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Περίληψη

Η μέτρηση του πλήθους εμφανίσεων μικρών υπογραφημάτων σε μεγαλύτερα γρα-
φήματα είναι μια κρίσιμη εργασία για πολλές εφαρμογές. Πιο συγκεκριμένα, τα τρίγω-
να εμπλέκονται στον ορισμό μετρικών όπως ο συντελεστής ομαδοποίησης (clustering
coefficient) και ο λόγος μεταβατικότητας (transitivity ratio), που είναι θεμελιώδεις
στη μελέτη σύνθετων δικτύων. Μια δυσκολία στον υπολογισμό αυτών των παραμέτρων
είναι ότι συχνά τα γραφήματα προς μελέτη δεν είναι πλήρως διαθέσιμα για διάφορους
λόγους.

Σε αυτή την διπλωματική εργασία, ορίζουμε ένα μοντέλο θορύβου παρακινούμε-
νοι από την ιδιωτικότητα στα κοινωνικά δίκτυα, δηλαδή το γεγονός ότι οι χρήστες
μπορούν να θέτουν τους φίλους τους ως κρυφούς. Ειδικότερα, έχουμε ένα αυθεντικό
γράφημα όπου κάθε κορυφή εκτελεί ένα πείραμα Bernoulli με κάποια γνωστή πιθανό-
τητα επιτυχίας και το θορυβώδες δείγμα ορίζεται αφαιρώντας τις ακμές για τις οποίες
και τα δύο άκρα σημειώνουν επιτυχία στα πειράματα. Ο στόχος είναι η εκτίμηση του
πλήθους ακμών και τριγώνων του αυθεντικού γραφήματος εντός μικρού πολλαπλα-
σιαστικού σφάλματος, με μεγάλη πιθανότητα. Αρχικά, βρίσκουμε τέτοιες εκτιμήτριες
και αποδεικνύουμε αντίστοιχα κάτω φράγματα για το απαιτούμενο πλήθος δειγμάτων,
βασισμένα στην θεωρία πληροφορίας. Έπειτα, επιτρέπουμε στους αλγορίθμους μας να
έχουν επιπλέον πρόσβαση στο αυθεντικό γράφημα μέσω μαντείου που αποκαλύπτει
την πραγματική γειτονιά κορυφών και επεκτείνουμε τις προηγούμενες εκτιμήτριες για
αυτή την περίπτωση. Ο αριθμός των δειγμάτων που χρειάζονται γίνεται σταθερός και
το πλήθος των ερωτημάτων προς το μαντείο εξαρτάται μόνο από τις παραμέτρους α-
κρίβειας και όχι από το μέγεθος του γραφήματος.

Λέξεις κλειδιά: Εκτιμητική, Τρίγωνα, Μάθηση, Θεωρία Πληροφορίας





Abstract

Counting the number of occurrences of fixed subgraphs in larger graphs is a
crucial task for many applications. More specifically, triangles are involved in the
definition of metrics such as the clustering coefficient and the transitivity ratio,
which are fundamental in complex network analysis. A difficulty for the calculation
of these parameters is that input graphs are often incomplete for various reasons.

In this thesis we introduce a noise model motivated by the privacy constraints
in social networks, that is, the fact that users can mark their friends as hidden from
the public. More precisely, we have an underlying graph where each vertex performs
a Bernoulli trial with some known probability of success and the noisy sample graph
is defined by removing the edges for which both endpoints succeed in the trials. The
goal is to estimate the number of edges and triangles of the underlying graph within
a small relative error, with high probability. First, we derive such estimators and
prove matching information theoretic lower bounds for the sample complexity of
these tasks. Then, we allow our algorithms to have additional query access to the
underlying graph by asking vertices to reveal their true neighborhood and we extend
the previous estimators in this setting. The number of samples required becomes
constant and the number of queries depends only on the accuracy parameters and
not the size of the graph.

Keywords: Estimation, Triangles, Learning, Information Theory
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Εκτεταμένη Ελληνική
Περίληψη

Σε αυτό το κεφάλαιο παρουσιάζουμε συνοπτικά το περιεχόμενο και τα αποτελέσμα-
τα αυτής της διπλωματικής εργασίας. Αρχικά εισάγουμε το πρόβλημα της παρούσας
εργασίας εξηγώντας το κίνητρο για τον ορισμό του. Έπειτα παρουσιάζουμε την συνει-
σφορά μας, όπου παραθέτουμε τα βασικά συμπεράσματα χωρίς τις αποδείξεις και τις
τεχνικές λεπτομέρειες, οι οποίες υπάρχουν στο αγγλικό κείμενο.

Εισαγωγή

Ένα πολύ σημαντικό πρόβλημα στην στατιστική είναι η εκτίμηση μιας άγνωστης
παραμέτρου κάποιας κατανομής. Για παράδειγμα, κάτι που μαθαίνουμε σε ένα εισαγω-
γικό μάθημα πιθανοτήτων είναι η εκτίμηση της μέσης τιμής μιας κανονικής κατανομής
από δείγματά της. Το θέμα αυτής της διπλωματικής είναι η εκτίμηση παραμέτρων γρα-
φημάτων από θορυβώδη δείγματά τους, κάτι που συνιστά σημαντικό θεωρητικό και
πρακτικό πρόβλημα για τους λόγους που εξηγούνται παρακάτω.

Τα γραφήματα είναι δομές που συναντιούνται παντού για την αναπαράσταση δεδο-
μένων, από την βιολογία μέχρι τα κοινωνικά δύκτια. Σε αυτή την εργασία εστιάζουμε
στα κοινωνικά δίκτυα [B+16] τα οποία είναι μη κατευθυνόμενα γραφήματα με μια κο-
ρυφή για κάθε χρήστη και μια ακμή για κάθε ζεύγος χρηστών που είναι φίλοι. Αυτά τα
γραφήματα έχουν πολλές ενδιαφέρουσες ιδιότητες και έχουν μελετηθεί πολύ στη βι-
βλιογραφία [New03, AB02, DM13]. Επίσης το μέγεθος τους στη πράξη είναι τεράστιο,
κάτι που γεννά την ανάγκη για αποδοτικούς αλγορίθμους.

Όμως τι θέλουμε να υπολογίζουμε με αλγορίθμους στα κοινωνικά δύκτια; Τα τρί-
γωνα είναι σημαντικές δομές στα γραφήματα αυτά διότι γεννιούνται από φυσικούς
μηχανισμούς. Πιο συγκεκριμένα, δύο άνθρωποι που έχουν πολλούς κοινούς φίλους,
τείνουν να δημιουργούν δεσμό φιλίας και μεταξύ τους, κάτι που αναφέρεται ως μετα-
βατικότητα, και επιπλέον, άνθρωποι που είναι φίλοι τείνουν να έχουν πολλούς κοινούς
φίλους γιατί πιθανότατα έχουν παρόμοια ενδιαφέροντα, κάτι που αναφέρεται ως ομο-
φιλία [WF+94]. Για αυτούς τους λόγους έχουν οριστεί μετρικές για να ποσοτικοποι-
ήσουν την μεταβατικότητα και την ομοφιλία, οι οποίες είναι ο λόγος μεταβατικότητας
[NWS02] και ο συντελεστής ομαδοποίησης [WS98]. Οι ορισμοί και των δύο βασίζονται
στη μέτρηση τριγώνων.
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Κίνητρο και Ορισμός του Μοντέλου
Αν και ένα μεγάλο μέρος της βιβλιογραφίας εστιάζει στο σχεδιασμό γρήγορων αλ-

γορίθμων, ώστε να μπορούν να εκτελεστούν με είσοδο τεράστια δίκτυα, το σημείο
αφετηρίας της παρούσας εργασίας είναι η ιδιωτικότητα στα κοινωνικά δίκτυα. Πιο συ-
γκεκριμένα, κάθε χρήστης έχει την δυνατότητα να ορίσει τους φίλους του ως κρυφούς,
καθιστώντας τα κοινωνικά δίκτυα ένα τέλειο παράδειγμα περιβάλλοντος με περιορισμέ-
νη πληροφορία. Ένα μοντέλο το οποίο περιλαμβάνει το χαρακτηριστικό που μόλις
περιγράφηκε, δηλαδή τους κρυφούς φίλους, προτάθηκε στο [CEK+15]. Ο σκοπός σε
εκείνη την εργασία ήταν να βρεθούν αποδοτικοί αλγόριθμοι για τον υπολογισμό ιδιο-
τήτων του δικτύου από τη σκοπιά κάθε χρήστη ξεχωριστά, με σεβασμό δηλαδή στην
ιδιωτικότητα των άλλων χρηστών. Ορμώμενοι από αυτές τις ιδέες, πάμε ένα βήμα παρα-
πέρα και ρωτάμε πως γίνεται βλέποντας το δημόσιο δίκτυο (δηλαδή αυτό που οι κρυφές
σχέσεις μεταξύ φίλων είναι αόρατες) να εξάγουμε συμπεράσματα για το πραγματικό
δίκτυο (που περιέχει κρυφές και μη κρυφές σχέσεις). Έτσι οδηγούμαστε στο εξής
μοντέλο.

Στο μοντέλο μας υπάρχει το αυθεντικό γράφημα G = (V,E) όπου V είναι το
σύνολο των κορυφών και E το σύνολο των ακμών. Ένα δείγμα Gs του γραφήματος
αυτού παράγεται από την εξής τυχαία διαδικασία. Κάθε κορυφή εκτελεί μια δοκιμή
Bernoulli με πιθανότητα επιτυχίας p. Έστω {Xv}v∈V οι τυχαίες μεταβλητές για όλες
τις κορυφές. Το Gs ορίζεται να έχει τις ίδιες κορυφές με το G και οι ακμές του
ορίζονται

Es = {(u, v) ∈ E(G) | Xu = 0 ∨Xv = 0}

Δηλαδή αυτό που περιγράφεται παραπάνω είναι ότι κάθε χρήστης με πιθανότητα
p αποφασίζει αν θέλει να κρύψει τους γείτονές του και αν δύο φίλοι πάρουν αυτή
την απόφαση η σχέση μεταξύ τους γίνεται αόρατη στο δημόσιο δείγμα. Μπορούμε
να βλέπουμε το παραπάνω σαν τον ορισμό μιας κατανομής πιθανότητας πάνω στα
γραφήματα n κορυφών, την οποία θα συμβολίζουμε με PG.

Θα επιτρέπουμε στους αλγορίθμους μας να έχουν επιπλέον πρόσβαση στο αυθε-
ντικό γράφημα μέσω μαντείου το οποίο με είσοδο μια κορυφή v θα επιστρέφει την
γειτονιά αυτής της κορυφής Γ(v) στο αυθεντικό γράφημα.

Ο λόγος για το μαντείο είναι ότι κάθε δείγμα αποκαλύπτει πολλή πληροφορία, η
οποία όμως μπορεί να είναι περιττή από ένα σημείο και μετά. Επίσης ένα ολόκληρο
δείγμα μπορεί να είναι πολύ ακριβό σε σχέση με μια κλίση του μαντείου. Έτσι θέλουμε
με λίγα στοχευμένα ερωτήματα στο μαντείο να αποσπάσουμε ισοδύναμη πληροφορία
που θα προσφερόταν από ολόκληρα δείγματα.

Στόχος
Τα προβλήματα που εξετάζουμε σε αυτή την εργασία είναι αρχικά η εκτίμηση του

πίνακα γειτνίασης του αυθεντικού γραφήματος και έπειτα η εκτίμηση του πλήθους
ακμών και τριγώνων στο αυθεντικό γράφημα. Πιο συγκεκριμένα, έστω G1, . . . , GN τα
δείγματα. Θέλουμε εκτιμήτριες που να πληρούν τα εξής.

1. Εκτίμηση του πίνακα γειτνίασης. Δεδομένου μιας παραμέτρου δ ∈ (0, 1]
ο στόχος είναι να βρεθεί γράφημα Ĝ τέτοιο ώστε

P
G1,...,GN∼PG

(Ĝ = G) ≥ 1− δ (1)
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2. Προσεγγιστική εκτίμηση ακμών. Για κάθε ε, δ ∈ (0, 1] ψάχνουμε μια
εκτιμήτρια m̂ για τις ακμές του αυθεντικού γραφήματος m = |E(G)| έτσι ώστε

P
G1,...,GN∼PG

(|m̂−m| ≤ εm) ≥ 1− δ

3. Προσεγγιστική εκτίμηση τριγώνων. Το ίδιο για εκτίμηση τριγώνων.

Εκτίμηση από Δείγματα
Στη συνέχεια παρουσιάζουμε τα αποτελέσματά μας για τα παραπάνω προβλήματα.

Αρχικά εξετάζουμε αλγορίθμους που έχουν πρόσβαση μόνο σε δείγματα του αυθεντι-
κού γραφήματος και όχι πρόσβαση στο μαντείο. Αυτό θα δώσει ιδέες για την βελτίωσή
τους στην επόμενη ενότητα όταν επιτρέψουμε χρήση του μαντείου.

Εκτίμηση του Αυθεντικού Γραφήματος
Αρχικά εξετάζουμε μια απλή εκτιμήτρια για την εκτίμηση όλου του αυθεντικού

γραφήματος. Οι ακμές που είναι ορατές σε κάθε δείγμα ξέρουμε σίγουρα ότι ανήκουν
και στο αυθεντικό γράφημα ενώ για τα ζεύγη ακμών που δεν έχουν ακμή στο δείγμα
δεν ξέρουμε αν αυτό οφείλεται στο ότι η ακμή δεν υπάρχει στο αυθεντικό γράημα ή
υπάρχει και απλά είναι κρυμμένη. Η πιο φυσιολογική εκτιμήτρια που θα μπορούσαμε
να σκεφτούμε σε αυτό το σημείο είναι η ένωση όλων των δειγμάτων G1, . . . , GN .

(Ĝ)ML =
N∪
i=1

Gi

Μπορούμε να δείξουμε ότι αυτή η εκτιμήτρια είναι και εκτιμήτρια μέγιστης πιθανοφά-
νειας (ΕΜΠ), αφού πρέπει να συμπεριλάβουμε όλες τις ακμές της ένωσης για να μην
μηδενιστεί η πιθανοφάνεια και επιπλέον, αν συμπεριλάβουμε περισσότερες, η πιθανο-
φάνεια δεν πρόκειται να αυξηθεί.

Τώρα προσδιορίζουμε την δειγματική πολυπλοκότητα αυτής της εκτιμήτριας. Πόσα
δείγματα χρειάζονται για να ισχύει η (1); Είναι εύκολο να δούμε ότι με λογαριθμικά
πολλά δείγματα log(n/δ), όλες οι κορυφές θα γίνουν σε κάποιο από τα δείγματα ορατές,
φανερώνοντας την γειτονιά τους και άρα όλο το γράφημα θα γίνει ορατό με πιθανότητα
τουλάχιστον 1− δ.

Πιο ενδιαφέρον είναι να εξετάσουμε αν αυτός είναι και απαραίτητος αριθμός δειγ-
μάτων από κάθε εκτιμήτρια που πετυχαίνει την (1). Με επιχειρήματα από την θεωρία
πληροφορίας, και συγκεκριμένα με χρήση της ανισότητας του Fano, απαντούμε ότι
πράγματι λογαριθμικό πλήθος δειγμάτων είναι αναγκαίο.

Θεώρημα 1. Υπάρχει μια εκτιμήτρια Ĝ τέτοια ώστε για κάθε παράμετρο δ ∈ (0, 1]
και γράφημα G, δεδομένων N = Θ(log(n/δ)) ανεξάρτητων δειγμάτων X1, . . . , XN ∼ PG
ικανοποιεί PX∼PN

G
(Ĝ ̸= G) < δ. Επιπλέον, αν N = o(logn) τότε για κάθε εκτιμήτρια

Ĝ υπάρχει γράφημα G τέτοιο ώστε PX∼PN
G
(Ĝ ̸= G) ≥ 1/3.

Η ιδέα για την απόδειξη του παραπάνω θεωρήματος είναι ότι ορίζουμε μια οικο-
γένεια γραφημάτων και δείχνουμε ότι οποιοσδήποτε αλγόριθμος που καταφέρνει να
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ξεχωρίσει ποιο γράφημα της οικογένειας γέννησε τα δείγματα χρειάζεται τουλάχιστον
logn δείγματα. Αυτό το σενάριο είναι γνωστό στην στατιστική ως έλεγχος στατιστικών
υποθέσεων.

Προσεγγιστική Εκτίμηση Ακμών
Προχωρώντας στην προσεγγιστική εκτίμηση ακμών, αρχικά εξετάζουμε την εκτι-

μήτρια που απλά μετράει τις ακμές στο δείγμα Gs και τις κανονικοποιεί κατάλληλα.

m̂ =
|E(Gs)|
1− p2

(2)

Φαίνεται εύκολα ότι E[m̂] = |E(Gs)|. Για τον υπολογισμό της διασποράς αυτής της
εκτιμήτριας, υπάρχουν όροι από τη διασπορά κάθε ακμής του τυχαίου δείγματος κα-
θώς και όροι συνδιακύμανσης μεταξύ ακμών που μοιράζονται κοινή κορυφή. Αφού
υπολογιστούν οι όροι αυτοί και ύστερα από μερικές πράξεις προκύπτει ότι

Var(m̂) ≤ p2

2(1− p2)

∑
v∈V

d2G(v)

Επειδή τελικά θέλουμε να εξασφαλίσουμε την (2), εφαρμόζουμε την ανισότητα Chebysev
για να πάρουμε τον τύπο για το σφάλμα

P(|m̂−m| > εm) ≤ Var(m̂)

ε2m2
≤ p2

2ε2(1− p2)

∑
v∈V d2G(v)

m2

Παρατηρούμε ότι εξαρτάται από τον λόγο
∑

v∈V d2G(v)

m2 το αν θα είναι το σφάλμα
μικρό ή μεγάλο. Για παράδειγμα, σε ένα d-κανονικό γράφημα ο λόγος αυτός πέφτει
σαν 1/n και άρα η εκτίμηση βελτιώνεται με φυσικό τρόπο. Η χειρότερη περίπτωση είναι
το γράφημα να είναι άστρο, όπου ο λόγος είναι σταθερά. Εκεί η κεντρική κορυφή έχει
πολλές ακμές πάνω της και η συνεισφορά στη διασπορά είναι τεράστια. Παρακινούμενοι
από αυτή την παρατήρηση, στην επόμενη ενότητα θα προσπαθήσουμε να βρούμε τέτοιες
προβληματικές κορυφές και να ρωτάμε το μαντείο για την πραγματική γειτονιά τους
ώστε να διορθώσουμε αυτή την εκτιμήτρια.

