

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ

Προγραμματισμός ρομποτικού βραχίονα 5 αξόνων
με βάση λογισμικό αριθμητικού ελέγχου

εργαλειομηχανών

Διπλωματική εργασία
του

Μιχαήλ Μποφίλιου

Επιβλέπων: Δρ. Γ.Χ. Βοσνιάκος

Αθήνα
Οκτώβριος 2019

𝜠𝜰𝜲𝜜𝜬𝜤𝜮𝜯𝜤𝜠𝜮

Θα ήθελα να ευχαριστήσω τον καθηγητή Δρ. Γ.Χ. Βοσνιάκο
για την ανάθεση αυτής τη διπλωματικής ,την εμπιστοσύνη και την

καθοδήγηση του. Επίσης ιδιαίτερες ευχαριστίες στα μέλη του
Εργαστηρίου Τεχνολογίας των Κατεργασιών και όλους όσους συνέβαλαν

στην αποπεράτωση αυτής της εργασίας. Επίσης ευχαριστώ τους
ανθρώπους που με στηρίξανε καθ’ όλη την πορεία των σπουδών.
Τέλος ευχαριστώ εγκάρδια την οικογένεια μου για την αμέριστη

υπομονή και υποστήριξη τους όλα αυτά τα χρόνια!

1

ΠΕΡΙΛΗΨΗ

Μια από της βασικότερες κατηγορίες ρομπότ είναι οι ρομποτικοί βραχίονες,
βιομηχανικού ή όχι, τύπου. Τα τελευταία χρόνια ένας αυξανόμενος αριθμός
ρομποτικών χειριστών αδρανοποιούνται λόγω της παλαιότητας των λογισμικών
ελέγχου τους, που ουσιαστικά περιορίζει τις δυνατότητες όλης της διάταξης.
Εντούτοις, οι ρομποτικοί βραχίονες έχουν τη δυνατότητα να αξιοποιηθούν με
ποικίλους τρόπους λόγω των ιδιαίτερων πλεονεκτημάτων τους. Η επιδεξιότητα στο
χώρο εργασίας, είναι ένα από αυτά, επιτρέποντας τους την προσέγγιση ενός σημείου
εντός του χώρου δράσης τους από διάφορους προσανατολισμούς, όσους τους
επιτρέπουν οι βαθμοί ελευθερίας τους. Η δυνατότητα οδήγησης ενός ρομποτικού
βραχίονα με ευέλικτο τρόπο επιτρέπει την επαναχρησιμοποίηση του και με την
κατάλληλη διαμόρφωση τα αποτελέσματα είναι εντυπωσιακά. Η δόμηση όμως
κατάλληλου συστήματος για την οδήγηση ενός τέτοιου βραχίονα είναι αρκετά
απαιτητική διαδικασία, καθώς χρειάζεται αποτελεσματική επίλυση προβλημάτων
κινηματικής, ελέγχου, σχεδιασμού τροχιάς και πιστοποίησης του αποτελέσματος. Το
ρομπότ RM-501 Movemaster II είναι ένας ρομποτικός βραχίονας βιομηχανικού τύπου,
5 βαθμών ελευθερίας, κατασκευασμένος το 1986 από τη Mitsubishi.

Το αντικείμενο αυτής της διπλωματικής είναι ο προγραμματισμός του RM-501 με βάση
λογισμικό αριθμητικού ελέγχου εργαλειομηχανών, συγκεκριμένα το 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, οπότε
και η οδήγηση πραγματικού χρόνου του ρομποτικού βραχίονα θα γίνεται μέσω
εντολών 𝐺 κώδικα. Πρόκειται για ένα εγχείρημα με χαμηλό κόστος αλλά αρκετές
δυσκολίες όσον αφορά την δόμηση του κινηματικού μοντέλου, ευθέως και
αντιστρόφου, την ομαλή και έγκαιρη επικοινωνία πραγματικού χρόνου μεταξύ των
εμπλεκόμενων μερών, καθώς και τον κατάλληλο σχεδιασμό τροχιάς που υλοποιεί τις
εντολές του χρήστη.

Στο πρώτο κομμάτι της διπλωματικής, αναλύεται πλήρως η κινηματική του βραχίονα
και αναπτύσσονται κριτήρια για την ύπαρξη, την εγκυρότητα και τον αριθμό των
λύσεων στο πρόβλημα της αντίστροφης κινηματικής του. Επίσης γίνεται ανάλυση της
διαφορικής κινηματικής του με σκοπό την εύρωστη αντιμετώπιση των ιδιομορφιών.
Στη συνέχεια παρουσιάζεται η ανάλυση του σχεδιασμού τροχιάς που, σε συνδυασμό
με τα παραπάνω, απαιτούνται για τη ομαλή μετατόπιση του τελικού σημείου δράσης
(ΤΣΔ) χωρίς σπασμωδικές κινήσεις. Τελικά γίνεται πιστοποίηση του αποτελέσματος με
μια τροποποιημένη μέθοδο και μετρούμενα μεγέθη που προτείνονται σε επίσημο
μετρητικό στάνταρ βιομηχανικών ρομποτικών χειριστών.

2

ABSTRACT

One of the major categories of robots is the robotic arm type, industrial or otherwise.

In recent years an increasing number of robotic manipulators have been inactivated

due to their outdated control software which substantially limits the capabilities of the

entire setup. However, robotic arms have the potential to be exploited in a variety of

ways and applications because of the particular advantages they possess. Workspace

dexterity is one of them, allowing them to approach a point within their operational

space from as many different orientations as their degrees of freedom allow. The ability

of driving a robotic arm in a flexible manner allows it to be reused and with the right

configuration the results are impressive. However, building a proper system for driving

such a manipulator is a quite demanding process, as it requires efficient solution for

problems of kinematics, control, trajectory planning and validation of the result. The

RM-501 Movemaster II robot is an industrial-grade, 5-degree-of-freedom robotic arm

made in 1986 by Mitsubishi.

The subject of this thesis is to program the movement of the RM-501 robot, based on

numerical control software for CNC machines, 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 in this case. Thus, the robot

will be guided in real time by 𝐺 𝑐𝑜𝑑𝑒 commands. This is a low-cost project, but there

are several difficulties regarding the construction of the forward and inverse kinematic

model, the smooth and timely real-time communication between the parties involved,

as well as the proper trajectory design that implements the user's commands.

In the first part of the thesis, the kinematics of the manipulator is fully analyzed and

criteria for the existence, validity and number of solutions to the problem of inverse

kinematics, are developed. Furthermore, analysis of the differential kinematics is made

in order to come up with a robust countermeasure for the singularities. Subsequently,

the analysis of the trajectory planning which, in combination with the above, is required

for a smooth displacement of the end effector without jerky movements. Eventually

the validity of our result is checked based on a modified method and measured

parameters as defined by an official quality standard designed for industrial robotic

manipulators.

3

TABLE OF CONTENTS

ΠΕΡΙΛΗΨΗ .. 1

ABSTRACT ... 2

Chapter 1: INTRODUCTION .. 6

1.1: Related Work ... 7

1.2: Thesis Structure ... 10

Chapter 2: KINEMATICS of RM-501 .. 11

2.1: Forward Kinematics ... 11

2.2: Inverse Kinematics... 16

Chapter 3: DIFFERENTIAL KINEMATICS .. 23

3.1: Calculation of the Jacobian .. 24

3.1.1: Geometric Jacobian .. 24

3.1.2: Analytical Jacobian ... 26

3.2: Inverse Differential Kinematics.. 28

3.2.1: Jacobian Transpose Method .. 29

3.2.2: The Pseudoinverse Method ... 29

3.2.3: Damped Least Squares (DLS) .. 30

3.2.4: Singular Value Decomposition (SVD) .. 32

3.2.5: Manipulability ... 35

3.2.6: Trajectory Replanning .. 36

3.3: Singularity Analysis .. 37

Chapter 4: TRAJECTORY PLANNING .. 42

4.1: Joint Space Trajectories ... 42

4.1.1: Cubic Polynomials .. 43

4.1.2: Higher-order Polynomial .. 44

4.1.3: Trapezoidal Velocity Profile (LSPB) ... 45

4.2: Operational Space Trajectories ... 48

4.2.1: Cartesian Path Problems .. 49

4.3: Path Blending .. 51

4.3.1: Parabolic Blending .. 52

4.3.2: Circular Blending of Linear Segments ... 54

4.3.3: General Case of Circular Blending .. 59

Chapter 5: IMPLEMENTATION on 𝑳𝒊𝒏𝒖𝒙𝑪𝑵𝑪 .. 62

5.1: 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 Overview ... 62

4

5.1.1: Basic Architecture .. 62

5.1.2: The Motion Controller .. 64

5.1.3: Hardware Abstraction Layer (HAL) ... 66

5.2: RM-501 Configuration on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 ... 67

5.2.1: Existing Set-Up.. 67

5.2.2: The new Configuration ... 70

5.3: Testing ... 76

5.3.1: Accuracy and Repeatability .. 76

5.3.2: Pick and Place Test ... 78

5.3.3: Experimental Results .. 80

Chapter 6: CONCLUSION and FUTURE DIRECTIONS ... 83

6.1: Future Directions ... 83

APPENDICES ... 85

A. Square sub-jacobians’ determinants ... 85

B. Solving the general cubic polynomial .. 87

C. Configuration Files ... 88

a. The .hal file ... 88

b. The .ini file .. 93

c. The kinematics file ... 99

d. MATLAB supplementary file ... 104

REFERENCES ... 106

5

LIST OF FIGURES

Figure 1: RM-501 robot and its DOFs[1] .. 6

Figure 2: Denavit-Hartenberg parameters[6] .. 12

Figure 3: DH frames of the RM501 robot with gripper mounted 12

Figure 4: Manipulator XZ plane .. 19

Figure 5: A physical interpretation of the columns of the Jacobian matrix [18] 25

Figure 6: Comparison of damped least-squares to least-squares[19] 35

Figure 7: Elbow Singularity ... 39

Figure 8: Shoulder Singularity... 40

Figure 9: Double Singularity (Elbow & Shoulder) ... 41

Figure 10: Trajectory planning in joint space ... 43

Figure 11: Position, Velocity and Acceleration with Trapezoidal Velocity Profile [6] ... 45

Figure 12: Operation space trajectory planning procedure ... 48

Figure 13: Intermediate positions outside of operational space [5] 49

Figure 14:Endeffector passing close to Singularity [5] ... 50

Figure 15: Goal position reachable in different solution[5] ... 50

Figure 16: Path blending of linear segments .. 51

Figure 17: Parabolic blending ... 52

Figure 18: Over-fly of point B due to blending ... 52

Figure 19: Linear paths with circular arc blending trajectory[22] 54

Figure 20: Circular blend around waypoint qi .. 55

Figure 21: The general case of Blending[26] .. 59

Figure 22: Intersection of Arcs[27] ... 59

Figure 23: Deciding which lines will be blended instead of the circles 60

Figure 24: LinuxCNC Architecture Overview [29] ... 63

Figure 25: Motion Controller Bock Diagram [29] ... 64

Figure 26: The Joint Controller Block Diagram [29] .. 65

Figure 27:Positioning Targets and Scale Bars for the Photogrammetry Calibration 74

Figure 28: Accuracy and Repeatability concepts .. 76

Figure 29: Accuracy and Repeatability mathematical meaning 77

Figure 30: The pick and place task in laboratory environment 79

Figure 31: Accuracy of Positioning and Repeatability measurements 81

6

Chapter 1: INTRODUCTION

The RM-501 is a serial, open chain, vertically articulated manipulator with five (5)
degrees of freedom (DOF) achieved by revolute joints (5R). It was developed by
Mitsubishi and was commercially available under the Movemaster II series from 1986.
Its physical structure and articulation names are similar to that of a human arm. In fact,
the RM-501 consists of four (4) joints, the waist, the shoulder, the elbow and the wrist
each corresponding to one degree of freedom except for the wrist. The interesting part
of the wrist is that it has two degrees of freedom via a differential system.

Figure 1: RM-501 robot and its DOFs[1]

A manipulator with less than six degrees of freedom, or so called a low-DOF
manipulator, as this one, is not capable of positioning and orienting an object
efficiently. However, for specific industrial applications such as welding, painting and
loading/unloading, a low-DOF manipulator may be sufficient in theory. What is
considered an advantage of a low-DOF manipulator compared to 6-DOF or redundant
robots is that it has a simpler mechanical structure (i.e. less motors and links), a simpler
controller, better stiffness and a lower cost. Thus, the exponential increase in usage is
highly justified.

Despite the above, challenges arise when it comes to formulating and/or solving the
Kinematics problem for a low-DOF mobile manipulator. The degrees of freedom of a
system can be simplistically viewed as the minimum number of coordinates required
to specify a configuration in space. Applying this definition, six variables are needed in
our case, three positional and three or orientation. But in this case the number of
actuators is not enough. This fact leads to the next point of interest; the manipulator is

7

trivially underactuated since it has a lower number of actuators than degrees of
freedom. Underactuation is a technical term used in robotics and control theory to
describe mechanical systems that cannot be commanded to follow arbitrary
trajectories in configuration space.

Furthermore, other mathematical intricacies appear due to the nature of the
manipulator. For example, the matrices used to describe forward and differential
kinematics are rectangular. That said, there is not a 1-to-1 mapping between the
Cartesian space (workspace) and the joint space, making the velocity and singularity
analysis of such manipulators very difficult that requires specific techniques to find
(possibly multiple) solutions of complicated nonlinear and transcendental equations.
And even then, a closed form is usually not obtainable.

The next challenge the effort to control the RM-501 robotic arm with open digital
guidance software. The purpose is to implement a low-cost methodology for the
modernization and operation of this arm as a machine tool. It is called to operate via G
code commands with the help of LinuxCNC software. This puts to test various elements
of the configuration in order to produce a satisfying result that can also be evaluated
quantitatively.

1.1: Related Work

The optimization and update of an existing configuration with a custom complicated
drive unit as the one that was presented by Tsoumpas [1] has many difficulties
regarding the understanding of the intended use of parameters.

The increased popularity of low-DOF manipulators has spawned quite the research
activity over the past years. In particular, attention has been drawn to the inverse
kinematics problem since it poses one of the most significant challenges. There mainly
exist two strategies for inverse kinematics, which can be found in a multitude of classic
robotics books([4] [5] [6] , [17]). The closed form solution is one approach. It takes
advantage of the geometric and algebraic properties that the structure of the robot
possesses to identify every single possible solution. On the other hand, there is the
numerical solution. This one usually adopts an iterative method to find just one solution
that stems from a set of starting values. Admittedly, there is a (usually high) difficulty
to derive the former depending on the complexity of the system and often many
algebraic/geometrical tricks and techniques are required but its speed more than
compensates for that. In addition, there is always the danger of a numerical method
failing to converge, making it unable to determine safely whether there is actually a
solution. Make the closed form solutions much more attractive. Therefore, a closed
form solution is generally more advantageous than the numerical approach, but it
should be noted that the choice of method greatly depends on the system under
examination. Instances of numerical methods include, but are not limited to the
(modified) Newton-Raphson method, neural networks [7] , genetic algorithms [9] and
other methods.

Furthermore, various specific cases of five (low)-DOF manipulators have been studied

8

the past years. Some cases involve full kinematics analyses whereas others involve
modeling on the kinematic level and control. Zhao et al [35] studied the forward and
inverse kinematics for an RV-M1 robot, a 5-DOF manipulator and simulated the results
on MATLAB. The same approach was followed in [36] were a simulation methodology
of the 5-DOF robot, including direct, inverse and differential kinematics as well as
dynamics was applied to CATALYST 5. The setup was configured on Simulink/MATLAB
environment.

In similar fashion in [37] [38] [39] due to the increasing number of robots that are
unused now because of outdate equipment and abilities decide to retrofit an old
robotic arm, the ASEA IRB6-S2, using the MATLAB and Mach3 programs, which is a low
cost and efficient procedure. Additionally, Milutinovic et al [40] create a setup base on
a five-axis vertical articulated robot, which is considered as a specific configuration of
five-axis vertical milling machine. This low-cost control and programming system was
implemented on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software system.

Makondo and Claassens [41] used a geometric approach for the kinematic modeling of
a 5 DOF redundant manipulator. The technique was used for both forward and inverse
kinematics. In [42] Manseur and Doty solved the inverse kinematics problem of all five-
DOF, with five revolute joints, robot manipulators by using an one-dimensional iterative
technique, which is similar to Newton-Raphson. Huang [43] established the kinematics
model for a five-DOF cutting robot with the modified Denavit-Hartenberg method and
the inverse kinematics was solved using inverse transformation method. On the other
hand, Pechev [44] proposed a method for solving the inverse kinematics problem. The
method is performed in feedback loop and does not require matrix manipulations like
inversion, singular value decomposition or the computation of a dumping factor. The
proposed method gives comparable results to the DLS method.

In [45] an alternative algorithm that uses the filtered inverse of the Jacobian matrix
solves the inverse kinematics problem while dealing with singularities. The update law
of the estimator for the filtered inverse is driven by error signals that consider both the
left and the right inverse matrices, thus enabling trajectory tracking and minimization
of the control effort simultaneously. Another solution for the inverse kinematics task is
given by Hock and Sedo [46] In their work, they execute the linearization of the forward
kinematics equations with Taylor Series for multiple variables. The inversion of the
Jacobian with both the pseudoinverse and the transpose method, solved the IK
problem.

Other numerical approaches have been implemented as well. Abdulridha and Hassoun
[47] use a Quantum Neural Network to drive the Mitsubishi RM-501 robotic
manipulator by calculating the PID parameters needed. The results are compared to
usual Ziegler Nichols method for defining these parameters. In [48] both numerical and
analytical solutions of the inverse kinematics are studied for a 5R, CRS robotic arm. A
singularity avoidance method based on genetic algorithms is proposed to enhance the
behavior of the system near singularities. In [49] the weighting vector tuning problem
of the Twist Decomposition Algorithms is studied, as the TWA is proposed to solve the
functional redundancy of the manipulator. A weighting vector self-adaptation

9

algorithm for the 6-axis decoupled manipulators is found thus making joint limit and
singularity avoidance more robust.

Another example of a specific singularity detection and avoidance technique regarding
the interaction of humans and robots can be found in [50] and [51] . In the former the
proposed approach when it detects singularity, with a criterion that combines the
manipulability ellipsoid and condition number, or joint limit in real time, it adds virtual
stiffness and damping to the target stiffness and damping. The testing of this method
was applied on a SCARA robot manually operated by human. In the later, an
exponentially shaped damping was applied along degenerate dimensions to ensure
stable and smooth operation near singularity for applications involving physical
human–robot interaction. Using a repulsive force field method, the manipulator was
subtly guided away from the singularity.

Kemeny [52] proposed a systemic singularity search technique for kinematically
redundant manipulators, using the decomposition principle. Two classes of singular
configurations were identified and the resulting singularity man was proposed for local
motion planning. In four different occasions [53] [54] [55] [56] the singularity analysis
is accompanied by an extensive analysis of the manipulator workspace which derives
from rank deficiency criteria. Special mention is given for [55] where usong the theory
of reciprocal screws the independent velocity components were found in such a way
that the rectangular Jacobian matrix can be shaped into a square one. The method was
applied on 5-DOF and 4-DOF serial manipulators.

As far as trajectory planning is concerned things are more straightforward. In [57] a
low-cost camera-laser, via a triangulation technique, was used for enhancing the path
planning generation. The method was implemented on a five DOF robotic manipulator.
In [58] a trajectory planning and control with PID and SMC controllers on a 5 DOF
manipulator was presented. Chen and Lee [59] a path planning algorithm based on the
direction of maximum mobility and inverse kinematics is proposed for a 5 DOF
humanoid manipulator.

10

1.2: Thesis Structure

The second chapter consists of the two essential parts of the upcoming analysis. First
the derivation of the homogeneous transformation that describes the forward
kinematics for the manipulator is derived using the Denavit-Hartenberg convention
which is also briefly presented.

In the third chapter there are 3 major subchapters regarding the differential behavior
of the manipulator. First the Jacobian matrix is derived in a systematic way. Secondly
an overview of the most common methods of handling the inverse differential
kinematics problem is given. Finally, a singularity analysis is conducted so as to calculate
analytically the configurations that cause rank deficiency.

In the fourth chapter the problem of trajectory planning is tackled, in both joint space
and cartesian operational space. The last part proposes method of path blending that
is materialized in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶.

The fifth chapter is the implementation of all the above. At first there is a briefing on
the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 structure and operation. The second part develops the proper
adaptation and calibration of the new configuration on the software for a robust
behavior. Lastly, the configuration is tested on an industrial-type pick and place task to
verify its functionality.

11

Chapter 2: KINEMATICS of RM-501

2.1: Forward Kinematics

Forward kinematics refers to the use of the kinematic equations of a robot to compute
the position of the end-effector from specified values for the joint parameters. As such,
obtaining the equations required to transform the joint angles, for an open chain,
revolute joint (5R) arm in our case, to the end-effector position in Cartesian
coordinates, is a complex geometric problem which is later induced to an algebraic
problem. However general methods that automate this procedure have been
developed. Specifically, in the field of robotics the Denavit-Hartenberg (D-H)
convention is the one used more frequently, either the standard version or the
modified one.

A manipulator with 𝑛 joints, numbered from 1 to 𝑛, will have 𝑛 + 1 links, numbered
from 0 to 𝑛. Link 0 is generally fixed as it refers to base of the manipulator and the end-
effector is mounted or attached on link 𝑛. Links 𝑖 and 𝑖 − 1 are connected by joint 𝑖. A
coordinate frame 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is attached to each link as follows:

1. 𝑧 -axis is along the rotation direction for revolute joints, along the translation
direction for prismatic joints.

2. The 𝑧𝑖−1 axis lies along the axis of motion of the 𝑖𝑡ℎ joint.
3. The origin 𝑂𝑖 is located at the intersection of joint axis 𝑧𝑖 with the common

normal to 𝑧𝑖 and 𝑧𝑖−1.
4. The 𝑥𝑖 axis is taken along the common normal and points from joint 𝑖 to joint
𝑖 + 1.

5. The 𝑦𝑖 axis is selected in order a right-hand frame is completed, so is defined
by the cross product 𝒚𝒊 = 𝒛𝒊 × 𝒙𝒊

Both forms of DH convention, the first as per the original paper of Denavit and
Hartenberg[3] and the modified, introduced in the textbook of John J. Craig[4] represent
a joint as two translations and two angles, total of four parameters. However, the
transformation matrices differ. In this thesis the original D-H notation is being
facilitated. The link and joint parameters are:

• 𝑎𝑖: link length, the distance from 𝑂𝑖 to the intersection of the 𝑧𝑖−1 and 𝑥𝑖
axes along the 𝑥𝑖axis

• 𝑑𝑖: offset length, the distance from the origin of the (𝑖 − 1) frame to the
intersection of the 𝑧𝑖 axis with𝑥𝑖 axis along the 𝑧𝑖−1 axis, basically the
coordinate of 𝑂𝑖 along 𝑧𝑖−1

• 𝛼𝑖: twist angle, the angle from the 𝑧𝑖−1 to the 𝑧𝑖 axis about the 𝑥𝑖 axis,
positive when rotation is made counter-clockwise

• 𝜃𝑖: joint angle, the angle between the 𝑥𝑖−1 and the 𝑥𝑖 axes about the 𝑧𝑖−1
axis, positive when rotation is made counter-clockwise.1

1 Later substituted by the letter 𝑞 to keep unified symbols along the whole document.

12

Figure 2: Denavit-Hartenberg parameters[6]

Each axis of the robot has one limit switch from which the corresponding joint angle is
calculated. The range of each joint is thus determined in reference to a zero-position
defined by a particular reference posture of the robot. This posture is usually called the
zero pose or reference pose. In order to create simple algebraic equations while solving
for the forward kinematics this pose is recommended to be chosen so as the most joint
angles take such values that a simplified approach in terms of calculations is achieved,
so basically zero angles.

Figure 3: DH frames of the RM501 robot with gripper mounted

13

With this pattern we get the DH parameters of the Mitsubishi RM-501 Movemaster II
as follows:

𝐿𝑖𝑛𝑘, 𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 𝑞𝑖
1 𝑑1 0 𝜋/2 𝜃1
2 0 𝑎2 0 𝜃2
3 0 𝑎3 0 𝜃3
4 0 0 𝜋/2 𝜃4
5 0 0 0 𝜃5

𝑒𝑛𝑑 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 𝑑5 0 0 0
Table 1: DH parameters of the Mitsubishi RM-501 Movemaster II

The last line refers to the end-effector, in this case the gripper. The reason for creating
a different line in the above matrix is to make it easier to follow the same procedure in
case the end-effector is substituted or even totally removed. In general, we can sum
the last two lines to one, with both the wrist and gripper included.

5𝑒 𝑑5 0 0 𝜃5

The dimensions of the joint angles and the links length are, respectively in degrees (◦)
and millimeters (mm).

