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Summary 
Biomarkers are cornerstones of healthcare spanning a variety of applications from disease 
diagnosis to stratification and prediction of likely outcome. Despite significant efforts that 
have identified thousands of potential biomarkers, their translation into clinical practice 
remains poor, averaging 1.5 per year across all diseases. This inefficiency primarily results 
from the lack of connection of the candidate biomarkers with the underlying 
pathophysiological mechanisms that they monitor which results in poor reproducibility in 
their developmental pipeline. On top of these limitations, the current single-biomarker-to-
single-disease approach does not capture the multifactorial nature of complex diseases like 
Chronic Kidney Disease (CKD). CKD is a major public health problem that affects approximately 
to 14% of the general population and requires asymptomatic, early-stage, and disease-
specific, biomarkers to deliver more precise diagnostic and predictive information.  
Here we propose, and experimentally validate, a biomarker discovery pipeline that aims to 
identify molecular signatures that not only allow to discern different CKD subtypes but also 
capture the underlying biology of the disease. To that end, first, we integrate protein-protein 
interaction networks with annotated gene-sets into a knowledge-base that captures plethora 
of information about biological entities and their interactions. This model is then fed with CKD 
transcriptional data to generate a disease specific model. Third, the model is analysed using 
different state-of-the-art methods (e.g.: network analysis, pathway analysis) which result in a 
molecular profile for each protein capturing different disease biology. Relevant features are 
then selected and optimized by training an elastic network model on plasma samples which is 
used to predict biomarker performance. Finally, the resulting individual candidates are 
integrated into a biomarker panel with increased performance and stability using linear 
discriminant analysis as machine learning integrative method. Results show that our holistic 
approach can find biomarkers that are associated with disease mechanisms while keeping 
competent predictive abilities. 
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Extended Summary 
Modern high-throughput omic technologies like the widely used DNA microarrays in 
combination with the emergence of computational methods for multi-omics data analysis are 
allowing biomedical researchers to better understand complex diseases by unravelling their 
underlying mechanisms. This new field, Systems Biology, promotes the holistic description of 
the studied systems as opposed to the “traditional” approach that focuses on the study of its 
elements individually. DNA microarray studies, now collect the vast majority of protein 
encoding genes, thus allowing to capture most pathophysiological phenomena. Therefore, 
modern computational methods exploit the plethora of topological, functional, and 
contextual information about biological entities which are generally comprised into databases 
(protein-protein interaction networks, functionally correlated gene sets, etc.).  

Complex and heterogeneous diseases like Chronic Kidney Disease (CKD) are to benefit most 
from these system-based approaches due to their high degree of polygenicity (groups of genes 
that can act together to produce an observable variation). CKD is a major public health 
problem that affects to approximately 14 percent of the general population according to the 
National Institute of Diabetes and Digestive and Kidney Diseases. Despite its prevalence, CKD 
is a syndrome that is heavily understudied, according to NIH data the investment in kidney 
research per affected patient is 10% of that of aids and 1% of that of cancer in the United 
States. CKD is an asymptomatic disease in its early stages and can go undetected until it is very 
advanced, when patients may experience weakness related to anaemia and proteinuria 
(presence of large quantities of protein in urine which often causes the urine to become 
foamy). All modern CKD categorizations (Risk Injury-Failure-Loss-End Stage Kidney Disease 
[RIFLE], Acute Kidney Injury Network [AKIN], or Kidney Disease, Improving Global Outcomes 
[KDIGO]) use the estimated Glomerular Filtration Rate (eGFR) to diagnose kidney injury. 
Despite a single measurement of eGFR and proteinuria are generally used to identify CKD, the 
abnormalities should persist for at least 3 months in order to complete its diagnosis. In adults, 
the most common ways to calculate eGFR are using the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) equations, both 
of which use serum creatinine (sCr) as biomarker to calculate eGFR. However, this 
measurement lacks sensitivity (kidney damage is not the only factor that affects sCr levels) 
and fails on further characterizing CKD into subcategories (sCr its indifferent to the 
pathophysiology of the injury). On the other hand, second generation biomarkers like 
neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) have 
refined the diagnosis of CKD but fail to subfractionate CKD further.  

Predictions based on single-molecules are usually ineffective for complex diseases and fail in 
their progress to clinical trials due to their lack of connection to the mechanism of the disease. 
On the other hand, most of commercially available products use panels of genes like the 
MammaPrint® test, a panel of 70 genes for breast-cancer prediction. In the case of CKD, 
although recent studies have shown that gene expression in the kidney and protein signatures 
in external biofluids (serum, urine, etc.) can distinguish different forms of CKD, implying a 
complex system responding to different factors; such a test including disease-specific 
biomarkers does not exists yet and may be required. Hence, mechanism-based biomarker 
discovery aims to identify molecular signatures that not only capture the underlying biology 
of the disease, but also allow to identify its diversity distinguishing the subtype of origin and 
permitting more effective therapies.  
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Methods 

The present project deals with a proteomic biomarker discovery scheme that has as input 
gene expression data from patients. CKD is used as case study.  

In gene expression, the intensity is defined as the number of RNA copies that is proportional 
to the concentration of the protein produced. For the purposes of this thesis, microarray DNA 
type measurements were used from public databases (NephroSeq, Gene Expresion Omnibus). 
These technologies have the ability to measure the expression of a predefined number of 
genes in many samples. 

In the case of proteomics instead, for the present study, the measurement of concentrations 
of proteins was performed by the bead-based sandwich ELISA technique which allows 
measuring a predetermined number of proteins in many samples. 

The pipeline presented in this thesis combines prior knowledge from publicly available 
biological models databases with state-of-the-art algorithms that aim to capture meaningful 
biology for the disease. The goal is to suggest a number of proteins as candidate biomarkers 
to be measured in blood samples that are able to diagnose a disease subtype, and use machine 
learning methods to integrate them into a panel of biomarkers with increased performance 
and stability. The cornerstone is to molecularly determine the underlying pathophysiological 
mechanism causing CKD and detect it before the damage is done. Briefly, our methodology 
includes 5 steps:  

1) Integrate protein-protein interaction (PPI) networks with annotated gene-sets to construct 
the knowledge-base (KB) which comprises contextual information about the biological entities 
participating in our model. There exist several alternatives in both cases for the selection of 
the biological model, each of which being different from the previous one. A recursive motto 
in this thesis is that of the ‘wisdom of the crowds’, meaning that when several options are 
available without any apparent reason to prioritize any of them, their combination is probably 
closer to the truth. Consequently, for both biological models, we chose those that encapsulate 
these ideals in their construction by integrating several sources into a single database, that is, 
the Molecular Signatures database (MSigDB) for the gene sets, and OmniPath for the PPI.  

2) Feed this KB with CKD data obtained from the Gene Expression Omnibus (GEO) to create 
disease-specific models. CKD data was obtained from different studies which needed to be 
merged before using them for any type of analysis. Gene expression microarray 
measurements can be affected by small differences in any number of non-biological variables, 
so different instruments, technicians, reagent lots, or even days in which the experiments 
were carried out can affect the data. Heterogeneous datasets make integration challenging, 
so different steps removing incomplete features, observations, and under-represented 
disease groups were applied. Batch effect adjustment was addressed using ComBat.  

3) Apply different state-of-the-art omic-analysis methods (network analysis, pathway analysis, 
etc.) to describe a molecular profile for each biological entity included in the model. Our 
holistic approach uses three different types of analysis that study the system in three different 
biological levels: molecular-level, pathway-level, and network-level. For the molecular-level, 
the integrated gene expression dataset was analysed with Linear Models for Microarray Data 
(Limma), a gold-standard for the analysis of microarray data. For the pathway-level, the 
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method of choice was piano, a gene set analysis method that integrates 11 different 
algorithms in its pipeline. For the network-level, a custom method was applied which focuses 
in the surrounding area of each protein based on the PPI. 

4) Select and optimize the features included in the above-described molecular profile by 
training an elastic network model on plasma samples. Apart from literature, we don’t have 
information about which proteins (from the ones included in our model) are more likely to 
perform as biomarkers. We don’t know either which of the obtained features in the analysis 
above are useful for their prediction. We tried to answer these questions by measuring a 
relatively small number of proteins and calculating their performance as biomarkers using also 
a custom equation. Our equation for biomarker performance integrates quantitative and 
qualitative metrics into a single value that is used to train a prediction model. Based on these 
predictions, a second round of proteins is measured for validation purposes. The motivation 
behind the use of blood samples is that, for monitoring human health, measuring protein 
biomarkers in blood is considered a very attractive solution because the pathology of almost 
every body tissue can affect the blood proteome on top of the simplicity of obtaining the 
sample. 

5) Integrate the individual candidates into a biomarker panel with increased performance and 
stability. As described in the introduction of this section, biomarkers work best when 
integrated in panels. This is particularly true for polygenic diseases like cancer or CKD as in this 
study. Single proteins cannot capture the complexity and the different mechanisms that are 
affected by these pathologies. To that end, we exhaustively trained panels of size 1 to 7 trying 
all possible combinations of the measured proteins for each size. Then, the best performing 
panel was selected for each size to construct the Pareto front. Finally, the optimal panel was 
chosen based on the elbow criterion. 

Results and discussion 

Our results show that the pre-processing step, which involves, data integration and batch-
effect removal is the most critical phase of the whole pipeline as most of the downstream 
analyses depend on the expression results. To a lesser extent, but also of great importance, 
the selection of biological models chosen to construct the KB largely affect the obtained 
results.  

Our analysis also highlights one of the basic aspects of systems biology. Complex phenotypes 
are not explained by changes in individual molecules but rather small and coordinated 
changes in functionally correlated molecules originate those phenotypes. In fact, the results 
in the molecular-level do not correlate with biomarker performance in the way that the ones 
in the pathway- and network-level do. Moreover, the best performing proteins individually 
(TFF3 [BP = 96.08], and ICAM1 [BP = 90.24]) did not show a significant change in the 
transcriptomic level. In fact, from the introduced analyses, the network-level features are the 
ones correlating best with biomarker performance.  

Regarding the performance of the proteins individually, our method was able to find strong 
biomarker candidates when gene-expression level statistics were strong (CKD vs healthy). On 
the other hand, the separation between disease subgroups at the gene level was not strong, 
and as such the biomarker diagnostic power was lower. This trend was observed in all the 
analysed levels (transcriptomics, pathway, network, proteomics). On this front, some proteins 
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showed a moderate diagnostic ability to separate disease groups as is the case of Galectin 3 
for Diabetic Nephritis (DN) (BP = 72.36) and MMP9 for Lupus Nephritis (LN) (BP = 73.66). In 
fact, these two proteins together with the previously mentioned ICAM are the ones that were 
combined for the conformation of the optimal panel.  
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Chapter 1 Biomarkers 
This chapter represents a summary of the biological and technical concepts surrounding 
biomarkers, including the different types and applications of biomarkers, their developmental 
pipeline, and how to evaluate their performance. 

Introduction 

Etymologically, the word biomarker derives from biological and marker, and even if this 
definition seems straightforward enough, there has been a lot of ambiguity around this term 
and different authors [1, 2] suggest that its meaning has been diluted by overuse. The most 
widely accepted definition of the term biomarker was proposed by the Biomarkers Definitions 
Working Group from the National Institutes of Health (NIH) in 2001 [3]. According to that 
group, a biomarker is defined as “a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention”. Hence, in the broad sense, a biomarker may be a 
distinctive trait or feature with diagnostic, prognostic and/or predictive potential [1].  

Currently, there is an overwhelming interest in biomarker research as the volume of literature 
dedicated to biomarker discovery, characterization and validation continues to increase every 
year [4]. From the first incorporation of the term biomarker in a journal article title in 1980 [5] 
[6] (from PubMed), the number of journal citations including the term biomarker has 
increased reaching more than 17,000 in the year 2000 and more than 53,000 in the year 2017 
(Figure 1). 

Types of biomarkers 

Based on application 

Biomarkers can perform diverse functions in medical research and are often classified 
according to their intended use. Biomarkers are most commonly applied to diagnosis, 
prognosis, and prediction [7]. 

Diagnostic biomarkers: Diagnosis is related with determining the current state of the patient 
and accurately identifying an existing, but unknown, disease state. Diagnostic biomarkers are 
those that discriminate subjects as having or not having a specific disease or condition, or 
more generally, distinguish between several possibilities (disease severity, staging) [7]. 
Therefore, diagnosis is a problem of classification which is liable to the same considerations 
attributed to classification problems. Examples of diagnostic biomarkers include elevated 
blood glucose concentration for the diagnosis of diabetes mellitus [8] or heart rate variability 
as a biomarker of fibromyalgia syndrome [9].  

The differentiation between pathological and normal is not a trivial issue and involves the 
need to define “normal” to establish a reference interval to which patients’ results can be 
compared [10]. The normal range, or reference interval, is the value expected for 95% of the 
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population (National Cancer Institute; http://www.cancer.gov/dictionary/?CdrID=635450), 
although this cut-off value can be modified depending on each case. The establishment of a 
reference interval can require a large population so is usually not considered until the process 
of transition from biomarker discovery to validated assay [1]. Moreover, the concept of 
normal is confounded by the index of individuality and biological variation. The index of 
individuality is the intra-individual variation of a measurement while the biological variation 
represents the inter-individual disparity. Therefore, a diagnostic biomarker requires to 
characterize its “normal” levels within and between subjects and assess whether it varies by 
age, gender, and ethnicity.  

 

Figure 1 – Number of journal citations with the term biomarker. Each bar corresponds to a citations per year; A) Classification 
per application (diagnostic, prognostic, predictive, other), B) Classification per biological source used (blood, tissue, urine, 
other). 

Prognostic biomarkers: Prognostic biomarkers are related to the prediction/risk of a future 
event [7]. These biomarkers add the element of time, and therefore, a stochastic element, 

A) 

B) 
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one that is subject to chance. The outcome is not only unknown, but does not yet exist, 
distinguishing this task from diagnosis [11]. In diagnostic biomarkers, single measurements 
may be enough but in prognostics they are of little value. The problem is no longer only 
classification but also calibration and require a clinical assay to identify the likely 
course/outcome of a disease. For a prognostic biomarker to be beneficial it requires an 
available therapeutic option for influencing a negative outcome [1]. Examples of prognostic 
biomarkers include the Framingham risk score, which predicts the 10-year risk of 
cardiovascular disease [12] or the anatomic measurement of tumor shrinkage as prognostic 
biomarker for certain cancers [13]. 

Predictive biomarkers: Predictive biomarkers are related to identifying the group of patients 
that would be affected/resistant by/to a specific therapy. They refer to the use of a specific 
analyte or group of analytes to examine a large population for the purpose of identifying a 
specific pathophysiology. Therefore, prediction is a matter of screening. Predictive probability 
is largely dependent on prevalence, and somewhat less on sensitivity and specificity of the 
assay system [1]. Examples of predictive biomarkers include blood cholesterol concentrations 
for determination of the risk of heart disease [13] or PD-L1 expression as a predictive 
biomarker in cancer immunotherapy [14].  

Although the same biomarkers may serve different purposes, most often different 
experimental designs, data types, and analytical methods are needed to assess biomarker 
performance in each case. For example, the performance of diagnostic markers can normally 
be established using data from a single time point, while prognostic marker assessment 
usually requires at least two time points [7].  

Based on source 

Another common classification of biomarkers is based on the source material in which they 
are measured. Biomarkers can be obtained from different sources like tissue samples or 
biological fluids such as blood, urine, or saliva. 

Blood biomarkers: Blood is the most common source of biomarkers representing 
approximately 50% of the biomarker research efforts every year (figure, 1.B). There are many 
reasons to justify the use of blood as a source of potential biomarkers: blood is perhaps the 
most popular source for biological samples and is the preferred material for a final diagnostic 
test [1]. Moreover, it is reasonably easy to obtain samples; the samples are technically easy 
to process, and they are mostly considered homogeneous when compared to saliva or urine. 
Whole blood may serve directly as sample but more commonly the blood is fractionated into 
plasma or allowed to form serum. It must be emphasized that plasma and serum are not 
interchangeable terms and that there are gross analytical differences between these two 
biofluids [15]. Serum is the liquid fraction of whole blood that is collected after the blood is 
allowed to clot while plasma is produced when whole blood is collected in tubes that are 
treated with an anticoagulant. Serum is plasma without red/white cells nor clotting factors. 
An example of a blood biomarker is microRNA-210 in acute cerebral ischemia [16]. 

Urine biomarkers: Urine is a biological fluid that has recently drawn attention as a potential 
source of biomarkers. Urine biomarkers represent different advantages and disadvantages 
compared with those obtained from blood even if both fluids have a considerable history of 
use in clinical chemistry. The collection of urine is technically easier to perform as it does not 
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require venepuncture; however, blood is likely a more reproducible source as issues such as 
flow rate do not need to be considered [1]. It is common to express the concentration of urine 
biomarkers relative to creatinine concentration [17] to correct for urine dilution. Creatinine, 
formed from creatine, is a by-product of musculoskeletal exercise which, in normal conditions, 
is secreted through urine and its levels are considered to be constant within each individual 
[18]. Examples of urine biomarkers include albumin as a biomarker for cardiovascular and 
renal disease [19], S100 as a biomarker for head injury in children [20], or VEGF as a biomarker 
for cancer [21]. 

Apart from the abovementioned biofluids, there are other (less investigated) biological 
fluids/excretory products of interest as biomarkers. Examples include salivary cortisol as a 
biomarker for stress [22], fecal waters as a biomarker for colorectal cancer [23], exhaled 
breath condensate as a biomarker for pulmonary function [24], and sweat as a biomarker for 
the diagnosis of cystic fibrosis [25]. 

Tissue biomarkers: Tissue biomarkers are not as attractive as biofluids due to a higher 
invasiveness of obtaining tissue samples and because a greater level of processing (tissue 
fixation, preparation of sections, staining, and imaging) is required. However, demonstration 
of a biomarker in a tissue section is an unequivocal evidence for the presence of said 
biomarker [1]. Advances in single cell technologies are of high interest in the area of tissue 
biomarkers as they can help to unravel the underlying mechanisms and better understanding 
of complex diseases. Examples of tissue biomarkers include HCCR oncoprotein as diagnostic 
biomarker for breast cancer [26] or CD63 as a prognostic biomarker in lung cancer [27]. 

Based on nature 

Historically, biomarkers have often been either physical traits (e.g. skin pigmentation), or 
physiological metrics (e.g. heart rate). Nowadays, however, with the rapid progression of -
omic technologies, the term has become a shorthand for molecular biomarkers [10]. 
Nevertheless, non-molecular biomarkers (specially imaging-based) are still being focused by 
the scientific community. Examples of these include blood pressure as a potential biomarker 
of the efficacy of angiogenesis inhibitor [28], positron emission tomography (pet) images as a 
potential biomarker for Alzheimer’s disease [29], or magnetic resonance (MR) images as a 
potential biomarker for treatment response in oncology [30]. 

