
Visual telemetry transmission in marine
environment using Robot Operating System

platform

Barakou Stamatina

Chasapopoulos Konstantinos

Diploma Thesis

School of Naval Architecture and Marine Engineering

National Technical University of Athens

Supervisor: Assistant Professor G. Papalambrou

Committee Member: Professor K. Kyriakopoulos

Committee Member: Associate Professor C. Tzafestas

September 2019

Acknowledgments

This work has been carried out at the Laboratory of Marine Engineering (LME)

at the School of Naval Architecture and Marine Engineering of the National

Technical University of Athens, under the supervision of Assistant Professor

George Papalambrou.

We owe our greatest appreciation to our supervisor Assistant Professor George

Papalambrou for giving us the chance to work on this thesis. In addition to

his constant guidance, valuable comments and fruitful discussions, we have to

thank him for his unceasing encouragement and support through this thesis.

We are also grateful to our family and friends for their constant encouragement

throughout our thesis.

Abstract

The present thesis intends to research on the development of a telemetric com-

munication system application between two distant locations. The purpose of

this application is to secure an underwater area with the help of a floating

base, which is supervised by a land-based control center. The floating base is

unmanned and instead it is equipped with a group of sensors that gather in-

formation regarding its status and the state of the underwater area. Battery

power, geographical location, temperature and pressure levels sensors ensure the

autonomy and safety of the device. Finally, a motion camera which automat-

ically detects human presence is placed on the floating base in order to secure

the underwater area from possible trespass. Sensors’ data is collected and trans-

ferred to the remote control center. With the use of an integrated application,

a qualified operator has access to all the data listed, indicating in what state

the floating base is as well as if there was a human trespass occurrence.

This description summarizes the project’s basic idea. For the actual implemen-

tation, a small simulator was created in the Laboratory of Marine Engineering

at the Technical University of Athens and consists of two machines. One PC

is named Unit point and corresponds to the floating base and the other one is

given the name Base point corresponding to the land-based control center. Each

one of them represents one of the distant points.

3

Contents

Contents 4

1 Introduction 7

1.1 Problem Description . 7

1.2 Literature Review . 9

1.3 Thesis Structure . 10

1.4 Contributions . 11

2 Background 13

2.1 Robot Operating System . 13

2.1.1 History . 14

2.1.2 Why Use ROS . 15

2.1.3 Applications Using ROS 16

2.1.4 ROS Terminology . 17

2.1.5 Message Communication 22

2.1.6 ROS communication models differences 25

2.1.7 Analyze Message Communication Flow 26

2.1.8 Messages . 31

2.1.9 ROS Tools . 34

2.2 SSH Definition . 41

4

CONTENTS 5

2.2.1 Set up ssh keys . 41

2.2.2 How it works . 42

2.3 Database . 43

2.3.1 Evolution of Databases 44

2.3.2 SQL Definition . 46

2.4 OpenCv . 49

2.4.1 OpenCv Definition . 50

2.4.2 Computer Vision . 50

2.4.3 Haar-Cascade Detection in OpenCv 53

2.4.4 YOLO . 55

2.4.5 OpenCv in ROS . 59

2.5 Hypertext Markup Language - HTML 59

2.5.1 HTML Definition . 59

2.5.2 How HTML works . 60

3 Implementation 68

3.1 ROS . 68

3.1.1 ROS Communication models 68

3.1.2 UnitCall Service . 70

3.1.3 BaseCall Service . 73

3.1.4 ROS Master . 73

3.1.5 Network Setup in ROS . 74

3.1.6 OpenCV . 75

3.1.7 Sql . 80

3.1.8 Html . 82

3.2 Application Description . 86

3.2.1 UnitCall Development . 88

CONTENTS 6

3.2.2 BaseCall Development . 93

4 Results 98

4.0.1 Application prerequisites 98

4.0.2 Application Startup . 99

5 Conclusions and Future Work 105

5.0.1 Conclusions . 105

5.0.2 Future Work . 106

Chapter 1

Introduction

1.1 Problem Description

This work is part of a feasibility study carried out at the School of Naval Ar-

chitecture and Marine Engineering/NTUA with main objective to investigate

the capability of telemetry transmission between two distant locations in sea

environment. In an abstract formulation, the problem at hand is to set up

suitable software and hardware components so as to survey an underwater area

(local station) and transmit various kinds of information in the form of “mes-

sages” to a distant control center (remote station). The local station has to

be unmanned and equipped with a group of sensors that gather information

regarding the state of the underwater area. In addition, choices for entities like

suitable battery power, geographical location and communications must ensure

the autonomy and safety of the station. The main feedback comes from an cam-

era imaging system which allows a post-processing application to automatically

detect presence of objects of any kind (ie divers, ROVs, fishing vessels etc). The

chosen platform for the construction and handling of messages is the Robot

Operating System (ROS) framework, well established in the academic as well

as in the industrial environment. In addition, other mechanisms were set up

and co-operated with ROS: a basic image processing application that processes

video and pictures that come from the camera sensor initiating the messaging

generation process, in the local station side, as well as a data base application

7

1.1 Problem Description 8

that has to collect and store the various types of messages that are received,

together with a display environment for monitoring the whole remote operation

by a human operator; both in the remote station side. Figure 1.1 shows the

essential components of the complete application.

Figure 1.1: A National Technical University of Athens project, which aims to

construct a floating surveillance system

As for the contents of this Thesis, a minimal simulator 1.2 was set up at the Lab-

oratory of Marine Engineering/NTUA, consisting of two “computing nodes”:

one laptop named Unit point which corresponds to the local station at sea, and

a second laptop, given the name Base point, corresponding to the land-based

control center. In between an Ethernet network was set up so as to simulate the

link between the two nodes, with varying traffic and connectivity performance.

Both computers run Linux operating system.

1.2 Literature Review 9

Figure 1.2: Simulator consisted of two machines connected via ethernet cable

1.2 Literature Review

The Robot Operating System (ROS) is a framework and set of tools that provide

functionality of an operating system on a heterogeneous computer cluster.ROS

applications have been implemented since 2007. ROS provides functionality for

hardware abstraction, device drivers, communication between processes over

multiple machines, tools for testing and visualization, and much more. Its

usefulness is not limited to robots, but the majority of tools provided are focused

on working with peripheral hardware.

Many systems are using ROS communication not only for navigation and tra-

jectory planning but also for telemetry and monitoring. Specifically, in [11], eye

tracking technology is used for telemetry robot control. The telemetry system

consists of a graphical user interface with reconfigurable multiple widgets whose

transmission is prioritised based on the user’s gaze. The proposed approach en-

compasses a novel framework for telemetry of remote machines, based on ROS.

It includes a modular ensemble of GUI, gaze device interoperability, and a ROS

sensory topic modulator, which alternates different strategies to optimise all

1.3 Thesis Structure 10

displayed information transmission quality.

In [12], a multi-agent structure based in ROS is implemented for autonomous

surface vehicles. This work describes a multi-agent navigation guidance and

control system that is designed to equipping an autonomous surface vehicle. In

the developed of the project, a small autonomous surface vehicle is conceived

to perform as component of an integrated platform, together with a micro re-

motely operated vehicle. The autonomous surface vehicle is able to recover the

remotely operated vehicle, through a radio link, from a shore-ground station.

The platform can be employed for exploration, monitoring and light intervention

purposes in the underwater environment, allowing telepresence and direct guid-

ance of the operator on the spot of interest without the costs of manned supply

vessels. The autonomous surface vehicle contains sensors to acquire and publish,

within the agency, position, attitude, axial rotational speeds and accelerations

of the vehicle obtained by GPS and IMU. A surveillance camera acquires and

streams video and manages tilt and focus according to external requests. Ad-

ditionally, a logger is contained in order to save in a common file format all the

data generated and exchanged by the agents. ROS helps to monitor the status

of the infrastructure and to alert about the system’s failures.

In [13], a ROS based stereo vision system is constructed for autonomous vehi-

cle. The design contains an autonomous vehicle which is powered by ROS. The

vehicle is capable of maintaining a constant speed and distance for monitoring

or surveillance. ROS is implemented for trajectory tracking and telemetry. The

vehicle is powered by a compact embedded system. Various image processing

techniques are been implemented for navigation and obstacle detection. Artifi-

cial Neural Network is used for finding the shortest path by acquiring data from

image processing.

1.3 Thesis Structure

In the following chapters there will be a thorough analysis of the tools that

were used for the implementation of the application and an etiology of how

their combination made the application operational.

This thesis combines different research fields in order to conduct an integrated

1.4 Contributions 11

application. Chapter 2 presents the essential components and concepts of

ROS, as well as core parts of the application. Core parts include OpenCv that

was used for image processing, Secure Shell (SSH) for the machines’ safe con-

nection, Structured Query Language (SQL) for data storing and HyperText

Markup Language (HTML) for the application platform. Chapter 3 describes

the project’s implementation. This includes the basic ROS communication de-

sign and its integration with the core parts. Chapter 4 presents the results

after running the integrated application on the small simulator that was cre-

ated. Chapter 5 presents the conclusions depending on the basic idea project

and the result from the simulation. Also, some thoughts for future work are

proposed as well.

1.4 Contributions

Barakou Stamatina and Chasapopoulos Konstantinos contributed to the devel-

opment of the project and the final version of the writing. The floating base

(Unit point) was undertaken by Stamatina and the land-based control center

(Base point) was undertaken by Konstantinos. Both authors implemented the

communication between Unit and Base. More specifically,

Stamatina Barakou:

• established the SSH Unit-Base connection on the Unit side

• implemented the client side communication using ROS software

• developed a face recognition system using OpenCv that simulates human

detection

• designed a message management system where messages are sent auto-

matically to Base

Konstantinos Chasapopoulos:

• established the SSH Unit-Base connection on the Base side

• implemented the server side communication using ROS software

1.4 Contributions 12

• managed message extraction, classification and database storage

• designed the application platform

Chapter 2

Background

2.1 Robot Operating System

Nowadays, the power of Internet has given people great opportunities to expand

their knowledge even if they are researchers and developers trying to open new

scientific fields or even if they are students and their journey of knowledge just

began.

Figure 2.1: Robot Operating System is an open source tool to control complex

robotic systems [1]

ROS describes such a theory. Everybody can learn from scratch the world

of robotics and not only that. They can all together contribute as a united

community to enhance it with their knowledge and spread their ideas to make

it better 2.1.

13

2.1 Robot Operating System 14

Robot Operating System is an open source tool to control complex robotic sys-

tems. Within its flexible framework it provides services that aim to simplify the

task of creating robust, general-purpose robot software. It also provides hard-

ware abstraction, package management, libraries and message-passing processes

to accomplish fast, integrated solutions.

ROS packages are containing application-related code which uses libraries such

as C++, Python, Lisp and running on Unix-based platforms. Other important

libraries to integrate with ROS are Gazebo for simulation and OpenCv for image

recognition. The latter will be described thoroughly in the next chapter.

ROS is especially known for its collaborative behavior between developers, re-

searchers and laboratories across the world. Everyone can use and built upon

each others work and then distribute to the ecosystem. This effort is supported

by ROS packages system and its containing files dependencies but also with

Stacks and Repositories 2.2.

Figure 2.2: Plumbing: ROS provides publish-subscribe messaging infrastruc-

ture. Tools: ROS provides an extensive set of tools for configuring, debugging,

visualizing, logging etc. Capabilities: ROS provides a broad collection of li-

braries. Ecosystem: ROS is supported and improved by a large community,

thousands of ROS packages [1]

.

2.1.1 History

ROS, Robot Operating System, was first developed in 2007 by Stanford Uni-

versity [1]. ROS had many ancestors and contributors but the first vision of

an open source robotics platform was provided by Willow Garage. Later, re-

searchers and developers contributed to extend this concept between the basic

2.1 Robot Operating System 15

ROS idea and the determinant software packages. Over the years, the contrib-

utors placed their code in the same server, making public their repository and

that is how the ROS ecosystem was gradually built.

2.1.2 Why Use ROS

There are many software platforms for robotic projects, the most active are

listed below.

• MSRDS Microsoft Robotics Developer Studio, Microsoft - U.S.

• ERSP Evolution Robotics Software Platform, Evolution Robotics - Europe

• OpenRTM National Institute of Adv. Industrial Science and Technology

(AIST) - Japan

• OROCOS Europe

• OPRoS ETRI, KIST, KITECH, Kangwon National University - South

Korea

• NAOqiOS SoftBank and Aldebaran - Japan and France

Each one of them provides unique and convenient functions such as component

extension, communication feature, visualization, simulator, real-time and much

more. However, much like the current operating systems of personal computers,

the robot software platforms that are selected by users will become more popular

while others are diminishing. Over the years, ROS development attracts more

and more developers and researchers. This section describes why somebody

should use ROS specifically [2] [3].

• ROS has a wide variety of packages due to ROS distributed ecosystem.

With these packages could be achieved software reuse. Packages include

algorithms, applications and hardware, from computing trajectory for mo-

bile robot to control a drone from joystick.

• ROS makes system robust. This means that if one robot’s motor crashes,

the robot will not stop doing other tasks. This happens due to ROS mes-

sage system. If one thing crashes due to internal or external disturbance,

the system will not crash too.

