ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΜΕΛΕΤΗΣ ΠΛΟΙΟΥ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΜΕΤΑΦΟΡΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

"Συγκέντρωση Και Επεξεργασία Τεχνικών Στοιχείων Πλοίων Μεταφοράς Υγρού Φορτίου"

ΝΑΤΑΛΙΑ ΟΝΟΥΦΡΙΟΥ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ:

Γ. ΖΑΡΑΦΩΝΙΤΗΣ (ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ) Ν. ΒΕΝΤΙΚΟΣ, ΑΝ. ΚΑΘΗΓΗΤΗΣ Ε. ΗΛΙΟΠΟΥΛΟΥ, ΕΔΙΠ

Αθήνα 2019

Ευχαριστίες	6
Περίληψη	7
1. Εισαγωγή	8
1.1 Πλοία μεταφοράς υγρού φορτίου	8
1.1.1 Γενικά	8
1.1.2 Κατηγορίες	8
1.1.3 Διάταξη και Υπόβαθρο Κανονισμών	9
2. Βάση Δεδομένων	12
3. Στατιστική Ανάλυση	25
3.1 Ορισμοί	25
3.1.1. Διάγραμμα Διασποράς(Scatter Diagram)	25
3.1.2. Προσεγγιστικές καμπύλες(Approximating Curves)	25
3.1.3. Μέθοδος Ελάχιστων Τετραγώνων	26
3.1.4. Παλινδρόμηση (Regression)	27
3.1.5. Θεωρία Συσχέτισης (Correlation Theory)	27
4. Εκτίμηση Στοιχείων Tankers	29
4.1. Κύριες Διαστάσεις	29
4.1.1 Ολικό μήκος (Loa)	29
4.1.2. Μήκος μεταξύ καθέτων (L _{BP})	
4.1.3. Πλάτος (Β)	32
4.1.4. Κοίλο (D)	
4.1.5. Βύθισμα Σχεδίασης (T _{Design})	
4.1.6. Βύθισμα αντοχής (T _{scantling})	41
4.8.2. Ύψος εξάλων σε κατάσταση αντοχής (Freeboard Scantling)	43
4.1.7. Λόγοι κύριων διαστάσεων	46
4.2. Πρόσθετο (νεκρό) βάρος (DWT)	49
4.3. Εκτόπισμα (Δ)	51
4.4. Βάρους κενού σκάφους (Lightship (L.S.))	55
4.5. Ολική Χωρητικότητα (Gross Tonnage)	59
4.6. Καθαρή Χωρητικότητα (Net Tonnage)	63
4.7. Suez Canal Net Tonnage (SCNT)	68
4.8. Χωρητικότητα Δεξαμενών	69

4.8.1. Όγκος δεξαμενών φορτίου (Cargo Oil)	69
4.8.2. Χωρητικότητα δεξαμενών έρματος (Ballast Water)	76
4.8.3. Χωρητικότητα δεξαμενών καυσίμου (Fuel Oil Capacity)	78
4.8.4. Χωρητικότητα δεξαμενών Diesel (Diesel Oil)	80
4.9. Εκτίμηση Ισχύος Πρόωσης	81
4.10. Κέντρα βαρών (Centers of Gravity)	83
4.10.1. Κέντρο βάρους Lightship	83
4.10.2. Κέντρο βάρους σε κατάσταση Full Load Departure	87
4.10.3. Κέντρο βάρους φορτίου σε κατάσταση Full Load Departure	89
4.11. Λοιπές Παράμετροι Σχεδίασης	91
4.11.1. Συντελεστής γάστρας (Block Coefficient)	91
4.11.3. Διάμετρος έλικας	92
4.11.4. Μήκος πρυμναίου τμήματος (LAFT)	96
4.11.5. Μήκος μηχανοστασίου (L _{ER})	97
4.11.6. Μήκος χώρου φορτίου (L _{CARGO})	99
5. Συμπεράσματα και προτάσεις	100
6. Βιβλιογραφία	102
7. ПАРАРТНМА-Matlab Curve Fitting Tool	103

<u>Διαγράμματα</u>

Διάγραμμα 1: Ενδεικτικά διαγράμματα διασποράς	25
Διάγραμμα 2: Διάγραμμα Διασποράς με προσεγγιστική καμπύλη και καμπύλες	
πρόβλεψης	26
Διάγραμμα 3: L_{OA} συναρτήσει του L_{BP}	29
Διάγραμμα 4: L_{BP} συναρτήσει του DWT_{Design}	30
Διάγραμμα 5: L_{BP} συναρτήσει του $DWT_{scantling}$	31
Διάγραμμα 6: Β συναρτήσει του L_BP	32
Διάγραμμα 7: Β συναρτήσει του DWT _{Design}	33
Διάγραμμα 8: D συναρτήσει του DWT _{Design}	34
Διάγραμμα 9: D συναρτήσει του L _{BP}	35
Διάγραμμα 10: D συναρτήσει του Β	36
Διάγραμμα 11: D συναρτήσει του T _{Design}	37
Διάγραμμα 12: T _{Design} συναρτήσει του DWT _{Design}	38
Διάγραμμα 13: T _{Design} συναρτήσει του D	39
Διάγραμμα 14: T_{Design} συναρτήσει του L_{BP}	40
Διάγραμμα 15: $T_{scantling}$ συναρτήσει T_{Design}	41
Διάγραμμα 16: T _{scantling} συναρτήσει DWT _{scantling}	42
Διάγραμμα 17: Freeboard scantling συναρτήσει του $T_{scantling}$	43
Διάγραμμα 18: Freeboard scantling συναρτήσει του DWT _{scantling}	44
Διάγραμμα 19: Freeboard scantling συναρτήσει του L _{BP}	45
Διάγραμμα 20: L_{BP}/B συναρτήσει του $DWT_{scantling}$	46
Διάγραμμα 21: Lbp/D συναρτήσει του $DWT_{scantling}$	46
Διάγραμμα 22: B/D συναρτήσει DWT _{scantling}	47
Διάγραμμα 23: B/T συναρτήσει DWT _{scantling}	47
Διάγραμμα 24: D/T συναρτήσει DWT _{scantling}	48
Δ ιάγραμμα 25: DWT _{scantling} συναρτήσει DWT _{Design}	49
Διάγραμμα 26: L_{BP} *B*D συναρτήσει του DWT _{scantling}	50
Διάγραμμα 27: Displacement _{Design} (Δ) συναρτήσει DWT _{Design}	51
Δ ιάγραμμα 28:DWT _{design} /Displacement _{design} συναρτήσει DWT _{design}	52
Διάγραμμα 29 : DWTdesign/Displacementdesign συναρτήσει DWTdesign	53
Διάγραμμα 30: Displacement _{design} συναρτήσει του $L_{BP}*B*T$	54
Διάγραμμα 31: L.S. συναρτήσει του L_{BP}	55
Διάγραμμα 32: L.S. συναρτήσει του $L_{BP}*B*D$	56
Διάγραμμα 33: L.S. συναρτήσει DWT _{design}	57
Διάγραμμα 34: L.S./Δ συναρτήσει του DWT_{design}	58
Διάγραμμα 35: GT συναρτήσει του DWT _{design}	59
Διάγραμμα 36: GT συναρτήσει του $DWT_{scantling}$	60
Διάγραμμα 37: GT συναρτήσει του L_{BP}	61
Διάγραμμα 38: GT συναρτήσει του L*B*D	62
Διάγραμμα 39: ΝΤ συναρτήσει του DWT _{design}	63
Δ ιάγραμμα 40: NT συναρτήσει του DWT _{scantling}	64
Διάγραμμα 41: NT συναρτήσει του LBP*B*D	65

Διάγραμμα 42: NT συναρτήσει του GT	66
Διάγραμμα 43: NT/GT συναρτήσει του NT	67
Διάγραμμα 44: SCNT συναρτήσει του GT	68
Διάγραμμα 45: V_{cargo} συναρτήσει του $DWT_{scantling}$	69
Διάγραμμα 46: V_{cargo} συναρτήσει του $L_{BP}*B*D$	70
Διάγραμμα 47: V_{cargo} συναρτήσει του L_{cargo} *B*D	71
Διάγραμμα 48: V_{cargo} συναρτήσει του L_{BP}	72
Διάγραμμα 49: V _{cargo} συναρτήσει του L _{cargo}	73
Διάγραμμα 50: Vslope συναρτήσει του Vcargo	74
Διάγραμμα 51: V_{cargo} συναρτήσει του NT	75
Διάγραμμα 52: $V_{ballast}$ συναρτήσει του $DWT_{scantling}$	76
Διάγραμμα 53: $V_{ballast}$ συναρτήσει του $L_{BP}*B*D$	77
Διάγραμμα 54: V_{fuel} συναρτήσει του $L_{BP}*B*D$	78
Διάγραμμα 55: V_{fuel} συναρτήσει του P_{MCR}	79
Διάγραμμα 56: V_{diesel}/V_{fuel} συναρτήσει του V_{fuel}	80
Διάγραμμα 57: C_N συναρτήσει του DWT_{design}	81
Διάγραμμα 58: MCR συναρτήσει του $L_{BP}*B*D$	82
Διάγραμμα 59: KG_{LS} συναρτήσει του D	83
Διάγραμμα 60 : KG _{LS} /D συναρτήσει του D	84
Διάγραμμα 61: LCG_{LS} συναρτήσει του L_{BP}	85
Διάγραμμα 62 : LCG_{LS}/L_{BP} συναρτήσει του L_{BP}	86
Δ ιάγραμμα 63:KG _{departure} συναρτήσει του D	87
Διάγραμμα 64: $LCG_{departure}$ συναρτήσει του L_{BP}	88
Διάγραμμα 65: KG _{cargo} departure συναρτήσει του D	89
Διάγραμμα 66: LCG_{cargo} departure συναρτήσει του L_{BP}	90
Διάγραμμα 67: C_B συναρτήσει του C_P	91
Διάγραμμα 68: Propeller Diameter συναρτήσει του $DWT_{scantling}$	92
Διάγραμμα 69: Propeller Diameter συναρτήσει του T_{design}	93
Διάγραμμα 70: Propeller Diameter συναρτήσει του $L_{BP}*B*D$	94
Διάγραμμα 71: Propeller Diameter συναρτήσει του MCR	95
Διάγραμμα 72: L_{AFT} συναρτήσει του L_{BP}	96
Διάγραμμα 73: L_{ER} συναρτήσει του L_{BP}	97
Διάγραμμα 74 : L_{ER} συναρτήσει του MCR	98
Διάγραμμα 75: Leargo συναρτήσει του L_{BP}	99

<u>Πίνακες</u>

Πίνακας 1: Κατηγοριοποίηση δεξαμενόπλοιων ανάλογα με τη χωρητικότητα	τους σε
DWT	8
Πίνακας 2:Γενικά Χαρακτηριστικά	12
Πίνακας 3: Λεπτομέρειες γενικών χαρακτηριστικών	13
Πίνακας 4: Χωρητικότητας	14
Πίνακας 5: Λεπτομέρειες Χωρητικότητας	15
Πίνακας 6: Δεδομένα κατά την Full Load Departure	16
Πίνακας 7: Λεπτομέρειες για τα δεδομένα της Full Load Departure	17
Πίνακας 8: Δεδομένα για όλες τις καταστάσεις Arrival	
Πίνακας 9: Λεπτομέρειες των καταστάσεων Arrival	19
Πίνακας 10: Γενικά χαρακτηριστικά μηχανοστασίου	21
Πίνακας 11: Λεπτομέρειες γενικών χαρακτηριστικών μηχανοστασίου	21
Πίνακας 12: Δείγμα Υπό Μελέτη Πλοίων ανάλογα με την χωρητικότητα και	μέγεθος
Πίνακας 13: Δείγμα Υπό Μελέτης Πλοίων ανά Έτος Ναυπήγησης	23
Πίνακας 14: Όρια των λόγων των κύριων διαστάσεων	

<u>Σχήματα</u>

Σχήμα 1:Γενική διάταξη και κάτοψη- 105000 DWT Crude Oil Carrier	9
Σχήμα 2: Τυπική διάταξη εγκάρσιας τομής Tanker	11
Σχήμα 3: Δείγμα Υπό Μελέτη Πλοίων ανάλογα με την χωρητικότητα και μέ	γεθος23
Σχήμα 4: Δείγμα Υπό Μελέτης Πλοίων ανάλογα με το έτος ναυπήγησης	

<u>Εικόνες</u>

Εικόνα 1:Περιβάλλον εργασίας Curve Fitting Tool	103
Εικόνα 2: Εισαγωγή καμπυλών πρόβλεψης	103

Ευχαριστίες

Η παρούσα Διπλωματική Εργασία πραγματοποιήθηκε στο πλαίσιο των υποχρεώσεών μου στο Εθνικό Μετσόβιο Πολυτεχνείο (Ε.Μ.Π.), στη Σχολή Ναυπηγών Μηχανολόγων Μηχανικών και συγκεκριμένα στον Τομέα Μελέτης Πλοίου και Θαλάσσιων Μεταφορών κατά το ακαδημαϊκό έτος 2018-2019. Στο σημείο αυτό θα ήθελα να ευχαριστήσω όλους όσους με στήριξαν κατά τη διάρκεια των σπουδών μου και συνέβαλαν στην υλοποίηση της συγκεκριμένης διπλωματικής εργασίας.

Πρώτιστα οφείλω ευχαριστίες στον υπεύθυνο καθηγητή μου κ. Γεώργιο Ζαραφωνίτη, καθηγητή του Τομέα Μελέτης Πλοίου και Θαλάσσιων Μεταφορών, για την ανάθεση της διπλωματικής εργασίας, την καθοδήγηση του και την συμβολή του σε όλη τη διάρκεια της εκπόνησης της διπλωματικής εργασίας.

Επίσης θα ήθελα να ευχαριστήσω τους κ. Γεώργιο Παπατζανάκη και κα. Ελευθερία Ηλιοπούλου μέλη του εργαστηρίου Μελέτης Πλοίου, για τον χρόνο τους και την πολύ σημαντική βοήθεια που μου παρείχαν σε κάθε δυσκολία που παρουσιάστηκε κατά την εκπόνηση της διπλωματικής.

Πολλά ευχαριστώ χρωστώ στους φίλους μου για την βοήθεια και την ψυχολογική στήριξη που μου έχουν προσφέρει κατά τη διάρκεια των σπουδών μου.

Τέλος στην οικογένειά μου που με εμπιστεύτηκε, με στήριξε και με στηρίζει άνευ όρων σε κάθε πτυχή της ζωής μου.

Περίληψη

Σκοπός της συγκεκριμένης διπλωματικής εργασίας είναι ο εντοπισμός πιθανών σχέσεων μεταξύ των βασικών χαρακτηριστικών των εξεταζόμενων πλοίων και την παραγωγή προσεγγιστικών τύπων για την εκτίμηση των βασικών χαρακτηριστικών μιας νέας κατασκευής στο στάδιο της προμελέτης.

Σε πρώτο στάδιο έγινε η συγκέντρωση των απαραίτητων δεδομένων που συλλέχτηκαν από διάφορα στοιχεία και σχέδια πλοίων που διαθέτει το εργαστήριο του Τομέα Μελέτης Πλοίου και Θαλάσσιων Μεταφορών με σκοπό τη δημιουργία μιας βάσης δεδομένων και στη συνέχεια έγινε η ανάλυση αυτών, δίνοντας εμπειρικούς τύπους που είναι πολύ χρήσιμοι για τη μελέτη ενός πλοίου στην προκαταρκτική φάση της σχεδίασης.

Στην παρούσα διπλωματική εργασία, η στατιστική ανάλυση και η παραγωγή των προσεγγιστικών σχέσεων μεταξύ των βασικών χαρακτηριστικών των πλοίων υγρού φορτίου έγινε χρησιμοποιώντας το πρόγραμμα MATLAB R2015a.

Αντίστοιχες διπλωματικές εργασίες έχουν ανατεθεί και στο παρελθόν στο Εργαστήριο Μελέτης Πλοίου της Σχολής Ναυπηγών Μηχανολόγων Μηχανικών για διάφορους τύπους πλοίων, κάποιες από αυτές είναι οι εξής: για δεξαμενόπλοια οι αντίστοιχες των Nkoko Nossa, 2013 και Καραγεώργο Β., 2016, αλλά και οι διπλωματικές εργασίες επί της Μεθοδολογία Προμελέτης Πλοίων Μεταφοράς Ξηρού Φορτίου του Κάραλη Β., 2016.

1. Εισαγωγή

1.1 Πλοία μεταφοράς υγρού φορτίου

1.1.1 Γενικά

Η Διεθνής Σύμβαση SOLAS I Regulation 2 ορίζει ένα δεξαμενόπλοιο ως "ένα φορτηγό πλοίο κατασκευασμένο ή προσαρμοσμένο για τη χύδην μεταφορά υγρών φορτίων μιας εύφλεκτης φύσης". Το Regulation 1.6.1 αποσαφηνίζει την έννοια του "εύφλεκτου", δηλώνοντας ότι "Οι απαιτήσεις για τα δεξαμενόπλοια του παρόντος κεφαλαίου ισχύουν για δεξαμενόπλοια που μεταφέρουν αργό πετρέλαιο ή προϊόντα πετρελαίου με σημείο ανάφλεξης που δεν υπερβαίνει τους 60°C, όπως καθορίζεται από μια εγκεκριμένη συσκευή σημείου ανάφλεξης, και μία τάση ατμών Reid που είναι κάτω από την ατμοσφαιρική πίεση ή άλλα υγρά προϊόντα που έχουν παρόμοιο κίνδυνο πυρκαγιάς". Η κατασκευή του πρώτου δεξαμενόπλοιου ξεκίνησε το 1863 και δεν έχει σταματήσει η ανάπτυξη του συγκεκριμένου είδους από τότε. Πρόκειται για έναν από τους πιο διαδεδομένους τύπους πλοίων καθώς αποτελούν το 13.7% (το 2018) του παγκόσμιου εμπορικού στόλου όσον αφορά τον αριθμό των πλοίων και 29.2% (το 2018) όσον αφορά το DWT.