Molecular biomarkers: The rapid advancement of molecular biomarkers is partially due to the 
parallel development of -omic technologies that are allowing us to measure more, and more 
reliably, different molecules. Molecular biomarkers can be of various types including 
proteomic biomarkers [10], genomic biomarkers [31], metabolic biomarkers [32] and so on. 
Each type utilizes different technologies for its measurement and as a consequence a diversity 
of strategies have been implemented for their discovery. For a review about -omic 
technologies applied to kidney see [33].  

Despite all the different types of biomarkers mentioned in the previous paragraphs, from this 
point onwards, we will use the term biomarker as a shorthand for diagnostic blood proteomic 
biomarker as these will be the focus of the present thesis. Genomic biomarkers are currently 
used for diagnosis of monogenic diseases like polycystic kidney disease, which are caused by 
a mutation in a single gene. However, complex diseases like chronic kidney disease or cancer 
are often polygenic (caused by small but coordinated changes in several different genes). In 
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this way, proteomics has been the enabling technology absorbing most of the biomarker 
research efforts [1] as the protein domain is likely the most affected one in disease, response, 
and recovery. This makes proteomics the ideal territory for biomarker discovery as proteins 
provide a broad picture of patient phenotype [10]. Among all biofluids, human blood is the 
most attractive option as it contains more different proteins (estimated to contain at least 
10,000 different proteins) [34]. Moreover, blood has been described as the most 
comprehensive human proteome, with the ability to represent physiological and pathological 
processes from all body tissues [34].  

The biomarker development pipeline 

Analogously to drug development, the biomarker pipeline is a multi-step process that typically 
involves numerous studies from preclinical, to confirmatory human trials, although the 
pharmaceutical industry has more than 100 times funding than the one of protein diagnostics 
[34]. A well-organized biomarker development project typically evolves from an unbiased 
experimental approach that emphasizes on comprehensive protein characterization via mass-
spectrometry (MS) to a targeted approach that emphasizes on development of high-
throughput antibody-based assays. The different steps in between differ in the experimental 
methods, as well as analytical tools used, and represent a tradeoff between the number of 
samples and analytes included [10] (Figure 2).  

 

Figure 2- The biomarker development pipeline. Discovery involves the identification of hundreds of biomarker candidates 
differentially expressed via MS; Quantification emphasizes on the confirmation of differential expression in gold standard 
samples (usually plasma); Verification focuses on the assessment of specificity of the candidates; Validation concludes with 
the development of a clinical assay. 

Candidate discovery: Discovery is the unbiased and semiquantitative process by which the 
differential expression of proteins between specific conditions is first defined [10]. Discovery 
is not limited to specific species (e.g., animal models or cell lines) or biological materials 
(tissue, blood, etc.) and typically involves a simple two-group comparison (e.g., healthy vs 
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disease) avoiding considerations about possible co-founding factors (gender, age, ethnicity, 
etc.). The output of the discovery phase is a list of proteins differentially expressed between 
the conditions of interest, which can be expanded with proteins drawn from the literature. 
Differential expression is typically assessed via semiquantitative untargeted MS. The discovery 
phase is known to have a high false positive ratio; i.e., proteins that during discovery showed 
differential expression but upon further testing, in fact, they do not. Because of their high 
false-discovery rate, these proteins are called ‘candidate biomarkers’ rather than biomarkers.  

Candidate qualification: Qualification translates the findings from discovery by confirming 
differential expression of the candidate biomarkers in binary comparisons using alternative, 
targeted methods and human plasma samples [10]. 

Candidate verification: Verification extends the analysis to hundreds of human plasma 
samples, now including not only binary comparisons, but a broader range of cases and 
controls. This increase in patient number allows to start assessing the biological variation of 
the candidates in the tested population and the possible co-founding factors affecting 
candidate levels [10]. 

Biomarker validation: Validation tests many thousands of samples and aims to capture the 
full variation of the targeted population [10]. Because the final goal is the development of an 
in-vitro diagnostic (IVD) test, or in some cases, a point-of-care (POC) device, biomarker 
validation is closely related with the optimization and the validation of the test assay in which 
the biomarker is being measured (technical validation precedes biological validation). These 
tests are typically immunoassays (e.g., ELISA) that require full characterization of the 
immunoaffinity reagents to meet the rigorous standards required for clinical tests [10].  

We can see that besides the experimental shift from untargeted to targeted approaches, the 
biomarker pipeline includes another important state change. Discovery and qualification focus 
on the biological association between marker and phenotype, while assay optimization and 
validation also put emphasis on the test being used for the measurements which can 
dramatically enhance signal-to-noise, streamline processing and enhance throughput [10]. 
Both phases are essential as one of the main problems with blood proteomic biomarkers is 
the lack of reproducibility. This lack of reproducibility is directly linked with the record of 
transition from discovered biomarker to clinical assay (suggested as 1 per year since 1998 [10]) 
which is, in part, due to the biomarker pipeline and the cost of obtaining data sufficient for 
approval, but more importantly to the lack of connection of the vast majority of biomarker 
candidates with the underlying biology of the system in question [1]. Too often the biomarker 
pipeline is oversimplified into a direct line relationship between hypothesis generation and 
testing [7]. However, it is important to determine whether the newly identified biomarkers 
are mere associations or real biomarkers of disease state representing pathophysiological 
processes (mechanistic biomarkers) [35]. The term biomarker then is not only a laboratory 
analyte, is more of a concept where the biomarker is closely related to the biology underlying 
its production [1]. The use of the term biomarker as a response to an environment stress or 
in response to a therapeutic intervention seems quite reasonable. However, the vast majority 
of statistical approaches fail con capturing the most important ingredient, causality [36]. 
Statistical correlations solely do not make biomarkers. I cannot emphasize this point strongly 
enough as an understanding that capturing the underlying biology of a disease with a 
biomarker will increase the chances of developing an assay, robust, reproducible and with 
potential to progress into the clinic. 
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Mechanism Based Biomarker Discovery 

Traditionally, biomarker discovery was hypothesis driven and therefore related to extensive 
biological research to characterize pathological processes for identification of potential 
biomarker candidates. In contrast, the rapid development of -omics technologies over the last 
years initiated a paradigm shift into data-driven hypothesis-free multi-parametric profiling 
approaches for biomarker discovery [37]. However, as previously mentioned, this data-driven 
approach does not capture causal relationships between disease and marker showing little 
success as very few new biomarkers were introduced into clinical practice (averaging 1 per 
year) [38]. Therefore, a new paradigm shift is taking place, and modern biomarker discovery 
exploits existing knowledge about biological entities and their interactions as well as case-
specific data to characterize pathological processes related to disease phenotype and identify 
surrogate endpoints that respond to alterations in those processes. 

Complex and heterogeneous diseases like CKD are highly polygenic, rarely originated due to 
alterations in individual genes/proteins. In these cases, individual variants usually have a small 
effect size; thus, they make a limited contribution to the phenotype independently. In fact, 
the phenotype of complex diseases is more likely explained by complex physiological 
interactions, where multiple functionally connected variants act in concert causing a particular 
phenotype [39]. Therefore, this new paradigm shift encourages the analysis of complex 
phenotypes at various levels including simpler levels like alterations in single genes, and higher 
and more complex levels as in the case of gene sets, pathways, and biological networks.  

In this context, pathways (represented as gene sets) embody one of the simplest and most 
commonly used units to model functionally correlated biological entities. In this case, similarly 
to aggregating genes from genetic variants, genes are grouped into sets. One of the main 
benefits of working with pathways instead of individual entities is that pathways represent 
biological processes enhancing the interpretability of the generated results. Therefore, 
pathway analysis has become the first choice for gaining insights into the underlying biology 
of differentially expressed genes and proteins [40]. We are no longer only interested in big 
changes in individual entities, but also in relatively small changes in groups of 
biologically/functionally correlated ones.  

In pathway analysis, the unit of analysis is the gene set, which is any group of genes that shares 
a particular property, and the aim is to determine if the property has a role in the phenotype 
under study [41]. During the last years, a lot of different pathway analysis methods have been 
published each of then trying to tackle different limitations of the generic idea of pathway 
analysis including: biological crosstalk [42, 43], gene weights [44], pathway topology (for a 
review see: [45]), or different multilevel omics data [46], which has caused their aggrupation 
based on generation (Table 1) [40]. However, none of the available methods acts as gold 
standard as none of them has been proven to work better than the others. Therefore, a 
common practice is to use a number of different methods and find consensus among their 
results, a practice that has proven to outperform methods individually [47]. 
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Table 1 - Generational classification of pathway analysis methods. Pathway analysis methods can be classified in three 
generations, each following a different scheme. 

Generation Scheme 

1st generation, Over-
Representation Analysis 
(ORA) 

• Differential expression analysis 
• Threshold-based differentially expressed (DE) Genes  
• Number of DE genes relative to the number of genes in 

each pathway 
2nd generation, 
Functional Class Scoring 
(FCS) 

• Differential expression analysis 
• Gene-level statistics 
• Pathway-level statistics  

3rd generation, Pathway 
Topology (PT) based 

• Differential expression analysis 
• Pathway topology 
• Pathway-level statistics 

The two-tier structure of gene set analysis (apart from differential expression analysis) allows 
to further classify all these methods according to their statistical properties, i.e., null 
hypothesis and the gene-level statistic (Table 2). Different results depend basically in these 
two properties with null hypothesis being more significant than test statistic [48] [49]. 

Table 2 Statistical classification of pathway analysis methods. The two most significant properties affecting the obtained 
results are the null-hypothesis and the gene-level statistic. 

Based on null hypothesis Based on gene statistic 
Type Description Type Description 

Self-contained 
analysis 

θ_S > Ø? 

Hypothesis that only 
considers results within 
a gene set of interest. 

Fold-change 
(FC) 

Statistic describing how much 
a quantity changes from an 

initial to a final value. 

T-value 
Statistic describing the size of 
the difference relative to the 
variation in the sample data. Competitive 

analysis 

θ_S > θ_0? 

Hypothesis that 
compares the results 
from genes within a 
gene set of interest 

with results from genes 
outside the gene set. 

P-Value 
Statistic describing the 

evidence against the null 
hypothesis. 

Biological networks represented as protein-protein interaction (PPI) networks, on the other 
hand, embody a higher level of complexity where instead of aggregating groups of genes into 
sets one can analyze entire biological systems. Most of network analysis methods focus on 
identifying altered subnetworks (modules) for which lots of methods are available. These 
methods can be broadly classified in three groups. The first group uses a series of candidate 
subnetworks based on prior knowledge to then select the higher-scoring candidates based on 
their node values. Examples include MUFFIN [50], and NetSig [51] The second group of 
methods jointly analyzes network topology and node scores in order to identify subnetworks 
that may be affected by a particular phenotype. Examples include HotNet2 [52]. Finally, the 
third group of methods incorporate additional information about the interactions between 
the nodes, thus using more complex representations for the interactions between proteins. 
These methods need a more complex prior knowledge network. Examples include PARADIGM 
[53] and HIT’nDRIVE [54]. 
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Biomarker performance evaluation 

“Validation” is an extensively used term in biomarker development to refer to the validation 
of the biomarker as opposed to the validation of the assay. If we are to use KIM-1 as a 
biomarker for acute kidney injury, we have to make sure that we have a robust and reliable 
way to measure such marker. The validation of a biomarker is unrelated to the validation of 
the assay for the biomarker, which is associated with the accuracy, reproducibility, and 
robustness of the assay as well as its applicability (invasiveness, etc.) [1]. Thus, there is first 
the identification and validation of the biomarker, and then the validation of the assay of the 
biomarker in a clinical setting.  

To recognize the role of statistics, we must first understand that just as there are multiple 
steps in biomarker development, there are diverse styles of data analysis. One of the most 
broadly accepted discriminations is the disparity between exploratory data analysis (EDA) and 
confirmatory data analysis (CDA) [55]. EDA is hypothesis-free, flexible, and gives a sense of 
“what seems to be going on”, while CDA is hypothesis-driven and should be reserved for 
instances in which the number of samples and the data quality is high [7]. Most often there is 
not a known set of optimal statistical methods or a single analytical pipeline that works best. 
On the contrary, it is a good practice to test our hypotheses using alternative mathematical 
models and different patient cohorts to validate our results as “confirmation comes from 
repetition”. If the information is contained in the data, most of the available analytical 
methods should be able to retrieve it. Until reaching validation when CDA becomes 
mandatory, all the previous steps of the biomarker development pipeline can be satisfied with 
EDA that can be further categorized as qualitative and quantitative evaluations. Quantitative 
evaluation includes differential expression analysis most commonly used in transcriptomics 
analyses. In the qualitative side, however, particularly in the discovery phase, ROC analysis 
remains the gold-standard.  

Diagnostic predictability (statistical classification) 

In binary cases when the population under study can take only two outcomes (e.g., healthy vs 
disease) it is natural to think of performance in terms of the proportion of correctly classified 
patients (accuracy). For tests that take continuous values (e.g., analyte concentration) it is first 
required to dichotomize the output values using a threshold. Results from such a test are 
typically collected in a confusion matrix (Table 3). Despite looking fairly simple, confusion 
matrices open a myriad of ways to analyze them deriving a large number of performance 
indicators each communicating different information. Some of the most common indicators 
extracted from these tables include sensitivity, the proportion of positive samples detected as 
positive; and specificity, the proportion of negative samples detected as negative [56]. 
Indicators from the confusion matrix can be classified in threshold-based and threshold-free. 
Table 4 includes a comprehensive list of the threshold-based performance indicators that can 
be obtained from a confusion matrix. 
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Table 3 - Confusion matrix for the binary case. 

 

Table 4 - Threshold-based performance indicators. 

 

The choice of an adequate threshold is a crucial part in the creation of a test and thus, the 
confusion matrix. Generally, researchers may choose a threshold that maximizes/minimizes a 
specific indicator of performance (e.g., maximum accuracy), although occasionally, 
researchers have particular reasons to favor a particular threshold. These reasons are 
normally of biological nature rather than statistical ones. However, the selection of a 
threshold is usually subject to the group of samples included in the study and can be 
problematic if this number is low (see the need of cross-validation). There are ways to go 
around this problem and assess the performance of a marker over a range of possible 
thresholds which is one way to motivate analysis of a receiver-operator characteristic (ROC) 
curve [57]. To generate a ROC curve, instead of creating a confusion matrix for every possible 
threshold, the indicators of interest (usually sensitivity and 1-specificity) are depicted for 

REAL
Positive Negative Total

Predicted
Positive TP FP PP = TP + FP
Negative FN TN PN = FN + TN
Total RP = TP + FN RN = FP + TN N = TP + FP + FN + TN

Statistic Formula

Prevalence ! = 	$! %&

Sensitivity, recall, probability of detection, true positive rate '!$ = 	'! $!&

Specificity, selectivity, true negative rate '%$ = 	'% $%&

Fall-out, probability of false alarm, false positive rate (!$ = 	(! $%&

Miss rate, false negative rate (%$ = 	(% $!&

Precision, positive predictive value !!) = 	'! !!&

False discovery rate (*$ = 	(! !!&

False omission rate (+$ = 	(% !%&

Negative predictive value %!) = 	'% !%&

Accuracy ,-- = 	 ('! + (%) %&

Error rate 1$$ = 	 ((! + (%)	 %&

Matthew’s correlation coefficient 2-- = 	 '! 3 '% − (! 3 (%
('! + (!) 3 ('! + (%) 3 ('% + (!) 3 ('% + (%)

Positive likelihood ratio 5$(+) = 	 67869:9;9:< (1 − 6>7?9@9?9:<)	&

Negative likelihood ratio 5$(−) = 	 (1 − 6>7?9@9?9:<)	 67869:9;9:<&

Diagnostic odds ratio *+$ = 	5$(+) 5$(−)A
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different thresholds and plotted in the XY axes generating the curve. This curve includes all 
relevant thresholds, without any specific threshold being made explicit on the plot. Different 
biomarkers can be shown in the same plot to compare their performance (Figure 3). One of 
the most attractive characteristics of ROC curves is that any monotonic transformation of the 
biomarker values (e.g., scaling, centering, normalization, log-transformation, standardization, 
etc.) will result in the same ROC curve [7]. This is because ROC curves are based on the order 
of the samples and not their actual differences in value (qualitative versus quantitative 
analysis). The most common threshold-free indicator of performance extracted from the ROC 
curve is the area under the curve (AUCROC, c-statistic, c-index) which combats the 
arbitrariness of comparing results at a single threshold. The AUCROC is essentially a weighted 
average of the sensitivity estimates over all the thresholds across the 1-specificity values and 
is one way to collapse information of the whole curve into a single performance indicator [7]. 

 

Figure 3 – ROC curve example. The classificatory power of a biomarker can be expressed using threshold-based (sensitivity, 
specificity, etc.) or threshold-free (AUC) approaches. ROC curves can also be used to compare the performance of different 

biomarkers. 

Class-Imbalance 

Class imbalance, a difference in the number of positive and negative instances where usually 
the negatives outnumber the positives can have a huge impact in the development and 
evaluation of predictive models and classifiers in many bioinformatic studies. The visual 
interpretation of a ROC curve in the context of a heavily imbalanced dataset can be misleading 
with respect to the performance of a biomarker. Precision-recall (PR) curves, on the other 
hand, are more robust in cases where the negatives outnumber the positives by evaluating 
precision (the fraction of true positives among positive predictions) versus sensitivity [58]. 
Other less popular options include concentrated ROC (CROC), and Cost Curves (CC). However, 
the precision-recall curve loses its robustness when the positives outnumber the negatives (in 
such cases the negative predictive value can be used). On the other hand, the Matthew’s 
Correlation Coefficient (MCC) is an indicator of performance calculated from all four values of 
the confusion matrix that remains robust for any type of imbalanced dataset. While features 
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like precision or negative predictive value are easier to interpret, they cannot be generalized 
for every imbalanced dataset. Moreover, the MCC shows improved reproducibility than 
traditional indicators of performance (e.g., accuracy) when facing the problem of choosing the 
optimal threshold using different datasets (Figure 4). We proved this by performing an in-silico 
experiment using two different populations (Positive, and Negative). Positive follows a normal 
distribution with average of 10 and standard deviation of 1 while Negative follows a normal 
distribution with average of 15 and standard deviation of 2 (Figure 4.A). Both populations 
were samples using three different experimental conditions (Figure 4.B): one where the 
number of positives outnumbers the number of negatives (P>N), one where the number of 
negatives outnumbers the number of positives (N>P), and one where both populations have 
the same number of samples (N=P). We calculated the optimal threshold maximizing ACC or 
MCC (Table 4) for all the experimental conditions and found that using MCC as statistic for the 
problem of optimal threshold returns more consistent results in all cases across 100 iterations 
(Figure 4.C). 

