
Hybrid Diesel-Electric Marine Propulsion Plant Control with

Neural Networks

Stergios Evangelos Bachoumas

Diploma Thesis

School of Naval Architecture and Marine Engineering
National Technical University of Athens

Supervisor: Assistant Prof. George Papalambrou

Committee Member : Prof. N. Kyrtatos

Committee Member : Associate Prof. Ch. Papadopoulos

2019 October

2

Acknowledgements

Ever since I was a little kid, my parents wanted the best for my education and made truly
such great sacrifices to get me to the point that I am today. So from the bottom of my
heart I want to thank them for their continuous support and for pushing me to the right
directions at the right times.

The present work is the final requirement for the fulfilment of my studied and it was
completed at the Laboratory of Marine Engineering (LME) at the School of Naval Architec-
ture and Marine Engineering of the National Technical University of Athens (NTUA), under
the supervision and instrumental help of Assistant Professor Dr. George Papalambrou.

I want to emphasize how grateful I am to my instructor, for giving me the opportunity
and the motivation to work on this subject that deeply interested me even before the start of
this assignment and also for devoting his time into helping me achieve a very good outcome
of which I am proud.

Furthermore I want to thank Professor Nikolaos Kyrtatos and Associate Professor Chris-
tos Papadopoulos for evaluating this assignment and for being a member of the audit com-
mittee at the day of the presentation.

At this point I want to sincerely express my heartfelt gratitude to PhD Candidate
Nikolaos Planakis for his crucial assistance and wish him the best for his remaining and all
his future endeavours.

With this chance, I wish to express my gratitude to friends for their support during
these years of my studies, and to my fellow students with whom we had great cooperation
and they were the driving force I needed to achieve better results.

Last but not least, I want to make a note of gratitude for everyone, that directly or
indirectly, lent a hand in this venture. This accomplishment would not have been possible
without them. Thank you.

3

4

Abstract

The purpose of this assignment is to develop a machine learning framework (LME-NNPower)
based on neural networks that can be used for the online quasi-optimal control of HIPPO-2,
the Hybrid Diesel Electric Marine Propulsion Plant of the Laboratory of Marine Engineer-
ing (LME).

Initially we discuss the inner workings of the predictive stage of the framework. To be
more precise in this stage of the assignment a neural network was created for the classifica-
tion of the near future Cruising Trend (NN-CRT) into six possible classes, by using features
from the Pitch Angle Operation Profile. Then another neural network was employed for
the prediction of the mid term Pitch Angle Pattern (NN-PAC) into five possible classes
(patterns). Yet again this is done by extracted different features from the Pitch Angle
Operation Profile.

Afterwards we examine the second stage of the framework, the control stage. Here for
every pitch pattern we create a set of regression neural networks. One network (NN-ENG)
is responsible for the torque command to the diesel engine and the other (NN-MOT) to
the electric motor’s command. With this approach we are able to emulate optimal control
that is based on a Nonlinear Model Predictive Control scheme that was studied in previous
work.

Finally a simulation scheme of the developed framework was established in the environ-
ment MATLAB Simulink. The simulations cover some crucial operation profiles and the
framework was tested for it’s ability to emulate the original NMPC controller and therefore
conduct an effective power split between the two main drivers of a diesel-electric marine
power plant.

5

6

List of Figures

1.1 Wärtsilä HY Hybrid Modules . 21

2.1 HIPPO-2 . 24

2.2 Caterpillar C9.3 Loading Diagram . 25

2.3 Caterpillar C9.3 Available Ratings . 25

2.4 Controllable Pitch Propeller Model in MATLAB Simulink 28

3.1 An illustration of the biological neuron with some of its biological features. 29

3.2 Rosenblatt’s Perseptron. The basic elements consisting the perceptron’s
model are the inputs, the weights, the net input, the activation function
and the output. 33

3.3 The convergence of the perceptron learning algorithm showing data from
two classes (red and blue) in a two dimensional feature space (φ1, φ2). ([9,
Bishop 2006]) . 34

3.4 Network diagram for the two layer neural network. ([9, Bishop 2006]) . . . 36

3.5 Geometric view of the error function E (w) as a surface on the weight space.
([9, Bishop 2006]) . 41

3.6 Illustration of the calculation of δj . ([9, Bishop 2006]) 43

3.7 Bias and Variance using bulls-eye diagram. 46

3.8 Underfitting, Overfitting and Optimal Generalization in Regression and Clas-
sification. 47

3.9 The enhanced holdout cross validation technique ([12, Raschka 2015]). . . . 49

3.10 The k-folds cross validation technique ([12, Raschka 2015]). 49

3.11 TensorFlow toolkit hierarchy. (Source: Google) 51

4.1 Considered Operation Pitch Angle β Patterns 56

4.1 Considered Operation Pitch Angle β Patterns (cont.) 57

4.1 Considered Operation Pitch Angle β Patterns (cont.) 58

4.1 Considered Operation Pitch Angle β Patterns (cont.) 59

4.2 Pearson Correlation Matrix of Pitch Angle β Patterns 60

4.3 The new Pitch Angle β Pattern 5 . 61

7

8 LIST OF FIGURES

5.1 LME-NNPower: The Proposed Machine Learning Framework. 65

5.2 Segmentation Algorithm for the step-by-step overlapping time frame. 66

5.3 Number of hidden layer neurons vs accuracy for NN-PAC with 1 hidden layers. 68

5.4 Number of hidden layer neurons vs accuracy for a NN-PAC with 2 hidden
layers . 69

5.5 Architecture of NN-PAC. 69

5.6 NN-PAC Prediction accuracies for different time parameters. 70

5.7 NN-PAC: The rise in accuracy of the network during training. 71

5.8 NN-PAC: The reduction of the cost function during training. 71

5.9 NN-PAC Performance Predictions Visualization on a custom Operation Pro-
file CPC1 . 72

5.10 Number of hidden layer neurons vs accuracy for NN-CRT with 1 hidden layer 75

5.11 Architecture of NN-CRT. 75

5.12 NN-CRT Prediction accuracies for different time parameters. 76

5.13 NN-CRT training process evaluation metrics. 77

5.14 Architecture of the energy management Neural Networks Operation Pitch
Angle β Patterns . 79

5.15 Power split comparison between NMPC and Neural Network for Pitch Angle
β Pattern 1 . 82

5.16 Power split comparison between NMPC and Neural Network for Pitch Angle
β Pattern 2 . 83

5.17 Optimal Power split comparison between NMPC and Neural Network for
Pitch Angle β Pattern 3 . 84

5.18 Optimal Power split comparison between NMPC and Neural Network for
Pitch Angle β Pattern 4 . 85

5.19 Optimal Power split comparison between NMPC and Neural Network for
Pitch Angle β Pattern 5 . 86

6.1 NN-PAC: The reduction of the cost function during training. 89

6.2 Pitch Angle Setting and developed Vessel Speed during acceleration simulation 90

6.3 Pitch Angle and Cruising Trend Predictions during acceleration simulation 91

6.4 Diesel Engine and Electric Motor Torque during acceleration simulation . . 92

6.5 Engine Speed and Battery State of Charge during acceleration simulation . 93

6.6 Pitch Angle Setting and developed Vessel Speed during deceleration simulation 94

6.7 Pitch Angle and Cruising Trend Predictions during deceleration simulation 95

6.8 Diesel Engine and Electric Motor Torque Control during deceleration simu-
lation . 96

6.9 Engine Speed and Battery State of Charge during deceleration simulation . 97

6.10 Pitch Angle Setting and developed Vessel Speed during simulation 98

LIST OF FIGURES 9

6.11 Pitch Angle and Cruising Trend Predictions during simulation 99

6.12 Diesel Engine and Electric Motor Torque Control during simulation 100

6.13 Engine Speed and Battery State of Charge during simulation 101

6.14 Pitch Angle Setting and developed Vessel Speed during step accelerations
simulation . 102

6.15 Pitch Angle and Cruising Trend Predictions during step accelerationssimulation103

6.16 Power split comparison between NMPC and Neural Network 106

A.1 The Cassiopeia GUI Program. 116

A.1 The Cassiopeia GUI Program (cont.) . 117

A.1 The Cassiopeia GUI Program (cont.) . 118

10 LIST OF FIGURES

List of Tables

2.1 The characteristics of the internal combustion diesel engine 24

2.2 The characteristics of the electric brake . 26

2.3 The characteristics of the electric motor/generator 26

3.1 The Tensorflow Toolkit Depth . 52

4.1 The statistics of the 7 Controllable Pitch Propeller β angle Patterns 54

5.1 The selected features for the Prediction of Pitch Propeller β angle Patterns 67

5.2 Prediction Accuracy of NN-PAC over 5 test pitch angle patterns 72

5.3 The selected features for the Prediction of the Cruising Trend 74

5.4 The six classes of Cruising Trend . 74

5.5 The acquired features from the simulation. 78

5.6 Testing Accuracy of NN-ENG and NN-MOT over the 5 pitch angle patterns 80

5.7 Testing Accuracy of NN-ENG and NN-MOT over the 5 pitch angle patterns 80

6.1 Index of simulations which were conducted 88

11

12 LIST OF TABLES

Contents

List of Figures 7

List of Tables 11

1 Introduction 17

1.1 The Hybrid Propulsion System . 19

1.2 The Need for Intelligent Engines . 20

1.3 Literature Overview . 21

1.4 Motivation and Structure of the study . 22

2 The Experimental Facility 23

2.1 HIPPO-2 . 24

2.2 Propeller Load Simulation Model . 27

3 Neural Networks Theory 29

3.1 Artificial Neural Networks . 30

3.2 Statistical Modelling Concepts . 31

3.2.1 Regression Concept . 31

3.2.2 Classification Concept . 32

3.3 Rosenblatt’s Perceptron . 33

3.4 Neural Network and Training . 35

3.4.1 Activation Functions and Error Functions 37

3.4.1.1 Regression Problems . 37

3.4.1.2 Classification Problems . 39

3.4.2 Parameter Optimization with Backpropagation 40

3.5 Bias-Variance Tradeoff . 44

3.6 Validation Methods . 48

3.6.1 Holdout Cross Validation Method 48

3.6.2 K-fold Cross Validation Method . 48

3.7 Neural Networks With Python and Tensorflow 51

13

14 CONTENTS

4 Data for Cruising Pattern Prediction 53

4.1 Cruising and Propeller Pitch Angle Patterns 54

5 Machine Learning Framework 63

5.1 The Framework Strategy . 64

5.2 The Prediction Stage . 65

5.2.1 Pitch Angle Pattern Prediction . 65

5.2.1.1 Features Extraction . 66

5.2.1.2 Neural Prediction Training 67

5.2.2 Cruising Trend Prediction . 73

5.2.2.1 Motivation . 73

5.2.2.2 Features Extraction . 73

5.2.2.3 Neural Prediction Training 74

5.3 The Control Stage . 78

5.3.1 Data Creation Phase . 78

5.3.2 Engine and Electric Motor Torque Control 78

5.3.3 Training Analysis . 79

6 Results of the Framework 87

6.1 Framework Set-Up . 88

6.2 Marine Application: Acceleration and Steady 90

6.2.1 Simulation Results . 90

6.2.2 Simulation Analysis . 90

6.3 Marine Application: Deceleration . 94

6.3.1 Simulation Results . 94

6.3.2 Simulation Analysis . 94

6.4 Marine Application: Acceleration and Deceleration 98

6.4.1 Simulation Results . 98

6.4.2 Simulation Analysis . 98

6.5 Marine Application: Step Acceleration Comparison with NMPC 102

6.5.1 Simulation Results . 102

6.5.2 Simulation Analysis . 102

7 Conclusions and Recommendations 107

Bibliography 111

Appendices 113

CONTENTS 15

A Cassiopeia GUI 115

16 CONTENTS

Chapter 1

Introduction

The shipping industry fills a very important role in the modern world. It is regarded as one
of the fundamentals of World Trade and Globalisation, as it is the engine that transports
90% of the global traded goods. Nevertheless the maritime industry is not invulnerable to
the technological changes and it is projected that in the next decade the new advancements
in technology will completely transform shipping.

Over the past two decades constructive effort has been rising exceptionally for higher
efficiency and optimum performance in the maritime industry. While this endeavour is done
with the purpose of keeping this leading position in the trading market, it has transformed
modern ships into floating factories. A ship nowadays contains numerous machinery equip-
ment such as engines, electronic networks and complex piping systems. All this machinery
needs to be optimised and monitored to avoid hazardous outcomes. A lot of sources address
this as a strategic business decision to maximise profits by reducing the energy consumption
and loses. On the other hand there is a shift of humanity towards “greener” solutions in
order to reduce the environmental impact of human industrial activities as a whole. In the
context of this situation, the maritime industry must comply to increasingly stricter regu-
lations, imposed by the legislative authorities around the industry. This desire has brought
the operation of ships under examination with the aim to reduce the exhaust gases emissions
primarily carbon dioxide (CO2), nitrogen oxides (NOx) and sulphur oxides (SOx).

Since the November of 1973, the International Maritime Organization (IMO) has adopted
a convention for the prevention of pollution from ships called MARPOL. But the specific
Annex VI for the Prevention of Air Pollution was only added in 2005. These regulations
are enforcing operational and design limitations to the maritime sector. An example of
these, is the limit of NOx emissions from engines that output at least 130kW and are built
after 2011. To make matters harder, even lower limits are applied in specific sea areas
of increased environmental “sensitivity”. Furthermore Chapter 4, ”Regulations on energy
efficiency for ships” of Annex VI is imposing the mandatory Energy Efficiency Design Index
(EEDI) for new ships and the Ship Energy Efficiency Plan (SEEMP) for all ships. This
efficiency index depends on the total CO2 related emissions that the ship would emit in
order to complete the required transportation work. The ultimate goal is for ships con-
structed in 2030 to have a 30% reduced EEDI compared to 2013. Despite the aim of this
regulation to increase the hull efficiency, the general trend is to satisfy it by increasing the
efficiency of the propulsion plant. The vast majority of ships nowadays use diesel engines
as their main propulsion drive power. Admittedly diesel engines played an integral role in
the technological growth of humanity, but they are heavily pollutant machines that have
already reached their peak thermal capabilities. Thus in order to cope with the increasing

17

18 Chapter 1. Introduction

aforementioned reductions more sophisticated technological advancements are needed for
the future.

According to [1], a plethora of techniques exists regarding the task of reducing emissions
from the operation of marine engines. This is done either by aiming towards increasing the
efficiency of the hull and propeller or that of the installed power plant. The band of solutions
that target the second proposal promise to reduce both emissions as well as fuel consumption
by affecting directly or indirectly the existing diesel engines. Some direct techniques are
the Exhaust Gas Recirculation System (EGR), the ’mini-sac’ and the slide-type fuel valves
introduced by MAN B&W Diesel and systems like intake air humidification. The most
prevalent indirect technique is the Selective Catalytic Reduction System (SCR) like the
SINOx by Siemens. Furthermore alternative fuels (e.g. LNG and biofuels) and renewable
sources of power have also been proposed. Moreover a lot of progress has been shown in
the field of batteries making the full battery depended ship, a viable solution for the future.
A very interesting solution is that of a Hybrid Propulsion and Energy Conversion system.

1.1 The Hybrid Propulsion System 19

1.1 The Hybrid Propulsion System

The Hybrid Propulsion system is developed to take advantage of the best from both worlds
of propulsion, conventional thermal, like diesel, and electric to make a system better suited
also for these types of vessels that have a flexible power demand. This is done by connecting
an electrical motor and a diesel engine to the same gearbox giving the system a high degree
of redundancy and flexibility. Optimised fuel economy in all operational modes and reduced
investment cost compared to a full diesel electrical system is also achieved.

