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Abstract

OpenMP is an Application Program Interface (API), which was first intro-

duced in 1996 and since then it was adopted as the most popular standard

for shared-memory parallel programing.It provides a portable and scalable

model for the developers of multi-threaded applications.

OpenMP is still in the process of being extended, which means that in

order to support each new feature changes should be done both in the front

and back ends. These changes have to do with the new syntax that appears

as well as the code generation that targets the runtime system. For this

reason and for the needs of this thesis we use the Mercurium compiler and

the Nanos runtime system which are designed to accommodate new concepts

and extensions that we need to add in OpenMP.

In this thesis we propose extensions to allow the runtime detection of

dependencies between for loops. With these extensions we are able to reduce

the delays that are potentially caused from unbalanced workloads in the for

loops and improve performance.
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Chapter 1

Introduction

1.1 Multi-core Architectures

Despite the improvements and the steps that have been taken in order to

reduce the size of single gates, problems such as the heat dissipation prevent

us to raze even more the single-core clock frequency. This problem accom-

panied by the great need of improving the performance of some applications,

led the researchers to design parallel architectures.

Single-core computational systems used to depend all their potential to

improve performance at the parallelization on the level of instruction. The

only effort towards utilizing parallelization was the concurrent use of the

accelerator and the input/output devices. Nowadays, since the instruction-

level parallelism cannot be exploited any further and the power consumption

is of great importance, the parallelization is directed to the use of multiple

accelerators and the effective use of them.

According to Moore’s law [9], transistors available in accelerators are

doubling each 18 to 24 months. This means that what is now important is

to find effective ways in order to synchronize the accelerating units and to

make them communicate rapidly and consistently. Furthermore, we should

have a good control of the simultaneous references to the main memory and

the input/output devices.

For the parallelization of the computations researchers have designed

13



14 CHAPTER 1. INTRODUCTION

many different architectures and programming models that can in the first

place increase the performance and then be eligible to expand with the ad-

dition of new accelerating units. Two models dominate the parallel architec-

tures: shared memory and distributed memory which are further discussed

in the forthcoming paragraphs.

1.1.1 Shared memory architectures

In the model of shared memory, processors have common access to global

memory. The most important feature is the use of a single address space,

which means that all processors have the same view of the memory. Each

processor has his own level of cache memory and all processors are connected

in the same network, typically a shared bus as it is shown in the figure 1.1.

Figure 1.1: Shared Memory Model.

The communication between processors is done through reads and writes

to the common data with the simultaneous update of each processor’s in-

dividual cache. This means that the programming is being held easier and



1.1. MULTI-CORE ARCHITECTURES 15

the execution can be done clearly, separated to the different units. On the

other hand, with this type of architecture we face a major problem when a

number of processors are trying to write in the global memory data, at the

same time.

1.1.2 Distributed memory architectures

In the architecture of distributed memory there is no common memory

space where all the processors have access. Each processor has its own local

memory space and is the only one to have access on it as it is depicted in

the figure 1.2. The exchange of information is done by sending and receiv-

ing explicit messages to and from the private memories of the processors.

The sender sends its messages to the other processors, when this is needed,

through the communication network.

Figure 1.2: Distributed Memory Model.

Consequently, this model is not as user friendly as the previous one,

because all the information that has to be exchanged should be exchanged
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manually. On the other hand, its main advantage is the fact that there is no

need of a big common memory space that needs to be consistent and updated

all the time as in the case of the shared memory model.

1.2 Parallel Programming and its difficulties

Now that multi-core architectures are widely used and parallel program-

ming starts to replace the contemporary sequential programming, an other

property starts concerning programmers. Concurrency, which refers to the

simultaneous execution of instructions and the potential interaction of these

computations with each other, raise new issues that do not exist in the se-

quential programming.

The concurrent use of shared resources can lead the outcome to be in-

determinate. The first case of indeterminate situation is when two or more

competing actions are each waiting the other to finish. This makes all of

them wait and no one of them to continue. This case is named after deadlock

[1] which is a common problem in multiprocessing of shared memory model,

since there is widely used the idea of mutual exclusion, in order to avoid the

simultaneous use of the same resource.

An other common problem of concurrent programming is the problem of

starvation, which is quite similar to the deadlock. The problem of starvation

rises when a process needs a resource in order to continue its execution,

but is persistently denied to get the resource because of this resource being

occupied by an other program.

Moreover, concurrency introduces new classes of potential problems that

have not arose in conventional sequential programing. Some of the most

common problems are the software bugs and especially the race conditions.

Apart from the problems that arise when we try to create a correct par-

allel code, there is always the problem of efficiency and performance which

are the main reasons to use parallel programming. The problem of commu-

nication and synchronization of the processes among each other are some of
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the greatest obstacles in getting good parallel program performance. More-

over, synchronization and scheduling overhead may be some other reasons of

getting low performance.

An other problem that is critical to performance is to balance the load

of an applications’ workload among the threads [3]. The solution to this

problem is to minimize idle time of threads, which means idle cores and

eventually waste of resource and extension of execution time . If we achieve to

share the workload to all threads trying to avoid the work sharing overheads,

we can have the minimum waste in computation time and finally achieve

improvements in performance [6].

In fact the program performance follows Amdahl’s law [8] which is the

following:

1

(1 − P ) + P
N

where P is the proportion of the program that can be parallel and as a result

(1-P) is the proportion of the program that remains sequential. The above

formula estimates the maximum speedup that can be achieved when we use

N number of processors.

The above law shows that the maximum speedup that can be achieved is

not linear to the number of processors, which consists an other proof of the

unsurpassed problems of parallel programming.

1.3 Motivation

Now that we know which problems cost as far as performance is con-

cerned, we can manage to eliminate them. The reason of this project was

first of all to introduce a way to reduce the idle time of threads between the

tasks that are executed in parallel using OpenMP API.

Being too rigid, OpenMP does not allow the programmer to avoid load

imbalance and express all the parallelization available, especially in the cases

that we need to scale to systems that have large number of processors.
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This project is an attempt to introduce a way of exploiting parallelization

in cases that OpenMP, as it is currently implemented, cannot. It pursues to

provide an easy way to balance the workload of threads in cases that there

are dependent work distributions and finally to reduce the execution time.

1.4 Organization

The rest of the thesis is organized in six more chapters. Chapter 2,

includes a detail description of OpenMP and some basic ideas and common

structures. In chapter 3 we give an outline of OmpSs environment, which

is the one that we use and extend for the needs of this thesis. In the next

chapter, chapter 4, we give more details about the extensions that we have

implemented and we analyze theoretically some examples. In chapter 5 we

give a more in-depth description about the implementation of the extensions

and we explain some of the basic structures that are implemented. In chapter

6 we describe the algorithm sparseLU that we use to evaluate the extensions

and then we present the results of the evaluation of this algorithm and the

results of some more artificial algorithms. Finally, in chapter 7 we conclude

the thesis and we state some useful directions for futures work.



