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Abstract

This thesis studies the ability to automatically predict the best possible ligand binders for
protein kinases targets, through the use of deep learning. A large number of literature datasets on
protein-ligand binding were curated and merged into one, engineered to be ready to use for machine
learning and made publicly available. The ways of comparing molecules were also analyzed and a
new, custom similarity metric was introduced, based on the aggregation of the different compressed
molecule representations (fingerprints) and different similarity scoring rules.

Furthermore, a graph convolutional neural network (GCNN) was developed (among other mod-
els) to predict the disassociation constant between drugs and proteins and managed better accuracy
than the baseline model of the literature. An ensemble of many different GCNNs was also created
and proved to be able to fairly generalize even in the cold-drug case (previously unseen and struc-
turally different molecules), where almost all of the literature models collapse entirely.

Finally, predicting confidence intervals alongside with the point predictions in deep learning was
investigated. Three different methods to estimate the uncertainty of a prediction were proposed
and, for the first time, directly compared in both the conventional and the cold-drug case.

Περίληψη

Σε αυτήν την εργασία μελετάται η δυνανότητα της αυτόματης πρόβλεψης των καλύτερων δυνατών

μικρομορίων ως δέτες σε πρωτεΐνες, μέσα από τη χρήση αλγορίθμων μηχανικής μάθησης. ΄Ενα

μεγάλο μέρος των βάσεων δεδομένων της βιβλιογραφίας όσον αφορά τη σύνδεση φαρμάκων-πρωτεϊνών

ενοποιήθηκε σε ένα και φτιάχτηκε με τέτοιο τρόπο ώστε να είναι εύκολο για χρήση σε αλγορίθμους

μηχανικής μάθησης. Τα δεδομένα αυτά δημοσιοποίθηκαν για ελεύθερη χρήση. Οι τρόποι σύγκρισης

μη όμοιων μορίων επίσης αναλύθηκαν κι ένας νέος, προσαρμοσμένος τρόπος μέτρησης της μοριακής

ομοιότητας εισήχθη, βασισμένος στην ενοποίηση διαφορετικών συμπιεσμένων τρόπων αναπαράστασης

των μορίων και διαφορετικών κανόνων βαθμολόγησης.

Ακόμα, ένα νευρωνικό δίκτυο γραφικών συνελίξεων αναπτύχθηκε (μεταξύ άλλων μοντέλων) για

την πρόβλεψη της σταθεράς πρόσδεσης μεταξύ φαρμάκων και πρωτεϊνών και κατάφερε καλύτερη

ακρίβεια από το στάνταρ μοντέλο της βιβλιογραφίας. ΄Ενα σύνολο από πολλά τέτοια δίκτυα επίσης

δημιουργήθηκε και αποδείχθηκε η ικανότητα γενίκευσης των προβλέψεών του ακόμα και στην περίπτωση

των νέων φαρμάκων (φάρμακα που δεν έχει ξαναδεί το δίκτυο κατά τη διάρκεια της εκπαίδευσης),

περίπτωση στην οποία σχέδον όλα τα μοντέλα της βιβλιογραφέιας αποτυγχάνουν τελείως.

Τέλος, μελετήθηκε η δυνατότητα πρόβλεψης διαστημάτων βεβαιότητας μαζί με τις σημειακές προβ-

λέψεις στην μηχανική μάθηση. Τρεις διαφορετικές μέθοδοι για την πρόβλεψη της αβεβαιότητας προ-

τάθηκαν και, για πρώτη φορά, συγκρίθηκαν άμεσα, τόσο στην απλή περίπτωση όσο και στην περίπτωση

των νέων φαρμάκων.
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1 Introduction

I imagine a day, some time in the not too distant future, when we will be able to create
our own genetically engineered machines, cure the diseases of the old and find new ways
to build and extend the capabilities of humanity, moving from programming software to
programming the physical world, through biology.

-Ryan Bethencourt, 2015

Artificial intelligence is advancing various industries, including healthcare and the pharmaceuti-
cal industry. Deep neural networks started to become particularly popular around 2012, when
researchers from the University of Toronto [1] won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). In recent years, this brand of machine learning techniques has revolutionized
several artificial fields such as computer vision, natural language processing, and game playing.

Will deep learning be able to similarly transform chemistry, biology, and medicine? Experimen-
tal sciences give rise to a wealth of unstructured, noisy, and sometimes poorly understood data. One
central attraction of deep neural nets is their ability to build complex and suitable featurizations
without the need to handcraft them explicitly. A method also known as feature or representational
learning (see section 2.2).

1.1 Motivation - Drug Discovery

Proteins perform the vast majority of functions responsible for our health and well-being. Thus,
designing substances that can regulate or alter the function of these is paramount for the implemen-
tation of safe and successful therapeutics. To conclude the introduction, we present to the reader
the main motivational driver behind this work, namely drug discovery.

Drug Design: Drugs are, in majority, organic small molecules purposed to activate or inhibit a
specific function of a multifunctional protein or disrupt protein-protein interactions, resulting in the
treatment of a disease [2]. Despite the paramount advances in many of the scientific, technological
and managerial factors that should tend to raise the efficiency of commercial drug research and
development, the number of new drugs approved per billion US dollars spent on R&D is steadily
falling [3]. In the heart of this declining curve, is our inability to understand the complex mechanisms
involved in the process of biomolecular recognition between a protein and its epitope. Biomolecular
recognition drives fundamental biological functions in any living organism, including gene regulation
and sensing environmental stimuli [4]. It involves the interaction of a protein, usually a receptor or
enzyme, with molecules present in living organisms, ranging from parts of macromolecules such as
pieces of DNA to small molecules such as neurotransmitters and odorants. Efficient biomolecular
recognition requires exquisite control of affinity and specificity [5]. In the lack of that control,
conventional drug discovery is performed by screening the target proteins through large molecular
assays (typically in the order of a million molecules) to identify molecules that inhibit or activate
their function. These screenings are usually informed by structure based strategies [6] and in some
times are preceded by computational screening [7]. Unfortunately, through the above process, while
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it is possible to find molecules that work, there is no information gained about their mechanism of
action. Thus, every new target requires the same amount of time and effort spent to screen through
the entire molecular library, as if we were to discover a drug for the very first time. On the other
hand, computational drug design when coupled with machine learning algorithms results in a net
gain of information from each drug discovery, which in turn makes the discovery of the next one
faster and easier.

2 Background

2.1 Deep Learning - An Overview

An extensive analysis of the math behind all the machine learning and deep learning techniques
used for the development of this work’s models is out of the scope of this thesis. However, in
this section we provide an introductory overview into the theory of deep neural networks and
their unique properties that distinguish them from traditional machine learning algorithms used
in cheminformatics. The majority of deep learning algorithms currently developed are based on
artificial neural networks, and for the purpose of this review we will focus on deep neural networks
exclusively.

Artificial neural networks (ANNs), on which most deep learning algorithms are based on, are
a class of machine learning algorithms inspired by biological neural networks, used to estimate or
approximate functions by translating a large number of inputs into a target output (see figure 1).
ANNs are constructed from a series of layers, and each layer comprises many “neurons”. Each
neuron accepts an input value from the previous layer, and maps it onto a non-linear function. The
output of this function is used as the input for the next layer in the ANN, until it reaches the last
layer, where the output corresponds to the objective that is to be predicted. In addition, a tunable
parameter, the “weight” (or coefficient) of each neuron’s function is adjusted in the construction of
this model to minimize the error of the predicted value, a process known as “training” the neural
network. Figuratively, the collection of these neurons in ANNs mimics the way neurons work in
biological systems, hence its name, artificial neural network.

To train an ANN one must assign a cost or objective function between the output and the ground-
truth labels. The models developed in this thesis belong to the category of maximum likelihood
estimators with an i.i.d. data assumption (see section 4.1) that can be generalized to estimate a
conditional probability P (y|x; θ) in order to predict y given x by optimizing the parameters θ. This
is actually the most common situation because it forms the basis for most supervised learning. If
X represents all our inputs and Y all our observed targets and m the number of training examples,
then the conditional maximum likelihood estimator is

ΘML = argmax(θ)

m∑
i=1

logP (y(i)|x(i); θ)

In order to determine how to assign error attribution and make corrections to the weights of

10



(a) A traditional feedforward artificial
neural network (ANN) with one hid-
den layer. Each neuron denoted as
circle accepts a series of n input val-
ues and maps it to an output using a
non-linear function, with a bias term
applied to all neurons in the hidden
layer.

(b) Deep neural network (DNN) differ from ANN by
having multiple (n > 3) hidden layers as depicted in
the schematic diagram, the bias term is omitted here
for simplicity.

