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Abstract

The main objective of this Ph.D. Thesis was to study the concentration, physical properties,
and chemical composition of aerosols and their contribution to cloud formation in the Eastern
Mediterranean, with emphasis on the Athens Metropolitan Area, using in situ and remote sensing
measurement techniques. Other objectives include the contribution to new methods to deduct
properties of the atmospheric aerosol and the comparison of aerosol measurements conducted by in
situ and remote sensing instruments.

This Thesis is structured in five chapters. In Chapter 1, we present the physical, chemical and
optical properties of aerosols, their impact on climate and health, and the factors affecting aerosol
concentration in the study area. We also present the NTUA Raman Lidar (EOLE) and the operation
principle of Wind Doppler Lidar.

In Chapter 2, we introduce the current situation of aerosol particle number concentration in City-
Centre Urban Background, Urban Background and Regional Background stations in Greece. Based
on the diurnal variations and previous studies, main sources for the City-Centre Urban Background
station that were identified are traffic (freshly emitted and aged) and the regional background con-
centration. Sources for the Urban Background stations include fresh traffic and nucleation, aged
traffic and cooking, and the regional background concentration. The Regional Background station
dominant sources are local aged sources (cooking and other sources related to tourism) and the
regional background concentration. Size distribution modal analysis was applied to the particle
number concentration data and the results were subsequently divided in clusters. If we make the as-
sumption that the accumulation cluster identified at the Regional Background station corresponds
to the transported from other areas particle fraction, and use the median number concentration
from each cluster, we conclude that 18% of the particle number distribution is transported at the
City-Centre Urban Background site, 37% at the Urban Background sites, and 59% at the Regional
Background site. Based on the air mass origin clustering of the regional background concentration,
we concluded that the regional particle number concentrations when air masses originate from the
Mediterranean Sea is much lower than when they originate from the North-East and North-West

direction. Etesian flow conditions were found to increase the regional background particle concen-



tration in the Mediterranean basin by a factor of 2.5 to 4.

Chapter 3 deals with the deduction of a new method to retrieve the real part of the equivalent
refractive index of atmospheric aerosols by combining the size distributions obtained by a Scanning
Mobility Particle Sizer (SMPS) and an Optical Particle Counter (OPC). The objective is to show that
size distribution data acquired at in situ measurement stations can provide an insight to the physical
and chemical properties of aerosol particles, leading to better understanding of aerosol impact on
human health and earth radiative balance. The resulting ERI could be used in radiative transfer
models to assess aerosol forcing direct effect, as well as an index of aerosol chemical composition.
To validate the method, a series of calibration experiments were performed using compounds with
known refractive index (RI). This led to a corrected version of the ERI values, (ERIcor). The
ERIcogr values were subsequently compared to model estimates of RI values, based on measured
P M, 5 chemical composition, and to aerosol RI retrieved values by inverted lidar measurements on
selected days.

The subject of Chapter 4 is to find the atmospheric conditions that allow the direct comparison of
in situ and remote sensing measurements. This is a very important point as it will allow collocating
in situ and remote sensing aerosol measurement stations to combine their measurements, so as to
investigate the vertical mixing of aerosols and acquire a profile of aerosol properties extending from
ground level to several km above ground level (agl). Thus, we will obtain an insight on how regional
aerosol is added to local aerosol, especially during pollution events due to long range transport
(Sahara dust, Biomass Burning, etc.). On selected days that displayed significant turbulence up to
approximately 1,000 m above ground level (agl), we acquired the aerosol extinction or scattering
coefficient by in situ instruments using three methods. In the first method the aerosol extinction
coefficient was acquired by adding a Nephelometer scattering coefficient in ambient conditions and
an Aethalometer absorption coefficient. The correlation between the in situ and remote sensing
instruments was good (coefficient of determination R? equal to 0.74). In the second method we
acquired the aerosol refractive index by fitting dry Nephelometer and Aethalometer measurements
with Mie code calculations of the scattering and absorption coefficients for the size distribution up

to 1,000 nm obtained by in situ instruments. The correlation in this case was reasonably good (R?



equal to 0.62). Our next step was to compare the extinction coefficient acquired by remote sensing
instruments to the scattering coefficient calculated by Mie code using the size distribution up to
1,000 nm and ERIcogr, which is the real part of the equivalent refractive index acquired by the
comparison of the size distributions obtained by a Scanning Mobility Particle Sizer (SMPS) and an
Optical Particle Counter (OPC). The agreement between the in situ and remote sensing instruments
in this case was not good (R? equal to 0.45). The last comparison for the selected days was between
the aerosol extinction Angstrom exponent acquired by in situ and remote sensing instruments. The
correlation was not good (R? equal to 0.4), probably due to differences in the number size distribu-
tions present in the air volumes measured by in situ and remote sensing instruments. Nevertheless,
if turbulent conditions prevail in the atmosphere, extending from ground level up to the height at
which the lidar measurements take place, good agreement between the extinction coefficients of in
situ and remote sensing instruments can be achieved, as indicated by the first two methods men-
tioned earlier. Furthermore, we also present a day that a Saharan dust event occurred in Athens. At
first, the Saharan dust layer was evident in lidar measurements at a height of 2,000 m agl. Due to
the high turbulence in the atmosphere, in the afternoon the Saharan dust layer gradually descended
to ground level and it was detected by in situ instruments. The origin of air masses from North
Africa reaching Athens was also depicted by FLEXPART air mass transport model 3-hourly plots.
Thus, we obtained an insight on how regional aerosol is added to local aerosol, especially during
pollution events due to long range transport.

Finally, the conclusions and perspectives for future studies are provided in Chapter 5.



Greek Abstract

O xbptog otdyog g BlatePhc auTAC NTaY 1) UEAETH NG CUYXEVTPWONG, TWV QUOLXDY WBIOTHTKY Xal
™M YNUXE oVOTAONS TWV OUWEOVUEVKY COUATIOIY XL 1) CUVELG(OEE TOUC GTOV GYNUATIOUO TWV
oOvvepwv oty Avatohxr] Mecdyelo pe éugoon otnv Mntponohtixh neploxf tne Adnvac. ‘Eniong
0 TPOGBLOPIOHOE TV WBIOTATKY TWV UWEOVUEVLY CWUATIOIWY PE VéeC UedOBoUC xaL 1 cUYXELON TWY
UETPNOEWY AVAUECO OE ETUTOTLO ORYAUVL Xol OEY VO TNAETIOHOTNONG.

H napotoa nepihndn e Sdoxtopixic Statpf3nic nepiéyet Tplo xe@dhono. 210 TEMTO XEPIAAUO ToPOL-
otdlouye TNy TopoNo XUTACTACY TNG XoTovouhc Ueyédoug ot optdpol Twv awEoVPEVLY CWUATLOIWY
oe otoduolc actxol vroPddpou Kévtpou II6Ane (AYKII), aotixol unoPddpou (AY) xou otadpoic
aVTITPOoLRELTIXOUS TG eVPUTERTG Teptoyfic e Avatohnfic Mesoyeiouv (ET). Me Bdon v nuepfiowa
OLAXOUOVOT] TWV XUTAVOUMY X0 TEOTYOUUEVES UEAETES, OL XUPLEC TNYES OUWPOVUEVLV CWUATIOIY Yia
tov otadpd AYKIT eivon 1 xuxhogopia oxnudtwy (Tpdo@ates xal YNEoOUEVES EXTIOUTES) XaL OL OU-
yxevipooelg urmofdipeou tne evpltepne mepoyfc. Ou mnyéc yia touc otaduolc AT nepthapPdvouv
TEOCPATEG EXTOUTES O NUATWY, TUPTVOTOINCT VEWY COUATIOIWY, YNEUOUEVES EXTOUTES OYNUATWY, EX-
TOUTES AOY® UOYELREUOTOC Xl CUYXEVTPWOELS LToBddpou tng eupltepne meploync. Ou mnyég Yo Tov
otadué ET mepthoufdvouy tomxée mnyéc (Ynpaopévo acpoldh amd payelpepa xou GARES Spao TNELOTNTES
TIOL GUVBEOVTAL UE TOV TOUPLOWS xou TIC YELToViXES TOAeS oty Kphtn) xow Ty ouyxévipwon unoPddpou
e euplTtepng TepLoy NS, AVOAUCOUE TIC XATAVOUES PEYEVOUE Xat apldUol dLWEOUUEVWY CWHATISIWY Ot
Gdpotlopa Aoyopriixdy XaTavoudy Ti¢ onoleg xatomy yweloaue pe Bdon avdhuon ouddwy. Me Bdon
v unodeoy) 6TL 1 OUddA OTNY TEPLOYT| CUCTOREVOTS UWPOVUEVWY COUATOIOY Tou avory vwpelo Thxe
otov otodud ET mepléyel autd mou YeTopépovTon omd UAUXQVEC TEQLOYES oL TNV Yenon Tne Sldueong
TS TS oLYREVTEPLONG Yiot Xde opdda, cuunepaivoupe 6Tt 18% NG CUYHEVTEWONG CUWEOVUEVLY G0~
potdiov otov otadud AYKII petagépeton and paxpvéc neployés, to 37% yia toug otadpoie AT xou
70 59% Yo tov otadud EY. Booiopévol otov ywpelopd ot opddec pe Bdon T TpoAeuon v aeplnyv
POV YLoL TNV OUAd TTOU VoY VPO TIXE (WG UETUPEROUEVT] OO UAXPLVES TEQLOYES, CUUTEROEVOUUE OTL 1|
CUYXEVTEWOT] AWPEOVUEVLY cwpaTdiwy dtay ot aéplec pdleg mpoépyovion and tnv Mecdyelo Odhacoa
elvow TOAD younhotepeg and otav mpoépyovion and Bopeio-Avatolix| 1§ Bépeo-Auvtiny) xateduvon.

‘Otav emxpotodv ol Etnoleg n ouyxévtpwon unoBddpou otnyv meployt| tne Mecoyeiou auv€dvetar amd



2,5 éwc 4 gopéc.

Y10 deltepo xe@dhono avontiooeTon o véo pédodog ylo TNV amdXTNoY TOU TEAYUUTIX0U PéPoug
ToU 160BUVOpOU BelxTn BLdIAACTC TOU ATUOCPUELXOU AECOADUATOC UE TOV CUVBUAOHUO TWV XAUTOVOUMY
ueyédouc xan oprdpol evéc Slaoptnol XATUPETENTH AUWEOVPEVLY COUNTOIWY Ye Bdon Ty nhextoixy
xwvnrixdtnTa (AKHK) xou évav ontind xatopetenth oopatdioy (OKX). O oxonde ebvon va deifoupe
OTL Tt dedopéva xatavopunc aptiuol cwpatidiny Tou AopfBdvoval ot 6Touolg UETPHOEWY UTOPOLY Vol
pog Bdoouy o alodno yia T QUOLKES XoL YMUIXEC WBLOTNTEC TWV AWEOVUEVWY CWHATISIV ol Vol
odnyNoouv €101 6 xoADTERPY XUTAVONON TWVY EMBPACEDY TOUS GTO XAl Xat TNV avdpmrivn vyela. O
mpoxUnTwy evepy6e delxtne diddhaone (ERI) pmopel vo ypnowonomdel oe povtéha yetopopds axti-
voPoriag xar we delxtng e ynuiic cboTaone Twy wpolUevey cwuatdiwy. T'a v miotonoinon
e pedodou, Eyvay pior oelpd and TeElpduato Bardovouncng Ye YXeNor EVIOEWY X0t UVAXOY UE YVOOTO
delxtn diddhaone (AA). Etol MBaye tov Swopdwuévo deixtn diddiaone (ERIcor). O twéc ERIcor
%xaToTY ouyXeldnxay pe utohoyiopols TS TS Tou Belxtn Blddhaong TwV AWEOVUEVWY COUNTIOIWY
RI Booiopévee otn ynuxn cbotaon giktewv PMs 5 xou oe petprioelc lidar .

To Tplto xepdhoo acyolelton ue TNy €0PECT TWV ANAUPALTNTOY CUVINXWY OOTE Vo ETLTEATEL 1) Ameu-
Yelog o0yxplom TV UETEHoEWY Ue ETLTdLO Gpyova Xou PE dpyava Tnhemoxdémnone. To Yéua autd elvan
o) onuavtxd, xadde Yo emitpédel oe otaduols Ye eMTOTA OpYAUVEL XOU HE OPYAVO TNAETLOXOTNONG
EYHATEC TNUEVOUG OE UxEY) amdG TooT UETAED TOUC VAl GUVBLAGOUY TIG UETPNOELS TOUC, €TOL WOTE VoL Elvall
duvaty 1 Siepebivnon e xo Odoc avdUENS TOV AWEOUUEVWY COUATIOIWY xat 1 M1 TNe xataxdpueng
HATAVOUNS TWY WBLOTHTOV TOug omd To €8apoc Ewe opxeTd yLhopeTea Téve and 1o édagoc (agl). T
emAeyuéveg uépeg omou elyaue onuavtixd TOEPN oty atudcpoupa péyet eva vog tepinou 1.000 pétpwy
Tavw and To €dapog, unoloyicaue Tov cuvtekeo T eao¥éviong ue Bdon dedouéva and Tor GpYovaL ETIL-
TOTUWY PETPHOEWY YPENOLLOTOLOVTOS TEES HeEBGBouc. Xtny mpdtn wédodo o cuvteheothc e€acdévione
TWV APOVUEVWY COUTLOILY TEoExuE amd TNV TpdcUecT) ToU GUVTEAEG T oXEDUoTE ToU 0pYdvou «Ne-
(QENOUETPOY X0l TOU GUVTEAECTH AmoppoPNone Tou opydvou «Ardoléuetpoy. Koatémv tov cuyxplvoue
ue Tov ouvteheo T eaolévione Tou opydvou Tnhemoxémnone. H ouoyétion otny nepintworn aut Aoy
xoht) (ouvieheotic mpoodlopopol R? {coc pe 0,74). Etnv dedtepn pédodo unoloylcope tov debxtn

OLdrdhaone npocapudlovTog T HETPNOELS CUVTEAECTHY oxédaone Xt anoppdpnonc Negehoyétoou xou



Avdohoyétpou yenoldonoiwvtag utoloylopgols xwdxa Mie pe Bdon tny xatavour aprdpod xa yeyédoug
ouuoTdlwy Tou Adfoue amd Tor bpyovo EMTOTIWY PeTphioewy. Katdmv ye tov deixtn diddhaong mou
unohoylotnxe xou TNV xatovour| peyédoug xon aprduod TV awEoUHEVWY CuUATIdILY, uToloyicaue Tov
ouvteheo ] e€ocVévione xou Tov cuyxplvaue Ye TiC YeTtproels tnhemoxonnone. H ouoyétion xo oty
nepintwon auth frav avoromtny (R? {coc pe 0,62). Emione mopouoidloupe plo nuépo 6mou otny
nepoy”) e Advag elyaue éva eneloddlo pimavong and oxdvn e Xoydpeas. Apyxwd to oTedUa TNe
ATUOGPALEAC IOV TEPLElYE TNV oX6VY TS Loy dpoc aviyvelinxe and to dpyuvo TnAenioxomnong o Ljog
peyahitepo Twv 1.500 pétpwy mhvew and v emipdveia Tng Ydhacoouc. Adyw tng loyuehc TOpPNg oty
ATUOOCPOLEAL, TO ATOYEUUN TO OTEOU AUTO avoplyUnxe e To Tomxd agpdAupa xou aviyvelinxe and to
Opyova EMTOTWY Yetproewy. H mpoéhevon twv aecpivv poloy and v Notia Ageixy| nopovotdleton

eniong pe xpromn tou povtéhou atpoopaipixiic petagopdc FLEXPART.



Katavour peyvédoug xon aptdpod TV dwpolUEVLY G-
RoTLOlwY o Ao TIXoLE oTadoVg, oTAVUOVE AT TIXOY LUTO-
Bddpou, xau oTAIULOLE AVILTEOCWTRELTIXOVE TNG ELEVTEENS
TepLoyY NG TN AvatoAixrc Meocovyelou.

Arnoteréopata

To xohoxaipt Tou 2012 TEAYUATOTOACOUE UETEPHOELS XATAVOUREC HEYEDOUS Xou dpldUol cuwEoVUEVGRY
ouuoTdlwy oe ool aoTxod unoBdipou xévtpou ToANG, oToduolg acTixo) untoBdipou, xou otad-

pouc avtitpoonneutxols e eupltepng meployfic e Avatolxrc Mecoyeiou.

ITapovoioor xatavoumy peyedoug xou apldpon

Y10 Uyhua i topouctdloupe ToV YEWUETEIXO UEGO Gn Xt To 16° - 84° exatootnudplo NG Xatavoung
peyédouc xon aptduol v toug otaduolc Actixol TroBddpouv Kévipou IIéhne (AYKII), Actixod

Tropddpou (AY), Evpltepou Trofddpou (ET) yia tic ypovixée neptédoug tou mivaxa i.
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Ilivaxag it Xpovixég neplodol yetproewy xotovopurc Yeyédoug xat aptipod ampoUUEV®Y GOUITLOY

Tou TapovctdlovTal oty Tapolod epyasia.

Ilepiodocg EiSo¢ Xpovixn
Stadnog II6Am
Acvypatorndiog Stodpmol Kdaruvdn
8" Touviou - Actixd TnéBadpo
Patras-C IT&tpa 95%
26" Iouhiou Kévtpou I16Ane
8" Touviou - Aotixé
ICE-HT IT&tpa 89%
21" Touhiou TroBadeo
1" Touviou - Aotxé
DEM AdAva 82%
2" Avyovotou TroBadeo
9" Touviou - Aotixé
EPT Oecoalovinm 99%
22" Touhiou TréBodeo
1" Touviou - Euvpitepo
FIN Divoxahid 94%
31" Iouhiou TréBodeo

O otadude Aotixod TroBddpou Kévtpou I1dANe eupavilel xopuer ota 60 nm , urodetxviovtoc éva
plypo and medo@aTeG EXTOUTES OYNUATWY XUl TUO YNEUOUEVES EXTIOUTES OYNUETWY, EVE TapoLGtdlel
T UYMASGTERES THIEC CUYXEVTPWONG AwEOVUEVWY cwuatdiny. Mtnv Bihoypapia Snidvetou otL ot
évav otadud actxol utofddpou otnv Boapxehdvn (nepiodoc Serypatolndioe 307 Ioudiou 2012 - 47
Avyototou 2013) tonodetnuévo oe andotact 350 YETpwy and Evay TONGUYVAGTO HUTOXVNTODPONO
(9.000 oyrpotor avé epydolun NUEED), 1) CUYHEVTEWOT OWEOVUEVELY CWHTLO{wY xupavdToY avdueoo oo
7.500 £ 5.000 cm ™3 (uéon ouyrévipwon + otadepd andxhiong). Lo Blo ebpog dlaothuatoc ueyédouc
otov otadud Actuxol TroBddpou Kévtpou II6Ane (AYKII) ov avtictoyee tpée frav 8.200 £+ 5.800
em 3. H xoravour| peyédoug xou aprduod otoug otadpoic Aotinol TroBddpou nopouctdlel o emufixn
pop@Y), uTodevbovTuC TOMATAES THYEC oL omoleg €xouv avoplytel. Extdc and to ynpaouévo turue tng
XAUTOVOUNC TIOU AVTIOTOLYEL 0TO XAJOUO GUCCWEEVDTS, dlaxpiveTon emlong wla xopu@r Tou avTioTouyel
oto xhdopo  Aitken. Ov otoduol Actixol YTrofdlpou ennpedlovtan onuovtnd and TiC exmounég
OYMNUATWY Xt TNV xotomvy] adENoT HEYEDVOUC TV AwEOVUEVKY CWHATIOIOY AOYw anoppdpnone aepiwy

%ol oLUTOXVGWOTE LBpaTUGY. LNy PifMoypapio dnAdveton 6tL otov otadué Montelibretti (nepiodoc



derypatohniog 267 Senteufplou 2007 - 77 Modou 2009), évav otadud tonodetnuévo ot andotoon 30
km Bopeodutind tng Poune, n ouyxévipwon auwpodueveny cwpatdiny oto ebpog 17,5 - 100 nm Aoy
5.000 £ 3.000 cm™3 (uéon ouyxévrpwon £ otadepd andxhiong). O otadpdc Eupltepou TroBddpou
napouctdlel xopuy oto 100 nm xou TV YoaUNAGTERT, CUYXEVTEWOT and Ghoug Tou otaduole. XTny
BBhoypapia dNAGVETIL OTL Eval YNRACUEVO XAGOUN CUCCHREVONS UE XopueY oo 100 nm topoatneeita
ouyvd oty Pwvoxold. To xhdopa e xatavourc ue xopuer ota 100 nm ymopel vo anododel oe éva
piypa ynpaouévou aepohdUatoc (HETUPEPOPEVO amd TNYEC TNS EUPUTERNS TEPLOYNGC) O EPOAVUATOC
evdldpeone yhpavong and xovivég noielc oto ynol tne Kerne.

H xarovouy| peyédoug xou apriuol copatdiny ot xdlde otadud ywelotnxe oe tpfuata ye Bdon to
uéyedoc twv coyoatdiewy. Me yerorn tne nueprolas SLoxOUavong TV TUNUETWY dUTOY Xl TeoYYoLUE-
vee Uelétee, ouunepdvope 6Tt oL xVptec Tnyéc Yot tov AYKIT otodud eivon exmounéc oynudtenv xou 1o
umoPBadpo g eupltepng teployNc, Yot Toug AT oTaduole TEGCPUTES EXTTOUTES OYNUETOLY, YNEUCUEVES
exnounéc oynudtwy xo 1o unéBadpo xa v tov ET otadud or tomixée aoyohiec (toupiopde, paye-
lpepa) xan M ouyxévtpwon unofddpou. H pecaio tuh tne ouyxévipwong aprdpod tou ogelieton oty
oLYXEVTELOT Tou eLpUTEEOL LUTORAYpoL eivar 13% yia tov otodud AYKIIL, 29% Yo toug otoduote AT

xou 45% o tov otadpd ET.

IHopaywy? vEoV copatidivy we tuenvoroinon

Yty Pvoxohid ot 61 pépec pueTpioewy elyaue 5 TEPITTMOELC TAPAYWYHC COUATIOIWY UE TUENVoToinaT),
5 mepintwoelc nupnvonolnone otov otadud DEM oe 54 nuépeg xau 4 nepintwoeic otov otodud EPT oe
43 nuépeg, eved otoug otadpole Patras-C, ICE-HT dev Bpédnxe xapio. Xtov mivaxa ii napoucidletan
70 OG0 Loy VRN NTAV 1) GUVELGPORA TNE TupnvoTtoinong ot xdve otadud. Beédnxe 6t ta cwyatidio oty
neployY) peyédoug 10-20 nm , yiot 6A0 TO YEOVIXO BLEACTNU TNG XOUTAVIOG UETENOEWY, TEOERYOVTAL
and Tupnvonoinon oe tococtd 4% yio tov otadud DEM, 12% vy tov otadpd EPT xou 1% vy tov
otadué FIN.

Emouévee 1 ouVELoQopd TNE TURNVOTOINGTE GTOV OYNUATIOUS VEPWY HTOY ACUOVTY) 6TNY AVATOAXY

Meaoéyelo v e€etaldpevn nepiodo.
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IMivaxag ii: Atoluty xan oxetnr) ouvelspopd otoug otoduotc DEM, EPT, FIN oto ebpog yeyédoug
Nio—20, (em™3). Nnpr eivow 1 péom nuepholo cuYXEVTPOOT AUWPOVUEVLY CLUUTIBLY TOU €YOUY Topo-
y Vel ue mupnvomoinoy, Npg elvon 1 u€om NUERYOLO CUYHEVTEWOT] AWEOVUEVLY CWHATOLY LToBdlpou
xo, NNpr—pPERC EVOL 1) OXETIXY CUVELCQORA TNG TUETVOTIOIMGNS XATE TNV DLAEXELAL TV NUEPCY OTIC
omnoleg €youv aviyveudel. Nyprp_coNTR ENOL 1) CUVEIGPORE TG TupnvoTolnone oe 6N v neplodo

TV HETPHOEWV.

YtoOwés Nypr Ny Nnpr—-pPerc NNPF—CONTR

DEM 350 700 30% 4%
EPT 500 400 56% 12%
FIN 30 100 20% 1%
x103 Diurnal Profile x103 Diurnal Profile x103 Diurnal Profile
15.0 300 15.0 300
7 10.0 0 7 100
IE 200 2 IE
~ 3 E
Z 5.0 100° Z 50
0.0 06 12 19 0o 06 12 18 0o 06 12 18 0
Time of Day Time of Day Time of Day
(o) AYKII-OMAAA1 (B") AYKII-OMAAAZ2 (v) AYKII-OMAAA3

Eyua ii: Hyueprowo Sroocdpovon e ocuyvotniag epgavions (UTAe ypodua) xou tne peoodac Tuhc ou-
yrévtpwone (xbxxwvn yeauur) yio Tic Ouddec hoyaptduxdy xatavouwy tov éxouv npocdopotel. H
xOxxvn meploy)) YOpw and v peocata Ty avtiotolyel oto 169 xou to 84° exatooTnuUdelo TG OALXAC

CUYXEVTPWONG AWPOVUEVLY COUATIOIWY.

AToTEAECUATA AVAAVCTG OUEBWY AOYALLIUIXOV XATAVODY

Avohboape tic xatovoués peyédoue xou aptdpol almpolPeveY owuatdiny ot ddpolopa Aoyoptduixody
OUTOVOUMVY TS OTOIES XATOTY XUTATEEOME WS TROC TNV YEWUETELXY PEOT DIGUETPO, TNV YEWUETEIXT
otadepd andxAoNE Xt ToV GLUVOAXS apLiud ue Bdom avdlucT ouddnmv.

Ytov otodud AYKIT (Eyfua ii) 0wy - opdda mou xuplapyet oty xotavops| optduol copatidiny
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Eyua ili: Huephota Stocdpoven tne ouyvétntog ep@dvions (Umhe ypodua) xou e peoafas Thc ou-
Yxévipwone (xdxxvn yeaupr) yio Tic Ouddec hoyoptduxdy xatavoudy nov éxouv npocdopotel. H
neploy N YOpw and TNy weoaio Ty avtiotolyel 6to 162 xon o 84° exatoc TNUOELO TNS OAXNC CLYXEVTEL-

ONG UWPOVUEVRY COUATLOIWY.

XL OTNV GUYVOTNTA EUQEVIonG oyeTiletal UE TPOCPATES XU YNEUCUEVES exmounés oynudtony (OMA-
AA3). H opdda auth nopouotdler auinuévn cuyXEvTpwon aepoUHEVeY COUATISIWY Xou cuyvotnta
ELQPAVIONG TIC TIPWLVES X0l ATOYEVHATIVES WEEG OTOL €youpe avEnuévn xivnon oyxnudtwy. H OMAAA2
TEOEPYETOL OO TNV CUCCWPEUGCT] AUWPOVUEVWY COUATIOIWY TOU UETAPECOVTAL ATO UUXELVES TIEQLOYES XOll
v abénon yeyédoug Twv cwuaTdiwy Tou TaEdyovTo TOTXd AdYw CUUTOXVWOTNE AERlLY Xol UBPATUMY
o€ oUTd.

Ytoug otadpoie AT (Eyhue iil) n OMAAATL propel va amododel otic exnounéc oynudtemy, xadoe
€yeL UEYAAN alEnom ouYXEVTpwone apLiuol owuaTdiwy xou CUYVOTNTIC EUPAVIONS TIC TEWIVES o O-
TOYELHATIVESG (dpeS Omou Eyouue avinuévn xivnon. Ilopouvoidler eniong adénon g cuyxévipwong o
ueomnuépt, dpa cuvdéetar eniong pe cwpatidio Tou tapdyovtal pe nupnvononon. H OMAAA?2 eivan ota-
Yepn} oe OAT| TN SLdpxeia TNS NUERAS XL TTROEPYETOL OO TNV UETAPEPOUEVY) CUYHEVTEWOT CWUATIOIWY amd
v eupltepn meploy xou TNV adEnom peyédoug Twy cwpatdiwy tou mopdyovton tomixd. H OMAAA3
eniong ouVBEETAL UE TNV XVNOT) TWV OYNUATWY, xaddg eppavilel HEYIOTA TO TEW! Xal TO ATOYEVMA, OAAS
TPOEEYETAL OO EXTOUTES ToL €youv unooTel Yrpavor. H OMAAA4 nopoucidlel yéyioto to yeonuéet,
WBlee oTNY CUYVOTNTA EUPAVIONG, XL AVTICTOLYEL OF PETUPEPOUEVES EXTIOUTIES AT YELTOVIXEC TIEPLOYES.

Ytov otodus ET (Zyhue iv) n OMAAA2 cuvdéeton pe exnounéc evBLUESTC YHPAVOTC TTOU Tpoép-
yovtat ané exnopnéc twv nokewv e Kefine. H OMAAA3 cuvdéeton pe to undPodpo tne eupltepnc

neployfic. H OMAAAT npoépyeton and nohd ondvies TepInT@oels TomxXc pUTAVOTC.
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Syfua iv: Hyuepriowo SioxOpovern e ouyvotntog eupavions (UTAe ypoua) xou e peoadus TS ou-
yxevipwone (xdxxwvn yeauur) yio tic Ouddec hoyaptduxdy xatavouwy mou éyouv npocdopiotel. H
xOxxvn eployl) YOpw and v peocata Ty avtiotolyel oto 169 xou o 84° exatooTNUOELO TG OALXAC

CUYXEVTPWONG AWPOVUEVLY COUATIOIWY.

Agob unohoylooupe v Sdpeon T T ouYxEvTpwong Yia xdde oudda ot xdde timo oToiuol
%o pe Bdon tny unddeon OTL 1) opdda GTNY TEPLOYY) CUCGHOREVCTC OULWPOVUEVRY CWUATIOIY TOU ava-
yvwplotnxe otov otadud EII elvon autd mou petapépovial and HaxpvéC TEQLOYES Xl TNV YeHoN TNG
Bidpeone e e cuyxévtpwaong Yo xdde oudda, oupmepaivoupe 6Tt 18% TG oLUYXEVTEPWONG AUWEO-
Opevev copatdioy otov otodud ATKIT petagpépeton and poxpvéc neployée, 1o 37% v toug otadpoic

AY xou t0 59% vy tov otoduéd EY.

MezaBoAY) oty ovyxEvipwon vnolBddpou Bacillonevrn TNy TEOEAELOT TWV de-

plov palodv

H OMAAA3 tou otadpod ET nou avtiotoyel 610 xhdopa cLCOMPEVOTE TNS xatavourc Leyédoug
xat apLiol TWV awpoVUEVLY GuUTikY Yewpolue 6Tl avTioTolyel otnv cuyxévipwon unolddpou
e eupltepng meploy e e Avatolxfic Meooyelou. Avolbooue oe ouddeg TNV TeoéAeucT) TV aeplwv
palédv vty OMAAA3 tou otaduod ET xou to anoteléoparta nopouctdloviar oto Ly v. Metd
TOV UTIOMOYIOUO TNE PEOTC TING CUYXEVTPWONG OUWPOUUEVGDY CWHATIOIWY Yo xdVe ouddo Tou avoryve-
plotnxe pe Bdon v npoéheuot) Twv agplev Yaloy, CUUTERUIVOUUE OTL 1) CUYXEVTPWOT| ULWEOVUEVKY
oopatdiwy 6tay ol aépleg wdlec mpoépyovtar and Ty Meodyeio Odhacou elvar TohD yaunAotepes and
otay Tpogpyovial and Bopeio-Avoatohu 1) Bopelo-Auvtin xoatebduveor. ‘Otav emxpatoly ol Etnoleg 1

ouyxévTpwor unofddpou otnv neployt g Meooyelou auvédvetan and 2.5 €wc 4 Qopéc.
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nsitivity nsitivity nsitivity
(s) (s) (s)
5.3e+04 5.3e+04 5.3e+04
2.7e+04 2.7e+04 2.7e+04
1.3e+04 1.3e+04 1.3e+04
-6.6e+03 -6.6e+03 -6.6e+03
3.3e+03 3.3e+03 3.3e+03
1.6e+03 1.6e+03 1.6e+03
8.le+02 8.le+02 8.le+02
4e+02 4e+02 4e+02
2e+02 2e+02 2e+02
I, 1e+02 I, 1e+02 I, 1e+02
10°W 0° 10°E 20°E 30°E 40°E 50°E 10°W 0° 10°E 20°E 30°E 40°E 50°E 10°W 0° 10°E 20°E 30°E 40°E 50°E
(«) EY-ITAE-OMAAAL (8) EY-TIAE-OMAAA2 (v) EY-IIAE-OMAAA3
lnsmv\ly lnsmv\ly
(s) (s)
5.3e+03 5.3e+03
2.7e+03 2.7e+03
1.3e+03 1.3e+03
6.6e+02 6.6e+02
3.3e+02 3.3e+02
1.6e+02 1.6e+02
81 81
40 40
20 20
/ 10 -~ 10
10 W 0° 10°E 20°E 30°E 40°E 50°E 10 W 0° 10°E 20°E 30°E 40°E 50°E
() EY-TIAE-OMAAA4 (¢) EY-ITAE-OMAAAS5

Yyfuo v Xdpteg mou unoduxvelouv Tic opddeg Tou npoéxuday Ye Baom TV avdALGT) OPddwY TPOEAEUOTS
agplowv palov. H ET-ITAE-OMAAAL avtiotolyel oty npdtn oudda tpoéheuone acplev yalodyv mou

avayvwelotnxe and v avdiuorn tnge OMAAAYS tou otatpod ET.

