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Abstract 
The microbial production of fuels and industrial chemicals has been identified as a 

promising alternative to address the depletion of fossil resources and the climate 

change, which is tightly correlated to anthropogenic activities. The development of 

efficient cell-factories requires systematic metabolic engineering of microbial strains 

to rewire the metabolic network towards the desired behavior. Although minimum 

separation costs are key determinants of a novel bioprocess viability,   downstream 

process considerations are seldom accounted during the microbial strain design 

procedure. In this work, an efficient computational strain design workflow is proposed 

to identify metabolic interventions that succeed high product revenues while 

demanding minimum separation expenses. The systematic workflow comprises of five 

modules: In the first module, the Genome-scale Metabolic reconstruction (GEM) of a 

selected host organism is edited to include metabolic pathways towards a selected 

product portfolio and economic variables related to the upstream process and the 

potential product revenue.  In the second module, a Mixed-Integer Linear Program 

(MILP) formulation is addressed to identify alternative sets of reaction eliminations 

that result in maximum revenue. In the third module, we sample the GEM allowed 

solution space that correspond to the alternative metabolic strategies and estimate 

the product stream composition.  In the fourth module, based on the exit stream 

compositions we identify the optimal separation flowsheet and minimum cost for 

product recovery by solving the corresponding superstructure optimization problem. 

Finally, the average separation cost and product revenue are used to identify the most 

promising metabolic strategies.  

 As a case study, we applied our workflow to rationally design a kerosene producing 

S.cerevisiae strain for minimum downstream separation cost. To this direction, 

S.cerevisiae iMM904 GEM was adapted to include hydrocarbons’ producing 

heterologous pathways. The developed strain design framework was applied to create 

a pool of alternative metabolic strategies that yield in maximum revenue. Assuming 

aerobic cell culture conditions in a chemostat array with glucose as the sole carbon 

source, the models that correspond to the distinct strategies were sampled to 

estimate the exit stream composition and a distillation supertask problem was solved 

to identify the minimum separation cost. The applied methodology identified 

metabolic strategies up to 7-fold more efficient with respect to the initial strain. 

The present formulation is the first to our knowledge that aims to bridge the strain 

design procedure with the downstream process synthesis, paving the way towards 

microbial strains tailor-made for sustainable biorefinery applications. 

 

Keywords: S.cerevisiae; microbial biorefinery; kerosene; genome-scale model; 

superstructure; distillation supertask; strain design algorithm; metabolic engineering; 

mixed-integer linear programming  
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Εκτεταμένη περίληψη 
Η παρούσα διπλωματική εργασία πραγματοποιήθηκε στα πλαίσια της ακαδημαϊκής 

συνεργασίας μεταξύ της σχολής Χημικών Μηχανικών Ε.Μ.Π και  του πανεπιστημίου 

EPFL, υπό την επίβλεψη των καθηγητών Αντώνη Κοκόση και Βασίλη Χατζημανικάτη. 

Η εργασία πραγματεύεται το σχεδιασμό ενός υπολογιστικού πλαισίου για το 

σχεδιασμό μικροβιακών στελεχών με την ικανότητα παραγωγής χημικών και 

βιοκαυσίμων με έμφαση στο κόστος διαχωρισμού. Το αναπτυχθέν πλαίσιο 

εφαρμόστηκε επιπλέον για την μελέτη και in silico βελτιστοποίηση στελεχών του 

μύκητα S.cerevisiae με την ικανότητα να παράγουν βιοκαύσιμα ανάλογα της 

κηροζίνης.  

Η σύγχρονη κοινωνία είναι άρρηκτα συνδεδεμένη με τη χρήση των ορυκτών 

καυσίμων τόσο σαν πηγή ενέργειας αλλά και σαν πρώτη ύλη για την παραγωγή 

προϊόντων. Οι ορατές συνέπειες της συντελούμενης κλιματικής αλλαγής, 

συνδεδεμένης με την χρήση των ορυκτών καυσίμων, σε συνδυασμό με την εξάντληση 

των αποθεμάτων πετρελαίου, έχουν οδηγήσει τη διεθνή κοινότητα να αναζητήσει 

εναλλακτικές.  

Σε αυτή την κατεύθυνση, η χρήση γενετικά τροποποιημένων μικροοργανισμών για 

την παραγωγή βιοκαυσίμων και χημικών αποτελεί μια υποσχόμενη βιώσιμη 

εναλλακτική. Η δημιουργία κατάλληλων στελεχών ικανών να παράγουν χρήσιμα 

χημικά συχνά προϋποθέτει την επιβολή αλλαγών στον κυτταρικό μεταβολισμό. 

Επειδή οι αλλαγές αυτές είναι μη προφανείς η σχεδιαστική διαδικασία συχνά 

υποβοηθάται από τη χρήση Μεταβολικών μοντέλων Γονιδιακής Κλίμακας (ΜΓΚ) που 

περιέχουν όλη τη διαθέσιμη πληροφορία σχετικά με τις μεταβολικές δυνατότητες 

ενός οργανισμού. Τα ΜΓΚ αποτελούν στοιχειομετρικές αναπαραστάσεις του συνόλου 

του μεταβολικού δικτύου υπό τη μορφή συστήματος γραμμικών εξισώσεων και 

περιορισμών. Η εφαρμογή υπολογιστικών πλαισίων βελτιστοποίησης στα ΜΓΚ 

μπορεί να αναδείξει τις απαραίτητες γενετικές τροποποιήσεις που θα προσδώσουν 

στον οργανισμό ένα επιθυμητό χαρακτηριστικό όπως η υπερπαραγωγή ενός 

χρήσιμου χημικού ή η σύζευξη της παραγωγής με την κυτταρική ανάπτυξη. 

Ο διαχωρισμός των προϊόντων της ζύμωσης από το ρεύμα εξόδου του 

βιοαντιδραστήρα αποτελεί μια από τις βασικές πηγές κόστους στις βιοδιεργασίες 

διαδραματίζοντας έτσι καθοριστικό ρόλο για τη βιωσιμότητα μιας πιθανής 

εφαρμογής. Η σύσταση του ρεύματος εξόδου έχει άμεση σχέση με το κόστος 

διαχωρισμού. Οι διαφορετικές στρατηγικές μεταβολικής μηχανικής που 

αναδεικνύονται από τη χρήση των αλγορίθμων σχεδιασμού καθορίζουν το σύνολο 

των ιδιοτήτων του μεταλλαγμένου μικροοργανισμού συνεπώς και τη σύσταση του 

ρεύματος εξόδου.   

Στην παρούσα εργασία, αναπτύσσεται μια καινοτόμος ροή εργασίας με σκοπό την 

ορθολογική σχεδίαση μικροβιακών στελεχών που αποφέρουν τα μέγιστα έσοδα 

διατηρώντας παράλληλα χαμηλό κόστος διαχωρισμού. Η προτεινόμενη ροή εργασίας 

απαρτίζεται από πέντε στάδια. Το πρώτο στάδιο απαρτίζεται από την ανάπτυξη και 
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επεξεργασία του ΜΓΚ προσθέτοντας μεταβολικά μονοπάτια για την παραγωγή των 

χρήσιμων χημικών αλλά και μεταβλητές σχετιζόμενες με τη χρηματική αξία των 

προϊόντων και τα οικονομικά χαρακτηριστικά της ζύμωσης. Στο δεύτερο στάδιο 

εφαρμόζοντας έναν αλγόριθμο για το σχεδιασμό μικροβιακών στελεχών 

δημιουργείται μια δεξαμενή μεταβολικών στρατηγικών που οδηγούν σε 

μεγιστοποίηση των εσόδων. Στο τρίτο στάδιο, εφαρμόζοντας τις μεταβολικές 

στρατηγικές του τρίτου σταδίου με τη μορφή περιορισμών στο ΜΓΚ, 

πραγματοποιείται δειγματοληψία στον επιτρεπτό χώρο λύσεων του γραμμικού 

συστήματος και προσδιορίζεται έτσι η σύσταση του ρεύματος εξόδου. Τα δεδομένα 

σύστασης του ρεύματος εξόδου του βιοαντιδραστήρα που προκύπτουν για κάθε 

διαφορετική μεταβολική στρατηγική λειτουργούν σαν είσοδος για το τέταρτο βήμα 

οπού προσδιορίζεται το ελάχιστο κόστος διαχωρισμού μέσω μιας υπερδομής. Τέλος 

στο τελευταίο βήμα, οι διαφορετικές στρατηγικές αξιολογούνται βάσει του 

υπολογιζόμενου μέσου κόστους διαχωρισμού και των μέσων εσόδων. 

Συγκεκριμένα για την περίπτωση του S.cerevisiae που παράγει κηροζίνη, 

επεξεργαστήκαμε το ΜΓΚ iMM904 προσθέτοντας μεταβολικά μονοπάτια παραγωγής 

υδρογονανθράκων και οικονομικούς παράγοντες που συσχετίζονται με τις τιμές των 

παραγόμενων προϊόντων αλλά και με τη ζύμωση. Η ζύμωση θεωρήσαμε ότι λαμβάνει 

χώρα σε συστοιχία χημειοστατών σε αερόβιες συνθήκες με σταθερή παροχή 

γλυκόζης. Χρησιμοποιώντας τον αλγόριθμο σχεδιασμού στελεχών δημιουργήσαμε 

μια σειρά εναλλακτικών μεταβολικών στρατηγικών που καταλήγουν σε μέγιστο 

κέρδος. Πραγματοποιώντας δειγματοληψία στον επιτρεπτό χώρο λύσεων των 

διαφορετικών μοντέλων, προσδιορίσαμε την αντίστοιχη σύσταση του ρεύματος 

εξόδου της συστοιχίας. Τέλος, υπολογίσαμε το ελάχιστο κόστος διαχωρισμού για το 

εκάστοτε ρεύμα λύνοντας ένα πρόβλημα υπερδομής αποστακτικών στηλών. Η 

εφαρμογή της ροής εργασιών κατάφερε να αναδείξει μεταβολικές στρατηγικές που 

καταλήγουν σε επταπλασιασμό του κέρδους σε σχέση με το αρχικό στέλεχος του 

μύκητα. Οι μεταβολικές στρατηγικές μπορούν να μεταφραστούν σε εργαστηριακές 

πρακτικές γενετικής τροποποίησης όπως προσθήκη, διαγραφή, υπερέκφραση ή 

υποέκφραση γονιδίων και να θέσουν στόχους για την τροποποίηση ενζύμων.   
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Chapter 1. Introduction 
Biotechnology has served humankind for more than 8.000 years. The first 
biotechnological applications include the use of microorganisms for the production of 
fermented foods and beverages such as cheese, yoghurt, beer and wine, which remain 
at the core of our societies’ culinary culture, working as a pillar for the modern food 
industry. In modern history, the two World Wars have played a crucial role in the 
acceleration of the industrialization of biology. The acetone-butanol-ethanol 
fermentation process, which is still in use, was developed at the time of WWI while 
WWII signalled the industrial scale production of penicillin1.  
 
In the early 1990s, the advancing field of genetic engineering enabled several more 
biotechnological success stories with the majority of them being pharmaceuticals-
related (recombinant proteins and antibodies). Later the introduction of 
mathematical modeling and bioinformatics to the study of cellular behavior helped to 
kick start the science of metabolic engineering –suggesting ways to rationally redirect 
the cellular metabolism in order to produce a plethora of different chemicals that far 
exceed the spectrum of food industry. The emerging field of industrial biotechnology 
has worth over 300 billion USD in revenue and is expected to duplicate  by 20252.  

Apart from the apparent economic potential, the shift to a bio-based economy and 
the subsequent intensification of industrial biotechnology applications is necessary to 
tackle the unprecedented challenges that humankind is facing in the modern era. The 
climate crisis, the depletion of natural resources and the increasing food demands are 
driving up the inequality gap and bring the planet to its limits. Biotechnology rises as 
an indispensable tool to address these issues and safeguard a sustainable future for 
all. Biotechnology is the key element for transforming renewable feedstock to desired 
chemicals thus dethatching economy from fossil fuels and alleviating the impact of 
climate crisis. In agriculture, biotechnology advances can yield in more productive, 
resistant crops that can support the human population. In healthcare, biotech drugs, 
vaccines and diagnostics are improving health and the quality of life3,4.    

Bio-processes and especially the concept of bio-refinery, where biomass feedstock is 
transformed to useful biofuels, platform and specialty chemicals and novel products, 
are described as the most promising routes to establish a sustainable bio-economy5. 
Microbial bio-refineries, which utilize microorganisms and microbial consortia 
fermentations as the biomass transformation technology present great interest. 
Bioprocesses demand milder conditions compared to traditional catalytic 
transformations while the cellular enzymatic toolbox can conduct very specific 
transformations towards desired chemicals, which are hard or impossible to obtain 
conventionally. Nevertheless, since these processes are seldom competitive to their 
petrochemical counterparts, current efforts focus on strain efficacy enhancement 
with respect to the titer, productivity and yield of the desired product6. The 
development of industrial strains with selected characteristics that can support the 
commercialization of a bio refinery application is conducted with iterative trial cycles 
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where metabolic interventions are systematically identified and applied to the host 
organism6–8. Because the necessary interventions are not obvious, the process is 
computer assisted and typically, Mixed Integer Linear Programming (MILP) algorithms 
are utilized to build the interventions’ strategies9–11.  

A parallel endeavor towards commercialization of bio-refinery applications lies on the 
process synthesis.  The upstream and downstream processes, with respect to the 
fermentation(s), contribute to the total expenditure via the capital and operating cost. 
Especially the downstream process aiming to products’ purification is identified as a 
major total cost contributor, accounting for up to 80% of the total annual 
expenditure12. The synthesis problem for the downstream process aims to identify the 
optimum, in terms of cost, selection and sequence of available technologies to 
separate the vaporizable products from a fermentation broth of known composition. 
Although, the metabolic network interventions alter the fermentation broths content 
the microbial development scarcely accounts for downstream insights and the two 
problems are addressed independently without communicating with each other.  

The present thesis aims to address the systems challenge to develop a systematic 
workflow that will assist to connect metabolic modeling and design strategies with the 
downstream process synthesis problem. The thesis comprises of six chapters. In the 
second chapter, we provide the definitions and the necessary background information 
concerning the key points of the thesis and briefly discuss the state of the art in strain 
design and downstream process synthesis. In the third and fourth chapter, we present 
the suggested workflow used to connect the strain design/phenotype prediction 
problem with the downstream process synthesis problem and discuss the methods 
used in the individual workflow modules. Furthermore, we specify the methodology 
for a selected case study concerning the heterologous production of hydrocarbons 
from S.cerevisiae for minimum separation cost. In the fifth chapter, we present and 
discuss the results for the specific case study and finally in chapter six we discuss our 
findings, evaluate whether the proposed workflow could assist nowadays strain 
design procedure and set some future prospects on metabolic and process integration.   

Chapter 2. Background and State-of-the-art 
 

2.1 Cellular metabolism 
Living cells consist of a large number of compounds and metabolites. While water is 

the most predominant compound accounting for approximately 70% of the cellular 

mass, the rest is distributed among complex building blocks such as nucleic acids (DNA 

and RNA), lipids, proteins and carbohydrates.  Synthesis and organization of these 

macromolecules to form a functioning cell is succeeded by  numerous independent 

reactions. Cellular metabolism is the network of enzyme-catalyzed reactions where 

nutrients are broken down to form the biomass building blocks and provide the 

necessary energy to sustain life. Metabolism may be categorized in catabolism and 

anabolism. Catabolic reactions break down the energy sources to simpler 
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intermediate molecules while anabolic reactions build up the cellular components. 

Catabolic reactions are typically exergonic while anabolic reactions are endergonic13,14.   

The cellular metabolic network is organized in a structure similar to a ‘bow-tie’, in the 

sense that a broad range of substrates are broken down to form a much smaller 

number of intermediates, which are then channeled towards a  large number of 

distinct biomolecules. Metabolic networks can be divided to smaller subunits called 

metabolic pathways. Metabolic pathways are series of connected reactions that 

convert one metabolite to another via anabolic or catabolic ways. The pathways are 

interconnected by the flow of material and energy; metabolites may participate in 

several reactions by branching, connecting several reaction sequences while the 

energy-related universal co-factors (ATP, NADH, NADPH), indispensable for many 

reactions, add another level of integration between pathways. The pathways are 

further organized in subnetworks, responsible for a specific cellular function. While 

there are important structural differences between the metabolic networks of 

different species, several ‘core’ subnetworks remain conserved across all organisms.  

 

2.2 Metabolic Engineering 
Metabolic engineering is the ad hoc manipulation of the cellular metabolic, regulatory 
and transport processes, using primarily genetic approaches, in order to enhance the 
production of desired chemicals15. Unlike the early-day approaches applied for 
chemical overproduction that focused on single-reactions or random mutations, 
metabolic engineering examines the full network properties to identify potential 
bottlenecks and develop directed alterations to shift the cellular behavior towards the 
engineering objective. The imposed genetic manipulations include recombinant DNA 
techniques and genome-editing techniques such as CRISPR-Cas9 that typically result 
in gene insertions, deletions upregulations and downregulations9.  
 
The emerging high-throughput techniques available to decipher omic data (genomes, 
transcriptomes, proteomes, metabolomes, fluxomes) and the advancements in 
computational biology have paved the way for systems metabolic engineering. In this 
systems-level metabolic engineering approach, the omic data and computational 
techniques broadly used in systems biology together with the synthetic biology design 
approaches are integrated to the traditional metabolic engineering action framework, 
allowing better understanding of the cellular functions and engineering capabilities8.  
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Figure 1: Synthetic biology paves the way towards full predictability of bioengineered systems. The rational strain 
design resembles the historical wild animals’ domestication, to increase productivity and enable the desired 
response to human instructions16.  

2.2.1 Towards a bio-based economy 
The modern society is built upon an on growing dependency towards fossil fuels use. 
From transport and commodity chemicals to value-added chemicals, fossil fuels serve 
as a main energy and feedstock provider; in the year 2016, 33% of the global energy 
consumption and approximately 80% of the liquid transportation fuels were 
petroleum-derived17. The increasing concerns regarding depletion of petroleum 
resources and the climate change-directly linked to human activity-related Green 
House Gases (GHGs) emissions have driven the research community to seek for 
alternative energy options, such as the microbial biosynthesis of advanced biofuels18. 
To this direction, nature’s diverse toolbox has been exploited to design novel 
processes to produce chemicals’ building blocks and final products, starting from 
renewable non-food biomass or even CO2, leading to neutral or ‘‘negative’’ carbon 
emissions respectively17,19,20. The target product can be a natural biological chemical 
(ethanol, amino acids, etc.) or a molecule that does not normally occur in nature 
(polylactic acid, 5-methyl-1-heptanol, etc.)9,8. Available biochemical reaction 
databases such as KEGG and Metacyc or retrobiosynthetic tools such as the BNICE.ch 
framework can be utilized to identify production pathways that meet the specification 
needs for the selected host organism21. 
 

