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Abstract

In the present thesis, the following three different mathematical problems
are solved: (a) the problem of edge detection in the Radon (p,#)-space,
(b) the problem of deblurring in the attenuated Radon (p, 8)-space, and (c)
the problem of the inversion of the attenuated Radon transform via a new
analytic formula, following the pioneering work of Novikov and Fokas, and
the associated numerical implementation, referred to as the attenuated spline
reconstruction technique (aSRT).

The above mathematical problems involve the inversion of the celebrated
Radon transform of a function, defined as the set of all its line integrals, as
well as the inversion of a certain generalization of the Radon transform of
a function, the so-called attenuated Radon transform, defined as the set of
all its attenuated line integrals. The non-attenuated and attenuated versions
of the Radon transform provide the mathematical foundation of two of the
most important available medical imaging techniques, namely positron emis-
sion tomography (PET), and single-photon emission computed tomography
(SPECT).

Although Radon himself derived in 1917 the inversion of the transform
bearing his name, seventy four years later Novikov and Fokas rederived this
well-known formula by considering two classical problems in complex analysis
known as the d-problem and the scalar Riemann-Hilbert problem. Although
the inversion can be obtained in a simpler manner by the use of the Fourier
transform, the derivation of Novikov and Fokas allowed Novikov to invert
the attenuated Radon transform in 2002. It took Fokas, Iserles and Mari-
nakis four more years to establish a more straightforward derivation of this
inversion. Following their work, one of the main results of the present thesis
involves the formulation of an equivalent inversion for the attenuated Radon
transform. It is not suprising that even today, more than a century after its

seminal publication, Radon’s work is still highly influential.



8 Abstract

In Chapter 1, the Radon transform in R? and its attenuated generaliza-
tion are presented, whereas in Chapter 2 their inversions, especially in the
context of non-Fourier analysis, are constructed. Chapter 3 deals with the
problem of sinogram edge detection in the context of inverse problems. Fur-
thermore, in Chapter 4, aSRT is analyzed, which provides a novel analytic
inversion formula for the attenuated Radon transform. This new inversion
formula involves the computation of the Hilbert transforms of the linear at-
tenuation function and of two sinusoidal functions of the attenuated data.
Finally, in Chapter 5, the problem of deblurring in the attenuated Radon
(p, 0)-space is solved.

The mathematical problems solved in this thesis are quite different from
one another, however they bear several intrinsic similarities. They are all
key elements of a large class of mathematical problems, associated with the
mathematical foundations of emission tomography. The inversion of the
Radon transform and of its attenuated generalization constitute fundamental

problems in the mathematical core of medical imaging.



Extended abstract in Greek

O meplpnuog petaoynuatiopdéc Radon pag Siodidotatne ouvdptnong oplle-
TaL OC TO GUVOAO OAWYV TOV ETUXAUTUAIDY OAOXANPWUATOY QUTAC ETTL EUDELDY.
Trdpyer éva €ldog yevixeuuévou petaoynuoatiodol Radon, o enovopalduevog
ebaolevnuévos petaoynuatioués Radon, o omolog opiletan »¢ 10 GUVOAO OAwV
TWV EMXOUTUALWY OhOXANEWUdToY Wlag SlodldoTatng ouvdptnong el eudeiwy,
eCaotevnuévne we mpog uio cuvdptnon elacvévions. Tooo n un e&acdevn-
wévr, 600 xa 1 eCocVevnuévn exdoyt| Tou uetacynuatiopol Radon moapéyouv
70 podnpotind undPatpo ce BUO ATO TIC ONUAVTIXOTERES TEYVIXES LATEIXNS O-
newmoviong ofuepa, ouyxexplpéva to PET xaw to SPECT, avtictouya.

O yn e€actevnuévoe petaoynuatiopnos Radon oyetileton ye to avtiotpogo
HordnuoTind TEOBANUOL TNG AvaXATooXELTS Wiog cUVEETNONE amd ToL ETXOUTOALNL
ohoxAnpouatd tne. To xbplo péinua otny arnexovion PET elvar 1 apriuntixn
EQOPUOYY) TNG AVTIGTEOPHC Tou Un e€aocvevnuévou petaoynuationol Radon.
Ouolwg, oty mepintwon tou egacvevnuévou petaoynuatiopod Radon, to o-
viiotowo avtiotpopo padnuatind mTeoBAnue TEPLAUBAVEL TNV OVOXATAOXELY
ulag ouvdpTnong and To «eEacVeVnUévay emxounOA ohoxAnewuatd tng. O
x0plog otoyoc tne anexdvione SPECT eivou 1 avtiotpogn tou e€acdevnuévou
uetaoynuatiopo’ Radon.

To 1991, o Novikov xou Pwxdc emavegétacay tny HO1 YVWo T, TOTE, ovTL-
oTpopn Tou yetaoynuatiopod Radon mpoypatomowbvtag gaouatikny avdlvon

oTny oxohoLUT| oW WOOTYLOVY

1 1 1 1

OTOU oL BEIXTEC UTOONAWYOLY pepxn Topaywylon. H avdluorn autr eunepiéyet
0L0 TEOPBAAMATY TN GUYYEOVNG ULYAOXAS AVAAUGTS, CUYXEXPWEVL TO TEOPBATN-
o d (d-bar), xou To Borduwté teéBinua Riemann-Hilbert (RH), avtictotya.
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Molovéti 1 avtioTpogy| Tou petacynuatiopo Radon unopel vo emiteuy et
UE oop®s anAoVoTEQO TEOTO, ONAUDY| UE YEHOY TOU OLoBIACTATOU UETACY T
pattopol Fourier, to micovéxtnuo tng avtiotpoghc xatd Novikov xon Pwxd
XATEO TN EQavES Evtexa ypovia apydtepa (2002) and tov Novikov. O Novikov
amédelle 6Tl o eCacevnuévog yetaoynuationdc Radon unogel, 6mwe axpBog
xou o un egoodevnuévog, va avtioteagel pe TN Borideio gaopatixic avdhuonc.
Yy e€aotevnuévn meplntwon, ung, 1 avdAuon auth dev egoupudleTal oTNV

elowon oty (A1), odlld oe pla yevixevon auvthc:

1 1 1 1

Téooepa ypovia apyotepa, to 2006, o Pwxdg, Iserles xou Mapwvdnng o-
viéotpeday tov eCacdevnuévo yetaoynuatioud Radon pe axdurn amhovotepo
TEOTO, YPNOUWOTOLOVTAS To ATOTEAECUATA TN QPUOUATIXNG OVAALOTG TOV EEL-
CWOEMY OLOTLIWY xon ([A.2)). Aemtopépeiec authc e véac avTioTeoghc
napatievion oto Evotnta2.2] tou nopdvrog xewpévou.

‘Evo ané ta xOpta amotehéopata Tng mapoloag Sltelfrc elvon 1 Slatinmon
Hag Loodlvoune avTioTeoghc Yl Tov eacvevnuévo uetacynuatiopd Radon,
axohoudvToaS To TewToToplaxd £0Yo Twv Novikov xa wxd. Iapoucidlovue
Aemtopugp®e wia Véo e€lowon avaALTIXAC avTIo TEOPNC €U VEVNUEVLV ONOXAT-
ew TGV uetaoynuatioudy Radon, BA. OedpnuafA 10} xadde xou tov avtioTor-
YO OAYORLIUO AVAXATACHEUTS EXOVOG, UE TNV ovouaota attenuated spline re-
construction technique (aSRT).

Yy mopoloa daten, ue titho <O petaoynuoationdc Radon, ol yevixed-
OELC TOU X0 EQPUPUOYES auTwY oTIC tatpixég anewxovicel, PET xou SPECT»
emAboupe Tplor BlapopeTd uardnuaTixd TeoBAfuoTaL:

1. 7o mpdPAnua tne evpeang cuvopwY otov xatd Radon (p, 8)-yweo, dnhadn
07O NULTOVOYRoUU (sinogram), ot TNG AVAXATUOXEVAS TV OESOUEVHDV
péow otatiotxic owpevuévwy adpotoudtwy (CUSUM statistics), BA.
Kegdhouo

2. 70 TEOBANUA TN AVOALTIXNAC AVTIOTEOPHC TOL e€aaUeEVNUEVOL UETOOY T
patiopol Radon péow pag véog e€lowong, BA. Osdpnua xoL NG
avtiototyne aprdunuxic uhoroinone avthc (aSRT), nou tapovoidlovto

oto Kegdhao [@ o
3. 10 mEdPAnua Tou «&evohwpotocy (deblurring) tou eZocdevnuévou nui-

Tovoypdupotog otov Radon (p, 8)-ydeo o tng enaxdrovdng avonorto-

oxeuhc TV «Zedohwuévwyy (deblurred) dedopévev, PA. Kegpdhowo
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To pordnuotind TEoBARUATH TOL TEQLYEAPOVTUL TUPATAVE TUEOTL EVOL dpXE-
& BlapopeTind UETAE) TOUS, WO TOCO SlodéTouy eyyeveic opototntes. To mpo-
BAAuoTor auTd avixouy o€ uia euplTUTN XUTNYOoEio Lo NUATIXGY TEOBANUATEY
Tou oyetiloval Ye TNV Touoypapio xou TNy mupnvixy tateixr]. H avtiotpogn tou
uetaoynuatiopol Radon xou tng e€acvevnuévng yevixeuorg tou amoteholy Uo-
UnpaTd tpolAfuata Tou oyetilovton, EV TEAEL, UE TNV OVUXATUOKELY| LUTEIXAC
exovag. Tétowou eldoug TpofrfuaTo SLopopP@VOUY TO VEUEAOOES Lot NuaTind
umofoipo tne Touoypaploc exntounhc nolitpoviwy PET xou tne touoypaplog
exmounhc Hovay gutoviny SPECT.

‘Eyouv nepdoet méve and exatd ypdvia and TNy TenTonoplaxt| dnuocicuon
Tou Johann Radon 7o 1917. H cuyxexpwévn onpocicuon éuerie vo amotehécel
70 évauoua Yl Tr) OnuLoupyia VOC xouvolplou xAJO0U OTNV LTEXT, TOY XAABO
e touoypapiag. To éoyo Tou Radon e€axoloudel vo aoxel yeydin emppon

OTNY EQELVITIXT XOWOTNTA TYXOOUIWS PEYEL CTUERAL.

Meracynuaticpnéc Radon ctov R?

Tomuxég ocvvtetaypmeéveg. Mio eudeio L oto xjxz-eninedo divaton va
TEOGOLOPIGTEL ATO TNV TEOCHUACUEVY) ATOCTUCT| TNE OO TNV 0EY T TWV AEOVKY
p, (—oo0 < p < 00), xou and ™ yovia Ty onolo oynuotilet ue tov dova x1, 6
(0 <60 < 2m), Ph. oyfua YuuPBoiilovtac o povadiado dtavbouota ent TG

L ye el xou et npoximter 6t

el = (cos6,sinh),

el = (—sin#,cosh).

Enopévoc, xée onueio x = (z1,x2) enl tng L o€ xopTEOLavEC GUVTETAYUEVES

exppdletal BACEL TV TOTUXWY CLUVTETAYUEVLY (p, T) we €&
X = peJ‘ + 7 e”,

OTOU TO T UTOONAMVEL TO UAX0S ToU eVHUYEOUUOL TUNUUTOS TOU AVAXEL GTNV

evdela. Enopévoc,

x1 = x1(p,7;0) = Tcosh — psiné, (A.3a)

x9 = x1(p,7;0) = Tsinb + pcosé. (A.3b)
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Avuotpégovtag Tig e€loWoELS (A.3]), TpoxinTouV 0oL ToTKéC GUVTETAYUEVES OUL-

VOPTHOEL TWV TOTUXGY, ONAadT
p = p(z1,22;0) = x3c0860 — x18inb, (A.4a)

T =71(x1,22;0) = 9 8in 0 + 1 cosb. (A.4Db)

Xwpog cuvapthoeswy Schwartz. e 6, T oxohoudel, Ya avagpepduacTe

oe cuvapThoelg Schwartz.
Oplopoég A.1. O ywpos ouvvaptrioewy Schwartz otov R™, 1 o xdpos twy
Tayéws peoluevwy auvaptrioewy (rapidly decreasing functions) oupfoliletar
pe S(R™) ka1 opiletar ws:

S(R") = {f € CF(R") : [[flla,s < 00} C C=(R"), (A.5)

omov

DA f(x)|, V roAvdetkTn a, 3,

[ flla,s = sup
z€eR™

‘an*Bf(x)‘ — 0, xalds |z] = co. (A.6)

Metaoynuationdée Radon. O meplgnuoc petaoynuatiopds Radon plog
OLo0Ldo TATNS GLVEETNONG 0plleTol WS TO GUVOAO OAWY TWV ETUXOUTUALWY ONO-

XAnewudTey authg ent eudeldv. 1o cuyxexpyéva:

Opiopog A.2. To emkauntlio odokApwpa piag Swdidotatng ouvdptnons
Schwartz f € S(R?) enf evady oto eninedo, PA. Opioud arotelel Tov
enovopaldpevo <uetaoynuationd Radony, R, s f(x1, x2) kar ovuPodiletar

pe f(p,8). O petaoynuationés Radon arodnkedetar ovvniiBns otn popgry eveg
nuicovoypdpatos, to omolo ekppdletal ws e€ng:

~

f(p,0) = (Rf)(p,0) = /_Oo f(Tcosf — psinf, 7sinf + pcosf)dr,

0<60<2m, —c0o<p<oo, (A7)
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Méow tou cuvaptnotaxol Dirac, n egiowon (A7) unopel vor ypopel we:

-~

f(p,0) = /_00 /_OO f(x1,22)0(p + 21 8in 0 — x5 cos §)dz1dzs. (A.8)

O perooynuatiopds (A7) anotedel éva avtiotpopo mpdPAnua: Aedouévne
e ouvdpTNoNG F(p,0),0<6 < 2r, —00 < p < o0, eMJUUOUUE VOU AVOXATO-
oxeudoouuey T ouvdptnon f(z1, x2). pdxertou yio To yardnuotind npdBAnua
ne Topoypapiog extounic nolitpoviwy PET. To npdBinua autd to éhuoe, xot’
oYV, o Bloc o Radon to 1917. H avtiotpogy| tou petacynuotiopod Radon

avohVeTon extevis ota Kegdhona [2] xan

EfacVevnuévoc petacynuaticpnéc Radon ctov R?

To podnuotind mpoAnua e Topoyeaplag EXTOUTAS HoveY gwtoviwy SPECT
EUTEQIEYEL TN YEVIXELUOT) TOL YeTaoy NaTiodo) Radon, xa mo cuyxexpluéva Tov
ebaolevnuévo petaoynuatiopd Radon 1 exOeticd petaoynuatioué Radon, tov
omolo cuuPoriCouue ye R,. H cuvdptnon tou cuvteheot ypouunrc e€actévi-
one, 1 anhoe eZooVévion, oupfolileto pe p(x1, 2).

Opopdég A.3. Opilovue to emiaumilio odokAnpwua piag dwdidotatng ou-
vdptnons Schwartz f € S(R?) ent evlecsv oo eninedo, eéaodevnuévng ws tpos
T owvdptnon ekaoBéviong (i, ws tov «efaolevnuévo petaoynuationd Radony,
Ry s f(x1,x2) ka1 tov oupPorilovue e fu(p,H). O ebaoOevnpévog peta-
oxnuatiopos Radon aroOnkedetar ovvniws otn uopen evos efaolevnuévov
nuitovoypdpatos, to omolo ekppdletal ws e€ng:

]?u(pa 0) _ (Ruf) <p, 9) _ / e [ p(s cos f—psin 0,5 sin 6-+p cos 9)ds><

— 00

f(rcosf — psin®, 7sinf + pcosf)dr, 0 <6 < 2w, —oco < p<oo. (A.9)

O petaoynuotionos OTOTEAEL, OTIWOS AXEYBWE XKoL O UETACY NUATIOUOC
(A7), éva avtiotpogo mpdPAnpa: Aedouévmv Twv cuvapTAoEwY ﬁ(p, 0),0<
§ < 2m, —oo < p < 00 xau p(x1,x2), EMVUUOVUE VO OVUXATACKEUGCOUPE T
ouvdptnon f(z1,x2). Hpdxerton yia o godnuoatind mpdPAnua e Togoypo-
plag exmounric povayv gwrtoviky SPECT. H avtiotpogy| tou eacievnuévou

uetooynuatiopol Radon avehdeton extevie oto Kegdhao [
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IMapatrenon A.4. Yy opuakn katdotaon pundevikng ekacOéviong, dnAadn
w(zy,x2) — 0,

o ekaolevnuévos petaoxnuatiouds Radon R, petatpémetar otov un efaole-
ynuévo uetaoynuatiopd Radon R:

lim R,,(-) =t Ro(-) = R()

Avtiotpogh petacynuaticpod Radon ctov R?

Mio ané tig cuvADELS PardNUATIXES TEYVIXES OTOV TOUEN TNG LUTEIXNG ATEXOVIONC
Booileton oto Jeddpnua kevtpiknig tours (central slice theorem). To Yedpnuo
Ut TapéyEl éva Bacixd epyohelo Yol TNV AVTIOTEORT TOU UETUCY NUATIOULOD

Radon, n onola Bacileton otoug petaoynuatiopols Fourier.

Oedpnua A.5. (Ocdpnua kevtpiknig tours). O dwdidotatos petaoynua-
topés Fourier Fo pias ovvdptnons f(x1,z2) elvar ioog pe tov povodidotato
petaoxnuatioué Fourier Fi tov petaoynuatiopov Radon R tng f. Xe auyn

oupPoAIoU6 TEAEOTOY, TO Tapartdve atodidetal wg

Fo{f} =P {RA{S}}, (A.10)

omov o petaoxnuatiouss Fa elvai ioog jue

(F2{f}) (&,&) = /_00 /_OO f(xy, mg)e 2 Em+822) 40 dry . (AL11)

€ve) 0 petaoynuatiopds Fi Otvetar andé tov timo

[e.o]

(Fi{g}) () = / g(p)e 2P dp, (A12)

—0o0

ka1 o0 petaoynuatiopds R opiletar otny e&iowon (A.7).

ITépropa A.6. To Ueddpnpa kevtpikns touns ovvendyetal 6t n katd Fourier
avTioTpor) Tov puetaoxnuatiopol Radon eivai, o€ ypagn tekeotdv, n axolov-
On:

R =F R (A.13)
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H avtiotpogt| Tou petacynuatiopol Radon pnopel va emteuydel xan ywplc
Toug petaoynuatiogols Fourier. Mmopolue vor avTio TREPOUYE TOV UETOO) T
patiopd Radon pe €vav mo mepimhoxo toTo, YenotlomolovTag epyoleio Tng
Uyodnc avdhuong. 201600, To UTOAOYLO TIXA TAEOVEXTAUATA TNG AVTLOTEO-
e ywelc Toug yetaoynuatiopole Fourier etvan W6outépme onuavtid, xou Yo
Yivouv cogr| oto Kegdhono [l Y10 xepddhono autd mapoucidlovye éva and ta
%x0pLoL AMOTEAEGUATO TG TTAPOVCUS BLTEBNC.

‘Onwg avagépinxe mponyouuéveg, to 1991, o Roman Novikov xat o ©a-
véone Pwxdc avtéotpedav Tov yetaoynuationd Radon eqopudloviac gooyo-
e avdhuon oty eiowon (Ad). Ttnv avéhuon tou axohoudet, uiodetolue
o o yoprduxn TeocEYYLon Yol TNV avTloTpo®Y| Tou Yetacynuatioplol Radon.
Yuyrexpuyéva, to Briyata Tou aiyopliuou eivar 500:

(0) Eud0 mpbéBAnua. Advouue v e&iowon WBLoTyoy 0S TEOS TNV
ouvdptnon f Yy oheg Tig WioTwég k € C. H Aon tne e€iowong idtotiumy
meénel va ebvan gporyuévn yio xdde k € C. To eudl) mpofBinua anotehel
YopoXTNELGTIX TepinTwon d-TpoPhfuatoc (d-bar problem).

(B) Avtictpopo mpdBAnua. Acdouévou 6Tl 1 Aon g e&iowong LBLo-
TV elvol QpoaryHEVN Yo OAEC TIG ULy adLXEC WOLOTIWES k, CUUTEQD-
ftvoupe 6Tl UTdEYEL LGOBUVOUT AVUTURAG TUCT] Yo TNV U, 1 omola, avTl va
e€aptdton and Ty f, e€aptdton and tov petacynuatiopd Radon tne f
(f), Br. eglowon (A7). To aviicTteogo mpdBAnuo amotee! yopawetnoL-
ot nepintwon Baduwtol npofrfuatoc Riemann-Hilbert (RH) 7 scalar

Riemann-Hilbert problem.

Ogwopoéc A.7. O petaoynuatiopds Hilbert piag ovvdptnons u(t) opiletar

S to axdlovo odokAnpwpua:

H{u(t)} = > (PV / h “(T)t dT>, (A.14)

m o0 T —

omov to PV ovppodiler to katd Cauchy odoxAnpwpa kipiag Tipng

PV/ g(T)dr = lim g(7)dr, (A.15)
L 0 )L,

ka1 to L. avamapiotd to tunua tng kaumiAng L pe kévtpo to onueio t, kai

unKos 0o e 2e.



16 eptindn

~

ITpotaocn A.8. O avtiotpopos tou petaoynuatiopol Radon f(p,0), plag
ouvdptnons f(x1,r2) € S(R?), drws opiletar otny ekiowon (A7) diverar and
Tov timo:

-~

1 [amf)(p, 0)

f(x1,x9) = dé, (A.16)

CAr d ]
0 P p=x2 cos @—x1 sin O

e —00 < w1, T2 < 00, kat to oUuPoro H va avarapiotd tov petaoynuatioud
Hilbert wg mpos tn petapAner p, énws otny eéiowon (A.14)), o

-~

1 <
(Hf)(p,0) = - PV/ f(i’i)dr, —o<p<oo, 0<6<2m (A17)

AvtioTtpopn eEacVEVLEVOL UETACY NUXATICUOU

Radon ctov R2

O Novikov anédeile Ot 1 avTioTeoPY) Tou €EaGUEVNUEVOU UETUCY NUATIOULOD
Radon emtuyydvetar uéow gaopoatinic avdiuong tne e&lomaong 1oty ,
n omola amotehel yevixeuon g eZiowone (A.). Qotéoo, 1 aviicTpogh auth
oLvaTow vo emitevdel Ue TN YproN TV ATOTEAECUATWY TNG AVTICTROPHC TOU U1
eaodevnuévou petaoynuotiopot Radon, Bh. Mépiopa 2.9, cel. [72

IIpbétaom A.9. O avtiotpopos tov efaoOevnpévov puetaoynuatiopov Radon
.]/‘L(p, 0) jag owdptnons f(x1,x2), €€aoevnuévng ws mpos tn ouvdptnon
ebaotévions pu(xy, z2), e fou € S(R?), pA. ekiowon (AL9), bivetar and tov

o

1 CLE
f(z1,22) = E(axl - i@m)/ €9 J(x1,20,0)dl, —o0 < x1, T3 < 00,
0
(A.18)
omov n ovvdptnon J opiletar ws €€ng:
J (w1, 22,0) = PO L (0,0) fu(p,) , (A.19)
T=x9 sin 0+x1 cos 6

p=xg cos 0—xq sin @
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4 /
kat o1 roootntes M kar L, 1wodvzar jue

M(r,p,0) = / i (scos@ — psind, ssinf + pcos ) ds, (A.20)

T

L,u(p7 6) — ep_ﬁ(p’e)PfeP_ﬁ(pra) _|_ 67P+ﬁ(p79)P+eP+ﬁ(p79)' (Azl)
X etlowon (A.21)), to @ avanapiotd tov petaoynuatiopd Radon tng ov-
vdptnong ekaoOéviong (1, 6nAadn

ﬁ(p,&):/ (T cosf — psinf, 7sinh + pcosb)dr,

—00

0<60<2r, —oo<p<oo, (A22)

evad o1 tpoPolikol teAeotés PE bivovtar and tny axdlovin efiowon:

(P¥g)(p) = ig(;) + % PV /Z fﬁn)pdr = ig(Qp) + %(Hg)(p). (A.23)

EVpeor ocuvépwv otov Radon (p,0)-ydeo dedo-

eV pe adpolopata CUSUM

Y70 xEPANLO [3] XATATAVOUAG TE UE TO TEOBANUA TNE AV VEUOTC TV GUVOPWY
TOU NULTOVOYRAUUOU, OTO TAXCLO TwV avTio TEOQY YoinuaTinedy TEoBANudTeY
e mupnvixrc tateixrc. To mpdfAnua Tou TREocdloploro) TwY CLUVOEKY (TERL-
YOUUUATWY) TWY AVTIXEWEVWY OTIC EXOVES TUPNVIXAC LTpXhAC €YEL ueheTnUel
EXTEVWS OTO TAPEAVOY, WOTOGO TO UEYUAUTEQO HEPOC TNG AVAAUCTG €YEL ETL-
AEVTPWUEL OTNV ATELXOVIOT EVOC UOVO AVTIXEWEVOU. 2XOTOC TNG UEAETNG UoC
elvor 1 avdmtudn plag autoyoatononuévng uedodou Yo TOV TEOGOLOPIOUO TWV
CLYVOPMVY EVOC 1) TOMNAWY OVTIXEWEVWY GE AMEIXOVICELS TUENVIXNC LATEIXAC, XAl
Wdtepa oe Topoypapixeg ewoveg PET xoa SPECT, avoxataoxeuaouéves e
puktpoptouévn omoBonpofoly (filtered back-projection, FBP). Ta npoavapep-
Uévta obvopa tov Radon (p, §)-ydeo dedoyévmy unopolv va yenotponotnloly
otny topoypapio exrournric PET # SPECT, vy tov unohoyloud twv cuvopwy
TOU OWUATOS Xal Yl TN SLoptwon g e€acdéviong. H aviyveuon twv cuvdpny
TWV TPOC ATEXOVIOT] AVTIXEWEVWY ETITUY YAvVETOL EQupuolovTag Uio TooToToLN-

HEVN TEXVIXY) owpeLTXOY adpotoudtoy (cumulative sums, CUSUM) oto nui-
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TOVOYROUUa, dNhadY) Tov (p, B)-yweo dedouévwy tou uetaoynuotiopold Radon
TV €V AOY® edvev. Me tn véa tpocéyylon yog eipaote o Vo var oviy ve-
VoouPE auTOUOTA GhoL ToL ovTLXElpEVL TTOL amelxoviCovtal GTNV LTEIXY EXoVA,
Ywelc vo amanteltar a priori yvmon tou cuVokxol aprluo) TOV AVTIXEWEVLY
oauTOY. AZoloyrooue TN U€V000 YOS UE TPOCOUOLWHUEVOL OUOLOUNTA, OTWS TO
opolwua towdtnag exdvac (image quality phantom 1Q) xou 0o gnepraxd opot-
OUATO TOAATAGY AVTIXEWEVKY, UE TO UN-TPOCOUOLWUEVO opoiwua NEMA | xo
ue plor sk perétn Yopaxa. Ilpog auth tnv xateduvor, yenowonolfcoue
tov PET topoypdgpo GE Discovery. To meptypduuoto TOU oviy VEOGOUE ETL-
TuyYdvouv axpiBeta pilac uéoou teTpary@vou (root mean square) {on ye 1.14
pixels, 1.69 pixels xou 3.28 pixels, xou andéotoon xotd Hausdorff (Hausdortt
distance) (on pe 3.13, 3.12 xou 4.50 pixels, yiot TNV TEOGOUOIWGT TOL OUOLOUO-
toc 1Q, to mpaypatnd opolwpa NEMA xou v xhwvix| perétn, avtiotorya.
To anoteréoyata aviioToryoly o onpavtixy| fehtinon o oyéon ue mpdopoTa
amoteAéopata Tou EAfPUNcAY o TopoUolee UeRETEC. Avapépouye emlong OTL
ANPoe tomixd opdhua eviomiopgol optimal sub-pattern assignment (OSPA)
e tdENng Twv 0.94 xou 1.48, ylo oL TROCOUOLWUEVO OUOLWMUAT VO Xl TELOY
avTixeévey, avtiotorya. H pédodog uac Aettoupyel anotekeoyatind oc clvo-
AL XUPTWV AVTIXEWWEVWY, X0l O EX TOUTOU TUPEYEL VOl LoYUEO pYUAElo Yia
TOV QUTOUOTO TEOCBLOPLoHS GUVORLY WE axplBT| anoteléopata. A&ilel vo or-
UELWUEL OTL UE TNV EQUPUOYY) TNS MEVOBOU HaC, UELOVETOL ONUAVTIXE O YEOVOC

UTIOAOYLOUOU XOUTH TNV OVOXATAOHELY| TWV EXOVOV.

MéVodoc CUSUM

It vor avadei&oupe v mvaxomounuévn tou pop@t|, cudBoiilouue To MuLTo-
VOYQOUUO UE ﬁj,, avelapThtwe eCacdévione. Tlpdxeiton yio To yeTaoynuatioud
Radon tng Siodidotatne cuvdptnong xotavounc podevépyewas f(z1,x2). To
nutovoypauuo amotelel évay mivaxo ue Ny yooupéc xou N, oThheg, oL onoleg

avTioToL o0V ota oployota p xou 6, ue cTolyela

-~

fz‘j:f(pi,@j), Y iZl,...,Np, pdeis j=1,...,N9.

Yrc wrpiég anewxovioel PET xoa SPECT, unodétouye 6ti 1 cuvdptnon (ﬁ])
olrd€Tel menepacuévo opéa, PA. oyrua AcBoUévou ToU TETERUCUEVOU
popEA NG ﬁj7 elvon aoparéc va utodécoupe 6T yio xdle ypouuy| j Tou NULTo-

VOYEUUUOU UTIEEYOUY BUO0 «GYEBOY UNBEVIXE DLUC THUATOY, EVOL ATO TOL APLO TERAL
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xan évor oo Tar 8e€Ld. LuuBoMloude TO UAX0g TV BICTNUATOY aUT®Y Ye £f,

xan £ pixels, avtioTorya. Xwplg mepioplond TN YEVIXOTNTOC UTOVETOVUE OTL
b =lr="¢

xou avtipetonilovue 1o £ og ehediepn napduetpo. H mapduetpoc £ mopéyet
o3| extiunon tne xatavourc Tou Yoplou ata 8U0 dxEa TOU NULTOVOYEAUUOV.
Hpoxewévou va Peedel 1 andtoun yetoBoly| (dAyo) TOU NULITOVOYEAUUOL GE
)

xade ypouut 7, elodyouye ta axorovda CUSUM adpoiouota LY xou RY ané

oploTeRd xou amd dedld, avtioTolya

ng) -0, (A.24a)
ngj) = max {O,ngl + ﬁl,j - (N(Lj) + )\U(Lj)>}, n=1,...,Np (A24D)

6ToL e ,u(Lj) ouuPoAilovpe Tov Yéco xau pe o TNV TUTXY OmOXAOT) TOU

«OYEBOV UNBEVIXOL BIACTARATOCY amd aploTepd, Yo xdde yoouun j:

) ¢
W =i 0 e o= G () e
- i=1

eV UE A oLPPBOAILOVUE TOV TOAAATAACLUCTY TNG TUTIXAC ATOXALOTG, GTOV OTo{0
ocuvidwe Sivouue TNV TWH A = 3. Ao Tov avwTépn oploud YiveTon capéc OTL

T0 oWEELTO dlpolopa and aPLeTERH lvor aUEAVOV, BNANDY:

LY > LU yia xdde m > n.

