displacement
function is as follows:

U(y, p) = A UA +B UB + UsP + UaP (4.24)
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4.3. Displacement function for a concentrated load

Coeff. Value Coeff. Value Coeff. Value
A -1/π q64 18.273236 q31 0.74952005
B -0.19532775 q66 -38.99971412 q51 -0.08175407
q22 -1.23991592 q82 0.74180336 q53 5.10578057
q42 1.08897876 q84 -9.64366612 q71 0.04700608
q44 -9.7265530 q86 22.03387365 q73 -2.9709584
q62 -1.50465044 q88 -13.05630027 q75 9.15391675

Table 4.1: Approximation function coefficients

where
UA = 2 ln |p− y|+ 2 ln(1− yp)(y2p2 + yp− 1)

− 2 ln(1 + yp)(y2p2 + yp) + 2(2yp+ 1)
(4.25)

UB = 2 ln((1− y)2 + (1− p)2) + 2 ln((1 + y)2 + (1 + p)2)

+ 3p((1 + y)2 ln(1 + y)− (1− y)2 ln(1− y))

+ 3y((1 + p)2 ln(1 + p)− (1− p)2 ln(1− p))

+ (3p/2− 3yp+ 3y2p/2− 2) ln((1− y)2 + 4)

+ (−3p/2− 3yp− 3y2p/2− 2) ln((1 + y)2 + 4)

+ (3y/2− 3yp+ 3yp2/2− 2) ln((1− p)2 + 4)

+ (−3y/2− 3yp− 3yp2/2− 2) ln((1 + p)2 + 4)

+ 2(1− y + 3p− 3yp) arctan((1− y)/2)

+ 2(1 + y − 3p− 3yp) arctan((1 + y)/2)

+ 2(1− p+ 3y − 3yp) arctan((1− p)/2)

+ 2(1 + p− 3y − 3yp) arctan((1 + p)/2)

+ 6yp(π + 2 ln(2) + 1)− 2(π − 6 ln(2)− 2)

(4.26)

and UsP, UaP given by Eqs. (4.13) and (4.22), respectively.
It is noted that the following limits hold:

lim
x→1

(1− x) ln(1− x) = lim
x→−1

(1 + x) ln(1 + x) = 0 (4.27)

so function UB has a removable singularity at y = ±1 or p = ±1 if y ̸= p.
In Fig. 4.12, a comparison between the displacement distribution of the numerical

solution and the proposed approximation is presented for various values of the location of
the load, p. Only cases 0 ≤ p < 1 are presented for clarity, since the opposite sign cases
are symmetrical to the ones presented. This figure shows that the proposed approximation
predicts very well the numerical values.
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4. The nonlinear displacement distribution of the semi-infinite strip
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Figure 4.12: Displacement distributions for various values of the location of the load:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).

4.4 Extension to rectangular and triangular normal load
distributions

After the determination of the displacement distribution for the self-equilibrating stresses
of a concentrated load applied at an arbitrary location on the semi-infinite strip end, the
displacement profile due to the self-equilibrating stresses of any normal load distribution
can be calculated, since an arbitrary load can be considered as the superposition of con-
centrated loads across the the semi-infinite strip end. Thus, if the normal load distribution
is σ(y), the displacements across the strip are calculated as:

u(y) =

∫ 1

−1

σ(p) U(y, p) dp (4.28)

In this section, two characteristic cases are considered: a rectangular load (Fig. 4.13a)
and a triangular load (Fig. 4.13b).
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x

y

(b)

1

x

y

+1Å�

(a)

r

1

+1Å� r

Figure 4.13: (a) Rectangular load and (b) Triangular load cases examined

Rectangular load
The displacement distribution due to the self-equilibrating stresses of a rectangular load
with unit stress value in the region [−1, r] of the strip end (Fig. 4.13a) is calculated as:

UR(y, r) =

∫ r

−1

U(y, p) dp (4.29)

This integral is easy to calculate given the function U (Eq. 4.24). The analytical ex-
pressions of the non-polynomial terms are given in 4.A. The displacement distributions
for various r values are shown in Fig. 4.14, where both the numerical results according
to the method by Gaydon and Shepherd (1964) and the approximation of the aforemen-
tioned integral are presented. It can be seen that there is very good agreement between
the proposed approximation and the numerical results.

In Fig. 4.14, only results for r ≥ 0 are presented for clarity, however the conclusions
of this comparison are easily extended to cases r < 0, due to the following property:

Since only the self-equilibrating stresses are considered, a rectangular load in the region
[−1, r] is equivalent to a rectangular load spanning the whole section, which does not give
rise to self-equilibrating stresses, and an opposite sign rectangular load in the region [r, 1].
Thus, further taking the symmetry about y = 0 into account, the following symmetry
holds for the rectangular load displacement distribution:

UR(−y,−r) = −UR(y, r) (4.30)

It is noted that although the value of function U does not exist for y = p, the integral
of Eq. (4.29) does have a finite limit at y = r. The displacement at the load tip (y = r) is
presented in Fig. 4.15, for both the numerical solution and the proposed approximation.

Triangular load
Similarly, the displacement distribution due to the self-equilibrating stresses of a triangular
load in the region [−1, r] of the end section with unit maximum stress at y = −1 (Fig.
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4. The nonlinear displacement distribution of the semi-infinite strip
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Figure 4.14: Displacement distributions due to rectangular loading for various r values:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).
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Figure 4.15: Displacement due to rectangular loading at y = r for various r values: Com-
parison between numerical results and proposed approximation.
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4.5. Application to the elastic rocking body

4.13b) is calculated as:

UT(y, r) =
r

r + 1

∫ r

−1

U(y, p) dp− 1

r + 1

∫ r

−1

p U(y, p) dp (4.31)

The analytical expression of the non-polynomial terms of both integrals can be found in
4.A. The displacement distributions for various values of r are given in Fig. 4.16, where
both the numerical results according to the method by Gaydon and Shepherd (1964) and
the approximation of the aforementioned integral are presented, again showing very good
agreement with each other.

Similarly to the rectangular loading, the following symmetry holds for the triangular
loading displacement distribution:

UT(−y,−r) =
1 + r

1− r
UT(y, r) (4.32)

So, although only cases with r ≥ 0 are presented, the aforementioned identity implies
that the depicted comparison of the results also holds for cases with r < 0.

Again, Eq. (4.31) does have a finite limit for y = r and the displacement at the load
tip (y = r) is presented in Fig. 4.17, for both the numerical solution and the proposed
approximation.

4.5 Application to the elastic rocking body
One important practical application of the semi-infinite strip results is the prediction of
the response of rocking bodies. In contrast to conventional members, rocking bodies can-
not develop tensile stresses at the rocking interfaces, but only compressive stresses acting
partially on the rocking end sections. Due to this partial loading, nonlinear stress distri-
butions develop near the contact areas (Fig. 1.5). This also influences the displacement
distributions across rocking body sections near the contact area, which are nonlinear.

As explained in Section 4.2, in order to examine the influence of the nonlinear stress
distributions, the stresses at the rocking interfaces must be decomposed into stresses ac-
cording to the technical theory for the respective resultant forces and self-equilibrating
stresses. Since the effect of the latter is negligible far from the rocking interfaces, the
displacement distribution at sections far from the contact areas is almost linear across the
element, as predicted by the technical theory of bending.

For a body rocking on a rigid surface, since the rocking interface is planar, the dis-
placement distribution of the fibers corresponding to the contact region must be linear
also at the rocking end. Since the displacements according to the technical theory are
linear across the whole section by default, this means that the displacements due to the
self-equilibrating stresses must also be linear for this contact region (Fig. 4.18).
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4. The nonlinear displacement distribution of the semi-infinite strip
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Figure 4.16: Displacement distributions due to triangular loading for various r values:
Comparison of numerical results (solid lines) and proposed approximation (dashed lines).
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Figure 4.17: Displacement due to triangular loading at y = r for various r values: Com-
parison between numerical results and proposed approximation.
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4.5. Application to the elastic rocking body

Considering that the effect of the self-equilibrating stresses vanishes at sections far
from the contact area, their contribution can be equivalently examined using the semi-
infinite strip model, which is much easier to solve. In terms of the semi-infinite strip
problem, and assuming that the contribution of the shear stresses on the normal displace-
ments is negligible compared to the one of the normal stresses (e.g. relatively slender
bodies), this means that a suitable normal stress distribution must be found, so that the
produced displacement distribution under the corresponding semi-infinite strip end load-
ing is linear.

The aforementioned problem can be stated mathematically as follows: Given a contact
length, c of the normal load (meaning that σ = 0 at y = −1+c) and n control points across
the contact region, assuming without loss of generality that the stress value at y = −1 is
σ = 1, the stresses at the intermediate n− 2 points must be determined, so that

ui+1 − ui

yi+1 − yi
=

ui − ui−1

yi − yi−1

(4.33)

for i = 2, ..., n − 1, where ui are the displacements at the control points yi (Fig. 4.18).
This gives us n − 2 equations with n − 2 unknowns. It is noted that in order for the
calculated stresses to be meaningful, they should all have the same sign as the one assumed
for y = −1.
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[u]ui
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Rocking

interface

Figure 4.18: Stress distribution acting across the rocking interface, [σ], and induced dis-
placement distribution, [u]. The displacement distribution under the load must be linear.
Only deformations parallel to the load are shown for clarity.

The respective displacements can be calculated numerically in many ways. The numeri-
cal method used must take into account that the displacement under the concentrated load
is not finite. However, it is helpful that these singularities regarding the displacements do
not exist for the rectangular and triangular load cases. The easiest integration scheme is
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4. The nonlinear displacement distribution of the semi-infinite strip

to consider a rectangular load which has its center at each point yi and extends until the
middle of the distance between neighboring points.

Here, the more accurate decomposition of the stress distribution into a sum of triangu-
lar loads is used with the corresponding displacements calculated as stated in Section 4.4.
The singularities of the displacement distributions due to a triangular load are removable,
thus no problems arise in the numerical solution of the problem.

The first step is to decompose the unknown stress distribution (Fig. 4.19a) into “hat”
functions, H(y), that is n functions, each one of which has unit value at a point yj and zero
values everywhere else, with linear transition inside the intervals [yj−1, yj] and [yj, yj+1]

(Fig. 4.19b). In this way, any piecewise linear stress distribution can be expressed as

σ(y) =
∑
j

σjHj(y) (4.34)

1
j
Â+

j
 (y)1

j

1
j
�

H
j
 (y)

�
j

s
j+1

s
j-1

s
j

0y
j

(a) (b) (c)

y1 yn... ... y
j

y
j-1

y
j+1

y
j

y
j-1

y
j+1

Figure 4.19: Decomposition of the stress distribution: (a) Original distribution; (b) De-
composition into hat functions; (c) Decomposition of the hat function around yj into
three triangular distributions starting at y = −1.

A hat function Hj(y) around point yj is composed of three linear parts in the inter-
val [−1, yj+1] and thus can be decomposed into three triangular distributions starting at
y = −1 (Fig. 4.19c). The vector containing the maximum stresses, S, of the triangular
distributions ending at points yj can be proven that is connected to the stress values at
points yj , σ, through the relationship:

S = H σ (4.35)

where H is a n× n matrix with zero values except for the following entries:

Hj−1,j =
1 + yj−1

yj − yj−1

Hj,j =− yj + 1

yj − yj−1

− 1 + yj
yj+1 − yj

Hj+1,j =
yj+1 + 1

yj+1 − yj

(4.36)

for j = 1, ..., n, where fractions containing y0 or yn+1 are ignored.
A new n×n matrix Ut is formulated next, whose entry Ut,ij refers to the displacement

at yi due to a triangular load with its tip at yj (meaning a load length of 1 + yj) and unit
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4.5. Application to the elastic rocking body

maximum stress, using the formulas found in Section 4.4. The first column referring to
a triangular load with tip at y = −1 is set to zero. Then, a new matrix Uσ is produced,
whose entry Uσ,ij refers to the displacement at yi due to the stress at yj , which is given by:

Uσ = Ut H (4.37)

Afterwards, a (n− 2)× n matrix K is formulated, whose entry Kij gives the contri-
bution of the stress at yj on the difference between the slopes of the intervals [yi+1, yi+2]

and [yi, yi+1], given by

Kij =
Uσ,i+2,j − Uσ,i+1,j

yi+2 − yi+1

− Uσ,i+1,j − Uσ,i,j

yi+1 − yi
(4.38)

The stress at point y = −1+ c is equal to zero, thus the final column of K is removed.
Furthermore, the stress at the leftmost point, y = −1, is assumed to have a unit value.
Thus, if the first column of K is denoted as K0 and the n − 2 remaining columns form
the matrix Kn, the stresses σn at the intermediate n − 2 locations are calculated as the
solution of the linear system:

Kn σn = −K0 (4.39)

After the calculation of the stress distribution, the displacements u at various locations
y∗i across the whole section due to the self-equilibrating stresses can be calculated as

u = U∗
t H σ (4.40)

where σ = [1,σn, 0]
T and U∗

t is a matrix whose entry U∗
t,ij refers to the displacement

at y∗i due to a triangular load with its tip at yj and unit maximum stress at y = −1, as
previously.

Applying this procedure for many values of the contact length, c, the stress distribu-
tions shown in Fig. 4.20 are produced, where the corresponding linear stress distributions
are also presented in dashed lines. It can be seen that the stress distributions produced are
nonlinear and may in reality even contain singularities at points y = −1 and y = −1 + c.
For the limiting case c = 2, corresponding to full contact at the base interface, a linear
stress distribution develops, as expected, since the technical theory of bending can be used,
which predicts linear stresses and displacements across the section by default.

The lever arms produced by exact stress distributions shown in Fig. 4.20 with respect
to the center of the section are presented in Fig. 4.22. In the same figure, the lever
arm corresponding to a triangular load with the same contact length, c, is also shown for
comparison. It can be seen that, generally, the lever arm produced by the exact stress load
is lower than the one for triangular load.

Regarding the displacement distribution across the rocking section, the previous stress
distributions were calculated so that the displacement profile under the load is linear.
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4. The nonlinear displacement distribution of the semi-infinite strip

There is, however, no constraint regarding the displacement distribution across the (up-
lifted) non-contact region of the rocking section, which is nonlinear. This is due to the
nonlinearity of the displacements produced by the self-equilibrating stresses, which influ-
ence the whole section (Fig. 4.18). The deviation of the displacement distribution of the
non-contact region from the linear distribution for various contact lengths, c, is presented
in Fig. 4.21, where the distributions have been normalized so that the displacement devi-
ation at y = 1 is equal to unity. The shapes of these distributions correspond to the shape
of the gap formed between the rocking interface and the body (e.g. across the uplifted
non-contact regions at the top and bottom rocking interfaces of Fig. 1.5).

It can be seen that the displacement distribution across the non-contact region is in-
deed nonlinear, so the assumption of a bilinear displacement distribution composed of
two linear segments across the contact and non-contact regions of the rocking interface
would be only approximate. This approximation neglects that the displacement distribu-
tion must be first-order continuous across the whole section, which is accounted for in the
methodology presented in this thesis and reflected on the derived displacement deviation
distributions of Fig. 4.21. Interestingly, though, as c → 0, meaning that the rocking body
can be considered almost rigid and contact takes place almost at the corner of the rocking
body, the displacements across the non-contact region are essentially linear, which agrees
with the assumption of non-deformability of a rigid rocking body.

The central displacement, δ0, and the slope, θ, of the linear displacement distributions
under the load produced by the exact stress loadings (Fig. 4.20) are presented in Fig. 4.23.
In the same figure, the predictions according to the formulas proposed in Chapter 2 are
also presented for comparison. As explained in that chapter, δ0 and θ are the parameters of
the best-fit line that approximates the displacement distribution under a triangular load.
It is noted that for a triangular load, the contact length, ct, and the maximum stress, st,
for given axial force, Nn, and moment, Mn, at the end section of the semi-infinite strip
are:

ct = 3

(
1 +

Mn

Nn

)
(4.41)

st =
2Nn

ct
=

2

3

Nn

1 +Mn/Nn

(4.42)

For compatibility reasons, the results of the two methods are compared for the same axial
force and moment acting on the rocking section and the results are presented in terms of
parameters ct and st.

It can be seen that the assumption made in Chapter 2 gives very good results. The only
discrepancy between the results can be observed for small values of the equivalent contact
length, ct. For such small contact lengths, the numerical solution by Gaydon and Shep-
herd (1964) does not converge well even for a fairly large number of eigenfunctions used,
so the results in Chapter 2 have been extrapolated to cover this area. Furthermore, the

96



4.5. Application to the elastic rocking body

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Location, y

0.0

0.2

0.4

0.6

0.8

1.0
St

re
ss

c= 0.25

c= 0.50

c= 0.75

c= 1.00

c= 1.25

c= 1.50

c= 1.75

c= 2.00

Figure 4.20: Stress distributions for various contact lengths, c, which produce linear dis-
placement distributions under the load. The corresponding linear stress distribution for
each contact length is shown with a dashed line.
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Figure 4.22: Lever arm of exact stress distributions with respect to the center of the section
and comparison with that of triangular loads with the same contact length, c.

respective values of the results obtained using the methodology proposed in the present
chapter (“exact” distributions) might be sensitive to even small errors included in the pro-
posed approximation functions. Thus, it is difficult to decide on which values are more
accurate. Nevertheless, the discrepancy between them is not expected to have a significant
effect on practical applications.