Anoteléopata cUYXELONG TOL LoOBUVAUOUL BelxTY OLddAa-
O7S TOU ATULOCPAUEILXOV AEEOAVUATOS UE deixTteg St Aaong
TOL TEOXVTTOLY ATO TNV YNULXT CLOTACT) XA TLE OTTIXES
LBLOTNTES TOLG

Yto yfpa vi tapovoidletar o todlvopog delxtne diddhaong ERIcor Yo OAn TNy Sdpxelo TS o=
undvioe petpoewy HygrA-CD (276 3wpa). O 00divapoc delxtne Siddhaong elvow o mporypotinde
oprdudE oV GUVBLALEL UE TN UXEHTERY) BUVOTY ATOXALOY) TS XAUTOVOPES TIOU TEOXVTTOUY Omd Tol OpYU-
vat: Alpopixode XOTOHETENTAS MWPOVUEVWY cuUaTdiwy pe Bdon thy nhexten xivntixdtnta (AKHK)
xo OmTiGS xotopetenTic owpatdiny (OKX). Xto wotéypauua 6 gaiveton T 1 mAetodngio twv Ty

tou ERIcor Bploxetan evtdg tou evpoug 1,62-1,68.
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1.551.575 1.6 1.6251.651.675 1.7 1.725
ERI or

Syhua vi: Iotdypauuo Tng Swoncduavong tng uéong tung avd 3weo tou ERIcor Y 6An v neplodo
e xoumdviog HygrA-CD. Toa unie mopolknhéypopua SNAGVOLY TNV oLy VOTNTO EUPAVIONG TNS THNG
wou ERIcopr evé M UTAe ypouur mopouctdlel Ty xoAUTERY TROGEYYIoN 1S AUPOIoUO YXOOUGLAVEDY

HOTAVOUWYV.

Acixtng dtddhaong and TNy ynuixy ovotacy Rljc xow cOyxeLlorn Ue Tov

ERIcor

Me Bdor yetprioeic ovTixAc ypwpatoypaplac o QIATpo THACUUE TO AVLOVTO YO XATLOVIO TWV OLWEO-
OpEVLY cwpatdiny Yo ta Ypovixd Sothpata tou Ilivaxe iil. Katdmyv éyive avdiuvon twv @iitpwy
pe v teyvixy XRE xou mhpope TNy TEQEXTIXOTNTA TV dwEOVUEVLY CuUaTdiwy ot puétahio. Metd
and avdhuon and Gpyavo PEtenong opyavixol xoi otolyetoxol dvipoxa EC-OC AdBoue tic avtiotot-
YEC OLUYXEVTPWOOELS. Me cuVBuOoUS TwV TapATdvVe PeTpioewy AdfBaue Tov Belxtn Biddhaong and Ty
YT OO TUACT] TWV AWEOVUEVWY CWHATIOIY Xl TOV oLYXEVoE UE TOV LlooBUVOHOo el diddiaong
ERIcor.

Yto Syfua vii 1o RIjc xow ERIcor éxouv xah cuoyétion (R? = 0,88). ‘Otav to xhdopa udloc

e oxévng ebvon VYMAS, o ERIcor elvan uPnhoc.

YOyxplon deixtrn diddAhaong Rl wow ERIcor

To lidar pe petprioeic oe 6 prixn xOpatoc nov Aettoupyel oto Edvind Metodfo ITohuteyvelo (EOLE)
napelye TV xotovopr] xo’ UPog Tou GLUVTEAESTY) OTLCYOOHEDAOTC AWEOUUEVLY CwpaTidiwy. Metd

and encéepyaoio Twv petproewy AdPoye tov delxtn Siddhaong Twv awpoluevey owuatdiwy xod Udog

15



ITtvaxo iii: XOyxeion RItc xaw ERIcor

Hyepounvia, dpa (UTC) ERIcor RIic
217 Moiou 2014, 19:00-22:00 | 1,6640,1 | 1,5840,15
28" Maiou 2014, 08:30-13:30 | 1,654+0,1 | 1,59+0,15
28" Maiouv 2014, 19:00-22:00 | 1,67+0,1 | 1,5940,15
30" Maiou 2014, 08:30-13:30 | 1,654+0,1 | 1,58+0,15
30" Maiou 2014, 19:00-22:00 | 1,63+0,1 | 1,57+0,15
6" Touviouv 2014, 19:00-22:00 | 1,65+0,1 | 1,5840,15
6" Touviou 2014, 19:00-22:00 | 1,6540,1 | 1,58+0,15

1.68

EC, mass fraction%

ERIcor

1.62 |

1.56 1.58
Rl

1.60

6

Syfua vii: Xoyxpion Rljc xou ERIcor. H xbxavn ypouur mopouotdlel Ty Ypouix Teocaploy)

avdueoo ota 800 eyédn. To ypdua tou evdetinod x0xhou avtiotolyel 6To xAdopa Pdlag podpou

Svdpoxa (o ox0VEOo YEMMO AVTIO TOLYEL O HEYOAUTERPY CUYXEVTPWOT)) EVE) 1) ETLPAVELA TOU XOXAOL OV TL-

otouyel 670 xhdopo udlag e oxdvNG (HEYUAITERY) ETLPAVELX AVTIO TOLYEL OE UEYOAITERT) CUYXEVTEWOT).
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Iivaxag iv: Xoyxewon RIn; xaw ERIcor

Huepopnvia, wpa (UTC) ERIcor RIp;

23" Matou 2014, 19:00-20:00 1,61£0,1 | 1,56+0,1

26" Maiouv 2014, 19:00-20:00 1,63+0,1 1,6+0,1

7" Touviou 2014, 22:00-23:00 | 1,67+ 0,1 | 1,614+0,1

10" Touviou 2014, 18:45-19:45 | 1,6840,1 | 1,62+0,1

17" Touviou 2014, 19:00-20:00 | 1,6640,1 | 1,59+0,1

187 Touviou 2014, 19:00-20:00 | 1,58+0,1 | 1,5940,1

22" Touviou 2014, 19:00-20:00 1,6+0,1 1,56£0,1

RIp;. ¥tov mivoxa L mapouctdlovTal oL NUEROUNVIES Xal WEES 0TI OToleC ElYAUE XOWVEC UETPNOES TWY
TPOUVAPELOUEVWY UEYEVDV.

Yo EyAua viii napovoidleton 1 obyxplon twv Rl xou ERIcor »ou Topatnpolpe 4Tt UTEpYEL
oxenxd xohn cuoyéton peto€l toug. H oyetur uypasia oto Udog mou petpd to lidar xupovotay
avdpeoo oto 40 xat o 65%, augdvoviac Tic Swpopéc avdpesa ota dvo peyédn. Iupdha autd, o xiplog
unyaviopds mou @odveton v emneedlel T cuoyétion twv Ripr xou ERIcor eivou n ui&n tov aegplowv

palodv xad” Oog.

20YAELOT EMUTOTULWY UETENOEWY XU UETENOCEWY TNAETULCOHOTT]-
ong otnv Mnrponoiitixy Ilepioyn twv Adnvoy

Y OY%ELOT TOU GUVTEAEG TY] ATOREOYPTCYG UWEOVIEVLY CWUATLOWY TOU
A@Onxe and to EOLE lidar e tov avticTolyo cuvieAec T ToU AjpUn-
xe anod Ta opyava Negehopetpo, Avdalopetpo

Tt var unopécouye va oLYXEIVOUPE TIC HETENOELC EMUTOTUWY OPYEVKY Xol OPYAVGWY TNHAETIOXOTNONC,

unohoylooyue Tov u€co ouvteheotn eactévions ota 355 xou 532 nm yio Ohog amd 1.200 €we 1.300 yétpa

v and To eninedo tne Odhacoac (asl) yia emheyuévee nuépec oTic onoleg elyaue Wyven ToEBn oty
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Syua viil: XOyxpeion loodivagou detxtn Sidtiaone ERIcor pe tov deixtn diddhaone RIr . H xdxavn
oo mapouctdlel TV Ypouixy| TeoooppoY avipeca ota dVo peyédn. To ypdpa avtiotoryel ot

oyetixn uypasio oo Oog brou petpd to lidar (40-65 %).

atpoopapa. O cuviekeotrc e€aodévione yia Ti¢ emtonie Yetprioelc unoloyiotnxe and o ddpoloua
TOU GUVTEAEDTY] OXEDBOTE oL TopEelye To dpyavo Ne@eAOUETEO X0l TOU GUVTEAEGTY| ATOPEOPNOYS TOU
napelye To dpyavo Avdorduetpo. Io vo yetatpédouue Tov cuvteleoTty| oxédaong and Enpéc ouvinixeg
uétpnomne oe atpoopuupxéc cuviixeg, yenolwonohoope éva cuvteAeoth adEnong oxédaone (oo e 0,57.
Trodéoaue 6TL 0 CUVTEAESTAC amopEdPNONE Bev UeTaBdAAETOL UE TNV OYETXTY LYpasid.

Hapatnpotye oto Lyfua ix 6T uTdpyel XohH cuUPVis avaUEsH GTOUS GUVTEAEG TG e€aoUéviong
ETUTOTUWY 0PYEVWY XAl OpYAVWY TNAETUOXOTNONG YL NUEEES UE toyven ToeBn otnv atudogaipa. Ol
petproel pe to udPnAdTepo € Bploxovtal 6To XEVTpo TNE Blaomopds, eV 0 cuvtekeaThAg adinong ue-
yédoug Aoyw uypooxomixdTnTag dev pafveton vor ETNEEGLEL ONUAVTIXG TNV GUCYETION. LUUTERUVOUYE

EMOUEVE OTL O ONUAVTIXOTERPOS UNYavioUdc Tou enneedlel TN cuoyétion elvon 1 avaEn xod” og.
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Yyfuoe ix: Xdyxplon tou cuviteheo Ty eacBévions o aTUooPalpixés cLVITXES UETENUEVOLU amd To
Opyova Negelopetpo xow Ardohbuetpo xou tov avtioTtolyo cuvieheot) e€acVévions PeETENUEVO and
10 EOLE. To péyedoc tou xdxhou avtotolyel otov ouviekeath adénone peyédouc Adyw uypooxo-
TUXOTNTAUC XL TO YpOpA Tou X0OxAou GTov pulUS amwhielag evépyelog AOyw TOEPng €. Kou ta 8Vo
ueyédn xavovixomowolvtow avdyeoso oto 100 xou to 200. xolpo ypdua aviiotoiyel oe LPniéc Ti-
uéc puduol anoielac evépyelog AOYw TOEPNC, eV 1 peyahbtepn enlpdvela avtioTolyel oe uPnhoTepo
ouvteheoth ad&none weyédoug Aoyw uypooxomxdtnrac. H xdxxvn ypopun napoucidler tnv oxéon
NEPH — AETHgxr-wET-660 = 1,21 * EOLEgxT_660+13,8 Mm™!, 1 onola elvon 1 xehOtepn

Yeopper tpocapuoyh pe R? (oo e 0,74.
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Syua x: X0yxplon tou cuvieAeo T e€ac¥éVione oe ATHOCPAUEIXEC GUVITXEC UTOAOYLOUEVO UE XWOLXL
Mie xou tov avtioTolyo cuvieheot| efaociévione petenuévo and to EOLE. To péyedoc tou xixhou
avTioTolyel oTov cuvtehea T adénong yeyédoug AdYw UYPOGXOTUXOTNTAUS XAl TO YPWH TOU XOXAOU
oTov pulud andielag evépyetag Aoyw TOpPne €. Kau ta 0o peyédrn xavovixonolobvion aviecso 6To
100 xou To 200. XxoUpo ypwua avtiotolyel ot uPniéc Tiwés pulUOY anwAelg evépyelog Adyw TOEPRNC,
eV 1 ueYohOTERT EmLpdvela avTioTolyel ot udhnAdtepo cuviekeoth adEnong yeyédoug Adyw UYpooxo-
mxdtnrac. H xéxnvn ypopun topovotdlel v oyéon NEPH — AETHR;_pxr-wET—660 = 0,64 *

EOLEgxT_660+7,6 Mm™1, 1 onola ebvan 1 xahhtepn yoouux npocopuoy pe R? oo pe 0,62.

Y OY%ELOT TOLU GUVTEAEG TY] ATOREOYPTCYG UWEOVIEVLY CWUATLOWY TOU
AMpUnxe andé to EOLE lidar pe tov avtiotolyo cuvieheo Ty mouv ApUn-

xe Ue x)ouxo Mie.

Trohoyloope tov Seixtn Sidhoone npocupudlovtag T UETPHOELS CUVIEAECTOV OXEDUONC XOL OTOp-
péopnone Negehopétpou xar Avdaropétpou yenoionoldviog xwdixoa Mie pe Bdorn tny xatavoun oprdpod
xon Yeyédoug owpatdiny mou AdBaue omd Tar dpyava EMTOTIWY YeTeroewy. To enduevo Brua ¥tov va
avéyoupe tov deixtn diddhaong xou v xotavour peyédoug xat apidpol aempolUEVLY cwuaTdiny ot
ATUOCPAUELXES CLUVITIXEC WG TPOC TNV oyYeTix) uypaocio. Kotémy pe tov Seixtn Siddiaone mou uno-
rovloTnue xou TNV xatovour| HEYEDOUC xal dptduol TWV dWEOUUEVWY CWUATOIWY, UToAOYIoUUe TOV

ouvteheo T e€aoVévione xon ToV oLYXpEIVOUE UE TIC HETENOELS TRAETOXOTNONG (YA X).
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Y10 Uyfua X mapatneolue 6Tl UTEEYEL XOAY) CUMQWVIN aviueco 6Toug cuvtekeotéc eCaocdéviong
EMUTOTUWY 0PYAVWV XL 0PYAVOY TNAETIOXOTNONG Yiol NUERES YE Loyuet TUEBT oty atudopoupa. Tlpénel
vou €youde UTOYLY ag OTL 1) xaTovopT aplduol xou ueYEdoug TwV awEOVUEVWY CLUTBILY Tou Yenot-
pomoldnxe yia Tov UToAoYIoWd Tou cuvieheo ) e€acVévione @tdvel uéypt too 1.000 nm xou autd pnopel
vor 0dnyel oe Aadn oyetildueva pe owpotidio peyahitepou peyédoug mou Bploxovton oTny aTudoQoLEd.
Ou petprioeig Ye 1o udmAdtepo € Bploxovtar 6To %*EVTEo TNC BlHoToRdE, EVE 0 GUVTEAEGTAC adENomg
peyédouc Aoyw uypooxomxoTnTac dev Qalvetan Vo emneedlel oNUAVTIXG TNV CUCYETION. LUUTEQUVOUUE

ETOUEVOC OTL O GNUOVTIXOTEPOS UNYOVIGHOE ToL emneedlet T cuoyétion elvar 1 avduén xod” Uoc.

Avauigy Tomixol Kol UETAPEROUEVOL acgpolLpatog TNy 277 Maiouv 2014

Trv 277 Mafou 2014 otny neployh) e Advag elyoue €va eneloddio pdnavong and oxovY TG Loy deds.
Y10 TyAua xi(a) nopovodletoar to dopdwuévo ohpa we mpog v andotaoyn ot AU tou EOLE.
Apywd 0 oTpOUA TNS ATROGPIIEOS ToV TEplelye TNV oxdvn TNg Moy dpag aviyvebinxe and to dpyavo
mnhemioxdénnone ot Oog peyahltepo twv 1.500 pétpwv Téve and v empdvel te Ydhaocoog (06:00-
09:00 UTC). Ze yaunidtepo vhouetpo tnv (Bro dpor dtoxplveton £var GTEMMUO TOU TEPLEYEL TOUS TOTLXOVC
evnoug. Ltig 12:00 UTC, Aoyw tne toyuehc toefng otny atubogoupa, 6nwe goivetar ato Lyfua xii(o),
o 800 oTpwuata avautyviovton. To amdysuua, éva xahd avoulyuévo oTehua eppavileton and To E8apog
éwe ta 2.000 pétpa tévew and ) Ydhacoa. To yeyovde autd vodewvieton xoau 6to Lyfua xi(B'), 6mou
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2.5 x 1071). The red line depicts the relation of ERITorAL-sc-wET—660 = 0.84 *
EOLEgx7T—_ss0+1.5 Mm~! which is the best linear fit obtained, with a coefficient of

determination (R?) equal t0 0.45. . . . . . . . ...
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is present above 1,500 m asl and a local pollution layer at ground level. At 12:00, due
to strong turbulence up to 1,000 m, the two layers are mixing. In the afternoon, a well
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almost the end of the day, there is turbulence in the atmosphere up to the height
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Chapter 1

Introduction

1.1 Optical, microphysical and physico-chemical properties
of aerosols and their role in climate change

Aerosols are relatively stable suspensions of solid or liquid particles in a gas. Particles may be either
directly emitted into the atmosphere or formed in the atmosphere via photochemical reactions.
The former particles are called primary while the latter ones are called secondary particles. The
formation mechanism for primary aerosols is twofold (a) bulk-to-particle conversion (e.g., mineral
dust) and (b) liquid-to-particle conversion (e.g., sea salt). Secondary aerosols form only within the
atmosphere from precursor substances like gases, hence through the physical mechanism of gas-to-
particle conversion. Aerosol principal modes, sources, particle formation and removal mechanisms
are indicated in Figure 1.1. The size distribution of aerosol particle surface area is presented in
Figure 1.2.

Through physical and chemical aging processes, when the thermodynamic state of the atmosphere
permits it, aerosols function as CCN and enhance cloud development processes. Aerosols lifetime is
generally short - from few days to few weeks. They are transported to remote regions following the
wind trajectories, and finally, they are removed from the atmosphere via dry deposition due to the

gravitation force or wet deposition in the form of precipitation.



ATMOSPHERIC AEROSOL
Exgg;?rrestrial i SOURCES SINKS
Marine Continental In-cloud
aerosol aerosol scavenging
(n <10% ml") {n ~103-ml") - guclea}mn
: - brownian
diffusion
Volcanoes. -phoresis
Gas-to-particle
reactions NS ih
AV U Le W WL L
i \ Precipitation
Sulfate / icaj‘,’ "%‘"ﬁ
CCN /
i Oy / /1/-impacton
deposition - grownian
; diffusion
0, Saia /4//-phoresis
oEa = /‘t
spray ¢ P =
Wing BMS & d. £

Figure 1.1: Idealized schematic of atmospheric aerosol sources and sinks.

We usually discriminate atmospheric aerosols with respect to their size range and their origin,
making a distinction between “fine” and “coarse” particles referring to particles smaller and larger

¢

than 1 pum respectively. In fact, particles falling in “fine” mode are further classified to the “nucle-
ation”, “Aitken” and “accumulation” modes. “Aitken” and “accumulation” modes consist of both
primary and secondary aerosols, while the nucleation mode refers exclusively to secondary particles
and its formation involves the nucleation of a new phase (liquid or solid) from a supersaturated gas
phase.

Aerosol sources have been grouped into two big classes; the anthropogenic sources due to emis-
sions from vehicles, domestic heating, industry, power plants and the natural sources. The most
common aerosols of natural origin are mineral dust, sea salt, biological aerosols like bacteria and
pollen. Aerosols of anthropogenic origin include sulfates, nitrates, Black Carbon (BC) and par-

ticular organic matter; sulfates may also originate from natural sources through dimethyl sulfide

(DMS), which is emitted by phytoplankton species after their death. Due to the high concentration
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Figure 1.2: Idealized schematic of the distribution of particle surface area of an atmospheric aerosol.

Principal modes, sources, particle formation and removal mechanisms are indicated. [81]



of oxygen, DMS by its reaction with O produces sulfur dioxide SO- and a secondary product is
sulfate 504_2. Apart from the ocean, DMS is also released to the atmosphere through vegetation.
Lastly, volcanoes (via eruption and continuous degassing) may be substantial natural sources of SOs
which functions as an effective sulfate precursor. SO5 is mainly emitted to the atmosphere through
anthropogenic activities, mainly ship emissions and fossil fuel combustion. Biomass Burning (BB)
is an important source for BC and Particulate Organic Matter (POM): main products of incomplete
combustion of biomass. Large quantities of BC and POM are also emitted into the atmosphere as a
result of fossil fuel combustion. The anthropogenic activities are also responsible for nitrates NO,
although a small fraction of such emissions comes from natural sources (lightning and the soil which
produces NO).

Aerosols can be externally mixed (heterogenic) with respect to the species that they consist of, or
they can be an internal mix, where the different constituents are homogeneously mixed in a solid or
a liquid phase. This discrimination between externally and internally mixed aerosols is convenient,
but the true mixing state stands between these two extremes.

We often use the population mixing state to define the distribution of chemical compounds across
the particle population and the morphological mixing state to express the distribution of chemical
compounds within and on the surface of the particle.

Mineral dust is insoluble when it is in pure form, close to the emitting source areas. However,
when mineral dust is internally mixed with soluble components e.g. sea salt, the resulting aerosol
becomes prone to water uptake. In nature, the internally-mixed particles can be decomposed into
an insoluble and hydrophobic component, like OC, and a soluble and hygroscopic component, like
sulfate.

Regarding optical properties of aerosols, the refractive index of a medium is a pure number which
describes how fast light propagates through it. The light intensity scattered by an aerosol particle
in all angles can be calculated by the Mie theory, provided the particle is spherical, and that its
refractive index and geometric diameter are known [10].

Aerosols influence climate both directly by the scattering and absorption of solar radiation, and

indirectly through their role as cloud condensation nuclei. Light can be scattered or absorbed by



aerosol particles suspended in the atmosphere. Light scattering dominates over absorption in the
visible. Nevertheless, absorption of light cannot be ignored, as it influences considerably the total
radiation balance. The reduction in the intensity of a light beam during its propagation through
an aerosol medium is determined simultaneously by absorption and scattering processes. The sum
of total light scattering (i.e. in all directions) and absorption is called extinction. Energy, which
is absorbed by particles, is not contained in them indefinitely, but radiates at larger wavelengths
(emission).

The magnitude of the direct-forcing of aerosols (measured in Wm™2) at a particular time and
location depends on the amount of radiation scattered back to space, which itself depends on the
size, concentration, and optical properties of the particles and the solar zenith angle. The so-called
indirect effect emerges when increases in aerosol number concentrations from anthropogenic sources
lead to increased concentrations of cloud condensation nuclei, which, in turn, lead to clouds with
larger number concentrations of droplets with smaller radii, which, in turn, lead to higher cloud
albedos [81].

Particles can both scatter and absorb radiation. As particles become increasingly absorbing
versus scattering, a point is reached, depending on their size and the albedo of the underlying surface,
where the overall effect of the particle layer changes from one of cooling to heating. Moreover, if the
particles consist of a mixture of purely scattering material, e.g. ammonium sulfate, and partially
absorbing material, e.g. soot, the cooling-heating effect depends on the manner in which the two
substances are mixed throughout the particle population. The two extremes are when every particle
contains some absorbing material and when the absorbing material is distinct from the scattering
particles. These effects are further perplexed when a cloud is present. Particles exist above and
below clouds and, to some extent, even in the cloud itself. The amount of light scattered back to
space depends on the properties of both the aerosols and the cloud.

The direct effect can be observed visually as the sunlight is reflected upward from haze when
viewed from above (e.g., from a mountain or an airplane). The result of the process of scattering
of sunlight is an increase in the amount of light reflected by the planet and hence a decrease in the

amount of solar radiation reaching the surface. The amount of light reflected upward by aerosol



is approximately proportional to the total column mass burden of particles (usually reported in
grams per square meter). The direct effect of aerosols on climate is a result of the same physics
that describes the reduction of visibility that occurs in airmasses laden with particles. The main
difference is that, while visibility reduction is attributed to aerosol scattering in all directions, the
direct climatic effect of aerosols results only from radiation that is scattered in the upward direction,
back to space.

Indirect climate effects of aerosols are more complex and more difficult to determine than direct
effects because they depend on a chain of phenomena that relate aerosol levels to concentrations of
cloud condensation nuclei, cloud condensation nuclei concentrations to cloud droplet number con-
centrations (and size), and these, in turn, to cloud albedo and cloud lifetime. Changes in the particle
number concentration of aerosols cause variations in the population and sizes of cloud droplets, which
are expected to trigger changes in cloud albedo and areal extent. Other meteorological influences
might occur as a result of perturbations in the particle number concentration of aerosols, such as
changes in precipitation.

In contrast to Green House Gases (GHGs), which act only on outgoing, infrared radiation, aerosol
particles can influence both sides of the energy balance. Particles of diameters less than 1 um are
highly effective at scattering incoming solar radiation, sending a portion of that scattered radiation
back to space. Therefore, these particles reduce the amount of incoming solar energy in comparison
to their absence and consequently cool the Earth. Sulfate particles produced by the oxidation of
anthropogenically emitted SO5 in the industrialized parts of the world, constitute much of this light-
scattering aerosol. Biomass burning of forests and savannas is a dominant source of airborne particles
in the tropics, consisting mainly of organic matter and soot. Wind acting on soils produces mineral
dust, which is always present in the atmosphere to some degree. Human activities, though, such
as disruption of soils by changing use of land in arid and sub-arid regions, can increase the loading
of dust over that present “naturally”. Mineral dust particles can scatter and absorb incoming and
outgoing radiation due to their size and composition. The light-scattering effect dominates in the
visible part of the spectrum, and mineral dust exerts an overall cooling effect, while in the infrared

region, mineral dust is an absorber and acts like a greenhouse gas.



Greenhouse gases such as COy, CHy, N2O, and the CFCs are virtually uniform globally. Aerosol
concentrations, contrarily, are highly variable in space and time. Sulfate aerosols, with lifetimes of
about a week, are most abundant close to their sources in the industrialized areas of the Northern
Hemisphere. During the dry season in tropical areas, biomass aerosols are emitted predominantly.
Large arid regions produce downwind high concentrations of mineral dust. What is more, green-
house gas forcing operates day and night; aerosol forcing operates only during daytime. Aerosol
radiative effects depend in a complicated way on the solar angle, relative humidity, particle size
and composition, and the albedo of the underlying surface. When superimposed on each other, the
spatial distribution of GHG warming and aerosol cooling do not occur at the same locations [81].

Aerosol residence times in the troposphere are approximately 1-2 weeks. If all SOs sources
were shut off today, anthropogenic sulfate aerosols would disappear from the planet in 2 weeks.
By contrast, GHG residence times are measured in decades to centuries, but because of the great
inertia of the climate system, the effect of GHG forcing takes decades to be fully transformed into
equilibrium climate warming [81]. If both CO5 and aerosol emissions were to cease today, the Earth
would continue to warm as the climate system continues to respond to the amount of CO- already
in the atmosphere.

The inability to reconcile the observed temperature trend since the preindustrial period with
that predicted by general circulation models (GCMs) based on GHG increases alone led to severe
uncertainties about our understanding of the climate effects of GHG forcing, until recently. Inclusion
of aerosol effects in climate models has made a decisive difference in the ability to simulate observed
temperature trends. Significant similarities between patterns of observed temperature changes with
GCM predicted changes are observed when aerosols are included, while less similarities are observed
if GHGs alone are considered.

Overall, the aerosol radiative forcing over the years from 1750 to 2011 is estimated as —0.9 [-1.9
to 0.1] Wm ™2 (medium confidence). Radiative forcing from aerosols has two competing components:
a dominant cooling effect from most aerosols and their cloud adjustments and a partially offsetting
warming contribution from black carbon absorption of solar radiation. There is high certainty that

the global mean total aerosol radiative forcing has canceled out a substantial portion of radiative



forcing from well-mixed GHGs. Aerosols continue to contribute the largest uncertainty to the total

radiative forcing estimate [68].

1.2 Factors affecting aerosol concentration in the study area

Atmospheric aerosol particles affect air quality, human health, atmospheric visibility, and the climate
[23]. To understand these effects, measurements of their size distribution and chemical composition
are highly needed.

Ground based in situ and remote sensing measurement platforms are essential tools for continuous
monitoring and evaluation of global, regional, and local air quality. In situ instruments provide
comprehensive measurements of aerosol and trace gas chemistry as well as physical properties. They
also possess excellent temporal resolution. Remote sensing instruments provide the vertical profile
of aerosol particle size distribution, their optical and physical properties [79].

Furthermore, measurements of vertical distributions of aerosol concentration, as well as the
understanding of vertical mixing processes, provide an important input for understanding the dis-
persion of aerosols from local pollution sources and effective control of air quality. In studies of
air quality, information about the depth and dynamics of the atmospheric boundary layer (BL) is
essential to interpreting in situ measurements of atmospheric species. To understand the processes
that affect concentrations of species emitted within the surface layer, one needs knowledge of trans-
port and mixing conditions including mean horizontal wind speed and direction profiles, strength
of turbulence, and depth of the atmospheric BL. The BL is defined here as the layer of atmosphere
in turbulent connection with the surface of the earth and the height of the BL, referred to in this
article as the mixing height (MH), defines the volume of atmosphere in which gas-phase or aerosol
chemical species, emitted within the BL, are mixed and dispersed. Based on surface-level in situ
measurements of aerosol properties and size distributions, knowledge about the height to which
particles may be mixed can also improve assumptions about aerosol properties aloft for the purpose
of aerosol-cloud interaction studies. The combination of MH, updrafts, wind speed and direction,
and other meteorological information is crucial to understanding of in situ atmospheric chemistry

measurements made during air quality studies. Well-mixed BLs often occur over/near land in the



unstable daytime convective boundary layer (CBL), typically as a result of surface heating. Stable
boundary layer (SBL) conditions may be observed over land, typically at night where, in the ab-
sence of surface heating, the BL is in general not well mixed. SBL conditions are also observed over
cold oceans. Very stable boundary layers (vSBL), typically observed over land, exhibit weak shear
turbulence and strong temperature gradients near the surface [92].

A key challenge in relating the remote sensing (Lidar) and in situ aerosol measurements is that
the former are made under ambient Relative Humidity (RH) conditions, while the latter are made
under dry RH conditions (typically < 20 %RH) [108, 107]. At high RH, hygroscopic aerosols
uptake water, which affects their optically relevant properties (e.g., size, morphology, and refractive
index). In order to address the influence of hygroscopic growth, we use two methods: First we
apply scattering enhancement due to hygroscopic growth f(RH) factor to in situ data, and second
we convert the dry aerosol properties measured in situ to ambient conditions using a hygroscopic
growth adjustment. In both cases, we compare these data to those obtained via multi-wavelength
lidar measurements.

The Athens Metropolitan Area (AMA) is an ideal location to study these issues. It is densely
populated and hosts many commercial and industrial activities in a relatively small area. High
aerosol concentrations can be present during long periods of time [100]. Strong vertical aerosol
gradients in the lower troposphere can form in regions surrounded by mountains, under stable
atmospheric conditions with weak air circulation and high anthropogenic activity [103].

During summer and early autumn (warm period), the circulation over the Eastern Mediterranean
is dominated by a persistent northerly flow known as the Etesians [93]. When the Etesians prevail,
the advection of air masses is evident over the Eastern Mediterranean, rendering the long range
transport as the most important factor for high concentrations of gases and aerosol particles. Air-
borne measurements performed during an Etesian outbreak [89] clearly show that neutral to stable
atmospheric conditions prevail over the Northern and Central Aegean Sea, with reduced friction
velocities and absolute turbulent fluxes (momentum or heat) cumulating the concentrations below
the planetary boundary layer and mainly inside the shallow marine atmospheric boundary layer.

Unstable conditions are observed only over the South Eastern Aegean Sea, in the vicinity of Crete,



resulting in enhanced friction velocities and large positive values of sensible heat flux. In previous
studies, the fine aerosol fraction over the Aegean Sea has been related to regional sources of pollution
which is enhanced by long-range transport during the Etesian flow. A mixture of anthropogenic [43],
biogenic [35], and biomass burning emissions [12] originating mainly from the Balkan area, as well as
the central and Eastern Europe, results in enhanced aerosol concentrations in the Southern Aegean
Sea.

At the same time, high number concentrations of nucleation-mode particles are observed in the
Northern Aegean Sea [91], associated with polluted air masses transported from Istanbul. [39]
proposed that based on simulations, what contributed to new particle formation (NPF) events was
the clean air masses of low preexisting aerosol particles with sufficient H2S0, from high altitudes.
During the NPF period, the air masses pass over the greater Istanbul area, avoiding mixing with the
local emissions. Thereafter, they penetrate at lower levels (due to the Etesian flow structure) over
North Western Turkey. During the non-NPF period, the air masses suffered a strong mixing during
their longer journey over the Turkish mainland. Without excluding the role of photochemistry in
NPF, it was shown by both measurements and simulations that the plume over the Aegean Sea
moved fast with rather negligible mixing, especially above the marine atmospheric boundary layer.
The fast advection above marine atmospheric boundary layer and the low number of preexisting
concentrations inside the plume prevented the subsequent growth of the nucleated particles towards
the central Aegean Sea. Although long datasets of particle number concentration data in the Eastern
Mediterranean are not available, [4] report a mean particle concentration of 1.6 x 103 particles per

em? at Finokalia (FIN) regional station during 2008 and 2009.

1.3 Remote sensing of the atmosphere

The science of making inferences about objects from measurements, made at a distance, without
coming into physical contact with the objects under study, is called remote sensing. Remote sensing
includes all methods that use a force field (i.e., acoustic, gravity, magnetic, electromagnetic etc.)
in order to obtain remotely information about an object. Remote sensing has acquired quite an

attention, in the last decades, because of the many possibilities to obtain information about the

10



AO- Q switcher Laser beam

at1064nm

[

Tetal rofect NA:YAG c KD+ Crystal
\\\\\\\\\

Figure 1.3: EOLE lidar Transmit Unit [3]

structure and the constitution of the atmosphere with a high vertical resolution. In the current work,
lidar is the fundamental active remote sensing instrument which was used to study the structure of
the lower troposphere (including the PBL) and to obtain the optical and microphysical properties

of aerosols.

1.3.1 The NTUA Raman lidar EOLE

The NTUA Raman lidar system is called EOLE and its transmitting unit is demonstrated in Figure
1.3. A pulsed solid state Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet) laser (Spectra-
Physics LAB-170-10 model) is the laser source. The primary laser beam is emitted at 1064 nm with
a repetition frequency of 10 Hz. At the beginning, the energy of each laser pulse is 850 mJ. The
second and third harmonic frequencies of the Nd:YAG system (at 532 nm and 355 nm, respectively)
are produced with the use of two non-linear KD*P (Potassium Dideuterium Phosphate) crystals.
The laser beam has a Gaussian profile, a 10 mm diameter and its beam divergence is smaller than
0.5 mrad. The energy of the laser beam is controlled by an energy meter at the beginning of each
measurement, while the laser is getting heated (see Figure 1.3).

