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Abstract

The aim of this thesis is to provide a tool for the predictive maintenance of two-stroke
marine diesel engines through monitoring of torsional vibrations and performance data.

Costly failures can be avoided and downtime can be reduced with predictive main-
tenance, which is crucial for the vessel operation, sustainability and profitability. In
order to achieve this goal, a reliable modelling of the shafting system is very impor-
tant. Such a model can be used for generating a dataset of the torsional vibrations
during normal or faulty operation of a marine engine. This dataset can later be used
for machine learning and training of a classifier model that would be able to discern be-
tween two classes of data: intact and faulty condition. Neural Networks (NN), Support
Vector Machines (SVM) and Decision Trees are the most common algorithms used for
classification based on machine learning. Within this thesis the Modelica language is
used as the tool for developing the shafting system model and generating the torsional
vibrations dataset. Emphasis is given on the presentation of Modelica language as a
powerful tool for simulation and its use for torsional vibration analysis.

Furthermore, within this study a literature review on the subject of predictive main-
tenance is conducted demonstrating that even though in other industries significant
steps have been made on developing a diagnostics system, the maritime industry falls
behind on the preventive maintenance of the marine diesel engines and thus there is
still ample room for research and developments.

A case of a container ship vessel driven by a two-stroke low-speed Diesel engine is
studied. In particular, a 10,000 TEU Container Vessel’s propulsion system was mod-
elled, based on the existing torsional vibration analysis which was available within the
frame of this study and simulations were conducted. The simulation requires that the
model represents accurately the dynamic behaviour of the system for correct transient
torsional vibration calculations. The shafting system was modelled using the Modelica
language. In addition to that, the torsional vibrations theory was utilized and the steps
for developing the case study model are analysed.The natural frequencies and modes
of the shafting system being studied are determined, and the forced torsional vibration
response is then calculated. The forced torsional vibration stress curves are obtained
from the calculated vibrations. The same work is carried out for the case of a cylinder
misfire and the results are compared with the available ones for verification.

Finally, data generated from simulations is used for training machine learning algo-
rithms in order to classify between intact and faulty operation. The trained classifier is
able to distinguish between the intact condition and the one of cylinder misfiring, based
on the dataset features that were extracted from the torsional vibration signals of the
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developed model. Moreover, the classifier is able to locate the fault location, indicating
the most probable cylinder and percentage of misfiring. The developed method shows
promising results for further research on a predictive maintenance tool that can be used
for marine diesel engines through monitoring of torsional vibrations. Furthermore, the
combination of additional performance data could provide more accurate and precise
predictions.
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>0vodn

Y16y0¢ TN Mapoloug BimhwuaTiXrg epyactug etvar 1) avdmTun Wiag uedodou TeEdBAedng
BraPBwv oToug peydhoug voutixolg xivnthpeg Diesel, yéoa and tn uehétn TV TOAAVTOOE-
0V OTREPEWS oL TKV BEBOUEVWY amOBOCTC TOU XvNTH e

Aamavnpeéc aotoylec Umopolv vo amo@euydoly, Ve ETTAEOV 0 YEOVOS EXTOC AELTOVE-
yiog umopel vo uetwdel yéoo and v medPBAedn BraBayv, yeyovog to onolo eivar xpiowng
onuactog yioe T T BLodotun xar armodotxt| Aettoupyia tou mholou. ITpoxewévou va emiteu-
yOel auTOC 0 OTYOC, Elvon TOAD GNUAVTIXG VoL YIVEL Lot 0€LOTLO TN HOVTEAOTIOMOT] TOL a&o-
vixol cucthpatoc. Eva tétolo yovtého umopel va yenowonomdet yio T dnutoupyio evog
GUVOAOU DEBOUEVWY, UECU OO TNV TEOCOUOIWOT) TOU XUTH TT) OLIOKELNL XAVOVIXNG 1) EAXTTC-
potixric Aettovpyiac. Autd To GUVoAo BEBOUEVLY, UTOREL O GUVEYELX VoL yeToLpoTotniel
Yio T yefion evog akydprduou unyavixhc udinong mou Yo etvon o Héomn va draxpivel petadd
0LO XATNYOELOY BEBOUEVLV: St xon ehattwpatixt| xutdotaoy. Ta vevpwvixd dixtua
(Artificial Neural Networks -ANNs) , ou unyavéc Stovuoudtov unoothene (Support
Vector Machines-SVMs) ot ta 0évTpa amdgauong etvar ot o cuvriopévol ahyopLiuot
UMy OIS UEUINomg Tou YeNOoYOTo0VTAL Yo TOEVOUNGT-XATIYOPLOTONoT). LTNV Tapo-
Voo Btmhwpatixd, 1 YAOooo tpoyeauuatiopol Modelica yenowonoteiton yior Tnv avdmtuén
TOU LOVTEAOU TOU 0&OVIXOU GUG TAUNTOS Xl TNV TROCOUOICT) TWV TUAAVTWOENY G TEEPE-
0C TEOXEWEVOL var Yivel 1 dnutovpyio evog cuvolou dedouévey. Emnpociétng, dlvetan
Waitepn éugaon otnv topouciaon e yawooouc Modelica w¢ éva toyupd epyaheto mpo-
COUOIWONE %ok 1) OUVATOTNTA TNG OTN UEAETY) TWV OTEETNTIXMOV TUAAVTWCEWY.

Emniéov, 610 mhaiolo tng dimhwpatixic epyactag Sieddyetan pa BiAoypapixr| avo-
OXOTNOT 6TO VEUA TNE TROANTTIXAC CUVTARNONG, UTOOEXVOOVTAS OTL TUPOAO TIOU GE GAAES
Blounyavieg €youv yiver onuovTind Bruata yior TNy avamTulrn EVOC GUG TAULATOS L&Y VWONG,
o Topéog TNe vouTihlog uoTepel 6TV UToEEn BLOBIXACLOY TEOANTTIXHC CUVTHENONC TWV
vouTiX@v xvnthewy Diesel, divovtag 1ol peydho meprdmpeto yio épeuva xon avamTugn.

Axobyo, €€eTdoTNXE TO TORADELYUA EVOC TAOIOU UETAUPORAS EUTOREUHATOXBWTIKY, TO
omofo diédeTon apydoTeogo xvnthea Diesel. Luyxexpéva, poviehonoiinxe 1o cOo TN
TEOWONS EVOC ThOLOU PETAPORAS EUTOREVUATOXBWTIWY YwenTtixdtntac 10.000 TEU, hoy-
Bdvovtag OAo Tor amopaiTNTa GTOLEl Yior TNV AVETTUEN TOU HOVTEAOU OO TEONYOUUEVT
HERETT TWV TAAAVTOOE®Y OTEEPEWS oL ftay dlardéoiun Yo auTtd To TAOLO.

H npocopolwon evog cuotiuoatog amontel To HOVTENO VoL avTITEOCKTEVEL UE oxp{Belar
T1) SUVOLXT] GUUTIERLPORE TOU GUC THHUNTOC, TROXEWEVOU VoL YIVETAUL 0 GG TOC UTOMOYLOHOS
TWY TOAAVTIOOEWY 0Tpédews o cuvirneg petofatnfc xatdotaons. To alovind cloTnua
povteronotinxe yenoonouwvTag T Yhwooo npoypoupatiopo’ Modelica. Eminiéoyv, na-
EOUGLALETOL 1) YENOWOTOLOVUEVT VEWEId TWV OTRETTIXWOY TUAAVTWOENY Xt 1) Ueodoroyia
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OVAMTUENS TOU UOVTEAOU YOl TO TURADELY A EVOC TAOIOU UETAPORAC EUTOREVUATOXIBOTIWY.
Apyind, tpocdlopiCovton oL QUOIKES LBLOCUYVOTNTES X0l LBLOPORYES TOU 0EOVIXOU GUC THUA-
TOC xaL 6TY) CUVEYELDL EETACOVTOL OL ATOXPICELS TWV CTEETTIXWY TahavTwoewy. Méoa and
TIC TPOGOHOLOOEL UTOAOYILOVTaL OL YWVIES TAAAVTWONG %o 1 BLoOUAVOT) TNG OTEETTIXAG
EOTAC, XS xou 1) Tdom Aoyw oteédmg. ‘It Sradixacio axoloudeiton xat yia Ty Tepintw-
on Tpocouoinong TS UTaEENS OPAAINTOC aTEAOUE XadoNE GE EVary XUAVOPO XaL ToL TEALXS
amotehéopato ouyxelvovton Yol ENOAAUEUCT) UE oUTA TNG dEYIXHC SLodEotung UEAETNC.

Téhog, ta dedopeva Tou TapRy Y Inxay oand TIC TEOCOUOLWOELS YENOHLOTOUUTXAY Yol
NV exnofdevon alyoplduwmy unyovixic uddnong mpoxeyevou va yivel xatnyoptonoinon
peTagl dduetng xou ehatToUaTXAC Aettovpyiag. O alyopriuog mou extaldelTNXE fTay oE
Véomn vo Sonplvel petoly tne ddtng xatdoTtaone xou exelvng e Evay xOAVOPo Vo EU-
povilel oQAAUAL, YENOULOTOLOVTIS YORUXTNEWOTIXG YVwelopata Tou elyav e€oyVel and to
OY|LATOL TOU TROGOUELOUNXAY PEGE TOU UOVTEAOU TOAAVTIOOEWY O TEEPEWS Tou ovamTOyIn-
xe. Emmiéoyv, o alydprduog Ytav ixavog vo evtoniosl Tny tonovesia Tou 6@dAuaTog, uTo-
devbovTag Tov TavoTERO XUAWVOEO xot To Tavd T0600T6 aterols xavong. H pédodog
oL VAT TUYINXE TEOCPEREL TOMAGL UTIOGY OUEVA ATOTEAEGUOTOL YLOL TNV TEPOUTERE) EQEUVOL
OYETXE UE EVOL EPYOUAEID TTROY VWO TIXNC CLUVTAENONG, TOL UTopEl Vo yenoluonotniel GToug
vowTtixolg xvntrieee Diesel yeoo amd tn YETENon TWV CTEETTIXOY TOAAVIWOEWY. Emi-
TAEOV, 0 GUVOUICUOE TEOCVETMY BEGOUEVLY ATOB00TC TOL aEoVIX0) GUC TAUATOS TEOWCNG
Yo umopoloe va mapéyel To AemToUepelc xou oxpifeic mpoBiéderc.
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1 Introduction

Two-stroke diesel engines are widely used for the propulsion of vessels in the mar-
itime industry. Fault detection for the vessel’s main engine is important to ensure
reliable and profitable operation, by avoiding costly failures and reducing downtime.
There have been continuing advances in the application of vibration based condition
monitoring techniques to machines in operation. Such techniques have been applied to
rotating machinery, typically operating at constant speed and load in various industries.
However, the application of condition monitoring on marine two-stroke diesel engines
has developed slowly.

On the other hand, torsional vibrations of marine propulsion shafting systems have
been studied for more than a century. During the operation of a marine propulsion
system driven by a Diesel engine, the occurrence of torsional vibrations is constant.
The torsional vibrations are generated by the various (periodic,dynamic) external loads
which induce excitation torques. The main engine and the propeller are the two main
sources of excitations, with the bellow being possible causes of effecting the expected
torsional vibrations:

e Ageing of the frontal damper
e Misfiring of a cylinder
e Inadequate flexible coupling

e Excess diameter in the propulsion line, among others

Propulsion Shaft
Damper

Propeller
Flex. coupling

Gearbox

Figure 1: Typical propulsion system




In most cases the reason of studying the torsional vibrations of a marine propulsion
shafting system is for the prevention of shaft or other structural failures that could
lead to huge economic or even human disasters. Meanwhile, maintenance of machin-
ery components can affect the sustainability and profitability of a vessel and current
maintenance state of practice in shipping offers ample room for improvement. Early
detection of potential failures can be accomplished by periodic intelligent monitoring
and analysis of torsional vibrations. A predictive maintenance technique, that includes
real-time equipment monitoring during operation, should be performed in order to drive
maintenance decision-making. Predictions are based on vibration signals generated by
a healthy shafting system. Vibrations can be measured periodically and any increment
in their reference levels indicates the possibility of a failure.

1.1 Literature Review

The need for the continuous monitoring of the machinery room is constantly gaining
ground in order to keep perfect operation and maintenance. Marine Diesel engines are
well known for their operational robustness and efficient performance, but despite their
known reliability there are operational issues that make monitoring of critical engine
components and subsystems necessary. Moreover, engines typically constitute a signif-
icant fraction (1/10-1/5) [1] of the acquisition cost and a comparable fraction of the
life cycle cost, thereby providing the motivation for engine condition monitoring on the
basis of reducing life cycle costs.

The work of Liang Xingyu et.al. [16] presents the progress and the recent trends
in the torsional vibrations of internal combustion engines. Their work is focusing on
presenting the available literature on the modelling of torsional vibrations, the analysis
methods, the measures and torsional vibration control as well as the research directions
on these topics. The utilization of torsional vibrations of the crankshaft for identifying
faults by torsional vibration signals is also depicted in their work. They present the
research direction and refer to studies on fault diagnosis by torsional vibration signal
of internal combustion engine crankshaft.