Figure 1: Artificial Neural Networks

the ANN, a common technique is by working backwards originating from the predicted output,
and back through the neural network. This backwards propagation of errors is known formally
as “backpropagation”. During the process of backpropagation, an algorithm known as gradient
descent is used to find the minimum in the error surface caused by each respective neuron when
generating a corresponding output.

A key issue with backpropagation is that the error signals become progressively more diffused as
the signal goes back through each hidden layer. In addition, the nonlinear transformation functions,
such as sigmoids, have finite dynamic range, so error signals tend to decay as they pass through
multiple layers, which is more commonly known as the “vanishing gradient problem” [8]. Nowadays,
the most efficient way to deal with the vanishing gradient problem is to use rectified linear activation
(ReLU) functions. The ReLU’s first derivative is precisely unity or 0, generally ensuring that error
signals can back-propagate without “vanishing” or “exploding”.

As these methods enable the training of deeper and more complex neural network architectures,
overfitting also becomes more of an issue, which led to the development of the dropout algorithm.
In dropout, for each epoch of the training process, a fixed proportion of neurons are randomly
selected to be temporarily excluded from the model. The net effect of dropout is that it simulates
many different architectures during training, which prevents co-dependency among neurons and
reduces overfitting [9].
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In addition to the traditional feedforward DNN (figure 1) that has been discussed so far, more
sophisticated architectures include convolutional neural networks (figure 2a) [1], [10], recurrent
neural networks (figure 2b) [11] and autoencoders (figure 2c) [12] that have been highly successful
in computer vision and natural language processing applications. In this thesis we use all of these
three architectures and compare between them as for which solves best the protein-drug binding
affinity prediction problem (see section 5)

(a) Schematic diagram of a convolutional neural
network (CNN). CNNs are designed with the ex-
plicit assumption that the input is in the form
of image data. Each convolutional layer extracts
and preserves the spatial information and learns
a representation which is then typically passed
onto a traditional fully-connected feedforward
neural network before the output layer.

(b) Schematic diagram of a recurrent neural net-
work (RNN). RNNs at its simplest implementa-
tion are a modification of the standard feedfor-
ward neural network where each neuron in the
hidden layer receives an additional input from
the output from the previous iteration of the
model, denoted as circular arrows.

(c) Schematic diagram of an autoencoder, which are neural networks used in unsu-
pervised learning. In autoencoders, the objective is to learn the identity function of
the input layer, and in the process, a compressed representation of the original data
in the hidden layers is learned.

Figure 2: CNNs, RNNs & Autoencoders

A technical discussion of the various DNN architectures while informative to understanding the
deep learning literature, is beyond the scope of this thesis, therefore, we refer the readers to the
following publications summarizing this research topic [13], [14], [15], [16]. A very concise schematic
representation of all the different neural network architectures that include both traditional machine
learning and deep learning techniques can be found in figure 3.
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Figure 3: The most famous neural network architectures

2.2 Representation Learning for Computational Chemistry

Many decades of chemistry research has led to the development of several thousand molecular
descriptors that describe a range of properties of conceivably any compound (see section 2.3.1).
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Molecular descriptors thus serve as features constructed using chemical knowledge and intuition (i.e.
domain expertise) that can be used in traditional machine learning models, which have achieved
reasonable success in computational chemistry applications [17], [18] and [19].

In this section, however, we would like to highlight furthermore the ability of deep learning to
automatically discover the representations needed for feature detection or classification from raw
data. This replaces manual feature engineering and allows a machine to both learn the features
and use them to perform a specific task. The so-called “feature learning” is especially useful when
trying to learn representations in a space so vast as the chemical space of the 1060 possible molecular
compounds that could work as potential drugs [20].

In traditional (shallow) machine learning the features are not extracted automatically. The
features are provided by a domain expert. In a process known as feature extraction and/or en-
gineering, various transformations and approximations are applied, which can be motivated from
first principles, or may be well-known approximations, or even educated guesses. Secondly, shallow
learning is template matching. It does not learn a representation of the problem, it merely learns
how to precisely balance a set of input features to produce an output. Third, its expressive power
grows with the number of terms (i.e. parameters to be fitted), but it may require exponentially
many terms if the nonlinear transformations are chosen poorly. For example, a simple power series
expansion will require an extremely large amount of terms (and parameters) to fit functions with
large amounts of oscillations.

The mapping of features into an output using the function provided is the task of a processing
unit, and deep learning algorithms are constructed from a collection of these processing units, ar-
ranged in a layered and hierarchical fashion. Therefore, unlike simpler machine learning algorithms,
it maps features through a series of non-linear functions that are stitched together in a combinatorial
fashion to optimally maximize the accuracy of the model. As a result of this complex architecture,
a deep learning algorithm learns multiple levels of representations that correspond to different lev-
els of abstraction, forming a hierarchy of concepts. By constructing these so-called “hierarchical
representations,” deep learning has an internal state that may be transferred to new problems,
partially overcoming the template matching problem. Ultimately, these unique characteristics of
deep learning enables it to utilize raw data directly as opposed to engineered features, and often
the resulting models constructed produce a comparable level of predictive accuracy. Deep learning
achieves this ability because within the multiple layers of the non-linear functions, the algorithm
transforms the raw data and maps it to intermediate “output” that serve as input (features) for the
latter layers in the algorithm, in the process gradually transforming raw data into learned features.
In short, deep learning algorithms are potentially capable of automatically (i.e. without expert
intervention) engineering the necessary features that are relevant to optimally predict the output
of interest.

Automatic feature extraction, a process that requires no domain knowledge, is therefore one
of the most significant benefits of a deep learning algorithm. This is unlike traditional machine
learning algorithms, where a model must be carefully constructed with the “correct” features based
off chemical knowledge and intuition for it to perform and generalize well.
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2.3 The problem of molecular similarities in Machine Learning

Molecular Informatics utilizes many ideas and concepts to find relationships between molecules.
The concept of similarity, where molecules may be grouped according to their biological effects
or physicochemical properties has found extensive use in drug discovery. Molecular similarity, as
a paradigm, contains many implicit and explicit assumptions in particular with respect to the
prediction of the binding and efficacy of molecules at biological receptors [21]. How molecular
information is represented, called the representation problem, is also very important to the type of
molecular similarity analysis (MSA) that can be carried out in any given situation [22]. Furthermore,
in pharmaceutical research and drug development, machine learning methods play an important
role in virtual screening and ADME/Tox prediction and for the application of such methods a
formal measure of similarity between molecules is essential. Such a measure, in turn, depends on
the underlying molecular representation.

The reason why molecular similarities metrics are so important is because the whole drug discov-
ery procedure is based on the assumption that “similar” molecules will also have similar properties.
For example, when medicinal chemists know a compound causes the death of cancer cells but also
has toxic consequences for the rest of the human organism, they probably try to find a molecule
“similar” (defined by a similarity metric) to that, which keeps the “death of cancer cells” property
but the lacks the toxicity. Although that is the only way to proceed experimentally when the
space to be explored is as vast as 1060 compounds, we cannot ignore the fact that experimental
biologists explore only small neighborhoods of already know to be successful compounds while the
real solution may be located somewhere “far” in the chemical space, where the “distance” is again
defined by a similarity measure. That is why, in this thesis, we investigate the problem of finding
a more general similarity metric as well as the ability of deep learning algorithms to generalize
to compounds that are highly dissimilar as defined by various hand-engineered similarity metrics
experimental biologists use today.

2.3.1 Molecular Fingerprints

Molecular fingerprints are a way of encoding the structure of a molecule. The most common
type of fingerprint is a series of binary digits (usually around 1000 to 4000 bits) that represent the
presence or absence of particular substructures in the molecule (see figure 4). As directly finding
common substructures between a group of molecules is an NP-complete problem [23], compar-
ing fingerprints allows you to determine the similarity between two molecules and to quickly find
matches to a query substructure in a large database. To be more specific, to achieve high efficacy of
similarity-based screening of databases containing millions of compounds, molecular structures are
usually represented by molecular screens (structural keys) or by fixed-size or variable-size molec-
ular fingerprints. Molecular screens and fingerprints can contain both 2D- and 3D-information.
However, the 2D-fingerprints, which are a kind of binary fragment descriptors, dominate in this
area.