2.2.2 Renewable biofuels 
Biofuels are arguably the most likely near term renewable alternative to petroleum 

fuels, with some forms of transportation that cannot be easily electrified (such as long 

distance trucking, shipping and aviation) having this approach as the only 

alternative22.Bioethanol is by far the most produced biofuel, in 2017, the worldwide 

bioethanol production was more than 95 billion liters with the USA market alone 

occupying the 2/3 of the total production23. Despite the high production titers, 

bioethanol does not correspond to an ideal candidate for conventional fuel 
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substitution.  Direct use of ethanol as a fuel requires engine modifications while its 

energy content is lower than that of fossil derived gasoline. To this end, an ideal 

substitute biofuel would enclose precise chemical replacements of the fossil-fuel 

counterparts, thus being able to be utilized as drop-in fuel in the existing 

infrastructures without prior engine modifications. This special category of biofuels is 

referred to as advanced biofuels24. Bio-derived hydrocarbons, such as alkanes and 

alkenes, due to their chemical relativity to conventional fuels and high energy density, 

consist an ideal renewable biofuel target. Based on the chain length distribution 

different bio-derived hydrocarbon blends can be used as a replacement to the 

according fuel type. 

 
Figure 2: Engineered microorganisms can work as fuel cell-factories to convert Feedstock to advanced biofuels and 
chemicals25. 

 

2.2.3 S.cerevisiae as a cell-factory 
Since S.cerevsiae has been broadly used for beer and wine fermentations, its selection 

as industrial ethanol producer is not surprising. The ethanol fermentation, nowadays, 

consists a robust, well-studied industrial application, making yeast one of the most 

preferred host organisms for the production of diverse fuels and chemicals. Moreover, 

holding a GRAS status by FDA, makes yeast suitable for the production of food-grade 

products23.  Over the years, yeast metabolic capabilities have been exploited for the 

production of various products such as pharmaceuticals (artemisinic acid, human 

albumin etc.), fuels (alcohols, alkanes, etc.) and platform chemicals (succinic acid, 

coumaric acid, etc.) and specialties (santalene, valencene, etc.).  
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2.2.3.1 Yeast hydrocarbon production 

Although many microorganisms are able to naturally synthesize alkanes and alkenes 
as a response against environmental threats, the production levels and the properties 
of the compounds are not suitable for direct use as drop-in biofuels. For that reason, 
heterologous hosts are exploited to express several pathways involved in alkanes and 
alkenes metabolism26. 
 
Yeast constitute an ideal host candidate for alkanes and alkenes production of the 

range of kerosene. The accumulated existing knowledge over yeast fermentations 

facilitates the scale up process. S.cerevisiae exhibits pH-tolerance and has been 

proven robust in prior applications. Furthermore, since yeast does not naturally 

produce this class of products the addition of heterologous hydrocarbons producing 

pathways will evoke minimum cross-talking with the native subsystems27. 

Long-chain alkanes and alkenes production via existing  heterologous pathways 

typically present free fatty acids or free fatty acid-related molecules as a starting point, 

intersecting in that way with the host’s native lipids metabolism28. Existing efforts 

include the heterologous expression of two enzymes from S. elongatus the fatty acyl-

acid reductase (FAR) that converts fatty acyl-CoA to fatty aldehydes, and the fatty 

aldehyde deformylating oxygenase (FADO)29. The enzymes addition complemented 

with the hfd1 gene deletion resulted in a final titer of 22 μg/gDCW. Alternatively tο 

the FAR  enzyme, a Mycobacterium marinum Carboxylic acid reductase (CAR) has been 

showcased to 2.7-fold  improve the final titers. The main by-product to alkanes and 

alkenes are the free fatty alcohols, as a result of the native aldehyde reductases 

activity30. The low attainable yields in comparison to the theoretical estimates are 

partly attributed to the tightly regulated nature of lipids metabolism in yeast. Further 

metabolic modifications applied towards yield enhancement include the elimination 

of competing pathways, the increase of co-factor supply by upstream gene additions 

and the production pathway compartmentalisation31. 

Recent advances include the engineering of Yeast capable of secreting 1-alkenes, 

minimizing potential stress due to toxicity32. Since these long chain hydrocarbons are 

immiscible, the establishment of an industrial process seems promising; the formation 

of an organic phase containing the product blend is expected to further facilitate the 

downstream harvesting process.   

The current efforts in order to develop viable microbial biorefineries focus on: 

1) lowering the costs related with the suitable microbial host development  

2) the establishment of efficient biomass-to-sugars hydrolysis pathways33.  

It is worth mentioning that in many biorefinery applications, the downstream 

processes account for over than 50% of the total production cost34. A sustainable 

biorefinery shall depend on upstream and downstream processes optimised to meet 

the product’s characteristics and the host’s physiological specifications.  
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2.3 Constraint-based modelling and analysis of metabolism 
The emerging high throughput technologies for studying various biological processes 

and functions at the gene, protein, and metabolite levels, yield in the generation of 

large amounts of information35.  Mathematical modeling of metabolism is an 

invaluable tool to assess and predict the cellular behavior under different 

environments and genetic backgrounds. The existing approaches to model 

metabolism can be roughly devided in two groups of approaches: the kinetic modeling 

and the stoichiometric modeling. In kinetic modeling, different types of mechanistic 

expressions, such as Michaelis Menten kinetics are utilized to describe reaction rates. 

The total of the rate expressions constitute a system of ordinary differential equations 

representing the conservation of mass for each metabolite. Solution of the system 

results in a time-dependent metabolite concentrations and reaction flux profile. In 

contrast to kinetic modeling, stoichiometric approaches rely primarily on 

stoichiometric equations to form a system of linear equations that describe 

metabolites’ mass conservation under steady-state10.  

2.3.1 Genome-Scale Metabolic reconstructions (GEMs) 
Stoichiometric models have been in use to study the physiology of organisms since 
1980s. The knowledge accumulation alongside with the progress in the field of 
genome annotation led to the creation of Genome Scale Metabolic Reconstructions. 
GEMs contain links between the occurring reactions and the genes encoding the 
according enzymes in the form of gene to protein to reaction associations (GPRs). In 
that way GEMs enclose all known biochemistry taking place inside a specific 
organism36. GEMs are an invaluable tool in systems biotechnology applications such 
as the construction of metabolic strategies for metabolite overproduction, 
identification and design of drugs, as well as the study of cellular phenotypes under 
alternative nutrients or the impact of gene knockouts.  
 
 

2.3.2 Constraint-based methods 
Constraint-based modelling is a broadly used approach to study metabolism. The 
metabolic network stoichiometric information is encoded in a stoichiometric matrix (S 
matrix). Each row of the matrix represent a metabolite and each column a reaction. 
The elements of the matrix are the stoichiometric coefficients of each metabolite in 
the according reaction. S matrix constitutes a core element of GEMs37.  
 

2.3.2.1 Flux balance Analysis 

Flux Balance Analysis (FBA) is key concept in constraint-based methods and the basis 

for the construction of numerous other analysis methods. In FBA, constraints are 

imposed in two ways. The first lies to the FBA assumption that the system is in a 

pseudo-steady state,meaning that metabolites concentrations inside the cell do not 

change over time, thus there is no metabolite accumulation. Mathematicaly this is 

described by the equation:  

𝑆 ∙ 𝑣 = 0 
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Where S is the stoichiometric matrix and v is the vector containing all the reaction 

fluxes in the metabolic network. In that way S imposes flux balane constraints on the 

system, ensuring that the total amount of each compound eing produced is equal to 

the amount consumed. The second type of imposed constraints is the upper and lower 

bounds given to each reaction flux, typically including  laboratory flux measurements 

(metabolite uptake and secretion rates). 

The two types of constraints (stoichiometry related linear equations and bound 

inequalities) define an allowable solution space. The network may acquire any flux 

distribution lying inside the solution space.  

The aim of flux balance analysis is to find a flux distribution inside the allowable 

solution space that maximizes or minimizes a specified objective function (Z). A typical 

task when handling GEMs is the growth prediction under different circumstances. In 

that case, the objective is the maximization of biomass which is acounted in the 

stoichiometric matrix as an extra column (biomass reaction) including precursors in 

stoichiometries simulating biomass production. The stoichiometries are scaled in a 

manner such that the flux through the biomass reaction is equal to the growth rate 

(μ).  

 

Figure 3: A conceptual basis representation of constraint-based modeling. Without  constraints, the metabolic flux 
distribution may  lie at any point in a solution space. When the mass balance constraints (S matrix) and capacity 
constraints (upper and lower bounds) are imposed, an allowable solution space is defined. The network may acquire 
any flux distribution within this defined space, while points outside it are denied by the constraints. Through 
optimization of specific objective functions, FBA identifies a single optimal flux distribution that lies on the edge of 
the solution space polytope. 

2.3.2.2 Thermodynamics-based Flux Analysis 

Solutions obtained with FBA are non-unique and sometimes unreliable because they 

may violate thermodynamic constraints. In order to further constrain the allowed 

solution space and obtain thermodynamic feasible flux distributions, Henry et. al. 

proposed the thermodynamics-based flux analysis (TFA) workflow in which extra 

constraints are added in order to couple reaction directionalities to thermodynamics 

constraints.  In the formulation, metabolite concentrations and Gibbs energy of 

reactions are added to the model while the Gibbs energy of reaction sign is coupled 

to the reaction directionality38. 
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Table 1: The constraints applied in FBA and TFA formulations38. 

FBA constraints 
Mass balance 𝑆. 𝑣 = 0 

Flux capacity 𝑣 ≤ 𝑣 ≤ 𝑣 

TFA constraints 

Gibbs energy of reaction Δ𝑟𝐺𝑖
′ = Δ𝑟,𝑡𝑝𝑡𝐺𝑖

′ +∑ 𝑛𝑖,𝑗𝜇𝑗
𝑚

𝑗=1
 

Chemical potential 𝜇𝑗 = Δ𝑓𝐺𝑗
′0 + Δ𝑓,𝑒𝑟𝑟𝐺𝑗

′0 + 𝑅𝑇 ln 𝑥𝑗  

Thermodynamic 

feasibility 
Δ𝑟𝐺𝑖

′ − 𝐾 + 𝐾 ∗ 𝑧𝑖 < 0 

Coupling constraint 𝑣𝑖 − 𝐾 ∗ 𝑧𝑖 < 0 

Where: 

 Δ𝑟𝐺𝑖
′ is the transformed Gibbs free energy of the reaction 𝑖 

𝜇𝑗  are the chemical potentials of the reactants 𝑗 

Δ𝑟,𝑡𝑝𝑡𝐺𝑖
′ is the Gibbs free energy of transport  (accouted when the reaction is transport 

of a compound from one compartment to another 

Δ𝑓𝐺𝑗
′0 is the standard transformed Gibbs free energy of formation of the compounds  

Δ𝑓,𝑒𝑟𝑟𝐺𝑗
′0 is the estimated error in the energy of formation 

𝑅 is the universal gas constant 

𝑇 is the temperature (here assumed 298 K) 

𝑥𝑗 is the molar fraction of the compound j 

𝐾 is a large (Big-M, 𝐾 > max Δr𝐺𝑖
′) value  

and 𝑧 is a binary decision variable 

The formulation requires net fluxes to be non-negative. To this direction, each 

reaction is separated in two: a net forward and a net backward, while the net fluxes 

are  associated such that: 

𝑣𝑛𝑒𝑡 = 𝑣𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑣𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

 By applying aditional constraints we ensure that at most one of the two reactions are 

active at a time. 
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2.4 Computer-aided strain design  
The strain design engineering procedure aims to construct microbial strains that 

overproduce the desired compound. This objective often contradicts to microbial 

metabolism, which has evolved to favor fast growth. For that reason, the product yield 

of wild type strains is often much lower than the theoretical maximum yield10. The 

metabolic interventions needed to redirect the metabolic flow towards the desired 

compound are often multiple and non-intuitive. As an answer to this problem several 

computer-aided strain design algorithms have emerged, aiming to identify the 

necessary set of network perturbations to meet the engineering objective. The 

majority of these approaches is based on a mathematical (or evolutionary) 

optimization framework that search over a set of potential genetic interventions (gene 

insertions, eliminations, upregulations and downregulations). One key outcome of the 

design procedure is to couple cellular growth with the production of the desired 

compound. In that way, the cellular growth becomes the driving force behind 

production. If the new functionality is not coupled to cellular growth, it is very likely 

that under evolutionary pressure it will be lost10,39,40.  

 

 

Figure 4: Wild type strains vs. Growth-coupled mutant strains. The desired compound production is not mandatory 
in the case of the wild type strain. The mutant strain is obliged to produce the desired compound even for zero 
growth. The chemical in the second case has been transformed to an obligatory biomass formation byproduct40. 
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Figure 5: Phylogenetic representation of the alternative constraint-based methods applied to GEMs41 

 

2.5 Multicomponent distillation 
Distillation is the most common method for the separation of homogeneous mixtures. 

The process exploits the difference in volatility among the components of a mixture. 

Repeated vaporization and condensation can lead to virtually complete separation, 

thus high purity end-products. Besides the high energy costs, distillation is a versatile, 

robust and well-understood technique42. 

 

 

The design of a multicomponent distillation column is based on the decision of the 

two key components, namely the light (LK) and heavy (HK) component, as well as their 

recovery in the overhead and bottom product respectively. The separation is aimed 

to take place between the key components with the light key component kept out of 

the bottom product and the heavy key component kept out of the top product. The 

intermediate boiling components will distribute between the products. A number of 

short-cut methods are available for the design of multicomponent distillation columns. 

Each addresses different aspects of the column design. Fenske-Underwood-Gilliand 
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(FUG) is probably the most popular shortcut method applied in distillation column 

design. The method assumes constant relative volatility alongside the column, which 

can be approximated as the geometric mean of the relative volatilities at the top and 

the bottom of the column. The relative volatility of the light key component with 

respect to the heavy key component will be: 

(𝑎𝐿𝐾
𝐻𝐾⁄
)𝑎𝑣𝑔 = [(𝑎𝐿𝐾

𝐻𝐾⁄ )𝐵 ∙ (𝑎𝐿𝐾
𝐻𝐾⁄ )𝐷]

1/2 

Where B and D denote the distillate and bottom product respectively. 

In order to calculate the number of theoretical trays for a distillation column, we first 

have to calculate the minimum number of trays Nmin using the Fenske43 equation and 

the minimum reflux ratio Rmin using the Underwood equations44.  

𝑁𝑚𝑖𝑛 =
ln [(

𝑥𝐿𝐾
𝑥𝐻𝐾⁄ )

𝐷
∙ (
𝑥𝐿𝐾

𝑥𝐻𝐾⁄ )
𝐵
]

ln ((𝑎𝐿𝐾
𝐻𝐾⁄ )𝑎𝑣𝑔)

 

 

 Where 𝑥𝐿𝐾 and 𝑥𝐻𝐾  are the molar fractions of the light and heavy key components 

respectively.  

The minimum Reflux ratio is calculated via the Underwood equations: 

i) ∑
𝑎𝑖𝑥𝐹𝑖

𝑎𝑖−𝜃

𝑛
𝑖=1 = 1 − q̅ 

 

ii) 𝑅𝑚𝑖𝑛 + 1 = ∑
𝑎𝑖𝑥𝐷𝑖

𝑎𝑖−𝜃
        ,𝑛

𝑖=1  1 < 𝜃 < 𝑎LK    

Where  n is the number of components, 𝑎𝑖is the average geometric volatility for the 

component I, 𝑥𝐹𝑖  and 𝑥𝐷𝑖 are the molar fractions of the component i at the feed and 

the distillate respectively,  q̅ is the ratio of moles of saturated liquid at the feed stage 

per feed stream mol. Assuming that the incoming stream is saturated q̅ = 1. 

The number of theoretical trays can be estimated using Gilliand’s correlation for the 

calculated 𝑁𝑚𝑖𝑛 and the selected reflux ratio 𝑅.  

The separation of a feed mixture in more than two products usually requires multiple 

distillation columns. The cost-optimal sequence of columns-meaning the one which 

requires the least annualized investment costs for equipment plus annual utility costs 

for a given recovery target is not obvious 45. The different approaches found in the 

literature addressing the sequencing problem can be classified as approaches that 

employ heuristics, shortcut methods, mathematical programming methods and 

methods based on rules and expert systems. While the heuristics are easy to use, they 

often contradict with each other. The shortcut methods utilize simple models that are 

seldom reliable46. 
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2.6 State of the art in strain design 
The typical design process towards a suitable strain for bio-production of fuels and 

chemicals follows the iterative Design-Build-Test-Learn (DBTL) cycle, commonly 

involved in engineering practices.  The Design involves the choice of the platform-

organism and the heterologous pathway to-use, as well as, decisions over strategies 

able to improve the production characteristics. In the Build module, the DNA parts 

corresponding to the heterologous pathway are constructed and the platform-

organism is transformed. The rest of the metabolic strategies are also imposed to the 

cell, using primarily gene-editing tools. In the Test module we gather information on 

the cloning results, strain’s efficiency and omics data that help to better comprehend 

the cellular behavior. The learn module, so far, appears to be the weakest and less 

described among the rest. It aims to incorporate the attained data, identify the hurdles 

of the approach and underline alternatives to bypass them. 

Nowadays, the process is expensive and laborious; the improvement iterations may 

last up to eight years while the total cost to develop a commercial strain is on the 

order of 50 M$. The main focus includes improvement of product titer, yield and 

production rate (TRY). The design of metabolic strategies to improve the cellular 

properties can be immensely facilitated by GEMs. Existing algorithms can be used to 

predict network modifications that lead to the desired properties, such as maximizing 

yield and coupling the production flux to cellular growth. The latter is important since 

Adaptive Laboratory Evolution methods (ALE) are commonly used to further improve 

the strains’ characteristics. GEMs can be utilized as well to assist the interpretation of 

omics data47. Constraining a GEM with experimental data obtained in the test module 

can facilitate the troubleshooting and accelerate the DBTL cycle33,48. 

 

Figure 6: Schematic representation of the DBTL cycle. 

 The commercial strain can serve as the central biotransformation technology in a 

microbial biorefinery. Biorefinery applications are highlighted amongst the most 

promising routes towards the establishment of bio based industry49. The usual 

objective set in biorefinery applications is to optimize the use of resources while 

minimizing wastes. The biorefinery synthesis and design problem is a relatively 

complex one, given that multiple feedstock sources can be utilized in different ways 

and be transformed from different alternative technologies to a multitude of 
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alternative portfolios50. Biorefinery products may vary from platform chemicals to 

specialties.   

Bioprocesses’ separation typically account for the 60%-80% of the total production 

cost, directly affecting the project viability. The process synthesis problem is typically 

handled with one of the following alternative approaches including: enumeration of 

alternatives, evolutionary modification, and superstructure optimization. The first two 

approaches are heuristic-based and practically applicable when the number of 

alternatives is relatively small. Although superstructures are sometimes difficult to 

develop, they can systematically address the design problem in most cases12,51.  

The commercial strain has been optimized to obtain certain characteristics, namely 

greater yields and achievable titers. The separation design considerations may begin 

in the final steps of the strain design, practically when the technology is ready to exit 

the lab2. The separation process synthesis is based on the reactor’s exit stream 

composition. The exit stream, known as the fermentation broth is usually a dilute 

mixture of metabolites. According to the desired product portfolio, the stream is 

separated and the according chemicals are recovered.   Since the strain’s metabolic 

network has been adjusted to meet the engineering demands, the flux distributions 

and metabolite concentrations inside the cell are expected to change as well. That 

means that the fermentation broth content when culturing the commercial strain 

might differ substantially from the wild-type counterpart. In conclusion, the two 

problems, the DBTL iterative cycle towards a stable overproducing strain and the 

separation process synthesis for minimum cost are addressed sequentially.  