Πριν το κάνουμε αυτό, προσδιορίζουμε πάλι το πλήθος δειγμάτων που χρειάζεται
για την εκτίμηση, για να το συγκρίνουμε με το πλήθος δειγμάτων της διορθωμένης
εκτιμήτριας που χρησιμοποιεί το μαντείο (εκείνη προφανώς θα θέλουμε να δουλεύει με
λιγότερα δείγματα). H (2) όπως είναι γραμμένη χρησιμοποιεί ένα δείγμα, αλλά μπορούμε
να την επεκτείνουμε να δουλεύει με N απλά χρησιμοποιώντας την ένωσή τους σαν ένα
καλύτερο δείγμα που έχει παραχθεί από το ίδιο μοντέλο με παράμετρο p′ = pN .

Θεώρημα 2. Υπάρχει μια εκτιμήτρια m̂ τέτοια ώστε για κάθε ε, δ ∈ (0, 1] και γράφη-
μα G με m ακμές, δεδομένων N = Θ(log(1/ε2δ)) ανεξάρτητων δειγμάτων X1, . . . , XN ∼
PG ικανοποιεί PX∼PN

G
(|m̂−m| > εm) < δ. Επιπλέον, αν N = o(log ε−1) τότε για κάθε

εκτιμήτρια m̂ υπάρχει ένα γράφημα G τέτοιο ώστε PX∼PN
G
(|m̂−m| > εm) ≥ 1/3.

Για την απόδειξη του κάτω φράγματος σε αυτό το θεώρημα, γίνεται αναγωγή σε
έλεγχο στατιστικών υποθέσεων, παρόμοιο με αυτόν του προηγούμενου θεωρήματος.
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Προσεγγιστική Εκτίμηση Τριγώνων
Η εκτίμηση τριγώνων είναι παρόμοια με αυτή των ακμών με μόνη διαφορά ότι οι

πράξεις γίνονται περισσότερες. Τελείως αντίστοιχα, συμβολίζοντας με T (G) το σύνολο
τριγώνων του γραφήματος G, το σημείο αφετηρίας είναι η εκτιμήτρια

T̂ =
|T (Gs)|

1− 3p2 + 2p3

όπου στον παρονομαστή έχουμε την πιθανότητα να είναι ένα τρίγωνο ορατό στο δείγμα,
ώστε τελικά η αναμενόμενη τιμή της T̂ να είναι ίση με |T (G)|. Ο υπολογισμός της
διασποράς εδώ χρειάζεται πολλές πράξεις. Συμβολίζουμε με λ(v) το πλήθος τριγώνων
που ακουμπούν στην v και με λ(u, v) το πλήθος τριγώνων που περιλαμβάνουν την
ακμή (u, v) ∈ E. Τελικά βρίσκουμε

P(|T̂ − T | > εT ) ≤ Var(T̂ )
ε2T 2

≤
c1(p)

∑
v∈V λ2(v) + c2(p)

∑
(u,v)∈E λ2(u, v)

ε2T 2

όπου c1(p) = 6p3(1−p)3/(1−3p2+2p3)2 και c2(p) = p2(1−p)2(1−2p)2/(1−3p2+2p3)2

είναι σταθερές που εξαρτώνται μόνο από το p.
Η αντιστοιχία με την περίπτωση των ακμών είναι εμφανής. Αντί για βαθμούς, τώρα

στον αριθμητή εμφανίζονται ”βαθμοί τριγώνων”. Οπότε, οι κορυφές που συνεισφέρουν
περισσότερο στο σφάλμα είναι αυτές που πάνω τους ακουμπούν πολλά τρίγωνα. Η
δειγματική πολυπλοκότητα για την μάθηση τριγώνων είναι ίδια με αυτή των ακμών και
η απόδειξη είναι πανομοιότυπη.

Θεώρημα 3. Υπάρχει μια εκτιμήτρια t̂ τέτοια ώστε για κάθε ε, δ ∈ (0, 1] και γράφημα
G με t τρίγωνα, δεδομένων N = Θ(log(1/ε2δ)) ανεξάρτητων δειγμάτων X1, . . . , XN ∼
PG ικανοποιεί PX∼PN

G
(|t̂ − t| > εt) < δ. Επιπλέον, αν N = o(log ε−1) τότε για κάθε

εκτιμήτρια t̂ υπάρχει ένα γράφημα G τέτοιο ώστε PX∼PN
G
(|t̂− t| > εt) ≥ 1/3.

Εκτίμηση από Δείγματα και Χρήση Μαντείου
Όπως φάνηκε από τα προηγούμενα, η συνεισφορά κάθε κορυφής στο variance της

εκτίμησης των ακμών είναι ανάλογη του βαθμού της στο τετράγωνο. Η ιδέα είναι ότι
αν αρχικά το σφάλμα της εκτίμησης είναι μεγάλο, αυτό οφείλεται στο γεγονός ότι το
αυθεντικό γράφημα μοιάζει σαν μια μικρή συλλογή από άστρα, δηλαδή υπάρχουν λίγες
κορυφές που πάνω τους ακουμπούν σχεδόν όλες οι ακμές του γραφήματος. Αν ξέραμε
ποιο είναι αυτό το σύνολο Q των κρίσιμων κορυφών, θα μπορούσαμε να ρωτήσου-
με για την πραγματική γειτονιά τους και να αξιοποιήσουμε αυτή την πληροφορία για
βελτιώσουμε την εκτιμήτρια. Πιο συγκεκριμένα θα χρησιμοποιούσαμε την εκτιμήτρια

m̂ =
∑

e=(u,v)∈E

1(u ∈ Q ∨ v ∈ Q) +
1

1− p2

∑
e∈E(G[V \Q])

1(e ∈ E(Gs))

Μπορούμε να δείξουμε ότι αν το Q περιέχει τις Θ(ε−2δ−1) κορυφές μέγιστου βαθμού,
τότε το ε-σχετικό σφάλμα αυτής της εκτιμήτριας είναι πάντα κάτω από δ. Το ενδια-
φέρον είναι ότι το πλήθος των κορυφών στο Q είναι σταθερό ως προς το μέγεθος
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του γραφήματος. Βέβαια, μέχρι τώρα είπαμε τι θα κάναμε αν ξέραμε τις μεγιστοβάθ-
μιες κορυφές του αυθεντικού γραφήματος, που προφανώς είναι κάτι μη εφικτό. Η ιδέα
είναι ότι αν ορίσουμε το Q να περιέχει τις Θ(ε−2δ−1) μεγιστοβάθμιες κορυφές του
ενός δείγματος, το ποσό που θα μειωθεί το σφάλμα θα είναι μια προσεγγιστικά ίδιο
με την μείωση που θα παίρναμε αν χρησιμοποιούσαμε τις βέλτιστες κορυφές. Έτσι,
χρησιμοποιούμε δύο δείγματα G1, G2, όπου από το G1 καθορίζουμε το σύνολο Q(G1)
των Θ(ε−2δ−1) μεγιστοβάθμιων κορυφών και η τελική εκτίμηση που υπολογίζεται με
βάση το G2 είναι η

m̂ =
∑

(u,v)∈E(G)

1(u ∈ Q(G1) ∨ v ∈ Q(G1)) +
1

1− p2

∑
e∈G[V \Q]

1(e ∈ E(G2)) (3)

Η ανάλυση που μόλις περιγράψαμε πολύ περιληπτικά τελικά οδηγεί το παρακάτω συ-
μπέρασμα (που δίνουμε μια ανεπίσημη εκδοχή του εδώ).

Θεώρημα 4. Υπάρχει μια εκτιμήτρια m̂ η οποία χρησιμοποιεί δύο δείγματα και k =
Θ(ε−2δ−1) ερωτήματα προς το μαντείο και ικανοποιεί P(|m̂−m| > εm) ≤ δ.

Εκτίμηση Πλήθους Τριγώνων
Η ιδέα είναι παρόμοια με αυτή για τις ακμές και έτσι τα αποτελέσματα γενικεύονται

και για τα τρίγωνα. Θα πρέπει να εκτιμήσουμε και εδώ από το δείγμα ποιες είναι οι
κορυφές που πάνω τους ακουμπούν πολλά τρίγωνα στο αυθεντικό γράφημα και να
τις ρωτήσουμε για να μειώσουμε την συνεισφορά τους στο σφάλμα. Η διαφορά σε
σχέση με την περίπτωση των ακμών είναι ότι αυτό το εγχείρημα είναι δυσκολότερο.
Πράγματι, οι βαθμοί κορυφών διατηρούνται στα δείγματα (οι βαθμοί είναι είτε ίδιοι
είτε ακολουθούν διωνυμική κατανομή) ενώ το πλήθος τριγώνων που ακουμπά σε κάθε
κορυφή όχι (φανταστείτε πολλά τρίγωνα που μοιράζονται μία κοινή ακμή, αν αυτή
χαθεί χάνονται όλα τα τρίγωνα). Οπότε φαίνεται ότι δεν θα είναι εφικτό να πετύχουμε
την εγγύηση (2). Παρόλλα αυτά αν χρησιμοποιήσουμε πολλαπλασιαστικό σφάλμα εW ,
όπου W ο αριθμός των σφηνών, δηλαδή τριάδων κορυφών με δύο ακμές (σαν τρίγωνα
αλλά με μία ακμή να λείπει), αντί για σφάλμα εT , τότε τα αποτελέσματα γενικεύονται.

Θεώρημα 5. (Ανεπίσημο) Υπάρχει εκτιμήτρια T̂ που χρησιμοποιεί δύο δείγματα και
k = Θ(ε−2δ−1) ερωτήματα προς το μαντείο και ικανοποιεί P(|T̂ − T | > εW ) ≤ δ, όπου
W είναι το συνολικό πλήθος σφηνών στο γράφημα G.
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Chapter 1

Introduction

The subject of this thesis is estimation of unknown parameters, which have
always been a central problem in statistics. Algorithms can be divided into categories
depending on their purpose. On the one hand, some algorithms are used to calculate
functions, that is, output a specific result for each possible input. In this case, time
complexity which is the amount of time it takes to run the algorithm is the main
measure of efficiency. In this context, computer scientists begun (and have never
stopped) to ask which are those functions that can be computed efficiently and which
cannot. On the other hand, the purpose of some other algorithms is to estimate
missing or unknown information, such as the expected value of a distribution by
taking as input samples drawn from that distribution. The measure of efficiency in
that case, apart from time complexity, is the sample complexity which is the number
of samples required for an accurate estimation. Before we go into the details of the
problem examined in this thesis, we briefly discuss its context.

Social networks
Graphs are ubiquitous structures for representing information and are used in

many diverse fields, such as information systems, biology and social networks. In
this thesis we focus mainly on social networks which are used to encode friendship
relations between humans. Social networks are undirected graphs which have a
vertex for each user and an edge for each pair of users that are friends. Much
effort has been made by computer scientists and mathematicians to derive random
graph models with the same properties as those of real world social networks, such as
skewed degree distribution [New03] or small average diameter [AB02, B+16, DM13].
Also, the size of these graphs is typically very large and can reach millions of vertices
and edges. Thus, fast algorithms are required in order to run in feasible amounts of
time.

Why Triangles
But what tasks do we want efficient algorithms for? Triangles have received

great attention in the field of social network analysis as they are closely related to
some significant structural properties of graphs. The creation of triangles in social
networks is explained by certain laws. The first one is that people with common
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friends tend to become friends themselves, a phenomenon known as transitivity and
the second is that people who are friends statistically have similar interests and
thus tend to have many common friends, a phenomenon called homophily [WF+94].
Therefore, in order for these characteristics of social networks to be quantified, two
metrics have been defined and are extensively used in the literature. The transitivity
ratio [NWS02] of a graph G is the probability that a wedge (which is defined as
a path of length two), which is selected uniformly at random from all wedges of
G, will participate in a triangle. The clustering coefficient [WS98] of a vertex v
is defined as the probability that two uniformly selected neighbors of v will be
connected with an edge. In addition, counting the number of triangles is used in
a number of graph mining applications such as spam detection and community
detection [BBCG08, EM02](for a longer list see [TKM11]). Therefore, new triangle
counting algorithms are continuously proposed and studied from both a practical
and a theoretical perspective.

Motivation and Statement of the Problem
There is a considerable amount of literature on triangle counting or other algo-

rithms that can run fast on massive networks, however, in this thesis we examine
the problem from a learning viewpoint. Privacy plays a major role in social net-
works, where each user can mark some of her friends as private, which makes them
a perfect example of limited knowledge environments. In [CEK+15], this privacy
setting is examined, where the public-private model of graphs is introduced and
algorithms for it are presented. In that model, the graph G which is known to the
public and does not contain edges between users that decided to hide their friends
is called public, while a private graph Gu associated with each user u contains that
user along with all her private friends. The authors were interested in designing
algorithms that would preprocess the public graph and then would very efficiently
compute properties of the graphs G ∪ Gu, which essentially are the social network
from the viewpoint of each user. Thus, these algorithms would run in a tailored
way for each user, respecting the privacy constraints of other users. The algorithms
presented were also efficient, meaning that they were much faster than running the
same algorithm for the property of interest on the union Gu ∪G one time for each
user.

Motivated by the characteristic of social networks to have public and private
vertices and also from [CEK+15], we go a step further and ask what can be done
about estimating properties of the union of the public with all private graphs G ∪
{Gu}u, having access to only the public graph. Therefore, in this thesis, we treat
the process of marking private friends as noise, which removes parts of the graph,
and we are interested in recovering information about the initial graph. Based on
this idea we are lead to propose a variant of the public-private model.

In our model we have the underlying graph G, which contains all connections
between friends and each user decides whether to hide its friends with some prob-
ability p. If two friends make this decision their edge is removed from the resulting
noisy sample graph Gs. Admitting that, based solely on the noisy sample graphs the
learning tasks can be extremely hard, we allow our algorithms to have additional
access to a small number of private graphs, equivalently, we allow them to query for
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the true neighborhood of some vertices. In this model, we are interested in deriving
estimators for interesting parameters of the underlying graph, such as the number
of triangles.

Contribution
In this thesis, we begin by deriving and studying simple estimators, which only

use samples of the graph, for the number of edges and triangles under the aforemen-
tioned model. More specifically, they output an estimation that is whithin a certain
multiplicative factor away from the real value, with high probability. For these, we
find that their sample complexity is optimal for the specific tasks by constructing
an information theoretic lower bound.

Based on this examination, we then derive estimators for the same tasks that
also perform a certain number of queries. We show that by allowing queries, the
number of samples needed for accurate estimation drops to constant and also the
number of queries is small, as it does not depend on the size of the graph.

Related Work
As mentioned before, due to the significance of triangles in social networks, in

this thesis we focus on deriving estimators for their number in the noise model moti-
vated by the privacy characteristics of social networks. Much work exists on triangle
counting, ranging from exact counting algorithms, based on matrix multiplication
[AYZ97, CW90] to approximate counting algorithms. In this section, we provide a
quick overview of some of these ideas that are most relevant to this thesis.

Graph Sparsifiers
Approximation algorithms that use samples of the original graph were proposed

for triangle counting in order to achieve faster runtimes. In these works, samples are
used in a different context than in this thesis, were we treat samples as the result of
noise altering the original graph. More specifically, samples are used as a mean of
sparsification, that is, obtaining a subgraph of significantly smaller size from which
the triangles of the original graph can be accurately estimated by counting their
number in the sample and scaling them properly. Tsourakakis et al started these
sparsification mechanisms, the most important of which is Doulion [TKMF09]. In
Dulion, the sparsification process of G consists of keeping each edge with probability
p and deleting it with 1−p, resulting in a subgraph G′. After that, an exact counting
algorithm is applied to count the number of triangles in G′ and the result is scaled by
1/p3 to obtain the desired estimate X. This algorithm is very accurate in practice.
In [TKM11, TKM09] a more thorough analysis is done to derive strong theoretical
guarantees using some advanced concentration inequalities for random variables
that are polynomials.

Graph sampling can be thought of as a basic preprocessing step of the input
before the computation of any graph property. The goal always remains the same,
namely to produce a smaller graph that in a way preserves the desired property of the
original graph, making its computation more efficient. Some sampling methods are
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edge sampling, such as Doulion, vertex sampling [LKJ06], where one choses random
sets of vertices and examines the corresponding induced subgraph and traversal
based sampling [LF06], which can be a random walk on the graph’s vertices. For a
complete survey on the topic we refer to [HL13].

Learning via Queries
In the previous type of works, the whole graph has to be read for its sparsifi-

cation. However, another line of research is dedicated on algorithms that are truly
sublinear (meaning that they do not need to read the entire graph) in order to
achieve even lower time complexities. We would like to think of these algorithms
as having restricted knowledge of the input, which is more on par with the context
of this thesis. In other words, these are essentially learning algorithms that need to
extract properties of an unknown graph. Sublinear algorithms is a growing field that
initialy started with property testing [Gol17], the task to decide whether an object
has a property or is far away from having it, but recently has embraced estimation
problems too. Access to graph G is available by queries of three types that are now
standard in the literature:

1. Degree query: The degree d(v) of any vertex v ∈ V .

2. Neighbor query: What vertex is the i-th neighbor of vertex v ∈ V (where some
arbitrary ordering of the neighbors is assumed and also i < d(v)).

