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ITepiindn

To mabyvia Stopdppewong drodng povielomotoly Ty dradixacio ue Tnv onola ot dvipw-
TOL AVTUAAGCGOLY Xl SLIORPOVOLY amOELC. AVIAUTIXOTERN, TEQLYPAPOLY TA XOVWVIXS
GUVOAL YENOLIOTOLOVTAS B TUA, 6ToL oL x6ufoL eivon oL dvipwTol xou oL axuES oL GYETELS
ueTall Toug xar uovéTouy OTL oL dvipwTol expedlovy we drodr éva otadulouévo péco
6p0 TV andEOY TV aTOUWY PE To omola Epyovial ot ena@r. To cuvelehnTnd malyvia
Olopoppwone drnodme cuumepthau3dvouy To YEYovOC OTL oL oyEaelg HETAED TwV avilp®TeY
OLOLOPPMVOVTOL THUTOYPOVA UE TIC amOELC TOUC.

e auTA TN SITAWUATIXT EPYOLo AOYONOUUAOTE UE TOV UTOAOYIOUO ONuEiwY toppoTiag
oe ouve€ehxTind takyvia Slopoppwong drodmg. IIo cuyxexpléva, ta Talyvia Tou UEAETAUE
amoteAoLY yevixeuor Tou povtérou Friedkin Johnsen otny omolo tar Bdien uetod twyv moux-
TV elvol GUVAETNOT TWY aTOYEwY ToU EXPEALOUV o EYOUV TAVTA oTUElD looppoTiag Yiot
elvon concave n-person games. ¢ TeO¢ TN GUYXAGT HEAETAUE BUO PUOLKES BUVOHIXES, TO
best response xou to follow the leader. Apyixd, delyvouue 6Tt xdmolo o TyUdTUTA TETOUWY
Touyviwy unopel vo €youv TOAAG onueio LloOpEOTiag oL OE TETOLEG TEPLTTWOELS To best
response dev ouyxhiivel xadohxd. Enlong, amodeixviouue 6Tt yia cuvaptroelg Bopmy mou
oev ebvon dapopiolueg uropel To best response vo U cUYXAIVEL o TOTUXE. MTr GUVEYELY,
YenoWoTolvTog Wia cuVaETNOT BuvoLxoy, delyvouue OTL 6Tl concave N-person games
WV omolwy ol cuvapThoel xépdoug eivon diagonally strictly concave undpyet alyoprd-
HOC TOU GUYXAIVEL OTO povadixd onueio loopporiog. XNV TEp(NTmon TV CUVELEMXTIXOY
Ty Viev dtooppnong drnodng TupatneoUUe OTL auTdC 0 ahyoerduog elvor LooBUYAUOS e
70 follow the leader, To omoio eniong detyvouue 6Tt e€acpaiilel no-regret cToug maixTeS
ToU T axoAoudoLv.

A€Zerg xhewdid: Awoudppwon Arnodne, Kupty) BeAtiotornoinor, Yuvelehwntind Mov-
REINe






Abstract

The opinion formation games model the process according to which humans exchange
and form their opinions. In particular, they represent social groups as networks, where
the nodes correspond to people and the edges signify the relationships between them,
assuming that people compute their opinions as a weighted average of the opinions of
the people they encounter. The asymmetric coevolutionary opinion formation games
are based on the fact that the relationships between humans evolve simultaneously with
their opinions.

In this thesis we focus on the computation of equilibrium points in asymmetric co-
evolutionary opinion formation games. More specifically, the games we study are a
generalization of the Friedkin Johnsen model in which the weights between players are
a function of the opinions they express and they always have an equilibrium point since
they are concave n-person games. We are particularly interested in the convergence of
two natural dynamics, namely best response and follow the leader. Initially, we show
that some instances of asymmetric coevolutionary opinions formation games might have
multiple equilibria and in such cases the best response dynamic does not converge glob-
ally. Moreover, we prove that if the weight functions are not differentiable then best
response might not even converge locally. Subsequently, using a potential function we
show that there exists a dynamic that converges to the unique equilibrium point of
a concave n-person game whose payoff functions are diagonally strictly concave. Par-
ticularly, in asymmetric coevolutionary opinion formation games we observe that this
algorithm is equivalent to the follow the leader dynamic, which ensures no regret to the
players that follow it.

Keywords: Opinion Formation, Convex Optimization, Coevolutionary Models






Euyopeiotieg

H exnévnon tne SimAouotixic pouv epyaoiac onuatodoTel TNV 0OAOXAPWoT| TWV TEOTTUY -
XY oL 6ToudY 0TN oyoh Twv Hiextpohdywy Mnyovixwy xon Mnyavixdy Trolo-
YIOTOV. X auth) Jou Ty mpoordieta utheday mohhol mou ue Bordncoy xou yio oauTd
Yo fdeha va Toug euyaplotiow. O emPAcnwy xadnyntic x. Pwtdnng Yéow tou woadn-
wotog Twv Atoettedy Modnuatixedy gou xivnoe 1o evila@épov vo aoyohnie Tepantéon
ue 1o avTixeipevo tng Ocwpntnhc IIAnpogpopuhc xou pe othple oe OAn Tn didpxela Tng
OLmAwpaTXAC Ue TN ouveyr Tou Pordeta. Idiadtepa onuovTiny Yoo Ty TparypatoTolnon Tng
Topoloag epyaciog fTay 1 cUUBoAY Twy pekwy Tou Epyactneiou Aoyinic xa EmotAung
Troloyouwy Ltpat] Xxovhdxrn xa Bopdh Kavdorpou. H qoutnuiny| pou euneipior oy
HOVadXT| YdieT OTOUS GIAOUC oL TIOU YVOELoN OTN OY O ot Holl TORPEUTAXIUE oUTA Ta
mévie ypova. Emmpdcieta Yo fieha va eLyaploTHow TOUC YOVEIC HOU Lol T1) CUUTUEYO-
TAOT) X0 TNV UTIOUOVY| Toug. TEAOC, aplepdve TNV BIMAOUATIXY Loy o1 Ydto wou TTohudvva
Tou Ueyahwooe pall aAAd OEV TEOAABE Vo Ue OEL DITAWUATOVYO.

Kovotovtiva
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Chapter 1
Extetapuevn EAAnvixr Tlepiindn

Y10 xe@drono autd, oLVOPIlouUE TO TEQIEYOUEVO TNG ToEOUCAS OIMAWUATIXNG, BlvovTag
Baoixolg oplopols xou Vempruota, ywelc arodellec.

1.1 Ewoaywyn

Or dvidpwrol k¢ xovwvind 6vta oulnTave HeTad) TOUg xon AAANAETIOEOLY UE ATOTENECUL

VoL BLoop@@vouy amodele, ol onoleg petoBdAlovTon xodig €oyovion oe ETPY| UE GANOUG
avipomoug. M drodn Yo unopodoe v Yewpenldel we évag mporyatinds aprduog oe €vol
OLVEYES OLAOTNUA, OTWS Yo Topdderypa 1) Bardporoyior mou Bdlouv oL xatavakwTés o Eva
mpotov. T tnv povredomoinom autrg Tng duvauixng dadixaoctug €youv tpotadel povtéla
TIOL AVTLOTOLY 00V TO XOWVWVIXO GOVOAO GE Eva B{XTUO, TOL OToloU XOPLUPES elvar oL dvlpwmol
xan oL axuég ouufBoAilouv Tic oyéoelg uetalld Toug. Ta Bdon twv axuny cuyfoiilouvy 1o
TOCO EXTYWOUV 0 €Vog TOoV GAAO xou UTopel ol oxuéc va etvar xotuduvouevee 1 oyt To
x0ptar JovTéRa Bladppwong dmodng utodétouy 6Tl oL dvipwol exedlouy wS YVmun Eva
UEcO 6p0 TV anddenwy oTIC omoleg extivevTo.

To 1990 ot Friedkin ot Johnsen mpédtewvay éva povtého [20] oto omofo xdde droyo i
EYEL Wiol WL TT drodn s; Tou mapopével otadepr xan pla dSnuooto drodn x; mou YeToBEA-
AETow € BLoxELTOUE YUPOUC, Xt oL BU0 GTO OLAIC T 0,1]. Tu Bdon w;; elvon un apvnTixd
xou ouPBoAilouv To Toco cuumael To dtopo i Tov j. Iapdhinha xde dtouo €yel éva un
UNdEVIXG Bdpog w; TOuU aVTIGTOLYEl 0TO TOCO Glyoupo elvol Yo TNV WIWTIXY Tou dmodn.
Enopévee oe xdde yOpo t xdde drouo exppdlet dnodn

xf _ Z];éz wijll;il + w;Ss;
D i Wij + Wi
Avuth 1 Suvopxr Sadixacto Yo xatodhlel oe pla otodepr| xatdotaon oty omolo xde
drouo Yo €yet pla otodept| dmon mou de Yo ahhdler dTav TafpveL Tov xavolplo UEGo 6p0
[21]. Tevixd ou anodelg oTig onoleg Yo xataAAEouY To dTopo UTOREl Var elvol SLopOpETIXES
UETAE) TOUC AOY® TV IBWTIXGY amodewy Tou Slatneody xou AauPdvouy urddn.
To povtého autod €yel xou €va 1ood0VaUo TolyVio 6To ontolo xdle dtouo €yel X60T0C

ci(x") = Zw”(xf — x?)Q + w; (2t — 8;)?,
J#i




70 omolo TEOXUTTEL and TO OGO BlAPWVEL UE TOUG YEITOVEC TOU GTO BiXTUO AR xan TO
1600 anéyel 1 drodn mov expedlel and auth Tou dlatneel tpocwmxd [5]. Av xdle Taixtng
EMAEYEL TNV dmodn mou ehayioTonolEl To x60TOC ToL ElyE GTOV TEONYOUUEVO YUPO TOTE
T0 mafyvio Yo e&ehyvel ye tov (Blo TEoOTO Ue TN BuvoUXT| SladLXaola TWY UECKWY OGPV
xou Yo xatoAi€el oe tooppotia, otny omolo xavévag de Yo €xel xivnteo vor ahhdEel dmogn
0edouévou 6Tt ot umtdhotrol Yo petvouy otadepol oTig amddelg Toug.

Mio mopodhay) awtol Tou povtélou elvon to povtého Hegselmann Krause [23] tou
omolou 1 Bacixy| 1Bed etvon OTL oL dvilpwrol ennpeedlovial Gyt amd OAOUC TOU GAAOUS RS
uovo amd Toug avipmnoug Tou €youy xovTvéS andelg ue auvtols. o ocuyxexpyéva, oto
Y0po t to &topo i utoloyilet tn yettovid tov Nf = {j # i : |zt —x§’1| < €} xou oUWV
UE aUTH amoxTd dmodn

ot ZjeNf xé_l + s
TN
To e etvan plo Yetinr) otadepd mou xadopllel o méc0O umopel vo anéyouv ol andelc amd
Tic onoleg emnppedletan xdnotog. Autd To YovTélo €yel TOAG oruElol LGOPEOTIAC TOL AVTL-
OTOLYOUV GE €V DL WELOUO TWVY ATOUWY OE OLoXELTES YeLToviES. Emmpdoteta 1 duvouxy
otadtxactior og auTtd TO poVTELO TdvVTA Yo cuYRAivel oe xdmolo onueto IwoppoTiag.

YuvAtwg ot dvipmmol yivovton @ilol e auTolg TOU GUUPEVOLY X0l ETOPEVS ETNEEES-
Covtan teplocdTepo and Tig anddelg Toug. BéPona xodde ot amddelc Toug ahhdlouy ennpped-
Covton xan ot guifec Toug. To cuvelehntnd malyvia Sloaudppwone drodng amoteholy plo
Aoy yevixeuor tou povtéhou Friedkin Johnsen otnv omolo to Bdion petalld twv atouwy
oev ebvon otadepd, aAd e€apT@vTon amd TIg amdPels Tou ExpEdlouy oL UTOAOLTOL 3]. Avo-
AUTIXOTERX, 1) CLVAPTNOT (KOG TOUG Elval

(%) = (1= ) ) ay(xei) (@ — 25)° + il — s,)°

JFi

oty omoio To Bdpog qij(x_i) HETOEY TOL OTOUOU 7 X0l TOU ATOUOL j EIVaIL GUVEYTIC CLVAETNON
OAWV TWY ONUOCLLY ATOPEWY EXTOC A6 AUTH TOU 4 Xt TNG o TadEPNC WIWTXAS dmodng s;.
To Bépn etvon xavovixomompéva, dnhadn yio x8e 4 woyber Y, ¢ij(x—;) = 1. Enione to
a; ebvon pior otadepd oo Sidotnua (0, 1] tou cuyBorilet Ty autonemofinon tou atduou
1.

EpwtApata xow XtdyoL

To povtéro Friedkin Johnsen eivou ototind ue tny €vvola 6Tt To dixtuo mou xoopilel To
WS AAANAETLOEOVY Tar dToua elvor oTordepd 660 e&ehiooeton 1) Sladixaota. "Eyel amodetytel
6Tl auT6 TO HOVTEND €YEL HoVadIXG oTUElD tooppoTiag 6To omolo cuyXhiver ypouuxd [5]. Av-
tideta To wovtého Hegselmann Krause xou o cuvelehintind mokyvia Stadpgwong drodng
etvan Buvaixd ool xdde dTouo Unopel va ennepedletal and SLopopeTiXols avipmdToug oe
OLopopeTd Bardud oe xdlde yopo. H duvouxr Tou povtéhou Hegselmann Krause cuy-
xhiver og onuelo oopponiog [2], woTtHo0 BeV eivan YVWOTH xaTd TOOO ToL CUVEEEAXTIXG.
Ty VioL UTEEY 0LV DUVAUIXES TTOU VL €Y0UV TNV (BLot LOLOTNTAL.
Y Sumhouat| auTt E0TIACOUPE 0T UEAETT TNS CUUTERLPOEES 50O BLac VN TIXG PUOIXDY