In their study, Banks et.al(2001) [1] presented an overview of previous research
conducted on diesel engine diagnostics and presented diesel engine diagnostics develop-
ments. Many research efforts aiming to develop a diesel engine diagnostic system have
typically been guided by a thorough knowledge of component failure modes knowns as
Failure Mode and Effects Analysis (FMEA). Within their work is presented a compar-
ison of component failure rates obtained from studies of twenty similar marine diesel
engines, with failures of the fuel oil valve representing greater than 30% of the recorded
failures. Their work indicates that the fuel injection system is the most prevalent source
of problems for diesel engines, while engine components subjected to high levels of wear,




such as pistons, liners and bearings rank near the bottom. They also demonstrated that
the parts that are most prone to failure or are critical to engine performance and thus
given higher maintenance attention also had the higher failure rates.

Condition monitoring systems and fault diagnostics techniques have been devel-
oped to reduce maintenance costs and to increase availability for critical mechanical
systems. These techniques compare measured operational parameters to normal ma-
chine condition baseline levels. The most common parameters that can be measured
and monitored on diesel engines are pressure, temperature, flow rates and vibrations.
Cylinder pressure analysis has been used extensively to monitor the engine combustion
process, by evaluating deviations from pre-established, "healthy’ pressure-time curves
of each of the cylinders. In addition, vibration and acoustic analysis of diesel engine
has shown a great potential for predictive diagnostic through spectrum analysis of en-
gine vibration data. Even though today’s techniques of diesel engine diagnostics have
been well developed, there is still no mechanism for predicting the remaining useful life.
Current financial situation of the shipping industry, combined with an average global
merchant fleet vessel age of almost twenty years [10] makes clear that a high level of
operations optimisation is required for the vessel to remain sustainable and profitable.
The introduction of novel methods of monitoring the condition of machinery equipment,
suggesting suitable maintenance actions, and scheduling those actions in an optimised
fashion is considered necessary.

Predictive maintenance can monitor equipments during operation. Predictions are
based on a vibration signature generated by a healthy machine. Vibrations are mea-
sured periodically and any increment in their reference levels indicates the possibility
of a failure. There are several approaches to analyse the vibrations information for
machinery diagnosis. Conventional time-domain methods are based on the overall level
measurement, which is a simple technique for which reference charts are available to in-
dicate the acceptable levels of vibrations. Processing algorithms have been developed to
extract some extra features in the vibrations signature of the machinery. Among these
is the Fast Fourier Transforms (FFT) that offers a frequency-domain representation of
a signal where the analyst can identify abnormal operation of the machinery through
the peaks of the frequency spectra. Since FFT cannot detect transient signals that
occur in non-stationary signals, more complex analysis methods have been developed
such as the wavelet transform. This approach converts a time-domain signal into a
time-frequency representation where frequency components and structured signals can
be localized. Also, there are now available fast and efficient computational algorithms
to process the information of these new techniques.




Regarding the engine faults, which arouse the need of predictive maintenance, these
can be classified into two main categories:

e Combustion faults

e Mechanical faults

Misfire is a very common combustion fault and many works have been put forward
to study the vibration-signal-based misfire diagnosis. One of the main approaches is
based on the torsional vibration signal of the crankshaft. The other is based on the
translational acceleration signals measured on the engine block. Even though some
researchers studied the engine fault diagnosis, these diagnostic approaches normally re-
quire an expert to interpret the analysis results from measured vibration signals making
machine learning a potential solution to the problem of automated diagnostics of faults
in marine diesel engines.

In their work, Jian Chen et.al(2013) [3], developed an Artificial Neural Network
(ANN) based automated system to diagnose a range of different faults in internal com-
bustion (IC) engines, including combustion faults (misfire) and mechanical faults (pis-
ton slap and bearing knock). They developed simulation models, which can simulate
combustion faults and mechanical faults in engines, since network training is a critical
issue of ANN applications. In addition, in order to evaluate and update the simula-
tion models, they carried out a small number of experiments with combustion faults
and mechanical faults and studied the experimental vibration signals. To detect engine
misfires they used the torsional vibration of the crankshaft and angular acceleration of
the engine block. Moreover, for the diagnosis of mechanical faults they demonstrated
that envelope analysis of the vibration signals as the appropriate signal processing ap-
proach. Finally, they trained networks on simulated data that can efficiently detect
both the combustion faults and mechanical faults in real tests and identify the location
and severity of the faults as well.

Williams (1996) [4], used the torsional vibration signal of the crankshaft for the
misfire diagnosis. He presented the technical literature for engine misfire detection and
faulty cylinder identification using crankshaft angular velocity measurements. Tech-
niques to identify the location of specific faulty cylinders, real time detection of engine
misfire using measured speed fluctuations and torsional vibration signal, are categorized
into three main approaches: threshold criteria, pattern recognition, and model based
deconvolution. In his work a comparison of most commonly used methods of fault de-
tection is presented as well as various assumptions for the location of misfiring cylinders.

In their study, Desbazeille et.al(2010),[5] focused at monitoring large diesel en-
gines by analysing the crankshaft angular speed variations. They modelled both the




crankshaft dynamical behaviour and the excitation torques. The angular speed varia-
tions were modelled at the crankshaft free end. The excitation torques depended on the
in-cylinder pressure curve which was modelled with a phenomenological model while
mechanical and combustion parameters of the model were optimized based on actual
data. They proposed an automated diagnosis based on an artificially intelligent system.
They used neural networks for pattern recognition of the angular speed waveforms in
normal and faulty conditions. The reference patterns required in the training phase
were computed with the developed model and were calibrated using a small number of
actual measurements. Finally, they managed to successfully diagnose an experimental
fuel leakage fault, including detection and localization of the faulty cylinder, as well as
the approximation of the fault severity.

For the misfire diagnosis, the vibration based condition monitoring based on the
torsional vibration signal of the crankshaft creates the need for modelling of the torque
generated by the engine. In the literature, the subject of in-cylinder pressure reconstruc-
tion has been widely studied. In the papers of Zhang (2007), [6] and Moro et.al(2002),[7]
methodologies for the instantaneous in-cylinder pressure reconstruction have been de-
veloped. The methodologies are based on the existence of a linear correlation, charac-
terized by frequency response functions, between in-cylinder pressure and engine speed
signals. They also present the signal processing methodology and experimental results,
obtained during transient tests. They propose the methodologies for the development
of diagnostic tools for the combustion process, as in the presence of a misfiring cylinder
the instantaneous engine speed waveform is strongly affected by the absence of com-
bustion, and they confirmed that the reconstructed in-cylinder pressure shows a good
agreement with the actual measurements.

Another work aiming to develop a method for machine health monitoring is that
of Crupi et.al.(2004) [8]. They analysed the rotating machinery of the Refinery of
Milazzo (Italy) and they developed a method using neural networks that allowed to
diagnose faults, which were not considered in the training data. The designed net was
able to evaluate the vibration signatures and recognize the fault presence. With their
analysis they concluded that the net was able to detect the presence of imbalance and
bearing wear, even if these typologies of faults were not present in the training data set.

Nahvi and Esfahanian (2005)[9], also designed an artificial neural network system
for fault prediction of rotating machinery systems. In their work they used multi-layer
feed forward networks, constituted of non-linear neurons and implemented a normal-
ization scheme on the input and output vectors. To train the network they used data
consisting of vibration signals of more than 40 rotating common rotating machinery
faults. Moreover, they developed a computer software able to detect machinery faults
by using the above techniques which was validated for fault detection of different ma-




chinery systems. Lastly, they displayed the effectiveness of the proposed neural network
algorithm by several tests and found that the designed network was capable of identi-
fying unknown faults in rotating machinery.

The work of Gkerekos et.al.(2017) [11] presents a methodology for intelligent mon-
itoring of marine machinery using performance data. The proposed methodology in-
cludes a suitable pre-processing technique for the acquired dataset and the development
of a self- learning model that can estimate whether a given data point corresponds to
a reference (nominal) condition considered during training. The proposed self-learning
model can be trained without the need of obtaining data corresponding to faulty con-
ditions. For training the models they used measurements that were suitably analysed
and processed to retain most of the information (variance) of the original dataset while
minimising number of required dimensions. Finally, the proposed methodology was
elaborated and showcased through several case studies, simulating faults in different
subsystems. A similar advanced work is that of Peng Li et.al.(2010)[13] in which a self-
learning algorithm for fault diagnosis in the combustion system of a marine diesel engine
was developed. In this paper an advanced method of intelligent fault diagnosis based on
fuzzy neural network (FNN) was optimized and trained by ant colony algorithm (ACA).

It must be mentioned that the maintenance and condition monitoring in maritime
industry is left behind when compared to defence, aviation, manufacturing, auto mobile,
and nuclear power production, where maintenance focus has recently shifted from reac-
tive to preventive/predictive. The work of G Chandroth [12] presented a methodology
where vibration data were combined with performance data (cylinder pressures) for the
condition monitoring of a main engine to create robust diagnostic systems. Orthogonal
wavelet transforms, principal component analysis and time domain information were
used to extract features from the data. and several artificial neural net classifiers were
developed using these data. In another work of Gkerekos et.al.(2016) [14] a self-learning
model for the condition monitoring of ship machinery was developed based on vibration
measurements.

Last but not least, the recent work of Hesari et.al. (2018 )[15] presents a combustion
fault detection technique for a 12-cylinder 588 kW transient diesel engine based on
vibration signature analysis using fast Fourier transform, discrete wavelet transform,
and artificial neural network. They found that power spectra of vibration signals in the
low-frequency range reliably distinguish between normal and faulty conditions, but the
fault’s location couldn’t be identified. For the identification of faults location they used
a feature extraction method based on discrete wavelet transform and energy spectrum
that were later used as inputs in a neural network for classification according to the
location of sensors and faults. Their proposal was that a two-step fault detection
method is more reliable than other one-step methods for complex engines.




1.2 Goals of the Present Study - Thesis Outline

Simulation is proving to be a viable way of generating data to train neural networks
to diagnose and make prognosis of faults in machines. Advanced software packages are
now available, which allow modelling of the kinetics of whole engines, usually with the
components such as engine block, crankshaft, connecting rods and pistons treated as
rigid. Up until now they have been used primarily in the design and development of
new engines, but they could also be used to simulate a wide range of faults, both in
combustion, and in the mechanical components.

In the present work, the Modelica language is used as the tool for modelling and
simulation of the shafting system. Furthermore, significant emphasis is given on the
presentation of the Modelica language and its use for torsional vibration analysis, for
a deeper understanding of the modelling problem. One of the main objectives of this
study is to develop a model that can be used to simulate various steady state and
transient state cases of a propulsion system. The overall aim of the above objectives
is to provide reliable data generated from the modelling phase for the later machine
learning and training of a classifier model which will be able to discern between two
classes of data: healthy and faulty. A critical issue with machine learning applications
in machine condition monitoring is the model training, and it is neither likely nor eco-
nomical to experience a sufficient number of different actual faults, or to generate them
in seeded tests, to obtain sufficient experimental results for the training. The proposed
methodology can be used for training a classification algorithm using sufficient number
samples form the developed model.

Further, investigating the potential of the proposed method a case study was carried
out. Based on the available data from a torsional vibration analysis already conducted
on a container ship, a Modelica model was developed. After verifying the results pro-
duced, several machine learning classifier algorithms (Decision Tree, Random Forest,
KNeighbors, Multi-layer Perceptron) were trained using simulation data for normal and
faulty operation conditions with one cylinder misfiring at different levels. The classi-
fication method is divided into three steps predicting a possible fault condition, the
location of the fault as well as the misfire level. The features for the machine learning
algorithms are extracted by performing an Octave Band Analysis, which utilizes the
power spectra of vibration signals in the low-frequency range.

The present work aims to design an automated system for Main Engine failure
diagnostics, through monitoring of torsional vibrations and performance data. The
above will provide a simplified but robust framework for the early detection of emerging
faults that will lead to minimisation of ship’s downtime and operation costs.




2 Torsional Vibrations

Two-stroke diesel engines are the most common propulsion prime mover of ships,
transmitting the required power through the main propulsion shafting to the propeller.
The subject of torsional vibrations of the propulsion systems have been widely studied
over the past years. The main sources of excitations of the aforementioned systems are
produced by the propeller and the main engine, with the torsional vibrations being a
constant problem. The propeller produces an alternating excitation torque due to its
hydrodynamic behaviour with the water flow, while on the other end of the propulsion
system, the diesel engine produces excitation torque on each of the crank throws created
by the combination of the gas combustion forces inside the cylinders and the tangential
forces induced by the reciprocating masses.

2.1 Modelling of Propulsion Systems

The most common methods of modelling a shafting system are that of the lumped
parameter system, the continuous system, or by using a finite element analysis model.
The lumped parameter model is the most commonly used in the shipbuilding industry
as a method for simplifying the model of complex propulsion systems. This method
is usually further simplified as a straight branched-chain type (damped or undamped)
and calculations can be performed using Holzer method, the system matrix eigenvalue
extraction method, the trial and error search method based on the transfer matrix, or
with the finite element which allows to calculate the torsional vibration of more com-
plex ship propulsion systems.

