3

5
|ﬂ||%l|$
nvpPeopos

p:

NPOMHOEV

EONIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOION MHXANIKON KAI MHXANIKON THOAOTIETON

TOMEAY. TEXNOAOTITAY. IIAHPO®OPIKHY. KAI YIIOAOTTXTOQN
EPTAYTHPIO MIKPOYIIOAOTIETON KAI YVHRIAKON X TYSTHMATON

Implementation and Acceleration of Neuron Simulator with
CUDA C

AITAQMATIKH EPTAYTA

TOL

AXeEavdpou Neogitou

EnmpBAenwv: Anunteioc 1. Yolvtene
Kodnyntoic

Alé€avdpoc Neogitou

Adrva, Todviog 2019

(this page is left intentionally blank)

EGNIKO METXOBIO ITOAYTEXNEIO

TMHMA HAEKTPOAOT'QN MHXANIKQN KAI
MHXANIKON YIIOAOT'TIETOQN

TOMEAY TEXNOAOTITAY ITAHPO®OPIKHY. KAI
YIIOAOT'TETON

EPTAYXTHPIO MIKPOYIIOAOTIESTON KAI WHPTAKOQN
YYYXTHMATON

Implementation and Acceleration of Neuron Simulator with
CUDA C

AITTAQOMATIKH EPTAXTA

TOL

AXe€avdpou Neogitou

EnBrenwy: Anufteloc 1. Xolvteng
Kohnyntiic

Eyxptdnxe and tny tpyels| e€etaotiny emtpont| tnv Teitn 18 Touviou 2019.

Anuteioc 1. Sovvtenc Kuiopdh Z. IexpeotlA Tdeyoc Matodrouhog
Kadnynthc Kodnyntic Koadrynthc

Adrva, ToOviog 2019

AXe€avdpog NeogiTou
Amhopotovyog Portntic Tou Edvixod Metodfiou Hohuteyvelou

Copyright © Alé€avbpoc Neogitou, 2019.
Me emupialn novtog dixanduatog. All rights reserved.

Anayopebeton 1 avtiypoapt|, anodixeucn xou Slavour Tng mapovoug epyastag, €& OhOXAHEOU 1
TUARATOS AUTAS, Yo EUTOEXO oxomo. Emtpénetan 1 avatinwo?, anodfixeucs xou Slavour Yo oxond
U1 XEEOOCXOTUXO, EXTOUOEUTIXNC 1) EPELUVNTIXNC PUOMNG, LTO TNV TEoLTOUEoT Vo avapépeTon 1) TNYT)
TpoéAeuoTC o Vo Blatnpeeiton To mopdy prvuua. EpwtAuata tou agopodv tn yerion tne epyaociog yia
AEEOOOHOTING OXOTO TEETEL VoL AMEVVUVOVTOL TEOS TOV CUYYRAUPED.

O anddeg xon Tor CUUTERGOUATA TOU TEQLEYOVTOL GE QUTO TO EYYRAUPO EXPEALOUV TOV GUYYEIpPE
xa Oev TEETEL Var punveLVEel OTL avTinpoonTedouy Ti¢ enionueg Véoelg Tou Edvixol petodfBiou Tohu-
TEYVEIOL.

ITepirndm

H vevpoemotiun elvon 1 emotrnuovixny| UEAETY) TOU VELPWOD GUOTAUATOS XU TNG OYEOTG
TWV VEVPOVWY UE TN CUUTEELPORE xan Tr udinon. H peyahitepn npoondleta yioo Toug veu-
POETUC TAUOVES ETUXEVTIPWVETAUL GTOV EYXEPUAD, XoIWE N ALENUEVT XATAVONCT| TOU 00MYEL OF
O Gapn) XaTavonon Tne avipmmivng ouveldnong. Eve o nepiocdtepa telpduota 6To TapeAtov
oehyInoay o EEEIBIAEVUEVOL EQYUT THELO TOU UEAETOVOY TUAKNTO TR HUTIXWY EYHEPANXGDY
VEUROVWY, GTY) GUYYPOVY| VEUROETILG THUT Ol UTOAOYLO TEC YPNOLLOTIOLOUYTOL EVPEWS YL TNV TEO-
oouoleGT BLOAOYIXMY VELPWVIXWY BIXTUWY UE PEYSAN AETTOPERELX ot TOAUTAOXOTNTO. AUTEC
Ol TPOGOPOLOOELS ETUTEETOLY TNV ATEOVIOT) OIXTUGY UEYAAUTEPOL UeyEDoug, BondmvTag Toug
TEPAUTEP® OTNY €PELVE TOUG.