1.1.2 Κατηγορίες

Τα δεξαμενόπλοια χωρίζονται σε διάφορες κατηγορίες ανάλογα με το είδος του μεταφερόμενου φορτίου και διακρίνονται ως εξής:

- Crude Oil Tankers: χρησιμοποιούνται για την μεταφορά αργού πετρελαίου.
- Product Tankers: χρησιμοποιούνται για την μεταφορά των επεξεργασμένων προϊόντων που προέρχονται από το αργό πετρέλαιο (βενζίνη, ντίζελ, καύσιμο αεριωθούμενων) από τα διυλιστήρια.
- Chemical Tankers: χρησιμοποιούνται για την μεταφορά χημικών.

Γενικά αξίζει να σημειωθεί ότι μπορεί να γίνει και συνδυασμός των πιο πάνω κατηγοριών καθώς στη συγκεκριμένη διπλωματική έχουν μελετηθεί οι συνδυασμοί Crude/Product, Product /Chemical και Crude/Product/Chemical.

Τα δεξαμενόπλοια εκτός από το είδος μεταφερόμενου φορτίου χωρίζονται και ανάλογα με την χωρητικότητα τους σε DWT στις ακόλουθες κατηγορίες:

Ship Type	DWT
Small Oil Tankers	Έως 14999
Handysize	15000-34999
Handymax	35000-59999
Panamax	60000-79999
Aframax	80000-119999
Suezmax	120000-199999
VLCC (Very Large Crude Carrier)	20000-319999
ULCC (Ultra Large Crude Carrier)	320000 και άνω

Πίνακας 1: Κατηγοριοποίηση δεζαμενόπλοιων ανάλογα με τη χωρητικότητα τους σε DWT

1.1.3 Διάταξη και Υπόβαθρο Κανονισμών

Η γενική διάταξη ενός πλοίου Tanker φαίνεται στο παρακάτω σχήμα:

Σχήμα 1:Γενική διάταζη και κάτοψη- 105000 DWT Crude Oil Carrier

Στη συνέχεια του κειμένου θεωρείται ότι τα κύρια τμήματα που χωρίζεται ένα πλοίο τύπου tanker είναι τα εξής:

- Πρυμναίο τμήμα (L_{AFT}): Ορίζεται από την πρυμναία κάθετο (A.P.) έως την πρυμναία φρακτή του μηχανοστασίου που συμπίπτει με την πρυμναία φρακτή σύγκρουσης.
- Χώρος μηχανοστασίου (L_{ER}): Ορίζεται μεταξύ της πρυμναίας και πρωραίας φρακτής του μηχανοστασίου και περιλαμβάνει την μηχανολογική εγκατάσταση του πλοίου συμπεριλαμβανομένης της κύριας μηχανής, γεννητριών και διάφορων βοηθητικών μηχανημάτων.
- Χώρος φορτίου (L_{CARGO}): Ορίζεται ο χώρος μεταξύ της πρωραίας φρακτής μηχανοστασίου και της πρωραίας φρακτής σύγκρουσης του πλοίου. Στο χώρο αυτό βρίσκονται οι δεξαμενές φορτίου που ορίζονται από στεγανές εγκάρσιες φρακτές. Συνηθίζεται στα μεγαλύτερα πλοία όπως τα VLCC και πολλά Suezmax να υπάρχουν δύο διαμήκεις φρακτές καθώς στα υπόλοιπα μία. Στο χώρο του φορτίου συμπεριλαμβάνονται και οι δεξαμενές slop.
- Πρωραίο τμήμα (L_{FWR}): Ορίζεται από την πρωραία φρακτή σύγκρουσης έως την πρωραία κάθετο (F.P.). Η θέση της ορίζεται με βάση τον κανονισμό της SOLAS για φορτηγά πλοία ως εξής:

$$\min \left\{ \frac{5\%L_{BP}}{10m} \right\} \le d \le \max \left\{ \frac{8\%L_{BP}}{5\%L_{BP}} + 3m \right\}$$

Σε περίπτωση ύπαρξης βολβού η απόσταση d μετριέται από το σημείο α όπου:

$$\alpha = \min \begin{cases} M \acute{\epsilon} \sigma \sigma \tau \sigma \upsilon \beta \sigma \lambda \beta \sigma \acute{\upsilon} \\ 1.5\% L_{BP} \pi \rho \acute{\omega} \rho \alpha \theta \varepsilon \upsilon \tau \eta \varsigma F. P. \\ 3m \pi \rho \acute{\omega} \rho \alpha \theta \varepsilon \upsilon \tau \eta \varsigma F. P. \end{cases}$$

Παλαιότερα το έρμα μεταφερόταν στις άδειες δεξαμενές φορτίου προκαλώντας εκτεταμένη θαλάσσια ρύπανση, καθώς με την αποβολή του έρματος έριγναν μαζί του στη θάλασσα υπολογίσιμες ποσότητες υπολειμμάτων φορτίου που είχε παραμείνει στις δεξαμενές κατά την εκφόρτωση. Το γεγονός αυτό σε συνδυασμό από μια σειρά ατυχημάτων ευαισθητοποίησε την κοινή γνώμη και τους αρμόδιους φορείς με αποτέλεσμα να συγκληθεί από τον IMO (International Marine Organization) μια διεθνής σύσκεψη προκειμένου να θεσπιστούν κανονισμοί για την προστασία του περιβάλλοντος. Αποτέλεσμα αυτής της σύσκεψης ήταν να υιοθετηθεί μια διεθνής σύμβαση γνωστή ως MARPOL (Marine Pollution) όπου ορίζει τον τρόπο με τον οποίο πρέπει να ασκείται η σχεδίαση, κατασκευή και διαχείριση στα πλοία που μεταφέρουν ρυπογόνα ή/και επικίνδυνα φορτία καθώς και τις προϋποθέσεις υπό τις οποίες επιτρέπεται η απόρριψη στη θάλασσα ορισμένων από αυτά.. Έτσι ο πιο σημαντικός κανονισμός που καθορίζει τη σχεδίαση των δεξαμενόπλοιων είναι της MARPOL 73/78. Οι περιορισμοί που θέτει η MARPOL για την σχεδίαση των δεξαμενόπλοιων περιλαμβάνουν το ύψος διπυθμένου hdb (Double Bottom) καθώς και την απόσταση του διπλού τοιχώματος w_{DH} (Double Hull) τα οποία ορίζονται πιο κάτω.

<u>Ύψος διπυθμένου (hdb):</u> ανάλογα με το DWT διαφοροποιείται ως εξής

• Tankers \geq 5000t DWT

$$h_{DB} = \begin{cases} \frac{B}{15} \\ 2m \end{cases}, \text{ not less than } 1.0 \text{ m}$$

• Tankers < 5000t DWT

$$h_{DB} = \frac{B}{15}$$
, not less than 0.76 m

Απόσταση διπλού τοιχώματος (wdh): ανάλογα με το DWT διαφοροποιείται ως εξής

• Tanker \geq 5000t DWT

$$w_{\rm DH} = \begin{cases} 0.5 + \frac{DWT}{20000} \\ 2m \end{cases}, \text{ not less than } 1.0 \text{ m} \end{cases}$$

• Tanker < 5000t DWT

$$w_{DH} = 0.4 + \frac{2.4 * DWT}{20000}$$
, not less than 0.76 m

Πιο κάτω φαίνεται μια τυπική εγκάρσια τομή (Midship Section) στο χώρο φορτίου ενός δεξαμενόπλοιου.

Σχήμα 2: Τυπική διάταζη εγκάρσιας τομής Tanker

2. Βάση Δεδομένων

Η δημιουργία της βάσης δεδομένων με τεχνικά στοιχεία πλοίων μεταφοράς υγρού φορτίου έγινε συγκεντρώνοντας στοιχεία πλοίων που υπήρχαν διαθέσιμα στο Εργαστήριο Μελέτης Πλοίου ΕΜΠ. Τα δεδομένα αρχικά καταγράφτηκαν στο Ms Excel και στη συνέχεια περάστηκαν στην Ms Access και αναλύονται στις παρακάτω κατηγορίες:

1. Γενικά Χαρακτηριστικά

Tanker database									
General GA-Capacity	Departure	Arrival Machine	у						
ID 1	Ship Na Ship T	ame SEABRAVERY ype Crude/Oil Pro	oduct	IMO Number Call Sign	9288734 9HZS7	Classe	d By LRS Due or Deliver	ed 2005	
	Size Categ	gory AFRAMAX		Flag	MALTA				
Notations +100A1,	, Double Hull	Oil Tanker, ESP, S	hip Right(SDA	A, FDA Plus, CM), *IW	/S, SPM, LI, LMA,	ICE CLASS	1C FS		
Notations with the	e descriptive	notes Pt. Ht., Sh	ipRight(PCWB	T(date)), SERS, SCM), +LMC, UMS, IGS	5, COW, E	TA]
Ice Capability Nar	rative YES	Gt (t)	57296 Nr	t (t) 32526	SuezCanal Net T	onnage	53541.12	Crew 36	<u>ز</u>
Length OA (m)	243.96	Beam (m)	42	Draft Design (m)	13.6		Speed D	esign (kn) 14.	5
Length BP (m)	234	Depth (m)	21	Draft Scantling (m)	14.9		Speed_Sca	ntling (kn)	1
DWT design (t)	93151	Displacement	Design (t)	111054 Freebo	oard Design (m)				
DWT Scantling (t)	105042	Displacement Sc	antling (t)	122945 Freeboar	d Scantling (m)	6.118	Type of	Steel High Topsilo	
LishtChin (t)	47000	(C C m) 44	20 100 10 /	- 107.02			Type of Bulki	right rensite	41
LightShip (t)	17903	(G LS (m) 11	.38 LCG LS (m 107.92			Type of build	icado i tac	
Cb_Design	0.8082	Cb_Scantling	0.8168						
Cwl_Design	0.9011	Cwl_Scantling	0.9121						
Cp_Design	0.8104	Cp_Scantling	0.8189						
Cm_Design	0.9973	Cm_Scantling	0.9975					GAOK	
							Capa	city Plan OK	-1
Min bending mome	nt hogging (t	on-meter) 401	40				Midship	Section OK	1
Max bending momen	nt hogging (te	on-meter) 2580	00					Lines	1
Min bending mome	nt sagging (t	on-meter) -360	90				Shell Ex	pansion	51
Max bending mome	nt sagging (to	on-meter) -2320	00			Tri	im and Stability	Booklet OK	1
							Se	a Trials	-
Max shear force (+)	(tons)	10540						More	
Max shear force (-)	(tons)	-10540							

Πίνακας 2:Γενικά Χαρακτηριστικά

Όπου:

77/	2	A 7	,		,
Πινακας	31	Λεπτομερε	ιες νενικών	' γαρακτη	οιστικων
				No porter l	p

Ship Name	Όνομα του πλοίου
Ship Type	Τύπος πλοίου
Size Category	Μέγεθος
IMO Number	Αριθμός του ΙΜΟ
Call Sign	Σήμα κλήσης
Flag	Σημαία
Classed By	Νηογνώμονας
Due or Delivered	Έτος ναυπήγησης ή παράδοσης
Notations	Σημειώσεις
Ice Capability	Ικανότητα με πλεύση σε πάγο
Gt	Ολική χωρητικότητα
Nt	Καθαρή χωρητικότητα
Suga Conel Not Tonnage	Καθαρή χωρητικότητα σύμφωνα με τον κανόνα της
Suez Canar Net Tonnage	διώρυγας του Σουέζ
Crew	Αριθμός πληρώματος
Length OA	Ολικό μήκος
Length BP	Μήκος μεταξύ καθέτων
Beam	Πλάτος
Depth	Κοίλο
Draft Design	Βύθισμα σχεδίασης
Draft Scantling	Βύθισμα αντοχής
Speed Design	Ταχύτητα υπηρεσίας
Speed Scantling	Ταχύτητα στο βύθισμα αντοχής
Type of Bulkhead	Είδος φρακτής
Lightship	Βάρος άφορτου σκάφους
Min bending moment hogging	Ελάχιστη καμπτική ροπή σε κατάσταση hogging
Max bending moment hogging	Μέγιστη καμπτική ροπή σε κατάσταση hogging
Min bending moment sagging	Ελάχιστη διατμητική δύναμη σε κατάσταση sagging
Max bending moment sagging	Μέγιστη διατμητική δύναμη σε κατάσταση sagging
Type of Steel	Είδος χάλυβα
	Στο βύθισμα σχεδίασης
DWT Design	Πρόσθετο (νεκρό) βάρος
Displacement Design	Εκτόπισμα
Freeboard Design	Ύψος εξάλων
Cb Design	Συντελεστής γάστρας
Cwl Design	Συντελεστής ίσαλου επιφάνειας
Cp_Design	Πρισματικός συντελεστής
Cm Design	Συντελεστής μέσης τομής
KC LS	Απόσταση του κέντρου βάρους του L.S. από το βασικό
KGLS	επίπεδο
LCG LS	Διαμήκης θέση του κέντρου βάρους του L.S.
	Στο βύθισμα αντοχής
DWT Scantling	Πρόσθετο (νεκρό) βάρος
Displacement Scantling	Εκτόπισμα

Freeboard Scantling	Ύψος εξάλων
Cb Scantling	Συντελεστής γάστρας
Cwl Scantling	Συντελεστής ίσαλου επιφάνειας
Cp Scantling	Πρισματικός συντελεστής
Cm Scantling	Συντελεστής μέσης τομής
	Γενικής διάταξης
	Χωρητικότητας
Charle hower and and for	Μέσης τομής
Check boxes για την υπαρζη	Ναυπηγικές Γραμμές
	Shell expansion
	Trim and stability
	Sea trials

2. Χωρητικότητα (Capacity)

Tanker database
General GA-Capacity Departure Arrival Machinery
Cargo Tanks Number 12 Fuel Oil Capacity 100% (m3) 2857.9 Ballast Tanks Capacity (m3) 37886.2
Cargo Capacity 100% (m3) 120494.2 Diesel Oil Capacity 100% (m3) 230.5 Fresh Water Capacity (t) 334.3
Slop Tanks Capacity (m3) 2531.6 Lub Oil Capacity 100% (m3) 171.6
Constant Weight (t)-DEP 161.08 KG Crew and Constants (m)-DEP 9.95 LCG Crew and Constants (m) 69.83
Camber YES Camber Height (mm) 1050 DoubleBottom Height (m) 2.3
Sheer_Stem NO Sheer Length_Stem (m) Sheer Height_Stem (m) Bulb
Sheer_Stern NO Sheer Length_Stern (m) Sheer Height_Stern (m) 5.2
Aft Length (m) 10.4 Machinery Length (m) 31.5 Cargo Length (m) 181.3 Forward Length (m) 10.8
Aft Frame Spacing (mm) 800 Machinery FrSpacing (mm) 800 Cargo Frame Spacing (mm) 3700 Fore Frame 800 Spacing (mm) 800 Cargo Frame Spacing (mm) 3700 Spacing (mm) 800
Superstructure Height (m) 14.35 Transversal Surface (m2) 328.73 Centre of Longitudinal Surface Z (m) from BL 30.17
Superstructure Length (m) 14.4 Centre of Transversal Surface Z (m) 27.7 Centre of Longitudinal Surface X (m) from AP 22.52
Superstructure Beam (m) 24.79 Longitudinal Surface (m2) 408.42 Number of Cargo Cranes
Forecastle NO Forecastle Length (m) Forecastle Height (m) Deck Crane Capacity (mt)
Poondeck NO Poondeck Length (m) Poondeck Height (m) Number of Provision Cranes
Provision Crane Capacity (mt)

Πίνακας 4: Χωρητικότητας

Όπου:

IIIVURUS J. IIGRIOHEDGIES IUDPILIKUIIIUS	Πίνακας	5:	<i>Λεπτομέρειες</i>	Χωρ	ητικότητας
--	---------	----	---------------------	-----	------------

Cargo Tanks Number	Αριθμός δεξαμενών φορτίου
Cargo Capacity 100%	Χωρητικότητα δεξαμενών φορτίου (Περιλαμβάνονται οι δεξαμενές slop)
Slop Tanks Capacity	Χωρητικότητα δεξαμενών slop
Fuel Oil Capacity	Χωρητικότητα δεξαμενών καυσίμου
Diesel Oil Capacity	Χωρητικότητα δεξαμενών Diesel
Lub Oil Capacity	Χωρητικότητα δεξαμενών για λιπαντικά
Ballast Tanks Capacity	Χωρητικότητα δεξαμενών έρματος
Fresh Water Capacity	Χωρητικότητα δεξαμενών γλυκού νερού
Constant Weight	Σταθερό βάρος
KG Crew and Constants	Απόσταση του κέντρου βάρους από το βασικό επίπεδο (σταθερό βάρος και βάρος πληρώματος)
LCG Crew and Constants	Διαμήκης θέση του κέντρου βάρους (σταθερό βάρος και βάρος πληρώματος)
Camber	Ύπαρξη κυρτότητας καταστρώματος (Yes/No)
Camber Height	Ύψος κυρτότητας καταστρώματος
Sheer Stem	Ύπαρξη σιμότητας στην πλώρη (Yes/No)
Sheer Stern	Ύπαρξη σιμότητα στην πρύμνη (Yes/No)
Sheer Length Stem	Μήκος πρωραίας σιμότητας
Sheer Length Stern	Μήκος πρυμναίας σιμότητας
Sheer Height Stem	Ύψος σιμότητας στην πρωραία κάθετο
Sheer Height Stern	Ύψος σιμότητας στην πρυμναία κάθετο
Double Bottom Height	Ύψος διπυθμένου
Bulb	Ύπαρξη βολβού (Yes/No)
Bulb Length	Μήκος βολβού από την F.P.
Aft Length	Μήκος πρυμναίου τμήματος
Aft Frame Spacing	Ισαπόσταση των κατασκευαστικών νομέων στο πρυμναίο τμήμα
Machinery Length	Μήκος χώρου μηχανοστασίου
Machinery Frame Spacing	Ισαπόσταση των κατασκευαστικών νομέων στο χώρο μηχανοστασίου
Cargo Length	Μήκος χώρου φορτίου
Cargo Frame Spacing	Ισαπόσταση των κατασκευαστικών νομέων στον χώρο φορτίου
Forward Length	Μήκος πρωραίου τμήματος
Fore Frame Spacing	Ισαπόσταση των κατασκευαστικών νομέων στο πρωραίο τμήμα
Superstructure Height	Ύψος υπερκατασκευής (συνολικά)

