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Abstract 

 

The engine room of a modern vessel, where all machinery for the operation and 

propulsion is located, is a large and extremely complicated compartment. It contains 

all types of equipment, such as the main engine, electric generators, pumps and 

complex piping systems. Therefore, there is a huge need for having an accurate 

description of both what type of machinery is included, as well as its exact location in 

the engine room. Having access to this kind of information can solve various time-

consuming and challenging tasks, such as visual inspection of faulty parts, 

maintenance of machinery, purchasing of spare parts and path planning for 

retrofitting new systems.  

Recent progress in the field of artificial intelligence and machine learning has led to 

huge potential for applications such as computer vision and object recognition. 

Specifically, the combination of the improvements into architectures of artificial 

neural networks and especially convolutional neural networks, as well as the 

advances in image processing algorithms and the substantial advances in 

computational power of computer systems, have made the task of real-time object 

recognition an achievable goal. However, performing object recognition using a 

machine or deep learning approach requires large amount of accurate training data, 

which is usually difficult and time consuming to collect.    

The present diploma thesis aims to clarify the basic concepts and parameters of 

artificial (and especially) convolutional neural networks, and their impact on the 

fields of machine learning and object recognition. Additionally, it focuses on 

reviewing the current state-of-the-art object recognition algorithms and on analysing 

their way of function and their evolution over time. 

Furthermore, the work in the current thesis attempts to develop a robust object 

recognition framework that can identify and localize mechanical components of 

complex systems, such as piping networks. The approach in the current problem is 

based on object recognition in 2D images using deep learning techniques, and 

especially convolutional neural networks. Furthermore, the current thesis proposes a 

method that aims to automate the process of generating a large and accurate 

dataset which is required to train a custom object detection CNN-based network.  
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Σύνοψη 
 

Σε ένα πλοίο, ο χώρος του μηχανοστασίου, όπου βρίσκεται όλος ο μηχανολογικός 

εξοπλισμός για την λειτουργία και την πρόωση του πλοίου, αποτελεί ένα μεγάλο και 

ιδιαίτερα πολύπλοκο χώρο. Ειδικότερα, περιέχει εξοπλισμό, όπως η κύρια μηχανή, 

ηλεκτρογεννήτριες, αντλίες, αλλά και πολύπλοκα συστήματα σωληνώσεων. Για αυτόν τον 

λόγο, υπάρχει σημαντική ανάγκη για μία ακριβή περιγραφή, τόσο του περιεχομένου των 

μηχανημάτων που υπάρχουν, όσο και της ακριβής θέσης του στον χώρο του 

μηχανοστασίου. Η πρόσβαση σε τέτοιου είδους πληροφορίες μπορεί να συντελέσει στην 

επίλυση ιδιαίτερα δύσκολων προβλημάτων, που απαιτούν πολύ χρόνο για την επίλυσή 

τους, όπως η αναγνώριση προβληματικών εξαρτημάτων, η συστηματική συντήρηση 

μηχανημάτων, αλλά και οι παραγγελίες ανταλλακτικών εξαρτημάτων.  

Η πρόσφατη πρόοδος στον τομέα της τεχνητής νοημοσύνης και της μηχανικής μάθησης έχει 

οδηγήσει σε τεράστιες δυνατότητες όσον αφορά πολλές διαφορετικές επιστημονικές 

περιοχές, όπως η όραση υπολογιστών και η αναγνώριση αντικειμένων/προτύπων. 

Συγκεκριμένα, ο συνδυασμός των βελτιώσεων στις αρχιτεκτονικές των τεχνητών 

νευρωνικών δικτύων και ειδικότερα των συνελικτικών νευρωνικών δικτύων, όπως επίσης 

και η πρόοδος στους αλγορίθμους επεξεργασίας εικόνας , καθώς και η σημαντική αύξηση 

της διαθέσιμης υπολογιστικής ισχύος των συμβατικών υπολογιστικών συστημάτων, έχουν 

καταστήσει το πρόβλημα της αναγνώρισης αντικειμένων σε πραγματικό χρόνο μία σχετικά 

απλή διαδικασία. Ωστόσο, η αναγνώριση αντικειμένων με μεθόδους μηχανικής η βαθιάς 

μάθησης απαιτεί την ύπαρξη μεγάλου και έγκυρου υλικού για εκπαίδευση, το οποίο είναι 

δύσκολο και απαιτεί πολύ χρόνο για να συλλεχθεί. 

Αρχικά, η παρούσα διπλωματική εργασία στοχεύει στην επεξήγηση των βασικών εννοιών 

και παραμέτρων των τεχνητών νευρωνικών δικτύων καθώς  επίσης και στην σημαντική 

επίδραση που έχουν στους τομείς της μηχανικής μάθησης και της αναγνώρισης 

αντικειμένων. Επιπρόσθετα, η εργασία αυτή εστιάζει στην βιβλιογραφική ανασκόπηση των 

αλγορίθμων αναγνώρισης αντικειμένων τελευταίας τεχνολογίας και ευρείας χρήσης και 

επικεντρώνεται στον τρόπο λειτουργίας τους αλλά και στην χρονική εξέλιξή τους. 

Επίσης, η παρούσα εργασία επιχειρεί να δημιουργήσει ένα εύρωστο υπολογιστικό δίκτυο 

αναγνώρισης αντικειμένων, το οποίο έχει την δυνατότητα να ταυτοποιεί το είδος αλλά και 

να προσδιορίζει την ακριβή θέση μηχανολογικών εξαρτημάτων σε σύνθετα  συστήματα στο 

μηχανοστάσιο ενός πλοίου, όπως είναι τα δίκτυα σωληνώσεων. Η συγκεκριμένη 

προσέγγιση βασίζεται στην αναγνώριση αντικειμένων σε 2-διάστατες εικόνες με χρήση 

μεθόδων βαθιάς μηχανικής μάθησης, και ειδικότερα συνελικτικών νευρωνικών δικτύων. 

Επιπρόσθετα, η παρούσα διπλωματική εργασία προτείνει μία μέθοδο η οποία στοχεύει 

στην αυτοματοποίηση της διαδικασίας δημιουργίας δεδομένων για την εκπαίδευση ενός 

δικτύου αναγνώρισης αντικειμένων με χρήση ΣΝΝ.  
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1. Introduction 

 

1.1 Artificial Intelligence 
 

Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, and 

especially computer systems. These processes include learning - the acquisition of 

information and rules for using the information, reasoning – using rules to reach 

approximate or definite conclusions, and self-correction. Particular applications of AI are 

computer vision, natural language processing and self-driving cars. In the field of Artificial 

Intelligence, a large number of tools has been developed to solve the most difficult problems 

in computer science. A few of the most general of these methods are: Search and 

Optimization, Fuzzy Logic, Probabilistic method for uncertain reasoning, Classifiers and 

statistical learning methods and Artificial Neural Networks.  

 

1.2 Machine Learning 
 

Machine learning (ML), which is a subset of Artificial Intelligence is a category of algorithms 

and statistical models that computer systems use to perform specific tasks. This allows 

computer systems to be more accurate in predicting outcomes without being explicitly 

programmed, relying on patterns they recognize in data they process. The basic premise of 

machine learning is to build algorithms that can receive input data and use statistical 

analysis to predict an output, while updating outputs as new data becomes available. These 

algorithms are based on sample data, known as training data which comprises of a set of 

inputs and their desired outputs. Computer systems search through this data looking for 

patterns and they adjust program actions accordingly. A few of the most commonly used 

machine learning algorithms are: Decision trees, k-Means Clustering, k-Nearest Neighbour 

and Reinforcement learning.  

 

1.3 Deep Learning 
 

Deep Learning is a subset of machine learning and involves learning based on artificial neural 

networks. Deep learning models can achieve state-of-the-art accuracy, sometimes exceeding 

human-level performance. Models are trained by using a large set of labelled data and 

neural network architectures that include many layers, such as deep neural networks, deep 

belief networks, recurrent neural networks and convolutional neural networks. While 

traditional neural networks only contain 2-3 hidden layers, deep neural networks can have 

as many as 150. Some of the most common application of Deep Learning include self-driving 

cars, image recognition and market price forecasting. Although deep learning was first 
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introduced in the 1980s, it has only recently become so useful, due to the fact that it 

requires large amounts of data. For example, driverless car development requires millions of 

images and thousands of hours of video sequence. Furthermore, deep learning also requires 

substantial computing power, such as high-performance GPUs which enable reducing 

training time for a deep learning network from weeks to hours, or even less.  

 

Figure 1: Artificial Intelligence, Machine Learning and Deep Learning areas 

 

1.4 Object Detection 
 

Object detection, which is a subset of object recognition, is the process of finding instances 

of objects of a certain class in images, such as animals, humans or cars. It has a lot of 

applications in various areas of computer vision tasks, such as face detection, video 

surveillance, image retrieval and tracking movement of objects.  

Its basic concept is based on the fact that every object class has its own unique features that 

help in classifying this particular class. For example, all circles are round, which means that 

when looking for circles, objects that have a constant distance from a fixed point (center) are 

sought in an image. At the same way, squares have perpendicular corners with equal side 
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lengths. Therefore, when attempting to detect square objects, such features are searched. 

Similarly, in face detection, eyes, nose, lips can be found through extracting unique features 

such as skin color or distance between eyes.  

1.5 Object Recognition 
 

Object recognition is a field of computer vision technology which focuses on finding and 

identifying objects in an image or a video sequence. When humans look at a certain image or 

video, they can easily spot people, objects, scenes or other visual details. The goal of object 

recognition is to teach computers to do what comes naturally to humans: to gain a level of 

understanding of what the image contains.  

This concept, which has been introduced for more than half a decade has recently become 

one of the most exciting fields in Computer Vision and Artificial Intelligence. Considering the 

development of Convolutional Neural Networks architectures, backed by big training data 

and advanced computing technology have enabled computers to immediately recognize all 

objects in a scene. This ability has many applications, including automated vehicles, cancer 

detection, face detection, etc. It does not only focus on identifying objects in images, but 

also localizing them. This means that the exact location of a certain object in an image is 

defined. This allows for multiple objects to be identified and located within the same image, 

such as identifying multiple pedestrians and stop signs in driverless cars. 

 

1.6 Object Recognition Techniques 
 

Most methods that are used in the field of object recognition and object detection fall into 

machine learning or deep learning – based approaches. Both techniques learn to identify 

objects in images, however; they differ in their execution. For machine learning approaches, 

classification methods are implemented in order to define special features of objects. On the 

other hand, deep learning-based methods include techniques which are able to end-to-end 

detect objects while       specifically defining features and mostly depend on convolutional 

neural networks (CNNs). 

