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ATmayopeleTOL 1 avIlypor], amofNKeuon Kol Vo TNG Topovoag epyaciag, €5 oAOKANPOL 1
TUNHOTOG OVTAG, Y10 EUTOPIKO 6KOTO. Emttpémetal n avatdnmon, amobnkevuon kot Sovopn yio GKoTo
L1 KEPOOGKOTMIKO, EKTALOEVTIKNG 1] EPEVVNTIKNG GVONG, LILO TNV TPOUTOHESN VAL avapEPETAL 1) TN
Tpoérevong kot va datnpeital To mapdv uivopa. Epotipoata mov apopovv ) xpron e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

Ot amdyeLg Kot T0. GUUTEPACLATE TOV TEPLEYOVTOL GE AVTO TO EYYPUPO EKPPALOVY TOV CLYYPOPEN
Kol gV mpémel va, epunvevdel Ot avtimpocsmrevovy 11§ enionues B€oelg tov E6vikod Metoofiov
IToAvteyveiov.



To my sister, Despina.






Avtopotn llapaymyn Anavrijcemv og Epotioeg IIavo og
Ewkoveg pe Xpfiion Babuvag Emprenopevnc Mabnong

Extetapévn Hepinyn

Ieprypagi tov Ipofrqpartog

H avtopomn andvinon ontikedv epotiocmv (Visual Question Answering, VQA) amote)lel éva mpo-
BAnua mov dwutépvel ta media e Eneéepyaciag uowkng I'Adocag (Natural Language Processing,
NLP) kot tng Opaong Yrnoroywotov (Computer Vision, CV). Ta tedevtaia ypovia 1 xprion TE(VIKOV
Babidv vevpoviKdV SIKTO®V £YEL 0ONYNCEL GE CNUAVTIKY] TPAOOO Kol 6TOVS dV0 aVTOVE TOpES MB®-
VTOG TOLG EPEVVNTES VO, 0o0AN 000V Le TpoPALOTA TTOL apopohV TNV TOAVTPOTIKY Lddnomn. To VQA
opiletor @G T0 TPOPAN O TNG AVTOLOTING TOPUYDOYNS L0 ATAVTINONG GE PLOIKT YADGGO, SEGOUEVOL
piag epdTNoNg o€ eAe0Bepn LopeN OYETIKA LE pia etkdva. To mpdPAnpa avtod gival diaitepa amortn-
TIKd Kabdg Tpodmobétel 1060 TV eaymyn XPNoUNG TANPOPOPIag amd TNV EPATNOT Kol TNV EIKOVO,
0G0 KOl TNV IKOVOTNTO GLAAOYIGTIKNG TAV® GTNV TANPOPOPIa CVTH LE AmMTEPO GTOYO TNV TPOPAEYN
piog opOng andvtnong. Ztnv Topodca SITAMUATIKY, ETKEVIPOVOLAOTE OTNV TAPUYMYT AITAVIIGEDV
elevBepng LOPONC Y10 EPOTNCELS avoLyTOV TOTOL. Kabdg 1 BepaTikn TV OnTIKOV EpMTHOEMY deV
neplopiletar,  opb1 amdKpion amaitel £va VPV PAGHLO IKAVOTNTOV GUAALOYIGTIKNG TAV® GE EIKOVEG.

"Enerta and ) dnpocicvon cuvolmv dedopévav peyding kiipokag, Eyovv tpotabel moAvdpiOpo
LOVTEAQ Yo TV avTipetdmion tov VQA mpofAnuatog. H migioymoeio avtdv akolovbel pio mopod-
pow opydvoon: H epdtnon kwdikonoteitoar HEC® £VOG OVAOPOUIKOD VEVP®VIKOD SIKTOOV, EVD TO
YOPOUKTNPLOTIKA TNG EKOVAG EEAYOVTOL OO £VOL GUVEAMKTIKO VEVPMVIKO SIKTVO TTOV £XEL TPOEKTALOED-
Ogl yio TV avayvapilon avTiKeévmy. X1 GUVEELD, Ol dVO0 OVTEG AVOTAPAGTAGES GLVOVAOVTOL pE
&va INYavioid GLUYYMVEVLCTG KoL 001YOVVTOL GE £Va VTTO-3IKTVO TOV TPOPAETEL TNV OTAVTNOT).

O1 TepLocoTepeg oHYYPOVES TPooeyyioelg datvnavouy T0 VQA g éva tpdPinua ta&vounong.
ITopdTt o1 amavinoelg dev givor TANPEIS TPOTAGELS, KUUAIVOVTOL OO LELOVOUEVEG AEEEIC G GVVTO-
ueg opaoeis. To ovvoro TV THAVOV OTOVTACEDV ETMALYETOL OC Ol ATAVTNGELG TOL guPavifovtot
ovyvoTepa oTa dedopéva EKTAIOELONC. ALTO ONUATIVEL OTL ATOVINGELS TOV OTOTEAOVY GUVIOUEG QPa-
oE1g AVTILETOTILOVTOL G EEY®PLIOTEG KAAGELS amd TG EMPEPOVS AEEEIG TOV aVTES TTEpAapavouy. [
TOPASELY LA, O1 ATTAVTIGELS “UOdPO Kot AoTpo”, “Ladpo” Kal “dotpo” Bempodviot TANP®S oveEapTn-
TG KAAoELS. AVTO €pyeTot o€ avtifeomn pe T dwichnon 0t n évvola idg EPACTG TPOKVTTEL A TN
onpaciloroyio Tov empépoug AéEewv. 'Eva avtikeipevo mov givor ”padpo kot donpo”™ popdleton Eva
KOWO YOPUKTNPIOTIKO [LE Ladpa KAl AoTpa avTiKeipeva. Ynoétovpe 0Tt 1 KpabNon e avoyvopt-
OTG TOL YPAOUATOG EVOG ”UODPOL Kol AGTPOV” OVTIKEEVOD Uopel va opeAndel amd v expddnon
TOV EVVOLDV TOV OV0 UELOVOUEVOV YPOUATOV 0O AAAN OELYLLOTA TOV GLVOLOL dEGOUEVMV.

Emumdéov, n mpdPreyn amaviiocemy oe eninedo gpaomng meptopilel TNV EKPPAGTIKOTITO TOV TPO-
TEWOUEVAOV HOVTEA®V. O YdpOog TV TOUVOV AmavIoE®V ival avoTnpd KoBopIGUEVOS EK TMV TPO-
TEPOV KO OEV UTOPOVV VO, TPOKVYOLV VEEG OAVTNGELG OO TNV VIAPYOVCO YVAOGT TOL povtédov. [
TAPASELY L0, OE TEPIMTMOT| ATAVINCEDYV GE EPMTNOELS CYETIKA LLE TO YPDOUO TOV AVTIKEIWEV®V, KAOE
GUVOVAGHOG XPOUAT®V TOL deV EYEL TPooTeDel 6TO0 GHVOAO T®V THAVAOV KATIYOPLDV EIVOL TPAUKTIKA
OTTOYOPEVIEVOG. ZVVETMG, N eMBLUiO Y100 VYNA KAALYN TOV aTavINoE®Y, 001 YEiTaL GE Ypiyopn
dtevpuven Tov apldpod TV TOUVOY ATOVINGEDV.

Me kivntpo avTég TIg TapoTnpnoELs, Tpoteivovpe To Grounded Seq2Seq povtéro, Tov avTipeTtomi-
Ce1 10 VQA ¢ éva Tpofinua Tapaymyng akorovdiog (sequence generation). H amdvtnon mapdyston
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Zypa 0.1: Apnpnpévn aneikovior ToL TPOTEWOUEVODL LOVIEAOV.

a6 éva sequence-to-sequence povtédo (Evomta 3.3), mov e€optdtol omd TIC avamapacTAGES TNG
EPMTNOMNG KO TNG €KOVAS. To amoteléouata Log VOl aVTay®OVIOTIKE e KUPIMG Y10 EPWTNGELS OVOL-
YTOV TOTOV, YEYOVOG OV dgiyvel OTL 1 EAEVOEPT TOPUYDYT| UTOVINGEDVY VAL EPIKTT] Y10 TO ALVOIKTOD
Tomov VQA.

Ieprypa@i) Tov Movtérov

To oyfua 0.1 TV apyITEKTOVIKNAG TOL TPOTEWVOUEVOL LOVTELOV. To GUVOAIKO GUGTIUO aTOTEAE]-
Tl amo TPELG PACIKEC LOVASES: TOV KOIIKOTOMTH TG EPADTNONG, TOV KMOKOTOMTN TNG EIKOVAG Kol
TOV OTOK®OIKOTOTH TNG OTAVTNONC.
Agdopévou evog Cevyaplov epmtnong @ kot eikovag 1, To chomua Tapdyet pio ardvinon Y og eéng:

e H gpdpmon Q = [q1,...qN] Kodikonoteitor and &va povotd emmédov, dSumhig kotevbuvong
LSTM (BiLSTM, Evotnra 2.3.4). Apywd, ot AéEeis g; tng epdtnong unkovg N avomapicrto-
vTol g one-hot davocpata, émwov 1 B€on Tov “1” avtictolyel otn BEom ¢ AéEng oto Ae&ikd
€16000v V. To one-hot diévucpa kéOe AEENG iEpyetar and £va. embedding eninedo, mov £xet ap-
yuomomBei pe GloVe embeddings [57] ko tpocappoletot katd v ekmaidgvon. To embedding
K@0e AéEng mepva péca and to BiILSTM, mov mapdyet v véa kpun katdotaon yio kabe Ko-
tevBuvon.

Ot kpLE£EC KATAOTAGELS OO TO EUTPOG h:f Kot 10 Tio® TEPAGLLL ﬁf EVAOVOVTOL Y10, VO OITOKTY)-
covpe v €€0do tov BILSTM h{ g kd0g ypovikn otiypn ¢ :

h$ = [he;h¢] fortel...N (0.1)
Ot xatootaoeic h§ yuo k6de t[€ 1,... N] Siupoppdvovy évav mivako H € RV*4 H oavoma-

pACTAON TNG EpMTNOTG e VIoAoyileTtal g To KLPTO GBpotoua Twv hf pe Bapn ay, Tov vIolo-
yilovton péow evog self-attention unyoaviopot [47]:

a® = softmax(wgotanh(W, HT)) (0.2)
N

e=) afh; (0.3)
t=1

omov W1 € R xan w,o € R o1 mapdpetpot tov pmyavicpov. Ta Bapn avtd af opilovy
™ ovuPorn kabe kpueng Katdotacng hf oty TEAK 0VOTAPAGTOOT TNG EIKOVIC €.



e H swova I avamapictator oty €i60d0 ©¢ éva cHvoro amd R Sovoouato YopoKTPLoTIKOV
{11, ...ir} mov e&Gyovton amd évo TPOEKTUIOEVIEVO JIKTVO OViYVEVONG AVTIKEIUEVAOVY. TVYKE-
KPWEVA, TO YOPOKTNPLOTIKG TOL Ypnotponotovpe £xovv eEoyOel and éva Faster RCNN ((Evo-
mra 3.2)) 4iKTLo eKTadEVIEVO TAV® 6T0 cUVoAo dedopévey Visual Genome [43], ta omoia
etvar draBéopa amd Toug Anderson et al. [5]. Ta yapaktnpiotikd ovtd Kodikorolovy bounding-
box mePLoyES oG EIKOVAC, TPOGPEPOVTOS ETGL TOTIKT TANPOPOPIO GYETIKA LE TO AVTIKEILEVA
nov givon Tapdvta og avt. Kpatdpe yuo 6ieg Ti1g eixdveg ta 36 bounding boxes pe tnv vym-
AOTePN eumictoovvn. Ev cuvtopia, pa eiova I avoarapictatol and Eva xaptn R = 36 diavv-
OUATOV YapaKTPIOTIKAV 4, € R4S mov avticTtorovy eéyovieg meployic g ekovag.

Epappolovpe L2 kovovikomoinon oto dtavicpata 166000 I €161 dGTE OAES Ol TYEG TOVG VA
Bpiokovtal o £va GUYKPICHO €0POC Kol TEPVALE TO KOVOVIKOTOUNIEVO YOPAKTIPICTIKA O
éva eminedo pie tanh pn ypoyLKOTTO, ATOKTAOVTOC TV OTTTIKY avomapdotaon V€ RIEX4:

I
V= tanh(va) (0.4)

omov W,, € R2948%4 ¢iyqn o mivaog mov mpoPdiet To SLAVOGHATO YOPAKTNPIGTIKGOY 6T Stdi-
GTACN TNV OVOTOPACTOCNG TG EPATNONG.

e Hoandvimon Y = [y, ...y ] mapdyetor amd £vo povod emmédov, povig katebBvuvong LSTM pe
péyebog ico pe d. To LSTM amokmotkomoinong e€aptdtol amd TNy epOTNon HECH TNG OPyLKO-
oinomng g KPueNG KATAGTOOTG LE TNV OVOTAPEGTOCT TNG EpMTNONG €:

hi=e (0.5)

Ye kG0e ypovikn oty t € [1, ... L], o amokmdikomoumtg déxetor wg £icodo v mponyoduevn
AEEN Yi—1 KOL EVNLEPDOVEL TIC KATACTACELS TOv. H Tpéyovcsa kpuen KoTdoTaon hf YPNOLO-
TOLEITOL Y10 VO EGTIACEL TAWM GTO YOPAKTNPLOTIKA TG ekovag V. H dwdikacio avt) Tapdyet
éva OTTIKO J1dvus o Uy Onw¢ meptypdoetal amod v E&icmon 0.8.

TOVSVALOVLIE TO OTTIKG SIGVOGHO Ty Kol TNV Koy katdotacn hf pe to yvopevo Hadamard o
LLE OTOYO TNV OIOKTN G €VOG O10VOGUOTOC [t

fi = 0o by (0.6)

H endpevn Aéén vy vmoroyiletar g n AEEN pe TNV vynAdTEPN TOAVOTNTA OO TNV SEGUEVUEVN
Katavopn Thavotntog Téve oto AeiKd TV anavtioemy V,:

P(yile,y1,...y¢—1, fr) = softmax(Wy f;) (0.7)

omov W, € RIVelxd H groxodikonoinon otapotd dtav mpoPrepdei n Aéén <EOS>. Tty
pacn, cvyyovevovue ta Aedikd Tov epothcenv V, kol tov anaviicenv V, ot £vo koo Ae-
Ewco V' kar ypnoyomolodpe o 1810 eminedo embedding yio T AEEELG TOV EPOTNOEMV KOl TOV
OTOVTCEMV €161 MGTE TO O1KTLO Vo pabel pia kown avaroapdotaom yo Tig Aéeg V.

Mnyoaviepos Xopukig Ipocoyris O punyavicpog yopikng tpocoyng (attention) ypnoiponoteiton
Y10 TNV E6TINGT TAVO GTA YUPOKTNPLOTIKA TOV TEPLOYDY TNG EKOVOAG KOTA TNV ITOKM®OKOTOINoT TG
andvinong. To oynuoa 0.2 aTOTLTOVEL YPAPIKA TOV €V AGY® UNYAVIGUO Y®PLKoD attention.

e KaBe ypovikn otyun t, 1 €wova cuvoyiletal o€ £va d-O106TATO SIAVUGLO Dy YPTCLLOTOLD-
VTOG TO UNYOVIGUO TPOGOYNG, TOV EMTPEMEL GTO OIKTVO VOl EGTIAGEL OTIG O GYETIKEG VTOTEPLOYES
™G ewovag. O UNYavIGROS TPOCOYNG TOL VIOBETOVE aKOAOVOEL TOV OPIoUO TNG KAMUOK®THG TPOGO-
NG ecmTEPKOD Yivopévou [68]. H onuacio kdbe Stavocpatog yapaktnplotikdv kabopiletot amod
oyxéon toug pe €va ddvucspa-epdtnon (query vector), TOV GTNV TEPIMTMOOT HOG 0dNyeitaL and TV
KPLOT KATAGTACT] TOL OTOKOIIKOTOU|TH hf € R%.
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Yympa 0.2: I'pa@ikr] onekdvion ToV UNYaviGHOD TPOGOYNS.

[pokeévou vo LTOAOYIGOVE TNV TEAIKT OVOTOPACTACT] TNG EKOVIS Ut, TOIPVOVE TPMTO, 3VO
ypoppikovg petacynpatiopods Vi koar Vo e ontikig avanapdotaong V. O wivakag Vi ypnotpo-
TOLELTOAL Y10 TOV VTOAOYIGHO TNG CLYYEVELNG HETAED TOV SLUVUGUATOV YOPOKTNPIOTIKOV KAOE TEPLOYN
Ko Tov query Stavvopotog hY. Ta oKkop TG GLYYEVELNG HETATPETOVTAL GE Bpn TPocOyNc af mepve-
VoG péca amd évo softmax eninedo. TELOC, Ta PapN TPOGoYHS aff epapuOLoVTaL GTa YUPOKTNPIGTIKG

g ewovag Vo mapdyovag tnv avonapiotacn vy o¢ eENG:

dy/T
t

Vi
ﬁz) (0.8)

0 =alVy (0.9)

al = softmax(

O mopéyovtog 1/+v/d ypnoipomoteiton yio vo KMUOKOGEL TO ATOTELEGHLO TOV EGMTEPLKOD YIVOUEVOD
KOL VoL OTOTPEYEL TNV €16000 TOAD UEYOA®V TIUMV OTNG GLVAPTNONG, TOV UTOPEL Vo 001 YNOEL OTO
pofAnua vanishing gradient. Eotidalovtag ek véov otnv ewcdva o€ KaOe Prpa, 0 AmoK®OIKOTOU TS
€xet 1 SLVOTOTNTA VO TPOCAPLOCEL Ta, BAPT TPOGOYNG AaUBAvoVTag LTOYIV TNV TPONYoOUeEVT] AEEN
KOl VO 0ToQUYEL TIG pokpoTtpObecpeg eopTNoELS 0o TO OTTIKG TEPLEYOUEVO.

