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ABSTRACT 

Its escalating prevalence in the population (>25% in 2018) establishes NAFLD as the 

most common cause of chronic liver disease in the US. However, no NAFLD/NASH-

specific agent received FDA-approval, despite the advances in its mechanism’s decipher 

and the identification of potential drug targets. NAFLD includes a spectrum of liver diseases 

ranging from simple hepatic steatosis to Non-Alcoholic Steatohepatitis (NASH), liver 

cirrhosis, and hepatocellular carcinoma (HCC). 

Drug-induced liver injury (DILI) is defined as a liver injury caused by various medications, 

herbs, or other xenobiotics, leading to abnormalities in liver tests or liver dysfunction with 

the reasonable exclusion of other etiologies. DILI is one of the leading causes of acute liver 

failure in the US, while almost 95% of the compounds validated in drug discovery are 

rejected due to their liver-related side effects. Approximately, 2% of the diagnosed Non-

Alcoholic Steatohepatitis (NASH) incidents are attributed to DILI. 

Thus, further examination on the compounds that may induce NAFLD-alike liver 

steatosis needs to be conducted. In that context, a computational platform is developed 

and, by means of network-based pathway analysis on NAFLD’s pathogenesis and known 

steatogens, yields several potentially hepatotoxic/steatogenic compounds. Among them, 

three (Pimozide, Clomiphene and Mefloquine) are tested in-vitro in order to validate their 

steatogenic effects on Hep3B and FOCUS hepatocellular lines. 

The in-silico approach deduces a network similarity, thus identifies compounds inducing 

liver steatosis in-vitro. A high-throughput setup for NAFLD/NASH drug-screening is 

developed. Further experiments are necessary to decipher the mechanisms identified 

compounds facilitate and to assess their in-vivo effects. Also, additional experiments should 

be performed in order to classify the tested steatogens in clusters, along with the known 

NAFLD-inducing compounds, and examine the similarities and differences among them, in 

terms of the steatogenic mechanisms facilitated and the effects induced. 

Keywords: NAFLD, NASH, DILI, liver, steatosis, pathway analysis, networks, drugs, steatogenic 

compounds, DEGs, genes, systems, biology, systems biology, bioengineering, GLS, GSA 
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ΠΕΡΙΛΗΨΗ  

Η αυξανόμενη επικράτηση της Μη-Αλκοολικής Λιπώδους Νόσου του Ήπατος 

(NAFLD) στο γενικό πληθυσμό (>25% το 2018) την καθιστά ανάμεσα στις πιο συχνές 

αιτιολογίες χρόνιας ηπατικής βλάβης στις ΗΠΑ. Παρά το ανησυχητικό αυτό δεδομένο, 

κανένας φαρμακολογικός παράγοντας δεν έχει λάβει την έγκριση του FDA ως σήμερα 

και παρά την ολοένα και αυξανόμενη γνώση γύρω από τους μηχανισμούς της 

παθογέννεσης. Η Μη-Αλκοολική Λιπώδης Νόσος του Ήπατος περιλαμβάνει ένα ευρύ 

φάσμα παθήσεων, το οποίο ξεκινά από απλή στεάτωση και καταλήγει σε Μη-Αλκοολική  

Στεατοηπατιίτιδα (NASH), ηπατική κίρρωση και ηπατοκυτταρικό καρκίνωμα (HCC). 

H Ηπατοπάθεια από Φάρμακα (DILI) ορίζεται από την ηπατική βλάβη, την 

προκαλούμενη από τη χορήγηση διαφόρων φαρμάκων, βοτάνων και ξενοβιοτικών, που 

οδηγεί σε ηπατική δυσλειτουργία. Η DILI αποτελεί μία εκ των επικρατέστερων αιτιών 

οξείας ηπατικής βλάβης στις ΗΠΑ, ενώ περί το 95% των, υπό εξέταση, 

φαρμακολογικών ουσιών, απορρίπτεται εξαιτίας των ηπατολογικών του επιπτώσεων. 

Επιπλέον, περί το 2% της Μη-Αλκοολικής Στεατοηπατίτιδας (NASH) δείχνει να 

οφείλεται στην Ηπατοπάθεια από Φάρμακα (DILI). 

Για τους λόγους αυτούς, πρέπει να συνυπολογίζονται οι τάσεις για δημιουργία 

στέατωσης -που ομοιάζει προς την NAFLD-στεάτωση- κατά τον έλεγχο νέων, αλλά και 

ήδη εμπορεύσιμων φαρμάκων. Στο πλαίσιο αυτό, μια υπολογιστική πλατφόρμα, με 

χρήση της Ανάλυσης Βιολογικών Δικτύων (Network-Based Pathway Analysis) πάνω σε 

σημαντικά μονοπάτια για την παθογέννεση της NAFLD, αλλά και άλλων γνωστών, 

βιβλιογραφικά, στεατογόνων ενώσεων, δίδει αποτελέσματα για άλλες πιθανές 

ηπατοτοξικές/στεατογόνες φαρμακολογικές ουσίες. Μεταξύ αυτών, τρεις (Pimozide, 

Clomiphene, Mefloquine) επιλέγονται προκειμένου να ελεγχθούν και πειραματικά σε 

Hep3Β και FOCUS ηπατικές κυτταροσειρές. 

Η in-silico προσέγγιση καταλήγει σε δικτυακές επικαλύψεις, από τις οποίες εξάγει 

πιθανά στεατογόνες ενώσεις. Με χρήση high-throughput μεθόδων, γίνεται η in-vitro 

αξιολόγηση των φαρμακολογικών αυτών ουσιών σε σχέση με την τάση τους να 

προκαλούν ηπατική στεάτωση αντίστοιχη προς της NAFLD. Πρόσθετα πειράματα 

οφείλουν πραγματοποιηθούν, προκειμένου να αποσαφηνιστούν οι μηχανισμοί της 

NAFLD παθογέννεσης, καθώς και να ομαδοποιηθούν οι υπό-εξέταση φαρμακολογικές 

ουσίες με τις γνωστές στεατογόνες ενώσεις, προς περεταίρω αξιολόγησης και των 

πιθανών στεατογονικών τους τάσεων.  

Λέξεις-κλειδιά: NAFLD, NASH, DILI, liver, steatosis, pathway analysis, networks, drugs, 

steatogenic compounds, DEGs, genes, systems, biology, systems biology, bioengineering, GLS, GSA  
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1 INTRODUCTION 

1.1 BIOLOGICAL BACKGROUND 

1.1.1 Definitions 

1.1.1.1 Non-Alcoholic Fatty Liver Disease (NAFLD) 

Non-Alcoholic Fatty Liver Disease (NAFLD) demonstrates escalating paces of 

circumstance within the general population, mainly attributed to the increasing obesity in 

both children and adults. 

NAFLD accounts for the hepatic component of the metabolic syndrome, while it is 

officially defined by the excessive, yet non-inflammatory, accumulation of liver fat by causes 

other than elevated alcohol consumption (<21 in men, <14 in women). [1] 

The very term, NAFLD, is referring to a broad spectrum of conditions, commencing 

from simple steatosis and steatohepatitis (Non-Alcoholic Steatohepatitis; NASH) and 

potentially leading to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC), along 

with their clinical extensions. 

NAFLD is tightly linked with insulin resistance, among other obesity-related factors, 

such as diabetes, central abdominal obesity and dyslipidemia. Found to be an independent 

risk factor for cardiovascular diseases regardless of age, sex and cholesterol levels, NAFLD 

is also linked with increased mortality risk of any cause, in which, both liver-related and 

secondary factors, e.g. malignancies, diabetes and coronary heart disease, contribute. [2] 

 

1.1.1.2 Drug-induced Liver Injury (DILI) 

A prevalent, though underestimated cause of liver disease is Drug-induced Liver Injury 

(DILI). In the United States, DILI is the first cause of acute liver failure and causes 10% of 
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all cases of acute hepatitis. Interestingly, hepatotoxicity accounts for the first cause of drug 

withdrawal from global markets and the commercial use.  

Several drugs and other xenobiotics may trigger various pathological patterns, involved 

in the induction of liver damage. Steatosis has been acknowledged to be linked with various 

steatogenic drugs, such as amiodarone, tamoxifen, irinotecan, methotrexate, valproic acid 

and glucocorticoids. Although steatogenic pathophysiological pathways are still only partly 

understood, the primary pathogenic mechanisms by which drugs lead to hepatic steatosis 

involve the inhibition of mitochondrial β-oxidation, decreased VLDL secretion, insulin 

resistance and elevated de novo FA synthesis or absorption. 

Fatty liver itself is a very prevalent clinical disease, and owing to its underlying metabolic 

disorder, there is an increasing awareness for NAFLD-induced DILI. Indeed, DILI covers a 

wide spectrum of liver disorders that ranges from simple steatosis to more severe forms, 

such as cirrhosis and hepatocellular carcinoma.  

The wide epidemiological impact of Fatty Liver Disease and the diagnostic complexity 

of DILI make the identification of a single molecule, as the origin of drug-induced liver 

disease, even more difficult. Even if several drugs may be responsible for DILI, few drugs 

have a proven causative role for steatosis.  

 

1.1.1.3 Drug-induced Steatohepatitis (DISH) 

The development of DISH can be considered as the precipitation of pre-existing 

steatosis or as a de novo liver disease. DISH pathogenesis has not been fully elucidated; 

however, oxidative stress appears to be a key mechanism.  

Mitochondrial dysfunction and inhibition of the mitochondrial respiratory chain induce 

the increased production of Reactive Oxygen Species (ROS). ROS cause FA peroxidation 

that, in turn, leads to inflammation and fibrosis, facilitated by the activating Kupffer and Ito 

cells. ROS and reactive lipid peroxidation can directly damage the mitochondrial 
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respiratory chain and the mitochondrial DNA, thus creating a vicious cycle of increased 

ROS production. 

 

1.1.2 Epidemiology 

NAFLD’s prevalence in individuals of normal weight, lacking metabolic risk factors, is 

found to approximate 16%. The percentage reaches 43-60% in diabetic patients and rises 

up to 91% in patients with hyperlipidemia. Its prevalence also rises in accordance with age, 

as it approximates 20% in ages below 20 to more than 60% in ages above 60. Specifically, 

age has been proven to be an independent risk factor with regards to steatosis and its 

potential progression towards fibrosis and cirrhosis. The male sex is found to be 

independent to the progression of NAFLD towards NASH and fibrosis. [3]  

Although some studies suggest that ethnicity influences NAFLD’s prevalence, recent 

data do not back the notion. Interestingly, though, the link between insulin resistance and 

NASH is significantly different in individuals of Latin origins, when compared to the non-

Latin. [4] 

Although mortality rates appear increased in patients with steatohepatitis and 

progressed fibrosis, patients with sole steatosis do not demonstrate significant mortality. A 

wide-association study on 129 NAFLD patients, diagnosed via liver biopsies, suggested mild 

mortality rates in NAFLD patients when compared to the increased mortality of NASH 

patients. While mainly linked with cardiovascular disease, liver-related mortality was found 

more frequent in patients with NASH cirrhosis. [5] Recent systematic research on 221 

biopsy-proven NASH patients revealed age and degree of inflammation to be independent 

predictors of initial biopsies’ progression towards fibrosis. On the other hand, factors such 

as diabetes, hypertension and obesity were found statistically insignificant as predictors. 

These findings suggest that the presence of elevated fibrosis is related to the overall 

increased mortality rates due to cardiovascular disease. [6] 

Hamabe et al.’s review suggested smoking as an independent risk factor for NAFLD, 

regardless of other concurrent metabolic factors. Notably, NAFLD’s development rate in 
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quitters was similar to that of the smokers, most probably due to the consequent weight 

gain of the former. [7] 

Mild alcohol consumption seems not to trigger NAFLD’s development, while several 

studies have shown that it may even limit its occurrence. [8] 

 

1.1.3 Natural History of the Disease 

The natural history and pathogenesis of NAFLD is not sufficiently documented. In 

NAFLD, simple steatosis is defined by the presence of fat in <5% of the hepatic cells, with 

around 20-25% of the total cases progressing to NASH, from which 20% will develop liver 

fibrosis and, ultimately, cirrhosis.  

The evolutionary mechanisms leading from steatosis to steatohepatitis are complexed 

and not fully comprehensible, although increased abdominal obesity and insulin resistance 

in cellular environments of increased FFA release might play a significant role in the 

transition.  

Normally, insulin promotes hepatic and peripheral glucose intake and subdues its 

production in the liver. In fasting periods, liver becomes the primary organ for glucose 

production via gluconeogenesis and glycolysis. In insulin-resistant patients, hepatic 

autoregulation is disturbed and thus, increasing gluconeogenesis and glycolysis lead to 

hyperglycemia. 

The underlining mechanisms of liver failure in NAFLD are thought to be a multiple-hit 

process that involves insulin resistance, oxidative stress, apoptosis and a deregulation in the 

levels of adipokines. [9]  
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1.1.4 Molecular mechanisms of Pathogenesis 

1.1.4.1 Two-Hit Hypothesis 

The Two-Hit model for NAFLD was first introduced in 1998 by Day et al. The first of 

the hits addresses the accumulation of Triglycerides (TG) and Free Fatty Acids (FFAs) in 

hepatocytes, due to insulin resistance, increased dietary lipid intake and elevated hepatic 

lipogenesis. The second includes lipid peroxidation, mitochondrial dysfunction and 

inflammation and is leading to cellular damage and fibrosis. Pre-inflammatory pathways, 

activated by cytokines and pattern-recognition receptors, including toll-like receptors, lead 

to core signaling pathways: The Nuclear Factor κβ (NF-κβ) and the C-Jun N-Terminal 

Kinase (JNK) pathway. NF-κβ’s activation is observed in NASH and may lead to increased 

transcription of pre-inflammatory genes, while JNK induces insulin resistance via the direct 

phosphorylation and degradation of IRS1 (Insulin Receptor Substrate 1), therefore limiting 

the corresponding intracellular signaling processes. Lipid peroxidation may promote the 

reproduction of Hepatic Stellate Cells (HSCs), thus contributing to fibrosis. Reactive 

Oxygen Species (ROS) promote cytokine-release that trigger several pathways of the 

immune system, thus leading to further liver damage. In NASH, hyperinsulinemia, lipid 

peroxidation and hepatic iron peroxidation amplify oxidative stress, thus causing 

mitochondrial dysfunction and contributing to the excessive accumulation of triglycerides 

and, eventually, to cell death. [10] 

 

1.1.4.2 Multiple-Hit Hypothesis 

The simplicity of the two-hit hypothesis could not include the complexity of human 

NAFLD, where multiple concurrent factors act on genetically predisposed individuals and 

influence the development and progression of the disease. Therefore, a multiple-hit 

hypothesis was necessary to include dietary habits and environmental and genetic factors 

that trigger insulin resistance, obesity of reproducing fat cells and changes in the intestinal 

microbiome. [9] 
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1.1.5 Fat metabolism, hepatotoxicity and insulin resistance 

Fat enters the fatty liver in the form of triglycerides, originating from the esterification 

of glycerol and free fatty acids (FFA). Upon their synthesis, triglycerides enter the storage 

and secretory vesicles of the liver.  

FFAs originate in the patient’s nutrition or the adipose tissue through lipolysis and/or 

de novo lipogenesis (DNL). In hepatocytes, FFAs form acyl-CoA fatty acids in a process 

facilitated by acyl-CoA synthetases. Formed acyl-CoA fatty acids undergo esterification or 

enter β-oxidation. 

The influx of triglycerides is not necessarily hepatotoxic. It may represent a homeostatic 

mechanism of the liver to counterbalance excess FFAs; a notion that is proven in muscle 

models. Under normal conditions, the synthesis of triglycerides is induced in an effort to 

reduce FFA overflow. Triglycerides are either stored within the hepatocellular cytoplasm 

in the form of lipid droplets or secreted in the form of Very-Low-Density Lipoproteins 

(VLDL). [11] 

The inhibited accumulation of triglycerides in novel VLDLs, via the obstruction of the 

Microsomal-Triglyceride-Transfer Protein (MTP), causes faulty secretion of triglycerides 

and thus, lipid accumulation without liver injury. The inhibited expression of Diglyceride 

Acyltransferase 2 (DGAT2) -a key enzyme that is involved in the formation of triglycerides- 

causes a decrease in the intrahepatic triglycerides and a subsequent rise in FFA oxidation. 

DGAT2 inhibition has been found to deteriorate steatohepatitis in muscle models. 