Chapter 2

The OpenMP environment

OpenMP[10], [11] is an Application Program Interface (API), that is

widely used for writing multi-threaded applications for shared memory archi-

tectures. It combines compiler directives, library routines and environment

variables that can be used to specify shared memory parallelism in Fortran

and C/C++ programs. It provides a portable and scalable model but also a

user-friendly and efficient approach to shared-memory parallel programming.

The main idea of OpenMP is that the already existing thread creates

a certain number of slave-treads. After that, the task that needs to be

executed is divided to a number of parts equal to the number of the threads

that exist in total. As a result, each part of the initial task can be executed

by one thread and all of them to be executed concurrently, with the runtime

environment allocating threads to different processors.

The user of OpenMP explicitly specifies which should be the actions to be

taken in order for the compiler and the runtime to run the program in parallel.

Moreover, the user is responsible to produce an accurate program free of

data-dependencies, data conflicts and deadlocks. This means that OpenMP

implementations are not required to check for the restrictions that will cause a

program to be classified as non-conforming. Finally, OpenMP is not expected

to include any kind of compiler-generated automatic parallelization.

19
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2.1 The OpenMP execution model

The basic execution entity of OpenMP is the thread. Each thread has its

own stack and associated static memory and is managed from the OpenMP

runtime system. In fact, each OpenMP program begins as a single thread of

execution. This first thread, called the initial thread executes the program

sequentially and persists throughout the whole execution.

When the initial thread encounters a parallel construct it creates

(forks) a number of threads that team of threads. This team of threads,

includes the initial thread, that now is named the master thread of the new

team, and 0 or more other threads. The actual number of the threads that

will be created is defined by the user when the num threads clause is used.

Each one of the created threads has the obligation to execute one of the

implicit tasks that are created. The code of these implicit tasks is defined

by the code inside the parallel construct. Each task of this parallel construct

is assigned to a different thread in the team of threads and it becomes tied.

This means that this task will be always executed by the thread that was

initially assigned to.

At the end of the parallel construct, there is an implicit barrier. Beyond

this barrier only the master thread is allowed to continue the execution.The

threads that were created by the initial thread synchronize and join to this

single thread. Furthermore, there is no restriction in the number of the

parallel constructs that can be specified in a single program.

During the execution inside the parallel construct the threads may en-

counter worksharing constructs or/and task constructs. Further on there will

be a detailed description of the execution model and the syntax of both of

the above cases as well as the parallel construct itself. All the above are

depicted in figure 2.1.

Inside the parallel construct the team can encounter a worksharing

construct. At that point, the work inside the construct is divided among

the members of the team and executed cooperatively instead of being exe-

cuted by every thread. The way that the worksharing construct is divided
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Figure 2.1: Execution model
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in order to be shared to the threads, has to do with some instructions that

the user states and differentiate the behavior of the threads.

When a thread encounters a task construct, a new task is generated.

This new task may be executed by the encountering thread immediately or

be delayed. If the execution of the task is suspended, the encountering thread

can resume it if this thread is tied with this task or let an other thread to

resume it in case of the thread being untied.

Moreover, there are available some synchronization constructs and some

library routines in order to coordinate tasks and data access in parallel re-

gions.

2.2 Description of the constructs

In this section we discuss some of the most important OpenMP directives

relevant to this thesis.

First of all the OpenMP directives are specified by using the #pragma

keyword and has the following syntax:

#pragma omp directive-name [clause[[,]clause]...] new-line

2.2.1 The parallel construct

The syntax of the parallel construct is the following :

#pragma omp parallel [clause[[,]clause]...] new-line

where the clause can be one of the following :

if

num threads

default

private

firstprivate

shared

copyin

reduction
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As we have already mentioned, when the initial thread encounters the

parallel construct it creates a team of threads and becomes the master thread

of this team. The region is executed by all the threads of the team, including

the master thread. Furthermore the number of threads of the team remains

stable during the execution of this specific parallel region.

Inside the parallel region each thread has its own identification number.

Beginning from the number zero, which identifies in all cases the master

thread, all threads get an incremental number. By using the library routine

omp get thread num() we can get the number of a specific thread.

The encountering thread creates also a number of tasks equal to the

number of threads, inside the parallel region. The code of these tasks is

determined by the parallel construct and each one of them gets tied with one

thread. This and only this thread (which is tied with the specific task) is

allowed to execute it.

At the end of the parallel region there is an implicit barrier, beyond

which only the master thread can resume execution of the enclosing task

region. In the case of nested parallel regions, the thread that encounters the

second parallel region acts in the same way as we have already described and

becomes the master of the new team of threads.

We also have to mention that a program that branches into or out of

a parallel region is not supposed to be conforming. Finally, we should be

careful not to depend the programs on the ordering of the evaluation of the

clauses, or on any side effect of the evaluation clauses.

2.2.2 The worksharing construct

With the worksharing constructs the execution of a region is destributed

among the members of the team that encounter this construct. The work-

sharing construct does not have an explicit barrier. However, a barrier is

implied at the end of the region. Exception is when the nowait clause is

specified. The nowait clause removes the implied barrier and now the treads

can proceed to the instructions following the worksharing region without
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waiting for the other members of the team to finish with their own part of

the region

In OpenMP we define the following four worksharing constructs.

loop construct

sections construct

single construct

workshare construct

2.2.2.1 Loop construct

The loop construct denotes that the iterations of the loops will be dis-

tributed to the threads of the team (that already exist and execute the par-

allel region) and they will be executed in parallel. The syntax of the loop

construct is the following :

#pragma omp for [clause[[,]clause]...] new-line

Where the clause can be one of the following :

private

firstprivate

lastprivate

reduction

schedule

collapse

ordered

nowait

We have to note that a loop region always binds with the innermost

parallel region and the threads that execute the iterations of the loop are

only those that execute the parallel region. At the end of the for loop, there

is an implicit barrier. In case of a nowait clause this implicit barrier does

not exist anymore.

A for loop has a number of iterations, lets hypothesize that this number

is N and begin from 0 to N-1. When the loop is not executed in parallel,

the logical numbering denotes the sequence in which the iterations will be

executed. In the case of the parallel execution the way that the iterations
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will be distributed to the threads is defined by the schedule clause. Each

thread binds with and executes a chunk which is a contiguous non-empty

subset of the loop and that has to be an invariant integer expression with

always a positive value.