3. Pair query: Test whether (u, v) ∈ E for any pair of vertices (u, v) ∈ V 2.
The naive way to count triangles in this setting is by a simple Monte Carlo

algorithm: sampling random triplets of vertices and checking if they form a triangle
in the graph. By executing k trials and counting the number of successes (when
triplets formed triangles) it is a simple exercise of concentration inequalities to see
that if k is big enough we have a good approximation.

The first non trivial algorithm for triangle estimation was that of [ELRS15]. For
a graph with n vertices and m edges, an estimator t̂ for the number of triangles was
designed that works with O

(
ε−1(poly logn)

(
n

t1/3
+ m3/2

t

))
standard type queries

and satisfies P(|t̂ − t| > εt) < 1/3. The algorithm’s analysis is quite intricate and
requires a number of ideas. In [Ses15], an algorithm with the same guarantees but
simpler analysis was proposed.

In this setting, other properties were examined too before triangles, such as
estimating the number of stars [GRS11] or cliques of fixed size [ERS18]. After the
triangle estimation algorithm, the result was generalized for arbitrary subgraph
counting [AKK18].

The relevance of these works to this thesis is that we would like to combine
elements from both the sparsification methods mentioned before and the query
based algorithms in our work. We note that our goal is to calculate an initial rough
estimation of the number of triangles from a single noisy sample graph, which is very
similar to what algorithms like Doulion do, and then, given additional query access,
improve upon this estimation by asking vertices that are critical to the number of
triangles. This is something that, to the best of our knowledge, has not been studied
in the literature yet.
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Online Learning for Network Discovery
Apart from the fact that the graph inputs are too large to be handled, which leads

to the need for sparcification, the input may be incomplete by its self. For example
graph data for social networks are collected from apps or users who make their
accounts public and are inherently incomplete. Thus, a research direction focuses
in enhancing these partially observed graphs via probing parts of the network. A
model for the queries is each vertex can be asked to reveal all of its neighbors or just
one uniformly at random. The question is, given a limited budget of such queries,
how can we efficiently probe the graph so as to reveal the greatest number of new
vertices or triangles or, in its full generality, optimize an arbitrary graph function?
The model describing how the incomplete input is generated does not need to be
known and the task becomes an online learning problem [LSBER18]. The problem
has also been formulated as a multi-armed bandit problem and an algorithm that
includes both exploration and exploitation proccedures with efficient performance
in practice has been proposed [SERGP17].

Thesis Organization
This is a brief outline of the content of each chapter to guide the reader through

this thesis. Effort has been made to keep chapters concise enough to preserve read-
ability and yet complete and self contained, regarding the way the ideas of this thesis
are analyzed. All preliminaries are located in Chapter 2. More specifically, in that
chapter, basic concentration inequalities that will be used later are presented and
well known tools from hypothesis testing and information theory that are usefull
for lower bound construction are developed.

Chapter 3 is about parameter estimating using only noisy samples of the orig-
inal graph. First, the noise model is formally presented and then estimators for
the number of edges and triangles as well as for the whole graph are given. Their
sample complexity is determined and lower bounds using the tools of Chapter 2 are
constructed to understand their limitations.

In Chapter 4, queries are allowed to improve the accuracy of estimation, or
equivalently, reduce the number of samples required. Based on the conclusions from
the analysis of the previous chapters, we develop a query strategy and design an
estimator for edges and triangles that embraces information from these queries.

Finally, Chapter 5 contains our conclusions and directions for ongoing or future
work on the subject.
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Chapter 2

Information Theoretic Lower
Bounds

A part of our work will be focused on constructing lower bounds on the number
of samples needed to learn a property of the underlying distribution. Proving that
no algorithm can achieve better performance for a specific task is essential for un-
derstanding a problem and is often more interesting than designing an algorithm for
it. Lower bounds can be challenging to construct, yet mathematicians’ efforts have
resulted in many frameworks for that purpose. In order to prove that an estimator
needs at least a certain number of samples, we need to argue that less samples
do not provide enough content for recognizing which source could have generated
the samples. The concept of useful content is captured by the tools of information
theory. In this chapter we provide an overview of the tools and machinery that are
necessary to construct lower bounds. For the shake of completeness we start by some
preliminaries about concentration of measure that, although not exploited during
the lower bound derivation, are used in later chapters.

2.1 Statistics Preliminaries
Often in statistics and in the analysis of randomized algorithms we need to use

the fact that random variables are close to their expected value with high probability.
The motivation can become clear with a simple example. Consider tossing a fair coin
n times. After many trials, that is, if n is great enough, half of the results will be
heads with high confidence. We need to quantify this behavior. The law of large
numbers states that the mean of many random variables converges almost surely to
the expected value, as their number increases. However, the law of large numbers or
other results such as the central limit theorem are asymptotic results. We would like
to determine exact bounds on the rate of convergence, which is what the following
theorems essentially do.

Theorem 2.1 (Markov’s Inequality). Let X be a non negative random variable.
For any a > 0

P(X ≥ a) ≤ E[X]

a
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Proof.

E[X] =
∑
x

xP(X = x) =
∑
x≥a

xP(X = x) +
∑
x<a

xP(X = x) ≥ aP(X ≥ a)

The fact that X must be non negative was required in order to bound the second
sum. ■

The next inequality is derived from Markov’s inequality and bounds from above
the probability of a random variable to deviate from its expected value.

Theorem 2.2 (Chebysev’s Inequality). Let X be a random variable. Then for any
a > 0

P(|X − E[X]| ≥ a) ≤ Var[X]

a2
(2.1)

Proof. The result follows from an application of Markov’s inequality to the random
variable (X − E[X])2 and the observation that E[(X − E[X])2] = Var[X]. ■

Next, we present Chernoff bounds that are used for sums of random variables.
There exist many variants of these theorems, with the more general of them having
information theoretic essence, as they are expressed in therms of the mutual infor-
mation of the distributions involved. For a complete exposition on the subject see
[BLM13]. Here we only state the variant we will use later in our analyses which is
the multiplicative bound.

Theorem 2.3 (Chernoff Bound). Let X1, X2, . . . , Xn be independent {0, 1} random
variables with E[Xi] = pi and define X =

∑n
i=1Xi. Let µ = E[X] denote the expected

value of X. For every 0 < ε < 1 it holds

P(X > (1 + ε)µ) ≤ exp
(
−ε2µ

3

)
(2.2)

P(X < (1− ε)µ) ≤ exp
(
−ε2µ

2

)
(2.3)

Proof. For the standard proof that uses the moment generating function we refer
the reader to page 66 of [MU17]. ■

These bounds are preferred over the Chebysev’s inequality, when applicable,
because they demonstrate a much more intense concentration of measure. Indeed,
these bounds are tight within a constant factor [Mou10].

2.2 Divergence Measures
Divergence measures are functions that establish the distance between probabil-

ity distributions. A very formal definition of these concepts, which can be found in
[Gra11], requires a bit of setup and also understanding of measure theory. Here we
present the definitions only to an extend that serves our purposes.

Let X be an arbitrary space, P,Q two distributions on that space and also let
p, q denote their probability density functions. For every A ⊂ X , each distribution
assigns a probability which will be denoted by P (A), Q(A).
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Definition 2.1. The total variation distance between P and Q is defined as

∥P −Q∥TV ≜ sup
A⊂X

|P (A)−Q(A)| = 1

2

∫
X
|p(x)− q(x)|dx

Thus, if we imagine the two distributions as hills of sand, their total variation
distance can be thought of as the amount of sand that must be moved from one to
another to make them equal. For discrete random variables, integrals are replaced by
sums. Next, we define another divergence which technically is not a distance. This
divergence is a member of a well known family of divergences called f -divergences
[AS66, Csi67].

Definition 2.2. The Kullback-Leibler divergence between P and Q is

DKL ( P||Q) ≜
∫
X
p(x) log p(x)

q(x)
dx

We finish this section with two properties of KL-divergence. The first one, which
is easier to prove, is about products of distributions P = P1 × · · · × Pn,Q = Q1 ×
· · · × Qn. For these, KL-divergence satisfies

DKL ( P||Q) =
n∑

i=1

DKL ( Pi|| Qi) (2.4)

The second property is Pinsker’s inequality, a result that required more effort by
mathematicians in order to be proved. For arbitrary distributions P and Q (not
only products as we assumed before) we have

∥P −Q∥2TV ≤
1

2
DKL ( P||Q) (2.5)

2.3 Information Theory Concepts
Here we present the basic definitions and properties of information theoretic

concepts that will be used later in this thesis. This is not a complete investigation
but a rather quick review of the elements that our work will depend on. For further
information we refer the reader to [CT12].

2.3.1 Entropy
For the following we will let capital letters such as X denote random variables

and the corresponding calligraphic letters such as X denote the alphabets from
which they take values.

Definition 2.3. The entropy of a random variable X with probability mass function
p(x) is defined as

H(X) ≜ −
∑
x∈X

p(x) log p(x) = E[− log p(X)]
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We will adopt the convention 0 log 0 = 0 because of the limit behavior of the
function x logx when x goes to zero. Entropy serves as a measure of the information
content of a random variable. Consider for example a degenerated random variable
that is just a constant. Its entropy is zero. Also, H(X) ≥ 0 for every random variable
X and more importantly

Proposition 2.1. H(X) ≤ log |X | with the inequality being tight in the case of a
uniform random variable.

The proof is deferred to a later subsection. Next we introduce joint and condi-
tional entropy.

Definition 2.4. The joint entropy of random variables X and Y is defined as

H(X,Y ) ≜ −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

Definition 2.5. The conditional entropy of Y given X is defined as

H(Y | X) ≜ −
∑
x∈X

p(x)H(Y | X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

An easy to prove property is the chain rule, which is

H(X,Y ) = H(Y ) +H(X |Y ) (2.6)

2.3.2 Mutual Information
Mutual information between two random variables, say X and Y , quantifies how

much extra information about X is revealed when Y becomes known.

Definition 2.6. The mutual information between random variables X and Y with
joint probability mass function p(x, y) and marginal probability mass functions p(x)
and p(y) is defined as

I(X;Y ) ≜
∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)

p(x)p(y)

)
= DKL ( PXY || PXPY )

The mutual information can be rewritten in the following way (this is often given
as the definition of mutual information). The proof is very easy and thus omitted.

Proposition 2.2. For random variables X and Y we have I(X;Y ) = H(X) −
H(X | Y ).

We can define conditional mutual information I(X;Y |Z) similarly to conditional
entropy, and we will have that I(X;Y |Z) = H(X | Z)−H(X | Y, Z).
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2.3.3 Information Inequality
We will prove the very important inequality of Proposition 2.1, which essentially

tells us that the number of bits that are necessary to describe a random variable X
are at most log |X |. First we begin by proving the following.

Proposition 2.3. For random variables X ∼ PX and Y ∼ PY , it is true that
DKL ( PX || PY ) ≥ 0 with the relation becoming an equality only if PX = PY .

Proof. Let p(x), q(x) be the probability mass functions of X and Y respectively and
A = {x ∈ X | p(x) > 0} the support of X.

−DKL ( PX || PY ) = −
∑
x∈A

p(x) log
(
p(x)

q(x)

)
=
∑
x∈A

p(x) log
(
q(x)

p(x)

)
≤ log

∑
x∈A

p(x)
q(x)

p(x)

= log 1
= 0

where the inequality which was used was Jensen’s inequality for concave functions.
As log(·) is strictly concave, the equality occurs iff q(x)/p(x) is constant (indepen-
dent of x), that is, p(x) = q(x) for every x. ■

Corollary 2.1. For random variables X and Y , we have that I(X;Y ) ≥ 0.

Proof. The proof follows from noting that I(X;Y ) = DKL ( PXY || PXPY ) ≥ 0 ■

Now we can prove the desired inequality.

Proof of Proposition 2.1. Let p(x) be the probability mass function of X and u(x)
the probability mass function of the uniform distribution over alphabet X .

u(x) =

{
1
|X | , x ∈ X
0, x ̸= X

Let P be the distribution of X and U the uniform distribution. We have that

DKL ( P|| U) =
∑
x∈X

p(x) log p(x)

u(x)
= log |X | −H(X) ≥ 0

because of the last corollary. ■

The following states that conditioning reduces entropy.

Corollary 2.2. For random variables X and Y it is true that H(X | Y ) ≤ H(X).

Proof. I(X;Y ) = H(X)−H(X | Y ) from Corollary 2.1. ■
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2.3.4 Data Processing Inequality
The random variables X,Y, Z form a Markov chain X → Y → Z if the condi-

tional distribution of Z depends only on Y and not on X, that is, p(z|x, y) = p(z|y).
This means that given Y , the random variables X and Z become independent. The
Markov chain presented may be interpreted in the following way. A process converts
X to Y and another process is applied to Y and gives Z. It is natural to think that
Z is less related to X than Y . In other words, no process (deterministic of random-
ized) can increase the information content about X. This is formally expressed by
the following inequality.

Proposition 2.4 (Data Processing Inequality). Let X,Y, Z be random variables
that form a Markov chain X → Y → Z. Then

I(X;Y ) ≥ I(X;Z) (2.7)

Proof.

I(X;Y, Z) = H(X)−H(X | Y, Z)

= H(X)−H(X | Z) +H(X | Z)−H(X | Y, Z)

= I(X;Z) + I(X;Y |Z) (2.8)

We obtain the following in a similar manner.

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ) (2.9)

By the fact that X,Z are independent the fact that given Y we have I(X;Z|Y ) = 0.
From (2.8) and (2.9) we get

I(X;Z) + I(X;Y |Z) = I(X;Y )

I(X;Y )− I(X;Z) = I(X;Y |Z) ≥ 0

I(X;Y ) ≥ I(Y ;Z)

which is the desired relation. ■

2.4 Hypothesis Testing
We introduce the notion of testing statistical hypotheses, which was of central

interest in the field of statistics [LR06]. The reason is that often we are given sam-
ples from a distribution for which we know that it belongs to a predefined set of
distributions and we want to find which one of these was actually used to generate
the samples. A statistical hypothesis is every hypothesis regarding the distribution
of a random variable X. More specifically, a hypothesis H may regard a parameter
θ of the density function p(x|θ) or the form of the density function.

Testing hypotheses can be seen as a primitive form of estimation, where one
does not need to output an exact value of the unknown parameter but just needs
to distinguish between cases for that parameter. Although weaker than estimation,
hypothesis testing can be as hard as estimation and for that reason it is very often
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used to establish lower bounds for estimation problems, as we will show in the next
section. We follow the exposition of [Duc16].

We define the setting of canonical hypothesis testing. Let V be a set of indices
and {Pv}v∈V a family of distributions with support X .

1. Nature chooses an index V ∈ V uniformly at random.

2. Conditioned on the event V = v, N samples are drawn from the v-th distri-
bution X = (X1, . . . , XN ) ∼ PN

v .

The goal is to find the value v having access only to the samples X. Every function
Ψ : X → V used for that purpose is called a test. The joint distribution from which
the samples X are drawn eventually is

P =
1

|V|
∑
v∈V
PN
v

We will call a hypothesis testing problem binary if |V| = 2, that is if there
exist only two hypotheses. These hypotheses are denoted by H0 and H1, with H0

being called null hypothesis and H1 being called alternative hypothesis. If we have
more than two hypotheses, the setting is referred as multiple hypothesis testing. A
hypothesis may be simple or composite. The latter type of hypothesis is associated
with a family of distributions instead of a single one. Conditioned on a composite
hypothesis, nature chooses a distribution from that set uniformly at random and
uses it to generate the samples. The testing problem is called composite if at least
one of the hypotheses is of that type, otherwise it is called simple.

2.5 From Estimation to Hypothesis Testing
Providing solution to an estimation problem consists of designing an estimator

that approximates the unknown value of interest well enough, meaning that some
kind of guarantee is presented. For example, the empirical mean of N samples of
Bernoulli variables is an unbiased estimator with variance that behaves like 1/N .
In order to completely solve the estimation problem, lower bounds have to be con-
structed, indicating that every estimator cannot do better than a certain threshold.
Even for the simple example mentioned above, it is not obvious how to do this.
This problem was resolved for the first time using the concept of Fisher informa-
tion and the Cramer-Rao inequality [Cra46, Rao92]. A different way is described in
this section, which is to first note that by having an estimator one could use it to
solve a hypothesis testing regarding the unknown parameter, and then prove that
this hypothesis testing problem is hard.

2.5.1 The Framework
To begin, we define the notion of the estimator’s risk. Let P a distribution and

θ(P) its parameter. A good estimator θ̂ for θ should have low EX∼PN [(θ̂(X)−θ(P))2].
However, this definition of the risk would not be enough, as the estimator θ̂(X) =
θ(P) for every X would have zero risk, yet this estimator would be completely
unreliable for other distributions than P. This issue is resolved by selecting the
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distribution used adversarially from the family of possible distributions S, thus the
risk is defined as the quantity

sup
P∈S

E
X∼PN

[
(θ̂(X)− θ(P))2

]
To establish a lower bound for every estimator, one needs to use the minimum
value of this risk, where the min is taken over all estimators. This definition was
introduced by Wald [Wal39].

Definition 2.7 (Minimax Risk).

M(θ,S) ≜ inf
θ̂

sup
P∈S

E
X∼PN

[
(θ̂(X)− θ(P))2

]
After having defined the risk, we focus on reducing the estimation problem to

the hypothesis testing problem and lower bounding the former by providing a bound
for the latter. Depending on whether the resulting hypothesis testing is binary or
not, different inequalities are used to bound its error, resulting in different methods
of constructing lower bounds. However, the reduction is always the same.

Let V be a set of indices, {Pv}v∈V a class of distributions indexed by V and
{θ(Pv)}v∈V their parameters.