A 100% reflective dichroic mirror allows only the laser beam at 355 nm to reach the energy
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meter, while the other two laser beams at 532 and 1064 nm are transmitted through the mirror
and are guided to a beam dump. When the laser is sufficiently heated, it is turned to the Q-Switch
mode. The main turning mirror is rotated 90° around its axis, allowing the three laser beams (at
three wavelengths) to expand with a factor of 3. Then, they are transmitted to the atmosphere by a
highly reflective mirror (reflection coefficient of 99.9% at all three wavelengths). The beam expander
type is Galilean. A Galilean beam expander consists of a concave lens followed by a convex lens as
demonstrated in Figure 1.4. The magnification power is determined by the ratio of the outgoing
beam diameter D,,; over the incoming beam diameter D,,,. The beam expander consists of four
lenses; three made of Barium crown [N — BaK3] and one of Calcium Fluoride [CaF5] manufactured
by Dorotek GmbH. It provides a magnification of a factor 3 and thus, the outgoing expanded beam
has a diameter of 30 mm. Likewise, the beam divergence is 3 times smaller (0.17 mrad Full Width
at Half Maximum (FWHM) at 95% of energy) than the one of the incoming laser beam. The final
turning mirror (manufactured by Laseroptik GmbH), the one that guides the laser beam to the
atmosphere, is highly reflective at all operational wavelengths when the incident angle of the laser
beam to the mirror is 45°.

The receiver unit of EOLE is demonstrated in Figure 1.5. A Cassegrain type telescope collects
the backscattered light. At the telescope’s bottom there is a concave parabolic mirror of diameter
d=300 mm and focal length f=600 mm. Thus, the telescope has a half-angle divergence 6 of roughly
244 mrad. An illustration of the telescope focal point is given in Figure 1.6. The parabolic mirror has
a substrate of magnesium fluoride [MgF5], an inorganic compound which increases the reflectivity
at the spectral region of 355-1064 nm. On top of the MgFs a substrate of silicon dioxide [SiOs)]
protects the former. Finally, the reflectivity of the telescope mirror is above 85% for light beams at

the detected wavelengths (in particular lower reflectivity of 85% at 1064 nm and higher reflectivity
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Figure 1.5: EOLE lidar Receiver Unit [3]

of 98% at 355 nm).

The light collected is guided to the detection unit through an optical fiber, which is mounted
to a base that can be mechanically adjusted at the focal point of the telescope mirror. The optical
fiber is manufactured by A.R.T Photonics GmbH and it is of a SiOy type. The fiber’s core has a
diameter of 1.5 whereas the cladding (with refractive index ng>n4) is of a 1.6 mm diameter. The
light propagation in an optical fiber is presented in Figure 1.7. A beam of light will be guided
through the fiber only if the beam enters the core with an angle lower than a certain angle which
is called acceptance cone angle of the fiber ¢,. In any other case, the beam of light will be lost
in the cladding. The Numerical Aperture (NA) of the fiber, which is a simplified measure of the
fiber’s light gathering capacity, is indicated by the maximum angle of acceptance. The Numerical
Aperture (NA) is expressed mathematically as the sine of the acceptance cone angle. The NA of
EOLE optical fiber has been estimated equal to 0.22 + 0.02 and the resulting final field of view of
the EOLE system is 1.5 mrad (Full Width at Half Maximum (FWHM)) [3].

The light received, which propagates through the optical fiber, passes through a beam collimator
before entering to the optical detection unit. The collimated light beam is splitted into several
beams by a series of dichroic filters (beamsplitters), as can be seen in Figure 1.5. All of EOLE’s

beamsplitters have been manufactured by Omega Optical.
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Figure 1.7: Light propagation in an optical fiber cable [3]

In order to reduce the intensity of the backscattered signal as well as the atmospheric background
noise, the spectrally separated light beams are transmitted through a series of optical filters. These
optical filters are consisted of a narrow-band Interference Filter (IFF), followed by a focusing lens and
a/some Neutral Density (ND) filter(s). The purpose of the use of ND filters, which are manufactured
by Melles Griot-CVI, is to reduce the signal intensity of the elastically-backscattered light beams at
355, 532 and 1064 nm. Lastly, an eyepiece lens is used right before the light beam enters the photo-
detectors. Hence, the Signal to Noise Ratio (SNR) is definitely increased, provided that the narrow
spectral width of the interference filters permit only the detected wavelengths to be transmitted
through the filter.

The selection of the IFF is based on its transmissivity (T), its Optical Density (OD) and its
spectral width. The blocking ability of the interference filter is demonstrated by its OD with respect
to the amount of radiation which is transmitted through it. The OD is related to the filter percent

transmission (T) as
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OD = —log1p (1?)1)) (1.1)

A filter’s bandwidth is the wavelength range used to indicate the part of the spectrum that a
beam of light is transmitted through it. It is also referred as Full Width at Half Maximum (FWHM).
The focusing lenses have a diameter 25.4 mm and a focal length of 40 mm. The ND filters are only
used at the backscattered lidar signals at 355, 532 and 1064 nm, to reduce their amplitude, as there
is a strong elastic backscattering component from the lower layers of the atmosphere. This could
cause saturation to the data acquisition unit and therefore, ND filters are necessary as light intensity
attenuators. The collected light in EOLE detection unit is attenuated up to 70% by ND filters used.
The presence of ND filters at all detected wavelengths is displayed in Figure 1.5. The ND filters
used at 387, 407 and 607 nm attenuate the collected light only up to 20%, as the inelastically
backscattered light from atmospheric gases is, in general, weak. The eyepiece lens consists of two
plano-convex lenses (doublet type, a sequence of two plano-convex lenses with their convex sides to
osculate aside, paired together such as spherical and chromatic aberrations are reduced when a light
ray is transmitted through a doublet lens) manufactured by Thorlabs S.A. The effective focal length
is 29.79 mm for all wavelengths, except for 1064 nm, which has a total focal length of 14.89 mm. The
reason for this difference is the use of an avalanche photodiode which has a detection cross-section
of 1.5 mm, much smaller than the one that photomultipliers have (used at all other wavelengths),
which is 5 mm. Due to the inhomogeneity of radiation’s spatial distribution when reaching the
receiving area of the photo-detectors, the use of an eyepiece lens is crucial. When eyepiece lenses

are used, the advantages are:

1. the range-dependence of the lidar backscattering effect on the final image at the photocathode
is significantly decreased (i.e., backscattered signal from lower altitudes does not appear at

different spots on the detector effective area than backscattered signal from higher altitudes).

2. the spatial inhomogeneity problem at the photocathode of the photomultiplier is eliminated.

Hamamatsu S.A. manufactured the PMTs used (type R7400: P and Y series). The photocath-
ode of the photomultipliers is an alloy multialkali (Na-K-Sb-Cs) with quantum efficiency (quantum

efficiency, expressed as a percent, is the number of photoelectrons emitted from the photocathode
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divided by the number of incident photons) of 12% at 532 nm, 20% at 387 and 407 nm, 22% at 607
nm and 23% at 355 nm. The Avalanche Photo-Diode (APD) used for the detection of the 1064 nm
radiation is also manufactured by Hamamatsu S.A. (model APD-1.5).

When the detected backscattered light (at all wavelengths mentioned above, from UV to the
near IR) is exiting from the PMTs and the APD, it enters the data acquisition system in analog
detection mode or photon counting detection mode. When the pulse exits the PMT at the analog
detection mode, it is being recorded as output current, while at the photon counting detection mode,
all the produced photoelectrons by the PMT are recorded as counts. The latter detection mode is
more accurate under low Signal to Noise Ratios and provides high stability of the lidar signal. The
photon counting mode can be applied only to lidar signals backscattered from higher altitudes (e.g.
> 4-5 km), as at low altitudes the PMTs cannot detect photoelectrons that arrive at a very high
rate due to the dead time effect.

In EOLE system, the lidar signals at 355, 532 and 1064 nm are detected both in the analog and
photon counting mode, whereas the signals at 387, 407 and 607 nm are detected only in the photon
counting mode. LICEL GmbH has manufactured the EOLE data acquisition system. When the
signal is detected in analog mode, the digitization of the signal is required. The Analog-to-Digital
conversion is done with an accuracy of 12 bits for 8192 time bins with the possibility of integrating
up to 4000 pulses. If the laser pulse repetition frequency is 10 Hz, in order to achieve a signal with a
time resolution of 100 seconds, 1000 pulses are integrated in each recording. The resulting raw spatial
resolution is 7.5 m, keeping in mind that the EOLE transient recorders have a 20 MHz sampling
rate. The amplitude range of the detected analog signals is in the order of 40-150 mV. The photon
counting detector consists of a three-order pre-amplifier and a signal discriminator of 64 tuning
levels. The maximum theoretical photon counting rate is 250 MHz but the actual rate is 50 MHz
due to the photomultiplier dead time constrain. For the accurate recording of the backscattered
laser photons, the operation of the detection unit should remain within its “linear” region. The
upper limit of the recording rate is set when the dead time constrain is applied, which has been
measured equal to 6.5 ns (i.e., recording rate of 153 MHz). High energy photons, originating from

cosmic rays should be excluded as well, using the relevant discrimination levels.
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1.3.2 Doppler Wind Lidar

When the source or the receiver of radiation move relative to one another, a change of perceived
frequency is occuring. It was first described by the Austrian physicist Christian Doppler (1803-1853)
for acoustic waves, but it occurs for electromagnetic waves as well. Provided that we measure the
change of frequency, the relative speed of the source with respect to the receiver can be determined,
if the group velocity of the radiation in the respective medium is known. The speed of light in air and
vacuum has been known with high accuracy, therefore the optical Doppler effect lends itself ideally
for the remote measurement of the speed of very distant objects. Provided that the object does not
move directly toward or directly away from the observer, the use of the optical Doppler effect yields
the component of the speed of the object along the line of sight. For a velocity measurement the
object must emit electromagnetic radiation. This happens for stars and galaxies. An application
of the optical Doppler effect was the determination of the shift of light from distant stars to longer
wavelengths, leading to our present notion of an expanding universe. As the relative shift of optical
frequencies, %, is proportional to ¥ (the ratio of the velocity v of the object to the speed of light c)

and since very distant stars move away fast, these measurements were comparatively easy to make.

1.3.2.1 The Optical Doppler Effect

Unlike sound, light is not “advected” by some medium. Therefore, in the optical Doppler effect,
there is no distinction between the case of the moving transmitter and the moving receiver, or both
transmitter and receiver moving in a medium. Provided that the emitted light has a wavelength of
Ao and a frequency of fo = A—CU and the relative speed along the line of sight is v, then the frequency

observed is
F=fo(1+2) (1.2)

Air and aerosols do not emit light, therefore, for a measurement of their speed they have to be
illuminated by light from the lidar transmitter.

If the frequency of that light is fy, then its apparent frequency on the aerosol particle is provided
by Eq. (1.2). The light is reemitted, or back-scattered, at this frequency. As the particle is moving

while scattering, the reemitted light is detected by the lidar receiver as being shifted to frequency
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= fo+AF = h(+27) (1.3)

The particle (or wind) velocity is defined in such a way that a movement toward the lidar which
leads to a positive frequency shift is characterized by a positive line-of-sight velocity, and vice versa.
We occasionally use the term “radial velocity” v, or radial component of a velocity vector that is not
parallel to the line of sight instead of the line-of-sight velocity vyog or velocity component along the
line of sight. The quantities v;og and v, are fully synonymous, with the same sign convention. The
collective movement of air masses which we call wind is superimposed by the individual, thermal,
random movement of the molecules, which normally move much faster than the wind speed. In fact,
the faster they move, the higher the temperature. The relative shift of their velocity distribution
with the wind speed is therefore small. Aerosol particles, due to their higher mass, move more slowly
at the same temperature and have a narrower velocity distribution. They are shifted by the same

amount, but relative to its width this shift is much larger and therefore measurable.

1.3.2.2 Doppler Wind Lidar Wavelength Considerations

The laser wavelength can be chosen at random in Doppler wind lidar . Nevertheless, as the aerosol
contribution to the return signal is much better suited for frequency analysis than the molecular
signal, the wavelength to be used will depend on the expected magnitude of the return signal and
the expected ratio of aerosol-to-molecular backscatter. The molecular signal is proportional to A™4,
while the aerosol signal, depending on wavelength range and particle properties, is proportional to
something between A~2 and A*!. Hence, even if the aerosol return signal decreases with an increase
in wavelength, the molecular “background” signal decreases much faster so the aerosol-to-molecular

backscatter ratio gets more favorable.

1.3.2.3 Doppler Wind Lidar Heterodyne Detection Technique

In heterodyne detection the return signal is mixed with the radiation from a local optical oscillator
(“LO”). The mixed signal incorporates the sum and the difference frequencies of the two components.

The sum is far above the frequency cutoff of the detector, while the difference is a low-frequency
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signal that can be determined accurately. Thus, for heterodyne-detection lidar what is needed is
a pulsed transmitter laser with high frequency stability of the output frequency fy and a second,
continuous-wave laser with frequency fro. The mixing of the two leads to frequencies fro =+
(fo+Af), where fo+ Af is the Doppler- shifted frequency backscattered from the atmosphere. The

superposition, apart from a DC component, results in a detector current equal to

iac =p (\/2PL0P($, A)cos 27 (fro — (fo + Af)] + /2ProP(z, A) cos 27 (fro + (fo + Af))])
(1.4)

Only the first component, or beat signal

ippr = pV/2PLoP(x,A) cos[2n(fro — (fo + Af))] (1.5)
is measured by the detector, with

p the detector sensitivity
Pro, fro the power and frequency of the reference laser

P(z,\), fo+ Af the power and frequency of the backscattered radiation

P(x,\), fo+ Af are the only ones that vary with range x. The frequency difference between the
frequency of the transmitted laser pulse, fy, and the local oscillator, f1o, is determined with great
accuracy and preserved as stable as possible during the measurement. The frequency difference is
also a key parameter in the subsequent signal evaluation. A coherent Doppler lidar (Figure 1.8) is
consisted of a high-power, frequency-controlled, pulsed laser transmitter (TE), a transmitter-receiver
telescope, two heterodyne detectors (D1, D2) in which the local-oscillator radiation is mixed with the
outgoing pulse (D1) and with the Doppler-shifted backscatter signal (D2), and a signal processing
system (not shown in Figure 1.8).

The two lasers are connected through a locking loop (LL). The laser pulse length is normally a
few microseconds. The temporal distribution of the pulse power is either gaussian (for solid-state
lasers) or like a gain-switched spike (for CO2 lasers). If a CO2 laser is used at a wavelength around
10.6 pum, a frequency shift Af of 189 kHz corresponds to a radial velocity component of 1 ms™!

[105]. The optical signal contains speckle that results from constructive and destructive interference
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Figure 1.8: Principle of a heterodyne-detection Doppler lidar [105].

of waves scattered by randomly distributed particles. Different shots into the same part of the
atmosphere hence lead to different return signals due to the random distribution of the scatterers.

Heterodyne-detection lidars therefore differ from most other lidars by their need for
1. a pulsed, narrow-frequency, ultrastable high-power laser.
2. a second narrow-frequency laser, which is usually referred to as local oscillator (LO).
3. a fast detector in which the return and LO signals are mixed.

4. a second fast detector in which the transmitted and LO signals are mixed (the so-called pulse

monitor).
5. the time for averaging over several shots to average out speckle.

6. the presence of aerosol particles.

The main advantages of the heterodyne-detection technique are the high tolerance of background

light and the independence of temperature and all properties of the optical components of the system.

1.3.2.4 Doppler Wind Lidar Scan Techniques

Since pulsed Doppler lidars measure profiles of the line-of-sight wind velocity, vertically pointed
systems provide the profile of the vertical wind velocity. The lidars must be tilted out of the
vertical in order to measure the horizontal wind. Thus, the horizontal wind produces a line-of-sight
component to the lidar signal, and with appropriate scanning schemes, the three-dimensional wind
vector can be derived. A necessary assumption is the horizontal homogeneity of the wind field in

the sensed volume. Nonetheless, vertical homogeneity is not required.
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Figure 1.9: Schematic of the scan technique of a Doppler lidar. Lower part: VAD scan, upper part:

DBS scan [105].

VAD Technique When a conical scan is carried out with the apex of the cone at the lidar scanner
as depicted in Figure 1.9 and, for a given height or distance, the velocity signal is displayed as a
function of azimuth angle, a plot as the one shown in Figure 1.10 is obtained [105].

The technique got its name from this display of velocity versus azimuth (velocity-azimuth display,
VAD). In the ideal case that there is a homogeneous atmosphere, the measured LOS component

shows a sine-like behavior (Figure 1.10) given by

v, = —usinf cos p — v cos f cos  — wsin (1.6)
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Figure 1.10: Example of sine fitting of the radial wind velocity simulated with the use of the VAD

technique [105]

u the west—east component

v the south-north component

» the vertical component

¥ the azimuth angle, clockwise from North

¢ the elevation angle

Fitting this to a function of type

vr =a+bcos (0 — Omax) (1.7)

with offset a, amplitude b, and phase shift ,,,, , we acquire the three-dimensional wind vector

i gmam amax
u = (u,v,w) = (~p—mar _pZEomer 2 (1.8)
cos cos sin
With this, the horizontal wind speed vy, is
Vhor = (’U,2 + 02)% = L (19)
cos

the horizontal wind direction dd, as westwind, e.g., blows from the west,

dd = 0,0s (1.10)
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vertical wind velocity w, defined as positive for wind up, is

a
= 1.11
@ sine ( )
and total wind speed is
ju] = (u? +0” +w?)? (1.12)

In order to obtain a VAD scan, a separate sine-wave fit is done for each height interval. From
each height interval, one set of data a, b, 0,4, and, consequently, u, v, w is obtained.

The smoothness of the sine-wave fit and thus the precision of its parameters depends on instru-
mental parameters, turbulence and therefore roughness of the terrain, and on weather data such as
atmospheric stratification stability. These factors must be taken into account in addition to lidar
data such as pulse-repetition frequency and time-bin width, if a planned measurement is to yield

the desired data in a predetermined time.

DBS Technique If we make the assumption of cellular flow with little turbulence which would
lead to a smooth sinusoidal behavior in the VAD scan, it could be expected that four measurements
at azimuth-angle intervals of 90°, or three at 120°, or even two at right angles should be sufficient,
along with one measurement in the vertical. In the case of three directions (vertical, tilted east, and

tilted north), the three components u, v, w are obtained as follows:

v (Urg — Up1 8in Q) (1.13)
cos ¢

o= — (Vr3 — vp18in ) (1.14)
cos @

W= —vp (1.15)

Here v,1, v,2, and v,3 are the vertical, east, and north radial velocities, respectively. The Doppler
beam swinging, or DBS, technique is faster and simpler in the hardware and in the data evaluation
algorithm. However, it lacks the goodness-of-fit information as a measure for the reliability of the

results. This drawback is partially compensated by information about the temporal behavior of the
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Figure 1.11: Simulation of the behavior of turbulent wind components in the boundary layer [105]

data. Figure 1.11 presents results of a simulation of high-frequency data obtained from three slant
lidar beams oriented such that the projections onto the horizontal plane form three angles of 120°.

Using data such as those of Figure 1.11, the degree of smoothing (or temporal integration)
necessary to obtain the wind speed and direction data required for a given application can directly
be inferred. Moreover, turbulence is easily determined for any time scale as dictated by the particular
process investigated, particularly as turbulence depends critically on ground roughness length and
atmospheric stratification stability.

Since parameters such as maximum range, range resolution, temporal resolution (or scan rate),
and wind-speed and wind-direction sensitivity all depend on each other, these dependencies must

be known and observed when planning a measurement for a given purpose.

1.3.2.5 Doppler Wind Lidar Used In The Current Study

In this study we utilize data from a Stream Line Pro system scanning Doppler lidar manufactured
by Halo Photonics. All Halo Photonics Stream Line versions are 1.5 ym pulsed Doppler lidars with
a heterodyne detector that can switch between co- and cross-polar channels [72]. The Stream Line
Pro version is designed for harsh environmental conditions with no exterior moving parts, which
limits the scanning to within a cone of 20° from the vertical.

The minimum range is 90 m, and the telescope focus of the Stream Line Pro lidar is user-
configurable between 300 m and infinity. Integration time per ray is user-adjustable and can be
optimized between high sensitivity (long integration time) and high temporal resolution (short in-

tegration time) depending on the environmental conditions and research questions.
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In measurement mode the Halo Doppler lidar provides three parameters along the beam direction:
radial Doppler velocity (v,.), signal to noise ration (SNR) and attenuated backscatter (3), which is
calculated from SNR taking into account the telescope focus.

The Doppler scanning lidar system (StreamLine Wind Pro model, HALO Photonics) at 1.5 ym
was operated in the vertical azimuth display (VAD) mode and the 3-beam Doppler beam swinging
(DBS) mode. It mainly provided the vertical profiles of the radial wind and 2-3D wind fields, as well
as the atmospheric turbulent properties (e.g. turbulent dissipation rate, €) [67]. The wind velocity
is provided with accuracy better than 0.1 and 0.5 ms~! for VAD and DBS mode, respectively. The
range resolution of the measurements is 30 m, and the temporal resolution is 14 seconds and 15
min for DBS and VAD modes, respectively; the maximum range achieved is 2-3 km (or even 10 km

height, under the presence of clouds) depending on the atmospheric aerosol load [71].
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Chapter 2

Particle number size distribution
statistics at City-Centre Urban
Background, Urban Background,
and Remote stations in Greece

during summer

Particle number size distribution measurements were conducted during the summer of 2012 at City-
Centre Urban Background (Patras-C), Urban Background (ICE-HT in Patras, DEM in Athens,
EPT in Thessaloniki), and Regional Background stations (FIN in Crete). At the City-Centre Urban
Background station, the average number distribution had a geometric mean diameter peak approxi-
mately at 60 nm and the highest number concentration, whereas at the Regional Background station
and the Urban Background stations it displayed a major peak approximately at 100 nm, with the
Regional Background station exhibiting the lowest number concentration. The particle number size

distribution at each site was divided into size fractions and, based on their diurnal variation and pre-
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vious studies, we concluded that the main sources for the City-Centre Urban Background station are
traffic and the regional background concentration, for the Urban Background stations fresh traffic,
aged traffic, cooking and the regional background concentration, and for the Regional Background
station local activities (tourism, cooking) and regional background concentration. The median num-
ber concentration that is attributed to regional background concentration for the City-Centre Urban
Background, the Urban Background and the Regional Background stations are respectively 13, 29
and 45% of the total number concentration. Nucleation events were identified at DEM station,
where the newly formed particles accounted for 4% of the total particle concentration for the mea-
surement period in the size range 10-20 nm, EPT, where they accounted for 12%, and FIN, where
they accounted for 1%, respectively. New Particle Formation events contribution during summer
to Condensation Cloud Nuclei were therefore insignificant in the Eastern Mediterranean. Modal
analysis was performed on the number distributions and the results were classified in clusters. At
the City-Centre Urban Background station, the cluster-source that dominated number concentra-
tion and frequency is related to fresh and aged traffic emissions, at the Urban Background stations
aged traffic emissions, while at the Regional Background station number and frequency were dom-
inated by the regional background concentration. Based on cluster analysis, 18% of the median
number distribution was due to long range transport at the City-Centre Urban Background site,
37% at the Urban Background sites, and 59% at the Regional Background site. The Flexible Parti-
cle Dispersion Model (FLEXPART) was used in order to acquire geographic origin clusters and we
concluded that the Etesian flow increases the median regional background number concentration in

the Mediterranean basin by a factor of 2.5 to 4.

2.1 Materials and Methods

Simultaneous particle size distribution measurements were performed at five sampling stations in
Greece. The measurements were conducted in Patras, Athens, Thessaloniki and Finokalia (Figure
2.1), during June and July 2012.

Patras is located at the foothills of a mountain with a height of approximately 2 km, at the Gulf of

Patras. It is an urban area with a population of approximately 300,000 inhabitants. Measurements
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Figure 2.1: City-Centre Urban Background (red color circle), Urban Background (yellow color circle),

and Regional Background (white color circle) stations.

were conducted simultaneously at two stations in Patras.

The City-Centre Urban Background station (Patras-C) was located at the central square of
Patras (38.238° N, 21.74° E, at 50 m a.s.].) on the roof of a seven-floor building. This station was
near the harbor and it was influenced by traffic. The particle number size distributions in Patras-C
were measured by a Scanning Mobility Particle Sizer (SMPS, model 3936, TSI) operated so as to
cover the particle size range between 10 to 470 nm (electrical mobility diameter). The sheath flow
rate was 4 Lmin~! and the sample flow rate was 1 Lmin~'. The duration of each measurement was
3 minutes. The inlet line length was 2 m, the tube diameter was 1/4 in and the inlet flow rate was
1 Lmin~'. At Patras-C, due to diffusion losses, penetration was 84% for 10 nm particles and 90%
for 15 nm particles. The calculations were carried out according to [32]. The mean concentration in
the size range 10 to 15 nm represents 4% of the mean concentration of the total particle number size
distribution in Patras-C station. As reported by [106], in a series of EUSAAR-ACTRIS workshops,
instruments used at EUSAAR-ACTRIS network were within an uncertainty range of 10% for all sizes

between 20 to 200 nm against a reference system. For particles larger than 200 nm, the uncertainty
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range increases to 30%. For particles in the size range 10 to 20 nm, the uncertainty is expected to
be significantly larger than 10%. Keeping these information in mind, we consider that a correction
for diffusion losses is not necessary for Patras-C station.

The second station (ICE-HT Patras) was located at the ICE-HT Institute (38.3° N, 21.81° E,
at 100 m a.s.l.), 8 km north-east from Patras city center, 2 km from the sea and 1 km south
from the Patras-Athens highway, in a suburban area surrounded by olive tree fields, while some
small settlements are within a distance of 1 km. At ICE-HT station, a Scanning Mobility Particle
Sizer (SMPS, classifier model 3080, DMA model 3081, CPC model 3787, TSI) was deployed for the
measurement of the number size distribution in the range 10 to 496 nm. The SMPS operated at

a sheath flow rate of 5 Lmin~! and a sample flow rate of 1 Lmin~".

Each measurement had a
duration of 3 minutes. The inlet line length was 8 m, the tube diameter was 3/4 in and the inlet
flow rate was 3 Lmin~!. Due to diffusion losses, penetration was 80% for 10 nm particles and 88%
for 15 nm particles [32]. The mean concentration in the size 10 to 15 nm represents 3% of the mean
concentration of the total particle size distribution. Diffusion losses are considered insignificant when
compared to the total particle number size distribution and the measurement uncertainty in the size
range 10 to 15 nm, therefore, we do not apply a correction.

The measurements reported here for Athens have been conducted at the Demokritos station
(DEM, 37.995° N, 23.816° E, at 270 m a.s.l.), which is a member of the GAW (Global Atmosphere
Watch) and ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure) Networks, and is
situated on the foot of Mount Hymettus in Agia Paraskevi. The DEM monitoring station belongs to
the National Centre of Scientific Research “Demokritos”, which is situated about 7 km north from the
center of Athens, in a pine forest [99]. It is representative of the atmospheric aerosol in the suburbs of
the Athens Metropolitan area (AMA), which is densely populated (3,750,000 inhabitants) and hosts
many commercial and industrial activities in a relatively small area (approximately 4.5 x 10% km?).
[61] report that for DEM station dependence on traffic and weather parameters was minor, but there
was a strong seasonal variation. It is frequently influenced by katabatic winds [20], during which, air
masses from mount Hymettus (peak height 1024 m) are brought over the station. Also, the lowering

of nocturnal boundary layer height (NBLH) occasionally results in an increase in particle number

29



concentration, even in the absence of aerosol particle sources. In Athens, particle size distribution
measurements were conducted with an SMPS, consisting of an Electrostatic Classifier model 3080,
a DMA column model 3081, and a Condensation Particle Counter (CPC 3022A, TSI Inc). The
size range measured extended from 13 to 661 nm. Each measurement had a duration of 5 minutes
(including 15 s down scan time). Flows within the DMA were checked and adjusted if necessary
every week, with the sheath and inlet flows set at 3 and 0.3 Lmin~! respectively. The inlet line
consisted of two parts: The first part had a length of 6 m with a tube diameter of 2.5 cm and a

flow rate of 9.5 Lmin~!.

The second part had a length of 25 ¢cm with a tube diameter of 1/4 in
and a flow rate of 0.3 Lmin~"'. Due to diffusion losses, penetration was 88% for 13 nm particles and
90% for 15 nm particles [32]. The mean concentration in the size 10 to 15 nm represents 5% of the
mean concentration of the total particle number size distribution. Diffusion losses are considered
insignificant when compared to the total particle number size distribution and the measurement
uncertainty in the size range 13 to 15 nm, therefore, we do not apply a correction.

Thessaloniki is a densely populated (16,000 inhabitants per km?) coastal city in Northern Greece
with a total population of approximately 1,000,000 inhabitants. The city is located NE of the
Thermaikos Gulf, and is surrounded by residential communities and an industrial zone on the NW.
The daily mean air temperature and relative humidity (RH) vary from 5.5 to 28.1 °C and from 47
to 80%, respectively [98]. The station is located on Agrafon Street at Eptapyrgion (EPT) (40.63° N,
22.95° E, at 174 m a.s.l.) next to small residences, a park on the West, and the city ring road 1 km
away on the East. In EPT station, an SMPS (TSI, Model 3034) was employed to measure the size
distributions in the range of 10 to 487 nm. The SMPS 3034 operates at a fixed 1 Lmin~! sample
flow rate (4 Lmin~! sheath flow rate). Each measurement had a duration of 3 minutes. The inlet
line length was 1.5 m, the internal tube diameter was 0.5 cm, and the inlet flow rate was 1 Lmin~".
Due to diffusion losses, penetration was 85% for 10 nm particles and 91% for 15 nm particles [32].
The mean concentration in the size 10 to 15 nm represents 3% of the mean concentration of the
total particle size distribution. Diffusion losses are considered insignificant when compared to the

total particle number size distribution and the measurement uncertainty in the size range 10 to 15

nm, therefore, we do not apply a correction.
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Finokalia (FIN) station is a European super-site for aerosol research, part of the ACTRIS Net-
work (35.3° N, 25.67° E, at 250 m a.s.l.). The station is situated on the NE part of the island of Crete,
facing the Mediterranean Sea in the wide north sector, located on the top of a hill over the coastline.
FIN station is representative of the background marine conditions of Eastern Mediterranean [48],
with little anthropogenic influence. The nearest city is Heraklion with approximately 170,000 in-
habitants, located about 50 km west of Finokalia. [37] report that nighttime new particle formation
(NPF) events with very limited growth are relatively common in Finokalia, and such events tend to
be associated with air mass transport over the island of Crete (local origin). A detailed description
of the FIN station and the climatology of the area can be found in [60]. At FIN station, the particle
number size distributions were measured in the diameter range 9 to 848 nm using an SMPS built
at TROPOS - Leibniz Institute for Tropospheric Research [37]. It is a closed-loop system, at 5
Lmin~! to 1 Lmin~! ratio between the sheath and acrosol flows, and it is operated according to the
recommendations by [106]. Each measurement had a duration of 5 minutes. The inlet line consisted
of two parts: The first part had a length of 3 m with a tube diameter of 1 in and a flow rate of 16.7
Lmin~t. The second part had a length of 0.5 m with a tube diameter of 1/8 in and a flow rate of
1 Lmin~'. The measured number size distributions were corrected for diffusion losses according to
the methodology described in [106]. Additional information on the sampling stations are provided
in Table 2.1.

All inlet aerosol flows were dried to relative humidity (RH) below 40%. All results presented in
this work are expected to be within the uncertainty limits provided by [106], which were mentioned

earlier in this section.

2.1.1 Size Distribution Modal Analysis

The obtained particle number size distributions (NSD) were analyzed and the modal structure
along with the number concentration in each mode were calculated by applying a curve-fitting
algorithm. The algorithm used in this study employed the least squares method to fit the sum
of up to 4 log-normal distributions to the measurements [34]. The algorithm starts by fitting a

uni-modal log-normal distribution, and successively tests the possibility of increasing it to a bi-
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Table 2.1: Particle size distribution measurements reported in this work

s D c Sampling Site Data
tation ity
Period Location Coverage
8" of June - City-Centre
Patras-C Patras 95%
26" of July Urban Background
8" of June - Urban
ICE-HT Patras 89%
215 of July Background
1% of June - Urban
DEM Athens 82%
27 of August Background
9*" of June - Urban
EPT Thessaloniki 99%
2274 of July Background
15¢ of June - Regional
FIN Finokalia 94%
31°¢ of July Background

, a tri- and finally a tetra-modal distribution based on the root mean square error (RMSE), the
estimated number concentration of each mode, the geometric mean diameter, and the geometric
standard deviation of the neighboring modes. The RMSE of the difference between the SMPS

NSDMEASURED)

measured number size distributions ( and the sum of the fitted modes number

size distributions (N SpFITTED ) is calculated by the following equation:
n 0.5
RMSE = % (Z {Néw_EASURED _ Nj(TTEDT) (2.1)
n pi pi
i=1

is the number

where n is the number of size bins of the SMPS size distribution. N(%_EASURED

concentration measured by the SMPS at size bin i corresponding to particle diameter d,;, and
N é‘; I TTED ig the number concentration of the sum of fitted modes at diameter dpi. We performed
the modal analysis in order to classify our data in log-normal modes that are determined by the

internal structure of each Particle Number Size Distribution. Thus, the identification of possible

particle sources is pursued for log-normal modes that are determined impartially.

2.1.2 New Particle Formation (NPF) Events Analysis

In order to locate New Particle Formation events, we used a simplified variant of the procedure

described by [18]. Particle number size distributions were visually inspected for the City-Centre
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Figure 2.2: Median temporal evolution of the parameters N1g_o9 (red line), DLy (blue line) and C'S
(cyan dotted line) in the set of the 4 selected nucleation events depicted in Figure A.7 (Appendix).

The error bars correspond to the 25" and 75" percentiles.

Urban Background, Urban Background and Regional Background stations. The requirements for
a day to qualify as a NPF event day were: 1) a substantial increase in the number concentration
of particles in the size bins from 10-20 nm during the time window 09:00-18:00 Local Time, 2)
Nig_20 being significantly elevated above the nocturnal background, 3) the burst having a minimum
duration of 1 h, and 4) a decrease in N1g_o0 towards the end of the day. The observation of a gradual
increase in nucleation mode diameter was not a necessary criterion to qualify a day as a NPF day,
but was nevertheless visible in most cases.

The results obtained by this method were subsequently evaluated using the method proposed by
[30]. Four exemplary nucleation events were used as a model set (cf. Figure A7, Appendix).

The parameters used in order to distinguish NPF events were N1g_o0, the median length diameter
(DLs; a parameter reflecting the decrease in the median particle diameter during a nucleation event)
from 10 to 30 nm electrical mobility diameter, and condensation sink (C'S) [82].