 

Figure 4 - Optimal threshold selection. The optimal threshold usually is the one that optimizes sensitivity and specificity, but 
depending on the diagnostic test, different relative costs are given to misclassifying diseased and non-diseased individuals. 
Here we performed an in-silico experiment where we samples two different populations (A) using three different approaches: 
one where the number of positives outnumbers the number of negatives (P>N), one where the number of negatives 
outnumbers the number of positives (N>P) and one where the number of positives is the same as the number of negatives(P=N) 
(B). For each approach, we calculated the optimal threshold using the maximum of ACC or MCC and found that MCC returned 
more consistent results across 100 iterations (C). 

Biomarker Panels 

ROC curves are a great tool to assess qualitative performance of individual biomarkers or 
compare between different biomarkers. However, in biomarker development, though single 
markers may serve in selected cases, there is a growing consensus that multiple markers used 
either individually or as part of integrated panels will be required for most applications. The 
most relevant question, then, is not the performance of a single marker in isolation, but 
whether if another marker adds new information to the classification model [7]. The basic 
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strategy to answer this question is to identify a set of metrics that quantify the discriminatory 
ability of the panels with and without the biomarker in question and evaluate if the gain in 
performance is significant. There are many ways to combine values from markers. To find an 
indicator that reliably represents the performance of the panel we need to construct a model. 
When a mechanistic model is not available, as is most often the case, a mathematical model 
can be used. [7]. Examples of mathematical models often used in classification problems 
include: support vector machines, logistic regression, random forest, etc. Remarkably, the 
more markers we include in the model, the mode complex the model becomes. Following the 
problem-solving principle known as the Occam’s razor, usually we want “the simplest model 
that explains the data”. A common strategy to find the optimal panel size is to plot the 
performance of the panel in the Y axis and the size in the X axis constructing what is known as 
the Pareto front. A valid rule of thumb for the optimal size is to choose the point in the curve 
with maximum convergence/concavity (elbow criterion). It is the responsibility of the 
statistician to choose the appropriate performance parameter(s) that best adapt to the 
specific problem/test. 

The need of cross-validation 

The evaluation of a biomarker using a mathematical model that has been optimized to give 
maximum performance for a given dataset is liable to be too optimistic compared to the 
performance it would show in a different study [7]. Optimizing a mathematical model for an 
entire dataset may cause not only to fit the information contained in the analyte (signal), but 
also the experimental error (noise). This is called bias due to overfitting. Re-sampling methods 
like bootstrap and cross-validation can be helpful diminishing this effect and bringing our 
model closer to the reality it aims to represent.  

Analytical evaluation of clinical assays 

Once the medical utility of an analyte as a biomarker has been verified, the analytical 
performance of the clinical assay has to be examined and optimized. A common practice for 
establishment of an analytical performance goal takes into consideration both the index of 
variation (within-subject variation, 𝐶𝑉#), and biological variation (between-subject variation, 
𝐶𝑉$), and stipulates that imprecision should be smaller than 0.5 ∙ 𝐶𝑉#  and bias smaller than 
0.25 ∙ (𝐶𝑉#+ + 𝐶𝑉$+). +⁄  [10].  

Indicators of precision: According to the International Standards Organization (ISO), precision 
is defined as the closeness of agreement among results of measurements performed under 
stipulated conditions [59]. Repeatability and reproducibility are indicators that express 
precision quantitatively. Repeatability refers to measurements that are performed under the 
same conditions, whereas reproducibility is used to describe measurements performed under 
different conditions. Even if these are known as indicators of precision, in reality they measure 
imprecision, which reflects random error and is expressed as a standard deviation (SD) or a 
coefficient of variation (CV%) and is evaluated using pools with different analyte 
concentrations (low, normal, high) [10]. In general, assays show smaller imprecision at higher 
concentrations of the analyte because of assay designs that generally result in direct 
proportionality between analyte concentration and generated signal. Therefore, the range of 
analyte concentrations tested should not only cover the span of the standard curve but more 
importantly the clinically relevant range.  
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Indicators of accuracy: Accuracy is defined as the closeness of agreement between the value 
of an analyte measurement in a sample and the true concentration of the analyte in that 
sample. Trueness and accuracy are similar, but not identical, as trueness is the closeness of 
agreement between the average value of different measurements of the same sample and 
the true concentration of the analyte in that sample [60]. Trueness reflects bias, a measure of 
systematic error, whereas accuracy reflects uncertainty, which comprises both random and 
systematic errors. Trueness can be evaluated by comparing the values obtained by the new 
test with those determined by a reference method, using unbiased regression analysis 
(Deming) and residual plots (Bland-Altman) or by measuring reference standards (samples of 
known concentration value) [10]. For novel analytes, reference standards do not usually exist, 
and alternative methods like recovery can be applied (Figure 5). In recovery experiments, 
different concentrations of the analyte of interest are added to a set of samples and the 
recovery is determined by comparing the measured concentration in the samples with and 
without added analyte. Ideally, a recovery of 100% should be seen which means that the 
difference in concentration between the samples with and without added analyte should be 
100% of what was added. As the specificity of the antibodies used was established earlier by 
western blot analysis and immunostaining, no significant cross-reactivity with other proteins 
is expected. Even so, it can happen that the added recombinant/purified protein does not 
reassemble the naturally occurring one and that the recovery is far from 100%. Therefore, it 
is imperative to demonstrate that the newly developed assay is not affected by endogenous 
or exogenous interferences [61].  

 

Figure 5 - Recovery experiment. A set of samples of unknown concentrations 〖[C]〗_1 and 〖[C]〗_2 are measured with 
and without adding a known concentration(s) of a particular protein R. The measured values Y_1 and Y_2 are reversed to their 
corresponding concentrations X_1 and X_2 using the standard curve (usually modelled by a 5-parameter logistic regression). 



 - 15 - 

Recovery is then defined as the ratio between the difference in the recovered concentrations X_1 and X_2 and the originally 
added known concentration(s) R. 

Indicators of analytical measurement range: The standard curve is the mathematical model 
that allows to estimate the concentration of analyte in a sample from its reported 
measurement value, but there is more: the standard curve also contains information about 
the measurement and linear ranges of a particular assay. The measurable range of an assay is 
determined by the upper and lower limits of detection. The lower limit of detection (LLOD) is 
defined as the lowest analyte concentration likely to be reliably distinguished from the 
measured values obtained from blank samples (plasma or serum, in this case, that does not 
contain the protein of interest) [62]. Linearity refers to the range of analyte concentration that 
exhibits a constant relationship between observed and expected measurements [63]. 
Linearity and limits of detection must be assessed to determine the range of measurand values 
over which measurements can be performed with acceptable precision and accuracy [64]. 
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Chapter 2 Chronic Kidney Disease 
This chapter introduces Chronic Kidney Disease (CKD). It focuses on the development of renal 
damage, its diagnosis, and categorization. 

Introduction 

The kidneys are two bean-shaped organs that regulate the volume of extracellular fluid by 
removing excess of water and wastes from the blood, through the nephrons (the microscopic 
structural and functional units of the kidney), to form urine. These wastes come from the 
normal breakdown of active muscle and from food consumption. Additionally, kidneys help 
on the regulation of osmolarity, ion concentrations, and pH, and are responsible of the 
production of certain hormones (e.g., erythropoietin). Chronic kidney disease (CKD) is a 
syndrome that describes the gradual loss of kidney function and/or alterations on its 
structure. This loss is often recognized by reduced glomerular filtration rate (GFR) which is 
clinically identified by increased levels of serum creatinine (sCr). Creatinine is a waste product 
of musculoskeletal exercise that in healthy conditions is secreted through the urine but in 
presence of kidney damage builds-up increasing its serum concentration.  

CKD is a major public health problem that affects to approximately 14% of the general 
population [1], although this percentage varies in different regions of the world and age 
groups, being significantly higher in people over 65 years of age. Despite its prevalence, CKD 
is a heavily understudied syndrome as NIH investments in kidney research represent less than 
1% of Medicare costs for kidney diseases [2]. CKD as a cause of death is increasing and now 
represents 1.35% of the global burden of disability-adjusted life years lost, being ranked 17th 
in 2015 [3]. In high-income countries, CKD is most commonly associated with diabetes 
mellitus, hypertension and obesity; for example, 30-40% of those with diabetes also have CKD 
[4]. In low-income countries, however CKD is often accompanying inappropriate use of 
medications and infectious diseases [5].  

Development of renal damage 

The number of nephrons a person has is set at birth and averages 950,000 nephrons per 
kidney. After birth, no new nephrons can be generated, and any loss would require the 
remaining nephrons to work harder to compensate and maintain kidney function. CKD is 
attributed to the rupture of basement membranes including abnormal epithelial 
regeneration, which endorses nephron loss. Reductions in the total renal mass cause 
glomerular hypertrophy in the functional nephrons to accommodate renal demands [6]. 
However, this hypertrophy causes additional nephron losses triggering a vicious cycle that 
results in end stage renal disease (ESRD) if the process is not decelerated [5]. Moreover, the 
effects of shear stress on the remaining nephrons eventually result in the development of 
sclerotic lesions in the glomeruli and nephron atrophy. These lessons cause the filtration of 
molecules that, in healthy conditions, remain in the bloodstream. Therefore, advanced CKD 
not only causes insufficient filtration rate but also is associated with systemic complications 
such as electrolyte abnormalities, metabolic acidosis, anemia, mineral bone disorder, 
hypertension and hyperuricemia [5]. 
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During renal damage development, it is unknown if all nephrons respond to an injurious 
stimulus or only a particular subgroup is affected. As the function of the different nephrons in 
the kidney can be considered independent, GFR can be expressed by the equation:  

𝐺𝐹𝑅34356 = 𝐺𝐹𝑅8#9$6:;9:<=>49 ∙ 𝑁9:<=>498 

𝐺𝐹𝑅34356: GFR of the whole renal mass (all nephrons). 
𝐺𝐹𝑅8#9$6:;9:<=>49: the average GFR of individual nephrons. 
𝑁9:<=>498: the number of operatory nephrons.  

 

Figure 6 - Renal damage development model. As the number of functional nephrons begins to reduce, the remaining 
working nephrons need to work harder to keep up with renal demand (compensation). However, the work a single nephron 

can do is not unlimited and only when functional nephrons have reached their limit, we can observe a drop in total GFR 
(saturation). 

This equation implies that when 𝑁9:<=>498 decays, 𝐺𝐹𝑅34356  will be constant as long as 
𝐺𝐹𝑅8#9$6:;9:<=>49 increases. However, 𝐺𝐹𝑅8#9$6:;9:<=>49 cannot increase indefinitely. 
Therefore, only when 𝐺𝐹𝑅8#9$6:;9:<=>49 has reached its maximum 𝐺𝐹𝑅34356  will start 
decreasing. By contrast, a decline in 𝐺𝐹𝑅34356  implies that 𝑁9:<=>498 has significantly declined, 
possibly with the remaining functional nephrons operating at their maximum [5]. In fact, sCr 
does not increase until approximately 50% of the renal mass is lost, suggesting a 
compensatory but saturable system [7] (Figure 6). Also, it is unknown whether if all cells in the 
nephrons are affected by a given injury or if only specific cells are disturbed. Moreover, it is 
unknown if these responses are stimulus-specific or common to all forms of injury. 

This mechanism can explain why CKD is an asymptomatic disease in its early stages and can 
go undetected until it is very advanced, when patients may experience weakness related to 
anaemia and proteinuria (presence of large quantities of protein in urine which often causes 
the urine to become foamy) [5].  
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Figure 7 - CKD development model. During the first stages, the disease remains asymptomatic given the compensatory 
nature of the kidney. However, when this system saturates, the disease becomes asymptomatic represented by a drop in 
eGFR and a rise of sCr. 

CKD diagnosis 

Classic nephrology taught that kidney failure should be described based on the etiology and 
the anatomy of the injury. It was believed that identifying the site of injury and the mechanism 
of dysfunction should inform the correct treatment [7]. Nowadays, however, modern 
nephrology uses a single analyte, sCr, regardless of the type of injury or the related 
mechanisms. It is believed that an increase in this analyte, reflects some degree of injury in 
the kidney tubule. In fact, published guidelines for kidney disease: Risk-Injury-Failure-Loss-End 
Stage Kidney Disease (RIFLE) [8], Acute Kidney Injury Network (AKIN) [9], or Kidney Disease, 
Improving Global Outcomes (KDIGO) [10] mention that even minimal increases in sCr 
represent the initial phase of a wide spectrum of diseases related to kidney damage [7]. These 
diseases are comprised in the diagnostic term acute kidney injury (AKI), which is defined by 
increasing levels of sCr, regardless of the pathophysiology of origin or the anatomical site of 
injury. Most of the times, AKI episodes are self-limited, and kidney function returns to normal. 
However, AKI episodes, often show, more chronic renal damage than would be expected and 
subnormal renal function occurs late in the follow-up period. In fact, when AKI symptoms 
persist for more than 3 months, the patient is diagnosed with CKD which has made AKI to gain 
increasing recognition as a prelude to the development of CKD [7]. Moreover, this relationship 
is bidirectional, with CKD patients at substantially greater risk of suffering an episode of AKI 
[11]. Therefore, AKI and CKD are often understood as an integrated clinical syndrome [12], 
and nephrologists argue that the distinction between AKI and CKD may be artificial. The 
definition of kidney malfunction by the AKI paradigm has permitted the analysis, integration 
and comparison of population-based data sets which has grown awareness of the serious 
public health problem that AKI represents: the incidence continues to increase among 
hospitalized adults [13, 14], and the diagnosis is associated with significant morbidity and 
mortality [15] as there is evidence of AKI being responsible for approximately 2 million deaths 
annually worldwide [16]. 

Undoubtedly, the introduction of sCr in clinical practice has significantly improved the state 
of the art in CKD diagnosis. However, sCr does not represent a perfect reference standard as 
it may rise for reasons unrelated to kidney damage (e.g., fully reversible volume depletion [7]) 
implicating low specificity and may also fail to rise when kidney damage has been done 
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involving low sensitivity. Moreover, as previously mentioned, sCr concentration does not 
increase until approximately 50% of the renal mass is lost, meaning that when the damage is 
not severe enough, sCr may not be changed, implicating late diagnosis. Finally, diagnosis by 
sCr is used to identify a generic form of CKD, despite CKD being a complex and heterogenous 
disease, denoting a biomarker that cannot fractionate the disease in subcategories. All these 
drawbacks indicate that renal biopsy still plays the crucial role in the definitive diagnosis of 
CKD [17, 18]. However, due to its invasiveness, it is not exempt of complications and a lot of 
research efforts are being focused on the identification of molecular biomarkers for diagnosis 
of CKD using less-invasive and easy-to-collect samples, such as urine and blood [18]. Recent 
data have shown that gene expression in tissue and protein signatures in urine can distinguish 
different kidney conditions, implying a complex system responding to different environmental 
stimuli [19]. In fact, some proteins are progressing through the biomarker development 
pipeline to the point of starting to be considered “second generation” biomarkers for CKD. For 
example, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 
(KIM-1) have shown improved specificity when compared with sCr but also fail on discretizing 
further the disease [19, 20]. These efforts may guide us towards a molecular-based 
classification of renal diseases, where proteomics play a central role identifying the early 
pathological modifications and the molecular changes related to disease progression. 
However, new insights into the different mechanisms affecting kidney biology may be needed 
to redefine CKD in molecular terms. 

CKD categorization 

It has been stated that in CKD, different mechanisms may affect different parts of cell 
physiology, but ultimately, all the variants, regardless of the initiating disease, converge in 
nephron loss which involves nonspecific wound-healing responses that include some degree 
of interstitial fibrosis. This common mechanism has allowed the stratification of the disease 
based on the degree of renal damage (severity). However, the clinical presentation of CKD 
also takes into account the pathogenesis of origin (primary disease) making it a bi-directional 
classification.  

Degree of renal damage 

All modern categorizations of CKD use a classification of severity based on the GFR, either 
estimated (eGFR) or measured (mGFR). Even if these two parameters can show differences, 
mGFR is calculated by urine clearance which is cumbersome and expensive making eGFR a 
more attractive alternative [21]. In adults, the most common ways to calculate eGFR are the 
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [22] and the Modification of 
Diet in Renal Disease (MDRD) equations [23], both of which use sCr under steady-state 
conditions. Regardless of the equation used for the eGFR, CKD can be generally categorized in 
5 stages with increased severity (Figure 3). Early stages of CKD (G1-G2) are usually 
asymptomatic, but from CKD G3 on, patients may experience symptoms like weakness related 
to anemia and polyuria (excessive urination) [5]. When a patient progresses to G5 and ESRD, 
kidneys cannot satisfy renal demands and haemodialysis or kidney transplantation are 
required. Patients receiving a kidney transplant have better prospects as the 5-year survival is 
around 86-93%, comparing to those receiving dialysis whose life expectancy is one third of 
that of the age and sex-matched general population [5]. 
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KDIGO [10], in 2012 further detailed the classification of CKD based on severity, incorporating 
the level of albuminuria (which can be approximated by proteinuria as serum albumin 
accounts for 55% of the total protein in blood plasma [24]) expanding the G1-G5 staging into 
a 2D matrix. This matrix also incorporates prognostic information about the risk of CKD 
progression and related complications [5]. The use of these two parameters for CKD is 
complementary as eGFR is a well-stablished indicator of renal excretory function (tubular 
damage) while albuminuria is a marker of renal barrier dysfunction (glomerular damage) [5]. 
Albuminuria (given as a ratio to creatinine, in mg/g), is most commonly determined using the 
urinary albumin concentration test [5] and KDIGO classifies the continuous measurement into 
3 categories with increasing severity (Figure 8). 

 

Figure 8 - Kidney Disease classification based on the KDIGO paradigm (from KDIGO [Kidney Disease: Improving Global 
Outcomes (KDIGO) Acute Kidney Injury Work Group]. The 2D matrix incorporates the level of albuminuria and the glomerular 
filtration rate (eGFR) to describe the risk of patients with chronic kidney disease progressing to end-stage renal disease and 
other adverse effects. 

The two metrics used in KDIGO matrix (GFR and albuminuria) are used to classify a ‘generic’ 
form of CKD, but adding the underlying cause is highly desirable and is critical for optimal 
management of the disease [5].  