To tolerate the high separation costs, the Design module should maintain a view over 

the resulting exit stream and the consequent separation synthesis problem. In that 

way, the mutant phenotypes- result of the suggested network modifications, can be 

evaluated with respect to the necessary separation cost to fulfil the requirements of 

a specified product -portfolio. The common element for the strain design algorithm 

and the separation synthesis is the fermentation broth content; where the decisions 

over genetic modifications made in the first defines the variability of the broth 

contents and subsequently the optimal separation sequence. A workflow, which 

allows the communication between the two and provides valuable feedback on the 

design module of the DBTL cycle, should enclose modules that:  

1) Prepare and curate the GEM of the host organism(e.g. by adding heterologous 

pathways necessary for the production of a specified portfolio compounds) 

2) Generate a pool of alternative metabolic strategies that yield in maximum 

potential revenue for the specified portfolio (e.g. using a strain design 

algorithm) 

3) Computationally asses the resulting fermentation broth’s composition if the 

distinct metabolic strategies are applied (e.g. by sampling the allowed solution 

space of the according GEM) 



 
 

   28 
 

4) Estimate the minimum separation cost for each case (e.g. address the 

synthesis problem using superstructure optimization to identify the minimum 

cost process flowsheet) 

5) Compare the different metabolic strategies with respect to the estimated 

potential profit (considering both the potential revenue and the downstream 

separation cost) and choose the most promising mutants to be built and tested 

in the lab. The profit will not be the only decision parameter, since the different 

strategies will be evaluated with respect to their biological feasibility and wet-

lab construction efficacy.  

 

Figure 7: The microbial strain optimization current workflow. The design procedure does not communicate with the 
downstream process synthesis problem, which happens only after the strain is optimized and cultured in pilot scale. 
We aim to provide the missing insight from the future process design to the strain design module.  

 

Chapter 3. Problem description and 

Methodology  
3.1 Problem description and workflow outline 

3.1.1 Problem description and the main challenges 
Typical metabolic engineering approaches applied nowadays to produce efficient cell 

factories do not take into consideration the separation process synthesis problem that 

will support the desired bioprocess application. The common practice in computer-

aided strain design, usually involves MILP formulations that reveal metabolic 

strategies (gene deletions and reaction additions, gene upregulations and 

downregulations) which conclude in maximum yield or growth-coupled production of 

the target chemical. While these methods are a valuable tool for yield and titer 

optimization, they do not take into consideration the separation process needs and 
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the subsequent cost that will occur if the proposed metabolic strategies are applied. 

The different network manipulations may result in different exit stream composition 

and consequently different separation process design possibilities and yielding costs. 

It is evident that addressing the strain design problem and the process synthesis 

problem under a common framework will yield in the rational design of cell-factories 

that achieve high revenues while preserving low separation costs and favorable 

downstream process operation conditions. Our main endeavor is thus to develop a 

systematic workflow that correlates the proposed metabolic interventions of the 

strain design procedure to potential exit stream compositions and the corresponding 

optimal downstream process design.  The changes in the exit stream content can be 

approximated by sampling the region of feasible flux distributions of the GEM 

(solution space).  

The primary challenge is to connect the phenotype prediction problem usually 

addressed via FBA-related methods with the downstream process synthesis 

procedure. GEMs  enclose the total metabolic capacity of organisms. The models are 

used to predict the microbial behaviour in different regimes and genetic backgrounds. 

The metabolic capacity is defined by the stoichiometric matrix and the applied 

capacity and thermodynamic constraints. A prerequisite to address the phenotype 

prediction problem is to define the cellular objective. Given a specific objective, 

commonly maximum growth, we can formulate and solve an LP problem that will 

reveal a flux distribution where the biomass reaction obtains its maximum value. 

Although the estimated flux distribution satisfies the problem criteria, the solution is 

non-unique and as a consequence we do not grasp a full idea of the microorganism’s 

secretion capacity. We do not unveil all the potential fermentation broth resulting 

compositions.  

Furthermore, we have to find an effective way to translate the GEM variables to an 

industrial stream. The variables of the first are described with respect to the 

bioreactors’ biomass content (mmol∙gDCW-1∙h-1) while an industrial stream is 

characterized by its flow rate, molar composition, etc. Especially in separation 

processes, we have to identify the critical physicochemical characteristics that will 

guide the process sequence (on which properties will we base our flowsheeting 

decisions). 

Moreover, we need a systematic way to evaluate the minimum achievable 

downstream cost for the calculated exit stream compositions. In that way, we will be 

able to link specific phenotypes with the corresponding downstream cost demands 

and identify metabolic interventions that lead to maximum profit. The strain design 

procedures, to our knowledge, have not been connected with the downstream 

process synthesis. For that reason, we propose a workflow formulation that aims to 

assist the Design and Learn modules of the DBTL cycle.  
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3.1.2 Proposed workflow outline 
 

The proposed workflow consists of five steps: 

1) In the first step, we reconstruct and curate the Genome-scale model that will 

work as the basis for the rest of the analysis. To this direction, we identify the 

heterologous production pathways for a specific portfolio and incorporate 

them in the Genome-scale model. Next, we proceed with model curation and 

model reduction using the redGEM36 and lumpGEM52 algorithms. Moreover, 

we incorporate economic factors, related to the upstream process and the 

products’ revenue onto the Genome-scale model.  

2)  In the second module, using an MILP algorithm we identify alternative 

metabolic strategies that end up in maximum revenue for a specified set of 

products and culture conditions. 

3)  In the third step, we sample the solution space of the GEM after applying the 

network changes identified in step 2. The changes are expressed in the form 

of reaction eliminations. The application of the eliminations can be simulated 

by setting the upper and lower bounds of the reactions to zero. The sampling 

procedure results in composition and flow-rate estimates regarding the exit 

stream.  

4) In the fourth step, in order to address the separation process synthesis 

problem we solve a superstructure-based optimization problem. The 

superstructure encloses all the available equipment alternatives to meet the 

portfolio specifications. The superstructure yields in a MI(N)LP problem 

formulation, the solution of which underlines the optimal downstream 

flowsheet. In that way, we calculate the average separation cost for each 

metabolic strategy.  

5)  Finally, we identify the metabolic strategies that yield in maximum revenue at 

the lowest separation cost. We compare the potential mutant strains with 

respect to the initial strain performance. The most promising metabolic 

strategies can be translated in real-life lab decisions.   
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Figure 8: The strain design workflow 

 

3.1 Genome-scale model reconstruction and curation 
The purpose of the first module is to prepare a functional and practical GEM to 

conduct the following steps of the analysis. We assume that the designer has already 

chosen a host organism and the target product-portfolio. In the vast majority of 

industrial fermentation applications, we utilize one of the so-called platform 

organisms: E.coli, S.cerevisiae, C.glutaminicum and A.Niger. These organisms are well-

studied and their genome annotations and metabolic reconstructions are available. 

For that reason, we do not get into details on the reconstruction procedure, which is 

extensively described in literature53. The GEM preparation is divided in two steps. The 

first step includes actions concerning the metabolic network while the second step 

entails economic considerations of the upstream process.  

In the first step, the designer identifies the heterologous pathways that enable the 

production of the target products. The pathways are translated to sequential 

biochemical reactions where the reactants and the products are cellular metabolites. 

We augment the stoichiometric matrix according to the novel reactions by adding a 

number of new columns, equal to the number of the reactions and new lines 

corresponding to the number of the new metabolites. The pathway selection may lie 

on literature findings, online biochemical databases or retrobiosynthetic algorithms.  

In order to enhance the model accuracy, thermodynamic constraints can be applied. 

If the portfolio targets include intracellular metabolites, TFA-based methods are 

mandatory since intracellular concentrations are introduced as variables. In the 

present study, we focus on metabolites that are secreted to the extracellular matrix. 
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In this case, the secretion fluxes can be directly used to extract information 

considering productivity and compounds’ concentration in the bioreactor.  

The incorporation of experimental data1 (physiology, fluxomics, metabolomics, etc.) 

is a common practice that enhances GEM predictability and credibility of the analysis 

outcome. For practical reasons, GEMs are reduced over specific subsystems of interest. 

In our methodology we systematically reduce GEMs by applying the redGEM36 and 

lumpGEM52 algorithms. In that way, we to form a core metabolic network including 

the subsystems of interest while maintaining the paternal GEM main characteristics. 

 

 

Figure 9: Addition of novel reactions and metabolites to the stoichiometric matrix. With blue, we indicate the 
heterologous reaction that leads to the production of the desired compound P. The heterologous pathway 

consists of the reactions V8 and V9, which are added as new columns, while the new metabolite P is added as line.   

    

In the second step, we incorporate upstream cost-related and potential revenue 

variables and constraints onto the GEM context. The upstream cost-related terms 

correspond to values such as the annualized capital cost of the fermenter, the 

feedstock price, other utilities etc., while the revenue terms correspond to the 

resulting revenue if the specified metabolite quantities were sold at the market price. 

In other words, the potential revenue term is an indicator of the content value. To 

extract the economics-related constraints and variables we first have to conclude in 

key upstream process parameters such as the feed stream flow rate and concentration. 

                                                           
1 The incorporation of experimental expression data (mRNA, protein concentrations, 
and metabolites concentrations) results in larger in size metabolic and expression 
models (ME-models)67 
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Figure 10: A simple metabolic network with the corresponding stoichiometric matrix. The stoichiometric Matrix is 
augmented by terms accounting for the upstream cost and the products' revenue. The growth rate and the 
substrate fluxes are used to form the upstream cost while the product secretion flux works as a base for the revenue 
calculations. The additional constrains’ RHS is zero.  

3.2 Strain design algorithm 
The second module of the workflow comprises of a strain design algorithm suited to 

propose a pool of alternative metabolic strategies that fulfill the specified criteria set 

by the designer. In that sense, this part is versatile and alternative available Computer 

aided strain design algorithms can be utilized. If the designer wishes to 

computationally asses the downstream separation cost of an already existing pool of 

alternatives then the algorithmic generation part can be omitted.  

3.2.1 OptKnock formulation 
The strain design algorithm in use is based on the OptKnock10,11  MILP formulation 

proposed by Burgard et.al. Optknock simultaneously handles two competing objective 

functions: the biological objective of the organism, usually the maximization of cellular 

growth and the engineering objective set by the designer (usually the overproduction 

of a desired compound). The formulation aims to identify reaction eliminations that 

reshape the cellular network in a way that the target chemical production is 

maximized while the attainable growth rate is at the highest possible levels.   

Optknock problem formulation consists of two parts: the outer problem including the 
engineering objective (maximization of a target flux) and the inner problem of the 
cellular objective. The outer problem identifies reaction candidates for elimination 
that maximize the target flux, while the inner problem redistribute metabolic fluxes 
aiming to maximize the biomass formation in the perturbed network subject to the 
outer problem-imposed changes. The initial optimization problem is:  
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 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

       

[
 
 
 
 
 
 
 
 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠                                 

                         
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                   

                                         
∑ 𝑆𝑖𝑗 ∙ 𝑣𝑗 = 0𝑗∈𝐽  ,                         ∀ 𝑖 ∈ 𝐼 

 
𝐿𝐵𝑗 ∙ 𝑦𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 ∙ 𝑦𝑗  ,          ∀ 𝑗 ∈ 𝐽

 
(𝑖𝑛𝑛𝑒𝑟) ]

 
 
 
 
 
 
 
 

 

  ∑ (1 − 𝑦𝑗) ≤ 𝐾𝑗∈𝐽   

𝑦𝑗  ∈ {0,1},   𝑣𝑗  ∈ ℝ, ∀ 𝑗 ∈ 𝐽   

Where, 

 𝑣𝑡𝑎𝑟𝑔𝑒𝑡:  The target flux to be maximized 

𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠: The biomass reaction 

𝑦𝑗: Binary variable that decides whether a network reaction is eliminated. Reactions 

are eliminated for the value of 1.  

𝐾: Maximum allowed reaction eliminations 

The initial formulation does not correspond to a linear problem since the inner 

optimization problem is a constraint to the outer problem. By converting the inner 

problem to its dual counterpart, congregating the constraints and using the duality 

property, the authors transformed the problem to a single-level optimization MILP 

problem:  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
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𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =  ∑ 𝑈𝐵𝑗 ∙ 𝑦𝑗 ∙ 𝜇𝑗
UB

𝑗∈𝐽 − ∑ 𝐿𝐵𝑗 ∙ 𝑦𝑗 ∙ 𝜇𝑗
LB

𝑗∈𝐽                            
                         

∑ 𝑆𝑖𝑗 ∙ 𝑣𝑗 = 0𝑗∈𝐽  ,                            ∀ 𝑖 ∈ 𝐼   
                                         

∑ 𝑆𝑖𝑗𝜆i + 𝜇j
𝑈𝐵 − 𝜇j

𝐿𝐵 = 0𝑖∈𝛪  ,                                ∀ 𝑗 ∈ 𝑗 − {𝐵𝑖𝑜𝑚𝑎𝑠𝑠}

∑ 𝑆𝑖,𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝜆i + 𝜇biomass
𝑈𝐵 − 𝜇biomass

𝐿𝐵 = 0𝑖∈𝛪                                              
 

𝐿𝐵𝑗 ∙ 𝑦𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 ∙ 𝑦𝑗  ,              ∀ 𝑗 ∈ 𝐽

0 ≤ 𝜇j
𝑈𝐵 ≤ 𝜇j

𝑈𝐵,𝑚𝑎𝑥 ,                      ∀ 𝑗 ∈ 𝐽

0 ≤ 𝜇j
𝑈𝐵 ≤ 𝜇j

𝑈𝐵,𝑚𝑎𝑥 ,                      ∀ 𝑗 ∈ 𝐽
 

∑ (1 − 𝑦𝑗) ≤ 𝐾𝑗∈𝐽                                          

𝑦𝑗  ∈ {0,1},   𝑣𝑗  ∈ ℝ, ∀ 𝑗 ∈ 𝐽 

 

The elimination search is conducted among a predefined reaction list from which we 

exclude intra and extracellular transport reactions. The solution of the MILP problem 

identifies alternative metabolic strategies comprising of up to K reaction eliminations. 

The application of the identified strategies aims to identify strategies that couple 

revenue with growth. For alternative values of K we generate pools of metabolic 

strategies that will be used to direct the constraints applied in the next step. Each 

metabolic strategy corresponds to an altered metabolic network, where the identified 

reactions are knocked-out (the bounds are set to zero).  

 

3.3 GEM sampling 
The sampling module aims to provide the connection between the proposed mutant 

metabolic networks and the superstructure optimization problem. The stoichiometric, 

capacity and thermodynamic constraints imposed on network reactions, form a 

solution space, which contains all candidate steady-state solutions. The FBA-based 

approaches identify only one steady-state solution in which the objective function 

obtains optimal value. The FBA solution is non-unique and does not provide any 

information on the range of the metabolic network fluxes that correspond to steady-

state solution sets. For that reason, the sampling process is necessary to determine 

the range of possible steady-state fluxes allowed in the metabolic network under the 

imposed constraints.  

The allowed solution space is uniformly sampled using the artificial centering hit and 

run (ACHR) algorithm broadly used to estimate flux distributions in metabolic 

studies54–56. The extracellular fluxes are treated according to the same assumptions 

used to incorporate upstream process data to the GEM to translate each sample to 

the corresponding fermentation broth composition. 

3.4 Separation synthesis using superstructure optimization 
Superstructure-based methods are identified as the most systematic way to address 

the synthesis problem. In general terms, solving a superstructure-based problem 
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firstly requires the representation and generation of a superstructure which encloses 

all the potentially useful unit operations and the according interconections12. Based 

on the superstructure, we formulate a mixed-integer optimization problem. The 

problem includes discrete decision variables y for the selection of the unit operations 

and the interconnections and continuous variables x that represent flowrates, 

temperatures, pressures, compositions, etc. The solution of the resulting problem 

yields in the optimal separation process flowsheet alongside with the optimal 

operating conditions.  

The superstructures yield in MINLP representations of the general form:                                                         

𝑍 = min[𝑓(𝒙, 𝒚)]  𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

  𝒉𝒊(𝒙, 𝒚) ≤ 𝟎     

  𝒈𝒊(𝒙, 𝒚) ≤ 𝟎                    

   𝒙 ∈ 𝑿 = {𝒙|𝒙𝝐ℝ𝒏, 𝒙𝑳𝑩 ≤ 𝒙 ≤ 𝒙𝑼𝑩} 

   𝒚 ∈ 𝒀 = {𝒚|𝒚𝝐{𝟎, 𝟏}𝒏}                  

 

 

Figure 11: Available processes set the constraints of the mathematical formulation 

                 

For example, the State-Task-Network (STN) representation can be used to depict the 

system. States are defined as the set of physicochemical properties of a stream such 

as composition, temperature, pressure, particle size, etc. The tasks correspond to the 

physicochemical transformations that occur between adjacent states57. The sampling 

procedure, alongside with according manipulations (state equation calculations, 

property databases, etc.) are used to determine the initial feed state based in which 
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the superstructure will be constructed. In the STN representation states and tasks are 

generally known while the equipment assignment is considered unknown. Each task 

encloses equipment alternatives that yield in the defined separation. The objective 

function of the resulting formulation is the minimization of the total separation cost 

to satisfy the portfolio specifications. That means that the problem includes cost 

variables corresponding to each potential unit operation. 

 

Figure 12: Simple STN superstructure representation 

The considered unit operations include distillation, evaporation, adsorption, 

chromatography, crystallization, filtration, reverse osmosis, etc. Based on the selected 

alternatives we have to retract the according physicochemical properties in order to 

calculate the potential intermediate states. We can conduct the calculations with 

shortcut methods (e.g. Fenske-Underwood-Gilliand for distillation columns) while the 

cost estimation is based on conceptual cost models since more elaborate calculations 

are not justified at this stage of the analysis2,12,34,58. 

 

 

Chapter 4. Case study: Hydrocarbons 

producing S.cerevisiae 
 

4.1 Application description 
Flight-travel-related fossil fuel use and the subsequent CO2 emissions are expected to 

increase in the years to come. Unlike the other transportation sectors, there are not 

sustainable and suitable alternatives to the petrochemically derived kerosene33. 

S.cerevisiae has been characterised as one of the most promising platform-organisms 

to express heterologous genes responsible for long-chain hydrocarbon production 

(13C-17C), ideal to replace kerosene as drop-in biofuels. During the strain design 

process, we typically identify genetic interventions that rewire cellular metabolism 

towards overproduction of the desired compounds. These changes, may as well affect 

the composition of the fermentation broth and consequently, the downstream 

separation cost. Since the downstream cost has been proved to be decisive on 
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whether a microbial biorefinery application will be viable, we aim to guide the design 

procedure towards metabolic strategies that succeed high product revenues while 

demanding minimum separation expenses.  

To this direction, we will apply the proposed workflow to identify metabolic strategies 

that result in maximum revenue while maintaining low separation costs. In the 

following paragraphs, we will elaborate on the different workflow modules as they are 

redefined for the specific case study. S.cerevisiae will serve as the host organism which 

we will genetically modify to produce hydrocarbons (alkanes and alkenes) and fatty 

alcohols as by-products. We assume that the strain is capable of secreting the 

produced compounds to the extracellular matrix, thus we do not have to disrupt the 

cells to harvest the products. We further assume that the cell culture takes place in a 

chemostat array in aerobic conditions and steady glucose feed. Glucose serves as the 

only carbon source. Since the target-products are insoluble in water, we assume that 

the exit stream is split in two. The first split contains the insoluble products, namely 

the non-native compounds and the rest of the native yeast insoluble secreted 

metabolites while the second split contains the soluble secreted metabolites. The 

separation synthesis focuses on the insoluble stream. The components of the stream 

are identified and matched to specific portfolio products. Because of the nature of the 

compounds we assume that the products’ separation is achieved with sequential 

distillations. Having only one technology, the superstructure problem is simplified to 

a supertask.   