DL, is calculated by the following equation:

109039 dNdlogd
DLy = 0.5/ ——2d,dlogd 2.2
2 log(10) dlogd, g g (22)

where dN is the concentration of particles in the size range dlogd,,.

The condensation sink C'S is a parameter defining if volatile species (e.g. sulphuric acid vapors),
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will form new particles or condense onto existing particles. It is given by:

CS=21D>  BmidpiNa, (2.3)

3

Here D is the particle diffusion coefficient, d,; the particle diameter of size bin i, Ny, is the respective

number concentration and S,,; the transitional correction factor [22].

Kn+1

b = 0.377TKn +1+ %oz—lKn2 + %a‘lKn

(2.4)

« is the sticking coefficient, which is assumed to be unity, and Kn the Knudsen number given

by:

Kn=2Y (2.5)

where A, is the mean free path of the condensing vapor molecules and r its radius [46]. It should
be noted that the CS is calculated based on the SMPS measurements, covering particles having
diameters from 10 to ca. 500 nm, and not the entire particle size range. This assumption adds an
error to the estimation of C'S that can be in the order of 100% when compared to PMs 5 (particulate
matter with aerodynamic diameter smaller than 2.5 ym) measurements [82].

In Figure 2.2 the temporal evolution of the median value of the above mentioned parameters
(N10—20, DLo, CS) for the four exemplary nucleation events is presented.

Using the algorithm proposed by [30], we succeeded in distinguishing potential NPF events, but
the algorithm identified as NPF event cases without a substantial increase of particle concentration
in the size bin 10-20 nm. Additionally, there were cases of events distinguished as potential NPF by
the algorithm, that started in another location, leading to a banana plot that did not have a high
particle concentration in the smaller particle sizes measured by the SMPS, as also observed by [82].
These cases were excluded after visual inspection.

In order to evaluate the strength of the nucleation events, we used the method proposed by [52].
Ultrafine particle concentrations at the Regional Background and Urban Background stations were

divided in a mean background concentration and a new particle formation mean concentration.
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2.1.3 Clustering methods of Size Distribution Modal Analysis Results

Cluster analysis places objects in clusters suggested by the data, not defined a priori, such that
objects in a given cluster tend to be similar to each other, and objects in different clusters tend
to be dissimilar. The size distribution modal analysis results were clustered using two different
algorithms: K-means [7] and HDBSCAN [59], available by [73]. The most widely used technique
for clustering is the K-means algorithm, which is dependent on the choice number of clusters, K.
K-means partitions the dataset to K clusters by minimizing intra-partition distances. In order to
evaluate the performance of the algorithm, we used a minimum K of 2 clusters and a maximum
K of 10 clusters, as it is difficult to work with more than 10 deducted clusters. It should also be
noted that the campaign period was 2 months and we do not expect to have such a large number
of clusters at each station. The K-means algorithm was initiated 10 times for each case, each with
a different centroid seed.

HDBSCAN algorithm first transforms space according to the density/sparsity of data points,
constructs a cluster hierarchy of connected components, condenses the cluster hierarchy based on
minimum cluster size, and extracts the stable clusters. In order to evaluate the algorithm, we used
a minimum cluster size of 3 data points and we increased that by one to 100 points.

In an attempt to determine how accurately the clusters reflect the data, we used the Silhouette
width [78], the Caliniski-Harabasz [15] and the Dunn Index methods [7, 97, 104]. The Silhouette width
shows which objects lie well within their cluster, and which ones are merely somewhere in between
clusters. Its value ranges from -1 to 1. A value of 1 indicates well separated clusters, while a value
of 0 indicates overlapping clusters. Caliniski-Harabasz method reconciles, in a sense, two different
approaches to the investigation of the spatial relationships between the points, the agglomerative
and the divisive methods. The index it provides is defined as ratio between the within-cluster
dispersion and the between-cluster dispersion. A higher index relates to better defined clusters. The
Dunn Index illustrates the minimum ratio of the minimum distance between two objects of different
clusters divided by the maximum distance between two objects belonging to one cluster. The higher
the Dunn Index the better the cluster homogeneity. Modal analysis results (Geometric standard

deviation of mode o4, Geometric mean diameter of mode dg, Total number of particles in mode
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N) were normalized between their minimum and maximum values before applying the clustering
algorithms. Each algorithm was applied for the minimum sample size (HDBSCAN) and the number
of clusters (K-means) mentioned earlier. For each result, the Dunn Index, the Calinski-Harabasz
index and the Silhouette width were calculated. The Silhouette width was favoring results with very
few clusters (usually 2 clusters), therefore, we used the Calinski-Harabasz index in order to acquire
the ideal number of clusters for the K-means and HDBSCAN algorithms. Then, we compared the
two solutions (one from K-means method and one from HDBSCAN) based on the Dunn Index
results (i.e. the ideal solution for HDBSCAN Dunn Index was compared to the Dunn Index of the
K-means result with the same number of clusters and vice versa). In all cases HDBSCAN algorithm
outperformed K-means algorithm (based on the Dunn Index criterion). We used two algorithms
so as to apply two independent statistical methods on the dataset in order to obtain results with
minimum overlap between clusters and at the same time a minimum number of clusters for each

dataset.

2.1.4 Air mass origin clustering and Potential Source Contribution Factor

Analysis

The Flexible Particle Dispersion Model (FLEXPART) was used in order to acquire residence times
over geographic grid cells (sensitivity) [85, 84]. These indicate how sensitive the measurements at a
station are to emissions occurring at each geographic grid cell. FLEXPART runs account for grid
scale wind as well as for turbulent and mesoscale wind fluctuations. Drift correction, to prevent
accumulation of the released computational particles, and density correction, to account for the
decrease of air density with height, were both applied. Seven-day backward runs with the release
of 4 x 10* air parcels every 3 hours beginning from FIN station were produced. Residence times in
each grid cell, for a height from 0 to 100 m above ground level (agl), were acquired. The center
of mass (centroid) of the residence times in all cells for each 3-hour time step in backward rumns,
was also calculated. Observing the distance between centroids provides a measure of the speed at
which the air masses travel between consecutive 3-hour intervals. Based on centroids for each 3-hour

release, we clustered the origin of air masses with a procedure similar to the one described in the
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previous section. The PSCF method applied is described in [74]. PSCF frequency maps indicate the

probability that a geographic region is the source of the aerosol particle concentration measured.

2.2 Results and Discussion

2.2.1 Overview of concentration levels and size distributions

Comparisons between measured and modeled concentrations are usually done using the arithmetic
means of the relevant quantities. A typical arithmetic mean comparison is of less use for these
distributions, as the values of linear means are strongly affected by the outlier values. A way to
compare the results would then be the ability of a model to reproduce the measured concentration
histograms. In this article we use mostly the percentile values of the number size distributions in
order to represent the histogram. We present a comparable mean value (g,,) and some indication
of the histogram shape and the concentration variance (other percentiles).

Figure 2.3 illustrates the geometric mean g,, and the middle (16! and 84'") percentiles of the
size distributions at the three station types for the time periods indicated in Table 2.1. We only
present g,,, 16"" and 84" percentiles in the figure for practical reasons, but the 5, 16t 50" 84"
and 95" percentiles are all presented in Tables 2.2 and 2.3.

The City-Centre Urban Background station displays in Figure 2.3 a peak at 60 nm, indicating
a mixture of freshly emitted road traffic exhaust and more aged traffic, while it exhibits the highest
peak values (twice as high as Urban Background stations). [13] report that at an urban background
station in Barcelona (sampling period 30" of July 2012 - 4" of August 2013), located close (350
m) to a major highway (Diagonal Avenue: 9 x 10* vehicles per working day), the particle number
concentration in the size range 17.5 to 100 nm was 7.5 x 10%> £ 5 x 103 cm ™3 (mean concentration
+ standard deviation). In the same size range at the City-Centre Urban Background station, the
corresponding values were 8.2 x 103 4 5.8 x 10% em 3.

The size distributions at the Urban Background stations demonstrate an elongated shape, indi-
cating multiple mixed sources. Apart from the well-aged accumulation mode, an Aitken mode was

observed, as well. The Urban Background stations are strongly affected by road traffic exhaust and

37



subsequent particle growth. [13] report that at Montelibretti ( sampling period 26"

of September
2007 - 7" of May 2009), a sampling site located 30 km NE from the Rome city centre, the particle
number concentration in the size range 17.5 to 100 nm was 5 x 10% £ 3 x 103 em™3 (mean con-
centration + standard deviation). In the same size range at the Urban Background stations, the
corresponding values were 3.3 x 102 & 5.4 x 103 em™3. In more detail, at ICE-HT station, the cor-
responding values were 3.2 x 103 £ 8.2 x 103 em ™3, at DEM station they were 4.4 x 103 + 3.4 x 103
em ™3 and at EPT station they were 2.5 x 10% £ 1.9 x 103 em™3.

The Regional Background station displays a peak at 100 nm and has the lowest particle concen-
tration values. [8] report that a well-aged accumulation mode with a peak above 100 nm is frequently
observed at Finokalia. We observe here an average peak at 100 nm, which we may attribute to a
mixture of well-aged aerosol (probably transported from distant areas) and aerosol of intermediate
aging stemming from nearby cities in the island of Crete. [101] reports that at Finokalia, during the
period from 10" of July 2000 to 30" of July 2000, the particle number concentration in the size
range 8 to 327 nm was 1.7 x 10% & 1.6 x 103 em ™3 (mean concentration + standard deviation). The
corresponding values in our study (10** of July 2012 - 30" of July 2012) are 3.3 x 10% £ 1.1 x 10°
em ™3,

The geometric mean (g,,), 16!" and 84!" percentiles of the size distributions at the three Urban
Background stations are provided in Figure A.1 (Appendix).

As shown in Table 2.3, the observed mean number concentration for the size fraction from 30 to 50
nm electrical mobility diameter (N3g_s50) at the City-Centre Urban Background station was 2.8 x 103
em ™3, while at Cabauw station (representative of Central European aerosol), it was 2.1 x 10% cm =3,
during the period 2008-2009 [4]. For the size fraction from 50 to 500 nm (Nsg), the observed mean
number concentration at the City-Centre Urban Background station was 5.8 x 103 em ™3, while at
JRC-Ispra station it was 5.6 x 10> em™2. We conclude that the City-Centre Urban Background
site has similarities to stations representative of the background concentrations in polluted areas of
Central Europe and Northern Italy.

The mean number concentration at the Regional Background site for the size fraction from 30

to 50 nm was 0.6 x 103 ¢m ™2, while at Harwell station (a rural station representative of large scale
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Figure 2.3: Overview of Particle Size Distribution statistics for each size bin in thousands of particles
per cm?: geometric mean (G,,, cyan dots), the 16" and 84*" percentiles of the measured concen-
trations. The area below the lower end of the error bars corresponds to the 16" percentile, while
the area below the higher end of the error bars corresponds to the 84" percentile. The City-Centre
Urban Background station (CCUB) corresponds to Patras-C, the Urban Background stations (UB)

correspond to ICE-HT, DEM, EPT, while the Regional Background station corresponds to FIN.
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Table 2.2: Descriptive statistics during the campaign reported in this work. N is the mean con-

centration, pos to pgs are the 5t to the 95" percentile, Max the maximum number concentration

during the campaign, and Stdev the standard deviation of the number concentration. CCUB refers

to the City-Centre Urban Background station (Patras-C), RB refers to the Regional Background

station (FIN), and UB to the Urban Background stations (ICE-HT, DEM, EPT).

Size bin, nm N x 10° Los K16 Mso  Ms4  fos  Max StDev
CCUB, Nio-20 1.1 0.2 04 09 18 2.7 19 1
CCUB, Nzo—50 4.1 09 1.5 3.2 6.6 10.1 714 3.5
CCUB, Nso-100 3.5 1 1.6 29 5.1 8 39.8 2.4
CCUB, Nioo-200 2 0.6 1 1.8 2.9 3.9 36.6 1.4
CCUB, Naoo-500 0.4 0.1 0.2 04 06 08 7.6 0.3

CCUB, Nt 11.1 3.6 5.4 9.5 16.5 24.2 112.3 7.1

UB, Nio-20 0.5 0.03 0.09 0.3 0.8 1.7 48.8 1

UB, Nao-s0 1.4 0.3 0.4 1 2.2 3.8 111.2 2.2

UB, Nso-100 1.7 0.5 0.7 14 23 3.4 2389 3.7

UB, Nigo—200 1.5 0.5 0.7 1.3 2 2.6 199.8 2.6

UB, Nago—500 0.5 0.2 0.3 0.5 0.8 1 19.7 0.4

UB, Nt 5.5 1.8 2.6 4.5 7.4 11.2 456.3 8
RB, Nig-20 0.2 0.004 0.01 0.05 0.2 0.7 9.4 0.5
RB, Nao—_s0 0.7 0.1 0.2 05 1.3 21 5.2 0.6

RB, Nso-100 1.4 0.5 0.7 13 21 27 55 0.7

RB, Nigo—200 1.2 0.5 0.7 1.1 1.6 1.8 3.8 0.4

RB, Nago-s500 0.4 0.2 03 04 06 0.7 1.2 0.2

RB, Niot 3.5 1.4 2.2 34 4.8 6 14.1 1.4
ICE-HT, Nip-20 0.4 0.02 0.05 0.2 0.6 1.4 48.8 1.2
ICE-HT, Nao_s0 1.2 24 37 08 19 31 111.2 2.8
ICE-HT, Nso-100 1.9 0.6 09 14 22 3.1 2389 5.9
ICE-HT, Nigo-200 1.7 0.6 09 14 21 26 199.8 4.2
ICE-HT, N2po—s00 0.4 0.1 0.2 04 0.6 0.9 19.7 0.5

ICE-HT, Niot 5.5 2.1 2.7 43 6.8 9.6 456.3 12.3

DEM, Nio-20 0.9 0.1 0.2 05 1.4 26 23 1.3

DEM, Nap_s0 1.9 04 06 1.3 3.1 5.3 273 2
DEM, Nso-100 2.1 09 1.2 1.8 3.1 4.8 10.5 1.2
DEM, Nigo—200 1.9 0.7 11 1.8 25 3.3 19.6 0.8
DEM, Naoo-500 0.7 0.3 0.4 0.7 1 1.4 5.5 0.4

DEM, Niot 7.6 3.7 4.5 6.3 10.3 15.9 58.8 0.4

EPT, Nio-20 0.4 0.05 0.1 0.2 06 1.2 7.5 0.5

EPT, Nao—s0 1.3 0.2 04 09 2 3.4 22.2 1.2

EPT, Nso-—100 1.2 0.4 0.5 1 1.8 2.6 29.3 0.8
EPT, Nioo—200 0.9 04 06 09 1.3 1.7 10.6 0.4
EPT, Naoo-s00 0.5 0.2 03 05 0.7 08 21 0.2

EPT, Niot 4 1.5 21 3.5 5.7 8.5 44.5 2.4
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Table 2.3: Comparison of City-Centre Urban Background, Urban Background and Regional Back-
ground stations in Greece with other measurement campaigns [4]. N3g_5o refers to particles with
mobility diameter from 30 to 50 nm, N5g refers to particles with mobility diameter from 50 to 500
nm, and Njgg refers to particles with mobility diameter from 100 to 500 nm. N is the mean con-
centration, g,, is the geometric mean concentration, o5 to g5 are the 5th to the 95" percentile.
CCUB refers to the City-Centre Urban Background station (Patras-C), RB refers to the Regional

Background station (FIN), and UB to the Urban Background stations (ICE-HT, DEM, EPT).

Station Fraction N x 10° 9m o5 M6 M50 Hs4  flos
Harwell 0.8 0.5 0.1 0.2 0.6 1.3 2.1
K-Puszta 1 0.7 0.2 04 0.7 14 2.7
Cabauw 2.1 1.6 04 0.8 1.9 3.4 4.6
Jungfraujoch 0.1 0.08 0.02 0.04 0.08 0.2 0.3
JRC-Ispra 1.6 1.3 0.5 0.7 1.3 24 3.7
CCUB N3o—s0 2.8 2.2 0.6 1 22 44 7
RB 0.6 0.4 0.1 0.2 04 1 1.7
UB 1 0.7 0.2 03 0.7 1.5 2.5
ICE-HT 0.8 0.6 0.2 03 05 1.2 2
DEM 1.3 1 03 05 09 2 3.7
EPT 0.9 0.6 0.2 03 06 1.4 23
Harwell 1.8 1.3 03 05 1.3 33 5
K-Puszta 3.7 3 1.1 1.7 3.1 5.6 8
Cabauw 2.9 29 06 1.3 34 6.5 9.1
Jungfraujoch 0.3 0.2 0.03 0.07 0.2 06 1
JRC-Ispra 5.6 4.2 1 2 4.4 9.3 14
CCUB Nso 5.8 5 1.9 2.9 5.1 84 12
RB 2.8 2.6 1.2 1.8 2.8 3.7 44
UB 3.6 3 1.3 1.8 3.1 4.8 6.7
ICE-HT 3.9 3.1 1.4 2 3.2 4.5 5.7
DEM 4.8 4.4 23 3 4.2 6.4 8.8
EPT 2.5 2.3 1.1 1.5 2.3 3.4 4.6
Harwell 0.8 0.5 0.1 0.2 0.6 1.5 2.4
K-Puszta 2 1.6 05 09 1.7 3 44
Cabauw 1.2 0.8 0.2 0.3 1 2.2 33
Jungfraujoch 0.2 0.08 0.008 0.03 0.09 0.3 0.6
JRC-Ispra 2.9 1.9 04 08 21 5 83
CCUB Nioo 2.4 2 0.7 1.2 21 34 44
RB 1.6 1.5 0.7 1 1.6 2.1 2.4
UB 2 1.7 0.7 1 1.7 2.7 3.6
ICE-HT 2.1 1.7 0.7 11 1.7 2.6 3.2
DEM 2.6 24 1.1 1.6 2.5 3.5 4.8
EPT 1.4 1.3 07 09 14 19 24
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air masses affecting Southern England) it was 0.8 x 10% cm ™3, during the period 2008-2009. For the

fraction Njo, the mean number concentration at the Regional Background site was 2.8 x 103 em ™3,

while at Harwell it was 1.8 x 103 em™3. For the fraction Nigp, the mean number concentration
at the Regional Background site was 1.6 x 10 em ™3, while at Harwell it was 0.8 x 10 em™3. We
conclude that the Regional Background site is more polluted than the rural site of Harwell, as its
particle number concentrations in the size ranges N5o and Nigg are higher. The main difference in
these two sites is found on the Njgg size fraction (as Nig is included in Njg), relating it mainly to
the long range transport of polluted air masses in the Eastern Mediterranean.

The overall mean concentration and percentiles for all size fractions of the Urban Background
sites are very similar to the K-Puszta station (representative of the Central-Eastern European re-
gional conditions). We conclude that the Urban Background sites have similarities to the aerosol
concentrations measured at the Central-Eastern Europe during the Etesians.

Figure 2.4 displays the diurnal variation of the aerosol particle concentration size distributions
for all site types.

At the City-Centre Urban Background station, we observe distinctive peaks during the morning
and evening traffic rush hour for size bins N1g_20, Nog—50, N50—100, and N¢ot. N1go—200 and Nogg—_500
are more or less stable throughout the day.

At the Urban Background stations, Nso_100 is the fraction that mainly displays morning and
evening peaks, attributed to traffic. We observe that Nig_o0, Nog_50 fractions display a similar
evening peak and a small morning peak, but their maximum concentration is reached during noon.
[45] reported that 5 organic aerosol sources were identified at ICE-HT station and 4 at DEM. These
were very oxygenated OA (V-OOA, 19%), moderately oxygenated OA (M-OOA, 38%), biogenic
oxygenated OA (b-OOA, 21%), Hydrocarbon-like OA (HOA-1, 7%), and HOA-2 (15%) at ICE-
HT and V-OOA (35%), M-OOA (30%), HOA-1 (18%), and HOA-2 (17%) at DEM (Figure A.6,
Appendix). By comparing the diurnal cycle of these sources and the diurnal cycle of the size
fractions, HOA-1 and HOA-2 mainly correspond to the N5g_19¢ size fraction, while V-OOA to the

fractions Nygg_200 and Nogg_s00. M-OOA and Nig_og, Nog_50 correlate in the diurnal variation,

and hence could be originating from the same source.
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Figure 2.4: Diurnal variation (UTC) of the particle number concentration (vertical axis) for the size
fractions N10,20 (green COIOT), N20,50 (red), N50,100 (blue), N1007200 (brown), N200,500 (plnk), and
(Niot) at City-Centre Urban Background (Patras-C, in subfigures a,b), Urban Background (ICE-HT,

DEM, EPT, in subfigures c,d), and Regional Background stations (FIN, in subfigures e,f).
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The peaks corresponding to HOA-1, HOA-2 and M-OOA cannot be identified for the size fractions
at the Regional Background station. Nevertheless, a small peak in the evening in the size fractions
Noo_50, Nso_100 is apparent at the Regional Background station and may be attributed to aerosol
of intermediate aging, transported from source areas within Crete. [75] report that at the Regional
Background station, 80% of the PM1 (particulate matter with aerodynamic diameter smaller than
1 pm) organic aerosol was water soluble and its OC/EC ratio was equal to 5.4, indicating that the
organic aerosol content was mainly secondary and highly oxidized. This is in-line with the diurnal
variation of Ny, which is almost stable throughout the day. As shown in Table 2.2, the median values
of the fraction N5g_100 at the Regional Background station and the Urban Background stations have
similar values but their diurnal patterns are dissimilar. While at the Urban Background this fraction
appears to be related to traffic, there is no such relation at the Regional Background station. The
median concentrations for the size ranges N1g—_20, Nao—50, N50—1005 N100—200, N200—-500, Ntot (Table
2.2) at the Regional Background station, are the 5%, 16%, 456%, 63%, 99% and 36% of the respective
median concentrations of the City-Centre Urban Background station. The remainder percentages at
the City-Centre Urban Background station may be attributed to traffic, shipping (as it is situated
close to Patras harbor), other locally produced particles and condensational growth. When compared
to the Urban Background stations, the Regional Background median concentrations correspond to
the 17%, 55%, 97%, 91%, 79% and 77% of the respective median of the Urban Background stations.
By combining these estimations and diurnal variation of the size fractions in Figure 2.4, we conclude
that those that are similar in number mean concentration and diurnal variation at all station types
are N1go_200 and Nogg_s500. Assuming that these fractions measured at the Regional Background
station constitute the regional background concentration, we conclude that the transported part of
the median particle number concentrations for the City-Centre Urban Background station is 13%, for
the Urban Background stations 29%, and for the Regional Background station 45%. Other fractions
should mainly be attributed to NPF, freshly emitted traffic exhaust, aged traffic, cooking and other
local sources. We have to keep in mind though that this estimation is based on an empirical division
of size fractions.

It is worthwhile mentioning that N;,; resembles very much Ng5o_100 at the Regional Background
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station, since Nsg_1099 is the dominating size fraction in terms of particle concentration. At the
Urban Background stations N5g_109 and Nog_5g are the dominant size fractions.

The City-Centre Urban Background station displays significantly higher particle number concen-
trations than the Urban Background and Regional Background stations (cf. Figure A.2 in Appendix).
In Figure A.3 (Appendix), the time-series for the size fractions are displayed. It is observed that the
particle concentrations are similar at the Urban Background and Regional Background stations for
the size bins N5o_100, N100—200, and Nogg_500. For the size bin Nogg_500, all station types exhibit
similar number concentrations (cf. Figure A.3 in Appendix). In Figure A.4 (Appendix), we present
the diurnal variation for each size bin for the three Urban Background stations, while in Figure A.5

the time-series for the same stations.

2.2.2 Statistics and phenomenology of size distribution at different sta-

tion types

Each mode identified by the size distribution modal analysis algorithm was classified according to its
geometric mean diameter (dg) in a structure consisting of two submodes corresponding to the Nucle-
ation mode (N<15, N15_30), two submodes corresponding to the Aitken mode (Aso—g0, Aso—90) and
two submodes corresponding to the Accumulation mode (Cgg—120, Cs120). This finer classification
was carried out in order to distinguish the aerosol sources more precisely. The nomenclature of this
work is provided in Table 2.4.

The most frequent mode combinations for the City-Centre Urban Background, the Urban Back-
ground and the Regional Background stations are displayed in Tables 2.5 to 2.7. The dataset
acquired by modal analysis and subsequent classification in six submodes, was separated in 2-hour
intervals, in order to obtain the diurnal variation of modes for the whole period of the campaign.

The diurnal variation of the classified modes are presented as Appendix (Figures A.14 to A.22).

2.2.2.1 City-Centre Urban Background station (Patras-C)

Table 5 demonstrates the most frequent mode combination for the City-Centre Urban Background

station during the campaign. We observe that Aitken mode dominates the City-Centre Urban
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Table 2.4: Nomenclature

Explanation

n

Mode N< 15

Mode N15730

Mode A30,60

Mode Aeo_go

Mode Cgp—120

Mode C> 120

Geometric standard deviation of mode
Geometric mean diameter of mode,
referring to dry electrical mobility diameter
Total number of particles in mode
Number of size bins of the SMPS particle size distribution
Mode with dg smaller than 15 nm, gas to particle conversion
Mode with dg larger than 15 nm and smaller than 30 nm,
related to vehicle emissions and growth of nucleated particles
Mode with dg4 larger than 30 nm and smaller than 60 nm,
related to vehicle emissions, growth of nucleated particles
Mode with dg4 larger than 60 nm and smaller than 90 nm,
related to traffic and growth of nucleated particles
Mode with dg4 larger than 90 nm and smaller than 120 nm,
related to condensational growth
Mode with d, larger than 120 nm,

related to condensational growth
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Table 2.5: City-Centre Urban Background station most frequent mode combinations. Asy_goCs120

refers to size distributions that consist of an A3g_gg mode and a Cs199 mode, described in detail in

Table 2.4.

Mode A30-60C>120 Aszo—c0 A30-60Co0-120 Nis-30A60-90 Ni5-30Co0-120
Combination Median Median Median Median Median
Nis-30 0g - - - 1.5 1.6
Nis—30 dy - - - 24 27

Nis—30 N - - - 2.5 x 10° 3.5 x 10°
As0-60 0g 2 2 1.9 - ,
Azo—60 dyg 43 50 37 - -
Aso—e0 N 7.2 x 10° 10.3 x 10° 5.9 x 10% - -
Ago—90 04 - - - 1.9 -
As0-90 dg - - - s -
Ago—90 N - - - 6.6 x 10° -
Coo—120 0¢ - - 1.6 - 1.7
Coo—120 dgy - - 109 - 101
Coo—120 N - - 3.6 x 10% - 5 x 10°
Cs120 0y 1.45 - - - -
Csi20 dyg 137 - - - _
Cs120 N 2 x 10% - - - -
Frequency % 27 15 15 13 9
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Table 2.6: Urban Background stations most frequent mode combinations. Agzg_goCs120 refers to

size distributions that consist of an Azg_gp mode and a Cs199 mode, described in detail in Table

2.4.
Mode A30-60C>120 Ni5-30Co0-120 A60-90C>120 Ni5-30C>120  Coo-120
Combination Median Median Median Median Median
Nis—30 0g - 1.6 - 1.9 -
Nis—30 dg . 22 B, 25 .
Nis—s0 N - 1.4 x 10° - 1.4 x 10° -
Aso—60 0g 2 - - - _
Aso—60 dg 43 - - - -
Azo—60 N 2% 10% - - - -
Aso—90 04 - - 2.2 - .
Ago—90 dg - - 69 - -
Ago—90 N - - 2.3 x 10° - -
Coo—120 0y - 1.9 - - 1.9
Coo—120 dg - 105 - - 100
Coo—120 N - 3.2 x 10° - - 3.7 x 10%
Cs120 0g 1.6 - 1.5 1.8 -
Cs120 dg 157 - 180 135 -
Csi120 N 1.9 x 10° - 1.1 x 10° 2.6 x 10% -
Frequency % 21 9 8 6 6

Background station, as it is present at 4 out of 5 of the most frequent mode combinations. Overall,
an Aitken mode (Azo_go or Agp—go) was present at the City-Centre Urban Background station more
than 75% of the time, during the campaign. This finding indicates that the site PSD is dominated

by traffic emissions, fresh and aged.

2.2.2.2 Urban Background stations (ICE-HT, DEM and EPT)

Table 2.6 demonstrates the most frequent mode combinations. One may observe that the most
frequent modes are Aitken and Accumulation. This indicates that the main sources affecting these
sites are vehicle emissions fresh (Asg_go)) and aged (Agp—g0)) and condensational growth of existing

particles.
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Table 2.7: Regional Background station most frequent mode combinations. Aszg_goCs120 refers to

size distributions that consist of an Azg_gp mode and a Cs 199 mode, described in detail in Table

2.4.

Mode

Combination

Nis-30 dy
Nis—30 N
Azo-60 Og
Aso—co dg
Aszo—6o N
A6o—90 04
Aeo—90 dg
Ago—90 N
Cgo-120 04
Coo-120 dy
Cgo—120 N
Cx120 Og
Cs120 dyg
Csi120 N

Frequency %

ASO—BOC>1'ZO

Median

46

1x10%

1.5
152
1.8 x 10°

20

090— 120

Median

106

3.5 x 10°

12

AGO—QDC> 120

Median

1.7
73

1.7 x 103

1.5
169
1.2 x 10%

11

49

C>120

Median

1.8
129

3% 10°

Ni5-30A60-90C>120

Median

23

0.24 x 103

73

1.3 x 10°

1.5
180
0.84 x 10°
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2.2.2.3 Regional Background station (FIN)

Table 2.7 shows the most frequent mode combinations, which are Aitken mode — Accumulation

mode. Therefore, the main sources are aged traffic and condensational growth.

2.2.3 Cluster Analysis Results

In the previous section we classified and thus simplified the complex data sets measured at City-
Centre Urban Background, Urban Background and Regional stations using empirically determined
fractions in the particle size distribution and submodes on the results of the modal analysis. In order
to evaluate our conclusions on local sources and transported aerosol, we needed to utilize an impartial
method so as to group the aerosol size distributions. We used the results of the Size Distribution
Modal Analysis as input data and subsequently we used the clustering algorithms presented in the

Materials and Methods section.

2.2.3.1 City-Centre Urban Background station (Patras-C) identified clusters

The HDBSCAN algorithm results for a minimum cluster size of 38 data points (3 clusters) has the
highest Caliriski-Harabasz score comparing to the rest of the HDBSCAN results (results for mini-
mum cluster sizes ranging from 3 to 100). They also have a Dunn Index equal to 7.2 x 10~3 while the
K-means algorithm results for 3 clusters have a Dunn Index equal to 2.5 x 1073, The highest Dunn
Index for the K-means results is equal to 3.5 x 1072 and corresponded to 4 clusters. Nevertheless,
it is still less than the Dunn Index acquired by the HDBSCAN algorithm results for a minimum
cluster size of 38 data points. Figure 2.5 shows the frequency of occurrence at each hour of the day
for each cluster. The frequency of CCUB-SD-Cluster2 (Cluster2 for the Size Distribution clustering
at the City-Centre Urban Background site) is almost stable throughout the day, while the particle
concentration increases during noon, due to the accumulation of particles that are produced locally.
This profile is similar to the M-OOA source identified at ICE-HT, and corresponds to aerosol of
medium oxygenation, and therefore aging. Its 50" percentile dy corresponds to accumulation mode.
CCUB-SD-Cluster?2 is a sum of the Regional Background particle concentration and condensational

growth of locally produced particles. CCUB-SD-Cluster3 has increased frequency and number con-
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Table 2.8: City-Centre Urban Background station clusters identified.

Cluster CCUB-SD CCUB-SD CCUB-SD
Results -Clusterl -Cluster2 -Cluster3
20" perc
1.2 1.42 1.45
g
50" perc
1.2 1.57 1.81
g
80" perc
1.2 1.74 2.1
Ty
20" perc
5.5 93.7 25.4
dy
50" perc
6.5 116.9 39.7
dy
80" perc
6.6 139 51.57
dy
20" perc _
>1x10° 1.6 x 10° 2.3 x 10%
N
50" perc _
>1x10° 3.4 x 10% 5.3 x 10%
N
80" perc _ .
>1x10° 5.9 x 10% 10.7 x 10°
N
Condensational growth, Vehicle
Cluster Traffic
Regional emissions,
Source episode
background fresh and aged
Cluster
0.7 % 74 % 100 %
Frequency

centration in the early morning and late evening and it could be attributed to vehicle emissions. Its
50" percentile dg corresponds to Aitken mode. This cluster is mainly attributed to fresh and aged
vehicle emissions as its diurnal variation is similar to HOA-1 and HOA-2 sources [45]. It should be
noted that this cluster is always present at the City-Centre Urban Background station. There is also
a very infrequent nuclei mode cluster (CCUB-SD-Clusterl) which has an estimated d, of less than
6.5 nm. The particle number concentration of this cluster has high uncertainty, since the measured
size distribution range begins from 10 nm and measurement uncertainty is higher in the size range
from 10 to 20 nm. In Figure 2.5 we observe that this cluster occurs at 06:00 UTC and from 12:00

to 18:00 UTC. It could be attributed to local pollution events due to combustion.
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Figure 2.5: City-Centre Urban Background station diurnal frequency of occurrence (blue area, counts
per hour) and median number concentration Ny,edian (red line) for all identified clusters. The area

around Ny,egian corresponds to 25" and 75" percentiles of the quantity.