It is expected that the establishment of an analytical function for the displacement
distribution of the semi-infinite strip under a point load will provide significant help in
future works regarding the prediction of the response of deformable rocking bodies.

4.A Analytical expressions for the non-polynomial terms
of the displacement integrals

The polynomial terms of Eq. (4.24), that is functions UsP and UaP, are easy to integrate for
the derivation of the displacement due to a rectangular or triangular load. The indefinite
integrals regarding UA and UB are given here.

IA =

∫
UA(y, p) dp = 2 f1(y, p)− (2y2p2 + 5yp− 1) p f2(yp)/3

+ (1 + yp) (2yp− 1) p f2(−yp)/3 + 4yp2/3

(4.43)
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Figure 4.23: (a) Normalized central displacement and (b) normalized slope of the lin-
ear displacement distributions under the load produced by the “exact” stress loads and
comparison with the results of equivalent triangular loads with the same axial force and
moment. ct and st are the contact length and maximum stress of the equivalent triangular
load, respectively, while E is the modulus of elasticity of the member.
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4. The nonlinear displacement distribution of the semi-infinite strip

JA =

∫
p UA(y, p) dp = (p+ y) f1(y, p)− [(3yp+ 7)f1(yp, 1) + f2(yp) + f3(yp)] p

2/6

− [(3yp+ 1) f1(−yp, 1) + f2(−yp) + f3(−yp)] p2/6 + yp3 + p2/3− yp

(4.44)
IB =

∫
UB(y, p) dp = −4f4(y, p)− 2f5(y, p) + 4f4(−y,−p) + 2f5(−y,−p)

+ 3 [(1 + y)f1(−y, 1)− (1− y)f1(y, 1)] p
2/2 + [(1 + p)2f1(−p, 1) + (1− p)2f1(p, 1)] y

+ ln[(1− y)2 + 4] (3y2p− 6yp+ 3p− 8) p/4

− ln[(1 + y)2 + 4] (3y2p+ 6yp+ 3p+ 8) p/4

+ ln[(1− p)2 + 4] (2− y/2− 2p+ 3yp/2− 3yp2/2 + yp3/2)

− ln[(1 + p)2 + 4] (2 + y/2 + 2p+ 3yp/2 + 3yp2/2 + yp3/2)

+ arctan(y/2− 1/2) (3p+ 2) (y − 1) p− arctan(y/2 + 1/2) (3p− 2) (y + 1) p

− arctan(p/2− 1/2) [(3y + 1) (−5 + 2p− p2) + 8 (1 + y)]

− arctan(p/2 + 1/2) [(3y − 1) (5 + 2p+ p2) + 8 (1− y)]

+ 2 (6 ln(2)− π) p+ 3 (2 ln(2) + π + 1) yp2

(4.45)
JB =

∫
p UB(y, p) dp = −4f4(y, p) + (1− y)f5(p, y)− (1 + p)f5(y, p)

− 4f4(−y,−p) + (1 + y)f5(−p,−y)− (1− p)f5(−y,−p)

+ [(1 + y) f1(−y, 1)− (1− y) f1(y, 1)] p
3

+ [(3p− 1) (1 + p)2 f1(−p, 1) + (3p+ 1) (1− p)2 f1(p, 1)] y/4

+ ln[(1− y)2 + 4] (y2p− 2yp+ p− 2) p2/2

− ln[(1 + y)2 + 4] (y2p+ 2yp+ p+ 2) p2/2

+ ln[(1− p)2 + 4] (−1/3− p2 + 15y/8 + 3yp2/4− yp3 + 3yp4/8)

+ ln[(1 + p)2 + 4] (−1/3− p2 − 15y/8− 3yp2/4− yp3 − 3yp4/8)

+ arctan(y/2− 1/2) (2p+ 1)(y − 1) p2 − arctan(y/2 + 1/2) (2p− 1)(y + 1) p2

− arctan(p/2− 1/2) [(y + 1/3) (−13 + 3p2 − 2p3) + 8(1 + y)]

− arctan(p/2 + 1/2) [(y − 1/3) (−13 + 3p2 + 2p3)− 8(1− y)]

+ 2 (2 ln(2) + π + 1) yp3 + (6 ln(2)− π + 2/3) p2 − 2yp

(4.46)
The functions f1, ..., f5 are given in Table 4.2. These functions contain removable

singularities at the points given in the table, for which the corresponding limits are given.
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macroelement algorithm of Chapter 2

Function Definition Singularity point Limit
f1 f1(x, z) = (z − x) ln |z − x| x = z 0
f2 f2(x) =

(1− x) ln(1− x)

x
x = 0 -1
x = 1 0

f3 f3(x) =
1 + f2(x)

x
x = 0

1

2
x = 1 1

f4 f4(x, z) = (1− x) arctan

(
1− z

1− x

)
x = 1 0

f5 f5(x, z) = (1− z) ln [(1− x)2 + (1− z)2] x = z = 1 0

Table 4.2: Functions for the calculation of the displacement integrals containing remov-
able singularities.

4.B Incorporation of the rocking interface stress
determination procedure into the macroelement
algorithm of Chapter 2

In Chapter 2, a macroelement formulation for the prediction of the response of elastic
deformable rocking bodies was proposed. In this formulation, the normal stresses devel-
oping across the rocking interface are assumed to have a triangular distribution. Since a
triangular load does not produce linear displacements (Section 4.4), a best-fit linear ap-
proximation of the induced displacements is performed, so that there is compatibility with
the observation that the displacement distribution across the loaded region of the rocking
interface is linear.

As explained in Section 4.5, this approximation does indeed give very good results
(Fig. 4.23). More specifically, given a set of an axial force and moment acting on the
rocking end, the central displacement and rotation produced by the equivalent triangular
load, whose parameters are calculated using Eqs. (4.41) and (4.42), are in very good
agreement with the ones produced by the exact nonlinear stress distribution.

This means, that the macroelement procedure proposed in Chapter 2 does not need
to be altered regarding the calculation of the additional displacements produced by the
partial loading of the rocking interface. However, if one wants to determine the exact stress
distribution acting on the rocking interface at the end of a converged step, the procedure
presented in Section 4.5 can be incorporated as follows:

For given axial force, Nr, and moment, Mr, acting on the rocking end of a member
with semi-width b, normalized with respect to the width d, and for n control points across
the contact region:

• Calculate the normalized forces referring to the semi-infinite strip dimensions, Nn =

Nr/b and Mn = Mr/b
2.
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4. The nonlinear displacement distribution of the semi-infinite strip

• Calculate the lever arm for a stress distribution acting on the left side of the semi-infinite
strip end, r = −|Mn/Nn|. If |r| ≤ 1/3, the whole section is loaded with a linear stress
distribution and the technical theory of bending applies, otherwise continue to the next
steps.

• Estimate the normalized contact length, c, from Fig. 4.22, or from the following ap-
proximation:

c = 3(r+1)+(10.49+41.93r+74.22r2+63.13r3+20.79r4)(r+1)(r+1/3) (4.47)

• Calculate the coordinates of the control points, yj = −1+c (j−1)/(n−1), j = 1, ..., n.

• Formulate matrixUt, whose entryUt,ij refers to the displacement at yi due to a triangular
load with its tip at yj , using Eq. (4.31).

• Formulate matrix H using Eq. (4.36).

• Formulate matrix Uσ using Eq. (4.37).

• Formulate matrix K using Eq. (4.38).

• Formulate and solve Eq. (4.39) to determine σn.

• The vector of stresses corresponding to points yj is σ = [1,σn, 0]
T .

• Calculate the axial force of the calculated stress distribution:

N1 =
n−1∑
j=1

1

2
(yj+1 − yj)(σj+1 + σj) (4.48)

• Scale the calculated stresses to match the given normalized axial force:

σ̂ =
Nn

N1

σ (4.49)

The stresses corresponding to the normalized semi-infinite strip have the same value as
the ones corresponding to the original member with arbitrary semi-width b.

• If ρ = sign(Mr/Nr), the points of action of stresses σ̂ on the original member rocking
end section are Yj = −b ρ yj , while the contact length is C = b c.

• The additional displacements due to the self equilibrating normal stresses at points Y ∗
i

across the rocking interface are calculated using Eq. (4.40) for y∗i = −(ρ/b) Y ∗
i and σ̂

instead of σ, which additionally need to be multiplied with (b/E).

It is noted that the determination of the stress distribution inside the member for the
calculated stress distribution at the rocking interface is a much more involved process. In
order to do so, the maximum stresses of the triangular loads, S, are needed, which are
calculated using Eq. (4.35) with σ̂ instead of σ. Afterwards, the procedure described in
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macroelement algorithm of Chapter 2

detail in Chapter 2 must be followed for the determination of the stresses inside the body
of the member induced by each individual triangular load, all of which must be finally
superimposed with the stress distribution predicted by the technical theory of bending for
the given resultant forces at the member ends.
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5
Modeling of inelastic rocking bodies under

cyclic loading

In this chapter, the macroelement formulation for inelastic rocking bodies under cyclic
loading is presented. In contrast to the monotonic loading examined in Chapter 3, cyclic
loading, which is examined herewith, is much more complex and needs a different treat-
ment.

It should be noted that the formulation presented in this chapter is developed for static
analyses. The dynamic motion of rocking members, though, is more complex, since it also
involves other motion modes (sliding and upthrow) and requires a suitable treatment of
damping, especially during impacts. The proposed formulation herein can serve as the
basis for the extension of the macroelement for dynamic analyses; however, the necessary
modifications to incorporate the aforementioned phenomena are considerable and will be
presented in the following chapter.

5.1 Problem statement
The material of the rocking body is assumed to be elastic-perfectly plastic with Young’s
modulus E, Poisson’s ratio ν and yield stress σy, while the same modulus of elasticity is
assumed during unloading. As usual practice in beam-column elements, material yielding
is assumed only for the normal stresses, due to the increased difficulty of implementing
another yielding criterion combining all stresses.

As will be explained in the ensuing, a stress - strain material relationship is not di-
rectly used, because inelasticity is introduced in the form of inelastic displacements under
constant yield stress. It is also noted that, modifications to account for more complicated
material laws are difficult to implement with the proposed formulation, as they would
require additional assumptions for the calculation of the inelastic strains.

The main characteristic of rocking bodies is that, in contrast to conventional structural

105



5. Modeling of inelastic rocking bodies under cyclic loading

members, tensile stresses cannot develop across the rocking interface. As a result, little
tensile stresses can develop inside the body close to its rocking end. This means that the
plastic deformations developing in this area cannot be reversed by sufficient tensile stresses,
so they can be considered almost irreversible for the formulation presented herein.

Since tensile stresses cannot develop across the rocking interface, the stress distribution
across this interface is nonlinear. However, the technical theory of bending used in usual
structural analyses cannot predict such response, meaning that this theory cannot be used
for rocking members. As extensively described in Chapter 2, the following approach,
based on the more general theory of elasticity, is used instead, which is considered an
invaluable tool for the accurate prediction of deformable rocking bodies.

It is reminded that the displacements produced by the nonlinear stress distribution
across the rocking interface can be examined by decomposing it into two distributions:
(i) A stress distribution according to the technical theory of bending for the given rock-
ing end resultant forces and (ii) Self-equilibrating distributions, which influence the local
displacements but do not produce resultant forces and moments (Fig. 4.2).

The self-equilibrating stresses developing near the contact area have no resultant forces
and moment, so, according to the Saint-Venant principle, their effect far from the contact
area is negligible. This means that the displacement distribution across member sections
far from the contact area is almost linear across the element, as predicted by the tech-
nical theory of bending (Fig 1.5). Furthermore, the additional displacements induced
to the rocking body across the rocking interface by the self-equilibrating stresses can be
equivalently calculated as those corresponding to a semi-infinite strip (Fig. 4.1), since
this problem is much more easily solved. The semi-infinite strip examined is loaded with
self-equilibrating normal and shear stresses across its end (x = 0,−1 ≤ y ≤ 1) and, in
contrast to the well-known semi-infinite space, is stress-free at its sides (y = ±1). The
results for the semi-infinite strip loaded with self-equilibrating normal and shear stresses
can be easily translated into ones referring to the rocking body, as it will be shown in the
ensuing.

Although the theory of elasticity used to solve the aforementioned semi-infinite strip
problem can only be rigorously applied to elastic bodies, it would be useful to use it ap-
propriately also for inelastic ones. To this end, the following assumptions are made: (i)
The behavior defined previously for the inelastic material is considered as is for the rock-
ing interface, where, however, only compressive stresses can develop (Fig. 5.1). (ii) The
stress distributions on the rocking interface produce elastic displacements, [uel], which
are calculated according to the elastic theory of the semi-infinite strip. (iii) Fibers with
inelastic behavior or fibers which are stress-free at the rocking interface may develop addi-
tional displacements, [ua], beyond the aforementioned elastic ones. In the case of inelastic
behaviour, these additional displacements are negative (ua < 0) and correspond to the
additional plastic displacements that develop during the current step, while in the case
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Figure 5.1: Elastic-perfectly plastic material law assumed for the rocking body at the
rocking interface, where only compressive stresses can develop.
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Figure 5.2: Stress distribution acting across the rocking interface and displacements pro-
duced across the yielded, elastic and non-contact regions, which match the displacements
of the rocking surface.

of stress-free fibers at the rocking interface, which do not belong to the contact region,
additional displacements are positive (ua > 0) and correspond to the gaps formed be-
tween the body and the rocking interface (Fig. 5.2). It should be noted that, in addition
to all of the aforementioned displacements, each fiber may also have a preexisting plastic
displacement, upl,pr, from previous steps, which is almost irreversible, as explained above.

For a given linear displacement distribution across the rocking end, urs(Y ), which
corresponds to the planar rocking surface (Fig. 5.2) and is determined from the displace-
ments at node j of the element, the stress distribution at the rocking interface has to be
determined, so that the following condition holds for each fiber located at Y :

uel(Y ) + ua(Y ) + upl,pr(Y ) = urs(Y ) (5.1)

with
ua(Y ) ≥ 0, for regions which are stress-free (σ(Y ) = 0)

ua(Y ) = 0, for regions with elastic response (σy < σ(Y ) < 0)

ua(Y ) ≤ 0, for regions with inelastic response (σ(Y ) = σy)

(5.2)
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where uel(Y ) is the elastic displacement at Y induced by the normal and shear stresses,
ua(Y ) is the additional plastic or gap displacement at Y , depending on the response of the
respective fiber at the rocking interface as defined above, upl,pr(Y ) is the preexisting plastic
displacement at Y from previous steps and σ(Y ) is the normal stress of the fiber located
at Y at the rocking end.

Fig. 5.2 shows the original and deformed position of the rocking body and the rocking
surface. The shaded area corresponds to the deformed rocking body, where only deforma-
tions of the body parallel to the loading are shown for clarity. The normal stresses, [σ], as
well as the shear stresses, acting across the rocking interface produce elastic displacements,
[uel], which develop across the whole section (in blue), while negative additional (plastic)
displacements [ua] develop across the yielded area (in red) and positive additional (“gap”)
displacements [ua] form between the rocking surface and the body across the non-loaded
area (in green), so that the total displacements match those of the rocking surface (node j
of the element), [urs] (in brown). Preexisting plastic displacements are not considered in
the figure for simplification.

It should be mentioned that this problem statement does not make the assumption of
linear strain distribution across the contact region, which has been proven to be incorrect
even for elastic bodies (Chapter 4). As also shown in the next section, this is because such
a linear strain distribution produces nonlinear displacements across the contact region,
which comes in contrast to the assumption of a planar rocking surface (Fig. 5.2).

In addition, it is evident that only displacements parallel to the deformed member
axis are considered in the proposed formulation, while small relative displacements of the
individual control points perpendicular to the member axis, for example due to Poisson’s
phenomenon, are neglected, as is the usual practice in beam-column formulations. Nev-
ertheless, and despite the fact that a planar rocking surface is assumed, some kind of stress
singularity may still exist at the corners of the rocking body, as shown in Chapter 4, but
does not affect the solution convergence.

Elastic strain and additional displacement distributions
For the numerical solution of the aforementioned problem, the rocking interface is exam-
ined in the same coordinate system as the one used for the semi-infinite strip,−1 ≤ y ≤ 1,
meaning that coordinates Y of the actual rocking end section are normalized with respect
to the semi-width of the member section, b, and is discretized into a number of control
points with fixed normalized coordinates, Yw.

Each of these control points is assigned a stress value, σ, or more conveniently an elastic
strain of the rocking body at the rocking interface, εel = σ/E, as well as an additional
displacement, the normalized value of which, with respect to b, is denoted with ũa. Eq. 5.2
suggests that these quantities cannot take values independently from each other. Although
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Figure 5.3: Unified representation of both the elastic strain, εel, (in blue) and the nor-
malized additional displacement, ũa, (positive values in green and negative values in red)
under variable w: For w ≤ εy, εel = εy and ũa = w − εy ≤ 0; for εy < w ≤ 0, εel = w
and ũa = 0, while for w > 0, εel = 0 and ũa = w > 0.

the dimensionless quantities εel and ũa are not directly comparable with each other, a new
dimensionless variable

w = εel + ũa (5.3)

is introduced for algorithmic reasons, which represents the sum of the elastic strains and
the normalized additional displacements. This variable is able to represent the whole al-
lowable range of εel and ũa values at each fiber as follows (Fig. 5.3):

εel =


0 , if w > 0

w , if εy < w ≤ 0

εy , if w ≤ εy

(5.4)

and

ũa =


w , if w > 0

0 , if εy < w ≤ 0

w − εy , if w ≤ εy

(5.5)

where εy = σy/E.
The previous relationships express the assumptions in Eq. (5.2) and more specifically

(Fig. 5.3):

• if w > 0, the fiber does not come in contact with the rocking surface and does not
develop an elastic strain (εel = 0), but only a positive additional (“gap”) displace-
ment, ũa = w > 0.
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5. Modeling of inelastic rocking bodies under cyclic loading

• if εy < w ≤ 0, the fiber behaves elastically, so an elastic strain at the interface
develops with εy < εel ≤ 0 and the additional displacement is zero, ũa = 0.