 

 

Figure 13: The insoluble metabolites are grouped in product categories 

 

4.2 Genome-scale model curation, reduction and analysis  

4.2.1 S.cerevisiae for long –chain hydrocarbons production model curation 
In the process to evaluate S.serevisiae hydrocarbons’ production potential and the 

impact of different metabolic strategies, we incorporated reactions corresponding to 

2 heterologous enzymes namely Carboxylic acid reductase (CAR) originated from 

Mycobacterium marinum and a Synechoccocus elongatus Aldehyde-deformylating 

oxygenase (FADO).  Alternatively, to the CAR enzyme one could consider using S. 
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elongatus native mechanism for fatty aldehydes production, the Fatty acid reductase 

(FAR).   

As a starting point, we used an extended version of the consensus Yeast GEM 

iMM90459. The model contains nine cellular compartments with 2180 reactions taking 

place and 1550 participating metabolites. The reactions are divided in 78 subsystems. 

The Hydrocarbon Producing Strain GEM (HPS) contains 57 extra reactions grouped in 

a new subsystem, as well as 24 metabolites that do not exist in the initial model. The 

20 reactions correspond to transports between the different compartments while the 

number of unique metabolites is 16, meaning that in the stoichiometric matrix we 

account for species multiple times if they participate in reactions located in different 

compartments.  

4.2.2 Thermodynamic-based Flux Analysis  
Further constraining the HPS GEM, we applied the TFA framework materialized in the 
form of matTFA, the matlab toolbox implementation of TFA60. In that way, we reduce 
the feasible solution space by adding thermodynamic constraints regarding 
metabolites’ and reactions’ Gibbs Free Energy (ΔG). In order to translate the model to 
the TFA equivalent we enriched the database available with the toolbox, with 
information considering the fatty-acid metabolism and the newly added reactions and 
metabolites.  
 

4.2.3 Model reduction  
After the thermodynamic curation, the model was reduced using the redGEM36 and 

lumpGEM52 algorithms. The reduction is conducted for aerobic conditions and culture 

medium containing glucose as the sole carbon source.  

First, we selected 9 subsystems of the initial HPS GEM (Acyl Biomass, Biomass, 
Carnitine Shuttle, Fatty Acid Biosynthesis Mitochondrial, Fatty Acid Biosynthesis, Fatty 
Acid Degradation, Fatty Acid Elongation, Glycolysis, Heterologous Alkanes Production) 
around of which the core metabolic network will be constructed. In the next step, after 
excluding small metabolites, co-factors and inorganics, the algorithm identifies 
metabolites and reactions pairs between the selected subsystems by directed graph 
search with respect to the degree of connection D. The selected degree of connection 
in our case is D=1. The core network is finalized by a second graph search to find 
connections of the D1 network with the extracellular space.  
 
Finally, utilizing the lumpGEM52 algorithm we connect the core network, generated by 
redGEM, with the Biomass Building Blocks (BBBs) of HPS GEM biomass reaction. The 
algorithm identifies the smallest alternative subnetworks (Smin) that are capable of 
producing the distinct BBBs with the metabolites found in the redGEM-generated 
network as a starting point. Finally, lumpGEM calculates unique lumped reactions for 
all the BBBs. We tested two alternative reduced models with respect to the lumped 
reactions availability; in the first constructed reduced model we accounted for one 
lumped reaction per BBB appointed randomly by the algorithm while in the second 
reduced model, we accounted for all the different lumped reactions that correspond 
to stoichiometrically balanced subnetworks of size equal to Smin.  
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The reduced models passed a series of tests to evaluate their consistency with the HPS 
GEM. The performed test consist of 1) calculations of the maximum biomass and 
products’ yields, 2) Single gene-essentiality check for the genes shared with the parent 
GEM and 3) Thermodynamic flux variability analysis to estimate the feasible range of 
different subsystems’ fluxes. 
 
 The gene-essentiality is simulated by setting the lower and upper bounds of a reaction 
set, which corresponds to the gene under investigation, to zero. Then the usual FBA 
LP biomass maximization problem is solved; if the system cannot produce biomass the 
gene is characterized as essential and the gene knock-out as lethal.  The procedure is 
repeated for the whole set of shared genes between the reduced and the parent 
model.  
 

4.2.4 Flux variability comparison under Biomass and Product yield flux 

constraints 
Here, we attempt to assess the different flux profiles attained in two extreme cases: 

1) A biomass proliferating strain hydrocarbon producer and 2) A hydrocarbon 

overproducing strain. 

1) The biomass proliferating strain hydrocarbons producer concept, herein is a 

strain that while constrained to exhibit growth rates higher or equal to the 95% 

of the maximum biomass yield, is in addition constrained to produce 

hydrocarbons in rates higher or equal to the 95% of the maximum yield 

attained in proliferation conditions. This concept encloses useful information 

on the characteristics of a strain that while proliferating is a de-facto 

hydrocarbons producer (the production rates are higher than zero).  

 

2) The second concept corresponds to the opposite scenario, where the strain is 

constrained to produce hydrocarbons in rates higher or equal to the 95% of 

the maximum yield while exhibiting growth rates higher or equal to the 95% of 

the maximum attainable growth rate.  

The two scenarios are built for the three alkanes present in the model (n-tridecane, n-

pentadecane, n-heptadecane) and each pair was compared according to the fluxes 

variability for different reaction subsystems.  
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Figure 14: The process we follow to compare the flux variability between the two extreme scenarios. 

 

 

4.3 Incorporating economic factors onto the Genome-scale 

model 
In order to better assess the potential of the present strain to serve as a kerosene 

producer, we incorporated upstream cost-related variables and constraints onto the 

GEM context. In that way, we can directly link the metabolic network properties with 

the upstream (production) cost and identify network changes that lead to maximum 

profit scenarios. 

Our goal is to enrich the stoichiometric matrix by two sets of elements, where the first 

set corresponds to variables related with the upstream cost (capital cost, utilities, etc.) 

and the second to the potential revenue corresponding to specific metabolites 

produced by the cell, sold at the market price, while the downstream cost is not taken 

into account.  

 

4.3.1 Upstream process parameters identification and incorporation to the 

GEM 
a) Upstream process basic characteristics 

First, we have to define the basic characteristics of the upstream process that will be 

used to formulate the upstream cost equations. We assume a 994 T/day glucose 

supply (240 g/L), which corresponds to the amount of glucose generated by the NREL 

process when hydrolyzing 2000 TDW/day biomass, previously used by Maravelias et 

al. to evaluate the suitability of different microbes and metabolic engineering 

strategies for the production of fuels and chemicals34. The economic parameters 

presented in this section are also adopted from the aforementioned study unless 

otherwise stated.  
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Figure 15: (A) The base case-scenario proposed by Maravelias et al. for the upstream cost calculations (B) The cost 
distribution for the base-case scenario34. 

The system in study consists of a chemostat array with a steady Feedstock flow rate 

of 994 T/day. The exit stream is split in two parts: The first part contains the total of 

the insoluble metabolites secreted by the yeast, present in the reduced model and the 

second the soluble products. The separation cost for the split is considered negligible. 

The cells are removed without product loss in any phase. The secreted insoluble 

metabolites found in the model include alkanes, fatty alcohols, fatty acids and sterol.  

The soluble metabolites considered in the study include several carboxylic acids and 

amino acids. While they are far from the total of the compounds that can be found in 

the stream they will work as an indicator of the potential revenue if they could be 

retrieved from the fermentation broth without any extra action needed.  

In this part, we have to mention that although the GEM contains reactions for the 

production and secretion of monosaturated fatty alcohols, these molecules are 

accounted together with their unsaturated counterparts under the properties of the 

later. Furthermore, due to the vapour pressure similarities between myristate and 

octadecanol mixtures, the two compounds are accounted as one mix product, 

uniformly behaving as 1-octadecanol.  
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Figure 16: Schematic of the exit-stream split to a stream containing the insoluble products and another that 
contains the solubles. Although our study focuses on the insoluble products valorization, we proceed with 
estimating the maximum achievable revenue in the case where all the products were included in the portfolio. The 
produced compounds may be used as fuels, platform-chemicals and precursors for the production of different 
molecules or pharmaceuticals.  

 

Table 2: Market prices for the metabolites present in the insoluble products' stream. 

    Insoluble    

Name MW  Product Price ($/T) Use 

Tridecane 184 

Kerosine 520 Fuel 

Pentadecene 210 

Pentadecane 212 

Heptadecene 238 

Heptadecane 240 

Tetradecanol 214 1-Tetradecanol 1500 

Cosmetics, 
Industrial, Emulsifier 

Hexadecanol 242 1-Hexadecanol 

1500 Myristate 228 Octadecanol/ 
Myristate mix Octadecanol 270 

Sterol 385 Sterol 1000 Food, Industrial 

 

 

 

Table 3: Market prices for the metabolites present in the soluble products' stream. 

Soluble  

Name MW  Product Price ($/T) Use 

Formic Acid 46 Formic Acid 600 Food, Insecticide, Industry 

Acetic Acid 60 Acetic Acid 300 Food, Pharmaceuticals, Industry 
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Lysine 146 Lysine 1050 Food 

Pyruvic Acid 87 Pyruvic Acid 1000 Food, Industry 

Lactic Acid 90 Lactic Acid 1000 Food, Industry 

Glutamic Acid 147 Glutamic Acid 800 Food 

Fumaric Acid 116 Fumaric Acid 1000 Food, Pharmaceuticals, Industry 

Succinic Acid 118 Succinic Acid 1100 Food, Industry 

Citric Acid 192 Citric Acid 700 Food, Industry 

 

b) Upstream cost terms 

The upstream cost consists of 5 terms:  

 

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐶𝑜𝑠𝑡 = 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐶𝑜𝑠𝑡 + 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 + 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑂𝑃𝐸𝑋 + 𝐿𝑎𝑏𝑜𝑢𝑟 + 𝑂𝑡ℎ𝑒𝑟 

Excluding the substrate cost, the terms are expressed as a function of the reactor 

active volume:  

 

 

 

 

Table 4: Cost terms for the upstream process 

Cost Term Expression 

Substrate Cost 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐶𝑜𝑠𝑡 +𝑊𝑎𝑡𝑒𝑟 𝐶𝑜𝑠𝑡 

Annualized CAPEX 𝐶𝐶𝐹 ∙ 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑃𝐶 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒 

Reactor OPEX 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 ∙ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒 ∙ 𝑊ℎ 

Labour 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐿𝑎𝑏𝑜𝑢𝑟 𝑁𝑒𝑒𝑑𝑠 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒 ∙ 𝑆𝑎𝑙𝑎𝑟𝑦 ∙ 𝑊ℎ 

Other (𝐼𝑀𝐹 + 𝐼𝐹) ∙ 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑃𝐶 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒 

 

 

Where , 

Glucose Cost: Annual glucose purchase cost [M$/Y] 

Water Cost: Annual water purchase cost [M$/Y] 

CCF: Capital Charge Factor  

Reactor PC: Reactor Purchase cost per bioreactor volume [M$/m3] 

Volume: Bioreactor volume [m3] 

Specific Power: Electricity needs per bioreactor volume [KW/m3]  

Electricity Cost: Electricity Cost [$/KW-h] 
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Wh: Unit Working hours [h] 

Specific Labour Needs: Needs in labour per reactor volume [No workers/m3] 

Salary: Hourly salary per worker [$/(worker∙h)] 

IMF: Insurance and maintenance cost factor 

IF: Installation Factor 

A detailed chart with the economic factors’ values used for this study can be found in 

the appendix.   

 

The upstream cost can be expressed as a two-termed equation where the first term is 

a linear function of the volume and the second one, the substrate cost, can be 

assumed constant for our case.  

  
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐶𝑜𝑠𝑡 = 𝑓(𝑉) + 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐶𝑜𝑠𝑡    

 𝑓(𝑉) = 𝑎 ∙ 𝑉     

𝑎 = (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 ∙ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐿𝑎𝑏𝑜𝑢𝑟 𝑁𝑒𝑒𝑑𝑠 ∙ 𝑆𝑎𝑙𝑎𝑟𝑦) ∙ 𝑊ℎ

+ (𝐼𝑀𝐹 + 𝐼𝐹 + 𝐶𝐶𝐹) ∙ 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑃𝐶 = 𝐶𝑜𝑛𝑠𝑡 

 

 

In order to account for the Upstream cost in the GEM we add three variables and the 

accompanying constraints: 

i)  The volume variable: The volume in a chemostat system is given by the 

equation : 

𝑉 =  
𝐹

𝐷
=
𝐹

𝜇
  

Which can be approximated by a linear relationship for a tight region of 

growth rates such that:   

𝑉 =  𝛽 ∙ 𝜇 + 𝛾  

The corresponding constraint is: 

 
Volume_const: 𝑉 − 𝛽 ∙ 𝜇 = 𝛾 

Where β is the slope and γ is the intersect of the linear approximation. 

ii) The upstream cost variable is as described above, while the corresponding 

constraint is:   

 

Upstream_const: 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐶𝑜𝑠𝑡 − 𝑎 ∙ 𝑉 = 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐶𝑜𝑠𝑡    
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c)  Revenue terms 

We assume that the bioreactor system in use consists of an array of chemostats in 

steady state. In this case, the dilution rate (D) is equal to the growth rate:  

𝐷 = 𝜇  (1) 

Thus, the substrate [S] in the exit stream will be:  
 

𝑑𝑆

𝑑𝑡
= 𝑢𝑆 ∙ [𝐵] + 𝐷 ∙ ([𝑆]0 − [𝑆]) = 𝑢𝑆 ∙ [𝐵] + 𝐷 ∙ 𝛥𝑆 = 0  (2) 

 

From (1) and (2):  

[𝐵] =  
𝛥S

𝑢𝑠
 ∙ 𝐷 =

𝛥S

𝑢𝑠
 ∙ 𝜇   (3) 

 
The product [Pj] balance will similarly be:   

𝑑𝑃𝑗

𝑑𝑡
= 𝑢𝑃𝑗 ∙ [𝐵] + 𝐷 ∙ ([𝑃𝑗]0 − [𝑃𝑗]) = 0

[𝑃𝑗]0
=0

⇒    [𝑃𝑗] =  
𝛥S

𝑢𝑠
 ∙ 𝑢𝑃𝑗  (4)   

 

Where us and up are the glucose uptake rate and the product j secretion rate 

respectively.  

The potential annual revenue from the product j will be:  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑗 [
𝑀$

𝑌
] =

𝛥S

𝑢𝑠
 ∙ 𝑢𝑃𝑗 ∙

𝑀𝑟(𝑃)

𝑀𝑟(𝑆)
 ∙ 𝑃𝑟𝑖𝑐𝑒(𝑃)

∙ 330 [ 

𝑇𝑜𝑛𝑠 𝐺𝑙𝑐
𝑑𝑎𝑦

𝑚𝑚𝑜𝑙 𝐺𝑙𝑐
𝑔𝐷𝐶𝑊 ℎ 

∙
𝑚𝑚𝑜𝑙 𝑃𝑗

𝑔𝐷𝐶𝑊 ℎ 
∙

𝑔𝑟 𝑃
𝑚𝑜𝑙 𝑃
𝑔𝑟 𝐺𝑙𝑐
𝑚𝑜𝑙 𝐺𝑙𝑐

∙
𝑀$

𝑇𝑜𝑛 𝑃
∙
𝑑𝑎𝑦

𝑌
] (5) 

While the total potential revenue will be:   

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =  ∑𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑗

𝑛

𝑗=1

 (6) 

The glucose in the exit stream is considered to be [S] = 0,02 [S]o and the glucose uptake 

rate -5 
𝑚𝑚𝑜𝑙 𝐺𝑙𝑐

𝑔𝐷𝐶𝑊 ℎ 
 :   

Revenuej_Const: [357,18 ∙ 𝑀𝑟(𝑃𝑗) ∙ 𝑃𝑟𝑖𝑐𝑒(𝑃𝑗)] ∙ 𝑢𝑃𝑗 − 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑗 = 0   (7)  

For each product j we want to account for, we add one extra variable 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑗 and an 

extra constraint Revenuej_Const in the form presented in eq.7. The RHS of the 

constraint is zero.  

d)  Gross profit for the upstream process 
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The gross profit for the upstream part of the process can be directly calculated by 

subtracting the cost of goods sold (COGS- here in the form of upstream cost) from the 

potential revenue. 

Even though the calculations presented here are a gross approximation of the 

upstream cost, the profit value can work as an indicator of the available margin for 

the separation costs to follow the upstream process. The presence of COGS and 

revenue variables in the model, allows the direct investigation of alternative metabolic 

network conformations and exit stream compositions that increase profit.   

The estimation of the maximum attainable profit for different values of the Biomass 

reaction can be calculated with the CobraToolbox robustnessAnalysis function.  

4.4 Strain design algorithm  
For the case study, the engineering objective is the potential revenue from the 

insoluble metabolites in the exit stream. In other words, we form an objective function 

were the identified market price of each component works as a weight for the 

corresponding production flux. Since the cellular growth rate is imposed by the 

Dillution rate in the case of the chemostat, we narrow down our search for growth 

rates close to the target D value.  

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒𝑠 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

    

𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =  ∑ 𝑈𝐵𝑗 ∙ 𝑦𝑗 ∙ 𝜇𝑗
UB

𝑗∈𝐽 − ∑ 𝐿𝐵𝑗 ∙ 𝑦𝑗 ∙ 𝜇𝑗
LB

𝑗∈𝐽                            
                         

∑ 𝑆𝑖𝑗 ∙ 𝑣𝑗 = 0𝑗∈𝐽  ,                            ∀ 𝑖 ∈ 𝐼   
                                         

∑ 𝑆𝑖𝑗𝜆i + 𝜇j
𝑈𝐵 − 𝜇j

𝐿𝐵 = 0𝑖∈𝛪  ,                                ∀ 𝑗 ∈ 𝑗 − {𝐵𝑖𝑜𝑚𝑎𝑠𝑠}

∑ 𝑆𝑖,𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝜆i + 𝜇biomass
𝑈𝐵 − 𝜇biomass

𝐿𝐵 = 0𝑖∈𝛪                                              
 

𝐿𝐵𝑗 ∙ 𝑦𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 ∙ 𝑦𝑗  ,              ∀ 𝑗 ∈ 𝐽

0 ≤ 𝜇j
𝑈𝐵 ≤ 𝜇j

𝑈𝐵,𝑚𝑎𝑥 ,                      ∀ 𝑗 ∈ 𝐽

0 ≤ 𝜇j
𝐿𝐵 ≤ 𝜇j

𝐿𝐵,𝑚𝑎𝑥 ,                      ∀ 𝑗 ∈ 𝐽
 

∑ (1 − 𝑦𝑗) ≤ 𝐾𝑗∈𝐽                                          

𝑦𝑗  ∈ {0,1},   𝑣𝑗  ∈ ℝ, ∀ 𝑗 ∈ 𝐽 

 

 

The OptKnock search for growth-coupling alternatives is conducted to the upstream 

cost factors-enriched GEM that we discussed in chapter 4. We set the glucose uptake 

rate vglc=-5 mmol ∙ gDCW-1 ∙ h-1 and specify the list of reactions to consider deleting, as 

well as the maximum number of allowable reaction eliminations K. The reaction list 

does not include intra- and extra- cellular transport reactions or lumped reactions. In 



 
 

   48 
 

order to consider alternative solutions of the same length K, we impose integer cuts. 

The problem construction is conducted with a self-developed matlab function 

compatible with the matTFA toolbox. The problem is solved using IBM ILOG CPLEX 

12.7.1. 