Definition 2.8. The class {θ(Pv)}v∈V is called 2δ-packing if

|θ(Pv)− θ(Pv′)| ≥ 2δ ∀v ̸= v′

The following bounds the minimax risk of parameter estimation by the minimum
error of a hypothesis testing problem.

Proposition 2.5. Let V be a set of indices, S = {Pv}v∈V a class of distributions
indexed by V and {θ(Pv)}v∈V their parameters such that {θ(Pv)}v∈V is 2δ-packing.
The minimax risk is bounded as follows

M(θ,S) ≥ δ2 inf
Ψ

P
X∼P

(Ψ(X) ̸= V )

Proof. The idea consists of the following two steps:

1. In order to solve the hypothesis testing regarding the family {Pv}v∈V we use
the value of the estimator θ̂(X) and return the distribution for which the
parameter θ is closer to θ̂(X). That is,

Ψ(X) ≜ argmin
v∈V

|θ̂(X)− θ(Pv)|

2. We show that for that particular testing function Ψ, the probability of error
is less than or equal to the minimax error of the estimation, that is

M(θ,S) ≥ δ2 P
X∼P

(Ψ(X) ̸= V )

However, Ψ is not the only testing function for the hypothesis testing and
thus, the above expression can be further bounded by the infimum over all
testing functions, resulting in the desired bound.
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It remains to prove the argument of the second step. To do so, first we need to
see when the testing function makes a wrong guess. Observe that because we have
a 2δ-packing, if the testing function guesses wrongly, θ̂ and θ must be more than
δ-away. To see that, suppose that |θ̂ − θ(Pv)| < δ. Then, for each v′ ̸= v, we have
the inequality

2δ ≤ |θ(Pv)− θ(Pv′)| ≤ |θ̂ − θ(Pv)|+ |θ̂ − θ(Pv′)| < δ + |θ̂ − θ(Pv′)|

which gives |θ̂− θ(Pv′)| > δ and thus the test Ψ guesses correctly (a contradiction).
Next, we examine the risk

sup
v∈V

E
X∼PN

v

[
(θ̂(X)− θ(Pv)2)

]
≥ sup

v∈V
E

X∼PN
v

[
δ21

(
|θ̂(X)− θ(Pv)| ≥ δ

)]
≥ δ2 sup

v∈V
P

X∼PN
v

(
|θ̂(X)− θ(Pv)| ≥ δ

)
≥ δ2

1

|V|
∑
v∈V

P
X∼PN

v

(Ψ(X) ̸= v)

= δ2 P
X∼P

(Ψ(X) ̸= V )

where for the third inequality we used the fact that the supremum of the elements of
a set is greater than their mean value. Taking infimum over the possible estimators
θ̂ finishes the proof. ■

What remains to do now is to present how the error of the hypothesis testing
PX∼P(Ψ(X) ̸= V ) can be bounded from below.

2.5.2 Le Cam’s Method
Le Cam’s inequality [Yu97, LC12] is used in the case of binary hypothesis testing.

The index set is now V = {1, 2} and the probability of error is

P
X∼P

(Ψ(X) ̸= V ) =
1

2
P

X∼PN
1

(Ψ(X) ̸= 1) +
1

2
P

X∼PN
2

(Ψ(X) ̸= 2)

Proposition 2.6. The error of the hypothesis testing is related to the total variation
distance between the two distributions as follows

inf
Ψ

{
P

X∼PN
1

(Ψ(X) ̸= 1) + P
X∼PN

2

(Ψ(X) ̸= 2)

}
= 1− ∥PN

1 − PN
2 ∥TV (2.10)

Proof. Let A be the critical region of the testing function Ψ, that is the region
where it assigns the input to the first distribution Ψ(X) = 1. Also let P1(A), P2(A)
the probabilities assigned to region A by the N -fold distributions PN

1 ,PN
2 . Then we

have that

P
X∼PN

1

(Ψ(X) ̸= 1) + P
X∼PN

2

(Ψ(X) ̸= 2) = P1(A
c) + P2(A) = 1− P1(A) + P2(A)
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Therefore, taking infimum over all testing functions gives

inf
Ψ

{
P

X∼PN
1

(Ψ(X) ̸= 1) + P
X∼PN

2

(Ψ(X) ̸= 2)

}
= inf

Ψ
{1− P1(A) + P2(A)}

= 1− supΨ {P1(A)− P2(A)}
= 1− ∥PN

1 − PN
2 ∥TV

■

Combining this simple observation with the reduction of Proposition 2.5 we get
a generic lower bound for the risk of estimation.

Corollary 2.3. Let P1,P2 with |θ(P1)− θ(P2)| ≥ 2δ. The following is true for the
minimax risk of estimation using N samples

M(θ,S) ≥ 1

2
δ2
(
1− ∥PN

1 − PN
2 ∥TV

)
(2.11)

An observation about this bound is that there exists a trade off regarding the
selection of δ. On the one hand, a lower δ means that the distributions have more
similar value θ and thus are less distinguishable, something that is quantified by
having small total variation distance. On the other hand, a smaller δ weakens the
bound. Thus, the selection of δ should be the result of a fine tuning, in order to
achieve the best value for the bound. We demonstrate the method with an example
about Bernoulli variables.

Proposition 2.7. The minimax lower bound for the estimation of the mean of a
{−1,+1} Bernoulli random variable using N samples is

M ≥ 1

24N

Proof. We need to define two Bernoulli distributions P1,P2 with probabilities of
success p1, p2 such that we have 2δ separation of them, as required by Corollary 2.3.
We set

p1 =
1 + δ

2
, p2 =

1− δ

2

We have that

∥PN
1 − PN

2 ∥2TV ≤
1

2
DKL

(
PN
1

∣∣∣∣PN
2

)
=

N

2
DKL ( P1|| P2)

=
N

2

[
1− δ

2
log
(
1− δ

1 + δ

)
+

1 + δ

2
log
(
1 + δ

1− δ

)]
= N

δ

2
log
(
1 + δ

1− δ

)
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where the first inequality is Pinsker’s (2.5), and the second equality is property
(2.4). To further bound the term we note that for δ < 1/2 we have that

δ log
(
1 + δ

1− δ

)
≤ 3δ2

To see that, set the corresponding function and differentiate it

f(x) = log
(
1 + x

1− x

)
− 3x

f ′(x) =
1− x

1 + x

(1− x) + (1 + x)

(1− x)2
− 3

=
2

1− x2
− 3

Setting f ′(x) = 0 gives x = ±1/
√
3. For x = 1/

√
3 we have f(1/

√
3) < 0 and for

x = 0 we have f(x) = 0, therefore f(x) < 0 in this region. Therefore, we get

∥PN
1 − PN

2 ∥TV ≤ δ

√
3N

2

By setting δ = 1/
√
6N , (2.11) turns into

M(θ,S) ≥ 1

2
δ2
(
1− ∥PN

1 − PN
2 ∥TV

)
≥ 1

12N

(
1− 1

2

)
=

1

24N

which is the bound that we wanted to prove. ■

2.5.3 Fano’s Method
In this section we examine the inequality of Fano which bounds the error of

multiple hypothesis testing. We will turn our attention to a slightly more general
setting of moving information through a noisy channel, which includes hypothesis
testing as a special case. Consider a Markov chain X → Y → X̂. The interpretation
is that Y is generated according to a random variable X (the domain of which will
be denoted by |X |), and then a process X̂ which only has access to Y tries to recover
X. Let h2(p) = −p log p−(1−p) log(1−p) denote the entropy of a Bernoulli random
variable. We now state the inequality and provide its proof that is standard in the
literature (see [CT12, Duc16] and also [Yu97] for some useful variants that are not
presented here).

Proposition 2.8 (Fano’s Inequality). Let X → Y → X̂ be a Markov chain. It holds
true that

h2(P(X̂ ̸= X)) + P(X̂ ̸= X) log(|X | − 1) ≥ H(X | X̂)
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Proof. We define a binary random variable E to be the indicator of the event X̂ ̸=
X.

E =

{
1, X̂ ̸= X

0, X̂ = X

We expand the entropy H(X,E | X̂) in the following two ways. The first one is

H(X,E | X̂) = H(X | E, X̂) +H(E | X̂)

= P(E = 1)H(X | E = 1, X̂) + P(E = 0)H(X | E = 0, X̂) +H(E | X̂)

= P(E = 1)H(X | E = 1, X̂) +H(E | X̂)

where we used the fact that H(X | E = 0, X̂) = 0 because given X̂ and also that no
error has occurred, X is no longer random. The second equation is the chain rule
(see property (2.6), here we have its conditional form)

H(X,E | X̂) = H(X | X̂) +H(E | X̂,X)

= H(X | X̂)

where we used the fact that given X̂ and X, E is completely determined. Next, we
combine these two equations and bound some terms to obtain the desired inequality

H(X | X̂) = P(X̂ ̸= X)H(X | E = 1, X̂) +H(E | X̂)

≤ P(X̂ ̸= X) log(|X | − 1) + h2(P(X̂ ̸= X))

where we used the fact that given E = 1, X can have at most |X |−1 values and the
entropy is always bounded from the logarithm of the number of different possible
values. ■

If X is distributed uniformly, as in the hypothesis testing, we can further ma-
nipulate the previous inequality

Corollary 2.4. Let X → Y → X̂ be a Markov chain with X being uniformly
distributed on X . We have that

P(X̂ ̸= X) ≥ 1− I(X;Y ) + log 2
log |X | (2.12)

Proof. First we use the definition of mutual information I(X; X̂) = H(X)−H(X | X̂)
and fact that h2(p) ≤ log 2 for every p as the entropy of a binary random variable.
Denote by Pe the probability or error P(X̂ ̸= X) to save space.

log 2 + Pe log |X | ≥ h2(Pe) + Pe log(|X | − 1) ≥ H(X | X̂) = H(X)− I(X; X̂)

Next we use the data processing inequality (2.7) which translates to I(X; X̂) ≤
I(X;Y ). We also use H(X) = log |X | because X is uniformly distributed.

log 2 + Pe log |X | ≥ H(X)− I(X; X̂) ≥ log |X | − I(X;Y )

Therefore, the result follows. ■
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Note that above, X̂ was an arbitrary estimator. Inequality (2.12) has an intuitive
interpretation. A uniform random variable X has entropy log |X |, which means that
one needs logarithmically many bits to describe it. Thus, in order to learn X from
Y with small probability of error, Y needs to be such that the mutual information
between the two be comparable with log |X |.
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Chapter 3

Estimation Using Many
Samples

In this chapter we define the problems examined in this thesis and start develop-
ing our results for the case where multiple samples but no queries are allowed. More
specifically, we define our noise model and state the problems examined, namely
estimation of the adjacency matrix of the unknown graph, exact estimation of edges
or triangles with high probability and approximate estimation of edges or triangles
with high probability. We derive simple estimators for these problems and analyze
their sample complexity. Also, we establish information theoretic lower bounds us-
ing the tools of Chapter 2 to show that these estimators are optimal regarding the
number of samples they use. This analysis will help in finding an appropriate query
strategy to reduce the variance of the estimation, which will be developed in the
next chapter.

3.1 The Model
3.1.1 Noise Samples

We begin by formally defining the noise model which we will be using throughout
this thesis. According to this model, there exists an undirected graph of interest
G = (V,E), where V is a set of n vertices and E ⊆ V × V is the set of m edges,
which we call the underlying graph. A sample graph Gs of G is a spanning subgraph
ofG which is generated by the following random process. Each vertex v ∈ V executes
an independent Bernoulli trial with probability of success p. Let {Xv}v∈V be those
Bernoulli random variables. The edge set Es of the sample graph contains all edges
from G that have at least one endpoint for which the Bernoulli trial failed, that is

Es = {(u, v) ∈ E(G) | Xu = 0 ∨Xv = 0}

The interpretation of this model is the following. Social networks are undirected
graphs which have a vertex for every user and an edge between each pair of friends.
Our model describes the process of hiding friends from the public. More specifically,
each user decides whether to hide her friends list and if a pair of friends make
this decision, their connecting edge becomes invisible to the public. We model the
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decision of hiding friends as a random experiment with known probability of success
p. We will often call the vertices for which the random trial succeeded hidden and
the vertices for which it failed visible. This graph generating proccedure can be
seen as the definition of a probability distribution on all graphs with n vertices.
This means that given a graph G we just defined a probability distribution P(G)
according to which each sample graph is generated with a corresponding probability.
A generalized version of this model would require a different probability pv for
each user and additionally these probabilities would be unknown, but this would
complicate significantly the estimation tasks.

3.1.2 The Oracle
Our algorithms will have access to one or more samples of the form discussed

above as well as additional oracle access to G. The oracle responds to a query for
a vertex v ∈ V by returning the neighborhood of that particular vertex in the
underlying graph Γ(v) = {u ∈ V | (u, v) ∈ E}. Clearly, visible vertices already
reveal their true neighborhoods in the sample graphs and thus it would be feckless
to query for them. However, it is stressed that our algorithms do not have knowledge
of the Bernoulli trials vector X = (Xv1 , . . . , Xvn) and thus do not know which are
the visible vertices.

3.2 General Objectives
N sample graphs G1, . . . , GN are revealed and the algorithms have additional

query access to the underlying graph G. The problems examined are that of esti-
mating parameters of the underlying graph G. In this thesis we will mainly focus
on the following parameters.

1. Adjacency matrix or graph estimation. Given a confidence parameter
δ ∈ (0, 1] the goal is to find a graph Ĝ with n vertices such that

P
G1,...,GN∼PG

(Ĝ = G) ≥ 1− δ (3.1)

2. Exact edge estimation. Given δ ∈ (0, 1] the goal is to find an estimator m̂
for the edges of the underlying graph m = |E(G)| such that

P
G1,...,GN∼PG

(m̂ = m) ≥ 1− δ (3.2)

3. Exact triangle estimation. The same for estimating the number of trian-
gles. This can be generalized to any arbitrary subgraph occurrences estimation.

4. Approximate edge estimation. For every ε, δ ∈ (0, 1] we seek to find an
(ε, δ)-estimator, that is an estimator m̂ for the edges of the underlying graph
m = |E(G)| so that the relative error is small with high probability

P
G1,...,GN∼PG

(|m̂−m| ≤ εm) ≥ 1− δ (3.3)
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5. Approximate triangle estimation. The same for triangles.

For all these estimation tasks we will be interested in the sample complexity
which is the number of samples required to obtain the stated guarantees and the
query complexity which is the number of queries required. Essentially we would
like to study the trade off between sample complexity and query complexity, as it is
intuitively apparent that samples reveal a lot of information which may be redundant
while queries have the potential to reveal less but more relevant information. Thus,
with a few sample graphs we should be able to learn the graph well enough in order
to decide which vertices are critical for the property under examination.

3.3 Learning the Underlying Graph
We start our study by examining some simple estimators for the problems listed

above, which use only samples of the underlying graph and no queries. This study
gives some insight about the sample complexity of the estimation problems men-
tioned above, as well as ideas on how to improve them by allowing vertex queries,
which will be done in later chapters.

3.3.1 Maximum Likelihood Estimator
First, we examine an estimator of the whole underlying graph. Such an estimator

needs to determine the edge set of G, with high probability. Every sample is a
subgraph of the underlying graph, meaning that every edge observed is a real edge
of the underlying graph while every pair of vertices with no observed edge between
them could potentially have an edge in G. Consider the simple estimator of taking
the union of all sample graphs G1, . . . , GN . This seems like a very natural choice
which is supported by the following proposition.

Proposition 3.1. The union estimator is a maximum likelihood estimator for the
underlying graph G.

(Ĝ)ML =

N∪
i=1

Gi

Proof. For the proof we need to argue that including more edges to Ĝ than those
observed in the samples can only reduce the likelihood. Because of the fact that n is
fixed, a graph is solely described by its the pairs of vertices connected by edges. For a
sequence of graphs g1, . . . , gN let ei = (e1i , . . . , e

N
i ) be a binary vector that describes

the edges of those graphs as following: each element eji is one if and only if the i-th
pair of vertices is connected by an edge in the j-th graph, where i ∈ [n(n−1)/2] and
j ∈ [N ]. With capital letter we will denote the same vectors regarding the observed
sample graphs. Next we define the likelihood function L(g1, . . . , gN ; G) and show
that it is maximized when G = ∪Ni=1gi.

L(g1, . . . , gN ; G) = P(G1 = g1, . . . , GN = gN | G)

= P(E1 = e1, . . . ,En(n−1)/2 = en(n−1)/2 | G)
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=

n(n−1)/2∏
i=1

P(Ei = ei | Ei−1 = ei−1, . . . ,E1 = e1, G)

We need to choose G such that it does not miss any edges from those of ∪Ni=1gi,
because otherwise the likelihood becomes zero. In addition, suppose we include in G
an edge that has not been observed in any sample, say we include the i-th pair. Then
the corresponding factor from the product above P(Ei = ei | Ei−1 = ei−1, . . . ,E1 =
e1, G) will be less than or equal to one, where if we had not included this edge, the
factor would be equal to one. This shows that the likelihood may drop if we choose
more edges than those of the union and concludes the proof. ■

After we showed that the union is a maximum likelihood estimator, we would
like to find how many samples it takes for that estimator to obtain low probability
of error. The way this estimator works is that by taking many samples, the chances
of each vertex to become visible in some of these samples increase and if the number
of samples is great enough, then all vertices will show their true neighborhoods. A
simple analysis shows that Θ(logn) samples suffice for that purpose.

Proposition 3.2. Let δ ∈ (0, 1]. If the number of samples is N > log(n/δ), it holds
for the union estimator Ĝ = ∪Ni=1Gi that

P
G1,...,GN∼PG

(Ĝ = G) ≥ 1− δ

Proof. We bound the probability of wrong estimation. Denote by {Xu}u∈V the
Bernoulli random variables associated with the vertices of the graph.