There are several types of schedule:

• static

• dynamic

• guided

• automatic

• runtime

The first one the static schedule is declared as: schedule (static ,

chunk size ). This means that the iterations are separated into chunk size

number of chunks and assigned to the threads of the team in the roundrobin

way. When a chunk size is not specified the iterations are divided in the way

that is more approximately equal in size.

The dynamic schedule, which is declared as: schedule(dynamic, chunk size

), denotes that the chunks that are created based to the chunk size are dis-

tributed and binded to the threads of the team, in the way that the threads

request. Each thread request a chunk, and as soon as it finishes executing it,

it can request an other one until no chunks are available for execution. Each

chunk of the loop contains chunk size iterations, except for the last one that

it can have less than chunk size. In case that the chunk size is not specified

the default number is 1.

As far as the guided schedule is concerned, the threads act in the same

way as the dynamic schedule when the schedule (dynamic, chunk size )

is specified. The difference is that the for a chunk size of 1 the size fo each

chunk is proportional to the number of the unassigned iterations if we divide

them by the number of threads in the team decreasing to 1. If the chunk size

is l (where l is greater than 1), the size of each chunk is determined in the
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same way with the obligation that the chunks should not contain fewer than

l iterations (except for the last chunk to be assigned, which may have fewer

than l iterations). When the chunk size is not specified it gets 1 by default.

The auto schedule , specified by the schedule (auto) let the compiler

and/or the runtime to decide how to distribute the iterations to the threads.

A chunk size must not be specified.

Finally the runtime schedule, specified by schedule (runtime), let the

decision to be taken when the run time the schedule and the chunk size are

taken from the run-sched-var Internal Control Variables (ICV). A chunk size

must not be specified as well.

2.2.3 The task construct

With the task construct the user can define an explicit task. This task

region binds with the innermost parallel region. The syntax of the task

construct is the following:

#pragma omp task [clause[[,]clause]...] new-line

structured block

where a clause can be :

• if

• untied

• default (shared/none)

• private (list)

• firstprivate (list)

• shared (list)

As we have already described, when a thread encounters a task construct,

a task is created according to the code of the structured block. The thread

that first encounters the task construct can either execute it immediately of
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delay the execution for later or even let an other thread to assign with the

task and execute it later.

When a thread starts executing a task region it can temporarily suspend

the execution and resume it later. I the task is not declared as untied the

thread that started the execution should finish it, otherwise an other thread

of the team can finish executing this task.

When a program branches into or out of a task region then it is not

conforming. Also the program should not depend to any side effects or to

the ordering of the evaluation of the clauses.

2.3 Task-For construct comparison

Programmers that are using OpenMP, have to decide which parallel con-

struct to use in order to parallelize a region. This is not always a trivial deci-

sion as there are many differences that are not always obvious. For example,

if we want to parallelize a for-loop we should examine whether is better to

use the for construct or the parallel construct. What we should have in mind

is the way that the tasks are created and how they are distributed on the

threads.

Now we will describe in detail three different occasions of the for-loop and

the task construct.

• The task construct has a for loop in the structured block

#pragma omp task

for(i=0;i<N;i++)

f();

Lets hypothesize that we have two threads. One of them is the master

thread, which creates a task that includes the whole for loop. After the

task is created both threads are eligible to execute the task depending

on their availability.

The first figure (Figure 2.2) shows that the master thread creates the

task that it is subject to the execution. In the second figure (Fig-

ure 2.3) the second thread, the one with thread number = 1, continues
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the execution since the master thread is not available to execute the

task that had created. In the second instance of the figure we can see

also that during the execution of the task there is some time that is

lost between before the execution starts and after the execution fin-

ishes. This time is depicted with the more gray color before and after

the actual execution of the for loop.

Figure 2.2: Task construct with for loop as structure block: creation of the tasks.

• The task construct inside a for loop.

for(i=0;i<N;i++)

#pragma omp task

f();
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Figure 2.3: Task construct with for loop as structure block: execution of the

tasks.

Lets hypothesize that we have again two threads. The first one that

encounters first the for loop, starts executing it. Inside the for loop

there is a task construct. As a result the thread encounters N times

the task construct and creates N tasks. When the N number of tasks

are created then they are distributed in the two threads and start being

executed.

Figure 2.4 and figure 2.5 are two instances which depict the two

hypothetical threads and how they create and execute the tasks. In the

first instance, figure 2.4, the encountering thread creates N number of
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Figure 2.4: Task construct inside a for loop: creation of the tasks.

tasks each one of them will have the code of the task construct, which

is the call of the function f.

After the creation, these tasks will have to be distributed to the threads

depending their availability. In the second figure 2.5 it is also depicted

the execution intervals that happen because of the movements of the

tasks to the threads.

• A for loop inside a for loop construct.

#pragma omp for

for(i=0;i<N;i++)

f();
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Figure 2.5: Task construct inside a for loop: execution of the tasks.

Lets consider again the same hypothetical case of the two threads.

When one of these two threads encounters a for construct, a task is

created. This task is being separated in two tasks, as it is shown in

figure 2.6, each one of which has the half number of iterations of the

initial task, which in this case is N/2.

After that separation the tasks are distributed to the existing threads

as it is shown in figure 2.7.
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Figure 2.6: For loop inside a for construct: creation of the tasks.

Figure 2.7: For loop inside a for construct: execution of the tasks.



Chapter 3

The OmpSs environment

The OmpSs [5] programming model is an attempt to extend the current

OpenMP standard including some of its features and progressing in many

more. The objective of OmpSs is to include features that will make OpenMP

simpler and more portable and introduce a way to migrate applications to

homogeneous and heterogeneous architectures.

The already existing model of OpenCL tries to unify the programming

models for architectures based on hardware accelerators. It is an attempt to

ensure portability, low-level access to the hardware and performance porta-

bility. On the other hand it provides a great amount of low level details

which makes it difficult to use for those that are not familiar with these type

of programming models.

In contrast, the user of OmpSs needs only to decompose his application

into tasks and outline the usage of the variables in each task that has cre-

ated. For these variables the user has to describe whether they are inputs,

outputs, privates etc. After this declaration the user does not have any other

responsibilities and from that point on, the runtime system is responsible

to organize the way that tasks will be executed and to detect the possible

dependencies. Furthermore, the runtime is responsible to organize how the

work will be distributed at the heterogeneous set of processors and manage

the memory hierarchy in a transparent and portable way.

From the programming model point of view, in order to express more suc-

cessfully the dependencies between the tasks and to implement locality-aware

33
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dataflow scheduling policies, we need to find a stable way to express the de-

pendencies between the tasks at runtime. As far as the execution model is

concerned, the fork/join model of OpenMP as well as the parallel construct

are rejected. Thus asynchronous dataflow execution engines are implemented

that hide the complexities and dynamic heterogeneities in the core and mem-

ory architectures as well as adapt to dynamic changes in resource availability

and workloads.