2.1 Robot Operating System 16

• ROS has efficient communication. Different components and subsystems

might be running at a ROS project and probably they might be written

at different language (C++ or Python). This is achieved by ROS message

passing.

• ROS is open-source. ROS packages are open source which means that

anyone can use them, modify them or add new functionalities without a

fee. Also, ROS can integrate with other open source programs, such as

gazebo and OpenCv for simulation and image processing respectively.

• ROS supports real time processes and concurrency in robot projects.

• ROS is light. ROS do not need a lot of space in computer’s memory and

resources.

• ROS is flexible and adaptable to any environment. Robots communication

is achieved by message passing between nodes. These nodes run indepen-

dently and separate from each other which makes robot development more

easier. For example, a robot’s sensor node sends data as messages to be

consumed by any other node. Furthermore, nodes in ROS can be on mul-

tiple computers and different architecture. For example, nodes can run

either in Raspberry Pi , Arduino or even smartphones.

• ROS has a big community. Researchers and developers from all around

the world contribute with new packages or upgrade the existing ones.

• Any large robotics system should support multi-threading processing with

multiple robots. This is achieved by ROS message system which simplifies

these processes.

2.1.3 Applications Using ROS

ROS was first released in 2007. Since then a lot of different types of robots

were developed such as humanoid, mobile, manipulators, drones, underwater

vehicles. This gives the opportunity to somebody use this platform to upgrade

the existing software without starting from the beginning which could be time

consuming. The following examples located in http://www.ros.org/wiki/Robots

include this variety [1].

2.1 Robot Operating System 17

Roomba

Roomba is an autonomous vacuum cleaner that was introduced and developed

in 2002 by iRobot. Roomba includes sensors such as cliff and dirt sensor to

detect dust and avoid obstacles and actuators such as brush, vacuum and wheel

motors that helps it navigate through space. Roomba uses node drivers to

describe its functionalities such as velocity, odometry and other features from

ROS libraries.

Erle-Copter

Erle-copter is a Linux-based quadcopter powered by Erle-brain Linux autopilot.

It is a flying kit designed for outdoor operations and it is easily customizable

for users to be able to add different components or include modules (camera,

gps, anti-vibration system etc). Its flight software communicates with ROS to

achieve different flight modes.

NXT-Lego

NXT is a modular robotics kit manufactured by Lego. The main component

of the kit is a brick-shaped computer, called the NXT Intelligent Brick, that

can take input from sensors and control actuators through a number of mi-

crocontrolers. Lego NXT is compatible with ROS providing the ability to run

applications such as keyboard/joystick teleoperation, wheel odometry, etc. The

bridge between NXT and ROS creates a ROS topic for each motor and sensor of

the NXT robot. Users can create their own programs or download the desired

software. The NXT-ROS software stack supports several NXT models for users

to get familiar with NXT and ROS.

2.1.4 ROS Terminology

In order to develop a project related to ROS, it is necessary to understand

the essential components and concepts of ROS. This section will introduce the

terminology used in ROS and the important concepts of ROS [5].

ROS

ROS provides standard operating system services such as hardware abstraction,

device drivers, implementation of commonly used features including sensing, rec-

ognizing, mapping, motion planning, message passing between processes, pack-

2.1 Robot Operating System 18

age management, visualizers and libraries for development as well as debugging

tools.

Master

The master acts as a name server for node-to-node connections and message

communication. The command roscore is used to run the master.If master has

run, it is possible to register the name of each node and get information when

needed. The connection between nodes and message communication such as

topics and services are impossible without the master.

The master communicates with slaves using XMLRPC (XML-Remote Proce-

dure Call), which is an HTTP-based protocol that does not maintain connectiv-

ity. In other words, the slave nodes can access only when they need to register

their own information or request information of other nodes. The connection

status of each other is not checked regularly. Due to this feature, ROS can be

used in very large and complex environments. When ROS is executed, the mas-

ter will be configured with the URI address (a unique address that represents

a resource on the Internet) and port configured in the ROS MASTER URI. By

default, the URI address uses the IP address of local PC, and port number

11311.

Node

A node refers to the smallest unit of processor running in ROS. It is like an

executable program. According to ROS, it is better creating one single node for

each purpose. For example, in case of mobile robots, the program to operate

the robot is broken down into specialized functions. Specialized node is used for

each function such as sensor drive, sensor data conversion, obstacle recognition,

motor drive, encoder input, and navigation.

Upon startup, a node registers information such as name, message type, URI

address and port number of the node. The registered node can act as a publisher,

subscriber, service server or service client based on the registered information,

and nodes can exchange messages using topics and services.

The node uses XMLRPC for communicating with the master and uses XMLRPC

or TCPROS of the TCP/IP protocols when communicating between nodes.

Connection request and response between nodes use XMLRPC, and message

communication uses TCPROS because it is a direct communication between

2.1 Robot Operating System 19

nodes independent from the master. As for the URI address and port number,

a variable called ROS HOSTNAME, which is stored on the computer where the

node is running, is used as the URI address, and the port is set to an arbitrary

unique value.

Package

A package is the basic unit of ROS. The ROS application is developed on a

package basis, and the package contains either a configuration file to launch

other packages or nodes. The package also contains all the files necessary for

running the package, including ROS dependency libraries for running various

processes, datasets, and configuration file.

Metapackage

A metapackage is a set of packages that have a common purpose. For example,

the Navigation metapackage consists of 10 packages including AMCL, DWA,

EKF, and map server.

Message

A node sends or receives data between nodes via a message. Messages are

variables such as integer, floating point, and boolean. A message can contain

other messages. TCPROS and UDPROS communication protocol is used for

message delivery. Topic is used in unidirectional message delivery while service

is used in bidirectional message delivery that request and response are involved.

Topic

The topic is literally like a topic in a conversation. The publisher node first

registers its topic with the master and then starts publishing messages on a

topic. Subscriber nodes that want to receive the topic request information of

the publisher node corresponding to the name of the topic registered in the

master. Based on this information, the subscriber node directly connects to the

publisher node to exchange messages as a topic.

Publish and Publisher

The term ‘publish’ stands for the action of transmitting relative messages cor-

responding to the topic. The publisher node registers its own information and

topic with the master, and sends a message to connected subscriber nodes that

are interested in the same topic. The publisher is declared in the node and can

2.1 Robot Operating System 20

be declared multiple times in one node.

Subscribe and Subscriber

The term ‘subscribe’ stands for the action of receiving relative messages corre-

sponding to the topic. The subscriber node registers its own information and

topic with the master, and receives publisher information that publishes relative

topic from the master. Based on received publisher information, the subscriber

node directly requests connection to the publisher node and receives messages

from the connected publisher node. A subscriber is declared in the node and

can be declared multiple times in one node.

The topic communication is an asynchronous communication which is based on

publisher and subscriber, and it is useful to transfer certain data. Since the

topic continuously transmits and receives stream of messages once connected,

it is often used for sensors that must periodically transmit data. On the other

hands, there is a need for synchronous communication with which request and

response are used. Therefore, ROS provides a message synchronization method

called ‘service’. A service consists of the service server that responds to requests

and the service client that requests to respond. Unlike the topic, the service

is a one-time message communication. When the request and response of the

service is completed, the connection between two nodes is disconnected.

Service

The service is synchronous bidirectional communication between the service

client that requests a service regarding a particular task and the service server

that is responsible for responding to requests.

Service Server

The ‘service server’ is a server in the service message communication that re-

ceives a request as an input and transmits a response as an output. Both request

and response are in the form of messages. Upon the service request, the server

performs the designated service and delivers the result to the service client as

a response. The service server is implemented in the node that receives and

executes a given request.

Service Client

The ‘service client’ is a client in the service message communication that requests

2.1 Robot Operating System 21

service to the server and receives a response as an input. Both request and

response are in the form of message. The client sends a request to the service

server and receives the response. The service client is implemented in the node

which requests specified command and receives results.

Action

The action is another message communication method used for an asynchronous

bidirectional communication. Action is used where it takes longer time to re-

spond after receiving a request and intermediate responses are required until the

result is returned. The structure of action file is also similar to that of service.

However, feedback data section for intermediate response is added along with

goal and result data section which are represented as request and response in

service respectively. There are action client that sets the goal of the action and

action server that performs the action specified by the goal and returns feedback

and result to the action client.

Action Server

The ‘action server’ is in charge of receiving goal from the client and responding

with feedback and result. Once the server receives goal from the client, it

performs predefined process.

Action Client

The ‘action client’ is in charge of transmitting the goal to the server and receives

result or feedback data as inputs from the action server. The client delivers the

goal to the action server, then receives corresponding result or feedback, and

transmits follow up instructions or cancel instruction.

Parameter

The parameter in ROS refers to parameters used in the node.Default values are

set in the parameter and can be read or written if necessary. In particular, it is

very useful when configured values can be modified in real-time. For example,

settings such as USB port number, camera calibration parameters, maximum

and minimum values of the motor speed could be specified.

Parameter Server

When parameters are called in the package, they are registered with the param-

eter server which is loaded in the master.

2.1 Robot Operating System 22

Catkin

The catkin refers to the build system of ROS. The build system basically uses

CMake (Cross Platform Make), and the build environment is described in the

‘CMakeLists.txt’ file in the package folder.The Catkin build system makes it

easy to use ROS-related builds, package management, and dependencies among

packages.

rosrun

rosrun is the basic execution command of ROS. It is used to run a single node in

the package.The node uses the ROS HOSTNAME environment variable stored

in the computer on which the node is running as the URI address, and the port

is set to an arbitrary unique value.

roslaunch

While rosrun is a command to execute a single node, roslaunch in contrast exe-

cutes multiple nodes. It is a ROS command specialized in node execution with

additional functions such as changing package parameters or node names, con-

figuring namespace of nodes, setting ROS ROOT and ROS PACKAGE PATH,

and changing environment variables when executing nodes.roslaunch uses the

‘*.launch’ file to define which nodes to be executed. The file is based on XML

(Extensible Markup Language) and offers a variety of options in the form of

XML tags.

CMakeLists.txt

Catkin, which is the build system of ROS, uses CMake by default. The build

environment is specified in the ‘CMakeLists.txt’ file in each package folder.

package.xml

An XML file contains package information that describes the package name,

author, license, and dependent packages.

2.1.5 Message Communication

In the section above was given an introduction to ROS but not an explanation

in detail of how ROS works. In this section, ROS core functions and concepts

will be described, as well as detailed description of each terms [5].

2.1 Robot Operating System 23

As described, ROS is developed in unit of nodes. [10] The node exchanges data

with other nodes through messages forming a large program as a whole. The

key concept here is the message communication methods among nodes. There

are three different methods of exchanging messages: topics, services and actions.

Topics

Communication on topic uses the same type of message for both publisher and

subscriber. The subscriber node receives the information of publisher node

corresponding to the identical topic name registered in the master. Based on

this information, the subscriber node directly connects to the publisher node to

receive messages.

As topics are unidirectional and remain connected to continuously send or re-

ceive messages, it is suitable for sensor data that requires publishing messages

periodically. In addition, one or more subscribers can receive message from one

or more publishers.

For example, a robot’s camera is to take images for displaying them on laptop

screen. For that concept three nodes are necessary, one to contact with camera,

one with image processing unit on the robot and one for displaying on laptop

screen.

All those nodes are registering to ROS master so they communicate with each

other. The camera node subscribes to a specific topic and the other two are

publishing on the same as well. This topic serves like storage. So, when the

camera node receives data it sends them through ROS messages to the topic

above and the other two nodes can get them directly.

Services

Communication on service is a bidirectional synchronous communication be-

tween the service client requesting a service and the service server responding

to the request. The aforementioned ‘publish’ and ‘subscribe’ of the topic is

an asynchronous method which is advantageous on periodical data transmis-

sion. On the other hand, there is a need for synchronous communication which

uses request and response. Accordingly, ROS provides a synchronized message

2.1 Robot Operating System 24

communication method called ‘service’.

A service consists of a service server that responds only when there is a request

and a service client that can send requests as well as receiving responses. Unlike

the topic, the service is one-time message communication. Therefore, when the

request and response of the service are completed, the connection between two

nodes will be disconnected. A service is often used to command a robot to

perform a specific action or nodes to perform certain events with a specific

condition. Service does not maintain the connection, so it is useful to reduce

the load of the network by replacing topic. For example, if the client requests

the server for the current time, the server will check the time and respond to

the client, and the connection is terminated.

In the robot’s camera concept, the Image Processing Node is not able to request

data from the Camera Node. This can be achieved using ROS services. When

the Image Processing Node sends a request, the Camera Node gathers data from

Camera and then sends the reply.

Actions

Communication on action is used when a requested goal takes a long time to

be completed, therefore progress feedback is necessary. This is very similar to

the service where ‘goals’ and ‘results’ correspond to ‘requests’ and ‘responses’

respectively. In addition, the ‘feedback’ is added to report feedbacks to the client

periodically when intermediate values are needed. The message transmission

method is the same as the asynchronous topic. The feedback transmits an

asynchronous bidirectional message between the action client which sets the

goal of the action and an action server that performs the action and sends the

feedback to the action client. Unlike the service, the action is often used to

command complex robot tasks such as canceling transmitted goal while the

operation is in progress.