• if w ≤ εy, the fiber behaves inelastically, so it develops an elastic strain equal to the
yield strain, εel = εy, and an additional plastic displacement, ũa = w − εy ≤ 0.

If nw is the number of control points used, W is a vector with length nw, which
contains all of the w values and Sw and Ua are the same length vectors containing the
elastic strains and additional displacements for all control points, respectively. In addition,
Upl,pr is the vector containing the normalized plastic displacements at the control points
retained from previous steps.

5.2 Prediction of elastic displacements for given stress
distributions across the rocking interface

Before continuing with the problem treatment, the displacements induced by the self-
equilibrating stresses that develop across the rocking interface are derived in this section,
which are used next in the proposed algorithm.

Normal stresses
After uplift, the stress distribution across the rocking interface is nonlinear due to its partial
loading. As previously mentioned, the effect of such nonlinear loading can be considered
by decomposing it into (i) a linear loading as predicted by the technical theory of bend-
ing for the resultant forces produced and into (ii) a self-equilibrating load. Regarding the
displacements produced by the self-equilibrating part of the normal stresses, the displace-
ment distribution across the rocking interface for an arbitrary stress distribution has to be
determined.

This displacement distribution can be more easily calculated for an equivalent semi-
infinite strip, as mentioned before. The solution of this problem is presented in Chapter
4, where an analytic expression for the displacements across the member for a concen-
trated load at an arbitrary location is given, by approximating the numerical results of the
methodology proposed by Gaydon and Shepherd (1964). Function U(y, p) (Eq. 4.24),
refers to the displacement of the semi-infinite strip at location y for a unit concentrated
load at p, normalized with respect to the modulus of elasticity of the body, E.

In the proposed formulation, the normal loads across the rocking interface are decom-
posed into triangular or trapezoidal loads. As any stress distribution can be considered
as the integral of concentrated loads across the load surface, the displacements due to a
triangular load with unit negative slope, maximum value at y = −1 and load tip at r (Fig.

110



5.2. Prediction of elastic displacements for given stress distributions across the rocking
interface

5.4a) are given by:

Utr(y, r) = r

∫ r

−1

U(y, p) dp−
∫ r

−1

pU(y, p) dp (5.6)

The integrals required in the previous equation are given in Appendix 4.A. Furthermore,
the displacements due to a trapezoidal load with constant value between y = −1 and
y = rl and unit negative slope between y = rl and y = rr (Fig. 5.4b) are given by:

Utrapz(y, rl, rr) = Utr(y, rr)− Utr(y, rl) (5.7)

‒1 +1r
1

r+1

(a)
‒1 +1rl

1

rr-rl

rr

(b)

‒1 +1
(c)

rl rr

1

(c)
y1 y2‒1 +1y0

(d)

Figure 5.4: (a) Triangular normal load with maximum value at y = −1 and slope equal
to -1; (b) Trapezoidal normal load with elastic stress boundaries at rl and rr and stress
slope between them equal to -1; (c) Parabolic shear load with unit maximum value and
boundaries rl and rr; (d) Triangular normal load with maximum value at y0 and boundaries
at y1 and y2.

Shear stresses
The real distribution of the shear stresses is unknown, since in reality there is an interaction
with the normal stresses and an accurate prediction of its shape requires special solution
methods based on the theory of elasticity. However, the contribution of the shear stresses is
assumed here to be that of an equivalent parabolic distribution (Fig. 5.4c), independently
of the exact normal stress distribution. The normal stress distribution determines the
boundaries of the contact region across the rocking interface, rl and rr, which coincide
with the the boundaries assumed for the parabolic shear distribution.

Generally, the displacement profile produced by a parabolic shear loading is nonlinear.
Nevertheless, for simplicification, this distribution is linearized across the contact region,
as in Chapter 2.

In order to calculate the linearized displacements for the self-equilibrating part of the
parabolic shear stress distribution, the methodology presented in Chapter 2 is followed,
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5. Modeling of inelastic rocking bodies under cyclic loading

with the difference that both parabolic distribution boundaries, rl and rr, corresponding
to the contact region boundaries, need to be considered. For this loading, if τm is the
maximum shear stress, the shear stress distribution is:

τ̃(y) =


0, for y ≤ rl

4τm
(rr − rl)2

(rr − y)(y − rl), for rl ≤ y ≤ rr

0, for y ≥ rr

(5.8)

The terms βi associated with this distribution, which are necessary for the calculation
of the elongation integrals as in Chapter 2 are:

For the symmetric problem (antisymmetric shear distribution):

βi =
2
√
2τm

λ4
i (rr − rl)2

[
λi (rr − rl)

(
sinh (λi rr)

coshλi
+

sin (λi rr)

cosλi
+

sinh (λi rl)

coshλi
+

sin (λi rl)

cosλi

)
− 2

(
cosh (λi rr)

coshλi
− cos (λi rr)

cosλi
− cosh (λi rl)

coshλi
+

cos (λi rl)

cosλi

)]
(5.9)

and for the antisymmetric problem (symmetric shear distribution):

βi =
2
√
2τm

µ4
i (rr − rl)2

[
µi (rr − rl)

(
cosh (µi rr)

sinhµi
− cos (µi rr)

sinµi
+

cosh (µi rl)

sinhµi
− cos (µi rl)

sinµi

)
− 2

(
sinh (µi rr)

sinhµi
− sin (µi rr)

sinµi
− sinh (µi rl)

sinhµi
+

sin (µi rl)

sinµi

)]
(5.10)

The parameters of the derived best-fit line according to this methodology correspond
to the central displacement and rotation of the rocking end due to the self-equilibrating
shear stress loading.

The results are produced for a unit value of t = τm/E, where τm is the maximum
shear stress and E is the modulus of elasticity. It is noted that, for simplification of the
approximation of the results, only the results for Poisson’s ratio ν = 0 are derived here,
meaning that only the contribution of the normal stresses inside the element parallel to
the member axis on the displacements is considered, since the results for ν ̸= 0 do not
differ significantly from the ones presented here.

For the approximation of the results, the following two parameters were found to
produce a good fit:

q = 1 +
rl + rr

2
(5.11)

p =
1 + rl
1 + rr

(5.12)

which correspond to the distance of the center of the parabolic distribution from y =

−1 and to the ratio of the distances of the parabolic distribution edges from y = −1,
respectively. Results are presented only for the cases where −1 ≤ (rl + rr)/2 ≤ 0, or
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5.3. Approximate determination of region boundaries

equivalently 0 ≤ q ≤ 1, since the results for 0 < (rl + rr)/2 ≤ 1 are antisymmetric to the
former ones, as explained below.

The central displacement and the rocking end rotation are approximated by

δtn(rl, rr) = at(p)
(
1− qbt(p)

)ct(p) (5.13)
θtn(rl, rr) = dt(p)(1− q)et(p) + ft(p) (5.14)

respectively, where the individual functions are:

at(p) = a1 + a2p+ a3p
2

bt(p) = a1 + a2p+ a3p
2 + a4p

3 + a5p
4

ct(p) = a1 (1− p)a2 + 1

dt(p) = (1− p)(a1 + a2p+ a3p
2)

et(p) = a1 + a2(1− p)a3 + a4p

ft(p) = a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5

(5.15)

The aforementioned functions were chosen to approximate the numerical results as
well as possible and do not have any physical meaning, while the respective coefficients
are given in Table 5.1.

Coeff. at(p) bt(p) ct(p) dt(p) et(p) ft(p)
a1 2.43622225 0.69820019 0.81346044 2.34041769 1.40432262 0.43434583
a2 -2.38180594 -1.09830807 3.77005753 -1.95923561 0.13024245 3.10747649
a3 0.70789987 1.92667568 0.89142605 3.65641634 -6.96783698
a4 -1.12706668 -0.05492961 6.5017201
a5 0.68886705 -2.28427661

Table 5.1: Coefficients of shear stress loading displacement functions.

In Fig. 5.5, a comparison between the values produced by the numerical solution by
Gaydon and Shepherd (1964) and the proposed approximation are presented, showing
that the latter gives practically indistinguishable differences in the results.

For the case 0 < (rl+rr)/2 ≤ 1, the displacements are calculated due to antisymmetry
from equations:

δtn(rl, rr) = −δtn (−rr,−rl) (5.16)
θtn(rl, rr) = θtn (−rr,−rl) (5.17)

where the parameters q = 1− (rl + rr)/2 and p = (1− rr)/(1− rl) are used.

5.3 Approximate determination of region boundaries
By assigning a value w at each control point across the rocking interface , elastic strain, εel,
or additional normalized displacement, ũa, values are assigned to each one. Connecting
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5. Modeling of inelastic rocking bodies under cyclic loading
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Figure 5.5: Comparison of (a) the central displacement and (b) the rocking end rotation
due to the self-equilibrating shear stresses, as given by the numerical solution and the
proposed approximation.
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5.3. Approximate determination of region boundaries

these values with linear segments, the corresponding elastic strain and additional displace-
ment distributions across the rocking interface are created (Fig. 5.6). However, it can be
seen that this procedure creates regions that develop both elastic strains (ϵy < ϵel < 0) and
additional displacements, which violates the assumptions described previously.

This is why specific points between the respective control points must be chosen, cor-
responding to boundaries of regions with different behavior, where the additional dis-
placements become zero and the elastic strains become either zero or equal to the yield
strain. If such boundary points between regions are not explicitly considered (Fig. 5.6),
the accuracy and continuity of the produced forces for given continuous displacements
is not ensured, leading for example to non-smooth force-displacement curves, even for
dense control point locations and to discontinuous function for the contact zone of the
body with the base, leading to numerical problems. In addition, region boundaries may
exist between two control points, even though these two points have the same elastic or
inelastic response, since existing plastic displacements between them influence the shape
of the produced stress distribution.

�� �� � � �

� � � ���

�

��

� ���� � �

��	
�

� ���� � �

Figure 5.6: Creation of distributions [ũa] and [εel] from W values. It can be seen that, if
explicit region boundaries between control points are not considered, some intervals may
develop both elastic strains (ϵy < ϵel < 0) and normalized additional displacements, ũa.

The exact determination of such points is difficult and computationally inefficient,
often leading to numerical problems. It should be noted that if the crossings of the lin-
ear segments created by the w values with the horizontal lines w = 0 and w = εy are
used, significant errors are introduced, since the strains and the additional normalized
displacements are incomparable quantities, which are unified together under variable w

for numerical purposes only.
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5. Modeling of inelastic rocking bodies under cyclic loading

The accuracy of results between the control points is not of main concern, so an approx-
imate methodology may be chosen, as long as it ensures the consistency and continuity of
the produced results. To this end, the region boundaries between two control points are
determined on the basis that the total displacement distribution, that is, the sum of the
elastic, the additional and the preexisting plastic displacements, is linear inside the inter-
val. The nonlinearities in the displacement distribution in this interval are assumed to be
mainly caused by the nonlinearities of the normal stress and the additional displacement
distributions in the same interval, while the contribution of the shear stress distribution is
assumed to be insignificant.

In order to examine the displacement nonlinearities produced by a nonlinear normal
load, let us first consider the extreme case of a concentrated load at a location p with
−1 < p < 1. For this load, Eq. (4.24) presents a displacement singularity at y = p,
which originates from the first term of the expression, U1 = −2/π · ln |p− y|, while the
rest of the expression is continuous at this point. In fact, U1 is symmetric about y = p,
meaning that for symmetric ys about y = p, the slopes are opposite, attaining infinitely
large values as y → p.

Let us now consider the triangular normal load shown in Fig. 5.4d, with maximum
value at y0 and load boundaries at y1 and y2. The displacements produced by this load
can be calculated by considering the triangular load as the integral of concentrated loads
over the loaded area. This integration removes the singularities of the concentrated load
described above. However, as y1 → y0 and y2 → y0, this triangular load approximates a
concentrated load at y0. So, even for a triangular load, for small y1 − y0 and y2 − y0 val-
ues, U1 is considered to be the crucial function for the determination of the displacement
nonlinearities in this region.

Taking only the aforementioned function into account, it can be shown that the ratio
between the difference of the displacement slopes in the intervals [y0, y2] and [y1, y0],
∆Ku, and the difference of the elastic strain slopes in the respective intervals, ∆Kε, is

∆Ku

∆Kε

= − 2

π
∆y [β ln(β) + (1− β) ln(1− β)] (5.18)

where ∆y = y2−y1 and β = (y0−y1)/∆y. The plot of the function in brackets is shown
in Fig. 5.7. It is obvious that parameter β, which practically determines the location
of the peak of the triangular load with respect to the total loaded region, influences the
result. However, as an approximation, the mean value of the aforementioned function for
β ∈ [0, 1], equal to−1/2, can be assumed, regardless of the exact location of the maximum
elastic strain, therefore:

∆Ku ≈ ∆y

π
∆Kε (5.19)

The previous equation practically means, that, for a triangular load profile in any in-
terval [y1, y2] with zero strain values at the boundaries, the deviation of the shape of the
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Figure 5.7: Function β ln(β) + (1 − β) ln(1 − β) (solid blue line) and its mean value
(dashed green line), equal to −1/2.

induced displacements from the linear displacement distribution (∆Ku) can be obtained
by multiplying the load profile with ∆y/π. By further assuming that the previous remark
can be extended to a strain distribution of any shape, a direct relationship between the
deviations of the strain and the displacement distributions from the corresponding linear
distributions can be established. More specifically, if the values of the strain distribution
are multiplied with ∆y/π (Eq. 5.19), the shape of the modified strain distribution in-
side the interval, [ε′el], equals the one of the induced elastic displacements, making the
modified strain and additional and plastic displacement distributions directly comparable.
Equivalently, modified w′ values at the interval boundaries are defined as follows:

w′ =


w , if w > 0

w
∆y

π
, if εy < w ≤ 0

w + εy

(
∆y

π
− 1

)
, if w ≤ εy

(5.20)

so that modified strains are immediately produced for εy < w ≤ 0, while the additional
displacements remain the same for the other two cases.

Let us now consider an interval [y1, y2] with values w′
1 and w′

2 at the interval bound-
aries (Fig. 5.8a), which has no preexisting plastic displacements. For the case shown in
Fig. 5.8a, w′

1 > 0 and ε′y < w′
2 < 0, so the left boundary develops a positive additional

displacement (gap) and the right boundary develops an elastic strain, meaning that a re-
gion boundary must exist between them, for which w′ = 0. The line connecting the values
w′

1 and w′
2 at the interval boundaries crosses the horizontal line w′ = 0 at y0. The vertical

orange lines in Fig. 5.8a represent the deviation from the linear modified strain distribu-
tion (red line). As previously mentioned, it is considered that the linear strain distribution
does not produce significant nonlinearities inside the interval; therefore, since modified
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Figure 5.8: Schematic representation of the methodology used to estimate region bound-
ary points and correct region distributions: (a) Interval with w′

1 > 0 and ε′y < w′
2 < 0; (b)

Interval with ε′y < w′
1 < 0 and w′

2 < ε′y; (c) Preexisting plastic displacement distribution;
and (d) modification to account for the preexisting plastic displacements.

strain values are used, the shape produced by the vertical orange lines corresponds to the
deviation of the elastic displacements from the linear elastic displacement distribution.
However, additional displacements also exist, shown with vertical green lines. The sum
of the orange and green displacement distributions is linear, implying that this proce-
dure does not create any deviation of the displacements from a linear distribution. This
means that y0 is indeed the correct region boundary and the distributions shown in Fig.
5.8a with vertical green and slanted blue lines are the actual additional displacement and
modified strain distributions, respectively. The same procedure can be applied to any w′

combinations at the interval boundaries, such as the case presented in (Fig. 5.8b), where
ε′y < w′

1 < 0 and w′
2 < ε′y.

If a plastic displacement distribution exists inside the interval from previous steps (Fig.
5.8c), a modification is necessary to account for it. In such a case, the deviant plastic
displacement distribution is calculated (vertical purple lines in Fig. 5.8c) and its opposite
is then added to the line connecting the interval boundary values to create a new curve
(brown curve in Fig. 5.8d), so that the summation of the elastic, the additional and the

118



5.3. Approximate determination of region boundaries

preexisting plastic displacements produces a linear displacement distribution. In order to
locate the region boundaries and the actual distributions inside the interval, the procedure
described previously is applied again, but the aforementioned curve is used instead of the
linear one to determine y0.

