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ΠΕΡΙΛΗΨΗ 
 

Μια από της βασικότερες κατηγορίες ρομπότ είναι οι ρομποτικοί βραχίονες, 
βιομηχανικού ή όχι, τύπου. Τα τελευταία χρόνια ένας αυξανόμενος αριθμός 
ρομποτικών χειριστών αδρανοποιούνται λόγω της παλαιότητας των λογισμικών 
ελέγχου τους, που ουσιαστικά περιορίζει τις δυνατότητες όλης της διάταξης. 
Εντούτοις, οι ρομποτικοί βραχίονες  έχουν τη δυνατότητα να αξιοποιηθούν με 
ποικίλους τρόπους  λόγω των ιδιαίτερων πλεονεκτημάτων τους. Η επιδεξιότητα στο 
χώρο εργασίας, είναι ένα από αυτά, επιτρέποντας τους την προσέγγιση ενός σημείου 
εντός του χώρου δράσης τους από διάφορους προσανατολισμούς, όσους τους 
επιτρέπουν οι βαθμοί ελευθερίας τους. Η δυνατότητα οδήγησης ενός ρομποτικού 
βραχίονα με ευέλικτο τρόπο επιτρέπει την επαναχρησιμοποίηση του και με την 
κατάλληλη διαμόρφωση τα αποτελέσματα είναι εντυπωσιακά. Η δόμηση όμως 
κατάλληλου συστήματος  για την οδήγηση ενός τέτοιου βραχίονα είναι αρκετά 
απαιτητική διαδικασία, καθώς χρειάζεται αποτελεσματική επίλυση προβλημάτων 
κινηματικής, ελέγχου, σχεδιασμού τροχιάς και πιστοποίησης του αποτελέσματος. Το 
ρομπότ RM-501 Movemaster II είναι ένας ρομποτικός βραχίονας βιομηχανικού τύπου, 
5 βαθμών ελευθερίας, κατασκευασμένος το 1986 από τη Mitsubishi. 
 
Το αντικείμενο αυτής της διπλωματικής είναι ο προγραμματισμός του RM-501 με βάση 
λογισμικό αριθμητικού ελέγχου εργαλειομηχανών, συγκεκριμένα το 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, οπότε 
και η οδήγηση πραγματικού χρόνου του ρομποτικού βραχίονα θα γίνεται μέσω 
εντολών 𝐺 κώδικα. Πρόκειται για ένα εγχείρημα με χαμηλό κόστος αλλά αρκετές 
δυσκολίες όσον αφορά την δόμηση του κινηματικού μοντέλου, ευθέως και 
αντιστρόφου, την ομαλή και έγκαιρη επικοινωνία πραγματικού χρόνου μεταξύ των 
εμπλεκόμενων μερών, καθώς και τον κατάλληλο σχεδιασμό τροχιάς που υλοποιεί τις 
εντολές του χρήστη.  
 
Στο πρώτο κομμάτι της διπλωματικής, αναλύεται πλήρως η κινηματική του βραχίονα 
και αναπτύσσονται κριτήρια για την ύπαρξη, την εγκυρότητα και τον αριθμό των 
λύσεων στο πρόβλημα της αντίστροφης κινηματικής του. Επίσης γίνεται ανάλυση της 
διαφορικής κινηματικής του με σκοπό την εύρωστη αντιμετώπιση των ιδιομορφιών. 
Στη συνέχεια παρουσιάζεται η ανάλυση του σχεδιασμού τροχιάς που, σε συνδυασμό 
με τα παραπάνω, απαιτούνται για τη ομαλή μετατόπιση του τελικού σημείου δράσης 
(ΤΣΔ) χωρίς σπασμωδικές κινήσεις. Τελικά γίνεται πιστοποίηση του αποτελέσματος με 
μια τροποποιημένη μέθοδο και μετρούμενα μεγέθη που προτείνονται σε επίσημο 
μετρητικό στάνταρ βιομηχανικών ρομποτικών χειριστών. 
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ABSTRACT 
 

One of the major categories of robots is the robotic arm type, industrial or otherwise. 

In recent years an increasing number of robotic manipulators have been inactivated 

due to their outdated control software which substantially limits the capabilities of the 

entire setup. However, robotic arms have the potential to be exploited in a variety of 

ways and applications because of the particular advantages they possess. Workspace 

dexterity is one of them, allowing them to approach a point within their operational 

space from as many different orientations as their degrees of freedom allow. The ability 

of driving a robotic arm in a flexible manner allows it to be reused and with the right 

configuration the results are impressive. However, building a proper system for driving 

such a manipulator is a quite demanding process, as it requires efficient solution for 

problems of kinematics, control, trajectory planning and validation of the result. The 

RM-501 Movemaster II robot is an industrial-grade, 5-degree-of-freedom robotic arm 

made in 1986 by Mitsubishi. 

 

The subject of this thesis is to program the movement of the RM-501 robot, based on 

numerical control software for CNC machines, 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 in this case. Thus, the robot 

will be guided in real time by 𝐺 𝑐𝑜𝑑𝑒 commands. This is a low-cost project, but there 

are several difficulties regarding the construction of the forward and inverse kinematic 

model, the smooth and timely real-time communication between the parties involved, 

as well as the proper trajectory design that implements the user's commands. 

 

In the first part of the thesis, the kinematics of the manipulator is fully analyzed and 

criteria for the existence, validity and number of solutions to the problem of inverse 

kinematics, are developed. Furthermore, analysis of the differential kinematics is made 

in order to come up with a robust countermeasure for the singularities. Subsequently, 

the analysis of the trajectory planning which, in combination with the above, is required 

for a smooth displacement of the end effector without jerky movements. Eventually 

the validity of our result is checked based on a modified method and measured 

parameters as defined by an official quality standard designed for industrial robotic 

manipulators.  
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Chapter 1: INTRODUCTION 
 
 
The RM-501 is a serial, open chain, vertically articulated manipulator with five (5) 
degrees of freedom (DOF) achieved by revolute joints (5R). It was developed by 
Mitsubishi and was commercially available under the Movemaster II series from 1986. 
Its physical structure and articulation names are similar to that of a human arm. In fact, 
the RM-501 consists of four (4) joints, the waist, the shoulder, the elbow and the wrist 
each corresponding to one degree of freedom except for the wrist. The interesting part 
of the wrist is that it has two degrees of freedom via a differential system. 
 

 
Figure 1: RM-501 robot and its DOFs[1] 

 
A manipulator with less than six degrees of freedom, or so called a low-DOF 
manipulator, as this one, is not capable of positioning and orienting an object 
efficiently. However, for specific industrial applications such as welding, painting and 
loading/unloading, a low-DOF manipulator may be sufficient in theory. What is 
considered an advantage of a low-DOF manipulator compared to 6-DOF or redundant 
robots is that it has a simpler mechanical structure (i.e. less motors and links), a simpler 
controller, better stiffness and a lower cost. Thus, the exponential increase in usage is 
highly justified. 
 
Despite the above, challenges arise when it comes to formulating and/or solving the 
Kinematics problem for a low-DOF mobile manipulator. The degrees of freedom of a 
system can be simplistically viewed as the minimum number of coordinates required 
to specify a configuration in space. Applying this definition, six variables are needed in 
our case, three positional and three or orientation. But in this case the number of 
actuators is not enough. This fact leads to the next point of interest; the manipulator is 
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trivially underactuated since it has a lower number of actuators than degrees of 
freedom. Underactuation is a technical term used in robotics and control theory to 
describe mechanical systems that cannot be commanded to follow arbitrary 
trajectories in configuration space.  
 
Furthermore, other mathematical intricacies appear due to the nature of the 
manipulator. For example, the matrices used to describe forward and differential 
kinematics are rectangular. That said, there is not a 1-to-1 mapping between the 
Cartesian space (workspace) and the joint space, making the velocity and singularity 
analysis of such manipulators very difficult that requires specific techniques to find 
(possibly multiple) solutions of complicated nonlinear and transcendental equations. 
And even then, a closed form is usually not obtainable. 
 
The next challenge the effort to control the RM-501 robotic arm with open digital 
guidance software. The purpose is to implement a low-cost methodology for the 
modernization and operation of this arm as a machine tool. It is called to operate via G 
code commands with the help of LinuxCNC software. This puts to test various elements 
of the configuration in order to produce a satisfying result that can also be evaluated 
quantitatively. 
 

1.1: Related Work 
 
The optimization and update of an existing configuration with a custom complicated 
drive unit as the one that was presented by Tsoumpas [1] has many difficulties 
regarding the understanding of the intended use of parameters. 
 
The increased popularity of low-DOF manipulators has spawned quite the research 
activity over the past years. In particular, attention has been drawn to the inverse 
kinematics problem since it poses one of the most significant challenges. There mainly 
exist two strategies for inverse kinematics, which can be found in a multitude of classic 
robotics books([4] [5] [6] , [17] ). The closed form solution is one approach. It takes 
advantage of the geometric and algebraic properties that the structure of the robot 
possesses to identify every single possible solution. On the other hand, there is the 
numerical solution. This one usually adopts an iterative method to find just one solution 
that stems from a set of starting values. Admittedly, there is a (usually high) difficulty 
to derive the former depending on the complexity of the system and often many 
algebraic/geometrical tricks and techniques are required but its speed more than 
compensates for that. In addition, there is always the danger of a numerical method 
failing to converge, making it unable to determine safely whether there is actually a 
solution. Make the closed form solutions much more attractive. Therefore, a closed 
form solution is generally more advantageous than the numerical approach, but it 
should be noted that the choice of method greatly depends on the system under 
examination. Instances of numerical methods include, but are not limited to the 
(modified) Newton-Raphson method, neural networks [7] , genetic algorithms [9] and 
other methods. 
 
Furthermore, various specific cases of five (low)-DOF manipulators have been studied 
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the past years. Some cases involve full kinematics analyses whereas others involve 
modeling on the kinematic level and control. Zhao et al [35] studied the forward and 
inverse kinematics for an RV-M1 robot, a 5-DOF manipulator and simulated the results 
on MATLAB. The same approach was followed in [36] were a simulation methodology 
of the 5-DOF robot, including direct, inverse and differential kinematics as well as 
dynamics was applied to CATALYST 5. The setup was configured on Simulink/MATLAB 
environment.  
 
In similar fashion in [37] [38] [39] due to the increasing number of robots that are 
unused now because of outdate equipment and abilities  decide to retrofit an old 
robotic arm, the ASEA IRB6-S2, using the MATLAB and Mach3 programs, which is a low 
cost and efficient procedure. Additionally, Milutinovic et al [40] create a setup base on 
a five-axis vertical articulated robot, which is considered as a specific configuration of 
five-axis vertical milling machine. This low-cost control and programming system was 
implemented on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software system. 
 
Makondo and Claassens [41] used a geometric approach for the kinematic modeling of 
a 5 DOF redundant manipulator. The technique was used for both forward and inverse 
kinematics. In [42] Manseur and Doty solved the inverse kinematics problem of all five-
DOF, with five revolute joints, robot manipulators by using an one-dimensional iterative 
technique, which is similar to Newton-Raphson. Huang [43] established the kinematics 
model for a five-DOF cutting robot with the modified Denavit-Hartenberg method and 
the inverse kinematics was solved using inverse transformation method. On the other 
hand, Pechev [44] proposed a method for solving the inverse kinematics problem. The 
method is performed in feedback loop and does not require matrix manipulations like 
inversion, singular value decomposition or the computation of a dumping factor. The 
proposed method gives comparable results to the DLS method. 
 
In [45] an alternative algorithm that uses the filtered inverse of the Jacobian matrix 
solves the inverse kinematics problem while dealing with singularities. The update law 
of the estimator for the filtered inverse is driven by error signals that consider both the 
left and the right inverse matrices, thus enabling trajectory tracking and minimization 
of the control effort simultaneously. Another solution for the inverse kinematics task is 
given by Hock and Sedo [46] In their work, they execute the linearization of the forward 
kinematics equations with Taylor Series for multiple variables. The inversion of the 
Jacobian with both the pseudoinverse and the transpose method, solved the IK 
problem. 
 
Other numerical approaches have been implemented as well.  Abdulridha and Hassoun 
[47] use a Quantum Neural Network to drive the Mitsubishi RM-501 robotic 
manipulator by calculating the PID parameters needed. The results are compared to 
usual Ziegler Nichols method for defining these parameters. In [48] both numerical and 
analytical solutions of the inverse kinematics are studied for a 5R, CRS robotic arm. A 
singularity avoidance method based on genetic algorithms is proposed to enhance the 
behavior of the system near singularities. In [49]  the weighting vector tuning problem 
of the Twist Decomposition Algorithms is studied, as the TWA is proposed to solve the 
functional redundancy of the manipulator. A weighting vector self-adaptation 
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algorithm for the 6-axis decoupled manipulators is found thus making joint limit and 
singularity avoidance more robust. 
 
Another example of a specific singularity detection and avoidance technique regarding 
the interaction of humans and robots can be found in [50] and [51] . In the former the 
proposed approach when it detects singularity, with a criterion that combines the 
manipulability ellipsoid and condition number, or joint limit in real time, it adds virtual 
stiffness and damping to the target stiffness and damping. The testing of this method 
was applied on a SCARA robot manually operated by human. In the later, an 
exponentially shaped damping was applied along degenerate dimensions to ensure 
stable and smooth operation near singularity for applications involving physical 
human–robot interaction. Using a repulsive force field method, the manipulator was 
subtly guided away from the singularity. 
 
Kemeny [52] proposed a systemic singularity search technique for kinematically 
redundant manipulators, using the decomposition principle. Two classes of singular 
configurations were identified and the resulting singularity man was proposed for local 
motion planning. In four different occasions [53] [54] [55] [56] the singularity analysis 
is accompanied by an extensive analysis of the manipulator workspace which derives 
from rank deficiency criteria. Special mention is given for [55] where usong the theory 
of reciprocal screws the independent velocity components were found in such a way 
that the rectangular Jacobian matrix can be shaped into a square one. The method was 
applied on 5-DOF and 4-DOF serial manipulators. 
 
As far as trajectory planning is concerned things are more straightforward. In [57] a 
low-cost camera-laser, via a triangulation technique, was used for enhancing the path 
planning generation. The method was implemented on a five DOF robotic manipulator. 
In [58] a trajectory planning and control with PID and SMC controllers on a 5 DOF 
manipulator was presented. Chen and Lee [59] a path planning algorithm based on the 
direction of maximum mobility and inverse kinematics is proposed for a 5 DOF 
humanoid manipulator. 
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1.2: Thesis Structure 
 
The second chapter consists of the two essential parts of the upcoming analysis. First 
the derivation of the homogeneous transformation that describes the forward 
kinematics for the manipulator is derived using the Denavit-Hartenberg convention 
which is also briefly presented. 
 
In the third chapter there are 3 major subchapters regarding the differential behavior 
of the manipulator. First the Jacobian matrix is derived in a systematic way. Secondly 
an overview of the most common methods of handling the inverse differential 
kinematics problem is given. Finally, a singularity analysis is conducted so as to calculate 
analytically the configurations that cause rank deficiency. 
 
In the fourth chapter the problem of trajectory planning is tackled, in both joint space 
and cartesian operational space. The last part proposes method of path blending that 
is materialized in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶. 
 
The fifth chapter is the implementation of all the above. At first there is a briefing on 
the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 structure and operation. The second part develops the proper 
adaptation and calibration of the new configuration on the software for a robust 
behavior. Lastly, the configuration is tested on an industrial-type pick and place task to 
verify its functionality. 
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Chapter 2: KINEMATICS of RM-501 
 

2.1: Forward Kinematics 
 
Forward kinematics refers to the use of the kinematic equations of a robot to compute 
the position of the end-effector from specified values for the joint parameters. As such, 
obtaining the equations required to transform the joint angles, for an open chain, 
revolute joint (5R) arm in our case, to the end-effector position in Cartesian 
coordinates, is a complex geometric problem which is later induced to an algebraic 
problem. However general methods that automate this procedure have been 
developed. Specifically, in the field of robotics the Denavit-Hartenberg (D-H) 
convention is the one used more frequently, either the standard version or the 
modified one.  
 
A manipulator with 𝑛 joints, numbered from 1 to 𝑛, will have 𝑛 +  1 links, numbered 
from 0 to 𝑛. Link 0 is generally fixed as it refers to base of the manipulator and the end-
effector is mounted or attached on link 𝑛. Links 𝑖 and 𝑖 − 1 are connected by joint 𝑖. A 
coordinate frame 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖   is attached to each link as follows: 
 

1. 𝑧 -axis is along the rotation direction for revolute joints, along the translation 
direction for prismatic joints. 

2. The 𝑧𝑖−1 axis lies along the axis of motion of the 𝑖𝑡ℎ joint. 
3. The origin 𝑂𝑖 is located at the intersection of joint axis 𝑧𝑖 with the common 

normal to 𝑧𝑖 and 𝑧𝑖−1. 
4. The 𝑥𝑖  axis is taken along the common normal and points from joint 𝑖 to joint  
𝑖 + 1. 

5. The 𝑦𝑖 axis is selected in order a right-hand frame is completed, so is defined 
by the cross product 𝒚𝒊 = 𝒛𝒊  × 𝒙𝒊 

 
Both forms of DH convention, the first as per the original paper of Denavit and 
Hartenberg[3] and the modified, introduced in the textbook of John J. Craig[4] represent 
a joint as two translations and two angles, total of four parameters. However, the 
transformation matrices differ. In this thesis the original D-H notation is being 
facilitated. The link and joint parameters are: 
 

• 𝑎𝑖: link length, the distance from 𝑂𝑖 to the intersection of the 𝑧𝑖−1 and 𝑥𝑖  
axes along the 𝑥𝑖axis 

• 𝑑𝑖: offset length, the distance from the origin of the (𝑖 − 1) frame to the 
intersection of the 𝑧𝑖 axis with𝑥𝑖  axis along the 𝑧𝑖−1 axis, basically the 
coordinate of 𝑂𝑖 along 𝑧𝑖−1 

• 𝛼𝑖: twist angle, the angle from the 𝑧𝑖−1 to the 𝑧𝑖 axis about the 𝑥𝑖  axis, 
positive when rotation is made counter-clockwise 

• 𝜃𝑖: joint angle, the angle between the 𝑥𝑖−1 and the 𝑥𝑖  axes about the 𝑧𝑖−1 
axis, positive when rotation is made counter-clockwise.1 

 

 
1 Later substituted by the letter 𝑞 to keep unified symbols along the whole document. 
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Figure 2: Denavit-Hartenberg parameters[6]  

 
Each axis of the robot has one limit switch from which the corresponding joint angle is 
calculated. The range of each joint is thus determined in reference to a zero-position 
defined by a particular reference posture of the robot. This posture is usually called the 
zero pose or reference pose. In order to create simple algebraic equations while solving 
for the forward kinematics this pose is recommended to be chosen so as the most joint 
angles take such values that a simplified approach in terms of calculations is achieved, 
so basically zero angles.  
 
 

 
Figure 3: DH frames of the RM501 robot with gripper mounted 
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With this pattern we get the DH parameters of the Mitsubishi RM-501 Movemaster II 
as follows: 
 

𝐿𝑖𝑛𝑘, 𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 𝑞𝑖 
1 𝑑1 0 𝜋/2 𝜃1 
2 0 𝑎2 0 𝜃2 
3 0 𝑎3 0 𝜃3 
4 0 0 𝜋/2 𝜃4 
5 0  0 0 𝜃5 

𝑒𝑛𝑑 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 𝑑5 0 0 0 
Table 1: DH parameters of the Mitsubishi RM-501 Movemaster II 

 
The last line refers to the end-effector, in this case the gripper. The reason for creating 
a different line in the above matrix is to make it easier to follow the same procedure in 
case the end-effector is substituted or even totally removed. In general, we can sum 
the last two lines to one, with both the wrist and gripper included. 
 

5𝑒 𝑑5 0 0 𝜃5 
 
The dimensions of the joint angles and the links length are, respectively in degrees (◦) 
and millimeters (mm). 
 

The homogeneous frame transformation 𝑇𝑖 
𝑖−1  from frame 𝑖 − 1 to frame 𝑖 can be 

described by the sequence of elementary transformation starting from link (𝑖 − 1): 
1. A rotation 𝜃𝑖  about the 𝑧𝑖−1 axis 
2. A translation 𝑑𝑖 along the 𝑧𝑖−1 axis 
3. A translation 𝑎𝑖 along the 𝑥𝑖  axis 
4. A rotation 𝛼𝑖 about the 𝑥𝑖  axis 

And the product of those basic transformations is: 
 

𝑻𝑖 
𝑖−1 = 𝑹(𝜃𝑖|𝑧𝑖−1)𝑻(𝑑𝑖|𝑧𝑖−1)𝑻(𝑎𝑖|𝑥𝑖)𝑹(𝛼𝑖|𝑥𝑖) = 

= [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 0 0
0 0 0 0

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] [

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝛼𝑖 −𝑠𝛼𝑖 0
0 𝑠𝛼𝑖 𝑐𝛼𝑖 0
0 0 0 1

] = 

= [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

] 

 
So, the transformation from each 𝑖 − 1 link to the next 𝑖 are: 
 

𝑻1 
0 = [

𝑐1 0 𝑠1 0
𝑠1 0 −𝑐1 0
0 1 0 𝑑1
0 0 0 1

] 
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𝑻2 
1 = [

𝑐2 −𝑠2 0 𝑎2𝑐2
𝑠2 𝑐2 0 𝑎2𝑠2
0 1 1 0
0 0 0 1

] 

𝑻3 
2 = [

𝑐3 −𝑠3 0 𝑎3𝑐3
𝑠3 𝑐3 0 𝑎3𝑠3
0 0 1 0
0 0 0 1

] 

𝑻4 
3 = [

𝑐4 0 𝑠4 0
𝑠4 0 −𝑐4 0
0 1 0 0
0 0 0 1

] 

𝑻5 
4 = [

𝑐5 −𝑠5 0 0
𝑠5 𝑐5 0 0
0 1 1 0
0 0 0 1

] 

 
If the gripper tool is mounted to the robot wrist as well, the transformation from the 
wrist to the end-effector is as a simple translation by 𝑑5 
 

𝑻𝑒 
5 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑5
0 0 0 1

] 

 
Assuming that the transformation matrix 𝑇𝑒 

0  giving the pose of the end-effector in 
terms of joint variables with respect to the base frame then it is the dot product of all 
transformation matrices from the base(0) to the end-effector(5) 
 
𝑻e 
0 = 𝑻1 

0 𝑻2 
1 𝑻3 

2 𝑻4 
3 𝑻5 

4 𝑻𝑒 
4 = 

= [

𝑠1𝑠5 + 𝑐234𝑐1𝑐5 𝑐5𝑠1 − 𝑐234𝑐1𝑠5 𝑠234𝑐1 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑐234𝑐5𝑠1 − 𝑐1𝑠5 −𝑐1𝑐5 − 𝑐234𝑠1𝑠5 𝑠234𝑠1 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)

𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
0 0 0 1

] 

 
Where all symbols sijk, 𝑐𝑖𝑗𝑘 stand for sin(𝑞1 + 𝑞2 + 𝑞3) , cos (𝑞1 + 𝑞2 + 𝑞3) 

respectively. 
 
Some final thoughts can be made regarding the verification of the result. In general, for 
any homogenous transformation it stands that: 
 

𝑻𝑖 
𝑖−1 = [ 𝑹𝑖 

𝑖−1 𝒅𝑖 
𝑖−1

0 1
] 

 
And that stands for the 𝑻𝑒 

0  matrix as well. So, the upper {3 × 3} block of the 
transformation matrix refers to the orientation and since rotational is an orthogonal 
matrix the squared sum of its lines and columns must be equal to +1. Apart from that 

to check the validity the result and especially the distance part ( 𝒅𝑖 
𝑖−1 ) joint values of 
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specific known positions (such as the reference pose or a pose where the manipulator 
is completely stretched) can be substituted whether they give the expected result. In 
this case both expectations meet, so the result seems legitimate.  
 
A common way to describe the end-effector orientation is via Roll-Pitch-Yaw. Given 
these angles, 𝑟, 𝑝, 𝑦 respectively, the transformation matrix can be found: 
 

𝑻𝑖 
𝑖−1 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟23 𝑟33 𝑝𝑧
0 0 0 1

] = [

𝑐𝑝𝑐𝑦 𝑠𝑟𝑠𝑝𝑐𝑦 − 𝑐𝑟𝑠𝑦 𝑐𝑟𝑠𝑝𝑐𝑦 + 𝑠𝑟𝑠𝑦
𝑐𝑝𝑠𝑦 𝑠𝑟𝑠𝑝𝑠𝑦 + 𝑐𝑟𝑐𝑦 𝑐𝑟𝑠𝑝𝑠𝑦 − 𝑠𝑟𝑐𝑦
−𝑠𝑝 𝑠𝑟𝑐𝑝 𝑐𝑟𝑐𝑝

𝒅𝑖 
𝑖−1

0 1

] 

 
The inverse can be done: 

𝑟 = 𝑎𝑡𝑎𝑛2(𝑟23, 𝑟33) 

𝑝 = 𝑎𝑡𝑎𝑛2 (−𝑟31, √𝑟322 + 𝑟332) 

𝑦 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) 
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2.2: Inverse Kinematics 
 
The inverse kinematics problem is the challenge of defining joint angles for a given end-
effector configuration. Basically, is the necessary step required to go from operational 
Cartesian space which an observer, a user and a programmer can perceive to the joint 
space which the robotic manipulator is based on. If the forward kinematics is described 
by the mathematical equation: 
 

𝒙𝑒 = 𝑓(𝒒) 
 
Then in the inverse kinematics, the joint variables 𝜃 are a function of the end-effector 
pose: 
 

𝒒 = 𝑓−1(𝒙𝑒) 
 
Compared to the Forward Kinematics which was computed in a unique way, meaning 
that with given the joint variable, the position of the end-effector can be derived, the 
Inverse Kinematics is not a straightforward procedure. Although there is no standard 
and generally applicable method to solve the inverse kinematic problem, there are a 
few analytic and numerical methods to solve the problem.  
 
