
i 
 

 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

SCHOOL OF ARCHITECTURE 

 

 

Augmenting traditional wind catcher with 

combined evaporative cooling system and 

solar chimney 

 

 

AZAM     NOROOZI 

 

 

A THESIS PRESENTED TO THE NATIONAL TECHNICAL UNIVERSITY OF 

ATHENS IN FULFILMENT OF THE THESIS REQUIREMENT FOR THE DEGREE 

OF DOCTOR OF ARCHITECURE 

 

 

SUPERVISOR: PROFESSOR YANNIS S. VENERIS 

 

 

 

 

 

November 2019 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

SCHOOL OF ARCHITECTURE 

 

Ph.D. Degree Examination 

for 

AZAM NOROOZI 

 

Augmenting traditional wind catcher with combined evaporative 

cooling system and solar chimney 

 

Thesis Committee:         Yannis S. Veneris 

Georgios Kallos   

Elias Zacharopoulos 

 

The Ph.D. Proposal has been examined and approved on …2012…… 

Yannis Veneris (Professor) 

Georgios Kallos (Professor, National & Kapodistrian University of Athens) 

Elias Zacharopoulos (Professor) 

Kostas Moraitis (Professor) 

Anastasios Stamou (Professor) 

Flora-Maria Bougiatioti (Assistant Professor) 

Mathaios Santamouris (Professor, University of South Wales)  

 

 

 

 



iv 
 

 

Η έγκριση της παρούσας διδακτορικής διατριβής από την επταμελή εξεταστική επιτροπή και τη Σχολή 

Αρχιτεκτόνων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου δεν προϋποθέτει και την αποδοχή των 

απόψεων του συγγραφέα σύμφωνα με τις διατάξεις του άρθρου 202, παράγραφος 2 του Ν.5343/1932 

 

 

 

…………………………… 

Azam Noroozi 

School of Architecture 

National Technical University of Athens 

 

 

 

 

 

 

 

 

Copyright © Azam Noroozi, 2016 

All rights reserved 

No part of this thesis may be reproduced, stored in retrieval systems, or transmitted in any form 

or by any means -electronic, mechanical, photocopying, or otherwise- for profit or commercial 

advantage. It may be reprinted, stored or distributed for a non-profit, educational or research 

purpose, given that its source of origin and this notice are retained. Any questions concerning 

the use of this thesis for profit or commercial advantage should be addressed to the author. The 

opinions and conclusions stated in this thesis are expressing the author. They should not be 

considered as a pronouncement of the National Technical University of Athens. 

 

 

 

 

 

 

 

 

 



v 
 

Abstract 

 

Wind catchers are one of the oldest cooling systems in Hot-Dry regions that are employed to 

provide sufficient natural ventilation in buildings. The optimal adequacy of the wind catchers 

has been constrained in the suitable wind speed, which causes them to be inefficient at times 

and in areas with low wind speed. A four-directional wind catcher equipped with two 

evaporative cooling parts (wetted blades and adjustable opening pads) and a solar chimney 

was proposed in this study. A prototype of the proposed wind catcher has developed to 

analyze the performance of the system. Theoretical analysis of the wind catcher was carried 

out and a set of experiments were organized to validate the results of the obtained models. 

Moreover, a numerical simulation investigated the ventilation performance of the solar 

chimney. The results showed when the pad was closed, the maximum value of cooling load 

was achieved at the wind speed of 3(m⁄s). In addition, at the wind catcher heights of 2.5 and 

3.5 m and the wind speeds of lower than 3(m⁄s), the cooling loads approximately doubled by 

employing closed-pad mode. Compared with the open-pad mode, the closed-pad mode has 

shown better results, when the wind speed was low. The airflow rate at the no-wind condition 

and solar radiation of 1000 (W/m2) was eventuated around 0.021 (kg/s), if applying the 

evaporative cooling system. Consequently, the combined system increases the mass flow rate 

of the air by several times in the low wind speed compared that without the solar chimney. 
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Chapter 1 

Introduction 

Problem Statement  

Climate change and global warming are among the top critical issues in today’s world. Human 

influence on the climate system is apparent, and today the emissions of greenhouse gases are 

at its highest level in human history. It is becoming increasingly evident that human activities 

have an impact on the environmental balance of our planet [1]. 

Energy consumption, especially the burning of fossil fuels, is currently one of the main factors 

contributing to climate change. The impact of energy consumption is not limited to 

environmental effects. It also impresses the world economy and human comfort. Primary 

energy consumption includes transport, the built environment, and power generation [2]. 

Energy used in buildings accounts for about 40% of the global energy production, most of it 

comes from non-renewable sources. Building energy consumption accounts for 33% of total 

annual carbon dioxide emissions, which contributes significantly to climate changes [3, 4].  

A study by Larsen shows, people averagely spend about 90% of their time inside the building, 

which highlights the importance of focusing on maintaining a good and healthy environment 

[5]. The negative effect of the world population growth and the rapid urbanization in urban 

area have led to a sharp increase in environment pollution which have profound impacts on 

human health. Consequently, it is urgent to reduce the environmental impacts of the built 

environment [6].  

Hot and dry climate zones are known for extreme hot weather in summer and little rainfall all 

year that lead to a dry condition. The primary concern in Hot-Dry regions is thermal comfort. 

During hot seasons climate plays an essential role in the building performance and its energy 

consumption. The conventional design solutions for maintaining thermal comfort mostly 

considers mechanically driven ventilation and air-conditioning systems. Building heating, 

ventilation, and air-conditioning systems(HVAC) account for almost half of the energy 

consumption in buildings [3]. The high demand for these systems will dramatically increase 

greenhouse gas emissions.  

Before the invention of modern mechanical systems, consequent of harsh climatic conditions 

in hot and dry areas, people had to build their houses with some ingenious strategies, which 
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based on minimum energy consumption [7]. These strategies are the use of renewable 

energy(solar energy, wind, the earth thermal reservoir, and water), energy recovery and 

demand-control and energy efficient technologies without environmental pollution [8]. Those 

can be considered in building design for ventilation, cooling, and heating to preclude the use 

of fossil fuels. 

Passive systems can be considered as a viable and efficient strategy for the concept of 

sustainable building, because one of the goals of sustainable design is the comfort of the 

residents. There are various passive cooling methods to provide excellent thermal comfort and 

high indoor air quality with low energy consumption (see figure 1.). Two essential techniques 

in the vernacular architecture of this climate have been passive cooling and natural ventilation 

[9]. 

 

Figure 1.Different passive cooling methods for energy efficient buildings [10]. 

 

One of the essential building elements in the Hot-Dry climate which was used for cooling and 

natural ventilation is wind catcher. Wind catchers have been used as a traditional strategy of 

vernacular architecture in the Middle East countries such as Iran, Egypt, Jordan, Kuwait, and the 

UAE, under Hot-Dry and Warm-Humid conditions. The local climate, geographical conditions 
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and the social position of the residents defined some design parameters in traditional wind 

catchers such as materials, construction, height and number of openings [11].  

Wind catchers requires a driving force to operate. The first force is external wind and the 

second force due to the naturally occurred difference in temperature is buoyancy effect. Some 

researches show that external wind force provides 76% more, internal ventilation than 

buoyancy effect [12]. Consequently, the traditional system is mostly applied for heat 

dissipation rather than supplying ambient cool air through the system, the use of cooling 

equipment in the channels only leads to energy dissipation.  

Moreover, when there is not adequate external airflow, the stack effect is negligible. Therefore, 

system efficiency is low which causes the wind catcher to be inefficient at times and areas with 

low wind speed [13].   

Aim and Scope 

This research focuses on a combinatorial construction of passive and low energy strategies in 

the four-sided wind catcher system (WCS). The proposed wind catcher tries to improve the 

performance and reduce some of the problems and limitations of conventional and traditional 

wind catchers to reduce energy consumption in the buildings located in the Hot-Dry regions.  

The suggested system has changed traditional solutions along with new considerations. 

The primary goal of this project is increasing the contribution of buoyancy force in the wind 

catcher performance. The system is equipped with a solar chimney structure and evaporative 

cooling features to improve the ventilation and cooling potential under hot and dry climatic 

conditions. 

The secondary goals of this research include: 

i. Developing an evaluation framework which comprehensively considers the quality of the 

evaporative cooling feature in the simple prototype.  

ii. Investigating the mechanism of solar chimney structure in combination with the wind catcher 

using CFD1 software. 

 

 

                                                           
1 Computational Fluid Dynamics 
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Structure 

The structure of the thesis is organized as follows: 

In chapter 1, the introduction states the problem, aim, and scope of the research as well as the 

structure of the thesis. 

Chapter 2 extensively describes climatic elements, climatic classifications and the notions of 

thermal comfort. Moreover, it briefly outlines the design strategies and elements in a Hot-Dry 

climate. The final part of this section focuses on wind catchers in detail. 

Chapter 3 reviews literature on the studies of the wind catcher in three parts. The studies of the 

components optimization of traditional wind catchers and existing research of two combined 

systems (WCIECS)2 and (WCISCS)3 are presented. The pros and cons of the existing wind 

catchers are investigated to identify the expectations of the new designed system and originality 

of the work. 

Chapter 4 describes the proposed system and its components. The working principles, the 

system response in different environmental conditions, are expressed. 

Chapter 5, evaluates of the proposed model. An analytical model, and an experimental model 

assess the efficiency of the evaporative cooling of the system. The CFD software gives an 

overview of the role of the solar chimney in structure functioning. 

Chapter 6 presents results and discussions of the assessments. 

Finally, chapter 7 draws a conclusion and future works. 

 

 

 

 

 

                                                           
2 Wind Catcher Integrated with Evaporative Cooling System 
3 Wind Catcher Integrated with Solar Chimney System 
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Chapter 2 

Basic Definitions 

Climatic Elements 

Climate was an issue that had been studied by the ancient Greek philosophers and geographers. 

This word has been derived from the Greek word Klima meaning “slope,” referring to the 

variation in received sunshine on Earth’s surface, which is due to the regular changes in the 

Sun’s angle of inclination upon a spherical Earth. Climate can be perceived as a local 

environmental conditions including, temperature, humidity, solar radiation, wind, rain and so 

on [14]. 

Climate is different from weather. Weather is a result of daily atmospheric conditions at a 

particular place and time, while climate is the result of average weather conditions in a specific 

place. The most significant of climatic elements that make up both weather and climate are as 

follows: 

(A) Ambient temperature 

(B) Solar radiation 

(C) Air humidity 

(D) Precipitation 

(E) Wind 

Ambient Temperature 

Ambient temperature is the temperature of air in a shady enclosure. It is usually determined in 

degree Celsius (ºC). Temperature is a significant factor in determining the weather, because it 

influences or controls other elements of the weather. At a specific site, temperature fluctuates 

depending on factors such as wind, shading, the presence of water body, sunny condition, etc. 

Solar Radiation 

Solar radiation is the radiant energy received from the sun. It shows the intensity of sun rays 

falling per unit time per unit area (watt per square meter (w/m2)). Geographic location, 

orientation and season, time of day, and atmospheric conditions influence the collision rays on 

a surface.  
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Solar radiation plays an essential role in the structure of traditional architecture. In the warm 

climates, the smallest amount radiation that penetrates the building is noticeable.  

Humidity 

Humidity states the amount of water vapor in the atmosphere. There are three main 

measurements of humidity: absolute, relative and specific. Relative humidity (RH) is calculated 

by the ratio of the mass of water vapor in a specific volume of moist air at a given temperature, 

to the mass of water vapor in the same volume of saturated air at the same temperature [15]. 

RH is expressed as a percentage and has no units.  

Precipitation 

It can appear in all of its forms such as drizzle, rain, sleet, snow, etc. The amount of 

precipitation is usually defined in millimeters (mm).  

Wind 

Wind is the horizontal movement of the atmosphere that is the result of the horizontal 

differences in the air pressure. Indeed, wind is the movement of air from high pressure to low 

pressure. The main influencing factors are differential heating of land and water mass on the 

earth’s surface, solar radiation and rotation of the earth. Wind speed is a significant design 

factor for architects. Windsocks are used to show the direction and Anemometers record the 

speed in (km/h) or meters per second (m/s).  

 

Climatic Classifications 

The ancient Greeks proposed the first climate classification scheme. They divided Earth’s 

surface into five zones based on the intensity of sunshine; a torrid zone, two temperate zones, 

and two frigid zones [16]. There are three basic types of classification systems; empirical, 

genetic, and applied. According to the empirical classification system, the climate is classified 

by observable features (e.g. temperature, precipitation). On the other hand, some observable 

features (e.g. the frequency of air mass invasions, the influence of orographic barriers, the 

influence of particular wind, and pressure belts) make a genetic classification. Finally, the 

applied classification systems can solve specific problems. In the following, a type of climatic 

classifications is introduced that is significant in the architectural design process. 
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Köppen Climatic Classification System 

The most widely used climatic classification system is that of Wladimir Koppen (1846-1940) 

in its various modified forms. This system is one of the empirical classification systems which 

is utilizes monthly temperature and precipitation data. Moreover, it includes the relationship of 

climate with the vegetation. According to this scheme, the world has five climatic groups with 

13 sub-division. Five main climatic groups are:   

 A (Tropical Moist Climates) 

 B (Dry Climates) 

 C (Mesothermal or mid-latitude mild) 

 D (Microthermal or mid-latitude cold) 

 E (Polar) 

 

 Hot-Dry Climatic Regions 

Hot-Dry desert climates extend in two belts between latitudes 15°, 30° N, and S. The condition 

of the Hot-Dry climate is as follows:  

There are two seasons, one hot season and a cooler one. In the hot season, Dry-Bulb-

Temperature (DBT) maximum ranges are around 43-49°C. Moreover, DBT are in more cooling 

season around 27-32° C. Due to being away from the body of water, the temperature range 

between night and day is high. Minimum nightly temperatures are around 24-30°C and 10-

18°C in hot and cooler seasons respectively.  

Relative Humidity (RH) varies from 10 to 55%. Precipitation is slight and variable. Although 

flash storms may occur, several years droughts are usual. Sky conditions are normally clear, 

with limited luminance, which may be further reduced by dust storms.  

