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Summary in Greek 

Η παρούσα διπλωματική εργασία εντάσσεται στην επιστημονική περιοχή της διοίκησης της 

εφοδιαστικής αλυσίδας και επικεντρώνει το ενδιαφέρον και τις εργασίες της στη διαδικασία της 

προμήθειας (purchasing) των επιχειρήσεων που δραστηριοποιούνται στον κλάδο της ναυτιλίας. Η 

διαδικασία προμήθειας στον κλάδο της Ναυτιλίας είναι μια πολύπλοκη διαδικασία, πολύ 

κοστοβόρα και με μεγάλα περιθώρια βελτίωσης. Στόχος της παρούσας διπλωματικής εργασίας 

είναι να δημιουργήσει ένα εργαλείο υποστήριξης των αγοραστικών  αποφάσεων του τμήματος 

προμηθειών μιας ναυτιλιακής εταιρίας το οποίο βασίζεται σε έναν συνδυασμό αλγοριθμικών 

τεχνικών ανάλυσης δεδομένων και είναι σε θέση να προβλέψει τις αναγκαίες ποσότητες για την 

κάλυψη των αναγκών σε ανταλλακτικά για το σύνολο του στόλου της, με το ελάχιστο δυνατό 

κόστος και σεβόμενο τις απαιτήσεις της τελικής ζήτησης σε ορίζοντα ενός έτους.   

Η εργασία χωρίζεται σε δύο μέρη. Στο πρώτο μέρος της εργασίας γίνεται μια συνοπτική περιγραφή 

του λειτουργικού μοντέλου του κλάδου της Ναυτιλίας με έμφαση στη διαδικασία προμήθειας η 

οποία και μελετάται λεπτομερώς στο πλαίσιο της παρούσης εργασίας. Στη συνέχεια ακολουθεί  μια 

βιβλιογραφική επισκόπηση των βασικών εννοιών της ανάλυσης δεδομένων και των διαθέσιμων 

αλγοριθμικών τεχνικών και των χαρακτηριστικών τους. Η έρευνα αυτή, οδηγεί στον προσδιορισμό 

των αλγορίθμων τεχνητής νοημοσύνης που θα χρησιμοποιηθούν στο δεύτερο μέρος, στο οποίο 

παρουσιάζονται οι εργασίες υλοποίησης του εργαλείου υποστήριξης αποφάσεων που αποτελεί και 

το κύριο παραγόμενο προϊόν της εργασίας.  

Το δεύτερο μέρος της εργασίας ακολουθεί τρία βασικά μεθοδολογικά βήματα υλοποίησης. Στο 

πρώτο προσδιορίζονται συγκεκριμένοι κωδικοί πάνω στους οποίους θα επικεντρωθεί η ανάλυση 

του κόστους και η πρόγνωση των αναγκαίων ποσοτήτων για την κάλυψη των αναγκών του στόλου. 

Χρησιμοποιούνται αλγόριθμοι ομαδοποίησης (clustering) προκειμένου να καταταχθούν οι κωδικοί 

με βάση μια σειρά κριτηρίων που αφορούν στοιχεία της ζήτησης τους και  τελικά προσδιορίζονται  

αυτοί που αποτελούν το μεγαλύτερο κομμάτι του συνόλου των εξόδων για το σύνολο του στόλου.  

Στη συνέχεια, για τους κωδικούς που εντοπίστηκαν στο προηγούμενο βήμα, εκπονείται ανάλυση 

της ζήτησης τους με στόχο τον καθορισμό των συνολικών ετήσιων αναγκών για αυτούς τους 

κωδικούς σε κάθε πλοίο.  Πιο συγκεκριμένα, η ανάλυση περιλαμβάνει τη δημιουργία μοντέλων 

πρόβλεψης των ονομαστικών αναγκών κάθε πλοίου για το έτος αναφοράς και τον καθορισμό του 

τρόπου με τον οποίο οι αγοραστικές αποφάσεις επηρεάζουν τις τελικές ανάγκες των πλοίων. Ο 

απώτερος επιχειρηματικός στόχος των αναλύσεων αυτού του βήματος είναι η εκλογίκευση της 

διαδικασίας προμήθειας μέσα από τη δημιουργία στοχευμένων παραγγελιών σε μεγάλες 

ποσότητες με όσο το δυνατόν μικρότερο σφάλμα, που θα οδηγήσει σε σημαντική μείωση του 

κόστους προμήθειας (λιγότερα stock outs, μείωση του κόστους αποθεματοποίησης, επίτευξη 

καλύτερων μέσων τιμών προμήθειας ανά κατηγορία ανταλλακτικών και συνολικά). 

Στο τρίτο και τελευταίο μεθοδολογικό βήμα της εργασίας, αναπτύσσεται ένα ρυθμιστικό 

(prescriptive) μοντέλο προκειμένου να υποστηρίξει τις βέλτιστες αποφάσεις για την αγορά 

ανταλλακτικών, χρησιμοποιώντας σαν βάση τα αποτελέσματα του προγνωστικού μοντέλου του 

προηγούμενου βήματος. Για το σκοπό αυτό δημιουργήθηκε μια σύνθετη συνάρτηση κόστους με 

διαφορετικές συνιστώσες, όπως το κόστος κτήσης, το διαχειριστικό κόστος, το μεταφορικό κόστος, 

το κόστος εργασίας (διαχείρισης) και το κόστος αποθέματος. Ως αποτέλεσμα, το μοντέλο που 

προκύπτει είναι σε θέση να προτείνει στα στελέχη εφοδιαστικής και προμηθειών μιας ναυτιλιακής 
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εταιρίας  την ανάθεση εντολών προμήθειας (ανταλλακτικά ανά προμηθευτή) η οποία δίνει το 

χαμηλότερο δυνατό συνολικό κόστος και ταυτόχρονα ικανοποιεί τις απαιτήσεις της ζήτησης.  
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Summary in English 

This diploma thesis is part of the scientific field of supply chain management and focuses on the 

purchasing-related tasks of a shipping company. Purchasing is a complex process, bears high cost 

and exhibits great improvement margins. The main objective of this thesis is to create a decision 

support tool that is based on data analytics and machine learning algorithms and can forecast the 

quantities needed to cover the needs of the fleet for spare parts, that concurrently minimizes the 

cost and respects the demand requirements. 

The thesis is divided in two parts. The first part briefly describes the shipping and maritime industry 

focusing on the supply chain specific aspects that are examined in detail in the main body of the 

thesis. Furthermore, it contains the theoretical research and the literature review of the data 

analytics concepts such as descriptive, predictive, prescriptive and machine learning algorithms as 

well as an in-depth analysis of the ones that will be used in the case study. The theoretical research 

aims to define the machine learning algorithms that will be used in the second part which 

constitutes the main product of the thesis.  

The second part of the thesis follows three main steps. The first step focuses on the definition of the 

product codes upon which predictive and prescriptive models will be applied. Clustering is used to 

classify the product codes based on a series of different criteria referring to demand in order to 

define the product codes that drive the cost of the spares for the whole fleet. 

Furthermore, for the product codes determined in the previous step, analyses are performed in 

order to determine the total needs of the fleet for the following year for each vessel. More precisely, 

machine learning models are developed and forecasting of nominal needs is attempted as a function 

of vessel, demand characteristics and decisions regarding the source of purchase. The business 

reasoning behind these analyses is the rationalization of the purchasing process by placing targeted 

orders in high quantities with minimum error possible that will lead to significant decrease of 

purchasing-related costs (less stock outs, decrease of stock out cost, better average price of 

purchase per spare type and in total). 

Lastly, in the third step, a prescriptive model is developed to support cost optimal decisions in terms 

of spare parts procurement using as a basis the outcome of the predictive model. For this purpose, a 

complex cost function is created that includes the acquisition cost, the logistic/forwarding cost, the 

administrative cost and the inventory cost. As a result, the model  can advise the executives of the 

purchasing department of a shipping company the allocation of spares to vendors that minimize the 

total cost while respecting the level of demand.  
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1 Problem Statement  

1.1 The shipping industry and the case company 
Seaborne trade allows for the bulk transportation of raw materials and the import/export of 
affordable provisions and manufactured goods. Seaborne trade accounts for the carriage of 
approximately 80 percent of global trade and more than 70 percent of its value is carried on board 
and handled by seaports worldwide (UNCTAD, 2018). Over 50,000 merchant ships exist 
(International Chamber of Shipping, 2019) trading internationally and transporting a large variety of 
cargoes. Greece continues to be the largest ship owning country in terms of cargo-carrying capacity 
(dwt), followed by Japan, China, Germany and Singapore (UNCTAD, 2018). It should be noted that 
the total cargo carrying capacity for these countries accounts for around 50 percent of the globally 
existing dwt, as shown in the table below.   
 

Table 1.1-1: Ownership of the world fleet, regarding ocean-going vessels of 1.000 gross tons and above (Source: (UNCTAD, 
2018)) 

 Country of Ownership  DWT [thousands of tons]  
Greece             330,176   
Japan             223,615   
China             183,094   
Germany             107,119   
Singapore             103,583   
China               97,806   
Korea               77,277   
USA               68,932   
Norway               59,380   
Bermuda               54,252   

World          1,910,012   

The main types of vessels that will be discussed below are:  

‒ Tankers, which are used for the transportation of crude oil, oil products, chemicals and gas.  
‒ Dry bulk carriers, which are used for the transportation of several dry cargoes.  
‒ Container ships and multipurpose ships, which are used for the transportation of general 

cargo.  

In the shipping business, usually, each vessel is owned by a company, which is called the ship-owning 

company. The companies operating the vessels, not necessarily owning the assets themselves, are 

called ship management companies. The case company described in this Thesis is a ship 

management company operating worldwide. The company operates in the spot market, which 

means that it does not undertake long contracts but rather fixes its vessels for smaller voyages. The 

company operates 86 vessels (tankers, containerships, dry bulk carriers), most of them oil tankers 

with an average age of the vessels of the company is 9.97 years. The case company has 67 oil tankers 

with an average age of 10.6 years and 21 dry carriers with average age of 7.9 years.  

Table 1.1-2: Vessels sizes and types operated and average age of vessels by the case company 

Vessel Size Vessel Type Number of Vessels Average Age [years] 

CAPESIZE Dry 5 6.1 

CONTAINER Dry 3 6.7 

KAMSARMAX Dry 4 10.0 

PANAMAX DRY Dry 1 13.0 

SUPRAMAX Dry 4 11.9 

ULTRAMAX Dry 4 4.1 
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AFRAMAX Tanker 33 10.7 

MR1 Tanker 7 16.7 

MR2 Tanker 10 9.7 

SUEZMAX Tanker 8 9.8 

VLCC Tanker 7 6.5 

For reference, the sizes of the vessels are presented below.  

Table 1.1-3: Average dead weight tonnage of vessels per size and type 

Vessel Size Vessel Type DWT [tons] 

CAPESIZE Dry        180,200  

CONTAINER Dry          49,600  

KAMSARMAX Dry          82,200  

PANAMAX DRY Dry          75,600  

SUPRAMAX Dry          56,200  

ULTRAMAX Dry          62,700  

AFRAMAX Tanker        110,900  

MR1 Tanker          39,700  

MR2 Tanker          49,100  

SUEZMAX Tanker        161,100  

VLCC Tanker        311,900  

In 2018 the average age of oil tankers across the worldwide fleet was 29.2 years (UNCTAD, 2018) 

and for dry bulk carriers 42.5 years (UNCTAD, 2018)  

Table 1.1-4: World fleet statistics (Source: (UNCTAD, 2018)) 

    Years 

    0-4 5-9 10-14 15-19 20+ 

Oil tankers Percentage of total ships 14.97 21.89 17.04 8.46 37.64 

  Percentage of dead-weight tonnage 21.7 33.86 24.6 14.3 5.55 

  Average vessel size (dwt) 78543 84016 78643 93525 8303 

Dry Bulk Carriers Percentage of total ships 27.83 41.32 12.9 8.72 9.24 

  Percentage of dead-weight tonnage 29.99 43.04 12.93 7.22 6.82 

  Average vessel size (dwt) 79281 76618 73750 60907 54304 

The technical condition of a vessel directly affects the performance of the ship and the economic 

outcome it produces, as well as, the well-being of the men on board and the protection of the 

environment. A vessel’s operating capabilities, its fuel consumption and its resale price, heavily 

depend on the vessel’s technical condition. As a result, maintenance and repair activities are 

required to ensure that the vessel and its equipment strictly meet current standards for safe and 

efficient operation. The maintenance of a vessel is divided in two main categories, i.e. planned and 

unplanned maintenance. Unplanned (or corrective) maintenance is maintenance which is carried out 

after unexpected failure detection and is aimed at restoring an asset to a condition in which it can 

perform its intended function. Planned maintenance includes the overhauls and the dry-docks. The 

overhauls take place at specific time intervals for specific type of machinery on board the vessel 

during the voyage or a port call. The dry docking procedure is an extensive maintenance process that 

takes place at specific time intervals (longer than routine overhauling) and requires the vessel to stay 

at a shipyard for some time. 

The maintenance costs of a vessel heavily depend on its age mainly because of two factors:  

 Because of malfunctions by the aged machinery of the vessel and  
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 Because of the increased mandatory maintenance procedure that a vessel above 15 years 

needs to undertake (dry docking takes places every 2.5 years when a vessel reaches 15 years 

instead of 5) 

1.2 Bulk ordering concepts  
The main scope of the bulk orders in general is to aggregate demand and exploit the advantages of 

high volume. The main advantages of bulk orders are:  

 Low administrative costs: Order aggregation creates economies of scale reducing the 

administrative cost per order ratio.  

 High negotiating power: when the demand of several needs is accumulated the volume 

increases and the customer can press for lower prices, higher discounts and better 

contractual terms. 

 Low logistics costs:  The decisions regarding time and place of delivery can be optimized 

ensuring lower forwarding costs 

 Uniformity: the lower number of suppliers is a step towards guarantee of a same level of 

quality of purchased goods across a company.  

 Traceability:  The uniformity of quality across the company makes it easier to identify 

problems and malfunctions if need arises.  

Undoubtedly, the maintenance of the machinery onboard a vessel is a critical task. The scheduled 

and organized maintenance of a vessel can make a considerable difference on the operating 

expenses of the vessel. Therefore, ship management companies establish full proof and robust 

planned maintenance frameworks and systems, whilst taking the planned maintenance of the 

vessels very seriously and undertaking cross departmental projects to ensure timely delivery, high 

quality of spare parts with the lowest total cost of ownership possible.  

The planned maintenance of each vessel is a timely task that demands overhauls at specific time 

intervals and/or equipment running hours. Depending on the age of the vessel and the type of 

machinery those needs may vary but the overhaul needs when accumulated for the whole fleet may 

amount to a considerable expense for the company.  

The bulk ordering process in the shipping industry has the below characteristics: 

 The suppliers that can provide the necessary parts in the necessary volumes for overhauling 

processes are a few and are concentrated in two geographic regions (Europe and Asia).  

 The number of distinct items ordered each year is considerably high amounting to several 

thousand different spare parts   

 The delivery locations are not constant and are subject to the vessel’s movements.  

The main idea behind the bulk orders of the case company is that the individual vessel’s needs for 

overhauls and general planned maintenance are accumulated across the fleet and then grouped into 

four categories: compressors, purifiers, main engine and diesel generators, which are the main 

machinery components requiring overhauls every one or two years. Then, smaller groups are 

created based on characteristics of the underlying vessels and items are grouped into rfqs. Then the 

rfqs are sent to suppliers making it easier to negotiate prices and terms as the one-off revenue for 

suppliers increases. Finally, after the supplier selection process ends, the grouped queries are again 

broken down to individual vessels, the purchase orders are released and the items are then 
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delivered to the vessels accordingly. The main steps of the bulk orders in the case company are as 

follows:  

 A. Requisitions from the vessels are created: The Vessel’s Chief Engineer (C/Eng) updates 

the quantity requirements for each needed item (VCE is a member of the vessel’s crew and 

the person responsible for all technical issues safeguarding the smooth operation of the 

vessel). In his decision, C/Eng considers the Superintended Engineer’s (VSE) insight and the 

vessel’s stock. VSE shares the same responsibilities with C/Eng but is based on shore. This 

task generally starts in late March to early April and ends late May.  

 B. Queries creation: The requirements of the vessels are aggregated per component and 

manufacturer to create the rfqs. 

 C. Price collection: The suppliers revert with prices and after negotiations the winner is 

selected. 

 D. Purchase order finalization: Purchase orders are created and the final quantities are 

determined by the technical department after reviewing the updated needs of the vessel. 

This step generally takes place in November, so it is highly probable that the vessel’s needs 

have changed. The finalized purchase orders are then sent out to corresponding suppliers 

and the parts are delivered to the vessels accordingly. This process takes place in the start of 

the year.  

The bulk order process is also presented in a form of a flow chart below:  

 

Figure 1.2-1: Bulk order process flow diagram 

To provide a deeper understanding of the process an indicative time plan is presented below:  
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Figure 1.2-2: Indicative timeline of the bulk ordering process 

In the figure above the remark section indicates the responsible department for completion of 

relevant activity, ‘TE’ for technical department and ‘PU’ for purchasing department. 

As can one easily understand from the time plan above, the bulk order process takes a lot of time 

and requires the attention of several departments and individuals. The main challenges that the case 

company encounters in this process are the following: 

 The volume: the bulk orders refer to more than 50 vessels and more than 4,000 items every 

year making it very time-consuming to negotiate with the implicated suppliers and conclude 

the selection process.  

 The administrative workload: a high number of interconnected parties and stakeholders 

participate in the process, which makes the process very unwieldy and slow-moving. By 

approximation, 1.7 FTEs throughout the year are needed for the smooth completion of the 

process. 

The above challenges have triggered the case company in scouring for ways to optimally address 

them and unlock further value of the bulk order process. The case company looked to machine 

learning due to its current strong standing and high maturity profile in deploying advanced analytics 

to increase effectiveness and boost efficiency in supply chain areas such as general consumables 

forecasting, crew scheduling and strategic network design. This gave rise to the topic of this diploma 

thesis which will aim to address the aforementioned key challenges by taming a very sizeable and 

overly complex dataset, providing ways to extract useful information and insights from historical 

data, facilitating the ability to forecast the needs of the fleet, reducing administrative workload and 

support the decision-making process by generating indicative solutions.  

In the following sections, the applicability of machine learning in dealing with similar business issues 

will be examined (in Chapter 0) so as to formulate bulk orders analytics framework (in Chapter 3) 

that will enable the design of an integrated tool that aims to tackle challenges throughout the 

process of the bulk orders. More specifically, clustering and forecasting of the quantities needed by 

the vessels will take place to provide a laser focused and current view of the critical needs of the 

vessels by integrating exogenous factors which in their way orchestrate demand, e.g. vessel age and 

in the process eliminate the back and forth between the technical department and the vessel which 
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presents the main hurdle in step (A), (see Figure 1.2-1). Furthermore, to further reduce the 

administrative workload and generate cost optimal scenaria in steps (C) and (D) (see Figure 1.2-1), 

blending of analytics with traditional operations research, i.e. prescriptive analytics, will be 

examined and to drive winner selection will take place on the basis of minimum total cost of 

ownership.  
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2 Theoretical research 

2.1  Basic Concepts 

2.1.1 Data Analytics Concepts  

Most recent advances in artificial intelligence (AI) have been achieved by applying machine learning 

to very large data sets (Russel & Norvig, 2009)Machine learning algorithms detect patterns and learn 

how to make predictions and recommendations by processing data and experiences, rather than by 

receiving explicit programming instruction. The algorithms also adapt in response to new data and 

experiences to improve efficacy over time. Data analytics, that are a major part of machine learning 

algorithms, can be divided into three major categories with increasing complexity. 