The difficulties of inverse kinematic are found in two poles. The first one refers to the 
mathematical part as the inverse kinematics equations are in general non-linear, 
making it a heavy-calculation problem that might not have a closed-form solution. The 
second one is about the amount of possible solutions. These can be multiple or even 
infinite in the case of redundant manipulators and many or even all of them can be 
non-admissible because of the joint limits that control the boundaries of the kinematic 
structure. 
  
The existence of a solution to the inverse kinematics problem is based on whether the 
end-effector pose is achievable, meaning whether it belongs to the robot’s admissible 
workspace. To find a solution an iterative method can be used. However, in our case, 
closed-form solutions are desirable because they are faster than numerical solutions 
and readily identify all possible solutions. Furthermore, the software that will be used 
is the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 environment, which is mainly used for driving CNC machines using 
closed-form kinematics algorithms (in general, easier than a 5-DOF manipulator), and 
this feature is going to be utilized. 
 
The disadvantage of closed-form solutions is that they are not general, but robot 
dependent. The most effective methods for finding closed-form solutions are ad hoc 
techniques that take advantage of particular geometric features of specific 
mechanisms. A closed-form solution to this problem can be found based on Pieper’s [7]  
and other’s work [9] who mainly studied 6-DOF manipulators with spherical wrists. 
Generally, based on this, the sufficient conditions of existence of a closed-form solution 
for the inverse kinematics problem for a manipulator are: 

1. Three consecutive revolute joint axes intersect at one point 
2. Three consecutive revolute joint axes are parallel. 
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Spherical-wrist manipulators have their last three joint-axes intersecting at a common 
point. For these manipulators the position of the end-effector in space is determined 
only by the displacements performed about the first three joint-axes. This concept is 
often referred to as the position-orientation decoupling; and has been utilized to 
produce a closed-form solution, for the inverse position problem of simple structure 
robots, efficient enough to be implemented for computer control.  
 
In the case of the Mitsubishi RM-501 Movemaster II robot the second condition is met 
since joints 2, 3 and 4 are three consecutive parallel revolute joints. Assuming that the 
transformation matrix 𝑻𝑒 

0  giving the pose of the end-effector in terms of joint variables 
with respect to the base frame, and the individual transformation matrices 
𝑻1 
0 (𝑞1), 𝑻2 

1 (𝑞2), 𝑻3 
2 (𝑞3), 𝑻4 

3 (𝑞4), 𝑻5 
4 (𝑞5), 𝑻𝑒 

5  are known, it is possible to compute 
the inverse kinematics by solving the equations for the unknown joint variables. 
According to forward kinematics: 
 

𝑻𝑒 
0 = 𝑻1 

0 𝑻2 
1 𝑻3 

2 𝑻4 
3 𝑻5 

4 𝑻𝑒 
5  

= [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟23 𝑟33 𝑝𝑧
0 0 0 1

] 

 
By solving the equations for the unknown joint variables as follows: 
 

𝑻𝑒 
1 = 𝑻1 

0 −1
 𝑻𝑒 
0  

𝑻𝑒 
2 = 𝑻2 

1 −1
 𝑻1 
0 −1

 𝑻𝑒 
0  

𝑻𝑒 
3 = 𝑻3 

2 −1
 𝑻2 
1 −1

 𝑻1 
0 −1

 𝑻𝑒 
0  

𝑻𝑒 
4 = 𝑻4 

3 −1
 𝑻3 
2 −1

 𝑻2 
1 −1

 𝑻1 
0 −1

 𝑻𝑒 
0   

𝑻𝑒 
5 = 𝑻5 

4 −1
 𝑻4 
3 −1

 𝑻3 
2 −1

 𝑻2 
1 −1

 𝑻1 
0 −1

 𝑻𝑒 
0  

  𝑰4  =  𝑻𝑒 
5 −1

 𝑻5 
4 −1

 𝑻4 
3 −1

 𝑻3 
2 −1

 𝑻2 
1 −1

 𝑻1 
0 −1

 𝑻𝑒 
0   

 

The solution for the inverse kinematics problem starts from the relationship: 
 

𝑻𝑒 
0 = 𝑻1 

0 𝑻2 
1 𝑻3 

2 𝑻4 
3 𝑻5 

4 𝑻𝑒 
5  

 
All, but the first joint lye on the same 𝑋𝑍 plane, so by decomposing the relationship 
with Pieper’s method as follows: 
 

 𝑻1 
0 −1

 𝑻𝑒 
0 = 𝑻𝑒 

1 = 𝑻2 
1 𝑻3 

2 𝑻4 
3 𝑻5 

4 𝑻𝑒 
4  (1) 

 
where,  
 

𝑻1 
0 −1

= [

𝑐1 𝑠1 0 0
0 0 1 −𝑑1
𝑠1 −𝑐1 0 0
0 0 0 1

]  
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And 
 

𝑻2 
1 𝑻3 

2 𝑻4 
3 𝑻5 

4 𝑻𝑒 
4 = [

𝑐234𝑐5 −𝑐234𝑠5 𝑠234 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234
𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
𝑠5 𝑐5 0 0
0 0 0 1

] 

 

So, with the elements of 𝑻𝑒 
0  known, the equation (1) becomes: 

 

[

𝑟11𝑐1 + 𝑟21𝑠1 𝑟12𝑐1 + 𝑟22𝑠1 𝑟13𝑐1 + 𝑟23𝑠1 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1
𝑟31 𝑟32 𝑟33 𝑝𝑧 − 𝑑1

𝑟11𝑠1 − 𝑟21𝑐1 𝑟12𝑠1 − 𝑟22𝑐1 𝑟13𝑠1 − 𝑟23𝑐1 𝑝𝑥𝑠1 − 𝑝𝑦𝑐1
0 0 0 1

]

= [

𝑐234𝑐5 −𝑐234𝑠5 𝑠234 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234
𝑠234𝑐5 −𝑠234𝑠5 −𝑐234 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234
𝑠5 𝑐5 0 0
0 0 0 1

] 

 
By equating the translational part, the first three elements the last column and 
specifically the (3,4) element of both matrices: 
 

𝑝𝑥𝑠1 − 𝑝𝑦𝑐1 = 0 

 
Which has two solutions 𝜃1 and 𝜃1 + 𝜋 
 

𝑞1,1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥) 𝑜𝑟 𝑞1,2 = 𝑎𝑡𝑎𝑛2(−𝑝𝑦, −𝑝𝑥) 

 
where atan2 is the arctangent function with two arguments. The purpose of using two 
arguments instead of one (tan−1(… )) is to gather information on the signs of the inputs 
in order to return the appropriate quadrant of the computed angle, which is not 
possible for the single-argument arctangent function. It also avoids the problems of 
division by zero. 
 
Another parameter we can easily calculate is 𝑞5. By equating (3,1) and (3,2) elements 
of both matrices  
 

𝑟11𝑠1 − 𝑟21𝑐1 = 𝑠5 

𝑟12𝑠1 − 𝑟22𝑐1 = 𝑐5 

 
Which gives one solution respected to 𝜃1 and as there are two possible solutions for 
𝑞1, there are two solutions for 𝑞5 as well 
 

𝑞5 = 𝑎𝑡𝑎𝑛2(𝑟11𝑠1,𝑖 − 𝑟21𝑐1,𝑖, 𝑟12𝑠1,𝑖 − 𝑟22𝑐1,𝑖), 𝑖 = 1, 2 
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After that the procedure is a quite straightforward one, which has been extensively 
been applied especially in simple planar three-link manipulators, which corresponds to 
joint 2, 3 and 4 of the RM-501 robotic arm.[10]  
 
By equating (1,3) and (2,3) elements we get  
 

𝑟13𝑐1 + 𝑟23𝑠1 = 𝑠234 

𝑟33 = −𝑐234 

  

So, solving for 𝑞2 + 𝑞3 + 𝑞4 we get two solutions 
 

(𝑞2 + 𝑞3 + 𝑞4)𝑖 = 𝑎𝑡𝑎𝑛2(𝑟13𝑐1,𝑖 + 𝑟23𝑠1,𝑖, −𝑟33), 𝑖 = 1, 2 

 
After that, the rest translational elements of both matrices can be equated ((1,4), (2,4) 
elements): 
 

 
𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 

𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234 = 𝑝𝑧 − 𝑑1 
 

(2) 

 
The manipulator plane, is the 𝛸𝛧 that was aforementioned. Basically, the quantities 
 

 
𝑎3𝑐23 + 𝑎2𝑐2 = 𝑑𝑥 
𝑎3𝑠23 + 𝑎2𝑠2 = 𝑑𝑧 

(3) 

 
are the displacement of the wrist on this plane 
 

 
Figure 4: Manipulator XZ plane 
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By squaring both sides and adding them: 
 

𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2𝑐23

2 + 𝑎2
2𝑐2

2 + 2𝑎2𝑎3𝑐2𝑐23 + 𝑎3
2𝑠23

2 + 𝑎2
2𝑠2

2 + 2𝑎2𝑎3𝑠2𝑠23

→ 𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2 + 𝑎2

2 + 2𝑎2𝑎3(𝑠2𝑠23 + 𝑐2𝑐23) 

 

And by using the trigonometric properties 

 

 
𝑠𝑖𝑗 = 𝑠𝑖𝑐𝑗 + 𝑐𝑖𝑠𝑗 

𝑐𝑖𝑗 = 𝑐𝑖𝑐𝑗 − 𝑠𝑖𝑠𝑗 
(4) 

 

𝑐3 = 𝑐2+3+(−2) = 𝑐23𝑐−2 − 𝑠23𝑠−2 = 𝑐23𝑐2 + 𝑠23𝑠2 

 

𝑑𝑥
2 + 𝑑𝑧

2 = 𝑎3
2 + 𝑎2

2 + 2𝑎2𝑎3𝑐3 → 

𝑐3 =
𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3
 

 
Then the 𝑠𝑖𝑛 of 𝜃3 can be calculated 
 

𝑠3 = ±√1 − 𝑐32 
 
Thus, two symmetric solutions for 𝜃3 come up, one for elbow-up and one for elbow-
down position. In order to determine both the sine and cosine of the desired joint angle 
and then apply the two-argument arctangent. This ensures that we have found all 
solutions and that the solved angle is in the proper quadrant using the two-argument 
arctangent routine. 
 

𝑞3 = 𝑎𝑡𝑎𝑛2(𝑠3, 𝑐3) 
 
The 𝑑𝑥 and 𝑑𝑧 remain unknown to this point. However, by utilizing (2)  
 

𝑑𝑥 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝑑5𝑠234 

𝑑𝑧 = 𝑝𝑧 − 𝑑1 + 𝑑5𝑐234 

 

Or by checking 𝒅𝑒 
0 : 

 

• 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) = 𝑝𝑥 → 𝑐1(𝑑𝑥 + 𝑑5𝑠234) = 𝑝𝑥 → 

𝑑𝑥 =
𝑝𝑥
𝑐1
− 𝑑5𝑠234 

• 𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234 = 𝑝𝑧 → 𝑑1 + dz − 𝑑5𝑐234 = 𝑝𝑧 → 

𝑑𝑧 = 𝑝𝑧 − 𝑑1 + 𝑑5𝑐234 

 

Depending on the known task and desired position of the end-effector both solutions 
have its merits. Either way, 𝑑𝑧 is calculated the same way. Geometrically this procedure 
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is the equivalent of using the cosine law in the triangle that is formed by joints 2,3 and 
4. Intuitively mechanical constrains for the geometry of the manipulator appear, which 
can mathematically be described by the limits of 𝑐3. 
 

|𝑐3| ≤ 1 → |
𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3
| ≤ 1 → −1 ≤

𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2

2𝑎2𝑎3
≤ 1 → 

−2𝑎2𝑎3 ≤ 𝑑𝑥
2 + 𝑑𝑧

2 − 𝑎3
2 − 𝑎2

2 ≤  2𝑎2𝑎3 → 
(𝑎2 − 𝑎3)

2 ≤ 𝑑𝑥
2 + 𝑑𝑧

2 ≤ (𝑎2 + 𝑎3)
2 

 
if this constraint is not valid then there is no solution for 𝑞3 and inverse kinematics 
cannot be calculated. 
 
In order to proceed to finding 𝑞2, we can use (2) by utilizing trigonometric properties 
(4) 
 

𝑎3𝑐23 + 𝑎2𝑐2 = 𝑑𝑥 → (𝑎2 + 𝑎3𝑐3)𝑐2 − 𝑎3𝑠3𝑠2 = 𝑑𝑥 

𝑎3𝑠23 + 𝑎2𝑠2 = 𝑑𝑧 → (𝑎2 + 𝑎3𝑐3)𝑠2 + 𝑎3𝑠3𝑐2 = 𝑑𝑧 

 

The above equation is of a typical transcendental trigonometric form  

 

𝑎 𝑠𝑖𝑛𝜃 − 𝑏 𝑐𝑜𝑠𝜃 = 𝑐 

𝑎 𝑠𝑖𝑛𝜃 + 𝑏 𝑐𝑜𝑠𝜃 = 𝑑 

 

Where 𝑎 = 𝑎2 + 𝑎3𝑐3, 𝑏 = 𝑎3𝑠3, 𝑐 = 𝑑𝑥, 𝑑 = 𝑑𝑧 

Which can be solved by introducing two new variables 𝑟 and 𝜑 such that 

 

𝑎 = 𝑟 𝑠𝑖𝑛𝜑 

𝑏 = 𝑟 𝑐𝑜𝑠𝜑 

So  

 

𝑟 = √𝑎2 + 𝑏2 

𝜑 = 𝑎𝑡𝑎𝑛2(𝑎, 𝑏) 

 
Substituting the new variables, the set of equations becomes 
 

𝑑𝑥
𝑟
= 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜃 

𝑑𝑧
𝑟
= 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃 

 

So, we get 
 

cos(𝜑 + 𝜃) =
𝑑𝑥
𝑟
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sin(𝜑 + 𝜃) =
𝑑𝑧
𝑟

 

 
And the solution 
 

𝜑 + 𝜃 = 𝑎𝑡𝑎𝑛2 (
𝑑𝑧
𝑟
,
𝑑𝑥
𝑟
) = 𝑎𝑡𝑎𝑛2(𝑑𝑧, 𝑑𝑥) → 𝜃 = 𝑎𝑡𝑎𝑛2(𝑑𝑧 , 𝑑𝑥) − 𝑎𝑡𝑎𝑛2(𝑏, 𝑎) 

 
So, in the case of 𝑞2 
 

𝑞2 = 𝑎𝑡𝑎𝑛2(𝑑𝑧 , 𝑑𝑥) − 𝑎𝑡𝑎𝑛2(𝑎3𝑠3, 𝑎2 + 𝑎3𝑠3) 

 
The sign of 𝑞3 will affect the sign of 𝑏 = 𝑎3𝑠3, subsequently affecting 𝜃2. 
 
Finally, 𝑞4 can be calculated 
 

𝑞4 = (𝑞2 + 𝑞3 + 𝑞4) − 𝑞2 − 𝑞3 

 
The multiple solutions represent different possible configurations that can reach end-

effector position and orientation. In general, the solution of the inverse kinematics of 

a robot is not unique, but rather multiple ones can fulfil the same criteria. So, to reach 

to a specific point within the working space, there can be different configurations which 

in turn are associated to multiple solutions. Furthermore, the difficulty lies in selecting 

the appropriate solution out of all the possible ones. The criteria on which to base a 

decision may vary, but a very consisted and easily applicable choice consists of choosing 

the closest solution to the current configuration. Generally, the manipulator is given 

position and orientation data to reach to, meaning three values each, six in total. In the 

case of underactuated manipulators -as in the case of RM-501- the number of joints is 

less than six, so unless the freedom in the task space is reduced, there can be no 

solution.  
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Chapter 3: DIFFERENTIAL KINEMATICS 
 
Τhe relationship between the joint variables and the end-effector position and 
orientation have been established in the previous chapter. The next vital problem in 
robotics is the instantaneous kinematics issue -forward and inverse- which basically is: 
given the rates of motion of all joints, find the positions of all members of the chain and 
the total velocity of the end-effector and the reverse. This connection is described by a 
matrix called geometric jacobian. 
 
As stated in the kinematics chapter the forward kinematics is: 
 

𝑻𝑒 
0 (𝐪) = [ 𝑹𝑒 

0 (𝒒) 𝒅𝑒 
0 (𝒒)

0 1
] 

 

Where 𝒒 = [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5]
𝑇 is the (5 × 1) vector of the RM-501 manipulator joint 

angles. Target of the differential kinematics is to find the correlation between joint 
speeds and the translational and rotational speeds of the end-effector.  
 

𝝂𝑒 = [𝜐𝑥 𝜐𝑦 𝜐𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇

 

 
Where, 
 

𝒅𝑒 0 ̇ = [𝜐𝑥 𝜐𝑦 𝜐𝑧]
𝑇

 

𝝎𝑒 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇

 

𝝂𝑒 = [
𝒅𝑒 0 ̇

𝝎𝑒
] 

 
Is the translational speed vector and 𝜔𝑖 the rotational ones. As a result, the relation 
describing differential kinematics: 
 

𝝂𝑒 = 𝑱(𝒒)𝒒̇ 

𝑱 = [
𝑱𝑃
𝑱𝑂
] 

 

𝑱𝑃 is the (3 × 5) matrix that connect joint speeds 𝒒̇ with linear velocity 𝒅𝑒 0 ̇  and 𝑱𝑂 is 
the matrix that connects joint speed with angular velocity of the end-effector. 
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3.1: Calculation of the Jacobian 
 

3.1.1: Geometric Jacobian 
 
The general process of calculating the jacobian requires differentiation. The 
displacement Jacobian 𝐽𝑃 is equivalent to the derivative of 𝑻𝑒 

0  with respect to the 
manipulator joint coordinates. 
 

 𝑱𝑃 =
𝜕 𝒅𝑒 
0

𝜕𝑞
=
𝜕 𝑻𝑒 
0

𝜕𝑞
 

 
Since for example 𝜐𝑥 is calculated from: 
 

𝜐𝑥 =
𝜕 𝒅𝑒

𝑥
 
0

𝜕𝑞1
𝑞1̇ +

𝜕 𝒅𝑒
𝑥

 
0

𝜕𝑞2
𝑞2̇ +

𝜕 𝒅𝑒
𝑥

 
0

𝜕𝑞3
𝑞3̇ +

𝜕 𝒅𝑒
𝑥

 
0

𝜕𝑞4
𝑞4̇ +

𝜕 𝒅𝑒
𝑥

 
0

𝜕𝑞5
𝑞5̇ 

 
For the angular velocity vector, the calculations can get more complicated as the 
differentiation of the rotational matrix is required 
 

𝜔 = 𝑹𝑒 
0 ̇ 𝑹𝑒 

0 𝛵
 

 
Thus, a more comfortable and universal method is required in order to calculate the 
geometric jacobian of the manipulator. Such is the jacobian generating vectors, where 
 

𝑱 = [
 𝑱𝑃1  𝑱𝑃2 ⋯  𝑱𝑃𝑛
𝑱𝑂1 𝑱𝑂2 ⋯ 𝑱𝑂𝑛

] 

 
Where the jacobian are calculated: 
 

𝑱𝑖 = [
𝑱𝑃𝑖
𝑱𝑂𝑖
] = {

[
𝒛𝑖−1
𝟎
] ,  𝑓𝑜𝑟 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛𝑡

[
𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1)

𝒛𝑖−1
] , 𝑓𝑜𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒 𝑗𝑜𝑖𝑛𝑡

 

 
Where 
 

• 𝒛𝑖−1 is the third column of the rotation matrix 𝑹𝑖−1 
0  

• 𝒑𝑒    is the vector of first three elements of the fourth column of matrix 𝑻𝑒 
0  

• 𝒑𝑖−1 is the vector of the first three elements of the fourth column of matrix 𝑻𝑖−1 
0  

 
In our case 𝑛 = 5  and all joints are revolute so: 
 

𝒛0 = [
0
0
1
] , 𝒛1 = 𝒛2 = 𝒛3 = [

𝑠1
−𝑐1
0
] , 𝒛4 = [

𝑠234𝑐1
𝑠234𝑠1
−𝑐234

] 
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𝒑0 = [
0
0
0
] , 𝒑𝟏 = [

0
0
𝑑1

] , 𝒑2 = [

𝑎2𝑐1𝑐2
𝑎2𝑐2𝑠1
𝑑1 + 𝑎2𝑠2

] , 𝒑3 = 𝒑𝟒 = [

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2)

𝑠1(𝑎3𝑐23 + 𝑎2𝑐2)

𝑑1 + 𝑎3𝑠23 + 𝑎2𝑠2

] ,

𝒑𝑒 = [

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2  + 𝑑5𝑠234)

𝑠1(𝑎3𝑐23 + 𝑎2𝑐2  +  𝑑5𝑠234)

𝑑1 + 𝑎3𝑠23  + 𝑎2𝑠2  −  𝑑5𝑐234

] 

 
By computing column by column, the geometric jacobian is: 

 

𝑱 =

[
 
 
 
 
 
−𝑠1(𝑎3𝑐23 + 𝑎2𝑐2  +  𝑑5𝑠234) −𝑐1(𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234) −𝑐1(𝑎3 𝑠23 − 𝑑5𝑐234) 𝑑5𝑐234𝑐1 0

𝑐1(𝑎3𝑐23 + 𝑎2𝑐2  +  𝑑5𝑠234) −𝑠1(𝑎3𝑠23 + 𝑎2𝑠2 − 𝑑5𝑐234) −𝑠1(𝑎3𝑠23 − 𝑑5𝑐234) 𝑑5𝑐234𝑠1 0
0 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 𝑎3𝑐23 + 𝑑5𝑠234 𝑑5𝑠234 0
0 𝑠1 𝑠1 𝑠1 𝑠234𝑐1
0 −𝑐1 −𝑐1 −𝑐1 𝑠234𝑠1
1 0 0 0 −𝑐234 ]

 
 
 
 
 

 

 

As a validation the linear velocity part of the jacobian can by calculated by 
differentiation and is expected. The 𝑖𝑡ℎ column of 𝐽 represents the incremental change 
in the end-effector due to the joint variable 𝑞𝑖. In other words, it refers to the direction 
and scale of the resulting infinitesimal end-effector velocity for an infinitesimal unit 
rotational velocity at 𝑖𝑡ℎ joint.[11]  
 

 
Figure 5: A physical interpretation of the columns of the Jacobian matrix [18]  
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The columns of 𝐽 are closely related to the vector defined from a joint's axis to the end 
effector, denoted by 𝑝𝑖 in Figure 5: A physical interpretation of the columns of the 
Jacobian matrix [18] Figure 5. In particular, the magnitudes of the 𝑗𝑖's and 𝑝𝑖's are equal, 
and their directions are perpendicular. The relation can be extended to three 
dimensions -as in our case- easily by using the cross product of a unit vector along the 
axis of rotation 𝑎𝑖 with the vector pi to obtain 𝑗𝑖 and that’s how the generating vectors 
method is easily understandable. 
 

𝒋𝑖 = 𝒂𝑖 × 𝒑𝑖 

 
Where 𝒂𝑖  corresponds to 𝒛𝑖−1 and 𝒑𝑖 to 𝒑𝑒 − 𝒑𝑖−1 of the method for revolute joint as 
calculated above. 
 
As a final note we can take into account the fact that the jacobian matrix is essentially 
a differential mapping, so any arbitrary small change in joint angles is mapped to a 
respective arbitrary small change in the position and orientation of the end-effector. 
Jacobian is a way for solving equation kinematics equation. It is applied as an iterative 
method. The Jacobian 𝑱 is computed and then an update value 𝛿𝒒 for the purpose of 
incrementing the joint angles 𝒒 by 𝛿𝒒: 
 

𝒒 ≔ 𝒒+ 𝛿𝒒 

 
Subsequently, the change in end effector positions caused by this change in joint angles 
can be estimated as  
 

𝛿𝒙𝐸 = 𝑱𝛿𝒒 

 
In order to check the result two different configuration 𝒒𝑎 , 𝒒𝑏, very close with each 
other. These two configurations correspond to two end effector position and 
orientation vectors 𝒙𝐸𝑎 and 𝒙𝐸𝑏 that can be found via the forward kinematics map. So, 
after calculating the differences 𝛿𝒒 = 𝒒𝑎 − 𝒒𝑏 and 𝛿𝒙𝐸 = 𝒙𝐸𝑎 − 𝒙𝐸𝑏 we can check if 
the latter equals to the product of the jacobian matrix 𝐽 with the configurations’ 
difference as it should. 
 

3.1.2: Analytical Jacobian 
 
The last reference that needs to be attended is the possibility of calculating the 
analytical jacobian 𝐽𝐴. The difference between geometric jacobian 𝐽 and 𝐽𝐴 is in the 
rotational part since it analytical jacobian expresses the spatial velocity of the end-
effector in terms of translational and rotational velocities. The translational part 𝐽𝑃 is 
the same in both. Depending on the expression of the angular velocity of the end 
effector either the geometric or the analytical jacobian is calculated. When the angular 
velocity of the end-effector is expressed in Cartesian frequencies as 
 

𝜔 = [

𝜔𝛸
𝜔𝛶
𝜔𝛧
] 
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then, Jacobian matrix is called geometric as calculated in this section. When the angular 
velocity of the end-effector is expressed in non-Cartesian frequencies such as Eulerian, 
then Jacobian matrix is called analytic. To connect those two then in global frame 𝑂𝑋𝑌𝑍 
in terms of local Roll-Pitch-Yaw frequencies the angular velocity of a body with respect 
to the global reference frame is: 
 

[

𝜔𝛸
𝜔𝛶
𝜔𝛧
] = [

𝜑̇ + 𝜓̇ sin 𝜃

𝜃̇ cos 𝜑 − 𝜓̇ cos 𝜃 sin𝜑

𝜃̇ 𝑠𝑖𝑛 𝜑 + 𝜓̇ cos 𝜃 cos𝜑

] = [
1 0 sin 𝜃
0 cos𝜑 − cos 𝜃 sin𝜑
0 sin𝜑 cos 𝜃 sin 𝜑

] [

𝜑̇

𝜃̇
𝜓̇

] = 𝑱𝑟𝑝𝑦 [

𝜑̇

𝜃̇
𝜓̇

] 

 
where 𝜑, 𝜃, 𝜓 are the Roll-Pitch-Yaw rates of change respectively. So, the connection 
between 𝐽 and 𝐽𝐴 is 
 

𝑱𝐴(𝒒) = [
𝑰3×3 𝟎3×3
𝟎3×3 𝑱𝑟𝑝𝑦

−1] 𝑱(𝒒) 

  
A similar connection can be found for the Euler angles 𝜙𝜃𝜓 about 𝑧𝑥𝑧 axes. A simple 
mention is enough as it can easily be seen that it is a very computationally taxing 
method especially for implementation in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 
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3.2: Inverse Differential Kinematics 
 
Given that we have a linear transformation relating joint velocity to Cartesian velocity, 
a reasonable question to ask is whether the jacobian matrix is invertible thus enabling 
the control of the manipulator. This requires calculation of the corresponding motion 
at the joint configurations level so as to achieve the desired end-effector motion. Thus, 
the objective is to solve the equation 
 

𝛿𝒙𝐸 = 𝑱𝛿𝒒 
 
for 𝛿𝒒. In most cases, this equation cannot be solved uniquely. Indeed, the Jacobian 𝐽 
may not be square or invertible, and even if is invertible, just setting 𝛿𝒒 = 𝑱−1𝛿𝒙𝐸 may 
work poorly if 𝐽 is nearly singular. In general singularity analysis is done at this point and 
the findings give information about which the best course of action is. So a few 
information on singularities will be presented here a whole sub-chapter will be devoted 
to the rest of the singularity analysis. 
 