A relative example to describe this process could be the control of a tilting laser

scanner by an operator. The operator (action client) sends a goal to scanner

(action server), to scan an object. This goal includes a signal to begin the

process as well as the necessary scan parameters like min-max angle, speed,

etc. As long as the operation takes place, the operator gets feedback of the

2.1 Robot Operating System 25

progress that could be the time left until the scan completes. When the scan

is completed, a result is sent to the operator that may contain a point cloud

generated by the scanner, the total time that scanner needed to complete the

operation, etc.

The publisher, the subscriber, the service server, the service client, the action

server, and the action client can be implemented in separate nodes. In order

to exchange messages among these nodes, the connection has to be established

first with the help of a master. A master acts like a name server as it keeps

names of nodes, topics, services and action as well as the URI address, port

number and parameters. In other words, nodes register their own information

with the master upon launch, and acquire relative information of other nodes

from the master. Then, each node directly connects to each other to perform

message communication.

2.1.6 ROS communication models differences

Topics, services and actions can all concurrently run on the same robot project

but somebody has to choose which one serves a specific task in a better way.

Topics:

• They are receiving continuous data

• They present a many to many connection. One or more publishers/sub-

scribers can connect to a single topic

• They are asynchronous. Data subscribing/publishing may be at any time

independent from senders/receivers. Furthermore a particular publisher

can not send to a particular subscriber

• They support one way transport. Only publisher decides when data is

going to be send.Subscriber can not send a reply

Services:

• They are used for remote procedure calls that terminate quickly. Services

block procedure as well as preempting a service may cause problems, so

they are not appropriate for long running processes

2.1 Robot Operating System 26

• They are synchronous

• They present a one to one connection. Services support only one client

and one subscriber

• They support bi-directional communication

Actions:

• They are complex procedures for long tasks as they do not block operation

and they can be preempted

• They give feedback during task execution

2.1.7 Analyze Message Communication Flow

The most important communication sequence of the master, nodes, topics, ser-

vices, and action message is presented below [5].

Running the nodes

A master that manages connection information in a message communication

between nodes is an essential element that must be run first in order to use

ROS 2.3. The ROS master is run by using the ‘roscore’ command and runs the

server with XMLRPC. The master registers the name of nodes, topics, services,

action, message types, URI addresses and ports for node-to-node connections,

and relays the information to other nodes upon request.

roscore

2.1 Robot Operating System 27

Figure 2.3: Master must be run first in order to use ROS.

Running the Publisher and Subscriber

Publisher and Subscriber nodes are launched with either a ‘rosrun’ or ‘roslaunch’

commands. The nodes register their node name, topic name, message type, URI

address, and port with the master as it runs. The master and node communicate

using XMLRPC 2.4.

$ rosrun PACKAGE_NAME NODE_NAME

$ roslaunch PACKAGE_NAME LAUNCH_NAME

2.1 Robot Operating System 28

Figure 2.4: Running Publisher/Subscriber

The master distributes the publisher’s information to subscribers that want

to connect to the publisher node. The master and node communicate using

XMLRPC 2.5.

Figure 2.5: Providing publish information

2.1 Robot Operating System 29

Connection Request/Response from the Subscriber/Publisher Node

The subscriber node requests a direct connection to the publisher node based

on the publisher information received from the master. During the request

procedure, the subscriber node transmits information to the publisher node

such as the subscriber node’s name, the topic name, and the message type. The

publisher node and the subscriber node communicate using XMLRPC.

The publisher node sends the URI address and port number of its TCP server

in response to the connection request from the subscriber node. The publisher

node and the subscriber node communicate using XMLRPC.

The subscriber node creates a client for the publisher node using TCPROS,

and connects to the publisher node. At this point, the communication between

nodes uses TCP/IP based protocol called TCPROS 2.6.

Figure 2.6: Connection Request/Response from the Subscriber/Publisher Node

Message Transmission

The publisher node transmits a predefined message to the subscriber node. The

communication between nodes uses TCPROS 2.7.

2.1 Robot Operating System 30

Figure 2.7: Message transmission between nodes

Service Request/Response Connection

The procedures discussed above correspond to the communication on ‘topic’.

Topic communication publishes and subscribes messages continuously, unless

the publisher or subscriber is terminated. There are two types of services.

-Service Client: Request service and receive response

-Service Server: Receive a service, execute the specified task, and return a

response

The connection between the service server and the client is the same as the

TCPROS connection for the publisher and subscriber described above. Unlike

the topic, the service terminates connection after successful request and response

2.8. If additional request is necessary, the connection procedure must be carried

out again.

Figure 2.8: Service Connection-Request/Response model

Action Connection

2.1 Robot Operating System 31

Action may look similar to the request and the response of the service with an

additional feedback message in order to provide intermediate result between the

request (goal) and the response(result), but in practice it is rather more like a

topic 2.9. The connection between the action server and the client is similar to

the TCPROS connection of the publisher and subscriber.

Figure 2.9: Action Connection-Similar to request/response but with additional

feedback

2.1.8 Messages

A message is a bundle of data used to exchange data between nodes. The

topics, services, and actions are using messages to communicate. A message

can include basic data types such as integer, floating point, Boolean as well as

message arrays. Moreover, a message can contain other messages. Also, the

header ‘std msgs/Header’ which is commonly used in ROS can be included in

the message. These messages can be described as field types and field names as

shown below.

fieldtype1 fieldname1

fieldtype2 fieldname2

fieldtype3 fieldname3

int32 x

int32 y

The topics, services, and actions described in the previous section, use messages.

2.1 Robot Operating System 32

Although they are similar in the form and the concept, they are divided into

three types according to their usage.

msg File

The ‘msg’ file is the message file used by topics, which has the file extension of

‘*.msg’. Such msg file consists of field types and field names. A simple example

follows the structure of a ’string’ message in the ’msg’ file which is described

below. In this case, a simple type string is used for publishing.

msg/String.msg

string

There are also more complicated message structures with nested messages. For

example, in the case of the ‘teleop turtle key’ node of the turtlesim package from

the turtlesim example, which can be found on www.rosorg.com, the translational

speed (meter/sec) and rotational speed (radian/sec) is sent as a message to the

turtlesim node according to the directional keys (←, →, ↑, ↓) entered from the

keyboard. The TurtleBot moves on the screen using the received speed values.

The message used at this time is the ‘twist’ message in ‘geometry msgs’.

geometry_msgs/Twist.msg

Vector3 linear

Vector3 angular

In the message structure below, ‘linear’ and ‘angular’ values are declared as a

Vector3 type. This is the similar form to the nested message as the Vector3

is a message type in the ‘geometry msgs’. The Vector3 contains the following

data.[5]

float64 x float64 y float64 z

In other words, six topics published from the ‘teleop turtle key’ node are lin-

ear.x, linear.y, linear.z, angular.x, angular.y, and angular.z. All of these are

float64 type. With these data, arrow keys of the keyboard can be converted

2.1 Robot Operating System 33

to the translational speed (meter/sec) and the rotational speed (radian/sec)

message, so that the TurtleBot could be controlled.

srv File

The ‘srv’ file is the message file used by services, with the file extension of

‘*.srv’. For example, the ’AddTwoInts’ message in the ‘srv’, like in the the

message structure below, describes a typical srv file. The major difference from

the msg file is that the series of three hyphens (—) serve as a delimiter; the

upper message being the service request message and the lower message being

the service response message. In the example, ’A’ and ’B’ are the requested

integers and Sum is the number that comes from summarize these integers, as

response.

srv/AddTwoInts.srv

int64 A

int64 B

int64 Sum

action File

The action message file is the message file used by actions, with the file extension

of ‘*.action’. Unlike msg and srv, it is relatively uncommon message file, so there

is no typical example of the message file, but can be used as shown in following

example. The major difference from the msg and srv files is that the series of

three hyphens (—) are used in two places as delimiters, the first being the goal

message, the second being the result message, and the third being the feedback

message. The biggest difference of the action file is the feedback message feature.

The goal message and the result message of the action file can be compared to

the request and the response message of the srv file mentioned above, but the

additional feedback message of the action file is used to send feedback while the

designated process is being performed. As describe in the following example,

when the starting position of ‘start pose’ and the goal position of ‘goal pose’ of

the robot are transmitted as request values, the robot moves to the received goal

2.1 Robot Operating System 34

position and returns the ‘result pose’. While the robot is moving to the goal

position, the ‘percent complete’ message periodically transmits feedback values

showing the progress in the form of the percentage of the goal point reached.

geometry_msgs/PoseStamped start_pose

geometry_msgs/PoseStamped goal_pose

geometry_msgs/PoseStamped result_pose

float32 percent_complete

2.1.9 ROS Tools

3D Visualization Tool (RViz)

RViz is the 3D visualization tool of ROS 2.10. The main purpose is to show

ROS messages in 3D, allowing us to visually verify data. For example, it can

visualize the distance from the sensor of a Laser Distance Sensor (LDS) to an

obstacle, the Point Cloud Data (PCD) of the 3D distance sensor, the image

value obtained from a camera, and many more without having to separately

develop the software.

Figure 2.10: Rviz is the 3D visualization tool of ROS [5].

It also supports various visualization using user specified polygons, and Interac-

tive Markers allowing users to perform interactive movements with commands

2.1 Robot Operating System 35

and data received from the user node. In addition, ROS describes robots in Uni-

fied Robot Description Format (URDF), which is expressed as a 3D model for

which each model can be moved or operated according to their corresponding

degree of freedom, so they can be used for simulation or control. The mobile

robot model can be displayed, and received distance data from the Laser Dis-

tance Sensor (LDS) can be used for navigation 2.11, 2.12. RViz can also display

the image from the camera mounted on the robot. In addition to this,it can

receive data from various sensors such as Kinect, LDS, RealSense and visualize

them in 3D.

Figure 2.11: View from Laser Distance Sensor[5]

2.1 Robot Operating System 36

Figure 2.12: Navigation using LDS Sensor[5]

RViz Displays

Dispaly menu is the most frequently used menu to select the message for 3D

display 2.13.

2.1 Robot Operating System 37

Figure 2.13: Rviz Displays Panel [5]

2.1 Robot Operating System 38

ROS GUI Development Tool (rqt)

The rqt tool that is a part of ROS allows graphical representations of ROS

nodes, topics, messages, and other information. The ROS wiki lists many of the

possible tools that are added to the rqt screen as plugins such as ‘rqt’ plugins

‘rqt image view’, ‘rqt graph’, ‘rqt plot’ and ‘rqt bag’.

rqt image view

This is a plugin to display the image data of a camera 2.14. Although it is not

an image processing process, it is still quite useful for simply checking an image.

Figure 2.14: Example of rqt image view displaying camera data [5]

2.1 Robot Operating System 39

rqt graph

The ‘rqt graph’ is a tool that shows the correlation among active nodes and

messages being transmitted on the ROS network as a diagram. This is very

useful for understanding the current structure of the ROS network.

rqt plot

The ‘rqt plot’ is a tool for plotting 2D data 2.15. Plot tool receives ROS mes-

sages and displays them on the 2D coordinates.

Figure 2.15: Example of rqt plot converting ROS messages into coordinates [5]

rqt bag

The ‘rqt bag’ is a GUI tool for visualizing a message. It has visualization func-

tion added which allows us to see the image of the camera right away, making

it very useful for managing image data messages.

rqt console

The ’rqt console’ is a viewer in the rqt package that displays messages being

published to rosout 2.16. It collects messages over time, and lets users view

them in more detail, as well as allowing them to filter messages by various

means.

2.1 Robot Operating System 40

Figure 2.16: Example of rqt console displaying various messages [5]

ROS public packages

As mentioned above, ROS provides packages which are developed and released

by users, ready to be re-used. There are packages for every ROS version and

they are located in [1]. In this project were used two of these packages related

to camera.

cv camera

Cv camera is a ROS camera driver which uses OpenCV capture object to cap-

ture images from camera and publish them in topic /cv camera/image raw.

$ rosrun cv_camera cv_camera_node

image saver

Image saver is a tool from plugin image view that allows users to save images

as jpg/png file from streaming topic. Image saver subscribes to the streaming

topic e.g. /cv camera/image raw and when rosservice call /image saver/save is

called image saver grabs a picture from camera.

2.2 SSH Definition 41

$ rosrun image_view image_saver image:=/cv_camera/image_raw

2.2 SSH Definition

Secure Socket Shell or SSH is a network protocol that provides administrators

with a secure way to access a remote computer 2.17. Ssh connection starts a

client program that enables secure connection to a server on a remote machine.

This method provides an encrypted connection between two hosts over an inse-

cure network.After setting up this connection it is possible to execute commands

or transfer files on the remote server [14].

Figure 2.17: SSH is a network protocol that provides administrators with a

secure way to access a remote computer [18].

2.2.1 Set up ssh keys

In order to be able to start a secure SSH connection between two machines, the

following configuration is required [16].

• Create a key pair, private and public

$ ssh-keygen -t rsa

• Store them in a local machine’s file location

2.2 SSH Definition 42

• Enter a pathphrase (optionally). The user decides if he wants more secu-

rity in his connection if private key falls in unauthorized possession

• Copy public key in new machine’s authorized keys file with the following

command.