ouvaLxwy, Tou best response xou tou follow the leader, w¢ mpog ) olyxhion oe ornuela
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oopporiog oe ouveleAxTxd mabyvia Slopopgpuwone drodne. I'vwpeiloupe otL xon ou 6o
aUTEC BuVaULXES BLadxaoieg ouyxhivouv ot onuelo lWooppoTiag GTNY WX TepInTWoT TOoU
T Bdpn ebvon otadepd xan o malyvio avdyetow oe povtédo Friedkin Johnsen. H Omapln
oruelou woopporiog e€aopaiileton and 1o Yewpenua Tou Rosen yio tnv Umopén wooppomiog
oe xofha modyvia n-otépey [36] enedr) N ouvdptnon x6cToue xdde aTdpouU Elvon XUPTH
©¢ TEog TNV dmoy| Tou. Apyxd, UEAETAUE TIC BLdpopeg TEYVIXES ue6B0UE TOU UTOEOLY
va yenotonointoly yla vo amodeilouv T olyxAlon Wwog duvouxic dtadixacioc. Autég
cuuTepAUUBavouy €vvoleg amd TN yeouuix dAYEBpa, TV xupTY| BektioTonolnon xan Ty
dueon xupth Peltiotonoinon (online convex optimization). Xtn cuvéyela, napodétouue
TEONYOVUUEVA ATOTEAECUOTA OYETIXY UE TNV CUYXALOT) DUVOULXWY OF LOOPEOTIEC XO{AWY
Touyviev n-atéuny. Iho cuyxexpyléva, Tapouctdloupe TNy EVvola Tng BLory VLG AUGTNRHG
xohotntog mou e€ac@ahilel 6Tt To onuelo Woppomiug evog xothou Touyviou V-otouwy el
VoL HOVOBIXG X0 PEAETAUE €VOL BUVOIXO CUCTNUA GUVEYOUC YEOVOU Tou GUYXAIVEL GTO
oruelo topponiog evoc xoihou Tonyviou n-aTOU®Y v oL GUVIPTHOELS XEpBOUE elval Blory K-
via oo tned xolheg. Mia epwtnom mou mpoxintel ebvar xotd téco LTdEyEL Eva avTioTolyo
OLoxELTO BUVOUIXO GUGTNUA TOU Vor GUYXAIVEL 0Ty toopponio. Aclyvouue 6Tt 6vTwe €val
T€T0l0 SUVOIXG GOCTNUA UTdEYEL Tou Holdlel ue xddodo xhiong ue TN dlopopd 6Tl xdrde
maixtng Bertiotonolel Ybvo N Bt Tou cuvdpTnorn xépdous. Emnpdoieta, yehetdue pio
UTOXAGOT) TWV XOIAWY Ty Vimy n-aTtépemY Tou ovoUdlovTon xovwvixd xolho Tofyvia, yo To
omola av 6hot oL TaixTeC oxohovdoly oTpaTNYIXES No-Tegret To malyvio cuYXAIVEL GE LoOE-
comia. (26T600, AMOBEWNYOOUUE OTL GTT YEVIXT| TEQITTWON T GUVECEAXTIXG Ty VioL BloguOp-
pwong drodng BevV avixouV ot auUTH TNV UToxAdoT. Axololtng, delyvouue 6Tt avtieta
ue to povtéro Friedkin Johnsen ota cuvelehntnd madyvia Stapdppwone drodne to best
response Pmopel var U1 oLYxhivel xodoAxd 6 O TIYULOTUTIOL TTOU €Y 0UV TOAG onueio Lloop-
comlac. Emnpdoieta, delyvouue 6Tl yia cuvapthoel Poapodv mou dev elvon maporywyloyeg
umopel To best response vo un cuyxAivel xat Tomixd oe €va onuelo LooppoTiag aveEupTHTLS
ToL 600 XxoVTd ot U6 Bploxovtan ot andeic. Tlapdhhnha, amodewviouue 6Tt 0 oalyopEL)-
uoc Follow The Leader yia tor cuve€ehixtind mabyvia Sladppwong drodng eivar no regret
xodg xou 6T glvorn 1GOBUVOUOS PE TO BLAXEITO BUVAUIXG CUGTNUA TIOU GUYXALVEL Ylol To
Ty Vit TV OTOlwY 0L GUVIPTACELS XE€0D0UC elvar Blory VL aOTNEd XOLAES.

1.2 Ocswentixd TnoBadeo

Ye auth Vv mopdypago mopadétouue Tic Poacixéc €vvoleg mou ebvan amapaitnTeS Yia
TNV XATOVONCT TV UEVOBWY Tou yenowonotodvTal yior Vo amodeilouy tn cOyxhion Uiog
dLVOUIXTC OladLxaciag ot LoopEOoTa.

Ocwpolue 6Tt Lo duvopxr| Sadxacio eehlooeton ot Slaxpltd Brjdoto xotd Tor omola
x&de medxTopag EMAEYEL xdmolo THT GOUPWVIL UE XETOL0 xovova. e auTh TNV TepintTwon
Aée 6TL T0 cUoTNUA Elval o€ LooEEOTLAL GTAY 1) XATAG TaoT) 6TV oTtolo BoloxeTon TaPoUEVEL
otadepy| oto ypdvo. And tn oxomd g Yewplouc mouyviwy €youue n maixteg, xdie évog
am6 TOUC OTOloLS ETAEYEL Lol OTEATNYIXY X; antd éva alvolo S;. To didvuouo X Tepthop-
Bdver T0 GUVORO TWV GTEATNYIXWY OAWY TWV TOUXTMY XAl AVAXEL OTO XAPTECLAVO YLVOUEVO
TWY ETMPEPOUC GUVOL®Y OTRATNYXOV. Xe xdie YOpo Tou monyviou xdie naixtng nailel
otpatnywy Tou xou €yel x6oTtoc ¢;(x). To clvolo otpatnywwy xX* elvar onueio Loop-
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pomiag Nash yia éva malyvio av yio xdde mobxtn ¢ xou xdde otpatnyw x; € S; oy lel
* *
ci(x) < ei(xg, x75).

Me diho Aoyior o€ auTH TNV xoTdo TooT xavelc TafxTng dev Exel xivnteo Vo ahhAEeL oTeaTYIXY
0edopEVOL OTL oL uTtdAotrtol Vo Tapaueivouy oTaepol oTig emhoyeg Toug. Mia otpatryiny
Aéyetan best response yio xdmolo oty oy ehaytoTonolel T0 XOGTOC TOL BEBOUEVOL OTL
ol utolointot Taxteg dev ahhdlouv otpatnywd|. Ilio cuyxexpwéva, 1 otpatny x; civor
1 “UOAOTERY amdvTNOY OTN OTEATNYWXH X_; av Yo xdie s; € S; €youue

¢i(x) < ¢i(siyx_y).

Mo vor amodei&oupe 6Tt uior duvoguuxr dtadxcaction Yo cuyxAivel oe éva onueio 1ooppomiog
UTOPOUUE VO YPTOULOTOLAGOUUE Uiot CUVEETNOT BUVAULXOV TOL AVTIO TOLYEL TNV XoTdo-
TUOT) TOU CUGTANTOS OE TEAUYUATIXES TWEC XL TNG omolog Tar Tomxd eAdytoTo Yo avTio-
ToLyo0V oTo onueia looppoTiag Tou cusTANNTOS. Enopéve yio va del€oude 6Tt 1) Suvox)
dradixacto Yo cuyxhivel oe onueio loopporiog apxel va BelEouue 6TL 1) GUVAETNOT) BUVOULXOV
Yo ouYXAVEL GE xdTOLO TOTIXO ENYIGTO.

Mo dAAn uédodog yiow TN amodeln GUYXAONG WG BUVIUIXAC OLodLXACIOG EXUETOA-
A€ueToL TNV 1OLOTNTY NO regret mou meplopilel T GUVOAIXG xOGTOC TOU €YEL XATOLOC TTOU
Vv axoroudel. Iho avohutixd, €vag alyodprduog elvar no regret yio Tov TalxTtn TOUL TOV
ocohouvlel av 1) BLapopd Tou GUVOAXO) x6GToUg oL Va Exel oe T yUpoug and To EAAYLOTO
GUVOAXO x6GTo¢ Tou Va ebye av mdvto eméheye Ty (Bl otpatnywer etvan g t6€ng o(T).
Tumxd to regret TocoTIXOTOLETAL C

T

T
regret, = sup Z ¢(x;) — min Z c(x) |,
€T\ =1 xR i3

OToU ¢; Efvo Ol CUVORTHOELS XOOTOUG.

"Evog eupéwe Sadedouévog ahyoprduog mou e€acpalilel no regret o€ xAmOLEG TEQITTE-
oeig ebvar o Follow The Leader cOugova ue tov omolo o maixtng emAEyel T otpatnyixy
ToL Vol TOU EAAYLOTOTOLOUGE TO GUVOAXO X0 TOG Py pL TO TeAeuTato YOpO, dnhadn

-1
X7 = argmin Z c(x).

xeK i—1

1.3 Kolha ITolyvia n-atouwy

To ouvelehxTnd matyvia Slodepwong drodng €youy Tdvta onuelo WoppoTiag yiott avrx-
0LV GTNY XUTNYORLo TWY XOIAWY TowY ViKY 1 aTéuY. Lupgwve ue Tov optoud tou [36] ot
éva xolho mafyvio n atéuny €youue n TuixTeg, 0 xde Evag Ue uloa oTEUTNYXY X; TTOU
avixel oe éva xVpTé o cuuTayeg olvoro S;. To cOvoho TV GTEATNYIXGY CUUTERLEYE-
TOL OTO OLAVUCHO OTRATNYIXWY X TO OO0 UV XEL GTO XUPTECLAVO YIVOUEVO TWV ETMLUELOUG
CLUVOAWY CTEATNYIXWY TWV TUXTOV. XT0 TEAog xdie yOpou tou maryviou xdie molxtng
€xel %€p00¢ u;(X) To omolo elval GUVEYTIC CLUVEETNOY TOU X XL XOLAT OTN OTEATNYXY X;
Tou (Blou mabxTy.



Ocwenua 1. Kdle rxoido maiyvio n atouwy éyer onueio 10opponiag.

10l oLVEEEMXTIXG Ty VLo BLoORPWONS Amodng 1 cLVAETNOT XOG TOUC EVOC ATOMOL Ei-
VOIL GUVEY TS GTO BLAVUCUOL TwV ATOEWY Xou xVETH WS TEOC TN dLxr| Tou drodrn. Emouévne to
TEONYOUUEVO VeDEUA Loy UEL XAl YioL auTA Tor oy Viot Tou TévTal €youy loopponio. 2otdéco
0e Yvoplloude Twg umopel vor uTohoYIoTEL auTH 1) lWoopporio. ‘Onwe avapépape xaL TEo-
Youpévee dio Teyvixn yia vor amodey Vel n olyxhion uog duvouxrc dadtxactog etvan ye
YPNOoM HlS ouVdETNoNS SuvoUixoL. Xta cuveEexTixd Tokyvia dloudppnmaong drodng etvor
OYETIXA DUOHONO VO XUTAOXEVAOTEL ULat TETOLXL GUVERTNOT AOYW TNG EYYEVOUS ACUUMETEIOG
ToL eTMPEPOLY oL oLVaETHoEL Bdpouc. Mia utoxhdon xolhwy Tonyvieky yia To omola ebvor
YVLO T 1) UTapdn cuVEETNOoNE BLVAULXO) Elvor UTE TOU €Y0UY GUVAPTHCELS XEPOOUE TOU
elvo Blory VLKL WO TNEA XOLAES.

H évvolr tne daryodviag auotneric xohotntag e€ao@ahilet 6t éva xolho malyvio €yel
uovadix6 onuelo ooppotiog [36] o opileton pe tn yeron tne xhionc (gradient) twv
ouvapThoewY x€pdouc. AZ{Cel va onueiwlel OTL YENCILOTOLOVUE TNY XAloT) Uag CUVEETNOTNG
%€pBOUC MG TPOG TN OTEATNYLXY Tou (Blou TduxTn xou T1 cupBoiilouue w¢ Viu;i(x).
Opwopdg 1. O ouraptioes képdoug evog koilou marnwviov n atduwy eivar owaywria
avotnpd koike§ av yia kdOe 6U0 dapopetikd daviopata oTpatn)ikdy X* kair X 10y Vel

n
i=1

[or peyohOtepn euxohion UTOPOUKE YLol TOV OPLOUO TNG LY WVLAG AUOTNREHC XOLAOTNTOG
VOl TEEOUUE TO OLAVUCHAL

V1u1 (X)

VQ’LLQ (X)

9(x) = :

Votin (X)
xou Vo yenowdonoiooupe tov mivoxa Tlaxdum autod tou Saviouatog mou cuuBoAiloupe
ue G(x).
Opwoupog 2. O1 owvaptioes képdouvs €vds koilou maryviov n atéuwy eivar daydvia
avotnpd koiles av ya kdOe otpatnyikn x o tivaxas (G(x) + G(x)T) etvar aprnrird opio-
Hévog.

LNy meplnTteon auTtdy Ty Tonyviky optleTon €vo BUVAUIXO GUCTNUA OE GUVEYY| YPOVO
70 onolo cuYXAlVEL 6T0 Lovadd onueto wwoppoTiog. T xdie mduxtn i

X;(t) = Viu(x).
Ebvar onuavtixd va emonudvouye 6Tt autd T0 GUGTNUA UTOREL Vol Yeapel xou U T LopgY
x(t) = g(x(t)). Av g(x(t)) = 0, t61€ 10 GUoTNUA €YEL PTdOEL GE oNUElD WoppoTiog XS
AOY® TNG UNdEVIXAC Tapary Y ou ol oTpatnyixée Yo mapoucivouy otadepéc.
Oevpnua 2. Av o (G(x)+G(x)") elvar apynrird opiopévog yia kide x € S tére n Adon

Touv ovotruatos x(t) = g(x(t)) ovykAiver otny wopporia Nash ya omowdritote apyixd
onueio oo S.



[t vor omodery tel To Teoryoluevo Yempnua YenoYloToLEiTol (¢ GUVEETNOT BUVUULXOUL N
vopua Tou Blaviopotog g(x), 1 omola 6tay undeviletan to alotnua Beloxeton oe Wwoppomnia.

Mia umoxhdorn TV xolhwv maryvioy n atdpwy Tou €youy oYETXG evilapépoy elval
Ta xowwvixd xotha modyvia. T'ar var avixer og auth) Ty xatnyoplor €va Takyvio TeETEL Vol
wavorolel 8Vo cuvirixec. IlpdTa TEENEL Vo UTEEYEL AUGTNEOC XUPTOC GUVOUOUOC TV
CLUVAPTHCEMY XEEOOUC OAWY TWV TOUXTWY ToU VoL efvon x0{Aog 0TO BIAVUOUA X OAWY TWV
otpatnywoy. Emmiéov npénel yia xdle naixtn 1 cuvdptnon x€pdoug Tou va elvor xupTh
¢ TEOS TG OTEATNYIXES TWV UTOAOITWY TAXTOY. M auTtd Tor Tafyvia oy xdde modxtng
oxohovlel no regret duvouxr| TOTE 0 PECOC HPOC TWV CTEATNYIXWY W TEOS TO YEOVO Val
oLYXAlVEL 0T0 onuElo LooppoTiaC.

Oecwpnua 3. Av ge éva kowwrikd koilo maiyvio ot o1 Taikte§ akoAovdoly kdmow no
regret aAydpiuo, 1 amapattnta tov b0, téte o péoog dpog Twv oTpaTnykdy X =

1 T t / / ,

261660 amodexviEToL OTL 0T YEVIXT| TEQITTMWOT To CUVEEEAXTIXG Ttaly Via Bl OpPwong
drodng dev elvon xotvwvixd xofha yotl To povtélo Friedkin Johnsen dev avixel oe auth
TNV UTOXAAOT).