Hewpapatikny A&ohdynon

20voro Agdopuévev  AELOAOYOULE TO LOVTELO O YPTCLLOTOLOVTOGS T 0£VTEPT) EKOOGT TOV GLVO-
Aov dedopévav Visual Question Answering under Changing Priors (VQA-CP v2) [3]. To ev Adyw
obvolo dedopévav omoterel Topodiayn Tov VQA v2 cuvorov dedouévmv [27] to omoio givar to
7o gvpEmg dtudedopévo civoro dedopévav yio VQA. Kabe delypa amoteAet Eva (guydpt ikoOvac-
gpMTNONG cLVOdEVOEVO amd 10 amavTioels, Tov X0V cLAAEYOEL and Eeywpiotovg avOpdmovg.

[pdéopateg dnpocievoelg[27, 2, 14, 34] €xouv deilet 6tin vapén YAoookng pepoinyiog (language

biases) 6ta cUVOAL SESOUEVOV EMITPETEL GTA LOVTEAD VO LLOVTEDOVVY T1) COGTH OTAVTIOT 0yVODVTOG
TNV OTTIKN TANPOPOPia. g OTOTELECUA, £VOL LOVTEAO TTOV EMTVUYYAVEL KOAT 0mdd00N, OEV avTijLE-
torilel anaportitog o the VQA mwpdPinpa, yeyovdg mov umopet vo amoTeAECEL TPOYOTEIN YO THV
npoypatiky tpoodo. To VQA v2 cuvolo dedopévav emtyelpel vo KataoTeilel TO pOLO TOV EK TOV
TPOTEPOV YAWGGIKAOV KOTOAVOUDMY CLAAEYOVTAG Y10 KAOE epMTNOT 2 GUUTANPOUOTIKEG EIKOVEC TOV
odnyovv og drapopetikég amavinoelc. [lapd v npocmdbeia avtn, pepoinyia (bias) otnv Katavoun
TOV EPOTACE®V 1] TOV OTavVTHoE®V eEakolovBoldy va vrtdpyovv, OTmwg eaivetal otov mivaka 0.1. H
maporiiayn VQA-CP v2 mpotdOnke yio Ty avTIUET®OTIOT cuToD ToV (THUHaToc. Anpovpyndnke ova-

10



MéBodog 2Hvolo Aedopévav Axpipela
Yovoho NavOyr ApiBuog Airo

uévo yhwooo [7] VQA v2 43.01 67.95 30.97 27.20
VQA-CP v2 15.95 35.09 11.63 07.11
yAdooot+ekova [7] VQA v2 51.61 73.06 3441 39.85
VQA-CP v2 19.73 34.25 11.39 14.41
yvAdooo+ewkovatattention [73]  VQA v2 52.02 68.89 34.55 43.80
VQA-CP v2 24.96 38.35 11.14 21.74

Mivakag 0.1: Zoykpion ¢ anddoong VQA poviédwv nive oto VQA-CP v2 covoro a&loldynong
kot 610 VQA v2 ovvolo gnainfevong [3].

dlopyoavmvovtag TG vTodtaipeons Tov VQA v2 cuvorov, £T61 MGTE O KATAVOLT TMV OTUVINCE®Y KAOE
TOTOL EPAOTNOTG VAL SLPEPEL LETOED TOV VTOGLVOAOVL ekTaidevong kat agtoddynong. H avaviietot-
Yol TOV KOTOVOU®MV TOV ATaVTHGE®V eKTaidevong kot a&loAdynong eEetdlel Tpayuatikd TOG0o KaAd
éva pHovtélo umopel vo eneEepyaoTel TV ORTIKY €1G000 Y10 VO GUUTEPAVEL T 6®OTYH amdvtnon. O
nivaxkog 0.1 amotumdveL T CNUAVTIKY PEl®oT TG amdd0ong TOV LOVTEA®Y 0TOV 0EI0A0YOVVTAL GTO
VQA-CP v2.

[MopaxdTom amaptBpovpe optopéves Pactkég AETTOUEPELES TOV GLVOAOL dedopévemy VQA-CP v2:

e To oVvoro exmaidevong anotereiton and 121K ewoveg, 438K epmtioeig kot 4.4M omovinoes,
eV 10 oOvoro aciodoynons amoteleiton 98K ewcoveg, 220K gpwtioeig kot 2.2M anavinocelg.

o Ot gpotoeig ekmaidevong Exovv Eva Ae&ihoyio peyéboug 14.5K, v ot amavtioelg ekmaidgv-
ong &yovv éva AeEhoyio peyéBoug 37K. To kowvd Aegirdyro avépyetan og 40K AéEets.

e To péyioto pnrog tev epotoemv eivar 25 AéEeis. TTapdtt To P€YIOTO UAKOG TV OTAVICEDV
otaver g 24 AéEeig, n TAEIOYN Qo TOV OTAVTGEDVY amoTeEAEITAL ad LOMG pio E0G Tpelg AEEELS.

Xyetwkn) Biphoypagio ‘Emncita amd v kukAogopio peyding kiipokag VQA cuvoiwv ded0LE-
vov [7, 27], molvapibueg Tpoceyyicelg Exovv mpotafel Yo TNV AVTIUETOMTION TOV TpoPfAnuatog. H
E10QYMYN UNYAVIGHOV attention ota, VQA cvotipota £XEl ETPEPEL CNUOVTIKN BONoN T anddoong
tovc. Mia a&oompeimtn epyacio ndvem oto attention anoteet to povtéro Stacked Attention Network
(SAN) [73], mov a&lomotel dVO cuveyduEeVa eMimeda Y®PIKOL attention pe oTOYO TNV £EAYMYT| O Ag-
nropepovg TAnpogopiag. To povtéro Grounded VQA (GVQA) [3] eivar pia vBpdiki opylteKToviKn
mov enekteivel To SAN dikTvo ¢ mpog v TPOPAeYN TV amaviioewv. Ot “Nai/Oyl” epotioelg
avTILETOTILOVTOL MG £Vol SLAOIKO TPOPAN LA OTTTIKNG ETOANOEVONG, EVD 01 VTOAOITEG EPOTICELS GUV-
dvalovv TV TPOPAEYT OTTIKMDY EVVOLMV KOl VTOYNPLOV artovioemv. Anderson et al. [S] epappolovv
[ ekdoyn ¥wpikov attention TAv® Gg £va GHVOAO TOTIKOV YopuKTNPLOTIKOVY amd évo Faster RCNN
diktvo. [Ipdcpata ot Ramakrishnan et al. [59] eiofyayav éva oyfiua adversarial ekraidevong yio tnv
EKTOIOELOT LOVTEAMVY LE TNV 1010 ApyLTEKTOVIKT] OTTwG Ta [ 73] Kat [S5], Ta omoia dpwg Bacilovtat Aryo-
TePO o€ YAwooKd biases. Edkotepa, ekmaidehovy og avtinolo £va LOVTEAO YPTCLLOTOIOVTOS LOVO
TNV YAOGGKY| £10000 Kot TPocBETOVTOC Evay OpO EVIPOTIAG OTN CLVAPTNGT KOGTOLE TOV LITOAOYILEL
T0 KEPOOG TANPOPOPIOG OO TN GLUTEPIANYT] TNG EIKOVAG.

H ouyydvevon Tov xapaKTnploTIK®V TS EIKOVOC KOl TNG EPMTNONG TPOYUATOTOEITUL GLYVA LE
amiég mpatels 6nmg to ywvopevo Hadamard kot n évoon (concatenation) [7]. ITapdia avtd, £xovv
dtepeuvn el Kat o TOAVTAOKEC TPOCEYYIGEIC GLYYDVEVOTG. AVTEG Ol TPOGEYYIOELS EMKEVTPMVOVTOL
GTNV 0TOJOTIKN TPOGEYYIGT) TOL EEMTEPIKOV YIVOUEVOD PETAED TOV YOPOUKTIPIOTIKMV TNG EIKOVOG Kol
NG EPMTNOMG YPNOYOTOIDMVTAG TIG TEXVIKES compact bilinear pooling [23], mpocéyyiong e tensors yo-
unAng taéng [39] or Tucker amocvvBeong [10]. O1 Andreas et al. [6] mpoteivouv T duvapkr chvBeon
€vOG SIKTOOV e PEPM ad VO GOVOAO TPOEKTOOELUEVMVY VTTO-OKTOMV LE GTOYO TNV TPOCUPHOYT| TOV
attention Kol TNG GLYYOVELONG OVALOYA LLE TNV EPMTNOT).
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Yneprnapaperportov Movréhov O mivakag 0.2 cuvoyiler tic facikég vreprnapapétpovg tov Grounded
Seq2Seq povtélov. Xpnotlomolovpe Koo AeEIAGYL0 Y10 TIG EPOTNOELS KOL TIG ATAVINGELS EPapUOLo-
vtog TV TeXVIKN décpevong Papdv (weight tying) oto embedding enimeda Tov KOOIKOTOMTH Kol TOV
OTOKOIKOTOMTH. M€ auTd TOV TPOTO LEIMVOLLLE TOV aPBLO TOV TAPAUETPOV KOl ETPAALOVLLE T O1)-
LLOGLOAOYIKT] €0OVYPALLLLON TNG EPMTNONG KOL TG OTAVINGCTG. Xpnotpuonotovpe yo péyedog batch ico

pe 128. ®étovpe to PEYIOTO UNKOG TV EPMTNCENMY 160 HE 23 KOl TO HEYIGTO UNKOG TMV OTAVINGEWDY
ico pe 5.

Apykomoinen Embeddings 300-d GloVe
MéyeBog Aekrhoyiov 10K words
, . Méyebog LSTM 512
Kodwomomtig Epdtnong Mé}',YlG‘Cg Lo 3
ATOKMIKOTOM TS ATAVINGNG 1\1\/{[:’2223 IELTS]IZ(ZI 10524

Hivaxag 0.2: Yreprapdperpot tov poviéhov Grounded Seq2Seq.

PvOpiceic Exnaidgvong Katd v exnaidocvon, dtatnpovpe 1o va tpito TV de00pévmv ekmaiden-
ong yio eroAndevon Kot TopakoAovbovpe TV akpifeld 6T0 GHVOAO 0LTO TPOKEUEVOD VO EPAPUO-
GOVUE TPO®PN S10KOT VOTEPO 0d D emoyEC oTabepng N Letovpevng akpifetag. Akoun epapuolovpe
dropout pe mBoavotnta 0.2 petd anod kdbe eminedo ko teacher forcing, divovtag g eicodo ctov amo-
KOJIIKOTOMTN TN 6®GTN Tponyobuevn A&En, Xpnoomotobue Tov adyopifpo fertiotonoinong Adam
pe pubpod pdonong 0.001. Téhog, TPOYUATOTOLOVUE EXAVENCT TOV SESOUEVMV LLOG Y10, TV KOTNYOpio
amovinoemv “AAlo”: Ze kdbe emoyn, doAéyovue Tuyaio g etikéta pia amd tig 10 dabéoieg ama-
vioels. Me autdv tov Tpomo, mopovctdlovpEe GTO LOVTEAO LOG TOPAPPUCHUEVEG ATOVINGELS Y10, KAOE
amAvInoT, To omoio Asrtovpyel mg pébBodog regularization.

Metpikn ASohdynong  A&oloyolue T0 LOVTEAO LG ¥PNOLOTOIMVTOG TV Kabiepopévn VQA pe-
tpwcn axpifelog [7]. Onwg £yl mpoavapepbei, kaOe epdtnomn cvvodedetar and 10 aravricels. Mia
andvinon a Aappaver Eva téleto okop s(a) av Touptdlel pe TOLAGYIGTOV TPES amd TG SOBECIES
OTTOVTNCELS;

. # avBpwmol mov andvincav a
score(a) = min( 3

1) (0.10)

Hewpoapotikd Aroteréopato O mivakog 0.3 wapovstdlel TNV andd0cT| TOV TPOTEWVOUEVOL LOVTE-
Aov 610 VQA-CP v2 odvoro oe cOykpion e baseline kot state-of-the-art povtéda. Qg baseline po-
viéha Bempovpe ta 600 Tpdta, ovopaotikd ta “d-LSTM” kot “d-LSTM Q + I”. To “d-LSTM” ava-
QEPETAL GE £VA. LOVTELO TTOV YPTCLLOTOLEL LOVO T1] YAWGGIKT TANPO(QOPIn ELGOI0V KOl 0yVODVTOS TV
gwdva, OTov 1 gpmTnon Kmdkorotgital and évo Badd LSTM &vo otpoudtov. To “d-LSTM Q +
I” ypnowonotel v dto S1dtaln yo v epdtnon Kot Eva tpoekmodevpévo CNN povtédo yia v
e&ayoyn evog KaBoAkoD S10vOGHATOG YOPAKTNPIGTIKMY Yol TNV €KOvVa. To S1ovOGHOTO YopoKTnpl-
OTIKMOV TNG EPMTNONG KOl TNG EIKOVOG EVAOVOVTOL Kol 001 youvTal o€ éva tavount. Eivol speavéc
OTL TO HOVTELO OGS OTOdI0EL ONUOVTIKA KaADTEPO 0o avTd Ta apeAn] baseline povtéda. To kaBokd
OLAVUGLOL YOPOKTIPLOTIKMY PITOPEL Vo €Ivol ETAPKES Yol TNV KOTNYOPLOTOINGT| TNG EKOVAG OALY 0TO-
Tehel pio VTEPPOAIKA YEVIKT OVATOPACTOOT] TNG ATOPAITTNG TANPOPOPIG Yo TV ATAVTINOT| UG
GUYKEKPLUEVNG EPADTNONG.

Yoykpron pe State-of-the-Art Movtéha  Katd ) o0ykpion tov mpotevopevov Grounded Seq2Seq
ue state-of-the-Art (sota) povtéha, TaPATNPOVLE OTLTO LOVTELO LG ETPEPEL AVTAYOVIOTIKO ATOTEAE-
opata, Wing oty katnyopia “AAro”. [TapdAio mov 1 Katnyopio avty ivar Wiaitepa gvpeia, T0 amo-
TéAEGLLO PploKeTaL OE CLUPMVIO [LE TO KIVITPO TNG Epyacioc. YToOETovpe 0T To mopadeiyloTo avTig
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Movtého Xovolo Noav/Oyr ApiBuog  Aldo

d-LSTM Q [7] 15.95  35.09  11.63 7.1
d-LSTM Q + 1 [48] 19.73 3425  11.39 1441
SAN [73] 24.96 3835  11.14 21.74
GVOQA [3] 31.30  57.99  13.68 22.14
MCB [23] 36.33  41.01  11.96 40.57
UpDn [5] 39.74  42.27 1193 46.05
UpDn+Adv [59] 41.17 65.49  15.48 35.48

Grounded Seq2Seq 36.42  40.29 12.07 41.08

Mivaxag 0.3: X0ykpion pe baseline and state-of-the-art povtéia ntdve oto VQA-CP v2 cldvoiro de-
dopévav.

NG KATYOopiog ENOPELOVVTOL G PEYOAVTEPO Pabud amd TV TOpUy®YT AKOAOLODY MG OTAVTICELS,
EMEON EMOEYOVTAL OTAVTIOELS LEYOADTEPOV PNKOVG. Ymoypoppiletor 6Tt KovEva LLOVTELO OV EML-
TUYYXAVEL TN PEATIOTN amOd00T o8 OAEG Tig vokatnyopies. [Tapatnpodpue 6t Ta poviéha GVOA ko
UpDn—+Adv €govv xoddtepn enidoon oe anavinoelg “Nat/Oyt” pe peydin dapopd. ITapodia avtd, n
emidoon Tovg TNV KaTnyopia “AAro” givar pétpua. Xe obykpion pe ta baselines, sota poviéla €yovv
™ Ayotepn Pedtioon o€ epOTAGEIS TOV amavtdvTol e aptBpovg. To pétpnua arattel éva Eeympi-
010 €100G GLALOYIGTIKNG, TOL £YEL KIVITOTOWOEL LL0L GEIPA EPYUCIDY OV £0TIALOVY OMOKAEIGTIKG OE
ot 1o TPOPAnpa [67, 75]. Evag mepartépm mapdyovtag mov £xel 1010iTepT) EXIOPAGT) GTNV GUVOAIKN
amdd00T EIVAL T TOWOTNTA TV OTTIKMV YOPOKTNPLOTIK®Y. E1d1koTEpQ, LovTéla Tov aglomotoby yopa-
knplotikd and to Faster RCNN (UpDn, UpDn—+Adv, Grounded Seq2Seq) Egmepvodv GUGTNHATIKA
HOVTEAQD, TTOL KAVOLV YP1IOT YAPOKTINPLOTIKOV OO CUVEMKTIKG dIKTVO EKTOOEVIEVA Y10 KOTYOPLO-
noinon ewovov (SAN, GVOA kar MCB).