Some of the most common fingerprints include the Morgan or Circular Fingerprints which
take into consideration the atom types, the connectivity (Element, #heavy neighbors, #Hs, charge,
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(a) Molecular substructures (b) A binary molecular 2D fingerprint

Figure 4: Molecular substructures and fingerprints

isotope, inRing) and the chemical features (Donor, Acceptor, Aromatic, Halogen, Basic, Acidic)
and are calculated for the neighborhood of each atom, the Atom-Pair and Topological-Torsion
Fingerprints which account for the atom-type (Element, #heavy neighbors, #pi electrons), the
atom Pair (Atom-type – topological distance – Atom-type) and the topological Torsion (Atom-
type – Atom-type – Atom-type – Atom-type) and the 2D Pharmacophore Fongerprints which
identify feature points in a molecule, calculate the inter-feature topological distances and assign bit
id to feature – distance combination.

2.3.2 Similarity Measures

Attempts to quantify the similarity of compounds have a long history in chemical informatics
and drug discovery. Many computational methods employ similarity measures to identify new
compounds for pharmaceutical research [24]. There are many ways one might choose to measure
such similarity; for example a chemical approach might rank them according to the number of
physical properties and reactions they share, whereas a mathematical approach might rank them
according to their similarity in three dimensions. Note that the similarity measures are independent
of the molecular feature descriptors, although some measures may work best for some specific kind
of fingerprints.

As far as measuring the similarity between different fingerprints is concerned, we can describe
the molecules by the presence or absence of features and then the binary association coefficients or
similarity measures are based on the four terms a, b, c, d shown in the table 1.

Molecule B
0 1 Totals

Molecule A
0 d b d+b
1 A c a+c=A

Totals a+d b+c=B n

Table 1: Binary association coefficients for fingerprint comparison
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Where: a is the count of bits on in object A but not in object B. b is the
count of bits on in object B but not in object A. c is the count of the bits on in
both object A and object B. d is the count of the bits off in both object A and
object B.

There are a lot of different similarity metrics defined with the help of these coefficients. The
most common are shown in table 2, whereas for a full review of them the reader is referred to
Holliday et al [25].

Measure Range Formula
Cosine 0-1 c√

(a+c)(b+c)

Dice 0-1 2c
(a+c)+(b+c)

Euclid 0-1
√

c+d
a+b+c+d

Tanimoto 0-1 c
a+b+c

Table 2: Similarity metrics for fingerprints

Over the years there has been much discussion as to which type of similarity metric to use.
In chemistry it has generally been thought that, as most descriptor features are absent in most
molecules, i.e. the bit string descriptors in the fingerprints contains mainly zeros, coefficients such
as the Tanimoto are more appropriate. Thus, the most common similarity metric used is the
Tanimoto which one can see that is independent of d. It may be regarded as the proportion of the
“on-bits” which are shared. The Dice similarity metric is also used in combination with specific
fingerprints.

2.3.3 Our Similarity Measure

As surprising as it may seem, two molecules can be calculated to be very similar when mea-
sured by the Tanimoto, for example, distance for a specific kind of fingerprint and very dissimilar
when measure encoded according to another kind of fingerprint. As a matter of fact, the choice of
fingerprints will have a major impact on the Tanimoto similarity value and the correlation between
the similarities of the same drugs using different fingerprints isn’t always high [26], [27]. Generally
there is no golden rule on which fingerprint to use but it depends of what one is trying to achieve.
Usually, if we are interested in assessing molecular diversity we would use topological fingerprints
like extended connectivity fingerprints (e.g. ECFP4) as they are, in the writer’s opinion, well suited
to capture structural differences (atom type, bond type, connectivity etc). If we are interested in
identifying compounds that are similar from a “molecular recognition” point of view (capable of
establishing similar interactions with an hypothetical biological target) then we would use Pharma-
cophore based fingerprints (e.g. FCFP4 or PHFP3) as they are (possibly) better suited to capture
the molecular recognition similarity. Note for instance that the two molecules chloro-benzene and
bromo-benzene (figure 5) have a Tanimoto similarity of 1 using FCFP4 (the two molecules are per-
ceived as identical on the assumption that the two halogen atoms, Cl and Br, are equivalent from a
ligand-protein recognition point of view) whereas the Tanimoto similarity is just 0.35 if ECFP4 are
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used. The low value is down to the lower molecular complexity (that is indeed related to size) of
the two molecules in the example. That is just because of the Tanimoto similarity metric definition.

Figure 5: Are chloro-benzene and bromo-benzene similar molecules?

In the basis of this thesis work, an effort has been made to discover a new similarity metric
as an aggregation of the different similarities measured using different fingerprints. Nine different
fingerprints have been used including Circular, Topological and Pharmacophore fingerprints to
encode the final 16506 molecules of our dataset (see section 4.2) into nine different representations,
between which the similarity was measured using either the Tanimoto or the Dice distance metric,
according to the fingerprint type. Next, the similarities were made binary (similar or dissimilar)
according to a threshold tuned differently for every fingerprint, so that the number of similar drugs
for every drug in the dataset is in the same order of magnitude for every fingerprint. Having done
that, we needed not nine but only one number to show if a drug is similar to another.

In other words, we needed to aggregate the “votes” of the different fingerprints to get one simi-
larity binary result. To do that, we had to consider that some fingerprint similarities are dependent
(correlated) and others are not. Thus, a simple majority voting system was not appropriate. Our
goal was to consider each fingerprint equal as for its contribution to the similarity decision between
two drugs. However, if we just take a majority vote between our fingerprints, then, if some of them
are dependent (e.g. ecfp4 and ecfp6), it’s like we consider them more important than the others.
What we did is, having the nine similarity matrices that contain the similarities of every drug with
all the rest for every fingerprint, we compared them to extract Spearman correlations between the
fingerprints. According to the spearman correlations we decided which sets of fingerprints (referred
to as criteria from now on) can be considered independent between them and which dependent.
Finally, to aggregate them we follow a weighted majority rule that is:

If S a set of independent criteria then we assign weight W = 1/|S|+ε to every
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criterion in the set, where ε a small number (it does not matter how small). If a
criterion is not dependent to any else then its weight is assigned W = 1.

That way if all the criteria accord with each other in S then their ”“” has in total a weight of
1 + |S|ε (which is just something above 1). The idea is that they will all count like one “vote” but
in case two sets S, S’ disagree, the most weighted is the “vote” of the one that includes the more
criteria. This whole procedure to find a generalized way to count how many molecules are similar
to a specific one in a dataset was carried out in order to make validation sets for our model that
are equally hard to the test-set of a competition we participated in. For more details see section
4.3 and section 9.

3 Related Work

In computer-aided drug design, traditional machine learning algorithms have a long history
in the field of cheminformatics, notably in their contribution to quantitative structure activity
relationship (QSAR) applications. In QSAR, the output to be predicted is usually the biological
activity of a compound. Usually regression models are used, and the input data are molecular
descriptors, which are precomputed physicochemical properties of the molecule, designed from
chemistry domain knowledge. Early work in QSAR applications used linear regression models, but
these were quickly supplanted by Bayesian neural networks [28] ,[29], followed by RFs [17] and SVMs
[30]. Practitioners in the field have historically favored models that allow for variable selection so
that an informed chemist can determine if selected features made sense. In addition, models that
allowed assessment of uncertainty of output predictions were also preferred. The field of QSAR is
vast, and we refer readers to the following reviews for key historical technical developments [31],
[32]. For the purpose of this review, we will limit the scope of discussion to the performance of
DNN-based QSAR models and appropriate comparisons to traditional machine learning models.

The first foray of deep learning into QSAR was the Merck challenge in 2012. The winning group
used DNN models, led by Dahl who was part of Hinton’s research team. Notably, the team had no
formally trained computational chemist in the group; they were from the computer science depart-
ment. Later, in 2014, Dahl et, al. submitted an arxiv paper exploring the effectiveness of multi-task
neural networks for QSAR applications, based on the algorithms used in the Merck challenge. In
this work, the authors used a multi-task DNN model. In an accuracy performance benchmark
against other traditional machine learning algorithms, such as gradient-boosted decision trees and
logistic regression, the DNN-based model outperformed all others in 14 of 19 assay predictions by
a statistically significant margin and was comparable in terms of performance in the remaining 5
assay prediction.

A subsequent study in 2015 published by Merck, comprehensively analyzed the training of DNNs
and compared their performance to the current state of the art used in the field, RF-based models,
on an expanded Merck challenge dataset [33]. The key issue associated with training deep neural
networks, particularly in the number of tunable parameters was also investigated. The authors
discovered that most single task problems could be run on architectures with two hidden layers,
using only 500-1000 neurons per layer and 75 training epochs.
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In 2014, Hochreiter and co-workers published a peer-reviewed paper at the Neural Information
Processing Systems (NIPS) conference on the application of multi-task DNNs for QSAR applica-
tion on a significantly larger dataset. The authors benchmarked the accuracy performance of the
DNN model across 1230 targets, and compared them against traditional machine learning models,
including SVMs, logistic regression and others. it was demonstrated that DNNs outperformed all
models they tested on, which also included 2 commercial solutions and 3 currently implemented
solutions by pharmaceutical companies.