 Descriptive analytics focus on models that try to describe what happened and are deployed 

by most industries as they give valuable insight in the past.  

 Predictive analytics use statistical models and forecasts techniques to understand the future 

and are used to answer the question ‘what could happen?’ Predictive analytics are 

employed in data-driven organizations as a key source of insight.  

 Prescriptive analytics mainly employ optimization and simulation algorithms to provide 

recommendation on what to do to achieve specific goals.  

 

 

Figure 2.1-1: Types of data analytics (Source: McKinsey Analytics) 

2.1.2 Machine learning Concepts  

Machine learning focuses on the last two types of data analytics, predictive and prescriptive. The 

main idea of the research behind artificial intelligence (AI) is that ‘every aspect of learning or any 

other feature of intelligence can, in principle, be so precisely described that a machine can be made 

to simulate it’ (McCarthy, Minsky, Rochester, & Shannon, 1955)Generally artificial or computational 

intelligence is the study of intelligent agents, described as entities that act in an environment (Poole, 

Mackworth, & Goevel, 1998). As the research in the field grew, researchers defined AI as the ‘effort 

to make computers think’ and to create ‘machine with minds in the full and literal sense’ 

(Haugeland, 1985).  

All in all, artificial intelligence is typically defined as the ability of a machine to perform cognitive 

functions we associate with human minds, such as perceiving, reasoning, learning, interacting with 

the environment, problem solving, and even exercising creativity. Examples of technologies that 
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enable AI to solve business problems are robotics and autonomous vehicles, computer vision, 

language and text processing, virtual agents, and machine learning.  

Artificial intelligence can be divided into three main categories explained in detail in the next 

sections:  

 Supervised learning  

 Unsupervised learning  

 Reinforcement learning 

The main goal of machine learning algorithms is to effectively build a mathematical model based on 

a subset of the available data, most commonly called the training set, to make predictions about the 

future and take actions without being explicitly instructed the way to perform the task (Bishop, 

2006) 

2.2 Algorithms and use cases  

2.2.1 Descriptive models 

Descriptive analytics are used to describe previous data and situations and extract value from them. 

These models make extensive use of statistical tools that can quantitatively describe and summarize 

features of a dataset. For each use case, the tools used are different.  

In the specific use case, the bulk ordering process of a ship management company, for the time 

being the descriptive analytics are used mainly to compare strategies and results of each year to 

enable the company to negotiate better in the future.   

2.2.1.1 Unsupervised learning algorithms  
Unsupervised learning algorithms can be used to construct descriptive models and derive underlying 

relationships and give insight to past data (Hinton & Sejnowski, 1999). Unsupervised learning 

algorithms are machine learning algorithms that ‘learn’ from the test data that have not been 

labeled, classified or categorized. In contrary to the supervised algorithms where a human gives 

feedback, in the process of unsupervised learning the algorithm detects common elements in the 

data and reacts based on the presence or the absence of such common elements. Therefore, the 

unsupervised learning algorithms are typically used when one does not know how to classify the 

data and they want the algorithm to find patterns and categorize the data for them. Most common 

use cases of the unsupervised learning algorithms are:  

‒ Segment employees, suppliers, customers and generally business partners into categories 

based on their performance 

‒ Use clusters for behavior prediction to identify the important data necessary for making a 

recommendation 

One of the most important aspects of unsupervised learning algorithms is clustering. Clustering is 

the process that includes grouping a set of objects in the same group, in a way that group’s items are 

more alike than others belonging in a different group. There are many data clustering algorithms 

present in literature, since clustering is one of the most common tasks in machine learning. Some 

clustering algorithms are:  
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‒ k-means: the k-means algorithm groups items into a predefined number of clusters aiming 

to minimize the distance of data points from the mean of each cluster. This algorithm will be 

explained in detail below. 

 DBSCAN: dbscan is a density-based algorithm that groups items based on how closely they 

are packed. This algorithm will be explained in detail below. 

 Kohonen neural network: a neural network algorithm that is mostly used for dimensionality 

reduction. The algorithm is trained using unlabeled data to produce a low-dimensional 

representation of the input space (Kohonen, 1982). 

Another aspect of unsupervised learning is anomaly detection, the process where the data points 

that differ significantly from the whole of the dataset are identified and labelled as outliers. 

Typically, the outliers refer to problems in the smooth operation of an organization. The 

unsupervised anomaly detection search for outliers in an unstructured dataset using the assumption 

that most of the data-points can be considered normal. Therefore, the algorithms detect instances 

(data points) that fit the least to the remainder of data in the dataset. The algorithms that perform 

outlier detection can be as simple as the creation of box plots or more complex using clustering 

(Zimek & Filzmoser, 2018) 

2.2.2 Predictive models 

Predictive models make use of statistical techniques from data mining and machine learning. They 

are used to analyze current and historical data to make predictions about future events (Nyce, 

2007).  They capture the relationship between the specific performance of a unit in a sample and 

one or more attributes and features of the units. The objective is to assess the likelihood that a 

similar unit in a different sample will exhibit the specific performance. Generally, data can be divided 

into two major categories. The first is the training sample, or training set, that encompasses data 

that have known attributes and performance and upon which the models are applied and tested. 

The other contains data that have known attributes but unknown performance. Some indicative use 

cases that predictive models are broadly used:  

‒ Customer/ Supplier relationship management: An approach that is used to manage a 

company’s interaction with current and potential customers. It involves the construction of a 

holistic view of the relationship with customers throughout the lifecycle of the relationship. 

It is used to predict customer’s buying habits and to promote relevant product codes.  

‒ Project risk management: The process of managing an uncertain event that if it occurs it has 

either positive or negative impact on the objectives of the project.  

‒ Demand forecasting: The process of trying to understand and predict customer demand to 

optimize supply decisions using supply chain and business management 

‒ Trade promotions optimization: Tools helping companies achieve profitable growth from 

their trade promotions that are optimized to generate more sales and profitability.  

The predictive models mainly make use of supervised learning, a sub-category of machine learning, 

which uses algorithms to learn a function that maps an input to an output based on input-output 

pairs (Russel & Norvig, 2009). The supervised algorithms use labeled training data and feedback from 

humans to learn the relationship of given inputs to a given output. (Mohri, Rostamizadeh, & 

Talwalkar, 2012)In supervised learning algorithms, each data set can be described as a pair that 

consists of an input object (most of the times, a vector) and an output (a value). The algorithm, then, 

analyses the data and produces a function that connects the input variables and the output. Once 
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the training of the algorithm is complete and the algorithm is sufficiently accurate, it is applied on 

new data.    

 

Figure 2.2-1: Supervised learning algorithms main logic (Source: McKinsey Analytics) 

Supervised learning can be divided into two main categories: the classification and the regression 

algorithms. Classification algorithms recognize patterns form the input data and then use them to 

classify the new observation. On the other hand, regression algorithms forecast a continuous 

numeric variable using input data and reveal the underlying function.  

Generally, most algorithms can work both for classification and regression problems. Depending on 

the specifics of the case at hand, relevant changes are made so that the algorithm can be used.  

The main steps to applying a supervised learning algorithm are: 

 Gathering of the training set: the training set needs to be a cross section sample that 

respects the requirements of the chosen algorithm and concurrently has a satisfactory 

number of data points relation to the variables to successfully complete the training phase. 

 Treating of the gathered data: the input data of the algorithm are represented in a way that 

will increase the accuracy. The user needs to be cautious of the number of variables that will 

be used to avoid the ‘curse of dimensionality’ (Bellman, 1957) meaning the increase of 

various phenomena detrimental to the accuracy of the algorithms that arise when analyzing 

high dimensional spaces (e.g. overfitting, underfitting etc.).  

 Deciding the algorithm that will be used to train the data and determine control parameters. 

 Evaluating the accuracy of the algorithm by applying the algorithm on the test data.  

Below some major algorithms are presented:  

Table 2.2-1: Machine learning algorithms used in predictive analytics 

Algorithm Main Logic  Application Example  

Linear 
regression  

Linear approach to modelling the 
relationship between a dependent variable 
and one or more independent variables to 
predict future values of output variables.  

Prediction and understanding of 
economic elements such as 
consumption spending, fixed 
investment spending and economic 
drivers such as competition, 
distribution, marketing initiatives, etc. 
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Logistic 
regression  

A model that resembles linear regression 
although the outcome is a binary variable. It 
is now extended to include categorical 
outputs with more than two values.  

Classification of people for business 
purposes based on how likely it is for 
them to spend a certain amount of 
money, to repay a loan etc. Can also 
be used in medicine and other 
scientific fields. 

ARIMA 
model 

The ARIMA (autoregressive integrated 
moving average) models can be applied to 
time series data either to better understand 
the data or to predict future points in the 
series. 

Prediction of sales for the next months 
based on previous year’s sales to 
better plan production and accuracy 
of sales targets.  

SARIMA 
models 

An extension of the previously mentioned 
model, the SARIMA models can also account 
for the seasonality in the time series. 

Prediction of retail sales to account for 
seasonal peaks within the year, e.g. 
Christmas holidays etc. 

Naive 
Bayes  

Classifier that makes use of Bayes' theorem 
with strong 'naïve' assumptions between 
the features. It allows the probability of an 
event to be calculated based on knowledge 
of factors that might affect that event.  

It is mainly used to analyze sentiment 
to assess a product's perception in the 
marker                                                                                                       
Can also be used to classify several 
people based on measured 
characteristics. 

Random 
forest  

Classification or regression model that fairly 
improves the accuracy of a single decision 
tree by generating multiple decision trees 
and taking a majority vote of them to 
predict the output. 

Can be used to predict the customers 
that will repay their debts in time, to 
predict a stock's behavior and 
whether a customer will buy a product 
or not. 

Neural 
networks 

Model in which artificial neurons (software-
based calculators) make up an input layer, 
one or more hidden ones where calculations 
take place and an output layer.  

Due to their ability to model nonlinear 
processes they have vast applications 
in system identification, medical 
diagnosis and decision making. 

Deep 
learning 

Based on neural networks, deep learning 
methods were inspired by the processing of 
information in biological systems.  

They are broadly used for voice, text 
and character recognition. 

Decision 
tree 

Uses decision trees to go from observations 
about an item to conclusions about the 
item's target value. It can be either a 
classification tree, where the target variable 
can only have discreet values or regression 
tree if it is continuous. 

A decision tree can be used to provide 
a defined decision framework eg. it 
can be used to understand product 
attributes that make a product more 
likely to be bought. 

Support 
vector 
machine  

It represents the examples as points in space 
in way that the example of the separate 
categories is divided by a gap that is as wide 
as possible. When generalized it can be used 
for regression. 

It is widely applied in biological and 
other sciences. It has also been used 
to classify images and in text and 
hypertext categorization.   
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Boosting 
trees  

Generates sequential decision trees where 
each decision tree focuses on correcting the 
errors coming from the previous tree model. 
The final output is a combination of results 
from all decision trees. 

Forecasting of product demand and 
inventory levels. 

As several algorithms have been developed, it is important that the best – performing algorithm for 

each use case is selected. In the selection process, the following aspects need to be considered: 

 Bias-variance tradeoff: Errors in machine learning algorithms can be divided into two major 

categories: the bias error, which is the error that derives from faulty assumptions in the 

learning algorithm, and the variance error, which derives from sensitivity to small 

fluctuations in the training set (James, 2003). Thus, the first major issue that one must 

consider is the tradeoff between bias and variance (Geman, Bienenstock, & Doursat, 

1992).The tradeoff is the conflict that tries to simultaneously minimize these two sources of 

error that prevent the supervised learning algorithms from generalizing beyond their 

training set.  

 Function complexity and amount of training data: The second issue that arises is the amount 

of training data that will be used. As expected, the higher the complexity of the ‘true’ 

function the higher the amount of data needed to extract the relationship between the 

variables. However, if the function is too complex the algorithm can be prone to overfitting, 

meaning that the results of the algorithm respond more closely to the train set but fail to fit 

additional data (i.e. the test set). 

‒ Noise in the output values: If the desired output variables exhibit high levels of noise, 
meaning these variables are often incorrect, then the algorithm should not attempt to fit the 
data. Attempting to fit misleading data could lead to overfitting or to incorrect definition of 
the underlying function. To avoid this issue, it is common to apply techniques that remove 
noisy training examples prior to the training (e.g. outlier elimination) or try to alleviate noise 
in the output (e.g. early stopping) (Brodley & Friedl, 1996). 

It is important to consider the above when selecting the algorithm for each use case and to 
experiment between different algorithms to determine the best algorithm for each application 
(Geisser, 1993). 

2.2.2.1 Reinforcement Learning 

Reinforcement learning is an area of machine learning that is broadly used in prescriptive models. In 

reinforcement learning the algorithm learns how to perform a specific task in an environment. The 

algorithm receives rewards when performing correctly and penalties when performing incorrectly. 

Thus, the algorithm learns without any intervention from humans by trying to maximize the rewards 

and minimize the penalties.  One of the main issues to be addressed when using reinforcement 

learning is the exploration – exploitation trade off. The exploration can be defined as the ‘random’ 

search of the possible solutions without searching in a specific area. This allows the algorithm to 

explore the solution space and not trap it-self to a local optimum. On the other hand, the premise of 

exploitation is searching thoroughly promising solution neighborhoods identified during the 

exploration phase. The main disadvantage of the exploration is that is time-consuming, and the main 

disadvantage of the exploitation is that the algorithm can be easily trapped to a local optimum. To 

overcome these shortcomings, efficient and effective neighborhood operators need to be 

constructed to account for the intricacies of the feasible solution space, like the “Big Valley” 
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phenomenon, i.e. the clustering of very strong local optima around the global one, whilst not 

sacrificing utilization of the “Backbone”, e.g. the commonly shared orientations amongst promising 

permutations.  

2.2.3 Prescriptive analytics 

Prescriptive analytics is a recently introduced concept of data analytics as it encompasses techniques 

and results from descriptive and predictive analytics. Prescriptive analytics uses optimization 

methods to identify the best alternatives to minimize or maximize some objective (Evans & Linder, 

2012) Prescriptive analytics suggest decision options on how to take advantage of a future 

opportunity or mitigate a future risk and show the implications of each decision option. The 

algorithms may consider new data that become available to re-assess the decisions and the risks. 

Generally, prescriptive analytics models consider both structured data (numbers, labelled data) and 

unstructured data and business rules.  

One of the simplest methods used to search for the optimum solution in a problem is the brute force 

search or exhaustive enumeration. Brute-force search is a general problem-solving technique that 

consists of systematic enumeration of all possible candidates for the solution and checking the 

performance of each candidate on the objective function and on the constraints of the problem. Its 

application though is dependent on the underlying optimization problem, complexity and size of 

solution space. Should the former be NP-Hard and the latter expansive, usage of brute force might 

be prohibited due to the large computational overhead generated. In this case, alternate 

approximation approaches might be considered like generalized metaheuristics, e.g. greedy adaptive 

randomized search, particle swarm optimization, and/ or heuristics encompassing problem specific 

knowledge in hybrid algorithmic frameworks.  

2.3 In-depth analysis of machine learning algorithms to be used  

2.3.1 Unsupervised learning – Clustering Algorithms  

Clustering is a major part of unsupervised machine learning. As previously discussed (in 2.2.1.1), 

clustering makes use of historical data to create classes (often also called groups) based on certain 

criteria. Clustering is performed when it is believed that the data have undisclosed relationships with 

one another that can be unveiled with the underlying cluster labels.  The underlying clustering labels 

and classes may help uncover useful information about the data and the groupings can be made 

based on several dimensions in a structured way that will help choose better actions for each group.  

2.3.1.1 k-means 
K-means is an algorithm that organizes data into groups (k) that each contains data with similar 

characteristics. K-means groups n observations into k clusters based on the distance between 

observations of each cluster from a centroid. The algorithm tries to minimize this distance between 

observations from same cluster.  

More specifically, it puts N data points of an I-dimensional space into K clusters. Each cluster can be 

parameterized by a vector mk called its mean. The data points are denoted by vector  x(n) where n 

runs from 1 to N (where N is the number of data points). The vector x has I components  xi . We can 

compute the distance as:  

d (x, m) = ∑(xi − mi)
2

i=I

i=1
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The first step of k-means is the initialization of the centroids (the means). This can be performed 

using a number of different methods which will be discussed further below. Then, the two main 

steps of the algorithm are performed in iteration. The first step is called the assignment step and the 

second the update step.  

In the assignment step, each data point is assigned to the nearest mean. The guess for the cluster 

k(n) that the point x(n) belongs is denoted by k^ (n) : 

 k^ (n) = argmink{d(mk, xn) } 

, where argmin is the function that attains the k for which the distance as defined above is the 

minimum.  

Then, rk
(n)

 is set to 1 if mk is the closest mean to data point x(n), otherwise it is set to 0.  

rk
(n)

= {
1, if k^ (n) = k

0, if k^ (n) ≠ k
 

To summarize the two steps are presented below:  

‒ In the first step, the algorithm computes the distance between the mean and each cluster. 

The k cluster for which the mean has the minimum distance, is the cluster that the data 

point will be part of.   

‒  In the second step the rk
(n)

 takes the value 1 if the data point belongs in cluster k and 0 

otherwise.  

In the update step the means (mk) that have been initialized (in the first iteration) or have been 

computed in the previous iteration are updated.  

mk =
∑ rk

(n)
xn

n

R(k)
 

where,  

R(k) =  ∑ rk
(n)

n

 

The steps are repeated until the assignments do not change. Alternatively, it can be said that the 

algorithm stops when the means, the parameters of the model, stabilize.  

There are two cases that k-means can’t handle. The first refers to the distances between a data point 

and two (or more) centers of clusters. If said distances are equal, then the algorithm cannot decide 

where to assign the data point. However, this is easily solved by assigning the data point to the 

smallest k.  The second case occurs when a cluster has no data points assigned to it. If this is the 

case, then R(k) = 0 and mk  cannot be updated. If this happens then no changes are required to be 

made to mk.The initialization of the algorithm influences the clustering result as sometimes the k-

means is trapped in a local optimum. Furthermore, the initialization also affects the total number of 

iterations of the algorithm and therefore the complexity of the problem. 

The first method for the initialization is the random method. According to this data points are 

assigned randomly to clusters and then the mean is calculated.  
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The second is the Forgy method. This is one of the most commonly used methods where k data 

points are randomly chosen and are used as initial means. (Hamerly & Elkan, 2002) 

The Forgy method tends to spread centers out in the data, while the Random Partition method 

tends to place the centers in a small area near the middle of the dataset. Random Partition was 

found to be a preferable initialization method for its simplicity (Pena, Lozano, & Larranaga, 

1999)However, for standard k-means algorithms the Forgy method of initialization is preferable 

(Zhang, 2003). The algorithm does not guarantee convergence to the global optimum. The result 

may depend on the initial clusters. As the algorithm is usually fast, it is common to run it multiple 

times with different starting conditions.  

One of the major characteristics of k-means is the fact that it uses the Euclidian distance as a metric 

and variance as a measure of cluster scatter. Another main characteristic is that the number of 

output clusters is a pre-defined parameter by the user making the algorithm subject to the user’s 

perception of the dataset. Poor choice of the parameter k (number of clusters) may yield poor 

results.  