Superstructure Length	Μήκος υπερκατασκευής
Superstructure Beam	Πλάτος υπερκατασκευής
Transversal Surface	Εγκάρσια επιφάνεια υπερκατασκευών
Centre of Transversal Surface Z	Κέντρο εγκάρσιας επιφάνειας υπερκατασκευών κατά τον κάθετο άξονα
Longitudinal Surface	Διαμήκης επιφάνεια υπερκατασκευών
Centre of Longitudinal Surface Z	Κέντρο διαμήκης επιφάνειας υπερκατασκευών κατά τον κάθετο άξονα
Centre of Longitudinal Surface X	Κέντρο διαμήκης επιφάνειας υπερκατασκευών κατά τον διαμήκης άξονα
Forecastle	Ύπαρξη πρόστεγου (Yes/No)
Forecastle Length	Μήκος πρόστεγου
Forecastle Height	Ύψος πρόστεγου
Poopdeck	Ύπαρξη επίστεγου (Yes/No)
Poopdeck Length	Μήκος επίστεγου
Poopdeck Height	Ύψος επίστεγου
Number of cargo cranes	Αριθμός γερανών (για τα tanker αφορά το γερανό για το χειρισμό των σωληνώσεων του φορτίου)
Deck Crane Capacity	Ανυψωτική ικανότητα γερανού
Number of Provision Cranes	Αριθμός γερανών για εφόδια
Provision Crane Capacity	Ανυψωτική ικανότητα γερανών για εφόδια

3. Δεδομένα κατά την Full Load Departure

Πίνακας 6: Δεδομένα κατά την Full Load Departure

Tanker database			
General GA-Capacity Departure Arriv	al Machinery		
KGdep Cargo (m) Tdes	KGdep FO (m) Tdes	KGdep DO (m) Tdes	KGdep DWT (m) Tdes 12.13
LCGdep Cargo (m) Tdes	LCGdep FO (m) Tdes	LCGdep DO (m) Tdes	LCGdep DWT (m) Tdes 126.4
KG_cor dep (m) Tdes	KGdep FW (m) Tdes	KGdep LO (m) Tdes	KGdep Ship (m) DISPL 12.01
	CGdep FW (m) Tdes	LCGdep LO (m) Tdes	LCGdep Ship (m) DISPL 123.42
Ta_dep (m) Tdes 14.1	KB dep (m) Tdes	KM dep (m) Tdes 17.85	MTC_Design (T-M) Tdes 1506.4 TPC Design (t/cm) Tdes 90.88
Tf_dep (m) Tdes 13.12	LCB dep (m) Tdes 124.76	GM dep (m) Tdes 4.97	Max GZ Dep Tdes (m) 2.687
Trim_dep (m) Tdes 0.98	BM dep (m) Ides	GM_cor dep (m) Ides	θ (max GZ)-Tdes (deg) 36
Ta_scant (m) homo DEP 14.81	KB scant (m) homo DE	P KM scant (m) home	D DEP 17.62
Tf_scant (m) homo DEP 15.03	LCB_scant (m) homo DE	P 123.82 GM scant (m) hom	o DEP 4.53
Trim_scant (m) homo DEP 0.21	BM scant (m) homo DE	GM_cor scant (m) hon	no DEP
MTC_Scant (T-M) homo DEP 1554.7	TPC_Scant (t/cm) homo DEP	91.98	
θ (maxGZ) DEP Tscant (deg) 32.25	Max GZ DEP Tscant (m)	1.95	

Όπου:

Στο βύθισμα σχεδίασης				
KG dep Cargo T _{des}	Απόσταση του κέντρου βάρους του φορτίου από το βασικό επίπεδο			
LCG Cargo T _{des}	Διαμήκης θέση του κέντρου βάρους του φορτίου			
KG cor dep T _{des}	Διορθωμένη απόσταση του κέντρου βάρους του φορτίου από το βασικό επίπεδο			
KGdep FO T _{des}	Απόσταση του κέντρου βάρους του καυσίμου από το βασικό επίπεδο			
LCGdep FO T _{des}	Διαμήκης θέση του κέντρου βάρους του καυσίμου			
KGdep FW T _{des}	Απόσταση του κέντρου βάρους του γλυκού νερού από το βασικό επίπεδο			
LCGdep FW T _{des}	Διαμήκης θέση του κέντρου βάρους του γλυκού νερού			
KGdep DO T _{des}	Απόσταση του κέντρου βάρους του Diesel από το βασικό επίπεδο			
LCGdep DO T _{des}	Διαμήκης θέση του κέντρου βάρους του Diesel			
KGdep LO T _{des}	Απόσταση του κέντρου βάρους των λιπαντικών από το βασικό επίπεδο			
LCGdep LO T _{des}	Διαμήκης θέση του κέντρου βάρους των λιπαντικών			
KGdep DWT T _{des}	Απόσταση του κέντρου βάρους του πρόσθετου (νεκρού) βάρους από το βασικό επίπεδο			
LCGdep DWT T _{des}	Διαμήκης θέση του κέντρου βάρους του πρόσθετου (νεκρού) βάρους			
KGdep Ship DISPL	Απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο			
LCGdep Ship DISPL	Διαμήκης θέση του κέντρου βάρους εκτοπίσματος			
Ta dep T _{des}	Πρυμναίο βύθισμα (στην πρυμναία κάθετο)			
Tf dep T _{des}	Πρωραίο βύθισμα (στην πρωραία κάθετο)			
Trim dep T _{des}	Διαγωγή			
KB dep T _{des}	Απόσταση κέντρου άντωσης από το βασικό επίπεδο			
BM dep T _{des}	Μετακεντρική ακτίνα			
KM dep T _{des}	Απόσταση του μετάκεντρου από το βασικό επίπεδο			
GM dep T _{des}	Μετακεντρικό ύψος			
GM cor dep T _{des}	Μετακεντρικό ύψος διορθωμένο (λόγω ελεύθερων επιφανειών)			
MTC design T _{des}	Ροπή διαγωγής ανά εκατοστό διαφοράς βυθισμάτων			
TPC design T _{des}	Τόνοι ανά εκατοστό βύθισης			
Max GZ dep T _{des}	Μέγιστος μοχλοβραχίονας επαναφοράς			
Θ (max GZ) T _{des}	Γωνία μέγιστου μοχλοβραχίονα επαναφοράς			
	Στο βύθισμα αντοχής			
Ta scant homo DEP	Πρυμναίο βύθισμα ομοιογενούς φόρτωσης			
Tf scant homo DEP	Πρωραίο βύθισμα ομοιογενούς φόρτωσης			
Trim scant homo DEP	Διαγωγή ομοιογενούς φόρτωσης			

Πίνακας 7: Λεπτομέρειες για τα δεδομένα της Full Load Departure

KB scant homo	Απόσταση κέντρου άντωσης από το βασικό επίπεδο ομοιογενούς
DEP	φόρτωσης
LCB scant homo	Διαμήκης θέση του κέντοου άντωσης ομοιονενούς φόρτωσης
DEP	
BM scant homo	Μετακευτοική ακτίνα ομοιοχευούς φόρτωσης
DEP	Μετακεντρική ακτινά ομοιογενούς φορτώσης
KM scant homo	Απόσταση του μετάκεντρου από το βασικό επίπεδο ομοιογενούς
DEP	φόρτωσης
GM scant homo	Ματακαντοικό ύνας ομοιοχαιούς αδοτωσης
DEP	Μετακεντρικό ύψος ομοιογενούς φορτωσης
GM cor scant nomo	Μετακεντρικό υψος διορθωμενο(λογώ ελευθερών επιφανείων)
DEP	ομοιογενους φορτωσης
MTC scant homo	Ροπή διαγωγής ανά εκατοστό διαφοράς βυθισμάτων ομοιογενούς
DEP	φόρτωσης
TPC scant homo	
DEP	Ιονοι ανα εκατοστο βυθισης ομοιογενους φορτωσης
Max GZ DEP T _{scant}	Μέγιστη τιμή μοχλοβραχίονα επαναφοράς ομοιογενούς φόρτωσης
Θ (max GZ) DEP	
T _{scant}	ι ωνια μεγιστου μοχλορραχιονα επαναφορας ομοιογενους φορτωσης

 Δεδομένα για τις καταστάσεις φόρτωσης Homogenous Load Arrival, Light(Normal) Ballast Condition at arrival and Heavy Ballast Condition at arrival.

Πίνακας	8:	Δεδομένα	για	όλες τις	καταστάσεις	Arrival
---------	----	----------	-----	----------	-------------	---------

Tanker database
General GA-Capacity Departure Arrival Machinery
KGcargo ARR (m) Tdes KGfo ARR (m) Tdes KGlo ARR (m) Tdes 12.05
LCGcrago ARR (m) Tdes LCGfo ARR (m) Tdes LCGdo ARR (m) Tdes LCGdwt ARR (m) Tdes 127.98
KGfw ARR (m) Tdes KGdo ARR (m) Tdes KGdispl ARR (m) Tdes 11.94
LCGfw ARR (m) Tdes LCGdo ARR (m) Tdes KG_cor ARR (m) Tdes
LCGdispl ARR (m) 124.69
Ta_arr (m) Tdes 13.5 KB arr (m) Tdes KM arr (m) Tdes 17.84
Tf_arr (m) Tdes 13.34 LCB arr (m) Tdes 124.91 GM arr (m) at Tdes 5.02 Max GZ arr Tdes(m) 2.799
Trim_arr (m) Tdes 0.16 BM arr (m) Tdes GM_cor arr (m) Tdes θ (maxGZ) arr Tdes(deg) 36.75
KG Light Ballast (m) DISPL 8.32 KG_cor Light Ballast (m) LCG Light Ballast (m) DISPL 125.45
Ta_Light Ballast (m) 7.98 KB Light Ballast (m) KM Light Ballast (m) 22.77
Tf_Light Ballast (m) 6.68 LCB_Light Ballast (m) 128.14 GM Light Ballast (m) 14
Trim_Light Ballast (m) 1.3 BM Light Ballast (m) GM cor Light Ballast (m)
Max GZ Light B-Arr (m) 7.889 θ (max GZ) Light B-Arr (deg) 45
KG Heavy Ballast (m) DISPL 9.6 KG_cor Heavy Ballast (m) DISPL LCG Heavy Ballast (m) DISPL 124.2
Ta_Heavy Ballast (m) 10.13 KB Heavy Ballast (m) KM Heavy Ballast (m) 20.26 Max GZ Heavy 6.482
Tf_Heavy Ballast (m) 8.21 LCB_Heavy Ballast (m) 127.56 GM Heavy Ballast (m) 10.2 Ballast (m)
Trim_Heavy Ballast (m) 1.92 BM Heavy Ballast (m) GM cor Heavy Ballast (m) max GZ (θ) Heavy 42
Ballast (deg)

Όπου:

Πίνακας 9: Λεπτομέρειες των καταστάσεων Arrival

Homogenous Load Arrival				
KG cargo Arr T _{des}	Απόσταση του κέντρου βάρους του φορτίου από το βασικό επίπεδο			
LCG cargo Arr T _{des}	Διαμήκης θέση του κέντρου βάρους του φορτίου			
KGfw Arr T _{des}	Απόσταση του κέντρου βάρους του γλυκού νερού από το βασικό επίπεδο			
LCGfw Arr T _{des}	Διαμήκης θέση του κέντρου βάρους του γλυκού νερού			
KGfo Arr T _{des}	Απόσταση του κέντρου βάρους του καυσίμου από το βασικό επίπεδο			
LCGfo Arr T _{des}	Διαμήκης θέση του κέντρου βάρους του καυσίμου			
KGdo Arr T _{des}	Απόσταση του κέντρου βάρους του Diesel από το βασικό επίπεδο			
LCGdo Arr T _{des}	Διαμήκης θέση του κέντρου βάρους του Diesel			
KGlo Arr T _{des}	Απόσταση του κέντρου βάρους των λιπαντικών από το βασικό επίπεδο			
LCGlo Arr T _{des}	Διαμήκης θέση του κέντρου βάρους των λιπαντικών			
KGdwt Arr T _{des}	Απόσταση του κέντρου βάρους του πρόσθετου (νεκρού) βάρους από το βασικό επίπεδο			
LCGdwt Arr T _{des}	Διαμήκης θέση του κέντρου βάρους του πρόσθετου (νεκρού) βάρους			
KGdispl Arr T _{des}	Απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο			
KG cor Arr T _{des}	Διορθωμένη απόσταση του κέντρου βάρους από το βασικό επίπεδο			
LCGdispl Arr T _{des}	Διαμήκης θέση του κέντρου βάρους εκτοπίσματος			
Ta Arr T _{des}	Πρυμναίο βύθισμα (στην πρυμναία κάθετο)			
Tf Arr T _{des}	Πρωραίο βύθισμα (στην πρωραία κάθετο)			
Trim Arr T _{des}	Διαγωγή			
KB Arr T _{des}	Απόσταση κέντρου άντωσης από το βασικό επίπεδο			
LCB Arr T _{des}	Διαμήκης θέση του κέντρου άντωσης			
BM Arr T _{des}	Μετακεντρική ακτίνα			
KM Arr T _{des}	Απόσταση του μετάκεντρου από το βασικό επίπεδο			
GM Arr T _{des}	Μετακεντρικό ύψος			
GM cor Arr T _{des}	Μετακεντρικό ύψος διορθωμένο (λόγω ελεύθερων επιφανειών)			
Max GZ Arr T _{des}	Μέγιστη τιμή μοχλοβραχίονα επαναφοράς			
Θ (max GZ) Arr T _{des}	Γωνία μέγιστου μοχλοβραχίονα επαναφοράς			
	Light (Normal) Ballast Condition at arrival			
KG Light Ballast DISPL	Απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο			
KG cor Light Ballast DISPL	Διορθωμένη απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο			
LCG Light Ballast DISPL	Διαμήκης θέση του κέντρου βάρους εκτοπίσματος			
Ta Light Ballast	Πρυμναίο βύθισμα (στην πρυμναία κάθετο)			
Tf Light Ballast	Πρωραίο βύθισμα (στην πρωραία κάθετο)			

Trim Light Ballast	Διαγωγή
KB Light Ballast	Απόσταση κέντρου άντωσης από το βασικό επίπεδο
LCB Light Ballast	Διαμήκης θέση του κέντρου άντωσης
BM Light Ballast	Μετακεντρική ακτίνα
KM Light Ballast	Απόσταση του μετάκεντρου από το βασικό επίπεδο
GM Light Ballast	Μετακεντρικό ύψος
GM cor Light Ballast	Μετακεντρικό ύψος διορθωμένο (λόγω ελεύθερων επιφανειών)
Max GZ Light Ballast	Μέγιστη τιμή μοχλοβραχίονα επαναφοράς
Θ (max GZ) Light Ballast	Γωνία μέγιστου μοχλοβραχίονα επαναφοράς
	Heavy Ballast Condition at arrival
KG Heavy Ballast DISPL	Απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο
KGcor Heavy Ballast DISPL	Διορθωμένη απόσταση του κέντρου βάρους του εκτοπίσματος από το βασικό επίπεδο
LCG Heavy Ballast DISPL	Διαμήκης θέση του κέντρου βάρους εκτοπίσματος
Ta Heavy Ballast	Πρυμναίο βύθισμα
Tf Heavy Ballast	Πρωραίο βύθισμα
Trim Heavy Ballast	Διαγωγή
KB Heavy Ballast	Απόσταση κέντρου άντωσης από το βασικό επίπεδο
LCB Heavy Ballast	Διαμήκης θέση του κέντρου άντωσης
BM Heavy Ballast	Μετακεντρική ακτίνα
KM Heavy Ballast	Απόσταση του μετάκεντρου από το βασικό επίπεδο
GM Heavy Ballast	Μετακεντρικό ύψος
GM cor Heavy Ballast	Μετακεντρικό ύψος διορθωμένο(λόγω ελεύθερων επιφανειών)
Max GZ Heavy Ballast	Μέγιστη τιμή μοχλοβραχίονα επαναφοράς
Θ (max GZ) Heavy Ballast	Γωνία μέγιστου μοχλοβραχίονα επαναφοράς

5. Γενικά χαρακτηριστικά του μηχανοστασίου

Πίνακας 10: Γενικά χαρακτηριστικά μηχανοστασίου

Tanker database	
General GA-Capacity Departure	Arrival Machinery
Engine Make HYUNDAI	MCR (HP) 15400 NCR (HP) 13860 RPM_MCR 97
Engine Model B&W 6560MC	MCR (KW) NCR (KW) RPM_NCR 93.7
Number of Engines 1 HFC	Consumption (t/day) 42 Endurance (sm)
Number of Propellers 1	Propeller Diameter(m) 7.81 Rudder Beam(m) 6.98
Propeller Blades 4	Shaft Length (m) Rudder Height (m) 11.5
Type of propeller	Rudder Surface (m2) Max Helm Angle (deg)
Pumps	Cargo Pumps Power 3000 Pump Ballast
Cargo Pumps 3	(m3/h) (Capacity) Power (m3/h)
Ballast Pumps	Grades 3
Gen Make HYUNDAI	Gen HP text Gen HP Emergency KW
Gen Model B&W 6L23/30H	Gen KW 800 text Gen KW Emergency HP
Number of Gen	3 Gen SFOC (gr/kWh)
Thruster NO Th	ruster Diameter (m)
Thruster KW Thruster I	Distance from FP (m)
Thruster D	Distance from AP (m) NO