P
G1,...,GN∼PG

(Ĝ ̸= G) ≤ P
G1,...,GN∼PG

[∃u ∈ V : X1
u = 1, . . . , XN

u = 1]

≤
∑
u∈V

P
G1,...,GN∼PG

(X1
u = 1, . . . , XN

u = 1)

= npN

< δ

where we used union bound for the second inequality. The last inequality comes
from the fact that N > log(n/δ). ■

From the proof above it becomes more clear why a union of many samples is
more representative than one sample, more specifically how it is improved as the
number of samples increases. This is an observation that will be used later.

Remark 3.1. The union of many, say N , samples can be considered as a single
sample generated by the same noise model, but with smaller probability for the
vertices to be hidden, specifically with p′ = pN .

3.3.2 Lower Bound
Now that we provided a first estimator for the adjacency matrix of the underlying

graph and we upper bounded the sample complexity of this problem, the next
natural step towards getting insight about the problem is to examine the optimality
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of that estimator, before seeking for more advanced ones. Also we hope that through
that study we will be able to answer questions regarding the sample complexity of
the estimating problems stated at the start of the chapter, something that will be
discussed later in this chapter.
Definition 3.1. The sample complexity of estimating the adjacency matrix is a
function f(n, δ) of the size n of the underlying graph G and the confidence parameter
δ, such that every algorithm Ĝ for this task requires at least f(n) samples in order
to satisfy

∀GP(Ĝ = G) ≥ 1− δ

This definition is generalised for every other estimation task in this thesis. For
simplicity we will only care about the dependence on the size of the graph, equiva-
lently we may replace δ with a constant, say 1/3 in the definition above. To deter-
mine the sample complexity of learning the underlying graph, we first adopt a more
intuitive and informal approach that hopefully reveals the idea behind the lower
bound construction and then we give a formal proof using Fano’s inequality and the
tools presented in Chapter 2.

Consider the class of graphs with only two vertices. Let G1 be the graph that has
the edge and G0 the graph with the missing edge. Define the following hypothesis
testing: A graph is chosen between G0 and G1 uniformly at random and is used to
generate N sample graphs X = (X1, . . . , XN ). An estimator Ĝ that has access to
these samples solves the problem of hypothesis testing if it correctly recovers the
decision made, that is, which graph was used to generate the samples. The estimator
may be randomized. This means that for fixed input samples the estimator produces
a probability mass over the two graphs. The samples are independent, so without
loss of generality we can assume that the estimation does not depend on the order
of the observations. In other words, if we change the order of the input samples, the
probability mass that the estimator outputs should be the same. Additionally, if we
want to consider only useful estimators we can make the assumption that if one of
the samples contains an edge the estimator gives G1 as the answer with probability
one. The probability of correct estimation is

1

2
P

X∼PN
G1

(Ĝ(X) = G1) +
1

2
P

X∼PN
G0

(Ĝ(X) = G0)

We examine the two terms separately, (a will be a parameter of the estimator to
model its randomization). For the first term we have

P
X∼PN

G1

(
Ĝ(X) = G1

)
= P
X∼PN

G1

(
Ĝ(X) = G1 |

∪
i

Xi = G1

)
P

X∼PN
G1

(∪
i

Xi = G1

)

+ P
X∼PN

G1

(
Ĝ(X) = G1 |

∪
i

Xi = G0

)
P

X∼PN
G1

(∪
i

Xi = G0

)
= 1 · (1− p2N ) + ap2N (3.4)

For the second term we have

P
X∼PN

G0

(Ĝ(X) = G0) = P
X∼PN

G0

(
Ĝ(X) = G0 |

∪
i

Xi = G1

)
P

X∼PN
G0

(∪
i

Xi = G1

)
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+ P
X∼PN

G0

(
Ĝ(X) = G0 |

∪
i

Xi = G0

)
P

X∼PN
G0

(∪
i

Xi = G0

)
= 0 + (1− a) (3.5)

Figure 3.1. Two graphs of the family used for the lower bound when n = 8. The left
is G10100111 and the right is G00111011.

Now consider the family of graphs (see Figure 3.1) {Gv}v∈V with n disjoint pairs
of vertices that can have an edge between each one of these pairs (2n graphs in total).
This family is the cartestian product of families like the one defined previously. Let
V = {0, 1}n be the set of indexes for the graphs of this family (a zero in the index of
the graph means that the edge associated with that particular position is missing,
where a one denotes an existing edge). The hypothesis testing is the following set
up: An index from V is picked uniformly at random according to a random variable
V . Conditioned on the choice V = v, N samples are drawn from the distribution of
Gv. The goal is to determine the value v of the index V . Let Ψ = (Ψ1, . . . ,Ψn) be an
arbitrary estimator for the hypothesis testing for this family (it is a n-dimensional
binary vector which has an element for each possible edge). The edges of these
graphs are disjoint, so without loss of generality we can assume that the estimator
operates independently on each pair of vertices, like the estimator described above.
In other words, we can assume that each Ψi is an estimator like the one described
previously and operates independently from the others. We have the following for
the probability of error (to avoid complicated notation we will drop subscripts and
were no confusion can occur)

P(Ψ(X) ̸= GV ) = 1− P(Ψ(X) = GV )

= 1−
∑

v∈{0,1}n
P

X∼PN
Gv

(Ψ(X) = GV |V = v)P(V = v)

= 1− 1

2n

∑
(e1,...,en)∈{0,1}n

P(Ψ(X) = G(e1,...,en))

= 1− 1

2n

∑
(e1,...,en)∈{0,1}n

P(Ψ1(X) = e1, . . . ,Ψn(X) = en)

= 1− 1

2n

∑
e1∈{0,1}

· · ·
∑

en∈{0,1}

P(Ψ1(X) = e1) · · ·P(Ψn(X) = en)

(independence)

= 1− 1

2n

∑
e1∈{0,1}

P(Ψ1(X) = e1) · · ·
∑

en∈{0,1}

P(Ψn(X) = en)
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= 1− 1

2n
((1− p2N ) + ap2N + 1− a)n (from 3.4, 3.5)

= 1−
(
2− a− (1− a)p2N

2

)n

It is now a matter of analysis to show that this error is great if fewer than
logarithmic samples are used. For the sake of completeness we present a proof.

Lemma 3.1. For every a ∈ [0, 1], if N ≤ 1
2 log n

2 ln(3/2) , then 2−n(2 − a − (1 −
a)p2N )n ≤ 2/3 .

Proof. Define the function under examination

f(N,n, a; p) =

(
2− a− (1− a)p2N

2

)n

We begin by examining the case a = 0, because this is the case were the estimator
makes most sense intuitively (a = 0 means that the estimator does not output
more edges than those observed in the samples, just like the MLE estimator of the
previous section). Substituting a = 0 gives, assuming N ≤ 1

2 log n
2 ln(3/2) , that

f(N,n, a = 0; p) =

(
2− p2N

2

)n

=

(
1− 1

2
p2N

)n

≤ exp
(
−1

2
np2N

)
≤ 2

3

Next we show that if a > 0 this quantity is even smaller than the previous case.
To see this differentiate with respect to a and observe that the derivative is negative

∂

∂a
f(N,n, a; p) =

n

2n
(p2N − 1)(2− a+ (a− 1)p2N )n−1 < 0

■

We have thus shown that if N = o(logn), it holds

P(Error) ≥ 1/3

P(Ψ(X) ̸= GV ) ≥ 1/3

1

2n

∑
v

P
X∼PN

Gv

(Ψ(X) ̸= Gv) ≥ 1/3

∃v ∈ V P
X∼PN

Gv

(Ψ(X) ̸= Gv) ≥ 1/3

Noting that the estimator Ψ was arbitrary, we have shown that for every estimator
there exists a graph such that the estimator fails to recognize it with constant
probability.

3.3.3 Fano’s Inequality
Here we prove the same lower bound formally using Fano’s inequality. This is a

method that costructs lower bounds that are expressed using information theoretic
measures, which we will need to calculate. After that, our efforts will be reduced to
bounding an analytic expression.
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Theorem 3.1. There exists an estimator Ĝ such that for every parameter δ ∈ (0, 1]
and graph G, given N = Θ(log(n/δ)) i.i.d. samples X1, . . . , XN ∼ PG satisfies
PX∼PN

G
(Ĝ ̸= G) < δ. In addition, if N = o(logn) then for every estimator Ĝ there

exists a graph G such that PX∼PN
G
(Ĝ ̸= G) ≥ 1/3.

Proof. The family of graphs G = {Gv}v∈V we consider now is smaller than the one
used in the previous section. For each index v = {1, . . . , n} (not to be confused
with a vertex) we define the graph Gv of the family as follows. The vertex set is
{u1, . . . , un}∪{w1, . . . , wn} and the edge set is {(u1, w1), . . . , (un, wn)} \ {(uv, wv)}.
Again, let V be the set of indices of the graphs and V the random variable which
denotes which one of the n graph distributions was initially chosen. Thus the hy-
pothesis testing problem we define consists of the following: First, an index V from
V is chosen uniformly at random and then N sample graphs G1, . . . , GN or, more
compactly, G are drawn from the distribution defined by the underlying graph GV .
The estimator Ψ has to output the value of V correctly, having access to only the
sample graphs. Following the notation of Chapter 2, we denote by I(V ;G1, . . . , GN )
or I(V ;G) the mutual information between the samples and the random variable
V . The inequality we are using is (2.12) which we restate here.

P(Ψ(G) ̸= GV ) ≥ 1− I(V ;G) + log 2
log |V| (3.6)

We denote by PV,G the joint distribution of V and the samples, by PV the distribu-
tion of V which is uniform and by PG = 1

|V|
∑

v∈V PN
Gv

the joint distribution of the
samples which is a mean of the distributions defined by the graphs of the family.
We calculate the mutual information and provide some explanations about these
calculations below:

I(V ;G) = DKL
(
PV,G

∣∣∣∣PV PG)
=

∑
v∈V,g∈GN

P
(V,G)∼PV,G

(G = g, V = v) log
( P(V,G)∼PV,G(G = g, V = v)

PG∼PG(G = g)PV∼PV
(V = v)

)

=
∑
v∈V

P
V∼PV

(V = v)
∑
g∈GN

P
G∼PN

Gv

(G = g) log
(
PG∼PN

Gv
(G = g)

PG∼PG(G = g)

)

=
1

n

∑
v∈V

∑
g∈GN

P
G∼PN

Gv

(G = g) log

 PG∼PN
Gv

(G = g)
1
n

∑
v′∈V PG∼PN

Gv′
(G = g)


=

1

n

∑
v∈V

∑
g∈G

P
G∼PN

Gv

(∪
i

Gi = g

)
log

 PG∼PN
Gv

(∪iGi = g)

1
n

∑
v′∈V PG∼PN

Gv′
(∪iGi = g)


=

1

n
n
∑
g∈G

P
G∼PN

Gv

(∪
i

Gi = g

)
log

 PG∼PN
Gv

(∪iGi = g)

1
n

∑
v′∈V PG∼PN

Gv′
(∪iGi = g)


=

n−1∑
k=0

(
n− 1

k

)
p2Nk(1− p2N )n−1−k log

(
n

k + 1

)
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Where, for the fifth equality we did not assumed that P(G = g) = P(∪iGi = gi)
as it may seem (this is not generaly true). Instead, one needs to think that for all
sample graph vectors g = (g1, . . . , gN ) with the same union, the argument inside the
logarithm is the same and thus we can group these terms together (the argument
inside the logarithm is n over the number of graphs in the family that can generate
the samples with non zero probability). For the next equality the terms for every
v ∈ V are equal due to symmetry reasons and thus the first sum degenerates to
n equal terms. For the last equality, we group all possible graphs according to the
number of hidden edges. Thus Fano’s inequality (3.6) eventually has been turned
into

We now need to show that if N = o(logn), the quantity I(V ;G)/ logn goes to
zero. Observe that the sum can be treated as an expected value involving a binomial
random variable X ∼ Bin(n− 1, p2N ) and use Taylor expansion to approximate it.

n−1∑
k=0

(
n− 1

k

)
p2Nk(1− p2N )n−1−k log

(
n

k + 1

)
= E

[
log
(

n

X + 1

)]
Taylor approximation for calculating expectations. Let X be a random vari-
able and µX its expectation. We can approximate the expected value of a function
of X as following:

E[f(X)] = E[f(µX + (X − µX))]

≈ E
[
f(µX) + f ′(µX)(X − µX) +

1

2
f ′′(µX)(X − µX)2

]
= f (E[X]) +

1

2
f ′′ (E[X])Var[X] (3.7)

Applying this to our case, E[X] = (n − 1)p2N , Var[X] = (n − 1)p2N (1 − p2N ),
and

f(x) = log
(

n

x+ 1

)
f ′(x) = − 1

x+ 1

f ′′(x) =
1

(1 + x)2

Therefore we have that
1

logn E
[
log
(

n

X + 1

)]
≈ 1

logn log
(

n

1 + (n− 1)p2N

)
+

1

2 logn
(n− 1)p2N (1− p2N )

[1 + (n− 1)p2N ]2

Now it easy to see that if N = o(logn) both terms become o(1). According to
(3.6), this means that the error P(Ψ(G) ̸= GV ) goes to one as the size n increases.
Therefore, we have that for every estimator there exists a graph such that the error,
when samples o(logn) from this graph distribution are used, is high.

P(Ψ(X) ̸= GV ) ≥ 1/3

1

n

∑
v

P
X∼PN

Gv

(Ψ(X) ̸= Gv) ≥ 1/3
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∃v ∈ V P
X∼PN

Gv

(Ψ(X) ̸= Gv) ≥ 1/3

■

We conclude with some remarks. The idea behind the lower bound essentially
is that the union of the samples provides all the necessary information about the
underlying graph. This was made intuitively understandable by the arguments pro-
vided in the begining of the section and finally formalized in the information theo-
retic proof, where we showed that the mutual information between the underlying
graph and the sample graphs is the same as the mutual information between the
underlying graph and the union of the samples. The other observation is that the
family of graphs used to prove the bound was not really a graph with many con-
nections between its vertices but rather a collection of gadgets that served as bits
of information.

Remark 3.2. Learning a word of n bits using noisy samples, were each bit that
equals to one may be zeroed in the samples with some fixed probability, needs Ω(logn)
samples.

3.4 Exact Edge and Triangle Estimation
Having studied the graph learning problem we move to the estimation problems

of main interest in this thesis, which are counting the occurrences of fixed subgraphs
in the underlying graph. It is stressed that in this section we seek for estimators
satisfying the guarantee (3.2). We again intend to start from simple estimators
for each problem, examine their sample complexities and compare them with the
sample complexity of the estimation problems. It may seem plausible at first that,
depending on the property of interest, its estimation will have different sample
complexity. For example, learning the number of edges seems less demanding than
the number of triangles and the latter seems less demanding than estimating the
number of circles of length 5 or the diameter of the graph. Thus, through our study
of sample complexity, we would like to approach the following problem.

Question 3.1. Is the sample complexity of estimating global properties higher than
the sample complexity of estimating local properties?

Or perhaps the more ambitious question:

Question 3.2. Can the sample complexity of learning properties of graphs charac-
terize them in any way?

Our analysis gives a negative answer to those questions as we again derive lower
bounds that are logarithmic in the number of vertices of the graph, which are the
same as the bound for learning the whole graph. This means that, at least for the
properties examined here, their exact estimation is not easier than learning the
graph.
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3.4.1 Upper Bound
One estimator for counting subgraphs exactly would be to use the union esti-

mator and return the number of edges observed in the union of the samples. With
Θ(log(n/δ)) samples, the structure of the graph can be learned with probability at
least 1 − δ. which provides a naive estimator for every graph property. It remains
to show that the lower bound matches this upper bound.

3.4.2 Lower Bound
We derive a statistical lower bound, again using the machinery presented in

Chapter 2. We search for the family of graphs for the construction of the bound by
searching for the most difficult input for every estimator. In other words, we want
to find graphs that have different value of the property of interest but are similar
and thus hard to be distinguished.

Theorem 3.2. There exists an estimator m̂ such that for every δ ∈ (0, 1] and graph
G, given N = Θ(log(n/δ)) i.i.d. samples X1, . . . , XN ∼ PG satisfies PX∼PN

G
(m̂ ̸=

|E(G)|) < δ. In addition, if N = o(logn) then for every estimator m̂ there exists a
graph G such that PX∼PN

G
(m̂ ̸= |E(G)|) ≥ 1/3.

Proof. For this proof, we use a binary hypothesis testing. Let H0 be the null hy-
pothesis and H1 the alternative hypothesis. We describe the graphs associated with
each hypothesis. For H0 the underlying graph is a matching. More specifically, its
vertex set is {u1, . . . , un} ∪ {v1, . . . , vn} and its edge set is {(u1, v1), . . . , (un, vn)}.

H1 is a composite hypothesis, that is, in this case a graph is selected uniformly
at random from the family of graphs {Gi}ni=1 where the i-th graph is a matching,
like the graph of the null hypothesis, but with the i-th edge missing (this is the
same family used in the previous lower bound).

Each hypothesis is selected with probability 1/2 according to a random variable
V . If there exists an estimator m̂ that guarantees P(m̂ ̸= m) < δ with N = o(logn)
samples then we could use it to test the hypotheses presented above with error
probability less than δ. However we will show that solving the hypothesis testing
with arbitrarily small probability of error, say 1/3, requires Ω(logn) samples and
thus the edge estimator mentioned before cannot exist.

