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Abstract 
 

Out of the numerous applications of biomimetic, aquatic inspired devices based on 

oscillating hydrofoils are able to achieve high levels of efficiency either for propulsion 

or for tidal energy extraction in nearshore and coastal regions. The ability to account 

and properly design for flexibility effects has the potential to further enhance the 

overall performance of such systems. 

 

In the present work, a hydro-elastic model is proposed for investigating the effects of 

chord-wise flexibility on the performance of flapping foils with variable flexural 

rigidity, and whose structural response is actuated by unsteady pressure field caused 

by the prescribed harmonic motion of the hydro-mechanical system. A fluid-structure 

interaction numerical method has been developed to simulate the time-dependent 

structural response of the oscillating hydrofoil. We present a low order boundary 

element panel method (BEM) for the unsteady hydrodynamics, coupled with a finite 

element method (FEM) for the cylindrical bending of thin elastic plates, based on the 

classical Kirchhoff-Love theory.  

 

Numerical results are presented concerning the performance of the system over a 

range of design and operation parameters, including Strouhal number, heaving and 

pitching amplitudes and effective angle of attack. To further illustrate the capabilities 

of the developed BEM-FEM coupled model, we validate the numerical scheme with 

experimental data, for the case of a chord-wise flexible thin plate under enforced 

heaving motion excited at the leading edge. The present model could serve as a useful 

tool in the design, assessment and control of biomimetic systems for renewable energy 

extraction. 
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Chapter 1 - Introduction  

 

Biomimetic design and production emulates biological solutions in order to tackle 

engineering problems while preserving efficiency and environmental sustainability. 

It is considered to be an active research area that benefits from developments in the 

fields of mathematical modelling, physics and even experimental biology. The term 

derives from the ancient Greek words for life (βίος) and imitation (μίμησις).  Living 

organisms through natural selection have developed structures well-adapted to their 

environment. A variety of fields such as agriculture, medicine, architecture, 

transportation, communication and energy have derived innovative solutions from 

the exploration of biomimicry. As progress in robotics, new materials and actuators 

gradually springs forward and the interest to reveal the physics behind the efficiency 

of locomotion in the aquatic environment remains novel biomimetic system ideas 

emerge.  Aquatic animals use a combination of muscle contractions, fin oscillations, 

hydrodynamic shapes and modulation of body flexural rigidity to achieve high 

velocities, remarkable manoeuvrability and rapid changes in direction; see the recent 

work by Shyy et al.  (2013).  

 

1.1 Applications Of Biomimetic Systems 

 

Out of the many application of biomimetic systems, flapping-wing thrusters have the 

potential to revolutionize commercial marine applications, by displaying significant 

advantages over conventional rotary propellers; see Triantafyllou et al. (2000) as well 

as Shyy et al. (2010), while for an extensive review refer to Rozhdestvensky & Ryzhov 

(2003). Flapping-wing thrusters are characterized by:  

o ecologically friendly low frequency operation 

o high thrust to power ratios 

o superior manoeuvrability 

o the ability to operate in a variety of motion regimes 

o acceptable cavitation characteristic 

o relatively low aerodynamic drag in the switched off position design 

versatility for operation in propulsion, stabilizer and controller modes.  

However, promising results can also be found for biomimetic propulsion devices 

based on entirely different concepts, such as the flexible oscillating duct (FOD) 

inspired by jellyfish motions that was proposed and studied in the work of Politis & 
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Tsarsitalides (2012). The powering performance of ships equipped these FOD systems 

displayed superior propulsive coefficients to that of conventional propellers.  

Moreover, recent experimental and theoretical work regarding the principle 

mechanisms for producing propulsive and transient forces in oscillating flexible 

bodies and fins in water have been used in state-of-the-art engineering prototyping. 

Such attempts aim to explore the possibility of constructing superior propulsion 

systems in terms of propulsive efficiency for modern autonomous underwater 

vehicles (AUVs). Among these projects, was the 1.2 m long laboratory robot MIT 

Robotuna that aimed to experimentally reproduce the locomotion mechanisms of the 

Atlantic Bluefin tuna and thus to reveal the physics behind it.  

Another interesting application, was the small human-powered submarine Aphalina 

designed by the Saint-Petersburg State Marine Technical University. This award 

winning prototype was equipped with a hydro-bionic thruster and showed good 

speed characteristics.  

 

 

Figure 1.1 The designs of MIT laboratory robot 'Robotuna' (left) and the human-powered 

submarine ‘Aphalina’ (right) from Rozhdestvensky & Ryzhov (2003) 

Thrust in most fish is generated via lateral caudal fin and body movements, but other 

species developed a different swimming locomotion using their median and paired 

fins. In body/caudal fin propulsion, where fraction of the body is displaced laterally 

the following categories have been identified. However, this mode’s insensitivity to 

changes of scale, as it operates efficiently at an extended range of Reynolds number, 

is the reason why it is regarded as the principal means of aquatic animal propulsion, 

see Lighthill’s earliest work on that topic (1969).  

In the Anguilliform group, muscle contraction that produces thrust is achieved through 

constant-sized flexion waves propagating along the slender bodies of fish such as eels. 

This primitive mode of undulations concerning the whole body results in increased 
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drag forces and relatively inefficient locomotion. In Sub-carangiforms the wave 

propagating along the body is of higher amplitude but concerns only the rear half. 

This effect is concentrated in the very rear of the stiffer body and tail in the Carangiform 

group. The Thunninform group is comprised of the high-speed and long-distance 

swimmers such as tunas, with crescent shaped large tails and extremely developed 

caudal locomotion. Lateral movements occurring only at the area of the caudal fin 

account for more than 90% of the total thrust generation.  

This diploma thesis is focused on the thunninform mode, which is considered to be the 

most efficient in the aquatic environment. It is found among a varied group of 

vertebrates such as teleost fish, sharks and marine mammals that evolved under 

different circumstances, see e.g. Sfakiotakis et al. (1999). In biomimetic propulsion 

applications, where optimization for high-speed locomotion in calm water is the key, 

the thunninform design is suitable. For slow swimming, rapid accelerations and 

demanding turning manoeuvring, however, that is not the case. For a more detailed 

classification of biological and bioinspired aquatic systems, the reader can refer to 

Salazar et al. (2018).  

 

Figure 1.2 Body/caudal fin propulsion swimming modes from primitive to derived, a) 

anguilliform, b) sub-carangirform, c) carangiform, and d) thunninform, adapted from Prats (2015) 

From a different perspective, biomimetic devices are also appropriate for efficient 

exploitation of wave renewable resources. Oceans have enormous wave energy 

reservoirs, a continuously renewed by feeding wind action. Ships moving in the 

seaway receive the wave energy and store it in the form of kinetic energy for heaving, 

pitching and other ship motions. However, uncontrolled ship motions have a negative 

impact in ship’s operability in severe sea states. Motivated by that, in the work of 

Politis et al. (2014) a biomimetic wing device equipped with an active pitch control 

mechanism was proposed to extract this kinetic energy from the ship’s motions, 

transform it to useful propelling power and simultaneously control and stabilize its 
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motions. The use of unsteady oscillating wing thrusters located beneath the hull, for 

the enhancement of the overall ship propulsion in the presence of waves has been 

studied by Belibassakis & Politis (2013) as well as Filippas & Belibassakis (2014), with 

the latter work also accounting for free surface effects.  

Biomimetic devices are also appropriate for efficient energy extraction of wave and 

tidal renewable resources, especially in coastal areas. The mutual existence of waves 

with strong following, oblique or opposing currents at various nearshore places, 

which otherwise is characterized by quite low wave potential, offers a motivation for 

comprehensive investigation of such resources and the development of hybrid 

technological devices; see the extensive review by Xiao & Zhu (2014), the recent and 

ongoing work of Belibassakis & Filippas (2016) as well as Filippas, Gerostathis & 

Belibassakis (2018).  

 

1.2 Flexible Flapping Foil Propulsion Systems 

 

This section will serve as a short literary review on the journey that started with early 

observations of aquatic swimmers in nature and is heading today towards the 

successful engineering applications of flexible oscillating wings operating as main 

propulsion systems. Recent studies concerning biomimetic propulsion phenomena 

prominently feature:  

o unsteady motions characterized by large-scale vortex structures  

o flapping kinematics in 3-D 

o flexible wing structures, see Shyy (2013) for more details.  

To tackle this complex fluid-structure interaction problem, researchers from various 

fields combine their knowledge to reveal the underlying physical mechanisms that 

account for high propulsive efficiencies and overall performance. We start with 

experimental work and then we present studies of numerical modelling or 

simulations in this topic.  

 

1.2.1 Experimental Studies 

 

One of the earliest feasibility studies of an oscillating fin propulsion control system as 

a vehicle actuator was conducted experimentally by Yamamoto et al. (1995),  showing 

promising results for the use on ships. Later on, Prempraneerach, Hover, & 

Triantafyllou (2003) showed experimentally that a properly tuned chord-wise 
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flexibility attribute can have a significant effect on the propulsive efficiency of 2-D 

flapping (heaving and pithing) foils, up to a 36% increase, compared to the efficiency 

of a rigid foil, with small loss in thrust. Also, a non-dimensional flexibility parameter 

is developed to provide a scaling law for the effects of flexibility. Another set of 

comprehensive experimental data, regarding the kinematics and hydrodynamics of 

flexible foil-like fins based on the bluegill sunfish, were produced by Lauder et al. 

(2006), (2007) using advanced technologies for visualization and water flow 

quantification.  

The effect of stiffness on thrust generating plunging foils at zero freestream velocity 

was studied experimentally by Heathcote et al. (2004). Direct force measurements 

confirmed that at high plunge frequencies the thrust coefficient in intermediate 

stiffness foils was the greatest. The least stiff foil could generate larger thrust at low 

frequencies, but the increased flexibility resulted in enhanced thrust/input-power 

ratios. The results also suggested that there is an optimum foil stiffness for a given 

plunge frequency and amplitude. Heathcote et al. (2007) performed another series of 

water tunnel experiments with particle image velocimetry (PIV) flow field 

measurements for flapping motions at low Reynolds numbers, with results suggesting 

that the effect of chord-wise flexibility is beneficial for purely heaving foils. Motivated 

by these results they performed another series of water tunnel experiments, presented 

in Heathcote et al. (2008), to investigate the effect of span-wise flexibility on the thrust, 

lift and propulsive efficiency of a rectangular wing in purely heaving motions. They 

reported that a limited degree of flexibility was greatly beneficial, a thrust benefit of 

50% was observed for a wing of intermediate flexibility and for a highly flexible wing, 

while the tip was observed to move out of phase with the root leading to a diminished 

thrust coefficient.  

In the work of Baranyyk, Buckham, & Oskai (2010) a method was presented for the 

experimental characterization of the propulsive performance of a family of oscillating 

plates composed of rigid and flexible segments of various proportions. They reported 

which Strouhal number, oscillating frequency and heave amplitude triplets provided 

the highest efficiency in the positive thrust-producing regime for 15%, 50% and 100% 

rigid plates respectively. On the effects of submergence at different depths, it was 

observed that an overall increase in the thrust coefficient across the oscillation 

frequencies was the result of the propulsor proximity to the bottom of the channel. 

The flow visualization revealed the formation of large dynamic stall vortices that 

influenced the wake structure, and suggested that their constructive interaction with 

trailing edge vortices might lead to overall improvement of thrust and efficiency.  

Thin foil unidirectional oscillations under fluid forces were modelled both 

numerically and experimentally by Alben et al. (2012). They reported good agreement 
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between the previously developed 2-D inviscid model and the experimental results 

concerning the number of wavelengths in their shape, their swimming speeds and the 

surrounding flows. The presented model allows for a simple analysis based on 

sinusoidal solutions that predicts power law scaling for the foil velocities, leading 

edge curvatures and shed circulation, as well as the distributions of peaks and troughs 

in these quantities as length and rigidity are varied. 

Dewey et al. (2013) presented experimental results on the role of flexibility and aspect 

ratio in bioinspired aquatic propulsion. This time, the experiments were performed 

on flexible panels actuated with pitching oscillations at their leading edge, to 

investigate the scaling of thrust production, with results indicating that the global 

maximum in propulsive efficiency across a range of panel flexibilities is achieved 

when 

(i) 0.25 < Strouhal < 0.35 

(ii) the frequency of motion is tuned to the structural resonant frequency of the 

panel.  

The research verified the earlier findings of Triantafyllou et al. (1993). 

Another series of experiments, performed on flexible panels actuated with heave 

oscillations at their leading edge, to investigate the scaling of propulsive performance 

we also conducted by Quinn et al. (2014). Both the trailing edge amplitude and the 

mode shapes of the panel were found to scale with dimensionless parameters 

originating from the Euler–Bernoulli beam equation. They concluded that if the panels 

were designed to be propulsion devices the Strouhal number in the self-propelled 

state would be approximately constant, and the swimming economy /u P


, as the ratio 

of freestream velocity to mean power input, would be dictated by the swimming 

speed.  

The response of a flexible plate actuated by a harmonic heaving motion about the 

leading edge in a uniform flow, was also experimentally studied by Paraz, Eloy, & 

Schouveiler (2014). The plate’s response was characterized by resonance peaks, as the 

forcing frequency gradually increased. The experiments were performed for a range 

of parameters such as the forcing frequency and amplitude, Reynolds number and 

rigidity revealing that nonlinearities are essential in proper fluid-structure interaction 

modelling.  

To gain a better understanding of the effect of flexibility and flapping amplitude on 

thrust generation and swimming efficiency they combined the experiments on the 

previous model system with a weakly nonlinear analysis, see Paraz et al. (2016). The 

complementary theoretical model, assumed 2-D fluid flow with transverse resistive 

drag effects to account for the nonlinearities. A modal decomposition system motion 
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allowed the prediction of the plate response amplitude and generated thrust, as a 

function of the forcing amplitude and frequency.  

The effect of flexibility on the time-averaged thrust can be beneficial for plunging foils 

even when the flexible region is confined to a small section near the trailing-edge, as 

it was reported by the experiment of Cleaver et al. (2014) using short thin plates of 

various flexibilities attached to foils. Across a range of frequency, amplitude and flap 

angle as parameters improvements in propulsion performance where estimated.  

Experimental gradient-based optimization via direct force measurements and PIV 

was used by Quinn et al. (2015) to maximize the propulsive efficiency of a flexible 

plate, under combined heaving and pitching motions. Their method, well-suited for 

the design of flexible underwater propulsors, reveals conditions for global 

optimization of efficiency:  

o Strouhal number is within an optimal range that varies weakly with 

amplitude and boundary conditions (0.40-0.53 for purely heaving motions 

and 0.26-0.33 for flapping motions) 

o the panel is actuated at a resonant frequency of the fluid–panel system  

o the heaving amplitude is tuned such that trailing-edge amplitude is 

maximized while the flow along the body remains attached  

o the maximum pitch angle and phase lag are chosen so that the effective 

angle of attack is minimized.  

Moreover, Richards & Oskai (2015) presented an experimental study for the 

investigation of the effects of the foil stiffness, inertia and oscillation kinematics on the 

thrust generation and efficiency of flexible oscillating-foil propulsion systems. The 

results revealed a damping behaviour that is affecting the dynamic structural 

behaviour of the foils tested. Also, the maximum efficiency occurred at the same 

frequency ratio that resulted in both a beneficial phasing of the deformation with 

respect to the driven motion and also the maximum overall amplitude of the motion.  

The role of chord-wise flexural stiffness in a rectangular foil undergoing pure pitching 

in a uniform current has been investigated experimentally by Fernandez-Praz (2017), 

using digital particle image velocimetry (DPIV) and load measurements with a 6-axes 

balance to study flow field patterns and hydrodynamic forces. The optimum chord-

wise flexibility in terms of propulsion efficiency reached 69% for the semi-flexible foil 

at Reynolds numbers studies. The results also indicated a strong relation between the 

tip amplitude and the coefficient of thrust, which should be taken into account for 

efficiency maximization in terms of variable flexibility for propulsion devices 

undergoing pitching motions.  
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Other parameters that offer significant improvements in the static thrust produced by 

oscillating flexible fins, such as variations in the stiffness profile, have been studied 

experimentally by Riggs et al. (2010). It has been shown that the variations in local 

chord-wise bending stiffness (EI) of a fin mimicking the stiffness profile of a 

Pumpkinseed Sunfish (Lepomis gibbosus), performed better in comparison to a fin of 

NACA 0012 aerofoil profile of similar dimensions.  

An experimental setup has been fabricated by Kancharala et al. (2016) to measure the 

stiffness profiles of real fish caudal fins. Chord-wise varying stiffness robotic fins 

fabricated using carbon fiber reinforced composites (CFRC) have been tested in the 

water tunnel to evaluate their superior performance over constant stiffness fins. 

 

1.2.2 Numerical Modelling based on Potential Theory  

 

Applications of potential theory in the field of aquatic locomotion date back to the 

pioneering work of the applied mathematician M. J. Lighthill, who not only studied 

the different types of aquatic locomotion but employed modelling techniques to 

analyse high propulsive efficiency, large-amplitude undulatory motions and was also 

among the first to explore the so-called slender body theory, see Lighthill (1969), 

(1971). In the 1960s Lighthill also investigated the inviscid flow around undulatory 

swimmers with slender bodies of gradually variable cross-section. Slender body 

theory results concerning thrust production and time rates of energy shedding were 

obtained, indicating that the mean values of these quantities depend on the movement 

and body shape at the tail-end vicinity only.  

As a generalization Wu (1970) solved the problem of slender fish shape optimization 

to determine the transverse oscillatory movements that correspond to a prescribed 

thrust at the expense of minimum required work for maintaining the motion. Recent 

revisions of Lighthill’s slender body theory by Yu & Eloy (2017) also led to a useful 

correction so that near the trailing edge of a body moving at a high Reynolds number 

a Kutta condition is satisfied, producing valid results for the fluid forces calculation 

even at moderate aspect ratios. These studies prove that potential based methods 

remain very useful up to date. 

Later on, Katz & Weihs (1978), (1979) presented a fluid-structure interaction model for 

the passive deformations of chord-wise flexible foils. A potential based model was 

used for the hydrodynamics in conjunction with a cantilever model for the elastic 

behaviour of flexible foils oscillating at large amplitude. Calculations of 

hydrodynamic forces, revealed that flexibility increased up to 20% compared to rigid 

structures, with a tolerable loss in thrust. However, very flexible foils have no practical 

use for engineering applications since thrust deduction is significant.  
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An attempt to model the entire locomotor system of a fish belonging to the Carangiform 

group was made by Cheng et al. (1998). They presented a continuous dynamic beam 

model, which integrates contributions from active muscle contraction, passive internal 

biomaterials, body inertia as well as fluid reaction. In the model a linear viscoelastic 

assumption is made for the passive behaviour of internal tissues, skin and backbone, 

while the unsteady fluid force acting on the swimmer is calculated by a 3-D waving 

plate theory. A review and a summary of studies on large amplitude undulatory 

swimming coupled to internal mechanics was presented by Pedley & Hill (1999) as 

one approach to the investigation of how fish achieve their remarkable swimming 

performance.  