Ouoloxc,
R%Z — 0, (A26a)
RY) | = max {0, RY + foiyj — (ug) n Agg>) } n=N, Ny_1,....2,1,

(A.26D)

6Tou UE ,ug) ouuPoAiloupe Tov Yéco xau pe O'g) TNV TUTXY OmOXAOT TOU
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«oYEBOV UNBEVIXOU BLCTANATOCY amd Beld, Yo xdde ypouun j:

N, N,

¢ _ 1 g W _ |1 7 @)

05 =7 g fij xou op = 7 g <fw—uR) . (A.27)
i=Np,—{+1 i=Np,—{+1

Ano tov avewTtépn oplopd YiveTow capéc 6Tl To CwEELTXO dipoloua and Beid

elvon piivoy, onAad:

RU) < RU) v xédde  m > n.

m  — n

Evpeomn cuvépwv: N =1 (éva avtixeipevo)

[oe Ty edpeom twv 800 axpaiwy, ¥ cuvoplox®y, pixels Tne j-lOoTAC YeouuUhC

TOU NULTOVOYQOUUOU
PL, Yo nga

avtioTtotya, Beloxouye mpwTtioTwe Toug TopoxdTe delxTeg:

ig): max_ker LY xa i/}%): min  ker RY) (A.28)

1<n<N, " 1<n<N, o

omou ker A elvan 10 undevixd alvoro tou A, ue
ker A = {6)\ot ot deixtec @ tétool dote A =0}, A€ {Ll(j), jo)} .

[o xdde ypopur| 7, ONULOVEYOLYTOL BUO KVEQPT» DEIXTOV, XUl CUYXEXQUEVIL

('/(j) ()

ZLovj) nou (ZIR{)h])

‘Eneita, egopuolovye ToAuwvuuxr teoceyylon Poduol n > 3 xou AopBdvouue

0V0 XOUTUAES BEXTWY,

M=) e i = ().

Eniong, av ewodyoupe pio napduetpo padding p (oe pixels), ye p € N t6te:

Z(Lj(?:l%t)(])—P xou Zg)zfﬁo(JHp, p=0,1,...,L7’)J. (A.29)
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Me autéd tov 1p6T0, SNULOLEYOLYTOL BUO XUUTVAES, XAl GUYXEXQUIEVAL OL

PLo = pLo(05) xou  pry, = pry(0;),

Ol OTIO{EC AVTIOTOLYOVUY GTOUC OEIXTES
Z.LO = Z.LO (J) Ho iRo = iRo (])7

avtiotorya. Ot xaumdieg autég amoteholy Ta eEWTEPIXA GUVORA TOU TMULTO-
VOYEAUUOL. AV TO NUTOVOYEUUUO amoTeheiton amd Wiot cuUTAY) U UNoEviXn
TEPLOY Y}, TOTE 1) TROG OVOXATAOKEVY| EXOVOL AVATOPLC T EVOL AVTIXEIUEVO UE XAEL-

670 GUVORO.

Elpeomn cuvépwv: N > 1 (toAhd& avtixeipeva)

Av nedva avoamaplotd N EeywploTd avTixelueva e aOvopa XAEIGTES XOUTUAES,
TOTE TO NULTOVOYPUUUO OmOTEAELTAL OO TOAAES, «OYEDOV UNOEVIXECY TEQLOYES.
Ye auth) TNV TepinTwaoT, TEENEL Vo TAEVOUNCOUPE XAVE YRouUY| j CUUPVOL UE
oV 0Pl TV xopLPGY TN av Yo wa otadept| Ypoupn §¥ (xou emopéve

otadepy| Yovia 05+) 0 aprdude v xopuedy elvor Njx = 2, T6TE 1 cuvVdpTNoN
9(pi) = fi= = f(pi, 05+)

otord€TeL 5U0 *x0pPLYES GTN UETABANTY pi. O aprdudg TV BLaXEITGY AVTIXEWEVLY
oTnv eoéva oxohoudel Tov avticTolyo apliud Twv xopuP®Y, o xdle Yoouun,
UTO TNV EVvola

N = max N;. (A.30)
1<j<Np

‘Otory TedXELTOL Y10l TOAUXOEUPA NULTOVOY oo Vol NTOVUE «OYEDOV Unde-

VXY UTOBLAC THUATA EVTOEC TOU axOA0U oL BLAC THUNTOS BEXTEY
1) =949, (A.31)

xa WAL HECW CLEELPEVWY adpoloudTey, Yo xdie ywvia 0. Enopévwe, tpo-

onodolue v Bpolue aploTepd xa 6e€Ld KECHTEPIXAY CUVOpLUXE pixels
(7) (7) _ ,
b, AU AR, YW k=1,...N; -1,

€€w amd To omola M) TWH TN CUVEETNONG 7 undeviletar. Xnuewdvouye OTL 1|
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optax) T k = 0 avamaplotd Ty mepintwon N = 1, 6nwg neprypddoye otny

TponyoLuevn evotnta. o amhodoteuoy), votetolue Tov cuyfohioud
19 = [igj_l,ig;j_k], k=1,...,N;, N;>1 (A.32)

Kotd tn diaduacia e0peong 1wV GUVOEWY TOANATAGY AVTIXEWEVGY, oVO-
xOmteL pla eyyevic duoxohio: o aptdude Twv dtoaxpttdy avtxeyévmy (N) dev
elvon a priori yvwotog. o vo avtipetonicovde tn Suoxollor auTH, SLOVEUOUUE
M ~ov apduéd «avunpoothnovey CUSUM (A,,) evidc tou o thuatog Iéj).
Efvor onuavtind v onpeidoouye ot o oprdude M etvor évag npoxadoplopévog,
aEXOVVTOC UEYIAOG VeTindg axéponog. Ot TEOTEWVOUEVES TWES Yol TNV TopdUE-
te0 M amoutolv Toukdyiotov M > N,, m.y. M = 1000. Kdie avtinpocmnog
elvon LTEOLYLUVOC YIaL TOV EVIOTIOUS ATOTOUWY AAAAY DV TOCO T APLOTERY, OGO
xon ota 6e€id. H avalrtnon yio tov xdie avtinpdowno exvd and tuyaio, xdie

popd, pixel exxivnong,
smeléj), m=1,...,M.

Kde avtimpdonnog epopudletl tov aryoprduo CUSUM péoa 6To Sidotnua I(()j).
Xenowponoolue tny Bio axplBie u€dodo, OIS xaL GTO 0Py X0 SLEAGTNU, LOVO
TOL AUTH TN POEA EVIAGCOUNE GTT VewENo Yog Eva GTOLYEID TUYAOTNTAC, OLOTL
0eV YVWEILoUUE EX TV TPOTEPWY oV 0 EXACTOTE AVTINPOoWROC Vo Bpet Eva VEo
vmoddotnue. Aniadn, dev yvwpllovue av N > 2.
Ouolwe, optlovye yio xdde yoouur j To cwpeuTxd abpolopato Lglj)(Am),
YO TNV OPIOTERT TAEUR, Xalt Rg)(Am), yioo T 8eid Thevpd, avtioTolyo:
L) (Am) =0, (A.33a)

L (Ap) = max {0,290 (Ap) + Foy = () +20) ) (A33D)
nol

RY (An) = 0. (A.34a)
R (Am) = max {0, B () + Foorg = () +00) . (A300)

6oL oL ToEEVIETELC UTOONAWVOUY TNV EEAETNOY TOU CLEEVUEVOL adpolouaTOg
amd TOV M-100TH AVTITEOCKWTO, 0 onolog Lexivnoe TNV avalTnoTn EcHTERIXWY
() ()

GUVOEWY A0 TO Sy, M = 1,..., M, eve) oL tocdTnte g’ xou o’ divovtal and
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v e&lowaon (A.25), oL tocdTnTES Mg) xou O'g) divovton amé tny e&lowon (A.27)),
xaL To A mepypdpeTon mapandve. Emouéve, yio va Beoldue to z(le), EQPOCOV
undpyet (dnhodh N; > 1), AowPEvoude To ENYIOTO PETUEY TWV AVTLTPOCWIOV:

) ) B
h 13%1£M{1<mni’§vpke“n <Am>} P (A-35a)

/ , -(7) / / . L
AvtioTorya, v vo Ppolpe 10 iR, Ep6cOV UTEEYEL, AABEVOUUE TO UEYIOTO

HETOEY TOV OVTITROCOTWY:

= o, { i, ke RO (s

Axohoudolue v (Bro Stadixacior avadpouxd, yia vo Bpolue Toug deixteg

1%2) P zgi uéyel i(sz)vj_l peeis ig])vj_l, i xdde  N; > 1,

OTOU AUTOL LTIEYOLY. LNUEWGVOUUE OTL AV YL XATOLO
k< Nj—1,
<0 ouvoplaxd pixel i) ( avtioTtoya 10 i) ) dev undpyet, totE €€’ oplopol
e p L= N X Ry PXEL P
avod€ToupE o€ auTOV To Ol TNV Ty 0, dnhadh av

()

* 7. A ’, (]) /7 -
10 k* eivan tétoo Hote B if,. n}ﬂ Ry

T67TE

2%13 =0 A zgz =0, V k>Fk. (A.35¢)

XeNOWOoTOLOVTIS TOV TURATAVL 0pLOUS, UTOROVUE VO TOGOTIXOTOACOUUE TNV
aduvauio TepaTépw TAEVOUNONG TWV LTOBIUCTNUATLY ,g] ), ywelc TNV mpdTEEN

yvwon tou Nj.
Mdoxa Radon (p,0)-5cdopévwv: Movoxopupa NULTOVOYeoliidl

H emuxdhudn tou nuitovoypdppou (sinogram masking) otnv nepintwon N =1
ETTUY Y AVETAL, Yia Xdie ypouur| 7, Vétovtag Tny udoxa {on ye 1 evtog tou Ié] )
o 0 omoudhmote ahhob. H pdoxa tou nuitovoypdupou, MY, etvor évog mivanac

o omolog nepiéyel otoryela ioa ye 0 1 1, we e&hc:

1 B 1, avie Iéj) B
Mg (pi, 0;) = , Yy N=1 (A.36)
0, orrol
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Mdoxo Radon (p,0)-5edopévmv: IToAuxopLYA NULTOVOY P

H onuovpyia tng udoxag tou nuitovoypdupou otny mepintwon N > 1 ebvan
copwg duoxoAOTERT. Emituyydveton, yio xdde ypouur j, Vétoviac tnv TN
e Udoxog fon pe 1 eviog twv Do TNUATOY I,gj)7 kE=1,...,N xou {on pe 0
onoudfmote ohhol. H pdoxa tou nuitovoypdupou, MY eivor évac mivoxac o
omolog mepLéyel otoryela oo we 0 1) 1, xou anotehet diapoponoinon tng e€lowong

(A30) s c2ic:

N
N I, avie IIEJ)
Mg (pi, 0;) = k=1 , oy N >1, (A.37)
0, orlol

6mou T N xou I,gj) dtvovton and tic eodoeie (A.30) xou (A.32)), aviioTol-

yo. Emuedvouye 6t ot e€iowaoeic ((A.36) xou (A.37) napéyouv Tic amopaitnTeS

TANEOYORIES Yo TN Onuiovpyia TNG UACKAS TOU NULTOVOYRUUUOU Yo xdie Te-

plntwon, ywele va amoutelton 0 TEOTEROS TEOGOLOPIOUOS TNG T g Tou N.

Mdoxa AVAXATACTHEACUEVNE ELXOVOG

H pdoxo tng exdvag, M, xataoxevdleton Aopfdvovtac utodn 6t va pixel to
omoio elvon exTOC GUVOEOL XAl GUVETKOC ExeL UNdeVIXY) T, uropel vor e€oupedel
Omo TO MULTOVOYEUUHO, 0ol TeoTo eCoxplBuwdoly ol VETEIC TV oV VEUTWY
pr = pr(61) Y 6hec Tic Ywvieg 0 mou AauBdvouv cuvelc@opd and To CUYXE-
xpwévo pixel. Térte, yio xdde (z1,22), oav undpyet €otw xou éva O, T€Tol0
WoTE f(pk,ﬁl) = 0, npoxVntel 61 n ouvoptnoy f(z1,x2) va woltu ye 0. H
ouvixn auTh anoppeéel and TN @Oon Tou uetacynuationol Radon, o onolog
elvon évar ddpotouol U aEVNTIX®Y OpWY, X ETOPEVWS LoOUTOL UE UNOEV UOVO
otav 6lot oL opot etvon undevixol. ‘Eneita, avaxotaoxeudlouue Tr udoxo Tou
NULTOVOYEAUUOL YLt Vor AJBOUUE TNV UAoX TNG EXOVAC.

Ye auth v xatedduvor, cuufolilovue Ye @z Xt Qz, TOV 0EWIUS TwV
Yooy (x1 diediuvon) xou Twv oTNAOY (22 Bledluvor) TS AvVoXoTOOXEVO-
ouévng ewodvoc. H ouviing mpoxtind otig wtpixée aneixovioelg umoryopeel
TETPUY WVIXES ELXOVES, ONAAON @z, = Quy = Q, ETOUEVWS 1) UAOHA TNG EXOVOC
(Mj = Mj(21,,22;), pe i =1,...,Q) ebvon évag TeTporywvIxoe mivorag QX Q.
[o xdde (a:li,ajgj)gjzl Beloxouue ta p = p(6)) Y dhec Tig T (BZ)ZV:"I.

X1 yevr] TEpINTWOT), TO UTOAOYIOUEVO p OEV CUUTITTEL Xt ovayXTr) UE

v dopéplon {pk}gil TOU NULTOVOYEUUOU - Enopévwe, mpénet vo Bpolue
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Tov TANoLéotepo Belxtn k (xau cuvende t Véon pi), dedopévou otL o p Yo
Beloxeton mévta oe éva DAoTNUA TNS LOPYNHS [Pk, Pr+1] Yio xdmowo k. Me awtd
TOV TEOTO, 1] UTOAOYIOUEVY XoTOAN p = p(0) uetatpéneton oty pi = pr(6),
WS ATMOTEAECHN TNG UETATOTUONS TNG TPOS TOV TANCEGTEQO OEIXTY), Yl OAEC
Tic Ywvieg 0. H tn g pdoxag tou nuitovoypeduuou utoloyileton enl tng
xoumOng, Snhadh Mg (pr(6r), 01). Av vndpyet éoto xou pla ywvio 6 = 0 tétol
dote Mg(pr, 0) = 0, t6te 0 udoxa e exdvac Vo 1wobto e 0, eddhhog Ja

toolton e 1:

0, av 36 t¢towo dote M 0;),0;)) =0
M (i) = ! s(pk(01),61) C (Ag)
1, ohroU

yoaok=1,...,Nyxul=1,...,Ny.

Mio vEa, avaAuTixy uEYob0g AVTIOTEOPNS TOU

cfacdevnuevou petacynuaticpol Radon

Y10 Kegdhawo 4] napoucidlouue tnv «attenuated spline reconstruction tech-
nique» (aSRT). H pédodoc aSRT mpocdidel pla xavotéuo mpocéyylon otov
Topéa TNG avaxataoxeung tatexov exévwy SPECT. H véa auty) teyvixr| Po-
oiletar oe évav avoluTixd TOTO Tou amodidel Tov avtioTpopo egacVevnuévo
uetaoynuotiopd Radon. Xuyxexpuyéva, nepthaudvel Tov UTOAOYIOUO TWV UE-
Taoynuotiouey Hilbert tne yeauuixrc cuvdptnong eacdéviong xou 500 nutto-
VoedhV cuvapThoEwY Tou eZacdeviuévon nuitovoypdupoy, Bh. e&lowon (A.9).
Ov avwtépw umoloyiouol exteholvton Ue yenor dedouévwyv egactévione and
aZovixoie topoypdgpouc (CT) xodie xa pe ypRon tpttoBdiuwy cuvapThHoEmY

spline. Ytoyog pag ebvan:

(o) va mapousctdooupe to padnuatixd vnéBadeo e véauc uedddou avTo Tpo-
¢hc Tou e€acdevnuévou yetaoynuatiopolb Radon, we eupelag yevixevong
e pedodou twv Poxd, Iserles xar Mopvdxn (2006),

(B) va avoxaTaoXEUACOUPUE TEOCOUOLWUEVA ot XAxd dedopéva SPECT

YENOWOTOLOVTOS TN VEo Yog péYodo, xau

(v) vo aZohoyfioouue Ty uédodo avaxataoxeufic aSRT, ouyxpivovtde tnv
HE TIC 0V0 Baoixéc YeOB0UE UVaXATACHEUNG, XAl CUYXEXQUIEVOL TNV Vo

Autr| uédodo FBP xan tnv emavoknmixn yédodo OSEM.
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[Tpog auth| TV xatelYuVoT), TEAYUATOTOCAUUE UEAETEC TROCOUOIWONS YET
owomoldvTag éva opolmua towdtntag exévog (IQ phantom) xan pio xotdhhnin
ouvdptnon eCacd¥éviong. O avaxataoxevée dnuovpyHinxay yio 45, 90 xou
180 ywvieg pe 20 mpayyatonolfoels xou eunepletyay Yopufo xatd Poisson, oc
Tpla Stapopetind eninedo (noise levels, NL), onhadr 100% (NL1), 50% (NL2)
xou 10% (NL3) twv cuvolixay xpoloewy, avtiotoyyo. Enlong, avaxateoxeud-
oope eCacdevnuéva nuitovoypoppa SPECT and tny yerétn evoc opolduotog
Jaszczak, xaddg xan and pa xdwvixy SPECT /CT pehétn puoxapdiou.

Yuyxptvope ta aroteréopota avoxataoxeviic aSRT, FBP xaw OSEM yenot-
HOTIOLOVTOG PETEXES exdvag, cuunepthopBdvouévng e avtideone (contrast),
Tou bias xat e Teoyltntac (image roughness). To anoteléopoto UTOdEL-
xvOouy OTL pe T wévodo aSRT nopdyovton axpifBelc avaxataoxeués i Tpoco-
HOLWUEVL X0l TEOYHATIXG. OUOLOUNTA, XS %o Yol XAWIXS dEBOPEVAL.

LUYXEXQUWEVD, OTNY TEQITTWOT TNS XAWXNC HEAETNS TOU Puoxapdiou, N
uédodog aSRT mopryaye avoxataoxeuég eixovag ue udmidtepn «puypen avtide-
ony (cold contrast) an” 6t ot péYodor FBP xou OSEM. Me tnv evonudtnmon
e Biopwaong e€acdévione, n pédodog aSRT mopéyetl BeAtiwuévn evahhaxTi-
x| oty avohutixt| uédodo FBP. Autd ebvar ibuaitepo eAmibopodpo, dixd otny
ATEXOVIOT] TOV AEYOUEVOY «XEVUWVY TEPLOY DYV, OIS AUTEG UEAETWVTOL OE LY Al
UG EMELGOBL TOLU LUOXAUEOIOU UE UERIXT| 1| TATION OmOPEUET TWVY G TEQPAVLULWY

ARTNELOV.

‘Eva 9ewpnua yia TNy aviioTeopr Tou eEacdevnuévou Ue-
TaoynuotiopoL Radon

Oewpolye plo evdeia L oto eninedo, 1 onola yapaxtneiletor and Tic Tomxég

ouvteTaypéves, BA. e€lomaoelg O . O e€aotevnuévog YeTaoynuaTL-
ouoc Radon pilag diodidotatne Schwartz cuvdptnong f opileton otny edicwon
)

To avtictpogo mpoAnua Tou avadletal and TNy eéicwaon AoOnxe To
2006 amd toug Poxd, Iserles xow Mogwvdxrn. H Abon divetan otnyv Ilpdtoon

xou ouyxexpwéva otic ellowoels (A.18)—(A.21) o nepthouPdver tpofolixoic

TeheoTéC o petaoynuotiopole Hilbert.
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Ocwpnua A.10. H ekiowon avtiotpopnig tov e€aolevnévov petaoynuati-
ouot Radon (A.18) eivar wodlvaun pe tny avarapdotaon

27
f(xla ZL‘2) = — 5 BM(T7p70) [Mp(Ta P G)G(pa 6) + Gp(pa 9)} d97

p=xg cos 0—x1 sin 6
T=x9 sin 04x1 cos 6

(A.39)
OTOU 01 O€IKTES UTOONAWDYOUY LEPIKI) Tapaywylon ws mpos T UETapAnTn p, 1
ouvdptnon M opilerar otny e€lowon (A.20) ka1 n ouvdptnon G divetar and

G(p,0) = e~ 20 [cos(F(p, 0))GC (p, 6) + sin(F(p, 6))G(p,6)] . (A.40)

O1 owaptiioeas GC ka1 G opilovar ws eng:

1 © 1a Fulr, 0)dr
C - fi(r,0) LA A
G~ (p,0) 27TPV/0062 cos F(r,0) r—p (A.41a)
1 BN ) Fu(r,0)dr
s — f(r,0) LA il
G”(p,0) 27TPV/OOe2 sin F(r, 0) —p (A.41Db)
evd) ovvdptnon F' wg €€ng:
1, 1 = u(r,0)
F =- = P A .42
(0,0) = M {7i(p,0)) 2ﬂ< V/_oor—pd’">’ (A.42)

omov e H ovuporioaue tov petaoynuatiops Hilbert wg mpog tn petapAntn
p, onws otny ekiowon (A.14). O ouvaptiioes i kai ]L dtvovtar otis e€lodoerg
(A.22) ka1 (A.9), avtioTtoya.

Andbdatn. Eqapudlovue tov tehects| L, mou opileton otny ellowon (A.21),
otov eCocVevnuévo petaoynuatiopo Radon (]/‘;), Bh. e&lowaon (A.9), we oxo-
rovdwe:

( Lufu ) (p,0) = {eP*mpm PP Ap0)

I €7p+ﬁ(p,9) P+6P+ﬁ(p,9)} ﬁ(ﬂ’ 9) (A43)

Ao Tic e€ioddoeic (A.23) xan (A.42) ocuvendyetan bt

ePER = 5 IF (A.44)



28 eptindn

nol
_ . il o m~ 1 B
P pt {ePﬂth} — ¢~ g tiF {eglFfu +=H {eg‘Ffu}] . (A.45Db)

H nepartépe avdhuon 1wy eglonoewy (A.45)) poc odnyel otny anoxpuntoypedpn-
on e eZiowone (A.43). Tuyxexpéva, yio vo amhovotelooupe TNy e&lowmon

(A.43), mpwtiotwe hauBdvouue unddn v eiowaon (A.42), xou énetta cUVOL-
dloupe tic e€iotoeic (A.44) xon (A.45)), dote va Zavaypddouye Tov teEleCTH

Ly, ot popet

~ 1 _& : B . Bspr o~
(L#fu> (p.0) = 52 [e—‘FH {e%+1Ffu} +elfy {e%IFf“H . (A.46)
Xenowotnowvtag Tov TOno tou Euler

e = cos F + 1sin F,

umopolue vo yedoupe tnv eiowon (A.46) we eghc:

WIE)

<Lufu> (p,0) = %e‘ [(COSF —isin F)H {e%“Fﬁ}
+(cos F +isin F)H {e%_iFﬁH . (A.47a)
Avanticoouye nepautépw TNy e&lowon vt vo AdBoupe
(15 00 et fonr ({30 102
—isin P (H{ETR L - H {5 R ] (Aam)

1 omolo GuveETdyETAL

[N

(Lufi) (.0) = 5ce”

oo T—p

0o JB4ip | B
cos F' (PV/ Mhdr)
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Me autd ToVv TEoTO avarypdpouue TNV Toeandve eiowor

(L) (0.0) = 5t

oo b iF —iFy
—1smF<PV/ lC ‘ )fudr) , (A.47d)
—00 r—=p
xan ouveyiCouue
~ 1 & * e2(2cos F)
<Lufu) (p,0) = 5" cosF(Pv/_oo T >
i
*© e2(2isinF) ~
—isin F (PV / e>(2isin F) fudr> (A.47e)
N
To tehevtalo Brua tepthauBdvel Tov axdhoudo yelplouo:
N 2 g 1 © 5 cos F -
(Lufu> (0,0) = Ze~5 |cos F ( {PV/ €2 cos fudr}>
i 2 R
% 5 sin F
+sin F' < {PV/ p— f#dr}) (A.471)

Autd pog odnyel oty telx| Hoppy| e anhovoteuone tne e&lowaong ((A.46),
¢ &g

(Luﬁ) (p,0) = —2ie™ % [cos(F)GC + sin(F)GS] (A.48)

ue Tic ouvaptioeic GY(p,0) xou G¥(p, ) va opilovta otic efiodoe (A.41a)

xou (A.41Db), avtiotoryo. Mtny e&iowon (A.48), av AdBouue unddn Tov oplopd
(A.40) tnc ouvdptnone G(p,0), tpoxinter 6Tt

(Luﬁ) (p,0) = —2iG(p. ). (A.49)

Enopévag, n eZiowon (A.43)) yetotpénetan otny e€iowon (A.49). Lnuewdvouue
ot 1 e€lowon (A.49)) utodnhdver dTL 1 GuVdeTnoN

(Lﬂ?/:) (p,0)
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elvol oLy g QovTacTixd, OnAadn

Re { (L,J“;) (p, 9)} =0.

Enopévwe, and g e€iodoeig (A.19) xou (A.49) cuvendyetan 6Tt

J(x1,29,0) = —2i [eM(T,,Oﬂ)G(p, 9)j| g sin 642 cos0 ° (A.50)
p=wxg cos 0—x1 sin @
‘Apat, YENOWOTOLWOVTAS TOV BLUPOELXd TEAECT
(0, — 10,) = e 9(0; —10),), (A.51)

0 omolog TEOXVTTEL AN TNV EQUPUOYT TOU XAVOVA TNG AAUGIBOC OTIC TOTXES
ouvtetaypéveg, BA. eliodoelg (A.3), umopolue vo unohoylooupe T dpdorn Tou
teheot| (A.51) otn ouvdptnon J:

(axl - 18232)J = —216719(87- - lap) {GMG} p=xg cos 0—x sin O

T=x9 sin 0+x1 cos 6

= —2i€_i0 [GM(MT - lMp)G + €M(GT - IGP)} p=x9 cos 0—xq sin @

T=x9 sin 4z cos 6
= —26_10€M [—IMG + MpG "‘ Gp] p=x9 cosf—xqsinb , (A52)

T=x9 sin 4z cos 6

OTOU YENOUOTONCOUE TIG LOLOTNTES

M. (7,p,0)

p=wg cos 0—x sin O = ,U:(.I'l, x2) nal GT<p7 9) =0.

T=x9 sin 0+x1 cos @
Ewdyouye tov teheot| (Oz, — i0z,) VoS T0U OhOXANPOUATOS 0T0 Ol Péhog
e eliowone (A.18) xou ouvdudlouue v eliowon (A.50) pe tnv ediowon
(A.52)), yio vor MBoupe
1 2w Y )
eV [-ipG + M,G + G, dg. (A.53)

p=x9 cos@—xq sin @
T=x9 sin +x1 cos @

f(xlva) =

_%0

O npdrog 6poc Tou ohoxhnpwuatog oto de&i uéhog tne eZiowong (A.53) amho-
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roteltan w¢ e€ne:

2
_; /0 pi(zy, z2) [eM(T,p,G)G(p,Q)} s inotan eono 00

p=xg cos @ —x1 sin f

1 2T

= Q,u(xl,azg)/ J(x1,29,0)d0. (A.54)
0

Yy eZlowon (2.9) tou dedpou twv Pwxd, Iserles xouw Mapivdnen [8], ovtixomd-

OTOUUE TN CLVAETNOT [t UE TN CLUVAETNOT U, XU UTOAOYILOUUE TNV T TN Yid

A = 0. Enopévec,

1 2

u(z1,22,0) J(z1,22,6)d0.

Ennpoodétme, to 6plo A — 0 tne eicwone (2.2) tou drou dedpou unodnidve
ot

du(wy, x2,0)
0z

Qd¢ ex ToUTOL, 1 CLVAETNON U Eivol AVOAUTLIXT TOVTOU, CUUTERLAUBOVOUEVOL XaL

:()7

Tou anelpou. Av emxolectolue Ty unddeon oty Ilpdtoon 2.1 tou ev Aoyw

GeUpou, CUYXEXPIIEVO OTL 1) GUVEETNOT| U LXAVOTIOLEL T1 GUVOELOXY) GUVTY|XT

1
uzO(), zZ — 00,
z

énetan and To Yewpnua tou Liouville étu n axépona cuvdptnon u Yo mpénel va

elvon mavtol undevixt|. Koatd cuvénewa
2
/ J(x1,22,0)d0 = 0. (A.55)
0
‘Apa, hauPBdvovtag unodn ty e&iowon (A.55)), n e&iowon (A.54) cuvendyetan

21
| e [MONG0] s 10 =0

p=xg cos 0—x sin @

Arné o mopomdve yivetan cagéc 6t 1 e&lowan (A.53) Aopfdver T poppr

1 21

f(acl, mg) = eM (MpG + Gp) do. (A.56)

p=xg cos —x1 sin 6
T=x9 sin 4z cos 6

Enoyévoc, n elowon (A.18]) yetatpéneton oty eiowon (A.39). [ |

_%0
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Kaddpiopa JoAwdyv Radon 6edopévewy

Yo Kegdhao [5| napovotdlouvpe pa véa teyvixn yioo to «Eedéhwpoy (deblur-
ring) avoxataoxevoouéveny e t wédodo aSRT exdvov and dedopévo to-
woypdpwv SPECT/CT, epoduopévev pe xateuduvtipes Tapod A hwy OTov
(parallel-hole collimators). H véo poc puédodoc Baoileton otny tavéunon tou
xatevduvtrpa ue Bdon to blurring mpogiA Tou, xar oyt TN CUVAETNOY CNUELAXAC
andxptone autol (point-response function, PSF). Me to Eeddhwpo tou apyt-
%00 e€acVevnuévou NUIToVOYpauUou, eluacte oe H€an VoL dvVOXATUOHEUACOUUE
AYOTERO VOAEC %01 TEPLOGOTERO EUXPLVELC ELXOVES.