2.2.3.2 Urban Background stations (ICE-HT, DEM and EPT) identified clusters

In order to run the clustering algorithms, we combined the data available from Urban Background
stations in one dataset. Even though we miss circa 8 days from beginning and 8 days from end
of the time period at ICE-HT and EPT in comparison to DEM station, the actual difference is
small. If we remove the extra days from DEM station dataset, the difference in mean concentration,
for all DEM station size bins presented in Table 2.3, is less than 10%. Please keep in mind that
the measurement uncertainty is 10% for the size range 20-200 nm and significantly higher for the
smaller and larger particle sizes. The HDBSCAN algorithm results (4 clusters) presented in Table
2.9 were the best fit for the dataset. In order to acquire these results, a minimum cluster size of
73 data points is used. The Dunn Index for these results is 5.9 x 10™2 while the corresponding
value for the K-means algorithm (4 clusters) is equal to 0.9 x 1073. The highest Dunn Index for
the K-means results is equal to 1.7 x 1073 and corresponded to 2 clusters. Nevertheless, it is still
less than the Dunn Index acquired by the HDBSCAN algorithm results for a minimum cluster size
of 73 data points. The results for each Background station are presented in the Appendix (Tables
A.4-A.6, Figures A.23-A.25). Figure 2.6 shows the frequency of occurrence at each hour of the
day for each cluster. UB-SD-Clusterl (Clusterl for the Size Distribution clustering at the Urban
Background sites) has a frequency of 7% and could be mainly attributed to traffic due to the fact
that an increased frequency and particle number concentration is observed at 06:00 and 18:00 UTC.
There is also a peak at noon, which could be attributed to new particle formation. UB-SD-Cluster2

is very stable in frequency and particle number concentration throughout the day, as we observe in
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Figure 2.6: Urban Background stations diurnal frequency of occurrence (blue area, counts per hour)
and median number concentration Np,edian (red line) for all identified clusters. The area around

Nnedian corresponds to 25" and 75" percentiles of the quantity.

Figure 2.6. This mode is the sum of the regional background concentration and the condensational
growth of particles produced locally. This is supported by the fact that its 50" percentile dy
corresponds to Accumulation mode. UB-SD-Cluster3 has increased frequency and particle number
concentration in the morning and the evening, which probably relates this cluster also to traffic
exhaust (due to vehicle circulation peaks when people go to and return from work) occurring at the
city highways and center, and subsequently transported to the urban background stations. Its profile
corresponds to sources HOA-1 and HOA-2, which are attributed to traffic, cooking and other local
sources. UB-SD-Cluster4 has increased frequency and number concentration in the middle of the
day, therefore it probably relates to freshly emitted traffic particles, or particles generated elsewhere
and subsequently transported to the background site, growing in size as they adsorb photochemically

produced pollutant gases. Its 50" percentile dg corresponds to Aitken mode.

2.2.3.3 Regional Background station (FIN) identified clusters

The HDBSCAN algorithm results presented in Table 2.10 (3 clusters) were the best fit for the dataset.
In order to acquire these results, a minimum cluster size of 28 data points is used. The Dunn Index
for these results is 12.5 x 103 while the corresponding value for the K-means algorithm for 3 clusters
is 1.7 x 1073, The highest Dunn Index for the K-means results is 5.4 x 1073 and corresponded to
2 clusters. Nevertheless, it is still less than the Dunn Index acquired by the HDBSCAN algorithm
results for a minimum cluster size of 28 data points. Figure 2.7 shows the frequency of occurrence at

each hour of the day for each cluster. RB-SD-Clusterl (Clusterl for the Size Distribution clustering
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Table 2.9: Urban Background stations clusters identified.

Cluster UB-SD UB-SD UB-SD UB-SD
Results -Clusterl -Cluster2 -Cluster3 -Cluster4
20" perc
3 1.55 2.06 1.34
g
50" perc
3 1.68 2.1 1.52
g
80" perc
3 1.84 2.16 1.73
g
20" perc
8.3 98.9 27.7 18.5
dy
50" perc
15.1 122.4 48.4 42.5
dy
80" perc
25.6 154.1 61.6 53
dy
20" perc
2.2 x 10% 1.4 x 10° 1.1 x 10° 0.7 x 10%
N
50" perc
4.1 % 10° 2.7 x 10% 2.3 x 10% 1.4 x 10°
N
80" perc
7.9 x 10% 4.5 x 10° 3.9 x 10° 2.7 x 10%
N
Nucleation, Condensational growth, Vehicle Vehicle
Cluster
Vehicle Regional emissions, emissions,
Source
emissions background aged fresh and aged
Cluster
7% 79 % 13 % 53 %
Frequency
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Table 2.10: Regional Background station clusters identified.

Cluster RB-SD RB-SD RB-SD
Results  -Clusterl -Cluster2 -Cluster3
20" perc
2.1 1.31 1.42
Tg
50" perc
2.1 1.45 1.56
Ty
80" perc
2.1 1.6 1.76
Ty
20" perc
7.3 28.5 111.8
dy
50" perc
11.1 50.6 147.6
d.q
80" perc
20.4 78.7 194.6
d‘]
20" perc . . .
0.2x10° 0.5 x 10° 0.7 x 10°
N
50" perc ) . .
0.3 x 10° 10° 1.8 x 10°
N
80" perc
0.5x10°  1.8x10° 3 x 10°
N
Local Tourism Condensational growth,
Cluster
activities, activities, Regional
Source
nucleation aged background
Cluster
1.7 % 65 % 83 %
Frequency

at the Regional Background site) is very infrequent and it occurs in the early morning or late
evening, therefore it can only be partly related to photochemistry, as we have only identified 5 cases
of nucleation events. It is mainly related to pollution transported within the island of Crete, as
indicated in earlier studies. RB-SD-Cluster2 relates to the aged pollution produced from Cretan cities
and activities related to tourism, including cooking. RB-SD-Cluster3 is the regional background
concentration. [31] report for FIN that the variability in OA composition could be explained by two
factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility.
This is in-line with our classification, where 2 clusters corresponding to aged aerosol dominate the

frequency of occurrence at the site.
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Figure 2.7: Regional Background station diurnal frequency of occurrence (blue area, counts per
hour) and median number concentration Npedqian (red line) for all identified clusters. The area

around Ny,egian corresponds to 25" and 75" percentiles of the quantity.

2.2.4 New Particle Formation (NPF) Events

Combining the two methods mentioned in the New Particle Formation (NPF) Events Analysis
section, 5 nucleation events were identified at FIN over 61 days (cf. Figure A.12 displays the
contour plots and Figure A.13 displays the origin of air masses for nucleation days, Appendix), 5
nucleation events at DEM over 54 days (cf. Figures A.8 and A.9, Appendix), 4 nucleation events
at EPT over 43 days (cf. Figures A.10 and A.11, Appendix), while at Patras-C and ICE-HT there
were no nucleation events.

1 nucleation event day at EPT (18! of June) coincided with 1 nucleation event day at FIN.
Figures A.11, A.13 display that the origins of air masses reaching the two stations for the day
mentioned (18" of June) were very similar. 1 nucleation event day at DEM coincided with 1
nucleation event day at EPT (14" of June). The origins of the air masses during this event day
reaching the two sites are also very similar (cf. Figures A.9, A.11, Appendix). We conclude that
approximately 1 in 5 of the nucleation events that we have identified occurred simultaneously at
a broader geographic area, where conditions favorable for nucleation prevail, probably due to the
origin of the air masses reaching the measurement stations.

The results evaluating the strength of the nucleation events at the Regional Background station
and the two Urban Background stations that nucleation events were identified, are presented in
Table 2.11.

One may observe in Table 2.11 that at EPT, 56% of particles in the size range Njg_o¢ during

nucleation days originate from NPF, while the corresponding percentages at DEM and FIN are 30
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Table 2.11: Absolute and relative contributions of NPF at DEM, EPT, FIN in the size range
Nig_20 during the measurement period (cm=3). Nypr is the daily average number concentration
of newly formed aerosol, Np, is the daily average number concentration of Background aerosol,
and Nypr_pgrc is the relative contribution of NPF during nucleation days. Nypr_conTr is the

relative contribution of NPF events during the entire measurement period.

Station NnpPF Npy Nnpr-PERC NNPF-CONTR
DEM  0.35x10* 0.7 x 10% 30% 4%
EPT 0.5x 10° 0.4 x 10* 56% 12%
FIN 0.03 x 10 0.1 x 10° 20% 1%

and 20%, respectively. Nevertheless, keeping the whole measurement period in mind, the impact of
NPF is insignificant at FIN (1%) and DEM (4%), but much more pronounced at EPT (12%). This
size range was chosen as it proved to be useful for the detection of photochemical particle formation
bursts. [52] reported a relative contribution of 23.8% of NPF with regard to the annual average
of N5_o0 at Leipzig-TROPOS in 2012. [55] report that the maximum in new particle formation
occurrence in Finokalia was during the winter months. [38] report a minimum in atmospheric ion
concentrations during June-September. [101] report that during the summer campaign at Finokalia
(10-31 July 2000), new particle formation events were not observed. However, they also report that
during the winter campaign (7-14 January 2001), new particle formation events were observed in
almost half of the days (three nucleation events during the 7 days of the measurements). The fact
that nucleation events are infrequent during summer months at the Regional Background station is
also reported by [76]. We intend to investigate the frequency of occurrence of NFP in the Eastern

Mediterranean in the winter months in another manuscript.

2.2.5 Regional background concentration variation based on air masses
origin
The prevailing synoptic pattern over the Aegean Sea during summer is characterized by strong

northern winds (Etesians) transporting dry and cool air masses downwind of Southern Russia,

Ukraine, Central/Eastern Europe, the Balkan countries and Turkey. Detailed aerosol chemical

57



predictions by a comprehensive model system showed that more than 70% of the predicted aerosol
mass over the Aegean Sea during these synoptic conditions is associated with the transport of aerosols
and their precursors from outside the modeling domain (domain included Greece and Asia Minor
Coast), as reported by [5]. [93] indicate that during July and August using the 40-yr ECMWF
Re-Analysis (ERA-40) dataset, the average wind direction in the Eastern Mediterranean is from the
North - North East and North West (Figure A.27, Appendix). In other words, the contribution of
air mass transport from the south to the Eastern Mediterranean is insignificant during the Etesians.

In order to estimate the effect of aerosol transport from distant areas to the regional background
concentration, the origin of the air-masses for RB-SD-Cluster3 of the Regional Background station
(FIN), which represents the long range transported aerosol, was investigated. Clusters from other
stations were not used, as they are Urban Background stations and their particle size distributions
are affected by local pollution. The HDBSCAN algorithm provided the best fit for a minimum
cluster size of 44 data points, with a minimum sample size of 1, producing 5 clusters for the origin
of air-masses at FIN, regarding the regional background concentration. The clusters produced are
depicted in Figure 2.8, where we have also included the Potential Source Contribution Function
analysis (PSCF) at the 75" percentile. The Dunn Index for these results is 1.87 x 10~ while the
corresponding value for the K-means algorithm for 5 clusters is 0.79 x 10~!. The highest Dunn Index
for the K-means results was 1.04 x 10! and corresponded to 6 clusters. Nevertheless, it is still less
than the Dunn Index acquired by the HDBSCAN algorithm results for a minimum cluster size of 44
data points. The PSCF results indicate that there are many potential source areas, extending from
the Caspian Sea to North-East and North-Central Europe. There are also hot-spots over Bulgaria
and Turkey.

One may observe that the origin of RB-AMO-Clusterl (the first cluster identified based on Air
Mass Origin clustering) is from the Mediterranean Sea and it represents slow moving air masses, as
we can see that its centroid has traveled the distance from North Italy to Crete in 7 days. Also, the
air masses residence time, depicted by the color scale, lays over the Mediterranean Sea. We have to
keep in mind that the residence time depicted corresponds to a height of 0 to 100 meters agl. We

would expect this cluster to represent the background concentration of the Mediterranean basin.
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Figure 2.8: Maps showing the air mass origin for the clusters identified through Air Mass Origin
clustering and potential source areas from PSCF analysis. RB-AMO-Clusterl corresponds to the
first cluster identified based on Air Mass Origin clustering, referring to the cluster RB-SD-Cluster3
mentioned in Table 2.12. Subfigures a-e: Regional background concentration air mass origin clus-
tering, based on centroids. The color corresponds to residence time in each cell, while the black dots
correspond to the centroid of mass for all 3-hour releases of 4 x 10* finite air masses in the cluster,
for each 3-hour backward step in time. Subfigure f: Potential Source Contribution Function analysis
(PSCF) at the 75" percentile of the total number concentration N of each mode obtained through

modal analysis for the cluster RB-SD-Cluster3.
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We should consider that the low precipitation in the Mediterranean basin favors the long residence
time of PM (particulate matter) in the atmosphere with the consequent impact on air quality [77].
Table 2.12 shows that this cluster has the largest median d, and the lowest number concentration
compared to all clusters. That indicates probably aged aerosol particles, as particles have had time
to grow to large accumulation mode sizes due to condensation, strong photochemistry and long
time over Southern European areas. The particle number concentration of this cluster should be
considered the regional background concentration of the Mediterranean basin during this period.
RB-AMO-Cluster2 originates from the Caspian Sea region, passes over the Black Sea and finally
over the Aegean Sea. The median particle number concentration of this cluster is three times higher
than that of RB-AMO-Clusterl and similar to those of the other clusters. We should also notice that
at the 80" percentile of d, RB-AMO-Cluster2 has a value similar to RB-AMO-Clusterl, indicating
aged aerosol. The origin of RB-AMO-Cluster3 is from Central Europe, but its main residence time
in the height from 0 to 100 m agl is over the Black Sea and Ukraine, Bosporus Strait and the
Aegean Sea. RB-AMO-Cluster4 originates from Western Europe, but it has much higher residence
time in Central Europe than RB-AMO-Cluster3. Nevertheless, it demonstrates very similar particle
number concentration values to RB-AMO-Cluster3, for all 3 percentiles presented. This could be an
indication that a potentially significant source area of aerosol particles for these two clusters is the
Bosporus Strait area. RB-AMO-Clusterb originates from Great Britain, passes over Belgium and
the Netherlands, Central Europe, the Black Sea and the Aegean Sea. Its median particle number
concentration is similar, but somehow lower than the particle number concentrations of RB-AMO-
Cluster2, RB-AMO-Cluster3 and RB-AMO-Cluster4. As shown in Figure 2.8, it is the cluster that
has the highest centroid speed, perhaps leading to a less efficient collection of precursor gases and
aerosol particles. Overall, the air masses during the campaign originate from the North-East, North-
West and the Mediterranean Sea. Particle number concentration originating from the Mediterranean
Sea are much lower, consisting of a median value of 0.7 x 103 particles per cm3. Clusters with origin
from North-East and North-West have particle number concentrations with median values ranging

3

from 1.7 x 10% to 2.5 x 10 particles per cm3. Therefore, we may conclude that the Etesian flow

increases the regional background particle concentration in the Mediterranean basin by a factor of
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2.5, to 4.

As demonstrated in Table 2.12 the identified clusters represent roughly 80% of the centroids, as
intermediate centroids have been considered outliers. We have to keep in mind that the HDBSCAN
algorithm distinguishes high and low density areas in order to separate clusters. Low density areas
are considered outliers and are not included in the clusters. Figure A.26 (Appendix) shows the
emission sources for SO2. We observe that there are significant emission sources near the Bosporus
area, which is also depicted as the closest to FIN potential source area indicated by the PSCF
analysis. In an attempt to estimate the impact of this area, we included the residence time in
this region for each cluster in Table 2.12. Considering all clusters, we observe that there is good
agreement between residence time in this area and particle concentration. If we only consider RB-
AMO-Clusters2-5 (the ones that have a significant residence time), we cannot distinguish between
the amount of aerosol particles and precursor gases acquired by air masses in the Bosporus region and
the regions they resided on earlier. If we apply a regression on the residence times in Bosporus area
of RB-AMO-Clusters2-5 and the 80" percentile of the total number concentration for each mode
determined by modal analysis (N), we acquire an R? of 0.66. Based on these facts, we conclude
that the Bosporus area is a significant source area for the regional background concentration in the
Eastern Mediterranean during the Etesian flow, but there are also other source areas in the North-
Central and North-Eastern Europe, that influence the regional background particle concentration in
the Eastern Mediterranean. Similar results were obtained by PSCF analyses at the 80" to the 95"
percentiles of N (included as Appendix, Figure A.29).

In order to have an estimate of the impact on the NSD of Southern winds, which, as mentioned
earlier, are infrequent during the Etesians, we have identified by visual inspection 26 3-hour FLEX-
PART sensitivity plumes that originate to some extend from the south (Figure A.28). All of these
plumes are already included in RB-AMO-Clusterl, and thus the percentiles of their size distributions

are similar (see Table A.7, Appendix).
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Table 2.12: Characteristics of Regional background concentration identified clusters based on air

mass origin. After the frequency of occurrence of each cluster during the campaign, we have included

cluster residence time in the Bosporus area (latitude 40°-42° | longitude 25°-30°) normalized to

frequency.
Cluster RB-AMO RB-AMO RB-AMO RB-AMO RB-AMO
Results -Clusterl -Cluster2 -Cluster3 -Cluster4 -Cluster5
20" percentile
1.37 1.43 1.46 1.48 1.49
Tg
50" percentile
1.47 1.63 1.59 1.62 1.57
Tg
80" percentile
1.68 1.88 1.75 1.72 1.73
Tg
20" percentile
129.1 107.2 115.2 97.7 117.5
dy
50" percentile
179.5 136.6 145.6 126.7 145.9
dy
80" percentile
216 205.2 170.2 173.7 168
dg
20" percentile )
0.4 x 10° 0.9 x 10° 1.5 x 10° 1.1 x 10° 1.1 x 10°
N
504" percentile . .
0.7 x 10° 2.3 x 10° 2.5 x 10% 2.2 x 10% 1.7 x 10°
N
th S
80" percentile . . . .
1.9 x 10° 3.3 x 10° 3.1 x 10% 3.4 x 10% 2.4 x 10°
N
Frequency
25.1 16.9 17.3 10.4 10.9
%
Residence
106 478 528 568 436
time
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Chapter 3

Development of a new method to
retrieve the real part of the
Equivalent Refractive Index of

atmospheric aerosol

In the context of the international experimental campaign Hygroscopic Aerosols to Cloud Droplets
(HygrA-CD, 15 May to 22 June 2014), dry aerosol size distributions were measured at Demokritos
station (DEM) using a Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 550 nm
(electrical mobility diameter), and an Optical Particle Counter (OPC model Grimm 107 operating at
the laser wavelength of 660 nm) to acquire the particle size distribution in the size range of 250 nm to
2.5 pm optical diameter. This work describes a method that was developed to align size distributions
in the overlapping range of the SMPS and the OPC, thus allowing for the retrieval of an aerosol
equivalent refractive index (ERI). The objective is to show that size distribution data acquired at in
situ measurement stations can provide an insight to the physical and chemical properties of aerosol

particles, leading to better understanding of aerosol impact on human health and earth radiative
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balance. The resulting ERI could be used in radiative transfer models to assess aerosol forcing
direct effect, as well as an index of aerosol chemical composition. To validate the method, a series
of calibration experiments were performed using compounds with known refractive index (RI). This
led to a corrected version of the ERI values, (ERIcogr). The ERIcor values were subsequently
compared to model estimates of RI values, based on measured PMs 5 chemical composition, and to

aerosol RI retrieved values by inverted lidar measurements on selected days.

3.1 Experimental Procedure

The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), or-
ganized in the Athens Metropolitan Area (AMA), Greece, from 15 May to 22 June 2014, provided
an extended record of data on aerosols and their role in cloud formation [71]. The major sampling
site of the campaign was the Demokritos station (DEM), member of the GAW and ACTRIS Net-
works (37.995° N 23.816° E, at 270 m a.s.]), which is situated on the foot of Mount Hymettus in
Agia Paraskevi. The DEM monitoring site belongs to the National Centre of Scientific Research
“Demokritos”, which is situated about 7 km to the north from downtown Athens, in a pine for-
est. It is representative of the atmospheric aerosol at suburban areas of the Athens Metropolitan
area. The station is frequently influenced by katabatic winds [20], during which, air masses from
mount Hymettus (peak height 1,024 meters) are brought over the station. Also, the lowering of
nocturnal boundary layer height (NBLH) is occasionally resulting in an increase in particle number
concentration, even in the absence of aerosol particle sources.

The instruments that were in operation during the campaign included:

1. an SMPS to acquire the particle size distribution of atmospheric aerosol in the size range from
10 to 550 nm (electrical mobility diameter). The instrument provides a full size distribution
in the above mentioned range every 5 minutes. The SMPS has been calibrated against a
reference SMPS system at the WCCAP (World Calibration Centre for Aerosol Physics) in
2013 and participated in an intercomparison workshop in 2016 at the WCCAP, exhibiting a
counting accuracy within 10% for the size range 30-550 nm against a reference system under

controlled laboratory conditions [106]. The instrument is calibrated at DEM station with PSL
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spheres that have an electrical mobility diameter of 200 nm.

. an OPC (Grimm 107@660 nm laser light wavelength) to acquire the particle size distribution
in the size range of 250 nm to 2.5 um optical diameter. The OPC in a similar intercomparison
at the WCCAP exhibited a counting accuracy within 10% for the size range 250 nm to 1 pm.
This instrument acquires a full size distribution every 1 minute. The instrument uses laser light
of 660 nm, opening angles detected are 29.5°-150.5° and 81°-99° [14]. After its manufacture,
the instrument follows an electronical adjustment of 1 gm channel with mono-disperse PSL 1
pum spheres (Duke Scientific, NIST traceable, m = 1.59, according to ISO 21501-1) [80, 26].
Afterwards the unit is calibrated to a reference Grimm OPC, using dolomite aerosols (i.e.
different refractive index and a full size distribution). The particle number concentration
in each size bin of the unit is adjusted to the one measured by the reference instrument.
The adjustment is performed by changing the detection limits thresholds for each size bin
[51, 80, 26]. The reference Grimm OPC is checked and certified with monodisperse Latex
aerosol [26]. According to [29], the OPC counting accuracy is within 10% of the ideal 100%
for sizes from 0.3 to 1 pm (electrical mobility diameter). The sizing accuracy decreases from

around 0.8 um up to approximately 2 pm.

. an AE33 dual spot aethalometer in order to acquire the equivalent black carbon concentration
(EBC) at seven wavelengths (370, 470, 520, 590, 660, 880, 950 nm). This instrument completes

an EBC measurement for all wavelengths every 1 minute and operated after a PMs 5 inlet [41].

. an Ecotech 3-wavelength nephelometer to acquire the aerosol scattering and backscattering
coeflicient at 450, 525 and 625 nm. The instrument operated after a PM;jq inlet and completes

a measurement for all wavelengths every 1 minute [69].

. a Sunset Lab Elemental Carbon - Organic Carbon (EC/OC) measurement instrument. The
instrument acquires one measurement every 3 hours. It operates after a PMs 5 cyclone and it
has participated in an intercomparison exercise [70, 2]. During that exercise, the reproducibility

relative standard deviation for all participants, was within 30%, without any correction applied.

. a Droplet Measurement Technologies (DMT) streamwise thermal-gradient CCN counter. Through-
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out the campaign, the instrument was operated at a total flow rate of 0.5 LPM, with a sheath-
to-aerosol flow ratio of 10:1, and a top-bottom column difference, AT between 4 and 15 K.
Concentrations were measured at each supersaturation for 10 min, yielding a CCN spectrum

consisting of 5 different supersaturations every 50 min [11].

7. a multi-wavelength Raman lidar system (EOLE) deployed at the National Technical University
of Athens (NTUA) (37.97° N, 23.79° E, 212 m a.s.l.), approximately 4 km from DEM station
and 4.5 km from the city center which was used to provide the vertical profile of the optical
properties of aerosols (backscatter and extinction coefficients) at 355-532-1064 nm [44]. Using
these data as input, we can derive the vertical profile of the aerosol microphysical properties (i.e.
refractive index, effective radius, volume concentration, etc.) based on inversion techniques

[54, 96).

Inlet aerosol flows are dried to relative humidity (RH) below 40%, while particle losses due to
diffusion in the pipe lines are calculated and corrected for SMPS. Other losses are not corrected for
the OPC and the SMPS; as their inlet line is vertical and therefore losses in the size range 0.2 to 1
pum (aerodynamic diameter) are not significant.

The analysis of PMs 5 filters was performed by:

1. An accredited according to EN14902 high-resolution energy dispersive X-Ray fluorescence
spectrometer Epsilon 5 by PANanalytical (XRF). Epsilon 5 is constructed with optimized
Cartesian-geometrical design for lower background and with extended K line excitation 100
kV X-ray capability. The spectrometer provides selection of 8 secondary targets (Al, CaFs,
Fe, Ge, Zr, Mo, AlyO3, LaBg), that can polarize the X ray beam. All measurements were

performed under vacuum [19].

2. Ton Chromatography (IC). The concentrations of C1~, NO3, SO3~, Na*, K+, NH, Ca?*,
M g** were determined by a Metrohm 732 IC Separation Center connected to a 732 IC con-

ductivity detector and a 753 Suppressor Module for anions determination as described in [57].
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3.2 ERI optimal solution algorithm

The aerosol particle’s scattering process is described by four amplitude functions, Si, S, S3, S4,
all functions of 6 (angle of incident light to scattered light in the direction of light propagation).
Spherical particles have S5 =S4 = 0. So two complex amplitude functions occur for any direction;
these functions are S1(0) and S2(6); they depend only on the scattering angle §. We have to compute
the numbers [33]:

iy = |51(0)|° and iy = |S5(0)]? (3.1)

Quen = = [ 102(0) + ia0)}sin 0) o .2)
0

where x is the size parameter (x = k7, k,, is the wave number and r is the radius). Qseq i8
the scattering efficiency. Then we obtain the scattering effective cross section Ss., by multiplying
Qscq to the particle cross section area. The angular integration is performed over the solid angle
corresponding to Grimm 107 (described earlier). The resulting scattering effective cross section Sseq,
(um/m?), is calculated for each OPC size bin using the function Mie_abed of [58].

The following assumptions apply for OPC measurements:

1. Absorption is negligible and particles are spherical.
2. The aerosol is internally mixed.

3. The size distribution measured by the OPC represents particles of sizes equivalent to those
corresponding to PSL spheres with a real part of refractive index equal to 1.585 at 660 nm

wavelength.

The fitting procedure consists of several steps. In the first step, the algorithm assumes that RI
can range from 1.3 to 2.2 in steps of 0.1 (i.e. 1.3, 1.4, etc.). For these refractive indices, the Grimm
size distribution is recalculated for size bins corresponding to SMPS. The Root Mean Square Error
(RMSE) of the difference between the SMSP and OPC number size distributions (NSD) is calculated:

100
MSE = —
RMS ﬁ(.

n
1=

0.5
2
(NSPS - Ngre] ) 53
1
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where n is the number of size bins in the overlapping range of SMPS and OPC size distributions.
NZMPS g the number concentration measured by SMPS at size bin i corresponding to particle di-
ameter D and Ngip ¢ is the number concentration measured by OPC at diameter D. The overlapping
range varies with respect to the RI assumed. For assumed RlIs below 1.3, the overlapping range has

very few size bins. Subsequently, an algorithm is employed in order to find the ERI that minimizes

RMSE [66)].

3.2.1 OPC diameter recalculation for assumed Rls

Based on the assumptions mentioned earlier for the OPC,
Ssca 1s calculated for OPC size bins. S, is not monotonically increasing with particle size,

therefore it is fitted to the function

Sica = a D (3.4)

where D is particle diameter, and a,b derived fitted constants. This provides a good approx-
imation in the particle size range from 100 - 1200 nm (Figures A.34-A.39, Appendix). This ap-
proximation is from now on considered as the instrument primary measurement for each OPC size
bin.

In order to invert the OPC size bins particle size for any other RI, we calculate S, for a range
of diameters extending from 100 to 1200 nm. Then, we calculate the constants a,b in the Si.,
relation to diameter D for the new RI, according to equation 4. Subsequently, we find the particle

size diameters corresponding to the OPC primary measured S, .

3.3 Method Evaluation - Calibration Procedure

In order to evaluate the method for the ERI retrieval, a series of calibration experiments were made.
For this purpose, we generated test aerosol of known chemical composition.

Bulk materials were chosen from common chemical species found in the atmospheric aerosol or
used in instrument calibration, with RI values according to the literature: Ammonium Sulfate (RI =

1.53@580 nm wavelength) [88], Di-Ethyl-Hexyl-Sebacate (RI = 1.45@650 nm) [90] and Polystyrene
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Latex Spheres (PSL) with sizes of 262 and 490 nm (RI = 1.585@660 nm) [87]. Calculations of the
response function were performed and ERI was calculated for each chemical compound.
Based on the PSL experiment it was concluded that Ss., has to be corrected for a sizing error

in OPC NSD, within the ERI retrieval algorithm according to equation 5.

SSCU.
SSC(I*CO’I" - 15 (3»5)

The next step is to find a correction factor for aerosols with RI different from PSL spheres,
incorporating all experiments. The final ERI correction equation for the dependence on aerosol RI

follows:

RI = 1.7 exp((—(ERIcor — 2)/1.5)%) (3.6)

The calibration procedure, setup, and results in detail are presented as Appendix. Regression
analysis of the literature RI and ERI derived from the calibration procedure, yielded an overall
standard error (uncertainty) of + 0.1. The discrepancies between literature and calculated RI can
be attributed to the OPC measurement principal and subsequent signal treatment by the instrument,
which leads to a distortion of the particle size distribution for substances with Rls other than 1.6.

The DEM station is a background station and the overlapping range of SMPS and OPC is in ac-
cumulation mode, therefore ERI-oR is expected to frequently correspond to aged, internally mixed
aerosol. Nevertheless, occasionally, particles might have variable Rls, even if they are measured in
the same optical size range (externally mixed). The measurement error is expected to be higher in

this situation.

3.4 Major findings

After fitting the SMPS and the OPC size distributions obtained at DEM station during HygrA-CD
campaign, we acquire the optimal solution ERI, as depicted in Figure 3.1. The correction of equation
6 has not yet been applied.

We observe that the original SMPS - OPC size distributions are quite different in these 4 cases,

leading to large differences in ERI retrieved.
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Figure 3.1: SMPS - OPC fit examples for various ERI values. Red circles and line denote the
measured SMPS size distribution (SD) combined with the fitted Grim 107 size distribution, while
the black circles and line represents the Grim 107 measured SD. The Grim 107 SD is moved to the
right at ERI = 1.6, as it should, in order to compensate for the sizing error in relation to the SMPS

observed at the PSL calibration experiment.

In Figure A.40 (see Appendix), the same size distributions are depicted but in a smaller diameter
range and therefore differences in number concentration between the size distributions are more
profound. From both Firures (1 and A.40), the adjustment of the size distributions is very good.

We have to keep in mind that the ERI is not the actual RI of the aerosol measured by SMPS and
OPC, but rather a number describing the optimal solution of a fitting procedure between the size
distributions of the two instruments. Aerosol RI could be variable even within each size bin measured
by the OPC. We expect it to be closely related to an average overall RI of the size distribution, but
the relation might depend on factors like aerosol mixing state and the presence of more than one
modes in the overlapping range. The transfer functions of the two instruments and subsequent data
treatment, also lead to discrepancies in the size distributions measured. This optimal solution in
Figure 3.1 includes the correction for the sizing error of the OPC.

In order to correct for the relation of ERI to RI, as observed in the calibration experiments, we
apply equation 6 and acquire ERIcogr. An overview of ERIcogr during HygrA-CD campaign is
presented in Figure 3.2. The histogram of the measured values (276 3hr intervals) indicates that

most of the values are in the range between 1.62 and 1.68.
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Figure 3.2: FRIcog histogram evolution of the 3hr mean values during the whole period of HygrA-
CD campaign. Blue boxes denote the number of ERIcogr occurrences in each size bin, while the

cyan line denotes the best fit of the histogram using Gaussian distributions.

3.4.1 FERIcor comparison to aerosol mass constituents

According to [1], soil dust constituted 12% of PMs 5 mass (6% annual average Sahara dust and 6%
local soil dust) during 2013 at the DEM station. In order to investigate if the presence of dust can be
identified in the range of values of the FRI-o g dataset during the Hygra campaign, we calculated the
Single Scattering Albedo Exponent agga at 450-625 nm wavelength. We accomplished that using
absorption and scattering coeffient data obtained from the AE33 and the Ecotech Nephelometer
measurements respectively.

In Figure 3.3 we observe that a Sahara dust episode is indicated on the 27th to 30th of May
2014 by SKIRON model [40]. When coarse particles are present (during Sahara dust events), agsa
becomes clearly negative with values usually falling between -0.1 and -0.5, according to [16]. We
observe in Figure 3.3 that when agga is below -0.1, ERIcog increases. This could be attributed to
dust constituents with high RI.

In order to evaluate the EFRIcop variability against aerosol components and various aerosol
types, 24hr averages of ERIcor and EC/OC were obtained at the time intervals corresponding to
XRF measurements. In Figure 3.4, the OC values were adjusted for carbon and hydrogen weights
by multiplying with a mass correction factor of 1.4 [27].

In Figure 3.4, when the Sulfur to Organic Carbon ratio increases, FRIcog increases, as sulfuric
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Figure 3.3: ERIcor (blue) in comparison to Single Scattering Albedo exponent (assa, green)
derived from DEM station instrument measurements. The SKIRON Sahara dust model output
(pg/m?) at 400 m above ground level (agl) is also depicted (red). Circles are actual data points,

while lines are interpolation.Data are taken from 26 to 31 May 2014.
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Figure 3.4: ERIcor 24hr averages in comparison to Sulfur per Organic Carbon mass ratio of aerosols
up to 2.5 um (aerodynamic diameter) during HygrA-CD campaign.The red line depicts the linear fit
for the data points. The color corresponds to EC concentration measured (darker color corresponds

to higher concentration). Linear fit R? equals to 0.32.
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compounds have almost the same RI compared to organic compounds, but most organic compounds
emission sources are associated with Elemental Carbon, the major absorbing species. The linear fit
R? is low, which indicates that other components (EC, dust content), also play an importand role
in determining ERIcor values.

In order to compare ERIcor to aerosol composition, mineral dust (or soil dust) was estimated

based on XRF measurements and average crust composition [65], as

Mineral Dust = 1.35 Na + 1.66 Mg+ 1.89A4l +2.14 Si 4+ 1.21 K +1.40 Ca + 1.67 Ti+

1.43 Fe (3.7)

Some corrections were however applied to this formula to take into account sea-salt contributions
to Na and M g, and possible anthropogenic contributions to the other elements. The sea salt fractions
of Na and Mg were calculated using the measured Cl concentration and the Na/Cl and Mg/Cl
ratios 0.56 and 0.07, respectively. Due to possible C1 losses in aerosol samples, this approach may

overestimate the non-sea salt component of Na (nssy,) and Mg (nssag).