3.1 The execution model

In order to describe a little further the OmpSs execution model we should

point out the difference in how the threads are created in OpenMP and

OmpSs. As we have already described, OpenMP follows the fork/join model.

On the other hand OmpSs follows the thread-pool model which means that

all the treads exist since the beginning of the execution. When the execution

starts only one of these threads, the master thread executes the code. The

rest of the threads remain stand-by to execute the work when it is available.

In OmpSs the term pool still refers to a team of threads as in the case of

OpenMP. The only difference between the two notions is that in OmpSs the

team is divided in two kind of threads: the master thread and the worker

threads.

Using the usual OpenMP worksharing constructs or task constructs, the

master thread in this case can generate work for the other threads. Moreover,

having the possibility of nesting the worksharing constructs, which is an other

difference between openMP and OmpSs, all threads can eventually become

work generators.

From all the above, we can understand that as we already have all the

threads from the beginning of the execution, there is no need for the parallel

construct. Furthermore, being possible to have all the constructs nested,

there is no actual need tho implement the nested teams of threads. For all

the above, the parallel construct is rejected.
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3.2 The dataflow extensions-The task construct

In this section we describe the task construct, an extension of OmpSs

that is already implemented and integrated to the programming model. The

syntax of the construct is as follows [7]:

#pragma omp task [omp clauses] [ss clauses]

task block

The ss clauses can be one of the following: input, output, inout

and inout-set. These four clauses are accompanied by an expression that

leads to evaluate a set of lvalues. Later they are used by the runtime system

in order to build the dependency graph for the tasks.

• input clause: The task that has an input clause which evaluates to an

lvalue cannot be executed since a task that has been already created

has an output clause that evaluates to the same lvalue and has not

finished its execution.

• output clause: The task that has an output clause which evaluates to

an lvalue, cannot be executed since a task that has been already created

has an input or an output clause that evaluates to the same lvalue and

has not finished its execution.

• inout clause: In this case we consider the inout clause that evaluates

to an lvalue as if it was input clause and output clause applying to the

same lvalue.

• inout-set clause: In this case we consider that the inout-set that eval-

uates to a lvalue is equivalent to an inout that evaluates to the same

rvalue with the exeption that it will not create dependencies with other

tasks with an inout-set clause which evaluates to the same lvalue.

3.3 The implementation

OmpSs is composed of the Mercurium compiler, which is a source-to-

source compiler, and the Nanos++ runtime library. In this paragraph we
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give some information about these two components as well as the scheduler

component and we provide a good insight on the role of each one of them.

3.3.1 Mercurium

The first basic component of the OmpSs, the compiler, is restricted to

recognize the constructs [5]. After recognizing them the rest of its role is to

transform them into calls in order to be used by the runtime library.

One type of transformations that the compiler makes is to change the

dataflow clauses, that we have already describe, to expressions that will be

evaluated during the execution of the program. The idea is that these ex-

pressions will be passed to the runtime library as addresses of memory that

will be used afterwords to construct the dependency graph.

Furthermore, the Mercurium compiler creates code to enable the runtime

to execute the applications to a range of target devices. The target devices

can be, exept for the SMP, also cuda and cell. When a task is associated with

a target or a target directive is liked to a task which is different from the SMP

the representation of this task is passed to a handler which is responsible for

distributing the work to the devices.

3.3.2 Nanos++

The second component of the OmpSs programming model, the Nanos++

is a runtime library for task-based programming models [5]. The unit that

the Nanos runtime library is based on is the WorkDescriptor which is a unit

of work that creates instances of a subclass that describes the work to be

done.

WorkDescriptors are created by the compiler both for tasks constructs and

for worksharings and contains data for the environment of their execution but

also for the dependencies related to them. Each one of the work descriptors

is related to a list which contains information about the devices that a task

can run to. More specifically each element of the list refers to a device and

contains information, about this specific device, which is needed to run the

code related to the work descriptor.
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The runtime system also maintains a graph where the tasks are linked

together according to the dependencies they have. Each time the compiler

creates a work descriptor it is submitted to this graph in order to have its

dependencies checked. For simplicity, efficiency reasons and in order to avoid

deadlocks the graph that is created is the one of each task and contains

information about the dependencies of its children. Finally, in order to detect

the dependencies the runtime keeps the addresses of all the arguments when

dependency clauses exist.
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Chapter 4

Design of loop dependences for

OpenMP

In this chapter we describe in detail the extensions of the OmpSs which

were implemented for the needs of this thesis. The extensions are related

to the for loops and the way to express and implement the dependencies

among them. The proposal of this thesis is to extend the for-loop construct

that already exists in OpenMP with some additional clauses that are used

to retrieve the dependencies among the for loops and also the dependencies

among the for-loops and the tasks.

More specifically, we can say that when a for-loop needs a variable that

is previously computed by an other for-loop then we say that it has an input

dependence and we express it with the input clause. Accordingly, when a

for-loop is computing a variable that is planned to be used later from a task

of an other for-loop we can say that it has an output dependence and we

express it with an output construct. In the last case when a for-loop needs

a variable that is computed in a previous task block or a for-loop block and

also generates a variable that is needed later on for other blocks then we

say that it has an input-output dependence. If this input-output dependence

applies to the same variable, then we express the input-output dependence

with an inout clause.

39
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4.1 The syntax of the construct

The syntax of the construct is equivalent to the task constructs which we

described in the previous chapter. More specifically the construct is :

#pragma omp for [omp_clauses] [ss_clauses]

for -block

Where the ss clauses can be one of the following:

1. input : The for-loop that has an input clause which evaluates to an

lvalue cannot be executed since an other for-loop that has been already

created has an output clause that evaluates to the same lvalue and has

not finished its execution.

2. output : The for-loop that has an output clause which evaluates to

an lvalue, cannot be executed since an other for-loop that has been

already created has an input or an output clause that evaluates to the

same lvalue and has not finished its execution.

3. inout : In this case we consider the inout clause that evaluates to an

lvalue as if it was input clause and output clause applying to the same

lvalue.

The syntax of the above clauses is shown below:

• input (data-reference-list)

• output (data-reference-list)

• inout (data-reference-list)

As described above, the dependencies of the for loops are described as

data reference lists, which is more generic than an actual variable list. With

the data reference list we mean the list of variables and references to sub-

objects, that can also include array element references.

For a better understanding of how the ss clauses are used we can see the

following example (Listing 4.1) and the graph 4.1.
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Listing 4.1: Outline of dependencies

int main ()

{

...

#pragma omp for output (var1 ,var3)

for (...)

{...}

#pragma omp for output (var2) inout(var3)

for (...)