 

4.5 GEM sampling 
The FBA solution consists of a single flux distribution corresponding to maximum 

growth under the given environmental conditions, if the objective is maximization of 

the biomass reaction. The FBA problem is underdetermined, there are multiple flux 

distributions that satisfy the imposed constrains while achieving optimal value for the 

objective function. Since the scope of our application is to estimate the composition 

of the chemostat array exit stream, we cannot solely rely on the FBA solution. 

Alternatively, we sample the solution space to attain different flux distributions that 

are allowed by the mass balance and capacity constraints in order to extract an 

estimate of the exit stream composition.  

In order to proceed with model sampling, we impose the network modifications 

identified in the previous step and further constrain the glucose uptake rate to vglc=-5 

mmol ∙ gDCW-1 ∙ h-1 and biomass reaction to take values 𝜇 ∈ {0.9,0.11}. The sampling 

is conducted with the COBRA toolbox matlab sampling function61 available with 

matTFA60.The approach used is based on the artificial centered hit and run 

algorithm(ACHR)62. For each case, we generate 5000 samples that are further analyzed 

to estimate the exit stream content, the produced kerosene characteristics and the 

potential revenue.  

Due to computational time limitations, we cannot proceed with the downstream cost 

calculations for each sample. To address this issue, we use each sample to construct a 

vector that comprises of the extracellular fluxes of interest. The vectors are clustered 

using the kmeans63 matlab embedded function to form k clusters of vectors of 

different size. The algorithm partitions the observations into k clusters in which each 

observation belongs to the cluster with the nearest mean, where the mean works as 

a prototype of the cluster. Thus, the mean of each cluster will function as the Input for 

the downstream problem while its size will function as a weight to calculate the 

average downstream cost 𝑇𝐶̅̅̅̅  and the average revenue 𝑇𝑅̅̅ ̅̅  that will be used to 

compare the alternative strategies. 

𝑇𝐶̅̅̅̅ = ∑
𝑊(𝑘)

𝑛
∙ 𝑇𝐶(𝑘)

𝐶

𝑘=1

 

𝑇𝑅̅̅ ̅̅ = ∑
𝑊(𝑘)

𝑛
∙ 𝑇𝑅(𝑘)

𝐶

𝑘=1

 

Where, 
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C is the number of clusters 

W(k) is the size of the k cluster 

n is the number of samples 

TC(k) is the downstream cost calculated for the kth cluster 

TR(k) is the revenue calculated for the kth cluster 

𝑇𝐶̅̅̅̅  is the average downstream cost 

𝑇𝑅̅̅ ̅̅  is the average revenue 

 

4.6 Downstream cost calculations 

4.6.1 The synthesis problem 
The approach used in this study developed by Shah and Kokossis (1997) combines 

optimization technology in the form of mathematical programming, engineering 

insights and shortcut design models. These three components are integrated into 

conceptual models, which include only basic information of the process and set up the 

background for the application of Conceptual Programming46.  

A superstructure based on the number of distinct separation tasks T is generated by 

using the list processing technique proposed by Hendry and Hughes (1972). The 

separation tasks receive a single feed and yield in two products. They are divided into 

different subsets M according to the product subgroup associated with the feed. The 

representation enables estimates of compositions and nominal flowrates of feed and 

products without prior knowledge of the performance of the upstream and 

downstream tasks. The shortcut methods2 are employed to calculate the important 

process parameters (e.g. Fenske-Gilliland method for the calculation of the number of 

trays, Underwood's method for estimating the minimum reflux ratio, etc.). The 

process parameters and column basic characteristics are utilized to create the cost-

related variables that correspond to each task. Formulation of this problem leads in a 

mixed-integer linear program, in which the total annualized venture cost is minimized 

with respect to the tasks sequence. 

  

a)  Task cost variables 

The total cost of each task is the sum of the capital cost correlated with the column in 

use and the operating cost linked with the needed utilities.  

                                                           
2 In order to proceed with the shortcut calculations, it is  assumed that the relative volatility  remains 

constant across each distillation column.   
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The capital cost consists of the column cost, 𝐶𝑜𝑠𝑡𝑐𝑜𝑙 and a fixed charge cost 𝐶𝑜𝑠𝑡𝑓𝑖𝑥. 
The former is expressed as a function of the vapour to feed ratio V/F and the number 

of trays NT. The former represents the relative cost of the column in the available 

design options, while the fixed cost includes the cost of needed supplementary items 

such as piping. 

𝐶𝑜𝑠𝑡𝑐𝑜𝑙 = 𝑎1 ∙ (1 + 𝑏1 ∙
𝑉

𝐹
) ∙ 𝑁𝑇 

𝐶𝑜𝑠𝑡𝑓𝑖𝑥 = 𝑎2 ∙ (1 + 𝑏2 ∙
𝐹

𝐹𝑡𝑜𝑡
) 

The constants α1, α2, b1, b2 are generic and independent of the separation system, the 

components or the composition of the feed, merely representing the economic 

environment.  

Table 5: Constants of cost model 

No Generic constant Value 

1 a1 15.00 

2 a2 765.00 

3 a3 0.05 

4 a4 0.10 
 

The utility cost 𝐶𝑜𝑠𝑡𝑢𝑡𝑖𝑙  for each task is: 

𝐶𝑜𝑠𝑡𝑢𝑡𝑖𝑙 = 𝑉 ∙ (1 + 𝐶ℎ𝑜𝑡 + 𝐶𝑐𝑜𝑙𝑑) 

Where the utility cost indexes Chot and Ccold are functions of reboiler temperature ( Treb) 

and condenser temperature( Tcond ). 

 

 

 

 

 

 

 

Table 6: Discrete cost indices for hot utilities. The discrete cost indices are used to construct continuous cost 
indicest-dependent  functions. For target temperatures outside  the ementioned ranges,  the cost indices are 
e x t r a p o l a t e d . 

No. Type 
Temperature 

Range (oC) 
Cost Index 

Chot 
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1 
Very low-pressure 

steam (VLP) 
up to 80 oC 0.100 

2 
Low-pressure 

steam (LP) 
80 oC to 118 oC 0.130 

3 
Medium pressure 

steam (MPS) 
118 oC to 164 oC 0.169 

4 
High-pressure 
steam (HPS) 

164 oC to 186 oC 0.187 

5 
Very high-pressure 

steam (VHP) 
186 oC to 230 oC 0.261 

6 
Furnace or Hot oil 

(HO) 
230 oC to 260 oC 0.280 

 

 

Table 7: Discrete cost indices for cold utilities. The discrete cost indices are used to construct continuous cost 
indicest-dependent  functions. For target temperatures outside  the ementioned ranges,  the cost indices are 
extrapolated. 

No. Type 
Temperature 

Range (oC) 
Cost Index 

Ccold 

1 
Cooling Water 

(CW) 
45 oC onwards 0.017 

2 Chilling water (R1) 0 oC to 45 oC 0.200 
 

b)  Constraints of the synthesis problem 

The constraints include simple material balances and cost-related expressions. The 

logical constraints associate integer and continuous variables.  

 

Mass balance expressions:  

𝐹𝑡𝑜𝑡 − ∑ 𝑓𝑘 = 0

𝑘∈𝑇𝑓𝑟

 

∑ (𝜁m,t ∙ 𝑓𝑡) − ∑ 𝑓𝑘 = 0  ∀ 𝑚 ∈ 𝑀

𝑘∈𝑇𝑚
𝑖𝑛𝑝𝑘∈𝑇𝑓𝑟

 

Annualized cost expressions for each column:  

𝐶𝑜𝑠𝑡𝑡𝑜𝑡 = [𝑎𝑎𝑛𝑛 ∙ (𝐶𝑜𝑠𝑡𝑐𝑜𝑙 + 𝐶𝑜𝑠𝑡𝑓𝑖𝑥) + 𝐶𝑜𝑠𝑡𝑢𝑡𝑖𝑙]  ∙
𝑓𝑡
𝐹 𝑡
∀ 𝑡 ∈ 𝑇 

Logical constraints:  

f𝑡 − 𝐹𝑡 ∙ 𝑌𝑡 ≤ 0 ∀ 𝑡 ∈ 𝑇 

c) The objective function 



 
 

   52 
 

𝑓𝑜𝑏𝑗 =∑𝐶𝑜𝑠𝑡𝑡
𝑡𝑜𝑡

𝑡∈𝑇

 

4.6.2 The 6-product stream separation problem 

 

Figure 17: Discrete representation of simple column sequences for a 6-product stream. The 35 tasks are denoted 
with black enumeration while the 15 subgroups with blue.  

 

Let T={t} be the set of tasks and M={m} be the set of product subgroups. For a single 

source problem leading to six products there are 35 tasks: t1,t2,…,t35 and 15 subgroups: 

m1,m2,…,m15. Given the recovery matrix and the molar fraction of components at the 

feed stream we can calculate the distillate and bottom molar fraction for each task. 

The distillation columns operate in atmospheric pressure while the pressure drop 

along each column is considered negligible. We use the Antoine equation to estimate 

the temperatures at the top and the bottom of each column. Then, using FUG short-

cut methods, we calculate the vapour load (V), vapour to feed ratio (V/F) and the 

number of theoretical trays (NT) for each task. The operating cost indices Chot and Ccold 

are calculated as well for each task based on the top and bottom temperatures.  

Knowing the parameters of the cost variables for each task, we can construct the 

mixed-integer linear program as described in the previous section. By solving the 

problem we identify the sequence that succeeds in product separation (at the pre-

described purity levels) at minimum cost. The problem matrices construction is 

conducted by a developed set of matlab functions. The necessary input is the recovery 

matrix, the stream composition and the components’ Antoine coefficients to calculate 

the condenser and reboiler temperatures. The parameters needed for the problem 

construction that yield from non-linear equations are approximated using matlabs’ 

built-in vpasolve function. The problem is solved using IBM ILOG CPLEX 12.7.1. 
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Finally, since the conceptual cost value identified by the minimization problem cannot 

be used to compare cases of different flowrate, we estimate the CAPEX corresponding 

to the selected distillation sequence.  

The components physicochemical and economic parameters and constants can be 

found in Appendix A. The detailed calculations followed for the problem construction 

are presented in Appendix B. The detailed sizing and cost models followed to calculate 

the sequence CAPEX can be found in Appendix C.  
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Chapter 5. Case study results  
 

5.1 Results outline  
The results presentation follows the exact same pattern with the proposed workflow. 

First, we discuss about the GEM characteristics and reduce the parent model following 

two alternative approaches. The two reduced models are compared with the parent 

model to test their consistency. Furthermore, we utilize the economics-enriched GEM 

to estimate the maximum potential revenue for different product portfolios. We 

evaluate whether the hydrocarbons annual revenue is growth-coupled and identify a 

promising metabolic strategy for revenue maximization.  

Moreover, we apply the strain design algorithm to the economics-enriched GEM to 

create a pool of alternative metabolic strategies yielding in maximum revenue. Each 

strategy is implemented in the GEM by applying reaction eliminations. The result 

mutant model is then sampled to obtain alternative allowed flux distributions and 

asses the hydrocarbon production potentials of the strain. The samples are clustered 

to groups based on the similarity of the insoluble products’ fluxes.   

The alternative calculated clusters consequently represent each metabolic strategy. 

We estimate the minimum downstream separation cost and the potential revenue for 

the mean of each cluster and proceed with calculating an average mean for each case. 

Finally, we present the comparative data between the potential mutant strains with 

respect to the initial strain performance. The performance indicator is the difference 

between the potential revenue and the downstream cost.  

 

5.2 Genome-scale model curation, reduction and analysis  

5.2.1 Model general characteristics  
The model contains heterologous reactions producing long-chain alkanes and alkenes. 

Fatty aldehydes work as intermediates for the alkanes production while fatty alcohols 

are possible by-products. Schematically the alkanes production process involves the 

fatty aldehyde production from the corresponding fatty acids and then the aldehyde 

deformylation towards alkanes and alkenes. Fatty-aldehydes can be transformed to 

fatty alcohols by the Alcohol dehydrogenase enzymes (ADH) 3  present in yeast’s 

cytosol. We assume that the produced alkanes and alkenes as well as the fatty alcohols 

are secreted in the extracellular space. The secretion reactions considered here are 

energy and co-factor independent. 

                                                           
3 The ADH fatty-aldehydes to fatty-alcohols reactions were not included in the model for each aldehyde 
separately but are included in the form of pool reactions. For that reason, we included specified 
reactions for this transformation.  
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 Assuming that the fatty aldehydes and fatty acids can diffuse through the peroxisomal 

membrane, the compartmentalisation of the production mechanism (map and 

contain the enzymes inside the peroxisome) does not result in any difference in the 

attainable flux profiles and final product yields. In all the cases addressed here, we 

assume that the production reactions can occur both inside the cytosol and inside the 

peroxisome4. 

 

 

Table 8: The heterologous reactions added in the model 

Enzyme Reactions 

mmCAR 

nadph_x + ttdca_x <=> nadp_x + tdcal_x 

hdca_x + nadph_x <=> hxdcal_x + nadp_x 

hdcea_x + nadph_x <=> nadp_x + hxdceal_x 

nadph_x + ocdca_x <=> nadp_x + ocdcal_x 

nadph_x + ocdcea_x <=> nadp_x + ocdceal_x 
 

seFADO 

h_x + 2 nadph_x + o2_x + tdcal_x <=> h2o_x + 2 nadp_x + trdcn_x + for_x 

h_x + 2 nadph_x + o2_x + hxdcal_x <=> h2o_x + 2 nadp_x + for_x + pntdcn_x 

h_x + 2 nadph_x + o2_x + hxdceal_x <=> h2o_x + 2 nadp_x + for_x + pntdcen_x 

h_x + 2 nadph_x + o2_x + ocdcal_x <=> h2o_x + 2 nadp_x + for_x + hptdcn_x 

h_x + 2 nadph_x + o2_x + ocdceal_x <=> h2o_x + 2 nadp_x + for_x + hptdcen_x 

 

 

                                                           
4 Our GEM does not account for toxicity considerations. The compartmentalization of the production 

mechanism in reality might be proven to raise the production yields because toxic by-products like 

peroxidase are catabolised68.  
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Figure 18: Visualization of the reactions associated with tridecane production. The alkane synthesis happens both 
in the cytosol (right) and the peroxisome (left).The other hydrocarbons are produced identically from the same 
enzymes and complexes.  

 

 

5.2.2 Thermodynamic coverage and reduced models 
We were able to assign the Gibbs free energy of formation to 80% of the participating 

metabolites and the Gibbs free Energy of Reaction to 66% of the reactions. The HPS 

GEM containing the heterologous reactions and the corresponding transport 

reactions needed to balance them, was reduced to produce two models: The first 

containing one lumped reaction per BBB (1 per BBB model) and the second all the 

possible different lumps corresponding to a Smin sized subsystem (Smin model).  

The maximum growth rate under thermodynamic constraints and glucose uptake rate 

vglc=-5 mmol ∙ gDCW-1 ∙ h-1 is 0.4582 h-1 for the 1 per BBB model and 0.4850 h-1 for the 

Smin model, while for the original GEM is 0.4872 h-1
.  The 1 per BBB model contains 

395 enzymatic reactions out of a total of 685 with 500 participating metabolites. The 

Smin model contains 579/827 enzymatic reactions with 496 participating metabolites. 

The resulting core network after applying the redGEM algorithm is identical in both 

cases (S matrix size 424 x 606).  The difference in size lies in the post processing of the 

model after the lumped reaction calculations.  
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                                                                Table 9: Reduced models’  characteristics 

                        

 

The product molecules’ flux range appears to be more constrained in the case of the 

original GEM resulting in lower maximum production yields compared to both the 1 

per BBB and the Smin models (Figure 19). This points out that reactions belonging to 

subsystems excluded from the reduced core network, pose a significant extra 

constraint in the product yields. Even though, the reduced models appear to reach 

higher possible levels of hydrocarbons production, the Smin model is more consistent 

with the original model that the 1 per BBB. The Smin model maximum yields for the 

different species seem to be sensitive to both the saturation level and the chain length, 

exhibiting a similar behaviour to the original GEM, while the 1 per BBB model appears 

to be saturation-insensitiveTable 10. The Smin reduced model appears to be more 

consistent with the original GEM in terms of maximum biomass and product yields. 

Henceforth, the model used for the analyses and manipulations will be the Smin 

reduced model.  
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                                   Figure 19 Flux variability comparison between the original model and the two reduced. 

 

Table 10: The maximum attainable fluxes and Yields for all the fatty-acid derived products of interest. The 
calculations are made for glucose as sole carbon source and glucose uptake rate: 5 mmol∙gDCW-1∙h-1. The 
calculations are made for the Smin reduced GEM. 

Product 
Maximum production 
flux(mmol∙gDCW-1∙h-1) 

YP/S 

(mol P/mol S) 
YP/S 

(g P/g S) 

n-Tridecane 1,425 0,285 0,292 

n-Pentadecane 1,247 0,249 0,294 

1-Pentadecene 1,151 0,230 0,269 

n-Heptadecane 1,108 0,222 0,296 

1-Heptadecene 1,032 0,206 0,273 

1-Tetradecanol 1,425 0,285 0,339 

1-Hexadecanol 1,247 0,249 0,335 

Hexadecenol 1,151 0,230 0,307 

1-Octadecanol 1,108 0,222 0,332 

Octadecenol 1,032 0,206 0,307 

 

 

 

The Smin model contains 41  sets of lumped reactions resulting in the production of 

41 BBBs. The number of alternative minimum sized reaction subsystems that result in 

a building bloc, as well as, the number of unique lumped reactions (Table 11) varies 

between the BBBs. For biomass components like mannan  (Smin=6)  and glucogen 

(Smin=4)  there is only one unique lumped reaction identified for their production 

while for the amino acid isoleucine (ile-L) there are 24 unique alternatives (Smin=17) .  
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Table 11: Number of alternative lumped reactions added in the reduced model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 Smin reduced model consistency checks 
In order to investigate whether the reduced model is consistent with the original, we 

compared the flux variability of reactions belonging to different subsystems after the 

thermodynamic constraints were imposed. In Figure 20 we observe that the allowed 

variability of some key enzymatic reactions of Glycolysis appear to be almost identical 

and slightly more constrained for the reduced model (TDH), while other reactions such 

as FBA exhibit significant differences. We have to denote that while most of the 

reactions participating in the fatty acid synthesis and degradation subsystems follow 

Biomass Building Block 
Number of alternative lumped 

reactions 

13BDglcn, glucogen, mannan, 

pa_SC, pc_SC, pe_SC, ps_SC, 

ptd1ino_S, ribflv, tre 

1 

ala-L, asp-L, cys-L, ergst, glu-L, 

gly, phe-L, ser-L, val-L 
2 

gmp 3 

amp, asn-L, gln-L, leu-L, met-L, 

pro-L, thr-L, triglyc_SC, trp-L, tyr-L 
4 

dtmp 5 

dcmp 7 

cmp, his-L, lys-L, ump 8 

damp, dgmp 9 

arg-L 12 

zymst 18 

ile-L 24 



 
 

   60 
 

the same pattern between the two models, the maximum achievable flux in the case 

of the reduced model is considerably lower. A reduced model that contains further 

subsystems and a higher degree of connectivity is expected to yield in a more 

consistent version that represents better the predictive capacity of the original GEM.   

 

 

Figure 20: Flux variability comparison for key reactions of the Glycolysis (right) and Fatty acid synthesis and 
degradation (left) between the original and the reduced model. 