Melrétn Tov Movtéhov  Extedolpe o HeEAETN e GTOYO VO, OTOLOVAOGOLLLE TO. GTOYELN TOV LLOVTE-
A0V pag kot va aEloA0YNGOVLE TNV ENIOPAGT TOVS GTNV OTOS0GT] TOV TPOTEWOUEVOL HOVTELOV. AVTH
N HeEAETN TepAapPavel TEWPAUATO OTOL L1a 1} Kot ot dV0 glcodot avTikadioTavTol amd Tuyaio dtovo-
opata Yo vo eKTIUn0el 1 GLVEIGPOPA TNG YAMGGIKNG KOl TNG OTTIKNAG £16000V, KaMG Kat 1 Tuyoio
amddoon vy kabe tomo epmtipatog. O mivakag 0.4 mapovstdalel To amoTEAEGILATO TOV TEWPAUUATOV.

Movtélo YOovolo Nav/Oyr ApiBudég  Alro
(A): Toyaieg Eicodot 16.84 56.34 0.38 0.65
(B): Mévo Ewdva 17.44 57.90 0.39 0.91
(C): Movo Epotnon 18.66 38.29 10.25 10.38
(D): Epatnon kot Ewcova o¢ Apykomoinon 35.51 38.57 11.10  40.30
(E): UpDn Mnyavicpog Attention 33.20 39.56 11.54  35.45
(F): Aoaipeon tov Mryavicpot self-attention 35.92 40.83 11.93 40.03
(G): Zvyyaovevon Evoong 35.42 39.47 12.30  39.35
(H): Zvyydvevon MUTAN 35.67 40.00 11.46  39.70
Grounded Seq2Seq 36.42 40.29 12.07 41.08

ivakag 0.4: Amoteléopata amd Tn LEAETY) TOV LOVTEAOV.

To mepdpoto pe Toyaio | eplopopévn €i6odo (4, B, C) tpoceépouv Kotd fdon mAnpopopia. yio
N eVon Tov TpoPAnuatos. Kot apydc, mapotnpodpe 6tin xpnon Lovo g eikdvoc Exel TapOpota emi-
d00M LE TIG TUYOIES EIGOS0VG, EVM 1) YPNOT) LOVO TNG EPATNOTG £XEL KOADTEPT] AV KOL YOLUNAN ETLdOOT).
Av16 emPePardvel Tapatnpnoelg ot Pirioypagio oxetikd pe To poAo tov language bias ota VQA
ocvotiuoata [3]. H amddoon tov poviéhov (4, B) oty katnyopia “Nav/Oyt” opeiketar 610 yeyovog
OTL TO, LOVTEAD OITAVTOLV OXEOOV TTAVTA ‘Oyi’, TOL AMOTEAEL TNV O GLYVN ATAVINGN oTa dedopéva
exmaidevonc. Eivat pavepo 0tL yo tnv enidoon oty Katnyopio AALO” OTALTEITOL 1] EVOOUATOOT) KoL
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TV 500 £1600@V. TNV Katnyopia “AplOuoc”, mapatnpovpe pkpn dapopd avapesa 6to poviéro (C)
KoL QVTA TOV 0ELOTOL0VV TNV TANPOPOPic TOGO ard TNV £pAOTNGT OGO KOl Ao TNV AIdvVINGo.

Tao povtéra (C) xar (F), diepeuvoiv T dtdTaén Tov KOSIKOTOU|TH TG EPMTNONG. ZE GUYKPIOT) E
10 d-LSTM Q baseline (PA. [Tivaxa 0.3), n ékd00T TOV LOVTEAOD LLOG TOL YPNCULOTOLEL LOVO YAMGGO
emTuyyavel +3% oamdivtn Pedtioor. Avtd VTOdNAGVEL OTL T YpNoT VOGS SIMANG KatevBuvong LSTM
e self-attention mapéyet po KaAOTEPT VOO PAoTOCT TNG EpDTNONG. H onpacio tov unyavicpo self-
attention emiPBePodveral Kot amd TN LEIOUEVT ENLO0GT TOV HOVTELOL (F). ZVYKPIVOVTOG TO TEIPALLOTOL
(D) ko (E) pe to Grounded Seq2Seq, mapatnpodie OTLT ¥PHON TOL ETIAEYUEVOL UNYOVICHOV attention
o€ kGBe Prpo amokmotkoroinong Exel BeTikn enidpacn otV 0mdd06T TOL LOVTEAOV.

Té\og, 0 TEPAPATIGUOG LE SLPOPETIKES HEBOOOVG GVYYDVELONG delyvel dTiTo Yivopevo Hadamard
amodidel kKodvtepa amd v Evoon (G) kot ) cvyydvevon MUTAN (H) katd 1.00% kot 0.75% ovrti-
otoyya. H ehappig xelpdtepn anddoomn tov povtéhov (G) propet vo. amodobel 6to yeyovog 6tin npdén
™G Evaonc avéavel to péyefog Tov SLUVOGLOTOG OPAKTNPLOTIK®Y XOPIG Vo, GUALAUPAVEL TIC AN -
Aemdpaoels mov cvpPoaivouv petald Tov e1oddwv. H cvyydvevon MUTAN, and v aAkn, givor o
LéB0O0C TopayovTonoinong Tov eEMTEPIKOD YIVOUEVOL, TTOL OEAVEL GNUAVTIKE TNV TOALTAOKOTTO
TOV HOVTELOL. AEGOUEVOD OTL YPTGILOTOCOLE TIG TIHEG TOV TOPOUETPOV OO TNV TPMOTOTLTY| dNUO-
cievon [10], n amwddoon tov poviélov (H) Ba erweelovvtay TOUVOS amd TEPAITEP® TEPAUATIOUO
LLE TIG TUES TV VITEPTAPAUETPOV.

YoumEPAcHaTO.

e aut T SWAOUOTIKY Epyocio, EEEPEVVOVILE TNV OTOTEAEGUATIKOTITO EVOG sequence-to-sequence
povtédov yio. 1o VQA mpofinua. H mpotevopevn pébodoc faciletar otn p1on ovadpopkdy veupm-
VIKOV SIKTOOV TOL €£0pTAOVTAL TOGO OO TN YAMCOIKH 0G0 Kot amd TNV onTikn €ic0do. O anokmdiko-
Tomtg epappdlet attention TV GTO YOPAKTNPLOTIKA TG EIKOVAS o€ KAOE B amokmdikoroiong. H
TEWPOAUOTIKN pog perétrn e&etalel T cupPfoln TV empépoug TuNUdT@v Tov poviéhov. Ev kataxieiot,
EMTUYYAVOVLE AVTOYOVIOTIKA amoteréouata deiyvovtog T duvatdtnTa Yo TpOPAEYT| AmovTGE®V
ehevBepng popengc.

AéEe1g KAELOWA

OTAVTINOT OTTIKAV EPOTNCEMVY, LOVTEAN axoAovDinc-ce-akolovbia, yelopévn cviloyioTtikn, Pabdid
pudonon, ToAvtpomiky pabnon
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Abstract

Visual Question Answering (VQA) constitutes a task at the intersection of Natural Language Pro-
cessing and Computer Vision. Given an open-ended, natural-language question and an image, the
goal is to predict the correct answer. In recent years, VQA has attracted a lot of interest from the
research community, as it transcends the preliminary of extracting meaningful representations from
each modality. In addition to that, it requires the capability to reason over the inputs and to infer their
relations. Answering arbitrary visual questions is a challenging problem, as it assesses a large range
of skills extending across the linguistic and the visual domains.

One limitation of typical, modern VQA systems is that they approach the task as a classification
problem over a limited set of pre-defined answers. The goal of this Diploma Thesis is to alleviate
the above problem, via proposing a sequence generation model that can produce answers of arbitrary
length. The proposed method is a sequence-to-sequence network conditioned on textual and visual
information from the question and the image respectively. The question encoder is a bidirectional
Recurrent Neural Network augmented with a self-attention mechanism, while the image feature ex-
tractor is comprised of a pretrained Convolutional Neural Network. The answer is generated following
a greedy decoding process, which uses a Recurrent Neural Network cell as the decoder. At each de-
coding step, the answer decoder attends to the visual features by employing a cross-modal, scaled
dot-product attention mechanism. We conduct an ablation study that investigates the contribution of
each module. Our results indicate that the feedback loop, which allows access to image features at
each decoding step, is an effective conditioning mechanism.

The proposed model is evaluated on the VQA-CP v2 dataset, which tests the capacity to reason
over the visual input without depending on language-based statistical biases. Our model shows sig-
nificant improvement of prediction accuracy compared to baseline approaches. We also measure the
performance of the proposed model against state-of-the-art VQA systems. The reported performance
is comparable to that of existing models in the literature, showcasing the feasibility of free-form an-
swer generation for open-ended VQA.

Key words

visual question answering, sequence-to-sequence, grounded reasoning, deep learning, multimodal
learning
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Chapter 1

Introduction

1.1 Visually Grounded Language

The development of machines that understand the meaning of natural language and that are able to
interpret the content of visual scenes, constitute two central objectives of artificial intelligence. In re-
cent years, research in the respective fields of natural language processing (NLP) and computer vision
(CV) has made remarkable progress. Deep neural network techniques have pushed the boundaries
of performance in tasks across the board. Although the areas of NLP and CV are usually studied in
isolation, there is increasing interest in approaches attempting to capture how they interact. These
approaches fall under the broader category of multimodal learning, which focuses on processing and
combining information from the diverse modes in which something exists or is experienced.

Efforts to bridge natural language and visual understanding have been motivated by the aspiration
to enable human-machine interactions about the physical world. As humans communicate with each
other primarily through language, it is expected that autonomous, intelligent machines would also be
capable to reason over visual information using language. Most modern language models are based on
the distributional hypothesis of semantics [30], which states that words that occur in similar linguistic
contexts are likely to have related meanings. Semantic representations of words learned using only
textual corpora have so far been successfully applied to core NLP tasks. However, the limitations of
this overarching approach are called into question by the following argument: Models are trying to
extract the meaning of words, which are simply symbols, from their relation to words in their context,
which are also symbols. As a result, they are lacking the ability to connect word representations to the
real-world objects they refer to [51]. The challenge of grounding the meaning of words in perceptual
experience or action is known as the symbol grounding problem [29].

The importance of grounding semantic representations to physical objects is supported by cog-
nitive evidence. Humans acquire a common understanding about the meaning of words that is tied
to their interactions with the environment. Studies in child language acquisition suggest that there
is a strong correlation between learning new words and learning the corresponding concepts in the
real world [26]. Moreover, experimental findings indicate that in early developmental stages chil-
dren generalize their knowledge about object names based on the similarity of visual attributes [45].
This line of research has inspired several NLP approaches. Recent work has shown that grounding
semantic representations can boost the performance of models on NLP tasks, which are traditionally
tackled by purely linguistic approaches such as word similarity [63], natural language inference [41]
and sentiment classification [38].

Advances in deep learning have given rise to tasks that lie at the intersection of language and
vision and particularly those that aim at leveraging natural language to express visual understanding
capabilities. Such tasks include image captioning [32], visual question answering [7] and visual dialog
[17]. In the scope of this thesis, we focus on the task of visual question answering and propose a model
for grounded answer generation.
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1.2 Visual Question Answering

Visual question answering (VQA) is the task of automatically answering free-form, natural-language
questions by reasoning over a given image. During the past few years, VQA has attracted consider-
able attention in the research community. The success of image classification and object detection
systems has shifted the interest towards more demanding visual understanding tasks. VQA is par-
ticularly challenging because it requires a system to demonstrate varied computer vision capabilities,
such as object recognition, attribute classification, counting and more. Current VQA datasets pose
no limitations to the visual questions asked, meaning that they can demand external knowledge and
common-sense reasoning. In brief, VQA is a multimodal task, that involves the understanding of nat-
ural language, the processing of visual inputs and the ability to reason over both modalities as well as
their interconnections.

The nature of the task allows VQA to serve as a benchmark for visual understanding. Answering
arbitrary questions involves diverse low-level computer vision tasks. As a result, in a VQA setting
we can evaluate how well machines are able to process and reason over visual inputs. It is thus
understandable that open-domain VQA on real-world images is considered as a Visual Turing Test.
Beyond theoretical motivations, VQA can be applied in real-world scenarios. Machines with visual
reasoning capabilities will improve human-machine communication by creating common reference
points in the physical world. An immediate application of such VQA systems would be to assist
visually impaired individuals by enabling them to acquire specific information on the fly. For example,
VQA systems can help blind people either online by providing requested details about visual content
or in real life by helping them navigate dynamic environments.

Answer Prediction

red
it is raining
yes
dog

Why are they holding an umbrella? Question Encoder

000

Fusion Algorithm

playing tennis
2

’Q."

Image Encoder }

Figure 1.1: Abstract diagram of the VQA pipeline.

Since the release of large-scale datasets [7, 27, 43], a multitude of approaches has been proposed.
Most VQA algorithms define a common series of steps, as it is shown in Figure 1.1: First, image
and question representations are extracted by separate modules. The input representations are then
combined using either simple operations, attention mechanisms or more complex fusion methods to
predict an answer. Finally, the fused representation is passed to a classifier that predicts an answer.
More details about specific models are given in our summary of related work (Sec. 5.2).

Addressing VQA as a classification task poses a limitation to current systems. The prediction of
answers on a phrase-level contradicts our intuition suggesting the meaning of a phrase emerges from
the syntax and the semantics of the words that comprise it. Consequently, this approach restricts the
expressiveness of proposed models to closed-world settings, where the space of possible answers is
known in advance. The goal of this thesis is to explore the feasibility of generating answers, instead
of performing classification among a set of known answers. To this end, we adapt the sequence-to-
sequence framework [65] to VQA by conditioning the answer generation to both input modalities.
We use Faster RCNN features [60] to encode the image from salient regions and recurrent layers to
encode the question input as well as to decode the answer. We address the issue of grounding the
answer generation process to the visual input by creating a feedback loop during decoding. At each
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decoding step, the next word is predicted by attending to the image features and fusing with the current
decoder state.

The results of the experiments, which were conducted as part of this thesis, indicate that our con-
ditional answer decoder proposes a viable alternative to the closed-world assumption of current VQA
systems. Through an ablation study we provide empirical evidence supporting the importance of re-
current grounding for model performance. Furthermore, our results demonstrate significant improve-
ment compared to baseline approaches and are competitive with the state-of-the-art for open-ended
visual questions.

1.3 Thesis Outline

The thesis is structured as follows:

e Chapter 2 provides the machine learning background. Specifically, we first introduce the basic
concepts of supervised machine learning and then focus on the deep learning background, that
is most relevant to our work.

e Chapter 3 summarizes the modality-specific approaches that we utilize. We describe the general
application of recurrent neural network for sentence encoding, the convolutional neural network
model that is used to extract image features and the sequence-to-sequence framework.

e Chapter 4 presents the main motivation behind our approach and the system architecture of the
proposed Grounded Seq2Seq model.

e Chapter 5 displays the setting and the results for the different experiments that were conducted.
We also provide some examples of the results of the proposed model.

e Chapter 6 concludes the thesis and proposes directions for future work.
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Chapter 2

Machine Learning Background

2.1 Machine Learning

Machine learning (ML) is the scientific study of algorithms that allow computers to automatically
extract knowledge through data. Computers can thus learn to perform tasks by generalizing from the
experience acquired from data rather than being explicitly programmed. ML is considered a subfield
of artificial intelligence (Al) that has strong ties to computational statistics and mathematical opti-
mization. The term Machine Learning was first introduced in 1959 by Arthur Samuel, a pioneer in
the fields of computer gaming and Al.

ML applications span a wide range of tasks associated with human intelligence. One active area
of research, that makes use of ML methods, is natural language processing (NLP). NLP is concerned
with developing computational algorithms to automatically analyze, understand and generate human
language. ML algorithms have also been a subject of computer vision (CV) research. CV deals with
building algorithms for computers to understand the content of digital images and solve problems
such as face recognition, object detection and image segmentation. Visual question answering, which
is the subject of focus for the present thesis, is a task at the intersection of NLP and CV. Therefore,
after providing a brief, general background on ML, we will focus on the basics of deep learning in the
context of both NLP and CV.

2.1.1 Types of Learning Algorithms

ML algorithms can be broadly divided into three categories depending on the information that is
provided for learning: supervised, unsupervised and reinforcement learning.

Supervised Learning In the setting of supervised learning, an algorithm learns a function from
input examples to target values given a set of data, for which the target responses are known. The set
of input-output pairs used for learning is usually referred to as the training dataset. Supervised models
are designed to derive a mapping function that approximates the implicit relationships in the training
examples with the aim of making accurate predictions about novel inputs. Supervised ML algorithms
can be grouped into two major categories based on the desired output:

e Classification, which refers to the problem of predicting outputs that are restricted to a distinct
set of values (classes). The target output is often called a label. If there are only two possible
classes, the task is referred to as binary classification. For more than two classes, each input can
be assigned exactly one (multi-class classification) or multiple labels (multi-label classification)
of these classes.

e Regression, which refers to the problem of estimating real-valued outputs within a predefined
range.

Supervised methods are very powerful and they are thus utilized in the majority of ML applications.
Many of the recent deep learning breakthroughs in tasks such as object classification, text generation
and machine translation, fall under this category. A more detailed background of supervised learning
algorithms will be presented in Sections 2.2-2.3.
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Unsupervised Learning Inunsupervised learning, algorithms learn to infer patterns within a dataset
without being presented with target values for each learning example. This leaves the algorithm to
discover the underlying structure or distribution of the data. Two of the most common unsupervised
learning problems are clustering and representation learning.

e Clustering is the task of finding groupings in the data based on a predesignated similarity mea-
sure such that objects that belong to the same group are more similar to each other than to those
in other groups. Clustering is often used for exploratory data analysis, which aims at providing
insight into a dataset by identifying patterns, trends and outliers.

e Representation learning comprises a set of techniques for discovering representations of raw
data that are conducive to classification or prediction tasks. This replaces manual feature en-
gineering, which can be a difficult and expensive process since it requires domain knowledge.
Moreover, unsupervised methods for representation learning often perform dimensionality re-
duction, i.e. finding representations of the input that lie in a low-dimensional space.