The shafting system is usually composed by the following components:

e Engine crankshaft, which is the main component of the internal combustion engine
e Engine damper.

e Flexible coupling

e Gearbox

e Propulsion shaft, which can further consists of the intermediate shafts and the
propeller shaft

e Propeller

Bellow are listed the three basic methods that can be used for modelling the shafting
system and analysing the torsional vibrations.




Lumped Mass Parameter Model

Also known as the simple mass-spring model this is the simplest model for the
calculation of shaft vibration. With this method a crankshaft is modelled as
illustrated in figure 2, with the crankshaft being demonstrated by mass spring
components with equivalent stiffness and inertia moments, elastic axis without
mass, internal damping and external damping. The rotational inertia of each
crank includes the equivalent rotational inertia of connecting rod and piston.
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Figure 2: Simple mass-spring model

This modelling method has clear physical content and is more precise for lower
frequency of torsional vibration modal. Moreover, this simplified model offers
ease of use and simpler calculations, but at the cost of precision. Also this model
is established completely for rigid shaft and rotation parts, so it can not simulate
the actual shatft.
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Figure 3: Representation of propulsion system using simple mass-spring model
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e Continuous Mass Model

This model is based on continuum theory and the shaft is considered as elastomer.
The finite element method is adopted, dissecting the crankshaft entities directly
into finite element calculation model of division. Compared to the lumped mass
model the mass of the shaft is distributed continuously along the shaft and partial
differential equations can be used for more precise calculations of low as well
as high frequency and vibration modal of the shaft The model is solved using
numerical method, and also can calculate arbitrary section stress conveniently.
The cons of this model is the lower speed of calculations and the higher complexity,
thus this model is not preferred for system simulation and design and it’s mainly
used in the calculation of free vibration. Two modelling methods deriving from
the continuous mass model, are the framework model and the multi diameter
model[16], which can offer higher precision.

e Multi Segment Concentrated Mass Model

Even though, this model is very similar to the lumped mass model, can be sepa-
rated into many sections according to the structure characteristics upon analysis
demand. Compared to the lumped mass model and the continuous model, high
order torsional vibration frequencies can be calculated with higher calculation
speeds.

New modelling methods continue to develop, such as the continuous beam model
[16] and graphical methods which are based on system matrix method. The research
direction is mainly focusing on continuous mass model using finite element analysis.
But, it’s not only the modelling method that will assure that the theoretical calcula-
tions are accurate, since the model’s parameters also have to be correct and accurate.
Considerable amount of precision errors lies at the accuracy of model’s rigid parameters,
which are calculated through experience formula and approximate calculations.
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2.2 Calculation of Torsional Vibrations
2.2.1 Basic Equations

The common approach to the torsional vibration analysis is through analysing steady-
state vibrations in a frequency domain. Another approach, is the transient torsional
vibration analysis performed in the time domain, which can simulate events such as
passing through a barred speed range. However, the later is more demanding and in-
tensive calculations and multiple runs are required.

External and internal vibratory forces are responsible for the vibratory occurring
motion around the equilibrium point. These vibrations are time-dependent phenomena,
appearing in the form of periodic movements, and could be described by several simple
harmonics having different periods and phases according to Fourier harmonic analysis.
A harmonic is a sinusoidal movement described by the following equation:

0 =0y x sin(w X t+ @)

where, 6: the amplitude at time t
fy: the maximum amplitude
w: the pulsation (in rad/s)

¢:  the phase (in rad)

The base of the torsional vibration analysis is the equations of motion for the system.
The methodology to model a propeller system for torsional analysis is based on the
equation: ) ‘

[1]0 +[C10 + [K]0 = [F] (1)

Where [I], [C], [K], [F] are the inertial mass, damping, stiffness and excitation
vectors respectively. Equation (1) is a non-homogeneous system of second-order linear
ordinary differential equations with constant coefficients, with each equation corre-
sponding to the number of nodes (lumped masses) in the torsional vibration model.

The most common solving methods of the torsional vibration models also described
in [16] include the following:

e The Holzer method
e The system matrix method

The transfer matrix method

The energy method and amplification coefficient method

The modal analysis method
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e The finite element

e The substructure analysis method of the torsional vibration of systems with
branch shafts

As a first step the investigation of natural frequencies is very important for the
analysis of resonance phenomena. The natural frequencies of the undamped system
can be found from solving the differential equation of the free vibrations given by the
equilibrium of internal forces (potential energy plus kinetic energy equals zero):

(116 + [K]0 =0 (2)

where [I], [K] are the inertial mass and stiffness matrices.

Then the Campbell’s diagram is constructed in order to compare the system natural
frequencies with the possible excitation frequencies, referred as the critical speeds of the
engine system. In a two stroke-cycle internal combustion engine, the engine crankshaft
makes one revolution per cycle. The engine cylinder pressure and the inertial effects are
periodic in one engine revolution and by applying a Fourier series expansion a mathe-
matical description of the torque acting at the crankshaft as a summary of harmonic
functions(orders) can be generated. Therefore a critical speed for a two stroke-cycle
internal combustion engine is defined as:

Natural frequency
OrderNo.

Critical Speed =

If a natural frequency of the system corresponds to any of the forcing frequencies,the
engine speed may be critical if there is insufficient damping in the system. It is obvious
that there are many engine critical speeds due to the multiple natural frequencies and
order numbers, but are only important when they coincide with engine running speed.
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2.2.2 Excitation Forces

The torque produced by the engine is the cause of the inertial forces due the recip-
rocating and rotating masses of the crankshaft and of the gas forces acting on each
cylinder by the combustion of fuel in the combustion chamber. The tangential force T
is a function of crank angle and is periodic over one crank revolution as it can be seen
at figure 4.
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Figure 4: Tangential forces during one revolution

A harmonic analysis is usually performed on the function of the tangential force T to
consider the various orders separately. In addition, only a certain number of harmonics
can be considered, since higher harmonics of high frequency and small amplitudes do
not significantly affect to the torsional vibrations.

T =Ty+ Tisin(¢ + e1) + Tosin(2¢ + e3) + ... + Tisin(kp + ;)

where,
e is the phase relative to T.D.C. of k-order component.

The propeller is the other main excitation source of torsional vibrations. In order
for a ship to voyage at a desired speed, specific power is demanded to be delivered to
the propeller. The torque-power demand of the propeller is always equal to the torque-
power supplied by the main engine in order for the system to be at an equilibrium state
and the ship to voyage at the desired speed under the relevant weather conditions. The
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propeller’s torque demand curve is known as the propeller law curve and most of the
times is a a cubic variation of power demand as a function of speed and is based on
the engine’s maximum continuous rating (MCR). The cubic curve of the propeller’s
law is applicable for displacement vessels using a propeller for their propulsion and for
cruising at low and medium speeds. The curve can also change for a specific ship based
on its loading condition, the fouling og the hull and the weather conditions. In addition
there are many types of ships and speed ranges for which the propeller’s law is not
applicable, thus for better precision ship specific resistance curves should be used based
on experimental data.
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3 Open Modelica

The OpenModelica language was used within this thesis as a tool for modelling and
simulating the torsional vibrations of the shafting system. The definition of simula-
tion is the imitation of a system response over time. The simulation requires that a
model correctly represents the behaviour of the simulated system and thus the correct
transient torsional vibration calculation needs to be based on adequate simulation of
propulsion plant dynamics. Modelica is a relatively new (2000) object-oriented pro-
gramming language, developed by the countries of north Europe in cooperation with
companies such as SAAB and Dassult. The Modelica language in not only used for
academic purposes but also in the industry for model based development. Many auto-
motive companies, such as Audi, BMW, Daimler, Ford, Toyota, VW use Modelica to
design energy efficient vehicles and/or improved air conditioning systems and have also
been used by power plant providers, such as ABB, EDF, Siemens.

3.1 Introduction To Modelica

Modelica is a modelling language for computer simulation of dynamic systems where
behaviour evolves as a function of time. Modelica is an object-oriented equation-based
programming language, oriented toward computational applications with high complex-
ity requiring high performance. Specifically, the models of the systems are created by
using their equations and the models can be used in different domains while building
complex systems. The language uses definitions used also in languages such as JAVA,
C++, C# and others. Common used terms of the aforementioned languages such as
class, inheritance, methods and functions are also used in Modelica, while new terms
such as Connections, Connectors, Packets, models .etc. are introduced. Furthermore,
due to the fact Modelica being an object-oriented language the vast availability of
developed libraries must be mentioned as one of its main advantages.

The four most important features of Modelica are:

e Modelica is primarily based on equations instead of assignment statements. This
allows acasual modelling that gives better reuse of classes since equations do not
specify a certain data flow direction. Thus a Modelica class can adapt to more
than one data flow context.

e Modelica has multi-domain modelling capability, meaning that model components
corresponding to physical objects from several different domains such as, electri-
cal, mechanical, thermodynamic, hydraulic, biological, and control applications
can be described and connected.

e Modelica is an object-oriented language with a general class concept that unifies
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classes, generics-known as templates in C++ and general sub-typing into a single
language construct. This facilitates reuse of components and evolution of models.

e Modelica has a strong software component model, with constructs for creating and
connecting components. Thus the language is ideally suited as an architectural
description language for complex physical systems, and to some extent for software
systems.
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3.2 Modelica Environments And OpenModelica

There are several commercial and open source environments for implementing the
Modelica language, each one with it’s own capabilities developed for specific applica-
tions. For the purposes of this thesis the OpenModelica environment was used for
developing the models. The OpenModelica environment is an open pen source Model-
ica based modelling and simulation environment for industrial, research and teaching
usage, which has been developed and funded by the Linkoping university, the Open
Source Modelica Consortium and fast developing companies. The OpenModelica en-
vironment supports most of the Modelica language capabilities (algorithms, equations,
functions and packages) and supports the ability of connecting with Eclipse and learning
of Modelica through DrModelica.

Bellow is a list of the commercial and open source Modelica enviroments, each one
with it’s own capabilities developed for specific applications.

e Commercial Modelica environments:

— CATIA Systems

— Dymola

— LMS Imagine.Lab AMESim
— MapleSim

— SystemModeler

— SimulationX
e Open source Modelica enviroments:

— JModelica.org, developed by Lund University and Modelon AB, Sweden
— OpenModelica, developed by Linkoping University, Sweden

In the OpenModelica environment the user has the ability of developing the model
either in a graphic editor or by using an interactive command handler.

The OpenModelica environment applications are:

e OMShell — an interactive command handler

e OMNotebook — a literate programming notebook
e MDT — an advance textual editor in Eclipse

e OMEdit — graphic editor
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OMOptim - optimization tool
ModelicaML - UML Profile

MetaModelica - extension

ParModelica — extension

Within this thesis, the OpenModelica Connection Editor (OMEdit) was used for
the modelling purposes., which is a user interface of the OpenModelica that provides
the ability to build models, edit connections and simulation of the models and plot of
the results. OMEdit offers modellers the ability to create models both textually and
graphically. When using the graphic environment of OMEdit the user can use already
developed models just by drug and drop of the relative icon from the available libraries.
The parameters of the available models-components can be changed to suit each appli-
cation enabling the user to develop a more complex model by connecting the available
models-components.

As already mentioned, Modelica being an object-oriented language uses the concept
of class, the meaning of which is reduced to a more abstract level, and the concept of
object which has a tangible value and is undoubtedly related to the class, with each
object having reference to a specific class. Moreover, for reasons related to the main-
tainability and scalability of the code, Modelica introduces new concepts for specific
use, identical to the class concept. These are the concepts of model, connector, record,
block and type, which are restricted classes and are used as alternatives to the class
under appropriate conditions.
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3.3 OMEdit

As already mentioned OMEdit is the OpenModelica Connection Editor, which is a
graphical environment for developing of models. OMEdit is developed in C++ using
the Qt 4.7 graphical user interface library. OMEdit communicates with OpenModelica
Compiler (OMC) and requests the model information and creates models based on
the Modelica annotations. After the implementation of the models, OMC performs
several steps for the simulation of the object oriented models. Firstly, from Modelica
source code, parsing of the codes, type checking, class expansion and generation of
connection equations are performed. Later, OMC flattens the object oriented models
into a system of differential algebraic equations (DAE) and in order to reduce the size
of the equations performs optimizations. Furthermore, it reduces index of the system
for numerical solutions and minimal set of equations in state-space form are generated.
Lastly, sequential C code is generated with a numerical solver to simulate the models.