From this procedure, it follows that the elastic strain distribution inside each interval
is generally nonlinear. The actual elastic strain distribution is calculated by dividing the
modified strain distribution found with the previous procedure with ∆y/π (Eq. 5.20).
Applying the previous procedure for all intervals across the rocking interface, vectorsS and
Ys are created, containing the values and coordinates of the actual elastic strain distribu-
tion, respectively, for the whole section. Furthermore, the difference between this strain
distribution and the linear segment connecting the strain values at the interval boundaries
defines additional loads which must be taken into account (e.g. the distribution in vertical
orange lines in Fig 5.8a, divided by ∆y/π). The opposite of the slopes of this distribution
difference, as well as their left and right boundaries are stored in vectors Ks, YKsl and
YKsr, respectively.

To summarize, the necessary region boundaries and correct elastic strain and addi-
tional displacement distributions inside each interval are calculated as follows:

1. Calculate w′ at the region boundaries using Eq. (5.20).

2. Draw the line connecting the aforementioned values.

3. Calculate the differences between all linear segments of the plastic displacement
distribution with the line connecting the plastic displacement values at the interval
boundaries.

4. Add the opposite of the aforementioned deviant distribution to the line of step 2.

5. Determine the region boundaries from the points of the crossings of this curve with
the horizontal lines corresponding to w′ = ε′y = εy(∆y/π) and w′ = 0.

6. The regions between the aforementioned horizontal lines correspond to the correct
modified strain or additional displacement distributions. The additional loads due to
the nonlinearity of the strain distribution are calculated as the difference between the
modified strain distribution, divided by ∆y/π (Eq. 5.19), from the line connecting
the strain values at the interval boundaries.

It it noted here that due to the existence of plastic displacements, a new region may
form inside an interval, although none of the interval boundaries suggests that such a re-
gion exists. For example, a common phenomenon during unloading is that decompression
does not happen uniformly across the contact region, as one would intuitively think, but
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5. Modeling of inelastic rocking bodies under cyclic loading

the yielded region remains and translates towards the center of the element. The proce-
dure described above is able to predict such a response, even if this yielded region is formed
between two control points behaving elastically.

Furthermore, the ratio between displacement and strain slopes derived above, equal
to ∆y/π on average, is much less than unity. On the contrary, if the crossings of the
[w] distribution with w = 0 and w = εy were used as region boundaries, meaning that
the aforementioned ratio would be assumed equal to one, the introduced error would be
significant, even if no plastic displacements were present.

5.4 Calculation of displacements for given W values
As described previously, convergence of the algorithm is achieved when the sum of the
elastic, the additional and the preexisting plastic displacements equals the values of the
given target linear displacement distribution. This equality is checked explicitly only at
the control points, Yw, and implicitly between them, with the procedure described in the
previous section for the determination of the region boundaries.

For given W vector, containing the w values for all control points (Eq. 5.3), the
aforementioned displacement contributions are determined. The contribution of the elas-
tic displacements induced by the loading is the most difficult to calculate and originates
from three sources: The resultant forces at the rocking interface, the self-equilibrating nor-
mal stresses and the self-equilibrating shear stresses. Regarding the other contributions,
vector Ua, calculated using Eq. (5.5) for each control point, contains the normalized ad-
ditional displacements at the control points, while Upl,pr contains the normalized plastic
displacements induced at the control points from previous steps.

Elastic displacements due to the resultant forces
As already explained, the element is examined in a corotational coordinate system of a sim-
ply supported beam. For a conventional elastic member, the relationship between nodal
displacements and nodal forces in this coordinate system is (e.g. Przemieniecki, 2012):

ur =


L

EA
0 0

0
L

3EI
+

α

GAL
− L

6EI
+

α

GAL

0 − L

6EI
+

α

GAL

L

3EI
+

α

GAL

Fn (5.21)

where ur = [δrf, θ1rf, θ2rf]
T is the vector containing the central elongation and the rotations

at the two member ends due to the resultant forces, Fn = [N,M1,M2]
T is the vector

containing the axial force and moments at the two member ends, E is Young’s modulus,
G is the shear modulus, A is the area of the member section, I is the moment of inertia
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5.4. Calculation of displacements for given W values

of the member section and α is the shear shape factor with α ≈ 1.2 for rectangular cross
sections (the shear deformations contribution can be neglected by setting α = 0.0).

The forces at the rocking end, normalized with respect to the semi-width, b, and the
thickness, d, as well as the modulus of elasticity, E, are:

Nn =
N

bdE
(5.22)

Mn =
M1

b2dE
(5.23)

Qn =
Q

bdE
= −M1 +M2

bdLE
(5.24)

These normalized forces, Fnn = [Nn,Mn, Qn]
T , are introduced, so that compatibility with

the resultant forces produced by the stresses acting on the coordinate system of the semi-
infinite strip (b = d = 1) is achieved, where the stresses are also normalized with respect
to E.

Using these quantities, the nodal displacements at the member ends due to the nor-
malized resultant forces on the rocking end are calculated as:

ur = fr Fnn (5.25)

with

fr =


L

2
0 0

0
3L

4b

L2

4b2
− α(1 + ν)

0 −3L

4b
− L2

2b2
− α(1 + ν)

 (5.26)

Normalized axial force and moment at the rocking end Given the vectors S and Ys of
length ns, containing the values of the elastic strain distribution at the respective coor-
dinates, including those between the control points, the normalized axial force and the
normalized moment are given by:

Nn =
1

2

ns−1∑
i=1

(yi+1 − yi)(si+1 + si) (5.27)

Mn =
1

6

ns−1∑
i=1

(yi+1 − yi)(2siyi + siyi+1 + si+1yi + 2si+1yi+1) (5.28)

where si and yi are the elements of vectors S and Ys.
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5. Modeling of inelastic rocking bodies under cyclic loading

Normalized shear force at the rocking end Since the self-equilibrating stresses have a
local influence on the area near the rocking end according to the Saint-Venant principle,
the rotation at node i of the element (Fig. 1.5), which corresponds to the non-rocking
end, is unaffected by the self-equilibrating stresses formed at the rocking end. As a result,
rotation θ2 is determined only from the resultant forces of the member ends. Given θ2,
the normalized shear force is calculated from

Qn =
θ2 − fr,32Mn

fr,33
(5.29)

where fr,32 = −(3L)/(4b) and fr,33 = −L2/(2b2)− α(1 + ν).
After the calculation of Qn, the first two rows of Eq. (5.25) are used to determine

the contribution of the resultant forces to the rocking end displacements, δrf and θ1rf.
Alternatively, the value of the shear force calculated using Eq. (5.29) can be condensed
into Eq. (5.25), so vector urf = [δrf, θ1rf]

T can be directly calculated from

urf =

fr,11 0

0 fr,22 −
fr,23 · fr,32

fr,33

{Nn

Mn

}
+

 0
fr,23
fr,33

θ2

 (5.30)

where additionally, fr,11 = L/2, fr,22 = (3L)/(4b) and fr,23 = L2/(4b2)− α(1 + ν).

Elastic displacements due to the self-equilibrating shear stresses
If ycl and ycr are the boundaries of the contact zone, as determined by the approximate
calculation of the region boundaries, since an equivalent parabolic shear stress distribution
is considered between them, the maximum shear stress, normalized with respect to the
modulus of elasticity, E, is:

t =
3Qn

2(ycr − ycl)
(5.31)

For given shear stress distribution boundaries, the parameters utn = [δtn, θtn]
T of the

linearized displacements induced to the contact region of the rocking end with normalized
semi-width b = 1 by a parabolic distribution with t = 1 are given by Eqs. (5.13) and (5.14)
or Eqs. (5.16) and (5.17). For the value of t calculated using Eq. (5.31), the respective
vector containing the displacement parameters due to the self-equilibrating shear stresses
is:

ut = t utn (5.32)
It is noted here that, using the aforementioned methodology, the contribution of the

self-equilibrating shear stresses can be approximately considered for slender rocking bod-
ies only. For squat rocking bodies, e.g. bodies with length approximately equal to their
width, the self-equilibrating shear stresses contribution becomes important and, since it
usually produces displacements which are of opposite sign to the normal self-equilibrating
stresses, convergence problems may occur.
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5.4. Calculation of displacements for given W values

Elastic displacements due to primary self-equilibrating normal stresses
The primary normal strain distribution is the one formed by linear segments between the
elastic strains Sw located at points Yw. This stress distribution differs from the actual one
formed by taking into account the nonlinearities between the control points; however, it is
examined separately because the control points remain fixed across the rocking interface.
As a result, the following formulation remains unaltered throughout the analysis, meaning
that the respective matrices need to be formulated only once, at the beginning of the
analysis.

The purpose of the following derivations is to formulate a matrix V, whose entry (i, j)
is the elastic displacement induced at location yi due to a unit elastic strain at location yj ,
with the elastic strains at the other control points being equal to zero. In order to derive
this matrix, the elastic strain distribution (Fig. 5.9a) is first decomposed into triangular
hat loads (Fig. 5.9b). Then, each hat load is decomposed into three triangular loads with
maximum values at y = −1 (Fig. 5.9c), for which the displacements induced across the
section can be easily calculated.

εel, j

y j

(a)

y jy j-1 y j+1

εel, j

(b)

y jy j-1 y j+1

εel, j

(c)

Figure 5.9: (a) Elastic strain distribution; (b) Decomposition into hat triangular loads; (c)
Decomposition of each hat load into triangular loads with maximum value at y = −1.

More specifically, matrixH is formulated, whose entry (k, j) refers to the contribution
of the elastic strain at yj to the opposite of the slope of the triangular load with maximum
value at y = −1 and load tip at yk. It can be proven that the non-zero entries of this
matrix are given by the following expressions:

Hj−1,j =
1

yj − yj−1

Hj,j =− 1

yj − yj−1

− 1

yj+1 − yj

Hj+1,j =
1

yj+1 − yj

(5.33)

for each j = 1, ..., nw, where fractions containing y0 and ynw+1 in their denominator are
ignored.

In addition, matrix G is formulated, whose entry (i, k) is the displacement induced
at location yi due to a triangular load of maximum value at y = −1 and unit negative
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5. Modeling of inelastic rocking bodies under cyclic loading

slope (Fig. 5.4a) with load tip at yk. This matrix is formulated using Eq. (5.6). It is
worth noting, that, since the aforementioned triangular loads are produced from the elastic
strains and not the corresponding stresses, the displacements of Eq. (5.6), which generally
correspond to E = 1, are produced directly for the correct modulus of elasticity of the
rocking body, E.

Finally, matrix V is given by
V = G H (5.34)

which remains constant throughout the analysis.
Vector Ue1, which contains the displacements at the control points due to the primary

normal stresses, is formed during each iteration as:

Ue1 = V Sw (5.35)

Elastic displacements due to secondary self-equilibrating normal stresses
Apart from the primary normal stress distribution, which is linear between control points,
secondary normal stresses need to be taken into account, expressing the nonlinearities
of the normal stress distribution between the control points due to region transitions or
nonlinear plastic displacements between them.

As mentioned above, vectors Ks, YKsl and YKsr are created during the procedure of
the approximate determination of the region boundaries, which contain the opposite of
the slopes of the deviant strain distribution, as well as the corresponding left and right
interval boundaries.

The displacements induced across the rocking end section for each one of these seg-
ments is calculated by multiplying the slope of each segment, ks, with the displacements
at the control points produced by a trapezoidal load with negative unit slope in the elastic
region (Fig. 5.4b), which has boundaries yksl and yksr, calculated using Eq. (5.7).

Adding the contributions of all elements of vector Ks on the control point displace-
ments, vector Ue2 is created, which contains the displacements at the control points due
to the secondary normal stresses.

Target displacements
If un = [δ, θ1, θ2]

T is the vector containing the element displacements in the corotational
coordinate system, namely the axial elongation, the chord rotation at the rocking end and
the chord rotation at the other end, then a new vector urs = [δ, θ1]

T is formed, which
contains the two first elements of un. These are the parameters of the target linear dis-
placement distribution of the rocking surface, which must match the displacements pro-
duced by all aforementioned displacement contributions. It may be recalled that the third
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5.4. Calculation of displacements for given W values

element of un, which is the chord rotation at the non-rocking end, is satisfied by default,
since Eq. (5.29) is used to calculate Qn.

Combination of the control point displacements
Until now, the following vectors regarding displacements have been derived:

• Ue1 andUe2, which refer to the contribution of the self-equilibrating normal stresses
on the displacements of the control points across the semi-infinite strip end.

• Ua and Upl,pr, which contain the normalized additional and preexisting plastic dis-
placements of the control points across the semi-infinite strip end.

• ut, which refers to the contribution of the self-equilibrating shear stresses on the
central displacement and rotation of the semi-infinite strip end.

• urf, which refers to the contribution of the resultant forces on the central displace-
ment and rotation of the member rocking end.

• urs, which refers to the central displacement and rotation of the planar rocking sur-
face.

It is clear that various incompatibilities exist between the aforementioned vectors. First
of all, vectors Ue1, Ue2, Ua and Upl,pr contain values referring to the control points, while
ut, urf and urs contain only two values, referring to the central displacement and rotation
of the rocking end. In addition, vectors Ue1, Ue2, Ua, Upl,pr and ut refer to normalized
displacements of the semi-infinite strip (b = 1), while urf and urs to displacements of the
actual member rocking section.

The displacements of the semi-infinite strip due to the self-equilibrating stresses have
to be multiplied with b to derive the displacements of the actual member at the respective
points (Chapter 2). However, it is more convenient here to examine all displacements in
the semi-infinite strip normalized coordinate system, thus, all actual member displace-
ments are divided by b, instead.

Coordinate Yi across the actual member rocking end section, corresponding to nor-
malized coordinate yi of the semi-infinite strip, is determined by:

Yi = b yi (5.36)

Also, given a central displacement, δ, and a rotation, θ1, of the rocking end of the actual
member, the displacement at point Yi of the rocking end is given by:

U(Yi) = δ + Yi θ1 = δ + b yi θ1 (5.37)
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5. Modeling of inelastic rocking bodies under cyclic loading

Since the conversion of the actual member rocking end displacements into ones com-
patible with the semi-infinite strip displacements demands thatU(Yi) be divided by b, this
is achieved by dividing the term referring to the central displacement by b and leaving the
rotation unchanged, while using the normalized coordinates contained in Yw. Using the
previous remark, new vectors Ut, Urf and Urs are formed, containing displacements for
the control points across the normalized rocking end section:

Ut = C ut (5.38)

Urf = C B urf (5.39)

Urs = C B urs (5.40)

with

C =


1 yw1

1 yw2

. . .

1 yw,nw

 (5.41)

and

B =

[
1/b 0

0 1

]
(5.42)

Finally, the difference between the resultant and the target displacement vectors is
defined:

Ud = Ue1 +Ue2 +Ua +Upl,pr +Ut +Urf −Urs (5.43)

As a sidenote, it is understood that a modification of the macroelement to consider an
arbitrary rocking surface displacement distribution instead of a linear one that corresponds
to a rigid base surface that remains planar, is a rather simple task: instead of using Eq.
(5.40) referring to a linear target displacement distribution, vector Urs may be formed
using the actual target displacements at each control point across the rocking surface,
divided by b.

5.5 Algorithm convergence
The algorithm converges if the norm of Ud is less than a convergence limit defined by
the user. Usually, an iteration procedure is needed, in which a better estimation of W is
derived in each step so that Ud ultimatelly fulfills the convergence criterion. To this end,
the derivatives of all quantities mentioned in the previous section with respect to W are
needed.
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5.5. Algorithm convergence

These derivatives are not presented here for space reasons, but can be easily derived
using the chain rule on every quantity dependent explicitly or implicitly on W. This way,
matrix ∂Ud/∂W is formed and a better estimation of W is given by:

Wnew = Wprev −
(
∂Ud
∂W

)−1

Ud (5.44)

It is worth noting that, due to the high nonlinearity of the problem, the increment
prediction of W denoted by the second term of the right-hand side of Eq. (5.44) might
be so large that the solution is not approached. Thus, if the algorithm does not converge
after some iterations, in order for the update ofW to follow better the nonlinearity around
the solution, this increment can be reduced using a parameter λ, with 0 < λ < 1, so the
previous equation then reads:

Wnew = Wprev − λ ·
(
∂Ud
∂W

)−1

Ud (5.45)

After convergence is achieved, the forces and the respective stiffness matrix in the
corotational coordinate system are calculated as follows:

The produced forces in the corotational coordinate system, Fn, are calculated by in-
verting Eqs. (5.22), (5.23) and (5.24):

Fn = bdE

1 0 0

0 b 0

0 −b −L

Fnn (5.46)

where Fnn = [Nn,Mn, Qn]
T is the vector containing the normalized rocking end forces.

The corresponding stiffness matrix is defined as ∂Fn/∂un. The force vector,Fn, though,
is not dependent only on un, but also on W, which also changes when vector un does. In
order to calculate ∂W/∂un, it is necessary to calculate ∂Ud/∂un by derivating all the
quantities using again the chain rule. Then, since the value of Ud should remain close to
zero with a change in un, the following equation holds:

∂W

∂un
= −

(
∂Ud
∂W

)−1
∂Ud
∂un

(5.47)

So, finally, the stiffness matrix in the corotational coordinate system is derived as:

Kn =
DFn
Dun

=
∂Fn
∂un

+
∂Fn
∂W

∂W

∂un
(5.48)

Iteration procedure for given nodal displacements The input given to the macroelement
by the global finite element framework is the vector of local system displacements, ue.
These are converted to corotational system displacements, un, using Eq. (2.1). After-
wards, iterations of the procedure presented above are performed, in order to find the
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5. Modeling of inelastic rocking bodies under cyclic loading

vector W that satisfies the convergence criterion, Ud ≈ 0. Specifically, given the coro-
tational system displacements of the last committed step, un,prev and the corresponding
matrix ∂W/∂un (Eq. 5.47), the new estimate of vector W for the next step is given by:

Wnew = Wprev +
∂Wn
∂un

(
un − un,prev

)
(5.49)

After convergence of W is achieved, the force vector Fn, and the stiffness matrix,
Kn, in the corotational coordinate system are calculated using Eqs. (5.46) and (5.48),
respectively. The output of the macroelement to the general finite element framework are
the local system forces, Fe (Eq. 2.3), and the local system stiffness matrix, Ke (Eq. 2.5).