$ ssh-copy-id

2.2.2 How it works

The SSH protocol employs a client-server model to authenticate two parties and

encrypt the data between them [17].

The server component listens on a designated port for connections. It is respon-

sible for negotiating the secure connection, authenticating the connecting party,

and spawning the correct environment if the credentials are accepted.

The client is responsible for beginning the initial TCP handshake with the server,

negotiating the secure connection, verifying that the server’s identity matches

previously recorded information, and providing credentials to authenticate.

An SSH session is established in two separate stages. The first is to agree upon

and establish encryption to protect future communication. The second stage

is to authenticate the user and discover whether access to the server should be

granted 2.18.

Figure 2.18: The SSH protocol employs a client-server model to authenticate

two parties and encrypt the data between them [19].

2.3 Database 43

SCP - Secure File Copy

scp is a program for copying files between computers. It uses the SSH protocol.

It is included by default in most Linux and Unix distributions [14].

The basic usage of scp is as follows:

$ scp file host:path

$ scp host:file path

The first line copies the file to the remote host in a specific path. Alternatively,

the second line fetches the file from the remote host, and puts it in the directory

indicated by path.

2.3 Database

Database, also called electronic database, any collection of data, or informa-

tion, that is specially organized for rapid search and retrieval by a computer.

Databases are structured to facilitate the storage, retrieval, modification, and

deletion of data in conjunction with various data-processing operations. A

database management system (DBMS) extracts information from the database

in response to queries [20].

A database is stored as a file or a set of files on magnetic disk or tape, optical

disk, or some other secondary storage device. The information in these files

may be broken down into records, each of which consists of one or more fields.

Fields are the basic units of data storage, and each field typically contains

information pertaining to one aspect or attribute of the entity described by

the database. Records are also organized into tables that include information

about relationships between its various fields. Although database is applied

loosely to any collection of information in computer files, a database in the

strict sense provides cross-referencing capabilities. Using keywords and various

sorting commands, users can rapidly search, rearrange, group, and select the

fields in many records to retrieve or create reports on particular aggregates of

data.

2.3 Database 44

Database records and files must be organized to allow retrieval of the informa-

tion. Queries are the main way users retrieve database information. The power

of a DBMS comes from its ability to define new relationships from the basic

ones given by the tables and to use them to get responses to queries. Typically,

the user provides a string of characters, and the computer searches the database

for a corresponding sequence and provides the source materials in which those

characters appear; a user can request, for example, all records in which the

contents of the field for a person’s last name is the word Snow.

The many users of a large database must be able to manipulate the information

within it quickly at any given time. Moreover, large business and other orga-

nizations tend to build up many independent files containing related and even

overlapping data, and their data-processing activities often require the linking

of data from several files. Several different types of DBMS have been devel-

oped to support these requirements: flat, hierarchical, network, relational, and

object-oriented.

2.3.1 Evolution of Databases

Databases have evolved since their inception in the 1960s, beginning with hierar-

chical and network databases, through the 1980s with object-oriented databases,

and today with SQL and NoSQL databases and cloud databases.

In one view, databases can be classified according to content type: bibliographic,

full text, numeric and images. In computing, databases are sometimes classified

according to their organizational approach. There are many different kinds

of databases 2.19, ranging from the most prevalent approach, the relational

database, to a distributed database, cloud database or NoSQL database [22].

2.3 Database 45

Figure 2.19: Database’s evolution [21] [23]

Types of BDMS

There are four major types of DBMS [21].

• Hierarchical - this type of DBMS employs the ”parent-child” relationship

of storing data. This type of DBMS is rarely used nowadays. Its structure

is like a tree with nodes representing records and branches representing

fields. The windows registry used in Windows XP is an example of a

hierarchical database. Configuration settings are stored as tree structures

with nodes.

• Network DBMS - this type of DBMS supports many-to many relations.

This usually results in complex database structures. RDM Server is an

example of a database management system that implements the network

model.

2.3 Database 46

• Relational DBMS - this type of DBMS defines database relationships in

form of tables, also known as relations. Unlike network DBMS, RDBMS

does not support many to many relationships.Relational DBMS usually

have pre-defined data types that they can support. This is the most pop-

ular DBMS type in the market. Examples of relational database manage-

ment systems include MySQL, Oracle, Sqlite and Microsoft SQL Server

database.

• Object Oriented Relation DBMS - this type supports storage of new data

types. The data to be stored is in form of objects. The objects to be stored

in the database have attributes (i.e. gender, age) and methods that define

what to do with the data. PostgreSQL is an example of an object oriented

relational DBMS.

2.3.2 SQL Definition

Structured Query Language (SQL) 2.20 is a computer language for database

management and data manipulation. SQL is used to query, insert, update and

modify data [24].

Figure 2.20: SQL is a computer language for database management and data

manipulation [29].

The SQL language is based on several elements. For the convenience of SQL

developers, all necessary language commands in the corresponding database

2.3 Database 47

management systems are usually executed through a specific SQL command-

line interface (CLI) [25].

• Clauses - the clauses are components of the statements and the queries

• Expressions - the expressions can produce scalar values or tables, which

consist of columns and rows of data

• Predicates - they specify conditions, which are used to limit the effects of

the statements and the queries, or to change the program flow

• Queries - a query will retrieve data, based on a given criteria

• Statements - with the statements one can control transactions, program

flow, connections, sessions, or diagnostics. In database systems the SQL

statements are used for sending queries from a client program to a server

where the databases are stored. In response, the server processes the SQL

statements and returns replies to the client program. This allows users

to execute a wide range of amazingly fast data manipulation operations

from simple data inputs to complicated queries.

SQL Elements

SQL is a language designed to store data, but the data stored in an SQL database

is not static. It can be modified at any time with the use of several very simple

commands. The SQL syntax is pretty much self explanatory, which makes it

much easier to read and understand.

Queries

The SQL queries are the most common and essential SQL operations. Via

an SQL query, one can search the database for the information needed. SQL

queries are executed with the “SELECT” statement. An SQL query can be

more specific, with the help of several clauses:

• FROM - it indicates the table where the search will be made

• WHERE - it’s used to define the rows, in which the search will be carried.

All rows, for which the WHERE clause is not true, will be excluded

2.3 Database 48

• ORDER BY - this is the only way to sort the results in SQL. Otherwise,

they will be returned in a random order

Example:

SELECT * FROM Table1 WHERE number=1 ORDER BY LastName

Data Manipulation

Data manipulation is essential for SQL tables - it allows users to modify an

already created table with new information, update the already existing values

or delete them.

• With the INSERT statement, new rows to an already existing table could

be added. New rows can contain information from the start, or can be

with a NULL value.

INSERT INTO table(name1, name2, name3)

VALUES('value1','value2','value3');↪→

• With the UPDATE statement, the already existing information in an SQL

table could be easily be modified.

UPDATE table SET number1 = 'true' WHERE firstcolumn = 'number2';

• With the DELETE statement, unneeded rows from a table could be re-

moved.

DELETE FROM table WHERE firstcolumn = 'value1' AND

secondcolumn = 'value2';↪→

Data Definition

Data definition allows user to define new tables and elements.

• CREATE - with the CREATE statement, a new table in an existing

database could be created.

CREATE TABLE Persons(phone VARCHAR(32), firstname

VARCHAR(32), lastname VARCHAR(32), address VARCHAR(64));↪→

2.4 OpenCv 49

Data Control

SQL allows the user to define the access each of the table users can have to the

actual table.

• GRANT - with the GRANT statement, users are authorized to modify

the selected table.

GRANT ALL PRIVILEGES ON database_name TO database_user;

2.4 OpenCv

Computer vision and image processing are two fields of technology that are

growing rapidly nowadays. This is partly a result of both cheaper and more

capable cameras, partly because of affordable processing power, and partly be-

cause vision algorithms are starting to mature [35].

Figure 2.21: OpenCv is an open source real time computer vision library [32].

There is a wide variety of image processing programs such as OpenCv and

TensorFlow. OpenCV itself has played a role in the growth of computer vision

by enabling thousands of people to do more productive work in vision 2.21. With

its focus on real-time vision, OpenCV helps students and professionals efficiently

implement projects and jump-start research by providing them with a computer

vision and machine learning infrastructure that was previously available only in

a few mature research labs.

2.4 OpenCv 50

2.4.1 OpenCv Definition

OpenCv is an open source real time computer vision library. It was first released

in 2000 and it is written in C++ but with different bindings with Python, Mat-

lab and Java. It runs on Linux, Windows and Mac OS. OpenCV was designed

for computational efficiency and with a strong focus on realtime applications.

OpenCV is written in optimized C and can take advantage of multicore proces-

sors [35].

One of OpenCV’s goals is to provide a simple-to-use computer vision infras-

tructure that helps people build fairly sophisticated vision applications quickly.

The OpenCV library contains over 500 functions that span many areas in vision,

including factory product inspection, medical imaging, security, user interface,

camera calibration, stereo vision, and robotics. Because computer vision and

machine learning often go hand-inhand, OpenCV also contains a full, general-

purpose Machine Learning Library (MLL). This sub-library is focused on sta-

tistical pattern recognition and clustering. The MLL is highly useful for the

vision tasks that are at the core of OpenCV’s mission, but it is general enough

to be used for any machine learning problem.

Since its alpha release in January 1999, OpenCV has been used in many ap-

plications, products, and research efforts. These applications include stitching

images together in satellite and web maps, image scan alignment, medical im-

age noise reduction, object analysis, security and intrusion detection systems,

automatic monitoring and safety systems, manufacturing inspection systems,

camera calibration, military applications, and unmanned aerial, ground, and

underwater vehicles. It has even been used in sound and music recognition,

where vision recognition techniques are applied to sound spectrogram images

[35].

2.4.2 Computer Vision

Computer vision is an interdisciplinary field that deals with how computers

can be made for gaining high-level understanding from digital images or videos.

From the perspective of engineering, it seeks to automate tasks that the human

visual system can do [31].

2.4 OpenCv 51

The goal of Computer Vision is to emulate human vision using digital images

through three main processing components, executed one after the other [30]:

• Image acquisition

• Image processing

• Image analysis and understanding

As our human visual understanding of world is reflected in our ability to make

decisions through what we see, providing such a visual understanding to com-

puters would allow them the same power.

Image acquisition

Image acquisition is the process of translating the analog world around us into

binary data composed of zeros and ones, interpreted as digital images.

Different tools have been created to build such datasets:

• Webcams and embedded cameras

• Digital compact cameras and DSLR

• Consumer 3D cameras and laser range finders

Most of the time, the raw data acquired by these devices needs to be post-

processed in order to be more efficiently exploited in the next steps.

Image processing

The second component of Computer Vision is the low-level processing of images.

Algorithms are applied to the binary data acquired in the first step to infer low-

level information on parts of the image. This type of information is characterized

by image edges, point features or segments, for example. They are all the basic

geometric elements that build objects in images.

This second step usually involves advanced applied mathematics algorithms and

techniques.

Low-level image processing algorithms include:

• Edge detection

2.4 OpenCv 52

• Segmentation

• Classification

• Feature detection and matching

Image analysis and understanding

The last step of the Computer Vision pipeline if the actual analysis of the data,

which will allow the decision making.High-level algorithms are applied, using

both the image data and the low-level information computed in previous steps.

Examples of high-level image analysis are:

• 3D scene mapping

• Object recognition

• Object tracking

Applications of computer vision

Techniques developed for Computer Vision have many applications in the fields

of robotics, human-computer interaction and visualization, to name a few:

• Motion recognition

• Augmented reality

• Autonomous cars

• Domestic/service robots

• Image restoration such as denoising

When developing Computer Vision algorithms, one has to face different issues

and challenges, related to the very nature of the data or event the application

to be created and its context:

• Noisy or incomplete data

• Real-time processing

2.4 OpenCv 53

• Limited resources: power, memory

Current research is focused on addressing these challenges to make the algo-

rithms more robust and efficient in difficult conditions.

2.4.3 Haar-Cascade Detection in OpenCv

It is a machine learning based approach where a cascade function is trained

from a lot of positive and negative images. It is then used to detect objects in

other images [36].

Cascading is a particular case of ensemble learning based on the concatena-

tion of several Classifiers, using all information collected from the output from

a given classifier as additional information for the next classifier in the cas-

cade.Cascading Classifiers are trained with several hundred ”positive” sample

views of a particular object and arbitrary ”negative” images of the same size.

After the classifier is trained it can be applied to a region of an image and de-

tect the object in question. To search for the object in the entire frame, the

search window can be moved across the image and check every location for the

classifier [41].

This process is most commonly used in image processing for object detection

and tracking, primarily facial detection and recognition.The first cascading clas-

sifier is the face detector of Viola and Jones (2001).[37]The requirement for this

classifier was to be fast in order to be implemented on low-power CPUs, such

as cameras and phones [41].

In order to train a classifier it needs samples, which means it is needed a lot

of images that show the desired object for detection (positive sample) and even

more images without the object (negative sample).The best results came from

positive images that look exactly like the ones where the desired object is in,

except that they are cropped so only the object is visible [39].