Πίνακας 11: Λεπτομέρειες γενικών χαρακτηριστικών μηχανοστασίου

Όπου:

Engine Make	Κατασκευαστής μηχανής
Engine Model	Μοντέλο μηχανής
Number of Engines	Αριθμός μηχανών
MCR (HP)	Μέγιστη συνεχής ισχύς σε ΗΡ
MCR (kW)	Μέγιστη συνεχής ισχύς σε kW
Consumption	Κατανάλωση
NCR (HP)	Ονομαστική συνεχή ισχύς σε ΗΡ
NCR (kW)	Ονομαστική συνεχή ισχύς σε kW
Endurance	Αυτονομία του πλοίου (sea miles)
RPM MCR	Στροφές ανά λεπτό της MCR
RPM NCR	Στροφές ανά λεπτό της NCR
Number of Propellers	Αριθμός ελίκων
Number of Propeller Blades	Αριθμός πτερυγίων έλικας
Type of propeller	Είδος έλικας
Propeller's Diameter	Διάμετρος έλικας
Shaft Length	Μήκος άξονα
Rudder Surface	Επιφάνεια πηδαλίου
Rudder Beam	Πλάτος πηδαλίου
Rudder Height	Ύψος πηδαλίου
Max Helm Angle	Γωνία τιμονιού
Max Helm Angle Pumps	Γωνία τιμονιού Αντλίες (Submerged or not submerged)

Ballast Pumps	Αριθμός αντλιών έρματος	
Grades	Αριθμός ειδών σωληνώσεων	
Cargo Pumps Power	Ισχύς αντλιών φορτίου	
Text Cargo Pumps Power	Επεξήγηση ισχύος αντλιών φορτίου	
Pump Ballast Power	Ισχύς αντλιών έρματος	
Text Pump Ballast Power	Επεξήγηση ισχύος αντλιών έρματος	
Gen Make	Κατασκευαστής γεννήτριας	
Gen Model	Μοντέλο γεννήτριας	
Number of Gen	Αριθμός γεννητριών	
Gen HP	Ισχύς γεννήτριας σε ΗΡ	
Gen kW	Ισχύς γεννήτριας σε kW	
Text Gen HP	Επεξήγηση ισχύος γεννήτριας σε ΗΡ	
Text Gen kW	Επεξήγηση ισχύος γεννήτριας σε kW	
Gen SFOC	Κατανάλωση καυσίμου	
Emergency kW	Ισχύς γεννήτριας έκτακτης ανάγκης σε kW	
Emergency HP	Ισχύς γεννήτριας έκτακτης ανάγκης σε ΗΡ	
Thruster	Ύπαρξη πρωραίας πλευρικής έλικας	
Thruster kW	Ισχύς πρωραίας πλευρικής έλικας	
Thruster Diameter	Διάμετρος πρωραίας πλευρικής έλικας	
Thruster Distance from FP	Απόσταση πρωραίας πλευρικής έλικας από την F.P	
Thruster Distance from AP	Απόσταση πρωραίας πλευρικής έλικας από την Α.Ρ.	

Συνολικά καταγράφτηκαν και αναλύθηκαν τεχνικά χαρακτηριστικά από 164 πλοία μεταφοράς υγρού φορτίου εκ των οποίων τα 88 είναι Crude Oil Tankers, 30 Oil Products Tankers, 14 Crude/Oil Products Tankers, 31 Oil Product/Chemical Tankers και 1 Crude/Product/Chemical. Ανάλογα με την χωρητικότητα και το μέγεθος τους υπήρχαν από μικρά πλοία (Small Oil Tanker) μέχρι VLCC (Very Large Crude Carrier) και συνολικά κατανέμονται ως εξής:

Πίνακας 12: Δείγμα Υπό Μελέτη Πλοίων ανάλογα με την χωρητικότητα και μέγεθος

Ship Type	DWT	Number of ships	%
Small Oil Tankers	Έως 24999	15	9,15%
Handysize	25000-34999	2	1,22%
Handymax	35000-59999	27	16,46%
Panamax	60000-799999	30	18,29%
Aframax	80000-119999	31	18,90%
Suezmax	120000-199999	44	26,83%
VLCC	20000-319999	15	9,15%
Total	-	164	100,00%

Σχήμα 3: Δείγμα Υπό Μελέτη Πλοίων ανάλογα με την χωρητικότητα και μέγεθος

Όσον αφορά την χρονολογία κατασκευής τους κατατάσσονται ως εξής:

Χρονολογία	Number of ships	%
1991-1999	22	14%
2000-2005	38	24%
2006-2010	70	44%
2011-2017	30	19%

Σχήμα 4: Δείγμα Υπό Μελέτης Πλοίων ανάλογα με το έτος ναυπήγησης

3. Στατιστική Ανάλυση

Στα προκαταρκτικά στάδια της μελέτης ενός πλοίου χρειαζόμαστε μαθηματικές σχέσεις που συσχετίζουν τις διάφορες μεταβλητές σχεδίασης παράγοντας με την βοήθεια της στατιστικής ανάλυσης κατάλληλες σχέσεις που θα βοηθήσουν τον ναυπηγό. Πιο κάτω ορίζονται μερικές έννοιες στατιστικής που θα χρησιμοποιηθούν.

3.1 Ορισμοί

3.1.1. Διάγραμμα Διασποράς (Scatter Diagram)

Σε μια στοχαστική σχέση το διάγραμμα διασποράς είναι, γενικά, ένα νέφος σημείων το οποίο πολλές φορές καθορίζει μια ιδεατή γραμμή η οποία δίνει μια πρώτη εικόνα της σχέσης που συνδέει τις δύο ή περισσότερες μεταβλητές. Η σχέση μάλιστα μεταξύ των δύο ή περισσότερων μεταβλητών είναι τόσο περισσότερο ισχυρή όσο πιο κοντά στην ιδεατή γραμμή βρίσκονται τα σημεία (xi,yi) ή (xi,yi,...,zi), i=1,...,n του διαγράμματος διασποράς. Για παράδειγμα στο πρώτο από τα παρακάτω σχήματα έχουμε το διάγραμμα διασποράς μιας ισχυρής σχέσης στην οποία όταν αυξάνουν οι τιμές της X αυξάνουν γενικά και οι τιμές της Y, ενώ στο δεύτερο σχήμα έχουμε μια λιγότερο ισχυρή σχέση στην οποία όταν αυξάνουν οι τιμές της X ελαττώνονται γενικά και οι τιμές της Y. Τέλος, στην περίπτωση του τρίτου σχήματος δε φαίνεται να υπάρχει κάποια σχέση μεταξύ των X και Y.

Διάγραμμα 1: Ενδεικτικά διαγράμματα διασποράς

3.1.2. Προσεγγιστικές καμπύλες (Approximating Curves)

Όπως έχει αναφερθεί πιο πάνω σε ένα διάγραμμα διασποράς η ιδεατή γραμμή η οποία δίνει μια πρώτη εικόνα της σχέσης που συνδέει τις δύο ή περισσότερες μεταβλητές είναι στην ουσία η προσεγγιστική καμπύλη και φαίνεται παρακάτω:

Διάγραμμα 2: Διάγραμμα Διασποράς με προσεγγιστική καμπύλη και καμπύλες πρόβλεψης

Για την εύρεση της προσεγγιστικής καμπύλης χρησιμοποιήθηκε το λογισμικό Matlab R2015a και συγκεκριμένα το εργαλείο Curve Fitting Tool. Το εργαλείο αυτό περιέχει κάποιες τυποποιημένες εξισώσεις που μπορούν να χρησιμοποιηθούν ως συνάρτηση μίας μεταβλητής, οι τύποι των οποίων φαίνονται πιο κάτω:

- Linear model Poly1: f(x)=p1*x+p2
- Linear model Poly2: $f(x)=p1*x^2+p2*x+p3$
- General model Power1: $f(x)=a*x^b$
- General model Power2: $f(x)=a*x^b+c$
- General model Log1: f(x)=a*ln(x)+b
- General model Exp1: f(x)=a*exp(b*x)

Σημειώνεται ότι το Matlab διαθέτει και άλλες πιο πολύπλοκες εξισώσεις καθώς και τη δυνατότητα ο χρήστης να δημιουργήσει νέα εξίσωση (Custom Equation), όμως στην παρούσα εργασία χρησιμοποιήθηκαν κυρίως οι πιο πάνω.

Στο πιο πάνω διάγραμμα καθώς και στα επακόλουθα εκτός από την προσεγγιστική καμπύλη εμφανίζονται και δύο επιπλέον οριακές καμπύλες με διακεκομμένες γραμμές εκατέρωθεν της προσεγγιστικής που ορίζουν το επίπεδο βεβαιότητας (Boundary Curves). Οι καμπύλες αντιστοιχούν στις καμπύλες πρόβλεψης (Prediction Bounds) οι οποίες ορίζουν τις περιοχές στο διάγραμμα που μπορεί μια νέα παρατήρηση να εμφανιστεί με πιθανότητα 95%.

3.1.3. Μέθοδος Ελάχιστων Τετραγώνων

Μελετώντας ένα διάγραμμα διασποράς παρατηρούμε ότι η κατανομή των σημείων μπορεί να σχεδιάσει πολλές προσεγγιστικές καμπύλες οι οποίες διαφέρουν μεταξύ τους ως προς την ποιότητα προσέγγισης. Έτσι από όλες τις πιθανές καμπύλες που έχουν σχεδιαστεί πρέπει να επιλεγεί εκείνη που μας δίνει την καλύτερη προσέγγιση και αυτή θα είναι η βέλτιστη (Best-Fitting Curve). Η διαδικασία επιλογής της βέλτιστης καμπύλης στο Matlab 2015a γίνεται με την μέθοδο ελάχιστων τετραγώνων (Nonlinear Least Squares).

Έτσι αν θεωρήσουμε ότι έχουμε ένα διάγραμμα διασποράς με σημεία (x_i, y_i) όπου i=1,...,n, για μια δεδομένη τιμή του x_i θα υπάρχει διαφορά μεταξύ της τιμής y_i και της τιμής που δίνεται από την καμπύλη $f(x_i)$. Η διαφορά αυτή ονομάζεται απόκλιση ή σφάλμα ή υπόλοιπο (Deviation, Error, Residual) και ορίζεται ως

$$d_i = y_i - f(x_i)$$

Υπολογίζοντας τις τιμές d_i για όλα τα σημεία που έχουμε, τότε μπορούμε να βρούμε το άθροισμα των τετραγώνων των d_i για όλα τα σημεία το οποίο ονομάζεται σύμφωνα με την βιβλιογραφία SSE (Sum of Squares due to Error) και υπολογίζεται:

$$SSE = d_1^2 + d_2^2 + \dots + d_n^2 = \sum_{i=1}^n d_i^2 = \sum_{i=1}^n (y_i - f(x_i))^2$$

Πόσο καλή είναι η ποιότητα της προσεγγιστικής καμπύλης μας δείχνει το μέγεθος του SSE. Γενικά βέλτιστη προσεγγιστική καμπύλη (Best-Fitting Curve) θεωρείται αυτή με τη μικρότερη τιμή του εν λόγω αθροίσματος και λέγεται καμπύλη ελάχιστων τετραγώνων (Least Squares Curve).

3.1.4. Παλινδρόμηση (Regression)

Γενικά με τη μέθοδο της παλινδρόμησης (Regression) εκτιμούμε ένα μοντέλο (μαθηματικό πρότυπο) που αναπαριστά τη σχέση ανάμεσα σε μια εξαρτημένη μεταβλητή y αφενός και μια ή περισσότερες ανεξάρτητες μεταβλητές x αφετέρου. Έτσι με βάση το δείγμα που διαθέτουμε η εκτίμηση της τιμής μιας μεταβλητής y που αντιστοιχεί σε μία δεδομένη τιμή της μεταβλητής x μπορεί να προσεγγισθεί από την μέθοδο παλινδρόμησης και γίνεται μέσω της καμπύλης ελάχιστων τετραγώνων.

3.1.5. Θεωρία Συσχέτισης (Correlation Theory)

Ο βαθμός της σχέσης μεταξύ μεταβλητών, δηλαδή το πρόβλημα που έχει σκοπό να προσδιορίσει πόσο καλά η προσεγγιστική εξίσωση περιγράφει τη σχέση ανάμεσα στις μεταβλητές ονομάζεται συσχέτιση. Η συσχέτιση αποτελεί βασικό μέγεθος αξιολόγησης σε όλη την ανάλυση που πραγματοποιείται στην παρούσα εργασία. Εάν όλες οι τιμές των μεταβλητών ικανοποιούν την εξίσωση παλινδρόμησης με ακρίβεια τότε λέμε ότι οι μεταβλητές είναι τέλεια συσχετισμένες ή ότι υπάρχει τέλεια συσχέτιση μεταξύ τους.

Αν η συσχέτιση αναφέρεται σε δύο μόνο μεταβλητές τότε μιλάμε για απλή συσχέτιση (simple correlation) και όταν πρόκειται για περισσότερες μιλάμε για πολλαπλή συσχέτιση (multiple correlation). Στην συγκεκριμένη εργασία αναφερόμαστε μόνο σε απλές συσχετίσεις.

Συντελεστής Συσχέτισης

Το άθροισμα των τετραγώνων των αποκλίσεων των τιμών του y από το μέσο όρο \overline{y} αναφέρεται σαν SST (Total Sum of Squares) και είναι

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Το άθροισμα των τετραγώνων των αποκλίσεων των τιμών της παλινδρόμησης $f(x_i)$ από το μέσο όρο \overline{y} αναφέρεται ως SSR (Sum of Squares due to Regression) και είναι:

$$SSR = \sum_{i=1}^{n} (f(x_i) - \bar{y})^2$$

Σύμφωνα με τα παραπάνω θα ισχύει:

$$SST = SSE + SSR \Rightarrow \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \sum_{i=1}^{n} (f(x_i) - \bar{y})^2$$

Ο συντελεστής προσδιορισμού (Determination Coefficient) δείχνει το ποσοστό της διακύμανσης που εξηγείται από την καμπύλη παλινδρόμησης. Συμβολίζεται με R² (R-square) και δίνεται από τη σχέση:

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \Rightarrow R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Η μεγαλύτερη τιμή που μπορεί να πάρει το R^2 είναι η μονάδα και αυτό θα συμβεί όταν ολόκληρη η μεταβλητότητα της y ερμηνεύεται από την ανεξάρτητη μεταβλητή x. Η μικρότερη τιμή του R^2 είναι το μηδέν, όταν η ανεξάρτητη μεταβλητή x δε συμβάλλει καθόλου στην ερμηνεία της μεταβλητότητας της y. Γενικά όσο πιο κοντά στη μονάδα είναι η τιμή του R^2 τόσο καλύτερη είναι η προσέγγιση. Π.χ. $R^2 = 0.893$ σημαίνει 'ότι η προσέγγιση εξηγεί το 89.3% της συνολικής διακύμανσης στα δεδομένα γύρω από το μέσο όρο.

Από τον πιο πάνω συντελεστή λύνοντας ως προς R προκύπτει ο συντελεστής συσχέτισης (Correlation Coefficient) και υπολογίζεται από:

$$R = \sqrt{\frac{SSR}{SST}} = \sqrt{1 - \frac{SSE}{SST}} \Rightarrow R = \sqrt{1 - \frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Σε όλες τις περιπτώσεις ο συντελεστής R μετράει το βαθμό της συσχέτισης αναφορικά με τον τύπο της εξίσωσης της αρχικής υπόθεσης, μετράει δηλαδή το πόσο καλά προσεγγίζει η υποτιθέμενη εξίσωση τα δεδομένα. Επίσης πρέπει να επισημανθεί ότι μεγάλη τιμή συντελεστή συσχέτισης δεν συνεπάγεται αναγκαστικά ότι οι μεταβλητές έχουν κάποια εξάρτηση.

Τυπικό Σφάλμα (Standard Error)

Το τυπικό σφάλμα εκτίμησης μετράει τη διασπορά των τιμών που παρατηρήθηκαν γύρω από τη γραμμή παλινδρόμησης. Αναφέρεται σαν RMSE (Root Mean Squared Error) και δίνεται από την πιο κάτω σχέση:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{n}}$$

A@HNA 2019

4. Εκτίμηση Στοιχείων Tankers

Έχοντας πλέον δημιουργήσει την βάση δεδομένων, μπορούμε με την χρήση του λογισμικού Matlab R2015a και του εργαλείου Curve Fitting Tool να κάνουμε την στατιστική ανάλυση των δεδομένων που συλλέχτηκαν, όπου όπως έχει ήδη αναφερθεί θα προσπαθήσουμε να βρούμε συσχετίσεις μεταξύ των βασικών μεγεθών. Να σημειωθεί ότι για την παραγωγή των διαγραμμάτων επιλέξαμε μεγέθη που είναι πιθανό να έχουν κάποια αλληλεξάρτηση και όχι μεγέθη που δεν έχουν κάποια φυσική σχέση μεταξύ τους. Επιπλέον διαγράμματα που δεν μας έδωσαν κάποια σημαντική πληροφορία δεν παρουσιάζονται στην έκθεση.

4.1. Κύριες Διαστάσεις

Στο κεφάλαιο 4.1. θα δοθούν διαγράμματα και εμπειρικοί τύποι για τα απόλυτα μεγέθη και στο κεφάλαιο 4.1.7 θα δοθούν για τους λόγους των κύριων διαστάσεων.