Pathogenesis of CKD 

Glomerulonephritis (GN) is one of the most common causes leading to CKD [18]. There are 
two main types of glomerulonephritis: primary and secondary. Primary glomerulonephritis 
affects the kidneys directly, while in secondary glomerulonephritis the kidneys are damaged 
as a result of another illness [25]. Of the patients who come to ESRD, 15-20% are due to 
primary glomerulonephritis, 55-60% to secondary glomerulonephritis (30% diabetic, 15-20% 
hypertensive/vascular, 10% immune), 10% to autosomal dominant polycystic kidney disease 
(ADPKD), 10% to interstitial nephropathy, and the remaining 5-10% remain unclear [26]. 
Although they share some common mechanisms, there are many primary diseases that lead 
to CKD, each with its own specific pathophysiology. Therefore, here we will focus on those 
used in our experiments, i.e., immunoglobulin A nephropathy (IgAN), diabetic nephropathy 
(DN), and lupus nephritis (LN).  
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Primary GN 

Immunoglobulin A nephropathy: IgA nephropathy (IgAN) involves glomerular damage and is 
the most common GN worldwide [27]. Its pathogenesis involves an abnormal immunitary 
response to antigen encountered in the upper respiratory/gastrointestinal tract. The 
exposition of antigens at mucosal sites stimulates the production of IgA which entails the 
generation of anti IgA antibodies, immunocomplex formation, and renal deposition [26]. 
Recent studies [28], have shown that the galactose-lacking pIgA1 serum levels are often 
increased in IgAN patients. However, the low sensitivity/specificity of this marker doesn’t 
allow the substitution of the current diagnostic practice (demonstration of mesangial IgA-
dominant staining by immunofluorescence or immunohistochemistry), which requires renal 
biopsy [29]. Nevertheless, researchers are employing many non-invasive proteomic 
techniques for detecting alternative diagnostic biomarkers both in urine and serum samples 
[17, 30].  

Secondary GN 

Diabetic nephropathy: DN is the most common secondary glomerulonephritis accounting for 
30% of the patients reaching ESRD in CKD, representing the first cause of chronic kidney 
failure. In DN all the kidney compartments are affected including glomeruli, tubuli, 
interstitium and vasculature. Its pathogenesis involves vascular damage generated by protein 
glycosylation, sorbitol production, increased glomerular filtration, and finally glomerular 
hypertension and hypertrophy [26]. In the tubuli, the pathology includes interstitial fibrosis, 
inflammatory infiltration and atrophy. DN is clinically presented in stages based on the urinary 
albumin excretion (UAE): microalbuminuria (20μg/min ≤ UAE ≤ 199μg/min) and 
macroalbuminuria (UAE > 200μg/min) [31]. Although diabetic nephropathy has been 
classically defined by the presence of proteinuria in diabetic patients, proteinuria explicitly is 
not specific of DN making the identification of novel molecular biomarkers for DN an attractive 
option.  

Lupus nephritis: LN is a secondary glomerulonephritis affecting both the glomeruli and the 
tubuli. LN represents a frequent and severe manifestation of systemic lupus erythematosus 
(SLE, a multisystem connective tissue disease), appearing in about 75% of patients with this 
disease [32, 33]. The pathogenesis involves immunocomplex deposition from autoantibodies 
(anti-phospholipids, anti-DNA, anti-SM, anti-nucleus) and its pathology differentiates 6 classes 
based on histology [26]. This level of complexity represents a clinical challenge in choosing the 
best therapeutic strategy [34], which can be only achieved by renal biopsy [33, 35, 36]. To 
avoid the invasiveness of renal biopsy, many efforts are being made to identify reliable 
biomarkers in non-invasive samples like urine/serum that allow monitoring of the disease thus 
facilitating an early diagnosis and intervention that can improve favorable outcomes [37, 38]. 

Biomarkers in CKD 

We have seen how when nephrons shut down, the active ones work harder to compensate 
which carries out further complications. Indicators in clinical practice like GFR, proteinuria, or 
albumin-creatinine ratio (ACR) are useful for later stages of the disease but fail on its early 
detection given the compensatory abilities of the kidney [39]. The lack of reliable molecular 
biomarkers makes renal biopsy to remain the gold standard to identify the primary disease 
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leading to CKD. However, the unprecedented availability of molecular data is attracting the 
focus of several research efforts to identify novel biomarkers. It is important to determine 
whether the newly identified biomarkers are purely associations or real biomarkers of 
underlying pathophysiological processes (mechanistic biomarkers) [19]. These biomarkers can 
be classified according to the main mechanism they reflect including: GFR, proteinuria, 
glomerular damage, tubular damage, among others. Here we will review the main biomarkers 
for each mechanism (for an extensive review, read [19]). 

Biomarkers for kidney function (eGFR) 

Creatinine (Cr): creatinine is a by-product of musculoskeletal exercise that in healthy 
conditions is secreted through the kidneys to the urine. Conversely, in CKD, this filtration is 
affected which causes creatinine to build up in blood increasing its serum levels. Having a 
blood test for creatinine is the first step in checking kidney function. However, serum 
creatinine levels are also affected by factors independent of kidney disease like muscle mass 
and diet. 

Cystatin C: Cystatin C is a small protein that is produced by the cells in the body. In healthy 
conditions, Cystatin C is filtered and metabolized after tubular absorption, but in CKD is 
accumulated in blood. Cystatin C is alternatively used to calculate eGFR in cases of 
overweighed patients or with high muscular mass as cystatin C is not influenced by these 
factors but is affected by inflammation and diabetes among others [5]. 

Biomarkers for CKD progression (proteinuria) 

Albumin (Alb): albumin is a protein produced by the liver which our body uses mainly for 
tissue regeneration. In healthy conditions, albumin stays in the bloodstream. However, in CKD, 
albumin is secreted to urine. Indeed, increased urinary albumin excretion is an established 
marker of CKD progression [40] reflecting both glomerular and tubular damage. 

Biomarkers for glomerular damage 

Podocin: Podocin is a protein component of the podocytes, cells in the Bowman’s capsule in 
the kidneys that wrap around the capillaries of the glomerulus [41]. It functions as the 
filtration barrier of the kidney glomerulus. Mutations in the podocin gene NPHS2 can cause 
glomerulonephritis [42]. Urinary podocin is elevated in diabetic nephropathy and active lupus 
nephritis [19].  

Biomarkers for tubular damage 

Kidney Injury Molecule 1 (KIM-1): KIM-1 is a transmembrane tubular protein with unknown 
function, undetectable in healthy kidneys, but highly expressed in experimental and clinical 
kidney injury [43]. KIM-1 expression is significantly increased in tissue and urine in AKI and 
kidney disease. The correlation between tissue and urine KIM-1 is unknown. Studies suggest 
that KIM-1 may be an indicator of AKI to CKD transition [44]. 

Neutrophil gelatinase-associated lipocalin (NGAL): NGAL is a protein highly expressed in the 
tubular epithelium of the distal nephron which is secreted from tubular epithelial cells after 
tubular injury [19]. It has two molecular forms in the urine: the dimeric form that comes from 



 - 26 - 

neutrophils, and the monomeric form which is generated by the kidney tubular epithelial cells 
[45]. Differentiating these two forms may enhance the performance of NGAL as a biomarker 
even further. 

As seen, eGFR (based on sCr), especially when combined with proteinuria, is the most widely 
spread biomarker for CKD and one of the few accepted for clinical practice, but these have 
limitations [19]. Second generation biomarkers like podocin, NGAL, and KIM-1 have refined 
the diagnosis of CKD by capturing different pathologic mechanisms but fail to sub fractionate 
CKD further [7]. Although elements of CKD are common to all primary diseases, particularly in 
the late stages, there are specific pathophysiological mechanisms unique to each underlying 
renal etiology [19]. For this reason, early, more sensitive, biomarkers are required. However, 
it is unlikely that a single biomarker will be able to capture all the complexity of this 
heterogeneous disease. Hence, a panel measuring multiple biomarkers including disease-
specific biomarkers may be required for the molecular characterization of CKD [19].  

Conclusions 

Undoubtedly, the standardization of CKD and the staging system based on measurements of 
eGFR and proteinuria that can be reliably applied to a large population at a reasonable cost, 
represents a major success of modern nephrology and an attractive focus for research efforts 
[46]. However, this classification system represents a reductionist approach that does not 
capture the heterogeneity and complexity of CKD. Although recent efforts have discovered a 
new generation of biomarkers that have laid the groundwork for capturing the different 
mechanisms in CKD, the heterogeneity of these studies and the large number of biomarkers 
identified make it difficult to translate these findings into clinical practice [7]. Moreover, 
predictions based on single-genes are usually ineffective for complex diseases and fail in their 
progress to clinical trials due to their lack of connection to the mechanism of the disease. On 
the other hand, most of commercially available products use panels of genes like the 
MammaPrint® test [47], a panel of 70 genes for breast-cancer prediction. In the case of CKD, 
one of the first applications of integrative panels on the urine of CKD patients allowed the 
identification of a 273-peptide classifier capable of discriminating between CKD patients and 
healthy controls with a sensitivity of 98.7% and a specificity of 100% [48]. Although its 
satisfactory performance as a diagnostic tool, the large number of analytes included makes 
the test expensive and its capability to discriminate among different primary diseases has not 
been tested. Therefore, a test including disease-specific biomarkers does not yet exist and 
may be required [19].  
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Chapter 3 Methods 
This chapter introduces the methodology followed in the study. This PhD thesis exhibits a 
proteomic biomarker discovery scheme that requires as input transcriptomic data from 
patients. CKD is used as case study. The pipeline combines biological models extracted from 
publicly available databases with state-of-the-art algorithms that aim to capture meaningful 
biology for the disease. The goal is to suggest a number of proteins as candidate biomarkers 
to be measured in blood samples that are able to asymptomatically diagnose a myriad of 
subcategories, and use machine learning methods to integrate them into a panel of increased 
performance and stability. The cornerstone is to molecularly determine the underlying 
pathophysiological mechanism causing CKD and detect it before the damage is done. Briefly, 
our methodology includes 5 steps (Figure 9):  

1) Integrate protein-protein interaction networks with annotated gene-sets to construct 
our knowledge-base (KB) which comprises contextual information about the biological 
entities participating in our model.  

2) Feed this KB with CKD data obtained from the Gene Expression Omnibus (GEO) to 
create disease-specific models.  

3) Apply different state-of-the-art omic-analysis methods (network analysis, pathway 
analysis, etc.) to describe a molecular profile for each biological entity included in the 
model.  

4) Select and optimize the features included in the above-described molecular profile by 
applying an iterative active-learning approach in order to identify the best quality 
candidate biomarkers. The evaluation of performance as biomarkers is assessed by 
using plasma samples.  

5) Integrate the individual candidates into a biomarker panel with increased performance 
and stability. 

The chapter described below does not follow the order presented in the scheme above. 
Instead, it follows the methodology in the same order it evolved: from the acquisition of the 
gene expression data and their analysis, to the construction of the molecular profile, training 
of the model and posterior validation using proteomics data. 
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Figure 9 - Schematic representation of the methodology. Briefly our methodology follows 5 steps: 1) Construction of the 
knowledge base, 2) Generation of the disease specific model, 3) Construction of the molecular profile, 4) Construction of the 
predictive model, 5) Generation of the biomarker panel. 

Data Acquisition and Pre-Processing 
The acquisition and pre-processing steps involve everything from downloading the gene 
expression data from public databases, through the pre-process it to make it comparable, to 
its integration it in a single dataset.  

Data Collection 

Gene expression data was obtained from studies reported in Nephroseq V3 
(https://nephroseq.org/resource/main.html), a rapidly growing database that collects gene 
expression studies in renal disease. From the studies included in the database, those meeting 
the following criteria were initially chosen:  

- Expression is measured in human samples. 
- Expression is measured in glomerular or tubular tissues. 
- Expression is measured using Affymetrix technology. 
- Samples do not belong to transplants. 
- Dataset includes at least two groups. 

From the selected studies, raw expression data was downloaded from the Gene Expression 
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). For each GEO series (GSE), the raw data (CEL 
files) were downloaded and the expression values normalized using the Robust Multi-array 
Average (RMA) algorithm. Genetic variants were aggregated into genes as genes are usually 
represented by the most abundant trait to characterize the whole gene (HUGO Gene 
Nomenclature Committee, HGNC format). DNA-methylation probes mapping to the same 
gene were median centered to obtain a single value per gene. Patient related data was 
obtained from Nephroseq. 

Data Filtering 

Data was filtered in different levels following the subsequent criteria: 

- Expression data: Only genes appearing in all samples were kept for further analysis. 
- Patient data: Incomplete patient data was removed by removing those features not 

included in at least 75% of the samples.  
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- Samples: Under-represented sample groups (samples from the same experiment, 
platform, tissue, and disease group) were removed by filtering those groups with less 
than 5 samples in each tissue, thus reducing the sparsity of the dataset.  

Data Integration 

Expression data from individual experiments was evaluated for batch effects using Principal 
Component Analysis (PCA). Evaluation of batch existence was assessed by visual inspection. 
Intra-experiment expression data was adjusted for batch effect using the Combining Batches 
of Gene Expression Microarray Data (ComBat) algorithm [1], a method that uses an empirical 
Bayes framework to adjust for batch effects. Combat was the method of choice as it has shown 
increased performance when compared with five other well-known batch effect adjustment 
methods in independent studies [2]. The adjustment is calculated without setting any 
covariates because adjusting for batch effects while retaining group differences may lead to 
exaggerated confidence in downstream analyses [3].  

Secondly, expression data from different GSEs was integrated for each tissue. A bipartite 
graph was created joining GSE and disease groups. Disconnected GSEs or disease groups were 
not included in the integration. Evaluation of batch presence and correction was again 
evaluated using PCA and ComBat (without covariates).  

From the integrated dataset, only those patients belonging to the diabetes nephritis (DN), 
healthy living donor (HLD), immunoglobulin A nephropathy (IgAN), and lupus nephritis (LN) 
groups were filtered as these are the groups that were also experimentally validated.  

Generation of Molecular Profile 

The generation of the molecular profile involves all the different analyses used to obtain 
biological features from the expression data using state of the art analytical methods. This 
includes gene-level statistics (differential expression analysis), pathway-level statistics 
(pathway analysis), and network-level statistics (network analysis).  

Pathway Database (MSigDB) 

The Molecular Signatures Database (MSigDB), a collection of human signaling pathways, was 
the database of choice for the pathway definitions. We selected the curated gene sets (C2), 
canonical pathways (CP) dataset (version 6.2 updated July 2018), as it contains gene sets 
curated from various online pathway databases such as Biocarta, Reactome, KEGG, and PID. 
Gene sets were further classified based on their size into two groups using Gaussian mixture 
models. Large gene sets representing general biology were removed from further analysis. 

Protein-Protein-Interaction Database (OmniPath) 

Protein-protein-interactions (PPIs) were obtained from OmniPath [4], a database that collects 
protein-protein-interactions from different public databases (String, HPRD, etc.). 
Inconsistencies between the different databases were excluded by including only those 
interactions that were reported in at least 3 external sources.  



 - 34 - 

Gene-Level Statistics (GLS) 

Differential expression analysis was performed using Limma [5]. Limma first fits a linear model 
for each gene and then computes the estimated coefficients and standard errors for a given 
set of contrasts to finally calculate differential expression using empirical Bayes statistics. 
Contrasts act as a method for defining comparisons between groups (Case and Control). In 
this study, given that the number of groups is larger than two, we build a contrast for each 
disease group using as a control a pool of all the remaining disease groups (DN vs 
HLD+IgAN+LN, for example).  

From Limma analysis, the logarithm in base 2 of the fold-change (logFC) and the minus 
logarithm in base 10 of the p-value (logP) were included in the molecular profile.  

Pathway-Level Statistics (PLS) 

The second set of molecular features are the pathway-level statistics. These features come 
from first running a gene-set enrichment (pathway analysis) method, and second integrating 
the pathway enrichment scores back to the genes. In this section we will be the terms gene-
set analysis and pathway analysis indistinctively. However, in the strict sense, this only holds 
true when pathways are represented as gene sets. 

Gene-Set Analysis: Gene-set enrichment analysis was performed using piano [6], a pathway 
analysis method that allows to use any number of 11 different gene set analysis methods and 
offers different alternatives to integrate the results. Each method requires a user-defined 
gene-level statistic (GLS) as input. For the present study, the following 10 methods were 
chosen using the GLSs in the parenthesis: 

- Fisher’s combined probability test (p-value) 
- Stouffer’s method (p-value) 
- Reporter features (p-value) 
- Parametric Analysis of Gene-set Enrichment (PAGE) (t-value) 
- Tail Strength (p-value) 
- Gene Set Enrichment Analysis (GSEA) (t-value) 
- Mean statistic (fold-change) 
- Median statistic (fold-change) 
- Sum statistic (fold-change) 
- MaxMean statistic (t-value) 

For each method, each pathway is represented by a set of 5 p-values including different 
directionality classes: 

- Distinct-up: Up-regulation (up and down are cancelled out). 
- Mixed-up: Up-regulation (up and down are not cancelled out, a pathway can be mixed-

up and mixed-down regulated at the same time). 
- Non-Directional: Differentially regulated (regardless the sign). 
- Mixed-down: Down-regulation (up and down are not cancelled out). 
- Distinct-down: Down-regulation (up and down are cancelled out). 



 - 35 - 

Consensus scoring of the gene sets is achieved as described in the original paper [6], which 
consists of aggregating the ranks of the gene sets based on p-values rather than aggregating 
the p-values directly. The median of the ranks of a given gene set is used as the consensus 
score.  

Map pathways to genes: For each gene, the collection of pathways in which it participates 
was obtained by recycling the same biological model used in gene-set analysis (MSigDB). 
These p-values were combined using Hartung’s method [7] which incorporates the correlation 
among p-values via introducing the correlation matrix in the Z-transform test.  

From this analysis, the minus logarithm in base 10 of each of the 5 p-values as well the 
logarithm in base 2 of the number of pathways in which each gene participates were included 
in the molecular profile.  

Network-Level Statistics (NLS) 

The third set of molecular features are the network-level statistics. These features come from 
applying a custom network analysis method that integrates differential expression and 
topological information. 

In this study, we used a custom guilt-by-proximity approach in which the network-score for 
each protein is calculated based on the GLSs of the neighboring nodes as described in Eq. 1: 
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where Ci is the centrality of the node i (betweenness), DM is the maximum distance from any 
node δ connected by a distance j to the source i, Dj is the number of nodes in distance j from 
the source i, and GLSδ is the GLS value of the node δ in distance j from the source i. The 
distance j between nodes i and δ is calculated using Dijkstra algorithm for the shortest path 
problem. When applying the formula using logFC as GLS, we take the absolute value of logFC 
so the positive and negative values do not cancel out when applying their summation. 

From network analysis, the network scores using both GLSs as well as the logarithm in base 2 
of the degree of each entity in the network were included in the molecular profile. 

Map to Protein Identifiers 

HGNC symbols were mapped using the UniProt database (https://www.uniprot.org/) 
(taxonomy 9606, Homo Sapiens) to protein identifiers (UNIPROTKB). We filtered-in those 
proteins that were reviewed (existence experimentally probed, not only predicted). Different 
HGNC symbols mapping to the same UNIPROTKB symbol were mean centered while HGNC 
symbols mapping to several UNIPROTKB symbols were duplicated.  

Feature Integration 

The molecular profile of each protein was integrated into a feature matrix. Only the proteins 
containing data for all the features (complete observations) were kept for further analysis. 
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Feature Selection 

Non-informative or highly correlating features were removed using three approaches:  

- Estimation of predictor variance: we evaluated the coefficient of variation (CV) of each 
predictor individually and selected those features with at least 40% of CV. 