A highly accurate classifier should be trained with a lot of negative images that

look exactly like the positive ones with the difference that they do not contain

the desired object. For example if somebody wants to detect a ”stop” sign, the

negative images would ideally be a lot of pictures of other signs [39].

The process starts by extracting Haar features from each image as shown below:

2.4 OpenCv 54

(a) (b)

Figure 2.22: Feature Extraction [32]

Each feature is a single value obtained by subtracting sum of pixels under white

rectangle from the sum of pixels under black rectangle. Rectangle features can

be computed very rapidly using an intermediate representation for the image

which called the integral image. It simplifies calculation of sum of pixels, no

matter how large may be the number of pixels, to an operation involving just

four pixels [36].

For example, in figure 2.22, two features are being extracted. The first one

focuses on the property that the region of the eyes is often darker than the area

of the nose and cheeks. The second feature relies on the property that the eyes

are darker than the bridge of the nose [40].

But among all these features calculated, most of them are irrelevant. For ex-

ample, when used on the cheek, the windows become irrelevant because none

of these areas are darker or lighter than other regions on the cheeks, all sectors

here are the same. So we promptly discard irrelevant features and keep only

those relevant with a fancy technique called Adaboost. AdaBoost is a training

process which selects only those features known to improve the classification

(face/non-face) accuracy of our classifier [40].

The first step is to apply each and every feature on all the training images.

For each feature, it will find the best threshold to classify if the faces present

or not.There will be errors or misclassifications. By selecting the features with

minimum error rate, which means they are the features that best classifies faces.

2.4 OpenCv 55

Each image is given an equal weight in the beginning. After each classification,

weights of misclassified images are increased. New error rates are calculated

and so as new error rates. This loop will continue until required accuracy or

error rate is achieved or required number of features are found. Final classifier is

created by combining all of the weak classifiers (they are called weak classifiers

because them alone can not classify the image but together they form a strong

classifier) [36].

In an image, most of the image region does not contain any faces. It is a better

idea to have a simple method to check if a window is not a face region, discard

and do not process it. This can speed up the process of face recognition by

focusing on the face region only instead of all areas. The method here is using

the concept of Cascade of Classifiers. Instead of applying all training features,

group the features into different stages of classifiers and apply one-by-one. If a

window fails the first stage, it will be discarded immediately, if it passes, apply

the second stage of features, keep continuing the loop. Finally, the window

which passes all stages is a face region. This explains how Face Detection using

Haar Cascade works [36].

2.4.4 YOLO

YOLO (You Only Look Once) is a network for object detection. The object

detection task consists in determining the location on the image where certain

objects are present, as well as classifying those objects. Previous methods for

this, like in section above, execute this task in multiple steps. This can be slow

to run and also hard to optimize, because each individual component must be

trained separately. YOLO does it all with a single neural network [34].

This neural network splits the image in multiple grid cells with bounding boxes

as shown in figure 2.23.

2.4 OpenCv 56

Figure 2.23: Grid Cells with Bounding Boxes

If the grid cell contains an object then the algorithm generates two bounding

boxes for each grid cell. The YOLO algorithm takes the middle point of the

bounding box and associates it to the grid cell containing it. After all boundings

boxes have generated, yolo uses a class probability theory in order to eliminate

the boxes that intersect and keep only the prevailing ones those with the higher

probability with object inside.This can be done with the non max suppression

method.Non-max suppression is a common algorithm used for cleaning up when

multiple boxes are predicted for the same object [42].

For the example below, the model outputs three predictions for the truck in the

center. There are three bounding boxes, but we only need one. The thicker

the predicted bounding box, the more confident the prediction is that means a

higher pc value.The goal is to remove those “shadow” boxes surrounding the

main predicted box [42].

2.4 OpenCv 57

Finally, the cleaned up prediction is showed in figure 2.24:

Figure 2.24: Prediction Process [38]

So here is the graph illustrating the prediction process figure 2.25:

2.4 OpenCv 58

Figure 2.25: Prediction Process [42]

2.5 Hypertext Markup Language - HTML 59

2.4.5 OpenCv in ROS

ROS provides integration with OpenCV to manipulate the images sending be-

tween nodes. So, ROS offers a bridge class to transform ROS images back and

forth from OpenCV 2.26. The cv bridge library converts a cv image into a ROS

image message and then republishes it over ROS [1].

Figure 2.26: Cv bridge concept of converting type of messages [1]

2.5 Hypertext Markup Language - HTML

2.5.1 HTML Definition

HTML or Hypertext Markup Language is a computer language which is used

to create web pages and web applications 2.27.

2.5 Hypertext Markup Language - HTML 60

Figure 2.27: HTML is the standard markup language for Web pages [47].

HTML documents consist of document tags which act to directly describe the

visual appearance of a web page or to provide a directive command such as

inserting imagery or a link to another web page within a document. HTML

documents are saved in text format and are designed to be viewed or edited on

any operating system that is able to connect to the Internet [46].

The definition can split in three parts as follows [45].

• Hypertext is a method that lets somebody move around internet by click-

ing the page he want to enter

• Markup is what the HTML tags define about the text inside them

• Language - HTML is a language because it needs coding and syntax to

use

2.5.2 How HTML works

Web browsers receive HTML documents from a web server or from local storage

and render the documents into multimedia web pages.Each page contains a series

of connections to other pages called hyperlinks.

HTML code ensures the proper formatting of text and images so that your

Internet browser may display them as they are intended to look. Without

HTML, a browser would not know how to display text as elements or load

images or other elements. HTML also provides a basic structure of the page,

upon which Cascading Style Sheets are overlaid to change its appearance. One

2.5 Hypertext Markup Language - HTML 61

could think of HTML as the bones (structure) of a web page, and CSS as its

skin (appearance) [44].

HTML Markup

HTML elements are the building blocks of HTML pages. With HTML con-

structs, images and other objects such as interactive forms may be embedded

into the rendered page. HTML documents are defined by tags, written using

angle brackets, that consist of an opening and closing tag in order to create

structured documents.Tags such as and <input /> directly introduce

content into the page. Other tags such as <p> surround and provide informa-

tion about document text and may include other tags as sub-elements. Browsers

do not display the HTML tags, but use them to interpret the content of the

page.[43] A typical HTML document starts with an <html> tag and ends with

an </html> tag.This tag declares the document to be type HTML to a web

browser. Most HTML tags are paired, such as <html> </html> and <body>

</body>. An HTML document usually consists of a head, embedded between

<head> and </head> tags, followed by a body, embedded between <body>

and </body> tags. The head usually states the title of the document, which

is specified between a pair of <title> and </title> tags. A <TITLE> tag can

be displayed in the top of a web browser and can also contain Javascript and

other meta data information for the web page.The body is the content of the

document. Detailed information, such as text and tables, appears in the body.

The major HTML elements that provide conceptual structure in HTML docu-

ments are titles, sections, paragraphs, links, images, lists, tables, forms.

Titles

The title located in the head of the HTML document is converted to an at-

tributed object in the HTML-CM conceptual model. For example, consider the

following HTML code 2.28.

2.5 Hypertext Markup Language - HTML 62

Figure 2.28: Html title tags

This code is converted to the following attributed object.

Title: Robot Operating System

Sections

A section in an HTML document is converted to an attributed object.The head-

ing of the section is converted to an attribute and the rest of the section is

converted to a value for this attribute.

Paragraphs

A paragraph is the content after a <p> tag up to a </p> tag or another <p>

tag. As mentioned in Chapter 1, the </p> tag is optional. If a paragraph has

some boldface or italic words or some words preceding a colon at the beginning,

then the paragraph is converted to an attributed object, and otherwise it is

converted to a list object. A sequence of multiple paragraphs is converted to

a list object too. The following is an example for paragraph as well as section

2.29.

2.5 Hypertext Markup Language - HTML 63

(a) Html paragraph tags

(b) Result

Figure 2.29: Example of Html Sections and Paragraphs

Links

A link in an HTML document is converted to a linking object, which consists

of a label and an anchor. The label is the text presented and the anchor is the

destination of the link, which can refer to another HTML document, a PDF file,

a video/audio clip, etc. The following is an example 2.30.

2.5 Hypertext Markup Language - HTML 64

(a) Html links tags

(b) Result

Figure 2.30: Example of Html Links

Images

A reference to an image document in an HTML document is converted to an

attributed object using the Image keyword as the attribute and the destination

of the link to the image as the value. The following is an example 2.31.

(a) Html image tags
(b) Result

Figure 2.31: Example of Html image

Lists

The HTML element is used to represent an item in a list. It must be

2.5 Hypertext Markup Language - HTML 65

contained in a parent element: an ordered list (), an unordered list (),

or a menu (<menu>). In menus and unordered lists, list items are usually

displayed using bullet points. In ordered lists, they are usually displayed with

an ascending counter on the left, such as a number or letter 2.32 2.33.

(a) Html list tags (b) Result

Figure 2.32: Example of Html ordered list

(a) Html list tags (b) Result

Figure 2.33: Example of Html unordered list

HTML also supports description lists. A description list is a list of terms, with

a description of each term. The <dl> tag defines the description list, the <dt>

tag defines the term (name), and the <dd> tag describes each term 2.34.

(a) Html list tags
(b) Result

Figure 2.34: Example of Html Description List

Tables

2.5 Hypertext Markup Language - HTML 66

Tables in HTML are used either to display tabular information or to provide

visitors with a better visual layout. A table begins with a <table> tag and ends

with a </table> tag. A table that has a caption embedded between <caption>

and </caption> tags is converted to an attributed object by using the caption

as the attribute and the rest of the table’s contents as the value. The content of

the table, ignoring the caption, consists of rows and columns of cells. The <tr>

tag shows the beginning of a new row. The <td> tag shows the beginning of a

cell. The </tr> and </td> tags can be used to end rows and cells, respectively,

but they are not mandatory. Both rows and columns can have headings that

are specified by <th> tags 2.35.

(a) Html table tags

(b) Result

Figure 2.35: Example of Html Tables

Forms

An HTML form is used to display data and receive input from the user. A

form begins with <form> and ends with </form>.An HTML form is converted

to a single attributed object. HTML forms have many special elements called

controls. Some example controls are text input, checkbox, button, radio button,

and menu. Although the visualizations of these controls are quite different,they

all have three common attributes, specifically, names, values, and types. The

name specifies the data being displayed as output, the value is the data that

are stored in the HTML document, and the type determines the type of value

2.5 Hypertext Markup Language - HTML 67

being received as input. The two methods of sending information from a form

to the server are GET and POST. The major difference between them is the

way that they organize and send information to the server. The GET method

sends the information as name-value pairs. It has a limitation on how long the

string can be, which makes it good for sending short information. The POST

method first places the name-value pairs together in a file and then sends the

file to the server. There is no limit on the size of the file.

The two special types of buttons in HTML forms are SUBMIT and RESET.

Activating a SUBMIT button sends information entered so far on the form,

while activating a RESET button removes any information entered by the user

from the form and prepares the form for new entries. The HTML <input>

element is used to create interactive controls for web-based forms in order to

accept data from the user 2.36.

(a) Html form tags

(b) Result

Figure 2.36: Example of Html Forms

Chapter 3

Implementation

So far the tools including ROS, OpenCV, HTML, Sql, used for the project

implementation have been analyzed at a theoretical level. All of them play an

equally important role in the composition of the project. This chapter is divided

in two sections, the first part contains a description of the basic code structure

of each tool separately, which clarifies their functionality. In the second part, it

becomes concrete how these tools are linked to each other in order to form an

integrated application.

3.1 ROS

3.1.1 ROS Communication models

Topics, services and actions are ROS communication models that have been

described and compared in detail in 2.1.5. Before the development of this appli-

cation is explained, it is important to mention which of these three models was

used. The application’s main feature requires a one to one, remote and periodic

connection in which two locations need to be synchronized and interact with

each other. In order to meet the application’s requirements, service is selected

as the prevailing communication model.

An autonomous device (Unit point) sends periodic messages to a remote station

(Base point) where the messages are evaluated by a human operator. This kind

68

3.1 ROS 69

of communication is accomplished by a simple service method (UnitCall). Ad-

ditionally, the operator has the ability to request information about the device’s

status at any time, which requires the use of an additional service (BaseCall).

Each service consists of a client node, a server node and a service file.

The application also required a continuous communication with the Unit’s cam-

era data stream. Data might be published and subscribed at any time indepen-

dent of any senders/receivers. This was achieved by using topics communication

model.

These two client/server models as well as the topic communication model will

be further analyzed in the sections below.

Package

First of all, after installing ROS, a directory named catkin ws (catkin workspace)

will be created in order to build ROS packages. The command catkin init workspace

will setup this directory to be able to build ROS packages.

Afterwards, the following command creates the packages used for the project

implementation inside the workspace’s src folder.

$ cd ~/catkin_ws/src

$ catkin_create_pkg application message_generation std_msgs rospy

cv_bridge↪→

The ’application’ package was created with dependencies: ’message generation’,

that creates a new massage, ‘std msgs’, that is the ROS standard message pack-

age , ‘rospy’ that allows the client library to use Python in ROS and ’cv bridge’

that allows using cv bridge package. These packages may also be added after

creating the ‘package.xml’ file.