1.4 XUyxiion oe Ynuela loopponiag oe Yuvele-
Axtixd [olyvia Awapdppwong ‘"Arnodhng

1ot aoUUPE TR GUVEEEAXTIXG Taly Vial Bloop(pmoNg dmodng xdle maixtng €yet uior WBIwTIXY
drnodn s; € [0,1] mov napouéver otadeph xou pior dnuodota drodm x; € [0, 1] mou propet
va petaBdiheton. Eniong éyel éva mopdyovia autoextiunone a; € [0, 1] xadodg xan Bdpn
¢ij(x_;) mpog Toug dAROUC TAUXTES TOU Elvol GUVAPTAHOES TV ANOPEWY TwY UTOAOLTOV
TOUXTGY. 2To TEhog xdle yOpou xde maixtng @ €yel x60T0C

ci(x) = (1 =) ) gi(x-i) (@ — ;) + il — 1%,

i

omou ta Bdpn elvon xavovixonotnuéva, dnhadt| Loy Ve Z#i gij(x_;) = L Yto best
response xdUe malxtng ehaylotomolel TN ouVEETNOT XOGTOUS TOU TENYOUUEVOU YUEOU.
Enouévae €youue

xffrl - zrél[(iﬂ] ci(z, xt_z) =(1— ) %: qij(xt_i)xﬁ + ;8.
VE=)

To mpayTo epyTNUa ToL TPOoXUTTEL Efvon xTd TOGO TO best response cuyxhivel xodoAxd
oto onpeio twopporioc. H amdvinon oe autd 1o epdtnua civar Ot 0 cuyxAivel yatl oe
TEPLTTWOELS TTOU UTERY0LY TOAG onueiol tooppoTiog 6To Talyvio umopel oL amddelc xdmotwy
ATOUWY Vo TohavtovovTon dtapxae. H cuunepipopd auth elivon eugoavrc oto yedgnua 1.1a
Tou €yel TEOXVPEL amd TEOCOUOIWOT EVOC GUYXEXQLUEVOL Tapadelypatog o Python xou
oetyvel TNV YeToffolt| TV anddewy 800 atouwy xadog 1 Swdixacia e€ehloceton 0TO YEOVO.
Emnpbdoieta to best response pnopet vo pn cuyxAivel Tomxd oe xdmota onueia looppotiog
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Figure 1.1: X0yxpon twv 600 duvouix®y Yo Ty (dla tepintewon

av oL cuvapThoelg Bdpoug dev elvon Tapaywylowes. Me dhha Aoyl 660 xovTd xou av ebvou
TO OLEVUOHN TWV amoewy 0To orueio Loopporiag av OAa To dtopo oxoroudolv To best
response To cUCTNHA O Yo cUYXAIVEL o exelvo To oruelo eoppoiog.

O ahyopriuoc follow the leader etvon 1 dedtepn duvauxy tou e€etdloupe. M oUTHY
xdde dropo ehayloTomolel TO GUVOAIXO xOGTOC oL elye U€ypl TOV TEONYOUHEVO YUEO.

Enopéveg exgpdlel dmodn
t
27 = min Y ¢(z,x7,)
z€[0,1] !
T=

1 CUYXEXEWEVOL OTo GUVEEEMXTIXG Ttady Vil Slabppwong dmodng

t 1
1 t
v ’+t+1

x
! t+1

(1 —a) Z qij (x";)x + ays;
JF

Hoapatneolue OTL o€ aUTY| T1 OUVOHLXT] TO ATOUO TPVEL EVOL UEGO OPO TG TEOTYOLUEVHS TOU
drodng xou TV amOPEWY TV UTOAOITWY ATOUOY YE OTOTEAEOUA 1) UETABOATY oTnv dmodn
va efvon o oot anéd 6Tt 6To best response. Auto €yel W ATOTENECHO OE TEPLTTOOELS
ToL oL AnOPELS TOU TEOXUTTOUV a6 TO best response TAAAVTOVOVTAL VO GUYXAVOLY OTaY
T dropar axoroudoly tov ahyopiuo follow the leader, 6mwe qotveton xou oTo yedgnuo
1.1B.

M xohr} w6t Tou follow the leader yio tor ouyxexpyéva malyvio etvan 6Tl €&-
ac@aiilel no regret oe 6molo dtopo to axoloudel. Ilio cuyxexpléva, anodewvieTon 6Tt
oy Vel

T T
Z ci(x") — min cr(x,x" ;) < Hr,
t=1
onouv Hp ebvar o T-0076¢ apuovindg aprduoc. Emmiéov xivnteo yio tny mepoutépe HeAET
auTOU TOL AAYOEIIUOU ATOTEAOVY Ol TPOGOUOLOOELS TTOU XY UATOTOCUUE Y1 SLEPOPOUG
TUTOUS GLUVORTHOEWY BaPKOV XaL THEATNEYCAUE OTL GLYXAIVOLY ot onucio WoppoTiag, 6K
oTo Ypedpnuo 1.2.



10 1

08 1

Opinicn
=
e

00 A

Rounds

Figure 1.2: H €&éMin tov anddewy oc otrywodturo e 100 dropa mou axohoudoly To
follow the leader

Av mpoomo|coUUE Vol YENOWOTOAGOUUE Th GUVEETNOT BUVAULXO) TIOU UVAUPEQUUE Yol
T BLory VLol o TNEd xolho Ttakyvior Eyouue

(1—a1) Ej;él ¢ (X_1)z; + os1 — 1
9(x) = :
(1 - an) 2375” an(x—n)xj + oSy, — Ty
Hopotnpolpe 1 o xavévoe tou follow the leader uropel va ypagtel ye ) popeh x* =
x4 % g(xt‘l). IoodUvoua e To Buvaind GUCTAUN GUVEYOUC YPOVOU UTOROUUE Vo TORdE-
oule To (B0 Vewpnuo Yo Evar BLoxpltd cUGTNUAL.

I

Ocwpnua 4. Av 1 [lg(x)
ToTe 1) Ouvapkr) dladikaoia

efvar L-Aeta ka1 o (G(x) + G(x)T) efvar apvnrird opropévog,

1
Xt — Xt—l + ;g(Xt_l)

ovykAiver oto onpieio 1wopporiag.

To mponyoluevo Yempnua 0ev Loy VEL UOVO Yol T CUVECENXTIXG TtakyVial BLoOEPHOONS
drodng mou ixavomotolv Tig GUVITXES TOU Ahhd lva YEVIXG Yio To XOIAGL TIOLY VLOL T2 OLTOUWY.
Enouévwg Yo umopoloe va €yel eQupouoyr| xon o€ dAAa €0 Tony viwy Tou avAxouy ce auTh
™V xAdo.






Chapter 2

Introduction

Humans as social beings, interact with each other constantly and this dynamic process
affects many aspects of their behavior, including their opinions regarding issues they
are interested in. An opinion can be considered as a variable that either has discrete
values, as for example the preferred candidate in an election, or values that lie in a
continuous interval, with the prediction of the temperature at a specific time and place
in the future being such an example. Although this dynamic procedure has been a well
defined field of research for years, the advent of the Internet and the extensive use of
social media have facilitated the monitoring of human interactions because social media
users declare their friendships and general relationships publicly. In parallel, a group
possibly interested in opinion formation would be that of advertisers, who attempt to
predict and influence the opinions of the public on a specific product.

A series of opinion formation models, starting with DeGroot’s consensus model [15],
share some common elements. More specifically, they all describe a process that repeats
in discrete steps, during which people, in order to formulate their opinion, take into con-
sideration the weighted average of a subset of opinions. Depending on the model, the
definition of the weights and the subset of opinions that influence a person differentiate.
Another factor that varies between different models proposed is whether this averaging
procedure happens randomly or in a deterministic manner. Therefore, these opinion for-
mation dynamics lie in a greater class of models that imitate intricate natural processes
through averaging systems. Other natural procedures displaying similar characteristics
relate to animal behavior such as in birds and fish [34, 35, 10]. Additionally, artificial
systems such as sensor networks might as well rely on an averaging process that involves
communication between agents [9, 8].

The DeGroot model comprises of a fixed network, where every agent communicates
with everyone else and studies the attainment of consensus, where eventually all the
agents agree in one opinion or opinion disparity, in which case the network splits into
groups of similarly thinking agents. This model was extended by Hegselmann and
Krause in [23] by introducing the sense of neighborhood that consists of agents with
similar opinions. Agents adopt the unweighted average of the opinions of their neighbors
including their own opinions. A randomized version of this model is the Deffuant Weis-
buch [14, 42|, where agents meet in pairs and exchange opinions only if their opinions
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are close in comparison with a threshold value. A similar model is proposed in [13].
In [25, 26, 16] the models proposed extend the aforementioned models by including the
evolution of friendships between people simultaneously with that of their opinion. In
[26] the term coevolution was used to describe this phenomenon.

In 1990 Friedkin and Johnsen introduced a model [20] that studied opinion formation
instead of the reaching of consensus in the sense that people usually do not agree, but
rather form a personal opinion after being influenced by their environment. This process
was modeled with the inclusion of a private opinion for each person along with their
publicly expressed opinion. Bindel, Kleinberg and Oren presented a game theoretic
equivalent of the FJ model in [5] and studied the social cost of disagreement through
a measure called Price of Anarchy, that compares the cost of a game in an equilibrium
to the optimal cost. This work in PoA bounds was extended for more general cases
in [3, 12, 11]. In most models mentioned the opinions are signified by real numbers.
However, there are also variants of the F.J model with binary opinions [43, 4, 12], usually
0 and 1.

A question that naturally occurs from the game theoretic view of the F.J model is
how will the game evolve if the weights between the agents change as time progresses.
In reality, apart from the actual opinions, even the relationships between people are
influenced by the opinions they express. In this way, people usually become more fond
of individuals with whom they share similar opinions and as a result they are greatly
affected by those people’s opinions in comparison to other’s. The coevolutionary opinion
formation game introduced in [3] extends the FJ model, taking into account these
varying parameters. In particular, the weight of the influence of agent j to agent ¢
becomes a function of the private opinion of i and the public opinions of all the other
agents.

2.1 Opinion Formation Models

As people engage in conversation with their friends or relatives their opinion is shaped
gradually. In opinion dynamics the process is modeled as a network of agents who are
linked to each other and possess numerical opinions that change according to averaging
rules. Multiple models have been proposed, each trying to simulate several natural
characteristics of the opinion formation process.

The Friedkin Johnsen Model

In the FJ model [20] there exists an underlying network graph G(V, E,w), where V
is the set of the agents, E is the set of the links between pairs of agents and w are
the weights of these links. For a pair of agents ¢ and j the weight w;; signifies how
much agent j influences agent ¢ during this procedure. It is assumed that all weights
between distinct agents are non-negative, whereas for any agent ¢ w; denotes a positive
self-confidence weight. The opinions expressed by the agent i at round ¢ of the process is
denoted by z! € [0, 1]. In parallel, each agent ¢ maintains an internal opinion s; € [0, 1],
that does not change in time. All opinions of the agents are updated at every round

11



according to
‘ Zj;éi wisz_l + w;S;
D i Wij + Wi

In [21] it was illustrated that this dynamic converges linearly in time to a unique stable
point.

Bindel, Kleinberg and Oren proposed in [5] a corresponding game, whose parallel
best response is the same as the averaging update rule of the FJ model. In particular,
at round t each agent expresses opinion z!, which is her strategy, and incurs a cost

ci(x') = Z wij(zh — :1:;)2 + w;(zh — 54)%.
J#1

The agents acting selfishly are interested in minimizing the cost they suffer. Indeed, the
opinion that minimizes the quadratic equation of the cost is the one suggested by the
FJ dynamic. Consequently, the Nash equilibrium of this game coincides with the stable
point of the relative dynamic.

The Hegselmann Krause Model

An interesting variation of the previous dynamic is the Hegselmann Krause model in-
troduced in [23]. This model takes into account that people usually are influenced by
others that share similar opinions with them. In fact, people tend to form groups of
like-minded individuals that affect one another. In the HK model there are n agents,
each with an initial opinion x? € [0,1]. The dynamic evolves again in discrete time
steps. At each round every agent calculates her neighborhood, which includes all the
other agents whose opinion is at most ¢ > 0 away from her opinion, formally denoted
by Nt ={j #i:|z{"" —2!7!| < e}. The parameter ¢ symbolizes how open or narrow
minded the agents are. Similarly to the F.J model, the new opinion of agent i is derived
from the averaging of the opinions of her neighbors. Hence, the opinion update rule for
agent ¢ at round ¢ is
‘ ZjeNf w;‘_l + s

tT TN

This dynamic has an infinite number of stable points that correspond to a separation
of the agents into groups, such that any two agents of two different groups have opinions
that are more than ¢ apart. Moreover, the averaging process always converges to such
a stable point in a bounded number of steps ([2],[24], [28], [40], [30], [29]).

The Deffuant Weisbuch Model

The incentive behind the Deffuant Weisbuch model ([14], [42]) is that agents usually
exchange opinions in pairs and an agent would discuss only with those who already
possess opinions close to hers. The model consists of n agents and each agent ¢ has an
opinion x; € [0, 1]. At each round ¢ two agents ¢ and j are chosen at random. If their
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opinions are closer than a positive constant d, they update their opinions according to

o= ol (el )

and

t i1 t—1 t—1
Tj =X + p(z; -y ),

where p is a convergence parameter in [0, %] The dynamic process of the DW model

always converges to a stable point. For high values of d the opinions converge to an
average opinion, whereas for lower values the agents are partitioned in opinion clusters.

2.2 Questions and objectives

The DeGroot and the Friedkin Johnsen models are static in the sense that the underlying
network which dictates the interactions between the agents is fixed. These static dy-
namics converge linearly to a unique equilibrium. Even though the Hegselmann Krause
and Deffuant Weisbuch models are dynamic because each agent gets influenced by the
other agents in a different degree in every round, they as well converge to an equilibrium
relatively fast. However, it is not known whether the asymmetric coevolutionary opinion
formation games, whose network also evolves in time, possess the same property.

This thesis focuses on studying whether reasonable dynamics, such as best response
and no-regret dynamics, can converge to an equilibrium of an asymmetric coevolution-
ary opinion formation game. The main incentive for this approach originates in the
fact that both best response and no-regret dynamics converge when all the averaging
weights of the cost functions are fixed, which is a condition that reduces the game to a
Friedkin Johnsen model. The existence of an equilibrium in asymmetrical coevolution-
ary opinion formation games is ensured by Rosen’s theorem of equilibrium existence
in concave n-person games [36], because each player’s cost function is convex in her
opinion. In chapter 4 we will present previous results about convergence properties of
dynamics in concave n-person games. In particular, we will present the notion of diag-
onal strict concavity which ensures that the equilibrium of a concave n-person game is
unique and study a continuous dynamic system that converges to the equilibrium of a
concave n-person game under the assumption that the payoff functions are diagonally
strictly concave. One question that we will attempt to answer in 5 is whether there
exists an equivalent discrete dynamic that converges to the equilibrium under similar
assumptions. Indeed, we will show that if the payoff functions are diagonally strictly
concave and an additional smoothness condition holds, then a dynamic which resembles
gradient descent converges to the unique equilibrium. Moreover, in 4 we will study a
subclass of concave n-person games, called socially concave games, for which no-regret
dynamics converge to an equilibrium. However, we will show that in general asymmetric
coevolutionary opinion formation games are not in this subclass.

