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Summary in Greek

H mapoloa SUTAWHATIK €pyooia eVTAOOETOL OTNV EMLOTNHOVIKN TEploxn Tng Sloiknong tng
edodlaotikig aAucidag Kal ETUKEVIPWVEL TO evlladEPOV KAl TG EPYACieg TNG otn Stadlkaoia Tng
npounBetag (purchasing) Twv enepnoewy IOV dpactnplomolouvtal otov KAado tng vauthiag. H
Sladkaola mpopnBelog otov kAAdo tng Noautllag elval pla moAumAokn Siadikaocia, TOAU
KooTofBopa kal pe peyala meplbwpla BeAtiwong. XTOXOC TNG MapoUoas SUTAWUATIKAG Epyaciog
elval va dnuloupynoel éva gpyaleio UTOOTAPLENG TWV AYOPACTIKWY ANMOPACEWY TOU TUAUATOC
MpounOslwy Hlag VAUTIALAKAG €Talplag to omoio Paociletal os £vav ocuvludopo AAYOPLOULKWV
TEXVIKWV avaAuong dedopévwy Kal elval oe Béon va PoPAEYPEL TIG avayKalEG TTOCOTNTEG yLa TNV
KOAUYPN TWV VoYKWV O€ aVTOAAOKTIKA yla TO oUVOAO TOU OTOAOU TNng, HE To €Adyloto duvato
KOOTOC Kol 0€BOUEVO TIG ATIALTAOELG TNG TEAKNG {NThoNng o€ opllovta eVOC £TOUG.

H epyaoia ywpiletal oe U0 pEpN. ITO MPWTO UEPOG TNG EPYOOLOC YIVETOL LILOL CUVOTITIKN TtEPLypadn
TOU AettoupylkolU poviéhou tou kAASou tng Nauthiog pe éudaon otn Stadikacio mpounelag n
orola Kal HeAETATAL AEMTOUEPWE OTO TTAALOLO TN Mapolong epyaciag. XTn cuvexela akolouBel pia
BLBAloypadikn €MIOKOMNGN TwV BACKWY EVVOLWY TNG avaluong SeSopévwy Katl Twv SltabEotuwv
OAYOPLOUIKWY TEXVIKWY KOL TWV XOPOKTNPLOTIKWY TouG. H £peuva autr, odnyel otov mpocdloplopod
TWV aAyopiBuwv texvnTg vonuoaouvng mou Ba xpnotpomnotnbolv oto SeUTEPO HEPOG, OTO OO0
napouatalovral oL epyaciec uhomoinong tou epyaieiou umoothpléng amopAacewV TIOU ATTOTEAEL KOt
TO KUpPLO TOpayOUEVO TIPOLOV TNG epyaciag.

To beutepo pEpog NG epyaciag akolouBel tpla Baoika peBodoroyikda Brpoto uAomoinong. Xto
npwto Tpocdlopilovtal CUYKEKPLUEVOL KwOLKOL MAVw oToug omoioucg Ba emikevipwOel n avaiuon
TOU KOOTOUG KOL N TPOYVWON TWV aVayKaiwy TOCOTATWV yLla TNV KAAUN TWV avayKwv Tou oTOAou.
Xpnotuormnolouvtal aAyoplBuol opadomnoinong (clustering) mpokelpévou va katataxbouv ot Kwdikol
UE BAon pla oglpd KpLtnpilwv mou adopouv otolxeia tng {ATnong Toug Kot TeAKA tpoadlopilovral
ouTtol Tou amoteAoUV TO HeyaAUTEPO KOUUATL TOU CUVOAOU TwV €£68WV yLa TO GUVOAO TOU GTOAOU.

ZTN OUVEXELQ, YL TOUG KWOLKOUG TIOU EVIOTIOTNKOV OTO TPONYOUMEVO Brpa, eKMoveital availuon
™G NTNONG TOUG HE OTOXO TOV KABOPLOPO TWV CUVOALKWVY ETHOLWV OVAYKWVY Yl QUTOUC TOUC
KwdKoU¢ oe kKaBe mhoio. Mo cuykekplpéva, n avaluon meplhappavel Tn dnuoupyia HovtéAwv
MPOBAEYNC TWV OVOLOTIKWY avaykwv KABe mAolou yla To £10G avadopds Kot Tov KaBopLopo tou
TPOTIOU LE TOV OTOLO OL AYOPOOTLKEG amopACEL; EMNPEAIOUV TLG TEAIKEG AVAYKEG TwV TAoilwv. O
OMWTEPOG ETIUXELPNUATIKOC OTOXOC TWV avOAUOEWY auTol Tou Brupotog sivatl n ekAoyikeuon tng
Sadkaoilag mpounBelag péca amd TN ONULOUPYLO OTOXEUUEVWY TIOPOYYEALWV OE MEYAAEG
TMOOOTNTEG HE 000 TO dUVATOV ULKPOTEPO ODAAUQ, TTIOU Ba 08nynoeL Ge ONUOVTLKN HElwWon Tou
Kootoug mpopnBetag (Ayotepa stock outs, peiwon tou kOOTOUC amoBepatonoinong, emiteuén
KOAUTEPWY HECWV TLLWV TIPOUNBELOC ava Katnyoplo avTAAAAKTIKWY KoL CUVOALKA).

Jto tpito KAl TeAeutaio peBoSOAOYIKO PAHA TNG €PYACLOC, QVAMTUCOETAL £vO PUBULOTIKO
(prescriptive) povtélo mpokelpévou va umootnpifel Tig PEATIoTEG amoddoeElC ylo TNV ayopd
OVTOAAOKTIKWY, XPNOLLOTIOLWVTAG ooV BACH T AMOTEAECUATA TOU TPOYVWOTLKOU HOVIEAOU TOU
mponyoupevou BrAuatog. Ma To okomo autd dnuoupyndnke pla cUVOETN cuvdaptnon KOOTOUG ME
S10.POPETIKEC OCUVIOTWOEC, OTIWE TO KOOTOG KTAONG, TO SLAXELPLOTIKO KOOTOG, TO HETADOPLIKO KOOTOC,
TO KOOTOG epyaciag (Sdlaxelplong) kot To KOoTog amoBOguarog. Q¢ amMOTEAECUA, TO HOVIEAO TOU
TPOKUTTEL €ival og O£on va mpoteivel ota otedéxn epoSLacTIKAC Kol TPOUNOELWY HLAG VOUTIALOKAC



gtalpiag tnv avabeon evioAwv mpounBelag (avtaAAakTikd ava mpounbesutn) n omoia Sivel To
XAUNAOTEPO SUVATO CUVOALKO KOOTOC KOl TAUTOXPOVA LKOVOTIOLEL TG ATALTAOELG TNG {ThoN .



Summary in English

This diploma thesis is part of the scientific field of supply chain management and focuses on the
purchasing-related tasks of a shipping company. Purchasing is a complex process, bears high cost
and exhibits great improvement margins. The main objective of this thesis is to create a decision
support tool that is based on data analytics and machine learning algorithms and can forecast the
guantities needed to cover the needs of the fleet for spare parts, that concurrently minimizes the
cost and respects the demand requirements.

The thesis is divided in two parts. The first part briefly describes the shipping and maritime industry
focusing on the supply chain specific aspects that are examined in detail in the main body of the
thesis. Furthermore, it contains the theoretical research and the literature review of the data
analytics concepts such as descriptive, predictive, prescriptive and machine learning algorithms as
well as an in-depth analysis of the ones that will be used in the case study. The theoretical research
aims to define the machine learning algorithms that will be used in the second part which
constitutes the main product of the thesis.

The second part of the thesis follows three main steps. The first step focuses on the definition of the
product codes upon which predictive and prescriptive models will be applied. Clustering is used to
classify the product codes based on a series of different criteria referring to demand in order to
define the product codes that drive the cost of the spares for the whole fleet.

Furthermore, for the product codes determined in the previous step, analyses are performed in
order to determine the total needs of the fleet for the following year for each vessel. More precisely,
machine learning models are developed and forecasting of nominal needs is attempted as a function
of vessel, demand characteristics and decisions regarding the source of purchase. The business
reasoning behind these analyses is the rationalization of the purchasing process by placing targeted
orders in high quantities with minimum error possible that will lead to significant decrease of
purchasing-related costs (less stock outs, decrease of stock out cost, better average price of
purchase per spare type and in total).

Lastly, in the third step, a prescriptive model is developed to support cost optimal decisions in terms
of spare parts procurement using as a basis the outcome of the predictive model. For this purpose, a
complex cost function is created that includes the acquisition cost, the logistic/forwarding cost, the
administrative cost and the inventory cost. As a result, the model can advise the executives of the
purchasing department of a shipping company the allocation of spares to vendors that minimize the
total cost while respecting the level of demand.
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1 Problem Statement

1.1 The shipping industry and the case company

Seaborne trade allows for the bulk transportation of raw materials and the import/export of
affordable provisions and manufactured goods. Seaborne trade accounts for the carriage of
approximately 80 percent of global trade and more than 70 percent of its value is carried on board
and handled by seaports worldwide (UNCTAD, 2018). Over 50,000 merchant ships exist
(International Chamber of Shipping, 2019) trading internationally and transporting a large variety of
cargoes. Greece continues to be the largest ship owning country in terms of cargo-carrying capacity
(dwt), followed by Japan, China, Germany and Singapore (UNCTAD, 2018). It should be noted that
the total cargo carrying capacity for these countries accounts for around 50 percent of the globally
existing dwt, as shown in the table below.

Table 1.1-1: Ownership of the world fleet, regarding ocean-going vessels of 1.000 gross tons and above (Source: (UNCTAD,
2018))

Country of Ownership | DWT [thousands of tons]
Greece 330,176
Japan 223,615
China 183,094
Germany 107,119
Singapore 103,583
China 97,806
Korea 77,277
USA 68,932
Norway 59,380
Bermuda 54,252
World 1,910,012

The main types of vessels that will be discussed below are:

— Tankers, which are used for the transportation of crude oil, oil products, chemicals and gas.

— Dry bulk carriers, which are used for the transportation of several dry cargoes.

— Container ships and multipurpose ships, which are used for the transportation of general
cargo.

In the shipping business, usually, each vessel is owned by a company, which is called the ship-owning
company. The companies operating the vessels, not necessarily owning the assets themselves, are
called ship management companies. The case company described in this Thesis is a ship
management company operating worldwide. The company operates in the spot market, which
means that it does not undertake long contracts but rather fixes its vessels for smaller voyages. The
company operates 86 vessels (tankers, containerships, dry bulk carriers), most of them oil tankers
with an average age of the vessels of the company is 9.97 years. The case company has 67 oil tankers
with an average age of 10.6 years and 21 dry carriers with average age of 7.9 years.

Table 1.1-2: Vessels sizes and types operated and average age of vessels by the case company

Vessel Size Vessel Type Number of Vessels | Average Age [years]

CAPESIZE Dry 5 6.1
CONTAINER Dry 3 6.7
KAMSARMAX Dry 4 10.0
PANAMAX DRY Dry 1 13.0
SUPRAMAX Dry 4 11.9
ULTRAMAX Dry 4 4.1




AFRAMAX Tanker 33 10.7

MR1 Tanker 7 16.7
MR2 Tanker 10 9.7
SUEZMAX Tanker 8 9.8
VLCC Tanker 7 6.5

For reference, the sizes of the vessels are presented below.

Table 1.1-3: Average dead weight tonnage of vessels per size and type

Vessel Size Vessel Type DWT [tons]
CAPESIZE Dry 180,200
CONTAINER Dry 49,600
KAMSARMAX Dry 82,200
PANAMAX DRY Dry 75,600
SUPRAMAX Dry 56,200
ULTRAMAX Dry 62,700
AFRAMAX Tanker 110,900
MR1 Tanker 39,700
MR2 Tanker 49,100
SUEZMAX Tanker 161,100
VLCC Tanker 311,900

In 2018 the average age of oil tankers across the worldwide fleet was 29.2 years (UNCTAD, 2018)
and for dry bulk carriers 42.5 years (UNCTAD, 2018)

Table 1.1-4: World fleet statistics (Source: (UNCTAD, 2018))

Years

0-4 5-9 | 10-14 | 15-19 20+

Oil tankers Percentage of total ships 1497 | 21.89 | 17.04 8.46 | 37.64
Percentage of dead-weight tonnage 21.7 | 33.86 24.6 14.3 5.55

Average vessel size (dwt) 78543 | 84016 | 78643 | 93525 8303

Dry Bulk Carriers Percentage of total ships 27.83 | 41.32 12.9 8.72 9.24
Percentage of dead-weight tonnage 29.99 | 43.04 | 12.93 7.22 6.82

Average vessel size (dwt) 79281 | 76618 | 73750 | 60907 | 54304

The technical condition of a vessel directly affects the performance of the ship and the economic
outcome it produces, as well as, the well-being of the men on board and the protection of the
environment. A vessel’s operating capabilities, its fuel consumption and its resale price, heavily
depend on the vessel’s technical condition. As a result, maintenance and repair activities are
required to ensure that the vessel and its equipment strictly meet current standards for safe and
efficient operation. The maintenance of a vessel is divided in two main categories, i.e. planned and
unplanned maintenance. Unplanned (or corrective) maintenance is maintenance which is carried out
after unexpected failure detection and is aimed at restoring an asset to a condition in which it can
perform its intended function. Planned maintenance includes the overhauls and the dry-docks. The
overhauls take place at specific time intervals for specific type of machinery on board the vessel
during the voyage or a port call. The dry docking procedure is an extensive maintenance process that
takes place at specific time intervals (longer than routine overhauling) and requires the vessel to stay
at a shipyard for some time.

The maintenance costs of a vessel heavily depend on its age mainly because of two factors:

— Because of malfunctions by the aged machinery of the vessel and
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— Because of the increased mandatory maintenance procedure that a vessel above 15 years
needs to undertake (dry docking takes places every 2.5 years when a vessel reaches 15 years
instead of 5)

1.2 Bulk ordering concepts
The main scope of the bulk orders in general is to aggregate demand and exploit the advantages of
high volume. The main advantages of bulk orders are:

— Low administrative costs: Order aggregation creates economies of scale reducing the
administrative cost per order ratio.

— High negotiating power: when the demand of several needs is accumulated the volume
increases and the customer can press for lower prices, higher discounts and better
contractual terms.

— Low logistics costs: The decisions regarding time and place of delivery can be optimized
ensuring lower forwarding costs

— Uniformity: the lower number of suppliers is a step towards guarantee of a same level of
quality of purchased goods across a company.

— Traceability: The uniformity of quality across the company makes it easier to identify
problems and malfunctions if need arises.

Undoubtedly, the maintenance of the machinery onboard a vessel is a critical task. The scheduled
and organized maintenance of a vessel can make a considerable difference on the operating
expenses of the vessel. Therefore, ship management companies establish full proof and robust
planned maintenance frameworks and systems, whilst taking the planned maintenance of the
vessels very seriously and undertaking cross departmental projects to ensure timely delivery, high
quality of spare parts with the lowest total cost of ownership possible.

The planned maintenance of each vessel is a timely task that demands overhauls at specific time
intervals and/or equipment running hours. Depending on the age of the vessel and the type of
machinery those needs may vary but the overhaul needs when accumulated for the whole fleet may
amount to a considerable expense for the company.

The bulk ordering process in the shipping industry has the below characteristics:

— The suppliers that can provide the necessary parts in the necessary volumes for overhauling
processes are a few and are concentrated in two geographic regions (Europe and Asia).

— The number of distinct items ordered each year is considerably high amounting to several
thousand different spare parts

— The delivery locations are not constant and are subject to the vessel’s movements.

The main idea behind the bulk orders of the case company is that the individual vessel’s needs for
overhauls and general planned maintenance are accumulated across the fleet and then grouped into
four categories: compressors, purifiers, main engine and diesel generators, which are the main
machinery components requiring overhauls every one or two years. Then, smaller groups are
created based on characteristics of the underlying vessels and items are grouped into rfgs. Then the
rfgs are sent to suppliers making it easier to negotiate prices and terms as the one-off revenue for
suppliers increases. Finally, after the supplier selection process ends, the grouped queries are again
broken down to individual vessels, the purchase orders are released and the items are then
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delivered to the vessels accordingly. The main steps of the bulk orders in the case company are as
follows:

— A. Requisitions from the vessels are created: The Vessel’s Chief Engineer (C/Eng) updates
the quantity requirements for each needed item (VCE is a member of the vessel’s crew and
the person responsible for all technical issues safeguarding the smooth operation of the
vessel). In his decision, C/Eng considers the Superintended Engineer’s (VSE) insight and the
vessel’s stock. VSE shares the same responsibilities with C/Eng but is based on shore. This
task generally starts in late March to early April and ends late May.

— B. Queries creation: The requirements of the vessels are aggregated per component and
manufacturer to create the rfgs.

— C. Price collection: The suppliers revert with prices and after negotiations the winner is
selected.

— D. Purchase order finalization: Purchase orders are created and the final quantities are
determined by the technical department after reviewing the updated needs of the vessel.
This step generally takes place in November, so it is highly probable that the vessel’s needs
have changed. The finalized purchase orders are then sent out to corresponding suppliers
and the parts are delivered to the vessels accordingly. This process takes place in the start of
the year.

The bulk order process is also presented in a form of a flow chart below:

P
Determine l:l Vessel

neccessary —»| Determine guantities —»| Cnegéc Zﬁt;;:?mal
equipment ?

|:| Technical Department

|:| Purchasing Department

k.

Data preparation and
cleansing

]

—»  Query creation

Meetings with

suppliers —» Revised Quantities

Price collection  —»

k.

Winner Selection — Orders Finalization

Figure 1.2-1: Bulk order process flow diagram

To provide a deeper understanding of the process an indicative time plan is presented below:
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Activity Mar Ppr May un ul lAug Sep Oct INov Dec | Remark

Al. Decide equipment A TE

A2. Update/create templates T TE
A3. Determine quantities after TE

checking with vessel

B. Creating the queries I PU
C1(a). Price Collection I PU
C1(b). Meetings with Suppliers and | PU
negotiations

C2. Revised quantities I TE

(& adjustments if significant price deviations)

D1. Winners' selection L | TE&PU

D2. Final Check by Technical Department TE
D3. Orders send by Spares operators - PU

Figure 1.2-2: Indicative timeline of the bulk ordering process

In the figure above the remark section indicates the responsible department for completion of
relevant activity, ‘TE’ for technical department and ‘PU’ for purchasing department.

As can one easily understand from the time plan above, the bulk order process takes a lot of time
and requires the attention of several departments and individuals. The main challenges that the case
company encounters in this process are the following:

— The volume: the bulk orders refer to more than 50 vessels and more than 4,000 items every
year making it very time-consuming to negotiate with the implicated suppliers and conclude
the selection process.

— The administrative workload: a high number of interconnected parties and stakeholders
participate in the process, which makes the process very unwieldy and slow-moving. By
approximation, 1.7 FTEs throughout the year are needed for the smooth completion of the
process.

The above challenges have triggered the case company in scouring for ways to optimally address
them and unlock further value of the bulk order process. The case company looked to machine
learning due to its current strong standing and high maturity profile in deploying advanced analytics
to increase effectiveness and boost efficiency in supply chain areas such as general consumables
forecasting, crew scheduling and strategic network design. This gave rise to the topic of this diploma
thesis which will aim to address the aforementioned key challenges by taming a very sizeable and
overly complex dataset, providing ways to extract useful information and insights from historical
data, facilitating the ability to forecast the needs of the fleet, reducing administrative workload and
support the decision-making process by generating indicative solutions.