When using the OMEdit the user can navigate through the bellow basic views:

e Modeling View
Can be used by the user for creating models both textually and graphically

e Plotting View
Is used for plotting the simulated results offering different options for presenting
the results appropriately

e Interactive Simulation View
This view is similar to the plotting view with the difference that the user can

change the parameters and variables value during the simulation

In addition, during the model development modeller is using three different views:

e Icon view

The icon view demonstrates the icon that is used for each model-component in
the model space of the diagram view. In this view he user can also create a new
icon for representing a new model.

e Diagram view

When in diagram view the user can drag and drop components-models from the
available libraries into the model space and connect the various components in
order to create a new model.
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o Text view

The text view enables the user to see the generated code of the developed model
for each of the components used in the diagram view. Moreover, when in this the
user can edit the generated code of the components used in the diagram view or
add lines to the code of the model using Modelica language. Every change made
in diagram or text view is simultaneously depicted to all views.

The ability of acasual and multi-domain modelling, show the strong capabilities of
OpenModelica when developing a model. Bellow, figure 5 compares a model devel-
oped with OpenModelica to a model developed in Simulink, where simulation is made
through assignment statements with limited data flow context and the view of the
developed model not demonstrating physical model.

Modelica: Keeps the Simulink:
Physical model - Physical Signal-flow model — hard to
structure understand

easy to understand

1 l l
- | |
n . _L N
-1

I
L

/

R2=100 |:;:|

n
P sinin sum1 Res1 Cap il
n

p p

Figure 5: Modelica model vs Simulink model
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4 Torsional Vibration Model Development with Open-

Modelica

In this section, the methodology of developing a model in OpenModelica for a Ves-
sel’s propulsion system is presented. The data used for this purpose are obtained from
of a torsional vibration analysis of a 10,000 TEU Container Vessel’s propulsion system.,
equipped with a 10 cylinder MAN Bé&W 10S9OME-C ME9.2 engine. Figure 6 demon-
strates the developed model which will be described later.

Crancshaft Region

Thrust Bearing

Flywheel

Intertmidiate Intertmidiate
Shaft No.3
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Shaft No.2

Serewshaft t[l  Propeller

Figure 6: OpenModelica model for torsional vibrations

The presented technique of modelling for the solution of torsional vibration problem
uses a Lamped Mass parameter model, composed of a finite number of elements de-
scribing the torsional stiffness of the propel and intermediate shafts and crankshaft, the
rotating inertia and the internal and external system damping. The first components
used to set the model refer to the rigid parameters:

e Torsional stiffness
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e Polar mass and moment of inertia
e Relative damping

e Absolute damping

The next step in analytically determining the torsional response is to calculate
the torsional natural frequencies of the system. For this purpose the stiffness
and mass inertia of the shaft and components being analysed, referred also as
the mass-elastic data, are required. In this case the mass moment of inertia and
torsional stiffness, as already mentioned, are obtained from the torsional vibration
analysis of a 10,000 TEU Containership. If not provided they can be calculated
using simple formulas. Table 1, illustrates the data of the torsional system.

Table 1: Torsional System

Engine Data

Engine Model 10S90ME-C Mk9.2, 2-cycle Bore 900 mm
Engine MCR 51000 kW Stroke 3260 mm
Speed at MCR 84 RPM Number of Cylinders 10
Torque at MCR 5798 kNm Connecting Rod Ratio 0.4528
MEP 17.75 bar Reciprocating Mass 17,840 kg
MIP 18.69 bar Firing sequnce 1,8,7,3,5,9,4,2,10,6
Torsional System
No. Inertia kgm? Elasticity nradNm Eq. Diam. mm Component Firing angle
1 23600 14.29
Damper
2 2030
7Zero
. aac .
3 4389 0.176 1130 Flange
4 69980 0.204 1130 Cylinder 1 0
5 i 54°
5 69980 0.194 1130 Cylinder 2 254
Jlinde 550
6 69980 0.199 1130 Cylinder 3 115.5
S STETR 999 9°
7 71120 0.197 1130 Cylinder 4 229.2
Jinder 5 11.5°
8 71120 0.132 1130 Cylinder 5 141.5
9 18100 0.131 1130 Camshaft Drive
10 70670 0.199 1130 Cylinder 6 343.8
Jes SIRH . o
11 69980 0.206 1130 Cylinder 7 82.2
12 69908 0.197 1130 Cylinder 8 36.4
S = 5o
13 71120 0192 1130 Cylinder 9 185.2
14 71120 0.126 1130 Cylinder 10 288.4
15 10750 0.08 1179 Thrust Bearing
16 33280 - - Flywheel
3.665 805 Intermediate Shaft No.1
17 6330 .
3.667 805 Intermediate Shaft No.2
18 6093
3.667 805 Intermediate Shaft No.3
19 7739
3 C
1.862 988 Screwshaft
20 614400 Fixed Pitch Propeller
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The natural frequencies of the undamped system can be found from solving the
equation of the free vibrations. Table 2 shows the calculated natural frequencies
and mode shapes for the 20 nodes(inertias) of the system, which agree with the
results of the available study. The results of this study are also include in the
appendix A for reference

Table 2: Natural frequencies without damping

Natural Frequency Node Relative Angle/Mode Shape
(RPM) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
138.6 1.08 1 1 1 0996 0.989 0979 0966 0.955 0.944 0925 0.902 0877 0.851 0.832 0.82 0.241 -0.339 -0.917 -1.21
508 29.5 135 135 1 0.552 0.105 -0.358 -0.803 -1.079 -1.346 -1.698 -1.993 -2.197 -2.312 -2.328 -2.333 -1.746 -1.045 -0.277 0.124
751.3 -0.904 0984 0.984 1 0.931 0.786 0.571 0.308 0.114 -0.081 -0.369 -0.634 -0.834 -0.958 -0.986 -0.999 -0.828 -0.537 -0.172 0.028
I's Di
Campel's Diagram
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Figure 7: Campbell diagram resonance of natural frequencies due to harmonic excita-
tions

In table 2 only the first three natural frequencies are shown since these are the
ones interfering with the excitation harmonics for the engine’s speed range. Figure
7 illustrates the Campbell’s diagram comparing the system’s first three natural
frequencies, to the excitation frequencies that may be critical for the specific en-
gine speed, if there is insufficient damping in the system. It is obvious that there
are many engine critical speeds due to the multiple natural frequencies and order
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numbers, but are only important when they coincide with engine running speed.

The next components that need to be set are those representing the excitation
forces. The forced torsional vibrations of the propulsion system’s shafts are caused
by the torque of the cylinder gas pressure forces and the inertia forces of the re-
ciprocating masses. The method used in this study, performs harmonic analysis
on the function of the tangential force T, considering the first 20 harmonics. Fur-
thermore, the total tangential force is assumed being composed of the ideal firing
gas, the mass and compression gas components. The values for the amplitudes of
each harmonic can be seen in appendix A.

T =T, + Tisin(¢p + e1) + Trsin(2¢ + e2) + ... + Tisin(ko + e20)

The torque of one cylinder is the sum of a constant term, 7;,, and of the harmonics
components. The constant component cannot produce torsional vibrations and
only creates twisting of the shaft section between the engine and the propeller,
on which the alternating twisting due to the harmonic components are superim-
posed. In this work the amplitude of the constant component produced by all
(10) cylinders is assumed to be calculated by a cubic variation of power demand
as a function of speed, known as propeller’s law curve. The values for this curve

showing the power produced for each engine speed can also be found at appendix
A.

In contrast to the constant torque 7,,, produced by the cylinder to accelerate
the system, the absolute damping components of the system create an opposite
constant toque which is dependent on the engine’s speed.

The other main excitation source, the propeller, is assumed that the torque-power
demand of the propeller is the difference between the total torque-power supplied
by the engine and the opposing torque, due to the absolute damping of the system.
In this way the power demand of the system is equal to the torque-power supplied
by the main engine and the system oscillates around the equilibrium point. This
assumption was made due the available data from the original torsional study of
the vessel. For demonstrating the excitation of the propeller at the OpenModelica
environment the combination of the torque and real exression components is used.

4.1 Creating New Modelica Classes

In figure 8 the components used for demonstrating the rigid parameters are shown.
The inertia component represents the polar mass and moment of inertia. The
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springdamperF is used for demonstrating the torsional stiffness and relative damp-

ing of the shaft. In the original springdamper component found in the standard
Modelica library, the damping torque is calculated as:

Ty

rel

= Dwrel

where,

D, is the damping constant in Nms/rad
Wrel, 18 the relative speed between two inertias in rad/s

The new component calculates the relative damping as proposed by MAN B&W,
using the unidimensional relative damping xk = %W‘

spri
c=10~ 5/ 0.152§ el
= i
) B
= T S—
I
.
1
I
foued 2

Figure 8: Rigid parameters demonstrate with OpenModelica components

Similarly, new components are created for the absolute damping of the system in-

corporating the MAN B&W proposal. The absolute damping in this case is calculated
as:

Td,lbs - Dwrel
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where,

D, is the damping constant in Nms/rad, calculated as 2-5.5 - Ipopeier - w/100
for the propeller and as 2 - 0.85 - I qnex - w/100

I, being the moment of inertia in kgm?
wrer, being the relative speed of the shaft with the environment

A completely new component is used for modeling the torque generated form each
cylinder. This components takes as input parameters the cylinder firing angle and the
desired misfire percentage of the cylinder. Then calculates the required torque for the
requested rotational speed, by superimposing the calculations for the constant term,
T,, and for the harmonic components of the ideal fire, mass and compression. The
amplitude of the harmonic components is assumed to change relative to the rotational
speed by a factor fr = M%’f\fm‘ The use of this correction factor will discussed later
at section 4.2.
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Figure 9: New model class for cylinder

Lastly, it is useful mentioning some of the components used to set the parameters
for the system’s desired speed. In the case of a steady state simulation a parameter
named RPMoperation is set at desired speed needed for the simulation. This speed is
then used as the system’s initial rotational speed and as the input parameter for the
cylinder components to produced the relative torque. The torques produced by the
relative damping, absolute damping and the propeller are then calculated based on the
rotational speed and torque of cylinders. In the case of a transient state simulation,
an initial rotational speed can be set for the model in addition to a function for the
desired speed increase rate.

Figure 10: Block components used for system’s initialization
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4.2 Model Validation

In order to validate the developed torsional vibration model, the results are compared
to those of the available torsional vibration study of a 10,000 TEU Container Vessel’s
propulsion system.

In the original study, a modal summation is used for calculating the vibration am-
plitudes at each inertia and the stress between them. With this method the amplitude
due to the effect of each excitation order is calculated for the engine’s speed range.
Moreover, the relative and absolute damping are order dependent and the total ampli-
tudes at each inertia are calculated as the synthesis, superposition, of the magnitudes
of all orders. The OpenModelica model presented is equation based, thus by setting the
right parameters it’s as able to represent vibration amplitudes, as those would appear
in a real life situation.

For the purposes of validating the model, multiple steady-state simulation where
performed for various speeds at the engine’s operational range, 20 — 90 rpm. Due to
the large volume of simulations, the OpenModelica model was simulated using a .mos
script, run from command line. Using this script one can change the initial parameters,
select the variables to be saved, import Modelica model and generally add lines of code
as would do at the OMEdit text view. The results are then processed using a Python
script. For each steady state simulation corresponding to a specific speed,the vibra-
tion and torque amplitude is calculated as the peak to peak distance for each obtained
signal. Repeating the process for all simulation the total vibration amplitude at each
speed is calculated and compared to those of available study.

Bellow, figures 11 and 12, demonstrate the comparison to the available study, for
the total stress amplitude at each speed for the intermediate shaft at a point after the
flywheel and for the total stress amplitudes for the screwshaft respectively.
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Vibratory Stress between inertia 16-17

OpenModelica Simulation Results
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Figure 11: Vibratory stress after the flywheel between inertia No.16-17

Figures 11 and 12 illustrate the results simulated with the assumption of correcting
factor fr for the amplitudes of the harmonics synthesizing the cylinders’ torque and
correcting factor fp for the absolute damping constant.The torque correcting factor is
calculated as fr = M%va fCR. This assumption is based on the available data from the
study and in order to correct the amplitudes of the simulated results. Specifically, in

the original study the mean indicate pressure is calculated as :

MIPy) = MEPMCR(”/”MCR)2 + MIPycr — MEPycr

Moreover, the amplitudes of the harmonics are given for the MCR speed and no
informations about the amplitudes at other speeds is available. For that reason, it was
assumed that the amplitudes of the harmonics, consisting the cylinder torque, will be
decreased by the factor fr = M%DI P Otherwise, a higher value for the torque would
be calculated at speeds lower than M C’R resulting to higher values for the calculated

vibratory stress.
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Vibratory Stress between inertia 19-20

OpenModelica Simulation Results
14 Original Study
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Figure 12: Vibratory stress at screwshaft between inertia No.19-20

The damping correcting factor is calculated as fr = M?g fCR. This assumption is

based on the available data from the study and in order to correct the amplitudes of the
simulated results. Specifically, in the original study the absolute damping is calculated
as :

MIPy) = MEPMCR(”/”MCR)2 + MIPycr — MEPycr

The damping torque Ty, ,. = Dwye, = 2+ 0.85 - Ipaner - w/100 of the crankshaft is
multiplied by a factor fp = 10.5 to correct the effect what all harmonics would have to
the damping constant. In a classic modal analysis such as that of the original study, the
effect of each individual harmonic (k = 1,2, ..., 20) is studied and the absolute damping
constant has a linear relationship with the harmonic order. Thus, an assumption is
made that when the summation of all harmonics is studied with the Modelica model,
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the absolute damping constant at each crank is calculated as:

k=20

Tdabs = fDDwrel = 2_0 ; karel = 10.5Dwml

Last, it must be confirmed that any fault simulated with the OpenModelica will
indeed produce results that can be later easily distinguished and classified using machine
learning algorithms. Bellow figures, show the simulated results of the vibratory stress
amplitudes, for the intermediate shaft at a point after the flywheel, at intact condition
and for Cylinder No.1 with a 50% misfire respectively.