{...}

#pragma omp for input (var2 , var3)

for (...)

{...}

#pragma omp for input (var1)

for (...)

{...}

...

}

4.2 The types of dependencies

We can define two general categories to use these clauses. The first one

is to apply them to the whole loop and not care about the induction variable

and the second one is to explicitly define that the dependence of the loop

is related to the induction variable. The first case describes coarse grain

dependencies whereas the second case fine grain dependencies.

4.2.1 Coarse grain dependencies

In the first case, we imply that the whole loop is dependent on an other

loop, if the clause is input or inout, or that the loop makes a dependence

to an other loop if the clause is the ouput. In this case we consider the

loop as if it was a task where we apply the dependencies we described in

the previous chapter. As a result, a for-loop cannot be executed if it has an

input dependence and the variables that this reference is applied to are not

previously computed.
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Figure 4.1: Dependence graph.

For example in the case of the Listing 4.2, we imply that the whole third

loop is dependent of the first and the second loop, because the b matrix is

dependent of the results of the first loop and the c matrix is dependent of

the results of the second loop.

and to express the dependencies graphically we can see figure 4.2:

As a result we expect the third loop not to be executed before the b and

the c matrices are computed. However, the first and the second loop are

independent which means that the second loop can be executed before the

first one, provided that there are threads that are not in use by the first loop.

A better understanding of the actual use of the above idea can be the

Listing 4.3.

In this case there is an unbalanced workload on the first loop that makes it
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Listing 4.2: Coarse grain dependencies: example 1

void main (){

...

#pragma omp for output (b)

for (i=0;i<10;i++){

b[i]++;

}

#pragma omp for output (c)

for (i=0;i<10;i++){

c[i]++;

}

#pragma omp for input (b, c)

for (i=0;i<10;i++){

b[i]=...

c[i]=...

}

...

#pragma omp taskwait

}
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Listing 4.3: Coarse grain dependencies: example 2

void main (){

...

#pragma omp for output (b)

for (i=0;i<10;i++){

for (j=0;j <100000;j++)

b[i]++;

}

#pragma omp for output (c)

for (i=0;i<10;i++){

for (j=0;j<3;j++)

c[i]++;

}

#pragma omp for input (b, c)

for (i=0;i<10;i++){

b[i]=...

c[i]=...

}

...

#pragma omp taskwait

}
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Figure 4.2: Dependence graph for the coarse grain example .

finish its execution really slow. In this case and as long as there are available

threads there is no need to wait the first loop to finish execution. As a result

the free threads continue with the execution of the second loop and thus we

raise the level of parallelism.

4.2.2 Fine grain dependencies

The second category is to express the dependencies according to the in-

duction variable of the matrices that possibly exist as dependent variables.

In this case, the expression is applied to the loop for each iteration and it

is evaluated as if each chunk of the loop was a task with the defined depen-

dencies to refer to the specific chunk ranges. More specifically, if a loop has

an input dependence from a previous one, but in this case only for a few

iterations and the loop that has the related output dependence has already
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Listing 4.4: Fine grain dependencies: example 1

void main (){

...

#pragma omp for output (b[0:4])

for (i=0;i<5;i++){

b[i]++;

}

#pragma omp for output (c[0:4])

for (i=0;i<5;i++){

c[i]++;

}

#pragma omp for input (b[0:4] , c[0:4])

for (i=0;i<10;i++){

b[i]=...

c[i]=...

}

...

#pragma omp taskwait

}

computed these iterations, then the input-dependent loop can start being

executed conditionally that there are available threads.

For example in the case of Listing 4.4 the third loop is again dependent of

the first and the second loop, but this time with the difference that the b and

the c matrices of the third loop is dependent only in the first five elements

and not in the following.

If we want to show the dependence graph between the for-loops, figure 4.3

we have to describe the two phases: The phase one describes the dependencies

between the loops for the first five iterations and the phase two shows that

for the rest of the iterations there are no dependencies between the loops.

Considering now the following case, where the loops are not balanced, we

can understand better the actual use of the Listing 4.5.

In this case the third loop has a dependence on the first five elements of
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Listing 4.5: Fine grain dependencies: example 2

void main (){

...

#pragma omp for output (b[0:4])

for (i=0;i<5;i++){

for (j=0;i <10000;i++)

b[i]++;

}

#pragma omp for output (c[0:4])

for (i=0;i<5;i++){

for (i=0;i <10000;i++)

c[i]++;

}

#pragma omp for input (b[0:4] , c[0:4])

for (i=4;i<10;i++){

b[i]=3*i

c[i]=4*i

}

...

#pragma omp taskwait

}
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Figure 4.3: Dependence graph for the fine grain example.

b and c matrices. However, there is no need to wait for the calculation of

these five elements since the induction variable of the third for loop begins to

increment from four which means that only one of the elements of the matri-

ces are dependent to the previous loops. So there is no actual dependence in

the elements that the induction variable is greater than four and as a result

these iterations can start being executed before the end of the execution of
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the firs two loops.

In this case, by expressing the dependencies relative to the induction

variable the level of the parallelism is again raised. If this was not the case,

and we expressed it only with the coarse grain construct then the third loop

should be stalled and executed after the first two loops have finished their

execution.

4.3 SparseLU example

In order to suport the above with a less artificial example we use the

SparseLU algorithm [5], which computes an LU matrix factorization.

4.4 Description of the algorithm SparseLU

As we have already mention, SparseLU computes the factorization of an

LU blocked matrix. The matrix is organized as a hypermatrix with pointers

to the actual blocks of data. The implementation includes the use of four

basic functions. The main functions are the lu0, fwd, bdiv and bmod [7].

In Listing 4.6 is the main code of the sequential SparseLU kernel.

In the above algorithm, when the lu0 is computed the rest of the instances

of fwd and bdiv can be executed in parallel. Moreover, when a pair of in-

stances of fwd and bdiv then one instance of bmod is allowed to be executed.

On the other hand there are dependencies between each instance of bmod of

one iteration of kk loop and the instances of lu0, fwd, bdiv and bmod in the

next iteration of the same loop.

With the above analysis of the dependencies of the algorithm, we can use

the extensions of OmpMP in order to exploit the available parallelism. For

example we can use the for construct in order to distribute the work in the

loops on the lines 11 and 16. We should also apply loop distribution to isolate

the loop that executes the multiple instances of function bdiv and exploit the

parallelism that exists between the instances of functions bdiv and fwd.