Singularities are defined as those configurations at which the Jacobian matrix is rank-
deficient. Singularities can be of two kind: 
 

▪ Workspace-boundary singularities which occur when the manipulator is fully 
stretched out or folded back on itself in such a way that the end-effector is at 
or very near the boundary of the workspace. Those are not necessarily a 
problem since they can be avoided by not using the manipulator to the 
boundaries of its reachable workspace. 

 
▪ Workspace-interior singularities occur away from the workspace boundary they 

generally are caused by alignment of two or more axes of motion, or by the 
attainment of special end-effector configurations. Unlike the boundary 
singularities these singularities constitute a serious problem, as they can be 
encountered anywhere in the reachable workspace when a path is given in the 
operational space. 

 
Avoiding singularities of the manipulator, or at least having a particular way of dealing 
with them, is of great importance for the following reasons: 
 

➢ Singularities represent configurations at which the mobility of the structure is 
reduced so it is impossible to impose an arbitrary motion to the end-effector. 
 

➢ When the manipulator is at a singularity, infinite solutions to the inverse 
kinematics problem may exist. 

 
➢ In the neighborhood of a singularity, small velocities in the operational space 

may cause large velocities (and torques) in the joint space. 
 

There are many ways in modern robotics which can detect and deal with singularities, 
all with their pros and cons. The main attributes that dictates which method to choose 
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are the application which the manipulator will be used on and of course the hardware 
and software capabilities. A small overview of the viable solutions will be presented. 

 

3.2.1: Jacobian Transpose Method 
 
The idea of this technique very simple: use the transpose of 𝑱 instead of the inverse of 
𝑱. Given a desired end effector pose 𝒙𝐸𝑤 and actual pose 𝒙𝐸, the Jacobian transpose 
can be used to iteratively step the robot towards it using equation 
 

𝛿𝒒 = 𝛼𝑱𝑇(𝒙𝐸𝑤 − 𝒙𝐸) 

𝛿𝒒 = 𝛼𝑱𝑇𝛿𝒙𝐸 

 
for small for some appropriately small scalar 𝛼. This method was first used by Balestrino 
et al. (1984) and Wolovich and Elliott (1984) to perform inverse kinematics for 
robots.[11] [12]   
 
Of course, the transpose of the Jacobian is not the same as the inverse; however, it is 
possible to justify the use of the transpose in terms of virtual forces that guide the robot 
towards the desired position. Since this method does not require inversion of the 
Jacobian, numerical problems near singularities are avoided whilst also being 
computationally efficient. 
 

3.2.2: The Pseudoinverse Method 
 
In order to bypass the problem of invertibility the pseudoinverse matrix was 
introduced. Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 depending on whether 𝑚 ≤ 𝑛 (more columns 
than rows) or 𝑚 > 𝑛 (more rows than columns) then the matrix is called either fat or 
tall accordingly and then the pseudoinverse or Moore-Penrose inverse is: 
 

• 𝐴† = 𝐴𝑇(𝐴𝐴𝑇)−1 the right pseudoinverse if 𝐴 is fat 

• 𝐴‡ = (𝐴𝑇𝐴)−1𝐴𝑇 the left pseudoinverse if 𝐴 is tall 
 
In our case 𝑱 is a 6 × 5 matrix, thus a tall one and the left pseudoinverse is needed. And 
solving for 𝛿𝒒 gives 
 

𝛿𝒒 = 𝑱‡𝛿𝒙𝐸 
 
Where 
 

𝑱‡ = (𝑱𝑇𝑱)−1𝑱𝑇 
 
The pseudoinverse gives the best possible solution to the equation 𝛿𝒙𝐸 = 𝑱𝛿𝒒 in the 
sense of least squares, which means 𝛿𝒒 has the property that it minimizes the 
magnitude of the difference 𝑱𝛿𝒒 − 𝛿𝒙𝐸. Furthermore, 𝛿𝒒 is the unique vector of 
smallest magnitude which minimizes the norm ‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖ , or equivalently, which 
minimizes ‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖

2. 
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However, the pseudoinverse tends to have stability problems in the neighborhoods of 
singularities. As aforementioned at a singularity, the Jacobian matrix no longer has full 
rank, corresponding to the fact that there is a direction of movement of the end 
effectors which is not achievable. If the configuration is exactly at a singularity, then the 
pseudoinverse method will not attempt to move in an impossible direction, and the 
pseudoinverse will be well-behaved. However, when the configuration is close to a 
singularity, then the pseudoinverse method will lead to very large changes in joint 
angles, even for small movements in the target position. In practice, roundoff errors 
mean that true singularities are rarely reached and instead singularity have to be 
detected by checking values for being near-zero. Normally this happened by detecting 
the magnitude of the determinant reaching below a specified value. Mathematicians 
do not have this problem since zero means zero and nothing else. But when performing 
numerical calculation as in the case of controlling a robot via a computer these tiny 
numbers become significant (by tiny it is assumed any number which is in the same 
order as ‖𝑱‖ ∙ 𝑒 (norm of 𝑱 times the machine precision 𝑒). Unfortunately, the Moore-
Penrose inverse often depends on the way "tiny" is defined. 
  

3.2.3: Damped Least Squares (DLS) 
 
The damped least squares (DLS) method avoids many of the pseudoinverse method's 
problems with singularities and can give a numerically stable method of selecting 𝛿𝒒. 
Damped least squares is a widely adopted approach which produces a modified 
Jacobian matrix that remains well-conditioned near singularity at the expense of 
exactness of the inverse kinematic solution to. It is also called the Levenberg-Marquardt 
method and was first used for inverse kinematics by Wampler[14]  and Nakamura and 
Hanafusa[13]  in 1986. 
 
Instead of finding the minimum vector 𝛿𝒒 that gives a best solution for  
 

𝛿𝒙𝐸 = 𝑱𝛿𝒒 
 
we look for the value of 𝛿𝒒 that minimize the norm of the residual tracking error 
combined with a term relating to the magnitude of the joint velocities. Mathematically 
this problem is expressed as 
 

min{‖𝑱𝛿𝒒 − 𝛿𝒙𝐸‖
2 + 𝜆2𝛿𝒒2} 

 
Which equals to minimizing the quantity 
 

‖(
𝑱
𝜆𝑰
) 𝛿𝒒 − (

𝛿𝒙𝐸
0
)‖ 

 
The corresponding normal equation is 
 

(
𝑱
𝜆𝑰
)
𝑇

(
𝑱
𝜆𝑰
) 𝛿𝒒 = (

𝑱
𝜆𝑰
)
𝑇

(
𝛿𝒙𝐸
0
) → (𝑱𝑇𝑱 + 𝜆2𝜤)𝛿𝒒 = 𝑱𝑇𝛿𝒙𝐸 
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And the damped least squares solution is equal to 
 

𝛿𝒒 = (𝑱𝑇𝑱 + 𝜆2𝜤)−1𝑱𝑇𝛿𝒙𝐸   

 
As (𝑱𝑇𝑱 + 𝜆2𝜤) is nonsingular. Because (𝑱𝑇𝑱 + 𝜆2𝜤)−1𝑱𝑇 = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1, the 
damped least squares solution can be also expressed as 
 

𝛿𝒒 = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1𝛿𝒙𝐸 
 
Thus, 
 

𝒒̇ = 𝑱∗𝝂𝑒 

where 𝑱∗ = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1 

 

with 𝑱∗ being what is called the damped inverse of Jacobian 𝑱. The term 𝜆 ∈ ℝ is a non-
zero damping constant that sets a weighting to the velocity component. 
 
Then question that comes up is which of the two expressions is preferable to use for 
𝑱∗. In general, the last expression is preferable in most robotics’ applications. The matrix 
being inverted is only 𝑚 ×𝑚 where 𝑚 =  3𝑘 is the dimension of the space of target 
positions, and 𝑚 is often much less than 𝑛, as most manipulators in question are 
redundant manipulators. However, that is not the case with the RM-501 robot as the 
𝑛 = 5, the degrees of freedom and 𝑚 = 6, the dimensions of the task space (3 for 
position and 3 for orientation). 
 
The specific expression and formulation of DLS is a special case of a more general form 
that includes weighting of the task and joint space dimensions [15] . In the form shown 
each task-space and joint-space dimension is given unit weighting.  
 
A larger damping parameter 𝜆 improves the manipulator behavior near singularities at 
the expense of tracking performance. The damping constant should be big enough so 
that the solutions for 𝛿𝒒 are well-behaved near singularities, but not too much because 
then the convergence rate is too slow. So, selecting the right damping parameter is 
crucial to achieve the desirable robot performance. 
 

Using a constant damping factor has the disadvantage of compromising one 
performance factor to improve another and it can be difficult to achieve both good 
tracking performance when far from singularity and stable behavior near singularity. 
Another approach has been proposed that dynamically adjust the damping according 
to factors such as the condition of the Jacobian. There have been a multitude of 
methods proposed for selecting damping constants dynamically based on the 
configuration of the manipulator. Special attention is given to selectively damped least 
squares and approach by Buss and Kim [16]  where all singular values are damped based 
on the difficultly in reaching the target position. A second approach even older in grasp 
with many different applications is utilizing the manipulability of the robot. Nakamura 
and Hanafusa[13] proposed a damping factor that adjusts according to a measure of 
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robot manipulability √det(𝑱𝑱𝑇) which will be defined later. Kelmar and Khosla[19]  
utilized a dynamic damping factor based on the rate of change of the manipulability 
measure. 
 

3.2.4: Singular Value Decomposition (SVD) 
 
Firstly, we need to examine what Singular Value Decomposition is, how it works and 
then how it is applied in similar configurations. Rather than a method, we can say that 
it is mostly a tool providing insight of manipulator singularities and used in combination 
with a method for dealing with them like the aforementioned and provides insight into 
the degeneration that occurs near singularity by performing eigenvalue analysis in 
Robotics, a task rather troublesome and of significant value. 
 
As mentioned, the geometric jacobian  𝑱 is a real 𝑚 × 𝑛 matrix, so by default it can be 
expressed as 
 

𝑱 = 𝑼𝜮𝑽𝑇 
Where 
 

𝑼 = [𝒖1, 𝒖2, …𝒖𝑚 ] ∈ ℝ
𝑚×𝑚 

𝑽 = [𝒗1, 𝒗2, … 𝒗𝑚 ] ∈ ℝ
𝑛×𝑛 

 
Orthogonal matrices and 𝜮 with a “diagonal-ish” format matrix: 
 

𝜮 =

[
 
 
 
 
 
𝜎1 0 0 ⋯ 0
0 𝜎2 0 ⋯ 0
0 0 𝜎3 ⋯ 0
0 0 0 ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 𝜎𝜅
0 0 0 ⋯ 0 ]

 
 
 
 
 

 

 
Where 𝜎𝑖 ≥ 𝜎𝑖+1 ≥ 0 with 𝜅 = min{𝑚, 𝑛} = 𝑛 in our case, the singular values of the 
jacobian. At this point we can introduce a number that is used a meter of the 
performance  
 

𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

= condition number of the Jacobian 

 
The numerical value of the singular values is exactly the positive square root of the 
common (always greater than or equal to zero) eigenvalues of the square matrices 𝑱𝑇𝑱 
and 𝑱𝑱𝑇. This is a property that holds for any matrix based on results of the symmetric 
eigenvalue problem. As it becomes clear the computation of the five eigenvalues and 
subsequently the singular values this way is very mathematically taxing. 
 
At singularity the smallest singular values become equal to zero, and motions along the 
corresponding spatial directions are no longer possible. The SVD of the inverse  
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𝑱−𝟏 = 𝑽𝜮−1𝑼𝑇 
 
With 𝜮−1 ∈ ℝ𝑛×𝑚 being 
 

𝜮−1 =

[
 
 
 
 
 
 
 
 
 
1

𝜎1
0 0 0 ⋯ 0

0
1

𝜎2
0 0 ⋯ 0

0 0
1

𝜎3
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
1

𝜎𝜅
0
]
 
 
 
 
 
 
 
 
 

 

 
 
The main diagonal elements contain the reciprocal of each singular value. Since 𝜎𝜅 
approaches zero at singularity it becomes apparent how the inversion becomes 
numerically unstable. 
 

• A very convenient property of the SVD is that it can be applied on the 
pseudoinverse of a matrix whether it is rank deficient or not. So, if 𝑱 = 𝑼𝜮𝑽𝑇 
then its pseudoinverse is  

 

𝑱† = 𝑼𝜮†𝑽𝑇 
With  

 

𝜮† =

[
 
 
 
 
 
 
 
 
 
1

𝜎1
0 0 0 ⋯ 0

0
1

𝜎2
0 0 ⋯ 0

0 0
1

𝜎3
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
1

𝜎𝜅
0
]
 
 
 
 
 
 
 
 
 

∈ ℝ𝑛×𝑚 

 
 

If a singular value is exactly zero, meaning that 𝑟𝑎𝑛𝑘(𝑱)  =  𝑟 <  𝑛 then the 

corresponding 𝜎𝑖  is replaced by a zero in 𝜮†. Since the values for which the 
singular values become zero are known from eigenvalues then the predictions 
regarding when to replace them are possible. 

 

• Performing the dumped least squares in conjunction with the SVD approach we 
can extract valuable information. 
 

𝑱𝑱𝑇 + 𝜆2𝜤 = (𝑼𝜮𝑽𝑇)(𝑽𝜮𝛵𝑼𝑇) + 𝜆2𝜤 = 𝑼(𝜮𝜮𝛵 + 𝜆2𝜤)𝑼𝑇 
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The matrix 𝜮𝜮𝛵 + 𝜆2𝜤 is the diagonal matrix with entries 𝜎𝑖
2 + 𝜆2, with 𝜆 the 

dumping constant. 𝜮𝜮𝛵 + 𝜆2𝜤 is non-singular, and its inverse is the diagonal 

matrix with non-zero entries (𝜎𝑖
2 + 𝜆2)−1. 𝑆𝑜 

 

𝑱∗ = 𝑱𝑇(𝑱𝑱𝑇 + 𝜆2𝜤)−1 = 𝑽𝜮𝛵(𝜮𝜮𝛵 + 𝜆2𝜤)−𝟏𝑼𝑇 = 𝑼𝜮∗𝑽𝑇 

 

Where 𝜮∗ is the diagonal matrix with entries 
 

𝜎𝑖,𝑖
∗ =

𝜎𝑖

𝜎𝑖
2 + 𝜆2

 

 
Thus, in general 
 

𝜮∗ =

[
 
 
 
 
 
 
 
 
𝜎1

𝜎1 + 𝜆2
0 0 0 ⋯ 0

0
𝜎2

𝜎2 + 𝜆2
0 0 ⋯ 0

0 0
𝜎3

𝜎3 + 𝜆2
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋯ ⋮

0 0 ⋯ 0
𝜎𝜅

𝜎𝜅 + 𝜆2
0
]
 
 
 
 
 
 
 
 

 

 
The effect of the damping term 𝜆 is such that for values of 𝜎𝑖 ≫ 𝜆, which means 
far away from a singularity the DLS method is very close to the pseudoinverse 

method. The main diagonal elements of 𝜮∗are similar to 𝜮−𝟏 resulting in the 
robot performing as if little to no damping is applied.  

 
𝜎𝑖

𝜎𝑖
2 + 𝜆2

≈
𝜎𝑖

𝜎𝑖
2 =

1

𝜎𝑖
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Figure 6: Comparison of  damped least-squares to least-squares[20]  

 
As the robot approaches singularity (𝜎𝑖 → 0), the denominator of the 
undamped diagonal term approaches zero, whereas with damping this 
denominator approaches 𝜆2 and hence the term remains numerically stable. 
Thus, the damped least squares method tends to act similarly to the 
pseudoinverse method away from singularities and effectively smooths out the 
performance of pseudoinverse method in the neighborhood of singularities. 

 

3.2.5: Manipulability 
 
Manipulability expresses whether a manipulator at a non-singular state is close to 
becoming singular. In fact, one can even determine the directions in which the end-
effector’s ability to move is diminished, and to what extent.  
 
A tool to visualize manipulability is the manipulability ellipsoid which indicates 
geometrically the directions in which the end-effector moves with least effort or with 
greatest effort. The end-effector has better capacity of motion in the direction of the 
major axis of the ellipsoid. Additionally, the direction of the minor axis represents the 
direction with worse capacity of developing speed.  
 
One measure of a robot’s manipulability is given by the condition number as defined 
before -the ratio of the Jacobian’s maximum to the minimum singular -. The closer to 
one the condition number is, the more isotropic the ellipsoid is which means that the 
ellipsoid tends to become a circle (planar configuration) or sphere (in 3D). Therefore, 
for a robot, it is preferable the diagonal eigenvalue matrix to approximate the identity 
matrix. When the ellipsoid tends to become increasingly anisotropic then the Jacobian 
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matrix may become singular (which is bad) or approach a singular matrix or badly-
behaved matrix. 
 

𝜔1 =
𝜆𝑚𝑎𝑥(𝑱𝑱

𝑇)

𝜆𝑚𝑖𝑛(𝑱𝑱𝑇)
≥ 1 

 
The condition number expresses the ratio of the longest and shortest semi-axes of the 
manipulability ellipsoid, which itself can pose as a measure. In both case values closer 
to 1 are preferable.  
 
Another measure of manipulability, which was proposed by Yosikawa[20]  is 
proportional to the volume of the manipulability ellipsoid   
 

𝜔2 = √𝜆1𝜆2… = √det(𝑱𝑱𝑇) 

 
In this case, unlike the previous, in this case, the larger the value is, the better for the 
manipulator. The manipulability measure 𝜔, has the property that 𝜔 = 0 holds if and 

only if 𝑟𝑎𝑛𝑘(𝑱) = 𝑟 < 𝑛 (when 𝑱 is not full rank). Thus, if 𝑆 ∶= √det(𝑱𝑱𝑇) = 0 a 
singularity occurs which corresponds to a fully flattened ellipsoid. 
 

3.2.6: Trajectory Replanning 
 
The most common and convenient way of dealing with singularities is simply avoiding 
singular configurations during the planning stage. Cases where motion and path 
commands are generated in real-time, as is typically the case during physical human–
robot interaction and other advanced applications, are not able to use this approach. 
However, especially for industrial manipulators that can have preplanned initial and 
final configurations, it lies on the programmer’s abilities to avoid the troublesome 
singular configurations.  
 
From the designer’s point of view, identifying singular configurations is crucial and 
especially detecting the singular values of the jacobian in advance is the best course of 
action in the specific application that we examine. So, the next sub-chapter will cover 
this issue. 
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3.3: Singularity Analysis 
 
Singularity analysis as mentioned before is the first step right after identifying the 
jacobian matrix as it gives great insight on the behavior of the manipulator and is then 
followed by the inverse differentiation. In fact, that was the case with this work as well, 
but the final of choice of using trajectory replanning and not another method like the 
ones mentioned above which mainly are implemented on a numerical background with 
iterative techniques pushed the singularity analysis chapter to a later chapter.  
 
It is worth mentioning that SVD as presented above is the most used method. This a 
result of the increase in computational power in the past years, thus making its use very 
efficient which led to it being implemented by default in many mathematical packages 
along with the great properties of this decomposition. Apart from that symbolic 
methods can be unreliable when applied to floating point computations among other 
things like dependencies in a matrix which are masked by measurement error -
problems that SVD bypasses. All in all, for performing eigenvalue-singularity analysis in 
Robotics, SVD is an excellent candidate to assist in. However, computational power and 
most importantly the fact that everything has to be implemented on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 which 
means utilizing its existing tools as they are pushes us to finding singularities analytically 
for reasons that will become even more clear in the later chapter regarding the 
software system itself and configuring it to our needs. 
 
It is known that whenever a matrix is singular it loses its rank and its determinant 
becomes zero. However, 𝑱 is a rectangular matrix, thus its determinant cannot be 
defined. So, a new approach is needed and a rank-deficiency criterion is developed.  
That methodology takes advantage of the fact that when a rectangular matrix loses 
rank, all square sub-matrices of the same dimension as the lower dimension of the 
rectangular matrix also become singular. The possible combination of joint angles that 
lead to matrix rank deficiency is called the rank-deficiency locus and for the rectangular 
matrix is the intersection of the singularity loci of the square submatrices resulting from 
all possible combinations of rows of 𝑱(𝒒𝑚), meaning: 
 

𝑺 =⋂ 𝑺𝑠𝑞𝑖
𝑖

 

Where singularity set for a square matrix 𝑨 
 

𝑺𝑠𝑞 = {𝒒
∗| det(𝑨(𝒒∗)) = 0} 

 
As an alternative method the Singular Vector Method[21]  can be used, which offers the 
advantage of applicability on symbolic matrices of any row and column dimension. Its 
implementation produced the same results. 
 
The square submatrices are constructed by removing the 𝑖𝑡ℎ row each time from the 
original jacobian matrix and finding the singularity locus by equating its determinant to 
zero as follows: 
 

𝑺𝑠𝑞𝑖 = {𝒒𝑚
∗ ∈ ℝ𝑛| det (𝑱𝑠𝑞𝑖(𝒒𝑚

∗ )) = 0} , 𝑖 = 1…6 
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1. Removing row 1: 
 

det(𝑱𝑠𝑞1) = 𝑎2𝑎3𝑠1𝑠3𝑠234 

det(𝑱𝑠𝑞1) = 0 ⟺ {sin(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 } ⟹ 

𝑺𝑠𝑞1 = {𝑞1 = 0 ∨  𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = 0. 𝜋} 

 

2. Removing row 2: 

 

det(𝑱𝑠𝑞2) = 𝑎2𝑎3𝑐1𝑠3𝑠234 

det(𝑱𝑠𝑞2) = 0 ⟺ {cos(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 } ⟹ 

𝑺𝑠𝑞1 = {𝑞1 = ±
𝜋

2
 ∨  𝑞3 = 0 ∨ 𝑞2 + 𝑞3 + 𝑞4 = 0. 𝜋} 

 
 
3. Removing row 3: 

 
det(𝑱𝑠𝑞3) = 0 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 

 
4. Removing row 4: 
 

det(𝑱𝑠𝑞4) = −𝑎2𝑎3𝑐234𝑐1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 

det(𝑱𝑠𝑞3) = 0 ⟺ {cos(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ cos(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨  

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹ 

𝑺𝑠𝑞1 = {𝑞1 = ±
𝜋

2
 ∨  𝑞3 = 0 ∨  𝑞2 + 𝑞3 + 𝑞4 = ±

𝜋

2
 ∨  

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} 

 
 
5. Removing row 5: 
 

det(𝑱𝑠𝑞5) = 𝑎2𝑎3𝑐234𝑠1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 

det(𝑱𝑠𝑞3) = 0 ⟺ {s𝑖𝑛(𝑞1) = 0 ∨ sin(𝑞3) = 0 ∨ cos(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨  

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹ 

𝑺𝑠𝑞1 = {𝑞1 = 0 ∨  𝑞3 = 0 ∨  𝑞2 + 𝑞3 + 𝑞4 = ±
𝜋

2
 ∨  𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} 

 

 
6. Removing row 6: 
 

det(𝑱𝑠𝑞6) = −𝑎2𝑎3𝑠234𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 

det(𝑱𝑠𝑞3) = 0 ⟺ {sin(𝑞3) = 0 ∨ sin(𝑞2 + 𝑞3 + 𝑞4) = 0 ∨  

𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0} ⟹ 

𝑺𝑠𝑞1 = {𝑞3 = 0 ∨  𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∨ 𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234 = 0}
2 

 
2 All calculations are presented in the Appendix (A) 
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Seeking simultaneous solutions by: 

• Discarding all angles that were not compatible with the joint limits discarded 

immediately. 

• Loci that are subsets of others are merged into the bigger-parent- set. 

 

And finally, the intersection of the subjacobians’ singularity loci is found: 

 

𝑺 = {𝑞3 = 0 ; 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∧ 𝑎2𝑐2 + 𝑎3𝑐4 = 0} 
 

The first condition is quite easy to understand as the common term in every single locus 

is 𝑞3 = 0. This condition represents the so-called elbow singularity. When this holds 

then there exists a rank deficiency and the rank of the jacobian drops from by 

1  (𝑟𝑎𝑛𝑘(𝑱) = 4).  

 

To understand this better, a singularity decoupling will be used. The two parts of the 

jacobian, the translational and rotation, come into discussion. The translational part 

of the arm’s linear velocity, which involve the waist, the shoulder and the elbow, is 

𝒋11. So, the translational part 𝑱𝑃 of the jacobian is: 

 

𝑱𝑃 = [𝑱11  𝑱12] 

 

Where 𝑱11 is the upper 3 × 3 submatrix: 

 

𝑱𝟏𝟏 = [𝑱𝑃1 𝑱𝑃2 𝑱𝑃3] 

 

From singularity decoupling [6] , the same singularity condition pops us (𝑠3 = 0). In such 

configuration, the loss of one degree of freedom stems from link 3 aligning with link 2 

as illustrated in the figure below. 