Let P1 be the joint distribution of the samples defined by the graph of the
null hypothesis and P2 be the joint distribution of the samples if the alternative
hypothesis is selected. Also, let Ψ be an arbitrary estimator for this hypothesis
testing. From Le Cam (2.10) and Pinsker (2.5) we have the bound:

P(Ψ ̸= V ) =
1

2
P
H0

(Ψ ̸= 0) +
1

2
P
H1

(Ψ ̸= 1)

=
1

2
(1− ∥P2 − P1∥TV )

≥ 1

2

(
1−

√
1

2
DKL ( P2|| P1)

)
(3.8)

It remains to calculate the KL-divergence between the joint distributions. For the
alternative hypothesis, observe that the corresponding distribution P2 is a mean over
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the distributions defined by the family {Gi}ni=1 because a graph of this family is
chosen uniformly at random to generate the N samples. Thus P2 = 1

n

∑n
i=1 PN

Gi
. Let

g1, . . . , gN be N graphs that belong in the support of the two graph distributions,
that is, they are matchings with a number of edges that could be ranging from 0
to n − 1 (because a graph with n edges can be generated only by P1). If k of the
n possible edges are missing from all g1, . . . , gN , the probability each distribution
gives to this sequence is

P1(g1, . . . , gN ) = p2Nk(1− p2N )n−k

P2(g1, . . . , gN ) =
k

n
p2N(k−1)(1− p2N )n−k

where for the second distribution the factor 1/n exists because the underlying graph
is selected uniformly at random from a family with n graphs and the factor k is
there because k graphs of this family can generate the sequence (each with equal
probability). The KL-divergence is then

DKL ( P2|| P1) =
∑

g1,...,gN

P2(g1, . . . , gN ) log
(
P2(g1, . . . , gN )

P1(g1, . . . , gN )

)

=
n∑

k=1

(
n

k

)
k

n
p2N(k−1)(1− p2N )n−k log

(
k

np2N

)
where for the last equality we grouped the vectors g = (g1, . . . , gN ) according to
the number of edges k missing from the union ∪Ni=1gi. Thus the lower bound (3.8)
becomes

P(Ψ ̸= V ) ≥ 1

2

1−
√√√√1

2

n∑
k=1

(
n

k

)
k

n
p2N(k−1)(1− p2N )n−k log

(
k

np2N

)
Again, the construction of the lower bound reduced to bounding an analytic

expression. To see that the series go to zero with n if N is less than logarithmic,
observe that the sum can be written as the expected value of a Binomial random
variable X ∼ Bin(n, p2N ), more specifically, we can write

n∑
k=1

(
n

k

)
k

n
p2N(k−1)(1− p2N )n−k log

(
k

np2N

)
=

1

np2N
E
[
X log

(
X

np2N

)]
For the random variable X we have that E[X] = np2N and Var[X] = np2N (1−p2N ).
We approximate the above expectation by keeping the first two terms of the Taylor
expansion, that is, we use (3.7) where

f(x) = x log
(

x

np2N

)
f ′′(x) =

1

x

From this process we get the following

1

np2N
E
[
X log

(
X

np2N

)]
≈ np2N

np2N
log
(
np2N

np2N

)
+

1

2

np2N (1− p2N )

(np2N )2
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= 0 +
1− p2N

2np2N
n→∞−−−−−−−→

N=o(logn)
0

Therefore, we showed that if N = o(logn) samples are used, every estimator
for the hypothesis testing has probability of error that goes to 1/2. This means
that for big enough n, say n ≥ n0, it holds that P(Ψ ̸= V ) ≥ 1/3 and because
P(Ψ ̸= V ) = 1

2 PH0(Ψ ̸= 0)+ 1
2 PH1(Ψ ̸= 1), we get that for some i = {0, 1} it is true

that PHi(Ψ ̸= i) ≥ 1/3 which concludes the proof. ■

An observation, relevant to the previous bound about learning the underlying
graph is that then we examined how many samples it takes to learn the labeled
graph. Here we derived that the same holds true about learning the unlabeled graph.
Corollary 3.1. The sample complexity of learning the unlabeled underlying graph
is Θ(logn).

3.4.3 Triangle Estimation
The previous lower bound can be directly generalized for triangle estimation or

even arbitrary subgraph occurrences estimation. The reason is that the underlying
graphs used in the proof consisted of disjoint gadgets serving as bits of information.
Instead of using edges as those gadgets, we can use triangles or other small fixed
graphs and obtain the same bounds for the corresponding estimation problems.
Thus, we do not repeat the full proof here but we only point out the changes
needed to generalize it.

The hypothesis testing for the triangles is the following. The graph for the null
hypothesis H0 has vertex set {u1, . . . , un}∪{v1, . . . , vn}∪{w1, . . . , wn} and edge set
{(ui, vi)}ni=1 ∪ {(vi, wi)}ni=1 ∪ {(wi, ui)}ni=1.

The alternative hypothesis H1 is again a composite hypothesis, where a graph
is selected uniformly at random from the family of n graphs {Gi}ni=1 where the i-th
graph is defined like the graph of the null hypothesis with the only difference that
it misses the i-th triangle (it misses all three edges of that particular triangle).

If we had a triangle estimator T̂ such that P(T̂ ̸= T ) < δ, we could use it to test
which hypothesis holds with probability of error at most δ but we will show that
the former task requires Ω(logn) samples to achieve arbitrarily small probability
of error. Analogously to the case of edges, let P1,P2 be the joint distributions of
the samples conditioned on each hypothesis. The only change in the calculation of
DKL ( P2|| P1) now is the fact that a triangle becomes entirely hidden with probabil-
ity p3 instead of p2 and therefore, for a graph sequence g1, . . . , gN such that ∪Ni=1g

i

has k missing triangles (we will call a triangle missing if all of its edges are missing)
the two distributions produce it with probabilities

P1(g
1, . . . , gN ) = p3Nk(1− p3N )n−k

P2(g
1, . . . , gN ) =

k

n
p3N(k−1)(1− p3N )n−k

and the proof continues with the only difference p2 ↔ p3.
Remark 3.3. Estimating the number of squares or, in general, appearances of a
fixed subgraph inside the underlying graph has the same sample complexity for the
same reason.
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Remark 3.4. We actually proved that learning the number of triangles in the
complementary graph needs Ω(logn) samples.

3.5 Approximate Estimation of Edges
In this section, we are interested in approximating the number of edges m of the

underlying graph. More specifically, we would like to have an estimator m̂ such that
(1− ε)m ≤ m̂ ≤ (1+ ε)m with probability at least 1− δ. While, the main objective
of this thesis is to examine triangles or other induced subgraphs, we start from
edge estimation mainly for two reasons. The first one is that the number of edges
is more closely related to the degrees of the graph, which are somewhat preserved
in the samples (the degree of each vertex is either the same with its degree in the
underlying graph or follows a binomial distribution) and thus edge estimation is
more natural to start with. The second reason is that we will develop a unified
approach for all these estimation problems based on the simpler case of the edges.
Again, we note that thought this chapter we will be considering estimators having
access only to samples of the underlying graph.

3.5.1 Mean and Variance
Let G = (V,E) be the underlying graph, denote by m the number of edges of the

underlying graph |E(G)| and by Gs the sample graph. Denote by {Xv}v∈V the set
of independent Bernoulli random variables with probability of success p, associated
with each vertex. Xv = 1 means that vertex v decided to hide his neighborhood in
the sample graph. We define a random variable Y(u,v) = XuXv associated with each
edge (u, v) ∈ E. Similarly Y(u,v) = 1 if the edge (u, v) is hidden in the sample graph
(which happens with probability p2) and Y(u,v) = 0 otherwise. These random vari-
ables are not independent if they correspond to edges that share common vertices.
The number of edges in the sample graph is |E(Gs)| =

∑
e∈E(G)(1− Ye) which has

mean
E[|E(Gs)|] =

∑
e∈E(G)

E[(1− Ye)] = (1− p2)m

Therefore, dividing by 1− p2 gives an unbiased estimator for the number of edges

m̂ =
|E(Gs)|
1− p2

(3.9)

Next we calculate the variance of this estimator. The variance of the number of
visible edges in the sample graph is

Var
(∑

e∈E
(1− Ye)

)
= Var

(∑
e∈E

Ye

)
=
∑
e∈E

Var(Ye) +
∑
e̸=e′

Cov(Ye, Ye′)

Each term is examined separately. For the variance of each edge we have that
Var(Ye) = p2(1 − p2). For the covariance terms, if e and e′ are disjoint edges the
term is zero as they are independent random variables. However, in case they share
a common vertex, for example e = (u, v) and e′ = (v, w) then

Cov(Ye, Ye′) = E[YeYe′ ]− E[Ye]E[Ye′ ]
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= E[XuX
2
vXw]− E[Ye]E[Ye′ ]

= E[XuXvXw]− E[Ye]E[Ye′ ]
= p3 − p2p2

= p3(1− p)

To finish the calculation we must find how many dependent pairs of edges exist.
Fix a vertex u and denote by dG(u) its degree in G. The number of correlated edge
pairs with u as the common vertex is dG(u)(dG(u)− 1) (each pair counted twice as
needed). Therefore

Var
(∑

e∈E
Ye

)
= p2(1− p2)m+

∑
u∈V

dG(u)(dG(u)− 1)p3(1− p)

= p2(1− p2)m− 2p3(1− p)m+
∑
u∈V

d2G(u)p
3(1− p)

= p2(1− p)2m+ p3(1− p)
∑
v∈V

d2G(v)

This is the exact expression for the variance. However, we will mostly need just
an upper bound of it which we derive by using dG(v) ≤ d2G(v) as follows.

Var
(∑

e∈E
Ye

)
≤ 1

2
p2(1− p)2

∑
v∈V

d2G(v) + p3(1− p)
∑
v∈V

d2G(v)

=
1

2
p2(1− p2)

∑
v∈V

d2G(v) (3.10)

Therefore, the variance of the estimator m̂ is bounded from a term proportional
to the sum of squares of degrees.

Var(m̂) ≤ p2

2(1− p2)

∑
v∈V

d2G(v)

The ε-relative error we are interested is directly related to the variance via the
Chebysev’s inequality (2.1). An application of the inequality gives

P(|m̂−m| > εm) ≤ Var(m̂)

ε2m2
≤ p2

2ε2(1− p2)

∑
v∈V d2G(v)

m2

From these calculations, we see that if p gets closer to 1 the bound gets worse
as expected because if p is almost 1 then the sample should be very close to empty
and the variance should be huge. Another conclusion is that it is the fraction∑

v∈V d2G(v)/m
2 that determines the success of our estimator. If it is the case that∑

v∈V d2G(v)

m2
< ε2δ

1− p2

p2

then we have an ε − δ estimator. There are cases where this is true, for example
having a d-regular graph as the underlying graph. In this case

∑
v∈V d2G(v)

m2 = Θ(1/n)
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and thus we can have ε − δ estimation for very small values of ε and δ, even for
ε2δ = Θ(1/n). Another example of practical interest because of their similarity
with real world networks are power law graphs [B+16], that is, graphs with degree
distribution pk = ck−γ for γ typically in (2, 3). It can be shown that for them the
estimator’s error decreases with n. On the other hand, the worst case is when the
underlying graph is a star where the fraction

∑
v∈V d2G(v)

m2 = Θ(1). The fact that each
vertex contributes to the variance proportionally to its squared degree will motivate
us to believe that by choosing a few high degree vertices and querying for their true
neighborhood will be enough to bring the estimation error down to δ, but this will
be extensively discussed in the next chapter.

3.5.2 Upper Bound
Even if the underlying graph is a star, by drawing many samples from the

distribution and using their union as more accurate sample, we can reduce the
probability of error. As already noted, the union follows the same distribution with
the only difference that the parameter p (the probability for each vertex to hide its
neighborhood) is exponentially reduced. Thus p is replaced with pN where N is the
number of samples.

P(|m̂−m| > εm) ≤ p2N

2ε2(1− p2N )

∑
v∈V d2G(v)

m2

=
2p2N

ε2(1− p2N )

∑
v∈V d2G(v)(∑
v∈V dG(v)

)2
≤ 2p2N

ε2(1− p)

< δ

if N > 1
2 log

(
2

ε2δ(1−p)

)
samples are used. Note that the samples needed depend on

ε, δ and p in a way that if p approaches 1 the quantity goes to infinity, as expected.
Therefore, we proved the following.
Proposition 3.3. The sample complexity of obtaining an (ε, δ)-estimator for the
number of edges is O

(
log
(

1
ε2δ

))
samples.

3.5.3 Lower Bound
In order to avoid multiparametric bounds, we focus on the dependence on the

parameter ε only (equivalently we can replace δ with 1/3 and p with some other
constant) to show that the lower bound mathces the upper bound of log(1/ε) given
previously. We will reduce the estimating problem to a hypothesis testing problem
as demonstrated in Section 2.5. This is essentially the same procedure as in the
proof of Proposition 2.5, with the difference that here we are not dealing with the
minimax error but with the ε-relative error. The same reduction can be found in
other works too, such as [Hub17].
Proposition 3.4. Every estimator m̂ that satisfies PX∼PN

G
(|m̂(X)−mG| > εmG) <

1/3 for every graph G needs N = Ω(log(1/ε)) samples.
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Proof. Consider the following hypothesis testing that is very similar to the one
presented in the last lower bound construction. The graph for the null hypothesis
H0 has vertex set {u1, . . . , un} ∪ {v1, . . . , vn} and edge set {(ui, vi)}ni=1, that is, the
graph is a matching with n edges.

The alternative hypothesis H1 is a composite hypothesis, where a graph is se-
lected uniformly at random from the family of all graphs that are defined like the
graph of the null hypothesis with the only difference that they have n(1−ε)/(1+ε)
edges instead of n.

Suppose there exists an estimator m̂ that satisfies PX∼PN
G
(|m̂(X) − mG| >

εmG) < 1/3 for every graph G, with N = o(log(1/ε)) samples, to derive a contra-
diction. We can use this estimator to solve the hypothesis testing with probability
of error less than 1/3. Indeed, define the testing function Ψ to be

Ψ(X) =

{
0, m̂(X) ≥ n(1− ε)

1, m̂(X) < n(1− ε)

It can be easily seen that the error of this estimator (were we will denote by V
the random variable that determines which hypothesis is selected), P(Ψ ̸= V ) =
1
2 PH0(Ψ ̸= 0) + 1

2 PH1(Ψ ̸= 1) is less than 1/3 because each term is less than 1/3.
For example the first term is

P
H0

(Ψ ̸= 0) = P(m̂(X) < n(1− ε)) = P(m̂(X) < m(1− ε)) < 1/3

If we choose ε = 1/(2n − 1), the graphs of the null and alternative hypotheses
have n and n − 1 edges respectively. This is the hypothesis testing examined in
the proof of Theorem 3.2, where we showed that Ω(logn) samples are required for
this hypothesis testing problem to be solved with probability of error less than
1/3. However, we assumed before that the estimator we used works with o(log ε−1)
samples which is o(logn) if ε = 1/(2n− 1). We get a contradiction. ■

The two propositions combined determine the sample complexity of approximate
edge estimation.

Theorem 3.3. There exists an estimator m̂ such that for every ε, δ ∈ (0, 1] and
graph G with m edges, given N = Θ(log(1/ε2δ)) i.i.d. samples X1, . . . , XN ∼ PG
satisfies PX∼PN

G
(|m̂ − m| > leqεm) < δ. In addition, if N = o(log ε−1) then for

every estimator m̂ there exists a graph G such that PX∼PN
G
(|m̂−m| > εm) ≥ 1/3.

3.6 Approximate Estimation of Triangles
We extend the previous efforts to obtain the same guaranties for the case of

estimating triangles. We will essentially show that the same approach gives simi-
lar results and the difference is a slightly higher level of complexity regarding the
calculations involved. In particular, as it will be seen below, the expression for the
variance of the estimation here is a direct generalization of the corresponding ex-
pression for the triangles.



38 CHAPTER 3. ESTIMATION USING MANY SAMPLES

3.6.1 Mean and Variance
Let Xv ∼ Bernoulli(p) be the random trials associated with each vertex v ∈ V

and T the set of all triangles of the underlying graph G. Also, let Gs be a sample
graph and T (Gs) the set of its triangles. For each triangle t ∈ T define the indicator
random variable that equals to one if and only if the triangle is hidden from the
sample graph.

Yt =

{
1, t ̸∈ T (Gs)

0, t ∈ T (Gs)

We calculate the expected value of the total number of triangles in the sample graph
|T (Gs)| =

∑
t∈T (1− Yt). To do so, note that the probability for a triangle (u, v, w)

to be visible is

P(Xu +Xv +Xw ≥ 2) = P(Xu +Xv +Xw ≥ 2) + P(Xu +Xv +Xw ≥ 3)

= 3p2(1− p) + p3 = p2(3− 2p)

Therefore the expectation we are interested in is

E

[∑
t∈T

(1− Yt)

]
= |T |(1− p2(3− 2p)) = |T |(1− 3p2 + 2p3)

Dividing by the factor 1− 3p2 + 2p3 gives an unbiased estimator for the number of
triangles

T̂ =
|T (Gs)|

1− 3p2 + 2p3

Next we calculate the variance of the number of triangles in the underlying graph

Var
(∑

t∈T
(1− Yt)

)
= Var

(∑
t∈T

Yt

)
=
∑
t∈T

Var(Yt) +
∑
t̸=t′

Cov(Yt, Yt′)

For the first terms we have that

Var(Yt) = E[Y 2
t ]− E[Yt]2

= E[Yt]− E[Yt]2

= E[Yt](1− E[Yt])
= 3p2 − 2p3 − 9p4 + 12p5 − 4p6

For the covariance terms, we have that the following depending on the number of
shared vertices.

1. If the two triangles are disjoint, then the corresponding covariance term is
zero
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Figure 3.2. Pair of triangles with one shared vertex and pair with one shared edge.

2. It t and t′ share a common vertex (it does not matter which of the three)
according to Figure 3.2, then Cov(Yijk, Yilm) = E[YijkYilm]−E[Yijk]E[Yilm] =
E[YijkYilm]− (p2(3− 2p))2 where

E[YijkYilm] = P(Yijk = 1, Yilm = 1)

= P(Yijk = 1, Yilm = 1 | Xi = 1)p+ P(Yijk = 1, Yilm = 1 | Xi = 0)(1− p)

= (p2 + 2p(1− p))2p+ p4(1− p)

= (4− 3p)p3

Therefore, Cov(Yijk, Yilm) = 4p3(1− p)3 in this case.