In the ’application’ folder, the ‘CMakeLists.txt’ and ‘package.xml’ files are cre-

ated along with default folders.

$ cd application

$ ls

3.1 ROS 70

include Header File Folder

src Source Code Folder

CMakeLists.txt Build Configuration File

package.xml Package Configuration File

The ROS build system ’catkin’ uses the software tool CMake. Therefore, the

build environment is described in the ‘CMakeLists.txt’ file in the package folder.

This file configures executable file creation, dependency package build priority,

link creation, and so on. Thus, UnitCall and BaseCall service files may be added

in CMakelists file 3.1.

Figure 3.1: Srv files are added in CMakelists file

This option will include the ‘UnitCall.srv’ and ’BaseCall.srv’ when building the

package, which will be used in the nodes.

3.1.2 UnitCall Service

UnitCall is called the service where Unit is the client that makes the request

3.2. The client node gets a number of values as input and connects through

master with the server node. These values represent the current state of the

Unit. Afterwards, client sends the values to server and waits for response.

3.1 ROS 71

Figure 3.2: UnitCall Service

Part of the request code

rospy.wait_for_service('call')

try:

call = rospy.ServiceProxy('call', Call)

resp1 = call(x, y, k, a, j, r, q, t)

return resp1.config

except rospy.ServiceException, e:

print "Service call failed: %s"%e

rospy.wait_for_service('call')

This method blocks operation until the service named ’call’ is available, pre-

venting data loss. For example due to network connection failure. Afterwards

a handle is created for calling the service.

call = rospy.ServiceProxy('call', Call)

resp1 = call(x, y, k, a, j, r, q, t)

return resp1.config

ServiceProxy class does the actual work of locating the server node, transmiting

the request data and waiting for a response. The type of service is declared by

UnitCall.srv file. The CallRequest object is sent to server as resp1 variable.

except rospy.ServiceException, e:

If the call fails by errors related to ROS Service communication, a rospy.ServiceException

may be thrown.

3.1 ROS 72

Server node receives the values and responds back to client with an indication

of success.

The server node initializes from the client’s call. A server named ’call’ is declared

and all requests are passed to to handle call function. This function includes

instances of CallRequest and returns instances of CallResponce confirming that

the values where received (’ok’) . Unlike client node, the server node does not

shut down after the operation is completed. Rospy.spin() asks ROS to wait for

pending callbacks.

Part of the response code

rospy.init_node('call_server')

s = rospy.Service('call', Call, handle_call)

. . .

rospy.spin()

def handle_call(req):

. . .

return ('ok')

Service file

UnitCall.srv file generates the CallRequest object that is sent to server. It also

generates the CallResponce object and if the procedure is successful it returns

a single string. Data before the dashes are the request elements and data after

the dashes are the response elements as they are presenting in figure 3.3.

Figure 3.3: Service file UnitCall

3.1 ROS 73

3.1.3 BaseCall Service

Basecall is called the service where Base node makes the request asking for the

aforementioned values 3.4. It connects through master with the Unit node and

waits for response. Afterwards, Unit sends the values to Base.

Figure 3.4: BaseCall Service

Request is sent through value ’a’. Then the values are sent to Unit in a list

form, so in the BaseCall.srv that follows the response part is a string 3.5.

Figure 3.5: Service file BaseCall

UnitCall and BaseCall services work in the same way. This means they use the

same main methods. But, they present differences related on which makes the

call in each case. As the information is always transferred from Unit to Base, in

the first case it passes as a request while in the second case it passes as response.

3.1.4 ROS Master

Initializing the whole ROS application it is necessary to start ROS master. One

master is capable of managing both Unitcall and Basecall services.

Roscore is the node administrator and remains open during any ROS operation.

3.1 ROS 74

3.1.5 Network Setup in ROS

ROS system can support running even hundreds of nodes at the same time in

multiple machines. So, in order for these nodes to be able to communicate with

each other at any time, a network configuration is needed. The requirements

are a bi-directional connectivity between all pairs of machines and on all ports

and each machine must advertise itself by a name that all other machines can

resolve [1].

When a ROS node advertises a topic, it provides a hostname:port combination

(a URI) that other nodes will contact when they want to subscribe to that topic.

It is important that the hostname that a node provides can be used by all other

nodes to contact it. The ROS client libraries use the name that the machine

reports to be its hostname. This is the name that is returned by the command

hostname.

Defining the machines names

In this project, ROS system runs in two machines. In order to define the host-

names of the machines, the first step is to open the /etc/hosts file. The file

includes IP addresses of the two machines and localhosts names. The next step

is to add the IP address of the other node and also change their both names.

Unit machine is called hal and Base machine is called marvin.

192.168.1.2 hal

192.168.1.1 marvin

The last step is to connect with the other machine through SSH and check

the connectivity. The desired outcome of a sufficient connection is presented in

figure 3.6.

3.1 ROS 75

Figure 3.6: Successful connectivity with hal machine

Machine Configuration

Roscore should run in one of the two machines. So, it is necessary to set up

an environment where all nodes can locate master. This is achieved by ROS

environment variables, via ROS MASTER URI, because all nodes must be con-

figured to use the same master. Roscore will run at Unit machine so it is needed

to export the specific address: export ROS MASTER URI=http://hal:11311.

3.1.6 OpenCV

This application is designed to secure an area from human trespass. Therefore,

the concept includes that a camera is mounted on Unit Point in order to track

space violation by detecting human bodies.

Regarding the hardware in the simulation scenario, Unit machine uses its web-

cam in order to detect faces and eyes instead of human bodies.

As for the software part of the project, OpenCV library was chosen to make a

Real-Time Face Detection. OpenCV comes with a number of built-in cascades

for detecting everything from faces to eyes to hands to legs. Face Detection, us-

ing Haar feature-based cascade classifiers, is an effective and widely used object

detection method with pretrained classifiers of human faces. Also, cv bridge

library from ROS was included in order to convert cv images to ROS messages

and the opposite.

The main part of Opencv code block uses LBPH (Local Binary Patterns His-

tograms) algorithm to detect faces. It labels the pixels of an image by threshold-

ing the neighborhood of each pixel and considers the result as a binary number.

LBPH uses four parameters:

3.1 ROS 76

• Radius: the radius is used to build the circular local binary pattern and

represents the radius around the central pixel

• Neighbors : the number of sample points to build the circular local binary

pattern

• Grid X : the number of cells in the horizontal direction

• Grid Y : the number of cells in the vertical direction

Part of OpenCv Code Block

In this project the script detect.py was developed as a node which listens to

a ROS image message topic, converts the images into a cv image, makes face

detection and displays the image using OpenCV. Then, the image is republished

over ROS. This node is not a camera streamer, but uses cv camera node package

to start the camera.

face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')↪→

def __init__(self):

self.image_pub = rospy.Publisher("detected_face",Image)

self.bridge = CvBridge()

self.image_sub =

rospy.Subscriber("/cv_camera/image_raw",Image,self.callback)↪→

def callback(self,data):

try:

cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")

except CvBridgeError as e:

print(e)

gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)

faces = detector.detectMultiScale(gray, 1.3, 5)

3.1 ROS 77

print(len(faces))

. . .

for (x,y,w,h) in faces:

cv2.rectangle(cv_image,(x,y),(x+w,y+h),(255,0,0),2)

cv2.imshow("Faces found", cv_image)

cv2.waitKey(1)

try:

self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image,

"bgr8"))↪→

except CvBridgeError as e:

print(e)

rospy.init_node('face_detection', anonymous=True)

face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')↪→

This line loads the face cascade into memory. The cascade is an XML file that

contains the data to detect faces.

self.image_pub = rospy.Publisher("detected_face",Image)

self.bridge = CvBridge()

self.image_sub =

rospy.Subscriber("/cv_camera/image_raw",Image,self.callback)↪→

These lines create a cv bridge object, a publisher which will republish the

images as ROS messages and a subscriber. The detect node subscribes to

/cv camera/image raw topic from cv camera node to use frames from camera.

cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")

This line converts a ROS image message into a cv image through module

cv bridge.CvBridge. The input is the image message, as well as an optional

3.1 ROS 78

encoding. The encoding refers to the destination cv image. The ”bgr8” refers

to a color image and it is more expected by most OpenCV functions.

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

The captured frame is converted to gray scale before using the face detector.

faces = detector.detectMultiScale(gray, 1.3, 5)

scaleFactor=1.3

minNeighbors=5

The above line applies the face detector to detect faces in the captured frame.

This function detects the actual face and is the key part of the code. The options

inside the brackets describe the following:

• The detectMultiScale function is a general function that detects objects.

Since it is called on the face cascade, it detects faces.

• The first option is the grayscale image.

• The second is the scaleFactor. Since some faces may be closer to the

camera, they would appear bigger than the faces in the back. The scale

factor compensates for this.

• The detection algorithm uses a moving window to detect objects. Min-

Neighbors defines how many objects are detected near the current one

before it declares the face found. MinSize, meanwhile, gives the size of

each window.

print(len(faces))

The len(faces) function returns the number of faces in a detected frame. If a face

is detected the algorithm returns 1, otherwise it returns 0. A result is printed

for every captured frame 3.7.

3.1 ROS 79

Figure 3.7: Result for every captured frame in terminal window

for (x,y,w,h) in faces:

cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

The function returns a list of rectangles in which it believes it found a face.

This function returns four values: the x and y location of the rectangle, and the

rectangle’s width and height (w , h).These values are needed in order to draw

a rectangle using the built-in rectangle() function.

The options inside the brackets describe the following:

• The first argument is the input frame

• The second is the x,y coordinate of the face

• Then is the height and weight

• After that the color of the line is specified which is in the form of (blue,green,red)

with adjustable values, range is 0-255. In this project is used green line

• The last argument is the line thickness

cv2.imshow("Faces found", cv_image)

cv2.waitKey(0)

These lines are displaying the frame and wait for the user to press a key respec-

tively.

self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))

3.1 ROS 80

This line converts a cv image into a ROS image message through CvBridge and

then publishes it over ROS.

rospy.init_node('face_detection', anonymous=True)

This lines creates a unique node with name ’face detection’.

3.1.7 Sql

Daily, a large amount of data that is being transferred from Unit Point to Base

Point. A backup history of this data is required once in every 24 hours in order

to compare values between days or even between weeks.

Therefore, a collection of incoming information requires organization which is

achieved by creating a database. Data is organized into rows, columns and

tables, and it is indexed to make it easier to find relevant information. Data

gets updated, expanded and deleted as new information is added. Databases

process workloads to create and update themselves, querying the data they

contain and running applications against it.

The software library that was used to provide a relational database management

system is Sqlite. The python code block that follows, creates a table named

”UnitData” in order to store and classify the incoming data from Unit point.

Part of Database Code Block

conn = sqlite3.connect('test.db')

cursor = conn.cursor()

cursor.execute('''CREATE TABLE IF NOT EXISTS UnitData

(sent_date TEXT,

sent_time TEXT,

received_date TEXT,

received_time TEXT,

Camera TEXT,

Battery TEXT,

Environment Temperature TEXT,

Device Temperature TEXT,

Barometer TEXT,

3.1 ROS 81

GPSlat TEXT,

GPSlon TEXT);''')

cursor.execute("INSERT INTO UnitData

VALUES(?,?,?,?,?,?,?,?,?,?,?)", (req.i[0:10], req.i[11:],

t[0:10], t[11:], cam, req.a, req.b, req.g, req.f, req.c,

req.d))

↪→

↪→

↪→

conn = sqlite3.connect('test.db')

To use Sqlite3, a connection object should be created that represents the database.

The data will be stored in the test.db file.

cursor = conn.cursor()

The above line creates a connection object then uses it to instantiate a cursor

object. The cursor object is used to execute SQL statements on the Sqlite

database.

cursor.execute('''CREATE TABLE IF NOT EXISTS UnitData

(sent_date TEXT,

sent_time TEXT,

received_date TEXT,

received_time TEXT,

Camera TEXT,

Battery TEXT,

Environment Temperature TEXT,

Device Temperature TEXT,

Barometer TEXT,

GPSlat TEXT,

GPSlon TEXT);''')

The execute() method of the created cursor is called to perform SQL commands.

The ”IF NOT EXISTS” statement is used to avoid overwriting an existing table.

3.1 ROS 82

This table consists of 11 columns, each one of them describes the name and type

of the incoming data. Type ”INT” is an integer data type. ”REAL” is a floating

point value and ”TEXT” is a text string.

cursor.execute("INSERT INTO UnitData

VALUES(?,?,?,?,?,?,?,?,?,?)", (req.i[0:10], req.i[11:], t,

req.a, req.b, req.c, req.d, req.e, req.f, req.g))

↪→

↪→

The values are inserted in table ”UnitData”, each one under the corresponding

name.

3.1.8 Html

Unit point includes a group of sensors, such as camera, GPS, thermometer,

barometer which collect information about Unit Point’s state. This information

(data) is sent through Sender-Receiver method using ROS to Base Point, in

order to be evaluated by a human who should have the ability to easily access,

manage and update data at anytime. Data might contain urgent information

about Unit’s safety, for example camera’s battery usage or the exact time of a

trespass occurrence, and therefore they need to appear as warnings.