The main part of the code using only the extension of OpenMP would

look like the Listing 4.7.
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Listing 4.6: SparseLU

1 int sparseLU (){

2 int ii , jj , kk;

3 /* Allocation of the blocks A[ii][jj]*/s

4 for (kk=0;kk <NB;kk++){

5

6 lu0(A[kk][kk])

7

8 for(jj=kk+1; jj <NB; jj++){

9 if (A[kk][jj]!= NULL)

10 fwd(A[kk][kk],A[kk][jj]);

11 }

12 for (ii=kk+1,ii <NB; ii++)

13 if(A[ii][kk]!= NULL){

14 bdiv(A[kk][kk], A[ii][kk]);

15 for(jj=kk+1; jj <NB; jj++)

16 if (A[kk][jj]!= NULL)

17 {

18 if (A[ii][jj]== NULL)

19 A[ii][jj]= alocate_clean_block ();

20 bmod(A[ii][kk],A[kk][jj], A[ii][jj]);

21 }

22 }

23 }

24 }
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Listing 4.7: SparseLU without dependencies

1 int sparseLU (){

2

3 int ii , jj , kk;

4

5 /* Allocation of the blocks A[ii][jj]*/

6

7 for (kk=0; kk <NB; kk++) {

8 lu0(A[kk][kk]);

9

10 #pragma omp for nowait

11 for (jj=kk+1; jj <NB; jj++)

12 if (A[kk][jj] != NULL)

13 fwd(A[kk][kk], A[kk][jj]);

14

15 #pragma omp for

16 for (ii=kk+1; ii <NB; ii++)

17 if (A[ii][kk] != NULL)

18 bdiv (A[kk][kk], A[ii][kk]);

19

20 #pragma omp for private(jj)

21 for (ii=kk+1; ii <NB; ii++)

22 if (A[ii][kk] != NULL)

23 for (jj=kk+1; jj <NB; jj++)

24 if (A[kk][jj] != NULL) {

25 if (A[ii][jj]== NULL)

26 A[ii][jj]= allocate_clean_block ();

27 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

28 }

29 }

30

31 }
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The graph that follows, 4.4, can give us a better insight of the dependen-

cies between the tasks of the algorithm. It shows the dependencies between

the functions lu0, fwd, bdiv and bmod in one iteration of kk loop.

Figure 4.4: Dependencies between SparseLU functions in one kk iteration.

From this graph we can understand that there is no need to execute first

the fwd function and then the bdiv function, since in one kk iteration we

don’t have any dependencies between them. In fact, the A[kk][kk] matrix is

not a matrix to be computed inside the fwd or bdiv functions but only in

lu0. Thus we can state that matrix A[kk][kk] can be only input(A[kk][kk])

and not output(A[kk][kk])

In the same way we can define whether the rest of the dependencies

while computing matrix A are input, output or inout and then introduce the

extensions proposed in this thesis. With the fine grain dependencies of the

matrix A then we get the Listing 4.8
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Listing 4.8: SparseLU with fine grain dependencies

1 int sparseLU (){

2

3 int ii , jj , kk;

4

5 /* Allocation of the blocks A[ii][jj]*/

6

7 for (kk=0; kk <NB; kk++) {

8

9 #pragma omp task inout(A[kk][kk]) schedule(static)

10 lu0(A[kk][kk]);

11

12 #pragma omp for input(A[kk][kk])

13 inout(A[kk][jj]) schedule(static)

14 for (jj=kk+1; jj <NB; jj++)

15 if (A[kk][jj] != NULL)

16 fwd(A[kk][kk], A[kk][jj]);

17

18 #pragma omp for input(A[kk][kk])

19 inout(A[ii][kk]) schedule(static)

20 for (ii=kk+1; ii <NB; ii++)

21 if (A[ii][kk] != NULL)

22 bdiv (A[kk][kk], A[ii][kk]);

23

24 for (ii=kk+1; ii <NB; ii++)

25 if (A[ii][kk] != NULL){

26 #pragma omp for input(A[kk][jj],A[ii][kk])

27 inout(A[ii][jj]) schedule(static)

28 for (jj=kk+1; jj <NB; jj++)

29 if (A[kk][jj] != NULL) {

30 if (A[ii][jj]== NULL)

31 A[ii][jj]= allocate_clean_block ();

32 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

33 }

34 }

35 }

36

37 #pragma omp taskwait

38

39 }
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4.5 Restrictions

In both coarse grain and fine grain dependencies we implemented the

above only when the schedule is static. For the rest of the cases we were

prevented by the structure and the nature of the current runtime system

runtime. Furthermore, for the same reasons we were prevented to implement

the above when the chunk is zero and not include the case when the chunk

in non zero.

Finally, we have to mention that in case there is no need of using the ouput

clause, then we consider it equal as if it had a OpenMP nonwait clause on

it.
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Implementation

In this chapter we present the main implementation steps of the Nanos++

runtime system, with its classes and its methods as it is currently imple-

mented (Figure5.1) [2] [4].

• Nanos++ runtime system as it is currently implemented, contains a

Dependency class which encapsulates any necessary information in

order to define dependencies. This class consists of the address field,

which is a reference to the address that is used to identify a dependency.

It also contains the input and output field which determine if the stor-

age pointed by address is read/ written by the user of the dependency

respectively.

• The runtime contains a a domain that is called Dependencies Do-

main. This represents a place that objects with dependencies (Depend-

ableObjects) can be submitted. Each one of the WorkDescriptors have

associated a DependenciesDomain to which they can submit objects.

They represent new tasks with dependencies or sets of dependencies

that should be synchronized in order to have their dependencies satis-

fied.

• The dependency graph is formed by Dependable Objects which rep-

resent the entities that have dependencies. When a Dependable Object

55
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Figure 5.1: Nanos++ dependencies system design.
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is added to the Dependencies domain, its dependencies are checked us-

ing their address as an identifier. When a Dependable Object ends

the finalizeObject() is invoked in the Dependencies Domain in order to

have the status of the dependencies updated.

The DependableObject class provides four virtual methods that are

used by the DependenciesDomain in order to provoke some actions.

These methods are the init() method, which is used when a Depend-

ableObject is submitted. It is invoked by the DependenciesDomain and

initializes the DependableObjects’ internal members when this is neces-

sary. The second method is the wait() method which is also invoked by

the DependenciesDomain after the DependableObject has already been

submitted. When all dependencies are satified in a DependableObject

the dependenciesSatisfied() method is invoked by the DependenciesDo-

main. Finally, the last method of the DependableObject is the waits()

method. This method is used by the DependenciesDomain to know

whether the wait() method waits untill dependencies are satisfied. If

so, the only action during DependableObject submission is adding it

as successor for the tasks updating its dependencies.

• There are also two other entities, the DOSubmit and the DOWait.

The first one represents a task which is submitted to the dependency

system and its action takes place when its dependencies are satisfied.

When a DOWait is submitted to a domain, the thread executing sub-

mitDependableObject() will add the DOWait to the dependency sys-

tem and wait until its dependencies are satisfied before returning con-

trol to the caller.