Another key limitation of k-means is the cluster model is the main concept of the algorithm. The 

main concept is based on spherical clusters which may fail to uncover underlying relationships 

between the data. 

2.3.1.2 DBSCAN  
Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm 

that given a set of points in some space, classifies in the same category points that are closely 

packed together. At the same time, it marks as outliers points that lie in low-density regions. The key 

idea is that for each point of a cluster, the neighborhood of a given radius must contain at least a 

minimum number of points, i.e. the density in the neighborhood must exceed some threshold. As k-

means, DBSCAN usually uses the Euclidean distance to measure how close data points are from each 

other (Ester, Kriegel , Sander, & Xu, 1996). Before applying DBSCAN, there two parameters that need 

to be defined: 

‒ eps: its value specifies the minimum distance between two points for them to be considered 

neighbors. If eps value is too small, a large part of the data will not be clustered. On the 

other hand, if the value is too high then most of the data points will be put in the same 

cluster. 

‒ minPts: which is the parameter that specifies how many neighbors a point should have to be 

included into a cluster. Generally, the higher the value of minPts the more significant the 

clusters that will be created will be 

The first parameter that must be defined is minPts. (Ester, Kriegel , Sander, & Xu, 1996) who wrote 

the first paper on DBSCAN suggest to setting minPts to 4, for two-dimensional data but in a next 

paper (Sander, Ester, Kriegel, & Xu, 1998) it is suggested that the minPts is set to twice the dataset 

dimension. Generally, minPts needs to satisfy the relationship  

minPts ≥ D + 1 

, where D is the number of dimensions of the problem. For datasets that have a lot of noise, that are 

very large, that are high dimensional, or that have many duplicates it may improve results to 

increase minPts.  (Schubert et al, 2017). 
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The value of eps is usually calculated using the k-distance graph, plotting the distance to the 

k=minPts-1 nearest neighbor sorted from largest to smallest value. The value of eps can then be 

decided based on the point that the graph shows an elbow. (Schubert, Sander, Ester, & Kriegel, 

2017) (Sander, Ester, Kriegel, & Xu, 1998) (Ester, Kriegel , Sander, & Xu, 1996). For the purposes of 

the algorithm data points are classified as core points, border points or outliers: 

‒ A data point is considered a core point if at least minPts are within distance eps of it 

(including the original point it self)  

‒ A data point is considered a border point when it is within distance eps from a core point but 

is not a core point itself (therefore it does not meet the minPts criterion)  

‒ A data point is considered a noise point if it does not belong in any of the aforementioned 

categories. Those points represent outliers in the data set that do not belong to any cluster 

Two points are considered ‘directly density-reachable’ if one of the points is a core point and the 

other point is within its eps radius. If we considered three data points denoted as p, m, q and p is 

directly density reachable from m, which is directly density-reachable from q. The set of points 

within the eps radius of p -> m -> q form one cluster.  

The algorithm chooses a point p arbitrarily.  Then, it retrieves all points directly density reachable 

from p with respect to the minimum distance eps. If p is a core point, then a cluster is formed. Then, 

it recursively finds all its density connected points and assign them to the same cluster as p. If p is 

not a core point, then the algorithm iterates through the remaining unvisited points in the dataset. 

The process is terminated when the algorithm has gone through all the points.  

More explicitly, the algorithm begins by picking an arbitrary point from the data set. If there are 

more than minPts data points within distance eps from that point (including itself), therefore if the 

data point is a core point, a cluster is formed. Then the algorithm checks all the points that were 

included in the cluster to determine if they too have more than minPts points within a distance eps. 

If they do the cluster grows and this process continues. If the above constraint is not satisfied, then 

the algorithm starts the process again by choosing randomly another data point that has not yet 

been assigned to a cluster. If the data point chosen happens to be a noise point, then the algorithm 

picks a new point. The main characteristics of DBSCAN are summarized below: 

‒ The algorithm optimizes the number of clusters without using feedback from the human 

thus increasing its efficiency. The user does not need to perform a sensitivity analysis as per 

the number of clusters.  

‒ DBSCAN can find any shape of cluster, as opposed to the k-means algorithm that finds only 

circle-shaped clusters. 

‒ The algorithm self-adjusts for outlying data points. 

‒ It is not entirely deterministic, meaning that border points that are reachable from more 

than one clusters can be part of any of those clusters 

‒ It cannot cluster datasets with large difference in densities, since the minPts-eps 

combination cannot be appropriately chosen for all clusters (Kriegel, Kroger, Sander, & 

Zimer, 2011) 
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2.3.2 Supervised learning – Forecasting Algorithms  

2.3.2.1 Random Forest 
Random forest is a supervised learning algorithm: meaning that the input and output variables are 

pre-defined by the user and is commonly used in machine learning.  

To better understand the algorithm at hand, the building block of random forest, the decision tree 

will be explained below. Decision tree learning uses decision trees to go from observations about an 

item to forecast about an item’s target value. The main advantages of the decision trees are:  

‒ Decision trees can handle both categorical and numerical data (Gareth, Witten, Hastie, & 

Tibshirani, 2015) 

‒ Decision trees do not require advanced data handling. Many algorithms in machine learning, 

also k-means and dbscan described above, require data normalization and indirect creation 

of dummy variables. However, decision trees do not require such actions.  

‒ The decision trees use a white box model in contrast with other machine learning 

algorithms, such as neural networks that make use of black box models.  

However, decision trees exhibit certain limitations as well:  

‒ Decision trees can be very robust and small changes in the training set could result in large 

changes in the outcome of the tree (Gareth, Witten, Hastie, & Tibshirani, 2015) 

‒ Decision trees are prone to overfitting (Bramer, 2007)This happens when an over-complex 

tree is created that cannot generalize well from the training data. (Hothorn, Hornik, & 

Zeileis, 2006) 

‒ Lastly, decision trees that have more categorical variables with different number of levels 

may be biased towards attributes with more levels (Deng, Runger, & Tuv, 2011).This can be 

easily avoided by a two-stage approach (Brandmaier, von Oertzen, McArdle, & Lindenberger, 

2013) 

Random decision forests were firstly introduced as an attractive method for classification due to 

their high execution speed (Ho T, 1995)In random forest tree predictors are combined so that each 

tree depends on the values of a random vector sampled independently (Breiman , 2001)To 

overcome limitations on accuracy exhibited on single trees, several decision trees in different 

subspaces are combined to form a forest thus increasing the validity of the results (Tin Kam Ho, 

1995). In other words, random forests are a way of averaging multiple deep single decision trees 

that may be in risk of overfitting and have been trained on different parts of the training set to 

reduce error metrics (Hastie, Tibshirani, & Friedman, 2008).  
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Figure 2.3-1: Random forest with two trees visualized 

The random forest algorithm makes use of the general technique of bootstrap aggregating (bagging) 

to combine the results of the single trees (Breiman , 2001).  

Given a training set 𝑋 = 𝑥1, 𝑥2, … . . , 𝑥𝑛 with responses 𝑌 = 𝑦1, 𝑦2, … … . . , 𝑦𝑛 bagging repeatedly (B 

times) selects a random sample with replacement of the training set and fits trees to these samples: 

For 𝑏 = 1, … . . , 𝐵 

‒ Sample with replacement 𝑛 training examples from 𝑋 , 𝑌 (denoted as 𝑋𝑏 , 𝑌𝑏 )  

‒ Train regression (or classification) tree 𝑓𝑏 on 𝑋𝑏 , 𝑌𝑏 

After training, predictions for 𝑥′ can be made by averaging all the predictions from previously trained 

trees 𝑓𝑏 using  

𝑓 =
1

𝐵
 ∑ 𝑓𝑏(𝑥′)

𝐵

𝑏=1

 

Therefore, random forest is one of the algorithms that will be tested in the next sections mainly 

because of its ability to avoid overfitting (Hastie et al, 2008) and its superior efficiency (Tin Kam Ho, 

1995). 

2.3.2.2 Generalized Linear Model  

The generalized linear model is a flexible generalization of ordinary linear regression that allows for 

response variables that have error distribution models other than a normal distribution (Nelder & 

Wedderburn, 1972) 

In a general linear model the dependent variable 𝑦𝑖, i = 1,….,n is modelled by a linear function of 

explanatory variables 𝑥𝑗, j=1,….,p plus an error term as follows:  

𝑦𝑖 = 𝛽𝜊 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝑒𝑖   

In a simple linear model, the independent variable is only one variable.  

A generalized linear model is made up of a linear predictor  

𝑛𝑖 = 𝛽𝜊 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖  
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and two functions  

‒ A link function that describes how the mean E(Yi) = μi, depends on the linear predictor 

g(μi)=ni 

‒ A variance function that describes how the variance var(Yi) depends on the mean 

var(Yi)=φV(μ) where the dispersion parameter φ is a constant 

One of the advantages of the generalized linear model is that it can account both for categorical and 

numerical variables. At the same time, the generalized linear model for regression in this case is 

superior to the simple linear regression as it does not pose limitations on the error distributions of 

the variables (Nelder & Wedderburn, 1972). 

2.3.2.3 Principal Component Regression  

In statistics, principal component regression (PCR) is a regression analysis technique that is based on 
principal component analysis (PCA). Typically, it considers regressing the outcome (also known as 
the response or the dependent variable) on a set of covariates (also known as predictors, or 
explanatory variables, or independent variables) based on a standard linear regression model but 
uses PCA for estimating the unknown regression coefficients in the model. (Bair , Hastie, & Debashis 
, 2005). 

The main structure of principal component regression can be divided into three main steps:  

 Perform principal component analysis on the independent variables using statistical 

methods 

 Perform regression on the vector of results of the previous step using simple regression 

methods such as the ordinary least squares method  

 Transform the vector back to the scale of actual covariates to get the final principal 

component regression estimator.  

The main concept of the principal component analysis (which is the stepping stone of the PCR 

algorithm), is to make use of statistical procedures to convert a set correlated variables into a set of 

linearly uncorrelated variables which are called principal components. Principal component analysis 

firstly introduced by Pearson in 1901, (Pearson , 1901) makes use of the principal axis theorem in 

mechanics and creates a vector of uncorrelated orthogonal basis set. 

The two main advantages of the PCR are:  

 The algorithm can be performed when the number of variables is high in relation to the 

number of available data. (Jackson, 1991) 

 PCR can perform regression even when the explanatory variables are highly correlated to 

each other.  

The two advantages above make the principal component regression one of the algorithms that will 

be used as the dataset has correlated independent variables and a large` number of data is not 

available. These are the two main reasons that this algorithm will be used in the forecasting of the 

demand. 

2.3.3 Prescriptive model – Brute Force Analysis 

In computer science, brute-force search or exhaustive search is a very general problem-solving 

technique and algorithmic paradigm that consists of systematically enumerating all possible 
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candidates for the solution, checking whether each candidate satisfies the problem's statement and 

assessing their performance.  

While a brute-force search is simple to implement, and will always find a solution if it exists, its cost 

is proportional to the number of candidate solutions – which in many practical problems tends to 

grow very quickly as the size of the problem increases (combinatorial explosion) (Coursera, 2018). 

Therefore, brute-force search is typically used when the problem size is limited, or when there are 

problem-specific heuristics that can be used to reduce the set of candidate solutions to a 

manageable size. The method is also used when the simplicity of implementation is more important 

than speed. At the same time there is merit in exploring the performance of brute force analysis as 

the computing power of the IT systems has increased considerably in the last year therefore, 

decreasing significantly the computational overhead of the implementation of such methods.  

The most efficient way to speed up a brute force algorithm is to reduce the search space efficiently 

by applying business or other rules. This analysis may reduce the candidates to the set of all valid 

solutions; thus yielding an algorithm that directly enumerates all the desired solutions without 

wasting time with tests and the generation of invalid candidates. 

2.4 Conclusions 
Having discussed in detail the applicable machine learning algorithms and advanced analytics 

concepts that can be applied in this project, the bulk orders analytics framework is formulated. The 

bulk orders analytics framework encompasses the algorithms and computation steps that will lead 

to the completion of the three methodological steps of the practical part of the thesis:  

‒ Identification of high interest items: in this methodological step of the thesis clustering will 

be performed so as to decrease the size of the dataset. This step encompasses the concepts 

of descriptive analytics and relevant algorithms discussed (see section: 2.3.1) will be 

applied. 

‒ Forecasting of demand: in this methodological step of the thesis machine learning 

algorithms will be applied so as to decrease the amount of administrative workload. This 

step encompasses the concepts of predictive analytics and relevant algorithms discussed 

(see section: 2.3.2) will be applied. 

‒ Allocation of items: in this methodological step of the thesis a prescriptive model will be 

created so as to minimize total cost incurred throughout the bulk orders process. This step 

encompasses the concepts of predictive analytics and relevant methodologies discussed 

(see section: 2.3.3) will be applied. 
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3 Bulk Orders Analytics Framework 

3.1 Overview 
Below the bulk orders analytics framework is presented. This framework aims to tackle challenges as 

presented in section 1.2, with the data analytics concepts thoroughly discussed in chapter 0.  As 

described in the summary the main scope of the analytics section of the thesis is to provide a 

comprehensive decision support tool for market decisions for the use of the case company in the 

bulk ordering process. The main steps of the bulk orders are presented below (see also: Figure 1.2-1)  

 

Figure 3.1-1: Bulk order process flow diagram [duplicate of Figure 1.2 1)] 

The main challenges ,(see also section 1.2), of the bulk orders are focused on the large volume of the 

ordered items and the continuous back and forth between the vessel and the departments that 

generates increased amount of administrative workload. Therefore, the practical part of this thesis 

aims to tackle those challenges by making use of data analytics and machine learning by decreasing 

the number of items, by providing forecasted total needs of each vessel for each spare part for the 

next year and by allocating each spare part to vendors. More precisely:  

‒ The decrease of total items aims to facilitate steps C and D where the price collection, the 

negotiations and the winner selection will focus only on a fraction on items and thus 

completion time for these steps will be smaller.  

‒ The forecast of the total needs of the vessel’s aims to facilitate step A by providing an insight 

to the technical department about the actual vessel’s needs and how they are shaped 

depending on the decisions regarding the source of purchase 

‒ The cost-based allocation aims to facilitate step D. ‘Winner Selection’ and rationalize the 

whole process by providing indicative allocation of spares to vendor category (i.e. maker or 

non-maker) on the basis on minimum cost incurrence.  

To achieve the above aims of the project an extensive bulk order analytics framework is created 

which is presented in the following figure:  
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Figure 3.1-2: Overview of bulk orders analytics framework 

The practical part of the thesis is divided in three main methodological steps, described below: 

‒ Identification of high-interest items: where from all the items of the bulk orders the ones 

that with certain criteria can be classified as high-interest are identified. 

‒ Forecasting of demand: where the nominal needs of the fleet based on vessel characteristics 

and the extra needs of each vessel based on market- related decisions are defined 

‒ Prescriptive model: where a complex cost function is created to determine the optimum 

allocation of vendor to items so as to minimize total cost, while respecting demand 

requirements. 

Detailed flow diagrams for each methodological step have been created and are presented below:  

 

Figure 3.1-3: Flow diagram for the first part of the thesis 

The first methodological step (presented above in Figure 3.1-3) focuses on the identification of the 

high interest items and aims to reduce the total administrative cost.  
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Figure 3.1-4: Flow diagram for the second part of the thesis 

The second methodological step (presented above in Figure 3.1-4) focuses on the prediction of the 

nominal and additional needs of the vessels.  
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Figure 3.1-5: Flow diagram for the third part of the thesis 

Lastly, the final methodological step includes the creation of the complex cost function. 

In the next sections each of the above sub-problems are discussed in detail.  

3.2 Data Engineering 
A large part of the thesis is focused on the data engineering part of the problem. As all the aspects of 

the practical part of the thesis entail sub-problems where historical data need to be used either to 

extract specific values or whole datasets to train models.  

The data engineering part of the thesis was completed using the case company’s data warehouse. 

The data warehouse is a structured database that consolidates raw data from disparate sources and 

heterogeneous systems within the company, in a hub-and-spoke architecture. More specifically, it 

houses information stemming from the below integrated systems:  

‒ the SEASOFT, which houses information regarding the position of the vessel 

‒ the SAP ERP, which houses information regarding invoice checking and payments 

‒ the AMOS PMS (Planned Maintenance System), which houses the basic vessel information 

and detailed relationship between vessel’s components while also provides spares, supplies 

and lubricants procurement support and entails all relevant information 

‒ the dedicated SAP Forwarding Tool, which houses information regarding supply chain 

related costs as well as information regarding the stock in the company’s warehouses.  

A large number of data in the database, which was used for the analysis, are produced from the 

planned maintenance system, AMOS, which also supports the entire procure-to-pay lifecycle of the 

spare parts demand: from the requisition part (where the vessel raises the need) to the delivery part 

(where the purchased goods are sent to the vessel). This cycle also entails the quotations phase, 
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where several suppliers quote prices and lead times for specific parts as well as the procurement 

order phase where, after vendor selection, the official purchase order is sent to the selected vendor 

and the parts are purchased.  

For the case study in question, each year more than 16,000 spare parts orders are made referring to 

more than 30,000 different maker references (which is a unique code referring to one item). In the 

bulk order process, which is the scope of the thesis, more than 4,000 items are procured grouped in 

600 orders.  

The variables that are of interest to the case study amount to more than 30 including historical 

prices, lead times, vessel characteristics, historical data about dry-docking etc.  