The homogeneous frame transformation 𝑇𝑖
𝑖−1 from frame 𝑖 − 1 to frame 𝑖 can be

described by the sequence of elementary transformation starting from link (𝑖 − 1):
1. A rotation 𝜃𝑖 about the 𝑧𝑖−1 axis
2. A translation 𝑑𝑖 along the 𝑧𝑖−1 axis
3. A translation 𝑎𝑖 along the 𝑥𝑖 axis
4. A rotation 𝛼𝑖 about the 𝑥𝑖 axis

And the product of those basic transformations is:

𝑻𝑖
𝑖−1 = 𝑹(𝜃𝑖|𝑧𝑖−1)𝑻(𝑑𝑖|𝑧𝑖−1)𝑻(𝑎𝑖|𝑥𝑖)𝑹(𝛼𝑖|𝑥𝑖) =

= [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 0 0
0 0 0 0

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] [

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝛼𝑖 −𝑠𝛼𝑖 0
0 𝑠𝛼𝑖 𝑐𝛼𝑖 0
0 0 0 1

] =

= [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

]

So, the transformation from each 𝑖 − 1 link to the next 𝑖 are:

𝑻1
0 = [

𝑐1 0 𝑠1 0
𝑠1 0 −𝑐1 0
0 1 0 𝑑1
0 0 0 1

]

14

𝑻2
1 = [

𝑐2 −𝑠2 0 𝑎2𝑐2
𝑠2 𝑐2 0 𝑎2𝑠2
0 1 1 0
0 0 0 1

]

𝑻3
2 = [

𝑐3 −𝑠3 0 𝑎3𝑐3
𝑠3 𝑐3 0 𝑎3𝑠3
0 0 1 0
0 0 0 1

]

𝑻4
3 = [

𝑐4 0 𝑠4 0
𝑠4 0 −𝑐4 0
0 1 0 0
0 0 0 1

]

𝑻5
4 = [

𝑐5 −𝑠5 0 0
𝑠5 𝑐5 0 0
0 1 1 0
0 0 0 1

]

If the gripper tool is mounted to the robot wrist as well, the transformation from the
wrist to the end-effector is as a simple translation by 𝑑5

𝑻𝑒
5 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑5
0 0 0 1

]

Assuming that the transformation matrix 𝑇𝑒

0 giving the pose of the end-effector in
terms of joint variables with respect to the base frame then it is the dot product of all
transformation matrices from the base(0) to the end-effector(5)

𝑻e
0 = 𝑻1

0 𝑻2
1 𝑻3

2 𝑻4
3 𝑻5

4 𝑻𝑒
4 =

= [

𝑠1𝑠5 + 𝑐234𝑐1𝑐5 𝑐5𝑠1 − 𝑐234𝑐1𝑠5 𝑠234𝑐1 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑐234𝑐5𝑠1 − 𝑐1𝑠5 −𝑐1𝑐5 − 𝑐234𝑠1𝑠5 𝑠234𝑠1 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
0 0 0 1

]

Where all symbols sijk, 𝑐𝑖𝑗𝑘 stand for sin(𝑞1 + 𝑞2 + 𝑞3) , cos (𝑞1 + 𝑞2 + 𝑞3)

respectively.

Some final thoughts can be made regarding the verification of the result. In general, for
any homogenous transformation it stands that:

𝑻𝑖
𝑖−1 = [𝑹𝑖

𝑖−1 𝒅𝑖
𝑖−1

0 1
]

And that stands for the 𝑻𝑒

0 matrix as well. So, the upper {3 × 3} block of the
transformation matrix refers to the orientation and since rotational is an orthogonal
matrix the squared sum of its lines and columns must be equal to +1. Apart from that

to check the validity the result and especially the distance part (𝒅𝑖
𝑖−1) joint values of

15

specific known positions (such as the reference pose or a pose where the manipulator
is completely stretched) can be substituted whether they give the expected result. In
this case both expectations meet, so the result seems legitimate.

A common way to describe the end-effector orientation is via Roll-Pitch-Yaw. Given
these angles, 𝑟, 𝑝, 𝑦 respectively, the transformation matrix can be found:

𝑻𝑖
𝑖−1 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟23 𝑟33 𝑝𝑧
0 0 0 1

] = [

𝑐𝑝𝑐𝑦 𝑠𝑟𝑠𝑝𝑐𝑦 − 𝑐𝑟𝑠𝑦 𝑐𝑟𝑠𝑝𝑐𝑦 + 𝑠𝑟𝑠𝑦
𝑐𝑝𝑠𝑦 𝑠𝑟𝑠𝑝𝑠𝑦 + 𝑐𝑟𝑐𝑦 𝑐𝑟𝑠𝑝𝑠𝑦 − 𝑠𝑟𝑐𝑦
−𝑠𝑝 𝑠𝑟𝑐𝑝 𝑐𝑟𝑐𝑝

𝒅𝑖
𝑖−1

0 1

]

The inverse can be done:

𝑟 = 𝑎𝑡𝑎𝑛2(𝑟23, 𝑟33)

𝑝 = 𝑎𝑡𝑎𝑛2 (−𝑟31, √𝑟322 + 𝑟332)

𝑦 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11)

16

2.2: Inverse Kinematics

The inverse kinematics problem is the challenge of defining joint angles for a given end-
effector configuration. Basically, is the necessary step required to go from operational
Cartesian space which an observer, a user and a programmer can perceive to the joint
space which the robotic manipulator is based on. If the forward kinematics is described
by the mathematical equation:

𝒙𝑒 = 𝑓(𝒒)

Then in the inverse kinematics, the joint variables 𝜃 are a function of the end-effector
pose:

𝒒 = 𝑓−1(𝒙𝑒)

Compared to the Forward Kinematics which was computed in a unique way, meaning
that with given the joint variable, the position of the end-effector can be derived, the
Inverse Kinematics is not a straightforward procedure. Although there is no standard
and generally applicable method to solve the inverse kinematic problem, there are a
few analytic and numerical methods to solve the problem.

The difficulties of inverse kinematic are found in two poles. The first one refers to the
mathematical part as the inverse kinematics equations are in general non-linear,
making it a heavy-calculation problem that might not have a closed-form solution. The
second one is about the amount of possible solutions. These can be multiple or even
infinite in the case of redundant manipulators and many or even all of them can be
non-admissible because of the joint limits that control the boundaries of the kinematic
structure.

The existence of a solution to the inverse kinematics problem is based on whether the
end-effector pose is achievable, meaning whether it belongs to the robot’s admissible
workspace. To find a solution an iterative method can be used. However, in our case,
closed-form solutions are desirable because they are faster than numerical solutions
and readily identify all possible solutions. Furthermore, the software that will be used
is the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 environment, which is mainly used for driving CNC machines using
closed-form kinematics algorithms (in general, easier than a 5-DOF manipulator), and
this feature is going to be utilized.

The disadvantage of closed-form solutions is that they are not general, but robot
dependent. The most effective methods for finding closed-form solutions are ad hoc
techniques that take advantage of particular geometric features of specific
mechanisms. A closed-form solution to this problem can be found based on Pieper’s [7]
and other’s work [9] who mainly studied 6-DOF manipulators with spherical wrists.
Generally, based on this, the sufficient conditions of existence of a closed-form solution
for the inverse kinematics problem for a manipulator are:

1. Three consecutive revolute joint axes intersect at one point
2. Three consecutive revolute joint axes are parallel.

17

Spherical-wrist manipulators have their last three joint-axes intersecting at a common
point. For these manipulators the position of the end-effector in space is determined
only by the displacements performed about the first three joint-axes. This concept is
often referred to as the position-orientation decoupling; and has been utilized to
produce a closed-form solution, for the inverse position problem of simple structure
robots, efficient enough to be implemented for computer control.

In the case of the Mitsubishi RM-501 Movemaster II robot the second condition is met
since joints 2, 3 and 4 are three consecutive parallel revolute joints. Assuming that the
transformation matrix 𝑻𝑒

0 giving the pose of the end-effector in terms of joint variables
with respect to the base frame, and the individual transformation matrices
𝑻1
0 (𝑞1), 𝑻2

1 (𝑞2), 𝑻3
2 (𝑞3), 𝑻4

3 (𝑞4), 𝑻5
4 (𝑞5), 𝑻𝑒

5 are known, it is possible to compute
the inverse kinematics by solving the equations for the unknown joint variables.
According to forward kinematics:

𝑻𝑒
0 = 𝑻1

0 𝑻2
1 𝑻3

2 𝑻4
3 𝑻5

4 𝑻𝑒
5

= [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟23 𝑟33 𝑝𝑧
0 0 0 1

]

By solving the equations for the unknown joint variables as follows:

𝑻𝑒
1 = 𝑻1

0 −1
 𝑻𝑒
0

𝑻𝑒
2 = 𝑻2

1 −1
 𝑻1
0 −1

 𝑻𝑒
0

𝑻𝑒
3 = 𝑻3

2 −1
 𝑻2
1 −1

 𝑻1
0 −1

 𝑻𝑒
0

𝑻𝑒
4 = 𝑻4

3 −1
 𝑻3
2 −1

 𝑻2
1 −1

 𝑻1
0 −1

 𝑻𝑒
0

𝑻𝑒
5 = 𝑻5

4 −1
 𝑻4
3 −1

 𝑻3
2 −1

 𝑻2
1 −1

 𝑻1
0 −1

 𝑻𝑒
0

 𝑰4 = 𝑻𝑒
5 −1

 𝑻5
4 −1

 𝑻4
3 −1

 𝑻3
2 −1

 𝑻2
1 −1

 𝑻1
0 −1

 𝑻𝑒
0

The solution for the inverse kinematics problem starts from the relationship:

𝑻𝑒
0 = 𝑻1

0 𝑻2
1 𝑻3

2 𝑻4
3 𝑻5

4 𝑻𝑒
5

All, but the first joint lye on the same 𝑋𝑍 plane, so by decomposing the relationship
with Pieper’s method as follows:

 𝑻1
0 −1

 𝑻𝑒
0 = 𝑻𝑒

1 = 𝑻2
1 𝑻3

2 𝑻4
3 𝑻5

4 𝑻𝑒
4 (1)

where,

𝑻1
0 −1

= [

𝑐1 𝑠1 0 0
0 0 1 −𝑑1
𝑠1 −𝑐1 0 0
0 0 0 1

]

18

And

𝑻2
1 𝑻3

2 𝑻4
3 𝑻5

4 𝑻𝑒
4 = [

𝑐234𝑐5 −𝑐234𝑠5 𝑠234 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234
𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
𝑠5 𝑐5 0 0
0 0 0 1

]

So, with the elements of 𝑻𝑒
0 known, the equation (1) becomes:

[

𝑟11𝑐1 + 𝑟21𝑠1 𝑟12𝑐1 + 𝑟22𝑠1 𝑟13𝑐1 + 𝑟23𝑠1 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1
𝑟31 𝑟32 𝑟33 𝑝𝑧 − 𝑑1

𝑟11𝑠1 − 𝑟21𝑐1 𝑟12𝑠1 − 𝑟22𝑐1 𝑟13𝑠1 − 𝑟23𝑐1 𝑝𝑥𝑠1 − 𝑝𝑦𝑐1
0 0 0 1

]

= [

𝑐234𝑐5 −𝑐234𝑠5 𝑠234 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234
𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
𝑠5 𝑐5 0 0
0 0 0 1

]

By equating the translational part, the first three elements the last column and
specifically the (3,4) element of both matrices:

𝑝𝑥𝑠1 − 𝑝𝑦𝑐1 = 0

Which has two solutions 𝜃1 and 𝜃1 + 𝜋

𝑞1,1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥) 𝑜𝑟 𝑞1,2 = 𝑎𝑡𝑎𝑛2(−𝑝𝑦, −𝑝𝑥)

where atan2 is the arctangent function with two arguments. The purpose of using two
arguments instead of one (tan−1(…)) is to gather information on the signs of the inputs
in order to return the appropriate quadrant of the computed angle, which is not
possible for the single-argument arctangent function. It also avoids the problems of
division by zero.

Another parameter we can easily calculate is 𝑞5. By equating (3,1) and (3,2) elements
of both matrices

𝑟11𝑠1 − 𝑟21𝑐1 = 𝑠5

𝑟12𝑠1 − 𝑟22𝑐1 = 𝑐5

Which gives one solution respected to 𝜃1 and as there are two possible solutions for
𝑞1, there are two solutions for 𝑞5 as well

𝑞5 = 𝑎𝑡𝑎𝑛2(𝑟11𝑠1,𝑖 − 𝑟21𝑐1,𝑖, 𝑟12𝑠1,𝑖 − 𝑟22𝑐1,𝑖), 𝑖 = 1, 2

19

After that the procedure is a quite straightforward one, which has been extensively
been applied especially in simple planar three-link manipulators, which corresponds to
joint 2, 3 and 4 of the RM-501 robotic arm.[10]

By equating (1,3) and (2,3) elements we get

𝑟13𝑐1 + 𝑟23𝑠1 = 𝑠234

𝑟33 = −𝑐234

So, solving for 𝑞2 + 𝑞3 + 𝑞4 we get two solutions

(𝑞2 + 𝑞3 + 𝑞4)𝑖 = 𝑎𝑡𝑎𝑛2(𝑟13𝑐1,𝑖 + 𝑟23𝑠1,𝑖, −𝑟33), 𝑖 = 1, 2

After that, the rest translational elements of both matrices can be equated ((1,4), (2,4)
elements):

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1

𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234 = 𝑝𝑧 − 𝑑1

(2)

The manipulator plane, is the 𝛸𝛧 that was aforementioned. Basically, the quantities

𝑎3𝑐23 + 𝑎2𝑐2 = 𝑑𝑥
𝑎3𝑠23 + 𝑎2𝑠2 = 𝑑𝑧

(3)

are the displacement of the wrist on this plane

Figure 4: Manipulator XZ plane

20

By squaring both sides and adding them:

𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2𝑐23

2 + 𝑎2
2𝑐2

2 + 2𝑎2𝑎3𝑐2𝑐23 + 𝑎3
2𝑠23

2 + 𝑎2
2𝑠2

2 + 2𝑎2𝑎3𝑠2𝑠23

→ 𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2 + 𝑎2

2 + 2𝑎2𝑎3(𝑠2𝑠23 + 𝑐2𝑐23)

And by using the trigonometric properties

𝑠𝑖𝑗 = 𝑠𝑖𝑐𝑗 + 𝑐𝑖𝑠𝑗

𝑐𝑖𝑗 = 𝑐𝑖𝑐𝑗 − 𝑠𝑖𝑠𝑗
(4)

𝑐3 = 𝑐2+3+(−2) = 𝑐23𝑐−2 − 𝑠23𝑠−2 = 𝑐23𝑐2 + 𝑠23𝑠2

𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2 + 𝑎2

2 + 2𝑎2𝑎3𝑐3 →

𝑐3 =
𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3

Then the 𝑠𝑖𝑛 of 𝜃3 can be calculated

𝑠3 = ±√1 − 𝑐32

Thus, two symmetric solutions for 𝜃3 come up, one for elbow-up and one for elbow-
down position. In order to determine both the sine and cosine of the desired joint angle
and then apply the two-argument arctangent. This ensures that we have found all
solutions and that the solved angle is in the proper quadrant using the two-argument
arctangent routine.

𝑞3 = 𝑎𝑡𝑎𝑛2(𝑠3, 𝑐3)

The 𝑑𝑥 and 𝑑𝑧 remain unknown to this point. However, by utilizing (2)

𝑑𝑥 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝑑5𝑠234

𝑑𝑧 = 𝑝𝑧 − 𝑑1 + 𝑑5𝑐234

Or by checking 𝒅𝑒
0 :

• 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) = 𝑝𝑥 → 𝑐1(𝑑𝑥 + 𝑑5𝑠234) = 𝑝𝑥 →

𝑑𝑥 =
𝑝𝑥
𝑐1
− 𝑑5𝑠234

• 𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234 = 𝑝𝑧 → 𝑑1 + dz − 𝑑5𝑐234 = 𝑝𝑧 →

𝑑𝑧 = 𝑝𝑧 − 𝑑1 + 𝑑5𝑐234

Depending on the known task and desired position of the end-effector both solutions
have its merits. Either way, 𝑑𝑧 is calculated the same way. Geometrically this procedure

21

is the equivalent of using the cosine law in the triangle that is formed by joints 2,3 and
4. Intuitively mechanical constrains for the geometry of the manipulator appear, which
can mathematically be described by the limits of 𝑐3.

|𝑐3| ≤ 1 → |
𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3
| ≤ 1 → −1 ≤

𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3
≤ 1 →

−2𝑎2𝑎3 ≤ 𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2 ≤ 2𝑎2𝑎3 →
(𝑎2 − 𝑎3)

2 ≤ 𝑑𝑥
2 + 𝑑𝑧

2 ≤ (𝑎2 + 𝑎3)
2

if this constraint is not valid then there is no solution for 𝑞3 and inverse kinematics
cannot be calculated.

In order to proceed to finding 𝑞2, we can use (2) by utilizing trigonometric properties
(4)

𝑎3𝑐23 + 𝑎2𝑐2 = 𝑑𝑥 → (𝑎2 + 𝑎3𝑐3)𝑐2 − 𝑎3𝑠3𝑠2 = 𝑑𝑥

𝑎3𝑠23 + 𝑎2𝑠2 = 𝑑𝑧 → (𝑎2 + 𝑎3𝑐3)𝑠2 + 𝑎3𝑠3𝑐2 = 𝑑𝑧

The above equation is of a typical transcendental trigonometric form

𝑎 𝑠𝑖𝑛𝜃 − 𝑏 𝑐𝑜𝑠𝜃 = 𝑐

𝑎 𝑠𝑖𝑛𝜃 + 𝑏 𝑐𝑜𝑠𝜃 = 𝑑

Where 𝑎 = 𝑎2 + 𝑎3𝑐3, 𝑏 = 𝑎3𝑠3, 𝑐 = 𝑑𝑥, 𝑑 = 𝑑𝑧

Which can be solved by introducing two new variables 𝑟 and 𝜑 such that

𝑎 = 𝑟 𝑠𝑖𝑛𝜑

𝑏 = 𝑟 𝑐𝑜𝑠𝜑

So

𝑟 = √𝑎2 + 𝑏2

𝜑 = 𝑎𝑡𝑎𝑛2(𝑎, 𝑏)

Substituting the new variables, the set of equations becomes

𝑑𝑥
𝑟
= 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜃

𝑑𝑧
𝑟
= 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃

So, we get

cos(𝜑 + 𝜃) =
𝑑𝑥
𝑟

22

sin(𝜑 + 𝜃) =
𝑑𝑧
𝑟

And the solution

𝜑 + 𝜃 = 𝑎𝑡𝑎𝑛2 (
𝑑𝑧
𝑟
,
𝑑𝑥
𝑟
) = 𝑎𝑡𝑎𝑛2(𝑑𝑧, 𝑑𝑥) → 𝜃 = 𝑎𝑡𝑎𝑛2(𝑑𝑧 , 𝑑𝑥) − 𝑎𝑡𝑎𝑛2(𝑏, 𝑎)

So, in the case of 𝑞2

𝑞2 = 𝑎𝑡𝑎𝑛2(𝑑𝑧 , 𝑑𝑥) − 𝑎𝑡𝑎𝑛2(𝑎3𝑠3, 𝑎2 + 𝑎3𝑠3)

The sign of 𝑞3 will affect the sign of 𝑏 = 𝑎3𝑠3, subsequently affecting 𝜃2.

Finally, 𝑞4 can be calculated

𝑞4 = (𝑞2 + 𝑞3 + 𝑞4) − 𝑞2 − 𝑞3

The multiple solutions represent different possible configurations that can reach end-

effector position and orientation. In general, the solution of the inverse kinematics of

a robot is not unique, but rather multiple ones can fulfil the same criteria. So, to reach

to a specific point within the working space, there can be different configurations which

in turn are associated to multiple solutions. Furthermore, the difficulty lies in selecting

the appropriate solution out of all the possible ones. The criteria on which to base a

decision may vary, but a very consisted and easily applicable choice consists of choosing

the closest solution to the current configuration. Generally, the manipulator is given

position and orientation data to reach to, meaning three values each, six in total. In the

case of underactuated manipulators -as in the case of RM-501- the number of joints is

less than six, so unless the freedom in the task space is reduced, there can be no

solution.

23

Chapter 3: DIFFERENTIAL KINEMATICS

Τhe relationship between the joint variables and the end-effector position and
orientation have been established in the previous chapter. The next vital problem in
robotics is the instantaneous kinematics issue -forward and inverse- which basically is:
given the rates of motion of all joints, find the positions of all members of the chain and
the total velocity of the end-effector and the reverse. This connection is described by a
matrix called geometric jacobian.

As stated in the kinematics chapter the forward kinematics is:

𝑻𝑒
0 (𝐪) = [𝑹𝑒

0 (𝒒) 𝒅𝑒
0 (𝒒)

0 1
]

Where 𝒒 = [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5]
𝑇 is the (5 × 1) vector of the RM-501 manipulator joint

angles. Target of the differential kinematics is to find the correlation between joint
speeds and the translational and rotational speeds of the end-effector.

𝝂𝑒 = [𝜐𝑥 𝜐𝑦 𝜐𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇

Where,

𝒅𝑒 0 ̇ = [𝜐𝑥 𝜐𝑦 𝜐𝑧]
𝑇

𝝎𝑒 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇

𝝂𝑒 = [
𝒅𝑒 0 ̇

𝝎𝑒
]

Is the translational speed vector and 𝜔𝑖 the rotational ones. As a result, the relation
describing differential kinematics:

𝝂𝑒 = 𝑱(𝒒)𝒒̇

𝑱 = [
𝑱𝑃
𝑱𝑂
]

𝑱𝑃 is the (3 × 5) matrix that connect joint speeds 𝒒̇ with linear velocity 𝒅𝑒 0 ̇ and 𝑱𝑂 is
the matrix that connects joint speed with angular velocity of the end-effector.

24

3.1: Calculation of the Jacobian

3.1.1: Geometric Jacobian

The general process of calculating the jacobian requires differentiation. The
displacement Jacobian 𝐽𝑃 is equivalent to the derivative of 𝑻𝑒

0 with respect to the
manipulator joint coordinates.

 𝑱𝑃 =
𝜕 𝒅𝑒
0

𝜕𝑞
=
𝜕 𝑻𝑒
0

𝜕𝑞

Since for example 𝜐𝑥 is calculated from:

𝜐𝑥 =
𝜕 𝒅𝑒

𝑥

0

𝜕𝑞1
𝑞1̇ +

𝜕 𝒅𝑒
𝑥

0

𝜕𝑞2
𝑞2̇ +

𝜕 𝒅𝑒
𝑥

0

𝜕𝑞3
𝑞3̇ +

𝜕 𝒅𝑒
𝑥

0

𝜕𝑞4
𝑞4̇ +

𝜕 𝒅𝑒
𝑥

0

𝜕𝑞5
𝑞5̇

For the angular velocity vector, the calculations can get more complicated as the
differentiation of the rotational matrix is required

𝜔 = 𝑹𝑒
0 ̇ 𝑹𝑒

0 𝛵

Thus, a more comfortable and universal method is required in order to calculate the
geometric jacobian of the manipulator. Such is the jacobian generating vectors, where

𝑱 = [
 𝑱𝑃1 𝑱𝑃2 ⋯ 𝑱𝑃𝑛
𝑱𝑂1 𝑱𝑂2 ⋯ 𝑱𝑂𝑛

]

Where the jacobian are calculated:

𝑱𝑖 = [
𝑱𝑃𝑖
𝑱𝑂𝑖
] = {

[
𝒛𝑖−1
𝟎
] , 𝑓𝑜𝑟 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡

[
𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1)

𝒛𝑖−1
] , 𝑓𝑜𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒 𝑗𝑜𝑖𝑛𝑡

Where

• 𝒛𝑖−1 is the third column of the rotation matrix 𝑹𝑖−1
0

• 𝒑𝑒 is the vector of first three elements of the fourth column of matrix 𝑻𝑒
0

• 𝒑𝑖−1 is the vector of the first three elements of the fourth column of matrix 𝑻𝑖−1
0

In our case 𝑛 = 5 and all joints are revolute so:

𝒛0 = [
0
0
1
] , 𝒛1 = 𝒛2 = 𝒛3 = [

𝑠1
−𝑐1
0
] , 𝒛4 = [

𝑠234𝑐1
𝑠234𝑠1
−𝑐234

]

25

𝒑0 = [
0
0
0
] , 𝒑𝟏 = [

0
0
𝑑1

] , 𝒑2 = [

𝑎2𝑐1𝑐2
𝑎2𝑐2𝑠1
𝑑1 + 𝑎2𝑠2

] , 𝒑3 = 𝒑𝟒 = [

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2)

𝑠1(𝑎3𝑐23 + 𝑎2𝑐2)

𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2

] ,

𝒑𝑒 = [

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑠1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234

]

By computing column by column, the geometric jacobian is:

𝑱 =

[

−𝑠1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) −𝑐1(𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234) −𝑐1(𝑎3 𝑠23 − 𝑑5𝑐234) 𝑑5𝑐234𝑐1 0

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) −𝑠1(𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234) −𝑠1(𝑎3𝑠23 − 𝑑5𝑐234) 𝑑5𝑐234𝑠1 0
0 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 𝑎3𝑐23 + 𝑑5𝑠234 𝑑5𝑠234 0
0 𝑠1 𝑠1 𝑠1 𝑠234𝑐1
0 −𝑐1 −𝑐1 −𝑐1 𝑠234𝑠1
1 0 0 0 −𝑐234]

As a validation the linear velocity part of the jacobian can by calculated by
differentiation and is expected. The 𝑖𝑡ℎ column of 𝐽 represents the incremental change
in the end-effector due to the joint variable 𝑞𝑖. In other words, it refers to the direction
and scale of the resulting infinitesimal end-effector velocity for an infinitesimal unit
rotational velocity at 𝑖𝑡ℎ joint.[11]

Figure 5: A physical interpretation of the columns of the Jacobian matrix [18]

26

The columns of 𝐽 are closely related to the vector defined from a joint's axis to the end
effector, denoted by 𝑝𝑖 in Figure 5: A physical interpretation of the columns of the
Jacobian matrix [18] Figure 5. In particular, the magnitudes of the 𝑗𝑖's and 𝑝𝑖's are equal,
and their directions are perpendicular. The relation can be extended to three
dimensions -as in our case- easily by using the cross product of a unit vector along the
axis of rotation 𝑎𝑖 with the vector pi to obtain 𝑗𝑖 and that’s how the generating vectors
method is easily understandable.

𝒋𝑖 = 𝒂𝑖 × 𝒑𝑖

Where 𝒂𝑖 corresponds to 𝒛𝑖−1 and 𝒑𝑖 to 𝒑𝑒 − 𝒑𝑖−1 of the method for revolute joint as
calculated above.

As a final note we can take into account the fact that the jacobian matrix is essentially
a differential mapping, so any arbitrary small change in joint angles is mapped to a
respective arbitrary small change in the position and orientation of the end-effector.
Jacobian is a way for solving equation kinematics equation. It is applied as an iterative
method. The Jacobian 𝑱 is computed and then an update value 𝛿𝒒 for the purpose of
incrementing the joint angles 𝒒 by 𝛿𝒒:

𝒒 ≔ 𝒒+ 𝛿𝒒

Subsequently, the change in end effector positions caused by this change in joint angles
can be estimated as

𝛿𝒙𝐸 = 𝑱𝛿𝒒

In order to check the result two different configuration 𝒒𝑎 , 𝒒𝑏, very close with each
other. These two configurations correspond to two end effector position and
orientation vectors 𝒙𝐸𝑎 and 𝒙𝐸𝑏 that can be found via the forward kinematics map. So,
after calculating the differences 𝛿𝒒 = 𝒒𝑎 − 𝒒𝑏 and 𝛿𝒙𝐸 = 𝒙𝐸𝑎 − 𝒙𝐸𝑏 we can check if
the latter equals to the product of the jacobian matrix 𝐽 with the configurations’
difference as it should.