More recent studies by Daniel & Combes (2002) revealed to what extent the surface 

shape of wings and fins is controlled by structural mechanics versus fluid-dynamic 

loading. To address this matter, they used combinations of computational and 

analytical methods in order to explore how bending stresses arising from inertial-

elastic mechanisms compared to stresses that correspond to fluid pressure forces. The 

somewhat intractable problem of fluid-solid interaction in animal flight does not need 

to be addressed, but for the aquatic environment that is not the case. They suggested 

that the coherent understanding of functional consequences of fin mechanical design, 

due to the high density of water itself, requires a solution to the fully coupled fluid-

structure interaction problem. 

From an engineering point of view, resonance and propulsion performance of flexible 

appendages is very important for applications. Towards that, Alben (2008) presented 

a 2-D vortex sheet model for the motion of a flexible body immersed in inviscid fluid 

and pitched periodically at the leading edge in small-amplitude regime. The results 

indicated that optimal efficiency is achieved as rigidity becomes small and decreases 

to 30-50%, depending on pitch frequency, as rigidity becomes large.  

Following a similar approach, another study by Michelin & Smith (2009) investigated 

the influence of bending rigidity of a heaving flexible wind in a 2-D imposed parallel 

flow in the inviscid limit. The trailing-edge flapping amplitude is shown to be 

maximal for a discrete set of values of the rigidity, at which a resonance occurs 

between the forcing frequency and a natural frequency of the system. Such resonances 

induce maximum values for the mean developed thrust and power input, showing 

that flapping efficiency is greatly enhanced by flexibility.  

Fully coupled fluid-structure interaction simulations for the passive deformations of 

a flapping foil with chord-wise or span-wise flexibility we carried out by Zhu (2007). 

The hydrodynamics are treated with a 3-D boundary element method and the 

structural response is approximated using a 2-D nonlinear thin plate model, with 

results demonstrating that the anisotropic structural flexibility of the body has 
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significant effects on its capability of thrust generation. This approach was later used 

to numerically examine the performance of a thin foil reinforced by embedded rays 

resembling the caudal fins Zhu & Shoele (2008). The simulations show that sensitivity 

of the fin to kinematic parameters; such as Strouhal number and amplitude of yaw 

motion, is reduced due to the fluid–structure coupling. More interestingly, even in 

cases when these parameters are not optimized, the flexible fin is able to function well 

as a propulsion device.  

Priovolos et al. (2018) presented a vortex-based method for the hydro-elastic analysis 

of a thin hydrofoil in flapping motion, operating as a biomimetic thruster. Thickness 

effects as higher-order contributions to the hydrodynamics were neglected and the 

flexible flapping thruster was free to deform under inertia and reactive forces caused 

by its forced motion and hydrodynamic pressure, respectively. The proposed method 

was validated through a series of comparisons with other models, as well as 

experimental results, for the case where the foil is clamped at its leading edge, while 

its trailing edge acts as a free end. The results illustrated that chord-wise flexibility can 

significantly improve the propulsive efficiency of such devices, up to 10%, in the 

realistic propulsion problem concerning an autonomous underwater vehicle (AUV). 

This work, supported by the Laboratory of Ship and Marine Hydrodynamics at the 

National Technical University of Athens (NTUA), serves as the main motivation for 

this diploma thesis. 

 

1.2.3 Computational Fluid Dynamics (CFD) Simulations 

 

The fundamental basis of almost all computational fluid dynamics (CFD) problems is 

the Navier–Stokes equations, which define many single-phase fluid flows. Numerical 

simulations with an unstructured, grid-based, Navier-Stokes 3-D solver were 

performed by Ramamurti (2002) to investigate the fluid dynamics of force production 

associated with the flapping motions of the bird wrasse. Previously measured fin 

kinematics where incorporated in steady, quasi-steady and unsteady simulations. 

Comparisons of the results with experimental data revealed that steady state 

computation where incapable of describing the phenomenon, whereas quasi-steady 

state computations with correct incorporation of experimental kinematics where 

useful in determining trends in thrust production. On the other hand, unsteady 

computations where found to be in agreement with the experimental data of force 

magnitudes and time history.  

Mittal et al. (2006) examined numerically the hydrodynamic performance of the 

bluegill’s pectoral fin by carrying out a set of simulations using experimentally 

recorded kinematics. A finite-difference-based immersed boundary methodology was 

used successfully to model the highly deformable, membranous fin. The results, 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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provided information (i) vortex dynamics and formation, (ii) surface and 

hydrodynamic forces.  

Navier-Stokes analysis was also employed by Miao & Ho (2005) to compute the 

unsteady, viscous flow fields associated with low-Reynolds number flows over a 

single chord-wise flexible foil executing prescribed plunging motions. The results 

showed that the propulsive efficiency is influenced primarily by the value of the 

reduced frequency rather than the Reynolds number and that out of the various runs 

performed the highest propulsive efficiency of reached 30.73%.  

Pederzani & Haj-Hariri (2006) presented a numerical method for the analysis of 

flexible bodies in unsteady viscous flow that models the foil body as an active flexible 

skin that actually drives the flow. Their fully implicit fluid-structure interaction 

methodology was validated by reproducing well-established results for vortex 

shedding from a stationary as well as an oscillating rigid cylinder.  

Luo et al. (2010) developed a 3-D, high-fidelity numerical approach to simulate the 

interaction between a viscous, unsteady flow and deformable thin structures. The flow 

solver was based on versatile sharp-interface immersed-boundary method in 

conjunction with a non-linear finite-element methods with capability of large 

deformations and various element types (frame, membrane, plate and shells) for the 

structural response. The flow-structure interaction in computed using an iterative and 

implicit approach. 

Sousa & Allen (2011) studied numerically the efficiency of thrust-producing 2-D 

inextensible membranes with variable bending rigidities undergoing pitching 

motions in a uniform flow. The dynamic response of the membranes was computed 

using a fluid/structure interaction method that couples a compact finite difference 

immersed-boundary method with a thin-membrane structural solver. The simulation 

results, showed that the thrust coefficient is primarily a function of Strouhal number, 

increasing monotonically for increasing values of St. Efficiency increases for 

increasing structural mass coefficient and reaches a minimum for intermediate values 

of the bending rigidity. The most interesting aspect of these results is the relatively 

high values for efficiency that can be obtained for such a simple configuration. 

Dai et al. (2012)  numerically investigated the effects of wing stiffness, mass ratio, 

phase angle of active pitching, and Reynolds number on the hydrodynamic 

performance of an elastic wing in hovering motion, clamped to a rigid leading edge. 

The code couples a viscous incompressible flow solver based on the immersed-

boundary method and a nonlinear finite-element solver for thin-walled structures. 

The dynamic pitching depends not only on the specified kinematics at the wing root 

and the stiffness of the wing, but also greatly on the mass ratio, which represents the 
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relative importance of the wing inertia and aerodynamic forces in the wing 

deformation.  

In another work by Dai et al. (2012) the propulsive performance of an elastic plate of 

aspect ratio 0.54 and mass ratio 0.1 that pitches around its leading edge in a free stream 

at Reynolds number 640, was numerically investigated. The fluid–structure 

interaction is achieved by combining a second-order, Cartesian-grid based immersed-

boundary flow solver, and a finite-element solver that can handle geometric 

nonlinearity of a thin-walled structure. It was found that for the rigid plate and the 

flexible plate with the first-mode deformation, the thrust coefficient nearly collapses 

onto the same curve when plotted against the Strouhal number defined using the tail 

excursion. Exceptions were found in overly flexible plates that indicated higher 

deformation modes. On the other hand, the flexible plate has significantly higher 

power efficiency than the rigid plate at the same Strouhal number.  

Finally Bourlet et al. (2015) presented a numerical study of the self-induced flapping 

motion of a flexible cantilever foil in a uniform axial flow, by employing a high-order 

fluid-structure solver based on fully coupled Navier-Stokes and non-linear structural 

dynamics equations. They investigated the evolution of the unsteady laminar 

boundary layer and showed that the induced tension within the foil is dominated by 

pressure effects and only marginally affected by skin friction.  

 

1.3 Flexible Biomimetic Wave and Tidal Energy Extraction Devices 

 

The study of wave and tidal energy extraction systems based on flexible structures is 

a relatively modern field of research with emphasis on efficiency and sustainability. 

The effects of chord-wise flexibility on the power extraction potential of a kinetically 

constrained oscillating thin plate that undergoes a heaving and pitching motion have 

only been studied by Jeanmond & Olivier (2017). In their work they presented a 2-D 

fully coupled fluid-structure interaction model based on a second-order finite-volume 

solver using the OpenFOAM library for the fluid flow in conjunction with a finite-

element solver for the beam equation with Hermite shape functions. The results 

presented were very promising, showing that flexible plates can extract up to more 

than twice the power of the corresponding rigid ones and that the dimensionless 

flexibility appears to be a key factor involved in the resonance phenomenon that 

greatly affects the flow field.  
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Chapter 2 - Hydrodynamics of Flapping Foils with Prescribed 

Deformations 
 

In the present work a symmetric wing of infinite span is considered to be fully 

submerged into the surrounding incompressible fluid. Under the assumption that the 

boundary layer around the streamlined foil is very thin, the negligence of viscous 

effects can be justified and the resulting flow on the exterior of the boundary layer can 

be modelled as a 2-D irrotational flow. The unsteady lifting flow problem of a flapping 

foil with prescribed deformations is treated with a non-linear pressure-type Kutta 

condition and frozen wake modelling for the trailing vortex sheet. A low order 

potential (panel) method has been implemented for the numerical approximation of 

the aforementioned problem. Significant 3-D and viscous effects are neglected under 

these assumptions, but nevertheless a quantitative understanding of the performance 

of wings with high aspect ratios is gained. In that sense, the present model could serve 

as a useful tool for the calculation of chord-wise pressure distribution in the 

preliminary design phase of biomimetic devices, suitable for propulsion or wave and 

current energy extraction.  

This Chapter begins with a brief literature review of Boundary Element Methods and 

the mathematical formulation of the unsteady hydrodynamic problem in an 

unbounded domain for the case of an oscillating foil with prescribed deformations is 

presented. Then, the numerical treatment of the aforementioned problem is presented 

using Boundary Element Methods (BEM). Numerical results are presented concerning 

the thrust coefficient and the efficiency of the flapping foil operating as a thrust 

producing system over a range of design and operation parameters for the case of 

rigid flapping foils. Furthermore, results concerning the overall propulsive 

performance of the system with prescribed deformations are presented to illustrate 

effects of chord-wise flexibility.  

These numerical results were obtained using a BEM-solver that was initially 

developed by Filippas & Belibassakis (2014), Filippas (2019) and has been extended, 

within the framework of this diploma thesis, to treat the problem of chord-wise 

flexible foils. 
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2.1 Brief Literature Review on Boundary Element Methods  

 

During the past decades, approximate numerical solutions proved to be a vital part of 

the research conducted both by engineers and physical scientists. Boundary Element 

Methods (BEM) refer to numerical techniques concerning the solution approximation 

of boundary integral equations (BIE). The purpose of BEMs is to specify an 

approximate solution that is an exact solution of the differential equation in the 

domain but satisfies the boundary conditions at a finite set of points. These methods 

first became known through the pioneering work of Russian mathematicians such as 

Mikhlin (1965) whose monograph in the theory of integral equations is considered a 

masterpiece. These formulations enabled the solution of partial differential equations 

for diffusion problems, acoustic wave propagation, elastoplasticity, fracture 

mechanics and among others fluid mechanics Brebbia et al. (1984). However since a 

more detailed overview of the wide range of BEM engineering applications is not the 

purpose of this literature review, from now on emphasis will be given to the use of 

BEM in aerodynamics.  

During the 1960s-80s several engineers such as Hess contributed by implementing the 

method for fluid mechanics and aerodynamics. The earliest works by Hess & Smith 

(1964) concerned the non-lifting flows around arbitrary 3-D bodies, but as experience 

gathered modelling 3-D aircraft lifting flows J.L & Friedman (1981) as well as the 

steady flow around propellers Hess & Valarezo (1985) was achieved. Meanwhile, the 

lack of comprehensive text for this field was covered by the works of notable scientists 

such as Moran (1984), Katz & Plotkin (1991). Boundary element methods present some 

interesting advantages over other popular numerical methods, such as Finite 

Difference or Finite Element Methods: 

o Dimensionality reduction, since the discretization schemes are implemented 

only on the boundary. Therefore the approximate solution of the 3-D 

formulation of a problem is equivalent to the determination of the unknowns 

on the specified 2-D boundary.  

o Handling unbounded domain problems with some closed boundaries is as 

easy as solving interior problems, since the unknown quantities, referring to 

the closed boundaries contain all the necessary information.   

o Reduction of computational cost is significant in various cases where integral 

terms can be evaluated analytically.  

o Especially for lifting flow problems, the boundary values of the solution and 

the corresponding derivatives contain all the physical information required. 

These data can be directly derived from the boundary integral equations. 
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However implementing Boundary Element Methods proves to be challenging due to 

the following: 

o Explicit knowledge of a fundamental solution for the differential equation is 

essential. Having a fundamental solution implicitly assumes homogeneity in 

the far-field, which is unrealistic in many problems. In some cases though 

where the fundamental solution is known but computationally costly other 

numerical methods could prove to be preferable.  

o The most suitable solutions to the differential equations are singularities in the 

form of sources, dipoles and vortices. This type of singularities though, comes 

with some challenging properties. Integration of singular kernels in many cases 

requires special treatment, in particular where analytical formulas are not 

available.  

 

2.2 Definition of the Unsteady Lifting Flow Problem 

 

Let us consider the fluid flow domain or region as an open domain 2D R  with 

corresponding boundaries 
B WD D D     that are assumed smooth in the sense of 

Lyapunov (Gunter, 1967), everywhere except from the trailing edge. The first 

component 
BD  refers to the surface of the foil and the second WD  to the trailing 

vortex sheet. The time-dependent boundaries ( )B BD D t    and ( )W WD D t    are 

denoted with respect to an inertial reference frame. 

 

Figure 2.1 Introducing the inertial and body-fixed coordinate systems 
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The unsteady lifting flow model that is presented in this thesis is in accordance with 

the notion of a deformable foil surface as well as wake evolution in time. The following 

coordinate systems are introduced in this work: 

 an earth-fixed coordinate system at which each point is represented by the 

( ( ), ( ))x t y t  or ( , ; )x y t  coordinates 

 a non-inertial body-fixed coordinate system, fixed at the foil’s centre of 

rotation along chord length with no inclination, in which an arbitrary point is 

represented by ( '( ), '( ))x t y t  or ( ', '; )x y t  

 a body-fixed curvilinear coordinate system defined on the boundary with 

each point represented as ( ( ))r s t  or ( ; )r s t  

The normal and tangent unit vectors, denoted as ( ; ) and ( ; )s t s tn τ  respectively, are 

defined uniquely at each point on the boundary using the body-fixed curvilinear. It is 

noted, that these unit vectors are time-dependent in order to comply with the 

modelling of a deformable boundary. However, for rigid hydrodynamics the normal 

and tangent unit vectors are only dependent on the s  parameter, i.e. ( ) and ( )s sn τ

respectively. 

The corresponding potential field  , ;x y t  with respect to the inertial reference frame 

is defined as a twice differentiable function in D . The boundary value of the potential 

 * , ;x y t  is also defined on the boundary, following a specific limiting process. 

Generally the boundary value of   on D  denoted by the function * , that can be 

discontinuous through the boundary  at point A D , is constructed by the following 

formula 

 *

0
( ; ) lim ( ; ) ( ; )

A A
s t s t s t





   r n       (2.1)  

where δ is a small parameter and An  a unit vector at point A not tangent to D . More 

details can be found in the work of Politis (2011). 

The body kinematics are defined with respect to the inertial reference frame, however 

for an arbitrary point 
BA D  we have the following representation, 

( ; ) ( ) ( ; )
A o
s t t s t r r r                (2.2) 

where ( ; )s tr  is used to describe the geometry of the foil in the body-fixed coordinate 

system and ( )O tr  contains the motion of the foil’s centre of rotation with respect to the 

inertial reference frame as shown in Figure 2.1.  
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In this Chapter, the following notation is used: 

 t /  denotes the time rates in the inertial reference frame 

 d dt/  denotes the time rates in the body-fixed reference frame 

The velocity of an arbitrary point on the body boundary with respect to the inertial 

reference frame is therefore given as 

( ; ) ( ; )
A t A
s t s t V r         (2.3) 

Moreover, a velocity potential ( , ; ) x y t  can be defined and ( , ; )x y t  denotes the 

potential gradient at an arbitrary point ( , ; )x y t . The governing equation for the 

potential field known as Laplace equation, can be derived from the law of mass 

conservation under the assumptions of irrotationality of the flow.  

2 ( , ; ) 0x y t          (2.4) 

As far as boundary conditions are concerned, on the moving boundary of a moving 

body, a no-entance boundary condition must be satisfied. 

( , ; )    ( , ; ) D ( )
B B B B

x y t x y t t    n V n     (2.5) 

where Bn  refers to the unit normal vector on the body boundary pointing in D . The 

behaviour of the potential field at infinity can be modelled as shown below; ensuring 

that at infinity the velocity field of the domain is not affected by the perturbations 

caused by the unsteady motion of the foil. 

x x 
   lim 0,  lim 0        (2.6) 

Furthermore, on the trailing wake the following kinematic and dynamic conditions 

must hold. The superscripts  ,u l  are used to denote wake's upper and lower side 

respectively in addition to the use of indices  B,W  for denoting values of ( , ; ) x y t  

on the body surface and the wake of the hydrofoil respectively.  

The following kinematic condition ensures the continuity of the normal velocity 

vector through the wake, 

( , ; ) ( , ; )
, ( , ; ) ( )

u l

W W
W

x y t x y t
x y t D t

n n

 
 

 
   (2.7) 

whereas the physical meaning behind the dynamic condition, that is the inability of 

the wake to support pressure difference 

( , ; ) ( , ; ),   ( , ; ) ( )u l

W W W
p x y t p x y t x y t D t      (2.8) 
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To proceed, we recall the approximate form of Bernoulli's theorem, with * /d dt  

denoting the rate of change of the trace of the potential with respect to a body-fixed 

reference frame 

   
*

21

2B

p d

dt


    V          (2.9) 

Using the kinematic and dynamic conditions in equations (2.7) & (2.8) along with 

Bernoulli’s theorem in (2.9) we derive the following, 

 , ;
0, ( , ; ) ( )W

W

D x y t
x y t D t

Dt


                    (2.10) 

where u l

W W W     denotes the potential jump (dipole intensity) on the wake and 

/ /    mD Dt t V  is the material derivative based on the mean total velocity 

 0.5 u l

m T T  V  on the trailing vortex sheet. The conditions discussed above 

result in an equation regarding the dipole intensity of the sheet, which determines the 

time evolution of the wake boundary 
WD . 