• WorkDescriptor which represent the runtimes’ basic unit of work,

has a DependenciesDomain where DependableObjects can be submit-

ted. Each WorkDescriptor is submitted to the dependency system

of its parent’s DependenciesDomain. The class of the SlicedWD

(Sliced WorkDescriptor ) derives also from WorkDescriptor, a mech-

anism that allows WorkDescriptors to be decomposed in a number of
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several WorkDescriptors. A Sliced WordDescriptor is always related to

a Slicer and a SlicerData. Each Slicer defines the work descriptor be-

havior and each SlicerData keeps all the data that is needed to separate

the work.

Above we have described the basic outline of the Nanos runtime system.

In order to implement the extensions we have already described, we have to

change both the Mercurium compiler and the Nanos runtime system.

In the following sections there will be a detailed description of the imple-

mentation of both the two cases.

5.1 Coarse grain loop dependencies

As we have already mentioned, Mercurium is a source to source compiler.

As a result the first step in order to implement the coarse grain dependencies

was to introduce a function that captures the type of the dependencies and

continues with creating one new structure. This structure passes the infor-

mation about what kind of dependencies we face, if for example it is input,

output or inout.

The first case as we have already described refers to the dependencies

that include the whole variable, as shown in code number 5.1.

In this case and for the first dependent block, which is the one in code

number 5.2

Listing 5.2: First dependent block

#pragma omp for output (b) schedule (static)

for (i=0;i<1;i++){

for(j=0;j <100000000;j++)

b[i]++;

}

the code that will be produced in order to express the dependencies will be

the one in 5.3:
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Listing 5.1: Coarse Grain Dependencies

#pragma omp for output (b) schedule (static)

for (i=0;i<1;i++){

for(j=0;j <100000000;j++)

b[i]++;

}

#pragma omp for output (c) schedule (static)

for (i=0;i<4;i++){

for(j=0;j<10;j++)

c[i]++;

}

#pragma omp for input (b, c) schedule (static)

for (i=0;i<4;i++){

b[i]++;

c[i]++;

}

#pragma omp taskwait

Listing 5.3: Code produced for the first dependent block

nanos_dependence_t _dependences [1] = {{

(void **) &ol_args ->b_0 ,

((char *) (b) - (char *) ol_args ->b_0),

{

0,

1,

1

},

sizeof(int [100])

}};

Where we declare the number of dependencies, which in this case is one

nanos dependence t dependences[1]. Then the variable that is dependent

which in this case is the int b[100] and it is declared as (void **) &ol args-

¿ 0 . The sturcture:

0,

1,
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1

declares that there is no input dependence (0), there is one output depen-

dence (1) and if the dependence can be renamed (1), which is not currently

used. Finally we declare which is the size of the valuable which in this case

is declared by the sizeof(int [100])

For the next block of dependencies the code that will be produced will

be quite the same as the one we have already described. For that we will

explain the code that is produced in the final block of dependencies 5.4:

Listing 5.4: Third block of dependencies

#pragma omp for input (b, c) schedule (static)

for (i=0;i<4;i++){

b[i]++;

c[i]++;

}

that produces the code 5.5, which describes in the same way the depen-

dencies with the difference that it integrates in one structure both of them.

After creating the above for all the coarse grain dependencies of the for

loops, the next step is to submit them. After that is the runtime that takes

the initiative.

In this first case with the coarse grain dependencies, there was no need

to change any part of the runtime system, since all the structures needed by

the runtime were already implemented for the task dependencies. [7]

5.2 Fine grain loop dependencies

On the other hand, in the second part of the implementation we have to

change both the Mercurium compiler and the runtime system, in order to

support fine grain loop dependencies.

The first step of the implementation was to create a function that fills the

dependencies instead of the structure that used to be created in the coarse

grain dependencies.
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Listing 5.5: Code produced for the third block of dependencies

nanos_dependence_t _dependences [2] = {

{

(void **) &ol_args ->b_0 ,

((char *) (b) - (char *) ol_args ->b_0),

{

1,

0,

1

},

sizeof(int [100])

},

{

(void **) &ol_args ->c_0 ,

((char *) (c) - (char *) ol_args ->c_0),

{

1,

0,

1

},

sizeof(int [100])

}

};
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If for example we have the same piece of code, this time introducing fine

grain dependencies, code 5.6:

Listing 5.6: Fine Grain Dependencies

int b[100];

int c[100];

#pragma omp for output (b[i]) schedule (static)

for (i=0;i<1;i++){

for(j=0;j <100000000;j++)

b[i]++;

printf("2_thread =%d\n",omp_get_thread_num ());

}

#pragma omp for output (c[i]) schedule (static)

for (i=0;i<2;i++){

printf("3_thread =%d\n",omp_get_thread_num ());

for(j=0;j <100000000;j++)

c[i]++;

}

#pragma omp for input (b[i], c[i]) schedule (static)

for (i=0;i<4;i++){

printf("4_thread =%d\n",omp_get_thread_num ());

}

#pragma omp taskwait

the code that would be produced by the compiler would now have the fol-

lowing functions:

1. for the first block of dependencies the compute dep 0(int i start,

int i end, nx data env 0 t *ol args, nanos dependence t *re-

sult) function that will be created 5.7: which describes the dependen-

cies and is called in the main function of the code.

2. For the second block of dependencies the function compute dep 1(int

i start, int i end, nx data env 1 t *ol args, nanos dependence t

*result) function will be created and it will have the same structure

as the above.
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Listing 5.7: Code generated from the first dependent block

void _compute_dep_0 (....)

{

result [0]. address = (void **) &ol_args ->b_0;

result [0]. flags.input = 0;

/*0 in case of output dependence and

1 in case of input or inout dependence */

result [0]. flags.output = 1;

/*0 in case of input dependence and

1 in case of output or inout dependence */

result [0]. flags.can_rename = 1;/*not used now*/

result [0]. offset = ...

result [0]. size = (i_end - i_start) * sizeof(int);

}

3. Finally, the last function for the last block of dependencies that will be

created, void compute dep 2(int i start, int i end, nx data env 2 t

*ol args, nanos dependence t *result), will have the format of the

code 5.8:

After creating the above functions that fill out the dependencies of the

whole program, and after calling them in the main() function of the produced

code, its the runtime that takes the initiative.

Now we will describe the changes that were made in the runtime system

in order to complete the implementation of the second part. These changes

concern only the static schedule when the chunk is zero, which means that

the runtime decides in how many pieces to separate the iterations of the for

loop.

At first we extended the structure of the slicer in order to add the fields of

the fine grain dependencies and the computation of the dependencies. After

that, we divide the WorkDescriptor that computes the for loop and create

Sliced WorkDescriptors each one of which will describe the work for some

specific iterations.