After convergence of the whole model containing the rocking macroelement when a
condition demanded by the finite element framework is achieved (e.g. the displacement
at a node equals a given value), the current state of all the elements contained in the model
is saved. For the rocking macroelement, this means that the normalized additional plastic
displacement distribution across the rocking interface, [ũa] < 0, calculated during the
determination of the region boundaries (e.g. Figs. 5.8b and d) at the current step, must
be added to the existing normalized plastic displacement distribution, [ũpl,pr], so that the
next step begins with the actual plastic displacements induced to the element until then.

5.6 Examples
In this section, the response of three rocking body configurations is examined using the
proposed macroelement formulation.

Rocking body with constant vertical force
The response of a solitary rocking body with a constant vertical force on its top side (Fig.
5.10) is examined in this example. The rocking body has height H = 4 m, width B = 1 m
and thickness d = 1 m, modulus of elasticity E = 30 GPa and yield stress σy = 20 MPa
and is loaded on its top with a vertical force N = −2500 kN. The whole body is modeled
using one macroelement with its rocking end (node j) at the bottom.

In Fig. 5.11, the loading - unloading curves (horizontal displacement, δx, versus ap-
plied horizontal force, Px) are shown for varying number of control points, nw, used in
the analysis. It can be seen that even the model with only 11 control points (red line) pro-
duces results that are very close to more dense control point configurations, meaning that
the proposed algorithm can capture well the actual stress and displacement distributions
between control points.

In Fig. 5.12, the elastic strains (blue curves) and plastic displacements (red curves) at
the base of the member at several steps during loading - unloading of the first half-cycle
are presented. It can be seen that gradually the element yields, starting to develop plastic
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A

N

Px
δx

B

H

Figure 5.10: Rocking body with constant vertical force.

displacements, before reaching the maximum displacement of the quarter-cycle, where
the elastic strain distribution becomes almost rectangular.

Interesting to note that, contrary to what one would imagine, i.e. that the whole
contact region would decompress during motion reversal, the actual response is totally
different: The element continues to yield while returning to its original position, with the
yield strains gradually moving towards the center of the element, before becoming elastic
again. This means that the formation of plastic displacements does not stop at the max-
imum displacement, but continues during unloading at regions a little further from the
base edge. This can be seen more clearly in Fig. 5.13, where the plastic displacement dis-
tributions that develop across the rocking interface at characteristic quarter-cycles during
the cyclic loading are presented. The formation of the plastic displacements described in
Fig. 5.12 is also presented in the first two plots of Fig. 5.13. In a similar manner, plastic
displacements continue to develop for the remaining cycles of the analysis.

Structural configurations with restrained rocking members
The ability of the proposed macroelement to predict realistically the response of restrained
rocking bodies is discussed in the ensuing.

First, a rocking concrete wall which is tendon restrained is examined and more specif-
ically the model SRW-B examined in Twigden et al. (2017). In brief, the rocking wall has
height H = 2.86 m, width B = 0.8 m and thickness d = 0.125 m and is restrained with
three prestressed tendons located at the center and about 0.2 m from the center. Regard-
ing the material properties, concrete strength is fc = 35.0 MPa, its modulus of elasticity
is assumed Ec = 4700

√
fc = 27.8 GPa, while each tendon has stiffness EAt = 28529.0
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Figure 5.11: Rocking body with constant vertical force: Horizontal displacement versus
applied horizontal force curves for various number of control points, nw, used.

kN/m and initial prestress 96.1 kN, which is reduced to 89.1 kN due to prestress losses
equal to 7.3%. As mentioned in the paper, the sum of the tendon forces is further re-
duced with respect to the expected value, approximately following the simplified analysis
by Aaleti and Sritharan (2009), as the lateral displacement increases. For this reason, in
the present analysis, the tendon stiffness is calibrated so that the sum of the tendon forces
at the maximum lateral displacement matches the one measured at the experiment (about
440 kN). Additional weight is added on top of the wall equal to 31.35 kN, while the self-
weight of the wall equals 7.15 kN. In order to apply the self-weight at the center of the
wall, the wall is modeled using two elements: one rocking macroelement for the lower
part, with its rocking end (node j) at the bottom, and one conventional element for the
upper part.

The experimental response of wall SRW-B is presented in Fig. 5.14a*, while the results
produced by the model which includes the proposed macroelement with the aforemen-
tioned properties is shown in Fig. 5.14b. It can be seen that the results obtained with the
proposed algorithm match very well the experimental backbone curve. A notable discrep-
ancy between the results can be seen during unloading for large displacements, where the
experimental curve does not pass close to (0,0) as in the numerical analysis and contrary to
what one would expect for typical rocking systems. According to Twigden et al. (2017),

*The author would like to thank Prof. R. Henry for providing the experimental data.
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(b)

Figure 5.12: (a) Elastic strains (blue curves) and plastic displacements (red curves) devel-
oping on the rocking interface before the end of the first half-cycle, where yielding occurs.
The right half of the element section is shown. (b) Corresponding points on the loading
- unloading curve.
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Figure 5.13: Plastic displacement distributions across the rocking interface at character-
istic quarter-cycles during the cyclic loading. The distribution at the beginning of each
quarter-cycle is shown in red and at the end in blue. Different scales are used for the
horizontal and the vertical axes.

this can be attributed to several reasons, such as prestress loss, debris underneath the wall
or damage near the wall toes. It should be also noted that an armouring steel base frame
was positioned under the wall and foam strips were used under the concrete rocking edges,
so that local concrete spalling could be avoided, influencing the wall response.

The second restrained rocking member configuration examined is the calcium-silicate
brick masonry wall EC COMP 1 investigated experimentally in Graziotti et al. (2016),
which exhibited mainly flexural behaviour. The masonry wall specimen under considera-
tion has height H = 2.75 m, width B = 1.1 m and thickness d = 0.102 m. Regarding
material properties, accoring to the paper, the masonry ultimate strength, fm, was equal to
6.20 MPa. However, a smaller value is used here for the yield strength, fy = 4.0 MPa, as
a mean value for the bilinearized material response. The modulus of elasticity of masonry
is taken equal to Em = 4.2 GPa. An applied vertical load equal to 58.34 kN is considered,
while the self weight is taken equal to 5.71 kN. The rotation of the wall is restrained at
its top edge, but no restraining along the vertical axis is applied according to the paper;
however, some kind of such restraining should exist, as evident from the ascending post-
rocking backbone curve. A vertical spring with ks = 3500 kN/m is assumed in order
to model this behavior. It should be noted that, since both ends of the member are ex-
pected to detach from their bases and develop damage in this configuration, the specimen
is modeled using two macroelements, with their rocking ends (nodes j) at the top and the
bottom of the specimen and their non-rocking ends (nodes i) joined in the middle.

The experimental results of wall EC COMP 1 are shown in Fig. 5.15a†, while the
results produced with the proposed macroelements are plotted in Fig. 5.15b. The experi-
mental response, however, shows a large hysteresis at later cycles that cannot be explained
for purely rocking response and, evidently, cannot be captured by the proposed macroele-
ments. Fig. 5.15 shows that, in general, the model with the proposed macroelements can
predict the response adequately, with discrepancies concerning the reloading-unloading
curves, especially at later cycles, due to the aforementioned unexpected hysteretic be-

†The author would like to thank Prof. F. Graziotti for providing the experimental data.
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Figure 5.14: (a) Experimental loading - unloading (force - displacement) curves for cyclic
response of member SRW-B (Twigden et al., 2017); (b) Response according to the pro-
posed algorithm (in blue) and comparison with the envelope of the experimental response
at the last cycle (in red).

haviour observed during the tests.
From the previous examples it can be seen that, although the bilinear material model

assumed for the macroelement cannot account for the precise material response, such as
that of concrete or masonry, the main characteristics of the cyclic response can be ade-
quately predicted. Thus, the proposed macroelement can be used for a quick and ade-
quately accurate estimation of the response of structural systems with rocking members.
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Figure 5.15: (a) Experimental loading - unloading (force - displacement) curves for cyclic
response of member EC COMP 1 (Graziotti et al., 2016); (b) Response according to
the proposed algorithm (in blue) and comparison with the envelope of the experimental
response at the last cycle (in red).

Comparison with corresponding models containing elastic or rigid
rocking bodies
In order to assess the implications of not considering the material inelasticity of the rock-
ing body or even the rocking body deformability altogether, the results produced by the
macroelement for the previous examples are compared with results for corresponding
models considering the rocking body to be elastic (by setting a very large σy value) or
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the rocking body to be rigid (by additionally setting a very large E value).
The results are presented in Fig. 5.16, where it can be seen that, apart from the fact

that the elastic and rigid models do not present any hysteresis, there are also notable differ-
ences between the backbone curves produced for an inelastic, an elastic and a rigid rocking
body. Regarding the differences between the inelastic and the elastic response, it can be
seen that the inelastic one may attain considerably lower force values in the post-rocking
branch, as expected, especially for larger displacements. However, there are also notewor-
thy differences between the responses of the elastic and the rigid body. Obviously, these
differences are larger at the pre-rocking branch of the elastic body response, however in
the case of restrained rocking bodies (cases (b) and (c) in Fig. 5.16), this discrepancy
continues even after rocking initiates.

The previous comparisons underline the importance of appropriately taking into ac-
count the deformability and inelasticity of the rocking body in applications where large
axial forces are expected, such as tendon- or beam-restrained rocking body configurations.
The proposed macrolement is particularly suitable for the analysis of such cases, whose ac-
curate analytical modeling is very difficult.

5.A Appendix: Alternative method based on quadratic
programming optimization

In this Appendix, an alternative formulation is presented for the solution of the problem
of the determination of vector W, that is the elastic strains and additional displacements
at the rocking interface. Instead of considering region boundary points between control
points as a function of W, these boundary points are considered the main variables of
the problem, while the values of the stresses or additional displacements in between are
considered secondary ones, instead. These stresses or additional displacements need to
obey specific inequalities as before, depending on the region they belong to. In fact, given
the region boundaries, the calculation of the region internal values can be formulated as a
quadratic programming optimization problem, which can be easily solved using existing
algorithms: The values of the stresses and additional displacements inside the regions need
to be determined, adhering to the respective constraints, which minimize the distance
between the produced and the linear target displacement distributions.

Despite the mathematical convenience of such a formulation, it is not chosen as the
main formulation of the proposed algorithm, since it leads to many problems: Firstly, it
is computationally taxing, since it requires the calculation of second order derivatives and
additionally all the quantities involved need to be first-order continuous, which is diffi-
cult to implement for the plastic displacements. Secondly, whether the points where the
stresses or additional displacements are calculated are considered fixed across the section or
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Figure 5.16: Comparison of the force - displacement curves for cyclic response produced
by the macroelement for the (a) constant vertical force, (b) SRW-B and (c) EC COMP
1 models (in blue) with results for respective models considering the rocking body to be
elastic (in green) and rigid (in red). Only the positive semi-axes are shown for clarity.
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5.A. Appendix: Alternative method based on quadratic programming optimization

moving together with the region boundaries, numerical problems arise when the distance
between any of the points becomes very small. Thirdly, the creation of new regions during
yielding or uplift or removal of existing ones is not straightforward and the continuity of
the solution is not always guaranteed. Finally, even when all of the aforementioned prob-
lems are addressed, the solution may get stuck inside a local minimum instead of the global
one, so random steps are sometimes needed to overcome them. However, it is presented
here as a suggestion for future research.

The determination of the stress distribution at the rocking interface is divided into
two steps: The first step is the determination of the elastic, inelastic and compression-free
regions and the respective boundaries across the rocking interface and the second step is
the calculation of the stresses or additional elongations of the internal points. As will be
seen, the first step is a nonlinear problem, while the second is one is a simpler one.

Assuming that the rocking interface has been divided into non-contact, elastic and
inelastic regions, the boundaries between regions are gathered in a vector R. Points Yw,
which have no fixed locations for the current formulation, are inserted inside the regions,
including the points at the edges of the section, where the stresses and additional displace-
ments are controlled. Vector Y contains both R and Yw in ascending order. A vector
q is introduced that contains the corresponding region identifier (“0” for a non-contact
region, “1” for an elastic region and “2” for an inelastic one) for each point in Y (region
boundaries are considered either “0” or “2”). The unknown stresses or additional elonga-
tions are expressed in a vector W for each of the points in Yw. For formula simplification
and computational reasons, the stresses and additional elongations are normalized with
respect to the modulus of elasticity, E.

Stresses
The elastic strains S at points Y can be expressed as linear functions of W:

S = BsW + bs (5.50)

where Bs is a ny×nw matrix and bs is a ny vector (ny being the length of vector Y), with
zero entries everywhere except for the following entries:

• Bs,ij = 1 for j = 1, ..., nw if qi = 1 where i is the index of Y that corresponds to
Yw,j .

• bs,i = ϵy for i = 1, ..., ny if qi = 2.

Since stresses are constant for non-contact and inelastic regions, it can be concluded
that the whole stress distribution can be described using the boundaries of these regions,
as well as internal points of the elastic ones (point vector Ym), so the calculation of all
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5. Modeling of inelastic rocking bodies under cyclic loading

entries of S is not necessary. The stresses at these main locations Ym are given by:

Sσ = BσW + bσ (5.51)

where Bσ and bσ are the reduced BS matrix and bS vector, keeping only the rows corre-
sponding to points contained in Ym.

Additional elongations
Similarly to the stresses, additional displacements are expressed as linear functions of W:

Ua = BaW (5.52)

whereBa is a ny×nw matrix, with zero entries everywhere except for the following entries:
Ba,ij = 1 for j = 1, ..., nw if qi ̸= 1 where i is the index of Y that corresponds to Yw,j .

Additional elongations at region boundaries R are considered equal to 0.

Resultant forces at the rocking interface
Having expressed the stresses at locations C as linear functions of W, the nomalized
resultant axial force Nn and moment Mn at the rocking interface are expressed as:

Nn = BNW + bN (5.53)

Mn = BMW + bM (5.54)

Regarding the axial force calculation,

BN =AT
N Bσ (5.55)

bN =AT
N bσ (5.56)

where AN is a vector with length nc with:

AN,i =
ym,i+1 − ym,i−1

2
(5.57)

for i = 1, ..., nm, where nm is the length of vector Ym, ym,0 = ym,1 and ym,nm+1 = ym,nm .
Regarding the moment calculation,

BM =AT
M Bσ (5.58)

bM =AT
M bσ (5.59)

where AM is a vector with length nc with:

AM,i =
ym,i+1 − ym,i−1

6
(ym,i+1 + ym,i + ym,i−1) (5.60)

for i = 1, ..., nm, where ym,0 = ym,1 and ym,nm+1 = ym,nm .
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5.A. Appendix: Alternative method based on quadratic programming optimization

Contribution of the resultant forces on the rocking end displacements
According to Eq. (5.30), the displacements due to the resultant forces are functions of W
as follows:

urf =

fr,11 0

0 fr,22 − fr,32
fr,23
fr,33

{Nn

Mn

}
+

 0
fr,23
fr,33

θ2

 = BrfW + brf (5.61)

where

Brf =

fn11 0

0 fr,22 − fr,32
fr,23
fr,33

[BN

BM

]
(5.62)

and

brf =

fn11 0

0 fr,22 − fr,32
fr,23
fr,33

{bN

bM

}
+

 0
fr,23
fr,33

θ2

 (5.63)

Maximum shear stress
Using Eqs. (5.29) and (5.31), the normalized maximum shear stress, t, can be expressed
as

t = BtW + bt (5.64)

where
Bt = − fr,32

fr,33 · γQ
BM (5.65)

bt =
θ2

fr,33 · γQ
− fr,32

fr,33 · γQ
bM (5.66)

and
γQ =

2

3
(ycr − ycl) (5.67)

Contribution of self-equilibrating shear stresses on the rocking end
displacements
If utn = [δtn, θtn]

T , the additional displacements induced to the contact region are ex-
pressed as linear functions of W as follows:

ut = ButW + but (5.68)

with

But =

[
δtn 0

0 θtn

][
Bt

Bt

]
(5.69)

and
but = bt · utn (5.70)
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Contribution of self-equilibrating normal stresses on the rocking end
displacements
The contribution of the self-equilibrating normal stresses is taken into account with a
formula similar to Eq. (5.35):

Ue = Vw Sσ (5.71)

where Sσ contains the stresses at the main locations Ym and matrix Vw is formulated in
the same manner as matrix V of the original formulation (Eq. 5.34), but is not constant
in this case and is formed using the elements of Ym at each instant.