3.4.2 RI;c acquired by Ion Chromatography, EC/OC and dust measure-

ments

A filter sampler was deployed at the National Technical University of Athens (NTUA) (37.97° N,
23.79° E, 212 m a.s.l.), approximately 3.3 km from DEM station. Ion Chromatography was used
in order to separate anions and kations of the aerosol collected. The model ISORROPIA (IT) [21]
was applied to the results and the water content of the aerosol species was calculated. The RH and
temperature used were the average values recorded at DEM station SMPS and OPC inlet line, over
the corresponding time intervals. Based on the assumption that during daytime, the air masses over
the AMA are well mixed, we also used the EC/OC measured at DEM station. Dust derived at the
DEM station was also used, but we have to keep in mind that it is derived from filter samples with
24hr duration. Two samples were excluded, as at the time of measurement there was strong mixing

in the vertical, bringing aerosol from higher layers (probably dust), leading to very high ERIcor

73



Table 3.1: Physical constants of species used in refractive index and density calculations from [27]

and [42].
Species Density (g cm™2) | Refractive index
(NHy)z SO4 1.76 1.53
NaNOs 2.26 1.59
Organic Carbon 1.40 1.55
Elemental Carbon 2.00 1.96 — 0.66 i
Mineral dust 1.99 159 — 7x107% i

values, not corresponding to 24hr averages of dust concentration (Figures A.41, A.42, Appendix).

The density and refractive index data for the mass constituents calculated are presented in Table
3.1.

According to [42], the imaginary part strongly decreases with increasing particle size, reflecting
the fact that the highly absorbing components (hematite and soot) are predominantly found in the
small particle range. Therefore, at the size range that ERIcog is calculated (approximately 260-550
nm electrical mobility diameter), we expect significant absorption. This is attributed not only to the
dust absorption, but also to the fact that during Sahara dust events in HygrA-CD campaign, the
Planetary Boundary Layer Height (PBLH) reduces significantly according to [6], leading to higher
concentrations of pollutants, including EC. Despite all that, the ERIcor values increase during
dust events (see Figure 3.3), as it appears that the effect of constituents with high real part of RI
like dolomite (RI = 1.62), calcite (RI = 1.6), chloritoid (RI = 1.73), hematite (3.05 - 0.3 i) and
ilmenite (2.4 - 0.3 i) is significant [42].

The aerosol density was computed from the chemical analysis data following [28] using Equation

_ X
pt= Z 7 (3.8)
i K2

where X; is the mass fraction for species i and p; is the individual species density (gem™3).
Refractive index can be computed by different mixing rules, 2 of which are partial molar refraction

[83] and volume-weighted method [28].
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Figure 3.5: FRIcog averages in comparison to RIr¢ derived from IC, EC/OC and XRF measure-
ments during HygrA-CD campaign. The red line depicts the linear fit for the data points. The size

of the markers corresponds to dust mass fraction, while the color corresponds to EC mass fraction.

The volume-weighted method was used (Equation 9) to calculate mean refractive index (m =

my — kz)

m:pzi:Xi::T’i—pzi:)ifii (3.9)

where m,. is the real part of a complex refractive index for species i and k; is the imaginary part.
The only absorbing species included were EC and Dust. The imaginary part of the refractive index
was not calculated, as it could not be compared to ERIcoR.

In Figure 3.5, ERIcor and RI;c seem to have a standard offset during these hours (around
0.05-0.1). ERIcor and RIrc are well correlated (R2 = 0.88 for a linear fit). We also observe
that when the dust mass fraction is high, ERIcog is high. The uncertainty of RI;c depends on
the uncertainty of the XRF, EC/OC and IC measurements. Reported uncertainties range between
less than 10% (IC) and up to 20% (XRF), [56, 70, 57]. Therefore, an overall uncertainty of =+

0.15 could be considered suitable for RIjo, given that most of the particulate mass comes form IC

measurements. ERIcor averages in comparison to RIj¢ are also presented in table A.9 (Appendix).
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3.4.3 Lidar inversion algorithm description to acquire aerosol RI;; and

comparison to ERIcor

The 6-wavelength Raman lidar system (EOLE) was operated at National Technical University of
Athens (NTUA) (37.97° N, 23.79° E, 212 m a.s.l.), during selected daytime/nighttime slots (37 days
and nights out of 39), to provide the vertical profiles of the aerosol backscatter coefficient (byer) (at
355, 532 and 1064 nm) and aerosol extinction coefficient (aqer) (at 355 and 532 nm), the lidar ratio
(S = ager/baer) (at 355 and 532 nm), and the aerosol Angstrém exponent AF-related to backscatter
and extinction coefficients. During nighttime the vertical profiles of bye, Gger, S, and AFE-related to
extinction and backscatter coefficients are retrieved with 10-20%, 10-15%, 10% and 25% uncertainty,
respectively [44].

During daytime, using as input a constant S value (constrained by the mean Aerosol Optical
Depth (AOD) value obtained from a nearby sunphotometer), we retrieve only the b, and the
AE-related to backscatter coefficient values with an average uncertainty (due to both statistical and
systematic errors) of 20-30% and 25%, respectively [44]. Moreover, EOLE provided the water vapor
mixing ratio profiles from 0.5 to 6-7 km height, during nighttime, with a statistical error less than
8% at heights up to 2 km and 10-15% from 2.5 to 6 km [53].

Although full overlap of EOLE occurs at 600-700 m above ground level, an experimental method
has been applied [102] to derive the overlap correction vertical profile down to about 400 m. The
real part of RI (RIpr) has been retrieved from multi-wavelength Raman lidar data, without the use
of any a priori assumption. The inversion algorithm is based on the minimum discrepancy criterion
and is implemented with the use of regularization techniques [96].

Aerosol backscatter coefficient at 355, 532, and 1064 nm and extinction coefficient at 355 and
532 nm have been used in order to obtain the refractive index with an uncertainty of 0.1. The
particle extinction coefficient stabilises the solution and decreases the discrepancy of the retrieval.
In addition, base functions are used to stabilise the inverted quantity (e.g. the particle refractive
index). From the mathematically correct solution space, only the physically meaningful subspace is
accepted [62]. In this study, only solutions with a discrepancy lower than 1% have been considered

and the aerosol radius range has been restricted from 0.03 to 10 pum.
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Figure 3.6: FRIcogr to RIp; values. The red line depicts the linear fit for the data points. The

color corresponds to RH measured between 1 to 1.2 km a.g.l. (darker blue means higher RH value).

In Figure 3.6 the ERIcoRr versus the RIp; for six coinciding OPC-SMPS and lidar measurements
is shown. We observe that ERIcor and RIp; are reasonably correlated (R2 = 0.6 for a linear
fit). The RH during the lidar measurements in Figure 3.6 ranged from 40 to 65%, increasing the
discrepancy between FRIcor and RI;;. We observe that the RH has little effect on the correlation
of ERIcor and RIp; for the measurements presented in Figure 3.6. We may thus conclude that
the main mechanism that influences the FRIcor and RIp; correlation is the state of mixing in
the vertical. Hygroscopicity data were not availiabe for all measurements shown in Figure 3.6 and
could not be included. FRIcogr averages in comparison to RIy; are also presented in table A.10

(Appendix).
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Chapter 4

Comparison of in situ and remote
sensing aerosol measurements in

the Athens Metropolitan Area

In the summer of 2014 in situ and remote sensing instruments were deployed in Athens, in order to
study the concentration, physical properties, and chemical composition of aerosols and their contri-
bution to cloud formation. We also aimed to find the atmospheric conditions that allow the direct
comparison of collocating in situ and remote sensing stations measurements and demonstrate the
mixing of regional and local aerosol in the vertical. On selected days that displayed significant
turbulence up to approximately 1,000 m above ground level (agl), we acquired the aerosol extinc-
tion or scattering coefficient by in situ instruments using three methods. In the first method the
aerosol extinction coefficient was acquired by adding a Nephelometer scattering coefficient in ambi-
ent conditions and an Aethalometer absorption coefficient. The correlation between the in situ and
remote sensing instruments was good (coefficient of determination R? equal to 0.74). In the sec-
ond method we acquired the aerosol refractive index by fitting dry Nephelometer and Aethalometer
measurements with Mie code calculations of the scattering and absorption coeflicients for the size

distribution up to 1,000 nm obtained by in situ instruments. The correlation in this case was rea-

78



sonably good (R? equal to 0.62). Our next step was to compare the extinction coefficient acquired
by remote sensing instruments to the scattering coefficient calculated by Mie code using the size
distribution up to 1,000 nm and ERIcoRr, which is the real part of the equivalent refractive index
acquired by the comparison of the size distributions obtained by a Scanning Mobility Particle Sizer
(SMPS) and an Optical Particle Counter (OPC). The agreement between the in situ and remote
sensing instruments in this case was not good (R? equal to 0.45). The last comparison for the
selected days was between the aerosol extinction Angstrém exponent acquired by in situ and remote
sensing instruments. The correlation was not good (R? equal to 0.4), probably due to differences
in the number size distributions present in the air volumes measured by in situ and remote sensing
instruments. Nevertheless, if turbulent conditions prevail in the atmosphere, extending from ground
level up to the height at which the lidar measurements take place, good agreement between the
extinction coefficients of in situ and remote sensing instruments can be achieved, as indicated by the
first two methods mentioned earlier. Furthermore, we also present a day that a Saharan dust event
occurred in Athens. At first, the Saharan dust layer was evident in lidar measurements at a height
of 2,000 m agl. Due to the high turbulence in the atmosphere, in the afternoon the Saharan dust
layer gradually descended to ground level and it was detected by in situ instruments. The origin of
air masses from North Africa reaching Athens was also depicted by FLEXPART air mass transport
model 3-hourly plots. Thus, we obtained an insight on how regional aerosol is added to local aerosol,

especially during pollution events due to long range transport.

4.1 Materials and Methods

The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD),
organized in the Athens Metropolitan Area (AMA), Greece, from 15 May to 22 June 2014, provided
an extended record of data on aerosols and their role in cloud formation [71]. The major sampling
site of the campaign was the Demokritos station (DEM, purple marker, Figure 4.1), member of
the GAW and ACTRIS Networks (37.995° N 23.816° E, at 270 m above sea level (asl)). The
DEM monitoring site belongs to the National Centre of Scientific Research “Demokritos”, which is

situated on the foot of Mount Hymettus, about 8 km to the north from downtown Athens, in a pine
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Figure 4.1: Experimental sites over Attica (Greece) during the HygrA-CD campaign. The altitudes

of the stations are given in parenthesis (in meters above sea level: asl).

forest. It is representative of the atmospheric aerosol at suburban areas of the Athens Metropolitan
Area. The station is frequently influenced by katabatic winds [20], during which, air masses from
Mount Hymettus (peak height 1,024 meters) are brought over the station. Also, the lowering of
nocturnal boundary layer height (NBLH) is occasionally resulting in an increase in particle number
concentration, even in the absence of aerosol particle sources.

The instruments that were in operation at DEM station during the campaign included:

1. a Scanning Mobility Particle Sizer (SMPS) to acquire the particle size distribution of atmo-
spheric aerosol in the size range from 10 to 550 nm (electrical mobility diameter) comprised of
a TSI Model 3080L electrostatic classifier (TSI Inc., Shoreview, MN, USA) and a condensa-
tion particle counter (CPC; TSI Model 3772, TSI Inc., Shoreview, MN, USA). The instrument
provides a full size distribution in the above mentioned range every 5 minutes. The SMPS has
been calibrated against a reference SMPS system at the WCCAP (World Calibration Centre
for Aerosol Physics) in 2013 and participated in an intercomparison workshop in 2016 at the
WCCAP, exhibiting a counting accuracy within 10% for the size range 30-550 nm against a
reference system under controlled laboratory conditions [106]. The instrument is calibrated at

DEM station with PSL spheres that have an electrical mobility diameter of 200 nm.

2. an Optical Particle Counter (OPC) (Grimm 107@660 nm laser light wavelength) to acquire the
particle size distribution in the size range of 250 nm to 2.5 pm optical diameter. The OPC in a
similar intercomparison at the WCCAP exhibited a counting accuracy within 10% for the size

range 250 nm to 1 pm. This instrument acquires a full size distribution every 1 minute. The
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instrument uses laser light of 660 nm, opening angles detected are 29.5°-150.5° and 81°-99°
[14]. After its manufacture, the instrument follows an electronic adjustment of 1 ym channel
with 1 gm monodisperse polystyrene latex spheres (PSL) (Duke Scientific, NIST traceable, m
= 1.59, according to ISO 21501-1) [80, 26]. Then, the unit is calibrated to a reference Grimm
OPC, using dolomite aerosols (i.e. different refractive index and a full size distribution). The
particle number concentration in each size bin of the unit is adjusted to the one measured
by the reference instrument. The adjustment is performed by changing the detection limits
thresholds for each size bin [51, 80, 26]. The reference Grimm OPC is checked and certified
with monodisperse Latex aerosol [26]. The OPC number size distribution acquired by the
instrument was adjusted based on a calibration measurement with PSL spheres of 262 and 490

nm ([99], see Appendix, Figures A30 - A32).

. an AE33 dual spot Aethalometer in order to acquire the equivalent black carbon concentration
(eBC) at seven wavelengths (370, 470, 520, 590, 660, 880, 950 nm). This instrument completes
an eBC measurement for all wavelengths every 1 minute and operated after a PMs 5 inlet. The
aerosol absorption coefficient was acquired using a multiple scattering correction factor due
to filter fibers (Cp) equal to 3.5 in order to correct for multiple scattering by the filter fibers
and the scattering of the aerosols embedded in the filter [41]. The instrument participated in
an intercomparison workshop in 2017 at the WCCAP, exhibiting an equivalent Black Carbon
(eBC) counting accuracy within 4% against a reference system (MAAP) under controlled

laboratory conditions.

. an Ecotech 3-wavelength Nephelometer to acquire the aerosol scattering and backscattering
coefficient at 450, 525 and 635 nm. The instrument operated after a PM;g inlet and completes
a measurement for all wavelengths every 1 minute [69]. The instrument participated in an
intercomparison workshop in 2016 at the WCCAP, exhibiting counting accuracy at 450 and 635
nm wavelength within 6% against a reference system (Aurora4000) under controlled laboratory

conditions.

. a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) in order to acquire the hygro-

scopicity of aerosol particles. The instrument consists of two Differential Mobility Analyzers
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(DMAs) for sizing particles in the fine aerosol range, a humidification system, and an Ultrafine
Condensation Particle Counter [86]. Aerosol particles were initially dried and passed through
a bipolar charger before entering the first DMA (DMA-1). The monodisperse aerosol flow
downstream DMA-1 was then exposed to elevated RH conditions inside the humidifier. The
second DMA (DMA-2), which was also operated with a sheath flow of elevated RH, and the
UCPC were used for measuring the size distribution of the particles downstream the humidifier

[9].

6. A pulsed Doppler scanning lidar system (StreamLine Wind Pro model, HALO Photonics) at
1.5 pm was deployed at the DEM site by the Finnish Meteorological Institute (FMI). The
system was operated in the vertical azimuth display (VAD) mode and the 3-beam Doppler
beam swinging (DBS) mode. It mainly provided the vertical profiles of the radial wind and
2-3D wind fields, as well as the atmospheric turbulent properties (e.g. turbulent dissipation
rate, €) [67]. The wind velocity is provided with accuracy better than 0.1 and 0.5 ms~?! for
VAD and DBS mode, respectively. The range resolution of the measurements is 30 m, and
the temporal resolution is 14 seconds and 15 min for DBS and VAD modes, respectively; the
maximum range achieved is 2-3 km (or even 10 km height, under the presence of clouds)

depending on the atmospheric aerosol load [71].

7. An accredited according to EN14902 high-resolution energy dispersive X-Ray fluorescence
spectrometer Epsilon 5 by PANanalytical (XRF). Epsilon 5 is constructed with optimized
Cartesian-geometrical design for lower background and with extended K line excitation 100
kV X-ray capability. The spectrometer provides selection of 8 secondary targets (Al, CaFy,
Fe, Ge, Zr, Mo, Al2Os, LaBg), that can polarize the X ray beam. All measurements were

performed under vacuum [19].

The second campaign site was located at the National Technical University of Athens (NTUA,
blue marker, Figure 4.1, 37.97° N, 23.79° E, 212 m asl), about 5 km to the north from downtown

Athens. The instruments that were in operation at NTUA station during the campaign included:

1. The 6-wavelength Raman lidar system (EOLE) which operated during selected daytime/nighttime

slots (37 days and nights out of 39), to provide the vertical profiles of the aerosol backscatter
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coefficient (bger) (at 355, 532 and 1064 nm) and aerosol extinction coefficient (aqer) (at 355 and
532 nm), the lidar ratio (S = Gger/baer) (at 355 and 532 nm), and the aerosol Angstrom ex-
ponent (AF)-related to backscatter and extinction coefficients. During nighttime the vertical
profiles of byer, ager, S, and AFE-related to extinction and backscatter coeflicients are retrieved
with 10 - 20%, 10 - 15%, 10% and 25% uncertainty, respectively [44]. During daytime, using
as input a constant S value (constrained by the mean Aerosol Optical Depth (AOD) value
obtained from a nearby sun-photometer), we retrieve only the b,e, and the AFE-related to
backscatter coefficient values with an average uncertainty (due to both statistical and system-
atic errors) of 20 - 30% and 25%, respectively [44]. Moreover, EOLE provided the water vapor
mixing ratio profiles from 0.5 to 6-7 km height, during nighttime, with a statistical error less
than 8% at heights up to 2 km and 10 - 15% from 2.5 to 6 km [53]. The measurements of
extinction and backscatter coefficient above the height of 1200 m above sea level (asl) were con-
sidered meaningfull and the average from 1200 m asl to 1300 m asl was used for the comparison

to the in situ instruments.

. A microwave radiometer (RPG-HATPRO model, RPG Radiometer Physics), operated at
NTUA, was used to detect the microwave radiation emitted by the atmosphere at several
channels (22.2 - 31.4 GHz and 51.3 - 59 GHz) to provide temperature and Absolute Humidity
(AH) and RH vertical profiles [47]. The root-mean-square (rms) accuracy of temperature was
0.6 K near the surface, increasing to 1.5 - 2.0 K in the middle troposphere [17, 49]. The rms
of absolute humidity was 0.4 gm 3. The integrated water vapour (IWV) and the liquid water

path (LWP) retrievals had accuracies of 0.3 - 1.0 kgm~! and 20 - 30 gm ™2 , respectively [50].

For in situ instruments, inlet aerosol flows are dried to RH below 40%, while particle losses due

to diffusion in the pipe lines are calculated and corrected for SMPS. Other losses are not corrected

for the OPC and the SMPS, as their inlet line is vertical and therefore losses in the size range 0.2

to 1 um (aerodynamic diameter) are not significant.

Radiosondes were also launched from the HNMS or the NKUA (Figure 4.1). The radiosonde

(RS92-SGP model, Vaisala Oyj) equipped with a GPS receiver, temperature, humidity, and pressure

sensors, was used to measure the vertical profiles (with a height uncertainty of 20 m) of temperature
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(uncertainty 0.3 - 0.4 °C), RH (uncertainty 4%), pressure (uncertainty 0.5 - 1 hPa for pressures >
100 hPa) and wind speed and direction (uncertainties of 0.15 ms~! and 2°, respectively) according

to [64] and [95, 94]. .

4.1.1 Choice of dry aerosol particle number size distribution extent

The aerosol dry size distribution used is obtained during the procedure in order to acquire the Equiv-
alent Refractive Index (ERIcogr) optimal solution by fitting the SMPS and OPC size distributions
in the overlapping range [99]. Since the OPC number size distribution was corrected based on cali-
bration measurements with PSL spheres of 262 and 490 nm (see Appendix, Figures A30 - A32), we
used the combined size distribution up to the size of 1,000 nm (corresponds to dry electrical mobility
diameter). After this size, we cannot be sure that ERIcor corresponds to the aerosol particle’s
refractive index. Also, according to [29], the OPC counting accuracy is within 10% of the ideal
100% for sizes from 0.3 to 1 pm (electrical mobility diameter). The sizing accuracy decreases from
around 0.8 pym up to approximately 2 pm. The obtained combined size distribution up to 1,000
nm from the SMPS and OPC (considered to correspond to electrical mobility diameter) is used
from now on as the aerosol size distribution whose optical properties are compared to the EOLE
lidar measurements. The counting accuracy of the SMPS in the size range 30 - 550 nm is 10%,
therefore we expect the error in the size distribution produced by the combination and adjustment
of SMPS and OPC measurements to be within an uncertainty of 10%. Furthermore, we expect the

uncertainty of all comparisons presented in this work to be within 20%.

4.1.2 RIagss_nppy optimal solution algorithm

The Root Mean Square Error (RMSE) of the difference between the aerosol scattering and absorption
coefficients measured by the Nephelometer (Scatngpy) and AE33 (Absagss), and the scattering
(Scatysp) and absorption (Absysp) calculated using Mie theory for the combined size distribution

of SMSP and OPC up to 1,000 nm (NSD) is produced according to equation 1:

0.5
RMSE = ([ScatNEpH — SCCLtNSD]2 + [AbSAEgg — AbSNSD]z) (4.1)
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The RIAg33—nEpm optimal solution is obtained when we acquire the minimum RMSE in a fiting
procedure where the aerosol refractive index is the independent variable. The resulting complex
refractive index may be used to calculate the absorption and scattering coefficients at specific angles

(i.e. backscattering), keeping in mind that we refer to spherical particles, as we use Mie code.

4.1.3 Truncation error correction and calculation of the scattering coef-

ficient for ambient conditions

The Nephelometer measurements are corrected for truncation errors following [63], while the scatter-
ing Angstrom exponent is used to adjust the scattering coefficient to 660 nm. In order to calculate
the ambient scattering coefficient so as to compare to EOLE lidar extinction coefficient, the aerosol
hygroscopic exponent  was used [24]. The ambient RH is computed using the microwave radiometer

measurements. The ambient aerosol scattering coeflicient oscat amp, at RHgmp is determined as

100 — RHyyy )7 42)

Oscat,amb = Oscat,dry (
’ 2\ 100 — RH gmp

4.1.4 Refractive index in ambient conditions

The aerosol ERIcor and RIagss— neppr were adjusted to ambient conditions, using the hygroscop-
icity k acquired by the HTDMA measurements for a dry particle electrical mobility diameter equal

to 250 nm. The aerosol density was computed following [28] using Equation 3:

X,

-1 7

p = — 4.3
= (43)

where X; is the mass fraction for species i and p; is the individual species density (gem™3).
Species 1 refers to the dry aerosol size distribution up to 1,000 nm with a refractive index equal
to ERIcor or RIAogss_nppr and a density equal to 1.48 gem ™3 [25]. Species 2 refers to water.
Refractive index can be computed by different mixing rules, 2 of which are partial molar refraction
[83] and volume-weighted method [28].

The volume-weighted method was used (Equation 4) to calculate mean refractive index (m =

my — k’z)
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where m,. is the real part of a complex refractive index for species i and k; is the imaginary part.

4.1.5 Flexible Particle Dispersion Model (FLEXPART)

The Flexible Particle Dispersion Model (FLEXPART') was used to find the possible aerosol source
areas of the measured atmospheric volume. To do this, FLEXPART simulates the backward trajec-
tories of a large number of air parcels and estimates their residence time over each geographic grid
cell (sensitivity) [85, 84]. These residence times indicate how sensitive the measurements at a station
are to emissions occurring at each geographic grid cell. FLEXPART runs account for grid scale wind
as well as for turbulent and mesoscale wind fluctuations. Drift correction, to prevent accumulation
of the released computational particles, and density correction, to account for the decrease of air
density with height, were both applied. Seven-day backward runs with the release of 4 x 10* air
parcels every 3 hours beginning from DEM station were produced. Residence times in each grid cell,

for a height from 0 to 100 m agl, were acquired.

4.1.6 Aerosol mineral dust concentration estimation based on XRF mea-

surements

The estimation is based on XRF measurements and following [65]:

Mineral Dust = 1.35 Na +1.66 Mg+ 1.89Al +2.14 Si+1.21 K +1.40 Ca+1.67 T+ 1.43 Fe
(4.5)
Some corrections were however applied to take into account sea-salt contributions to Na and
Mg, and possible anthropogenic contributions to the other elements. The sea salt fractions of Na
and M g were calculated using the measured CI concentration and the Na/Cl and M g/CI ratios 0.56
and 0.07, respectively. Due to possible C1 losses in aerosol samples, this approach may overestimate

the non-sea salt component of Na (nssyq) and Mg (nssarg).
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Figure 4.2: Comparison of the dry scattering coefficient ocq¢,qry Obtained by Mie code calculation
using ERIcog, for sizes up to 1,000 nm (electrical mobility diameter), and the dry scattering
coefficient obtained by Ecotech Nephelometer adjusted to 660 nm wavelength, corresponding to OPC.
The color of the marker corresponds to the absorption coefficient measured by AE33, normalized
between 0 and 100. The minimum value of the AE33 absorption depicted is 0.3 Mm ™! and the
maximum value is 16 Mm ™. The area of each marker corresponds to ERIcor, normalized between
0 and 100. The maximum value of ERIcor depicted is 1.7 and the minimum is 1.43. The red line
depicts the relation of SD — ERIcor — Miesecarter = 1.07 * Nephggo-13 Mm ™1, which is the best

linear fit obtained, with a coefficient of determination (R?) equal to 0.72.
4.2 Results and Discussion

4.2.1 Comparison of Nephelometer to ERI calculated total scattering co-

efficient

In Figure 4.2 we present the comparison of the scattering coefficient measured by Ecotech Neph-
elometer (adjusted to 660 nm wavelength, Nephggo) to the scattering coefficient (SD — ERIcor —
Miegeqtter) Obtained by the application of Mie code on the unified aerosol size distribution (SD) of
the instruments SMPS and OPC acquired in the process of defining ERIcor [99]. The refractive
index used was ERIcog. If we apply a linear fit, SD — ERIcor — Mieseqtter €quals 1.07 * Nephggo-
13 Mm~! with a coefficient of determination (R?) equal to 0.72. SD — ERIcor — Mieseatter values
are almost the same to those of the dry Nephelometer scattering coefficient, and there is a reason-

ably good agreement between the two quantities. This is an indication that the portion of the size
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distribution up to 1,000 nm can be used in order to compare optical properties of aerosols from
in situ and remote sensing instruments. Keeping in mind the uncertainties in the size distribution
measurements of SMPS, OPC and the uncertainty of ERIcogr, we expect the uncertainty in the
estimation of SD— ERIcor — Mieseqtter to be within 20%. In Figure 4.2, SD— ERIcor — Mieseqtter
values below the red fitting line correspond to lower ERIcog values and higher absorption coefficient
values measured by AE33 (AE33,ps—660) as indicated by the color and area of the markers. Higher
ERIcog values and low AE33.ps_¢60 values correspond to very high SD — ERIcor — Miescatter

values, in relation to the red line.

4.2.2 Comparison of EOLE lidar to Nephelometer and Aethalometer to-

tal ambient extinction coefficient

In order to compare in situ and remote sensing instruments, we calculated the average EOLE ex-
tinction coefficients at 355 and 532 nm for a height from 1,200 m asl to 1,300 m asl for days selected
based on dissipation rate . For these days € exhibited values higher than 10~ for a height extending
from 15 to 1,000 m agl. The comparison days included the 215 of May 20:00 to 21:00, 22"¢ of May
20:30 to 21:30, 23" of May 20:30 to 21:30, 7" of June 22:00 to 23:00 and 10" of June 18:45 to 19:45.
Then, we deduced the EOLE extinction Angstrém exponent and calculated the EOLE extinction
coefficient at the wavelength of 660 nm. The in situ ambient scattering coefficient was calculated
using the Nephelometer measurements, equation 2 and a « factor equal to 0.57, corresponding to
polluted marine aerosol [24]. We consider this v factor suitable for the selected days that display
high turbulence in the atmosphere, as the AMA has in general a high impact from anthropogenic
activities (vehicle emissions, cooking, shipping) and it is also frequently under the influence of the
sea breeze [25]. We assumed that the absorption coefficient, measured by the AE33, did not change
due to hygroscopic growth of particles. This assumption is plausible, as the scattering is the dom-
inant part of the extinction (the minimum single scattering albedo for the selected days is 0.94).
We excluded days that we identified dust in the SD during the HygrA-CD campaign, by calculating
the single scattering albedo exponent assa using Nephelometer and Aethalometer data and the

origin of airmasses calculated by FLEXPART (included in Appendix, Figures A.62-A.66). During
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Figure 4.3: Comparison of the ambient extinction coefficient from Nephelometer and Aethalometer
for ambient conditions, and the extinction coefficient obtained by EOLE for a height up to 1,300
m asl (DEM station is at 270 m asl). Both scattering coefficients were adjusted to the wavelength
of 660 nm. The size of the marker corresponds to the growth factor measured by the HTDMA
(range: 1.004-1.21) and the color of the markers corresponds to the average € value for a height
extending from 15 to 1,000 m agl (range: 8 x 107% - 2.5 x 1071). The red line depicts the relation
of NEPH — AETHpx1—wET—660 = 1.21 * FOLERx1_660+13.8 Mm™!, which is the best linear

fit obtained, with a coefficient of determination (R?) equal to 0.74.

Saharan dust events, agsa becomes clearly negative with values usually falling between -0.1 and
-0.5, according to [16].

We observe in Figure 4.3 that there is good agreement between the extinction coefficient from
in situ instruments to the EOLE lidar extinction coefficient for selected days that exhibit tur-
bulence to heights above 1,000 m agl. The vertical distribution plots of the e values for these
selected days are presented as Appendix (Figures A46 - A50, depicting 21-23 of May, 7 and 10
of June). NEPH — AETHgx1-weT—660 and EOLEgxT_g60 are well correlated (R? equal to
0.74 for the linear fit NEPH — AETHpxt_wEeT—660 = 1.21 * EOLERxT_660+13.8 Mm™1). The
RH during the lidar measurements in Figures A51 - A55 (Appendix) at a height of 1000 m agl
ranged from 55% to 75%. We observe that the growth factor has little effect on the correlation of
NEPH — AETHgxT_-wET—660 and EOLEgx1_ggo for the measurements presented in Figure 4.3.

The data point with the highest e value is at the center of the variance, indicating that the main
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Table 4.1: EOLEgxT_660 and NEPH — AETHg x1_wET—660 values for the selected days.

) EOLEgxT-660, NEPH — AETHExT-W ET—660,
Date, Time (UTC)

Mm™! Mm™!
21°% of May 2014,
52.2 68.6
20:00-21:00
22" of May 2014,
79.8 122
20:30-21:30
237 of May 2014,
73.8 80.2
20:30-21:30
7t of June 2014,
38.5 72
22:00-23:00
10" of June 2014,
90.5 132.9

18:45-19:45

mechanism that influences the NEPH — AETHgexT_wET—660 and FOLEgxT_geo correlation is
the state of mixing in the vertical, while the growth factor impact appears to be insignificant. The
backscatter EOLE lidar measurements at the wavelength of 1064 nm are presented as Appendix
(Figures A56 - A60). These vertical distribution plots indicate that the aerosol concentration during
the comparison hours is almost uniform from ground level up to approximately 1,000 m agl, prob-
ably due to high turbulence in the atmosphere. The extinction values for the EOLFEgx1_¢60 and

NEPH — AETHg x7_wET—660 are also presented in Table 4.1:

4.2.3 Comparison of EOLE lidar and RI4p33_ngpn calculated extinction
coefficients

In Figure 4.4 there is good agreement between NEPH—-AETHR; _px1—wET—660 and EOLE g xT_660

(R2 is equal to 062, NEPH — AETHleEXTfl/VETfGGO = 0.64 * EOLEEXT,(;G()—F?.G Mm_l) for

selected days that exhibit turbulence to heights up to 1,000 m agl. We have to keep in mind that

during the deduction of RIsgss— nEpm the size distribution (SD) up to 1,000 nm dry diameter was
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Figure 4.4: Comparison of the ambient extinction coeflicient obtained by Mie code calculation using
RIApss_nEpg retrieved from Nephelometer and Aethalometer for ambient conditions, for sizes up
to 1,000 nm, and the extinction coefficient obtained from EOLE for a height up to 1,300 m asl.
Both extinction coefficients were adjusted to the wavelength of 660 nm. The size of the marker
corresponds to the growth factor measured by the HTDMA (range: 1.004-1.21) and the color of the
markers corresponds to the average e value for a height extending from 15 to 1,000 m agl (range:
8 x 107% - 2.5 x 10’1). The red line depicts the relation of NEPH — AETHR_gxT—WET—660
= 0.64 * EOLEgx7T_¢60+7.6 Mm~" which is the best linear fit obtained, with a coefficient of

determination (R?) equal to 0.62.
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Table 4.2: EOLEgxT_6¢60 and NEPH — AETHR;_px1T—wET—660 values for the selected days.

) EOLEgxt—660, NEPH — AETHRI_ EXT-WET-660,
Date, Time (UTC)

Mm™! Mm™!
21°% of May 2014,
52.2 39
20:00-21:00
22" of May 2014,
79.8 75.8
20:30-21:30
237 of May 2014,
73.8 42.9
20:30-21:30
7" of June 2014,
38.5 34.6
22:00-23:00
10" of June 2014,
90.5 61.6

18:45-19:45

used, leading to possible errors related to larger sizes of particles that were not included. We observe
that the growth factor has little effect on the correlation of NEPH — AETHR; _gpxT-wET—660 and
FEOLEgxT_660 for the measurements presented in Figure 4.4. The data point with the highest
€ value is at the center of the variance, indicating that the main mechanism that influences the
NEPH — AETHR;_gxT-wEeET—660 and FEOLEgx1_g60 correlation is the state of mixing in the
vertical, while the growth factor impact appears to be insignificant. The extinction values for the

EOLEgx71_660 and NEPH — AETHR;_px7T-wET—660 are also presented in Table 4.2:

4.2.4 Comparison of EOLE lidar extinction coefficient to FRI-or calcu-
lated ambient scattering coefficient

In Figure 5 we observe that there is reasonable agreement between the FRIcor calculated ambient

scattering coefficient to the EOLE lidar extinction coefficient for selected days that exhibit turbulence

to heights above 1,000 m agl (R? is equal to 0.45). We have to keep in mind that the absorption

coefficient cannot be calculated, as ERIcogr corresponds to the real part of the aerosol refractive
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Figure 4.5: Comparison of the ambient scattering coefficient obtained by Mie code calculation using
ERIcog for ambient conditions, for sizes up to 1,000 nm, and the extinction coefficient obtained
from EOLE. Both coefficients were adjusted to the wavelength of 660 nm. The size of the marker
corresponds to the growth factor measured by the HTDMA (range: 1.004-1.21) and the color of the
markers corresponds to the average € value for a height extending from 15 to 1,000 m agl (range:
8 x107* - 2.5 x 1071). The red line depicts the relation of ERI7oraL-_sc-wEeT—660 = 0.84 *

EOLFEgx7_gs0+1.5 Mm~! which is the best linear fit obtained, with a coefficient of determination

(R?) equal to 0.45.
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Table 4.3: EOLEgxT_¢60 and ERIToT AL —sc—wET—e660 values for the selected days.