Vibratory Angle inertia 17
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Figure 13: Vibratory angle after the flywheel between inertia No.17, intact condition
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Vibratory Angle inertia 17
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Figure 14: Vibratory angle after the flywheel inertia No.17, Cylinder No.1 50% misfiring

From figures 13 and 14, it is easily observed, that simulations for cylinder No.1
misfiring produce results with significant differences. From these results it can be
concluded that machine learning algorithms will perform well at distinguishing between
intact and fault conditions.
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5 Common Cylinder Failures and Maintenance Tech-
niques

5.1 Common Cylinder Failures

A preventive maintenance tool aims on the diagnosis of common failures. Therefore,
it is important that the failures with the highest occurrence rates or/and impact to
vessels operational life should be studied. As already mentioned, main engine’s faults
can classified in two main categories.

e Combustion faults

e Mechanical faults

One of the most common combustion faults is that of cylinder misfire. Other com-
monly occurring faults are that of the fuel oil valve, of the fuel delivery system, the
cylinder head and cooling system.

e Fuel Injection System

Cylinder Head and Valves

Charging and Exhaust System

Cooling System

Bearings, Pistons, Liners, Timing Gears, etc.

Most of the faults can be detected by changes from expected values or patterns
measured by speed, temperature, pressure and vibration sensors. A common fault can
be located at piston rings used to keep gas blow-by from the combustion chamber to
the crankcase. A possible blow-by will appear as reduction in compression pressure and
power loss. Piston rings assist also to the lubrication of the cylinder liner, meaning that
a malfunction will result in piston scraping the cylinder liner and increase in heat trans-
ferred from the piston to the liner. Apart from machinery faults, a fault can arouse due
to fuel oil quality. Marine fuel oil’s consistency and quality varies for different suppliers.
The impact of a bad quality fuel oil can be seen at the cylinder’s pressure diagram as
a delayed and prolonged combustion with high pressure peaks or increased rates in the
rise of pressure . In addition, the faults due to unsuitable fuel oil, increase scavenging
temperatures and high fuel to air ratio can appear at the cylinder’s pressure diagram as
irregular peaks known as "knocking”, due to the ignition of fuel at irregular intervals.
Another, of the common problems appearing is due to malfunction of the fuel injection
system and specifically fuel being injected earlier or with delay. These may mainly be
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due to a fault at the fuel injector or at the fuel pump and their effect can be seen at
the cylinder’s pressure diagram. Similar effects on the pressure diagram can be due
to incorrect timing of valve opening or even due to damaged exhaust valve. Increased
scavenging temperatures can be an indication of fault at the cooling system and the
scavenging air system. Faults located at the turbocharger are usually translated as a
change in its rotational inertia, which then result into delay of the turbocharger during
transient states. Thus, during acceleration or deceleration a delay in the air supplied
by the turbocharger results into a rich or poor air-fuel mixture respectively.

The origin of the above mentioned faults can easily be detected after an inspection.
For example,during an inspection a piston crown damage by erosion, due to mechanical
overloads and thermal disintegration can easily be observed They cause usually derives
from excessive and/or premature fuel injection and lack of oxygen for the fuel available,
translating to incorrect spraying and leaking injector nozzles injectors. Another fault
that can be easily detected with inspection is that of burning low sulphur fuels with
increased additives. Over-additivation lead to mechanical and chemical bore polish,
which then lead to micro-seizures and latent risk of scuffing.

Severe Top-land deposits’

Liner polishing / hard contact marks

Figure 15: Damage due to low sulphur fuel

From the available literature it is clear that the fuel injection system has been the
most prevalent source of problems for diesel engines. Meanwhile, engine components
subjected to high levels of wear, such as pistons, liners and bearings rank near the
bottom. Furthermore, the amount of attention invested in the maintenance of marine
engine components compared to to their failures rates is unequal and it is clear that
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this is not happening due to lack of proper maintenance attention. For that reason
preventative maintenance should be used for parts that are most prone to failure or
are critical to engine performance and avoid any unnecessary component replacements,
regularly scheduled maintenance and yearly overhauls. Vibration analysis can be used
as a technique for monitoring the performance and failures by measuring vibrations
against known failure vibrations, by Interpreting and classifying the information from
acquired data. It must be noted, that even though an abnormal condition could be
detected, by using vibration analysis for calculation of the vibration spectrum, that
condition may be the result of not just one fault of but sometimes multiple causes. The
later makes difficult to distinct the fault’s location.
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5.2 Maintenance Philosophy

Maintenance’s role is not to repair damaged equipment, but to prevent its dam-
age, enabling machinery to work efficiently, reliably and safely. The selection of the
type of maintenance depends on the application considering the cost and safety. The
maintenance philosophy can be divided based on the following approaches:

e Reactive or run to failure maintenance

This type of maintenance is based on the philosophy of run-to-failure. In this
case maintenance is only performed after failure of a component. In most cases
no repair is possible and the component is replaced by a new one. This type
of maintenance can offer the longest time between shutdowns but failures are
catastrophic and can possibly affect multiple components and/or machines and
additionally a large spare-parts inventory is required. For these reason, reac-
tive maintenance is mainly applied to relatively not expensive and non-critical
machines or where there is back up equipment.

e Preventive or time based maintenance

This method has been established for more expensive equipment with more costly
operation. When preventive maintenance is implemented, maintenance and in-
spections of equipment is performed at a fixed frequency, following Original Equip-
ment Manufacturers (OEMs) recommendations and past experience. With this
method unplanned downtime is minimised since maintenance is performed to pre-
vent failure of the machine.. Significant increase in machine lifespan is also one
of its advantages as well as the lower cost due to the reduced number of compo-
nents that need complete replacement. Preventive maintenance generally aims to
provide such maintenance intervals determined by the rate of failures of similar
equipment, aiming for a 1-2% of them to experience failures between maintenance
intervals. Thus, the clear majority of machines would be able to continue work-
ing without maintenance for multiple maintenance intervals. The weakness of this
method the difficulty to estimate time between repairs. Not taking into consid-
eration the actual machine condition results to failures that can occur before the
planned repair or maintenance been conducted too early.

e Predictive or condition based maintenance

In this case the maintenance scheduling for each component is decided based on its
past and present condition, rather than at predetermined intervals by performing
monitoring and diagnostics. Predictive maintenance is extremely cost effective
for marine engines that need to run for long periods without any shutdowns.
Downtime due to unplanned maintenance can be avoided, while lifetime, and
safety can be increased. The main disadvantage is that higher initial cost is
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required, but still proves to be more economical during a machine’s lifespan and
offers better management of spare parts.

Proactive or prevention maintenance

This method aims to identify the root cause of a fault or a condition. The objective
is to proceed to corrective actions based on the root cause in order to avoid faults
or improve a condition.
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6 Machine Learning Algorithms

6.1 Introduction To Machine Learning

Over the past years, machine learning algorithms have gained a lot of attention and
have been extensively used for classification problems, aiming to recognise or predict
different classes within a dataset. Machine learning algorithms are programs (math
and logic) that adjust themselves to perform better as they are exposed to more data.
The “learning” part of machine learning means that those programs change how they
process data over time, much as humans change how they process data by learning.
So a machine-learning algorithm is a program with a specific way to adjusting its own
parameters, given feedback on its previous performance making predictions about a
dataset.

o Supervised and unsupervised learning

There are many different machine learning algorithms and can be distinct in two
main categories, supervised and unsupervised learning. For the purposes of this
thesis a supervised learning model was used. By this term it is meant that the
model is trained to reproduce known outputs for a training set whose output data
patterns are known. On the contrary unsupervised learning models are trained
with unlabelled data and don’t have any outcome to predict data . Thus they
may be used to uncover information about the data structure as a preliminary
step before applying supervised learning.

o The Dataset

A training dataset is the actual dataset used to train the model during develop-
ment process. During the preprocess the training dataset is divided into features
and labels. Features are the algorithm’s inputs and each one is represented as
one column of the dataset, whereas labels are the algorithm’s output. The data
can have one or more labels and the aim of the machine learning model is to be
able to predict new unlabelled data. For the training process the model is fed
with the training dataset receiving both known input and output data and the
selected algorithm creates the appropriate rules between the input and output
data. During this stage many algorithms can be tested and compared in order to
opt for the one with the highest performance

The supervised learning algorithms can be divided into two learning techniques:

1. Classification

This is a technique that separates the training data into classes and aims to
predict the output of unknown data by reproducing class assignments from the
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training set. The classification of data can be done according to specific individual
requirements.

2. Regression

This is a technique that fits the training data and aims to reproduce the output
value.

For the purposes of this thesis the classification technique was used, since the de-
veloped OpenModelica model offers the ability to obtain data for various loads and
engine conditions. In general the classification during machine learning can be binary,
multi-class, multi-labelled and hierarchical.

o Data Processing And Feature Engineering

When creating a machine learning model, one of the first considerations is to
decide the features to be used. Features are pieces of information given as input
to the algorithm and can be either numeric values or text. Datasets are usually of
high dimension including irrelevant or redundant features, which may lower the
performance of a machine learning algorithm. For this reason, feature selection
methods must be applied in order to increase performance

In machine learning the terms of bias and variance used in statistics, are used for in
order to decide whether supervised learning algorithms can generalize beyond training
dataset.

o Underfitting-Bias error

The bias error occurs when the model cannot adequately capture the important
structure of the data, missing the relevant relations between features and target
outputs.

o Overfitting-Variance error The variance error appears as sensitivity to small
fluctuations in the training set and occurs from ”overtraining” or when training
samples are rare, adjusting to specific random features of the training data. Thus,
the model performs well on the training dataset, but is less accurate in predicting
unknown data.

6.1.1 Python For Machine Learning

Python is an object-oriented programming language and an easy-to-use language
making it simple to use. In addition is a free software and can also be freely modified
and re-distributed because while the language is copyrighted it’s available under an
open-source license. Python comes with a large standard library that supports many
common programming tasks and is easily extended by adding new modules implemented

40



in a compiled language such as C or C++. One of it’s advantages is the ability to run
on different Operating Systems and can be embedded into an application to provide a
programmable interface.

Python is broadly used in machine learning and scientific applications, having li-
braries such as Scikit-learn and SciPy for machine learning and data analysis. It must
be noted that when selecting a programming language for machine learning and data
science, the selection of the best language depends on the project or experience on pre-
vious projects. Scikit-learn is a machine Learning library that has a simple interface and
it is well documented with many examples and tutorials. In continuation, Scikit-learn
features various classification, regression and clustering algorithms including support
vector machines, random forests and gradient boosting, and is cooperates very well with
Python’s numerical and scientific libraries NumPy and SciPy, as well with the rest of
the wealthy open-source available libraries.
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6.2 Random Forest Algorithm

The Random Forest algorithm shows great performance in regression and classifica-
tion problems in various fields and have gained increased attention within the machine
learning community. Random decision forests known as Random forests is a machine
learning technique useful for prediction problems. It is an ensemble learning method
for classification or regression. Classification is achieved with a set of decision trees
that grow using randomly selected subspaces of data at training time and outputting
the class that is the mode of the classes (classification) or mean prediction (regression)
of the individual trees. Random forest handles non-linearity by exploiting correlation
between the features of the data.

6.2.1 Decision Trees

A decision tree is a decision support tool based on the concept of the cutting off
of possibilities. Can be used to classify data, and they cut off possibilities of what
a given instance of data might be by examining a data point’s features. They have a
flowchart-like structure where the flow starts at the base with a single node and extends
to the many leaf nodes that represent the categories that the tree can classify. Each
internal node represents a decision, each branch represents their possible consequences,
including chance event outcomes, resource costs, and utility outcome and each leaf node
represents a decision taken after computing all attributes.

[ Work to do? | Internal
node
Yes No
Stay in | Outlook? |

Branch

Sunny Rainy
Over-

cast

Go to beach Go running [ Friends busy? J

Leaf YENO

node Stay in Go to movies

Figure 16: Decision tree example
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Decision tree structure:

e Root Node: A root node is at the beginning of a tree. It represents entire pop-
ulation being analysed. From the root node, the population is divided according
to various features, and those sub-groups are split in turn at each decision node
under the root node.

e Parent Node and Child Node: These are relative terms. Any node that falls under
another node is a child node or sub-node, and any node which precedes those child
nodes is called a parent node.

e Decision Node: When a sub-node splits into further sub-nodes, it’s a decision
node.

e Leaf Node or Terminal Node: Nodes that do not split are called leaf or terminal
nodes.

e Splitting: It is a process of dividing a node into two or more sub-nodes.

e Pruning: Removing the sub-nodes of a parent node is called pruning. A tree is
grown through splitting and shrunk through pruning.

e Branch or Sub-Tree: A sub-section of decision tree is called branch or a sub-tree,
just as a portion of a graph is called a sub-graph.