In the present work, time evolution of the trailing vortex sheet comes with prescribed 

kinematics. In this simplified wake model the vortices emitted from the trailing edge 

remain were shed. This linearization of the free wake dynamics leads to a significant 

simplification in the modelling, while providing satisfactory predictions in cases of 

moderately low unsteadiness. Similar wake models have also been described and 

used in the work of La Mantia & Dabichki (2009), (2011) and (2013). 

Extensions concerning the modelling of the non-linear free-wake dynamics are 

proposed as future work. The transport of trailing vorticity in the wake with respect 

to the body-fixed reference frame for the linearized wake model is expressed as 

   ; ; ,
W W TE W

t t t t D     x x V x    (2.11) 

where TEV  denotes an appropriate velocity determined from the derivative of the 

trailing edge’s motion. However, in the present study we have chosen the bisector of 

the trailing edge for the transport of trailing vorticity in the wake. Closer examination 

of the effects of changes in the direction towards which the transport of trailing 

vorticity occurs in the wake is also an interesting aspect that should be investigated in 

the future.  
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Figure 2.2 Time-evolution of trailing vortex sheet for flapping foil motion Filippas et al. (2014). 

Free wake mode (solid line) compared with simplified-wake linear mode (dashed line). 

 

2.2.1 Pressure-type Kutta Condition  

 

The existence of the trailing vortex sheet introduces complexity and requires 

boundary conditions which are different from the ones satisfied on the body 

boundary. Therefore a Kutta condition needs to be introduced for a unique solution 

to be obtained and fully close the initial boundary value problem. This ensures that at 

the trailing edge finite values of velocity occur and that the flow is smooth. In the 

present method the standard version of the pressure type Kutta condition that is 

implemented requires the pressure difference at the trailing edge to be zero and 

contains non-linear terms. 

Under the assumption that the pressure field is continuous in D , at the trailing edge 

defined as 
B WD D   is holds,  

       , , , ,

( , ; ) lim ( , ; ) lim ( , ; ) ( , ; )
TE TE TE TE

u u u u

B TE TE B B B W W W W TE TE
x y x y x y x y

p x y t p x y t p x y t p x y t
 

     (2.12) 

       , , , ,

( , ; ) lim ( , ; ) lim ( , ; ) ( , ; )
TE TE TE TE

l l l l

B TE TE B B B W W W W TE TE
x y x y x y x y

p x y t p x y t p x y t p x y t
 

     (2.13) 

where ( , ) , ( , ) , ( , ) .
B B B W W W TE TE B W
x y D x y D x y D D     

The classic pressure-type Kutta condition is now obtained from  (2.8) and (2.12) &  

(2.13) as it follows, 

( , ; ) ( , ; ),    ( , ; ) ( ) ( )  u l

B B B Wp x y t p x y t x y t D t D t      (2.14) 
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After Bernoulli’s theorem in equation (2.9) is applied to the upper and lower sides of 

the trailing edge we obtain,  

   
*

2 21 1
, ( , ; )

2 2

u u
u u u u uTE TE
TE B B TE B TE TE

p d
p p x y t

dt


      V V    (2.15) 

   
2 21 1

2 2

*

, ( , ; )



      

l l

l l l l lTE TE

TE B B TE B TE TE

p d
p p x y t

dt
V V    (2.16) 

Substituting relations (2.15) & (2.16) into equation (2.14) we obtain  

 
   

* *
2 2

2 21 1 1 1
( ) ( ) 0

2 2 2 2

u l

TE TE u u l l l u

TE B TE B B B

d

dt
V V V V

 
          (2.17) 

The following formula 

 *

B B B B

b

V n n=


               (2.18) 

expresses the relation between values of the tangent velocity and the normal velocity 

on the body-boundary (Politis G. , 2011). 

By substituting relation (2.18) in equation (2.17) we can derive the nonlinear pressure-

type Kutta condition, 

 
   

* *
2 2

* * 2 21 1 1 1
( ) ( ) 0

2 2 2 2

u l

TE TE u u u u l l l l l u

TE B B TE B B B B

d
b b

dt
n V n V V V

 
            

           (2.19) 

 
 

* * * *
* * 0

2

u l u l
TE TE u lTE TE

B B TE TE

d
b

dt

    
         

 
n V  (2.20) 
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2.2.2 Representation Theorem - Boundary Integral Equation (BIE) 

 

The solution of the lifting flow problem is obtained when Green’s theorem is applied 

and the total potential is expressed as a function of the boundary values of the 

potential   and its derivative 
n




. Therefore for each ( , )o ox y D   

0 0
0 0 0 0

( )

0 0
0 0

( )

0 0

( , | , )( , ; )
( , ; ) ( , | , ) ( , ; ) ( , )

( , ; ) ( , | , )
                ( , | , ) ( , ; ) ( , )

( , ; )
                ( , | , )

B

u
W

B
B

D t

u
uW
W

D t

l
W

G x y x yx y t
x y t G x y x y x y t ds x y

n n

x y t G x y x y
G x y x y x y t ds x y

n n

x y t
G x y x y

n
0 0

( )

( , | , )
( , ; ) ( , )

l
W

l
W

D t

G x y x y
x y t ds x y

n

   (2.21) 

where 

0 0 0 0

1
( , | , ) ln ( , | , )

2
G x y x y r x y x y


         (2.22) 

0 0 0 0

2

0 0

( , | , ) ( , | , )1

2 ( , | , )

G x y x y x y x y

n r x y x y

n r



 
 

   

                                                                  (2.23) 

and 

 0 0 0 0
( , | , ) ( ),( ) ,x y x y x x y y rr r                      (2.24) 

where u

W
D  , l

W
D  denote the upper and the lower sides of the shear layer respectively 

and the following functions in (2.22) and (2.23) refer to fundamental solution of 

Laplace equation in two-dimensions known as Green’s function and its derivative 

respectively. More details about the theory of linear integral equations can be found 

in the work of Kress (1989). 

As far as the physical interpretation of (2.21) is concerned the first term on the right 

hand side is the potential induced at point 
0 0( , )x y  from sources of 

( , ; )B x y t

n




 

intensity distributed at the body boundary. The second term expresses the potential 

induced from a dipole singularity distribution along body boundary of ( , ; )B x y t  

intensity. The same holds for the singularity distributions along the upper and lower 

side of the shear layer.  

 



32 

 

Green's formula can also be applied for every point 0 0( , )x y  on the boundary D  

0 0
0 0 0 0

( )

0 0
0 0

( )

( , | , )( , ; )1
( , ; ) ( , | , ) ( , ; ) ( , )

2

( , ; ) ( , | , )
                    ( , | , ) ( , ; ) ( , )

( , ; )
                    (

B

u
W

B
B B

D t

u
uW
W

D t

l
W

G x y x yx y t
x y t G x y x y x y t ds x y

n n

x y t G x y x y
G x y x y x y t ds x y

n n

x y t
G

n
0 0

0 0

( )

( , | , )
, | , ) ( , ; ) ( , )

l
W

l
W

D t

G x y x y
x y x y x y t ds x y

n

  (2.25) 

At this point we use (2.7) and (2.10) to derive the following 2nd Fredholm-kind weakly 

singular integral equation. For 0 0( , )x y D  

B

B W

B B

D t

B B W

D t D tb x y t

G x y x y
x y t x y t ds x y

n

G x y x y
G x y x y ds x y x y t ds x y

n

0 0
0 0

( )

0 0
0 0

( ) ( ), ;

( , | , )1
( , ; ) ( , ; ) ( , )

2

( , | , )
( , | , ) ( , ) ( , ; ) ( , )V n

 (2.26) 

where 
u l

W W W W  denotes the potential jump or the dipole intensity on the 

wake. Since Kelvin’s theorem holds, the potential jump at the trailing edge is equal to 

the value of circulation around the foil at time t and in problems of unsteady motion 

this value changes over time. 

 
 

 ( , ; ) ( , ) 



    
BD t

t x y t ds x y t       (2.27) 

We conclude at this point that under the physical interpretation of (2.10), according to 

which the trailing wake behaves as a material curve, that W  is not constant along 

the wake boundary 
WD  since it changes over time representing the history of 

circulation. Information about the circulation at each time step is stored in values of 

potential jump W  on 
WD  with the last integral term in the boundary integral 

equation (BIE) in (2.26), expressing the memory effect of the wake.  

The BIE in relation together with Kutta condition in (2.20) provide us with a system 

of equations for the unknown boundary fields ( , ; )B x y t  on the body boundary and 

the dipole intensity W  at the vicinity of the trailing edge. The solution of the 

aforementioned problem can be achieved using different approaches which are 

presented and discussed in more detail in Section 2.3.1.  
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2.3 Discretization Scheme for BEM 

 

In the present study a low-order potential based boundary element (panel) method 

has been implemented to model numerically the unsteady flapping foil motion in 

infinite 2-D domains. The discretization scheme begins with an appropriate boundary 

approximation. In our case the boundary D is decomposed into a finite number of 

line segments, the so called boundary elements. Each element is characterized by its end 

points and the mid-point; denoted as nodes and collocation points respectively, see e.g. 

the discretization on the body boundary of the foil in Figure 2.3. Since the boundaries 

introduced in the mathematical formulation are time-dependent, the boundary 

elements on the trailing wake will be increased in number as time evolves, whereas 

on the deformable foil body changes in the boundary element’s length are allowed.  

The fundamental solution in (2.22) satisfies the governing equation everywhere on the 

domain, therefore the next step towards the discretization is to satisfy approximately 

the boundary conditions on both the body boundary and the trailing wake in their 

discretized version. We assume that on the boundary we have piecewise-constant 

intensity distributions of the fundamental solution and its derivative, also known in 

fluid mechanics terminology as source and dipole respectively.  

 

Figure 2.3 Boundary discretization and boundary elements for a NACA 0012 airfoil 

On the body boundary we use distributions of both sources and dipoles, whereas on 

the trailing wake solely dipoles. This is essential in order to comply with the dynamic 

condition on the wake in equation (2.8), since the trailing wake as a material surface 

cannot support pressure difference.  

Therefore, on the discretized boundary we have piecewise-constant distribution of the 

potential, 

( , ; )     i=1,...NB Bi Bx y t      (2.28) 

( , ; )  i=1,...NW W Wi Wi
x y t     (2.29) 
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Also, for the discretized no-entrance boundary condition we have, 

( , ; )
  i=1,...NBiB

B B i B
i

x y t
V n b

n n
  (2.30) 

Finally, we assume that the boundary integral equation (BIE) is satisfied at a finite 

number of points, known as collocation points. In the present study the mid-point of 

the boundary elements have been chosen to the be collocation points. This also holds 

for the Pressure-type Kutta condition, presented in equation (2.20).  

For ( , ) , 1,...i i Bx y i N  

      1 1

1 1 22

B B F

j

N N N
ij

ij Bj ij B B ij Wj i Wj
j j j

b

B A B B


 
  

 
        

 
  V n  (2.31) 

where ij  is the Kronecker delta and ijA , ijB  are induction factors.  

The term Wj  approximates the potential jump (dipole intensity) on the trailing wake 

thus denoting memory effects, while 
1W  refers to the potential jump on the wake 

element that is closest to the trailing edge. This panel element is also denoted as the 

Kutta-strip. At each time step a new element is generated on the wake with unknown 

dipole intensity 
1W .  

The induction factors ijA , ijB  represent the induction potential at collocation point-i 

due to a source or dipole distribution located at panel-j and are defined as follows 

( , | , ) ( , )ij s i i j j j j

panel j

A G x y x y ds x y       (2.32) 

( , | , )
( , )

s i i j j

ij j j

panel j

G x y x y
B ds x y

n




     (2.33) 

Despite occurring singularities the above integrals (2.32) & (2.33) for low-order panel 

methods can be evaluated analytically, see e.g. Katz & Plotkin (1991) as well as Moran 

(1984). This proves to be a significant advantage and gain in computational cost. 

Otherwise, adaptive integration techniques can be used for the numerical calculation 

of singular integrals, see e.g. Filippas (2019). 

The matrix form of equation (2.31) holds as is, 

1W K W     A Φ S b W μ W       (2.34) 

where  

 ,   i {1,...N },   j {1,...N }ij B BA  S  
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       1, , 1,..., , 2,..., ( )ik K i B WB B i N k N t     W W  

The Dirchlet-toNeumann operator (DtN) is introduced using the inverse matrix of 1
A  

in the discretized form of the BIE. This operator sets a mapping between the boundary 

values of the potential and their normal derivatives, by containing essential 

information regarding the distribution of sources and dipoles on the body boundary. 

It is important to note that this operator remains unchanged in rigid body problem, 

but that is not the case if deformations occur. In that sense, flexible body 

hydrodynamics are computationally more demanding than the rigid body 

simulations. We can reformulate (2.34) as,  

1W W     Φ D b P μ Z         (2.35) 

 1( )W W  P A W μ         (2.36) 

where 1D A S  denotes the DtN operator.  

The discretised form of the non-linear Pressure-type Kutta condition is presented 

below with the non-linear and linear terms presented separately for convenience. The 

interested reader can also refer to Filippas & Belibassakis (2014), Filippas (2019). 

 , ,1d

dt

   
 L N        (2.37) 

 
 

 
 1 21 2 1 1 2

,2 ,1 , , 1 3

1 12 2 2

B

B

B

N

N

N

g
d d      




       

g g τg g τ g g
L   (2.38) 

       1 1
, , 1 ,2 ,1 , , 1 ,2 ,1

1 1 1 1

1

2

B B

B B

B B

N N

N N

N Nd d d d            

 

   
               

      

τ ττ τ
N  

                                                                                                                                 (2.39) 

   1 , ,1, ,1 BB
B N BB N B

b b     g n n V V       (2.40) 

   2 , ,1, ,1 BB
B N BB N B

b b     g n n V V       (2.41) 

   
22

3 ,1 ,

1

2 BB B Ng   
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where τ  is the unit tangent vector on the body contour defined in the clockwise 

direction and jd  is the curvilinear distance between the midpoints of the  , 1j j   

panels.  
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2.3.1 Solution of the Hydrodynamic Problem 

 

As it was previously mentioned, the solution of the hydrodynamics problem can be 

achieved using various approaches. To begin, we focus on the role that will be 

assigned to the BIE presented in (2.26). The BIE can be used as: 

1. part of a system of equations containing information about the unknown 

boundary fields ( , ; )B x y t  on the body boundary. Using the pressure-type 

Kutta condition, as presented in Section 2.2.1, or the Morino condition we 

construct the complete system of equations, with the boundary fields ( , ; )B x y t  

and 1W  as unknowns. 

2. a constraint to the dynamical system evolution equations. The latter is 

constructed using the pressure-type Kutta condition, while the DtN operator 

acts as a constraint. This operator is constructed using the discretized BIE. The 

dynamic variable in this case is 1W  denoting dipole intensity in the vicinity of 

the trailing wake. 

 

2.3.1.1 First approach - System of equations 

 

Using the BIE along with the Morino condition we can construct a linear system of 

equations for the unknown boundary fields ( , ; )B x y t  and 1W  at the vicinity of the 

trailing edge, which can be solved at each time step of the simulation, for more details 

refer to Filippas (2013).  

Instead of using Morino condition in this section we present a more accurate approach 

to the problem solution using pressure-type Kutta. A finite difference method (FDM) 

is used for the temporal and spatial discretization of the pressure-type Kutta condition 

in order to form a system of nonlinear equations along with the BIE relation.  

The resulting system of equations can be solved numerically after the appropriate 

discretization at each time step of the simulation.  

Particularly, a backward finite difference scheme in time combined with forward and 

backward differences in space has been used for the discretization of the pressure-

type Kutta condition in the set of equations (2.37)-(2.42) as follows,  
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The linearized form of the above equation is, 
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where  , ,     1,k x Bk y Bk Bc k N   i j . In the relations above, τ  in the above relations 

refers to the unit tangent vector on the body contour defined in the clockwise direction 

and jd  is the curvilinear distance between the midpoints of the  , 1j j   panels. Also, 

, 1, , 2 1, 2

0

4( ) ( )

2

t t t t t t t t

t

              



g     (2.45) 
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Returning now to the discretized form of the boundary integral (2.31), we derive the 

following expression by re-arranging terms, so that for ( , ) , 1,..., :i i Bx y i N  

      1 1

1 1 22


 

  

 
       

 
  

B B F

j

N N N
ij

ij Bj i W ij B B ij Wjj
j j j

b

B B A BV n   (2.49) 

In this form all the quantities in the rhs are known from the prescribed kinematics of 

the foil and the history of circulation of the foil, that has been evaluated at previous 

time steps.  

Equations (2.43)-(2.48) & (2.49) form a set of 1BN   equations which can be solved for 

the unknown values of Bi  and 
1w  at each time step. Moreover, this set of equations 

can be written in a more compact form, 
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and for the non-linear Pressure-type Kutta condition 
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or in linearized form 
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Equations (2.50)-(2.52) and (2.54) consist of a linear system of equations that can be 

solved explicitly for the unknown values of x . That could be, however, a first step for 

the solution of the nonlinear system of equations (2.45)-(2.47) and (2.53) using a 

General Iterative Method.  

In this work, for the present multivariate problem a Newton Raphson method is 

implemented at each time step as follows  

1

1 ( ) ( )n n n n



  x x J x f x         (2.55) 

where 1( )nJ x  denotes the inverse of the system’s Jacobian, which can be analytically 

calculated for the present formulation. To summarize the Jacobian is  
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with the following functions, 
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Finally, for the evaluation of   in the domain D  at every time step for each ( , )i ix y D  

the following expression can be used  

     
1 1 1

B B FN N N

i ij j ij Bj ij Wj

j j j

A b B B 
  

              (2.67) 

 

2.3.1.2 Second approach - First Order Initial Value Problem (IVP)  

 

The pressure-type Kutta condition in equation (2.20) contains a partial time derivative 

of the unknown potential. Therefore, it can be used after discretization as the 

dynamical system evolution equation with the DtN operator acting as a constraint and 

1W  as the dynamic variable. 

Particularly, we use the Leibniz rule for equation (2.37)-(2.42) and the DtN operator, 

see equation (2.35), in order to express the values of the potential in the vicinity of the 

trailing edge that appear in the discretized form of the pressure-type Kutta condition, 

in terms of  the dynamic variable 1W . In this way we obtain the following nonlinear 

first order differential equation, 

   
 

   
1

1
1 1 1


  


        



D bW
W W W

dd d
P

dt dt dt
N L   (2.68) 

where  
1




D

Bi N

ij i
D denotes a vector 

1

Bi N

i i
P P




 ,

1

Bi N

i i
Z Z




  scalar quantities. 

Notice that that   symbolizes the difference of a function   at the trailing edge. 

For more details see Filippas & Belibassakis (2014) and Filippas (2019). 

Under the assumption of prescribed kinematics, b  is known at each time step from 

the no-entrance boundary condition in equation (2.5). Also, ( )WP  in equation (2.36) 

or P  in equation (2.68) contains information regarding the distribution of dipoles 

on the wake, known from the time history.  

Especially for rigid body hydrodynamics the DtN operator needs to be evaluated only 

once, saving computational cost and thus time. However, in formulations where the 
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body boundary is deformable, this operator needs to be re-evaluated at each time step, 

making simulations of chord-wise flexible foils more computationally demanding.  