In chapter 3 we are interested in the theoretical background relevant to the tech-
niques that are commonly used to prove the existence of an equilibrium and the con-
vergence of a dynamic. Chapter 5 is devoted to studying the behavior of dynamics in
asymmetric coevolutionary games and more specifically of best response and follow the
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leader, which is an algorithm commonly used in online convex optimization. We will
show using specific examples that unlike in the Friedkin Johnsen model, best response
does not converge globally for asymmetric coevolutionary opinion formation games that
have multiple equilibria. Furthermore, we will demonstrate that best response does not
even converge locally if the set of possible weight functions is unconstrained. Particu-
larly, if the weight functions are not differentiable then best response might not converge
to an equilibrium no matter how close to it the starting point of the game is. Regard-
ing follow the leader, we will show that it is no-regret for these games as well as that
it is equivalent to the dynamic that converges when the payoff functions of the game
are diagonally strictly concave. Finally, we will present a set of simple conditions that
would ensure that an asymmetric coevolutionary opinion formation game is diagonally
strictly concave.

2.3 Overview of the chapters

This thesis comprises of three chapters. Chapter 3 includes all the basic notions, required
for the better understanding of the main problem we consider in this thesis. Firstly,
we have presented some basic definitions regarding correspondences, as they are used
in the proof of existence of Nash equilibria in particular classes of games. In order
to study the convergence of dynamics to equilibria, we present certain commonly used
methods starting with basic linear algebra definitions and properties of vectors and
square matrices and continue with the presentation of the basic concepts of convex
optimization. We are particularly interested in the analysis of the gradient descent
algorithm that calculates the optimal value of a convex function, the best response and
follow the leader methods as natural strategy choosing behaviors of players in games,
as well as the definition of no-regret algorithms.

In chapter 4 we describe a class of games called concave n-person games, which
include the coevolutionary opinion formation games we are interested in. In this set of
games there are n players, each with a payoff function which is concave in her strategy
and continuous. First, we cite the result of [36] according to which these games always
admit a Nash equilibrium, thus implying that the coevolutionary opinion formation
games have this property too. The proof we present makes use of the Kakutani fixed
point theorem. We continue by defining the notion of diagonal strict concavity, which
involves the players’ payoff functions and ensures that the equilibrium of a concave game
is unique. Additionally, we provide a sufficient condition regarding the first derivatives
of the payoff functions that guarantees that diagonal strict concavity holds. Following
that, we illustrate that there exists a continuous time dynamic that always converges to
a Nash equilibrium of such a game under the requirement that the latter condition holds.
This is analyzed in steps, firstly showing that the strategies produced by the dynamic
remain in the feasible strategy set, secondly proving that the dynamic converges to a
stable point and finally showing that the stable point of the dynamic and the Nash
equilibrium of the corresponding game coincide. We also present a subclass of concave
games called socially concave games, for which it is illustrated that if all the players
follow a no-regret algorithm, possibly each player a different one, then the average
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of the strategies of the players converges to a Nash equilibrium. Finally, we define the
coevolutionary opinion formation games and explain why this particular group of games
is concave.

In chapter 5 we have included all of our results, focusing on the analysis of the
best response and follow the leader algorithms concerning whether they converge to an
equilibrium of a coevolutionary opinion formation game. The first question that arose
was whether a Nash equilibrium of such a game is unique. Providing simple examples
we illustrate that this is not true. In the following sections we are concerned with the
behavior of the two algorithms for different types of weight functions. In particular,
we start by examining the global convergence of best response and show that it does
not hold for either non differentiable or differentiable weight functions. A reasonable
following question is whether best response converges locally to a Nash equilibrium,
meaning that if the vector of opinions is close to the equilibrium then the dynamic
will converge to it. We show that for the example with the non-differentiable function
local convergence does not hold, but it does for the second example. As a response
to the instability of best response we present the results of simulations showing that
opinions expressed according to follow the leader do not fluctuate but rather converge
to a stable point. Furthermore, we prove that follow the leader ensures no regret for
agents in this game. In the following section we present our main result, which is not
limited to the coevolutionary opinion formation games and can be applied to any concave
games. Because we observed that the update rule of follow the leader in coevolutionary
opinion formation games is equivalent to gradient descent with step size inverse of
time, we proved that if the game is diagonally strictly concave and under a Lipschitness
assumption this algorithm converges to the unique Nash equilibrium. Finally, we provide
sufficient conditions for stict diagonal concavity of a coevolutionary opinion formation
game.
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Chapter 3

Theoretical Background

In this chapter we will provide the basic toolbox of definitions and theorems, that
have been used for the study of the opinion formation models and are required for
the comprehension of the subsequent chapters. More specifically, we are interested in
the different methods and approaches of studying whether a dynamic converges to an
equilibrium point.

3.1 Equilibria

The problems we are going to discuss throughout this thesis have a specific structure.
In particular, like in the aforementioned models, there are n agents who adopt a certain
value in every discrete round of a process according to some rule. If the values of the
agents remain stable, then we say that the system has reached an equilibrium.

From a game theoretic point of view, there are n players who want to win in a game
that is played in discrete rounds. At each round all the players choose simultaneously
each one her own strategy for this round. The state of the game at round ¢ is described
by the strategies the players’ chose. At the end of each round every player suffers a cost,
which is dependent on the strategies of all the players. Every player is knowledgeable
about her cost function. We suppose that all the players are selfish and they want to
minimize the cost they incur.

In terms of notation, we denote the strategy set from which player ¢ can choose
her actions by S;. The set of the strategy combinations is the Cartesian product of
the individual strategy sets, i.e. S =57 x ... x S,. The strategy vector of player 7 is
denoted by x; and that of the rest of the players by x_;. Finally, the cost function of
player i is signified by ¢;(x).

An important notion that is regularly used in this setting is the Nash equilibrium
[32]. This is a state of the game in which no player has an incentive to unilaterally
deviate from her chosen strategy. Namely, a strategy combination x* € S is a Nash
equilibrium if for every player ¢ and for any x; € S;

¢ (x) < ei(xg,x5,).
A best response strategy of a player ¢ is the one that minimizes her cost, given
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that the rest of the player will not change their strategies. More formally x; € S; is a
best response to x_; if for any strategy s; € S; we have

C; (X) S Ci(si7 X_i).

As we observe the notions of the Nash equilibrium and the best response strategy are
linked because a joint strategy is a Nash equilibrium if it is the best response strategy
to itself for all the players.

A more general notion of equilibrium is that of the e-Nash equilibrium that at-
tempts to loosen the conditional inequality. Certainly, there exists the corresponding
best response. A strategy combination x* € S is a e-Nash equilibrium if for a non-
negative ¢, for every player ¢ and any x; € S;

¢ (x") < ei(x,x*,) — €

A strategy of a player i x; € S; is an e-best response to x_; if for a non-negative ¢
and for any strategy s; € S; we have

Ci(X) S Ci(si>x—i) — €.

Naturally, an e-Nash equilibrium is an e-best response to itself for all the players. More-
over, the Nash equilibrium is a 0-Nash equilibrium.

3.2 Correspondences

An equilibrium of the game could be defined as the fixed point of the update rule. In
other words, when the system is at the equilibrium point then the players will adopt
the exact same values as in the previous round. Therefore, if we want to examine the
convergence of the dynamic to an equilibrium, we first have to prove that such a point
exists. One method of proving the existence of a fixed point is by using correspondences.

In some cases there are multiple values that maximize or minimize an expression. For
instance, the function |z — a| + |z + a|, where a is positive, is minimum for x € [—a, a].
A correspondence maps a point of set X to a subset of set Y. In the previous example
we mapped the real value of a to the interval [—a, a|. Since we will study optimization
problems, we are interested in the structure of the set of optimal solutions. Formally,
a correspondence ¢ from X to Y associates each point x in X with a subset of YV
denoted by ¢(x).

Since the calculation of equilibria in games can also be considered as an optimization
problem, correspondences are crucial in determining the existence of an equilibrium. In
particular, the Kakutani fixed point theorem is used to prove the existence of a Nash
equilibrium. In the case that we will apply it we will also need the Berge maximum
theorem, that is specific for maximization problems. It states that if f : X xY — R
is a continuous function on X x Y that we wish to maximize and S is a non-empty
compact set that describes the feasible solutions then we can define the correspondence
¢ from X to Y

¢(z) = argmax{f(z,y)}

y€S(z)
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The correspondence ¢ is upper semicontinuous, closed and compact-valued. If f is
concave in y and S is convex, then ¢ is convex-valued. The Kakutani fixed point
theorem ([27]) states that if a correspondence from x € S to ¢(x) C S is upper
semicontinuous and the set .S is bounded, closed and convex, then there exists x* € S
such that x* € ¢(x*). More detailed description of the notion of correspondence and
the theorems mentioned can be found in [6].

3.3 Linear Algebra

One approach of examining the convergence of a game to an equilibrium would be to
check if the distance between the vector of values that the players have chosen and some
equilibrium point is decreasing as time progresses. The basic tool for this method is
linear algebra, as it defines the notion of distance through norm and it provides helpful
inequalities that bound the value of a norm.

First, we will define some basic notions regarding vector and matrix norms. We
typically are concerned with vectors and matrices of real numbers. Vectors will be
mostly denoted by x and y and their coordinates by x1,...,x, or yi, ..., y, respectively.
A vector norm is a mapping of a vector in R” to a real number. The norm of vector
x € R™ is denoted by ||x|| and has the following properties:

L ||x]| >0

2. ||ex|| = |e| - |x]|, where ¢ is a real number

3. ||x]| =0 if and only if x =0

4. [[x+yll < |Ix]| + |ly]|, where y is also a vector in R"

The norm we will mostly use is the Euclidean norm that is defined as

x|]s = (x7x)2 = (/22 + ... + 2.

Unless it is specified otherwise, it is implied that the norm used is the Euclidean. This
norm satisfies the Cauchy-Schwartz inequality that is useful for bounding vector inner
products.
T
<"y | < lIxll2llyll2-

The matrix norm is a mapping of a square matrix with elements that are real
numbers to a real number. The matrix norm we will use is defined in correspondence
with a vector norm. If || - || is a vector norm, then the induced matrix norm of n x n-
dimensional matrix A is defined as:

[All =~ max  [[Ax].
{xeR"|||x||=1}

Similarly to the Cauchy-Schwartz inequality, it can be inferred directly from the

previous definition that for matrix A € R"*" and x € R"

[Ax[| < [[A[[][x]-
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The maximum magnitude of the eigenvalues of a square matrix A is called the
spectral radius and is denoted by p(A). The spectral radius can be useful when a
square matrix of real numbers is also symmetric, since then

[A]l2 = p(A).

In this case we can compute the norm of the matrix just by calculating its eigenvalues.

Additionally, the eigenvalues of a symmetric matrix are useful in determining several
properties of the matrix. One such property is the definiteness a matrix. A n x n
symmetric matrix A of real numbers is positive definite if:

1. for all x € R", x # 0 we have x’ Ax > 0, or
2. all the eigenvalues of A are positive
It is positive semidefinite if:
1. for all x € R"” we have x’Ax >0 , or
2. all the eigenvalues of A are non-negative .

Similarly, matrix A is negative definite if —A is positive definite and negative
semidefinite if —A is positive semidefinite.

When a square matrix A is not symmetric we can study the definiteness of matrix
(A + AT), that is symmetric, because x? Ax = $x7(A + AT)x. Sometimes we are not
just interested in whether the eigenvalues are positive or negative, but we need more
exact bounds. When all the eigenvalues of a symmetric matrix A are greater than or
equal to [ we write A > [1. Similarly, when all the eigenvalues of A are less than or equal
to L we write A < LI. One way of bounding the eigenvalues of a square matrix with
only non-negative elements is by calculating the row sums of the matrix. In particular,
the largest eigenvalue of A is upperbounded by its largest row sum. Books [38] and [1]

explain these concepts in further detail.

3.4 Convex Optimization

Another method of showing that a game converges to an equilibrium point involves
the use of a potential function. More specifically, a potential function is a function
that maps the strategies’ vector to a real value and decreases when a player chooses a
strategy that strictly decreases her cost. Therefore, a local minimum of the potential
function signifies an equilibrium point of the game. Hence, showing that by following a
specific update rule the players’ strategies will converge to an equilibrium is equivalent
to proving that the potential function will converge to a local minimum.

Convex optimization provides the tools to study different algorithms that optimize
the value of functions that have specific "good” properties. If the potential satisfies such
conditions then we can examine whether well known convex optimization algorithms
converge to the minimum of the potential function. The term convex may refer to
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either a set or a function. In this section we start by defining both and continue with
explaining notions, necessary for the analysis of the optimization of a convex function
in a convex set, as presented in [7], [22] and [41].

A set K C R" is convex if for every two points x and y in K all points described
by x(A) = Ax+ (1 —\)y, where A € [0, 1], are in set K. Intuitively, a set is convex when
every line segment connecting any two points of the set lies entirely in the set.

There are multiple definitions of convex functions according to the level of smooth-
ness of the function. The fundamental is the one following. It defines a function as con-
vex if the line connecting any two points of its graph is above or on the graph. Namely,
a function f : K — R, where K is a convex set, is convex if for any x,y € K and
A€ [0,1]

FOx+ (1= Ny) <A (x) 4+ (1= f(y)

If the inequality above is strict for any x # y, then f is called strictly convex.
If the function is differentiable then its gradient is denoted by

Vi) = (5L g (x))T'

Geometrically, we can say that a function is convex if the tangent space of f at point
x lies below the graph of f. The following definition states exactly this, but more
formally. A differentiable function f : K — R, where K is a convex set, is convex if for
any x,y € K

fly) = f(x) + V) (y - x).
The equivalent of the second derivative for multiple variable functions is the Hessian
of f at x, denoted by V2f(x).

02 0?2 9?2
a_z}g( ) 8:B16fw2 (X) T 8%18.](;3” (X)
02 f 02 f 02 f
SO Rl B
82f' 82f‘ . 82]“
0xn0x1 <X) 0T 0T (X> o @ (X)

In this case, a twice differentiable function f : K — R, where K is convex and open, is
convex if the Hessian V2 f(x) is positive semidefinite.

Apart from convex functions we will study properties of a relative class of functions,
concave functions. Suppose set K is convex. Function f: K — R is concave if and
only if function — f is convex.