We identified 176 (Table 12) common genes between the original and the reduced 

model, with each gene corresponding to one or more reactions. We performed single-

gene deletions to both models and compared the results. As it is expected the lethal 

single-gene knock-outs appear to be more in the case of the reduced model since 

there are less rewiring alternatives. Glycolysis is the only refueling alternative for the 

reduced model, explaining why eight single-gene deletions located in glycolysis 

subsystem, appear to be lethal for the reduced model and not for the original GEM. 

We did not detect any false-positive single-gene deletion between the rest of the 

subsystems initially chosen for the reduction.  
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Table 12: Gene Essentiality check for the original GEM and the reduced model 

Subsystem 

Number of lethal gene 

K.Os 

GEM rGEM 

Fatty Acid Biosynthesis 3 3 

Fatty Acid Degradation 4 4 

Fatty Acid Elongation 4 4 

Glycolysis 0 8 

Tyr, Trp and Phe 

Metabolism 
0 1 

Ox.Phosphorylation 0 1 

Phospholipid Biosynthesis 1 0 

Transport/Other 3 7 

Total 15 28 

 

 

 

5.2.4 Flux variability comparison under Biomass and Product yield flux 

constraints 
The two extreme cases exhibit, as it was expected, very different behaviors. Glycolysis 

is the only refueling alternative for the metabolic network in the reduced model case. 

Having the same glucose consumption in both cases explains why most glycolytic 

reactions appear to be so constrained. Enzymatic complexes catalyze many of the 

reactions participating in lipids metabolism. The same complexes catalyze the same 

reaction for lipids of different chain length. As it was expected, the synthesis, 

elongation and degradation reactions variability depends on the product we are 

maximizing each time. In that sense, when n-tridecane was set to be the main product 

of the overproducing strain, the reactions including lipid-related molecules of carbon 

chain size less or equal to 14 appear to reach higher ranges while for chain size greater 

than 14 are close to zero.  The degradation for the overproducing strain follows the 

exactly opposite behavior. The biomass proliferating strain in all cases exhibits a 

similar behavior and the maximum attainable flux remains low.   
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Figure 21: Glycolysis fluxes variability comparison for a n-tridecane overproducing strain(red) and a proliferating 
strain (green) the gray bar denotes the flux variability for the unconstrained model. 

 

 

Figure 22: Mitochondrial Fatty acid biosynthesis fluxes variability comparison for a n-tridecane overproducing 
strain(red) and a proliferating strain (green) the gray bar denotes the flux variability for the unconstrained model. 
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Figure 23: Fatty acid biosynthesis  fluxes variability comparison for a n-tridecane overproducing strain(red) and a 
proliferating strain (green) the gray bar denotes the flux variability for the unconstrained model. 

 

 

Figure 24: Degradation fluxes variability comparison for a n-tridecane overproducing strain(red) and a 
proliferating strain (green) the gray bar denotes the flux variability for the unconstrained model. 
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5.3 Incorporating economic factors onto the Genome-scale 

model 
The production envelopes and pareto fronts for Growth rate versus Revenue and 

Growth rate versus profit, underline that there is a weak growth-coupling between 

the cellular growth and the hydrocarbons, the Total insoluble product and Total 

soluble product fluxes. That means that in the maximum attainable value of the 

biomass reaction there is de facto production of one or more chemicals belonging to 

the aforementioned categories.  The big difference in potential revenues between the 

three cases, is explained by the different prices assigned to the products. The prices 

work as weights on the engineering objective function. The selected soluble products, 

as well as, the alcohol mixtures correspond to specialty chemicals and consequently 

the prices assigned to them are far greater than the fuel price. While the average 

kerosene market price is 520 $/T the market price for high purity fatty alcohol 

mixtures can be almost triple and double for carboxylic acids purposed for food and 

industrial applications. The results suggest that the profit margin is greater when the 

cell factory is reprogrammed to produce specialty chemicals.  

 

Figure 25: Achieved biomass for different allowed values of potential revenue. The maximum revenue achieved by 
hydrocarbons production is approximated to 45M$/Y and for the total insoluble stream almost 180M$/Y for 
almost zero corresponding growth rate. The data shown correspond to the reduced model prior to the 
thermodynamic constrain- this explains the different shape of the coupling-pitch observed at maximum growth.   
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Figure 26: The Upstream process potential net profit for the hydrocarbons stream and the total insoluble products. 
The suggested bio-kerosene producing process appears unable to break-even while the optimistic scenario for the 
total insoluble producing process breaks even for dilution rates D=0.1 h-1 and leaves a margin of 10 M$ for the 
downstream process for very high retention times.   

 

 

 

Figure 27:The potential revenue for the hydrocarbons, insolubles and all the products. If all the product portofolio 
is exploited, the maximum potential revenue can be up to 280M$/Y 
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Figure 28: Production envelope for the hydrocarbons potential revenue. The total hydrocarbon flux exhibits weak 
growth coupling. Meaning that for zero biomass production, the organic flux does not necessarily attains non-zero 
values, while for maximum biomass production the total organic flux obtains non-zero values. The production 
envelop corresponds to the reduced model after the thermodynamic constraints are imposed. 

 

 

The hydrocarbons’ potential revenue exhibits a weak growth-coupling behaviour 

meaning that for zero biomass production the flux comprising of all the hydrocarbons 

in the model does not have to be non-zero while for maximum biomass the fluxes’ 

value is definitely greater than zero. In order to identify whether a single alkane or 

alcohol is behind this behaviour we plotted the production envelopes for the 

individual alkanes and alcohols as well as the total alkanes flux and the total alcohols 

flux (Figure 29). It appears that while the individual alkane production reactions are 

not growth coupled the total flux is. A possible explanation to that lies to the fact that 

alkanes comprise the main drain for AcCoA-derived molecules. In higher biomass 

production rates the alkane reactions are needed to balance the higher fatty acid 

production. The fatty-alcohol production fluxes do not exhibit the same behaviour, 

neither individually nor in total.  
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Figure 29: Comparative production envelopes for individual Alkanes, individual alcohols, Total Alkanes and total 
alcohol flux. While the individual reactions do not appear to be growth-coupled, the total alkane flux exhibits 
growth-coupled behaviour. 

 

As showcased in the production envelope for the hydrocarbon stream potential 

revenue, for D=0.1 h-1 the revenue lies between the two extreme values of 42M$/Y 

and 0M$/Y. Attempting to identify key fluxes that differentiate between the two 

extreme states we conducted a flux variability analysis, where the fluxes variability of 

the upper extreme state (growth rate set to 0.1 and revenue to 42M$/Y) were 

compared against the lower extreme state (growth rate set to 0.1 and revenue to 

0M$/Y) (Figure 30). The analysis identified that the FDH reaction catalysed by formate 

dehydrogenase appears to obtain its maximum values 𝑣 ∈ {0.59,1.13} in the case of 

maximum revenue and lower-ranged values for zero revenue 𝑣 ∈ {0.59,0.43}. 
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Figure 30:The two boundary revenue conditions for D=0.1h-1.The upper limit is 42M$ while the lower is 0M$. 

 

As an attempt to simulate an FDH upregulated strain (FDH↑) we will constrain the 

reaction to take values 𝑣 ∈ {0.8,1.13} . While this strain is able to achieve lower 

maximum growth rates, the potential revenue from hydrocarbons, thus the 

hydrocarbon production, is strongly coupled with the cellular growth (Figure 31).  

 

 

Figure 31: Production envelope for the hydrocarbons potential revenue for the initial strain and the FDH↑ strain. 
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Figure 32: Production flux envelope for the total  insoluble products’ stream for the initial strain and the FDH↑ 
strain. 

 

5.4 Strain design algorithm  
The OptKnock-based strain design algorithm was used to identify reaction 

eliminations that would result in coupling of the growth rate with the insoluble stream 

potential revenue inside the Dilution rate working-region. Although the production of 

the total stream is already growth-coupled as it was showcased in the previous section, 

we shall target to strong growth coupling that would ensure higher product yields. The 

search was performed for the initial strain and the FDH↑ strain, for the chemostat D 

working region and for the complete allowed region of growth rates. The allowed 

number of eliminations varied from 1-20 and the alternative solutions obtained for 

each length was limited to three.  

We were unable to obtain alternative metabolic strategies that yield in stronger 

growth coupling for both cases and for the total allowed region of growth rates. That 

might be explained from the reduced alternatives that the GEM under study entails. 

Another possible explanation could be the existence of pool reactions in the fatty acids 

subsystems that restrain eliminations that would yield in strong growth-coupling. The 

set of pool reactions is considered transports thus, it is excluded from the search. 

Furthermore, better results might be obtained for more thorough search comprising 

of larger size of allowed deletions and more iterations, while bearing in mind that a 

big number of deletions might be practically infeasible. 

The inclusion of the design algorithm in the workflow procedure is incremental. The 

strains to be tested and optimized with ALE in the lab have to exhibit growth-coupled 

behaviour for the production of the desired chemical. The suggested reaction 

eliminations suggested by the algorithm, even though do not yield in stronger coupling 

or improved yield will serve as a pool of potential metabolic strategies.  
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We will test whether this pool of suggested eliminations will have any impact on the 

downstream cost. The reaction elimination radically changes the solution space 

leading to possible alterations in the exit stream’s estimated composition.  

 

Strategy 
No 

Number of 
deletions 

FDH ↑ Deletions 

0 0 No Initial strain  

1 1 No SeFADO17_2_x 

2 1 No POT1_C10 

3 1 No POT1_C12 

4 2 No POT1_C10, POT1_C12 

5 2 No SeFADO17_1_x, SeFADO17_2_x 

6 2 No POT1_C10, POT1_C14 

7 3 No POT1_C10, POT1_C12, POT1_C14 

8 3 No POT1_C10, POT1_C12, POT1_C16 

9 3 No POT1_C10, POT1_C12, POT1_C18 

10 4 No POT1_C10, POT1_C12, POT1_C14, POT1_C16 

11 4 No POT1_C10, POT1_C12, POT1_C14, POT1_C18 

12 4 No POT1_C10, POT1_C12,POT1_C14, HFA1 

13 5 No POT1_C12, HFD1, FOX2_a, FOX_2b, POX_C12 

14 5 No POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18 

15 5 No POT1_C10, POT1_C12, POT1_C14, POT1_C16, HFA1 

16 7 No 
POT1_C10, POT1_C12, POT1_C14, POT1_C16,POT1_C18, 
HFA1, POX1_C10 

17 7 No 
POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
HFA1, POX1_C12 

18 7 No 
POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
POX1_C10, POX1_C12 

19 8 No 
POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
HFA1, POX1_C10, POX1_C12 

20 1 FDH ↑ SeFADO17_2_x 

21 1 FDH ↑ SeFADO17_1_x 

22 1 FDH ↑ POT1_C10 

23 3 FDH ↑ SeFADO15_2_x, SeFADO17_1_x, SeFADO17_2_x 

24 3 FDH ↑ POT1_C12, NADH2-u6cm, SeFADO17_2_x 

25 3 FDH ↑ POT1_C10, SUCD2_u6m, FAS1_C8a 

26 5 FDH ↑ POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18 

27 5 FDH ↑ POT1_C10, POT1_C12, POT1_C14, POT1_C16, HFA1 

28 5 FDH ↑ POT1_C10, POT1_C12,POT1_C14, POT1_C16, POX1_C10 

29 7 
FDH ↑ 

POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
HFA1, POX1_C10 

30 7 
FDH ↑ 

POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
HFA1, POX1_C12 

31 7 
FDH ↑ 

POT1_C10, POT1_C12, POT1_C14, POT1_C16, POT1_C18, 
HFA1, POX1_C14_1 

32 0 FDH ↑   
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The POT1 is an Acetyl-CoA acyl transferase enzyme, located in yeast peroxisome and 

participates in beta- oxidation process (fatty acids degradation). The enzyme catalyses 

the degradation of a 3-oxoacyl- CoA molecule to acetyl-CoA and the according acyl-

CoA molecule. Given that beta-oxidation is a competing pathway to the heterologous 

hydrocarbons producing pathways, since both have fatty acids as a starting point, 

disruption of beta-oxidation process might be proven useful for yield and titer 

maximization. Since the enzyme’s substrates vary in chain-length, while the proposed 

strategies indicate elimination of chain-length-specified  reactions, a possible 

realization of such strategies would include enzyme engineering of POT1 to exhibit 

low affinity towards the chain-lengths we shall avoid.  

The POX1 enzyme participates, as well, in beta-oxidation further oxidizing acyl-CoA 

compounds. HFA1 enzyme, located in mitochondria, is responsible for the 

mitochondrial conversion of Acetyl-CoA to Malonyl-CoA.  

 

5.5 GEM sampling  
The sampling procedure was followed for the total pool of metabolic strategies 

applied in the initial strain and the FDH↑ strain. Here, for brevity, we will present and 

compare the sampling results for the initial strain and the FDH↑ strain. First, we will 

show the potential revenue of the insoluble products’ stream and the average 

kerosene composition in the case of the initial strain. Secondly, we will follow the 

same procedure for the FDH↑ strain and present a brief comparison between the 

individual product fluxes in the two cases.  

For a dilution rate D=0.09-0.11 h-1 the approximated potential revenue for the initial 

strain is 15 M$/Y(Figure 33). The average kerosene based on the fluxes distribution for 

the various samples  

 

Figure 33:Potential insoluble products'  revenue  for different samples of the initial strain. The mean revenue is 
approximately 15 M$/Y while the std is 4.9.  
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Figure 34:Kerosene composition (initial strain). Heptadecane appears to be the most abundant component of the 
kerosene produced from the initial strain,  accounting for the 33% of the total stream. The rest of the 
components: Tridecane(21%), Pentadecene(18%), Pentadecane(17%), Heptadecene (11%). 

For a dilution rate D=0.09-0.11 h-1 the approximated potential revenue for the FDH↑ 

strain is 36 M$/Y (Figure 35). The average kerosene based on the fluxes distribution 

for the various samples mostly consists of tridecane (82%), n-pentadecane comes 

second accounting for 16% of the total kerosene product while n-heptadecane and 

the saturated hydrocarbons account for the rest 2%.  

 

 

 

Figure 35:Potential insoluble products'  revenue  for different samples of the FDH upregulated strain. The mean 
revenue is approximately 36 M$/Y while the std is 1.1. 
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Figure 36: Kerosene composition (FDH↑). Tridecane covers 82% of the total product. Pentadecane comes second 
in abundancy with 16%.  

As estimated by the sampling procedure, FDH↑ appears to double the potential 

revenue while radically altering the profile of the produced kerosene. Tridecane is 

favoured over heptadecane while pentadecane, in both cases, remains in comparable 

levels. As it appears from the probability-flux plot (Figure 37), apart kerosene related 

products (1 and 3) the rest appear to drop.  

 

 

Figure 37 : Probability-Flux diagrams for the 6 distillation products 
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5.6 Minimum downstream cost estimation 
In this section, we will present the preparatory calculations for the sequencing 

problem, including the task columns basic characteristics. Based on the column 

characteristics, we will proceed with the annual CAPEX estimations. Furthermore, we 

will showcase that the sequence identified as optimal using the conceptual cost is 

consistent with the CAPEX estimations for all the alternative separation routes. The 

calculations presented here refer to the initial strain without any further modifications.  

5.6.1 Downstream cost estimation for the initial strain 
Parameters estimation 

The samples were clustered in 15 groups using the k-means algorithm as described in 

the sampling procedure. The calculations for the Molar flow are based in the upstream 

process presented, for a 994 T/day glucose supply (240 g/L). For each alternative 

metabolic strategy cluster set, we calculate the molar fraction of the stream 

components and the total molar flow.  

Table 13: Exit stream composition for the various clusters 

Product 
Cluster No.(molar fraction) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

0,133 0,475 0,052 0,065 0,216 0,067 0,196 0,219 0,049 0,306 0,050 0,159 0,253 0,106 0,029 

0,501 0,063 0,129 0,029 0,080 0,074 0,071 0,087 0,045 0,085 0,015 0,089 0,045 0,033 0,030 

0,053 0,054 0,101 0,045 0,062 0,116 0,076 0,057 0,144 0,114 0,127 0,152 0,035 0,083 0,065 

B 0,027 0,036 0,104 0,009 0,021 0,027 0,125 0,040 0,053 0,042 0,031 0,033 0,324 0,047 0,019 

C 
0,029 0,033 0,056 0,036 0,275 0,104 0,064 0,037 0,025 0,055 0,041 0,062 0,063 0,030 0,012 

0,042 0,065 0,122 0,715 0,054 0,259 0,076 0,243 0,414 0,094 0,537 0,104 0,080 0,390 0,666 

D 0,037 0,049 0,072 0,011 0,031 0,070 0,074 0,034 0,024 0,054 0,023 0,059 0,056 0,042 0,020 

E 0,066 0,105 0,126 0,044 0,076 0,104 0,109 0,136 0,099 0,079 0,073 0,147 0,030 0,101 0,072 

F 0,112 0,121 0,239 0,045 0,184 0,180 0,210 0,148 0,148 0,172 0,104 0,195 0,114 0,168 0,086 

Molar 
Flow 

(kmol/h) 
12,223 10,024 7,128 18,777 8,607 9,344 6,662 8,474 12,473 6,794 14,565 6,375 11,303 11,574 15,742 

Cluster 
Size 

165 265 686 150 321 198 483 180 249 632 202 831 68 282 288 

 

For the first cluster, after we estimate the top and bottom composition, based on the 

feed and the recovery matrix, we can first apply the Antoine equation to calculate the 

Top and Bottom temperatures and the components’ volatilites and then calculate the 

columns’ basic characteristics using the FUG shortcut methods. We assume that the 

components are 98% recovered to the product fraction they belong and the rest 2% is 

distributed to the neighbouring products.  
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Table 14: The product fraction calculations based on the recovery matrix. The results correspond to the task 1 
(including the products ABSDEF) and the relative volatility is calculated for an A/B separation (1-tetradecanol is 
the Light-Key component). 

i Component Xif 

Recovery fractions in Product Relative 
Volatility  A B C D E F 

1 n-tridecane 0,1334 0,98 0,02 0 0 0 0 2,0986 

2 1-pentadecene 0,5012 0,98 0,02 0 0 0 0 1,0875 

3 n-pentadecane 0,0529 0,98 0,02 0 0 0 0 1,0387 

4 1-tetradecanol 0,0266 0,01 0,98 0,01 0 0 0 1,0000 

5 1-heptadecene 0,0291 0 0,01 0,98 0,01 0 0 0,5576 

6 n-heptadecane 0,0418 0 0,01 0,98 0,01 0 0 0,5345 

7 1-hexadecanol 0,0371 0 0 0,01 0,98 0,01 0 0,3107 

8 1-octadecanol 0,0664 0 0 0 0,01 0,98 0,01 0,0972 

9 zymosterol 0,1117 0 0 0 0 0,02 0,98 0,0001 

Product fractions (Xip): 0,6739 0,0405 0,0701 0,0377 0,0676 0,1101  
Feed flowrate 12,2 kmol/h   

 

After calculating the distillate and bottom compositions, we can calculate the Top and 

Bottom temperatures corresponding to the condenser and reboiler temperatures 

respectively (Figure 38).  

 

 

Figure 38: The reboiler and condenser temperatures as calculated for the 35 different tasks. 

The shortcut calculations yield in the necessary parameters to 1) construct the 

sequencing problem and 2) estimate the annual venture cost.  
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Table 15: Estimated parameters for the sequencing problem construction. The reflux ratio corresponds to 1.1Rmin 

as calculated by the second part of the Underwood equation. 