 
Figure 7: Elbow Singularity 
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For the second condition we can identify that except for the term 𝑠3, the term that is 

present to all is the 𝑠234 one. If 𝑠234 = 0, it means that 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 and in 

order for all submatrices to have at least a common zero term so that an intersection 

exist it must be 

 

{
𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234 = 𝑎2𝑐2 + 𝑎3𝑐23 = 0

𝑞2 + 𝑞3 = −𝑞4
} ⟹ 𝑎2𝑐2 + 𝑎3𝑐4 = 0 

 

Thus, the condition 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 nulls the determinants of all sub-matrices as 
long as the extra mandatory condition 𝑎2𝑐2 + 𝑎3𝑐4 = 0 Is met. Again, the rank is 
reduced to 4. 
 
By the singularity decoupling the two condition can be clearer as the condition 
represent projection of the forearem and upper arm onto the 𝑥 axis. If they sum to 0, 
then arm is over the origin, and joint 1 loses its ability to position the robot. As shown 
in the figures below, joint 1 at first loses its ability to define the position of the end-
effector and next it cannot define the orientation neither. Obviously the second case is 
a subcategory of the first (subset of the “parental” loci). 
 

 
 (a): Joint 1 position definition inability 

 
 (b): Joint 1 position & orientation definition inability 

Figure 8: Shoulder Singularity 
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If all conditions, 𝑞3 = 0, 𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 and 𝑎2𝑐2 + 𝑎3𝑐4 = 0  are met 
simultaneously then the rank drops to 3. 
 

 
Figure 9: Double Singularity (Elbow & Shoulder) 

 
To summarize the rank-deficiency locus of the original Jacobian is: 
 

𝑺 = {

𝑞3 = 0, 𝑟𝑎𝑛𝑘(𝑱) = 4

𝑞2 + 𝑞3 + 𝑞4 = 0, 𝜋 ∧  𝑎2𝑐2 + 𝑎3𝑐4 = 0, 𝑟𝑎𝑛𝑘(𝑱) = 4  

  𝑟𝑎𝑛𝑘(𝑱) = 3 if both of the above are true

} 
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Chapter 4: TRAJECTORY PLANNING 
 
A robot controller typically accepts a steady stream of desired robot configurations, 
reads joint sensors to determine the robot's actual configuration, and updates the 
actuator commands to follow the desired configuration. This process can happen 
thousands of times a second. A robot configuration as a function of time is called a 
trajectory. 
 

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦: 𝒒(𝑡), 𝑡𝜖[t0, tf] 
 
where is the time 𝑡 goes from 𝑡0 to capital 𝑡𝑓 such that the robot moves from 𝒒(𝑡0) =

𝒒0 to 𝒒(𝒕𝒇) = 𝒒𝑓  the initial and final configuration respectively. The same can be 

applied in the cartesian position 𝒙.  
 
A path denotes the locus of points in the joint space, or in the operational space, which 
the manipulator has to follow in the execution of the assigned motion; a path is then a 
pure geometric description of motion. Mathematically is defined to be a curve in 
configuration space as a function of a path parameter, 𝑠 ∈ [0,1] 
 

𝑝𝑎𝑡ℎ: 𝒒(𝑠), 𝑠 ∈ [0,1] 
 
As s increases from zero, the robot moves from the start configuration at 𝒒(𝑠 = 0) to 
the end configuration at 𝒒(𝑠 = 1). A path can be turned into a trajectory by defining a 
time scaling function 𝑠(𝑡), which maps the time range [0, 𝑇] to the path parameter 
range [0,1]. 
 

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦: 𝒒(𝑠(𝑡)), s: [t0, tf] ⟶ [0,1] 

 

When designing a path what we need to take in careful consideration is whether it 
happens in joint space or cartesian workspace.  
 

4.1: Joint Space Trajectories 
 
If it is desired to plan a trajectory in the joint space, the values of the joint variables 
have to be determined first from the end-effector position and orientation specified by 
the user. The general procedure of planning a trajectory is depicted in the figure below 
and can be accomplished by implementing various methods which will be mentioned 
later in this chapter. The inputs are the joint positions and velocities 𝑞𝑎, 𝑞𝑏 , … , 𝑞𝑎̇, 𝑞𝑏̇ , … 
and the output is the trajectory of each joint, 𝒒𝑑(𝑡). Those trajectories are later sent 
as inputs to the robot controller which drives the robot via electric signals to the 
motors. 
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Figure 10: Trajectory planning in joint space 

 
The planning algorithm generates a function q(t) interpolating the given vectors of joint 
variables at each point, in respect of the imposed constraints at each iteration. 
 
In general, a joint space trajectory planning algorithm is required to have the following 
features: 

• the generated trajectories should be not very computationally demanding  

• the joint positions and velocities should be continuous functions of time 
(continuity of accelerations may be imposed, too), 

• undesirable effects should be minimized, e.g., nonsmooth trajectories 
interpolating a sequence of points on a path. 

 
We suppose that at time 𝑡0 the joint variables satisfy 
 

𝑞(𝑡𝑜) = 𝑞0 
𝑞̇(𝑡0) = 𝜐0 

 
And for the target position 
 

𝑞(𝑡𝑓) = 𝑞𝑓 

𝑞̇(𝑡𝑓) = 𝜐𝑓 

 
There is also a case that initial and final acceleration is defined. 
 

4.1.1: Cubic Polynomials 
 
One way to generate a smooth curve is by a polynomial function of t. Since we have 
four constraints to satisfy, we require a polynomial with four independent coefficients 
that can be chosen to satisfy these constraints. Thus, we consider a cubic trajectory of 
the form 
 

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 
 
Subsequently the velocity and acceleration along the path are 

𝑞̇(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 
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𝑞̈(𝑡) = 2𝑎2 + 6𝑎3𝑡 
 
Combining the above equations with the four desired constraints we can find the values 
of the four unknown coefficients by solving the 4𝑥4 system: 
 

𝑎0 = 𝑞0 
𝑎1 = 𝑞̇0 

𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0 = 𝑞𝑓 

3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1 = 𝑞̇𝑓 

 
The most usual case is to assume zero initial and final velocities and starting movement 
at zero time and thus the coefficients are found 
 

𝑎0 = 𝑞0 
𝑎1 = 0 

𝑎2 =
3

𝑡𝑓
2 (𝑞𝑓 − 𝑞0) 

𝑎3 = −
2

𝑡𝑓
3 (𝑞𝑓 − 𝑞0) 

 
The general solution can be seen in Appendix (B). 
 

4.1.2: Higher-order Polynomial  
 
If it is desired to assign also the initial and final values of acceleration, six constraints 
have to be satisfied instead of two and so 4 coefficients then a polynomial of at least 
fifth order is needed. The motion timing law for the generic joint is then given by 
 

𝑞(𝑡)  =  𝑎5𝑡
5  +  𝑎4𝑡

4  +  𝑎3𝑡
3  +  𝑎2𝑡

2  +  𝑎1𝑡 + 𝑎0 
 
whose coefficients can be computed, as for the previous case, by imposing the 
conditions for 𝑡 =  0 and 𝑡 =  𝑡𝑓 on the joint variable 𝑞(𝑡) and on its first two 

derivatives.  
  
In general, to satisfy 𝑛 + 1 conditions, a polynomial path of degree n is required.  The 
conditions can refer either to positions at a series of points, so that the trajectory will 
pass through all specified points; or position, velocity, acceleration, and jerk at two 
points, so that the smoothness of the path can be controlled.  
 
However, this a very computationally heavy approach even though it degenerates to a 
set of algebraic equations. That’s why the path planning can be simplified by splitting 
the whole path into a series of segments and utilizing combinations of lower order 
polynomials for different segments of the path. The polynomials must then be joined 
together to satisfy all the required boundary conditions. 
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4.1.3: Trapezoidal Velocity Profile (LSPB) 
 
LSPB stands for Linear Segments with Parabolic Blends and is another method of 
trajectory generation in joint space. Mathematically it is much easier to describe and 
solve that why it’s a perfect candidate for an industrial application. Apart from the 
computational reasons, there is another major asset in this method: it allows a direct 
verification of whether the resulting velocities and accelerations can be supported by 
the physical mechanical manipulator. Actually, it is the one that 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 utilizes. 
 
The first approach is to use linear functions to move from 𝑞0 to 𝑞𝑓, so the velocity is 

constant during the whole movement. But this would suggest that the acceleration 𝑞̈ 
at the beginning and at the end of the movement is mathematically infinite -practically 
too large-. This would burden the mechanical system of the manipulator because of 
oscillations and oscillations affecting its accuracy.  
 

 
Figure 11: Position, Velocity and Acceleration with Trapezoidal Velocity Profile [6]  



46 
 

The trapezoidal velocity profile imposes a constant acceleration in the start phase, a 
cruise velocity, and a constant deceleration in the arrival phase. The resulting trajectory 
is formed by a linear segment connected by two parabolic segments to the initial and 
final positions. It is assumed that acceleration and deceleration time are equal, which 
suggests that the value 𝑞𝑐̈ is the same magnitude. This leads to a symmetric trajectory 
with respect to the average point  
 

𝑞𝑚 =
𝑞0 + 𝑞𝑓

2
 at  𝑡𝑚 =

𝑡𝑓

2
 

 
The time of acceleration and deceleration is 𝑡𝑐 and for smooth transition some 
constrains have to be satisfied. At the end of the parabolic segment (𝑡𝑐) the velocity 
must be equal to the velocity of the linear segment: 
 

𝑞𝑐̈𝑡𝑐 =
𝑞𝑚 − 𝑞𝑐
𝑡𝑚 − 𝑡𝑐

 

 
For the parabolic segment with constant acceleration 𝑞𝑐̈: 
 

𝑞𝑐 = 𝑞0 +
1

2
𝑞𝑐̈𝑡𝑐

2 

 
By combining these two equations 
 

𝑞𝑐̈𝑡𝑐
2 − 𝑞𝑐̈𝑡𝑓𝑡𝑐 + 𝑞𝑓 − 𝑞0 = 0 

𝑞𝑐̈ = 𝑠𝑖𝑔𝑛(𝑞𝑓 − 𝑞0)|𝑞𝑐̈| 

 
Solving for the acceleration time 
 

𝑡𝑐 =
𝑡𝑓

2
− √

𝑡𝑓
2𝑞𝑐̈ − 4(𝑞𝑓 − 𝑞0)

2𝑞𝑐̈
 

 
The time of the parabolic part 𝑡𝑐 is different for each joint, but the total movement time 
of its joint is common, equal to the total time of the trajectory 𝑡𝑓. The above equation 

contains a slightly covert constraint regarding 𝑞̈𝑐 that is allowed to be used. Indeed, for 
the quantity under the square root to be positive, acceleration (or deceleration) need 
to be bigger than a value 𝑞̈𝑚𝑖𝑛   
 

𝑞̈𝑚𝑖𝑛 =
4(𝑞𝑓 − 𝑞0)

𝑡𝑓
2 ≤ |𝑞̈𝑐| ≤ 𝑞̈𝑚𝑎𝑥 

 
The closer 𝑞̈𝑐 gets to its minimum value the less time the joint has to move at its top 
speed so the constant velocity segment keeps shrinking. At the equality the resulting 
trajectory does not feature the constant velocity segment anymore and has only the 
acceleration and deceleration segments (triangular profile). 
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All in all, the trajectory is produced 
 

𝑞(𝑡) =

{
 
 

 
 𝑞0 +

1

2
𝑞𝑐̈𝑡

2 0 ≤ 𝑡 ≤ 𝑡𝑐

𝑞0 + 𝑞𝑐̈𝑡𝑐 (𝑡 −
𝑡𝑐
2
) 𝑡𝑐 < 𝑡 ≤ 𝑡𝑓 − 𝑡𝑐

𝑞𝑓 −
1

2
𝑞𝑐̈(𝑡𝑓 − 𝑡)

2
𝑡𝑓 − 𝑡𝑐 < 𝑡 ≤ 𝑡𝑓
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4.2: Operational Space Trajectories 
 
A joint space trajectory planning algorithm generates a time sequence of values for the 
joint variables 𝑞(𝑡) so that the manipulator is taken from the initial to the final 
configuration, eventually by moving through a sequence of intermediate 
configurations. The resulting end-effector motion is not easily predictable, in view of 
the nonlinear effects introduced by direct kinematics. Whenever it is desired that the 
end-effector motion follows a geometrically specified path in the operational space, it 
is necessary to plan trajectory execution directly in the same space as joint space 
planning is not enough.  
 
The general walkthrough of trajectory planning directly in operational space can be 
summarized in the following figure. This procedure precedes the transformation of 𝑻 

𝑆
𝑇 

 

 
Figure 12: Operation space trajectory planning procedure 

 
For reducing the complexity, we assume that the desired path is linear in Cartesian 
Space and we want the orientation of the end-effector to change smoothly along the 
path. As mentioned in previous chapter the path standards (position and orientation) 
for each point 𝑖 of the path is given by a transformation matrix 𝑇 

𝑆
𝑇,𝑖. Interpolation is 

not viable with matrices and thus those standards have to be transformed to a cartesian 
vector 𝑿 with dimensions 6 × 1. 
 

𝑻𝑇,𝑖 
𝑆 = [

𝑹𝑖 𝒅𝑖
0 1

] = [
𝑹𝑖(𝜑𝑖) 𝒅𝑖
0 1

] 

 

Thus, the vector 𝑿 is constructed as: 

 

𝑿𝑖 = [
𝒅𝑖
𝒌𝑖𝜑𝑖

] = [𝑑𝑥𝑖 𝑑𝑦𝑖 𝑑𝑧𝑖 𝑘𝑥𝑖𝜑 𝑘𝑦𝑖𝜑 𝑘𝑧𝑖𝜑]
𝛵 

 
It is noted that there is no single solution on the respective axis for the angle as 
 

𝑹𝑖(𝜑𝑖) = 𝑹𝑖(𝜑𝑖 +𝑚 ∙ 360
𝑜),𝑚 = 1,2, … 

 
After calculating 𝑿𝑖  for a point 𝑖, the 𝒌𝑖+1, 𝜑𝑖+1 elements are chosen so we don’t have 
major deviances orientation-wise. 
 

‖𝒌𝑖𝜑𝑖 − 𝒌𝑖+1𝜑𝑖+1‖ = 𝑚𝑖𝑛 
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For a linear movement in cartesian space, linear and parabolic segments are used, but 
with the same interpolation time for all 6 cartesian elements of 𝑿𝑖. Otherwise the path 
will not be linear. The path 𝑿(𝑡) that is produced however cannot be inserted to the 
controller straight ahead as the robot can only interpret commands intended for its 
actuators. Thus, the inverse kinematics of the manipulator are used in order to 

calculate joint space trajectories 𝜽̇(𝑡). This procedure is presented below: 
 

𝑿(𝑡) ⟶ 𝑻(𝑡)
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠
→              𝜽̇(𝑡) 

𝜽̇(𝑡) =
𝜽(𝑡) − 𝜽(𝑡 − 𝑑𝑡)

𝑑𝑡
 𝑜𝑟 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 

𝜽̈(𝑡) =
𝜽̇(𝑡) − 𝜽̇(𝑡 − 𝑑𝑡)

𝑑𝑡
 

 

where 𝑑𝑡 is the iteration step of the computer and these commands are in turn sent to 

the controller of the manipulator. 

 

4.2.1: Cartesian Path Problems 
 
In general, there are three types of problems that need to be taken into account: 
 

1. Intermediate points are unreachable. 
 
When producing path in Cartesian space and disregard the specifics of the manipulator 
that is intended for, then the path is possible to be impossible to follow as it passes 
through positions that don’t belong to its operational space.  
 

 
Figure 13: Intermediate positions outside of operational space [5]  

 
To bypass this a message is sent to the user that notifies him that the path is impossible. 
 

2. High Joint rates near Singularity 
 
If a manipulator is following a Cartesian straight-line path and approaches a singular 
configuration of the mechanism, one or more joint velocities might increase toward 
infinity as it became apparent in previous chapter. Because velocities of the mechanism 
are upper bounded, this situation usually results in the manipulator's deviating from 
the desired path. Apart from that the violent acceleration can have unpredictable 
effect. 
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Figure 14:Endeffector passing close to Singularity [5]  

 
A possible solution was discussed earlier on how to handle the inversion of the 
Jacobian. A more practical application is to progressively lower the speed. This would 
result in moving away from the specifications for the movement, time wise but without 
deviation from the desirable path. 
 

3. Start and goal reachable in different solutions 
 
The manipulator can reach all points of the path in some solution, but not in any one 
solution. In particular, a problem will arise if the goal point cannot be reached in the 
same physical solution as the robot is in at the start point. 
 

 
Figure 15: Goal position reachable in different solution[5]  

The manipulator trajectory planning system can detect this problem without ever 
attempting to move the robot along the path and can signal an error to the user. 
 
To handle these problems with paths specified in Cartesian space, most industrial 
manipulator-control systems support both joint-space and Cartesian-space path 
generation. The user quickly learns that, because of the difficulties with Cartesian 
paths, joint-space paths should be used as the default, and Cartesian-space paths 
should be used only when actually needed by the application. 
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4.3: Path Blending 
 
In most application even geometrically complex movements are analyzed into several 
simpler ones, linear segments to be exact. However, the trajectory generator originally 
has specifications to follow for each linear movement that dictates zero speed at the 
end. So, the movement for the next segment has to start from zero and build up velocity 
again. For a specific segment the speed is limited and the movement has to be able to 
stop within a single segment. In order to have maximum machine speed and assuming 
a triangular velocity profile the segment has minimum length of: 
 

𝑢𝑚𝑎𝑥 = √𝑎𝑚𝑎𝑥𝐿 ⟶ 𝐿𝑚𝑖𝑛 =
𝑢𝑚𝑎𝑥

2

𝑎𝑚𝑎𝑥
 

 
So depending the configuration this step can get quite big, and big segments are 
required to run at maximum speed. 
 
This stop-and-go motion through the waypoint list creates jerky motions with 
unnecessary stops. To avoid such motion a kind of blending is required. This is required 
in both the joint space and Cartesian space trajectories. 
 
 

 
Figure 16: Path blending of linear segments 

 
At this point it is good to introduce jerk which is the rate of change of acceleration. In 
general, infinite jerk, which translates to immediate change in acceleration, provides 
good enough results. Of course, for applications with high accelerations or compliant 
machines such as 3d printers, finite jerk is significantly better, but the benefit at the 
expense of implementation struggle isn't satisfactory enough for standard machines. 
Subsequently the velocity profile will be trapezoidal. However, the improvement lies 
on the optimization based on velocity continuity. This basically means the velocity 
doesn't need to become zero at the end of every segment. 
 
Industry standard blending methods involve non-uniform rational B spline and other 
spline-based approaches like Pythagorean Hodograph, the Hermite spline or Bezier 
curves. All have its unique advantages and attributes but they are challenging to 

https://en.wikipedia.org/wiki/Acceleration
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implement in 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶. Basically, it is velocity optimization problem for lookahead 
velocity planning that allows continuity of velocity 
 

4.3.1: Parabolic Blending 
 
Instead of decelerating to a complete stop, the next segment is activated early so the 
acceleration of the next segment to the desired value and orientation overlaps the 
decelerating of the previous segment and the resulting velocity vector is the sum of 
both the previous and the next segment. What we get is a smooth blend instead of a 
hard stop. The challenge of parabolic blending is deciding when to start executing the 
next segment given a tolerance T, which is the distance of the parabolic arc from the 
hypothetical corner of the segments should they be executed linearly. 
 

 
Figure 17: Parabolic blending 

 
So, if we assume the 3D problem of the end effector moving along the 𝐴𝐵 and then the 
𝐵𝐶 linear paths and we want to avoid stopping or even passing from 𝐵. Then given the 
constant speed 𝑣1 along the linear path 𝐴𝐵 and respective speed 𝑣2 on 𝐵𝐶 and the 
desirable goal is to have constant acceleration for time 𝛥𝛵 then to calculate the over-
fly of point B of the trajectory:  
 

 
Figure 18: Over-fly of point B due to blending 
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The transition from one segment to another starts at 𝑡 = 0 for our convenience: 
 

𝒅(𝑡) = [

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

] , 𝑡𝜖[0, 𝛥𝛵] 

 
We can calculate the unit vectors of direction cosines for the two segments 
 

𝑩 − 𝑨

‖𝑩 − 𝑨‖
= 𝑲̂𝐴𝐵 

𝑪 − 𝑩

‖𝑪 − 𝑩‖
= 𝑲̂𝐵𝐶  

 
 

Then acceleration 𝛼 = 𝑑̈ at each direction 
 

𝑑̈(𝑡) =
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

𝛥𝛵

∫  

→ 𝑑̇(𝑡) = 𝑢1𝐾𝐴𝐵 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

𝛥𝛵
𝑡
∫  

→  

𝑑(𝑡) = 𝐴′ + 𝑢1𝐾𝐴𝐵𝑡 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

2𝛥𝛵
𝑡2 

 
Thus, we obtain a parabolic blending. To solve such an equation there are various 
options. For the general one the distance of segment that is blended: 
 

𝛣 − 𝛢′ = 𝑑1𝐾𝐴𝐵 
𝐶′ − 𝐵 = 𝑑2𝐾𝐵𝐶  

 
At time 𝛥𝛵 the end effector has reached to 𝐶′ 
 

𝑑(𝛥𝛵) = 𝐴′ + 𝑣1𝐾𝐴𝐵𝛥𝛵 +
𝑣2𝐾𝐵𝐶 − 𝑣1𝐾𝐴𝐵

2𝛥𝛵
𝛥𝛵2 = 𝛢′ +

𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶 = 𝐶

′ 

⟶−𝐵 + 𝐴′ +
𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶 = 𝐶

′ − 𝐵 

⟶ 𝑑1𝐾𝐴𝐵 + 𝑑2𝐾𝐵𝐶 =
𝛥𝛵

2
𝑣1𝐾𝐴𝐵 + 𝑣2𝐾𝐵𝐶  

⟶ 𝑑1 = 𝑣1
𝛥𝛵

2
 , 𝑑2 = 𝑣2

𝛥𝛵

2
 

 
And by choosing either one we can find the other. 
 
An alternative solution which is closer the applied one, since it sets even more 

parameters beforehand is found by imposing the acceleration, so ‖𝑑̈(𝑡)‖ = 𝑎𝑚𝑎𝑥. For 

simplicity we can choose 𝑢1 = 𝑢2 = 𝑢 and it can even be 𝑢 = 𝑢𝑚𝑎𝑥. 
 

𝛥𝛵 =
𝑢𝑚𝑎𝑥
𝑎𝑚𝑎𝑥

‖𝐾𝐵𝐶 − 𝐾𝐴𝐵‖ =
𝑢𝑚𝑎𝑥
𝑎𝑚𝑎𝑥

√2(1 − 𝐾𝐵𝐶,𝑥𝐾𝐴𝐵,𝑥 − 𝐾𝐵𝐶,𝑦𝐾𝐴𝐵,𝑦 − 𝐾𝐵𝐶,𝑧𝐾𝐴𝐵,𝑧) 
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Then 
 

𝑑1 = 𝑑2 = 𝑣𝑚𝑎𝑥
𝛥𝛵

2
  

 
An essential requirement for an offline prediction is that the maximum allowed velocity 
and tangential acceleration are needed along the path. Apart from that the distance to 
the end of the path is also required as the question whether at the current speed is 
there enough space to slow down and stop. As a matter of fact, the problem with the 
parabolic blends is the there isn't one explicit path so it's hard to parameterize 
tangential acceleration as well as to know the actual path length. For this reason, 
circular arcs are the prevalent choice. 
 

4.3.2: Circular Blending of Linear Segments 
 
The circular blending method offer some unique advantages. Circular blends are very 
easy to parameterize by arc length since  
 

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑎𝑛𝑔𝑙𝑒 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 
 
Which is exactly the disadvantage of other blending methods. Secondly, it can be 
applied in any arbitrary arc using only 3 values, the start of the blending, the center of 
the circle and the radius. But the most important thing is that the ability to 
parameterize the tangential and normal acceleration independently. Basically, if the 
velocity on an arc of unknown radius is limited then subsequently the normal 
acceleration is bound up to a point, so the rest can be utilized as tangential 
acceleration.3 As an effect there is no need to know the velocity at any point of the 
movement, thus enabling an offline velocity optimization i.e. optimization can be done 
when a new segment is added and after done no further changes are required. 
 

 
Figure 19:  Linear paths with circular arc blending trajectory[22]  

 

 
3 The tangential acceleration is a measure of the rate of change in the magnitude of the velocity vector, 
i.e. speed, and the normal acceleration are a measure of the rate of change of the direction of the velocity 
vector 
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The procedure is very straight forward and it only needs to be used once after a new 
segment is added. By extracting parameters from previous and next segment, the 
geometric constraints of the arc (radius, center and endpoints) can be calculated. Then 
the circular arc can be constructed and be added in place of the now trimmed parts of 
previous and next segment. What we need to make sure is that the newly created 
circular segment does not replace more than half of each of the neighboring linear 
segments because if another blend follows then the continuity of the path will break. 
 
Using the same terminology as in parabolic blending we have the tolerance 𝑇, the arc 
radius 𝑅 ≡ 𝑟𝑖, the intersection point 𝑃 ≡ 𝑞𝑖 which we want to over-fly and when 
moving from 𝑞𝑖−1to 𝑞𝑖+1. The goals are the same as well. The circular arc will start 
tangential to the linear path segment before the waypoint and end tangential to the 
linear path segment after the waypoint and of course velocity and acceleration within 
the limits of the machine.  
 

 
Figure 20: Circular blend around waypoint qi 

 
First the unit vector pointing from 𝐴 to 𝐶 is calculated as before 
 

𝑩 − 𝑨

‖𝑩 − 𝑨‖
= 𝑲̂𝐴𝐵 ≡ 𝒚̂𝑖 =

𝒒𝑖 − 𝒒𝑖−1
‖𝒒𝑖 − 𝒒𝑖−1‖

 

𝑲̂𝐵𝐶 ≡ 𝒚̂𝑖+1 
 
And the angle 𝑎𝑖 between the two adjoining path segments of waypoint 𝐵 ≡ 𝑞𝑖 
 

𝑎𝑖 = arccos (𝒚̂𝑖 ∙ 𝒚̂𝑖+1) 
 
The distance 𝑙𝑖 between waypoint 𝑞𝑖 and the points where the circle touches the linear 
segments is given as 
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𝑙𝑖 = min{
‖𝒒𝑖 − 𝒒𝑖−1‖

2
,
‖𝒒𝑖+1 − 𝒒𝑖‖

2
,
𝛵 sin

𝑎𝑖
2

1 − cos
𝑎𝑖
2

} 

 
where the first two elements give the maximum possible distances such that the 
circular segment does not replace more than half of the adjoining linear segments and 
the last element limits the radius to make sure the circular segment stays within the 
tolerance 𝑇. 
 