- Estimation of predictor correlation: we evaluated the correlation coefficient of each 
pair of features and selected those with a Pearson correlation coefficient smaller than 
0.85. 

- Estimation of linear dependencies: we used the QR decomposition of the feature 
matrix to find sets of linear combinations between the features (if they exist).  

Secretion Prediction 

The feature matrix was expanded using information about the subcellular location of each 
protein. Known subcellular locations were obtained from the UniProt database while the 
unknown ones were predicted using a prediction model developed together with C. Fotis 
(unpublished) (Figure 10) and similar to [8]. Briefly, the method tries to predict if a protein is 
going to be secreted from characteristic sequences that can be identified in the amino acid 
chain of a protein following the subsequent steps: 

- For training, evaluation and testing of the model the manually curated dataset of 
human proteins was downloaded from UniProt.  

- Subcellular locations for known proteins were classified in three different categories: 
intracellular, membranous, extracellular.  

- Protein features were created as to capture the information needed for cellular 
secretion (Figure 10.A). For a protein to be secreted through a traditional secretory 
pathway [9, 10] it must possess a characteristic signal peptide and must lack a 
transmembrane domain. 

- Five different methods were used for secretion prediction predicting different were 
used to predict the existence of signaling peptides given its sequence of amino acids 
for each protein: SignalP [11], TargetP [12], TMHMM [13], Phobius [14] and WolfPSORT 
[15]. Briefly, SignalP is 3 layer feed forward neural network that outputs the probability 
of the protein having a Signal peptide in its amino acid sequence; TargetP uses a similar 
approach to predict subcellular location; TMHMM, is a hidden Markov Model that 
outputs the probability of the protein having a membrane domain inside its amino acid 
sequence; Phobius, is a hidden Markov Model that predicts the presence of both signal 
peptides and membrane domains inside a protein’s amino acid sequence; and 
WolfPSORT is a KNN model that uses the presence of functional domains inside a 
protein’s amino acid sequence to predict its subcellular location. 

- The performance of each individual method was individually validated using the 
Uniprot dataset. 

- The output of each method was integrated into a feature vector describing the 
presence of signal peptides for each protein. This feature vector then served as input 
for training and testing a random forest binary classifier that predicts protein 
secretion. The classifier was trained and optimized using a 10-fold cross validation 
scheme. 
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Figure 10 - Secretion prediction. A) Biology. A protein is secreted through a conventional pathway if it possesses a signal 
sequence and lacks a transmembrane domain. B) Machine learning. This biology was captured using a combination of 4 
methods to predict whether if a protein is secreted or not. 

Experimental Design 

This section of the methods involves everything related to the proteomic experiments 
performed, from acquisition to measurement. It also describes the measured analytes and 
some quality control checkpoints introduced. 

Sample acquisition  

79 human plasma samples (20 DN, 19 HLD, 19 IgAN, and 21 LN) were obtained from patients 
enrolled from Brigham and Women’s Hospital (BWH, Boston, US), Beth Israel Deaconess 
HealthCare (BIDMC, Boston, US), and Massachusetts General Hospital (MGH, Boston, US) 
undergoing native kidney biopsy and venipuncture. Diagnosis was performed based on 
histopathology (2 expert pathologists blinded to diagnosis).  
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Sample preparation 

Plasma samples were heat-inactivated to destroy complement prior to performing dual-
antibody Luminex assays. Samples were stored at -80oC. They were thawed at room 
temperature and gently mixed after thawing. Then, they were placed in a 56°C water bath for 
30 min and gently mixed after the incubation. The inactivated plasma samples were diluted 1 
to 10 with Low cross normal buffer (CANDOR) before the measurements. 

xMAP technology – Proteomics 

Proteomics measurements were performed in triplicates using the Luminex xMAP technology. 
Briefly, Luminex xMAP is an instrument for multiplex detection of proteins in a single biological 
sample using bead-based sandwich immunoassays (ELISA-like). It is based on polystyrene or 
paramagnetic microspheres (beads) that are internally dyed with red and infrared 
fluorophores of differing intensities. Each dyed bead is given a unique number (bead region) 
allowing the differentiation of one bead from another. Multiple analyte-specific beads can 
then be combined in a single well of a 96-well microplate-format assay to detect and quantify 
multiple targets simultaneously, using the Luminex instrument for analysis. The system can 
simultaneously detect many targets in a single sample depending on the system design. Using 
a dual laser system, the signature of each bead is identified, and the presence and intensity of 
reporter associated with the bead is detected. The intensities are usually reported by the 
median of all the beads with the same ID. This gives information about both the identity and 
concentration of targets in the sample. Proteins including antibodies, ligands, and nucleic 
acids specific to the targets can be coupled to the beads.  

As part of this PhD thesis, 24 (14 training, 10 validation) custom dual-antibody Luminex assays 
were developed using ProtATonce’s (Athens, Greece) multiplex assay service (Table 5). 2 to 4 
antibodies were selected and cleaned up from amine containing buffers and carrier proteins 
that interfere with the coupling procedure. All antibodies were tested pair-wise as capture 
and as detection antibody. Capture antibodies were coupled to the beads whereas detection 
antibodies were biotinylated (if not already biotinylated). Quality control confirmed 
biotinylation and coupling efficiency. In each assay, the optimal capture/detection antibody 
pair was selected based on signal-to-noise ratio measurement.  

All the different capture antibodies were coupled to Luminex magnetic beads, different bead 
regions, and were detected using analyte-specific biotinylated antibodies that bind to the 
appropriate epitope of the immobilized analyte. The 24 conjugated capture antibodies and 
the 24 biotinylated detection antibodies were multiplexed to create the bead mix and the 
detection mix, respectively. 50μl of the coupled beads (bead mix) were incubated with the 
samples on a flat bottom 96-well plate on a shaker at 900 rpm for 90 minutes at room 
temperature. Then, detection mix was added, and the samples incubated on a shaker at 900 
rpm for 60 minutes at room temperature. The final step was the addition of freshly prepared 
SAPE solution (Streptavidin, R-Phycoerythrin conjugate, Cat Nr: S866, Invitrogen) for the 
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detection of the signal. 15 minutes after the incubation with SAPE, samples were measured 
with the Luminex FlexMAP 3D instrument.  

Table 5 - Developed assays. 24 custom dual-antibody Luminex assays were developed using ProtATonce's multiplex assay 
service. 

Protein Name UNIPROTID Catalog 
Number 

Provider Round 

ANXA2 P07355 DYC3928-2 R&D Systems Training 
CCL2 P13500 900-K31 Peprotech Training 
CCL5 P13501 900-K33 Peprotech Validation 
CFH P08603 DY4779 R&D Systems s Training 
COL3A1 P02461 DY6220-05 R&D Systems Training 
CNTF P26441 900-K158 Peprotech Training 
CXL11 O14625 900-K151 Peprotech Validation 
DEFB1 P60022 900-K202 Peprotech Training 
GAL3 P17931 DY1154 R&D Systems Validation 
GROA P09341 900-K38 Peprotech Training 
hsTropT P45379 MAB1874 R&D Systems Training 
ICAM1 P05362 900-K464 Peprotech Training 
IL1A P01583 900-K11 Peprotech Validation 
IL1B P01584 DY201 R&D Systems Validation 
IL20 Q9NYY1 900-K224 Peprotech Training 
IL6 P05231 900-K16/ 

DY206-05_Det 
Peprotech/R&D 
Systems 

Validation 

MMP1 P03956 DY901B R&D Systems Validation 
MMP9 P14780 DY911 R&D Systems Validation 
NPHS1 O60500 DY4269-05 R&D Systems Validation 
NRG1 Q02297 900-K316 Peprotech Training 
RETN Q9HD89 900-K235 Peprotech Training 
TFF3 Q07654 RD191160200R Biovendor Training 
TNF10 P50591 900-K141 Peprotech Validation 
TNFA P01375 900-K25 Peprotech Training 

Proteomics – Quality control 

Proteomic measurements were accepted based on the following criteria: 

- Bead Counts QC: A measurement is accepted if the corresponding bead count is above 
30 [16]. 

- Replicate QC: A measurement is accepted if is less than 3 median absolute deviations 
from the median MFI of the replicates. 

- Analyte distribution QC: A measurement is accepted if is less than 3 standard 
deviations from the mean MFI of the analyte. 

All the valid measurements were median centered. If all the triplicates for a particular sample 
were invalid, the value was substituted by NA. Patients with more than 1 NA were considered 
outliers and removed from the analysis. For patients with a single NA, the value was 
substituted by the median for that analyte.  
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Background Evaluation: Valid measurements were compared versus blank/background 
measurements, (measurements performed with antibody but without patient sample). We 
tested that patient measurements for each protein were significantly higher than those of the 
background using one-tiled t-tests. Obtained p-values were adjusted for multiple comparisons 
using false-discovery-rate (FDR) method. Those proteins with an adjusted p-value over 0.01 
were removed from further analysis.  

Downstream analysis 

Exploratory analysis 

Data was visually explored by applying three unsupervised machine learning clustering 
methods: PCA, tSNE, and Hierarchical Clustering (HC).  

Definition of biomarker performance 

Our definition of biomarker performance (BP) integrates two types of metrics: quantitative 
(differential expression analysis, -log10(p-value), log2(FC)) and qualitative (ROC analysis, 
AUC). 

𝐵𝑃 = 75 ∙ 𝐴𝑈𝐶 + 15 ∙ 𝑙𝑜𝑔𝐹𝐶Y +10 ∙ 𝑙𝑜𝑔𝑃Y  

Where BP represents biomarker performance, AUC represents the area under the ROC curve, 
and logFC and logP represent the log2 of the fold-change and -log10 of the p-value from 
differential expression analysis after some transformations (quantitative): 

𝑙𝑜𝑔𝐹𝐶Y = 𝑚𝑖𝑛(|𝑙𝑜𝑔+(𝐹𝐶)|, 2) 

𝑙𝑜𝑔𝑃Y = min(−𝑙𝑜𝑔.c(𝑝), 2) 

The justification behind these transformations is that while AUC is a parameter that naturally 
ranges between 0 and 1 (with 0.5 representing the random case), the log2(FC) ranges between 
-inf to +inf and the -log10(p-value) ranges between 0 and +inf. Therefore, to keep our BP score 
between 0 and 100, we trimmed the log2(FC) between -2 and 2 considering that a 2-fold 
increase/decrease in the expression was enough and took its module because we are 
interested in absolute differences regardless of their direction. For the p-value we put the 
threshold in 0.01 for the same reason.  

Model training 

Features from the feature matrix were z-normalized and trimmed in the [-5, +5] range to avoid 
strong outlier influence. Biomarker performance (BP) was predicted using elastic network 
models for the glomerular and the tubular tissues as implemented in the glmnet R package 
[17].  
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Here, l(y,x) is the negative log-likelihood contribution for the observation I while β represents 
the weights given to the features x. The elastic-net penalty is controlled by α which connects 
the extreme cases of Lasso (α = 1), and Ridge (α = 0). The parameter λ controls the strength 
of the penalty in the optimization function. In this study, λ was selected so that gives the 
minimum mean cross-validated error (λ.min). 

Elastic networks represent a regularized regression method that combine the L1 (Lasso, size) 
and L2 (Ridge, performance) penalties of the Lasso and Ridge regressions [18]. Model training 
was performed under a 10-times nested 10-fold cross-validation scheme which is less likely of 
overfitting the data than non-nested cross-validation [19]. Stratification was performed so 
that each fold kept the same proportion of samples for each subtype. 

Weights for each fold were mean-centered and used to predict biomarker performance in the 
entire dataset. The final prediction was obtained averaging the prediction for the glomerular 
and the tubular models.  

Model validation 

10 proteins were selected for validation based on several criteria: predicted biomarker 
performance, literature, and antibody availability to report the protein of interest. Samples 
were pre-processed, measured and analyzed as in the training set. Model validation was then 
performed comparing the obtained residuals (differences between the predicted and 
measured biomarker performance) of each protein in both the training and validation sets. 

Integration into biomarker panel 

Combinations of candidate biomarkers into panels with increased performance were then 
evaluated. Linear discriminant analysis (LDA) was the method of choice for candidate 
integration. Briefly, panels of size 2-7 were exhaustively trained using a 5-fold cross validation 
scheme. Then, the Pareto front was constructed by choosing the best performing panel for 
each size. Here, best was defined using a composite score reflecting both quantitative and 
qualitative indicators. For the quantitative indicator, the posterior residual probabilities of the 
samples (probability of misclassification) was chosen, while panel accuracy (percentage of 
correctly classified samples) was chosen as the qualitative indicator. Finally, both indicators 
were ranked, and the rankings averaged to select the best panel for each size. 

The optimal panel size was selected based on the elbow criterion on the previously generated 
Pareto front. We again used quantitative and qualitative indicators of panel performance. For 
the qualitative indicator the panel percentage of correctly classified samples was reused. For 
the quantitative indicator: first, samples were down-scaled to the two first components 
returned by LDA (LD1 and LD2); second, each subgroup was modelled as a two-dimensional 
normal distribution; and third, the Bhattacharyya distance [20], was calculated between each 
pair of distributions.  
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Where D�(i, j) is the Bhattacharyya distance between distributions i and j, μi is the mean of 
the distribution i, Σi is the covariance of the distribution i, and 𝚺 = 𝜮𝟏�𝜮𝟐

+
.   

The assays measuring the proteins included in the optimal panel were further characterized 
by constructing the calibration curves that allow to map the MFI values to molarity (ng/ml) 
(Appendix 1). 

Correlation with eGFR 

Proteomic measurements were also analyzed for correlation with the estimated glomerular 
filtration rate (eGFR) by fitting linear models between the mean fluorescence intensity values 
(MFIs) and the eGFR. 

Implementation as shiny app 
The pipeline described here was implemented as an interactive online application in Shiny 
(from RStudio): https://asierantoranz91.shinyapps.io/MBBD. The app implements a reduced 
version to speed up the calculation of the results. Specifically, the calculation of the pathway-
level-statistics has been implemented using 2 of the 10 applied methods (Fisher’s and 
Stouffer’s) and can only handle 2-group comparisons (case vs control). 
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Chapter 4 Results 
This chapter introduces the results obtained in the present study. It includes results related to 
data acquisition and pre-processing, to the obtained molecular profile, experimental results 
(training), model construction, and experimental results (validation). 

Data Acquisition and Pre-Processing 

Data Collection 

Nephroseq included 32 studies at the time of collection (November 2017), 14 of which met 
the criteria described in the methods (Table 6).  

Table 6 - Studies selected from Nephroseq. The reported columns are study name, organism, tissue, platform, disease group, 
and GEO series. In the “Groups” column AH stands for Hypertensive Nephropathy, CKD for Chronic Kidney Disease (generic), 
DN for Diabetic Nephropathy, FSGS for Focal-Segmental Glomerulosclerosis, HLD for Healthy Living Donor, IgAN for 
Immunoglobulin A Nephropathy, IgM for Immunoglobulin M nephropathy, LN for Lupus Nephritis, MCD for Minimal Change 
Disease, MGN for Membranous Glomerulonephritis, MPGN for Membranous Proliferative Glomerulonephritis, NPHSCL for 
Nephrosclerosis, TBMD for Thin Basement Membrane Disease, TN for Tumor Nephrectomy, VCL for Vasculitis. 

Study Organism Tissue Platform Groups GEO Series 
Berthier Lupus 
Glom 

Homo 
Sapiens 

Glomeruli GPL96 HLD, LN GSE32591 

Berthier Lupus 
Tublnt 

Homo 
Sapiens 

Tubulointerstitium GPL96 HLD, LN GSE32591 

Hodgin FSGS 
Glom 

Homo 
Sapiens 

Glomeruli - FSGS, HLD - 

Ju CKD Glom Homo 
Sapiens 

Glomeruli GPL96, 
GPL570 

DN, FSGS, MCD, TN, 
VCL  

GSE47185 

Ju CKD Tublnt Homo 
Sapiens 

Tubulointerstitium GPL96, 
GPL570 

DN, FSGS, MCD, 
MGN, TBMD, TN 

GSE47185  

Ju CKD Tublnt 2 Homo 
Sapiens 

Tubulointerstitium GPL570 AH, CKD, DN, FSGS, 
IgAN, IgM, LN, MCD, 
MGN, MPGN 

GSE69438 

Neusser 
Hypertension 
Glom 

Homo 
Sapiens 

Glomeruli GPL96 NPHSCL, TN GSE20602 

Reich IgAN 
Glom 

Homo 
Sapiens 

Glomeruli GPL96 HLD, IgAN GSE35488 

Reich IgAN 
Tublnt 

Homo 
Sapiens 

Tubulointerstitium GPL96 HLD, IgAN GSE35488 

Sampson 
Nephrotic 
Kidney Glom 

Homo 
Sapiens 

Glomeruli  
GPL17692 

FSGS, MCD, MN, 
Other 

GSE68127 

Sampson 
Nephrotic 
Kidney Tublnt 

Homo 
Sapiens 

Tubulointerstitium GPL17692 FSGS, MCD, MN, 
Other 

GSE68127 

Schmid 
Diabetes Tublnt 

Homo 
Sapiens 

Tubulointerstitium GPL96, 
GPL570 

AH, HLD, IgAN, LN GSE32591, 
GSE37455, 
GSE35488 
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Woroniecka 
Diabetes Glom 

Homo 
Sapiens 

Glomeruli GPL571 DN, HLD GSE30122 

Woroniecka 
Diabetes Tublnt 

Homo 
Sapiens 

Tubulointerstitium GPL571 DN, HLD GSE30122 

From these studies, all but the Hodgin FSGS Glom have matching publicly available expression 
data in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). For both 
Sampson Neprhotic Kidney studies, the annotation is incomplete. Therefore, these 3 studies 
were excluded from further analysis reducing the number of studies to 11. Furthermore, the 
Ju CKD studies re-use the expression data of the Reich IgAN, Berthier Lupus, and Schmid 
Diabetes studies. Consequently, the raw expression data of the 7 independent datasets was 
downloaded directly from GEO: 

• GSE20602: Human Nephrosclerosis Triggers a Hypoxia-Related Glomerulopathy [1]. 
• GSE30122: Transcriptome Analysis of Human Diabetic Kidney Disease.  [2, 3]. 
• GSE32591: Expression data from human with lupus nephritis (LN) [4]. 
• GSE35488: Expression data from human with IgA nephropathy (IgAN) [5]. 
• GSE37463 (superseries of GSE37455): Cross-species transcriptional network analysis 

defines shared inflammatory responses in murine and human lupus nephritis [4]. 
• GSE47185: In silico nano-dissection: defining cell type specificity at transcriptional 

level in human disease [6]. 
• GSE69438: Tissue Transcriptome Driven Identification of Epidermal Growth Factor as 

a Chronic Kidney Disease Biomarker Gene expression analysis of peripheral blood cells 
in patients with chronic kidney disease [7]. 