3.1.2: Analytical Jacobian

The last reference that needs to be attended is the possibility of calculating the
analytical jacobian 𝐽𝐴. The difference between geometric jacobian 𝐽 and 𝐽𝐴 is in the
rotational part since it analytical jacobian expresses the spatial velocity of the end-
effector in terms of translational and rotational velocities. The translational part 𝐽𝑃 is
the same in both. Depending on the expression of the angular velocity of the end
effector either the geometric or the analytical jacobian is calculated. When the angular
velocity of the end-effector is expressed in Cartesian frequencies as

𝜔 = [

𝜔𝛸
𝜔𝛶
𝜔𝛧
]

27

then, Jacobian matrix is called geometric as calculated in this section. When the angular
velocity of the end-effector is expressed in non-Cartesian frequencies such as Eulerian,
then Jacobian matrix is called analytic. To connect those two then in global frame 𝑂𝑋𝑌𝑍
in terms of local Roll-Pitch-Yaw frequencies the angular velocity of a body with respect
to the global reference frame is:

[

𝜔𝛸
𝜔𝛶
𝜔𝛧
] = [

𝜑̇ + 𝜓̇ sin 𝜃

𝜃̇ cos 𝜑 − 𝜓̇ cos 𝜃 sin𝜑

𝜃̇ 𝑠𝑖𝑛 𝜑 + 𝜓̇ cos 𝜃 cos𝜑

] = [
1 0 sin 𝜃
0 cos𝜑 − cos 𝜃 sin𝜑
0 sin𝜑 cos 𝜃 sin 𝜑

] [

𝜑̇

𝜃̇
𝜓̇

] = 𝑱𝑟𝑝𝑦 [

𝜑̇

𝜃̇
𝜓̇

]

where 𝜑, 𝜃, 𝜓 are the Roll-Pitch-Yaw rates of change respectively. So, the connection
between 𝐽 and 𝐽𝐴 is

𝑱𝐴(𝒒) = [
𝑰3×3 𝟎3×3
𝟎3×3 𝑱𝑟𝑝𝑦

−1] 𝑱(𝒒)

A similar connection can be found for the Euler angles 𝜙𝜃𝜓 about 𝑧𝑥𝑧 axes. A simple
mention is enough as it can easily be seen that it is a very computationally taxing
method especially for implementation in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶

28

3.2: Inverse Differential Kinematics

Given that we have a linear transformation relating joint velocity to Cartesian velocity,
a reasonable question to ask is whether the jacobian matrix is invertible thus enabling
the control of the manipulator. This requires calculation of the corresponding motion
at the joint configurations level so as to achieve the desired end-effector motion. Thus,
the objective is to solve the equation

𝛿𝒙𝐸 = 𝑱𝛿𝒒

for 𝛿𝒒. In most cases, this equation cannot be solved uniquely. Indeed, the Jacobian 𝐽
may not be square or invertible, and even if is invertible, just setting 𝛿𝒒 = 𝑱−1𝛿𝒙𝐸 may
work poorly if 𝐽 is nearly singular. In general singularity analysis is done at this point and
the findings give information about which the best course of action is. So a few
information on singularities will be presented here a whole sub-chapter will be devoted
to the rest of the singularity analysis.

Singularities are defined as those configurations at which the Jacobian matrix is rank-
deficient. Singularities can be of two kind:

▪ Workspace-boundary singularities which occur when the manipulator is fully
stretched out or folded back on itself in such a way that the end-effector is at
or very near the boundary of the workspace. Those are not necessarily a
problem since they can be avoided by not using the manipulator to the
boundaries of its reachable workspace.

▪ Workspace-interior singularities occur away from the workspace boundary they

generally are caused by alignment of two or more axes of motion, or by the
attainment of special end-effector configurations. Unlike the boundary
singularities these singularities constitute a serious problem, as they can be
encountered anywhere in the reachable workspace when a path is given in the
operational space.

Avoiding singularities of the manipulator, or at least having a particular way of dealing
with them, is of great importance for the following reasons:

➢ Singularities represent configurations at which the mobility of the structure is
reduced so it is impossible to impose an arbitrary motion to the end-effector.

➢ When the manipulator is at a singularity, infinite solutions to the inverse
kinematics problem may exist.

➢ In the neighborhood of a singularity, small velocities in the operational space

may cause large velocities (and torques) in the joint space.

There are many ways in modern robotics which can detect and deal with singularities,
all with their pros and cons. The main attributes that dictates which method to choose

29

are the application which the manipulator will be used on and of course the hardware
and software capabilities. A small overview of the viable solutions will be presented.

3.2.1: Jacobian Transpose Method

The idea of this technique very simple: use the transpose of 𝑱 instead of the inverse of
𝑱. Given a desired end effector pose 𝒙𝐸𝑤 and actual pose 𝒙𝐸, the Jacobian transpose
can be used to iteratively step the robot towards it using equation

𝛿𝒒 = 𝛼𝑱𝑇(𝒙𝐸𝑤 − 𝒙𝐸)

𝛿𝒒 = 𝛼𝑱𝑇𝛿𝒙𝐸

for small for some appropriately small scalar 𝛼. This method was first used by Balestrino
et al. (1984) and Wolovich and Elliott (1984) to perform inverse kinematics for
robots.[11] [12]

Of course, the transpose of the Jacobian is not the same as the inverse; however, it is
possible to justify the use of the transpose in terms of virtual forces that guide the robot
towards the desired position. Since this method does not require inversion of the
Jacobian, numerical problems near singularities are avoided whilst also being
computationally efficient.

3.2.2: The Pseudoinverse Method

In order to bypass the problem of invertibility the pseudoinverse matrix was
introduced. Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 depending on whether 𝑚 ≤ 𝑛 (more columns
than rows) or 𝑚 > 𝑛 (more rows than columns) then the matrix is called either fat or
tall accordingly and then the pseudoinverse or Moore-Penrose inverse is:

• 𝐴† = 𝐴𝑇(𝐴𝐴𝑇)−1 the right pseudoinverse if 𝐴 is fat

• 𝐴‡ = (𝐴𝑇𝐴)−1𝐴𝑇 the left pseudoinverse if 𝐴 is tall

In our case 𝑱 is a 6 × 5 matrix, thus a tall one and the left pseudoinverse is needed. And
solving for 𝛿𝒒 gives

𝛿𝒒 = 𝑱‡𝛿𝒙𝐸

Where

𝑱‡ = (𝑱𝑇𝑱)−1𝑱𝑇

The pseudoinverse gives the best possible solution to the equation 𝛿𝒙𝐸 = 𝑱𝛿𝒒 in the
sense of least squares, which means 𝛿𝒒 has the property that it minimizes the
magnitude of the difference 𝑱𝛿𝒒 − 𝛿𝒙𝐸. Furthermore, 𝛿𝒒 is the unique vector of
smallest magnitude which minimizes the norm ‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖ , or equivalently, which
minimizes ‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖

2.

30

However, the pseudoinverse tends to have stability problems in the neighborhoods of
singularities. As aforementioned at a singularity, the Jacobian matrix no longer has full
rank, corresponding to the fact that there is a direction of movement of the end
effectors which is not achievable. If the configuration is exactly at a singularity, then the
pseudoinverse method will not attempt to move in an impossible direction, and the
pseudoinverse will be well-behaved. However, when the configuration is close to a
singularity, then the pseudoinverse method will lead to very large changes in joint
angles, even for small movements in the target position. In practice, roundoff errors
mean that true singularities are rarely reached and instead singularity have to be
detected by checking values for being near-zero. Normally this happened by detecting
the magnitude of the determinant reaching below a specified value. Mathematicians
do not have this problem since zero means zero and nothing else. But when performing
numerical calculation as in the case of controlling a robot via a computer these tiny
numbers become significant (by tiny it is assumed any number which is in the same
order as ‖𝑱‖ ∙ 𝑒 (norm of 𝑱 times the machine precision 𝑒). Unfortunately, the Moore-
Penrose inverse often depends on the way "tiny" is defined.

3.2.3: Damped Least Squares (DLS)

The damped least squares (DLS) method avoids many of the pseudoinverse method's
problems with singularities and can give a numerically stable method of selecting 𝛿𝒒.
Damped least squares is a widely adopted approach which produces a modified
Jacobian matrix that remains well-conditioned near singularity at the expense of
exactness of the inverse kinematic solution to. It is also called the Levenberg-Marquardt
method and was first used for inverse kinematics by Wampler[14] and Nakamura and
Hanafusa[13] in 1986.

Instead of finding the minimum vector 𝛿𝒒 that gives a best solution for

𝛿𝒙𝐸 = 𝑱𝛿𝒒

we look for the value of 𝛿𝒒 that minimize the norm of the residual tracking error
combined with a term relating to the magnitude of the joint velocities. Mathematically
this problem is expressed as

min{‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖
2 + 𝜆2𝛿𝒒2}

Which equals to minimizing the quantity

‖(
𝑱
𝜆𝑰
) 𝛿𝒒 − (

𝛿𝒙𝐸
0
)‖

The corresponding normal equation is

(
𝑱
𝜆𝑰
)
𝑇

(
𝑱
𝜆𝑰
) 𝛿𝒒 = (

𝑱
𝜆𝑰
)
𝑇

(
𝛿𝒙𝐸
0
) → (𝑱𝑇𝑱 + 𝜆2𝜤)𝛿𝒒 = 𝑱𝑇𝛿𝒙𝐸

31

And the damped least squares solution is equal to

𝛿𝒒 = (𝑱𝑇𝑱 + 𝜆2𝜤)−1𝑱𝑇𝛿𝒙𝐸

As (𝑱𝑇𝑱 + 𝜆2𝜤) is nonsingular. Because (𝑱𝑇𝑱 + 𝜆2𝜤)−1𝑱𝑇 = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1, the
damped least squares solution can be also expressed as

𝛿𝒒 = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1𝛿𝒙𝐸

Thus,

𝒒̇ = 𝑱∗𝝂𝑒

where 𝑱∗ = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1

with 𝑱∗ being what is called the damped inverse of Jacobian 𝑱. The term 𝜆 ∈ ℝ is a non-
zero damping constant that sets a weighting to the velocity component.

Then question that comes up is which of the two expressions is preferable to use for
𝑱∗. In general, the last expression is preferable in most robotics’ applications. The matrix
being inverted is only 𝑚 ×𝑚 where 𝑚 = 3𝑘 is the dimension of the space of target
positions, and 𝑚 is often much less than 𝑛, as most manipulators in question are
redundant manipulators. However, that is not the case with the RM-501 robot as the
𝑛 = 5, the degrees of freedom and 𝑚 = 6, the dimensions of the task space (3 for
position and 3 for orientation).

The specific expression and formulation of DLS is a special case of a more general form
that includes weighting of the task and joint space dimensions [15] . In the form shown
each task-space and joint-space dimension is given unit weighting.

A larger damping parameter 𝜆 improves the manipulator behavior near singularities at
the expense of tracking performance. The damping constant should be big enough so
that the solutions for 𝛿𝒒 are well-behaved near singularities, but not too much because
then the convergence rate is too slow. So, selecting the right damping parameter is
crucial to achieve the desirable robot performance.

Using a constant damping factor has the disadvantage of compromising one
performance factor to improve another and it can be difficult to achieve both good
tracking performance when far from singularity and stable behavior near singularity.
Another approach has been proposed that dynamically adjust the damping according
to factors such as the condition of the Jacobian. There have been a multitude of
methods proposed for selecting damping constants dynamically based on the
configuration of the manipulator. Special attention is given to selectively damped least
squares and approach by Buss and Kim [16] where all singular values are damped based
on the difficultly in reaching the target position. A second approach even older in grasp
with many different applications is utilizing the manipulability of the robot. Nakamura
and Hanafusa[13] proposed a damping factor that adjusts according to a measure of

32

robot manipulability √det(𝑱𝑱𝑇) which will be defined later. Kelmar and Khosla[19]
utilized a dynamic damping factor based on the rate of change of the manipulability
measure.

3.2.4: Singular Value Decomposition (SVD)

Firstly, we need to examine what Singular Value Decomposition is, how it works and
then how it is applied in similar configurations. Rather than a method, we can say that
it is mostly a tool providing insight of manipulator singularities and used in combination
with a method for dealing with them like the aforementioned and provides insight into
the degeneration that occurs near singularity by performing eigenvalue analysis in
Robotics, a task rather troublesome and of significant value.

As mentioned, the geometric jacobian 𝑱 is a real 𝑚 × 𝑛 matrix, so by default it can be
expressed as

𝑱 = 𝑼𝜮𝑽𝑇
Where

𝑼 = [𝒖1, 𝒖2, …𝒖𝑚] ∈ ℝ
𝑚×𝑚

𝑽 = [𝒗1, 𝒗2, … 𝒗𝑚] ∈ ℝ
𝑛×𝑛

Orthogonal matrices and 𝜮 with a “diagonal-ish” format matrix:

𝜮 =

[

𝜎1 0 0 ⋯ 0
0 𝜎2 0 ⋯ 0
0 0 𝜎3 ⋯ 0
0 0 0 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝜎𝜅
0 0 0 ⋯ 0]

Where 𝜎𝑖 ≥ 𝜎𝑖+1 ≥ 0 with 𝜅 = min{𝑚, 𝑛} = 𝑛 in our case, the singular values of the
jacobian. At this point we can introduce a number that is used a meter of the
performance

𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

= condition number of the Jacobian

The numerical value of the singular values is exactly the positive square root of the
common (always greater than or equal to zero) eigenvalues of the square matrices 𝑱𝑇𝑱
and 𝑱𝑱𝑇. This is a property that holds for any matrix based on results of the symmetric
eigenvalue problem. As it becomes clear the computation of the five eigenvalues and
subsequently the singular values this way is very mathematically taxing.

At singularity the smallest singular values become equal to zero, and motions along the
corresponding spatial directions are no longer possible. The SVD of the inverse

33

𝑱−𝟏 = 𝑽𝜮−1𝑼𝑇

With 𝜮−1 ∈ ℝ𝑛×𝑚 being

𝜮−1 =

[

1

𝜎1
0 0 0 ⋯ 0

0
1

𝜎2
0 0 ⋯ 0

0 0
1

𝜎3
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
1

𝜎𝜅
0
]

The main diagonal elements contain the reciprocal of each singular value. Since 𝜎𝜅
approaches zero at singularity it becomes apparent how the inversion becomes
numerically unstable.

• A very convenient property of the SVD is that it can be applied on the
pseudoinverse of a matrix whether it is rank deficient or not. So, if 𝑱 = 𝑼𝜮𝑽𝑇
then its pseudoinverse is

𝑱† = 𝑼𝜮†𝑽𝑇
With

𝜮† =

[

1

𝜎1
0 0 0 ⋯ 0

0
1

𝜎2
0 0 ⋯ 0

0 0
1

𝜎3
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
1

𝜎𝜅
0
]

∈ ℝ𝑛×𝑚

If a singular value is exactly zero, meaning that 𝑟𝑎𝑛𝑘(𝑱) = 𝑟 < 𝑛 then the

corresponding 𝜎𝑖 is replaced by a zero in 𝜮†. Since the values for which the
singular values become zero are known from eigenvalues then the predictions
regarding when to replace them are possible.

• Performing the dumped least squares in conjunction with the SVD approach we
can extract valuable information.

𝑱𝑱𝑇 + 𝜆2𝜤 = (𝑼𝜮𝑽𝑇)(𝑽𝜮𝛵𝑼𝑇) + 𝜆2𝜤 = 𝑼(𝜮𝜮𝛵 + 𝜆2𝜤)𝑼𝑇

34

The matrix 𝜮𝜮𝛵 + 𝜆2𝜤 is the diagonal matrix with entries 𝜎𝑖
2 + 𝜆2, with 𝜆 the

dumping constant. 𝜮𝜮𝛵 + 𝜆2𝜤 is non-singular, and its inverse is the diagonal

matrix with non-zero entries (𝜎𝑖
2 + 𝜆2)−1. 𝑆𝑜

𝑱∗ = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1 = 𝑽𝜮𝛵(𝜮𝜮𝛵 + 𝜆2𝜤)−𝟏𝑼𝑇 = 𝑼𝜮∗𝑽𝑇

Where 𝜮∗ is the diagonal matrix with entries

𝜎𝑖,𝑖
∗ =

𝜎𝑖

𝜎𝑖
2 + 𝜆2

Thus, in general

𝜮∗ =

[

𝜎1

𝜎1 + 𝜆2
0 0 0 ⋯ 0

0
𝜎2

𝜎2 + 𝜆2
0 0 ⋯ 0

0 0
𝜎3

𝜎3 + 𝜆2
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
𝜎𝜅

𝜎𝜅 + 𝜆2
0
]

The effect of the damping term 𝜆 is such that for values of 𝜎𝑖 ≫ 𝜆, which means
far away from a singularity the DLS method is very close to the pseudoinverse

method. The main diagonal elements of 𝜮∗are similar to 𝜮−𝟏 resulting in the
robot performing as if little to no damping is applied.

𝜎𝑖

𝜎𝑖
2 + 𝜆2

≈
𝜎𝑖

𝜎𝑖
2 =

1

𝜎𝑖

35

Figure 6: Comparison of damped least-squares to least-squares[20]

As the robot approaches singularity (𝜎𝑖 → 0), the denominator of the
undamped diagonal term approaches zero, whereas with damping this
denominator approaches 𝜆2 and hence the term remains numerically stable.
Thus, the damped least squares method tends to act similarly to the
pseudoinverse method away from singularities and effectively smooths out the
performance of pseudoinverse method in the neighborhood of singularities.

3.2.5: Manipulability

Manipulability expresses whether a manipulator at a non-singular state is close to
becoming singular. In fact, one can even determine the directions in which the end-
effector’s ability to move is diminished, and to what extent.

A tool to visualize manipulability is the manipulability ellipsoid which indicates
geometrically the directions in which the end-effector moves with least effort or with
greatest effort. The end-effector has better capacity of motion in the direction of the
major axis of the ellipsoid. Additionally, the direction of the minor axis represents the
direction with worse capacity of developing speed.

One measure of a robot’s manipulability is given by the condition number as defined
before -the ratio of the Jacobian’s maximum to the minimum singular -. The closer to
one the condition number is, the more isotropic the ellipsoid is which means that the
ellipsoid tends to become a circle (planar configuration) or sphere (in 3D). Therefore,
for a robot, it is preferable the diagonal eigenvalue matrix to approximate the identity
matrix. When the ellipsoid tends to become increasingly anisotropic then the Jacobian

36

matrix may become singular (which is bad) or approach a singular matrix or badly-
behaved matrix.

𝜔1 =
𝜆𝑚𝑎𝑥(𝑱𝑱

𝑇)

𝜆𝑚𝑖𝑛(𝑱𝑱𝑇)
≥ 1

The condition number expresses the ratio of the longest and shortest semi-axes of the
manipulability ellipsoid, which itself can pose as a measure. In both case values closer
to 1 are preferable.

Another measure of manipulability, which was proposed by Yosikawa[20] is
proportional to the volume of the manipulability ellipsoid

𝜔2 = √𝜆1𝜆2… = √det(𝑱𝑱𝑇)

In this case, unlike the previous, in this case, the larger the value is, the better for the
manipulator. The manipulability measure 𝜔, has the property that 𝜔 = 0 holds if and

only if 𝑟𝑎𝑛𝑘(𝑱) = 𝑟 < 𝑛 (when 𝑱 is not full rank). Thus, if 𝑆 ∶= √det(𝑱𝑱𝑇) = 0 a
singularity occurs which corresponds to a fully flattened ellipsoid.

3.2.6: Trajectory Replanning

The most common and convenient way of dealing with singularities is simply avoiding
singular configurations during the planning stage. Cases where motion and path
commands are generated in real-time, as is typically the case during physical human–
robot interaction and other advanced applications, are not able to use this approach.
However, especially for industrial manipulators that can have preplanned initial and
final configurations, it lies on the programmer’s abilities to avoid the troublesome
singular configurations.

From the designer’s point of view, identifying singular configurations is crucial and
especially detecting the singular values of the jacobian in advance is the best course of
action in the specific application that we examine. So, the next sub-chapter will cover
this issue.

37

3.3: Singularity Analysis

Singularity analysis as mentioned before is the first step right after identifying the
jacobian matrix as it gives great insight on the behavior of the manipulator and is then
followed by the inverse differentiation. In fact, that was the case with this work as well,
but the final of choice of using trajectory replanning and not another method like the
ones mentioned above which mainly are implemented on a numerical background with
iterative techniques pushed the singularity analysis chapter to a later chapter.

It is worth mentioning that SVD as presented above is the most used method. This a
result of the increase in computational power in the past years, thus making its use very
efficient which led to it being implemented by default in many mathematical packages
along with the great properties of this decomposition. Apart from that symbolic
methods can be unreliable when applied to floating point computations among other
things like dependencies in a matrix which are masked by measurement error -
problems that SVD bypasses. All in all, for performing eigenvalue-singularity analysis in
Robotics, SVD is an excellent candidate to assist in. However, computational power and
most importantly the fact that everything has to be implemented on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 which
means utilizing its existing tools as they are pushes us to finding singularities analytically
for reasons that will become even more clear in the later chapter regarding the
software system itself and configuring it to our needs.

It is known that whenever a matrix is singular it loses its rank and its determinant
becomes zero. However, 𝑱 is a rectangular matrix, thus its determinant cannot be
defined. So, a new approach is needed and a rank-deficiency criterion is developed.
That methodology takes advantage of the fact that when a rectangular matrix loses
rank, all square sub-matrices of the same dimension as the lower dimension of the
rectangular matrix also become singular. The possible combination of joint angles that
lead to matrix rank deficiency is called the rank-deficiency locus and for the rectangular
matrix is the intersection of the singularity loci of the square submatrices resulting from
all possible combinations of rows of 𝑱(𝒒𝑚), meaning:

𝑺 =⋂ 𝑺𝑠𝑞𝑖
𝑖

Where singularity set for a square matrix 𝑨

𝑺𝑠𝑞 = {𝒒
∗| det(𝑨(𝒒∗)) = 0}

As an alternative method the Singular Vector Method[21] can be used, which offers the
advantage of applicability on symbolic matrices of any row and column dimension. Its
implementation produced the same results.

The square submatrices are constructed by removing the 𝑖𝑡ℎ row each time from the
original jacobian matrix and finding the singularity locus by equating its determinant to
zero as follows:

𝑺𝑠𝑞𝑖 = {𝒒𝑚
∗ ∈ ℝ𝑛| det (𝑱𝑠𝑞𝑖(𝒒𝑚

∗)) = 0} , 𝑖 = 1…6

38

1. Removing row 1:

det(𝑱𝑠𝑞1) = 𝑎2𝑎3𝑠1𝑠3𝑠234

det(𝑱𝑠𝑞1) = 0 ⟺ {sin(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 } ⟹

𝑺𝑠𝑞1 = {𝑞1 = 0 ∨ 𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = 0. 𝜋}

2. Removing row 2:

det(𝑱𝑠𝑞2) = 𝑎2𝑎3𝑐1𝑠3𝑠234

det(𝑱𝑠𝑞2) = 0 ⟺ {cos(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 } ⟹

𝑺𝑠𝑞1 = {𝑞1 = ±
𝜋

2
 ∨ 𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = 0. 𝜋}

3. Removing row 3:

det(𝑱𝑠𝑞3) = 0 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦

4. Removing row 4:

det(𝑱𝑠𝑞4) = −𝑎2𝑎3𝑐234𝑐1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

det(𝑱𝑠𝑞3) = 0 ⟺ {cos(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ cos(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹

𝑺𝑠𝑞1 = {𝑞1 = ±
𝜋

2
 ∨ 𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = ±

𝜋

2
 ∨

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0}

5. Removing row 5:

det(𝑱𝑠𝑞5) = 𝑎2𝑎3𝑐234𝑠1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

det(𝑱𝑠𝑞3) = 0 ⟺ {s𝑖𝑛(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ cos(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹

𝑺𝑠𝑞1 = {𝑞1 = 0 ∨ 𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = ±
𝜋

2
 ∨ 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0}

6. Removing row 6:

det(𝑱𝑠𝑞6) = −𝑎2𝑎3𝑠234𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

det(𝑱𝑠𝑞3) = 0 ⟺ {sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹

𝑺𝑠𝑞1 = {𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∨ 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0}
2

2 All calculations are presented in the Appendix (A)

39

Seeking simultaneous solutions by:

• Discarding all angles that were not compatible with the joint limits discarded

immediately.

• Loci that are subsets of others are merged into the bigger-parent- set.

And finally, the intersection of the subjacobians’ singularity loci is found:

𝑺 = {𝑞3 = 0 ; 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∧ 𝑎2𝑐2 + 𝑎3𝑐4 = 0}

The first condition is quite easy to understand as the common term in every single locus

is 𝑞3 = 0. This condition represents the so-called elbow singularity. When this holds

then there exists a rank deficiency and the rank of the jacobian drops from by

1 (𝑟𝑎𝑛𝑘(𝑱) = 4).

To understand this better, a singularity decoupling will be used. The two parts of the

jacobian, the translational and rotation, come into discussion. The translational part

of the arm’s linear velocity, which involve the waist, the shoulder and the elbow, is

𝒋11. So, the translational part 𝑱𝑃 of the jacobian is:

𝑱𝑃 = [𝑱11 𝑱12]

Where 𝑱11 is the upper 3 × 3 submatrix:

𝑱𝟏𝟏 = [𝑱𝑃1 𝑱𝑃2 𝑱𝑃3]

From singularity decoupling [6] , the same singularity condition pops us (𝑠3 = 0). In such

configuration, the loss of one degree of freedom stems from link 3 aligning with link 2

as illustrated in the figure below.

Figure 7: Elbow Singularity

40

For the second condition we can identify that except for the term 𝑠3, the term that is

present to all is the 𝑠234 one. If 𝑠234 = 0, it means that 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 and in

order for all submatrices to have at least a common zero term so that an intersection

exist it must be

{
𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234 = 𝑎2𝑐2 + 𝑎3𝑐23 = 0

𝑞2 + 𝑞3 = −𝑞4
} ⟹ 𝑎2𝑐2 + 𝑎3𝑐4 = 0

Thus, the condition 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 nulls the determinants of all sub-matrices as
long as the extra mandatory condition 𝑎2𝑐2 + 𝑎3𝑐4 = 0 Is met. Again, the rank is
reduced to 4.