1.6.1 Object Recognition using Machine Learning 
Machine learning techniques for object recognition are also popular and offer different 

approaches than deep learning. Specifically, to perform object recognition with a standard 

machine learning approach, it is important to have a collection of images or video and have 

all the relevant features selected in each image. For example, a feature extraction algorithm 

might extract edge or corner features that can be used to differentiate between classes in 

the given data. These extracted features are added to the machine learning model, which 

will learn to separate these features into their distinct categories by performing classification 

using algorithms such as support vector machine (SVM), Nearest Neighbour or Naive Bayes. 

This information will be used when analysing and classifying new objects. There is a variety 

of machine learning algorithms and feature extraction methods, which offer many 

combinations to create an accurate object recognition model, which can achieve accurate 

results with minimal data. Furthermore, machine learning methods offer the flexibility to 

choose the best combination of features and classifiers for learning. 



18 
 

1.6.2 Object Recognition using Deep Learning  
Deep learning techniques, such as CNNs are used to automatically extract features in order 

to identify an object. For example, a CNN can learn to identify differences between cats and 

dogs by analysing thousands of training images and learning the features that distinguish 

cats from dogs. In order to perform object recognition using a deep learning model, it is 

mandatory that this model is trained with a dataset. The model can either be trained from 

scratch, or a pretrained deep learning model can be used. In the first case, a very large 

dataset should be gathered, and the architecture of the model should be designed. More 

specifically, a very wide set of labelled data should be considered in order to include a range 

of images with different sizes, poses and types of the object. Aside from that, the 

architecture components of the network, such as weights and layers should be set. This 

approach can produce impressive results, but it requires large amount of data. The second 

approach involves fine-tuning of a pre-trained model, so new data containing unknown 

classes are fed to an existing network. This method is much less time-consuming.  

Choosing between machine learning and deep learning- based approaches depends highly 

on the problem to be solved and on the available computational power. In many cases, 

machine learning can be an effective technique especially when the features or 

characteristics of the image are the best to distinguish objects of different classes. 

Furthermore, choosing a deep learning approach depends on the number of labelled 

training images and on the availability of computational power, since substantial power 

helps to decrease significantly the training time.  
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Figure 2: Machine Learning and Deep Learning pipelines for Object Recognition tasks 

1.7 Impact of Machine Learning and Object Detection in 

Manufacturing Industry 

 

The recent advances in Artificial Intelligence which have improved significantly computer 

vision have surely a great impact on almost every industry. Manufacturing is without a doubt 

an industry in which significant progress has been noted due to the improvement of object 

detection algorithms. That is because these advances have given machines “the ability to 

see”, which is a concept that companies, factories, etc have been missing until very recently. 

This would make factory robots more capable and able to interact with – and take 

instructions from humans. It is, therefore, expected that the whole industry will change 

drastically, since a lot of manufacturing processes can now be completely automated. Below 

are mentioned some of the main cases that computer vision, and particularly object 

recognition can be implemented. 

1.7.1 Quality Management 
Quality control and analysis are integral parts of every industrial process and are still highly 

reliable on human visual inspection. This makes it a difficult task, since human vision must 

constantly adapt to changing conditions and products and distinguish parts which do not 

match the quality standards. With the introduction of computer vision, this process can be 

completely automated with incredible speed, since faulty parts can be easily separated from 

good parts. Particularly, machine vision tools have been developed that can find microscopic 

defects at resolutions well beyond human vision, using machine learning algorithms trained 

on sample images. For example, computers can learn to identify defects, such as scratches, 

cracks or bad assemblies. This is a very useful solution, especially for large manufacturing 

industries, where a massive quantity of products has to be tested and time is a very valuable 

commodity for the business. 

1.7.2 Inventory Management 
Inventory management is a time-consuming task, which is, however, crucial for the smooth 

operation of a company. Inefficient inventory management can be harmful for an industry, 

in terms of both capital and time. Computer vision enables manufacturers to automatically 

count and localize every stored or outgoing product through object detection or identify 

misplaced items, therefore, improving significantly the accuracy of inventory management. 

This helps businesses to avoid wasting money in inaccurate orders due to ordering the 

wrong type or quantity of products, as well as having an accurate overview of the current 

stored inventories. Furthermore, object recognition can be applied by companies as a tool 

for automating content organization, as well as in accelerating content retrieval.  
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Figure 3: Application of Object Recognition on inventory management 

 

1.7.3 Assembly Line 
Today, assembly lines are almost fully automated, even for the most complex products, such 

as cars. However, every movement of a robotic arm depends on the way it has been 

programmed to function.  By introducing computer vision to the assembly line, machines are 

able to identify and localize components accurately, therefore eliminating error. This way, 

robots are taught to autonomously locate, grasp and place different components accurately. 

Therefore, assembly line is much more efficient and flexible.   

 

Figure 4: Application of Object Recognition on assembly line 
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2. Artificial Neural Networks – Preliminaries 
 

An artificial neural network (ANN) is a computational system which is inspired by the 

biological neural networks that make up human brains. Such systems have the ability of 

“learning” by considering examples. For example, in image recognition they might learn to 

identify images that contain cats by considering example images that have been labelled as 

“cat” or “no cat”. They do this by automatically extracting certain identifying features from 

the training material that they process. They are excellent tools for finding patterns which 

are far too complex and numerous for a human to extract. 

These networks consist of a set of connected and parametrized computational nodes, called 

neurons, which intend to replicate the function of a human neuron. These nodes receive an 

input signal and produce and output signal. Neurons are organized in three types of layers:  

 Input layer: brings the initial data into the system for further processing by    

subsequent layers of artificial neurons. 

 

 Hidden layer: a layer in between input and output layers, where neurons take in 

weighted inputs and produce an output. 

 

 Output Layer: the last layer of neurons that produces the desired outputs for the 

system.  

 

Each neuron receives each output of the neurons of the previous layer as input. Each single 

input is multiplied by a weight,    , where   indicates the number of the input and j the 

number of the neuron. The value of the weight increases or decreases the strength of the 

signal at a specific connection. After being multiplied by the respective weights, the inputs 

are all summed and feed a function inside the neuron, called “activation function”. 

 

 

Figure 5: Basic architecture of an Artificial Neural Network 
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2.1 Activation Function 
 

In artificial neural networks, the activation function of a node defines the output of that 

node given an input or a set of inputs. The output of this function is the total output of the 

neuron, which will be an input for the neurons of the following layer. The main role of an 

activation function is to decide whether a neuron should be activated or not, depending on 

its input. This is inspired by biological neurons. There are several activation functions, as 

each on has different results in different problems. Therefore, the choice of different 

activation functions is mostly dependent on the architecture of the network and the results 

one obtains when using them. An activation function may be linear or non-linear, however; a 

network with linear activation function will only be able to learn linear problems, since 

summing all layers in the network will give another linear function. Non-linear activation 

functions are preferred in more complex problems. Some of the desirable properties of an 

activation function are continuous differentiability, finite range and smoothness. 

Some of the most widely used activation functions are the Sigmoid Function, the Hyperbolic 

Tangent (tanh), the Rectified linear Unit (ReLU) and the Leaky Rectified Linear Unit (LReLU). 

All the above functions share the same basic behaviour but each one of them has best 

results in some particular problems. For example, in the area of Object Recognition, the 

ReLU functions is mostly preferred. In the following image the graphs of the functions are 

shown:  

 

 

Figure 6: Basic activation functions 

 

The sigmoid function maps the input to (0,1) and is defined as following:  

        ( )  
 

     
 

It is one of the most widely used activation functions as it has the properties of smoothness 

and continuous differentiability. However, in cases where lower layers of the neural network 

have gradients near to 0, it may lead to slow convergence and instability. This issue is 

referred to as vanishing gradient problem, as the gradient becomes so small in the earlier 

layers of a deep neural network that it barely affects the weights of the earlier layers, thus 

failing to optimize the initial weights. It has a characteristic “S”-shaped graph and is widely 

used in binary classification.  
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The tanh function is very similar to the sigmoid function with the main difference being that 

it maps the input to the (-1,1) range. Like the sigmoid, it also has the same problem of 

vanishing gradient. It is defined as following:  

     ( )  
      

      
 

The ReLU function is among the most widely used and it has the following simple form:  

     ( )      (   ) 

One advantage of the ReLU function is that, unlike, sigmoid and tanh functions it does not 

have convergence problems, since the gradient is either 0 or 1. Furthermore, if the input of 

the neuron is negative, it automatically converts it to zero, therefore, another advantage is 

that it does not activate all neurons. This makes the network more efficient and easier for 

computation. However, the ReLU function is dealt with the dying ReLU problem. This is 

when the ReLU activation function always outputs zero value for any input, which means 

that there is no discrimination between different inputs. Once in this state, it is unlikely to 

recover, as the gradient will also be zero, therefore, weights will not be altered. It should be 

noted that ReLU functions can only be used in the hidden layers of the neural network.  

 

LReLU function is another version of the ReLU function, and is defined as following: 

      ( )     (   )       (    ) 

The main difference with ReLU is that LReLU allows a small gradient when the input is 

negative. This solves the dying problem which ReLU is dealt with, therefore, makes the 

system more stable.  

 

2.2 Bias 
 

It must be noted that each neuron includes an additional important parameter, called “bias”, 

or “threshold”. Just as the weights, bias is a learnable parameter and its value determines, 

whether the activation output from a neuron is going to be propagated forward through the 

network. Therefore, it determines whether or not or by how much a neuron will operate by 

moving the entire activation function to the left or right, upward or downwards, in order to 

generate the required output values. Therefore, the “bias” increases the flexibility of the 

neural network to fit the given data. 

Instead of the weighted sum of the inputs from the previous layer being passed to the 

activation function, the bias term is also added to that sum and then the entire sum feeds 

the activation function. At the beginning of the training procedure, biases’ values are 

initialized to random numbers or zeros, and are updated continually during training. 
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2.3 Model of Artificial Neuron  
 

The mathematical interpretation of a neuron j for example is a function f: ℝ N → ℝ, defined 

as:  

 (    )    (     ∑        )

 

   

 

where σ: ℝ→ ℝN is the activation function, wj   ℝ N+1 is the vector of weights and θj is the 

threshold term of the neuron. 

For clarity reasons, the term woj may be ignored, and thus write in vector form:  

 

 (    )   (  
  ) 

 

As it can be seen in the image below, each neuron receives as inputs                 the 

outputs of the neurons of the previous layer. Then, these inputs are multiplied by the 

corresponding weights    , and then they are all summed. This sum is then passed to the 

activation function, which produces the final output of the neuron   . 