Ipoxewévou va cuveyloTel 1) e€EMEN TOU CUYXEXPIIEVOL ETUC TNUOVIXOU XAADOU, YeNnoLo-
TOLOUVTOL oo Tio eVpeial o GOVIETA BIXTUN VEUPOVWY GE TEOCOUOLOGELS, DNULOVEYOVTIG
TNV AVEyXT] VLo ETULTEY UVOT] TEOCOHUOIOTG OF DLUPOPETIXEC TAATPOPUES XOU UPYITEXTOVLXES IOV
YenoulomololvTon and to avtioTtotya epyac thpla. Eve untdpyouv apxetol TpoGoUoLTES Yo Uid
cupelol ETAOYT) TROCOUOLOGEWY LOVTEAWY VEURMVGY, 1) TAELOVOTNTO OV elivon BEATIO TOTOLNUEVT
YLt GUYYEOVO CUCTHUUTA UTOAOYLO TGV X0l CUVETWS OEV ETTUYYAVEL BEATIO TN amddooT), Xxo-
YUOTEQOVTOC TOUG VEUROETIO THUOVES OO ONUAVTIXG GUUTERAOUATY TOU TEOXVTTOUY ond To
ATOTEAEGUATO. TPOCOUOIWOT.

Auth) 1 BImAWUOTIXT EQYOCIN GTOYEVEL VO XATEUVAOEL TNV AVaYXT| YIo ETULTUYUVOUEVT] TO-
oopoinon yenowonowwvtag o CUDA API yio emitdyuvon oe éva obotnua NVIDIA GPU.
To povtého o710 omoio emxevTpVETOL QUTY 1) Epyacio eivar To povtéro vevpwvo Adaptive Ex-
ponential Integrate-and-Fire ye Spike-Timing Dependent Plasticity otic ouvddelc tou, mou
YenoulomoLeiton eVpEng oTn oUYyeovn Epeuva. H apyxr mpocouolwon eworydn apyixd and tov
Tpocouolwt Brian oe éva véo mpocopolwt Yeauuévo oTtn YAOcoo Teoypauuatiopnol C xo
ot cuvéyela avamTOYUNXE Yo TNy anoteheopotixy emtdyuvon oe GPU. H mhatgpdpua CUDA
elvon €val oTEOUA AOYLOULXOU TOU TUREYEL GUECT) TEOGRACT) GTO GOVORO EIXOVIXMY EVIOAGY TNG
GPU xou o napdhhnha UTOAOYIG TG GTOLYERL Yol YEVIXEC EQUQUOYES TOOYPUUUATIOUOU.

Auth 1 vhomoinon ATay EMTUYNG OTNY EMTAYLVOT| TG TEOCOUOIOTC VEURKOVGY TAVE) 0
76 100 gopéc oe olyxplon Ue Tov TpocouolnTh Belay, tepiotactond @tdvoviag axduo xat Eva
eLluo emitdyuvong 1000x dtatnewmvtoag TapdAAN e TNV (Blal AELTOLEYIXOTNTA UE TOV TTROGOUOLL-
) Brian. Aev undipyet Yewpntind dplo GTNV TOGOHTNTO VEURMV®Y TIOU TEQLEYOVTOL GTO O{XTVO,
oy xou 1) amédooT) TapaTNENINXE Vo UELVETAUL onuavTixd xadoe To 6pla Tne Uviune tTov GPU
Eemepdotnxay. To yeyovog autd anotélece oruelo EVBLAPEPOVTOS %ol BIEPELVTUNXE TEPAUTER®
woll Ye GAAEC TORUTNENOELS O QUTY| T1) BITAWUATIXY EpYATiaL.

AéEesic KAsouk

NVIDIA, CUDA, Parallel Programming, Ilpocouoiworn Neuptvewy, Brian, GPGPU, Ila-
carinionoinor, Adaptive Exponential Integrate-and-Fire model, STDP, in-silico experiment

Abstract

Neuroscience is the scientific study of the nervous system and the relation of nerves to
behaviour and learning. The biggest effort for neuroscientists is focused on the brain as
its increased understanding results in more clear knowledge about human consciousness.
While most experiments in the past were conducted in specialised laboratories studying
portions of actual brain neurons, in modern neuroscience computers are widely utilised to
simulate biological neural networks in great detail and complexity. These simulations enable
the visualization of networks of greater size, aiding them further in their research.

In order for this discipline to continue advancing, even more sizeable and complex neuron
networks are being used in simulations, generating the need for simulation acceleration in
different platforms and architectures used by the corresponding laboratories. While plenty
of simulators are available for a wide selection of neuron model simulations, the majority
is not optimized for modern computer systems and subsequently doesn’t achieve optimal
performance, delaying neuroscientists from important conclusions drawn from simulation
results.