Therefore, the elevated concentration of triglycerides is an epiphenomenon that occurs 

with the spontaneous production of toxic metabolites, hepatotoxicity and liver injury. [12] 

De novo lipogenesis is a metabolic pathway that includes the glycolysis of glucose into 

acetyl-CoA, the biosynthesis of saturated fats with their subsequent desaturation, and the 

formation of triglycerides within the liver and the adipose tissue. A deregulation of DNL 

has been observed in patients with the metabolic syndrome or NAFLD. DNL increases 

with dietary plans rich in carbohydrates and poor in lipids, that cause an increase in blood’s 

triacylglycerol. The increased synthesis and secretion of VLDL in the liver leads to 
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hyperglyceridemia and steatosis. Hepatic DNL is induced from the flux of lipids into the 

liver, due to excessive dietary FFA intake and peripheral insulin resistance. Although the 

exact mechanism is not fully comprehensible, it is suggested that hepatic insulin resistance 

may be the or/the effect of liver steatosis. Chronic hyperinsulinemia, as in NAFLD, 

increased DNL via the positive regulation of lipogenic transcription factors. [13] 

Hepatic de novo lipogenesis (DNL) increases subsequently to the activation of several 

transcription factors, such as the Sterol Regulatory Element-Binding Protein 1 (SREBP-1), 

the Carbohydrate Response Element-Binding Protein (ChREBP) and the Peroxisome 

Proliferator-Activated Receptor (PPAR-γ). SREBP-1 is a transcription factor that exists in 

three isomorphs: (a) the SREBP-1c, activated by insulin, regulates the activation of DNL 

and the regulatory genes for glucose and FA metabolism, along with those that regulate 

lipid synthesis, (b) SREBP-2 is involved in cellular homeostasis of cholesterol, thus its 

deregulation is tightly linked with fat accumulation in the hepatocyte. (c) ChREBP is 

activated by glucose, increases DNL and provides more substrate for FFA and triglyceride 

synthesis. [14] 

Among the insulin receptors, the Insulin Receptor Substrate 2 (IRS-2) may function, 

when activated, as a regulator of SREBP1-c, therefore affecting DNL. In cases of insulin 

resistance, IRS-2 is negatively regulated and thus, SREBP-1 is overexpressed and DNL 

increases. Additionally, the β-oxidation of FFA is suspended, thus promoting further 

accumulation of fat within the hepatocytes. [15] 

SREBP-1c is also suspended by the Glucose-Regulated Protein 78 (GRP78). GRP78 is 

a binding protein for immunoglobin and a substantial regulator of the Endoplasmic 

Reticulum (ER), thus important for the cell’s survival. Research suggests that the levels of 

Carbomoyl-Phosphate Synthase 1 (CPS1) and GRP78 are gradually decreasing from 

simple steatosis and towards NASH. [13] 

Recent studies on rodents revealed that in obesity, DNL is negatively regulated in White 

Adipose Tissue (WAT) and that its selective restoration reverses the obesity-induced 

insulin resistance. Human studies support these findings. The enzymes of DNL are 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

12 

 

suppressed within WAT in obese individuals, along with the Glucose Transporter 4 

(GLUT4). This suppression is tightly linked with faulty metabolic controls and can be 

reversed with weight loss via bariatric surgery. This finding suggests that DNL and its 

corresponding factors, e.g. the monounsaturated fatty acids in WAT, play an important 

role in regulating systemic insulin resistance and in determining metabolic diseases. 

Opposite to WAT, hepatic DNL has been found to be positively regulated in obese 

rodents and humans, where it is believed to induce hepatotoxicity, insulin resistance, 

atherogenic dyslipidemia and NAFLD. Given this correlation between hepatic DNL and 

the metabolic syndrome, it is believed that a suppressed DNL may provide a viable 

approach against several obesity-related diseases. Regardless of the mechanisms facilitated, 

patients with NAFLD demonstrate increased DNL that is not suppressed through fasting, 

as well as higher nocturnal levels of FFAs. [13] 

Hepatocellular FFAs can injure insulin’s signaling pathway, through the activation of 

kinase-serine, and contribute insulin resistance. Patients with NAFLD demonstrate lowered 

sensitivity for insulin, in their muscles, liver and adipose tissue. Due to insulin resistance, the 

adipose tissue becomes resistant to the anti-lipolytic functions of insulin, thus commencing 

peripheral lipolysis that induces increased FFA influx and guides DNL. Moreover, the lipid 

overload in beta pancreatic cells leads to a deregulation of insulin secretion and to changes 

in the expression of the α-receptor, activated by the Peroxisome Proliferator-Activated 

Receptor α (PPAR-α), the glucokinase, the Glucose Transporter 2 (GLUT2), the Pre-

proinsulin and the Pancreatic Duodenal Homeobox 1 (PDX-1), that lead towards insulin 

resistance as a result of FFA-induced B-cells apoptosis. [9] 

The mechanisms of hepatotoxicity, consequent to the ectopic fat accumulation in the 

liver, have not been sufficiently described. In the case of the energy intake exceeding 

consumption, an abundance of FFA leads to the ectopic storage of fat in the muscles and 

the liver. An overload of lipids may be found in other organs, such as the heart, pancreas 

and the arterial wall. The adipose tissues may store large amounts of FFA excess, but, 

when their maximum capacity is met, cellular dysfunction and cell death, i.e. hepatotoxicity, 

occurs. Hepatotoxic mechanisms include apoptosis, increased levels of cardiolipin, 
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increased permeability of the membranes, cytochrome-release within the mitochondria, 

NF-κβ activation and oxidative stress. In NAFLD, hepatic fat accumulation is considered a 

consequence of the imbalance between liver fat intake/production and its subsequent 

secretion/metabolism. [13] 

Other pathways of fat disposal, e.g. the faulty oxidation of fatty acids in the liver or the 

lowered synthesis and secretion of VLDL, are of minor importance towards determining 

fat accumulation and hepatotoxicity in NAFLD. Autophagy, which regulates lipid 

metabolism, lowers the hepatic steatosis and result in a vicious cycle of lipid accumulation 

and further suppression of the autophagic function. [16] 

Insulin resistance is more prevalent in NASH, when compared to simple steatosis. 

Patients with hepatic steatosis and NASH, but without diabetes type-II, demonstrate 

lowered sensitivity against insulin. Insulin resistance, as one of the “Multiple Hits” that sets 

the stage for NAFD and its progression towards NASH, is of critical importance for 

hepatotoxicity, oxidative stress and the commencement of the inflammatory signaling 

cascade. 

In  patients with NAFLD, both genetic and environmental factors interfere with insulin’s 

signaling pathway and contribute to the conservation and deterioration of insulin 

resistance: IRS-2 phosphorylation by inflammatory signaling molecules, like JNK1 and IKKb, 

NF-κβ and SOGS activation are only a portion of the mechanisms facilitated to obstruct 

the signaling pathway of insulin in NAFLD patients. [17] 

 

1.1.5.1 Dysfunction of the Adipose Tissue 

The adipose tissue is not inert, as it was traditionally believed. It has several endocrine 

functions and secretes hormones (adipokines), like leptin and adiponectin. The adipose 

tissue is also the primary source of FFAs and is responsible for 60% of the total triglyceride 

influx. 
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Lipocytes’ hypertrophy, due to lipid overload, is relative to obesity and/or insulin 

resistance and results adipokine imbalance that can affect not only the tissue but also the 

liver. The excess lipidic load from the overloaded and malfunctioning adipose tissue may 

move towards the liver, muscles and other organs, where it is ectopically stored. [13] 

The adipose tissue contributes in maintaining low degrees of inflammation, by 

producing pre-inflammatory cytokines. The levels of IL-6 in the plasma and the expression 

of TNF-α in adipocytes are increased in obese patients with a tension to lower accordingly 

to weight loss. In addition, the increased expression of pre-inflammatory genes and the 

activation of macrophages in the intestinal and subcutaneous adipose tissue of NAFLD 

patients, is related to the NAFLD’s progression towards NASH and fibrosis. 

Leptin is a 16kDa anorexigenic hormone with pre-inflammatory action, that defends 

non-fatty regions against lipid accumulation. In the liver, this is done via a decrease in 

SREBP-1’s expression. However, leptin increases in obese patients as a response against 

leptin-resistance. Its pre-fibrotic role as been demonstrated in several in vitro models and 

in animal models. Leptin activates the hepatic stellate cells through the Hedgehog and 

mTOR pathways and stimulates the Kupffer cells. However, in spite of the plethora of 

data derived from the animal models, leptin’s effect and importance in patients with 

NAFLD or NASH is still undocumented. [9] 

Adiponectin improves the hepatic and peripheral insulin resistance and has an anti-

inflammatory and hepatoprotective role. This role is accomplished mainly through the 

increase of sphingolipid deacetylation, performed primarily within the hepatocytes, the 

cardiac muscle and the pancreatic B-cells. Adiponectin’s hepatoprotection addresses the 

inhibition of hepatic gluconeogenesis and the suppression of lipogenesis, mainly through 

the activation of the 5’AMP-activated Protein Kinase (AMPK) and the PPAR-α, which both 

increase fatty acids’ oxidation in the liver and the muscles. Moreover, it is negatively 

correlated to the levels of triglycerides of the plasma, and positively correlated to HDL 

and LDL-cholesterol levels. [13] Its anti-inflammatory action is performed via the 

obstruction of NF-κβ’s activation, anti-inflammatory cytokine-release and via the inhibition 

of pre-inflammatory cytokine release, e.g. TNF-a’s and IL-6’s. Adiponectin’s anti-oxidative 
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results are regulated by the AdipoR1 receptor, therefore its lowered levels in obese 

patients may play a causal role in mitochondrial dysfunction and insulin resistance. [9] 

Patients with NAFLD have lower concentrations of adiponectin than the healthy, in spite 

of the increased lipolysis and FFA concentrations. Therefore, adiponectin’s low levels in 

NAFLD, increase the influx of FFAs and the lipid oxidation and play an important role in 

the condition’s progression towards NASH. [13] Generally speaking, low levels of 

adiponectin and increased leptin, in obese patients, may lead to hepatic steatosis, 

inflammation and fibrosis. 

 

1.1.5.2 Mitochondrial dysfunction 

Structural and functional changes within the mitochondria contribute to NAFLD’s 

pathogenesis. The structural changes include mitochondrial-DNA damage as well as 

morphological changes, while the functional changes involve the respiratory chain and the 

mitochondrial β-oxidation. 

If the mitochondria and the peroxisomes become unable to accommodate the 

increased lipid influx, the respiratory oxidation may collapse, leading to failing fat-

homeostasis and to the production of toxic metabolites, deriving from the lipids and the 

overproduction of ROS. These molecules activation the inflammatory pathways, thus 

promoting an inflammation-induced hepatic necrosis and worsening mitochondrial 

damage. [18] 

There is a proven correlation between insulin resistance, obesity, TNF-α and 

mitochondrial dysfunction. In addition, Reactive Oxygen Species (ROS), along with oxidized 

Low-Density Lipoproteins (LDL) may activate Kupffer cells and hepatic stellate cells, 

further inducing inflammation and fibrosis. [19]  

However, what remains unknown is whether mitochondrial dysfunction is NAFLD’s 

main pathological event or a consequence of the changes in lipids’ metabolism. 
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1.1.5.3 Stress of the Endoplasmic Reticulum 

Increased protein production; the main dysfunction of the ER and ATP deficiency that 

induces unfolded proteins to accumulate, may activate Unfolded Protein Response (UPR) 

in response to the reticulum’s stressing. UPR’s activation involves adaptive mechanisms, 

like the reduction of protein synthesis, the increased capability of the ER for protein 

transport, the increased folding and the activation of protein-degradation pathways that 

ease up a failing folding that would normally lead to apoptosis. 

In NAFLD, UPR derives from several factors, including hyperglycemia, ATP-depleting 

mitochondrial damage, hypercholesterolemia, depletion of phosphatidylcholine and 

oxidative stress. 

UPR results in the activation of JNK, that in turn activates inflammatory pathways or 

apoptotic pathways, while its activity seems to separate NASH patients from patients with 

simple steatosis. Moreover, JNK’s activity is tightly linked with faulty insulin signaling and 

diabetes. 

Another interesting effect of UPR’s is the activation of SREBP-1c’s pathways. Through 

this activation fat accumulation in the liver is sustained, leading to further induction of 

oxidative stress and UPR. [20] 

The X-Box Binding Protein 1 (XBP-1) is the main regulator of UPR that interacts with 

insulin’s P13K signaling pathway. This interaction involves increased nuclear translocation, 

mainly attributed to insulin. Regulated by the XBP-1-regulated cellular response to ER 

stress, XBP-1 may be the lost link between steatosis, insulin resistance and inflammation.  

[21] 

 

1.1.5.4 Inflammation in NAFLD: IL-6 and TNF-α 

Elevated FFAs and the subsequent hepatotoxicity, insulin resistance, dysfunction of the 

peripheral adipose tissue and endotoxins of the intestines that contribute to the activation 

and maintenance of the pre-inflammatory cytokines’ production and release. 
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NF-κβ is a transcription factor and the main regulator of the inflammatory response, 

while its IKK2 subunit is the main component required for its activation in acute 

inflammation. Permanent activation of NF-κβ’s pathway is observed in both experimental 

NAFLD animal models and NASH human patients. IKK2’s overexpression, that leads to 

the permanent activation of NF-κβ’s pathway in hepatocytes, causes chronic inflammation 

and insulin resistance. [22] 

The key-role of cytokine production in the liver during hepatic steatosis progressing to 

NASH, is acknowledged by a plethora of studies conducted on animal models. The liver’s 

exposure to increased levels of pre-inflammatory cytokines leads to histological changes 

that are regularly observed in NASH, e.g. hepatocellular necrosis and apoptosis, 

neutrophils’ chemotaxis, activation of hepatic stellate cells development of Mallory bodies. 

Moreover, the plasma and liver-levels of TNF-α are elevated in NASH patients and relative 

to the histological severity of the liver injury. 

Finally, the inflammatory response and the activation of NF-κβ may cause carcinogenesis 

and thus, chronic inflammation in NAFLD. It may also play an important role in the 

development of Hepatocellular Carcinomas (HCC). [23] 

 

1.1.5.5 Activation of the Inflammasome 

Inflammasomes are cytoplasmic poly-proteinic complexes that induce inflammation, 

consisting of caspases and molecules that derive from several pathogens or injured cells. 

They act as sensors for endocrine and exocrine pathogens that are related to pathogen-

associated molecular patterns (PAMPs) or damage-associated molecular patterns 

(DAMPs). 

The inflammasomes contribute to the immune response against various stimuli, as part 

of their innate immune system. They regulate the pre-inflammatory cytokine operators by 

activating of several kinds of Pattern Recognition Receptors (PRPs), like Toll-like Receptors 

(TLR), NOD-like Receptors (NLRs) and C-type Lectin Receptors (CLRs). DAMP-release 
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may be induced by various mechanisms, such as cellular necrosis, unremoved apoptotic 

cells and oxidative stress. 

Inflammasome activation -in response to FFAs, oxidative stress and other NAFLD-

related pre-inflammatory metabolites- and the subsequent production of Interleukin 1β 

(IL-1β), could play an important role in NASH’s progression, through the suppression of 

PPAR-α and the indirect promotion of the cell-death, via TNF-α. In NASH, the saturated 

fatty acids positively regulate the inflammasomes and induce danger-signals’ release from 

the hepatocytes in the form of caspase-dependent mechanisms that promote sensitization 

in IL-1β’s and Lipopolysaccharide’s (LPS) release in hepatocytes. For support, NLRP3-

deficient muscle models were protected from nutrition-induced NASH. 

Kupffer cells play in important role in inflammasomes’ activity: They express large 

amounts of IL-1β’s mRNA and their reduction leads to an overall decrease in IL-1β. 

Phenotypic regulation of Kupffer cells could become a promising anti-fibrotic strategy. 

As a consequence, the expression of proteins that relate to inflammasomes (NLRP3, 

pro-IL-1β, pro-IL-18) are significantly elevated in NASH patients when compared to cases 

of simple steatosis. [9]   

 

1.1.5.6 Cell Death 

The hepatocellular apoptosis plays an important role in liver injury and in the 

development of NASH. The soluble Fas, a membranous death receptor of the TNF family, 

seems to be a key-point for apoptosis. The flux of FFAs into the hepatocytes causes an 

increase of the Fas linkers and the activation of Fas receptors that lead to apoptosis. In 

addition, the reactive caspases (mainly caspase 3) breaks up several substrates inside the 

cell, including Cytokeratin 18 (CK-18): an important intermediate protein of the liver that 

leads to apoptosis. Fragments of the CK-18 can be monitored in blood samples, using 

ELISA, and may become a powerful diagnostic tool in the years to come. 
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Hedgehog signaling (Hh) is involved in liver tissue repair and is thoroughly studied in 

NAFLD, in order to verify whether the elongation of the signaling pathway may influence 

the outcome of the disease. The levels of Hh activity seem to be proportionate to the 

extent and severity of the liver injury, both in rodents and in humans. The macrophage 

infiltration has been also observed in NASH patients, where the Monocyte 

Chemoattractant Protein 1 (MCP-1) is considered another important factor that might 

regulate the progression of the disease, by causing chronic inflammation as a result of 

leukocytes’ infiltration into the liver. [13] 

 

1.1.5.7 Genetic Factors 

Genetic factors, mainly in the form of Single Nucleotide Polymorphisms (SNPs), affect 

the flux of FFA, the oxidative stress, the reaction against endotoxins and the production 

and activity of cytokines. 