[Tparypatonow|oaue YEAETES TPOCOUOIWONG GE €val OUOlwUA TOLOTNTOS El-
x6voc (IQ) pe xatdhhnhn cuvdptnon yeouuxhc e€aotévione. O avaxotooxey-
¢ OnurovpyHumxay Yo 180 ywvieg. Meletrooue 20 TooyUoTOTOLAGELS OL OTOLES
eunepietyay 96puPo xatd Poisson, oe eninedo 50% TtV cUVOAMXDY %xpOUCEMY.
[o Ty mpocouoinon tou ouowwuatog 1Q, yenowonowjouue Evay TUTIXO Xo-
tevduvthipa younhrc evépyetag xan uPniic avdhuone (LEHR). Ytn ouvéyewa
Yorooope ta Radon dedopéva Tou e€acevnuévou NUITOVOYRaUUOU YeNoULOTOL-
ovtog éva Gaussian mpogih ye Tumxt| anoxion o = 0.019. Tpoyuyoatonofooue
ouyxploelg ueTagd TwV YOADV %ot TWV «XoUPLOUEVLVY AVUXATUOXEUWY, YOOl
HomoldvTag 800 peTpéc: a) TNy tomxh uetex tne «Vepurc avtideoncy (hot
contrast), xou B) v okt petpuxr <no-reference perceptual blur metricy.
T TpoXATUEXTING YoC AMOTEAEGUATO UTOBEIXVVOLY OTL 0 aAYOELIUOC pag elvon
wovog vo avtio taduioet anotelecpatind To gouvopevo Yohwuatos twv Radon
0EBOUEVOV AOYw xatevduvtrpa, €Wixd oTo Thaicto Twv edvwy SPECT nou
avoxataoxevdo txay pe tn pedodo aSRT. Ot petpinéc mou emio tpatedooue xo-
YioT00V TOV ahyoeriud pog yerowo otnv xhvixy anexoviony SPECT xadoe
xaw ot Protateuxn encéepyacio eixdvac. Enopévng, n npotevouevn teyviny o-
VIO TGOS TOU YOADUATOS TV XATEVIUVTHPWY UE TUPIAANAES OTES, BUVATOL
VoL BEATIOOEL TNV TOLOTNTOL ELXOVAS GE avaxaTaoxeVEg eaoievnuéveny Radon

dedouévwy and topoyedgpouc SPECT /CT.
Apuduntixy vAornoinoy pe tertofdduieg splines

Ytoyog pog elvon va Abcouye Ty e&lowon

jus

an(p,0) = /_ ® 0(8) Gu(r6 + p,0+6) d6, (A57)

NE]
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YLOL TOL <LOOVLXGy BEBOUEVL ), CUVIPTACEL TV <JOADUEVWYY BEBOUEVLY g, OE-
dopévne tng ouvdptnone Bdpoug w xon Tng axtivag meploTpognc . [t TNy
apriunTer) vAorolnor, emotpatevouue TELtoPdiuleg cuvapThoeg spline. e
x&le vnodidoTnua [pi, pit1] Yo ko ta i = 1,...,n — 1, avantiooouuE TIC
9u(p,0) xau g,(p,0) wc xPixée splines otn petaAnty p, Tic onoleg cuyPo-
Alouye pe 51(3)(,0, 0) xau §l-(3) (p,0), avtiotorya. Enopévoc,

3
gu(p,0) = 5(3) (p,0 ZCJ (A.58a)
7=0
pidei) 3
Gulp,0) = =30 (A.58b)
7=0

AouBdvouue urddn ot n ouvdptnom gu(p, ), =1 < p <1, 0 < 0 < 27, Siveton
yio xde ywvio @ oton onueto {p;}}. LvuBolilouye Ty T g g oTa p; e
gir < e

9 = gi(0) = gu(pi,0), pi €[-1,1], 0€0,2n). (A.59)

H »uPuer| spline Si(g) (p,8) mou oplleton otny e&iowon ((A.58a) mapeuBdiier ™

ouvdptnon gu(p, ) otoug xéuBouc {p;}i; uTd TV évvolr
SP(pi0) =gi, i=1,....n—1 (A.60)

Emnnpootétwg, unodétouue 6t 1 ouvdptnon gu(p, ) xou 1 pepixr) mopdywnyde

e ¢ Teog p undevilovton ota dxpo p1 = —1 xou p, = 1t
9u(=1,0) = g,(1,0) =0, 0<6<2m, (A.6la)
g, Ogu
—(-1,0) = ==(1,0) =0, 0<0 <27 A.61b
JA(-1.0) = FE(10) =0, 0<0<2r (A61D)

O otadepée {c,gj)}? Tou avantdyuatog spline (A.58al) tou eZacdevnuévou nui-
ToVOYEAUUOU g, (p, 0) umopolv vo utoloyioBoly pe Bdon tnv spline Sour mou
TapouctdleTon exTeVOS 0TV Evotntog NS ToeolcaC BlaTEBhc. Luyxe-

xpWéva, ol otadepéc auTég divovTar amd T axdlouleg eLloMoELS:

" 3
(0) gy — Pi+19i — Pidi+1 g; A, P Giv1 (A Pi
& ( ) A, + 6 —Pit18; + A, + 6 PiRg R
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2 " 2
Wy Jit1— G 9i [« | 3Py Jiv1 (A, 3P
O ( At TR ) T (<A 1) (A62D)
1
c2(0) = = (pirrg! — piglin), (A.62¢)
2A;
1! /!
(3) 941 9
o (0)="4x (A.62d)
nou
Ai = Pi+1 — pi, (AGQQ)

6mou 0 cupPolioude gl uTodnhdVeL T deltep UepXT| TOEdYWYO TNG ToEEUBEA-
Aoucag CLVAETNOTG splin SZ-(?’) (p,8) ¢ mpoc N YETOBANTH p, UTOLOYLOUEVT
oTic Véoelg p;, OnAadh v xdde i =1,...,n

2 ¢(3) 0
o = ‘95%;2/”) = SV (01,0) = 2¢2(0) + 65 (0)pi.  (A.63)
p=pi

Or eCiotoec (A.62) mepthopfdvouy Tic Yvwotés ouvapthoeie {g; ] xadde xan
Tic dyvwotee ouvaptioeic {g) 1], ZupPoriloupe v medTn THEdYLYO TS
ouvdptnorg spline Si(g) ue Si(2)

Si(Q) elvon deutepoPdduta, xar Ty urohoyiloupe 6mwe oty ediowon (A.63):

, 60V 0 exVETNG 2 UTOONAWVEL OTL 1) GLUVAETNOT)

_057(p.)

50 = c(0) + 262 (0)p + 3¢ (0) p2. (A.64)

S (p.0)
T tov uTohoytopd v cuvapthoewy {gf } axohoudolyue tn uédodo tou dp-
Ypou [56]: emhbouye To olo TN TwY axéhoudwy n e€lodoewy, dedouévne tne

OLVEYELNS TEWTNG (XAt p), Taporyyou Tne xuPxic spline:

S (pi1,0) = S (pig1, 0), (A.65a)
S (p1,0) = 8521 (pn. 0) = 0, (A.65D)
yoxdde i =1,...,n—2xou 6 € [0,27). H anaitnon cuvéyeiac tne spline, ou-

YHEXQUIEVOL OTL Si(?’) (pit1,0) = Si(i)l(piﬂ, O)yii=1,...,n—2xu Sf’) (p1,0) =
g3

n—1

(pn,0) =0 (BA. elotoec (A.61)), ovolaoTind uTOdNAGVEL bTL oL x6UBot

'H Bettepn uepih) mapdywyoc tne tertoBddutac cuvdptnone spline Si(g) (p,0) wc npoc
™ uetoBAnTY) p ouuBoileTon Ue Si(l)(p, 0), dedopévou 6Tt elvan pior tpwtoBdduta spline we
Teog TNV (Biar yeTofFAnTy.
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{pi}{ omoteholv aupbdueves hoyapriuixéc avwpohies (removable logarithmic
singularities).

o Ty avTio TpogH Tou ohoxhneduatos ¢ edlowong (A.57), yenowonoto-
Ope Tic eClodoele (A.58)

3

A 3. .. |
S 9)p = / w(5) (Za‘”(e))(ra + p)ﬂ) ds. (A.66)
—A =0

J=0

Aqgol oupPolicouye o ohoxhipwua oo Sei uéhoc tne ellowang (A.66) pe 1,

VO TUGCOUUE

3
I = (Z Ei(J)(Q)pj) Iy + [Ei(l)(g) + 2@(2)(9>p+ 3Ei(3)(9)p2} e
=0
+ [Ei@)(e) +3590)p| 2L+ ¢, (0)r° L5, (A67)

OTOoU

A
1]-:/ w(0)0736 j=0,1,2,3. (A.68)
—A

N xdde j = 0,1,2,3, 10 ohoxhfpwua I; avamaplotd TNV j-looTrH eomY NG
cuvdptnong Bdeouc w tou xatevduvtipa. Acdoyévou 6Tl 1 cuVdETNoN W vl

XAVOVIXOTIOUNUEVT), ONAaOY

/Oo w(8)ds = /_ w(8)ds =1, (A.69)

—00

n e&lowon (A.68) cuvendyeton
I() = 1, Il = 0, IQ = ,8, avd [3 = 0, (A70)

omou 1 mapdueTeoc B cUPPBOAILEL TNV ATOXAICT TNG CUVEETNONG W. LUYXEXPL-

UEVA, OTNV TEQIMTWOT TELYWVIXNG CUVEETNONG Bdpoug, dTou

L +8), se[-A0]
w(8) = é(A—&), 5e(0,Al (A71)

0, aAhOU,



36 eptindn

1 amdxhion ebvon
A2
B=

eve) oty mepintwon Gaussian cuvdptnong Bdpoug, 6mou

w(d) = e 22, og=o0(A). (A.72)

1 amdxhion ebtvon

B =o2
Yy e€lowon (A.67), elodyoupe Tic unoroylopévee otic e€lonaelc (A.70) na-
capétpous xou damotdvouue 6Tt 1 eiowon (A.66) uropel va ypapel oty o-
%x6 oLV LopPT:
d2(0) + V(0 + o (0)0* + 7 (0)p” = ¢, 0) + r2527 (0)]
+[@(0) + 32887 0)| o+ & 0)0* + V(0" (AT3)

Enopévaoc,
fcvi(o)w) _ CZ(O)(Q) + r2ﬁc£2)(9), (A.74a)
&M(0) = " (0) + 328 (0), (A.74D)
’@(2)(9) — Cl@)(@)’ (A.74c)
@) = o). (A.74d)



Introduction

The celebrated Radon transform [1,2] of a two-dimensional function is de-
fined as the set of all its line integrals |3|. There exists a certain generalization
of the Radon transform, the so-called attenuated Radon transform, defined
as the set of all line integrals of a two-dimensional function attenuated with
respect to an attenuation function. The non-attenuated and attenuated ver-
sions of the Radon transform provide the mathematical foundation of two
of the most important medical imaging techniques, referred to as positron
emission tomography (PET) [4], and single-photon emission computed to-
mography (SPECT) [5], respectively.

The non-attenuated Radon transform gives rise to an associated inverse
problem, namely to “reconstruct” a function from its line integrals. The main
task in PET imaging is the numerical implementation of the inversion of the
non-attenuated Radon transform. Similarly, in the case of the attenuated
Radon transform, the corresponding inverse problem is to reconstruct a func-
tion from its attenuated line integrals. The main task in SPECT imaging is
the inversion of the attenuated Radon transform.

In [6], Novikov and Fokas rederived the well-known inversion of the Radon
transform by performing the so-called spectral analysis of the following eigen-

value equation:

1 1 1 1

where subscripts denote partial differentiation with respect to x1 and zo,
respectively. This analysis encompasses two certain problems in modern
complex analysis known as the d-problem and the scalar Riemann-Hilbert
(RH) problem, respectively.

Although the inversion of the Radon transform can be obtained in a

less complicated manner, namely by employing the two-dimensional Fourier

37
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transform, the advantage of the derivation of [6] was established eleven years
later (2002) by Novikov |7]: Novikov demonstrated that the inverse attenu-
ated Radon transform can be derived by applying an analysis similar to that
performed in the eigenvalue equation . In this direction, he performed
the spectral analysis of a slight generalization of equation , namely of

the eigenvalue equation

1 1 1 1

Four years later, in 2006, by employing the results of the analysis of equations
and , Fokas, Iserles and Marinakis derived the inverse attenuated
Radon transform in a more straightforward manner [8|. Details of this deriva-
tion are presented in [9] and in Section of this manuscript. One of the
main results of the present thesis is the formulation of an equivalent inver-
sion for the attenuated Radon transform, following the pioneering work of
Novikov and Fokas. A new analytic inversion formula is presented in detail,
as well as the corresponding image reconstruction algorithm.
In the present thesis, we solve three different mathematical problems,
namely:
1. the problem of detection of edges and boundaries in the Radon (p, 6)-
space and the subsequent reconstruction of the cleared data, which we
solved via CUSUM statistics; this is presented in Chapter

2. The problem of the inversion of the attenuated Radon transform via a
new analytic formula, see theorem and the corresponding numeri-
cal implementation (aSRT); this is presented in Chapter

3. The problem of deblurring in the attenuated Radon (p,#)-space and
the subsequent reconstruction of the deblurred data, which we solved
via spline interpolation; this is demonstrated in Chapter

The mathematical problems described above are quite different from one
another, however they bear several intrinsic similarities. They are all key
elements of a large class of mathematical problems, associated with the
mathematical foundations of emission tomography. The inversion of the
Radon transform and of its attenuated generalization are problems playing
a fundamental role in the mathematical formulation of medical image re-
construction. They form the fundamental mathematical setting of PET and
SPECT tomography.
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Figure I.1: Portrait of Johann Radon (undated photograph from the Aus-
trian Academy of Sciences).

I.1 Historical remarks

Johann Radon

Johann Karl August Radon (1887-1956), depicted in figure was a distin-
guished Austrian mathematician. In 1917 he wrote a seminal article |1] en-
titled “Uber die Bestimmung von Funktionen durch ihre Integralwerte lings
gewisser Mannigfaltigkeiten’ﬂ for the Berichte der Sdichsischen Akademie
der Wissenschaft zu Leipzz’gﬂ In this article, Radon introduced an integral
transform pair that was meant to give birth to the fields of computed tomog-
raphy and mathematical image reconstruction. This transform would later

be referred to as the Radon transform. Radon followed Hendrik Antoon

240On the determination of functions from their integral values along certain manifolds”,
translated in English by P.C. Parks in 1986 .
3Reports of the Saxon Academy of Sciences and Humanities of Leipzig.
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Lorentz’sﬂ unpublished work in 1905, where the initial Radon problem was
described, and a three-dimensional function was recovered from its integrals
over corresponding planes [11]. The inversion of the integral transform in
three dimensions was introduced by Hermann Bockwinkel in [12], through his
work on the propagation of light in biaxial crystals. In this work, Bockwinkel
mentions the inversion equation as Lorentz’s [13]. The Radon transform for-
mulation provides the mathematical framework for a large number of inverse
problems, not only in mathematics and medical imaging, but in physics, geol-
ogy and certain other areas [14]. Nowadays, it is globally acknowledged that
Radon pioneered the reconstruction of images from projections. In 2003, in
order to honor his contributions to science, the Austrian Academy of Sci-
ences named the “Institute for Computational and Applied Mathematics”
after Johann Radon. Today, more than 100 years after his pioneering pub-
lication, Radon’s work is still highly influential in the research community

worldwide.

CT: Cormack and Hounsfield

Allan MacLeod Cormack (1924-1998) was a renowned South African physi-
cist. Along with Godfrey Hounsfield, Cormack was awarded the Nobel Prize
in Physiology or Medicine in 1979 for his work on X-ray computed tomog-
raphy. Cormack’s mathematical work [15,/16] extended Radon’s ideas and
essentially gave rise to computed tomography (CT). According to the Royal
Swedish Academy of Sciences, Cormack developed the necessary mathemat-
ical methods of calculation for obtaining images of the body’s interior |17].
Essentially, in 1963, Cormack implemented tomographic reconstructions for
the X-ray scanner [3].

Sir Godfrey Newbold Hounsfield (1919-2004) was a pioneering English
electrical engineer. Hounsfield invented the computed tomographic scanner,
and hence made an unparalleled contribution to medicine. In his obitu-
ary [18], Caroline Richmond mentions that he actually conceived the idea
of computed tomography during a weekend ramble in 1967. Hounsfield de-
scribed a complete computed tomography system in his patent application
in 1968. In 1969, he built an X-ray scanner, whereas in 1972, Hounsfield and

4Nobel Prize in Physics 1902 awarded jointly to Hendrik Antoon Lorentz and Pieter
Zeeman “in recognition of the extraordinary service they rendered by their research into
the influence of magnetism upon radiation phenomena’” |10].
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radiologist Jamie Ambrose built the first ever medical CT scanner. In the
description of his work and achievements [19], the Royal Swedish Academy
of Sciences reports that, surprisingly, by the time he conceived his tomo-
graphic scanner, Hounsfield was unaware of neither Radon’s nor Cormack’s

contributions in the field of image reconstruction.
PET: Hoffman, Mullani, Phelps and Ter-Pogossian

In 1972, the Washington University School of Medicine research group of
Michael Phelps, Edward Hoffman, Nizar Mullani and Michel Ter-Pogossian
[20,121] built PETT II, a device which used the detection of annihilation
coincidence to generate reconstructed tomography images |22|. The same
group developed the Positron Emission Tomography scanner in 1973, fol-
lowing the concept of the corresponding PET camera, built to investigate
functional characteristics of human interior organs. Since then, PET scans
have become a standard in nuclear medicine; they have saved and prolonged
lives, and have made some operations unnecessary [23|. The number of PET

scans has increased impressively, although at varying rates worldwide [24].

SPECT: Edwards and Kuhl

SPECT was introduced in 1963 by David Kuhl and Roy Edwards [25], re-
markably, almost 60 years ago. In their groundbreaking experiments on
emission tomography, Kuhl and Edwards developed a tomographic scanner,
designed to image single-photon (y-ray) emitters [26,27]. It took 13 more
years for Kuhl and his associates to reach “Mark IV”, the final version of

their scanning system [28].

Combinations: PET/CT and SPECT/CT

In the early 2000s, the combination of PET and CT (PET/CT) was intro-
duced by electrical engineer Ronald Nutt and physicist David Townsend [29).
The PET/CT device, combining two triumphs of technology namely PET
and CT, was characterized as a “winning combination” by Time magazine’s
“Inventions 2000” section [23|. As in the case of PET/CT, quite recently,
integrated SPECT/CT scanners have been made available [30]. There is
an increase in the demand of new hybrid SPECT/CT devices, since they
offer the unique opportunity to provide accurate, attenuation-corrected re-
constructed images [31]. SPECT/CT achieves increased specificity through

precise localization and characterization of its functional findings [32].
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I.2 A little bit of medical physics

Nuclear medicine provides powerful, non-invasive functional imaging tools
in order to detect several human diseases |33]. These tools involve radioac-
tive materials for the efficient imaging of several properties of a patient’s
physiology, such as morphology or function [34]. In nuclear medicine, the
main goal of tomography is to determine the radioactivity distribution of
a radiopharmaceutical injected in a patient’s body [35,[36]. The choice of
radiopharmaceutical is application-specific. The radiotracer will target the
organ to be imaged and localize there by a chemical process. Once the
organ becomes radioactive it emits either positrons (8% or e*) or photons
(y-rays). The two main categories of emission tomography differ on whether
the radioactive isotope of the radiopharmaceutical emits positrons (PET) or
single photons (SPECT). The emitted radiation is detected by a system of
detectors |37], which will in turn create, after reconstruction, an image of

the radioisotope distribution within the organ of interest.
PET physics

PET makes use of the unique characteristics of decaying radionuclides inside
radiopharmaceuticals, such as FDG (*¥F-2-deoxy-2-fluoro-D-glucose). When
a radionuclide is injected inside the patient, it is distributed in tissues in a
manner determined by its biochemical properties [38|, following bichemical
modification [39]. Then, the radioisotope decays and emits a positron (anti-
electron). Following 1 decay, the ejected positron has a very short lifetimeﬂ
and rapidly combines with an electron in the tissue. As a consequence, the
electron and anti-electron annihilate and their masses, denoted by m,+ and

m,—, respectively, are converted into electromagnetic energy:

E =mc® = (me+ +m.-)c? =1.022 MeV = 2 x 511 keV, (1.3)

y MeV
sice Mer = mg- = 9.109 x 1073 kg = 2 x 0.511 ~——. (L4)
C

The energy is then released as high energy photons. This process produces
two 511 keV y-particles propagating in opposite directions [36]. Then, PET

detectors detect these annihilation photons, as coincidence y-rays [4]. In
PET, tumors with higher glucose metabolism usually appear as regions with

higher radioactivity, hence visible in emission tomography images [36].

5The mean lifetime of the so-called singlet or para-positronium state, .Sy or p-Ps, is of
the order of 107 sec.
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SPECT physics

In SPECT, a patient is injected with a pharmaceutical labeled with a ra-
dionuclide, which emits photons [3]. SPECT utilizes the unique chemical
characteristics of decaying radiopharmaceuticals, consisting of a targeting
agent labeled with a certain radioisotope, such as technetium-99 (%Tc) [40].
As in PET, the radioactivity of the radiopharmaceutical is distributed in the
body in a fashion governed by its unique biochemical properties |38]. The
injected radiotracers radiate single photons and the detectors count these
individual photons, as y-ray events [5]. SPECT images are generated using
gamma cameras that record the photons emitted by the tracer inside the

tissue of the patient [41].

1.3 Beer’s law

In SPECT diagnostic imaging, let us denote the v-ray by L and the linear at-
tenuation coefficient of the patient’s tissue at the point (z1,x2) by p(z1,x2).
Furthermore, we denote the corresponding ~-ray intensity at the same point
by I(x1,2z2). Then, a photon traveling a very short distance ds undergoes a

relative intensity loss

7= —pds. (I.5)

If ds is zero, then the intensity is preserved, hence the intensity loss van-
ishes. However, in the limit case Js — 0, equation ([.5) becomes an ordinary
differential equation (ODE) of the following form:

dr

T —ul, (1.6)
or
(a)
dIS S (L.7)
The above may be rewritten as
%(ln]):—u. (1.8)

Hence,
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I = Iyexp <_ /L u(s)ds), (L.9)

where Iy represents the initial v-ray intensity, and L denotes the length of

the line traveled by the ray undergoing attenuation. It must be emphasized
that the integral in the right-hand side of equation ([[.9)) is a line integral.
The aim in SPECT imaging is to reconstruct the distribution of the
radiation sources. Equation provides information for a single source.
However, we need to acquire information about the distribution as a whole.
Hence, we express the distribution as a function f(x1,x2) of point-sources.
In this direction, the generalization of equation leads to the reducing,

or attenuation, factor
exp (—/ u(s)ds) 1, (I.10)
L(x)

only this time the integration is applied on L(x), i.e. the segment of the
ray L from point x = (z1,z2) to the detector, instead of L itself. Summing
over all point sources, and taking into account the factor ([.10) yields the
following generalization of equation for SPECT:

Is = /Lexp ( /L(x) ,u(s)ds) fdr, (I.11)

under the assumption that the linear attenuation coefficient 1 obeys Beer’s
law . It is worth mentioning that we must require that the function f
decays at infinity sufficiently fast in order to balance for the effect of the
exponential weight in the integral [42]. For details, see figure and
the relevant analysis performed on Chapter [I] and Chapter @] In SPECT
applications, the data are given in the form of Ig, as in equation ([.11]).

We note that in PET, where instead of a single photon the positron
emission is pairwise and in opposite directions, equation simplifies to

Ip = exp (- /L ,u(s)ds) /L fdr, (1.12)

where the line integration occurs along the whole ray L. In this case, the fac-
tor exp (— [; pu(s)ds) is a constant in the overall integration, and all measure-
ments are embedded in Ip. For the mathematical transition from SPECT
to PET, see Section and Remark
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(a) Data: f, — Jr e Jeeo s £qr  (b) Reconstruction: f, the inverse of f,,.

Figure 1.2: Tomography as an inverse mathematical problem.

I.4 Emission tomography as an inverse problem in

mathematics

There exist several integral transforms associated with tomography [37]. Sev-
eral great mathematicians, including Gelfand [43], have studied these trans-
forms in the context of inverse problems. From a mathematical point of view,
emission tomography, which is the branch of medical imaging that includes
PET and SPECT [34], is considered within the inverse problem paradigm.
In this direction, equation implies an inverse problem, namely

Is=f. (1.13)

where the right-hand side of equation (I.11]) is replaced by ﬁ, and the sub-

script u emphasizes the dependence on the linear attenuation function u, see

figure [[.2]
Equation ([.13]) allows us to express the main inverse problem involved
in emission tomography, namely to invert the integral transform J?u and to

retrieve f in the sense that

fu= /Lexp (— /L(x) ,u(s)ds) fdr. (I.14)
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Similarly, the corresponding inverse problem in PET arises from

~

Ip =T, (1.15)

where the right-hand side of equation is replaced by f It is worth
noting that there is no p subscript in the right-hand side of equation ,
since, in the case of PET, the linear attenuation function g and its line
integral are considered constants, see Remark [1.4] in Chapter

I.5 Publications originating from this thesis

The research conducted for the purposes of this thesis at the Research Cen-
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Conference papers
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4. N.E. Protonotarios, A.S. Fokas, A. Gaitanis, G.A. Kastis, aSRT: A
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N.E. Protonotarios, A.S. Fokas, G.A. Kastis, Attenuated Radon trans-
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A.S. Fokas, G.A. Kastis, N.E. Protonotarios, Analytic reconstructions
for PET, SPECT, MEG and EEG, Advanced Inverse Problems (AIP),
Helsinki, (2015), [53].

Book chapter

11.

N.E. Protonotarios, G.A. Kastis, A.S. Fokas, A new approach for the
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1.6 Structure of thesis

The thesis consists of six chapters, divided into two parts. In Part I, we
present the Radon transform in R?, its attenuated generalization and their
inversions. In Part II, we present our results regarding the applications
of these transforms and their corresponding inversions in emission tomogra-
phy, and particularly in the field of mathematical medical imaging. More

specifically:
e Part I: Radon transforms and their inversions.

— Chapter 1: We present the Radon transform in R? and its gener-
alization, namely the attenuated Radon transform, appropriately

defined in the so-called local coordinates.

— Chapter 2: We investigate several aspects of the mathematical
inversion of both the unattenuated and attenuated Radon trans-

forms in R?, especially in the context of non-Fourier analysis.
e Part II: Applications in PET and SPECT medical imaging.

— Chapter 3: We deal with the concept of sinogram contour and
edge detection in the context of inverse problems, and we present
an automated method for determining the contour of either single
or multiple objects reconstructed tomographic images of nuclear
medicine modalities such as PET and SPECT.

— Chapter 4: We present a novel approach for SPECT image re-
construction, namely the attenuated spline reconstruction tech-
nique (aSRT), which provides an analytic formula for the inverse
attenuated Radon transform, and involves the computation of the
Hilbert transforms of the linear attenuation function and of two

sinusoidal functions of the attenuated sinogram.

— Chapter 5: We present a spline-based method for deblurring
reconstructed images of SPECT/CT imaging systems equipped
with parallel-hole collimators, based on the classification of the

collimator in terms of its blurring profile.

— Chapter 6: We list all open questions arising from the mathe-
matical problems investigated in the thesis and our plans to fur-

ther investigate them in the near future.
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Chapter 1

The Radon transform in R?

and its generalization

1.1 Local coordinates

The Radon transform, R, integrates a function f on R™ over its correspond-
ing hyperplanes [37]. In the case of R?, the Radon transform involves line
integration along lines, and more precisely along families of parallel lines.
The line integra][] of a continuous function f : D C R?> — R along a differ-
entiable curve C : [a,b] — D C R? is defined by:

b
/Cfds:/a f(r(T))Hr(T)H2dT, (1.1)

where r : [a,b] — C is a bijective map, namely the parameterization of
the curve C, and || - ||2 denotes the L?-norm in R?. We need to employ a
convenient and easy-to-manipulate coordinate description for parallel lines,
especially when focusing on tomography and medical imaging applications.
The following selection of coordinates comes quite naturally, hence the term
“line coordinates”, or “local coordinates”.

A line L on the zixzo-plane can be specified by the signed distance from
the origin, p, (—oo < p < o), and the angle with the xj-axis, 8 (0 < 6 <
27), see figure We denote the corresponding unit vectors parallel and

perpendicular to L by ell and el, respectively. The unit vectors are given

! A more appropriate term is “curve integral”, however the potentially misleading term
“line integral” remained unchanged. In Greek, the only term used is “emxaundAio olo-
x\Mpwua’, which actually means “integral along a curve”.

o1
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o~

Figure 1.1: A two-dimensional object f(x1,x2) and its projections f(p,6) .
Both Cartesian (x1,z2) and local (p, 7) coordinates are indicated.

by

el = (cos,sin),

el = (—sinf,cosh).