3. If t and t′ share two common vertices we have that

E[YijkYilm] = P(YijkYilm = 1 | Xi = 1, Xj = 1)p2

+ 2P(YijkYilm = 1 | Xi = 0, Xj = 1)p(1− p)

+ P(YijkYilm = 1 | Xi = 0, Xj = 0)p(1− p)2

= p2 + 2p2p(1− p)

= p2(1− p)2(1 + 4p− 4p2)

Therefore, Cov(Yijk, Yilm) = p2(1− p)2(1 + 4p− 4p2) in this case.

The goal is to find a concrete expression for the variance, a formula that would
be analogous to the case of edge estimation. In edge estimation we had the sum of
squares of degrees. Here, instead of degrees we will have the number of triangles
incident to each vertex, which are, in a way, ”triangle degrees”.

To begin, observe that the covariance term for triangles t1, t2 for both of the
cases presented above can be written as

Cov(Yt1 , Yt2) =
{
4p3(1− p)3, one shared vertex
4p3(1− p)3 + p2(1− p)2, two shared vertices

This means that the term for the case of two shared vertices is equal to the term
for the case of one shared vertex plus another term. Using the adjacency matrix A
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of the underlying graph, we have the following for the sum of all covariance terms∑
k ̸=l

Cov(Ytk , Ytl) =
∑
v∈V

4p3(1− p)3
A3[v, v]

2

(
A3[v, v]

2
− 1

)
+

∑
(u,v)∈E

A2[u, v]
(
A2[u, v]− 1

) (
p2(1− p)2 − 4p3(1− p)3

)
To provide an explanation for the above expression, fix a vertex v. The value of
A3[v, v] is equal to twice the number of triangles incident to that vertex. For each
pair of such triangles 4p3(1−p)3 must be added. However, there may exist triangles
that share two vertices. For those pairs, we must add an extra p2(1−p)2. The number
of those triangles are determined by A2. The reason 4p3(1 − p)3 is subtracted is
because the triangles that share a common edge, also share a common vertex and
thus 4p3(1 − p)3 has already been added twice (one time for each endpoint of the
shared edge).

By some extra algebraic manipulations, we obtain a final expression of the vari-
ance.

Var
(∑

t∈T
Yt

)
= |T |4p3(1− p)3 + p3(1− p)3

∑
v∈V

(A3[v, v])2 + p2(1− p)2(1− 2p)2
∑

(u,v)∈E

(A2[u, v])2

Denote by λ(v) the number of triangles of G that are incident to vertex v and
by λ(u, v) the number of triangles of G that include the edge (u, v) ∈ E. We
will use these instead of the adjacency matrix and also we will use the fact that
|T | =

∑
v∈V λ(v)/3 as well as λ(v) ≤ λ2(v) to obtain a simpler upper bound of the

variance.

Var
(∑

t∈T
Yt

)
=

4

3
p3(1− p)3

∑
v∈V

λ(v)

+ 4p3(1− p)3
∑
v∈V

λ2(v) + p2(1− p)2(1− 2p)2
∑

(u,v)∈E

λ2(u, v)

≤ 4

3
p3(1− p)3

∑
v∈V

λ2(v) + 4p3(1− p)3
∑
v∈V

λ2(v)

+ p2(1− p)2(1− 2p)2
∑

(u,v)∈E

λ2(u, v)

≤ 6p3(1− p)3
∑
v∈V

λ2(v) + p2(1− p)2(1− 2p)2
∑

(u,v)∈E

λ2(u, v)

Finally we can express the ε-relative error using Chebysev’s inequality (2.1).

P(|T̂ − T | > εT ) ≤ Var(T̂ )
ε2T 2

≤
c1(p)

∑
v∈V λ2(v) + c2(p)

∑
(u,v)∈E λ2(u, v)

ε2T 2

where c1(p) = 6p3(1 − p)3/(1 − 3p2 + 2p3)2 and c2(p) = p2(1 − p)2(1 − 2p)2/(1 −
3p2 + 2p3)2 are constants depending only on p.

The expression for the variance shows that the crucial fractions from which the
estimation’s error depends are

∑
v∈V λ2(v)/T 2 and

∑
(u,v)∈E λ2(u, v)/T 2. Again,
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for certain underlying graphs such as regular graphs, these quantities are o(1) and
thus the estimation has error that naturally goes to zero. However, the worst case
here would be to have a graph with vertex set {v} ∪ {u1, . . . , u2n} and edge set
{(v, ui)}2ni=1 ∪ {(ui, u2n−i+1)}ni=1, that is, n triangles sharing one central vertex v.
In this case the upper bound becomes constant. A query strategy discussed in the
following chapter will focus on eliminating these vertices of high ”triangle degree”
from the variance.

3.6.2 Upper Bound
Similarly to the edge estimation case, if N samples are available, we can use their

union to improve the error of estimation. The reason is that if we use the union,
the parameter p will be replaced by pN , and thus the variance will be reduced
exponentially in the number of samples, as we show below. Using the fact that∑

(u,v)∈E λ2(u, v) ≤
∑

v∈V λ2(v) and that c1(pN ) ≤ 6p3N/(1−3p2+2p3)2, c2(pN ) ≤
p2N/(1− 3p2 + 2p3)2 we have

P(|T̂ − T | > εT ) ≤
c1(p

N )
∑

v∈V λ2(v) + c2(p
N )
∑

(u,v)∈E λ2(u, v)

ε2T 2

≤
[c1(p

N ) + c2(p
N )]
∑

v∈V λ2(v)

ε2T 2

=
6p3N + p2N

(1− 3p2 + 2p3)2
9
∑

v∈V λ2(v)

ε2
(∑

v∈V λ(v)
)2

≤ 9(6p3N + p2N )

(1− 3p2 + 2p3)2ε2

∼ 9p2N

(1− 3p2 + 2p3)2ε2

By demanding that this expression is less than δ and solving the inequality, we find
that the number of samples N must be at least logarithmic in ε−2δ−1. We state this
conclusion below.

Proposition 3.5. The sample complexity of obtaining an (ε, δ)-estimator for the
number of triangles is O

(
log
(

1
ε2δ

))
.

3.6.3 Lower Bound
To avoid repeating the same proofs, we state that the same lower bound of the

case of edge estimation holds true for triangles as it can be shown in exactly the
same way.

Proposition 3.6. Every estimator T̂ that satisfies PX∼PN
G
(|T̂ (X)−T | > εT ) < 1/3

for every graph G needs N = Ω(log(1/ε)) samples.

Theorem 3.4. There exists an estimator t̂ such that for every ε, δ ∈ (0, 1] and
graph G with t triangles, given N = Θ(log(1/ε2δ)) i.i.d. samples X1, . . . , XN ∼ PG
satisfies PX∼PN

G
(|t̂ − t| > εt) < δ. In addition, if N = o(log ε−1) then for every

estimator t̂ there exists a graph G such that PX∼PN
G
(|t̂− t| > εt) ≥ 1/3.
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Remark 3.5. These conclusions should also hold for other subgraphs such as circles
of length more than three. The expression of the variance should be easily generalized
for these cases and the same logarithmic bound should hold true.
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Chapter 4

Estimation Using Two Samples
and Some Queries

In this chapter we allow oracle access to the underlying graph in addition to the
samples. More specifically, the learning algorithms may perform queries to learn
the true neighborhood of vertices which they choose. Based on the analysis of the
variance done in Chapter 3 we specify which are the critical vertices for the proper-
ties examined and we design query strategies to eliminate their contribution to the
estimation’s error. The resulting estimators require two full samples of the under-
lying graph and perform a number of queries that depends only on the parameters
of accuracy and not the size of the graph. The result is summarized below.
Theorem 4.1. (Informal) There exists an estimator m̂ which uses two samples and
k = Θ(ε−2δ−1) queries and satisfies P(|m̂−m| > εm) ≤ δ.

For the triangles, we get a somewhat weaker guarantee.
Theorem 4.2. (Informal) There exists an estimator T̂ which uses two samples and
k = Θ(ε−2δ−1) queries and satisfies P(|T̂ − T | > εW ) ≤ δ, where W is the total
number of wedges in graph G.

4.1 Query Strategy
Based on the observations and conclusions of the previous chapter, we start

designing the strategy for selecting which vertices to query. As a warm-up we first
study the behavior of the ε-relative error of the edge estimator m̂ = |E(Gs)|/(1−p2),
which is restated here.

P(|m̂−m| > εm) ≤ p2

2ε2(1− p2)

∑
v∈V d2G(v)

m2

in order to find out which are the cases where this error is naturally decreasing with
the size of the graph (and thus the need for queries is obviated) and how do the
graphs that do not belong in these cases look like. Some observations on this matter
are the following.
Claim 4.1. If m = ω(n), the estimator’s relative error (without queries) asymptot-
ically vanishes.
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Proof. ∑
u∈V

d2G(u) =
∑

(u,v)∈E

(dG(u) + dG(v)) ≤ 2mn

∑
u d

2
G(u)

m2
≤ 2

n

m

m=ω(n)−−−−−→ 0

■

This shows that if it is the case that m = ω(n), then no queries are needed to
correct the estimator, as it already has zero error asympotically. We will now show
that in any other case, that is, if the error is initially high, then only a constant
number of vertices is responsible for that.

Claim 4.2. Assume that
∑

u∈V d2G(u)/m
2 = Θ(1). Then, there exist k = Θ(1)

vertices of degree Θ(m).

Proof. Let us assume that all degrees are o(m) to derive a contradiction.∑
u d

2
G(u)

m2
=

∑
(u,v)(dG(u) + dG(v))

m2
≤ o(m)m

m2

which means that
∑

u∈V d2G(u)/m
2 → 0. Therefore, there must be a vertex with

degree Θ(m). Additionally, the number of vertices of such degree cannot be more
than constant. ■

This suggests that every hard instance must look like a small collection of stars,
which is what was intuitively expected. Using the fact that each vertex we query
”disappears” from the variance (which we will show through the analysis later), we
get that the number of queries needed to reduce the error of estimation is indepen-
dent of the size of the graph.

Based on the previous discussion, the ideal scenario would be to query for the
vertices of highest degree in the underlying graph. However, the underlying graph
is unknown and thus this is an unrealistic set up. Nevertheless, we are going to
analyze it, because, we will later show that using the same strategy applied on the
sample graph, the results are similar (because we will show that the degree ranking
does not fundamentally change in the sample graph).

Notation. For every set S of vertices, let G[S] denote the subgraph that is
induced from the set S, that is, the subgraph which has S as its vertex set and
{(u, v) ∈ E(G) | u ∈ S, v ∈ S} as its edge set.

Let Q be a set of vertices to be queried, which we will call query set. For the
reasons explained, for now we will assume that the query set is deterministically
specified. Define the estimator

m̂ =
∑

e=(u,v)∈E

1(u ∈ Q ∨ v ∈ Q) +
1

1− p2

∑
e∈E(G[V \Q])

1(e ∈ E(G1))

This estimator is unbiased, as we have that (note that Q is not random)

E[m̂] =
∑

(u,v)∈E

1(u ∈ Q ∨ v ∈ Q) +
∑

(u,v)∈E

1(u /∈ Q, v /∈ Q)
1− p2

1− p2
= m (4.1)
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Now we calculate its variance to show that the vertices from Q ”disappear” from
the formula we gave in the previous chapter. Since the first term is deterministic,
its variance is zero, thus we examine the other term

Var

 ∑
e∈E(G[V \Q])

(1− Ye)

 = Var

 ∑
e∈E(G[V \Q])

Ye


(3.10)
=

1

2
p2(1− p2)

∑
v∈V \Q

d2G[V \Q](v)

≤ 1

2
p2(1− p2)

∑
v∈V \Q

d2G(v) (4.2)

This shows why the queried vertices disappear from the variance. We conclude by
bounding the number of queries needed to bring this variance divided by ε2m2 (that
is, the estimation’s probability of ε-relative error) down to δ. Claim 4.2 suggests that
this number is constant. A more precise bound depending on the parameters ε, δ is
1/ε2δ, which is stated as Lemma 4.3.

4.2 Analysis of the Estimator
Having analyzed the ”optimal” query strategy, where the highest degree vertices

of the underlying graph are queried, we move to the more realistic set up where we
need to approximately find those vertices from the sample graph. The strategy here
is to apply the same selection rule to the sample graph. It remains to prove that
this is a good approximation.

We first give a complete description of the estimator. Suppose we are given
two independent samples G1, G2 ∼ PG. The first sample will be used to determine
the query set and the second to calculate the estimation. The reason we require
different samples is that technical difficulties arise when the query set is statistically
correlated with the sample graph, which are discussed at the end of the section. From
the first sample G1, a query set Q(G1) of the k highest degree vertices is determined.
After the set Q is queried, all the neighborhoods {ΓG(u) | u ∈ Q} become known
(we will use subscripts to be clear about which graph we consider each time). Then,
the second sample is used along with the information from the queries to output the
estimation which is calculated by counting the edges that are adjacent to Q (first
term below) and the edges of the second sample graph after the removal of the set
Q from it (second term)

m̂ =
∑

(u,v)∈E(G)

1(u ∈ Q(G1) ∨ v ∈ Q(G1)) +
1

1− p2

∑
e∈G[V \Q]

1(e ∈ E(G2)) (4.3)

Lemma 4.1. For the expected value and variance of the estimator we have the
following

E
G1,G2∼PG

[m̂] = m
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Var
G1,G2∼PG

[m̂] ≤ c(p) E
G1∼PG

 ∑
u∈V \Q(G1)

d2G(u)


where c(p) depends only on the parameter p of each vertex to hide.

Proof. We use the law of total variance

Var
G1,G2∼PG

(m̂) = E
G1∼PG

[ Var
G2∼PG

(m̂)] + Var
G1∼PG

[ E
G2∼PG

[m̂]]

= E
G1∼PG

[ Var
G2∼PG

(m̂)] + Var
G1∼PG

[m]

= E
G1∼PG

[ Var
G2∼PG

(m̂)] + 0

≤ c(p) E
G1∼PG

 ∑
u∈V \Q(G1)

d2G(u)


The last inequality follows from the calculation of the estimator’s variance when
the query set is deterministic (4.2). ■

Lemma 4.2. Let Q∗ be the set of the k < n vertices of highest degree in the
underlying graph G and let Q(G1) be the same set for the sample graph G1 ∼ PG.
Under Assumption 1 (specified at the end of the proof), there exists a constant
a = a(p) that depends only on the parameter p of each vertex to hide, such that

E
G1∼PG

 ∑
u∈V \Q(G1)

d2G(u)

 ≤ a
∑

u∈V \Q∗

d2G(u)

Proof. Denote by Û(G1) the set of the l = n−k lowest degree vertices in G1 and by
U∗ the same set for G. The lemma is restated as follows. We want to find a constant
a such that

E
G1∼PG

 ∑
u∈Û(G1)

d2G(u)

 ≤ a
∑
u∈U∗

d2G(u)

An assumption is needed about the degrees because if the graph has only low degree
vertices, their ranking can be completely changed in the sample graph. Let ûi denote
the vertex with the i-th smallest degree in G1 and let u∗i denote the same thing for
G. Then, the left hand side of the previous inequality is

E
G1∼PG

 ∑
u∈Û(G1)

d2G(u)

 = E
G1∼PG

[d2G(û1)] + · · ·+ d2G(ûl)]

= E
G1∼PG

[d2G(û1)] + · · ·+ E
G1∼PG

[d2G(ûl)]

The main idea is that we would like to prove for each one of the terms the desired
inequality, namely that EG1 [d

2
G(ûi)] ≤ (2/(1− p))2d2G(u

∗
i ). To do so, we examine an

arbitrarily selected vertex v. If dG(v) > 2dG(u
∗
i )/(1−p) it is almost impossible that
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this vertex will be chosen as the the i-th smallest in the sample because even if it
is hidden, its degree in G1 will be concentrated around its expectation E[dG1(v)] >
2dG(u

∗
i ) > dG(u

∗
i ) (this means that there will be at least i vertices with smaller

degrees in the sample and thus ûi ̸= v). This is formalized using Chernoff bounds
(Theorem 2.3): P(ûi = v) ≤ P(dG1(v) < E[dG1(v)]/2) ≤ exp(−E[dG1(v)]/8) =
exp(−(1− p)dG(v)/8). For the vertices of high degree the bound works, but for the
vertices of low degree we have to work independently. Thus we do the following

E
G1∼PG

 ∑
u∈Û(G1)

d2G(u)

 =

l∑
i=1

E
G1∼PG

[d2G(ûi)]

=

l∑
i=1

∑
v∈V

d2G(v) P
G1∼PG

(v̂i = v)

=

l∑
i=1

{ ∑
v : dG(v)≤

2dG(u∗
i
)

1−p

d2G(v) P
G1∼PG

(ûi = v)

+
∑

v :
2dG(u∗

i
)

1−p
<dG(v)≤ 24 logn

1−p

d2G(v) P
G1∼PG

(ûi = v)

+
∑

v : 24 logn
1−p

<dG(v)

d2G(v) P
G1∼PG

(ûi = v)

}
= A+B + C

We examine each term bellow. For the first one we have that

A =

l∑
i=1

∑
v : dG(v)≤

2dG(u∗
i
)

1−p

d2G(v) P
G1∼PG

(ûi = v) ≤ 4

(1− p)2

l∑
i=1

d2G(u
∗
i )

For the second term we have

B =
l∑

i=1

∑
v :

2dG(u∗
i
)

1−p
<dG(v)≤ 24 logn

1−p

d2G(v) P
G1∼PG

(ûi = v)

≤
l∑

i=1

∑
v : dG(v)≤ 24 logn

1−p

d2G(v) P
G1∼PG

(ûi = v)

=
∑

v : dG(v)≤ 24 logn
1−p

d2G(v)

l∑
i=1

P
G1∼PG

(ûi = v)

≤
∑

v : dG(v)≤ 24 logn
1−p

d2G(v)
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For the last term we have

C =

l∑
i=1

∑
v : 24 logn

1−p
<dG(v)

d2G(v) P
G1∼PG

(ûi = v)

≤
l∑

i=1

∑
v : 24 logn

1−p
<dG(v)

d2G(v) P
G1∼PG

(
dG1(v) <

E[dG1(v)]

2

)

≤
l∑

i=1

∑
v : 24 logn

1−p
<dG(v)

d2G(v) exp
(
−(1− p)

dG(v)

8

)

≤
l∑

i=1

∑
v : 24 logn

1−p
<dG(v)

d2G(v) exp
(
−1− p

8

24 logn
1− p

)
≤ n3 exp(−3 logn)
= 1

Where we used the multiplicative Chernoff bound for the second inequality. There-
fore, we can bound the fraction as follows:

EG1∼PG

[∑
u∈Û(G1)

d2G(u)
]

∑
u∈U∗ d2G(u)

≤ 4

(1− p)2
+

1∑
u∈U∗ d2G(u)

+
1∑

u∈U∗ d2G(u)

∑
v : dG(v)≤ 24 logn

1−p

d2G(v)

Assumption 1. G has more than k vertices of degree higher than 24 logn
1−p . Therefore,

the second term is less than 1 and the final term also less than 1 because of our
assumption. ■

The above Lemma states that the error of the estimator is an approximation of
the error under the ”optimal” query strategy. It is now time to determine how many
queries are required by the optimal query strategy.