White dust haze may cause high glare and luminance. Solar radiation is strong. However, long 

wave re-radiation releases heat at night into the cold sky. Winds are usually local and turbulent.  

In a Hot-Arid region, low humidity and lack of clouds cause a high-temperature difference 

between day and night. High day temperatures and rapid night cooling may cause materials to 

fracture. The major problems in hot and dry climate are the limited water resources and green 

spaces caused by hot days, low humidity, the intensity of solar radiation and stagnant air (lack 

of airflow) at low altitude.  
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Thermal Comfort 

Climate is defined as the condition of the atmosphere at a particular location over a long period 

of time. It depends on the temperature, humidity, solar radiation, wind, rain.  Because a climate 

contains many different aspects, this study investigates only the aspects of the indoor thermal 

condition. 

One of the main goals of building construction is to create a comfortable living space. Although 

architecture focuses on many other aspects, thermal comfort cannot be undermined. The air 

temperature is perhaps the most noticeable climatic element related to the built environment 

experienced by the resident. Therefore, it is a matter of concern as a climatic element for human 

comfort [14].  

Indoor environment, the heating, indoor air quality, light, and noise affects health, productivity, 

and comfort of the occupants. Recent studies have shown that improved air quality in the indoor 

environment would be expected to rise complacency and the productivity of work [17]. The 

satisfaction of residents from the quality of the indoor environment largely depends on indoor 

thermal condition. Comfort is the condition of mind which expresses satisfaction with the 

environment. The comfort temperature is a function of the air temperature and the mean radiant 

temperature [18]. 

Thermal comfort in an indoor area is related to the heat exchange between the human’s body 

and the environment. Moreover, it depends on the individual’s metabolism, the nature of the 

activity engaged in, and the body’s ability to adjust to a range of ambiance [19]. 

Macpherson identified six factors that affect thermal comfort in the building as follows: 

 Indoor temperature 

 Relative humidity 

 Mean radiant temperature 

 Air velocity 

 Clothing level 

 Metabolic rate  

Thermal comfort can be achieved in different contribution of each individual parameter as well 

as their combinations with other parameters. There are other aspects of building services which 

affect the comfort of occupants. In buildings where the occupants control their environment, 
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variability may result from people adjusting conditions to suit themselves which affects the 

comfort of other occupants. The results of some surveys show the indoor thermal comfort 

related to the outdoor climate. Moreover, time is the main factor in comfortable temperatures. 

The rate of change of time is typically quicker than weather seasonal fluctuations but longer 

than the momentary fluctuations that occur in the surrounding microclimate [20]. 

Many scientists worked on different designs for climatic models so that each has positive points 

for architectural performance. In different stages of architectural design, two groups of these 

models apply [21]. 

1) Defining Comfort Conditions 

a) Fanger thermal equation 

b) Adaptive model 

2) Design Strategy Models 

a) Building bioclimatic charts 

i) Olgyay bioclimatic chart 

ii) Givoni bioclimatic chart 

b) Mahoney model 

The energy used in the thermal comfort of buildings, includes ventilation, heating and cooling 

systems accounts for more than 60% of the total energy consumption in buildings.  

Various factors have different thermal effects. The commonly factors found in conventional 

design are air temperature and air humidity. It affect only 6% and 18% of our understanding of 

thermal comfort, while the temperature of surrounding surfaces and the air velocity account for 

50% and 26% of thermal comfort perceptions, respectively. 

Therefore, the wind and the sunlight in Hot-Dry regions play an essential role in achieving 

thermal comfort. As, they were two major factors in the design of the traditional architectural 

elements that helped provide comfortable conditions for habitants in this climatic.  

 

Natural ventilation 

Natural ventilation is the process of supplying fresh air and removing stale air that can reduce 

the costs of the building construction and operation, and energy consumption. It is one of the 

fundamental methods in the energy-efficient design of buildings that can play a significant role 
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in ventilation and cooling in consequence of improving indoor air quality and providing 

adequate thermal comfort in certain climates.  

In natural ventilation of a space, wind pressure and stacks effects cause the circulation of air. 

Different building elements such as window, wind catcher and solar chimney are used for 

natural ventilation. 

Principles and elements of natural ventilation 

Natural ventilation is the use of natural forces to help and guide the movement of air through 

the building [8]. Natural ventilation originates from two natural forces, pressure differences 

created by the wind around the building; and temperature differences or both as driving forces.  

1. Wind Driven Ventilation 

In nature, wind is used as motive force for providing ventilation. The flow of the wind on a 

building face will produce a positive pressure on the windward side and a relative negative 

pressure on the leeward side. This pressure difference, as well as, the pressure differences 

inside the building will drive airflow. (See figure 4) 

 

 

 

 

Figure 2. Pressure pattern on around the building. 

There are many factors which play an active role in capturing the wind and providing 

ventilation in the building. The building shape becomes a crucial factor that can create wind 

Negative pressure 

Positive pressure 
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pressures, which causes the air to flow through the openings of the building. The other factors 

include the following: 

 Building orientation and location, so that the windward wall is perpendicular to the summer 

wind.  

 Window typologies and operations; 

 Types, shape, and size of openings;  

  External elements and urban planning. 

 

2. Stack Ventilation 

Temperature differences between the inside and outside of buildings cause stack effects. When 

the inside building temperature is higher than the outside, warm indoor air will rise and exit 

thus being replaced by cooler, denser air from below. It can be induced by temperature or by 

humidity. On hot summer days with no wind, the relatively stable airflow, naturally occurs by 

the stack effect. Moreover, because airflow does not rely on the pressure and direction of the 

wind, there is greater control in locating the air intake. The inlets should supply air from the 

low level in the room. The outlets should be located across the room and at a high level. 

Types of natural ventilation are due to wind and buoyancy through cracks in the building 

envelope or purposely installed openings. 

a) Single-Sided Ventilation: 

Limited to zones close to the openings. Single-sided ventilation is driven by wind-induced 

turbulence (buoyancy can also contribute), and the depth of the space that can be adequately 

ventilated is limited. 
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b) Cross-Ventilation: 

Cross Ventilation is driven by wind. The depth of the building ventilation is limited.  Buildings 

utilizing the stack ventilation principle are characterized by two or more openings on opposite 

walls -covers a more extensive zone than the single-sided openings.  

 

 

c) Stack Ventilation: 

Stack ventilation is mainly driven by buoyancy (wind can also contribute) and can ventilate 

deep plan buildings. Buildings utilizing the stack ventilation principle are 

characterized by ventilation openings in the façade [22]. 

 

 

 

 

 Historical Design Strategies and Climate-Responsive Building Elements in 

Hot-Dry Climate 

In traditional buildings, climate has a significant effect on the design of sustainable living 

spaces. Before the advent of the industrialization, humans have utilized some innovative 

strategies to provide thermal comfort in Hot-Dry climates [23].   

Hot days with low humidity are the principal problem in Hot-Dry areas.  High temperatures 

during the summer months increase energy demand for cooling systems in buildings. 

Increasing energy consumption leads to higher emissions of air pollutants and greenhouse 

gases [2].  
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In most countries, there are excellent examples of vernacular architecture, as well as, many 

contemporary architects by embracing some of the principles of climatic design, have created 

interesting examples of low energy buildings adapted to the climate.  

The purpose of this section of the study is to introduce traditional climate-responsive building 

elements in Hot-Dry regions and their functions.  Therefore, the physical aspects of the climatic 

and vernacular architecture have been focused on. Mofidi [24] has introduced some 

architectural aspects, derived from the analysis, in the Hot-Dry climate, which included the 

essential design strategies. The analysis of the cases demonstrates some similarities and 

contrasts in elements and principles that are different in history and culture but being similar 

in climate. Taleghani et al. [7] introduced natural climatic strategies and then, categorized these 

characteristics into three levels: a) macroscale, b) medium scale, and c) microscale. These 

levels described the performance of the strategies. Moreover, they focused on points that can 

be learned from past experiences to improve energy consumption patterns in contemporary 

architecture. Maleki [25] has demonstrated the usage of traditional architecture in a Hot-Arid 

climate of Iran as a sample of sustainable architecture. He has described and illustrated some 

essential building elements in Hot-Dry regions. Figure2 illustrates some architectural strategies 

and elements in the Hot-Dry climate are stated. 

 

Figure 3. The schematic view of climate-responsive building elements in Hot-Dry regions 
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Introverted Building and Courtyard 

The most popular element of traditional buildings which was intended to create a better inhabitable 

microclimate was the courtyard. It is basically an atrium in many shapes and spatial layout. The 

courtyard has been a social space with an environment function, planned to increase daytime cooled 

spaces. Commonly, there was a sunken courtyard with some plants and a shallow pond to produce fresh 

and cool place for inhabitants by evaporative cooling. The diffusion of water through the canal into the 

courtyard floor, made of porous stone, contributed to the effect of evaporative cooling. The deep 

courtyards with high walls have minimized the hours of direct sunlight during the daytime, created a 

suitable place for summer [26]. Shading and increasing RH have influenced the comfort condition of 

the yard. Courtyards have been used for thousands of years and are common architectural 

features in many areas including the Middle East and the Mediterranean. It is a common natural 

ventilation and cooling technique that improves comfort conditions by modifying the 

microclimate around the building [8] (Figure 3). Table 1. shows the solutions of a courtyard for 

comfort conditions. 

 

 

Figure 4. A courtyard of a traditional house located in Yazd, Iran 
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Table 1. How courtyard responded to climatic conditions 

 comfort functions solutions climatic elements 

Courtyard  

 

 Day time cooling  

 Increase ventilation 

 Increase relative 

humidity 

 Minimizing hours of 

direct radiation 

 Dimension of walls 

 Orientation of courtyard  

 Utilizing evaporative 

cooling 

 Plants 

 Shallow pond, Fountain 

 Solar radiation 

 Air movement 

 Humidity 

 

Porch 

 The porch is a unique space in traditional architecture, with one side entirely open, typically 

to a courtyard [7].  The porch was utilized to improve privacy and security as well as to control 

the entry of light for the spaces that didn’t have direct light, while natural ventilation was 

induced by windows that open to the porch. The location of the porch is usually on the south 

side of courtyards with the open side of the room facing to the north [27]. Table 2 presents the 

solutions of the porch for comfort conditions. 

Table 2. How porch acted to climatic conditions 

 comfort functions solutions climatic elements 

Porch 

 

 Filtering direct radiation 

 Increase ventilation 

 Orientation of porch 

 Dimensions 

 Windows 

 Solar radiation 

 Air movement 

 

 

Wind Catcher 

 One of the significant climate-responsive building elements of Hot-Dry climate which was 

used for cooling and natural ventilation is Wind-catcher.  A wind towers or a wind catcher is 

small tower with a height between 5 to 33 m raised on the roof of a building. It acts as a cooling 

system to provide favorable ventilation and a pleasant interior environment utilizing the widely 

available renewable energy of wind [28].  A wind catcher needs a driving force to operate 

where the first force is buoyancy effect, resulting from naturally occurred temperature 
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difference. The second force is the external wind [29]. The flow of the wind on the internal 

blades of the wind catchers will produce a positive pressure on the windward side, while the 

leeward openings meet a negative pressure. Therefore, like a ventilation system the hot and 

polluted air is drawn out [30]. It should be mentioned, that in the past architectural construction 

has taken advantage of masonry blocks and thicker walls and roofs to prevent the fast heat 

transfer from exterior to interior of the building or vice versa. 

Wind catcher was used for improving natural cooling in two ways-displacement, and 

evaporative cooling. Evaporative cooling is a natural phenomenon that occurs when moving 

air passed over a water surface as clay jars, porous pottery, and wetted straw [26, 31]. The wind 

catchers were in many different sizes, directions and heights, due to the specific breeze flow 

related to environmental areas. Generally, their location in the building plan was determined 

based on the four main geographical directions or according to wind power and direction [32]. 

A wind catcher comprises a chimney, stalk, catgut, chain, and shelf. Table 3 shows the 

solutions of wind catcher for comfort conditions. 

Table 3. How wind catcher operated to climatic conditions 

 comfort functions solutions Climatic elements 

Wind catcher 

 Cooling 

 Ventilation 

 Increasing relative 

humidity 

 Orientation of opening 

 Tower height 

 Materials 

 Water surface 

 Solar radiation 

 Air movement 

 Humidity 

 

Roofs in the Shape of Domes and Vaults 

One of the types of the roof in Hot-Dry regions is the dome which has been as the covering 

roof for mosques, water reservoirs, and shopping centers. This strategy was commonly 

employed for closed and semi-opened spaces [24]. Having the convex and unbalanced surface 

would create a different impact angle of the sunbeam on the dome. Moreover, since a portion 

of the ceiling always remains in the shade during morning and/or afternoon times, it will benefit 

more from self-shadowing. The surface form of the roof also increases contact surface with the 

outdoor winds. The distance between the dome and the floor causes the accumulation of warm 

air under the dome that improves the effectiveness of the thermal insulation. On the other hand, 

the curved shape of the dome helps to increase solar reflectance and thermal emittance during 
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the night which can result in a better cooling performance. Table 4 indicates the solutions of a 

roof for comfort conditions.  

Table 4. How roof responded to climatic conditions. 

 comfort functions solutions climatic elements 

Roof  Improving night cooling 

  Improving the 

effectiveness of the 

thermal insulation 

 Convex form 

 Unbalanced surface 

 Material 

 Solar radiation 

 Air movement 

 

 

Wall 

In arid regions, there are significant diurnal temperature fluctuations within the hot seasons. 

Walls, in traditional buildings, were made of mud, clay brick or a blend of mud plaster, straw, 

and mud with high thickness. Due to its thickness and material characteristics, a wall would 

absorb heat from 9 AM to 12 AM from solar radiation then the heat would penetrate the 

building until the pre-dawn hours. This strategy was applied to increase the time-lag and to 

retain some heat for nighttime warming. 

The extensive thickness of the walls, approximately one meter, led to improve the thermal 

insulation, subsequently made the walls to work as a thermal barrier and avoid thermal 

emittance to the interior during the day. Therefore, a large portion of the absorbed heat transfers 

to the ambient by radiation and convection. Consequently, the walls provide enough comfort 

for residents. Table 5 shows the solutions to a wall for comfort conditions. 