The electric motor and the directly connected diesel engine can run the propeller sepa-
rately or in parallel. Typical operation for pure diesel mechanical setup is steaming. Typical
operation for electrical set-up is transit at lower speed and dynamic positioning(DP) op-
eration. Parallel boosting operation between mechanical and electrical is typically heavy
towing, fast steaming and anchor handling operations.

A hybrid propulsion system can be realised with both azimuths and conventional pro-
pellers, but for many reasons the best layout is with conventional propellers and controllable
pitch control. By the use of the conventional and well proven propeller system, it is possi-
ble to combine electrical and mechanical operation of the propeller. And, full advantage of
both variable speed control and variable pitch can be taken.

Summarising the advantages of the Hybrid propulsion system’s properties compared to
conventional systems as follows:

• Improved redundancy: engines/gen-sets can be decoupled without major consequences
to the operation of the vessel.

• Shaft generator/main engine can be operated independent of main gear.

• Partly improved utilisation of cargo space and more flexible overall ship design com-
pared to conventional design. Shaft line is still there but the physical size of the main
engine will be reduced and the auxiliary engine room can be located freely.

• Optimised fuel economy in all modes of operation, also transient, especially for vessels
with fluctuating load demands. This is due to the optimised utilisation of the diesel
engines and elimination of zero-pitch losses of propellers.

• Emissions are reduced due to the reduced fuel consumption

• Investment cost is mostly equivalent to a conventional system, but of course depending
on layout and ratings.

The key factor in order to achieve respectable higher efficiency is the control strategy.
For example, studies have shown that a 10− 35% fuel and emission reduction is possible in
battery deployment and intelligent use of DC configurations by implementing appropriate
control strategies [2]

20 Chapter 1. Introduction

1.2 The Need for Intelligent Engines

Smart shipping is the inclusive term coined by the industry to describe the digital technolo-
gies available for determining and optimising operational efficiency. Tightening margins and
the affordability and availability of computing power have met to form opportune conditions
for the adoption of smart shipping: weather-routing, voyage planning, fuel consumption,
emissions control and predictive maintenance are popular options for improved commercial
efficiency as well as meeting new regulatory standards.

The first intelligent engine in the maritime world was delivered in October-1998. Since
then a lot of things have changed so it’s only logical that there is again a spark of interest
for the development of even smarter engines that use state-of-the-art technology.

Today the world is in a need of engines that can cope up with the stringent emission
norms and also the higher demands for robust, reliable, smart and low cost operations.
To achieve the above requirements, a whole new generation of engines is being developed
with a comprehensive use of electronics, hardware and software in both two and four stroke
engines known as “Intelligent Engines”.

One of the greatest benefit of an intelligent engine is that it contains a central advanced
control system that we can describe as the brain of the engine. This system is responsible
for constantly monitoring and evaluating the working performance of the engine so that it
maintains the operating parameters at an optimal level. These actions lead to unmatched
performance levels at every working condition. The ultimate goal of the system is to achieve
lower operational costs and it does that emphatically, so even if the initial cost of such an
engine is higher the investment will eventually pay off.

Another great feature of an intelligent engine is the incorporation of reliable smart
diagnostics like predictive alarms for all types of malfunctions. These diagnostics assist
the on-board crew into acting predictively and not reactively, a very important aspect of
hazard identification and prevention. Furthermore, in the long run, this feature helps a lot
in reducing the working overhead and stress not only of the crew but also of the offshore
office people because the engine’s performance is “as new” for its lifetime.

1.3 Literature Overview 21

1.3 Literature Overview

During recent years there is an expansion in the number of hybrid marine applications.
These systems come with increased complexity due to the extra degrees of freedom that
they have. Nonetheless, control strategies for marine applications are not very advanced and
the control systems that are used are mostly based on classic control logic, e.g. rule based
control according to [2] or heuristic rules/fuzzy logic for control algorithm development
according to [3]. However, research has shown that conservative control strategies fail
to provide a significant fuel and emission reduction when they are employed to control
advanced system arrangements.

Figure 1.1: Wärtsilä HY Hybrid Modules

Hybrid propulsion has many configurations, two of them that can be seen in Fig. 1.1.
The most prevalent configuration has a conventional main propulsion unit, such as a diesel
engine and the electric motor is directly connected to the main shaft line. The theory
behind this arrangement is for the diesel engine to supply the needed propulsive power in
higher speeds and for the electric motor to assist in lower speeds where the diesel efficiency
is critically low.

Another interesting application which refers to parallel operation of the electric motor
and diesel engine is presented in [?], which the motor assists the engine so as to maintain
a specific air-fuel ratio λ reference. In that way, during transient operations, the thermal
loading of the engine is decreased and consequently the NOx emissions drop. In [4], the
above is implemented via Model Predictive Control.

A different implementation besides diesel engines and diesel generators, is the usage
of batteries as secondary power source. In this way, partial and low load are handled by
the electric part with high efficiency while the diesel part manages the higher loads. Two
approaches are conceived for this scheme. The first is referred as heuristic control strategy,
in which the battery charge is provided offshore. In [5], a rule based strategy which greatly
reduce the fuel consumption for hybrid harbour tugs is suggested. The other approach
suggests that the battery should be recharged during the operation by the primary mover.
According to [5], an equivalent fuel consumption strategy is proposed which aims to drop
the fuel consumption, by applying linear programming. In [6] a NMPC control scheme of
the aforementioned approach is implemented thoroughly.

22 Chapter 1. Introduction

1.4 Motivation and Structure of the study

In the present study, we investigate the implementation of a control strategy for a hybrid
diesel-electric ship propulsion plant with the use of Artificial Neural Networks (ANNs)
that we based on a Nonlinear Model Predictive Control Scheme. The control strategy is
examined with respect to minimising the produced emissions during transient loads.

More specifically, the developed framework is employed for the closed-loop control of a
simulation model that is based on the Hybrid powertrain HIPPO-2 housed in the Laboratory
of Marine Engineering (LME) of the National Technical University of Athens (NTUA).

The framework comprises of two stages. The prediction stage and the control stage.
The prediction stage contains two neural networks, one that predicts the Current Pitch
Angle Pattern and another one that predicts the Cruising Trend of the Engine. Base on
the pitch angle pattern prediction the control stage kicks in with a set of neural networks
that are employed to emulate Nonlinear Model Predictive Control (NMPC) a technique
that has been used in the past to great success. Five pitch angle patterns exist, therefore
five sets of neural networks are used.

The motivation of this study comes from the fact that MPC solves a constrained
quadratic-programming (QP) optimisation problem in real time based on the current state
of the plant. Since MPC solves its optimisation problem in an open-loop fashion, there
is the potential to replace the controller with a trained deep neural network. Doing so is
an appealing option, since evaluating a deep neural network can be more computationally
efficient than solving a QP problem in real-time.

The structure of the thesis is as follows: Firstly a brief description of the test bed
HIPPO-2 and the previously developed simulation model are introduced in Chapter 2.
Then a theoretic background regarding neural networks is presented in Chapter 3. Next,
in Chapter 4 we cover the used data for our experiments as well as the data pre-processing
techniques that we used to improve the overall performance of the proposed method. Subse-
quently in Chapter 5 we the developed framework of neural networks as well as the training
results from all the explored different models. In Chapter 6 the results from the simulated
control scheme are presented and finally in Chapter 7 we provide our conclusions and pro-
pose future work in order to improve the framework as well as different possibilities that
have not been studied here.

Chapter 2

The Experimental Facility

In this chapter we present the experimental hybrid powertrain facility HIPPO-2, based on
which we created the simulation environment where the final tests of the presented control
method took place.

The powering units of the facility are the Internal Combustion Engine (ICE) and the
Electric Motor/Generator (EMOT), while the load torque is applied by the Electric Motor
(EB). For this study we incorporated a Virtual Battery (B) which was simulated in parallel
during the experimental test via the control platform. The Neural Network approach of this
thesis is based on a Model Predictive Control (MPC) scheme that requires models for the
aforementioned components so as to simulate and solve the optimization control problem.
These models can be found in Karystinos [6].

23

24 Chapter 2. The Experimental Facility

2.1 HIPPO-2

The HIPPO2 Fig. 2.1 contains:

Figure 2.1: HIPPO-2

• an internal combustion engine with the following characteristics:

Table 2.1: The characteristics of the internal combustion diesel engine

Caterpillar C9.3 Tier IV

Power(MCR) 261 kW at 1800-2200 rpm

Peak Torque 1596 Nm at 1400 rpm

Mass Inertia 12.047 Kg ·m2

The load diagram of the engine can be seen in 2.2, emphasizing at Rating C where
the engine is operating. According to the needed rotational speed and it’s deviation
from the real time speed that is measured from the appropriate sensor, the Electronic
Control Unit (ECU) of the engine controls the amount of the injected fuel into the
cylinders with a closed loop system, using a controller based on engine maps.

2.1 HIPPO-2 25

Figure 2.2: Caterpillar C9.3 Loading Diagram

Figure 2.3: Caterpillar C9.3 Available Ratings

The Caterpillar C9.3 Engine is a Tier IV engine with respect to the emissions stan-
dards and therefore it is following the strictest rules regarding that matter. To achieve
this level of emissions reduction, it incorporates systems like Selective Catalytic Re-
duction (SCR) that spray urea (ammonia) on the exhaust gases to reduce NOx,
Exhaust Gas Recirculation (EGR) that returns some of the exhaust gas mass back
into the cylinder in order to reduce the combustion temperature of the engine and
therefore to further reduce NOx emissions and finally it also has Diesel Particulate
Filter (DPF) for soot (mass of impure carbon particles resulting from the incomplete
combustion process)

• an electric brake with the following characteristics:

The electric brake is installed to simulate the load of the propeller in real life situations.
The load of the propeller can be broken into a hydrodynamic part and an inertial one.

26 Chapter 2. The Experimental Facility

Table 2.2: The characteristics of the electric brake

ABB 315kW Low Voltage Cast Iron Induction Motor

Power(MCR) 315 kW at 1488-2200 rpm

Peak Torque 2021 Nm at 1488 rpm

Moment of inertia 6.9 kgm2

The hydrodynamic is the torque needed from the propeller in order to keep the needed
rotating speed and the thrust. The inertial is the torque that the propeller needs in
order to catch up to the rotational speed of the shaft system with the addition of
frictional losses from the gearing system and the rest of the shaft system of the ship.
The characteristics of the electric brake can be seen in Table.2.2.

• and electric motor/generator unit with the following characteristics:

Table 2.3: The characteristics of the electric motor/generator

ABB 90kW Low Voltage Cast Iron Induction Motor

Power(MCR) 90 kW at 1483-2200 rpm

Peak Torque 579 Nm at 1483 rpm

Moment of inertia 1.73 kgm2

The electric motor/generator can be used when the required torque by the brake is
more than what the diesel engine can give on it’s own, or it can be used when we
need to store energy for future use. The motor/generator can be seen at Table.2.3.

The diesel engine, the brake and the motor/generator are serially connected and the
range of rotation speed is from 600 rpm to 2200 rpm..

The output speed and torque for the brake and for the electric motor are controlled
by the ABB drives. The type of ABB drives that is being used for the brake and for the
motor is the ACS800. Using the ACS800 and the CANopen communication protocol we
can collect the necessary data and therefore effectively control the brake and the motor.

Furthermore there is a torque meter between the brake and the motor which is used to
measure the rotational speed of all three connected machines and the torque on the shaft
between the brake and the motor.

2.2 Propeller Load Simulation Model 27

2.2 Propeller Load Simulation Model

In this thesis for validation purposes, we used the previously developed tug vessel model
with a Controllable Pitch Propeller (CPP) from [7]. In Fig. 2.4 we show this model in the
MATLAB Simulink environment.

The purpose of this high fidelity simulation environment is to provide a base for sim-
ulating loads on the HIPPO-2 hybrid testbed. It encompasses a ship model for the surge
movement of a tug vessel, a reduction gear model, a controllable pitch propeller model as
well as a probabilistic unidirectional wave model to fill the role of the environmental dis-
turbance. Using this system we can only simulate loading conditions of tug vessels as the
power capabilities of the testbed are limited.

28 Chapter 2. The Experimental Facility

F
igu

re
2
.4:

C
on

trollab
le

P
itch

P
rop

eller
M

o
d

el
in

M
A

T
L

A
B

S
im

u
lin

k

Chapter 3

Neural Networks Theory

In this chapter we will introduce some basic theory regarding the artificial neural networks
ANNs.

Artificial Neural Networks are used as statistical models and therefore we will mention
some basic statistical concepts that are going to be prevalent in the whole study. Afterwards
we will briefly describe the predecessor of ANNs, the Perceptron and finally we will describe
the main constituents of a neural network from architecture to functionality and training.

Figure 3.1: An illustration of the biological neuron with some of its biological features.

29

30 Chapter 3. Neural Networks Theory

3.1 Artificial Neural Networks

The most important activity of a “developing” neuron is its ability to adapt to the sur-
rounding environment and in the same way that this is essential to the proper functioning
of biological neurons as information-processing units in the human brain, so is with neural
network made up of artificial neurons. In its most general form, a neural network is a
machine that is designed to model the way in which the brain performs a particular task or
function of interest; the network is usually implemented by using electronic components or
is simulated in software on a digital computer. To achieve good performance, neural net-
works employ a massive interconnection of simple computing cells referred to as “neurons”.
According to Haykin [8] the following definition of a neural network viewed as an adaptive
machine:

A neural network is a massively parallel distributed processor made up of simple pro-
cessing units, which has a natural propensity for storing experiential knowledge and making
it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Inter-neuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.

3.2 Statistical Modelling Concepts 31

3.2 Statistical Modelling Concepts

In the present study we face two different problems where in order to solve them we will
employ neural networks that apply two different machine learning concepts. The concept
of classification and regression. While every machine learning problems is in it’s core a
regression problem, we find it instructive to make the distinction clear.

3.2.1 Regression Concept

In statistical modelling, regression analysis is a set of statistical processes for estimating
the relationships among variables. It includes many techniques for modelling and analysing
several variables, when the focus is on the relationship between a dependent variable and
one or more independent variables (or ’predictors’). More specifically, regression analysis
helps one understand how the typical value of the dependent variable (or ’criterion variable’)
changes when any one of the independent variables is varied, while the other independent
variables are held fixed.

Regression analysis is widely used for prediction and forecasting, where its use has
substantial overlap with the field of machine learning. Regression analysis is also used to
understand which among the independent variables are related to the dependent variable,
and to explore the forms of these relationships. In restricted circumstances, regression
analysis can be used to infer causal relationships between the independent and dependent
variables. However this can lead to illusions or false relationships, so caution is advisable.

A regression model predicts continuous values. For example, regression models make
predictions that answer questions like the following:

• How many dBs is the self-noise that is generated by an aerofoil reacting to it’s own
turbulent boundary layer at high Reynold Numbers?

• What is the energy efficiency of a building as a function of its parameters?

• What is the fuel consumption of a ship’s engine based on past reports?

The two most common metrics for evaluating a regression model are the Mean Squared
Error (MSE) measure and the R2 measure. If xi is the truth and x̂i is the model output,
for sample i, the error is given by:

εi = xi − x̂i (3.1)

then the Mean Squared Error has the following definition:

MSE =
1

n

n∑
i

ε2i (3.2)

and R2:

R2 = 1− MSE

V ar(x)
(3.3)

32 Chapter 3. Neural Networks Theory

In a narrower sense, regression may refer specifically to the estimation of continuous
response (dependent) variables, as opposed to the discrete response variables used in classi-
fication [9]. The case of a continuous dependent variable may be more specifically referred
to as metric regression to distinguish it from related problems [10].