By the singularity decoupling the two condition can be clearer as the condition
represent projection of the forearem and upper arm onto the 𝑥 axis. If they sum to 0,
then arm is over the origin, and joint 1 loses its ability to position the robot. As shown
in the figures below, joint 1 at first loses its ability to define the position of the end-
effector and next it cannot define the orientation neither. Obviously the second case is
a subcategory of the first (subset of the “parental” loci).

 (a): Joint 1 position definition inability

 (b): Joint 1 position & orientation definition inability

Figure 8: Shoulder Singularity

41

If all conditions, 𝑞3 = 0, 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 and 𝑎2𝑐2 + 𝑎3𝑐4 = 0 are met
simultaneously then the rank drops to 3.

Figure 9: Double Singularity (Elbow & Shoulder)

To summarize the rank-deficiency locus of the original Jacobian is:

𝑺 = {

𝑞3 = 0, 𝑟𝑎𝑛𝑘(𝑱) = 4

𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∧ 𝑎2𝑐2 + 𝑎3𝑐4 = 0, 𝑟𝑎𝑛𝑘(𝑱) = 4

 𝑟𝑎𝑛𝑘(𝑱) = 3 if both of the above are true

}

42

Chapter 4: TRAJECTORY PLANNING

A robot controller typically accepts a steady stream of desired robot configurations,
reads joint sensors to determine the robot's actual configuration, and updates the
actuator commands to follow the desired configuration. This process can happen
thousands of times a second. A robot configuration as a function of time is called a
trajectory.

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦: 𝒒(𝑡), 𝑡𝜖[t0, tf]

where is the time 𝑡 goes from 𝑡0 to capital 𝑡𝑓 such that the robot moves from 𝒒(𝑡0) =

𝒒0 to 𝒒(𝒕𝒇) = 𝒒𝑓 the initial and final configuration respectively. The same can be

applied in the cartesian position 𝒙.

A path denotes the locus of points in the joint space, or in the operational space, which
the manipulator has to follow in the execution of the assigned motion; a path is then a
pure geometric description of motion. Mathematically is defined to be a curve in
configuration space as a function of a path parameter, 𝑠 ∈ [0,1]

𝑝𝑎𝑡ℎ: 𝒒(𝑠), 𝑠 ∈ [0,1]

As s increases from zero, the robot moves from the start configuration at 𝒒(𝑠 = 0) to
the end configuration at 𝒒(𝑠 = 1). A path can be turned into a trajectory by defining a
time scaling function 𝑠(𝑡), which maps the time range [0, 𝑇] to the path parameter
range [0,1].

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦: 𝒒(𝑠(𝑡)), s: [t0, tf] ⟶ [0,1]

When designing a path what we need to take in careful consideration is whether it
happens in joint space or cartesian workspace.

4.1: Joint Space Trajectories

If it is desired to plan a trajectory in the joint space, the values of the joint variables
have to be determined first from the end-effector position and orientation specified by
the user. The general procedure of planning a trajectory is depicted in the figure below
and can be accomplished by implementing various methods which will be mentioned
later in this chapter. The inputs are the joint positions and velocities 𝑞𝑎, 𝑞𝑏 , … , 𝑞𝑎̇, 𝑞𝑏̇ , …
and the output is the trajectory of each joint, 𝒒𝑑(𝑡). Those trajectories are later sent
as inputs to the robot controller which drives the robot via electric signals to the
motors.

43

Figure 10: Trajectory planning in joint space

The planning algorithm generates a function q(t) interpolating the given vectors of joint
variables at each point, in respect of the imposed constraints at each iteration.

In general, a joint space trajectory planning algorithm is required to have the following
features:

• the generated trajectories should be not very computationally demanding

• the joint positions and velocities should be continuous functions of time
(continuity of accelerations may be imposed, too),

• undesirable effects should be minimized, e.g., nonsmooth trajectories
interpolating a sequence of points on a path.

We suppose that at time 𝑡0 the joint variables satisfy

𝑞(𝑡𝑜) = 𝑞0
𝑞̇(𝑡0) = 𝜐0

And for the target position

𝑞(𝑡𝑓) = 𝑞𝑓

𝑞̇(𝑡𝑓) = 𝜐𝑓

There is also a case that initial and final acceleration is defined.

4.1.1: Cubic Polynomials

One way to generate a smooth curve is by a polynomial function of t. Since we have
four constraints to satisfy, we require a polynomial with four independent coefficients
that can be chosen to satisfy these constraints. Thus, we consider a cubic trajectory of
the form

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3

Subsequently the velocity and acceleration along the path are

𝑞̇(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2

44

𝑞̈(𝑡) = 2𝑎2 + 6𝑎3𝑡

Combining the above equations with the four desired constraints we can find the values
of the four unknown coefficients by solving the 4𝑥4 system:

𝑎0 = 𝑞0
𝑎1 = 𝑞̇0

𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0 = 𝑞𝑓

3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1 = 𝑞̇𝑓

The most usual case is to assume zero initial and final velocities and starting movement
at zero time and thus the coefficients are found

𝑎0 = 𝑞0
𝑎1 = 0

𝑎2 =
3

𝑡𝑓
2 (𝑞𝑓 − 𝑞0)

𝑎3 = −
2

𝑡𝑓
3 (𝑞𝑓 − 𝑞0)

The general solution can be seen in Appendix (B).

4.1.2: Higher-order Polynomial

If it is desired to assign also the initial and final values of acceleration, six constraints
have to be satisfied instead of two and so 4 coefficients then a polynomial of at least
fifth order is needed. The motion timing law for the generic joint is then given by

𝑞(𝑡) = 𝑎5𝑡
5 + 𝑎4𝑡

4 + 𝑎3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0

whose coefficients can be computed, as for the previous case, by imposing the
conditions for 𝑡 = 0 and 𝑡 = 𝑡𝑓 on the joint variable 𝑞(𝑡) and on its first two

derivatives.

In general, to satisfy 𝑛 + 1 conditions, a polynomial path of degree n is required. The
conditions can refer either to positions at a series of points, so that the trajectory will
pass through all specified points; or position, velocity, acceleration, and jerk at two
points, so that the smoothness of the path can be controlled.

However, this a very computationally heavy approach even though it degenerates to a
set of algebraic equations. That’s why the path planning can be simplified by splitting
the whole path into a series of segments and utilizing combinations of lower order
polynomials for different segments of the path. The polynomials must then be joined
together to satisfy all the required boundary conditions.

45

4.1.3: Trapezoidal Velocity Profile (LSPB)

LSPB stands for Linear Segments with Parabolic Blends and is another method of
trajectory generation in joint space. Mathematically it is much easier to describe and
solve that why it’s a perfect candidate for an industrial application. Apart from the
computational reasons, there is another major asset in this method: it allows a direct
verification of whether the resulting velocities and accelerations can be supported by
the physical mechanical manipulator. Actually, it is the one that 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 utilizes.

The first approach is to use linear functions to move from 𝑞0 to 𝑞𝑓, so the velocity is

constant during the whole movement. But this would suggest that the acceleration 𝑞̈
at the beginning and at the end of the movement is mathematically infinite -practically
too large-. This would burden the mechanical system of the manipulator because of
oscillations and oscillations affecting its accuracy.

Figure 11: Position, Velocity and Acceleration with Trapezoidal Velocity Profile [6]

46

The trapezoidal velocity profile imposes a constant acceleration in the start phase, a
cruise velocity, and a constant deceleration in the arrival phase. The resulting trajectory
is formed by a linear segment connected by two parabolic segments to the initial and
final positions. It is assumed that acceleration and deceleration time are equal, which
suggests that the value 𝑞𝑐̈ is the same magnitude. This leads to a symmetric trajectory
with respect to the average point

𝑞𝑚 =
𝑞0 + 𝑞𝑓

2
 at 𝑡𝑚 =

𝑡𝑓

2

The time of acceleration and deceleration is 𝑡𝑐 and for smooth transition some
constrains have to be satisfied. At the end of the parabolic segment (𝑡𝑐) the velocity
must be equal to the velocity of the linear segment:

𝑞𝑐̈𝑡𝑐 =
𝑞𝑚 − 𝑞𝑐
𝑡𝑚 − 𝑡𝑐

For the parabolic segment with constant acceleration 𝑞𝑐̈:

𝑞𝑐 = 𝑞0 +
1

2
𝑞𝑐̈𝑡𝑐

2

By combining these two equations

𝑞𝑐̈𝑡𝑐
2 − 𝑞𝑐̈𝑡𝑓𝑡𝑐 + 𝑞𝑓 − 𝑞0 = 0

𝑞𝑐̈ = 𝑠𝑖𝑔𝑛(𝑞𝑓 − 𝑞0)|𝑞𝑐̈|

Solving for the acceleration time

𝑡𝑐 =
𝑡𝑓

2
− √

𝑡𝑓
2𝑞𝑐̈ − 4(𝑞𝑓 − 𝑞0)

2𝑞𝑐̈

The time of the parabolic part 𝑡𝑐 is different for each joint, but the total movement time
of its joint is common, equal to the total time of the trajectory 𝑡𝑓. The above equation

contains a slightly covert constraint regarding 𝑞̈𝑐 that is allowed to be used. Indeed, for
the quantity under the square root to be positive, acceleration (or deceleration) need
to be bigger than a value 𝑞̈𝑚𝑖𝑛

𝑞̈𝑚𝑖𝑛 =
4(𝑞𝑓 − 𝑞0)

𝑡𝑓
2 ≤ |𝑞̈𝑐| ≤ 𝑞̈𝑚𝑎𝑥

The closer 𝑞̈𝑐 gets to its minimum value the less time the joint has to move at its top
speed so the constant velocity segment keeps shrinking. At the equality the resulting
trajectory does not feature the constant velocity segment anymore and has only the
acceleration and deceleration segments (triangular profile).

47

All in all, the trajectory is produced

𝑞(𝑡) =

{

 𝑞0 +

1

2
𝑞𝑐̈𝑡

2 0 ≤ 𝑡 ≤ 𝑡𝑐

𝑞0 + 𝑞𝑐̈𝑡𝑐 (𝑡 −
𝑡𝑐
2
) 𝑡𝑐 < 𝑡 ≤ 𝑡𝑓 − 𝑡𝑐

𝑞𝑓 −
1

2
𝑞𝑐̈(𝑡𝑓 − 𝑡)

2
𝑡𝑓 − 𝑡𝑐 < 𝑡 ≤ 𝑡𝑓

48

4.2: Operational Space Trajectories

A joint space trajectory planning algorithm generates a time sequence of values for the
joint variables 𝑞(𝑡) so that the manipulator is taken from the initial to the final
configuration, eventually by moving through a sequence of intermediate
configurations. The resulting end-effector motion is not easily predictable, in view of
the nonlinear effects introduced by direct kinematics. Whenever it is desired that the
end-effector motion follows a geometrically specified path in the operational space, it
is necessary to plan trajectory execution directly in the same space as joint space
planning is not enough.

The general walkthrough of trajectory planning directly in operational space can be
summarized in the following figure. This procedure precedes the transformation of 𝑻

𝑆
𝑇

Figure 12: Operation space trajectory planning procedure

For reducing the complexity, we assume that the desired path is linear in Cartesian
Space and we want the orientation of the end-effector to change smoothly along the
path. As mentioned in previous chapter the path standards (position and orientation)
for each point 𝑖 of the path is given by a transformation matrix 𝑇

𝑆
𝑇,𝑖. Interpolation is

not viable with matrices and thus those standards have to be transformed to a cartesian
vector 𝑿 with dimensions 6 × 1.

𝑻𝑇,𝑖
𝑆 = [

𝑹𝑖 𝒅𝑖
0 1

] = [
𝑹𝑖(𝜑𝑖) 𝒅𝑖
0 1

]

Thus, the vector 𝑿 is constructed as:

𝑿𝑖 = [
𝒅𝑖
𝒌𝑖𝜑𝑖

] = [𝑑𝑥𝑖 𝑑𝑦𝑖 𝑑𝑧𝑖 𝑘𝑥𝑖𝜑 𝑘𝑦𝑖𝜑 𝑘𝑧𝑖𝜑]
𝛵

It is noted that there is no single solution on the respective axis for the angle as

𝑹𝑖(𝜑𝑖) = 𝑹𝑖(𝜑𝑖 +𝑚 ∙ 360
𝑜),𝑚 = 1,2, …

After calculating 𝑿𝑖 for a point 𝑖, the 𝒌𝑖+1, 𝜑𝑖+1 elements are chosen so we don’t have
major deviances orientation-wise.

‖𝒌𝑖𝜑𝑖 − 𝒌𝑖+1𝜑𝑖+1‖ = 𝑚𝑖𝑛

49

For a linear movement in cartesian space, linear and parabolic segments are used, but
with the same interpolation time for all 6 cartesian elements of 𝑿𝑖. Otherwise the path
will not be linear. The path 𝑿(𝑡) that is produced however cannot be inserted to the
controller straight ahead as the robot can only interpret commands intended for its
actuators. Thus, the inverse kinematics of the manipulator are used in order to

calculate joint space trajectories 𝜽̇(𝑡). This procedure is presented below:

𝑿(𝑡) ⟶ 𝑻(𝑡)
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠
→ 𝜽̇(𝑡)

𝜽̇(𝑡) =
𝜽(𝑡) − 𝜽(𝑡 − 𝑑𝑡)

𝑑𝑡
 𝑜𝑟 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛

𝜽̈(𝑡) =
𝜽̇(𝑡) − 𝜽̇(𝑡 − 𝑑𝑡)

𝑑𝑡

where 𝑑𝑡 is the iteration step of the computer and these commands are in turn sent to

the controller of the manipulator.

4.2.1: Cartesian Path Problems

In general, there are three types of problems that need to be taken into account:

1. Intermediate points are unreachable.

When producing path in Cartesian space and disregard the specifics of the manipulator
that is intended for, then the path is possible to be impossible to follow as it passes
through positions that don’t belong to its operational space.

Figure 13: Intermediate positions outside of operational space [5]

To bypass this a message is sent to the user that notifies him that the path is impossible.

2. High Joint rates near Singularity

If a manipulator is following a Cartesian straight-line path and approaches a singular
configuration of the mechanism, one or more joint velocities might increase toward
infinity as it became apparent in previous chapter. Because velocities of the mechanism
are upper bounded, this situation usually results in the manipulator's deviating from
the desired path. Apart from that the violent acceleration can have unpredictable
effect.

50

Figure 14:Endeffector passing close to Singularity [5]

A possible solution was discussed earlier on how to handle the inversion of the
Jacobian. A more practical application is to progressively lower the speed. This would
result in moving away from the specifications for the movement, time wise but without
deviation from the desirable path.

3. Start and goal reachable in different solutions

The manipulator can reach all points of the path in some solution, but not in any one
solution. In particular, a problem will arise if the goal point cannot be reached in the
same physical solution as the robot is in at the start point.

Figure 15: Goal position reachable in different solution[5]

The manipulator trajectory planning system can detect this problem without ever
attempting to move the robot along the path and can signal an error to the user.

To handle these problems with paths specified in Cartesian space, most industrial
manipulator-control systems support both joint-space and Cartesian-space path
generation. The user quickly learns that, because of the difficulties with Cartesian
paths, joint-space paths should be used as the default, and Cartesian-space paths
should be used only when actually needed by the application.

51

4.3: Path Blending

In most application even geometrically complex movements are analyzed into several
simpler ones, linear segments to be exact. However, the trajectory generator originally
has specifications to follow for each linear movement that dictates zero speed at the
end. So, the movement for the next segment has to start from zero and build up velocity
again. For a specific segment the speed is limited and the movement has to be able to
stop within a single segment. In order to have maximum machine speed and assuming
a triangular velocity profile the segment has minimum length of:

𝑢𝑚𝑎𝑥 = √𝑎𝑚𝑎𝑥𝐿 ⟶ 𝐿𝑚𝑖𝑛 =
𝑢𝑚𝑎𝑥

2

𝑎𝑚𝑎𝑥

So depending the configuration this step can get quite big, and big segments are
required to run at maximum speed.

This stop-and-go motion through the waypoint list creates jerky motions with
unnecessary stops. To avoid such motion a kind of blending is required. This is required
in both the joint space and Cartesian space trajectories.

Figure 16: Path blending of linear segments

At this point it is good to introduce jerk which is the rate of change of acceleration. In
general, infinite jerk, which translates to immediate change in acceleration, provides
good enough results. Of course, for applications with high accelerations or compliant
machines such as 3d printers, finite jerk is significantly better, but the benefit at the
expense of implementation struggle isn't satisfactory enough for standard machines.
Subsequently the velocity profile will be trapezoidal. However, the improvement lies
on the optimization based on velocity continuity. This basically means the velocity
doesn't need to become zero at the end of every segment.

Industry standard blending methods involve non-uniform rational B spline and other
spline-based approaches like Pythagorean Hodograph, the Hermite spline or Bezier
curves. All have its unique advantages and attributes but they are challenging to

https://en.wikipedia.org/wiki/Acceleration

52

implement in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶. Basically, it is velocity optimization problem for lookahead
velocity planning that allows continuity of velocity

4.3.1: Parabolic Blending

Instead of decelerating to a complete stop, the next segment is activated early so the
acceleration of the next segment to the desired value and orientation overlaps the
decelerating of the previous segment and the resulting velocity vector is the sum of
both the previous and the next segment. What we get is a smooth blend instead of a
hard stop. The challenge of parabolic blending is deciding when to start executing the
next segment given a tolerance T, which is the distance of the parabolic arc from the
hypothetical corner of the segments should they be executed linearly.

Figure 17: Parabolic blending

So, if we assume the 3D problem of the end effector moving along the 𝐴𝐵 and then the
𝐵𝐶 linear paths and we want to avoid stopping or even passing from 𝐵. Then given the
constant speed 𝑣1 along the linear path 𝐴𝐵 and respective speed 𝑣2 on 𝐵𝐶 and the
desirable goal is to have constant acceleration for time 𝛥𝛵 then to calculate the over-
fly of point B of the trajectory:

Figure 18: Over-fly of point B due to blending

53

The transition from one segment to another starts at 𝑡 = 0 for our convenience:

𝒅(𝑡) = [

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

] , 𝑡𝜖[0, 𝛥𝛵]

We can calculate the unit vectors of direction cosines for the two segments

𝑩 − 𝑨

‖𝑩 − 𝑨‖
= 𝑲̂𝐴𝐵

𝑪 − 𝑩

‖𝑪 − 𝑩‖
= 𝑲̂𝐵𝐶

Then acceleration 𝛼 = 𝑑̈ at each direction

𝑑̈(𝑡) =
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

𝛥𝛵

∫

→ 𝑑̇(𝑡) = 𝑢1𝐾𝐴𝐵 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

𝛥𝛵
𝑡
∫

→

𝑑(𝑡) = 𝐴′ + 𝑢1𝐾𝐴𝐵𝑡 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

2𝛥𝛵
𝑡2

Thus, we obtain a parabolic blending. To solve such an equation there are various
options. For the general one the distance of segment that is blended:

𝛣 − 𝛢′ = 𝑑1𝐾𝐴𝐵
𝐶′ − 𝐵 = 𝑑2𝐾𝐵𝐶

At time 𝛥𝛵 the end effector has reached to 𝐶′

𝑑(𝛥𝛵) = 𝐴′ + 𝑣1𝐾𝐴𝐵𝛥𝛵 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

2𝛥𝛵
𝛥𝛵2 = 𝛢′ +

𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶 = 𝐶

′

⟶−𝐵 + 𝐴′ +
𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶 = 𝐶

′ − 𝐵

⟶ 𝑑1𝐾𝐴𝐵 + 𝑑2𝐾𝐵𝐶 =
𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶

⟶ 𝑑1 = 𝑣1
𝛥𝛵

2
 , 𝑑2 = 𝑣2

𝛥𝛵

2

And by choosing either one we can find the other.

An alternative solution which is closer the applied one, since it sets even more

parameters beforehand is found by imposing the acceleration, so ‖𝑑̈(𝑡)‖ = 𝑎𝑚𝑎𝑥. For

simplicity we can choose 𝑢1 = 𝑢2 = 𝑢 and it can even be 𝑢 = 𝑢𝑚𝑎𝑥.

𝛥𝛵 =
𝑢𝑚𝑎𝑥
𝑎𝑚𝑎𝑥

‖𝐾𝐵𝐶 − 𝐾𝐴𝐵‖ =
𝑢𝑚𝑎𝑥
𝑎𝑚𝑎𝑥

√2(1 − 𝐾𝐵𝐶,𝑥𝐾𝐴𝐵,𝑥 − 𝐾𝐵𝐶,𝑦𝐾𝐴𝐵,𝑦 − 𝐾𝐵𝐶,𝑧𝐾𝐴𝐵,𝑧)

54

Then

𝑑1 = 𝑑2 = 𝑣𝑚𝑎𝑥
𝛥𝛵

2

An essential requirement for an offline prediction is that the maximum allowed velocity
and tangential acceleration are needed along the path. Apart from that the distance to
the end of the path is also required as the question whether at the current speed is
there enough space to slow down and stop. As a matter of fact, the problem with the
parabolic blends is the there isn't one explicit path so it's hard to parameterize
tangential acceleration as well as to know the actual path length. For this reason,
circular arcs are the prevalent choice.

4.3.2: Circular Blending of Linear Segments

The circular blending method offer some unique advantages. Circular blends are very
easy to parameterize by arc length since

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑎𝑛𝑔𝑙𝑒 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠

Which is exactly the disadvantage of other blending methods. Secondly, it can be
applied in any arbitrary arc using only 3 values, the start of the blending, the center of
the circle and the radius. But the most important thing is that the ability to
parameterize the tangential and normal acceleration independently. Basically, if the
velocity on an arc of unknown radius is limited then subsequently the normal
acceleration is bound up to a point, so the rest can be utilized as tangential
acceleration.3 As an effect there is no need to know the velocity at any point of the
movement, thus enabling an offline velocity optimization i.e. optimization can be done
when a new segment is added and after done no further changes are required.

Figure 19: Linear paths with circular arc blending trajectory[22]

3 The tangential acceleration is a measure of the rate of change in the magnitude of the velocity vector,
i.e. speed, and the normal acceleration are a measure of the rate of change of the direction of the velocity
vector

55

The procedure is very straight forward and it only needs to be used once after a new
segment is added. By extracting parameters from previous and next segment, the
geometric constraints of the arc (radius, center and endpoints) can be calculated. Then
the circular arc can be constructed and be added in place of the now trimmed parts of
previous and next segment. What we need to make sure is that the newly created
circular segment does not replace more than half of each of the neighboring linear
segments because if another blend follows then the continuity of the path will break.

Using the same terminology as in parabolic blending we have the tolerance 𝑇, the arc
radius 𝑅 ≡ 𝑟𝑖, the intersection point 𝑃 ≡ 𝑞𝑖 which we want to over-fly and when
moving from 𝑞𝑖−1to 𝑞𝑖+1. The goals are the same as well. The circular arc will start
tangential to the linear path segment before the waypoint and end tangential to the
linear path segment after the waypoint and of course velocity and acceleration within
the limits of the machine.

Figure 20: Circular blend around waypoint qi

First the unit vector pointing from 𝐴 to 𝐶 is calculated as before

𝑩 − 𝑨

‖𝑩 − 𝑨‖
= 𝑲̂𝐴𝐵 ≡ 𝒚̂𝑖 =

𝒒𝑖 − 𝒒𝑖−1
‖𝒒𝑖 − 𝒒𝑖−1‖

𝑲̂𝐵𝐶 ≡ 𝒚̂𝑖+1

And the angle 𝑎𝑖 between the two adjoining path segments of waypoint 𝐵 ≡ 𝑞𝑖

𝑎𝑖 = arccos (𝒚̂𝑖 ∙ 𝒚̂𝑖+1)

The distance 𝑙𝑖 between waypoint 𝑞𝑖 and the points where the circle touches the linear
segments is given as

56

𝑙𝑖 = min{
‖𝒒𝑖 − 𝒒𝑖−1‖

2
,
‖𝒒𝑖+1 − 𝒒𝑖‖

2
,
𝛵 sin

𝑎𝑖
2

1 − cos
𝑎𝑖
2

}

where the first two elements give the maximum possible distances such that the
circular segment does not replace more than half of the adjoining linear segments and
the last element limits the radius to make sure the circular segment stays within the
tolerance 𝑇.

To define a circle all is need is its center 𝒄𝑖 and its radius 𝑟𝑖. Of course, the plane on
which the circle lies is needed as well, i.e. the two orthonormal vectors 𝒙̂𝑖 and 𝒚̂𝑖. So
since 𝒚̂𝑖 points along the path of the preceding linear path segment, 𝒙̂𝑖 points from
center of circle to the point where the circle and the linear segment become tangent.

𝑟𝑖 =
𝑙𝑖

tan
𝑎𝑖
2

𝒄𝑖 = 𝒒𝑖 +
𝒚̂𝑖+1 − 𝒚̂𝑖
‖𝒚̂𝑖+1 − 𝒚̂𝑖‖

∙
𝑟𝑖

cos
𝑎𝑖
2

𝒙̂𝑖 =
𝒒𝑖 − 𝑙𝑖𝒚̂𝑖 − 𝒄𝑖
‖𝒒𝑖 − 𝑙𝑖𝒚̂𝑖 − 𝒄𝑖‖

If we introduce the arc length travelled as 𝑠 then 𝑠 has a span from 0 to 𝑎𝑖𝑟𝑖 :

𝑠𝑖 ≤ 𝑠 ≤ 𝑠𝑖 + 𝑎𝑖𝑟𝑖

where 𝑠𝑖 is the start of the circular segment. Thus, the robot configuration 𝒒 for any
point on the circular segment can be calculated as a function 𝒇(𝑠) of the arc length.

𝒒 = 𝒇(𝑠) = 𝒄𝑖 + 𝑟𝑖 (𝒙̂𝑖 cos (
𝑠

𝑟𝑖
) + 𝒚̂𝑖 sin (

𝑠

𝑟𝑖
))

𝒇′(𝑠) = −𝒙̂𝑖 sin (
𝑠

𝑟𝑖
) + 𝒚̂𝑖 cos (

𝑠

𝑟𝑖
)

𝒇′′(𝑠) = −
1

𝑟𝑖
(𝒙̂𝑖 sin (

𝑠

𝑟𝑖
) + 𝒚̂𝑖 cos (

𝑠

𝑟𝑖
))

The configuration 𝒒 at a point 𝑠 along the path of length 𝑠𝑓 is given by

𝒒 = 𝒇(𝑠), 𝑤ℎ𝑒𝑟𝑒 𝑓: [0, 𝑠𝑓] ⟶ ℝ𝑛

with 𝑠 being an arbitrary parameter. For our convenience this parameter is chosen to
be the arc length traveled since the start of the path.