This diploma thesis aims to appease the need for accelerated simulation by utilizing the
CUDA API for acceleration on an NVIDIA GPU system. The model this thesis is focused
on is the Adaptive Exponential Integrate-and-Fire neuron model with Spike-timing Depen-
dent Plasticity on its synapses, widely used in modern research. The original simulation was
firstly imported from the Brian Simulator into a new simulator written in the C program-
ming language and then developed for efficient GPU acceleration. The CUDA platform is
a software layer that gives direct access to the GPU’s virtual instruction set and parallel
computational elements for general purpose programming applications.

This implementation was successful in accelerating the neuron simulation a factor of
over 100x times in comparison to the Brian Simulator, occasionally reaching even a 1000x
acceleration rate while keeping the same functionality with the Brian Simulator. There is no
theoretical limit in the amount of neurons contained in the network, though performance was
observed to drop significantly as GPU memory limits were surpassed. This fact constituted
a point of interest and was investigated further along with other observations in this diploma
thesis.

111

Keywords

NVIDIA, CUDA, Parallel Programming, Neuron Simulation, Brian, GPGPU, paral-
lelization, Adaptive Exponential Integrate-and-Fire model, STDP, in-silico experiment

Euyapiotieg

Oa el vor euyELOTACK TOV EMBAETOVTA XNy NTYH x. MoLVTEN Yid OAEC TIC YVOOELS
X0l EUTELRIEC TTOU UOU UETEPERE XUTE T1) OLIOXELN TWV CTOUDMY HOU X0l TNG EXTOVNONG TNG
OLTAWMATIXAG oU EpYaciag.

Enfong euyaplote ioltepo ToV UETABLOUXTORLXO QOLTNTY| X. MLONEOTOVAO Xl TOV OLOAUX TO-
ex6 portnTy| %x. Xatlnxewvotovty| Yo TNV xoodiynon xat TNy o Tevy| cuvepyasio pog xad)” OAn
7 Odpxeta TG epyaciog Hou oTNY SLTAWHATIX XS xon TOV X. LUdearydo Yo TNV TOADTIIN
Bordeid Tou.

Contents

Extetopévn Ilepiindn
Ewoywyh . . .
Yyetn6 ‘Epyo oty Emtoyuvéuevn Trohoytotin) Nevpoemothun
Heprypapn HpoPhAuatog . . . o o o o oo oo
Thomoinon tou [lpocopowwthoe Co 0oL
Thomoinon Hapdhhnhou Ilpoypoppatiopoto Lo
ATOTEREOUOTA © . . . o o

1 Introduction

1.1 Neuroscience oo
1.1.1 Computational Neuroscience
1.1.1.1 History

1.1.2 Neurons
1.1.3 Synapseso
1.1.4 Levels of Analysis in Neural Modeling
1.1.5 Types of Neural Modeling
1.1.5.1 Conventional reductive models

1.1.5.2 Computational interpretive models

1.1.6 Degrees of Modeling Detail of Neurons
1.1.6.1 Conductance-based models

1.1.6.2 Integrate-and-fire models

1.1.6.3 Firing-rate models

1.2 Accelerated Computation via GPU
1.2.1 Graphics Processing Unit
1.2.2 General-Purpose Computing on GPU
1.2.3 Development Environment of GPGPU
1.23.1 Earlystageso

1.2.3.2 The CUDA programming model

1.2.3.3 Other GPGPU frameworks

2 Related Work on Accelerated Computational Neuroscience
2.1 Popular Neural Simulation Frameworks
2.2 GPU-accelerated Simulators L

vi

20
20
21
21
22
25
25
26
26
26
27
27
27
28
28
28
29
30
30
31
32

2.3 BrainFrame

Problem Statement
3.1 Adaptive Exponential Integrate-and-fire (AdEx) Neuron Model
3.2 Spike-Timing Dependent Plasticity (STDP)

Initial Approach

4.1 Brian Architecture
4.1.1 Imput Neurons
4.1.2 Model Neurons
4.1.3 Synapses
4.1.4 Brian Code

4.2 C Simulator Architecture

Parallel Programming Optimization

5.1 CUDA implementation
5.1.1 General Design Features
5.1.2 Data Structures and Memory Handling
5.1.3 Kernel Design

5.1.3.1 Devicecode
51.3.2 CPUwcode
5.1.4 Large Scale Experiments Support
5.1.4.1 Single GPUo
51142 Dual GPU.
5.1.5. CUDA Optimizations
5.1.5.1 Float vs Double Datatype
5.1.5.2 Kernel Mergeo
5.1.5.3 Parallel Mean Calculation
51.5.4 AoSvs SoA
5.1.5.5 Shared Memory
5.1.5.6 Other Attempts.
5.2 OpenMP implementation