A web application using Html offers a simple way to display and control data.

Values are retrieved from a database and they appear in a html table in a web

page. Also, warnings could be pop up windows in front of the screen.

Http

HTTP is the protocol for websites. It is designed to interact and communicate

with computers and servers. HTTP works as a request-response protocol be-

tween a client and server. When a name of a website in the address bar of a

browser is typed, what happens is that an HTTP request has been sent to a

server. That server receives the request and needs to figure how to interpret

that request. Next, sends back an HTTP response that contains the information

that the web browser receives and then, it displays what is asked for on a page

in the browser.

A web browser may be the client and ROS application may be the server. This

3.1 ROS 83

enables user to submit an HTTP request from the Base point and through ROS

communication get a response from Unit point’s status.

For this web application, a combination of Python and HTML was used. Python

was executed on the server side while HTML was downloaded to the client and

run by the web browser. Python was used to generate Html and the latter for

constructing the layout of the application’s interface and finally to display its

elements on screen with the Css (Cascading Style Sheets) language.

Flask Application

Flask is a Python framework for creating web applications. It makes the design-

ing of a web application simpler as it focuses on what the users are requesting

and what sort of response to give back. Also, it makes development faster by

offering code for all sorts of processes like database interaction or file activity.

The app.py file will contain the main code that will be executed by the Python

interpreter to run the Flask web application. The templates directory is the

directory in which Flask will look for static HTML files for rendering in the web

browser. Templates folder contains two html files that will be used in this part

of the code. Furthermore, the static directory is created as well which contains

a css file which demonstrates Html’s document style. The directory tree that

follow describes this concept.

1 s t f l a s k a p p 1 /

app . py

templates /

p r i n t i t e m s . html

blank . html

s t a t i c /

s t y l e . c s s

Before start analyzing the contents of both python script app and html tem-

plates, it is important to mention that as the one is depending on the other in

order to run, a step-by-step code presentation will take place.

from flask import Flask, render_template, request

3.1 ROS 84

import Tkinter as tk

import tkMessageBox

app = Flask(__name__)

@app.route('/')

@app.route('/print_items', methods=["GET","POST"])

def print_items():

...

tkMessageBox.showwarning('Base','Alert!')

...

return render_template('print_items.html', items=items)

@app.route('/blank', methods=["GET","POST"])

def blank2():

...

return render_template('blank.html', items=items)

In order to run the application as a single module, a new Flask instance is

initialized with the argument name to let Flask know that it can find the

HTML template folder (templates) in the same directory where it is located.

The route decorator (@app.route(’/’)) is used to specify the URL that should

trigger the execution of the print items and blank functions, therefore it binds

the functions with the URL. These three functions simply render the HTML

files print items.html and blank.html, by using the render template() method.

This means that it actually displays their content in the user’s browser. Inside

the brackets is provided the name of the html file and the variables that are

going to pass to the template engine as keyword arguments. Variable ”items”

from the first two functions contains data from the database ”UnitData” which

will pass to print items.html and blank.html. Print items function also con-

tains a MessageBox() method that pops up a message window in the rendered

print items Html page under conditions.

The HTTP method knows different methods for accessing URLs. The HTTP

methods ’GET’, ’POST’ are used to succeed HTTP ’client-server’ interaction.

By default, a route only answers to GET requests, but that can be changed by

3.1 ROS 85

providing the methods argument to the route() decorator. The POST method

is used for the ’print items’ and ’blank’ templates in order to transport the form

data to the server in the message body. POST is better for submitting secure

data as they do not appear in the address bar like GET method.

These two functions display their Html content in the user browser, in two

different web pages, after the user (human) make an action such us clicking a

button. Each one of the functions have conditions that handle the incoming

data from the database and depend on what kind of information the user would

request. Specifically, in the html code below, four buttons are created in order

to make options for the user to choose what kind of information he wants to

receive. These kind of information are going to be explained thoroughly in the

section below.

The app.py script runs locally by executing the following command from the

app’s main directory and the user can view the result in his web browser at

http://127.0.0.1:5000/. The result is the content of the print items Html file.

The user sees a table in which its rows are filled with data according to some

conditions and three buttons ready for submission. When the user decides to

click one of them, their content is rendered in an new page or fills the table with

updated data.

$ python app.py

At first the ’print items’ template loads the css file which creates a scrolling

table where the data will be displayed. After the table has been created with the

corresponding name values as rows, they are filled with data from the variable

”items” of the python app.py script. The Html also makes a refresh after 5

seconds to update the table in case new data came in. The lines that follow

describe the creation of four submit buttons. The HTML ¡form¿ element defines

a form that is used to collect user input. After the user click the buttons, named

”new message” or ”photo”, the form data is sent to the page ”/print items” and

the table data are updated.

<form>

<form method=post action="/print_items">

<input type=submit value='new message' name='action'>

</form>

3.2 Application Description 86

The submit button ”show alerts”, was created in order to open a new page when

the user chooses to click it. The variable ”items”, as in print items case, loads

data from the database ”UnitData” and display them in a scrolling table but

this time with specific rows and columns. Next, if the user chooses to click the

button ”photo”, a window is opened containing a photo. Alternative, if the user

chooses to click the button ”video”, a window is opened containing a real time

video.

<form>

<form method=post action="/print_items">

<input type=submit value='show alerts' name='action'>

</form>

<form>

<form method=post action="/print_items">

<input type=submit value='photo' name='action'>

</form>

<form>

<form method=post action="/print_items">

<input type=submit value='video' name='action'>

</form>

3.2 Application Description

As mentioned previously, the application’s actual implementation took place in

the National University’s Marine Laboratory using two machines. Each one of

them represents the remote locations (Unit/Base) where telemetry was imple-

mented. So far, application’s main cause has been stated, but not approached

from user’s side.

The user is able to check several values which represent the state of the Unit.

These values refer to battery level, device’s and environment’s temperature,

device’s location and human detection, as well as date and time information.

For that reason, the user has a platform in his disposal 3.8, in which all the

messages, that are being sent from Unit, are displayed. Incoming messages are

3.2 Application Description 87

inserted into a table, with every row constitutes of a message. The platform is

being refreshed periodically and messages are sorted by the time of shipment.

Figure 3.8: Application’s main platform

Among the information a new message holds, an indicator shows if Unit’s camera

detected a face or not. In case face detection is positive, user receives an alert

message in the form of pop up window in the platform.

The user can seclude alerted messages in order to handle more efficient a large

amount of incoming messages during the day. This can be achieved by clicking

the option ”show alerts”.

Every new message is added in the table after an automatic repeatable proce-

dure. This procedure is held by UnitCall Service which has described in section

3.1.2. Besides that, the user can request for Unit’s status at any time. This

is achieved with options ”new message” and ”photo”. Both options return a

new message with the only deference that ”photo” requests additionally for an

instant image. This image displays the area around Unit depending on web

camera’s range. In this way, the user can have a visual perspective in case of

a trespass, similar to option ”video” where the user can examine real time the

area through live cast video. These two options connected to ”new message”

and ”photo” buttons activate BaseCall Service 3.1.3.

In conclusion, this application uses two different services in order for the mes-

sages to be transmitted from Unit to Base 3.9 3.15.

3.2 Application Description 88

3.2.1 UnitCall Development

Figure 3.9: UnitCall Service

3.2 Application Description 89

In this project, Unit gathers information from the following sources.

Camera

Unit uses two different nodes to start image processing. As mentioned in

3.1.6, cv camera node runs in order to start the camera and publish images

in /cv camera/image raw topic. Afterwards, the node detect.py subscribes to

/cv camera/image raw to use the images and then starts the processing part.

Lastly, the images after image processing are republished in ”detected face”

topic 3.10.

Figure 3.10: Unit’s camera process with nodes topics and cv bridge

PC’s web cam is used for image processing. As mentioned in 3.1.6, OpenCv

uses a function to return the number of detected faces. These values represent

integers, 1 for detected face and 0 for non detected. Then, these values are

extracted into a txt file, called camdata.py, along with a string timestamp.

Additionally, in some cases values become -1 e.g. if OpenCv stops working 3.11.

3.2 Application Description 90

(a) Detected face-Time send (b) Not Detected face-Time send

(c) OpenCv stops working-Time send

Figure 3.11: Camdata Values

Time sent Timestamp regarding to when the message is sent (date and time)

from the Unit point. It is stored in camdata.py file.

GPS Unit’s position is received from the website https://ipstack.com/ as geo-

graphical longitude and latitude.

Other Sensors Battery’s levels, environment’s and device’s temperature, as

well as barometer’s pressure are defined by random default values in a txt file,

called values.py 3.12.

Figure 3.12: Default Sensor Values

These python files are imported into application’s basic executable program

called ”call list.py”. The individual variables which are contained in these files,

consist of the message that is going to be sent from Unit to Base. The vari-

ables are passing as arguments in ROS command for running service client as

3.2 Application Description 91

it showing in figure 3.13.

Figure 3.13: ROS Command to initiate UnitCall Service

Call list is developed to run ”call client” service automatically under two con-

ditions. These conditions determine when the message is going to be sent.

Standard message

Normally, a message is sent to ”Base” every 5 minutes. Along with the status of

”Unit”, the message also contains a value (j=1 or j=0) that indicates a trespass

or not.

Alert message

Every time there is a new human trespass in the area and so the result from

OpenCv is j=1, ”Unit” informs the ”Base” with an alert message. OpenCv

generates a value (1 or 0) for every captured frame meaning several values per

second. This is a large and unnecessary amount of information as ”Base” needs

to be informed only once by the time and duration of the event. Therefore,

call list and detect were implemented to send the message once when j=1 for

the first time, implying there was a trespass, and then send the message again

when j=0 for the first time as well, implying human has left the area.

The messages are sent from ”Unit” to ”Base” using ROS communication system.

Call Server is developed to receive messages coming from ”Unit” and then reg-

ister the individual values in a table in database. Client-Server communication

description can be found in detail in 2.1.7.

Table UnitData has 11 titles in columns, each one of them represents the names

of the incoming variables 3.14. Every new message is a new row in the table

and their values are placed in the corresponding name.

3.2 Application Description 92

Figure 3.14: Database UnitData

App.py file opens a HTML page in which the content of the ”Unitdata” database

table is displayed. The function print items makes a connection with the database

and then fetches all rows to a HTML table. The function is triggered every 5sec

using refresh module. In case UnitData has been filled with a new message, the

table Base is updated with a new row. In addition, in case of an alert message,

a pop up window appears in order to be noticed by the control staff.

conn = sqlite3.connect('~/Unitdata.db')

cursor = conn.cursor()

cursor.execute('SELECT * FROM COMPANY ORDER BY recieved_time

DESC')↪→

items=cursor.fetchall()

cursor.execute('SELECT * FROM COMPANY ORDER BY sent_time DESC

LIMIT 1')↪→

k=cursor.fetchone()[7]

cursor.execute('SELECT * FROM COMPANY ORDER BY sent_time DESC

LIMIT 1')↪→

z=cursor.fetchone()[2]

global x

if k==1 and z!=x:

root=tk.Tk()

root.withdraw()

tkMessageBox.showwarning('Base','Alert!')

x=z

return render_template('print_items.html', items=items)

3.2 Application Description 93

3.2.2 BaseCall Development

Figure 3.15: BaseCall Service

3.2 Application Description 94

Standard messages can be requested any time from user in ”Base”. When ”new

message” or ”photo” options are pressed, BaseCall service is activated from

app.py file, in order to receive the standard message instantly.

if request.method=='POST' and request.form['action'] ==

'NewMessage':↪→

os.system('python ~/request_server.py 0')

elif request.method=='POST' and request.form['action'] ==

'Photo':↪→

os.system('python ~/request_server.py 1')

elif request.method=='POST' and request.form['action'] ==

'Video':↪→

os.system('rqt_image_view')

In case the ”new message” button is pressed, ”request server” takes ”0” as

argument (a=0). Alternatively, if ”photo” is pressed, request server” takes ”1”

as argument (a=1). In both cases the value is sent to ”request client” which

instantly updates the sensors’ data and responds to ”Base”.

reload(values)

from values import x, y, r, q

reload(camdata)

from camdata import j, t

reload(gps)

from gps import lat, lon

l=[x,y,lat,lon,j,r,q,t]

return "%s"%(l)

However, in ”photo” case, an image is sent back to ”Base”. This is achieved

with using the image saver ROS package 2.1.9. The node image saver runs in

Unit with additionally parameters to filter the script and waits until a call is

made in order to save an image 3.16.

3.2 Application Description 95

Figure 3.16: Image saver listens to cv camera node topic and saves an image

until a service call is made

$ rosrun image_view image_saver image:=/cv_camera/image_raw

_save_all_image:=false _filename_format:=image.jpg

__name:=image_saver

↪→

↪→

if req.a==1:

os.system('rosservice call /image_saver/save')

os.system('scp ~/image.jpg

base@marvin:~/web_application/static/image')↪→

Then every time the option ”photo” is pressed and therefore a=1, ”request client”

activates ”image saver” to capture an image and store it in ”Unit” machine’s

hard drive. Then the image is transferred to ”Base” machine through Secure

Shell (SSH).