Similar studies were conducted by Google and Pande group in 2015 [34] that focused on the
mulit-task learning and evaluated the transferability to tasks not contained in the training set, while
others like Swamidass and coworkers in 2015 used DNNs to predict toxicity and other properties
[35]. Swamidass and co-workers results were particularly distinctive, because they developed a
DNN model to predict the specific location on a molecule that undergoes epoxidation, i.e. its
site of epoxidation (SOE). A larger scale study on chemical toxicity was also published by the
Hochreiter group in 2016 [36]. DeepTox model developed by Hochreiter and co-workers had the
highest performance of all methods submitted to the Tox21 challenge [37]. Further analysis of
their model indicated that using a multi-task DNN model led to consistent outperformance against
single-task models in 10 out of 12 assay predictions.

In line with the progress in QSAR and toxicity prediction, deep learning algorithms have also
started to make an impact in other aspects of computer-aided drug design. In 2013, Baldi and
co-workers reported using a DNN model to predict molecule solubility [38]. Other research de-
velopments in this direction was also submitted to arxiv by Pande and co-workers, where they
developed a multi-task DNN model for predicting not just solubility, but the entire spectrum of
ADMET properties. Deep learning may also have a future in virtual screening as a viable alter-
native or complement to existing docking methods. In 2016, an arxiv paper was submitted by
AtomNet, a startup that developed a DNN model to classify the activity of small molecules docked
in protein binding pockets [39]. For additional recent developments of deep learning in applications
that are more closely aligned to computational biology, we refer our readers to the following review
that focuses on that research topic [40].

4 Data

4.1 Data über alles

The world of data is expanding at an unimaginable pace. It’s estimated that by 2020, every
human would create 1.7MB of information each second. The true power of data can be unlocked
when it is refined and transformed into a high quality state where we can realize its true potential.
Bad data is sighted as one of the root causes for failure of data-dependent initiatives as machine
learning is.

An ML algorithm is a self-teaching entity that usually learns from available data about which
we typically make a set of assumptions known collectively as the i.i.d. assumptions. These
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assumptions are that the examples in each dataset are independent from each other, and that the
training set and test set are identically distributed, drawn from the same probability distribution
as each other.

Most of the popular deep learning models nowadays (including the models of this thesis) are
estimators based on the maximum likelihood principle. One way to interpret maximum likelihood
estimation is to view it as minimizing the dissimilarity between the empirical distribution p̂data,
defined by the training set and the model distribution, with the degree of dissimilarity between
the two measured by the KL divergence. Minimizing this KL divergence corresponds exactly to
minimizing the cross-entropy between the distributions. We can thus see maximum likelihood as
an attempt to make the model distribution match the empirical distribution p̂data. Ideally, we
would like to match the true data-generating distribution pdata, but we have no direct access to
this distribution.

It is, thus, obvious the great importance of the unbiased data, their diversity and reliability.
The more diverse the data is, the more our model can generalize to new input data and learn how to
represent a larger part of the true data-generating distribution, which, in our case, is the chemical
space ( 1060 different molecules). As a matter of fact, it is a property of Maximum Likelihood that
the true distribution pdata must lie within the model family pmodel(x; θ). Otherwise, no estimator
can recover pdata no matter how big the number of training examples is.

4.2 Data Augmentation

A large part of this thesis concerns an effort that has been made to create a large dataset
out of literature sources that will contain binding affinity data, curated as for its quality and
integrity, between compounds and protein kinases measured by the binding affinity and equilibrium
dissociation constant Kd. Generally speaking, the curation process involves several manual and
automated steps and aims to: (1) maximize data accessibility and comparability; (2) improve data
integrity and flag outliers, ambiguities and potential errors; and (3) add further curated annotations
and mappings thus increasing the usefulness and accuracy of the data for all users and modellers
in particular.

This section concerns the gathering and organizing of the various protein kinases-micromolecules
binding datasets that exist for free in the web and in the literature as for the date of this thesis’
writing. The various data of experimental biological labs around the world that comes out publicly
available is unfortunately not yet formatted universally. The differences are usually spotted either
on the compound or protein representations (i.e. different type of SMILES formatting, custom IDs
and numbering, lack of unique UniprotKB IDs etc) or on the way each lab measures the affinity
metric. In this work, an effort has been made to clean and format universally the binding affinity
data between protein kinases and ligands, that comes from different sources, experiments, labs and
is expressed in various metrics such as Kd, Ki, IC50 etc.

The goal of this work is to create a unique overall dataset that will contain the most probable
Kd values of all the interactions between kinases and drugs found in the literature, specifically
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formatted to be easy to use for machine learning applications and competitions such as the IDG-
DREAM challenge [41] without any further work.

4.2.1 Useful data in the literature

DTC dataset

Drug Target Commons (DTC) is a publicly available web platform (database with user interface)
for community-driven bioactivity data integration and standardization for comprehensive mapping,
reuse and analysis of compound–target interaction profiles.

DTC contains 1509 different types of bioactivity data between drugs and kinases gathered from
the literature and other open access databases. Out of those types 4 are considered to be dissociation
constants (Kd, KD, KDAPP, PKD). The drug-kinase pairs in DTC that have at least one of those
four types are 85475 (not unique). After filtering for NaN values as well as for Kds and units that
were not concentrations (not in PKD) 2895 pairs were removed. Out of the 82580 pairs remaining,
2308 were removed due to having no protein ID.These 2308 pairs consist of 617 unique proteins
that we have to fix. In addition 2821 pairs were missing the inchikey identifier making the process
of acquiring their smiles a bit harder. 1247 pairs were mapped to smiles based on their ChemblID
and chemical name while the rest 1574 were mapped to their smiles using the UNC dataset (see
below) that we extracted from a pdf. From this approach all but 2 drugs (13 pairs) (were restricted
drugs) out of the 550 that had no inchi keys were mapped to their smiles.

Next, the pairs that contained inchikeys were mapped to their smiles using Chembl database. On
this front, 186 drugs involved in 767 interactions were not found in Chembl. 128/186 were mapped
to their smiles using BindingDB database. The remaining 58 drugs involved in 586 interactions
were removed.

In DTC there exist 3144 pairs of data points (compounds) with multiple target proteins sepa-
rated by comma. Those data points were kept by splitting each data point into multiple interactions
creating 11529 interactions. Although this approach might not be the cleanest we don’t think it
will cause any issues, because in the final step we filter to keep only the unique pairs based on the
standard deviation of the Kd values for multiple pairs.

The aminoacid sequences for the proteins in the pairs were all collected from UniprotKB using
the uniprot IDs of the pairs as identifiers.

Next, after observing the range of Kd values, the max value for Kd was set to 10000 NM and
the min to 0.001 NM resulting in a Pkd metric in the range of 5 to 12.

Finally, because DTC reports the sign for each interaction as well (<,>,=) some inconsistencies
were removed. That is if the sign was < and the value between 100 (pkd=7) and 10000 (pkd=5)
NM the pair was removed due to uncertainty. Pairs with Kd < 100 and sign < were kept being
considered as “bound”. In addition, if the sign was > and the value was < 1000(pkd > 6) the pair
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was removed. Pairs with sign > and value > 1000(pkd < 6) were left in as they were considered
inactive.

Note: These “sign” filters were also applied to every dataset from the ones below where is
needed.

PKIS dataset

The Published Kinase Inhibitor Set (PKIS) is a collection of 376 compounds that have been
made available by GSK for screening by external groups; all compounds have been published in
the scientific literature. The PKIS contains 3719 interactions, out of which only 1084 concern Kd
values. We recover the drug SMILES by mapping the PKIS InChI-keys on the CHEMBL database.
The sequences are taken from UniprotKB and the Kd values are converted to pKd. The max pKd
value is also set to pKd = 12 and larger values are removed. Note: These filters and mappings are
applied to every dataset.

KKB database

The Kinase Knowledgebase (KKB) is Eidogen-Sertanty’s database of kinase structure-activity
and chemical synthesis data. The KKB contains over 1.8M kinase structure-activity data points
reported in peer-reviewed journals and patents but one has to pay for it to be accessed. Rajan
Sharma et al. [42] have extracted and made available publicly 258K structure activity data points
and 76K associated unique chemical structures across eight kinase targets. Out of these 258K
datapoints, one can extract 6227 Kd values associated with 233 compounds.