Reinforcement Learning In reinforcement learning, a software agent learns to perform a task in
interaction with its environment. The agent is presented with examples without labels, as in unsuper-
vised learning. However, learning is accomplished by trial and error using feedback from its actions.
Although both supervised and reinforcement learning use external signals to learn an input-output
mapping, supervised learning has access to the target outputs, while reinforcement learning uses pos-
itive or negative feedback to discover the actions that maximize its rewards. Reinforcement learning
algorithms are widely used in autonomous vehicles and logic games, such as the DeepMind’s Al-
phaGo, an Al system that managed to beat an expert at the ancient Chinese game Go.

2.2 Supervised Machine Learning Algorithms

The subject of this thesis, namely visual question answering, falls under the category of supervised
classification tasks. Consequently, the following sections will provide background primarily on su-
pervised learning methods.

Definition Given a dataset of N training examples D = {(x,, yn),n = 1, ..., N}, the task is to learn
a function f : X — Y mapping the input X to the output space Y. How well the function f fits the
training data, i.e. how accurately it maps X to Y, is quantified by a loss function L : Y x Y — R=0,
For instance, given a training example (x;, y;) the loss of predicting the value y; = f(x;) is computed
by L(9i, Yi)-

The accuracy of a learning algorithm is measured by its ability to make an accurate prediction y*,
when it is presented with a novel input * ¢ D. This is referred to as the generalization ability of the
algorithm.

The “no free lunch” (NFL) theorem [72] states that all optimization problem algorithms perform
equally well when averaged over all possible problems. This implies that no one algorithm works best
for learning all possible target functions. Note that the NFL theorem only applies to problems drawn
uniformly at random from the space of all problems, which is not the case for real-world problems.
This highlights the importance of inductive bias, i.e. making assumptions about the about the nature
of the target function, when selecting an algorithm for a particular problem. Some other factors to
consider when choosing a learning algorithm are accuracy, model complexity, training time, number
of parameters and number of features.

2.2.1 Generalization

Definition = Generalization refers to a model’s ability to perform well on new, previously unseen
inputs, drawn from the same probability distribution as the ones used to train the model.
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Figure 2.1: Graphical illustration of bias and variance. Figure from: [22]

The entirety of available data is typically split into two parts: the training set used for training the
model and the fest set reserved for evaluating the model. It is important to draw a distinction between
the training and the generalization error. The training error is calculated on the training data set and
it is minimized using an optimization technique. The generalization error is formally the expectation
of the model’s error were we to apply it to an infinite, previously unseen inputs. In practice, it is
approximated by the model’s error on the test set.

Ideally, we would like an algorithm to have a low training and generalization error. The prediction
errors of any ML algorithm contain a bias and a variance error term. In order to achieve good model
performance, the sum of these errors needs to be minimized. However, there is a trade-off between a
model’s ability to minimize the bias and the variance simultaneously.

The Bias-Variance Trade-Off

Suppose we have a training data set D = {(x,,yn),n = 1,..., N}. The training data is actually
generated by some function f, such that y = f(x) + €, where € is normally distributed noise with
zero mean: € ~ N (0, 0¢).

The goal of the learning process is to find a model f () to approximate f(x) as well as possible.
The expected squared prediction error at point « is:

Err[z] = E[(f(z) - f(2))*]
The prediction error can be decomposed into three terms: [35]:

Errle] = (B[f(2)] - f(2))> + E[(f(2) - E[f(2))?] + o

Err[x] = Bias® + Variance + Irreducible Error

e The bias is the difference between the average model prediction and the correct value. A model
with high bias pays very little attention to the training data and oversimplifies the model. It
always leads to high error on training and test data.

e The variance term corresponds the variance of the approximating function f over all the training
data D. It represents the model sensitivity to the choice of the training data D.

e The irreducible error is produced by the noise in the data and cannot be reduced regardless of
the learning algorithm.

33



Total Error

Underfitting
Zone

Overfitting
Zone

Variance

Optimum Model Complexity

Error

Bias2

&

Y

Model Complexity

Figure 2.2: The bias-variance trade-off with respect to model complexity. Figure from: [22]

Figure 2.1 presents a bulls-eye diagram to visualize the bias and variance in a 2-dimensional space.
The center ring is the target model that predicts correctly the output values. Moving away from the
bulls-eye the predictions become more and more inaccurate. The dots represent the training data
points.

The reason that there is a trade-off between achieving low bias and low variance, is that these states
are interrelated with model complexity (see Fig. 2.2). Low variance models tend to be simpler, while
low bias models are usually more complex. The trade-off becomes clear when considering the two
extreme cases. A model with zero variance, e.g. a constant function, cannot capture the underlying
pattern of the data. Such a simple model would probably have high bias and perform poorly on both
the training and the test sets. On the other hand, a model with zero bias, would have to be complex
enough to fit every data point in the training set. Although the training error would be zero, such a
model would have high variance and a high generalization error.

Underfitting vs. Overfitting

Under-fitting Appropriate-fitting Over-fitting

Figure 2.3: Approximating functions of increasing complexity from left to right. Figure from: [1]

The difference between the training and the generalization error is often called the generalization
gap. The goal of ML algorithms is to minimize both the training error and the generalization gap. In
order to achieve that we need to avoid the phenomenons known as underfitting and overfitting (see
Fig. 2.3). Whether a model will under- or overfit depends on the its complexity (see Fig. 2.2) and the
availability of sufficient training data.

Underfitting occurs when the model is not able to reduce the training error. An underfitted model
has not captured the relationship between the inputs and the target outputs. Underfitting is related to
low variance - high bias errors.

Overfitting occurs when the model is able to reduce the training error, but the generalization gap
is substantial. A model will overfit, if it is complex enough to adapt to the noise in the training data.
Overfitting is related to high variance - low bias errors. A common strategy to combat overfitting is
to withhold a subset of the training examples known as the validation set, on which different models
can be evaluated until we determine the appropriate model complexity.
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2.2.2 Logistic Regression

Logistic regression (LR) is a linear classification model. LR computes the probabilities for a classifi-
cation problems with two possible outcomes by applying the logistic function to the output of a linear
function f. The logistic function, also known as the sigmoid function, squeezes a vector into a range
of (0, 1). For a binary classification problem, the probability of one of the classes for a feature vector
x € R? is computed as:

1
P(y=1|m):m 2.1)
where f is a linear function with w; parameters:
f(x) = wo+wiz1 + ... +wyzy (2.2)

The probability of the other class would be P(y = 0|xz) = 1 — P(y = 1|«). Each input is assigned
the class label for with the posterior probability is greater than 0.5.

The parameters of the linear function are computed by minimizing the cross-entropy loss .J, which
is defined as:

J(w) = —[ylog(P(y = 1|z)) + (1 — y)log(1 — P(y = 1|x))] (23)

This optimization problem can be solved using the gradient descent algorithm, which will be described
further in Section 2.3.3.

2.2.3 Support Vector Machines

~

N /margin
S N

. Y 5
> >

X, ' X4

Figure 2.4: Left: Examples of hyperplanes that separate the data points. Right: The hyperplane cho-
sen by the SVM algorithm.

Support Vector Machines (SVMs) are linear classification models as well. Suppose we have a
binary classification problem and that the training data are linearly separable in the feature space.
One could choose any of such solutions as the decision boundary (see Fig. 2.4). The objective of the
SVM algorithm is to find the hyperplane with the maximum margin, i.e. to maximize the smallest
distance between the hyperplane and any of the samples [11].

A hyperplane in a d dimensional space can be described mathematically by the equation:

wlz+b=0 (2.4)

where € R? are the input features, w € R% and b € R are the parameters. Without the bias term
b the model would be limited to hyperplanes that go through the origin. We assume that the training
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Figure 2.5: Overview of an artificial neural network. Figure from [37].

data set with class labels y € {—1, 41}, that is linearly separable. There exists at least one choice of
the parameters w and b such that for the function f(x) = w”x + b we get:

f(x) >0 Vawithlabely = +1 (2.5)
f(x) <0 Vawithlabely = -1 (2.6)

That means that y - f(a) > 0 for all training data points @;. The distance of a point x from the
hyperplane is given by |f(x)|/ ||w||. We can scale w, so that the value of f(x) is equal to 1 for the
nearest points with y = 1 and equal to —1 for the nearest points with y = —1. The maximum margin
then becomes equal to 2/ ||w/|| requiring that:

f(®)>—1 Y withlabely = +1 .7)
f(x) < —1 Vawithlabely =-1 (2.8)

The task is now formulated as finding the parameters w, b such that

1
min J(w):§||'w||2 (2.9)
subjectto  y;(wl@; +b) > 1, Va; (2.10)

This is an example of a quadratic programming problem which is solved using the method of Lagrange
multipliers [11]. The SVM algorithm can be extended for datasets that are not linearly separable by
using the kernel trick, projecting data points into high-dimensional feature spaces, where they become
linearly separable.

2.3 Deep Learning

In order to give an overview of deep learning, we will first introduce the concept of artificial neural
networks.

Artificial neural networks (ANNs) are a computational learning paradigm loosely inspired by the
biology of the human brain [54]. The term “artificial neural networks” does not describe a particular
algorithm, but rather a framework to design and train ML models for a wide variety of tasks. ANNs
can process any kind of real-world data that is represented as a vector, be it text, image, sound etc.
That is because ANNs are able to extract features from raw input data and to be trained in an end-to-
end manner. This eliminates the need for engineering hand-crafted features, a process which requires
domain expertise and is often both task-specific and time-consuming.

Deep learning (DL) is used to describe the set of techniques for learning in deep neural networks
[54]. Deep ANNSs are typically composed of multiple layers of units. The attribute “deep” refers to
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Figure 2.6: The perceptron. The terms w; represent the neural weights and b represents the bias.

the number of layers in a neural network. The first layer is called the input layer and the last one is
called the output layer. Any layer between the input and the output layer is called hidden (see Fig 2.5).
ANNs with one hidden layer are described as shallow, while ANNs with two or more stacked hidden
layers are described as deep. Deep neural networks are able to learn a hierarchy of features, as the
features are transformed from one layer to the next, forming more and more complex representations.

According to the Universal Approximation Theorem [16], an ANN with only one hidden layer can
approximate any continuous function with arbitrary precision. More formally, given any continuous
function f(x) and some € > 0, there exists an neural network f(2) with one hidden layer such that
| f(x)—f(x)| < eVa. Even though shallow neural networks are universal function approximators,
in practice deeper networks are necessary to learn most tasks. The layer of a shallow network that
approximates f may be infeasibly large or such an ANN may fail to generalize correctly [24].

In the past decade, DL has experienced an explosive growth. However, the basic ideas around
DL started forming in the 1940s. There are two main contributing factors for the recent success of
DL. On the one hand, the availability of larger, labeled datasets has played a key role. Deep neural
networks require massive amounts of data for training. On the other hand, deeper networks and larger
datasets also require a lot of computing power. The efficient training of DL models was enabled by
the high parallelization of computations, that is achieved by multi-core hardware architectures such
as Graphics Processing Units (GPUs).

2.3.1 The Perceptron

The simplest possible type of ANNS is the perceptron [61]. The perceptron is a network with a single
unit that can be used to for binary classification problems assuming that the two classes are linearly
separable. The algorithm was developed in the 1950s by Frank Rosenblatt. Asitis illustrated in Figure
2.6, the perceptron first sums up the weighted inputs and a bias, and then applies to the weighted sum
an activation function such as the sign or the sigmoid function.

Suppose we have a training data set D = {(x,,yn),n = 1,..., N}, where ,, € R% and y,, €
{—1,1}. The two classes can be separated by a hyperplane with parameters w € R, b € R (see Eq.
2.4-2.6). To simplify the notation we will incorporate the bias term b to the weights w by expanding
the input and weight vectors such that

x=[1,x1,..2q7 (2.11)
w = [b,wy, ..wg]" (2.12)

Let M be the set of all data points missclassified by a perceptron with parameters w. The cost function
is defined as:
J(w)=> yw'= (2.13)
xeM
The cost function is non-negative and it becomes zero when the weights w correspond to a solution,
that is when no point in the dataset is missclassified. The algorithm for finding a solution is similar
to gradient descent. Starting with a random initialization of w, we iteratively update the weights in
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the direction of the negative gradient of the cost function J(w). However, the cost function is not
differentiable at all points in the weight space. As we adjust the weights w, there is a point where a
data sample x that was previously missclassified, is classified correctly by the new hyperplane. At
this point the number of samples in M changes and the gradient at this point is not defined.

To recapitulate the steps in the perceptron algorithm, starting with an initialization of the weights
w(0) we apply iteratively the following update rule:

w(t+1) =w(t) — a(t)x(t) (2.14)

where «(t) is the learning rate at iteration t, i.e. a constant in the range (0, 1] that controls the size of
the update. The update process is repeated until the cost function becomes equal to zero. It has been
proven that the perceptron algorithm converges to a solution after a finite number of steps [66].

The learning rate is an example of what is known as hyperparameters of ML algorithms, that
means parameters whose values are not learned by the algorithm itself. Hyperparameters are properties
of the algorithm that have to be set before the learning process and they are usually chosen empirically.

The perceptron can also be trained in an online fashion. This means that each data sample in D
is examined successively and in case it is misclassified the update rule (Eq. 2.14) is applied. Once
all data samples in D have been examined, we say that an epoch has been completed. This process is
repeated for a finite number of epochs.

Comparing the Perceptron to Logistic Regression and SVMs

In previous sections, we have described two more linear classification methods, namely logistic re-
gression (Sec. 2.2.2) and SVMs (Sec. 2.2.3).

Both the perceptron and the SVM algorithm aim at finding a hyperplane that classifies correctly
the samples from both classes. Nonetheless, the solution of the perceptron algorithm is not unique.
Since there exist multiple hyperplanes that separate the classes, the algorithm could converge to any of
them depending on the weight initialization and the learning rate. On the contrary, the SVM algorithm
produces the hyperplane that maximizes the distance of each sample from the decision boundary (see
Fig. 2.4). Another difference of these algorithms is that the perceptron can be trained online, while
the SVM requires all the training samples at once.

A perceptron with a sigmoid (logistic) activation function is equivalent to logistic regression.
Using the sigmoid function allows us to interpret the output of the perceptron as the probability of the
input belonging to one of the classes. The prediction is based on whether the output is greater than 0.5
or not. For instance, if the output of the perceptron is interpreted as the probability P(y; = 1|x;; w),
we can formulate the cross-entropy loss (Eq. 2.3) and train the model as we would a logistic regression
classifier.

The perceptron can be considered as the building block of feedforward networks, which we will dis-
cuss next.

2.3.2 Feedforward Networks

Feedforward networks, also called multilayer perceptrons (MLPs), consist of multiple stacked layers
of computational units, which are connected without any feedback loops. Each unit is a perceptron
that takes as input the output of the previous layer and implements a vector-to-scalar function. There
are typically no connections between units of a single layer. So, feedforward networks can represented
as acyclic graphs that compose together many different functions.

A feedforward networks is made of an input layer that accepts the input data, hidden layers that
process outputs from the previous layer and an output layer that provides the final output. The flow of
information from the input to the output is called forward propagation. The number of hidden layers
determines the depth of a model, while the number of the units in the hidden layers determines the
width of the model.
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(a) o(x) (b) tanh(x)

Figure 2.7: Left: The sigmoid function. Right: The tanh function.

The goal of a feedforward networks is to approximate a functions f that maps the input x to a
target y. Linear models, such as logistic regression and the perceptron, can learn only linear functions
in the form of y = w” x, where w are the model parameters. Feedforward networks, however, are not
limited to linear functions thanks to the use of non-linear activation functions. These models can learn
non-linear transformations ¢ of the input such that y = w” ¢(x; @). The function ¢ with parameters
0 is defined by the hidden layers of the network. Both @ and w are learned during training using a
gradient-based method.

Activation Functions

As noted above, the purpose of activation functions is to introduce non-linearities to the network.
Non-linear activation functions are a prerequisite for the universal approximation theorem. Without
non-linearities the model capacity would not grow as the depth of the model increases. Lets consider,
for example, a linear neural network with one hidden layer of two units w; and ws and one output
unit w, :

Yy = Wo1 (wlll'l +... wlnl‘n) + on(w21$1 + .. wWonTy
= (Worw11 + Weaw21) T1 + - -+ + (WorW1in + WeaWap) T (2.15)
= wWi1T1+ -+ WpTn

It’s obvious that a feedforward network without linear activation functions is equivalent to a linear
neural network without hidden layers. In this section, we present some of the most commonly used
activation functions for deep neural networks.

Sigmoid

The sigmoid function is defined as:
1

1+e®
As seen in Figure 2.7a, the sigmoid function squashes real-valued numbers to the range (0,1). In
particular, large negative numbers become 0 and large positive numbers become 1. This causes the
problem of vanishing gradients. In the saturation regions the gradient is almost zero, which means
that during training the weights will barely be adjusted. Moreover, the use of sigmoid activations
makes the learning process sensitive to the initialization of the weights. If the initial weights are too
large or too small, the small gradients will hinder the learning.

o () (2.16)

Hyperbolic tangent

The hyperbolic tangent (tanh) function is defined as:

tanh(x) = S (2.17)

eCE + e—$
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(a) f(z) = max(0,x) (b) f(z) = max(0.1z, x)

Figure 2.8: Left: The ReLU function. Right: The leaky ReL U function.