3.2.2 Classification Concept

When working with statistics and other areas where large amounts of data are collected and
analysed, it is often necessary to sort the data points into sub-groups. There are several
different methods of creating a digital classification machine or classifier, a neural network
is one of them.

The common ground for all classifiers is that they work by supervised learning, where
the classifier is trained on data with known outcomes and then is used for inference on
similar but unseen data. The accuracy of the network is one of the available metrics for
evaluating it and it describes the fraction of predictions our model got right. Formally,
accuracy has the following definition:

Accuracy =
Correct Predictions

Total Predictions
(3.4)

Another metric that can be used is precision which attempts to answer the following
question: What proportion of positive identifications was actually correct?. Precision is
defined by:

Precision =
True Positives

True Positives+ False Positives
(3.5)

In the case of multiclass logistic regression (multi-classification) we can create a cross
precision confusion matrix.

In summary a classification model predicts discrete values that are used as labels of mu-
tually exclusive sub categories(classes). For example, classification models make predictions
that answer questions like the following:

• Is a certain cargo vessel risky for insurance based on its characteristics?

• Is the auto-landing condition of a spacecraft preferable or should the pilot switch to
manual?

3.3 Rosenblatt’s Perceptron 33

3.3 Rosenblatt’s Perceptron

One very simple but very important linear discrimination model is the perceptron of Rosen-
blatt (1958), which occupies an important place in history of pattern recognition algorithms.
It corresponds to a two-class model in which the input vector x is first transformed using
a fixed non-linear transformation(function) to give a feature vector φ(x), and this is then
used to construct a generalized linear model of the form:

y(x) = f(wTφ(x)) (3.6)

Where the non-linear function f(·) is given by a step function of the form:

f(a) =

{
+1 a ≥ 0

−1 a < 0
(3.7)

Figure 3.2: Rosenblatt’s Perseptron. The basic elements consisting the perceptron’s model
are the inputs, the weights, the net input, the activation function and the output.

The vector φ(x) will typically include a bias component φ0(x) = 1. In a discussion of two-
class classification problems, we have focussed on a target coding scheme in which t ∈ {0, 1},
which is appropriate in the context of probabilistic models. For the perceptron it is more
convenient to use target values t = +1 for class C1 and t = −1 for class C2, which matches
the choice of activation function.

The algorithm used to determine the parameters w of the perceptron can most easily
be motivated by error function minimization. A natural choice of error function would be
the total number of misclassified patterns. However, this does not lead to a simple learning
algorithm because the error is a piecewise constant function of w, with discontinuities
wherever a change in w causes the decision boundary to move across one of the data
points. Methods based on changing w using the gradient of the error function cannot be
applied, because the gradient is zero almost everywhere.

We therefore consider an alternative error function known as the perceptron criterion.
To derive this, we note that we are seeking a weight vector w such that patterns xn in
class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2 have wTφ(xn) < 0. Using
the t ∈ {−1,+1} target coding scheme it follows that we would like all patterns to satisfy
wTφ(xn)tn > 0. The perceptron criterion associates zero error with any pattern that is
correctly classified, whereas for a misclassified pattern xn it tries to minimize the quantity
−wTφ(xn)tn. The perceptron criterion is therefore given by:

34 Chapter 3. Neural Networks Theory

EP (w) = −
∑
n∈M

wTφ(xn)tn (3.8)

where M denotes the set of all misclassified patterns. The contribution to the error asso-
ciated with a particular misclassification pattern is a linear function of w in regions of w
space where the pattern is misclassified and zero in regions where it is correctly classified.
The total error function is therefore piecewise linear.

We now apply the stochastic gradient descent algorithm to this error function.

The change in the weight vector w is then given by:

w(τ+1) = w(τ) − η∇EP (w) = w(τ) + ηφntn (3.9)

where η is the learning rate parameter and τ is an integer that indexes the steps of the
algorithm. Because the perceptron function y(x,w) is unchanged if we multiply w by a
constant, we can set the learning rate η to 1 without loss of generality. Note that, as the
weight vector evolves during training, the set of patterns that are misclassified will change.

The perceptron learning algorithm has a simple interpretation, as follows. We cycle
through the training patterns in turn, and for each pattern we evaluate the perceptron
function. If the pattern is correctly classified, then the weight vector remains unchanged,
whereas if it is incorrectly classified, then for class C1 we add a vector φ(xn) onto the
current estimate of weight vector w while for C2 we subtract the vector φ(xn) from w. The
perceptron learning algorithm is illustrated in Fig. 3.3

Figure 3.3: The convergence of the perceptron learning algorithm showing data from two
classes (red and blue) in a two dimensional feature space (φ1, φ2). ([9, Bishop 2006])

Aside from difficulties with the learning algorithm the perceptron does not provide
probabilistic outputs, nor does it generalize readily to K > 2 classes. The most important
limitation, however, arises from the fact that it is based on linear combinations of fixed
basis functions.

3.4 Neural Network and Training 35

3.4 Neural Network and Training

The linear models for regression and classification are based on linear combinations of fixed
non-linear basis functions φj(x) and take the form:

y(x,w) = f

(
M∑
j=1

wjφj(x)

)
(3.10)

where f(·) is a non-linear activation function in the case of classification and the identity
in the case of regression. Our goal is to extend this model by making the basis functions
φj(x) depend on parameters and then to allow these parameters to be adjusted, along with
coefficients {wj}, during training. There are many ways to construct parametric non-linear
basis functions. Neural networks use basis functions that follow the same form as (3.10), so
that each basis function is itself a non-linear function of a linear combination of the inputs,
where the coefficients in the linear combination are adaptive parameters.

This leads to the basic neural network model, which can be described as a series of
function transformations. First we construct M linear combinations of the input variables
x1, ..., xD in the form

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 (3.11)

where j = 1, ...,M, and the superscript (1) indicates that the corresponding parameters are

in the first “layer” of the network. We shall refer to the parameters w
(1)
ji as weights and

the parameters w
(1)
j0 as biases. The quantities aj are known as activations. Each of them is

then transformed using a differentiable, non-linear activation function h(·) to give

zj = h(aj) (3.12)

These quantities correspond to the outputs of the basis function that in the context of
neural networks, are called hidden units. The non-linear functions h(·) are generally chosen
to be sigmoidal functions such as logisticsigmoid or the tanh function. Following the basis
function equation, these values are again linearly combined to give output unit activations

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (3.13)

where k = 1, ..,K, and K is the total number of outputs. This transformation corresponds

to the second layer of the network, and again w
(2)
k0 are bias parameters. Finally, the output

unit functions are transformed using an appropriate activation function to give a set of
network outputs yk. The choice of activation function is determined by the nature of the
data and the assumed distribution of target variables and follows the same considerations
as for linear models. Thus for standard regression problems, the activation function is the
identity so that yk = ak. Similarly, for multiple binary classification problems, each output
unit activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (3.14)

36 Chapter 3. Neural Networks Theory

where

σ(a) =
1

1 + exp(−a)
(3.15)

Finally, for multi-class problems, an activation function of the below form is used

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(3.16)

which is known as the normalized exponential and can be regarded as a multi-class gener-
alization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck) (3.17)

The normalized exponential is also known as the softmax function as it represents a
smoother version of the max function because, if ak � aj for all j 6= k, then p(Ck|x) ' 1,
and p(Cj |x ' 0).

Figure 3.4: Network diagram for the two layer neural network. ([9, Bishop 2006])

We can combine these various stages to give the overall network function that, for
sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(3.18)

where a set of all weight and bias parameters have been grouped together into a vector w.
Thus the neural network model is simply a non-linear function from a set of input variables
{xi} to a set of output variables {yk} controlled by a vector w of adjustable parameters.

This function can be represented in the form of a network diagram as shown in Fig 3.4.
The process of evaluating the network function can be interpreted as a forward propagation
of information through the network.

At this point we can absorb the bias parameters into the set of weight parameters by
defining an additional input variable x0 whose value is clamped at x0 = 1, so that

3.4 Neural Network and Training 37

aj =
D∑
i=0

w
(1)
ji xi. (3.19)

We can similarly absorb the second-layer biases into the second-layer weights, so the overall
network function becomes

yk(x,w) = σ

(
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

))
(3.20)

As it can be seen from Fig 3.4, the neural network model comprises two stages of
processing, each of which resembles the perceptron model and for that reason the neural
network is also called multilayer perceptron, or MLP. A key difference compared to the
perceptron is that a neural network uses continues sigmoidal non-linearities in the hidden
units, whereas the perceptron uses step-function non-linearities. This means that the neural
network function is differentiable with respect to the network parameters, and this property
will play a central role in network training.

The network architecture shown in Fig 3.4 is the most commonly used one in practice.
However, it is easily generalized, for instance by considering additional layers of processing
each consisting of a weighted linear combination of the form (3.13). Due to some confusion
in the literature we will call a neural network of the Fig 3.4 to be called a two-layer network,
because it is the number of layers of adaptive weights that is important for determining the
network properties [9].

3.4.1 Activation Functions and Error Functions

The process of training an ANN refers to the estimation of the adaptive parameters that
lead to the minimum error. Summarizing all that we have discussed, a neural network could
be perceived as a parametric nonlinear function that given a set of input vectors xn where
n = 1, 2, . . . , N together with a corresponding set of target values tn. What we wish to
achieve is for this approximation to be as accurate as possible and this can be expressed in
mathematical form with an error function:

E (ŵ) =
1

2

N∑
n=1

||y(xn,w)− tn||2 (3.21)

However we can provide a much more general view of network training by first giving a
probabilistic interpretation to the network outputs.

3.4.1.1 Regression Problems

We start by discussing regression problems and particularly one where we have a single
target variable t ∈ R. We assume that t has a Gaussian distribution with an x-dependent
mean, which is given by the output of the neural network so that

p(t|x,w) = N (t|y(x,w, β−1) (3.22)

where β is the precision (inverse variance) of the Gaussian noise. For the conditional
distribution in Eq.(3.22) we assume that the network’s output function is the identity,

38 Chapter 3. Neural Networks Theory

because such a network can approximate any continuous function from x to y. Suppose
we are given a data set of N independent and identically distributed observations X =
x1, . . . , xN and the corresponding target values t = t1, . . . , tN , we construct the likelihood
function :

p(t|X,w, β) =
N∏
n=1

p(tn|xn,w, β) (3.23)

Taking the negative logarithm we obtain the error function:

β

2

N∑
n=1

{y(xn,w)− tn}2 −
N

2
lnβ +

N

2
ln(2π) (3.24)

In the neural network literature it is usual to consider the minimization of the error function
instead of the maximization of the (log)likelihood and we will also follow this convention.
Consider first the determination of w. Maximizing the likelihood function is equivalent to
minimizing the sum-of-squares error function given by

E (w) =
1

2

N∑
n=1

{y(xn,w)− tn}2 (3.25)

where additive and multiplicative terms have been discarded. The value of w that mini-
mized the error function will be denoted as wML because it corresponds to the maximum
likelihood solution. The error function is nonconvex due to the nonlinearity of the network’s
function y(x,w) and thus in practice we can find local maxima of the likelihood function
that correspond to local minima of the error function. Assuming wML is found we can then
find β from (3.24) as:

1

βML
=

1

N

N∑
n=1

{y(xn,wML)− tn)}2 (3.26)

If we consider the case of K (multiple) target variables and we assume that they are indepen-
dent conditional on x and w with shared noise precision β, then the conditional probability
distribution of the target values is given by:

p(t|x,w) = N (t|y(x,w, β−1I) (3.27)

Following the same process and the same assumptions we get that the noise precision is
now given by:

1

βML
=

1

NK

N∑
n=1

||y(xn,wML)− tn)||2 (3.28)

Furthermore, we shall introduce one more essential equation that occurs from the natural
pairing of the error function and the output unit activation function. In the regression case
the output activation function is the identity and therefore the error function is the sum-
of-squares functions so we have:

∂E

∂ak
= yk − tk (3.29)

3.4 Neural Network and Training 39

3.4.1.2 Classification Problems

Now for the case of binary classification in which we have a single target variable t such
that t = 1 denotes class C1 and t = 0 denotes class C2. We consider a network having a
single output whose activation function is a logistic sigmoid

y = σ(a) =
1

1 + exp(−a)
(3.30)

so that 0 ≤ y(x,w) ≤ 1. We can interpret y(x,w) as the conditional probability p(C1|x),
with p(C2|x) given by 1 − y(x,w). The conditional distribution of targets given inputs is
then a Bernoulli distribution [9] of the form

p(t|x,w) = y(x,w)t{1− y(x,w)}1−t (3.31)

If we consider a training set of independent observations, then the error function, which is
given by the negative log likelihood, is then a cross-entropy error function of the form

E (w) = −
N∑
n=1

{tn ln yn + (1− tn) ln(1− yn)} (3.32)

We can see that there is no analogue of the noise precision β because the target values are
assumed to be correctly labelled. According to Simard et al.(2003) found that using the
cross-entropy error function instead of the sum-of-squares for a classification problem leads
to faster training as well as improved generalization.

If we have K separate binary classifications to perform, then we can use a network
having K outputs each of which has a logistic sigmoid activation function. Associated with
each output is a binary class label tk ∈ {0, 1}, where k = 1, . . . ,K. If we assume that the
class labels are independent, given the input vector, then the conditional distribution of the
targets is

p(t|x,w) =

K∏
k=1

yk(x,w)tk [1− yk(x,w)]1−tk (3.33)

Taking the negative logarithm of the corresponding likelihood function then gives the fol-
lowing error function

E (w) = −
N∑
n=1

K∑
k=1

{tnk ln ynk + (1− tnk) ln(1− ynk)} (3.34)

Same as the regression case, the derivative of the error function with respect to the activation
for a particular unit takes the form of (3.29).

Finally, we consider the standard multiclass classification problem in which each input
is assigned to one of K mutually exclusive classes. The binary target variables tk ∈ {0, 1}
have a 1-of-K coding scheme indicating the class, and the network outputs are interpreted
as yk(x,w) = p(tk = 1|x), leading to the following error function

E (w) = −
N∑
n=1

K∑
k=1

tnk ln yk(xn,w) (3.35)

40 Chapter 3. Neural Networks Theory

We can see that the output unit function is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑
j exp(aj(x,w))

(3.36)

which satisfies 0 ≤ yk ≤ 1 and
∑

k yk = 1. Note that yk(x,w) are unchanged if a
constant is added to all the ak(x,w), causing the error function to be constant for some
directions in weight space. This degeneracy is removed if an appropriate regularization
term is added to the error function.

Once again the derivative of the error function with respect to the activation for a
particular output unit takes the same form of (3.29).

Summarizing, there is a natural choice of both output unit function and matching error
function, according to the type of problem we are trying to solve. For regression we use linear
outputs and sum-of-squares error, for (multiple independent) binary classification we use
logistic sigmoid outputs and a cross-entropy error function, and for multiclass classification
we use softmax outputs with the corresponding multiclass cross-entropy error function.