Performance Analysis

6.1 Simulation Environmento 0oL

6.2 Experimental Resultso
6.2.1 Comparisons based on network size
6.2.2 Comparisons based on connectivity
6.2.3 Comparisons based on firing percentage

Conclusion

7.1 Remarks

7.2 Future work Lo

vii

38
39
40

42
42
42
43
44
44
46

51
o1
o1
52
25
25
60
61
61
63
65
65
66
66
68
69
71
73

76
76
78
78
83
84

List of Figures

O 1 O Ot = W N+~

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Emutdyuvon GPU vs CPU vs OpenMP, MxM 13
Emtdyvuvon GPU vs CPU vs Brian, MxM 13
Emutdyuvon GPU vs CPU vs Brian, NxM 14
Emtdyuvon GPU vs CPU vs OpenMP, NxM 14
Emtdyvvon GPU vs CPU, MxMo 17
Emutdyuvon GPU vs CPU, NxM 17
Emutdyvvon GPU vs CPU, MxMo oo 18
Emutdyuvon GPU vs CPU, NxM 19
Common parts of aneuron 23
Neuron architectures 46
Acceleration GPU vs CPU vs OpenMP, MxM 79
Acceleration GPU vs CPU vs Brian, MxM 80
Acceleration GPU vs CPU vs Brian, NxM 80
Acceleration GPU vs CPU vs OpenMP, NxM 81
Acceleration GPU vs CPU, MxM 83
Acceleration GPU vs CPU, NxM 84
Acceleration GPU vs CPU, MxM 85
Acceleration GPU vs CPU, NxM 86

Viil

List of Tables

1 Emtdyuvon we npog Méyedog Awxtiou, Meyaritepne Khipoxag, MxM 16
6.1 Acceleration by Network Size, MxM 78
6.2 Acceleration by Network Size, NxM 79
6.3 Acceleration by Network Size, Large Scale, MxM 82
6.4 Acceleration by Amount of Synaptic Connections, MxM 83
6.5 Acceleration by Amount of Synaptic Connections, NxM 83
6.6 Acceleration by Amount of Firing Neurons, MxM 85
6.7 Acceleration by Amount of Firing Neurons, NxM 85

1X

Extetauevn llepiindmn

Eicaywy™

Autd mou evémveuoe auTH TN OITALUATIX EpYasio HTOY 1) GLEAVOUEVT AVaYXT) VO UELL-
Vel 0 ypdvoc TPocoOwoNE TEWRUUATLY oL OYeTILOVTaL UE VEURPMVIXE BIXTUO YLlal VEUROETI-
othuovee. Hapduola pe apxetolg dAAoUC XAABOUC, 1) E0EUVOL OTT) VEUROETLO TYUT| TEPLAoBAvEL
ONUERA TPOCOUOLOOELS CUVIETWY POUIMUATIXGDY HOVTEAWY TOU TpooTodoly vo e€nyRoouy
AeLTovpYIXOTNTA TOU EYXEPIAOL. H peydhn moAumAoxdTnta Tou eYXEPIAOU, XS Kol 1) TOAU-
TAOXOTNTO GUUTEPLPORAC XU OPYAVMOTG TWV VEUROVWY 001Y0UV OE TERAC TIEC TEOCOUOLOCELS
Tou yeewdlovTtat TohD YeoVo Yia Vo TpEZouy, xaduc TEROVTAC TNV EPELVA. JTOY0C TNE TUEOUCAS
epyaotag elvon va tpoonadrioet var avaxoAber Tov BEATIOTO TPOTO EMTAYUVOTS TN TEOCOUO-
iwonc tou AdEx (Adaptive Exponential Integrate-and-Fire) povtélou veupwvwyv, 1 omofo
YETNOWOTOLETO EVPEMS GE VEUROETIG TNUOVIXE TElpduaTta. AUty 1 Tpocouoinon tepthouBdvel
TO (PUVOUEVO TNG TAACTIXOTNTOG EEUPTWUEVNE AMd TIC CTIYHES TUPODOTNONG VEURMVOY YL TIG
OLVBEGELS TWY VEURWVWY TIou ovoudlovTal cuvdalelc.