To include the machine acceleration and velocity limits we can define the velocities and
accelerations with respect to parameter 𝑠 utilizing the chain rule:

57

𝒒̇ =
𝑑

𝑑𝑡
𝒇(𝑠) =
̇ 𝑑

𝑑𝑠
 𝒇(𝑠)

𝑑𝑠

𝑑𝑡
= 𝒇′(𝑠) 𝑠̇

𝒒̈ = 𝒇′(𝑠)𝑠̈ + 𝒇′′(𝑠) 𝑠̇2

Following the procedure proposed in [23] the joint acceleration and velocity limits are
found resulting in the open-source algorithm that the authors propose. Of course,
acceleration is bound by its electromechanical limits:

−𝑞̈𝑖
𝑚𝑎𝑥 ≤ 𝑞̈𝑖 ≤ 𝑞̈𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ [1, … , 𝑛]
−𝑞̈𝑖

𝑚𝑎𝑥 ≤ 𝑓𝑖
′(𝑠)𝑠̈ + 𝑓𝑖

′′(𝑠) 𝑠̇2 ≤ 𝑞̈𝑖
𝑚𝑎𝑥

If 𝑓′(𝑠) ≠ 0:

−𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

≤ 𝑠̈ ≤
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

If 𝑓′(𝑠) = 0 and 𝑓𝑖
′′(𝑠) ≠ 0:

𝑠̇ ≤ √
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′′(𝑠)|

For the lower and upper limit of the path acceleration 𝑠̈ cn be found as the maximum
of the lower boundary and the minimum of the upper boundary respectively.

𝑠̈𝑚𝑖𝑛 ≤ 𝑠̈ ≤ 𝑠̈𝑚𝑎𝑥

With

𝑠̈𝑚𝑖𝑛 = max
𝑖∈[1,…,𝑛]

𝑓′(𝑠)≠0

(
−𝑞̈𝑖

𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

)

𝑠̈𝑚𝑎𝑥 = min
𝑖∈[1,…,𝑛]

𝑓′(𝑠)≠0

(
−𝑞̈𝑖

𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

)

Of course, 𝑠̈𝑚𝑖𝑛(𝑠, 𝑠̇) ≤ 𝑠̈𝑚𝑎𝑥(𝑠, 𝑠̇) for all possible combinations of arguments of joints
(𝑖. 𝑒. 𝑖 ∈ [0, 𝑛], 𝑗 ∈ [𝑖 + 1, 𝑛]), and by solving the inequality for 𝑠̇, the velocity limit due
to acceleration constraints is derived:

𝑠̈𝑚𝑖𝑛(𝑠, 𝑠̇) ≤ 𝑠̈𝑚𝑎𝑥(𝑠, 𝑠̇) ⇔

− |
𝑓𝑖
′′(𝑠)

𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

| 𝑠̇2 + (
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

) ≥ 0

Geometrically, this is a set of downward-facing parabola. By equating with zero the we
find the boundary of feasible velocities.

58

𝑠̇ =

√

𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

|
𝑓𝑖
′′(𝑠)
𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|

With the appropriate condition for the denominator. So, by now two constraints for 𝑠̇
have been introduced. The intersection of these produce the velocity constraint due to
joint acceleration limits and combining these:

𝑠̇𝑚𝑎𝑥(𝑠) = min

{

min
𝑖∈[0,𝑛]

𝑗∈[𝑖+1,𝑛]

𝑓𝜅
′(𝑠)≠0,𝜅=𝑖,𝑗

|
𝑓𝑖
′′(𝑠)

𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|≠0

√

𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

|
𝑓𝑖
′′(𝑠)
𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|

, min
𝑖∈[0,𝑛]

𝑓′(𝑠)=0

|𝑓𝑖
′′(𝑠)|≠0

√
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′′(𝑠)|

}

The velocity is also constraint by its electromechanical limits

−𝑞̇𝑖
𝑚𝑎𝑥 ≤ 𝑞̇𝑖 ≤ 𝑞̇𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ [1, … , 𝑛]

−𝑞̇𝑖
𝑚𝑎𝑥 ≤ 𝑓′(𝑠) 𝑠̇ ≤ 𝑞̇𝑖

𝑚𝑎𝑥

If 𝑓′(𝑠) = 0 then the inequality is satisfied. If 𝑓′(𝑠) ≠ 0, since the movement is forward
along the path and thus 𝑠̇ > 0, then

𝑠̇ ≤
𝑞̇𝑖
𝑚𝑎𝑥

|𝑓′(𝑠)|
, ∀𝑖 ∈ [1, … , 𝑛]

And the lower limit for 𝑠̇ give another constraint for the velocity

𝑠̇𝑚𝑎𝑥(𝑠) = min
𝑖∈[1,…,𝑛]

 𝑓′(𝑠)≠0

𝑞̇𝑖
𝑚𝑎𝑥

|𝑓′(𝑠)|

The corresponding algorithm can then be found in [23] . However, since this will be

implemented on a computational, non-symbolic environment it is best to avoid

complex calculations. There is only need to solve the forward problem and then check

if the result holds for our constraints.

A special case is when the end-effector returns from the same path as the first linear

movement. Then the blending will not have an effect since the end effector will

inevitably have to stop in order to move to the exact opposite direction. As a result, as

expected the end effector will just stop short on its way to the waypoint

59

4.3.3: General Case of Circular Blending

All of the above correspond to blending linear segments. However, it is more difficult
when dealing the general case, such intersecting with arcs, either the convex or the
concave problem.

Figure 21: The general case of Blending[26]

Indeed, there exists theoretical solution for solving such a problem. Basically, it is a
problem of intersection of arcs which has an exact solution which even a 𝐶𝐴𝐷 program
can generate. However, computationally the approach is based on solving 3 quadradic
equations as shown in the figure below:

(a): The convex problem

 (b): The concave problem

Figure 22: Intersection of Arcs[27]

So, instead of defining the tolerance in order to find the radius 𝑅 of the circle it is
preferable to do the opposite. By defining the radius, it is easier to define the
geometrical parameters and then check whether the tolerance constraint holds.

By taking advantage of the fact infinitesimal arcs of the circle can be perceived as
straight lines. So basically, the procedure is to find tangent lines at the intersection
point. With this assumption we fall into the category of circular blending of linear
segments which has already been discussed. The resulting radius then can be used to

60

solve the forward problem. The only problem is deciding which lines will be used. As a
matter of fact the answer differs whether it is the convex or the concave situation.

 (a): The convex problem

 (b): The concave problem

Figure 23: Deciding which lines will be blended instead of the circles

For the convex problem the lines are decided to be the one tangent to the circles at the
intersection point, along the 𝒖̂1 and 𝒖̂2 vectors. In the case of concave things are not

that straightforward. Basically, first the normal vector of the blending arc (𝐶3𝑃̂) is

calculated. After that, the intersection points of the parallel lines, tangent to the original
circular segments, are found and the secant lines from these points to point 𝑃 is
defined. The minimum of half of the length of these secants is the maximum length
that we have to blend over, the amount 𝑑 as defined in the Circular Blending of Linear
Segments.

Now in both cases the resulting circle is slightly smaller than the exact solution but it is
guaranteed it will not violate the tolerance constraint. Now that the line to line blending
can be done, the radius 𝑅 can be found and by solving the quadradic equations the
center 𝐶 for the circle that gives the blend can be identified.

All of the above was done so a solid measurement of the length left till the of the path
can be estimated for the new path. Knowing that, it is obvious that we can find whether
there is enough length for the endeffector to stop. Also, it is important to know what
are the kinematic constraints along that path, the velocity and acceleration limits.

So, the procedure is straightforward, an iterative process which starts from the end of
the queue and moving backward along the path. The properties that we care about is
the target velocity 𝑣𝑡 which is the desired feed rate over that segment and the final
velocity 𝑣𝑓 which is the highest possible velocity at the end of the segment in order not

to violate the limit of the next. The algorithm can be narrowed down to:

𝑣𝑓
{𝑖+1}

= 𝑣𝑡
{𝑖}

𝑣𝑡
{𝑖} = √𝑣𝑓

{𝑖} + 2𝑎𝑙

While 𝑖 moves from up, the queue is moving back so if we have 𝜅 segments in total and
𝑖 is the iteration step number which goes up, the queue in moving backwards along the
path so the segment number 𝑛 = 𝑚 − 𝑖. The process stops when either 𝑛 = 𝑚 which

61

means that we have reach to the first segment or if the target velocity has reached a
limit and cannot be increased anymore, which means that the endeffector is already
moving at maximum velocity at current segment 𝑛.

62

Chapter 5: IMPLEMENTATION on 𝑳𝒊𝒏𝒖𝒙𝑪𝑵𝑪

5.1: 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 Overview

𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, which was formerly named Enhanced Machine Controller or EMC2 is
GNU/Linux software system that implements numerical control capability using general
purpose computers to control CNC machines. EMC was created by NIST, the National
Institute of Standards and Technology, which is an agency of the Commerce
Department of the United States government.

It is capable of providing coordinated control of up to 9 axes of movement, thus
enabling the control of a Computer Numerically Controlled (CNC) mills and lathes, 3D
printers, robots, laser cutters, plasma cutters and other automated devices. It makes
extensive use of a real time-modified kernel, and supports both stepper- and servo-
type drives. As a CNC controller 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 uses G-Code language. There are several
dialects of G-code, 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 uses RS274/NGC, thus there is integrated an appropriate
interpreter.

As an open-source distribution it is free and provides some very important properties
and operations. Firstly, it has its own Graphical User Interface (GUI) and actually
multiple ones, for the user to choose from depending on his needs. A realtime motion
planning system with look-ahead as well as operation of low-level machine electronics
such as sensors and motor drives are also provided. Most importantly thought it
provides with an easy to use “breadboard” layer for quickly creating a unique
configuration for your machine, the HAL.

The control can operate true servos (analog or PWM) with the feedback loop closed by
the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software at the computer, or open loop with step-servos or stepper
motors. Motion control features include: cutter radius and length compensation, path
deviation limited to a specified tolerance, lathe threading, synchronized axis motion,
adaptive feedrate, operator feed override, and constant velocity control. Support for
non-Cartesian motion systems is provided via custom kinematics modules, which
means that a robotic manipulator can be configured. the basic key aspects will be
mentioned from the most upper lever to the lower where hardware is.

5.1.1: Basic Architecture

There are four components contained in the LinuxCNC Architecture: a motion
controller (EMCMOT), a discrete IO controller (EMCIO), a task level command handler
and executor which coordinates them (EMCTASK) and several text-mode and graphical
User Interfaces. The hierarchical correlation of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 controllers is:

• The discrete I/O controller is implemented as a hierarchy of controllers, in this
case for spindle, coolant, and auxiliary (e.g., estop, lube) subsystems.

• The task controller coordinates the actions of the motion and discrete I/O
controllers. Their actions are programmed in numerical control with G and M

63

commands which form programs base on the RS274/NGC language, which are
interpreted by the task controller into NML messages and sent to either the
motion or discrete I/O controllers at the appropriate times.

The basic architectur of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 can be seen in the figure below:

Figure 24: LinuxCNC Architecture Overview [29]

64

5.1.2: The Motion Controller

The motion controller (EMCMOT) receives commands from user space modules via a
shared memory buffer, and executes those commands in realtime. The status of the
controller is made available to the user space modules through the same shared
memory area. The motion controller interacts with the motors and other hardware
using the HAL (Hardware Abstraction Layer).

Figure 25: Motion Controller Bock Diagram [29]

65

Inside Motion Controller there is a sub category, the joint controller. There is one joint
controller per joint. The joint controllers work at a lower level than the kinematics, a
level where all joints are completely independent. All the data for a joint is in a single
joint structure.

Figure 26: The Joint Controller Block Diagram [29]

Its basic inputs and outputs consist of the desired position, in Cartesian coordinates and
in joint coordinates, the desired position in motor cords which is the basic output and
is generated the same way regardless of the mode, and is the output to the PID loop or
other position loop.

1. carte_pos_cmd - This is the desired position, in Cartesian coordinates. It is
updated at the trajectory rate4, not the servo rate5. In coord mode, it is
determined by the trajectory planner. In teleop mode, it is determined by the
trajectory planner as well. In free mode, it is either copied from actual position,
or generated by applying forward kinematics to (2) or (3).

2. emcmotStatus->joints[n].coarse_pos - This is the desired position, in joint
coordinates, but before interpolation. It is updated at the trajectory rate, not
the servo rate. In coord mode, it is generated by applying inverse kinematics to
(1) In teleop mode, it is generated by applying inverse kinematics to (1) In free
mode, it is copied from (3), I think.

3. emcmotStatus->joints[n].pos_cmd - This is the desired position, in joint
coordinates, after interpolation. A new set of these coordinates is generated
every servo period. In coord mode, it is generated from (2) by the interpolator.
In teleop mode, it is generated from (2) by the interpolator. In free mode, it is
generated by the free mode trajectory planner.

4 Trajectory rate refers to the time that is needed for the trajectory rate to do the iteration step and
produce the next infinitesimal numerical step of the path. Using the language introduces in the General
Case of Circular Blending of the chapter dedicated to the trajectory planning, it is the time required to
move from 𝑖 to 𝑖 + 1 step.
5 Servo rate refers to the speed of the servo thread, which is basically the thread that handles items that
can tolerate a slower response, like the motion controller, ClassicLadder, and the motion command
handler. A thread is a list of functions that runs at specific intervals as part of a realtime task. Apart from
that, base rate also exists and it refers to the 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 which is the time (in nanoseconds) that is
needed for the subroutines assigned to the base_thread to repeat themselves.

66

4. emcmotStatus->joints[n].motor_pos_cmd - This is the desired position, in
motor coordinates. Motor coordinates are generated by adding backlash
compensation, lead screw error compensation, and offset (for homing) to (3).
It is generated the same way regardless of the mode, and is the output to the
PID loop or other position loop.

5. emcmotStatus->joints[n].motor_pos_fb - This is the actual position, in motor
coordinates. It is the input from encoders or other feedback device (or from
virtual encoders on open loop machines). It is "generated" by reading the
feedback device.

6. emcmotStatus->joints[n].pos_fb - This is the actual position, in joint
coordinates. It is generated by subtracting offset, lead screw error
compensation, and backlash compensation from (5). It is generated the same
way regardless of the operating mode.

7. emcmotStatus->carte_pos_fb - This is the actual position, in Cartesian
coordinates. It is updated at the trajectory rate, not the servo rate. Ideally,
actual position would always be calculated by applying forward kinematics to
(6). However, forward kinematics may not be available, or they may be unusable
because one or more axes aren’t homed. In that case, the options are:

a. fake it by copying (1),
b. admit that we don’t really know the Cartesian coordinates, and simply

don’t update actual position.
Whatever approach is used, I can see no reason not to do it the same way
regardless of the operating mode. I would propose the following: If there are
forward kinematics, use them, unless they don’t work because of unhomed axes
or other problems, in which case do (b). If no forward kinematics, do (a), since
otherwise actual position would never get updated.

Another utility of the Motion Controller is the Joints (formerly known as AXIS). More
information on that will follow as it a major change in the new stable version of
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 that the configuration of the Mitsubishi RM-501 was adapted on.

5.1.3: Hardware Abstraction Layer (HAL)

One of the most advantageous aspects of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 is that it can be configured in such
a way that it can be applied in a great variety of hardware devices, especially CNC
machines. Any system (including a CNC machine), consists of interconnected
components. For the CNC machine, those components might be the main controller,
servo amps or stepper drives, motors, encoders, limit switches etc. The machine builder
must select, mount and wire these pieces together to make a complete system.

What HAL does, is create a virtual layer where the wiring and piece mounting that
would potentially be needed can be replaced by electronic components that are
interconnected and act as bridge between the computer code and the hardware itself.
So, HAL would use its so-called components instead of the typical hardware building
blocks, HAL signals instead of wires, and HAL pins instead of terminals.

67

5.2: RM-501 Configuration on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶

5.2.1: Existing Set-Up

Based on the work of D. Tsoumpas [1] the RM-501 manipulator was configured on a
past version of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, installed upon a Pentium D (2.4 Ghz) based personal
computer with 512MB of RAM. The reason for pointing out the computer specification
is because they affect the performance and based on this knowledge the configuration
was set up on a newer PC. The most intriguing aspect of this work is the custom
controller and the construction of custom breadboards to replace the old ones.
Specifically, the 3 original breadboards, named 724, 732, 727 were replaced by a new
one which transfers and receives information to and by the computer through two
parallel ports. Each pin of the two ports correspond to a specific signal. The
correspondence of the original pin signals with the ones of the new breadboard and
their name is given in the table below for reasons of completeness.

PARALLEL PORT 0 SGNAL NAME PIN

0.Pin1 -

0.Pin2 STEP_1 724.Pin1

0.Pin3 DIR_1 724.Pin2

0.Pin4 STROBE 724.Pin4 732.Pin4 727.Pin4

0.Pin5 ELBOW SELECT 724.Pin8

0.Pin6 WAIST SELECT 724.Pin11

0.Pin7 HAND_1 727.Pin1

0.Pin8 HAND_2 727.Pin2

0.Pin9 HAND_3 727.Pin3

0.Pin10 OVERLOW 724 724.Pin14

0.Pin11 SWITCH ELBOW 724.Pin18

0.Pin12 SWITCH WAIST 724.Pin20

0.Pin13 -

0.Pin14 -

0.Pin15 -

0.Pin16 -

0.Pin17 MASTER RESET 724.Pin15 732.Pin15 727.Pin15

0.Pin18 GND

0.Pin19 GND

0.Pin20 GND

0.Pin21 GND

0.Pin22 GND

0.Pin23 GND

0.Pin24 GND

0.Pin25 GND
Table 2: Parallel Port 0 Pins

68

PARALLEL PORT 0 SGNAL NAME PIN

1.Pin1 STEP_2 732.Pin1

1.Pin2 -

1.Pin3 DIR_2 732.Pin2

1.Pin4 SHOULDER SELECT 732.Pin7

1.Pin5 LEFT WRIST SELECT 732.Pin9

1.Pin6 RIGHT WRIST SELECT 732.Pin10

1.Pin7 -

1.Pin8 HAND_DIRECTION 727.Pin12

1.Pin9 HAND_POWER 727.Pin17

1.Pin10 OVERLOW 732

1.Pin11 SWITCH SHOULDER 724.Pin18

1.Pin12 SWITCH PITCH 724.Pin19

1.Pin13 SWITH ROLL 732.Pin20

1.Pin14 -

1.Pin15 -

1.Pin16 -

1.Pin17 GND

1.Pin18 GND

1.Pin19 GND

1.Pin20 GND

1.Pin21 GND

1.Pin22 GND

1.Pin23 GND

1.Pin24 GND

1.Pin25 GND
Table 3: Parallel Port 1 Pins

Based on this hardware elements, an appropriate HAL file created. The important

aspects of this file and its course of editing and managing the corresponding signals is

as follows:

• The output of the trajectory planner, which have been modified by the

kinematics component, is the basic input on the HAL layer. These outputs are

basically joint angles (that depending on the mode are identified with the way

that is was explained on the joint section of The Motion Controller chapter)

corresponding to one of the 5 motors.

• This output signal is then fed to the stepgen component which is responsible

for modifying the angle value to the necessary steps that are the correct input

for the stepper motors of the RM-501 robot. Apart from steps the stepgen

produces the direction of the corresponding motor as a different signal.

• A noticeable element is the use of a sum2 component, for the joint 3 and 4

signals before entering the stepgen. This is due to the differential device where

the wrist motors are attached to. When both motors rotate the same direction

then the wrist pitch is changing accordingly. The wrist roll is produced by

reverse rotation of those motors.

69

• All the motors’ steps and direction are fed for each breadboard to pins 01 and

02 respectively. A third pin- the section pin- that corresponds to each motor is

in charge of selecting the one that we want to dictate the move to. So, in order

to choose the correct selection pin and the right direction a complicated

structure of HAL components that utilize a self-driving multiplexer and a

bitslicer.

• Between 𝑠𝑡𝑒𝑝𝑔𝑒𝑛 and the parallel port, 4 multiplexes mediate with the

purpose of feeding the data produced from all 𝑠𝑡𝑒𝑝𝑔𝑒𝑛𝑠 to just 4 pins, 2 in

each breadboard, basically its 2 multiplexers per parallel port.

• Using the two free slots of the existing multiplexer, to avoid extra unnecessary

components, configures the opening the closing of the grip.

• As inputs to the HAL are information coming from limit switches and overflow

errors which are connected to the Master Reset of the breadboard.

The rest of the configuration consists of typical ini and kins files, which were adapted
to the new setup, and will be mentioned in the chapters to come. Of course, the existing
vismach model was also essential in verifying the result of our configuration.

Regarding the results, the behavior and response of the existing configuration, as well
as the remarks and comments of the previous “builder” some valuable information can
be extracted:

➢ Should we choose to use the existing controller breadboard we must take into
consideration the special attributes of the specific machine.

➢ One very important value is the 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 and the 𝑠𝑒𝑟𝑣𝑜_𝑝𝑒𝑟𝑖𝑜𝑑 (which
were explained in footnote 5). These depend on the computational capabilities
of each computer and can only be improved by better hardware and
sometimes by a more solid configured software system in terms of
computational speed (like LUbuntu 12.04 over its adversary Ubuntu 10.04).

➢ The oscillations on a linear trajectory that were found in the first testing
scenario of [1] gives two insights. First is the one that was pointed out in the
thesis regarding the capping of 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 due to the CPU speed. A second
translation though is that the jerky move is a result of start-stop of the
endeffector because of the trajectory planner dictating an iterative move of
accelerating and decelerating back to zero.

➢ The kinematics model needs refurbishing regarding configuration choice
elements as well as avoidance or at least prediction of singularity points in
order to notify the user. Otherwise unnecessary mechanical load is put on the
manipulator.

70

5.2.2: The new Configuration

❖ Hardware Updates

As mentioned before, the custom controller of the manipulator in the form of a
breadboard dictates a specific approach of the hardware aspect of the problem. This is
subsequently extended upon the HAL file. Since HAL is basically a “dictionary” for the
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 system to understand and distribute information from the trajectory
planner and other resources to the hardware elements of the configuration. Thus, the
breadboard sets the signals that the manipulator -in our case- receives and transmits
and the HAL file makes sure that these signals are translated the right way. For example,
in the case of the RM-501 manipulator specific pins hold the step and direction
information which are produced by iterative calculation from the trajectory planner in
the form of joint angles. The “line” responsible for connecting these two dots is the HAL
file. Since we chose to stick to the existing breadboard then it is obvious that unless a
new approach of HAL is found altogether then not big changes can be applied on the
HAL configuration. The use of multiplexers is considered imperative, so there will
always be an element with a period that is at least 4 × 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑.

As mentioned, the point is to lower 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 as much as possible. For that sake, a
hardware upgrade seemed a good solution. In the laboratory environment there was a
newer Core 2 Duo E6750, 2.6 GHz available. With a 2 GB of RAM memory addition a
setup fully capable of using 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 on, was created. Apart from that a Nvidia
graphics card was already installed.

So, for this system some tweaks were utilized in order to maximize the possible
outcome of the latency test6, i.e. minimum jitter. Firstly, all power saving modes were
disabled from Bios and by a small change in the GRUB we can make sure that the CPU
will not enter in an idle state, because when idle, the CPU is put into a power-saving
state and it takes some time to wake up from that, hence the latency in reacting to the
timer interrupt. So, the CPU is in a loop checking to see if it is needed rather then it
entering in idle state waiting for a wakeup call, thus never sleeps and so it doesn’t
require long wakeup time. Secondly the nouveau graphics driver for Nvidia. Last but
not least on this PC, utilizes SMP7. On a 2-core machine for example, if you have another
core available, which is not fully utilized, the SMP scheduler will try to use that core
when it is not busy and the real-time code gets spread between the caches of the 2
cores, increasing read time and latency. So, isolating one core and forcing all

6 latency-test sets up and runs one or two real-time threads. By default, these threads are a fast thread
with a 25.0𝜇𝑠 period and a slow thread with a 1.0𝑚𝑠 period. This default setup mimics a common
configuration pattern for LinuxCNC. The two threads are referred to as the base_thread and the
servo_thread, respectively. Each time a thread is started by the scheduler, the code set up by latency-
test gets the time and subtracts from it the previous time the same thread started. In a perfect system,
this difference would always be equal to the selected period for the thread, e.g., there would be zero
latency. Because of vagaries in the system, it usually is not zero. latency-test determines the maximum
deviation (both larger and smaller) of this difference compared to the selected period, compares the
absolute values of the two deviations, and reports the larger absolute value as the max jitter.
7 Symmetric Multiprocessing (SMP) means that LinuxCNC is run n computers with multiple CPUs (aka
cores). Core 2 Duo is a dual core processor.

71

information to be stored in the same cache is the most usual approach. In computer
science there are newer and way more elegant ways to handle processor affinity8, but
they will not be discussed in this document.

❖ Software Updates

The existing layout was reconfigured on the new PC. However, some software changes
were implemented as well. The major one is the utilization of joints and axes distinction,
which didn’t exist in the previous version in an operating system level. This change, in
our case, since it is a complex cartesian machine with non-trivial kinematics9, is very
beneficial. As defined by 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 we have[30] :

➢ An axis is one of the nine degrees of freedom that define a tool position in three-
dimensional Cartesian space. Those nine axes are referred to as
𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉, and 𝑊. The linear orthogonal coordinates 𝑋, 𝑌, and 𝑍
determine where the tip of the tool is positioned. The angular coordinates 𝐴, 𝐵
and 𝐶 determine the tool orientation. A second set of linear orthagonal
coordinates 𝑈, 𝑉 and 𝑊 allows tool motion (typically for cutting actions) relative
to the previously offset and rotated axes. Unfortunately, “axis” is also
sometimes used to mean a degree of freedom of the machine itself, such as the
saddle, table, or quill of a Bridgeport type milling machine.