) EOLEgxT-660, ERITOTAL-SC—WET-660,
Date, Time (UTC)

Mm™! Mm™!
21°% of May 2014,
52.2 27
20:00-21:00
22" of May 2014,
79.8 98.6
20:30-21:30
237 of May 2014,
73.8 58.8
20:30-21:30
7t of June 2014,
38.5 43
22:00-23:00
10*" of June 2014,
90.5 62.2

18:45-19:45

index. There is also the problem with the use of the SD up to 1,000 nm mentioned in section
3.3. Neither growth factor or ¢ appear to have a significant impact on the correlation between
ERItorar—sc—wer—e60 and EOLEgx1_gs0- Nevertheless, as indicated in Figure 6, FRIcoR,
which is calculated based on the size distributions of SMPS and OPC, provides a useful insight
into the optical properties of aerosols in the atmosphere not only at ground level but also at higher
altitudes.

The extinction values for the FOLFEE x1_¢60 and the scattering values for ERITorAL—sC—W ET—660

are also presented in Table 4.3:

4.2.5 Comparison of EOLE lidar to Nephelometer and Aethalometer ex-

tinction Angstrém exponent

In Figure 6 we compare the extinction Angstrém exponent from EOLE lidar and in situ measure-
ments. The comparison is not good, as the R? is equal to 0.4. We have to keep in mind that the

EOLE extinction Angstrém exponent is calculated based on measurements at 355, 532 nm, while the
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Figure 4.6: Comparison of the Angstrém exponent obtained from EOLE for the height 1,200 m
to 1,300 m asl to the one acquired by in situ Nephelometer-Aethalometer measurements. The
size of the marker corresponds to the growth factor measured by the HTDMA (range: 1.004-1.21)
and the color of the markers corresponds to the average e value for a height extending from 15
to 1,000 m agl (range: 8 x 107* - 2.5 x 1071). The red line depicts the relation of NEPH —
AETH g xr_w BT — Angstrom = 125 * EOLEgxp_ gngstrom-0-86, which is the best linear fit obtained,

with a coefficient of determination (R?) equal to 0.4.

in situ extinction Angstrém exponent is calculated based on 470, 660 nm wavelength. These differ-
ences in the extinction Angstrém exponent indicate that the size distribution at ground level and at a
height between 1,200 and 1,300 m asl are different, even though we adjusted the in situ size distribu-
tion up to 1,000 nm considering its hygroscopic growth. The Angstrém exponent discrepancies may
be attributed to particles with aerodynamic diameter larger than 10 ym that could be present in the
atmosphere but not sampled by the in situ instruments due to their PM;q inlet heads. We observe
that the growth factor has little effect on the correlation of NEPH — AETH g xr_w pr— Angstrom
and EOLEpyp_ gngstrom for the measurements presented in Figure 6. The data point with the
highest € value is at the center of the variance, indicating that the main mechanism that influences
the NEPH — AETHgx7_wET—660 and EOLEgxT_geo correlation is the state of mixing in the
vertical.

The values for the EOLEEXT—Angstram and NEPH — AETHEXT_WET_Angsmjm are also pre-

sented in Table 4.4:
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Table 4.4: EOLEgx1_jngstrom @a0d NEPH — AETH gy _w pr— Angstrom vValues for the selected

days.

EOLFEgxT NEPH — AETHpxT-wET
Date, Time (UTC)

Angstrém Angstrém
21°% of May 2014,
0.98 0.48
20:00-21:00
22" of May 2014,
0.28 -0.58
20:30-21:30
237 of May 2014,
1.09 -0.41
20:30-21:30
7th of June 2014,
1.37 0.92
22:00-23:00
10" of June 2014,
1.01 1.23

18:45-19:45

4.2.6 Mixing of local and regional aerosol on the 27" of May 2014

The PM, 5 concentration of mineral dust on a 24-h filter at DEM station on the 27" of May was
3.5 ugm=3. The estimation is based on XRF measurements and equation 4.5.

In Figure 4.7a (EOLE range-corrected signal (A.U.) at 1064 nm), a Saharan dust layer is present
above 1,500 m asl (06:00-09:00 UTC) and a local pollution layer is present at lower altitudes. At
12:00 UTC (due to turbulence in the atmosphere as indicated in Figure 4.8a), the two layers are
mixing. In the afternoon, a well mixed layer (local pollution and Saharan dust) is present up to
2,000 asl (Figure 4.7a). This is also indicated in Figure 4.7c, where the Angstrém exponent for the
averaged period 11:30-12:30 UTC and for the height between 1,800 and 2,500 m agl is below 1, while
for the averaged period 19:30-20:30 UTC the Saharan dust layer has descended to heights below
1,000 m asl, as the Angstrom exponent AE)_ 355 /532 is above 1 for all altitudes depicted. Figure 4.8a
displays the e values on the 27" of May. From 09:00 UTC until almost the end of the day, there is

turbulence in the atmosphere up to the height of 1,000 m agl. In Figure 4.8b, after 12:00, the aerosol
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scattering coefficient values measured at ground level (wavelength of 470 and 660 nm) are getting
very close to each other (Angstrém exponent is decreasing, an indication of Saharan dust, [16]) and
finally at 18:00, the Saharan dust layer is at ground level, as the scattering coefficient at 660 nm
is higher than that at 470 nm. Figure 4.8c demonstrates that air masses reaching DEM station
have a significant residence time in a height up to 100 m agl (very close to the ground) in North
Africa. As indicated by the residence time color plot, the air masses from North Africa are partly
lifted to altitudes higher than 100 m agl and subsequently they move downwards to DEM station,
depositing Saharan dust. Figure A61 (Appendix) presents a radiosonde measurement at 12:00 UTC.
It demonstrates a region of low RH, which is consistent with a Saharan dust layer, mainly between

1,000 and 2,000 m agl.
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(c) EOLE Angstrém exponent.
Figure 4.7: Subfigure a: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm
observed by EOLE, in arbitrary units (A.U.). Until 09:00 UTC a Saharan dust layer is present
above 1,500 m asl and a local pollution layer at ground level. At 12:00, due to strong turbulence
up to 1,000 m, the two layers are mixing. In the afternoon, a well mixed layer up to 2,000 asl has
developed. This is also demonstrated in subfigure ¢, where the Angstrém exponent at 11:30 to 12:30
indicates that a Saharan dust layer is present at 1,800 to 2,500 m asl (Angstrém below 1), but at
19:30 to 20:30 the Saharan dust layer is missing, indicating that it has descended to lower altitudes.
Subfigure b: EOLE backscatter lidar signals at 355, 532 and 1064 nm. Subfigure ¢: EOLE Angstrom

exponent.
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(c) Air mass origin from a height up to 100 m agl.
Figure 4.8: Subfigure (a) displays the € values during the 27¢" of May. From 09:00 UTC until almost
the end of the day, there is turbulence in the atmosphere up to the height of 1,000 m agl. Subfigure b:
After 12:00, the aerosol scattering coefficient values measured at ground level (470 and 660 nm) are
getting very close (Angstrém exponent is decreasing, an indication of Saharan dust) and finally at
18:00, the Saharan dust layer is at ground level dominating particle concentration, as the scattering
coefficient at 660 nm is higher than that at 470 nm. Subfigure (c) indicates that air masses with
significant residence time over North Africa from a height up to 100 m agl reach DEM station on

the 27" of May at 18:00-21:00.
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Chapter 5

Conclusions and perspectives

In the context of this Ph.D thesis in Chapter “Particle number size distribution statistics at City-
Centre Urban Background, Urban Background, and Remote stations in Greece during summer” the
particle number concentration in the Eastern Mediterranean during the Etesian flow, in City-Centre
Urban Background, Urban Background and Regional Background stations using high time resolution
instrumentation was studied. The peak concentration at the City-Centre Urban Background station
is approximately at 60 nm, while at the Urban and Regional Background stations is at approxi-
mately 100 nm. The highest particle number concentration values were observed at the City-Centre
Urban Background station (Patras-C). Also, the median particle number concentration for the size
fraction Nog_5p is higher than the corresponding concentration for the size fraction Nsg_19g, indi-
cating a domination of freshly emitted road traffic exhaust. This is not the case for the Regional
Background and the Urban Background stations, where the median particle number concentration
for the fraction Ngg_109 is higher than in the fraction Nog_50. As shown in Table 2.2, the Regional
Background station median concentrations for the size ranges Nig_20, Noo—50, N50—100, N100—200,
Nago—500, Niot, are the 5%, 16%, 45%, 63%, 99% and 36% of the respective median concentrations of
the City-Centre Urban Background station. The remainder percentages may be attributed to traffic,
cooking, condensational growth of locally produced particles, and other local activities. Compared
to the Urban Background stations, the Regional Background station median concentrations corre-

spond to the 17%, 55%, 97%, 91%, 79% and 77% of the respective mean of the Urban Background
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stations. The remainder percentages may be attributed to traffic (aged and fresh), cooking, other
local activities, condensational growth of locally produced particles and NPF.

By combining these estimations and diurnal variation of the size fractions in Figure 2.4, we
conclude that the fractions that are similar in number mean concentration and diurnal variation
at all station types are Nygg—200 and Nogg—s00- The median values of the fraction Nsg_1g9 at
the Regional Background station and the Urban Background stations have similar values but their
diurnal patterns are dissimilar. While at the Urban Background stations this fraction appears to be
related to traffic, there is no such relation at the Regional Background station. Assuming that these
fractions (N100—200, N200—500) measured at the Regional Background station constitute the regional
background concentration, we conclude that the transported part of the median particle number
concentrations for the City-Centre Urban Background station is 13%, for the Urban Background
stations 29%, and for the Regional Background station 45%. Other fractions should mainly be
attributed to NPF, freshly emitted traffic exhaust, aged traffic, cooking, and other local sources.
This estimation is based on empirically divided particle size fractions.

Based on the diurnal variations and previous studies, main sources for the City-Centre Urban
Background station that were identified are traffic (freshly emitted and aged, corresponding to size
fractions Nyg_20, Noog—50, Nso—100) and the regional background concentration estimated earlier.
Nigo—_200 has a much higher concentration at the City-Centre Urban Background station than at
the Urban Background and the Regional Background stations, but it is also stable throughout the
day, which indicates that the difference stems from the accumulation of particles in smaller size
fractions taking place at the City-Centre Urban Background station area. Sources for the Urban
Background stations include fresh traffic and nucleation (N19—20, Nag—50), aged traffic and cooking
(N50—100) and the regional background concentration estimated earlier. The Regional Background
station dominant sources are local aged sources (cooking and other sources related to tourism) and
regional background concentration.

When we compare the diurnal variation (Figure A.4, Appendix) of the three Urban Background
stations, we observe that DEM station has a higher background number concentration in the size

ranges N1g_20, Noo—50. We have to keep in mind that this station is relatively close to the center of
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Athens, and therefore it is probably influenced by fresh traffic related particles in a higher extend than
the two other stations. ICE-HT is influenced mainly by early morning traffic, probably transported
from Patras city center.

It should be noted that the Urban Background sites number fractions are very similar to the
K-Puszta station (representative of the Central-Eastern European regional conditions). This could
be partly attributed to the Etesians, as they transport aerosol and precursor gases from Eastern
and Central Europe. The long range transported aerosol (N1gg) at the Regional Background station
has higher values than the corresponding aerosol at Harwell station (a rural station representative
of large scale air masses affecting Southern England).

New Particle Formation events were identified at DEM station, where the newly formed particles
account for 4% of the total particle concentration in the size fraction N1g_s9 during the measurement
period, EPT, where they account for the 12%, and FIN, where they account for 1%, respectively.
NPF events contribution to summer Condensation Cloud Nuclei (CCN) and in other words climate
in South-Eastern Europe appears to be insignificant in this and previous studies mentioned earlier.
1 NPF event occurred the same day at EPT-FIN and 1 at EPT-DEM stations, indicating that
conditions favorable for nucleation at a large geographic area may exist, but events may or may not
occur, depending on local sources and sinks at each station.

The size distribution modal analysis results were subsequently divided in clusters. The daily
frequency of occurrence and particle number concentration for each cluster were identified. Based
on diurnal variation of frequency of occurrence and number concentration, we identified that at the
City-Centre Urban Background station the source that dominates is related to traffic (CCUB-SD-
Cluster3). At the Urban Background we can identify in UB-SD-Clusterl fresh traffic and NPF, in
UB-SD-Cluster2 the regional background concentration and the condensational growth of locally
produced particles, while in UB-SD-Cluster3 we identify the aged traffic with a broad ¢,. UB-
SD-Cluster4 is a mixture of fresh and aged traffic exhaust, but it also displays a peak at noon,
indicating similarities to the diurnal profile of moderately oxygenated organic aerosol (M-OOA)
identified at ICE-HT and DEM stations in earlier studies. At the Regional Background station,

number and frequency are dominated by the regional background concentration in accumulation
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mode, but there is also a frequent cluster related to aerosol from sources within Crete, like activities
related to tourism (cooking included). This is similar to the behavior of the size fractions Nog_5¢ and
N50_100 mentioned earlier for the Regional Background station. If we make the assumption that the
accumulation cluster identified at the Regional Background station corresponds to the transported
from other areas particle fraction, and use the median number concentration from each cluster,
we conclude that 18% of the particle number distribution is transported at the City-Centre Urban
Background site, 37% at the Urban Background sites, and 59% at the Regional Background site.

After we cluster the modal analysis results for ICE-HT, DEM, EPT, and make the same assump-
tion regarding the transported from other areas number concentration fraction, 45% of the particle
number distribution is transported at the ICE-HT, 22% at DEM, and 55% at EPT.

Based on the air mass origin clustering of the regional background concentration measured at
FIN, we concluded that the regional particle number concentrations when air masses originate from
the Mediterranean Sea is much lower than when they originate from the North-East and North-
West direction. Etesian flow conditions were found to increase the regional background particle
concentration in the Mediterranean basin by a factor of 2.5 to 4.

In order to have a better assessment of the NPF impact on Condensation Cloud Nuclei, further
work should include measurements with SMPS systems that can measure particles with sizes below
10 nm.

In Chapter “Development of a new method to retrieve the real part of the Equivalent Refractive
Index of atmospheric aerosol” a new method in order to acquire the real part of the aerosol Refractive
Index was proposed. As indicated in Figure 3.3, the ERIcog is influenced strongly by dust light
scattering and absorption, in the size range that ERIcog is defined (accumulation mode). During
Sahara dust events, FRIcogr values approach values as high as 1.7.

As the sulfur per organic carbon ratio increases, FRIcopR increases, but the correlation is weak.
Their relation could not be easily attributed to these two constituents alone, as high dust mass
fraction values could influence ERIcoR, as we see in Figure 3.4.

FERIcor overestimates RI in relation to RI;o. Nevertheless, correlation between the estimated

values from the two methods is very good. Higher dust mass fraction leads to higher ERIcoR.
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FERIcor relation to RIp; is more complex. RIp; values were obtained at a height between 1
to 1.2 km. There was good mixing in the vertical during chosen days, therefore a good correlation
between ERIcor and RIp; is expected (Figures A.41-A.45, Appendix). There is also the RH
difference problem between the station measurements and those made by the lidar, that increases
the discrepancies. Nevertheless, the main difference should be attributed to the state of mixing in
the vertical, as indicated in Figure 3.6.

Overall, the SMPS-OPC system is considered a valuable method so as to estimate real part of
RI for ambient aerosol. This is supported by the chemical composition RI (RI;¢) and RIp; when
there is good mixing in the atmosphere. Considering that many stations have long series of SMPS
and OPC data, deriving ERIcog could provide valuable information on aerosol properties.

Further work on the subject should include acquiring detailed aerosol composition of PMI,
in order to estimate RI in a size range corresponding to ERIcogr. The imaginary part of the
ERIcor should be estimated along with the real part, based on SMPS, OPC, EC/OC, and AE33
measurements. A model to estimate the imaginary part and the real part of RI could be derived,
based on the measurements from the above mentioned instruments.

In Chapter “Comparison of in situ and remote sensing aerosol measurements in the Athens
Metropolitan Area” the main aim, in addition to reporting the aerosol measurements conducted, is
to find the atmospheric conditions that allow the direct comparison of in situ and remote sensing
measurements. This is a very important point as it will allow collocating in situ and remote sensing
aerosol measurement stations to combine their measurements, so as to investigate the vertical mixing
of aerosols and acquire a profile of aerosol properties extending from ground level to several km above
ground level (agl). Thus, we will obtain an insight on how regional aerosol is added to local aerosol,
especially during pollution events due to long range transport (Saharan dust, Biomass Burning,
etc.).

Within the systematic uncertainties associated with each instrument described, comparison be-
tween in situ and remote sensing instruments is possible for collocating in situ and remote sensing
stations, even when the sampled volume is not the same (in situ measurements take place at ground

level, while lidar measurement volume is at a height of several hundred meters agl). The main
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condition for this comparison to be valid is the existence of high turbulence in the atmosphere up to
a height of at least 800 m agl. There are of course discrepancies associated with the in situ instru-
ments inlets (aerosol particles with aerodynamic diameter above 10 pm are not sampled), but there
is also high uncertainty in the measurement of particles with optical diameter above 1 ym measured
by OPCs. Errors in the measurement of RH in the atmosphere and hygroscopicity x applied to all
particle sizes (estimated based on a dry particle size of 250 nm electrical mobility diameter), could
lead to erroneous hygroscopic growth factors and therefore distorted size distributions on which Mie
code is applied in order to obtain in situ optical properties.

In Figure 4.2 we observe that there is good agreement between dry Nephelometer scattering
coefficient and ERIcopr calculated scattering coefficient for the size distribution acquired by SMPS
and OPC up to a size of 1,000 nm (electrical mobility diameter). This indicated that this size
distribution fraction is a good choice so as to calculate, using Mie code, the optical properties of the
aerosol volume sampled by in situ instruments.

In Figure 4.3 the Nephelometer and Aethalometer calculated total ambient extinction coefficient
is compared to EOLE extinction coefficient. Good agreement is observed between the two quantities,
indicating that Nephelometer and Aethalometer can provide aerosol optical properties representative
of the MH volume.

In Figure 4.4 we present the comparison of EOLE lidar to RIsgss_nvepm calculated extinction
coefficient. RIapss_ngpy is the refractive index acquired by fitting the Mie code solution for the
combined size distribution of SMPS and OPC up to 1,000 nm to the Nephelometer and Aethalometer
scattering and absorption coefficients. The obtained refractive index is then adjusted to ambient
conditions. The results indicate good agreement between in situ and remote sensing instruments.

In Figure 4.5 we compared the EOLE lidar extinction coefficient to ERIcogr calculated ambient
scattering coefficient. The results were not in good agreement, but we have to keep in mind that
ERIcog corresponds to the real part of the refractive index and we can not calculate the absorption
coefficient. Still, we have a useful result for days with high turbulence in the atmosphere, even for
higher altitudes.

In Figure 4.6, the Nephelometer and Aethalometer calculated extinction Angstrém exponent is
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compared to the one calculated for EOLE lidar. The agreement is not good and this probably displays
that the size distributions measured by in situ and remote sensing instruments have differences that
lead to different Angstréom exponents. This could be partly attributed to particles with aerodynamic
diameter larger than 10 um present in the atmosphere but not sampled by the in situ instruments
due to their PMig inlet heads. We should also keep in mind that the uncertainty in the EOLE
extinction Angstrom exponent measurement is 25%.

The mixing of local and regional aerosol is presented in Figures 4.7 and 4.8, demonstrating the
results that can be obtained by the synergy of in situ and remote sensing instruments. A Saharan
dust layer, observed by EOLE lidar at an altitude of 2,000 m agl, reaches the ground level due to
high turbulence in the atmosphere and dominates the aerosol measured at DEM station as indicated
by Figure 4.8b. Thus, we obtained an insight on how regional aerosol is added to local aerosol,
especially during pollution events due to long range transport.

Further work on the subject should include the comparison of high altitude in situ station mea-
surements to remote sensing instrument measurements placed at a lower altitude (all instruments
measuring the same air volume). We will compare the extinction and backscattering coefficients
acquired by remote sensing instruments to the extinction and scattering coefficients acquired by
in situ instruments. We will also compare the shape factor acquired by in situ instruments to the
polarization acquired by lidar measurements. Thus we will be able to study in more detail aerosol
physico-chemical properties, aerosol-cloud interactions, cloud micro-physics, Condensation Cloud

Nuclei formation and the impact of aerosols and clouds on climate change.
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Appendix A

A.1 Appendix of the chapter “Particle number size distri-
bution statistics at City-Centre Urban Background, Ur-
ban Background, and Remote stations in Greece during

summer”’

Overview of concentration levels and size distributions

DEM station in Athens and ICE-HT in Patras have the main peak at 100 nm. However, in the
case of DEM station (Figure A.1), at the 84!" percentile, an increase in the number concentration of
N<15 mode particles (see Table 4) was observed, indicating that new particle formation may occur.
As DEM station is situated in a pine tree area, biogenic aerosol is probably contributing significantly
to the size distribution (oxidation of hydrocarbons emitted by vegetation, like terpenes). The size
distribution at EPT station demonstrates an elongated shape, indicating multiple mixed sources.
Apart from the well-aged accumulation mode, an Aitken mode (Azp_go) was observed as well. The

station is a typical Urban Background station, strongly affected by road traffic exhaust.
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Figure A.1: Overview of Particle Size Distribution statistics for each size bin: geometric mean (G, ),
the 16" and 84'" percentiles of the measured concentrations. The area below the lower end of the
6th

error bars corresponds to the 16" percentile, while the area below the higher end of the error bars

corresponds to the 84" percentile.
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Figure A.2: Diurnal variation (UTC) for City-Centre Urban Background (green), Urban Background
(black), and Regional Background (blue) stations. The error bars correspond to one tenth of the

standard deviation.

124



14000 [~ T T T T 50000~
12000
40000
10000
<. 8000 s, 30000
S 8
5 S5
Z 6000 % 20000
4000
10000
2000 u
Jun10 Jun15 Jun20 Jun25 Jun30 Julos JuHO Jun10 Jun15 Jun20 Jun25 Jun30 Julo5  Jul10
(a) N1o—20 (b) N20-50
20000~
15000
o ' =
& 5 10000 g
z =
5000

0 0
Jun10 Jun15 Jun20 Jun25 Jun30 Jul05 Jul10 Jun10 Jun15 Jun20 Jun25 Jun30 Julo5 Jul10

(¢) Nso—100 (d) N1oo—200

70000~
60000
50000

40000

©

tot

cm”

N200t0500

30000

20000

10000

0 0
Jun10 Jun15 Jun20 Jun25 Jun30 Juldo5 Jul10 Jun10 Jun15 Jun20 Jun25 Jun30 Jul05 Jul10
(e) N200—500 (f) Niot
Figure A.3: Time-series (UTC) for City-Centre Urban Background (green), Urban Background

(black), and Regional Background (blue) stations.

125



2000

1500

10to20

cm™

z 1000

500

Immﬁ

e »"

ﬂ“ﬁ

} % EH%E

f .
HH#%&I i %Efl - E

N ”ﬁf

00:00

06:00 12:00 18:00

(a) N1o—20

800

700

N200t0500
cm?
)
o
o

! ﬁ il
il Iﬁmﬁm}m %ﬁ;

Ayt

Figure A.4: Diurnal variation (UTC) for ICE-HT (green), EPT (black), and DEM (blue) stations.

06:00 12:00 18:00

(e) N2go-500

N201050

N1 00t0200

s

z

3500

3000

2500

© 2000

?

1500

1000 ]

i }
Hﬁﬂﬁﬁéﬁ V} E .

00:00 06:00 12:00 18:00

5000
4500
4000
3500

= 3000

G
2500

?

2000
1500
1000

(b) N2o-50

¥ L FigeEs N
Hz# I m@ fz{;m STt
XXXXXTYX XYY X XXX

XTIXIEXX IR XT XLy TS,

320F5
= 5,

oy m T

FTETe
B el T rga

00:00 06:00 12:00 18:00

14000
12000 |
10000 11 H ﬁ
E 8000 ﬁ ﬁ} Iﬁ IEE
6000

4000

(d) N1oo—200

T ¢ F
Eﬁ;mi Lt %?ﬁ %IEHI ¥

,,,fizﬂ"g S XIIIILI
Eifl Lﬁ = EIL e im@q‘

IIMIII Iii

ond

00:00 06:00 12:00 18:00

The error bars correspond to one tenth of the standard deviation.

126

(f) Ntot



40000

35000
30000
25000

@

‘20000
o

1Ut020

15000

10000

5000 lﬂ !
0 AL

Jun10 Jun15 Jun20 Jun25 Jun30 JulO:

lJuAs
5 Jul10

(a) N1o—20

10000

8000

0
Jun10 Jun15 Jun20 Jun25 Jun30 Juld5 Jul10

(c) Ns0-100

N200t0500

0
Jun10 Jun15 Jun20 Jun25 Jun30 Juldo5 Jul10

(e) N2go—500

100000

80000

20000

6000

5000 -

4000 -

N 10010200
m
w
=
s
=]

(b) N2g—50

0
Jun10 Jun15 Jun20 Jun25 Jun30 Julo5 Jul10

140000

120000

100000

80000

?

£

Ntot

o
60000
40000

20000

(d) N1oo—200

(f) Ntot

Figure A.5: Time-series (UTC) for ICE-HT (green), EPT (black), and DEM (blue) stations.

127



10 (a) Patras
0.8 -
0.6 -
0.4
0.2
20|
1.8
E16-|
214 M-O0A
=12
£10
8
1.0
§0.8_4'_,_,_|—'—|_.—._\_,—\_.—|_|_‘_|_‘——,_
806 b-O0A
$04
So2 Lo
] HOA-2 .
1.2 BC Fos
0s] Fos"e
00 ] B
06 108
04 HOA-1 = Lo
02 06
F04
00— T : : : :
0 2 4 6 10 12 14 16 18 20 22 24
Time of the Day
(a) ICE-HT
40~ (b Athens
3.0
2.0 |
1.0
o 28]
E 24
2 j
g 2.0—7 M-O0A
£ 16
2
[
g
5 304 BC 1.0
2 20 HOA-2 — 0.9
& 20 o038
= 1 o7
10 o6
0.0 0590
5 10 2
- B 2
i HOA-1 C F09 &
3 o8 @
2| o7
g Fos
ot+———T T T T : : : :
0 2 4 6 10 12 14 16 18 20 22 24

Time of the Day

(b) DEM

Figure A.6: Diurnal cycles of the PMF factors (a) in ICE-HT and (b) in DEM. [45]

128



dN/dlogdp, p/cc dN/dlogdp, p/cc
10° - 10°
400 400
300 300
200 200
£ 125 £ 125
£ £
o o
° 70 ° 70 .‘
40 40 "‘
25 i 25
151 . s - : 15 .

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(a) DEM, 4" of June

dN/dlogdp, p/cc
10°

400

300

200

125

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(c) EPT, 14" of June

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(b) DEM, 6" of June

dN/dlogdp, p/cc

10°
400
300

200

125

M‘ "'LW

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(d) 18" of June

Figure A.7: Summer 2012, exemplary NPF events used in order to develop an algorithm for the

detection of NPF at all stations, time is GMT.

New Particle Formation (NPF) Events

129



dN/dlogdp, p/cc
; 0°

1

400
300

200

£ 125
3

;m“ M i

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(a) 4t" of June

400§
300 {1
200

£ 125
3

40

25
15 ! \ { J 102
03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT
(c) 12t of June

E
c
o

9

dN/dlogdp, p/cc
10°

400
300

200

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(b) 6t* of June

dN/dlogdp, %/cc

400
300

200

£ 125

3

=" 70
40

25

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(d) 14*" of June

400
300

200

125

70

40

25

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of day, GMT

(e) 27" of July

Figure A.8: Summer 2012, DEM, time is GMT. Contour plots of the particle number concentration

(color bar), particle size (y-axis) and time (x-axis) at DEM. On the above Figures we observe

nucleation events, where particles

grow from 13 nm to approximately 70 nm.

Statistics and phenomenology of size distribution at different

station types

Each mode identified by the size distribution modal analysis algorithm was classified according to its

geometric mean diameter (dg) in a structure consisting of two submodes corresponding to the Nucle-
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(c) 12t of June (d) 14" of June

(e) 27" of July

Figure A.9: Summer 2012, DEM, time is GMT. Origin of air masses for nucleation events identified.

The centroid of residence time plume is also displayed (black dots).
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Figure A.10: Summer 2012, EPT, time is GMT. Contour plots of the particle number concentration

(color bar), particle size (y-axis) and time (x-axis) at EPT. We observe nucleation events, where

particles grow from a size of 10 nm to approximately 70 nm.
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(c) 27" of June (d) 18tk of July

Figure A.11: Summer 2012, EPT, time is GMT. Origin of air masses for nucleation events identified.

The centroid of residence time plume is also displayed (black dots).
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Figure A.12: Summer 2012, FIN, time is GMT. Contour plots of the particle number concentration

(color bar), particle size (y-axis) and time (x-axis). We observe nucleation events, where particles

grow from a size of 10 nm to approximately 70 nm.
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(c) 29" of June (d) 19" of July

(e) 315t of July

Figure A.13: Summer 2012, FIN, time is GMT. Origin of air masses for nucleation events identified.

The centroid of residence time plume is also displayed (black dots).
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ation mode (N<15, N15_30), two submodes corresponding to the Aitken mode (Aso—g0, Aso—90) and
two submodes corresponding to the Accumulation mode (Cgg—120, Cs120). This finer classification
was carried out in order to distinguish the aerosol sources more precisely. The nomenclature of this
work is provided in Table 2.4.

The dataset acquired by modal analysis and subsequent classification in six submodes, was
separated in 2-hour intervals, in order to obtain the diurnal variation of modes for the whole period

of the campaign. The results are displayed in Figures A.14 to A.22.

City-Centre Urban Background station (Patras-C)

Figure A.14 and Figure A.15 (Appendix) display the number concentration and frequency spider
plots for the City-Centre Urban Background station. Nj5_3¢ has a maximum concentration from
14:00 to 16:00 UTC, which corresponds to M-OOA source diurnal profile identified by [45].

A3p_go mode exhibits peaks corresponding to traffic rush hours for both frequency and number
concentration (06:00 to 10:00 and 18:00 to 20:00 UTC). Agyp—go mode is not as frequent as Azo_go,
and its maximum lies in the time period from 20:00 to 22:00 UTC. This mode is probably the result
of the A3p_go mode particle growth. Cs 199 has a maximum of particle number in the interval 14:00
to 16:00, and it’s number concentration throughout the day lays between 2 x 103-3 x 103 particles

per cm ™3,

Fresh ship emissions display a peak at 35 nm, according to [36], thus we expect this
source to mainly contribute to Aitken mode as well.

Overall, the Aitken modes (Azg—_go and Ago—go) dominate the particle number concentration and
correspond to HOA-1 and HOA-2 sources mentioned earlier, while modes Cgg_120 and Cs129 are
stable throughout the day. N.15 mode is infrequent, as the particles emitted at street-level are lost
by the time they reach the urban background stations due to polydisperse coagulation, diffusion and
dry deposition. They also have grown out of the nucleation mode due to condensational growth.
[13] report that a mode was identified at Barcelona, Madrid and Brisbane, where the traffic related
20-40 nm peak shifted towards the nucleation mode and that might indicate particle evaporation.

Therefore, there are a few cases where traffic combustion exhaust particles could reduce in size

towards nucleation mode particles.
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(a) Ni5—30 (green), Aszp—go (red) modes (b) Aso—90 (blue), Coo—120 (green),

Cs120 (red) modes

Figure A.14: Summer 2012 diurnal variation spider plots for the City-Centre Urban Background
station. Submodes (whose characteristics and sources are described in detail in Table 4) are classified
in 2-hour intervals in order to acquire the diurnal variation for the average number concentration.
The hour displayed on the axes corresponds to the start of the two hour interval (UTC), while
smaller numbers (in size) correspond to the average number concentration depending on the hour

of the day, for all modes in thousands of particles per cm?.

0
14:00 50 % °10:00
12:00

(a) N15—30 (green), Azo—e0 (red) modes (b) Aeo—go (blue), Cgp—120 (green),
C>120 (red) modes

Figure A.15: Summer 2012 spider plots for the City-Centre Urban Background station. Submodes
are classified in 2-hour intervals in order to acquire the diurnal variation for the frequency of occur-
rence. The hour displayed on the axes corresponds to the start of the 2-hour interval (GMT), while

smaller numbers (in size) 100, 75, 50 correspond to frequency of occurrence.
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(a) N<15 mode (blue), Ni5_30 (green), Aso—e0 (b) Aeo—g0 (blue), Cgp—_120 (green), Csi20
(red) modes (red) modes

Figure A.16: Summer 2012 diurnal variation spider plots for Urban Background stations. Submodes
(whose characteristics and sources are described in detail in Table 4) are classified in 2-hour intervals
in order to acquire the diurnal variation for the average number concentration. The hour displayed
on the axes corresponds to the start of the 2-hour interval (UTC), while smaller numbers (in size)
correspond to the average number concentration depending on the hour of the day, for all modes in

thousands of particles per em?.

Urban Background stations (ICE-HT, DEM and EPT)

At the Urban Background stations, Csi199 and Cgg_120 modes are almost constant in frequency
and particle number concentration throughout the day (Figures A.16, A.17-Appendix). Agg_go and
A3p_go have three peaks in number concentration, two corresponding to the diurnal profile of sources
HOA-1 and HOA-2, and one corresponding to M-OOA. N15_3¢ has a maximum frequency from 08:00
to 10:00 UTC and 20:00 to 22:00 UTC. Its highest concentration values are observed from 10:00 to
12:00 UTC. N5 has the most complex pattern, with 3 maxima in number and frequency: 04:00 to
06:00, 10:00 to 12:00, and 20:00 to 22:00 UTC. N.15 peak at 04:00 to 06:00 UTC may be attributed
to early morning traffic. N.15 and Ny5_30 peaks at noon may be attributed to new particle formation
and subsequent growth.