3.4.2 Parameter Optimization with Backpropagation

We can now consider the issue of determining a weight vector w that minimizes the defined
error function. One can imagine the error function as a surface on the weight space,
where the components of the vector w correspond to the main axis of space. Finding
the coordinates of local or global minima on the surface is the solution to our problem.
Consider an initial position for the vector w and then a small step in the weight space
from w to w + δw. The change in the error function could then be approximated as:
δE ' δwT∇E (w), where the vector ∇E (w) is the gradient of the error function at this
point. Because the function E (w) is a smooth continuous function of w, when we get to
the point where the gradient vanishes i.e. ∇E (w) = 0, we have encountered a stationary
point which may be a minima, maxima or saddle point. This happens because otherwise
we could take a step in the direction of −∇E (w) and thereby reduce even further the error.
The described geometric view of the problem is illustrated in Fig.3.5

The main issue we are dealing with is that the error function has a highly nonlinear
dependence on the weights and bias parameters and that means a severely complex surface
for the error function with a lot of points where the gradient vanishes. It can be proven
from the symmetrical properties of the neural network that for any point w, that is a
local minimum, there exist numerous other points in the weight space that are equivalent
minima. For a FNN with two-layers for each such point exist M !2M equivalent points. Since
close form analytic solutions for so complex functions are impossible to be found we shall
resort to iterative numerical solutions. The optimization of continuous nonlinear functions
is a widely studied problem and there exists an extensive literature on the matter. Most
techniques involve the following three steps

• Initialization of the weight vector w to w(0)

• Successive steps through the weight space in the form of w(τ+1) = w(τ) + ∆w(τ)

• Utilization of gradient information for the update of the weights, i.e. ∆w(τ) is a
function of ∇E (w)

3.4 Neural Network and Training 41

Figure 3.5: Geometric view of the error function E (w) as a surface on the weight space.
([9, Bishop 2006])

The idea of utilizing the gradient information seems pretty effective but that information
is not always simple to accumulate. It is often computationally demanding to get a precise
value of the gradient of the error function and thus we resolve to approximations. A
satisfactory approximation of ∇E (w) can be produce with a Taylor expansion of E (w)
around w up to first or second terms.

Based on the analysis so far, a few more essential elements that are utilized in the
majority of the ANN training algorithms shall be introduced. For instance, many training
algorithms that make use of the gradient information further modify ∆w(τ) by inserting a
positive scaling factor η and so we have

w(τ+1) = w(τ) + η∇E (w(τ)) (3.37)

This parameter η is known as the learning rate and is responsible for controlling the step
size in the weight space. In some algorithms it has a constant value while in others it is
adjustable in order to escape from regions with vanishing gradient.

Furthermore the gradient of the error function is actually a function of the derivative of
the error with respect to every weight wji as the value ∂E

∂wji
. By considering the definition

of the derivative of a function we get the meaning of ∂E
∂wji

, which is how much will a small

change in wji affect the value of the error function E .

Many error function of practical interest comprise a sum of terms, one for each data
point in a training set, so that

E (w) =

N∑
n=1

En(w) (3.38)

Here we will consider the problem of evaluating ∇En(w) for one such term in the error
function.

42 Chapter 3. Neural Networks Theory

If we consider a simple linear model with it’s outputs yk as linear combinations of the
input variables xi so that

yj =
∑
i

wkixi (3.39)

together with an error function that for the particular input pattern n takes the form

En(w) =
1

2

∑
k

(ynk − tnk)2 (3.40)

The gradient of this error function with respect to a weight wji is given by

∂E

∂wji
= (ynj − tnj)xni (3.41)

which can be interpreted as a ’local’ computation involving the product of an ’error signal’
ynj− tnj associated with the output end of the link wji and the variable xni associated with
the input end of the link. The same formula arises with a logistic sigmoid activation function
together with the cross-entropy error function and similarly for the softmax activation
function together with its matching cross-entropy error function. Next we see how this
simple result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its inputs in
the form

aj =
∑
i

wjizi. (3.42)

where zi is the activation of a unit, or input, that send a connection to unit j and wji is
the weight associated with the connection. We will not deal with biases explicitly as they
can be grouped with weights as we saw earlier. The sum in (3.42) is then transformed by
a nonlinear function h()̇ to give the activation zj of unit j in the form

zj = h(aj) (3.43)

Now consider the evaluation of ∂En
∂wji

. The outputs of the various units will depend on

the particular input pattern n. However, in order to keep the notation clean we will omit
the n subscript from the network variables. First we note that En depends on the weight
wji only via the summed input aj to unit j. We can therefore apply the chain rule for
partial derivatives to give

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

(3.44)

We introduce a useful notation

δj =
∂En
∂aj

(3.45)

Now using (3.42) we can write

3.4 Neural Network and Training 43

∂En
∂wji

= δjzi (3.46)

Equation (3.46) tells us that the required derivative is obtained simply by multiplying the
value of δ for the unit at the output end with the value of z at the input end of the
weights(z = 1 for a bias). We can easily notice that this is the same as the derivation for
the simple linear model which we analysed earlier in this section. Therefore in order to
evaluate the derivatives we only need to calculate the δj for each hidden and output unit
in the network and then apply (3.46).

We remember that for the output units we have

δk = yk − tk (3.47)

To evaluate the δ’s for hidden units, we simple make use of the chain rule for partial
derivatives,

δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

(3.48)

where the sum runs over all unit k to which j units are connected. The arrangement of
units is illustrated in Fig.3.6

Figure 3.6: Illustration of the calculation of δj . ([9, Bishop 2006])

The meaning behind (3.48) is that variations in aj give rise to variations in the error function
only through variations in ak. We can substitute the definition of δ from (3.45) into (3.48)
and make use of (3.42) and (3.43) to obtain the following backpropagation formula

δj = h′(aj)
∑
k

wkjδk (3.49)

which tells us that the value of δ for a particular hidden unit can be obtained by propagation
the δ’s backwards from units higher up in the network. Because we already know the values
of δ’s for the output units, it follows that by recursively applying (3.49) we can evaluate
the δ’s for all of the hidden units in a feed-forward network, regardless of its topology.

44 Chapter 3. Neural Networks Theory

3.5 Bias-Variance Tradeoff

In order to validate a machine learning method and a neural network is no exception, we
have to understand what it means for a multilayer perceptron neural network to be well
trained. According to [8], neural learning means the synaptic weighs and and thresholds
of the network are updated by successfully and efficiently applying the back-propagation
algorithm with the purpose of creating a mapping between the inputs {xi} and the outputs
{yk} of the network.

Nevertheless before we can understand the validation methods that we used, it is in-
structive to have a clear distinction between two very important types of errors, i.e. bias
and variance. Gaining a proper understanding of these errors will not only help build
accurate models but also to avoid the mistake of overfitting and underfitting.

We can express the above two meanings mathematically. Let’s say we are trying to
predict values for a variable (response) D using variables X and parameters w. We will
use the generic linear regression model to motivate our point but note that this done as a
simple example without loss of generality [9].

D = φ(X,w) + ε (3.50)

where φ(X,w) is a deterministic function of X and parameters w and ε ∼ N (0, σ2ε) is the
error term. This model is a mathematical description of a stochastic environment and it’s
purpose is to explain or predict the value of Y produced by X.

Now we create a model of the environment with the purpose of encapsulating the empiri-
cal knowledge represented by the training sampleQ. This training will lead to an estimation
ŵ of the real unknown parameter vector w. Schematically the above are denoted by:

Q −→ ŵ (3.51)

In effect the estimation model provides an approximation to the regression model of
(3.50). We will denote this input-output function that is realized by the estimation model
by

y = Φ(X, ŵ) (3.52)

Where y is a realization of the random variable Y . Given the training sample Q of (3.51),
the estimator ŵ is minimizing the error function, which in term of squared differenced
between the desired and the actual responses takes the form:

E (ŵ) =
1

2

N∑
i=0

(di − Φ(Xi, ŵ))2 (3.53)

Letting EQ denote the average operator and using (3.51) we can write (3.53) in the form

E (ŵ) =
1

2
EQ[(d− Φ(X,Q))2] (3.54)

with further manipulation of the equations that we already have we can reduce (3.53) into
the form

E (ŵ) =
1

2
EQ[ε2] +

1

2
EQ[(φ(X,w)− Φ(X,Q))2] (3.55)

3.5 Bias-Variance Tradeoff 45

The first term is the variance of the expectational error ε over the data sample Q. It’s
called the intrinsic error because it is independent of ŵ and thus it is irreducible. It is a
measure of the amount of noise in our data and therefore no matter how good we make
our model, our data will have certain amount of noise or irreducible error that can not be
removed.

Since the first term is irreducible this means that the total error is reduced only by
reducing the second term. Therefore ŵ that minimized the error function also minimizes
the ensemble average of the squared distance between the regression function φ(X,w) and
the approximation function Φ(X, ŵ). This means that the effectiveness of Φ(X, ŵ) as a
predictor of the desired outcome d is defined as:

Lav(ŵ) = EQ[(φ(X,w)− Φ(X,Q))2] (3.56)

It can be shown that for the case of regression the optimal solution φ(X,w) is actually
the conditional expectation E[d|X]. Therefore we can rewrite (3.56) as:

Lav(ŵ) = EQ[(E[d|X]− Φ(X,Q))2] (3.57)

The difference between the operators EQ and E should be very carefully noted. The vari-
ables and their functions under EQ represent entities in the sample Q. Contrary to that
the statistical operator E acts on the whole ensemble (band) of X and D which includes Q
as a subset.

Expression (3.57) may be viewed as the average value of the estimation error between
the regression function φ(X,w) and the approximation function Φ(X, ŵ) evaluated over
the sample Q. Next we can write

E[d|X]− Φ(X,Q) = E[d|X]− EQ[Φ(X,Q)] + EQ[Φ(X,Q)]− Φ(X,Q)

where we simply added and subtracted the term EQ[Φ(X,Q)]. By putting this back in
(3.57) we end up with the final form:

Lav(ŵ) = (EQ[Φ(X,Q)]− E[d|X])2 + EQ[(Φ(X,Q)− EQ[Φ(X,Q)])2] (3.58)

where the above terms are defined as Bias (3.59) and Variance (3.60).

B(ŵ) = EQ[Φ(X,Q)]− E[d|X] (3.59)

and

V (ŵ) = EQ[(Φ(X,Q)− EQ[Φ(X,Q)])2] (3.60)

and then finally
Lav(ŵ) = B2(ŵ) + V (ŵ) (3.61)

• Bias is the difference between EQ[Φ(X,Q)], i.e. the average prediction of our model,
and E[d|X] = φ(X,w), i.e. the correct value which we are trying to predict. Thus
B(ŵ) represents the inability of the model represented by Φ(X, ŵ) to accurately
approximate φ(X,w). We may therefore view the bias B(ŵ) as an approximation
error [8].

46 Chapter 3. Neural Networks Theory

• Variance is the variance of the approximating function Φ(X, ŵ) measured over the
entire training sample Q. Thus V (ŵ) expresses the inadequacy of the empirical
knowledge contained in the training sample Q about the regression function φ(X,w)
and we therefore can view it as an estimation error [8].

Figure 3.7: Bias and Variance using bulls-eye diagram.

Now that we have a very clear picture of the difference between bias and variance we
may rightfully think that for a model to achieve good performance, both of them must be
small. Unfortunately we cannot achieve this ideal situation because we can only have a
finite amount of data for training. In principal only with an infinitely large training sample
we can eliminate both bias and variance and this is the famous bias-variance dilemma.
The consequence of this is increasingly, and therefore prohibitively, slow convergence to out
target [11].

In supervised learning, underfitting happens when a model is unable to capture the
underlying pattern of the data. These models usually have high bias and low variance. It
happens when we have very less amount of data to build an accurate model or when we try
to build a linear model with nonlinear data. Also, these kind of models are very simple,
thus unable to capture the complex patterns in data like linear and logistic regression.

On the other side, overfitting happens when our model captures the noise along with
the underlying pattern in data. It happens when we train our model a lot over noisy data.
These models have low bias and high variance and are in general very complex like Decision
trees which are prone to overfitting.

3.5 Bias-Variance Tradeoff 47

Figure 3.8: Underfitting, Overfitting and Optimal Generalization in Regression and Clas-
sification.

48 Chapter 3. Neural Networks Theory

3.6 Validation Methods

With that being said let’s assume that we fit our model on a training dataset and use the
same data to estimate how well it performs in practice. The model can be too simple and
thus suffer from underfitting (high-bias) or it can very complex therefore it suffers from
overfitting (high-variance) A further problem with cross-validation is that we might end up
with a lot of parameters for a single model and thus exploration of all possible combinations
of all these parameters will require a number of training runs that grow exponentially with
time [9]

For the purposes of this thesis, the very popular k-fold cross validation method will be
used but we find it instructive to also presented the classic holdout cross validation method
in order to compare and justify our final choice.

3.6.1 Holdout Cross Validation Method

The holdout cross validation method is the most classic approach for estimating the gener-
alisation performance of machine learning models, like neural networks. The process starts
with the split of our initial dataset into a separate training and test dataset where the
former is used for model training and the latter to estimate performance. But in order to
achieve the ultimate purpose of a machine learning application, i.e. to perform predictions
on unseen data, we need to tune a set of different parameters (hyperparameters) for
further improvement in performance. However by reusing the same test dataset repeatedly,
during the aforementioned tuning, it will effectively become part of our training data and
thus the whole process will most likely lead to overfit. This is a fundamental flaw of the
classic holdout method and it thus calls for an improvement.

This improvement is done by separating the data into three parts: a training set, a
validation set and finally a testing set. The training set is used to the same reason as before
and the validation set is used to tune the parameters as in place of the testing set from the
classic method. There is an advantage that we might miss at first, and that is that the test
dataset has never been seen from the model, neither for training nor for parameter tuning.
Thus by finalizing the process with the predictions on the test dataset the we completely
held out, we can obtain a less biased estimate of the models ability to generalize to new
data. Both the classic and enhanced holdout methods are show in 3.9.

After this, a disadvantage still exist even with the enhanced method. The partition of
the dataset is done only one time, and because the performance estimate is directly coupled
with the way we partition the dataset, at the end the estimate will vary for each different
sample of the data. The way to fix that flaw is by using the k-fold cross validation method,
where essentially we repeat the holdout method k times on k subsets of the training data.

3.6.2 K-fold Cross Validation Method

Cross-validation is a statistical method used to estimate the skill of machine learning mod-
els.

It is commonly used in applied machine learning to compare and select a model for a
given predictive modelling problem because it is easy to understand, easy to implement,
and results in skill estimates that generally have a lower bias than other methods.

Cross-validation is a re-sampling procedure used to evaluate machine learning models

3.6 Validation Methods 49

Figure 3.9: The enhanced holdout cross validation technique ([12, Raschka 2015]).

Figure 3.10: The k-folds cross validation technique ([12, Raschka 2015]).

on a limited data sample and the procedure has a single parameter called k that refers
to the number of groups that a given data sample is to be split into. As such, it is often
called k-fold cross-validation. When a specific value for k is chosen, it may be used in
place of k in the reference to the model, such as k = 10 becoming 10-fold cross-validation.
This approach involves randomly dividing the set of observations into k groups, or folds, of
approximately equal size. The first fold is treated as a validation set, and the method is fit
on the remaining k − 1 folds.

Cross-validation is primarily used in applied machine learning to estimate the skill of
a machine learning model on unseen data. That is, to use a limited sample in order to
estimate how the model is expected to perform in general when used to make predictions
on data not used during the training of the model.

The general procedure is as follows:

1. Shuffle the dataset randomly.

50 Chapter 3. Neural Networks Theory

2. Split the dataset into k groups.

3. For each unique group:

3.1. Take the group as a hold out or test data set.

3.2. Take the remaining groups as a training data set.

3.3. Fit a model on the training set and evaluate it on the test set

3.4. Retain the evaluation score and discard the model.

4. Summarize the skill of the model using the sample of model evaluation scores.

Importantly, each observation in the data sample is assigned to an individual group
and stays in that group for the duration of the procedure. This means that each sample is
given the opportunity to be used in the hold out set 1 time and used to train the model
k − 1 times which yields a lower variance-estimate of the model compared to the holdout
method.[12]

It is also important that any preparation of the data, for example normalization, prior
to fitting the model occur on the CV-assigned training dataset within the loop rather than
on the broader data set. This also applies to any tuning of hyperparameters. A failure
to perform these operations within the loop may result in data leakage and an optimistic
estimate of the model skill.