Matrix Z contains at each time step information concerning the induction factors for 

a dipole singularity of unit strength at the panel element known as Kutta-strip. Also, 

since this differential equation contains both linear and non-linear terms, an 

appropriate numerical scheme for the time integration need to be implemented. 

To accomplish that, the initial value problem (IVP) with respect to the dynamic 

variable 
1WU  is presented below in a more compact notation 

( ),
d

dt


U
f U ( )o ot U U        (2.69) 

       1 1
( ) [ ] [ ] [ ]

    
   

  

D b U U
f U U

d d P

dt dt

N L
 (2.70) 

where ( )f U  denotes a vector function.  

As far as numerical solutions for first-order IVPs are concerned, we could use either 

explicit or implicit methods from the two main categories (i) Linear multistep methods  

and (ii) Runge-Kutta methods. 

In the present study a higher-order Adams-Bashford-Moulton (A.B.M.) scheme is 

implemented. This forth order method falls into the linear multistep category, requires 

two evaluations of the vector function f at each time step and has error estimate of 

order (Δt5) providing the required accuracy stability and efficiency, see Longuet-

Higgins & Cokelet (1975) as well as Filippas & Belibassakis (2014). 

The time derivative terms   /d dt ,   / D bd P dt  in equation (2.68) can be 

approximated numerically with a finite difference scheme. To proceed, with ( )tU  

known at time step t, the corrector step is the following, 

( ) ( ) [9 ( ) 19 ( ) 5 ( ) ( 2 )]
24

pre

t
t t t t t t t t t t


          U U f f f f   (2.71) 

with predictor step 

 ( ) ( )pre t t pret t t t    f f U       (2.72) 

( ) ( ) [55 ( ) 59 ( ) 37 ( 2 ) 9 ( 3 )]
24

pre

t
t t t t t t t t t t


          U U f f f f  (2.73) 

After the solution has been obtained, at each time step, the DtN can then be used for 

the calculation of the potential on the body-boundary. Subsequently information 

concerning the potential or the velocity field on the domain can be obtained from the 
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boundary data. Finally, for the evaluation of   in the domain D  at every time step 

for each ( , )i ix y D  the following expression can be used, 

     
1 1 1

B B FN N N

i ij j ij Bj ij Wj

j j j

A b B B 
  

             (2.74) 

 

2.4 Numerical Results  

 

The BEM-solver that was initially developed by Filippas & Belibassakis (2014), 

Filippas (2019) has been extended, within the framework of this diploma thesis, to 

treat the unsteady lifting flow problem of flapping foils with prescribed deformations. 

The initial 2-D version of the code was written in Matlab, a multi-paradigm numerical 

computing environment. In order to improve performance we  

o used vectorization techniques, offered in the recent versions of Matlab, in 

functions responsible for the construction of the DtN operator 

o added object-oriented features and data structures to make coding less error-

prone and user friendly 

 

2.4.1 Flapping-Foil Propulsion Parameters 

 

In the present study the unsteady flapping motion of the foil is described by three 

degrees of freedom (i) the forward motion ( )s t , (ii) the heaving ( )h t and (iii) pitching 

motion ( ) t  with respect to the inertial reference frame, see Figure 2.4. For simplicity, 

the oscillatory motions heaving and pitching motions are assumed to be harmonic. 

These motions are enforced on the pivot point located along chord length c , smooth 

transition between initial resting state and unsteady motion is accomplished with a 

time filter function 2( ) 1 exp( )oF t f t    where of
 .Therefore we have, 

( ) ( )s t F t Ut         (2.75) 

( ) ( )[ cos(2 )]ah t F t h ft       (2.76) 

( ) ( )[ cos(2 )]t F t ft             (2.77) 

where U  is the forward velocity, 
ah  the heaving amplitude,   the pitching 

amplitude, f the flapping frequency, φ the phase difference between the motions and 

  the initial pitching angle.  
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Figure 2.4 Flapping-foil propulsion parameters and kinematic characteristics 

The maximum angle of attack 
maxa  is another very important motion parameter, since 

it is connected with the initiation of the leading edge separation and the dynamic stall 

effects. The instantaneous angle of attack (effective angle of attack) for a stationary 

fluid in an un-bounded domain can be evaluated  

1 /
( ) tan ( )

/
  

  
 

dh dt
a t t

ds dt
      (2.78) 

This angle of attack is defined by the total velocity that an observer fixed at the pivot 

point along the foil’s chord length experiences, as a result of the forward motion and 

the heaving velocity. For the special case of (2.75)-(2.77) equation (2.78) is, 

1 sin( )
( ) tan ( )cos( )

 
    

   
 

oh t
a t t t

U
   (2.79) 

The main non-dimensional parameters for modelling the flapping motion, as 

discussed in Shyy (2013), are the following: 

o Reynolds number is defined as the ratio between inertial and viscous forces. 

For a flapping motion typically reference length refL  refers to an averaged 

chord length in span-wise direction, velocity refU  is the free-stream velocity in 

forward movement and v the kinematic viscosity of the fluid.  

Re
ref ref m

U L Uc

v v
        (2.80) 

o Strouhal number characterizes the behaviour of oscillating flow mechanisms, 

vortex dynamics and shredding behaviours. Particularly for natural flyers and 

swimmers at cruising conditions higher values of propulsive efficiency where 

encountered in a narrow region of 0.2 < St < 0.4, see Taylor et al. (2003). If  

2ref o

ref ref

f L h f
St

U U


         (2.81) 

 where 2ho  is the characteristic trailing edge amplitude. 
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o Reduced frequency is also a parameters that characterises the unsteadiness of 

the flapping motion. 

2

2 2

ref m

ref a

f L c
k

U h

 
         (2.82) 

o Advance ratio which can be defined as a function of Strouhal number is 

introduced in 2D forward flight as it is shown below. 

1

2

ref

a

U
J

f h St 
 


       (2.83) 

 

2.4.2 Calculation of Pressure and Forces 

 

It was previously mentioned that the present model could serve as a useful tool for 

the calculation pressure distribution along chord-length for hydrofoils of various 

forms. In this section we derive the formulas used in the calculation of pressure 

distribution and other integrated quantities that are important when the overall 

performance of flapping foil inspired propulsion is assessed.  

The pressure difference coefficient1 on the thin hydrofoil for a velocity, that is 

characteristic for the foil motion (e.g. the forward velocity of flapping foil thruster) is 

defined as 

21

2

l u
P

p p
C

U


         (2.84) 

In order for the forces acting on the hydrofoil to be calculated the evaluation of the 

pressure on the body boundary is essential. In the present study an unsteady version 

of Bernoulli’s equation derived from Euler’s equation was employed, see e.g. Filippas 

(2013), 

 
21

2


   



p

t
       (2.85) 

                                                 
1 In Chapter 4, were the fluid-structure interaction problem of chord-wise flexible foils 

is presented, the pressure distribution coefficient serves as the loading term in the RHS 

of the thin plate equation for the structural response of the deformable foil. 
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where ρ is the fluid density, ( , ; )p x y t  the perturbation pressure at point ( , ; )x y t  and 

t




 denotes the total velocity time rate with respect to a fixed observer at the inertial 

reference frame.  

The formulation of the BIE in equation (2.26) refers to quantities of the trace *  on the 

boundary but the corresponding rate of change denoted by 
*d

dt


 with respect to the 

body-fixed reference frame Ox y   can also be calculated (Section 2.2). A special 

treatment that results into the expression of the approximate Bernoulli’s theorem 

based on boundary data is found in Politis (2011). The final form of the approximate 

Bernoulli’s theorem as required for the calculation of perturbation pressure 

distribution on the body boundary is the following 

     
*

2 2* *1 1

2 2
B B

b

p d

dt
 

  


       V n V     (2.86) 

Finally for the non-dimensional pressure coefficient 
2/ 0.5pC p U  in conjunction 

with (2.9) the following is obtained, 
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V     (2.87) 

The instantaneous lift coefficient 
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         (2.88) 

The instantaneous thrust coefficient 

2

( ) 1
( )

1

2
B
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D
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          (2.89) 

The instantaneous moment coefficient 

2
2 2

( ) 1
( ) ( | )

1

2
B

M P

D

M t
C C s t ds

c
U c 

    n r      (2.90) 

where ( ; )s tr  is the reference vector pointing from pivot point to surface point.  

The moment coefficient is calculated with the formula presented above with respect 

to the centre of rotation and the negative values correspond to drag. Since the foil is 

passively submitted to flapping motions, consisting of heaving h and pitching θ, we 
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can define the instantaneous propulsive efficiency, as the ratio of the cycle-averaged 

power to the incoming energy flux,  

( )out

in in

P t U

P P


 
          (2.91) 

where ( ) ( ) ( )inP t L t h M t    denotes the power input to the foil. The cycle-averaged 

input power coefficient can also be defined as, 
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For the case of periodic oscillatory motions, we are interested in calculating the the 

mean values of the thrust and input power coefficient per cycle, as well as the 

amplitudes of the lift and moment coefficient. For the mean thrust and input power 

coefficient we have respectively,  

0

1
( ) 

T

T TC C t dt
T

        (2.93) 

0

1
( ) 

T

op opC C t dt
T

        (2.94) 

whereas for the amplitudes of the lift and moment coefficients the following formulas 

will be used 
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o T

M MC C t t dt
T T

       (2.96) 

The pressure distribution along the body-boundary can be evaluated from the 

approximate Bernoulli’s theorem in equation (2.86). Assuming that pressure remains 

constant at each panel the following non-dimensional instantaneous coefficients can 

be calculated as follows 
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where ,2 ,1,i i ix x x    ,2 ,1,i i iy y y    are respectively the x and y-axis projections of the 

panel-i on the body-fixed reference frame, while  ,ref refx y  refers to the center of 

rotation located along chord-length. 

 

2.4.3 Numerical Study 

 

This section begins with a discussion about the stability and convergence of the 

numerical schemes introduced in Section 2.3.1. In both approaches, where the 

pressure-type Kutta condition is enforced at the vicinity of the trailing edge we expect 

the pressure difference at the trailing edge to be closer to zero as time discretization 

becomes more refined. Therefore, the pressure difference at the trailing edge is 

monitored during simulations as a measure of numerical instability. More 

particularly, if (1) the pressure difference at the trailing edge starts to gradually 

increase at some point during the simulation or (2) the pressure difference changes 

signs between consequent time steps, numerical instabilities have occurred. In most 

cases, with a proper selection of space and time discretization parameters this can be 

avoided. 

Extensive numerical investigation of both approaches has been performed for cases of 

flapping motion. It has been found that the convergence is characterized by an 

optimum relation between the size of the panels neighboring to the trailing edge of 

the body Bs  and those that represent the nearby wake  Ws . 

Systematic studies concerning the first approach (see Section 2.3.1.1) have shown that 

for a range of parameters consisting of 0.2 0.4 Str  and 10 50  , the optimal 

ratio varies in the interval 2 / 3.25   W Bs s  with greater values corresponding to 

lower Strouhal numbers, see also Filippas & Belibassakis (2014). 

We present as an example in Figure 2.5 a color plot of the error ( ) / ref ref

T T TC C C

associated with the thrust coefficient 2/  T X oC F U h , as a function of the number of 

panels on the body bN  and the time-step expressed as a portion of the period 

/ (%),t T  in the case of flapping NACA 0012 hydrofoil in an unbounded domain. In 

this case, the Strouhal number is / 0.4  oStr h U ,the vertical (heaving) amplitude 

/ 1oh c  and the rotational (pitching) amplitude 45 . o  The thrust coefficient error 

is calculated with respect to the value ref

TC  as obtained by the present method, based 

on the finest discretization in both space and time ( 500,  dt = 0.00125T  ). In the 

same figure the curves corresponding to different values of / W Bs s  are shown using 



48 

 

solid lines. We clearly observe that an optimal ratio exists, which in the examined case 

is / 2.4.  W Bs s  

 

Figure 2.5 Convergence of thrust coefficient TC  (Section 2.3.1.1) as a function of the number of 

body panels   and the time-step / (%)t T , for NACA0012 hydrofoil in flapping motion. The 

error of thrust coefficient (%) is shown by using color scale. Contour lines indicate the ratio 

/ W Bs s of the length of panels in the vicinity of the trailing edge, from Filippas & Belibassakis 

(2014). 

Regarding the second approach (see Section 2.3.1.2) results show that for the same 

range of parameters consisting of 0.2 0.4 Str  and 10 50  , the optimal ratio 

varies in the interval 0.8 / 2   W Bs s  with greater values corresponding to lower 

Strouhal numbers. We present in Figure 8 the color plot of the error ( ) / ref ref

T T TC C C

associated with the thrust coefficient 2/  T X oC F U h , as a function of the number of 

panels on the body bN  and the time-step expressed as a portion of the period 

/ (%),t T  for the study case discussed above.  

Since this approach is based on a higher-order Adams-Bashford-Moulton (A.B.M.) 

scheme that falls into the linear multistep category, simulations with a coarse 

discretization in time and a fine mesh is space ( 500,  dt = 0.01T  ) leads to 

numerical instabilities. The pressure-type Kutta condition is satisfied with increased 

precision only for fine discretization. Therefore, the results presented in Figure 8 
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correspond to a subset of the tested combinations of space and time discretization 

parameters, as presented in Figure 2.6.  

 

 

Figure 2.6 Convergence of thrust coefficient TC (Section 2.3.1.2) as a function of the number of 

body panels   and the time-step / (%)t T , for NACA0012 hydrofoil in flapping motion. The 

error of thrust coefficient (%) is shown by using color scale. Contour lines indicate the ratio 

/ W Bs s of the length of panels in the vicinity of the trailing edge. 

 

2.4.4 Validation 

 

Regarding the presented BEM for the hydrodynamic analysis of rigid flapping foils, 

extensive validation against experimental data as well as numerical calculations 

concerning the solver’s performance over a range of motion parameters, can be found 

in the work of Filippas & Belibassakis (2014). However, for completeness in this 

section we compare the present method with the experimental data found in 

Schouveiler et al. (2005). It is noted here, that the numerical schemes presented in 

Sections 2.3.1.1 & 2.3.1.2 are in agreement for fine discretization. The experiment 

consisted of generating the propulsive force with a foil undergoing a harmonic 

flapping which is a combination of a heave translation and a pitch rotation, to study 

an aquatic propulsion system inspired from the thunniform swimming mode. 
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Systematic measurements of the fluid loading showed a remarkable peak of efficiency 

of more than 70% for optimal combinations of the parameters.  

Simulations were performed for a NACA 0012 foil with the center of rotation 

positioned at 1/ 3c  for motions characterized by 0.3,  / 0.75,  23.3   o

o oStr h c  and 

phase lag 90   .Results obtained for the instantaneous thrust and lift coefficients 

are compared against experimental data in Figure 2.7. Satisfactory agreement is 

observed with the experimental data regarding the amplitude and the phase lag of the 

integrated force coefficients. The small differences concerning the peak values of the 

thrust coefficient could be due to non-linear vortex-wake dynamics that are not 

modeled in the present work. 

 

Figure 2.7 Thrust and Lift coefficients time history comparison between the present method with 

Schouveiler et al. (2005) 
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Chapter 3 - Structural Analysis of Thin Plate in Vacuo 
 

In this Chapter we present a model for the dynamic structural analysis of the foil using 

the Classical Plate Theory (CPT) based on the Kirchhoff-Love hypothesis. Structurally 

, the foil, is modelled as a thin plate featuring flexural rigidity variation. The plate is 

subjected to cylindrical bending under the plane strain assumption. The studied 

structure is assumed to be perfectly elastic, homogeneous and isotropic. In this 

formulation, dimensionality reductions allows us to treat an 1-D problem. For the 

numerical solution of the partial differential equations modelling the transverse 

displacement of the plate, we follow an hp-FEM approach based on Hermite 

polynomials of 3rd and 5th order. Finite element formalism provides a very systematic 

manner of handling various boundary, allows the study of the convergence properties 

for the numerical scheme and can be implemented algorithmically with ease. The 

damped structural response of the foil is treated with the addition of proportional 

damping terms. 

This Chapter begins with a brief introduction on Finite Element Methods and the 

characteristics of commercially available software. Then, the problem of cylindrical 

bending of thin elastic plates is introduced and appropriate boundary conditions are 

discussed. The equivalent weak formulation of the initial boundary value problem 

(IBVP) is derived by means of a Galerkin approximation method. Later, we present 

the discretization scheme with emphasis on the introduction of the employed Hermite 

finite elements, the deduction of the system of algebraic equations, the addition of 

appropriate proportional damping terms and the employed time integration scheme. 

In the last section of Chapter 3, the proposed numerical scheme is validated against 

analytical solutions, available in the literature, concerning (i) the free vibration 

analysis of a linearly double-tapered cantilever beam, (ii) the static solution of a non-

prismatic cantilever beam under tip load forcing, and (iii) the dynamic analysis of a 

cantilever beam of constant thickness, under transverse dynamic tip loading. 

Furthermore, the capabilities of the developed FEM solver are illustrated through the 

investigation of a test case of particular interest to the present work and the coupling 

with the hydrodynamic field in particular, i.e. a structural response of a plate with 

flexural rigidity profile variation under dynamic distributed load resembling the time 

history of hydrodynamic pressure enforced on a rigid flapping foil with prescribed 

kinematics.  
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3.1 Brief introduction on Finite Element Method  

 

The finite element method (FEM) is one of the most important developments in 

numerical analysis, a powerful and versatile tool for the solution of linear as well as 

nonlinear complex problems. This method was popularised in structural analysis  in 

the 1950’s with the pioneering work of J. Argyris, who systematically analysed 

complex structures with a large number of finite components. Over the years, the 

existence of a unified treatment of such discretised problems, led to the definition of 

the finite element process as a method of approximation to continuum problems with 

applications that spread in all fields of engineering, science and medicine, see Fung & 

Tong (2001) as well as Zienkiewicz et al. (2005) for a more details on the origin and 

fundamentals of the method. 

The finite element method demands the division of the problem domain in sub-

resgions, called elements, establishes approximate solutions in terms of unknown 

parameters in sub-regions and then deduces an approximate solution for the whole 

domain. In structural analysis, this procedure involves expressing the relations 

between the displacements and internal forces at the selected nodal points of 

individual structural components to form of a system of algebraic equations. The 

system of equations is then written most conveniently in matrix form, and the solution 

of these equations is obtained efficiently by high-speed computation. In truth, the 

concept of finite element method dates back to 1943 when Courant used a triangular 

mesh to solve a two-dimensional Laplace equation, or earlier when mathematicians 

formulated differential calculus with piece-wise smooth functions. However, the 

method did not found widespread applicability before the availability of high speed 

computers able to solve the produced large systems of algebraic equations and to 

handle the tedious input and the voluminous output.  

Numerous finite-element computer programs are commercially available today for 

specific or general applications. To list a few, the most notable ones include 

NASTRAN, originally developed for NASA in the late 1960s under the United States 

government funding for the aerospace industry, ANSYS and ABAQUS. Equally 

important, if not more, in the finite element method is its implementation. The success 

of commercially available software lies largely in the development of efficient pre- and 

post-processors, and algorithms for solving large systems of equations.  