Table 5. How wall acted to climatic conditions. 

 comfort functions solutions climatic elements 

Wall  Loses the heat through 

transferring 

 Thermal insulation 

 Delays the heat transfer from 

outside to inside (thermal lag) 

 Thickness of wall 

 Materials 

 Solar radiation 
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Window  

The primary purposes of a window were the entrance of daylight, ventilation, and views. In the 

Hot-Dry climate, windows were mostly applied for ventilation [33]. Windows would often be 

divided into smaller parts by thick wooden frames which provided more control of light by an 

edge around the window as a canopy in different sizes. The glass part was reduced in size and 

was made with the least glass because glass is not a good sound and heat insulator [26]. 

Moreover, in traditional houses of Hot-Dry climate, the window glass was designed in different 

colors and ornaments. Windows with colorful glass provide enough sunlight, block the intense 

sunshine, and create beautiful patterns in the room. The fact that clear glass and other non-

opaque materials have relatively less solar transmission insulation value with very little loss of 

heat energy. Colored panes have provided further diffusion of light as well as privacy in 

buildings [33].  

Windows with latticework and screen are one of properties of the climate-responsive traditional 

buildings. They allow the air and light to enter through a filtered rate with the consideration of 

increasing privacy for the residents. These could be constructed from metal, stucco and what 

is typical of the local structure. Latticework was also often made of wood, especially in 

residential sites, e.g. ‘Moucharaby’ and ‘Orsi’. Table 6 presents the solutions to the window 

for comfort conditions.  

Table 6. How window reacted to climatic conditions. 

 comfort functions solutions Climatic elements 

Window  Control of solar radiation 

 Ventilation 

 

 Size 

 Breaking of window  

 Canopy 

 Colorful glass 

 Lattice work 

 Solar radiation 

 Air movement 

 

 

Wind Catcher in Detail  

Wind is the movement of air or gusts from high-pressure areas (highs) to low-pressure areas 

(lows). Spatial differences in the density of the atmosphere make air movement above the 

Earth's surface. Earth's surface consists of water, and land mass, which their absorption of solar 
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radiation is not equivalent [34]. Winds can be affected by the interaction of global, and regional 

patterns created by the sun's differential heating effect on land, forest, and water, and more 

locally, by topography. 

As mentioned, wind plays an essential role where as it is a significant factor in architectural 

structures in the Hot-Dry regions  [28]. Architects consider the effect of wind on thermal 

comfort through convection or ventilation, and air penetration in interior spaces. 

 

Figure 5. A four-sided wind catcher located in Yazd, Iran 

At ancient times, wind catchers were used similarly to the modern air conditional systems in 

warm and dry areas. The date of the earliest historical evidence of a wind catcher related to the 

fourth millennium BC, a simple example of it is found in a house on the southern slopes of the 

Alborz Mountains in the northeastern part of Iran. Wind catcher couldn’t be used in the regions 

where were vulnerable to sand-storms and warm winds even in valleys [7]. 

Wind catchers have been used in countries with Hot-Arid climates for centuries. They have 

been on top of ordinary houses and water cisterns as well as mosques [25]. A wind catcher 

consists of a tower that seems like a chimney with one end in summer living quarter of the 
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house, and its top at a certain height on the roof. It was used to provide natural ventilation and 

passive cooling for the interior spaces of buildings by convection and evaporation of renewable 

energy of wind [28]. It led the suitable wind into the living environment for the modifying of 

the heat and the adjustment of the temperature in terms of thermal comfort [35].  

In Hot-Dry regions, it is necessary to increase humidity rate. The airflow initially passed 

through a stone pond and fountain, and then entered the building, which resulted in transferring 

moisture to other building spaces. In some places, wetted mats or thorns were placed inside the 

wind catcher to enhance the humidity and coolness of the airflow. In these areas, the hot 

weather had the potential effect of causing water to evaporate quickly in turn develop cooling 

in the living spaces and relative humidity in the air, thereby reducing the heat and drought [31]. 

Generally, the orientation of the wind catcher is based on the four main geographical directions 

as well as, wind power and the prevailing wind direction [32]. 

This system had different names in different countries, as it was called “Baud-Geer” in Iran 

and “Malqaf” in Arab countries. Malqaf was a bidirectional wind catcher which was normally 

combined with another architectural element known as “Salasabil” that was a wavy marble 

plate linked to a source of water [36]. 

 

 

Figure 6. A cross section of air path in conventional wind catcher [37] 

Wind catchers had diverse designs that have roots in the personal experience of architects, the 

suitability, wealth and social status of homeowners. The height of the tower, the passage section 

of the air, the location and number of openings, and the placement of the tower accordingly 

varied to suit  its cooling performance [38]. 
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A conventional wind catcher consists of a cabinet, shaft and blades. Cabinet is the head part of 

wind catcher which includes airflow transmission duct. Further, shaft is located between the 

cabinet and the roof. Bricks and adobes elements which divide wind catcher opening into 

smaller opening are blades. 

The blades are raised in two main and subsidiary partitions within the shaft. Parapets as main 

blades continue to the center part of the shaft. As regards the subsidiary blades are the wind 

catcher s wings. [39],  [28]. The role of the blades is not only to divide the wind catcher to 

smaller shafts and increase the air motion cause of buoyancy effect, but also to meet the 

structural requirements of the system. Blades are placed in columns in different shapes (See 

table 7). 

 

Table 7. Typology of wind catchers with oblong plan [28] 

 Blades  form Cross  plan 

1 
Wind catchers with 

X form of blades 
 

2 

Wind catchers with + 

form of blades and 

equal canals 
 

3 

Wind catchers with + 

form of blades and 

different canals 

 

 

4 
Wind catchers with 

H form of blades 
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5 
Wind catcher with K 

form of blades 
 

6 
Wind catcher with I 

form of blades 
 

 

The Different Kinds of the Traditional Wind Catcher 

In different reviews, several types of the wind catchers categorized that based on their tower 

height, cross-section, number of openings, orientation and also their position on the building 

plan.  

In addition to the type, wind catchers have been designed using different forms and plans such 

as circle, octagon, polygon, square and oblong. There was almost no triangular form and only 

rare cases of wind catcher with a circular plan have been observed [28]. 

Location of wind catcher on the building plan varies. There were three main strategies 

regarding to the location of wind catchers: 

1. Placing the structure behind the parlor adjacent to the courtyard 

2. Placing it on the northern portion of the parlor 

3. Constructing it at one corner of the courtyard having no direct relation with the 

Parlor [40]  

Table 8 summarizes the main characteristics of wind catcher based on the climate zone. 
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Table 8. Comparing various wind catcher in the Middle East according to different climatic zones [40] 

 

 

Moreover, wind catchers have usually various openings in terms of the wind direction. In cities 

where the suitable wind blows from a specific direction, the air trap has been kept open in one 

direction and closed at the all other sides [7].  

1. One-sided wind catcher 

2. Two-sided wind catcher 

3. Three-sided wind catcher 

4. Four-sided wind catcher 
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Working Principles of the Traditional Wind Catchers  

Extensive research has been carried out using CFD and full-scale tests on different types of 

wind catchers to determine the forces that contribute to the airflow through the system. The 

wind catcher’s performance was affected by wind speed, temperature difference, location and 

number of openings in the building.  There were two driving forces to operate. The first force 

was the external wind and the second force was buoyancy effect due to the difference in 

temperature.  

Wind Catcher Function According to Buoyancy Effect  

When wind speed is almost zero, induced air movement results from differential buoyancies of 

warm and cool air inside the building. In these circumstances, the wind catcher acts according 

to the temperature difference. During the day, because the sun hits on the southern face of it, 

the internal and external walls absorb a lot of heat, so the air temperature inside the wind catcher 

increases and goes upward. This creates a vacuum inside the living area and takes the cool air 

from the courtyard into it. Moreover, the existing air in the northern ducts is drawn [29]. On 

the contrary, during the night, the air outside become cold, and the cold air moves downward. 

The heated adobe walls of the wind catcher cool off at night. The similar reaction of the walls 

related to the construction produces a vacuum in the open space of the courtyard. This produces 

air circulation through the wind catcher resulting in the natural ventilation of the home. 

Wind Catcher Function According to External Wind 

When there is minimal wind outside, the performance of a wind catcher is more governed by 

the difference in air pressure. The higher density of the air on the surface exposed to wind 

makes the air pressure positive, while pressure is negative in the leeward opening [29, 30]. 

Figure 7 shows how this difference of pressure creates air traction and suction in the wind 

catcher. 

There were two ways for natural cooling of the wind catcher; displacement, and evaporative 

cooling. Evaporative cooling is a natural phenomenon that occurs when moving air passes over 

a wetted medium or water source. Evaporative cooling technique is beneficial in hot and dry 

areas because the temperature considerably reduces and the moisture level increases [26]. 

Generally, evaporative cooling in traditional architecture was used in two ways. The first way 

rely mostly of landscaping system. The airflow that passes through rows of trees, water 

fountains, and above ponds, springs, or wet cover becoming cool and make the space cooler. 
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The second way was the use of a wind catcher, in which the circulated air cooled down when 

the wind passed upon the water pond or through the moist walls [34]. 

 

 

 

 

Figure 7. Traction and suction in wind catcher 
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Chapter 3 

Literature Review 

The objective of this section is to review and provide comprehensive literature on wind catcher 

systems for space cooling and ventilation. Considering the goals objectives of this research, 

the literature review results are categorized into three different groups to achieve better 

conclusions. 

 

Review on the Studies with Emphasis on Components Optimization of 

Traditional Wind Catchers   

Several researchers have analyzed various designs of wind catchers. 

Montazeri et al. [38] have investigated numerically, analytically, and experimentally the 

operation of a two-sided wind catcher. Results demonstrate that the maximum performance is 

achievable when air incidence angle is closer to 90°. At this incident angle, the wind catcher 

efficiency increases approximately 20% more compare to the zero incidence angles.  

Elmualim et al. [41] have carried out empirical and computational fluid dynamics (CFD) 

simulations to evaluate the performance of square and circular section wind catchers for natural 

ventilation applications in buildings. The results indicated that the performance of the system 

depends mainly on the speed and direction of the dominant wind. Moreover, the outcome 

shows that the efficiency of the four-sided wind catcher is much higher than the circular one in 

the same wind speed. Furthermore, it agrees with Montazeri findings. Montazeri [42] has 

examined the ventilation performance in wind catchers with a different number of openings, in 

order to evaluate how the number of openings affects the hydrodynamic reaction of wind 

catchers. The experimental wind tunnel, smoke visualization testing and computational fluid 

dynamic (CFD) were modelled. It illustrated that the number of openings was the main factor 

in the performance of wind catcher systems. In addition, a rectangular system could provide a 

higher efficiency compare to a circular plan.   

Dehnavi et al. [43] have studied the effect of physical properties of square wind catchers on 

their performance and found the optimum characteristics of square wind catchers for best 



28 
 

performance. Likewise, they have found the most efficient in the form of a squared wind 

catchers with the crossed blades. 

Ghadiri et al. [44] have surveyed the wind catcher elements in the traditional architecture based 

on their physical characteristic and parameters. They used ANSYS Fluent software for 

simulation, which showed the impact of different square wind catcher’s plan geometry on the 

indoor ventilation rate. The results indicates that the ventilation rate in the cross form of the 

blades is higher compare to other investigated geometries.  

In another research, they [44] have investigated four-sided wind catcher performance using a 

numerical method. In this study, CFD simulation was utilized to determine the effect of height 

on the ventilation rate of the wind catcher room. Based on the research findings, the height of 

the wind catcher influences the ventilation rate, wind speed, and volume flow velocity at the 

different opening ratios of the wind catcher.  

Mahdavinejad et al. [45] have evaluated the YAZDI-wind catcher4 function using an analytical 

model and a simulated case study as well as theoretical modelling. The results show that 

YAZDI wind catcher with four openings has a positive performance throughout the year. 

Zarandi [28] has assessed typology of the wind catchers by the physical analyzing of the 

thermal behavior of conventional wind catchers in Yazd . She has analytically and numerically 

studied 53 conventional wind catchers with an optimum operation and recorded their 

specifications. Results illustrate the general characteristics of wind towers with optimum 

performance. 

Masrour et al. [46] have examined the air circulation in the traditional wind catchers and 

buildings. They have compared the mass flow rate of intake air into the wind catcher and 

building at various wind speeds and directions during the day. The research results can be used 

for designing better wind catchers with higher performance. 

Sarjito [47] has investigated the wind catcher geometry to define the optimum geometry of a 

wind catcher. All simulations were carried out using ANSYS CFX; Moreover, other researches 

have been carried out by Yavarinasab and his colleague [48]. They have investigated and 

analyzed the relationship between some important factors of wind catchers such as length, 

                                                           
4 one of the traditional wind catcher types in Iran. 
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width and height as well as the area of the room associated to it. In two separate studies, the 

effect of the shape of the wind catcher’s roof on its performance has been studied. 

Dehghan et al. [49] revealed that the geometry of wind catcher’s roof and the approaching wind 

direction strongly influence the flow pattern, the internal pressure field and induced airflow 

rate inside the wind-catchers. Moreover, Esfeh et al. [50] have investigated experimentally and 

theoretically the influence of wind speed and direction on the ventilation capacity of one-sided 

wind catchers, which were constructed with flat, inclined or curved roofs. The results indicate 

that wind catcher with curved roof performed better in the test than other types of wind 

catchers. 

 

Review on the Studies of the Wind Catcher Integrated with Evaporative 

Cooling System (WCIECS).   

Bahadori is a pioneer in research on wind catchers, who was involved in many researches 

related to wind catchers and their efficiency for almost 40 years. He has introduced two new 

designs of the wind catchers including wind catchers with wetted columns and wetted surfaces.   

Bahadori et al. [40] examined the new designs of wind catchers theoretically and 

experimentally and compared their performance to the conventional wind catchers. Results 

show that both new designs performed better than the conventional wind catchers. 