The tanh function (see Fig. 2.7b) is similiar to the sigmoid function, but it is zero-centered. Tanh
squashes real-valued numbers to the range (—1, 1). In fact, the tanh function is a scaled sigmoid:

tanh(x) = 20(2x) — 1 (2.18)

Therefore, the tanh activation function suffers from the vanishing gradient problem as well.

Rectified Linear Unit

The rectified linear unit (ReLU) function is defined as:
f(z) = max(0,x) (2.19)

This ReLU (see Fig. 2.8a) is the most common activation function in feedforward neural networks.
The popularity of the ReLU is attributed to the fact that it is a piecewise linear function, which facili-
tates the optimization with gradient-based methods. In addition, ReL.Us are computationally efficient
compared to sigmoid or tanh activations, which involve expensive operations with exponentials. Al-
though ReLUs do not suffer from the vanishing gradient problem, a complication that can arise from
their use is the problem of the “dying ReLU”. A ReLU dies when the weights are updated in such
a way that the output of the unit becomes zero for any input. This means that the gradient flowing
through the unit will be zero and the weights will not be updated. As a result, that unit will not activate
(i.e. become non-zero) from that point on. Another drawback of ReLUs is that the output value is not
bound, which can lead to activations blowing up in deep networks.

In order to overcome the problem of the “dying” ReLU, the leaky ReLU was proposed [52]. The
leaky ReLU (see Fig. 2.8b) has a small slope instead of becoming zero for negative values and it

defined as:
ar ifx <0

flz) = { r  ifr>0 (2.20)

where « is a small positive constant.

2.3.3 Training Artificial Neural Networks
Loss Functions

ANN:Ss are trained using an optimization method, which aims to find the set of model parameters that
minimizes the prediction error. The prediction error of a model with w parameters is estimated by a
loss function J(w). The loss function computes a non-negative value that measures the inconsistency
between the predicted and the target output.

Most deep ANNSs are trained under the framework of maximum likelihood estimation (MLE).
MLE is a method of estimating the best model parameters w by maximizing the likelihood function,
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or equivalently by minimizing the negative likelihood. Suppose we have a training dataset D =

{(n,yn),n =1,..., N} The maximum likelihood estimate is defined as:
N
w = arg maxH P(y = yi|zs; w) (2.21)
[

In practice, it is common to take the logarithm of the likelihood function. This monotone transforma-
tion makes the computation of the derivatives more convenient without changing the maxima:

N
w = arg maXZ logP(y = yi|zi; W) (2.22)

i=1

Under the MLE framework the loss function estimates how closely the distribution of predictions
matches the distribution of the targets in the training data. This dissimilarity between the empirical
distribution p and the predicted distribution g can be expressed by the cross-entropy H. The loss
function is computed as:

N
J(w) = H(p,q) = —% > logP(y = yilai; w) (2.23)

Note that the performance of an ANN on a particular task is typically evaluated by a measure P
different that the loss J. This measure, however, is often unsuitable for gradient-based optimization.
As a result, we minimize a carefully selected loss function and expect that by minimizing the loss we
will optimize the performance measure P.

Suppose we have a classification task with K possible classes. We want the output layer to cal-
culate the probability distribution over the K classes. In order to convert the values z; of the output
layer to probabilities, we use the sofimax function. The softmax function is defined as:

e?

SOftmaX(Zi) = Kizz (224)
j=1¢"

The values z; are first exponentiated to become positive and then normalized so that the sum of the
output values for all classes adds up to 1. The softmax function can be seen as a generalization of
the sigmoid function, which is often used to compute the probability distribution in case of a binary

classification problem.

Optimization

Training an ANN is essentially the optimization problem of finding the set of model parameters w that
minimizes the average loss function J(w) over the training data. This problem is usually addressed
using gradient descent. Gradient descent is an iterative method. Parameters w are randomly initialized
and at each iteration they are adjusted by taking a step in the parameter space following the direction
of the negative gradient of the loss function V.J(w). The biggest difference between training a linear
model like the perceptron and a deep neural network is that the non-linearity of deep models causes
the loss surface to become non-convex (see Fig. 2.9). This means that there is no guarantee that a
gradient based method will converge to a global minimum, where the loss function is zero. In fact,
provably solving the optimization problem of deep neural networks belongs to the class of an NP-
hard problems [36]. That means that there probably exists no algorithm that finds the optimal set of
parameters for a deep NN in polynomial time.
The parameters w at the i-th iteration are updated according to the rule:

Wiyl = W; — aVJ('w,) (2.25)
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Figure 2.9: Left: The surface of a convex loss function. Right: The surface of a non-convex loss
function. Figure from [74]

where « is the learning rate. The gradient defines the direction in which we should update the weights,
but it does not provide any information as to the magnitude of the update step. As we saw in the
description of perceptron algorithm (see Eq. 2.14), this is controlled by the learning rate. The learning
rate is one of the most important hyperparameters in training ANNs. On the one hand, if the learning
rate is too big, Gradient Descent may overshoot the minima and bounce back and forth on the loss
surface. On the other hand, if the learning rate is too small, it may take too long to reach a local
minimum, or the algorithm might get stack at a suboptimal local minimum.

An analogy that is often used to provide some intuition for the Gradient Descent algorithm is that
of a blindfolded person trying to move down a valley. Imagine that every point in a valley corresponds
to a setting of the parameters and the height at each point corresponds to the value of the loss function
for that particular setting of the parameters. In order to reach the bottom of the valley without knowing
its exact location, one could assume that the best strategy is to take steps in the direction where the
slope of the ground is the steepest. This is analogous to updating the model parameters in the opposite
direction of the gradient.

Backpropagation

In order to efficiently calculate the weight updates for a deep neural network, we employ the back-
propagation algorithm [62, 46]. Backpropagation is a recursive method that uses the chain rule to
compute the partial derivatives of the loss at each layer of weights. Starting with computing the gra-
dient of the output layer and moving towards the input layer, the backpropagation algorithms avoids
repeating computations by caching intermediate results.

Variants of Gradient Descent

We can categorize gradient descent variants into three groups based on the amount of data used to
compute the gradient of the loss function.

e Batch gradient descent computes the loss function by averaging the loss for each datum the
entire training set. For large datasets this can be very computationally expensive.

e Stochastic gradient descent (SGD) [12] updates the parameters using the gradient of the loss
at a single data point at a time. Although it is faster than batch gradient descent, it can lead to
noisy gradients and cause the loss function to fluctuate.

e Mini batch gradient descent falls in between the batch and the stochastic variants. The size
of a batch is a learning hyperparameter that is set empirically. Larger batches provide a more
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accurate estimate of the gradient, while the noisier estimate of smaller batches can help prevent
overfitting. Batches can be processed in parallel, which speeds up the training process. The
size of the batch is often limited by the available memory of the hardware. In practice, this is
the most commonly used variant of gradient descent.

Challenges of Gradient Descent

Two common issues that arise when dealing with the optimization of a non-convex loss function
[24] are local minima and saddle points. As the optimization is based on the gradient, there is a
danger that the algorithm will reach a suboptimal point and not be able to escape it as the gradient
becomes really small. Local minima are problematic, if they have a high loss in comparison to the
global minimum. However, research suggests that saddle points are actually much more common and
difficult to overcome [18], as they tend to be surrounded by plateaus of the loss surface. The noise
that is introduced by stochastic gradient descent helps escape local minima and saddle points.

In addition, in the last few years a number of variants of SGD have been proposed to overcome
these optimization challenges. Adagrad [20] adapts the learning rate to the parameters. This means
that parameters associated with frequently occurring features will have a smaller learning rate than
more rare ones. As a result, Adagrad works particularly well for sparse datasets. RMSprop is an
unpublished modification of Adagrad introduced by Geoffrey Hinton. It was developed to counteract
the fast decay of the learning rate by accumulating only recent gradients for the scaling of the learning
rate. Lastly, Adam [40] also computes an adaptive learning rate for each parameter. On top of keeping
arunning average of past gradients withing a fixed-size window like RMSprop, Adam also utilizes the
running average of the past squared gradients. In recent years, Adam has become the default optimizer
for most applications.

Regularization

Regularization refers to a set of techniques used during training to prevent overfitting. Overfitting is a
prevalent problem in deep learning. The large number of parameters, that is often in the millions, can
lead to deep neural networks memorizing the training data. During training, as the model parameters
are updated the loss computed over the training data diminishes. However, if the model capacity
is high enough, after a certain point the parameters start adjusting to the noise in the data and the
generalization error rises (see Fig. 2.10).

Most regularization strategies aim at balancing the bias-variance trade-off. In the context of model
error, that means achieving a lower generalization error at the expense of increasing the training error
[24]. One way to achieve that is by regulating the model capacity. However, that does not necessarily
mean that the generalization gap can be closed simply by determining the appropriate number of model
parameters. Since we do not have access to the underlying distribution of the data, the best strategy
usually is to allow the model to have access to highly complex function families and use regulariza-
tion to control the complexity. Some regularization techniques attempt to improve generalization by
introducing prior knowledge or encoding a preference for simpler models. Other methods, known as
ensemble methods, combine multiple models to increase the overall robustness.

In this section, we will present some common regularization techniques.

Parameter Norm Penalties

A standard approach for limiting the complexity of a deep neural network is to penalize the norm
of the model parameters. This is achieved by adding to the cost function J(w) another term Q(w)
known as the regularization term. The overall loss function then becomes:

J (w) = J(w) + AQ(w) (2.26)

where ) is a constant in the range [0, 1] that controls the strength of the regularization. The two main
norm penalties are the following:
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o [ regularization:

Qw) = [wl; =) [wi] (227)
The update rule of gradient descent defined in Eq. 2.25 becomes:

L, regularization encourages the network to become sparse. At each iteration, we subtract a
constant factor from all weights with a sign equal to sign(wj; ). This can eventually driving some
of the network weights to zero. This property acts as a feature selection mechanism.

e Lo regularization, also known as weight decay:

1
Qw) = o [|wll; (229)

The update rule of gradient descent defined in Eq. 2.25 becomes:
w1 = w; — a(VJ(w;) + dw;) (2.30)

At each iteration we subtract from the weights an additional term that is proportional to their
magnitude. This causes the weights to decay over time, hence the name “weight decay”. Large
weights are penalized more severely than small ones. Consequently, Lo regularization encour-
ages the weights of the network to remain small.

Sometimes L.; and Lo regularizers are combined. This is known as elastic net regularization. The
contribution of each regularizer is controlled by the hyperparameter A € [0, 1] as follows:

A2
Qw) = (1 =A) wlly + 5 [lwl (2.31)
Early Stopping
Error“
Validation
Training
early stopping Epechsr

Figure 2.10: Overfitting occurs when the training error continues to decrease, while the generalization
error rises. This is combatted by applying early stopping. Figure from [4]

Early stopping is a very useful technique for preventing overfitting. As mentioned above, after
a certain number of iterations the model starts to learn the noise in the training data. It is therefore
important to monitor at each epoch the performance of our model on the validation set. Early stop-
ping terminates the training process as soon as the validation loss stops decreasing. In practice, the
validation loss may start decreasing again after a few epochs. We usually allow the model to continue
training for a predefined number of epochs, which is often referred to as patience. In essence, early
stopping is tuning the hyperparameter number of epochs.
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Figure 2.11: The effect of dropout during training. Figure from [64]

Data Augmentation

One straightforward way to reduce the risk of overfitting is to use more training data. Collecting
large amounts of labeled training data can be costly. Instead, one can create synthetic data from the
already available dataset. This strategy is called data augmentation. The data augmentation methods
that can be applied to a training dataset in order to create new examples depend on the specific do-
main. Data augmentation has been utilized successfully for image classification. It is common to use
small transforms of the original images that preserve the label of each sample. Such transforms can
include flipping, rotating, rescaling and cropping of the image. For the natural-language domain data
augmentation is less common. Nonetheless, one way to augment text data is synonym replacement.
In general, data augmentation can also be achieved injecting small random noise to the data. This it
helps improve the robustness of neural networks.

Dropout

Dropout [64] is one of the most frequently used regularization techniques for deep learning. It is
a simple yet effective method. During training each unit is dropped with with probability p > 0.
Being “dropped” refers to a unit being ignored during both the forward and the backward pass of an
iteration (see Fig. 2.11). At test time, all units are employed, but they have to be scaled by a factor
1/p to account for the missing activations during training. Dropout prevents units from forming co-
dependencies amongst each other.

Suppose we have a model with IV units, each of which can be dropped. Training a neural network
with dropout can be seen as training a collection of 2V subnetworks that share some of their parame-
ters. As a result, dropout can be seen as a form of ensembling an exponential number models without
the requirement of training and evaluating multiple ones.

2.3.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of neural networks that process sequences of input
data. Unlike feedforward networks that operate under the assumption that all training instances are
independent, RNNs produce their output taking into consideration information presented previously
presented to them. [24]. As it is shown in Figure 2.12, RNNs have loops that allow the information
to be passed from one step to the next. Formally, given an input sequence a1, 2, ....x¢, the hidden
state of an RNN unit with parameters 6 is computed as:

h(t) = gn(Whph(t —1) + Wppz(t) + b)

y(t) = gy(Wpyh(t)+c) (2.32)
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Figure 2.12: Left: A recurrent neural network with one input and one output. Right: A recurrent
neural network unfolded for a sequence of length t.

where g5, and g, are activation functions. The weight matrices W}, and W}, can be regarded as
filters that determine the importance of the input and the previous hidden state respectively. At each
step the output is computed using the same weight matrices and biases. Parameter sharing across time
steps improves generalization in two ways. It allows the processing of sequences of variable lengths
and and the extraction of information that can occur at different positions within a sequence (e.g. I
went to the office on Monday.”, ”’On Monday [ went to the office.”).

The loss L is computed once the entire input has been processed as the sum of the losses L(t) at
each time step:

L=Y L(t)==)log(y(t) (2.33)

In order to optimize an RNN, the gradient needs to be propagated not only through the depth of the
model but also through previous time steps. This is known as back-propagation through time [71].
When optimizing RNNs a common issue is that these long-term dependencies cause the gradients to
become either very large (explode) or very small (vanish). The problem of exploding and vanishing
gradients is mitigated by special types of RNNSs, such as the Long Short-Term Memory networks
(LSTMs), which we will introduce in the following section.

Some variants of RNNs include the following:

e Deep RNNs: By stacking simple RNNs on top of each other we can build deeper networks that
are able to capture the hierarchy of the input data.

e Bidirectional RNNs: Bidirectional RNNs are based on the idea that the output at time ¢ may
depend on both previous and future information in the sequence. The output of each unit is
a combination (sum, multiplication, concatenation) of the outputs of a forward RNN, which
processes the sequence normally, and a backward RNN, which begins processing the sequence
from the end. There are no connections between the hidden states of the two RNNSs.

e Sequence-to-Sequence RNNs: This architecture enables the mapping between sequences of
variable lengths. The encoder network maps the input sequence to a fixed-sized vector, which is
fed into the decoder network to generate the output sequence. Sequence-to-sequence modeling
will be discussed in further detail in Section 3.3.

Long Short-Term Memory Networks

Long short-term memory (LSTM) networks were introduced by Hochreiter and Schmidhuber [31] in
order to combat the problem of exploding or vanishing gradients during the optimization of RNNs.
LSTMs are able to effectively learn long-term dependencies and they have been applied successfully
to a wide range of problems including speech recognition, text classification and image captioning
tasks.
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Figure 2.13: The LSTM cell.

The building block of an LSTM network is called a “cell” (see Fig. 2.13). An LSTM cell makes use
of of three gating units in order to determine the flow of information, and control which information
to preserve in its internal states and which to forget. In particular an LSTM cell (see Fig. 2.13)is made
of:

o the forget gate f;, which determines the information that is going to be erased from the cell state.
Information from the current input x; and the previous hidden state h;_; is passed through a
sigmoid activation function in order to scale the values between 0 and 1. Values closer to 0 will
be forgotten, while values closer to 1 will be kept in the cell state,

o the input gate i¢, which controls which values of the input will be carried over to the new cell
state,

o the output gate o, which controls how much of the cell to reveal at the output based on the
current input and previous hidden state.

o the memory cell c;, which is updated based not only on past information but also on current
input. The past information is filtered by the forget gate f;, while the new information is filtered
by the input gate iy,

o the hidden state h; by which the LSTM encodes the sequence up to the time step .

The set of equations that define LSTM cell are :

fi = O'(Wf$t + Ufht71 + bf)

it = oWz +Uihy_1 +b;)
oo = o(Woxy+U,hi—1+b,) (2.34)
Ct = ft ®ci—1 + ’I:t ® tal’lh(Wg:l?t + Ught—l + bg)

h; = o;®tanh(¢)

where x; is the input at time ¢, h;_; is the output of the cell at ¢ — 1 and the symbol ® denotes the
element-wise multiplication between the vectors.