To create the datasets extensive use of SQL was made creating more than 35 temporary tables to 

create 4 final datasets. Below the dimensions of the initial tables:  

‒ First dataset: including all bulk orders items for all the years: 13,967 rows x 6 columns 

‒ Second dataset: including all vessel characteristics and demand metrics for forecasting of 

nominal needs of the fleet: 3,625 rows x 18 columns 

‒ Third dataset: including all vessel characteristics, demand metrics and market details for 

forecasting of extra needs of the fleet: 4,508 rows x 20 columns 

‒ Fourth dataset: including important variables from second dataset and historical data about 

demand, prices, weight and lead times used for prescriptive model: 3,625 rows x 18 columns 

Below a small part of the SQL code used:  

USE [ADW_Analytics] 
GO 
/****** Object:  StoredProcedure [pu].[uspT_MakerVSnonMaker]    Script Date: 21/06/2019 
16:02:07 ******/ 
SET ANSI_NULLS ON GO 
SET QUOTED_IDENTIFIER ON GO 
ALTER procedure [pu].[uspT_MakerVSnonMaker] AS  
SET NOCOUNT ON; 
IF OBJECT_ID('tempdb..#itemsdetailsinitial') IS NOT NULL DROP TABLE #itemsdetailsinitial 
IF OBJECT_ID('tempdb..#final') IS NOT NULL DROP TABLE #final 
 
.......... [more lines that have not been included] 
 
--drop table #final 
select distinct f.component, , f.Vessel_Code, f.MakerReference, f.BulkYear 
, sum(f.Avg_pv)/ count (f.Vessel_Code) as Quantity, avg (f.VesselAge) as Avg_Age, avg 
(f.AvgPrice) as Avg_Price 
  , f.Market, f1.VesselSize_Desc, f1.BoughtStatus, f1.NationalityCountry_Code, 
v.VesselSegment_Desc 
  , v.VesselType_Desc as VslType, dwt.Avg_DWT, f.NextYearDD,v.CargoOilType_Desc, 
v.ClassificationClass_Desc 
  , year (v.Bought_DateTime) as YearBought, v.BuildYear, v.HullBreadthMolded, 
v.HullTonnageGT 
  , v.HullSpeedAbsMax, v.InsuredValue, f.Level3_Desc 
  , case when e.Avg_pv_NB is null then 0 else e.Avg_pv_NB  end as 'ExtraNB' 
  , casewhen (ga.GeographicArea_Desc is null and v.Yard_Name like '%korea%') OR 
Yard_Name like '%hyundai%' OR Yard_Name like '%samho%' OR Yard_Name like '%DAEWOO%' or 
v.Vessel_Code = 'h8' then 'SOUTH KOREA' 
   when v.Yard_Name like '%imabari%' then 'JAPAN' 
   when v.Yard_Name like '%hudong%' then 'CHINA' 
   else GA.GeographicArea_Desc 
    end as 'VslOrigin'   
into #final 
from #finalv2 f  
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left join #finalv2 f1 on f.Component = f1.Component and f.Level3_Desc = f1.Level3_Desc and 
f.BulkYear = f1.BulkYear and f.Vessel_Code = f1.Vessel_Code 
left join #extraorders e on f.Component = e.Component and f.Level3_Desc = e.Level3_Desc and 
f.BulkYear = e.OrderYear and f.Vessel_Code = e.Vessel_Code 
left join adw.team.Vessels v on v.Vessel_Code = f.Vessel_Code 
left join adw.team.VesselsNextDryDocking dd on dd.Vessel_Code = f.Vessel_Code 
left join adw.team.GeographicAreas ga on ga.GeographicAreas_Key = 
v.YardCountry_GeographicAreas_FK 
left join #avgDWT dwt on dwt.VesselSize_Desc = f.VesselSize_Desc 
where f1.Maker_Code is not null 
group by f.Component, f.Level3_Desc, f.BulkYear, f.Vessel_Code    , f1.Maker_Code, 
f1.Maker_Name, f1.VesselSize_Desc, f1.BoughtStatus 
    , f1.NationalityCountry_Code, f.VesselAge, v.VesselSegment_Desc, 
v.Fleet_ShortDesc, v.CF_DWT_Max, f.NextYearDD, ga.GeographicArea_Desc 
    , v.Yard_Name, v.Vessel_Code, v.VesselType_Desc, v.CargoOilType_Desc, 
v.ClassificationClass_Desc, year (v.Bought_DateTime) 
    , v.BuildYear, v.HullBreadthMolded, v.HullTonnageGT, v.HullSpeedAbsMax, 
v.InsuredValue, e.Avg_pv_NB, f.Level3_Desc, dwt.Avg_DWT 
    ,f.MakerReference,f.Market 
 
.......... [more lines that have not been included] 
 
GO 

Additionally, some snapshots of the extracted data:  

 

Figure 3.2-1: Snapshot of SQL code’s results (1/2) 

Above snapshot (Figure 3.2-2) is produced by SQL code used for the first methodological step of the 

practical part of the thesis. 

 

Figure 3.2-2: Snapshot of SQL code’s results (2/2) 

Above snapshot (Figure 3.2-2) is produced by SQL code used for the second methodological step of 

the practical part of the thesis. 
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In the next sections, the analytics framework provided in this chapter will be used to perform the 

three methodological steps (namely: the identification of high interest items, the forecasting of 

demand and the implementation of the prescriptive model) of the practical part of the thesis to 

create the integrated decision support tool for the bulk order process.  
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4 Identification of high-interest items 
The bulk ordering process, as described (see section 1.2), is a time-consuming project and this is in 

part due to the very high number of line items that comprise a bulk order. In the interest of industry-

wide standardization, each item in the spare parts industry can be referred to using a unique 

number called a maker reference. In each bulk order, there are around 4,000 distinct maker 

references making it very time consuming to compare the items and even to insert the prices of each 

supplier in a data base or/ and an ERP system.  

Therefore, it seems important to be able to narrow down the high-interest items for each bulk order 

to facilitate and expedite the process. This way the analysis can be focused only on items that have 

been identified as high-interest and therefore the volume of administrative workload for the 

departments will be smaller. 

4.1 Identification of analysis criteria 
The identification variables that will be the input in the unsupervised learning algorithm is of great 

importance as the relationship between those will determine the items upon which the forecasting 

will be performed. The dataset that is used for clustering the items consists of data from all the bulk 

order projects (in total 3 bulk orders, one for the needs of 2017, one for the needs of 2018 and one 

for those of 2019) that the company has undertook. Therefore, the below variables were identified.  

‒ Price: this variable indicates the acquisition price of the item (also accounting for discounts- 

if any apply) 

‒ Quantity: this variable indicates the number of times this item was purchased in all the three 

bulks 

‒ Total Volume: this variable indicates the product of the price and the quantity and is meant 

to increase the importance of items that have a medium price and were ordered a 

considerable amount of times thus making the total volume of those items quite large.   

‒ Number of Unique Vessels: this variable indicates the number of different vessels that the 

item was installed on. This variable was inserted to increase the importance of an item, even 

if it doesn’t have a considerable volume, price or quantity, if it is installed on many vessels 

and therefore has an increased influence in the uniformity and possible problems across 

several vessels.  

‒ Average Age: this variable indicates the average age of the vessels said item is installed on.  

4.2 Descriptive modelling and clustering analysis  

4.2.1 The dataset 

The dataset has been extracted from the case study company’s data warehouse using SQL. Below a 

sample of the dataset is presented. 

The below notation will be used here on after for the identification of components: 

 Main Engine: M/E 

 Diesel Generator: DG 

 Purifiers: PUR (not present in below sample dataset) 

 Compressors: COMP (not present in below sample dataset) 
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Table 4.2-1: Sample of dataset used for clustering 

Maker 
Reference 

Category Quantity Price 
Total 

Volume 
Average 

Age 
Unique 
Vessels 

[redacted] M/E 2 10480.16 20960.32 14.01 1 

[redacted] M/E 1 9775 9775 16.14 1 

[redacted] M/E 1 7737.86 7737.86 11.58 1 

[redacted] M/E 1 7026.37 7026.37 14.23 1 

[redacted] M/E 1 6675.903 6675.903 6.11 1 

[redacted] M/E 1 6180.12 6180.12 6.11 1 

[redacted] DG 1 5920.498 5920.498 10.96 1 

[redacted] M/E 3 5338.67 16016.01 11.58 1 

[redacted] DG 1 5100 5100 11.58 1 

[redacted] M/E 1 5027.147 5027.147 10.96 1 

[redacted] DG 1 4868.18 4868.18 4.1 1 

[redacted] DG 1 4839.95 4839.95 10.47 1 

4.2.2 DBSCAN Clustering 

The scope of the clustering exercise is to determine the items that have an abnormally high price, 

quantity, combination of both or/ and are installed on several vessels. Therefore, what needs to be 

performed is a clustering that will identify the ‘outliers’ of the dataset thus labelling the items that 

have the characteristics described above. The ideal algorithm for this exercise is the dbscan 

algorithm also described in the previous chapter of the thesis (see sections 2.3.1.2) as it 

automatically creates a cluster containing the outliers.  

Having decided the variables of the analysis, as per literature review (see sections 2.3.1.2) k is 

determined as: 

k = 2 dim = 10 

, where dim is the number of dimensions (or variables) of the problem (5 variables as seen in the 

table above; Quantity, Price, Total Volume, Average Age, Unique Vessels). 

The next step will be to determine the value of the parameter eps. As previously stated, the k- 

Nearest Neighbor (kNN, 10-NN) is created and is shown below.  

 

Figure 4.2-1: k-NN plot 
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As discussed in the literature review (see section 2.3.1.2) the value of eps is determined by the 

elbow of the graph (in the above graph shown by the red dotted line). The value of the eps 

parameter is determined at eps=1.8 

Table 4.2-2: Cluster Means of Variables
1
 

Cluster  Data Points  Quantity Price  Total Volume Average Age  Unique Vessels  

0 376 110 841.05 4581.38 10.47 5.62 

1 12254 11.54 56.407 221.28 10.68 2.05 

2 9 168.6 1.3091 219.89 3.26 3.89 

As can be seen from the table above three clusters have been created. The first cluster (cluster 0), 

here on after the outlying cluster, contains the outliers of the analysis. The mean quantity of the 

outlying class is considerably higher than the one of the second cluster (cluster 1), which contains 

the clear majority of the data, here on after the average class. The same can be said for the price of 

the outlying class as compared to the price of the average class. Evidently, the total volume, which is 

computed the product of the aforementioned characteristics (price and quantity), is also 

considerably higher. Finally, the unique vessels, that as mentioned before describes the number of 

different vessels that the specific item is installed on, is also considerably higher in the outlying class. 

However, the average age of the vessels is virtually the same for the two clusters.  

All in all, the items of the outlying class represent the items that have considerable higher volume, 

price and quantity than the average meaning that they represent the cost drivers. 

The third cluster (cluster 2) contains a small fraction of the total items that have a large quantity and 

are installed on several young vessels.   

 

Figure 4.2-2: Results of clustering 
2
 

                                                           
1
 Made using (Hahsler & Piekenbrock , 2018) Library: dbscan 

2
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The items identified as cost drivers using clustering represent 3.06% of the items and 42.54% of the 

total cost of the bulk orders. Therefore, the cost drivers are the items that will be used further in the 

project to create the decision support tool.  

4.2.3 Further analysis using k-means 

To further analyse the data k-means clustering on the previously identified as high-interest items is 

performed. Identifying the optimum number of clusters is one way to limit the main disadvantage of 

the k-means. Therefore, for each cluster the total Euclidean distance, which is the total within-

cluster sum of squares, is computed.  

 

Figure 4.2-3: Optimum number of clusters 

The figure above shows that the total distance between the data points and the centroid of the 

cluster that these data points belong in, decreases as the number of clusters increases.  In the figure 

above there is no clear change of slope, except in cluster 7. However, considering the small number 

of data the number of clusters was chosen to be three. It is noted that any number between 3 and 5 

could have been chosen as there is no significant change in the slope of the curve. The smallest was 

chosen to group the items in a smaller number of clusters thus creating broader business categories.  

Table 4.2-3: Means of clusters produced by k-means algorithm 

Cluster  Data Points  Total Volume  Price Unique Vessels  Average Age  

1 174 4172.0 1799 1.40 10.9 

2 96 3169.0 1383 1.51 9.26 

3 105 2781.7 584 1.70 11.06 

As can be seen from the table above the means of the clusters cannot provide any more indications 

about the data in them. Therefore, the below graph is created. 
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Figure 4.2-4: Kmeans 3D plot with 3 of the variables
3
 

Making use of the graph above the description of each cluster is easier to be defined. Clusters 1 and 

2 consist of high-volume items of low quantities. The differentiating variable here is the age where 

cluster 2 consists mainly of young vessels and cluster 1 of older vessels. Cluster 3 consists mainly of 

low volume and high quantity items for older vessels.  

Table 4.2-4: Summarized results for 2
nd

 clustering 

Cluster  Description Data Points  Total Volume Percentage 

1 High volume – young vessels 217 $1,617,972.90  73.27% 

2 High volume – old vessels 126 $478,920.90  21.68% 

3 Low volume 139 $111,329.80  5.04% 

The cluster of k-means was further used as an independent variable in the forecasting analysis of the 

next chapter. 

The items identified as cost drivers using clustering will be used as a basis for the bulk order price 

collection and winner selection. Having identified around 3% of the total items that represent 

around 50% of the total cost, the purchasing department will focus only on the pre-identified items 

to collect prices, assess the quotations, negotiate the prices and select the winner. Therefore, the 

administrative workload will decrease considerably in these steps of the bulk order process (see also 

Figure 3.1-1 and section 3.1). Concurrently, the items identified as cost drivers will provide the basis 

of analysis in the following steps of the practical part of the thesis. These items will be included in 

the forecasting part of the thesis (see section 5) and for the final step of the thesis which is the 

creation of the decision support tool (see section 6). 

 

  

                                                           
3
 Made using (Sievert, 2018) Library: plotly for R 
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5 Predictive forecasting model for spare parts 
After having defined the items, identified by a unique number (maker reference), the predictive 

analysis is implemented.  

This phase is divided in two parts. The first part refers to the forecasting of nominal bulk quantities 

based mainly on the characteristics of each vessel and the second phase refers to the forecasting of 

the extra quantities, if any, that will be needed during the next year based mainly on the buying 

patterns of the previous years.  

5.1 Nominal Bulk Quantities 

5.1.1 Identification of parameters 

The first part of the forecasting process is to create the dataset. Using clustering a number of maker 

references has been identified as the cost and volume drivers of the spare parts bulk ordering 

process (see section 0). In the forecasting process, the machine learning algorithms will try to find a 

pattern between the data points in the dataset. The level on which the algorithms will try to find the 

relationships is described by the granularity level. Therefore, if we try to predict the nominal bulk 

quantities for each maker reference and for each vessel, we will need to create a small dataset for 

each maker reference. This way, the maximum number of data points that each dataset will have is 

3, equal to the number of bulk years, thus making the forecasting process very difficult.  

Therefore, the maker references have been grouped based on their relationship with certain 

components that can be found in the following table. 

Table 5.1-1: Components and Number of Maker References 

Component Number of Maker References 

AIR COMPRESSORS 19 

ASSEMBLY 3 

CAMSHAFT 1 

CONNECTING RODS 10 

CONROD (BIG END) BEARINGS 1 

CYLINDER HEADS 72 

CYLINDER LINERS 17 

DIESEL GENERATOR 21 

DRIVE SECTION 1 

EXHAUST VALVES 13 

FUEL INJECTION VALVES 38 

FUEL OIL PUMPS 31 

FUEL OIL PURIFIERS 22 

FUEL OIL SYSTEM 4 

LO SYSTEM 2 

LUB OIL PURIFIERS 19 

LUBRICATING SYSTEM 3 

MAIN BEARINGS 2 

MAIN DIESEL GENERATORS 26 

MAIN ENGINE 7 

MECHANICAL SYSTEM 12 

PISTONS 49 

SHAFT ASSEMBLY 5 

TURBO CHARGERS 6 
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Therefore, the maker references have now been grouped into 24 components4. Then the dataset is 

created making extensive use of SQL code as described in the previous section (see section 3.2) 

5.1.1.1 Defining parameters for one component 
The final product of the forecast will be the nominal quantity that a vessel needs for the following 

for each vessel and for each maker reference. The variables that will be used for the forecasting of 

the final quantity are:  

‒ Average Age: The age of the vessel is one of the most important vessel characteristics and as 

described in the first chapter the maintenance of the vessel and thus the quantities of the 

item that will be ordered are highly correlated.  

‒ Average Price: The price of an item is one of the most important demand characteristics and 

in the sections below its relationship with the final quantity will be examined.   

‒ DWT: This variable describes the dead-weight tonnage of the vessel and therefore is an 

indicator to the size of the vessel and to its needs 

‒ C/Eng Nationality: This variable refers to the nationality of the chief engineer of the vessel 

and aims to unveil influences of education and culture that can be associated with the chief 

engineer’s nationality. It is a categorical variable of three levels: GR for Greece, BG for 

Bulgaria and PH for Philippines.  

‒ Type: The combination of this variable with the DWT declares the size of the vessel (eg. 

Aframax, Suezmax etc.) Categorical variable of two levels: Tanker and Dry 

‒ Origin: This variable indicates the country of construction of the vessel. It is a categorical 

variable of three levels: SOUTH KOREA, JAPAN and CHINA and aims to unveil correlations 

between the shipyard and the quality of the vessel. 

‒ k-means cluster: as described in the previous section (see section 4.2.3) the cluster of the k-

means groups the items based on k-means algorithm creating 3 clusters.  

Table 5.1-2: Sample dataset for forecasting of nominal needs for component AIR COMPRESSORS 

Maker 

Reference 
Quantity 

Average 
Age 

Average 
Price 

C/Eng 
Nationality 

Type DWT Origin 
K-means 
cluster 

[redacted] 1 8.3 $  1,139.21  PH Tanker 110900 CHINA 1 

[redacted] 1 7.87 $  1,221.59  PH Tanker 110900 CHINA 1 

[redacted] 1 8.3 $  1,461.78  PH Tanker 110900 CHINA 1 

[redacted] 26 0.79 $  0.35  GR Tanker 161100 KOREA 1 

[redacted] 10 1.17 $ 0.15  PH Tanker 110900 JAPAN 2 

[redacted] 10 1.65 $ 0.15  PH Tanker 110900 JAPAN 2 

[redacted] 5 1.17 $ 0.26  PH Tanker 110900 JAPAN 1 

[redacted] 5 1.65 $ 0.26  PH Tanker 110900 JAPAN 1 

[redacted] 1 6.33 $ 0.15  PH Tanker 49100 KOREA 1 

5.1.1.2 Exploring regression techniques 
In order to understand the variables of the dataset and the effect that they have on the nominal 

quantity of the bulk order, a number of statistical methods are applied. The analysis below was 

performed on the component AIR COMPRESSORS.  

                                                           
4
 There are 11 maker references that have not been grouped in one of the components of Table 5.1-1. This 

happens because in the database no component was registered for said maker reference. 
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5.1.1.2.1 Linear Regression 

The first method explored was linear regression models. Having determined the variables of the 

analysis a correlation matrix is created and is visualized below.  

 

Figure 5.1-1: Correlation matrix for air compressors 

As can be seen from figure above there is no significant correlation between any of the variables and 

the final quantity. This is assuming that a significant (strong) correlation (either positive or negative) 

is described by a correlation coefficient absolute value of higher than 0.6 (Evans J. , 1996)The two 

variables that have the highest significance for the final nominal need for air compressors are the 

age of the vessel (as Avg_Age) and the type of the vessel (as VslType).  

Since the correlation between age of the vessel and the quantity is negative it means that as the age 

of the vessel increases the quantity decreases. There are two factors that can explain this finding. 

First, since the dry-docking procedures are happening in shorter time intervals the quantities needed 

to be procured each year in the bulk orders are lower. At the same time, for commercial reasons 

sometimes maintenance activities are not completed with the same intensity as for younger vessels 

for cost containment purposes since the vessel is coming towards its end of life. For example, if the 

company looks to sell an older vessel will not spend a considerate amount in overhauls and dry-

docks. Instead, it will keep costs to the lowest possible levels.  

As far as the vessel type is concerned, the correlation coefficient value is -0.5 which can be 

considered moderate relationship. For calculation purposes tanker- type was denoted as 0 and dry-

type was denoted as 1. The quantities are therefore higher for tanker vessels in relation to the dry 

bulk carriers.   

Finally, there is a negative correlation between the price and the quantity. The value of the 

correlation coefficient is -0.2 which indicates a weak negative relationship. This is expected as it is 

normal when the quantity increases for the price to drop.  
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Having checked the correlations between several variables and the dependent variable (quantity) 

linear models are created. Linear models were created for the numeric variables (the age of the 

vessels denoted as avg_age and the price denoted as avg_price) and for the categorical variable with 

the highest correlation with the dependent variable: the type of the vessel. 

 

Figure 5.1-2: Linear regression for AIR COMPRESSORS 

 

Figure 5.1-3: Linear regression for AIR COMPRESSORS 

As is observed by the graphs above, it is very difficult to approximate the relationship between the 

ordered quantity and the different aspects of the vessel or/ and the component that influence it.  

Table 5.1-3: Linear Regression and results 

Number of Variables  Variable X Coefficient R
2
 

1 Average Age  -0.158 4.34 4.1% 

1 Average Price -0.002 3.88 6.4% 

1 Vessel Type -1.701 2.762 3.8% 

The analysis performed with statistical models, has shown that there is no profound relationship and 

correlation between the variables, thus making the forecasting with conventional methods rather 

difficult.  