Generally, are simple to understand and can give important insights and help de-
termine worst, best and expected values for different scenarios, while be combined with
other methods for improved results. Some of their disadvantages is the tendency to
overfit when trees are grown very deep and tend to learn highly irregular patterns and
thus becoming unstable and . Decision trees are able to handle multi-output problems
and use continuous numerical input, they are not a practical way to predict such values,
since decision-tree predictions must be separated into discrete categories.

6.2.2 Random Forest

The Random Forest algorithm is a a supervised classification algorithm which con-
sists of a group of decision trees, which are the base learner. The decision trees are
grown by feeding on training data using the random subspace method. The algorithm
applies bootstrap aggregation and random feature selection to individual classification
trees for prediction. That means all decision trees, in the Random Forest, do polling
during the prediction and majority of the polls is considered the result of prediction.
To break this down, decision trees can suffer from high variance and tend to over-fit
the model to the training data. The bootstrap aggregation, called bagging, can reduce
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this variance, but the trees are highly correlated. Random Forest is an extension of the
above using the random subspace method to build trees based on multiple samples of

the training data, enabling also to opt for the number of features that can be used to
build the trees.

Training Data

Training Data Subset Training Data Subset | | Training Data Subset

O O O O O O

Decision Tree Decision Tree Decision Tree

Random Forest

Figure 17: Random forest structure example

Random forest is considered an ensemble method that uses ensembles of decision
trees. The goal of ensemble methods is to combine the predictions of several base
estimators built with a given learning algorithm in order to improve generalizability /
robustness over a single estimator. The scikit-learn implementation combines classifiers
by averaging their probabilistic prediction, instead of letting each classifier vote for a
single class.
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6.3 Nearest Neighbors Algorithm

Nearest neighbors algorithm is based on the principle of finding a predefined number
of training samples closest in distance to the new point, and predict the label from
these, thus the model representation is the entire training dataset. The number of
samples can be a user-defined constant (k-nearest neighbor learning), or vary based
on the local density of points (radius-based neighbor learning). The algorithm stores
the entire dataset, so training data must be carefully selected and some cases requires
to be updated. Predictions are made by looking through the entire training dataset
and finding the most similar "neighbour” based on a distance measure. The distance
measure is most often used is Euclidean distance, calculated as the square root of the
sum of the squared differences between a new point and an existing point across all in-
put attributes. Other distance measures include Tanimoto, Jaccard, Mahalanobis and
cosine distance. As an example Euclidean distance measure is suggested to be used if
the input variables are similar in type, while the Manhattan distance is a good measure
to use if the input variables are not similar in type. Selecting a higher value for the
parameter k of the knearest neighbors, minimises noise effect of the dataset, but the
classification boundaries become less distinct.

Within the Scikit-learn library two different nearest neighbors classifiers can be
found:

1. KNeighborsClassifier implements learning based on the knearest neighbors of each
query point, where k is an integer value specified by the user.

2. RadiusNeighborsClassifier implements learning based on the number of neighbors
within a fixed radius r of each training point, where r is a floating-point value
specified by the user. The k-neighbors classification in KNeighborsClassifier is
the most commonly used technique.
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6.4  Multi-layer Perceptron classifier

The Multi-Layer Perceptron classifier (MLPC) relies on an underlying Neural Net-
work to perform the task of classification. Artificial Neural Networks (ANN) are widely
used for classification problems and Scikit-Learn offers a library for an easy implemen-
tation. MLPC uses an ANN with three or more hidden layers and because of its many
hidden layers, it’s considered a deep learning method. Each hidden layer contributes to
the overall performance of the network, using a back propagation technique for training
the network. MLPC can learn and model complex and non-linear relationships and also
generalize well, even when trained with incomplete data. Even though, the error in one
node cannot affect the entire network, it is difficult to understand how the output layer
was predicted and the algorithm tends to be computationally expensive.

The concept of an ANN is inspired by the human nervous system, which consists
of the dendrite that receives information signal, the nucleus which processes the sig-
nals and the axon which connects one neuron to another. When a neuron receives an
electrochemical signals from many sources for which the excitation is high enough, the
neuron fires, passing on the signal. Based on that concept an ANN is a network of
artificial neurons made up of an input layer which receive the input data, one or more
hidden layers that processes the data, and output layer which makes the predictions.

Dendrite Axon terminal

)‘f i ]
\ (o 1

D R &
, \V\%XOTK r \Schwann cell

Myelin sheath
Nucleus y

Figure 18: Structure of human neuron

An ANN architecture has the following structure:

e Input Layer, which is the visible layer receiving the input feature, with the
number of input nodes representing the number of features from the input dataset.

Hidden Layers, in contrast to the input layer, remain hidden and are the main
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contributor of model’s performance. MLPC consists of multiple hidden layers
which are connected together.

Neuron, is the computational unit of the neural network. MLPC’s neurons
are connected in a directed graph with the output of one neuron acting as the
input of the next neuron. Each neuron has weight, biases and an activation
function. Weights are the fundamental elements behind the learning process of
the network. Learning happens by adjusting the weights during data processing,
while the activation function maps the weighted sum of inputs to the output in
the neuron.

Output Layer, the final hidden layer of the network and represents the model’s
prediction. The output can be a single output neuron, binary or multiple output
neurons.

The learning process takes place through the stages of feed-forward and back propa-
gation. During feed-forward stage, random weights are assigned for each input, adding
a bias to the sum of input and weight. Then that information is sent to each neuron
in the hidden layer for further processing. The neuron uses an activation function, for
processing the information based on weights and biases, by multiplying the weights
and bias added. One complete cycle of the forward pass and backward pass is usually
referred to as an epoch. Back propagation is needed during the learning process to
adjust weights and biases in a backward direction, in order to improve the accuracy.
The final predicted output occurs after a feed-forward phase and is compared to the
expected output by calculating the error, using a loss function.

A single artificial neuron can be represented mathematically as:

k
O=f (Zw"(”i + b)
where,

(O, is the output

f, is the activation function

I;, are k inputs

w;, are summation weights

b, is a bias term determining how much activation induces firing
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A layer of multiple artificial neurons can be represented mathematically as bellow,
where indices [ — 1for the input vector and [ for the output vector anticipate the next
step, where layers are interconnected.

ki1
(Ol)j = f; (Z wj,il(ol_l)i + bjl)
i=1
where,

(O, is the output vector
fjl, is the activation function

(O'1),, are k;—; inputs
wjﬂ-l, is the weight of the 4;, input in the j;, neuron

bjl, is the bias term of the j;, neuron

By combining layers a MLPC is achieved as shown in figure 19 bellow.

+bias

+bias O

Figure 19: Structure of an MLPC
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7 Development of a Fault Diagnosis Method

7.1 Data Processing
7.1.1 Data Extraction From OpenModelica Model

To diagnose a fault the monitoring of a machine is essential in order to obtain and
detect data that underlay a fault. The diagnosis occurs after the analysis of the detected
data which usually consists of vibration signals measured at regular time intervals at
points of interest. Within this thesis fault diagnostics are based on vibration signals,
speed and power.

The ISO 17359 standard, Condition monitoring and diagnostics of machines, offers
guidelines about how various operational parameters associate with various machine
faults. Most of the faults for rotating machinery can be identified by changes of am-
plitudes and spectral content of vibrations. By applying the right analysis tool to the
vibration signals information regarding the fault point can be derived.

Machine
types: pumps
Exa:lfples Fluid Length Pressure
leakage|measurement|
faults

Damaged
impeller
Damaged
seals
Eccentric
impeller
Bearing
damage

Symptom or parameter change

el Coast | oil
Power or Speed |Vibration|Temperature| down

vacuum time | debris | leakage

Bearing wear

Mounting
fault

Unbalance

Misalignment

* Indicates symptom may occur or parameter may change if fault occurs.

Table 3: Typical monitoring parameters

The data extracted from the Modelica model simulation, for the training of machine
learning algorithms, is that of the vibration signal at the intermediate shaft after the
flywheel and the speed signal. The signals are obtained after multiple simulations at
steady state conditions with a 1RPM mean speed difference between them for various
engine conditions, in the range of 20 — 90RPM . Simulations’ sampling frequency is

49



100 Hz, since the maximum engine speed is n = 90 rpm or n = 1.5 Hz and thus
the highest order of excitation(20) has a frequency of 30 Hz. Moreover, the simulated
signals are obtained after the system has reached steady state and have a 25 s duration.
Each signal is further divided into five equal time duration signals in order to obtain
more samples for the training of machine learning algorithms.

Then each signal is processed further using time domain analysis where statistical
features are calculated from the vibration data. By comparing the statistical features,
particular faults can be identified. In method proposed within this study, the statisti-
cal features used are that of the mean value, peak amplitude, the standard deviation
and the variance. In addition, a lot of valuable information can be extracted from a
frequency domain analysis, showing important information about the problem source.
The frequency domain analysis technique used for this study is presented next at section
[7.1.2].
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7.1.2 Octave Band Analysis

Time-domain processing generally provides an intuitive representation of the re-
lationships between data and is often used to identify morphology of transient infor-
mation. In the case of the ship’s main engine the information of interest repeats over
regular intervals, transformations can be used to convert the time-domain information
to the frequency-domain. Specifically, the oscillatory information from the vibration
signal can, which may be hidden in the time-domain may be easier to assess in the
frequency-domain. The vibration signal can be represented as a sum of sinusoids, with
each sinusoid having a specific oscillation frequency, amplitude, and phase shift, by
using commonly used Fourier Transform. Using the Fourier Transform, which can be
easily implemented in Python using the Fast Fourier Transform (FFT) algorithm , the
signal from the time-domain can be represented to the frequency-domain to perform
Spectral Analysis

In order to use the results of a Spectral Analysis as features for a machine learning
algorithm, one must select based on a frequency by frequency basis. That would result
at selecting to many features in the case of deciding to use all the available information
or to a number of features that are not important in the case of selectively deciding the
frequencies to be used. As a solution to that the Octave Band Analysis is used in this
case, which can generates results that can be easily be used as features of an algorithm.

Octave Band Analysis has been developed for analysing audibility performance, by
grouping more naturally frequencies of audio signals, so that the distributed signal
power scales better for analysis. The frequency range is divided into sets of frequencies
called bands, with each band covering a specific range of frequencies. A octave has an
upper band frequency which is twice the lower band frequency. Similarly, a one-third
octave band is a frequency band whose upper band-edge frequency is the lower band
frequency times the cube root of two.

The audio spectrum from 20 Hz to 20 KHz can be divided up into 11 octave
bands. If we set/define the 7th octave band’s center frequency to be f£"¢" = 1000 H z
then all lower center frequencies for octave bands can be defined from each other us-
ing the formula fefer = feenter /2 - All higher center frequencies for octave bands can
be defined from each other using the formula fY" = 2fc"*". For each center fre-
quency,the half- octave low, or high, frequency for each octave band are (respectively)
given by the formulae fv = f,/2'/2 and fh9"h = 212, Thus the center frequency of
an octave band is feenter = feenter /9 and the fractional percent bandwidth per octave

band is constant.

In the 1/n-octave analysis, the signal to be analysed is split into partial signals by a
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digital filter bank before the sound level is determined. The filter bank consists of sev-
eral filters connected in parallel, each with a bandwidth of 1/n-octave. An octave filter
is a filter whose upper cut-off frequency is twice the lower cut-off frequency, whereas
1/3-octave filters further subdivide each octave band into three parts and so on. This
means that octave filters or 1/n-octave filters do not have a constant absolute band-
width, but a constant relative bandwidth, i.e., the frequency bands are equidistant on
a logarithmic frequency scale.

Each octave band may be separated into three ranges - referred to as one-third-
octave bands. The audio spectrum from 20 Hz to 20 KHz can be divided up into 31
1/3-octave bands. If we set/define the 19th 1/3 octave band’s center frequency to be

center — 1000 Hz then all lower center frequencies for 1/3octave bands can be defined
from each other using the formula feenfer = feenter /91/3 - All higher center frequencies for
1/3octave bands can be defined from each other using the formula foifer = 21/3 feenter,
For each center frequency,thel/6 octave low, or high, frequency for each 1/3 octave
band are (respectively) given by the formulae flv = f, /2'/6 and fh9h = 21/6f,  The

percent fractional bandwidth per octave band is constant.