 

 

 

Figure 7: Schematic representation of a typical feed-forward artificial neural network 
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2.4 Feedforward Neural Networks 
 

A feedforward neural network is an artificial neural network where its connections between 

nodes do not form a cycle. The information moves only towards the forward direction, from 

the input nodes, through the hidden nodes and to the output nodes. This means that the 

output of any layer does not affect the same layer. It is the simplest form of ANNs. 

Representative examples of such networks are the Single-layer Perceptron and the Multi-

layer Perceptron.  

 

2.5 Feedback Neural Networks 
 

A feedback or recurrent neural network (RNN) is a neural network, where its connections 

can form loops. This means that information flows in both directions, both forward, and 

backwards. Outputs are fed back to the network, which gives the network a kind of memory, 

since an output a neuron reached at a time step, t-1, affects the output it will reach at a time 

step, t. These systems are dynamic, since their state is changing continuously until they 

reach an equilibrium. Therefore, compared to feedforward networks, these systems can get 

very complicated but are very powerful.   

 

Figure 8: Feedforward and Feedback Neural Networks 

 

2.6 Typical Neural Network Types 

 

2.6.1 Perceptron 
Perceptrons are the first and simplest form of artificial neural networks which consists of a 

single layer of output nodes. The inputs are fed directly to the outputs through being 

multiplied by the respective weights. The sum of the products of weights and inputs is 

calculated in each neuron, and if the value is above a predefined threshold (bias) the neuron 
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is activated and the output is usually assigned to unit value. Otherwise, it is assigned to the 

deactivated value, which is usually -1 or 0. This is done by using the threshold activation 

function, which makes the output of each neuron 1 or 0. This special attribute of 

perceptrons makes such networks ideal for classification tasks, (i.e. decide whether an input 

belongs to a certain class or not). While perceptrons perform great in some tasks, they also 

have some weaknesses. Because the output of the neuron is either 0 or 1, a small change in 

the weights or bias of any single perceptron in the network may cause the output to 

completely flip (e.g. from 0 to 1). That flip may then cause the behaviour of the rest of the 

network to change in a very complicated way. For that reason, sigmoid neurons might be 

used instead of perceptrons. Additionally, perceptrons are only capable of learning linearly 

separable problems, so multilayer perceptrons were later introduced in order to counter this 

issue. 

 

2.6.2 Multilayer Perceptron (MLP) 
Multilayer Perceptrons are typical feedforward neural networks composed by one or more 

hidden layers. Except for the input nodes, contrarily to perceptrons, each node uses a 

nonlinear activation function, which enables MLPs to solve problems that are not linearly 

separable. An MLP with one hidden layer is capable of approximating any continuous 

function. Their architecture is quite simple, since they are composed of fully connected 

layers, which means that each node in one layer connects with a certain weight     in the 

following layer. Multilayer perceptrons are often applied to supervised learning problems, 

which means that they are trained on a set of ideal input-output pairs using 

backpropagation algorithm. These concepts will be elaborated in the following chapters. 

 

2.7 Learning 
 

An integral part of neural networks and of Artificial Intelligence in general, is the concept of 

learning. This concept is referred to computing the best values for all dependent-free 

variables in a system through a learning algorithm, in order to have an ideal behaviour. In 

the case of neural networks, this means calculating the values of weights and thresholds. 

There are two basic types of learning: supervised learning and unsupervised learning. 

 

2.7.1 Supervised Learning 
Supervised learning requires some type of “supervision” that indicates which is the ideal 

behaviour of the system and corrects it when it performs mistakes. The desired behaviour is 

determined by a set of ideal inputs-outputs that define which is the ideal output of the 

system when it is fed by a certain input. During the procedure of training, the real output of 

the network differs from the desired one; the difference of these two outputs is the error of 

the ANN, and it is used by the training algorithm in order to define new values for weights 

and biases. 

Training algorithms are usually repetitive tasks, which means that the sets of ideal input-

output are provided consecutively to the network, and each time the error is calculated, 

which indicates the change of weights and biases. This procedure is terminated either when 
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the algorithm reaches a certain number of iterations or when the error drops down of a 

desired threshold. Before training takes place, the dependent-free parameters of the 

systems (biases and weights) should be initialized to some values, which are usually 

considered as small positive numbers.  

 

2.7.2 Unsupervised learning 
Unsupervised learning, on the other hand, is a class of machine learning techniques to find 

patterns in data. Unlike supervised learning, training set does not include any labels, which 

means that the input variables are not provided with any corresponding outputs. Therefore, 

algorithms must detect certain structures in the data. Success in such kind of networks is 

determined by whether the network is able to reduce an associated cost function.  

 

Figure 9: Unsupervised and Supervised Learning 

 

2.8 Objective Function 
 

In all problems that involve optimization an objective or loss or cost function is a function of 

inputs that outputs a real number representing a “cost”, which is associated with the certain 

input. An objective function is a measure of how good a prediction model is in terms of 

being able to predict the expected outcome. In an optimization problem, the objective is to 

minimize the loss function.  

The learning problem for a neural network is formulated as searching for a set of weights 

{ ( )}
   

 
 that minimizes a given loss function   : ℝ K x K  → ℝ, which is a function that 

measures the inconsistency between the output predicted by the neural network ( ) and 

the true value ( ̂). The learning problem can also be formulated as searching for a function 

that best maps a set of inputs to their correct output. When training a neural network, the 

objective is to minimize the objective function and bring output as close as possible to the 
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correct value, which is achieved by using gradient descent algorithm. An example of a 

common loss function used in neural networks is the L2-norm, which calculates the squared 

difference between the output predicted and the actual value: 

 

 (   ̂)  ∑(     ̂)
 

 

   

 

 

Some other loss functions are the Mean Absolute Error, Smooth Mean Absolute Error and 

the Log-Cosh Loss function. 

In general, it is not possible to find a closed form expression for the minima of the loss 

function of a neural network, so the gradient of the loss function is calculated. 

 

2.9 Back Propagation Algorithm 
 

Backpropagation of error algorithm is one of the most widely used training algorithms in the 

case of neural networks. It is capable of training feedforward networks of any size and 

number of layers. Its objective is to calculate the values of weights and biases, which are 

often referred to as learnable parameters of an ANN, in order to minimize the loss function 

of the neural network. Given a neural network architecture and a loss function, back-

propagation calculates the gradient of the loss function, ∇ E with respect to all weights in 

order to achieve a local minimum using dynamic programming. This is a mathematical 

process called gradient descent, which is a first-order iterative optimization algorithm for 

finding the minimum of a function. That is, given a neural network and a loss function, back-

propagation algorithm propagates the loss at the output layer backward, so that the 

gradient at all hidden layers can be calculated using the chain rule in order to adjust the 

weights at each neuron, as described below: 

Assuming the output of the j-neuron is oj, then: 

 

    (    ) then       ∑         
 
  

 

Then the error produced in the output of the neuron j is: 

 

         

 

Summing the errors of all the neurons in the output layer:  
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∑ (       )

 

        

 

 

The weights and biases are updated as following: 

        (
   

    
) 

 

       (
   

   
) 

where a describes the learning rate parameter. 

The calculation of the partial derivative of the objective function with respect to a weight wij 

is done, using the chain rule:  

 

  

    
 

  

   

   

     

     

    
 

 

Similarly, the partial derivative of the object function with respect to the biases is calculated.  

As it can be seen from the image below, the loss function is calculated by considering the 

squared difference between the target and predicted output and summing these values for 

all output neurons. Then, the derivative of the loss function with respect to all weights is 

calculated using the chain rule, and by propagating the error backwards, the values of all 

weights are adjusted accordingly.  

 

 

Figure 10: Schematic Representation of Backpropagation Algorithm 
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2.10 Optimization of Backpropagation Algorithm  

 

2.10.1 Batch Normalization 
Batch normalization is a technique applied in artificial neural networks in order to improve 

their efficiency and stability. While training a neural network, the values of the weights of 

the layers constantly change, therefore, the distribution of the inputs also changes. This 

makes training slower, especially in cases of very deep networks. This problem is known as 

internal covariate shift. More specifically, as long as the statistical distribution of the input 

keeps changing after some iterations, the hidden layers will keep trying to adapt to the new 

distribution, therefore, making convergence slower. So, the batch normalization algorithm is 

proposed in order to solve that issue. It involves a normalization of the inputs to a layer with 

zero mean value and unity standard deviation. This makes each layer in the network to learn 

faster, and also independently of the other layers. Furthermore, Batch Normalization makes 

neurons work in their linear regions of their activation functions, which improves learning 

performance. It also prevents the vanishing gradient problem, which sigmoid and tanh 

functions are dealt with.  

 

               

 

Figure 11: Batch Normalization (BN) applied to the inputs 
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Figure 12: Average loss with and without Batch Normalization 

 

2.10.2 Adaptive Learning Rate 
Learning rate in neural networks in artificial neural networks is defined as a parameter which 

indicates how fast the network adapts the values of its weights, with respect to minimizing 

the loss function. The lower the learning rate is, the slower it will take the ANN to converge. 

However, if its value gets too great, the network might overshoot the minimum of the loss 

function, and it might cause divergence. The weight update formula is as following: 

         
  

    
 

 

Figure 13: Large and small learning rate issues 
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2.10.3 Momentum Rate 
In artificial neural networks, the error function comprises of local minimums, which the 

system can get stuck to, thinking it has reached the global minimum. To overcome such 

situations, a momentum term is considered in the objective function, which is a value 

between 0 and 1 that increases the size of the steps that are taken towards the minimum. 

Therefore, it helps the system jump from local minimums, and move towards the global 

minimum. A large momentum rate implies faster convergence, but the global minimum 

point might be skipped. In cases that the learning rate is large, momentum rate should be 

kept at lower values.             

 

      
  

    
      

    

 

,where η is the learning rate and γ is the momentum rate 

             

Figure 14: Network stuck into local minima 

 

 

2.11 Issues in Artificial Neural Networks 
 

Thanks to their huge number of parameters, artificial neural networks have a lot of freedom 

and can fit almost any complex dataset. This ability has allowed them to find applications in 

many areas, in which it has been difficult to make progress, such as image recognition, 

natural language processing, etc. However, sometimes, the complexity of these networks 

may become a potential weakness, since it can lead to overfitting or underfitting.  

 

2.11.1 Overfitting 
This situation occurs when the neural network is so closely fitted to the training set that it is 

difficult to generalize and make predictions for new, unseen data. In practice, detecting that 

a trained model is overfitting is a difficult task, so it is necessary that some steps should be 

followed during training. Specifically, it is advisable that a dataset should be divided into 

three parts – training set, cross-validation set and test set. The model learns by only 
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considering data from the first part, while cross-validation set is used to track progress of 

training and optimize the model. Furthermore, at the end of the training process, the test 

set is used, in order to evaluate the performance of the trained network.  