Furthermore, it identifies the strengths and weaknesses of each of the systems in different 

environmental conditions. 
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Figure 8. Cross-section of a wind catcher with wetted column [40] 

 

Figure 9. Cross-section of a wind catcher with wetted surfaces[40] 

 

In a thesis conducted by Elzaidabi [51] an indirect evaporative cooler system has been 

constructed by combining a modified wind catcher and a diamond-shaped psychometric energy 

core (PEC) unit. This work evaluated the proposed systems for different parameters such as 

wind velocity, fan velocity, and water flow rate numerically and experimentally. Results show 

that the system has had good performance with over 80% cooling capacity. 
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Pearlmutter et al. [52] have presented a multi-stage down-draft evaporative cooling tower 

(DECT). In this system, water spraying in the upper part of the tower makes the dry ambient 

air cooler. Then the cool air which is now heavier moves to the bottom of the tower and mixes 

with other air stream in the secondary inlet and the mixture is cooled by evaporation. In addition 

to the theoretical analysis, the paper depicts experimental findings on temperature reduction, 

water consumption, and cooling output.  

 

Figure 10. multi-stage down-draft evaporative cooling tower Model [52] 

 

Kalantar [53] has experimentally and numerically studied the cooling performance of a wind 

catcher with water sprayers system on the top of system in a hot and dry region. It signifies the 

important effect of the evaporative cooling in the hot and dry region because the temperature 

decreases considerably if the system is embedded in the wind catcher. 

Saffari et al. [54] have carried out a numerical study on the wind catcher consisting of wetted 

curtains hung in the tower. In another research, Haghighi et al. [55] have evaluated the 

performance of a wind catcher that was coupled with shower cooling system to meet thermal 

comfort conditions.  

Engelmann et al. [56] have tried to simulate a typical office building to investigate the potential 

of different ventilation and cooling strategies. They demonstrate that active cooling provides 

good thermal comfort in warm and hot climates with high and fluctuating cooling loads. Amer 
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et al. [57] reviewed the recent developments of the concerning evaporative cooling 

technologies that could potentially meet adequate cooling comfort, reduce environmental 

impact and lower energy consumption in buildings. The review has been conducted to cover 

direct evaporative cooling, indirect evaporative cooling and combined direct-indirect cooling 

systems. 

Some other researchers have been accomplished on the utilization of evaporative cooling in the 

different segment of a wind catcher. 

Janajreh et al. [58] have suggested the wind catcher potential for providing occupants comfort 

conditions under trans-evaporative cooling. The wind that captured by wind-catcher is 

impregnated with moisture which consequently causes reducing the temperature and increasing 

the density of the air. 

Goudarzi et al. [59] have designed and fabricated a new design of wind catcher constructed 

from a four quadrant peak rooftop, nozzles, and turbines. They found that numerical results 

agree well experimental results.  

 

 

Figure 11. Goudarzi et al. a new design of wind catcher constructed from a four quadrant peak rooftop, nozzles, and turbines 

[59] 

  



33 
 

Review on the Studies of the Wind Catcher Integrated with Solar Chimney 

System (WCISCS).  

Wind catcher with the proper absorption of outside airflow and directing it to the indoor space 

acts as a passive natural ventilation system. In recent years, natural ventilation has been 

recognized as a method of saving energy in buildings. Installation of one heat source inside 

any wind catcher facilitates the movement of airflow due to buoyancy effect. Based on a study 

carried out by a group of scholars on the thermal comfort of residents of three buildings, it was 

revealed that there is a negative relationship between thermal comfort and having a strong heat 

source such as strong solar radiation [36]. However, the result of smoke visualization and CFD 

simulation showed that installation of a heat source improves the performance of wind catcher, 

particularly at lower wind speeds [60].  

Sanchez et al. [61] analyzed and optimized the aerodynamics of wind catchers and wind-

extractors and also the geometry of their elements by using computational fluid mechanics. 

They presented a simple model as a result of their work. Wind extractor utilizes wind energy 

to induce airflow by centrifugal action. Centrifugal force created by rotating vanes, in turn, 

creates a low-pressure zone, which draws the fresh air from outside and replaces polluted 

air/hot air continuously. 

Elmualim [62] investigated the effect of the airflow control mechanism and the heat source 

inside rooms on wind catcher performance. Therefore, experimental wind tunnel and smoke 

visualization testing and CFD modelling were conducted. The result showed that the 

performance of the wind catcher depends significantly on the speed and direction of the wind. 

Furthermore, there is a decrease in internal temperature compared to the external in the 

presence of heat sources.   

Some studies have investigated the integration of solar chimney into a wind catcher. A solar 

chimney essentially is a solar air heater, which is designed to the maximum gain of solar energy 

and thereby maximize the air movement. Bansal et al. [63] proposed a system comprised of a 

wind catcher and a solar chimney. They indicated for low air velocities, the effect of the solar 

chimney is substantial in promoting natural ventilation. 

Maerefat et al. [64] have proposed using a system consisting of a solar chimney and an 

evaporative cooling cavity.  The research has studied the system's ability to meet the thermal 

requirements of residents and the effects of main geometric parameters on system performance. 
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The findings show that the system can make good indoor air condition under different 

conditions.  

 

Figure 12. Schematic diagram of solar chimney and cooling cavity [64] 

 

Tavakolinia in her thesis has introduced the use of a solar-chimney with an underground air 

channel combined with a wind-catcher to create thermal comfort for inhabitants. The end 

product improves air quality and thermal comfort levels in a single story building, while the 

system reduces energy use, CO2 emission, and pollution [37]. 
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Figure 13. A cross section of the proposed wind- chimney [37] 

 

Abdallah et al. [65] have developed the integration of direct evaporative cooling tower with a 

solar chimney multi-zone thermal ventilation model. The findings show that the system caused 

an acceptable decrease in indoor temperatures. Moreover, they numerically investigated the 

effect of solar chimney parameters on wind catcher parameters as a second phase of the new 

integrated model. The result indicates that the performance of the system is very high in the 

hottest days of the year [66]. 

Mahdavinejad and Khazforoosh [67] have presented a pattern in which combination of wind 

catcher and chimney in one of Kashan(Iran) house for optimum ventilation efficiency so that 

the energy efficiency will be increased. 

 

Figure 14. The proposing pattern mechanism by Mahdavinejad and Khazforoosh [67] 
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Dehghani-Sanij et al. [68] have designed a new wind catcher that can rotate and set itself in the 

direction of maximum wind speed. As a part of system, a solar chimney is installed in another 

part of the building. The proposed design of wind towers can help to save energy. These wind 

towers can be used in most countries, especially in developing countries. The use of these wind 

towers reduces greenhouse gas, CO2 emission, and air pollution. 

Ansar et al. [69] performed various simulations on a combinatorial wind catcher-solar chimney 

system for a closed dwelling space. They revealed that substantial air motion could be attained 

within the closed region with such a combination. The solar chimney in such a system was 

found to be most effective for average heat flux on the absorber and lower ambient air 

velocities, while at higher ambient wind velocities, the main contribution for air current within 

the room was from the wind catcher.  

 

The Pros and Cons of the Existing Wind Catchers 

Sustainable architecture is seeking to minimize the negative environmental impacts of 

buildings, as well as increasing efficiency in the use of materials and energy. In the countries 

at Hot-Dry regions, due to harsh conditions and lack of access to modern heating and cooling 

system in ancient times, the architects had to rely on natural energies to achieve comfort [32]. 

The strategies used in traditional architecture are consistent with the concepts of sustainable 

architecture because these strategies have an approach to minimize energy consumption and 

improve thermal comfort. 

Wind catchers as traditional natural ventilation systems have been utilized to provide 

acceptable indoor conditions and maintain a healthy and comfortable living space, rather than 

using conventional mechanical ventilation. The controlling of the climatic influences on the 

building is the most critical part of the construction and design. Most votes in several surveys 

show strong sings of dissatisfaction with internal conditions from a mechanically controlled 

environment. Some studies have made clear that the operating of the mechanical system which 

completely separated from the outdoor environment, can even be far from comfort and health 

[70]. Moreover, natural ventilation has been a unique method for reducing energy consumption 

and cost [38].  
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Wind catchers have been used for cooling buildings using substitution with cool air instead of 

warm air. The system has used clean and fresh air at roof level compared to low-level windows. 

Furthermore, it can be combined with evaporative cooling to accelerate the cooling process. 

Despite all the advantages of using wind catchers, some researchers have questioned the use 

of wind catcher because insects and dust can easily enter. This aspect is critical in Southeast 

Asia and Africa where the Dengue and Malaria diseases kill thousands of people every year.  

Driven-flow to direct the air through the building in most modern and traditional wind catchers 

are the natural forces of wind pressure and stack effect as resulting from air buoyancy, which 

occurs due to temperature and moisture difference in indoor to outdoor.  However, as noted 

above (see section Working Principles of the Traditional Wind Catchers), when there is wind, 

the wind catcher is more applicable for heat dissipation rather than supplying ambient cool air 

as an internal air suction. When there is not adequate external airflow, the stack effect is 

negligible. As a result, the system ’s efficiency is lowered which causes the wind catcher to be 

inefficient at times and areas with low wind speed [36]. These conditions are also present in 

most newly designed systems. 

On the other hand, in Hot-Arid climate, the ambient air is usually hot and dry; there is often 

dust and sand in it that makes the unprocessed air insufferable [71]. In traditional wind catchers, 

airflow through the surface of the water, such as porous pots, and ponds was used to improve 

the natural cooling and air conditioning. Lack of control over the water evaporation process 

was the major drawback of the system. 

In the courtyard, as a traditional strategy in the hot and dry climate, the presence of trees, ponds 

and tall walls, made the air cool and moist. Placing a courtyard near the wind catcher has 

increased its efficiency and helped to improve structure performance. Due to the declination of 

size in the housing structure, the courtyard is incompatible to modern architecture. 

In the case of the proposed modern systems, in addition to the issues outlined above, and from 

an architectural point of view, some of them have a little resemblance to the traditional 

constructions that lead to a reduction in visual communication with the former ones. A survey 

of the literature reveals that the acceptable level of indoor comfort and savings in energy is 

based on the wind catcher integrated with evaporative cooling system. Furthermore, wind 

catcher and solar chimney were placed in two separate parts of the building as two different 

concepts, consequently, not united. 
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Originality 

The wind and the sunlight in Hot-Dry regions were two major factors in the design of the 

traditional architectural elements that helped provide comfortable conditions for habitants in 

this climatic [72]. 

Scholars debated the importance of the two driving forces in wind catcher- wind and buoyancy 

effect- some emphasize the first force as the primary motive of passive ventilation, while others 

emphasize the second force. Several of them have proposed buoyancy effect and the difference 

in the density of the air in inside and outside as the main force of passive ventilation in the 

structures.  Meanwhile, others have shown the effectiveness of these two forces equally.  

Test results using computational fluid dynamics have showed the ventilation efficiency of the 

system by external wind is 76% more than the buoyancy effect [73]. The study on four-sided 

wind catcher indicates that at 61.5 % of the wind incidence angles, the exhausting air to 

outdoor, is more than the sucked air from outside, although the proportion rates of the two 

flows are approximately equal to each other at other angles. [13]. Consequently, when there is 

wind, the wind catcher is more in a traditional mode as an internal air suction.  

Moreover, their studies have suggested that the installation of a window could provide 

additional external winds and could increase the internal air conditioning by 47% compared to 

only relying on buoyancy force. The optimal speed occurs when there is a window to strengthen 

the wind effect and a heat source to enhance the buoyancy effect [36]. 

However, in Hot-Dry areas, the windows need to be small to reduce absorbed solar radiation. 

Therefore, a separate ventilation system, passive or mechanical devices, could be an application 

to provide air movement while windows just have served natural daylight purpose [37]. 

A conventionally wind catcher is an internal air suction for the dissipation of the heat, rather 

than supplying ambient cool air, the applying of cooling equipment inside the system only leads 

to energy loss. The system attempts to increase the contribution of the buoyancy effect to wind 

pressure in the blown airflow into the building. 

Considering those two presented approaches: 



39 
 

1) The air passes through the wet pad units hanged in the air inlet opening which leads to a 

reduction in temperature and an increase in density of the air that subsequently results in 

the downward movement as the buoyancy effect [74]. 

2) In some conduits that are solar chimney, intensifying the buoyancy force cause the hot air 

to rise and leave the conduit. Then the fresh cool air is replaced through other channels. 

However, the only source for fresh air supply are the channels of the wind catcher. 

The wet blades section are used to increase the evaporative cooling capacity of the system. 

Moreover, to improve performance at the various wind incidence angles, the wind catcher is 

designed in four-sided shape and the pads units, around the vertical axis, can be rotated. 
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Chapter 4 

Proposed Wind Catcher 

Wind catchers are one of the oldest cooling systems that are employed to provide sufficient natural 

ventilation in buildings. This study proposed a four-sided wind catcher. The performance of the 

designed system was evaluated using two methods with the help of a laboratory scale model.  

 

Wind Catcher Description 

The designed device is a four-directional wind system that was equipped with two evaporative 

cooling parts (wetted blades and adjustable opening pads), supplemented with a solar chimney 

structure. The construction has a foursquare cross-section, and its dimensions have been 

determined using the results of the previous studies conducted by Bahadori at al. and 

Yavarinasab [40, 48]. Figure 15 illustrates the main components of the proposed system. 

 

Wind Catcher Components 

It comprises of a head, which is the upper part of the structure and includes a flat roof, some 

openings on four sides and hinged evaporative cooling units, two air outlets, solar absorber 

plates and grid screen mounted to prevent insect entry. The hinged pads operate like a filter. 

Likewise, the water sprayers which placed on the top of pads in intended to soak them. The 

hinged pads can be positioned in two different modes, opened and closed, using an ON/OFF 

switch in a swinging motion.  

The column, the middle part of the wind catcher, consists of some ceramic parapets which are 

located in the middle of the base of the column and extended to top of structure in the shape of 

“H”. Inside main conduits, there is a wetted blades section with vertical cloth curtains. Blades 

are erected from the bottom of the heat and is extended to the air distribution window. Water 

spraying pipes designed to sprinkle water on the curtains. The excess water is collected in a 

container located at the bottom of shaft and will be recirculated in the system.  