➢ A joint is one of the movable parts of the machine. Joints are distinct from axes,
although the two terms are sometimes (mis)used to mean the same thing. In
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, a joint is a physical thing that can be moved, not a coordinate in
space. The shoulder, elbow, and wrist of a robot arm are joints. Every joint has
a motor or actuator of some type associated with it. Joints do not necessarily
correspond to the 𝑋, 𝑌 and 𝑍 axes, although for machines with trivial kinematics
that may be the case.

➢ A pose is a fully specified position in 3-D Cartesian space. In the LinuxCNC
motion controller, when we refer to a pose, we mean an EmcPose structure,
containing six linear coordinates (𝑋, 𝑌, 𝑍, 𝑈, 𝑉 and 𝑊) and three angular ones
(𝐴, 𝐵 and 𝐶).

With this in mind the ini and hal files need a major update, especially the hal pins.
Instead for the original axes pins, now Hal pins are created for ini file items for both
joints ([JOINT_N]) and axes ([AXIS_L]). In the original configuration which utilizes a prior
version of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, the hal pin names ini.N.* referred to axes with 0 ==> 𝑥,
1 ==> 𝑦, etc. On the contrary now two different pins are created. For example, a pin

8 Processor affinity, or CPU pinning or "cache affinity", enables the binding and unbinding of a process or
a thread to a central processing unit (CPU) or a range of CPUs, so that the process or thread will execute
only on the designated CPU or CPUs rather than any CPU. This can be viewed as a modification of the
native central queue scheduling algorithm in a symmetric multiprocessing operating system. (available
from https://en.wikipedia.org/wiki/Processor_affinity)
9 Trivial kinematics machines are the ones that mapping from Cartesian space (the G-code program) to
the joint space (the actual actuators of the machine) is trivial. It is a simple 1:1 mapping. So, the change
of joint value will affect the movement along an axis in a straightforward manner and the joint matches
the Cartesian coordinates.

72

for max cartesian acceleration along axis 𝐿 and another for max joint acceleration of
joint 𝑁:

For L = x y z a b c u v w:

Ini File Item hal pin name

[AXIS_L]MAX_ACCELERATION ini.L.max_acceleration

For N = 0 ... [KINS](JOINTS -1)

Ini File Item hal pin name

[JOINT_N]MAX_ACCELERATION ini.N.max_acceleration

❖ Kinematics file Updates

The relationships between joints and axis coordinates are determined by the
mathematical kinematics functions that describe a machine’s motion. World
coordinates (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉,𝑊) are determined by applying forward kinematics
operations to joint (motor) positions. When moving in world space (e.g., gcode
movements) the required joint positions are determined by applying inverse kinematics
operations to the coordinates requested for motion in world space. Both of these
functions where analytically expressed in Forward Kinematics and Inverse Kinematics
chapters respectively.

Special flags were used on both functions to distinguish the state of the intended
configuration, such as Elbow-up or Elbow-down, Singular configuration and even give
a heads up if the desired position is unreachable. The flags are just a long int and they
exist only as a way to pass info between the functions. The flags are then declared in
control.c, which is the core control function of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, that more or less dictates
the movement of the machine.

❖ PID Tuning

Even before calibrating while jogging in free mode10 it was evident that all joints, apart
from the first, were slightly off. When jogging slow everything seemed fine. However,
while the feed rate was increasing from the slider, in AXIS graphical user interface, the
joint moved past its intended final position and then returned to settle to its
destination. Since our configuration is in a closed loop with encoder signal as feedback,
this small overshoot is a major indication that the PID loop11 needs tuning. Specifically,
in order to decrease the overshoot, the derivative (D) parameter needs to increase. The
general empirical rules are shown in the table below:

10 Free mode means that each joint is independent of all the other joints. Cartesian coordinates, poses,
and kinematics are ignored when in free mode. In essence, each joint has its own simple trajectory
planner, and each joint completely ignores the other joints.
11 A proportional-integral-derivative controller (PID controller) is a common feedback loop component
in industrial control systems. The Controller compares a measured value from a process (typically an
industrial process) with a reference set point value. The difference (or error signal) is then used to
calculate a new value for a manipulable input to the process that brings the process measured value back
to its desired set point.

73

Parameter Rise Time Overshoot Settling Time Steady State Error

P ↓ ↑ Small change ↓
I ↓ ↑ ↑ Eliminate

D Small change ↓ ↓ Small change
Table 4: PID Tuning Approach

for increasing values of each parameter.
The calibration process was fulfilled for all joints but the results were evident only for
the second joint. Joints 2,3 and 4, which were actually the most troublesome from that
aspect, had a slight improvement but further research is needed on that point.

❖ Calibration with Photogrammetry

In order to check the result of our configuration regarding its accuracy, basically make
sure that the intended position is reached, a method for evaluating and calibrating if
necessary, the manipulator is needed. There a plethora of methods in doing so, such as
touching reference parts, using supersonic distance sensors, laser interferometry,
theodolites, calipers or laser triangulation or even optical methods with optical capture.
In the environment of the laboratory, means for photogrammetry method were
available and thus, photogrammetry was used.

Photogrammetry is a technique related to optical metrology, which makes possible to
determine the dimensions and volumes of objects. This method consists of taking
pictures of the object that we want to measure and that we have previously covered
with targets, from different angles of view. The software associated with this method
recognizes the coded targets and orients the points according to a 3D point cloud. This
uses the principle of triangulation for specified point in different photos. To obtain a
maximum information of the position of the measured object, it is necessary to use a
maximum of coded targets as well as many different angles of views, and thus created
the cloud of points mentioned previously.

The tools that were used are the scale bars that act as a reference size, 3 of which were
positioned on the 𝑋𝑌 plane and one in the vertical direction (𝑍). On the piece, the
manipulator in our case, and its environment special coded targets and point targets
are placed. Coded targets are a special type of target that the photogrammetry
software can recognize and automatically decode. The point targets are used to make
the network denser. A very important tool is the camera. A Nikon D90 and a flash
SIGMA EM-140 DG were used. Because of the fact that the measurements happened
in a period of almost a week and the place where the robot is, is not sealed from natural
sun light the brightness varies and so settings like aperture, shutter speed and
sensitivity needed to be adjusted properly depending on the brightness in the room.
Lastly the ImetricS software was responsible for performing calculations of target
coordinates and measuring distances between points, which gave the deviation of the
manipulator from the desirable position.

74

Figure 27:Positioning Targets and Scale Bars for the Photogrammetry Calibration

First of all, coded targets were set on the base of the robot so that when the robot
moves, coded targets remain on the same position and act as a reference. Targets
points were set on the tip of the endeffector, on both the face and the side of the grip.
By doing this if there are errors, it is possible to compare the results based on the two
points independently.

The first and foremost position that need to be calibrated is the Home Position. Since
homing essentially happens in free mode, it doesn’t involve kinematics or any kind of
solver, we can be certain that the offset that might come up from the photogrammetry
method will be affected by the manipulator itself and not by numerical computation
for trajectory etc.

The procedure was long lasting but straightforward. Each joint was homed 30 times
and for each time the photos were used to calculate the deviation from the expected
position. So, by calculating the deviation in cartesian coordinates and with the joint
lengths known, the deviation of the joint angle in homing can be calculated since

𝑎𝑛𝑔𝑙𝑒 = tan−1(
𝑦𝑝𝑙𝑎𝑛𝑒

𝑥𝑝𝑙𝑎𝑛𝑒
)

The mean of these deviations was subtracted to the original offset parameter of the ini
file. The advantage is that each joint operates in its own plane and thus only two
coordinates was necessary to check each time, in contrast with the test evaluating the
accuracy and repeatability of the manipulator which is mentioned in the next chapter.

Coded
Targets

Scale Bars

Point Targets

75

In the mathematical expression above 𝑥𝑝𝑙𝑎𝑛𝑒 and 𝑦𝑝𝑙𝑎𝑛𝑒 don’t necessarily correspond

to cartesian 𝑥 and 𝑦 coordinates. These parameters 𝑥𝑝𝑙𝑎𝑛𝑒 and 𝑦𝑝𝑙𝑎𝑛𝑒 are the lengths

of the adjacent side and the opposite site respectively of the hypothetical triangle with
hypotenuse the manipulator link. So after measuring the angle, the deviation from the
desired offset angle can be calculated. These process for the mean values is shown in
the table below.

Joint 0 1 2 3 4
Initial Offset −150 −100 90 0 −67
Mean Measured Angle −149.9 −97.65 89.6 0.26 -67.37
Mean Deviation 0.1 2.35 −0.4 0.26 −0.37
Final Offset −150.1 −102.35 90.4 −0.26 −66.63

Table 5: Calculating the offset of each joint

76

5.3: Testing

After calibration it is time to check the results in a more complex task. At first a
substantial amount of time was devoted on testing each simple move. The simpler of
them all is a linear move. The first thing that was done was some Cartesian space
jogging, before going straight to testing 𝐺01 commands.

Right after calibrating homing procedure, the manipulator was placed in teleop mode12.
Jogging in an axis is essential to check the kinematics that were implemented. Again,
since the movement is linear on an axis, we only need to check the deviation of the
specific coordinate in reference with the indicated coordinate in the AXIS GUI. The last
test that was done was a simple pick and place task. As a manipulator designed for
industrial purpose, the two parameters that are very important for evaluation if the
machine, accuracy and repeatability.

5.3.1: Accuracy and Repeatability

First the two concepts are related, in a matter that they both evaluate the performance
of a manipulator, but not connected. Accuracy is defined as the ability of the robot to
precisely move to a desired position in 3-D space. Repeatability is a measure of the
ability of the robot to move back to the same position and orientation.

Figure 28: Accuracy and Repeatability concepts

12 In teleop mode, movement of the machine is based on Cartesian coordinates using kinematics, rather
than on individual joints as in free mode. However, the trajectory planner per se is not used, instead
movement is controlled by a velocity vector. Movement in teleop mode is much like jogging, except that
it is done in Cartesian space instead of joint space.

77

The positioning accuracy and reproducibility tests of positioning of an industrial robot
is measured in accordance with the guidelines of 𝐼𝑆𝑂 9283: 1998 standard[32] .
Accuracy mathematically is:

𝐴𝑃𝑃 = √(𝑥̅ − 𝑥𝑐)2 + (𝑦̅ − 𝑦𝑐)2 + (𝑧̅ − 𝑧𝑐)2

where the mean coordinates of the set of measurement points

𝑥̅ =
1

𝑛
∑𝑥𝑗

𝑛

𝑗=1

𝑦̅ =
1

𝑛
∑𝑦𝑗

𝑛

𝑗=1

𝑧̅ =
1

𝑛
∑𝑧𝑗

𝑛

𝑗=1

𝑥𝑐, 𝑦𝑐, 𝑧𝑐 coordinates of the set position and 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 the 𝑗𝑡ℎ measurement. As for

repeatability, it is defined as “the closeness of agreement between the attained
positions after 𝑛 repeat visits TCP point to the same command pose in the same
direction” and can be perceived as a sphere with a radius of a sphere with center the
coordinates calculated from the average coordinated of individual measurement
points:

𝑅𝑃 = 𝑙 ̅ + 3𝑆𝑙

where

𝑙 ̅ =
1

𝑛
∑𝑙𝑗

𝑛

𝑗=1

𝑙𝑗 = √(𝑥𝑗 − 𝑥̅)
2
+ (𝑦𝑗 − 𝑦̅)

2
+ (𝑧𝑗 − 𝑧̅)

2

𝑆𝑙 =
√
∑ (𝑙𝑗 − 𝑙)̅

2𝑛
𝑗=1

𝑛 − 1

Figure 29: Accuracy and Repeatability mathematical meaning

78

According to the guidelines included in 𝐼𝑆𝑂 9283 standard, 30 measurements are
enough to produce valid measurements, for each of the points. These, are typically a
set of 5 points located inside a certain space called ISO cube. The ISO cube is located in
the working space and satisfies the following requirements:

• ISO cube should be located in the part of working space with the greatest
anticipated use.

• The cube should have the maximum volume allowable with the edges parallel
to the base coordinate system.

However, in this application this procedure wasn’t followed. A rather a simplified
approach of measuring the accuracy and repeatability in some significant position of
the Pick and Place task, such as the Neutral Pose in the 𝑋𝑍 and 𝑌𝑍 plane etc. -more
information in the following subchapter.

5.3.2: Pick and Place Test

As an industrial manipulator, the RM-501 will be called upon to do many movements
as such. From Home Position it will have to move above an object, lower the
endeffector straight down, close the grip to hold the object, go back up, change
position and lower it down. Such a scenario can be written in a 𝐺 𝑐𝑜𝑑𝑒 program as
such:

;initialization of parameters, tolerance, offsets etc.

G40 (turn cutter compensation off-can be omitted depending on tool)

G21 (millimeters for length units)

G90 (set absolute distance mode)

G94 (Units per Minute Mode)

G49 (cancels tool length compensation)

G64 P0.5 (path tolerance 0.02 of the actual path)

; main body-movement of end-effector

G1 X210 Y0 Z-150 F2800 (moving to a Neutral Pose-N.P.-)

G3 X0 Y210 Z-150 R210 F2800 (turning to the direction of the object

with arc move)

G1 X0 Y340 Z-30 F2800 (approaching the object)

G1 X0 Y340 Z30 F2800 (lower the grip)

G4 P1.5 (dwell for 2 seconds until lowering is

done)

M102 (close the grip)

G1 X0 Y340 Z-30 F2800 (move upwards)

G1 X0 Y210 Z-150 F2800 (return to the N.P., ready to turn)

G2 X210 Y0 Z-150 R150 F2800 (arc move-90 degrees- to original N.P.)

G1 X290 Y0 Z-30 F2800 (approaching dropping point)

G1 X290 Y0 Z30 F2800 (lower the grip to drop object)

G4 P1.5

M101 (open the grip to release)

M2 (end program)

Basically, the endeffector turns from Home Position to the direction of the object,
approaches it, grabs, returns to original Home Position and approaches final point to
release the object. This procedure is depicted in the figure below.

79

(a) The N.P. in XZ plane (b) The N.P. in YZ plane (c) Approaching the object

(d) Vertical move to grasp

(e) Returning to XZ N.P.

(f) Approaching final position

(g) Releasing the object

(h) Return to the N.P. to repeat if needed

Figure 30: The pick and place task in laboratory environment

Some aspects that need to be pointed out are:

➢ The absolute distance mode axis numbers (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉,𝑊) usually

represent positions in terms of the currently active coordinate system. On the
contrary 𝐺91 sets incremental distance mode where axis numbers usually represent
increments from the current coordinate.

➢ The path tolerance in 𝐺64 𝑃0.5 is exactly as defined in the Path Blending chapter.
In general, for CNC machining 0.5𝑚𝑚 of tolerance is considered a very
inappropriate value since precision is of utmost importance. However, the
manipulator doesn’t have this restraint so we can optimize for path speed by
invoking very big tolerance

➢ The Neutral Pose seems as an extra unnecessary step and indeed it is for these
specific numbers. However, the kinematics solver is very sensitive and due to the
nature of the inverse kinematics some joint angles have big change and others small.
Of course, these changes happen in the same time, otherwise we would get the

80

linear move we want (or arc move), but depending where the final point of the
trajectory is a joint might reach its limits first even though the requested pose could
be achieved otherwise, or even maybe trajectory passing close to a singularity -not
to result to an error message, but close enough to result to ruining of the next
increments-. This would result in an error message or position that cannot be
reached. This was the case with being in Home Position, turning to the direction of
the object and doing:

G1 X0 Y340 Z-30 F2800

Straight ahead. The endeffector approached the point with very high speed due to
big increment from the solver that didn’t have enough time to slow down, thus
crashing. The same applies principle to singularities. That is why a middle Neutral
Pose was chosen. This most of the times is chosen based on the application and
manipulability criteria.

➢ The final approach for the object was decided to become vertically. In general,
depending on the application, the geometry and the relative position of the robot
and the gripper, the final approach can vary. In almost all cases though the final
approach is linear from close range, because going straight for the object from any
possible position and orientation can have unpredictable results. The most
important factor however is the obstacles layout which the manipulator has to
avoid.

➢ The dwell for 1.5 seconds is necessary because it was observed that the 𝑀102 was
executed before the previous movement had been done. Basically, we commanded
the controller to wait because the trajectory rate was slower than the interpreter
rate. Normally with movements of the endeffector this isn’t necessary because the
trajectory planner gives the incremental value which is stashed until it is read by the
appropriate HAL pin and then executed. The same HAL pins are involved in passing
the trajectory values thus there is no problem. However, the grip opening and
closing is controlled by different pins which are not in complete sync with the
trajectory values.

Of course, by utilizing 𝐺 𝑐𝑜𝑑𝑒, all available commands of RS274/NGC dialect are
available. Generally, apart from the linear and circular-helical movement, NURBS, cubic
and quadratic B-splines are available with commands 𝐺5.2 − 𝐺5.3, 𝐺5, 𝐺5.1
respectively. Its command has its own arguments as defined in [28] . For the tool
attached to the manipulator such movements are not necessary and that Is the reason
that no further notice is given. However for a more advanced application they are viable
choices, and should a CAM program produces spline curve then 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 can
perform adequately.

5.3.3: Experimental Results

As stated before, the typical repeatability test requires a specific ISO cube located in

the operational space of the manipulator. However, having the set of data from the

accuracy measurement test, it was decided to use these for repeatability. Basically,

what is measure is the ability of the manipulator to repeat the specific movements of

81

our pick and place test. For both tests the same important end effector position were

taken into consideration. These are the ending point of each segment, i.e. of each line

of 𝐺 𝑐𝑜𝑑𝑒. It is important to mention that the same point resulting from different

movement is taken into consideration as many times as it occurs in our trajectory. This

is to check the trajectory solver precision from different initial conditions. The points

and their coordinates are presented in and they are in chronological order from start

to end of pick and place task.

Due to the repetitive nature of the obtained results and to ensure reliability of their
presentation, the results of five randomly chosen measurements were presented.

Figure 31: Accuracy of Positioning and Repeatability measurements

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5

A
P

 [
m

m
]

No of measurement

Accuracy measurements

NP XZ

NP YZ

VER Y (after grabbing)

VER Y (after grabbing)

APP Y (with object)

NP YZ (with object)

NP XZ (with object)

APP X (over dropping position)

VER X (dropping position)

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

1 2 3 4 5

R
P

 [
m

m
]

No of measurement

Repeatability measurements

NP XZ

NP YZ

APP Y (over grabbing position)

VER Y (after grabbing)

APP Y (with object)

NP YZ (with object)

NP XZ (with object)

APP X (over dropping position)

VER X (dropping position)

82

The mean values of accuracy and repeatability are:

 𝑋 𝑌 𝑍 𝐴𝑃̅̅ ̅̅ 𝑃 𝑅𝑃̅̅ ̅̅

𝑁𝑃 𝑋𝑍 210 0 −150 2,844 0,514

𝑁𝑃 𝑌𝑍 0 210 −150 2,971 0,440

𝐴𝑃𝑃 𝑌 (𝑜𝑣𝑒𝑟 𝑔𝑟𝑎𝑏𝑏𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 0 340 −30 3,347 0,559

𝑉𝐸𝑅 𝑌 (𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑏𝑏𝑖𝑛𝑔) 0 340 30 2,662 0,564

𝐴𝑃𝑃 𝑌 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 0 340 −30 3,039 0,553

𝑁𝑃 𝑌𝑍 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 0 210 −150 2,924 0,431

𝑁𝑃 𝑋𝑍 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 210 0 −150 2,942 0,495

𝐴𝑃𝑃 𝑋 (𝑜𝑣𝑒𝑟 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 290 0 −30 3,146 0,523

𝑉𝐸𝑅 𝑋 (𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 290 0 30 3,271 0,537
Table 6: Coordinates of Points, Mean Accuracy and Mean Repeatability

From the result some major conclusions can be made:

❖ The repeatability is significantly lower than the accuracy. That is something to
be expected as Manipulators of industrial robots, currently used in industry, are
characterized by very good reproducibility (𝑅𝑃) but not very good accuracy
(𝐴𝑃)[33] .

❖ The second thing worth noticing is that both accuracy and repeatability is

improved for positions closer to the 𝑍 axis. This might be due to the dynamic

behavior of the manipulator, meaning that when the arm is not extended to the

outer parts of the operational space, but rather remains close to its center of

gravity then its precision is enhanced.

❖ In general, typical values for the accuracy and repeatability are considerably

lower, probably half of what we achieved. However, considering the nature of

its task, a simple pick and place, these two measures do not need to be

excellent. Especially the middle points of the path and trajectory need only be

admissible and unobstructed. Only the picking and releasing needs to be

accurate enough.

83

Chapter 6: CONCLUSION and FUTURE DIRECTIONS

This thesis presented a complete methodology so as to derive the complete kinematic
model for the Mitsubishi RM-501 Movemaster II mobile manipulator, as well as the
adaptation (and optimization to some extend) of its configuration on a 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶. We
accomplished the following:

• Derive a solid kinematic model for the manipulator, both forward and inverse.
Criterions that determine the existence, the correctness and the number of
solutions for the inverse kinematic problem have been determined and applied
in the kinematics in order to notify the user of the ability to approach a desired
point.

• Differential kinematics was a focal point of the thesis as singularity analysis
enabled us to predict the singular configurations in an analytical way. Also,
other approaches were discussed that have mainly numerical implementation.

• A simple trajectory planner and path blending method was analyzed that is part
of the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software.

• The adaptation of the setup to the newer (up to this point) version of the
software, that utilizes elements beneficial for our application and were lacking
from the previous configuration.

• Lastly, the application of the above and the necessary calibration of the Home
Position resulted in:

o Much reduced oscillations due to jerky movement because of the
trajectory planner.

o A very responsive and solid robotic manipulator for that is able to
perform a pick and place task, thus ready to be installed in an automated
machining cell

o The evaluation of its positional integrity and behavior by measuring the
accuracy and repeatability

6.1: Future Directions

Although right now, the RM-501 robotic manipulator with small adaptations is in
position to be used for experimental work in industrial environment, it has reached to
barrier as far as the hardware is concerned and to an up to date state software wise
which dictates some wait for further changes. However, since 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 is open
source, coding experimentation is possible. In this aspect the following are proposed:

• As far as the differential kinematic model is concerned, its application right now
only has a warning and somewhat preventive character. However, in major
industrial robotic manipulators the controller has the ability to react in order to
avoid the singular value. This attribute is lacking from our configuration and it
would be extremely beneficial. Its implementation might require more changes
to the kinematics file, even a reconstruction of it, so the jacobian matrix will be
utilized thus implementing one of the methods that were discussed on this
document or other method.

84

• As far as the trajectory planner is concerned constant improvements are being
made from the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 community and can be used, to offer a smoother
and faster trajectory. Explore the possibility of the minimum singular value of
the Jacobian matrix acting as a metric in a control scheme. For instance, in
navigation function control schemes, a manipulability measure is used so as to
avoid the manifolds that correspond to rank deficiency.

• An even more independent manipulator, in the manner of path planning would
be a major asset. Right now, only 𝐺 𝑐𝑜𝑑𝑒 and jogging commands are used to
drive the manipulator to the desired position. However, there is the possibility
to program the robot to move (via custom M commands maybe) between an
initial and final position while satisfying an optimization criterion. This would be
great for applications such as obstacle voidance etc.

• In the same concept, right now there is no way to move a joint independently
similar to cartesian movement in teleop mode i.e. to command a joint to move
a specific angle. This would be a major asset in escaping singular configuration
and for now only jogging out of one is possible.

• The manipulator is connected to the PC via parallel ports, which caps the speed
and amount of information we can pass through, thus hindering the
performance. As per 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 community encouragement, the use of a mesa
7i76E port, which is more supported and evolving. Apart from that PID tuning
was based on empirical method thus the results were questionable. A solid PID
tuning would eliminate or at least lower significantly the overshoot that we
observed.

• The configuration can be set up from the beginning on an Arduino based
computer, allowing applications that the nature of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 doesn’t have
right now or hinders.

• In literature, there are numerous references of velocity, load and other
parameters affecting the accuracy and repeatability of an industrial
manipulator. In the right context, following the ISO standard, experiments can
be conducted to verify this.

• Right now, only a gripper is used as endeffector tool. The possibility of changing
the tool has many prospects, By configuring the tool table via the software this
a viable approach and can even be used in accordance with the next suggestion.

• Lastly, the manipulator seems ready to execute simple tasks in an industrial-ish
manner. Connecting it to a machining cell seems possible and thus work
regarding project management to plan, coordinate, and track specific tasks in a
project, is what needs to be done.