Comparative genomic studies have verified the role of several SNPs on the Patatin-like 

Phospholipase 3 (PNPLA3) with regards to the development and progression of NAFLD 

and, particularly, the I148M (rs738409 C/G) polymorphism. This single mutation replaces 

cytosine (C) with guanine (G), that, in turn, changes codon 148 from isoleucine to 

methionine. PNPLA3 encodes adiponutrin; a protein that demonstrates considerable 

homology to the enzymes involved in lipid metabolism and may promote lipolytic activity 

in triglycerides. In humans, this protein is expressed, primarily, in regions of the intracellular 

membrane of hepatocytes, and its activity is promoted either during insulin resistance or 

after food consumption. The G-allele seems to be linked with elevated influx of 

triglycerides into the liver, and thus, with NAFLD. The wild-type phenotype is expressed 

by the CC allele, whereas in NAFLD, the expression of alternative CG and GG alleles is 

tightly linked with the progression of the disease towards fibrosis and cirrhosis. [13] The 

PNPLA3 148M allele (CG) is related to decreased DNL and expression of SREBP-1c, 

despite the seeming increase in lipidic load. In contrast, hepatic β-oxidation is not influenced 

by the lipogenic factor. 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

20 

 

Additionally, fat accumulation on PNPLA3 148M carriers is linked with lowered 

secretion of triglyceride-rich lipoproteins from the liver. [9] 

Following the discovery of PNPLA3’s mutation, and its potential correlation with 

steatosis and steatohepatitis, several SNPs have been observed in NAFLD/NASH patients. 

Genomic studies on Non-Hispanic, Caucasian women, diagnosed with NAFLD via liver 

biopsies, suggested that non-alcoholic steatosis is significantly correlated with mutation 

rs264524 of chromosome 8, on the gene encoding Farnesyl Diphosphate Farnesyl 

Transferase-1 (FDFT-1); the main regulator of cholesterol’s biosynthesis. The same study 

revealed a strong correlation between the degree of fibrosis and SNP rs343062 of 

chromosome 7, although its function remains unknown. Another three SNPs have been 

linked with the inflammation of the hepatic lobes: (a)  rs1227756 of chromosome 10, on 

gene α1 of collagen XIII (COL13A1), (b) rs6591182 of chromosome 11, and (c) rs887304 

of chromosome 4, on the gene of the Calcium-Binding Domain 4B, EFCAB4B [13]. 

A polymorphism on the gene of the Transmembrane 6 Superfamily Member 2 

(TM6SF2) is probably implicated in NAFLD’s pathogenesis. TM6SF2 causes the secretion 

of VLDL, while the polymorphism rs58542926, through a loss-of-function, is related to 

hepatic steatosis, lower plasma levels of VLDL and higher levels of ATP. Interestingly, 

although the polymorphic carriers are more likely to develop NASH, they remain 

protected against cardiovascular diseases, due to the lower levels of VLDL. [9] 

Another alteration of the gene, that has been thoroughly studied, is that of the 

Glucokinase Regulatory Protein (GCKR). GCKR regulates the glucokinase, a 

phosphorylating enzyme that is responsible for the hepatic metabolism of glucose and the 

activation of hepatic lipogenesis. Polymorphisms on this gene, e.g. rs780094 and 

rs1260326, appear related to an increased risk for diabetes type-II, especially in Asian 

populations. [13] 
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1.1.5.8 Epigenetic Factors 

Epigenetic variations are constant changes at the transcriptional level, such as DNA 

methylation, histone modifications, and activity of microRNAs (miRNAs) that do not alter 

the basic DNA sequence and contribute to cellular homeostasis with a high degree of 

developmental and environmental plasticity. It is assumed that the distribution of this 

equilibrium can determine increased susceptibility to NAFLD. In a study of muscle models 

that induced NASH via diet, a correlation was observed between NASH development and 

epigenetic modifications, and, more specifically, cytosine methylations. 

Methylation of DNA is considered an important factor in the progression of simple 

steatosis to NASH. It is primarily influenced by dietary deficiencies in methyl vectors, such 

as betaine and choline. 

Modifications to histone acetylation, via histone deacetylases (HDACs) and histone 

acetyltransferases (HATs), are the most comprehensible of epigenetic modifications. Silent 

information regulator-2-family (SIRTs) includes proteins with deacetylating activity, among 

which, SIRT1 is related to the regulation of glucose homogenate proteins, oxidative stress, 

fat solubility and inflammation response. The relationship between NAFLD and the 

lowered expression of SIRT1 is observed in both animal models and humans. 

In studies of obese patients of all NAFLD stages and healthy controls, differences in the 

expression and methylation levels were observed in 9 genes, encoding key-enzymes for 

the mediated metabolism and the signaling pathway of insulin. Interestingly, these 

differences were partially reversed after bariatric surgery. 

Finally, non-coding RNAs regulate the mechanisms of NASH’s epigenetic gene 

expression. Research on these non-coding regions of RNA are limited to miRNAs, the 

small endogenous monoclonal RNA molecules that regulate various cellular mechanisms 

by affecting the transcriptional and post-transcriptional gene expression. Changes in the 

expression of miRNAs have been linked to the pathogenesis of NAFLD/NASH. mir-122, 

the most abundant hepatic miRNA, leads to decreased levels of cholesterol when 

suspended. It also leads to differential expression of the hepatic genes, mainly associated 
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with cholesterol and FA metabolism. 113 miRNAs were found to be differentially 

expressed in the abdominal adipose tissue of NASH patients, when compared to patients 

with simple steatosis. Among these, 7 miRNAs, involved in gene regulation of several 

metabolic pathways, were significantly correlated with NASH, while two (mir-97, mir-99) 

were found associated with the extent of hepatic fibrosis. [9] 

 

1.1.5.9 Dietary Factors 

Several dietary factors, with regards to both quality (specific ingredients), quantity and 

calorie consumption, are related to the development of NAFLD and NASH. In a study 

that involved 18 healthy individuals, the normal calorie consumption was doubled with 

fast-food meals. This caloric excess led to an increase in the serum’s ALT and induced 

steatosis in less than 4 weeks. 

Fructose is a lipogenic, pro-inflammatory agent that causes oxidative stress and elevated 

expression of TNF-α. Special insulin-independent kinases cleave fructose to fructose 1-

phosphate, that in turn transforms into triose-phosphate and enters the glucose pathway, 

where it produces DNL substrates. In muscle models of fructose-induced NAFLD, 

fructose intake -of industrial origin- was found associated with increased fibrosis. 

Mono-unsaturated FAs, commonly met in the Mediterranean diet, seem to have a 

protective role against NAFLD. A Japanese study of 5.000 individuals, suggested moderate 

alcohol consumption to also have protective effects against NAFLD. In a meta-analysis of 

over 40.000 people, moderate alcohol consumption was associated with a decrease in the 

incidence of NAFLD and in its progression to NASH. [9] 

 

1.1.5.10 Influence on the microflora: the gut-liver axis 

Intestinal microflora is involved in the pathogenesis and the progression of NAFLD, via 

the so-called gut-liver axis. More than 50% of the visceral blood-volume passes through 

the liver. Thus, the liver is the organ with the greatest exposure to intestinal toxins and, as 
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such, the first line of defense against bacterial products. The host-microflora 

communication is of profound importance for the development and homeostasis of the 

host’s adaptive immunity. Lipopolysaccharides (LPS) are one of the major bacterial toxins. 

They act, when bound to the CD14 co-receptor, as a ligand for TLR resulting in the 

activation of an inflammatory cascade that includes stress-activated kinase pathways: the 

JNK, Insulin-3 Regulating Agent and the JB transcription factor.  These pathways are 

involved in the development of insulin resistance, obesity and liver fat accumulation, as well 

as in the development of progression of NASH. Specific patterns of the microflora can 

increase intestinal permeability and cause lipo-polysaccharidemia. Patients with NAFLD 

demonstrate increased intestinal permeability and elevated bacterial microflora when 

compared to the healthy controls. The significant correlation between elevated bacterial 

microflora and NASH is observed in cases even lacking increased intestinal permeability. 

The intestinal microflora affects the energy balance of the host, by kneading resistant 

starchy and non-starchy polysaccharides into short-chain fatty acids (SCFAs) that become 

absorbable from the intestinal epithelium. Additionally, the bacteria suppress the synthesis 

of the Fasting-Induced Adipocyte Factor (FIAF) leading to increased lipoprotein lipase 

activity and triglyceride accumulation. They may also produce enzymes that catalyze the 

conversion of dietary choline into toxic products (mainly methylamines). When taken in 

by the liver, these amines convert into trimethylamine-N-oxides and cause inflammation 

and liver injury. Recent studies have shown that a dysbiosis with the microflora can cause 

NASH by either lowering choline levels or increasing methylamine levels. Another 

mechanism through which NAFLD is induced, involved a change in the metabolism of bile 

that affects several functions, such as hepatic DNL and VLDL secretion. 

Apart from these, the intestinal microflora is an important source of endogenous 

alcohol production. Several obesity-related abnormalities are associated with elevated 

levels of alcohol-breath. Research on the identification of potential differences between 

the intestinal microflorae of NASH, obese and healthy children revealed an abundance of 

alcohol-producing bacteria in NASH, along with a consequent increase in blood’s alcohol 
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levels; a hypothesis that explains the similarities in histological and genetic characteristics of 

Alcoholic and Non-Alcoholic Fatty Liver Disease. 

Finally, failing NALP3 inflammasomes are associated with low levels of various intestinal 

cytokines, including IL-18, that regulate the intestinal microflora. As a result, an increased 

flux of TLR4- and TLR5-antagonists into the portal circulation leads to more acute NASH 

phenotypes. [9] 

 

1.1.6 Diagnosis 

Non-Alcoholic Fatty Liver Disease is basically a non-symptomatic condition and, as such, 

its diagnosis is often incidental. Clinicians ought to consider the likelihood of NAFLD’s 

occurrence in patients with abnormal liver markers and/or metabolic risk-factors, as the 

likelihood of occurrence increases proportionally to the number of metabolic-syndrome 

factors. 

Although the levels of Aspartate Transaminase (AST) and Alanine Transaminase (ALT) 

are significantly different in NAFLD patients, the traditional thresholds may address them 

as “Normal”. Several studies have shown that ALT is not a good biomarker for predicting 

fibrosis in patients with NAFLD.  

Ultrasounds is a good diagnostic tool for cases with at least 30% hepatic steatosis (64% 

sensitivity & 85% specificity). Other diagnostic tools include Magnetic Resonance 

Spectroscopy (MRS) and FibroScan’s Control Attenuation Parameter (CAP), which are 

more sensitive and offer quantitative liver analysis. 

For non-invasive diagnosis, there are various scoring systems that help in the 

classification of patients with minor or significant liver fibrosis. Several of those systems use 

AST, ALT, age and decreased glucose tolerance as input variables. Alternative tests include 

the European Liver Fatigue Table, which combines three biomarkers of the blood’s serum 

(hyaluronic acid, pre-collagen-III peptide and metalloproteinase 3-specific inhibitor) and 

FibroTest. Transient elastography, such as Fibroscan, has been tested for the diagnosis of 
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NAFLD and is usually used in complementary non-invasive tests. However, up until today, 

liver biopsy remains the most reliable and widespread means for NAFLD/NASH diagnosis 

and evaluation, and the primary endpoint for clinical trials. [24] 

 

1.1.7 Therapy 

1.1.7.1 Weight Loss 

A change in lifestyle and dietary habits still remains the primary treatment method for 

NAFLD, as there are no approved therapeutic agents. Although lifestyle changes are 

effective, they can be difficult to implement, and, thus, a gradual weight loss over a 6- to 

12-month period seems reasonable. A calorie deficit down to 500-1000 kcal per day is 

usually suggested to NAFLD patients, the progress of which is consistently monitored by 

a clinical dietitian.  

Simple carbohydrates, such as fructose, have been linked to NAFLD. Carbohydrate 

consumption affects glucose homeostasis and FFA metabolism by the liver, therefore low-

carb diets have been thoroughly studied. Several studies have shown that a 7-10% weight 

loss is associated with reduced liver inflammation. Although exercise alone has not been 

proven effective, when combined with dietary changes, light exercise, e.g. 30- to 40 

minutes of daily walking, seems to improve NAFLD’s histological and biochemical factors. 

Considerable weight loss can be achieved with pharmacological agents. Orlistat leads 

to moderate weight loss via a 30% reduction in fat absorption through lipase inhibition. 

However, recent studies revealed moderate results, limited only to patients that achieved 

a 9% weight loss attributed to lifestyle changes. Sibutramine is a serotonin- and 

noradrenaline-inhibitor that increases satiety and may lead to moderate weight loss. In a 

study on NASH patients receiving Sibutramine over a 6-month period, a 10% weight loss 

improved insulin resistance and achieved lower transaminase levels. However, its use was 

withdrawn due to the risk of fatal heart disease. Finally, Rimonabant, a cannabinoid 

receptor-antagonist, has been a promising therapeutic agent due to the fact that non only 
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did it led to substantial weight loss, but also to improved insulin resistance and lipid-

adiponectin levels in the serum. However, it was withdrawn from commercial use in 2008, 

due to severe psychiatric side-effects. [25] 

Bariatric surgery, which is widely used for weight loss, reduces most of the histological 

characteristics of NAFLD and diabetes type-II, which is associated to obesity and insulin 

resistance. Up until today, bariatric surgery is not considered necessary for NAFLD 

patients, as the surgery increases the insulin sensitivity in viruses, muscle and adipose tissue, 

due to weight loss, and thus improves overall metabolic health. The mechanisms facilitated 

for the improvement of insulin sensitivity remains unknown. [26] 

 

1.1.7.2 Liver Transplant 

For the end-stage NAFLD patients, liver transplantation is the only alternative. 

However, NASH recurrence is a frequent phenomenon, mainly due to the ongoing 

metabolic risk factors and the use of immunosuppressants, such as corticosteroids. [27] 

 

1.1.8 State-of-the-Art: Research Strategies for Non-Alcoholic Fatty Liver 

Disease 

1.1.8.1 Dietary Free Fatty Acids 

Among the many factors associated with the pathogenesis of NAFLD, the role of FFAs 

is the most direct. The notion has been demonstrated in-vivo, by the tight relationship 

between FFA-bearing adipocytes and target cells, such as hepatocytes. [28] 

The main sources of FFAs are the following: 

a) Dietary Fatty Acids, mainly in the form of chylomicrons absorbed in the intestines; 

b) Increased lipolysis of WAT’s peripheral fat, that flows in the form of non-esterified 

Fatty Acids toward the liver; 

c) Newly synthesized intrahepatic Fatty Acids via DNL [28] 
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The most direct way to validate FFA’s effect on hepatocytes is by their exposure to 

elevated concentrations of FFAs that will generate intracellular lipid droplets, associated 

with changes in the cell’s oxidative state. 

Hepatocytes exposed to 0.1% triglycerides revealed an increase in intracellular ROS 

production levels that led to cell death and lipo-apoptosis. The use of a special 

flavoprotein-inhibitor, such as oxidase and NADPH (Nicotinamide Adenine Dinucleotide 

Phosphate) limits the ROS increase, indicating that this increase is flavoprotein-dependent 

and derives from Mitochondrial Complex I or from NADPH’s oxidase. [29] 

In addition to oxidative stress, cytotoxicity, due to FFA-exposure, occurs via caspase-

dependent apoptosis, with JNK triggering mitochondrial apoptosis by activating Bim-

dependent Bax. Interestingly, it has been suggested that the use of unsaturated fatty acids 

can mimic the "two-stroke hypothesis" in-vitro. The exposure to FFAs has made 

hepatocytes more vulnerable to apoptosis, through low concentrations of glycogene 

deoxycholic acid. This phenomenon is associated with significant transcription of IL-8 and 

IL-22 pro-inflammatory cytokines, but only in the stem cells. [30] 

Oleic acid is a monounsaturated fatty acid and one of the most common fatty acids 

of human nutrition. It is necessary for the formation of the plasma membrane and acts as 

an energy source. Palmitic acid is a saturated fatty acid with similar function and the most 

prevalent in fatty hepatocytes. 

The effect of FFA differs among the various kinds of fatty acids, or, in descending 

likelihood for apoptosis: Stearic Acid > Palmitic Acid > Palmitoleic Acid > Oleic Acid. In 

accordance with this observation, a differential effect of oleic and palmitic acid on hepatic 

cell viability, activation of caspases and DNA breakage, has been identified. This observation 

underlines the importance of saturated-unsaturated ratio, especially in experimental design. 