Every point x = (z1,22) on L in Cartesian coordinates can be expressed in

terms of the line coordinates (p, ) via
X = ,oeL +7 e”,
where 7 denotes the arc length. Therefore,
x1:=x1(p,7;0) = Tcosh — psinb, (1.2a)

T = xl(p,T;Q)ZTSiDQ‘FPCOSG' (12b)

This way, the family of all parallel lines can be represented by simply fixing
the angle 0 and by letting p vary. Furthermore, for the family of all parallel

lines L, ¢ on the x1x2-plane that form an angle 6 with the x;-axis, we choose
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the following parameterization r, by employing equations (|1.2)):

r(r) = [TC.OS@ — psm&] . (13)
Tsinf + pcosf

The above choice is in agreement with the fact that 7 represents the arc
length of the line L. It is worth noting that

' (D]l, = \/<(?71>2 + <C:f>2 =1, (1.4)

hence, equation (|1.3) is a natural parameterization of the lines L. It turns

out that this specific type of parameterization is very useful, especially when
dealing with integrals along families of straight lines. Taking into account
the above, if the curve C is a line L naturally parameterized by the arc
length 7, the initial line integral may be rewritten as follows:

/de:/f(a:l(T,p,Q),xg(T,p,H))dT
¢ oo (15)
:/ f(rcosf — psin, 7sinf + pcosf)dr

Equations (|1.2) can be inverted and expressed in the local coordinates
(p, 7) in terms of the Cartesian coordinates (z1,x2) and the associated angle
0, as follows:

p = p(x1,29;0) = x3c0860 — x18inb, (1.6a)
T =71(21,22;0) = 22800 + 21 cos f. (1.6b)

Definition 1.1. The space of Schwartz functions, or the space of rapidly
decreasing functions on R™ is denoted by S(R™) and is defined as:

S(R") = {f € CFR") : |[flla,p < 00} C CT(R"), (1.7)

where

[ flla,s = sup an,Bf(x)} , V multi-index o, S,
z€R™

‘anBf(fv)‘ — 0, as|zx|]—o00. (1.8)
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1.2 The Radon transform in R2

The celebrated Radon transform [1,2] of a two-dimensional function is de-
fined as the set of all its line integrals |3],55]. It is worth noting that Radon
in his seminal paper |2| refers to the concept of line integrals as straight line

integrals.

Definition 1.2. The line integral of a two-dimensional Schwartz function
f € S(R?) along straight lines on the plane, see Deﬁnition and equation
is referred to as the “Radon transform” R of f(x1,22) and is denoted by

f(p,0). The Radon transform is usually stored in the form of the so-called

sinogram, expressed as follows:

~

f(p,0) = (Rf)(p,0) = /_OO f(Tcosf — psin®, 7sinh + pcosf)dr,

0<60<2m, —c0o<p<oo, (1.9)

An alternative representation of the Radon transform involves Dirac’s delta

function (line impulse) and is expressed as follows [56]:

f(p, 0) = / / f(z1,22)0(p + x18in 6 — x9 cos O)dz1dxs. (1.10)

We illustrate the importance of the Radon transform in the following exam-

ples.

Example 1. f(z1,22) = e~(#1+23) _ For the calculation of the Radon trans-

form of the above function, we apply equation (1.9)), as follows:

f(p,@) :/ f(rcos® — psiné, 7sin @ + pcosf)dr

(o)
- / e_[(TCOSG—psin9)2+(7'SiH9+PC059)2]dT

— 00

o0 2 2 2 o0 2
= / e (TP )Ar = ¢ / e T dr =
— o —00

_ VT (lim erf (1) — lim erf (r))

2 T—00 T——00

= ﬁe_p2.
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Example 2. If the function f represents a circle centered at the origin, i.e.

1, for a2+ 23 < R?
f(l‘l,ﬂ?g) = . ? .

0, otherwise

Then, for |p| < R, the Radon tranform is

J/"\(p,ﬂ) :/ f(rcos — psinf, 7sin @ + pcosf)dr
—00
/_ /RZ_ 2

whereas for p € [—R, R] the Radon transform vanishes.

dr = 2/ R?2 — p2,

The transform pair gives rise to the following inverse problem: Given
the function ]?(,0, 0), 0 <0 < 2w, —00 < p < 00, reconstruct the function
f(z1,22). This is the main mathematical problem in PET tomography.
In principal, the above problem was solved by Johann Radon himself in
1917 [1,2]. The inversion of the Radon transform is explained in detail in
Chapters 2] and

1.3 Properties of the Radon transform in R?

We present some of the most important properties of the Radon transform
in R2, as outlined in [3}[35}37,/5759).

Weighted sum

The Radon transform of a finite weighted sum of functions is the finite

weighted sum of the Radon transforms of the involved functions, namely,

N
( {Zaf}) => " (R{aif:}) (p,9). (1.11)
=1

Proof. Inserting the left-hand side of equation (1.11)) in equation (|1.9) yields

N o [ N
(R{Z aifi}>(p, 0) = / (Zaifi(rcose - psinQ,TSin9+pcose)> dr

i=1 — \i=1
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= / [alfl(Tcosﬂ—psin@,7‘sin9+pcos{9)d7'

—0o0

+ +/ an fn(Tcos — psinﬁ,TsinH—i-pcosﬁ)]dT

—00

(/ a; fi(Tcosf — psinf, Tsin 0 +pcos€)> dr.

—00

M= 1M

(R{aifi}) (p,0).

=1

Scaling

The Radon transform of a function with scaled variables is itself a scaled

Radon transform of the initial function, namely,

(RA{f(Az1, Az2)}) (p, 0) = (R{f}) (Ap,0) . (1.12)

Proof. In the defining equation (|1.9), we insert the left-hand side of equation
(11.12)), as follows:

(R{F Ozt Ae2) D) (p / FOM(rcos 0 — psin6), \(7sind + pcos 8))dr
= / f(ATcosd — Apsinf, AT sin 6 + Apcos6)dr
_ % / (7 cos — (\p)sin, 7 sin + (Ap) cos ) dr’
(R {1 (A, 0),

where we have used the change of variables

7' = A1,

hence
dr’ = \dr.
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Shifting

The Radon transform of a function with a variable shift is itself a shifted

Radon transform of the initial function, namely,

(R{f(z1 — 21,22 — 25)}) (p, 0) = (R{fH(p— ¢, 0). (1.13)

Proof. In the Radon transform definition (|1.9), we insert the left-hand side
of equation (1.13]):

(R{f(x1 — 2,29 — 25)})(p, 0)

= /oo f(rcos® — psinf — 2, 7sin@ + pcosf — ab)dr
= /OO f(rcos® — psind — 7' cosf + p'sin b,
Tsinf + pcosf — 7'sin@ — p' cos O)dr
= /OO f((r—=7")cosO — (p—p')sinb, (1 —7")sin 0 + (p — p') cos O)dr
= /oo f(7"cos — (p—p')sinf,7"sin@ + (p — p') cos 0)dr”
= (R{fH(p—r".0),
where, following equations , we have used the fact that
x) =7 cosf — p'sinb,
xh = 7'sinf + p' cos b,

for some

(z}, %) corresponding to (p',7'),

and the appropriate change of variables
=71,

therefore

dr” = dr.
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Figure 1.2: Cartesian (z1, z2) and local (p, §) coordinates for the attenuated
Radon transform.

1.4 A generalization of the Radon transform in R:

The attenuated Radon transform

The mathematical problem of SPECT medical image reconstruction leads
naturally to a generalization of the Radon transform [35], namely the atten-
uated Radon transform or exponential Radon transform, denoted by R,,. The
attenuation concept is represented by the attenuation function p(z1, x2), and

is indicated by the corresponding Subscriptﬂ

Definition 1.3. We define the line integral of a two-dimensional function
f(z1,z2) attenuated with respect to the function p(x1,x2) as the attenuated
Radon transform R, of f(x1,x2), denoted by ﬁ(p,G), see figure . The
attenuated Radon transform is usually stored in the form of the so-called

attenuated sinogram, expressed as follows:

}L(p’ 0) _ (Ruf) (p7 9) _ / e [ p(s cos §—psin 0,5 sin 6+p cos G)ds><

— 00

f(Tcosf — psin®, 7sinh + pcosf)dr, 0 <0 < 2w, —oo < p <oo. (1.15)

2The attenuated Radon transform is sometimes denoted by A, see for example [35].
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The above transform gives rise to the following inverse problem:
Given the functions fu(p, 0), 0 <0 < 2w, —oc0 < p < oo and p(zy,x2),
—00 < x1,x3 < 00, reconstruct the function f(z1,z9). This is the main
mathematical problem in SPECT tomography. The inversion of the attenu-
ated Radon transform is explained in detail in Chapters [2 and [

Remark 1.4. In the limit case of no attenuation, i.e.
w(xy, xe) — 0,

the attenuated Radon transform R, becomes the non-attenuated Radon trans-
form:

lim R,,(-) = Ro(-) = R().

Proof. If p(x1,22) — 0, then the integral inside the exponential part of
the integral (1.15)) becomes 0, hence the exponential tends to 1, therefore

equation (|1.15) becomes equation ((1.9)). [ |

Remark [T.4] emphasizes the fact that, from a strictly mathematical point
of view, the non-attenuated Radon transform is indeed a special, limiting
case of the attenuated Radon transform. The attenuated Radon transform

has been extensively studied in the literature, especially in [60-62].






Chapter 2

The 1nversion of the Radon
transform in R? and of its

generalization

2.1 Fourier-based inversion of the Radon transform
in R?

One of the most standard techniques in the mathematics of medical imaging
involves the so-called central slice theorem (CST). This provides a funda-

mental tool for the Fourier-based inversion of the Radon transform [63].

Theorem 2.1. (Central slice theorem). The two-dimensional Fourier trans-
form Fa of a function f(x1,x2) is the one-dimensional Fourier transform
F1 of the Radon transform R of the same function f. In purely operator

notation

Fo{ft=FA{RA{S}}, (2.1)
where Fo is defined by

(F2{S}) (&1, 6) = /_oo /_OO (1, ma)e~2mE121H6222) 4y 4y (2.2)

F1 is defined by

(o.9]

(Fi (o)) () = / g(p)e 2" dp, (2.3)

—00

and R is defined in equation (1.9).

61
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Proof. We shall prove the CST by inserting the alternative definition of
the Radon transform in the right-hand side of equation (2.1)). This yields

oo 0o oo
Fi{RA{f}} = /6_2”1”) [/ /f(:nl, x2)0(p + x1 8in 6 — x5 cos G)dxldx% dp
_ / / f(wla xg)dxld.%'g <6727Ti7”(7I1 sin 6+x2 cos 9))
— / / f(xl,xg)d$1d$2 (672771(7:317'sin0+:p2rcos6’)>

= / / f(z, :L"g)e_%i(&“+52‘”2)d:n1dm2

=F{f},

= / / f(z1, z2)dx1dws [/e_%irpé(p + z18inf — x4 cos O)dp]

where we introduced the variables £ and & as
& = —rsinf and & =rcosh, (2.4)

and we have treated 0 as a constant, in the sense that the above are consid-

ered for all 6 values involved. |

Corollary 2.2. The central slice theorem implies that the Fourier-based in-
verston of the Radon transform may be written in the following operator
form.:

R =F . (2.5)

The inversion of the Radon tranform may be accomplished without Fourier
analysis. One can invert the Radon transform in a slightly more compli-
cated manner, by employing complex analysis. However, the computational
benefits of the non-Fourier inversion are significant; these benefits will be-
come very clear in Chapter [4] which illustrates one of the main results of the

present thesis, particularly with the introduction of cubic spline functions.
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2.2 The inversion of the Radon transform in R2

without the Fourier transform

2.2.1 Preliminaries

In order to solve the inverse problem defined in equation ([1.9) without Fourier
analysis and invert the Radon transform, it is essential to introduce appro-

priate mathematical machinery [64].

Lemma 2.3. (Generalized Cauchy formula or Pompeiu’s formula, [64)]).
Assume that the function f(z,Zz) is continuous and has continuous partial
derivatives in a finite region D and on the simple closed boundary 0D. We de-
note by 0D the closed boundary of D with counterclockwise direction. Then,

f(z,2) can be evaluated at any interior point z via the following formula

where the so-called wedge product dC Ad(, ¢ = & +in, ( = &€ —in, is defined

as

d¢ A d¢ = (d€ +idn) A (d€ — idn) = —2id&dn. (2.7)

Proof. Let the real functions u(x,y) and v(z,y), as well as their partial
derivatives u,(x,y), uy(z,y), vo(z,y) and vy(x,y), be continuous inside a

finite region D and on its simple closed boundary dD. Green’s theorem

/GD(udx +ody) = // uy)dady. (2.8)

Replacing in equation (2.8) (z,y) by (£,7n) and letting g = u + iv, we find

/angg_ // 99 a¢ n ¢, (2.9)

where d¢ = d¢ + +idn, 09/9( = %(ge + +igy) and d¢ A d( is defined in
equation . We define the region D, as follows:

yields

D.=D\{|¢— = <¢€}, €>0, (2.10)

i.e., D¢ is the region D without the circular area centered at ( = z with radius

€. We denote the boundary of this circular area by dD.. The contour of D,
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comprises of two subcontours, namely D and dD.. Noting that ({ — z)~*
is analytic in D,, we may apply Green’s theorem in the form (2.9) on the

function g(¢) = f(¢)(¢ —2)7 ¢

fapcf(—ozdg 7217 g_z d¢ = - // 8f/8CdCAdC (2.11)

However, we note that the points on the circle 0D, can be expressed in the

form ¢ = z + ee'?, therefore

7{ FO e [T f(Lg“ o= [z +ecyids = 2mif(:).
aD. C — 2z 0 eel 0
(2.12)

The above is valid because (a) f(z) is continuous, and (b) the integral of a
continuous function inside a bounded region (0D,) and the limit (¢ — 0) are
interchangeable. Similarly, due to the fact that (( —z)~! is integrable inside
the region D, together with the fact that fr is continuous, it follows that
the double integral over D, converges to the double integral over the whole

region D. Hence, their difference tends to zero as € — 0:

af /o¢ . < 2 9f/aC
‘//D . dC/\dC’ < 2/0 /0 o rdrdd < dme, (2.13)

—Z

where we have used polar coordinates, i.e., ¢ = z + eel?, and the continuity

of &f/0¢ in a bounded region, namely

of
‘a& <A. (2.14)

As a consequence, we consider equation (2.11)) in the limit € — 0

f(€) 8f /8¢
7{%(_ d¢ — 21 +if (2 //D = SIS qe A de, (2.15)

therefore, Pompeiu’s formula (2.3) follows. |

Corollary 2.4. If f(z) is analytic in D = DUOD, then Pompeiu’s formula
(2.6) reduces to Cauchy’s integral formula

YIS

27 GDC_Z

fz) =

dc. (2.16)

Proof. The proof is straightforward: if f(z) is analytic in D = DUOD, then



2.2. Radon transform inversion in R? without the Fourier transform 65

df/0¢ = 0. Hence, Cauchy’s integral formula (2.16] follows from Pompeiu’s
formula ([2.6]). |

Lemma 2.5. (Plemelj formule). Let L be a smooth, finite, closed or open
contour and let p(t) satisfy a Holder condition on L. Then, the Cauchy-type

integral

1
oz) = L [ 2T g, (2.17)
2mi J, T — 2
has the limiting values ®(t) and ®*(t) as z approaches L from the right
and the left, respectively, given that t is not an endpoint of L. The limits

O*(t) are given by

dE(t) = :I:%gp(t) + 2%1 PV/ :_0(_7—1(317', (2.18)
L

where PV [ denotes the Cauchy principal value integral defined by

PV/ g(T)dr = lim g(7)dr, (2.19)
L e—0 L*LE

and L. denotes the part of the contour L that is centered around t, with
length 2e.

Proof. We shall derive the Plemelj formulee only in the case that ¢(7) is an-
alytic in the neighborhood of L. The derivation of these formulee in the more
general case of (1) satisfying a Holder condition on L is far too complicated
for the purposes of the present study, see [65]. If ¢(7) is analytic at 7 = ¢,
then we use the Cauchy theorem to deform L into two separate contours,
namely L — L. and C,, where C. is the semicircle of radius r = €, centered
at 7 = t. Taking the limit of equation as € — 0 yields

1 o(7) . e(7)
®T(t) = lim /L dr + hm/c th, (2.20)

L. T—t =0 Jo, T —

where we used the deformation L = (L — L¢) U C.. However, if we use polar

coordinates, namely 7 = t + ee'?, then the second integral on he right-hand
side of equation ([2.20) becomes
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1 1 0 , 1
lim / md'r = — lim o(t + eel?)idg = 5()0(7—). (2.21)
C

e—02mi Jo T —1 2mie—0 J_

Hence, equation ([2.21)) reduces to the equation (2.18) representing ®*(¢).
Similar considerations apply for the corresponding part of the equation ([2.18)
representing ® (). [ |

Lemma 2.6. The solution of the scalar Riemann-Hilbert problem

OT(t)—d (t) =g(t), telL, (2.22a)
d(z)=0 (i) , z—o00, z¢L, (2.22b)

s given by
oz) = L [ 9T 4 (2.23)

N % LT— %
Proof. Equation ([2.22a)), together with Liouville’s theorem, implies that the

unique solution of the scalar Riemann-Hilbert problem (2.22)) is given by
2-23). [

2.2.2 The Radon transform pair

In 1991, Roman Novikov and Thanasis Fokas rederived the well known inver-
sion of the Radon transform [6] by performing the so-called spectral analysis

of the following eigenvalue equation:

B (k + i) Oz, + % (k — ]1) 8352] u(zy, x93k, k) = f(x1,20), keC.
(2.24)
As already noted, the Radon transform inversion can be obtained in
a more straightforward manner, by employing the two-dimensional Fourier
transform. However, the major advantage of the derivation of |6] was estab-
lished eleven years later (2002) by Novikov |7]. Novikov demonstrated that
the inverse attenuated Radon transform can be derived by applying a similar

analysis to a slight generalization of equation (2.24)), namely the equation
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1 1 1 1 _
[2 <k: + k) Oz, + % <k - k) Oy — M($1,$2):| u(zy, xoy ky k) = f(x1,22),

keC. (2.25)

In the following pages, we present an algorithmic approach for the in-
version of the Radon transform. The corresponding analysis, referred to as

spectral analysis, consists of two steps:

(a) The direct problem. We solve the eigenvalue equation in
terms of the function f for all complex eigenvalues k. The solution of
the eigenvalue equation must be bounded for all complex values of &k
in C. The direct problem gives rise to a certain problem in complex

analysis known as the d-problem.

(b) The inverse problem. Given that the solution u of equation is
bounded for all complex eigenvalues k, we derive an equivalent repre-
sentation of w which, instead of depending on f, depends on the Radon
transform of f denoted by f, as in equation . The inverse problem
gives rise to a certain problem in complex analysis known as the scalar
Riemann-Hilbert (RH) problem.

Definition 2.7. The Hilbert transform of a function u(t), is defined as the

following integral:

H{u(t)} = % <PV / h u(T)th> . (2.26)

—o00 T —

~

Proposition 2.8. The inversion of the Radon transform f(p,0) of a func-
tion f(x1,z2) € S(R?), defined in equation (1.9)) is given by

f(xlny) —

Lo [6<Hf><p9> a,  20)

am J dp ] .
p=x2 cos —x1 sin O

with —oo < x1,x2 < 00, H denoting the Hilbert transform in the variable p,

as in equation (|2.26]),

. 1 oo
(Hf)(p,0) == PV T(T’i)dr, —o < p<oo, 0<6<2m (2.28)
s o T —
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and PV [ denotes the Cauchy principal value integral defined in equation
(2.19)).

Proof. We will invert the Radon transform by performing the spectral anal-
ysis of the eigenvalue equation ([2.24)).

The direct problem: A d-problem

In order to solve the direct problem, we solve equation (2.24]) for all complex
k values, assuming that the function f is known. We introduce the following

change of variables from (z1,z2) to (z, 2):

z= 2% (k: - ;) x] — % <k‘ + ;) T, (2.29a)

z:—;<k—;)m+;<k+;>m. (2.29b)
Employing the chain rule we find

z%f:;(k—i>a,—;<%—%)@, (2.30a)

am:—;<k+i)@—;<é+;)@. (2.30b)

Hence, we are able to rewrite equation (2.24)) in the following form:

() 2T g 0 kec BAL (28D

where

v(Ikl) = o (!le - \k|2> . (2.32)

Equation (2.31]) can be further simplified, namely

us ==, |k| #£1. (2.33)

It is important to note that if p was analytic, then pz = 0, since the z deriva-
tive measures the “departure” from analyticity. Furthermore, we supplement
equation ([2.31)) with the following boundary condition at infinity

1 B
u=0 () , z—o00, ie. IB>0 suchthat |u|< =k (2.34)
z z
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The solution of equation (2.31)), equipped with the boundary condition
(2.34), via Pompeiu’s formula (see Lemma is given by

(&), ) dz’ AdZ
k k| # 1. 2.
27r1/R2 v(lk]) 2 —2z €C. |kl # (2.35)
By employing
=1 2
dz’ Ad7 % ’W — dz!dz),

we rewrite equation (2.35)) as follows:

1 1 dz! dz]
u(xy, e, k) = 3. Sen (W - |k:|2> /R2 f(zh, z5) le_ 2 (2.36)

z

It is evident from equation that u depends on k only through z — 2/,
hence u(x1,x2, k) constitutes a sectionally analytic function with a “jump”
across the unit circle |k| = 1 of the complex k-plane. Equation repre-
sents the solution of the direct problem for all complex values of the eigen-

value k, in terms of the function f.

The inverse problem: A Riemann-Hilbert problem

In order to solve the inverse problem, we solve equation (2.24) in terms of
]/f\, instead of f itself. We note that equation (2.36)) implies

u=0 (;) ,  k— o0, (2.37)

i.e., the solution u of equation ([2.24)) is bounded for all complex eigenvalues
k.
We note that

z—2 = % (k — k) (z1 —27) — % (k + 2) (g — ab). (2.38)

In order to investigate the behavior of u as k approaches the unit circle, let

EE=0Fe)e?, 0<6<2r, £>0. (2.39)
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Hence,
1 . .
F 3 =01-9d F(1+e)e™ +0(), (2.40a)
- i _ i0 N ,—if 2
¥ - =0+ F(1-e)e +0(e). (2.40b)

Equation (2.29al) implies

z—2 = (x1 —2))sinf — (wy — x}) cos
+ie [(z1 — @) cos O — (zg — xy) sinf] + O(e?)
=p—p xie(t —7) +0(?). (2.41)

Let u™ denote the limits of the function u as k approaches the unit circle

|k| =1 from inside and outside, respectively:

+ 1 i0 :
u = lim u(zy, 2, (15 €)e”) = lim u(@r, 22, k7) (2.42)

Replacing z— 2’ in equation (2.36)) by the corresponding representation ([2.41))

yields
o, 7, 0)dpdr’
=F—1 2.43
:':27T1€1—I>r(l)//Rzp—p:tlET—T)] (243)

where
o(p,7,0) = f(Tcosf — psinf, 7sinf + pcosh), (2.44)

i.e., p is the function f expressed in the local coordinates. For the evaluation
of the limit (2.43)), we split the integral over d7’; so as to control the sign of

-7

1 0 T dr’
+ . '
=7F—1
T {/oo J—[ptie(r —7)
o deT/ /
dp'. (2.45
WA e e RO

In the first integral of (2.45) (7' — 7) is negative, whereas in the second

integral (7' — 7) is positive, thus

27

= :F/ {IFWIQO p,7,0) + (He)(p, 7', 0) }dT

szm/ {£7ip(p, 7',0) + (He)(p, 7', 0) } d7’,  (2.46)
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where we have employed the Plemelj formulee, see Lemma [2.5] as well as
the definition of the Hilbert transform, see equation (2.28)). In the right-
hand side of equation (2.46) we add and subtract :F%m fTOO mip(p, 7', 0)d7r,

to obtain .
wE = FPEH0.0) ~ [ el 007 (2.47)

where

(Pﬂﬂ@)zig$)+2;1%<[Z;%2ﬁr:ig?)+gﬁﬂmgm (2.48)

denote a family of projectors in the variance p.

Equations (2.42)) and (2.47)) imply

ut—uT =i(Hf)(p, 6). (2.49)

We supplement equation (2.49) with the boundary condition (2.37)) and we
construct a scalar Riemann-Hilbert problem. The solution to this problem

is, according to Lemma [2.6

1 (ut —u™)(p, 0')dK’
a 21 |k/|:1 kK —k '

(2.50)

The equation |k’| = 1 can be rewritten as k' = €%, implying that dk’ =

Y,
e’ d0’, hence

27ri et —k
Replacing in equation (2.51) ut — u~ by the right-hand side of equation
[£.49), yields:

2t + - N 0" 1p/
- 1/ (ut —u")(p,0)ie” db . (251)
1Jo

, keC, k| #1, peR. (2.52)

U= —

17 (M) (p, 0)d
J

2mi el —k

Equation ([2.52)) represents the solution to the inverse problem. In order to

express f as a function of fwe must utilize the equivalence of the solutions

of the direct and inverse problems, provided by equations ([2.36|) and (2.52)),

respectively. We proceed with the asymptotic analysis of the behavior of u

for large k. Equation (2.52)) yields
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I N I | 1
== i = = — 0. 2.
u {27Ti/0 e’ (Hf)(p,0)do ’ +0 2 ) k— oo (2.53)
Substituting in equation (2.24]) the above expression, we find that the O(1)

term implies

1 ~

27
£ = 35 0 = 100) [ 07 (0.0 a. (25

p=x3 cos 0—x1 sin 6

Using the identity
(0, — 10,) = e 9(0, —1D,), (2.55)

in equation (2.54]), we obtain equation ([2.27)). [ |
An immediate consequence of the above, is the following corollary.

Corollary 2.9. Let k* denote the limits of k, defined in equation (2.39)), as

k approaches the unit circle from inside and outside the unit circle (k| = 1),
and let z and v be defined in equations (2.29a)) and (2.32), respectively. Then,

di (o {1 ) 2 (P5F) (000~ [ tprsas
(p,7) €ER?, € (0,21), (2.56)

where ]? denotes the Radon transform of f (defined in equation (1.9))), and
P*, (p,7) and ¢ are defined in equations [2.48), (1.6) and (2.44)), respec-

tively.

Proof. Equation (2.33) implies that
_1 [ f(z1,20)
u(zy, 29, k) = 071 { . (2.57)
°L v(lkD)
Therefore, taking the limit of equation (2.57)) as k approaches the unit circle

|k| =1 from inside and outside yields
+ . —1 f(xlny)
= ]_ = _— 2
o = g (0 {055 ) (259

where u™ is defined in equation (2.42). Inserting equation (2.47) in equation
(2.58)) yields equation (|2.56]). |
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2.3 The inversion of the attenuated Radon trans-

form in R?

In [7] Novikov demonstrated that the inverse attenuated Radon transform
can be derived by performing the spectral analysis of the eigenvalue equation
, which is a slight generalization of the eigenvalue equation .
However, one can derive the inversion of the attenuated Radon transform in
a simpler manner, using the results of the inversion of the non-attenuated
Radon transform (see Section as well as Corollary

Proposition 2.10. The inverse of the attenuated Radon transform ﬁ(p, 0)

of a function f(x1,x2), attenuated with respect to the function p(xy1,x2) (with
[, € S(R?)), defined in equation (1.15)) is given by

1 2m
f(z1,29) = E(&“ - i@m)/ 9 J(x1,29,0)dl, —o0 < x1, 15 < 00,
0
(2.59a)
where the function J is defined by
J (@1, 2,0) = M TPOLL(p, 0) fu(p,0) : (2.59b)
T=x9 sin +x1 cos 6
p=xg cos 0—xq sin @
with M and L, defined by
M(t,p,0) = / p(scos@ — psiné, ssinf + pcosf) ds, (2.59¢)
Lu(p,0) = P TR0 p=PTR(p0) | o~ PTi(p0) pt PR, (2.59d)

in equation (2.59d)), 1 represents the Radon transform of the attenuation

function p, i.e.,

ﬁ(p,@):/ w(Tcosf — psinf, 7sinf + pcos @) dr,

—00

0<60<2m, —o0<p<oo, (2.5%)

whereas the projection operators PT are defined in equation (2.48)).
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Proof. Rewriting equation ([2.25) in the form

uz + Bu= i, (2.60)
v v

and multiplying both sides of equation (2.60]) by o {4} , yields

= O S = O S = ) ) (2.61)
v v
Therefore,
9 (a8} = Lot (8}
5 (ue ) = e : (2.62)
Hence,

Equation represents the solution to the direct problem, which, follow-
ing the same approach as with the inversion of the non-attenuated Radon
transform, defines a sectionally analytic function u with a “jump” across the
unit circle, |k| = 1, of the complex k-plane. Furthermore, u satisfies the esti-
mate . Therefore, u is given by equation . However, this time the
jump u™ — u~ will be different than the one given by equation . The
determination of the jump involves the limits of d;'(f/v) as k approaches
kT, hence can be computed via Corollary In the limit & — kT, equation

(2.63)), where f is replaced by p, implies

(FPTA=[7 @(ps,0)ds) & — Jiy g1 {fe(jFP]Fﬁffoo @(p,s,e)ds)} . (2.64)
v

where 11 denotes the Radon transform of y, defined in equation ([1.9), and ®

denotes the function p expressed in the local coordinates:
®(p,7,0) = p(Tcost — psinb, Tsinb + pcosh). (2.65)

Applying Corollary on the right hand side of equation (2.64) and using
J?u defined in equation (|1.15)) yields

F FPTO Y > / FPFfe= 77 P50 s 1
FPTe P — | elp, 7.0 dr’, (2.66)
T
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where in equation ([2.56|), instead of f we used the function
(6¥P¢ﬁe*f?° N’“*‘”ds) f.
We note that inside the integral of the expression (2.66), the term ¥ 7 is
independent of 7/, hence it can come outside the integral. This means that
this specific term can be canceled throughout equation (2.64]). Therefore,
the jump is given by
ut —uT =, (2.67)

where J is defined in equation (2.59b)). Hence, equation (2.51]) implies

(2.68)

U= —

i /27r J(p, T, el)eie’del
o7 Jy ok

Therefore,

1 [ 0 1 1
= |— ! T -+ — — 00. 2.
U [2 /0 e’ J(p, ,Q)de} 2 (0] <k2) , as k—o0 (2.69)

Substituting equation (2.69)) in equation (2.25), we find that the O(1) term
in equation ([2.25)) implies equation ([2.59a)). |
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Chapter 3

Sinogram masking with

CUSUM

The present chapter deals with the concept of sinogram contour detection in
the context of inverse problems and it is based on [45] and [48]. The problem
of determining the contours of objects in nuclear medicine images has been
studied extensively in the past, however most of the analysis has focused
on a single object as opposed to multiple objects. The aim of this work
is to develop an automated method for determining the contour of either
single or multiple objects in filtered backprojection (FBP) reconstructed to-
mographic images of nuclear medicine modalities such as PET and SPECT.
These contours can be used for computing body edges for attenuation cor-
rection in both PET and SPECT, as well as for eliminating corresponding
streak artifacts outside the objects; this could be extremely useful in com-
pressive sensing reconstruction [66]. Contour detection is accomplished by
applying a modified cumulative sums (CUSUM) scheme in the sinogram, i.e.
the data space (the space of the Radon transform of the images). Our novel
approach automatically detects all objects in the image, without requiring
a priori knowledge of the number of distinct objects in the reconstructed
image. This method has been evaluated in simulated phantoms, such as
an image-quality (IQ) phantom and two digital multi-object phantoms, as
well as a real NEMA phantom and a clinical thoracic study. In this direc-
tion, a GE Discovery PET scanner was employed. The detected contours
achieved root mean square accuracy of 1.14 pixels, 1.69 pixels and 3.28 pix-
els and a Hausdorff distance of 3.13, 3.12 and 4.50 pixels, for the simulated

79
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image-quality phantom PET study, the real NEMA phantom and the clin-
ical thoracic study, respectively. These results correspond to a significant
improvement over recent results obtained in similar studies. Furthermore,
we obtained an optimal sub-pattern assignment (OSPA) localization error
of 0.94 and 1.48, for the two-objects and three-objects simulated phantoms,
respectively. Our method performs efficiently for sets of convex objects and
hence it provides a robust tool for automatic contour determination with
precise results. It is also worth noting that sinogram masking results in a

significant reduction in calculation time during reconstruction.