Combining the previous equation with Eq. (5.51), the following equations are formed:

Ue = BeW + be (5.72)

with
Be = Vw Bσ (5.73)

be = Vw bσ (5.74)

Difference between target and predicted elongations
Similarly to Eq. (5.43), the difference between the target and the predicted elongations is
given by

Ud = BdW + bd (5.75)

with
Bd = Be +Ba +CBt +CBBrf (5.76)

and
bd = be +Upl,pr +C bt +CB brf −CB urs (5.77)

with matrices C and B given by Eqs. (5.41) and (5.42), respectively.
It it noted that vector Upl,pr in this formulation does not refer to constant points, but

to the locations corresponding to Yw.

Convex Quadratic Problem formulation
Since matrix Bd is not square, meaning that the number of equations is greater than the
number of unknowns, W, the problem cannot be solved directly. Furthermore, the in-
equalities regarding the unknown stresses and additional displacements, depending on the
regions of the corresponding locations, must be taken into account for the values in W to
have meaning.

One possible solution would be to reduce Bd and bd to include only elongation dif-
ferences on points not being region boundaries, and the elongation differences at region
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5.A. Appendix: Alternative method based on quadratic programming optimization

boundaries could be checked at a later stage. However, the problem regarding the afore-
mentioned inequalities would persist.

This is why a more elegant solution to the problem is to express it as a convex quadratic
minimization problem. More specifically, the convex quadratic minimization problem is
defined as:

minimize f =
1

2
WTGW − aTW (+d) (5.78)

subject to
DTW ≥ b (5.79)

where matrix G is a positive definite symmetric matrix‡.
Here, the function that has to be minimized, f , is half the sum of squares of the

elements of Ud:

f =
1

2
UT

d Ud =
1

2
WT BT

d Bd W +BT
d bd W +

1

2
bT

d bd (5.80)

meaning that
G = BT

d Bd (5.81)

a = −BT
d bd (5.82)

while the constant term (with respect to W)

d =
1

2
bT

d bd (5.83)

can be dropped for the minimization procedure. Eq. (5.81) shows that G is indeed a
positive semidefinite symmetric matrix as a product of the transpose of a matrix with
itself. It turns out that det (Bd) ̸= 0, so G is positive definite.

Furthermore, each column of D and entry of b refer to an inequality constraint, so for
each element yw,i in Yw, new columns and entries are added in D and b respectively, as
follows:

• Dik = 1, bk = 0 for points with qi = 0

• Dik = −1, bk = 0 and Di,k+1 = 1, bk+1 = ϵy for points with qi = 1

• Dik = −1, bk = 0 for points with qi = 2

where k is the current column/entry to be added.
Convex quadratic optimization problems are quick and easy to solve, for example

with the quadprog package for Python, which uses the algorithm by Goldfarb and Idnani
(1983).

‡This symbol is widely used in the respective literature and should not be confused with the matrix used
in Eq. (5.34).
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Apart from finding the optimal solution W and the minimum of the objective func-
tion, f̂ , the algorithm also returns the inequality constraints that are active, that is, they
hold as equalities at the optimal solution. It is evident that the minimum of the original
function, f is

f = f̂ + d (5.84)

where f̂ is the minimum of the function without the constant term. The minimum value
of f should be close to zero in order to consider the result the solution to the problem
under examination.

Changing the region boundaries
Throughout the previous analysis, the region boundaries, R, are kept constant, so that
all the quantities are linearly dependent on W and a quadratic programming problem is
formulated, since by changing R and as a result Ym, the problem is nonlinear. However,
the minimum value of f resulting from this approach is in the initial steps not zero. The
next step in order to further minimize f is to change R.

If f has a minimum value with respect to R, this means that ∂f

∂R
is an array with nr

zero entries. If that is not the case, vector R must be updated with the addition of ∆R

given by solving:
∂2f

∂R2
∆R = − ∂f

∂R
(5.85)

It should be noted that since entries inR have a specific order, special attention should
be paid that the addition of ∆R does not alter this order. A suitable fraction of ∆R can
be used instead for the new step to ensure this.

The aforementioned procedure of course requires the calculation of matrices ∂2f

∂R2
and

∂f

∂R
, which is not an easy task, considering that most quantities used are dependent on R.

However, by sequentially differentiating all quantities used as presented in the previous
steps, these matrices can be calculated successfully.

Listing all the necessary calculations would be cumbersome, however the general ap-
proach is as follows. Since most quantities are expressed with matrix calculations, matrix
differentiations must be applied with respect to vector R, which produces new matrices
with one extra dimension for first order differentiation and two extra dimensions for sec-
ond order differentiation. This way, matrices up to the fourth dimension are created. In
order to calculate the derivative of a product of matrices, the chain rule is used as in usual
calculus, but paying special attention that the rows and columns multiplied between ma-
trices are the correct ones. To aid in this task, a very helpful function is the “einsum”
function provided by the NumPy python package, which describes the multiplication of
matrices using matrix axis indices, along which matrix multiplications take place. By fol-
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lowing the aforementioned procedure, one can arrive at matrices ∂G

∂R
, ∂

2G

∂R2
, ∂a

∂R
, ∂2a

∂R2
,

∂d

∂R
and ∂2d

∂R2
.

Knowing the active constraints of the QP problem at the optimal solution, matrix Ds

can be constructed, which contains all columns of D that refer to active constraints. The
derivatives of the optimal solution, W with respect to matrix G and vector a are given by
(e.g. Boot, 1963):

∂W

∂a
= G−1 −G−1 Ds

(
DT

s G−1 Ds

)−1
DT

s G−1 (5.86)

and
∂wk

∂Gij

= −∂wk

∂ai
wj (5.87)

Therefore,
∂wi

∂rj
=
∑
k

∂wi

∂ak

∂ak
∂rj

+
∑
k

∑
l

∂wi

∂Gkl

∂Gkl

∂rj
(5.88)

and by calculating
∂2wi

∂rj ∂ak
= −∂wi

∂al

∂Glm

∂rj

∂wm

∂ak
(5.89)

and ∂2W

∂R ∂G
from applying the chain rule to Eq. (5.87) respectively, the second order

derivative ∂2W

∂R2
can be calculated from Eq. (5.88).

Finally, derivatives ∂f

∂R
and ∂2f

∂R2
can be calculated by differentiation of Eq. (5.78), so

Eq. (5.85) can then be used.
A similar procedure can be used for the calculation of the derivative ∂R

∂un
, where un is

the vector of target displacements at member ends, which is needed for the formulation of
the stiffness matrix of the element. The following derivatives are calculated for a change
only in un:

∂W

∂un
, ∂2W

∂un∂G
, ∂2W

∂un∂R
and finally ∂2f

∂un∂R
.

Since by changing un, the minimum value of f needs to remain close to 0, the follow-
ing equation holds:

∂2f

∂R2

∂R

∂un
= − ∂2f

∂un∂R
(5.90)

from which ∂R

∂un
is calculated.
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6
Modeling of inelastic rocking bodies under

dynamic loading

In this chapter, the cyclic inelastic macroelement formulation is extended, in order to take
into account phenomena associated with the dynamic rocking motion. To this end, a
suitable treatment of damping is introduced, which does not violate the physical contraint
of compressive-only stresses at the rocking interface and other motion modes usually ob-
served together with the rocking motion, namely sliding and upthrow, are predicted by
introducing a new internal variable regarding the sliding of the member on the rocking
surface. Thus, a macroelement is created, which is able to take into account the interaction
between rocking, deformability, inelasticity, damping, energy loss during impacts, sliding
and upthrow in a uniform manner.

6.1 Macroelement coordinate systems
Usually, finite element frameworks demand the forces, Fe, and stiffness matrix, Ke, of an
element for given displacements, ue, in the element local coordinate system, which is the
system aligned with the initial position of the member and has 6 degrees of freedom (Fig.
6.1a).

The static formulation proposed in previous chapters, like other nonlinear finite ele-
ment formulations, uses internally a corotational (natural) coordinate system (Fig. 6.1c),
from which the rigid body motion of the element as a whole has been removed. This
coordinate system, which is associated with the deformation of the member, is aligned
with the deformed position of the element and has three independent degrees of freedom
(forces Fn and displacements un).

In order to account for sliding in the dynamic marcoelement formulation, another in-
dermediate coordinate system is considered, from which the sliding motion has been re-
moved (Fig. 6.1b). This intermediate coordinate system has six degress of freedom (forces
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Figure 6.1: Displacements and Forces in the (a) Local; (b) Intermediate and (c) Corota-
tional coordinate systems. Node j corresponds to the initial position of the rocking end
of the body on the rocking surface, while node j’ corresponds to the displaced position of
the projection of the rocking end on the rocking surface due to sliding and upthrow.

Fi and displacements ui), which are aligned with the local coordinate system of the body.
It can be understood that the usual conversions between the local and the corotational co-
ordinate systems applied when no sliding is present now apply between the intermediate
and the corotational coordinate systems, instead.

For the introduction of sliding, a new internal variable s is introduced, which is the
displacement of the rocking end of the element perpendicular to the original member
axis due to sliding, with respect to the initial reference node of the member end (Fig.
6.1). This means that the conversion of the local displacements, ue, to the intermediate
displacements, ui is performed as follows:

ui = ue + s · [0, 0, 0,−u6, 1, 0]
T (6.1)

where u6 is the rotation of the rocking end (Node j) in the local coordinate system.
Correspondingly, the forces in the intermediate coordinate system, Fi are converted

into local coordinate system forces, Fe, as follows:

Fe = Fi + s · [0, 0, 0, 0, 0,−Fi,4 − u6 Fi,5]
T (6.2)

where Fi,4 and Fi,5 are the forces parallel and perpendicular to the undeformed member
axis in the intermediate coordinate system without sliding. It can be seen that only the
moment at the rocking end differs between the intermediate and the local coordinate
systems.

This formulation is considered adequate when sliding is small considered with the
other dimensions of the member. As will be later explained, since additional displace-
ments (“gaps”) may develop between the rocking end of the member and the rocking
surface, the node at the rocking surface (Node j’), which is translated with respect to the

146



6.2. Treatment of damping

original position of the rocking end on the rocking surface (Node j), does not necessarily
correspond to the base of the member, but to its projection to the rocking surface if the
body has completely detached from this surface (upthrow).

For moderately small deformation-induced displacements, the following formulas can
be used for the corotational system displacements and the intermediate system forces re-
spectively (Fig. 6.1):

un =


δ

θ1

θ2

 =


ui,4 − ui,1 +

1
2
(ui,5 − ui,2)

2/L

ui,6 − (ui,5 − ui,2)/L

ui,3 − (ui,5 − ui,2)/L

 (6.3)

Fi =



Fi,1

Fi,2

Fi,3

Fi,4

Fi,5

Fi,6


=



−N

−N · (ui,5 − ui,2)/L+ (M1 +M2)/L

M2

N

N · (ui,5 − ui,2)/L− (M1 +M2)/L

M1


(6.4)

6.2 Treatment of damping
Of main interest for the dynamic analysis of rocking bodies is the treatment of damping,
since damping generated during impacts plays a significant role on the predicted response.
Although Rayleigh damping is well-documented for linear systems only, it has also been
used for rocking systems (e.g. Barthes, 2012; Wiebe et al., 2012; Belleri et al., 2013,
among others). Both mass- and tangent-stiffness-proportional formulations have been
used, however there are drawbacks to each one (e.g. Abaqus/CAE: User’s Manual (6.11)
2011): The former greatly affects the rigid-body motion, which corresponds to lower fre-
quencies, while the latter reduces the theoretical time-step required for convergence, since
it mainly influences higher frequency motion components.

Another promising approach (Barthes, 2012; Vassiliou et al., 2016), which is also used
in commercial finite element software (e.g. Abaqus/CAE: User’s Manual (6.11) 2011), is
the use of the HHT integration scheme, which introduces numerical damping to damp
high frequency components. The results produced for rigid blocks are in excellent agree-
ment with Housner’s damping model. However, the damping introduced is numerical,
with no physical meaning and, furthermore the experiments generally show that Hous-
ner’s damping model generally overestimates the actual damping of rocking blocks as men-
tioned above. Thus, a more flexible damping mechanism would be preferable, especially
for deformable bodies. In order to implement Housner’s damping, another option is to in-
troduce an equivalent Dirac-like damping force (Prieto et al., 2004; Prieto and Lourenço,
2005) or, regarding finite element analyses, to perform an “event-based” analysis (Dia-
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mantopoulos and Fragiadakis, 2019), where such damping is explicitly introduced when
the algorithm detects impact, similarly to analytical formulations. For typical harmonic
excitations, damping can be also introduced using a continuous viscous damper, which
is calibrated, so that it provides the same loss of energy as the one expected theoretically
(Vassiliou et al., 2014).

It is observed that most of the aforementioned approaches do not have a direct physical
meaning and may, in fact, violate the assumption of a compression-only rocking interface.
In this dissertation, an approach similar to tangent-stiffness-proportional damping is em-
ployed, which regards damping as a material property and which complies with the pre-
vious fundamental assumption of the compression-only rocking interface. The damping
considered in the proposed formulation is defined first at stress level. More specifically,
in order to incorporate damping in the macroelement, a damping stress equal to

σd = β · σ̇ (6.5)

is applied at each point of the member, which is proportional to the rate of change of the
corresponding point stress. Such damping stresses are commonly used in finite element
frameworks instead of resultant damping forces.

An advantage of using the previous damping model is that by applying and integrating
the damping stresses corresponding to the rate of change of the normal stresses across
the two member ends, an equivalent expression for the resultant damping forces in the
corotational coordinate system is produced:

Fd = β · Ḟn (6.6)

The previous damping model, when applied to a linear elastic system, is equivalent
to stiffness-proportional damping. When applied to nonlinear systems, it corresponds to
stiffness-proportional damping based on the current stiffness of the system instead of the
initial one, which is commonly used in finite element software (e.g. OpenSees, Mazzoni
et al., 2006).

Although this damping model is easy to implement for linear systems, a physically
consistent implementation for rocking bodies is not straightforward. The main character-
istic of rocking bodies is that tensile stresses cannot be transmitted through the rocking
interface with the base. However, the stresses applied to the rocking interface are actu-
ally the sum of the deformation-inducing and the damping stresses, so both contributions
have to be taken into account in this limitation. This means that, at each point at location
y across the rocking interface, the following inequality must hold:

σs(y) + σd(y) ≤ 0 (6.7)

where σs(y) and σd(y) are the deformation-inducing and damping stress at y, respectively.
By incorporating Eq. (6.5), the previous equation becomes:

σs(y) + β · σ̇s(y) ≤ 0 (6.8)
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The exact calculation of the stress rate, σ̇s, appearing in Eq. (6.8), through the veloc-
ities at the element ends is difficult and computationally inefficient. So, the stress rate is
approximated by the following relationship:

σ̇s ≈
σs − σs,pr

∆t
(6.9)

where σs,pr is the stress at the previous step and ∆t is the time step. This backward dif-
ference numerical approximation of the derivative is widely used, as for example in the
backward Euler method for the solution of differential equations. The drawback of us-
ing such an approximation is that ∆t needs to be sufficiently small during the analysis,
especially when rapid changes in stresses occur, e.g. during impacts.

By substituting Eq. (6.9) into Eq. (6.8), the stress inequality becomes:

σs ≤ γ · σs,pr (6.10)

with
γ =

β/∆t

1 + β/∆t
(6.11)

The previous inequality means, that, for the dynamic problem, the deformation-inducing
stress must not only be negative, but also lower than γ · σs,pr ≤ 0. For the limiting case
of ∆t → ∞, meaning that the problem is almost static, γ → 0, so the condition of Eq.
(6.10) reduces to σs ≤ 0, as normally used for a static analysis.

In order to account for the previous condition, a modification in the calculation of εel

and ũa is performed compared with the static formulation (Chapter 5):

εel =


εlim , if w > εlim

w , if εy < w ≤ εlim

εy , if w ≤ εy

(6.12)

and

ũa =


w − εlim , if w > εlim

0 , if εy < w ≤ εlim

w − εy , if w ≤ εy

(6.13)

where εlim = γ · εel,pr.
The previous definition ensures that the maximum value of attainable elastic strain at

the control points is εlim, and when that holds, a gap may form between the rocking body
and the rocking surface (ũa > 0). In order to satisfy the previous conditions also between
control points, an approximate procedure is applied, similar to the one used in the static
formulation (Chapter 5). This procedure uses modified w′ values at the control points at
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6. Modeling of inelastic rocking bodies under dynamic loading

the boundaries of each interval, which for the dynamic case are defined as:

w′ =


w + εlim

(
∆y
π

− 1
)

, if w > εlim

w
∆y

π
, if εy < w ≤ εlim

w + εy
(
∆y
π

− 1
)

, if w ≤ εy

(6.14)

where ∆y is the distance between the control points.
A new distribution [w′] is created inside the interval by adding the linear distribution

formed by connecting the aforementioned values at the interval boundaries with the op-
posite of the deviation of the preexisting plastic displacements from the corresponding
linear plastic displacement distribution (purple line in Fig. 6.2a). For the static case, the
boundaries of the non-contact and the yielded region, as well as the respective modified
elastic strain distributions, [εel,n] and additional displacement distributions, [ũa], are de-
termined by the intersections of distribution [w′] with the horizontal lines w′ = 0 and
w′ = ε′y = εy (∆y/π), respectively (Fig. 6.2a). It is noted that, in order to obtain the elas-
tic strain distribution, [εel], the modified elastic strain distribution [εel,n] has to be divided
by (∆y/π).