In the following sections, the applicability of machine learning in dealing with similar business issues
will be examined (in Chapter 0) so as to formulate bulk orders analytics framework (in Chapter 3)
that will enable the design of an integrated tool that aims to tackle challenges throughout the
process of the bulk orders. More specifically, clustering and forecasting of the quantities needed by
the vessels will take place to provide a laser focused and current view of the critical needs of the
vessels by integrating exogenous factors which in their way orchestrate demand, e.g. vessel age and
in the process eliminate the back and forth between the technical department and the vessel which
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presents the main hurdle in step (A), (see Figure 1.2-1). Furthermore, to further reduce the
administrative workload and generate cost optimal scenaria in steps (C) and (D) (see Figure 1.2-1),
blending of analytics with traditional operations research, i.e. prescriptive analytics, will be
examined and to drive winner selection will take place on the basis of minimum total cost of
ownership.
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2 Theoretical research

2.1 Basic Concepts

2.1.1 Data Analytics Concepts

Most recent advances in artificial intelligence (Al) have been achieved by applying machine learning
to very large data sets (Russel & Norvig, 2009)Machine learning algorithms detect patterns and learn
how to make predictions and recommendations by processing data and experiences, rather than by
receiving explicit programming instruction. The algorithms also adapt in response to new data and
experiences to improve efficacy over time. Data analytics, that are a major part of machine learning
algorithms, can be divided into three major categories with increasing complexity.

— Descriptive analytics focus on models that try to describe what happened and are deployed
by most industries as they give valuable insight in the past.

— Predictive analytics use statistical models and forecasts techniques to understand the future
and are used to answer the question ‘what could happen?’ Predictive analytics are
employed in data-driven organizations as a key source of insight.

— Prescriptive analytics mainly employ optimization and simulation algorithms to provide
recommendation on what to do to achieve specific goals.

Descriptive Predictive Prescriptive

Figure 2.1-1: Types of data analytics (Source: McKinsey Analytics)

2.1.2 Machine learning Concepts

Machine learning focuses on the last two types of data analytics, predictive and prescriptive. The
main idea of the research behind artificial intelligence (Al) is that ‘every aspect of learning or any
other feature of intelligence can, in principle, be so precisely described that a machine can be made
to simulate it’ (McCarthy, Minsky, Rochester, & Shannon, 1955)Generally artificial or computational
intelligence is the study of intelligent agents, described as entities that act in an environment (Poole,
Mackworth, & Goevel, 1998). As the research in the field grew, researchers defined Al as the ‘effort
to make computers think’ and to create ‘machine with minds in the full and literal sense’
(Haugeland, 1985).

All in all, artificial intelligence is typically defined as the ability of a machine to perform cognitive
functions we associate with human minds, such as perceiving, reasoning, learning, interacting with
the environment, problem solving, and even exercising creativity. Examples of technologies that
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enable Al to solve business problems are robotics and autonomous vehicles, computer vision,
language and text processing, virtual agents, and machine learning.

Artificial intelligence can be divided into three main categories explained in detail in the next
sections:

— Supervised learning
— Unsupervised learning
— Reinforcement learning

The main goal of machine learning algorithms is to effectively build a mathematical model based on
a subset of the available data, most commonly called the training set, to make predictions about the
future and take actions without being explicitly instructed the way to perform the task (Bishop,
2006)

2.2 Algorithms and use cases

2.2.1 Descriptive models

Descriptive analytics are used to describe previous data and situations and extract value from them.
These models make extensive use of statistical tools that can quantitatively describe and summarize
features of a dataset. For each use case, the tools used are different.

In the specific use case, the bulk ordering process of a ship management company, for the time
being the descriptive analytics are used mainly to compare strategies and results of each year to
enable the company to negotiate better in the future.

2.2.1.1 Unsupervised learning algorithms
Unsupervised learning algorithms can be used to construct descriptive models and derive underlying

relationships and give insight to past data (Hinton & Sejnowski, 1999). Unsupervised learning
algorithms are machine learning algorithms that ‘learn’ from the test data that have not been
labeled, classified or categorized. In contrary to the supervised algorithms where a human gives
feedback, in the process of unsupervised learning the algorithm detects common elements in the
data and reacts based on the presence or the absence of such common elements. Therefore, the
unsupervised learning algorithms are typically used when one does not know how to classify the
data and they want the algorithm to find patterns and categorize the data for them. Most common
use cases of the unsupervised learning algorithms are:

— Segment employees, suppliers, customers and generally business partners into categories
based on their performance

— Use clusters for behavior prediction to identify the important data necessary for making a
recommendation

One of the most important aspects of unsupervised learning algorithms is clustering. Clustering is
the process that includes grouping a set of objects in the same group, in a way that group’s items are
more alike than others belonging in a different group. There are many data clustering algorithms
present in literature, since clustering is one of the most common tasks in machine learning. Some
clustering algorithms are:
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— k-means: the k-means algorithm groups items into a predefined number of clusters aiming
to minimize the distance of data points from the mean of each cluster. This algorithm will be
explained in detail below.

— DBSCAN: dbscan is a density-based algorithm that groups items based on how closely they
are packed. This algorithm will be explained in detail below.

— Kohonen neural network: a neural network algorithm that is mostly used for dimensionality
reduction. The algorithm is trained using unlabeled data to produce a low-dimensional
representation of the input space (Kohonen, 1982).

Another aspect of unsupervised learning is anomaly detection, the process where the data points
that differ significantly from the whole of the dataset are identified and labelled as outliers.
Typically, the outliers refer to problems in the smooth operation of an organization. The
unsupervised anomaly detection search for outliers in an unstructured dataset using the assumption
that most of the data-points can be considered normal. Therefore, the algorithms detect instances
(data points) that fit the least to the remainder of data in the dataset. The algorithms that perform
outlier detection can be as simple as the creation of box plots or more complex using clustering
(zZimek & Filzmoser, 2018)

2.2.2 Predictive models

Predictive models make use of statistical techniques from data mining and machine learning. They
are used to analyze current and historical data to make predictions about future events (Nyce,
2007). They capture the relationship between the specific performance of a unit in a sample and
one or more attributes and features of the units. The objective is to assess the likelihood that a
similar unit in a different sample will exhibit the specific performance. Generally, data can be divided
into two major categories. The first is the training sample, or training set, that encompasses data
that have known attributes and performance and upon which the models are applied and tested.
The other contains data that have known attributes but unknown performance. Some indicative use
cases that predictive models are broadly used:

— Customer/ Supplier relationship management: An approach that is used to manage a
company’s interaction with current and potential customers. It involves the construction of a
holistic view of the relationship with customers throughout the lifecycle of the relationship.
It is used to predict customer’s buying habits and to promote relevant product codes.

— Project risk management: The process of managing an uncertain event that if it occurs it has
either positive or negative impact on the objectives of the project.

— Demand forecasting: The process of trying to understand and predict customer demand to
optimize supply decisions using supply chain and business management

— Trade promotions optimization: Tools helping companies achieve profitable growth from
their trade promotions that are optimized to generate more sales and profitability.

The predictive models mainly make use of supervised learning, a sub-category of machine learning,
which uses algorithms to learn a function that maps an input to an output based on input-output
pairs (Russel & Norvig, 2009). The supervised algorithms use labeled training data and feedback from
humans to learn the relationship of given inputs to a given output. (Mohri, Rostamizadeh, &
Talwalkar, 2012)In supervised learning algorithms, each data set can be described as a pair that
consists of an input object (most of the times, a vector) and an output (a value). The algorithm, then,
analyses the data and produces a function that connects the input variables and the output. Once
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the training of the algorithm is complete and the algorithm is sufficiently accurate, it is applied on
new data.

Figure 2.2-1: Supervised learning algorithms main logic (Source: McKinsey Analytics)

Supervised learning can be divided into two main categories: the classification and the regression
algorithms. Classification algorithms recognize patterns form the input data and then use them to
classify the new observation. On the other hand, regression algorithms forecast a continuous
numeric variable using input data and reveal the underlying function.

Generally, most algorithms can work both for classification and regression problems. Depending on
the specifics of the case at hand, relevant changes are made so that the algorithm can be used.

The main steps to applying a supervised learning algorithm are:

— Gathering of the training set: the training set needs to be a cross section sample that
respects the requirements of the chosen algorithm and concurrently has a satisfactory
number of data points relation to the variables to successfully complete the training phase.

— Treating of the gathered data: the input data of the algorithm are represented in a way that
will increase the accuracy. The user needs to be cautious of the number of variables that will
be used to avoid the ‘curse of dimensionality’ (Bellman, 1957) meaning the increase of
various phenomena detrimental to the accuracy of the algorithms that arise when analyzing
high dimensional spaces (e.g. overfitting, underfitting etc.).

— Deciding the algorithm that will be used to train the data and determine control parameters.

— Evaluating the accuracy of the algorithm by applying the algorithm on the test data.

Below some major algorithms are presented:

Table 2.2-1: Machine learning algorithms used in predictive analytics

Algorithm Main Logic Application Example

Prediction and understanding of
Linear approach to modelling the | economic elements such as

Linear relationship between a dependent variable | consumption spending, fixed
regression | and one or more independent variables to | investment spending and economic
predict future values of output variables. drivers such as competition,

distribution, marketing initiatives, etc.
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Logistic
regression

A model that resembles linear regression
although the outcome is a binary variable. It
is now extended to include categorical
outputs with more than two values.

Classification of people for business
purposes based on how likely it is for
them to spend a certain amount of
money, to repay a loan etc. Can also
be wused in medicine and other
scientific fields.

ARIMA
model

The ARIMA (autoregressive integrated
moving average) models can be applied to
time series data either to better understand
the data or to predict future points in the
series.

Prediction of sales for the next months
based on previous year’s sales to
better plan production and accuracy
of sales targets.

SARIMA
models

An extension of the previously mentioned
model, the SARIMA models can also account
for the seasonality in the time series.

Prediction of retail sales to account for
seasonal peaks within the year, e.g.
Christmas holidays etc.

Naive
Bayes

Classifier that makes use of Bayes' theorem
with strong 'naive'’ assumptions between
the features. It allows the probability of an
event to be calculated based on knowledge
of factors that might affect that event.

It is mainly used to analyze sentiment
to assess a product's perception in the
marker

Can also be used to classify several
people based on measured
characteristics.

Random
forest

Classification or regression model that fairly
improves the accuracy of a single decision
tree by generating multiple decision trees
and taking a majority vote of them to
predict the output.

Can be used to predict the customers
that will repay their debts in time, to
predict a stock's behavior and
whether a customer will buy a product
or not.

Neural
networks

Model in which artificial neurons (software-
based calculators) make up an input layer,
one or more hidden ones where calculations
take place and an output layer.

Due to their ability to model nonlinear
processes they have vast applications
in system identification, medical
diagnosis and decision making.

Deep
learning

Based on neural networks, deep learning
methods were inspired by the processing of
information in biological systems.

They are broadly used for voice, text
and character recognition.

Decision
tree

Uses decision trees to go from observations
about an item to conclusions about the
item's target value. It can be either a
classification tree, where the target variable
can only have discreet values or regression
tree if it is continuous.

A decision tree can be used to provide
a defined decision framework eg. it
can be used to understand product
attributes that make a product more
likely to be bought.

Support
vector
machine

It represents the examples as points in space
in way that the example of the separate
categories is divided by a gap that is as wide
as possible. When generalized it can be used
for regression.

It is widely applied in biological and
other sciences. It has also been used
to classify images and in text and
hypertext categorization.
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Generates sequential decision trees where
each decision tree focuses on correcting the
errors coming from the previous tree model.
The final output is a combination of results
from all decision trees.

Forecasting of product demand and
inventory levels.

Boosting
trees

As several algorithms have been developed, it is important that the best — performing algorithm for
each use case is selected. In the selection process, the following aspects need to be considered:

— Bias-variance tradeoff: Errors in machine learning algorithms can be divided into two major
categories: the bias error, which is the error that derives from faulty assumptions in the
learning algorithm, and the variance error, which derives from sensitivity to small
fluctuations in the training set (James, 2003). Thus, the first major issue that one must
consider is the tradeoff between bias and variance (Geman, Bienenstock, & Doursat,
1992).The tradeoff is the conflict that tries to simultaneously minimize these two sources of
error that prevent the supervised learning algorithms from generalizing beyond their
training set.

— Function complexity and amount of training data: The second issue that arises is the amount
of training data that will be used. As expected, the higher the complexity of the ‘true’
function the higher the amount of data needed to extract the relationship between the
variables. However, if the function is too complex the algorithm can be prone to overfitting,
meaning that the results of the algorithm respond more closely to the train set but fail to fit
additional data (i.e. the test set).

— Noise in the output values: If the desired output variables exhibit high levels of noise,
meaning these variables are often incorrect, then the algorithm should not attempt to fit the
data. Attempting to fit misleading data could lead to overfitting or to incorrect definition of
the underlying function. To avoid this issue, it is common to apply techniques that remove
noisy training examples prior to the training (e.g. outlier elimination) or try to alleviate noise
in the output (e.g. early stopping) (Brodley & Friedl, 1996).

It is important to consider the above when selecting the algorithm for each use case and to
experiment between different algorithms to determine the best algorithm for each application
(Geisser, 1993).

2.2.2.1 Reinforcement Learning

Reinforcement learning is an area of machine learning that is broadly used in prescriptive models. In
reinforcement learning the algorithm learns how to perform a specific task in an environment. The
algorithm receives rewards when performing correctly and penalties when performing incorrectly.
Thus, the algorithm learns without any intervention from humans by trying to maximize the rewards
and minimize the penalties. One of the main issues to be addressed when using reinforcement
learning is the exploration — exploitation trade off. The exploration can be defined as the ‘random’
search of the possible solutions without searching in a specific area. This allows the algorithm to
explore the solution space and not trap it-self to a local optimum. On the other hand, the premise of
exploitation is searching thoroughly promising solution neighborhoods identified during the
exploration phase. The main disadvantage of the exploration is that is time-consuming, and the main
disadvantage of the exploitation is that the algorithm can be easily trapped to a local optimum. To
overcome these shortcomings, efficient and effective neighborhood operators need to be
constructed to account for the intricacies of the feasible solution space, like the “Big Valley”
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phenomenon, i.e. the clustering of very strong local optima around the global one, whilst not
sacrificing utilization of the “Backbone”, e.g. the commonly shared orientations amongst promising
permutations.

2.2.3 Prescriptive analytics

Prescriptive analytics is a recently introduced concept of data analytics as it encompasses techniques
and results from descriptive and predictive analytics. Prescriptive analytics uses optimization
methods to identify the best alternatives to minimize or maximize some objective (Evans & Linder,
2012) Prescriptive analytics suggest decision options on how to take advantage of a future
opportunity or mitigate a future risk and show the implications of each decision option. The
algorithms may consider new data that become available to re-assess the decisions and the risks.
Generally, prescriptive analytics models consider both structured data (numbers, labelled data) and
unstructured data and business rules.

One of the simplest methods used to search for the optimum solution in a problem is the brute force
search or exhaustive enumeration. Brute-force search is a general problem-solving technique that
consists of systematic enumeration of all possible candidates for the solution and checking the
performance of each candidate on the objective function and on the constraints of the problem. Its
application though is dependent on the underlying optimization problem, complexity and size of
solution space. Should the former be NP-Hard and the latter expansive, usage of brute force might
be prohibited due to the large computational overhead generated. In this case, alternate
approximation approaches might be considered like generalized metaheuristics, e.g. greedy adaptive
randomized search, particle swarm optimization, and/ or heuristics encompassing problem specific
knowledge in hybrid algorithmic frameworks.

2.3 In-depth analysis of machine learning algorithms to be used

2.3.1 Unsupervised learning - Clustering Algorithms

Clustering is a major part of unsupervised machine learning. As previously discussed (in 2.2.1.1),
clustering makes use of historical data to create classes (often also called groups) based on certain
criteria. Clustering is performed when it is believed that the data have undisclosed relationships with
one another that can be unveiled with the underlying cluster labels. The underlying clustering labels
and classes may help uncover useful information about the data and the groupings can be made
based on several dimensions in a structured way that will help choose better actions for each group.

2.3.1.1 k-means
K-means is an algorithm that organizes data into groups (k) that each contains data with similar

characteristics. K-means groups n observations into k clusters based on the distance between
observations of each cluster from a centroid. The algorithm tries to minimize this distance between
observations from same cluster.

More specifically, it puts N data points of an I-dimensional space into K clusters. Each cluster can be

parameterized by a vector my called its mean. The data points are denoted by vector x™ where n
runs from 1 to N (where N is the number of data points). The vector x has | components X; . We can
compute the distance as:

i=I
d(x,m) = Z(Xi — m;)?
i=1
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The first step of k-means is the initialization of the centroids (the means). This can be performed
using a number of different methods which will be discussed further below. Then, the two main
steps of the algorithm are performed in iteration. The first step is called the assignment step and the
second the update step.

In the assignment step, each data point is assigned to the nearest mean. The guess for the cluster
k™ that the point x(™ belongs is denoted by k™ ™ :

k" ™ = argming{d(m¥, x™) }

, Where argmin is the function that attains the k for which the distance as defined above is the
minimum.

Then, rl((n) is set to 1 if my is the closest mean to data point x(n), otherwise it is set to 0.

r(n>:{1, ifk" ™ =k
k 0, ifk"®™ %k

To summarize the two steps are presented below:

- In the first step, the algorithm computes the distance between the mean and each cluster.
The k cluster for which the mean has the minimum distance, is the cluster that the data
point will be part of.

- In the second step the rl((n) takes the value 1 if the data point belongs in cluster k and 0

otherwise.

In the update step the means (my) that have been initialized (in the first iteration) or have been
computed in the previous iteration are updated.

_ T
Mk ="

where,

K — ()
RO = 3
n

The steps are repeated until the assignments do not change. Alternatively, it can be said that the
algorithm stops when the means, the parameters of the model, stabilize.

There are two cases that k-means can’t handle. The first refers to the distances between a data point
and two (or more) centers of clusters. If said distances are equal, then the algorithm cannot decide
where to assign the data point. However, this is easily solved by assigning the data point to the
smallest k. The second case occurs when a cluster has no data points assigned to it. If this is the
case, then R® = 0 and my cannot be updated. If this happens then no changes are required to be
made to my.The initialization of the algorithm influences the clustering result as sometimes the k-
means is trapped in a local optimum. Furthermore, the initialization also affects the total number of
iterations of the algorithm and therefore the complexity of the problem.

The first method for the initialization is the random method. According to this data points are
assigned randomly to clusters and then the mean is calculated.
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The second is the Forgy method. This is one of the most commonly used methods where k data
points are randomly chosen and are used as initial means. (Hamerly & Elkan, 2002)

The Forgy method tends to spread centers out in the data, while the Random Partition method
tends to place the centers in a small area near the middle of the dataset. Random Partition was
found to be a preferable initialization method for its simplicity (Pena, Lozano, & Larranaga,
1999)However, for standard k-means algorithms the Forgy method of initialization is preferable
(zhang, 2003). The algorithm does not guarantee convergence to the global optimum. The result
may depend on the initial clusters. As the algorithm is usually fast, it is common to run it multiple
times with different starting conditions.

One of the major characteristics of k-means is the fact that it uses the Euclidian distance as a metric
and variance as a measure of cluster scatter. Another main characteristic is that the number of
output clusters is a pre-defined parameter by the user making the algorithm subject to the user’s
perception of the dataset. Poor choice of the parameter k (number of clusters) may yield poor
results.

Another key limitation of k-means is the cluster model is the main concept of the algorithm. The
main concept is based on spherical clusters which may fail to uncover underlying relationships
between the data.