The value of k, according to [12], is negatively proportional to the size of the training set.
For example, if we are dealing with relatively small training sets, we might need to increase
the number of folds. If we increase the value of k, more training data will be used in each
iteration, which results in a lower bias towards estimating the generalization performance
by averaging the individual model estimates. However, large values of k lead to increased
runtime for the cross-validation algorithm and yield estimates with higher variance since
the training folds will be more similar to each other. On the other hand, if we are working
with large datasets, we can choose a smaller value for k, for example, k = 5 , and still
obtain an accurate estimate of the average performance of the model while reducing the
computational cost of refitting and evaluating the model on the different folds.

3.7 Neural Networks With Python and Tensorflow 51

3.7 Neural Networks With Python and Tensorflow

TensorFlow [13] is an interface for expressing machine learning algorithms, and an imple-
mentation for executing such algorithms. A computation expressed using TensorFlow can
be executed with little or no change on a wide variety of heterogeneous systems, ranging
from mobile devices such as phones and tablets up to large-scale distributed systems of
hundreds of machines and thousands of computational devices such as Graphics Processing
Units (GPU) cards. The system is flexible and can be used to express a wide variety of
algorithms, including training and inference algorithms for deep neural network models,
and it has been used for conducting research and for deploying machine learning systems
into production across more than a dozen areas of computer science and other fields, includ-
ing speech recognition, computer vision, robotics, information retrieval, natural language
processing, geographic information extraction, and computational drug discovery. The
TensorFlow interface and an implementation of that interface that was built at Google is
presented at [13].

We can use lower-level APIs to build models by defining a series of mathematical oper-
ations. Alternatively, we can use higher-level APIs (like tf.estimator) to specify predefined
architectures, such as linear regressors or neural networks. The following figure shows the
current hierarchy of TensorFlow toolkits:

Figure 3.11: TensorFlow toolkit hierarchy. (Source: Google)

TensorFlow consists of the following two components:

• A graph protocol buffer.

• A runtime that executes the (distributed) graph.

These two components are analogous to Python code and the Python interpreter. Just
as the Python interpreter is implemented on multiple hardware platforms to run Python
code, TensorFlow can run the graph on multiple hardware platforms, including CPU, GPU,
and TPU.

The following table summarizes the purpose of each level of abstraction:

With these presented choices a question of the context ”Which API(s) should I use?”
comes into play. According to Google the reality is that we should use the highest level of
abstraction that solves the problem at hand. The higher levels of abstraction are easier to
use, but are also (by design) less flexible. Thus we start with the highest-level API first
and get everything working. If we need additional flexibility for some special modelling

52 Chapter 3. Neural Networks Theory

Table 3.1: The Tensorflow Toolkit Depth

Toolkit(s) Description

Estimator (tf.estimator) High-level, OOP API.
tf.layers/tf.losses/tf.metrics Libraries for common model components.

TensorFlow Lower-level APIs

concerns, move one level lower. Note that each level is built using the APIs in lower levels,
so dropping down the hierarchy should be reasonably straightforward.

Chapter 4

Data for Cruising Pattern
Prediction

Cruising pattern exhibited in real cruising is the product of the instantaneous decisions of
the vessel operator to cope with the physical marine environment. It plays a core role in
power distribution and therefore needs to be predicted during real time operation. Cruising
patterns can be defined in terms of the operation profile of the vessel between time interval
[t −∆w, t], where t is the current time and ∆w > 0 is the window size that characterizes
the length of the operation profile that should be used to explore cruising patterns.

In every machine learning project is it essential to collect the right data. As data we
define any unprocessed fact that can be interpreted and analysed. They are the most
important part of all Data Analytics, Machine Learning, Artificial Intelligence. Without
data, we can’t train any model and all modern research and automation will go in vain.
Therefore in this section we will briefly discuss about the data and their preprocessing in
order to predict the cruising and trend patterns.

53

54 Chapter 4. Data for Cruising Pattern Prediction

4.1 Cruising and Propeller Pitch Angle Patterns

Cruising patterns can be observed in the speed profile of the vessel in a particular maritime
environment. In order to develop an intelligent system that can effectively predict the
cruising type and cruising trend of a vessel, the selection of a good set of features is one of
the most important steps. It has been shown in pattern recognition that too many features
may degrade system performance. This can be explained by the increased hardware and
computation costs due to the acquisition and processing of the new features, especially in
an embedded implementations. In the automotive industry an extensive research has been
conducted and the outcome is that a small subset of features can give satisfying prediction
results according to [14].

In general a cruising pattern can be described as a composition of different cruising types
such as port manoeuvring, open sea etc. This integral part was developed in [15], where
two different methods, Euclidean Distance (ED) and Dynamic Time Warping (DTW) were
used to create clusters of similar data from real ship operation profiles. In both methods
the data were clustered into seven and nine clusters, each containing 1730 seconds. For the
purposes of this study we considered only the seven clusters edition of the DTW.

Table 4.1: The statistics of the 7 Controllable Pitch Propeller β angle Patterns

β Pattern βmax βmin βavg βstd 25% 50% 75% Duration (sec)

Pattern 1 0.597 0.019 0.505 0.094 0.518 0.537 0.554 1730
Pattern 2 0.464 0 0.228 0.186 0.0002 0.318 0.422 1730
Pattern 3 0.732 0 0.403 0.282 0.005 0.528 0.651 1730
Pattern 4 0.467 0 0.179 0.174 0.0014 0.168 0.357 1730
Pattern 5 0.723 0 0.679 0.079 0.678 0.708 0.711 1730
Pattern 6 0.708 0 0.311 0.309 0 0.211 0.648 1730
Pattern 7 0.721 0 0.231 0.290 0 0.003 0.637 1730

One of the main goals of this study is to to address multiple systems with similar
dynamics therefore the pitch angle patterns are normalized, which means that since β ranges
in [0◦, 90◦] a β = 0.5 is the same as β = 45◦. The statistics of these normalized patterns are
presented in Table.4.1, where βavg is the average pitch angle, βmax is the maximum, βmin
is the minimum, βstd is the standard deviation and 25th% 50th% and 75th% percentages.
Also we present the pitch angle time-plots in 4.1.

After studying these statistics it becomes apparent that Patterns 3, 6 and 7 share a lot
of similarities. One of these is that they contain a lot of idle time which can be seen by
the 25th% that is 0 in all three of them and for Pattern 7 even the 50th percentile is nearly
0. Idle time is defined as the time with β = 0 which is not characteristic of a tug vessel’s
operation profile. These similarities will make it difficult, even for the neural network, to
effectively distinguish between them. Therefore we have to perform some corrections in our
patterns so they can fit the purpose of our study in a better way. We focus our efforts on
the two following directions:

• Eliminate unnecessary similarities.

• Minimize idle time as much as possible.

Correlation estimations are commonly used in various data mining applications and
based on the above a correction mechanism based on correlation was devised. In our case,

4.1 Cruising and Propeller Pitch Angle Patterns 55

patterns are nonlinear time series and thus they might share nonlinear correlation. Due
to the absence though of a nonlinear correlation method we explore the similarity between
two patterns with a simplistic method in which the following two statements must hold
simultaneously:

• The patterns have akin ranges of values regardless of time.

• The patterns report a positive Pearson Correlation Coefficient larger that 0.5.

Pearson’s correlation coefficient is defined as the covariance of two variables divided by the
product of their standard deviations. In Fig. 4.2 we show the Pearson Correlation Matrix
for the patterns. It is important to note that Pearson’s method describes the strength of a
linear relationship between two variables and thus it provides only half of the picture that
we need to determine their similarity. Therefore we must interpret it’s results with caution
so that we do not falsely identify two patterns as similar.

We refer to the correlation coefficient between Pattern A and Pattern B as ρA,B. The
coefficient ρ3,6 = 0.65 agrees with our initial expectation of strong correlation between
Pattern 3 and 6. Taking into account the statistic values from Tab. 4.1 as well as the
ranges of values in these two patters we conclude that they are indeed similar. Additionally
from the time plots we can see that the part from the beginning to 450 seconds of Pattern
7 is nearly the same as the part from 800 seconds to 1200 seconds of Pattern 6 and this
is further validated from the mild correlation coefficient ρ6,7 = 0.28. Since our goal is to
minimize as much idle time as possible and to eliminate unnecessary similarities we will
discard Pattern 6 and then combine the part from the start until 1200 seconds of Pattern
3 with the part from 1200 seconds to the end of Pattern 7. This will be our new Pattern 5
and it’s shown in Fig.4.3.

For the other patterns the coefficients ρ5,1 = 0.84, ρ2,4 = 0.7 are above our threshold,
but they do not share analogous ranges of values hence they are not similar.

Finally from hereafter we will refer to these patterns as Controllable Pitch Propeller(CPP)
β angle(pitch) Patterns and it is possible to investigate the operation of a Controllable Pitch
Propeller as a sequence of these patterns. For the convenience of description, we label these
5 patterns as PC1, . . . PC5.

56 Chapter 4. Data for Cruising Pattern Prediction

(a) Pitch Angle β Pattern 1

(b) Pitch Angle β Pattern 2

Figure 4.1: Considered Operation Pitch Angle β Patterns

4.1 Cruising and Propeller Pitch Angle Patterns 57

(c) Pitch Angle β Pattern 3

(d) Pitch Angle β Pattern 4

Figure 4.1: Considered Operation Pitch Angle β Patterns (cont.)

58 Chapter 4. Data for Cruising Pattern Prediction

(e) Pitch Angle β Pattern 5

(f) Pitch Angle β Pattern 6

Figure 4.1: Considered Operation Pitch Angle β Patterns (cont.)

4.1 Cruising and Propeller Pitch Angle Patterns 59

(g) Pitch Angle β Pattern 7

Figure 4.1: Considered Operation Pitch Angle β Patterns (cont.)

60 Chapter 4. Data for Cruising Pattern Prediction

Figure 4.2: Pearson Correlation Matrix of Pitch Angle β Patterns

4.1 Cruising and Propeller Pitch Angle Patterns 61

Figure 4.3: The new Pitch Angle β Pattern 5

62 Chapter 4. Data for Cruising Pattern Prediction

Chapter 5

Machine Learning Framework

In the present chapter the holistic framework of the investigated control scheme will be
presented. We will start with the design procedure, then continue with the tuning and
finish with the training reports of the developed framework where further explanation will
take place. As we stated earlier in Chapter 3, neural networks that are tackling classification
and regression problems require a supervising mechanism for their training. With that in
mind, for the design procedure we took the following steps: 1) Supervised Learning Setup
for the different Networks, 2) Creation and Analysis of the Basic Framework Constituents,
3) Grouping of Constituents, 4) Simulation of the Framework to acquire Results and finally
5) Assessment of the Results to see if we achieved our initial objectives. From the above 1,
2 and 3 are presented here whereas 4 and 5 are discussed inn the next chapter.

The framework and the graphical user interface (GUI) A that supports it, are developed
using the programming language Python and the networks are specifically engineered with
Tensorflow, the Machine Learning Library from Google. A brief description of Tensorflow
has been given in Section 3.7 so here we will focus on its implementation for the Neural
Network Control scheme.

The purpose of the developed framework is to efficiently perform the power split between
the two power units of the propulsion plant using a Nonlinear Model Predictive Controller
as the supervising teacher. The ultimate objective of this study is to learn from the NMPC
scheme and investigate the possibility of it’s replacement with a machine learning approach
based on Neural Networks. As we stated earlier we will achieve an indirect regulation of the
NOx emissions by smoothing the transient operations of the Diesel Engine via the operation
of the Electric Motor by controlling the torque of both power units directly.

In general the rule of thump for Neural Networks, is for the input values to be real
life values and not simulated values/estimations from a model. Unfortunately in out case
this is not possible because all the necessary parameters are not on deck at every step of
the operation. To be more precise, torque load in a marine power plant is not measured
directly in most cases because the measured signals are not systematic enough due to noise
or non trivial time delay. To solve this problem we will adopt the same Moving Horizon
Estimation (MHE) scheme as in [6], an efficient method of estimating the load torque which
will be use as an integral input feature for our control phase networks.

63

64 Chapter 5. Machine Learning Framework

5.1 The Framework Strategy

In this section, we explain the attributes and constituents of the developed framework
LME-NNPower.

We devise the problem of optimal power split on a marine hybrid diesel-electric propul-
sion plant as follows. Consider that for any given pitch angle pattern PC(t) (t ∈ [0, te],
where te denotes the end of a pattern) at any given t, the vessel is operating according to
one of the 5 standard pitch angle patterns PC1, .., PC5 defined in 4.1. We will use these
patterns as the basis for calculating the optimal control commands of the NMPC given each
one of these patterns. In that way we create 5 different time sequences of torque commands
for the Engine and 5 for the Electric Motor that we use as training data for our neural
networks. Lastly we replace NMPC with these trained networks for direct engine control.
In other words the Neural Networks conduct the power splitting directly, by controlling
simultaneously both the torque of the Electric Motor (TQ-MOT) and the torque of the
Diesel Engine (TQ-ENG) opposed to indirect engine control where only the Electric Motor
is controlled.

In Fig. 5.1 a diagram for the proposed machine learning framework is presented featur-
ing all of it’s core functionalities. It is instantly clear that it contains two distinct stages.

• The prediction stage.

• The control stage.

Each stage features neural networks that are employed to do specific calculations that we
are going to analyse.

5.2 The Prediction Stage 65

5.2 The Prediction Stage

The prediction of the operational status of the propulsion plant is broken down into two
core predictions.

• The prediction of future Pitch Angle Pattern (PC).

• The prediction of near future Cruising Trend (CT).

The prediction regarding the Pitch Angle Pattern that the power plant operates in, can be
though of as a mid-term prediction and the one about the Cruising Trend a short-term one.

Figure 5.1: LME-NNPower: The Proposed Machine Learning Framework.

5.2.1 Pitch Angle Pattern Prediction

The Pitch angle β Patterns have been presented with detail in 4.1. These patterns are
a distillate of a vast amount of operational data, therefore we can use them as adequate
representatives of real-world operational profiles for a specific range of operations. Let
PC[t] be the pitch patterns sequence that the vessel is operating in order to complete a

66 Chapter 5. Machine Learning Framework

trip, with t = 0, 1, . . . , tc, . . . , te where tc is the current time and te is the ending time of
the trip. For example a possible sequence can be {PC3, PC1, PC5, PC3, PC2}tet=0. Thus at
any given moment tc, we assume that PC(tc) ∈ {PCi | i = 1, . . . , 5}. We will predict the
pitch angle pattern in the future based on the mid-term history of the operation profile. In
other words, the predictions are made on a step-by-step overlapping time frame.

5.2.1.1 Features Extraction

To predict the pitch pattern at time tc, we will extract features from the operation profile
in the segment [tc − ∆WPC , tc]. The non negative value ∆WPC is defined as the window
size of the segment that we use to make the prediction. As we stated earlier we will make
these predictions on a moving time frame fashion, i.e. at time steps k∆tPC , k = 1, 2, . . .
and these predictions will be used for calculating the optimal control strategy in the future
period [tc, tc + ∆tPC]. Fig 5.2 illustrates the functionality that we described above where
the x-axis represents time and the y-axis is the normalised β pitch angle. Note that the
values for the parameters are only set to ∆WPC = 150 and ∆tPC = 100 for illustration
purposes and in reality for this algorithm to have a realist effect they must be smaller.