2.3.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of feedforward networks that process structured
data using the convolutional operation. Although, drawing analogies between the function of artificial
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Figure 2.14: Full architecture of a CNN taken from [56]

and animal neural functions can be spurious, CNNs are a standout example of machine learning driven
by neuroscientific insights. The first CNNs were inspired by the visual cortex of animals: Each of
the cortial neurons responds only to stimuli coming from a restricted region, namely its receptive
field. There are two types of cortial neuron cells, ones that detect basic shapes with a particular
within a small receptive field and ones that have larger receptive fields and more spatially invariant
responses. Consequently, CNNs were initially applied mostly to computer vision tasks. However, in
recent years they have demonstrated competitive results in additional domains, such as speech and
text. In general, CNNs can process any data that exhibit a clear grid-structure. For instance, images
are typically encoded as 3-dimensional volumes of a red, a green and a blue channel (RGB encoding).
Sound can be represented visually as a spectrogram and text can be viewed as a set of consecutive
n-grams (sequences of n contiguous words).

A layer is characterized as convolutional, if its weights are applied to the input using the operation
of convolution instead of matrix multiplication. From a mathematical viewpoint, a convolution of two
functions is the integral transform that measures how much one function modifies the other, as the first
one passes over the latter. Given an input function x and a weighting function w the convolution x *w
is defined as:

s(t) = z(t) xw(t) = /a:(h)w(t — h)dh (2.35)

The weighting function is often called a filter or kernel. The output of the convolution is also referred
to as a filter/feature map. As we have seen above, the output of a fully-connected layer with input x
and weights w can be expressed as w’ . CNNs, conversely, perform discrete convolutions of the
inputs and weights. In practice, most DL libraries do not flip the kernel in favor of simplicity. The
implemented function is the cross-correlation:

s(t) = a(t) xw(t) =Y z(t + h)w(h) (2.36)

h

The size of the kernels is usually much smaller than the input. This allows CNNs to learn hierarchies
of patterns. The first layers of CNNs extract simple, local patterns that are gradually assembled in
more abstract and complex ones moving deeper into the network.

Another key difference between fully-connected and convolutional layers is that while fully-
connected layers can be broken down into two stages, the affine transformation and the activation
function, convolutional layers are composed of the following three:

e Convolution stage: The first step is to apply conlvolution between the input and a set of kernels.

e Detector stage: The second step involves the use of a nonlinear activation function. A common
nonlinear function used at this stage is the ReLU 2.19.

e Pooling stage: Finally, in the pooling stage the features are downsampled. Each feature in the
output feature map corresponds to a summary statistic of a neighborhood of features.

The pooling operation is integral to the conception of CNNs as it enables successive layers to process
representations of increasing fractions of the original input. In addition, pooling layers reduce the size
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Figure 2.15: Sparse connectivity and parameter sharing in convolutional layers (top) in comparison to
fully connected layers (bottom). The shading of the units is indicative of the connectivity
of the units. Unit 3 is shaded along with the units of layer ¢ 4+ 1 that are affected by
the value of x3. The bold edge is an example of parameter sharing in CNNs. In fully
connected layers, each value is only used once. Figure adapted from [24]

of the output which also helps to reduce the number of model parameters. This leads to an increase
of the computational efficiency and prevents overfitting. The pooling process is somehow similar
to the convolution described before in terms of operating on feature neighborhoods, but instead of
using a learned filter, it uses a hardcoded function. Two of the most common pooling operations are
max- and average-pooling. As the names suggest, max-pooling selects the feature with the maximum
value within a region, while average-pooling computes the average of a neighborhood of features. In
practice, max-pooling have been found to perform better.

Pooling layers achieve invariance to small transformations of the input. If we pool over regions
of the feature maps, the learned representations become translation invariant. That means that if we
apply a small shift to the input, the output of the pooling will be approximately the same. This is very
helpful for cases, where it is more important to know if a feature exists rather than its exact location. If
we pool over features from separate feature maps, the learned representations can become invariant to
transformations of the input. For example, max-pooling over image features helps grants invariance
to rotations [24].

CNN display three important properties: sparse connectivity, parameter sharing and equivariant
representations.

Sparse Connectivity In fully-connected layers, each output is computes as a function of all the
input values. However, this leads to the number of parameters quickly blowing up when the input is
very high-dimensional. CNNs overcome this problem through sparse interactions. That means that
each output neuron will only be connected to a local region of the input neurons (see Fig. 2.15).
The extent of the connectivity is controlled by the size of the kernel, which is a hyperparameter often
referred to as the receptive field of the neuron. Sparse connectivity constraints the number of model
parameters, which reduces memory requirements as well as the risk of overfitting.

Parameter Sharing Another benefit of using the operation of convolutions it that it enforces param-
eter sharing. It is motivated by the assumption that it would be desirable to extract similar features
along different input regions. The kernel can be thought as a filter sliding across the input, so that
each element of the kernel is applied to each element of the input. Figure 2.15 visualizes the property
of parameter sharing present in convolutional layers (top graph), where the bold edge represents a
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weight being used at each input node. Parameter sharing, also called weight tying is a technique as it
significantly limits the number of model parameters.

Equivariant Representations  Another effect of parameter sharing in CNNs is that the learned
representations are equivariant to translation. A function f is equivariant to a function g if f(g(z)) =
g(f(z)). That means that applying a convolutional layer to a translated input, will yield the same
representation as translating the output of the convolution. This property explains why a kernel detects
a particular pattern across the input. In order to detect multiple features at each layer we do not use
just one kernel but a set of them.

2.3.6 Attention Mechanisms

In recent years, attention has been established as a valuable tool for deep learning models. Originally,
attention was used in Neural Machine Translation to dynamically attend over the representation of
the input sequence and predict the next word in the translated sequence [8]. Since then attention
mechanisms have been applied to multiple tasks and domains yielding state-of-the-art results. This
success motivated the design of the Transformer [69], a type of network for processing sequences
based entirely on self-attention.

Attention can be interpreted as focusing on the most relevant elements of the input by computing
weights of importance for their representations. For instance, these elements could be regions in an
image or words in a sentence. The importance of each element is typically measured by their alignment
with a query vector q.

Formally, given a set of N input vectors x1,...,x, and a query vector g the attention module
uses an alignment function to score the relevance of each x; to the query g. The alignment scores s;
are then normalized using the softmax function to produce attention weights o, . . ., a;, that sum to
1. The final representation & is represented as the average of the inputs a; weighted by «;.

s; = align(q, x;) (2.37)
eSi
a; = softmax(s;) = W (2.38)
=) am (2.39)
i

The score s; for each vector x; is a scalar computed with an alignment score function. Table 2.1
summarizes a collection of popular alignment score functions.

Name Alignment Score Function
General [50] s Weax;
Additive [8] v, tanh(W,[s; z;])
Dot-Product [50] sta;

Scaled dot-product [69] L\/g’
Content-based [28] cosine(s, x;)

Table 2.1: Types of alignment score functions that take as input the representations x; € R" and the
query q € R,
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Chapter 3

Multimodal Learning

Visual question answering is the task of predicting an answer to a natural-language question regarding
an image. To tackle this task, the first step is to extract representations from both the textual and visual
inputs. In this section, we will present the methods used to represent textual and visual information
in the scope of this thesis and we will introduce the concept of sequence-to-sequence modeling.

3.1 Natural Language Processing

Natural language processing (NLP) is a subfield of Al, that specializes in automating the analysis,
understanding and generation of natural -i.e human- language. The objective of NLP is to enable the
interaction between humans and machines in natural language. However, this has been proven to be a
rather demanding goal, as human language is abstract, complex and highly diverse. The meaning of a
sentence can vary according to the interpretation of ambiguous words, syntax or tone. For example, the
word “python” can refer either the reptile or the programming language [13], while the phrase “That’s
just what I needed today!” can express either a negative or positive sentiment depending on whether
or not it is used sarcastically. In recent years, NLP has seen impressive progress across all core tasks,
but especially considering the learning of word representations. This progress has been marked by the
replacement of high-dimensional sparse vectors with low-dimensional distributed representations.

Word Embeddings

The simplest way to represent a word as a vector would be to encode it by its index in the vocabulary.
This can be expressed as a vector with dimension equal to the vocabulary size which is marked with
a ‘1’ at the position corresponding to the word index and is filled with ‘0’s everywhere else. This is
called a one-hot encoding. One-hot encodings have several disadvantages. First of all, the size of these
vectors scales linearly with the size of the vocabulary. This is associated with a problem known as
the curse of dimensionality [9], which refers to overfitting occurring when the feature space becomes
sparse. Moreover, one-hot vectors encode no information about the similarity of words. For instance,
given that one-hot vectors represent words as independent unit vectors, the word “dog” would be
considered equally dissimilar to the words “cat” and “car”. Nowadays, these issues have been resolved
by the use of word embeddings, which map words to vectors in a low-dimensional, continuous space.
This allows words the semantic relationship of words to be captured by their relative positioning in
the embedding space.

Most models for learning word embeddings are motivated by the Distributional Hypothesis [21],
which states that words that appear in similar contexts have a similar semantic meaning. The context
of a word typically refers to the set of words that occur within a window around it. Learning word
embeddings is typically posed as the unsupervised task of predicting a word based on its context. So
for example, one expects to find the words “dog” and “cat” in similar contexts as they both refer to
four-legged, popular pets. However, the words “dog” and “car” would co-occur significantly more
rarely in the same context. As a result, the embeddings of “dog” and “cat” will be closer to each other
than to the embedding of “car”.

The Word2Vec model was proposed in 2013 by Mikolov et al. [53] and it has since become one of
the most widely used models for learning word embeddings. It is a computationally efficient method
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Figure 3.1: The two training models of Word2Vec. Figure from [53]

based on training a shallow neural network. It come in two versions: the Continuous Bag-of-Words
model (CBOW) and the Skip-Gram model. The CBOW model learns to predict the current word
from its context, while the Skip-Gram model learn to predict context words from the current word.
The context used during training is determined by the size of the window. Large windows tend to
capture more semantic similarities, while smaller windows tend to capture more syntactic similarities.

Word2Vec embeddings have been found to preserve semantic relationships which allow basic
vector arithmetic. For example, the vector operation king — man + woman yields an embedding
close to the embedding of queen. However, one limitation of Word2 Vec is that it takes into account
co-occurencies only within a window around each word. Global Vectors for Word Representation
(GloVe) [58] overcomes this problem by combining global co-occurrence statistics and local context
window methods. GloVe computes a co-occurrence counts matrix and then learns a factorization of
this matrix such that the low-dimensional representations will preserve linear relations between words
just like Word2Vec.

Word embeddings are trained on large, unannotated corpora and can provide meaningful and dense
representations of words. It is a common practice to use pretrained word embeddings instead of one-
hot vectors as inputs for downstream NLP tasks. This helps reduce the number of trainable parameters,
which is especially important for supervised tasks where only a small number of annotated data are
available. If the amount of available data is large enough, one can use the pretrained embeddings to
initialize the input layer and allow it to be fine-tuned for a specific task during training.

Sentence Representations

The Bag of Words (BOW) model is arguably the simplest algorithm for computing a sentence repre-
sentation. In BOW, a sentence is represented as an aggregation -typically the average- of its words
disregarding completely the order of the words within the sentence. CBOW is a variation of this
model, where words are represented by their embeddings. Although very simplistic,c CBOW is a
strong baseline for many text classification tasks.

Following the success of word embedding models, there have been efforts to train models that
encode entire sentences in fixed-size, low-dimensional vectors. The motivation is that these sentence
embeddings will be robust enough to be utilized as off-the-shelf text features. Skip-thought [42] vec-
tors have been an attempt at this direction. The Skip-thought model emulates the Skip-gram Word2Vec
model. However, instead of predicting the context words, Skip-thoughts predict the surrounding sen-
tences of the current one.

Nonetheless, the standard approach for most NLP tasks is to train a recurrent neural network end-
to-end. Suppose we have a sentence wi, ... wr that we want to classify. At time step ¢ the input
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Figure 3.2: Visualization of 96 kernels of size 11 x 11 x 3 from the first convolutional layer [44]. The
first layer extracts low-level information about edges of different orientations and colors.

word w; passes through the embedding layer and the word embedding e is then fed to the RNN. The
sentence is represented by the hidden state of the RNN at the last time step of the sequence. Finally,
the sentence representation is fed to a classifier implemented as a series of fully-connected layers. In
order to encode both future and past information at each time step, one can use a bidirectional rnn and
combine the hidden states through concatenation. Moreover, one can take the average or the max of
the hidden states at each time step, or add a self-attention layer on top of the RNN.

3.2 Convolutional Neural Networks for Images

Images are usually represented as 3-dimensional volumes H x W x C, where H is the image height,
W is the width and C' is the number of channels. RBG images have three channels defining the red,
green, and blue color components of each individual pixel. As one can expect, these representations
are very high dimensional. Some of the most widely used CNN architectures accept images of size
224 x 224. That means that if we were to process an image of this size using a fully-connected network,
the number of weights for a single neuron in the input layer would be 224 % 224 % 3 = 150.528. This
explains why the properties of sparse connectivity and parameter sharing of CNNs are imperative for
Computer Vision tasks.

Transfer learning has been applied with remarkable success to computer vision problems. Train-
ing deep CNNs from scratch requires a lot of resources and it can take up to several weeks. As a
result, people tend to make use of networks pretrained on a large dataset. Two common pretraining
tasks are image classification and object detection. Although similar, these two tasks are distinct.
Image classification aims at determining correctly the label of an image, while object detection aims
at identifying the labels as well as the location of multiple objects in an image. Pretrained CNNs are
used in one of the following scenarios:

o Fixed feature extraction: The image features are extracted by taking the output of an intermedi-
ate layer of the pretrained CNN. In order to obtain a global image representation, it is sufficient
to remove the output layer that produces scores for candidate labels and use the rest of the CNN
as the feature extractor. Taking the output of earlier layers results in a feature map, i.e. a set of
features representing regions of the input image.

e Fine-tuning: If the dataset of the target task is large or the data differ substantially from the
original ones, it is beneficial to fine-tune the pretrained model. In this scenario, the weights of
the pretrained model are used as an initialization. During training, these weights are usually
updated using a smaller learning rate than randomly initialized ones.

As we described in Section 2.3.5, the feature extraction part of CNNs is composed of stacked con-
volutional, activation and pooling layers that transform one volume of activations to another. CNNs
are thus able to learn hierarchies of patterns in the data. Kernels detect simple and generic features
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Figure 3.3: Overview of the Faster R-CNN architecture. Image from [60]

in the earlier layers, which get more and more complex as the layers get deeper. Figure 3.2 shows an
example of kernel weights if the first layer of a CNN trained for object classification [44]. We can see
that the first layer recognizes low-level features such as edges and colors.

CNN architectures for object detection differ slightly from regular CNNs in order to account for the
localization of objects in the image. An object detection system must output a tuple for each detected
object: the class scores and the bounding box coordinates. Since each image contains an arbitrary
number of objects, most models determine a group of region proposals and then use a classifier to
compute the probability of an object being present in that region. The regions proposals are generated
by applying multiple anchor boxes at different positions of the image. Anchor boxes are basically
bounding boxes of different shapes and sizes. One of the most efficient models for object detection is
the Faster R-CNN [60], . The steps of this model are the following:

e An input image is passed through a convolutional layers to obtain the feature map of the image.

e A Region Proposal Network (RPN) is applied on the feature map. The RPN uses the features
of each anchor box to compute an “objectness” score that expresses the likelihood of an object
being present in the region specified by the anchor.

e The regions proposed by the RPN have different sizes. As a result, the feature maps corre-
sponding to these regions also have varying sizes. To obtain representations of a fix size for all
regions, a Region of Interest (Rol) pooling layer is applied to the feature maps. Unlike a Max-
Pooling layer, ROI pooling splits the feature map into a fixed number of regions, and keeps the
maximum value in every region. Therefore, the size of the output is the same regardless of the
size of input.

o Finally, the features of the proposals are passed to a classifier that outputs class label probabil-
ities and to a linear regression layer that refines the coordinates of the bounding box.
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Figure 3.4: The sequence-to-sequence architecture. The model takes as input the sequence “ABC”
and generates the sequence “XY”. The first input to the decoder is the start-of-
sequence token <SOS> and the generation halts after outputting the end-of-sequence
token <EOS>. Image adapted from [65]

3.3 Sequence-to-Sequence Models

Sequence-to-sequence (seq2seq) learning is a framework for mapping input to output sequences of
different lengths. The challenge of a target sequence not having the same length as the inputs particu-
larly common in Machine Translation. For example, the sentence “How are you doing?” in English is
translated to “mmg eicat?” in Greek. The English sequence is made up of 4 words, while the Greek one
is made up of just 2. It is obvious that there does not exist a one-to-one mapping from the sequence
of one language to another. It is thus impossible to use a regular RNN to translate each word from the
source language to a word in the target language. This motivated Sutskever et al. [65] to develop the
seq2seq neural architecture. Since then seq2seq models have been applied to multiple tasks such as
speech recognition [15] and video captioning [70].

The general seq2seq approach is straightforward. The network has two parts — an encoder and a
decoder (see Fig. 3.4). The encoder maps the input sequence to a fixed dimensional vector ¢ which is
utilized by the decoder this vector to generate the output. Formally, the task of generating the output
Y1, - - - Yy sequence given the input sequence x1, . . . x7» can be expressed as:

T/
P(y17 B ~?JT"3317 s '$T) = HP(yt‘c7 Yi, - - 'yt—l) (31)
t=1

Since both the encoder and the decoder process sequences, they are usually implemented using RNNs.
In more detail, the seq2seq approach involves the following stages:

e Encoder: The input sequence z1, . . . 7 is processed by the encoder RNN. The last hidden state
7 serves as the fixed dimensional representation of the input (i.e. ¢ = h%) and it is used to
initialize the hidden state of the decoder RNN. This vector is often referred to as the “context”
or “conditioning” of the decoder, because its role is to summarize the information of the input
based on which the decoder will generate the output.

e Decoder: The hidden state of the decoder is initialized with the context vector c. Following
that, the decoder takes as input a start-of-sequence token <SOS> and starts generating words
one by one. At each time step ¢, the next word y, of the output sequence is predicted given the
last predicted word and the decoder hidden state. The decoder continues to predict words until
an end of sequence token <EOS> is predicted.