3.1 An introduction to edge-detection

In nuclear medicine the two prevailing, noninvasive tomographic imaging
modalities are positron emission tomography (PET) and single-photon emis-
sion computed tomography (SPECT). These nuclear medicine techniques,
which are usually referred to as “emission tomography”, have significant pre-
clinical and clinical applications and can be employed to a vast variety of
medical fields including neurology, oncology, cardiology and psychiatry [67].

PET uses the unique decay characteristics of radiopharmaceuticals, such
as FDG (*®F-2-deoxy-2-fluoro-D-glucose). When FDG is intravenously in-
troduced into the patient’s body, it is distributed in tissues in a manner
determined by its biochemical properties [38]. Then, PET detectors detect
the corresponding annihilation photons (coincidence gamma rays) that are
produced when positrons interact with electrons [4]. On the other hand, in
SPECT the intravenously injected tracers, such as technetium (%Tc) labeled
with an appropriate agent, radiate single photons. This time, the detectors
count individual photons (y-ray events) [5].

Image reconstruction is the main goal for almost all inverse problems in
imaging, although it is usually adopted in a tomography context, suggesting
reconstruction from projection data, i.e. sinograms [68|. There are several
reconstruction algorithms which are mainly distinguished as analytic and
iterative. The predominant analytic approach for image reconstruction is
filtered backprojection (FBP). FBP is based on the inversion of the Radon
transform via the central slice theorem [63], see theorem in page
The advantages of FBP amongst other analytic methods are undoubtedly

its speed and simplicity. However, its main limitation lies on its mere for-
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mulation, which, intrinsically, does not incorporate the statistical nature of
light; at the same time, it usually generates “streak artifacts" in the recon-
structed images involved. These streak artifacts are due to incomplete data
measurement, such as angular undersampling, or poor counting statistics |4].
The dominant iterative approach for image reconstruction is ordered subset
expectation maximization (OSEM). In this chapter, we will focus on FBP-
reconstructed images.

Although OSEM image reconstructions do not exhibit streak artifacts
and incorporate the statistical nature of light in the Poisson sense, there are
numerous cases where FBP has shown to produce improved quantitative re-
sults over OSEM. For example, in several neuroreceptor studies, especially if
a low count rate cannot be avoided, FBP reconstruction is sometimes prefer-
able to OSEM, in order to estimate the total volume of the distribution [69].
Another study by Reilhac et al. |70] suggests that the iterative reconstruction
methods are biased at low statistics, especially in the lower part of the image
dynamic range and for cold regions. Furthermore, according to Boellaard et
al. |[71], patient data indicated that OSEM and FBP provide equivalent re-
sults in the imaging of brain, myocardium, and tumor regions of interest
(ROIs).

Since the 1980s, the main mathematical problem of determining the con-
tour of an object for attenuation purposes in nuclear medicine has received
reasonable attention in the literature, especially in studies where contour
detection is accomplished via the sinogram. In cases where no computed
tomography (CT) is present, contour detection is a necessary approach for
determining the corresponding attenuation map for attenuation correction
purposes. Nevertheless, even in cases with a CT present (such as PET/CT),
CT delivers single snapshots of the breathing cycle and, when used for at-
tenuation correction, it may generate edge artifacts in most of the PET
respiratory cycle, even though respiratory gating of PET is, in general, pos-
sible [72].

There are numerous methods that have been proposed in order to address
the problem of contour detection. It is obvious that the simplest possible
method is sinogram thresholding, although this relatively subjective method
is neither adaptive nor automatic. Other contour detection methods in-
clude: (a) the maximum slopes algorithm for head contour determination in

PET |73], making use of the first derivative of the projections in order to
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specify the abrupt changes through the derivative maxima, (b) the Tomitani
method, encompassing differential geometry aspects in contour finding |74],
(c) the seminal Canny approach to edge detection, encompassing principles
from the calculus of variations [75], (d) the automated body contours find-
ing method in SPECT [76] which incorporates thresholding, smoothing and
fourth-order Fourier fitting, (e) the online brain attenuation correction pro-
cedure for head contour determination |77|, based on the Tomitani method
and a sinogram finite differences scheme, (f) the method for determination of
concave body outlines from SPECT sinograms before reconstruction making
use of a fourth-rank tensor projector operator |78|, (g) the mixed detection
and validation methods utilizing the sinogram derivatives and cosine fitting
in low count emission images [72], (h) the sinogram segmentation technique,
achieved by surface deformation fitting between the projected model and
the input sinogram [79], (i) the novel truncation correction method, utilizing
the idea of sinogram decomposition, where sinogram curves are considered
as individual image points [80], (j) the sinogram segmentation technique for
direct metal suppression in CT [81], (k) the metal artifact reduction through
sinogram segmentation method of lumbar spine CT images [82], (1) the pre-
reconstruction sinogram filtering approach based on three-dimensional (3D)
mean-median filters in PET reconstructions, aiming to minimize angular
blurring artifacts, to smooth flat regions and to preserve the edges |83|, as
well as (m) the denoising algorithm for cone-beam CT sinograms, encom-
passing a certain regularization in terms of gradient and Hessian [84].

Most of the aforementioned methods correspond to single-object cases.
More specifically, the first two and the fifth one focus mainly on the brain
and adjacent skull regions. Furthermore, all the methods mentioned above
are based on the concepts of thresholding, image segmentation and sinogram
differentiation. The method presented in this chapter takes into account only
the values of the sinogram in a straightforward manner, without computing
any corresponding threshold or derivative.

The main goal of the current chapter is to develop an automated method
for determining the contour of multiple objects in FBP-reconstructed images.
This method can be used for obtaining body edges for attenuation correction

purposes. In this direction, it is worth mentioning that:

(i) in PET/CT, body edge detection throughout the PET sequence can

improve the single CT scan before attenuation correction [72],
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(ii) in brain SPECT imaging, contour determination is essential for accu-

rate attenuation correction [72], and

(iii) in PET and SPECT CT-less imaging, it could provide a good starting
point for a uniform attenuation map. Furthermore, body edge detec-
tion could eliminate streak artifacts outside the body, which could be
very useful in the area of compressive sensing reconstruction, where
the sinogram and image can be “cleaned” for outside artifacts in every

iteration [66).

By applying a simplified cumulative sums (CUSUM) scheme in the sinogram,
as originally developed by Page [85], we were able to automatically detect

all objects in the image without requiring:

e prior knowledge of the number of distinct objects in the reconstructed

image, and

e visually selected threshold values, the calculation of noisy sinogram

derivatives, or the use of segmentation techniques.

The image masking process is accomplished via the sinogram mask, taking
into account one of the results of Kastis et al. [56]. In particular, that a
pixel which is outside the boundary spanned by an object (and hence has
zero value) can be singled out from the sinogram by first identifying the
detector locations px, = pi(6;) for all angles 0; that receive contribution from
this pixel; then, for every (z,y) if there is even one 6 such that f(pk, 0;) =0
it follows that f(z,y) must be zero. This condition arises from the very
nature of the Radon transform itself, which is a sum of positive terms and
thus is zero only when all terms are zero. Following this result, we are
able to reconstruct the sinogram mask in order to produce the image mask.
This way image masking is accomplished via sinogram masking, since we

reconstruct the masked sinogram.

3.2 Materials and methods used in CUSUM

3.2.1 The CUSUM-based algorithm

The CUSUM algorithm was originally introduced by E.S. Page in his seminal

Biometrika article in 1954 [85]. It encapsulates the notions of:
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(a) All sinogram rows. (b) Single sinogram row.

Figure 3.1: Sinogram finite support for nuclear imaging: (a) 2D and (b) 3D.

e adaptive thresholding, and

e complete memory of the information embedded in previous observa-
tions [86).

Let ﬁj denote the sinogram, i.e. the tabulated, matrix version of either
the Radon transform (PET) or the attenuated Radon transform (SPECT)
of the two-dimensional (2D) radioactivity distribution function f(x,y), as
in [56]. The sinogram is a matrix with Ny rows (angular dimension, #) and

N, columns (signed distance dimension, p), with elements
fij = F(pi,0;), for i=1,....N, and j=1,...,N.

In medical modalities such as PET and SPECT, we assume that (ﬁ]) has
finite support, see figure Given that ]/‘;j has finite support, it is safe
to assume that for every row j of the sinogram there are two “almost zero
intervals", one on the leftmost and another on the rightmost side. Let the
intervals’ lengths be £, and £y pixels, respectively. For the sake of simplicity,

we assume that

by, =lp="{

and we consider this length a user-defined parameter. This length parameter,
£, is the only user-defined parameter in our method and depends on the size
of the object. The parameter ¢ provides a rather precise estimation of the

noise distribution for the two edges (either left or right) of the sinogram.



3.2. Materials and methods used in CUSUM 85

In order to find the left as well as the right abrupt changes (jumps) of the
sinogram in each row, we introduce the following cumulative sums (CUSUM
statistics) Lg ) and R,(f ) for the left and right side respectively and for each

row j:

L(()j) =0, (3.1a)
19 = max {0,129, + fuj — (u +20?) ), n=1,.. N, (31b)

n—

where Mg) and U(Lj) are the mean and standard deviation (SD) of the left

“almost zero interval" of row j, i.e.:

Y, L
W= d o = [ (R-a) e
i=1 =1

and X is a user-defined positive number (namely the multiplier of the SD),
conventionally set at A = 3, but any A may be used [87]. The value of A is
related to the size of the persistent shift we are interested to detect and the
smaller the size the smaller the value of A. From the above definition it is
clear that, until it detects the first abrupt change from left to right, the left

cumulative sum is non-decreasing, i.e.

LY > LW forall m > n.

m  — n

Similarly,

() _
RNp =0, (3.3a)
Rfle = maX{O,R,(Lj) + ﬁlflhj - (,ug) + )\Ug)) }, n=Ny, Ny_1,...,2,1,
(3.3b)

where u%) and ag) are the mean and standard deviation of the right “almost

zero interval", i.e.:

N, N,
ool s & ; 1~ (7 )2
,u%) =7 E fi; and a%) =7 g <fl] — ,u?) . (3.4)
i=N,—l+1 i=N,—l+1
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Once again, from the above definition it is clear that, until it detects the first
abrupt change from right to left, the right cumulative sum is non-increasing,
i.e.

RY) < RY) forall m>n.

3.2.2 Single-object contour determination

In order to find both the leftmost and the rightmost boundary pixels of the
j-th row of the sinogram, denoted by
p) and pff),

respectively, we find both indices by the following:

1G) () (7)) _ : (4)
ir, = 1<mni>]<vp ker L;)) and ip’ = 1<I21<r}vp ker R, (3.5)

where ker A is the kernel (or zero set) of A, defined by

ker A = {all i such that A =0}, A€ {ng),R(j)} .

(2

For every row j, two index “clouds" are created, namely
J(g . (g .
(i12),5) and(ifg),):

We proceed with polynomial fitting of degree n > 3 (user defined) and as a
result we get two index curves, namely
fit At

fit it .
ip =ip(j) and i =ig ().

The user may add padding of p pixels, where p is a non-negative integer, so

that the indices of the left and right exterior boundaries are

15;]3 =if'(j) —p and 2%3 =iy (i) +p, p=0,1,..., LfJ (3.6)
In this manner, two curves are created, namely

PLo = pLo(05) and  pr, = pr,(0;),
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which correspond to
i, =ir,(j) and iR, =iR,(J),

respectively. These two curves are the exterior edges (or outer boundary
curves) of the sinogram. If the sinogram consists of one solid non-zero region
and hence the image depicts a single object with one closed boundary, then

the sinogram mask is created rather effortlessly, see Sec. [3.2.4

3.2.3 Multi-object contour determination

If the image depicts N distinct objects with closed boundaries, then the
sinogram consists of many almost-zero regions. In this case, we need to
distinguish each row j according to its number of peaks, Nj, i.e. if for a
fixed row j* (and hence fixed angle 6;+) the number of peaks is Nj» = 2,

then the function
9(pi) = fig» = f(pi, ;)
is bimodal in p;. The number of distinct objects in the image is ruled by the

number of peaks, for each row, in the following manner:
N = max N;. (3.7)
1<j<Ng

Then, in the case of multimodal sinograms, for each angle 6, we must search,

again via cumulative sums, inside the exterior index interval

1) =949, (3.8)
for “almost zero" subintervals. Therefore, we are trying to find left and right
“inner boundary" pixels, namely

and i), for k=1,...N;—1,

()

i,
outside of which there are no counts, i.e. the sinogram value is zero. We note
that k£ = 0 represents the one-object case, described above. For simplification
we introduce the notation

Lg_1? ZRNj—k
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Another difficulty in the multi-object case arises from the fact that there
is no a prior: knowledge of the number of distinct objects, N. The way to
overcome this difficulty is to deploy M CUSUM “agents”, A,,, inside I(()j ),
It is important to note that M is a user-defined, sufficiently large positive
integer; recommended values for this parameter require M > N, for example
M = 1000. Each of these agents is responsible for pinpointing any abrupt
changes both on its left and on its right; it begins its search from random
starting pixels,
Sm eIéj), m=1,....,M,

and makes use of the CUSUM algorithm inside I(()j ). The above imply that
the exact same method is being used inside the initial interval, only this time
there exists an element of randomness, due to the fact that we do not know
a priori whether an agent will find or not a new subinterval, i.e. we do not
know whether N > 2 or not in advance.

Similarly, we introduce the following cumulative sums LY )(Am) and

Rslj )(Am) for the left and right side respectively and for each row j:

LE’JBO (Ap) =0, (3.10a)

LD (An) = max {0, LD, (An) + Foy = (1) +20?) ), (3.100)
and

RY (4,,) =0, (3.11a)

p

Rgzl(Am) = max {0, R,(lj) (An) + ﬁl*l,j — (,ug) + )\ag)> }, (3.11b)

where the parentheses emphasize the dependence of each (left and right)
CUSUM statistic on the m-th agent, starting at pixel s,,,, m =1,..., M, M(Lj)
and ag) are defined in equation , ,u%) and ag) are defined in equation
, and X is described above. Then, in order to find z(le), if it exists, i.e.

N; > 1, we take the minimum over the agents
() _ : ;
= i {0} Gz

and in order to find igz, if it exists, we take the maximum over the agents
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igfz max { min kerR(j)(Am)}—l—p, (3.12b)

1<m<M | 1<n<N, n

We follow the same procedure, recursively, to find indices

(4) :(7)

i, and dp upto

(4)

zLer and

) for N; > 1,

ZRNj—l’
wherever they exist. It is important to note that if the boundary pixel Z(ij)*

( .(7)

or iy’ ) does not exist, for some
k*
k* < N; —1,
then we assign this pixel an index of zero, i.e. if

k* is such that 3 Z(L]Z* or # igz*’

then:

i) =0 and i) =0 ¥ k> k" (3.12¢)

Using the above definition, we are able to quantify the inability to further

)

stratify the subintervals I lij without prior knowledge of Nj.

3.2.4 Sinogram masking
Unimodal sinograms

Sinogram masking when N = 1 is performed by setting, for each row j,
the mask equal to one inside Iéj ) and equal to zero everywhere else. The
sinogram mask, M}g, is a matrix consisting of zeros and ones and is defined
as follows:
) 1, ifiely
My (pi, 0;5) = , for N=1. (3.13a)
0, otherwise

Multimodal sinograms

Sinogram masking in the case of N > 1 can be proved to be quite more

challenging; it is performed by setting, for each row j, the mask equal to
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one inside the intervals I ,gj ), k=1,...,N and equal to zero everywhere else.
Once again, the sinogram mask, MY, is a matrix consisting of zeros and

ones and is defined as a slight modification of equation (3.13al):

N .
1, ifie Y 1Y
MY (pi,0;) = k=1 , for N >1, (3.13b)

0, otherwise

where N > 1 and [ ,gj ) are defined in equations (3.7) and (3.9)) respectively.
We note that equations (3.13]) provide the sinogram mask for all cases, with-

out prior specification of N.

3.2.5 Image masking

The image mask My is constructed from the sinogram mask taking into
account one of the main results of Kastis et al. |56], namely that a pixel
which is outside the boundary spanned by an object and hence has zero
value, can be singled out from the sinogram by first identifying the detector
locations pp = pi(60;) for all angles 6; that receive contribution from this
pixel; then, for every (x,y) if there is even one 6 such that f(pk, 0;)) =0 it
follows that f(x,y) must be zero. This condition arises from the very nature
of the Radon transform (sinogram), which is a sum of positive terms and thus
is zero only when all terms are zero. Following this result, we reconstruct
the sinogram mask in order to produce the image mask.

In this direction, let @, and @, denote the number of rows (z direction)
and columns (y direction) of the reconstructed image matrix. Common prac-
tice in nuclear imaging suggests square images, i.e () = Qy = @, hence the
image mask M; = My(z;,y;), i,j = 1,...,Q is a square QX matrix. For
every (z;, yj)gj:p we find p = p(6;) for all (Gl)lNzgl, according to equation (3)
of [56]. In the general case, this calculated p does not necessarily coincide
with the (pk)gi 1 partition of the sinogram ﬁ;l and hence we need to find
the nearest fixed k (and hence py), since p always lies in an interval of the
form [pg, pr+1] for some appropriate index k. This way, the calculated curve
p = p(0) becomes py, = pr(6;) through shifting to the nearest integer index,
for all angles 6;. The value of the sinogram mask is calculated on the curve,
Ms(pr(0;),6;), and if there exists an angle 6; = 0 such that Mg (px, 0~) =0,

then the image mask must be zero; otherwise the mask is one:
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Input pi, 05, ﬁj, N,, No, X\, £, n, p, M, s, and @
Output  Mg(p;, 6;) and My (x4, ;)
Step la: V (9]-)?[:91 calculate ,ug), aj(:j), ,ug), ag), (Lg))gil, ( Q))fgl.
Step 1b: Find initial indices Z/L(?)) and i;%) via ker Lﬁf) and ker R,(Zj).
Step 1c: Polynomially fit (degree n) to find ifLitO(j ) and ifgo(j ),
Step 1d: Add padding p to find zgo) and ’L%g and Iéj).
Step 2a: Deploy M agents A,, inside Iéj ) (random starting points s, ).
Step 2b: For ¢ > 1 find indices (if any) Z%Z) and 1%3 via ker Lg)(Am) and
ker R%j )(Am) and padding p, else assign index value of 0.
Step 3:  Find (Nj)jy:‘)l and, thus, N.
Step 4: Perform sinogram masking by calculating Mg.
Step 5a: V (mi,yj)gjzl find p = p(6;) and then nearest px, = p(0;).
Step 5b: Calculate Mg(pr(6;), 6;).
Step 5c:  Perform image masking by calculating M;: if 3 6; such that
Mg (px, 6;) = 0, then My(x;,y;) = 0, else My(z4,y;) = 1.
Table 3.1: Algorithm for image masking via CUSUM.
M (s, y5) = 0, if 3 6; such that Mg(px(6;),6;) =0 ’ (3.14)
1, otherwise
fork=1,...,Nyand [ =1,..., Ny.

In summary, image masking is performed as follows: a) we specify the

length (¢, in pixels) of the “almost zero" interval as well as the multiplier (\)

of the standard deviation of counts (o) within this specific area for a given

sinogram, b) we find the left and right initial boundary curves, through

left and right cumulative sums and by considering the boundary points for

each angle (6) as points on a curve, ¢) we obtain the final exterior curves of

the sinogram via polynomial fitting and optional padding (p, in pixels), d)

we deploy “agents" that search for internal edges (if any) within the exte-
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rior boundaries, but with random starting points (s,,) and without a priori
knowing the total number of non-zero intervals, e) we find the interior bound-
aries of the sinogram and hence the sinogram mask (Mg) by reapplying left
and right cumulative sums and f) we construct an image mask (Mj) from
the sinogram mask, under the following condition: if a pixel is outside the
boundary of an object, and thus has zero value, then there exists at least
one angle such that the Radon transform of this specific pixel has zero value
in the image mask there, since a pixel in image space maps to a curve in
sinogram space. The sinogram and image masking procedures are outlined
in Table 3.1l

Our method was implemented in GNU Octave, a freely redistributable high-
level interpreted language and software, primarily intended for numerical

computations.

3.2.6 Data acquisition, reconstructions and implementation
Simulation studies

The simulation studies were performed employing simulated sinograms of:

(i) an image-quality (IQ) phantom (N = 1),

(ii) a digital phantom simulating two separate bodies (two ellipses emulat-

ing a slice of two human legs, N = 2),

(iii) a digital phantom simulating three separate bodies (three ellipses em-

ulating a slice of a human torso and two arms, N = 3), as well as

(iv) a concave phantom (N = 1), all under Poisson noise of 10% of the

total counts.

Software for Tomographic Image Reconstruction (STIR) [88] was employed
to simulate the GE Discovery ST PET /CT scanner [89]. This specific scanner
consists of 24 detector rings with diameter of 88.62 cm. Every detector ring
consists of 70 detector blocks, and each block in turn consists of an array
of 6x6 crystals (that is a total of 420 crystals per ring). The dimensions of
the resulting, simulation-generated sinograms are N, = 221 detectors and
Ny = 210 angles, with a detector bin size of 3.195 mm each. For further

details of this particular scanner, see [89]. For all phantoms involved in our
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simulation studies, the size of the square image grid was 128, i.e. 128x128
pixels.
For the simulation studies performed, we assigned the parameters the

following values:
e )\ = 3 for the o multiplier,
e n = 7 for the degree of the polynomial fit, and
e M = 1000 for the number of deployed agents.

As far as the length of the “almost zero interval" is concerned, the following

values were used:

e ( = 60 pixels for the simulated 1QQ phantom,
e (¢ = 50 pixels for the two-object and three-object phantoms, and

e (=75 pixels for the concave phantom.

For the simulated IQ and the concave phantoms we did not add padding,

however we assigned padding of

e p = 1 pixel for the two-object phantom, and

e p = 2 pixels for the three-object phantom.

Phantom studies

We also employed our automatic method for an image-quality phantom rep-
resenting a human torso, namely a NEMA IEC Body Phantom Set™, Data
Spectrum Corp, Hillsborough, NC, USA. The GE Discovery ST PET/CT
scanner was used to acquire the corresponding sinograms. This specific
phantom incorporates six coaxial isocenter spheres with diameters of 10,
13, 17, 22, 28, and 37 mm, respectively. A cylindrical insert, simulating the
lungs, with a diameter of 50 mm was installed in the phantom’s center. The
cylinder’s (cold insert) density is 0.30 g/ml and its attenuation coefficient
is approximately equal to the average value of the attenuation coefficient in
the lungs [90]. The phantom was loaded with an aqueous solution of 8F
with a background activity concentration of 5.3 kBq/cm? according to the
guidelines of the NEMA Standards Publication NU 2-2001 [91]. In order



94 Chapter 3. Sinogram masking with CUSUM

to simulate lesions with lesion-to-background ratio of four, the six spheres
were filled with a concentration four times larger than the background. The
NEMA phantom was transaxially positioned in the center of the GE Dis-
covery ST PET/CT system, whereas axially it was positioned in a way that
the center of the spheres was placed at the axial center of the scanner. An
emission scan was obtained in two-dimensional (2D) mode, with septa in
place, in a single bed position and a CT scan followed in order to obtain
the attenuation correction mapping. The emission scan acquired a total of
100x 105 counts and all sinograms were subsequently corrected for deadtime,
normalization, randoms, scatter and attenuation.

The two-dimensional sinograms were then transferred to a computer for
reconstruction with STIR. Once again, the dimensions of the acquired sino-
grams were N, = 221 detectors and Ng = 210 angles and the reconstructed
image size was 221x221 pixels (Q = 221). For the real NEMA phantom we

set the parameters’ the values as follows:
e ( = 60 pixels for the‘almost zero interval",
e )\ = 3 for the o multiplier,

e n = 7 for the degree of the polynomial fit,

M = 1000 for the number of agents, and

no padding, i.e. p = 0 pixels.

Clinical study

A clinical study of a patient’s thorax was performed by employing emission
scans from the GE Discovery ST PET/CT scanner. The total counts of the
sinogram were 1.6x10% counts and the length of the “almost zero interval"

was set at
o ( = 40 pixels.

The same parameters were used as in all previous studies performed.

Reconstructions

The reconstructions of all sinograms involved were performed in STIR using

two-dimensional FBP with a ramp filter with a cutoff at Nyquist frequency.
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The reconstructed images size was () = 221, i.e. 221x221 pixels, resulting

in a pixel size of 3.195 mm, equal with the detector bin size.

3.2.7 Comparison metrics

For the comparison of the simulated-phantom results with the actual phan-
tom, we employed three different metrics, namely the root mean square
(RMS) error eyys, the Hausdorff distance egr, and the optimal sub-pattern
assignment (OSPA) metric localization error éz(:l)o o

Root mean square error

The root mean square error (epys, in pixels) between the estimated and
actual boundary locations, for all angles of projection 6;, j = 1,..., Ny is

given by:

PO (ﬁj - Rj)2

rms — 5 1
e Ny (3.15)
where

R; =iy —it)), (3.16)

Z%O), zgg are defined in equation , and ]%j, R; correspond to the estimated
and actual edge locations, respectively, and thus are represented by the dis-
tance from the center of the Radon space (sinogram space) to the projection
ray that passes through the object boundary; this is exactly the same metric
that Barnden, Dickson and Hutton used in [72] for their evaluation.

The RMS metric is meaningful only for one-object cases, i.e. N=1, since
it compares the image and sinogram boundaries as a whole. For this reason,
we computed the above metric only for the N = 1 cases, i.e. the simulated
IQ phantom, the real NEMA phantom and the clinical thoracic study.

Hausdorff distance

The dominant approach in the evaluation of segmentation algorithms is the

Hausdorff distance, ef;. The Hausdorff distance between two curves,

A={aj,az,...,an} and B ={by,ba,...,bn},
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is calculated by:

er(A, B) = max <maxd(ai, B),maxd(bj,A)> , (3.17)
i J

where d, i.e. the distance to the closest point, is defined by

d(a;, B) = min ||b; — a4, (3.18)
J

as described in [92,93]. In our case, the curves A and B represent the seg-
mented boundary and the ground-truth boundary. Therefore, the Hausdorff
distance reflects the maximum mismatch between the segmentation and the
ground truth [94]. Since the Hausdorff distance metric deals with closed

boundary curves, it is only valid for one-object cases.

OSPA metric localization error

We employed the OSPA metric (or OSPA distance) in the context of multi-
object performance evaluation. More specifically, we computed the p-th

order “per object” localization error &

» €p o> between the phantom binary map

and the calculated mask, as in [95|. The localization error was evaluated via

the following expression:

|

P

_(c) (1 . N e
ep,loc(X’ Y)= (n 7?6111'[1}12;(1( )(xivyw(i))p> ) (3.19)

where

4 (z,y) := min (¢,d(z,y))

denotes the distance between = and y cut-off at ¢ > 0 (outlier sensitivity),
I1; denotes the set of permutations on {1,2,...,k} for any k € N, X =
{z1,...,xm}, Y = {y1,...,yn} and p > 1 is the cardinality penalty. A

practical choice for our case is

e p =2 (second order error), and

ec=1

)

therefore,
dW(z,y) = d(z,y),
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given that the values of d are always less or equal to 1 (since we are comparing
binary maps in a pixel-by-pixel manner). Furthermore, all matrices involved
are square matrices, hence
m=n=Q.

As a result, we are interested in determining ééll)o o

1
1 < :
5(1) _ : 2

627100(X’ Y) - <Q ngg}l z; d(l‘la yw(z)) ) ’ (320)
1=

where d is treated in the context of square, () x () matrices hence, is naturally

computed as follows

Q Q
d:=dy(A,B) = | > (aij — by)?, (3.21)

i=1 i=1
i.e. d is chosen to be the Euclidean matrix distance, where A = (a;;) and
B = (Bjj) are @xQ matrices. The OSPA localization error is meaningful
in multi-object cases, i.e. N > 1. For this reason we computed it for
all corresponding cases, namely the simulated two and three-object digital
phantoms. In these cases the OSPA error is a measure of the “distance”, in
the generalized sense, between the binary version of the phantom and its
calculated binary mask. The above are valid under the assumption that no
cardinality error occurs, i.e. the number of reconstructed objects remains

the same with the original number of objects depicted in each phantom.

3.3 CUSUM results

The execution time for contour determination depends on the number of
total distinct objects (N) and is clearly less in cases were N = 1. More
specifically, in all N = 1 cases (the simulated 1Q phantom, the simulated
concave phantom, the real NEMA phantom as well as the clinical thoracic
phantom) the execution time was less than 4.3 s (4.21 s, 4.12 s, 4.29 s and
4.02 s, respectively) and in the simulated two-ellipses phantom and three-
ellipses phantom cases the execution time was significantly larger, namely
more than 22 s (22.27s and 22.76 s, respectively). All studies were executed
on a Dell Precision T1700 workstation with an Intel® Xeon® CPU E3-1241

v3 processor, running on a 64-bit Windows® 10 environment.
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Single-object Multi-object
Simulated Real Simulated
1Q NEMA Thoracic 2-obj. 3-obj.
RMS
error 1.14 1.69 3.28 - -
Hausdorff
distance 3.13 3.12 4.50 - -
OSPA
error - - - 0.94 1.48

Table 3.2: CUSUM error measurements, in pixels.

In Table we present the results obtained from the computation of all
comparison metrics investigated, both from the simulated and real studies.
It is important to note that the RMS error and the Hausdorff distance can
only be determined in single-object cases, whereas the OSPA localization

error is only defined for multi-object cases.