2.3.1.2 DBSCAN
Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm

that given a set of points in some space, classifies in the same category points that are closely
packed together. At the same time, it marks as outliers points that lie in low-density regions. The key
idea is that for each point of a cluster, the neighborhood of a given radius must contain at least a
minimum number of points, i.e. the density in the neighborhood must exceed some threshold. As k-
means, DBSCAN usually uses the Euclidean distance to measure how close data points are from each
other (Ester, Kriegel , Sander, & Xu, 1996). Before applying DBSCAN, there two parameters that need
to be defined:

— eps: its value specifies the minimum distance between two points for them to be considered
neighbors. If eps value is too small, a large part of the data will not be clustered. On the
other hand, if the value is too high then most of the data points will be put in the same
cluster.

— minPts: which is the parameter that specifies how many neighbors a point should have to be
included into a cluster. Generally, the higher the value of minPts the more significant the
clusters that will be created will be

The first parameter that must be defined is minPts. (Ester, Kriegel , Sander, & Xu, 1996) who wrote
the first paper on DBSCAN suggest to setting minPts to 4, for two-dimensional data but in a next
paper (Sander, Ester, Kriegel, & Xu, 1998) it is suggested that the minPts is set to twice the dataset
dimension. Generally, minPts needs to satisfy the relationship

minPts > D+ 1

, Where D is the number of dimensions of the problem. For datasets that have a lot of noise, that are
very large, that are high dimensional, or that have many duplicates it may improve results to
increase minPts. (Schubert et al, 2017).
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The value of eps is usually calculated using the k-distance graph, plotting the distance to the
k=minPts-1 nearest neighbor sorted from largest to smallest value. The value of eps can then be
decided based on the point that the graph shows an elbow. (Schubert, Sander, Ester, & Kriegel,
2017) (Sander, Ester, Kriegel, & Xu, 1998) (Ester, Kriegel , Sander, & Xu, 1996). For the purposes of
the algorithm data points are classified as core points, border points or outliers:

— A data point is considered a core point if at least minPts are within distance eps of it
(including the original point it self)

— A data point is considered a border point when it is within distance eps from a core point but
is not a core point itself (therefore it does not meet the minPts criterion)

— A data point is considered a noise point if it does not belong in any of the aforementioned
categories. Those points represent outliers in the data set that do not belong to any cluster

Two points are considered ‘directly density-reachable’ if one of the points is a core point and the
other point is within its eps radius. If we considered three data points denoted as p, m, g and p is
directly density reachable from m, which is directly density-reachable from q. The set of points
within the eps radius of p -> m -> g form one cluster.

The algorithm chooses a point p arbitrarily. Then, it retrieves all points directly density reachable
from p with respect to the minimum distance eps. If p is a core point, then a cluster is formed. Then,
it recursively finds all its density connected points and assign them to the same cluster as p. If p is
not a core point, then the algorithm iterates through the remaining unvisited points in the dataset.
The process is terminated when the algorithm has gone through all the points.

More explicitly, the algorithm begins by picking an arbitrary point from the data set. If there are
more than minPts data points within distance eps from that point (including itself), therefore if the
data point is a core point, a cluster is formed. Then the algorithm checks all the points that were
included in the cluster to determine if they too have more than minPts points within a distance eps.
If they do the cluster grows and this process continues. If the above constraint is not satisfied, then
the algorithm starts the process again by choosing randomly another data point that has not yet
been assigned to a cluster. If the data point chosen happens to be a noise point, then the algorithm
picks a new point. The main characteristics of DBSCAN are summarized below:

— The algorithm optimizes the number of clusters without using feedback from the human
thus increasing its efficiency. The user does not need to perform a sensitivity analysis as per
the number of clusters.

— DBSCAN can find any shape of cluster, as opposed to the k-means algorithm that finds only
circle-shaped clusters.

— The algorithm self-adjusts for outlying data points.

— It is not entirely deterministic, meaning that border points that are reachable from more
than one clusters can be part of any of those clusters

— It cannot cluster datasets with large difference in densities, since the minPts-eps
combination cannot be appropriately chosen for all clusters (Kriegel, Kroger, Sander, &
Zimer, 2011)
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2.3.2 Supervised learning - Forecasting Algorithms

2.3.2.1 Random Forest
Random forest is a supervised learning algorithm: meaning that the input and output variables are

pre-defined by the user and is commonly used in machine learning.

To better understand the algorithm at hand, the building block of random forest, the decision tree
will be explained below. Decision tree learning uses decision trees to go from observations about an
item to forecast about an item’s target value. The main advantages of the decision trees are:

— Decision trees can handle both categorical and numerical data (Gareth, Witten, Hastie, &
Tibshirani, 2015)

— Decision trees do not require advanced data handling. Many algorithms in machine learning,
also k-means and dbscan described above, require data normalization and indirect creation
of dummy variables. However, decision trees do not require such actions.

— The decision trees use a white box model in contrast with other machine learning
algorithms, such as neural networks that make use of black box models.

However, decision trees exhibit certain limitations as well:

— Decision trees can be very robust and small changes in the training set could result in large
changes in the outcome of the tree (Gareth, Witten, Hastie, & Tibshirani, 2015)

— Decision trees are prone to overfitting (Bramer, 2007)This happens when an over-complex
tree is created that cannot generalize well from the training data. (Hothorn, Hornik, &
Zeileis, 2006)

— Lastly, decision trees that have more categorical variables with different number of levels
may be biased towards attributes with more levels (Deng, Runger, & Tuv, 2011).This can be
easily avoided by a two-stage approach (Brandmaier, von Oertzen, McArdle, & Lindenberger,
2013)

Random decision forests were firstly introduced as an attractive method for classification due to
their high execution speed (Ho T, 1995)In random forest tree predictors are combined so that each
tree depends on the values of a random vector sampled independently (Breiman , 2001)To
overcome limitations on accuracy exhibited on single trees, several decision trees in different
subspaces are combined to form a forest thus increasing the validity of the results (Tin Kam Ho,
1995). In other words, random forests are a way of averaging multiple deep single decision trees
that may be in risk of overfitting and have been trained on different parts of the training set to
reduce error metrics (Hastie, Tibshirani, & Friedman, 2008).
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Figure 2.3-1: Random forest with two trees visualized

The random forest algorithm makes use of the general technique of bootstrap aggregating (bagging)
to combine the results of the single trees (Breiman, 2001).

Given a training set X = x4, x5, ....., X, with responses Y = y,, ¥, ... ....., ¥, bagging repeatedly (B
times) selects a random sample with replacement of the training set and fits trees to these samples:

Forb=1,....,B

— Sample with replacement n training examples from X ,Y (denoted as X}, Y}, )
— Train regression (or classification) tree f;, on X, Y},

After training, predictions for x’ can be made by averaging all the predictions from previously trained

trees f3, using
L
f=2 D f@)

b=1
Therefore, random forest is one of the algorithms that will be tested in the next sections mainly
because of its ability to avoid overfitting (Hastie et al, 2008) and its superior efficiency (Tin Kam Ho,
1995).
2.3.2.2 Generalized Linear Model

The generalized linear model is a flexible generalization of ordinary linear regression that allows for
response variables that have error distribution models other than a normal distribution (Nelder &
Wedderburn, 1972)

In a general linear model the dependent variable y;, i = 1,....,n is modelled by a linear function of
explanatory variables x;, j=1,....,p plus an error term as follows:

Vi = Bo + B1X1; + Baxai + -+ Bpxpi + €
In a simple linear model, the independent variable is only one variable.

A generalized linear model is made up of a linear predictor
Ny = Bo + B1Xq; + Paxoi + -+ BpXpi
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and two functions

— A link function that describes how the mean E(Vi) = u;, depends on the linear predictor
g(u)=n;

— A variance function that describes how the variance var(Yi) depends on the mean
var(Yi)=@V(u) where the dispersion parameter ¢ is a constant

One of the advantages of the generalized linear model is that it can account both for categorical and
numerical variables. At the same time, the generalized linear model for regression in this case is
superior to the simple linear regression as it does not pose limitations on the error distributions of
the variables (Nelder & Wedderburn, 1972).

2.3.2.3 Principal Component Regression

In statistics, principal component regression (PCR) is a regression analysis technique that is based on
principal component analysis (PCA). Typically, it considers regressing the outcome (also known as
the response or the dependent variable) on a set of covariates (also known as predictors, or
explanatory variables, or independent variables) based on a standard linear regression model but
uses PCA for estimating the unknown regression coefficients in the model. (Bair , Hastie, & Debashis
, 2005).

The main structure of principal component regression can be divided into three main steps:

— Perform principal component analysis on the independent variables using statistical
methods

— Perform regression on the vector of results of the previous step using simple regression
methods such as the ordinary least squares method

— Transform the vector back to the scale of actual covariates to get the final principal
component regression estimator.

The main concept of the principal component analysis (which is the stepping stone of the PCR
algorithm), is to make use of statistical procedures to convert a set correlated variables into a set of
linearly uncorrelated variables which are called principal components. Principal component analysis
firstly introduced by Pearson in 1901, (Pearson , 1901) makes use of the principal axis theorem in
mechanics and creates a vector of uncorrelated orthogonal basis set.

The two main advantages of the PCR are:

— The algorithm can be performed when the number of variables is high in relation to the
number of available data. (Jackson, 1991)

— PCR can perform regression even when the explanatory variables are highly correlated to
each other.

The two advantages above make the principal component regression one of the algorithms that will
be used as the dataset has correlated independent variables and a large® number of data is not
available. These are the two main reasons that this algorithm will be used in the forecasting of the
demand.

2.3.3 Prescriptive model - Brute Force Analysis
In computer science, brute-force search or exhaustive search is a very general problem-solving
technique and algorithmic paradigm that consists of systematically enumerating all possible
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candidates for the solution, checking whether each candidate satisfies the problem's statement and
assessing their performance.

While a brute-force search is simple to implement, and will always find a solution if it exists, its cost
is proportional to the number of candidate solutions — which in many practical problems tends to
grow very quickly as the size of the problem increases (combinatorial explosion) (Coursera, 2018).
Therefore, brute-force search is typically used when the problem size is limited, or when there are
problem-specific heuristics that can be used to reduce the set of candidate solutions to a
manageable size. The method is also used when the simplicity of implementation is more important
than speed. At the same time there is merit in exploring the performance of brute force analysis as
the computing power of the IT systems has increased considerably in the last year therefore,
decreasing significantly the computational overhead of the implementation of such methods.

The most efficient way to speed up a brute force algorithm is to reduce the search space efficiently
by applying business or other rules. This analysis may reduce the candidates to the set of all valid
solutions; thus yielding an algorithm that directly enumerates all the desired solutions without
wasting time with tests and the generation of invalid candidates.

2.4 Conclusions

Having discussed in detail the applicable machine learning algorithms and advanced analytics
concepts that can be applied in this project, the bulk orders analytics framework is formulated. The
bulk orders analytics framework encompasses the algorithms and computation steps that will lead
to the completion of the three methodological steps of the practical part of the thesis:

— ldentification of high interest items: in this methodological step of the thesis clustering will
be performed so as to decrease the size of the dataset. This step encompasses the concepts
of descriptive analytics and relevant algorithms discussed (see section: 2.3.1) will be
applied.

— Forecasting of demand: in this methodological step of the thesis machine learning
algorithms will be applied so as to decrease the amount of administrative workload. This
step encompasses the concepts of predictive analytics and relevant algorithms discussed
(see section: 2.3.2) will be applied.

— Allocation of items: in this methodological step of the thesis a prescriptive model will be
created so as to minimize total cost incurred throughout the bulk orders process. This step
encompasses the concepts of predictive analytics and relevant methodologies discussed
(see section: 2.3.3) will be applied.
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3 Bulk Orders Analytics Framework

3.1 Overview

Below the bulk orders analytics framework is presented. This framework aims to tackle challenges as
presented in section 1.2, with the data analytics concepts thoroughly discussed in chapter 0. As
described in the summary the main scope of the analytics section of the thesis is to provide a
comprehensive decision support tool for market decisions for the use of the case company in the
bulk ordering process. The main steps of the bulk orders are presented below (see also: Figure 1.2-1)

The main challenges ,(see also section 1.2), of the bulk orders are focused on the large volume of the
ordered items and the continuous back and forth between the vessel and the departments that
generates increased amount of administrative workload. Therefore, the practical part of this thesis
aims to tackle those challenges by making use of data analytics and machine learning by decreasing
the number of items, by providing forecasted total needs of each vessel for each spare part for the
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next year and by allocating each spare part to vendors. More precisely:

To achieve the above aims of the project an extensive bulk order analytics framework is created

which is presented in the following figure:
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completion time for these steps will be smaller.

depending on the decisions regarding the source of purchase

non-maker) on the basis on minimum cost incurrence.

Purchasing Department

Figure 3.1-1: Bulk order process flow diagram [duplicate of Figure 1.2 1)]

The decrease of total items aims to facilitate steps C and D where the price collection, the
negotiations and the winner selection will focus only on a fraction on items and thus

The forecast of the total needs of the vessel’s aims to facilitate step A by providing an insight
to the technical department about the actual vessel’s needs and how they are shaped

The cost-based allocation aims to facilitate step D. ‘Winner Selection’ and rationalize the
whole process by providing indicative allocation of spares to vendor category (i.e. maker or
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Figure 3.1-2: Overview of bulk orders analytics framework

The practical part of the thesis is divided in three main methodological steps, described below:

— ldentification of high-interest items: where from all the items of the bulk orders the ones
that with certain criteria can be classified as high-interest are identified.

— Forecasting of demand: where the nominal needs of the fleet based on vessel characteristics
and the extra needs of each vessel based on market- related decisions are defined

— Prescriptive model: where a complex cost function is created to determine the optimum
allocation of vendor to items so as to minimize total cost, while respecting demand
requirements.

Detailed flow diagrams for each methodological step have been created and are presented below:
l:‘ Data Engineering
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v all data referring fo Structured Data
bulk orders
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underlying relations
between high-interest
items

Proceed to
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Figure 3.1-3: Flow diagram for the first part of the thesis

The first methodological step (presented above in Figure 3.1-3) focuses on the identification of the
high interest items and aims to reduce the total administrative cost.
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Figure 3.1-4: Flow diagram for the second part of the thesis

The second methodological step (presented above in Figure 3.1-4) focuses on the prediction of the
nominal and additional needs of the vessels.
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Figure 3.1-5: Flow diagram for the third part of the thesis

Lastly, the final methodological step includes the creation of the complex cost function.

In the next sections each of the above sub-problems are discussed in detail.

3.2 Data Engineering
A large part of the thesis is focused on the data engineering part of the problem. As all the aspects of

the practical part of the thesis entail sub-problems where historical data need to be used either to

extract specific values or whole datasets to train models.

The data engineering part of the thesis was completed using the case company’s data warehouse.

The data warehouse is a structured database that consolidates raw data from disparate sources and

heterogeneous systems within the company, in a hub-and-spoke architecture. More specifically, it

houses information stemming from the below integrated systems:

the SEASOFT, which houses information regarding the position of the vessel

the SAP ERP, which houses information regarding invoice checking and payments

the AMOS PMS (Planned Maintenance System), which houses the basic vessel information
and detailed relationship between vessel’s components while also provides spares, supplies
and lubricants procurement support and entails all relevant information

the dedicated SAP Forwarding Tool, which houses information regarding supply chain
related costs as well as information regarding the stock in the company’s warehouses.

A large number of data in the database, which was used for the analysis, are produced from the

planned maintenance system, AMOS, which also supports the entire procure-to-pay lifecycle of the

spare parts demand: from the requisition part (where the vessel raises the need) to the delivery part

(where the purchased goods are sent to the vessel). This cycle also entails the quotations phase,
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where several suppliers quote prices and lead times for specific parts as well as the procurement
order phase where, after vendor selection, the official purchase order is sent to the selected vendor
and the parts are purchased.

For the case study in question, each year more than 16,000 spare parts orders are made referring to
more than 30,000 different maker references (which is a unique code referring to one item). In the
bulk order process, which is the scope of the thesis, more than 4,000 items are procured grouped in
600 orders.

The variables that are of interest to the case study amount to more than 30 including historical
prices, lead times, vessel characteristics, historical data about dry-docking etc.

To create the datasets extensive use of SQL was made creating more than 35 temporary tables to
create 4 final datasets. Below the dimensions of the initial tables:

—  First dataset: including all bulk orders items for all the years: 13,967 rows x 6 columns

— Second dataset: including all vessel characteristics and demand metrics for forecasting of
nominal needs of the fleet: 3,625 rows x 18 columns

— Third dataset: including all vessel characteristics, demand metrics and market details for
forecasting of extra needs of the fleet: 4,508 rows x 20 columns

— Fourth dataset: including important variables from second dataset and historical data about
demand, prices, weight and lead times used for prescriptive model: 3,625 rows x 18 columns

Below a small part of the SQL code used:

USE [ADW_Analytics]

GO

/*¥**¥*k%k Object: StoredProcedure [pu].[uspT_MakerVSnonMaker] Script Date: 21/06/2019
16:02:07 *¥***x*x/

SET ANSI_NULLS ON GO

SET QUOTED_IDENTIFIER ON GO

ALTER procedure [pu].[uspT_MakerVSnonMaker] AS

SET NOCOUNT ON;

IF OBJECT_ID( 'tempdb..#itemsdetailsinitial') IS NOT NULL DROP TABLE #itemsdetailsinitial
IF OBJECT_ID('tempdb..#final') IS NOT NULL DROP TABLE #final

.......... [more lines that have not been included]

--drop table #final

select distinct f.component, , f.Vessel Code, f.MakerReference, f.BulkYear

, sum(f.Avg_pv)/ count (f.Vessel Code) as Quantity, avg (f.VesselAge) as Avg_Age, avg
(f.AvgPrice) as Avg_Price

, f.Market, fl1.VesselSize Desc, fl1l.BoughtStatus, fl.NationalityCountry_Code,
v.VesselSegment_Desc

, V.VesselType Desc as VslType, dwt.Avg DWT, f.NextYearDD,v.CargoOilType Desc,
v.ClassificationClass_Desc

, year (v.Bought_DateTime) as YearBought, v.BuildYear, v.HullBreadthMolded,
v.HullTonnageGT

, V.HullSpeedAbsMax, v.InsuredValue, f.Level3 Desc

, case when e.Avg pv_NB is null then © else e.Avg pv_NB end as 'ExtraNB'

, casewhen (ga.GeographicArea_Desc is null and v.Yard_Name like '%korea%') OR
Yard_Name like '%hyundai%' OR Yard_Name like '%samho%' OR Yard_Name like '%DAEWO00%' or
v.Vessel Code = '"h8' then 'SOUTH KOREA'

when v.Yard_Name like '%imabari%' then 'JAPAN’
when v.Yard_Name like '%hudong%' then 'CHINA'
else GA.GeographicArea_Desc
end as 'VslOrigin'
into #final
from #finalv2 f
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left join #finalv2 f1 on f.Component = f1.Component and f.Level3 Desc = fl.Level3 Desc and
f.BulkYear = fl.BulkYear and f.Vessel Code = fl.Vessel Code
left join #extraorders e on f.Component = e.Component and f.Level3 Desc = e.lLevel3_Desc and
f.BulkYear = e.OrderYear and f.Vessel Code = e.Vessel Code
left join adw.team.Vessels v on v.Vessel Code = f.Vessel Code
left join adw.team.VesselsNextDryDocking dd on dd.Vessel Code = f.Vessel Code
left join adw.team.GeographicAreas ga on ga.GeographicAreas Key =
v.YardCountry_GeographicAreas_FK
left join #avgDWT dwt on dwt.VesselSize Desc = f.VesselSize Desc
where f1l.Maker_Code is not null
group by f.Component, f.Level3 Desc, f.BulkYear, f.Vessel Code , fl.Maker_Code,
f1.Maker_Name, fl1.VesselSize Desc, f1.BoughtStatus