A shortcoming of this approach is that the information of the input is accessed only through the
context vector. Trying to encode variable-length sequence into a fixed-size representation creates a
kind of information bottleneck. A solution to this issue has been provided by the use of an attention
mechanism, that dynamically combines the outputs of the encoder for each input word during the
decoding stage. That means that at each time step the decoder has access to all encoder states and can
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focus on the most relevant parts of the input. Finding a solution to this problem was the final advance
that made neural MT competitive with previous approaches.

Training a seq2sec model a few particularities that distinguish it from a regular RNN. One of
them concerns the formulation of the loss function. As we have mentioned before, cross-entropy is a
popular loss function for classification problems. In practice, sequence generation is implemented as
performing a series of classifications for each input. As a result, the loss J of a model with parameters
w for a single data sample is computed as the sum of the cross-entropy losses between the target i,
and the predicted y; words:

T’ T’
J(w) = —logHP(gjt =yle,yry . y—1) = — ZlogP(gst =yle,y1, - Yr—1) (3.2)
t=1 t=1

Another useful technique for training seq2seq models is feacher forcing. Using incorrectly pre-
dicted words as inputs of the decoder can cause instability during training. Instead, teacher forcing
leads to faster convergence by forcing the decoder takes the ground truth as input at each time step.
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Chapter 4

Sequence-to-Sequence Modeling for Visual Question
Answering

4.1 Motivation

A VQA system takes as input an image and a free-form, natural-language question regarding the image
and outputs a natural-language answer. Generally, the questions are open-ended, meaning they cannot
be answered with just “yes” or “no”. In this thesis, we focus on free-form answer generation. Since the
thematic of visual questions is unconstrained, their level of complexity varies widely and answering
can require diverse types of reasoning. To illustrate that point, let’s consider a few examples. Visual
questions require object detection capabilities to be able to locate the objects referenced in the question.
In addition to that, answering the question “What color of shirt is the man on the left wearing?”
involves spatial reasoning to identify the man and attribute classification to recognize the color. To
respond to questions similar to “How many people are in the image?” calls for solving a visual counting
problem. Lastly, the inquiry “What is the model of this vehicle?” requires commonsense knowledge
that cannot be extracted directly from the image. Creating a VQA system that can answer arbitrary
questions is understandably very challenging.

Question Encoder Answer Decoder

00 0 g g (g (0 g B
[ T A
Why are they holding an umbrella ?
<80S>

it

is

Image Encoder

Figure 4.1: Overview of the proposed model.

Most current approaches formulate VQA as a classification task. Although the ground truths are
not usually complete sentences, they range from single words to short phrases. The set of possible
classes is selected as the answers that occur most frequently in the training data. This implies that
answers that are indeed short phrases are treated as separate classes from the words that they com-
prise. For instance, under this setting answers “black and white”, “black™ and “white” are viewed as
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Figure 4.2: BiLSTM of the Question Encoder.

completely independent classes. This contradicts our intuition that the meaning of a phrase emerges
from the syntax and the semantics of individual words. An object that is “black and white” shares
a common attribute with both black and white objects. As a result, we hypothesize that learning to
recognize the color of a “black and white” object can benefit from learning the concepts of the two
individual colors from other samples in the dataset. Moreover, predicting answers at a phrase-level
limits the expressiveness of proposed models to closed-world settings. The space of possible answers
is strictly defined in advance and no novel answers can be composed from the existing model knowl-
edge. For instance, in the case of answering questions about the color of objects, every combination of
colors that has not been added to the set of possible classes will be prohibited. Consequently, aiming
at a high coverage of answers under the classification setting leads to a fast expansion of the number
of possible answers.

Motivated by these observations, we formulate the VQA problem as a sequence generation task.
The answer is generated by a seq2seq model (Sec. 3.3), conditioned on both the question and the
image representation. We use Faster RCNN features (Sec. 3.2) to extract the image representation
and an LSTM (Sec. 2.3.4) to encode the question. The answer is generated by a decoder LSTM. Our
system performs grounded answer generation by attending to the image features at each decoding step.
We show empirically in our ablation study that grounding has a large impact on model performance.
Our results are competitive with the state-of-the-art, especially for questions that are not closed-form.
This showcases the feasibility of free-form answer generation for open-ended VQA. In the following
section we will describe in detail the modules of the grounded seq2seq model for VQA.

4.2 Model Description

Figure 4.1 depicts an abstract scheme of the proposed grounded seq2seq architecture. The overall
system is made up of three main modules: the question encoder, the image encoder and the answer
decoder. Given an input pair of a question () and an image I, the system generates an answer Y as
following:

e The question @ = [q1, . . . qn] is encoded using a single-layer, bi-directional LSTM (BiLSTM)
encoder (see Fig 4.2). Initially, the words ¢; in the question sequence with length N are rep-
resented as one-hot vectors, where the index of the “1” corresponds to the index of the word
in the input vocabulary V;,. The one-hot vector of each word is passed through an embedding
layer, that has been initialized with GloVe embeddings [57] and is fine-tuned during training.
The resulting embeddings are then fed to the BILSTM, which produces a new hidden state for
each direction.

The hidden states from the forward h_% and the backward pass ﬁf are concatenated to obtain the
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BiLSTM output h{ at each time-step ¢ :
hi = [he;he] fortel...N (4.1)

Suppose that f;f and ﬁf are k-dimensional vectors. The combined state hy will then be a d-
dimensional vector, where d = 2k. We stack the states hy for t[e 1,... N] in order to obtain
the matrix H € RV,

The role of the question encoder is to map variable length input sequences to a fixed-size rep-
resentations. The question representation e is computed as the convex sum of h§ using weights
af, that are learned from a self-attention mechanism [47]:

a® = softmax(w,etanh(W,1 H T)) (4.2)
N

e=) ahy (4.3)
t=1

where W,; € R™? and wy € R™? are the self-attention parameters. These weights af
signify the contribution of each hidden state h{ to the final question representation e.

The image [ is represented as a set of R feature vectors {1, ...iz} extracted from a pretrained
object detection network. Specifically, we use features extracted from a Faster RCNN network
trained on the Visual Genome dataset [43], which have been made publicly available by Ander-
son etal. [5]. These features encode bounding-box regions in an image, thus providing localized
information about objects. In essence, representing each image in the dataset as a collection of
object features acts as a form of bottom-up attention that allows us to encode only salient image
regions.

A Faster RCNN network can output an arbitrary number of bounding boxes for each image.
Following [5], we keep for all images the 36 bounding boxes with the highest confidence. In
brief, an input image I is represented by a feature map R = 36 feature vectors 4, € R2048
corresponding to salient regions in the image.

We apply L2 normalization to the input feature vectors [ so that all the inputs are at a comparable
range and pass the normalized features through a fully-connected layer with a tanh non-linearity
to obtain the visual representation V' € Rf¥*¢:

I
V= tanh(mWU) (4.4)

where W, € R2048%d ig the matrix that projects the image features to the dimension of the
question representation.

The answer Y = [y1,...yr] is generated by a single-layer, uni-directional LSTM with size
equal to d. The decoder LSTM is conditioned on the question by initializing its hidden state
with question representation e:

hi=e (4.5)

The answer generation follows a greedy decoding process. At each time step ¢ € [1,...L], the
decoder takes as input the previous word g, and updates its states. The current hidden state
h{ is used to attend to the image features V. This produces the visual context vector ¥; as
described in Eq. 4.8. The motivation behind applying spatial attention at each decoding step is
to allow the model to attend to different regions in order to predict the next word. We combine
the visual context vector ¥; and the hidden state h{ using the Hadamard product o to obtain the
fused vector f;:

fi = v, o hf (4.6)
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The next word y; is computed as the word with the highest probability from the conditional
probability distribution over the answer vocabulary V:

P(yt|e7 Y1, --Yt—1, ft) = SOftmaX(Wdft) (47)

where W,; € RIVelx? is a learned weight matrix. The decoding halts when the <EOS> token
is predicted. In practice, we merge the questions V; and answers V, vocabularies into a com-
mon vocabulary V' and use the same embedding layer for the question encoder and the answer
decoder in order to learn a joint textual representations of the words in V.

Spatial Attention Mechanism
We will now go into further detail about the spatial attention mechanism, that is used to attend over the
image features during the decoding. Fig. 4.4 illustrates an overview of the spatial attention mechanism.

At each time step ¢, the image is summarized into a single d-dimensional vector v; using a spatial
attention mechanism, that allows the network to focus on the most relevant parts of the image. The
attention mechanism we utilize follows the definition of the scaled dot-product attention introduced
in [68]. The relevance of each feature vector is determined in relation to a query vector, which in our
case is guided by the decoder hidden state h¢ € RY.

In order to compute the attended image representation v, we first take two linear projections V;
and V5 of the visual representation V. V; is used to compute the affinity between each region feature
vector and the query vector h{. The affinity scores are converted to attention weights a{ by going
through a softmax layer. The attention weights a{ are lastly applied to the image features V5 producing
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Figure 4.4: Overview of the spatial attention mechanism.

the representation v; as follows:

d v
a; = softmax( )
Vd

6:afV2

(4.8)

(4.9)

The factor 1/ V/d is used to scale dot product values in order to prevent vanishing softmax gradients.
As mentioned above, by attending over the image regions at each step, the decoder has the opportu-
nity to adjust the attention weights depending on the previous words as well as to avoid long-term

dependencies to the visual input.
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Chapter 5

Experimental Setup, Evaluation and Results

In this chapter, we describe the experimental procedure and present our evaluation results. First, we
provide some information about the dataset and previous related work on the task. Then, we specify
the chosen parameters of the proposed Grounded Seq2Seq model and continue with the evaluation.
We do so by comparing it to state-of-the-art models and examining the results of an ablation study
done to investigate the contribution of each components to the model performance. Finally, we present
visualization examples of our model.

5.1 Dataset

We evaluate our model on the second version of the Visual Question Answering under Changing
Priors (VQA-CP v2) dataset [3]. This dataset constitutes a variant of the VQA v2 dataset [27] that is
currently the most widely used dataset for VQA. The VQA v2 dataset consists of 443K train, 214K
validation and 453K test samples of image-question pairs. Each image-question pair is accompanied
with 10 answers, that have been collected from 10 individual human annotators. The dataset contains
multiple questions for every single image, with the total number of different images adding up to
200K.

A reasonable concern regarding VQA models is whether answer prediction is actually grounded
in the visual input. Recent work [27, 2, 14, 34] has repeatedly highlighted that language biases in
VQA datasets allow models to guess the correct answer even when disregarding the visual input.
This is attributed to language being a simpler signal for learning, which encourages the learning of
incidental statistics in the questions and answers. As a result, a model achieving good performance is
not necessarily addressing the VQA problem, which can pose a setback for real progress. The VQA v2
dataset attempts to suppress language priors by collecting for each question 2 complementary images
that result into different answers. For example, for the question “What is the person doing?” there
exist 2 samples in the dataset, one depicting a person surfing and one depicting a person skateboarding.
Despite this effort, biases in the distribution of the questions or answers persist. As seen in Table 5.1,
the language-only model still manages to answer correctly 43% of the test questions and remarkably
to achieve 67.95% accuracy in the “Yes/No” category. The VQA-CP v2 variant was proposed as a
remedy to this issue. It was created by reorganizing the splits of VQA v2 dataset so that the distribution
of answers for each question type differs between training and evaluation sets. The samples from the
train and the validation sets of the VQA v2 dataset are repartitioned in the train and test sets of the
VQA-CP v2. The mismatch of the training and evaluation answer distributions really test how well
the model can reason over the visual input to deduce the correct answer. As it can been seen in Table
5.1, VQA models show significant performance degradation when evaluated on VQA-CP v2.

Next, we enumerate some key details about the dataset:

e VQA-CP v2 train consists of 121K images, 438K questions and 4.4M answers, while VQA-CP
v2 test consists of 98K images, 220K questions and 2.2M answers.

e The training questions have a vocabulary of size 14.5K, while the training answers have a vo-
cabulary of size 37K. The joint vocabulary of the questions and the answers has a size of 40K
words.
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Method Dataset Accuracy
Overall Yes/No Number Other
language-only [7] VQA v2 43.01 67.95 30.97 27.20
VQA-CP v2 15.95 35.09 11.63 07.11
language+image [7] VQA v2 51.61 73.06 3441 39.85
VQA-CP v2 19.73 34.25 11.39 14.41
language+image+attention [73] VQA v2 52.02 68.89 3455 43.80
VQA-CP v2 2496  38.35 11.14 21.74

Table 5.1: Comparison of the performance of existing VQA models on VQA-CP test split to their

performance on the original VQA validation split. [3]

e In addition to reporting the overall accuracy, it is common to break down model performance
in 3 categories: “Yes/No”, “Number” and “Other”. As the names suggest, the “Yes/No” cat-
egory contains all closed questions. “Number” samples refer to all questions answered with a
number. Although the majority of “Number” questions are counting questions, there can also
include questions of digit recognition (e.g. “What is the number on the bus?”). All remaining
data samples are grouped under the term “Other”. Concerning the percentages of each answer
category, approximately 42% of the answers belong to “Yes/No”, 12% belong to “Number” and

46% belong to “Other”.

e Figure 5.1 depicts the length distributions of training questions and answers. The maximum
question length is 25 words. Although the maximum answer length reaches 24 words, the

majority of answers consist of just one word.

Distribution of Question Lengths
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Distribution of Answer Lengths
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Figure 5.1: Distributions of sequence lengths in training questions and answers.

5.2 Related Work

Following the release of large scale VQA datasets [7, 27], many approaches to tackle the task have
been proposed. Most methods follow a similar pipeline: Image representations are extracted from
a pretrained CNN based model, while questions are encoded using RNNs. The image and question
features are then combined using different attention and fusion mechanisms to improve cross-modal

grounding. The joint representation is then fed to a classifier in order to predict the answer.

The introduction of attention mechanisms in the VQA pipeline led to a significant performance
boost. Notable work on attention includes the Stacked Attention Network (SAN) [73] that utilizes
two successive layers of spatial attention in order to extract more fine-grained information. Grounded
VQA model (GVQA) [3] is a hybrid architecture built upon SAN that distinguishes between “Yes/No”
and the rest of the questions. “Yes/No” questions are treated as a binary visual verification task,
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while the remainders are processed by combining predicted visual concepts and candidate answers.
In [49], question features are extracted on word, phrase and sentence level. These features are then
used to attend over both the image and the question by use of an affinity matrix. Anderson et al. [5]
apply spatial attention on top of a set of regional features extracted from a Faster RCNN. The spatial
attention weights are calculated by projecting the concatenated image and question vectors from a
gated tanh layer. More recently, Ramakrishnan et al. [59] introduce an adversarial training scheme to
train a model with the same architecture as [5] that is , nonetheless, less dependent on language biases.
Specifically, they train a language-only model as an adversary and adding an entropy term to the loss
function that estimates the information gain after considering the image.

Fusion of image and question features is often performed with simple operations such as the
Hadamard product or concatenation [7]. However, more intricate fusion approaches have also been
investigated. These approaches focus on efficient approximations of the outer-product between im-
age and question features using compact bilinear pooling [23], low rank tensor approximation [39] or
Tucker decomposition [10]. Andreas et al. [6] propose dynamically assembling a network from a set
of pretrained modules to adapt the attention and fusion scheme on the question input.

5.3 Experimental Setup

Model Hyperparameters

Table 5.2 summarizes the main hyperparameters of the Grounded Seq2Seq model. We use 300-
dimensional GloVe embeddings to initialize the embedding layer with a vocabulary size of 10K words.
We employ weight tying for the embedding layers of the encoder and the decoder in order to reduce
the number of model parameters and enforce the semantic alignment of questions and answers. We
use a BiLSTM with 256 units for the encoder, an LSTM with 512 units for the decoder and batch size
128. We set the maximum length of the questions equal to 23. Due to the short length of the answers
in the dataset, we keep the maximum length of the predicted answers to 5.

Embeddings Initialization 300-d GloVe
Vocabulary Size 10K words
. LSTM size 512
Question Encoder Max length 3
LSTM size 1024
Answer Decoder Max length 5

Table 5.2: Grounded Seq2Seq Parameters.

Training Setup

e During training we retain a third of the training data for validation and monitor the validation
accuracy to apply early stopping with patience of 5 epochs,

e we apply dropout with probability 0.2 after each layer,
e we apply teacher forcing, meaning we feed the correct previous word to the answer generator,
e we use the Adam optimizer with learning rate 0.001 and

e we perform data augmentation for ‘other’ answers: At each epoch, we select at random one of
the ten human provided answers as the target for each sample. Thus, we present our model with
paraphrased answers for each question, which acts as a form of regularization.