To these datasets, another GEO series (GSE) dataset was added with matched patient data 
and satisfying our inclusion criteria stated above but not present in Nephroseq V3 at the time 
of collection:  

• GSE93798: Transcriptomic and proteomic profiling reveal insights of mesangial cell 
function in patients with IgA Nephropathy [8]. 

The global dataset integrating all samples contained 552 patients and 21656 different HGNC 
symbols across all samples. 

Data Filtering 

Expression data: From the 21656 different HGNC symbols mapped from the probes 12549 
were common to all samples. 

Patient data: From the 33 different features obtained, 8 were present in at least 75% of the 
samples including:  

- GSE series: GEO ID of the dataset (100% of the samples). 
- GPL platform: GEO ID of the platform used to measure the sample (100% of the 

samples). 
- Accession number: GEO ID of the sample (100% of the samples). 
- Age: Age of the patient at the time of biopsy (91.3% of the samples). 
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- GFRMDRD: estimated glomerular filtration rate (eGFR) using the 4-variable MDRD 
equation at the time of biopsy (87.32% of the samples). 

- Disease group: Diagnosed condition (100% of the samples). 
- Sex: Male (0) or female (1) (92.39% of the samples). 
- Tissue: Tissue from where expression data was obtained (Glomeruli or 

Tubulointerstitium) (100% of the samples). 

Samples: Sample distribution per experiment, platform, disease, and tissue is shown in Figure 
11.A. All the under-represented groups (less than 5 samples in each tissue) were removed 
from further analysis (Figure 11.B). This resulted in the removal of 44 patients from the global 
dataset to a total of 508. 

 

Figure 11 - Sample distribution per experiment (y-axis), platform (x-facet), disease (x-axis), and tissue (y-facet). A) All 
samples, B) After removing under-represented groups. The number inside each tile represents the number of patients for that 
particular quadruplet. AH stands for Hypertensive Nephropathy, DN for Diabetic Nephropathy, FSGS for Focal-Segmental 
Glomerulosclerosis, HLD for Healthy Living Donor, IgAN for Immunoglobulin A Nephropathy, LN for Lupus Nephritis, MCD for 
Minimal Change Disease, MGN for Membranous Glomerulonephritis, and VCL for Vasculitis. 

Data Integration 

Intra-Experiment: Figure 12 shows the projection of each dataset in the first two components 
after PCA before (A) and after (B) ComBat. The variance explained for each subplot is included 
in Table 7. Figure 12.A shows that GSE37463 and GSE47185 have internal batch effects due to 
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platform while GSE93798 has an internal batch effect due to the day in which the 
measurements were carried out.  

 

Figure 12 - Batch effect correction (intra-experiment). Each dataset is represented by a projection of its samples in the first 
two components after Principal Component Analysis (PCA). A) Before applying ComBat, B) After applying ComBat. Evaluation 
of batch existence was assessed by visual inspection. Three experiments were identified containing batches: GSE37463 
(Platform), GSE47185 (Platform), GSE93798 (Day).  

Table 7 - PCA variance. Variance explained for PC1 and PC2 in all the subplots from Figure 12. 

Experiment Tissue 
Before After 

PC1 (%) PC2 (%) PC1 (%) PC2 (%) 

GSE37463 Tubulointerstitium 82,24 2,97 19,07 12,77 

GSE37463 Glomeruli 77,14 3,85 16,88 12,76 

GSE30122 Tubulointerstitium 27,20 25,40 27,20 25,40 

GSE30122 Glomeruli 23,93 21,93 23,93 21,93 

GSE47185 Tubulointerstitium 70,85 8,20 27,68 14,97 

GSE47185 Glomeruli 63,62 5,56 15,34 12,05 

GSE69438 Tubulointerstitium 27,05 12,31 27,05 12,31 

GSE32591 Tubulointerstitium 28,85 10,68 28,85 10,68 

GSE32591 Glomeruli 26,05 17,68 26,05 17,68 

GSE35488 Tubulointerstitium 24,98 12,34 24,98 12,34 

GSE93798 Glomeruli 61,06 7,33 21,17 7,55 
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Inter-Experiment: Figure 13shows the resulting bipartite graph of GSEs and disease groups. 
All the pairs are connected to the main graph, thus no GSEs need to be removed for this 
reason. The PCA projections for the integrated dataset are shown in Figure 14. From the 
integrated and corrected dataset, 317 samples (Figure 15) belonging to the diabetes nephritis 
(DN), healthy living donor (HLD), immunoglobulin A nephropathy (IgAN), and lupus nephritis 
(LN) groups were included (191 samples were filtered out). Expression and patient-related 
data are included in supplementary files 1 and 2. 

 
Figure 13 – Bipartite graph representing GSE-Disease pairs for each tissue (left: Glomeruli, right: Tubulointerstitium). All 
pairs are connected to the main graph meaning that all the GSEs contain at least one disease group in common with another 
GSE. 
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Figure 14 - Batch effect correction (inter-experiment). All datasets are integrated and represented by a projection of their 
samples in the first two components after Principal Component Analysis (PCA). A) Before applying ComBat, B) After applying 
ComBat. Evaluation of batch existence was assessed by visual inspection. GSE series was identified as the only remaining 
artifact introducing batch effect.  

Table 8 – PCA variance. Variance explained for PC1 and PC2 in all subplots of Figure 14. 

Tissue 
Before After 

PC1 (%) PC2 (%) PC1 (%) PC2 (%) 

Tubulointerstitium 41,29 18,69 21,32 11,84 

Glomeruli 36,37 17,14 12,07 10,58 
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Figure 15 - Sample distribution by disease group and tissue. DN stands for diabetic nephritis, HLD for healthy living donor, 
IgAN for immunoglobulin A nephropathy, and LN for lupus nephritis. 

Generation of Molecular Profile 

Pathway Database (MSigDB) 

The MSigDB C2 CP version 6.2 dataset originally included 1329 gene sets mapping to 8904 
HGNC IDs connected by 67622 interactions (50.88 genes per pathway, 7.59 pathways per 
gene). Classification by gene-set size yielded a threshold of 75 genes per set, thus, only those 
sets with less than 75 were included in the final model. This resulted into a final model of 6613 
genes mapped to 1124 terms by 32853 connections (29.22 genes per pathway, 4.96 pathways 
per gene).  

Protein-Protein-Interaction Database (OmniPath) 

The original OmniPath database included 7990 nodes and 49070 edges (6.14 edges per node). 
After removing inconsistencies, the reduced network contained 5927 nodes connected by 
31042 edges (5.24 edges per node). 

Gene-Level Statistics (GLS) 

Differential expression analysis results are typically represented as volcano plots (Figure 16) 
where the X axes represents the log2 of the fold change between the case and the control and 
the Y axes represents the -log10 of the p-value of the Limma model (essentially ANOVA). The 
complete list of GLSs is included in supplementary file 3. 
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Figure 16 - Differential expression analysis results. Each subplot represents a volcano plot where the x axes represents the 
log2 of the fold change (logFC) and the y axes the -log10 of the p-value (logP) calculated as described in the methods. A gene 
is considered to be differentially expressed if the absolute logFC is larger than 1 and the p-value is smaller than 0.05 (logP > 
1.3). Differentially expressed genes in each case are represented in green. 

Pathway-Level Statistics (PLS) 

Gene-Set Analysis: Most affected pathways for each tissue and contrast are summarized in 
Figure 17 (for the complete list, see supplementary file 4). 
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Figure 17 - Most affected pathways. A) Glomeruli, B) Tubulointerstitium. For each disease group, the three most affected 
pathways are shown for each p-value type. 
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Map pathways to genes: Most affected genes in the pathway level are summarized in Figure 
18.A (for the complete list, see supplementary file 5). Figure 18.B shows an example for the 
pathways where HLA-C participates using tubulointerstitial and DN contrast data. Figure 18.C 
shows a volcano plot for one of its pathways (KEGG_TYPE_I_DIABETES_MELLITUS) for the 
same data.  

 

Figure 18 - Pathway-Level Statistic (PLS) results. A) Most affected genes. For each tissue and disease group, the three most 
affected genes are shown for each p-value type. B) Heatmap representing the set of 5 p-values for all the pathways where 
HLA-C participates using tubulointerstitial data for DN contrast. C) Volcano plot for KEGG_TYPE_I_DIABETES_MELLITUS 
pathway (one of the pathways where HLA-C participates) using tubulointerstitial data for DN contrast. 
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Network-Level Statistics (NLS) 

The most affected genes in the network level as described in the methods are summarized in 
Figure 19 (for the complete list, see supplementary file 6). Figure 20 shows the Local 
environment (nodes in distance 1) of the 5 most affected genes (AIM2, C1QC, NLRC4, and 
NLRP2) for glomerular tissue and HLD contrast.  

 
Figure 19 - Network-Level Statistic (NLS) results. A) Most affected genes. Each tissue and disease group is represented by a 
volcano plot of the obtained scores. Each subplot contains labels for the 10 genes further from the origin (0,0 point) in each 
case. 
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Figure 20 - Glomeruli HLD local environment. The 5 most affected genes from NLS are projected together with their adjacent 
nodes based on the PPI network. These nodes cluster in 3 different affected areas. Nodes are colored by the logFC from 
differential expression analysis. Node size correlates with the logP from differential expression analysis. 

Map to Protein Identifiers 

The 14350 unique HGNC symbols included in the union of all three models (GLS, PLS, NLS) 
were mapped to 13743 unique reviewed Uniprot IDs (UNIPROTKBs).  

Feature Integration 

Figure 21 shows the Venn diagram of the different UNIPROTKBs included in each model (GLS: 
12279, PLS: 6551, and NLS: 6119). The 3587 proteins included in all three models (triple 
intersection) were used for further analysis. 

logFC 

logP 
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Figure 21 - Venn diagram. The number of different proteins included in each model is represented as a finite set. Only those 
proteins included in the triple intersection were kept for further analysis. 

Feature Selection 

Table 9 shows the coefficient of variation (CV) for each feature, tissue, and disease group. 
None of the coefficients is below the 40% threshold of exclusion, thus all of them were kept 
in the matrix.  

Table 9 - Feature selection. Estimation of predictor variance. For each tissue and disease group the coefficient of variation 
(CV) of each feature is calculated across all proteins.  

Tissue Feature DN HLD IgAN LN 
Glomeruli gls_logFC 8580,76 775,57 598,47 1163,25 
Glomeruli gls_logP 101,67 119,44 95,64 86,14 
Glomeruli nls_localFC 48,67 55,28 46,53 46,32 
Glomeruli nls_localP 47,45 52,76 45,00 41,02 
Glomeruli nls_logC 51,97 51,97 51,97 51,97 
Glomeruli pls_logN 81,00 81,00 81,00 81,00 
Glomeruli pls_p_dist_down 89,14 111,92 107,96 106,48 
Glomeruli pls_p_dist_up 111,10 104,33 172,49 95,16 
Glomeruli pls_p_mix_down 88,13 102,40 97,51 95,31 
Glomeruli pls_p_mix_up 98,04 96,31 99,66 95,87 
Glomeruli pls_p_non_dir 91,58 140,76 90,95 89,06 
Tubulointerstitium gls_logFC 972,47 708,70 1278,43 926,56 
Tubulointerstitium gls_logP 96,54 108,80 92,60 88,81 
Tubulointerstitium nls_localFC 50,74 53,01 47,51 47,89 
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Tubulointerstitium nls_localP 44,23 45,16 42,98 43,23 
Tubulointerstitium nls_logC 51,97 51,97 51,97 51,97 
Tubulointerstitium pls_logN 81,00 81,00 81,00 81,00 
Tubulointerstitium pls_p_dist_down 106,87 132,41 103,49 109,27 
Tubulointerstitium pls_p_dist_up 169,58 110,99 93,62 101,14 
Tubulointerstitium pls_p_mix_down 109,20 100,72 100,22 105,45 
Tubulointerstitium pls_p_mix_up 102,47 94,63 87,64 136,58 
Tubulointerstitium pls_p_non_dir 95,43 99,53 84,38 118,19 

Figure 22 shows the correlation matrix for the features across all tissues and disease groups. 
The largest correlation coefficient was between the network-level-statistics localFC and localP 
with R = 0.81, below the 0.85 threshold declared in the methods. 

QR decomposition revealed that none of the features can be explained as a linear combination 
of the others. 

 
Figure 22 - Correlation matrix. Pearson correlation coefficient was calculated between each pair of features across all 
features and disease groups. 
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Secretion Prediction 

The downloaded dataset contained rich information for 20183 proteins including, when 
available, the subcellular location and presence of signal sequences. For training, 3950 
proteins were removed due to unknown subcellular location. In addition, 3959 proteins that 
had supporting evidence of being situationally intracellular or extracellular were removed 
leaving 12274 proteins for training and testing.  
 
Following cross validation and parameter tuning the final model exhibited a Matthews 
correlation coefficient of 0.849 outperforming by 0.09 points other majority vote-based 
methods. Regarding protein secretion alone it also outperformed by 0.15 points other 
machine learning methods which predict the subcellular location of a protein given its amino 
acid sequence. 

Experimental results 

Sample acquisition  

Baseline patient characteristics are specified in Table 10 (for patient specific information, see 
supplementary file 7). 

Table 10 - Sample acquisition. 80 samples belonging to 3 disease groups and control were included in the study. 

Group DN HLD IgAN LN 
Number of patients (N) 20 19 19 21 
Age (years) 51.2±12.3 50.0±19.2 47.9±12.4 46.4±17.3 
Female (%) 50% 45% 52.6% 66.7% 
eGFR (ml/min/1.73m3) 46.5±26.6 NA 56.3±33.2 58.7±34.6 

Proteomic results – training set 

The raw Mean Fluorescent Intensities (MFIs) representing the proteomic measurements for 
the training set are contained in supplementary file 8. 425 replicate measurements were 
removed based on QC (14.93% of the total measurements), 5 (0.18%) due to bead counts, 299 
(10.50%) due to replicate QC and 121 (4.25%) due to analyte distribution QC. Figure 23 shows 
the number of remaining replicates for each sample/analyte pair before median centering. 
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Figure 23 - Number of replicates per sample and analyte pair – training set. 425 replicates were removed due to quality 
control checks.  

10 patients (E418, E476, P19, P20, Y189, Y288, Y410, Y450, Y458, and Y476) were removed 
due to loss of information (more than 1 NA). Table 11 shows the resulting p-values from 
background evaluation after running one-tailed t-test and FDR for multiple comparisons. 
CNTF, ANXA2, and hs.Trop.T did not show significant differences from background 
measurements and were removed from further analysis. 

Table 11 - Background Evaluation – training set. Sample MFIs were compared to blank/background measurements using 
one-tailed t-tests. P-values were adjusted for multiple comparisons using false-discovery-rate (FDR) method. 

Analyte p.value p.adj 
CNTF 8,89E-01 8,89E-01 

ANXA2 1,40E-01 1,51E-01 
hs.Trop.T 4,51E-02 5,26E-02 

IL20 1,85E-04 2,36E-04 
NRG1 4,20E-05 5,88E-05 
TNFA 2,07E-07 3,21E-07 
TFF3 4,60E-17 8,05E-17 
RETN 2,21E-17 4,41E-17 
GROA 6,90E-18 1,61E-17 
CFH 5,08E-18 1,42E-17 
CCL2 1,14E-26 4,01E-26 

COL3A1 2,33E-30 1,09E-29 
ICAM1 9,28E-48 6,50E-47 
DEFB1 1,58E-49 2,22E-48 

Exploratory analysis: Results from PCA, tSNE, and HC are summarized in Figure 24-C. Figure 
24.D shows violin plots for all the analytes colored by disease group. 
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Figure 24 - Exploratory Analysis – training set. A) Principal Component Analysis (PCA), B) t-stochastic neighbor embedding 
(t-SNE), C) Hierarchical Clustering (HC), D) violin plots.  

Candidate Biomarker Performance: Figure 25 summarizes results from both quantitative 
and qualitative analyses (for a complete list, see supplementary file 9).  

 

D) 
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Figure 25 – Candidate biomarker performance – training set. A) Quantitative performance. MFIs were compared in a 
contrast-based manner similarly to differential expression analysis of genes. B) Qualitative results. Area under the ROC curve 
(AUC) was used as performance metric. C) Biomarker performance (BP). BP was calculated integrating quantitative and 
qualitative metrics as described in the methods. 

Model training 

Correlation between the molecular features defined in the molecular profile and biomarker 
performance are summarized in Figure 26. Biomarker performance was predicted using elastic 
networks. Figure 27 shows the obtained weights from the elastic network (lambda min) in the 
cross-validated model. These weights were used to predict the biomarker performance of all 
the proteins in our model (feature matrix). Glomerular and Tubular correlations showed a 
Pearson correlation coefficient of 0.62 (RMSE = 5.6, p-value < 2e-16) (Figure 28). The final 
predicted biomarker performance was obtained by averaging the predictions from the 
glomerular (Glom) and tubular (Tub) models. These predictions were used to compare the 
obtained biomarker performance in the measured proteins with the predicted one (Figure 
29). The obtained root-mean-square error (RMSE) was equal to 12.85 while the mean absolute 
error (MAE) was equal to 10.08. 

BP 
40 60 80 

A) B) 

C) 
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Figure 26 - Biomarker performance (BP) correlation with molecular features. The label inside and the color for each 
subplot represents the Pearson correlation coefficient between the feature and biomarker performance.  
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Figure 27 - Elastic network, cross validated weights. Each weight is represented by the mean and the standard deviation 
across all folds. 

 
Figure 28 - Glomerular versus tubular prediction. X-axes represents the predicted biomarker performance in glomerular 
tissue (Y-axes, tubulointerstitial). The blue line represents the linear model obtained from both predictions. Correlation 
analysis showed a Pearson correlation coefficient of 0.62 (RSE = 5.6, p-value < 2e-16). 
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Figure 29 - Training set performance. Biomarker performance from the proteomic measurements (BP) was compared 
against the predicted biomarker performance (pBP). 

Proteomic results – validation set 

The raw Mean Fluorescent Intensities (MFIs) representing the proteomic measurements for 
the validation set are contained in supplementary file 10. 367 sample measurements were 
removed based on QC (17.95% of the total measurements), 1 (0.05%) due to bead counts, 227 
(10.99%) due to replicate QC, and 140 (6.81%) due to analyte distribution QC. Figure 30 shows 
the number of remaining replicates for each sample/analyte pair before median centering. 

 
Figure 30 - Number of replicates per sample and analyte pair - validation set. 367 replicates were removed due to quality 
control checks.  

11 patients (E418, E476, P19, P20, Y189, Y210, Y288, Y410, Y450, Y458, and Y476) were 
removed due to lack of information (more than 1 NA). From the 11 patients, all but Y210 were 
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removed in the training set for the same reason. Table 12 shows the resulting p-values from 
background evaluation after running one-tailed t-tests and FDR for multiple comparisons. 
IL1B, IL1A, and MMP1 did not show significant differences when compared to background 
measurements thus were removed from further analysis. 