Moreover, two small conduits that located between warm air outlets of the room and the air 

outlets in the head act as a solar chimney.  A window, which deploys at the lower end of the 
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column, distributes the fresh and cold air (comes from the wind catcher) into the building. 

Other windows, on top of it, exhaust polluted air through of chimney to out. 

 

 

 

Figure 15. The components of the proposed wind catcher 
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Figure 16. The plan of the proposed wind catcher 

 Using wind catchers is generally considered as a smart way of utilizing wind energy directly 

in a building, which has provided thermal comfort and passive ventilation for building 

inhabitants in the Hot-Dry climate [43, 75]. In presence of a desirable wind speed, wind catcher 

acts as a ventilator in which the fresh air is taken into the building and the hot and polluted air 

discharged based on wind pressure [29]. Indeed, wind speed is the most dominant driving force 

for moving the air through the conduit. The proposed system attempts to augment the efficiency 

of the system using integrated parts and structure in which blown airflows into the building, 

while the wind speed is low. 

The water nozzles, which installed on the top of the pad unit and the blades section is intended 

to make them wet. Moreover, it increases the driving force of the buoyancy effect. The concept 

works based on the absorption of the relatively large amount of energy needed for evaporation 

of water from the air in the vicinity of the wetted surface. This action leads to a reduction in 

temperature and an increase in density of the air that subsequently results in the downward 

movement of the fresh air through the wind catcher [76].  

Ceramic Blades Cloth Curtains 

Solar Chimney  

Pad Units 
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The pad unit and the blades section support the system to retain a balance between the two 

essential parameters of evaporative cooling and ventilation to provide thermal comfort. 

Evaporation cooling is a passive cooling system, which is one of the most effective methods 

and known for creating thermal comfort in the hot and dry climate in the old architecture [77]. 

In this technique, as a physical phenomenon, the heat of air is used to evaporate water that 

results in air temperature reduction. It can be efficient in a dry climate where increasing air 

moisture content can improve the occupant's comfort [77]. 

 

 

Figure 17. The schematic view of the proposed wind catcher with open and closed pad 

  

The traditional wind catchers were a combination of the air inlets and outlets. Therefore the 

chimneys were considered as a part of the wind catchers in the past [39]. Some disparate 

conduits, made by blades in wind catcher, at a given time work as fresh air inlet duct. The other 

channels operate to exit polluted air based on the chimney effect, as the environmental 

conditions change, the flow pattern will reverse [28].  

The chimney effect is based on the principle that air density decreases with an increase in 

temperature. Depends on the sunlight direction, the airflow is heated in the conduits located on 

the side and flows upward. The difference in temperature between the interior and exterior 
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parts and between different regions creates different pressures and result in air currents [25]. 

Due to the mass and heat capacity of the materials used in current and traditional wind catchers, 

the amount of cooling energy stored is relatively small. This amount of energy cannot meet the 

cooling needs of a hot day. 

A solar chimney essentially is a solar air heater, which is designed to maximize the absorbance 

of solar energy and thereby the air movement [78]. As air is a transparent fluid, it cannot be 

directly heated by solar radiation. Therefore, a solar chimney must contain a solar absorber; a 

surface made of a material which absorbs solar radiation, and allows solar heat to be transferred 

to the air using convection. This converts solar energy (heat) into kinetic energy (motion) of 

air [77].  Solar collectors can be used as aids to promote stack effect ventilation and wind 

catcher performance in times or areas of little wind speed [8, 63]. 
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Chapter 5 

Evaluation of the Proposed Wind Catcher 

 

In the Hot-Dry climate, high temperature during hot seasons, diurnal temperature fluctuations, 

as well as intense sunlight and relative drought influence the climatic specifications. Since the 

thermal comfort depends greatly on the variable characteristics, the wind catcher could play a 

decisive role in providing comfort to the inhabitants by cooling the air and increasing the 

relative humidity of the building space without letting the sunlight to enter. 

The proposed wind catcher system intended to address the residents' thermal comfort needs 

better. In order to analyze the performance of the system, a simplified prototype based on the 

principles of the proposed system was developed. The pad unit and the blades section that acts 

as evaporative cooling techniques and a solar chimney which intended to improve ventilation 

are two main mechanisms that have been integrated into the design of wind catcher. This simple 

model was evaluated in two stages, including performance evaluation of the evaporative 

cooling system as well as the analyzing the effect of including a solar chimney presence within 

a wind catcher. 

 

Modeling of the Proposed Wind Catcher 

 Prototype Description 

The prototype had a height of 2.5 m, cross-section of 0.40 × 0.20 m, including the input conduit 

and the air outflow conduit (solar chimney), with the air openings extended 0.40 m above the 

device. Table 9 depicts other dimensions of the wind catcher.  
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Figure 18. The metal structure of the model before installing the wall 

 

The walls were constructed from a 6 mm thick polycarbonate plate with its outer surfaces 

covered by a shiny aluminum sheet to minimize solar radiation absorption. Inside the input 

conduit, there is a blade section with a cross (+) shape configuration which was made up of 

four gunny sack curtains with a width of 0.10 m and length of 1.80 m.  

 

  

Figure 19. The blade section with plus shape and gunny screens 

 

A 1 cm thick straw layer, constructed as a pad, was installed in the air inlet opening.  
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Figure 20. Constructed pad is installed in prototype wind catcher 

Drip tubing is used to spray water on the pad and the blades.  

 

Figure 21. Drip tubing mounted on blades 

Output Tube for Pad 
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A window, which deploys at the lower end of the system is the outlet of system. Moreover, the 

opening in south is blocked by a panel, therefore the structure can operate as a one-sided wind 

catcher. Table 9 summarizes the geometrical specifications of the system. 

 

Table 9. Geometrical specifications of the prototype system 

S. No. 

Geometry  

Measurement 

 

1 Area of wind catcher opening in north 0.1*0.4 =0.04 𝑚2 

2 Area of wind catcher opening in south 0.1*0.4 =0.04 𝑚2 

3 Room inlet opening area 0.16*0.15 =0.024 𝑚2 

4 Length of the collector (glazing) 0.25 m 

5 Breadth of the collector 0.1 m 

6 Area of chimney opening (inlet from room) 0.16*0.15=0.024 𝑚2 

7 Height of wind catcher 2.5 m 

8 Dimensions of wind catcher plan  

Inlet channel with plus blades shape)  

0.2*0.2 m 

Outlet channel (chimney)  0.1*0.2 m 
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Figure 22. A simplified longitudinal section of wind catcher and room 
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Figure 23.  Schematic diagram of the prototype wind catcher performance 

 

Evaluation Method of the Evaporative Cooling System  

Wind catchers cause natural cooling in two ways, displacement and evaporative cooling [54]. 

Evaporative cooling can be generated naturally when an airflow passes through a wetted 

medium or a water source. In the assembled structure, the pad unit and the blades section are 

soaked up with water spray and enhance natural cooling.    

Analytical Modelling 

An analytical modelling has established to assess the temperature and humidity variations 

of the airflow rate through the constructed wind catcher. Inlets opening is located at the top of 

the system in north orientation. Moreover, in this section the solar absorber plate is removed, 

as well as, the inlet openings on the other sides are blocked. Considering this assumption the 

system acts as a one-sided wind catcher. A window, which deploys at the lower end of the 

column is the outlet of system. 

Collector 
Evaporative cooling 
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 When the pad is closed, the air passes through the wetted straw, and the water evaporation 

reduces the temperature and increases the relative humidity (RH) of the flowing air. On the 

other hand, when the pad is open, the entering airflows parallel to the pad. So, the pad acts like 

a screen. 

The temperature drop of the air when passing through the wetted straw is obtained by the 

following expression [79]. 

𝑇𝑡 = 𝑇𝑎 − 𝜂(𝑇𝑎 − 𝑇𝑤𝑏) (1) 

where 𝜂 is the efficiency of the straws, 𝑇𝑎 and 𝑇𝑤𝑏 are respectively dry and wet bulb 

temperatures of ambient air (°C), and 𝑇𝑡 defines the air temperature after the pads (°C). The 

efficiency of the pad depends on the thickness of the straw (dp) in centimeter and airspeed 

through the pad (𝑣𝑖) in meters per second as the equation 

 

𝜂 = 𝑓(𝑣𝑖) + 𝐿(𝑑𝑝) 

 

𝑓(𝑣𝑖)

= {
−0.02325𝑉𝑖 + 0.899                                                                                𝑣𝑖 < 1m/s

−0.0452𝑉𝑖
4 + 0.26𝑉𝑖

3 − 0.635𝑉𝑖
2 + 0.57774𝑉𝑖 + 0.714             𝑣𝑖 > 1m/s

 
(2) 

 

𝐿(𝑑𝑝) = [0.04631 − 1.444 ∗ 10−3𝑑𝑝] ln
𝑑𝑝

2.5
 

(3) 

Since the evaporative cooling by the pad is assumed to be an isenthalpic process, the humidity 

ratio (𝜔) of the air behind the pad is given by the following expression 

(𝜔)𝑡 =
 𝐶𝑝𝑇𝑎 + (𝜔ℎ𝑔)𝑎 − 𝐶𝑝𝑇𝑡

(ℎ𝑔)𝑡
 (4) 

where 𝐶𝜌 is the specific heat of the air (J/(kg K)), T is the dry air temperature, 𝜔 is the humidity 

ratio of the air (kg/kg), and ℎ𝑔 is latent heat. 𝑡 and 𝑎 refer to the interior and exterior airflows, 

respectively. 

In the second part, the entering air passes through the conduits. To determine temperature and 

RH variations of the air inside the conduit, its height is divided to smaller parts (with a length 
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of 0.5 m) in which the wall and ambient temperatures, solar radiation, and wind speed were 

assumed to be constant. According to the trial and error method, the changes in the length of 

fewer than 0.5 meters are negligible. When the pad is open, it operates like the screens inside 

the conduit. A similar calculation has been considered for the open pad. Therefore, it assumed 

as the first part of the conduit unit.  

The energy balance equation for each part of the column can be written as [80, 81]. 

𝐼𝑠𝛼𝑏𝑠 + ℎ𝑜𝑏𝑠(𝑇𝑎 − 𝑇𝑠) + 𝐼𝑒𝛼𝑏𝑒 + ℎ𝑜𝑏𝑒(𝑇𝑎 − 𝑇𝑒) + ℎ𝑜(𝑏𝑤 + 𝑏𝑛)(𝑇𝑎 − 𝑇𝑛)

+ 𝑚𝑎̇ 𝐶𝑝(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) = 𝑚𝑣̇ 𝐿𝑣 
(5) 

where b is the area of the walls (m2), I is solar beam on the walls (W/m2), 𝛼 is the wall 

absorptivity (decimal), 𝑚𝑎̇  is the mass flow rate of the wind entering the wind catcher (kg/s), 

𝐶𝑝 is the specific heat of the humid air (J/(kg K)), ho is convection heat transfer coefficient of 

ambient air (W/(m2 K)). 𝐿𝑣 is the latent heat of the evaporation (J/g) and the subscripts s, e, w, 

and n refer to the south, east, west, and north walls of the wind catcher, respectively. 

The rate of the water vaporization is calculated by [82].  

𝑚𝑣̇ = ℎ𝐷𝐴𝑚(𝑤𝑐 − 𝑤𝑎) (6) 

where ℎ𝐷 is the mass transfer coefficient (g/(m2 s)), 𝐴𝑚 is wetted surface of the column (m2), 

𝑤𝑐 is the humidity ratio of the saturated air at the desired temperature. 𝑤𝑎 is the humidity ratio 

of the inner airflow. Mass transfer coefficient can be expressed as 

ℎ𝐷 = 
ℎ𝑖

𝐶𝜌
 (7) 

where ℎ𝑖  is the inner convection heat transfer coefficient of the air (W/(m2 K)) which was given 

by Equation (8). 

ℎ𝑖 =  2.8 + 3𝑣𝑖 (8) 

Finally, the cooling load calculated the various parts of the column as 

𝑄𝑐 = 𝑚𝑎̇ 𝐶𝑝(𝑇) (9) 

To obtain the air velocity inside the wind catcher, we use the expression [40, 79, 83].  

𝑓
𝐿

𝐷

𝑉𝑖
2

2𝑔
+ ∆𝑃𝑝 =

1

2
𝐶𝑝𝑤𝜌𝑉𝑤

2 +
𝑔𝑍𝜌

𝑅
[
1

𝑇𝑜
−

1

𝑇𝑎
] (10) 
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where f, L, D, Cpw, Z, vw, To, and R respectively show the friction coefficient of the conduit 

(dimensionless), length of the conduit (m), hydraulic diameter of the conduit (m), the pressure 

coefficient of wind (dimensionless), height of the wind catcher (m), wind velocity (m/s), outlet 

temperature of the wind catcher (°C), and the gas constant for air (J/(kg K)). ∆𝑃𝑝 stands for 

pressure drop in the opening pad which has been calculated using the empirical expression 

∆𝑃𝑝

= {
1.029𝑣𝑖𝑑𝑝

0.755                                                                                              𝑣𝑖 < 1𝑚/𝑠

4.9(0.1885𝑣𝑖
4 − 𝑣𝑖

3 + 2.091𝑣𝑖
2 − 1.42𝑣𝑖 + 0.4056)𝑑𝑝

0.755             𝑣𝑖 > 1𝑚/𝑠    
 

(11) 

 

Experimental Procedure 

In order to evaluate the performance of the system under real operating conditions, as well as 

to validate the obtained analytical expressions, a set of experiments were carried out during the 

month of May 2017 at the campus of Bozrgmehr University, located at Qaen (33°43′36″ N and 

59°11′04″ E) a small city at east side of Iran. According to Köppen and Geiger, this climate 

has been classified as a cold desert climate (BWk). The average temperature in the warmest 

month of the year is 27.6 °C. 

Since the wind speed was mostly fluctuating during the test period, a blower (Pars200 modle, 

Parskhazar co., Tehran, Iran) with an adjustable rotary speed was utilized to provide a constant 

air velocity inside the wind catcher’s conduit in north orientation. The tests were conducted at 

three increasingly levels of wind velocity through the conduit (1, 1.5 & 2.5 m/s). Moreover, 

the wetted pad is fixed at closed mode during the tests. 