DAVIS dataset [43]

This dataset contains the interactions (Kd) of 72 kinase inhibitors with 442 kinases covering
> 80% of the human catalytic protein kinome. Small note: the drug names included in DAVIS
dataset must be matched to InChI keys by mapping the CTS (Chemical Translation Service).

BindingDB database

BindingDB is a public, web-accessible database of measured binding affinities, focusing chiefly on
the interactions of protein considered to be drug-targets with small, drug-like molecules. BindingDB
contains 1,587,753 binding data, for 7,235 protein targets and 710,301 small molecules. Out of this
data the interactions containing only kd metric have been kept (70300 interactions) out of which
69429 remained after mapping the InChI keys and applying the “sign” and other filters.

HMS LINCS database

The Library of Integrated Network-based Cellular Signatures (LINCS) program is developing
a library of molecular signatures that describes how different types of cells respond to a variety
of agents that disrupt normal cellular functions. Under this database the Harvard medical school
in collaboration with the NIH have made publicly available multiple kinases-compounds binding
experiments using the KINOMEscan technology. These datasets may contain directly Kd values or
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concentration of compound values that need to be multiplied by the control percentage to become
Kd (units also differ between the different datasets in the website so that is also to be kept in mind).
The datasets also identify the proteins and the compounds by custom LINCS IDs that need to be
converted to UniprotKB IDs and canonical SMILES using other datasets provided in the website.
Out of the 182 different csv files that can be downloaded from the LINCS database website and
contain experiments with kinases using KINOMEscan, one can extract 401 proteins, 162 drugs and
42610 unique interactions between the protein-drug pairs out of the 63700 total values, throwing
away NaN values, restricted SMILES and after applying all the filters.

UNC dataset

Another useful kinases-ligands dataset can be found in [44] from the university of North Carolina.
Extracting information out of this dataset is of particular difficulty due to the .pdf format of the
data. However, interactions of great quality (relatively rare and structurally different molecules)
can be found in here. After a lot of custom export functions 361 drugs, 339 proteins and 1793
unique interactions were added.

4.2.2 “Useless” (non Kd) data in the literature

GOSTAR database

Huge database which belongs to Excelra Knowledge Solutions (formerly GVK Informatics)
company (part of the 1 billion dollars GVK group). This database is probably not freely available,
although was not able to request a licence through the webpage, since it seems there is a bug when
the website is trying to read the user’s IP address.

EMD Millipore database

Pairwise assays between purified recombinant human kinases and a collection of small molecule
inhibitors were carried out by the EMD Millipore Corporation (now known as Millipore Sigma) using
a filter binding radioactive ATP transferase assay. However, the metrics used for this database are
the Km and S score, which unfortunately cannot be directly related to Kd. More information about
this work can be found in [45].

Kinase Inhibitor Resource (KIR) database

In [46] Anastasiadis et al. used a custom affinity metric that was cheaper for them to evaluate.
The metric is defined as the average of two replicates which is shown as percent remaining kinase
activity in the presence of the compound relative to solvent control. These values, unfortunately,
cannot be directly interpreted as Kd values and thus they are “useless” for this work.
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4.2.3 Merging the datasets

After combining the data from all the different datasets all the interactions that exist several
times should be treated so that they are included just once. When merged initially the datasets
contained 260571 pairs and 16871 unique drugs in total. From the duplicates we kept the ones that
their Kd value differ less than 10%. As a Kd value we kept their mean. From the ones that exist
more than twice, we kept the ones that their std/mean is less than 10%. As a Kd value we kept
their mean. Finally, 103741 unique interactions are included in our dataset.

In order to have a universal SMILES format (see section 4.4) (SMILES canonicalization) all the
SMILES were converted to molecular graphs and back to SMILES using the RDkit anaconda tool.

Regarding the tools used in this data curation work, it is obvious that the size of the datasets is
big enough to prevent any manual editing. All of the work was carried out using scripts. Most of the
datasets manipulation was done using R in RStudio platform. Python was also used supportively
to extract some information in specific cases as is the UNC, the LINCS and the PKIS datasets.

4.3 Creation of difficult validation sets

As already mentioned, the generalization in previously unseen and structurally different molec-
ular scaffolds is the great challenge of deep learning and it is truly difficult. As a matter of fact,
a great study by Wallach et. al. [47] reveals that most deep learning classification benchmarks
actually reward memorization rather than generalization. In order for one to be able to judge
objectively if his/her deep learning model can generalize well, a difficult validation set is needed.
By the term difficult we mean a set of molecules that are structurally different from the ones that
the model has used to train on, where the “difference” or “similarity” is measured by a specific
similarity metric.

In this work, we used a generalized custom similarity metric (see section 2.3.3) to create val-
idation sets that contain molecules that are very dissimilar to the ones used in the training sets
of our models. We validated both our models and the literature baselines to datasets of different
difficulty or similarity levels and showed how the validation mean square error increases rapidly
when validating on dissimilar molecules. In order to create the validation sets, other factors had
also to be taken into account. These include the labels (Kd) distribution of the validation sets to
be close to the training set, the molecules included in the validation sets not to have too many
protein-drug pairs in the initial dataset so that the training set does not become too small and
the distribution of labels (Kd values) in both the training and validation sets to stay, as much as
possible, non-biased, which means close to uniform.

For more details on how the experiments of the increasing validations sets difficulty were con-
ducted and the comparison between them see section 7.
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4.4 Input Data

In machine learning input samples have traditionally been modeled as vectors. Consequently,
molecules are represented to machine learning algorithms in a vectorized form using molecular de-
scriptors. While this approach is straightforward, it has its shortcomings. Amongst others, the
interpretation of the learned model can be difficult, e.g. when using fingerprints or hashing. Struc-
tured representations of the input constitute an alternative to vector based representations, a trend
in machine learning over the last years. For molecules, there is a rich choice of such representations.
Popular examples include the molecular graph, molecular shape and the electrostatic field [48].

In deep learning we prefer, as analyzed in section 2.2, to provide the algorithm the data in a raw
form and let it learn the most appropriate representation alone. On this front, we use either simple
one-hot encoded SMILES to represent the molecules and one-hot encoded amino-acid sequences
to represent the proteins or one-hot encoded graph representation of the molecules when training
graph convolutional neural networks (see section 5.2).

The Simplified Molecular-Input Line-Entry System (SMILES) is a specification in the form of
a line notation for describing the structure of chemical species using short ASCII strings. SMILES
strings can be imported by most molecule editors for conversion back into two-dimensional drawings
or three-dimensional models of the molecules (figure 6). SMILES are an one-to-one correspondence
of molecules to strings and include information about the molecule atoms, bonds, rings, aromaticity,
branching and stereochemistry.

As for the one-hot encoding, in machine learning one-hot is a group of bits among which the
legal combinations of values are only those with a single high (1) bit and all the others low (0). In
other words, when encoding with one-hot a SMILES string the result is an array of ones and zeros
of shape=(length of the SMILES dictionary, length of the SMILES string) where all the values in
each column are zeros except for the one which corresponds to the character of the SMILE string
in that position (see figure 7). The same way, we encode the amino-acid sequences to represent the
proteins, where the dictionary is the 20 different amino-acids.

5 Deep Learning for Protein-Drug Binding Affinity Predic-
tion

Our efforts focused on building a deep end-to-end model that takes as input either a SMILES
representation or a graph representation of a compound and the amino-acid sequence of a protein
and outputs the Kd value of the compound-protein pair. On this front, we investigated several deep
architectures in order to represent the SMILES-sequence pairs in a latent space that best captures
the nature of the binding affinity prediction.

At the same time we implemented a baseline model, namely the DeepDTA model [49], trained
on the same augmented dataset that we made (see section 4.2) in order to have a fair comparison
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Figure 6: Generation of SMILES: Break cycles, then write as branches off a main backbone.
(Ciprofloxacin)

Figure 7: Exemplary generation of the one-hot representation derived from the SMILES of 4-
(bromomethyl)-1H-pyrazole.

between our models and the literature.

5.1 DeepDTA Model

The work of the DeepDTA model concerns the modeling of protein sequences and compound 1D
representations with convolutional neural networks (CNNs) [49]. The paper that was published in
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June 2018 managed to overpass the previous baselines that were the KronRLS regression algorithm
[50] and the SimBoost method [51] and thus became a new baseline that we used for our models
comparison.