Table 12 - Background Evaluation – validation set. Sample MFIs were compared to blank/background measurements using 
one-tailed t-tests. P-values were adjusted for multiple comparisons using false-discovery-rate (FDR) method. 

Analyte p.value p.adj 
IL1B 1,00E+00 1,00E+00 
IL1A 9,77E-01 1,00E+00 

MMP1 9,16E-01 1,00E+00 
IL6 6,89E-04 9,84E-04 

CXL11 5,44E-08 9,07E-08 
CCL5 5,99E-10 1,20E-11 

NPHS1 9,47E-12 2,37E-11 
TNF10 6,38E-12 2,13E-11 
MMP9 6,46E-19 3,23E-18 

Galectin.3 4,77E-31 4,77E-30 

Exploratory analysis: Results from PCA, tSNE, and HC are summarized in Figure 31.A-C. Figure 
31.D shows violin plots for all the analytes colored by disease group. 
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Figure 31 - Exploratory Analysis – validation set. A) Principal Component Analysis (PCA), B) t-stochastic neighbor embedding 
(t-SNE), C) Hierarchical Clustering (HC), D) violin plots.  

Candidate Biomarker Performance: Figure 32 summarizes results from both quantitative 
and qualitative analyses (for a complete list, see supplementary file 11).  

A) B) 

C) 

D) 
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Figure 32 – Candidate biomarker performance – validation set. A) Quantitative performance. MFIs were compared in a 
contrast-based manner similarly to differential expression analysis of genes. B) Qualitative results. Area under the ROC curve 
(AUC) was used as performance metric. C) Biomarker performance (BP). BP was calculated integrating quantitative and 
qualitative metrics as described in the methods. 

Model testing 

For the model testing, we compared the measured biomarker performance of the proteins 
that were part of the validation set with their predicted counterparts (Figure 33). These 
candidates returned a root-mean-square error (RMSE) of 15.87 and a mean absolute error of 
13.68. Figure 34 shows the comparative in absolute error distribution between training and 
test sets. We compared these distributions using a two-tailed t-test which yielded a p-value 
of 0.31, i.e., the residuals from the validation set were not significantly different to those of 
the training set. 

A) B) 

C) 
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Figure 33 - Validation set performance. Biomarker performance from the proteomic measurements (BP) was compared 
against the predicted biomarker performance (pBP).  

 
Figure 34 - Mean absolute error comparative. Training = 10.08 ± 6.60; test = 13.68.7 ± 9.2. 

Downstream analysis 

Integration into biomarker panel 

Combinations of candidate biomarkers into panels with increased performance were then 
evaluated. Figure 35 shows the correlation matrix between the measured analytes in both the 
training and validation sets. Figure 36 shows the resulting Pareto front from LDA using a 5-
fold cross-validation scheme. The elbow criteria revealed that the optimal panel size was 3 
(ACC = 0.69, BD = 1.07). The panel of size 3 was formed by the proteins: Galectin3, ICAM1, and 

Training 

Testing 
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MMP9. Figure 37 shows the rotation vectors for LD1 and LD2, the confusion matrix, and the 
projected values of the samples in LD1 and LD2. 

 
Figure 35 - Correlation matrix - analytes. All measured proteins were pair-wise evaluated for correlation using Pearson's 
correlation coefficient. 
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Figure 36 - Pareto front. The Pareto front contains the optimal solution for the panel of each size (x-axes). The elbow criterion 
was applied for both quantitative (Bhattacharyya Distance, BD) and qualitative (Accuracy, ACC) parameters. 

 

 
Figure 37 – Optimal Panel. Left) rotation vectors for LD1 and LD2 (top) and confusion matrix (bottom), Right) projected values 
of the samples in LD1 and LD2.  

Correlation with eGFR 

Proteomic measurements were also analyzed for correlation with the estimated glomerular 
filtration rate (eGFR). From the 18 valid proteins, 4 showed significant correlation with eGFR: 
TFF3 (p-value = 2.41e-12), RETN (p-value = 1.68e-03), COL3A1 (p-value = 4.08e-03), and CCL5 
(p-value = 4.84 e-02) (Figure 38) when fitting linear models between the mean fluorescence 
intensity values (MFIs) and the eGFR. After correcting for multiple comparisons only TFF3 (p-
value = 5.79e-11), RETN (p-value = 2.02e-02), and COL3A1 (p-value = 3.26e-02) remained 
significant. 
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Figure 38 - Correlation with eGFR. MFIs are shown as a function of eGFR. CCL5, COL3A1, RETN, and TFF3 showed significant 
correlation. 
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Chapter 5 Conclusions 
The present project exhibits a proteomic biomarker discovery scheme that feeds on 
transcriptomic data using CKD as case study. The pipeline combines biological models 
extracted from publicly available databases with state-of-the-art algorithms that aim to 
capture meaningful biology for the disease. The goal is to suggest a number of proteins as 
candidate biomarkers to be measured in blood samples that are able to asymptomatically 
diagnose a myriad of subcategories and use machine learning methods to integrate them into 
a panel of increased performance and stability. The cornerstone is to molecularly determine 
the underlying pathophysiological mechanism causing CKD and detect it before the damage is 
done.  

Our methodology follows several steps for each of which there exist several alternatives that 
potentially affect the final results. Therefore, the first part of the discussion consists of the 
justification behind the selected methodologies, while the second part focuses on the 
discussion of the results.  

Methodological considerations 

Data Acquisition and Pre-Processing 

The pre-processing step involves everything from data collection to combination, which 
includes normalization, filtering, and integration. This step is critical as it affects the quality of 
all the downstream results regardless of the analytical methods chosen. It ensures that the 
data (coming from different sources) is comparable and can be used as a whole. If the input 
data is not good, the obtained results won’t be good either regardless of the analytical tools 
and algorithms used, a concept described in computer science as garbage in, garbage out 
(GIGO) (Figure 39). 

 

Figure 39 - Garbage in, garbage out (GIGO). Quality results are only obtained when both, the input data and applied analytical 
tools are of quality. 
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In this study, we are using public gene expression microarray data which measures the 
expression of thousands of genes in a single assay, using multiple probes to assay each 
transcript, making them a valuable data source for biomarker discovery and identification as 
they capture most of the pathophysiological phenomena, thus providing valuable information 
on disease subcategories, disease prognosis, and treatment outcome [1]. Microarray 
technology has become the gold standard for identifying genes or pathways whose expression 
changes between specific phenotypes.  

The expression data was obtained from studies were reported in Nephroseq and obtained 
from the Gene Expression Omnibus (GEO) database. GEO supports community-derived 
reporting standards that facilitate integration of different datasets [2]. However, gene 
expression microarray measurements can be affected by small differences in any number of 
non-biological variables, so different instruments, technicians, reagent lots, or even days in 
which the experiments were carried out can affect the data. 

When facing integration of different datasets, there are two general approaches: The first one 
involves meta-analysis or combination of the results from multiple studies; while the second 
one encompasses integration or combination of data from different studies. In this study, we 
opted for the latter given that the data was obtained from standardized databases which 
eases integration and because the heterogeneity of the samples to be combined (different 
studies included different disease groups) (Figure 11 - Results). If each experiment was 
analyzed individually, given the way contrasts have been built (case vs pool of controls), the 
control groups would be very different one from another, thus introducing bias due to 
experiment.  

Data filtering was another critical stage to ensure the quality of the input dataset. 
Heterogeneous datasets make integration challenging, thus the different steps removing 
incomplete features, observations, and under-represented disease groups increase 
comparability of the datasets and facilitate their integration. The integrated dataset is subject 
to batch effect which was addressed using ComBat. In the same way that there are many non-
biological variables that affect the data, there are many methods to alleviate batch effects 
ComBat was the method of choice as it has shown increased performance when compared 
with five other well-known batch effect adjustment methods in independent studies [3]. The 
adjustment is calculated without setting any covariates because adjusting for batch effects 
while retaining group differences may lead to exaggerated confidence in downstream 
analyses [4]. 

Generation of the molecular profile 

The study presented in this thesis involves an integrative holistic analysis in different biological 
scales: genes, pathways, and network (Figure 40). The analysis of the data in each scale returns 
a series of statistics (features) that are captured in a molecular profile representing a protein 
present in the Uniprot database. While the analysis in the gene-level is more straightforward 
with Limma being the gold-standard approach [5], analysis in the pathway- and network-levels 
is more complex, require of biological models for their implementation, and the selection of 
the best method is an open question.  
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Figure 40 - Illustration of analysis in different biological scales. A) Gene-Level, B) Pathway-Level, C) Network-Level. 

Perhaps it should be mentioned, that gene-level analysis revealed a relatively small number 
of differentially expressed genes with classical p-value and logFC thresholds (25 across all 8 
subsets) (Figure 16 - Results). However, this is an expected result given that the methodology 
followed up to that point was very conservative (integration of datasets without disease co-
variates). Moreover, the methodology presented here does not make threshold-based 
decisions and dichotomize the results between significant and non-significant but rather take 
the continuous values of the statistics for downstream analyses, approach that has been 
recently encouraged by the scientific community [6].  

Pathway-level analysis: The number of degrees of freedom in this analysis is 3: the pathway 
database used, the method used for mapping gene-level statistics to pathway-level statistics, 
and the method used to combine p-values. While the number of pathway-database options is 
large, including broadly known the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
https://www.genome.jp/kegg/) or Reactome (https://reactome.org/), the number of 
pathway-analysis methods is perhaps larger (only piano already includes 11). Kharti et al [7] 
reviewed the different approaches used in pathway analysis and classified them in three 
generations: Over-representation analysis (ORA), functional-class scoring (FCS), or pathway-
topology-based (PT-based). The first two generations use pathways defined as gene-sets, 
while the third generation uses network-based representations of pathways. Intuitively, the 
methods and approaches used for each definition of pathway vary accordingly (for a review 
see: [8]). The use of different pathway-databases or analytical methods heavily affects the 
obtained results and, naturally, any downstream analyses performed. Given that there is not 
a clear understand of any individual pathway analysis method working better than the others, 
a common approach is to run a number of methods and then find consensus among the 
obtained results, which actually, outperforms methods individually [9]. 

In fact, both the database (MSigDB) and method of choice in this study (piano [10]), directly 
incorporate this logic as MSigDB contains gene sets curated by domain experts from various 
online databases such as Biocarta, Reacome, KEGG, and PID. Piano, instead, allows to use any 
number of 11 different gene set analysis methods and offers different alternatives to integrate 
the results. In this study, from the 11 available methods, the Wilcoxon rank-sum test was not 
included in the pipeline due to significantly longer computational times when compared with 
the rest of the methods. Using the classification system described in [7], these methods belong 
to the second-generation pathway analysis methods, functional class scoring (FCS). FCS 
methods rely on the assumption that although large changes in individual genes can have 
significant effects on the phenotype, weaker yet coordinated changes in sets of functionally 
correlated genes can also have significant effects. Second-generation methods act in two 

A) Gene-Level B) Pathway-Level C) Network-Level 
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steps (two-tier structure): first, they calculate a gene-set statistic from the individual entities 
belonging to the set; and second, they assess whether if the calculated statistic is significant. 
FCS methods represent an improvement over the first-generation ones (Over-representation 
analysis, ORA) in the sense that they are not subject to user-defined thresholds to assess 
significance, but do not explode the pathway topology information in the way that third-
generation methods do [7]. However, this information is included in the analysis in the 
network-level.  

Using the status of a pathway as a biomarker may be impractical as the status of a pathway is 
generally obtained from a competitive analysis in which the score for a particular pathway is 
compared against an empirical background distribution built with the scores for the rest of 
the pathways. Therefore, we had to integrate enrichment statistics in the pathway-level back 
to the molecular entities. In the same way that a pathway is composed by several proteins (in 
the database encoded by their genes), a protein can appear in several pathways. Therefore, 
for each protein (encoded by its gene), the enrichment scores from the different pathways in 
which it participates were aggregated. We avoid the use of traditional score aggregation 
operators (mean, median, etc.) directly on the p-values as it can lead to loss of information 
[9]. We also avoid traditional p-value combination methods (Fisher, Stouffer, Tippet, sumZ, 
etc.) [9] because these methods may produce inaccurate results as they assume independency 
of the p-values to be integrated which is not the case here (different pathways can have 
proteins in common making the p-values correlated). Therefore, applying such methods 
would lead to inaccurate bimodal p-value distributions, and by definition, the p-values of null 
hypotheses should be uniformly distributed between 0 and 1 [11]. It has been demonstrated, 
that when correlation information is available, a weighting-capable method for integration of 
dependent p-values is performing best [11]. In this study, we used Hartung’s method [12] 
which incorporates the correlation among p-values via introducing the correlation matrix in 
the Z-transform test. The resulting p-value distributions for the different scores was uniform 
in all the cases (Figure 41.A), unlike any other approach tested which resulted in bimodal p-
value distributions (Figure 41.B, Tippet’s method). Anticonservative distributions could me 
‘corrected’ using multiple-hypothesis test correction (Bonferroni, FDR, etc.), but bimodal 
distributions usually mean that the wrong test has been selected [13, 14].  

Network-level analysis: Integrative analysis of gene expression data in the context of 
biological networks such as protein-protein interaction (PPI) networks is increasingly 
becoming a major technique in systems biology, particularly in polygenic diseases where the 
phenotype cannot be explained by modifications in individual entities. However, most of 
published methods [15-18], focus on finding disease modules rather than assigning a score to 
each protein based on local information. Therefore, in this study, we propose a guilt-by-
proximity approach in which a network-score is calculated for each protein which aggregates 
the gene-level scores for surrounding proteins based on the PPI network.  

Our scoring function penalizes by the degree of the node in the graph because nodes of large 
degree represent hubs in the network which are more likely affected by any 
pathological/pharmacological condition, thus reducing the specificity of our biomarker 
candidates. Promising candidates are not hubs but are located in close proximity. For example, 
ICAM1, one of the best reported candidates to discriminate healthy samples from a generic 
definition of CKD (pool of DN, IgAN, and LN), is adjacent to EGFR, a hub in the PPI network 
(Figure 42). 
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Figure 41 - p-value distributions. P-value distributions after aggregation from different gene sets. A) Hartung's method, B) 
Tippet's method. 

Our network-level analysis is also subject to the biological model used. The logic used here is 
similar to the one used in the pathway-level as Omnipath [19] is a database that collects 
protein-protein-interactions from different public databases (String, HPRD, etc.). In this case 
instead, in order to construct a high reliability prior knowledge network for downstream 
analysis, similarly to [20] inconsistencies between the different databases were excluded from 
the final network by including only those interactions that were reported in at least 3 external 
sources. 

Map to protein identifiers: All the different analyses used HGNC nomenclature which is 
representative of genes. However, the goal is to obtain proteomic biomarkers. We have 
performed all the analyses in HGNC because not all the genes included in our models are 
protein encoding genes, but their expression may be affected by other pseudo-genes that do 
not encode for proteins. Therefore, after the construction of the molecular profile, the HGNC 
symbols were mapped to Uniprot IDs. 

Feature selection/integration: Generally, there exist three strategies to deal with missing 
data: deleting the observations, deleting the variables, and imputing the missing values. The 
selection of the correct strategy depends on the structure of the data (number of 
observations, number of variables, amount of missing data):  

- Deleting observation: If the number of observations is large in comparison to the 
number of variables and the different categories are sufficiently represented in the 
data, one may consider deleting some observations while preserving the power of the 
dataset.  

A) 

B) 
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Figure 42 – ICAM1/EGFR network for glomerular tissue and HLD contrast. ICAM1 is an adjacent node of EGFR, a central hub 
of the protein-protein-interaction network. Both nodes are highlighted with black arrows. 

- Deleting features: If most of missing values come from few variables and by removing 
these variables many observations can be saved, one would consider deleting variables 
instead.  

- Imputing values: If the amount of non-missing data is enough to associate the 
different variables and get an idea of how they correlate, one may consider predicting 
the missing values using analytical approaches. Imputation with mean/median/mode 
is a crude way of treating missing values and may destroy the dataset. In complex 
cases, is usually best to use more advanced methods to predict missing values such as 
KNN [21], or MICE [22]. 

In this study, given that the number of observations (13743) is one thousand times larger than 
the number of features (11), and that the percentage of missing data represents 45.61% of 
the total data, we delete all the observations with missing data and proceeded only with the 
proteins containing data for all the features (complete observations). The complete 
observations were subject to different quality control checkpoints for feature selection 
because introducing non-informative or highly correlating features/predictors in a 

EGFR 

ICAM1 

logFC logP 
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mathematical model, a common problem in biomedical datasets, can reduce the predictive 
performance or increase feature instability [23].  

Secretion prediction: The subcellular location (extracellular, membranous, intracellular) of 
each protein was included as an indicative feature for potential users. We hypothesized that 
if a protein was extracellular it could be detected in blood samples. However, we did not filter 
to extracellular locations based on this feature because these predictions are valid only for 
the normal state. On the other hand, proteins that in normal circumstances are intracellular, 
may be extracellular in pathological conditions. 

Experimental design 

The molecular profiles were constructed using data obtained directly from two different 
tissues. However, samples were measured in blood samples. The motivation behind the use 
of blood samples is that, for monitoring human health, measuring protein biomarkers in blood 
is considered a very attractive solution because the pathology of almost every body tissue can 
affect the blood proteome [24] on top of the simplicity of obtaining the sample. A biomarker 
is more likely to progress to clinical settings if its measurement is minimally invasive. 

The number of checkpoints for quality control of Luminex xMAP measurements may appear 
excessive with a lot of measurements lost. However, the number of patients lost was 3 for the 
training set and 12 for the validation set. Moreover, when constructing prediction models, 
particularly when the number of data points is enough, it is preferable to lose some good 
measurements rather than to introduce bad ones (better to lose signal than to introduce 
noise).  

Our definition of biomarker performance is novel and integrates routinary indicators of 
performance used in biomarker discovery like ROC curves (AUC) with quantitative indicators 
of performance (log-fold-change, p-value). This integration tries to balance up the relatively 
low number of samples tested with modifications that rank-up robust biomarker candidates. 

We also trained the obtained molecular profiles from each tissue individually and calculated 
a final score by aggregating the predictions obtained from each model to harmonize with our 
“wisdom of the crowds” analytical approach where combining multiple results enhance the 
performance. One of the greatest results obtained is that the predicted biomarker 
performances for both tissues were very correlated across all proteins (p-value < 2e-16) which 
gives us confidence about the robustness of our metric.  