Linear regression with two variables was also explored. However, the results are not satisfactory. 

Even when combining the variables Average Age and Average Price the coefficient of determination, 

R2, is 8.31% which is very low. However, since it is not justified to dismiss linear regression solely on 

the coefficient of determination below graphs, and their ideal shape is also included.  
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Figure 5.1-4: Ideal Shape of residuals vs fitted (left) and QQ plot (right) 

The residuals vs fitted graph tests whether the relationship between the variables is linear (i.e. 

linearity) and whether there is equal variance along the regression line (i.e. homoscedasticity). The 

ideal residuals vs fitted plot should be relative shapeless (as shown in the figure above) and be 

generally symmetrically distributed around the 0 line.  

The QQ plot helps determine if the dependent variable is normally distributed by plotting quantiles 

from the dataset’s distribution against a theoretical distribution. If the data is normally distributed it 

will be plotted in a generally straight line (as shown in the figure above)  

  

Figure 5.1-5: Residuals vs fitted (left) and QQ plot (right) after implementing linear model with age and price 

As can be seen from the graphs above and from the comparison with the ideal shapes neither the 

residuals vs fitted plot nor the normal QQ plot are satisfactory.  

The above along with the low value of R2 are enough to dismiss normal linear regression as a 

forecasting method.  

5.1.1.2.2 Time series analysis 

Another approach that could be used for forecasting is the time series analysis. The bulk ordering is 

a project that is undertaken every year and the demand of the spare parts is influenced by several 

factors. Initially, someone could argue that the best way to forecast demand would be by using time 

series analysis. However, in this case the time series analysis is not performed due to the reasons 

below: 

‒ The size of the dataset for the desired granularity is extremely small. As previously 

described (5.1.1), the forecasting will take place for distinct maker references and for a 

series of vessel characteristics that practically define a unique vessel. Therefore, the 
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dataset of each quantity that needs to be forecasted has at most 3 data points, each 

data point representing one of the bulks already carried out by the case company. As is 

cited in literature review (Hanke & Wichern , 2009) minimum of the sample size to 

capture patterns in time series needs to be at least 50. This makes the time series 

analysis for the problem a poor choice. 

‒ Additionally, demand of spare parts is heavily influenced by exogenous factors such as 

the vessel characteristics. As it was observed by the correlation matrix above (5.1.1.2.1) 

the vessel characteristics heavily influence the final demand of the vessel. Therefore, the 

time series forecasting which is used to predict values based on previously observed 

values (Imdadullah, 2014)cannot easily account for the needed exogenous factors.  

‒ Using above analyses of linear regression, it is noted that the above dataset exhibits 

signs of multicollinearity, heteroscedasticity and non-stationarity and therefore certain 

transformations need to be performed (Deviant , 2012)This can be proven quite difficult 

considering the two points above.  

The inapplicability of time series analysis was validated by utilization of the auto.arima package 

within R. The end goal was to identify a data set transformation viable enough to generate reliable 

results using the optimum ARIMA parametrization. For most of the components of the dataset 

auto.arima identified as optimum the set-up ARIMA (0,0,0), i.e. approximating the time series as 

“white noise”, which means that the dataset can be characterized as a sequence of random numbers 

and cannot be predicted if no further actions are taken. Below an example of forecasted quantities is 

presented:  

 

Figure 5.1-6: Results of ARIMA forecasts for the majority of the components
5
 

The approximation of the series as white noise results in a constant non-zero value as the forecasted 

quantity which does not capture the desired result.  

5.1.2 Application of machine learning  

Having considered the above analyses as well as the small size of the dataset, the applicability of 

machine learning, and advanced statistics will be explored to see if there is indeed ground to 

                                                           
5
 Made using (Hyndman, et al., 2019) Library: foreast 
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formulate a predictive model in this problem domain. The algorithms described in the previous 

chapter (see section 2.3.2) of the thesis will be tested and evaluated to this end.  

Smaller datasets for each component including all the distinct maker reference numbers that fall 

under said component along with the extracted aforementioned variables from the database are 

created. A loop is then created, which initially checks if there are more than 20 entries in said sub-

dataset for the component to ensure a large number of data to perform the next task. Then the data 

are divided into two sets: the training set and the test set with a random 80-20 data partition, as for 

most of the sub-datasets the number of data points is not sufficient enough to also create a 

validation set. Finally, the training of the models is performed using the trainsets.  

The following pseudo-code explains the process described above: 

data <- get dataset from SQL6  

for all components [i=1,. . .,N] 

    component_dataset [[i]] <- data (where component[i] = component) 

    if nrow (component_dataset [[i]]) >20  

        data_partition <- 80/20 

        trainset <- 0.8*data 

        testset <- -(trainset) 

        model_prediction 1<- train random forest 

        model_prediction 2<- train generalized linear regression  

        model_prediction 3<- train principal component regression 

    end  

end  
Having trained the models, the testing process is then performed. For each model the test set is 

inserted as input and the output is then compared to the actual quantity. For each entry the 

forecasting error is computed and for each component the mean average percentage error is also 

computed.  

for all components [i=1,. . .,N] 

    if nrow (component_dataset [[i]]) >20  

        model_results 1<- test random forest 

        model_results 2<- test generalized linear regression  

        model_results 3<- test principal component regression 

   mape[i] <- compute mape for component i  

    end  

end  

5.1.2.1 Forecasting results  
For each component the mean absolute percentage error is computed as per below formula:  

𝑀𝐴𝑃𝐸 =
|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙|

𝑎𝑐𝑡𝑢𝑎𝑙
 

The results are presented in the table below. For some components forecasting did not take place as 

the entries were not enough to properly train and test the algorithms. Here on after the three 

algorithms used for forecasting are denoted as follows:  

 Random Forest: RF 

 Generalized Linear Model: GLM 

 Principal Component Regression: PCR 

                                                           
6
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Table 5.1-4: Mean absolute errors for each component 
7
 

Component RF GLM PCR Number of Points 

AIR COMPRESSORS 34% 119% 112% 268 

ASSEMBLY - - - 6 

CAMSHAFT 64% 61% 58% 22 

CONNECTING RODS 77% 111% 272% 31 

CONROD (BIG END) BEARINGS - - - 9 

CYLINDER HEADS 140% 220% 221% 893 

CYLINDER LINERS 111% 311% 301% 155 

DIESEL GENERATOR 125% 297% 146% 114 

DRIVE SECTION 39% 46% 27% 22 

EXHAUST VALVES - - - 17 

FUEL INJECTION VALVES 98% 109% 128% 283 

FUEL OIL PUMPS 103% 104% 103% 153 

FUEL OIL PURIFIERS 77% 100% 94% 427 

FUEL OIL SYSTEM 22% 45% 34% 26 

LO SYSTEM - - - 16 

LUB OIL PURIFIERS 52% 99% 103% 519 

LUBRICATING SYSTEM - - - 4 

MAIN BEARINGS - - - 13 

MAIN DIESEL GENERATORS 122% 78% 88% 50 

MAIN ENGINE - - - 10 

MECHANICAL SYSTEM 137% 172% 166% 194 

PISTONS 64% 256% 259% 294 

SHAFT ASSEMBLY 64% 70% 85% 80 

TURBO CHARGERS 48% 70% 48% 54 

As can be seen from the table above the forecasting error is, in some cases, considerable and in 

some cases, it can be characterized as rather satisfactory (those below 40%).  

To better visualize the performance of the algorithms below indicative results for each component 

are presented.  

 

Figure 5.1-7: Forecasting results for the component AIR COMPRESSORS 

                                                           
7
 Made using (Kuhn, et al., 2018) Library: caret.  

All the following forecasting results were found using caret library. 
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Figure 5.1-8: Forecasting results for the component PISTONS 

What needs to be noted is that x axis in the graph above only denotes the observation and does not 

have any affiliation with time.  

5.1.2.2 Handling of data and forecasting results 

For some components, making use of the graphs it was observed that even though the fitting of the 

model seemed rather satisfactory the error was extremely high. An indicative case is the below: 

 
Figure 5.1-9: Forecasting results for the component FUEL INJECTION VALVES 

For the component fuel injection valves, the error of the random forest algorithm is 98% (which is 

the minimum of the three algorithms).  

However, as can be observed from the graph the fitting seems to be much better than the error. The 

two data points circled in red in above graph that have extremely high quantity as compared to the 

rest of the dataset drive the error to higher levels.  

Therefore, a data cleansing method is used to determine those data points and eliminate them from 

the training and evaluating sets of the algorithms. In the specific dataset it is common to come 

across data points that can be considered as outliers. In a business sense, this can be explained by a 

superintended engineer calculating the values mistakenly or a vessel having abnormally high or low 

needs for a year.    
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Therefore, dbscan (see section 2.3.1.2) is used to determine the outliers and exclude those data 

points from the analysis (see section 2.2.1.1). 

While performing the above data cleansing method the below parameters were used  

‒ minPts = 6: this parameter was chosen  as dimensions of the problem multiplied by two (see 

2.3.1.2). The dimensions for which dbscan is applied are only the numeric ones (age of the 

vessel, DWT, price of the item) 

‒ eps = 0.5: this parameter was chosen as dictated by literature review (see 2.3.1.2). However, 

since every component has a different optimum eps value the average was assumed as eps 

value for the parameters of DBSCAN performed below.   

In the next section (see 0) the assumption of the eps value is tested to determine the optimum eps 

for the components.  

The table below presents the number of outliers for each component and the relative relation with 

the total number of observations for each component.  

Table 5.1-5: Number of outliers per category 

Component Outliers Number of Points Percentage 

AIR COMPRESSORS 27 268 10.1% 

ASSEMBLY - 6 - 

CAMSHAFT 14 22 63.6% 

CONNECTING RODS 20 31 64.5% 

CONROD (BIG END) BEARINGS - 9 - 

CYLINDER HEADS 34 893 3.8% 

CYLINDER LINERS 20 155 12.9% 

DIESEL GENERATOR 12 114 10.5% 

DRIVE SECTION 22 22 100.0% 

EXHAUST VALVES 17 17 100.0% 

FUEL INJECTION VALVES 37 283 13.1% 

FUEL OIL PUMPS 46 153 30.1% 

FUEL OIL PURIFIERS 22 427 5.2% 

FUEL OIL SYSTEM 8 26 30.8% 

LO SYSTEM - 16 - 

LUB OIL PURIFIERS 51 519 9.8% 

LUBRICATING SYSTEM 0 4 0.0% 

MAIN BEARINGS - 13 - 

MAIN DIESEL GENERATORS 6 50 12.0% 

MAIN ENGINE - 10 - 

MECHANICAL SYSTEM 20 194 10.3% 

PISTONS 42 294 14.3% 

SHAFT ASSEMBLY 26 80 32.5% 

TURBO CHARGERS 22 54 40.7% 

For the components EXHAUST VALVES and DRIVE SECTION the outliers are 100% of the dataset. This 

means that dbscan cannot classify the items and labels them as outliers and therefore, the 

components have been excluded from the implementation of the algorithms below.   

Having handled the dataset in the way that was described above, the three algorithms are applied 

again and are trained and tested on the ‘cleaned’ dataset. The pseudo code of the analysis and its 

results are presented below. In the following pseudo code suffix ‘_no’ is used to emphasize the 

absence of the outliers.  
 

eps <- 0.5  
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minPts <- 5 

for all components [i=1,. . .,N] 

    db[[i]] <- dbscan on component_dataset [[i]] 

    dataset_no [[i]] <- db[[i]] [where db$cluster <> 0] 

    if nrow (component_dataset [[i]]) >15 

        data_partition <- 80/20 

        trainset_no [[i]] <- 0.8*dataset_no [[i]] 

        testset_no [[i]] <- - (dataset_no[[i]]) 

        model_prediction_no 1<- train random forest 

        model_prediction_no 2<- train generalized linear regression  

        model_prediction_no 3<- train principal component regression 

    end  

end 

and hereafter the second loop used to extract the results:  

for all components [i=1,. . .,N] 

    if nrow (component_dataset [[i]]) >15  

        model_results_no 1<- test random forest 

        model_results_no 2<- test generalized linear regression  

        model_results_no 3<- test principal component regression 

        mape_no[i] <- compute mape for component i  

    end  

end  

The table below presents the results of the implementation of the algorithms already discussed (see 

section 5.1.2) after performing data handling methods.  

Table 5.1-6: Mean absolute errors for each component after outlier elimination 

Component RF  GLM PCR Number of Points 

AIR COMPRESSORS 31% 115% 94% 241 

ASSEMBLY - - - 6 

CAMSHAFT - - - 8 

CONNECTING RODS 0% 0% 0% 11 

CONROD (BIG END) BEARINGS - - - 9 

CYLINDER HEADS 125% 153% 158% 859 

CYLINDER LINERS 122% 242% 149% 135 

DIESEL GENERATOR 83% 117% 93% 102 

DRIVE SECTION - - - 0 

EXHAUST VALVES - - - 0 

FUEL INJECTION VALVES 44% 63% 56% 246 

FUEL OIL PUMPS 68% 100% 101% 107 

FUEL OIL PURIFIERS 46% 89% 91% 405 

FUEL OIL SYSTEM 10% 20% 30% 18 

LO SYSTEM 17% 17% 17% 16 

LUB OIL PURIFIERS 53% 93% 92% 468 

LUBRICATING SYSTEM - - - 4 

MAIN BEARINGS - - - 0 

MAIN DIESEL GENERATORS 162% 198% 141% 44 

MAIN ENGINE - - - 10 

MECHANICAL SYSTEM 71% 72% 76% 174 

PISTONS 53% 107% 125% 252 

SHAFT ASSEMBLY 29% 46% 55% 54 

TURBO CHARGERS 0% 17% 0% 32 

To better visualize the performance of the algorithms below indicative results for each component 

are presented.  
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Figure 5.1-10: Forecasting results for the component AIR COMPRESSORS after outlier elimination 

For the component AIR COMPRESSORS total error was improved by 3% (see Figure 5.1-7 and Table 

5.1-4). Another example is provided below:  

 

Figure 5.1-11: Forecasting results for the component PISTONS after outlier elimination 

For the component AIR COMPRESSORS total error was improved by 3% (see Figure 5.1-8 and Table 

5.1 4). 

By comparing the two tables that summarize the results of the two methods (see Table 5.1-4 and 

Table 5.1-6), the forecasting after outlier elimination is a process that yields better results than 

simple forecasting. As an indication the total average error of the forecasting without handling of 

outliers is 73% and after outlier elimination it decreases by 17% to 56%. 

5.1.2.3 Optimization of data cleansing algorithm and forecasting results  
As previously discussed, the results of the chosen outlier handling method (dbscan) are heavily 

influenced by its two parameters (see section 2.3.1.2). The first parameter (k) is defined as per 

literature review. As the forecasting of the different components is governed by the same number of 

dimensions, this parameter can be considered as constant across the different components.  

However, the second parameter, eps, is defined by interpreting a graph. This does not allow the 

algorithm to be fully automated as the user needs to interpret the produced graph and then to 
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determine the value of the eps parameter. To avoid this, a loop is performed to determine the best 

value for this parameter. 

However, as eps decreases, meaning that dbscan will consider data points to be in the same cluster 

only if they have distance smaller than eps, the number of points that are labelled as outliers 

increases. This way, the forecasting error decreases but the probability the model over fits the data 

increases. Therefore, it is very difficult to determine the ideal eps for each component.  

As can be seen from the table of the previous section (5.1.2.2) there are some components that the 

outlier handling could not decrease the error to satisfactory levels. Namely those components are:  

‒ Cylinder Heads 

‒ Cylinder Liners  

‒ Main Diesel Generators 

For those components below the analysis of the optimum eps value is presented.  

 

Figure 5.1-12: Change of MAPE (left) and number of data points (right) as eps parameter increases for component 
CYLINDER HEADS 

As described above, when the eps parameter decreases the number of data points included in the 

analysis is increased (the outliers are decreasing). At the same time the forecasting error decreases 

as well. As can be seen from the graph the optimum error (without simultaneous elimination of a 

considerable amount of data points) is at eps=0.8.  

 

Figure 5.1-13: Change of MAPE (left) and number of data points (right) as eps parameter increases for CYLINDER LINERS 

Another example is given in the figure above referring to component main diesel generators. The 

behavior here is similar to the component described above where the optimum point can be found 

at eps=0.8.  
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The analysis above can be considered an area of further research into optimizing the model and 

especially the data handling section.  

5.1.3 Synthesis of results 

To conclude, the forecasting of the nominal quantities the six models produced by the three 

different methods (RF, PCR, GLM) are evaluated and the results are presented on the table below. 

For the next steps of the thesis the algorithms presented below are considered the best performing 

algorithms and are used for further steps.  

Table 5.1-7: Least mean absolute error for each component for all methods 

Component Minimum MAPE Method 

AIR COMPRESSORS 31% Random Forest No Outliers 

ASSEMBLY - - 

CAMSHAFT 58% Principal Component Regression 

CONNECTING RODS 0% Random Forest No Outliers 

CONROD (BIG END) BEARINGS - - 

CYLINDER HEADS 125% Random Forest No Outliers 

CYLINDER LINERS 111% Random Forest  

DIESEL GENERATOR 83% Random Forest No Outliers 

DRIVE SECTION 27% Principal Component Regression 

EXHAUST VALVES - - 

FUEL INJECTION VALVES 44% Random Forest No Outliers 

FUEL OIL PUMPS 68% Random Forest No Outliers 

FUEL OIL PURIFIERS 46% Random Forest No Outliers 

FUEL OIL SYSTEM 10% Random Forest No Outliers 

LO SYSTEM 17% Random Forest No Outliers 

LUB OIL PURIFIERS 52% Random Forest  

LUBRICATING SYSTEM - - 

MAIN BEARINGS - - 

MAIN DIESEL GENERATORS 78% Generalized Linear Model 

MAIN ENGINE - - 

MECHANICAL SYSTEM 71% Random Forest No Outliers 

PISTONS 53% Random Forest 

SHAFT ASSEMBLY 29% Random Forest No Outliers 

TURBO CHARGERS 0% Random Forest No Outliers 

As can be easily observed from the table above the best performing method for the vast majority of 

the components is the random forest algorithm. This result was expected as the random forest 

algorithm (as previously discussed in 2.3.2.1) best handles the exogenous factors that influence the 

outcome in a stochastic manner that makes it impervious to over/ under fitting. 

5.2 Additional quantities during the year 
As previously described, the quantities of the bulk ordering process are meant to cover the fleet’s 

needs for the next year, yet on occasion those items are reordered during the year. This is either due 

to miscalculation of the vessel’s needs or failure of previously bought equipment. To determine 

those additional quantities a forecasting process is used.  

First, the dataset is created following the same actions as for the nominal quantities. The same 

vessel characteristics are extracted from the database, but an additional column is created.  

‒ Bulk Market: This variable is a categorical variable that has two values: maker and parallel. 

This variable describes the source of purchase of each item purchased in the bulk order 
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process. These variables will be used to explore possible correlation between the source of 

purchase and the additional quantities 

What needs to be predicted is the variable here on after denoted as “NonBulk”, which is the extra 

quantity that was purchased during the year.  

Table 5.2-1: Sample dataset for forecasting of extra needs for component FUEL INJECTION VALVE 

In the training of the algorithms for the forecasting of the extra quantities there is the difficulty that 

most of the data (used for training and testing) are zero, meaning that an item was purchased in the 

bulk order but was not re-purchased during the year.  