4.1.1 Ολικό μήκος (L_{OA})

Διάγραμμα 3:L_{OA} συναρτήσει του L_{BP}

<u>Αποτελέσματα προσέγγισης</u>

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 1.026 (1.022, 1.029) p2 = 3.653 (2.807, 4.5)Goodness of fit: SSE: 305.5 R-square: 0.9995 Adjusted R-square: 0.9995 RMSE: 1.373

$$L_{OA} = 1.026 * L_{BP} + 3.653$$

<u>Παρατηρήσεις</u>

Πρόκειται για μια από τις καλύτερες προσεγγίσεις που παρατηρήθηκαν καθώς οι οριακές ευθείες σχεδόν ταυτίζονται με την προσεγγιστική.

4.1.2. Μήκος μεταξύ καθέτων (Lbp)

Διάγραμμα 4: L_{BP} συναρτήσει του DWT_{Design}

Αποτελέσματα προσέγγισης

General model Power1: $f(x) = a*x^b$ Coefficients (with 95% confidence bounds): a = 8.627 (7.802, 9.452)

 $b = 0.2881 \ (0.2799, 0.2963)$

Goodness of fit: SSE: 8788 R-square: 0.9791 Adjusted R-square: 0.9789 RMSE: 7.98

 $L_{BP} = 8.627 * DWT_{Design}^{0.2881}$

Διάγραμμα 5: LBP συναρτήσει του DWTscantling

Αποτελέσματα προσέγγισης

General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

- a = 6.877 (6.264, 7.49)
- $b = 0.3045 \ (0.2969, 0.3121)$

Goodness of fit: SSE: 8687 R-square: 0.9815 Adjusted R-square: 0.9814 RMSE: 7.462

 $L_{BP} = 6.877 * DWT_{scantling}^{0.3045}$

<u>Παρατηρήσεις</u>

Η συσχέτιση του L_{BP} και του Deadweight και στις δύο περιπτώσεις είναι αρκετά καλή γεγονός που αποδεικνύει την μεγάλη αλληλεπίδραση τους. Από το διάγραμμα βλέπουμε ότι για κάποια σταθερά μήκη συσσωρεύονται πολλά πλοία για παράδειγμα στα μήκη 264m, 220m και 175m τα οποία σχετίζονται με φυσικούς περιορισμούς. Παρατηρούμε επίσης ότι όχι μόνο συσσωρεύονται σχεδόν όλα τα σημεία γύρω από τις προσεγγιστικές καμπύλες αλλά περιλαμβάνονται και ανάμεσα στα όρια πρόβλεψης. Σημαντικό είναι και το γεγονός ότι η προσεγγιστική καμπύλη και στα δύο διαγράμματα έχει πολύ καλή συμπεριφορά σε όλο το εύρος των DWT του δείγματος μας.

4.1.3. Πλάτος (Β)

Διάγραμμα 6: Β συναρτήσει του L_{BP}

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): $p1 = 0.1884 \ (0.1798, 0.1969)$ $p2 = -2.612 \ (-4.592, -0.6315)$

Goodness of fit: SSE: 1672 R-square: 0.921 Adjusted R-square: 0.9205 RMSE: 3.212

 $B = 0.1884 * L_{BP} - 2.612$

<u>Παρατηρήσεις</u>

Η σχέση του πλάτους Β με το μήκος L_{BP} είναι αρκετά σημαντική, γιατί μπορεί να μας δώσει μία πρώτη προσέγγιση των λόγων ανάμεσα στα μεγέθη. Αν και η προσεγγιστική καμπύλη προσεγγίζει αρκετά καλά τα σημεία παρατηρούμε ότι υπάρχουν σταθερά πλάτη στα περίπου 32m, 42m και 60m. Το φαινόμενο αυτό παρατηρείται γιατί υπάρχουν περιορισμοί λόγω της περατότητας της διαδρομής, των εγκαταστάσεων των λιμανιών και των διυλιστηρίων όπως για παράδειγμα τα 32m που είναι το μέγιστό πλάτος για να περάσει ένα πλοίο από την παλιά διώρυγα του Παναμά.

Διάγραμμα 7: Β συναρτήσει του DWT_{Design}

Αποτελέσματα προσέγγισης

General model Power1: $f(x) = a*x^b$ Coefficients (with 95% confidence bounds): a = 0.9408 (0.8157, 1.066) b = 0.3306 (0.3192, 0.3419) Goodness of fit: SSE: 508.4 R-square: 0.9692 Adjusted R-square: 0.969 RMSE: 1.919

$$B = 0.9408 * DWT_{Design}^{0.3306}$$

<u>Παρατηρήσεις</u>

Σε αυτό το διάγραμμα φαίνονται επίσης οι περιορισμοί στα πλάτη καθώς έχουμε στα 32m τα panamaxs, στα 42m τα aframaxs και στα 60m τα VLCC. Και πάλι βλέπουμε ότι η παρατήρηση που κάναμε στο διάγραμμα B-L_{BP} σχετικά με τα όρια του πλάτους εμφανίζεται και εδώ συναρτήσει του DWT. Παρόλο που οι παράμετροι ποιότητας της προσεγγιστικής καμπύλης είναι αρκετά καλές, θα μπορούσαν να ήταν ακόμη καλύτερες αν δεν υπήρχαν αυτές οι περιοχές.

4.1.4. Κοίλο (D)

Διάγραμμα 8: D συναρτήσει του DWT_{Design}

Αποτελέσματα προσέγγισης

General model Power1:

 $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 1.1762 (0.9844, 1.368) b = 0.2549 (0.2409, 0.2689)Goodness of fit: SSE: 232.9 R-square: 0.9257 Adjusted R-square: 0.9252 RMSE: 1.299

$$D = 1.1762 * DWT_{Design}^{0.2549}$$

<u>Παρατηρήσεις</u>

Παρατηρούμε ότι η προσέγγιση είναι αρκετά ακριβής όμως φαίνεται ότι το διάστημα που ορίζουν οι καμπύλες πρόβλεψης είναι μεγαλύτερο από τα αντίστοιχα διαγράμματα L_{BP}-DWT_{Design}, B-DWT_{Design}. Βέβαια για καλύτερη ακρίβεια θα μπορούσε κανείς να χωρίσει το δείγμα του σε μεγέθη.

34

Διάγραμμα 9: D συναρτήσει του L_{BP}

Αποτελέσματα προσέγγισης

Linear model Poly1:

f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.08494 (0.08146, 0.08841)p2 = 1.856 (1.052, 2.66)

Goodness of fit: SSE: 275.7 R-square: 0.935 Adjusted R-square: 0.9346 RMSE: 1.304

 $D = 0.08494 * L_{BP} + 1.856$

<u>Παρατηρήσεις</u>

Είναι προφανές ότι η συσχέτιση D-L_{BP} είναι λιγότερο καλή από την D-DWT, αλλά έχει σχετικά καλή ποιότητα. Παρόλο που η καμπύλη δεν ακολουθεί τέλεια τα διασκορπισμένα σημεία με την βοήθεια των καμπυλών πρόβλεψης μας παρέχει αρκετά χρήσιμη πληροφορία, καθώς ο λόγος μεταξύ τους παίζει σημαντικό ρόλο στη διαμήκη αντοχή του πλοίου αφού για υψηλές τιμές των λόγων L_{BP}/D και L_{BP}/B ανάγει το πρόβλημα στην θεώρηση του πλοίου ως καμπτόμενη δοκός. Αν οι λόγοι είναι εκτός ορίων όπως τα όρισε ο Νηογνώμονας πρέπει να γίνει περαιτέρω εξέταση της διαμήκους αντοχής. Όπως παρατηρούμε από το διάγραμμα: 21 βλέπουμε ότι ο λόγος L_{BP}/D είναι ανάμεσα στο 9-12.

Διάγραμμα 10: D συναρτήσει του Β

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.4168 (0.3914, 0.4421)

p2 = 4.387 (3.344, 5.43)

Goodness of fit: SSE: 563.6 R-square: 0.8671 Adjusted R-square: 0.8662 RMSE: 1.865

D = 0.4168 * B + 4.387

<u>Παρατηρήσεις</u>

Και εδώ βλέπουμε ότι τα σημεία έχουν μεγάλη απόκλιση από την προσεγγιστική καμπύλη, μειώνονται δηλαδή οι παράμετροι ποιότητας αλλά μπορούμε να πούμε ότι παραμένουν σε ικανοποιητική τάξη μεγέθους. Παρατηρούμε ότι για πλάτη περίπου B=32m (Panamax) και για B=48m (Suezmax) η προσέγγιση δεν είναι ικανοποιητική αφού το κοίλο διαφοροποιείται ενώ το πλάτος παραμένει σταθερό. Επίσης για πλοία με πλάτος έως και 25m υπάρχει σημαντική υπερεκτίμηση του κοίλου.

Διάγραμμα 11: D συναρτήσει του T_{Design}

General model Power2:

 $f(x) = a^*x^b + c$

Coefficients (with 95% confidence bounds):

a = 37.83 (1.107, 74.55)

 $b = 0.2346 \ (0.08935, 0.3799)$

c = -48.13 (-89.35, -6.909)

Goodness of fit: SSE: 211.2 R-square: 0.9473 Adjusted R-square: 0.9467 RMSE: 1.16

$$D = 37.83 * T_{Design}^{0.2346} - 48.13$$

<u>Παρατηρήσεις</u>

Το διάγραμμα D-T_{Design} μας δίνει μια αρκετά καλή συσχέτιση ανάμεσα στα δύο μεγέθη καθώς η προσεγγιστική καμπύλη προσεγγίζει τα σημεία πολύ καλά και είναι ανάμεσα στα όρια πρόβλεψης.

Διάγραμμα 12: Τ_{Design} συναρτήσει του DWT_{Design}

General model Power1:

 $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.3219 (0.2811, 0.3626)b = 0.3292 (0.3183, 0.34)

Goodness of fit: SSE: 52.29 R-square: 0.9708 Adjusted R-square: 0.9705 RMSE: 0.6156

 $T_{Design} = 0.3219 * DWT_{Design}^{0.3292}$

<u>Παρατηρήσεις</u>

Η προσέγγιση μας δίνει πολύ καλή κατανομή των σημείων γύρω από την προσεγγιστική καμπύλη. Παρατηρούμε ότι υπάρχουν κάποιες περιοχές που έχουν σημεία με σταθερό βύθισμα όπως για βύθισμα 12.2m (Panamax) και για βύθισμα 16m (Suezmax), αυτό συμβαίνει γιατί υπάρχει ο περιορισμός του βυθίσματος λόγω της διώρυγας του Παναμά και του Σουέζ.

Διάγραμμα 13: Τ_{Design} συναρτήσει του D

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): $p1 = 0.7041 \ (0.671, 0.7371)$ $p2 = -1.3 \ (-2.01, -0.5907)$

Goodness of fit: SSE: 177.6 R-square: 0.918 Adjusted R-square: 0.9175 RMSE: 1.06

$$T_{Design} = 0.7041 * D - 1.3$$

<u>Παρατηρήσεις</u>

Η καμπύλη μας δίνει μια ικανοποιητική εκτίμηση του βυθίσματος συναρτήσει του κοίλου παρόλο που βλέπουμε ότι για πλοία με βύθισμα 12.2m (Aframax) και 16m (Suezmax) το κοίλο διαφοροποιείται.

Διάγραμμα 14: T_{Design} συναρτήσει του L_{BP}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.06211 (0.05952, 0.06471) p2 = -0.5114 (-1.111, 0.08811)

Goodness of fit: SSE: 142.9 R-square: 0.934 Adjusted R-square: 0.9336 RMSE: 0.9511

 $T_{Design} = 0.06211 * L_{BP} - 0.5114$

<u>Παρατηρήσεις</u>

Όπως και στο προηγούμενο διάγραμμα παρατηρούμε ότι στην περιοχή μήκους γύρω στα 265 m υπάρχει μεγάλη διακύμανση, όμως παρ' όλα αυτά το διάγραμμα βυθίσματος συναρτήσει του L_{BP} μας δίνει καλές παραμέτρους ποιότητας.

4.1.6. Βύθισμα αντοχής ($T_{scantling}$)

Διάγραμμα 15: T_{scantling} συναρτήσει T_{Design}

Αποτελέσματα προσέγγισης

General model Power2:

 $f(x) = a*x^b+c$ Coefficients (with 95% confidence bounds):

- a = 3.296 (1.707, 4.886)
- $b = 0.6806 \ (0.5602, 0.8011)$
- c = -4.311 (-7.551, -1.071)

Goodness of fit: SSE: 63.15 R-square: 0.9691 Adjusted R-square: 0.9687 RMSE: 0.6425

 $T_{scantling} = 3.296 * T_{Design}^{0.6806} - 4.311$

<u>Παρατηρήσεις</u>

Η προσέγγιση μας δίνει πολύ καλή κατανομή των σημείων γύρω από την προσεγγιστική καμπύλη. Όμως όπως έχει αναφερθεί και πιο πάνω ιδιαίτερο ενδιαφέρον παρουσιάζει το βύθισμα σχεδίασης στα 12.2 m λόγω του ότι υπάρχει περιορισμός στη διώρυγα του Παναμά.

Διάγραμμα 16: Tscantling συναρτήσει DWTscantling

General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

a = 0.4473 (0.3938, 0.5008)

 $b = 0.3058 \ (0.2956, 0.316)$

Goodness of fit: SSE: 68.05 R-square: 0.9661 Adjusted R-square: 0.9659 RMSE: 0.6604

$$T_{scantling} = 0.4473 * DWT_{scantling}^{0.3058}$$

<u>Παρατηρήσεις</u>

Βλέπουμε ότι η συσχέτιση των δύο μεγεθών είναι αρκετά καλή. Παρατηρούμε ότι υπάρχουν κάποια σημεία εκτός των καμπυλών πρόβλεψης, αυτός ο περιορισμός εμφανίζεται λόγω της περατότητας της διαδρομής.

4.8.2. Ύψος εξάλων σε κατάσταση αντοχής (Freeboard Scantling)

Διάγραμμα 17: Freeboard scantling συναρτήσει του $T_{scantling}$

Αποτελέσματα προσέγγισης

General model Power2: $f(x) = a*x^b+c$ Coefficients (with 95% confidence bounds): a = -4321 (-1.52e+04, 6560) b = -3.836 (-5.253, -2.419) c = 6.3 (6.075, 6.526) Goodness of fit: SSE: 66.49 R-square: 0.587

Adjusted R-square: 0.581 RMSE: 0.6942

 $Freeboard_{scantling} = -4321 * T_{scantling}^{-3.836} + 6.3$

<u>Παρατηρήσεις</u>

Γενικά υπάρχουν πολλές αποκλίσεις και παρατηρούμε ότι δεν είναι και τόσο ικανοποιητική η συσχέτιση, εκτός από την περιοχή με βύθισμα από 10-18m που φαίνεται να είναι πιο ικανοποιητική.

General model Power2: $f(x) = a*x^b+c$ Coefficients (with 95% confidence bounds): a = -2.842e+04 (-1.071e+05, 5.025e+04) -1.036 (-1.368, -0.7047) b = c =6.381 (6.141, 6.622)

Goodness of fit: SSE: 60.37 R-square: 0.6293 Adjusted R-square: 0.6239 RMSE: 0.6614

 $Free board_{scantling} = -28420 * DWT_{scantling}^{-1.036} + 6.381$

Παρατηρήσεις

Και πάλι στο διάγραμμα βλέπουμε αποκλίσεις ειδικά στην περιοχή που το DWT είναι 320000t το freeboard είναι μικρότερο σε σχέση με πλοία που το DWT είναι μικρότερο.

Διάγραμμα 19: Freeboard scantling συναρτήσει του L_{BP}

General model Power2:

 $f(x) = a^*x^{b+c}$ Coefficients (with 95% confidence bounds): a = -4.335e+07 (-2.697e+08, 1.83e+08)b = -3.593 (-4.763, -2.422)c = -6.347 (6.136, 6.559)

Goodness of fit: SSE: 57.51 R-square: 0.6468 Adjusted R-square: 0.6417 RMSE: 0.6456

 $Free board_{scantling} = (-4.335e + 0.7) * L_{BP}^{-3.593} + 6.347$

<u>Παρατηρήσεις</u>

Πανομοιότυπα είναι τα διαγράμματα Freeboard-DWT με το Freeboard-L_{BP}. Υπάρχει η ίδια απόκλιση στην περιοχή με L_{BP} 320m με μειωμένο το Freeboard. Αν δεν υπήρχε αυτή η περιοχή θα είχαμε καλύτερα αποτελέσματα.

45

4.1.7. Λόγοι κύριων διαστάσεων

Διάγραμμα 21: LBP/D συναρτήσει του DWT scantling

Διάγραμμα 23: B/T συναρτήσει DWT_{scantling}

Διάγραμμα 22: B/D συναρτήσει DWT_{scantling}

Διάγραμμα 24: D/T συναρτήσει DWT_{scantling}

Τα όρια των λόγων των κύριων διαστάσεων που ορίστηκαν από τα πιο πάνω διαγράμματα συνοψίζονται στον πιο κάτω πίνακα:

	MIN	MAX	AVERAGE
L _{BP} /B	5.019	6.835	5.725
L _{BP} /D	9.005	12.222	10.680
B/T	2.185	3.397	2.654
B/D	1.541	2.367	1.888
D/T	1.159	1.619	1.415

Πίνακας 14: Όρια των λόγων των κύριων διαστάσεων

4.2. Πρόσθετο (νεκρό) βάρος (DWT)

Διάγραμμα 25: DWT_{scantling} συναρτήσει DWT_{Design}

Αποτελέσματα προσέγγισης

Linear model Poly1:

f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 1.057 (1.043, 1.07)p2 = 6879 (5121, 8637)Goodness of fit:

Soldness of In: SSE: 4.445e+09 R-square: 0.9946 Adjusted R-square: 0.9945 RMSE: 5803

 $DWT_{scantling} = 1.057 * DWT_{Design} + 6879$

<u>Παρατηρήσεις</u>

Παρατηρείται από το διάγραμμα πως παρόλο που υπάρχουν σημεία διαφορετικών τάξεων μεγέθους, η προσεγγιστική καμπύλη τα προσεγγίζει με έναν καλό τρόπο.