For the dynamic case, though, the maximum values of modified elastic strains are
determined by the distribution [εlim,n]:

[εlim,n] = γ · ∆y

π
· [εel,pr] (6.15)

So, for regions where w′ > εlim,n, these develop both the maximum elastic strains

[εlim] = γ · [εel,pr] (6.16)

and additional displacements ũa > 0, meaning that, although the body has detached from
the rocking surface, it still maintains deformation-inducing stresses in these areas, which
however cancel out with the damping stresses; thus the externally applied stresses from
the rocking surface are indeed zero.

After the determination of the elastic strain distribution with the aforementioned pro-
cedure for the whole rocking interface, the normalized deformation-inducing axial force,
Nn, and moment, Mn, at the rocking end can be calculated by numerical integration of
this distribution, which are defined as:

Nn =
N

bdE
(6.17)

Mn =
M1

b2dE
(6.18)

where b is the semi-width, d is the thickness and E is the modulus of elasticity of the body.
Since Eq. (6.9) equivalently holds for the elastic strains and both Nn and Mn are linearly
related to the elastic strains, similar equations also hold for Ṅn and Ṁn.
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w'=εy'

w'=0

w'1
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(a)
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w'1

w'2

[w']

[εlim,n]

[εel,n]

[ũa]<0

[ũa]>0

(b)

Figure 6.2: Determination of region boundaries and the corresponding modified elastic
strain distributions, [εel,n], and normalized additional displacement distributions, [ũa] for
the (a) static case and (b) the dynamic case.

The normalized shear force, Qn, defined as:

Qn =
Q

bdE
= −M1 +M2

bdLE
(6.19)

is calculated for given rotation of the non-rocking end, θ2, from

Qn =
θ2 − fr,32Mn

fr,33
(6.20)

with fr,32 = −(3L)/(4b) and fr,33 = −L2/(2b2) − α(1 + ν), where L is the original
length of the member and α is the shear shape factor with α ≈ 1.2 for rectangular cross
sections. By assuming that the approximation of Eq. (6.9) also holds for θ̇2, which is the
rate of change of the chord rotation of the non-rocking end, it follows from Eq. (6.20)
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6. Modeling of inelastic rocking bodies under dynamic loading

that this approximation also holds for the rate of change of the normalized shear force at
the rocking end, Q̇n. So, the rate of change of the normalized forces at the rocking end,
Fnn = [Nn,Mn, Qn]

T , is
Ḟnn ≈

1

∆t

(
Fnn − Fnn,pr

)
(6.21)

Finally, the sum of the deformation-inducing and the damping normalized forces at
the rocking end is

Fnn,tot = Fnn + β · Ḟnn =

(
1 +

β

∆t

)
Fnn −

β

∆t
Fnn,pr (6.22)

6.3 Treatment of upthrow and sliding
The dynamic response of rocking bodies usually also involves other motion modes, namely
upthrow, which is the complete detachment of the rocking body from the rocking surface,
and sliding, which results in a translation of the rocking body with respect to the rocking
surface.

In this formulation, upthrow is considered as a special case of sliding where the resul-
tant axial force is zero, that is when the whole rocking interface develops positive additional
displacements (gaps with respect to the rocking surface), [ũa] > 0, so these two phenom-
ena are treated in a uniform manner as described in the following. It is noted that the
variable s introduced above measures the displacement of the projection of the rocking
end of the element (Node j’) perpendicular to the original member axis with respect to its
initial position on the rocking surface (Node j), and as a result also takes into account the
corresponding body displacement during upthrow, while displacements perpendicular to
the rocking end section during upthrow are taken into account using the additional (“gap”)
displacements, ũa > 0 (Fig. 6.3).

A Coulomb friction law is implemented, which demands that

|Fp,rs| ≤ µ |Fn,rs| (6.23)

whereµ is the friction coefficient andFp,rs andFn,rs are the forces parallel and perpendicular
to the rocking surface, respectively.

The aforementioned forces are related to the element forces with the relationships:

Fn,rs = F4,tot + F5,tot · u6 (6.24)
Fp,rs = F5,tot − F4,tot · u6 (6.25)

where F4,tot and F5,tot are the sum of the deformation-inducing and damping forces in
the local coordinate system of the element parallel and perpendicular to the undeformed
member axis and u6 is the rotation of the rocking surface.
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6.3. Treatment of upthrow and sliding

[ua]

s

Node j

Node j'

Node i

Figure 6.3: Description of the translation of the body in space during upthrow using
sliding, s, and the additional displacements (“gaps”), [ua] > 0.

By introducing variables:

ρ = (u5 − u2)/L (6.26)
s̃ = s/L (6.27)

it follows from Eqs. (6.2), (6.4) and Eqs. (6.17), (6.19) that

F4,tot = b dENn,tot (6.28)
F5,tot = b dE [Qn,tot + (ρ+ s̃)Nn,tot] (6.29)

Using also that
Qn,tot = (1 + β/∆t)Qn − (β/∆t)Qn,pr (6.30)

and due to Eq. (6.20),

Qn = k1 (u3 − ρ)− k2 Mn − k1 s̃ (6.31)

where k1 = 1/fr,33 and k2 = fr,32/fr,33, it follows that

F5,tot = b dE (A+B · s̃) (6.32)

where

A = (1 + β/∆t) [k1 (u3 − ρ)− k2 Mn]− (β/∆t)Qn,pr + ρ Nn,tot (6.33)

B = Nn,tot − k1 (1 + β/∆t) (6.34)

If one assumes that Fn,rs ≤ 0, Ineq. (6.23) translates to

µFn,rs ≤ Fp,rs ≤ −µFn,rs (6.35)
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6. Modeling of inelastic rocking bodies under dynamic loading

For u6 = 0, it is evident from Eq. (6.24) that the assumption Fn,rs ≤ 0 holds, since
Fn,rs = F4,tot = b dENn,tot and Nn,tot is always nonpositive as the integral of nonpositive
strains. For u6 > 0, it can be proven that if the right part of Ineq. (6.35) holds, it follows
that

Fn,rs ≤ F4,tot
1 + u2

6

1 + µu6

≤ 0 (6.36)

Similarly, for u6 < 0, it can be proven that if the left part of Ineq. (6.35) holds, it follows
that

Fn,rs ≤ F4,tot
1 + u2

6

1− µu6

≤ 0 (6.37)

From the previous remarks, it is clear that if Ineq. (6.35) holds, the assumption Fn,rs ≤ 0

always holds as a consequence.
For the usual case |u6 µ| < 1, Ineq. (6.35) can be alternatively expressed as follows:

L1 ≤ A+B · s̃ ≤ L2 (6.38)

where
L1 = Nn,tot

u6 + µ

1− u6µ
(6.39)

L2 = Nn,tot
u6 − µ

1 + u6µ
(6.40)

Ineq. (6.38) is checked at each iteration for the value of s̃ of the last committed step.
If the friction inequality holds, then s̃ remains the same. Otherwise, s̃ is redetermined, so
that, out of the two inequalitites, the one that does not initially hold, holds as an equality.
After the value of s̃ is established, Eqs. (6.31) and (6.30) are used to calculate Qn and
Qn,tot, respectively. It is noted that the rather extreme case B = 0, which means that the
aforementioned inequalities may not be satisfiable, corresponds to (Nn − k1) = γNn,pr <

Nn,pr, which can emerge when Nn − Nn,pr < k1 with k1 < 0, but such a large change in
the axial force can be prevented by using a smaller time step if necessary.

For the special case u6 = 0, meaning that the rocking surface does not rotate, and for
a very large value of µ approaching infinity, Ineq. (6.38) may not hold only if Nn,tot = 0,
meaning that the rocking body has completely detached from the rocking surface, and
s̃ = −A/B corresponds to the horizontal displacement of the body from its initial position
during free-flight.

6.4 Calculation of displacements
As mentioned above, the elastic displacements induced to the member generally originate
from three sources: The resultant forces at the member ends, the self-equilibrating normal
stresses and the self-equilibrating shear stresses.
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6.4. Calculation of displacements

For the static formulation (Chapter 5), the contribution of the self-equilibrating shear
stresses was taken into account using proposed approximate formulas and some further
assumptions, which however are not suitable for the dynamic formulation and may lead
to computational problems. For this reason, the contribution of the self-equilibrating
shear stresses is neglected here, which nevertheless is not considered important for slender
rocking bodies.

Contribution of resultant forces
As explained in the static formulation (Chapter 5), given the normalized axial force, Nn,
and the normalized moment, Mn at the rocking end, as well as the chord rotation of the
non-rocking end, θ2, the linear displacement distribution parameters of the actual member
rocking end are calculated as

urf =

fr,11 0

0 fr,22 −
fr,23 · fr,32

fr,33

{Nn

Mn

}
+

 0
fr,23
fr,33

θ2

 (6.41)

where fr,11 = L/2, fr,22 = (3L)/(4b) and fr,23 = L2/(4b2)−α(1+ν), fr,32 = −(3L)/(4b)

and fr,33 = −L2/(2b2)− α(1 + ν).
These correspond to normalized displacements at the control points located at nor-

malized coordinates yw across the rocking interface, which are contained in vector Urf:

Urf = C B urf (6.42)

with

C =


1 yw1

1 yw2

. . .

1 yw,nw

 (6.43)

and

B =

[
1/b 0

0 1

]
(6.44)

Contribution of self-equilibrating normal stresses
Given the elastic strain distribution across the rocking interface, the displacements due to
the corresponding self-equilibrating distribution can be calculated similarly to the static
formulation (Chapter 5), which involves the decomposition of the elastic strain distribu-
tion into basic geometric shapes (triangles, trapezoids) at every step, for which the dis-
placements produced are calculated using proposed analytical expressions. However, this
procedure is rather inefficient for dynamic analyses, due to the increased number of steps
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6. Modeling of inelastic rocking bodies under dynamic loading

and the complexity of the elastic strain distributions created due to damping. This is why
a simpler procedure is proposed here:

The generally nonlinear strain distribution inside each interval between control points
is approximated with a linear distribution with the same normalized axial force, Ni, and
the moment,Mi, as the original elastic strain distribution of the interval. The values of this
linear distribution at the left, yl, and right boundary, yr, of each interval are respectively:

sl = 2
Ni (yl + 2yr)− 3Mi

(yr − yl)
2 (6.45)

sr = −2
Ni (2yl + yr)− 3Mi

(yr − yl)
2 (6.46)

Similarly to the procedure followed in previous chapters, in order to calculate the ad-
ditional displacements due to the self-equilibrating stresses originating from such a linear
distribution, it is decomposed into primary shapes, for which the calculation of displace-
ments has been established. More specifically, analytical expressions regarding the non-
linear displacement distribution of the semi-infinite strip are used, since the area of the
rocking body near the contact region can be equivalently examined using the semi-infinite
strip with what regards the effect of the self-equilibrating stresses, as explained in previous
chapters.

If U(y, p) is the function giving the displacement at fiber y for a unit concentrated
load at p, which has been previously derived in Chapter 4, the displacements induced by
a rectangle with unit value in the interval [−1, r] and a triangle with maximum value at
y = −1 and unit negative slope in the interval [−1, r] are respectively:

Urect(y, r) =

∫ r

−1

U(y, p) dp (6.47)

Utr(y, r) = r

∫ r

−1

U(y, p)−
∫ r

−1

p U(y, p) dp (6.48)

The integrals required for the calculation of the previous expressions can be found in Chap-
ter 4.

It can be proven that the displacements due to the self-equilibrating stresses corre-
sponding to a linear distribution in the interval [yl, yr] with values at the boundaries equal
to sl and sr, respectively, can be calculated as

Ulin (y, yl, yr, sl, sr) = −sr − sl
yr − yl

[Utr(y, yr)− Utr(y, yl)] + sr Urect(y, yr)− sl Urect(y, yl)

(6.49)
Combining Eqs. (6.45) and (6.46) with Eq. (6.49), it follows that the displacement at

y due to a unit normalized axial force, Ni, or moment, Mi, at the interval [yl, yr] is equal
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6.4. Calculation of displacements

to:

UN (y, yl, yr) = 6
yr + yl

(yr − yl)3
[Utr(y, yr)− Utr(y, yl)]− 2

yr + 2yl
(yr − yl)2

Urect(y, yr)

− 2
2yr + yl
(yr − yl)2

Urect(y, yl) (6.50)

UM (y, yl, yr) = − 12

(yr − yl)3
[Utr(y, yr)− Utr(y, yl)] +

6

(yr − yl)2
[Urect(y, yr) + Urect(y, yl)]

(6.51)

respectively.
Using Eqs. (6.50) and (6.51), two nw × (nw − 1) matrices, UN and UM , are formed,

the element (i, j) of which refers to the induced displacement at the i-th control point,
due to a unit normalized axial force or moment at the j-th interval, respectively.

If Ni and Mi are the vectors containing the normalized axial forces and moments at
all intervals, respectively, then the induced displacements at the control points due to the
self-equilibrating normal stresses are given by:

Ue = UN Ni +UM Mi (6.52)

The main benefit of this approach is that matrices UN and UM are constant and are
formulated at the beginning of the analysis, greatly reducing computational times. An-
other benefit is that the induced displacements are now dependent only on the resultant
forces of each interval, meaning that the elastic strain distributions may be simplified in
order to further reduce computational times, as long as their resultant forces remain the
same to ensure the continuity of the solution. For example, after every step convergence,
the elastic strain and the plastic displacement distributions may be bilinearized between
control points and in different behaviour regions (non-contact, elastic or inelastic).

Target displacements
Similarly to the static formulation (Chapter 5), iterations are performed with respect to
W, which is the vector containing the w values at all control points, for given local dis-
placement vector, ue, until vector Ud, containing the differences between the achieved
and the target displacements of the rocking surface:

Ud = Urf +Ue +Ua +Upl,pr −Urs (6.53)

is almost zero, where Urf is the vector of elastic displacements induced by the resultant
forces (Eq. 6.42), Ue is the contribution of the elastic displacements induced by the
self-equilibrating normal stresses (Eq. 6.52), Ua is the vector containing the additional
displacements at the control points (positive for “gap” displacements in non-contact re-
gions and negative for additional normalized plastic displacements in inelastic regions,
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6. Modeling of inelastic rocking bodies under dynamic loading

Eq. 6.13), Upl,pr is the vector of preexisting normalized plastic displacements at the con-
trol points and Urs is the vector of the normalized target displacements of the contact
surface given by:

Urs = C B urs (6.54)

where C and B are the matrices given by Eqs. (6.43) and (6.44), respectively and urs =

[δ, θ1]
T (Eqs. 6.1 and 6.3).

After convergence has been achieved, the local force vector Fe is returned to the finite
element framework (Eqs. 6.4 and 6.2), as well as the respective stiffness matrix Ke =

∂Fe/∂ue, which is obtained though successive differentiation of all involved quantities.

6.5 Validation of the predicted response for rigid rocking
bodies

In order to assess the capacity of the prosposed macroelement to predict the response of
rigid rocking bodies accurately, the results produced by the macroelement are compared
with existing analytical or numerical solutions.

First, the response of free-standing blocks under free oscillations is examined. Three
rocking blocks are considered with width B = 1 m, thickness d = 1 m and heights H ,
which correspond to slenderness ratios α = 0.1, 0.2 and 0.3, with tanα = B/H *. In
order to model these with finite elements, each block is modelled using two parts, with
the lower part being the proposed macroelement and the upper part being a conventional
elastic element. Very large values are considered for the modulus of elasticity, E, and
the damping parameter, β, in order to model the perfectly inelastic impacts assumed by
Housner (1963). The mass of the body is assumed concentrated at the center of the body,
together with the moment of inertia corresponding to that point. It should be noted here
that the inclusion of distributed mass in the macroelement is difficult, while the division
of the mass and the respective moment of inertia into more nodes is not obvious and not
necessarily more correct, since the rocking node of the macroelement corresponds to the
rocking surface and not the rocking end of the element. However, in the case of almost
rigid bodies the concentrated mass approach is considered accurate, due to the very small
deformation of the bodies. Furthermore, the friction coefficient between the rocking body
and the rocking surface is assumed infinite, which means that as long as a non-zero axial
force exists between the rocking body and the rocking surface, there is no slip between
them.

The results produced for an initial rotation θ0 corresponding to θ0/α = 0.5 by the lin-
ear solution by Housner (1963) and the respective results by the macroelement are given

*Not to be confused with the shear shape factor.
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6.5. Validation of the predicted response for rigid rocking bodies

in Figs. 6.5, 6.6 and 6.7 for α = 0.1, 0.2 and 0.3 respectively. It can be seen that, gener-
ally, there is very good agreement between the analytical solution and the one produced
by the macroelement model for very large E and β values. The only notable discrepancy
regards the rotational velocity at the end of the rocking response in Fig. 6.7, which may
be attributed to the very large β value used (overcritical damping in the dynamic analysis
of conventional structures) or numerical inaccuracies due to the very large parameter val-
ues used, which may require extremely small timesteps to capture the rigid body response
accurately for such small oscillations. Similar numerical problems also exist in rigid body
solutions and assumptions regarding the end of the rocking motion may be used to over-
come them. It should be emphasized that the produced energy loss seen in Figs. 6.5, 6.6
and 6.7 is determined automatically during the response for these very large E and β val-
ues and an energy loss ratio, such as the one used in analytical solutions, is nowhere used
in the finite element model. In addition, in order to capture the response during impacts
as accurately as possible, the timestep is greatly reduced when abrupt axial force changes
are detected.