Because of the intermittent nature of demand in these cases it is proven difficult to train the 

algorithms in some of the sub-datasets. It was decided that if any sub-dataset had a mean of non-

bulk quantities of less than 0.1 it would not be used for forecasting, but, rather the extra quantities 

would be assumed to be all zeroes. This threshold was decided as it was the minimum variation in 

the target variable required for efficient training of the dataset. For the forecasting of the extra 

quantities, the same procedure as previously is used. The pseudocode is presented below: 

for all components [i=1,. . .,N] 
    extra_dataset [[i]] <- all from data where component[i] = component 
    if nrow (extra_dataset [[i]]) >20 && mean (extra_dataset [[i]]) >0.1 
        data_partition <- 80/20 
        trainset <- 0.8*data 
        testset <- -(trainset) 
        model_prediction 1<- run random forest 
        model_prediction 2<- run generalized linear regression 
        model_prediction 3<- run support vector regression 
    end 
end 
  
for all components [i=1,. . .,N] 
    if nrow (extra_dataset [[i]]) >20 && mean (extra_dataset [[i]]) >0.1 
        model_results 1<- test random forest 
        model_results 2<- test generalized linear regression 
        model_results 3<- test principal component regression 
        mape[i] <- compute mape for component i 
    end 
end 

The models are trained and tested according to the pseudocodes above thus producing the results 

of the following section.  

Maker 
Reference 

Category 
Bulk 

Market 
Non-
Bulk 

Quantity Type DWT 
Average 

Price 
Age Origin 

C/Eng 
Nationality 

[redacted] DG Maker 0 2 Dry 49600  $ 448.24  3.75 KOREA PH 

[redacted] DG Maker 0 3 Tanker 161100  $ 429.03  0.79 KOREA GR 

[redacted] DG Maker 9 7 Tanker 161100  $ 177.70  0.79 KOREA GR 

[redacted] DG Maker 56 112 Tanker 161100  $ 1.35  0.79 KOREA GR 

[redacted] DG Parallel 0 0 Tanker 110900  $ 729.63  8.67 KOREA BG 

[redacted] DG Parallel 6 1 Tanker 311900  $ 72.25  12.35 KOREA GR 

[redacted] DG Parallel 0 2 Dry 56200  $ 717.22  12.63 CHINA PH 

[redacted] ME Parallel 4 3 Tanker 110900  $ 465.48  13.35 KOREA PH 

[redacted] ME Parallel 0 4 Tanker 110900  $ 232.74  7.87 CHINA PH 

[redacted] ME Parallel 0 6 Tanker 161100  $ 503.81  9.79 KOREA BG 

[redacted] ME Parallel 0 6 Tanker 39700  $ 558.57  15.55 KOREA PH 
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5.2.1 Forecasting results  

For each component the mean absolute percentage error is presented in the table below. For some 

components an accurate forecast could not be generated as the entries were not enough to properly 

train and test the algorithms.  

Table 5.2-2: Mean absolute errors for extra needs for each component  

Component RF GLM PCR Number of Points 

AIR COMPRESSORS - - - 326 

ASSEMBLY - - - 6 

CAMSHAFT 672% 1361% 530% 24 

CONNECTING RODS 14% 114% 97% 35 

CONROD (BIG END) BEARINGS - - - 10 

CYLINDER HEADS 161% 267% 317% 1061 

CYLINDER LINERS 43% 37% 17% 173 

DIESEL GENERATOR 193% 126% 158% 149 

DRIVE SECTION 0% 43% 43% 32 

EXHAUST VALVES 0% 0% 0% 18 

FUEL INJECTION VALVES 304% 319% 345% 329 

FUEL OIL PUMPS 257% 324% 194% 183 

FUEL OIL PURIFIERS 28% 57% 69% 505 

FUEL OIL SYSTEM 200% 357% 86% 31 

LO SYSTEM - - - 17 

LUB OIL PURIFIERS 2% 8% 12% 729 

LUBRICATING SYSTEM - - - 11 

MAIN BEARINGS - - - 15 

MAIN DIESEL GENERATORS - - - 50 

MAIN ENGINE - - - 10 

MECHANICAL SYSTEM 5% 10% 8% 325 

PISTONS 121% 146% 168% 314 

SHAFT ASSEMBLY - - - 99 

TURBO CHARGERS 0% 17% 0% 56 

As can be seen from the table above, the forecasting results for some components is not satisfactory 

and the error metric is considerably higher than that in the forecasting for the nominal quantities. To 

better visualize the results of the forecasting process, indicative figures for each component are 

presented below.  

 

Figure 5.2-1: Forecasting results for the component LUB OIL PURIFIERS 
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Figure 5.2-2: Forecasting results for the component FUEL OIL PUMPS 

From the figures above, the need to better handle the dataset to produce better results is becoming 

clear. As previously discussed (see section 2.3.3), this part of the forecasting exercise will be used in 

the next section (see section 6) where the prescriptive model is constructed.  

The main scope of the forecasting of the extra needs is to determine whether extra needs for the 

vessels are influenced by the initial source of purchase (maker or non-maker) 

5.2.2 Data handling and forecasting results 

The same behavior observed before is also observed in this section of the forecasting exercise.  

  
Figure 5.2-3: Forecasting results for the component FUEL INJECTION VALVES 

What is interesting to be observed here, is the scale of the difference of the circled point. The 

quantity of all the points is below 40 and there is only one that is more than 100. This data point not 

only increases the error but also could be influencing the training of the algorithms and the rest of 

the results. The mean percentage absolute error for fuel injection valves is more than 300%.  

Therefore, the same process as previously is employed, and handling of the outliers is performed.  
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Table 5.2-3: Mean absolute errors for extra needs for each component after outlier elimination 

Component RF GLM PCR Number of Points 

AIR COMPRESSORS - - - 295 

ASSEMBLY - - - 6 

CAMSHAFT - - - 8 

CONNECTING RODS - - - 15 

CONROD (BIG END) BEARINGS - - - 10 

CYLINDER HEADS 70% 181% 183% 971 

CYLINDER LINERS 7% 13% 0% 153 

DIESEL GENERATOR 6% 44% 48% 121 

DRIVE SECTION - - - 16 

EXHAUST VALVES - - - 0 

FUEL INJECTION VALVES 88% 122% 127% 285 

FUEL OIL PUMPS 14% 19% 17% 145 
FUEL OIL PURIFIERS 16% 18% 6% 472 

FUEL OIL SYSTEM - - - 20 

LO SYSTEM - - - 17 

LUB OIL PURIFIERS 0% 3% 6% 687 

LUBRICATING SYSTEM - - - 11 

MAIN BEARINGS - - - 6 

MAIN DIESEL GENERATORS - - - 50 

MAIN ENGINE - - - 10 

MECHANICAL SYSTEM 3% 5% 2% 308 

PISTONS 13% 17% 9% 293 

SHAFT ASSEMBLY - - - 99 

TURBO CHARGERS - - - 33 

As per usual, below forecasting results are presented in figures to better visualize the results.  

 

Figure 5.2-4: Results for forecasting of extra needs for component FUEL INJECTION VALVES after outlier handling  

What needs to be noted here is that by eliminating in total 44 data points (both from the training 

and the test sets) the error decreases from 304% to 84%, which for the purposes of this business 

case can be considered acceptable. Some more indicative results are presented below: 
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Figure 5.2-5: Results for forecasting of extra needs for component FUEL OIL PUMPS after outlier handling 

For fuel oil pumps error was reduced from 257% to 14% with the elimination of 38 outliers.  

By comparing the two tables that summarize the results of the two methods (see Table 5.2-2 and 

Table 5.2-3), the forecasting after outlier elimination seems to be a process that yields better results 

than simple forecasting. Indicatively the total average MAPE for the forecasting without outlier 

elimination is 88%8 and after outlier elimination it decreases to 24%.   

The forecasting of the extra quantities is performed only on a small number of components as the 

rest do not exhibit variations in the data and thus the completion of the training is very difficult. 

Especially after outlier handling the number of forecastable components drops even further, from 13 

to 8. This section of the thesis is one of the areas that future work could be focused on.   

5.3 Application on newly-released data 
The bulk ordering process of the case company starts in April each year (see section 1.2), therefore 

the first phase of the process, where the requisitions are created, is an ideal case for the algorithms 

to be tested. For each component the qualifying algorithm out of the six previously mentioned 

models can be found below.  

Table 5.3-1: Forecasting results for real case of the best performing algorithm 

Component MAPE Method Used  

AIR COMPRESSORS 36% Random Forest No Outliers 

ASSEMBLY - - 

CAMSHAFT 35% Principal Component Regression 

CONNECTING RODS 62% Random Forest No Outliers 

CONROD (BIG END) BEARINGS - - 

CYLINDER HEADS 105% Random Forest No Outliers 

CYLINDER LINERS 110% Random Forest 

DIESEL GENERATOR 66% Random Forest No Outliers 

DRIVE SECTION 78% Principal Component Regression 

EXHAUST VALVES - - 

FUEL INJECTION VALVES 66% Random Forest No Outliers 

FUEL OIL PUMPS 106% Random Forest No Outliers 

FUEL OIL PURIFIERS 65% Random Forest No Outliers 

FUEL OIL SYSTEM 16% Random Forest No Outliers 

                                                           
8
 This was computed excluding the forecast of the component CAMSHAFT as the error is extremely high and 

the results of the above will not be used further.  
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LO SYSTEM - - 

LUB OIL PURIFIERS 111% Random Forest 

LUBRICATING SYSTEM - - 

MAIN BEARINGS - - 

MAIN DIESEL GENERATORS 78% Generalized Linear Model 

MAIN ENGINE - - 

MECHANICAL SYSTEM 99% Random Forest No Outliers 

PISTONS 55% Random Forest No Outliers 

SHAFT ASSEMBLY 113% Random Forest No Outliers 

TURBO CHARGERS 5% Random Forest No Outliers 

For indicative components forecasting results are presented using graphs to better visualize the 

performance of the chosen algorithm. 

 

Figure 5.3-1: Forecasting of RQ quantities for BO 2020 for component AIR COMPRESSORS 

For the forecasting of component air compressors, random forest with outlier handling was used. 

The error in the training was 31% and the actual error was 36%.  

In general, the average error on the newly released data does not deviate significantly from the 

average error in the training set. However, it should be kept in mind that the quantities that are used 

to test the performance of the algorithms on the newly released data are the initial quantities of the 

bulk order process. As it was explained in previous sections (see section 1.2) the initial quantities are 

reduced or increased based on the company’s decisions regarding necessary equipment. 

As further analysis, all six algorithms were applied to the data to evaluate if the best algorithm is 

indeed the best fit. The results are presented below. On the table below, the minimums have been 

marked with bold. 

Table 5.3-2: Results of all methods on real data 

Component RF GLM PCR RF_NO GLM_NO PCR_N0 

AIR COMPRESSORS 36% 113% 109% 36% 108% 94% 

ASSEMBLY - - - - - - 

CAMSHAFT 49% 75% 35% - - - 

CONNECTING RODS 54% 179% 175% 62% 89% 71% 

CONROD (BIG END) BEARINGS - - - - - - 

CYLINDER HEADS 116% 184% 195% 105% 298% 299% 

CYLINDER LINERS 110% 200% 228% 70% 224% 187% 

DIESEL GENERATOR 100% 151% 168% 66% 86% 109% 

DRIVE SECTION 64% 189% 78% - - - 

EXHAUST VALVES - - - - - - 

FUEL INJECTION VALVES 89% 102% 110% 66% 66% 73% 

FUEL OIL PUMPS 168% 174% 174% 106% 132% 130% 

FUEL OIL PURIFIERS 83% 122% 128% 65% 99% 104% 
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FUEL OIL SYSTEM 24% 65% 29% 16% 90% 29% 

LO SYSTEM - - - - - - 

LUB OIL PURIFIERS 111% 156% 148% 78% 144% 144% 

LUBRICATING SYSTEM - - - - - - 

MAIN BEARINGS - - - - - - 

MAIN DIESEL GENERATORS 30% 78% 47% 26% 67% 41% 

MAIN ENGINE - - - - - - 

MECHANICAL SYSTEM 153% 197% 175% 99% 150% 123% 

PISTONS 112% 304% 198% 55% 167% 248% 

SHAFT ASSEMBLY 70% 163% 165% 113% 8492% 9130% 

TURBO CHARGERS 47% 57% 48% 5% 71% 62% 

By comparing the two tables, it is observed that for most components the best performing algorithm 

on the test data is also the best performing for the newly released data. However, as can be seen by 

comparing Table 5.3-2 with Table 5.3-1 there are some components that the algorithm identified as 

the best performing is not. As previously stated the quantities of the newly released data are not the 

finalized purchased quantities, therefore explaining some of the deviations in the results. At the 

same time, it needs to be kept in mind that for most components the data available are not 

sufficient enough to capture precisely the complex nature of the problem therefore it is expected, 

especially in the first years of implementation that such deviations arise. However, it is expected 

that as the data set grows and additional dimensions (i.e. variables) are added the accuracy of the 

results will improve. The components that have different best performing algorithms for the train 

set and for the newly released date can be seen below: 

Table 5.3-3: Components for which the test and the real set have different behavior 

Component 
Error in 

train 
Best Performing on train 

Error in 
new data 

Best Performing on new 
data 

CONNECTING RODS 62% Random Forest No Outliers 54% Random Forest 

CYLINDER LINERS 110% Random Forest 70% Random Forest No Outliers 

DRIVE SECTION 78% Principal Component Regression 64% Random Forest 

LUB OIL PURIFIERS 111% Random Forest 78% Random Forest No Outliers 

SHAFT ASSEMBLY 113% Random Forest No Outliers 70% Random Forest 

For the components of the table above, in the following sections both algorithms were applied, and 

the average was taken as the final forecasted quantity.   

The forecasting of the nominal needs of the vessels exhibits satisfactory results (average MAPE 53%) 

and could, in the future when the training samples increase, become more and more accurate. For 

some specific components that show increased accuracy, e.g. fuel oil system (MAPE = 10%) the tool 

can be used to expedite the process while decreasing the workload both for the vessel and for the 

shore- based engineers. However, the forecasting of the extra needs does not yield such results. The 

average MAPE is increased compared to the forecasting of the nominal quantities while the number 

of components upon which forecasting is applied decreases.  

The next methodological step of the thesis encompasses the results of the above forecasting 

exercises to create the final objective function that leads to optimum allocation of items to vendors 

so as to minimize total cost of the bulk orders.  
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6 Prescriptive cost optimization model 
The final step of the analysis is the creation of the main product of the thesis, the prescriptive 

model. The prescriptive model ties in the entire bulk order analytics framework and gears it in the 

decision support domain by serving as a guideline on the optimal cost basis of  spare parts 

procurement The model will allow the case company to determine whether each spare part should 

be ordered more times than the nominal need of the vessel and whether it should be bought from 

maker or from the parallel market.  

For the prescriptive model data from the dataset used for the forecasting of nominal bulk quantities 

for the year 2018 will be used.  

6.1 Identification of cost analysis parameters  
The cost function will be the objective function of this optimization problem. Therefore, the 

components of this function are of great importance to the result.  

The components of the cost function have been identified as of below  

‒ Acquisition cost: it represents the cost of purchase for each item. It depends on the total 

quantities and on the acquisition price of each item. What needs to be noted here is that for 

the two main categories of suppliers, makers and non-makers, the acquisition price changes 

considerably. 

 

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑁𝑒𝑒𝑑𝑠 + 𝐸𝑥𝑡𝑟𝑎 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠 + 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘) ∗ 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 

 

Safety stock: depending on the desired service level (SL) the level of the safety stock will be 

determined. The safety stock will also be added to the acquisition and forwarding cost as it is 

assumed that both the target inventory and the safety stock are bought together, 

considering that price fluctuations in the spare parts are not high. The safety stock follows 

the formula below. 

 

Safety Stock = Z ∗ √Avg LT ∗ (st dev of demand)2 + Avg demand ∗ (st dev LT)2 

 

where LT is the lead time, Z is the inverse distribution function of a standard normal 

distribution with cumulative probability of the underlying service level and demand refers to 

the historical demand of the relevant item. Both for the lead time and for the average 

demand there are more than 30 observations therefore by the central limit theorem it can 

be said that these variables satisfy the underlying assumptions (i.e. normal distribution) of 

the above formula.  

‒ Forwarding cost: this cost component represents the cost of the transportation of each item 

on board the vessel. This cost depends on several parameters such as the location of the 

supplier, the trading route of the vessel, any specific requirements for clearance etc. For the 

purposes of this analysis it is assumed that the forwarding cost depends mainly on the lead 

time. As of current situation in the market, there are two locations that supply ship spare 

parts and can cover the needs of the overhauls which are accumulated in the bulk orders: 

Europe and Korea. Around 40% of makers are in Europe and transportation costs to 

Rotterdam, the main logistic hub of the company, for the spare parts located in Europe is 
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assumed to be zero, as the European makers use groupage trucks on their account to 

transfer the spare parts. For the rest of the items, we will follow the function below. 

forwarding cost = {
  

weight of order

total weight in container 
∗ container rental rate , lead time < 30

weight of order ∗ airfreight rate             , lead time ≥ 30

 

Therefore, according to the above the final formula for the forwarding cost is the below: 

 

final forwarding cost = {
  (1 − 0.4) ∗ forwarding cost , market = Maker

 forwarding cost ,           market = Parallel
 

 

‒ Inventory Cost: this cost component represents the costs that are incurred because of the 

inventory held on the vessel. The inventory cost follows the simple formula below  

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑠𝑡 = (𝑆𝑆 +  
𝑇𝐼

2
) ∗ 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 ∗ 𝑊𝐴𝐶𝐶 

where: SS is the safety stock and TI is the target inventory where  

 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑁𝑒𝑒𝑑𝑠 + 𝐸𝑥𝑡𝑟𝑎 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠 

 

‒ Stock out cost: this cost component represents the costs that are incurred when an item 

that should have been on board the vessel is not. It is computed using the formula below: 

 

𝑆𝑡𝑜𝑐𝑘 𝑜𝑢𝑡 𝑐𝑜𝑠𝑡 =  
100 − 𝑆𝐿

2
∗ 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡  

where 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 ′ + 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 ′ + 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒′ 

 

What needs to be noted here is that the components of the additional cost are significantly 

higher than the respective costs during a normal/ routine ordering process. Therefore, the 

three components of the additional cost function will be increased by a factor.  

6.2 Analysis  

6.2.1 Acquisition Cost  

The acquisition cost is the first cost component that will be discussed. The main components of the 

acquisition cost are the total quantities and the purchase price. Both of those components will be 

analyzed below.  

6.2.1.1 Total Quantities 
To determine the level of the nominal needs for each maker reference the models of the previous 

section (see section 5) are being used. The dataset is structured in the same way as the dataset that 

was used for training and testing the models of the previous chapter (see section 5). The best 

performing model (the one having the smallest error) was used (see section 5.1.3) 
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Table 6.2-1: Components that each algorithm is applied on 

Algorithm Components 

Random Forest No Outliers 

AIR COMPRESSORS, CONNECTING RODS, 
CYLINDER HEADS, DIESEL GENERATOR, FUEL 
INJECTION VALVES, FUEL OIL PURIFIERS, FUEL 
OIL PUMPS, FUEL OIL SYSTEM, LO SYSTEM, 
MECHANICAL SYSTEM, TURBO CHARGERS 

Random Forest  CYLINDER LINERS, LUB OIL PURIFIERS, PISTONS 

Principal Component Regression CAMSHAFT, DRIVE SECTION 

Generalized Linear Model MAIN DIESEL GENERATORS 

 

To determine the extra quantities for the fleet, the datasets (also including the forecasted data for 

nominal needs) are duplicated. The first dataset will have the bulk market equal to Maker thus 

making the indirect assumption that all the items were purchased though the original market and 

the second will be created assuming that all items were purchased through the parallel market.  