The pre-processor enables users to describe efficiently, and in a relatively error-free 

manner, a complex problem in terms of its geometry, configuration, material 

properties, loading conditions, etc., through the input. Whereas, the post-processor 

handles the voluminous output making it easily understandable through interactive 

graphic, tables, charts, and summaries. The pre- and post-processors also enable users 
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to examine at ease any specific location of the domain or aspect of the solution prior 

to, during, or after the analysis. The need for efficient solution algorithms for large 

systems goes without saying, mainly because for professional applications finite 

element analysis (FEA) results often in systems with hundreds of thousands, even 

millions, degrees of freedom. Even with the advent of computers today, efficient 

algorithms make it possible to obtain the solutions, especially for nonlinear problems, 

at a reasonable cost and in a reasonable time. 

 

3.2 Cylindrical Bending of Thin Elastic Plates 

 

Generally, plates as structural elements have planform dimensions that are large 

compared to their thickness and are subjected to loads that cause bending 

deformations in addition to stretching. The plate theory presented in this section is 

valid for thin plates; with length-to-thickness ratio greater than 30 or slenderness 

ratios /h L  smaller than 0.0333.  

Let as consider a body-fixed reference frame and a Cartesian coordinate system 

( , , )x y z  such that the xy -plane coincides with the geometric mid-plane of the plate 

and the remaining z-coordinate is taken positive upwards; i.e. right-hand rule. The 

dimensions of the rectangular plate under study are denoted as , ,x yl l h  along ,x y  and 

zaxis respectively with , .y xl l h   

The plate is symmetric in fabrication about the mid-surface with thickness variation 

described by a real function ( )h h x  and dimension xl  coincides with the chord 

length of the hydrofoil L . If the un-deformed mid-plane of the plate is denoted as a 

connected open Lipschitz subset o  of 2  then the plate domain   is the following 

tensor product   ( ( ) / 2,  ( ) / 2)  o h x h x . 

The total displacements of a point along the ( , , )x y z  coordinates are denoted as 

( , , )u v w  so that a material occupying position ( , , )x y z  in an un-deformed state shall 

moves to position ( , , )x u y v z w    after deformations have occurred. The 

displacement of a point on the mid-plane in the un-deformed state will be defined as 

( , , )o o ou v w . The displacement field is time dependent with (0, ),    Tt T    and 

therefore the domain in space/time for the dynamic problem is the product (0, ). T  

In classical plate theory (CPT) the Kirchhoff-Love hypothesis for the displacement 

field involves of the following three assumptions, see e.g. Reddy (2007). These 

assumptions are presented schematically in Figure 3.1. 
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o The straightness assumption; implying that straight lines that are 

perpendicular to the mid-surface remain straight after deformation.  

o The inextensibility condition; under which the transverse normal does not 

experience elongation, the plate thickness does not change during 

deformations. 

o The normality assumption; under which the transverse normal rotates but 

remains perpendicular to the mid-surface after deformation.  

 

Figure 3.1 The deformed and un-deformed geometries of an edge of a plate under the Kirchhoff 

assumptions (Reddy, 2007) 

These conditions imply that for the time-dependent displacement field holds: 

( , , ; ) ( , ; ) o
o

w
u x y z t u x y t z

x


 


       (2.100) 

o
o

w
v x y z t v x y t z

y


 


( , , ; ) ( , ; )       (2.101) 

( , , ; ) ( , ; )
o

w x y z t w x y t         (2.102) 

along with the inextensibility assumption 0
w

z





.In the present study, the strains 

associated with the displacement field are computed under the infinitesimal strain 

assumption. 

xx yy zz

u v w

x y z
  

  
  
  

, ,       (2.103) 
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xy yz xz
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y x z y z x
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   (2.104) 

Consequently from (3.1)-(3.5) we have,  
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        (2.105) 

where 
0 0 0( , , )xx yy xy    are the membrane strains and 

1 1 1( , , )xx yy xy    the flexural 

bending strains or curvatures. Moreover,  
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     (2.106) 

Since the plate domain   is thin along the z-direction there can be little variation of 

the stress components ,  ,  zz xz yz    through the thickness, and thus they will be 

approximately zero throughout it every moment in time. This is equivalent with the 

plane stress assumption. Therefore the constitutive stress-strain relations for 

isotropic materials (Hooke’s law) are reduced to the following 

2

1
2

1 0

  1   0
1

0 0

xx xx

yy yy

v

xy xy

v
E

v
v

 

 

 


    
    

        
       

      (2.107) 

The equations of motion of the CPT can be derived using the dynamic version of the 

principle of virtual displacements, the reader is motivated to refer to the work of 

Gelfand & Fomin (1963) as well as Reddy (2007) .  

Rotary inertia terms, which are known to contribute to higher frequencies of vibration 

are neglected. Then the Euler-Lagrange equations of motion can be derived by 

expressing the thickness-integrated forces and moments in terms of the 

displacements.  

In our case of linear analysis the coupling between the in-plane displacements ( , )o ou v

with the transverse displacement on the mid-plane 
ow  and the rotation of the normal 

to the mid-plane about y -axis, / ow x  disappears.  
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The structure is subjected to a time-dependent transverse load distribution ( ; )q x t  

uniform at any section parallel to the x -axis. This assumption combined with the 

geometric characteristics of the plate i.e. ,y xl l h , introduces the special case of 

cylindrical bending. In this formulation, the displacements along the y -axis and all 

derivatives with respect to y are set to zero, leading to a reduced form for the 

displacement field ( , ; ),  0,  ( , ; )u u x z t v w w x z t   , equivalent to the plane strain 

conditions. 

 Consequently the governing equations in the domain (0, ) (0,T)L   are the following 

2 2

2 2 2

( ; ) ( ; )

1
o o

o

u x t u x tE
I

v x t

  
     

       (2.108) 

2
2 2

2

( ; )
[ ( ) ( ; )] ( ; ) o

o o

w x t
D x w x t q x t I

t


   


    (2.109) 

with 
( )/2

( )/2

( ),
h x

o

h x

I dz h x 


 
3

2

( )
,

12(1 )

Eh x
D

v



 where oI  denotes the mass moment of 

inertia,   is the density of the material, E  denotes Young’s modulus, v  is Poisson’s 

ratio and D  is the bending stiffness or flexural rigidity for isotropic materials.  

In the present work variations in the flexural rigidity profile are incorporated in the 

thickness function ( )h x  whereas all other quantities denote constants, unless stated 

otherwise.  

Expanding the first term in the LHS of (3.10) yields the following expression,  

2 2 2 2 4[ ( ) ( ; )] ( ) ( ; ) ( ) ( ; )
o o o

D x w x t D x w x t D x w x t        (2.110) 

This expression contains the biharmonic operator 4 (.) , which in 3-D takes the form 

4 4 4 4 4 43 3
4

4 4 4 2 2 2 2 2 2
1 1

(.) 2
i i j j

i j x y z x y y z x z 

      
            

         
  (2.111) 

Generally, the local specification of the primary variables constitutes the geometric 

boundary or essential conditions, whereas specification of the secondary variables 

constitutes the natural boundary conditions. The essential boundary conditions alone 

are sufficient for solving the differential equation. The natural boundary conditions 

are boundary conditions that involve higher order derivative terms and are not 

sufficient for solving the differential equation, requiring at least one essential 

boundary condition.  
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The modelling of thin plates in cylindrical bending with the CPT yields ,  ,  o o x ou w w  

as primary variables and ,  xx xxN M  as secondary variables. 

2

2

h

xx xx

h

N dz


          (2.112) 

2

2

h

xx xx

h

M zdz


          (2.113) 

Additionally, for the calculation of the dynamic response of the plate, the initial 

displacement and velocity fields need to be specified throughout the domain of the 

plate. The above entails specifying the values of the displacements and their first 

derivatives with respect to time at 0t   for all points in  . The vibrational response 

of the foil, modelled as a plate, requires the prediction of all primary variables, and 

hence the consideration of both in plane and transverse deformations.  However, in 

the context of CPT the deduced equations of motion (3.10)2 are uncoupled and can be 

tackled separately. In the present work, where the transverse flexural response of the 

plate is of importance, equation (3.10) alone will be considered. For all the studied 

cases, we assume that at 0t   the xy -plane of the chosen coordinate system coincides 

with the geometric mid-plane of the plate; in other words the plate is considered 

originally un-deformed. The initial conditions are 

o t ot t
w x t w x t

 
  

0 0
( ; ) ( ; ) 0        (2.114) 

Within the framework of this work, the following cases will be presented in terms of 

boundary conditions: 

Case 1: Cantilever plate 

The foil is assumed to be clamped at the leading edge at 0LEx   whereas the trailing 

edge at TEx L  remains unconstrained. To account for these boundary conditions, at 

the leading edge we have zero deflection and slope. Additionally at the free moving 

trailing edge, conditions of vanishing moment and shear force are applied.  

o x ox x
w x t w x t

 
  

0 0
( ; ) ( ; ) 0       (2.115) 

2 2( ) ( ; ) 0,      N [ ( ) ( ; )] 0
xx x o xx x x ox L x L

M D x w x t D x w x t
 

         (2.116) 

                                                 
2 The effects of chord-wise flexibility are predicted, as it will be shown on Chapter 4, 

with information regarding only the transverse displacement on the mid-plane 
ow  

and the rotation of the normal to the mid-plane about y -axis x ow .  
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Case 2: Clamped at centre of rotation with LE and TE as free edges 

For this special case where constraints need to be also enforced inside the domain, we 

need to introduce two structural members in the modelling. In this case the foil of 

chord length c L  is clamped at the center of rotation, which is positioned  Rx x . The 

origin is positioned at 0LEx   and the member are connected at  Rx x .  

A more compact formulation with just one structural member is not plausible, since 

essential conditions are to be enforced only at the boundary in IBVPs.  

For that we introduce two plate members, which are modelled using the boundary 

conditions discussed in Case 1 and share the clamped edge. Therefore, the boundary 

conditions for the member of the left, with respect to the pivot point are 

2 2

0 0
( ) ( ; ) 0,      N [ ( ) ( ; )] 0l l

xx x o xx x x ox x
M D x w x t D x w x t

 
         (2.117) 

R R

l l

o x ox x x x
w x t w x t

 
  ( ; ) ( ; ) 0       (2.118) 

Similarly, for the structural member on the right we have  

R R

r r

o x ox x x x
w x t w x t

 
  ( ; ) ( ; ) 0       (2.119) 

2 2( ) ( ; ) 0,      N [ ( ) ( ; )] 0r r

xx x o xx x x ox L x L
M D x w x t D x w x t

 
         (2.120) 
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3.2.1 Weak Formulation of the Initial-Boundary Value Problem (IBVP)  

 

This section is dedicated to the derivation of the weak formulation of the IBVP, which 

is suitable for the numerical approximation with the use of finite element methods, 

see e.g. Brenner & Scott (2008), Hughes (1987). Preliminaries and notation for the 

vector spaces can be found in Appendix A.  

Let us be given the classical Sobolev spaces ,2(Ω),   kW k  and the Banach spaces 

equipped with the Lebesgue-norm ( ;[0, ])   for 1pL T p   . These spaces 
,2(Ω),   kW k  when equipped with the following inner product mapping 2[ , ]L a b  = 

, ( ) ( )
b

a
x y x y d     can be denoted as Hilbert spaces, so that ,2(Ω) = H (Ω),   .k kW k

This mapping also yields an expression similar to the Lebesgue-norm  

 
1/2

2
( )

b

a
x x d   . Let us now introduce the following subset of 2Η (Ω)  with time as 

a parameter  

2

0 0
:   { ( ; ) Η (Ω)     :  =0,  =0}

xx x
V x t  

 
       (2.121) 

The variational formulation of the problem is determined by multiplying the 

governing equation with a test function V , integrating over Ω  and then 

performing integration by parts. Assuming that every term expresses a Lebesgue 

integral,  

0 0 0
[ ( ) ] ( ) ( ; )

L L L

xx xx o tt o
D x w dx m x w dx q x t dx            (2.122) 

Integration by parts on the first term in the lhs of (3.15), imposing the natural 

boundary conditions for the primary variables (defined in Section 3.2) and the fact that 

the f the test functions  satisfy the homogeneous essential conditions yields, 

0 0
[ ( ) ] ( ) .      

L L

xx xx o xx o xxD x w dx D x w dx      (2.123) 

Therefore from eq. (3.23) and (3.24) we have, 

0 0 0
( ) ( ) ( ; )

L L L

xx o xx tt oD x w dx m x w dx q x t dx            (2.124) 

By introducing the bilinear functional :V V    

0
( , ) ( )

L

o xx o xxa w D x w dx          (2.125) 

in conjunction with (3.25) we can present the variational formulation of the problem 

in a more compact notation.  
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Find 
ow V  such that for every test function V  the following holds 

 

2 ( )0
( , ) ( ) ,

L

o tt o L
a w m x w dx q  


         (2.126) 

 

with initial conditions 
2 2( ) ( )

( ,0), ( ,0), 0o t oL L
w x w x 

 
   . 

 

 

Proving the solution existence and uniqueness of aforementioned variational problem 

is not trivial and therefore is left for future work.  

 

3.2.1.1. Semi-discretization using Galerkin approximation methods  

 

In numerical analysis, Galerkin projection methods refer to a class of techniques used 

for the construction of a semi-discrete approximation to the solution of variational 

problems with respect to the spatial variable, see e.g. Zaglmayr (2006). In that sense, 

we introduce the finite-dimensional subspace hV V  , with super-script h  referring 

to a discretization parameter. We also assume that under reasonable assumptions the 

discrete solution h hu V  converges to the solution 
ow V as 0.h  

The mathematical proof of this statement is not the subject of this study, but 

nevertheless an interesting topic for future research and analysis. The projected 

formulation of the variational problem in (3.27) is the following: 

 

Find a solution h hu V  so that h hV   the Galerkin equation holds 

 

20 ( )
( , ) ( ) ,

L
h h h h h

tt
L

a u m x u dx q  


        (2.127) 

 

with initial conditions 
2 2( ) ( )

( ,0), ( ,0), 0h h h h

t
L L

u x u x 
 
    

 

 

To ensure that the approximated solution has the desirable smoothness, i.e. 
1( )hu C   we chose the set of Hermite polynomials as basis functions for the discrete 

subspace hV V . The construction of 2H  conforming elements is necessary in this 

case, since second order derivatives appear in the semi-discrete variational problem, 
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see equation (3.28). The solution expansion in the chosen finite-dimensional space hV  

is given by a mapping expressed by 

( ) ( )
n

h h

i i

i

u u t H x          (2.128) 

where ( )h

iu t  denote the time-dependent nodal unknowns and n  the number of 

employed shape functions as will be thoroughly discussed in the next section. If we 

expand the solution hu  in terms of a basis 1( )  i i nH  in hV  and allow the test functions

 h  to coincide with the chosen basis (Bubnov-Galerkin method) we can derive a linear 

system of equations with respect to the unknown nodal variables.  

The nodal unknowns for each representation are uniquely defined as an N -tuple and 

therefore, a solution approximation to the dynamic structural problem is 

accomplished when all the nodal unknowns are defined for every moment in time.  

By substituting (3.29) in (3.28) we can derive for ,  j=1jH n  

n n
h h

xx i i xx j j tt i i
i i

j

D x u t H x H x dx m x H u t H x dx

H x q x t dx

 



   
      

   



  

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( , )
 (2.129) 

with initial conditions  

2 2( ) ( )

(0) ( ), (0) ( ), 0
n n

h h

i i j t i i j
i iL L

u H x H u H x H
 

       (2.130) 

 

3.3 Discretization Scheme for hp-FEM 

 

During the 1970s the use of low-order polynomials over successively finer meshes was 

the predominant philosophy for finite element analysis for solution refinement and 

increase in accuracy. However, the pioneering work of Babuška and Szabo during the 

following years led to the development of the so-called hp-FEM. The main idea behind 

this approach is that solution refinement can be achieved with proper mesh selection, 

i.e. h version, combined with increase of the polynomial degree of the finite elements 

used in modelling, i.e. p version see Babuska et al. (1981).  

Motivated by the trade-off between the required mesh size and interpolation 

complexity for the same degree of accuracy we approximate the solution of the 

aforementioned problem with an hp-FEM.  
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We begin with the definition of Hermite finite elements by (Ciarlet, 1978), 

 Definition. Let 

(i)  h  be a bounded closed set with nonempty interior and piecewise 

smooth boundary (the element domain) 

(ii) hP V be a finite-dimensional space of function on K (the space of shape 

functions)  

(iii) 
1{ , , }nN N N  be a basis for 'P (the set of nodal variables). 

Then ( , , )h P N  is called a finite element. The basis function set of Hermite 

polynomials, of degree 2 1, 1  p k k , denoted 
1 2{ , , }nH H H  of P  dual to N (i.e. 

( ) i j ijN H ) is called the nodal basis of P . It is noted that index n , i.e. the number of 

employed shape functions in the set, is related to the polynomials degree of the shape 

functions as 1 n p . 

The total number of finite elements is denoted as 
elemN  and the subintervals in the 

discretized domain as 
1[ , ]e k kI x x  where 1, , elemk N . In the present work the 

simpler piecewise Hermite polynomials of order 3,5p  for 1,2k  are used, for 

which 4n   and 6n   respectively.  

The reader can refer to Appendix B for the derivation of these special functions We 

define the global Hermite polynomials with local support on an arbitrary finite 

element subinterval (Fig 3.2). For 1, , eleme N  and 1, ,i n   

( )     x I
( )

0            x {Ω I }


 

 

i ee

i h

e

H x
H x       (2.131) 

 

Figure 3.2 Global Hermite Shape Functions of 5th order with local support. 
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As it was previously discussed, the aim of Galerkin’s method is to derive a linear 

system of equations that can be easily used to compute the solution by a computer. If 

we denote by ( )e

iu t  the nodal unknowns for an arbitrary element in the proposed 

discretization, and 
e

jH  are the Hermite basis functions equation (3.29) on the local 

support of a finite element ( )he  is reduced to, 

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( , ) ,     ( )   1,

h h

h

n n
e e e e e e

xx i i xx j j tt i i

i ie e

e e

j j

e

D x u t H x H x dx m x H u t H x dx

H x q x t dx H x j n

 



   
      

   

  

  


 (2.132) 

For each term in the above equation we use identities regarding the summation 

operator and the integrals, for example for the first integral in the lhs it holds 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
h h

n n
e e e e e e

xx i i xx j i xx i xx j
i ie e

D x u t H x H x dx u t D x H x H x dx
 

  
           

    (2.133) 

Similarly for the second integral 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
h h

n n
e e e e e e

j tt i i tt i i j

i ie e

m x H u t H x dx u t m x H x H x dx
 

  
         

     (2.134) 

Consequently (3.33) along with (3.34) and (3.35) becomes,  

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( , ) ,    ( )   1,

h

h

n n
e e e e e e

tt i i j i xx i xx j

i ie e

e e

j j

e

u t m x H x H x dx u t D x H x H x dx

H x q x t dx H x j n
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The initial conditions become ( )   1, e

jH x j n , 

( ) ( )

(0) ( ) (0) ( ) 0

 

   
     

   
  

h h

N N
h e e h e e

i i j t i i j

i ie e

u H x H dx u H x H dx    (2.136) 

This expression can be interpreted as an approximation to the solution restricted to 

the local support of an arbitrary finite element ( )he . However, a more compact 

notation can be introduced using (3.32). 