[31] 

Additionally, different fatty acids bind to the cell membrane and are facilitated from 

the cell in different manners. In high concentrations, diffusion is the most important 

transport mechanism, while protein-assisted transport takes place at lower concentrations. 
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Due to their lipophilicity, fatty acids bind to serum’s albumin. Thus, only the unbound free 

fatty acids can enter the cell. CD36 / fatty acid translocase, caveolins and the fatty-acid-

transport protein are the major plasma membrane FFA-transporters. As binding 

differences have been monitored between humans and rodents, the source of albumin 

and the type of the used FA are important components for the in-vitro study. For example, 

the binding of oleic acid to human serum albumin resembles that of the palmitic acid to 

bovine serum albumin, and vice versa. With regards to the other forms of fatty acids, the 

correlation coefficients differ depending on the albumin binding site. All these results 

underline the need for a meticulous calculation of albumin’s concentration, ligand molarity 

(FFA) and albumin/FFA ratio under each of the experimental conditions. [28] 

 

1.1.8.2 Exogenous administration of steatogenic compounds 

Several drugs induce steatosis or steatohepatitis that bear pathological resemblances to 

NAFLD. Drug-induced steatosis falls into different categories that are based on the 

predominant characteristic of the steatosis they induce. These categories could be: 

1) Macro-vesicular steatosis is described by the presence of small or large lipid 

droplets in the hepatocellular cytoplasm along with profound nuclear 

displacement. This type of liver injury is usually reversible, but, over time, it may 

progress towards steatohepatitis and cirrhosis. In general, it is associated with 

increased hepatocellular exposure to alcohol, glucocorticoid therapy, total 

parenteral nutrition, Methotrexate (MTX) and Amiodarone (AMI). Also, this type 

of steatosis may be induced by chemotherapeutic drugs like Tamoxifen (TMX), 

Irinotecan (IRI) and Asparaginase. 

2) Steatohepatitis is characterized by steatosis, necroinflammation and hepatocellular 

“bloating” with or without Mallory bodies. In some cases, fibrosis may also occur. 

Drugs that are found to induce steatohepatitis are Amiodarone (AMI), Tamoxifen 

(TMX), Methotrexate (MTX) and Irinotecan (IRI). 
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3) Micro-vesicular steatosis is demonstrated by the accumulation of numerous small 

lipid droplets within the hepatocellular cytoplasm but lacking nuclear translocation. 

Micro-vesicular steatosis is the most severe form of liver injury, characterized by 

mitochondrial dysfunction, and can be lethal, when extensive or prolonged. 

Associated drugs include Valproic Acid (VPA), Tetracyclines (TET), Aspirin, 

Glucocorticoids and various non-steroidal anti-inflammatory compounds. [32] 

 

1.1.8.3 Valproic Acid (VPA) 

Valproic acid (VPA), along with its corresponding sodium salt form, sodium valproate, 

is the most widely used antiepileptic drug and a chemical analogue of linoleic acid. Daily 

administrations are estimated to exceed one million patients. Recently, VPA has been 

characterized as a histone-deacetylase inhibitor. VPA is effective against various types of 

epileptic seizures, including bipolar disorder, when administered alone or in the context of 

a wider treatment. Its antispasmodic properties were discovered in 1963 and 

commercialized in 1966 (France) and in 1978 (US). VPA has a wide range of action against 

general and partial epilepsy in both children and adults. Thus, it usually is the first 

compound to be considered against newly diagnosed epilepsies. Recently, its administration 

was proposed for other medical conditions, such as neuropathic pains, migraines and 

headaches. Also, it was suggested as an alternative mood stabilizer for various psychiatric 

conditions, while it may rarely be administered to patients with dementia or within a 

treatment for spinal muscular atrophy. 

 Figure 1.1.8.3.1: Valproic Acid’s  chemical structure 
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In 1978, a number of clinical studies revealed some biochemical abnormalities of the 

liver associated with VPA. VPA-induced hepatotoxicity may be manifested in one of the 

following ways: 

1) Hyperammonemia: a single biochemical finding that can be observed with a simple 

blood test. Hyperammonemia may be a complicating condition of increasing loss 

of consciousness and orientation with subsequent gastro-intestinal symptoms, such 

as nausea, vomiting, anorexia and diarrhea. These symptoms fade out within, 

approximately, three days of medical discontinuation.  

2) Hepatitis-like syndrome: characterized by a dose-dependent increase in serum 

aminotransferases. The majority of patients are asymptomatic, although some 

might develop anorexia and lethargy. Biochemical abnormalities and clinical 

symptoms are usually stabilized after medical discontinuation. 

3) Reye’s-like syndrome: a risky, rare and idiosyncratic syndrome. Patients usually 

experience acute cases of high fever, lethargy, anorexia, vomiting, loss of 

consciousness and cerebral edema. 

4) Non-alcoholic Fatty Liver Disease: the steatogenic side-effects of VPA have been 

detected in the 1980s. The notion is backed from histological findings on liver 

tissue, extracted from patients thought to have died due to VPA-induced 

hepatotoxicity, as well as by experimental studies on animals. [33, 34] 

VPA causes NAFLD by inducing weight gain, hyperinsulinemia and insulin resistance. 

The association between VPA and weight gain was first observed in 1981, but even today, 

the underlying pathological mechanisms are not fully comprehensible. It is regulated, both 

centrally and peripherally, by various neuropeptides and cytokines. These regulatory 

substances include resistin, the Fasting-Induced Adipose Factor (FIAF), adiponectin, leptin, 

ghrelin and visphatin. [35] VPA can increase appetite by amplifying the signal of the γ-

aminobutyric acid (GABA) in the hypothalamic pathways. It can also alter the gene 

expression of several adipokines, such as resistin and FIAF. This can lead to insulin- and 

leptin- resistance and, eventually, to obesity. These mechanisms have been observed in 

patients that received VPA for several years. As mentioned, adiponectin is a protein of the 
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adipokine family that plays an important role in lipid metabolism and insulin sensitivity and, 

thus, in body-weight regulation. VPA has been shown to negatively regulate adiponectin’s 

gene expression in adipocytes and to increase the expression of its corresponding receptor 

(adipoR1) in hepatocytes. The latter contributes to the deregulation of FA oxidation. 

Leptin is another adipokine that suppresses hunger and increases FA metabolism in the 

adipocytes. Its serum and mRNA levels in adipocytes are directly correlated to insulin 

deficiency and obesity. Leptin levels and leptin resistance may not be related to VPA but 

may result from its abundance in adipose tissue. Ghrelin is an appetite-generating hormone 

that acts to increase appetite. Plasma levels increase before meals and decrease afterwards. 

In addition, it regulates leptin- and insulin- secretion and selectively utilizes carbohydrates 

over lipids. An increase in ghrelin’s levels have been observed in the initial period of VPA 

administration. [42] 

Hyperinsulinemia has been extensively recorded during VPA treatments and is known 

to be related to obesity, dyslipidemia and insulin resistance. Interestingly, some scientists 

regard insulin resistance as a consequence of weight gain, but as its driving force. [36] The 

notion is supported by several observations that related VPA-induced obesity to an 

increase in insulin levels and a decrease in glucose levels. Hyperinsulinemia can stimulate 

appetite and therefore lead to obesity and to the hypothesis that VPA can induce insulin 

resistance. [35] Various assumptions on the role of VPA in hyperinsulinemia and insulin 

resistance have been formulated: 

1) VPA is a GABA agonist and can directly increase insulin levels by stimulating GABA 

receptors in β-pancreatic cells. [37] 

2) VPA and its metabolites can increase oxidative stress and dysfunction of pancreatic 

β-cells. [38] 

3) VPA may affect the sympathetic response to the glucose load. [39] 

4) VPA metabolism may antagonize mitochondrial FA oxidation and therefore 

increase the levels of FFAs in the plasma, leading to an increase in glucose secretion 

by pancreatic β-cells. [40] 
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5) VPA may destruct insulin’s signaling pathway, by inhibiting the expression of GLUT-

1 mRNA, a transmembrane carrier protein associated with the aforementioned 

pathway. [41, 42] 

With regards to the clinical image of the liver, VPA causes micro-vesicular steatosis. 

This type of steatosis is caused by the failing β-oxidation of the mitochondria. Following its 

conjugation with co-enzyme A (CoA) and the formation of valproyl-CoA, VPA enters the 

mitochondria. This leads to the inhibition of the mitochondrial FA oxidation, as VPA is 

oxidized into various products antagonizing the endogenous lipids for the oxidative 

enzymes. [43, 44] The first step in VPA’s activation pathway involves its dehydrogenation 

by cytochrome P450 (CYP) 2C9 and CYP2A6 and the subsequent formation of 4-ene-

valproate. This process activates an additional inhibitory mechanism for β-oxidation. In-vivo 

and in-vitro studies have shown that 4-ene-valproate is more steatogenic and cytotoxic 

than the parent drug. Following its formation, 4-ene-valproate is transformed into 2,4-

dienylprolyl-CoA, that can inactivate β-oxidation enzymes. [45, 46] VPA may also act as 

an anionic decongestant by transferring protons to the mitochondrial matrix. This may 

result in the inhibition of mitochondrial respiration and in the opening of the mitochondrial 

duct and thus, assisting an alternative VPA-induced cell death. [47] Only recently, a new 

mechanism that facilitates VPA-induced hepatic steatosis was proposed. In this mechanism, 

VPA-CoAs inhibit the action of Palmitoyl Carnitine Transferase 1, which carries FFAs into 

the mitochondria, resulting in a reduction of mitochondrial FFA uptake and a subsequent 

increase of the triglyceride input. [48] 

In summary and regardless of the involved mechanism, VPA significantly increases body 

weight and hence, the likelihood for obesity, insulin resistance and the metabolic syndrome 

to occur. These account for NAFLD’s main risk-factors, as well as for cardiovascular 

disease, dyslipidemia and diabetes. 
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1.1.8.4 Amiodarone (AMI) 

Amiodarone (AMI) is a large amphiphilic, di-ionized derivative of benzofuran, a third-

class antiarrhythmic drug that is used to treat abdominal and atrial arrhythmias. Long-term 

treatment with AMI is limited, due to a variety of extracardiac side-effects, such as 

pulmonary toxicity, cutaneous hyperpigmentation, thyroid dysfunction and liver failure due 

to the inhibition of mitochondrial β-oxidation. Hepatic steatosis is usually induced in mice, 

at a dose of 150 mg per kg per day, over a period of 4 to 7 days. [49] 

Ιn its protonated form, AMI can easily migrate through the external mitochondrial 

membrane. Following its protonation, AMI diffuses through the internal mitochondrial 

membrane. Within the -relatively alkaline- mitochondrial matrix, AMI renounces its 

protonated state and causes a decrease to the membrane potential. Apart from this, AMI 

inhibits the Microsomal Triglyceride Transport Protein; the protein that carries triglycerides 

and assembles them into VLDLs and chylomicrons. [50] 

In chronic treatment, asymptomatic elevations of transaminase levels, by up to three 

times the normal range, have been observed in 50% of patients, although recent studies 

conclude to a relatively reduced rate. The latency period varies from a few weeks to 

several years, while in more than 90% of the patients, it exceeds 90 days. Although liver 

injury is usually reversible, the levels of the hepatic enzymes take months to re-stabilize. 

Symptomatic liver impairment is reported in 1-3% of the patients receiving amiodarone. 

In these cases, both macro- and micro-vesicular steatosis comprise the most frequent 

pathological features. Steatohepatitis, cell “bloating”, Mallory bodies and cirrhosis are also 

Figure 1.1.8.4.1: Amiodarone’s chemical structure 
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common. Cases of micro-vesicular steatosis and hepatocellular necrosis that resemble the 

symptoms of Reye’s syndrome have been observed. Approximately 18% of patients 

proceed to drug discontinuation due to the development of AMI-induced NAFLD or 

NASH. [49] 

A number of mechanisms have been proposed to facilitate AMI-induced liver injury. 

Amiodarone, and its lipophilic metabolite, des-ethyl-amiodarone, are in high concentrations 

in the liver, associated more to the administered dose than to AMI’s concentration in the 

plasma. The intrahepatic storage of Amiodarone may cause phospho-lipidation due to the 

increased influx of phospholipids. This process appears to be a systemic symptom for the 

cationic, amphiphilic substances, regardless of the presence of liver injury or steatohepatitis, 

and the result of phospholipase inhibition. [49] 

In animal models, AMI-induced liver injury appears to be dose-dependent and 

proportional to the increased production of cholesterol, as well as to the accumulation of 

hepatocellular triglycerides. Research on mice revealed increased expression of several 

genes, with the androgen receptor and HNF4α among them. This overexpression results 

in a rise of intrahepatic lipids. Furthermore, both PPAR-α and PPAR-γ appear to rise up, 

suggesting a sustained antagonism between the elevated lipid synthesis and the subsequent 

increase in FA oxidation. [51] An in-vitro exposure of HepRG hepatocytes to AMI, induced 

vesicular steatosis with a distinct accumulation of triglycerides, along with a concurrent 

overexpression of the lipogenic genes (SREBP1, FAS and ACL) and the formation of lipid 

droplets. [52] 

Another important mechanism deriving from micro-vesicular liver injury is 

mitochondrial dysfunction. Amiodarone and its metabolite accumulate in the hepatic 

mitochondria and obstruct the Electron Transport Chain and Oxidative Phosphorylation. 

In animal models, AMI induces reduced mitochondrial β-oxidation leading to elevated ROS 

production.  Hence, a reasonable explanation for liver injury could involve mitochondrial 

FA β-oxidation and the subsequent induction of micro-vesicular steatosis, apoptosis and 

necrosis. [53] Dronedarone, an amiodarone-like anti-arrhythmic drug, was proposed as an 

alternative for the treatment of atrial fibrillation and was alleged to be less hepatotoxic. 
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Nevertheless, Dronedarone seems to have the same inhibitory potential as AMI. 

Interestingly, dronedarone-treated mice inhibited mitochondrial β-oxidation, resulting from 

the reduced activity of Carnitine Palmitoyl Transferase I (CPT1), without affecting the 

respiratory chain, ex-vivo. [54] 

 

1.1.8.5 Tetracyclines (TET) 

Tetracyclines (TETs) are broad-spectrum antibiotics used to treat infections in humans 

and animals. Their efficiency lies in their activity against gram-positive and gram-negative 

bacteria, but also mycoplasma and chlamydia. Tetracyclines were among the first drugs 

found to induce micro-vesicular steatosis, that typically occurred within 4-10 days after 

high doses of intravenous administration. [55] 

 

 

 

 

 

Micro-vesicular steatosis has been observed in parenchymal hepatocytes, following the 

administration of tetracyclines, both in humans and rodents.  

Although chemically induced steatosis is usually reversible, some dangerous forms may 

be lethal. The “Fatty Liver” was first described in 1951 on patients receiving high doses of 

tetracyclines, via intravenous or oral administration. [56] 

TETs’ cellular effects were initially monitored via liver biopsies or via the in-vivo exposure 

of isolated livers. Interestingly, the first findings regarding hepatic steatosis were extracted 

from TET-treated models. These models allowed for the investigation of key molecular 

pathways, with regards to lipid accumulation. For instance, the correlation between the 

intracellular overload of triglycerides and the limitation of mitochondrial β-oxidation was 

Figure 1.1.8.5.1: The chemical structure of Tetracyclines 
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examined by use of TET-models. [57] Since then, various in-vitro models have been used 

to decipher the biochemical basis of abnormal lipid accumulation. Today, the underlying 

mechanisms that result in the Fatty Liver are well documented. These mechanisms mainly 

concern the inhibition of FA oxidation and the secretion of lipoproteins. The fatty liver has 

also been attributed to the association between triglycerides and apoproteins, towards 

lipoprotein formation. [58] 

Recent genomic studies have shown that many genes are involved in FA transport 

and the esterification of triglycerides. In the same context, an association between these 

genes and the induction of steatosis was established. Among them, the Fatty Acid 

Translocase (FAT) CD36 and the Diacyl-Glycerol Acyltransferase 2 (DGAT2) appeared 

to be the most important. Interestingly, their expression increased after the in-vitro 

exposure of HepG2 hepatocytes to TET solutions. In addition, TET negatively regulated 

the phosphorylation of the Extracellular Signal-Regulated Kinase (ERK) that, in turn, 

reduced DGAT2. [59] 

 

1.1.8.6 Tamoxifen (TMX) 

Tamoxifen is a selective estrogen receptor (SERM) and a golden standard for treating 

estrogen-related breast cancer. It acts both agonistically and antagonistically and executes 

both beneficial and harmful processes. In the breast tissue, it prevents the signaling of 

estrogen and thus, reduces the death rate of breast cancer. 