, fl.NationalityCountry Code, f.VesselAge, v.VesselSegment_Desc,
v.Fleet_ShortDesc, v.CF_DWT_Max, f.NextYearDD, ga.GeographicArea_Desc

, v.Yard_Name, v.Vessel Code, v.VesselType Desc, v.CargoOilType Desc,
v.ClassificationClass_Desc, year (v.Bought_DateTime)

, V.BuildYear, v.HullBreadthMolded, v.HullTonnageGT, v.HullSpeedAbsMax,
v.InsuredValue, e.Avg pv_NB, f.Level3 Desc, dwt.Avg DWT

,T.MakerReference, f.Market

.......... [more lines that have not been included]

GO

Additionally, some snapshots of the extracted data:

MakerReference Component  Quartty  Price TotalVome  AverageAge  UniqueVendors  UniqueVessels  Bukear
1 PLATE 90302-125/154 [CYL LINER-COOLING JAC) i M/E 1.000000 S775.000000 9775000000 16 470000 1 1 2m7
2 Piate S0801-0157/163 [Edh vAdawer parts] M/E 1000000 7737860000 7737860000 11910000 1 1 2017
3 Plate 90501-0155 [Fuel pump] M/E 1000000 7026369541 7026363541 14 560000 1 1 2019
4 Plate P30302:0184/046 [Cy Iner-cosing jacket] M/E 1000000 6675902613 6675902619 6440000 1 1 2017
5 Plate P30801-0134/204 [Exh valvedower parts] M/E 1000000 6180.119848 6180.119848 6.440000 1 1 2m7
& PARTNO-147673-11021 D/G 1000000 5920497684 5320497684 11290000 1 1 2017
7 Plate P30302-0184/046 [Cyl liner and cool jacket] M/E 3000000 5567500000 16702.500000 14750000 1 1 208
& Plate 50201-0213/112 [Piston and piston rod] M/E 3000000 533BEES700 16016003100 11510000 1 1 2017
9 520,000 DAG 1.000000 5100.000000 5100.000000 11.510000 1 1 2m7
10 Plste 305010195 (FUEL PUMP ASSY) M/E 1000000 5027146500 5027146500 11290000 1 1 2017
11 520000 D/G 1000000 4868179500 4868179500 4430000 1 1 017
12 PART NO747673:23010 D/G 1000000 4839949627 4839943627 11680000 1 1 2017
13 PART NO74767323011 D/G 1000000 4839949627 4839949527 10800000 1 1 017
14 PLATE 90801-0196/088 [EXH.VALVE LOWER PARTS] M/E 1.000000 4802500000 4802500000 14 470000 1 1 207
15 PART NO:14767323010 D/G 000000 4792374178 1437712253 1515000 1 2 2me
16 21.000 D/ 2000000 4665682400 9339364800 14.380000 1 1 2018
17 SECTION NO:A21100/100 [CYLHEAD REV:1D) D/G 3000000 4650582400 14009047200 1440000 1 1 2019
18 PLATE P3S0801-0196/098 [EXHAUST V/VLOWER PARTS] M/E 1.000000 4582000000 4582000000 14 950000 1 1 2018
19 Plate 50501-26/015 [Cyinder head] D/G 1000000 4352182621 4352182621 3980000 1 1

2019

(& Query executed successfully.

Figure 3.2-1: Snapshot of SQL code’s results (1/2)

Above snapshot (Figure 3.2-2) is produced by SQL code used for the first methodological step of the
practical part of the thesis.

componert Vessel Code  MakerReference BukYear Guantty AvgAge Avg Pice  Maket VesselSize Desc NationaltyCountry_Code  Desc  VelType  Ava DWT [
1 [CHINDER[INERS ™} VR PLATE 90302-125/154 [CYL LINER-COOLING JAC] 2017 1000000 14470000 9775.000000 Paralel MR1 Newbuldng  PH Crude Ol Carrier Tanker  39700.00001_
2 EXHAUSTVALVES ™~ wo Plate S0801-0197/189 [Eh v/vdower parts] 2017 1000000 9910000 7737860000 Maker SUEZMAX Newbuldng  BG Crude O Camer Tarker  151100.0001
3 FUELOILPUMFS  XR Flate S0501-0195 [Fuel pump] 2019 1000000 14560000 7025369541 Maker AFRAMAX SecondHand  BG Cruds Ol Camer Tarker  110300.0001
4  TURBOCHARGERS XR 599.001 2017 0000000 12560000 6800.000000 Paralel AFRAMAX SecondHand  BG Crude Ol Carmer Tarker  110900.0001
5  CYLNDERLINERS  ZM Plate PS0302:0184/045 [Cyl liner-cooling jacket] 2017 1000000 4440000 6675302519 Moker MRZ Newbuidng  PH Chemical Carer Tarker 4910000001
6  CYLNDERLNERS 20 Plate P30302-0184/045 [Cyl Iner-cooing jacket] 2017 0000000 4140000 6675302619 Msker MRZ Newbuldng  PH Chemical Camer Tarker 4910000001
7 EXHAUSTVALVES  ZM Plate PS0801-0194/204 [Exh valve-ower pars] 2017 1000000 4440000 6180.119848 Moker MR2 Newbuiding ~ PH Chenical Carer Tarker 4910000001
8  EXHAUSTVALVES 20 Plate PS0801-0194/204 [Exh valvedower parts] 2017 0000000 4740000 6180.119848 Maker MRZ Newbuiding ~ PH Chenical Carer Tarker 4910000001
9 CYLNDERHEADS  Wx PART NO:147673-11021 2017 0000000 8800000 5834501689 Parolel AFRAMAX SecondHand  BG Crude Ol Carmer Tarker  110800.0001
10 CYLNDERLINERS WD Plate PS0302-0184/046 [Cyt ner and cooljacket] 2018 3000000 13750000 5567500000 Paralel SUPRAMAX Newbuldng  PH Bulk Carmer Dy 5620000000
11 FISTONS wo Plate 90201-0213/118 [Fiston and piston rod] 2017 3000000 9910000 5338665700 Farsllel SUEZMAX Newbuldng ~ BG Crude Oi Carer Tarker  161100.0001
12 PISTONS pled PART NO 747673:23010 2017 1000000 9680000 4839.949%27 Paralel MRZ SecondHand  PH Crude O Camer Tarker 4910000001
13 CONNECTINGRODS ~Wx PART NO 74767323011 2017 1000000 8800000 4839.949627 Paralel AFRAMAX SecondHand  BG Crude Ol Camer Tarker  110900.0001
16 CONNECTINGRODS 2w PART NO-147673:23010 2018 2000000 13950000 4827138559 Farsllel AFRAMAX SecondHand  BG Cruds Ol Camer Tarker  110300.0001
15 EXHAUSTVALVES W PLATE 508010196/098 [EXH.VALVELOWER PARTS] 2017 1000000 12470000 4802500000 Farclel AFRAMAX Newbulding ~ PH Crude Oi Carer Tarker  110800.0001
16 PISTONS T PLATE 302010191 [PISTON AND PISTON ROD] 2017 0000000 13470000 4654761500 Parslel AFRAMAX SecondHand  PH Crude Ol Carmer Tarker 1108000001
17 EXHAUSTVALVES  ZW PLATE PS0801-0196/098 [EXHAUST VVAOWER PARTS] 2018 1000000 13950000 4582000000 Paralel AFRAMAX SecondHand  BG Crude O Camer Tarker  110900.0001
18 CYLNDERHEADS  UD Flate 50501-26/015 [Cylinder head] 2019 1000000 3880000 4352182621 Maker AFRAMAX Newbuldng  GR Froduct Carer Tarker  110300.0001
19 TURBOCHARGERS WA 599.001 2018 1000000 13340000 4140000000 Paralel VLCC Newbuldng ~ GR Crude Oi Carer Tarker  311900.0001
20 PISTONS VR PLATE 30201-145/118 [PISTON AND PISTON ROD] 2017 2000000 14470000 4096152500 Paralel MR1 Newbuidng  PH Crude Ol Camer Tarker  39700.0000(=]
< " ] I3
(@ Query executed successfully. T-VSRV-EDW (110 5P3)  NTSRVDOMAIN\f.anglou (73) | ADW_Analytics | 00:00:00 | 3806 rows

Figure 3.2-2: Snapshot of SQL code’s results (2/2)

Above snapshot (Figure 3.2-2) is produced by SQL code used for the second methodological step of
the practical part of the thesis.
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In the next sections, the analytics framework provided in this chapter will be used to perform the
three methodological steps (namely: the identification of high interest items, the forecasting of
demand and the implementation of the prescriptive model) of the practical part of the thesis to
create the integrated decision support tool for the bulk order process.

37



This page has been intentionally left blank

38



4 Identification of high-interest items

The bulk ordering process, as described (see section 1.2), is a time-consuming project and this is in
part due to the very high number of line items that comprise a bulk order. In the interest of industry-
wide standardization, each item in the spare parts industry can be referred to using a unique
number called a maker reference. In each bulk order, there are around 4,000 distinct maker
references making it very time consuming to compare the items and even to insert the prices of each
supplier in a data base or/ and an ERP system.

Therefore, it seems important to be able to narrow down the high-interest items for each bulk order
to facilitate and expedite the process. This way the analysis can be focused only on items that have
been identified as high-interest and therefore the volume of administrative workload for the
departments will be smaller.

4.1 Identification of analysis criteria

The identification variables that will be the input in the unsupervised learning algorithm is of great
importance as the relationship between those will determine the items upon which the forecasting
will be performed. The dataset that is used for clustering the items consists of data from all the bulk
order projects (in total 3 bulk orders, one for the needs of 2017, one for the needs of 2018 and one
for those of 2019) that the company has undertook. Therefore, the below variables were identified.

— Price: this variable indicates the acquisition price of the item (also accounting for discounts-
if any apply)

— Quantity: this variable indicates the number of times this item was purchased in all the three
bulks

— Total Volume: this variable indicates the product of the price and the quantity and is meant
to increase the importance of items that have a medium price and were ordered a
considerable amount of times thus making the total volume of those items quite large.

— Number of Unique Vessels: this variable indicates the number of different vessels that the
item was installed on. This variable was inserted to increase the importance of an item, even
if it doesn’t have a considerable volume, price or quantity, if it is installed on many vessels
and therefore has an increased influence in the uniformity and possible problems across
several vessels.

— Average Age: this variable indicates the average age of the vessels said item is installed on.

4.2 Descriptive modelling and clustering analysis

4.2.1 The dataset
The dataset has been extracted from the case study company’s data warehouse using SQL. Below a
sample of the dataset is presented.

The below notation will be used here on after for the identification of components:

— Main Engine: M/E

— Diesel Generator: DG

—  Purifiers: PUR (not present in below sample dataset)

— Compressors: COMP (not present in below sample dataset)
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Table 4.2-1: Sample of dataset used for clustering

Reference | Cotesory | auantity | erice | UR | US|
[redacted] M/E 2 10480.16 | 20960.32 14.01 1
[redacted] M/E 1 9775 9775 16.14 1
[redacted] M/E 1 7737.86 7737.86 11.58 1
[redacted] M/E 1 7026.37 7026.37 14.23 1
[redacted] M/E 1 6675.903 | 6675.903 6.11 1
[redacted] M/E 1 6180.12 6180.12 6.11 1
[redacted] DG 1 5920.498 | 5920.498 10.96 1
[redacted] M/E 3 5338.67 | 16016.01 11.58 1
[redacted] DG 1 5100 5100 11.58 1
[redacted] M/E 1 5027.147 | 5027.147 10.96 1
[redacted] DG 1 4868.18 4868.18 41 1
[redacted] DG 1 4839.95 4839.95 10.47 1

4.2.2 DBSCAN Clustering

The scope of the clustering exercise is to determine the items that have an abnormally high price,
quantity, combination of both or/ and are installed on several vessels. Therefore, what needs to be
performed is a clustering that will identify the ‘outliers’ of the dataset thus labelling the items that
have the characteristics described above. The ideal algorithm for this exercise is the dbscan
algorithm also described in the previous chapter of the thesis (see sections 2.3.1.2) as it
automatically creates a cluster containing the outliers.

Having decided the variables of the analysis, as per literature review (see sections 2.3.1.2) k is
determined as:

k=2dim =10

, Where dim is the number of dimensions (or variables) of the problem (5 variables as seen in the
table above; Quantity, Price, Total Volume, Average Age, Unique Vessels).

The next step will be to determine the value of the parameter eps. As previously stated, the k-
Nearest Neighbor (kNN, 10-NN) is created and is shown below.

15

10

10-NN distance

0 20000 40000 60000 80000 100000 120000 140000

Points (sample) sorted by distance

Figure 4.2-1: k-NN plot
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As discussed in the literature review (see section 2.3.1.2) the value of eps is determined by the
elbow of the graph (in the above graph shown by the red dotted line). The value of the eps
parameter is determined at eps=1.8

Table 4.2-2: Cluster Means of Variables®

Cluster Data Points Quantity Price Total Volume | Average Age | Unique Vessels
0 376 110 841.05 4581.38 10.47 5.62
1 12254 11.54 56.407 221.28 10.68 2.05
2 9 168.6 1.3091 219.89 3.26 3.89

As can be seen from the table above three clusters have been created. The first cluster (cluster 0),
here on after the outlying cluster, contains the outliers of the analysis. The mean quantity of the
outlying class is considerably higher than the one of the second cluster (cluster 1), which contains
the clear majority of the data, here on after the average class. The same can be said for the price of
the outlying class as compared to the price of the average class. Evidently, the total volume, which is
computed the product of the aforementioned characteristics (price and quantity), is also
considerably higher. Finally, the unique vessels, that as mentioned before describes the number of
different vessels that the specific item is installed on, is also considerably higher in the outlying class.
However, the average age of the vessels is virtually the same for the two clusters.

All in all, the items of the outlying class represent the items that have considerable higher volume,
price and quantity than the average meaning that they represent the cost drivers.

The third cluster (cluster 2) contains a small fraction of the total items that have a large quantity and
are installed on several young vessels.

20k

Total Volume
15k

6 200
400
12 600 Quantity
14 800

16
1000

8
Average Agel?

Figure 4.2-2: Results of clustering 2

! Made using (Hahsler & Piekenbrock , 2018) Library: dbscan
> Made using (Sievert, 2018) Library: plotly for R
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The items identified as cost drivers using clustering represent 3.06% of the items and 42.54% of the
total cost of the bulk orders. Therefore, the cost drivers are the items that will be used further in the
project to create the decision support tool.

4.2.3 Further analysis using k-means

To further analyse the data k-means clustering on the previously identified as high-interest items is
performed. Identifying the optimum number of clusters is one way to limit the main disadvantage of
the k-means. Therefore, for each cluster the total Euclidean distance, which is the total within-
cluster sum of squares, is computed.

1500
/

1000
/

500

Total within-clusters sum of squares

Number of clusters K

Figure 4.2-3: Optimum number of clusters

The figure above shows that the total distance between the data points and the centroid of the
cluster that these data points belong in, decreases as the number of clusters increases. In the figure
above there is no clear change of slope, except in cluster 7. However, considering the small number
of data the number of clusters was chosen to be three. It is noted that any number between 3 and 5
could have been chosen as there is no significant change in the slope of the curve. The smallest was
chosen to group the items in a smaller number of clusters thus creating broader business categories.

Table 4.2-3: Means of clusters produced by k-means algorithm

Cluster Data Points Total Volume Price | Unique Vessels | Average Age
1 174 4172.0 1799 1.40 10.9
2 96 3169.0 1383 1.51 9.26
3 105 2781.7 584 1.70 11.06

As can be seen from the table above the means of the clusters cannot provide any more indications
about the data in them. Therefore, the below graph is created.
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Figure 4.2-4: Kmeans 3D plot with 3 of the variables®

Making use of the graph above the description of each cluster is easier to be defined. Clusters 1 and
2 consist of high-volume items of low quantities. The differentiating variable here is the age where
cluster 2 consists mainly of young vessels and cluster 1 of older vessels. Cluster 3 consists mainly of
low volume and high quantity items for older vessels.

Table 4.2-4: Summarized results for 2™ clustering

Cluster Description Data Points Total Volume Percentage
1 High volume — young vessels 217 | $1,617,972.90 73.27%
2 High volume — old vessels 126 | $478,920.90 21.68%
3 Low volume 139 | $111,329.80 5.04%

The cluster of k-means was further used as an independent variable in the forecasting analysis of the
next chapter.

The items identified as cost drivers using clustering will be used as a basis for the bulk order price
collection and winner selection. Having identified around 3% of the total items that represent
around 50% of the total cost, the purchasing department will focus only on the pre-identified items
to collect prices, assess the quotations, negotiate the prices and select the winner. Therefore, the
administrative workload will decrease considerably in these steps of the bulk order process (see also
Figure 3.1-1 and section 3.1). Concurrently, the items identified as cost drivers will provide the basis
of analysis in the following steps of the practical part of the thesis. These items will be included in
the forecasting part of the thesis (see section 5) and for the final step of the thesis which is the
creation of the decision support tool (see section 6).

* Made using (Sievert, 2018) Library: plotly for R
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5 Predictive forecasting model for spare parts
After having defined the items, identified by a unique number (maker reference), the predictive
analysis is implemented.

This phase is divided in two parts. The first part refers to the forecasting of nominal bulk quantities
based mainly on the characteristics of each vessel and the second phase refers to the forecasting of
the extra quantities, if any, that will be needed during the next year based mainly on the buying
patterns of the previous years.

5.1 Nominal Bulk Quantities

5.1.1 Identification of parameters

The first part of the forecasting process is to create the dataset. Using clustering a number of maker
references has been identified as the cost and volume drivers of the spare parts bulk ordering
process (see section 0). In the forecasting process, the machine learning algorithms will try to find a
pattern between the data points in the dataset. The level on which the algorithms will try to find the
relationships is described by the granularity level. Therefore, if we try to predict the nominal bulk
guantities for each maker reference and for each vessel, we will need to create a small dataset for
each maker reference. This way, the maximum number of data points that each dataset will have is
3, equal to the number of bulk years, thus making the forecasting process very difficult.

Therefore, the maker references have been grouped based on their relationship with certain
components that can be found in the following table.

Table 5.1-1: Components and Number of Maker References

Component Number of Maker References
AIR COMPRESSORS 19
ASSEMBLY

CAMSHAFT 1
CONNECTING RODS 10
CONROD (BIG END) BEARINGS 1
CYLINDER HEADS 72
CYLINDER LINERS 17
DIESEL GENERATOR 21
DRIVE SECTION 1
EXHAUST VALVES 13
FUEL INJECTION VALVES 38
FUEL OIL PUMPS 31
FUEL OIL PURIFIERS 22
FUEL OIL SYSTEM 4
LO SYSTEM 2
LUB OIL PURIFIERS 19
LUBRICATING SYSTEM 3
MAIN BEARINGS 2
MAIN DIESEL GENERATORS 26
MAIN ENGINE 7
MECHANICAL SYSTEM 12
PISTONS 49
SHAFT ASSEMBLY 5
TURBO CHARGERS 6
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Therefore, the maker references have now been grouped into 24 components’. Then the dataset is

created making extensive use of SQL code as described in the previous section (see section 3.2)

5.1.1.1 Defining parameters for one component
The final product of the forecast will be the nominal quantity that a vessel needs for the following

for each vessel and for each maker reference. The variables that will be used for the forecasting of

the final quantity are:

Average Age: The age of the vessel is one of the most important vessel characteristics and as
described in the first chapter the maintenance of the vessel and thus the quantities of the
item that will be ordered are highly correlated.