 
1 ,

( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )
 

 

   
h h

e e e e

loc i j i j i ji j n
e

a H H m x H x H x dx m x H x H x dxM  (2.137) 
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1 ,

( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )
 

 

       K
h h

e e e e

loc i j xx i xx j xx i xx ji j n
e

b H H D x H x H x dx D x H x H x dx  

           (2.138) 

 
1

( )

( ) ( ) ( , ) ( ) ( , )
h h

e e

loc j j jj n
e

f H H x q x t dx H x q x t dx
 

 

   f     (2.139) 

 
1 

 e

ie i n
U u            (2.140) 

By substituting (3.38)-(3.41) into (3.36) we have  

loc loc locee
U UM + K = f         (2.141) 

where n nlocM , n nlocK  stand for the local element mass and stiffness matrices 

respectively, n

loc f  for the local load vector and  n

e
U  for the vector containing 

the nodal unknowns for interval Ie
. Numerically the integrals are approximated using 

Gaussian quadrature, see Appendix C for more details.  

The next important step in this process is the assembly of the inner product terms, as 

introduced in the set of (3.38)-(3.42), by summing the constituent parts over each 

element. These quantities are used to construct the global matrices and are independent 

from each other from a computational point of view.  

The numbering scheme utilized is called the global-to-local index. This index ( , )k e l  

relates the local node number l , on a particular element e , to its position in the global 

data structure. Technical details regarding the implementation in an algorithmic level 

are not presented here, however the interested reader can refer to Hughes (1987)  

The total number of nodal variable unknowns, that defines the dimensions of the 

global matrices, is equal to the number of finite elements 
elemN  times the number of 

DOFs per element, i.e. 
T elemN n N  . Using (3.30) and (3.31) along with the compact 

notation in the set of equations (3.38)-(3.42) we can derive the global matrix equation 

glob globU UM + K = F  

 

(3.28) 

 

where T TN N

glob


M , T TN N

glob


K  stand for the global mass and stiffness matrices 

respectively, TN

glob F  is the global load vector and  TN
U  is the vector containing 

the nodal unknowns for the partitioned domain h . 
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3.3.1 Addition of Proportional Damping Terms  

 

In proportional or classical damping, an idealized damping method as introduced by 

Rayleigh, the damping matrix is assumed to be a linear combination of the mass and 

stiffness matrices. That is for 
1 2,    

1 2glob glob  C Μ Κ        (2.142) 

Addition of the proportional damping terms yields an extended global equation  

glob globU U UM + C K = F       (2.143) 

owever, for systems with many degrees of freedom is its quite difficult to guess 

meaningful values for the Rayleigh damping coefficients at the beginning of each 

analysis. In this work we follow a procedure presented by Dasgupta et al. (2003) that 

ensures a rational estimate for 
1 2,    and takes into account that modal mass 

participation decreases with increase in modes. 

 The procedure begins with modal analysis and identification of the significant 

modes (=m), i.e. the natural frequencies i . 

 Then we select the damping ratio 1  for the first mode of the system, as well as 

the damping ratio  m  of the mth significant mode.  

 For intermediate modes i , where 1 i m  we obtain  i  using the following 

formula, based on linear interpolation 

1
1 1

1

( )
 

   
 


  



m
i i

m

     (2.144) 

whereas for modes greater than m the values are extrapolated based on the 

following formula 

1
1

1

( )
 

   
 




  



m
i m i m

m

     (2.145) 

where 2.5 m i m  

 Based on the above set of data we can obtain 
2   as,  

1 1
2 2 2

1

2 2   

 






m m

m

a       (2.146) 

 Then by substituting this value into the following expression we obtain 

1   
2

1 1 1 2 12   a a       (2.147) 

 If we repeat this process for the first and 2.5mth mode we will obtain another 

set of data for the Rayleigh coefficients. In the present work the average values 

were used as a better approximation.  
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The behaviour of the attributed damping ratio values as a function of the natural 

frequency values of the system under study is presented in Figure 3.3. The first portion 

of the curve shows nonlinearity and beyond that the curve is linear. 

 

Figure 3.3 Damping ratio-natural frequency data set for a thin plate of 0.072 D Nm  with 2,m

1, 0.022  m  based on Dasgupta et al. (2003). The first three natural frequencies are added as 

points to the graph. The proportional damping coefficients are 1 1.0755a  and 2 1.7274 4 a e . 

 

3.3.2 Time Marching  

 

The extended global equation (3.44) is in fact a system of second order differential 

equations with initial conditions. For the solution of system as such, i.e. approximation 

of the nodal variable unknowns, we perform order reduction by assuming that 

,  y x U U . The following system of first order differential equations is derived, 






glob glob globy y x

x y

M C + K = F

= 0
      (2.148) 

By introducing matrix notation it holds,  

  
        

          
         

globglob glob globx x

y y

F0 M K C

I 0 0 -I 0
    (2.149) 

or in a more compact form  

,       A B F
T

Q Q Q U U       (2.150) 
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where  
 

  
 

glob0 M
A

I 0
,  

 
   

 

globK C
B

0 I
,  




 

globF
F =

0
, and I  is the identity matrix 

known from linear algebra.  

For the numerical solution of the above system we present the simple Implicit Euler 

method and the Crank-Nicolson scheme for time-integration, see e.g. Stoer & Burlish 

(1991). The implicit Euler method can be derived through integration of (3.37) from 
nt  

to 
1n nt t dt    and the use of the right-hand rectangle method (with one rectangle) for 

the integral approximation. This yields, 

1 1 1

   
  

    
n n n

n n n

t t t

t t t

Qdt Qdt dtA B F         

 1 1 1( ) ( ) ( ) ( )         n n n nQ t Q t Q t dt t dtA B F       

 1

1 1( ) [ ] ( ) ( )

   n n nQ t dt Q t t dtA B A F      (2.151) 

This method is very simple, it has 1st order accuracy and is also L-stable. The Crank-

Nicolson scheme, that has 2nd order accuracy and is A-stable, can be derived through 

integration from 
nt  to 

1n nt t dt    and the use of the trapezoidal rule for the integral 

approximation.  

 1

1 1( ) [ ] [ ] ( ) [ ( ) ( )]
2 2 2



     n n n n
dt dt dtQ t Q t t tA B A B F F   (2.152) 

This approach yields as a numerical output at each time step of the simulation the 

nodal unknowns of the transverse displacement on the mid-plane h

ow , the rotation of 

the normal to the mid-plane about y -axis  h

x ow  as well as their time derivatives  h

t ow

and ( )  h

t x ow .Finally, the obtained values of the nodal unknowns can be used to 

approximate the transverse displacement in (0, )T  with ( ; ) ( ) ( )
n

h h

i i

i

u x t u t H x . 
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3.4 Numerical Results and Validation  

 

In order to validate the developed FEM solver, we performed various comparisons 

between analytic solutions, found in the literature and the proposed numerical 

scheme. Free vibration analysis of a linearly double-tapered cantilever beam (Fig. 3.4) 

with the same taper ratio in both axis, i.e. in terms of horizontal and vertical 

dimensions, is presented in the work of Mabie & Rogers (1974). The relative error 

found for the first five fundamental frequencies, calculated by the present FEM for a 

mesh of 15,elemN  is compared against the analytic solution as shown in Table I. The 

results were found in good agreement, which can be further enhanced with refined 

discretization. 

The static behaviour of a non-prismatic cantilever beam under tip load forcing is 

studied by Beltempo et al. (2015). In Figures 3.4 & 3.5 we compare the transversal 

displacement distributions taken from the literature with the obtained numerical 

results, confirming once again that they are in good agreement.  

The first graph refers to CASE1 where the thickness profile varies linearly with 

parameter 0.25 mH  for a beam of 10 mL  length. The material properties are 
8 210  kN/m ,  v 0.3 E  and the tip load is equal to 100  P kN . Whereas in CASE2 that 

is depicted in Figure 3.6 the thickness varies nonlinearly with the same parameter 

0.25 mH .  

Finally, the FEM solver was validated against a dynamic test case of a cantilever beam 

of a constant thickness profile, under transverse dynamic tip loading. The beam’s 

response in terms of free tip transverse displacement profile is compared in Figure 3.5 

against the analytic solution found in Warburton (1976).  

TABLE I 

MODAL ANALYSIS FOR DOUBLE TAPERED CANTILEVER BEAMS  

 Mabie et al.(1974) 
Relative error with FEM (% 

x1e-3) 

Taper ratio a = 5.0 a = 10.0 a = 5.0 a = 10.0 

Ω1 30.9820 72.0487 0.1451 0.0231 

Ω2 91.9273 186.802 0.0410 0.2007 

Ω3 199.1682 371.238 0.0197 0.1413 

Ω4 356.2088 635.049 0.0198 0.1609 

Ω5 564.1394 981.657 0.0835 0.5628 
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Figure 3.4 Cantilever beam linearly tapered in horizontal and vertical planes simultaneously, see 

Mabie & Rogers (1974) 

 

Figure 3.5 Static response for non-prismatic beams and comparison with CASE1 in Beltempo et al. 

(2015). The transverse displacement comparison and the thickness profile are displayed in the 

upper and lower graph respectively. 
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Figure 3.6 Static response for non-prismatic beams and comparison with CASE 2 Beltempo et al. 

(2015). The transverse displacement comparison and the thickness profile are displayed in the 

upper and lower graph respectively. 

 

Figure 3.7 Dynamic response of the tip of a cantilever beam under point load. Comparison against 

the data published in Warburton (1976). 
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Chapter 4 - Coupled model for the fluid-structure interaction 

of chord-wise flexible foil thrusters 
 

In this final chapter the hydro-elastic analysis of chord-wise flexible hydrofoils with 

flexural rigidity profile variation in unsteady motion is discussed and a fully coupled 

BEM-FEM numerical scheme is established for the solution of this complex fluid-

structure interaction problem. The chord-wise pressure distribution is predicted with 

a boundary element formulation (BEM) for unsteady lifting flows around hydrofoils, 

whereas the structural response of the foil is approximated using a finite element 

method (FEM) based on Kirchhoff’s thin plate theory. 

The coupled numerical scheme presented in this work is an extension to methodology 

developed in the Laboratory of Ship and Marine Hydrodynamics at the National 

Technical University of Athens (NTUA) by Filippas et al. (2018), that treated the 

hydro-elastic problem of a semi-activated rigid biomimetic energy device in waves 

and currents nearshore with one degree of freedom and Priovolos et al. (2018), that 

studied the structural response of chord-wise flexible flapping foils operating as 

biomimetic thrusters as a system with multiple degrees of freedom.  

 

4.1 Formulation of the fluid-structure interaction problem  

 

The fluid flow domain is assumed to be the open domain 2D R  with time-dependent 

boundaries ( ) ( ) ( )   B WD t D t D t  corresponding to the foil’s exterior surface and the 

trailing vortex sheet respectively. These boundaries are defined with respect to an 

earth-fixed coordinate system 0xy . Additionally we introduce a non-inertial body-

fixed coordinate system 0 ' 'x y , fixed at the foil’s center of rotation along chord length 

with no-inclination as well as a body-fixed curvilinear coordinate system defined on 

the body boundary (Figure 4.1). Each point in the curvilinear system is represented by 

( ; )s tr , whereas ( ; ), ( ; )s t s tn τ  denote the unit normal and tangent vectors.  

From now on, the superscripts  ,u l  will be used to denote wake's upper and lower 

side respectively while the indices  B,W  denote values on the body surface and the 

wake of the hydrofoil respectively. In this sections we introduce briefly the 

mathematical formulation for the unsteady lifting flow problem but the interested 

reader can refer to Chapter 2 for more details.  
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Figure 4.1 The moving inertial and body-fixed frames of the chord-wise flexible flapping foil. The 

rigid foil geometry is denoted as a solid line, whereas the deformed state with a dashed curve. 

The governing equation for the potential field under the assumptions of irrotationality 

is 

2 ( , ; ) 0x y t           (4.1) 

where ( , ; )x y t  denotes the gradient of the potential component at a ( , ; )x y t  point. 

The no-entrance boundary condition that must be satisfied is 

B B B B
x y t x y t    ( , ; )    ( , ) D ( )n V n      (4.2) 

where ( , ; )B B x y tn n  refers to the unit normal vector and BV  on the total velocity 

on the body boundary. The behaviour of the potential field at infinity can be modelled 

as  

x x 
   lim 0,  lim 0         (4.3) 

The following kinematic condition ensures the continuity of the normal velocity 

vector through the wake, 

u l

W W
W

x y t x y t
x y D

n n

 
 

 

( , ; ) ( , ; )
, ( , )      (4.4) 

whereas the physical meaning behind the dynamic condition; that is the inability of 

the wake to support pressure difference 

u l

W W W
p x y t p x y t x y D ( , ; ) ( , ; ),   ( , )      (4.5) 

A nonlinear pressure type Kutta condition that requires the pressure difference at the 

trailing edge to be zero is also implemented along frozen wake modelling for the 

trailing vortex sheet. If we assume that  B Bb V n  then the pressure-type Kutta 

condition holds as,  
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* * * *
* * 0

2

    
        
 

u l u l
TE TE u lTE TE

B B TE TE

d
b

dt
n V   (4.6) 

However, the solution of the lifting flow problem is obtained when Green’s theorem 

is applied in conjunction with equation (4.3) for the unbounded domain treatment, so 

that the total potential is expressed as a function of the boundary values of the 

potential and its derivative / n . For each point 0 0( , ) ( )x y D t  

B

B W

B B

D t

B B W

D t D tb x y t

G x y x y
x y t x y t ds x y

n

G x y x y
G x y x y ds x y x y t ds x y

n

0 0
0 0

( )

0 0
0 0

( ) ( ), ;

( , | , )1
( , ; ) ( , ; ) ( , )

2

( , | , )
( , | , ) ( , ) ( , ; ) ( , )V n

 (4.7) 

where 
u l

W W W W  denotes the potential jump or the dipole intensity on the 

wake. Moreover, an unsteady version of Bernoulli’s equation derived from Euler’s 

equation was employed, see e.g. Filippas (2013), 

 
21

2


   



p

t
         (4.8) 

in order to calculate the pressure difference coefficient on the thin hydrofoil for a 

velocity, that is characteristic for the foil motion (e.g. the forward velocity of flapping 

foil thruster) as  

21

2



  l u

P

p p
C

U

         (4.9) 

In the present study, the unsteady flapping motion of the foil is described by three 

degrees of freedom (i) the forward motion ( )s t , (ii) the heaving ( )h t and (iii) pitching 

motion ( ) t  with respect to the inertial reference frame, see Section 2.4.1. 

From a structural point of view, the foil is modelled as a thin elastic plate of chord 

length c , clamped at the centre of rotation at R
x x  with free trailing and leading 

edges. The foil deforms under the effects of hydrodynamic pressure and non-inertial 

forces. To model the structural response of the foil’s camber line we introduce another 

non-inertial body-fixed coordinate system fixed at the leading edge with no 

inclination, to comply with the problem formulation presented in Chapter 3. It is noted 

that, this coordinate system is different from the ones introduced in the hydrodynamic 

modelling. 
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The structural response of the foil’s camber line is given as the solution of the 

following initial boundary value problem (IBVP). The governing equation in terms of 

the transverse displacement ( ; )
o
w x t  in domain [0, ] (0, )c T  holds as 

2
2 2

2

( ; )
( ) [ ( ) ( ; )] ( ; ) ( ; )o

o Hydro Ficticious

w x t
m x D x w x t q x t q x t

t


   


   (4.10) 

with ( ) ( )m x h x  denoting the mass distribution, 
3

2

( )
( )

12(1 )

Eh x
D x

v



 the flexural 

rigidity for isotropic materials, ( ; )
Hydro
q x t  the hydrodynamic pressure forcing term 

and ( ; )
Fictitious
q x t  the distributed loads due to non-inertial forces. For completeness ( )h x  

denotes the thickness profile of the foil, c  the chord length,   the material density, E  

Young’s modulus and v  Poisson’s ratio. 

Particularly, we assume that the structure experiences hydrodynamic effects, see 

equation (4.9), in terms of chord-wise pressure difference distribution given by the 

following expression,  

( ; ) 21

2
  Hydro pq x t U C         (4.11) 

The structure also experiences fictitious forces due to the non-inertial motions 

enforced to the pivot point, so that  

 ( ; ) ( ) ( ; ) ( ) ' ( ) ( ) cos ( )2
Fictitious oq x t m x w x t t x t h t t           (4.12) 

where ( ), ( )t h t  denote the pitching and heaving motions respectively. For more 

details about the derivation of the resulting fictitious forces the interested reader can 

refer to the work by Priovolos et al. (2018). 

Regarding the initial conditions we assume that 

o t ot t
w x t w x t

 
  

0 0
( ; ) ( ; ) 0        (4.13) 

whereas for the boundary conditions it holds, 

2 2

0, 0,
( ) ( ; ) 0,      N [ ( ) ( ; )] 0

xx x o xx x x ox c x c
M D x w x t D x w x t

 
         (4.14) 

R R
o x ox x x x
w x t w x t

 
  ( ; ) ( ; ) 0        (4.15) 

Rendering the analytical solution of the problem formulated above is at this point 

unachievable, as the structural and the hydrodynamic problem are coupled in an 

implicit manner with encapsulated forms of non-linearity. To begin with, the forcing 

term in equation (4.2) cannot be explicitly written in terms of the unknown transverse 
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displacement field ( ; )
o
w x t , since it is dependent on the mid-plane deformation which 

coincides with the foil’s camber line, and vice versa. Thus the pressure forcing term 

should be formally written as ( , ; ( ; ))Hydro oq x t w x t . 

The underlying coupling mechanism between the hydrodynamic and the structural  

problem is introduced through adjustments in the no-entrance boundary condition. 