Five temperature sensors (SMT160 moled, Tika co., Tehran, Iran) were used to measure 

temperatures of the inlet (opening is placed at the top of the system in north orientation), outlet 

(located at the bottom of device), and outer surfaces of the walls of the wind catcher as well as 

ambient. 

The sensors were connected to a personal computer through a temperature transmitter (TM 

1323 model, Tika co., Tehran, Iran). A solar power meter (TES 1333 model, TES co, Taipei, 

Taiwan) was utilized to measure solar radiation intensity on the south and east walls. Relative 

humidity (RH) of ambient air, the inlet, and the outlet of the wind catcher were determined 

using RH sensors (SUN-25H model, SUNWARD co., Tehran, Iran). Each test was conducted 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Qaen&params=33_43_36_N_59_11_04_E_region:IR_type:city(32474)
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in a time frame from 9 a.m. to 3 p.m. The data were recorded at 30 min time intervals during 

the day. Tables 10 to 12 show the reported weather data on through three days.  

 

  

Figure 24. The sensors were connected to a personal computer by means of a temperature transmitter 

 

Table 10.  Reported weather data for the first day 

Time 𝑇𝑎(°C) 𝑇𝑠(°C) 𝑇𝑒(°C) 𝑇𝑛(°C) 𝑉𝑊(m/s) 𝑉𝑖(m/s) 𝐼𝑠(W/m2) 𝐼𝑒(W/m2) RH 

09:00 27.00 29.60 29.40 26.20 2.5 1 520 612 14 

09:30 27.60 30.00 29.70 26.90 2.3 1 588 587 14 

10:00 27.90 30.50 30.30 27.40 2.9 1 633 566 13 

10:30 28.40 30.90 30.60 28.00 3.1 1 694 546 13 

11:00 29.00 31.30 30.80 28.50 2.5 1 734 532 13 

11:30 29.60 31.30 31.10 28.90 3.3 1 785 458 12 

12:00 30.00 31.40 31.30 29.30 3.4 1 805 365 12 
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12:30 30.60 31.20 30.50 30.00 4 1 810 279 12 

13:00 30.80 31.60 29.80 30.20 3.7 1 807 197 12 

13:30 31.10 31.80 29.20 30.90 4.5 1 777 142 11 

14:00 31.20 32.10 28.90 30.70 4.8 1 750 87 11 

14:30 30.90 31.70 28.10 29.50 5.2 1 635 55 11 

15:00 30.00 31.20 27.80 29.30 5.9 1 570 0 12 

 

Table 11. Reported weather data for the second day 

Time 𝑇𝑎(°C) 𝑇𝑠(°C) 𝑇𝑒(°C) 𝑇𝑛(°C) 𝑉𝑊(m/s) 𝑉𝑖(m/s) 𝐼𝑠(W/m2) 𝐼𝑒(W/m2) RH 

09:00 26.80 28.90 28.80 26.30 2.2 1.5 513 597 15 

09:30 27.20 29.10 28.90 26.70 2 1.5 570 567 15 

10:00 27.45 29.10 29.20 27.30 2.5 1.5 620 504 15 

10:30 27.90 29.40 29.70 27.80 3.2 1.5 630 429 14 

11:00 28.30 29.60 30.10 28.15 3.3 1.5 685 358 14 

11:30 28.80 30.00 30.60 28.50 3.2 1.5 720 286 14 

12:00 29.50 30.50 29.80 28.85 3.5 1.5 778 220 13 

12:30 30.20 30.60 29.50 29.30 3.8 1.5 798 190 13 

13:00 30.70 31.30 28.90 29.90 3.4 1.5 802 136 13 

13:30 31.00 31.80 28.20 30.50 4.2 1.5 806 75 12 

14:00 30.90 31.80 28.10 30.20 4 1.5 790 40 12 

14:30 30.40 31.25 27.70 29.70 4.6 1.5 745 0 12 

15:00 30.20 31.00 27.50 29.20 5 1.5 603 0 12 
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Table 12. Reported weather data for the third day 

Time 𝑇𝑎(°C) 𝑇𝑠(°C) 𝑇𝑒(°C) 𝑇𝑛(°C) 𝑉𝑊(m/s) 𝑉𝑖(m/s) 𝐼𝑠(W/m2) 𝐼𝑒(W/m2) RH 

09:00 27.60 29.9 29.8 27 3 2.5 525 622 14 

09:30 28.20 30.6 30.2 27.5 3.5 2.5 600 605 13 

10:00 28.25 31.05 30.4 28.2 2.9 2.5 368 580 13 

10:30 28.55 31.6 31 28.9 3.2 2.5 706 565 13 

11:00 29.30 31.9 31.3 29.1 2 2.5 758 541 12 

11:30 29.80 32.2 31.4 29.7 2.5 2.5 809 477 12 

12:00 30.20 31.7 31.8 30.2 1.5 2.5 820 384 12 

12:30 30.90 31.8 30.9 30.7 3.1 2.5 835 293 11 

13:00 31.20 32.15 30.2 31 4 2.5 810 219 11 

13:30 31.40 32.7 29.3 31.5 5 2.5 780 162 11 

14:00 31.80 32.1 28.5 31.3 4.8 2.5 755 95 11 

14:30 31.20 31.8 28.2 30.4 4.2 2.5 660 35 12 

15:00 30.60 31.3 27.8 30.1 6.3 2.5 580 0 12 

 

Experimental Validation 

To verify the obtained expressions, the results of the models were compared with those of 

experiments using the Pearson correlation coefficient (r), the root mean square deviation (e) 

and the mean absolute error (MAE) criteria which were determined as [84, 85] 

𝑟 =
𝑁 ∑𝑋𝑖 𝑌𝑖 − (∑𝑋𝑖)(∑𝑌𝑖)

√𝑁 ∑𝑋𝑖
2 − (∑𝑋𝑖)2√𝑁∑𝑌𝑖

2 − (∑𝑌𝑖)2

 

(12) 

𝑒 = √
∑(𝑒𝑖)2

𝑁
     (13) 
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And 

𝑀𝐴𝐸 =
1

𝑁
∑𝑒𝑖       (14) 

Where 𝑒𝑖 = [
𝑋𝑖−𝑌𝑖

𝑋𝑖
] , Xi and Yi are respectively the ith theoretical and empirical data; and N is the 

number of observations. 

 

The Analysis of the Presence of the Structure of a Solar Chimney  

One of the passive ventilation methods is the use of a solar chimney that provides ventilation 

for adjacent spaces with the help of renewable solar energy and uses the effect of a chimney in 

an air channel. In this system, the airflow is created by the buoyancy force. That is, the hot air 

rises and leaves conduit, replacing the fresh cold air instead. 

This section studies the effect of the solar chimney on the ventilation performance of the 

prototype wind catcher in a hot and dry climate. The airflow in the sample has two paths. In 

the wind catcher section, the airflow moves downward by creating a negative float. The 

positive airflow through the solar chimney causes a moving upward. Therefore, it creates a 

comfortable interior in terms of temperature and humidity by placing the appropriate cooling 

evaporation systems at the air inlet (located at the wind catcher section).  

Computational Fluid Dynamics (CFD) Simulation 

CFD is a computer-based tool design to numerically solve a wide range of fluid mechanics 

problems for discretized building spaces. CFD modelling techniques are more useful in 

determining the internal thermal and flow characteristics inside a building, which is more 

critical when it comes to the more detailed design of the ventilation system to ensure uniform 

flow distribution and to avoid local discomfort areas associated with stale air [86].  Masses of 

studies on solar chimneys have been conducted using CFD method and showed that the existing 

CFD models predict velocity and temperature profiles along with other flow characteristics 

accurately [87]. 

Many researchers have proposed different methods to investigate wind catcher’s performance. 

One of them is CFD-based programs which have more advantages compare to others and offer 

a comprehensive report of the airflow. Elmualim and Awabi [41, 62] proposed a CFD model 

which utilizes CFD simulation to validate laboratory measurements of 𝐶𝑝 (pressure coefficient) 
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in windward and leeward quadrant of a square wind catcher at normal incidence. They achieved 

good agreement (1% error) in windward and a less successful result (77% error) in leeward 

side. Li and Mak [88] compared their CFD simulation results with wind tunnel measurements 

of Elmualim et al. in a square wind catcher with a length of 500mm.  Consequently, a good 

agreement was reached between the two results. The performance of a circular wind catcher is 

evaluated by Su Riffat [89] using the CFD model demonstrating. Hughes et al. [90] used CFD 

to model a 1000mm wind catcher in order to predict a net flow rate. They compared the wind 

tunnel experimental result of Elmualim and Awabi, and the results showed a 20% error. 

Ghadiri et al. confirmed The CFD simulations with detailed wind tunnel experiments. The 

results demonstrated that CFD simulation is a reliable method for wind catcher study, but it is 

less accurate in prediction of models with non-vertical wind directions [91]. 

Kaiser et al. reviewed different analysis of wind catcher designs and cooling methods.  They 

suggested that the CFD techniques in use were suitable [92]. Due to the factors mentioned 

earlier, CFD modelling is chosen to optimize the solar chimney design herein. 

Development of the Numerical Model  

Numerical simulations on the steady state airflow due to pressure/thermal gradients, the 

influence of various structural parameters and, the weather conditions were carried out using 

the customized CFD solver Fluent of ANSYS Workbench. FLUENT employs an unstructured 

control volume mesh with triangular meshes on the surface of the geometry. The total number 

of elements was 840000. The grid independence test was done. 
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Figure 25. The view of mesh design of wind catcher model with triangular meshes on the surface of the geometry 

 

The underlying assumptions for the CFD simulation include a three dimensional, fully 

turbulent, non-isothermal, and steady-state incompressible airflow. The industry standard for 

turbulence simulation is the k–ε turbulent model that was used for modelling of buoyancy-

driven because of its robustness at a relatively low computational cost. The following equations 

govern the air motion for incompressible turbulent flow:  

1. Continuity equation 

2. Momentum equation  

3. Energy equation  

These equations for incompressible fluid flow can be respectively expressed as follow:  

∇. 𝑉⃗ = 0                                                                                                                               (1) 

𝜕𝑉⃗⃗ 

𝜕𝑡
+ (𝑉⃗ . ∇)𝑉⃗ = −

1

𝜌
∇𝑝 + 𝜗∇2𝑉⃗ + 𝜌𝑓                                                                                  (2) 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ (𝑉⃗ . ∇)𝑇] = 𝑘∇2𝑇 + 𝜑                                                                                         (3) 
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where 𝑉⃗  is the velocity vector (m/s), 𝑓  is the total body force per unit mass (N/kg), ρ is the 

specific mass (kg/m3) and 𝜗 stands for kinematic viscosity of the fluid (m2/s), T and k 

respectively stand for temperature (K) and thermal conductivity (W/mK), and 𝜑, the viscous 

dissipation, is expressed as: 

𝜑 = (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)2 + 2 [(

𝜕𝑢

𝜕𝑥
)2 + (

𝜕𝑣

𝜕𝑦
)2]                                                                                     (4) 

where u and v are respectively the x- and y- components of velocity (m/s). 

The default convergence criterion in FLUENT is 10−6 for the energy equation and 10−3 for 

all other equations. When the set convergence criterion is met, the iteration process is complete. 

Boundary Conditions 

The simulation consisted of a simple model room space with the size of 1.5*1.25*1m (length, 

width and height) has been combined with a one-sided wind catcher and a solar chimney.  

Figure 22 shows the geometry of the structure in details. The room attached to wind catcher is 

a closed room without any openings. Wind catcher is placed in length. 

The chimney is a glazing collector at a constant temperature. The other side walls of the solar 

chimney are insulated, hence adiabatic. The walls of the dwelling space are assumed not to 

take part in heat transfer so that the solar chimney is solely responsible for the thermal 

buoyancy effects on air. Moreover the infrared radiation of the room walls is ignored. 

The dimension of the domain was 5 times the height of wind catcher for the front and lateral 

of the domain based on recommended guidelines in CFD [93-95] and above the wind catcher, 

the height was just set at the same measurement. Behind the wind catcher the height was set 

(outflow direction) at least 15 times which would allow the flow to develop. Inlet velocity 

boundary condition is imposed on the inlet of the computational domain, while pressure exit 

boundary condition is imposed far downstream at the rear. No-specified shear boundary 

conditions at the side faces and the top face of the computational domain ensure the velocity 

gradients are non-existent at the sides and top. 

The influence of the internal gains (occupants, equipment) and heat gain through walls were 

not investigated in this work. All walls of the dwelling space were assigned no-slip boundary 

condition for airflow. 
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Figure 26. Schematic view of computational domain and boundary conditions for simulations on the combinatorial system 

 

Simulation Method 

In this study, also CFD simulations were accomplished to evaluate the effect of the influx of 

solar radiation amount on volume flow rate and air velocity at the entrance of the room. 

Different inlet air velocity ((the wind speed in inlet opening) (0, 3, 5 𝑚 𝑠⁄ )), and also the effect 

of increasing solar radiation on the capability of the combinatorial system are considered. A 

set of simulations was carried out with two different specified values for solar radiation, i.e., I 

= 0 and 1000 𝑤 𝑚2⁄  a normally incident on the absorber plate.  These values of heat flux were 

imposed as boundary conditions on the absorber plate which heat flux is a result of the solar 

radiation on the glazing surface (collector). There are two modes that depend on the presence 

or absence of the evaporative cooling load (𝑄𝑐 = 0.5𝑘𝑊). The inlet air temperature is fixed at 

30 °C (Based on experimental work).  Airflow distribution in the room is color coded and 

related to the CFD color map then used to obtain the simulation results in all cases as it was 

judged to give acceptable results taking into consideration the limitation of the studies (cost, 

time and computer capabilities). 

 

 

Wind catcher 

inlet 

Solar chimney 

exit 
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Chapter 6 

Results and Discussion 

The proposed system is designed to provide thermal comfort for the residents of the building 

in a Hot-Dry region. The four environmental variables, temperature, humidity, solar radiation, 

and air movement, directly determine the thermal comfort condition. The presented wind 

catcher can directly improve the thermal comfort of the inhabitants, since it impresses the three 

variables of temperature, humidity and air movement velocity. The results of this impact are 

presented in two sections. 