The architecture of the model is rather simple, as they use 1D convolutions to encode separately
the SMILES and the protein sequences and then concatenate the encodings to further produce a
binding affinity output through some fully connected layers (see figure 8. More detailed description
of the architecture is out of the scope of this thesis, as it is also described in their paper [49].

Figure 8: DeepDTA model with two CNN blocks to learn from compound SMILES and protein
sequences.

5.2 Graph Convolutions

Low-dimensional vector embeddings of nodes in large graphs have proved extremely useful as
feature inputs for a wide variety of prediction and graph analysis tasks [52], [53], [54]. In computa-
tional chemistry graphs are also very useful to representing molecular compounds. In these graphs,
vertices usually represent individual atoms and edges represent bonds.

On the front of trying to learn the function that computes molecular fingerprint vectors (see
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representational learning in section 2.2) instead of learning directly on handcrafted fingerprints
as the ones described in section 2.3.1, we developed a deep graph convolutional neural network
(GCNN) similar to the one developed by D.Duvenaud et al. [55]. The GCNN takes as input,
instead of just the one-hot encoded SMILES string (see section 4.4), a matrix containing one-hot
encoded information of other atom features as well (apart from the atom type) such as the solubility
and hydrophobicity of the atoms. More formally, for these models the goal is to learn a function of
signals/features on a graph G = (V,E) which takes as input:

• A feature description xi for every node i; summarized in a N×D feature matrix X (N: number
of nodes, D: number of input features)

• A representative description of the graph structure in matrix form; typically in the form of
an adjacency matrix A (or some function thereof)

and produces a node-level output Z (an N × F feature matrix, where F is the number of output
features per node).

More details into how one can generalize convolutional neural networks to work on arbitrar-
ily structured graphs is out of the scope of this thesis but the interested reader is referred to
the work of Defferrard et al. [56] and Kipf & Welling [57]. A GCNN is depicted schemati-
cally in figure 9 (the figure was borrowed from Expero, Inc.:https://www.experoinc.com/post/
node-classification-by-graph-convolutional-network).

Figure 9: A two layer graph convolutional network using one intermediate dropout layer.

Our architecture consists of a 3 layer deep graph convolutional network to extract application
specific neural fingerprints from the compound structures. These fingerprints are then concatenated
with the output of a 3 layer deep CNN that encodes the amino-acid sequences of the proteins (see
figure 10. The combined feature vector is fed through 2 fully connected layers for the final Kd
prediction. Batch normalization layers and ReLU activations are used throughout the network
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except for the final prediction layer. In order to reduce overfitting, dropout and L2 regularization
is also used between the fully connected layers.

Figure 10: Encoding 1hot amino-acid sequences through a CNN

5.3 LSTM Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient data codings in an
unsupervised manner [58], [59]. It learns to compress data from the input layer into a short code,
and then uncompress that code into something that closely matches the original data (see figure
2c). This forces the autoencoder to engage in dimensionality reduction, for example by learning
how to ignore noise.

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture.
Unlike standard feedforward neural networks, LSTM has feedback connections that make it a
”general purpose computer” (that is, it can compute anything that a Turing machine can) [60].
LSTMs were developed to deal with the exploding and vanishing gradient problems that can be
encountered when training traditional RNNs.

The exact details of the autoencoder and especially the LSTM architecture are definitely out
of the scope of this thesis, as they are rather complicated. In our work however we created an
LSTM autoencoder to learn a (as general as we could) compound representation and combined it
with a CNN for the proteins representation, in order to predict the binding affinity between the
compounds and the proteins.
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To be more specific, we first trained a deep LSTM autoencoder on the SMILES sequences of
all the compounds in the training, validation and test sets. The autoencoder used as input the
one-hot representation of the SMILES and was tasked to predict the next letter in the sequence.
The output of the trained encoder can serve as a compressed latent representation of the SMILES
space. The idea behind training an autoencoder first, is that the encoder learns to represent all
the available SMILES (training and test) and the final model should perform better than a fully
end-to-end architecture that has never seen the structures of the test set. Thus, the final model
used as input the output of the encoder along with the one-hot encoded amino-acid sequences.
The sequences were encoded again using a 3 layer deep CNN and concatenated with the output of
the encoder to build the final feature vector. This feature vector was then passed through 2 fully
connected layers for the final Kd prediction. Batch normalization layers and ReLU activations were
used throughout the network except for the final prediction layer. In order to reduce overfitting,
dropout and L2 regularization was used between the fully connected layers.

6 Predicting with confidence

6.1 Background

The problem of uncertainty prediction in machine learning is very important although not very
well-known. One of the disadvantages of machine learning as a discipline is the lack of reasonable
confidence intervals on a given prediction. Neural networks specifically suffer from two basic limita-
tions despite their popularity. The first problem is the unsatisfactorily low prediction performance
when there exists uncertainty in the data. The reliability of point forecasts significantly drops as a
result of the prevalence of uncertainty in operation of the system. The second problem of NNs is
that they only provide point predictions without any indication of their accuracy. Point predictions
are less reliable and accurate if the training data is sparse, if targets are multivalued, or if targets
are affected by probabilistic events. To improve the decision making and operational planning, the
modeler should be aware of uncertainties associated with the point forecasts. It is important to
know how well the predictions generated by NN models match the real targets and how large the
risk of un-matching is.

Test-time dropout is one of the most convenient and used ways to get an estimation of the
uncertainty of deep learning predictions. Test-time dropout which is also known as Bayesian deep
learning has been proved to be a variational approximation to a Gaussian process and therefore
uncertainty estimates using the variation of the different predictions can be extracted. For more
details see section 6.2.

Another way one could estimate uncertainty is to check how close an example is to the training
data points in the input space or in the latent (learned) space before the final prediction layer.
This method works under the assumption that the more similar a query is to an example that the
algorithm has previously seen (training example) the more confident should the model be for its
prediction.
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Furthermore, ensemble learning can be also used to estimate the confidence of the prediction.
Ensemble learning is about using many different models and getting a consensus of their predictions
and assumes that an ensemble of NN models will produce a less biased estimate of the true regression
of the targets [61]. It can refer to bootstrap aggregating (also called bagging) which involves the
generation of many different training sets by sampling the main one uniformly and with replacement,
to training the “same” model but with different architecture configurations on the same data or
to training many different models again on the same data. To predict confidence intervals out of
ensemble learning, one can take the standard deviation of the different models predictions as a
metric of uncertainty.

Finally, another important method proposed in the literature for trying to estimate the predic-
tion uncertainties in models that contain non-linearities is inductive conformal prediction, which
uses past experience to determine precise levels of confidence in new predictions. Given an error
probability ε, together with a method that makes a prediction ŷ of a label y, it produces a set of
labels, typically containing ŷ, that also contains y with probability 1− ε. Conformal prediction can
be applied to any method for producing ŷ: a nearest-neighbor method, a support-vector machine,
ridge regression etc. [62].

Apart from the ones mentioned above, other methodologies have been proposed in the literature
as well. However most of them fail in quality (quantification of the performance of each method
for producing high quality prediction intervals), repeatability (information about how each method
will do in worst cases, which methods are prone to fail, and which methods do well even in their
bad runs), computational load or variability (the response of the predictions intervals to the level
of uncertainty associated with data). Briefly we mention:

• Generating a distribution of predictions and calculating the variation between them using
simple cross-validation, producing that way an average confidence interval. This method,
however, shows more about the robustness of the model and reflects less the ground truth
correctness likelihood of the prediction labels.

• Delta method: the delta method has its roots in theories of nonlinear regression and inter-
prets an NN as a nonlinear regression model that allows us to apply asymptotic theories for
prediction intervals construction.

• Bayesian method: Bayesian NNs, which learn a distribution over weights, are currently the
state-of-the-art for estimating predictive uncertainty; however these require significant modi-
fications to the training procedure and are computationally expensive compared to standard
(non-Bayesian) NNs.

• Mean-variance estimation (MVE) method: works like the Bayesian method but also estimates
the target variance using a dedicated NN.

• PAC approaches: probably approximately correct (PAC) learning. Although well established
theoretically, not enough applied work exist in the literature for one to implement this easily
in deep frameworks.

Naturally, when trying to develop a model that apart from the point predictions also outputs
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uncertainty estimations, one must have a validation metric to judge these uncertainty predictions
after the training. This is not such a trivial problem to think about but for the purpose of this
thesis it has been decided that the validation of the uncertainty estimates can be calculated using
the absolute error of the point predictions (i.e. the mean of all the predictions for an input),
expecting the data points with the larger error to also have the maximum uncertainty. That way,
the validation accuracy is defined as the correlation between the predicted uncertainties and the
error of the correspondent inputs.