To define a circle all is need is its center 𝒄𝑖  and its radius 𝑟𝑖. Of course, the plane on 
which the circle lies is needed as well, i.e. the two orthonormal vectors  𝒙̂𝑖 and 𝒚̂𝑖. So 
since 𝒚̂𝑖 points along the path of the preceding linear path segment, 𝒙̂𝑖 points from 
center of circle to the point where  the circle and the linear segment become tangent. 
 

𝑟𝑖 =
𝑙𝑖

tan
𝑎𝑖
2

 

𝒄𝑖 = 𝒒𝑖 +
𝒚̂𝑖+1 − 𝒚̂𝑖
‖𝒚̂𝑖+1 − 𝒚̂𝑖‖

∙
𝑟𝑖

cos
𝑎𝑖
2

 

𝒙̂𝑖 =
𝒒𝑖 − 𝑙𝑖𝒚̂𝑖 − 𝒄𝑖
‖𝒒𝑖 − 𝑙𝑖𝒚̂𝑖 − 𝒄𝑖‖

 

 
If we introduce the arc length travelled as 𝑠 then 𝑠 has a span from 0 to 𝑎𝑖𝑟𝑖 : 
 

𝑠𝑖 ≤ 𝑠 ≤ 𝑠𝑖 + 𝑎𝑖𝑟𝑖 
 
where 𝑠𝑖 is the start of the circular segment. Thus, the robot configuration 𝒒 for any 
point on the circular segment can be calculated as a function 𝒇(𝑠) of the arc length.  
 

𝒒 = 𝒇(𝑠) = 𝒄𝑖 + 𝑟𝑖 (𝒙̂𝑖 cos (
𝑠

𝑟𝑖
) + 𝒚̂𝑖 sin (

𝑠

𝑟𝑖
)) 

𝒇′(𝑠) = −𝒙̂𝑖 sin (
𝑠

𝑟𝑖
) + 𝒚̂𝑖 cos (

𝑠

𝑟𝑖
) 

𝒇′′(𝑠) = −
1

𝑟𝑖
(𝒙̂𝑖 sin (

𝑠

𝑟𝑖
) + 𝒚̂𝑖 cos (

𝑠

𝑟𝑖
)) 

 
The configuration 𝒒 at a point 𝑠 along the path of length 𝑠𝑓 is given by 

 
𝒒 = 𝒇(𝑠), 𝑤ℎ𝑒𝑟𝑒 𝑓: [0, 𝑠𝑓] ⟶ ℝ𝑛 

 
with 𝑠 being an arbitrary parameter. For our convenience this parameter is chosen to 
be the arc length traveled since the start of the path. 
  
To include the machine acceleration and velocity limits we can define the velocities and 
accelerations with respect to parameter 𝑠 utilizing the chain rule: 
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𝒒̇ =
𝑑

𝑑𝑡
𝒇(𝑠) =
̇ 𝑑

𝑑𝑠
 𝒇(𝑠)

𝑑𝑠

𝑑𝑡
= 𝒇′(𝑠) 𝑠̇ 

𝒒̈ = 𝒇′(𝑠)𝑠̈ +  𝒇′′(𝑠) 𝑠̇2 
 
Following the procedure proposed in [23] the joint acceleration and velocity limits are 
found resulting in the open-source algorithm that the authors propose. Of course, 
acceleration is bound by its electromechanical limits: 
 

−𝑞̈𝑖
𝑚𝑎𝑥 ≤ 𝑞̈𝑖 ≤ 𝑞̈𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ [1, … , 𝑛] 
−𝑞̈𝑖

𝑚𝑎𝑥 ≤ 𝑓𝑖
′(𝑠)𝑠̈ +  𝑓𝑖

′′(𝑠) 𝑠̇2 ≤ 𝑞̈𝑖
𝑚𝑎𝑥 

 
If 𝑓′(𝑠) ≠ 0: 
 

−𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

≤ 𝑠̈ ≤
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

 

 

If 𝑓′(𝑠) = 0 and  𝑓𝑖
′′(𝑠) ≠ 0: 

 

𝑠̇ ≤ √
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′′(𝑠)|

 

 
For the lower and upper limit of the path acceleration 𝑠̈ cn be found as the maximum 
of the lower boundary and the minimum of the upper boundary respectively. 
 

𝑠̈𝑚𝑖𝑛 ≤ 𝑠̈ ≤ 𝑠̈𝑚𝑎𝑥 
 
With 
 

𝑠̈𝑚𝑖𝑛 = max
𝑖∈[1,…,𝑛]

𝑓′(𝑠)≠0

(
−𝑞̈𝑖

𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

) 

𝑠̈𝑚𝑎𝑥 = min
𝑖∈[1,…,𝑛]

𝑓′(𝑠)≠0

(
−𝑞̈𝑖

𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

−
𝑓𝑖
′′(𝑠) 𝑠̇2

𝑓𝑖
′(𝑠)

) 

 
 

Of course, 𝑠̈𝑚𝑖𝑛(𝑠, 𝑠̇) ≤ 𝑠̈𝑚𝑎𝑥(𝑠, 𝑠̇) for all possible combinations of arguments of joints 
(𝑖. 𝑒.  𝑖 ∈ [0, 𝑛], 𝑗 ∈ [𝑖 + 1, 𝑛]), and by solving the inequality for 𝑠̇, the velocity limit due 
to acceleration constraints is derived: 
 

𝑠̈𝑚𝑖𝑛(𝑠, 𝑠̇) ≤ 𝑠̈𝑚𝑎𝑥(𝑠, 𝑠̇) ⇔ 

− |
𝑓𝑖
′′(𝑠)

𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

| 𝑠̇2 + (
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

) ≥ 0 

 
Geometrically, this is a set of downward-facing parabola. By equating with zero the we 
find the boundary of feasible velocities. 
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𝑠̇ =

√
  
  
  
  
 
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

|
𝑓𝑖
′′(𝑠)
𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|

 

 
With the appropriate condition for the denominator. So, by now two constraints for 𝑠̇ 
have been introduced. The intersection of these produce the velocity constraint due to 
joint acceleration limits and combining these: 
 

𝑠̇𝑚𝑎𝑥(𝑠) = min

{
 
 
 
 

 
 
 
 

min
𝑖∈[0,𝑛]

𝑗∈[𝑖+1,𝑛]

𝑓𝜅
′(𝑠)≠0,𝜅=𝑖,𝑗

|
𝑓𝑖
′′(𝑠)

𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|≠0

√
  
  
  
  
 
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′(𝑠)|

+
𝑞̈𝑗
𝑚𝑎𝑥

|𝑓𝑗
′(𝑠)|

|
𝑓𝑖
′′(𝑠)
𝑓𝑖
′(𝑠)

−
𝑓𝑗
′′(𝑠)

𝑓𝑗
′(𝑠)

|

, min
𝑖∈[0,𝑛]

𝑓′(𝑠)=0

|𝑓𝑖
′′(𝑠)|≠0

√
𝑞̈𝑖
𝑚𝑎𝑥

|𝑓𝑖
′′(𝑠)|

}
 
 
 
 

 
 
 
 

 

 
The velocity is also constraint by its electromechanical limits  
 

−𝑞̇𝑖
𝑚𝑎𝑥 ≤ 𝑞̇𝑖 ≤ 𝑞̇𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ [1, … , 𝑛] 

−𝑞̇𝑖
𝑚𝑎𝑥 ≤ 𝑓′(𝑠) 𝑠̇ ≤ 𝑞̇𝑖

𝑚𝑎𝑥 

 
If 𝑓′(𝑠) = 0 then the inequality is satisfied. If 𝑓′(𝑠) ≠ 0, since the movement is forward 
along the path and thus 𝑠̇ > 0, then 
 

𝑠̇ ≤
𝑞̇𝑖
𝑚𝑎𝑥

|𝑓′(𝑠)|
, ∀𝑖 ∈ [1, … , 𝑛] 

 
And the lower limit for 𝑠̇ give another constraint for the velocity 
 

𝑠̇𝑚𝑎𝑥(𝑠) = min
𝑖∈[1,…,𝑛]

 𝑓′(𝑠)≠0

𝑞̇𝑖
𝑚𝑎𝑥

|𝑓′(𝑠)|
 

 
The corresponding algorithm can then be found in [23] . However, since this will be 

implemented on a computational, non-symbolic environment it is best to avoid 

complex calculations. There is only need to solve the forward problem and then check 

if the result holds for our constraints. 

 

A special case is when the end-effector returns from the same path as the first linear 

movement. Then the blending will not have an effect since the end effector will 

inevitably have to stop in order to move to the exact opposite direction. As a result, as 

expected the end effector will just stop short on its way to the waypoint 
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4.3.3: General Case of Circular Blending  
 
All of the above correspond to blending linear segments. However, it is more difficult 
when dealing the general case, such intersecting with arcs, either the convex or the 
concave problem. 
 

 
Figure 21: The general case of Blending[26]  

 
Indeed, there exists theoretical solution for solving such a problem. Basically, it is a 
problem of intersection of arcs which has an exact solution which even a 𝐶𝐴𝐷 program 
can generate. However, computationally the approach is based on solving 3 quadradic 
equations as shown in the figure below: 
 

 
(a): The convex problem 

 
 (b): The concave problem 

Figure 22: Intersection of Arcs[27]  

 
So, instead of defining the tolerance in order to find the radius 𝑅 of the circle it is 
preferable to do the opposite. By defining the radius, it is easier to define the 
geometrical parameters and then check whether the tolerance constraint holds.  
 
By taking advantage of the fact infinitesimal arcs of the circle can be perceived as 
straight lines. So basically, the procedure is to find tangent lines at the intersection 
point. With this assumption we fall into the category of circular blending of linear 
segments which has already been discussed.  The resulting radius then can be used to 
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solve the forward problem. The only problem is deciding which lines will be used. As a 
matter of fact the answer differs whether it is the convex or the concave situation. 
 

 
 (a): The convex problem 

 
 (b): The concave problem 

Figure 23: Deciding which lines will be blended instead of the circles 

 
For the convex problem the lines are decided to be the one tangent to the circles at the 
intersection point, along the 𝒖̂1 and 𝒖̂2 vectors. In the case of concave things are not 

that straightforward. Basically, first the normal vector of the blending arc (𝐶3𝑃̂) is 

calculated. After that, the intersection points of the parallel lines, tangent to the original 
circular segments, are found and the secant lines from these points to point 𝑃 is 
defined. The minimum of half of the length of these secants is the maximum length 
that we have to blend over, the amount 𝑑 as defined in the Circular Blending of Linear 
Segments.  
 
Now in both cases the resulting circle is slightly smaller than the exact solution but it is 
guaranteed it will not violate the tolerance constraint. Now that the line to line blending 
can be done, the radius 𝑅 can be found and by solving the quadradic equations the 
center 𝐶 for the circle that gives the blend can be identified. 
 
All of the above was done so a solid measurement of the length left till the of the path 
can be estimated for the new path. Knowing that, it is obvious that we can find whether 
there is enough length for the endeffector to stop. Also, it is important to know what 
are the kinematic constraints along that path, the velocity and acceleration limits.  
 
So, the procedure is straightforward, an iterative process which starts from the end of 
the queue and moving backward along the path. The properties that we care about is 
the target velocity 𝑣𝑡  which is the desired feed rate over that segment and the final 
velocity 𝑣𝑓 which is the highest possible velocity at the end of the segment in order not 

to violate the limit of the next. The algorithm can be narrowed down to: 
 

𝑣𝑓
{𝑖+1}

= 𝑣𝑡
{𝑖}

 

𝑣𝑡
{𝑖} = √𝑣𝑓

{𝑖} + 2𝑎𝑙 

While 𝑖 moves from up, the queue is moving back so if we have 𝜅 segments in total and 
𝑖 is the iteration step number which goes up, the queue in moving backwards along the 
path so the segment number 𝑛 = 𝑚 − 𝑖. The process stops when either 𝑛 = 𝑚 which 
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means that we have reach to the first segment or if the target velocity has reached a 
limit and cannot be increased anymore, which means that the endeffector is already 
moving at maximum velocity at current segment 𝑛. 
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Chapter 5: IMPLEMENTATION on 𝑳𝒊𝒏𝒖𝒙𝑪𝑵𝑪 
 

5.1: 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 Overview 
 
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, which was formerly named Enhanced Machine Controller or EMC2 is 
GNU/Linux software system that implements numerical control capability using general 
purpose computers to control CNC machines. EMC was created by NIST, the National 
Institute of Standards and Technology, which is an agency of the Commerce 
Department of the United States government. 
 
It is capable of providing coordinated control of up to 9 axes of movement, thus 
enabling the control of a Computer Numerically Controlled (CNC) mills and lathes, 3D 
printers, robots, laser cutters, plasma cutters and other automated devices. It makes 
extensive use of a real time-modified kernel, and supports both stepper- and servo-
type drives. As a CNC controller 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 uses G-Code language. There are several 
dialects of G-code, 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 uses RS274/NGC, thus there is integrated an appropriate 
interpreter. 
 
As an open-source distribution it is free and provides some very important properties 
and operations. Firstly, it has its own Graphical User Interface (GUI) and actually 
multiple ones, for the user to choose from depending on his needs. A realtime motion 
planning system with look-ahead as well as operation of low-level machine electronics 
such as sensors and motor drives are also provided. Most importantly thought it 
provides with an easy to use “breadboard” layer for quickly creating a unique 
configuration for your machine, the HAL. 
 
The control can operate true servos (analog or PWM) with the feedback loop closed by 
the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software at the computer, or open loop with step-servos or stepper 
motors. Motion control features include: cutter radius and length compensation, path 
deviation limited to a specified tolerance, lathe threading, synchronized axis motion, 
adaptive feedrate, operator feed override, and constant velocity control. Support for 
non-Cartesian motion systems is provided via custom kinematics modules, which 
means that a robotic manipulator can be configured. the basic key aspects will be 
mentioned from the most upper lever to the lower where hardware is.  
 

5.1.1: Basic Architecture 
 
There are four components contained in the LinuxCNC Architecture: a motion 
controller (EMCMOT), a discrete IO controller (EMCIO), a task level command handler 
and executor which coordinates them (EMCTASK) and several text-mode and graphical 
User Interfaces. The hierarchical correlation of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 controllers is: 
  

• The discrete I/O controller is implemented as a hierarchy of controllers, in this 
case for spindle, coolant, and auxiliary (e.g., estop, lube) subsystems.  

• The task controller coordinates the actions of the motion and discrete I/O 
controllers. Their actions are programmed in numerical control with G and M 
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commands which form programs base on the RS274/NGC language, which are 
interpreted by the task controller into NML messages and sent to either the 
motion or discrete I/O controllers at the appropriate times. 

 
The basic architectur of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 can be seen in the figure below: 
 

 
Figure 24: LinuxCNC Architecture Overview [29]  



64 
 

 

5.1.2: The Motion Controller 
 
The motion controller (EMCMOT) receives commands from user space modules via a 
shared memory buffer, and executes those commands in realtime. The status of the 
controller is made available to the user space modules through the same shared 
memory area. The motion controller interacts with the motors and other hardware 
using the HAL (Hardware Abstraction Layer).  
 

 
Figure 25: Motion Controller Bock Diagram [29]  
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Inside Motion Controller there is a sub category, the joint controller. There is one joint 
controller per joint. The joint controllers work at a lower level than the kinematics, a 
level where all joints are completely independent. All the data for a joint is in a single 
joint structure.  
 

 
Figure 26: The Joint Controller Block Diagram [29]  

 
Its basic inputs and outputs consist of the desired position, in Cartesian coordinates and 
in joint coordinates, the desired position in motor cords which is the basic output and 
is generated the same way regardless of the mode, and is the output to the PID loop or 
other position loop.  

1. carte_pos_cmd - This is the desired position, in Cartesian coordinates. It is 
updated at the trajectory rate4, not the servo rate5. In coord mode, it is 
determined by the trajectory planner. In teleop mode, it is determined by the 
trajectory planner as well. In free mode, it is either copied from actual position, 
or generated by applying forward kinematics to (2) or (3). 

2. emcmotStatus->joints[n].coarse_pos - This is the desired position, in joint 
coordinates, but before interpolation. It is updated at the trajectory rate, not 
the servo rate. In coord mode, it is generated by applying inverse kinematics to 
(1) In teleop mode, it is generated by applying inverse kinematics to (1) In free 
mode, it is copied from (3), I think.  

3. emcmotStatus->joints[n].pos_cmd - This is the desired position, in joint 
coordinates, after interpolation. A new set of these coordinates is generated 
every servo period. In coord mode, it is generated from (2) by the interpolator. 
In teleop mode, it is generated from (2) by the interpolator. In free mode, it is 
generated by the free mode trajectory planner.  

 
4 Trajectory rate refers to the time that is needed for the trajectory rate to do the iteration step and 
produce the next infinitesimal numerical step of the path. Using the language introduces in the General 
Case of Circular Blending of the chapter dedicated to the trajectory planning, it is the time required to 
move from 𝑖 to 𝑖 + 1 step. 
5 Servo rate refers to the speed of the servo thread, which is basically the thread that handles items that 
can tolerate a slower response, like the motion controller, ClassicLadder, and the motion command 
handler. A thread is a list of functions that runs at specific intervals as part of a realtime task. Apart from 
that, base rate also exists and it refers to the 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 which is the time (in nanoseconds) that is 
needed for the subroutines assigned to the base_thread to repeat themselves. 
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4. emcmotStatus->joints[n].motor_pos_cmd - This is the desired position, in 
motor coordinates. Motor coordinates are generated by adding backlash 
compensation, lead screw error compensation, and offset (for homing) to (3). 
It is generated the same way regardless of the mode, and is the output to the 
PID loop or other position loop.  

5. emcmotStatus->joints[n].motor_pos_fb - This is the actual position, in motor 
coordinates. It is the input from encoders or other feedback device (or from 
virtual encoders on open loop machines). It is "generated" by reading the 
feedback device.  

6. emcmotStatus->joints[n].pos_fb - This is the actual position, in joint 
coordinates. It is generated by subtracting offset, lead screw error 
compensation, and backlash compensation from (5). It is generated the same 
way regardless of the operating mode.  

7. emcmotStatus->carte_pos_fb - This is the actual position, in Cartesian 
coordinates. It is updated at the trajectory rate, not the servo rate. Ideally, 
actual position would always be calculated by applying forward kinematics to 
(6). However, forward kinematics may not be available, or they may be unusable 
because one or more axes aren’t homed. In that case, the options are:  

a. fake it by copying (1),  
b. admit that we don’t really know the Cartesian coordinates, and simply 

don’t update actual position.  
Whatever approach is used, I can see no reason not to do it the same way 
regardless of the operating mode. I would propose the following: If there are 
forward kinematics, use them, unless they don’t work because of unhomed axes 
or other problems, in which case do (b). If no forward kinematics, do (a), since 
otherwise actual position would never get updated. 

 
Another utility of the Motion Controller is the Joints (formerly known as AXIS). More 
information on that will follow as it a major change in the new stable version of 
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 that the configuration of the Mitsubishi RM-501 was adapted on. 
 

5.1.3: Hardware Abstraction Layer (HAL) 
 
One of the most advantageous aspects of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 is that it can be configured in such 
a way that it can be applied in a great variety of hardware devices, especially CNC 
machines. Any system (including a CNC machine), consists of interconnected 
components. For the CNC machine, those components might be the main controller, 
servo amps or stepper drives, motors, encoders, limit switches etc. The machine builder 
must select, mount and wire these pieces together to make a complete system. 
 
What HAL does, is create a virtual layer where the wiring and piece mounting that 
would potentially be needed can be replaced by electronic components that are 
interconnected and act as bridge between the computer code and the hardware itself. 
So, HAL would use its so-called components instead of the typical hardware building 
blocks, HAL signals instead of wires, and HAL pins instead of terminals. 
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5.2: RM-501 Configuration on 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 
 

5.2.1: Existing Set-Up 
 
Based on the work of D. Tsoumpas [1] the RM-501 manipulator was configured on a 
past version of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, installed upon a Pentium D (2.4 Ghz) based personal 
computer with 512MB of RAM. The reason for pointing out the computer specification 
is because they affect the performance and based on this knowledge the configuration 
was set up on a newer PC.  The most intriguing aspect of this work is the custom 
controller and the construction of custom breadboards to replace the old ones. 
Specifically, the 3 original breadboards, named 724, 732, 727 were replaced by a new 
one which transfers and receives information to and by the computer through two 
parallel ports. Each pin of the two ports correspond to a specific signal. The 
correspondence of the original pin signals with the ones of the new breadboard and 
their name is given in the table below for reasons of completeness. 
 

PARALLEL PORT 0 SGNAL NAME PIN 

0.Pin1 -  

0.Pin2 STEP_1 724.Pin1 

0.Pin3 DIR_1 724.Pin2 

0.Pin4 STROBE 724.Pin4 732.Pin4 727.Pin4 

0.Pin5 ELBOW SELECT 724.Pin8 

0.Pin6 WAIST SELECT 724.Pin11 

0.Pin7 HAND_1 727.Pin1 

0.Pin8 HAND_2 727.Pin2 

0.Pin9 HAND_3 727.Pin3 

0.Pin10 OVERLOW 724 724.Pin14 

0.Pin11 SWITCH ELBOW 724.Pin18 

0.Pin12 SWITCH WAIST 724.Pin20 

0.Pin13 -  

0.Pin14 -  

0.Pin15 -  

0.Pin16 -  

0.Pin17 MASTER RESET 724.Pin15 732.Pin15 727.Pin15 

0.Pin18 GND  

0.Pin19 GND  

0.Pin20 GND  

0.Pin21 GND  

0.Pin22 GND  

0.Pin23 GND  

0.Pin24 GND  

0.Pin25 GND  
Table 2: Parallel Port 0 Pins 
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PARALLEL PORT 0 SGNAL NAME PIN 

1.Pin1 STEP_2 732.Pin1 

1.Pin2 -  

1.Pin3 DIR_2 732.Pin2 

1.Pin4 SHOULDER SELECT 732.Pin7 

1.Pin5 LEFT WRIST SELECT 732.Pin9 

1.Pin6 RIGHT WRIST SELECT 732.Pin10 

1.Pin7 -  

1.Pin8 HAND_DIRECTION 727.Pin12 

1.Pin9 HAND_POWER 727.Pin17 

1.Pin10 OVERLOW 732  

1.Pin11 SWITCH SHOULDER 724.Pin18 

1.Pin12 SWITCH PITCH 724.Pin19 

1.Pin13 SWITH ROLL 732.Pin20 

1.Pin14 -  

1.Pin15 -  

1.Pin16 -  

1.Pin17 GND  

1.Pin18 GND  

1.Pin19 GND  

1.Pin20 GND  

1.Pin21 GND  

1.Pin22 GND  

1.Pin23 GND  

1.Pin24 GND  

1.Pin25 GND  
Table 3: Parallel Port 1 Pins 

Based on this hardware elements, an appropriate HAL file created. The important 

aspects of this file and its course of editing and managing the corresponding signals is 

as follows: 

• The output of the trajectory planner, which have been modified by the 

kinematics component, is the basic input on the HAL layer. These outputs are 

basically joint angles (that depending on the mode are identified with the way 

that is was explained on the joint section of The Motion Controller chapter) 

corresponding to one of the 5 motors.  

• This output signal is then fed to the stepgen component which is responsible 

for modifying the angle value to the necessary steps that are the correct input 

for the stepper motors of the RM-501 robot. Apart from steps the stepgen 

produces the direction of the corresponding motor as a different signal. 

• A noticeable element is the use of a sum2 component, for the joint 3 and 4 

signals before entering the stepgen. This is due to the differential device where 

the wrist motors are attached to. When both motors rotate the same direction 

then the wrist pitch is changing accordingly. The wrist roll is produced by 

reverse rotation of those motors. 
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• All the motors’ steps and direction are fed for each breadboard to pins 01 and 

02 respectively. A third pin- the section pin- that corresponds to each motor is 

in charge of selecting the one that we want to dictate the move to. So, in order 

to choose the correct selection pin and the right direction a complicated 

structure of HAL components that utilize a self-driving multiplexer and a 

bitslicer. 

• Between 𝑠𝑡𝑒𝑝𝑔𝑒𝑛 and the parallel port, 4 multiplexes mediate with the 

purpose of feeding the data produced from all 𝑠𝑡𝑒𝑝𝑔𝑒𝑛𝑠 to just 4 pins, 2 in 

each breadboard, basically its 2 multiplexers per parallel port. 

• Using the two free slots of the existing multiplexer, to avoid extra unnecessary 

components, configures the opening the closing of the grip. 

• As inputs to the HAL are information coming from limit switches and overflow 

errors which are connected to the Master Reset of the breadboard. 

The rest of the configuration consists of typical ini and kins files, which were adapted 
to the new setup, and will be mentioned in the chapters to come. Of course, the existing 
vismach model was also essential in verifying the result of our configuration. 

Regarding the results, the behavior and response of the existing configuration, as well 
as the remarks and comments of the previous “builder” some valuable information can 
be extracted: 
 

➢ Should we choose to use the existing controller breadboard we must take into 
consideration the special attributes of the specific machine. 

➢ One very important value is the 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 and the 𝑠𝑒𝑟𝑣𝑜_𝑝𝑒𝑟𝑖𝑜𝑑 (which 
were explained in footnote 5). These depend on the computational capabilities 
of each computer and can only be improved by better hardware and 
sometimes by a more solid configured software system in terms of 
computational speed (like LUbuntu 12.04 over its adversary Ubuntu 10.04). 

➢ The oscillations on a linear trajectory that were found in the first testing 
scenario of [1] gives two insights. First is the one that was pointed out in the 
thesis regarding the capping of 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 due to the CPU speed. A second 
translation though is that the jerky move is a result of start-stop of the 
endeffector because of the trajectory planner dictating an iterative move of 
accelerating and decelerating back to zero. 