The struct in code 5.9 is the one that we use to compute the dependencies
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Listing 5.8: Code generated from the second dependent block

void _compute_dep_2 (...)

{

result [0]. address = (void **) &ol_args ->b_0;

result [0]. flags.input = 1;

result [0]. flags.output = 0;

result [0]. flags.can_rename = 1;

result [0]. offset = ...

result [0]. size = (i_end - i_start) * sizeof(int);

result [1]. address = (void **) &ol_args ->c_0;

result [1]. flags.input = 1;

result [1]. flags.output = 0;

result [1]. flags.can_rename = 1;

result [1]. offset = ...

result [1]. size = (i_end - i_start) * sizeof(int);

}

of each loop, that is initialized by other structs that extract the information

from the code that is created by the compiler.

Listing 5.9: Dependencies struct

typedef struct {

int _lower; /**< Loop lower bound */

int _upper; /**< Loop upper bound */

int _step; /**< Loop step */

int _chunk; /**< Slice chunk */

int _sign; /**< Loop sign 1 ascendant , -1 descendant */

int _num_of_dep; /**< the number of dependencies */

nanos_compute_deps_fun_t _compute_deps;

/**< pointer to the function that fills the dependencies */

} nanos_slicer_data_for_internal_t;

The final change took place in the SlicerDataFor(), which is a Nanos++

object that is used in worksharing loops with the static policy. The change

happen to the submit() method which now submits the sliced work descriptor

with its dependencies 5.10.

This happens to every thread that executes the current loop except for
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Listing 5.10: Submit

if ( _numDeps >0){

nanos_dependence_t *deps =( nanos_dependence_t *)

alloca( _numDeps * sizeof (nanos_dependence_t ));

_compute_deps(nli ->lower ,nli ->upper ,nli ,deps);

work.getParent()-> submitWithDependencies (*slice ,_numDeps ,deps);

}

else {...}

the parent thread that finally submits the whole work descriptor again with

the dependencies 5.11:

Listing 5.11: Parent thread submit

work.convertToRegularWD ();

work.tieTo( (*team)[ first_valid_thread] );

nli = ( nanos_loop_info_t * ) work.getData ();

if ( _numDeps >0){

nanos_dependence_t *deps =( nanos_dependence_t *)

alloca( _numDeps * sizeof (nanos_dependence_t ));

_compute_deps(nli ->lower ,nli ->upper ,nli ,deps);

work.getParent()-> submitWithDependencies(work ,_numDeps ,deps);

}

else {...}
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Chapter 6

Evaluation

In order to evaluate the proposal of this thesis we used an artificial bench-

mark, that allow us to test the appropriateness and performance of the ex-

tension.

The benchmark 1 that we used is the following 6.1:

Listing 6.1: Benchmark 1

int main ()

{

int a[1000000] , i, j;

for ( i = N; i > 0 ; i-- ){

a[i] = 0;

for ( j = 0; j < i*100; j++ )

a[i]++;

printf("1.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

}

for ( i = N; i > 0; i-- )

printf("2.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

return 1;

}

In order to see the results of Benchmark 1 we run it in all three cases,

without dependencies, with coarse grain dependencies and with fine grain

dependencies.

67
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We run the three versions using 1, 2, 3, 4, 6, 10, 12, 14, 18, 24 and 48 cores,

in order to see the improvement that cause the versions of the benchmark

with the dependencies. Then we divide the execution time of each one of the

dependent benchmarks with the execution time of the benchmark that does

not have dependencies.

6.0.1 No dependencies

Listing 6.2: Benchmark 1 with without dependencies

int main ()

{

int a[1000000] , i, j;

#pragma omp for schedule(static) private(j)

for ( i = N; i > 0 ; i-- )

{

a[i] = 0;

for ( j = 0; j < i*100; j++ )

a[i]++;

printf("1.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

}

#pragma omp for schedule(static)

for ( i = N; i > 0; i-- )

printf("2.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

#pragma omp taskwait

return 1;

}

6.0.2 Coarse grain dependencies
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Listing 6.3: Benchmark 1 with coarse grain dependencies

int main ()

{

...

#pragma omp for schedule(static) output(a) private(j)

for ( i = N; i > 0 ; i-- ){

a[i] = 0;

for ( j = 0; j < i*100; j++ )

a[i]++;

printf("1.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

}

#pragma omp for schedule(static) input(a)

for ( i = N; i > 0; i-- )

printf("2.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

...

}

6.0.3 Fine grain dependencies

Listing 6.4: Benchmark 1 with fine grain dependencies

int main ()

{

...

#pragma omp for schedule(static) output(a[i]) private(j)

for ( i = N; i > 0 ; i-- ){

a[i] = 0;

for ( j = 0; j < i*100; j++ )

a[i]++;

printf("1.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

}

#pragma omp for schedule(static) input(a[i])

for ( i = N; i > 0; i-- )

printf("2.a[%d]=% dthread =%d\n",i,a[i],omp_get_thread_num ());

...

}
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6.0.4 Numbers and Graphs

nodeps coarsegdeps finegdeps nodeps/cgdeps nodeps/fgdeps
1 0.0088 0.0087 0.0088 1.0054 0.9981
2 0.0074 0.0069 0.0069 1.0737 1.0714
4 0.0079 0.0070 0.0051 1.1312 1.5331
6 0.0069 0.0083 0.0073 0.8308 0.9473
10 0.0153 0.0115 0.0083 1.3303 1.8445
12 0.0201 0.0144 0.0088 1.3939 2.2854
14 0.0438 0.0223 0.0424 1.9601 1.0315
18 0.0435 0.0258 0.0464 1.6845 0.9385
24 0.0429 0.0357 0.0477 1.2028 0.8991
48 0.0375 0.0363 0.0291 1.0332 1.2889

Figure 6.1: Speed up for the first benchmark.
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Conclusions and Future Work

OpenMP enables programmers to use simple constructs in order to paral-

lelize their code. Unfortunately, OpenMP sometimes can be extremely rigid

and not give the programmer the freedom that is needed to improve the ef-

ficiency even more. That is the reason why we have the need to extend it

with more features.

These extensions are implemented as part of an other system called

OmpSs. From all the above analysis, we realize that with the extensions

that are proposed by OmpSs, the programmer can have more choices of ex-

ploiting even more regions. However, there is a long way in order to complete

this idea, as the extensions for this project are related only with a specific

scheduling policy, the static scheduling. This restriction does not give the

programmer all the freedom that he needs, but above all does not let this

idea show its full potential.

In the future there plans to implement the above ideas in all other types

of scheduling, which makes us feel optimistic in bigger improvements and

even better efficiency.
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