Although until recently the most frequently recommended division of dataset would be: 60% 

training set, 20% validation set and 20% test set, when a dataset comprises of millions of 

entries, these proportions are no longer appropriate. In short, everything depends on the 

total size of the dataset, and in cases of millions of data, it could even be better to divide the 

set in 98/1/1 ratio.   

 

2.11.2 Underfitting 
This situation occurs when the trained model can neither fit the training data, nor generalize 

to new unseen data. Detecting an underfit model is obvious, since it will have poor 

performance on training data, and it is, of course, an unsuitable.  

 

 

Figure 15: Description of Overfitted, Optimum and Underfitted model 
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3. Convolutional Neural Networks 
 

Convolutional neural networks (CNNs) are a specialized kind of deep feed-forward neural 

networks, mostly used in computer vision. These networks are very successful in processing 

data that have a known grid-like topology, such as time series data which can be thought as 

a 1-D grid samples at regular time intervals, or images, which can be thought as a 2-D grid of 

pixels. The term “convolutional” refers to the mathematical operation, convolution, which is 

employed to these kinds of networks. The main advantage of such networks is their ability to 

decrease the computational power required to process data through dimensionality 

reduction.  

 

 

Figure 16: Convolutional neural network pipeline 

 

3.1 Design 
 

A convolutional neural network consists of input and output layers, as well as multiple 

hidden layers. The hidden layers of a CNN typically consist of convolutional layers, ReLU 

layers, pooling layers, fully connected layers and normalization layers. The special concepts 

of these layers will be analytically discussed in the following chapters. 

 

3.2 Convolution 
 

In mathematics, convolution is a mathematical operation on two functions (say f and g) that 

produces a third function which expresses how the shape of one is modified by the other. 

Specifically, it is an integral that expresses the amount of overlap of function g, as it is 

shifted over function f. It is defined as following: 

 

(   )( )  ∫  ( ) (   )  
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In deep learning applications, the input (function f) is a multidimensional array and the 

second argument (function g), usually referred to as the kernel is a multidimensional array 

of parameters that are adapted by the learning algorithm.      

 

 

Figure 17: Convolution Operation between two functions 

 

3.3 Convolutional Neural Networks in Deep Learning 
 

The architecture of convolutional neural networks used in Deep Learning and specifically in 

Computer Vision is in analogy to the connectivity pattern of human brains and is inspired by 

the function of the Visual Cortex. More specifically, individual neurons respond to stimuli 

only in a restricted region of the visual field, known as the Receptive Field. The composition 

of all these overlapping fields, results into covering the entire visual area. Similarly, hidden 

neurons inside the convolutional neural network, or otherwise referred to as features, are 

activated only by a smaller region of the input. This means that the fundamental difference 

between a fully connected layer and a specialized convolutional layer, is that the fully 

connected layer learns global patterns in its global input space, whereas convolutional layers 

learn local patterns in small windows.  

The goal of CNNs is to reduce the size of the input into a from which is easier for the 

network to process, without losing any features which are critical for getting the right 

prediction. This is very important, especially when massive datasets, such as in image 

recognition, are involved, where otherwise, it would be extremely computationally 

expensive for an MLP neural network to process an image. For example, a single neuron in 

an MLP which receives an image as input with size 64 x 64 x 3 (width, height, channel), will 

have 12,288 weights. Furthermore, a distinguishing feature of CNNs is that many neurons 

share the same weights, which reduces memory footprints, since a single vector of weights 

is used across all receptive fields sharing that vector. 
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In a regular artificial neural network, each neuron receives inputs from all neurons in the 

previous layer. Contrarily, in a convolutional neural network, instead of neurons receiving all 

inputs, they receive only a small patch of the input, and then apply the convolution 

operation with a weighted matrix, which will be referred to as a kernel by performing matrix 

multiplication and then pass the result to an activation function. Therefore, convolutional 

layers consider the spatial locality of their input. This means that convolutional layers learn 

spatial hierarchies of patterns by preserving spatial relationships. For example, a first 

convolutional layer maybe responsible for capturing low-level features such as edges, 

colour, gradient, orientation, etc. The second convolutional layer may be responsible for 

learning patterns composed of the basic elements that were learnt in the previous layer, and 

so on until the network can learn very complex patterns. This allows convolutional neural 

networks to efficiently learn increasingly complex and abstract visual content.  

 

Figure 18: Convolutional layer takes input x and applies convolution operation with a 3 x 3 kernel, 
stride = 1 and padding = 0 

 

 

Figure 19: Kernel sliding over the image and saves the result to an array with lower dimension  
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3.4 Steps in Image Recognition with CNN 
 

The kernel slides over the entire original image in both direction (columns and rows) until 

the entire image is parsed and saves each result as a separate smaller image. The size of the 

kernel’s shift is defined by two parameters: stride and padding, with stride representing the 

movement along the two directions and padding zero-pads the border of the input. There 

are two types of convolutional operation –in the first one, the dimension of the convolved 

feature is reduced compared to the input, and in the second one the dimension of the 

convolved feature is either increased or remaining the same. In the first one, Valid Padding 

is applied, whereas in the latter one, Same Padding. Therefore, the convolution operation 

has three dependent-free parameters: stride, padding and the size of the kernel matrix. 

After this procedure, the original image has been turned into several smaller, equally sized 

image tiles, which looks like this:  

 

Figure 20: Feature map of image in a CNN 

 

At this stage, instead of feeding the entire image to a neural network to perform 

recognition, every individual image tile is fed to a relatively small neural network, in which 

some outputs are produced. An important point is that the small neural networks that 

process all image tiles share the same weights. This means that every image tile is treated 

equally.  
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Figure 21: Processing of feature map in a CNN 

The results from processing every image tile in the neural network are saved and stored in 

an output array, just as it would have been if the original image would have been processed. 

The array that contains the outputs, with each one representing the probability of the tile 

containing an object, is much smaller than the output array that would have been produced 

if the whole original image was being processed. 

 

Figure 22: Overall process of an image through a CNN 

 

3.4.1 Pooling layer 
Convolutional neural networks usually accompany convolution layers with pooling layers, 

which are usually applied immediately after the convolutional layers. The basic goal of a 

pooling layer is to simplify the information collected by the previous layers and create a 

condensed version of the information contained in them. There are many ways to condense 

that information, but the most usual one is the max-pooling operation.  
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However, the size of the output array is still big, so in order to reduce its size, it is down 

sampled, using an algorithm called max pooling. The basic idea of this algorithm is to 

segment the output array in a square grid and keep the maximum values from each one. By 

applying this operation, if something interesting is found in the square grid, the most 

interesting is being kept to the max pooled array.  

In a similar way as the max-pooling operation, the average pooling returns the average of all 

the values from the grid. Both algorithms are responsible for reducing the spatial size of the 

convolved feature. However, max pooling has an additional advantage, which is noise 

suppression. Specifically, it discards all the noisy activations and so performs de-noising. 

Hence, max pooling performs in general, better than average pooling.  

The result of feeding all image tiles into smaller neural networks is an array that maps out 

which parts of the original image have the highest probability of containing an object. 

However, that array is still big, so Maxpooling algorithm is used, in order to reduce its size, 

while keeping the most interesting outputs. 

 

 

Figure 23: Maxpooling process 

 

After reducing the size of the output array, it is then fed to another neural network. This 

final neural network will determine whether the image contains an object or not and will 

produce a final output. This neural network will be referred to as “fully connected” network.  

In conclusion, the general pipeline of applying a convolutional neural network in an image is 

as follows: 

 

Figure 24: Image processing through a CNN-based object detection system 
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When designing an architecture for a network the above steps can be combined as many 

times as required to achieve a good performance, but of course, at the cost of more 

computational power. The basic idea is to have a large input and continually reduce its size, 

untill a single result is outputed.  

More convolutional layers means that the network can extract more complicated features 

from the input. With added layers, the network has the ability to adapt to more high-level 

features as well, therefore understanding the entirety of the given image. For example, 

considering a problem of identifying cats in images, the first convolutional layer might be 

able to recognize, ears, the second one to recognize whiskers, and the last one to recognize 

entire cats, using its previous knowldege.  

Of course, there is not a clear and straight-forward method of constructing the perfect 

architecture for a network. As most of the applications of machine learning, a lot of trial and 

error is involved, therefore, a lot of experimentation and testing is required. 
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4. State-of-the-art Object Detection Algorithms 
 

4.1 R-CNN 
 

4.1.1 General 
R-CNN [1], which stands for Region-CNN is one of the state-of-the-art convolutional neural 

networks (CNN) based deep learning object detection algorithms. The main novelty of this 

approach is that it proposes a method where selective search is used in order to extract 

2000 regions from the image, which are called region proposals. Therefore, instead of 

classifying a large number of regions, just 2000 regions can be used.  

These 2000 proposed regions are fed to a convolutional neural network, which produces a 

feature vector as output, which consists of features extracted from the image. The network 

that performs the features extraction is called AlexNet, a neural network framework 

introduced in 2012, which outperformed all existing frameworks at the time (with 15.3% 

error rates). Its architecture consists of 5 convolutional layers and 3 fully connected layers, in 

which ReLU activation function is applied. During training, weights are updated as following: 

 

, where learning rate starts from 0.01 and is decreased 3 times during training, momentum 

rate is set to 0.9 and weight decay parameter is 0.0005. 

 

Figure 25: AlexNet Architecture 

 

  Following, the output is fed to an SVM (Support Vector Machine) classifier, which finds a 

hyperplane in an n-dimensional space (where n is the number of features) that distinctly 

classifies the data points. Therefore, the SVM classifies the presence of objects within that 

candidate region proposal.  
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Figure 26: Support Vector Machine Algorithm 

 

 

Figure 27: R-CNN pipeline 

 

 

 

 

 

 

 

 

 

 

 



43 
 

4.2 Fast R-CNN 
 

4.2.1 General 
After R-CNN network being released, some of its drawbacks were solved and so an advanced 

version of RCNN was produced, called Faster R-CNN [2]. This approach is similar to the one 

of R-CNN, however, there are some essential differences. Specifically, instead of feeding the 

2000 proposed regions to the CNN, the entire input image is fed to a CNN to generate a 

convolutional feature map. Then, the region proposals are identified from the feature map, 

warped into squares and by using a Region of Interest (RoI) pooling layer they are reshaped 

into a fixed size. Following, they are fed to a fully connected layer. From the output RoI 

feature vector, a softmax layer is used to predict the class and the offset values of the 

bounding box.  