➢ The kinematics model needs refurbishing regarding configuration choice 
elements as well as avoidance or at least prediction of singularity points in 
order to notify the user. Otherwise unnecessary mechanical load is put on the 
manipulator. 
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5.2.2: The new Configuration 
 

❖ Hardware Updates 
 
As mentioned before, the custom controller of the manipulator in the form of a 
breadboard dictates a specific approach of the hardware aspect of the problem. This is 
subsequently extended upon the HAL file. Since HAL is basically a “dictionary” for the 
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 system to understand and distribute information from the trajectory 
planner and other resources to the hardware elements of the configuration. Thus, the 
breadboard sets the signals that the manipulator -in our case- receives and transmits 
and the HAL file makes sure that these signals are translated the right way. For example, 
in the case of the RM-501 manipulator specific pins hold the step and direction 
information which are produced by iterative calculation from the trajectory planner in 
the form of joint angles. The “line” responsible for connecting these two dots is the HAL 
file. Since we chose to stick to the existing breadboard then it is obvious that unless a 
new approach of HAL is found altogether then not big changes can be applied on the 
HAL configuration. The use of multiplexers is considered imperative, so there will 
always be an element with a period that is at least 4 × 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑. 
 
As mentioned, the point is to lower 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 as much as possible. For that sake, a 
hardware upgrade seemed a good solution. In the laboratory environment there was a 
newer Core 2 Duo E6750, 2.6 GHz available. With a 2 GB of RAM memory addition a 
setup fully capable of using 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 on, was created. Apart from that a Nvidia 
graphics card was already installed.  
 
So, for this system some tweaks were utilized in order to maximize the possible 
outcome of the latency test6, i.e. minimum jitter. Firstly, all power saving modes were 
disabled from Bios and by a small change in the GRUB we can make sure that the CPU 
will not enter in an idle state, because when idle, the CPU is put into a power-saving 
state and it takes some time to wake up from that, hence the latency in reacting to the 
timer interrupt. So, the CPU is in a loop checking to see if it is needed rather then it 
entering in idle state waiting for a wakeup call, thus never sleeps and so it doesn’t 
require long wakeup time. Secondly the nouveau graphics driver for Nvidia. Last but 
not least on this PC, utilizes SMP7. On a 2-core machine for example, if you have another 
core available, which is not fully utilized, the SMP scheduler will try to use that core 
when it is not busy and the real-time code gets spread between the caches of the 2 
cores, increasing read time and latency. So, isolating one core and forcing all 

 
6 latency-test sets up and runs one or two real-time threads. By default, these threads are a fast thread 
with a 25.0𝜇𝑠 period and a slow thread with a 1.0𝑚𝑠 period. This default setup mimics a common 
configuration pattern for LinuxCNC. The two threads are referred to as the base_thread and the 
servo_thread, respectively. Each time a thread is started by the scheduler, the code set up by latency-
test gets the time and subtracts from it the previous time the same thread started. In a perfect system, 
this difference would always be equal to the selected period for the thread, e.g., there would be zero 
latency. Because of vagaries in the system, it usually is not zero. latency-test determines the maximum 
deviation (both larger and smaller) of this difference compared to the selected period, compares the 
absolute values of the two deviations, and reports the larger absolute value as the max jitter. 
7  Symmetric Multiprocessing (SMP) means that LinuxCNC is run n computers with multiple CPUs (aka 
cores). Core 2 Duo is a dual core processor.  
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information to be stored in the same cache is the most usual approach. In computer 
science there are newer and way more elegant ways to handle processor affinity8, but 
they will not be discussed in this document. 
 

❖ Software Updates 
 
The existing layout was reconfigured on the new PC. However, some software changes 
were implemented as well. The major one is the utilization of joints and axes distinction, 
which didn’t exist in the previous version in an operating system level. This change, in 
our case, since it is a complex cartesian machine with non-trivial kinematics9, is very 
beneficial. As defined by 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 we have[30] : 
 

➢ An axis is one of the nine degrees of freedom that define a tool position in three-
dimensional Cartesian space. Those nine axes are referred to as 
𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉, and 𝑊. The linear orthogonal coordinates 𝑋, 𝑌, and 𝑍 
determine where the tip of the tool is positioned. The angular coordinates 𝐴, 𝐵 
and 𝐶 determine the tool orientation. A second set of linear orthagonal 
coordinates 𝑈, 𝑉 and 𝑊 allows tool motion (typically for cutting actions) relative 
to the previously offset and rotated axes. Unfortunately, “axis” is also 
sometimes used to mean a degree of freedom of the machine itself, such as the 
saddle, table, or quill of a Bridgeport type milling machine.  

➢ A joint is one of the movable parts of the machine. Joints are distinct from axes, 
although the two terms are sometimes (mis)used to mean the same thing. In 
𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, a joint is a physical thing that can be moved, not a coordinate in 
space. The shoulder, elbow, and wrist of a robot arm are joints. Every joint has 
a motor or actuator of some type associated with it. Joints do not necessarily 
correspond to the 𝑋, 𝑌 and 𝑍 axes, although for machines with trivial kinematics 
that may be the case.  

➢ A pose is a fully specified position in 3-D Cartesian space. In the LinuxCNC 
motion controller, when we refer to a pose, we mean an EmcPose structure, 
containing six linear coordinates (𝑋, 𝑌, 𝑍, 𝑈, 𝑉 and 𝑊) and three angular ones 
(𝐴, 𝐵 and 𝐶).  

 
With this in mind the ini and hal files need a major update, especially the hal pins. 
Instead for the original axes pins, now Hal pins are created for ini file items for both 
joints ([JOINT_N]) and axes ([AXIS_L]). In the original configuration which utilizes a prior 
version of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, the hal pin names ini.N.* referred to axes with 0 ==> 𝑥,  
1 ==> 𝑦, etc. On the contrary now two different pins are created. For example, a pin 

 
8 Processor affinity, or CPU pinning or "cache affinity", enables the binding and unbinding of a process or 
a thread to a central processing unit (CPU) or a range of CPUs, so that the process or thread will execute 
only on the designated CPU or CPUs rather than any CPU. This can be viewed as a modification of the 
native central queue scheduling algorithm in a symmetric multiprocessing operating system. (available 
from https://en.wikipedia.org/wiki/Processor_affinity) 
9 Trivial kinematics machines are the ones that mapping from Cartesian space (the G-code program) to 
the joint space (the actual actuators of the machine) is trivial. It is a simple 1:1 mapping. So, the change 
of joint value will affect the movement along an axis in a straightforward manner and the joint matches 
the Cartesian coordinates. 
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for max cartesian acceleration along axis 𝐿 and another for max joint acceleration of 
joint 𝑁: 
 
For L = x y z a b c u v w: 

Ini File Item              hal pin name 

[AXIS_L]MAX_ACCELERATION   ini.L.max_acceleration 

 

For N = 0 ... [KINS](JOINTS -1) 

Ini File Item              hal pin name 

[JOINT_N]MAX_ACCELERATION  ini.N.max_acceleration 

 
 

❖ Kinematics file Updates 
 
The relationships between joints and axis coordinates are determined by the 
mathematical kinematics functions that describe a machine’s motion. World 
coordinates (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉,𝑊) are determined by applying forward kinematics 
operations to joint (motor) positions. When moving in world space (e.g., gcode 
movements) the required joint positions are determined by applying inverse kinematics 
operations to the coordinates requested for motion in world space. Both of these 
functions where analytically expressed in Forward Kinematics and Inverse Kinematics 
chapters respectively.  
 
Special flags were used on both functions to distinguish the state of the intended 
configuration, such as Elbow-up or Elbow-down, Singular configuration and even give 
a heads up if the desired position is unreachable. The flags are just a long int and they 
exist only as a way to pass info between the functions. The flags are then declared in 
control.c, which is the core control function of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶, that more or less dictates 
the movement of the machine. 
 

❖ PID Tuning 
 
Even before calibrating while jogging in free mode10 it was evident that all joints, apart 
from the first,  were slightly off. When jogging slow everything seemed fine. However, 
while the feed rate was increasing from the slider, in AXIS graphical user interface, the 
joint moved past its intended final position and then returned to settle to its 
destination. Since our configuration is in a closed loop with encoder signal as feedback, 
this small overshoot is a major indication that the PID loop11 needs tuning. Specifically, 
in order to decrease the overshoot, the derivative (D) parameter needs to increase. The 
general empirical rules are shown in the table below: 
 

 
10 Free mode means that each joint is independent of all the other joints. Cartesian coordinates, poses, 
and kinematics are ignored when in free mode. In essence, each joint has its own simple trajectory 
planner, and each joint completely ignores the other joints. 
11 A proportional-integral-derivative controller (PID controller) is a common feedback loop component 
in industrial control systems. The Controller compares a measured value from a process (typically an 
industrial process) with a reference set point value. The difference (or error signal) is then used to 
calculate a new value for a manipulable input to the process that brings the process measured value back 
to its desired set point. 
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Parameter Rise Time Overshoot Settling Time Steady State Error 

P ↓ ↑ Small change ↓ 
I ↓ ↑ ↑ Eliminate 

D Small change ↓ ↓ Small change 
Table 4: PID Tuning Approach 

for increasing values of each parameter. 
The calibration process was fulfilled for all joints but the results were evident only for 
the second joint. Joints 2,3 and 4, which were actually the most troublesome from that 
aspect, had a slight improvement but further research is needed on that point.  
 

❖ Calibration with Photogrammetry 
 
In order to check the result of our configuration regarding its accuracy, basically make 
sure that the intended position is reached, a method for evaluating and calibrating if 
necessary, the manipulator is needed. There a plethora of methods in doing so, such as 
touching reference parts, using supersonic distance sensors, laser interferometry, 
theodolites, calipers or laser triangulation or even optical methods with optical capture. 
In the environment of the laboratory, means for photogrammetry method were 
available and thus, photogrammetry was used. 
 
Photogrammetry is a technique related to optical metrology, which makes possible to 
determine the dimensions and volumes of objects. This method consists of taking 
pictures of the object that we want to measure and that we have previously covered 
with targets, from different angles of view.  The software associated with this method 
recognizes the coded targets and orients the points according to a 3D point cloud. This 
uses the principle of triangulation for specified point in different photos. To obtain a 
maximum information of the position of the measured object, it is necessary to use a 
maximum of coded targets as well as many different angles of views, and thus created 
the cloud of points mentioned previously.  
 
The tools that were used are the scale bars that act as a reference size, 3 of which were 
positioned on the 𝑋𝑌 plane and one in the vertical direction (𝑍). On the piece, the 
manipulator in our case, and its environment special coded targets and point targets 
are placed. Coded targets are a special type of target that the photogrammetry 
software can recognize and automatically decode. The point targets are used to make 
the network denser. A very important tool is the camera. A Nikon D90 and a flash 
SIGMA EM-140 DG were used. Because of the fact that the measurements happened 
in a period of almost a week and the place where the robot is, is not sealed from natural 
sun light the brightness varies and so settings like aperture, shutter speed and 
sensitivity needed to be adjusted properly depending on the brightness in the room. 
Lastly the ImetricS software was responsible for performing calculations of target 
coordinates and measuring distances between points, which gave the deviation of the 
manipulator from the desirable position.  
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Figure 27:Positioning Targets and Scale Bars for the Photogrammetry Calibration 

 
First of all, coded targets were set on the base of the robot so that when the robot 
moves, coded targets remain on the same position and act as a reference. Targets 
points were set on the tip of the endeffector, on both the face and the side of the grip. 
By doing this if there are errors, it is possible to compare the results based on the two 
points independently. 
 
The first and foremost position that need to be calibrated is the Home Position. Since 
homing essentially happens in free mode, it doesn’t involve kinematics or any kind of 
solver, we can be certain that the offset that might come up from the photogrammetry 
method will be affected by the manipulator itself and not by numerical computation 
for trajectory etc.   
 
The procedure was long lasting but straightforward. Each joint was homed 30 times 
and for each time the photos were used to calculate the deviation from the expected 
position. So, by calculating the deviation in cartesian coordinates and with the joint 
lengths known, the deviation of the joint angle in homing can be calculated since 
 

𝑎𝑛𝑔𝑙𝑒 = tan−1(
𝑦𝑝𝑙𝑎𝑛𝑒

𝑥𝑝𝑙𝑎𝑛𝑒
)   

 
The mean of these deviations was subtracted to the original offset parameter of the ini 
file. The advantage is that each joint operates in its own plane and thus only two 
coordinates was necessary to check each time, in contrast with the test evaluating the 
accuracy and repeatability of the manipulator which is mentioned in the next chapter. 

Coded 
Targets 

Scale Bars 

Point Targets
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In the mathematical expression above 𝑥𝑝𝑙𝑎𝑛𝑒 and 𝑦𝑝𝑙𝑎𝑛𝑒 don’t necessarily correspond 

to cartesian 𝑥 and 𝑦 coordinates. These parameters 𝑥𝑝𝑙𝑎𝑛𝑒 and 𝑦𝑝𝑙𝑎𝑛𝑒 are the lengths 

of the adjacent side and the opposite site respectively of the hypothetical triangle with 
hypotenuse the manipulator link. So after measuring the angle, the deviation from the 
desired offset angle can be calculated.  These process for the mean values is shown in 
the table below. 
 
Joint 0 1 2 3 4 
Initial Offset −150 −100 90 0 −67 
Mean Measured Angle −149.9 −97.65 89.6 0.26 -67.37 
Mean Deviation 0.1 2.35 −0.4 0.26 −0.37 
Final Offset −150.1 −102.35 90.4 −0.26 −66.63 

Table 5: Calculating the offset of each joint 
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5.3: Testing 
 
After calibration it is time to check the results in a more complex task. At first a 
substantial amount of time was devoted on testing each simple move. The simpler of 
them all is a linear move. The first thing that was done was some Cartesian space 
jogging, before going straight to testing 𝐺01 commands.  
 
Right after calibrating homing procedure, the manipulator was placed in teleop mode12. 
Jogging in an axis is essential to check the kinematics that were implemented. Again, 
since the movement is linear on an axis, we only need to check the deviation of the 
specific coordinate in reference with the indicated coordinate in the AXIS GUI. The last 
test that was done was a simple pick and place task. As a manipulator designed for 
industrial purpose, the two parameters that are very important for evaluation if the 
machine, accuracy and repeatability. 
 

5.3.1: Accuracy and Repeatability 
 
First the two concepts are related, in a matter that they both evaluate the performance 
of a manipulator, but not connected. Accuracy is defined as the ability of the robot to 
precisely move to a desired position in 3-D space. Repeatability is a measure of the 
ability of the robot to move back to the same position and orientation. 
 

 
Figure 28: Accuracy and Repeatability concepts 

 
12 In teleop mode, movement of the machine is based on Cartesian coordinates using kinematics, rather 
than on individual joints as in free mode. However, the trajectory planner per se is not used, instead 
movement is controlled by a velocity vector. Movement in teleop mode is much like jogging, except that 
it is done in Cartesian space instead of joint space. 
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The positioning accuracy and reproducibility tests of positioning of an industrial robot 
is measured in accordance with the guidelines of 𝐼𝑆𝑂 9283: 1998 standard[32] . 
Accuracy mathematically is: 
 

𝐴𝑃𝑃 = √(𝑥̅ − 𝑥𝑐)2 + (𝑦̅ − 𝑦𝑐)2 + (𝑧̅ − 𝑧𝑐)2 
 
where the mean coordinates of the set of measurement points 
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𝑥𝑐, 𝑦𝑐, 𝑧𝑐 coordinates of the set position and 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗  the 𝑗𝑡ℎ measurement. As for 

repeatability, it is defined as “the closeness of agreement between the attained 
positions after 𝑛 repeat visits TCP point to the same command pose in the same 
direction” and can be perceived as a sphere with a radius of a sphere with center  the 
coordinates calculated from the average coordinated of individual measurement 
points: 
 

𝑅𝑃 = 𝑙 ̅ + 3𝑆𝑙  
 
where 
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Figure 29: Accuracy and Repeatability mathematical meaning 
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According to the guidelines included in 𝐼𝑆𝑂 9283 standard, 30 measurements are 
enough to produce valid measurements, for each of the points. These, are typically a 
set of 5 points located inside a certain space called ISO cube. The ISO cube is located in 
the working space and satisfies the following requirements: 

• ISO cube should be located in the part of working space with the greatest 
anticipated use. 

• The cube should have the maximum volume allowable with the edges parallel 
to the base coordinate system. 

 
However, in this application this procedure wasn’t followed. A rather a simplified 
approach of measuring the accuracy and repeatability in some significant position of 
the Pick and Place task, such as the Neutral Pose in the 𝑋𝑍 and 𝑌𝑍 plane etc. -more 
information in the following subchapter. 
 

5.3.2: Pick and Place Test 
 
As an industrial manipulator, the RM-501 will be called upon to do many movements 
as such. From Home Position it will have to move above an object, lower the 
endeffector straight down, close the grip to hold the object, go back up, change 
position and lower it down. Such a scenario can be written in a 𝐺 𝑐𝑜𝑑𝑒 program as 
such: 
 
;initialization of parameters, tolerance, offsets etc. 

G40 (turn cutter compensation off-can be omitted depending on tool) 

G21 (millimeters for length units) 

G90 (set absolute distance mode) 

G94 (Units per Minute Mode) 

G49 (cancels tool length compensation) 

G64 P0.5 (path tolerance 0.02 of the actual path) 

; main body-movement of end-effector 

G1 X210 Y0 Z-150 F2800        (moving to a Neutral Pose-N.P.-) 

G3 X0 Y210 Z-150 R210 F2800   (turning to the direction of the object 

with arc move) 

G1 X0 Y340 Z-30 F2800         (approaching the object) 

G1 X0 Y340 Z30 F2800          (lower the grip) 

G4 P1.5                       (dwell for 2 seconds until lowering is 

done) 

M102                          (close the grip) 

G1 X0 Y340 Z-30 F2800         (move upwards) 

G1 X0 Y210 Z-150 F2800        (return to the N.P., ready to turn) 

G2 X210 Y0 Z-150 R150 F2800   (arc move-90 degrees- to original N.P.) 

G1 X290 Y0 Z-30 F2800         (approaching dropping point) 

G1 X290 Y0 Z30 F2800          (lower the grip to drop object) 

G4 P1.5                        

M101                          (open the grip to release) 

M2 (end program) 

 
Basically, the endeffector turns from Home Position to the direction of the object, 
approaches it, grabs, returns to original Home Position and approaches final point to 
release the object. This procedure is depicted in the figure below. 
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(a) The N.P. in XZ plane (b) The N.P. in YZ plane (c) Approaching the object 

(d) Vertical move to grasp 
 

(e) Returning to XZ N.P.  
 

(f) Approaching final position 

 
(g) Releasing the object 

 
(h) Return to the N.P. to repeat if needed 

Figure 30: The pick and place task in laboratory environment 

 
Some aspects that need to be pointed out are: 
 
➢ The absolute distance mode axis numbers (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶, 𝑈, 𝑉,𝑊) usually 

represent positions in terms of the currently active coordinate system. On the 
contrary 𝐺91 sets incremental distance mode where axis numbers usually represent 
increments from the current coordinate. 

➢ The path tolerance in 𝐺64 𝑃0.5 is exactly as defined in the Path Blending chapter. 
In general, for CNC machining 0.5𝑚𝑚 of tolerance is considered a very 
inappropriate value since precision is of utmost importance. However, the 
manipulator doesn’t have this restraint so we can optimize for path speed by 
invoking very big tolerance 

➢ The Neutral Pose seems as an extra unnecessary step and indeed it is for these 
specific numbers. However, the kinematics solver is very sensitive and due to the 
nature of the inverse kinematics some joint angles have big change and others small. 
Of course, these changes happen in the same time, otherwise we would get the 
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linear move we want (or arc move), but depending where the final point of the 
trajectory is a joint might reach its limits first even though the requested pose could 
be achieved otherwise, or even maybe trajectory passing close to a singularity -not 
to result to an error message, but close enough to result to ruining of the next 
increments-.  This would result in an error message or position that cannot be 
reached. This was the case with being in Home Position, turning to the direction of 
the object and doing: 
 
G1 X0 Y340 Z-30 F2800 

 
Straight ahead. The endeffector approached the point with very high speed due to 
big increment from the solver that didn’t have enough time to slow down, thus 
crashing. The same applies principle to singularities. That is why a middle Neutral 
Pose was chosen. This most of the times is chosen based on the application and 
manipulability criteria. 

➢ The final approach for the object was decided to become vertically. In general, 
depending on the application, the geometry and the relative position of the robot 
and the gripper, the final approach can vary. In almost all cases though the final 
approach is linear from close range, because going straight for the object from any 
possible position and orientation can have unpredictable results. The most 
important factor however is the obstacles layout which the manipulator has to 
avoid. 

➢ The dwell for 1.5 seconds is necessary because it was observed that the 𝑀102 was 
executed before the previous movement had been done. Basically, we commanded 
the controller to wait because the trajectory rate was slower than the interpreter 
rate. Normally with movements of the endeffector this isn’t necessary because the 
trajectory planner gives the incremental value which is stashed until it is read by the 
appropriate HAL pin and then executed. The same HAL pins are involved in passing 
the trajectory values thus there is no problem. However, the grip opening and 
closing is controlled by different pins which are not in complete sync with the 
trajectory values. 

 
Of course, by utilizing 𝐺 𝑐𝑜𝑑𝑒, all available commands of RS274/NGC dialect are 
available. Generally, apart from the linear and circular-helical movement, NURBS, cubic 
and quadratic B-splines are available with commands 𝐺5.2 − 𝐺5.3, 𝐺5, 𝐺5.1 
respectively. Its command has its own arguments as defined in [28] . For the tool 
attached to the manipulator such movements are not necessary and that Is the reason 
that no further notice is given. However for a more advanced application they are viable 
choices, and should a CAM program produces spline curve then 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 can 
perform adequately.  
 

5.3.3: Experimental Results 
 
As stated before, the typical repeatability test requires a specific ISO cube located in 

the operational space of the manipulator. However, having the set of data from the 

accuracy measurement test, it was decided to use these for repeatability. Basically, 

what is measure is the ability of the manipulator to repeat the specific movements of 
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our pick and place test.  For both tests the same important end effector position were 

taken into consideration. These are the ending point of each segment, i.e. of each line 

of 𝐺 𝑐𝑜𝑑𝑒. It is important to mention that the same point resulting from different 

movement is taken into consideration as many times as it occurs in our trajectory. This 

is to check the trajectory solver precision from different initial conditions. The points 

and their coordinates are presented in and they are in chronological order from start 

to end of pick and place task. 

 

Due to the repetitive nature of the obtained results and to ensure reliability of their 
presentation, the results of five randomly chosen measurements were presented. 
 

 

 
Figure 31: Accuracy of Positioning and Repeatability measurements 
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The mean values of accuracy and repeatability are: 
 

 𝑋 𝑌 𝑍 𝐴𝑃̅̅ ̅̅ 𝑃 𝑅𝑃̅̅ ̅̅  

𝑁𝑃 𝑋𝑍 210 0 −150 2,844 0,514 

𝑁𝑃 𝑌𝑍 0 210 −150 2,971 0,440 

𝐴𝑃𝑃 𝑌 (𝑜𝑣𝑒𝑟 𝑔𝑟𝑎𝑏𝑏𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 0 340 −30 3,347 0,559 

𝑉𝐸𝑅 𝑌 (𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑏𝑏𝑖𝑛𝑔) 0 340 30 2,662 0,564 

𝐴𝑃𝑃 𝑌 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 0 340 −30 3,039 0,553 

𝑁𝑃 𝑌𝑍 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 0 210 −150 2,924 0,431 

𝑁𝑃 𝑋𝑍 (𝑤𝑖𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡) 210 0 −150 2,942 0,495 

𝐴𝑃𝑃 𝑋 (𝑜𝑣𝑒𝑟 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 290 0 −30 3,146 0,523 

𝑉𝐸𝑅 𝑋 (𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 290 0 30 3,271 0,537 
Table 6: Coordinates of Points, Mean Accuracy and Mean Repeatability 

 
From the result some major conclusions can be made: 
 

❖ The repeatability is significantly lower than the accuracy. That is something to 
be expected as Manipulators of industrial robots, currently used in industry, are 
characterized by very good reproducibility (𝑅𝑃) but not very good accuracy 
(𝐴𝑃)[33] .  

❖ The second thing worth noticing is that both accuracy and repeatability is 

improved for positions closer to the 𝑍 axis. This might be due to the dynamic 

behavior of the manipulator, meaning that when the arm is not extended to the 

outer parts of the operational space, but rather remains close to its center of 

gravity then its precision is enhanced.  

❖ In general, typical values for the accuracy and repeatability are considerably 

lower, probably half of what we achieved. However, considering the nature of 

its task, a simple pick and place, these two measures do not need to be 

excellent. Especially the middle points of the path and trajectory need only be 

admissible and unobstructed. Only the picking and releasing needs to be 

accurate enough.   
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Chapter 6: CONCLUSION and FUTURE DIRECTIONS 
 
This thesis presented a complete methodology so as to derive the complete kinematic 
model for the Mitsubishi RM-501 Movemaster II mobile manipulator, as well as the 
adaptation (and optimization to some extend) of its configuration on a 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶. We 
accomplished the following: 
 

• Derive a solid kinematic model for the manipulator, both forward and inverse. 
Criterions that determine the existence, the correctness and the number of 
solutions for the inverse kinematic problem have been determined and applied 
in the kinematics in order to notify the user of the ability to approach a desired 
point. 

• Differential kinematics was a focal point of the thesis as singularity analysis 
enabled us to predict the singular configurations in an analytical way. Also, 
other approaches were discussed that have mainly numerical implementation. 

• A simple trajectory planner and path blending method was analyzed that is part 
of the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 software. 

• The adaptation of the setup to the newer (up to this point) version of the 
software, that utilizes elements beneficial for our application and were lacking 
from the previous configuration. 