6.2 Estimating uncertainties using Dropout

The Gaussian process is a powerful tool in statistics that allows us to model distributions
over functions. It has been applied in both the supervised and unsupervised domains, for both
regression and classification tasks [63], [64]. The Gaussian process offers nice properties such as
uncertainty estimates over the function values, robustness to over-fitting, and principled ways for
hyper-parameter tuning.

It’s long been known that deep learning models can be related to Gaussian processes. Take a
neural network (a recursive application of weighted linear functions followed by non-linear func-
tions), put a probability distribution over each weight (a normal distribution for example), and with
infinitely many weights you recover a Gaussian process [65], [66]. For a finite number of weights
you can still get uncertainty by placing distributions over the weights. This was originally proposed
by MacKay in 1992 [67], and extended by Neal [65] in 1995.

It can be proven that dropout neural networks are identical to variational inference in Gaussian
processes (variational inference is an approach of approximating model posterior distribution which
would otherwise be difficult to work with directly). Actually, averaging forward passes through the
network (which is another way to say test-time dropout), is equivalent to Monte Carlo integration
over a Gaussian process posterior approximation [68].

As a part of this thesis, we incorporate test-time dropout in our deep graph convolutional neural
network and validate our uncertainty estimates (see section 7.3).

6.3 Estimating uncertainties using latent space norm

In this section we are trying to answer the question of whether the position of a data point
(in our case protein-drug pair) in the latent space learned by the algorithm is a good measure for
the uncertainty of the correspondent prediction. On this front, in the 128-dimensional latent space
of our deep graph convolutional neural network we calculated all the euclidean distances between
every validation and training point for a random-split validation set.

For estimating the uncertainty of a validation point prediction we followed three approaches.
First, for a given validation point, we counted its “neighbors” in the 128-dimensional sphere of

33



a finite radius and considered the inverse of this number as a metric of uncertainty. Second, we
calculated uncertainty as the normalized median of all the distances between this point and the
training set. Third, we did not use any distances but calculated the uncertainty as the level of
the point prediction error of the neighboring training points in the latent space. We assumed
that validation points that are included in areas of high error in the latent space should also be
accompanied with a high uncertainty prediction.

For the diagrams and other visualizations of the uncertainty experiments using the latent space
of our GCNN model see section 7.3.

6.4 Estimating uncertainties using a deep ensemble

There are quite a few sophisticated ways to combine models in an ensemble, as analyzed in
[61]. In this section we implemented the uncertainty estimation using an ensemble of deep models
trained on the same data set (108 slightly different graph convolutional neural networks as for their
architecture configuration) that predict two values instead of one. To be more specific, we tried
to recreate a state of the art model that was published by Google’s DeepMind in 2017 [69] and
constitutes the best approach for estimating uncertainties in deep learning according to the author’s
opinion.

The goal is to have a neural network whose predictions are also calibrated in the sense of
a frequentist notion of uncertainty which measures the discrepancy between subjective forecasts
and (empirical) long-run frequencies. In the implemented model the traditional cost function (e.g.
Mean Square Error) is altered so that it also captures predictive uncertainty. Like in [70] we use a
network that outputs two values in the final layer, corresponding to the predicted mean µ(x) and
variance σ2(x) > 0. By treating the observed value as a sample from a (heteroscedastic) Gaussian
distribution with the predicted mean and variance, we minimize the negative log-likelihood criterion:

−log(pθ(yn|xn)) =
log(σ2

θ(x))

2
+

(y − µθ(x))2

2σ2
θ(x)

+ constant

Thus, each of our 108 models learns to represent the output as a Gaussian distribution by learning
both the mean and variance. The combination of these models output distributions provides the
robustness advantage of the traditional ensembling methods as well. Ensemble results are treated
as a uniformly-weighted mixture model, and, as mentioned before, the ensemble prediction is ap-
proximated for simplicity to be a Gaussian whose mean and variance are respectively the mean and
variance of the mixture. Thus the mixture parameters are given by:

µ∗(x) =
1

M

∑
m

µθm(x)

σ2
∗(x) =

1

M

∑
(σ2
θm(x) + µ2

θm(x))− µ2
∗(x)

where M is the number of the models, θ the parameters and m each model in the sum.
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We note that the parameters that we altered between the 108 models are the learning rate
(values: [0.005, 0.001, 0.0005]), the number of convolutional filters (values: [16, 32, 64]), the size of
the convolutional filters (values: [16, 32, 64]), the size of protein encoding (values: [8, 16]) and the
size of the latent feature vector (values: [96, 128]). The results of this approach are also included
in section 7.3.

7 Experiments

In this section we describe all the experiments that we did, or, in other words, the training of
the three models (deepDTA, Graph Convolutional Neural Network & LSTM Autoencoder), their
validation and the machines that we used for it. Starting with the latter we used the programming
language R and the tools of RStudio almost entirely for all the data management work (data
augmentation, training-validation sets splitting etc) whereas the models were built in Python 3.6
using keras and tensorflow as back end. Training and testing was mostly performed on a local
NVIDIA GPU GTX-1080Ti, but some extra cloud computing services from the Paperspace platform
were also used when the need was higher.

7.1 Easy and Difficult Predictions

As mentioned before, in this thesis, apart from developing a deep learning model that is as good
as the baseline or beats it, we also wish to show the difficulty of all machine learning algorithms
to generalize to previously unseen and very dissimilar data, especially in the case of protein-drug
binding affinity prediction. Thus, we test our three models in two ways or settings, the “easy” and
the “difficult” one.

Firstly, the “easy” setting is regards testing to validation sets generated randomly from the
whole data that we possess (classic random split validation set generation and cross-validation). If
we see our data as a large matrix with the proteins in the rows and the compounds in the columns
where each cell corresponds to a Kd value (the binding strength of the specific protein - compound
pair), then we can think of this setting as hiding some cell values from the algorithm when training
and then calling the model to predict these cell values in testing time.

The more “difficult” setting is about testing the model on validation sets containing compounds
not only previously unseen from the algorithm, but also quite dissimilar from the ones that has seen
(i.e. the ones in the training set). This setting corresponds to hiding entire columns of the matrix
from the algorithm (that also concern structurally different molecules) and then call the model to
fill cells in these columns or, in other words, predict interactions of previously unseen compounds.

In either setting we created five validation sets and performed cross-validation to increase our
confidence on the results. For more details about how we identified the most different compounds
for the “difficult” setting see section 2.3.3.
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7.2 Models Comparison

In this section we present our results, through our validation accuracy metrics, in the form of
diagrams, for the different deep learning models that we used in this thesis. All the diagrams are
made in an “easy to see” way and so the more faded lines in the background are the exact values
and the bold ones are a polynomial inference on the former.

In figure 11, figure 12 and figure 13 we plot the the accuracy of deepDTA, GCNN and “autoen-
coder” model respectively for both the “difficult” and the “easy” validation sets (see section 7.1).
In figure 14 we plot the validation accuracy for both the baseline model deepDTA and our model
GCNN, when trained and validated on the exact same datasets.

The detailed observations and conclusions we can draw from all these figures are analyzed in
section 8.

(a) The validation mean square error versus
training time diagram for the baseline deepDTA
model. The blue line represents validating in
previously unseen compounds while the brown
one validating only in previously unseen pairs.

(b) The validation r2 metric versus training time
diagram for the baseline deepDTA model. The
blue line represents validating in previously un-
seen compounds while the brown one validating
only in previously unseen pairs.

Figure 11: Baseline model’s accuracy on “easy” and “hard” validation sets

7.3 Uncertainty estimation

In this section we present our results, in the form of diagrams, as far the uncertainty prediction
frameworks that we developed in this thesis are concerned.

In figures 15 and 16 we present the diagrams of the test-time dropout approach for the “easy”
and “difficult” setting respectively. In figure 15b we can see a scatter of the predicted points (drug-
protein pairs) where the x axis is the absolute error of each point prediction (i.e. the mean of all the
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(a) The validation mean square error versus
training time diagram for our graph convolu-
tional neural network model. The brown line
represents validating in previously unseen com-
pounds while the red one validating only in pre-
viously unseen pairs.

(b) The validation r2 metric versus training time
diagram for our graph convolutional neural net-
work model. The red line represents validating
in previously unseen compounds while the brown
one validating only in previously unseen pairs.

Figure 12: GCNN model’s accuracy on “easy” and “hard” validation sets

(a) The validation mean square error versus
training time diagram for our Kd-with-encoder
model. The red line represents validating in pre-
viously unseen compounds while the purple one
validating only in previously unseen pairs.