This was performed to determine and highlight the differences in the quantities that need to be 

purchased as influenced by the source of purchase.  

 

Figure 6.2-1: Extra needs depending on the market for FUEL INJECTION VALVES 

 

Figure 6.2-2: Extra needs depending on the market for FUEL OIL SYSTEM 

The next step was to compute the safety stock for each item. As per previous section the formula of 

the safety stock is the below  

Safety Stock = ZSL ∗  √Avg LT ∗ (st dev of demand)2 + Avg demand ∗ (st dev LT)2 
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where LT is the lead time computed in the following pages and ZSL is the inverse distribution function 

of a standard normal distribution with cumulative probability of the service level (SL). 

The average demand and the standard deviation of demand were computed regardless of the 

market using past data.  

The lead time was derived from past data for each category for makers and for parallel market. To 

capture the necessary time for delivery on board the production lead time was increased by 5 days. 

 

Table 6.2-2: Lead times per component for each market category 

Component Parallel Lead Time  Maker Lead Time  

AIR COMPRESSORS 30 8 

ASSEMBLY 21 5 

CAMSHAFT 30 15 

CONNECTING RODS 30 7 

CONROD (BIG END) BEARINGS 30 15 

CYLINDER HEADS 24 13 

CYLINDER LINERS 16 45 

DIESEL GENERATOR 27 22 

DRIVE SECTION 0 5 

EXHAUST VALVES 20 35 

FUEL INJECTION VALVES 15 16 

FUEL OIL PUMPS 21 15 

FUEL OIL PURIFIERS 1 5 

FUEL OIL SYSTEM 18 33 

LO SYSTEM 0 5 

LUB OIL PURIFIERS 0 5 

LUBRICATING SYSTEM 30 15 

MAIN BEARINGS 30 15 

MAIN DIESEL GENERATORS 23 13 

MAIN ENGINE 30 41 

MECHANICAL SYSTEM 0 15 

PISTONS 26 29 

SHAFT ASSEMBLY 0 5 

TURBO CHARGERS 30 0 

Lastly, to account for the forecast errors of the previous models, that sometimes are significant, the 

following procedure is used.  

 For each component the forecast bias is computed, and it is determined whether there is an 

over-forecasting or an under-forecasting bias 

 If there is an over-forecasting bias, then the safety stock computed is multiplied by the 

accuracy of the forecast of nominal quantities 

The forecast bias is computed using the following formula  

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑏𝑖𝑎𝑠 =
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 + 𝑎𝑐𝑡𝑢𝑎𝑙
 

The above, is sometimes called the normalized forecast metric and is broadly used to compute the 

bias. As can be seen, the metric ∈ [-1, +1] where 0 indicates the absence of forecast bias. Negative 

values show a tendency to under-forecast and positive values to over-forecast.  

In a business sense, the safety stock is needed to cover needs that cannot be covered by the nominal 

demand. However, if the demand has been forecasted with a method that indicates over -forecast 
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bias the final quantity that will be purchased will be unnecessarily high. This reasoning explains the 

final formula of the safety stock:  

Safety Stock = {
  safety stock ∗ accuracy , forecast bias > 0

safety stock   , forecast bias ≤ 0
 

To visualise the above thinking the diagram below is presented.  

 

Figure 6.2-3: Example of positive forecast bias in the component CYLINDER LINERS 

The forecast for some components (as the one illustrated in the figure above) tends to overestimate 

the quantities that will be needed. Therefore, the over forecasted quantities can be used as safety 

stock. This will avoid over-stocking the vessels with unnecessarily high quantities of items that have 

been forecasted with methods that exhibit high positive forecast bias.  

To determine the optimum service level of each time and market exhaustive enumeration was used. 

Random service levels were used to compute the total cost of the items and the service level having 

the minimum total cost was identified as the optimum service level and was used in the final step of 

the prescriptive model. The random service levels were chosen in the range of 95% to 99.9%. As the 

items ordered in the bulk process are critical for the smooth running of machinery, this range was 

chosen mainly for business and technical reasons.  
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Figure 6.2-4: Cost of item of item [REDACTED] of component AIR COMPRESSORS as a function of the service level 

As can be observed from the graph, the minimum cost is achieved for the same level 97.71% for 

both maker and non-maker. In the figure above, for SL ∈ [95%, 97.71%] the total cost decreases 

slightly and for SL ∈ [97.71%, 99.9%] the cost is increased while the slope remains the same. To 

understand this behavior below graph (total quantity to service level) is created. As one can see from 

the graph above there is a high fluctuation of the total cost (around 30%) as the service level 

changes, highlighting the need to determine the optimum service level. 

 

Figure 6.2-5: Quantity of item [REDACTED] of component AIR COMPRESSORS as a function of the service level 

The figure above visualizes the change of the total quantity purchased as the service level increases. 

As can be observed from the total quantities for maker and non-maker are the same. Using this 

graph, the change of the total cost can be interpreted more easily. The total quantity drives the 

increase as the service level dictates purchase of one additional quantity therefore driving the 

acquisition, forwarding and inventory costs up. Below another example is given: 
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Figure 6.2-6: Cost of item [REDACTED] of category CONNECTING RODS as a function of the service level 

For this item the optimum service level is different for the maker (maker optimum service level = 

95.18%) and for the non-maker (parallel optimum service level = 96.31%). Below the quantities of 

this item as a function of the service level are also disclosed. 

 

Figure 6.2-7: Total quantity of item [REDACTED] of category CONNECTING RODS as a function of the service level 

6.2.2 Acquisition Price  

To calculate the acquisition cost of each item the prices of the items depending on the market need 

to be determined. To simplify the procedure the comparable items (same items purchased in both 

bulks) of bulk orders 2018 and 2019 were extracted and for them, the prices were compared for 

each category (in the dataset labelled as category).  

Figure 6.2-8: Acquisition cost per category and per market 

Market_19 Market_18 Category AVG_(Price19/Price18) MAX_(Price19/Price18) MIN_(Price19/Price18) 

Maker Parallel D/G 4.39 52.08 0.23 

Maker Parallel M/E 3.61 17.24 0.71 

Maker Parallel Compressor 0.92 4.83 0.16 

Maker Parallel Purifier 1.12 5.49 0.26 
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Using the above table, the price on record is multiplied or divided by the relevant entry in the 

column labeled ‘AVG_ (Price19/Price18)’ that practically expresses the difference of prices between 

makers and non-makers.  Therefore, the prices depending on the market are extracted. To 

accommodate for randomness and for changes in prices the market prices of the items were then 

multiplied by a factor following the continuous distribution with a minimum of 0.8 and a maximum 

of 1.2.   

The elimination of assumptions regarding the prices of the two market categories can be achieved 

by making the prescriptive model vendor specific. This would improve accuracy in the forecasting 

part and efficiency in the decision-making part as sometimes the difference in pricing of vendors, 

even if they belong in the same category, can be significant. At the same, discrepancies between 

average historical prices and average market prices and/ or lead times can be omitted, thus making 

the model more efficient. 

6.2.3 Forwarding Cost  

The forwarding cost is the next cost component that will be examined.  As previously discussed (6.1), 

to determine the forwarding cost approximates the weights of the orders. The weight of the items 

depends on the category that they belong. Those are presented in the table below.   

Table 6.2-3: Components and Categories 

Component Category [1] Category [2] 

AIR COMPRESSORS AIR COMPRESSORS - 

ASSEMBLY MAIN ENGINES MAIN DIESEL GENERATORS 

CAMSHAFT MAIN DIESEL GENERATORS - 

CONNECTING RODS MAIN DIESEL GENERATORS - 

CONROD (BIG END) BEARINGS MAIN DIESEL GENERATORS - 

CYLINDER HEADS MAIN DIESEL GENERATORS - 

CYLINDER LINERS MAIN ENGINES MAIN DIESEL GENERATORS 

DIESEL GENERATOR MAIN DIESEL GENERATORS - 

DRIVE SECTION LUB OIL PURIFIERS - 

DRIVE SECTION FUEL OIL PURIFIERS - 

EXHAUST VALVES MAIN ENGINES - 

FUEL INJECTION VALVES MAIN ENGINES MAIN DIESEL GENERATORS 

FUEL OIL PUMPS MAIN ENGINES MAIN DIESEL GENERATORS 

FUEL OIL PURIFIERS FUEL OIL PURIFIERS - 

FUEL OIL SYSTEM MAIN DIESEL GENERATORS - 

LO SYSTEM LUB OIL PURIFIERS - 

LUB OIL PURIFIERS LUB OIL PURIFIERS - 

LUBRICATING SYSTEM MAIN ENGINES MAIN DIESEL GENERATORS 

MAIN BEARINGS MAIN DIESEL GENERATORS - 

MAIN DIESEL GENERATORS MAIN DIESEL GENERATORS - 

MAIN ENGINE MAIN ENGINES - 

MECHANICAL SYSTEM FUEL OIL PURIFIERS LUB OIL PURIFIERS 

MECHANICAL SYSTEM MAIN ENGINES - 

PISTONS MAIN DIESEL GENERATORS MAIN ENGINES 

SHAFT ASSEMBLY FUEL OIL PURIFIERS LUB OIL PURIFIERS 

TURBO CHARGERS MAIN ENGINES MAIN DIESEL GENERATORS 

For each category the average weight is shown below 
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Table 6.2-4: Average weight of items per category  

Category  Weight per Item [kg] 

MAIN DIESEL GENERATORS  2.8 

MAIN ENGINES 8.9 

LUB OIL PURIFIERS, FUEL OIL PURIFIERS  3.7 

For the component air compressors, there is no available data and therefore the weight of the items 

needs to be approximated using other methods. After conducting interviews with superintendent 

engineers and experienced spare part operators of the case company, average weight is assumed 

around  3 kgs per item.  

If a component belongs to more than one category, then the average of the two is taken as the 

weight. Therefore, the forwarding cost follow the following formula: 

forwarding cost = {
  
weight per item ∗ quantity

total weight in container 
∗ container rental rate , lead time < 30

weight per item ∗ quantity ∗ airfreight rate             , lead time ≥ 30

 

The forwarding cost must be separated into two categories: 

‒ Forwarding cost for routine orders. The routine last mile cost is low because in a routine 

shipment there is usually more than 10 orders being shipped and therefore the costs are 

being allocated to a high number of orders. Additionally, when routine shipment is arranged 

the port index, the corresponding price index of a port, is considered.  

‒ Forwarding cost for unplanned orders. In this case, the two factors above are not being 

considered as the spare part needs to reach the vessel regardless of its location and the port 

index is not considered.  

Further analysis for the forwarding cost for unplanned orders will take place in the stock out cost 

analysis section (see section 6.2.5). 

6.2.4  Inventory Cost  

As previously discussed the inventory cost follows the equation below 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑠𝑡 = (𝑆𝑆 +  
𝑇𝐼

2
) ∗ 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 ∗  𝑊𝐴𝐶𝐶 

, where WACC is the weighted average cost of capital which is the average interest rate of the case 

company which for privacy reasons is redacted.   

As further analysis for this parameter a sensitivity analysis will take place at the next section. For the 

purposes of this analysis the WACC ∈ [3%, 8%]. As reference, the WACC of the maritime industry is 

7.05% (NYU Stern, 2019). 

6.2.5 Stock- out Cost  

This cost component, as previously discussed, represents the cost of re-supplying the ship with the 

item on an urgent level if the existing stock of the vessel runs out.  

As one can easily understand, this cost will be increased compared to the previous cost mainly for 

the reasons below:  
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 When a requisition is made on an urgent basis there is no time to receive quotations from 

several vendors or to make price negotiations with them as can be done in the bulk ordering 

process. 

 When a requisition is made on an urgent basis, the selection is mainly made considering the 

lead time and not the price, therefore there is a possibility that the price is higher than 

usual.   

 When a requisition is made on an urgent basis, the forwarding cost of the shipment can be 

extremely higher both because of inconvenient delivery port and because of absence of 

other orders (meaning that the fixed costs of the shipment are not being allocated to many 

items). 

Therefore, the formula of the stock out cost is as per below  

𝑆𝑡𝑜𝑐𝑘 𝑜𝑢𝑡 𝑐𝑜𝑠𝑡 = (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡) ∗ (𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡′ + 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡′ + 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒) 

where, 

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 ′ =
𝑎 ∗ 𝑃𝑟𝑖𝑐𝑒𝑚𝑎𝑘𝑒𝑟 + (1 − 𝑎) ∗ 𝑃𝑟𝑖𝑐𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

2
∗  𝑆𝑡𝑜𝑐𝑘 𝑜𝑢𝑡 𝑜𝑟𝑑𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

where a is the percentage of the times that on a spot basis the maker is chosen. As per analysis of 

the case company’s buying patterns a= 40% and, 

𝑆𝑡𝑜𝑐𝑘 𝑜𝑢𝑡 𝑜𝑟𝑑𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = (𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 99.9% − 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑆𝐿 ) 

and,  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡 = (0.999 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑆𝐿) 

where SL is the service level for each item. 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡′ =  𝑆𝑡𝑜𝑐𝑘 𝑜𝑢𝑡 𝑜𝑟𝑑𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ∗ 𝑎𝑣𝑔_𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑎𝑖𝑟𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑠𝑡 ∗ 𝑢𝑟𝑔𝑒𝑛𝑐𝑦 

where the urgency factor of the equation above models the increased forwarding cost of an 

unplanned event. 

For calculating the urgency factor the following simple equations were used. 

{
𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐶𝑎𝑠𝑒𝑠1 ∗ 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐶𝑜𝑠𝑡 + 𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑎𝑠𝑒𝑠1 ∗ 𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡1

𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐶𝑎𝑠𝑒𝑠2 ∗ 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐶𝑜𝑠𝑡 + 𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑎𝑠𝑒𝑠2 ∗ 𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡2
 

To compute Cost1 and Cost2 the budgeting tool of the company was used which will not be disclosed 

for privacy reasons.  

Therefore, the urgency can be defined as  

𝑢𝑟𝑔𝑒𝑛𝑐𝑦 =
𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐶𝑜𝑠𝑡

𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐶𝑜𝑠𝑡
 

For the fleet total it was found that urgency ∈ [1.2, 2.5] 

Since a more precise way to define the urgency would be out of scope of this thesis, a sensitivity 

analysis will take place in the next section to explore the way that the urgency coefficient influences 

the model.  

Finally, to compute the administrative cost of an unplanned case it is assumed that each unplanned 

case is an order. To compute the administrative cost of an order, interviews with spare parts 
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operators of the case company were conducted. At the same time, by retrieving data regarding the 

number of orders completed each year by each operator, it was found that the total administrative 

cost of an order is 19USD.  

6.3 Synthesis of results 
Using the default values for the two variable parameters of the problem as below  

 WACC = [redacted]  

 Urgency Coefficient = 2 

, the below table is produced.  

The column maker percentage presents the percentage of entries for which the total cost of maker 

is less than the total cost of the parallel market, and thus the maker is chosen as the source of 

purchase. 

Table 6.3-1: For the default values of the parameters maker percentage for each component 

Component Maker Percentage Total Acquisition for Makers Total Acquisition for Parallel 

AIR COMPRESSORS 83%  $                            82,836.16   $                            35,874.97  

ASSEMBLY - - - 

CAMSHAFT 0%  $                                        -     $                                   62.82  

CONNECTING RODS 0%  $                                        -     $                            41,602.46  

CONROD (BIG END) BEARINGS - - - 

CYLINDER HEADS 39%  $                              4,586.61   $                          112,763.44  

CYLINDER LINERS 4%  $                                        -     $                            42,856.87  

DIESEL GENERATOR 11%  $                                   43.75   $                            10,068.39  

DRIVE SECTION 91%  $                                 496.69   $                                   77.83  

EXHAUST VALVES - - - 

FUEL INJECTION VALVES 1%  $                                   19.17   $                            97,703.79  

FUEL OIL PUMPS 0%  $                                        -     $                            68,889.19  

FUEL OIL PURIFIERS 57%  $                            15,952.30   $                              2,779.68  

FUEL OIL SYSTEM 0%  $                                        -     $                                   30.70  

LO SYSTEM 14%  $                                     1.56   $                                     7.16  

LUB OIL PURIFIERS 58%  $                              6,966.83   $                                   44.04  

LUBRICATING SYSTEM - - - 

MAIN BEARINGS - - - 

MAIN DIESEL GENERATORS 33%  $                                 128.81   $                              1,105.06  

MAIN ENGINE - - - 

MECHANICAL SYSTEM 2%  $                                 709.56   $                            38,875.61  

PISTONS 0%  $                                        -     $                          226,474.99  

SHAFT ASSEMBLY 44%  $                                 111.75   $                              5,137.98  

TURBO CHARGERS 0%  $                                        -     $                            36,175.98  

A sensitivity analysis is then performed for both the WACC and for the urgency coefficient.  
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Figure 6.3-1: Results of sensitivity analysis for WACC variable for component AIR COMPRESSORS 

The graphs above have been produced while keeping the urgency coefficient constant at 2. The 

graph visualizes the influence of WACC on the percentage of entries that the maker is selected as a 

source of purchase. 

As can be seen the WACC does not influence heavily the selection process. The total change in the 

selection is 1% (total size of the dataset: 98) which means that the selection switches from maker to 

non-maker for only one item when the WACC increases. This derives from the increased inventory 

cost for said item due to high price of maker as compared to that of the non-maker.  

The change in total gross revenue from makers is small and is depicted in the graph below.  

 

Figure 6.3-2: Change in total gross revenue of makers as a function of WACC 

As can be seen from the graph above the total gross revenue for makers is decreased by less $200 

(less than 0.5% of total gross revenue). Therefore, it is safe to conclude that for the component air 

compressors the WACC does not heavily influence the selection process. 

A further analysis on the influence of the WACC on important components of the cost function is 

conducted and the results can be seen in the graph below.   

The graph includes: 
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 Change of the total quantity purchased 

 Change of the total stock out cost  

 Change of the total acquisition cost  

 Change of the total cost  

 

Figure 6.3-3: Results of sensitivity analysis for important cost components 

It is important to be noted that the above graph was produced while keeping the urgency coefficient 

constant at 2. 

In the above graph (a) shows the change of the quantity due to the increased WACC. As can be seen 

the total quantity procured decreases thus also decreasing the acquisition cost (c) and increasing the 

stock out (b). In the last graph (d), the increase of the total cost is increased due to the increased 

inventory cost.  

In the next section the influence of the urgency coefficient is shown.    
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Figure 6.3-4: Total acquisition cost to makers for component AIR COMPRESSORS as a function of the urgency coefficient 

As is seen in the graph above, the urgency coefficient does not influence the selection process for 

the component air compressors.  

However, in the graph below it is observed that there is a slight increase in the total gross revenue 

by makers, that since no percentage change is exhibited means that the quantities procured are 

increased.  