3.3.1 Simulation studies

Simulated IQ phantom

For the IQ phantom study, the sinogram edge-detection, sinogram mask,
reconstructed image and masked reconstructed image are shown in figure
The corresponding surface plots are presented in figure This specific
digital phantom simulates the human torso, hence the number of distinct
objects with a clearly defined boundary in the image is 1. The cross-section
of the sinogram is unimodal for all angles 6;. The agents confirm the fact that
for all angles ¢; of the sinogram N; = 1, hence N = 1. By visual inspection,
both the sinogram mask and the image mask are correctly identified. Figure
[3-2]indicates that all FBP artifacts outside the object have been substantially

removed and the object is preserved intact. For the simulated 1Q phantom,
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() (d)

Figure 3.2: Sinogram and image edge detection and masking for the simu-
lated IQQ phantom (N = 1): (a) Sinogram edge detection with polynomial
fitting and padding (n =7, p =0, A = 3, £ = 60, M = 1000), (b) Sinogram
mask, (¢) FBP reconstructed image, (d) Enlarged masked image to enhance
visual inspection.
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Figure 3.3: IQ phantom surface plots of reconstructions: initial (left) and
masked (right).

the root mean square error was
érms = 1.14 pixels,

hence, the deviation between actual and estimated value was 3.64 mm. Fur-

thermore, the Hausdorff distance was measured to be
ey = 3.13 pixels, i.e. 10.00 mm.

Two-object phantom: simulation of human legs

For the digital two-object phantom the sinogram edge-detection, sinogram
mask, reconstructed image and masked reconstructed image are shown in
figure The corresponding surface plots are presented in figure This
particular digital phantom emulates a slice of two human legs, hence the
number of distinct objects in the image is 2. Again, this is confirmed by
the agents, which detected 2 distinct objects. It is clear by visual inspection
that both the sinogram and image masks are correctly identified. Only a few
image pixels still remain uncorrected, after applying the image mask (see
figure . Figure indicates that all FBP artifacts outside the objects
have been removed and the objects are preserved intact. For the simulated
two-object phantom, the OSPA localization error was

el = 0.94 pixels,

loc ™
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() (d)

Figure 3.4: Sinogram and image edge detection and masking for the simu-
lated two-object digital phantom (N = 2): (a) Sinogram edge detection with
polynomial fitting and padding (n =7, p =1, A = 3, £ = 50, M = 1000), (b)
Sinogram mask, (¢) FBP reconstructed image, (d) Enlarged masked image
to enhance visual inspection.



102 Chapter 3. Sinogram masking with CUSUM

Figure 3.5: Two-object phantom surface plots of reconstructions: initial (left)
and masked (right).

corresponding to a second-order deviation between actual and estimated

mask of 3.00 mm.

Three-object phantom: simulation of human torso and arms

For the digital three-object phantom study, the sinogram edge-detection,
sinogram mask, reconstructed image and masked reconstructed image are
shown in figure [3.6] The corresponding surface plots are presented in figure
[3:7 This digital phantom emulates a slice of a human torso and two human
arms, hence the number of distinct objects with a clearly defined boundary
in the image is 3. The agents confirm that N = 3. By visual inspection,
the masking process identifies all three objects correctly. After masking,
there remain only a few uncorrected pixels (see figure . Furthermore,
the inside zero area of the central object (torso) remain intact, as expected.
Figure [3.6] indicates that all FBP artifacts outside the objects have been
removed and the objects are preserved intact. For the simulated three-object
phantom, the OSPA localization error was

(1) _

€3 0oc = 1.48 pixels, or 4.73 mm.

Concave phantom

For the digital concave phantom study, the sinogram edge-detection, sino-

gram mask, reconstructed image and masked reconstructed image are shown
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(c) (d)

Figure 3.6: Sinogram and image edge detection and masking for the sim-
ulated three-object digital phantom (N = 3): (a) Sinogram edge detec-
tion with polynomial fitting and padding (n = 7, p = 2, A\ = 3, £ = 50,
M =1000), (b) Sinogram mask, (¢) FBP reconstructed image, (d) Enlarged

masked image to enhance visual inspection.
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Figure 3.7: Three-object phantom surface plots of reconstructions: initial
(left) and masked (right).

in figure The corresponding surface plots are presented in figure [3.9
This is a single-object phantom, a fact that is confirmed by the agents. Fig-
ure indicates that not all FBP artifacts outside the object have been
removed; there are several nonzero pixels inside what appears to be the con-
vex hull of the boundary of the object, i.e. the smallest convex set that
contains the boundary of the object and the object itself. The object is pre-
served intact, only this time its size is overestimated: the mask is now much
larger than the object, since it encapsulates the convex hull of the object

and its boundaries.

3.3.2 Real studies

The main challenge of determining the boundaries in a real sinogram, in
comparison to a simulated one, is the fact that a real sinogram may contain
non-zero, and even negative, values. This specific fact raises concern regard-
ing the accuracy of any edge detection method applied. However, in our
case the inexistence of the positivity constraint did not affect the accuracy
of neither the edge detection nor the sinogram masking, especially in the

case of the clinical thoracic study.

Phantom study

For the NEMA phantom study, the sinogram, sinogram edge-detection, sino-

gram mask, reconstructed image and masked reconstructed image are shown
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() (d)

Figure 3.8: Sinogram and image edge detection and masking for the simu-
lated concave phantom (N = 1): (a) Sinogram edge detection with polyno-
mial fitting and padding (n = 7, p = 0, A = 3, £ = 75, M = 1000), (b)
Sinogram mask, (¢) FBP reconstructed image, (d) Enlarged masked image
to enhance visual inspection.
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200

Figure 3.9: Concave phantom surface plots of reconstructions: initial (left)
and masked (right).

in figure The corresponding surface plots are presented in figure [3.11]
This real phantom simulates the human torso. The cross-section of the sino-
gram, acquired by the GE Discovery ST PET/CT scanner, is unimodal for
all angles. The agents confirm the fact that N; = 1 for all angles 0;, and
hence N = 1. Figure[3.10]indicates that not only does the image mask iden-
tifies the phantom, it also ensures that all FBP artifacts outside the object
have been removed. The value of the RMS error for the real NEMA phantom
was

erms = 1.69 pixels,

which corresponds to a length of 5.40 mm. Furthermore, the Hausdorff

distance was measured at
ey = 3.12 pixels,
corresponding to a distance of 9.97 mm.

Clinical study

For the real clinical study the sinogram, sinogram edge-detection, sinogram
mask, reconstructed image and masked reconstructed image are shown in
figures [3.12] and [3.13] This clinical study was performed in the thoracic
region of the patient, hence the number of distinct objects with a clearly

defined boundary in the image is 1. This is confirmed by the fact that for
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()

Figure 3.10: Sinogram, acquired by the GE Discovery ST PET/CT scanner,
and image edge detection and masking for the real NEMA phantom (N = 1):
(a) Sinogram edge detection with polynomial fitting and padding (n = 7,
p=0,A=3,¢=060, M =1000), (b) Sinogram mask, (c) FBP reconstructed

image, (d) Enlarged masked image to enhance visual inspection.
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Figure 3.11: NEMA phantom surface plots of reconstructions: initial (left)
and masked (right).

all angles 6; of the sinogram N; = 1, hence N = 1. Figures and
indicate that all FBP artifacts outside the object have been removed. The

value of the root mean square error for the real NEMA phantom was
erms = 3.28 pixels,

which corresponds to a length of 10.48 mm.
Furthermore, the relevant Hausdorff distance in the real clinical study was
measured

e = 4.50 pixels,

which corresponds to a total distance of 14.38 mm.

3.4 Analysis and discussion of CUSUM results

In this chapter, we presented a method to automatically determine the con-
tour of multi-object FBP-reconstructed nuclear medicine images, without
prior knowledge of the total number of objects involved. In order to accom-
plish the goal of our study, a CUSUM-based algorithm has been implemented
and tested in simulated and real phantoms. Given a sinogram, we perform
sinogram edge detection and thus create a sinogram mask. By mapping the
masked sinogram into the image space, we create an image mask, and subse-
quently determine the contour of all objects depicted on the corresponding

image.
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(c) (d)

Figure 3.12: Sinogram, acquired by the GE Discovery ST PET/CT scanner,
and image edge detection and masking for a slice of the clinical thoracic
study (N = 1): (a) Sinogram edge detection with polynomial fitting and
padding (n =7, p =0, A = 3, £ = 40, M = 1000), (b) Sinogram mask,
(c) FBP reconstructed image, (d) Enlarged masked image to enhance visual
inspection. The bright spots correspond to tumor locations.
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()

Figure 3.13: Sinogram, acquired by the GE Discovery ST PET/CT scanner,
and image edge detection and masking for another slice of the clinical tho-
racic study (N = 1): (a) Sinogram edge detection with polynomial fitting
and padding (n =7, p=0, A =3, £ =40, M = 1000), (b) Sinogram mask,
(c) FBP reconstructed image, (d) Enlarged masked image to enhance visual
inspection. The bright spots correspond to tumor locations.
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For the simulated studies, our results clearly indicate that our method
is fully capable of identifying single as well as multiple objects in the recon-
structed image, within a small error. In order to quantify this statement and
to evaluate the usability of our method, we have employed three comparison
metrics, namely the root mean square error and the Hausdorff distance for
one-object images, and the OSPA localization error for multi-object images,
respectively. More specifically, for the single-object case, the measured RMS
error was in the order of a pixel, whereas the Hausdorff distance (which
signifies the maximum deviation from the actual value) was 3 pixels. For
the multi-object cases, the measured OSPA second order localization error
(which signifies the miss-distance in the field of multi-object performance
evaluation) was less than two pixels in both 2-object and 3-object images.

For the real studies, our results suggest that our method is fully efficient
in identifying the objects, once again within a small error. For the real
single-object cases, the RMS errors were less than two pixels and in the
order of three pixels for the real NEMA phantom and the clinical thoracic
study, respectively. Furthermore, the Hausdorff distance was in the order of
3 pixels for the real NEMA phantom and less than 5 pixels for the clinical
thoracic study. Since the evaluation of any segmentation method is known
to be a very hard problem, the criteria for a good segmentation algorithm
are usually application-dependent, subjective and hard to define explicitly.
It is worth noting that relatively little research has been performed on the
segmentation evaluation process [96].

We think it is essential to compare our results with the results of [72]
in a meaningful manner. In this direction, we tested the method proposed
by Barnden, Dickson and Hutton |72|, which is based on “real” images, on
one-object phantom images used in this paper. This way we were able to
compare these results more consistently. In particular, we employed the
threshold crossing method with second derivative at 12% threshold without
any outlier rejection (D2T12), as described in |72]. For all one-object cases,
the root mean square error (eyys) of our method was smaller than the corre-
sponding root mean square error of D2T12 edge detection method. Detailed
comparisons between the RMS error measurements of these two methods are
shown in Table 3.3

Relatively recent studies suggest that the edge detection process in nu-

clear tomography is closely related to thresholding and sinogram derivative
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Edge detection method IQ NEMA Thoracic

CUSUM 1.14 1.69 3.28
D2T12 1.42 2.72 3.99

Table 3.3: Measured RMS error comparison between CUSUM method and
D2T12 of |72] for one-object studies, in pixels.

calculations. For example, Hosoba et al. [76] recommended thresholding for
contour detection in SPECT, whereas Barnden et al. |72] proposed a mixed
methodology scheme for edge detection, that includes sinogram threshold-
ing, calculation of sinogram derivatives up to second degree and, ultimately,
preliminary selection of the appropriate method by visual inspection. Fur-
thermore, in the latest sinogram-based approaches in CT, such as the stud-
ies by Elangovan and Whitaker |79], Kaewlek et al. [82], and Veldkamp et
al. [81], the sinogram undergoes segmentation either through deformation or
completion-replacement via interpolation. With our suggested method, no
thresholding or sinogram derivatives calculations are necessary. Our method
performs automated edge detection for multiple objects through the back-
projection of the sinogram mask. Most of the works mentioned above limit
their studies in one-object cases only. Our proposed approach is automated
and the only required parameter is the zero interval ¢ (number of pixels)
which the user can obtain by visual inspection of the sinogram. However,
one can use our algorithm in a fully automated fashion by finding the opti-
mal ¢ value for each imaging protocol /scanner. The minimum recommended

value of the zero interval for all scanners is
¢ = 10 pixels,

which represents the default fully-automatic setup for all scanners.
We also note that our proposed contour detection method is robust and
all the parameters involved are optimized. In particular, the standard devi-

ation multiplier, A, is optimized at
A =3,

since the persistent shift in all cases investigated was accurately detected at
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this level. The polynomial fitting degree was optimal at
n==17,
and for the number of agents deployed, the value
M = 1000

suffices for all studies performed. Our tests suggest that even the padding

parameter was optimized at

p=0,

i.e. no padding, for all single-object cases. Furthermore, the optimal values
of
p=1 and p=2,

for two and three objects cases were used, respectively.

The method proposed in this chapter is able to perform accurately and
efficiently for convex objects, such as the 1Q, two-object, three-object and
NEMA phantoms. Overall, it provides a very useful tool for automatic con-
tour determination. However, there appears a certain limitation in applying
our algorithm holistically for concave objects, due to the fact that, in con-
cave cases, there is always a certain “shadow" of the Radon transform. As
a result, the masked image in concave cases encompasses the convex hull of
the boundary of the object and hence it overestimates the size of the object.
Furthermore, the padding parameter p, is always provided in order to avoid
discretization errors. These errors appear, since from a known sinogram,
and hence from known detector locations, we need to engage the nearest
detector (p;) for every distinct pixel (x;,y;). Furthermore, there are certain

limitations in applying our method, such as
(a) low count imaging, and

(b) SPECT scans during which there are parts of the patient’s body that
are outside the field of view (FOV).

The mechanism described in the present chapter can be proven to be useful
for computing body edges for attenuation correction in PET or SPECT
systems that do not include a CT. As we will discuss extensively in chapter [

attenuation correction is one of the numerous applications of all contouring
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techniques in general, and not exclusively of our method. The usefulness of
creating attenuation maps arises especially in developing countries where,
even nowadays, there are PET and SPECT systems without a coupled CT
scanner. Even in cases where a CT is indeed available, i.e. PET/CT or even
SPECT/CT, the CT delivers single snapshots of the breathing cycle and
when used for attenuation correction it may possibly generate edge artifacts
in most of the respiratory cycle, with or without respiratory gating [72].
Our method can determine the boundaries of the object and thus create an
attenuation map. Furthermore, our technique is expected to be very useful
in eliminating noise outside the objects being imaged in compressive sensing
reconstructions. More specifically, it can be proven helpful in the desired
image decomposition as a background separation tool, see [66].

Our CUSUM method will be particularly useful for iterative reconstruc-
tion methods, such as compressive sensing, that aim to use FBP operators.
Such methods would use the forward back projectors per iteration, hence the
streak artifacts, when present in the back projected image, will keep getting
worse per iteration dominating the signal. Compressive sensing utilizes non-
linear iterative reconstruction methods and if it employs an FBP operator,
then the sinogram masking will be necessary. In compressive sensing to-
mographic reconstruction, as in most iterative reconstruction methods, the
sinogram must be “cleaned” of external artifacts in every iteration.

In this chapter, we have focused on FBP reconstructions. However, in
reconstruction cases and techniques other than FBP where the reconstruc-
tion is performed pixel-by-pixel (i.e. techniques that utilize pixel-driven ap-
proaches and thus reconstruct the sinogram on a pixel-by-pixel basis), the
presented method can dramatically reduce reconstruction time; these tech-

niques include:

e the so-called “spline reconstruction technique” for PET (SRT) evalu-
ated in |56] and extended for SPECT (aSRT for SPECT) in Chapter
and in |44], or

e the two-step Hilbert transform method, with utilization of a differen-
tiated backprojection (DBP) step, see [97].
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3.5 Conclusion and future work

For the purposes of this chapter, an automatic method for the contour
detection of FBP-reconstructed, multi-object nuclear medicine images has
been developed and tested in simulated and real phantoms. Our proposed
method, based on cumulative sums, automatically detects all objects in the
reconstructed image without the requirement of prior knowledge of the total
number of distinct objects being imaged. Through contour determination,
we were able to efficiently compute body edges. In future studies, we intend
to implement our method in STIR as well as to design and implement a
stand-alone application for contour detection, image masking and the elimi-

nation of streak artifacts.
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Chapter 4

A novel method for inverting
the attenuated Radon

transform

In this chapter we present the attenuated spline reconstruction technique
(aSRT), which provides an innovative approach for SPECT image recon-
struction |44,47|. aSRT is based on an analytic formula for the inverse atten-
uated Radon transform (IART). It involves the computation of the Hilbert
transforms of the linear attenuation function and of two sinusoidal func-
tions of the attenuated sinogram, see equation . These computations
are performed by employing the corresponding attenuation data provided
by computed tomography (CT) scans, and by utilizing custom-made cubic

spline interpolation. Our purpose in the present chapter is:

(a) to present the mathematical setting of aSRT, as part of a substantial

extension of [§|,

(b) to reconstruct both simulated and real attenuated SPECT data using
aSRT, and

(c) to evaluate aSRT by comparing it with two of the main inversion
modalities, namely filtered back-projection (FBP), and ordered sub-

sets expectation minimization (OSEM) reconstruction algorithms.

In this direction, we performed simulation studies by employing an image

quality (IQ) phantom and an appropriate attenuation map. Reconstructed

117
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images were generated for 45, 90 and 180 views over 360 degrees with 20
realizations and involved Poisson noise of three different levels (NL), namely
100% (NL1), 50% (NL2) and 10% (NL3) of the total counts, respectively.
Furthermore, real attenuated SPECT sinograms were reconstructed from
a real study of a Jaszczak phantom, as well as from a clinical myocardial
SPECT/CT study. Comparisons between aSRT, FBP and OSEM recon-
structions were performed using several image metrics such as contrast, bias
and image roughness. The results suggest that aSRT can efficiently pro-
duce accurate attenuation-corrected reconstructions for both simulated and
real phantoms, as well as for clinical data. In particular, in the case of the
clinical myocardial study, aSRT produced image reconstructions with higher
cold contrast than both FBP and OSEM. By incorporating the attenuation
correction within itself, aSRT may provide an improved alternative to FBP.
This is particularly promising especially for “cold” regions, as the ones oc-
curring in myocardial ischemia, as a result of partial or complete blockage of

the coronary arteries.

4.1 An introduction to SPECT and attenuation

SPECT is an important nuclear medicine modality with vast clinical and
preclinical applications, especially in the medical fields of cardiology (my-
ocardial perfusion imaging) and neurology (neuroimaging). This imaging
technique provides information regarding functional aspects of patients’ or-
gans, particularly the heart and the brain. SPECT nuclear imaging may
detect a denervated myocardium, and even ischaemic heart failure [98].

This specific nuclear medicine tomographic imaging technique utilizes the
unique chemical characteristics of decaying radiopharmaceuticals, that con-
sist of a targeting agent labeled with a radioisotope, such as technetium-99
(%9Tc) [40,99], iodine-123 (1231) [100], xenon-133 (}33Xe) [101], and thallium-
201 (?°1T1) [102]. The radiopharmaceutical is introduced into the patient
intravenously and it is distributed in the body in a manner governed by its
biochemical properties [38]. The injected radiotracers radiate single photons
and the detectors count these individual photons, as y-ray events [5].

As in all inverse problems related with tomography, nuclear medicine
image reconstruction is performed by reconstructing projection data, usually

stored in the form of sinograms |68|. There exist several image reconstruction
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algorithms, characterized either as analytic or iterative. The predominant
analytic image reconstruction technique is filtered backprojection (FBP) [103],
whereas the predominant iterative image reconstruction approach is ordered
subset expectation mazimization (OSEM) [104]. In this work we shall focus on
analytic reconstruction techniques, assuming parallel-beam geometry [105].

Attenuation correction is an important part of the SPECT reconstruc-
tion process, especially in the context of cardiac perfusion imaging [106]. It is
often considered as the potential “holy grail” of the SPECT nuclear imaging
field |107]. The main aim of attenuation correction is to minimize false-
positive defects, so that attenuation-corrected reconstructions may allow for
better quantification of potential abnormalities |108]. However, until quite
recently (the early 2000s), only less than 10% of SPECT cameras worldwide
were equipped with attenuation correction capabilities [109], even though
since the early 1980s substantial efforts were made to allow image fusion,
especially in brain studies |30]. Nowadays, hybrid SPECT/CT [110] is be-
coming a standard dual medical imaging modality, with various SPECT /CT
systems being currently commercially available. There exists a variety of
studies that demonstrate the superiority of SPECT/CT over stand-alone
SPECT in terms of diagnostic accuracy [111]. This specific dual imaging
approach is now suitable for a wide variety of diagnostic applications with
clinical impact [112], essentially addressing the ultimate objective in nuclear
medicine of shortening the acquisition time and of providing accurate, high-
quality attenuation-corrected fusion imaging [31].

SPECT reconstruction algorithms aim to invert the attenuated Radon
transform, see equation in Section which provides a certain gen-
eralization of the two-dimensional Radon transform. The attenuated Radon
transform, defined in Definition [1.3] in page is the line integral of the
distribution of the radioactive material inside the patient’s body, attenu-
ated with respect to the associated linear attenuation coefficient. The corre-
sponding attenuated SPECT data are usually stored as camera projections,
which can be expressed as attenuated sinograms, similar to the sinograms of
positron emission tomography (PET). The analytical approach to SPECT re-
construction always involves the inverse attenuated Radon transform (IART),
i.e. the inversion of the attenuated sinogram. Following the pioneering work
of Novikov |7] in 2002, an explicit mathematical formulation of IART was

given in 2006 by Fokas, Iserles and Marinakis [8]. For the inversion of the
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attenuated Radon transform, other analytical SPECT reconstruction tech-

niques based on Novikov’s work [7] include:

(i) Natterer’s exact inversion formulae [60], which is closely related to

Novikov’s inversion formula |7,
(ii) Tretiak-Metz seminal algorithm [61],

(iii) Metz and Pan technique [113], considered as a further improvement of
the work of Tretiak and Metz [61],

(iv) Kunyansky’s elegant reconstruction algorithm [62], which may be viewed

as a generalization of the Tretiak-Metz algorithm [61],
(v) Bal and Moireau’s method [114], and

(vi) the work of Ammari et al. [115], which provide a closely related asymp-
totic imaging technique in photoacoustics, in the presence of wave at-

tenuation.

The numerical implementation of the above analytic algorithms is based
on the concept of filtered back-projection. Furthermore, the numerical tech-
niques listed above employ the convolution property of the Fourier transform.
Fourier convolution is applied, in order to compute the Hilbert transform in-
volved in the attenuated Radon transform inversion. In this direction, and
for the cancelation of high frequencies involved, the application of appropri-
ate filters is often necessary.

In this chapter we present an alternative numerical technique for the
numerical evaluation of the inverse attenuated Radon transform occurring
in SPECT, namely the attenuated spline reconstruction technique (aSRT).
aSRT is a novel two-dimensional analytic image reconstruction algorithm
and is based on a new and improved mathematical derivation of an ear-
lier implementation introduced by Fokas, Iserles and Marinakis [8]. For the
computation of the Hilbert transforms of the linear attenuation function and
of two sinusoidal functions of the attenuated Radon transform, we employ
custom-made, third-degree splines, instead of the traditional Fourier-based
approach. It is important to note that the method used in [§] and in the
present chapter both employ cubic splines. Indeed, in our case, we applied

splines for the computation of the Hilbert transform of /i (see equation (4.5)),
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the two sinusoidal functions of the attenuated sinogram, namely G, and Gy
(see equations (4.8)) and the function G (defined in equation ([4.7)). The
corresponding analysis is presented on Section [£.3] These specific functions
are different from the functions encountered in [8]; it will be shown that these
functions simplify the numerical implementation of the inversion of the at-
tenuated Radon transform. The differences mentioned above become quite
clear if we compare equation (3.6) of 8] with the corresponding equation
of Theorem of the present chapter. Therefore, our new derivation
improves substantially the earlier formulation, leading to simplified expres-
sions which have the important advantage that they can be implemented
numerically in a significantly more efficient manner. aSRT, in comparison to
the industry standard FBP and OSEM, has the advantage of incorporating
attenuation correction within itself. Furthermore, it is worth noting that all
necessary calculations involved are performed in the image (physical) space,
as opposed to the Fourier space.

It is important to emphasize the fact that aSRT differs from SRT for
PET, developed by Kastis et al. [116}/117]. aSRT constitutes a substantial
generalization of SRT: SRT aims to invert the non-attenuated Radon trans-
form, i.e. the line integrals of the radioactive distribution, while our algo-
rithm aSRT inverts the corresponding line integrals attenuated with respect
to the linear attenuation function, p. Although in both PET and SPECT
the transmitted gamma rays suffer a relative intensity loss, as outlined by
the well-known Beer’s law (see Section, from a mathematical aspect, the
inversion occurring in PET (non-attenuated Radon) is a special case of the
corresponding inversion in SPECT (attenuated Radon). In the former case,
the attenuation factor is the integral of the linear attenuation function ()
along a single line, whereas in the latter the attenuation factor is the integral
of u along a single line segment.

The aim of the present work is (a) to present the mathematical setting
of aSRT and all equations involved, (b) to reconstruct simulated and real
attenuated sinograms, i.e. SPECT /CT data, using aSRT in order to evaluate
its performance, and (c) to compare aSRT with filtered backprojection and
ordered subsets expectation maximization. It is worth noting that this is the
first work involving the analytic inversion of the attenuated Radon transform,
where reconstructions of real clinical data are performed, and improved bias

and contrast with respect to FBP are demonstrated.
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Figure 4.1: A two-dimensional object, with attenuation coefficient p(x1,x2),
being imaged with parallel-beam projection geometry. Cartesian (x1,x2)
and local (p,7) coordinates are indicated.

4.2 A novel inversion formula for the attenuated

Radon transform

We shall follow the ideas and notation introduced in Chapter [I] We consider
a line L on the plane, specified by two real numbers, namely the signed
distance from the origin p, —co < p < 0o, and the angle with the x;-axis 6,
0 <0 < 27, see figure The unit vectors parallel (e”) and perpendicular
(e!) to L are given by

€L

el = (cosf,sinf) and et = (—sinb,cosh).

Therefore, every point on L in cartesian coordinates x = (z1,22) can be

expressed in terms of the so-called local coordinates (p, ) via

X:peLJrTe”,

where 7 denotes the arc length along the line L. Hence,
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x1 =71cosf —psinf and x9 = Tsinf 4 pcosh. (4.1)

We can invert equations (4.1) and express the local coordinates (p,7) in
terms of the cartesian coordinates (z1,z2) and their corresponding angle 6

via the following equations:

p=1x9c080 —x18inf and T = xosinf + x1cosb. (4.2)

As indicated in Definition the line integral of a function f : R? — R
attenuated with respect to an attenuation function i : R? — R is called the
attenuated Radon transform of f(z1,22). It is usually stored in the form of

the so-called attenuated sinogram and will be denoted by ﬁ(p, 0):

]L(p, 0) — /oo o f-roo (s cosf—psin,ssin 0+pcos 0)ds %
—00
f(rcos — psin®, 7sinf + pcosf)dr, 0 <0 < 2w, —00 < p<oo, (4.3)

where the subscript 1 emphasizes the dependence on the linear attenuation
function.