 Figure 1.1.8.6.1: Tamoxifen's chemical structure 
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Another known side-effect of TMX is the induction of hepatic steatosis. It occurs as an 

increase in hepatic enzymes, observed in approximately 43% of the patients, and 

normalizes within 6 months after withdrawal. The most frequent findings include mild 

steatohepatitis, micro-vesicular steatosis and, in rare cases, cirrhosis. Factors associated 

with TMX-induced liver injury, include NAFLD’s main risk factors plus glucose resistance, 

diabetes, hyperlipidemia and hypertension. [51] 

Like AMI, TMX is an amphiphilic drug that becomes protonated inside the 

transmembrane space and deprotonates into the mitochondrial matrix, in order to move 

through the inner mitochondrial membrane. This loss of protons decouples during 

oxidative phosphorylation. TMX disrupts the Electron Transport Chain and limits the 

regeneration of important co-factors, such as NAD (Nicotinamide Adenine Dinucleotide) 

and FAD (Flavin Adenine Dinucleotide). [60] 

The in-vitro exposure of HepG2 hepatocytes to TMX revealed significant hepatic 

steatosis and increased triglyceride accumulation in the cytoplasm. Assumptions on the 

underlying mechanism included an increase of FA biosynthesis, due to the positive 

regulation of SREBP-1c and the lipogenic genes. Additionally, the accumulating triglycerides 

increased the expression of the Microsomal Triglyceride Transfer Protein (MTP), which is 

associated with the assembly and secretion of VLDLs. Several in-vivo models back the 

aforementioned notion and suggest that de-novo FA biosynthesis is the main event leading 

to liver steatosis. [61] 

The role of mitochondria is still in question. Studies on rodents have shown that TMX 

accumulates within the mitochondria, where it inhibits β-oxidation and cellular respiration, 

via the inhibition of CPT I -the enzyme that regulates the rate of β-oxidation- and 

topoisomerases, that both lead to the destruction of the mitochondrial DNA. [62] 

However, in-vitro studies on HepG2 hepatocytes revealed no association between CPT I 

and TMX. [61]. Likewise, other rodent models have shown that TMX does not influence 

tri-glycerol secretion or FA oxidation. [63] Oxidative stress seems to play a key role. In 

studies where TMX was administered to rat populations, exhaustion of hepatic glutathione 
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and accumulating oxidized glutathione, lipid peroxidation and inhibited hepatic activity of 

glutathione reductase (GR), superoxide dismutase (SOD) and CAT were observed. [64]  

 

1.1.8.7 Methotrexate (MTX) 

Methotrexate is used to treat rheumatoid arthritis, psoriasis, psoriatic arthritis, 

inflammatory bowel disease and Crohn's disease. It works by inhibiting the production of 

folic acid, a major regulator involved in RNA and DNA synthesis.  

MTX enters the cell via the organic anion-transporting polypeptide (1B1) and inhibits 

the respiratory chain. Patients with obesity and diabetes are more likely to demonstrate 

hepatotoxicity with histological features that resemble NASH’s. [65]   

 

1.2 COMPUTATIONAL BACKGROUND 

1.2.1 Systems Biology 

Systems Biology is a constantly developing branch of Biology that implements the idea 

of addressing the various biological phenomena based on Systems Theory. Systems Theory 

is used in many sciences and has a strong mathematical background. Thus, the collaboration 

between scientists of different fields and backgrounds, such as biology, physics, 

mathematics and computer science facilitate mathematical modeling towards the analysis 

of ecosystems, organisms and cells. In this context, the different approaches, deriving from 

the interdisciplinarity of each scientific sector, can be combined to create a new way of 

deciphering the complex functions of biological systems. 

Figure 1.1.8.7.1: Methotrexate's chemical structure 
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In the past few years, high-throughput technologies have been developed, which, 

unlike their predecessors, allow the measurement of multiple targets extracted from 

multiple samples; in a process characterized by high speed, performance, accuracy and 

sensitivity. Systems Biology can utilize these measurements via the use of mathematical 

theories and models. Thus, in an effort to provide substantial explanations to the function 

of each system of interest, new hypotheses may be formulated, and new theories may be 

discovered. [136] 

The key concept implemented in Systems Theory includes the notion that each system 

consists not only of its interdependent parts, but also of the relationships involved between 

them. A typical example is that of gene expression. The independent study of a few genes 

may not provide substantial data on the condition of the organism, whereas the cumulative 

study over a large set of interdependent genes, along with the physiology of the organism, 

may lead to more secure conclusions. For example, the immune system of an organism 

cannot be adequately described by the concentration or activity of independent 

immunoglobulins, as its function cannot be considered the result of single underlying 

mechanisms or genes. According to Systems Biology, the immune system involves a set of 

complex interactions between numerous genes, protein complexes, metabolic 

mechanisms and external factors, the orchestration of which aims at dealing with various 

pathological conditions, including several diseases and infections. Thus, critical information 

for an adequate and representative prediction of an organism’s response against the 

various pathogens and/or pathological factors may lie within the genome, or among the 

abundant intra- and extracellular proteins, or within the fusion of the aforementioned 

sources. [137] 

Therefore, Systems Biology models biological entities, along with their interdependent 

functions, in networks, the structure and dynamics of which define the accuracy and validity 

of their resulting predictions. Thus, via selecting the appropriate inputs into the appropriate 

models, a prediction of the system’s time-response can result. Systems Biology finds several 

applications, i.e. the development of disease-specific biomarkers for the prediction of the 

patients’ response to various drugs.  
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1.2.2 Biological Networks 

Biological Networks are networks associated with and a superset of various networking 

communities, formulated either between different organisms or between different 

functions facilitated by the organisms. [139] Biological Networks are met in all scales of 

life; from the “largest” macroscopic, such as ecosystems, to the “smallest” microscopic. 

Systems at the molecular level are particularly complex, due to the plethora of interactions 

involved. Even the simplest of organisms needs to regulate thousands of biochemical 

processes in order to express the appropriate genes, on time, to synthesize its vital 

metabolic products and to extract the energy that is necessary to sustain its existence and 

efficiently respond to stimuli. This vast array of cross-linked processes creates dense and 

complex networks. 

In the pages to come, a summary of the major Biological Networks will be made. Their 

sharing feature is their composition, which, in all cases, involves molecules, genes, proteins 

and metabolites along with the interdependent interactions. 

 

1.2.2.1 Regulatory Networks 

Regulatory Networks are used to define the grid of functional transgenic interactions 

for the proper regulation of gene expression. These networks consist of genes or their 

corresponding post-translational proteins and their interactions, that represent their 

interdependent regulation [140]. In accordance to the Central Dogma of Biology, the 

extent of a gene’s expression is regulated by various transcription factors that are, in turn, 

regulated by the levels of protein transcription. Each transcription factor has the ability to 

identify and bind onto factor-specific, short DNA sequences, in order to positively or 

negatively regulate the transcription levels of the corresponding genes. Noteworthily, a 

transcription factor is able to regulate more than one gene, whereas a single gene can 

undergo the regulation of more than one transcription factors (gene expression). The 

Regulatory Networks consist of nodes and edges. Each of the nodes represents a gene or 

a transcription factor, while the internodal edges represent the interactions between the 
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nodes of interest. They may be directional, in the sense that they may also provide 

information on the type of the examined regulation, that is either inducive or repressive. 

In addition, Regulatory Networks may account the extent at which the regulation of 

interest defines an element’s expression.  

In summary, Regulatory Networks are of crucial importance, as they depict the level of 

cellular function, that provides the framework for key cellular processes, such as cellular 

specialization, growth and response to environmental stimuli. Given these, the Regulatory 

Networks are dynamically transformable, that is altering the type of internodal interactions 

or the interaction altogether. Last but not least, Regulatory Networks are tightly linked 

with other types of Biological Networks, as they comprise a superset of the elements 

involved in them. 

 

1.2.2.2 Metabolic Networks 

Metabolic Networks are networks that consist of metabolic pathways or the sequences 

of biochemical reactions, associated to the cell’s energy management. Their elements may 

lie within two discrete categories, the so-called bipartite. They consist of metabolites, 

namely the substrates and the products of the biochemical reactions, along with the 

corresponding catalytic enzymes. Thus, in Metabolic Networks, the nodes represent the 

Figure 1.2.2.1.1: Example of Regulatory 

Network 
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metabolites and enzymes, while the edges represent their relationship. [141] In Figure 

1.2.2.1, each of the red nodes represent a metabolite, while each of the green nodes 

represent an enzyme. Thus, enzyme E1 acts on substrate S and induces the production of 

metabolite P. Directional networks are usually used, in order to distinguish the substrates 

from their products. In some cases, Metabolic Networks may be formed in a way that the 

depicted nodes correspond only the metabolites, thus a connection between them 

indicates the presence of a shared enzyme. This method is used only to simplify the 

network and to reduce the number of nodes. 

 

1.2.2.3 Signaling Networks 

Signaling Networks consist of the signaling pathways, facilitated in cellular signal 

transduction, and of the cellular signaling processes that are involved in either the activation 

or the suppression of proteins and enzymes. Their elements are -almost exclusively- 

proteins, whereas the internodal edges depict the relationships between them, 

corresponding to either inducive or repressive reactions that comprise the stages of signal 

transduction. Complex networks may be created, as each of the elements can 

simultaneously transmit information on multiple pathways. Each pathway typically uses an 

environmental stimulus -of the extracellular matrix to the corresponding ligand- as input, 

that in turn activates the appropriate transmembrane protein-receptors. Binding is 

followed by a chain of molecules and signaling reactions inside the cytoplasm that reaches 

Figure 1.2.2.2.1: (a) Example of a Metabolic Network, (b) Portion of a human's metabolic reactions 
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the corresponding nuclear transcription factors. [142] This induces a change in the 

intracellular concentrations of several signaling molecules, such as calcium or cyclic 

nucleotides. [143] 

Although Signaling and Metabolic Networks bear significant resemblances, they are 

different in the type of information they provide and in the purpose they serve. The 

Signaling Networks are associated with data transduction via molecular signals, are 

extremely dynamic and their response times vary from milliseconds to several minutes or 

so. Furthermore, and despite a difficulty in comprehension, Signaling Pathways are crucial, 

especially in fields like molecular immunology. [144] On the other hand, Metabolic 

Networks are static and associated with the cell’s energy management, that is energy 

production and consumption mechanisms. [145]  

 

1.2.2.4 Networks of Protein Interactions 

Strictly speaking, all of the aforementioned networks are networks that involve protein 

interactions. Thus, the term may describe networks difficult to define or comprehend, 

either regarding the nature or the variety of interactions. These are “mixed” networks of 

many different functional relationships interlinking the nodal proteins. [146] 

However, the term may also refer to networks where the nature of interactions is 

clearly defined. These networks regard molecularly interlinked proteins that bind to create 

autonomous functional units, the protein complexes. Experimental identification of these 

links is profoundly demanding; therefore, it is not uncommon for these networks to involve 

heterogenous information. Their edges are non-directional, in spite of the interactions 

being transient in the sense of a complex altering a protein that in turn affects neighboring 

interactions. These kinds of interactions comprise the dynamic portion of the network. 

[143] 
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1.2.3 Pathway Analysis 

Typically, genomic analyses involve the study of gene expression, that is the 

determination of differentially expressed genes (DEGs). DEGs may be over-expressed or 

under-expressed within the study condition (pathological samples) and when compared 

to the control (healthy samples). However, the identification of individual DEGs does not 

provide sufficient information about the underlying mechanism that is altered between the 

study and control conditions. 

According to Systems Theory, genes do not act independently, but interact as parts of 

a network. Pathways are biological networks associated with a particular process of a cell 

or organism. For example, cellular endocytosis involves several pathways. The transition 

from the differential expression of genes to the differential expression of pathways is the 

key to adequately comprehend the phenomena that distinguish the study from the control. 

As the study condition usually reflects a disease, this kind of analysis offers an in-depth 

understanding of the pathology, in the sense that can identify the cellular processes that 

are associated with the condition. [147] 

Furthermore, several diseases are associated with slight changes in gene expression that 

are difficult to identify, especially in the case of individual genes. However, when studying 

the pathway expression, several slightly over-expressed genes can cumulatively lead to the 

false perception of a pathway as differentially expressed. For example, in diabetes type II, 

no individual DEGs are identified. However, a gene set -involved in oxidative 

phosphorylation- exhibited coordinated reduction in diabetic patients. [148]  
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There are three different ways for the analysis of pathways, presented in Figure 1.2.3.1. 

The first, Over-Representation Analysis (ORA), uses DEGs and their belonging pathways 

as input. After calculating the amount of under- and over-expressed genes that belong to 

a certain pathway, pathways that exhibit the largest amounts of DEGs are given as the 

method’s output. Nevertheless, ORA has several limitations. The method uses only a 

portion of the genes involved (only DEGs), while it does not count in the levels of 

differential expression. It also considers genes and pathways to act independently of each 

other. 

The second method is the so-called Functional Class Scoring (FCS). This method uses 

gene-level analysis as input, in the sense that it takes in all the genes and their corresponding 

expression levels. A statistical analysis of the pathways is then performed. This analysis 

counts in the pathways’ area and the transgenic correlations. FCS gives each of the 

pathways examined, a value, which corresponds to their statistical significance. However, 

FCS excludes the possibility of a gene being involved in more than one pathway and 

therefore, if a significant pathway contains a gene that is involved in also other, it is likely 

that these other pathways will be falsely named as statistically significant. Another limitation 

of FCS is that the method neglects the values of expression levels, except for the initial 

classification, thus resulting in significantly over- and under-expressed genes not being given 

the appropriate gravity. Fortunately, the latter may be tackled through the efficient 

selection of additional statistical analyses. 

Figure 1.2.2.4.1: Methods of Pathway Analysis (Khatri et al.,2012) 
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The third way involves Pathway Topology-Based Analysis (PT). PT follows the exact 

steps of FCS but counts in the pathways’ topology, i.e. the ways their genes interact in 

changing conditions. PT’s main limitations regard the actual topology of the pathways 

which is dependent on the cell type. In the vast majority of cases, this information is not 

adequately provided. The generalization and integration of this kind of information into 

databanks, are challenging for the current means of bioinformatics. 

 

1.3 AIM OF THE PROJECT 

Drug-induced liver injury (DILI) is defined as a liver injury caused by various medications, 

herbs, or other xenobiotics, leading to abnormalities in liver tests or liver dysfunction, with 

the reasonable exclusion of other etiologies.  

Non-Alcoholic Fatty Liver Disease (NAFLD) is recognized as a leading cause of liver 

disease in the western world. It includes a spectrum of liver disorders that range from 

simple hepatic steatosis to Non-Alcoholic Steatohepatitis (NASH), liver cirrhosis and 

hepatocellular carcinoma (HCC). 

The present project aims to the identification of potential steatogenic compounds, via 

network-based pathway analysis on NAFLD, and to the subsequent in-vitro verification of 

their steatogenic and hepatotoxic effects, in an effort to validate candidate DILI-inducing 

compounds. 
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2 MATERIALS AND METHODS 

2.1 COMPUTATIONAL ANALYSIS 

2.1.1 Gene Expression Omnibus (GEO) 

GEO is a public functional genomics data repository, provided by the National Center 

for Biotechnology Information (NCBI). The majority of data derives from genomic analyses 

over various biological concepts, including disease, evolution, immunology, toxicology and 

metabolism. Each study provides its resulting data in the form of microarrays. [160] 

At the initial stages of analysis, a selection of the data to be processed must me made. 

These data are extracted by means of search within the GEO repository. This search is 

performed by use of the term “NAFLD” and returns 628 corresponding datasets. 

Information including the set’s title, summary, organization, references, author and 

sample number are extracted out of each dataset. Given these clues and based on the 

organization and summary of each resulting set, datasets of the Homo Sapiens species are 

selected. These datasets include both healthy individuals, that will be used as control, and 

patients with NAFLD. 

 

2.1.2 Volcano Plot 

For each sample, the dataset provides values of assayed concentrations that quantify 

intracellular gene expression. Subsequent calculations aim to determine the total number 

of DEGs. The measure that describes how much of a gene’s expression changes between 

the control and study conditions, is given as the logarithm of the study-over-control ratio: 

log
2
[FC(g)]=

E(g)test

E(g)control

 

Thus, zero is the relation’s neutral point, while positive ratios correspond to over-

expression of the examined gene and negative ratios to under-expression. Interestingly, 
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when log2FC=1, in the study condition, a gene demonstrates two-times the expression of 

the control, whereas, when log2FC=-1, it demonstrates half the control’s expression.  

In order to evaluate the significance of these values and neglect apparently significant 

that occurred due to random variation, the dataset should undergo statistical testing. 

Therefore, a comparison between a pair of distributions -instead of values- must be made 

for each gene. Thus, each expression experiment should be conducted for at least three 

times [161] In this case, statistical testing is performed by use of Student’s t-test. The null 

hypothesis regards the case of the distributions’ mean values to be identical and attributes 

a corresponding t-value. The t-value in turn corresponds to the p-value. The smaller the 

p-value, the stronger the indication that the null hypothesis does not stand, i.e. the mean 

values of the two distributions are significantly different, meaning that the difference 

observed is of statistical significance and thus, the gene examined is differentially expressed. 