As we mentioned earlier, there are functions that are called strongly convex. These
can be restricted further by determining how strongly convex they are. A differentiable
function f : K — R, where K is convex, is l-strongly convex if for any x,y € K

F(y) > 60+ V1) y =) + L x— y

There also exists an equivalent definition for functions that have Hessian matrix. More
specifically, a twice differentiable function f : K — R, where K is convex and open, is
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l-strongly convex if

V2f(x) = U1

Another desirable property of functions is Lipschitz continuity, according to which
their value does not change significantly for arguments that are close. Typically, a
function is G-Lipschitz if for all x, y € K we have

1F(y) = FEIN < Glly =]l

where G is a positive constant. If the function is differentiable it is equivalent to say that
the gradient of the function is bounded, as the gradient shows how much the function
changes at a neighborhood around a specific point. In such case, an equivalent condition
is that

IVIx)I <G

Correspondingly to strong convexity, there exists the notion of smoothness, which
restricts the steepness of the function. In particular, a function is L-smooth if for any
X,y € K we have

Fly) < F60 + V7 y %) + £ llx— v

where L is a positive constant. This is equivalent to saying that the gradient of f is
L-Lipschitz and formally it holds that for any x, y € K

IVf(x) = V)l < Lix =yl

By the conditions of Lipschitz continuity, if the Hessian of function f exists then we can
also write that for all x € K
V2f(x) < LI.

One of the main reasons we study convex functions is because of their valuable
properties regarding minimization. For a convex function f a local minimum is also a
global minimum and if f is defined in R™ and is differentiable then only at the global
minimum it holds that Vf(x) = 0. Intuitively, —V f(x) shows the direction towards
which the function decreases, but if the gradient is zero then there is no such direction.
In case function f is defined in a convex set K then only at the minimizer x it holds
that for any y € K

Vi) (y—x)>0.

Again this shows that no matter where y is in K, if we move towards that point at any
length the value of the function will increase.

Consequently, if we have a convex function f that we wish to minimize in R?, there
is an iterative method to do so called gradient descent. We start at an initial point
Xy and move with towards the opposite direction of the gradient of f at some specific
length. More formally, if 7, is the step size, then

X1 = X — eV f(Xe).
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Suppose that f is L-smooth and [-strongly convex. We will analyse the case where
= %, but the convergence properties are similar for other choices of 7; as well. Our
goal is to show that the difference f(x;) — f(x*), where x* is the minimizer of the
function, decreases in every step and converges to zero.

Due to the smoothness and the update rule we obtain

FO) < F0r2) + Y Gea) G = x1) o =il

— Fxen) + 9 fxca)” (=97 ) + gV S
1 L
= Ft) IV SO+ o9 )

For ¢t > L it holds that —% + % < —%. Therefore, we obtain

£00) < Fx) = 5 197G

Because of the strong concavity of f we have for any x and y
[
F¥) 2 ) + V) (y =%) + 5lly = x|’

> ) = IV

This is derived from the minimization of the right term of the inequality over y. Thus,
for x;,_1 and x* we obtain

—IVFxe-)* < =20(f(xe-1) = f(x7)).

Combining the above inequalities we have

Fx) = FO) < Foir) = F(x) = o9 7Gx
< Flu) — Fx) — S (fxn) — F(x)
l

= (1= ) (f (1) = (X))

We denote the difference of the value of f at ¢ from the minimum value of f by
h(t) = f(x;) — f(x*) and by 7 the minimum ¢ which is at least L. Thus, from the
inequality (1 — z) < e* it holds that




3.5 Online Convex Optimization

Sometimes intermediate steps might be necessary in order to prove convergence. The
opinion formation games also fit in the setting of online convex optimization problems
whose goal is to ensure that the regret of a player following a specific algorithm will be
sublinear. Therefore, online convex optimization can be used for studying if the game
converges to an equilibrium when all players follow a no-regret algorithm.

Online convex optimization is a framework that provides useful tools for solving a
particular group of optimization problems with common properties. All these problems
can be described as a game between a player and an adversary that evolves in discrete
time. At round ¢ the player chooses to play x; from a convex set K. Then, the adversary
chooses a function f; : K — R from a family of convex functions F' and the player incurs
cost fi(xy).

After T rounds the player has a regret corresponding to the actions chosen :

T T
regrety, = sup <Z fi(xe) — ng}r(lz ft(x)> :
=1

SisendT t=1

The aim of these techniques is to achieve regret that is a sublinear function of T'. This
means that in retrospect the average cost the player suffers is approximately equal to
that incurred by choosing the best fixed action, no matter what the choices of the
adversary were. More formally, an algorithm is no-regret if it achieves

regrety = o(T).

A straightforward approach to this problem is Follow The Leader, also known
as fictitious play. According to this method at round T the player chooses an xr that
would minimize the aggregated cost up to round 7" — 1. Formally,

xeK

T-1
X7 = arg min Z fr(x).
t=1
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Chapter 4

Concave n-person Games

In this chapter we will consider a specific class of games, the concave n-person games.
Following [36] we will study the existence of pure Nash equilibria in these games as well
as a condition called strict diagonal concavity that affects the equilibrium uniqueness.
It shall be noted that the problem setting in [36] is relatively more general than the one
presented here. Hence, we will adapt the theorems focusing on a more confined case
where each player has her own separate strategy set, similar to that illustrated in [33].
Subsequently, we will study more specific subclasses of concave n-person games, namely
socially concave and asymmetric coevolutionary opinion formation games.

In a concave n-person game there are n players. Specifically, player ¢, where 7 is
an integer in [1,n], chooses a strategy x; from a compact and convex subset of R
denoted by S;, where m; is a positive integer. If we define vector x to contain the
strategies of all the players, then x is also in a convex and compact set S that results
from the Cartesian product of Sy, ...,S, and is m-dimensional, where m = > | m;.
In addition, every player ¢ has a payoff function u;(x) which depends on the strategies
of all the players involved in the game. In a concave n-person game all payoff functions
u;(x) are continuous in x and concave in the strategy vector x; of the same player for
fixed x_;, which is the vector of strategies of all the other players.

A pure strategy Nash equilibrium of a concave n-person game is a point x* in S,
such that for every i € {1,...,n}

ui(x7) = max{u;(yi, X7;) }- (4.1)

This condition indicates that no player has an incentive to change strategy given that
the strategies of all the other players are fixed.

4.1 Existence of Equilibrium in Concave n-person
Games

An interesting property of concave n-person games is that they always admit an equi-
librium. The proof presented in [36] constructs a mapping from strategies to sets of
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strategies and uses the Kakutani fixed point theorem to show that the fixed point of
the mapping is also an equilibrium of the relative game.

Theorem 4.1. Every concave n-person game has an equilibrium point.

Proof. As we mentioned previously a point x* is an equilibrium if for all i € {1,...,n}

x; € arg max{u;(y;,x";)}
Yi€S;

Equivalently, we can write

x* € arg max {Z Ui(YiuX*i)}

yes i=1

because if there existed an ¢ such that the strategy of player ¢ at the equilibrium was
not in the set argmax,, g {ui(ys,x*;)}, then we would be able to augment this payoff
function and therefore increase the whole sum by choosing a different strategy for .
However, then the equilibrium would not be in argmaxyco{> " | u;(yi, x*;)}, which is
contradictory. The set of optimal solutions

¢(x) = arg max {Z wi(yi, x_i)}

yes i=1

is a correspondence from S to a subset of S. The sum >  u;(y;,x_;) is continuous
in y and x. Since a player’s payoff is concave in her own strategy, this sum is concave
in y. By the Berge maximum theorem ¢ is upper semicontinuous, closed, compact and
convex and by the Kakutani fixed point theorem there exists a fixed point x* € ¢(x*),
which clearly is a Nash equilibrium point of the game. m

4.2 Diagonal Strict Concavity and Uniqueness of
Equilibrium

Concave n-person games may have multiple equilibrium points. As we observed previ-
ously, a point x* in S that satisfies

n n
o(x*,r) = Z riu;(x*) = max Z riug (yi, X°5) ¢
i=1 ves o

where ;8 are non-negative, is a Nash equilibrium of the game. A sufficient condition
that ensures that the equilibrium of such a game is unique is a property of the payoff
functions called diagonal strict concavity.

In the case where one player is responsible for maximizing her own payoff function,
for instance if she has to choose a pair of z1, o € R such that u(zy, z5) = —(z1 —3)* — 23

is maximized, one way of proving that the maximum is unique is to show that the payoff
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function is concave. By the definition of concave functions we could either show that
u(y) < u(x) + Vu(x)T(y — x) for any x,y € R? or that V?u(x) is negative definite.
However, in concave n-person games, where n is greater than 1, each player influences
the payoff of everyone else and therefore, the notion of concavity needs to be generalized.
The definition of the equilibrium suggests that each player attempts to maximize her
personal payoff by changing her strategy but has no say in the strategies of the others,
that also influence her payoff. For this reason we will use a pseudogradient of o(x,r)

r1Viug (x)
T’QVQUQ (X)

7 Vot (X)

Definition 4.1. We call o(x,r) diagonally strictly concave for x € S and fized r with
non-negative elements, if for every pair of distinct points x*,x € S we have

Using the Jacobian of vector g(x,r), denoted by G(x,r), it can be shown that
function o(x,r) is diagonally strictly concave. Notably, negative definiteness of matrix
(G(x,r) + G(x,1)T) for x € S and fixed r > 0 provides a sufficient condition for o(x, r)
to be diagonally strictly concave.

Theorem 4.2. If the symmetric matriz (G(x,r) + G(x,r)T) is negative definite for
x € S and fized v, whose elements are positive, then o(x,r) is diagonally strictly concave.

Proof. We can think of G(x,r) as an equivalent of a Hessian matrix whose definiteness
determines the concavity of the initial function o(x,r). Yet, we can not follow this
reasoning in the proof because ¢g(x,r) is not the actual gradient of o(x,r). We begin
with a property of G and we want to show a corresponding property of g. Because the
Jacobian matrix G contains all the first-order partial derivatives of vector g, a way of
getting the vector ¢ from the matrix GG is by integration.

Let x*, X be two distinct points in set S for which we want to show strong diagonal
concavity. Since S is a convex set, all the points on the line segment connecting them
are in S and have G(x,r) negative definite. Formally these points can be written as

X(A) ="+ (1-Mx,for 0 <A<1

The difference g(x*, r)—g(X, r) results from integrating on this line segment, i.e. g(x*,r)—

g(x,r) = f; W(D\. Since G(x,r) is the Jacobian of vector g(x,r), we can take

the derivative of g(x(\),r) with respect to A and obtain




In order to get the condition wanted we need to multiply the difference of g(x*,r) —
g9(%,1) by (x —x")T.

*

(=) (90" 1) — g(x1) = = [ (6" = 0TGN, 1) = R

2

G(x(\),r)T)(x* — %) and the fact that G(x()\),r) + G(x(A\),r)? is negative definite. As
a result o(x,r) is diagonally strictly concave. O

For the last two steps we used (x* — X)TG(x(\),r)(x* — x) = L(x* = %)T(G(x()\),r) +

There are fairly simple examples where diagonal strict concavity does not hold. For
instance, in a game with two players player 1 has strategy x, player 2 has strategy X
and their payoff functions are uy(z1,9) = —2? + 62129 and ug(xq, 22) = ——x2 + 2129
respectively. The function u; is concave in z; and wus is concave in x5. For this game

we have
—2x1 + 629
9(x) =

—XT2 -+ T

-2 6
o= (7 1)
which is not negative definite.
Finally, we can analyse the main idea of this section, which is that diagonal strict
concavity ensures the uniqueness of the equilibrium of a concave game.

and

Theorem 4.3. If o(x,r) is diagonally strictly concave for x € S and fized r, whose
elements are non-negative, then the equilibrium point of the game is unique.

Proof. Let x* be an equilibrium point of the game. In such case, point x* is an optimal
solution of the convex optimization problem for any i = {1,...,n}:

maximize u; (y@‘; X*—i)
s.t. Vi €5;.

Since function u,(y;, x*;) is concave in y; and x; is an optimal solution of the problem
above, we can infer that at this point the inner product between the gradient and the
direction towards an interior point of S; is non-positive. The gradient at point x; defines
a hyperplane in S;. If this inner product were to be positive that would mean that the
two vectors are in the same side of the hyperplane and therefore, by following the
direction of the projected gradient we would be able to further augment the objective
function. However, this is not possible at a maximum point. Therefore, for any y; € .S;
we have :

Viui(x*) (yi — x;) < 0.
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Formally, this is a result that is derived from the Karush-Kuhn-Tucker conditions.

For a positive number r;, we can multiply the inequality and obtain 7;Vu;(x*)7 (y; —
x7) < 0. The previous inequality is valid for any i. Hence, by summing for all i =
1,...,n we maintain the inequality sign.

Zriviui(x*)T(yi —x7) <0.
i=1

Let X be also an equilibrium point of the game that differs from x*. The procedure
above can be applied to this point as well. As a result,

Z riViuy(x*) T (%; — x}) + Z ri Vi ()" (x] —%;) < 0.
i=1

i=1
If we rewrite it in a more compact way we have
(% —x) g(x",1) + (x* = %)7g(x.1) <O,

where r is the vector of elements ;. By the assumptions of the theorem this is a contra-
diction. Therefore, diagonal strict concavity ensures the uniqueness of the equilibrium
point of the game.

O

One example where diagonal strict concavity holds is the Friedkin Johnsen model.
The theorem above provides an alternative proof for the uniqueness of its equilibrium.
In particular, the pseudogradient of the payoff functions, if we consider as payoff the
opposite of cost, is

2(1 — Oél) Zj;él W15 -+ 20&151 — 2331
g(x) = :
2(1 — ) Z#n WniT; + 20,8, — 2T,

By differentiating the payoff functions once more we get the matrix G

—2 2(1 — Oél)wlg . 2(1 — al)wln
G(X) _ 2(1 — f)ég)wgl -2 Ce 2(]_ — (]12)11}2”
2(1 — ap)wpy 2(1 — ay )wpa e —2

We can rewrite this matrix, using an auxiliary matrix W whose diagonal elements are
zero and the others are W;; = (1 — a;)w;;. Consequently, the matrix G is G(x) =
2(W —I), which is negative definite if all «; are positive. More specifically, this derives
from the fact that the rows of matrix W sum up to a value less than 1. Therefore,
the Friedkin Johnsen model corresponds to a diagonally strictly concave game with
unique equilibrium. The definiteness is relatively straightforward to study in this case.
However, even if we use the first definition that includes only the vector g the condition
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is reduced to the same inequality. Specifically for this game the condition is for any

x* #£ X
i=1 J#i J#
or
Z(@k -z > Z(If — ;) (Z(l — ag)wij (T — %)) ,
i=1 i=1 j#i

which by definition is equivalent to I > W.

4.3 Stability of the Unique Equilibrium Point

In [36] the author suggests a dynamic model that describes a natural behavior of the
players in a concave n-person game. The reasoning behind this model is that every
player, given the strategies of the other players, attempts to maximize her payoff by
choosing a feasible strategy from her strategy set. The rate according to which every
player changes her strategy depends on the gradient of the function u;(x) she wishes to
maximize over x;, since he gradient of the function shows the direction towards which
the function increases. The feasible set of joint strategies can be defined as S = {x|Vj €
{1,...,k} : hj(x) > 0}, where for any j = 1,..., k the function h;(x) is concave. If the
strategy of the players is not in S, then it must move towards a direction that increases
the value of the constraint functions that are not strictly satisfied. Consequently, a term
is added to the strategy change rate for every constraint function not strictly satisfied,
that is proportionate to the gradient of the relative constraint function. The differential

equations of the dynamic system are for allv=1,...,n
dx; y
5 (1) = %i(t) = riViu(x(t)) + D A (x(®) Vb (x(1)), (4.2)
j=1

where all A\;(x(¢)) are non-negative and will be defined later and all r; are positive
constants. The first term of the right side of the equation expresses the maximization
of the payoff function of player i and the second term ensures that strategy x is feasible.