 

Figure 28: Fast R-CNN Pipeline 

 

The main advantage of Fast-RCNN over R-CNN is that instead of applying the convolution 

operation to 2000 region proposals every time, the convolution is done only once per image 

and a feature map is generated by it. Therefore, it is significantly faster than R-CNN, both in 

terms of training and testing time. In the graph below the comparison between R-CNN, SPP-

Net and Fast R-CNN is shown:  

 

Figure 29: Comparison of R-CNN, SPP-Net and Fast R-CNN  
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4.3 Faster R-CNN 
 

4.3.1 General 
Although Fast R-CNN has significantly improved performance compared to R-CNN, both 

approaches use Selective Search algorithm to make the region proposals. However, this 

process is slow and time-consuming, which eventually affects the performance of the 

network. In order to counter this problem, Faster-CNN [3] was introduced, which is an 

algorithm based on Fast R-CNN that eliminates the Selective Search algorithm and lets the 

network learn the region proposals.  

Similar to Fast R-CNN, the entire image is provided as an input to a convolutional neural 

network which outputs a convolutional feature map. However, instead of using the Selective 

Search algorithm to make the region proposals, a separate CNN-based network performs 

this task. The predicted region proposals are then reshaped using a RoI pooling layer which 

is then used to classify the image within the proposed region and make the predictions for 

the bounding boxes. Therefore, the overall network has the following general pipeline: 

 

 

Figure 30: Faster R-CNN pipeline 

 

The basic steps of the algorithm are the following:  

1. Firstly, the image goes through convolutional laers and feature maps are extracted.  
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2. Then, a sliding window is used in the RPN (Region Proposal Network) for each 

location over the feature map. 

3. For each location, 9 anchor boxes are used (3 scales of 128, 256 and 512, and 3 

aspect ratios of 1:1, 1:2, 2:1) in order to generate the region proposals.  

 

4. A box classification (cls) layer outputs 2k scores, whether there is an object or not in 

the k boxes. 

 

5. A box regression layer (reg) outputs 4k coordinates (box center coordinates, width 

and height) of the k boxes.  

 

6. For a feature map of size W x H, there are WHk anchors in total.  

 

 

Figure 31: Region Proposal Network pipeline 

 

The loss function of the Region Proposal Network is:  

 

 ({  }{  })   
 

    
∑    (     

 

 

)   
 

    
∑  

     (     
 

 

) 

 

The first term refers to the classification loss over classes, i.e. whether there is an object or 

not. The second term refers to the regression loss of bounding boxes only when there is an 

object (pi
* = 1). 

The λ parameter, is a value that has been proven to improve the efficiency of the network. It 

has been turned out that λ=10 achieves the best result in terms of mAP (%) score.  

As region may have a high overlap with each other, non-maximum suppression is used to 

reduce the number of proposals.  
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Except the RPN, the remaining part of Faster R-CNN remains the same as Fast R-CNN. Firstly, 

RoI pooling is performed to the image, and then it is fed through a CNN and two fully 

connected layers.  

From the below graph, it can be seen that Faster R-CNN is approximately 10 times faster 

than Fast R-CNN, since it does not use the time-consuming Selective Search algorithm. 

 

Figure 32: Comparison of state-of-the-art object detection algorithms 

 

 

Figure 33: Illustration of the architecture of the R-CNN family and inference time speed of each model 
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4.4 You Only Look Once (YOLO) Algorithm  
 

4.4.1 General 
YOLO algorithm [6], which stands for “You Only Look Once”, is a very efficient and fast object 

detection system. Its main and contemporary difference compared to prior work on the field 

is that detection is performed through predicting certain bounding boxes of objects while 

calculating a class probability of objects being included in that boundary. This is achieved 

through applying a single convolutional neural network on the image which outputs 

bounding boxes with the respective class probabilities without any other system interfering 

during the process. This makes YOLO a unique system, since it performs end-to-end 

detection through applying just one network to the input image.  

 

Figure 34: YOLO algorithm pipeline 

YOLO can process images in real-time in 45 frames per second, outperforming many other 

state-of-the-art detection systems. Furthermore, its architecture enables it to learn generic 

representations and compared to other state-of-the-art systems it performs greatly on 

generalizing from general images to other domains such as artwork or visual environments.  

Most systems up today use classifiers to perform detection by performing classification at 

various regions and scales in an image. For example, some networks use a sliding window 

approach were classification is implemented at even regions over the entire image. More 

recent and sophisticated systems use region proposal technique to generate some bounding 

boxes which are likely to include objects. Classifiers are then run over these proposed 

regions and detection is made. At a later stage, a process to eliminate duplicate detections 

and rescore the boxes based on other objects detected in the scene is made. Such systems 

are relatively slow and, unlike YOLO, are also very hard to optimize since they are composed 

of several different components, with each one requiring separate optimization.  

More specifically, YOLO’s benefits over other methods are: 

1) YOLO is really fast, since its pipeline is really simple. A simple neural network is 

run through an image at about 45 frames per second, allowing YOLO to process video in 

real-time with only 0.25 milliseconds of latency.  

2) YOLO, unlike other system sees the entire image when making predictions. This 

makes YOLO able to make detection considering information depending on context of the 

image that other networks do not process because they do not see the entirety of the 

image. Consequently, YOLO makes much less back-ground errors than traditional detection 

systems which may mistake background parts as objects.  
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3) A huge advantage of YOLO is that it can learn generalizable representations of 

objects. This makes YOLO able to perform detections in environments such as artwork, even 

if it has been trained on natural images.  

4.4.2 Detection Process 
YOLO takes the input image and divides it into an S x S grid. If the center of an object falls 

inside a grid cell, then that grid cell is responsible for detecting that object. Each grid cell 

predicts B bounding boxes and confidence scores for those boxes, which reflect how 

confident the model is that the box contains an object and how accurate it thinks the box is 

that it predicts. Confidence is defined by the following measure:  

  (      )         
      

, where IOU is the Intersection over Union between the predicted box and the ground truth 

box. Its value ranges between 0 and 1 and corresponds to the overlapping area between the 

predicted box and the ground-truth box. The higher the IoU, the better the predicted 

location of the bounding box for a given object is.  

If no object exists inside that cell, the confidence score is zero. 

 

 

Figure 35: Intersection over Union 

 

Each bounding box prediction consists of 5 parameters: x, y, w, h and confidence. The (x,y) 

coordinates represent the centre of the bounding box relative to the boundaries of the grid 

cell. The width and height of the box are relative to the whole image. Finally, the confidence 

parameter represents the IOU between the predicted box and the truth box.  

Each grid cell also predicts C conditional class probabilities, Pr(Classi│Object), representing 

the probability that classi  contains an object. 

The conditional class probability is multiplied by the individual box confidence score which 

gives the class-specific confidence score for each box. This reflects the probability of the box 

containing an object of a certain class and how well the predicted box fits the object. 

 

  (      |      )    (      )         
        (      )         
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This procedure is described in the image below:  

 

 

Figure 36: Image is divided into S x S grid cell and for each cell B bounding boxes are predicted. 
Predictions are encoded into an S x S x ( B*5 + C ) tensor 

 

4.4.3 YOLO Architecture 
YOLO model has 24 convolutional layers followed by 2 fully connected layers. The final 

output of the network is a 7 x 7 x 30 tensor of predictions. (where S = 7 and C = 20).  

 

Figure 37: Network with 24 convolutional layers followed by 2 fully connected layers. Feature space is 
reduced from preceding layers 

 

A linear activation function is used for the final layer and all other layers use the following 

LReLU (Leaky Rectified Linear Unit) function:  
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Sum-squared error is used in the output of the model. Although it is easy to optimize, sum-

squared error weights localization error equally with classification error which is not ideal in 

terms of maximizing average precision. Furthermore, in an image a lot of grid cells do not 

contain any object, which leads confidence scores of those grid cell close to zero. This can 

cause overpower of gradient, which may lead to instability and divergence of the model in 

an early stage of the process.  

For that reason, loss from bounding box coordinate predictions is increased, whereas loss 

from confidence predictions for boxes that contain no object is decreased. Therefore, two 

parameters λcoord = 5 and λnoobj = 0.5 are used.  

Another imperfection of the sum-squared error is that error produced from large boxes is 

equally weighted as error produced from small ones. However, it is essential that small 

deviations in large boxes do not matter the same as in small boxes. To counter this problem, 

instead of predicting the height and width of the bounding boxes, the square root is used.  

Moreover, during training, multiple bounding boxes per gird cells are predicted. However, 

only one bounding box should be responsible for each object. To determine which one will 

be responsible among the multiple boxes, the IOU with the ground truth is calculated and 

the one with the highest IOU is selected.  

 

4.4.4 Loss Function 
The loss function of the network is:  
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where li
obj denotes if an object appears in cell I and lij

obj denotes that the jth bounding box 

predicted in cell i is responsible for that prediction.  
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4.5 YOLOv3 Algorithm 
 

4.5.1 General 
YOLOv3 [8], which stands for YOLO version 3 is an updated version of YOLO algorithm with 

improved accuracy. The output of the network is a feature map with (B x (5 + C)) entries. B 

represents the number of bounding boxes each grid cell of the image can predict. Each of 

the bounding objects has (5 + C) attributes, which describe the centre coordinates, the 

dimensions (width and height), the objectness score, and C class confidences for each 

bounding box, where C is the number of classes.  

The objectness score represents the probability that an object is contained inside a 

bounding box.  It should be nearly 1 for grids that contain an object and almost 0 for grid 

cells that do not contain any object.  

Class confidence represents the probability of the detected object belonging to a particular 

class (such as dog, car, fruit, etc.). 

 

 

Figure 38: Image divided into grid cells. Prediction of an S x S x ( B*5 + C ) tensor 
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4.5.2 Bounding Box Prediction 
As the older versions of YOLO, instead of predicting the width and the height of the 

bounding box, YOLOv3 predicts offsets to pre-defined default bounding boxes, called 

anchors. Then some transforms are applied to these anchors, in order to obtain the 

prediction. YOLOv3 has three anchors, therefore three bounding boxes per grid cell are 

predicted. The box with the highest IoU (Intersection of Union) will be the one responsible 

for the prediction. For each box, 4 coordinates are predicted tx , ty , tw and th , according to 

the following formulas: 

bX = σ(tX) + cX 

bY = σ(tY) + cY 

bW = pWetw
 

bh = pheth
 

, where cX , cY are the offsets of the grid cell from the top left corner of the image and pW and 

ph are the anchor width and height of the bounding box. Sigmoid function is used. 

 

Figure 39: Bounding box prediction  



53 
 

 

Figure 40: Transformation to give the final prediction of the bounding box 

 

During training sum of squared error loss is used by subtracting the prediction for some 

coordinate from the ground truth coordinate:  ̂     

YOLOv3 predicts a score for each bounding box using logistics regression. The score is 

assigned to 1, if the bounding box overlaps a ground truth object by more than any other 

bounding box prior. If the bounding box is not the best but does overlap a ground truth 

object by a threshold of 0.5, the prediction is ignored.  