85

APPENDICES

A. Square sub-jacobians’ determinants

det(𝐽𝑠𝑞1) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵)

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1
3 − 𝑎2𝑎3𝑠234𝑐23𝑠1

3𝑠2 − 𝑎2𝑎3𝑠234𝑐23𝑐1
2𝑠1𝑠2

+ 𝑎2𝑎3𝑠234𝑠23𝑐1
2𝑐2𝑠1

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1𝑠1
2 + 𝑎2𝑎3𝑠234𝑠23𝑐1

2𝑐2𝑠1 − 𝑎2𝑎3𝑠234𝑐23𝑠1𝑠1
2𝑠2

− 𝑎2𝑎3𝑠234𝑐23𝑐1
2𝑠1𝑠2

= (𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1 − 𝑎2𝑎3𝑠234𝑐23𝑠1𝑠2)(𝑐1
2 + 𝑠1

2)

= 𝑎2𝑎3𝑠234𝑠1(𝑠23𝑐2 − 𝑐23𝑠2)

= 𝑎2𝑎3𝑠1𝑠3𝑠234

det(𝐽𝑠𝑞2) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵)

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑐1
3 − 𝑎2𝑎3𝑠234𝑐23𝑐1

3𝑠2 − 𝑎2𝑎3𝑠234𝑐23𝑠1
2𝑐1𝑠2

+ 𝑎2𝑎3𝑠234𝑠23𝑠1
2𝑐2𝑐1

= 𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2𝑐1
2 + 𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2𝑐1

2 − 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2𝑐1
2

− 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2𝑠1
2

= (𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2 − 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2)(𝑐1
2 + 𝑠1

2)

= 𝑎2𝑎3𝑠234𝑐1(𝑠23𝑐2 − 𝑐23𝑠2)

= 𝑎2𝑎3𝑐1𝑠3𝑠234

det(𝐽𝑠𝑞3) = 0

det(𝐽𝑠𝑞4) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵)

= 𝑎2𝑎3
2𝑐234𝑐23

2𝑐1
3𝑠2 − 𝑎2

2𝑎3𝑐234𝑠23𝑐1
3𝑐2

2 − 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐1

3𝑐2
+ 𝑎2

2𝑎3𝑐234𝑐23𝑐1
3𝑐2𝑠2 + 𝑎2𝑎3

2𝑐234𝑐23
2𝑐1𝑠1

2𝑠2
− 𝑎2

2𝑎3𝑐234𝑠23𝑐1𝑐2
2𝑠1

2 + 𝑎2
2𝑎3𝑐234𝑐23𝑐1𝑐2𝑠1

2𝑠2
+ 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑐1

3𝑠2 − 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑐1
3𝑐2

− 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐1𝑐2𝑠1

2 + 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑐1𝑠2𝑠1
2

− 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑐1𝑐2𝑠1
2

= −𝑎2𝑎3𝑐234𝑐1(𝑠23𝑐2 − 𝑐23𝑠2)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)(𝑐1
2 + 𝑠1

2)

= −𝑎2𝑎3𝑐234𝑐1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

86

det(𝐽𝑠𝑞5) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵)

= 𝑎2
2𝑎3𝑐234𝑠23𝑐2

2𝑠1
3 − 𝑎2𝑎3

2𝑐234𝑐23
2𝑠1

3𝑠2 + 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐2𝑠1

3

− 𝑎2
2𝑎3𝑐234𝑐23𝑠1

3𝑐2𝑠2 − 𝑎2𝑎3
2𝑐234𝑐23

2𝑠1𝑐1
2𝑠2

+ 𝑎2
2𝑎3𝑐234𝑠23𝑐2

2𝑐1
2𝑠1 − 𝑎2

2𝑎3𝑐234𝑐23𝑐1𝑐1
2𝑐2𝑠1𝑠2

− 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑠1
3𝑠2 + 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑠1

3𝑐2
+ 𝑎2𝑎3

2𝑐234𝑐23𝑠23𝑠1𝑐2𝑐1
2 − 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑠1𝑠2𝑐1

2

+ 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑠1𝑐2𝑐1
2

= 𝑎2𝑎3𝑐234𝑠1(𝑠23𝑐2 − 𝑐23𝑠2)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)(𝑐1
2 + 𝑠1

2)

= 𝑎2𝑎3𝑐234𝑠1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

det(𝐽𝑠𝑞6) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵)

= 𝑎2𝑎3
2𝑠234𝑐23

2𝑐2
4𝑠2 − 𝑎2

2𝑎3𝑠234𝑠23𝑐1
4𝑐2 + 𝑎2𝑎3

2𝑠234𝑐23
2𝑠1

4𝑠2
− 𝑎2

2𝑎3𝑠234𝑠23𝑐2
2𝑠1

4 + 2𝑎2𝑎3
2𝑠234𝑐23

2𝑐1
2𝑠1

2𝑠2
− 2𝑎2𝑎3

2𝑠234𝑠23𝑐1
2𝑐2

2𝑠1
2 − 𝑎2𝑎3

2𝑠234𝑐23𝑠23𝑐1
4𝑐2

− 𝑎2𝑎3
2𝑠234𝑠23𝑐23𝑐2𝑠1

4 + 𝑎2
2𝑎3𝑠234𝑐23𝑠23𝑐1

4𝑐2𝑠2
+ 𝑎2

2𝑎3𝑠234𝑐23𝑐2𝑠1
4𝑠2 + 𝑎2𝑎3𝑑5𝑠234

2𝑐23𝑐1
4𝑠2

− 𝑎2𝑎3𝑑5𝑠234
2𝑠23𝑐1

4𝑐2 + 𝑎2𝑎3𝑑5𝑠234
2𝑐23𝑠1

4𝑠2
− 𝑎2𝑎3𝑑5𝑠234

2𝑠23𝑐2𝑠1
4 + 2𝑎2𝑎3𝑑5𝑠234

2𝑐23𝑐1
2𝑠1

2𝑠2
− 2𝑎2𝑎3𝑑5𝑠234

2𝑠23𝑐1
2𝑐2𝑠1

2 − 2𝑎2𝑎3𝑠234𝑐23𝑠23𝑐1
2𝑐2𝑠1

2

+ 2𝛼2
2α3𝑠234𝑐23𝑐1

2c2s1
2s2

= −𝑎2𝑎3𝑠234(𝑠23𝑐2 − 𝑐23𝑠2)(𝑠1
4 + 2𝑠1

2𝑐1
2 + 𝑐1

4)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

= −𝑎2𝑎3𝑠234𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

87

B. Solving the general cubic polynomial

𝑎0 = 𝑞0
 𝑎1 = 𝑞̇0

𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0 = 𝑞f

3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1 = 𝑞̇𝑓

⟹

[

1 𝑡0 𝑡0

2 𝑡0
2

0 1 2𝑡0 3𝑡0
2

1 𝑡𝑓 𝑡𝑓
2 𝑡𝑓

3

0 1 2𝑡𝑓 3𝑡𝑓
2
]

[

𝑎0
𝑎1
𝑎2
𝑎3

] =

[

𝑞
0

𝑞̇
0

𝑞
f

𝑞̇
𝑓]

Solves for 𝑎0 , 𝑎1, 𝑎2, 𝑎3 as follows

𝑎0 = −
𝑞1𝑡0

2(𝑡0 − 3𝑡𝑓) + 𝑞0𝑡𝑓
2(3𝑡0 − 𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3 − 𝑡0𝑡𝑓

𝑞̇0𝑡𝑓 + 𝑞̇𝑓𝑡0

(𝑡𝑓 − 𝑡0)
2

𝑎1 = 6𝑡0𝑡𝑓
𝑞0 − 𝑞𝑓

(𝑡𝑓 − 𝑡0)
3 +

𝑞̇0𝑡𝑓(𝑡𝑓
2 + 𝑡0𝑡𝑓 − 2𝑡0

2) + 𝑞̇𝑓𝑡0(2𝑡𝑓
2 − 𝑡0

2 − 𝑡0𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3

𝑎2 = −
𝑞0(3𝑡0 + 3𝑡𝑓) + 𝑞𝑓(−3𝑡0 − 3𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3

−
𝑞̇𝑓(𝑡0𝑡𝑓 − 2𝑡0

2 + 𝑡𝑓
2) + 𝑞̇0(2𝑡𝑓

2 − 𝑡0
2 − 𝑡0𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3

𝑎3 =
2𝑞0 − 2𝑞𝑓 + 𝑞̇0(𝑡𝑓 − 𝑡0) + 𝑞̇0(𝑡𝑓 − 𝑡0)

(𝑡𝑓 − 𝑡0)
3

88

C. Configuration Files

a. The .hal file

core HAL config file for simulation - 5 axis

#Testing

#loadrt threads name1=base-thread fp1=0 period1=40000 name2=servo-

thread period2=100000

#loadrt siggen

#addf siggen.0.update servo-thread

#setp siggen.0.frequency 0.25

load RT modules

#loadrt [KINS]KINEMATICS

loadrt rm501kins

#autoconverted rm501kins

loadrt [EMCMOT]EMCMOT base_period_nsec=[EMCMOT]BASE_PERIOD

servo_period_nsec=[EMCMOT]SERVO_PERIOD

traj_period_nsec=[EMCMOT]TRAJ_PERIOD num_joints=[KINS]JOINTS

#Load Real Time Components

loadrt hal_parport cfg="0x378 out 0xcf00 out"

loadrt stepgen step_type=0,0,0,0,0,0 ctrl_type=p,p,p,p,p,p

loadrt mux_generic config=uu8,bb4,bb4,bb4,bb4

loadrt bitslice count=1 personality=9

loadrt mux2

loadrt and2

loadrt sum2 count=2

loadrt or2

#Hook Functions to Base Thread

addf or2.0 base-thread

addf stepgen.make-pulses base-thread

addf mux-gen.00 base-thread

addf bitslice.0 base-thread

addf mux-gen.02 base-thread

addf mux-gen.01 base-thread

addf mux-gen.04 base-thread

addf mux-gen.03 base-thread

addf and2.0 base-thread

addf parport.0.write base-thread

addf parport.1.write base-thread

addf parport.0.read base-thread

addf parport.1.read base-thread

addf parport.0.reset base-thread

addf parport.1.reset base-thread

#Hook Functions to Servo Thread

addf motion-command-handler servo-thread

addf motion-controller servo-thread

addf stepgen.update-freq servo-thread

addf stepgen.capture-position servo-thread

addf mux2.0 servo-thread

addf sum2.0 servo-thread

addf sum2.1 servo-thread

89

Connect Position Commands from Motion Module to Step Generator

net J0pos joint.0.motor-pos-cmd => stepgen.0.position-cmd

net J1pos joint.1.motor-pos-cmd => stepgen.1.position-cmd

net J2pos joint.2.motor-pos-cmd => stepgen.2.position-cmd

net J3pos joint.3.motor-pos-cmd => sum2.0.in0 sum2.1.in0

net J4pos joint.4.motor-pos-cmd => sum2.0.in1 sum2.1.in1

net Lwpos sum2.0.out => stepgen.3.position-cmd

net Rwpos sum2.1.out => stepgen.4.position-cmd

#Connect Position Commands Feedback from Step Generator to Motion

Module

net J0pos joint.0.motor-pos-fb

net J1pos joint.1.motor-pos-fb

net J2pos joint.2.motor-pos-fb

net J3pos joint.3.motor-pos-fb

net J4pos joint.4.motor-pos-fb

#net J0pos-fb stepgen.0.position-fb => joint.0.motor-pos-fb

#net J1pos-fb stepgen.1.position-fb => joint.1.motor-pos-fb

#net J2pos-fb stepgen.2.position-fb => joint.2.motor-pos-fb

#net J3pos-fb stepgen.3.position-fb => joint.3.motor-pos-fb

#net J4pos-fb stepgen.4.position-fb => joint.4.motor-pos-fb

#Connect Enable Signals for Step Generators

net J0en joint.0.amp-enable-out => stepgen.0.enable

net J1en joint.1.amp-enable-out => stepgen.1.enable

net J2en joint.2.amp-enable-out => stepgen.2.enable

net J3en joint.3.amp-enable-out => stepgen.3.enable

net J4en joint.4.amp-enable-out => stepgen.4.enable

Create a data table for self-driving mux, strobe and joint select

setp mux-gen.00.in-u32-00 0x48

setp mux-gen.00.in-u32-01 0x89

setp mux-gen.00.in-u32-02 0xD2

setp mux-gen.00.in-u32-03 0x113

setp mux-gen.00.in-u32-04 0x164

setp mux-gen.00.in-u32-05 0x1A5

setp mux-gen.00.in-u32-06 0x1C6

setp mux-gen.00.in-u32-07 0x7

Break the data table to binary

net data mux-gen.00.out-u32 => bitslice.0.in

Loop Back for self-driving mux

net addr0 bitslice.0.out-06 => mux-gen.00.sel-bit-00

net addr1 bitslice.0.out-07 => mux-gen.00.sel-bit-01

net addr2 bitslice.0.out-08 => mux-gen.00.sel-bit-02

#Select Output

net sel0 bitslice.0.out-01 => and2.0.in0 mux-gen.01.sel-bit-00

mux-gen.02.sel-bit-00 mux-gen.03.sel-bit-00 mux-gen.04.sel-bit-00

net sel1 bitslice.0.out-02 => and2.0.in1 mux-gen.01.sel-bit-01

mux-gen.02.sel-bit-01 mux-gen.03.sel-bit-01 mux-gen.04.sel-bit-01

Link Steps

net elbw_step stepgen.2.step => mux-gen.02.in-bit-00

net base_step stepgen.0.step => mux-gen.02.in-bit-01

net hand_step stepgen.5.step => mux-gen.02.in-bit-03

net shld_step stepgen.1.step => mux-gen.04.in-bit-00

90

net lwst_step stepgen.4.step => mux-gen.04.in-bit-01

net rwst_step stepgen.3.step => mux-gen.04.in-bit-02

Link Directions

net elbw_dir stepgen.2.dir => mux-gen.01.in-bit-00

net base_dir stepgen.0.dir => mux-gen.01.in-bit-01

net hand_dir stepgen.5.dir => mux-gen.02.in-bit-02

net shld_dir stepgen.1.dir => mux-gen.03.in-bit-00

net lwst_dir stepgen.4.dir => mux-gen.03.in-bit-01

net rwst_dir stepgen.3.dir => mux-gen.03.in-bit-02

Link muxes, strobe to parport

net strobe bitslice.0.out-00 => parport.0.pin-04-out

net dir_01 mux-gen.01.out-bit => parport.0.pin-03-out

parport.0.pin-08-out

net dir_02 mux-gen.03.out-bit => parport.1.pin-03-out

net step_01 mux-gen.02.out-bit => parport.0.pin-02-out

parport.0.pin-07-out parport.0.pin-09-out

net step_02 mux-gen.04.out-bit => parport.1.pin-01-out

#Net select joint

net elbw_shld bitslice.0.out-03 => parport.0.pin-05-out

parport.1.pin-04-out

net base_lwst bitslice.0.out-04 => parport.0.pin-06-out

parport.1.pin-06-out

net hand_rwst bitslice.0.out-05 => parport.1.pin-08-out

parport.1.pin-05-out

net hand_pwr and2.0.out => parport.1.pin-09-out

#Net Home Switches

net elbw_sw parport.0.pin-11-in => joint.2.home-sw-in

net base_sw parport.0.pin-12-in => joint.0.home-sw-in

net shld_sw parport.1.pin-11-in => joint.1.home-sw-in

net pitch_sw parport.1.pin-13-in => joint.3.home-sw-in

net rol_sw parport.1.pin-12-in => joint.4.home-sw-in

#Net Reset, Errors

net error_1 parport.0.pin-10-in-not => or2.0.in0

net error_2 parport.1.pin-10-in-not => or2.0.in1

net reset or2.0.out => parport.0.pin-17-out

#Grip Configuration

setp mux-gen.01.in-bit-02 TRUE

setp mux-gen.01.in-bit-03 FALSE

setp stepgen.5.enable TRUE

setp mux2.0.in0 -1

setp mux2.0.in1 1

net clopen mux2.0.out => stepgen.5.position-cmd

setp stepgen.5.position-scale 400

setp stepgen.5.steplen 390000

setp stepgen.5.stepspace 390000

setp stepgen.5.dirhold 190000

setp stepgen.5.dirsetup 190000

#Diferential Configuration

setp sum2.0.gain0 1

setp sum2.0.gain1 1

setp sum2.1.gain0 -1

91

setp sum2.1.gain1 1

#Test

#setp stepgen.5.enable 1

#net sw siggen.0.clock => mux2.0.sel

#Parport Parameters Configuration

setp parport.0.pin-02-out-invert TRUE

setp parport.0.pin-03-out-invert TRUE

setp parport.0.pin-04-out-invert TRUE

setp parport.0.pin-05-out-invert TRUE

setp parport.0.pin-06-out-invert TRUE

setp parport.0.pin-07-out-invert TRUE

setp parport.0.pin-08-out-invert TRUE

setp parport.0.pin-09-out-invert TRUE

setp parport.0.pin-16-out-invert TRUE

setp parport.0.pin-17-out-invert TRUE

setp parport.1.pin-01-out-invert TRUE

setp parport.1.pin-02-out-invert TRUE

setp parport.1.pin-03-out-invert TRUE

setp parport.1.pin-04-out-invert TRUE

setp parport.1.pin-05-out-invert TRUE

setp parport.1.pin-06-out-invert TRUE

setp parport.1.pin-07-out-invert TRUE

setp parport.1.pin-08-out-invert TRUE

setp parport.1.pin-09-out-invert TRUE

setp parport.1.pin-14-out-invert TRUE

setp parport.1.pin-16-out-invert TRUE

setp parport.1.pin-17-out-invert TRUE

#Steping Configuration

setp stepgen.0.steplen [JOINT_0]STEP_LENGTH

setp stepgen.1.steplen [JOINT_1]STEP_LENGTH

setp stepgen.2.steplen [JOINT_2]STEP_LENGTH

setp stepgen.3.steplen [JOINT_3]STEP_LENGTH

setp stepgen.4.steplen [JOINT_4]STEP_LENGTH

setp stepgen.0.stepspace [JOINT_0]STEP_SPACE

setp stepgen.1.stepspace [JOINT_1]STEP_SPACE

setp stepgen.2.stepspace [JOINT_2]STEP_SPACE

setp stepgen.3.stepspace [JOINT_3]STEP_SPACE

setp stepgen.4.stepspace [JOINT_4]STEP_SPACE

setp stepgen.0.dirhold [JOINT_0]DIR_HOLD

setp stepgen.1.dirhold [JOINT_1]DIR_HOLD

setp stepgen.2.dirhold [JOINT_2]DIR_HOLD

setp stepgen.3.dirhold [JOINT_3]DIR_HOLD

setp stepgen.4.dirhold [JOINT_4]DIR_HOLD

setp stepgen.0.dirsetup [JOINT_0]DIR_SETUP

setp stepgen.1.dirsetup [JOINT_1]DIR_SETUP

setp stepgen.2.dirsetup [JOINT_2]DIR_SETUP

setp stepgen.3.dirsetup [JOINT_3]DIR_SETUP

setp stepgen.4.dirsetup [JOINT_4]DIR_SETUP

setp stepgen.0.position-scale [JOINT_0]SCALE

setp stepgen.1.position-scale [JOINT_1]SCALE

setp stepgen.2.position-scale [JOINT_2]SCALE

setp stepgen.3.position-scale [JOINT_3]SCALE

setp stepgen.4.position-scale [JOINT_4]SCALE

92

setp stepgen.0.maxaccel [JOINT_0]STEPGEN_MAXACCEL

setp stepgen.1.maxaccel [JOINT_1]STEPGEN_MAXACCEL

setp stepgen.2.maxaccel [JOINT_2]STEPGEN_MAXACCEL

setp stepgen.3.maxaccel [JOINT_3]STEPGEN_MAXACCEL

setp stepgen.4.maxaccel [JOINT_4]STEPGEN_MAXACCEL

#setp stepgen.0.maxvel [JOINT_0]STEPGEN_MAXVEL

setp stepgen.1.maxvel [JOINT_1]STEPGEN_MAXVEL

setp stepgen.2.maxvel [JOINT_2]STEPGEN_MAXVEL

setp stepgen.3.maxvel [JOINT_3]STEPGEN_MAXVEL

setp stepgen.4.maxvel [JOINT_4]STEPGEN_MAXVEL

Estop Loopback

net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

#Tool Loading Loopback

net tool-prep-loop iocontrol.0.tool-prepare =>

iocontrol.0.tool-prepared

net tool-change-loop iocontrol.0.tool-change =>

iocontrol.0.tool-changed

#Simulation

loadusr -W rm501gui

loadrt scale count=5

addf scale.0 servo-thread

addf scale.1 servo-thread

addf scale.2 servo-thread

addf scale.3 servo-thread

addf scale.4 servo-thread

net J0sim joint.0.pos-cmd

net J1sim joint.1.pos-cmd

net J2sim joint.2.pos-cmd

net J3sim joint.3.pos-cmd

net J4sim joint.4.pos-cmd

net J0sim scale.0.in

net J1sim scale.1.in

net J2sim scale.2.in

net J3sim scale.3.in

net J4sim scale.4.in

setp scale.0.gain 1

setp scale.1.gain 1

setp scale.2.gain 1

setp scale.3.gain 1

setp scale.4.gain 1

net J0scaled scale.0.out => rm501gui.joint1

net J1scaled scale.1.out => rm501gui.joint2

net J2scaled scale.2.out => rm501gui.joint3

net J3scaled scale.3.out => rm501gui.joint4

net J4scaled scale.4.out => rm501gui.joint5

93

b. The .ini file

EMC controller parameters for MITSUBISHI MOVEMASTER RM-501.

General note: Comments can either be preceded with a # or ; -

either is

acceptable, although # is in keeping with most linux config files.

Settings with a + at the front of the comment are likely needed to

get

changed by the user.

Settings with a - at the front are highly unneeded to be changed

###

##########

General section

###

##########

General section ---

[EMC]

#- Version of this INI file

VERSION = $Revision$

#+ Name of machine, for use with display, etc.

MACHINE = MISTUBISHI MOVEMASTER RM-501

#+ Debug level, 0 means no messages. See src/emc/nml_int/emcglb.h for

others

DEBUG = 0

#DEBUG = 0x00000007

#DEBUG = 0x7FFFFFFF

###

##########

Sections for display options

###

##########

[DISPLAY]

Name of display program, e.g., xemc

DISPLAY = axis

#DISPLAY = usrmot

#DISPLAY = mini

#DISPLAY = tkemc

#- Cycle time, in seconds, that display will sleep between polls

CYCLE_TIME = 0.200

#- Path to help file

HELP_FILE = tklinucnc.txt

#- Initial display setting for position, RELATIVE or MACHINE

POSITION_OFFSET = MACHINE

#- Initial display setting for position, COMMANDED or ACTUAL

POSITION_FEEDBACK = ACTUAL

94

#+ Highest value that will be allowed for feed override, 1.0 = 100%

MAX_FEED_OVERRIDE = 2.0

#+ Prefix to be used

PROGRAM_PREFIX = ../../nc_files/

#- Introductory graphic

INTRO_GRAPHIC = NTUA-logo.gif

INTRO_TIME = 6

#PYVCP = rm501.xml

Editor to be used with Axis

EDITOR = gedit

###

##########

Task controller section

###

##########

[FILTER]

#No Content

[RS274NGC]

#- File containing interpreter variables

PARAMETER_FILE = rm501.var

M101 (open grip) and M102 (close grip) files

USER_M_PATH =

/home/mechcnc/linuxcnc/nc_files/ngcgui_lib/mfiles

###

##########

Motion control section

###

##########

[EMCMOT]

EMCMOT = motmod

COMM_TIMEOUT = 1.0

BASE_PERIOD = 40000

SERVO_PERIOD = 1000000

TRAJ_PERIOD = 10000000

###

##########

Hardware Abstraction Layer section

###

##########

[TASK]

Name of task controller program, e.g., milltask

TASK = milltask

#- Cycle time, in seconds, that task controller will sleep between

polls

CYCLE_TIME = 0.010

95

###

##########

Part program interpreter section

###

##########

[HAL]

The run script first uses halcmd to execute any HALFILE

files, and then to execute any individual HALCMD commands.

list of hal config files to run through halcmd

files are executed in the order in which they appear

HALFILE = rm501.hal

#HALFILE = rm501_.hal

#POSTGUI_HALFILE = rm501_postgui.hal

#HALCMD = save neta

HALUI = halui

###

##########

Trajectory planner section

###

##########

[HALUI]

#No Content

[TRAJ]

#+ machine specific settings

AXES = 6

COORDINATES = X Y Z A B C

HOME = 0 0 0 0 0

LINEAR_UNITS = mm

ANGULAR_UNITS = deg

DEFAULT_LINEAR_VELOCITY = 25.0

MAX_LINEAR_VELOCITY = 100

DEFAULT_ACCELERATION = 10

MAX_LINEAR_ACCELERATION = 20

#POSITION_FILE = rm-501_position.txt

###

##########

Axes sections

###

##########

[EMCIO]

EMCIO = io

CYCLE_TIME = 0.100

TOOL_TABLE = rm501.tbl

[KINS]

KINEMATICS = rm501kins

#This is a best-guess at the number of joints, it should be checked

JOINTS = 5

#*************#

WAIST #

#*************#

96

[JOINT_0]

TYPE = ANGULAR

MAX_VELOCITY = 30

MAX_ACCELERATION = 200

BACKLASH = 0.000

MIN_LIMIT = -150

MAX_LIMIT = 150

FERROR = 2.000

MIN_FERROR = 0.200

HOME = 0.000

HOME_SEQUENCE = 0

HOME_SEARCH_VEL = -15

HOME_LATCH_VEL = 5

HOME_USE_INDEX = NO

HOME_IGNORE_LIMITS = NO

HOME_OFFSET = -150.1

HOME_IS_SHARED = 0

SCALE = 40

#STEPGEN_MAXVEL = 31.3

STEPGEN_MAXACCEL = 200

STEP_LENGTH = 390000

STEP_SPACE = 390000

DIR_HOLD = 190000

DIR_SETUP = 190000

#*************#

SHOULDER #

#*************#

[JOINT_1]

TYPE = ANGULAR

MAX_VELOCITY = 30

MAX_ACCELERATION = 20

BACKLASH = 0.000

MIN_LIMIT = -100

MAX_LIMIT = 30

FERROR = 2.000

MIN_FERROR = 0.200

HOME = -100

HOME_SEQUENCE = 1

HOME_SEARCH_VEL = -15

HOME_LATCH_VEL = 5

HOME_USE_INDEX = NO

HOME_IGNORE_LIMITS = NO

HOME_OFFSET = -102.35

HOME_IS_SHARED = 0

SCALE = 40

STEPGEN_MAXVEL = 31.3

STEPGEN_MAXACCEL = 21

STEP_LENGTH = 390000

STEP_SPACE = 390000

DIR_HOLD = 190000

DIR_SETUP = 190000

97

#*************#

ELBOW #

#*************#

[JOINT_2]

TYPE = ANGULAR

MAX_VELOCITY = 30

MAX_ACCELERATION = 20

BACKLASH = 0.000

MIN_LIMIT = -0.01

MAX_LIMIT = 90.01

FERROR = 2.000

MIN_FERROR = 0.200

HOME = 90

HOME_SEQUENCE = 2

HOME_SEARCH_VEL = 15

HOME_LATCH_VEL = -5

HOME_USE_INDEX = NO

HOME_IGNORE_LIMITS = NO

HOME_OFFSET = 90.4

HOME_IS_SHARED = 0

SCALE = 40

STEPGEN_MAXVEL = 31.3

STEPGEN_MAXACCEL = 21

STEP_LENGTH = 390000

STEP_SPACE = 390000

DIR_HOLD = 190000

DIR_SETUP = 190000

#*************#

PITCH #

#*************#

[JOINT_3]

TYPE = ANGULAR

MAX_VELOCITY = 92

MAX_ACCELERATION = 20

BACKLASH = 0.000

MIN_LIMIT = -180

MAX_LIMIT = 0

FERROR = 2.000

MIN_FERROR = 0.200

HOME = 0

HOME_SEQUENCE = 3

HOME_SEARCH_VEL = 15

HOME_LATCH_VEL = -5

HOME_USE_INDEX = NO

HOME_IGNORE_LIMITS = YES

HOME_OFFSET = -0.26

HOME_IS_SHARED = 0

SCALE = 26.66666

STEPGEN_MAXVEL = 45

STEPGEN_MAXACCEL = 21

STEP_LENGTH = 390000

STEP_SPACE = 390000

98

DIR_HOLD = 190000

DIR_SETUP = 190000

#*************#

ROLL #

#*************#

[JOINT_4]