Average Price: The price of an item is one of the most important demand characteristics and
in the sections below its relationship with the final quantity will be examined.

DWT: This variable describes the dead-weight tonnage of the vessel and therefore is an
indicator to the size of the vessel and to its needs

C/Eng Nationality: This variable refers to the nationality of the chief engineer of the vessel
and aims to unveil influences of education and culture that can be associated with the chief
engineer’s nationality. It is a categorical variable of three levels: GR for Greece, BG for
Bulgaria and PH for Philippines.

Type: The combination of this variable with the DWT declares the size of the vessel (eg.
Aframax, Suezmax etc.) Categorical variable of two levels: Tanker and Dry

Origin: This variable indicates the country of construction of the vessel. It is a categorical
variable of three levels: SOUTH KOREA, JAPAN and CHINA and aims to unveil correlations
between the shipyard and the quality of the vessel.

k-means cluster: as described in the previous section (see section 4.2.3) the cluster of the k-
means groups the items based on k-means algorithm creating 3 clusters.

Table 5.1-2: Sample dataset for forecasting of nominal needs for component AIR COMPRESSORS

Maker K-means
Reference Quantity AV:;ZEE A‘Ii?'::eg ) Nafc:i/oEnnainty Type DWT Origin cluster
[redacted] 1 8.3 S 1,139.21 PH Tanker 110900 CHINA 1
[redacted] 1 7.87 S 1,221.59 PH Tanker 110900 CHINA 1
[redacted] 1 8.3 S 1,461.78 PH Tanker 110900 CHINA 1
[redacted] 26 0.79 S 0.35 GR Tanker | 161100 | KOREA 1
[redacted] 10 1.17 $0.15 PH Tanker 110900 | JAPAN 2
[redacted] 10 1.65 $0.15 PH Tanker 110900 | JAPAN 2
[redacted] 5 1.17 $0.26 PH Tanker | 110900 | JAPAN 1
[redacted] 5 1.65 $0.26 PH Tanker | 110900 | JAPAN 1
[redacted] 1 6.33 $0.15 PH Tanker 49100 KOREA 1

5.1.1.2 Exploring regression techniques
In order to understand the variables of the dataset and the effect that they have on the nominal

quantity of the bulk order, a number of statistical methods are applied. The analysis below was
performed on the component AIR COMPRESSORS.

* There are 11 maker references that have not been grouped in one of the components of Table 5.1-1. This
happens because in the database no component was registered for said maker reference.
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5.1.1.2.1 Linear Regression
The first method explored was linear regression models. Having determined the variables of the
analysis a correlation matrix is created and is visualized below.
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Figure 5.1-1: Correlation matrix for air compressors

As can be seen from figure above there is no significant correlation between any of the variables and
the final quantity. This is assuming that a significant (strong) correlation (either positive or negative)
is described by a correlation coefficient absolute value of higher than 0.6 (Evans J. , 1996)The two
variables that have the highest significance for the final nominal need for air compressors are the
age of the vessel (as Avg_Age) and the type of the vessel (as VsIType).

Since the correlation between age of the vessel and the quantity is negative it means that as the age
of the vessel increases the quantity decreases. There are two factors that can explain this finding.
First, since the dry-docking procedures are happening in shorter time intervals the quantities needed
to be procured each year in the bulk orders are lower. At the same time, for commercial reasons
sometimes maintenance activities are not completed with the same intensity as for younger vessels
for cost containment purposes since the vessel is coming towards its end of life. For example, if the
company looks to sell an older vessel will not spend a considerate amount in overhauls and dry-
docks. Instead, it will keep costs to the lowest possible levels.

As far as the vessel type is concerned, the correlation coefficient value is -0.5 which can be
considered moderate relationship. For calculation purposes tanker- type was denoted as 0 and dry-
type was denoted as 1. The quantities are therefore higher for tanker vessels in relation to the dry
bulk carriers.

Finally, there is a negative correlation between the price and the quantity. The value of the
correlation coefficient is -0.2 which indicates a weak negative relationship. This is expected as it is
normal when the quantity increases for the price to drop.
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Having checked the correlations between several variables and the dependent variable (quantity)
linear models are created. Linear models were created for the numeric variables (the age of the
vessels denoted as avg_age and the price denoted as avg_price) and for the categorical variable with
the highest correlation with the dependent variable: the type of the vessel.

Quantity = fi{Avg_Age)
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Figure 5.1-2: Linear regression for AIR COMPRESSORS
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Figure 5.1-3: Linear regression for AIR COMPRESSORS

As is observed by the graphs above, it is very difficult to approximate the relationship between the
ordered quantity and the different aspects of the vessel or/ and the component that influence it.

Table 5.1-3: Linear Regression and results

2

Number of Variables Variable X Coefficient R
1 Average Age -0.158 4.34 4.1%
1 Average Price -0.002 3.88 6.4%
1 Vessel Type -1.701 2.762 3.8%

The analysis performed with statistical models, has shown that there is no profound relationship and
correlation between the variables, thus making the forecasting with conventional methods rather
difficult.

Linear regression with two variables was also explored. However, the results are not satisfactory.
Even when combining the variables Average Age and Average Price the coefficient of determination,
R?, is 8.31% which is very low. However, since it is not justified to dismiss linear regression solely on
the coefficient of determination below graphs, and their ideal shape is also included.
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Figure 5.1-4: Ideal Shape of residuals vs fitted (left) and QQ plot (right)

The residuals vs fitted graph tests whether the relationship between the variables is linear (i.e.
linearity) and whether there is equal variance along the regression line (i.e. homoscedasticity). The
ideal residuals vs fitted plot should be relative shapeless (as shown in the figure above) and be
generally symmetrically distributed around the 0 line.

The QQ plot helps determine if the dependent variable is normally distributed by plotting quantiles
from the dataset’s distribution against a theoretical distribution. If the data is normally distributed it
will be plotted in a generally straight line (as shown in the figure above)

Residuals vs Fitted Normal Q-Q
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Im{dataset$Quantity ~ datasetbAvg_Age + dataset$Avg_Price) Im(dataset$Quantity ~ datasetbAvg_Age + dataset$Avg_Price)

Figure 5.1-5: Residuals vs fitted (left) and QQ plot (right) after implementing linear model with age and price

As can be seen from the graphs above and from the comparison with the ideal shapes neither the
residuals vs fitted plot nor the normal QQ plot are satisfactory.

The above along with the low value of R® are enough to dismiss normal linear regression as a
forecasting method.

5.1.1.2.2 Time series analysis

Another approach that could be used for forecasting is the time series analysis. The bulk ordering is
a project that is undertaken every year and the demand of the spare parts is influenced by several
factors. Initially, someone could argue that the best way to forecast demand would be by using time
series analysis. However, in this case the time series analysis is not performed due to the reasons
below:

— The size of the dataset for the desired granularity is extremely small. As previously
described (5.1.1), the forecasting will take place for distinct maker references and for a
series of vessel characteristics that practically define a unique vessel. Therefore, the
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dataset of each quantity that needs to be forecasted has at most 3 data points, each
data point representing one of the bulks already carried out by the case company. As is
cited in literature review (Hanke & Wichern , 2009) minimum of the sample size to
capture patterns in time series needs to be at least 50. This makes the time series
analysis for the problem a poor choice.

— Additionally, demand of spare parts is heavily influenced by exogenous factors such as
the vessel characteristics. As it was observed by the correlation matrix above (5.1.1.2.1)
the vessel characteristics heavily influence the final demand of the vessel. Therefore, the
time series forecasting which is used to predict values based on previously observed
values (Imdadullah, 2014)cannot easily account for the needed exogenous factors.

— Using above analyses of linear regression, it is noted that the above dataset exhibits
signs of multicollinearity, heteroscedasticity and non-stationarity and therefore certain
transformations need to be performed (Deviant , 2012)This can be proven quite difficult
considering the two points above.

The inapplicability of time series analysis was validated by utilization of the auto.arima package
within R. The end goal was to identify a data set transformation viable enough to generate reliable
results using the optimum ARIMA parametrization. For most of the components of the dataset
auto.arima identified as optimum the set-up ARIMA (0,0,0), i.e. approximating the time series as
“white noise”, which means that the dataset can be characterized as a sequence of random numbers
and cannot be predicted if no further actions are taken. Below an example of forecasted quantities is
presented:

Forecasts from ARIMA(0,0,0) with non-zero mean
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Figure 5.1-6: Results of ARIMA forecasts for the majority of the components5

The approximation of the series as white noise results in a constant non-zero value as the forecasted
qguantity which does not capture the desired result.

5.1.2 Application of machine learning
Having considered the above analyses as well as the small size of the dataset, the applicability of
machine learning, and advanced statistics will be explored to see if there is indeed ground to

> Made using (Hyndman, et al., 2019) Library: foreast
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formulate a predictive model in this problem domain. The algorithms described in the previous
chapter (see section 2.3.2) of the thesis will be tested and evaluated to this end.

Smaller datasets for each component including all the distinct maker reference numbers that fall
under said component along with the extracted aforementioned variables from the database are
created. A loop is then created, which initially checks if there are more than 20 entries in said sub-
dataset for the component to ensure a large number of data to perform the next task. Then the data
are divided into two sets: the training set and the test set with a random 80-20 data partition, as for
most of the sub-datasets the number of data points is not sufficient enough to also create a
validation set. Finally, the training of the models is performed using the trainsets.

The following pseudo-code explains the process described above:

data <- get dataset from SQL®

for all components [i=1,. . .,N]
component dataset [[1]] <- data (where component[i] = component)
if nrow (component dataset [[1]]) >
data partition <- /
trainset <- *data
testset <- -(trainset)

model prediction 1<- train random forest
model prediction 2<- train generalized linear regression
model prediction 3<- train principal component regression
end
end
Having trained the models, the testing process is then performed. For each model the test set is

inserted as input and the output is then compared to the actual quantity. For each entry the
forecasting error is computed and for each component the mean average percentage error is also
computed.

for all components [i=1,. . .,N]
if nrow (component dataset [[i]]) >
model results 1<- test random forest
model results ?<- test generalized linear regression
model results 3<- test principal component regression
mape[i] <- compute mape for component i
end
end

5.1.2.1 Forecasting results
For each component the mean absolute percentage error is computed as per below formula:

|forecast — actual |

MAPE =
actual

The results are presented in the table below. For some components forecasting did not take place as
the entries were not enough to properly train and test the algorithms. Here on after the three
algorithms used for forecasting are denoted as follows:

— Random Forest: RF

— Generalized Linear Model: GLM

— Principal Component Regression: PCR

® Made using (Ripley & Lapsley, 2017) Library: RODBC
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Table 5.1-4: Mean absolute errors for each component 4

Component RF GLM PCR Number of Points

AIR COMPRESSORS 34% 119% 112% 268
ASSEMBLY - - - 6
CAMSHAFT 64% 61% 58% 22
CONNECTING RODS 77% 111% 272% 31
CONROD (BIG END) BEARINGS - - - 9
CYLINDER HEADS 140% | 220% 221% 893
CYLINDER LINERS 111% | 311% 301% 155
DIESEL GENERATOR 125% | 297% 146% 114
DRIVE SECTION 39% 46% 27% 22
EXHAUST VALVES - - - 17
FUEL INJECTION VALVES 98% 109% 128% 283
FUEL OIL PUMPS 103% 104% 103% 153
FUEL OIL PURIFIERS 77% 100% 94% 427
FUEL OIL SYSTEM 22% 45% 34% 26
LO SYSTEM - - - 16
LUB OIL PURIFIERS 52% 99% 103% 519
LUBRICATING SYSTEM - - - 4
MAIN BEARINGS - - - 13
MAIN DIESEL GENERATORS 122% 78% 88% 50
MAIN ENGINE - - - 10
MECHANICAL SYSTEM 137% 172% 166% 194
PISTONS 64% 256% 259% 294
SHAFT ASSEMBLY 64% 70% 85% 80
TURBO CHARGERS 48% 70% 48% 54

As can be seen from the table above the forecasting error is, in some cases, considerable and in
some cases, it can be characterized as rather satisfactory (those below 40%).

To better visualize the performance of the algorithms below indicative results for each component
are presented.
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Figure 5.1-7: Forecasting results for the component AIR COMPRESSORS

” Made using (Kuhn, et al., 2018) Library: caret.
All the following forecasting results were found using caret library.
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Figure 5.1-8: Forecasting results for the component PISTONS

What needs to be noted is that x axis in the graph above only denotes the observation and does not
have any affiliation with time.

5.1.2.2 Handling of data and forecasting results

For some components, making use of the graphs it was observed that even though the fitting of the
model seemed rather satisfactory the error was extremely high. An indicative case is the below:
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Figure 5.1-9: Forecasting results for the component FUEL INJECTION VALVES

For the component fuel injection valves, the error of the random forest algorithm is 98% (which is
the minimum of the three algorithms).

However, as can be observed from the graph the fitting seems to be much better than the error. The
two data points circled in red in above graph that have extremely high quantity as compared to the
rest of the dataset drive the error to higher levels.

Therefore, a data cleansing method is used to determine those data points and eliminate them from
the training and evaluating sets of the algorithms. In the specific dataset it is common to come
across data points that can be considered as outliers. In a business sense, this can be explained by a
superintended engineer calculating the values mistakenly or a vessel having abnormally high or low
needs for a year.
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Therefore, dbscan (see section 2.3.1.2) is used to determine the outliers and exclude those data
points from the analysis (see section 2.2.1.1).

While performing the above data cleansing method the below parameters were used

— minPts = 6: this parameter was chosen as dimensions of the problem multiplied by two (see
2.3.1.2). The dimensions for which dbscan is applied are only the numeric ones (age of the
vessel, DWT, price of the item)

— eps = 0.5: this parameter was chosen as dictated by literature review (see 2.3.1.2). However,
since every component has a different optimum eps value the average was assumed as eps
value for the parameters of DBSCAN performed below.

In the next section (see 0) the assumption of the eps value is tested to determine the optimum eps
for the components.

The table below presents the number of outliers for each component and the relative relation with
the total number of observations for each component.

Table 5.1-5: Number of outliers per category

Component Outliers | Number of Points | Percentage
AIR COMPRESSORS 27 268 10.1%
ASSEMBLY - 6 -
CAMSHAFT 14 22 63.6%
CONNECTING RODS 20 31 64.5%
CONROD (BIG END) BEARINGS - 9 -
CYLINDER HEADS 34 893 3.8%
CYLINDER LINERS 20 155 12.9%
DIESEL GENERATOR 12 114 10.5%
DRIVE SECTION 22 22 100.0%
EXHAUST VALVES 17 17 100.0%
FUEL INJECTION VALVES 37 283 13.1%
FUEL OIL PUMPS 46 153 30.1%
FUEL OIL PURIFIERS 22 427 5.2%
FUEL OIL SYSTEM 8 26 30.8%
LO SYSTEM - 16 -
LUB OIL PURIFIERS 51 519 9.8%
LUBRICATING SYSTEM 0 4 0.0%
MAIN BEARINGS - 13 -
MAIN DIESEL GENERATORS 6 50 12.0%
MAIN ENGINE - 10 -
MECHANICAL SYSTEM 20 194 10.3%
PISTONS 42 294 14.3%
SHAFT ASSEMBLY 26 80 32.5%
TURBO CHARGERS 22 54 40.7%

For the components EXHAUST VALVES and DRIVE SECTION the outliers are 100% of the dataset. This
means that dbscan cannot classify the items and labels them as outliers and therefore, the
components have been excluded from the implementation of the algorithms below.

Having handled the dataset in the way that was described above, the three algorithms are applied
again and are trained and tested on the ‘cleaned’ dataset. The pseudo code of the analysis and its
results are presented below. In the following pseudo code suffix ‘ no’ is used to emphasize the
absence of the outliers.

eps <-
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minPts <-

for all components [i=1,. . .,N]
db[[1]] <- dbscan on component dataset [[i]]
dataset no [[1]] <- db[[i]] [where db$cluster <> 0]
if nrow (component dataset [[1]]) >

data partition <- /
trainset no [[1]] <- *dataset no [[i]]
testset no [[i]] <- - (dataset no[[il])

model prediction no 1<- train random forest
model prediction no 2<- train generalized linear regression
model prediction no 3<- train principal component regression
end
end

and hereafter the second loop used to extract the results:

for all components [i=1,. . .,N]
if nrow (component dataset [[1]]) >
model results no 1<- test random forest
model results no ?<- test generalized linear regression
model results no 3<- test principal component regression
mape nol[i] <- compute mape for component i
end
end

The table below presents the results of the implementation of the algorithms already discussed (see
section 5.1.2) after performing data handling methods.

Table 5.1-6: Mean absolute errors for each component after outlier elimination

Component RF GLM PCR | Number of Points

AIR COMPRESSORS 31% 115% 94% 241
ASSEMBLY - - - 6
CAMSHAFT - - - 8
CONNECTING RODS 0% 0% 0% 11
CONROD (BIG END) BEARINGS - - - 9
CYLINDER HEADS 125% | 153% | 158% 859
CYLINDER LINERS 122% | 242% | 149% 135
DIESEL GENERATOR 83% 117% 93% 102
DRIVE SECTION - - - 0
EXHAUST VALVES - - - 0
FUEL INJECTION VALVES 44% 63% 56% 246
FUEL OIL PUMPS 68% 100% | 101% 107
FUEL OIL PURIFIERS 46% 89% 91% 405
FUEL OIL SYSTEM 10% 20% 30% 18
LO SYSTEM 17% 17% 17% 16
LUB OIL PURIFIERS 53% 93% 92% 468
LUBRICATING SYSTEM - - - 4
MAIN BEARINGS - - - 0
MAIN DIESEL GENERATORS 162% | 198% | 141% 44
MAIN ENGINE - - - 10
MECHANICAL SYSTEM 71% 72% 76% 174
PISTONS 53% 107% | 125% 252
SHAFT ASSEMBLY 29% 46% 55% 54
TURBO CHARGERS 0% 17% 0% 32

To better visualize the performance of the algorithms below indicative results for each component
are presented.
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Figure 5.1-10: Forecasting results for the component AIR COMPRESSORS after outlier elimination

For the component AIR COMPRESSORS total error was improved by 3% (see Figure 5.1-7 and Table
5.1-4). Another example is provided below:
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Figure 5.1-11: Forecasting results for the component PISTONS after outlier elimination

For the component AIR COMPRESSORS total error was improved by 3% (see Figure 5.1-8 and Table
5.14).

By comparing the two tables that summarize the results of the two methods (see Table 5.1-4 and
Table 5.1-6), the forecasting after outlier elimination is a process that yields better results than
simple forecasting. As an indication the total average error of the forecasting without handling of
outliers is 73% and after outlier elimination it decreases by 17% to 56%.

5.1.2.3 Optimization of data cleansing algorithm and forecasting results
As previously discussed, the results of the chosen outlier handling method (dbscan) are heavily

influenced by its two parameters (see section 2.3.1.2). The first parameter (k) is defined as per
literature review. As the forecasting of the different components is governed by the same number of
dimensions, this parameter can be considered as constant across the different components.

However, the second parameter, eps, is defined by interpreting a graph. This does not allow the
algorithm to be fully automated as the user needs to interpret the produced graph and then to
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determine the value of the eps parameter. To avoid this, a loop is performed to determine the best
value for this parameter.

However, as eps decreases, meaning that dbscan will consider data points to be in the same cluster
only if they have distance smaller than eps, the number of points that are labelled as outliers
increases. This way, the forecasting error decreases but the probability the model over fits the data
increases. Therefore, it is very difficult to determine the ideal eps for each component.