 

The Result of the Evaluation the Wind Catcher Integrated with Evaporative 

Cooling System (WCIECS) 

Model Verification 

The predicted data of outlet temperature and relative humidity were compared to experimental 

observe to verify the obtained models. Subsequently, the validated models investigated the 

effect of some design parameters and operating conditions imposed on the performance of the 

designed wind catcher.  

Figure 27 shows variations of solar radiation intensity, ambient temperature, and comparison 

between experimental and calculated outlet temperature of the wind catcher at the three inside 

air velocities of (a) 1, (b) 1.5, and (c) 2.5 m/s. The measurements taken during the test indicated 

that the temperature drop inside the designed wind catcher has been between 9.29 and 14.63 

°C. The temperature decrease in a modular wind catcher with wetted surfaces founded to be in 

a range of 9.2–13.6 °C [75]. The root means square deviation (e) ranges from 0.04925 to 

0.10728 while the observed correlation coefficient was between 0.9312 and 0.9438. The 

maximum deviations between the analytical and the experimental temperatures were 1.21, 

1.60, and 2.04 °C at the air velocities of 1, 1.5, and 2.5 m/s, respectively. The result also 

indicated that minimum absolute error associated with the analytical expressions is less than 

10%. A study that had been conducted to simulate indoor temperature of a greenhouse in Iraq 

based on thermo-physical properties of the greenhouse components showed that the predicted 

data had an absolute error of lower than 10% [96]. The results of similar research achieved a 

mean absolute deviation of lower than 20% between the predicted and the experimental 
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temperatures of a greenhouse equipped with a heat-pump heating system [97]. According to 

the research observation, it can be said that the experimental data adequately reflects analytical 

data. 
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(c) 

Figure 27. Hourly variations of experimental and calculated outlet air temperature under the conditions of Qaen city during 

3–5 May 2017, at the air velocities of (a) 1, (b) 1.5, and (c) 2.5 m/s. 

 

Figure 28 depicts the experimental and calculated RH variations of the airflow during the three 

days of the test. The figure indicates the RH enhancing of the moving air by 39.55 to 64% at 

the designed device. The range of RH increase in the wind catcher designed by Khani et al. 

[75] was from 23–53%. The root mean square deviations were less than 0.04586, the values of 

the Pearson correlation coefficient were more than 0.9188, and the difference between the 

experimental and analytical RH was less than 5%. Consequently, the resulting expressions can 

accurately predict the output air RH. 
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(c) 

Figure 28. Hourly variations of experimental and calculated outlet air relative humidity under the conditions of Qaen city 

during 3–5 May 2017, at the air velocities of (a) 1, (b) 1.5, and 2.5 m/s. 

Effect of Wind Speed and Wind Catcher Height 

The effect of wind speed and wind catcher height were analytically investigated on the air 

velocity inside the conduit, temperature, and cooling load. Since the position of the inlet pad 

could influence the operating parameters of the wind catcher, the tests were carried out with 

both open and closed pads. 

Figure 29 illustrates the effect of wind velocity and height of the wind catcher on air velocity 

inside the conduit at the two modes of the pad (open and closed). It is apparent that the increase 

of the wind speed enhanced the air velocity in the column. Moreover, the rate of changes was 

higher at the lower heights of the wind catcher. The heightening of the wind catcher increases 

the pressure drop which would result in the slower growth of air velocity in the column. 

Likewise, figure 29 indicated that in a windy climatic condition, the air velocity was slightly 

higher inside the column when the pad was open. This is more due to the air pressure drop 

when it is passing through the pad. Vice versa, when the wind speed was low, the closed pad 

contributed to a relatively higher air velocity inside the wind catcher. The airflow inside the 

wind catcher at the condition of no external wind is under the influence of the buoyancy effect 

(depends on the air temperature) and the pressure drop (because of the length of the duct). 

Therefore, as the temperature drops at the closed-pad mode are more, the air velocities were 
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higher compared to the open-pad mode. However, the effect of pressure drop is considerable 

at the taller wind catchers, which ultimately would lead to a decrease in air velocity at the 

height of 5 m. 

 

(a) 

 

(b) 

Figure 29. Effect of wind speed and wind catcher height on air velocity under the conditions of Qaen city at 12:00 p.m. on 3 

May 2017 and the modes of: (a) closed pad, (b) open pad. 
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Figure 30 depicts the effect of wind velocity and height of the wind catcher on the outlet 

temperature at the two modes of the open and closed pad. When the closed pad was imposed 

as pad mode, the changes in wind speed and the height have a negligible impact on the outlet 

temperature at low wind speeds (smaller than 2 m/s). The slow passing of the air through the 

wetted pad makes it almost saturated, accordingly brings to the lowest possible temperature. 

This result demonstrates the columns after the pad is neutral on the temperature and RH of the 

moving air. However, at higher wind speeds, when the air velocity inside the wind catcher was 

significantly high, the pad unit accomplished only a fraction of evaporative cooling while the 

wetted columns supplied the process. Therefore, the height of the columns was a dominant 

factor in the amount of cooling load and the temperature drop of the moving air. When the pad 

was open, the outlet temperature raised with wind velocity, as the velocity of the air in the 

conduits of the wetted blades increased. Furthermore, increasing the height of the wind catcher 

has reduced the air velocity. Accordingly, the outlet temperature at the longer wind catchers 

was lower. Moreover, it made the wetted screens (evaporation area) more effective. On the 

open pad mode, the air temperature drop in the wind catchers with higher height was further, 

which was in accordance with the results of the wetted columns wind catcher proposed by 

Bahadori et al. [40]. 

Cooling load is directly related to the air velocity and the temperature drop in the column.  

Figure 31a shows cooling load variations at the different dominant wind speed as well as wind 

catcher height applying the closed-pad mode. It is intelligible that the increasing of the wind 

speed up to 3 m/s improved the amount of sensible cooling load. However, the increase in wind 

speed result in a decreasing trend in the cooling load. This result is mainly due to the outlet 

temperature increasing at the higher wind speeds suddenly and without any significant increase 

in the air velocity. On the other hand, when the pad was open the amount of cooling load has 

been continuously increased with the wind speed (see figure 31b). The comparing of the two 

modes of wind catcher (figure 31a,b) indicated that at the wind catcher heights of 2.5 and 3.5 

m and the wind speeds of lower than 3 m/s, the cooling loads approximately doubled by 

employing closed-pad mode. While, at the height of 5 m, there was not a significant difference 

between the two modes. However, at the condition of no wind flow, a maximum sensible 

cooling load of 0.48 kW was achievable if the wind catcher height was 5 m. 
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(a) 

 

(b) 

Figure 30. Effect of wind speed and wind catcher height on outlet temperature under the conditions of Qaen city at 12:00 

p.m. on 3 May 2017 and the modes of: (a) closed pad, (b) open pad. 
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(a) 

 

(b) 

Figure 31. Effect of wind speed and wind catcher height on provided cooling load under the conditions of Qaen city at 12:00 

p.m. on 3 May 2017 and the modes of: (a) closed pad, (b) open pad. 
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Calculating the volumetric dimensions of the room, connected to the wind catcher 

The dimension of the room which is connected to the system has been calculated by the 

manual calculated method. The cooling load of a building depends on a number factors such 

as local climate, building type and thermal properties of material. . The method is now called 

CLTD (cooling load temperature difference), SCL (solar cooling load factor), and CLF 

(cooling load factor) method using simple multiplication factors. 

The overall dimension of the room is assumed to be a cube by length and width equal "x".  The 

height is set at 3 meters. The walls on three sides and the floor are insulated. The heat gain 

through walls have not been investigated in this work so that the energy exchange between 

inner and outer are solely through the south wall and roof. The wall is constructed from cement 

blocks and 20 cm in width. Moreover, a double-glazed window, in dimensions 1/3 of the wall 

surface, is installed on the wall. The room has a concrete roof of 30 cm. 

Based on the meteorological data for the six-year period of  2012 to 2017, the highest mean 

monthly maximum temperature in Qaen (33°43′36″ N and 59°11′04″ E) was equal to (38 

(°C)=100.4 (°F) ) in June and July. This temperature is considered as ambient temperature 

with the mean daily temperature of 81.6°F and the daily range of 28.5°F.  Likewise, the solar 

radiation intensity on the south wall is 900 (W/m2), and the average wind speed is 3 (m/s).  

The values of (23 (°C) =73.4 (°F)) dry bulb temperature and 50% relative humidity are 

imposed as thermal comfort conditions which are a result of some researches. 

The cooling load of the prototype wind catcher is produced in mentioned condition (𝑄𝑡𝑜𝑡𝑎𝑙) 

equal 1(𝐾𝑊)=3412.13(𝐵𝑡𝑢
ℎ𝑟⁄ ) and the equation is as follow: 

𝑄𝑡𝑜𝑡𝑎𝑙=𝑄𝑊𝑖𝑛−𝑆𝑜𝑙+𝑄𝑊𝑖𝑛−𝐶𝑜𝑛+𝑄𝑊𝑎𝑙𝑙−𝐶𝑜𝑛+𝑄𝑅𝑜𝑜𝑓−𝐶𝑜𝑛 

Where 

𝑄𝑊𝑖𝑛−𝑆𝑜𝑙 is Solar transmission load through the window in (𝐵𝑡𝑢
ℎ𝑟⁄ ) and calculated with the 

following equation: 

𝑄_(𝑊𝑖𝑛 − 𝑆𝑜𝑙) =𝑆𝐻𝐺 ∗ 𝐴 ∗ 𝑠ℎ𝑎𝑑𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑆𝐻𝐺 , Solar Heat Gain takes (𝐵𝑡𝑢
ℎ𝑟⁄ )  into account the latitude, month and hour. 𝐴 is area of 

the glass in(𝑓𝑡2). The values are tabulated in ASHRAE fundamentals handbook. 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Qaen&params=33_43_36_N_59_11_04_E_region:IR_type:city(32474)
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The modified equation for cooling load of the basic conduction equation for heat gain is as 

follows: 

𝑄 = 𝑈𝐴(𝐶𝐿𝑇𝐷) 

Where 

𝑈 is Coefficient of heat transfer roof or wall or glass, (𝐵𝑡𝑢
ℎ𝑟. 𝑓𝑡2. ℉⁄ ). 𝐴 is area of the roof 

or wall or glass in (𝑓𝑡2). Moreover, 𝐶𝐿𝑇𝐷 defined as cooling load temperature 

difference(℉). The values are determined from available tables on ASHRAE fundamentals 

handbook [98]. 

The above calculation is carried out for cooling load in each component. 

𝑄𝑊𝑖𝑛−𝐶𝑜𝑛  is Conductive load through the window in (𝐵𝑡𝑢
ℎ𝑟⁄ ).  

𝑄𝑊𝑎𝑙𝑙−𝐶𝑜𝑛 is Conductive load through the walls in (𝐵𝑡𝑢
ℎ𝑟⁄ ). 

𝑄𝑅𝑜𝑜𝑓−𝐶𝑜𝑛 is Conductive load through the roof in (𝐵𝑡𝑢
ℎ𝑟⁄ ). 

The results of calculation are given in the table 13. 

Table 13. Calculation process of cooling load in the room 

𝑄  calculated  

 

𝑄𝑊𝑖𝑛−𝑆𝑜𝑙 

𝑺𝑯𝑮 = 𝟔𝟕. 𝟑𝟖 (𝑩𝒕𝒖
𝒉𝒓⁄ ) 

𝑨 = 𝟑. 𝟐𝟖𝒙 (𝒇𝒕𝟐) 

𝒔𝒉𝒂𝒅𝒆 𝒇𝒂𝒄𝒕𝒐𝒓= 0.9 

𝒔𝒕𝒐𝒓𝒂𝒈𝒆 𝒇𝒂𝒄𝒕𝒐𝒓=0.65 

 

 

129.289x (𝐵𝑡𝑢
ℎ𝑟⁄ ) 

 

𝑄𝑊𝑖𝑛−𝐶𝑜𝑛 

𝑼 = 𝟎. 𝟓𝟏 (𝑩𝒕𝒖
𝒉𝒓. 𝒇𝒕𝟐. ℉⁄ ) 

𝑨 = 𝟑. 𝟐𝟖𝒙 (𝒇𝒕𝟐) 

𝑪𝑳𝑻𝑫 = 𝟏𝟓(℉) 

 

 

25.092x (𝐵𝑡𝑢
ℎ𝑟⁄ ) 

 

𝑄𝑊𝑎𝑙𝑙−𝐶𝑜𝑛 

𝑼 = 𝟎. 𝟏𝟏 (𝑩𝒕𝒖
𝒉𝒓. 𝒇𝒕𝟐. ℉⁄ )  
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𝑨 = 𝟔. 𝟓𝟔𝒙 (𝒇𝒕𝟐) 

𝑪𝑳𝑻𝑫 = 𝟑𝟏. 𝟓𝟓(℉) 

 

22.77x (𝐵𝑡𝑢
ℎ𝑟⁄ ) 

 

𝑄𝑅𝑜𝑜𝑓−𝐶𝑜𝑛 

𝑼 = 𝟎. 𝟎𝟕𝟕 (𝑩𝒕𝒖
𝒉𝒓. 𝒇𝒕𝟐. ℉⁄ ) 

𝑨 = 𝒙𝟐 (𝒇𝒕𝟐) 

𝑪𝑳𝑻𝑫 = 𝟑𝟕. 𝟏𝟐(℉) 

 

 

2.86𝑥2 (𝐵𝑡𝑢
ℎ𝑟⁄ ) 

𝑄𝑡𝑜𝑡𝑎𝑙  3412.13(𝐵𝑡𝑢
ℎ𝑟⁄ ) 

 

According to the above calculations, the room dimension is 4.7 𝑚* 4.7 𝑚 * 3 𝑚. 

Consequently, the prototype wind catcher can provide thermal comfort in a room by about 

66.2𝑚3. 

Comparing the Performance of the Proposed System with Traditional Wind catcher 

The results of Bahadori et al., who have conducted extensive studies on traditional and 

conventional wind catchers, are used to evaluate the performance of the proposed system. 