Figure 5.2: Segmentation Algorithm for the step-by-step overlapping time frame.

For the Pitch Patterns classification problem, the data features that we are going to use
are given in Table. 5.1. After we have chosen the parameters that we want to use, i.e. by
choosing a pair for window size and time step, we obtain these 15 features from the pitch
angle operation profile.

We analysed multiple pairs because they are very important for the accuracy and realism

5.2 The Prediction Stage 67

Table 5.1: The selected features for the Prediction of Pitch Propeller β angle Patterns

Feature Name Description

βmax Maximum Pitch Angle in [t−∆WPC , t)
βave Average Pitch Angle in [t−∆WPC , t)
ω+
max Maximum Pitch Acceleration in [t−∆WPC , t)
ω+
ave Average Pitch Acceleration in [t−∆WPC , t)
ω+
std Standard Deviation of Pitch Acceleration in [t−∆WPC , t)

ω−max Maximum Pitch Deceleration [t−∆WPC , t)
ω−ave Average Pitch Deceleration in [t−∆WPC , t)
Π03 Percentage where 0 ≤ β(t) < 0.3 for all t ∈ [t−∆WPC , t)
Π35 Percentage where 0.3 ≤ β(t) < 0.5 for all t ∈ [t−∆WPC , t)
Π57 Percentage where 0.5 ≤ β(t) < 0.7 for all t ∈ [t−∆WPC , t)
ΠA1 Percentage where 0 ≤ ω+(t) < 0.003 for all t ∈ [t−∆WPC , t)
ΠA2 Percentage where 0.003 ≤ ω+(t) for all t ∈ [t−∆WPC , t)
ΠD1 Percentage where −0.005 ≤ ω−(t) < 0 for all t ∈ [t−∆WPC , t)
ΠD2 Percentage where ω−(t) < −0.005 for all t ∈ [t−∆WPC , t)

of the prediction and for real-time implementation. Since the prediction depends on features
that we extract from the operation profile in the short term [tc −∆WPC , tc], the value of
∆WPC is directly related to the amount of information we use for our calculations. That
means that it can not be too big as that would lead to a lot of obsolete information in the
segment and contrary it can not be too small as that would mean that a lot of information
was not taken into account. Furthermore ∆tPC is linked with the amount of times we make
predictions. Therefore we should carefully chose it’s value because if it very small it might
cause computational overhead as we make predict very frequently. On the other side it
cannot be too big as that would completely nullify the objective of an online controller.
Next we are going to describe the training process.

5.2.1.2 Neural Prediction Training

We developed NN-PAC, a multilayer multiclass fully connected feedforward neural network,
with the task to predict the pitch angle pattern according to the aforementioned process.

In our search to find the best architecture for our network we analysed multiple layer
configurations base on the pair of ∆WPC = 60 and ∆tPC = 1. It should be noted that
although we present the results with this pair, an equivalent outcome occurs with the pair
∆WPC = 30 and ∆tPC = 1.

In the beginning we tested neural network with 2 layers by the definition in 3, therefore
with 1 hidden layer that had 5, 10, 20, . . . , 100 neurons.

All potential networks are trained with the same procedure, a 5-fold cross validation
method in order to achieve better generalization. More specifically, we automatically gen-
erate the dataset, namely Θ from the pitch pattern operation profile for all 5 patterns.
Now we are ready to follow the 4 steps presented in 3.6.2. First we randomly shuffle the
dataset Θ and then we split it into 5 subsets Θi where i = 1, 2, . . . , 5. Afterwards we create
5 identical neural networks and the network NNi where i = 1, 2, . . . , 5 is trained for 500
epochs on subsets Θj where j 6= i and it’s tested on Θi. The final accuracy is measured
as the average of all accuracies and the best network is kept for later inference. In Fig.5.3
we show the training and testing accuracy chart with respect to the different number of

68 Chapter 5. Machine Learning Framework

neurons in the hidden layer.

Figure 5.3: Number of hidden layer neurons vs accuracy for NN-PAC with 1 hidden layers.

From this chart it can be seen that the highest value is 93.14 with 80 neurons and after
that point the network’s performance doesn’t increase any further. In order to improve the
prediction accuracy we investigate further by adding one more hidden layer. Once again
we follow the same process as before and we experiment with different hidden layer neuron
sizes, this time with the sets of values [10−10], [20−10], [30−20], [40−30], [50−40], [60−50].
In Fig. 5.4 we show the training and testing accuracy chart with respect to the different
number of neurons in the hidden layers. We can see that it reaches it’s peak performance
at 96.68 with the set [40− 30] and after that point not a lot of improvement occurs.

The final architecture of the network is shown in Fig.5.5. The input layer has 15 nodes
for the features that we described in 5.1, two hidden layers with 40 and 30 nodes and
finally the output layer with 5 nodes representing each pattern {PC1, .., PC5}. In order for
Tensorflow to work, it requires the outputs to be encoded using the one-hot encode method.
One-hot encoding is often used for indicating the state of a state machine. When using
binary or Gray code, a decoder is needed to determine the state. A one-hot state machine,
however, does not need a decoder as the state machine is in the nth state if and only if the
nth bit is high. This means that each class is assigned a binary string with 5 digits and all
digits are 0 except for the digit that represents the class. An example would be that class
1 is encoded as 00001, class 2 is 00010 and so on.

The detailed final training and test results, i.e. prediction accuracy of the NN-PAC is
presented in Fig. 5.6a for training and in Fig. 5.6b for testing, where the values of the
parameters are ∆WPC ∈ {30, 60, 90, 180} and ∆tPC ∈ {1, 3, 5, 10, 20}.

5.2 The Prediction Stage 69

Figure 5.4: Number of hidden layer neurons vs accuracy for a NN-PAC with 2 hidden layers

Figure 5.5: Architecture of NN-PAC.

From the histogram we focus our attention on the testing performances. We seek the
pair that combines a as small as possible window size with a logical time step parameter.
As a whole for the window size we can see that the results stabilize after ∆WPC = 60secs.
As for the time step in general we can see that as it increases the performance decreases and
for all cases ∆tPC = 1sec gives the best results. This is a reasonable outcome in the sense
that the more frequently the network makes a predictions the more prone it will be to catch

70 Chapter 5. Machine Learning Framework

(a) NN-PAC Training Performance

(b) NN-PAC Testing Performance

Figure 5.6: NN-PAC Prediction accuracies for different time parameters.

all the pattern transitions. As we stated time step is directly coupled with computation
overhead, but we will keep ∆tPC = 1sec for the rest of our study.

Thus when we use the NN-PAC for online prediction of the pitch angle pattern, we use
∆WPC = 60secs and time step ∆tPC = 1sec. In Fig.5.7 we show the rise in accuracy of

5.2 The Prediction Stage 71

Figure 5.7: NN-PAC: The rise in accuracy of the network during training.

the network and in Fig.5.8 the reduction of the cost function as the epochs progress during
the training process.

Figure 5.8: NN-PAC: The reduction of the cost function during training.

The output from the NN-PAC is the pitch angle pattern. This prediction will be used as
a switch mechanism that will only activate the set of neural networks from the control stage
that correspond to the predicted pattern. In this way the hybrid power split is conducted
in the time interval [tc, tc+1s]. In Fig. 5.9 we can see an example of a potential operational

72 Chapter 5. Machine Learning Framework

Figure 5.9: NN-PAC Performance Predictions Visualization on a custom Operation Profile
CPC1

profile. The red line is the actual labelled pitch angle pattern and the blue line is the
prediction of the neural network. At the beginning we can see a delay for 60 seconds, this
is completely expected as the algorithm needs at least one window of data to perform the
prediction. Furthermore we tested for 5 more custom pitch patterns (CPC) in order to
test the accuracy of the network. The prediction results can be seen in Table 5.2. The
percentages are measured by summing the correct predictions of the network and then
dividing that sum with the total length of the dataset.

Table 5.2: Prediction Accuracy of NN-PAC over 5 test pitch angle patterns

Custom Pitch Pattern NN Accuracy (%)

CPC1 92.81
CPC2 88.34
CPC3 85.74
CPC4 90,21
CPC5 88.56

5.2 The Prediction Stage 73

5.2.2 Cruising Trend Prediction

In addition to the prediction of the operation pitch angle pattern, the prediction stage of
the framework contains a second type of neural network. The task of this neural network is
to predict the short term cruising trend at any given time t, thus the name of these networks
is NN-CRT. The motivation of using such a network to make a prediction regarding the
short term cruising trend can be explained through analogy with a similar problem in the
automotive industry and then by formatting this analogy into a marine application by
analysing the throttle control activity of the captain.

5.2.2.1 Motivation

In the automotive industry it is well known, even to the common driver, that the driving
style is closely related to the emissions of the engine. According to a similar study [3],
it has been proven that in an intelligent power management system the incorporation of
a driving trend prediction increases the accuracy of the machine learning approach as a
whole. We use this as the motivation we needed to investigate if it the cruising trend plays
an important role in a marine applications.

In order to understand what features will be necessary for our network in order to
make a realistic prediction, one must understand how the vessel speed is controlled by the
captain. If the vessel employs a fixed pitch propeller (FPP) for it’s propulsion, then in that
case the cruising trend would have been the short term decision made by the captain to
reduce or increase the speed of the engine by adjusting the position of the throttle lever.
On the other hand if a controllable pitch propeller (CPP) is used, then the captain does
not actually manipulate the speed of the engine but instead with the use of the throttle
lever he is changing the pitch angle of the installed propeller blades.

5.2.2.2 Features Extraction

The process of making a trend prediction will also happen on a moving time frame and
since it’s a short term decision we will use a different pair of time parameters to solve this
problem compared to the Pattern prediction. To predict the cruising trend at time tc, we
will again extract features from the operation profile in the segment [tc−∆WCT , tc], where
∆WCT is the window size of the segment that we use to make the prediction at time steps
k∆tCT , k = 1, 2, . . . and that predictions will be used for calculating the optimal control
strategy in the future period [tc, tc + ∆tCT]. Fig 5.2 illustrates the functionality that we
described above where the x-axes represents time and the y-axis is the normalised β pitch
angle.

The NN-CRT is trained using the features in Table 5.3 that we extract from the pitch
angle operation profile of the vessel and the outcome of the prediction can be one of the
six classes described in Table 5.4. The quantitative criterion is used in order for us to
automatically label all the data that we are going to use from the 5 Pitch Angle Patterns.

At this point it’s important to note that neural networks can be used to make a predic-
tion about the cruising trend with either of the aforementioned propulsion schemes. This is
due to the broad usefulness and generalization capabilities of the neural networks as non-
linear solvers. For this study we will only focus on the controllable pitch propeller case but
the features we will use as inputs to our network can also work in the fixed pitch propeller
case where someone should use the speed operation profile instead of the propeller pitch

74 Chapter 5. Machine Learning Framework

Table 5.3: The selected features for the Prediction of the Cruising Trend

Feature Name Description

βmax Maximum Pitch Angle in [t−∆WCT , t)
βmin Minimum Pitch Angle in [t−∆WCT , t)
βave Average Pitch Angle in [t−∆WCT , t)
βin Pitch Angle at t−∆WCT

βout Pitch Angle at t
ωave Average Pitch Acceleration in [t−∆WCT , t)

Table 5.4: The six classes of Cruising Trend

Cruising Trend Class Description Quantitative Criterion

0 Dead Stop βave = 0 & βmax = 0 & βmin = 0
1 Low Speed Cruise 0 < βave < 0.3 & ωave < 0.001
2 Mid Speed Cruise 0.3 < βave < 0.75 & ωave < 0.001
3 High Speed Cruise 0.75 < βave < 1 & ωave < 0.001
4 Acceleration ωave ≥ 0.001
5 Deceleration ωave < −0.001

angle operation profile.

5.2.2.3 Neural Prediction Training

We developed NN-CRT, a multilayer multiclass fully connected feedforward neural net-
work, with the task to predict the cruising trend in the short-term future according to the
previously described process.

For the architecture of this network we follow the same process as we did with NN-PAC.
We train all potential networks with the same 5-fold cross validation method base on the
pair of ∆WCT = 9 and ∆tCT = 1. All networks have 1 hidden layer with 5, 10, 15, 20, 25, 30
neurons. In Fig.5.10 we show the training and testing accuracy as a function of the neurons
in the hidden layer. Even with 5 neurons the network is performing quite remarkably, but
for optimal results we chose 20 neurons in the hidden layer. The final structure of the
network is shown in Fig.5.11.

Again in order to determine the best choice for window size ∆WCT we experiment with
various values. The detailed final training and test results, i.e. prediction accuracy of the
NN-CRT for all considered pairs, are presented in Fig.5.12 for training and testing, where
the values of the parameters are ∆WCT ∈ {5, 9, 15, 30} and ∆tCT = 1.

Although the performance is very high with every parameter set, it is important to
remember that when we are using big ∆WCT we are taking into account possibly obsolete
information. Therefore in an online environment we believe that ∆WCT = 9secs is the
best choice as it catches all the important transient shifts while still being computationally
feasible. Finally in Fig.5.13 we record the growth in accuracy of the network as well as the
decline of the cost function as the epochs progress during the training process.

5.2 The Prediction Stage 75

Figure 5.10: Number of hidden layer neurons vs accuracy for NN-CRT with 1 hidden layer

Figure 5.11: Architecture of NN-CRT.

76 Chapter 5. Machine Learning Framework

Figure 5.12: NN-CRT Prediction accuracies for different time parameters.

5.2 The Prediction Stage 77

(a) The rise in accuracy of the network during training.

(b) The reduction of the cost function during training.

Figure 5.13: NN-CRT training process evaluation metrics.

78 Chapter 5. Machine Learning Framework

5.3 The Control Stage

The machine learning algorithm NN-CON is developed with the goal of learning the optimal
power split settings for all standard patterns and then generalize this knowledge to online
energy management through neural learning for any operation. The objective is for the
Electric Motor to launch operation when it’s needed and thus assist the internal combustion
engine by compensating the required torque. This is done to ensure a steadily increasing
rate of torque from the engine instead of pushing it to accelerate fast in order to manage
the load on it’s own. To accomplish this, as we stated earlier, two sets of neural networks
will be employed to emulate the Nonlinear Model Predictive Control scheme based on the
Hybrid power plant of Hippo-2 testbed.

We commence our work flow by creating the necessary data for the training process
of the neural networks. After acquiring the data we device the training method for the
networks and then we follow up with the validation stage that is presented in the next
chapter. From this point on, the proposed machine learning framework is complete and its
good standing condition can be tested as a whole. For our first validation we compare the
power split performed by the framework against the control of the NMPC for a real life
maritime scenario.

5.3.1 Data Creation Phase

For the creation of the necessary data we combine the high fidelity vessel model from
Section. 2.2 with the NMPC and MHE scheme presented in [6]. With the model ready and
set, we use the 5 Standard Pitch Angle Patterns presented in 4.1 as the loading condition
inputs for the propeller model. One by one we simulate the operation of the complete model
and we collect a file with the selected variables in the form of time sequences. The labels
of the acquired data from the simulation are presented in Table.5.5.

For this simulation an important step was the realisation that the developed framework
is destined to replace the NMPC controller and therefore an equivalent sample time of
control commands is needed. For this reason the simulation of the patterns is set to 173
seconds with a sample time of 0.1s. In this way we still have 1730 values but we are able
to capture the correct control commands from the NMPC. This result is opposed to a case
of a slower sample time like 1s, where the motor would not get activated as the condition
would not be transient enough.