A volcano plot depicts the relation between these two values. Each point of the diagram 

corresponds to a specific gene. The x-axis attributes the value of log2FC, while the y-axis 

attributes the negative decimal logarithm of the p-value. Given these, the higher a gene 

stands with regards to the vertical axis, the more significant its differential expression may 

Figure 1.2.2.4.1: Example of a volcano plot 
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be considered. Also, the more distant a DEG is from x-axis’ zero point, the greater its 

intensity. Statistically significant differential expression is considered by use of the following 

thresholds: |log2FC|>1 and p-value<0.05. 

 

2.1.3 Gene Level Statistics (GLS) 

GLS is performed by use of a dedicated package of R-Bioconductor, named “Linear 

Models for Microarray and RNA-Seq Data” or Limma. [163] 

For each gene a linear model is created by means of the following formula: 

y
g
=β

g,0
+β

g,1
∙xg,1+⋯+β

g,n
∙xg,n+εg 

where: 

y
g
 is the value of g-gene’s expression; β

g,0
 is the control’s g-gene’s expression; 

β
g,1

,⋯,β
g,n

 is the difference between g-gene’s expression from samples (1,…,1-n) 

that is subtracted from the control’s; xg,,1,⋯,xg,,n are binary variables that determine 

whether the comparison includes the n-sample; εg is the calculation error 

By eliminating εg, yg
 is approximated by ŷ

g
, while β-parameters are approximated 

by β̂
g,1

,⋯,β̂
g,n

 accordingly. The null hypothesis, H0, regards the case when the 

difference between the n-sample’s g-gene’s expression to the control’s is zero, or 

β̂
g,n

=0 . As known from Linear Algebra, this vector can be calculated via the 

following formula: 

β̂
g,n

=(XT
X)

-1
X

T
Y 

where: 

X is the array of xg,0,…,xg,n variables, where each of its rows correspond to a gene 

and each of its columns correspond to a sample; Y is the vector of gene 

expressions 
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The standard error that derives from this calculation is determined as 

se (β̂
g,n
) =√sg

2∙(XT
X)

-1
, where sg

2 accounts for g-gene’s variation and its 

corresponding significance test, from which the t-value is calculated for each of the 

genes, as of: t= β̂
g,n

se (β̂
g,n
)⁄ . 

The aforementioned methodology involves one major issue. When the standard error 

reaches sufficiently small values, the method may deliver several false positives (FPs). This 

issue is tackled by use of hierarchical models that describe the changing β-coefficients and 

the variation sg
2
 as functions of the examined genes. 

Specifically, initial categorization of the patients leads to the formation of three distinct 

groups: the Healthy, the NASH-patients and the Steatosis-patients. Then, by use of the 

aforementioned methodology, a linear model is created for each of the genes. However, 

only xg,1 and xg,2 terms receive a value, as instead of n single samples, the method uses the 

three formed groups of patients. Then, two contrasts are performed: one between 

Healthy and NASH-patients and one between Healthy and Steatosis-patients (Figure 

2.1.3.1). 

Finally, empirical Bayes method attributes the necessary hyperparameters and the B-value, 

while a moderated t-test is also conducted. The analysis results in the parameters shown 

in Figure 2.1.3.2, demonstrated for each contrast and gene.  

 

Figure 1.2.2.4.1: Yielded contrasts between Healthy, NASH-patients 

and Steatosis-patients 

Figure 1.2.2.4.2: Example of yielded results 
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2.1.4 Gene Set Analysis (GSA) 

The analysis of pathways (Gene Set Analysis; GSA) is performed by use of another 

dedicated package of R-Bioconductor, named “Platform for Integrative Analysis of Omics 

Data” or Piano. [164] By using gene-sets, derived from the “Molecular Signatures 

Database” (MSigDB), and the GLS results, GSA is performed by means of nine distinct 

statistical methods: 

o Fisher: The basic form of Fisher’s test evaluates the independency between two 

variables by calculating p-values for 2x2 affinity matrices. [166] 

o Stouffer: Stouffer’s method is based on p-values and allows for the use of weight 

coefficients. [167] 

o Reporter: The algorithm maps gene analysis into metabolic gene networks, via the 

identification of adjacent DEGs. It is based on Patil & Nielsen’s “Reporter 

Metabolites Algorithm” [168] 

o Tail Strength: Assuming a null hypothesis that considers pi p-values to be 

independent and identically distributed within the interval [0,1] and their 

comparative relations to be p1≤p2≤…≤pm, the Tail Strength test calculates a p-

value’s deviation from its expected value and attributes it to a TS value. Positive 

TS values suggest that H0 does not stand, meaning that small p-values were more 

than expected. TS attributes weight towards the smaller p-values and thus it is 

more sensitive to tail deviations. [169] 

o Page: For each gene-set, this method (Parametric Analysis of Gene Enrichment 

Page) calculates Z-scores from the FoldChange (FC) values and, by means of the 

normal distribution, it attributes statistically significant gene-sets. [170] 

o MaxMean: In this method, a mean value for the positively and negatively expressed 

genes is calculated. This calculation is performed in each gene of each gene-set 

and is followed by a selection of the gene-sets that return the greatest absolute 

expression value. [171] 
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o Sum, Mean, Median: These methods calculate the Sum, Mean and Median values 

of each gene-set. Sum uses the t-value, while Mean and Median use the 

FoldChange (FC). 

As none of these methods can be considered to be much better than the rest, a 

combination of outcomes, resulting from each of the nine aforementioned analyses, is 

performed in order for the prevailing trend to dominate (Figure 2.1.4.1). Thus, the statistical 

analysis of genes progresses into the statistical analysis of pathways. These pathways are 

classified into five discrete categories, according to their p-value: 

o Distinct Up: Over-expressed and under-expressed genes are mutually excluded, 

leading to a prevailing over-expression of the pathway. 

o Mixed Up: Over-expressed genes prevail by neglection of the under-expressed. 

o Non-Directional: The absolute value of the differential expression is used, meaning 

that its direction is not considered. 

o Mixed Down: Under-expressed genes prevail by neglection of the over-expressed. 

o Distinct Down: Over-expressed and under-expressed genes are mutually 

excluded, leading to a prevailing under-expression of the pathway. 

2.1.5 DrugBank 

DrugBank is an online database for bioinformatics and chemoinformatics that combines 

detailed data of every pharmacological agent along with its molecular and genetic 

interactions. DrugBank’s latest version contains 10.500 drugs, among which 1.737 

approved small drug molecules, 870 food supplements and over 5.023 experimental drugs. 

In addition, DrugBank provides data on 4.772 drug-associated proteins, such as drug-

Figure 1.2.2.4.1: Consensus among different GSA methods 
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targets, enzymes, transporter and carrier complexes. For each drug, 50% of the provided 

information is dedicated to chemical data and another 50% to the drug targets [172].  

 

2.1.6 Connectivity Map (cMap) 

Connectivity Map (cMap) is an online bioinformatics tool and the product of Harvard 

university’s collaboration with MIT. It contains a database of gene-signatures of several 

drugs, along with a dedicated tool for the identification of intra-signature similarities. The 

database consists of gene expression elements that are obtained by in-situ Oligonucleotide 

Microarrays technology. 1.309 bioactive molecules and drugs have been administered on 

5 cancer cell-lines at different concentrations and in different durations. These cancer cell-

lines are: leukemic cells (HL60), breast cancer cells (MCF7, ssMCF7), prostate cancer cells 

(PC3) and melanoma cells (SKMEL5). The treating concentrations are proximal to those 

successfully used in experimental in-vitro applications. In cases where prior knowledge on 

the treating concentrations is limited or insufficient, 10μM are used instead. Each treatment 

lasts for 6 and/or 12 hours in an effort to monitor the drugs’ direct mechanisms of action. 

The bioactive molecules are called perturbagens, as their administration disrupts the 

normal cellular function and leads to the differential expression of several genes. A wide 

variety of substances may be considered as perturbagens, ranging from antibiotics to 

chemotherapeutic drugs and plant extracts. In each of the experiments, some of the cell 

microarrays are treated (treatment), while others are pseudo-treated (vehicle) and used 

as control. Thus, pairs of treatment-control are formulated. By use of a probe set, DEGs 

in treatment over control are listed. The list has over-expressed genes in its upper rows 

and under-expressed genes in its latter rows. Each experiment yields treatment instances 

that total 6.100 in number. Each of the instances is assigned an identification number and 

is characterized by its original experiment in terms of the used cell line, the name and the 

treating concentration of the drug and the scanning number of the microarrays, both 

treatment and control. As a result, a gene profile (gene signature) is created for each drug. 
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The intra-signature similarities are identified by cMap’s dedicated tool that operates by 

means of a signature-question. This question, provided by the user, may be the gene 

signature of any disease or the gene signature of another drug. Contrasts are made via the 

Kolmogorov-Smirnov (K-S) statistical test, i.e. a non-parametric method that determines 

whether the distributions of two samples are statistically different. [173] In practice, the 

test is performed between the signature-question and similar/opposite gene signatures of 

the registered drugs. Each gene bears a signal at the signature-question that indicates 

whether it is over- or under-expressed. The comparison between the signature-question 

and the registered drugs is performed in the following way: if the question’s over-

expressed/under-expressed genes coincide with the upper/latter rows of a drug profile, 

the two substances share a similar gene signature; if the over-expressed genes coincide 

with the profile’s latter rows (and vice versa), the two substance share an opposite gene 

signature. During this procedure, a value called the Enrichment Score (ES) is calculated. ES 

lies within the [-1,1] interval. ES’s positive values correspond to a similar gene signature, 

while the negative ones correspond to an opposite gene signature. For each signature-

question asked, a table of bioactive substances is produced (Figure 2.1.5.1). 

 

2.1.7 Methodology 

As mentioned, datasets extracted from human samples (Homo Sapiens) are first 

selected from GEO repository. These datasets include three groups of samples: Healthy, 

NASH-patients and Steatosis-patients. Following the construction of the corresponding 

volcano plots, a second screening is made, based on the number of DEGs, as the greater 

the number the more adequate the information extracted.  

The next step is to analyze the selected datasets. Following the bulk calculation of the 

number of DEGs, provided by the volcano plots, the goal of this step is to determine the 

Figure 1.2.2.4.1: Table of bioactive compounds, yielded from cMap's dedicated tool 
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statistically significant pathways that are involved in the pathogenesis of NAFLD. Firstly, 

GLS is performed and followed by GSA. Note that for each dataset, this analysis is carried 

out separately. 

Initially, raw data are extracted from the selected datasets and RMA normalization is 

performed. This method yields comparable distributions in cases where the original data 

do not follow the normal distributions. It is essentially based on the comparison of value 

ratings and thus, it is independent of moments, such as the mean value, the dispersion etc. 

[138] Raw data are organized in a single measurement per sample, for each transcription 

factor that corresponds to the gene of interest. Often are the cases where the exact same 

transcription factor corresponds to several genes or several transcription factors 

correspond to the same gene. The former factors are excluded from further analysis, 

whereas the latter are classified into mean-dependent groups. GLS is performed in the 

manner previously discussed and yields data for each contrast of each gene. 

Then, GSA is performed for each dataset and contrast, with datasets being classified in 

five groups: Distinct up/down, Mixed up/down and Non-Directional. The twelve top-rated 

pathways are selected from each group. These pathways have the most significant NAFLD-

associated differential expression and comprise Group 1. 

The study is preceded by the creation of NAFLD-induction models of primary human 

hepatocytes and hepatocellular lines by means of five different pharmacological substances. 

These substances were carefully selected in order to relate to various induction 

mechanisms of the disease. What is crucial at this stage is to determine those pathways 

triggered by the steatogenic NAFLD-inducers. 

Research over these steatogenic compounds in DrugBank yields relevant drug targets 

and drug-related carrier- and transport-protein-encoding genes. Then, via MSigDB, the 

corresponding pathways are listed for each of the yielded genes. These pathways comprise 

Group 2.  
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Then, by use of cMap’s dedicated tool, similarities in the drugs’ gene signatures are 

extracted. Known NAFLD-inducers -steatogenic compounds- are used as the signature-

question. Each compound is inputted separately, along with the names of three cell lines 

(HL60, MCF7 and PC3) and the concentration that is most proximal to the experimental. 

From the yielded results, bioactive compounds that demonstrate significantly (p-

value<0.05) similar (ES>0) or opposite (ES<0) expression are selected. Each of these 

yielded compounds are then searched on DrugBank and MSigDB in order to conclude on 

the pathways that they significantly affect. These pathways comprise Group 3. 

Since candidate NAFLD-inducing steatogenic compounds need to be sharing common 

pathways with the disease, they are extracted from the super-intersection of Groups 1, 2 

and 3 (Figure 2.1.7.1). Out of these, three compounds (Pimozide, Clomiphene and 

Mefloquine) are selected for in-vitro verification. 

2.2 IN-VITRO VERIFICATION 

2.2.1 Cell lines 

HepG2 is an immortalized cell line consisting of human liver carcinoma cells, derived 

from the liver tissue of a 15-year-old Caucasian male who had a well-differentiated 

hepatocellular carcinoma. Hepatocellular carcinoma is the fifth most-common cancer 

worldwide. The morphology of HepG2 cells is epithelial and contains 55 chromosome 

pairs. HepG2 cells can be grown successfully at a large scale, and secrete many plasma 

Figure 1.2.2.4.1: The intersection of the three groups contains potential steatogens 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

57 

 

proteins, such as transferrin, fibrinogen, plasminogen and albumin. They can be stimulated 

with human growth hormone. HepG2 cells are adherent, epithelial-like cells growing as 

monolayers and in small aggregates. 

Originally thought to be a hepatocellular carcinoma cell line but shown to be from an 

hepatoblastoma (PubMed=19751877). 

- Doubling time: ~50-60 hours (DSMZ) 

- Disease: Hepatoblastoma (NCIt: C3728) 

- Species of origin: Homo sapiens (Human)  

- Sex: Male 

- Category: Cancer cell line 

 

The human hepatocellular carcinoma cell line (FOCUS—Friendship of China and 

United States) was derived from a patient with primary hepatocellular carcinoma. This cell 

line has been in continuous culture over an 18-mo period. The morphological and 

ultrastructural features of FOCUS are consistent with its neoplastic hepatocellular origin. 

FOCUS cells contain aspartate aminotransferase and glucose-6-phosphatase activity. In 

addition, α1-antitrypsin, fibrinogen, alpha fetoprotein, and carcinoembryonic antigens were 

detectable in the cytoplasm of the cultured cells, by immunochemical staining techniques. 

The karyotype of the FOCUS cell is human in origin and it contains human DNA 

sequences as detected by molecular hybridization analysis. The FOCUS cells do not show 

evidence of density-dependent inhibition of growth under confluent conditions. Repeated 

growth curves over an 18-mo period were identical, revealing a doubling time of 42 to 48 

h. The malignant potential of FOCUS cells was further demonstrated by their ability to 

lead to gross tumor formation after subcutaneous infection into nude mice. From one of 

the solid tumors grown in nude mice, re-cultured cell lines have been established and 

found to have properties identical to the original FOCUS cell line. This FOCUS cell line 

represents an additional model for further investigation of tumor specific antigens and the 

relationship between hepatitis B virus (HBV) and hepatocellular carcinoma. Preliminary 
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molecular characterization has indicated the existence of integrated HBV sequences within 

the FOCUS genome. 

- Doubling time: 42-48 hours (PubMed=6086498) 

- Disease: Hepatocellular carcinoma (NCIt: C3099) 

- Species of origin: Homo sapiens (Human)   

- Sex: Male 

- Category: Cancer cell line 

 

HUH7 is a well differentiated hepatocyte-derived cellular carcinoma cell line that was 

originally taken from a liver tumor in a 57-year-old Japanese male in 1982. The line was 

established by Nakabayshi, H. and Sato, J. The HUH7 cell line is an immortal cell line of 

epithelial-like, tumorigenic cells. These cells are adherent to the surface of flasks or plates 

and typically grow as 2D monolayers.  Although containing many mutations and INDELS, 

it is worthy to note the HUH7 cells have a point mutation in the p53 gene. 

- Doubling time: 24 hours 

- Disease: Hepatocellular carcinoma (NCIt: C3099) 

- Species of origin: Homo sapiens (Human) 

- Sex: Male 

- Category: Cancer cell line 

 

Hep3B is hepatocellular carcinoma cell line, derived from an 8-year-old male. Cells 

contain integrated Hepatitis B virus genome. However, there is currently no evidence that 

this cell line produces infectious Hepatitis B virus. The cells should be handled under 

laboratory containment level 2. Ethnicity: Black. P53 null. 