• Lastly, the application of the above and the necessary calibration of the Home 
Position resulted in: 

o Much reduced oscillations due to jerky movement because of the 
trajectory planner. 

o A very responsive and solid robotic manipulator for that is able to 
perform a pick and place task, thus ready to be installed in an automated 
machining cell 

o The evaluation of its positional integrity and behavior by measuring the 
accuracy and repeatability 

 

6.1: Future Directions 
 
Although right now, the RM-501 robotic manipulator with small adaptations is in 
position to be used for experimental work in industrial environment, it has reached to 
barrier as far as the hardware is concerned and to an up to date state software wise 
which dictates some wait for further changes. However, since 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 is open 
source, coding experimentation is possible. In this aspect the following are proposed: 
 

• As far as the differential kinematic model is concerned, its application right now 
only has a warning and somewhat preventive character. However, in major 
industrial robotic manipulators the controller has the ability to react in order to 
avoid the singular value. This attribute is lacking from our configuration and it 
would be extremely beneficial. Its implementation might require more changes 
to the kinematics file, even a reconstruction of it, so the jacobian matrix will be 
utilized thus implementing one of the methods that were discussed on this 
document or other method. 
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• As far as the trajectory planner is concerned constant improvements are being 
made from the 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 community and can be used, to offer a smoother 
and faster trajectory. Explore the possibility of the minimum singular value of 
the Jacobian matrix acting as a metric in a control scheme. For instance, in 
navigation function control schemes, a manipulability measure is used so as to 
avoid the manifolds that correspond to rank deficiency. 

• An even more independent manipulator, in the manner of path planning would 
be a major asset. Right now, only 𝐺 𝑐𝑜𝑑𝑒 and jogging commands are used to 
drive the manipulator to the desired position. However, there is the possibility 
to program the robot to move (via custom M commands maybe) between an 
initial and final position while satisfying an optimization criterion. This would be 
great for applications such as obstacle voidance etc.  

• In the same concept, right now there is no way to move a joint independently 
similar to cartesian movement in teleop mode i.e. to command a joint to move 
a specific angle. This would be a major asset in escaping singular configuration 
and for now only jogging out of one is possible. 

• The manipulator is connected to the PC via parallel ports, which caps the speed 
and amount of information we can pass through, thus hindering the 
performance. As per 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 community encouragement, the use of a mesa 
7i76E port, which is more supported and evolving. Apart from that PID tuning 
was based on empirical method thus the results were questionable. A solid PID 
tuning would eliminate or at least lower significantly the overshoot that we 
observed. 

• The configuration can be set up from the beginning on an Arduino based 
computer, allowing applications that the nature of 𝐿𝑖𝑛𝑢𝑥𝐶𝑁𝐶 doesn’t have 
right now or hinders. 

• In literature, there are numerous references of velocity, load and other 
parameters affecting the accuracy and repeatability of an industrial 
manipulator. In the right context, following the ISO standard, experiments can 
be conducted to verify this. 

• Right now, only a gripper is used as endeffector tool. The possibility of changing 
the tool has many prospects, By configuring the tool table via the software this 
a viable approach and can even be used in accordance with the next suggestion.  

• Lastly, the manipulator seems ready to execute simple tasks in an industrial-ish 
manner. Connecting it to a machining cell seems possible and thus work 
regarding project management to plan, coordinate, and track specific tasks in a 
project, is what needs to be done.  
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APPENDICES 
 

A. Square sub-jacobians’ determinants 
 

det(𝐽𝑠𝑞1) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵) 

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1
3 − 𝑎2𝑎3𝑠234𝑐23𝑠1

3𝑠2 − 𝑎2𝑎3𝑠234𝑐23𝑐1
2𝑠1𝑠2

+ 𝑎2𝑎3𝑠234𝑠23𝑐1
2𝑐2𝑠1 

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1𝑠1
2 + 𝑎2𝑎3𝑠234𝑠23𝑐1

2𝑐2𝑠1 − 𝑎2𝑎3𝑠234𝑐23𝑠1𝑠1
2𝑠2

− 𝑎2𝑎3𝑠234𝑐23𝑐1
2𝑠1𝑠2 

= (𝑎2𝑎3𝑠234𝑠23𝑐2𝑠1 − 𝑎2𝑎3𝑠234𝑐23𝑠1𝑠2)(𝑐1
2 + 𝑠1

2) 

= 𝑎2𝑎3𝑠234𝑠1(𝑠23𝑐2 − 𝑐23𝑠2) 

= 𝑎2𝑎3𝑠1𝑠3𝑠234 

 

det(𝐽𝑠𝑞2) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵) 

= 𝑎2𝑎3𝑠234𝑠23𝑐2𝑐1
3 − 𝑎2𝑎3𝑠234𝑐23𝑐1

3𝑠2 − 𝑎2𝑎3𝑠234𝑐23𝑠1
2𝑐1𝑠2

+ 𝑎2𝑎3𝑠234𝑠23𝑠1
2𝑐2𝑐1 

= 𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2𝑐1
2 + 𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2𝑐1

2 − 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2𝑐1
2

− 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2𝑠1
2 

= (𝑎2𝑎3𝑠234𝑠23𝑐1𝑐2 − 𝑎2𝑎3𝑠234𝑐23𝑐1𝑠2)(𝑐1
2 + 𝑠1

2) 

= 𝑎2𝑎3𝑠234𝑐1(𝑠23𝑐2 − 𝑐23𝑠2) 

= 𝑎2𝑎3𝑐1𝑠3𝑠234 

 

det(𝐽𝑠𝑞3) = 0 

 

det(𝐽𝑠𝑞4) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵) 

= 𝑎2𝑎3
2𝑐234𝑐23

2𝑐1
3𝑠2 − 𝑎2

2𝑎3𝑐234𝑠23𝑐1
3𝑐2

2 − 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐1

3𝑐2
+ 𝑎2

2𝑎3𝑐234𝑐23𝑐1
3𝑐2𝑠2 + 𝑎2𝑎3

2𝑐234𝑐23
2𝑐1𝑠1

2𝑠2
− 𝑎2

2𝑎3𝑐234𝑠23𝑐1𝑐2
2𝑠1

2 + 𝑎2
2𝑎3𝑐234𝑐23𝑐1𝑐2𝑠1

2𝑠2
+ 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑐1

3𝑠2 − 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑐1
3𝑐2

− 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐1𝑐2𝑠1

2 + 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑐1𝑠2𝑠1
2

− 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑐1𝑐2𝑠1
2 

= −𝑎2𝑎3𝑐234𝑐1(𝑠23𝑐2 − 𝑐23𝑠2)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)(𝑐1
2 + 𝑠1

2) 

= −𝑎2𝑎3𝑐234𝑐1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 
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det(𝐽𝑠𝑞5) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵) 

= 𝑎2
2𝑎3𝑐234𝑠23𝑐2

2𝑠1
3 − 𝑎2𝑎3

2𝑐234𝑐23
2𝑠1

3𝑠2 + 𝑎2𝑎3
2𝑐234𝑐23𝑠23𝑐2𝑠1

3

− 𝑎2
2𝑎3𝑐234𝑐23𝑠1

3𝑐2𝑠2 − 𝑎2𝑎3
2𝑐234𝑐23

2𝑠1𝑐1
2𝑠2

+ 𝑎2
2𝑎3𝑐234𝑠23𝑐2

2𝑐1
2𝑠1 − 𝑎2

2𝑎3𝑐234𝑐23𝑐1𝑐1
2𝑐2𝑠1𝑠2

− 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑠1
3𝑠2 + 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑠1

3𝑐2
+ 𝑎2𝑎3

2𝑐234𝑐23𝑠23𝑠1𝑐2𝑐1
2 − 𝑎2𝑎3𝑑5𝑐234𝑠234𝑐23𝑠1𝑠2𝑐1

2

+ 𝑎2𝑎3𝑑5𝑐234𝑠234𝑠23𝑠1𝑐2𝑐1
2 

= 𝑎2𝑎3𝑐234𝑠1(𝑠23𝑐2 − 𝑐23𝑠2)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234)(𝑐1
2 + 𝑠1

2) 

= 𝑎2𝑎3𝑐234𝑠1𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 

 

det(𝐽𝑠𝑞6) = ⋯ (𝑀𝐴𝑇𝐿𝐴𝐵) 

= 𝑎2𝑎3
2𝑠234𝑐23

2𝑐2
4𝑠2 − 𝑎2

2𝑎3𝑠234𝑠23𝑐1
4𝑐2 + 𝑎2𝑎3

2𝑠234𝑐23
2𝑠1

4𝑠2
− 𝑎2

2𝑎3𝑠234𝑠23𝑐2
2𝑠1

4 + 2𝑎2𝑎3
2𝑠234𝑐23

2𝑐1
2𝑠1

2𝑠2
− 2𝑎2𝑎3

2𝑠234𝑠23𝑐1
2𝑐2

2𝑠1
2 − 𝑎2𝑎3

2𝑠234𝑐23𝑠23𝑐1
4𝑐2

− 𝑎2𝑎3
2𝑠234𝑠23𝑐23𝑐2𝑠1

4 + 𝑎2
2𝑎3𝑠234𝑐23𝑠23𝑐1

4𝑐2𝑠2
+ 𝑎2

2𝑎3𝑠234𝑐23𝑐2𝑠1
4𝑠2 + 𝑎2𝑎3𝑑5𝑠234

2𝑐23𝑐1
4𝑠2

− 𝑎2𝑎3𝑑5𝑠234
2𝑠23𝑐1

4𝑐2 + 𝑎2𝑎3𝑑5𝑠234
2𝑐23𝑠1

4𝑠2
− 𝑎2𝑎3𝑑5𝑠234

2𝑠23𝑐2𝑠1
4 + 2𝑎2𝑎3𝑑5𝑠234

2𝑐23𝑐1
2𝑠1

2𝑠2
− 2𝑎2𝑎3𝑑5𝑠234

2𝑠23𝑐1
2𝑐2𝑠1

2 − 2𝑎2𝑎3𝑠234𝑐23𝑠23𝑐1
2𝑐2𝑠1

2

+ 2𝛼2
2α3𝑠234𝑐23𝑐1

2c2s1
2s2 

= −𝑎2𝑎3𝑠234(𝑠23𝑐2 − 𝑐23𝑠2)(𝑠1
4 + 2𝑠1

2𝑐1
2 + 𝑐1

4)(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 

= −𝑎2𝑎3𝑠234𝑠3(𝑎3𝑐23 + 𝑎2𝑐2 + 𝑑5𝑠234) 
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B. Solving the general cubic polynomial 
 
 

𝑎0 = 𝑞0
 𝑎1 = 𝑞̇0 

𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0 = 𝑞f

3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1 = 𝑞̇𝑓 

⟹

[
 
 
 
 
1 𝑡0 𝑡0

2 𝑡0
2

0 1 2𝑡0 3𝑡0
2

1 𝑡𝑓 𝑡𝑓
2 𝑡𝑓

3

0 1 2𝑡𝑓 3𝑡𝑓
2
]
 
 
 
 

[

𝑎0
𝑎1
𝑎2
𝑎3

] =

[
 
 
 
𝑞
0

𝑞̇
0

𝑞
f

𝑞̇
𝑓]
 
 
 
 

 
Solves for 𝑎0 , 𝑎1, 𝑎2, 𝑎3 as follows 
 

𝑎0 = −
𝑞1𝑡0

2(𝑡0 − 3𝑡𝑓) + 𝑞0𝑡𝑓
2(3𝑡0 − 𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3 − 𝑡0𝑡𝑓

𝑞̇0𝑡𝑓 + 𝑞̇𝑓𝑡0

(𝑡𝑓 − 𝑡0)
2  

𝑎1 = 6𝑡0𝑡𝑓
𝑞0 − 𝑞𝑓

(𝑡𝑓 − 𝑡0)
3 +

𝑞̇0𝑡𝑓(𝑡𝑓
2 + 𝑡0𝑡𝑓 − 2𝑡0

2) + 𝑞̇𝑓𝑡0(2𝑡𝑓
2 − 𝑡0

2 − 𝑡0𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3  

𝑎2 = −
𝑞0(3𝑡0 + 3𝑡𝑓) + 𝑞𝑓(−3𝑡0 − 3𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3

−
𝑞̇𝑓(𝑡0𝑡𝑓 − 2𝑡0

2 + 𝑡𝑓
2) + 𝑞̇0(2𝑡𝑓

2 − 𝑡0
2 − 𝑡0𝑡𝑓)

(𝑡𝑓 − 𝑡0)
3  

𝑎3 =
2𝑞0 − 2𝑞𝑓 + 𝑞̇0(𝑡𝑓 − 𝑡0) + 𝑞̇0(𝑡𝑓 − 𝑡0)

(𝑡𝑓 − 𝑡0)
3  
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C. Configuration Files 
 

a. The .hal file 
 
# core HAL config file for simulation - 5 axis 

 

#Testing 

#loadrt threads name1=base-thread fp1=0 period1=40000 name2=servo-

thread period2=100000  

#loadrt siggen  

#addf siggen.0.update servo-thread 

#setp siggen.0.frequency 0.25 

 

 

 

# load RT modules 

#loadrt [KINS]KINEMATICS 

loadrt rm501kins 

#autoconverted  rm501kins 

loadrt [EMCMOT]EMCMOT base_period_nsec=[EMCMOT]BASE_PERIOD  

servo_period_nsec=[EMCMOT]SERVO_PERIOD 

traj_period_nsec=[EMCMOT]TRAJ_PERIOD num_joints=[KINS]JOINTS  

 

#Load Real Time Components 

loadrt hal_parport cfg="0x378 out 0xcf00 out"  

loadrt stepgen step_type=0,0,0,0,0,0 ctrl_type=p,p,p,p,p,p  

loadrt mux_generic config=uu8,bb4,bb4,bb4,bb4 

loadrt bitslice count=1 personality=9  

loadrt mux2  

loadrt and2 

loadrt sum2 count=2 

loadrt or2 

 

#Hook Functions to Base Thread 

addf or2.0                  base-thread 

addf stepgen.make-pulses    base-thread 

addf mux-gen.00             base-thread 

addf bitslice.0             base-thread 

addf mux-gen.02             base-thread 

addf mux-gen.01             base-thread 

addf mux-gen.04             base-thread 

addf mux-gen.03             base-thread 

addf and2.0                 base-thread 

addf parport.0.write        base-thread 

addf parport.1.write        base-thread 

addf parport.0.read         base-thread 

addf parport.1.read         base-thread 

addf parport.0.reset        base-thread 

addf parport.1.reset        base-thread 

 

#Hook Functions to Servo Thread 

addf motion-command-handler     servo-thread 

addf motion-controller          servo-thread 

addf stepgen.update-freq        servo-thread 

addf stepgen.capture-position   servo-thread 

addf mux2.0                     servo-thread 

addf sum2.0                     servo-thread 

addf sum2.1                     servo-thread 
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# Connect Position Commands from Motion Module to Step Generator 

net J0pos   joint.0.motor-pos-cmd   =>  stepgen.0.position-cmd 

net J1pos   joint.1.motor-pos-cmd   =>  stepgen.1.position-cmd 

net J2pos   joint.2.motor-pos-cmd   =>  stepgen.2.position-cmd 

net J3pos   joint.3.motor-pos-cmd   =>  sum2.0.in0  sum2.1.in0 

net J4pos   joint.4.motor-pos-cmd   =>  sum2.0.in1  sum2.1.in1 

net Lwpos   sum2.0.out              =>  stepgen.3.position-cmd 

net Rwpos   sum2.1.out              =>  stepgen.4.position-cmd 

 

#Connect Position Commands Feedback from Step Generator to Motion 

Module 

net J0pos   joint.0.motor-pos-fb 

net J1pos   joint.1.motor-pos-fb 

net J2pos   joint.2.motor-pos-fb 

net J3pos   joint.3.motor-pos-fb 

net J4pos   joint.4.motor-pos-fb 

 

#net J0pos-fb   stepgen.0.position-fb   =>  joint.0.motor-pos-fb  

#net J1pos-fb   stepgen.1.position-fb   =>  joint.1.motor-pos-fb 

#net J2pos-fb   stepgen.2.position-fb   =>  joint.2.motor-pos-fb 

#net J3pos-fb   stepgen.3.position-fb   =>  joint.3.motor-pos-fb 

#net J4pos-fb   stepgen.4.position-fb   =>  joint.4.motor-pos-fb 

 

#Connect Enable Signals for Step Generators 

net J0en    joint.0.amp-enable-out   => stepgen.0.enable 

net J1en    joint.1.amp-enable-out   => stepgen.1.enable 

net J2en    joint.2.amp-enable-out   => stepgen.2.enable 

net J3en    joint.3.amp-enable-out   => stepgen.3.enable 

net J4en    joint.4.amp-enable-out   => stepgen.4.enable 

 

 

# Create a data table for self-driving mux, strobe and joint select 

setp mux-gen.00.in-u32-00 0x48 

setp mux-gen.00.in-u32-01 0x89 

setp mux-gen.00.in-u32-02 0xD2 

setp mux-gen.00.in-u32-03 0x113 

setp mux-gen.00.in-u32-04 0x164 

setp mux-gen.00.in-u32-05 0x1A5 

setp mux-gen.00.in-u32-06 0x1C6 

setp mux-gen.00.in-u32-07 0x7 

 

# Break the data table to binary 

net data    mux-gen.00.out-u32  => bitslice.0.in 

 

# Loop Back for self-driving mux 

net addr0   bitslice.0.out-06   =>  mux-gen.00.sel-bit-00 

net addr1   bitslice.0.out-07   =>  mux-gen.00.sel-bit-01 

net addr2   bitslice.0.out-08   =>  mux-gen.00.sel-bit-02 

 

#Select Output  

net sel0    bitslice.0.out-01   =>  and2.0.in0  mux-gen.01.sel-bit-00   

mux-gen.02.sel-bit-00   mux-gen.03.sel-bit-00   mux-gen.04.sel-bit-00  

net sel1    bitslice.0.out-02   =>  and2.0.in1  mux-gen.01.sel-bit-01   

mux-gen.02.sel-bit-01   mux-gen.03.sel-bit-01   mux-gen.04.sel-bit-01 

 

# Link Steps   

net elbw_step   stepgen.2.step  =>  mux-gen.02.in-bit-00 

net base_step   stepgen.0.step  =>  mux-gen.02.in-bit-01 

net hand_step   stepgen.5.step  =>  mux-gen.02.in-bit-03 

 

net shld_step   stepgen.1.step  =>  mux-gen.04.in-bit-00 
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net lwst_step   stepgen.4.step  =>  mux-gen.04.in-bit-01 

net rwst_step   stepgen.3.step  =>  mux-gen.04.in-bit-02 

 

# Link Directions  

net elbw_dir    stepgen.2.dir   =>  mux-gen.01.in-bit-00 

net base_dir    stepgen.0.dir   =>  mux-gen.01.in-bit-01 

net hand_dir    stepgen.5.dir   =>  mux-gen.02.in-bit-02 

 

net shld_dir    stepgen.1.dir   =>  mux-gen.03.in-bit-00 

net lwst_dir    stepgen.4.dir   =>  mux-gen.03.in-bit-01 

net rwst_dir    stepgen.3.dir   =>  mux-gen.03.in-bit-02 

 

 

# Link muxes, strobe  to parport 

net strobe      bitslice.0.out-00   =>  parport.0.pin-04-out 

net dir_01      mux-gen.01.out-bit  =>  parport.0.pin-03-out    

parport.0.pin-08-out 

net dir_02      mux-gen.03.out-bit  =>  parport.1.pin-03-out 

net step_01     mux-gen.02.out-bit  =>  parport.0.pin-02-out    

parport.0.pin-07-out    parport.0.pin-09-out 

net step_02     mux-gen.04.out-bit  =>  parport.1.pin-01-out 

 

#Net select joint 

net elbw_shld       bitslice.0.out-03       =>  parport.0.pin-05-out    

parport.1.pin-04-out 

net base_lwst       bitslice.0.out-04       =>  parport.0.pin-06-out    

parport.1.pin-06-out 

net hand_rwst       bitslice.0.out-05       =>  parport.1.pin-08-out    

parport.1.pin-05-out 

net hand_pwr        and2.0.out              =>  parport.1.pin-09-out 

 

#Net Home Switches 

net elbw_sw     parport.0.pin-11-in =>  joint.2.home-sw-in 

net base_sw     parport.0.pin-12-in =>  joint.0.home-sw-in 

net shld_sw     parport.1.pin-11-in =>  joint.1.home-sw-in 

net pitch_sw    parport.1.pin-13-in =>  joint.3.home-sw-in 

net rol_sw      parport.1.pin-12-in =>  joint.4.home-sw-in 

  

 

#Net Reset, Errors 

net error_1     parport.0.pin-10-in-not =>  or2.0.in0 

net error_2     parport.1.pin-10-in-not =>  or2.0.in1 

net reset       or2.0.out               =>  parport.0.pin-17-out 

 

#Grip Configuration 

setp mux-gen.01.in-bit-02   TRUE 

setp mux-gen.01.in-bit-03   FALSE 

setp stepgen.5.enable       TRUE 

setp mux2.0.in0     -1 

setp mux2.0.in1      1 

net clopen          mux2.0.out  =>  stepgen.5.position-cmd 

setp stepgen.5.position-scale   400 

setp stepgen.5.steplen          390000 

setp stepgen.5.stepspace        390000 

setp stepgen.5.dirhold          190000 

setp stepgen.5.dirsetup         190000 

 

#Diferential Configuration 

setp sum2.0.gain0   1 

setp sum2.0.gain1   1 

setp sum2.1.gain0   -1 
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setp sum2.1.gain1   1 

 

#Test 

#setp stepgen.5.enable 1 

#net sw     siggen.0.clock  =>  mux2.0.sel 

 

#Parport Parameters Configuration 

setp parport.0.pin-02-out-invert        TRUE 

setp parport.0.pin-03-out-invert        TRUE 

setp parport.0.pin-04-out-invert        TRUE 

setp parport.0.pin-05-out-invert        TRUE 

setp parport.0.pin-06-out-invert        TRUE 

setp parport.0.pin-07-out-invert        TRUE 

setp parport.0.pin-08-out-invert        TRUE  

setp parport.0.pin-09-out-invert        TRUE  

setp parport.0.pin-16-out-invert        TRUE 

setp parport.0.pin-17-out-invert        TRUE 

 

setp parport.1.pin-01-out-invert        TRUE 

setp parport.1.pin-02-out-invert        TRUE 

setp parport.1.pin-03-out-invert        TRUE 

setp parport.1.pin-04-out-invert        TRUE 

setp parport.1.pin-05-out-invert        TRUE 

setp parport.1.pin-06-out-invert        TRUE 

setp parport.1.pin-07-out-invert        TRUE 

setp parport.1.pin-08-out-invert        TRUE  

setp parport.1.pin-09-out-invert        TRUE 

setp parport.1.pin-14-out-invert        TRUE  

setp parport.1.pin-16-out-invert        TRUE 

setp parport.1.pin-17-out-invert        TRUE 

 

#Steping Configuration 

setp stepgen.0.steplen              [JOINT_0]STEP_LENGTH     

setp stepgen.1.steplen              [JOINT_1]STEP_LENGTH 

setp stepgen.2.steplen              [JOINT_2]STEP_LENGTH     

setp stepgen.3.steplen              [JOINT_3]STEP_LENGTH 

setp stepgen.4.steplen              [JOINT_4]STEP_LENGTH 

 

setp stepgen.0.stepspace            [JOINT_0]STEP_SPACE 

setp stepgen.1.stepspace            [JOINT_1]STEP_SPACE 

setp stepgen.2.stepspace            [JOINT_2]STEP_SPACE 

setp stepgen.3.stepspace            [JOINT_3]STEP_SPACE 

setp stepgen.4.stepspace            [JOINT_4]STEP_SPACE 

 

setp stepgen.0.dirhold              [JOINT_0]DIR_HOLD 

setp stepgen.1.dirhold              [JOINT_1]DIR_HOLD 

setp stepgen.2.dirhold              [JOINT_2]DIR_HOLD 

setp stepgen.3.dirhold              [JOINT_3]DIR_HOLD 

setp stepgen.4.dirhold              [JOINT_4]DIR_HOLD 

 

setp stepgen.0.dirsetup             [JOINT_0]DIR_SETUP 

setp stepgen.1.dirsetup             [JOINT_1]DIR_SETUP 

setp stepgen.2.dirsetup             [JOINT_2]DIR_SETUP 

setp stepgen.3.dirsetup             [JOINT_3]DIR_SETUP 

setp stepgen.4.dirsetup             [JOINT_4]DIR_SETUP 

 

setp stepgen.0.position-scale       [JOINT_0]SCALE 

setp stepgen.1.position-scale       [JOINT_1]SCALE 

setp stepgen.2.position-scale       [JOINT_2]SCALE 

setp stepgen.3.position-scale       [JOINT_3]SCALE 

setp stepgen.4.position-scale       [JOINT_4]SCALE 



92 
 

 

setp stepgen.0.maxaccel             [JOINT_0]STEPGEN_MAXACCEL 

setp stepgen.1.maxaccel             [JOINT_1]STEPGEN_MAXACCEL 

setp stepgen.2.maxaccel             [JOINT_2]STEPGEN_MAXACCEL 

setp stepgen.3.maxaccel             [JOINT_3]STEPGEN_MAXACCEL 

setp stepgen.4.maxaccel             [JOINT_4]STEPGEN_MAXACCEL 

 

#setp stepgen.0.maxvel              [JOINT_0]STEPGEN_MAXVEL 

setp stepgen.1.maxvel               [JOINT_1]STEPGEN_MAXVEL 

setp stepgen.2.maxvel               [JOINT_2]STEPGEN_MAXVEL 

setp stepgen.3.maxvel               [JOINT_3]STEPGEN_MAXVEL 

setp stepgen.4.maxvel               [JOINT_4]STEPGEN_MAXVEL 

 

 

# Estop Loopback 

net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in 

 

#Tool Loading Loopback 

net tool-prep-loop      iocontrol.0.tool-prepare    =>  

iocontrol.0.tool-prepared 

net tool-change-loop    iocontrol.0.tool-change     =>  

iocontrol.0.tool-changed 

 

#Simulation 

loadusr -W rm501gui 

 

loadrt scale count=5 

 

addf scale.0 servo-thread 

addf scale.1 servo-thread 

addf scale.2 servo-thread 

addf scale.3 servo-thread 

addf scale.4 servo-thread 

 

net J0sim   joint.0.pos-cmd  

net J1sim   joint.1.pos-cmd  

net J2sim   joint.2.pos-cmd  

net J3sim   joint.3.pos-cmd  

net J4sim   joint.4.pos-cmd  

 

net J0sim scale.0.in 

net J1sim scale.1.in 

net J2sim scale.2.in 

net J3sim scale.3.in 

net J4sim scale.4.in 

 

setp scale.0.gain 1 

setp scale.1.gain 1 

setp scale.2.gain 1 

setp scale.3.gain 1 

setp scale.4.gain 1 

 

net J0scaled     scale.0.out    =>    rm501gui.joint1 

net J1scaled     scale.1.out    =>    rm501gui.joint2 

net J2scaled     scale.2.out    =>    rm501gui.joint3 

net J3scaled     scale.3.out    =>    rm501gui.joint4 

net J4scaled     scale.4.out    =>    rm501gui.joint5 
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b. The .ini file 
 

# EMC controller parameters for MITSUBISHI MOVEMASTER RM-501. 

 

# General note: Comments can either be preceded with a # or ; - 

either is 

# acceptable, although # is in keeping with most linux config files. 

 

# Settings with a + at the front of the comment are likely needed to 

get  

# changed by the user. 

# Settings with a - at the front are highly unneeded to be changed 

#####################################################################

########## 

# General section  

#####################################################################

########## 

 

# General section ---------------------------------------------------

---------- 

[EMC] 

 

 

#- Version of this INI file 

VERSION =   $Revision$ 

 

#+ Name of machine, for use with display, etc. 