In this study, the maximum engine speed is n = 90 rpm or 1.5 Hz and the highest
expected frequency is n = 30 H z corresponding to the k = 20 order of excitation. Thus,
one third octave band analysis is performed to the frequency range between 0 Hz
and 50 Hz. With this analysis the frequencies present in the spectrum are grouped
into bands making it easier to extract information about the spectrum amplitudes at
different rotational speeds.
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7.2 Algorithm Evaluation Methods

In order to decide about the capabilities of the tested algorithms, they will go through
a validation process for the available dataset. As already mentioned at the data pro-
cessing section, the features that will be included in the dataset for training the model
are as shown bellow:

e Average speed

e Peak angle

Standard Deviation
e Variance
e 1/3 Octave Bands

The above features correspond to the speed and angle signal obtained for the part
of the shaft after the flywheel.

In order to avoid overfitting the selected dataset is divided to a training set and
a test to be used for training and validating the algorithm. Otherwise, training the
model and testing it on the same data, would result to a model capable to perfectly
predict classes of the samples that has been trained, but will have a very poor score
at predicting anything useful unknown data. Usually, a random split of 80% to 20%
is used for the training and the test set respectively. In this work, a random split of
80% — 20% after shuffle of the dataset, is also used with the addition of an initial Corss
validation procedure called k-fold C'V. In this approach the training set is split into k
smaller sets called k folds. The model is trained on the k — 1 folds and is tested on the
remaining fold. The final performance is then the average of the values computed in
the aforementioned loop. The k-fold C'V is computationally expensive and is used only
as an initial step to check if the random split provides sufficient results, based on the
calculation of algorithms’ accuracy.

e Correlation matrix, is used to obtain more insight in how strongly each feature
in the dataset is correlated with others. Due to the fact that the dataset contains
a lot of features and the correlation becomes difficult to discern, the correlation
of features with the class is visualized it in the form of a bar-graph.

e Learning curve, is used to visualize the the validation and training score of a
model for varying numbers of training samples. It shows whether the model is
over fitted or under fitted and whether an increase in the size of training set would
be beneficial.
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‘ All Data ‘

‘ Training data ‘ Test data ‘

‘ Fold 1 H Fold 2 H Fold 3 H Fold4‘ Fold 5 ‘\

split1 | Fold1 || Fold2 | Fold3 | Fold4 | Fold5 |

split2 | Fold1 || Fold2 | Fold3 | Fold4 | Fold5 | > inding Parameter
Spiits | Fold1 || Fold2 | Fold3 || Fold4 | Folds |

spliit4 | Foid1 || Fold2 | Fold3 || Fold4 || Folds |

Split5 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 ‘ Fold 5 ‘j

Final evaluation ﬂ Test data

Figure 20: Illustration of data split with k-fold C'V

e Confusion Matrix, is used for assessing the performance of a classification algo-
rithm by comparing observed and predicted results. It is used to provided more
information compared to the classification accuracy alone by showing 7T'rue Pos-
itive and False Positive rates (number of correct and incorrect predictions) for
each class

e Classification report displays the precision, recall, F1, and support scores per
class, which are the main classification metrics. Metrics are defined in terms of
true and false positives, and true and false negatives. The Precision metric shows
the ability of classifier not to label an instance positive that is actually negative,
calculating the ratio of true positives to the sum of true and false positives (for
all instances classified positive, what percent was correct?). The Recall metric
measures the ability of classifier to find all positive instances calculating the ratio
of true positives to the sum of true positives and false negatives (for all instances
that were actually positive, what percent was classified correctly). The FI score
is a weighted harmonic mean of precision and recall and is lower than accuracy.
The Support is just the number of actual occurrences of the class in the specified
dataset, used for diagnosing imbalance problems.
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7.3 Case Study
7.3.1 Method

This case study aims on specifying and locating a misfire due to a possible fault based
on the vibration signals generated from the OpenModelica model. The algorithms to
be tested are the following:

i. Decision Tree Classifier
ii. Random Forest Classifier
iii. KNeighbors Classifier
iv. Multi-layer Perceptron classifier
The proccess is divided in three steps as described bellow:

1. In this step the classifier predicts the possible appearance of a fault. A Classifica-
tion problem is solved with two classes, 0 and I, where all signals corresponding
to intact condition are classified as class 0 and those corresponding to a condition
with one cylinder misfiring are classified as class 1.

2. In this step the classifier predicts the possible the possible location of the fault.
A Classification problem is solved with 10 classes, 1,...10, where all signals cor-
responding to misfiring of cylinder no.1 are classified as class 1 and as class 2,..,
,class 10 respectively for the rest of the cylinders misfiring.

3. In this step the classifier predicts the possible the possible misfire percentage for
the predicted fault location of step 2. A classification problem is solved with 3
classes, 20, 50 and 80 where all signals corresponding to the specific cylinder
location misfiring at a 20%, 50% and 80% percentage are classified as class 20, 50
and 80 respectively.

At each step the algorithms are trained using the features obtained as described
at the previous sections. In particular, only the vibration signal at the intermediate
shaft after the flywheel is obtained. The signal is obtained through multiple simulations
at steady states with a 1RPM mean speed difference between them for various engine
conditions. Moreover, in order to avoid aliasing errors and satisfy the Nyquist frequency
theorem, the simulation’s sample rate is to 100 Hz, since the maximum engine speed
is n = 90 rpm or n = 1.5 Hz and thus the highest order of excitation(20) has a
frequency of 30 Hz. For the various conditions the signals are classified as described in
the following scenarios in order to be used as classes.

e Intact condition with 0% misfire for all cylinders
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Table 4: Intact condition scenarios

Cylinder No. 1 2 3 45 6 7 8 9 10
Scenario 1 (misfire %) 2 1 0 0 3 0 1 0 3 2
Scenario 2 (misfire %) 1 0 3 2 0 2 0 1 2 1
Scenario 3 (misfire %) 0 2 1 3 0 2 0 2 0 2
Scenario 4 (misfire %) 2 2 3 0 1 2 0 1 0 O

e Four scenarios of intact condition with a range of 0 — 3% misfire for various
cylinders

All the signals obtained from the aforementioned simulations have a recorded du-
ration of 25 seconds and each of them is further divided into five equal time duration
signals in order to obtain more samples for the machine learning algorithms. Then
for each signal the mean engine speed, the peak amplitude, standard deviation and
variance are calculated. In addition to these, the frequency domain features calculated
with the one-third octave analysis are included to the dataset.

7.3.2 Algorithm Initial Evaluation Results-Step No.1

At this point the selected algorithms will be evaluated based on the methods men-
tioned later at this section and for each of the previously described threes steps. At
the bellow figures the correlation between all features, as well as the correlation of all
features with the class Cylinder Condition(0-1) are presented respectively.
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Figure 21: Correlation heatmap between features

Each coloured square illustrates the correlation between the variables on each axis.
Dark colour indicates strong correlation with values ranging from —1 to +1. A zero
correlation value indicates there is no linear trend between two variables. Correlation
values close to +1 show a positive correlation so that if one feature increases so does
the other. Instead correlation values close to —1 show a negative correlation so that if
one feature increases the other will decrease. Figure 21 visualizes the strong correlation
between all selected features and the correlation of all features with the output class
condition.
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The correlation of all features with Condition(Intact=0-Fault=1)

025

0.00 |“|“‘||IIIIIIIIIIIII

o o
- N
@t o

Pearson correlatie coefficient [abs waarde]
3

o]

=]
&)

EorE T - T S R}
g 2 ¢ £ g g g £ ¢ £ ¥ £ g & £ 2 ¢ ¢ F ¢ E
8 8 8 8 8 & B B 8 B 3 & B B 8 B 8 3 g

w

Angle Amp17 (deg)

Figure 22: Correlation heatmap of features with class

Figure 22 visualizes the correlation using the Pearson’s Correlation Coefficient as
before, but ranking the correlation of all features with the output class condition. As
discussed previously the value of Pearson’s Correlation Coefficient can be between —1
and +1. In figure 22 the mean speed value has the least correlation and the addition of
that feature may interfere with accuracy. In general, when dealing with large datasets
with many features, non-correlated features should be ignored, in order to avoid noise
and increased complexity of the system. The most important feature in this step is
the third one third Octave. Lastly, for a dataset as that of this case study a small
coefficient it’s not necessarily bad, since the dataset might have a large statistically
significant correlation and further investigation is needed.
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e Classification report

Random Forest (Accuracy: 97.43%) KNeighbors (Accuracy: 96.63%)
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Figure 23: Random forest and KNNeighbors classification report for step No.1
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Figure 24: Decision tree and Multi-layer Perceptron classification report for step No.1
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A high accuracy score is displayed for all algorithms. In addition, the precision
score is high but the recall seems to be the one lowering the F1 score. That
means that all algorithms have classified correctly most of their prediction but
don’t perform as well at finding all positive instances of the class.
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e Confusion Matrix

Random Forest Confusion Matrix

KNeighbors Confusion Matrix
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Rows Sum

Figure 25: Random forest and KNNeighbors confusion matrices for step No.1
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Figure 26: Decision tree and Multi-layer Perceptron confusion matrices for step No.1

The confusion matrix confirms the high precision and lower recall scores. Lower

recall score is due to algorithms tendency to classify samples as fault condition,
which is due to the class imbalance.
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e Learning curves

Learning Curves-Random Forest Learning Curves-KNeighbors
10 10
—— Training score —8— Training score
Gross-validation score Gross-validation score

09 09

08 08

o7 07
2 e
g 08 3 06
& @

05 05

04 04

03 03

02 02

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Training examples Training examples

Figure 27: Random forest and KNNeighbors learning curves for step No.1
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Figure 28: Decision tree and Multi-layer Perceptron learning curves for step No.1

Figures 27 and 28 show, that the benefit from adding more training data to the
current dataset is insignificant. The accuracy is already high so a increase in
training samples would result in a insignificant increase of algorithms’ score.
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7.3.3 Parameter Optimization-Step No.1

At this point the most important parameters of the algorithms are found using the
GridsearchCV module of python, in order to maximize the score of the model for the
specified feature space. The optimization is done by splitting dataset to folds and their
evaluation for the different values of the parameters is based on the accuracy score. The
influence that a single hyperparameter can have on the training and validation score is
presented at the bellow figure for the random forest algorithm and for various values of
the parameter maz_features, which are the maximum number of features the algorithm
is allowed to try in individual tree.

Validation Curve for RandomForestClassifier

1.00 —————

0.98

0.96

score

0.94

092
—4— Training Score

Cross Validation Score

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
max_features

Figure 29: Example of random forest hyperparameter tuning for step No.1

62



Class Balance for 11,280 Instances
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Figure 30: Class balance for step No.1

From figure 29 it’s concluded that when selecting a small value for maz_features,
the training and validation score are both low and the model will be underfitting.
Instead, when selecting a higher value for maz_features, the training score is high and
the validation score is lower, but not too low so that the model is overfitting. In
addition, the parameter class_weight will be used, due to the fact that the classes are
unbalanced, figure 30, and otherwise model would be biased. Moreover, all of the initial
selected features are considered important for the algorithms’ performance. figure 31.
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Feature Importances of 22 Features using RandomForestClassifier
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Figure 31: Feature importance for step No.1

Figure 31 illustrates the feature importances for the random forest classifier. At this
point all algorithms were tested in order to find the most important features. These
features that were later used for the training dataset did not provide any significant
improvement to the overall performance. Also, based on the fact that this procedure
is computationally expensive, the initial dataset including all features is used instead,
which provides equal performance.
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7.3.4 Algorithm Evaluation Results After Parameter Tuning-Step No.1

The evaluation for step No.1 will be conducted again including the parameter optimiza-

tions.

e Classification report
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Figure 32: Random forest and KNNeighbors classification report for step No.1
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Figure 33: Decision tree and Multi-layer Perceptron classification report for step No.1

A high accuracy score is displayed for all algorithms. In addition, the precision
score is high, but as before the recall seems to be the one lowering the F'1 score.
That means that all algorithms have classify correctly most of their prediction

but don’t perform as well at finding all positive instances of the class.

Despite

that, the accuracy and the recall have increased after the parameter optimization.
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e Confusion Matrix
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Figure 34: Random forest and KNNeighbors confusion matrices for step No.1
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Figure 35: Decision tree and Multi-layer Perceptron confusion matrices for step No.1

The confusion matrix confirms the high precision and lower recall scores. Lower
recall score is due to algorithms tendency to classify samples as fault condition,
which is due to the class imbalance. After the parameter optimization all algo-
rithms seem to be less effected from the class imbalance and show less confusion.
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e Learning curves
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Figure 37: Decision tree and Multi-layer Perceptron learning curves for step No.1

Figures 36 and 37 show, that the benefit from adding more training data to
the current dataset is insignificant. The accuracy is already high so a increase
in training samples would result in a insignificant increase of algorithms’ score.
Parameter optimization didn’t have a notable effect on the score of learning curves.
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7.3.5 Algorithm Initial Evaluation Results-Step No.2

The same evaluation method is used for the selected algorithms for step no.2 which is
the fault location problem. At the bellow figures the correlation between all features, as
well as the correlation of all features with the class Cylinder are presented respectively.
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Figure 38: Correlation heatmap between features

Figure 38 visualizes the strong correlation between all selected features and the
correlation of all features with the output class cylinder.
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The correlation of all features with Cylinder
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Figure 39: Correlation heatmap of features with class

Figure 39 visualizes the correlation using the Pearson’s Correlation Coefficient as
before, ranking the correlation of all features with the output class cylinder. In figure
39 the mean speed value has the least correlation and the addition of that feature
may interfere with accuracy. In general, when dealing with large datasets with many
features, non-correlated features should be ignored, in order to avoid noise and increased
complexity of the system. The most important feature in this step is the sixth one
third Octave. Lastly, for a dataset as that of this case study a small coefficient it’s not
necessarily bad, since the dataset might have a large statistically significant correlation
and further investigation is needed.