Associated with equation there exists the following inverse prob-
lem: Given the functions p(z1,z2), —oc0 < xj,z9 < o0, and fu(p,ﬂ),
0<6<2m —00 < p < oo, determine the function f(x1,x2). The relevant
inversion formula, called the inverse attenuated Radon transform (IART)
was first derived by Novikov [7] in 2002, extending the derivation of the
analogous result for the inverse Radon transform presented by Fokas and
Novikov in 1991 [6]. It was several years later (2006) shown by Fokas, Iser-
les and Marinakis in [8] that the inversion formula can actually be obtained
via a slight modification of a certain formula initially contained in [6]. This

inversion formula for the attenuated Radon transform was given by:

1

2m
f(z1,29) = E(am —i@m)/ 9 J (1, x2,0)dl, —o0 < 1,29 < 00, (4.4a)
0

where the function J is defined by

J(@1,w2,0) = MO L (0,0) o, 6) : (4.4b)
T=x9 sin 0+x1 cos §
p=wxg cos O —x1 sin @



124 Chapter 4. A novel inversion of the attenuated Radon transform

with M and L, defined by

M(r,p,0) = / p(scos@ — psiné, ssinf + pcos) ds, (4.4c)

Lu(p,0) = P’ 00 p= P ilp0) e~ PTh(p.0) pt P i(p0) (4.4d)

In equation (4.4d]), & represents the Radon transform of the attenuation

function pu, i.e.,

ﬁ(p,&):/ (T cosf — psinf, 7sinh + pcosf)dr,

—00

0<0<2m —oc0<p<oo, (4.4e)

whereas P* denotes the following projection operators in the signed distance

variable p:

1 oo
(PEg)(p) = j:M +— PV/ &dr , —oo< p<oo, (4.4f)
2 2mi B
where PV [ denotes the principal value integral, as in equation (2.19).
In what follows, it is useful to define F' as half the Hilbert transform,
defined in equation (2.26), of iz, which is in turn defined in equation (4.4e))

Fip.6) = SH {0, 0)} = o (Pv e dr) ,

where H denotes the Hilbert transform in the variable p, as in Definition

2.20

(4.5)

Theorem 4.1. The inversion formula for the attenuated Radon transform,
defined in equation (4.4al), of a function f(x1,x2) attenuated with respect to

a function p(xz1,x2) is equivalent to the representation

1 27
f(xla J}Q) - _% /0 eM(ﬂpﬂ) [Mp(Tv P, G)G(pv 9) + Gp(p7 9)] de?

p=xg cos 0—xq sin @
T=x9 sin §4x1 cos 6

(4.6)

subscripts denote differentiation with respect to p, M is defined in equation

(4.4d) and G is defined by

G(p,8) = e 3709 [cos(F(p,0)) G (p,6) + sin(F(p,0)G5(p,0)] ,  (4.7)
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with the functions G and G° defined by

c L) Fulr,0)dr

G (p,0) = 27rzav/_oo 2P0 cos F(r, ) 22 — (4.8a)

GS(p. PV/ AR gin F(r, Q)M. (4.8D)
T=p

Proof. We apply the operator L, defined in equation (4.4d), on the atten-
uated Radon transform J?;u defined in equation (|1.15)), as follows:

(%ﬁ) (p,0) = {J*ﬁ(pﬁ) PP ip0)
TP P OO L F(p,0). (4.9)
Equations (4.4f) and (4.5)) imply

PR = 5T (4.10)

R R P 1 P 1 TN
e_P+MP+ {6P+Mflu} 6_%+1F |:2€‘2L—1Ffu +—H {eg—lFf“}] . (411b)

By further analyzing equations (4.11)), we can decipher equation (4.9)). More
speciﬁcally, for the simplification of equation (4.9]), we first take into account
equation (4.5)) and then combine equations (4. 10|) and (4.11]) and rewrite the

operator Lu in the form

(Luﬁ) (p,0) = %e’% [e’iF’H {e%“Fﬁ} + ey {e%iFﬁH . (4.12)
Using Euler’s formula

e = cos F +isin F,



Chapter 4. A novel inversion of the attenuated Radon transform

126

equation (4.12) simplifies as follows:

[N

[(COSF —isin F)H {e%HFﬁ}

~ 1 _
(Lufi) (0.6) = 5o
+(cos F +isin F')H {e

wfE)

~iF J?”H . (4.13)

Further expansion of (4.13al) yields

<Luﬁ> (p,0) = %e*% [cosF (’H {e%HFﬁ} +H {e
—isinF (M {eEHPR L —n {5 TR (4130)

which in turn implies

~ 1
(Eufu) (0 0) = 5 e
—isin <PV /OO m;ﬂjfwﬁ)] . (4.13¢)

— 00

This way, we are able to rewrite the above expression as

L (elF 4 o—iFy
sF(PV/ 2l e )fudr>

B, iF _ —iFy _
—isin F <PV/ €2<ee)f#dr>], (4.13d)
oo r—p

N[E)

(LuFy) (9.0) = e

or even

NE)

o
* e2(2 F) ~
o F<pv / ez(m)fﬂdr)
r—p

—isin F' (PV

<Lufu> (p,0) = 2L7rie
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The final step involves the following manipulation,

1 ® ¢5 cos F ~
cos F' ( {PV/ mhdr})
27 —00 - p
1 &0 e% sin F’

which leads to the final simplification of equation (4.12]), as follows:

(2ufi) (0.0) =3

<

<

<L“ﬁ> (p,0) = ~2ie~5 [cos(F)GC + sin(F)G?], (4.14)

with G%(p,0) and G°(p,0) defined in equations (4.8a) and (4.8b)), respec-
tively. In equation (4.14]), if we take into account the definition (4.7)) of the

function G(p,0) we find

(Luﬁ) (p,0) = —2iG(p. ). (4.15)

Hence, equation (4.9) becomes equation (4.15)). It is important to note that
equation (4.15)) implies that the function

(Luda) (0.0)
is purely imaginary, i.e.
Re { (Llj;) (p, 0)} = 0.
Thus, equations and imply that

Tz, 0) = =2 [ MG L (4.16)
p=xg cos 0—x1 sin §
Therefore, using the differential operator
(0, — 10,) = €790, —1D,,), (4.17)

which arises from the application of the chain rule to the local coordinates,
defined in equations (4.1)), we can calculate the action of the operator (4.17))
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on J:

(aa;l - 183;2):] = _216710(87- - lap) {eMG} p=xg cos —xq sin @

T=x9 sin +x1 cos 6

= —2i€_i6 [eM(MT — lMp)G + eM(GT - IGP)} p=x9 cos —x sin 6

T=x9 sin 04x1 cos 6

- _267i9€M [_IILLG + MpG + Gp] p=wxg cos@—x1sinf , (418)

T=x9 sin 0+x1 cos 6

where we have used the identities

M, (T, p,0) = pu(xi,22) and Gr(p,6)=0.

p=xg cos 0—x sin @
T=x9 sin +x1 cos 6

Inserting the operator (0, — i0;,) inside the integral in the right-hand side
of equation (4.4a)) and combining equations (4.16]) and (4.18)), yields

1 2

fz1,290) = eM [—ipG + M,G + G| do. (4.19)

_%0

p=x9 cos—x1 sin b
T=x9 sin 6+x1 cos §

The first term of the integral on the right-hand side of equation (4.19)) can

be simplified as follows:

27
_ i/o wu(xy, x2) [eM(T,p,G)G(p, 9)} g sin 04 cos0 dé

p=xg cos @ —x1 sin 6

1 2m
= 2u(1‘1,332)/ J(x1,22,0)d6. (4.20)
0

Equation (2.9) of [8], with u replaced by u, evaluated at A = 0 yields

1

u(x1,x2,0) = By

2
/ J(l’l,l’g,e)de.
0

Furthermore, the limit A — 0 of equation (2.2) of [8] yields

ou(xy,xe,0)

0z =0,

Hence, u is analytic everywhere, including infinity. Recalling the assumption

of Proposition 2.1 of [8] that u satisfies the boundary condition

u:0(1>, Z — 00,
z
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it follows that the entire function u vanishes (Liouville’s theorem), thus
21
/ J(x1,22,0)d0 = 0. (4.21)
0
Hence, taking into account equation (4.21)), equation (4.20]) implies that

2m
/0 /’L(‘T17 ‘TQ) |:6M(T7P7G)G(p7 0)] T=x9 sin +x1 cos f de = 0

p=xg cos 0—x sin @

The above implies that (4.19) simplifies to

1 2m
f(.l‘l, $2) = —— / eM (MpG + Gp> dé. (4.22)
2T 0 o= o— ino
=x9 cos f—xq sin
T=x9 sin +x1 cos 6
Therefore, equation (4.4a) becomes equation (4.6)). [ |

4.3 Numerical implementation using splines

In order to numerically evaluate all quantities involved in equation (4.6]), we
employ the Gauss-Legendre quadrature for the computation of the function
M(t,p,0), as well as custom-made splines [118| for the computation of the
functions G(p, #) and F(p, 6). For all the functions appearing in the inversion
formula of the attenuated Radon transform, we assume that the evaluation

of the solution to the inverse problem (4.4) is performed at the points
. . n
<3ng)7 mgj)> 7

ij=1

i.e. in a given square reconstruction grid, as common medical imaging prac-

tise suggests.

4.3.1 The evaluation of M(7,p,0) and its 0, derivative

The integral for the function M(7,p, ) (4.4c) involves the computation of

the integral of the given attenuation function u(xi,z2) from

_ () _
S=T to §=Tp,
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see figure [1.1] However,
(V4 () <.

where R denotes the radius of the circular path centered at the origin, which

includes the supports of both f(z,z2) and p(z1,z2). Therefore,

@ @ — =) (@) gi
M\, p'",0;) /O 7 <s cosf; — p'" sin b,
ssinf; + P cos Hj) ds. (4.23)

The above integral can be computed using the Gauss-Legendre quadrature

with two functional evaluations at every step,

[ 16as ~ 2= s ) + £,
where

1 3 1 3
T1281+2<1—\é>>(82—81), 7'2:81+2<1+\3[)(82—51).

For the evaluation of the partial derivative of M with respect to p, M,(7, p, ),

we employ an appropriate finite difference scheme, as in [119].

4.3.2 The evaluation of F(p,0)

For the evaluation of F'(p,#), i.e. the half of the Hilbert transform of fi(p, 0)
in the variable p, we proceed in a similar way as in [116]. However, this
time, instead of evaluating the partial derivative of the Hilbert transform of
i(p, 0) with respect to p, we evaluate the Hilbert transform of fi(p, ), itself.

We assume that a function
f:[=1,1] x [0,27] — R,

with arguments indicated by (p, 0), is given for every 6 at the n points {p; }7.
We denote the value of f at p; by f;:
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Furthermore, we assume that both f(p,6) and its derivative with respect to

p vanish at the endpoints p; = —1 and p, = 1:

F-1,0) = f(1,6) =0, 0<0<2r, (4.25a)
9 9
ai( 1,0) = 8£(1,9) ~0, 0<6<2r (4.25b)

In each subinterval P;, with

Pl:[pl7p’b+1]g[plvpn]:[_lal]a izla"'vn_L

we approximate f(p, ) by third-degree cubic splines in the variable p, de-
noted by S (p, 0):

F(p,0) ~SP(p,0), pePl, 0<O<2r, i=1,..n—1

This specific cubic spline interpolates the function f(p, #) at the knots {p; }.-,

in the sense that
SP(pi,0) = fi(0), i=1,....n—1. (4.26)

More specifically,

3

S$Pp,0)=>""p, pep, 0<b<2r, i=1..,n-1 (427)
=0

ng) "

where the constants for j = 0,...,3, are given by the following

expressions, see [116}/119): Z

) " 1" 3
C(O) _ pz—l—lfz plf2+1 f ( PH—IA 4 pz+1) + i+1 <piAi . Pl> :

1 A; A; 6 A;

4.28a
(1) fz-‘rl fz LZH —A; + 3p1+1 + lerl —A; + 3pl <(4 28b§

€ A 6 Ay 6 A .

1
CEQ) = 5A, (pi1f] = pifii), (4.28¢)
1

o _ HéA I (4.284)

A; = pir1 — pi, (4.28¢)



132 Chapter 4. A novel inversion of the attenuated Radon transform

with f/" denoting the second derivative of f(p,6) with respect to p evaluated
at p;, le.,
{':82‘];(;2’0) , i=1,...,n. (4.29)
p=pi
It is important to note that equation involves the “second deriva-
tive” of the data. However, the assumption that the data are smooth enough
to even possess a second derivative is an oversimplification. To resolve this
issue, we simply replace the second derivative of the data with the second
derivative of its interpolating spline. In this direction, and following the
notation introduced in equation , we denote the second derivative in
question by SZ-(I) (p,0)
SV (p,0) = 2¢2(0) + 6P @), pe P, 0<6<2m, (4.30)

1

for every i = 1,...,n — 1. Following the principle of equation (4.29)), we

denote the second derivative of the interpolating spline, evaluated at p; with

S (p. 0)

/A
S = =5

(4.31)

p=p;
This way, equations (4.28) may be rewritten as follows

o — o fs S 3 St 3
o0  pirrfi— pifiv + = <_pi+1Ai + le) + = <pi i~ pl) ;

7 A 6 A; 6 A
4.32
y_fin—fi S 3p; Si 30} .
CE)ZT_6<_Ai+§)+ gfl <—Ai+ AZ‘>’ (4.32Db)
1
P = ﬂ(pms;’ — piSI), (4.32¢)
4 1/
@) Sik1 — 5
SO o S 4.32d
¢ T (4.320)

where S/ denotes the second derivative of SZ-(3) (p,0) with respect to p eval-
uated at p;, and A, is defined in equation (4.28€]).

Equation (4.27)) implies

et f(r,0) - () ()
PV dr ~ ¢ 1 , 4.33
. r—p § i (p) (4.33)



4.3. Numerical implementation using splines 133

where

D —pv (M7 e 0.3 434
9() =03 (1.3)
pi P

Straightforward calculations yield the following identities for the integrals

defined in (4.34)):

(0) Pit1 — P
I; =In|———~|, 4.35a
i (p) po— (4.35a)
ffl)(p) = A+ oI (p), (4.35D)
1

=3
3 1 1 0
19(p) = 3 (ol = pl) + 5 (Pl = pf) o+ Dip™ + 1)p.  (4.35d)

Substituting equations (4.34) and (4.35)) in equation (4.33) we find

e f(r,0) SOFARG
7{ L8O 4 ai(0) + 8O0+ 102+ | 3@ | 10(), (4.36)

i r—=p =0
where
1
a;(0) = Cgl)(‘g)Ai + 501(2) (P21 — 7)) + 3¢ Z( ) (P21 —P}) (4.37)
1
0) = (08 + 570) (- 7)) (4.38)
(0) = P(0)A, 4.39
7i(0) = ¢;” (0) A (4.39)

Taking into account equations (4.28)), the above expressions simplify as fol-

lows:

a;(0) = (fix1 — fi) — [17Pz+1 19p7;+1pz' + 8p7]SY

1
Bi(0) = 75 [(Bpivr = pi) S7' = (5pi = piv1) Si] (4.41)
S, — 8!
yi(0) =~ (4.42)

6
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Hence, using the identity

1 £(r,0) "1< Pit1 £(r,0) >
pr— d .
PV r_pdr ;1 PV/pi ). (4.43)

equation (4.36)) implies

1
1
pv [ L0000 o )+ BO)p+ (st - S0

4 r=p 6

n—2
3 3
3 [5900,0) = SZ1(0,0)| 1 o1 o)
i=1
+ S,(f_)l(p, 0)1In |p, — p| — S£3)(p, 0)In|p1 — p|, (4.44)
where

n—1 n—1
AB) = ai(6) and B(0) =>_ pi(0). (4.45)
=1 =1

The right-hand-side of equation involves the functions {f;}}, which
are known, and the functions {5} }7, which are unknown, see equation (4.31]).
If we denote the first derivative of the cubic spline (SZ-(?’)) with respect to the
variable p by 51(2)7 where the superscript denotes that SZ-(Q)

we find

is quadratic, then

@ (p,0
5P (p, 0) = W =M (0) + 22 (0)p + 3¢V (0) 2. (4.46)

In order to compute {S}'}} we follow the procedure of [116|, namely we solve
the system of the following n equations, taking into account the continuity

of the first derivative of the cubic spline:
S (pis1,0) = 8P (pi41,60), i=1,...n—2 0<6<2r (447a)
S (p1,0) = S2 1 (pn,0) = 0. (4.47b)
The continuity of the spline, namely
Si(g)(/)z'+1,9) = Sﬁ)l(ﬂiﬂye) i=1,...,n—2,

and
S (p1.6) = 52, (pn, ) = 0,
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see equations (4.25al), implies that the points {p;}} are removable logarithmic
singularities. If we apply equation (4.44]) with

f(pa 0) = //Z(pv H)a

we are able to compute F'(p, 0).

4.3.3 The evaluation of G(p,f) and its 0, derivative

Let f¢ and f° denote the following trigonometric functions:

€(p,0) = 3700 cos(F(p,0)) Fu(p.0), —1<p<1, 0<0<2m,
(4.48a)
£5(p,0) = e3P0 sin (F(p,0)) fu(p,0), —1<p<1 0<6<2m,
(4.48b)
where [1, fu and F' are given in equations , and , respectively.
We suppose that the attenuated sinogram, ﬁ(p, 0), is given at the points
{pi}7. Then, by computing i(p,0) and F(p,0) at these points, we can
compute the functions f¢(p,0) and f°(p,#) at the same points. Hence,
using equation and replacing f(p,0) by f€(p,0) and f(p,0), we can
compute G%(p,0) and G*(p,H), respectively. For the elimination of the
removable logarithmic singularities of G%(p, #) and G°(p, §) we require that
both f¢ and f° vanish at the endpoints:

FC(p1,0) = fFE(=1,0) =0 and  f%(pn,0) = f€(1,0) =0,  (4.49a)

F3(p1,0) = f5(=1,0) =0 and  f%(pn,0) = f5(1,0) =0.  (4.49D)

The above equations are valid provided that

Fulp1,6) = fu(=1,0) =0 and  fu(pn,0) = fu(1,6) =0, (4.50)

which is always the case in nuclear medicine, due to the assumption that
the attenuated sinogram must always have a finite support. By combining
G%(p,0) and G*(p,0), we are able to calculate G(p,0) as in equation (L.7).
For the numerical evaluation of the derivative of G with respect to p, G,(p, 6),
we employ a suitable finite difference scheme [119], in the same manner as
we did for the evaluation of M,(p, ).
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Sphere Diameter (mm) Activity

Si 12.7 hot
Sy 15.9 hot
Sy 19.1 hot
S 254 hot
S5 31.8 cold
Se 38.0 cold
Sp 216.0 warm

Table 4.1: Simulated IQ phantom details.

4.4 Materials and methods used in aSRT

4.4.1 Simulated data

Simulated phantom

For the purposes of our simulations, we have modeled a rotating, single-
head gamma camera comprising 129 scintillation crystals. The correspond-
ing square image grid size used was 129x129 pixels. The image and detector
pixel size was in all simulation studies 4 mm. We have performed an as-
sessment of aSRT by employing simulated data of an image quality (IQ)
phantom. This specific phantom has been employed in order to quantitate
the ability of each reconstruction technique to detect both hot and cold
lesions of variable size inside a radioactive background. The IQ phantom
consists of four circular hot regions (with diameters of 12.7, 15.9, 19.1 and
25.4 mm, denoted with S; to Sy, respectively) and two circular cold regions
(with diameters of 31.8 and 38 mm, denoted with S5 and Sg, respectively),
inside a larger warm region that simulates the background, see table for
details. The diameter of the larger background circle (denoted by Sp) is 21.6
cm. The ratio of radioactive concentration («) between hot regions () and

the warm background (ayp) is

Qp
ap
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for the four hot regions. The so-called “cold regions” have zero radioactive
concentration.

The simulations of the attenuated sinograms of the IQ phantom were
generated in the STIR framework [88], each time using appropriate attenu-
ation maps. The sinograms were acquired for 45, 90 and 180 views over 360

degrees. Three different noise levels (NL) were investigated:

1. 100% (NL1),
2. 50% (NL2),

3. 10% (NL3)

of the total counts. Using the initial noiseless sinogram (NLO0) as the starting
point, we generated 20 Poisson noise realizations at the three different levels
(NL1, NL2 and NL3). For 180 views, the sinograms contained, for each noise

level,

e 6x10% events for NLO,
e 6x106 events for NL1,
e 3x10% events for NL2,

e 0.6x10° events for NL3,

respectively. Similarly, in the cases of 90 and 45 views, the corresponding

numbers of events were

e 3x10% events for NLO,
e 3x10% events for NLI,
e 1.5x108 events for NL2,

e 0.3x10 events for NL3,
for 90 views, and

e 1.5%x10% events for NLO,
e 1.5%x10% events for NL1,
e 0.75x108 events for NL2,

e 0.15x10% events for NL3,

for 45 views, respectively.
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Implementation of aSRT, of FBP and of OSEM

aSRT Reconstructions All aSRT reconstructions were performed in Mat-
lab. There was no post-reconstruction filtering applied in any aSRT recon-

structions employed.

FBP Reconstructions The non-corrected FBP reconstructions of the
simulated date were generated in the open-source software library STIR [8§].
At a later stage, a ramp filter was applied to these reconstructions with cut-
off frequency equal to the Nyquist frequency. It is worth mentioning that
the STIR library does not provide a built-in, dedicated function for atten-
uation correction for FBP in SPECT/CT. Hence, all FBP reconstructions
were corrected for attenuation purposes in Matlab, according to Chang’s 15¢
order attenuation correction methodology. For this purpose, CT attenua-
tion maps were employed as in [120]. Furthermore, it is important to note
that Chang’s method is an intrinsically approximate attenuation correction

method, by design.

OSEM Reconstructions Attenuation-corrected OSEM reconstructions

were generated with:

e 5 subsets,

5 iteration updates (OSEMS5),

10 iteration updates (OSEM10),

20 iteration updates (OSEM20),

30 iteration updates (OSEM30),

40 iteration updates (OSEM40),

50 iteration updates (OSEMS50).

The above OSEM reconstructions were generated in STIR with attenuation
correction taken into account; however neither detector/collimator response

nor scatter correction were simulated.
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Sphere Diameter (mm) Activity

S 12.7 cold
Sy 15.9 cold
Ss 19.1 cold
Sa 25.4 cold
S5 31.8 cold
Ss 38.0 cold

Table 4.2: Clinical Jaszczak phantom details.

4.4.2 Real data

For the purposes of real data reconstructions, we utilized data from a real

Jaszczak phantom study, and from a clinical myocardial study.

Real Jaszczak phantom

We have performed reconstructions of a real Jaszczak phantom, with data
provided by a Mediso AnyScan® SC SPECT/CT scanner, equipped with the
Nucline™ all-modality acquisition software. For this specific Technetium
(%Tc) SPECT/CT study, low energy high resolution (LEHR) parallel colli-
mators were used. The attenuated sinograms were provided by Mediso Med-
ical Imaging Systems, Budapest. The phantom is the standard Jaszczak
phantom™ and consists of six cold solid spheres with diameters of 12.7,
15.9, 19.1, 25.4, 31.8 and 38 mm, denoted by S7 to Sg, respectively, see table
We used 128 number of views, with a corresponding reconstruction grid
size of 256x256 pixels. The image and detector pixel size was 2.13 mm,
as common practise suggests. The number of events per slice was approxi-
mately 1.2x10%, whereas the total amount of radioactivity in the phantom
was 8 mCi (296 MBq) of Technetium-99m isotope. The total scan duration
was 64 minutes, corresponding to 30 seconds acquisition, for each of the 128
projections collected. Three realizations (R = 3) were employed during this
real phantom SPECT /CT study. It is important to emphasize the fact that

the standard Jaszczak phantom involves cold regions only.
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Clinical data

We acquired real clinical SPECT data from a GE Millennium VG HawkeyeTM
SPECT/CT system. The Millennium VG camera of this specific GE scanner
includes two extra large rectangular Digital XP detectors, which can image
isotopes of energies within the range of 59 keV to 511 keV. For the purposes
of this study, a patient was injected with 3 mCi (111 MBq) of Thallium-
201 isotope. Attenuated sinograms of this myocardial perfusion 2°'T1 stress
study were acquired for 60 views, and were reconstructed using aSRT, FBP
and OSEM, within a 64x64 reconstruction grid. All necessary corrections,
including attenuation, detector/collimator response and scatter, were per-
formed according to the manufacturer’s clinical protocol. The image and
detector pixel size used was 7.81 mm. The number of events per slice was
approximately 1.4x10%. Furthermore, the total scan duration was 17 min-
utes, corresponding to 17 seconds acquisition for each of the 60 projections

collected.

4.4.3 Image metrics

For the determination of the quality of the reconstructed images for all phan-
toms investigated, a region of interest (ROI) analysis was performed. Com-
parisons of aSRT with FBP and OSEM were performed evaluating contrast,
bias and image roughness, as described below and in |117,|121]. More specif-

ically, the following image quality metrics were calculated:
(a) hot region contrast, Cj,
(b) cold region contrast, C.,
(¢) % bias for hot regions, by,
(d) bias % of background for cold regions, b., and
(e) background image roughness, IR.

In order to determine the ROI statistics at each solid phantom sphere, cir-
cular ROIs were employed. The diameters of all ROIs were the same as the
diameters of the lesions being measured. We calculated several image met-
rics for all noise levels and we averaged the corresponding results over all

realizations, R.
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Hot region contrast (Cp,). The hot region contrast (Cp,) was calculated

for each hot circular region using the following equation |116]:

mh’T
R 1
Ch = ) Moy (4.51)
h R 1 ap
r=1
ap

where my,, and my,, are the average counts (mean pixel value) measured in
each hot sphere and in the background ROI, respectively, for each realization,
r, and ap and a; are the actual radioactivity of each hot region and the
background, respectively. In the case of the simulated IQ phantom used, the
ratio (ap/ap) is four. We note that Cj, is also referred to in the literature as

contrast recovery coefficient (CRC).

Cold region contrast (C.). In a similar manner, the cold region contrast

(C.) was calculated for each cold circular region using the equation

1= Z Meyr (4.52)

mbr

where m,, are the average counts (mean pixel value) measured in each cold

circular region and in the background ROI.

% Bias for hot regions (b). The %bias for hot spheres (by,) for each hot

circular region was calculated using the equation

1 R
Z My, — ay, ] (4.53)
r:l

Bias % of background for cold regions (b.). The bias % of background

for cold regions (b.) for each cold circular region was calculated via the

b = 100 <1me>. (4.54)

formula

Image roughness (I/R). The image roughness (I R) of the background was
calculated as in [117]. This metric measures the pixel-to-pixel variability of

the reconstructed image [116] and the perceived image noise [122].
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45 views 90 views 180 views

aSRT

FBP

OSEM 20

OSEM 30 OSEM 10

OSEM 50

Noise Level 2

Figure 4.3: 1Q phantom reconstructions at noise level 2 (NL2, 50% of counts)
with various reconstruction methods (aSRT, FBP and OSEM with 10, 20,
30 and 50 iterations) at 45, 90 and 180 views.
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45 views 90 views 180 views

aSRT

FBP

OSEM 30 OSEM 20 OSEM 10

OSEM 50

Noise Level 3

Figure 4.4: 1Q phantom reconstructions at noise level 3 (NL3, 10% of counts)
with various reconstruction methods (aSRT, FBP and OSEM with 10, 20,
30 and 50 iterations) at 45, 90 and 180 views.
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Similar considerations were applied for the cold contrast calculations of
all real studies investigated. For the real Jaszczak phantom, we employed
ROIs similar to the ones of the IQ phantom simulations. For the clinical
myocardial, study we performed an ROI analysis outlined as follows: in the
center of the area of the left ventricle of the patient, we selected a circular
region, which corresponds to the cold region uptake. Subsequently, we man-
ually drew an ROI in the myocardial area over the annulus, corresponding
to the warm background area of the myocardium. Furthermore, we drew
similar ROIs for three consecutive slices and, as in the cases of the simulated
IQ phantom and the real Jaszczak phantom, averaged the cold contrast mea-
surements over all realizations, as in equation .

4.5 aSRT results

4.5.1 Simulations

The reconstruction time per slice, for a 45-projections sinogram was
e 2.3 sec for aSRT,
e 3.7 sec for OSEM20,
e 5.2 sec for OSEM30, and
e 13.7 sec for attenuation-corrected FBP,

using an Intel® Xeon® CPU E3-1241 processor, 16GB RAM. The longer
time in FBP reconstructions is due to the fact that the attenuation correction
was performed in Matlab. Therefore, in this case aSRT was faster than both
OSEM and FBP.

The simulated IQ phantom is presented in figure [4.2h, whereas the cor-
responding attenuation map is presented in figure [£.2b. The ROIs employed
for the determination of the image metrics are shown in figure [4.2c. Re-
constructed images using aSRT, FBP, and OSEM with 10, 20, 30 and 50
iterations for the IQ phantom, for all numbers of views (45, 90 and 180) are
presented in figure for noise level 2 (NL2), and in figure for noise
level 3 (NL3). The reconstructions presented in figures and are, at
each noise level, characteristic reconstructions of one (out of twenty) Poisson-

noise realizations. In all reconstructed images presented, the all-black color
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Figure 4.5: Contrast (C') and bias (b) measurements vs. image roughness
(IR) at 90 views for the hot sphere Sy and for the cold sphere Sg. The
leftmost datum point in each curve corresponds to NL1, the midpoint to
NL2 and the rightmost to NL3.

represents zero values, whereas the value of the all-white color represents
the maximum value of the IQ phantom reconstruction. Therefore, the scale
employed in figures and is the same for all images, and realizations,
involved.

The contrast and bias for the hot Sy sphere (25.4-mm) and the cold Sg
(38-mm) sphere as functions of the image roughness for 90 and 180 views are
presented in figures [£.5] and respectively, for the various reconstruction
techniques used. In each subplot, the leftmost datum point in each curve
corresponds to NL1, the midpoint to NL2, and the rightmost to NL3.
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Figure 4.6: Contrast (C') and bias (b) measurements vs. image roughness
(IR) at 180 views for the hot sphere S4 and for the cold sphere Sg. The
leftmost datum point in each curve corresponds to NL1, the midpoint to
NL2 and the rightmost to NL3.

4.5.2 Real data

Real Jaszczak phantom

aSRT and FBP reconstructions of the real Jaszczak phantom, as well as
the corresponding attenuation map (CT) and ROIs, are presented in figure
It is important to note that OSEM reconstructions for the real Jaszczak
phantom were unavailable at the time of the analysis. This Jaszczak phantom
study is a typical cold study, therefore only cold contrast (C.) was calculated.
Cold contrast (C.) and bias measurements for the 6 cold spheres of the real

Jaszczak phantom for the reconstruction techniques used, are presented in

figure [4-8h and figure .8, respectively.
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Attenuation map (CT) ROI

aSRT FBP

Figure 4.7: Attenuation map, ROI and reconstructions of a real Jaszczak
phantom, cold spheres’ region.

Clinical data

Reconstructions via aSRT, FBP, OSEM (10 iterations), as well as the cor-
responding attenuation map (CT) and ROIs of the real clinical myocardial
study, are presented in figure [£.9] All relevant clinical data and attenuated
sinograms were acquired from a GE Millennium VG HawkeyeTM SPECT/CT
system. Furthermore, in order to quantify the effect of each reconstruction
technique presented, we have performed cold contrast analysis and calcula-

tions in this cardiac study. The corresponding results are shown in figure

410
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Figure 4.8: Cold contrast (a) and cold bias (b) measurements for the six cold
spheres of the real Jaszczak phantom.

4.6 Analysis and discussion of the aSRT inversion

Simulation studies. For the simulation studies, in all images presented in
the present chapter, it is evident that all hot circular regions can be clearly
identified, at all noise levels, and by all reconstruction algorithms. However,
the cold regions reconstructed with FBP are not shown very clearly, espe-
cially in the relatively extreme case of NL3 at 45 views. Some streak artefacts
at the edge of the phantom appear in the aSRT reconstructions, especially at
low number of projection angles. These streak artefacts are the result of in-
complete data measurement, also referred to as “angular undersampling” 4],
and are closely related to the back-projection operator (integral over theta).
Similar streak artefacts are present at low number of projections in all an-
alytic reconstructions that utilize a back-projection operator, such as FBP
and Natterer’s inversion formula [60|. It is important to note that the cases
of NL3 are quite unrealistic, especially the case of 45 views, corresponding
to an extremely low number of 3.333 counts per projection.

Overall, FBP reconstructions exhibited higher image roughness in all
noise levels and all numbers of projections. Furthermore, the image rough-
ness of aSRT reconstructions is similar to the image roughness of OSEMS50 re-
constructions, for all noise levels. As expected, in the variations of OSEM re-
constructions, the noise level increases as the number of iterations increases.
Furthermore, the contrast increases as the number of OSEM iterations in-

creases, whereas the bias decreases, in both hot and cold regions. For all
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Figure 4.10: Cold contrast measurements for the real clinical myocardial
study.

reconstruction techniques used and for all noise levels investigated, the im-
age roughness, represented in the z-axis in figures [£.5] and [£.6] respectively,
increases as the number of views decreases. This is expected, as mentioned
above, due to lower angular sampling.

For the cold regions of the 1QQ phantom, aSRT provided images with
lower bias and higher contrast than FBP and OSEM for all iteration up-
dates investigated. The cold region contrast, as well as the cold bias ex-
hibited, as expected, small variations as a function of the initial noise level
of the sinograms, see table For the 38-mm cold circular region (Sg),
the aSRT-reconstructed images exhibited a cold contrast (C) of 0.89, which
was higher than the contrast of all other reconstruction techniques. For the
reconstructed images via FBP, the contrast was substantially low (0.41) for
Sg. The OSEM contrast varied from 0.54 for OSEM10 to 0.79 for OSEMS50.
Similarly, the cold bias % of background (b.) value for aSRT was the lowest
of all other techniques studied (10.80%), whereas for FBP was the highest
(59.85%). The cold bias % of background values for OSEM reconstructions
varied from 46.49% for OSEM10 to 20.59% for OSEM50. Therefore, aSRT
provides better quality images for the cold regions, in terms of both contrast

and bias.
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Method Cold contrast (C.) Cold bias (b.)

aSRT 0.84 -10.98%
FBP 0.86 -9.17%
OSEM10 0.74 -18.83%
OSEMS50 0.97 -1.84%

Table 4.3: Cold contrast (C;) and bias (b.) measurements for the Sg cold
sphere.