For the model implementation we used the PyTorch library [55]. The training process takes approxi-
mately 10 hours on a GeForce GTX TITAN X GPU.
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Model Overall Yes/No Number Other

d-LSTM Q [7] 15.95 35.09  11.63  7.11
d-LSTMQ+1[48]  19.73 3425  11.39 14.41
SAN[73] 24.06  38.35  11.14 21.74
GVOQA [3] 31.30  57.99  13.68 22.14
MCB [23] 36.33  41.01  11.96 40.57
UpDn [5] 39.74 4227  11.93 46.05
UpDn+Adv [59] 41.17 65.49 15.48 35.48

Grounded Seq2Seq 36.42 40.29 12.07 41.08

Table 5.3: Comparison with baselines and state-of-the-art on the VQA-CP v2 dataset.

5.4 Results & Discussion

Evaluation Metric

We evaluate our model using the standard metric for the VQA dataset [7]. The hard accuracy, which
accepts a predicted answer as correct only if it exactly matches the ground truth answer, is unsuitable
for the particular dataset. The inter-annotator agreement is around 80%, which means that it would
be impossible for an algorithm to achieve 100% accuracy. Moreover, as not all errors are equal, this
metric can be overly strict. For instance, answering the question “What’s in the sky?”” with the answer
“airplanes” instead of the singular “airplane” or its synonym “plane” would be penalized the same as
choosing a completely unrelated answer such as “penguin”.

A simple way to alleviate this issue is by taking advantage of the multiplicity of answers included
in the dataset. As mentioned above, each question is accompanied by 10 answers provided by different
annotators. The variation in the ground truth answers accounts to some degree for the real-world sce-
nario, where questions can have multiple acceptable answers. A predicted answer a receives perfect
score s(a) if at least three human annotators have provided the same answer:

Ma=a) ) (5.1)

score(a) = min(
where 1 is the indicator function.

This evaluation is still imperfect. The set of possible answers is still limited in expressiveness.
Consequently, the model can sometimes predict an answer that is reasonable to a human, but still
receives a zero score. On the other hand, the VQA accuracy metric can in some cases give an inflated
performance score. In some cases, the ground truths contain opposite answers, such as “left” and
“right” or “yes” and “no”. Even if the majority of the annotators answered “yes” but one to three
of them answered “no”, predicting the minority answer of “no” will still receive a positive score.
Examples of these cases will be shown in Sec. 5.5.

Comparison to Baselines

Table 5.3 reports the performance of our model on the VQA-CP v2 dataset in comparison with baseline
and state-of-the-art models. We consider the two first models as baselines, namely the “d-LSTM” and
“d-LSTM Q + I”. “d-LSTM” refers to the language-only model that encodes the question using a
deep LSTM with 2 layers and disregards the image completely. “d-LSTM Q + I” uses the same
layout to encode the question plus a pretrained CNN model to extract a global image feature vector.
The question and image feature vectors are concatenated and fed to a classifier. As we can see, our
model significantly outperforms both baselines. This performance gap is evidently attributed to the
visual representations and the addition of a the cross-model attention mechanism. The global image
feature vector, although adequate for image classification, is too coarse a representation to capture the
information needed to answer specific questions.
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Comparison to State-of-the-Art

When comparing the proposed Grounded Seq2Seq with sota models, we observe that our model yields
competitive results, particularly in the “Other” category. Although “Other” is a very broad category,
this result is supported by the motivation of our work. We hypothesize that because these are the
questions that accept longer answers, they can benefit to a greater extent from a sequence generation
setting. Note that no single model achieves best performance across all categories. We notice that the
models GVQA and UpDn+Adv yield good results for the “Yes/No” questions outperforming the rest
by a large margin. However, they achieve moderate results in the “Other” category. Compared to the
baselines, sota models achieve the least performance improvement in “Number” questions. Counting
requires a distinct kind of reasoning, which has stimulated a line of work focusing exclusively on this
task [67, 75]. Another factor that seems to be particular significant for the overall model performance
is the quality of visual features. Specifically, Faster RCNN features consistently outperform features
from object recognition tasks. Models SAN, GV'QA and MCB utilize regional features from a model
trained on image classification, while UpDn, UpDn+Adv and the proposed model leverage the bottom-
up attention that an object detection model such as Faster RCNN provide.

Ablation Study

We perform an ablation study to isolate components of our model and evaluate their effect on the
performance of the proposed model. This study includes experiments where one or both modalities
are missing (replaced by random vectors) to assess the contribution of the textual and visual modality
as well as the random chance performance for each question type. Table 5.4 summarizes the examined
variants of the Grounded Seq2Seq model and Table 5.5 presents the results of our experiments.

Model | Description

A Replace the image and question representations with random vectors

B Take only the image features as input

C Take only the questions as input

D Use a fused question and image representation only to initialize the decoder hidden state

E Replace the spatial attention mechanism with that from UpDn

F Use the final state of the question encoder without applying the self-attention

G Use concatenation for the fusion instead of the Hadamard product

H Use MUTAN fusion instead of the Hadamard product

Table 5.4: Characteristics of the models examined during the ablation study.

Model Overall Yes/No Number Other
(A): Random input 16.84 56.34 0.38 0.65
(B): Image input only 17.44  57.90 0.39 0.91
(C): Question input only 18.66 38.29 10.25  10.38
(D): Question and Image decoder initialization 35.51 38.57 11.10  40.30
(E): UpDn Attention Mechanism 33.20 39.56 11.54  35.45
(F): Question encoder without self-attention 35.92 40.83 11.93  40.03
(G): Concatenation fusion 35.42 39.47 12.30  39.35
(H): MUTAN fusion 35.67  40.00 11.46  39.70
Grounded Seq2Seq 36.42 40.29 12.07 41.08

Table 5.5: Ablation results.

The experiments with completely random or limited input (4, B, C) provide some intuition on
the nature of the dataset. First, we observe that providing only image input yields a performance
similar to random, while providing only question input yields better performance in the “Other” and
“number” categories. This is consistent with observations in the literature about language bias in
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VQA systems [3]. The performance of models (4, B) in “Yes/No” questions seems surprising at a
first glance, but it results from the model always predicting ‘no’ as the answer, which is actually
the most common answer in the training data. Despite the shift of the prior distribution between the
training and evaluation data, these models still achieve an accuracy of over 50% due to the evaluation
metric rewarding minority answers even when the contradict the majority. It is clear that to achieve
good performance in the “Other” category, incorporation of both modalities is important. For the
“Number” category, most of the information is encoded in the question and visual grounding does not
contribute much.

Models (C) and (F), investigate the chosen setup for the question encoder. Compared to the
language-only baseline (see Table 5.3), the language-only version of our model achieves +3% abso-
lute improvement. This suggests that the use of a bidirectional LSTM with self-attention provides a
better representation of the input question. The significance of the self-attention mechanism is also
confirmed by the reduced performance of model (F).

When comparing experiments (D) and (£) with Grounded Seq2Seq, we see that attending to the
image features using the scaled dot-product attention mechanism at each decoding step has a posi-
tive impact on model performance. In particular, our results demonstrate that the selected attention
mechanism is conducive to better visual grounding.

Finally, the experimentation with different fusion methods shows that the Hadamard product based
fusion outperforms both concatenation (G) and MUTAN (H) fusion by 1.00% and 0.75% respectively.
The slightly inferior performance of model (G) can be by the fact that concatenation increases the size
of the feature vector while failing to capture the interactions that occur between the inputs. MUTAN
fusion, on the other hand, is a factorized bilinear pooling method, which increases significantly the
model complexity. Since we used the parameters from the original paper [10], the performance model
(H) would probably benefit from further hyperparameter tuning.

5.5 Examples

In this section, we provide a few examples showcasing outputs of the Grounded Seq2Seq model, in
order gain some insight about the cases in which our model succeeds or fails. Figure 5.2 demonstrates
the model accuracy on certain question categories. From that we can infer that the model does well
on questions related to recognizing activity (“what sport”, “what is the person”), object class (“what
kind/type/room/animal”) or visual attributes (“what color’”). However, it performs poorly on questions

that require common sense reasoning or real-world knowledge (“why”, “what brand”, “what time”).

Accuracy per Question Type
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Figure 5.2: Model performance on specific question types.
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Going through the predicted answers for the samples of the test set, we observe that not all correct
predictions are rewarded equally and not all errors are equally bad. We select three representative
examples for each of the following four cases: predictions that get a perfect score, predictions that get
a partial score, predictions that get a zero score but pass as plausible and incorrect predictions. For
each sample, along with the question-image pair and the predicted answer, we provide all available
ground truths. For each unique ground truth we specify in parentheses the number of its occurrences.

Correct Answers
First, we present a few examples for which the model achieves a perfect score of 1.

What is the dog playing with?
Predicted Answer: teddy bear
Ground Truths: bear 4)

teddy bear  (3)
stuffed bear (2)

toy M

Which landmark is this?

Predicted Answer: washington monument

Ground Truths: washington monument
pentagon

sears tower
tall pyramid

Where is the man in this photo?

Predicted Answer: on horse

Ground Truths: on horse 3)
on horseback (1)
horse €))
field @)
woods @))]
riding €8
outside (1)

Table 5.6: Examples of questions and generated answers that are assigned an accuracy score of 1.
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Almost Correct Answers

Next, we look into outputs that are assigned a partial score, meaning the cases where the predicted
answers match only 1-2 out of the 10 provided ground truths. We chose these examples to showcase
instances for which our model is assigned a partial score, even though it succeeds in predicting seman-
tically correct answers. In general, we observe that predicted answers can fall under this category, if
they exhibit a different level of granularity compared to the ground truths. For instance, even though
“playing baseball” is considered a correct answer for the second example, “batting” would indeed be

a more precise ansSwer.

What is the color of the cup?
Predicted Answer: orange

Ground Truths: red 9)
orange (1)

What is he doing?
Predicted Answer: playing baseball

Ground Truths: batting
playing baseball
swinging
baseball bat

What color is the train?
Predicted Answer: yellow and blue

Ground Truths: blue and yellow
yellow and blue
blue yellow
blue/yellow

Table 5.7: Examples of questions and generated answers that are assigned a partial accuracy score.
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Almost Incorrect Answers

We observe that in some cases the selected evaluation metric is in disagreement with human evaluation.
The following examples demonstrate that plausible answers will be automatically evaluated as wrong,

if they do not exactly match at least one of the ground truths provided by the human annotators.

Where is the riding crop?
Predicted Answer: in front of horse

Ground Truths: on horse
in boy’s hand
right hand
hand
on ground
foreground
around rider’s waist
on horse

Why is the man in the air?
Predicted Answer: playing frisbee

Ground Truths: jumping 3)
catching frisbee (2)
to catch frisbee (1)
he’s jumping €))
he jumped (D
catching @))]
catching frisby (1)

What is the color of the train?
Predicted Answer: red and black

Ground Truths: red ®)
orange )

2
2
(1)
(1
(1
(1
(1)
(1

Table 5.8: Examples of questions and generated answers that are assigned an accuracy score of 0, but

are plausible.
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Incorrect Answers

Lastly, we consider a few examples of incorrect predictions. What these examples indicate is that
our model fails to predict the correct answer in cases of longer questions and more complex scenes.
Even without looking at the images, we can infer that the outputs of the first and third examples are
erroneous. The second example illustrates a case of a plausible assumption from a language viewpoint
that is, however, not grounded in the visual input.

What is the name of the store on the
left hand side of the screen that is written
in English?

Predicted Answer: no parking

Ground Truths: sasa (10)

What eating utensils are on the table?
Predicted Answer: fork and knife

Ground Truths: forks and spoons  (3)
spoon and fork )
fork and spoons (1)

spoons forks (N
spoon fork @))]
fork spoon Q8
8 O]

What type of herb is on the left?
Predicted Answer: orange

Ground Truths: parsley (7)
basil 3)

Table 5.9: Examples of questions and generated answers that are assigned an accuracy score of 0.
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Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we propose a multimodal sequence-to-sequence model for the task of visual question
answering. VQA has benefited greatly from progress in natural language processing and computer vi-
sion, with more and more sophisticated methods contributing towards improved overall performance.
State-of-the-art models approach open-ended VQA as a classification task over the most common an-
swers in the dataset. However, the restriction of potential answers narrows the expressiveness of the
models and limits their application to closed-world settings. Motivated by this observation, we de-
cided to investigate the feasibility of adapting a popular sequence generation framework to the task of
VQA. Specifically, we propose the Grounded Seq2Seq model that generates answers conditioned on
the image-question input pairs. Our model follows a similar pipeline to that of established methods,
but avoids treating compound answers as separate classes from the individual words that comprise
them. Instead, it enables the generation of answers from a large vocabulary that is shared among
questions and answers.

The comparison with baseline models and the accompanying ablation study help us identify the
design choices that contribute most to the performance of the proposed model. First, our model makes
use of prior knowledge from powerful pretrained models both for encoding the image as a collection
of region-specific features and for the initialization of the word embedding layer. Moreover, the ab-
lation results suggest that the use of attention is critical for model performance. We make use of two
attention mechanisms: a self-attention mechanism that is employed for the computation of a fixed-
sized question representation, and a cross-modal attention mechanism that allows the decoder to focus
on the most relevant visual information.

During the answer generation phase, the decoder attends over the image regions at each decoding
step using a scaled dot-product attention mechanism. Both the type of attention mechanism and its
recurrent application seem to contribute significantly to the model’s accuracy. Our experiments in-
dicate that the selected spatial attention mechanism yields results superior to those in existing VQA
approaches. Additionally, the attention feedback loop seems to enable the grounding of the generated
answer to the given image. We attribute the performance of the proposed model to certain training
details, as well. In order to reduce the memorization of language biases, we use a data augmenta-
tion technique. By randomly sampling the target answer from the given set of possible ground truths,
we reduce the model’s generalization gap. Lastly, we apply teacher forcing, a method that speeds
convergence and improves training stability.

We evaluate the proposed Grounded Seq2Seq model on the VQA-CP v2 dataset and achieve results
comparable to those of state-of-the-art models. Although VQA models are far from achieving human-
level performance, the outcome of our experiments challenges the need to confine possible answers to
pre-defined independent classes. In summary, the use of sequence generation models shows potential
for open-ended visual question answering and acts as a step in the direction of utilizing VQA systems
in real-world scenarios.

73



6.2 Future Work

Combining natural language with computer vision constitutes a complex problem, as the moderate
performance of current models on the VQA task corroborates. A shift in the distribution of answers
between the training and the test models reveals that visual grounding of language is still an open
problem. One limitation of our work is that it is applied on a dataset with short answers. This setting
limits the potential of sequence generation models to take advantage of the compositional structure of
language. As a result, we weren’t able to exhaustively test our hypothesis that a sequence generation
model can learn semantic relations of answer words in order to generalize to new answers. We plan
to experiment with the recently released GQA dataset [33], that is more appropriate for the proposed
model as it provides both short and long answers. This dataset would enable us to examine the model’s
ability to generate novel answers containing words seen in training instances.

Following the work of Ramakrishnan et al. [59], we are interested in leveraging adversarial ex-
amples [25] in order to increase the robustness of our answer generation model. To be more exact, we
hypothesize that we can improve the grounding ability of our model by generating samples consist-
ing of random combinations of questions and images assigned a ground truth in one of the following
manners. First, we can retain the original ground truth of the question in an attempt to reduce the
dependency on language biases. Second, we could replace answer words by randomly words from
the vocabulary that belong to the same category (such as number, sport, color etc.). Potentially correct
answers can be avoided by eliminating from the pool of possible words those that appear in ground
truths for other questions about the selected image. In reverse, we can employ semantically wrong
answers that appear, nonetheless, as ground truths for the selected image given other questions in the
dataset.

Furthermore, prior research in VQA has demonstrated that using more powerful pretrained vi-
sion models for feature extraction improves significantly the model performance. Although we use
pretrained word embeddings to initialize the embedding layer, it is expected that superior sentence rep-
resentations could be extracted from pretrained language models. In general, language models trained
on large corpora are able to capture contextual relations between words. We assume that transfer
learning would be especially beneficial for questions that require common sense reasoning. Conse-
quently, a future direction could involve transferring knowledge from state-of-the-art Transformer
networks [68]. In future experiments, we will fine-tune a Bidirectional Encoder Representations from
Transformer (BERT, [19]), a recently released sequence model that has achieved performance im-
provements across a wide variety of downstream NLP tasks.
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Appendix A

Abbreviations

(AI): Artificial Intelligence

(ANN): Artificial Neural Network

(BiLSTM): Bi-directional LSTM

(BOW): Bag-of-Words

(CNN): Convolutional Neural Network

(CV): Computer Vision

(DL): Deep Learning

(DNNs): Deep Neural Networks

(GPU): Graphical Processor Unit

(GD): Gradient Descent

(VQA): Visual Question Answering

(GVQA): Grounded Visual Question Answering model, [33]
(LR): Logistic Regression classifier

(LSTM): Long Short-Term Memory unit

(MCB): Multimodal Compact Bilinear Pooling, [23]
(ML): Machine Learning

(MT): Machine Translation

(MUTAN): Multimodal Tucker Fusion for Visual Question Answering, [10]
(NBOW): Neural Bag-of-Words

(NLP): Natural Language Processing

(RNNs): Recurrent Neural Networks

(Rol): Region of Interest

(RPN): Region Proposal Network

(R-CNN): Region-based Convolutional Neural Network
(SAN): Stacked Attention Network, [73]

(SGD): Stochastic Gradient Descent

(SVM): Support Vector Machine classifier

(Seq2Seq): Sequence-to-Sequence model

(VQA): Visual Question Answering

(VQA-CP): Visual Question Answering under Changing Priors dataset, [33]
(UpDn): Up-Down model, [5]
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