Table 5.5: The acquired features from the simulation.

Acquired Variable Description

TQENG Diesel Engine Torque
TQMOT Electric Motor Torque
TQLOAD Load Torque
VSHIP Vessel’s speed
SOC Battery’s State of Charge

NERROR Engine Speed Deviation from 1800 rpm

5.3.2 Engine and Electric Motor Torque Control

We develop two sets of neural networks. The first one is NN-ENG that is employed to
predict the torque of the diesel engine TQENG and the other one is NN-MOT that predicts

5.3 The Control Stage 79

the torque of the electric motor TQMOT . Each set contains 5 neural networks NNENG
i

and NNMOT
i that have been developed to learn the optimal power split for PCi where

i = 1, 2, . . . , 5. According to the notation given in Table.5.5, the inputs for NNENG
i and

NNMOT
i are NERROR(t), VSHIP (t), TQLOAD(t), SOC(t) and CT (t) where CT (t) is the

cruising trend at time t and it can take one of the 6 possible values defined in 5.4.

The architecture of the neural networks for the control stage can be seen in Fig.5.14. It
should be noted that the hidden layers for each network and for each different pattern can
be different but for this study we kept everything the same.

(a) The Diesel Engine control neural
network NNENG

i

(b) The Electic Motor control neural
network NNMOT

i

Figure 5.14: Architecture of the energy management Neural Networks Operation Pitch
Angle β Patterns

The performance of the neural networks is measured by Mean Absolute Error(MAE)
defined as

MAE =
1

N

N∑
i=1

|tari − outputi| (5.1)

Where N is the length of the pattern, so in our case N = 1730, output is the NN output
and target is the truth value. In order to show that the trend prediction is improving the
performance of the control phase networks we tested both with and without it. In Table.5.6
we present the testing results of the neural network compared with the NMPC while the
trend prediction was inactive and in Table.5.7 while it was working. It is clear that with
the prediction the performance increased in all but 2 cases.

Below we present the comparison between the neural networks and the NMPC for every
pattern.

5.3.3 Training Analysis

Starting with the observed MAE we conclude that for all cases we are inside the acceptable
region and from the graphs it can be observed that the results generated by the neural

80 Chapter 5. Machine Learning Framework

Table 5.6: Testing Accuracy of NN-ENG and NN-MOT over the 5 pitch angle patterns

Pitch Pattern NNENG−NOCRT (MAE) NNMOT−NOCRT (MAE)

PC 1 12.74 9.72
PC 2 13.41 4.0217
PC 3 7.62 4.78
PC 4 22.85 14.72
PC 5 43.44 24.86

Table 5.7: Testing Accuracy of NN-ENG and NN-MOT over the 5 pitch angle patterns

Pitch Pattern NNENG−CRT (MAE) NNMOT−CRT (MAE)

PC 1 11.55 (−9.3%) 7.94 (−18.3%)
PC 2 13.81 (+2.9%) 4.90 (−5.8%)
PC 3 7.14 (−6.3%) 4.07 (−14.8%)
PC 4 24.46 (+7.04%) 12.06 (−18.1%)
PC 5 35.62 (−18.1%) 24.21 (−2.6%)

networks are very close to that of the NMPC method. Although deviations do exist this is
actually a wanted behaviour as one of the main reasons that we are using neural networks
is to generalise well in the cases of unseen data, therefore a complete fit would in effect
hinder the performance due to overfitting as we discussed in 3.5

Pitch Pattern 1 was chosen to represent the case of a mild acceleration at start. In
this pattern the NMPC forces the EM to lightly assist the diesel engine at the beginning
and therefore an increase in torque occurs. When the full acceleration has taken place the
EM shifts to generating mode to recharge the battery and the required torque is mainly
provided by the diesel engine. In both occurrences, the NN correctly captures the desired
effect and because pattern 1 is the only mild acceleration from idle to 55 − 58%βmax the
expected behaviour is for this set of networks to generalise well in their region as they will
most likely be the ones activated when this type of operation profile occurs.

Pitch Pattern 2 represents the case of fast acceleration from idle to mid range operation
values of around 42 − 45%βmax and fast deceleration from mid range to low. Once again,
the EM is required to assist the engine in the acceleration but this time a faster response
is needed compared to the one in pattern 1. The NN captures this action and because only
this pattern was chosen to represent this type of acceleration it is also expected to perform
at a high level in it’s region.

Pitch Pattern 3 is not necessarily the most active pattern but this type of operation
profile usually occurs before a fast acceleration. In the operation of a tug vessel it can
represent the case where a call has been made for a client to be towed subsequently after
the one before him and the captain chooses not to dock but to remain in low speed cruising
which translates to about 30 − 40%βmax. For this case since the first part is in the range
of Pattern 1 as well as in Pattern 2 a difference in the rate of acceleration again makes the
all important distinction possible. Therefore when this Pattern is activated we expect once
more for the framework to conduct a correct power split.

Pitch Pattern 4 is a representing the case of a very fast acceleration from idle to high
range of 70− 72%βmax. This pattern is tug vessel operation would mostly occur after the
client has been given to the captain and he has to respond to the call at short time notice.
Since it is a fast transient the diesel needs heavy assistance from the motor at the beginning
and the NN picks that intention as well. Once more the uniqueness of this pattern translates

5.3 The Control Stage 81

into high expected performance when this pattern is switched on.

Finally Pitch Pattern 5 covers a range of operation regions and therefore is expected
to occur the most out of all patterns. The unique characteristic of this pattern is the fast
deceleration from high values to idle. This fast transient again is handled by the EM in
order to give room to the heavier diesel to slow down with a low rate pace. Although
this pattern is the one where the biggest MAE value arises, this is mostly because it is
characterised by transient shifts and lacks steady states and that initially made us believe
that this NN would not perform at acceptable performances. As we will see in the next
chapter with the simulation result due to the effective training of the networks and the
avoidance of overfitting this network fills it’s purpose.

82 Chapter 5. Machine Learning Framework

(a) The Diesel Engine Torque Command

(b) The Electric Motor Torque Command

Figure 5.15: Power split comparison between NMPC and Neural Network for Pitch Angle
β Pattern 1

5.3 The Control Stage 83

(a) The Diesel Engine Torque Command for Pattern 2

(b) The Electric Motor Torque Command for Pattern 2

Figure 5.16: Power split comparison between NMPC and Neural Network for Pitch Angle
β Pattern 2

84 Chapter 5. Machine Learning Framework

(a) The Diesel Engine Torque Command

(b) The Electric Motor Torque Command

Figure 5.17: Optimal Power split comparison between NMPC and Neural Network for Pitch
Angle β Pattern 3

5.3 The Control Stage 85

(a) The Diesel Engine Torque Command

(b) The Electric Motor Torque Command

Figure 5.18: Optimal Power split comparison between NMPC and Neural Network for Pitch
Angle β Pattern 4

86 Chapter 5. Machine Learning Framework

(a) The Diesel Engine Torque Command

(b) The Electric Motor Torque Command

Figure 5.19: Optimal Power split comparison between NMPC and Neural Network for Pitch
Angle β Pattern 5

Chapter 6

Results of the Framework

For the validation of the developed framework, four very common real marine applications,
were chosen to be simulated. The simulations were conducted by employing the same
propeller load simulator that we used for the training of the neural networks. In every
case the purpose was different but above all we sought for stability and therefore the neural
network framework is required to keep the system in a controllable state for it to be deemed
successful.

87

88 Chapter 6. Results of the Framework

6.1 Framework Set-Up

Essentially the framework that was presented in 5 was implemented in the simulation
environment MATLAB Simulink and it’s schematic can be seen in Fig. 6.1. The NMPC
controller is still present but it’s purpose is not to control the plant but to keep it in a steady
state for the first 60 seconds where the neural network that predicts the Pitch Cycle is not
actively making any prediction because it’s still gathering data to make its first window.
Therefore at this time the neural networks of the control stage are also inactive and thus
we need a mechanism to keep the system in a steady state. Note that the NMPC here is
a luxury and it’s not really needed as it is, in fact in real condition the internal controller
that most engine ECUs offer would suffice.

Sim. No Purpose
Engine
Speed
[rpm]

Duration
[sec]

1 6.2 Acceleration 1800 120
2 6.3 Deceleration 1800 200
3a 6.4 Acceleration & Deceleration 1800 200
3b 6.5 Step Acceleration Comparison with NMPC 1800 250

Table 6.1: Index of simulations which were conducted

Here again for easy of presentation we list once more all the necessary attributes of the
framework:

• NN-PAC is a classifier with 2 layers of 40 and 30 neurons [Activations: Tanh].

• NN-CRT is a classifier with 1 layer of 20 neurons [Activation: Tanh].

• The cost function for classification is the softmax cross entropy.

• NNENG are regression models with 2 layers of 64 neurons [Activations: ReLU].

• NNMOT are regression models with 2 layers of 64 neurons [Activations: ReLU].

• The cost function for regression is the mean squared error (MSE).

• The tug boat employs a Controllable Pitch Propeller (CPP) and the model accounts
for weather disturbances as well.

• The Engine Speed (SE) is referenced at 1800RPM .

• The Motor torque is limited between 522Nm and −522Nm.

• The Battery’s State of Charge is referenced at 50% and limited to above 20%.

• Movement Horizon Estimator (MHE) is used to estimate the brake load.

The sample time of the controller networks was set up to 0.1 s and for the prediction
networks was 1 s. In the next section, results from the experiment are presented. For all
simulations the same setup is being used.

6.1 Framework Set-Up 89

F
ig

u
re

6
.1

:
N

N
-P

A
C

:
T

h
e

re
d

u
ct

io
n

of
th

e
co

st
fu

n
ct

io
n

d
u

ri
n

g
tr

ai
n

in
g.

90 Chapter 6. Results of the Framework

6.2 Marine Application: Acceleration and Steady

The first scenario was chosen to represent the fast acceleration of a tug vessel. The purpose
here is for the EM to initially accelerate the vessel, by giving the required torque and for
the engine to follow up but with a slower rate of torque increase. After the EM has given
the starting boost it should shift to generating mode and recharge the battery. In Fig. 6.2
we can see this operation profile.

Figure 6.2: Pitch Angle Setting and developed Vessel Speed during acceleration simulation

6.2.1 Simulation Results

In the following figures the simulation results for the fast acceleration scenario in which
the speed reference is constant and equals 1800 rpm. Fig., 6.4 and 6.5 are referring to the
output torques of the ICE, the EM and the electric brake (load) and the engine speed with
the battery’s state of charge respectively. Moreover, the results of the predictive phase
neural networks are shown in Fig. 6.3.

6.2.2 Simulation Analysis

Initially as we explained the NMPC is holding the plant in idle position. The framework
kicks in at 60 seconds and the acceleration commences at 63 seconds.

6.2 Marine Application: Acceleration and Steady 91

Figure 6.3: Pitch Angle and Cruising Trend Predictions during acceleration simulation

The prediction stage neural networks are accurately predicting the situation they are
presented with. In the time range of 60− 63secs where the plant remains in idle, NN-PAC
predicts Pitch Cycle 2 but instantly when the fast acceleration is seen the prediction shifts
to Pitch Cycle 5. In reality Pitch Cycle 4 and 5 would be correct here. As for the NN-
CRT it starts predicting at 9seconds but the important part is after 60 for here as well.
It effectively predicts the acceleration and the High Speed steady afterwards. In general a
very pleasing outcome from the prediction networks.

The control stage neural networks also perform very well. As we can see the initial
torque is handled by the EM as the ICE torque slowly rises, resembling a steady state
condition. According to [16] in steady state, the efficiency of the ICE is increased and its
emissions are mostly regulated by the engine internal and after-treatment systems (EGR,
SCR). In transient loads, these systems usually have lower efficiency. After the acceleration
the motor is generating to recharge the battery back to 50% and although the engine speeds
up it’s well inside the safe region.

From the results it is obvious that the framework successfully handled this fast acceler-
ation transient and conducted the power split effectively.

92 Chapter 6. Results of the Framework

Figure 6.4: Diesel Engine and Electric Motor Torque during acceleration simulation

6.2 Marine Application: Acceleration and Steady 93

Figure 6.5: Engine Speed and Battery State of Charge during acceleration simulation

94 Chapter 6. Results of the Framework

6.3 Marine Application: Deceleration

The second scenario was a slow 42s deceleration of the tug vessel, a very common operation
manoeuvre for a tug vessel of the considered size. In this case we seek for the EM again
to kick in and hold the torque as the engine slows down. Afterwards it is possible for the
motor to again change into generating mode to charge the battery for a potential future
use. In Fig. 6.6 we can see the operation profile that we just described.

Figure 6.6: Pitch Angle Setting and developed Vessel Speed during deceleration simulation

6.3.1 Simulation Results

In the following figures the simulation results for the slow deceleration scenario in which
the speed reference is constant and equals 1800 rpm. Fig., 6.8 and 6.9 are attributing to
the output torques of the ICE, the EM and the electric brake (load) and the engine speed
with the battery’s state of charge respectively. Additionally, the results of the predictive
phase neural networks are shown in Fig. 6.7.

6.3.2 Simulation Analysis

The framework again starts at 60 seconds and the deceleration is issued at 83 seconds and
ends at 143 seconds.

6.3 Marine Application: Deceleration 95

Figure 6.7: Pitch Angle and Cruising Trend Predictions during deceleration simulation

The prediction stage neural networks are accurately predicting the situation they are
presented with. In the time range of 60−83secs where the plant remains at 65%, NN-PAC
predicts Pitch Cycle 1 but instantly when deceleration starts the prediction changes to
Pitch Cycle 5. Note that only 5 would be correct here and after a point maybe cycle 2 as
well. As for the NN-CRT It effectively predicts the deceleration initially but at the end
it would have been more acceptable to predict dead stop earlier. This can be explained
because we consider dead stop as a total 0 case and obviously this can’t happen if the
oldest value in the window is not zero which happens in this case. In general again a fairly
pleasing outcome from the prediction networks.

The control stage neural networks also perform well. As we can see the initial torque is
handled by the EM as the ICE torque very slowly comes to idle. After the acceleration the
motor is generating with the aim to recharge the battery back to 50%. Although it passes
this mark by 5%, this deviation is not catastrophic. For the matter of engine speed we can
see an initial speed up and then a small slow down but both are well inside the safe region
again.

From the results we conclude that the framework successfully handled this slow decel-
eration although a little more effort could be given by the EM as shown by the remaining
SOC of the battery.

96 Chapter 6. Results of the Framework

Figure 6.8: Diesel Engine and Electric Motor Torque Control during deceleration simulation

6.3 Marine Application: Deceleration 97

Figure 6.9: Engine Speed and Battery State of Charge during deceleration simulation

98 Chapter 6. Results of the Framework

6.4 Marine Application: Acceleration and Deceleration

The third scenario was chosen to represent a fast acceleration followed by a deceleration of
a tug vessel. The purpose here is to prove the time invariance of the framework and that
it can handle both situations one after the other at short time notice. In Fig. 6.10 we can
see this operation profile.

Figure 6.10: Pitch Angle Setting and developed Vessel Speed during simulation

6.4.1 Simulation Results

In the following figures the simulation results for the acceleration and deceleration scenario
in which the speed reference is constant and equals 1800 rpm. Fig., 6.12 and 6.13 are
attributing to the output torques of the ICE, the EM and the electric brake (load) and the
engine speed with the battery’s state of charge respectively. Additionally, the results of the
predictive phase neural networks are shown in Fig. 6.11.