For the hot regions of the IQ phantom, aSRT provided images with bias
and contrast similar to FBP. However, those values for FBP are achieved at
the expense of considerably increasing the image roughness. Both the hot
%%bias (by) and the hot contrast (Cj) for aSRT were between OSEM10 and
OSEM?20, in all cases. All hot lesions investigated demonstrated negative hot
bias, i.e. by < 0. The contrast, as well as the bias, demonstrated negligible
variations as functions of the sinogram noise level, see table [£.4l For the
25.48-mm hot circular lesion (S4), the hot contrast value was 0.84 for aSRT,
0.86 for FBP, and from 0.74 for OSEM10 to 0.97 for OSEMS50. In addition,
the hot %bias value was —10.98% for aSRT, -9.17% for FBP, and from —
18.83% for OSEM10 to —1.84% for OSEM50. FBP exhibited similar contrast
with aSRT, although at the expense of higher levels of image roughness. It
is important to note that the ROI placement for the background affects the
image roughness of aSRT. Selecting a background ROI which includes the
central region of the phantom, as well as areas at the edge of the object
(streaking artefacts) results in an increase in image roughness for aSRT, see
figure [I:2d. More specifically, the new image roughness values for NL1 to
NL3 were: (i) for 90 views, 13,53%, 18.74% and 40.54%, respectively, and
(ii) for 180 views, 9.43%, 13.31% and 28.87%, respectively. These specific
values for aSRT image roughness (I R) are still lower that the corresponding
ones of FBP reconstructions. As expected, in the cases of FBP and OSEM,
the corresponding values of I R remained unchanged. It is important to note
that contrast and bias measurements are not affected by the choice of the
background ROI.
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Method Hot contrast (C;) Hot bias (by,)

aSRT 0.89 10.80%
FBP 0.41 59.85%
OSEM10 0.54 46.49%
OSEMS50 0.79 20.59%

Table 4.4: Hot contrast (C,) and bias (b,) measurements for the Sy hot
sphere.

Real phantom studies. For the real Jaszczak phantom studies, the image
reconstructed via FBP exhibited significantly higher image roughness (0.96)
than the one reconstructed with aSRT (0.51). It is evident that for the
cold Jaszczak phantom study, the contrast and bias measurements in aSRT
reconstructions are superior to the ones in FBP reconstructions in all cold
spheres investigated, see figures and [£.8p, respectively.

Clinical studies. For the clinical myocardial 2°'T1 stress test perfusion
SPECT/CT study, aSRT exhibited a cold contrast (C.) of approximately
44%, FBP of approximately 38% and OSEM of approximately 40%, see fig-
ure [£.10] Hence, aSRT reconstructions exhibited cold contrast improvement
of approximately 14% over FBP reconstructions and 8% improvement over
OSEM reconstructions. Therefore, it is evident that in cold cardiac regions,
aSRT produces images with higher cold contrast than both OSEM and FBP.
It should be noted that, among the relevant literature of analytic inversion
of the attenuated Radon transform, aSRT was the only method to be tested
with reconstructions of clinical data. The improvement of our algorithm over
FBP and OSEM is a clear indication that aSRT may be valuable in the imag-
ing of structures such as the nucleus and annulus of spines, mitral valves etc.
Furthermore, we must emphasize that for the clinical studies no artefacts
were present, indicating that some of the simulated cases studied suffered
from quite “unrealistic” high noise and small number of projections. These
were cases, chosen in order to investigate the limitations of our method.
Overall, the improvement in bias and contrast of the cold regions of aSRT
over OSEM can be explained by recalling that OSEM usually exhibits slow
convergence in regions of low counts, as a result of the intrinsic positivity

constraint imposed by the statistical algorithm itself.
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4.7 Outcome and further investigation

aSRT is a novel, effective analytic method capable of reconstructing SPECT
data and producing attenuation-corrected images. In the present chapter we
have compared aSRT with FBP and OSEM using simulated and real phan-
toms, as well as real clinical data. We have presented an improved version
of the analytic formula for the inversion of the attenuated Radon transform
and have implemented aSRT numerically. Furthermore, we have evaluated
the aSRT reconstruction capability in comparison with the corresponding
FBP and OSEM ones using contrast, bias, and image roughness.

Our tests suggest that aSRT can efficiently produce accurate attenuation-
corrected reconstructions for simulated phantoms as well as real data. In
particular, it appears that aSRT has a rather noticeable advantage in cold
regions in comparison with both FBP and our implementation of OSEM.
More specifically, the aSRT results of the clinical myocardial study are en-
couraging, indicating that aSRT could provide useful reconstructions in a real
clinical setting. Further investigation is needed to better quantify with the
help of physicians, the improvement of aSRT in myocardial imaging. Clinical
studies involving myocardial ischemia are in progress. Overall, aSRT may

provide an improved alternative to FBP for SPECT /CT reconstruction.
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Chapter 5
Radon data deblurring

In the present chapter, we present a spline-based method for deblurring
aSRT-reconstructed images of SPECT/CT imaging systems equipped with
parallel-hole collimators, based on [46]. aSRT, or the attenuated spline re-
construction technique, is a recently developed analytic algorithm capable of
reconstructing attenuation-corrected SPECT/CT images [44]. Our method
is based on the classification of the collimator in terms of its blurring profile,
rather than the use of the so-called point response function. By deblurring
the initial attenuated sinogram, we are able to reconstruct images with less
blurring, via aSRT.

Simulation studies were performed by employing an image quality (IQ)
phantom and the corresponding attenuation map. Reconstructed images
were generated for 180 projections over 360 degrees. Furthermore, 20 re-
alizations of Poisson noise were created at a noise level of 50% of the to-
tal counts. For the purposes of the IQ phantom simulations, we employed
a typical low-energy, high-resolution (LEHR) collimator, and subsequently
blurred the relevant data using a Gaussian blur profile with a correspond-
ing standard deviation, o, value of 0.019. Comparisons between blurred and
deblurred sinogram reconstructions were performed using 2 appropriate met-
rics, namely hot contrast (local metric) and the no-reference perceptual blur
metric (global metric).

Our preliminary results indicate that the algorithm presented in this
chapter is capable of efficiently compensating for the collimator blur effect,
especially in the context of aSRT-reconstructed SPECT images. The metrics

employed indicate that our algorithm can be proven to be useful in clinical

155
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SPECT imaging as well as in biomedical image processing and analysis in
general. Therefore, this blurring-compensating technique for parallel-hole
collimation could provide efficient deblurring in SPECT imaging and may

be helpful in improving image quality of SPECT reconstructions.

5.1 An introduction to deblurring

SPECT utilizes a rotating gamma camera to acquire the projections required
for image reconstruction [|4]. It is a nuclear medicine modality of crucial
importance with preclinical and clinical applications, especially in myocar-
dial perfusion imaging and neuroimaging. SPECT scans provide informa-
tion regarding functional characteristics of the internal organs being imaged;
relevant examples include functional brain imaging and functional cardiac
imaging, even the diagnosis of coronary heart disease [123|. In SPECT imag-
ing, the patient is injected with a radiopharmaceutical, such as technetium
(%Tc) or thallium (?°'TI), labeled with an appropriate radioactive tracer
agent. The short-lived radioisotope undergoes nuclear decay and radiates
single photons (y-rays): the camera detects these individual photons [5].
All SPECT scanners combine photon detectors along with collimators.
The collimator limits the photons reaching the detector to a small range of
allowable directions [124], operating as a v-ray focusing mechanism. Only
the photons that are able to travel unobstructed through the collimator holes
are detected. The aim in imaging is to reconstruct the original location of
the source. For this purpose, the incidence angle of the detected photons
on the detector needs to be determined. The collimator provides a mapping
of the lines of response to particular detector positions [125]. Collimation is
an important aspect of SPECT imaging, since it affects the image quality
(contrast, resolution, sensitivity) of the resulting reconstructed images.

The two predominant categories of collimators are
e parallel-hole collimators, and
e pinhole collimators,

depending on the type of their focusing mechanism. Pinhole collimators
have a single hole, conical shape and are mainly used in the imaging of small
organs in order to provide magnification [120], and to achieve superior res-

olution [126]. Parallel-hole collimation is the most commonly used image
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formation aperture in nuclear medicine [125|. Parallel-hole collimators con-
sist of parallel holes, or channels, perpendicular to the detector faces [127].
In this chapter we shall focus on parallel-hole collimator apertures.

A point source being imaged corresponds to a blurred dot, as a result of
collimation. The severity of blurring depends on the characteristics of the
collimator, and on the distance between the source and the camera [128§].
SPECT images are usually degraded by collimator blurring, normally re-
ducing the resolution [129]. The further away the collimator is from the
object being imaged, the more blurring occurs [130]. Compensating for the
collimator-detector response in SPECT is of crucial importance for accurate
quantification and, ultimately, deblurring [131].

The problem of efficiently correcting SPECT collimator blurring has been
studied extensively in the past, especially in the context of inverting the
so-called blurred Radon transform |132]. Specifically, in [133|, a filtering
method is presented, which compensates for the distance-dependent detec-
tor response, based on the frequency-distance principle. Furthermore, there
exists the well-known frequency-distance method (and the corresponding re-
lation) utilizing Fourier analysis |124,134},|135]. The concept of the ideal
projection is usually described by the corresponding point spread function
and dealt with as the projection of a point source placed at a certain distance
from the detector, as described in |132]. Other approaches include the mixed
method of simultaneous attenuation correction and distance-dependent de-
blurring [136], the frequency-distance relation with Gaussian diffusion [137|,
and the analogous study for spinning-slat collimators [138] based on [124].
However, most of the analysis has focused on Fourier analysis.

In the present chapter we present a simple and efficient method for the
deblurring of SPECT images with parallel-hole collimators, extending the
spline context of aSRT, introduced recently |[44]. We note that we focus on
aSRT-reconstructed SPECT images. The deblurring process is based on the
spline interpolation of the blurred sinogram, and the corresponding inversion
of the “blurred” version of the attenuated Radon transform. By reconstruct-
ing the deblurred sinogram, we were able to deblur the reconstructed images
and improve their hot contrast, as defined in equation .
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5.2 Mathematical formulation

5.2.1 Attenuated Radon inversion via aSRT without blur

SPECT measurements are usually stored in the form of an attenuated sino-
gram, denoted, for the purposes of the present chapter, by g.(p,0), and

expressed in the so-called local coordinates (p,0), see |44]:

S)
%(P: 9) _ / e~ I; u(scos@—psm@,ssmO—i—pcosO)dsX
—o0

g(Tcosf — psinb, 7sinf + pcosh) dr, (5.1)

for 0 < 6 < 27 and —o0 < p < oo. The above expression represents
the attenuated Radon transform of the two dimensional radioactivity dis-
tribution function g(x1,x2), namely its line integrals, attenuated with re-
spect to the attenuation function u(z1,x2), as in Definition The inverse
problem arising in SPECT image reconstruction, associated with equation
(5.1, is to determine the function g(zi,z2), given the functions p(zy, z2),
—00 < 1,22 < 00, and g,(p,0), 0 < 0 < 27, —oo < p < oo. The analytic
inversion formula for the attenuated Radon transform pair was first derived
in [7], as a result of the extension of the analogous inversion presented in [6],
and rederived in [8]. This analytic formula was later simplified in [44] via
aSRT.

5.2.2 Blurred data

SPECT measurements are usually blurred due to collimation. KEquation
neglects the fact that the collimator of a gamma camera has a finite,
distance-dependent spatial resolution. This resolution is usually described
by an impulse response function usually referred to as the “point response
function” [124], p(p, r), which is the projection of a point source at a distance
r onto the detector plane. The photons that create the image propagate in
straight lines, therefore the collimator blurred projections g,(p,0) can be

described as weighted integrals of the ideal parallel projections g, (p,6), see

figure

/2
00(0,0) = / PO 09,0+ 945, (5.2)
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Figure 5.1: SPECT projections ideal parallel projections, corresponding to
the attenuated Radon transform, and real projections, blurred due to colli-
mation.

where w(d) and p(p, §) denote the weight function of the collimator and the

rotated projection variable, respectively. We assume that:

(i) each bin, sometimes referred to as “partition”; of the collimator receives

information from an angular span of 2A, 0 < A < 7, and

(ii) the angular variable ¢ lies in the corresponding symmetrical interval,
ie. d € [-AA]

The weight function w(d) encompasses the properties of the collimator and
depends on the angle § between the given direction and the normal to the
detector surface. This function may also be referred to as the blur profile.
The conventional point spread function can be obtained from the weight

function w(d) via the simple relation

p(p,d) =w <arctan (g)) .
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Figure 5.2: Rotated geometry.

For the computation of the rotated projection variable p’(p,d) involved
in the integral (5.2)), let us consider the rotated geometry, as in figure :

0 (p,8) = BC' =C'S + SB = rtan (g) (14 cosd)+ pcosd

=rsind + pcosd, (5.3)

where we assumed that the detector rotates around the object being imaged,
along a circular path of radius r. In the limit case § ~ 0, equation (/5.3)
simplifies to

p'(p,8) =16+ p, (5.4)

where R is treated as a constant of the scanning system. Therefore, equation

(5.2) becomes

an(p,0) = /_ w(8) Gu(rd + p. 0+ 6) d6. (5.5)

us
2
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It is worth mentioning that two of the most commonly used collimator blur

profiles include the following:

1. triangular blur

A2 (0+A), 6€[-A,0],
1
w(d) = =~ (A—146), 6¢e(0,A] and (5.6)
0, otherwise,
2. Gaussian blur
1 _%
w(d) = e 22, o=oc(A). (5.7)
270

In both blurring cases it is evident that the weight function w is normalized,

ie.,

(ME

T w0y = [ w(o)ds = 1. (5.8)
/ /

—0o0

INIE]

In the present chapter we shall focus on Gaussian blurring.

5.2.3 Numerical implementation

We aim to solve equation for the ideal data g, in terms of the blurred
data g,, given the weight function w and the radius r. For the numerical
implementation we employ custom-made cubic splines, as in Section[£.3.2] In
each subinterval [p;, pi11], foralli = 1,...,n—1, we expand both g,(p, §) and
gu(p,8) via cubic splines (denoted by Si(3) (p,0) and gi(g)(p, 0), respectively)

in the variable p, i.e.:

3 ) A
gu(p.0) = 57 (p,0) = 3" (0, (5.9a)
j=0
and 5
Gu(0,0) = 5% (p,0) ="V (o). (5.9b)
j=0

In this connection, we take into account the fact that the function g,(p,6),

-1 <p<1,0 <6 <27, is given for every 6 at the n points {p;}7. We
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denote the value of g, at p; by g;, i.e.,
gi :=9i(0) = gu(pi,0), pi€[-1,1], 6€]0,2m). (5.10)

The cubic spline S 3) (p, 0) defined in equations (5.9)) interpolates the function

)

gu(p,0) at the knots {p;};"; in the sense that
S (pi,0) =gi, i=1,....n—1. (5.11)

Furthermore, we assume that both g,(p,0) and its derivative with respect

to p vanish at the endpoints p; = —1 and p,, = 1:

gu(—1,0) = g,(1,0) =0, 0<6<2m, (5.12a)
g, g,

—=(-1,0) = ==(1,0) =0, 0<6<2m. 5.12b
Se(1,0) = Le(1,0) <0, 0=0<2n (5.120)

The constants {cl(-j )}? of the spline expansions (5.9) of the blurred sinogram
gu(p, 8) can be derived following the spline setting of [44}[119] and of Section
of this thesis, and are given by the following equations:

1

0 Pi+19i — Pigi+1 | i P} 9 p3
CE)(G): i+1Y91 19i+ +1<Pi+1Ai+ z+1>+ i+1 <Pi il)a

A, 6 A, 6 A,
(5.13a)

2 /" 2

Mgy _ Git1 =9 97 (o 3P | G (A 3P
c; (0) = A 6 ( A+ A )t A+ A ) (5.13b)

2 1
c,( )(9) = E(Piﬂgél — Pigir1); (5.13¢)
i 2
Cz ( ) 6AZ Y ( . )
and

A; = piy1 — pi, (5.13e)

with g/ denoting the second derivative of g,,(p, §) with respect to p evaluated
at p;, i.e.,

9gu(p,0) ,
g/:gip2 , t=1,...,n. (5.14)
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Equations (5.13) involve the functions {g;}}, which are known, and the func-

tions {g/}}, which are unknown. If we denote the derivative of the cubic

spline, S (3), by SZ.(Q), where the superscript denotes that S @) 45 quadratic,

1 7

we find

25 (p, 6
52 (p,0) = a,ip) = D(0) + 2P O)p+ 3P 0)2.  (5.15)
In order to compute {g/}} we follow the procedure of [116], namely we solve
the system of the following n equations (continuity of the first derivative of
the cubic spline):

81(2) (pi-i-l’ 9) = Si(i)l(pi-‘rlv 0)) (516&)
S (p1,0) = 821 (pn. 0) = 0, (5.16b)

for every i = 1,...,mn — 2, and 6 € [0,27). The continuity of the spline,
namely & (pi41,0) = S& (pig1,0) for i = 1,...,n — 2, and SV (p1,0) =
S,(f’_)l(pn,e) = 0 (see equations (5.12))), implies that the points {p;}} are
removable logarithmic singularities.

For the inversion of the integral in equation , we proceed by assuming

that for small angles § € [-A, A, see equation (5.4)), the coefficients Ei(j )(0)
remain unchanged, i.e. ¢ (])(9 +9) = Ei(j)(ﬁ) (sensitivity). This yields

3 3
SO = wo) S E&VO) o+ | o (5.17)

We denote the integral on the right-hand side of equation (5.17)) by I and

we expand it, to find

3
1= >0 | 1o+ 600 + 252 0)p+ 32 0)%| vy
=0

+ [5i<2>(9)+3z}3>(9)p 12, + ¢ (0)r3Ls, (5.18)

where

A
Ij:/ w(8)67ds  j=0,1,2,3. (5.19)
—A

For each j = 0,1,2,3, the integral I represents the j-th moment of the

collimator distribution function w. Given that w is normalized, see equation
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(5.8), equation ([5.19) implies

IO = 1, Il = 0, .[2 = ﬁ, and 13 = 0, (520)
where ( is the variance of the distribution, therefore
A2
B = s and (=02,

in the particular cases of triangular (see equation (5.6)) and Gaussian (see

equation ([5.7))) blurring, respectively. Substituting equations (5.20]) in equa-
tion ([5.18)) implies that equation (5.17)) may be rewritten in the form

d2(0) + P (0)p + o (0)0 + V(00" = [, 0) + 125 (0)]
+ @00 +3r2857(0)| p+ & 0)0* + & (0)0". (5.21)

Therefore,
& 90) = 20) + r28:2(6), (5.22a)
&V (0) = " (0) + 328 (6), (5.22b)
&) =), (5.22¢)
&) = o). (5.22d)
The above coefficients correspond to the new, custom-made cubic spline,
namely
3
50(0.0) =390, piel-1,1, 6e0,2n). (5.23)
7=0

Matlab implementation. It is worth noting that in Matlab, cubic splines
(SZ-(S)) are treated as

3
S7(0.0) =Y m{ O 0~ . p € lpipinl. O E(0.2m), (5.24)
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as opposed to the more standard cubic spline definition (5.9). Expressing
equation (5.24) in the form of equations (5.9) yields

(0) = —oim" () + 2mP(0) — pin(0) + miD(0),  (5.250)
¢, (6) = 3p7m{" (6) = 20, (6) + m{ (9), (5:25D)

2(0) = =3pmM (0) + m{P(6), (5.25¢)

&) = mM(9). (5.25d)

4
Taking into account equations (5.22)), we represent {Ey)}é as a function
=1

of {CEE) };1, ie.

In particular,

& = g{c@}, 0=0,1,2,3,4.

(2

&,"0) = =pile + 3r°B)mV(0) + (o +r7B)m” (0)
— o (0) + m{Y(0), (5.26a)

&(0) =302 +r28)m"(0) — 20 (0) + mP(0), (5.26D)
'51(2) (9) _ _sz (1) (9) 2)( )7 (5.26C)
z ®) () = §1> (0). (5.26d)

As in equation ([5.23)), the resulting spline is of the following form
Z s 0) (0~ piY p € [pispica), 0 €10,2m).  (5.27)

By combining equations ([5.26) with equations (5.22) and (5.27)), we express

the new coefficients, {ﬁzy)} , as functions of the initial ones {ml(-e)}g
=1’

w1 0) =mM(0), (5.28a)

w2 (0) = m? (0), (5.28b)

i (0) = 3r8m" (0) + m{? (9), (5.28¢)
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w1 (0) = r28m® () + m{Y (0). (5.28d)

5.3 Materials and methods used in deblurring

5.3.1 Simulations

For the purposes of the simulations, we have modelled a rotating, single-head
gamma camera, consisting of 129 scintillation crystals, with a corresponding
image grid size of 129x129 pixels. The image size, as well as the detector
pixel size was 4 mm. Following the same motivation as with the previous
two chapters, we employed simulated data of an image quality (IQ) phantom,
which simulates the human thorax. This specific phantom was employed in
order to quantitate the efficiency of the reconstruction technique to detect
hot and cold lesions of variable size inside a radioactive background. This
specific phantom consists of four hot circular regions (with diameters of 12.7,
15.9, 19.1 and 25.4 mm, denoted with S, Sy, S5 and Sy, respectively) and
two cold circular regions (with diameters of 31.8 and 38 mm, denoted with
S5 and Sg, respectively), inside a larger warm circular region of diameter
216 mm that simulates the background, see table Simulated sinograms
of the IQ phantom were generated in STIR [88| using appropriate attenua-
tion maps. The attenuated sinograms were acquired for 180 views over 360

degrees, and contained
e 6x10% events for the noiseless case.

Using the initial noiseless sinogram as the starting point, we generated 20

Poisson-noise realizations at a noise level of 50% of the total counts, i.e.
e 3x106 events for the Poisson-noise case.

In order to determine the quality of the reconstructed images of the IQ
phantoms investigated, we performed a region of interest (ROI) analysis.
For the calculation of the ROI statistics at each sphere, circular ROIs were
employed in Matlab. The diameters of all ROIs were equal to the ones of the
lesions being investigated. Several image metrics were calculated for all noise
levels and averaged over all realizations, R, see Section below. For the
simulation of the blurring of the attenuated sinograms involved, we applied

Gaussian blurring and we employed a typical low-energy, high-resolution
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(LEHR) collimator, with a Gaussian standard deviation
o = 0.019.

5.3.2 Metrics

For the evaluation of our deblurring method, we employed two image metrics,

one global and one local, namely
a) global metric: the no-reference perceptual blur metric, bp, and

b) local metric: hot contrast, Cj,.

No-reference perceptual blur metric

The no-reference perceptual blur metric (bp) was presented in [139)], in order

to control and quantify the blur effect in images. It is independent of
e edge spreading,
e choice of threshold, and
e the presence of noise.

In this direction, by comparing between different intensity variations, this im-
age metric is capable of quantifying the blur annoyance of an image (blurring
neighboring pixels before and after low-pass filtering). For the evaluation of
br, we employed the algorithm proposed by Crete et al. in [139]. It is worth

noting that the no-reference perceptual blur metric is normalized, i.e.
and that the lower the metric, the less the blurring effect measured.

Hot contrast

The contrast recovery coefficient (CRC), also referred to as hot region con-
trast (C},), see Section was calculated for each hot circular region using

the following expression, as in |116|:

1 R ™Mhyr
mp r
Ch = E %7_1, (529)

r=1 ap
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where my, , and my, . denote the mean pixel value measured in each hot region
and in the background ROI, respectively, for each realization, r, and aj; and
ap are the actual radioactivity of each hot region and of the background,

respectively. In our simulations, the ratio (ap/ap) is 4.

5.4 Deblurring results

All simulations were executed on a Dell Precision T1700 workstation with
an Intel® Xeon® CPU E3-1241 processor, running on a 64-bit Windows®
10 environment with 16 GB RAM. For the 1QQ phantom, the initial blurred
sinogram and the corresponding deblurred sinogram are shown in figures
and [5.3b] respectively. Similarly, aSRT reconstructions of the blurred
sinogram and the corresponding ones of the deblurred sinogram are shown in
figures [5.4a] and [5.4D)], respectively. The sinograms and reconstructed images
presented in these figures are characteristic reconstructions of 1, out of 20
Poisson noise realizations at each noise level. In all the reconstructed im-
ages presented in the figures, the value of the all-white color represents the
maximum value in the IQ phantom, and the all-black color represents zero
values. The aSRT reconstructions of the IQ phantom were generated for 180
views over 360 degrees and 20 realizations of Poisson noise. This noise level
corresponds to the 50% of the total counts.

For the simulated 1Q) phantom, the no-reference blur metric was 0.773 for
the aSRT-reconstruction of the blurred sinogram, whereas the corresponding
metric in the case of the aSRT-reconstruction of the deblurred sinogram was
0.744, see table The no-reference blur metric measurement comparisons
are presented in figure [5.5] Furthermore, before deblurring the hot contrast
(Ch) in the four hot spheres, S; to Sy, of the IQ phantom was measured
C1=49.9%, C?=64.1%, C3=63.2% and C}=76.1%, respectively. Similarly,
in the deblurred case, the corresponding values were C’}L:51.8%, C }%:66.7%,
02:66.1% and C§:79.9%, respectively. The hot contrast measurement com-
parisons are presented in figure [5.6] For details, see table [5.2]

5.5 Analysis of deblurring results

In this chapter we have developed a technique to compensate for the blur

effect in SPECT imaging. In order to accomplish this goal, a spline-based
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(a) Blurred attenuated sinogram of the IQ
phantom.

(b) Delurred attenuated sinogram of the IQ
phantom.

Figure 5.3: Attenuated sinograms of the IQ phantom.

Method No-reference blur metric (br)

Blurred 0.773
Deblurred 0.744

Table 5.1: No-reference blur metric (br) measurements for the IQ phantom.
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(a) aSRT reconstruction of the blurred sino-
gram of the IQ phantom.

(b) aSRT reconstruction of the deblurred sino-
gram of the IQ phantom.

Figure 5.4: Reconstructions of the IQQ phantom via aSRT.
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Figure 5.5: No-reference blur metric (br) measurement comparisons for the
aSRT reconstructions of the IQQ phantom.
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Figure 5.6: Hot contrast (C}) measurement comparisons for the aSRT re-
constructions of the IQ phantom.
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Sphere Hot contrast (C}), blur Hot contrast (C}), deblur

Si 49.9% 51.8%
S 64.1% 66.7%
Ss 63.2% 66.1%
Sy 76.1% 79.9%

Table 5.2: Hot contrast (C},) measurements for the IQ phantom.

deblurring algorithm has been implemented and tested in simulated phantom
data. For our simulations, in the images presented in figures and
it is evident that deblurring has been achieved. In order to quantify the
deblurring and to evaluate the usability of our method, we have employed
two comparison metrics, namely the no-reference perceptual blur metric (bp)
and the hot contrast (C},). Our results suggest that our method performed
deblurring efficiently, since the deblurred sinograms provided reconstructions
with lower no-reference perceptual blur metric and higher hot contrast than
the ones originating from blurred sinograms, for all 4 hot regions investigated.

Our deblurring algorithm provided better quality images in terms of both
hot contrast and no-reference blur metric. More specifically: (a) the overall
no-reference blur metric decreased by 3.75%, and (b) in all four hot regions
of the IQ phantom, the hot contrast increased 3.8%, 4.1%, 4.6% and 5,00%,
respectively (average increase of 4.4%). We note that for the purposes of
our simulations, we employed a typical LEHR, collimator, with a Gaussian
o value of 0.019.

The effects of any deblurring method are expected to be more distinct in
cases of collimators with higher o values. Hence, in the future, we plan to
evaluate our deblurring method by employing parallel-hole collimators with
higher o. In this direction, we aim to simulate phantoms with high sensitivity
collimators with ¢ values in the vicinity of 0.05. Furthermore, we plan to
test the usability of our method in real clinical data and to implement it in
STIR [88], probably including time-of-flight considerations [140].
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5.6 Conclusion

We have developed a novel method for the deblurring of reconstructed SPECT
images via aSRT, and have tested the proposed algorithm in simulated phan-
toms. Our algorithm is based on the specification of the collimator in terms
of its blur profile, rather than its point response function. Preliminary re-
sults indicate that our method is capable of compensating for the collimator
blur effect, which is intrinsic in SPECT imaging. By deblurring the blurred
sinograms, we were able to reconstruct images with less blurring, via aSRT.
The metrics employed indicate that our algorithm can be proven to be useful

for clinical SPECT applications.
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Chapter 6

Future work

This thesis deals with several different mathematical problems with direct

applications in PET and SPECT imaging, namely:

e the edge detection of both the non-attenuated (PET) and the atten-
uated (SPECT) versions of the Radon transform in two dimensions,
referred to as sinogram masking, and the subsequent “cleaner” image

reconstruction of the masked sinograms,

e the introduction of a new mathematical method for the efficient inver-
sion of the attenuated Radon transform and its numerical implemen-

tation, and

e the compensation for the blur effect in two-dimensional attenuated
Radon transform, which is inherent in all cases of SPECT attenuated

sinograms.

In the near future, we plan to further investigate all open aspects of the

above mathematical problems. More specifically:

¢ Regarding sinogram masking: we intend to implement our masking
method in STIR, as well as to design and implement a stand-alone
application for contour detection, image masking and the elimination

of streak artifacts.

e Regarding aSRT: since the aSRT results of the clinical myocardial
study are quite encouraging, it is evident that aSRT could provide use-
ful medical image reconstructions in a clinical setting. Further inves-

tigations are essential, especially with the help of clinical physicians,

175



176

Chapter 6. Future work

in order to better quantify the improvement of aSRT in myocardial
perfusion imaging. Clinical studies focusing on myocardial ischemia
are currently in progress. If further scrutinized, aSRT may provide an
alternative to the industry-standard FBP for SPECT/CT reconstruc-

tion.

Regarding sinogram deblurring: we plan to further examine our
deblurring method by employing parallel-hole collimators with higher
o values. In this direction, we aim to simulate phantoms with high
sensitivity collimators with o values in the vicinity of 0.05. Further-
more, we plan to test the usability of our algorithm in real clinical
data, and to implement our technique in the framework of STIR, or

relevant software.
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