Task 
Theoretical 

Trays 
Reflux 

ratio (R) 

Vapour to 
feed ratio 

(V/F) 

Cold utility 
cost index 

Hot utility 
cost index 

1 497 13,102 9,503 0,017 0,279 

2 40 2,184 2,274 0,017 0,280 

3 44 1,604 2,043 0,017 0,281 

4 23 1,226 1,831 0,017 0,282 

5 3 1,075 1,847 0,017 0,284 

6 497 13,102 10,679 0,017 0,279 

7 40 2,184 2,556 0,017 0,280 

8 44 1,604 2,296 0,017 0,281 

9 23 1,226 2,057 0,017 0,282 

10 38 5,373 0,523 0,017 0,288 

11 42 2,773 1,121 0,017 0,299 

12 22 1,504 1,034 0,017 0,304 

13 3 1,065 1,280 0,017 0,314 

14 497 13,101 11,557 0,017 0,279 

15 40 2,183 2,765 0,017 0,280 

16 44 1,603 2,483 0,017 0,281 

17 38 5,996 0,894 0,017 0,288 

18 42 2,802 1,772 0,017 0,299 

19 22 1,510 1,626 0,017 0,304 

20 42 3,388 1,063 0,017 0,305 

21 22 1,618 0,980 0,017 0,310 

22 3 1,064 1,261 0,017 0,323 

23 497 13,100 12,111 0,017 0,279 

24 40 2,178 2,894 0,017 0,280 

25 38 5,936 1,320 0,017 0,288 

26 42 2,751 2,613 0,017 0,299 

27 42 3,390 1,741 0,017 0,305 

28 22 1,616 1,604 0,017 0,310 

29 21 2,425 0,583 0,017 0,324 

30 3 1,055 0,994 0,017 0,351 

31 496 13,087 13,288 0,017 0,279 

32 38 5,468 1,701 0,017 0,288 

33 42 3,286 2,756 0,017 0,305 

34 21 2,415 1,205 0,017 0,324 

35 3 1,041 0,765 0,017 0,411 

5.6.2 Distillation task sequence for the minimum annual venture cost 
The optimization problem solved for the Cluster No.1, identified the sequence 1-10-

20-29-35 as the one resulting in minimum total cost for a value TCOST= 3.996 M$/Y 
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Figure 39: The identified task sequence that minimizes the total cost. With red the identified tasks 1-10-20-29-35 
that result in minimum conceptual total cost TCOST= 3.996 M$/Y. 

Table 16: Estimated cost variables from the conceptual cost model for the selected tasks. 

Estimated  
variables 

Task 1 Task 10 Task 20 Task 29  Task 35 

𝑭𝒍𝒐𝒘𝒓𝒂𝒕𝒆  
(𝒌𝒎𝒐𝒍/𝒉) 

12,223 3,986 3,491 2,634 2,173 

𝑪𝒐𝒔𝒕𝒄𝒐𝒍 (𝑲$) 10997,312 584,919 663,476 324,175 46,721 

𝑪𝒐𝒔𝒕𝒇𝒊𝒙(𝑲$) 841,500 789,947 786,847 781,483 778,598 

𝑪𝒐𝒔𝒕𝒖𝒕𝒊𝒍(𝑲$/𝒀) 150,567 2,723 4,905 2,057 2,374 

𝑪𝒐𝒔𝒕𝒕𝒐𝒕(𝑲$/𝒀) 2885,333 320,318 339,930 257,464 193,023 

 

Table 17: Distillate composition for the identified as minimum cost tasks 

Component 
xd 

Task 1 Task 10 Task 20 Task 29 Task 35 

1 0,194 0,002 0,000 0,000 0,000 

2 0,729 0,007 0,000 0,000 0,000 

3 0,077 0,001 0,000 0,000 0,000 

4 0,000 0,963 0,000 0,000 0,000 

5 0,000 0,011 0,409 0,000 0,000 

6 0,000 0,016 0,586 0,000 0,000 

7 0,000 0,000 0,005 0,982 0,000 

8 0,000 0,000 0,000 0,018 0,966 

9 0,000 0,000 0,000 0,000 0,034 
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Table 18: Bottom composition for the identified as minimum cost tasks. 

Component 
xb 

Task 1 Task 10 Task 20 Task 29 Task 35 

1 0,008 0,000 0,000 0,000 0,000 

2 0,031 0,000 0,000 0,000 0,000 

3 0,003 0,000 0,000 0,000 0,000 

4 0,081 0,001 0,000 0,000 0,000 

5 0,089 0,101 0,001 0,000 0,000 

6 0,128 0,145 0,002 0,000 0,000 

7 0,114 0,130 0,170 0,002 0,000 

8 0,204 0,232 0,308 0,370 0,006 

9 0,342 0,391 0,518 0,628 0,994 

 

Table 19: Basic design and operating characteristics for the selected columns. 

Characteristic Task 1 Task 10 Task 20 Task 29 Task 35 

Number of Trays 497 38 42 21 3 

Reflux ratio 13,102 5,373 3,388 2,425 1,041 

Vapour to feed 
ratio 

9,503 0,523 1,063 0,583 0,765 

Treb (oC) 331 356 430 647 500 

Tcond (oC) 260 274 301 331 470 

 

In a similar manner, we estimate the optimal separation sequences and the annualized 

total cost for the rest of the clusters (Table 20). We observe that the prominent favored 

sequence for the total of the clusters is 1-10-20-29-35, which is the same as the one 

identified as optimal for the Cluster No. 1. Moreover, the clusters 6 and 15 

differentiate from the prominent behavior since the identified as optimal sequence in 

these cases is 1-11-20-32-35. In Figure 40 we present the relative annualized cost 

results as for the cluster size.  
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Table 20: Complete cost optimization results for the initial strain clusters. 

Cluster 
No. 

Optimal 
sequence 

Total Cost 
(k$/Y) 

1 1-10-20-29-35 3996,066 

2 1-10-20-29-35 2670,949 

3 1-10-20-29-35 3537,728 

4 1-10-20-29-35 2518,198 

5 1-10-20-29-35 2669,436 

6 1-11-29-32-35 3143,838 

7 1-10-20-29-35 2737,717 

8 1-10-20-29-35 2699,478 

9 1-10-20-29-35 3087,186 

10 1-10-20-29-35 2878,596 

11 1-10-20-29-35 2859,987 

12 1-10-20-29-35 3525,718 

13 1-10-20-29-35 2365,802 

14 1-10-20-29-35 2726,517 

15 1-11-29-32-35 2747,717 

 

 

 

Figure 40: Calculated annualized total (conceptual) cost vs. cluster size. 

5.6.3 Annualized capital cost estimation 
In order to extract the average cost for the alternative engineered strains and compare 

the strategies we proceed with detailed capital cost estimations based on the cost 

model and assumptions found in Appendix. We assume that the utilities cost remain 

the same as calculated on the previous section.  
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Table 21: Capital cost estimation for the optimal sequence of the cluster No.1 

Cost variable Task 1 Task 10 Task 20 Task 29 Task 35 

Distillation column 
annualized capital cost 

(M$/Y) 
12,517 0,399 0,610 0,273 0,107 

Distillation column trays and 
tower internals annualized 

capital cost (M$/Y) 
26,186 0,262 0,479 0,164 0,051 

Heat exchangers and 
furnace capital cost (M$/Y) 

0,042 0,001 0,002 0,001 0,111 

Distillation column total 
annualized CAPEX (M$/Y) 

38,745 0,662 1,091 0,438 0,268 

Utilities annual cost (k$/Y) 139,890 6,993 13,001 6,534 6,184 

Total annualized CAPEX 
(M$/Y) 

77,630 1,330 2,195 0,883 0,542 

 

Table 22: Cost Estimation for the initial strain clusters 

Cluster 
No. 

Distillation 
column 

annualized 
capital cost 

(M$/Y) 

Distillation 
column trays and 
tower internals 

annualized capital 
cost (M$/Y) 

Heat exchangers and 
furnace capital cost 

(M$/Y) 

Utilities annual 
cost (k$/Y) 

Total annualized 
CAPEX (M$/Y) 

1 13,906 27,142 0,156 0,173 41,376 

2 5,642 6,893 0,170 0,068 12,773 

3 9,299 14,970 0,110 0,084 24,463 

4 6,342 7,560 0,173 0,137 14,213 

5 5,439 6,471 0,127 0,060 12,097 

6 8,311 12,165 0,125 0,095 20,697 

7 5,700 7,232 0,120 0,058 13,110 

8 5,596 6,778 0,144 0,064 12,582 

9 11,334 16,642 0,324 0,203 28,503 

10 6,003 7,786 0,126 0,059 13,974 

11 8,501 12,399 0,148 0,135 21,182 

12 8,362 12,813 0,124 0,070 21,369 

13 6,176 7,927 0,134 0,116 14,354 

14 6,843 9,042 0,140 0,092 16,117 

15 7,383 9,692 0,152 0,129 17,356 
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Figure 41: Estimated annualized total (real) cost vs. cluster size. 

 

 

Figure 42: Estimated annual potential revenue vs. cluster size. 
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Figure 43: Comparative presentation of the annual cost demands versus the attainable revenue for the 15 clusters 
of the initial strain. 

We proceed with calculating the annualized total downstream cost and total annual 

revenue for the initial strain: 

𝑇𝐶̅̅̅̅ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 =∑
𝑊(𝑘)

𝑛
∙ 𝑇𝐶(𝑘)

15

𝑘=1

= 18,84 ± 6,41 𝑀$/𝑌 

𝑇𝑅̅̅ ̅̅ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 =∑
𝑊(𝑘)

𝑛
∙ 𝑇𝑅(𝑘) = 14,99 ± 3,65 𝑀$/𝑌

15

𝑘=1

 

 

5.6.4 Consistency check for the conceptual cost model 
We will evaluate whether the distillation task sequence identified by the algorithm as 

optimal based on the conceptual cost value, is consistent with the actual estimated 

annual capital cost for the different alternative routes. For the 6-products distillation 

problem, there are 42 alternative identified routes (Table 23) that lead to full 

separation.  

The consistency check was performed for the 15 feed streams corresponding to the 

initial strain (Table 13: Exit stream composition for the various clusters). We calculated the 

annual downstream cost for the 42 alternative routes and examined whether the 

identified as optimum from the sequencing optimization program holds the minimum 

value.  

The total downstream cost calculations are in accordance with the optimization 

results for all the clusters  except cluster 6 and 15 ; the sequence identified as the most 

cost-efficient by the program in both cases is the sequence 6 while the cost estimation 

underlines the sequence 5 as the one with the minimum cost. The program-identified 
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sequence is 0.4 M$/Y and 0.57M$/Y greater than the identified optimal for the 

clusters 6 and 15 respectively.  

 

  

 

 

 

Figure 44:Consistency check for the cluster No 1. The identified as optimal sequence agrees with the estimated 
one 

 

Figure 45: Consistency check for the cluster No 6. The identified as optimal sequence is not in accordance with the 
estimated one. The program identified sequence 6 as the optimal sequence while the cost estimations underline 5 
is the one with the minimum cost. Anyhow, the difference between the two sequences can be assumed negligible. 
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Table 23: The alternative distillation task routes for a 6-product stream. 

No Route 

1 1 - 10 - 20 - 29 - 35 

2 1 - 10 - 20 - 30 - 34 

3 1 - 10 - 21 - 33 - 35 

4 1 - 10 - 22 - 27 - 34 

5 1 - 10 - 22 - 28 - 32 

6 1 - 11 - 32 - 29 - 35 

7 1 - 11 - 32 - 30 - 34 

8 1 - 12 - 35 - 25 - 33 

9 1 - 12 - 35 - 26 - 32 

10 1 - 13 - 17 - 27 - 34 

11 1 - 13 - 17 - 28 - 33 

12 1 - 13 - 18 - 32 - 34 

13 1 - 13 - 19 - 25 - 33 

14 1 - 13 - 19 - 26 - 32 

15 2 - 31 - 20 - 29 - 35 

16 2 - 31 - 20 - 30 - 34 

17 2 - 31 - 21 - 33 - 35 

18 2 - 31 - 22 - 27 - 34 

19 2 - 31 - 22 - 28 - 33 

20 3 - 23 - 32 - 29 - 35 

21 3 - 23 - 32 - 30 - 34 

22 3 - 24 - 31 - 29 - 35 

23 3 - 24 - 31 - 30 - 34 

24 4 - 35 - 14 - 25 - 33 

25 4 - 35 - 14 - 26 - 32 

26 4 - 35 - 15 - 31 - 33 

27 4 - 35 - 16 - 23 - 32 

28 4 - 35 - 16 - 24 - 31 

29 5 - 6 - 17 - 27 - 34 

30 5 - 6 - 17 - 28 - 33 

31 5 - 6 - 18 - 32 - 34 

32 5 - 6 - 19 - 25 - 33 

33 5 - 6 - 19 - 26 - 32 

34 5 - 7 - 31 - 27 - 34 

35 5 - 7 - 31 - 28 - 33 

36 5 - 8 - 34 - 23 - 32 

37 5 - 8 - 34 - 24 - 31 

38 5 - 9 - 14 - 25 - 33 

39 5 - 9 - 14 - 26 - 32 

40 5 - 9 - 15 - 31 - 33 

41 5 - 9 - 16 - 23 - 32 

42 5 - 9 - 16 - 24 - 31 
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5.6.5 Comparative results for the alternative metabolic strategies 
Here we present the according results for the alternative tested metabolic strategies. 

We observe that the strains can be clustered in two distinct groups. The FDH↑ 

engineered strains exhibit double profit with respect to the initial strain constraining 

the upregulated strains at the far top of the diagram. Furthermore, we observe that 

the average cost to obtain the desired portfolio appears to be lower for the 

upregulated strains. A possible explanation could be the rewiring of the fluxes towards 

the lighter products (especially towards tridecane). After the first column that the light 

kerosene fraction is removed, the remaining stream of minor flowrates can be easily 

separated.  

The different metabolic strategies applied to the initial strain without upregulation 

(bottom-right) do not appear to improve the separation cost, although in most cases 

the attainable potential revenue appears to reach higher levels than the initial strain.  

 

 

 

Figure 46: Comparing the Engineered strains estimated relative revenue and relative downstream cost with respect 
to the initial strain. 
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Table 24: Comparison of the mean downstream cost and mean revenue for the alternative engineered strains. 

Strategy Mean downstream cost Mean revenue Revenue - Cost 
 

 
Efficiency 

0 18,84 ± 6,41 14,99 ± 3,65 -3,85 
 

0% 

1 23,22 ± 11,35 14,71 ± 3,09 -8,51 
 

-121% 

2 24,87 ± 13,57 14,10 ± 3,65 -10,77 
 

-180% 

3 21,86 ± 11,15 15,65 ± 8,57 -6,22 
 

-61% 

4 30,34 ± 21,25 16,73 ± 4,13 -13,61 
 

-253% 

5 30,33 ± 17,30 15,42 ± 5,04 -14,91 
 

-287% 

6 23,92 ± 12,35 18,53 ± 2,78 -5,39 
 

-40% 

7 26,56 ± 13,82 21,44 ± 6,41 -5,11 
 

-33% 

8 25,59 ± 11,70 14,88 ± 3,01 -10,71 
 

-178% 

9 19,24 ± 9,13 13,39 ± 5,97 -5,85 
 

-52% 

10 29,54 ± 13,44 17,43 ± 5,73 -12,11 
 

-214% 

11 26,88 ± 32,27 24,04 ± 14,14 -2,84 
 

26% 

12 28,67 ± 14,35 17,77 ± 3,59 -10,90 
 

-183% 

13 17,81 ± 6,88 14,19 ± 4,07 -3,62 
 

6% 

14 18,73 ± 5,62 13,98 ± 3,16 -4,75 
 

-23% 

15 31,52 ± 20,95 14,04 ± 5,08 -17,49 
 

-354% 

16 24,52 ± 12,69 15,20 ± 5,56 -9,32 
 

-142% 

17 30,50 ± 20,23 16,29 ± 3,53 -14,21 
 

-269% 

18 18,60 ± 6,14 16,30 ± 4,87 -2,30 
 

40% 

19 28,35 ± 16,94 15,16 ± 4,29 -13,18 
 

-242% 

20 16,36 ± 4,84 33,15 ± 1,06 16,79 
 

536% 

21 15,14 ± 5,28 33,60 ± 1,77 18,46 
 

579% 

22 15,01 ± 5,05 33,26 ± 0,95 18,25 
 

574% 

23 14,72 ± 6,49 33,03 ± 1,34 18,31 
 

576% 

24 11,55 ± 5,46 33,72 ± 2,60 22,16 
 

676% 

25 16,13 ± 5,27 34,30 ± 1,98 18,17 
 

572% 
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The efficiency comparison among the alternative metabolic strategies is based on the 

difference between the mean revenue and the mean downstream cost. Although the 

feedstock annual price was proven to be the highest among the annual expenses (apx. 

150 M$/Y), it is assumed equal for the different cases. A novel upstream future 

process may provide glucose or alternative carbon sources from non-food biomass to 

much lower prices, enabling the development of a microbial cell factory like the one 

described. Indicatively, if the glucose comes from the NREL upstream process the 

feedstock cost may almost to half34. The present study aimed to identify strategies 

that reduce the separation cost while preserving high product revenues as a result the 

pseudo-profit value (Profit = Mean Revenue – Mean Downstream Cost) is an accurate 

measure to compare the alternative strategies.  

We observe that the strategies 11, 13, 18 and 20-32 appear to be improved with 

respect to the initial strain. The first three strategies correspond accordingly to 4, 5 

and 7 reaction eliminations without FDH upregulation, while the rest correspond to 

the total of the FDH↑ strains for all the different lengths of reaction eliminations. The 

calculated standard deviation in the strains without upregulation appears to obtain 

greater values. This may be explained by the fact that the FDH flux in the case of the 

upregulated strains was constrained to obtain values in a specific smaller range, 

subsequently constraining the solution space.  

The FDH↑ strains exhibit a 5-7 fold potential increase in profit, thus the upregulation 

of the fdh gene appears as a promising strategy towards sustainable kerosene 

biorefineries. The translation of the reaction elimination procedure to real-life 

laboratory techniques encloses some difficulties in the case of lipids metabolism since 

a single enzyme is responsible for the catalysis of different reactions. As a result, a 

simple gene knock-out approach is not applicable. Nevertheless, the identified 

strategies may work as enzyme engineering objectives. For example, the strategy No. 

28 that appears to be the most promising (757% profit increase with respect to the 

initial strain) involves FDH↑ and POT1 reaction eliminations for  substrates of chain 

length: C10, C12, C14, C16 and POX1 for C10. The two enzymes may be engineered to 

26 15,87 ± 5,46 33,40 ± 0,64 17,53 
 

555% 

27 18,81 ± 5,63 33,92 ± 1,03 15,11 
 

492% 

28 8,69 ± 2,79 33,98 ± 1,23 25,29 
 

757% 

29 13,16 ± 6,24 33,67 ± 0,63 20,51 
 

633% 

30 10,88 ± 5,68 34,15 ± 1,71 23,27 
 

704% 

31 13,70 ± 6,19 34,74 ± 1,29 21,04 
 

646% 

32 10,77 ± 5,06 32,74 ± 0,88 21,96 
 

670% 
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exhibit less affinity towards these substrates using directed evolution techniques. 

Alternatively, we could search for corresponding enzymes in different microorganisms, 

which exhibit properties closer to the desired and replace the native yeast enzymes. 