We conclude that the Urban Background stations size distributions, are influenced by both
primary emissions and secondary aerosol.

In Tables A.1-A.3 (Appendix), we present the most frequent mode combinations for each Urban
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(a) N<15 mode (blue), Ni5_30 (green), Aso—e0 (b) Aeo—g0 (blue), Cgp—_120 (green), Csi20
(red) modes (red) modes

Figure A.17: Summer 2012 spider plots for UB stations. Submodes are classified in 2-hour intervals
in order to acquire the diurnal variation for the frequency of occurrence for N.15 to Cs 129 modes.
The hour displayed on the axes corresponds to the start of the 2-hour interval (GMT), while the

smaller numbers (in size) 50, 38, 25 correspond to frequency of occurrence.

Background station (ICE-HT, DEM, EPT).
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(ICE-HT)

At ICE-HT (Figure A.18), Cs 120 has a high frequency of occurrence at night, but very low number
concentration. Cgp_190 has a high frequency of occurrence at daytime and high particle number
concentration from 06:00 to 08:00 GMT. Agp_go has a high frequency of occurrence from 00:00 to
02:00 GMT, but its highest number concentration values are observed from 06:00 to 08:00 GMT.
Asp_go has high frequency and high number concentrations from 06:00 to 08:00 GMT and 18:00 to
20:00 GMT. Nj5_30 has a maximum frequency from 12:00 to 14:00 GMT, and high concentration
values from 10:00 to 12:00 GMT. N5 has a maximum in particle concentration from 06:00 to
08:00 GMT, and from 16:00 to 22:00 GMT. Its maximum frequency is observed from 16:00 to 18:00
GMT. Overall, the station’s particle number concentration has a maximum in the morning hours
(06:00-08:00 GMT), which can be attributed to morning traffic from Patras city, and a maximum
in the evening (18:00-20:00 GMT'), which can be attributed to the lowering of the boundary layer,
while aerosol sources are still active. Also, aerosol removal processes effect (transport, coagulation)
is more apparent at night time, where Cs 159 mode dominates frequency. Table A.1 demonstrates the
most frequent mode combination. One may observe that Aitken and Accumulation modes contribute

almost equally to the most frequent mode combinations.
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Figure A.18: Summer 2012 spider plots for ICE-HT station. Sub-modes are classified in 2-hour

intervals in order to acquire the diurnal variation for the frequency of occurrence. Sub-figures a, b,

¢: the frequency of occurrence for N.15 to Cs129 modes. The hour displayed on the axes corresponds

to the start of the 2-hour interval (GMT), while the smaller numbers (in size) 50, 38, 25 correspond

to frequency of occurrence. Sub-figures d,e: the average number concentration depending on the

hour of the day, for all modes in thousands of particles per cm?.
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Table A.1:

ICE-HT most frequent mode combinations

Mode

Combination

ABO—GOC>120

Median

A30—60C90—120

Median

N15—30C90—120

Median

A60—90C>120

Median

CQO—120

Median

A60—90

Median

Ni5-30 0y

1.5

Nis_30 dg

24

Nis-30 N

0.9 x 103

Asg_60 0y

1.9

1.9

Aszo—¢60 dg

46

39

Aszo_60 N

1.6 x 10°

1.6 x 103

Ago—90 0y

1.9

1.9

A60—90 dg

71

7

A60—90 N

1.9 x 10®

4x10%

Coo-120 0y

1.6

1.7

1.7

Coo—120 dg

111

105

102

Coo-120 N

2.8 x 10°

3.3 x 10°

4 %103

C>120 Tg

1.6

1.5

C>120 dg

134

142

C>120 N

2.3 x 10°

1.4 x 10®

Frequency %

20

16

12

12
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(DEM)

At DEM (Figure A.19), local topography favors the development of katabatic winds, under certain
conditions of atmospheric stability. Katabatic winds may transport the well-aged particles to the
DEM station, leading to an increase in the particle number concentration. Also, the formation of the
shallow nocturnal boundary layer (NBL) has major effect on the number size distribution pattern,
by trapping aerosol particles within a layer of a few meters. At DEM, Cs159 and Cgg_129 modes
are almost constant in frequency and particle number concentration throughout the day. Agp_gg
and Asg_go have their highest number concentration values from 20:00 to 24:00 GMT. Ny5_3¢ has a
maximum frequency from 06:00 to 14:00 GMT and 20:00 to 22:00 GMT. Its highest concentration
values are observed from 12:00 to 14:00 and 20:00 to 22:00 GMT. N5 has the most complex
pattern, with 3 maximums in number and frequency: 04:00 to 06:00, 10:00 to 14:00, and 20:00 to
22:00 GMT. Peaks at nighttime are probably due to katabatic winds. One may observe that all
modes are influenced, as we see peaks in frequency and number at night for all modes. N5 peak at
04:00 to 06:00 GMT may be attributed to early morning traffic, brought to the station by sea-breeze
and anabatic wind. N_.15 and Ni5_30 peaks at noon may be attributed to new particle formation
and subsequent growth (Figure 5, subfigure 5b). Table A.2 demonstrates the most frequent mode
combinations: 4 out of 6 of the most frequent combinations are Nucleation mode — Accumulation

mode.
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(a) N<is mode (blue), Nis_30 (b) Nc<15 mode (blue), Nis_30 (c) Aeo—g0 (blue), Cgo—120 (green),

(green), Azp—eo (red) modes (green), Azp—eo (red) modes Cs120 (red) modes

(d)  Aeo—90 (blue), Cgo—120
(green), C>120 (red) modes

Figure A.19: Summer 2012 spider plots for DEM station. Submodes are classified in 2-hour intervals
in order to acquire the diurnal variation for the frequency of occurrence. On the left: the frequency
of occurrence for N5 to Cs120 modes. The hour displayed on the axes corresponds to the start of
the 2-hour interval (GMT), while the smaller numbers (in size) 50, 38, 25 correspond to frequency
of occurrence. On the right: the average number concentration depending on the hour of the day,

for all modes in thousands of particles per em?.
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(EPT)

At EPT (Figure A.20), Cs190 is almost constant in frequency and particle number concentration
throughout the day. Cgg_120, Ago_90 and Agzg_gp have their highest number concentration values
from 06:00 to 10:00 and 18:00 to 20:00 GMT. There is some resemblance for these modes to the
situation at ICE-HT. N_.15 mode indicates new particle formation at 06:00 to 12:00 GMT with
low frequency of occurrence. It might also be influenced by early morning traffic. Ni5_30 has a
maximum frequency and number concentration from 08:00 to 10:00 GMT and 20:00 to 22:00 GMT.
These particles may be attributed to the growth of N.15 mode particles and traffic in the morning,
while in the evening, the lowering of the boundary layer might enhance particle concentration, similar
to DEM station. Overall, the particle number concentration has a maximum in the morning (06:00
to 10:00) related to traffic and a peak in the evening, related to the boundary layer’s lowering.
Table A.3 (Appendix) demonstrates the most frequent mode combinations, which are a combi-

nation of Aitken mode — Accumulation mode.
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Table A.2: DEM most frequent mode combinations

Mode

Combination

N<15Cg0-120

Median

A307GOC>120

Median

Ni5-30C>120

Median

N15-30Co0-120

Median

N<15Cs120

Median

N<15A60790

Median

N<l5 Tg

2.5

2.9

1.8

N<15 dg

10

10

12

N<is N

4.5 x 10°

4.4 x 10°

4.1 x 10°

Nis5_30 0y

2.9

1.9

Ni5-30 dg

23

19

Nis—30 N

2.9 x 10°

2.8 x 10°

Azg_60 0y

2.4

Azo_60 dg

42

Aszo—e0 N

3.2 x 10°

AGO—QO Og

2.1

Ago—g0 dg

80

Ago—90 N

7.4 % 10°

Coo-120 0y

1.9

1.8

Coo-120 dg

106

107

Coo—120 N

4.8 x 10°

4.7 x 10°

C>120 Tg

1.7

1.7

1.8

C>12(J dg

141

132

128

Cs>120 N

2.8 x 10°

3.7 x 10°

4.3 x 10®

Frequency %

11

10

10

146




(a) N<15 mode (b) Nis5—30 (green), Aspo—_eo (red) (¢) Nc<is mode (blue), Nis_30

modes (green), Azp—eo (red) modes

(d) Aeo—g0o (blue), Copo—120 (e) Ago—90 (blue), Coo—120 (green),
(green), C>120 (red) modes Cs120 (red) modes

Figure A.20: Summer 2012 spider plots for EPT station. Submodes are classified in 2-hour intervals
in order to acquire the diurnal variation for the frequency of occurrence. Subfigures a, b, d: the
frequency of occurrence for N.j5 to Cs129 modes. The hour displayed on the axes corresponds to
the start of the 2-hour interval (GMT), while the smaller numbers (in size) 50, 38, 25 correspond to
frequency of occurrence. Subfigures c,e: the average number concentration depending on the hour

of the day, for all modes in thousands of particles per cm?.
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Table A.3: EPT most frequent mode combinations

Mode A30-60C>120 | Ni5-30A30-60C>120 | N15-30A60-90C>120 | N15-30C>120 | A60-90C>120 | As6o-90
Combination Median Median Median Median Median Median
Nis_s0 4 - 1.4 1.6 1.6 - -
Nis_30 dg - 21 23 26 - _
Nis—30 N - 0.9 x 10° 0.7 x 10° 1.3 x 10 - -
Azo_60 0y 1.9 1.5 - - _ _
Aszo_60 dyg 41 48 - - - -
Aso—eo N 1.8 x 10° 1.6 x 10° - - - .
Ago—90 04 - - 1.5 - 2.3 2.4
Ago—90 dg - - 69 - 68 7
Ago—go N - - 1.2 x 10 - 2 x 10° 3.7 % 10°
C>120 0y 1.6 1.7 1.5 1.9 1.5 -
Cs120 dg 175 158 197 140 208 -
Cs120 N 1.4 x 10° 1.8 x 10° 1x10? 1.8 x 10° 0.8 x 10° -
Frequency % 35 11 8 8 7 6

Regional Background station (FIN)

Nucleation events are infrequent during summer months at the Regional Background station [76].
We have identified 5 nucleation events during these days. The small Nucleation mode observed in
Figure A.21 (N.;5) could be mainly attributed to particles formed elsewhere and transported to the
station. The station is probably influenced by both katabatic and anabatic winds. At FIN (Figures
A.21, A.22-Appendix), Cs120, Coo—120, Aso—90, and Asg_go are almost constant in frequency and
particle number concentration throughout daytime. Ni5_30 and N5 are probably related to local
pollution events and transported aerosol from cities within Crete produced by combustion, cooking,
and activities related to tourism. Overall, the particle number concentration is dominated by Aitken

and Accumulation modes, which are almost stable throughout day and night.
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(a) N<15 mode (blue), N15_30 (green), Azo—60 (b) Aeo—90 (blue), Cgo—120 (green), Csi20
(red) modes (red) modes

Figure A.21: Summer 2012 diurnal variation spider plots for the Regional Background station.
Submodes (whose characteristics and sources are described in detail in Table 4) are classified in
2-hour intervals in order to acquire the diurnal variation for the average number concentration. The
hour displayed on the axes corresponds to the start of the 2-hour interval (UTC), while smaller
numbers (in size) correspond to the average number concentration depending on the hour of the

day, for all modes in thousands of particles per cm?.

20:00 % w2 04:00

(a) N<15 mode (blue), N15_30 (green), Azo—60 (b) Ago—g0 (blue), Cgo—120 (green), Csi20
(red) modes (red) modes

Figure A.22: Summer 2012 spider plots for FIN. Submodes are classified in 2-hour intervals in order
to acquire the diurnal variation for the frequency of occurrence. Numbers 1, 3, 5 correspond to

hours of day (GMT), while the smaller numbers 50, 38, 25 correspond to frequency of occurrence.
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Table A.4: ICE-HT station Clusters identified

Cluster oy dg N Cluster Frequency

Results Median | Median | Median Source %
ICE-HT-SD-Clusterl 3 13.6 1.8 x 10° Vehicle emissions 5
ICE-HT-SD-Cluster2 1.61 115.5 2.6 x 10°> | Condensational growth-Regional Background 80
ICE-HT-SD-Cluster3 1.93 68.2 2 x 10° Vehicle emmissions, aged 17
ICE-HT-SD-Cluster4 1.3 18.7 0.9 x 10° Vehicle emissions, growth 9
ICE-HT-SD-Clusterb 1.48 27 1x10° Vehicle emmissions, fresh 9

Cluster analysis of size distribution at different station types

ICE-HT station identified clusters

The HDBSCAN algorithm results presented in Table A.4 were the best fit for the dataset. In order

to acquire these results, a minimum cluster size of 69 data points was used.
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Figure A.23: ICE-HT diurnal frequency of occurrence (blue area, counts per hour) and median num-
ber concentration Nyedian (red line) for all identified clusters. The area around N, edian corresponds

to 25t" and 75" percentiles of the quantity.

In Figure A.23, the frequency of occurrence at each hour of the day is presented for each cluster.

ICE-HT-SD-Clusterl has a frequency of 5% and should mainly be attributed to local pollution
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events. As one may observe in Figure A.23, it has low frequency but high number concentration in
the morning and evening (local traffic), but high frequency at noon (growth of particles nucleated
at another location). It has a very large 0,4, indicating a very broad size distribution. ICE-HT-SD-
Cluster2 is very stable in frequency and particle number concentration throughout the day, as one
may observe in Figure A.23. This mode is the sum of the regional background concentration and
the coagulation of particles produced locally. ICE-HT-SD-Cluster3 has increased frequency at night,
but increased particle number concentration in the morning and the evening, which probably relates
it also to traffic exhaust occurring at the city highways and center, and subsequently transported to
ICE-HT. ICE-HT-SD-Cluster4 has increased frequency and number concentration in the middle of
the day, therefore it probably relates to M-OOA. It has a very small o, indicating a very narrow
size distribution. ICE-HT-SD-Cluster 5 has increased frequency and number concentration in the

evening. This cluster is mainly attributed to fresh vehicle emissions.
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Table A.5: DEM station Clusters identified

Cluster oy dg N Cluster Frequency

Results Median | Median | Median Source %
DEM-SD-Clusterl 1.36 532.6 0.8 x 10 | Condensational growth-long range transport 1.5
DEM-SD-Cluster2 3 20.2 4.2 x 10° Vehicle emmissions, fresh, nucleation 30
DEM-SD-Cluster3 1.58 227.5 3.1 x 10® | Condensational growth-long range transport 1
DEM-SD-Cluster4 1.58 17.8 2.3 x 10° Nucleation, Vehicle emissions 44
DEM-SD-Clusterb 1.8 115.5 4.2 x 10° | Condensational growth-regional background 83

DEM station identified clusters

The HDBSCAN algorithm results presented in Table A.5 were the best fit for the dataset. In order

to acquire these results, a minimum cluster size of 44 data points was used.
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Figure A.24: DEM diurnal frequency of occurrence (blue area, counts per hour) and median number

concentration Nypeqian (red line) for all identified clusters. The area around Np,edian corresponds to

25" and 75" percentiles of the quantity.

In Figure A.24, the frequency of occurrence at each hour of the day is presented for each cluster.

154



DEM-SD-Cluster]l has a frequency of 1.5% and should mainly be attributed to local and trans-
ported dust. It occurs mostly at nighttime. DEM-SD-Cluster2 is very broad, including fresh and
aged vehicle emissions. In Figure A.24, one may observe that its frequency and number concen-
tration peaks coincide with the early morning and evening traffic. There is also a peak at noon,
which could be partly attributed to NPF. DEM-SD-Cluster3 has increased frequency in the morning
and the evening, which probably indicates that it is the product of coagulation of particles from
smaller modes. Taking into account its d4, one would expect that it is transported from another
area, probably due to the Etesian flow. DEM-SD-Cluster4 has increased frequency and number
concentration in the morning and in the evening, but also in the middle of the day, therefore it
probably relates to freshly emitted traffic particles and particle nucleation. DEM-SD-Cluster5 is
very stable in frequency and particle number concentration throughout the day, as one may observe
in Figure A.24. This mode is the sum of the regional background concentration and the coagulation

of particles produced locally.
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Table A.6: EPT station clusters identified

Cluster og dg N Cluster Frequency

Results Median | Median | Median Source %
EPT-SD-Clusterl 3 61.3 1.7 x 10° Vehicle emissions, aged 1
EPT-SD-Cluster2 1.57 35.3 1.2 x 10® | Vehicle emissions, growth of nucleated particles 96
EPT-SD-Cluster3 1.64 172 1.4 x 10° Condensational growth - regional background 76

EPT station identified clusters

The HDBSCAN algorithm results presented in Table A.6 were the best fit for the dataset. In order

to acquire these results, a minimum cluster size of 16 data points was used.
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Figure A.25: EPT diurnal frequency of occurrence (blue area, counts per hour) and median number
concentration Nyeqian (red line) for all identified clusters. The area around Ny,edian corresponds to

25" and 75" percentiles of the quantity.

In Figure A.25, the frequency of occurrence at each hour of the day is presented for each cluster.

EPT-SD-Clusterl has a frequency of 1% and should mainly be attributed to aged transported
vehicle emissions from the city center. It mostly occurs at nighttime. EPT-SD-Cluster2 is very
stable in frequency, including fresh and aged vehicle emissions. In Figure A.25, one may observe
that its frequency and number concentration peaks coincide with the early morning and evening
traffic. Overall, it is a cluster with a very high frequency (96%) that represents the background
concentration of the city. EPT-SD-Cluster3 is very stable in frequency and particle number concen-
tration throughout the day. This mode is the sum of the regional background concentration and the

coagulation of particles produced locally.
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L {2

Figure A.26: Natural logarithm of SO emissions (kt/year) map from ECLIPSE EMISSION
DATASET (http://eclipse.nilu.no/) for 2015. Anthropogenic sources are included, excluding ship-

ping and aviation.
Regional background concentration variation based on air masses

origin.
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Figure A.27: Mean Jule - August wind at (a) 1000, (b) 925, (c) 850, and (d) 700 hPa. Wind speed
(ms~!, shaded) is also plotted. The grid points included in the calculation of mean wind speed and

direction over the Aegean are marked with dots only in the upper left map [93].

Table A.7: Characteristics of Regional background concentration for air masses with partly southern

origin.

Cluster South-West plumes South-West plumes South-West plumes

Results 20" percentile 50" percentile 80" percentile
4 1.4 1.54 1.65
dg 122.7 163.8 196.7
N 0.5 x 10° 0.7 x 10° 2.5 x 10°
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Figure A.28: Map showing the air mass origin for the 26 3-hour FLEXPART sensitivity plumes that

the air masses are partly transported from the south.

160



0O 30E 60 E 0O 30°E 60 E

(a) PSCF at the 80" percentile (b) PSCF at the 85" percentile

o o o o o o
0 30 E 60 E 0 30 E 60 E
(c) PSCF at the 90*" percentile (d) PSCF at the 95" percentile

Figure A.29: Potential Source Contribution Function analysis (PSCF).
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Figure A.30: Calibration of SMPS-OPC ERI setup.

A.2 Appendix of the chapter “A new method for the re-
trieval of the equivalent refractive index of atmospheric

aerosols”

Method Evaluation - Calibration Procedure

Figure A.30 displays the layout during the experiments. The aerosol particle generator used was a
TOPAS ATM 220, which provided a high number of aerosol particles in the overlapping range of the
two instruments. The calibration was carried out at DEM-GAW station and the instruments were
sampling from their station inlet line. The generated aerosol was brought to a mixing chamber, where
it was mixed with dry, particle free air. Mixing ratios varied, depending on the final concentration
needed for the calibration. The aerosol was then lead to the inlet line, into a vertical nafion dryer
with a length of 60 cm and internal diameter approximately 1 cm, and was subsequently distributed
to the two instruments. During the experiments, inlet flow had an RH equal to 15 & 9%, while
temperature was 22 + 8°C.

PSL spheres with nominal diameters of 262 and 490 nm were diluted in MilliQ water. A bimodal
NSD for both instruments was expected, as both instruments are calibrated with this compound.

As denoted in Figure A.31, the OPC has a peak at 430 nm (corresponding to 490 nm PSL), while
we cannot be sure about the peak for the 262 nm PSL. The lognormal fit based on the three first
size bins of the OPC overestimates the PSL concentration dramatically. This is probably due to the

fact that the boundaries of the first size bin of the OPC are not correctly attributed, while in these
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PSL spheres at 262 and 490 nm
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Figure A.31: Calibration of SMPS-OPC ERI with PSL spheres at 262 and 490 nm. Red circles
correspond to SMPS average concentration during the PSL experiment. Error bars correspond to
the standard deviation from the average of each bin, for all size distributions measured during the
experiment. Red line corresponds to SMPS lognormal distributions identified for the PSL sizes.
Intense red color corresponds to the part of the lognormal distribution based on measurements,
while the fade red line corresponds to the extended part of the distribution. The black circles, error
bars and line correspond to the OPC. We observe that while SMPS sizes PSL correctly at 490 nm,

OPC has a peak concentration at 430 nm size bin.
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size bins aerosol particles with smaller sizes than the nominal minimum are counted. Therefore, we
have a very steep slope of the lognormal distribution fitted to the data, thus the error in the number
concentration predicted is very large.

In order to correct for the sizing error, we consider the OPC measurement principal. It can be
described as follows: Air containing particles is drawn through an illuminated volume, where light
scattered by single particles is sensed and converted to an electrical signal, whose pulse height is
analyzed. The pulse height is used to infer particle size. The measurement of many particles results
in a size distribution. Particle concentration in every size bin is determined from total counts in
that size range. An error in the electrical signal pulse height would result in erroneous sizing of
the aerosol particle. We need to know the relation of this error in the working size range of the
instrument.

The simplest assumption would be that the error is related to the amplification of the scattering
signal, therefore the scattering signal expected should be divided by a constant factor. To investigate
that, we plot S, calculated by Mie theory and given particle size, for the OPC geometry, assuming
homogeneous aerosol particles with an RI equal to 1.585. According to the PSL experiment, 490 nm
particles are detected as 430 nm. We need to adjust Ss., so that the signal that corresponds to a
particle with a diameter of 430 nm, will now correspond to a 490 nm particle. According to Figure
A.32 (Appendix), if we divide Ss., by a factor of 1.5, we have a signal curve that corrects the error
observed at the PSL experiment.

The size correction for the OPC is incorporated into the optimal solution algorithm by assuming
it is a constant factor in the common size range of the two instruments.

SMPS sizes the 490 nm PSL correctly and slightly underestimates the 262 nm PSL.

If the linear correction assumption is valid in the particle size range of interest, we would expect
that the ERI we retrieve would be close to 1.585. The approximate solution for ERI during the PSL
experiment was ranging from 1.57 to 1.6, which is close to the target value of 1.585. Therefore, we
conclude that the OPC sizing error in the particle size range we are interested in, is corrected by

applying a constant amplitude factor.
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Figure A.32: S, values versus homogeneous aerosol particle diameter dp for the OPC geometry
and RI = 1.585. Theoretical scattering intensity according to equation 2 multiplied by particle cross
section (red line); idem, as previously, divided by 1.5 (blue line); We observe that the theoretically
predicted Ss.q, when we apply this factor, can approach the experimentally determined one, within

the particle size range we are interested in.

Ssca has to be corrected in the ERI retrieval algorithm according to equation A.1.

Seca
sca—cor — - Al
5 1.5 (A1)

The next step is to find a correction factor for aerosols with different RI. The final ERI correction

equation for the sizing error and their dependence on aerosol RI follows:

RI = 1.7+ exp((—(ERIcor — 2)/1.5)%) (A.2)

The next step is to evaluate if the above mentioned corrections can be applied to aerosols with
different RI.

Figure A.33 displays the calibration of SMPS-OPC derived ERI with dried generated test aerosol,
ERI to Literature RI (RI) for common pure compounds characteristic for atmospheric aerosol. There
is good correlation between the ERI calculated and the RI of each substance. The median values for
each calibration experiment are shown in red diamonds. DEHS calibration has 10 5-minute points
while Ammonium Sulfate 15 and PSL more than 20. The black line displayed is the fit of all data

points for the 3 calibration experiments.
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Figure A.33: Best fit (black line) ERI to RI values for the calibration of SMPS-OPC with generated
aerosol. Blue spots denote the 5-minute data points for the DEHS Experiment; green spots denote
the 5-minute data points for the Ammonium Sulfate Experiment; yellow rectangles denote the
5-minute data points for the PSL Experiment; red diamonds denote the median value for each

experiment.

Table A.8: Literature RI (RI) versus ERI median values (MED ERI). Standard deviation (STDEV

ERI), regression analysis R-squared and standard error (STD ERROR) are also presented.

AMMONIUM PSL SPHERES
PARAMETER | DEHS
SULFATE Diameter = 490 nm

RI 1.45 1.53 1.585

MED ERI 1.37 1.48 1.57

STDEV ERI 0.02 0.01 0.01
R-squared 0.98
STD ERROR 0.1
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RI=1.3

Figure A.34: Best fit of S;., at OPC diameter range for RI = 1.3.
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Figure A.35: Best fit of S;., at OPC diameter range for RI = 1.4.

In Table A.8 we present the results of the calibration experiments. We observe that ERI un-

derestimates RI for ammonium sulfate and DEHS, while it overestimates RI for PSL. Nevertheless,

R-squared is close to 1 for all experiments, and the standard error is 0.1. Therefore we conclude

that there is a good correlation between ERI and RI for these measurements.

Scattering effective cross section to diameters in the OPC size

range and below

Figures A.34-A.39.
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Figure A.36: Best fit of Si., at OPC diameter range for RI = 1.5.
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Figure A.37: Best fit of Si., at OPC diameter range for RI = 1.6.

RI=1.7

06 08 1 12
dp,um

Figure A.38: Best fit of S;., at OPC diameter range for RI = 1.7.
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Figure A.39: Best fit of Si., at OPC diameter range for RI = 1.8.
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Figure A.40: SMPS - OPC fit examples for various ERI values. Green circles denote the measured

OPC size distribution (NSD), blue circles denote the SMPS NSD, while the red line represents the

OPC, adjusted NSD. We observe that the final adjusted Grim OPC size distribution (SD) is very

close to the SMPS NSD. Also, the OPC NSD at 430 nm is moved to the right to 490 nm at ERI =

1.6, as it should, in order to compensate for the sizing error in relation to the SMPS observed at the

PSL calibration experiment.

SMPS-OPC FIT in the overlapping range

Figure A.40.
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Figure A.41: We observe that from 8:30 to 13:30 (IC filter measurement hours) there is strong

mixing in the vertical, leading dust to DEM station. RIj; was also calculated for this day (19:00-

20:00 UTC).

Figure A.42: We observe that from 8:30 to 13:30 (IC filter measurement hours) there is strong

mixing in the vertical, leading dust to DEM station.

HALO lidar vertical wind for days that the hypothesis of
uniform dust concentration during the day does not hold

In the calculation of RI;¢, the 24h average of dust concentration (calculated from XRF measure-
ments) was used. The hypothesis was that dust concentration during the day was closely following
the concentration of other aerosol constituents. This does not hold for days that exhibit strong mix-
ing in the vertical during the filter measurements and less mixing the rest of the day, while a Sahara
dust event is occurring. ERIcopr calculated for the hours corresponding to RIj¢, is significantly

higher during these days, as expected. (Figures A.41-A.42).
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Figure A.43: We observe that from 19:00-20:00 there is strong mixing in the vertical.
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Figure A.44: We observe that from 22:00-23:00 there is strong mixing in the vertical.

HALO lidar vertical wind for days that RI;; was calculated

Figures A.43-A.45.

On 17th of June 2014, 19:00-20:00, and 18th of June 2014, 19:00-20:00, the boundary layer

heights are approximately 1.1 km and 1.0 km respectively, according to ECMWF ERA-INTERIM

data.

Tire (UTC)

Figure A.45: We observe that from 18:45-19:45 there is strong mixing in the vertical.
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Table A.9: RI;¢c and ERIcog obtained by IC, EC/OC, XRF and SMPS-OPC instruments.

Date, Time (UTC) ERIcor RIic

21st of May 2014, 19:00-22:00 | 1.66+0.1 | 1.58+0.15

28th of May 2014, 08:30-13:30 | 1.65+0.1 | 1.5940.15

28th of May 2014, 19:00-22:00 | 1.67£0.1 | 1.59+0.15

30th of May 2014, 08:30-13:30 | 1.654+0.1 | 1.58+0.15

30th of May 2014, 19:00-22:00 | 1.63+0.1 | 1.57+0.15

6th of June 2014, 19:00-22:00 | 1.654+0.1 | 1.58+0.15

7th of June 2014, 19:00-22:00 | 1.65+0.1 | 1.58+0.15

RI;c and FERI-or available values

The available values for RI;c and FRIcogr are presented in Table A.9.

RI;; and FERI-or available values

The available values for RI;; and ERIcogr are presented in Table A.3. In Figure 6, the value

corresponding to the 22nd of June is not included, because RH was not available for that day.

A.3 Appendix of the chapter “Comparison of in situ and re-
mote sensing aerosol measurements in the Athens Metropoli-

tan Area”

¢ vertical distribution plots for the days selected in order to

compare in situ - remote sensing instruments
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Table A.10: Comparison of lidar derived RI values (RIL;) to ERIcog values obtained by SMPS-
OPC.

Date, Time (UTC) ERIcor RIpr

23th of May 2014, 19:00-20:00 1.61+0.1 | 1.56£0.1

26th of May 2014, 19:00-20:00 1.63+0.1 1.6+0.1

7th of June 2014, 22:00-23:00 1.67£ 0.1 | 1.61+£0.1

10th of June 2014, 18:45-19:45 | 1.68+0.1 | 1.6240.1

17th of June 2014, 19:00-20:00 | 1.66+0.1 | 1.5940.1

18th of June 2014, 19:00-20:00 | 1.584+0.1 | 1.5940.1

22nd of June 2014, 19:00-20:00 1.6£0.1 1.56+0.1
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Figure A.46: ¢ vertical distribution plot for the 215 of May, indicating turbulence in the troposphere.
Notice that there is turbulence extending to a height approximating 800 m agl at 20:00 to 21:00,

during in situ - remote sensing measurements comparison.
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Figure A.47: € vertical distribution plot for the 22" of May, indicating turbulence in the troposphere.

Notice that there is turbulence extending to a height above 1,000 m agl at 20:30 to 21:30, during in

situ - remote sensing measurements comparison.
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Figure A.48: € vertical distribution plot for the 23"¢ of May, indicating turbulence in the troposphere.

Notice that there is turbulence extending to a height above 1,000 m agl at 20:30 to 21:30, during in

situ - remote sensing measurements comparison.
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Figure A.49: € vertical distribution plot for the 7¢" of June, indicating turbulence in the troposphere.
Notice that there is turbulence extending to a height above 1,000 m agl at 22:00 to 23:00, during in

situ - remote sensing measurements comparison.
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Figure A.50: € vertical distribution plot for the 10" of June, indicating turbulence in the troposphere.
Notice that there is turbulence extending to a height above 1,000 m agl at 18:45 to 19:45, during in

situ - remote sensing measurements comparison.
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Figure A.51: RH vertical distribution plot for the 21%¢ of May. Notice that at 1,000 m agl, RH is

approximately 55 at 20:00 to 21:00.

RH vertical distribution plots for the days selected in order

to compare in situ - remote sensing instruments
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Figure A.52: RH vertical distribution plot for the 22" of May. Notice that at 1,000 m agl, RH is

approximately 55 at 20:30 to 21:30.

al

Figure A.53: RH vertical distribution plot for the 237¢ of May. Notice that at 1,000 m agl, RH is

approximately 62.5 at 20:30 to 21:30.
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Figure A.54: RH vertical distribution plot for the 7" of June. Notice that at 1,000 m agl, RH is

approximately 55 at 22:00 to 23:00.

Figure A.55: RH vertical distribution plot for the 10" of June. Notice that at 1,000 m agl, RH is

approximately 75 at 18:45 to 19:45.
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Figure A.56: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm observed
by EOLE, in arbitrary units (A.U.) for the 21%¢ of May. Notice that up to 1,000 m agl, there is a

uniform aerosol concentration at 20:00 to 21:00.

Temporal evolution of the range-corrected lidar signal (RCS)
at 1064 nm observed by EOLE, in arbitrary units (A.U.) for
the days selected in order to compare in situ - remote sensing

instruments
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Figure A.57: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm observed by

EOLE, in arbitrary units (A.U.) for the 22"¢ of May. Notice that up to 1,000 m agl, there is a

uniform aerosol concentration at 20:30 to 21:30.
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Figure A.58: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm observed by

EOLE, in arbitrary units (A.U.) for the 23"¢ of May. Notice that up to 1,000 m agl, there is a

uniform aerosol concentration at 20:30 to 21:30.
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Figure A.59: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm observed by
EOLE, in arbitrary units (A.U.) for the 7% of June. Notice that up to 1,000 m agl, there is an

almost uniform aerosol concentration profile at 22:00 to 23:00.
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Figure A.60: Temporal evolution of the range-corrected lidar signal (RCS) at 1064 nm observed by
EOLE, in arbitrary units (A.U.) for the 10" of June. Notice that up to 1,000 m agl, there is an

almost uniform aerosol concentration profile at 18:45 to 19:45.
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Figure A.61: Radiosounding at 12:00 UTC on the 27" of May indicates a distinct aerosol layer

mainly between 1,000 and 2,000 m (low Relative Humidity, an indication of a Sahara dust layer).

EOLE radiosonde profile on the 27" of May.
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Figure A.62: Origin of airmasses for the 21%¢ of May, 18:00 - 21:00 UTC.

Origin of airmasses for comparison days
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Figure A.63: Origin of airmasses for the 22" of May, 18:00 - 21:00 UTC.
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Figure A.64: Origin of airmasses for the 23"% of May, 18:00 - 21:00 UTC.
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Figure A.65: Origin of airmasses for the 7¢" of June, 21:00 - 24:00 UTC.
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Figure A.66: Origin of airmasses for the 10" of June, 18:00 - 21:00 UTC.
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