The no-entrance boundary condition, introduced in equation (4.2), needs to be 

modified to include the deformation velocity. In that sense, the total velocity on the 

body boundary is  

B Rigid t o rigid
w  = +  V V n         (4.16) 

[ sin ( ),cos ( )]Trigid t t  n          (4.17) 

where RigidV  denotes the velocity of the body boundary due to rigid motions, rigidn  the 

unit vector normal to the camber line in its un-deformed state and t o rigidw n  the 

deformation velocity projected in the direction of 'y  axis, which also corresponds to 

the camber line in its un-deformed state. 
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4.2 Discretization Scheme for the Coupled Problem  

 

4.2.1 Discretization Scheme for the Lifting Flow Problem 

  

The unsteady lifting flow problem presented in equations (4.1)-(4.7) is numerically 

studied using low-order potential boundary element (panel) methods. Briefly, the 

discretization scheme begins with an appropriate boundary approximation. The next 

step is to satisfy approximately the boundary conditions on both the body boundary 

and the trailing wake in their discretized version. On the body boundary, distributions 

of both sources and dipoles are used, whereas on the trailing wake we only use 

dipoles. This results in piecewise-constant distribution of the potential on the 

discretized boundary, 

( , ; )     i=1,...NB Bi Bx y t         (4.18) 

( , ; )  i=1,...NW W Wi Wi
x y t       (4.19) 

Also, for the discretized no-entrance boundary condition we have, 

( , ; )
  i=1,...NBiB

B B i B
i

x y t
V n b

n n
     (4.20) 

Finally we assume that the boundary integral equation (BIE) in equation (4.7) is 

satisfied at the collocation points. For ( , ), 1,...i i Bx y i N it holds 

      1 1

1 1 22


 

  

 
        

 
  V n

B B F

j

N N N
ij

ij Bj ij B B ij Wj i Wj
j j j

b

B A B B     (4.21) 

where ij  is the Kronecker delta and ijA , ijB  are induction factors. The term Wj  

approximates the potential jump (dipole intensity) on the trailing wake thus denoting 

memory effects, while 
1W  refers to the potential jump on the wake element that is 

closest to the trailing edge. In matrix form the above discretized equation can be 

reformulated as 

1     Φ D b P μ ZW W
        (4.22) 

 1( )  P A W μW W , 1Z A WK         (4.23) 

where 1D A S  denotes the DtN operator and 

    
2

 
  
 

A
ij

ijB ,  ,   i {1,...N },   j {1,...N }  S ij B BA  
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           1, , 1,..., , 2,..., ( )     W Wik K i B WB B i N k N t  

The collocation discretization scheme also holds for the non-linear Pressure-type 

Kutta condition, see also Filippas & Belibassakis (2014), Filippas (2019). 

 , ,1d

dt

   
 L N        (4.24) 

 

 
 

 
 1 21 2 1 1 2

,2 ,1 , , 1 3

1 12 2 2

B

B

B

N

N

N

g
d d      




       

g g τg g τ g g
L   (4.25) 

       1 1
, , 1 ,2 ,1 , , 1 ,2 ,1

1 1 1 1

1

2

B B

B B

B B

N N

N N

N Nd d d d            

 

   
               

      

τ ττ τ
N  

                                                                                                                                 (4.26) 

   1 , ,1, ,1 BB
B N BB N B

b b     g n n V V       (4.27) 

   2 , ,1, ,1 BB
B N BB N B

b b     g n n V V       (4.28) 

   
22

3 ,1 ,

1

2 BB B Ng   
  

V V         (4.29) 

where τ  is the unit tangent vector on the body contour defined in the clockwise 

direction and jd  is the curvilinear distance between the midpoints of the  , 1j j   

panels.  

After the discretization has been performed the solution of the aforementioned lifting 

flow problem can be obtained using two approaches. At this point, the reader is 

encouraged to refer to Section 2.3.1 for more details.  

The first approach (Section 2.3.1.1) consists of using the BIE as part of a system of 

equations about the unknown boundary fields ( , ; )B x y t  on the body boundary. 

Using the nonlinear pressure-type Kutta condition (Section 2.2.1) we can construct the 

complete nonlinear system of equations, with the boundary fields ( , ; )B x y t  and 1W  

as unknowns. Generally it holds,  

  0f x          (4.30) 
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where  1 1   
   

T

wx  is the vector containing the unknowns. The solution of 

this system at each time step of the simulation is approximated using a Newton 

Raphson method  

1

1 ( ) ( )

  x x J x f xn n n n        (4.31) 

where 1( )nJ x  denotes the inverse of the system’s Jacobian, which can be analytically 

calculated for the present formulation. 

The second approach (Section 2.3.1.2) uses the DtN operator, derived from the 

discretized version of the BIE, as a constraint to the dynamical system evolution 

equations. The latter was constructed using the pressure-type Kutta condition, 

whereas the dipole intensity 1W  in the vicinity of the trailing wake acts as the 

dynamic variable. Particularly, the initial value problem (IVP) with respect to the 

dynamic variable 
1WU  is presented below in a more compact notation 

( ),
d

dt


U
f U ( )o ot U U        (4.32) 

       1 1
( ) [ ] [ ] [ ]

    
   

  

D b U U
f U U

d d P

dt dt

N L
 (4.33) 

where ( )f U  denotes a vector function.  

In the present study, the numerical solution of (4.32)-(4.33) is obtained using a higher-

order Adams-Bashford-Moulton (A.B.M.) scheme, see Longuet-Higgins & Cokelet 

(1975) as well as Filippas & Belibassakis (2014). The time derivative terms   / ,d dt

  / D bd P dt  in equation (4.33) can be approximated numerically with a finite 

difference scheme. Furthermore, with ( )tU  known at time step t, the corrector step is 

the following, 

( ) ( ) [9 ( ) 19 ( ) 5 ( ) ( 2 )]
24

pre

t
t t t t t t t t t t


          U U f f f f   (4.34) 

with predictor step 

 ( ) ( )pre t t pret t t t    f f U       (4.35) 

( ) ( ) [55 ( ) 59 ( ) 37 ( 2 ) 9 ( 3 )]
24

pre

t
t t t t t t t t t t


          U U f f f f  (4.36) 

4.2.2 Discretization Scheme for the Structural Problem 
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Re-arranging the terms in equation (4.10) yields 

t o x x o o Total
m x w x t D x w x t m x w x t t q x t      2 2 2 2( ) ( ; ) [ ( ) ( ; )] ( ) ( ; ) ( ) ( ; )   (4.37) 

 Total Hydro
q x t q x t m x x t h t t    ( ; ) ( ; ) ( ) ( ) ( )cos ( )     (4.38) 

Next, the equivalent weak formulation of the IBVP is derived for the implementation 

of the FEM. After the semi-discretization of the system of equation using Galerkin 

approximation methods, the hp-FEM discretization is performed. More details about 

this methodology are presented in Chapter 3. 

Especially for the coupled problem, the local matrices are given by the following 

expressions,  

 
1 ,

( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )
 

 

   M
h h

e e e e

loc i j i j i ji j n
e

a H H m x H x H x dx m x H x H x dx  (4.39) 

 
1 ,

2

2

( ) ( )

( , )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )





 

 

 

 

   

   

 

 

K

h h

h h

e e

loc i j i j n

e e e e

xx i xx j i j

xx i xx j i j

e e

b H H

D x H x H x dx m x H x H x t dx

D x H x H x dx m x H x H x t dx

   (4.40) 

 

 

1
( )

( ) ( )

( ) ( ) ( , ) ( ) ( , )

( ) ( ; ) ( ) ( ) ( ) ( ) cos ( ) 

 
 

 

  

     
 

 

 

f
h h

h h

e e

loc j j Total j Totalj n
e

j Hydro j

e e

f H H x q x t dx H x q x t dx

H x q x t dx H x m x x t h t t dx
  (4.41) 

 
1 

 e

ie i n
U u           (4.42) 

where n nlocM  and, n nlocK  stand for the local element mass and stiffness 

matrices respectively, n

loc f  for the local load vector and  n

e
U  for the vector 

containing the nodal unknowns for interval Ie
. 

In this formulation, the foil undergoes prescribed heaving ( )h t  and pitching ( ) t

motions and thus the term 2

( )

( ) ( ) ( ) ( )



h

i j

e

m x H x H x t dx  appearing (4.39) as well as the 

term containing the influence of non-inertial phenomena in the forcing vector in (4.41) 

 
( )

( ) ( ) ( ) ( )cos ( ) 


   
 

h

j

e

H x m x x t h t t dx  can be calculated at each time step of the 

simulation. The first integral in the loading vector however, contains the 

hydrodynamic pressure forces which are dependent on the structural response of the 

foil and vice versa.  
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The next important step in this process is the assembly of the inner product terms, to 

construct the global matrices. The addition of proportional damping terms 1 2, a a  

yields the extended global equation, which is in fact a system of second order 

differential equations with initial conditions. By performing order reduction and 

introducing matrix notation we derive the following system of first order nonlinear 

differential equations,  

   A w B w Q ,    
T

o ow w w        (4.43) 

where  
 

  
 

glob0 M
A

I 0
,  

 
   

 

globK C
B

0 I
,  




 

globF
Q =

0
, 1 2 glob globa aC K M  the damping 

matrix and I  is the identity matrix known from linear algebra. It is noted, that the 

stiffness and force matrices are time-dependent in this formulation due to the time-

dependence of the pressure field and the non-inertial effects. 

 

4.2 Coupled BEM-FEM Numerical Scheme  

 

Having presented the formulation of a flapping foil possessing chord-wise flexibility, 

we devise a method to solve the coupled equations of the foil’s dynamic response as 

a flexible thin plate. The Crank-Nicolson time-marching scheme is  implemented for 

the integration of the structural equation (4.37). Therefore,  

        1
1 1

1 1

2 2
n n

n n n nt

w w
A B w Q B w Q

 

 
   


   

 
 

 1 1

11 1

2 2 2n n n n
tt tA B w A B w Q Q

 

 
        



 
   
 
    (4.44) 

where  1 1 1,n n n  w η u  denotes the solution vector at time step 1n , comprised of the 

nodal deflection and slope, while 
1,n nQ Q  are the loading vectors.  

The above has been discussed previously in Chapter 3, however in this section 

emphasis will be given to the loading vectors. If the loading vectors were known at 

each time step, the system of the above equations could be considered linear. Matrix 

[ 1/ 2 ] tA B  is non-singular and the solution could therefore be given from equation 

(4.44). However a hidden difficulty lies in the fact that the loading term in the current 

time step nQ  is not explicitly known and is also influenced by the deflection and slope 

response of the thin elastic plate. This implicit non-linearity is treated with an iterative 

scheme that considers the system of equations above to be in fact non-linear. We aim 

to solve the following 
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 1 1

11
0

1

22 2
n n n nt t t 

 
     

 
        

   
A B w A B w Q Q    (4.45) 

or, in a more compact form  

   1 1

11

2 2

1

2n n n n n
t t tG w A B w A B w Q Q

 

 
    

 
        
   

  (4.46) 

while setting the residual expression to vanish, as in  

 

  0n G w           (4.47) 

 

For the solution of equation (4.47) we use the Newton-Raphson method. Upon choice 

of an initial guess 0

nw  we successively approximate the unknown vector with the 

formula below 

 

   1 1 1 1 1,       2,...     q q q

n n n

q

n q     w w J w G w     (4.48) 

 

The matrix J  is the Jacobian of the function 2 2: N NG  defined as 

 

 

2

2 2

1 1 1

1 2

2

2 2

2 2 2

2 2

1

1

N

N

N N N

N

G G G

w w w

G G G

w w w

G G G

w w w

   
   
 
   

   
 
 
 
   
    

J w        (4.49) 

 

where        1 2 2, ,...,
T

NG GG   G w w w w . 

 

The calculation of the Jacobian matrix requires knowledge of the partial derivatives of 

the scalar components   , 1,..., 2i BNG i w  of the function  G w . This is not possible, 

however, since we do not have knowledge of the explicit dependence of  G w  on the 

vector w . Thus we resort to numerical approximation of the partial derivatives. Using 

the central differences scheme, we calculate 

 

   
2

i j j i j ji

j j

G w h

w

G w h

h

G   


         (4.50) 
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where jh  is sufficiently small. In practice jh  is selected as a small percentage of jw . 

Therefore, by defining a perturbation vector 1 2 2, ,...,
Tqq q q

n Nh h h   h  we have 

 

 
   

2

q q q q

n n n nq

n q

n

 


G w h G w h
J w

h
       (4.51) 

 

The proposed BEM-FEM coupled scheme is described below and presented 

schematically in Figure 4.2. 

o When the hydro-elastic coupling method proceeds to a new time step, the BEM 

solver is called using information from the previous step 0

1n nw w . In that 

sense, data flows from one solver to another (1) to approximate the deformed 

state of the camber line, based on which the body boundary geometry is 

generated and (2) to modify the no-entrance boundary condition.  

o The solution of the hydrodynamic problem gives a first approximation for the 

loading vector at the current time step 0

nQ . 

o We proceed by applying an implicit time integration scheme (e.g. implicit Euler 

method) to approximate the solution vector for the structural problem, thus 1

nw  

is obtained as our initial guess. 

o Starting with this initial guess we perform the iterative procedure based on the 

above Crank–Nicolson time integration scheme using the Newton-Raphson 

method. A criterion is established in order to examine the convergence of the 

iterative procedure. During intermediate iterations, the BEM solver is called to 

re-evaluate the loading vector based on new approximations concerning the 

deformations. 

o When the iterative procedure has converged to the solution, we obtain the 

vector containing the nodal deflection and slope response.  
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Figure 4.2 Flowchart of the BEM-FEM coupling algorithm, derived from Priovolos et al. (2018) 

 

Various criterions can be established to monitor the convergence of the iterative 

procedure to the approximate solution at each time step. In the present work, we 

introduce the following matrix containing the terms found in equation (4.46), as 

 

1 1

1 1
,  - ,  - ,  -

2 2

1 1

2 2
 

   
    

 

 
          

  
n n n nt tt tT A B w A B w Q Q   (4.52) 

 

with nw  and nQ  re-evaluated at intermediate iterations. Then we introduce, 

 

4 max ,        λ>0 crit T         (4.53) 

 

with 3 λ=10  as an example. Finally, we presented the expression that is used to 

terminate each intermediate iteration loop as, 

 

 max
n

critG w           (4.54) 
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4.3 Numerical Results 

 

4.3.1 Flapping-Foil with Prescribed Deformations 

 

To illustrate the capabilities of the extended BEM numerical scheme to treat flapping-

foils with prescribed deformations as well as the results that can be obtained with the 

developed hp-FEM we examine the structural response of a NACA0012 foil with 

flexural rigidity profile variation under distributed load. 

The time history of forcing is derived from the results of a case study for rigid flapping 

foils in propulsion mode, using the BEM solver presented in Chapter 2. The structural 

response of the foil is predicted here using the FEM solver with the time history of the 

distributed load is known a priori, as it has been obtained from simulation with the 

BEM solver. To what extent such simple simulations are able to reproduce results that 

resemble the fluid-structure interaction of biomimetic systems is an interesting topic 

for research. However, realistic solution approximations for a range of various design 

parameters, can only be obtained using fully coupled numerical models. 

For the hydrodynamics we consider a NACA0012 shaped foil with the centre of 

rotation located at the 1/ 3c  of the chord length 0.1 mc  that undergoes a combined 

heaving and pitching flapping motion. The non-dimensional heaving amplitude is 

/ 0.75ho c , the pitching amplitude is 10 o , the phase difference is 90   , 

Strouhal number is 0.3Str  and the forward velocity 0.2 /U m s . The fluid density 

is assumed to be 31000 kg/m  . The discretization in space and time employed 

120BN  panels and 0.05TSR  respectively. The structural member has a material 

density 31200 kg/m , Young’s modulus 5 22 10  N/m E  and Poisson’s ratio 0.5v . The 

mesh consisted of 100elemN  elements with 3nodesN .  

The time history of the non-dimensional pressure coefficient pC  on the body boundary 

and the corresponding pressure difference chord-wise 
2(1/ 2 ) pC U c  for the two 

periods after the solution has converged are presented in Figures 4.3 and 4.4 

respectively. These results were obtained using the BEM solver from Chapter 2, 

aiming for the latter to be used as the forcing term for the structural problem Note 

that, at the trailing edge the pressure difference is almost equal to zero, which is a 

results of the enforcement of the pressure-type Kutta condition.  

The FEM solution yields approximations for the the nodal unknowns of the transverse 

displacement on the mid-plane h

ow , the rotation of the normal to the mid-plane about 

y -axis  h

x ow  as well as their time derivatives  h

t ow and ( )  h

t x ow . The time histories of 
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these quantities are presented in Figures 4.5 – 4.8. These results are in accordance with 

the boundary conditions of Case 2 from Section 3.2, in which the pivot point of the foil 

remains clamped.  

Finally, the results obtained from the structural problem, and more specifically the 

transverse displacement and slope time histories, account for the prescribed 

deformations in this study case. The effects of flexibility on the instantaneous force 

and moment coefficients are shown in Figure 4.9. 

 

 

 

 

Figure 4.3 Time history of the pressure coefficient 
pC , concerning the flapping motion of a foil 

with / 0.75ho c , 10 o , 90   , 0.3Str  and 0.2 /U m s  for a mesh of 120BN  panels and 

0.05TSR   
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Figure 4.4 Time history of the pressure difference 2(1/ 2 ) pC U c , concerning the flapping motion 

of a foil with / 0.75ho c , 10 o , 90   , 0.3Str  and 0.2 /U m s  for a mesh of 120BN  panels 

and 0.05TSR . 

 

 

Figure 4.5 Time history of h

ow  for a material density 31200 kg/m , Young’s modulus 5 22 10  N/m E  

and Poisson’s ratio 0.5v .  
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Figure 4.6 Time history of  h

t ow  for a material density 31200 kg/m , Young’s modulus 5 22 10  N/m E  

and Poisson’s ratio 0.5v .  

 

Figure 4.7 Time history of  h

x ow  for a material density 31200 kg/m , Young’s modulus 5 22 10  N/m E  

and Poisson’s ratio 0.5v . 
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Figure 4.8 Time history of ( )  h

t x ow  for a material density 31200 kg/m , Young’s modulus 
5 22 10  N/m E  and Poisson’s ratio 0.5v  

 

Figure 4.9 Time history of force and moment coefficients for the case of a rigid foil (solid lines) 

and a foil with prescribed deformations (dashed line) 
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4.3.2 Validation of the Coupled BEM-FEM Numerical Scheme 

 

 

 

Figure 4.10 Schematic representation the experimental set up (a) and of the flexible plate (b) 

derived from Paraz et al. (2014) 

A fundamental aspect of this work is to illustrate the ability of the proposed coupled 

BEM-FEM to capture the main hydro-elastic effects of chord-wise flexible flapping 

foils. In this section, we present numerical results simulating an experimental case 

studied in the work of Paraz et al (2014), for which also analytical predictions were 

made in the most recent work by Paraz, Schouveiler, & Eloy (2016).  

The numerical method presented here is based on the second  approach to the problem 

solution (see Section 2.3.1.2), employing the Adams-Bashford linear multistep 

method for the lifting flow problem, which is less computationally demanding when 

compared to the first approach (see Section 2.3.1.1). 

The experiments considered flexible plates of chord length 0.12 c m  under enforced 

heaving motions, actuated at the leading edge (LE) for a frequency range of 0.2 8 Hz.