The normalized cooling load compared as the primary criterion in the determined climatic 

conditions. The normalized cooling load is calculated at various wind speed as imposed 

conditions as the following equation: 

𝑄𝑐𝑁 =
𝑚𝑎̇ 𝐶𝑝(𝑇)

𝑉
 

Where 

𝑄𝑐𝑁 is normalized cooling load (𝑘𝑊 𝑚3⁄ ), 𝐶𝑝 is the specific heat of the air (
𝐽

(𝑘𝑔℃)⁄ ), 𝑚̇ is 

defined mass flow rate( 
𝑘𝑔

𝑠⁄ ) and 𝑉 is the volumetric dimensions of the system (𝑚3). 

The mass flow rate of the air entering the building by the traditional wind catcher at two wind 

speed (0 and 5𝑚 𝑠⁄ ) were 0.25 and 2.3 
𝑘𝑔

𝑠⁄   respectively. The volumetric dimensions of the 

device are set at 4.2𝑚3 [40], which resulted in the temperature variations of indoor air in 0.1 

and 0.2 ℃. Table 14 shows the result of the comparison of the systems operatives. 
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Table 14. Comparison of the normalized cooling load with different wind speed at prototype wind catcher and traditional 
wind catcher 

 

It is observed that at the closed pad mode when the wind speed is low, the cooling load is 

maximum. The traditional wind catcher is not applicable at this wind speed. When wind 

speed is 5 𝑚 𝑠⁄ , the efficiency of the proposed system is much better than the traditional one, 

especially at the open pad mode. 

 

The Result of the Evaluation the Wind Catcher Integrated with Solar 

Chimney System (WCISCS) 

Effect of Wind Speed and Solar Irradiance on Airflow Pattern 

The predicted air-flow pattern around and inside the designed wind catcher at the different 

wind speeds (0, 3 and 5 m/s), solar irradiance on the absorber plate of 0 and 1000 W/m2 and 

two modes of with and without evaporative cooling was illustrated in figure 32, 33, 34. The 

figures indicate the fresh air, which enters the room through an inlet vent located the bottom of 

the wind catcher.  The heated air inside the room throws out through the window. Therefore, it 

leaves the solar chimney due to the buoyancy force. Increasing solar radiation increases the air 

velocity in the entrance to the room which enhances the zone of air circulation inside the room, 

mostly due to intensify of the buoyancy force. Moreover, the same results were achieved when 

evaporative cooling was used in the wind catcher. 
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Comparing the airflow pattern of the different wind speeds at the constant solar radiations 

indicated that increasing the wind speed from 0 to 5 m/s significantly increased the air velocity 

inside the wind catcher. Furthermore, the effect of solar radiation and evaporative cooling on 

the air velocity inside the wind catcher was less at the higher wind speeds. In other words, 

buoyancy force is more effective in characterization of the airflow inside the systemin 

comparison with the external wind. 

 

 

Figure 32. The airflow pattern inside the prototype wind catcher and room at the wind speeds 0 m⁄s,  1) Solar irradiances on 

the absorber plate of 0W⁄m^2 , 2) Solar irradiances on the absorber plate of 1000 W⁄m^2   , 3) Solar irradiances on the 

absorber plate of 1000 W⁄m^2   with evaporative cooling 

 

 

Figure 33. The airflow pattern inside the prototype wind catcher and room at the wind speeds 3 m⁄s,  1) Solar irradiances on 

the absorber plate of 0W⁄m^2 , 2) Solar irradiances on the absorber plate of 1000 W⁄m^2   , 3) Solar irradiances on the 

absorber plate of 1000 W⁄m^2   with evaporative cooling 
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Figure 34. The airflow pattern inside the prototype wind catcher and room at the wind speeds 5 m⁄s,  1) Solar irradiances on 

the absorber plate of 0W⁄m^2 , 2) Solar irradiances on the absorber plate of 1000 W⁄m^2   , 3) Solar irradiances on the 

absorber plate of 1000 W⁄m^2   with evaporative cooling 

 

Effect of Wind Speed and Solar Irradiance on Airflow Rate 

The airflow rate is one of the essential parameters in the ventilation systems. Ventilation rate, 

which depends on airflow rate, influenced the concentration of contaminants, heat generation 

and air change rates. Table 13. shows the air mass flow inside the wind catcher at the 

different imposing conditions. The airflow rate at the non-existent wind flow and set solar 

radiation by 1000 W/m2 was eventuated around 0.006 kg/s. Additionally, it improved by 

0.021 kg/s supplementing the evaporative cooling system. The result agrees with the results 

were achieved in Elmualim et al. [41] and Bansal et al. [78] works. For instance, Bansal et al. 

demonstrated that in ambient wind speed of 1.0 m/s the wind tower only creates a mass flow 

rate of 0.75 kg/s, while the system assisted by solar chimney causes an airflow up to 1.4 kg/s 

at 700 W/m2 incident solar radiation.  Table 13. depicts a maximum airflow rate of 0.1387 

kg/s at the wind speed of 5 m/s and the solar irradiance of 1000 W/m2 , if applying the 

evaporative cooling system. Consequently, the effect of the solar chimney is essential in the 

low speed of the wind, as well as the combined system increases the mass flow rate of air by 

several times, which improves the residence ventilation. 
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Table 15. Comparison of the airflow rate with different wind speed at inlet air window 

 

 

Comparing the Performance of the Proposed System with an Evaporative Cooler 

An evaporative cooler is a cooling system which has an impact on the humidity and air 

temperature of the room. In this cooler, the spending thermal energy of the moving air for 

vaporization of the moisture reduces the temperature while increases the RH of the air. 

Therefore, increasing air humidity is one of the advantages of the cooler compared to other 

air conditioners in a hot and dry area. The total volume of the room, attached to the prototype 

wind catcher, is about 70 𝑚3 to provide the thermal comfort.  

The suitable capacity of evaporative cooler for a place of 70𝑚3 should be around 2500 Cubic 

Feet per Minute (CFM), based on the manufacturer instruction. The CFM is the amount of 

fresh air circulated through building each minute. The minimum power consumption of such 

cooler is 200 watts. As a result, the proposed wind catcher has shown better energy efficiency 

and is more environmentally-friendly compared with the evaporative cooler. In dry climates, 

the designed system can reduce energy consumption and the need for conditioning equipment 

as a substitute for mechanical based cooling.  

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 3 5

m
as

s 
fl

o
w

 r
at

e 
(k

g
/s

)

wind speed (m/s)

I=0 I=1000 W/m2 I=1000 W/m2+evaporative cooling



78 
 

Chapter 7 

Conclusion 

 

This thesis tries to introduce a novel wind catcher system. In this research the efficiency of a 

prototype system as a simplified model of the primary proposed wind catcher was evaluated. 

This simplified model was evaluated in two stages, including the performance evaluation of 

the evaporative cooling system as well as the analyzing the effect of the presence of a solar 

chimney presence along with a wind catcher. The results of the assessment were demonstrated 

extensively for each section. The main outcomes are briefly summarized here.  

 

Effect of Evaporative Cooling Parts 

Thermal performance of prototype wind catcher equipped with a combinatorial evaporative 

cooling system (moist blades section and wetted pad unit) was studied. Theoretical assessment 

of the wind catcher was carried out. A set of experiments also were organized to validate the 

results of the obtained models. Moreover, the effect of wind speed and wind catcher height on 

two pad position were considered. The results of which can be described as follows: 

- Increasing the wind speed could considerably raise the air velocity within column, while the 

growth rate of air velocity was higher at the lower heights of wind catcher. Moreover, in a 

higher wind speed of 3 (𝑚 𝑠⁄ ), speed increasing results in the faster drop of outlet air 

temperature while the pad was put on the closed mode, which subsequently led to a significant 

decrease in sensible cooling load.  

- When the wind speed was almost zero, the close-pad mode resulted in a relatively higher air 

velocity within the wind catcher compared with the open-pad mode. On the other hand, at the 

conditions of wind existence, inside air velocity was slightly higher when the pad was open. 

-  Cooling load continuously was increased with respect to the wind speed when the pad was 

open. If the pad was closed, the maximum value of cooling load was achieved at the wind speed 

of 3(𝑚 𝑠⁄ ). In addition, at the wind catcher heights of 2.5 and 3.5 m and the wind speeds of 

lower than 3(𝑚 𝑠⁄ ), the cooling loads approximately doubled by employing closed-pad mode. 
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Compared with the open-pad mode, the closed-pad mode has shown better results, when the 

wind speed was low.  

- In comparing the performance of the proposed system with traditional wind catcher, when wind 

speed was 5(𝑚 𝑠⁄ ), the normalized cooling load of the proposed system was 6.2(𝑘𝑊 𝑚3⁄ ) at 

the open-pad mode versus 0.11 (𝑘𝑊 𝑚3⁄ ). The maximum value of cooling load was achieved 

by closed-pad mode of the proposed wind catcher, at the low wind speed.  

 

Effect of Solar Chimney Part 

The CFD software calculated the air velocity fluctuations into the prototype wind catcher has 

been integrated with a solar chimney system, as well mass flow rate. The modelling was 

conducted to investigate the ventilation performance of the model. The impressions of the 

system in this way are: 

- Air velocity in the entrance of the room was increased with respect to solar radiation and wind 

speed which enhances the zone of air circulation inside the room. An evaporative cooling 

system was incorporated into the prototype wind catcher, which lead to raise the air velocity.  

- The airflow rate at the non-existent wind flow and set solar radiation of 1000 W/m2 was 

eventuated around 0.021 kg/s, if applying the evaporative cooling system. Consequently, the 

combined system increases the mass flow rate of air by several times in the low speed of the 

wind.  

The total volume of the room, attached to the prototype wind catcher, is about 70 𝑚3 to 

provide the thermal comfort. The suitable capacity of evaporative cooler for a place of 70𝑚3 

should be around 2500 Cubic Feet per Minute (CFM), which minimum power consumption 

of such cooler is 200 watts compared with proposed system as a passive system for saving 

energy. 
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The Characteristic Items of the Final Presented Structure as well as the 

Application Area 

The primary concern in Hot-Dry regions is thermal comfort in the hot seasons. As, the 

significant problems are the lack of water resources and green spaces, hot days, low 

humidity, the intensity of solar radiation and stagnant air (lack of airflow), specially at the 

lower altitudes. Forasmuch as the wind catcher is a ventilation system as well a cooling 

system. Therefore, it plays an essential role in the building performance in Hot-Dry areas.  

The designed device is a four-directional wind system that is equipped with two evaporative 

cooling parts (wetted blades and adjustable opening pads), also supplemented with a solar 

chimney structure. The system dimensions could be determined based on the required amount 

of the cooling load and mass flow rate of the building. Moreover, it is calculated according to 

the calculations in “Calculating the volumetric dimensions of the room, connected to the 

wind catcher” (chapter 6). 

The mud, mud-brick, and dense construction materials were applied to increase the time-lag 

and to retain some heat from nighttime warming in the wall and blades of traditional wind 

catchers. The materials that are characterized by the low heat transfer and the high-water 

absorption can be used in the construction of the wall of the proposed structure. Cement 

blocks and clay bricks are common building materials in Iran, which are extensively applied 

in buildings because of their high porosity and lightweight properties. 

The column, the middle part of the wind catcher, consists of some ceramic parapets. Wetted-

blade section with vertical cloth curtains is positioned inside of the main conduits. The pad 

unit, made from the straw layers, is designed to rotate around the vertical axis. 

Similar materials can also being used in renovation or new construction. The moisture inside 

the shaft make it a great base for different fungi and mildews to grow in live. It is 

recommended to use glass-ceramic coating to facilitated regular maintenance including 

washing. Moreover, the curtains and their assembly should be easily accessible for the repair 

or possible exchanges.  

The mass production of the unit in different sizes could be considered as the system has the 

capability of being prefabricated with smaller units that can be assembled in the target 

location. Prefabricated system reduces transportation cost and can make construction process 

faster and cost effective. Furthermore, the structure can be incorporated to the design of a 



81 
 

new construction or be integrated to the renovation process of the existing buildings. Hereon, 

washable wall sandwich panels, and concrete slab systems are proposed for the walls which 

have good thermal insulation and waterproofing characteristics. 

The water nozzles, installed on the top of the pad unit and the blades section, spray water and 

keep them wet. The excess water is collected in a container located at the bottom of shaft to 

be recirculated in the system. An electric pump is recommended to pump the water from the 

container to nozzles. To prevent blockage of pipe springs the hardness of the water should be 

reduced. 

There are different kinds of wind catcher in Iran constructed in Hot-Dry regions. The 

proposed system can be utilized in the urban and the rural areas as the same way are used 

traditional wind catchers. 

As mentioned in the analytical model, the air velocity inside the wind catcher depends on 

various factors such as the wind pressure coefficient. At the inlets of the building the 

coefficient is intensely fluctuated depends on the present and density of walls, trees, and other 

physical structures. Some studies demonstrated that the impact on the inlet air velocity may 

be ignored when the physical barriers to wind catcher is farther than 8 times the height of it  

[99]. Moreover, the proposed system attempts to augment the efficiency using solar radiation 

absorption on the south side. Therefore, the shadow of the physical structure on the absorber 

plate (collector) can diminish the efficiency. In this condition, a solution would be the usage 

of a forced-air system by applying a small blower.  

The highest efficiency of the system is achievable during the sunshine hours in the day. 

Moreover, the system performance is significantly dependent on duration of sunlight in a 

typical day. Consequently, the proposed structure is more suitable as an air condition system 

for with buildings that are active during the day and are less used at night, such as office 

buildings, as well the buildings with the hybrid air conditioner system. 

 

Future works 

Future research could be considered to develop the proposed wind catcher:  

- Since this system is evaluated in a hot and dry climate in a geographically defined area, further 

study is needed to extend it to other areas and other climates. 
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- The sizes and proportions observed in the system are based on previous studies and existing 

cases, which can be corrected by conducting further tests to enhance the performance of the 

device. 

- The productivity of the device can be increased by using intelligent control systems as well as 

using fuzzy systems. 
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