The rigid body solution and the response produced by the macroelement for a rocking
body with α = 0.2 are also compared for ground excitations. Two ground excitation
cases are considered: (a) a sinusoidal pulse with angular frequency ωp = 6p and maximum
acceleration ap = 2αg (Fig. 6.8) and (b) the Castaic North Ridge Route (CDMG Station
24278) ground motion from the 1994 Northridge earthquake (Fig. 6.4).

Regarding the sinusoidal pulse response, generally there is very good agreement be-
tween the two solutions, especially at the beginning of the reponse. It should be noted
that small rotations have been assumed for the formulation of the macroelement, which
may demand smaller rotations than the linearization performed by Housner (1963), so a
small discrepancy regarding the maximum attained rotations and oscillation periods ex-
ists, which accumulates during the response. Regarding the recorded earthquake ground
motion, very good agreement exists during the strong ground motion duration, however
discrepancies begin to show when the ground motion subsides, possibly again due to the
very large value of β used or numerical problems due to the very small timesteps needed
for such extreme parameter values, which cannot be practically used.

From the previous examples, it can be understood that in the limiting case of very large
E and β values, the energy loss produced by the macroelement matches very well the one
predicted by Housner (1963). It would be interesting to examine the energy loss produced
by the macroelement for the cases where not both these parameters have very large values.
In order to examine such cases, two dimensionless quantities are introduced:

ϵ0 =
ρgH

E
(6.55)

which is the initial strain at the rocking surface due to the self-weight of the body (ϵ0 =
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Figure 6.4: The Castaic North Ridge Route (CDMG Station 24278) ground motion from
the 1994 Northridge earthquake.

10−6 was assumed for the rigid bodies of the previous examples) and

ζ =
βω

2
(6.56)

which is the damping ratio, as used in conventional dynamic analyses implementing stiffness-
proportional damping, where the first angular eigenfrequency of the fixed body, ω, is used
(ζ = 10000% was assumed for the previous examples).

Two cases for rocking body free oscillations are examined here: (a) A rigid body
(ϵ0 = 10−6) with varying ζ values and (b) very large damping (ζ = 10000%) with varying
ϵ0 values. In these cases, a modified (kinetic energy) coefficient of restitution, r, is deter-
mined, so that when used in conjunction with the rigid body solution by Housner (1963),
the same displacement is attained at the end of the first half-cycle. In Figs. 6.10, 6.11,
6.12, the ratio of this modified coefficient of restitution with respect to Hounser’s original
coefficient of restitution, rH, is shown for three slenderness ratios α = 0.1, 0.2 and 0.3,
respectively, and three initial rotation cases, θ0/α = 0.25, 0.50 and 0.75.

Regarding the rigid body with the varying damping ratio values, it is interesting to
note that the energy loss is not monotonic with respect to ζ and it is lower than the one
predicted by Housner for realistic ζ values, which is in agreement with most experimental
results showing that Housner overestimates the energy loss. Regarding the almost in-
finitely damped body with varying ϵ0 values, it can be seen that elastic bodies (larger ϵ0
values) present a complicated response, where the energy loss can be either lower or larger
than the one predicted by Housner. It is clear that in all cases, as ϵ0 → 0 and ζ → ∞, the
modified energy loss ratio matches the one by Housner.
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6.6. Effect of parameters on the deformable rocking body response

6.6 Effect of parameters on the deformable rocking body
response

In this section, a deformable body with width B = 1 m, depth d = 1 m and slenderness
ratio α = 0.2 is considered. The basic model examined has ϵ0 = 5 · 10−6 and ζ = 5%,
while it is considered elastic (σy → −∞) and the friction coefficient between the rock-
ing body and the rocking surface is assumed infinite. For simplification, the concentrated
mass approach is followed again, as in the rigid body cases examined previously, since the
deformations are still small enough, so that the mass distribution is not altered signifi-
cantly.

The response of the aforementioned rocking body to free oscillations with θ0/α = 0.5

(the rotations are measured at the center of the element), a sine pulse with ωp = 6p

and ap = 2αg and the Northridge excitation are shown in Figs. 6.13, 6.14 and 6.15,
respectively. In the same figure, the response of a rigid body with Housner’s coefficient of
restitution, rH = 0.8851, is shown, as well as the response when a modified coefficient of
restitution rm = 0.9256 is used, so that the rotation at the end of the first half-cycle of the
free oscillations is matched.

From Figs. 6.13, 6.14, 6.15 it is clear that, although the rigid body solution can-
not fully match the response produced by the macroelement, it is much closer than the
rigid body solution with Housner’s coefficient of restitution. As mentioned above, small
discrepancies between the macroelement and the modified rigid body solution are also
expected due to the linearizations performed in the macroelement formulation. It should
be also noted that due to the more realistic values used for ϵ0 and ζ in this model, the ro-
tational velocity becomes almost zero at the end of the earthquake excitation (Fig. 6.15),
in contrast to the infinitely damped rigid body response (Fig. 6.9).

In Fig. 6.16, 6.17 and 6.18, the response of the deformable rocking body under the
same excitations is shown for different ϵ0 and ζ values than the ones used for the basic
model described above. It is evident that generally both parameters have an effect on the
response. Regarding the parameter ϵ0, it is interesting to note that, regarding the earth-
quake excitation, higher values (more flexible bodies) may either lead to larger rotation
values (ϵ0 = 5 · 10−5) or even a much different response, where the body stops rocking
and sticks to the rocking surface (ϵ0 = 10−4). Is is noted that the transition between
rocking and sticking is determined automatically by the macroelement and does not need
an additional assumption usually used in literature (e.g. Oliveto et al., 2003; Acikgoz and
DeJong, 2012). Regarding the damping ratio ζ, it can be seen that the energy loss is not
always monotonic with respect to ζ, a phenomenon was also mentioned earlier regard-
ing the curves of Figs. 6.10, 6.11, 6.12. Furthermore, it can be seen in the earthquake
excitation that the (not practically used) cases ζ = 1000% and ζ = 10000% (overcriti-
cal damping in the dynamic analysis of conventional structures) present a response that
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6. Modeling of inelastic rocking bodies under dynamic loading

cannot be fully damped at the end of the response, just like in Figs. 6.7 and 6.9.
In Figs. 6.19, 6.20 and 6.21, the response of the rocking body is shown for different

yield stress values, which are presented using the dimensionless parameter σr:

σr = −ρgH

σy

(6.57)

which is the ratio of the initial stress at the contact interface due to the self-weight of
the body to the yield stress. In addition to the rotation at the center of the rocking body,
the plastic displacement distributions at the base of the rocking body at the last time of
the response shown is also presented. It can be seen that, although inelasticity does not
significantly alter the rotation of the body, at least for the free rocking and sine pulse
cases, the induced plastic displacements are different. It should be noted that the plastic
displacement distributions are bilinearized between control points as explained previously
for computational reasons.

The effect of the friction coefficient, µ, is examined next. The cases examined until
now correspond to µ → ∞, meaning that relative displacement between the rocking body
and the rocking surface is allowed only during complete separation (upthrow), when no
axial force develops between them. The central rotation, as well as the horizontal slip
of the body, which also includes its horizontal displacement in mid-air, are presented in
Figs. 6.22, 6.23 and 6.24 for different values of the friction coefficient, µ. Generally, it can
be seen that complete detachment of the body from the rocking surface happens during
impacts, since horizontal slips are present even for µ → ∞, which allows slips only during
upthrow. Furthermore, the response corresponding to µ = 0.2 is interesting, since a large
horizontal slip due to friction is evident at the beginning of the sine pulse and earthquake
excitations, changing its response, which continues to diverge from the other responses
until the end.
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6.6. Effect of parameters on the deformable rocking body response
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Figure 6.5: Rotation and rotational velocity for free oscillations of rigid rocking blocks
with θ0/α = 0.5 for α = 0.1, as given by the macroelement (blue lines) and the analytical
solution (orange lines).
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Figure 6.6: Rotation and rotational velocity for free oscillations of rigid rocking blocks
with θ0/α = 0.5 for α = 0.2, as given by the macroelement (blue lines) and the analytical
solution (orange lines).
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6.6. Effect of parameters on the deformable rocking body response
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Figure 6.7: Rotation and rotational velocity for free oscillations of rigid rocking blocks
with θ0/α = 0.5 for α = 0.3, as given by the macroelement (blue lines) and the analytical
solution (orange lines).
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6. Modeling of inelastic rocking bodies under dynamic loading
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Figure 6.8: Rotation and rotational velocity of a rigid rocking block with α = 0.2 for a
sinusoidal excitation with ωp = 6p and ap = 2αg, as given by the macroelement (blue
lines) and the rigid body solution (orange lines).
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6.6. Effect of parameters on the deformable rocking body response
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Figure 6.9: Rotation and rotational velocity of a rigid rocking block with α = 0.2 for the
1994 Northridge ground motion, as given by the macroelement (blue lines) and the rigid
body solution (orange lines).
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6. Modeling of inelastic rocking bodies under dynamic loading
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Figure 6.10: Ratio of the modified (kinetic energy) coefficient of restitution to Hounser’s
coefficient of restitution for a rigid body with varying ζ values (top) and for an almost
infinitely damped body with varying ϵ0 values (bottom). The slenderness ratio considered
is α = 0.1.
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Figure 6.11: Ratio of the modified (kinetic energy) coefficient of restitution to Hounser’s
coefficient of restitution for a rigid body with varying ζ values (top) and for an almost
infinitely damped body with varying ϵ0 values (bottom). The slenderness ratio considered
is α = 0.2.
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Figure 6.12: Ratio of the modified (kinetic energy) coefficient of restitution to Hounser’s
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6.6. Effect of parameters on the deformable rocking body response
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Figure 6.13: Rotation and rotational velocity of the deformable rocking body with ϵ0 =
5·10−6 and ζ = 5% under free oscillations with θ0/α = 0.5, as given by the macroelement
(blue lines), the rigid body solution with the modified coefficient of restitution (orange
lines) and the rigid body solution with the original coefficient of restitution (green lines).
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Figure 6.14: Rotation and rotational velocity of the deformable rocking body with ϵ0 =
5 · 10−6 and ζ = 5% under a sine pulse excitation with ωp = 6p and ap = 2αg, as given
by the macroelement (blue lines), the rigid body solution with the modified coefficient
of restitution (orange lines) and the rigid body solution with the original coefficient of
restitution (green lines).
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Figure 6.15: Rotation and rotational velocity of the deformable rocking body with ϵ0 =
5 ·10−6 and ζ = 5% under the 1994 Northridge ground motion, as given by the macroele-
ment (blue lines), the rigid body solution with the modified coefficient of restitution (or-
ange lines) and the rigid body solution with the original coefficient of restitution (green
lines).
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Figure 6.16: Central rotation of the deformable rocking body with different ϵ0 (top) and
ζ (bottom) values under free oscillations with θ0/α = 0.5
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Figure 6.17: Central rotation of the deformable rocking body with different ϵ0 (top) and
ζ (bottom) values under a sine pulse excitation with ωp = 6p and ap = 2αg
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Figure 6.18: Central rotation of the deformable rocking body with different ϵ0 (top) and
ζ (bottom) values under the 1994 Northridge ground motion.
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Figure 6.19: Central rotation and plastic displacement distribution at the base of the de-
formable rocking body at the end of the presented response for different σr values under
free oscillations with θ0/α = 0.5
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Figure 6.20: Central rotation and plastic displacement distribution at the base of the de-
formable rocking body at the end of the presented response for different σr values under
a sine pulse excitation with ωp = 6p and ap = 2αg.
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Figure 6.21: Central rotation and plastic displacement distribution at the base of the de-
formable rocking body at the end of the presented response for different σr values under
the 1994 Northridge ground motion.
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Figure 6.22: Central rotation and horizontal slip for different µ values under free oscilla-
tions with θ0/α = 0.5.
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Figure 6.23: Central rotation and horizontal slip for different µ values under a sine pulse
excitation with ωp = 6p and ap = 2αg.
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Figure 6.24: Central rotation and horizontal slip for different µ values under the 1994
Northridge ground motion.

182



7
Conclusions

In this dissertation, a macroelement formulation for deformable rocking bodies was pro-
posed. The elastic formulation was presented first, showing that rocking and member
deformability are in reality not separate phenomena. Since near the rocking interface
member sections do not remain plane, the technical theory of bending usually used in
beam-column finite element formulations is insufficient for the prediction of the response
of rocking members and the semi-infinite strip problem solution based on the theory of
elasticity was used to examine the effect of the stress nonlinearity locally near the rocking
interface. The results of the semi-infinite strip problem were incorporated into a force
beam-column finite element formulation to account for the additional displacements pro-
duced by the nonlinear stress distribution across the rocking interface. The excellent accu-
racy of the elastic macroelement was proven by comparison of the results produced using
the macroelement for characteristic rocking body configurations with the ones of corre-
sponding models using the commercial finite element program Abaqus. Furthermore, it
was shown that for members under large axial forces, the deformability of the body plays
an important role on their response, while some first results showed the beneficial role of
the inclusion of rocking members in frames on their seismic response.

In order to account for material inelasticity, the monotonic case can be easily treated
by extending the expressions of the additional displacements due to the self-equilibrating
stresses to correspond to the yielding stress distributions. However, the same procedure
cannot be applied for cyclic loading, due to the complex stress and plastic displacement dis-
tributions created during motion reversal. In order to solve this problem, the displacement
distribution of the rocking end under an arbitrary stress distribution must be determined
first, which is achieved by integrating the proposed analytical expressions regarding the
action of a concentrated load at an arbitrary position of the semi-infinite strip end. It was
shown using these expressions that even for an elastic body, both the stress distribution
across the contact zone and the shape of the rocking end not in contact with the rocking
surface are nonlinear.
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7. Conclusions

The previous analytical expressions were incorporated in an algorithm for the predic-
tion of the response of inelastic rocking bodies under cyclic loading, which is based on the
determination of a suitable stress distribution across the rocking interface, so that the pro-
duced displacements, in addition to the preexisting plastic ones, match the target member
rocking end displacements. The shape of the produced stress and plastic displacement dis-
tributions under cyclic loading was discussed, while the results produced for rocking wall
configurations found in literature were compared with experimental ones, showing that
despite the simplicity of the material law assumed, the main characteristics of the cyclic
response can be adequately captured. Furthermore, by comparing the previous results with
ones corresponding to models where the rocking members are considered to be rigid or
elastic, it was shown that both deformability and inelasticity must be appropriately taken
into account for a more accurate prediction of the rocking response.

The previous formulation was finally extended to examine the dynamic response by
including a suitable treatment of damping and other motion modes, namely upthrow and
sliding, which usually coexist together with rocking. Regarding the treatment of damping,
a damping formulation similar to tangent-stiffness-proportional damping is employed,
while paying special attention so that the sum of the deformation-inducing and damping
stresses across the rocking interface is always non-tensile. This constraint limits the maxi-
mum deformation-inducing stresses that may develop at each step. In order to account for
sliding and upthrow, which is considered as a special case of sliding for zero axial force, a
new variable denoting the displacement due to sliding and a new intermediate coordinate
system are introduced, while sliding is determined so that a Coulomb friction criterion is
satisfied at each step.

The proposed formulation can be implemented in any finite element framework, yield-
ing much faster analyses than conventional finite element codes, while providing very
good accuracy. It was mainly formulated for the investigation of the response of rocking
members used in earthquake-resilient structural configurations found in literature, which
develop large axial forces during their motion and as a result their deformability and in-
elasticity must be taken into account for an accurate prediction of their response. It is
believed that the proposed macroelement will provide more confidence to the engineers
regarding the computational analysis of structural configurations involving rocking mem-
bers, which are considered a much promising solution for the improvement of the seismic
performance of newly designed or retrofitted structures, assisting the documentation of
the codes regarding their design and promoting the scientific progress in this important
area.

However, the macroelement can also provide interesting results for the dynamic re-
sponse of free-standing bodies, especially with what regards the interaction between rock-
ing, sliding, upthrow, deformability, inelasticity and damping during impacts. This is why
it is believed that it will contribute to the advancement of the investigation of the response
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of solitary rocking bodies, since existing rigid body solutions cannot take into account the
aforementioned interactions and their outcome during impacts.

Some aspects worth researching further are:

• More thorough investigation of the interaction between rocking, sliding, upthrow,
deformability, inelasticity and damping during impacts.

• Determination of the apparent coefficient of restitution for deformable rocking
members with a wide range of properties and assessment of its ability to describe
the energy loss during their motion under arbitrary dynamic loads.

• Investigation of the improvement of the seismic response of structures by using
rocking over conventional yielding members and examination of optimum rocking
member configurations.

• Extension of the macroelement to three-dimensional rocking bodies*.

• Extension of the macroelement to take into account large rotations, so that the
response of squat solitary rocking bodies can be determined more accurately.

• Extension of the macroelement to take into account mild steel rebars or other par-
tial connections at the rocking interface, which exist in some of the rocking member
configurations found in literature and influence the rocking motion, especially dur-
ing cyclic loading.

*A simple elastic three-dimensional rocking member with interaction of the rocking components about
the two perpendicular axes only along the member parallel axis has already been implemented by the author.
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