- Doubling time: ~40-50 hours (DSMZ). 

- Disease: Hepatocellular carcinoma (NCIt: C3099) 

- Species of origin: Homo sapiens (Human)  

- Sex of cell: Male 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

59 

 

- Category: Cancer cell line 

2.2.2 Cell Culture 

All hepatic cell lines are cultured in Dulbecco’s Modified Eagles Medium (DMEM) High 

Glucose, with the addition of 10% v/v Fetal Bovine Serum (FBS; FB-1001/500) and 1% v/v 

of Penicillin/Streptomycin, provided by BIOSERA, France. The cultures are incubated at 

37°C, 5.0% CO2 and 90% humidity. 

Upon sufficient confluency, all cell lines are seeded on 96-well plates, (Corning® 

Costar®, 3599) at corresponding densities: 

- HuH7: 15000 cells per 100μl of medium per well 

- Hep3B: 15000 cells per 100μl of medium per well 

- HepG2: 20000 cells per 100μl of medium per well 

- FOCUS: 15000 cells per 100μl of medium per well 

 

2.2.3 Steatosis Induction 

2.2.3.1 Serum Concentration or Determining the Healthy Hepatocyte 

Numerous studies have now documented significant elevations in fasting lipogenesis, 

especially in cases of obesity, insulin resistance and diabetes. However, in order to 

determine the steatogenic effects of candidate NAFLD-inducing compounds, a prior health 

condition of the hepatocytes should be assured. Short-term fasting hepatocytes tend to 

over-express the lipogenic pathways, thus leading to a seemingly fatty phenotype even 

prior to the administration of steatogenic compounds. In this context, the in-vitro 

verification of candidate steatogens cannot be conclusive, as the prior health condition is 

violated. On the other hand, cells growing in serum exhibit the issue of the administered 

drug binding to the serum proteins, instead of the cellular. In order to eliminate this 

possibility, serum-free cultures should be the case, while dosing solutions should be made 

in the absence of serum.  
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Therefore, a consensus in the serum’s concentrations should be reached in order to 

accommodate both these limitations: on one hand, as little serum to not interfere with the 

drugs administered, and on the other hand, as much to suppress DNL and maintain the 

prior health condition of the hepatocytes. 

Hepatocellular fasting and the medium’s proteinic component -that may interfere with 

the drugs’ binding- is attributed mainly to the addition of Fetal Bovine Serum (FBS). Given 

this, the aforementioned consensus eventually regards the FBS concentrations in the 

culture medium. Thus, an FBS-concentration threshold that satisfies both the restrictions 

should be determined. 

In order to do so, HUH7 cell line is introduced to medium of different FBS 

concentrations (0% v/v, 1% v/v, 2% v/v, 4% v/v, 5% v/v, 6% v/v, 7% v/v, 8% v/v, 9% v/v and 

10% v/v). Fat levels are reviewed within 24h of treatment. 

 

2.2.3.2 NAFLD induction 

NAFLD induction is performed by exposing the cells to treatments of known NAFLD-

inducing compounds. These are: 

o Oleic & Palmitic Acid (Cayman Chemicals; 90260, 10006627) 

o Tamoxifen Citrate (Cayman Chemicals; 11629) 

o Amiodarone Citrate (Cayman Chemicals; 15213) 

o Tetracycline Hydrochloride (Cayman Chemicals; 14328) 

o Valproic Acid Sodium Salt (Cayman Chemicals; 13033) 

Figure 2.2.3.1.1: FBS experimental design 
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The fatty acids, approximated by a mixture of oleic and palmitic acid in a molar ratio 

of 1:2 palmitic: oleic, are dissolved in 100% ethanol at 90°C and in accordance to the 

manufacturer’s instructions. 

The pharmacological NAFLD-inducers (TMX, AMI and TET) are diluted in DMSO 

according to the manufacturer’s instructions. Valproic Acid is diluted in 100% ethanol at 

90°C and in accordance to the manufacturer’s instructions. 

The cells are exposed to the following concentrations for 24h, in 0.1% v/v DMSO and 

1.0% v/v etOH to the medium: TMX 8μΜ, AMI 20μΜ, TET 150μΜ, VPA 6mM. 

 

2.2.3.3 FFA-induced Steatosis or Defining the Fatty Hepatocyte 

With the healthy hepatocyte being determined, the fatty phenotype should be 

concluded. Normally, hepatocytes have a capacity to accommodate the excessive amounts 

of extracellular FFAs, either by facilitating them in β-oxidation or by regulating triglyceride 

biosynthesis. Above a threshold though, hepatocytes are unable to accommodate the 

excess and thus, fat, in the form of extracellular FFAs, accumulates.  

This threshold may be determined by the exposure of FOCUS hepatocytes to various 

increasing FFA concentrations (100μΜ, 200μΜ, 400μΜ, 500μΜ, 600μΜ, 700μΜ, 800μΜ 

and 1000μΜ). The fatty acids, approximated by a mixture of oleic and palmitic acid in a 

molar ratio of 1:2 palmitic: oleic, are dissolved in 100% ethanol at 90°C and in accordance 

to the manufacturer’s instructions. Fat levels are reviewed within 24h and 48h of 

treatment.  A bulk determination of FFAs threshold concentration is then made. 

Figure 2.2.3.3.1: FFA steatosis-induction experimental design 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

62 

 

2.2.3.4 Resazurin Viability Assay 

For the computationally yielded candidate steatogens, the in-vitro verification must be 

performed at propriate dosing concentrations. These concentrations should assure that 

90% of the treated hepatocytes should remain alive and are named EC90 or IC10. 

For the IC10 determination, dose-response curves should be constructed for each 

agent and cell line. The data from which the curves originate, are determined by means of 

the Resazurin Viability Assay. 

Resazurin is a cell-permeable redox cell marker that is used to measure the number of 

viable cells. It can be dissolved in physiological solvents (e.g. PBS) to form a dark blue 

solution that is added directly to the cell cultures in a homogeneous manner. Living cells 

with active metabolism can reduce resazurin into the pink and fluorescent resofurin (Figure 

2.2.3.4.1).  

The addition of an intermediate electron-donor is not necessary to for the reaction to 

occur, but it could accelerate its pace. The amount of resofurin produced is proportional 

to the number of viable cells and quantitated by fluorescence measurement at a 560nm 

excitation wavelength and an emission wavelength of 590nm. Quantification may also be 

performed by means of the optical absorption measurement, but at a much less sensitivity. 

The incubation time required to produce a sufficient fluorescent signal is usually 1-4 

hours and depends on the metabolic activity of each cell type, cell density and culture 

conditions, such as the culture medium. The incubation time should therefore be 

Figure 2.2.3.4.1: Resazurin is reduced to Resofurin according to 

the cell's metabolic activity 
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experimentally determined and be small enough to avoid reagent toxicity but large enough 

to be sufficient for the sensitivity of the method. Also, further reduction of resofurin leads 

to formation of hydro-resofurin, which is colorless and non-fluorescent, and can therefore 

lead to erroneous results (Figure 2.2.3.4.2). 

In the present study, Resazurin sodium salt (SIGMA; R7017) is first dissolved in Dulbecco's 

Phosphate Buffered Saline, pH 7.4, (Biosera; PM-B2092), and further diluted into fresh 

medium prior to each experiment. After the 24-hour exposure of the cells to the inducing 

substances, the medium is replaced and Resazurin is added at 60μg/mL concentration. 

After a 2-hour incubation at 37°C, 5.0% CO2 and 90% humidity conditions, Resazurin’s 

fluorescence at Ex560nm/Em590nm wavelengths is measured by use of VarioSkan™ LUX 

multimode microplate reader (Thermo Scientific™). Cell viability is expressed as the 

percentage of the cells exposed to the NAFLD-inducers to the non-exposed. [135] This 

method is used to construct a dose-survival curve for the NAFLD-inducing substances, in 

order to determine the dosing concentrations that do not reduce viability below 90%.  

Figure 2.2.3.4.2: Further reduction of resofurin leads to formation of 

hydro-resofurin 
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2.2.3.5 Reactive-Oxygen Species (ROS) Production Measurement 

Intracellular production of Reactive Oxygen Species (ROS) is measured by means of 

the cell-permeable, fluorescent CM-H2DCFDA substrate (ThermoFisher Scientific; 

C6827). CM-H2DCFDA is passively transported inside the cells, where acetate groups are 

cleaved by intracellular esterases. Thio-active chloromethyl groups react with the 

intracellular glutathione and other thiols. Subsequent oxidation generates the fluorescent 

2 ', 7'-dichlorofluorescin (DCF) product that is trapped inside the cell (Figure 2.2.3.5.1). 

DCFDA’s fluorescence can be measured at an excitation wavelength of 492-495nm and 

an emission wavelength of 517-527nm. 

Following the 24-hour exposure of the cells to the inducing compounds, the medium 

is removed, and the cells are washed with PBS. The cells are then exposed to 10μM of 

PBS-dissolved CM-H2DCFDA and incubated for 15 minutes at 37°C, 5.0% CO2 and 90% 

humidity conditions. Fluorescence is then measured at Ex494nm/Em520nm by use of 

VarioSkan™ LUX multimode microplate reader (Thermo Scientific™). Fluorescence needs 

to be normalized by the total protein concentration of the sample, that is determined via 

the BCA method and expressed in RFU/μg protein. 

Considering the antioxidant role of albumin, albumin levels are maintained in all samples. 

Cells exposed to 400μΜ of H2O2 for 30 minutes comprised the experiments positive 

controls for ROS production. The optimal concentration of H2O2 was determined through 

Figure 2.2.3.5.1: Overview of CM-H2DCFDA intracellular reactions 
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dose-viability curves, where a concentration, that did not affect the cells’ viability, was 

selected. 

 

2.2.3.6 High Content Screening of Lipid Droplets 

Intracellular fat load is determined by fluorescent microscopy. Lipid droplets are stained 

with Nile Red (Thermo Fisher Scientific; N1142), a red fluorescent dye, while the 

counterstaining of the cells’ nuclei is performed by use of Hoechst 33342 (Thermo Fisher 

Scientific; H3570) blue fluorescent probe. 

Nile Red is used to identify and quantify lipids, and intracellular neutral lipid droplets in 

particular. It is almost non-fluorescent in water and other polar solvents, but it fluoresces 

in non-polar environments at an 552nm excitation wavelength and an emission wavelength 

of 636nm (Figure 2.2.3.6.1). 

Hoechst 33342 is a cell-permeable pigment that emits blue fluorescence when bound 

to dsDNA Ex392nm/Em440nm (Figure 2.2.3.6.2). 

Following the 24-hour exposure of the cells to the inducing compounds, the medium 

is removed, and the cells are washed with PBS. The cells are then exposed to a staining 

solution, consisting of Nile Red 2μg/mL and Hoechst 33342 5μg mL and dissolved in fresh 

medium. After incubated for 45 minutes at 37°C, 5.0% CO2 and 90% humidity conditions, 

the stained medium is again removed, the cells are washed with PBS and fresh medium is 

added. Automatic image acquisition is then performed by using the JuLI™ Stage Real-Time 

ChR (NanoEnTek), in 20x magnification of channels DAPI (Excitation 390/40, Emission 

452/45) and RFP (Excitation 525/50, Emission 580). 

Figure 2.2.3.6.1: Nile Red's chemical structure Figure 2.2.3.6.2: Hoechst's chemical structure 
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RFP (corresponding to Nile Red) and DAPI (corresponding to Hoechst 33342) 

intensities are quantified through a procedure similar to the Viability Assay’s, and by use of 

VarioSkan™ LUX multimode microplate reader (Thermo Scientific™). 

Finally, the ratio RFP Intensity / DAPI Intensity is calculated for each of the samples. 

Statistical processing is then performed by use of the GraphPad Prism 6.0 software. 

 

2.2.3.7 Cell Lysis – Protein Isolation 

Cell lysis often refers to the breakdown of the cellular membrane, performed primarily 

by viruses, enzymes or osmotic mechanisms. In the present study, cell lysis is achieved by 

means of a detergent solution, the Lysis Buffer (ProtaVio Ltd). Proteins are the product of 

cell lysis. In order to protect proteins from the intracellular proteases, protease inhibitors 

(PIs) are introduced to the buffer, along with the Phenyl-methane-sulfonyl fluoride (PMSF; 

SIGMA; P4626) serine-protease-inhibitor. 

Following the 24-hour exposure of the cells to the inducing compounds, the medium 

is removed, and the cells are washed with PBS. Lysis buffer, PMSF and PIs are then added 

to the cells which are then incubated at -80°C for 1 hour. After incubation, the samples 

are sonicated and centrifuged in order to isolate the protein-containing supernatant. Low 

temperature and ultrasound treatment contribute to the effective breakdown of the 

cellular membranes. 

 

2.2.3.8 BCA Method for measuring Total Protein Concentration 

The Bicinchonic Acid or BCA method is a biochemical method for measuring the total 

protein concentration in a solution and is similar to the Lowry and Bradoford methods. 

The principle relies on the use of BCA as a Cu+ detection reagent, formed when Cu2+ is 

reduced by the proteins of an alkaline environment (biuret reaction). The purple product 

of this reaction is produced by the chelation of two BCA molecules with a copper Cu+ 

ion (Figure 2.2.3.8.1). 
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This chromogenic compound exhibits high optical absorbance at a wavelength of 562nm, 

which in turn exhibits linearity with increasing protein concentrations ranging between 20 

and 2000 μg/mL. The color generated is due to the macromolecular structure of the 

protein, the number of peptide bonds and the presence of four specific amino acids 

(cysteine, cystine, tryptophan, tyrosine). In the BCA method, the reaction does not reach 

an end point, i.e. the color continues to develop. However, after a specific incubation time, 

the pace of color-generation slows substantially, therefore not allowing the concurrent 

determination for several samples. 

Total protein concentration is determined on the basis of a commonly known standard 

protein, such as Bovine Serum Albumin (BSA), of known concentration. A series of 

dilutions of a known protein concentration is prepared and placed in the unknown 

concentration that can now be determined by means of a standard curve. 

An alternative method to BCA, is the Micro BCA that exhibits greater sensitivity (it has 

the ability to detect lower concentrations) but has a smaller dynamic range. In particular, 

Micro BCA is optimized to detect protein concentrations in the range of 0.5-20 μg/mL. 

For the purposes of the present study, the Pierce ™ BCA Protein Assay Kit (Thermo 

Fisher Scientific; 23225) and the Micro BCA ™ Protein Assay Kit (Thermo Fisher Scientific; 

23235) are used. 

Figure 2.2.3.8.1: The purple product of this reaction is produced by the 

chelation of two BCA molecules with a copper Cu+ ion 
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2.2.3.9 Methodology 

Day 0: Cell seeding on 96-well plates 

- HuH7: 15000 cells/100μl medium/well 

- Hep3B: 15000 cells/100μl medium/well 

- HepG2: 20000 cells/100μl medium/well 

- FOCUS: 15000 cells/100μl medium/well 

 

Day 1: Compound Treatment 

- Positive Control: Free Fatty Acid (FFA) mix of Oleic Acid : Palmitic Acid (2:1 molar 

ratio) diluted in etOH absolute 

- Final Concentration: 200uM; 1% v/v 

- Valproic acid (VPA), diluted in etOH absolute; 1% v/v 

- Amiodarone (AMI), Tamoxifen (TMX), Tetracycline (TET) diluted in DMSO at 

0.1% v/v 

- Steatogenic compounds: Mefloquine (MEF), Clomifene (CLO), Pimozide (PIM) in 

DMSO at 0.1% v/v 

- Negative Control: DMEM, etOH at 1% v/v, DMSO at 0.1% v/v 

 

Day 2: Additional Experiments 

1. Verification of lipid droplet formation using high content screening. Nile Red for 

staining lipids, Hoechst 33342 for counterstaining nuclei, JuLiStage 

2. Resazurin cell viability assay – Construction of IC curves 

3. ROS Production using fluorescent probe CM-H2DCFDA 
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3 RESULTS 

3.1 COMPUTATIONAL ANALYSIS 

3.1.1 GEO Microarrays 

GEO yields several microarrays, from which four are selected. This selection is made 

on the basis of two major criteria. Firstly, the microarray should concern data extracted 

from human samples (Homo Sapiens sp.) and secondly, each microarray should contain 

data from both healthy and NAFLD-patients. The main features of the selected 

microarrays are shown in the following table (Table 3.1.1.1): 

 

# GEO Author 
Healthy 

Samples 

Patients 

Samples 
Type of Sample NAFLD Stage 

GSE48452 Jochen, H. et al. 14 59 Liver Biopsy 

Healthy 

obese, 

NASH, 

Steatosis 

GSE63067 Frades, I. 8 11 Liver Biopsy 
NASH, 

Steatosis 

GSE72756 Chuanzheng, S. et al. 5 5 Liver Biopsy NAFLD 

GSE89632 Allard, JP. et al. 24 39 Liver Biopsy 
NASH, 

Steatosis 

Table 3.1.1.1: Datasets extracted from GEO 
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3.1.2 Selection of Datasets 

Each dataset extracted, yields a corresponding Volcano Plot that is shown below: 

Figure 3.1.2.1: Volcano Plots extracted from GSE48452 dataset; Contrasts between Healthy Obese, Steatosis and NASH 

Figure 3.1.2.2: Volcano Plots extracted from GSE63067 
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From these, GSE63067 and GSE89632 are selected, mainly due to the greater sample 

number and also due to the amount of DEGs discovered. 