When the image is saved to ”Base”, ”app.py” displays the image in a window

using again the Tk() module as message pop up window.

img = ImageTk.PhotoImage(Image.open(path))

panel = Label(root, image = img)

panel.pack(side = "bottom", fill = "both", expand = "yes")

The standard message is stored in ”Unitdata” table with the same procedure

as ”Unitcall” service.

3.2 Application Description 96

Lastly, the button ”video” opens ROS plugin image view. This way user chooses

visualization of the topics which are running in Unit. This is accomplished due

to export ROS MASTER URI where all nodes in ”Base” can locate and use

nodes running in ”Unit”. According to these facts, in image view two topics

are available, ”detected face” and ”/cv camera/ image raw”. Both display the

area around Unit with the only difference that ”/detected face” has undergone

image processing.

A flow diagram of the process is presented in 3.17.

3.2 Application Description 97

Figure 3.17: Flow diagram

Chapter 4

Results

This chapter describes the functionality of the application, thus it presents

screen screenshots presentation to explain step by step the final application

design.

4.0.1 Application prerequisites

In order to be able to begin with the installation and running the application,

following prerequisites must be installed on the Unit machine:

• Ubuntu 14.04

• Python 2.7

• ROS Indigo

• OpenCV 2.4

• cv camera node

• image saver

And the following prerequisites must be installed on the Base machine:

• Ubuntu 14.04

98

99

• Python 2.7

• ROS Indigo

• Sqlite

4.0.2 Application Startup

Base startup screen

The Base table is the first screen that user faces after entering the application

URL. The platform contains four available buttons, ”new message”, ” show

alerts” , ”photo”, ”video”.

Figure 4.1: Startup Screen-Base

The table 4.1 displays the Unit’s status. The Base table is auto-refreshed peri-

odically in order to receive the updated status. User can also manually refresh

the HTML page at any time. As long as there is no trespass, the value ’ok’ is

presented along with the rest of the Unit’s status 4.2.

100

(a) Window displaying the surveillance

area

(b) Base table

Figure 4.2: Unit’s status without trespass

When Unit detects a threat, a message is sent instantly to Base and the alert

window pops up 4.3.

101

(a) Window displaying the surveillance

area

(b) Base table with alert message

Figure 4.3: Unit’s status with trespass

After clicking the ’ok’ button, the pop up window closes, and the user can

examine the alert message 4.4.

102

Figure 4.4: Alert message

new message

By clicking the ’new message’ button, the user can request a new message from

the Unit. After a few seconds, the message is displayed on the screen 4.5.

Figure 4.5: New message is added on table Base

show alerts

By clicking the ’show alerts’ button, the user can seclude rows that containing

103

only alert messages 4.6.

Figure 4.6: Secluded alert messages

photo

In case a visual contact is required, the ’photo’ button requests, along with a

new message, an image from Unit. Then, the image is displayed in a pop-up

window 4.7.

Figure 4.7: Photo displayed in Base screen

video

There are cases where the user not only wants to use a single image to examine

the Unit’s territory, but also use an option of a real time video streaming from

camera. This is achieved with ”video” button 4.8.

104

(a) ROS rqt image view displaying the surveillance area-Topic

”/cv camera/image raw” selected

(b) ROS rqt image view displaying the surveillance area-Topic ”/de-

tected face” selected

Figure 4.8: Video area surveillance

Chapter 5

Conclusions and Future

Work

5.0.1 Conclusions

The aim of this master thesis was to design and develop an application that will

have the merit to operate under a ROS software environment. In the project

the idea of constructing a complete security system was implemented in order to

inspect and secure a distributed area from possible trespass. ROS service was an

ideal method for communication and data transferring as well as ROS topics and

plugins for integrating with sensors. The individual software parts were selected

in order to be simple, efficient and integrate with each other’s environment.Also,

taking into consideration that such a system requires nothing more than two

machines containing average processing power with a typical web camera, the

applicability of such a system is widened due to the low cost.

The project was tested under laboratory circumstances with two machines as

Unit and Base point. The system demonstrated its ability to provide a commu-

nication model where messages are successfully sent either automatic or under

request. Among that, the application detects faces and eyes with acceptable

accuracy, while sends data and images to remote machine where they are stored

and then displayed on screen. The communication was tested under local net-

work and the messages as well as the images were being sent at acceptable speed.

105

106

In case of possible network failure, the application is temporarily blocking the

operation in order to prevent message loss. The messages are successfully sent

after the communication is restored. Finally, real time video adds a visual

perspective in user’s possession. Though, in remote connections the streaming

seems to be a bit slow.

5.0.2 Future Work

Construction of a Unit Device-Real Sensors in Unit Device

When the project becomes realisable real sensors are going to be mounted in

Unit Device, transmitting all the necessary information as messages. Also,

the web camera will be replaced with stereo camera which will provide higher

resolution and wider range. These new hardware functionalities are proposed

to integrate and upgrade the software development of this project.

ROS Improvements

Due to the enhancement with more sensors in Unit device, more nodes need

to be implemented in order to control each sensor and its messages. A new

ROS service or a topic node for every new driver sensor should be developed,

depending on what kind of communication it is needed to achieved.

OpenCv Improvements

In this project OpenCv detects faces and eyes with the pre-trained haarcascades.

In the real implementation camera should recognize humans as divers, since the

Unit Device is placed underwater.

Design Improvements

Application’s platform design was created in order to provide the basic features

for a user. It is needed further design improvements to become even more

user-friendly and also even support an extra implementation for a touch screen

mode.

Network Investigation

The tests in University laboratory used LAN Wi-Fi connection between the two

machines. In further implementation it is proposed internet broadcast from

satellite which will eliminate the costs in sending messages and the possibility

107

of connection loss.

Network-Application Security

It is recommended in both PC hard drives, to be provided with passwords on

restart and also, network security methods. Furthermore, application’s platform

should be enhanced with ”login” and ”password” section in order to provide

permission only to qualified staff.

Multi-threading

The project required concurrent process of data files in different time. This

fact is controlled more efficient without limitations and less future bugs with

multi-threading nodes.

Bibliography

[1] ROS.org http://wiki.ros.org/

[2] 8 reasons why you should use ROS for robotics projects

https://niryo.com/2018/01/8-reasons-use-ros-robotics-projects/

[3] 15 reasons to use the robot operating system ros

https://www.intorobotics.com/15-reasons-to-use-the-robot

-operating-system-ros/

[4] Anil Mahtani, Luis Sánchez, Enrique Fernández, Aaron Martinez Effective

Robotics Programming with ROS Third Edition. Birmingham, 2016

[5] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, TaeHoon Lim ROS Robot

Programming-From the basic concept to practical programming and robot

application. Dec 22, 2017

[6] Enrique Fernández, Luis Sánchez Crespo, Anil Mahtani, Aaron Martinez

Learning ROS for Robotics Programming Second Edition. Birmingham, 2015

[7] Lentin Joseph Mastering ROS for Robotics Programming. Birmingham, 2015

[8] Morgan Quigley, Brian Gerkey, and William D. Smart Programming Robots

with ROS. O’Reilly, 2010

[9] R. PATRICK GOEBEL ROS By Example-A Do-It-Yourself Guide to the

Robot Operating System. 2012

[10] Jason M. O’Kane A Gentle Introduction to ROS. University of South Car-

olina, 2014

108

BIBLIOGRAPHY 109

[11] Joao Gomes, Francisco Marques, Andre Lourenco, Ricardo Mendonca, Pe-

dro Santana,Jose Barata Gaze-Directed Telemetry in High Latency Wireless

Communications: The Case of Robot Teleoperation.

[12] Giuseppe Conte, David Scaradozzi, Laura Sorbi, Luca Panebianco, Daniele

Mannocchi ROS Multi-agent Structure for Autonomous Surface Vehicles.

Università Politecnica delle Marche

[13] Abhishek B, Gautham S, Varun Rufus Raj Samuel D, Keshav k, U.P. Vi-

gnesh, Shyam R Nair ROS based Stereo Vision System for Autonomous Ve-

hicle. International Conference on Power, Control, Signals and Instrumen-

tation Engineering 2017

[14] SSH COMMAND

https://www.ssh.com/ssh/command/

[15] Secure Shell (SSH)

https://searchsecurity.techtarget.com/definition/Secure-Shell

[16] How To Set Up SSH Keys

https://www.digitalocean.com/community/tutorials/how-to-set-up

-ssh-keys--2

[17] Understanding the SSH Encryption and Connection Process

https://www.digitalocean.com/community/tutorials/understanding

-the-ssh-encryption-and-connection-process

[18] Basic SSH Commands

https://www.hostinger.com/tutorials/ssh/basic-ssh-commands

[19] Using SSH key in your web development workflow

https://studiok40.com/ssh-key-workflow/

[20] Database

https://www.britannica.com/technology/database

[21] What is Database? What is SQL?

https://www.guru99.com/introduction-to-database-sql.html

[22] database (DB)

https://searchsqlserver.techtarget.com/definition/database

BIBLIOGRAPHY 110

[23] Types of database management system and their evolution

https://www.analyticsvidhya.com/blog/2014/11/types-databases

-evolution/

[24] Structured Query Language (SQL)

https://www.techopedia.com/definition/1245/structured-query

-language-sql

[25] SQL (Structured Query Language)

https://www.ntchosting.com/encyclopedia/databases/structured

-query-language/

[26] What is SQL? Structured Query Language explained

https://www.infoworld.com/article/3219795/what-is-sql-structured

-query-language-explained.html

[27] SQL Basics: Working with Databases

https://www.dataquest.io/blog/sql-basics/

[28] What-is-SQL-Server

https://www.databasejournal.com/features/mssql/article.php/3769211/

What-is-SQL-Server.htm

[29] How to set up and learn Sql on Mac

https://www.macworld.co.uk/how-to/mac-software/how-set-up-learn-sql

-in-mac-os-x-3638150/

[30] What is Computer Vision?

https://hayo.io/computer-vision/

[31] Computer vision

https://en.wikipedia.org/wiki/Computervision

[32] OpenCV

https://docs.opencv.org/master/index.html

[33] Detecting cats in images with OpenCV

https://www.pyimagesearch.com/2016/06/20/detecting-cats-in-images

-with-opencv/

BIBLIOGRAPHY 111

[34] Understanding YOLO

https://hackernoon.com/understanding-yolo-f5a74bbc7967

[35] Gary Bradski and Adrian Kaehler Learning OpenCV. O’Reilly, September

2008

[36] Minh Nguyen MACHINE LEARNING:DEVELOPING AN IMAGE

RECOGNITION PROGRAM – with Python, Scikit Learn and OpenCV.

TURKU UNIVERSITY OF APPLIED SCIENCES, 2016

[37] Paul Viola, Michael Jones Rapid Object Detection using a Boosted Cas-

cade of Simple Features. ACCEPTED CONFERENCE ON COMPUTER

VISION AND PATTERN RECOGNITION 2001

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi You Only

Look Once:Unified, Real-Time Object Detection.

[39] TRAIN YOUR OWN OPENCV HAAR CLASSIFIER

https://coding-robin.de/2013/07/22/train-your-own-opencv-haar

-classifier.html

[40] Face detection using OpenCV and Python: A beginner’s guide

https://www.superdatascience.com/blogs/opencv-face-detection

[41] Cascading classifiers

https://en.wikipedia.org/wiki/Cascadingclassifiers

[42] Gentle guide on how YOLO Object Localization works with Keras (Part

2)

https://heartbeat.fritz.ai/gentle-guide-on-how-yolo-object-

localization-works-with-keras-part-2-65fe59ac12d

[43] HTML

https://en.wikipedia.org/wiki/HTML

[44] HTML

https://www.computerhope.com/jargon/h/html.htm

[45] What is HTML?

https://www.yourhtmlsource.com/starthere/whatishtml.html

BIBLIOGRAPHY 112

[46] How Does HTML Work?

http://www.tech-faq.com/how-does-html-work.html

[47] freepik

https://www.freepik.com/free-icon/html-file-with-code

-symbol742687.htm

[48] Sebastian Raschka Python Machine Learning. Birmingham, 2015

[49] Quickstart-A Minimal Application

http://flask.pocoo.org/docs/0.12/quickstart/rendering-templates

	Contents
	Introduction
	Problem Description
	Literature Review
	Thesis Structure
	Contributions

	Background
	Robot Operating System
	History
	Why Use ROS
	Applications Using ROS
	ROS Terminology
	Message Communication
	ROS communication models differences
	Analyze Message Communication Flow
	Messages
	ROS Tools

	SSH Definition
	Set up ssh keys
	How it works

	Database
	Evolution of Databases
	SQL Definition

	OpenCv
	OpenCv Definition
	Computer Vision
	Haar-Cascade Detection in OpenCv
	YOLO
	OpenCv in ROS

	Hypertext Markup Language - HTML
	HTML Definition
	How HTML works

	Implementation
	ROS
	ROS Communication models
	UnitCall Service
	BaseCall Service
	ROS Master
	Network Setup in ROS
	OpenCV
	Sql
	Html

	Application Description
	UnitCall Development
	BaseCall Development

	Results
	Application prerequisites
	Application Startup

	Conclusions and Future Work
	Conclusions
	Future Work