(b) The validation r2 metric versus training time
diagram for our Kd-with-encoder model. The
red line represents validating in previously un-
seen compounds while the purple one validating
only in previously unseen pairs.

Figure 13: Kd-with-encoder model’s accuracy on “easy” and “hard” validation sets

predictions for the specific drug-protein pair) and y axis is the uncertainty estimation of our test-
time dropout model (i.e. the standard deviation of all the prediction for the specific drug-protein
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(a) The validation mean square error versus
training time diagram for both the baseline and
our GCNN model.

(b) The validation r2 metric versus training time
diagram for both the baseline and our GCNN
model.

Figure 14: Accuracy comparison between our GCNN model and the baseline (deepDTA)

pair). In figure 15a we observe the distribution of the uncertainty predictions of our model in a
histogram with 50 bars (bins). More interestingly we construct from diagram 15b the diagram 15c
that results by filtering our test examples to a particular uncertainty threshold and plot the mean
error for this threshold. That way looking at cases only where the uncertainty is e.g. 60%, we
expect higher error than cases where uncertainty is 50%, hence the curve should be monotonically
increasing. If the application demands an error less than x%, we can trust the model only in cases
where the uncertainty is smaller than the corresponding threshold. Hence, by using figure 15c we
can compare accuracy of the models for a desired confidence threshold of the application.

(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 15: Uncertainties from the “test-time Dropout”, “easy setting” approach

On the same front, we present the scatter diagrams, histograms and thresholded uncertainties
figures for the latent space norm and the ensemble approaches. The metric represented by the x
axis (absolute error) is always the same, only the measure of uncertainty changes.

More specifically, in figures 17, 18, 19 we show the diagrams provided by the three ways to
define uncertainty using the position in the latent space as discussed in section 6.3 whereas figure
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(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 16: Uncertainties from the “test-time Dropout”, “difficult setting” approach

20 refers to the ensemble approach.

Approaches that include a finite n-dimensional radius definition (or norm limit) were tried with
many different limits and the ones that yielded the best results are the ones presented in these
diagrams. For more information about the results with other “radius” see table REFER HERE
IN SECTION REFER HERE. All these diagrams for both the latent distance and the ensemble
approach refer to the cold drug (“difficult”) setting. The ones for the “easy” setting are very similar
and are omitted for simplicity (in contrast with what happens with the test-time dropout approach).

(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 17: Uncertainties from the “error of neighbors in the latent space” approach

8 Results, Contributions & Discussion

8.1 A better model than the baseline

In figure 14 one can observe a comparison between the validation accuracy (Mean Square Er-
ror and r-squared correlation) of the baseline model before this thesis work (deepDTA) and the
graph convolutional neural network developed in this thesis. Since the two models are trained and
validated on the exact same dataset one can compare their accuracies directly. Thus, seeing the
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(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 18: Uncertainties from the “all median distances in the latent space” approach

(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 19: Uncertainties from the “number of neighbors in the latent space” approach

(a) Histogram of the uncertainty
predictions

(b) Uncertainty VS error (c) Thresholded uncertainties
VS absolute error

Figure 20: Uncertainties from the “deep ensembles” approach

obvious lower mean square error and highest r-squared correlation obtained by our model versus
the deepDTA, we can conclude that we beat the baseline and created a new one, stronger
on predicting the binding accuracy between protein kinases and compounds.

The better results of our GCNN model are probably due to a more detailed representation of the
compounds, namely the graph neural fingerprints. In other words, the SMILES representation used
by deepDTA is likely to miss too much information of the molecular physics needed to describe the
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protein binding, whereas the neural fingerprints that describe the connectivity between the atoms
of the molecule in a much more detailed way (kind of atom, bonds, edges) provides the algorithm
with the complexity needed to learn a better binding probability distribution.

8.2 We know what we know

An important contribution of this thesis is also the exploration of the uncertainty predictions
in machine learning, the different ways one can predict a level of confidence alongside with point
predictions and, most importantly, validate these uncertainty estimates. We explored three ways to
estimate uncertainty: the test-time dropout, the position of the test-point in the learned latent space
and the deep ensembles. We validated our uncertainty predictions using the pearson correlation
metric between the uncertainty and the absolute error of the validation points. In table 3 we show
the correspondent results for the three ways to calculate uncertainty, while in table 4 we focus on the
latent distance approach and show some results on how the different norms (finite n-dimensional
radius) influence the pearson correlations (which is equivalent to the validation accuracy of the
uncertainty frameworks). Table 3 includes the results for the best “radius”.

It is very important to mention that both the tables 3 and 4 are made for the “easy” setting (i.e.
random split validation set). In that case the dropout method ranks as second best (as we can see
from table 3). However, when calculating the same pearson correlations for the “difficult” (cold-
drug) setting, the dropout method collapses entirely. To be more specific, although the uncertainties
that it gives us are very small (high-confidence predictions), as we can see from figure 16b these
uncertainties have no correlation at all with the absolute error (the pearson correlation in that case
is less than 0.007). That shows us that in cases where the model doesn’t learn much the deviation
of the predictions with test-time dropout is pretty small (and hence small uncertainties) although
the absolute error is huge. In other words, the weights are robust, the algorithm is certain that
it hasn’t learn anything! In contrast, the latent space and the the ensemble methods give similar
results for both the random and the cold-drug setting, which makes them more appropriate to use
when we the predictions of the model are expected to be difficult to make.

Latent Distance Approach
Dropout Ensemble

number of
neighbors

median of
distances

error of
neighbors

Pearson
Correlation

0.13 0.14 0.29 0.4 0.44

Table 3: Comparison of different uncertainty estimation methods using pearson correlation

8.3 Data contribution

Another important contribution of this thesis is, in the author’s opinion, a large unbiased,
diverse and reliable dataset on the binding affinity of protein kinases with compounds. Although
it may seem trivial, the unification of many different resources into one universally formatted
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Number of Neighbors

“Radius” Pearson Correlation
3 0.07
2 0.08
1 0.12

0.67 0.13
0.5 0.1
0.3 0.05

Error of Neighbors

3 0.26
2 0.28
1 0.29

0.67 0.28
0.5 0.27
0.3 0.26

Table 4: Comparison of the latent space uncertainty methods for different “radius”

dataset is quite time consuming and presents unexpected difficulties. At the same time, having
a common dataset that includes all the current publicly available knowledge of humanity about
protein kinases Kd binding, is a very useful tool for all the scientific community that uses deep
learning to address the specific problem. The dataset made out of this thesis work has been
made publicly available and can be found on the github of the BioSystems Lab of NTUA (https:
//github.com/BioSysLab/Drug-Kinase-Binding).

9 The IDG-DreamChallenge Competition

A large part of the work that led to this thesis was carried out while participating, as a lab, in the
IDG-DREAM Drug-Kinase Binding Prediction Challenge [41]. Through the challenge we did most
of the data augmentation work (see section 4.2), as well as we developed our graph convolutional
neural network (see section 5.2) and LSTM autoencoder (see section 5.3). The best predictions for
the test set of the competition came out of the predict-with-encoder architecture we implemented.
Having in mind how difficult it is to really generalize to new compound scaffolds never previously
seen during training [47], an encoder that has been trained to represent the combined train and
test-set distribution was expected to boost performance when its encoded feature vector was fed
for further training.
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[56] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. 2016.

[57] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2016.

[58] Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie Yang. Modeling word perception using the
elman network. Neurocomputing, 71(16-18):3150–3157, October 2008.

[59] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Autoencoder for
words. Neurocomputing, 139:84–96, September 2014.

46



[60] Wikipedia. Long short-term memory. http://en.wikipedia.org/w/index.php?title=Long\
%20short-term\%20memory\&oldid=898571612, 2019. [Online; accessed 03-June-2019].

[61] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms (Chapman & Hall/Crc Ma-
chine Learnig & Pattern Recognition). Chapman and Hall/CRC, 2012.

[62] Glenn Shafer Vladimir Vovk, Alexander Gammerman. Algorithmic Learning in a Random
World. Springer-Verlag, 2005.

[63] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning series). The MIT Press, 2005.

[64] Michalis Titsias and Neil D. Lawrence. Bayesian gaussian process latent variable model. In
Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 844–851, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[65] Radford M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistics).
Springer, 1996.

[66] Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation,
10(5):1203–1216, July 1998.

[67] David J C Mackay. A practical bayesian framework for backprop networks. 1991.

[68] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, 2015.

[69] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles, 2016.

[70] D. A. Nix and A. S. Weigend. Estimating the mean and variance of the target probabil-
ity distribution. In Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), volume 1, pages 55–60 vol.1, June 1994.

47