69



e Classification report A low accuracy score is displayed for all algorithms, with
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Figure 40: Random forest and KNNeighbors classification report for step No.2
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Figure 41: Decision tree and Multi-layer Perceptron classification report for step No.2

KNeighbors showing the worst performance and MLPC the best. In addition,
the precision score is close to the recall score. At this point the algorithms’
performance is not acceptable leading to further optimizations.
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Figure 42: Random forest and KNNeighbors confusion matrices for step No.2
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Figure 43: Decision tree and Multi-layer Perceptron confusion matrices for step No.2

The confusion matrix confirms the algorithms’ low performance, showing the dif-
ficulty to distinguish the possible fault location. It is worth mentioning that the
algorithms confuse the true fault location as a fault to other cylinders which are
close rather than cylinder further from the true one.
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Figure 44: Random forest and KNNeighbors learning curves for step No.2
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Figure 45: Decision tree and Multi-layer Perceptron learning curves for step No.2

Figures 44 and 45 show, that algorithms would benefit from adding more training
data to the current dataset. Thus a higher accuracy could be achieved by an
increase in training samples. Moreover, the lower training score of MLPC could
also improve by increasing the number of training samples.
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7.3.6 Algorithm Evaluation Results After Parameter Tuning-Step No.2

The evaluation for step No.2 will be conducted again including the parameter optimiza-
tions as with step no.1.
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Figure 46: Class balance for step No.2
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From figure 46 is concluded that at this step there is no problem due to class
imbalances.
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Feature Importances of 22 Features using RandomForestClassifier
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Figure 47: Feature importance for step No.2

Figure 47 illustrates the feature importances for the random forest classifier. At this
point all algorithms were tested in order to find the most important features. These
features that were later used for the training dataset did not provide any significant
improvement to the overall performance. Also, based on the fact that this procedure
is computationally expensive, the initial dataset including all features is used instead,
which provides equal performance.
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e Classification report
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Figure 48: Random forest and KNNeighbors classification report for step No.2

Decision Tree (Accuracy: 56.95%) MLPC (Accuracy: 70.38%)
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Figure 49: Decision tree and Multi-layer Perceptron classification report for step No.2

Random forest and MLPC show an acceptable accuracy score for this step. In
contrast the performance of the decision tree and of the KNeighbors is not satisfy-
ing even after the parameter optimization. In addition, the precision score is close
to the recall score and all algorithms improved after the parameter optimization.
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Figure 50: Random forest and KNNeighbors confusion matrices for step No.2
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Figure 51: Decision tree and Multi-layer Perceptron confusion matrices for step No.2

After the parameter optimization all algorithms seem to perform better on dis-

tinguishing between the different classes.
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Figure 52: Random forest and KNNeighbors learning curves for step No.2
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Figure 53: Decision tree and Multi-layer Perceptron learning curves for step No.2

Parameter optimization didn’t have a notable effect on the score of learning curves.
Figures 52 and 53 show, that algorithms would benefit from adding more training
data to the current dataset. Thus a higher accuracy could be achieved by an
increase in training samples. Moreover, the lower training score of MLPC could
also improve by increasing the number of training samples.
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7.3.7 Algorithm Initial Evaluation Results-Step No.3

As before same evaluation method is used for the selected algorithms for step no.3
which is the fault severity problem. At the bellow figures the correlation between all
features, as well as the correlation of all features with the class misfire are presented
respectively.
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Figure 54: Correlation heatmap between features

Figure 54 visualizes the strong correlation between all selected features and the
correlation of all features with the output class misfire.
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The correlation of all features with Misfire %
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Figure 55: Correlation heatmap of features with class

Figure 55 visualizes the correlation using the Pearson’s Correlation Coefficient as
before, ranking the correlation of all features with the output class cylinder. In figure
55 the mean speed value has the least correlation and the addition of that feature
may interfere with accuracy. In general, when dealing with large datasets with many
features, non-correlated features should be ignored, in order to avoid noise and increased
complexity of the system. The most important feature in this step is the second one
third Octave. Lastly, for a dataset as that of this case study a small coefficient it’s not
necessarily bad, since the dataset might have a large statistically significant correlation
and further investigation is needed.
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e Classification report
Random Forest (Accuracy: 80.86%) KNeighbors (Accuracy: 70.33%)
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Figure 56: Random forest and KNNeighbors classification report for step No.3
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Figure 57: Decision tree and Multi-layer Perceptron classification report for step No.3

An acceptable score is displayed for all algorithms at this step.
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Figure 58: Random forest and KNNeighbors confusion matrices for step No.3
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Figure 59: Decision tree and Multi-layer Perceptron confusion matrices for step No.3

The confusion matrix confirms the algorithms’ good performance, showing the ad-
equate ability to distinguish the possible misfire percentage. It is worth mention-

ing that the algorithms confuse the true misfire percentage as a misfire percentage
closer to the true value.

81



e Learning curves
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Figure 61: Decision tree and Multi-layer Perceptron learning curves for step No.3

Figures 60 and 61 show, that algorithms would benefit from adding more training
data to the current dataset, with the decision tree being the one that would
benefit the most. Thus a higher accuracy could be achieved by an increase in
training samples. Moreover, the lower training score of MLPC could also improve
by increasing the number of training samples.
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7.3.8 Algorithm Evaluation Results After Parameter Tuning-Step No.3

The evaluation for step No.3 will be conducted again including the parameter optimiza-
tions as with steps no.1 and no.2.
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Figure 62: Class balance for step No.3

From figure 62 is concluded that at this step there is no problem due to class
imbalances.
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Feature Importances of 22 Features using RandomForestClassifier
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Figure 63: Feature importance for step No.3

Figure 63 illustrates the feature importances for the random forest classifier. At this
point all algorithms were tested in order to find the most important features. These
features that were later used for the training dataset did not provide any significant
improvement to the overall performance. Also, based on the fact that this procedure
is computationally expensive, the initial dataset including all features is used instead,
which provides equal performance.
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Figure 64: Random forest and KNNeighbors classification report for step No.3
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Figure 65: Decision tree and Multi-layer Perceptron classification report for step No.3

Random forest and MLPC show an increased and very satisfying score for this step
after the parameter optimization. In contrast the performance of the decision tree
and of the KNeighbors are lower, but still acceptable. In addition, the precision
score is close to the recall score and all algorithms improved after the parameter
optimization.
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Figure 66: Random forest and KNNeighbors confusion matrices for step No.3
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Figure 67: Decision tree and Multi-layer Perceptron confusion matrices for step No.3

After the parameter optimization all algorithms seem to perform better on dis-
tinguishing between the different classes.
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Figure 68: Random forest and KNNeighbors learning curves for step No.3
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Figure 69: Decision tree and Multi-layer Perceptron learning curves for step No.3

Parameter optimization affected the score of the learning curves, indicating that
after optimization an increase in samples would result in an even greater increase
in performance. Figures 68 and 69 show, that all algorithms would benefit from
adding more training data to the current dataset. Moreover, the lower training
score of MLPC could also improve by increasing the number of training samples.
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7.3.9 Making Predictions-Case Study

Previous sections, indicate that the selected algorithms perform reasonably well. All
algorithms show great performance at the first classification step predicting between
fault and intact conditions. The performance is lower for the second step when predict-
ing the fault’s location, while the performance raises again at the last step predicting
between the different misfiring levels. In this section the trained Random Forest al-
gorithm presented earlier is used for predicting new test data, that is not previously
included in the train neither the validation set. The reason of this test is to demonstrate
the results that someone would obtain if he would use the proposed method for making
predictions for the engine’s condition.

The data that will be used for making prediction is again generated using the Open-
Modelica model. Samples are obtained for various speeds at the engine’s speed range,
ignoring simulations at speeds used earlier at the evaluation section. The samples of
these simulations represent the measurements that would be made onboard a vessel.
Bellow are screenshots from the command line window showing the results after running
the Python script.
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Figure 70: Insight of folder with .csv files and classes’ probabilities for step No.1
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Figure 71: Step No.1 predictions and step No.2 probabilities and predictions

The binary results at left screenshot of figure 71, illustrate the predictions made
for step No.1 classifying between intact and faulty condition, 0 and 1 respectively. All
the samples examined in this case concern the scenario of cylinder no.7 misfiring at
80% compared to intact condition. It is easily understood that the algorithm classified
almost all samples as fault condition, validating the high accuracy score during the
validation procedure.

The results with values ranging from 1 to 10 at the right screenshot of figure 71,
illustrate the predictions made for step No.2 classifying the cylinder, where the fault
is located. Again, the lower accuracy score observed during the validation procedure
can be validated. Noting that the illustrated results are in an ascending order based on
their rotational speed, another important observation can be made. It is observed that
correct predictions were made for samples with higher speeds and to be more precise
for close to MCR.
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Figure 72: Step No.3 probabilities and predictions

The results with values 20,50 and 80 at the right screenshot of figure 72, illustrate
the predictions made for step No.3 classifying the level of the misfire. Also, in this case
the good performance of the algorithm observed during the validation procedure can
be validated. Similar observation as for step no.2, about the correct predictions can be
made, but at less extend, with higher true positive rates for samples of higher speeds
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8 Conclusions and Future Work

8.1 Conclusions

The present work proves that failure diagnostics of Main Engine , through moni-
toring of torsional vibrations can be achieved. The literature review demonstrates the
significant research and development steps on diagnostic systems and their potential
use for marine diesel engines.

The torsional vibrations of the shafting system can be modelled using the Modelica
language, to conduct both steady state and transient simulations. The case study con-
ducted, in which the propulsion system of a container ship vessel was modelled using
Modelica, proves that such a model is able to describe accurately the system’s dynam-
ics. The aforementioned model was able to perform simulations for various steady state
conditions, including cases with all cylinders at intact condition and for cylinder mis-
firing.

The data acquired from the simulations were processed and used for training ma-
chine learning algorithms, using Python, in order to predict operating conditions. The
time domain features consisting of the mean value, peak amplitude, standard deviation
and the variance and the frequency domain features of the one third octave band anal-
ysis provide sufficient information regarding the transient signal characteristics of the
dynamic system.

The classification procedure consists of three steps classifying data initially, as data
corresponding to intact condition or as data corresponding to cylinder misfiring. The
second step utilizes only data corresponding to cylinder misfiring. predicting the most
probable fault location. In the third and last step, the algorithms are trained only with
data corresponding to the probable cylinder misfiring, indicating the most probable
percentage of misfiring. Every algorithm showed great performance on the first step,
which means that any abnormal signal can easily be detected. Taking advantage of
this prediction unplanned preventive maintenance inspections can be made to locate
the fault location, but additional information would drastically minimise the required
work . At the second step machine learning algorithms showed satisfying performance,
meaning that utilizing such a tool inspections would only be carried out on the most
probable cylinder. At the third step, performance is again satisfying and close to that
of step one. Knowing the percentage of misfire is critical, since that would allow to
schedule future maintenance. It is also concluded that the parameter optimization and
feature selection at each step, is crucial in order to increase the algorithm’s performance.
The random forest algorithm showed the best performance on all three steps, compared
to the rest of the studied algorithms, while MLPC showed same level of performance.
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The predicted results indicated that the algorithms tend to make correct predictions
at speeds closer to MCR. At that speed range, the effect of the oscillations due to
resonance with the system’s natural frequencies is not as strong as at the lower speed
range. Thus, the algorithms can better distinguish the various fault conditions at speed
closer to MCR. It is concluded that the developed method shows promising results for
further research on a predictive maintenance tool that can be used for marine diesel
engines through monitoring of torsional vibrations. Furthermore, the combination of
additional performance data could provide more accurate and precise predictions.

8.2 Future Work

The presented prediction technique, produced satisfying results that could be further
improved. Algorithms’ classifying performance could be increased by investigating the
use of additional features. Additional features from the time and frequency domain
could be used, such as kurtosis value, skewness value, crest factor, shape factor, root
mean square frequency and Root variance frequency [14].

Moreover, within this thesis only conditions of on cylinder misfiring at specific mis-
firing percentages were simulated, therefore combinations of multiple cylinders misfiring
at various percentages should also be researched. Furthermore, additional features could
be extracted from the torsional vibration model or from the addition of performance
data. The Modelica torsional vibration model could be combined with other domain
models and create a full model of the main engine and main engine systems and simu-
late vibration characteristics of the most common faults. Finally, the Modelica model
could be developed and validated based on experimental result acquired from real time
operation measurements of the main engine.
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