The schematic representation of the experimental set up is shown in Figure 4.3. We 

also performed simulations by means of the proposed BEM-FEM numerical scheme 

to predict the structural response of the trailing edge (TE) for: 

o trailing edge heaving amplitude 0.004 mLEA  

o constant flexural rigidity 0.018 NmD  

o free stream velocity 0.05 m/s U  that corresponds to Re 6000  

o fundamental frequency of the structure immersed in fluid 0.75 Hzof   
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The damped structural response of the foil is modelled using proportional damping 

terms, which were calculated using the natural frequencies of the foil in vacuo. The 

results obtained are presented in Figure 4.4 against the experimental data published 

in Paraz et al. (2014). The numerical parameters consisted of 100bemN  panel elements, 

35femN  Hermite quintic finite and / 0.005dt T  for the time discretization with T  

being the period of the enforced motion. For the unsteady lifting flow problem the 

foil was modelled as a NACA 0004, whereas, considering its elastic deformations, the 

foil was modelled as a thin plate with constant thickness of 0.004 mh . 

 

Figure 4.11 Heaving flexible plate response and comparison with Paraz et al. (2014). 

As seen in Figure 4.11, satisfactory agreement is found between the experimental and 

numerical data, regarding the appearance of the peak at / 1of f  amplitude and the 

overall shape of the response curve. The small differences concerning the peak values 

of the structural response, that are overestimated with the present method, could be 

attributed to the non-linear vortex-wake dynamics or non-linear damping effects that 

are not modeled in the present work. It is also noted that the fictitious forces were not 

taken into account during the simulations and therefore it is left as a future task to 

examine their effect on the structural response of the foil. 

It was also observed that as the forcing frequency f  increased the pressure difference 

at the trailing edge required finer discretization in time to be minimized. Nevertheless, 
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even with increased values of the pressure difference at the TE the results were in 

good agreement with the experiment. 

Also, in the work of Paraz, Schouveiler, & Eloy (2016). it is highlighted that the 

structural response of the heaving chord-wise flexible flat plate can be predicted using 

a linearized Euler-Bernoulli beam equation that includes non-linear damping terms 

with emphasis on the transverse drag terms. However, the proposed coupled BEM-

FEM numerical scheme is able to predict reasonably well the structural response of 

the TE using only proportional damping terms.  

In order to gain more insight into the fluid-structure interaction modelling we present 

results for / 0.3,  1,  1.5of f  concerning  

o the time history of the trailing edge (TE) along with time histories of the leading 

edge motion (LE) and the transverse displacement (Fig. 4.12-4.14) 

o the time history of the chord-wise pressure distribution to verify the 

satisfaction of the pressure-type Kutta condition (Fig. 4.15-4.17) 

o the envelope of the foil’s deflection (Fig. 4.18-4.20) in the inertial reference 

frame 

The enforced motion of the leading edge is represented with a dashed line in Figures 

4.12, 4.13 & 4.14, whereas with a blue line we represent the transverse displacement 

time history that was obtained from the BEM-FEM coupled numerical scheme. The 

transverse displacement is expressed with respect to the non-inertial body-fixed 

reference frame fixed at the foil’s leading edge with no inclination. Therefore, the 

overall response of the trailing edge in the inertial reference frame is given as a 

superposition of the leading edge motion with the transverse displacement.  

We observe that increased transverse displacement amplitudes come with increased 

values of the forcing frequency. However, due to the modified no-entrance boundary 

condition in equation (4.7) and the coupling scheme that is implemented a phase lag 

between the leading edge motion and transverse displacement is observed. Due to this 

phase lag we are able to predict the peak in the structural response of the TE, see 

Figure 4.11. 

Regarding the chord-wise pressure difference, the time history presented in Figure 

4.15 for the smallest ratio between the forcing frequency and the first resonance of the 

systems, / 0.3of f , shows trends similar to those found in modelling rigid flapping 

foils. Also, the pressure difference at the trailing edge is close to zero, indicating that 

the chosen mesh leads to the satisfaction of the imposed pressure-type Kutta 

condition. However, that is not the case for the simulations depicted in Figure 4.16 & 

4.17. Particularly chord-wise pressure distribution for / 1.5of f  is strongly 
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influenced by the no-entrance boundary condition containing the deflection velocity 

and leads to the interesting deflection envelope in Figure 4.20. 

 

 

 

Figure 4.12 Time history of the leading edge enforced motion (dashed line), the trailing edge 

response (red line) and the transverse displacement of the camber line (black line) for / 0.3of f . 
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Figure 4.13 Time history of the leading edge enforced motion (dashed line), the trailing edge 

response (red line) and the transverse displacement of the camber line (black line) for / 1of f . 

 

Figure 4.14 Time history of the leading edge enforced motion (dashed line), the trailing edge 

response (red line) and the transverse displacement of the camber line (black line) for / 1of f  
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Figure 4.15 Time history of the chord-wise pressure difference for / 0.3of f . 

 

 

Figure 4.16 Time history of the chord-wise pressure difference for / 1of f . 
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Figure 4.17 Time history of the chord-wise pressure difference for / 1.5of f . 

 

Additional interesting results that can be produced by the present method are the 

deflection envelopes of the foil in the inertial reference frame. These represent the 

enveloped structural responses that an observer outside the towing tank in the 

experiments performed by Paraz et al. would witness. In Figure 4.18 the transverse 

displacement of the foil’s camber line is small compared to the chord length. The 

deflection envelopes in Figures 4.19 & 4.20 display a far more interesting behavior and 

are also found in good agreement with the analytical results presented in the work of 

Paraz et al (2016).  

These deflection envelopes are slightly different from the ones observed 

experimentally in the work of Paraz et al. (2014). It has been suggested, that fluid-

structure interaction models that account for large deformations would produce better 

approximations regarding the structural response of such systems. Motivated by this, 

extension of the current FEM for large deformation modelling is proposed for future 

work. 
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Figure 4.18 Envelope for / 0.3of f  

 

 

Figure 4.19 Deflection envelope during the last period of motion for / 1of f  
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Figure 4.20 Deflection envelope during the last period of motion for / 1.5of f  
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Chapter 5 - Concluding Remarks and Future Research 
 

In this work we extended a previously developed 2-D panel method to treat the 

unsteady lifting flow problem of flapping foils with prescribed deformations. In this 

context a non-linear pressure-type Kutta condition is implemented along with frozen 

wake modelling for the trailing vortex sheet. The convergence and stability of the 

proposed numerical scheme are discussed, while numerical results concerning the 

overall propulsive performance of the system with prescribed deformations are 

presented in order to illustrate effects of chord-wise flexibility. Emphasis has also been 

given to the calculation of chord-wise pressure distribution. 

A model for the dynamic structural analysis of the foil employing the Classical Plate 

Theory (CPT) based on the Kirchhoff-Love hypothesis has been proposed. As a 

structural member, the foil, is modelled as a thin plate with a flexural rigidity 

variation and subjected to cylindrical bending under the plane strain assumption. In 

this formulation, the 2-D elasticity problem reduces to an 1-D problem. A finite 

element method based on Hermite interpolation is presented for the numerical 

approximation of the plate response. The damped structural response of the foil is 

treated with the addition of proportional damping terms. 

Finally, a coupled BEM-FEM numerical scheme for the treatment of the fluid-structure 

interaction problem of flapping foils with chord-wise flexibility and a flexural rigidity 

profile variation is presented. The proposed methodology is able to assess the overall 

performance of systems that operate as biomimetic inspired propulsion. Numerical 

results are compared against experimental data for the case of flexible flat plates, in 

enforced heaving motions, in order to validate the proposed numerical scheme.  

Future work is planned towards the detailed investigation and systematic 

examination of the structural response of the chord-wise flexible foil over a range of 

design and operation parameters, including reduced frequency, heaving and pitching 

amplitudes and effective angle of attack, and various flexural rigidity profiles inspired 

by nature.  

Direct extensions include the introduction and modelling of various nonlinearities 

associated with the evolution of the trailing vortex sheet as well as accounting for large 

deformation assumption in the structural response. In order to extent the methods 

applicability for large angles of attack we can introduce the treatment of leading edge 

separation and dynamic stall effects. Treatment of the 3-D deformable flapping wing, 

including also span-wise flexibility effects is also an interesting topic for future work.  
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Motivated by the work of Moored (2018), future work could also be planned towards 

the development of a combined unsteady 3D coupled BEM-FEM, a boundary layer 

solver and self-propeller equations of motion could be exploited to explore bio-

inspired self-propelled locomotion, including flexibility effects. 

Another direction for research includes the study of oscillating hydrofoils in the 

presence of waves and currents for the exploitation of combined renewable marine 

energy sources in nearshore and coastal regions. These systems operate as semi-

activated biomimetic energy device, with imposed pitching motion and induced 

heaving motion in harmonic incident waves and currents. The use of aquatic inspired 

oscillating flexible fins in such applications confirm that such systems are able to 

achieve high levels of efficiency either for propulsion or for tidal energy extraction. 

The implementation of high order BEM using b-splines of NURBS for the 

representation of the geometry and the unknown distribution of singularities on the 

boundary would accelerating the convergence and increase the numerical efficiency 

of the proposed scheme. Finally, the above problems increase significantly the 

computational requirements, especially when 3-D effects are included in the 

modelling. Parallel programming techniques and general purpose programming on 

graphics processing units (GPGPU) can alleviate this problem. The implementation of 

the computational code could be done using the CUDA C/C++ application 

programming interface (API). 
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Appendix 

 

A. Preliminaries from Functional Analysis  

 

Functional analysis provides some very intriguing tools to the study of partial 

differential equations. Instead of trying to solve a given strong formulation of a 

boundary value problem directly, the very structure of vector spaces can be used to 

yield the desirable solution. These solutions are naturally found in Sobolev spaces 
,k pW which are normed vector spaces of functions. Hilbert spaces, complete subsets of 

Sobolev spaces equipped with inner product structures, are also important in 

approximation theory (Brenner & Scott, 2008), (Kreyszig, 1978).  

Abstractly we consider two real normed spaces ,  U V with their continuous dual spaces 
* *,  U V  respectively. Any vector space has a corresponding dual space consisting of 

all the linear functional on that space, together with structures of pointwise addition 

and scalar multiplication by constants. In this topological vector space, there is a 

subspace of the dual space that consists of continuous linear functional, called the 

continuous dual space.  

If U is the space of the possible solutions; given some partial differential operator 
*:U V   and a specified element *f V , the objective is to find a u U such that  

u f   

 

(A.1) 

 

However, in weak formulations, the above equation is only required to hold when 

tested against all other possible elements of V , which are called test functions.  

Introducing a formal definition of the Sobolev and Hilbert spaces requires some 

preliminary notation. Starting with the Lebesque integral of a real-valued function f

on a given domain  . For 1 p  , let 

1/

( )
: ( )P

p
p

L
f f x dx





 
  
 
  

 

(A.2) 

 

and for p    

( )
:  sup{ ( )    : x }

L
f ess f x 

   (A.3) 
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The Lebesgue spaces are then defined as  
( )

( ) : {  :  < }
P

P

L
L f f


    and are linear (or 

vector) spaces. Also, the functional 
( )PL 

  has norm properties. 

Definition. A normed linear space  ,V   is called a Banach space if it is complete with respect 

to the metric induced by the norm,  .  Therefore, for 1 p   a Lebesgue space ( )PL   is a 

Banach space.  

Definition. The support of a continuous function u  defined on some domain in n  is the 

closure of the (open) set {  :  ( ) 0}x u x  . If this is a compact set and it is a subset of the interior 

of a set,  , then u is said to have a compact support with respect to  . 

Definition. Given a domain  , the set of locally integrable functions is denoted by 
1 1( ) : {  :  ( )       compact K  interior Ω}locL f f L K      

We proceed by introducing a definition of derivatives in a weak sense. For that we 

need to define an n-dimensional multi-index as a n-tuple 
1 2( , ,..., )na a a a  of non-

negative integers. The length of which is 
1

:
n

i

i

a a


 . Then the point-wise partial 

derivative for C   is defined as  
1

1

...

naa

a

x

n

D
x x

 
   

   
    

. 

Definition. We say that a given function 1

locf L has a weak derivative aD f , provided there 

exists a function 1

locg L  such that for every function φ with a compact support in Ω 

( )( ) ( ) ( 1) ( ) ( )        φ ( )
a

g x x dx f x x dx D 
 

       

If such a g exists, we define aD f g  . 

Definition. Let k be a non-negative integer, and let 1

locf L . Suppose that the weak 

derivatives a

wD f  exist for all a k . The Sobolev norm is defined  

For 1 p  :      

1/

( ) ( )
:

k P
p

p

p
a

wW L
a k

f D f
 



 
   
 
  (A.4) 

For p  :      
( ) ( )

: max
k

p
a

wW La k
f D f


  

  

 

(A.5) 

 

Finally Sobolev spaces are defined as  1

( )
( ) : {  :     < }

k
p

k

p loc W
W f L f


    . In this form 

index k refers to the vector space dimension, whereas index p is the order of the 

Lebesgue norm. Hilbert spaces are complete inner product vector spaces and their theory 
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is richer than that of the general normed and Banach spaces. Ofter these inner-product 

spaces are denoted by ( )kH  . 

 

B. Hermite shape functions 

 

Let us assume that we have N+1 sample data points of a function f . In this section 

we will develop an interpolating polynomial that equals the function and its 1rst  

derivative at the given sample points. Therefore we require that for 0,i N  

( ) ( )i ig x f x  (B.1) 

'( ) '( )i ig x f x  

 

(B.2) 

 

Each of the expressions above enforces ( 1)N   constrains and in total we have 

2( 1)N  constrains. We need to set up a general polynomial, of degree 2( 1) 1N    so 

that the number of unknowns is equal to the number of constraints.  

 

Hermite interpolation function of 3rd order 

 

Consider the interval [0,1]  and that the values of function f  and its 1st derivative are 

known at the exterior nodal points, i.e. (0) of f , 1(1)f f , (1)

0'(0)f f  and (1)

1'(1)f f

. Since 1N   the interpolating polynomial will be of 2( 1) 1 3rdN     degree. So, 

2 3

1 2 3( ) og x a a x a x a x     (B.3) 

 

2

1 2 3'( ) 2 3g x a a x a x    (B.4) 

 

00

1 2 3 11

(1) (1)

0 1 0

(1) (1)

1 1 2 3 1

(0)

(1)
  

'(0)

'(1) 2 3

o

o

a fg f

a a a a fg f

g f a f

g f a a a f

 


    
 

  
     

 (B.5) 

 

If we apply constrains from eq. (B.1)-(B.2) to the expressions in (B.3) and (B.4) we have: 

The constraint equations can be written in matrix form: 
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0

11

(1)

2 0

(1)
3 1

1 0 0 0

1 1 1 1
      

0 1 0 0

0 1 2 2

o
fa

fa

a f

a f

   
   
     
   
   
      

 

 

(B.6) 

 

Therefore,  

(1) (1) 2 (1) (1) 3

0 1 1 0 1 0 1( ) (3 3 2 ) ( 2 2 )o o og x f f x f f f f x f f f f x            

 

(B.7) 

 

If we re-write eq. (B.7) so that the functional and derivative values are factored out, 

3 2 3 2 (1) 3 2 (1) 3 2

1 0 1( ) (2 3 1) ( 2 3 ) ( 2 ) ( )og x f x x f x x f x x x f x x            

 

(B.8) 

 

In this formulation we have derived the basis of the cubic Hermite function space: 

3 2

1 0 ( ) 2 3 1H a x x x     
3 2

2 0 ( ) 2H b x x x x     
3 2

3 1( ) 2 3H a x x x     
3 2

4 1( )H b x x x    

 

(B.9) 

 

Therefore we can define two separate functions associated with each data point. 

Mathematically the constraints discussed above, which are 16 in total {2 nodes x 2 

functions per node x 4 dofs per function} can be expressed by  

( )i j ija x  , ( ) 0i jb x   for , 0,1i j   

 

(B.10a) 

 

and their 1st derivative,  

(1) ( ) 0i ja x  , (1) ( )i j ijb x   for , 0,1i j   

 

(B.10b) 

 

with 
0   i j

1    i = j
ij


 


  denoting the Kronecker delta. 

 

Hermite interpolation function of 5th order 

 

If we assume that for the same interval [0,1]  we are given the data at three nodal points 

for the function and its 1st derivative, for the two exterior nodes and the mid-point as 

the interior node. Since 2N   the interpolating polynomial will be of 2( 1) 1 5thN     

degree. So, 
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2 3 4 5

1 2 3 4 5( ) og x a a x a x a x a x a x       (B.11) 
2 3 4

1 2 3 4 5'( ) 2 3 4 5g x a a x a x a x a x      

 

(B.12) 

 

After the constrains are applied to the interpolating polynomial expression and the 

equations are written in matrix notation, the system of linear equations can be solved 

with respect to the nodal unknowns. The next step is to substitute the solution to 

equations (B.11) and rearrange the terms so that the functional and derivative values 

are factored out. The basis functions of 5th order polynomials are given by the 

following analytic formulas: 

5 4 3 2

1 0 ( ) 24 68 66 23 1H a x x x x x       
5 4 3 2

2 0 ( ) 4 12 13 6H b x x x x x x       
2 2

3 0.5 ( ) 16 (1 )H a x x x    
2 3 2

4 0.5 ( ) 8 (2 5 4 1)H b x x x x x      
2 3 2

5 1( ) ( 24 52 34 7)H a x x x x x       
2 3 2

6 1( ) (4 8 5 1)H b x x x x x      

(B.13) 

 

The shape functions also have the following characteristics: 

( )i j ija x  , ( ) 0i jb x   for , 0,0.5,1i j   

 

(B.14a) 

 

and their 1st derivative,  

(1) ( ) 0i ja x  , (1) ( )i j ijb x   for , 0,0.5,1i j   (B.15b) 

with ij  as the Kronecker delta. 

 

Figure B.1 Shape Functions for Hermite Finite Elements of 3rd degree (left) and 5th degree (right) 

polynomials.  
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C. Gaussian Quadrature  

 

A quadrature rule is an approximation of the definite integral of a function, usually 

stated as a weighted sum of function values at specified points within the domain of 

integration. The n point Gaussian quadrature rule, is constructed to yield an exact 

result for polynomials of degree 2 1n  or less by a suitable choice of the nodes 
ix  and 

weights ,   1,...iw i n . The most common domain of integration for such a rule is taken 

as [ 1,1] . In that interval the Gauss-Legendre quadrature rule is, 

1

1
( ) ( ).




n

i i

i

f x dx w f x  
(C.1) 

 

However, this quadrature rule will only be an accurate approximation to the integral 

above if ( )f x  is well-approximated by a polynomial of degree 2 1n  or less on [ 1,1]

in the first place. The abscissas for quadrature order n  are given by the roots 
ix  of the 

Legendre polynomials ( )nP x , which occur symmetrically about 0. The weights are 

given by the following expression 

2 ' 2

2

(1 )[ ( )]
 


i

i n i

w
x P x

 (C.2) 

where ' ( )n iP x  is the derivative of the Legendre polynomial. 

An integral over [ , ]a b  must be changed into an integral over [ 1,1]  before applying 

the Gaussian quadrature rule. This change of interval can be done in the following 

way: 

( ) ( ).
2 2 2

  
 

nb

i i
a

i

b a b a a b
f x dx w f x  (C.3) 

  

https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Weighted_sum
https://en.wikipedia.org/wiki/Polynomial
http://mathworld.wolfram.com/Abscissa.html
http://mathworld.wolfram.com/LegendrePolynomial.html
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