GSE48542 and GSE72756 do not possess either the appropriate number of samples, 

for the results to be adequately reliable, or a sufficient number of differentially expressed 

genes. 

 

3.1.3 Gene Level Statistics (GLS) 

Following GLS analysis, the yielded results regarding the DEGs of each of the selected 

datasets, are shown in the Volcano Plots that follow: 

Figure 3.1.2.3: Volcano Plot extracted from GSE72756 

Figure 3.1.2.4: Volcano Plots extracted from GSE89632 
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Figure 2.2.3.9.1: NASH vs Healthy | Volcano Plot with marked DEGs, extracted from GSE63067 

Figure 3.1.3.2: Steatosis vs Healthy | Volcano Plot with marked DEGs, extracted from GSE63067 
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Figure 3.1.3.3: NASH vs Healthy | Volcano Plot with marked DEGs, extracted from GSE89632 

Figure 3.1.3.4:  Steatosis vs Healthy | Volcano Plot with marked DEGs, extracted from GSE89632 
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The names of the top-15 most differentially expressed genes, with regards to either 

over- or under-expression, are marked on each of the corresponding Volcano Plots. 

 

3.1.4 Gene Set Analysis (GSA) 

Gene Set Analysis is then conducted to yield the most significantly triggered pathways, 

based on the DEGs determined in §3.1.3. The results are extracted in the form of 

heatmaps. The horizontal axis displays the five categories of differential expression (distinct 

up/down, mixed up/down and non-directional), while the vertical axis displays the names 

of the most significant pathways, extracted from MSigDB. 

The legend and color axis of the heatmaps regard the values of statistical significance, 

by use of the p-values, yielded from GSA. Thus, the heatmaps for each of the selected 

datasets are presented below: 

 

Figure 2.2.3.9.1: Heatmaps extracted from GSE63067 | (a) Affected Pathways of NASH vs Healthy; (b) Affected Pathways of 

Steatosis vs Healthy 
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3.1.5 Determination of the Drug-triggered Pathways 

MSigDB and DrugBank are used to determine those pathways affected by the known 

steatogenic compounds (VAP, AMI, TET, TMX, Oleic Acid and Palmitic Acid). In the 

following tables, pathways derived from the intersection of Groups 1 and 2 (§2.1.7) are 

presented. 

COMPOUND GENE PATHWAY 

Valproic Acid 

ACADSB 
KEGG_FATTY_ACID_METABOLISM 

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 

ODGB REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 

PPARA 

KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

PPARD 
KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

PPARG KEGG_PPAR_SIGNALING_PATHWAY 

Figure 2.2.3.9.2: Heatmaps extracted from GSE89632 | (a) Affected Pathways of NASH vs Healthy; (b) Affected Pathways of 

Steatosis vs Healthy 
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BIOCARTA_NUCLEARRS_PATHWAY 

PID_NFAT_TFPATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

Amiodarone 

ADRB1 KEGG_ENDOCYTOSIS 

PPARG 

KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

PID_NFAT_TFPATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

Tetracycline - - 

Tamoxifen 
ESR1 

PID_ATF2_PATHWAY 

PID_AP1_PATHWAY 

EBP REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

Oleic Acid 

PPARA 

KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

PPARD 
KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

PPARG 

KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

PID_NFAT_TFPATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

RXRA 

KEGG_PPAR_SIGNALING_PATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

Palmitic Acid 

PPT1 KEGG_LYSOSOME 

PPARA 

KEGG_PPAR_SIGNALING_PATHWAY 

BIOCARTA_NUCLEARRS_PATHWAY 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

Table 3.1.5.1: Genes and corresponding pathways that are triggered by known steatogenic compounds (VAP, AMI, TET, TMX, 

Oleic Acid, Palmitic Acid) 

With those pathways, triggered by both the disease’s mechanisms and the known 

steatogenic compounds, being known, other substances of similar/opposite behavior can 

be determined. 
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3.1.6 Identification of Relative Compounds via cMap 

In the following figures, each of the known steatogens are introduced to cMap’s 

dedicated tool as a signature-question. For each signature-question, two lists of relative 

compounds are returned. The first contains drugs and substances that exhibit similar 

expression to the question, while the second contains those that exhibit the opposite 

expression.  

For instance, when Amiodarone is put as the signature-question: 

 

 

Figure 3.1.6.1: AMI as Signature-Question 

Figure 3.1.6.2: Compounds with an opposite expression to AMI 

Figure 3.1.6.3: Compounds with a similar expression to AMI 
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Figure 3.1.6.4: TMX as Signature-Question 

Figure 3.1.6.5:  Compounds with an opposite expression to TMX 

Figure 3.1.6.6: Compounds with a similar expression to TMX 
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Figure 3.1.6.7: TET as Signature-Question 

Figure 3.1.6.8: Compounds with an opposite expression to TET 

Figure 3.1.6.9: Compounds with a similar expression to TET 

Figure 3.1.6.10: VPA as Signature-Question 

Figure 3.1.6.13.1.61: Compounds with an opposite expression to VPA 

Figure 2.2.3.9.12: Compounds with a similar expression to VPA 
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By repeating the steps described in §3.1.2-3.1.5, via MSigDB and DrugBank, the super-

intersection of Groups 1, 2 and 3 yields the following significant pathways that associate 

NAFLD, known steatogens and candidate steatogenic compounds: 
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BIOCARTA_NUCLEARRS_PATHWAY 

KEGG_ENDOCYTOSIS 

KEGG_FATTY_ACID_METABOLISM 

KEGG_PPAR_SIGNALING_PATHWAY 

PID_AP1_PATHWAY 

PID_ATF2_PATHWAY 

PID_NFAT_TFPATHWAY 

REACTOME_FATTY_ACID_TRICYLGLYCEROL_AND_KETONE_BODY_METABOLISM 

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

Table 3.1.6.1: Significant pathways of the Super-intersection between Groups 1, 2 and 3 

What needs to be noted, is that, from the relative compounds yielded for each known 

steatogens, some may be non-steatogenic or known steatogens or even anti-steatogenic. 

 

Thus, we select three of the drugs listed, that will proceed to in-vitro verification of their 

possible steatogenic effects. These are depicted, along with some additional information, 

in the following figure (Figure 3.1.6.13): 

 

 

Figure 3.1.6.13 Final selection of candidate steatogenic compounds to proceed to in-vitro verification 
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3.2 IN-VITRO VERIFICATION 

3.2.1 FBS Threshold Determination Experiment 

The acquired images support the notion that as fasting increases (lower FBS 

concentrations in the culture medium), DNL also increases. Thus, and in order to satisfy 

the two conditions, described thoroughly in §2.2.3.1, the serum concentration is selected 

to be 2% v/v. 

0% FBS 1% FBS

2% FBS 4% FBS

5% FBS 6% FBS

7% FBS 8% FBS

9% FBS 10% FBS

Figure 2.2.3.9.1: HUH7 cell line exposed to different FBS concentrations 

for 24h 
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3.2.2 FFA Threshold Determination Experiment 

 

An observational overview of the fat levels in 24h and 48h of FFA treatment reveal that 

at approximately 200μΜ, FOCUS cells become unable to accommodate the FFA’s excess. 

DMEM ETOH 100 μM 200 μM

400 μM 500 μM 600 μM 700 μM

800 μM 1000 μM

Figure 3.2.2.2: FOCUS cell line exposed to increasing FFA concentrations (in 24h) 

DMEM ETOH 100 μM 200 μM

400 μM 500 μM 600 μM 700 μM

800 μM 1000 μM

Figure 3.2.2.3: FOCUS cell line exposed to increasing FFA concentrations (in 48h) 
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3.2.3 Bulk Verification of Steatogenic Effects 

As the pathway analysis concludes on an intersection of potentially steatogenic 

compounds, that may also be known to the scientific community or even anti-steatogenic, 

a bulk verification of the steatogenic effects is needed for Pimozide (PIM), Clomiphene 

(CLO) and Mefloquine (MEF). 

Hence, Hep3B cells are exposed to 10μΜ of either PIM, CLO or MEF and fat levels are 

reviewed within 24h of treatment. The acquired images are provided: 

As observed, fat seems elevated in the treated wells, however the used dosing 

concentrations may be hepatotoxic, as the majority of the controls’ cells are eliminated in 

the treatment wells. Thus, IC10 of PIM, CLO and MEF should be determined. 

 

3.2.4 IC10 Determination 

IC10 determination is performed for both FOCUS and Hep3B cell lines, as dosing 

concentrations are usually cell-dependent. Following Resazurin Viability Assay, a dose-

viability plot is created, with the viability points being interpolated through 4PL regression 

models. The dose-response curves, IC10 and R2  are provided for each drug and cell line 

and can be found in the following page: 

 

DMEM DMSO PIMOZIDE (10 μM)

CLOMIPHENE  (10 μM) MEFLOQUINE (10 μM)

Figure 2.2.3.9.1: Bulk verification of the steatogenic effects on Hep3B cell line 
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In the following pages, ROS production levels and Relative Fat levels will be examined 

for PIM, CLO and MEF treatments on FOCUS and Hep3B cells that are administered with 

concentrations as proximal to the corresponding IC10s as possible. 

In order to minimize the underlying standard error of the IC10 determination, a 

windows around IC10 will be used for the treatment of FOCUS and Hep3B cells. Thus, 

in the following figures 3 concentrations will be examined for each drug: the IC10, one 

slightly below the IC10 and one slightly above the IC10. 

Figure 2.2.3.9.1: Dose-Response curves of PIM, CLO and MEF for FOCUS cell line | IC10 or EC90 | 4PL's R-square values 

Figure 3.2.4.2: Dose-Response curves of PIM, CLO and MEF for Hep3B cell line | IC10 or EC90 | 4PL's R-square values 
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3.2.5 Intracellular Lipid Accumulation 

The data are presented as Mean±SEM of 3 independent experiments, while the 

statistical analysis is performed with ANOVA. The (*) correspond to statistical significance. 

3.2.5.1 Pimozide (PIM) 

  

Figure 3.2.5.1.1: Intracellular lipid accumulation of PIM-treated Hep3B hepatocytes 

Figure 3.2.5.1.2: Intracellular lipid accumulation of PIM-treated FOCUS hepatocytes 



Identification & Verification of Steatogenic Compounds via Network-Based Pathway Analysis 

86 

 

3.2.5.2 Clomiphene (CLO) 

 

 

Figure 3.2.5.2.1: Intracellular lipid accumulation of CLO-treated Hep3B hepatocytes 

Figure 3.2.5.2.2: Intracellular lipid accumulation of CLO-treated FOCUS hepatocytes 
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3.2.5.3 Mefloquine (MEF) 

 

 

Figure 3.2.5.3.1: Intracellular lipid accumulation of MEF-treated Hep3B hepatocytes 

Figure 3.2.5.2.2: Intracellular lipid accumulation of MEF-treated FOCUS hepatocytes 
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3.2.6 Intracellular ROS Production 

3.2.6.1 Pimozide (PIM) 

 

 

Figure 3.2.6.1.1: Intracellular ROS production of PIM-treated Hep3B hepatocytes 

Figure 3.2.5.3.2: Intracellular ROS production of PIM-treated FOCUS hepatocytes 
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3.2.6.2 Clomiphene (CLO) 

 

 

 

Figure 3.2.6.2.1: Intracellular ROS production of CLO-treated Hep3B hepatocytes 

Figure 3.2.6.2.2: Intracellular ROS production of CLO-treated FOCUS hepatocytes 
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3.2.6.3 Mefloquine (MEF) 

 

 

  

Figure 3.2.6.2.1: Intracellular ROS production of MEF-treated Hep3B hepatocytes 

Figure 3.2.6.3.2: Intracellular ROS production of MEF-treated FOCUS hepatocytes 
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4 CONCLUSIONS 

In summary, the present study is aiming to the identification and in-vitro verification of potential 

steatogenic compounds, that derive from a network-based pathway analysis of NAFLD’s 

underlying molecular mechanisms. 

First, in order to determine the candidate steatogenic compounds, a prioritization of several 

sets of pathways is performed towards the construction of the respective networks. To do so, a 

network-based computational platform that utilize gene expression datasets, derived from 

NAFLD/NASH liver biopsies (GEO-NCBI), and datasets from compound-treated lines (cMap), is 

constructed. Via computational comparisons between networks of NAFLD’s underlying 

mechanisms and networks of literally known steatogenic compounds (VPA, AMI, TET, TMX), an 

intersection is deduced. This intersection delivers networks that are significantly involved in 

NAFLD/NASH steatogenesis. These networks, in turn, correspond to differentially expressed 

genes and thus, to significantly differentiated pathways, that are concurrently triggered by NAFLD’s 

pathogenesis and by the known steatogens. From these networks, several compounds are yielded 

out of their sharing targets to the known NAFLD-inducers. The compounds may include novel 

steatogenic compounds, known steatogenic compounds and potential drug-repositioning 

substances for NAFLD’s treatment. After eliminating the known steatogens and other literally 

promising drug-repositioning substances, a final selection of three -potentially steatogenic- 

compounds is made. 

Thus, Pimozide, Clomiphene and Mefloquine proceed to in-vitro verification of their potential 

steatogenic effects on human hepatocytes. Complementary in-vitro NAFLD/NASH assays are 

developed to validate the in-silico predictions and identify PIM, CLO and MEF’s steatogenic effects. 

For that purpose, Hep3B and FOCUS hepatocellular lines are seeded on 96-well plates and 

exposed, for 24h, to PIM, CLO and MEF treatments of experimentally determined dosing 

concentrations; their corresponding IC10. Intracellular lipid droplets are then verified via high-

content screening that employs Nile Red fluorescent probe and Hoechst 33342 for nuclei 

counterstaining. JuLI™Stage (NanoEntek) automatically acquires images of the droplets. 

Compounds found to induce droplet accumulation, are also examined for producing intracellular 

ROS with CM-H2DCFDA fluorescent substrate. 
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All PIM-, CLO- and MEF-treated cell lines exhibit significantly elevated levels of intracellular lipid 

accumulation that is significantly higher than the accumulation demonstrated in the control wells 

of DMEM (culture medium) and DMSO (drug solvent). Hep3B and FOCUS hepatocytes also 

exhibit lipid accumulation levels that are significantly correlated to the corresponding positive 

controls, the FFA-treated wells. These results suggest that PIM, CLO and MEF induce steatosis to 

Hep3B and FOCUS hepatocytes, although the mechanism by which they do so is yet to be 

examined. 

Furthermore, all PIM-, CLO- and MEF-treated cell lines seem to produce significantly elevated 

levels of intracellular Reactive Oxygen Species (ROS) that is significantly higher than the levels of 

the control wells of DMEM (culture medium), DMSO (drug solvent) and ETOH (FFA solvent). 

Hep3B and FOCUS hepatocytes also exhibit lipid accumulation levels that are significantly 

correlated to the corresponding positive controls, the FFA-treated and H2O2-treated cells. These 

results suggest that PIM, CLO and MEF induce the production of ROS to Hep3B and FOCUS 

hepatocytes, leading to an increase of their oxidative stress; a major key-feature of NAFLD’s 

pathogenesis. 

Finally, these results conclude on adequate evidence that Pimozide, Clomiphene and Mefloquine 

can be considered to have a steatogenic tendency, successfully predicted by the computational 

platform used. However, 2D cell cultures cannot fully imitate the actual hepatic environment while 

the cell-line dependency of the steatogenic effects do not allow for conclusive deductions. 

In conclusion, the in-silico approach deduces a network similarity, thus identifies both 

compounds reducing and inducing steatosis in-vitro. A high-throughput setup for NAFLD/NASH 

drug-screening is successfully developed. Further experiments are necessary to decipher the 

mechanisms that the identified compounds facilitate, and to assess their in-vivo effects. ELISA for 

protein and cytokine measurement needs to be conducted in order to establish the experimentally 

verified tendency of PIM, CLO and MEF to induce steatosis at the protein level, while also a 

clustering among PIM, CLO, MEF and the known NAFLD-inducing compounds needs to be 

performed in order to classify relative compounds and predict their sharing features of action. 

Moreover, 3D cell cultures can also be used to better mimic the actual hepatic environment, while 

also analysis at the level of Single cell may provide substantial information on the exact pathogenic 

mechanisms. 
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