The system above can be rewritten in a more compact way using the notation H(x) =

[Vhi(x),. .., Vhy(x)] and A(x) = [Ai(x), - .., Ae(x)]T
x(t) = f(x(1), A(x(t)),r) = g(x(t),r) + H(x(t))A(x(t))- (4.3)

We will assume that both g(x,r) and H(x) are continuous in x.
The parameter vector A\(x) lies in the set A(x) C R*

Alx) = arg min 1f(x, 1)
1;20, if h;(x)<0, I;=0, otherwise

The aim of this set is to ensure that the strategy vector is not moved more than needed
towards a direction that would make it unfeasible. That is why we minimize %(t) as
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much as possible. If one of the constraint functions is zero, this means that the strategy
vector is on the bound of the set. Therefore, we still need to make sure it will not move
outside of S. If x is a strictly feasible point, then there is no need to change the value of
the constraint functions and the only concern of the players is to maximize their payoff.
Hence, in this case A(x) = {0} and f(x,\,r) = g(x,r).

If all the initial strategies are feasible, then the strategies described by the system
of differential equations 4.3 always remain in S. Therefore, the constrain terms of the
differential equations are successful in keeping the strategies in S.

Theorem 4.4. If g(x,r) and H(x) are continuous in x in compact set S D S, then
there exists a continuous solution x(t) of

x(t) = f(x(1), A(x(1)),r) = g(x(t),r) + H(x(£))A(x(t)),

such that starting at a point x in S the trajectory of strategies x(t) will remain in S for
allt > 0.

Proof. First, we need to show that this system of differential equations has a solution.
Assuming that A(x(t)) is measurable in ¢ and f is continuous in x, by the Caratheodory’s
existence theorem there exists a continuous solution x(t) in S that satisfies the differ-
ential equations almost everywhere.

Second, we want to prove that starting from a strategy vector in S the system will
never leave S. Let X be the first point on the transit of the strategy vector that is
external to S. For this point there exists a constraint that is not satisfied, i.e. there
exists a [ € {1,...,k} such that h;(X) < 0. Due to the continuity of x(¢) there exists a
”previous” point X that is on the border of S because hy(x) = 0 and Lh(x) < 0. If we
assume that the system is at point x at time ¢; > 0, then by the chain rule we obtain

d d

%hl(x(tl)) = Vhl(x(tl))ax(tl) < 0.

By substituting £x(t1) with g(x(t),r) + H(x(t1)A(x(¢1))) we end up with
d

hu(x(tr)) =

Vhi(x(t1))g(x(t), 1)+ A (x(01)) Viu(x (1)) Vi (x(t1)) + X (x (1)) [ VR (x(t1) |* < 0.
J#l

This implies that we could increase %hl(x(tl)) by choosing the appropriate \; and

thereby there was no need to move to a not feasible strategy. We can see how the

strategy change rate is influenced by the choice of \; following the steps below.
Formally, we have

I(@)1* = NlgGe(®)I* + 2(H (x(£))A(x(1))) " g (x(£)) + [ H (x(t)) Ax(t))]|*.

The derivative of [|x(1)||* over ) is

RO — o9 x(00)) (1)) + HOE)A ()] = () x(t) < 0.
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Therefore, by increasing the value of \; we can decrease the ||x(¢)||. This is contradictory,
because by the definition of A(x(t1)) we have already chosen the A; that minimizes
Ix(t)]]. Consequently, a point X such that h;(X) < 0 can not exist in the trajectory of
x(t).

[l

Following our observations of the previous proof the appropriate A should satisfy for
any j € {1,...,k}, such that h;(x(t)) <0

AW _ o ot AT 0

SO — 29 (1) Ly x(0) + H(x()AX(0)] = 0.

j

This means that if we denote by H the matrix that contains only the lines of matrix H

that correspond to the constraints that are not strictly satisfied, then for the vector A
we have

H(x(t))" [g(x(t)) + H(x(t))A(x(t))] =0
and therefore B B B
Ax(t)) = —[H(x(8))" H(x(t))] " H(x(t))" g(x(1))
which is non-negative.

According to basic optimization conditions, the value of g at a Nash equilibrium
is zero, since at such a point every player has maximized her payoff in relation to the
strategies of the other players. In fact, it is apparent that for this reason if the dynamic
system reaches a Nash equilibrium then it will remain there.

We will focus on the case where the constraint functions are not necessary and thus
the relative terms can be removed from the dynamic. Therefore, in order to show that
regardless of the starting point the system will converge to a Nash equilibrium point of
the corresponding game, we have to prove that the value of g converges to zero.

Theorem 4.5. If (G(x,r)+G(x,1)T) is negative definite for any x in S then the solution
of the system of differential equations x(t) = g(x(t),r) converges to a Nash equilibrium
point for any initial point in S.

Proof. We will show that the norm of g(x(¢),r) always decreases in time if it is not zero.

2 laloxt), I = & (g x(1), 1) g ox(0) ) = glox(t) 1) 5 (o (x(1) ).

By the definition of the Jacobian matrix it holds that L(g(x(t),r) = G(x(t),r)Lx(t).
Furthermore, the differential equations state that £x(¢) = g(x(t),r). As a result we

obtain
;jtllg( @), )P = g(x(t), r)" G(x(t), r)g(x(t), r).

Because for any square n x n matrix A and any n-dimensional vector x we have x’ Ax =
xT ATx | it holds that

g(x(t),r)" G(x(t), r)g(x(t),r) = %Q(X(t)a )" (G(x(t),r) + G(x,1)")g(x(t), r),
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which is negative because of the conditions of the theorem. Actually there exists a
positive constant m, such that

g(x(t), 1) (G(x(t),r) + G(x,1)")g(x(1),x) < —mllg(x(t), )|

Combining all of the above we obtain

1
§%I|9(X(?ﬁ)>r))|l2 < —mllg(x(t),x)|*.
Let h(t) be a real-valued function for non-negative t. If Sh(t) = —mh(t), then

h(t) = h(0)e™™ which means that lim; ., h(t) = 0. Hence, lim; . ||g(x(t),r))||* = 0,
which means that in time the dynamic system will converge to a Nash equilibrium. This
equilibrium is unique though, because of the negative definiteness of G(x,r)" + G(x, ).
Therefore, the system converges to the unique Nash equilibrium of the corresponding
game no matter the starting point. O

In a similar way in [36] it is proved that the constraints do not affect this convergence
result.

4.4 Socially Concave Games

We previously studied diagonally strictly concave games, as a subclass of concave n-
person games. In this section we will describe another subclass, called socially concave
games. What is interesting about these games, is that according to [17] and [31] there
exist natural discrete time dynamics that converge to the equilibrium point of the game.
Particularly, if all players follow a no-regret algorithm, then the average vector of their
strategies converges to a Nash equilibrium point and the average of the payoff of every
player converges to her payoff at that point.

Socially concave games also consist of n players who are trying to maximize their
payoff functions. Each player i plays a strategy x; in S; C R™ and gains payoff u;(x),
which is continuous in x € S;. Socially concave games specifically satisfy two conditions,
the first one being that there exists a strict convex combination of the payoff functions
that is concave in the strategy vector x. To be precise, this reminds us of o(x,r) =
> riui(x) under the condition that all r; > 0 and that they are normalized. This
function was extensively used in strictly diagonally concave games. The second condition
concerns each payoff function separately and states that all players’ payoff functions are
convex in the strategies of the other players. By this definition it can be inferred that
socially concave games constitute a subclass of concave n-person games. Therefore, by
theorem 4.1 they always admit a Nash equilibrium point.

A straightforward example of a socially concave game consists of two players with
strategies z; and 5. Their payoff functions are ui(z1, zo) = —22 + 23 and us(xy, 15) =

x? — 2. The function u; is concave in z; and convex in z», whereas the function uy is

concave in zs and convex in x;. Their convex combination %ul(xl, T9) + %UQ(Z'I, Tg) 18

equal to zero and hence, because it is constant it is concave.
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Theorem 4.6. All socially concave games are concave n-person games.

Proof. We need to show that each player’s payoff function is concave in her own strategy.
We will examine the behavior of all the payoff functions for the strategy of a fixed player
i € {1,...,n}. All the payoff functions of the other players are convex in i’s strategy.
Therefore, > ., rju;(x) is convex in i’s strategy. Directly by the first condition we
obtain that Z?Zl r;juj(x) is concave in i’s strategy. Therefore, the difference between
the two terms r;u;(x) is concave in strategy x;. Given a socially concave game, all the
players’ payoff functions are concave in the same player’s strategy. Hence, a socially
concave game is also a concave n-person game. ]

As we saw in chapter 3, there is a variety of online convex optimization algorithms,
such as online gradient descent and follow-the-leader, that achieve no-regret when ap-
plied to the right setting. If every player follows a no-regret algorithm, not necessarily
the same, then the average strategy vector will converge to a Nash equilibrium. Simul-
taneously, the average payoff of each player converges to the payoff at the equilibrium
point the dynamic converges to.

Theorem 4.7. If every player in a socially concave game follows a no-regret algorithm,
then the avemge strategy vector in round T is an €(T)-Nash equilibrium, where ¢(T) =
T ooiy = Ry(T) and R;(T) is the regret of player i at round T.

Proof. Assume that at round ¢ player ¢ has a strategy denoted by x!. Since she plays
according to a no-regret algorithm, after round 7" we have

T _ R(T)
—z:uZ 2 Z (x4, x T

The average strategy vector at this round is denoted by x”. Following the definition of
an e-Nash equilibrium our aim is to show that for all i there exists an ¢;(7") > 0, such
that for any z; € S;

rrm,n

wi(X7) > w2y, x%,) — (7).

We observe that the two inequalities are very similar. The first one upperbounds
the difference between the average payoff if instead of the strategies indicated by the
algorithm player ¢ had chosen to play any fixed strategy for all rounds and the average
payoff she actually achieved. Whereas, the second inequality attempts to bound the
difference between the payoff of player 7 if she unilaterally deviated from the average
strategy played up to this point and her payoff if everyone played according to the
average strategy.

Since the average payoff is a convex combination we can use convexity arguments
for the payoff functions to derive the second inequality. However, there is an extra
degree of complexity because we know that > | r;u;(x) is concave and not > | u;(x),
which would make the proof relatively direct. In terms of intuition it does not make a
significant difference. Starting from the initial inequality the convexity of u;(x) in the
other players’ strategies results in the right side of the final inequality lowerbounding
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that of the initial. Supposing we had that ) . , u;(x) is concave in x, which is not
actually true, we would get the left side as an upper bound of the left side of the initial
inequality.

That being so, we will multiply the initial inequality by r; and take the sum for all

players.
T n
%ZZHW(X —r)r(leaugzzhuz X, X Zrl

t=1 =1 t=1 i=1

Due to the concavity of > | r;u;(x) in x we obtain

ZI: riug (X)) > % Z Z i (xY)

t=1 i=1
Similarly, the convexity of u;(x) in x; implies that

T n n

1
Tmax E 5 T (X, X0 ;) > max Yy ru(x, X)) > g riui(s;, X

xeS
t=1 =1 i=1

where s; denotes the best response of player i to X' ;. We now want to keep the payoff
function of only one player j. Because ), riui(X ) < )iy Titti(si, XL;), we obtain for
any z; € S;

_ ~ 1 < Ri(T)
Uj(XT) Z Uj(Xj,XT]-) — T—Z’f’l—

T =1 T
1 <—n R;(T) . s o1 n R;(T)
Therefore, €;(T") = - >_i_; ;=% The maximum value of &;(T) is —— > 7%, r;=—.
Thus, we conclude that for all the players
. _ 1, BT
(%Y > wi(z. %L — I
uz(x ) - Ul(iliz, sz) P min Z T T
7j=1
O

Theorem 4.8. If every player in a socially concave game follows a no-regret algorithm,
then the average payoff of every player is close to her payoff for the average strategy

vector, 1.e.
1 T
P2l < 1 3,
t=1

where R;(T') is the regret of player j at round T

Proof. The idea behind this proof is exactly the same as that of the previous theorem.
The starting inequality is again

IIM%
Q?ﬁ
[M] =
£
2
5

|

=
SIS



Because of the convexity of w;(x;,x_;) in x_; we obtain

1
e Y (i, XL ) 2 max (o, %7) 2w (%7).

We can also directly use the result of the previous proof

T n
1 _ 1 Ri(T)
7O u(xh) 2 () = =y T
t=1 7 =1
Combining the previous inequalities the result of the theorem ensues. O]

By the two theorems above it immediately follows that if for all i € {1,...,n}
R;(T) = o(T) then the average strategy vector converges to a Nash equilibrium and
that each players’ average payoff converges to her payoff at this equilibrium.

An interesting question is what is the relation between strictly diagonally concave
and socially concave games. In fact, these two classes of games overlap but neither of
the two is a subset of the other.

On one side, the game corresponding to the FJ model is strictly diagonally concave
but it is not socially concave. The cost functions of the players are

( 1_a7, szj +al( ZT; Si)z.

JF#i

These functions are convex in not just ; but also in any z;, for j # 7. Therefore, this
game is not socially concave. On the other side, the definition of social concavity does
not ensure the uniqueness of the equilibrium. However, if one of the conditions of a
socially concave game is strict then the game is strictly diagonally concave.

Theorem 4.9. A socially concave game is a strictly diagonally concave game if the
convex combination of the payoff functions is strictly concave in the strategy vector or
all the players’ payoff functions are strictly convex in the strategies of the other players.

Proof. In theorem 4.6 we proved that every player’s payoff function is concave in the
player’s strategy. Since this results from the concavity in x; of Ti (2?21 iy (X) — D, Ty (X)> ,
if any of the two conditions of social concavity is strict then u;(x) will be strictly concave
in x; because the sum of a concave and a strictly concave function is strictly concave.
From now on we will not be concerned about which of the initial conditions was strict
but we will use the strict concavity we proved.

Let x* and X be two distinct points. We want to construct > i, r;Vu;(x)" (x} —

7

X;) + > i riViu(x*) T (X; — x7). Due to the concavity of Y | r;u;(x) in x we have

i riu (x*) < Z riu (X) + Z riVu;(x - X).
=1
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The same is true if we interchange the two points. Therefore, we obtain

n

> V() (x" - %) + Z riVu(x)7 (% — x*) > 0.

i=1
Function u;(x) is convex in x_; and strictly concave in x;. Subsequently,
wi (X5, X)) > us(x¥) 4+ V_jus (x5 (% — x*))
and
wi(x5, %) < ui(X) + Vi ()T (xF — %)

From these two we obtain

0 > u;(x*) — ui(X) + V_juy(x*) T (% — x*,) — V()7 (x — %y).
Of course the same is valid if we interchange the two points. This results to

Viui ()_()T(Xz—)_(i) —V_Z-u,- (X*)T()_(_i—Xii)‘l‘VﬂLi (X*)T(f(i—x*)—v_iui ()_()T(X*_Z'_)_(—i) > 0.