Διάγραμμα 26: LBP*B*D συναρτήσει του DWT scantling

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 1.802 (1.788, 1.816) p2 = 1.359e+04 (1.165e+04, 1.554e+04)

Goodness of fit: SSE: 7.569e+09 R-square: 0.9977 Adjusted R-square: 0.9977 RMSE: 6966

 $L_{BP} * B * D = 1.802 * DWT_{scantling} + 13590$

<u>Παρατηρήσεις</u>

Είναι φανερό ότι η συσχέτιση μεταξύ του DWT και του γινομένου L_{BP} , B, D είναι πολύ καλύτερη από ότι από εκείνη που προκύπτει αν πάρουμε ξεχωριστά την κάθε κύρια διάσταση με το DWT. Αυτό είναι αρκετά καλό εργαλείο στα χέρια του ναυπηγού μιας και τα δύο είναι μεγέθη όγκου των χωρών του πλοίου.

Εκτόπισμα (Δ)

Διάγραμμα 27: Displacement_Design(Δ) συναρτήσει DWT_Design

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 1.139 (1.135, 1.142) p2 = 4544 (4084, 5005)

Goodness of fit: SSE: 3.365e+08 R-square: 0.9997 Adjusted R-square: 0.9997 RMSE: 1573

 $\Delta_{design} = 1.139 * DWT_{design} + 4544$

<u>Παρατηρήσεις</u>

Το διάγραμμα μας δίνει μία εξαιρετική συσχέτιση μεταξύ των μεγεθών καθώς η ακρίβεια της προσεγγιστικής καμπύλης και η σχεδόν ταύτιση των καμπύλων πρόβλεψης είναι σχεδόν τέλεια και βοηθά σ 'έναν πολύ αξιόπιστο υπολογισμό του εκτοπίσματος στη περίπτωση που γνωρίζουμε το DWT ή και το αντίθετο.

Διάγραμμα 28: $DWT_{design}/Displacement_{design}$ συναρτήσει DWT_{design}

General model Power2:

 $f(x) = a^*x^{b+c}$ Coefficients (with 95% confidence bounds): a = -1.409 (-1.657, -1.161)b = -0.1416 (-0.1968, -0.08645)c = 1.113 (0.9843, 1.242)

Goodness of fit: SSE: 0.02147 R-square: 0.9301 Adjusted R-square: 0.9291 RMSE: 0.01261

$$\frac{DWT_{design}}{\Delta_{design}} = -1.409 * DWT_{design}^{-0.1416} + 1.113$$

<u>Παρατηρήσεις</u>

Το διάγραμμα παρουσιάζει το λόγο DWT/Δ ανάλογα με το μέγεθος του πλοίου σε DWT. Παρατηρούμε ότι όσο αυξάνεται το μέγεθος του πλοίου το DWT καταλαμβάνει όλο και μεγαλύτερο ποσοστό του εκτοπίσματος. Βλέπουμε ότι για μικρά πλοία με DWT έως 25000t ο λόγος κυμαίνεται μεταξύ 0,.58-0.76 ενώ για μεγαλύτερα πλοία κυμαίνεται μεταξύ 0.77-0.87.

Διάγραμμα 29 : DWT design/Displacement design συναρτήσει DWT design

<u>Παρατηρήσεις</u>

Εδώ έχει επιλεγεί το να χωρίσουμε τα δεδομένα σε κατηγορίες ανά μέγεθος ως εξής: Με μαύρο είναι τα small oil tankers και Handysize, με κόκκινο τα Handymax, Panamax και Aframax και με μπλε τα Suezmax και VLCC. Παρατηρούμε λοιπόν ότι ο λόγος DWT/Δ αυξάνεται με την αύξηση του DWT. Η πρώτη κατηγορία κυμαίνεται από 0.58-0.77, η δεύτερη από 0.78-0.86 και η τρίτη από 0.83-0.87.

Διάγραμμα 30: Displacement_{design} συναρτήσει του L_{BP}*B*T

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.8356 (0.8326, 0.8386)p2 = 406.1 (-138.2, 950.4)

Goodness of fit: SSE: 4.496e+08 R-square: 0.9995 Adjusted R-square: 0.9995 RMSE: 1818

 $\Delta_{design} = 0.8356 * L_{BP} * B * T + 406.1$

<u>Παρατηρήσεις</u>

Γνωρίζουμε από την θεωρία ότι το εκτόπισμα είναι άμεση συνάρτηση του μήκους, πλάτους και βυθίσματος κάτι που φαίνεται και από το πιο πάνω διάγραμμα. Οι καμπύλες πρόβλεψης σχεδόν ταυτίζονται στην προσεγγιστική καμπύλη οπότε η εκτίμηση είναι αρκετά ακριβής. Επίσης αφού η συσχέτιση ανάμεσα στα μεγέθη είναι γραμμική μπορούμε από την κλίση της ευθείας να βρούμε τον συντελεστή γάστρας, και όπως φαίνεται από την εξίσωση η σταθερά p1 είναι ίση με 0.8356 και όπως γνωρίζουμε από τη θεωρία ο συντελεστής γάστρας για τα δεξαμενόπλοια κυμαίνεται μεταξύ του 0.8-0.85 οπότε είμαστε μέσα στα όρια.

4.4. Βάρους κενού σκάφους (Lightship (L.S.))

Διάγραμμα 31: L.S. συναρτήσει του L_{BP}

Αποτελέσματα προσέγγισης

General model Power1:

 $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.004581 (0.002392, 0.00677)b = 2.783 (2.698, 2.868)

Goodness of fit: SSE: 4.786e+08 R-square: 0.9734 Adjusted R-square: 0.9732 RMSE: 1746

 $L.S. = 0.004581 * L_{BP}^{2.783}$

<u>Παρατηρήσεις</u>

Μια αρκετά σημαντική συσχέτιση καθώς όπως είναι προφανές με την αύξηση του μήκους παρατηρείται αύξηση και του βάρους της μεταλλικής κατασκευής. Αυτό συμβαίνει γιατί με την αύξηση του μήκους του πλοίου θα χρησιμοποιηθούν και περισσότερα ενισχυτικά ή τα ελάσματα θα έχουν μεγαλύτερα πάχη ή και τα δύο. Αυτό συμβαίνει για λόγους αντοχής και για να μην υπάρχουν μεγάλα βέλη κάμψης σε καταστάσεις hogging και sagging. Επίσης υπάρχουν περιοχές όπου το μήκος παραμένει σταθερό στα 260m και 320m αυτό οφείλεται στο ότι για τον υπολογισμό του L.S. παίζουν σημαντικό ρόλο και οι κύριες διαστάσεις B και D.

Διάγραμμα 32: L.S. συναρτήσει του L_{BP}*B*D

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.07241 (0.07102, 0.0738) p2 = 2668 (2299, 3037)Goodness of fit:

SSE: 2.613e+08 R-square: 0.9855 Adjusted R-square: 0.9854 RMSE: 1290

 $L.S. = 0.07241 * L_{BP} * B * D + 2668$

<u>Παρατηρήσεις</u>

Στο προηγούμενο διάγραμμα έχει αναφερθεί η παρατήρηση ότι για τον υπολογισμό του L.S. σημαντικό ρόλο παίζουν οι κύριες διαστάσεις L_{BP} , B και D. Η παρατήρηση επιβεβαιώνεται από το πιο πάνω διάγραμμα καθώς βλέπουμε μία συσχέτιση πολύ καλή με διακυμάνσεις μικρότερες από αυτές του διαγράμματος L.S.- L_{BP} .

Διάγραμμα 33: L.S. συναρτήσει DWT_{design}

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.1388 (0.1353, 0.1424)

p2 = 4490 (4030, 4950)

Goodness of fit: SSE: 3.309e+08 R-square: 0.9781 Adjusted R-square: 0.9779 RMSE: 1566

$$L.S. = 0.1388 * DWT_{design} + 4490$$

<u>Παρατηρήσεις</u>

Στο διάγραμμα παρατηρείται αρκετά καλή συσχέτιση μεταξύ του Lightship και του DWT καθώς η προσεγγιστική καμπύλη προσεγγίζει τα σημεία αρκετά καλά.

Διάγραμμα 34: L.S./Δ συναρτήσει του DWT_{design}

General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

 $a = 1.912 \quad (1.735, 2.09)$

b = -0.2142 (-0.2229, -0.2055)

Goodness of fit: SSE: 0.02239 R-square: 0.9271 Adjusted R-square: 0.9266 RMSE: 0.01293

$$\frac{L.S.}{\Delta} = 1.912 * DWT_{design}^{-0.2142}$$

<u>Παρατηρήσεις</u>

Παρατηρείται αρκετά καλή συσχέτιση μεταξύ των μεγεθών καθώς ο συντελεστής συσχέτισης είναι ικανοποιητικός και το σχετικό σφάλμα αρκετά μικρό.

4.5. Ολική Χωρητικότητα (Gross Tonnage)

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.5244 (0.5148, 0.534) p2 = 7774 (6546, 9003)

Goodness of fit: SSE: 1.557e+09 R-square: 0.9906 Adjusted R-square: 0.9905 RMSE: 3728

 $GT = 0.5244 * DWT_{design} + 7774$

Διάγραμμα 36: GT συναρτήσει του DWTscantling

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.4927 (0.488, 0.4973)p2 = 4834 (4176, 5492)

Goodness of fit: SSE: 5.336e+08 R-square: 0.9972 Adjusted R-square: 0.9972 RMSE: 2066

 $GT = 0.4927 * DWT_{scantling} + 4834$

<u>Παρατηρήσεις</u>

Αρχικά γνωρίζουμε ότι η ολική χωρητικότητα εξαρτάται από το άθροισμα του όγκου όλων των καταμετρούμενων χώρων του πλοίου, οπότε είναι αναμενόμενα τα αποτελέσματα των δύο διαγραμμάτων. Παρατηρούμε όμως ότι παρόλο που και στα δύο διαγράμματα η ολική χωρητικότητα έχει εκτιμηθεί με μεγάλη ακρίβεια, οι αποκλίσεις στο διάγραμμα του DWTscantling είναι πολύ πιο μικρές από το αντίστοιχο DWTdesign καθώς το DWTscantling αποτελεί αντιπροσωπευτικότερο μέγεθος για το πλοίο.

Διάγραμμα 37: GT συναρτήσει του L_{BP}

General model Power1:

 $f(x) = a^*x^{b}$ Coefficients (with 95% confidence bounds): a = 0.001143 (0.0006585, 0.001628)b = 3.248 (3.173, 3.324)

Goodness of fit: SSE: 2.754e+09 R-square: 0.9865 Adjusted R-square: 0.9864 RMSE: 4585

$$GT = 0.001143 * L_{BP}^{3.248}$$

<u>Παρατηρήσεις</u>

Όπως έχει ήδη αναφερθεί, η ολική χωρητικότητα εξαρτάται από το άθροισμα του όγκου όλων των καταμετρούμενων χώρων του πλοίου όπου το μήκος συμβάλει σε αυτό, οπότε η καλή προσέγγιση είναι αναμενόμενη. Πιο κάτω θα δούμε και την συσχέτιση των λοιπών κύριων διαστάσεων όπου θα διαπιστώσουμε ότι έχει ακόμα καλύτερη προσέγγιση.

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.2737 (0.2724, 0.275)p2 = 1041 (704.8, 1377)

Goodness of fit: SSE: 1.476e+08 R-square: 0.9993 Adjusted R-square: 0.9993 RMSE: 1061

GT = 0.2737 * L * B * D + 1041

<u>Παρατηρήσεις</u>

Επιβεβαιώνεται η παρατήρηση που κάναμε πιο πάνω πως αν λάβουμε και τις τρεις κύριες διαστάσεις του πλοίου, οι οποίες καθορίζουν και τον όγκο του, η προσέγγιση θα είναι καλύτερη. Πράγμα που ισχύει καθώς έχουμε μεγαλύτερη ακρίβεια αφού ο συντελεστής συσχέτισης είναι πολύ καλός.

4.6. Καθαρή Χωρητικότητα (Net Tonnage)

Διάγραμμα 39: NT συναρτήσει του DWT_{design}

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.3735 (0.3661, 0.3809) p2 = -2401 (-3351, -1451)Goodness of fit:

SSE: 8.766e+08 R-square: 0.9893 Adjusted R-square: 0.9892 RMSE: 2836

$$NT = 0.3735 * DWT_{design} - 2401$$

Διάγραμμα 40: NT συναρτήσει του DWT_{scantling}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.3531 (0.3477, 0.3585)p2 = -4622 (-5401, -3843)

Goodness of fit: SSE: 6.737e+08 R-square: 0.9929 Adjusted R-square: 0.9928 RMSE: 2369

 $NT = 0.3531 * DWT_{scantling} - 4622$

<u>Παρατηρήσεις</u>

Όπως και στη περίπτωση του GT, παρατηρούμε ότι η καθαρή χωρητικότητα NT παρουσιάζει πολύ καλά διαγράμματα και στις δύο περιπτώσεις, ωστόσο και πάλι οι αποκλίσεις στο διάγραμμα DWTscantling είναι μικρότερες για τον ίδιο λόγο που αναφέρθηκε στα αντίστοιχα διαγράμματα της ολικής χωρητικότητας GT.

Διάγραμμα 41: NT συναρτήσει του LBP*B*D

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.01606 (0.01192, 0.02021)b = 1.185 (1.165, 1.205)

Goodness of fit: SSE: 7.46e+08 R-square: 0.9925 Adjusted R-square: 0.9924 RMSE: 2433

 $NT = 0.01606 * (L_{BP} * B * D)^{1.185}$

<u>Παρατηρήσεις</u>

Διαπιστώνουμε από το διάγραμμα ότι η συσχέτιση των μεγεθών είναι άριστη, εξαιρώντας όμως δύο σημεία που είναι εκτός των καμπυλών πρόβλεψης.

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.05705 (0.04351, 0.07058)b = 1.207 (1.187, 1.228)

Goodness of fit: SSE: 7.485e+08 R-square: 0.9925 Adjusted R-square: 0.9924 RMSE: 2437

 $NT = 0.05705 * GT^{1.207}$

<u>Παρατηρήσεις</u>

Η καθαρή χωρητικότητα NT μπορεί να υπολογιστεί με μεγάλη ακρίβεια συναρτήσει της ολικής χωρητικότητας GT επιβεβαιώνοντας τον ορισμό της χωρητικότητας NT που προκύπτει από την ολική αν αφαιρέσουμε τον όγκο ορισμένων χώρων που δεν προορίζονται για την μεταφορά φορτίου.

Διάγραμμα 43: NT/GT συναρτήσει του NT

General model Power1:

 $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.1168 (0.09843, 0.1351)

 $b = 0.1505 \ (0.1354, 0.1655)$

Goodness of fit: SSE: 0.1972 R-square: 0.7792 Adjusted R-square: 0.7774 RMSE: 0.03956

$$\frac{NT}{GT} = 0.1168 * NT^{0.1505}$$

<u>Παρατηρήσεις</u>

Σύμφωνα με τους κανονισμούς που έχει θεσπίσει ο ΙΜΟ, τους Διεθνείς Κανονισμούς Καταμέτρησης Πλοίων, ισχύει ότι η καθαρή χωρητικότητα δεν πρέπει να θεωρείται κατώτερη του 30% της ολικής χωρητικότητας πράγμα που φαίνεται από το διάγραμμα αφού ο λόγος NT/GT κυμαίνεται μεταξύ 0.3 για πολύ μικρά πλοία έως και 0.7 για πολύ μεγάλα πλοία.

4.7. Suez Canal Net Tonnage (SCNT)

Διάγραμμα 44: SCNT συναρτήσει του GT

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.9484 (0.9351, 0.9617) p2 = -776.6 (-1719, 166.3)

Goodness of fit: SSE: 2.994e+08 R-square: 0.9966 Adjusted R-square: 0.9965 RMSE: 2068

$$SCNT = 0.9484 * GT - 776.6$$

<u>Παρατηρήσεις</u>

Βλέπουμε την άριστη συσχέτιση του Suez Canal Net Tonnage με την ολική χωρητικότητα, του οποίου ο υπολογισμός μπορεί να γίνει με μεγάλη ακρίβεια αφού τα πλείστα σημεία βρίσκονται πάνω στην προσεγγιστική καμπύλη.

4.8. Χωρητικότητα Δεξαμενών

4.8.1. Όγκος δεξαμενών φορτίου (Cargo Oil)

Διάγραμμα 45: V_{cargo} συναρτήσει του DWT_{scantling}

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 1.113 (1.107, 1.12) p2 = 1241 (298.5, 2184)

Goodness of fit: SSE: 1.778e+09 R-square: 0.9986 Adjusted R-square: 0.9986 RMSE: 3376

$V_{cargo} = 1.113 * DWT_{scantling} + 1241$

<u>Παρατηρήσεις</u>

Η συσχέτιση μεταξύ των μεγεθών είναι πολύ ικανοποιητική και αυτό οφείλεται στο γεγονός ότι το βάρος του φορτίου του πλοίου αποτελεί το μεγαλύτερο μέρος του DWT συνεπώς είναι λογική η εξάρτηση τους.

<u>Σημείωση:</u> Στον όγκο δεξαμενών φορτίου συμπεριλαμβάνονται και οι δεξαμενές slope.