Biomarker discovery method: performance 

The goal of this thesis was the characterization of kidney diseases at the molecular level. This 
characterization would assist the discovery of new biomarkers directly associated with the 
mechanism of the disease. The proposed pipeline performs an agnostic interrogation that 
aims to define different phenotypes in molecular terms. To that end, it needs the integration 
of knowledge in different levels (transcriptomics, pathways, network) to better understand 
the molecular relationships underlying the pathophysiology in a phenotype-specific manner 
to develop more reliable sets of biomarkers for diagnosis and personalize treatment of 
individual patients.  
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This type of systems-based approach is perhaps most useful in complex and heterogeneous 
diseases like Chronic Kidney Disease (CKD) or cancer given that they are better explained by 
alterations in molecular mechanisms rather than effects in individual genes [25]. In the case 
of CKD, current biomarkers like serum creatinine (sCr), NGAL, or KIM-1 either lack the 
sensitivity and specificity required, or cannot distinguish between different subtypes, or 
report alterations when the damage is done. The ideal set of biomarkers would be composed 
by a small number of analytes that are able to diagnose a myriad of subcategories before the 
damage is done (asymptomatic). Moreover, this set of analytes should be connected to the 
mechanism of the disease to minimize their attrition rate in clinical practice.  

Therefore, recent efforts to predict outcome in cancer exploit the wealth of information about 
gene regulations, pathways, protein-protein-interactions, metabolic reactions and other types 
of relationships between biomolecules available in public databases [25-29]. In the context of 
phenotype prediction, these methods aggregate groups of biologically related features into 
scores that are often used in supervised machine learning methods in the expectation that 
they will provide increased performance and stability. However, the claim that scores 
obtained from aggregations represent an improvement over single genes has been recently 
challenged as more and more studies come up demonstrating that aggregation scores do not 
outperform single genes in prediction performance or stability [30, 31]. Moreover, if we check 
commercialized products that are being used as biomarkers, they use single-gene panels 
rather than MGs. Examples of this are Mammaprint® [32], a panel of 70 genes for breast-
cancer prediction, Decipher® [33], a panel of 22 RNA markers to predict risk of metastases in 
prostate cancer, PAM50 [34] a set of 50 genes stratifying breast cancer patients into five 
‘intrinsic’ molecular subtypes, and OncoTypeDX® [35], a set of panels for tumor profiling in 
breast, prostate, and colon cancer.  

To obtain a set of predictive features in CKD, we used predefined pathways and protein-
protein-interactions expertly curated and stored in public databases (MSigDB, OmniPath). 
However, most of these databases are not disease-specific so only partially represent the 
disease in question. Moreover, despite significant improvement over the years, a priori 
defined databases are still biased towards well-understood biological processes and few 
pathways are compiled and annotated for rare or specific sub-types of diseases [7]. We found 
a promising kidney-specific protein-protein-interaction network in TissueNet V2 [36] which 
has the benefit of being kidney specific but the limitation of not being curated by domain 
experts. Moreover, TissueNet would represent the only kidney-specific database included in 
our model thus losing the robustness and reliability acquired by integration of several curated 
databases. Therefore, TissueNet could be potentially used to expand and modify OmniPath, 
but not a substitute. 

A successful model construction requires molecular patterns that consistently change across 
disease patients. Our model training revealed that features coming from the network-level 
have the biggest role in biomarker performance predictions as the network-level-statistic 
localP has the biggest weight in the predicted models for both tissues (Figure 27). Other 
authors [37] have already reported the relevance of network analysis as a potential tool for 
biomarker discovery which is encouraging the scientific community to move in this direction 
as several studies have been recently published using biological networks as means for 
biomarker discovery [38, 39]. 
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Going back to the example shown in Figure 42, it appears that promising candidate biomarkers 
are located next to hubs in the network. The intercellular adhesion molecule 1 (ICAM1), the 
protein from the training set with the highest network-level score for the localP feature, is at 
the same time one of the best performing biomarker candidates to classify the HLD group 
from the rest of groups (generic CKD candidate). ICAM-1 is an endothelial- and leukocyte-
associated transmembrane protein known for its importance in stabilizing cell-cell 
interactions and facilitating leukocyte endothelial transmigration. ICAM-1 ligation produces 
proinflammatory effects such as inflammatory leukocyte recruitment by signaling through 
cascades involving a number of kinases [40]. ICAM-1 is involved in FGF23 signaling, a 
mechanism that impairs neutrophil recruitment and host defence during CKD [41]. Based on 
our network model, ICAM-1 is located adjacent to epidermal growth factor (EGFR) which has 
also been associated to CKD [42]. In the gene level, none of the evaluated contrasts showed 
ICAM-1 as significantly differentially expressed. In the pathway level, ICAM1 participates in 
several significantly affected pathways like the BIOCARTA_MONOCYTE_PATHWAY gene set or 
the KEGG_VIRAL_MYOCARDITIS gene set. The KEGG_VIRAL_MYOCARDITIS gene set is 
particularly interesting because highlights the systematic nature of CKD and there exist several 
studies associating CKD with cardiovascular diseases [43].  

The other two biomarker candidates appearing in our panel, the matrix metallopeptidase 9 
(MMP9) and Galectin-3 were suggested by our biomarker discovery model (validation set) and 
have also been recorded in association with CKD.  

The matrix metallopeptidase 9 (MMP9), is an enzyme involved in the degradation of the 
extracellular matrix, thus is also involved in several important functions within neutrophil 
actions. Peripheral blood levels of MMP9 have been found to be altered in patients with 
chronic kidney disease on conservative treatment and on hemodialysis [44]. It was also 
reported as to be related to renal function in patients with CKD [45, 46]. Similarly to ICAM1, 
MMP9 is not significantly affected in the transcriptomic level. However, it participates in 
several affected pathways including AP-1 pathway and FRA pathway, both of which have been 
associated with renal fibrosis [47-48].  

Galectin-3 is a member of the beta-galactoside-binding protein family and plays an important 
role in cell-cell adhesion, cell-matrix interactions, macrophage activation, angiogenesis, 
metastasis, apoptosis. Galectin-3 is an established biomarker for cardiac fibrosis [49] and has 
also been linked to the development of CKD [50]. In our study, it was not significantly affected 
in any of the contrasts in the gene or pathway level. In the network-level instead, Galectin 3 
is located close to ABCA1, an important hub in our network model. ABCA1 is a transporter that 
removes cholesterol from macrophages [51]. In fact, cholesterol accumulation is one of the 
main risk factors for cardiovascular disease (CVD) which again highlights the relationship 
between CVD and CKD. 

As individual predictors, Galectin-3 is the best performing biomarker specifically for DN (BP = 
72.36, AUC = 0.79), and MMP9 is the best performing biomarker for LN (BP = 73.66, AUC = 
0.74). If these results are in fact not as strong as TFF3 (BP = 96.08, AUC = 0.95) or ICAM (BP = 
90.24, AUC = 1) for the HLD group, they show a moderate correlation that is of biological 
interest. In fact, the obtained optimal panel misclassifies the most between the LN and DN 
groups (10 out of 21 misclassified samples). However, there is a biological reason that could 
explain this behaviour as both DN and LN are secondary glomerulonephritis while IgAN is a 
primary glomerulonephritis (see Chapter 2). If we would merge DN and LN groups together 
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and use our panel to distinguish primary glomerulonephritis, secondary glomerulonephritis 
and control we would obtain a classification accuracy of 83.82% which starts to be of clinical 
relevance (Figure 43). 

 

Figure 43 – Optimal Panel – glomerulonephritis groups. Left) rotation vectors for LD1 and LD2 (top) and confusion matrix 
(bottom), Right) projected values of the samples in LD1 and LD2.  

From the proteins included in the validation set, Nephrin (NPHS1) is a protein associated with 
CKD that didn’t show any significance in proteomic measurements. Nephrin is a protein 
necessary for the proper functioning of the renal filtration barrier which consists of 
fenestrated endothelial cells, the glomerular basement membrane, and the podocytes of 
epithelial cells. One possible reason for this poor performance is that, based on the Tissue 
Protein Atlas (https://www.proteinatlas.org/), Nephrin is a membranous protein almost 
exclusively present in kidney tissue (particularly in the nephrons). This fact, together with the 
low expression found across all samples makes us consider Nephrin as a promising marker for 
CKD but not in blood samples. In fact, NPHS1 has been found mutated in congenital nephrotic 
syndrome [55], a primary cause for CKD in children.  

Finally, we also found 3 proteins (after multiple testing correction) that are correlated with 
eGFR: TFF3, RETN, and COL3A1. COL3A1 showed some predictive ability in DN (AUC = 0.65). 
COL3A1 is the gene that encodes for collagenase 3 alpha-1 chain. It has been recently shown 
that it is related with development of tubulointerstitial injury in DN [52] in the transcriptomic 
level. On the other hand, trefoil factor 3 (TFF3) was the protein that showed the most 
significant correlation with eGFR (p-value = 2.41e-12). Moreover, it was the protein that 
obtained the best biomarker performance score (individually) for HLD. It showed an AUC = 
0.95, a logFC = -1.95 and a p-value = 3.09e-13. This protein has been extensively reported in 
literature as related not only to CKD [58] but more particularly to eGFR [59]. 

Recapitulating, we have introduced a computational pipeline that can find promising 
biomarker candidates in serum samples using as input gene expression data. Our pipeline uses 
mostly, but not only, already published algorithms and methods, but their integration and 
application is novel. The method identifies strong protein biomarkers when there is strong 
contrast at the gene expression data. The potential use of some of these proteins as 
biomarkers in CKD has been validated with limited number of blood samples. We also have 
shown (using our biological models and available literature) that these biomarker candidates 
are connected to mechanisms related to CKD. Finally, we have implemented a reduced version 
of the algorithm in shiny and deployed it online. Although in this study we have focused on 
CKD, the pipeline and the online app are non-specific and could potentially be used for any 
set of phenotypes with transcriptomic data. 
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Appendix 1 – Calibration Curves 
The assays measuring the proteins included in the optimal panel (Galectin3, ICAM1, and 
MMP9) were further characterized by constructing the calibration curves that allow to map 
the MFI values to molarity (ng/ml). This requires the production of a calibration curve using 
known concentrations of recombinant protein for each assay. All recombinant proteins were 
added in a mix, standard mix, at initial target concentration 50 ng/ml. Then, 3-fold serial 
dilutions were performed with Low cross normal buffer (CANDOR), same buffer used for the 
sample dilution, for 15 wells including negative control (0 ng/ml). All measurements were 
performed in triplicates (9 replicates for samples of 0 concentration, blanks). Based on the 
known concentration of each recombinant protein in the standard mix and the Median 
Florescent Intensity units (MFI) obtained, the calibration curve of the assay was created; thus, 
the concentration of each target protein in the samples was calculated using the respective 
calibration curve. The construction of the curves, followed the subsequent steps: 

Bead counts (QC): Measurements with less than 30 bead counts were removed from further 
analysis [1]. In these assays, none of the measurements had less than 30 counts (min = 100).  

Outlier detection: Replicate measurements were evaluated for outliers. For each triplicate, a 
data point was considered an outlier if its absolute deviation from the median of the replicates 
was larger than 3 median absolute deviations (MADs): 

𝐷𝑎𝑡𝑎	𝑃𝑜𝑖𝑛𝑡 → �
𝑂𝑢𝑡𝑙𝑖𝑒𝑟,															𝑖𝑓						�𝑥#,J − 𝑥�� � > 3𝑀𝐴𝐷#
𝑁𝑜𝑡𝑂𝑢𝑡𝑙𝑖𝑒𝑟,						𝑖𝑓						�𝑥#,J − 𝑥�� � ≤ 3𝑀𝐴𝐷#

 

Where 𝑥��  is the median of the MFIs of the triplicates for protein i. 17 replicates (11.11% of the 
total) were identified as outliers for this reason and removed from further analysis.  

Limit of Blank (LoB): The LoB is defined as the highest value (MFI) to be found when replicates 
of a sample containing no analyte are tested. If we assume a Gaussian distribution of the raw 
analytical signals from blank samples, and set a 95% confident interval (CI), then the LoB is 
calculated as [2]: 

𝐿𝑜𝐵# = 	𝜇�,# + 1.645𝜎�,#  

Where μb,i and σb,i are the average and standard deviation of the MFIs for the blanks (0 
concentration) for protein i. Table 13 shows the resulting LoBs for the three assays. 

Table 13 - Limit of Blank (LoB). For each assay, the average for replicates of concentration 0 (μb), their standard deviation 
(σb) and the LoB are represented. 

Assay μb (MFI) σb (MFI) LoB (MFI) 
Galectin.3 2037.89 263.82 2562.53 
ICAM1 767.56 56.07 879.71 
MMP9 102.78 17.97 138.72 
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Limit of Detection (LoD): The LoD is defined as the lowest analyte concentration likely to be 
reliably distinguished from the LoB and at which detection is feasible. If we make the same 
assumptions made for the calculation of the LoB (Gaussian, and CI of 95%), then [3]: 

𝐿𝑜𝐷# = 𝐿𝑜𝐵# +	𝑐e,# ∙ 𝜎6�,# = 𝐿𝑜𝐵# +	
1.645

1 − 1
4𝑓#

∙ 𝜎6�,#  

Where σlc is the standard deviation for the relevant low concentration for the protein i, i.e., a 
concentration in the range from LoB to approximately 4LoB, and f is the number of degrees of 
freedom of the estimated standard deviation σlc (number of data points minus number of 
concentrations). For each protein, the low concentration range is defined as those 
concentrations whose μi + 2σi < 4LoB, thus: 

𝜎6�.# = �
∑ v𝑛J,# ∙ 𝑉𝑎𝑟J,#z
¡¢
JQ.

𝑁6�,#

�

 

Where nj,i is the number of data points for concentration j and protein i, Varj,i is the variance 
for concentration j and protein i, Nlc,i is the number of data points included in the low 
concertation range for protein i, and mi is the number of concentrations measured for the low 
concentration range for protein i. Table 14 shows the resulting LoDs for the three assays. 

Table 14 - Limit of Detection (LoD). For each assay, the number of data-points in the low concentration range Nlc, their 
standard deviation (σlc), the coefficient (Cb) and the LoD are represented. 

Assay Nlc σlc (MFI) Cb LoD (MFI) 
Galectin.3 14 146.64 1.68 2811.88 
ICAM1 27 104.65 1.66 1053.61 
MMP9 9 6.68 1.7 150.12 

Select calibration range: Fitting of calibration curves is best when none of the different areas 
is over/under-represented [4]. Thus, for each protein few concentrations in each area of the 
calibration range were selected (lower asymptote, linear range, upper asymptote). For the 
upper asymptote, we selected the concentration with the maximum median MFI as the upper 
limit. For the lower asymptote, we selected the biggest concentration with median MFI 
smaller than the LoD. The concentration ranges used for curve fitting for each analyte are 
represented in Table 15. Figure 44 shows the semi-log curves correlating concentration and 
MFI for each assay. 

Table 15 - Calibration range. For each assay, the lowest and highest concentrations used to fit the curve are represented. 

Assay lowConcentration (ng/ml) highConcentration (ng/ml) 
Galectin.3 0.0228 50 
ICAM1 0.0038 62.5 
MMP9 0.0038 250 
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Figure 44 – Semi-log concentration ranges. For each assay, the MFI is shown as a function of the log10 of the concentration 

Replicate precision: Concentrations whose replicates with a coefficient of variation of more 
than 25% were excluded from further analysis. In this case, none of the replicates showed a 
coefficient of variation higher than 25% (max = 22.32%) so none of the replicates was 
eliminated for this reason. 

Calibration of the curves: Standard curves were calculated using 5 Parameter Logistic (5PL) 
curves as mathematical models: 

𝐹(𝑥) = 𝐷 +
𝐴 − 𝐷

K1 + £𝑥𝐶¤
t
N
¥  

Where, x represents a given concentration of recombinant protein, F(x) the reported MFI, and 
A-E the parameters of the curve: 

• A: Minimum asymptote, response value at 0. 
• B: Hill’s slope, steepness of the curve 
• C: Inflection point, the point on the curve where the curvature changes direction 

or sign. C is the concentration of analyte where F(x) = (D-A)/2. 
• D: Maximum asymptote, response value at infinite. 
• E: Asymmetry factor. When E = 1 the curve is symmetrical around the inflection 

point resulting in a four-parameter logistic regression (4PL). 

In the present study, we used the R package nplr [5] which requires normalization of the MFIs 
in the [0-1] range: 

𝐹(𝑥)#,J∗ = 	
𝐹(𝑥)#,J − min(𝐹(𝑥)#)

max(𝐹(𝑥)#) − min(𝐹(𝑥)#)
 

Where yi,j is the MFI for a given protein i at a concentration j, and min/max yi are the 
minimum/maximum values for each protein across all concentrations. The 5PL curve 
estimates the MFI for a given concentration. To solve the inverse problem (concentration for 
a given MFI) we need to invert F(x): 
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𝐹©(𝑦) = 𝐶 ª�
𝐴 − 𝐷
𝑦 − 𝐷 − 1

«¬

 

The calibration curves obtained are shown in  

Figure 45. Table 16 shows the coefficient values for each curve. 

  

 

A) 

B) 
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Figure 45 - Calibration curves. A) Galectin.3, B) ICAM1, C) MMP9. The y-axes (right) shows the MFI and (left) the normalized 
MFI. The x-axes shows the concentration (ng/ml) in log10-scale. GOF represents the goodness of fit. 

Table 16 - Calibration coefficients. A: Minimum asymptote, B: Hill’s slope, C: Inflection point, D: Maximum asymptote, E: 
Asymmetry factor. 

Assay A B C D E 
Galectin.3 -0.0030 0.7958 -0.5777 0.8673 1.4547 
ICAM1 -0.0021 1.1527 1.2951 1.2503 0.7598 
MMP9 -0.0006 1.2635 0.9277 0.7584 0.7099 

Quality control: the functional sensitivity of the assays (A) is calculated by measuring the 
relative error between the obtained MFI for a given concentration and the predicted MFI for 
the same concentration using the 5PL: 

𝐴 =
1
𝑁HK1 − 

𝑀𝐹𝐼# − 𝑝𝑀𝐹𝐼#
𝑝𝑀𝐹𝐼#

N
r

#Q.

 

Where MFIi is the measured MFI for the concentration i, pMFIi is the predicted MFI for the 
concentration i based on the 5PL, and N is the number of concentrations measured. The 
functional sensitivity of the assays (A) together with LoB and LoD values in molarity (ng/ml) 
are represented in Table 17. 

 

C) 
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Table 17 - Funcional sensitivity of the assays. LoB, LoD, and functional sensitivity are represented for each assay. 

Assay LoB (ng/ml) LoD (ng/ml) Functional sensitivity (A) 
Galectin.3 0.0019 0.0044 0.9664 
ICAM1 0.0075 0.0356 0.9704 
MMP9 0.0046 0.0054 0.9216 

 

Assay validation including Limit of detection (LOD) and reproducibility were performed based 
on the European medicines Agency EMEA/CHMP/EWP/192217/2009 guideline on 
bioanalytical method validation.  
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