As can be seen from the table of the previous section (5.1.2.2) there are some components that the
outlier handling could not decrease the error to satisfactory levels. Namely those components are:

— Cylinder Heads
— Cylinder Liners
— Main Diesel Generators

For those components below the analysis of the optimum eps value is presented.
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Figure 5.1-12: Change of MAPE (left) and number of data points (right) as eps parameter increases for component
CYLINDER HEADS

As described above, when the eps parameter decreases the number of data points included in the
analysis is increased (the outliers are decreasing). At the same time the forecasting error decreases
as well. As can be seen from the graph the optimum error (without simultaneous elimination of a
considerable amount of data points) is at eps=0.8.
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Figure 5.1-13: Change of MAPE (left) and number of data points (right) as eps parameter increases for CYLINDER LINERS

Another example is given in the figure above referring to component main diesel generators. The
behavior here is similar to the component described above where the optimum point can be found
at eps=0.8.
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The analysis above can be considered an area of further research into optimizing the model and
especially the data handling section.

5.1.3 Synthesis of results

To conclude, the forecasting of the nominal quantities the six models produced by the three
different methods (RF, PCR, GLM) are evaluated and the results are presented on the table below.
For the next steps of the thesis the algorithms presented below are considered the best performing
algorithms and are used for further steps.

Table 5.1-7: Least mean absolute error for each component for all methods

Component Minimum MAPE Method

AIR COMPRESSORS 31% | Random Forest No Outliers
ASSEMBLY - -

CAMSHAFT 58% | Principal Component Regression
CONNECTING RODS 0% | Random Forest No Outliers
CONROD (BIG END) BEARINGS -l -

CYLINDER HEADS 125% | Random Forest No Outliers
CYLINDER LINERS 111% | Random Forest

DIESEL GENERATOR 83% | Random Forest No Outliers
DRIVE SECTION 27% | Principal Component Regression
EXHAUST VALVES - -

FUEL INJECTION VALVES 44% | Random Forest No Outliers
FUEL OIL PUMPS 68% | Random Forest No Outliers
FUEL OIL PURIFIERS 46% | Random Forest No Outliers
FUEL OIL SYSTEM 10% | Random Forest No Outliers
LO SYSTEM 17% | Random Forest No Outliers
LUB OIL PURIFIERS 52% | Random Forest
LUBRICATING SYSTEM - -

MAIN BEARINGS - -

MAIN DIESEL GENERATORS 78% | Generalized Linear Model
MAIN ENGINE - -

MECHANICAL SYSTEM 71% | Random Forest No Outliers
PISTONS 53% | Random Forest

SHAFT ASSEMBLY 29% | Random Forest No Outliers
TURBO CHARGERS 0% | Random Forest No Outliers

As can be easily observed from the table above the best performing method for the vast majority of
the components is the random forest algorithm. This result was expected as the random forest
algorithm (as previously discussed in 2.3.2.1) best handles the exogenous factors that influence the
outcome in a stochastic manner that makes it impervious to over/ under fitting.

5.2 Additional quantities during the year
As previously described, the quantities of the bulk ordering process are meant to cover the fleet’s
needs for the next year, yet on occasion those items are reordered during the year. This is either due
to miscalculation of the vessel’s needs or failure of previously bought equipment. To determine
those additional quantities a forecasting process is used.

First, the dataset is created following the same actions as for the nominal quantities. The same
vessel characteristics are extracted from the database, but an additional column is created.

— Bulk Market: This variable is a categorical variable that has two values: maker and parallel.
This variable describes the source of purchase of each item purchased in the bulk order
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process. These variables will be used to explore possible correlation between the source of
purchase and the additional quantities

What needs to be predicted is the variable here on after denoted as “NonBulk”, which is the extra
guantity that was purchased during the year.

Table 5.2-1: Sample dataset for forecasting of extra needs for component FUEL INJECTION VALVE

Maker Bulk Non- . Average .. C/En
Reference Category Market | Bulk Quantity | Type DWT Priceg Age Origin Nati{mag;ity
[redacted] DG Maker 0 2 Dry 49600 S 448.24 3.75 KOREA PH
[redacted] DG Maker 0 3 Tanker | 161100 | $429.03 0.79 | KOREA GR
[redacted] DG Maker 9 7 Tanker | 161100 | $177.70 0.79 | KOREA GR
[redacted] DG Maker 56 112 Tanker | 161100 | $1.35 0.79 | KOREA GR
[redacted] DG Parallel 0 0 Tanker | 110900 | $729.63 8.67 | KOREA BG
[redacted] DG Parallel 6 1 Tanker | 311900 | $72.25 12.35 | KOREA GR
[redacted] DG Parallel 0 2 Dry 56200 $717.22 12.63 | CHINA PH
[redacted] ME Parallel 4 3 Tanker | 110900 | $465.48 13.35 | KOREA PH
[redacted] ME Parallel 0 4 Tanker | 110900 | $232.74 7.87 | CHINA PH
[redacted] ME Parallel 0 6 Tanker | 161100 | $503.81 9.79 | KOREA BG
[redacted] ME Parallel 0 6 Tanker | 39700 $558.57 | 15.55 | KOREA PH

In the training of the algorithms for the forecasting of the extra quantities there is the difficulty that
most of the data (used for training and testing) are zero, meaning that an item was purchased in the
bulk order but was not re-purchased during the year.

Because of the intermittent nature of demand in these cases it is proven difficult to train the
algorithms in some of the sub-datasets. It was decided that if any sub-dataset had a mean of non-
bulk quantities of less than 0.1 it would not be used for forecasting, but, rather the extra quantities
would be assumed to be all zeroes. This threshold was decided as it was the minimum variation in
the target variable required for efficient training of the dataset. For the forecasting of the extra
guantities, the same procedure as previously is used. The pseudocode is presented below:

for all components [i=1,. . .,N]
extra dataset [[1]] <- all from data where component[i] = component
if nrow (extra dataset [[1i]1]) > && mean (extra dataset [[1i]]) >
data partition <- /
trainset <- *data

testset <- - (trainset)
model prediction I<- run random forest
model prediction 2<- run generalized linear regression
model prediction 3<- run support vector regression
end
end

for all components [i=1,. . .,N]
if nrow (extra dataset [[i]]) > && mean (extra dataset [[1i]]) >
model results 1<- test random forest
model results ”<- test generalized linear regression
model results 3<- test principal component regression
mape[i] <- compute mape for component i
end
end

The models are trained and tested according to the pseudocodes above thus producing the results
of the following section.
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5.2.1 Forecasting results
For each component the mean absolute percentage error is presented in the table below. For some
components an accurate forecast could not be generated as the entries were not enough to properly
train and test the algorithms.

Table 5.2-2: Mean absolute errors for extra needs for each component

Component RF GLM PCR Number of Points

AIR COMPRESSORS - - - 326
ASSEMBLY - - - 6
CAMSHAFT 672% 1361% | 530% 24
CONNECTING RODS 14% 114% 97% 35
CONROD (BIG END) BEARINGS - - - 10
CYLINDER HEADS 161% 267% | 317% 1061
CYLINDER LINERS 43% 37% 17% 173
DIESEL GENERATOR 193% 126% 158% 149
DRIVE SECTION 0% 43% 43% 32
EXHAUST VALVES 0% 0% 0% 18
FUEL INJECTION VALVES 304% 319% | 345% 329
FUEL OIL PUMPS 257% 324% 194% 183
FUEL OIL PURIFIERS 28% 57% 69% 505
FUEL OIL SYSTEM 200% 357% 86% 31
LO SYSTEM - - - 17
LUB OIL PURIFIERS 2% 8% 12% 729
LUBRICATING SYSTEM - - - 11
MAIN BEARINGS - - - 15
MAIN DIESEL GENERATORS - - - 50
MAIN ENGINE - - - 10
MECHANICAL SYSTEM 5% 10% 8% 325
PISTONS 121% 146% 168% 314
SHAFT ASSEMBLY - - - 99
TURBO CHARGERS 0% 17% 0% 56

As can be seen from the table above, the forecasting results for some components is not satisfactory
and the error metric is considerably higher than that in the forecasting for the nominal quantities. To
better visualize the results of the forecasting process, indicative figures for each component are
presented below.
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Figure 5.2-1: Forecasting results for the component LUB OIL PURIFIERS

60



FUEL OIL PUMPS

— &u
2 — PCR
= -
5
]
g -
] [}
o —
2
< 2 o
o L\ A
[em G/OOOOO 02'9—6’{00000MOUvOOOOOOOOOOO\\G—éO}D

| | | | | | | 1
0 5 10 15 20 25 30 35

Observations

Figure 5.2-2: Forecasting results for the component FUEL OIL PUMPS

From the figures above, the need to better handle the dataset to produce better results is becoming
clear. As previously discussed (see section 2.3.3), this part of the forecasting exercise will be used in
the next section (see section 6) where the prescriptive model is constructed.

The main scope of the forecasting of the extra needs is to determine whether extra needs for the
vessels are influenced by the initial source of purchase (maker or non-maker)

5.2.2 Data handling and forecasting results
The same behavior observed before is also observed in this section of the forecasting exercise.
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Figure 5.2-3: Forecasting results for the component FUEL INJECTION VALVES

What is interesting to be observed here, is the scale of the difference of the circled point. The
qguantity of all the points is below 40 and there is only one that is more than 100. This data point not
only increases the error but also could be influencing the training of the algorithms and the rest of
the results. The mean percentage absolute error for fuel injection valves is more than 300%.

Therefore, the same process as previously is employed, and handling of the outliers is performed.
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Table 5.2-3: Mean absolute errors for extra needs for each component after outlier elimination

Component RF GLM PCR Number of Points

AIR COMPRESSORS - - - 295
ASSEMBLY - - - 6
CAMSHAFT - - - 8
CONNECTING RODS - - - 15
CONROD (BIG END) BEARINGS - - - 10
CYLINDER HEADS 70% 181% 183% 971
CYLINDER LINERS 7% 13% 0% 153
DIESEL GENERATOR 6% 44% 48% 121
DRIVE SECTION - - - 16
EXHAUST VALVES - - - 0
FUEL INJECTION VALVES 88% 122% 127% 285
FUEL OIL PUMPS 14% 19% 17% 145
FUEL OIL PURIFIERS 16% 18% 6% 472
FUEL OIL SYSTEM - - - 20
LO SYSTEM - - - 17
LUB OIL PURIFIERS 0% 3% 6% 687
LUBRICATING SYSTEM - - - 11
MAIN BEARINGS - - - 6
MAIN DIESEL GENERATORS - - - 50
MAIN ENGINE - - - 10
MECHANICAL SYSTEM 3% 5% 2% 308
PISTONS 13% 17% 9% 293
SHAFT ASSEMBLY - - - 99
TURBO CHARGERS - - - 33

As per usual, below forecasting results are presented in figures to better visualize the results.
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Figure 5.2-4: Results for forecasting of extra needs for component FUEL INJECTION VALVES after outlier handling

What needs to be noted here is that by eliminating in total 44 data points (both from the training
and the test sets) the error decreases from 304% to 84%, which for the purposes of this business
case can be considered acceptable. Some more indicative results are presented below:
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Figure 5.2-5: Results for forecasting of extra needs for component FUEL OIL PUMPS after outlier handling

For fuel oil pumps error was reduced from 257% to 14% with the elimination of 38 outliers.

By comparing the two tables that summarize the results of the two methods (see Table 5.2-2 and
Table 5.2-3), the forecasting after outlier elimination seems to be a process that yields better results
than simple forecasting. Indicatively the total average MAPE for the forecasting without outlier
elimination is 88%° and after outlier elimination it decreases to 24%.

The forecasting of the extra quantities is performed only on a small number of components as the
rest do not exhibit variations in the data and thus the completion of the training is very difficult.
Especially after outlier handling the number of forecastable components drops even further, from 13
to 8. This section of the thesis is one of the areas that future work could be focused on.

5.3 Application on newly-released data

The bulk ordering process of the case company starts in April each year (see section 1.2), therefore
the first phase of the process, where the requisitions are created, is an ideal case for the algorithms
to be tested. For each component the qualifying algorithm out of the six previously mentioned
models can be found below.

Table 5.3-1: Forecasting results for real case of the best performing algorithm

Component MAPE Method Used

AIR COMPRESSORS 36% | Random Forest No Outliers
ASSEMBLY - -

CAMSHAFT 35% | Principal Component Regression
CONNECTING RODS 62% | Random Forest No Outliers
CONROD (BIG END) BEARINGS - -

CYLINDER HEADS 105% | Random Forest No Outliers
CYLINDER LINERS 110% | Random Forest

DIESEL GENERATOR 66% | Random Forest No Outliers
DRIVE SECTION 78% | Principal Component Regression
EXHAUST VALVES - -

FUEL INJECTION VALVES 66% | Random Forest No Outliers
FUEL OIL PUMPS 106% | Random Forest No Outliers
FUEL OIL PURIFIERS 65% | Random Forest No Outliers
FUEL OIL SYSTEM 16% | Random Forest No Outliers

® This was computed excluding the forecast of the component CAMSHAFT as the error is extremely high and
the results of the above will not be used further.
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LO SYSTEM - -
LUB OIL PURIFIERS 111% | Random Forest

LUBRICATING SYSTEM - -
MAIN BEARINGS - -

MAIN DIESEL GENERATORS 78% | Generalized Linear Model
MAIN ENGINE - -
MECHANICAL SYSTEM 99% | Random Forest No Outliers
PISTONS 55% | Random Forest No Outliers
SHAFT ASSEMBLY 113% | Random Forest No Outliers
TURBO CHARGERS 5% | Random Forest No Outliers

For indicative components forecasting results are presented using graphs to better visualize the
performance of the chosen algorithm.
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Figure 5.3-1: Forecasting of RQ quantities for BO 2020 for component AIR COMPRESSORS

For the forecasting of component air compressors, random forest with outlier handling was used.
The error in the training was 31% and the actual error was 36%.

In general, the average error on the newly released data does not deviate significantly from the
average error in the training set. However, it should be kept in mind that the quantities that are used
to test the performance of the algorithms on the newly released data are the initial quantities of the
bulk order process. As it was explained in previous sections (see section 1.2) the initial quantities are
reduced or increased based on the company’s decisions regarding necessary equipment.

As further analysis, all six algorithms were applied to the data to evaluate if the best algorithm is
indeed the best fit. The results are presented below. On the table below, the minimums have been
marked with bold.

Table 5.3-2: Results of all methods on real data

Component RF GLM PCR | RF.NO | GLM_NO | PCR_NO
AIR COMPRESSORS 36% 113% 109% 36% 108% 94%
ASSEMBLY - - - - - -
CAMSHAFT 49% 75% 35% - - -
CONNECTING RODS 54% 179% 175% 62% 89% 71%
CONROD (BIG END) BEARINGS - - - - - -
CYLINDER HEADS 116% 184% 195% 105% 298% 299%
CYLINDER LINERS 110% 200% 228% 70% 224% 187%
DIESEL GENERATOR 100% 151% 168% 66% 86% 109%
DRIVE SECTION 64% 189% 78% - - -
EXHAUST VALVES - - - - - -
FUEL INJECTION VALVES 89% 102% 110% 66% 66% 73%
FUEL OIL PUMPS 168% 174% 174% 106% 132% 130%
FUEL OIL PURIFIERS 83% 122% 128% 65% 99% 104%
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FUEL OIL SYSTEM 24% 65% 29% 16% 90% 29%
LO SYSTEM - - - - - -
LUB OIL PURIFIERS 111% 156% 148% 78% 144% 144%
LUBRICATING SYSTEM - - - - - -
MAIN BEARINGS - - - - - -

MAIN DIESEL GENERATORS 30% 78% 47% 26% 67% 41%
MAIN ENGINE - - - - - -
MECHANICAL SYSTEM 153% 197% 175% 99% 150% 123%
PISTONS 112% 304% 198% 55% 167% 248%
SHAFT ASSEMBLY 70% 163% 165% 113% 8492% 9130%
TURBO CHARGERS 47% 57% 48% 5% 71% 62%

By comparing the two tables, it is observed that for most components the best performing algorithm
on the test data is also the best performing for the newly released data. However, as can be seen by
comparing Table 5.3-2 with Table 5.3-1 there are some components that the algorithm identified as
the best performing is not. As previously stated the quantities of the newly released data are not the
finalized purchased quantities, therefore explaining some of the deviations in the results. At the
same time, it needs to be kept in mind that for most components the data available are not
sufficient enough to capture precisely the complex nature of the problem therefore it is expected,
especially in the first years of implementation that such deviations arise. However, it is expected
that as the data set grows and additional dimensions (i.e. variables) are added the accuracy of the
results will improve. The components that have different best performing algorithms for the train
set and for the newly released date can be seen below:

Table 5.3-3: Components for which the test and the real set have different behavior

Component Error in Best Performing on train Errorin Best Performing on new
train new data data

CONNECTING RODS 62% | Random Forest No Outliers 54% | Random Forest

CYLINDER LINERS 110% | Random Forest 70% | Random Forest No Outliers

DRIVE SECTION 78% | Principal Component Regression 64% | Random Forest

LUB OIL PURIFIERS 111% | Random Forest 78% | Random Forest No Outliers

SHAFT ASSEMBLY 113% | Random Forest No Outliers 70% | Random Forest

For the components of the table above, in the following sections both algorithms were applied, and
the average was taken as the final forecasted quantity.

The forecasting of the nominal needs of the vessels exhibits satisfactory results (average MAPE 53%)
and could, in the future when the training samples increase, become more and more accurate. For
some specific components that show increased accuracy, e.g. fuel oil system (MAPE = 10%) the tool
can be used to expedite the process while decreasing the workload both for the vessel and for the
shore- based engineers. However, the forecasting of the extra needs does not yield such results. The
average MAPE is increased compared to the forecasting of the nominal quantities while the number
of components upon which forecasting is applied decreases.

The next methodological step of the thesis encompasses the results of the above forecasting
exercises to create the final objective function that leads to optimum allocation of items to vendors
so as to minimize total cost of the bulk orders.

65



This page has been intentionally left blank

66



6 Prescriptive cost optimization model

The final step of the analysis is the creation of the main product of the thesis, the prescriptive
model. The prescriptive model ties in the entire bulk order analytics framework and gears it in the
decision support domain by serving as a guideline on the optimal cost basis of spare parts
procurement The model will allow the case company to determine whether each spare part should
be ordered more times than the nominal need of the vessel and whether it should be bought from
maker or from the parallel market.

For the prescriptive model data from the dataset used for the forecasting of nominal bulk quantities
for the year 2018 will be used.

6.1 Identification of cost analysis parameters
The cost function will be the objective function of this optimization problem. Therefore, the
components of this function are of great importance to the result.

The components of the cost function have been identified as of below

— Acquisition cost: it represents the cost of purchase for each item. It depends on the total
guantities and on the acquisition price of each item. What needs to be noted here is that for
the two main categories of suppliers, makers and non-makers, the acquisition price changes
considerably.

Acquisition Cost = (Nominal Needs + Extra Quantities + Safety Stock) » Acquisition Price

Safety stock: depending on the desired service level (SL) the level of the safety stock will be
determined. The safety stock will also be added to the acquisition and forwarding cost as it is
assumed that both the target inventory and the safety stock are bought together,
considering that price fluctuations in the spare parts are not high. The safety stock follows
the formula below.