Διάγραμμα 46: V_{cargo} συναρτήσει του L_{BP}*B*D

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.6166 (0.6134, 0.6199)p2 = -6608 (-7467, -5750)

Goodness of fit: SSE: 1.518e+09 R-square: 0.9988 Adjusted R-square: 0.9988 RMSE: 3062

 $V_{cargo} = 0.6166 * L_{BP} * B * D - 6608$

<u>Παρατηρήσεις</u>

Και σε αυτό το διάγραμμα βλέπουμε αρκετά καλή συσχέτιση μεταξύ του όγκου των δεξαμενών φορτίου και των τριών κύριων διαστάσεων, αναμενόμενο καθώς το γινόμενο L_{BP}*B*D αποτελεί ένδειξη όγκου.

Διάγραμμα 47: V_{cargo} συναρτήσει του L_{cargo}*B*D

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.7697 (0.7665, 0.7728) p2 = -3396 (-4048, -2745)

Goodness of fit: SSE: 8.6e+08 R-square: 0.9993 Adjusted R-square: 0.9993 RMSE: 2333

 $V_{cargo} = 0.7697 * L_{cargo} * B * D - 3396$

<u>Παρατηρήσεις</u>

Παρατηρούμε ότι ο όγκος εκτιμάται με μεγαλύτερη ακρίβεια αν αντί του μήκος μεταξύ των καθέτων χρησιμοποιήσουμε το μήκος του χώρου φορτίου στο γινόμενο Lcargo*B*D κάτι που είναι λογικό.

Διάγραμμα 48: Vcargo συναρτήσει του LBP

<u>Αποτελέσματα προσέγγισης</u>

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.0006842 (0.0004396, 0.0009289) b = 3.476 (3.412, 3.539)

Goodness of fit: SSE: 1.318e+10 R-square: 0.9899 Adjusted R-square: 0.9899 RMSE: 9021

 $V_{cargo} = 0.0006842 * L_{BP}^{3.476}$

<u>Παρατηρήσεις</u>

Παρόλο που έχουμε μία καλή συσχέτιση του όγκου των δεξαμενών φορτίου με το μήκος μεταξύ καθέτων παρατηρούμε ότι έχει μεγαλύτερες αποκλίσεις απ' ότι το αντίστοιχο διάγραμμα συναρτήσει του L_{BP}*B*D.

Διάγραμμα 49: Vcargo συναρτήσει του Lcargo

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.005903 (0.003792, 0.008014)b = 3.229 (3.163, 3.296)

Goodness of fit: SSE: 1.525e+10 R-square: 0.9877 Adjusted R-square: 0.9876 RMSE: 9825

 $V_{cargo} = 0.005903 * L_{cargo}^{3.229}$

<u>Παρατηρήσεις</u>

Παρατηρούμε ότι η συσχέτιση είναι αρκετά καλή, όμως δεν είναι πιο καλή από του αντίστοιχου διαγράμματος για L_{BP}, αυτό οφείλεται στο ότι κάποιες μετρήσεις του μήκους φορτίου αν δεν υπήρχε το frame spacing γίνονταν από το σχέδιο μέσω της κλίμακας των σχεδίων.

Διάγραμμα 50: Vslope συναρτήσει του Vcargo

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.02517 (0.02345, 0.02688) p2 = 165.5 (-104.6, 435.6)

Goodness of fit: SSE: 1.573e+08 R-square: 0.8387 Adjusted R-square: 0.8377 RMSE: 988.3

 $V_{slope} = 0.02517 * V_{cargo} + 165.5$

<u>Παρατηρήσεις</u>

Στο πιο πάνω διάγραμμα παρατηρούμε την συσχέτιση ανάμεσα στο όγκο δεξαμενών φορτίου και των δεξαμενών slope. Παρατηρούμε ότι το ποσοστό εξάρτησης του Vslope στο Vcargo είναι περίπου to 2-5%.

Διάγραμμα 51: V_{cargo} συναρτήσει του NT

General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

a = 13.39 (11.54, 15.24)

 $b = 0.8773 \ (0.8648, 0.8898)$

Goodness of fit: SSE: 5.21e+09 R-square: 0.9948 Adjusted R-square: 0.9947 RMSE: 6430

 $V_{cargo} = 13.39 * NT^{0.8773}$

<u>Παρατηρήσεις</u>

Πολύ καλή προσέγγιση παρουσιάζει η εκτίμηση του χώρου φορτίου συναρτήσει της καθαρής χωρητικότητας, η οποία όπως έχει αναφερθεί προηγουμένως έχει άμεση σχέση με τους οικονομικά εκμεταλλεύσιμους χώρους του πλοίου, δηλαδή το χώρο φορτίου.

4.8.2. Χωρητικότητα δεξαμενών έρματος (Ballast Water)

Διάγραμμα 52: Vballast συναρτήσει του DWT scantling

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.3017 (0.2962, 0.3072)p2 = 6327 (5546, 7109)

Goodness of fit: SSE: 1.209e+09 R-square: 0.9869 Adjusted R-square: 0.9868 RMSE: 2793

 $V_{ballast} = 0.3017 * DWT_{scantling} + 6327$

<u>Παρατηρήσεις</u>

Βλέπουμε ότι όλα τα σημεία είναι εντός των καμπυλών πρόβλεψης εκτός από δύο, παρ' όλα αυτά έχουμε μία υψηλή συσχέτιση όπου ο μελετητής μπορεί να εκτιμήσει σε πρώτη φάση της προμελέτης διαθέτοντας το DWT.

Διάγραμμα 53: Vballast συναρτήσει του LBP*B*D

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.1688 (0.1662, 0.1713)p2 = 3717 (3051, 4384)

Goodness of fit: SSE: 9.08e+08 R-square: 0.9908 Adjusted R-square: 0.9908 RMSE: 2375

 $V_{ballast} = 0.1688 * L_{BP} * B * D + 3717$

<u>Παρατηρήσεις</u>

Η προσεγγιστική καμπύλη και οι καμπύλες πρόβλεψης είναι για το πλείστο εύρος των σημείων του γινομένου αρκετά ικανοποιητικές. Επίσης το διάγραμμα παρουσιάζει πολύ καλές παραμέτρους ποιότητας και μικρές τάξης αποκλίσεις.

77

4.8.3. Χωρητικότητα δεξαμενών καυσίμου (Fuel Oil Capacity)

Διάγραμμα 54: V_{fuel} συναρτήσει του L_{BP}*B*D

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.01415 (0.01371, 0.0146) p2 = 52.38 (-65.05, 169.8)

Goodness of fit: SSE: 2.736e+07 R-square: 0.9613 Adjusted R-square: 0.961 RMSE: 413.5

 $V_{fuel} = 0.01415 * L_{BP} * B * D + 52.38$

<u>Παρατηρήσεις</u>

Στο διάγραμμα φαίνεται η γραμμική συσχέτιση της χωρητικότητας δεξαμενών συναρτήσει του γινομένου L_{BP}*B*D. Παρόλο που έχουμε ένα καλό συντελεστή συσχέτισης στο διάγραμμα παρουσιάζονται κάποιες μικρές αποκλίσεις.

Διάγραμμα 55: V_{fuel} συναρτήσει του P_{MCR}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.3043 (0.2921, 0.3165)p2 = -1005 (-1194, -816.3)

Goodness of fit: SSE: 3.931e+07 R-square: 0.9405 Adjusted R-square: 0.9401 RMSE: 506.9

$$V_{fuel} = 0.3043 * P_{MCR} - 1005$$

<u>Παρατηρήσεις</u>

Και σε αυτό το διάγραμμα έχουμε γραμμική συσχέτιση ανάμεσα στα δύο μεγέθη. Η χωρητικότητα των δεξαμενών καυσίμων (Heavy Fuel Oil) είναι άμεση συνάρτηση της ισχύος MCR του κινητήρα, αφού η ισχύς λειτουργίας του πλοίου καθορίζει την κατανάλωση άρα και την απαιτούμενη ποσότητα καυσίμου.

4.8.4. Χωρητικότητα δεξαμενών Diesel (Diesel Oil)

Διάγραμμα 56: Vdiesel/Vfuel συναρτήσει του Vfuel

Αποτελέσματα προσέγγισης

General model Power1: $f(x) = a*x^b$ Coefficients (with 95% confidence bounds): a = 5.062 (3.306, 6.818) b = -0.4894 (-0.5418, -0.437)

Goodness of fit: SSE: 0.7069 R-square: 0.6021 Adjusted R-square: 0.5996 RMSE: 0.06668

$$\frac{V_{diesel}}{V_{fuel}} = 5.062 * V_{fuel}^{-0.4894}$$

<u>Παρατηρήσεις</u>

Όπως είναι προφανές από το διάγραμμα η ποιότητα της προσέγγισης δεν είναι ικανοποιητική, αυτό βέβαια φαίνεται και από τον συντελεστή συσχέτισης όπου είναι αρκετά μικρός. Επίσης από το διάγραμμα οδηγούμαστε στο συμπέρασμα ότι ο λόγος Vdiesel/Vfuel μειώνεται όσο αυξάνεται ο όγκος των δεξαμενών καυσίμου.

4.9. Εκτίμηση Ισχύος Πρόωσης

Γνωρίζουμε από τη θεωρία ότι ο συντελεστής αγγλικού ναυαρχείου εξαρτάται από την ισχύ MCR, το εκτόπισμα στο βύθισμα σχεδίασης και την ταχύτητα και δίνεται από τον πιο κάτω τύπο:

 $C_N = \frac{\Delta_{design}^{2/3} * V_s^3}{P_{MCR}}$

Διάγραμμα 57: CN συναρτήσει του DWT design

Αποτελέσματα προσέγγισης

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 62.82 (39.1, 86.53) b = 0.1683 (0.1354, 0.2012) Goodness of fit: SSE: 2.204e+05 R-square: 0.5657 Adjusted R-square: 0.5608 RMSE: 49.77

$$C_N = 62.82 * DWT_{design}^{0.1683}$$

<u>Παρατηρήσεις</u>

Από το διάγραμμα παρατηρείται ότι καλύτερη συσχέτιση έχουμε για πλοία με DWT μεταξύ των 60000-150000t. Γενικά τα σημεία βρίσκονται μέσα στις καμπύλες πρόβλεψης εκτός από τρία σημεία. Τα μεγαλύτερα πλοία είναι πιο αποδοτικά άρα χρειάζονται λιγότερη ισχύ αναλογικά σε σχέση με τα πιο μικρά, επίσης και η ταχύτητα τους δεν αυξάνει αντίστοιχα με το μήκος καθώς ταξιδεύει σε μικρότερο αριθμό Froude και γι' αυτό η αύξηση της απαιτούμενης ισχύς είναι πιο μικρή με αποτέλεσμα να αυξάνει ο συντελεστής ναυαρχείου.

Διάγραμμα 58: MCR συναρτήσει του L_{BP}*B*D

Linear model Poly1:

 $\begin{array}{ll} f(x) = p1^*x + p2 \\ \text{Coefficients (with 95\% confidence bounds):} \\ p1 = & 0.04442 \ (0.04254, \, 0.04631) \\ p2 = & 3857 \ (3355, \, 4360) \end{array}$

Goodness of fit: SSE: 4.74e+08 R-square: 0.9328 Adjusted R-square: 0.9324 RMSE: 1743

 $MCR = 0.04442 * L_{BP} * B * D + 3857$

<u>Παρατηρήσεις</u>

Η προσεγγιστική καμπύλη και οι καμπύλες πρόβλεψης μας δίνουν μία καλή σχέση ανάμεσα στην ισχύ πρόωσης και του γινομένου L_{BP}*B*D. Στην ουσία μας δείχνει την επίδραση του όγκου της γάστρας στο MCR.

4.10. Κέντρα βαρών (Centers of Gravity)

4.10.1. Κέντρο βάρους Lightship

Διάγραμμα 59: KGLs συναρτήσει του D

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.3815 (0.3587, 0.4043)p2 = 3.769 (3.272, 4.266)

Goodness of fit: SSE: 45.14 R-square: 0.897 Adjusted R-square: 0.8962 RMSE: 0.5985

$KG_{LS} = 0.3815 * D + 3.769$

<u>Παρατηρήσεις</u>

To Lightship συναρτήσει του κοίλου D μας δίνει μια γραμμική συσχέτιση έχοντας ένα ικανοποιητικό συντελεστή συσχέτισης.

Διάγραμμα 60 : KGLs/D συναρτήσει του D

General model Power1: $f(x) = a*x^b$ Coefficients (with 95% confidence bounds): a = 1.941 (1.794, 2.088) b = -0.4056 (-0.4311, -0.3802)

Goodness of fit: SSE: 0.09959 R-square: 0.8589 Adjusted R-square: 0.8578 RMSE: 0.02811

$$\frac{KG_{LS}}{D} = 1.941 * D^{-0.4056}$$

<u>Παρατηρήσεις</u>

Βλέπουμε ότι ο λόγος KG/D κυμαίνεται ανάμεσα στο 0.48 μέχρι στο 0.9. Παρατηρούμε ότι με την αύξηση του D ο λόγος μειώνεται. Επίσης υπάρχουν περιοχές με σταθερό κοίλο πχ στα 19m, 23m και στα 30.5m, αυτό το φαινόμενο παρατηρείται λόγω φυσικών περιορισμών.

Διάγραμμα 61: LCG_{LS} συναρτήσει του L_{BP}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.4964 (0.4754, 0.5175)p2 = -6.667 (-11.61, -1.728)

Goodness of fit: SSE: 5129 R-square: 0.9462 Adjusted R-square: 0.9457 RMSE: 6.431

 $LCG_{LS} = 0.4964 * L_{BP} - 6.667$

<u>Παρατηρήσεις</u>

Το διάγραμμα παρουσιάζει καλά αποτελέσματα του LCG_{LS} συναρτήσει του μήκους μεταξύ των καθέτων L_{BP} με ποιότητα προσέγγισης καλό βαθμό.

Διάγραμμα 62 : LCG_{LS}/L_{BP} συναρτήσει του L_{BP}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.0002666 (0.0002448, 0.0002884) p2 = 0.3926 (0.3875, 0.3977)

Goodness of fit: SSE: 0.005484 R-square: 0.8258 Adjusted R-square: 0.8244 RMSE: 0.00665

$$\frac{LCG_{LS}}{L_{BP}} = 0.0002666 * L_{BP} + 0.3926$$

<u>Παρατηρήσεις</u>

Βλέπουμε ότι η συσχέτιση μεταξύ του λόγου LCG_{LS}/L_{BP} με το μήκος L_{BP} είναι γραμμική. Είναι προφανές από το διάγραμμα ότι οι περιοχές με σταθερό μήκος οφείλονται στο περιορισμό περατότητας, στις εγκαταστάσεις των λιμανιών και σε διυλιστήρια.

4.10.2. Κέντρο βάρους σε κατάσταση Full Load Departure

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.5423 (0.5351, 0.5496) p2 = 0.6957 (0.5374, 0.8541)

Goodness of fit: SSE: 3.411 R-square: 0.995 Adjusted R-square: 0.9949 RMSE: 0.1753

 $KG_{departure} = 0.5423 * D + 0.6957$

<u>Παρατηρήσεις</u>

Η συσχέτιση που μας δίνει το πιο πάνω διάγραμμα είναι παρά πολύ καλή, αφού τα περισσότερα σημεία ταυτίζονται στην προσεγγιστική καμπύλη. Το ίδιο ισχύει και για τις καμπύλες πρόβλεψης, γιατί όπως είναι φανερό δεν έχουν μεγάλη απόκλιση από την προσεγγιστική καμπύλη.

Διάγραμμα 64: LCG_{departure} συναρτήσει του L_{BP}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.5516 (0.5415, 0.5617)p2 = -7.633 (-10, -5.262)

Goodness of fit: SSE: 909.6 R-square: 0.9907 Adjusted R-square: 0.9906 RMSE: 2.876

 $LCG_{departure} = 0.5516 * L_{BP} - 7.633$

<u>Παρατηρήσεις</u>

Βλέπουμε μία εξαιρετική συσχέτιση του κέντρου βάρους LCGdep συναρτήσει του LBP, έχοντας ελάχιστες αποκλίσεις και τα όρια πρόβλεψης βρίσκονται πάρα πολύ κοντά στην ευθεία.

4.10.3. Κέντρο βάρους φορτίου σε κατάσταση Full Load Departure

Διάγραμμα 65: KG_{cargo} departure συναρτήσει του D

```
Αποτελέσματα προσέγγισης
```

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.5753 (0.5663, 0.5842)p2 = -0.1176 (-0.3142, 0.07904)

Goodness of fit: SSE: 2.785 R-square: 0.9957 Adjusted R-square: 0.9957 RMSE: 0.1995

 $KG \ cargo_{departure} = 0.5753 * D - 0.1176$

<u>Παρατηρήσεις</u>

Στο διάγραμμα παρατηρούμε μια πάρα πολύ καλή συσχέτιση του κατακόρυφου κέντρου βάρους του φορτίου σε σχέση με το κοίλο, παρουσιάζοντας μικρές αποκλίσεις και αριθμητικά ο συντελεστής συσχέτισης είναι άριστος.

Διάγραμμα 66: LCG_{cargo} departure συναρτήσει του L_{BP}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.5457 (0.5415, 0.55)p2 = 1.913 (0.9104, 2.916)

Goodness of fit: SSE: 85 R-square: 0.9989 Adjusted R-square: 0.9989 RMSE: 1.102

 $LCG \ cargo_{departure} = 0.5457 * L_{BP} + 1.913$

<u>Παρατηρήσεις</u>

Το αποτέλεσμα που δίνει η γραφική είναι αναμενόμενο καθώς παρουσιάζει εξαιρετική συσχέτιση του LCG του φορτίου με το μήκος δίνοντας πολύ αξιόπιστα αποτελέσματα.