The same thinking can be followed for the rest of the strategies. We have to bear in 

mind though that certain strategies may not lead in viable strains. For instance, the 

disruption of the respiratory chain as indicated in the strategies 24 and 25 is 

potentially not applicable for S.cerevisiae growing in aerobic conditions. The complete 

pool of metabolic strategies shall be tested in the parent GEM context before 

proceeding with experimental verification.  

Chapter 6. Conclusion and Future research  
6.1 Bridging strain design with downstream process synthesis 
In the present study, we achieved to propose a “bridge” between the strain design 

procedures typically followed during the Design module of the DBTL cycle with the 

downstream process synthesis and more specifically for the examined case study the 

distillation-sequencing problem. We displayed that alternative metabolic strategies 

may induce important changes in the fermentation broth attainable compositions that 

directly affect the downstream process expenditures necessary to obtain a specific 

product portfolio. In the following, we will present an overview of the main finding on 

each module of the proposed workflow. Furthermore, we will provide some insights.  

6.1.1 Genome-scale model curation, reduction and analysis  
We developed a GEM that corresponds to a mutant S.cerevisiae strain capable of 

producing kerosene-range hydrocarbons. The model was thermodynamically curated 

and reduced. The reduced model exhibits a maximum growth rate μ=0.4850 h-1 under 

aerobic conditions and glucose as the only carbon source. The estimated maximum 

theoretical yields (mol Product/mol Glucose) for n-tridecane, n-pentadecane, 1-

pentadecene, n-heptadecane, 1-heptadecene were 0.285, 0.249, 0.230, 0.222, 0.206 

respectively.  

The network changes are directly linked with the extracellular matrix. The extracellular 

matrix is closely defined by the GEM since we have assumed that its composition 

depends on the product secretion fluxes. In our case, the extracellular matrix and the 

following portfolio definition took place after the network systematic reduction. The 

resulting extracellular matrix was subsequently reduced as well, simplifying the 

separation but also constraining the portfolio alternative targets. Given the lack of 

experimental data and the nature of our task which was to showcase the connection 

between the strain design and the synthesis this simplification is acceptable. Anyhow, 

in future implementations the reduction step shall maintain a vivid communication 

with the downstream considerations in the sense that the potential alternative 

compositions occurring in the initial GEM shall be maintained in the reduced model. 

The consistency checks in the future reduced models used in the workflow shall 

thoroughly investigate the plurality and the range of the extracellular fluxes.  
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6.1.2 Incorporating economic factors onto the Genome-scale model 
The upstream process assumptions is the key element to translate cellular fluxes to 

stream composition enabling in that way, the rest of the analysis. By assigning market 

prices to the target portfolio chemicals we were able to assess the maximum 

attainable potential revenue. When we valorise the kerosene compounds the 

potential maximum revenue is 45M$/Y and raises up to 180M$/Y when the target 

portfolio contains the total of the insoluble stream products. The revenue values 

exhibit a growth-coupled behaviour since the revenue value that corresponds to 

maximum growth rate is non-zero.  

For  aerobic fermentation in a chemostat array with dilution rate D= 0.1 h-1 , steady 

glucose supply 994 T/day (240 g/L) and glucose uptake rate -5 mmol ∙ gDCW-1 ∙ h-1 we 

observed that the potential revenue from hydrocarbons may fluctuate from 0M$/Y to 

42M$/Y. Comparing the cellular fluxes variability for the two cases we identified that 

FDH↑ upregulation may lead to strong growth-coupling of the hydrocarbons revenue 

reassuring non-zero revenue values.  

The incorporation of economic factors onto the GEM context, enables the extraction 

of useful data concerning the process viability. In the present case study, we verified 

that the feedstock cost remains the most important bottleneck in the upstream 

process. Given that glucose market price is comparable to those of fuels, it is easy to 

understand that specialty chemicals represent a more profitable target market. The 

utilization of alternative non-food competing feedstock stands as the only promising 

direction.  

6.1.3 Strain design algorithm  
The strain design algorithm is the core of the Design module of the DBTL cycle. The 

incorporation of the revenue terms inside the GEM untaps a new dynamic. Using the 

total potential revenue as the engineering objective in an OptKnock-like formulation, 

we can unravel different portfolios that result to the desired properties (e.g. growth-

coupling). We estimate that this approach can be used to simultaneously identify 

promising product combinations to be produced microbially.  In the present study, we 

were not able to identify a metabolic strategy that results in stronger growth-coupling 

of the insoluble stream potential revenue. This is partially due to the existence of pool 

reactions in the lipid metabolism subsystems and the less number of rewiring 

alternatives that the reduced model entails.  

6.1.4 GEM sampling  
In the case study, the alternative metabolic strategies were tested in silico by applying 

the according capacity constraints to the GEM. The sampling procedure was applied 

to assess alternative phenotypic microbial states that correspond to a chemostat array 

with dilution rate D= 0.1 ± 0.01 h-1 and steady glucose supply 994 T/day (240 g/L).  The 

alternative strategies result in different product secretion ranges thus different 

stream composition capacities. For example, the two representative cases of the initial 

strain and the FDH↑ strain exhibit utterly different hydrocarbon production potential. 
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In the second case the alcohols and sterol production drops significantly while the 

estimated revenue doubles. The kerosene produced by the initial strain is rich in n-

hexadecane (33%) with the rest of the components:  21% n-tridecane, 18% 1-

pentadecene, 17% n-pentadecane, 11% n-heptadecene. The FDH↑ strain yields in a 

kerosene mixture where n-tridecane is the most abundant compound (82%) and 

pentadecane is in similar levels to the initial strain produced kerosene (14%).  

6.1.5 Minimum downstream cost estimation 
The downstream process synthesis and cost estimation focused on the separation of 

the stream that contains the insoluble products. For this specific case the 

superstructure formulation can be represented as a distillation supertask problem. 

Using an MILP formulation we identified the minimum separation cost for the 

alternative stream compositions that correspond to the different metabolic strategies. 

We developed an automated matlab set of functions that generates and solves the 

MILP problem using the recovery matrix and the stream initial composition as inputs.  

The Antoine equation is used to estimate the distillation column top and bottom 

temperatures while the FUG shortcut method is applied to calculate the columns’ 

basic operational characteristics. Solution of the problems yield sin a conceptual 

minimum cost estimation for the corresponding stream separation. Conducting a 

consistency check for the initial strain we concluded that the conceptual cost-based 

algorithm is generally in accordance with more detailed cost estimation methods. 

The tool can be expanded to address more complex sequencing problems that take 

into consideration alternative unit operations such as filtration, reverse osmosis, 

chromatography and crystallisation. In that way, we will be able to expand our 

workflow for the production of alternative chemicals and result in more reliable 

downstream cost estimates. 

6.1.6 Promising metabolic strategies  
Applying our developed workflow, we tested in silico 33 alternative metabolic 

strategies and calculated the corresponding mean downstream separation cost and 

mean product revenue. Although the feedstock price in our case study is the highest 

among the expenses our study focuses on separation-product revenue trade-offs.  We 

identified metabolic strategies applied to the initial strain that enhance strain’s 

efficiency up to 26%. The identified metabolic strategies applied at the FDH↑ strain 

yield efficiencies 500-700% for the production of the specific portfolio.  

The most promising identified metabolic strategy corresponds to an FDH↑ strain with 

five reaction deletions: FDH ↑ POT1_C10, POT1_C12, POT1_C14, POT1_C16, POX1_C10 Δ 

that practically disrupt beta-oxidation for fatty acids with chain lengths 10-16 carbon 

atoms. The translation of such strategies to laboratory practice entails an extra level 

of difficulty. Since the same enzyme catalyzes the reaction for substrates of different 

chain lengths, we cannot delete the corresponding gene because that would lead to 

collateral deletion of desired reactions. A possible interpretation of the strategy would 

involve enzyme engineering towards catalysts that exhibit low affinity towards the 
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undesired chain-length substrates. Alternatively, we can search for corresponding 

enzymes from different organisms that exhibit behavior closer to the desired.  

 

6.2 The advanced DBTL cycle 
The proposed workflow can directly assist the typical DBTL cycle. It is evident that the 

application of the workflow requires a valid GEM. The workflow estimations provide 

a range for the fermentation broth composition and the subsequent downstream cost. 

It makes sense that provision of experimental data will further constrain the model 

and improve the accuracy of our calculations. By that, we propose that our workflow 

can work at the interface of Design and Learn modules making sure that the proposed 

metabolic strategies don’t deviate from the minimum cost target.  

6.3 Towards metabolic – technoeconomic models (MTEs)  
Our initial goal was to formulate a problem where stoichiometric matrix is merged 

with all the technoeconomic parameters and variables that frame the bioprocess, 

including the upstream part and the downstream-separation part. In that way we 

would be able to directly identify network interventions that result to maximum total 

profit and estimate the optimal separation technologies’ sequence and operation 

conditions. 

Although the upstream process terms and revenue terms can be easily incorporated 

to the GEM, the superstructure representation poses some difficulties. Usually the 

development of the reconstruction requires a priori knowledge of the starting stream 

composition to define the properties of the distinct tasks. A future challenge that we 

currently try to tackle is to develop a framework that will enable the unification of the 

two types of problems leading to a new generation type of MTE models. 

MTEs can be used to address the total microbial biorefinery synthesis problem in 

parallel to the strain design module. The total biorefinery synthesis problem aims to 

identify optimal routes from feedstock to processes to portfolios that maximize profit. 

In a strain design framework where we examine the total unified MTE we can propose 

tailor-made microbial strains that consume the ideal feedstock to produce the target 

portfolios- reassuring in that way maximum profit and establishing a systematic 

umbrella approach to lead future biorefinery synthesis. 
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Appendix A: Upstream process parameters 
 

Table: Upstream process parameters 

Fermenter 

Temperature (oC) 30 

Pressure (atm) 1 

Specific power (kW/m3) 0,3 

PC (purhcase cost) base size 
(m3) 

3500 

PC Base cost ($) 700000 

Max size per equipment (m3) 2750 
  

Feedstock 

Glucose ($/kg) 0,5 

Water ($/m3) 0,85 
  

Utility 

Chilled water ($/T) 0,4 

Electricity ($/KW-h) 0,1 
  

Other 

Costing year 2016 

Operating days per year 330 

Operating capacity (%) 100 

Capital charge factor 0,1 
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Appendix B: Preparatory calculations for 

the sequencing problem 
Here we present the calculation steps followed to construct the sequencing problem 

parameters. We constructed an algorithm to conduct the calculations in matlab 

environment. The matlab functions used here are available upon request.  

Let us assume we have a 3-product separation by distillation sequencing problem. A 

stream containing 60% n-tridecane, 10% n-pentadecane and  30% n-heptadecane with 

a feed flowrate 1000kmol/h needs to be separated in 3 products A,B,C as indicated in 

the recovery matrix :  

Table 25: The recovery fraction matrix 

component/Product A B C 

n-tridecane 0.98 0.02 0.00 

n-pentadecane 0.01 0.98 0.01 

n-heptadecane 0.00 0.02 0.98 
 

The supertask problem involves 3 product subgroups and 4 tasks 

 

Figure 47: The subgroups and tasks for the 3-product distillation problem 

 

First, we have to estimate the distillation tasks resulting compositions using the 

recovery matrix and the given stream. Then we will apply the Antoine equation to 

estimate the Top and Bottom temperatures and the relative volatilities of the 

components and finally we will apply the FUG shortcut methods to estimate each 

task’s basic characteristics-needed to construct the MILP problem. The problem is 

solve as indicated in section 3.6.1 thus, we will not get into further detail on problem 

formulation and solution. 
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The products’ fraction for each product subgroup is calculated as indicated by the 

recovery matrix. For the first subgroup m=1 (A,B,C) it will be:   

 

Table 26: Table for the first subgroup 

ABC 
RECOVERY FRACTION 

MATRIX 

i cp xif A B C 

1 n-C13 0.6 0.98 0.02 0.00 

2 n-C15 0.1 0.01 0.98 0.01 

3 n-C17 0.3 0.00 0.02 0.98 

Product Fraction xip 0.589 0.116 0.295 
 

Based on the results of the first subgroup we can now construct the Feed and Product 

vertices for the rest: 

 

 

Table 27:Table for the second subgroup 

AB 
RECOVERY FRACTION 

MATRIX 

i cp xif A B C 

1 n-C13 0,851064 0,98 0,02 0 

2 n-C15 0,140426 0,01 0,98 0,01 

3 n-C17 0,008511 0 0,02 0,98 

Product 
Fraction 

xip 0,835 0,155 0,010 
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Table 28: Table for the third subgroup 

BC 
RECOVERY FRACTION 

MATRIX 

i cp xif A B C 

1 n-C13 0,029197 0,98 0,02 0 

2 n-C15 0,240876 0,01 0,98 0,01 

3 n-C17 0,729927 0 0,02 0,98 

Product 
Fraction 

xip 0,031 0,251 0,718 

 

 

 

Table 29: Distillate and Bottom molar fractions 

  Distillate molar fraction xd Bottom molar fraction xd 

i cp t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4 

1 n-C13 0,998 0,851 0,998 0,002 0,029 0 0,110 0 

2 n-C15 0,002 0,140 0,002 0,94 0,241 0,003 0,889 0,003 

3 n-C17 0 0,009 0 0,058 0,730 0,997 0,001 0,997 

 

Table 30: Fraction of feed ζ that  yields stream mεM needed to construct the MILP 

ζ(m,t) table 

m/t 1 2 3 4 

1 0 0 0 0 

2 0 0,705 0 0 

3 0,411 0 0 0 

 

Continuing, we can apply Antoine equation to estimate Top and Bottom 

temperatures for columns working on atmospheric pressure:  

Table 31: Top and Bottom temperatures 

 t=1 t=2 t=3 t=4 

Ttop 
(oC) 

236 239 236 272 

Tbot 
(oC) 

288 299 265 299 
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Table 32: Relative volatilities for each task 

  Relative volatility 
  t=1 t=2 t=3 t=4 

i 
place of cut 

cp 
1 2 1 2 

1 n-C13 2,2 4,4 2,2 4,4 

2 n-C15 1,0 2,0 1,0 2,0 

3 n-C17 0,5 1,0 0,5 1,0 

 

 

Finally applying the FUG shortcut methods, we get:  

 

Table 33: Basic column characteristics as calculated by FUG. 

 t=1 t=2 t=3 t=4 

Nmin 10,88844 12,28388 10,87541 12,26919 

Ntheor 28 32 28 30 

R 2,205666 1,709604 2,160593 4,996359 

V/F 1,888137 1,910271 2,640507 1,506531 

 

 

The problem is formulated as described in Chapter 3.6.1 and solved to identify that 

the sequence 1-4 yields in minimum separation cost 2.87M$/Y 
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Appendix C: Cost models  
Heat exchangers cost64 

InstalledCost($) = (
𝑀&𝑆

280
) ∙ 101.3 ∙ 𝐴0.65 ∙ (2.29 + (𝐹𝑑 + 𝐹𝑝) ∙ 𝐹𝑚) 

A(area) =
𝐻𝐸𝐴𝑇𝐷𝑈𝑇𝑌

𝑈 ∙ 𝛥𝛵𝐿𝑀
 [𝑓𝑡2] 

M&S (projected for 2019):  1638.9 

Fd = 0.85 (U-tube heat exchanger) 

Fp = 0.0 (Pressure up to 10 bar)  

Fm=2.81 (Stainless steel) 

Overall heat transfer coefficient U= 200  BTU∙h-1∙ft-2∙F-1 

 

Furnace cost64 

InstalledCost($) = (
𝑀&𝑆

280
) ∙ 5070 ∙ 𝑄0.85 ∙ (1.23 + 𝐹𝑑 + 𝐹𝑚 + 𝐹𝑝) 

 

Fd = 1.0 (cylindrical) 

Fp = 0.0 (Pressure up to 500psi)  

Fm=0.0  (Carbon steel) 

Distillation columns cost64 

InstalledCost($) = (
𝑀&𝑆

280
) ∙ 101.9 ∙ 𝐷1.066 ∙ 𝐻0.802 ∙ (2.18 + 𝐹𝑚 ∙ 𝐹𝑝) 

D(diameter), H(Height) = [ft] 

Fp = 1.0 (Pressure up to 3.4 bar)  

Fm= 2.25 (Stainless steel) 

Distillation column trays and tower internals64 

InstalledCost($) = (
𝑀&𝑆

280
) ∙ 4.7 ∙ 𝐷1.55 ∙ 𝐻 ∙ (𝐹𝑠 + 𝐹𝑡 ∙ 𝐹𝑚) 

D(diameter), H(Height) = [ft] 

 

Fs = 2.2 (Tray spacing (12in))  

Fm= 1.7 (Stainless steel) 
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Ft= 1.8 (Tray type (Bubble cap)) 

Height and Diameter calculations  

H = Tray spacing ∙ Ntheor + vapour disengaging space 

Ntheor: The theoretical number of trays  

Vapour disengaging space = 13.12 ft 

D = √
𝐴𝑟𝑒𝑎

𝜋
 

Area =  
𝑣𝑎𝑝𝑜𝑢𝑟 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 

𝑣𝑓𝑙𝑜𝑜𝑑 ∙ (1 − 𝜑)
 

v𝑚𝑎𝑥
𝑓𝑙𝑜𝑜𝑑

= 𝐶𝑆 ∙ √
𝜌liq − 𝜌𝑣𝑎𝑝

𝜌𝑣𝑎𝑝
 

v𝑓𝑙𝑜𝑜𝑑 = 0.7 ∙ v𝑚𝑎𝑥
𝑓𝑙𝑜𝑜𝑑

  and φ=0.12 

 

𝜌liq is the liquid density estimated based on the molar fraction and 𝜌𝑣𝑎𝑝 the vapour 

density calculated with the ideal gases equation of state for T= Tcond . 

Annualization of Capital cost          ACC = CAPEX ∙
𝑖∙(1+𝑖)𝑛

(1+𝑖)𝑛−1
 

 

Interest rate i = 0.05 

Number of years n = 25  

Negligible Insurance and Maintenance cost 
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Appendix D: Component Properties  
 

 

 

 

P: component vapour pressure in mmHg 

T: temperature oC 

A,B,C Antoine equation compound constants   

  A B C 

Tridecane 7,00756 1690,67 174,22 

Pentadecene 7,01555 1781,974 162,582 

Pentadecane 7,02359 1789,95 161,38 

Tetradecanol 7,41181 2003,29 168,13 

Heptadecene 7,03925 1877,91 151,53 

Heptadecane 7,0143 1865,1 149,2 

Hexadecanol 6,1586 1380 91 

Octadecanol 4,32298 685,976 10,85 

Sterol 2 3500 0 

 

The alkanes, alkenes and fatty-alcohol Antoine constants are presented as found at 

The Yawns handbook of vapour pressure: Antoine coefficients.65 

The condenser and reboiler duty are estimated based on the vaporization enthalpy 

ΔΗvap [KJ/mol] . Using the available data found in the NIST database 66 we constructed 

the following approximations to calculate the enthalpies at different temperatures 

and p=1 atm.   

ΔΗvap (tridecane) = -0.0885*T+92.783; 

ΔΗvap (pentadecene) = -0.0655*T+ 90.171; 

ΔΗvap (pentadecane) = -0.095*T+ 103.5; 

ΔΗvap (tetradecanol) = -0.2556*T+ 186.13; 

ΔΗvap (heptadecene) = -0.0757*T + 101.89; 

ΔΗvap (heptadecane) =  -0.1381*T+ 133.4; 

ΔΗvap (hexadecanol)= -0.2292*T+ 183.25; 

ΔΗvap (octadecanol) = -0.2226*T+ 189.25;  
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