(2

This way we can eliminate all the terms that include the gradients of payoff functions
over the strategies of the other players.

Consequently, we obtain that Y, 7 Vu; (%) (xF—%;)+> iy i Viu (x*) T (x,—x7) >
0. Thus, the game is strictly diagonally concave. [

4.5 Asymmetric Coevolutionary Opinion Formation
Games

A class of opinion formation games that fall into the category of concave n-person games
is that of the asymmetric coevolutionary opinion formation games. The motivation for
their study comes from the fact that the game corresponding to the F.J model is relatively
limited, because the weights between the players are constant. A more realistic model of
opinion formation would have weights that evolve as the opinions of the players change.
In [3] the authors attempt to extend the FJ model towards this direction by defining
the games described below.

Similarly to the FJ model, in the asymmetric coevolutionary games every player ¢
possesses an intrinsic opinion s; € [0, 1] and a self-confidence factor «; € [0,1]. Exter-
nally, she expresses to the other players an opinion z; € [0, 1], that may differ from s;.
The affinity of the players is directly influenced by the opinions they express, that mean-
ing that the weight player ¢ attributes to player j is greater if the second player’s external
opinion is closer to player i’s internal opinion. More specifically, for any i # j weight
¢;j(x_;) is a non-negative continuous function in x; and it decreases as the difference
|zj — si| increases. Additionally, the weights are normalized, i.e. } ., ¢ij(x-;) = 1. Asa
result, weight ¢;;(x_;) is an increasing function of |z — s;| for k& # j. In correspondence
to the cost function of the FJ model, the players suffer cost

ci(x) = (1= ;) > i (xi) (@ — 2;)° + il — i)™,

i
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Theorem 4.10. Asymmetric coevolutionary opinion formation games always admit a
pure Nash equilibrium.

Proof. By theorem 4.1 all concave n-person games admit a pure Nash equilibrium. Thus,
we only need to show that asymmetric coevolutionary games are a subclass of concave
n-person games. The cost function ¢;(x) is continuous in x, because all weights ¢;;(x_;)
are continuous in x, as well as the rest of the terms, that are quadratic functions. At
this point we should note that a convex minimization problem is equivalent to a concave
maximization problem. Hence, we want to show that the cost functions are convex in
z;. In particular, ¢;;(x_;) is not dependent on z; and therefore g;;(x_;)(z; — x;)? is
convex in z;, as well as a;(x; — s;)?. Consequently, all players’ cost functions are convex
in their own opinion. O

However, the asymmetric coevolutionary opinion formation games are not in general
socially concave. This holds because the cost functions of the FJ model, which is
the specific case of the coevolutionary for fixed weights, are convex in all the agent’s
opinions.
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Chapter 5

Equilibrium Convergence in
Coevolutionary Opinion Formation
Games

In this chapter we are interested in the convergence properties specifically of the Asym-
metric Coevolutionary Games. Our definition is less strict than that of [3] as the mini-
mum requirements for the weight functions are that they are continuous in their argu-
ments and normalized. In more detail, we have n-agents, each with a constant intrinsic
opinion s; € [0, 1], a constant self-confidence factor a; € [0,1] and an external opinion
x; € [0, 1] that may vary as the game evolves. The cost player i incurs is calculated by

the function
() = (1= ) Y ai(xi) (@ — 2;)° + ailw; — )%,
J#
where ¢;;(x_;) is the weight between agent i and agent j that is dependent on the
external opinions of all the agents but ¢ and continuous in x_;. Furthermore, it holds
that > ., ¢ij(x—;) = 1.

Our study focuses on two algorithms that are derived from intuitively natural be-
haviors of agents. The first one, called Best Response, determines that at every round
the agent decides to express the opinion that minimizes the cost she incurs if the exter-
nal opinions of all the other agents remain fixed. In mathematical terms, the opinion
update rule at round ¢ + 1 is

1 = min ¢(x,x",).
z€[0,1]

Since the cost function is twice differentiable in x;, it is easy to see that the minimizer
of the cost function is

o = (1 - ) Z q,-j(xt_i)x; + ;8.
i

The second algorithm is Follow-The-Leader, which makes use of the full history of
the costs the agent has suffered. In particular, at round ¢ the agent following this
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algorithm attempts to minimize the total sum of costs she suffers, meaning that she
chooses the opinion that would minimize the cumulative cost up to this round if she
had expressed this opinion at every round. Formally, the update rule is

t

2t = min ¢i(z,x7;).
z€[0,1] i
T=

In this case, the agent is not as influenced by the last round as it is in Best Response.
Thus, the change of opinions of one agent from one round to the next one can not be
as dramatic. This is apparent in the following update rule, which is actually equivalent
to the minimization of the sum of costs and can be expressed as a convex combination
of the Best Response opinions.

t 1
zitl = o 13:2 + 1 (1—«ay) ;%(Xti)x; + QiS;

With the aid of examples simulated in Python we observed that Best Response does
not generally converge in time, as the agent that follows it is susceptible to the changes
of opinions of all the other agents and this can lead to oscillations. Even in terms of local
convergence, the Best Response algorithm fails for some classes of weight functions such
as those that do not have continuous first-order derivatives. On the opposite, Follow-
The-Leader appears to converge to a Nash equilibrium in the examples we studied. We
proved that under certain conditions that ensure that the Nash equilibrium is unique
this holds. In addition, we showed that this algorithm is no-regret.

5.1 Global Convergence of Best Response

For general weight functions Best Response does not always converge to a specific point.
In fact, the opinion vector might oscillate between multiple points. This is evident in
two simple examples we constructed. In general, the minimum requirements for the
weight functions is that they are continuous in the opinion vector. In the first example
the weight functions are not differentiable, whereas in the second they are.

Both examples consist of a network of four agents. The two of them, agents 1 and 2,
have fixed opinions, which are 0.3 and 0.5 respectively. In order to keep their opinions
unchanged, both of them have self-confidence factors equal to 1. The other two agents
display relatively symmetrical behavior. They both have self-confidence factors 0.2 and
therefore, they are greatly influenced by the opinions of others. Particularly, agent 3
has 0.3 intrinsic opinion and is influenced only by agent 1 when the opinion of agent
4 is over 0.5 and equally by agents 1 and 4 if the opinion of agent 4 is at most 0.49.
Likewise, agent 4 has an intrinsic opinion equal to 0.5 and is only influenced by agent 2
when the opinion of agent 3 is at most 0.3 and equally by agents 2 and 3 if the opinion
of agent 3 is at least 0.31.
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Figure 5.1: The graph of the examples network

Example 1

In the first example the weight functions do not have continuous first derivatives. Con-
sidering that agents 1 and 2 are not influenced by the opinions of the rest of the agents,
there is no reason to define their weights. However, the weight functions of agents 3
and 4 are

0.5, if 24 < 0.49
G31(74) = { 5024 — 24, if 0.49 < 24 < 0.5
1, if x4 > 0.5
q32(z4) =0
0.5, if 224 < 0.49
@sa(za) = € =502y +25, if0.49 <24 < 0.5
0, if 24 > 0.5
qa1(w3) =0
1, if 3 <0.3
uo(w3) = { —5025 + 16, if 0.3 < 25 < 0.31
0.5, if 25 > 0.31
0, if 25 < 0.3
qu3(x3) = < 5025 — 15, if 0.3 < z3 < 0.31
0.5, if 25 > 0.31

By running simulations first, we noticed that this game has two equilibrium points
x* = [0.3,0.5,0.3,0.5] and x = [0.3,0.5,5/14,31/70]. Furthermore, we observed that
the behavior of the system depends on the starting point. Notably, the distinct cases
are
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1. if none of the initial opinions of agents 3 and 4 are in the interval (0.3,0.5) then
the game converges to the the equilibrium point [0.3, 0.5, 0.3, 0.5]

2. if only one of the initial opinions of agents 3 and 4 is in the interval (0.3,0.5) then
the game eventually oscillates between the points [0.3, 0.5, 0.3, 31/70] and [0.3,
0.5, 5/14, 0.5]

3. if both initial opinions of agents 3 and 4 are in the interval (0.3,0.5) then the game
converges to the equilibrium point [0.3, 0.5, 5/14, 31/70]

Specific results, that fall into these three cases and were produced by our simulations
of the system, are depicted in 5.2.

0.60 1 —— Agent 3 0.500 1 "-I —— Agent 3
- : Agent 4 0.475 4 II Agent 4
P | 0.450 1
0.425 4
£ 0454 £
z E 0.400 -
§ o401 & 0.375 +
0351 0350 1
0.30 4 0.325 4
0.25 4 ‘ 0.300 4
0 20 0 &0 a0 100 0 0 0 &0 a0 100
Rounds Rounds
(a) 2 = 0.6 and 29 = 0.25 (b) 2§ = 0.3001 and z§ = 0.4999
0.70 4 | - Agent 3 0.475 - Agent 3
065 | Agent 4 l Agent 4
0.450 i
0.60 | "
0.425 4
0.55 4 |
€ uso 5 0400 1
g ] r‘,li,ﬂli, J,F.J.J.H.'.ﬁ.\'lﬁ'.ﬁ,'l,'l I'lllllillillilll”“” ““”lllillillililﬂlll ARARRARRRRA g
a.a5 4 YY) 0.375 1
0.40 4 0.350 A P"
0.35 1 0.325 |
- . | | | . 0300 L . | . | .
o 20 40 (=] 80 100 o 20 40 (=] 80 100
Rounds Rounds
(c) 29 =0.45 and 29 = 0.7 (d) 2% = 0.45 and 2§ = 0.32

Figure 5.2: The evolution of the opinions of agents 3 and 4 for Best Response in example
1

The previous remarks can be proven mathematically. The general idea behind this
proof is that at every round the agents 3 and 4 swap opinions in a way. Therefore, we
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can address the cases concerning the initial opinion of 3 only. The update rule for the
opinions are :
zh =08 [q;),l(x Dot 4 gag (2 l)xi_l] + 353,

y = 0.8 [qao(rg oy '+ qus(ry oy '] + ausa

Subsequently, we study the distinct cases of the initial opinion of agent 3.
1. If 24 < 0.3, then 2% = 0.5.
2. If x4 > 0.5, then after two rounds we have 7% = 0.3.
The reason for this is that when 2% > 0.5, we obtain
2 =0.8(0.5-0.5+0.5-2%) +0.2-0.5 > 0.5.

By case 1 we have 757 = 0.3

3. If 24 € [0.31,0.5), then |25 — 74| = 0.4|24 — 73|

The update rule for z5™ is

25 =0.8(0.5- 0.5+ 0.525) +0.2-0.5.

The same update rule applies to the equilibrium x. Thus, we have T3 = 0.8(0.5 -
0.5+ 0.5Z5) + 0.2 - 0.5. As a result, it holds that |25 — Z3| = 0.4z} — 7.

4. If 24 is in (0.3,0.31), then |z} — 0.5 > |2& — 0.3].
For simplicity we can consider that 2, = 0.3 + ¢, where € € (0,0.01). By the
best response update rule we have 2{t" = 0.5 + 40€> — 8¢. Therefore the distance
0.5 — 2T = 8¢ — 40¢? > ¢ and "' moves further away from 0.5.

Similarly, it can be showed that the initial opinion of agent 4 determines the opinion of
agent 3 at the next round.

1. If 24 > 0.5, then 24" = 0.3.

2. If 2t < 0.3, then after two rounds we have x"* = 0.5.

3. If 2 € (0.3,0.49], then |25 — Z3| = 0.4]x} — Z4|.

4. If 2t is in (0.49,0.5), then |z5™ — 0.3| > |zt — 0.5].
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Example 2

In the second example the weight functions are twice differentiable, but even with this
requirement the Best Response might not converge. In particular, in our example the
weight functions of agents 3 and 4 are

104(1‘4 — 0.49)2 4+ 0.5 0.49 < z4 <0.495
g31(T4) = 4 9
1 —10*(xz4 — 0.5) 0.495 < x4 < 0.5
qs2(x4) =0
0.5 r4 <0.49
0.5 — 1O4<SE4 — 0.49)2 0.49 < x4 <0.495
G3a(4) = 4 9
10*(z4 — 0.5) 0.495 < x4 < 0.5
0 x4 > 0.5
qu(z3) =0
(]_ T3 S 0.3
1 —10%x3 — 0.3)? 0.3 < x3 <0.305
Q42<33’3) = 4 2
10*(z3 — 0.31)* + 0.5 0.305 < z3 < 0.31
0.5 x3 > 0.31
0 r3 < 0.3
104(333 — 0.3)2 0.3 < x3 <0.305
Qa3(r3) = 4 2
0.5 — 10*(z3 — 0.31)* 0.305 < z3 < 0.31
(0.5 xg > 0.31

Again the game has the same two equilibrium points, x* = [0.3,0.5,0.3,0.5] and
x =[0.3,0.5,5/14,31/70], as in example 1. Experimentally, we observe that the behavior
of the system is also similar to that of example 1, meaning that the convergence of Best
Response depends on the initial opinion vector. More specifically, if the opinions of
agents 3 and 4 fall into an interval close to X then the system converges to that point, if
none of them are in the interval it converges to x* and otherwise agents 3 and 4 oscillate
between their opinions at the two Nash equilibria alternately. This is illustrated in the
graphs of figure 5.3 that are similar to those of example 1. The difference between
the two examples in the interval that determines the convergence is apparent in figures
5.2b and 5.3b where for the same initial opinions the two systems converge to different
points.

A question that occurs from the previous examples is whether strong diagonal con-
cavity, that ensures the uniqueness of the equilibrium, suffices for the convergence of
Best Response in a Nash equilibrium.
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Figure 5.3: The evolution of the opinions of agents 3 and 4 for Best Response in example
2

5.2 Local Convergence of Best Response

A question that arose from the graph in 5.2b is whether Best Response always converges
locally, regardless of the cost functions. Even though in the general case of cost functions
Best Response does not converge for any initial opinion vector, we observed in the
examples above that for each Nash equilibrium there is a non-empty subset of the joint
strategy set that contains the initial opinion vectors that converge to it. Hence, the next
logical step was to study the form of those subsets. In particular, we were interested in
seeing whether there is a ball around each Nash equilibrium, such that if Best Response
starts from any interior point of the ball it will converge to this equilibrium. This
property is called local convergence. Remarkably, it does not hold for the example
with the non differentiable weight functions. Nevertheless, the second example with the
differentiable weight functions is locally convergent

Example 1

The definition of the example remains the same as in the previous section. One of
the equilibrium points is x* = [0.3,0.5,0.3,0.5]. We experimentally observed that if the
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initial point of the algorithm is of the type [0.3,0.5,0.34¢€1,0.5 — €3], where €; and €, are
relatively small and positive, the system does not converge to x*. Formally, the proof
for this is part of the proof that we presented in order to show that global convergence
did not hold. Yet, for clarity reasons we will underline the specific part that refers to
this issue.