Διάγραμμα 67: C_B συναρτήσει του C_P

Linear model Poly1:

f(x) = p1*x + p2Coefficients (with 95% confidence bounds):

 $p1 = 0.9811 \ (0.9705, 0.9916)$

 $p2=\quad 0.01798 \ (0.009333, 0.02663)$

Goodness of fit: SSE: 5.033e-05 R-square: 0.9976 Adjusted R-square: 0.9976 RMSE: 0.0007835

$$C_B = 0.9811 * C_P + 0.01798$$

<u>Παρατηρήσεις</u>

Από τα καλύτερα διαγράμματα της εργασίας, εξαιρετική η συσχέτιση του C_P συναρτήσει του C_B με μικρές αποκλίσεις. Παρατηρούμε ότι η κλίση της ευθείας μας δίνει το συντελεστή μέσης τομής C_m και όπως φαίνεται από τη σταθερά p1 είναι κοντά στα όρια που δίνουν οι νηογνώμονες.

4.11.3. Διάμετρος έλικας

Διάγραμμα 68: Propeller Diameter συναρτήσει του DWT_{scantling}

Αποτελέσματα προσέγγισης

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.327 (0.2729, 0.3812)b = 0.269 (0.2549, 0.2831)

Goodness of fit: SSE: 28.34 R-square: 0.9249 Adjusted R-square: 0.9244 RMSE: 0.4376

$$D_{prop} = 0.327 * DWT_{scantling}^{0.269}$$

<u>Παρατηρήσεις</u>

Η διάμετρος της έλικας προσεγγίζεται ικανοποιητικά από το DWT έχοντας πολύ καλή συσχέτιση. Παρατηρούμε ότι η προσεγγιστική καμπύλη προσεγγίζει αρκετά καλά τα σημεία, τα οποία είναι μέσα στα όρια των καμπυλών πρόβλεψης εκτός από μερικά.

92

Διάγραμμα 69: Propeller Diameter συναρτήσει του T_{design}

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.4206 (0.3982, 0.4431)p2 = 1.449 (1.134, 1.763)

Goodness of fit: SSE: 37.95 R-square: 0.9018 Adjusted R-square: 0.9011 RMSE: 0.5047

 $D_{prop} = 0.4206 * T_{design} + 1.449$

<u>Παρατηρήσεις</u>

Γνωρίζουμε ότι η διάμετρος της έλικας εξαρτάται από το βύθισμα καθώς απαιτείται η πλήρης βύθιση της. Ωστόσο βλέπουμε ένα πολύ καλό τρόπο προσέγγισης με ελάχιστα σφάλματα.

93

Διάγραμμα 70: Propeller Diameter συναρτήσει του $L_{BP}*B*D$

General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 0.2205 (0.1802, 0.2609)b = 0.2864 (0.2717, 0.3012)

Goodness of fit: SSE: 29.2 R-square: 0.928 Adjusted R-square: 0.9275 RMSE: 0.4383

$$D_{prop} = 0.2205 * (L_{BP} * B * D)^{0.2864}$$

<u>Παρατηρήσεις</u>

Ακόμη καλύτερη προσέγγιση δίνει το παραπάνω διάγραμμα συναρτήσει του γινομένου L_{BP}*B*D όπου το διάγραμμα παρουσιάζει πολύ καλά στοιχεία ποιότητας δίνοντας ικανοποιητική προσέγγιση.

Διάγραμμα 71: Propeller Diameter συναρτήσει του MCR

General model Power2:

 $f(x) = a*x^b+c$ Coefficients (with 95% confidence bounds):

- $a = 1.078 \ (-0.7879, 2.945)$
- $b = 0.2495 \ (0.1188, 0.3803)$
- $c = -4.226 \ (-9.855, 1.403)$

Goodness of fit: SSE: 55.57 R-square: 0.8525 Adjusted R-square: 0.8505 RMSE: 0.6191

$$D_{prop} = 1.078 * MCR^{0.2495} - 4.226$$

<u>Παρατηρήσεις</u>

Παρατηρούμε μια σχετικά καλή συσχέτιση ανάμεσα στη διάμετρο της προπέλας και της ισχύος. Βλέπουμε ότι με την αύξηση της MCR υπάρχει αύξηση και της διαμέτρου. Για καλύτερα αποτελέσματα θα μπορούσαμε να χωρίσουμε σε κατηγορίες ανάλογα με την δύναμη της ισχύς.

4.11.4. Μήκος πρυμναίου τμήματος (LAFT)

Διάγραμμα 72: LAFT συναρτήσει του LBP

Αποτελέσματα προσέγγισης

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.03305 (0.03086, 0.03524) p2 = 2.33 (1.823, 2.837)

Goodness of fit: SSE: 101.8 R-square: 0.8491 Adjusted R-square: 0.8481 RMSE: 0.8028

 $L_{AFT} = 0.03305 * L_{BP} + 2.33$

<u>Παρατηρήσεις</u>

Ο πιο πάνω εμπειρικός τύπος μπορεί να μας δώσει μια αρχική εκτίμηση του πρυμναίου τμήματος του πλοίου. Οι αποκλίσεις που υπάρχουν είναι λογικές καθώς αν δεν δινόταν το frame spacing στο σχέδιο η μέτρηση των μηκών γινόταν μέσω της κλίμακας των σχεδίων.

4.11.5. Μήκος μηχανοστασίου (Ler)

Διάγραμμα 73: Ler συναρτήσει του Lep

```
Αποτελέσματα προσέγγισης
```

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.09406 (0.08854, 0.09958)

 $p_1 = 0.05100(0.00051, 0.00051)$ $p_2 = 8.452(7.172, 9.731)$

Goodness of fit: SSE: 647.7 R-square: 0.8775 Adjusted R-square: 0.8767 RMSE: 2.025

$$L_{ER} = 0.09406 * L_{BP} + 8.452$$

<u>Παρατηρήσεις</u>

Το μήκος του μηχανοστασίου μας δίνει εξίσου ικανοποιητικά αποτελέσματα, ωστόσο υπάρχουν αντίστοιχου μεγέθους αποκλίσεις για τον ίδιο λόγο που αναφέρθηκε πιο πάνω.

Διάγραμμα 74 : L_{ER} συναρτήσει του MCR

General model Power2:

 $f(x) = a*x^b+c$ Coefficients (with 95% confidence bounds):

- a = 5.425 (-5.443, 16.29)
- $b = 0.2161 \ (0.07028, 0.3619)$
- c = -11.88 (-38, 14.23)

Goodness of fit: SSE: 1007 R-square: 0.7856 Adjusted R-square: 0.7828 RMSE: 2.591

 $L_{ER} = 5.425 * MCR^{0.2161} - 11.88$

<u>Παρατηρήσεις</u>

Αν και υπάρχουν κάποιες αποκλίσεις η συσχέτιση που μας δίνει το πιο πάνω διάγραμμα είναι ικανοποιητική. Και πάλι παρατηρούμε πως με την αύξηση της MCR υπάρχει αύξηση του μήκους. Και σε αυτή την περίπτωση θα μπορούσαμε να χωρίσουμε το διάγραμμα ανά κατηγορίες δύναμης της ισχύος για καλύτερα αποτελέσματα.

4.11.6. Μήκος χώρου φορτίου (L_{CARGO})

Διάγραμμα 75: Leargo συναρτήσει του LBP

```
Αποτελέσματα προσέγγισης
```

Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.848 (0.8401, 0.8558)p2 = -16.44 (-18.26, -14.63)

Goodness of fit: SSE: 1299 R-square: 0.9966 Adjusted R-square: 0.9965 RMSE: 2.868

 $L_{cargo} = 0.848 * L_{BP} - 16.44$

<u>Παρατηρήσεις</u>

Το μήκος του φορτίου συναρτήσει του μήκους μεταξύ καθέτων έχει την καλύτερη προσέγγιση σε σχέση με τα προηγούμενα διαγράμματα μηκών και αυτό είναι λογικό καθώς το μήκος του φορτίου παίρνει το μεγαλύτερο ποσοστό του L_{BP}.

5. Συμπεράσματα και προτάσεις

Στο πλαίσιο αυτής της διπλωματικής εργασίας έχει πραγματοποιηθεί μια στατιστική ανάλυση τεχνικών στοιχείων πλοίων μεταφοράς υγρού φορτίου. Αρχικά αναπτύχθηκε μία βάση δεδομένων στην MS Access ώστε να καταγραφούν με συστηματικό τρόπο όλα τα στοιχεία με σκοπό να μπορούμε να κάνουμε εξαγωγή αυτών στο Matlab για να γίνει η στατιστική ανάλυση. Τα στοιχεία αυτά προέκυψαν από σχέδια και τεχνικά φυλλάδια από πραγματικά πλοία που υπήρχαν στο εργαστήριο Μελέτης Πλοίου. Αποτέλεσμα όλων αυτών ήταν η δημιουργία μιας βάσης δεδομένων με συνολικά 164 πλοία μεταφοράς υγρού φορτίου.

Η στατιστική επεξεργασία των δεδομένων όπως έχει αναφερθεί έγινε με την χρήση του λογισμικού Matlab και συγκεκριμένα μέσω της παλινδρομικής ανάλυσης και είχε σκοπό την δημιουργία διαγραμμάτων και εμπειρικών τύπων που θα μας παρουσίαζαν την συσχέτιση μεταξύ των διάφορων μεταβλητών σχεδίασης. Οι σχέσεις που προέκυψαν αποτελούν χρήσιμο εργαλείο για την μελέτη και την σχεδίαση του πλοίου σε προκαταρκτική φάση. Επίσης έχει γίνει σύγκριση τόσο των σχέσεων όσο και των διαγραμμάτων από παλαιότερες αντίστοιχες ερευνητικές εργασίες και οι διαφορές που παρατηρήθηκαν ήταν πολύ μικρές.

Γενικά οι εμπειρικές σχέσεις που προέκυψαν στο Κεφάλαιο 4 για τις κύριες διαστάσεις, παρουσίασαν αρκετά ικανοποιητικά στοιχεία συσχέτισης τόσο μεταξύ τους όσο και με το DWT. Όσον αφορά τα βάρη του πλοίου δηλαδή L.S., DWT και Δ υπολογίστηκαν και αυτά με αρκετά καλές εκτιμήσεις παρόλες τις διαφορές, οι οποίες οφείλονται στις διάφορες κατασκευαστικές ιδιαιτερότητες όπως η δυνατότητα πλεύσης σε πάγους, η χρήση αυξημένου πάχους ελασμάτων λόγω διάβρωσης, διαφορετικές διαστάσεις υπερκατασκευών κ.ο.κ. Πολύ σημαντικό ρόλο παίζουν οι λόγοι των κυρίων διαστάσεων καθώς αν γνωρίζουμε κάποιον από τους λόγους μπορούμε να κάνουμε αμέσως μία εκτίμηση του αντίστοιχου μεγέθους είτε αυτό είναι το μήκος είτε το πλάτος κ.ο.κ.

Στη συνέχεια είδαμε την χωρητικότητα των δεξαμενών και παρατηρήσαμε ότι παρουσίασαν πολύ καλά αποτελέσματα. Παρατηρήσαμε πως το διάγραμμα της χωρητικότητας δεξαμενών καυσίμου συναρτήσει της ισχύς MCR μπορεί να συμβάλλει στο να κάνουμε μία πρώτη εκτίμηση της διάρκειας των καυσίμων για συγκεκριμένη ειδική κατανάλωση. Όσον αφορά την μελέτη των μηκών και συγκεκριμένα του μηχανοστασίου συναρτήσει της ισχύς MCR παρατηρήσαμε ότι η ισχύς αποτελεί μια ένδειξη του μεγέθους της κύριας μηχανής και των βοηθητικών μηχανημάτων που χρησιμοποιούνται και οποιαδήποτε διαφορά υπήρξε ανάμεσα στα διάφορα πλοία είναι λόγω των διαφορετικών αναγκών των πλοίων σε μηχανολογικό εξοπλισμό. Επίσης το κέντρο βάρους του Lightship καθώς και του πλοίου στην κατάσταση Full Load Departure εκτιμάται με μεγάλη ακρίβεια έχοντας μικρές αποκλίσεις οι οποίες πιθανόν να οφείλονται σε ιδιαιτερότητες της κάθε μιας κατασκευής.

Προτάσεις για περαιτέρω έρευνα:

 Μεγάλο ενδιαφέρον παρουσιάζει η πραγματοποίηση παρόμοιας στατιστικής ανάλυσης αλλά για μεγαλύτερο εύρος δείγματος πλοίων. Στα πλαίσια αυτής της ανάλυσης θα μπορούσε να γίνει μια πιο εξειδικευμένη μελέτη κάνοντας διάκριση των πλοίων ανάλογα με:

- Το μέγεθος των πλοίων. Για κάθε κατηγορία μεγέθους να γίνει διαφορετική ανάλυση.
- Τη χρονολογία ναυπήγησης. Θα μπορούσε να χωριστούν σε πλοία ανά πενταετία ή δεκαετία.
- Το νηογνώμονα.
- Τη χώρα κατασκευής και το ναυπηγείο.
- Το είδος του πλοίου. Ανάλογα με το είδος του μεταφερόμενου φορτίου τα δεξαμενόπλοια διακρίνονται σε διάφορα είδη που παρουσιάζουν ιδιαίτερα χαρακτηριστικά προς μελέτη.
- Η πραγματοποίηση παρόμοιας στατιστικής ανάλυσης θα μπορούσε να γίνει και για άλλους τύπους πλοίων (π.χ. πλοία μεταφοράς εμπορευματοκιβωτίων, πλοία μεταφοράς οχημάτων κλπ.).
- Θα μπορούσε να γίνει έμφαση στη μελέτη και σχεδίαση σε συγκεκριμένα μέρη του πλοίου (π.χ. μηχανοστάσιο).
- Η πραγματοποίηση στατιστικής ανάλυσης με χρήση λογισμικού διαφορετικού του Matlab (π.χ. XLSTAT, SPSS)

6. Βιβλιογραφία

- 1. Ζαραφωνίτης Γεώργιος, «Εισαγωγή στη Ναυπηγική και τη Θαλάσσια Τεχνολογία», Πανεπιστημιακές Εκδόσεις ΕΜΠ, Αθήνα 2015.
- Παπανικολάου Α. Αναστασόπουλος Κ., «Μελέτη και Εξοπλισμός Πλοίου Ι (Μεθοδολογία Προμελέτης) – Συλλογή Βοηθημάτων», Πανεπιστημιακές Εκδόσεις ΕΜΠ, Αθήνα 2007.
- Παπανικολάου Δ. Απόστολος, «Μελέτη Πλοίου Μεθοδολογίες Προμελέτης Πλοίου» (Τεύχος 1 & 2), Αθήνα 2009.
- 4. International Maritime Organization, International Convention of Tonnage Measurement of Ships 1969.
- International Maritime Organization, MARPOL 73/78, Consolidated Edition 2013.
- 6. Καραγεώργος Ευάγγελος, «Μεθοδολογία προμελέτης πλοίων μεταφοράς υγρού φορτίου», Διπλωματική Εργασία Επιβλέπων Καθηγητής κ. Γ. Ζαραφωνίτης, Τμήμα Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π., Εργαστήριο Μελέτης Πλοίου, Αθήνα 2015.
- 7. Κάραλης Βασίλης, «Μεθοδολογία προμελέτης πλοίων μεταφοράς ξηρού φορτίου», Διπλωματική Εργασία – Επιβλέπων Καθηγητής κ. Γ. Ζαραφωνίτης, Τμήμα Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π., Εργαστήριο Μελέτης Πλοίου, Αθήνα 2016.
- 8. Nkoko Nossa Anneck, «Στατιστική ανάλυση τεχνικών στοιχείων πλοίων μεταφοράς πετρελαίου», Διπλωματική εργασία – Επιβλέπων Καθηγητής κ. Γ. Ζαραφωνίτης, Τμήμα Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π., Εργαστήριο Μελέτης Πλοίου, Αθήνα 2013.
- 9. Determination of Regression Formulas for Main Dimensions of Tankers and Bulk Carriers based on IHS Fairplay data, Technical University of Denmark, Hans Otto Kristensen, 2010.
- 10. Design and operation of tankers, International conference, RINA, London, 2011.

7. ПАРАРТНМА-Matlab Curve Fitting Tool

Εδώ παρουσιάζεται με περισσότερη λεπτομέρεια η διαδικασία που πραγματοποιήθηκε στο λογισμικό Matlab R2015a για την παραγωγή των διαγραμμάτων της στατιστικής ανάλυσης.

Αρχικά έγινε η εισαγωγή όλων των στοιχείων της βάσης δεδομένων από το excel στο Matlab. Στη συνέχεια με την χρήση του Curve Fitting Tool κάναμε την επεξεργασία των δεδομένων η οποία εξηγείται πιο κάτω:

Εικόνα 1:Περιβάλλον εργασίας Curve Fitting Tool

Αφού ορίσουμε ποιο δεδομένο θέλουμε να είναι στον x-άξονα και ποιο θα είναι στον y-άζονα, παρουσιάζεται η γραφική όπως φαίνεται πιο πάνω. Στη συνέχεια αφού επιλέξουμε τις μεταβλητές μας, επιλέγουμε την μορφή της καμπύλης από τη λίστα των διαθέσιμων μοντέλων και επιλέγουμε αυτό που πιστεύουμε ότι είναι το πιο σωστό. Τα αποτελέσματα του διαγράμματος, δηλαδή οι παράμετροι της προσεγγιστικής καμπύλης φαίνονται στο παράθυρο στα αριστερά. Την εισαγωγή των καμπυλών πρόβλεψης εξηγεί η πιο κάτω εικόνα:

Εικόνα 2: Εισαγωγή καμπυλών πρόβλεψης

Έχοντας επιλέξει το διάγραμμα που θέλουμε να παρουσιάσουμε επιλέγουμε File->Print to Figure και εμφανίζεται ένα παράθυρο στο οποίο μπορεί να γίνει περαιτέρω επεξεργασία του διαγράμματος. Αφού κάναμε την κατάλληλη επεξεργασία του προγράμματος μπορούμε πλέον με την εντολή Edit->Copy Figure να το αντιγράψουμε και να το χρησιμοποιήσουμε στην έκθεση.