Safety Stock = Z * \/Avg LT * (st dev of demand)? + Avg demand = (st dev LT)?

where LT is the lead time, Z is the inverse distribution function of a standard normal
distribution with cumulative probability of the underlying service level and demand refers to
the historical demand of the relevant item. Both for the lead time and for the average
demand there are more than 30 observations therefore by the central limit theorem it can
be said that these variables satisfy the underlying assumptions (i.e. normal distribution) of
the above formula.

— Forwarding cost: this cost component represents the cost of the transportation of each item
on board the vessel. This cost depends on several parameters such as the location of the
supplier, the trading route of the vessel, any specific requirements for clearance etc. For the
purposes of this analysis it is assumed that the forwarding cost depends mainly on the lead
time. As of current situation in the market, there are two locations that supply ship spare
parts and can cover the needs of the overhauls which are accumulated in the bulk orders:
Europe and Korea. Around 40% of makers are in Europe and transportation costs to
Rotterdam, the main logistic hub of the company, for the spare parts located in Europe is
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assumed to be zero, as the European makers use groupage trucks on their account to
transfer the spare parts. For the rest of the items, we will follow the function below.

weight of order

. - - - * container rental rate, lead time < 30
forwarding cost = { total weight in container

weight of order * airfreight rate , lead time > 30

Therefore, according to the above the final formula for the forwarding cost is the below:

(1 — 0.4) * forwarding cost, market = Maker

final forwarding cost = { forwarding cost, market = Parallel

— Inventory Cost: this cost component represents the costs that are incurred because of the
inventory held on the vessel. The inventory cost follows the simple formula below

TI
Inventory Cost = (SS + 7) * Acquisition Price x WACC

where: SS is the safety stock and Tl is the target inventory where
Target Inventory = Nominal Needs + Extra Quantities

— Stock out cost: this cost component represents the costs that are incurred when an item
that should have been on board the vessel is not. It is computed using the formula below:

100 — SL o
Stock out cost = — *x Additional Cost

where
Additional Cost = Acquisition '+ Forwarding ' + Administrative'

What needs to be noted here is that the components of the additional cost are significantly
higher than the respective costs during a normal/ routine ordering process. Therefore, the
three components of the additional cost function will be increased by a factor.

6.2 Analysis

6.2.1 Acquisition Cost

The acquisition cost is the first cost component that will be discussed. The main components of the
acquisition cost are the total quantities and the purchase price. Both of those components will be
analyzed below.

6.2.1.1 Total Quantities
To determine the level of the nominal needs for each maker reference the models of the previous

section (see section 5) are being used. The dataset is structured in the same way as the dataset that
was used for training and testing the models of the previous chapter (see section 5). The best
performing model (the one having the smallest error) was used (see section 5.1.3)
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Table 6.2-1: Components that each algorithm is applied on

Algorithm Components

AIR COMPRESSORS, CONNECTING RODS,
CYLINDER HEADS, DIESEL GENERATOR, FUEL
Random Forest No Outliers INJECTION VALVES, FUEL OIL PURIFIERS, FUEL
OIL PUMPS, FUEL OIL SYSTEM, LO SYSTEM,
MECHANICAL SYSTEM, TURBO CHARGERS

Random Forest CYLINDER LINERS, LUB OIL PURIFIERS, PISTONS
Principal Component Regression CAMSHAFT, DRIVE SECTION
Generalized Linear Model MAIN DIESEL GENERATORS

To determine the extra quantities for the fleet, the datasets (also including the forecasted data for
nominal needs) are duplicated. The first dataset will have the bulk market equal to Maker thus
making the indirect assumption that all the items were purchased though the original market and
the second will be created assuming that all items were purchased through the parallel market.

This was performed to determine and highlight the differences in the quantities that need to be
purchased as influenced by the source of purchase.
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Figure 6.2-2: Extra needs depending on the market for FUEL OIL SYSTEM

The next step was to compute the safety stock for each item. As per previous section the formula of
the safety stock is the below

Safety Stock = Zg;, * /Avg LT * (st dev of demand)? + Avg demand * (st dev LT)2
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where LT is the lead time computed in the following pages and Zg, is the inverse distribution function
of a standard normal distribution with cumulative probability of the service level (SL).

The average demand and the standard deviation of demand were computed regardless of the
market using past data.

The lead time was derived from past data for each category for makers and for parallel market. To
capture the necessary time for delivery on board the production lead time was increased by 5 days.

Table 6.2-2: Lead times per component for each market category

Component Parallel Lead Time Maker Lead Time

AIR COMPRESSORS 30 8
ASSEMBLY 21 5
CAMSHAFT 30 15
CONNECTING RODS 30 7
CONROD (BIG END) BEARINGS 30 15
CYLINDER HEADS 24 13
CYLINDER LINERS 16 45
DIESEL GENERATOR 27 22
DRIVE SECTION 0 5
EXHAUST VALVES 20 35
FUEL INJECTION VALVES 15 16
FUEL OIL PUMPS 21 15
FUEL OIL PURIFIERS 1 5
FUEL OIL SYSTEM 18 33
LO SYSTEM 0 5
LUB OIL PURIFIERS 0 5
LUBRICATING SYSTEM 30 15
MAIN BEARINGS 30 15
MAIN DIESEL GENERATORS 23 13
MAIN ENGINE 30 41
MECHANICAL SYSTEM 0 15
PISTONS 26 29
SHAFT ASSEMBLY 0 5
TURBO CHARGERS 30 0

Lastly, to account for the forecast errors of the previous models, that sometimes are significant, the
following procedure is used.

— For each component the forecast bias is computed, and it is determined whether there is an
over-forecasting or an under-forecasting bias

— If there is an over-forecasting bias, then the safety stock computed is multiplied by the
accuracy of the forecast of nominal quantities

The forecast bias is computed using the following formula

forecast — actual

orecast bias =
f forecast + actual

The above, is sometimes called the normalized forecast metric and is broadly used to compute the
bias. As can be seen, the metric € [-1, +1] where 0 indicates the absence of forecast bias. Negative
values show a tendency to under-forecast and positive values to over-forecast.

In a business sense, the safety stock is needed to cover needs that cannot be covered by the nominal
demand. However, if the demand has been forecasted with a method that indicates over -forecast
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bias the final quantity that will be purchased will be unnecessarily high. This reasoning explains the
final formula of the safety stock:

safety stock * accuracy, forecast bias > 0

Safety Stock = { safety stock , forecast bias < 0

To visualise the above thinking the diagram below is presented.
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Figure 6.2-3: Example of positive forecast bias in the component CYLINDER LINERS

The forecast for some components (as the one illustrated in the figure above) tends to overestimate
the quantities that will be needed. Therefore, the over forecasted quantities can be used as safety
stock. This will avoid over-stocking the vessels with unnecessarily high quantities of items that have
been forecasted with methods that exhibit high positive forecast bias.

To determine the optimum service level of each time and market exhaustive enumeration was used.
Random service levels were used to compute the total cost of the items and the service level having
the minimum total cost was identified as the optimum service level and was used in the final step of
the prescriptive model. The random service levels were chosen in the range of 95% to 99.9%. As the
items ordered in the bulk process are critical for the smooth running of machinery, this range was
chosen mainly for business and technical reasons.
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Figure 6.2-4: Cost of item of item [REDACTED] of component AIR COMPRESSORS as a function of the service level

As can be observed from the graph, the minimum cost is achieved for the same level 97.71% for
both maker and non-maker. In the figure above, for SL € [95%, 97.71%] the total cost decreases
slightly and for SL € [97.71%, 99.9%] the cost is increased while the slope remains the same. To
understand this behavior below graph (total quantity to service level) is created. As one can see from
the graph above there is a high fluctuation of the total cost (around 30%) as the service level
changes, highlighting the need to determine the optimum service level.
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Figure 6.2-5: Quantity of item [REDACTED] of component AIR COMPRESSORS as a function of the service level

The figure above visualizes the change of the total quantity purchased as the service level increases.
As can be observed from the total quantities for maker and non-maker are the same. Using this
graph, the change of the total cost can be interpreted more easily. The total quantity drives the
increase as the service level dictates purchase of one additional quantity therefore driving the
acquisition, forwarding and inventory costs up. Below another example is given:
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Figure 6.2-6: Cost of item [REDACTED] of category CONNECTING RODS as a function of the service level

For this item the optimum service level is different for the maker (maker optimum service level =
95.18%) and for the non-maker (parallel optimum service level = 96.31%). Below the quantities of
this item as a function of the service level are also disclosed.
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Figure 6.2-7: Total quantity of item [REDACTED] of category CONNECTING RODS as a function of the service level

6.2.2 Acquisition Price
To calculate the acquisition cost of each item the prices of the items depending on the market need
to be determined. To simplify the procedure the comparable items (same items purchased in both
bulks) of bulk orders 2018 and 2019 were extracted and for them, the prices were compared for
each category (in the dataset labelled as category).

Figure 6.2-8: Acquisition cost per category and per market

Market_19 | Market_18 | Category AVG_(Price19/Price18) | MAX_(Price19/Price18) | MIN_(Price19/Pricel8)
Maker Parallel D/G 4.39 52.08 0.23
Maker Parallel M/E 3.61 17.24 0.71
Maker Parallel Compressor 0.92 4.83 0.16
Maker Parallel Purifier 1.12 5.49 0.26
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Using the above table, the price on record is multiplied or divided by the relevant entry in the
column labeled ‘AVG_ (Price19/Pricel8)’ that practically expresses the difference of prices between
makers and non-makers. Therefore, the prices depending on the market are extracted. To
accommodate for randomness and for changes in prices the market prices of the items were then
multiplied by a factor following the continuous distribution with a minimum of 0.8 and a maximum

of 1.2.

The elimination of assumptions regarding the prices of the two market categories can be achieved
by making the prescriptive model vendor specific. This would improve accuracy in the forecasting
part and efficiency in the decision-making part as sometimes the difference in pricing of vendors,
even if they belong in the same category, can be significant. At the same, discrepancies between
average historical prices and average market prices and/ or lead times can be omitted, thus making
the model more efficient.

6.2.3 Forwarding Cost

The forwarding cost is the next cost component that will be examined. As previously discussed (6.1),
to determine the forwarding cost approximates the weights of the orders. The weight of the items
depends on the category that they belong. Those are presented in the table below.

Table 6.2-3: Components and Categories

Component Category [1] Category [2]

AIR COMPRESSORS AIR COMPRESSORS -
ASSEMBLY MAIN ENGINES MAIN DIESEL GENERATORS
CAMSHAFT MAIN DIESEL GENERATORS -

CONNECTING RODS

CONROD (BIG END) BEARINGS

CYLINDER HEADS
CYLINDER LINERS
DIESEL GENERATOR
DRIVE SECTION
DRIVE SECTION
EXHAUST VALVES
FUEL INJECTION VALVES
FUEL OIL PUMPS
FUEL OIL PURIFIERS
FUEL OIL SYSTEM
LO SYSTEM
LUB OIL PURIFIERS
LUBRICATING SYSTEM
MAIN BEARINGS

MAIN DIESEL GENERATORS

MAIN ENGINE
MECHANICAL SYSTEM
MECHANICAL SYSTEM

PISTONS
SHAFT ASSEMBLY
TURBO CHARGERS

MAIN DIESEL GENERATORS
MAIN DIESEL GENERATORS
MAIN DIESEL GENERATORS
MAIN ENGINES
MAIN DIESEL GENERATORS
LUB OIL PURIFIERS
FUEL OIL PURIFIERS
MAIN ENGINES
MAIN ENGINES
MAIN ENGINES
FUEL OIL PURIFIERS
MAIN DIESEL GENERATORS
LUB OIL PURIFIERS
LUB OIL PURIFIERS
MAIN ENGINES
MAIN DIESEL GENERATORS
MAIN DIESEL GENERATORS
MAIN ENGINES
FUEL OIL PURIFIERS
MAIN ENGINES
MAIN DIESEL GENERATORS
FUEL OIL PURIFIERS
MAIN ENGINES

MAIN DIESEL GENERATORS

MAIN DIESEL GENERATORS
MAIN DIESEL GENERATORS

MAIN DIESEL GENERATORS

LUB OIL PURIFIERS

MAIN ENGINES
LUB OIL PURIFIERS
MAIN DIESEL GENERATORS

For each category the average weight is shown below
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Table 6.2-4: Average weight of items per category

Category Weight per Item [kg]

MAIN DIESEL GENERATORS 2.8
MAIN ENGINES 8.9
LUB OIL PURIFIERS, FUEL OIL PURIFIERS 3.7

For the component air compressors, there is no available data and therefore the weight of the items
needs to be approximated using other methods. After conducting interviews with superintendent
engineers and experienced spare part operators of the case company, average weight is assumed
around 3 kgs per item.

If a component belongs to more than one category, then the average of the two is taken as the
weight. Therefore, the forwarding cost follow the following formula:

weight per item * quantity ) )
* container rental rate, lead time < 30

forwarding cost = { total weight in container
weight per item * quantity * airfreight rate , lead time > 30

The forwarding cost must be separated into two categories:

— Forwarding cost for routine orders. The routine last mile cost is low because in a routine
shipment there is usually more than 10 orders being shipped and therefore the costs are
being allocated to a high number of orders. Additionally, when routine shipment is arranged
the port index, the corresponding price index of a port, is considered.

— Forwarding cost for unplanned orders. In this case, the two factors above are not being
considered as the spare part needs to reach the vessel regardless of its location and the port
index is not considered.

Further analysis for the forwarding cost for unplanned orders will take place in the stock out cost
analysis section (see section 6.2.5).

6.2.4 Inventory Cost
As previously discussed the inventory cost follows the equation below

TI
Inventory Cost = (SS + 7) * Acquisition Price * WACC

, where WACC is the weighted average cost of capital which is the average interest rate of the case
company which for privacy reasons is redacted.

As further analysis for this parameter a sensitivity analysis will take place at the next section. For the
purposes of this analysis the WACC € [3%, 8%]. As reference, the WACC of the maritime industry is
7.05% (NYU Stern, 2019).

6.2.5 Stock- out Cost
This cost component, as previously discussed, represents the cost of re-supplying the ship with the
item on an urgent level if the existing stock of the vessel runs out.

As one can easily understand, this cost will be increased compared to the previous cost mainly for
the reasons below:
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— When a requisition is made on an urgent basis there is no time to receive quotations from
several vendors or to make price negotiations with them as can be done in the bulk ordering
process.

— When a requisition is made on an urgent basis, the selection is mainly made considering the
lead time and not the price, therefore there is a possibility that the price is higher than
usual.

— When a requisition is made on an urgent basis, the forwarding cost of the shipment can be
extremely higher both because of inconvenient delivery port and because of absence of
other orders (meaning that the fixed costs of the shipment are not being allocated to many
items).

Therefore, the formula of the stock out cost is as per below
Stock out cost = (Probability of Stockout) * (forwarding cost + acquisition cost' + administrative)
where,

a * Priceggrer + (1 —a) * Priceparatter
2

Acquisition Cost ' = * Stock out order quantity

where a is the percentage of the times that on a spot basis the maker is chosen. As per analysis of
the case company’s buying patterns a= 40% and,

Stock out order quantity = (Safety Stockgervice tevel 99.0% — Safety Stockys seiectea st )
and,
Probability of Stockout = (0.999 — Selected SL)
where SL is the service level for each item.
Forwarding Cost’' = Stock out order quantity * avg_weight = airfreight cost x urgency

where the urgency factor of the equation above models the increased forwarding cost of an
unplanned event.

For calculating the urgency factor the following simple equations were used.

{Routine Cases; * Routine Cost + Unplanned Cases; * Unplanned Cost = Cost;
Routine Cases, * Routine Cost + Unplanned Cases, * Unplanned Cost = Cost,

To compute Cost; and Cost, the budgeting tool of the company was used which will not be disclosed
for privacy reasons.

Therefore, the urgency can be defined as

Unplanned Cost
Routine Cost

urgency =

For the fleet total it was found that urgency € [1.2, 2.5]

Since a more precise way to define the urgency would be out of scope of this thesis, a sensitivity
analysis will take place in the next section to explore the way that the urgency coefficient influences
the model.

Finally, to compute the administrative cost of an unplanned case it is assumed that each unplanned
case is an order. To compute the administrative cost of an order, interviews with spare parts
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operators of the case company were conducted. At the same time, by retrieving data regarding the
number of orders completed each year by each operator, it was found that the total administrative
cost of an order is 19USD.

6.3 Synthesis of results
Using the default values for the two variable parameters of the problem as below

— WACC = [redacted]
— Urgency Coefficient = 2

, the below table is produced.

The column maker percentage presents the percentage of entries for which the total cost of maker
is less than the total cost of the parallel market, and thus the maker is chosen as the source of
purchase.

Table 6.3-1: For the default values of the parameters maker percentage for each component

Component Maker Percentage Total Acquisition for Makers Total Acquisition for Parallel

AIR COMPRESSORS 83% S 82,836.16 S 35,874.97
ASSEMBLY - - -

CAMSHAFT 0% S - S 62.82
CONNECTING RODS 0% S - S 41,602.46
CONROD (BIG END) BEARINGS - - -

CYLINDER HEADS 39% S 4,586.61 S 112,763.44
CYLINDER LINERS 4% S - S 42,856.87
DIESEL GENERATOR 11% S 43.75 S 10,068.39
DRIVE SECTION 91% S 496.69 S 77.83
EXHAUST VALVES - - -

FUEL INJECTION VALVES 1% S 19.17 S 97,703.79
FUEL OIL PUMPS 0% S - S 68,889.19
FUEL OIL PURIFIERS 57% S 15,952.30 S 2,779.68
FUEL OIL SYSTEM 0% S - S 30.70
LO SYSTEM 14% S 1.56 S 7.16
LUB OIL PURIFIERS 58% S 6,966.83 S 44.04
LUBRICATING SYSTEM - - -

MAIN BEARINGS - - -

MAIN DIESEL GENERATORS 33% S 128.81 S 1,105.06
MAIN ENGINE - - -

MECHANICAL SYSTEM 2% S 709.56 S 38,875.61
PISTONS 0% S - S 226,474.99
SHAFT ASSEMBLY 44% S 111.75 S 5,137.98
TURBO CHARGERS 0% S - S 36,175.98

A sensitivity analysis is then performed for both the WACC and for the urgency coefficient.
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Figure 6.3-1: Results of sensitivity analysis for WACC variable for component AIR COMPRESSORS

The graphs above have been produced while keeping the urgency coefficient constant at 2. The
graph visualizes the influence of WACC on the percentage of entries that the maker is selected as a
source of purchase.

As can be seen the WACC does not influence heavily the selection process. The total change in the
selection is 1% (total size of the dataset: 98) which means that the selection switches from maker to
non-maker for only one item when the WACC increases. This derives from the increased inventory
cost for said item due to high price of maker as compared to that of the non-maker.

The change in total gross revenue from makers is small and is depicted in the graph below.
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Figure 6.3-2: Change in total gross revenue of makers as a function of WACC

As can be seen from the graph above the total gross revenue for makers is decreased by less $200
(less than 0.5% of total gross revenue). Therefore, it is safe to conclude that for the component air
compressors the WACC does not heavily influence the selection process.

A further analysis on the influence of the WACC on important components of the cost function is
conducted and the results can be seen in the graph below.

The graph includes:
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— Change of the total quantity purchased
— Change of the total stock out cost

— Change of the total acquisition cost

— Change of the total cost
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Figure 6.3-3: Results of sensitivity analysis for important cost components
It is important to be noted that the above graph was produced while keeping the urgency coefficient

constant at 2.

In the above graph (a) shows the change of the quantity due to the increased WACC. As can be seen
the total quantity procured decreases thus also decreasing the acquisition cost (c) and increasing the
stock out (b). In the last graph (d), the increase of the total cost is increased due to the increased
inventory cost.