YOLOv3 predicts bounding boxes at three different scales from which it can extract features. 

The detection layer makes detection at feature maps of three different sizes, having strides 

of 32, 16 and 8 respectively. This means, that with an input of 416 x 416, for example, 

detections are made on scales of 13 x 13, 26 x 26 and 52 x 52. This advancement to the 

algorithm helps YOLOv3 to get better at detecting small objects.  
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Figure 41: Feature maps at three different scales 

 

For an image, say of size 416 x 416, YOLO predicts a number of ((52 x 52) + (26 x 26) + (13 x 

13)) x 3 = 10647 bounding boxes, as each cell predicts 3 boxes. However, in the case of just 

one object being contained in the image, the detections are reduced from 10647 to 1.  

Firstly, boxes with an objectness score below a particular threshold are ignored. 

Furthermore, the process of Non-maximum Suppression is implemented. NMS intends to 

cure the problem of multiple detections of the same image.  
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4.5.3 Performance Metric 
The commonly used metric used for object detection challenges is called the mean Average 

Precision (mAP). It simply is the mean value of the Average Precisions computed over all 

classes, as described by the following formula:  

     
∑   ( ) 

   

 
 

In the image below, the performance on the COCO dataset of YOLOv3 network compared to 

other state-of the art networks is presented:  

 

Figure 42: Performance of YOLOv3 compared to other state-of-the-art algorithms 
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5. Case Study  
 

5.1 General Description – Goal 
 

In the present study, the main goal was to make a first attempt at performing object 

recognition using machine learning methods in the field of Naval Architecture and Marine 

Engineering, in the effort of being able to describe accurately the content of an image of a 

ship’s engine room. More specifically, the basic task was to perform recognition of the basic 

components of complex piping systems, such as flanges, straight pipes, elbow pipes and 

valves using a convolutional neural network-based approach. Furthermore, due to the fact 

that constructing a large enough dataset in order to train a CNN is a very time-consuming 

task that also requires manual intervention, an attempt was made to automate this 

procedure, as well as significantly minimizing the required time.  

Specifically, generating a large enough and accurate dataset of particular objects in order to 

train a neural network is a difficult task, since it requires collecting numerous images of 

different scales and poses, visually inspecting them and also specifying the exact position of 

objects in the picture. This is done by adding to the dataset annotation files for every image, 

which indicate the relative position of bounding boxes, their dimensions, as well as the class 

of every object. This is, of course, a time-consuming task, since it can only be done through 

manually tagging objects by drawing bounding boxes around them. Moreover, as images get 

more complicated, containing several different objects of different classes, this task gets 

even more difficult. Although this has been the way which datasets have been generated 

until today, it is an inefficient process, as it is not only a time-consuming procedure, but also 

involves human error which can significantly affect training and consequently, the network’s 

performance. For example, tagging an object at a wrong position, or mistakenly labelling an 

object to a different class may result in creating wrong training material.  

 Our proposed method can remarkably speed up the process of generating a dataset by 

creating as many training images as required, as well as creating the annotation files for 

every image which specify the position of objects and their class. Moreover, our current 

approach can ensure the validity of images included in the training dataset and can also 

generate images of objects at different scales and orientations, which are important for 

training a robust object recognition model. Furthermore, our method offers flexibility in 

terms of training a custom model for object detection, since it is able to generate a dataset 

for any object of our choice.    
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5.2 Used Tools 
 

5.2.1 Darknet 
The basic tool that was used for training our own custom object detection model is 

“Darknet” (https://github.com/pjreddie/darknet). Darknet is an open source neural network 

framework written in C and CUDA, officially launched in Linux system, which implements the 

aforementioned YOLO algorithm. It supports both CPU and GPU computation. This 

framework offers real-time object detection and classification by using some weights that 

were pre-trained in detecting some typical objects, such as cats, dogs, people, computers, 

etc.  

Darknet also offers the option of training our own custom model on our own dataset, in 

order to detect objects of our choice. More specifically, to train a custom model, Darknet 

must be provided with a dataset, which comprises of the training images in .jpg format and 

some annotation files in. txt format that accompany each image and include information 

about the position of objects in the image by specifying the coordinates and dimensions of 

the bounding boxes.  

Specifically, for every image in the dataset, the annotation file (.txt) must be saved in the 

same directory and with the same name and should have the following format:  

 

<object-class> <x_center> <y_center> <width> <height> 

 

, for each object on the image in a different line. 

Where:  

 <object-class> is an integer object number from 0 to (classes – 1) that indicates 

the class of the object 

 <x_center> <y_center> are float values relative to the width and the height of 

the image, representing the coordinates of the centre of each bounding box and can 

be equal from 0.0 to 1.0 and are measure from top left corner.  

 <width> <height> are float values relative to the width and height of the image, 

representing the width and height of the bounding box and can be equal from 0.0 to 

1.0.  

Note: <height> = <absolute_height> / <image_height>, where absolute height and 

image height are measured in pixels.  

 

https://github.com/pjreddie/darknet
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Figure 43: Sample image of 1 class (dog) 

For example, for the above (1920 x 1080) image the annotation file (.txt) must have the 

following format:  

 

0 0.682237 0.537409 0.382481 0.923356 

 

, where 0 indicates the “dog” class and the rest numbers indicate the coordinates of the 

centre of the bounding box and its width and heights, relative to the image width and height 

measured from the top left corner. 

 

5.2.2 How to use Darknet 
To perform object detection with Darknet on Linux system, the following command must be 

used on the command line:  

./darknet detector test ./cfg/coco.data ./cfg/yolov3-voc.cfg 

./yolov3.weights 

, where coco.data is a file that specifies the paths to some files necessary for training and 

has the following format: 

classes= 80 

train = data/coco/trainvalno5k.txt 

valid = data/coco_testdev 

#valid = data/coco_val_5k.list 

names = data/coco.names 

backup = backup/ 

eval=coco 
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, where: 

 classes is the number of different classes in the dataset 

 train specifies the images used for training 

 valid specifies the images used for validation 

 names contains the names of different classes (e.g. dog, cat, etc.) 

 backup is the folder in which weights are backed up after a fixed number of 

iterations 

 eval is the evaluation dataset 

 

yolov3-voc.cfg is the configuration file. This configuration file contains all the information 

about the process of the image through the network and specifies the exact architecture of 

the neural network. Particularly, it defines all values that are going to be used in each 

convolutional, maxpooling and fully connected layer of the CNN. In our case, the yolov3-voc 

architecture was used, which is YOLOv3 trained on the VOC dataset. All the important 

parameters and hyper-parameters are stored in the configuration file, which has the 

following format: 
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Figure 44: Configuration file of YOLOv3 trained on VOC dataset 

In this point, it is essential to make some clarifications regarding the main parameters of the 

system, defined in the configuration file: 

 Batch: The batch parameter indicates the batch size used during training. 

Specifically, when the network processes the training images it is unnecessary in 

terms of time and computational power to process all images at every iteration. For 

that reason, just a subset of the training set is used to update the weights. This is 

subset is referred to as batch. A commonly used value for this parameter during 

training is 64, whereas during testing, batch should be assigned to 1.  
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 Subdivisions: Even though a batch size, say of 64 images is used, computational 

power might be limited, and therefore GPU may run out of memory. For that 

reason, Darknet provides the subdivisions parameter, that defines a fraction of the 

batch size that will be processed at a single iteration. Therefore, GPU will process a 

number of batch/subdivisions images at a time. During training, subdivisions 

parameter shall be assigned to multiples of 2 (e.g. 2, 4, 8, 16), whereas during 

training it should be 1.  

 

 Width, Height and Channels: These parameters refer to the dimension (width x 

height) that the network resizes every image to, before processing it during training. 

A commonly used value is 416 x 416. Of course, results may improve if the 

resolution is increased (e.g. to 608 x 608) but, it would take longer to train. The 

channels parameter is set to 3 and indicates that an RGB image will be processed. 

During testing it is advisable to increase width and height (e.g. to 1024 x 1024). 

 

 Momentum: In a CNN the weights of the neural network are updated based on a 

small batch of images in each iteration. For that reason, there is a relatively big 

fluctuation of the weights update. As mentioned in previous chapters, the 

momentum rate is used to penalize those huge fluctuations of weight updates 

between consecutive iterations. A commonly used value for the momentum rate is 

0.9.  

 

 Decay: Decay parameter is an additional term in the weight update rule that helps 

the network to prevent from overfitting. Specifically, overfit neural networks are 

often characterized by large weight values, so it is important to prevent weight 

values to get large in magnitude. To do so, it is advisable to regularize the loss 

function, as described below by adding a weight penalty term to the plain error 

term:  

 

 ̃( )   ( )  
 

 
   

 

By doing this, large weight values are penalized, since larger weights produce larger 

outputs. The regularization parameter  , determines the penalty of the weights 

update. By applying gradient descent to the new cost function through 

differentiating it, the weights are updated as following:   

 

      
  

   
      

 

The term     is the decay parameter which in our case was set to 0.0005. 

 

 Learning Rate, Steps, Scales: As mentioned in previous chapters, the learning rate 

parameter controls how fast weights’ values change. It is typically a number 

between 0.0001 and 0.1. At the beginning of the training process, where there is not 

a lot of information and the network does not fit the inputs well, the learning rate 

should be high. However, as the network processes more data and it is converging 

towards minimizing the loss function, weights should change less aggressively. 
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Therefore, learning rate must decrease over time. For that reason, the steps 

parameter is implemented, which indicates that the learning rate will remain 

constant for a number of iterations, and then it will be decreased. It is advised that 

steps should be 80% and 90% of max batches value, which means that after 0.8*max 

batches of iterations, learning rate will be decreased and after a total of 0.9 max 

batches of iterations, it will be further decreased. The scales parameter will be 

multiplied with the learning rate, and thus, it specifies by how much the learning 

rate will decrease. As mentioned above, steps and scales parameters may be 

multiple.  

 

 

 Burn-in: Although learning rate should be high in the beginning and lower later on, 

as mentioned in the previous paragraph, it has been empirically proved that training 

speed may increase if a lower learning rate is used for a short period of time at the 

very beginning. This is controlled by the burn-in parameter, which is usually set to 

100 – 1000 iterations.  

 

 Angle, Saturation, Exposure, Hue: These parameters are used to create new data 

from the current inputs. This process is referred to as data augmentation. 

Specifically, an image containing a pipe rotated by 5 degrees will still be an image of 

a pipe. So, the angle parameter allows to randomly rotate the given image by +- 

angle. In a similar way, if the colours of the entire picture are transformed, the 

image is still a pipe. This transform is applied through the saturation, exposure and 

hue parameters.  