MACHINE =   MISTUBISHI MOVEMASTER RM-501  

 

#+ Debug level, 0 means no messages. See src/emc/nml_int/emcglb.h for 

others 

DEBUG   =   0 

#DEBUG  =   0x00000007 

#DEBUG  =   0x7FFFFFFF 

 

#####################################################################

########## 

# Sections for display options  

#####################################################################

########## 

[DISPLAY] 

 

# Name of display program, e.g., xemc 

DISPLAY =   axis  

#DISPLAY =  usrmot 

#DISPLAY =  mini 

#DISPLAY =  tkemc 

 

#- Cycle time, in seconds, that display will sleep between polls 

CYCLE_TIME          =   0.200 

 

#- Path to help file 

HELP_FILE           =   tklinucnc.txt 

 

#- Initial display setting for position, RELATIVE or MACHINE 

POSITION_OFFSET     =   MACHINE 

 

#- Initial display setting for position, COMMANDED or ACTUAL 

POSITION_FEEDBACK   =   ACTUAL 
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#+ Highest value that will be allowed for feed override, 1.0 = 100% 

MAX_FEED_OVERRIDE   =   2.0 

 

#+ Prefix to be used 

PROGRAM_PREFIX      =   ../../nc_files/ 

 

#- Introductory graphic 

INTRO_GRAPHIC       =   NTUA-logo.gif 

INTRO_TIME          =   6 

#PYVCP              =   rm501.xml 

 

# Editor to be used with Axis 

EDITOR              =   gedit 

 

#####################################################################

########## 

# Task controller section  

#####################################################################

########## 

 

[FILTER] 

#No Content 

 

[RS274NGC] 

 

#- File containing interpreter variables 

PARAMETER_FILE      =   rm501.var 

 

# M101 (open grip) and M102 (close grip) files  

USER_M_PATH         =   

/home/mechcnc/linuxcnc/nc_files/ngcgui_lib/mfiles 

 

#####################################################################

########## 

# Motion control section  

#####################################################################

########## 

[EMCMOT] 

 

EMCMOT              =   motmod 

COMM_TIMEOUT        =   1.0      

 

BASE_PERIOD         =   40000        

SERVO_PERIOD        =   1000000      

TRAJ_PERIOD         =   10000000     

 

 

#####################################################################

########## 

# Hardware Abstraction Layer section 

#####################################################################

########## 

[TASK] 

 

# Name of task controller program, e.g., milltask 

TASK                =   milltask 

 

#- Cycle time, in seconds, that task controller will sleep between 

polls 

CYCLE_TIME          =   0.010 
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#####################################################################

########## 

# Part program interpreter section  

#####################################################################

########## 

 

[HAL] 

# The run script first uses halcmd to execute any HALFILE 

# files, and then to execute any individual HALCMD commands. 

# list of hal config files to run through halcmd 

# files are executed in the order in which they appear 

 

HALFILE                 =   rm501.hal 

#HALFILE                =   rm501_.hal 

#POSTGUI_HALFILE        =   rm501_postgui.hal 

#HALCMD                 =   save neta    

HALUI                   =   halui    

  

#####################################################################

########## 

# Trajectory planner section 

#####################################################################

########## 

 

[HALUI] 

#No Content 

 

[TRAJ] 

 

#+ machine specific settings 

AXES                        =   6 

COORDINATES                 =   X Y Z A B C 

HOME                        =   0 0 0 0 0 

LINEAR_UNITS                =   mm 

ANGULAR_UNITS               =   deg 

DEFAULT_LINEAR_VELOCITY     =   25.0 

MAX_LINEAR_VELOCITY         =   100 

DEFAULT_ACCELERATION        =   10 

MAX_LINEAR_ACCELERATION     =   20 

#POSITION_FILE              =   rm-501_position.txt 

#####################################################################

########## 

# Axes sections                                                               

# 

#####################################################################

########## 

 

[EMCIO] 

EMCIO       =   io   

CYCLE_TIME  =   0.100    

TOOL_TABLE  =   rm501.tbl    

 

[KINS] 

KINEMATICS  =    rm501kins 

#This is a best-guess at the number of joints, it should be checked 

JOINTS      =    5 

 

#*************# 

#    WAIST    # 

#*************# 



96 
 

[JOINT_0] 

TYPE                =   ANGULAR 

MAX_VELOCITY        =   30 

MAX_ACCELERATION    =   200 

BACKLASH            =   0.000 

 

MIN_LIMIT           =   -150 

MAX_LIMIT           =   150 

FERROR              =   2.000 

MIN_FERROR          =   0.200 

 

HOME                =   0.000 

HOME_SEQUENCE       =   0 

HOME_SEARCH_VEL     =   -15 

HOME_LATCH_VEL      =   5 

HOME_USE_INDEX      =   NO 

HOME_IGNORE_LIMITS  =   NO 

HOME_OFFSET         =   -150.1 

HOME_IS_SHARED      =    0 

 

SCALE               =   40 

#STEPGEN_MAXVEL     =   31.3 

STEPGEN_MAXACCEL    =   200 

STEP_LENGTH         =   390000 

STEP_SPACE          =   390000 

DIR_HOLD            =   190000 

DIR_SETUP           =   190000 

 

 

#*************# 

#  SHOULDER   # 

#*************# 

[JOINT_1] 

TYPE                =   ANGULAR 

MAX_VELOCITY        =   30 

MAX_ACCELERATION    =   20 

BACKLASH            =   0.000 

 

MIN_LIMIT           =   -100 

MAX_LIMIT           =   30 

FERROR              =   2.000 

MIN_FERROR          =   0.200 

 

HOME                =   -100 

HOME_SEQUENCE       =   1 

HOME_SEARCH_VEL     =   -15 

HOME_LATCH_VEL      =   5 

HOME_USE_INDEX      =   NO 

HOME_IGNORE_LIMITS  =   NO 

HOME_OFFSET         =   -102.35 

HOME_IS_SHARED      =   0 

 

SCALE               =   40 

STEPGEN_MAXVEL      =   31.3 

STEPGEN_MAXACCEL    =   21 

STEP_LENGTH         =   390000 

STEP_SPACE          =   390000 

DIR_HOLD            =   190000 

DIR_SETUP           =   190000 
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#*************# 

#   ELBOW     # 

#*************# 

[JOINT_2] 

TYPE                =   ANGULAR 

MAX_VELOCITY        =   30 

MAX_ACCELERATION    =   20 

BACKLASH            =   0.000  

 

MIN_LIMIT           =   -0.01 

MAX_LIMIT           =   90.01 

FERROR              =   2.000 

MIN_FERROR          =   0.200 

 

HOME                =   90 

HOME_SEQUENCE       =   2 

HOME_SEARCH_VEL     =   15 

HOME_LATCH_VEL      =   -5 

HOME_USE_INDEX      =   NO 

HOME_IGNORE_LIMITS  =   NO 

HOME_OFFSET         =   90.4 

HOME_IS_SHARED      =   0 

 

SCALE               =   40 

STEPGEN_MAXVEL      =   31.3 

STEPGEN_MAXACCEL    =   21 

STEP_LENGTH         =   390000 

STEP_SPACE          =   390000 

DIR_HOLD            =   190000 

DIR_SETUP           =   190000 

 

 

#*************# 

#    PITCH    # 

#*************# 

[JOINT_3] 

TYPE                =   ANGULAR 

MAX_VELOCITY        =   92 

MAX_ACCELERATION    =   20 

BACKLASH            =   0.000 

 

MIN_LIMIT           =   -180 

MAX_LIMIT           =   0 

FERROR              =   2.000 

MIN_FERROR          =   0.200 

 

HOME                =   0 

HOME_SEQUENCE       =   3 

HOME_SEARCH_VEL     =   15 

HOME_LATCH_VEL      =   -5 

HOME_USE_INDEX      =   NO 

HOME_IGNORE_LIMITS  =   YES 

HOME_OFFSET         =   -0.26 

HOME_IS_SHARED      =   0 

 

 

SCALE               =   26.66666 

STEPGEN_MAXVEL      =   45 

STEPGEN_MAXACCEL    =   21 

STEP_LENGTH         =   390000 

STEP_SPACE          =   390000 
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DIR_HOLD            =   190000 

DIR_SETUP           =   190000 

 

 

#*************# 

#     ROLL    # 

#*************# 

[JOINT_4] 

TYPE                =   ANGULAR 

MAX_VELOCITY        =   92 

MAX_ACCELERATION    =   20 

BACKLASH            =   0.000 

 

MIN_LIMIT           =   -180 

MAX_LIMIT           =   180 

FERROR              =   2.0000 

MIN_FERROR          =   0.200 

 

HOME                =   0 

HOME_SEQUENCE       =   4 

HOME_SEARCH_VEL     =   -15 

HOME_LATCH_VEL      =   15 

HOME_USE_INDEX      =   NO 

HOME_IGNORE_LIMITS  =   NO 

HOME_OFFSET         =   -66.63 

HOME_IS_SHARED      =   0 

 

SCALE               =   26.6666 

STEPGEN_MAXVEL      =   45 

STEPGEN_MAXACCEL    =   21 

STEP_LENGTH         =   390000 

STEP_SPACE          =   390000 

DIR_HOLD            =   190000 

DIR_SETUP           =   190000 

 

[AXIS_X] 

MIN_LIMIT           = -150 

MAX_LIMIT           = 150 

MAX_VELOCITY        = 30 

MAX_ACCELERATION    = 200 

 

[AXIS_Y] 

MIN_LIMIT           = -100 

MAX_LIMIT           = 30 

MAX_VELOCITY        = 30 

MAX_ACCELERATION    = 20 

 

[AXIS_Z] 

MIN_LIMIT           = -0.01 

MAX_LIMIT           = 90.01 

MAX_VELOCITY        = 30 

MAX_ACCELERATION    = 20 

 

[AXIS_A] 

MIN_LIMIT           = -180 

MAX_LIMIT           = 0 

MAX_VELOCITY        = 92 

MAX_ACCELERATION    = 20 

 

[AXIS_B] 

MIN_LIMIT           = -180 
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MAX_LIMIT           = 180 

MAX_VELOCITY        = 92 

MAX_ACCELERATION    = 20 

 

[AXIS_C] 

MIN_LIMIT           = -180 

MAX_LIMIT           = 180 

MAX_VELOCITY        = 92 

MAX_ACCELERATION    = 20 

 

c. The kinematics file 
 
/******************************************************************** 

 * Description: rm501kins.c 

 *   Kinematics for RM-501 Mitsubishi Movemaster Robot 

 * 

 * Author:  

 * License: GPL Version 2 

 * System: Linux 

 * 

*********************************************************************

/ 

 

#include "rtapi_math.h" 

#include "posemath.h" 

#include "RM501kins.h" 

#include "kinematics.h" 

 

#include "rtapi.h"          /* RTAPI realtime OS API */ 

#include "rtapi_app.h"      /* RTAPI realtime module decls */ 

#include "hal.h" 

#define sq(x) ((x)*(x)) 

 

/* RM-501 Mitsubishi Movemaster DH parameters*/ 

 int d1 = 230; 

 int a2 = 220; 

 int a3 = 150; 

 int d5 = 95; 

 

/************************************************************* 

                                           Forward Kinematics 

*************************************************************/ 

int kinematicsForward(const double * joint, 

                      EmcPose * world, 

                      const KINEMATICS_FORWARD_FLAGS * fflags, 

                      KINEMATICS_INVERSE_FLAGS * iflags) 

{  

   PmHomogeneous hom; 

   PmPose worldPose; 

   PmRpy rpy; 

    

    double th1 = joint[0] * PM_PI / 180; 

    double th2 = joint[1] * PM_PI / 180; 

    double th3 = joint[2] * PM_PI / 180; 

    double th4 = joint[3] * PM_PI / 180; 

    double th5 = joint[4] * PM_PI / 180; 

 

    double C234 = cos(th2+th3+th4); 

    double S234 = sin(th2+th3+th4); 

    double C23  = cos(th2+th3); 
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    double S23  = sin(th2+th3); 

    double C1   = cos(th1); 

    double S1   = sin(th1); 

    double C2   = cos(th2); 

    double S2   = sin(th2); 

    double C3   = cos(th3); 

    double S3   = sin(th3); 

    double C5   = cos(th5); 

    double S5   = sin(th5); 

     

    /* First column of rotation matrix.*/ 

    hom.rot.x.x = S1*S5 + C5*C1*C234 ; 

    hom.rot.x.y = C5*S1*C234 - C1*S5; 

    hom.rot.x.z = C5*S234; 

     

    /* Second column of rotation matrix.*/ 

    hom.rot.y.x = S1*C5 - S5*C1*C234; 

    hom.rot.y.y = - C1*C5 - S5*S1*C234; 

    hom.rot.y.z = -S5*S234; 

     

    /* Third column of rotation matrix.*/ 

    hom.rot.z.x = C1*S234; 

    hom.rot.z.y = S1*S234; 

    hom.rot.z.z = -C234; 

     

    /* Position vector.               */ 

    hom.tran.x = d5*C1*S234 + a3*C1*C23 + a2*C1*C2; 

    hom.tran.y = d5*S1*S234 + a3*S1*C23 + a2*S1*C2; 

    hom.tran.z = d1 - d5*C234 + a3*S23 + a2*S2; 

    

   /**************************************************** 

                           Flags for Inverse Kinematics 

   ****************************************************/ 

    

   /*Helpfull Variables*/ 

   double dy = hom.tran.z - d1 + d5*C234; 

   double ith2 = atan2(C3*a3+a2, a3*S3) - atan2(k2/sqrt(sq(C3*a3+a2)+ 

sq(a3*S3)), sqrt(1-sq(k2)/(sq(C3*a3+a2)+ sq(a3*S3)))); 

   double dx = c1*hom.tran.x + s1*hom.tran.y - d5*s234; 

   double th3 = atan2(s3, c3); 

   double c3 = (sq(dx) + sq(dy) - sq(a3) - sq(a2)) / (2*a2*a3); 

   if (c3 > 1) c3 = 1; 

   if (c3 < -1) c3 = -1; 

   s3 = -sqrt(1 - sq(c3)); 

   ith3 = atan2(s3, c3); 

   if (c234 == 0 && s234 == 0) {    

      ith234 = (joint[1] + joint[2] + joint[3])* PM_PI / 180;   /* 

use current value */ 

   } else {  

      ith234 = atan2(s234, c234); 

   } 

    

   /* reset flags */ 

   *iflags = 0; 

    

   /* Set shoulder-down flag if necessary */ 

   if (fabs(th2 - ith2) < FLAG_FUZZ) 

   { 

     *iflags |= RM501_SHOULDER_RIGHT; 

   } 
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   /* Set elbow down flag if necessary */ 

   if (th3 - atan2()) < FLAG_FUZZ) 

   { 

      *iflags |= RM-501_ELBOW_DOWN; 

   } 

    

   /* Set singular flag if necessary */ 

   if ((fads(ith3) < SINGULAR_FUZZ) || (fabs(s234) < SINGULAR_FUZZ) 

&& fabs(C2*a2+C3*a3) < SINGULAR_FUZZ) ) 

   { 

       *iflags |= RM-501_SINGULAR; 

   } 

    

   /******************************************************/ 

       

   /* convert hom.rot to world->quat */ 

   pmHomPoseConvert(hom, &worldPose); 

   pmQuatRpyConvert(worldPose.rot,&rpy); 

   world->tran = worldPose.tran; 

   world->a = rpy.r * 180.0/PM_PI; 

   world->b = rpy.p * 180.0/PM_PI; 

   world->c = rpy.y * 180.0/PM_PI; 

    

      /* return 0 and exit */ 

   return 0; 

} 

 

/************************************************************* 

                                           Inverse Kinematics 

*************************************************************/  

   int kinematicsInverse(const EmcPose * world, 

                      double * joint, 

                      const KINEMATICS_INVERSE_FLAGS * iflags, 

                      KINEMATICS_FORWARD_FLAGS * fflags) 

{ 

   PmHomogeneous hom; 

   PmPose worldPose; 

   PmRpy rpy; 

    

   double th1, c1, s1; 

   double th2, c2, s2; 

   double th3, c3, s3; 

   double th4; 

   double th5, c5, s5; 

   double th234, c234, s234; 

    

   /* reset flags */ 

   *fflags = 0; 

 

   /* convert pose to hom */ 

   worldPose.tran = world->tran; 

   rpy.r = world->a*PM_PI/180.0; 

   rpy.p = world->b*PM_PI/180.0; 

   rpy.y = world->c*PM_PI/180.0; 

   pmRpyQuatConvert(rpy,&worldPose.rot); 

   pmPoseHomConvert(worldPose, &hom); 

    

   /******************************* 

            Waist-joint[0]-link[1] 

   *******************************/ 

   /* Atan2(0,0) is undefined so we have to take some precautions*/ 
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   /* The below lines means: If they asked you x=0 y=0 stay where  

   your oriantation sais. If your oriantation is also 0,0 go home.*/   

   if (hom.tran.y == 0 && hom.tran.x == 0) {      

        if (hom.rot.z.y == 0 &&  hom.rot.z.x == 0) {  

            th1 = 0; 

        } else { 

            if (*iflags & PUMA_SHOULDER_RIGHT){ 

                th1 = atan2(hom.tran.y, hom.tran.x); 

            } else { 

                th1 = atan2(-hom.tran.y, hom.tran.x); 

            } 

        } 

    } else { 

        th1 = atan2(hom.tran.y, hom.tran.x); 

    } 

    /*th1 = atan2(hom.rot.z.y, hom.rot.z.x);  

    can be used since hom.rot.z.y=S1*S234 and hom.rot.z.x=C1*S234 */ 

    

   /* Compute cos sin for later calcs*/ 

   c1 = cos(th1); 

   s1 = sin(th1); 

    

   /* Calculate terms for future use */ 

   c234 = c1*hom.rot.z.x + s1*hom.rot.z.y; 

   s234 = -hom.rot.z.z; 

    

   /* Atan2(0,0) is undefined */ 

   if (c234 == 0 && s234 == 0) {    

      th234 = (joint[1] + joint[2] + joint[3])* PM_PI / 180;   /* use 

current value */ 

   } else {  

      th234 = atan2(s234, c234); 

   }    

   /******************************* 

            Elbow-joint[2]-link[3] 

   *******************************/ 

      double dx = c1*hom.tran.x + s1*hom.tran.y - d5*s234; 

   double dz = hom.tran.z - d1 + d5*c234; 

    

   if((sq(a2-a3)<=sq(dx)+sq(dy)) && (sq(dx)+sq(dy)<=sq(a2+a3)) 

   { 

     c3 = (sq(dx) + sq(dz) - sq(a3) - sq(a2)) / (2*a2*a3); 

    

    s3 = -sqrt(1 - sq(c3));          

    //s3 = sqrt(1 - sq(c3)); 

    

    /* In this case there is no need for "if" protection, 

    because sin extracted from cos */ 

    th3 = atan2(s3, c3);   

   }else{ 

       /* ERROR:--inverse kinematics cannot be calculated*/ 

       return 1; 

   }    

    

   /******************************* 

           Soulder-joint[1]-link[2] 

   *******************************/ 

   /* -- FIXME -- flip the condition if necessary */ 

   /*if (*iflags & RM501_SHOULDER_DOWN){ 

     th2 = atan2(c3*a3+a2, a3*s3) - atan2(k2/sqrt(sq(c3*a3+a2)+ 

sq(a3*s3)), sqrt(1-sq(k2)/(sq(c3*a3+a2)+ sq(a3*s3))));  
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   } else { 

     th2 = atan2(c3*a3+a2, a3*s3) - atan2(k2/sqrt(sq(c3*a3+a2)+ 

sq(a3*s3)), -sqrt(1-sq(k2)/(sq(c3*a3+a2)+ sq(a3*s3)))); 

   }*/ 

    

   /* using atan2 allows to get rid of condition */ 

   th2 = atan2(dz,dx)-atan2(a3s3,a2+a3s3) 

    

   /******************************* 

             Pitch-joint[3]-link[4] 

   *******************************/ 

   th4 = th234 - th2 - th3; 

    

   /******************************* 

             Roll-joint[4]-link[5] 

   *******************************/ 

   s5 = s1*hom.rot.x.x - c1*hom.rot.x.y; 

   c5 = s1*hom.rot.y.x - c1*hom.rot.y.y; 

   if (c5 == 0 && s5 == 0) {    

      th5 = joint[4]* PM_PI / 180;   /* use current value */ 

   } else {  

      th5 = atan2(s5, c5); 

   }  

    

   /* copy out */ 

   joint[0] = th1*180/PM_PI; 

   joint[1] = th2*180/PM_PI; 

   joint[2] = th3*180/PM_PI; 

   joint[3] = th4*180/PM_PI; 

   joint[4] = th5*180/PM_PI; 

   

       return 0; 

} 

 

int kinematicsHome(EmcPose * world, 

                   double * joint, 

                   KINEMATICS_FORWARD_FLAGS * fflags, 

                   KINEMATICS_INVERSE_FLAGS * iflags) 

{ 

  /* use joints, set world */ 

  return kinematicsForward(joint, world, fflags, iflags); 

} 

 

KINEMATICS_TYPE kinematicsType() 

{ 

  return KINEMATICS_BOTH; 

} 

 

EXPORT_SYMBOL(kinematicsType); 

EXPORT_SYMBOL(kinematicsForward); 

EXPORT_SYMBOL(kinematicsInverse); 

 

int comp_id; 

 

int rtapi_app_main(void) { 

    int res=0; 

     

    comp_id = hal_init("rm501kins"); 

    if (comp_id < 0) return comp_id; 

} 

void rtapi_app_exit(void) { hal_exit(comp_id); } 
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d. MATLAB supplementary file 
 
syms th1 th2 th3 th4 th5 d1 a2 a3 d5 a; 
syms r11 r12 r13 px r21 r22 r23 py r31 r32 r33 pz; 

  
A_01 = Trans(0,pi/2,d1,th1); 
A_12 = Trans(a2,0,0,th2); 
A_23 = Trans(a3,0,0,th3); 
A_34 = Trans(0,pi/2,0,th4); 
A_45 = Trans(0,0,0,th5); 
A_5e = Trans(0,0,d5,0); 

  
% Transfer matrices from 0 to reference 
T_01 = simplify(A_01); 
T_02 = simplify(A_01*A_12); 
T_03 = simplify(A_01*A_12*A_23); 
T_04 = simplify(A_01*A_12*A_23*A_34); 
T_05 = simplify(A_01*A_12*A_23*A_34*A_45); 
T_0e = simplify(A_01*A_12*A_23*A_34*A_45*A_5e); 

  
%for inverse kinamatics 
T_1e = simplify(A_12*A_23*A_34*A_45*A_5e); 
T_2e = simplify(A_23*A_34*A_45*A_5e); 
T_3e = simplify(A_34*A_45*A_5e); 

  
%calculation for inverse kinematics 
T_0e_in = [r11, r12, r13, px; 
           r21, r22, r23, py; 
           r31, r32, r33, pz; 
           0,   0,   0,   1]; 
matrix1 = simplify(inv(T_01)*T_0e_in); 
matrix2 = T_1e; 
matrix1 == matrix2; 

  
%check for the validity ot T_0e 
%upper left 3x3 is rotation-> orthogonal matrix-> %squared sum of 

rows and 
%columns need to be 1; 
sum_of_1 = 0; 
for i=1:3 
    if simplify(T_0e(i,1)^2+T_0e(i,2)^2+T_0e(i,3)^2) == 1  
        sum_of_1 = sum_of_1 + 1; 
    end 
end 
for i=1:3 
    if simplify(T_0e(1,i)^2+T_0e(2,i)^2+T_0e(3,i)^2) == 1 
        sum_of_1 = sum_of_1 + 1; 
    end 
end 
%we expect 6 ones 

  
% Jacobian matrix 
% Creating zi 
z0= [0;0;1]; 
z1= T_01(1:3,3); 
z2= T_02(1:3,3); 
z3= T_03(1:3,3); 
z4= T_04(1:3,3); 
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pe=T_0e(1:3,4); 

  
% Creating pi 
p0=[0;0;0]; 
p1=T_01(1:3,4); 
p2=T_02(1:3,4); 
p3=T_03(1:3,4); 
p4=T_04(1:3,4); 

  
% Jacobian matrix Computation 
J = [cross(z0,pe-p0), cross(z1,pe-p1), cross(z2,pe-p2), cross(z3,pe-

p3), cross(z4,pe-p4); 
    z0, z1, z2, z3, z4]; 
J = simplify(J); 

  
% Jacobian-differentiate method upper {3x3} 
upper3_J = simplify(jacobian([T_0e(1,4) T_0e(2,4) T_0e(3,4)],[th1 th2 

th3])); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
%%%%%_Singularity Analysis_%%%%% 

  
check = transpose(J)*J; 
check = simplify(check); 

  
for i=1:6 
    Jsq{i} =J; 
    Jsq{i}(i,:) = []; 
    determinant(i) = det(Jsq{i}); 
    determinant = transpose(determinant); 
end 
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