6.4.2 Simulation Analysis

This scenario starts with mid speed cruising for the first 56 seconds and it’s followed by a
fast acceleration that commences at 116 seconds and ends at 120 seconds. After that high
speed cruising goes on for 20 seconds until 14 and then performs a similar deceleration, as

6.4 Marine Application: Acceleration and Deceleration 99

Figure 6.11: Pitch Angle and Cruising Trend Predictions during simulation

in the previous section, to eventually come to a hold at 180 seconds. For the remaining 20
seconds the plant is in idle condition.

For this scheme, the prediction stage neural networks are accurately predicting the
situation they are presented with. In the time range of 60 − 116secs where the plant
remains at 45%, NN-PAC predicts Pitch Cycle 2 which is the only logical choice that it
could make and then instantly predicts changes to Pitch Cycle 5 when the acceleration
starts. As shown from the acceleration section before the framework favours Pitch Cycle 5
vs 4 in accelerations. For the remaining high speed cruise and deceleration the prediction
of cycle 5 is the only logical one. As for the NN-CRT it adequately predicts the Mid
speed steady and the High Speed steady afterwards. The same deviation in acceleration
and deceleration occurs here as with the discussion we made before. In general a very
satisfactory outcome once again by the prediction networks.

The control stage neural networks also perform very well. As we can see the initial torque
is handled by the EM when the acceleration starts as the ICE torque slowly increases. After
the acceleration the motor is generating with the aim to recharge the battery back to 50%
but again it passes this mark by 5% as in the section before, this deviation is again not
bad. As for the engine speed it remains for all the simulation very close to the reference
value.

Winding up, this fairly transient scenario was handled successfully by The framework
as it effectively conducted the power split.

100 Chapter 6. Results of the Framework

Figure 6.12: Diesel Engine and Electric Motor Torque Control during simulation

6.4 Marine Application: Acceleration and Deceleration 101

Figure 6.13: Engine Speed and Battery State of Charge during simulation

102 Chapter 6. Results of the Framework

6.5 Marine Application: Step Acceleration Comparison with
NMPC

Finally an all important comparison between the framework and the NMPC is presented
for a series of step accelerations that expose the capabilities of the framework as a whole
in a simulation environment.

Figure 6.14: Pitch Angle Setting and developed Vessel Speed during step accelerations
simulation

6.5.1 Simulation Results

In the following figures the simulation results for the step accelerations scenario are presen-
ter, where the speed reference is constant and equals 1800 rpm. Fig., 6.16 are featuring the
comparative outputs for the power split conducted by NMPC and NN-Power framework.
Additionally, the results of the predictive phase neural networks are shown in Fig. ??.

6.5.2 Simulation Analysis

Once again the prediction stage neural networks are accurately predicting the situation they
are presented with. At 63 seconds a fast acceleration starts that makes NN-PAC predict
cycle 5 and after some stabilization has happened it changes to cycle 3 which is expected as
it stays for a long time in mid speed range. After the second acceleration it remains in the

6.5 Marine Application: Step Acceleration Comparison with NMPC 103

Figure 6.15: Pitch Angle and Cruising Trend Predictions during step accelerationssimula-
tion

range of cycle 5 that we have established as the cycle capable of conducting these transients
very well. For the NN-CRT the same issue with acceleration and deceleration occurs here
once again. In general a very satisfactory outcome from the prediction networks.

For the control stage neural networks as we can see the initial torque is handled by the
EM in every acceleration and the ICE torque slowly rises once again, resembling a steady
state condition. After the acceleration the motor is generating to recharge the battery back
to 50% and the engine speeds up it’s well inside the safe region.

Comparing now these results to the ones of the NMPC we can see that the framework
is very closely following the commands of the controller. Nevertheless it is important to
make a comment about the obvious deviations. For starters the framework appears to be
pushing the motor harder during accelerations. For this specific case the reason why this
happened is shown in the SOC diagram. The value of SOC at 150 seconds is at 57.2% where
the largest value from training that the network of the 5th cycle has seen is 55.5%. The
data that are feed to the network are normalized as we discussed earlier and this results in
a value larger than 1 for the SOC feature. This in turn causes the motor to overdrive and
subsequently self correct itself back in the accepted region of operation. It is important to
note that indeed if this specific framework was left for a longer time at cycle 3 that would
cause a problem as the value of SOC would be substantially larger than 1. This proves
that although the framework performs very well inside the region that we studied, further
development is needed to cover more cases as we will briefly discuss in the next chapter.

104 Chapter 6. Results of the Framework

Nevertheless from the results we proved our proof of consent that a framework of neural
networks such as LME-NNPower that we studied here can indeed emulate NMPC control
for the effective power split of a hybrid marine propulsion plant.

6.5 Marine Application: Step Acceleration Comparison with NMPC 105

(a) The Diesel Engine Torque Command

(b) The Electric Motor Torque Command

106 Chapter 6. Results of the Framework

(c) The Engine speed and Battery State of Charge conducted by the NN-POWER

(d) The Engine speed and Battery State of Charge conducted by the NMPC

Figure 6.16: Power split comparison between NMPC and Neural Network

Chapter 7

Conclusions and Recommendations

Conclusions

In this work we studied the development and usage of a machine learning framework based
on artificial neural networks for the power split of a hybrid diesel-electric marine power
plant. To achieve this we based our efforts on a Nonlinear Model Predictive Control ap-
proach that was previously studied.

The framework was divided in two major stages, the prediction stage and the control
stage.

For the prediction stage, initially we shaped our available data in an attempt to stan-
dardise the operation profile of a tug vessel. This was done by means of knowing the pitch
angle of it’s CPP propeller blades in a time series fashion. Through this process we created
5 Standard Pitch Angle Cycles that we later used to categorise any operation profile in our
range of study.

Afterwards we investigated the notion of cruising trend and it’s role in the improvement
of the overall performance of the framework. Through this process we created 6 classes
of standard cruising trend types in order to be able to classify any trend pattern. With
the presented results we concluded that the cruising trend indeed plays an important role
towards better overall predictions in all situations.

For both aforementioned problems we employed a similar machine learning approach, i.e.
a step-by-step overlapping time frame. In this method we chose a pair of time parameters,
the time size of the moving window as well as the time step and according to them we
extract useful features from the pitch angle operation profile of the vessel. A wide variety of
feedforward neural networks were tested to find the best one for each problem. The selected
neural networks of this prediction stage reached a high accuracy range of 88.56%− 92.81%
for the cycle prediction for the case of a 60 − s window and 97.56% for the cruising trend
prediction for the 9− s window size instance.

For the control stage, a simulation of the NMPC for each cycle created the necessary
data and 5 sets of power-split neural networks were developed. Every set was particularly
trained for 1 of the standard pitch angle cycles. Again for this problem a wide range of
neural network architectures was tested and the general MAE errors of the final networks
remained in the acceptable range of less than 5Nm.

Finally a variety of simulations were conducted in the environment of MATLAB Simulink
where the results of the developed framework were convincing enough to conclude that with

107

108 Chapter 7. Conclusions and Recommendations

further improvement, it’s within its capabilities to conduct effective power-spit on a hybrid
diesel-electric marine propulsion plant.

109

Future Work

In this thesis, a machine learning framework using neural networks was developed to em-
ulate nonlinear model predictive control for a set of predefined Pitch Angle Cycles. The
considered objective was for the networks to effectively learn and copy the control com-
mands of the controller in order to reduce the engine dynamic response during transient
operations via the electric motor.

For future work it can be advised to use real life data to create more operation profiles
to expand the range of usability of the developed framework. Moreover we recommend the
realization of more neural networks for the prediction stage of the framework as we believe
that this will bring better results for the case of online control. Notable features that could
be investigated can be the fuel mass consumption, air pressure and temperature. Further-
more features from the turbocharger or other auxiliary machinery can also be investigated
for possible improvement.

By the same token, in this thesis the networks that we developed were feedforward
neural networks. We strongly encourage the exploration of different neural networks in the
supervised learning field, where a strong candidate would be a Long Short Term Memory
(LSTM) network or the investigation of reinforcement learning algorithms like Q-learning
neural networks that are lately blooming in the field of Machine Learning.

Also the developed GUI program can be improved to further automate the process of
training by fully using the latest updates in the Machine Learning field.

Finally we advise the computation wise optimization of the framework in the simulation
environment Simulink as well as the integration of an observation mechanism for the battery
to take full advantage of the stored energy that is provides. Eventually when everything is
in place, a series of real-time online control experiments must also be administered on the
HIPPO-2 testbed to verify the consistency of the developed control scheme.

110 Chapter 7. Conclusions and Recommendations

Bibliography

[1] D. Woodyard, Pounder’s Marine Diesel Engines and Gas Turbines 9th Edition. Else-
vier Butterworth Heinemann, 2009.

[2] R. Geertsma, R. Negenborn, K. Visser, and J. Hopman, “Design and control of hybrid
power and propulsion systems for smart ships: A review of developments,” Applied
Energy, vol. 194, pp. 30 – 54, 2017.

[3] Y. L. Murphey, J. Park, Z. Chen, M. L. Kuang, M. A. Masrur, and A. M. Phillips, “In-
telligent Hybrid Vehicle Power Control - Part I: Machine Learning of Optimal Vehicle
Power,” IEEE Transaction of Vehicular Technology, vol. 61, pp. 30 – 54, 2012.

[4] N. Planakis, G. Papalambrou, and N. Kyrtatos, “Predictive control for a marine hybrid
diesel-electric plant during transient operation,” pp. 989–994, 04 2018.

[5] H. T. Grimmelius, P. D. Vos, M. Krijgsman, and E. van Deursen, “Control of hybrid
ship drive systems,” 2011.

[6] V. Karystinos, Nonlinear Model Predictive Control of a Hybrid Diesel-Electric Marine
Propulsion Plant. Zografou, Athens, Greece: NTUA, 2019.

[7] D. Varsamis, Load Simulation during ship propulasion and application in experimental
marine hybrid Diesel-Electric testbed. Zografou, Athens, Greece: NTUA, 2019.

[8] S. O. Haykin, Neural Networks and Learning Machines. Hamilton, Ontario, Canada:
Pearson Education, 2009.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. Cambridge, UK: Springer,
2006.

[10] W. Waegeman, B. D. Baets, and L. Boullart, “Roc analysis in ordinal regression learn-
ing,” Pattern Recognition Letters, vol. 29, pp. 1 – 9, 2008.

[11] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance
dilemma,” Neural Computation, vol. 4, pp. 1 – 58, 1992.

[12] S. Raschka, Python Machine Learning. Lively Street 35, Birmingham, UK: Packt
Publishing Limited, 2015.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

111

112 BIBLIOGRAPHY

[14] J. Park, Z. Chen, L. Kiliaris, M. L. Kuang, M. A. Masrur, A. M. Phillips, and Y. L.
Murphey, “Intelligent Intelligent Vehicle Power Control Based on Machine Learning of
Optimal Control Parameters and Prediction of Road Type and Traffic Congestion,”
IEEE Transaction of Vehicular Technology, vol. 58, 2009.

[15] D. Vekios, Loading Cycle Generation of Marine Engines using Machine Learning Meth-
ods. Zografou, Athens, Greece: NTUA, 2019.

[16] E. Giakoumis, Diesel Engine Transient Operation. 04 2009.

Appendices

113

Appendix A

Cassiopeia GUI

For the needs of this thesis a lite program with a graphical user interface was developed in
order to fast forward the repetitive training process, as a lot of networks-models combina-
tions have been tested. Below we present some pictures of the program. In order to make it
we used the Tkinter module of the programming language Python.It has three main frames,
each with a different main functionality.

The first frame is used to implement the automatic labelling algorithm so that we
can categorise our data according to the problem we are trying to solve (Trend of Cycle
Prediction). The user selects the pair or window size and time step that he wants to create
data for and then presses the corresponding button. According to the problem that the user
has chosen, the program automatically makes a parent folder with this name, i.e. Cycles
or Trend. Afterwards the labelling algorithms is executed and the result is a folder with
the name modelsizestep inside the aforementioned parent folder. Inside this folder there is
a train.csv that we use for the training process of the networks that refer to this model.

The second frame is the Classification Networks Frame. This frame is used to create
a classification network, train it and later use it to infer on unseen data. The user selects
the Edition of the network from Cycles or Trend. Afterwards the Model combo-box auto-
matically will only show the existing models inside the Edition parent folder so that the
user can only use valid data. To crate a network we press the Create button and then the
Network Structure window pops up so we can choose the network architecture we want.
The result of this process doesn’t really create a network but instead makes a folder with
a codenamed that hosts a JSON file. The program can later load this file when we want
to use the network and this is done mainly for two reasons. Firstly to avoid unnecessary
computation overhead, in order to keep the program as lightweight as possible and sec-
ondly to make multiple architectures possible for the same model. Indeed if we want to
create multiple architectures we just change the layers and possibly the activation functions
without restarting the program and the program will create a folder with a corresponding
codename.

To train a network we press the Train button and the training setup window pops up.
The first field is the network architecture that we want to train. Note that this pop up
window will train a network for the problem we chose in the Edition field from Classification
Networks Frame so this information is automatically picked up. Afterwards we chose the
training parameters and click the train button. The main outcome from the training is a
Tensorflow graph that can be used later to continue training if needed and a MATLAB
.mat file containing all the weights and biases that can be loaded for simulation. The
program also gives images of cost and accuracy from the training process.

115

116 Chapter A. Cassiopeia GUI

To make inference with a network we press the Infer button and the inference setup
window is made available. Here we select the network that we want to test on unseen data
and by clicking the button the program outputs a .csv file and an image of the inference
procedure.

(a) The Automatic Labelling Process Frame

(b) The Classification Networks Frame

Figure A.1: The Cassiopeia GUI Program.

117

(c) The Frame of the Controllers

(d) The Networks Creation Process subwindow

Figure A.1: The Cassiopeia GUI Program (cont.)

118 Chapter A. Cassiopeia GUI

(e) The Networks Training Process subwindow

(f) The Networks Inference Process subwindow

Figure A.1: The Cassiopeia GUI Program (cont.)

	List of Figures
	List of Tables
	Introduction
	The Hybrid Propulsion System
	The Need for Intelligent Engines
	Literature Overview
	Motivation and Structure of the study

	The Experimental Facility
	HIPPO-2
	Propeller Load Simulation Model

	Neural Networks Theory
	Artificial Neural Networks
	Statistical Modelling Concepts
	Regression Concept
	Classification Concept

	Rosenblatt's Perceptron
	Neural Network and Training
	Activation Functions and Error Functions
	Regression Problems
	Classification Problems

	Parameter Optimization with Backpropagation

	Bias-Variance Tradeoff
	Validation Methods
	Holdout Cross Validation Method
	K-fold Cross Validation Method

	Neural Networks With Python and Tensorflow

	Data for Cruising Pattern Prediction
	Cruising and Propeller Pitch Angle Patterns

	Machine Learning Framework
	The Framework Strategy
	The Prediction Stage
	Pitch Angle Pattern Prediction
	Features Extraction
	Neural Prediction Training

	Cruising Trend Prediction
	Motivation
	Features Extraction
	Neural Prediction Training

	The Control Stage
	Data Creation Phase
	Engine and Electric Motor Torque Control
	Training Analysis

	Results of the Framework
	Framework Set-Up
	Marine Application: Acceleration and Steady
	Simulation Results
	Simulation Analysis

	Marine Application: Deceleration
	Simulation Results
	Simulation Analysis

	Marine Application: Acceleration and Deceleration
	Simulation Results
	Simulation Analysis

	Marine Application: Step Acceleration Comparison with NMPC
	Simulation Results
	Simulation Analysis

	Conclusions and Recommendations
	Bibliography
	Appendices
	Cassiopeia GUI