 

 Max Batches: Max batches parameter refers to how many iterations the network 

will perform during training. For images with multiple classes, it is required to run 

for a greater number of batches. It is advised that for an n-class object detector, 

training should be run for at least 2000*n iterations.  

 

 Anchors: Anchors parameters refers to the anchor boxes, which are a set of 

predefined bounding boxes of a certain height and width. These boxes are defined 

to capture the scale and aspect ratio of specific object classes based on object sizes 

on the training dataset. During detection, the anchor boxes are tiled across the 

image. The CNN predicts the probability, as well as some other attributes such as 

IoU value and some offsets for every anchor box. Therefore, the network does not 

directly predict bounding boxes but rather predicts the probabilities that correspond 

to each anchor box. The use of anchor box enables the network to detect multiple 

objects of different classes, object of various scales, as well as overlapping objects.  

 

 

Furthermore, the configuration file contains all necessary information about every single 

layer of the neural network. Specifically, it specifies all parameters for the convolutional 

layers, which have been described in previous chapters, such as batch normalization, filters 

applied to the image, kernel stride and padding and what type of the activation function is 

used. 
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Moreover, the configuration file includes further information about the anchors, which 

define the proposed bounding boxes of the network, and the ignore and truth threshold 

which specify which bounding boxes will be predicted with respect to their confidence score.  

Finally, yolov3.weights is the file that contains the weights of the neural network. When 

training a custom model, either pre-trained weights or the backed-up weights from previous 

trainings can be used.  

5.2.3 How to train custom model in Darknet 
On Linux, to train a custom model in Darkflow, the following command must be used in the 

Terminal:  

./darknet detector train data/obj.data yolo-obj.cfg darknet53.conv.74 

 

, where obj.data is the .data file as described in the above chapter 

yolo-obj.cfg is the configuration file 

darknet53.conv.74 is the convolutional layer pre-trained weights file 

 

5.2.4 How to run Darknet 
On Linux, to perform object detection with Darknet, the following command must be used in 

the Terminal:  

./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights 
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5.2.5 Darkflow 
The second tool that was used is Darkflow (https://github.com/thtrieu/darkflow), which is 

Darknet translated into Tensorflow, an open source machine learning platform and can also 

be used in Windows system. Like Darknet, Darkflow performs real-time object detection and 

classification. 

Just as Darknet, Darkflow also offers the option of training a custom model. To perform 

custom object detection, it should be provided with a dataset comprising of the training 

images, as well as the annotation files in (.xml format), similarly to the (.txt) files in Darknet. 

These files include information about the exact position of objects in an image by specifying 

the coordinates of the upper left and lower right edges of the bounding boxes, as well as its 

dimensions (width and height). The annotation files have the following format:  

 

Figure 45: Annotation file format 

 

Aside from defining the position of bounding boxes in the image, the annotation file includes 

some further information:  

 Folder: specifies folder containing image 

 Filename: specifies image name 

https://github.com/thtrieu/darkflow
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 Segmented: specifies if the object is segmented or not (either 0 or 1) 

 Width: Width of image in pixels 

 Height: Height of image in pixels 

 Depth: Depth of picture (3 for RGB) 

 Name: name of object’s class 

 Truncated: specifies if the object is truncated or not (either 0 or 1) 

 Difficult: specifies if the object is difficult to detect or not or not (either 0 or 1) 

 (xmin, ymin): specifies the upper left edge of the bounding box in pixels, 

measured from top left corner of image 

 (xmax, ymax): specifies the lower right edge of the bounding box in pixels, 

measured from top left corner of image 

 

5.2.6 How to train a custom model in Darkflow 
To train a custom model in Darkflow, the following command must be used in the Command 

Prompt:  

flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights --train --gpu 
1.0 

 

5.2.7 How to run Darkflow 
To perform object detection with Darkflow, the following command must be used in the 

Command Prompt:  

flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-
yolo.weights --gpu 1.0 

 

 

5.2.8 How to improve object detection 
Before training a network, some basic steps regarding the training dataset should be 

followed in order to improve the detection accuracy: 

 It is mandatory that each object should be labelled in the dataset – no object in the 

dataset should be left without label.  

 

 For each object that is to be detected there must be at least 1 similar object in the 

training dataset with about the same shape, side of object, relative size, angle of 

rotation, tilt and illumination.  

 

 It is desirable that the training dataset includes images with objects at different 

scales, rotations, lightings, from different sides, in different backgrounds. It is ideal 

that at least 2000 different images for each class are used.  
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 It is also desirable that the training dataset includes images with non-labelled object 

that are not to be detected. Non-labelled images should be as many as images with 

objects.  

 

 

5.2.9 Dependencies 
Image detection in Darkflow is executed through the Command Prompt and requires 

some dependencies to run, such as Python, OpenCV, Visual Studio and Tensorflow. 

Additionally, some further Python libraries are used. 

 

 

5.3 Steps in Case Study 
 

The main goal of our case study was to design an efficient custom object recognition model 

using the Darknet and Darkflow frameworks. We were mostly involved with detecting basic 

mechanical components of complex piping systems, such as pipes and flanges. This effort 

was divided into some basic gradual steps, in order to reach our final result. The basic steps 

that were followed are: 

1. Object detection using Darkflow in Windows environment. Dataset was created 

using Google images 

2. Object detection using Darkflow in Windows environment. Dataset was 

automatically created through importing models into a project designed in Unity 

which will later be further discussed. 

3. Object detection using Darknet in Linux framework with the basic components of 

complex piping systems. Specifically, the basic components of piping systems (such 

as pipes and flanges) were separated in order to train a more efficient network. 

4. Object detection with objects of different materials. Specifically, the network was 

trained considering objects of various different materials used in piping systems 

(such as aluminium or stainless steel) in order to simulate more accurately real 

conditions of pipes.  

5. Object detection with additional components of piping systems added, such as 

valves, straight pipes and elbow pipes 

The aforementioned steps were followed in order to have some comparative results and 

test the speed and accuracy of each method.  
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5.3.1 Object detection using Darkflow in Windows with Google training images 
During the first stage of our case study, we attempted to train a custom model using 

Darkflow framework that can detect flanges in piping systems. To do so, we collected a 

dataset of approximately 300 Google images. A GitHub code 

(https://github.com/hardikvasa/google-images-download ) was used to automatically 

download a number of google images using the key word “flange”, in order to speed up the 

image collection process. However, a visual inspection was mandatory after downloading 

the dataset in order to detect faulty images, such as images not including flanges or images 

that were not in a .jpg format. The annotation files were created manually for every image 

through an editor by drawing bounding boxes around each flange. This was done by 

specifying the upper left and the lower right edge of the bounding box. Although the custom 

trained network performed well, the process of manually creating the annotation files was 

not ideal especially for cases were large datasets are required and there are multiple objects 

of different classes in each image, since it is a time-consuming task. 

After creating the dataset, we trained our own system, using yolov3 configuration file with 

the following parameters: 

Batch = 64 

Subdivisions = 8 

Height = 416 

Width = 416 

Learning rate = 0.001 

Max batches = 4500 

Decay = 0.0005 

Backup iterations = 100 

Threshold = 0.6 

Classes = 1 (flange) 

 

The duration of training was approximately 1 day, and the results were quite successful, as 

can be seen in the images below:  

https://github.com/hardikvasa/google-images-download
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Figure 46: Flange successfully detected 

 

 

Figure 47: Both flanges successfully detected 
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Figure 48: Most of flanges successfully detected 
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5.3.2 Object detection using Darkflow in Windows with automated training 
At the second stage of our case study, an approach of automating and improving the training 

procedure was made. Although training with sample Google images has some fine results, 

this method is not ideal for tasks that require large datasets and high efficiency, since it 

requires manually collecting all images, visually inspecting them and then drawing bounding 

boxes around objects. Therefore, our goal was to non-manually create a large dataset that 

contains multiple images of objects of our choice in various different sizes and orientations. 

Furthermore, an automated way of generating annotation files for each training image was 

required in order to fully-automate the training procedure.  

In order to meet these requirements, some tools were used. Firstly, we imported some 

simple 3D piping models into the environment of Unity. Our goal was to generate a large 

number of models’ images, each one accompanied by its annotation file which specifies the 

exact position of an object into an image. In order to achieve this, a project was created in 

Unity, which also includes some codes written in C# which are responsible for the following 

tasks: 

 

1. Develop a tool in Unity that allows random or manual rotation and scaling of any 

imported object around the 3 axes. Thus, we can have images with different 

orientations and sizes of the object. These actions can be performed either manually 

by simply pressing a single keyboard button, or automatically by applying a rotation 

after a fixed time step.  

 

2. Create a bounding box around the imported 3D model by detecting its extreme 

edges. This bounding box should be following the geometry of the object at any 

rotation and scaling.  

 

3. After every rotation and scaling of the model, automatically or manually capture a 

screenshot of the object and save it in a specified directory. 

 

4. Along with capturing a screenshot, generate the annotation files, both in (.xml) and 

(.txt) format that contain information about the position and orientation of the 

objects in the image. Both captured images and annotation files can be saved to 

directories of the user’s choice.  

 

By performing the above steps, we were able to generate a dataset, as large as required, as 

well as create the annotation files required by Darknet or Darkflow in order to train a 

custom model. This way, we managed to significantly accelerate both the procedure of 

image collection as well as object tagging, which is one of the most challenging and time-

consuming tasks when training a custom object detection model.  

Furthermore, it was important for the proper functioning of the project that every imported 

model into Unity would be pinned to the center of the Unity scene. To do so, a program was 

developed into Grasshopper plug-in of Rhinoceros 3D that calculates the center of gravity of 

each object and then translates this point to the center of global axes. After this process, the 

model is exported into (.fbx) format, in order to be compatible with Unity. 
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The green “Geo” block takes a meshed geometry as an input in order to be edited by the 

program. The second “Volume” block takes the geometry as input and computes its 

volumetric centroid, which is depicted in the yellow box as 3 coordinates along the x, y, z 

axes. The output is then passed forward to the “Move” block which translates the 

volumetric center of the geometry to the global origin [ 0, 0, 0] by subtracting the center 

coordinates from every point of the object. 

 

 

 

 

 

 

Figure 49: Computation of volumetric center in Grasshopper and translation of object to global origin 
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Figure 50: Meshed model is translated to the axes’ origin 
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In the following image, the environment of the Unity project is presented. The imported 

model has been rotated around the three axes and scaled along them manually using the 

top left bars. The bounding box is automatically created around each object of the model 

and after capturing a screenshot, the coordinates of the top left and bottom right edges of 

the box, which specify the limits of the bounding box of the objects are exported to the 

annotaion file which will be used during training. The annotation file is automatically saved 

to a folder of the user’s choice, specified in the “Folder name” field.  