TYPE = ANGULAR

MAX_VELOCITY = 92

MAX_ACCELERATION = 20

BACKLASH = 0.000

MIN_LIMIT = -180

MAX_LIMIT = 180

FERROR = 2.0000

MIN_FERROR = 0.200

HOME = 0

HOME_SEQUENCE = 4

HOME_SEARCH_VEL = -15

HOME_LATCH_VEL = 15

HOME_USE_INDEX = NO

HOME_IGNORE_LIMITS = NO

HOME_OFFSET = -66.63

HOME_IS_SHARED = 0

SCALE = 26.6666

STEPGEN_MAXVEL = 45

STEPGEN_MAXACCEL = 21

STEP_LENGTH = 390000

STEP_SPACE = 390000

DIR_HOLD = 190000

DIR_SETUP = 190000

[AXIS_X]

MIN_LIMIT = -150

MAX_LIMIT = 150

MAX_VELOCITY = 30

MAX_ACCELERATION = 200

[AXIS_Y]

MIN_LIMIT = -100

MAX_LIMIT = 30

MAX_VELOCITY = 30

MAX_ACCELERATION = 20

[AXIS_Z]

MIN_LIMIT = -0.01

MAX_LIMIT = 90.01

MAX_VELOCITY = 30

MAX_ACCELERATION = 20

[AXIS_A]

MIN_LIMIT = -180

MAX_LIMIT = 0

MAX_VELOCITY = 92

MAX_ACCELERATION = 20

[AXIS_B]

MIN_LIMIT = -180

99

MAX_LIMIT = 180

MAX_VELOCITY = 92

MAX_ACCELERATION = 20

[AXIS_C]

MIN_LIMIT = -180

MAX_LIMIT = 180

MAX_VELOCITY = 92

MAX_ACCELERATION = 20

c. The kinematics file

/**

 * Description: rm501kins.c

 * Kinematics for RM-501 Mitsubishi Movemaster Robot

 *

 * Author:

 * License: GPL Version 2

 * System: Linux

 *

/

#include "rtapi_math.h"

#include "posemath.h"

#include "RM501kins.h"

#include "kinematics.h"

#include "rtapi.h" /* RTAPI realtime OS API */

#include "rtapi_app.h" /* RTAPI realtime module decls */

#include "hal.h"

#define sq(x) ((x)*(x))

/* RM-501 Mitsubishi Movemaster DH parameters*/

 int d1 = 230;

 int a2 = 220;

 int a3 = 150;

 int d5 = 95;

/***

 Forward Kinematics

***/

int kinematicsForward(const double * joint,

 EmcPose * world,

 const KINEMATICS_FORWARD_FLAGS * fflags,

 KINEMATICS_INVERSE_FLAGS * iflags)

{

 PmHomogeneous hom;

 PmPose worldPose;

 PmRpy rpy;

 double th1 = joint[0] * PM_PI / 180;

 double th2 = joint[1] * PM_PI / 180;

 double th3 = joint[2] * PM_PI / 180;

 double th4 = joint[3] * PM_PI / 180;

 double th5 = joint[4] * PM_PI / 180;

 double C234 = cos(th2+th3+th4);

 double S234 = sin(th2+th3+th4);

 double C23 = cos(th2+th3);

100

 double S23 = sin(th2+th3);

 double C1 = cos(th1);

 double S1 = sin(th1);

 double C2 = cos(th2);

 double S2 = sin(th2);

 double C3 = cos(th3);

 double S3 = sin(th3);

 double C5 = cos(th5);

 double S5 = sin(th5);

 /* First column of rotation matrix.*/

 hom.rot.x.x = S1*S5 + C5*C1*C234 ;

 hom.rot.x.y = C5*S1*C234 - C1*S5;

 hom.rot.x.z = C5*S234;

 /* Second column of rotation matrix.*/

 hom.rot.y.x = S1*C5 - S5*C1*C234;

 hom.rot.y.y = - C1*C5 - S5*S1*C234;

 hom.rot.y.z = -S5*S234;

 /* Third column of rotation matrix.*/

 hom.rot.z.x = C1*S234;

 hom.rot.z.y = S1*S234;

 hom.rot.z.z = -C234;

 /* Position vector. */

 hom.tran.x = d5*C1*S234 + a3*C1*C23 + a2*C1*C2;

 hom.tran.y = d5*S1*S234 + a3*S1*C23 + a2*S1*C2;

 hom.tran.z = d1 - d5*C234 + a3*S23 + a2*S2;

 /**

 Flags for Inverse Kinematics

 **/

 /*Helpfull Variables*/

 double dy = hom.tran.z - d1 + d5*C234;

 double ith2 = atan2(C3*a3+a2, a3*S3) - atan2(k2/sqrt(sq(C3*a3+a2)+

sq(a3*S3)), sqrt(1-sq(k2)/(sq(C3*a3+a2)+ sq(a3*S3))));

 double dx = c1*hom.tran.x + s1*hom.tran.y - d5*s234;

 double th3 = atan2(s3, c3);

 double c3 = (sq(dx) + sq(dy) - sq(a3) - sq(a2)) / (2*a2*a3);

 if (c3 > 1) c3 = 1;

 if (c3 < -1) c3 = -1;

 s3 = -sqrt(1 - sq(c3));

 ith3 = atan2(s3, c3);

 if (c234 == 0 && s234 == 0) {

 ith234 = (joint[1] + joint[2] + joint[3])* PM_PI / 180; /*

use current value */

 } else {

 ith234 = atan2(s234, c234);

 }

 /* reset flags */

 *iflags = 0;

 /* Set shoulder-down flag if necessary */

 if (fabs(th2 - ith2) < FLAG_FUZZ)

 {

 *iflags |= RM501_SHOULDER_RIGHT;

 }

101

 /* Set elbow down flag if necessary */

 if (th3 - atan2()) < FLAG_FUZZ)

 {

 *iflags |= RM-501_ELBOW_DOWN;

 }

 /* Set singular flag if necessary */

 if ((fads(ith3) < SINGULAR_FUZZ) || (fabs(s234) < SINGULAR_FUZZ)

&& fabs(C2*a2+C3*a3) < SINGULAR_FUZZ))

 {

 *iflags |= RM-501_SINGULAR;

 }

 /**/

 /* convert hom.rot to world->quat */

 pmHomPoseConvert(hom, &worldPose);

 pmQuatRpyConvert(worldPose.rot,&rpy);

 world->tran = worldPose.tran;

 world->a = rpy.r * 180.0/PM_PI;

 world->b = rpy.p * 180.0/PM_PI;

 world->c = rpy.y * 180.0/PM_PI;

 /* return 0 and exit */

 return 0;

}

/***

 Inverse Kinematics

***/

 int kinematicsInverse(const EmcPose * world,

 double * joint,

 const KINEMATICS_INVERSE_FLAGS * iflags,

 KINEMATICS_FORWARD_FLAGS * fflags)

{

 PmHomogeneous hom;

 PmPose worldPose;

 PmRpy rpy;

 double th1, c1, s1;

 double th2, c2, s2;

 double th3, c3, s3;

 double th4;

 double th5, c5, s5;

 double th234, c234, s234;

 /* reset flags */

 *fflags = 0;

 /* convert pose to hom */

 worldPose.tran = world->tran;

 rpy.r = world->a*PM_PI/180.0;

 rpy.p = world->b*PM_PI/180.0;

 rpy.y = world->c*PM_PI/180.0;

 pmRpyQuatConvert(rpy,&worldPose.rot);

 pmPoseHomConvert(worldPose, &hom);

 /*******************************

 Waist-joint[0]-link[1]

 *******************************/

 /* Atan2(0,0) is undefined so we have to take some precautions*/

102

 /* The below lines means: If they asked you x=0 y=0 stay where

 your oriantation sais. If your oriantation is also 0,0 go home.*/

 if (hom.tran.y == 0 && hom.tran.x == 0) {

 if (hom.rot.z.y == 0 && hom.rot.z.x == 0) {

 th1 = 0;

 } else {

 if (*iflags & PUMA_SHOULDER_RIGHT){

 th1 = atan2(hom.tran.y, hom.tran.x);

 } else {

 th1 = atan2(-hom.tran.y, hom.tran.x);

 }

 }

 } else {

 th1 = atan2(hom.tran.y, hom.tran.x);

 }

 /*th1 = atan2(hom.rot.z.y, hom.rot.z.x);

 can be used since hom.rot.z.y=S1*S234 and hom.rot.z.x=C1*S234 */

 /* Compute cos sin for later calcs*/

 c1 = cos(th1);

 s1 = sin(th1);

 /* Calculate terms for future use */

 c234 = c1*hom.rot.z.x + s1*hom.rot.z.y;

 s234 = -hom.rot.z.z;

 /* Atan2(0,0) is undefined */

 if (c234 == 0 && s234 == 0) {

 th234 = (joint[1] + joint[2] + joint[3])* PM_PI / 180; /* use

current value */

 } else {

 th234 = atan2(s234, c234);

 }

 /*******************************

 Elbow-joint[2]-link[3]

 *******************************/

 double dx = c1*hom.tran.x + s1*hom.tran.y - d5*s234;

 double dz = hom.tran.z - d1 + d5*c234;

 if((sq(a2-a3)<=sq(dx)+sq(dy)) && (sq(dx)+sq(dy)<=sq(a2+a3))

 {

 c3 = (sq(dx) + sq(dz) - sq(a3) - sq(a2)) / (2*a2*a3);

 s3 = -sqrt(1 - sq(c3));

 //s3 = sqrt(1 - sq(c3));

 /* In this case there is no need for "if" protection,

 because sin extracted from cos */

 th3 = atan2(s3, c3);

 }else{

 /* ERROR:--inverse kinematics cannot be calculated*/

 return 1;

 }

 /*******************************

 Soulder-joint[1]-link[2]

 *******************************/

 /* -- FIXME -- flip the condition if necessary */

 /*if (*iflags & RM501_SHOULDER_DOWN){

 th2 = atan2(c3*a3+a2, a3*s3) - atan2(k2/sqrt(sq(c3*a3+a2)+

sq(a3*s3)), sqrt(1-sq(k2)/(sq(c3*a3+a2)+ sq(a3*s3))));

103

 } else {

 th2 = atan2(c3*a3+a2, a3*s3) - atan2(k2/sqrt(sq(c3*a3+a2)+

sq(a3*s3)), -sqrt(1-sq(k2)/(sq(c3*a3+a2)+ sq(a3*s3))));

 }*/

 /* using atan2 allows to get rid of condition */

 th2 = atan2(dz,dx)-atan2(a3s3,a2+a3s3)

 /*******************************

 Pitch-joint[3]-link[4]

 *******************************/

 th4 = th234 - th2 - th3;

 /*******************************

 Roll-joint[4]-link[5]

 *******************************/

 s5 = s1*hom.rot.x.x - c1*hom.rot.x.y;

 c5 = s1*hom.rot.y.x - c1*hom.rot.y.y;

 if (c5 == 0 && s5 == 0) {

 th5 = joint[4]* PM_PI / 180; /* use current value */

 } else {

 th5 = atan2(s5, c5);

 }

 /* copy out */

 joint[0] = th1*180/PM_PI;

 joint[1] = th2*180/PM_PI;

 joint[2] = th3*180/PM_PI;

 joint[3] = th4*180/PM_PI;

 joint[4] = th5*180/PM_PI;

 return 0;

}

int kinematicsHome(EmcPose * world,

 double * joint,

 KINEMATICS_FORWARD_FLAGS * fflags,

 KINEMATICS_INVERSE_FLAGS * iflags)

{

 /* use joints, set world */

 return kinematicsForward(joint, world, fflags, iflags);

}

KINEMATICS_TYPE kinematicsType()

{

 return KINEMATICS_BOTH;

}

EXPORT_SYMBOL(kinematicsType);

EXPORT_SYMBOL(kinematicsForward);

EXPORT_SYMBOL(kinematicsInverse);

int comp_id;

int rtapi_app_main(void) {

 int res=0;

 comp_id = hal_init("rm501kins");

 if (comp_id < 0) return comp_id;

}

void rtapi_app_exit(void) { hal_exit(comp_id); }

104

d. MATLAB supplementary file

syms th1 th2 th3 th4 th5 d1 a2 a3 d5 a;
syms r11 r12 r13 px r21 r22 r23 py r31 r32 r33 pz;

A_01 = Trans(0,pi/2,d1,th1);
A_12 = Trans(a2,0,0,th2);
A_23 = Trans(a3,0,0,th3);
A_34 = Trans(0,pi/2,0,th4);
A_45 = Trans(0,0,0,th5);
A_5e = Trans(0,0,d5,0);

% Transfer matrices from 0 to reference
T_01 = simplify(A_01);
T_02 = simplify(A_01*A_12);
T_03 = simplify(A_01*A_12*A_23);
T_04 = simplify(A_01*A_12*A_23*A_34);
T_05 = simplify(A_01*A_12*A_23*A_34*A_45);
T_0e = simplify(A_01*A_12*A_23*A_34*A_45*A_5e);

%for inverse kinamatics
T_1e = simplify(A_12*A_23*A_34*A_45*A_5e);
T_2e = simplify(A_23*A_34*A_45*A_5e);
T_3e = simplify(A_34*A_45*A_5e);

%calculation for inverse kinematics
T_0e_in = [r11, r12, r13, px;
 r21, r22, r23, py;
 r31, r32, r33, pz;
 0, 0, 0, 1];
matrix1 = simplify(inv(T_01)*T_0e_in);
matrix2 = T_1e;
matrix1 == matrix2;

%check for the validity ot T_0e
%upper left 3x3 is rotation-> orthogonal matrix-> %squared sum of

rows and
%columns need to be 1;
sum_of_1 = 0;
for i=1:3
 if simplify(T_0e(i,1)^2+T_0e(i,2)^2+T_0e(i,3)^2) == 1
 sum_of_1 = sum_of_1 + 1;
 end
end
for i=1:3
 if simplify(T_0e(1,i)^2+T_0e(2,i)^2+T_0e(3,i)^2) == 1
 sum_of_1 = sum_of_1 + 1;
 end
end
%we expect 6 ones

% Jacobian matrix
% Creating zi
z0= [0;0;1];
z1= T_01(1:3,3);
z2= T_02(1:3,3);
z3= T_03(1:3,3);
z4= T_04(1:3,3);

105

pe=T_0e(1:3,4);

% Creating pi
p0=[0;0;0];
p1=T_01(1:3,4);
p2=T_02(1:3,4);
p3=T_03(1:3,4);
p4=T_04(1:3,4);

% Jacobian matrix Computation
J = [cross(z0,pe-p0), cross(z1,pe-p1), cross(z2,pe-p2), cross(z3,pe-

p3), cross(z4,pe-p4);
 z0, z1, z2, z3, z4];
J = simplify(J);

% Jacobian-differentiate method upper {3x3}
upper3_J = simplify(jacobian([T_0e(1,4) T_0e(2,4) T_0e(3,4)],[th1 th2

th3]));

%%%

%%%%%%%%
%%%%%_Singularity Analysis_%%%%%

check = transpose(J)*J;
check = simplify(check);

for i=1:6
 Jsq{i} =J;
 Jsq{i}(i,:) = [];
 determinant(i) = det(Jsq{i});
 determinant = transpose(determinant);
end

106

REFERENCES

[1] Δ. Τσούμπας, Έλεγχος βιομηχανικού ρομπότ με βάση ανοιχτό λογισμικό
ψηφιακής καθοδήγησης εργαλειομηχανών, Διπλωματική εργασία, Εθνικό
Μετσόβιο Πολυτεχνείο, 2015.

[2] M. Erlic, K. Jones, W.S. Lu, Hardware interface Configuration for Motion
Control of the Puma-560 and the Mitsubishi RM-501 Robots, IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing,
May 9-10, 1991.

[3] J.Denavit, R.S.Hartenberg, A kinematic notation for lower-pair
mechanisms based on matrices, Transaction ASME Journal of Applied
Mathematics, (23), 215-221, 1995

[4] J. Craig, Introduction to Robotics: Mechanisms and Control 3rd edition,
Pearson Education, India, 2005.

[5] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. Robotics: modelling, planning
and control. Springer-Verlag London, 2010

[6] D. Pieper and B. Roth, The Kinematics of Manipulators Under Computer
Control, in Proceedings of the Second International Congress on Theory of
Machines and Mechanisms, Zakopane, Poland, 2:159—169, 1969

[7] E. Oyama, N.Y. Chong, A. Agah, and T. Maeda. Inverse kinematics learning
by modular architecture neural networks with performance prediction
networks. IEEE Int. Conf. Robot. Autom. (ICRA), Seoul, Korea, 1:1006–
1012, 2001.

[8] C.S.G. Lee, “Robot arm kinematics, dynamics, and control”, Computer
15(12): 62–80, 1982.

[9] A.C. Nearchou. Solving the inverse kinematics problem of redundant
robots operating in complex environments via a modified genetic
algorithm. Mech. Mach. Theory, 33(3):273–292, 1998.

[10] Anthony A. Maciejewski. Dealing with the ill-conditioned equations of
motion for articulated figures. IEEE Computer Graphics and Applications,
pp. 63-71, 1990

[11] A. Balestrino, G. De Maria, and L. Sciavicco, Robust control of robotic
manipulators, in Proceedings of the 9th IFAC World Congress, 5:2435-
2440, 1984.

[12] W. A. Wolovich and H. Elliot, A computational technique for inverse
kinematics, in Proc. 23rd IEEE Conference on Decision and Control, pp.
1359-1363, 1984.

[13] Y. Nakamura and H. Hanafusa, Inverse kinematics solutions with
singularity robustness for robot manipulator control, Journal of Dynamic
Systems, Measurement, and Control, 108:163-171, 1986.

[14] C. W. Wampler and L. J. Leifer, Applications of damped least-squares
methods to resolved-rate and resolved-acceleration control of
manipulators, Journal of Dynamic Systems, Measurement, and Control,
110:31-38, 1988.

107

[15] A. Deo and I. Walker, Overview of damped least-squares methods for
inverse kinematics of robot manipulators. Journal of Intelligent and
Robotic Systems 14(1):43-68, 1995.

[16] S. R. Buss and J. S. Kim, Selectively damped least squares for inverse
kinematics. Journal of Graphics, GPU, and Game Tools, 10(3):37-49, 2005.

[17] K. Lynch and F. Park, Modern Robotics Mechanics, Planning, and Control,
Cambridge University Press, 2017

[18] L. Kelmar and PK. Khosla, Automatic generation of kinematics for a
reconfigurable modular manipulator system. Robotics and automation,
Proceedings of 1988 IEEE international Conference on Roboticcs and
Automation, Philadelphia, Pennsylvania, pp. 663–668, 1988.

[19] K.T. Ge, Solving Inverse Kinematics Constraint Problems for Highly
Articulated Models. Masters Thesis, Waterloo University, 2000.

[20] T. Yoshikawa, "Manipulability of Robotic Mechanisms," The International
Journal of Robotics Research, 4(2), MIT Press, Cambridge, MA, 1985.

[21] E. Papadopoulos and V. Hayward. The singular vector algorithm for the
computation of rank-deficiency loci of rectangular jacobians. Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems
1:324–329, 2001.

[22] H. Kwon, K.H. Ahn and J.B. Song, Circular Path Based Trajectory Blending
Algorithm Considering Time Synchronization of Position and Orientation
Trajectories. Proceedings of 15th International Conference on Ubiquitous
Robots (UR), Hawaii, USA, 2008.

[23] T. Kunz and M. Stilman, Time-Optimal Trajecotry Generation for Path
Following with Bounded Acceleration and Velocity, Robotics: Science and
Systems, MIT Press, 2012.

[24] K. Shin and N. McKay. Minimum-time control of robotic manipulators with
geometric path constraints. IEEE Transactions on Automatic Control,
30(6):531–541, 1985.

[25] L. Zlajpah. On time optimal path control of manipulators with bounded
joint velocities and torques. In Proc. of IEEE International Conference on
Robotics and Automation, 1996.

[26] Delta Systems, Inc., Power PMAC Programmed Move Modes,
Presentation, 2013 (available from: https://www.slideserve.com/ chacha/
power-pmac-programmed-move-modes-november-2013).

[27] R.W. Ellenberg, LinuxCNC Trajectory Planner, Presentation, Carbide
Labs,LLC, 2014 (available from: https://www.youtube.com/watch?v=
412N5A-N8Fc&t=1075s)

[28] LinuxCNC, User Manual V2.8.0-pre1-5269-g1244b5a, 2019-10-22
[29] LinuxCNC, Developer Manual V2.8.0-pre1-5269-g1244b5a, 2019-10-22
[30] LinuxCNC, Integrator Information V2.8.0-pre1-5272-gf7ce81f, 2019-10-22
[31] LinuxCNC, Manual Pages
[32] International Organization for Standardization, ISO 9283:1998 standard,

Manipulating industrial robots — Performance criteria and related test
methods

108

[33] M. Placzek and L. Piszchek, Testing of an industrial robot’s accuracy and
repeatability in off and online environment. Maintenance and Reliability
20(3), 2018.

[34] B. Siciliano and O. Khatib. Handbook of Robotics. Springer, 2008.
[35] H. Zhao, Z. Lu, C.Liu, H.Wang. Model and simulation of the Mitsubishi RV-

M1 robot using MATLAB. IEEE International Conference on Signal and
Image Processing, 2016.

[36] J.A. Velarde-Sanchez, S.A. Rodriguez-Gutierez, L.G. Garcia-Valdovinos,
J.C.Pedraza-Ortega. 5-DOF manipulation based on MATLAB-Simulink
methodology. 20th International Conference on Electronics
Communications and Computers, Mexico, 2010.

[37] Bomfim, Bracarense, Coelho, Lima, Gontijo. A low cost methodology
applied to remanufacturing of robotic manipulators, 2014.

[38] A. Alvares, J. Toquica, E. Lima, M. Souza Bomfim. Retrofitting of Asea IRB6-
S2 industrial robot using numeric control technologies based on LinuxCNC
and MACH3-MATLAB. IEEE Interanational Conference on Robotics and
Biomimetics, Macau, China, 2017.

[39] A. Alvares, J. Toquica, E. Lima, M. Souza Bomfim. Retrofitting of Asea IRB6-
S2 industrial robot using computer numerical control-based controllers.
Journal of Brazilian Society of Mechanical Sciences and Engineering
40(149), 2018.

[40] D. Milutinovic, M. Glavonjic, N. Slavkovic, Z. Dimic,S. Z, B. Kokotovic and
Ljubodrag Tanovic, Reconfigurable robotic machining system controlled
and programmed in a machine tool manner. Springer-Verlag, London
Limited, 2010.

[41] N. Makondo and J. Claassens. Geometric Technique for the Kinematic
Modeling of a 5 DOF Redundant Manipulator. Proceedings of Robotics and
Mechatronics Conference, South Africa, 2012.

[42] R. Manseur and K.L. Doty. Fast inverse kinematics of five-revolute axis
robot manipulators. Mech. Mach. Theory, 27(5):587–597, 1992.

[43] Shaoping Huang. Research on trajectory planning and motion control of 5-
dof cutting robot. Dissertation for the Master’s Degree in Engineering,
Harbin Institute of Technology, 2011.

[44] A.N. Pechev. Inverse Kinematics without matrix inversion. IEEE
International Conference on Robotics and Automation, Pasadena, USA,
pp. 2005-2012, 2008.

[45] L.V. Vargas, A.C. Leite and R.R. Costa. Overcoming Kinematic Singularities
with the Filtered Inverse Approach. Proceedings of the 19th World
Congress The International Federation of Automatic Control, Cape Town,
South Africa, pp.8496-8502, 2014.

[46] O. Hock and J. Šedo. Forward and Inverse Kinematics Using Pseudoinverse
and Transposition Method for Robotic Arm DOBOT, 2017.

[47] H.M. Abdulridha and Z.A. Hassoun. Control design of robotic manipulator
based on quantum neural network. Journal of Dynamic Systems,
Measurement and Control 140(6), 2017.

109

[48] M. Nasr, M. Marey, M.M. Abdelhameed, and F.A. Tolbah. Using genetic
algorithm for singularity avoidance in positioning tasks of a robotic arm.
International Journal "Information Models and Analyses" 7(2), pp.163-
176, 2018.

[49] L. Huo,L. Baron. The self-adaptation of weights for joint-limits and
singularity avoidances of functionally redundant robotic-task. Robotics
and Computer-Integrated Manufacturing 27:367–376, 2011

[50] A.M. Mohammadi and A. Akbarzadeh. A real-time impedance-based
singularity and joint-limits avoidance approach for manual guidance of
industrial robots. Advanced Robotics 31(18):1016-1028, 2017

[51] M.G. Carmichael, D. Liu and K.J. Waldron. A framework for singularity-
robust manipulator control during physical human-robot interaction. The
International Journal of Robotics Research, 36(5–7):861–876, 2017

[52] Z. Kemeny. Mapping, detection and handling of singularities for
kinematically redundant serial manipulators. Periodica Polytechnica,
46(1):29-45, 2002

[53] K. Abdel-Malek, H.J. Yeh and N.Khairallah. Workspace void and volume
determination of the general 5DOF manipulator. Mechanics of Structures
and Machined, 27(1):89-115, 1999

[54] K. Abdel-Malek and H.J. Yeh. Geometric representation of the swept
volume using rank-deficiency conditions. Computer Aided Design,
29(6):457-468, 1997

[55] Y. Fang and L.W.Tsai. Inverse velocity and singularity analysis of low-dof
serial manipulators, Journal of Robotic Systems, 20(4):177-188, 2003

[56] K. Goyal and D. Sethi. An analytical method to find workspace of a robotic
manipulator, 2010

[57] M. Elyazed et al. Enhanncing the path planning geeration of a five dof
manipulator using a low-cost camera-laser triangulation technique.
Proceedings of ASME, 2018

[58] K.Anjana, A.P. Sudheer, S.J. Mila. Robust tracking controller for 5 degree
of freedom robotic manipulator, 2015

[59] H. Chen and J. Lee. Path planning of 5-dof manipulator based on maximum
mobility. International Journal of Precision Engineering and
Manufacturing, 15(1):45-52, 2014