Lemma 4.3. Let Q∗ be the set of the k vertices of highest degrees in the underlying
graph G. For k = Θ(ε−2δ−1) we have∑

u∈V \Q∗ d2G(u)

m2ε2
≤ δ

Proof. Let k be the size of Q∗. Also let d1 ≥ d2 ≥ · · · ≥ dk ≥ · · · ≥ dn the degree
sequence of the underlying graph G. Define ci = di/m.

f(G) =

∑
u∈V \Q∗ d2G(u)

m2ε2
=

1

ε2

(
d2k+1

m2
+ · · ·+ d2n

m2

)
=

1

ε2
(c2k+1 + · · ·+ c2n)

Now we may think of an adversary, who knows k, picking the worst case degrees
for the underlying graph, equivalently we want to maximize this function under the
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constraint
∑n

i=1 ci = 2. We make two observations about the form of the optimal
solution. The first one is that the optimal choice of the ci’s will have c1 = · · · = ck =
ck+1 because that way the mass of the first ci’s that do not appear in our sum will be
minimized. The second observation is that the optimal solution can contain zeros.
More typically, we have to solve the following constrained optimization problem (k
and n are fixed)

max
y,xk+2,...,xn

f(y, xk+2, . . . , xn)

g(y, xk+2, . . . , xn) = 0

xk+2 ≤ y

xk+3 ≤ y

...
xn ≤ y

Where f(y, xk+2, . . . , xn) = y2+x2k+2+ · · ·+x2n and g(y, xk+2, . . . , xn) = (k+1)y+
xk+2 + · · ·+ xn − 2. The optimal solution is described by the KKT conditions. Yet,
our inequality constraints are very easy and thus we can just examine two cases: the
first is when the inequalities are inactive (not tight) and the second is when some
or all of the inequalities are tight.

Case 1 (inactive inequalities). We solve the corresponding inequality-free
problem with Lagrange multipliers and then just verify that the inequalities hold.

∇f(y, xk+2, . . . , xn) = λ∇g(y, xk+2, . . . , xn)

⇒ 2y = λ(k + 1), 2xk+2 = λ, . . . , 2xn = λ

Using these along with the equation (k + 1)y + xk+2 + · · · + xn = 2, we solve for
λ = 4/[(k+1)2+(n−k−1)] and plug it in to find y = 2(k+1)/[(k+1)2+(n−k−1)]
and xk+2 = . . . = xn = 2/[(k + 1)2 + (n− k − 1)]. The corresponding value of f on
this point is

f(y∗, x∗k+2, . . . , x
∗
n) =

4

(k + 1)2 + (n− k − 1)

Case 2 (tight inequalities). Without loss of generality we can assume that the
first µ inequalities are tight, that is our cost function becomes f(y, xk+2+µ, . . . , xn) =
(µ + 1)y2 + x2k+2+µ + · · · + x2n and the constraint g(y, xk+2+µ, . . . , xn) = (k + µ +
1)y + xk+2+µ + · · · + xn − 2. We solve this optimization problem with Lagrange
multipliers.

∇f(y, xk+2+µ, . . . , xn) = λ∇g(y, xk+2+µ, . . . , xn)

⇒ 2(µ+ 1)y = λ(k + µ+ 1), 2xk+2+µ = λ, . . . , 2xn = λ

We solve first for λ and then for y and the xi’s.

λ =
4

(k+1+µ)2

µ+1 + n− k − 1− µ
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y =
2k+µ+1

µ+1

(k+1+µ)2

µ+1 + n− k − 1− µ

xk+2−µ = · · · = xn =
2

(k+1+µ)2

µ+1 + n− k − 1− µ

Finally, the cost of this point is

f(y∗, x∗k+2−µ, . . . , x
∗
n) =

4
(k+1+µ)2

µ+1 + n− k − 1− µ

It can be easily shown that this quantity is maximum when µ = n− k − 1, that is
when all the constraints are tight. In this case the cost is 4(n− k)/n2. Observe that
this cost is bigger than the cost of Case 1. To finish the optimization we also need to
check the value of f on the boundary of its domain. The boundary is where some of
the xi’s are zero. This is equivalent of changing n in the above problem. Therefore
we just need to optimize the cost with respect to n. Define h(n) = 4(n− k)/n2 and
differentiate

h′(n) =
4n2 − 4(n− k)2n

n4
= 0⇒ n = 2k

h′′(2k) = − 1

2k3
< 0

Therefore the maximum value of h is h(2k) = 1/k. This means that picking k =
1/(ε2δ) brings the error (the function defined on the beginning of this proof) down
to δ. ■

With all the above proven, we are ready to state the algorithm and combine the
lemmas to get the desired result.

Algorithm 1 Edge Estimator
Input: G1, G2, ε, δ

1: k ← Θ(ε−2δ−1)
2: Construct Q consisting of the k highest degree vertices of G1.
3: Query for the neighborhood of each v ∈ Q.
4: return m̂ ←

∑
(u,v)∈E(G) 1(u ∈ Q(G1) ∨ v ∈ Q(G1)) +

1
1−p2

∑
e∈G[V \Q] 1(e ∈

E(G2))

Theorem 4.1. Under the assumption that G has at least Θ(ε−2δ−1) vertices of
degree higher than 24 logn/(1− p), the estimator m̂ described in Algorithm 1 which
uses two samples and k = Θ(ε−2δ−1) queries satisfies PG1,G2∼PG

(|m̂−m| > εm) ≤ δ.

Proof. Use Chebysev’s inequality and each one of the lemmas

P
G1,G2∼PG

(|m̂−m| > εm) ≤ Var(m̂)

ε2m2

≤
c(p)EG1∼PG

[∑
u∈V \Q(G1)

d2G(u)
]

ε2m2
(Lemma 4.1)
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≤
a(p)c(p)

∑
u∈V \Q∗ d2G(u)

ε2m2
(Lemma 4.1)

≤ δ (Lemma 4.3)

Where for the last step we set δ′ = δ/a(p)c(p) and applied Lemma 4.3 with δ′

instead of δ. ■

We conclude with some remarks. First, we note that queries allowed to over-
come the lower bound of Ω(log(ε−2δ−1)) we had when only samples were used, as
the algorithm now needs only two samples. The second is that we avoided explic-
itly writing the dependence on the parameter p in the expressions throughout our
analysis. It is interesting to rewrite the query complexity of the estimator in terms
of all the parameters to highlight the trade off between the number of samples and
the number of queries. Suppose that we have N samples available and we use their
union to reduce p to pN as we did before. The trade-off is that each sample reduces
exponentially the number of queries required.

Remark 4.1. Algorithm 1 can be converted so that is takes N samples and Θ
(

pN

ε2δ

)
queries.

A note on the usage of two samples is that it makes the analysis very simple. If
we instead used only the first sample G1 in (4.3) in both terms, then the resulting
estimator would not be unbiased anymore. To see that, let Q(G1) be the query set.
Conditioned on the event Q(G1) = q, the probabilities for each vertex to be hidden
are not necessarily p anymore (for example if G is regular the query set will contain
mostly visible vertices, and thus the probability that another vertex is hidden will
be more than p).

4.3 Estimation of Triangles
In this section we extend the previous results to include triangle estimation.

The analogues of Claims 4.1, 4.2 hold, with the former now having T = ω(n2) as
a requirement in order for the probability of error to be o(1). However this is not
very usefull because it is a quite strong requirement. For example, power law graphs
do not meet this requirement as it was shown in [GvdHSS18] that the number of
triangles in these graphs with parameter γ ∈ (2, 3) is Θ(n

3
2
(3−γ)).

Now the optimal query strategy would be to ask for the true neighborhood of
vertices that have many incident triangles. The only major difference is that now
we cannot determine reliably from the sample graph which are these critical vertices
because ”triangle degrees” λ(v) are not well preserved in the sample, as we may have
graphs like the one of Figure 4.1 where, if edge (u, v) becomes hidden, it is imposible
to find out which is the best vertex to query.

Definition 4.1. The triplet of vertices (u, v, w) is called a wedge, if (u, v), (v, w) ∈
E.

However, wedges are well preserved in the samples in the same way as degrees
do, because for every pair (u, v) ∈ V 2 we have that |{w ∈ V | (u,w), (w, v) ∈ E}|
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Figure 4.1. A worst case underlying graph.

either remains the same in the sample graph or becomes a binomial random variable.
For that reason we will use wedges to determine which vertices to query, ending up
in an estimator with a guarantee of the form P(|T̂ − T | > εW ) < δ, where W is the
total number of wedges in the underlying graph. That guarantee is worse than the
one we were initially aiming for (which had the error expressed in terms of T and
not W ) but we believe that the difficulty is inherent to the model. This guarantee
is not firstly introduced here as it has been used in other works [SPK13].

Notation: We denote by T the total number of triangles and by W the total
number of wedges. Let λ(v) be the number of triangles adjacent to vertex v and
λ(u, v) the number of triangles that contain edge (u, v). Also let w(v) be the number
of wedges centered to vertex v, that is w(v) =

(
d(v)
2

)
, and w(u, v) be the number of

wedges that begin on u and end on v ((u, v) does not have to be an edge). We will
also use subscripts when it is not clear what graph is under examination.

Suppose that a set Q of vertices is queried and the true neighborhood for
each v ∈ Q becomes known. We will assume that this set Q is deterministicaly
decided and does not depend on the sample, while later we will drop this as-
sumption. Divide the triangles of the underlying graph into three sets: T0 = {t ∈
T (G) | t has no vertices in Q}, T1 = {t ∈ T (G) | t has one vertex in Q} and T≥2 =
{t ∈ T (G) | t has 2 or 3 vertices in Q}. The estimator’s value for the sample Gs is
defined as

T̂ = |T≥2|+
∑

t∈T1
1(t ∈ T (Gs))

1− p2
+

∑
t∈T0

1(t ∈ T (Gs))

1− 3p2 + 2p3

It is easy to see that the above estimator is unbiased. We calculate its variance.
The first term is not random and thus it does not contribute to the variance. Let
T̂e be the second term, which regards counting the edges that close triangles with
one vertex from Q each time, and T̂t be the final term which counts the triangles
that have no vertex in Q. Var[T̂ ] = Var[T̂e] +Var[T̂t] +Cov(T̂e, T̂t). Denote by

(
Q
2

)
the set of undirected pairs of vertices inside Q.

Lemma 4.4. The variance of the estimator T̂ is Var[T̂ ] = Var[T̂e] + Var[T̂t] +
Cov(T̂e, T̂t) where each term is bounded as follows (c1, c2, c3 depend only on p and
are specified in the proof):

Var[T̂t] ≤ c1(p)
∑

u∈V \Q

w2
G(u) + c2(p)

∑
(u,v)∈(V

2
)\(Q

2
)

w2
G(u, v)
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Var[T̂e] ≤ c3(p)
∑

u∈V \Q

w2
G(u)

Cov(T̂e, T̂t) ≤
√

Var[T̂t]Var[T̂e]

Proof. Denote by G′ the graph G \ Q, that is, the graph G after all vertices from
Q are removed. Using the formula for the variance we derived in Section 3.6.1 we
have that

Var
Gs∼G

(T̂t) = Var
Gs∼G

(
|T (Gs \Q)|
1− 3p2 + 2p3

)
≤

6p3(1− p)3
∑

u∈V \Q λ2
G′(u) + p2(1− p)2(1− 2p)2

∑
(u,v)∈E(G′) λ

2
G′(u, v)

(1− 3p2 + 2p3)2

≤
6p3(1− p)3

∑
u∈V \Q λ2

G(u) + p2(1− p)2(1− 2p)2
∑

(u,v)∈E(G′) λ
2
G(u, v)

(1− 3p2 + 2p3)2

≤ c1(p)
∑

u∈V \Q

w2
G(u) + c2(p)

∑
(u,v)∈(V

2
)−(Q

2
)

w2
G(u, v)

We now show that the variance of the term T̂e is not bigger than the variance
of T̂t. The term T̂e is an edge counting term and thus its variance has the form of
sum of squared degrees regarding the graph G′′ = (V \Q,E′′) where E′′ = {(u, v) ∈
E(G) | ∃w ∈ Q : (u, v, w) ∈ T (G), u ̸∈ Q, v ̸∈ Q}.

Var[T̂e] ≤ c3(p)
∑

v∈V \Q

d2G′′(v) ≤ c3(p)
∑

u∈V \Q

λ2
G(u) ≤ c3(p)

∑
u∈V \Q

w2
G(u)

The covariance term can be bounded using Cauchy-Scrwarz inequality. ■

The optimal query strategy. Here we describe how the query set is defined.
The query set contains the k highest degree vertices. Also, it contains both endpoints
of the k pairs of vertices (u, v) ∈ V 2 that have the biggest wG1(u, v).

Lemma 4.5. Let Q∗ be the optimal query set. It suffices for its size k to be Θ(ε−2δ−1)
in order to have∑

u∈V \Q∗ w2
G(u)

ε2W 2
≤ δ and

∑
(u,v)∈(V

2
)−(Q∗

2
)w

2
G(u, v)

ε2W 2
≤ δ

Proof (sketch). Exactly the same with that of Lemma 4.3. The similarity is due
to the fact that

∑
u∈V wG(u) = W and

∑
(u,v)wG(u, v) = W . Therefore, instead

of degrees we have wedge counts and instead of edges we have total number of
wedges. ■

Now we do the analysis for the setting where we are given two independent
samples G1, G2 ∼ PG and we use the first sample to decide the query set Q(G1)
according to the strategy described and the second sample to calculate the value of
the estimator.
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Lemma 4.6. Let Q∗ be the optimal query set of size k and Q(G1) the query set
of size k calculated from the first sample. Under Assumption 1 stated for wedges
instead of degrees, there exists a constant a = a(p), depending only on p, such that

E
G1∼PG

 ∑
u∈V \Q(G1)

w2
G(u)

 ≤ a
∑

u∈V \Q∗

w2
G(u)

E
G1∼PG

 ∑
(u,v)∈(V

2
)\(Q(G1)

2
)

w2
G(u, v)

 ≤ a
∑

(u,v)∈(V
2
)\(Q∗

2
)

w2
G(u, v)

Proof (sketch). Similar to Lemma 4.2. For the quantity
∑

u∈V \Qw2
G(u) note that

wG(u) =
(
dG(u)

2

)
and thus only the degrees are involved just like in edge estimation.

For the other sum
∑

(u,v)∈(V
2
)−(Q∗

2
)w

2
G(u, v) note that if at least one of the vertices

of a pair (u, v) is hidden, then the quantity w2
G1

(u, v) is binomialy distributed with
population w2

G(u, v). This is the same behavior that degrees have, which was the
only thing we exploited in the proof of the previous section. ■

Theorem 4.2. For the estimator T̂ with two samples G1, G2 and k = Θ(ε−2δ−1)
queries as described above it holds that

P
G1,G2∼PG

(|T̂ − T | > εW ) ≤ δ

Proof (sketch). Use Chebysev’s inequality and then Lemmas 4.4, 4.5, 4.6 and also
Cauchy-Scrwarz inequality. ■
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Chapter 5

Conclusion

5.1 Remarks
We have introduced our noise model and presented efficient estimators for edge

counting and triangle counting. Already from our examination of the case of trian-
gles, where the core of our analysis is very similar to that of edges, it becomes clear
that our approach is somewhat unified and thus its generalization for the case of
other subgraph induced graphs, such as C4 or cliques seems promising.

5.2 Future Directions
Apart from the extension of our results to other induced subgraphs, it would

also be pleasing to resolve the issue of whether just one sample instead of two
suffices for our estimation task. Intuitively, the claim that one sample is enough
seems reasonable as the amount of information contained about the underlying
graph remains roughly the same. Our analysis was based on two samples to avoid
technical difficulties, but it would be interesting to investigate whether there exist
more serious obstacles when only one sample is available for both the selection of
the query set and the calculation of the output value.

Another direction would be to study other properties different than subgraph
counting which are global, such as the diameter or the average distance. Instead of
deriving an estimator for these properties, first they could be examined in a property
testing setting, where one needs to find an algorithm to recognize if the graph has
diameter or average distance which exceeds a certain threshold, say poly logn.

An interesting premise that is required as subroutine in some counting algo-
rithms is sampling of edges uniformly at random, that is, the task of outputing an
edge of the graph which is selected uniformly at random. This has been recently
explored in the setting where standard type queries are the only way of accessing
the graph [ER18, ERR19]. It would be interesting to find similar algorithms for our
model.
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