Once more, the basic idea of the proof is that agents 3 and 4 swap opinions. Particu-
larly, if !}, = 0.5—¢, where € is in (0,0.01), then $g+1—0.3 = —40e%48¢ > €. Correspond-
ingly, if 25 = 0.3 + ¢, where € € (0,0.01), then we have 5™ = 0.5 + 40e? — 8¢ < 0.5 — e.
This means that the two agents’ opinions move away from the Nash equilibrium alter-
nately.

Example 2

In contrast, the results of the example 2 showed that for both Nash equilibria there
is an area around them from where the Best Response algorithm converges to them.
The point that is more interesting to study is again x* = [0.3,0.5,0.3,0.5], since the
behavior of the algorithm around the point x = [0.3,0.5,5/14,31/70] is similar for both
examples.

Interestingly, if !, = 0.5 — ¢, where € € (0,%%), then 24t — 0.3 = 0.8[(1 —
10%€2)0.3+10%%(0.5 — €)] + 0.2 x 0.3 — 0.3 = 1600€> — 8000¢*> < ¢. Namely, if the opinion
of agent 4 is a bit less than 0.5 but relatively close to it, then at the next round the
opinion of agent 3 will be even closer to 0.3. A similar result holds if the opinion of
agent 3 is € over 0.3. In this case at the next round the opinion of agent 4 will move
close to 0.5.

5.3 Examples of Convergence of Follow the Leader

In this section we cite the results of the simulations we ran as an incentive for study-
ing the equilibrium convergence under Follow the Leader. As mentioned previously, this
algorithm ensures more smooth changes in the opinion values than Best Response. Con-
cerning the examples 1 and 2, the opinion vector always converges to a Nash equilibrium
point regardless of the initial opinions if all the agents implement this algorithm. More
specifically, figures 5.4 and 5.5 show for both the not differentiable and the differen-
tiable weight functions that not only the oscillations are prevented but also the opinions
change more smoothly from one round to the next one.

Even for more complicated weight functions and more agents, our simulations show
that Follow The Leader converges to some point in S eventually. One such example is
for weight functions that are exponential and increase as the distance between the other
agent’s opinion is closer to the agents’ intrinsic opinion. More specifically, if we denote
by d’ = |z; — s;] the distance between the intrinsic opinion of agent i and the expressed
opinion of agent 7, then the weight between agent ¢ and agent ¢ is

g
e %

g \X—i) = < -
q]( ) Zk;‘éz eidk
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Figure 5.4: The evolution of the opinions of agents 3 and 4 for Follow The Leader in
example 1

Figure 5.6 depicts the graphs of the evolution of the opinions of 20 and 100 agents
respectively in time. In both cases the initial configuration, such as the intrinsic opinions
and the self-confidence factors, were selected randomly. We observe that if all the agents
choose their opinions according to Follow-The-Leader, then the system converges to a
specific point.

Similarly, we consider the case where all the weight functions are

1 1
) = gy gy

where ) is a small positive constant, for example 107, Figure 5.7 shows that for such a
dynamic of 20 and 100 agents respectively, where the constant parameters are generated
randomly and all the agents implement Follow The Leader, the opinion vector converges
to a point eventually.
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Figure 5.5: The evolution of the opinions of agents 3 and 4 for Follow The Leader in

(d) 29 = 0.45 and 29 = 0.32
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Figure 5.6: The evolution of the opinions for exponential weight functions

5.4 Follow The Leader is no regret

In this section we will study the game from the point of view of a single agent, without
knowing anything about the behavior of the rest of the agents, whose set is denoted by
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Figure 5.7: The evolution of the opinions for weight functions

N. The agent we will focus on has an intrinsic opinion s, self-confidence factor a and a
weight ¢; for agent j. In this case, at round ¢ the agent expresses opinion ', learns the
opinions of the other agents denoted by b’ and incurs cost

ale’) = (1—a) )y qd)(a" —b)* +ala’ — )

JEN

Due to the strong convexity of the cost function in x; we can show that if the
agent plays according to the Follow-The-Leader algorithm, then he will have no regret.
Applying this algorithm, in this specific case we have the following opinion change rule.

t 1
t+1 t [AYAA
fas =7 ° +— 1 (1—a)jE€qu(b )b; + as

Following the reasoning of [39] we will prove first a theorem that bounds the distance
of the values that minimize two strongly convex one-variable functions who are close
to each other. Closeness is indicated by the Lipschitzness of their difference. In other
words, if we have two convex functions that for any x € [0, 1] their values are relatively
close to each other then the values of z that minimize them can not be far from one
another. We can use this theorem show that the opinion of our agent will change less
as the time progresses.

Theorem 5.1. Let functions f : [0,1] — R and g : [0,1] — R be strongly convex,
such that for all x the second derivatives f"(x) and ¢"(x) > % and their difference

h(z) = g(z) — f(x) is an L-Lipschitz function, i.e. |h(x) — h(z")| < L|x — 2'|. Then if
xp = argmin,ep ) f(*) and z, = argmin,c 4y g(z), it must hold that |x; — xy| < nL.

Proof. The basic idea of this proof is that we can break the difference h(zs) — h(z,) in
the two separate contributions of the functions f and g.

Since f is %—strongly convex, we can lower bound the difference between the values of
the function in x, and xy. The value f(xf) is the minimum of f, making the difference
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f(zy) — f(zy) positive if z, # x . Specifically, we obtain

Fag) — Flag) > flag) (g —25) + %(xg — ).

At point z; and for all z € [0, 1] it holds that f'(z)(x —x) > 0 because z; minimizes
the function f. Therefore, we have

flag) = flag) = 5-(2g — 2y)".

Similarly, we obtain g(zf) — g(x,) > %(xf — 14)%.
In order to bound the distance |z; — z,| we will use the L-Lipschitzness of h.

Llxy —ag| > |h(xy) = h(zg)| = lg(xy) = f(2f) = g(24) + [(2,)]

As a result, we have |z; — x4 < nL.

[]

Proceeding, we will using the previous theorem we will prove that if the agent con-
sults Follow-The-Leader during the game, then she will have incurred cost as little as
that of the best fixed opinion on average.

Theorem 5.2. The regret of the FTL algorithm is at most:

¢i(xy) — min ci(x) < Hp (5.1)

Proof. In order to show that the Follow-The-Leader is a no-regret algorithm for this
game we will split the proof in three parts. First, we will bound the cumulative cost the
agent incurs by playing according to FTL by the cost she would suffer if she was able
to learn the opinions of the rest of the agents before expressing her own and therefore
be one move ahead plus the sum of distances between the consecutive opinions she
expresses. We could call the last one stability term, because it shows how often and
how much the agent changes opinion. By the definition of the Follow The Leader the
opinion the agent expresses at round ¢ is

T-1
T .
x —argmmé cr(x).
z€f0,1]

If she knew the rest of the opinions beforehand, which is not actually possible, she could
be able to have at round ¢ the opinion

T

= 2™ = arg minz c(x).

z€l0,1] 1
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The relation between the cumulative costs incurred by the two methods is

D al@) =) a@) + ) (alh) —a@).

t=1 t=1 t=1

Specifically, it holds that

lat) — @) = (1= a) Y g, (0) &~ 6 + ale’ )
—(1-a) qu(bt)(fft —b0)* —a(@’ —s)’
(1—a) Zq] (b")( ) (ah+ 1" —20°) + a(x’ — ') (2" + 7' — 2s).

All opinions are in [0, 1]. Hence, we have that (z*+2' —20%) < 2 and (2' 4+ 2" —2s) < 2.
Due to the fact that the weights are normalized, we obtain for any x and z’

cfr) = a(2') < (1—a) Y 2¢;(b")|w — 2’| + 2afe —
JEN

= 2|r — 2|

This result is useful in two ways as it shows that ¢;(z") — ¢;(z') < 2|z — 2/| and that the
cost functions are 2-Lipschitz.

Second, using theorem 5.1 we can bound this distance between consecutive opinions.
In particular, 7 minimizes the function Zle ci(z) and T minimizes the function
STt e (x). We now want to specify the values of the parameters of the theorem.
Regarding the convexity we calculate the second derivative of the two functions.

=(1-a) Zqu(bt)(x —b5) + 20(2' — s).
() =2(1 —a)+2a =2.

Thus, we obtain dQQ ST efx) = 2T and dd2 e(z) = 2(T+1) > 2T. As aresult we

can get 1) = 5=. We have already showed that the difference 33/ ¢, () — 321, ei(x) =
cr(z) is 2- Llpschltz Hence, we have

1
Tz < =,
27— 37| < =

The third step is to find how 3,_, ¢;(z') and mingeo,1] ST a(x) =S e(aT) are
related. We will use the method of induction to show that

T

th( ") < min c(x).

z€(0, 1] -
At t =1 we clearly have ¢;(z') < mingepqy ().
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Let us suppose that at 7 it holds that 37, ¢,(7") < mingeo,1] ST ax). At T +1
we can break the sum of costs into the cost of the last round and the sum of the rest
of the costs which is bounded by induction. If instead of the best fixed opinion for the
cumulative costs the agent expresses opinion x? !, then the sum of costs from 1 until
T increases. Formally, we have

T+1 T
D (@) <er(@) + ) al@)
t=1 t=1
T
=cp(z") + mren[(l)% ci(x)
T+1
== Ct(i'T)
t=1

T

T T
Z ct(x) — min a(z) < Z |zt — 2441| = Hr,
t=1 =1 t=1

where Hrp is the T-th harmonic number and it is known that Hy = O(logT'). Subse-
quently, we conclude that the Follow-The-Leader algorithm is no-regret.
O

5.5 Convergence to the Unique Equilibrium point

If the equilibrium of the game is unique because strong diagonal concavity holds, accord-
ing to 4.5 we have a continuous time dynamic system that converges to it. A question
that occurs is whether this property can be extended to a discrete time dynamic, that
would converge to the Nash equilibrium of the game. Apart from the negative definite-
ness of the matrix (G(x,r) + G(x,r)7), for the discrete equivalent we will need an extra
condition that signifies how much the strategies can move at each step.

In order to translate these conditions in the setting of coevolutionary games we need
to determine the vector

(1—a1) Zj;él q1j(X-1)z; + @181 — 21
(1 - Oén> Zj;én qnj(X*TL)mj + apS, — Ty,
Our goal creating this dynamic is to make the norm of g(x,r) equal to zero as

time progresses, because the unique Nash equilibrium of the game is simultaneously the
unique minimizer of ||g(x,r)|. Let

£ = 3 llgtx, )P
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be the function we attempt to minimize. Then by the definition of the Jacobian matrix
we obtain

Vf(x) = Gx, 1) g(x,1).
We assume that the function f is L-smooth, i.e. it holds that
L
Fy) < FE)+ VI (y =%) + Slly —x[*

The follow the leader update rule in this game is

t 1
t+1 _ 2t
Tt + 1—04z E i x + ;85|
(A t 1 Z t 1 ( jiij

which can also be written as

1
Xt+1—X —1——9( )

which is the gradient descent algorithm with step size % From the first update rule we
can see that at any round the opinions remain in [0,1]. In this case, we show that if
all the players choose their strategies according to this update rule their strategies will
converge to the unique Nash equilibrium of the game.

Theorem 5.3. If f(x) is L-smooth and G(x,r)+ G(x,t)T is negative definite, then the
opinion vector X' produced by the update rule

1
xt = x4 Eg(xt_l)
converges to the unique Nash equilibrium.

Proof. Because f is L-smooth we obtain

P < ¢+ VA =) 4 P

= P + VI (o) 4 H%go&-% "
= A 4 gl TG gl )+ o o)

Due to the fact that G(x,r) + G(x,r) is negative definite for any x in S, there exists a
positive constant m such that

9(x,1)7(G(x,r) + G(x,1)T)g(x,x) < —m |lg(x. )|
Given that g(x,r)"G(x,1)g(x,r) = 39(x,1)" (G(x,r) + G(x,1)")g(x,1), it holds that

L

(x"1) + (——+—)f(xt_1)-

FO) < £ = S labe )+ 5 o)
/ 2t 212
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Let a be a constant less than m, for example 3. By the time ¢ becomes at least

L_ we have that -2+ t% < —%. We denote that time by 7. As a result, we obtain

J(x) < f(x) -

(67

?f(xt_l)

= S,
O

The proof above is general for any game that satisfies the conditions, as long as there
is a way to ensure that the strategies that result from the dynamic will remain in the
feasible strategy set.

5.6 Conditions for Diagonal Strict Concavity

In order to apply the result of the previous section we want to determine a set of
conditions of the weight functions that are sufficient for proving that diagonal strict
concavity holds in the game we are interested in. In fact, the definition of the diagonal
strict concavity states that for every pair of distinct opinion vectors x*, X we have

(x" = %) (9(%) - 9(x)) > 0.
If we substitute ¢ with its components, then we equivalently obtain

n

Do —m) Y (af - 31— ) <Z(>_<—i)9fj - Qij(x*—i)x;> > 0.

i=1 i=1 j#i i
We now define a weight matrix Q(x) of the game, such that
o~ { e
(1 = ai)gi(x=i), ifi#j
Therefore, the condition of diagonal strict concavity is written as
I = %12 > (" - %)TQE)X — (X — )TQR)X
or equivalently
I = x[2 > (x —R)TQx)(x" —%) + (x — )T (Qx) — QR (5:2)

This condition is very similar to the condition that ensures the convergence of the FJ
model if we consider that the second term of the right side is very small, which means
that the weight functions are close between the two opinion vectors. This formally is
stated in the conditions
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L QKx") — Q)| < 7lx* — ]|
2. |Qx)|| < p, for any x € [0,1]"

where v and p are positive constants.
By condition 1 we obtain (x* — x)7Q(x*)(x* — x) < p||x* — x||*. Moreover, by the
Cauchy-Schwartz inequality and the condition 2 we have

(x" = %)"Q(x") — Q)x| <[lx" —x|[|(Q(x") — Q(x))x)l|
<[x" = x|[|Q(x") = QE)II[IxI]
<yllx" —x[*vn

As a result, if p+~y+/n < 1, then the inequality 5.2 holds and the equilibrium of the
game is unique.

5.7 Open Problems

In this section we mention a few immediate questions that remain unanswered. The first
one, that would complete our initial efforts, would be to find a class of weight functions
or even a specific one that satisfies the conditions of theorem 5.3. Granted this is
realized, then we would have a subset of coevolutionary opinion formation games that
have a dynamic that converges to a Nash equilibrium. However, it is also interesting to
study the case where more than one Nash equilibria exist. One possible direction would
be to check whether local convergence for best response holds for differential functions
as well as if there is a connection between the areas where the matrix G(x) + G(x)7T is
negative definite and local convergence.
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