 

Figure 6.3-5: Change in total gross revenue of makers as a function of the urgency coefficient 

A further analysis on the influence of the urgency coefficient on important components of the cost 

function is performed as in the previous section and the results can be seen in the graph below. 
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Figure 6.3-6: Results of sensitivity analysis for important cost components 

As can be seen in the quantity – urgency graph (a) as the urgency coefficient increases the quantity 

increases as well. This is expected as if the costs for unplanned cases are higher, it makes sense to 

increase the stock kept on board a vessel. At the same time the acquisition cost increases (b) with 

the same slope as the quantity. The behavior of the stock out cost, which can be seen at (c), is the 

most interesting one. At first, it was expected that with the increase of the urgency coefficient the 

stock out cost would increase considerably, however the simultaneous increase of the quantity 

procured slows down the effect of the urgency factor and even if the stock out cost increases it does 

not increase with the same intensity.  

6.4 Comparison with real-case results 
To compare the performance of the model with the real case results, the bulk ordering process of 

2018 of the case company is used. Here on after, the real case bulk is denoted with the suffix [actual] 

and the selections and costs produced by the model with the suffix [model].  

Table 6.4-1:  Comparison of percentage of maker selection and quantities procured for each component 

Component Percentage [model] Percentage[actual] Quantity [model] Quantity[actual] 

AIR COMPRESSORS 83% 36% 523 355 

ASSEMBLY - - - - 

CAMSHAFT 0% 0% 357 228 

CONNECTING RODS 0% 30% 57 46 

CONROD (BIG END) BEARINGS - - - - 

CYLINDER HEADS 38% 2% 6519 7387 

CYLINDER LINERS 0% 0% 928 950 

DIESEL GENERATOR 11% 22% 471 410 

DRIVE SECTION 91% 0% 62 55 

EXHAUST VALVES - - - - 

FUEL INJECTION VALVES 1% 52% 1382 1153 



 

82 
 

FUEL OIL PUMPS 0% 61% 287 237 

FUEL OIL PURIFIERS 77% 0% 515 407 

FUEL OIL SYSTEM 0% 86% 117 75 

LO SYSTEM 14% 0% 35 16 

LUB OIL PURIFIERS 58% 0% 554 399 

LUBRICATING SYSTEM - - - - 

MAIN BEARINGS - - - - 

MAIN DIESEL GENERATORS 33% 0% 101 92 

MAIN ENGINE - - - - 

MECHANICAL SYSTEM 1% 0% 724 809 

PISTONS 0% 3% 2156 2128 

SHAFT ASSEMBLY 44% 0% 284 190 

TURBO CHARGERS 0% 4% 85 47 

Total     15,157 14,984 

As can be seen from the table above, the percentage of the makers is increased considerably 

especially in some categories (e.g. the air compressors, the drive section and others).  

This can be explained mostly because of the decreased forwarding and stock out costs and will be 

further explored below.  

 What needs to be noted here are the assumptions below:  

‒ Stock out cost of the actual case has been computed in the same way that the stock out cost 

for the purposes of the thesis has been calculated.  

‒ No safety stock was assumed for the actual bulk orders therefore, the probability of stock 

out is 50%. In the following pages, a sensitivity analysis regarding this probability is carried 

out.  

‒ Urgency coefficient for the previous bulk was assumed 1.2 (the lower bound of the urgency 

coefficient bounds).  

Table 6.4-2: Comparison of total cost of acquisition and forwarding in each component 

Component Acquisition [model] Acquisition[actual] Forwarding [model] Forwarding[actual] 

AIR COMPRESSORS  $           118,711.13   $            67,478.15   $                   397.07   $              1,551.73  

ASSEMBLY  -   -   -   -  

CAMSHAFT  $                    65.77   $                   42.87   $                1,428.00   $              1,428.00  

CONNECTING RODS  $             41,602.46   $            28,448.57   $                   228.00   $                 179.47  

CONROD (BIG END) BEARINGS  -   -   -   -  

CYLINDER HEADS  $           128,783.77   $            65,694.61   $              12,453.07   $            26,606.13  

CYLINDER LINERS  $             59,627.99   $            38,336.30   $                3,712.00   $              3,712.00  

DIESEL GENERATOR  $             10,192.18   $              4,668.98   $                1,884.00   $              1,892.00  

DRIVE SECTION  $                  574.52   $                 531.71   $                     16.53   $                   19.20  

EXHAUST VALVES  -   -   -   -  

FUEL INJECTION VALVES  $             97,791.30   $          141,458.83   $                5,528.00   $              5,072.00  

FUEL OIL PUMPS  $             85,144.19   $          148,031.18   $                1,148.00   $              1,040.00  

FUEL OIL PURIFIERS  $             18,746.07   $            11,263.45   $                   137.33   $                 157.07  

FUEL OIL SYSTEM  $                    30.70   $                   62.54   $                   468.00   $                 460.00  

LO SYSTEM  $                      8.72   $                     4.14   $                       9.33   $                     9.33  

LUB OIL PURIFIERS  $               9,953.03   $              5,255.58   $                   147.73   $                 166.13  

LUBRICATING SYSTEM  -   -   -   -  

MAIN BEARINGS  -   -   -   -  

MAIN DIESEL GENERATORS  $               1,236.90   $                 840.21   $                   277.07   $                 408.00  

MAIN ENGINE  -   -   -   -  

MECHANICAL SYSTEM  $             46,248.38   $              6,942.63   $                   211.73   $                 193.33  

PISTONS  $           268,400.23   $          135,354.90   $                8,624.00   $              8,620.00  
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SHAFT ASSEMBLY  $               5,249.72   $                 787.33   $                     75.73   $                   75.20  

TURBO CHARGERS  $             36,175.98   $            19,471.70   $                   340.00   $                 328.80  

Total  $           928,543.05   $          674,673.67   $              37,085.60   $            51,918.40  

Table 6.4-3: Comparison of total cost of inventory and stock out cost in each component 

Component Inventory [model] Inventory[actual] Stock out [model] Stock out[actual] 

AIR COMPRESSORS  $             3,571.59   $           1,349.56   $              438.94   $        37,860.21  

ASSEMBLY  -   -   -   -  

CAMSHAFT  $                    1.46   $                  0.86   $                15.97   $             614.81  

CONNECTING RODS  $             1,309.17   $              568.97   $              362.11   $        28,329.28  

CONROD (BIG END) BEARINGS  -   -   -   -  

CYLINDER HEADS  $             2,737.88   $           1,313.89   $           2,696.39   $        47,976.15  

CYLINDER LINERS  $             1,508.30   $              766.73   $              841.09   $        38,659.21  

DIESEL GENERATOR  $                235.69   $                93.38   $              200.41   $          6,093.52  

DRIVE SECTION  $                  13.72   $                10.63   $                23.86   $             608.89  

EXHAUST VALVES  -   -   -   -  

FUEL INJECTION VALVES  $             2,354.66   $           2,829.18   $              506.90   $        29,224.29  

FUEL OIL PUMPS  $             2,366.53   $           2,960.62   $              276.23   $        38,526.97  

FUEL OIL PURIFIERS  $                519.57   $              225.27   $              186.15   $        10,855.38  

FUEL OIL SYSTEM  $                    0.78   $                  1.25   $                  8.64   $             408.81  

LO SYSTEM  $                    0.28   $                  0.08   $                  1.27   $             313.07  

LUB OIL PURIFIERS  $                258.52   $              105.11   $              120.83   $          8,385.28  

LUBRICATING SYSTEM  -   -   -   -  

MAIN BEARINGS  -   -   -   -  

MAIN DIESEL GENERATORS  $                  26.22   $                16.80   $                14.51   $             401.65  

MAIN ENGINE  -   -   -   -  

MECHANICAL SYSTEM  $             1,190.03   $              138.85   $              137.48   $        20,087.71  

PISTONS  $             7,162.21   $           2,707.10   $           2,585.96   $      124,924.43  

SHAFT ASSEMBLY  $                124.25   $                15.75   $                24.34   $          2,356.84  

TURBO CHARGERS  $             1,174.75   $              389.43   $              324.46   $        28,468.20  

Total  $           24,555.61   $         13,493.47   $           8,765.52   $      424,094.72  

Table 6.4-4: Final comparison of total costs for actual and model  

Component Percentage [model] Percentage[actual] Total [model] Total[actual] 

AIR COMPRESSORS 83% 36%  $ 123,118.73   $    108,239.66  

ASSEMBLY - -  -   -  

CAMSHAFT 0% 0%  $     1,511.20   $        2,086.54  

CONNECTING RODS 0% 30%  $   43,501.73   $      57,526.29  

CONROD (BIG END) BEARINGS - -  -   -  

CYLINDER HEADS 38% 2%  $ 146,671.11   $    141,590.79  

CYLINDER LINERS 0% 0%  $   65,689.38   $      81,474.24  

DIESEL GENERATOR 11% 22%  $   12,512.29   $      12,747.87  

DRIVE SECTION 91% 0%  $        628.63   $        1,170.43  

EXHAUST VALVES - -  -   -  

FUEL INJECTION VALVES 1% 52%  $ 106,180.86   $    178,584.29  

FUEL OIL PUMPS 0% 61%  $   88,934.95   $    190,558.78  

FUEL OIL PURIFIERS 77% 0%  $   19,589.12   $      22,501.17  

FUEL OIL SYSTEM 0% 86%  $        508.12   $           932.61  

LO SYSTEM 14% 0%  $          19.60   $           326.62  

LUB OIL PURIFIERS 58% 0%  $   10,480.12   $      13,912.11  

LUBRICATING SYSTEM - -  -   -  

MAIN BEARINGS - -  -   -  

MAIN DIESEL GENERATORS 33% 0%  $     1,554.70   $        1,666.67  

MAIN ENGINE - -  -   -  

MECHANICAL SYSTEM 1% 0%  $   47,787.62   $      27,362.53  

PISTONS 0% 3%  $ 286,772.41   $    271,606.42  

SHAFT ASSEMBLY 44% 0%  $     5,474.05   $        3,235.11  
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TURBO CHARGERS 0% 4%  $   38,015.18   $      48,658.13  

Total      $ 998,949.79   $ 1,164,180.27  

As can be derived from the previous tables there is quite a difference between the actual decisions 

and the model decisions. The two drivers of the cost are the acquisition and the stock out cost and 

are the two factors that differentiate the model decisions with the actual ones.  

 

Figure 6.4-1: Final total costs of previously realized bulk and as proposed by the model  

The figure above visualizes the difference between the total actual costs and the total model costs. 

As can be seen the stock out cost of the actual case is considerably high unlike the low stock out cost 

derived from the model.  

The cost components that drive the difference between the actual and the model are the acquisition 

cost and the stock out cost. The acquisition cost is increased because of two changes. The first refers 

to increased quantities due to market selection and safety stock and the second refers to the 

different choices made by the model that increase the acquisition cost because of the difference of 

price between makers and non-makers.  

However, the increased acquisition cost is covered by the decreased stock out cost due to the safety 

stocks. This is the reason that the stock out cost of the actual case is considerably higher. As 

previously said the stock out cost of the actual case was computed assuming that the actual 

quantities did not account for safety stocks. The graph below visualizes the effect that the 

probability of stock out. 

 

Figure 6.4-2: Sensitivity analysis for stock out probability 

As is seen by the graph above, the implementation of the model is profitable when the probability of 

stock out for the actual case is more than 30%. However, one of the assumptions for the 

computation of stock out cost (6.4) in the actual case is that the urgency is at the lowest possible 
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level since when the probability is high the more probable is to deliver in a more convenient port. 

Therefore, as the stock out probability decreases the urgency coefficient would need to be 

increased. This analysis is outside the scope of the current thesis and the results presented here 

refer to a decreased urgency coefficient of 1.2 and therefore the conclusions can be considered 

conservative.  

What needs to be noted here is that the purchase of safety stock can be treated as an investment. 

The safety stock purchased in the first year of implementation of the model will not be replenished 

in total and in the next year the quantities bought will not be as increased. 

Therefore, it is also important to note that if the selection suggestions of the model are used, 

without purchasing extra quantities (accounting for market and safety stock), the total costs would 

be as in the graph below.  

 

Figure 6.4-3: Final total costs incurred by the model in the 2
nd

 year 

As previously said the increased quantities purchased can be considered as an investment that, 

keeping all other factors stable, would be paid back in full in the 2nd year of implementation of the 

model regardless of the probability of stock out.  

In conclusion, the model supports that with the purchase of safety stock the total cost incurred in 

the bulk ordering process will lead to decreased costs. The total indirect profit of the 

implementation of the model as computed for a fraction of the total bulk order process amounts to 

more than $150,000, which translates to 14.8% reduction of the total costs incurred. The safety 

stock demands an initial investment of almost one quarter of the total acquisition cost that, 

according to the model, will decrease the stock out probability, thus decreasing the total costs of the 

process.   
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7 Summary of key findings and further research 
The original research objective as set out in the summary was to create a comprehensive decision 

support tool that would help to facilitate the process of the bulk orders and optimize the purchasing 

decisions.   

This would be achieved by firstly reducing the base of analysis by identifying the high interest items 

of the bulk order. This part focuses mainly on decreasing the workload of the departments involved 

and on the creation of a targeted subset for further analyses. The next step would be to create a 

forecasting tool for estimating the expected needs of the fleet regarding the previously identified 

items and to test whether the needed quantity is influenced by the source of purchase. Lastly, a 

cost-related decision support tool is created to allocate in the most cost-effective way the items to a 

group of vendors.  

The main conclusions of the above are:  

‒ The identified as high- interest items represent less than 5% of the total items but more than 

40% of the total cost. This means that if the bulk ordering process is only focused on these 

items the administrative workload would decrease considerably both for the departments 

involved internally, decreasing by around 0.5 FTE, but also for the business partners of the 

case company 

‒ The forecasting of the nominal needs of the vessels exhibits satisfactory results (average 

MAPE 53%) and could in the future, when the training samples increase, become more and 

more accurate. For some specific components that show increased accuracy, e.g. fuel oil 

system (MAPE = 10%) the tool can be used to expedite the process while decreasing the 

workload both for the vessel and for the shore- based engineers.  

‒ The forecasting models of the extra needs based on market characteristics are not 

performing well when it comes to accuracy (average MAPE 165%). What is observed is that 

the source of purchase in the bulk orders does not heavily influence the extra needs that 

need to be covered during the year after the bulk. However, a further analysis including 

more independent variables, related to the urgency of purchases, the types of machinery 

and their nominal running hours etc. may be performed in the future. This analysis was not 

performed as said data were not easily accessible in a structured format.  

‒ Lastly, the prescriptive model supports that increased quantities would lead to decreased 

total costs by 14.8%, as one major component of the cost function is the stock out cost-

which represents the increased cost to deliver an item on board with heightened urgency. 

Even if the previous exercise showed no influence of the source of purchase on the extra 

quantities, the prescriptive model supports an increased allocation of items to makers. This, 

however, mainly stems from the fact the makers have smaller production times, thus driving 

the safety stock down. All in all, the model supports an initial investment on increased safety 

stock that would be paid back in full (all other factors constant) after the 2nd year of 

implementation.  

In addition, throughout the course of this thesis the below areas were identified as the ones most 

deserving of further research:  

‒ Re-evaluation of the entire algorithmic framework when more data and bulk order cycles 

have been amassed. More specifically, with a sizeable enough critical mass of data, deep 
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learning algorithms could be performed and assessed to see if they would further improve 

the MAPE.  

‒ Add new dimensions (e.g.: urgency of purchase, related maintenance work orders etc.) in 

order to tackle the increased complexity of the extra needs forecasting. Including these 

dimensions may lead to more accurate predictions regarding the items re-purchased during 

the year after machinery failure-and not because of miscalculations in the forecasts 

‒ Further improve accuracy by making the predictive and prescriptive models vendor specific. 

Given the augmented variance noted in terms of prices, lead-times and total cost of 

ownership amongst suppliers- and even amongst original makers- any effort to increase 

granularity across this dimension would most likely yield improved decision making on cost. 

Furthermore, trade routes of the vessels could also be added as a way to increase accuracy 

in the computation of the forwarding cost.  

‒ Finally, there is need to reevaluate for these critical items their P-F curves, particularly if 

their origin is from the parallel market. Retrieving and consolidating this information in a 

structured format from the engineering crew onboard in between overhauls with the bulk 

order spare parts would subsequently pave the way for a more holistic predictive 

maintenance model. The latter should gauge this improved visibility into the spare part 

reliability when predicting demand or prescribing outcomes for optimum total cost of 

ownership. 
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8 Conclusions  
The findings of this thesis confirm that there is merit in applying advanced analytics concepts and 

machine learning algorithms in attempt to rationalize spare parts purchasing and tackle present 

challenges as discussed in Chapter 0. However, and given the initial investment needed, the 

application of such concepts will yield a higher ROI for companies that manage a fleet size 

potentially exceeding 30 vessels. A sizeable fleet is needed to generate a large enough pool of spare 

part needs to drive the economies of scale that lie at the heart of bulk order execution.  

Concurrently, the concepts presented in Chapter 0require an all-encompassing supply chain 

footprint of commonly adhered to procure-to-pay processes enabled by robust and scalable 

systems, e.g. AMOS, SAP, and Data Warehouse. The latter, acting as a holistic supply chain system of 

record, provide the primary source of a raw data set with the necessary breadth and depth to make 

concepts such as machine learning attractive, meaningful and effective.      

Of course the data set alone is not enough to unlock value, so any ship management company 

looking to go down this road will need to invest in developing internally its analytics capabilities by 

building a pool of dedicated data scientists coupled with analytics translators, who are capable of 

bridging the business need with the algorithmic capability necessary. The latter will link the business 

need with the analytics capability necessary the former will employ so as to drive value in any such 

initiative.  It is worth noting that supply chain systems of record and organically grown analytics 

capabilities remain elusive concepts in the maritime industry which has traditionally proven tardy in 

following the digitalization traits, minus some nominal exceptions such as the case company. Yet 

even in this case which fulfills the aforementioned requirements to a large extent, limitations and 

obstacles were faced when working towards the completion of this thesis. The primary one was data 

availability and depth: advanced analytics are data hungry to the extent that three years of bulk 

order data, in the time dimension, and over 90 vessels in the space dimension were not enough to 

enough to even entertain the thought of deploying deep learning algorithms. The ones that 

remained were hand-picked to ensure their structure was not prone to overfitting due to lack of 

extensive data to train them on, e.g. Random Forest.   

Additionally, such exercises as the one tackled in this thesis would need to also leverage the vantage 

point of core operations owners such as the Technical department since the Bulk Order analytics 

framework created could steadily evolved into a predictive maintenance tool with cross-functional 

ownership and applicability. In practice this proves difficult to ascertain and manage given the 

different pace, systems and tools the alternate departments follow, the Chinese walls raised in some 

cases. These could be handled under the umbrella of an end-to-end Maintenance Transformation 

Programme, complete with a Change Management methodology, provided all stakeholders involved 

see and realize the untapped value advanced analytics can generate.  

The McKinsey Global Institute (McKinsey & Company, 2018) estimates the net effect potential of 

Artificial Intelligence on the world economy to be an incremental 13 trillion USD of economic activity 

by 2030, or a 16% higher cumulative GDP than today. It will be hard to imagine such a tremendous 

impact leaving the maritime industry unaffected and ship management companies already start 

veering towards AI adoption at a faster pace than in the past in an effort to keep up with the rest of 

the world, much like the case company is doing. However, since there does not appear to be a silver 

bullet for the adoption of such concepts it makes sense to focus on tangible and ripe use-cases- e.g. 

forecasting for bulk order spares- generate a monetary and workload related benefit, communicate 
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it accordingly cross-departmentally and build the remaining use-cases from that point onwards. That 

was the main contribution of this diploma thesis to the case company.  
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