 

 

 

Figure 51: Environment of Unity project – Bounding box created around each component of the 
model 

 

After implementing the above steps, a custom object detection model was trained through 

Darkflow using simple pipe images, such as straight, bent and circular pipes, generated by 

importing the models to the Unity project. 
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Below is presented the graph of the average loss of the trained network against iteration 

number. The average loss started from approximately 3500 and ended up to about 0.2. It 

was stopped at 1500th iteration, since the the model had already converged and we wanted 

to avoid creating an overfitted model that would not be able to generalize to objects that it 

had not processed. As it can be seen, after about 100 iterations, the average loss had already 

dropped below 5. Training lasted about 8 hours until it was stopped.  

 

 

 

Figure 52: Average loss of network against iteration number 
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Below are some successful testing results of the trained model. The model was tested in 

detecting both simple pipes images which were also used in training, as well as detailed 

piping systems images. The trained model performed well in detecting basic components 

such as straight pipes but was not able to detect multiple components in a single image.  

 

 

 

Figure 53: Trained model successfully recognizes a single bent pipe 
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Figure 54: Trained model successfully recognizes a pipe in a rotated detailed piping system 
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Figure 55: Training model successfully recognizes a pipe in a rotated and truncated piping system 
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5.3.3 Training with model components images  
In the effort of being able to train a robust model that can detect multiple different 

components in a more detailed and complex piping model, it was necessary to make some 

advancements to the training set, as well as to the Unity project. Specifically, our goal was to 

generate a dataset that comprises of the basic components of a piping system in order to 

train the model to detect and recognize these parts in an image. To do so, we imported 

some detailed piping 3D models into the environment of Rhinoceros 3D and edited them. In 

particular, we isolated each component of the piping system, meshed it and exported it as 

an object (.obj format). At a later stage, the exported components were imported into the 

Unity project to capture screenshots of the models and create their annotation files for 

training, similarly to the procedure that was done before. Eventually, a dataset comprising of 

approximately 600 images was generated and was used to train another custom model. 

 

 

 

Figure 56: Meshed component of a detailed piping system 
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5.3.4 Training with multiple objects 
In order to be able to detect multiple objects of various classes in a single image, some 

improvements were required to be applied on the dataset, as well as on the Unity project. 

More specifically, some changes were made so that each object in the Unity project was 

included to a class (either flange or pipe). When capturing screenshots and generating the 

annotation files (.txt) objects that were contained to the “flange” class would be assigned to 

1 and objects that were in the “pipe” class were assigned to 0. Having changed the number 

of classes to 2 in the configuration file, when processing an image, YOLO can distinguish 

which objects is assigned to which class. For example, the annotation file has the following 

format:  

 

 

Figure 57: Annotation file (.txt) of image with multiple classes 

 

 

 

Figure 58: Screenshot information of image in the Unity Project. Width, Height and types of Classes 
are specified 

 

In the above example, the training image 1066.jpg contains objects of two different classes: 

3 flanges (assigned to 1) and 3 pipes (assigned to 0). Each line specifies the object’s class, the 

coordinates of the centre of the bounding box and the width and height of the bounding box 

relative to the image width and height. All screenshots were captured in 608 x 608 

resolution, which although is a relatively small value, it requires less computational power to 

be processed during training.  

Moreover, some advances were applied to the codes, in order to change the background 

colour in a random way after capturing every screenshot in the Unity project. This was done, 

in order to prevent YOLO from linking certain objects to a particular background colour. By 
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applying such change, our trained system becomes more robust, since it can perform object 

detection regardless of the font colour.  

The custom object detection model was trained with 800 images of simple piping systems, 

comprising of up to 6 six different components. The trained model was tested on images it 

had not processed before and had excellent performance in detecting all components in 

simple piping systems.  

 

 

 

 

Figure 59: Custom model detects perfectly all components of a simple piping system (pipe & flange) 
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Figure 60: Custom model detects perfectly all components of the piping system (pipes & flanges) 
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Figure 61: Custom model detects perfectly all components of the piping system (pipes & flanges) 
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At a later stage, our custom trained network which had been trained using simple 

components of piping systems, was tested on more complicated systems. As it can be 

shown, although it had not considered information about such complex systems, it 

performed really well, by detecting almost every component. This means that our trained 

model is able to generalize well and can perform detection to objects it has never processed 

before.  

 

 

Figure 62: Custom model detects almost every component of a complex piping system (pipes & 
flanges) 
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5.3.5 Training with different materials 
In order to train a more robust system that can perform well in real situtations, some 

imporvements were made to the training dataset. Specifically, based on the existing Unity 

project, some additional models were created which are intended to simulate real 

conditions of piping systems in a ship’s engine room. To do this, we had to create some new 

materials and textures and apply them to the piping models. Particularly, materials such as 

“metallic”, “stainless steel”, “aluminium”  and “rusted steel” were manually created. 

Furthermore, in order to replicate as accurately as possible real conditions of pipes in the 

engine room, different colours were applied to the models. Specifically, the applied colors 

were chosen in order to respond to the deafult pipeline colors on a ship. For example, green 

color for sea water pipes, blue for fresh water, black for fuel pipes and silver color for steam 

pipes. Additionaly, materials were created in a way that they had reflection of light in order 

to simulate the intense lighting inside a ship’s engine room. 

 

Figure 63: Model comprising of “stainless steel” and “aluminum” materials 
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Figure 64: Model comprising of “metallic” and “aluminum” materials 

 

 

Figure 65: Piping system inside ship’s engine room 
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At this point, the trained network which was trained with images of pipes and flanges with 

the custom materials, was tested on images of real piping systems in order to test its 

accuracy and performance on real conditions. As it can be seen, our custom model has 

managed to detect and accurately recognize most of the components of a complex piping 

system. Of course, performing detection on images of a real environment is much more 

challenging, since it includes various components that the model has not been processed 

through its training. Furthermore, real conditions also contain noise, such as various small 

objects  in front of pipes (e.g. cables, valves, other machinery equipment) and also defects. 

However, our trained model has performed quite well on real conditions.  

 

 

 

Figure 66: Custom model detects most of the components of a real complex piping system (pipes & 
flanges) 
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5.3.6 Training with additional components 
 

In the last part of our case study we were involved with adding objects of further classes to 

our custom object detection model in order to be able to detect accurately all basic 

components of piping systems. More specifically, the network was trained in order to detect 

valves and also distinguish straight pipes from elbow pipes. Some results of the training are 

presented below: 

 

 

Figure 67: Custom model detects all components of piping system (flange, straight pipe, elbow) 
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Figure 68: Custom model detects all components of piping system (flange, straight pipe, elbow) 
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Lastly, the custom object detection model was tested on images of real condition piping 

systems. Specifically, some images were captured from the Laboratory of Marine 

Engineering at the School of Naval Architecture and Marine Engineering of NTUA. Some of 

the results are shown below:  

 

 

 

 

 

Figure 69: Custom model detects accurately almost every component of the real condition piping 
system 
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Figure 70: Custom model detects most of the basic component of real condition piping system 

 

Although the results do not seem to be perfect, it is obvious that the custom model has 

successfully detected most of the basic components of the real condition piping systems in a 

noisy environment. 
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6. Conclusions – Future Work 
 

6.1 Conclusions 
 

In the present thesis, a robust object recognition framework has been developed to identify 

and localize mechanical elements of complex ship piping networks. The approach in the 

current problem has been based on object recognition in 2D images using convolutional 

neural networks. The presented results demonstrate that the current diploma thesis has 

achieved its goal which has been the proper training of machine learning algorithms and the 

recognition of piping elements. Specifically, it has succeeded on developing an efficient CNN-

based object recognition framework in the area of the manufacturing industry capable of 

detecting accurately all basic components of complex piping systems. Furthermore, it has 

also succeeded on proposing a method of almost automating the training process of the 

CNN, as well as ensuring the validity and sufficiency of the training data, which until today 

has been the most time-consuming task of constructing a robust and efficient object 

recognition framework. This offers the option of building a custom model capable of 

detecting objects of multiple classes of one’s choice with no limitations regarding the 

number, size, or complexity of objects. 

 

6.2 Future Work 
 

 Of course, this proposed method is still a preliminary approach in the field of object 

recognition and there is huge room for improvement. However, through making some 

advancements and additions to the existing model, this can be significantly enhanced in 

order to potentially play an integral part in problems, such as exact identification of 

mechanical parts, 3D object recognition and faulty parts detection. Below some proposals 

for future work that can advance the findings of the present thesis are stated.  

Firstly, aside from detecting components of complex piping systems, the current network 

can be trained to detect any kind of objects. Specifically, by importing into the proposed 

Unity project 3D models of different kind of objects (such as pumps, or engines), a large 

dataset can easily and accurately be generated in order to train a custom network. 

Therefore, a possible advancement to the current network would be to train a custom 

model that will be able to detect objects, such as, pipes, different kinds of engines (main 

engine, generators, etc), boilers and other machinery equipment. This improvement would 

help into being able to describe accurately the content of a ship’s engine room.  

Another impactful advancement to the existing model would be to further automate its 

basic steps. More specifically, some manual procedures required in the current network 

could be semi or fully automated in order to improve the speed and efficiency of the model. 

Particularly, the processes of generating the dataset and training the custom object 

detection model using Darknet can be automated. These tasks involve collecting all images 

and annotation files, saving them into specific directories, creating some additional files 

required for training, such as files that specify the labels of objects, or the configuration files. 

Of course, these are tasks that demand manual intervention. By automating all these 
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procedures, a flexible, fast and automatic network that can be created. This means that by 

providing an accurate dataset to the network it does not require any further manual 

processing and it can effectively train a custom model.  

Last, at an advanced stage, the current network could be upgraded into performing 3-D 

object recognition in point clouds. This means training a CNN with 3-D data of a ship’s 

engine room for example, in order to perform object detection on point clouds obtained by 

laser scans. Although this seems as a very complicated and challenging task, the custom 

object detection model proposed in the current thesis could possibly serve as a hybrid 

approach in this problem. Particularly, performing object recognition into 2-D images can 

help isolate a small region of a dense point cloud and try to perform recognition to the 3-D 

data in a limited 3D point cloud space. Having performed 3D object recognition on point 

clouds in a space such as a ship’s engine room and for example a pipe is identified, assuming 

that the CAD model of the object is available, it can be registered in the 3D space. This 

capability would definitely be of great importance, since it would help to automatically 

generate a virtual 3D model of every desired space. That would have various applications, 

such as improving maintenance of machinery, path planning for retrofitting new 

components and diagnosing and preventing defects.  
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