In the next section the influence of the urgency coefficient is shown.
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Figure 6.3-4: Total acquisition cost to makers for component AIR COMPRESSORS as a function of the urgency coefficient

As is seen in the graph above, the urgency coefficient does not influence the selection process for
the component air compressors.

However, in the graph below it is observed that there is a slight increase in the total gross revenue
by makers, that since no percentage change is exhibited means that the quantities procured are
increased.
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Figure 6.3-5: Change in total gross revenue of makers as a function of the urgency coefficient

A further analysis on the influence of the urgency coefficient on important components of the cost
function is performed as in the previous section and the results can be seen in the graph below.
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Figure 6.3-6: Results of sensitivity analysis for important cost components

As can be seen in the quantity — urgency graph (a) as the urgency coefficient increases the quantity
increases as well. This is expected as if the costs for unplanned cases are higher, it makes sense to
increase the stock kept on board a vessel. At the same time the acquisition cost increases (b) with
the same slope as the quantity. The behavior of the stock out cost, which can be seen at (c), is the
most interesting one. At first, it was expected that with the increase of the urgency coefficient the
stock out cost would increase considerably, however the simultaneous increase of the quantity
procured slows down the effect of the urgency factor and even if the stock out cost increases it does
not increase with the same intensity.

6.4 Comparison with real-case results

To compare the performance of the model with the real case results, the bulk ordering process of
2018 of the case company is used. Here on after, the real case bulk is denoted with the suffix [actual]
and the selections and costs produced by the model with the suffix [model].

Table 6.4-1: Comparison of percentage of maker selection and quantities procured for each component

Component Percentage [model] Percentage[actual] | Quantity [model] Quantity[actual]
AIR COMPRESSORS 83% 36% 523 355
ASSEMBLY - - - -
CAMSHAFT 0% 0% 357 228
CONNECTING RODS 0% 30% 57 46
CONROD (BIG END) BEARINGS - - - -
CYLINDER HEADS 38% 2% 6519 7387
CYLINDER LINERS 0% 0% 928 950
DIESEL GENERATOR 11% 22% 471 410
DRIVE SECTION 91% 0% 62 55
EXHAUST VALVES - - - -
FUEL INJECTION VALVES 1% 52% 1382 1153
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FUEL OIL PUMPS 0% 61% 287 237

FUEL OIL PURIFIERS 77% 0% 515 407
FUEL OIL SYSTEM 0% 86% 117 75
LO SYSTEM 14% 0% 35 16
LUB OIL PURIFIERS 58% 0% 554 399

LUBRICATING SYSTEM - - - -
MAIN BEARINGS - - - -

MAIN DIESEL GENERATORS 33% 0% 101 92
MAIN ENGINE - - - -
MECHANICAL SYSTEM 1% 0% 724 809
PISTONS 0% 3% 2156 2128
SHAFT ASSEMBLY 44% 0% 284 190
TURBO CHARGERS 0% 4% 85 47
Total 15,157 14,984

As can be seen from the table above, the percentage of the makers is increased considerably
especially in some categories (e.g. the air compressors, the drive section and others).

This can be explained mostly because of the decreased forwarding and stock out costs and will be
further explored below.

What needs to be noted here are the assumptions below:

— Stock out cost of the actual case has been computed in the same way that the stock out cost
for the purposes of the thesis has been calculated.

— No safety stock was assumed for the actual bulk orders therefore, the probability of stock
out is 50%. In the following pages, a sensitivity analysis regarding this probability is carried
out.

— Urgency coefficient for the previous bulk was assumed 1.2 (the lower bound of the urgency
coefficient bounds).

Table 6.4-2: Comparison of total cost of acquisition and forwarding in each component

Component Acquisition [model] | Acquisition[actual] | Forwarding [model] | Forwarding[actual]
AIR COMPRESSORS S 118,711.13 S 67,478.15 S 397.07 S 1,551.73
ASSEMBLY - - - -

CAMSHAFT S 65.77 S 42.87 S 1,428.00 S 1,428.00
CONNECTING RODS S 41,602.46 S 28,448.57 S 228.00 S 179.47
CONROD (BIG END) BEARINGS - - - -

CYLINDER HEADS S 128,783.77 S 65,694.61 S 12,453.07 S 26,606.13
CYLINDER LINERS S 59,627.99 S 38,336.30 S 3,712.00 S 3,712.00
DIESEL GENERATOR S 10,192.18 S 4,668.98 S 1,884.00 S 1,892.00
DRIVE SECTION S 574.52 S 531.71 S 16.53 S 19.20
EXHAUST VALVES - - - -

FUEL INJECTION VALVES S 97,791.30 S 141,458.83 S 5,528.00 S 5,072.00
FUEL OIL PUMPS S 85,144.19 S 148,031.18 S 1,148.00 S 1,040.00
FUEL OIL PURIFIERS S 18,746.07 S 11,263.45 S 137.33 S 157.07
FUEL OIL SYSTEM S 30.70 S 62.54 S 468.00 S 460.00
LO SYSTEM S 8.72 S 4.14 S 9.33 S 9.33
LUB OIL PURIFIERS S 9,953.03 S 5,255.58 S 147.73 S 166.13
LUBRICATING SYSTEM - - - -

MAIN BEARINGS - - - -

MAIN DIESEL GENERATORS S 1,236.90 S 840.21 S 277.07 S 408.00
MAIN ENGINE - - - -

MECHANICAL SYSTEM S 46,248.38 S 6,942.63 S 211.73 S 193.33
PISTONS S 268,400.23 S 135,354.90 S 8,624.00 S 8,620.00
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SHAFT ASSEMBLY S 5,249.72 S 787.33 S 75.73 S 75.20
TURBO CHARGERS S 36,175.98 S 19,471.70 S 340.00 S 328.80
Total $ 928,543.05 S 674,673.67 | $ 37,085.60 | $ 51,918.40

Table 6.4-3: Comparison of total cost of inventory and st

ock out cost in each component

Component Inventory [model] Inventory[actual] Stock out [model] Stock out[actual]
AIR COMPRESSORS S 3,571.59 S 1,349.56 S 438.94 S 37,860.21
ASSEMBLY - - - -

CAMSHAFT S 1.46 S 0.86 S 15.97 S 614.81
CONNECTING RODS S 1,309.17 S 568.97 S 362.11 S 28,329.28
CONROD (BIG END) BEARINGS - - - -

CYLINDER HEADS S 2,737.88 S 1,313.89 S 2,696.39 S 47,976.15
CYLINDER LINERS S 1,508.30 S 766.73 S 841.09 S 38,659.21
DIESEL GENERATOR S 235.69 S 93.38 S 200.41 S 6,093.52
DRIVE SECTION S 13.72 S 10.63 S 23.86 S 608.89
EXHAUST VALVES - - - -

FUEL INJECTION VALVES S 2,354.66 S 2,829.18 S 506.90 S 29,224.29
FUEL OIL PUMPS S 2,366.53 S 2,960.62 S 276.23 S 38,526.97
FUEL OIL PURIFIERS S 519.57 S 225.27 S 186.15 S 10,855.38
FUEL OIL SYSTEM S 0.78 S 1.25 S 8.64 S 408.81
LO SYSTEM S 0.28 S 0.08 S 1.27 S 313.07
LUB OIL PURIFIERS S 258.52 S 105.11 S 120.83 S 8,385.28
LUBRICATING SYSTEM - - - -

MAIN BEARINGS - - - -

MAIN DIESEL GENERATORS S 26.22 S 16.80 S 14.51 S 401.65
MAIN ENGINE - - - -

MECHANICAL SYSTEM S 1,190.03 S 138.85 S 137.48 S 20,087.71
PISTONS S 7,162.21 S 2,707.10 S 2,585.96 S 124,924.43
SHAFT ASSEMBLY S 124.25 S 15.75 S 24.34 S 2,356.84
TURBO CHARGERS S 1,174.75 S 389.43 S 324.46 S 28,468.20
Total S 24,555.61 S 13,493.47 S 8,765.52 S 424,094.72

Table 6.4-4: Final comparison of total costs for actual and model

Component Percentage [model] | Percentage[actual] | Total [model] Total[actual]
AIR COMPRESSORS 83% 36% $123,118.73 S 108,239.66
ASSEMBLY - - - -

CAMSHAFT 0% 0% S 1,511.20 S 2,086.54
CONNECTING RODS 0% 30% S 43,501.73 S 57,526.29
CONROD (BIG END) BEARINGS - - - -

CYLINDER HEADS 38% 2% $146,671.11 S 141,590.79
CYLINDER LINERS 0% 0% S 65,689.38 S 81,474.24
DIESEL GENERATOR 11% 22% S 12,512.29 S 12,747.87
DRIVE SECTION 91% 0% S 628.63 S 1,170.43
EXHAUST VALVES - - - -

FUEL INJECTION VALVES 1% 52% $106,180.86 $ 178,584.29
FUEL OIL PUMPS 0% 61% S 88,934.95 $ 190,558.78
FUEL OIL PURIFIERS 77% 0% S 19,589.12 S 22,501.17
FUEL OIL SYSTEM 0% 86% S  508.12 S 932.61
LO SYSTEM 14% 0% S 19.60 S 326.62
LUB OIL PURIFIERS 58% 0% S 10,480.12 S 13,912.11
LUBRICATING SYSTEM - - - -

MAIN BEARINGS - - - -

MAIN DIESEL GENERATORS 33% 0% S 1,554.70 S 1,666.67
MAIN ENGINE - - - -
MECHANICAL SYSTEM 1% 0% S 47,787.62 S 27,362.53
PISTONS 0% 3% $286,772.41 S 271,606.42
SHAFT ASSEMBLY 44% 0% S 5,474.05 S 3,235.11
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TURBO CHARGERS 0% 4% S 38,015.18 $ 48,658.13

Total $ 998,949.79 $1,164,180.27

As can be derived from the previous tables there is quite a difference between the actual decisions
and the model decisions. The two drivers of the cost are the acquisition and the stock out cost and
are the two factors that differentiate the model decisions with the actual ones.

424,095 1,164,180 M Actual

- 37,086 24,556 8,766 _____998,950
. 928543 37086 - Model
51,918 13,493
674,674 g ————

Acquisition Forwarding Inventory Stockout Total Acquisition Forwarding Inventory Stockout Total

Figure 6.4-1: Final total costs of previously realized bulk and as proposed by the model

The figure above visualizes the difference between the total actual costs and the total model costs.
As can be seen the stock out cost of the actual case is considerably high unlike the low stock out cost
derived from the model.

The cost components that drive the difference between the actual and the model are the acquisition
cost and the stock out cost. The acquisition cost is increased because of two changes. The first refers
to increased quantities due to market selection and safety stock and the second refers to the
different choices made by the model that increase the acquisition cost because of the difference of
price between makers and non-makers.

However, the increased acquisition cost is covered by the decreased stock out cost due to the safety
stocks. This is the reason that the stock out cost of the actual case is considerably higher. As
previously said the stock out cost of the actual case was computed assuming that the actual
qguantities did not account for safety stocks. The graph below visualizes the effect that the
probability of stock out.

Sensitivity analysis

$400,000.00 -

$200,000.00 -

0.4 0.5 0.6 0.7 0.8

Profit from the model
implementation

$(200,000.00) -
Probability of stock out

Figure 6.4-2: Sensitivity analysis for stock out probability

As is seen by the graph above, the implementation of the model is profitable when the probability of
stock out for the actual case is more than 30%. However, one of the assumptions for the
computation of stock out cost (6.4) in the actual case is that the urgency is at the lowest possible
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level since when the probability is high the more probable is to deliver in a more convenient port.
Therefore, as the stock out probability decreases the urgency coefficient would need to be
increased. This analysis is outside the scope of the current thesis and the results presented here
refer to a decreased urgency coefficient of 1.2 and therefore the conclusions can be considered
conservative.

What needs to be noted here is that the purchase of safety stock can be treated as an investment.
The safety stock purchased in the first year of implementation of the model will not be replenished
in total and in the next year the quantities bought will not be as increased.

Therefore, it is also important to note that if the selection suggestions of the model are used,
without purchasing extra quantities (accounting for market and safety stock), the total costs would
be as in the graph below.

24,556 8,766 768,206
697,799 ~ 37086 _
o M vodel
Next Year
Acquisition Forwarding  Inventory Stockout Total

Figure 6.4-3: Final total costs incurred by the model in the 2" year

As previously said the increased quantities purchased can be considered as an investment that,
keeping all other factors stable, would be paid back in full in the 2" year of implementation of the
model regardless of the probability of stock out.

In conclusion, the model supports that with the purchase of safety stock the total cost incurred in
the bulk ordering process will lead to decreased costs. The total indirect profit of the
implementation of the model as computed for a fraction of the total bulk order process amounts to
more than $150,000, which translates to 14.8% reduction of the total costs incurred. The safety
stock demands an initial investment of almost one quarter of the total acquisition cost that,
according to the model, will decrease the stock out probability, thus decreasing the total costs of the
process.
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7 Summary of key findings and further research

The original research objective as set out in the summary was to create a comprehensive decision
support tool that would help to facilitate the process of the bulk orders and optimize the purchasing
decisions.

This would be achieved by firstly reducing the base of analysis by identifying the high interest items
of the bulk order. This part focuses mainly on decreasing the workload of the departments involved
and on the creation of a targeted subset for further analyses. The next step would be to create a
forecasting tool for estimating the expected needs of the fleet regarding the previously identified
items and to test whether the needed quantity is influenced by the source of purchase. Lastly, a
cost-related decision support tool is created to allocate in the most cost-effective way the items to a
group of vendors.

The main conclusions of the above are:

— The identified as high- interest items represent less than 5% of the total items but more than
40% of the total cost. This means that if the bulk ordering process is only focused on these
items the administrative workload would decrease considerably both for the departments
involved internally, decreasing by around 0.5 FTE, but also for the business partners of the
case company

— The forecasting of the nominal needs of the vessels exhibits satisfactory results (average
MAPE 53%) and could in the future, when the training samples increase, become more and
more accurate. For some specific components that show increased accuracy, e.g. fuel oil
system (MAPE = 10%) the tool can be used to expedite the process while decreasing the
workload both for the vessel and for the shore- based engineers.

— The forecasting models of the extra needs based on market characteristics are not
performing well when it comes to accuracy (average MAPE 165%). What is observed is that
the source of purchase in the bulk orders does not heavily influence the extra needs that
need to be covered during the year after the bulk. However, a further analysis including
more independent variables, related to the urgency of purchases, the types of machinery
and their nominal running hours etc. may be performed in the future. This analysis was not
performed as said data were not easily accessible in a structured format.

— Lastly, the prescriptive model supports that increased quantities would lead to decreased
total costs by 14.8%, as one major component of the cost function is the stock out cost-
which represents the increased cost to deliver an item on board with heightened urgency.
Even if the previous exercise showed no influence of the source of purchase on the extra
guantities, the prescriptive model supports an increased allocation of items to makers. This,
however, mainly stems from the fact the makers have smaller production times, thus driving
the safety stock down. All in all, the model supports an initial investment on increased safety
stock that would be paid back in full (all other factors constant) after the 2" year of
implementation.

In addition, throughout the course of this thesis the below areas were identified as the ones most
deserving of further research:

— Re-evaluation of the entire algorithmic framework when more data and bulk order cycles
have been amassed. More specifically, with a sizeable enough critical mass of data, deep
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learning algorithms could be performed and assessed to see if they would further improve
the MAPE.

Add new dimensions (e.g.: urgency of purchase, related maintenance work orders etc.) in
order to tackle the increased complexity of the extra needs forecasting. Including these
dimensions may lead to more accurate predictions regarding the items re-purchased during
the year after machinery failure-and not because of miscalculations in the forecasts

Further improve accuracy by making the predictive and prescriptive models vendor specific.
Given the augmented variance noted in terms of prices, lead-times and total cost of
ownership amongst suppliers- and even amongst original makers- any effort to increase
granularity across this dimension would most likely yield improved decision making on cost.
Furthermore, trade routes of the vessels could also be added as a way to increase accuracy
in the computation of the forwarding cost.

Finally, there is need to reevaluate for these critical items their P-F curves, particularly if
their origin is from the parallel market. Retrieving and consolidating this information in a
structured format from the engineering crew onboard in between overhauls with the bulk
order spare parts would subsequently pave the way for a more holistic predictive
maintenance model. The latter should gauge this improved visibility into the spare part
reliability when predicting demand or prescribing outcomes for optimum total cost of
ownership.
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8 Conclusions

The findings of this thesis confirm that there is merit in applying advanced analytics concepts and
machine learning algorithms in attempt to rationalize spare parts purchasing and tackle present
challenges as discussed in Chapter 0. However, and given the initial investment needed, the
application of such concepts will yield a higher ROI for companies that manage a fleet size
potentially exceeding 30 vessels. A sizeable fleet is needed to generate a large enough pool of spare
part needs to drive the economies of scale that lie at the heart of bulk order execution.

Concurrently, the concepts presented in Chapter Orequire an all-encompassing supply chain
footprint of commonly adhered to procure-to-pay processes enabled by robust and scalable
systems, e.g. AMOS, SAP, and Data Warehouse. The latter, acting as a holistic supply chain system of
record, provide the primary source of a raw data set with the necessary breadth and depth to make
concepts such as machine learning attractive, meaningful and effective.

Of course the data set alone is not enough to unlock value, so any ship management company
looking to go down this road will need to invest in developing internally its analytics capabilities by
building a pool of dedicated data scientists coupled with analytics translators, who are capable of
bridging the business need with the algorithmic capability necessary. The latter will link the business
need with the analytics capability necessary the former will employ so as to drive value in any such
initiative. It is worth noting that supply chain systems of record and organically grown analytics
capabilities remain elusive concepts in the maritime industry which has traditionally proven tardy in
following the digitalization traits, minus some nominal exceptions such as the case company. Yet
even in this case which fulfills the aforementioned requirements to a large extent, limitations and
obstacles were faced when working towards the completion of this thesis. The primary one was data
availability and depth: advanced analytics are data hungry to the extent that three years of bulk
order data, in the time dimension, and over 90 vessels in the space dimension were not enough to
enough to even entertain the thought of deploying deep learning algorithms. The ones that
remained were hand-picked to ensure their structure was not prone to overfitting due to lack of
extensive data to train them on, e.g. Random Forest.

Additionally, such exercises as the one tackled in this thesis would need to also leverage the vantage
point of core operations owners such as the Technical department since the Bulk Order analytics
framework created could steadily evolved into a predictive maintenance tool with cross-functional
ownership and applicability. In practice this proves difficult to ascertain and manage given the
different pace, systems and tools the alternate departments follow, the Chinese walls raised in some
cases. These could be handled under the umbrella of an end-to-end Maintenance Transformation
Programme, complete with a Change Management methodology, provided all stakeholders involved
see and realize the untapped value advanced analytics can generate.

The McKinsey Global Institute (McKinsey & Company, 2018) estimates the net effect potential of
Artificial Intelligence on the world economy to be an incremental 13 trillion USD of economic activity
by 2030, or a 16% higher cumulative GDP than today. It will be hard to imagine such a tremendous
impact leaving the maritime industry unaffected and ship management companies already start
veering towards Al adoption at a faster pace than in the past in an effort to keep up with the rest of
the world, much like the case company is doing. However, since there does not appear to be a silver
bullet for the adoption of such concepts it makes sense to focus on tangible and ripe use-cases- e.g.
forecasting for bulk order spares- generate a monetary and workload related benefit, communicate
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it accordingly cross-departmentally and build the remaining use-cases from that point onwards. That
was the main contribution of this diploma thesis to the case company.
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