Xenowonotdnxay mtohhéc uédodot yia Tny eniteuén Tng TeAC emTdyuvonc. Ao Tny op-
Y1) TOL TELRAUATOC, 1) TROGOOIKaT) HTay LAOTOINUEVT Yia Tov TpocouolwT) BRIAN Simulator,
EVOLY PNULIOUEVO ADTT) VEUPWVIXMY HOVTEAWY avoLy ToU xwdwa tou Aettoupyel pue Python. Ilpo-
AEWEVOL Vo ETIToyUVIEL amOTEAEOUATING TO UOVTEND, TTPWTA 1) TPOCOUOIWOT) ETPETE VO UETO-
pepVel otn YAOooo Tpoypauuationol C, n onola Tapouctdlel GUVOAXY XOAUTERY amdOOGT) Amd
v Python, xodd¢ eivon o yhdooo mpoypoappationol younhotepou emmédou. Axoroling,
Yenowomolinxe 1 demapr) tpoypapuatiopol epappoyny CUDA mpoxeévou va egupuoctel
Ut TURGAANAY UTOAOYLO TiXT) €XD00T TOU ETLTUY YAVEL UYNAGTERY ETUTEDY EMTEYUVOTG YENOL-
wormowvtag wo GPU tne Nvidia. Téhog, o OpenMP API yonowomotdnxe yia vo emtayOver
NV Tpocouoiwor o todhamhd Véuata e CPU xon vor Siepeuvicet Tny xA{doxo EmTdyuveng
oe oUyxptom pe Ty exdoon GPU.

Neupoemothun

H veupoemo thun efvar 1 emo TnUovixy| EAETY) TOU VELURIXO) GUO TAUATOS, EWOLXA 1) OYECT) TWV
VEDPWVY WE T1 CUUTERLPORE xou TN udidnorn. H yeyarbtepn mpoomdieior TV VEUPOETIG TUOVODY
ETXEVIPOVETOL OTOV EYXEPAAO, XoWS 1) aUENUEVN xaTavonot| Tou, uall pe Tig PeATiouéveg
UEVOO0UC PEAETWY, OBNYOUV GE TO QY| YVWOT CYETIXA UE TN QUCIOAOYIXY| avlpOTLVY GU-
umeptpopd xon TV huywer| evedio. H yvoon tou nog axpiBeg Aettoupyel To veupnd oo TN
umopel va Bondrioel Toug epeuvNTES Vo Bpouv TEOTOUC Yial TNV TEOANYN 1 TN Yepancio mpofBAn-

UdTwV Tou eTNEedlouY TOV EYXEPANO, TO VELPXO GUCTNUN Xt To oua. Ou avaxaAleg Tou
ETOTNUOVIXOU XAJOOU ETITPENOLY GTOUG ETUCTHUOVES VoL avamTUEOLY VEQUTEIES Y10 VEUPOEX-
puUNoTIXES VOooUC (6Twg 1) voooc Tou Ahtoyduuep) xan Yuyixée aodévelee, Bonddvrag eniong
oty avdmtuén e Teyvntric Nonpooivng. Autég ol e€eilelg etvan mioavd va TpocpEpouy o1
MOVTLXG OQENT) YIaL TNY XOWOVIOL XL VoL EYOLY ETUTTOOELS OE €V EUPL PACUO TOUEWY DNUOCLAG
TONTIXNC OTWE 1) UYElY, 1) EXTTOUOEVOT), TO B{XUO XL 1) ACPIAELL.

Troloyiotixry Nevpoemothun

H urohoyiotixr) vevpoemo Tun efvar €vog xAAB0C TNG VEVROETIG TAUNG TOU GTOYEVEL OTNV
AATOVONOT| TOU TANPOPOELIXO) TEPLEYOUEVOU TMV VEURIXOY CNUETWY Y RNOLOTOLOVTAS Ui
MOTIXE LOVTEAS TOU VEUPLXOU GUGTHUUTOS OE TOMAES DLUPORETIXES DOULXES ALUAXES, CUUTE-
ELAPPOVOUEVKDY TV BLOGUOIXGOY, TOU XUXAOUATOSC Xul TwY LU TNUdTwY. Eivar pa Slemotn-
HOVIXT| ETLOTHUT TOU GUVOEEL Tl BLdPopa TEDLX TNEG VEVPOETLO THUNG, TNG YVWO TIXAG ETLOTAUNG
xan TN Puyoloylog Ye TNV NAEXTEOAOY(N, TNV EMCTAUN TV UTOAOYIGTOV, Tol LadnuaTixd xou
™ guoxr. O TeAx6g 0TOY0C TNS UTOAOYICTIXAC VEUROETIG TAUNG €lvar var e€nyNoEL TS yer-
OLLOTIOLOUVTOL NAEXTOEIXG XOU YNUXS OHUAUTOL GTOV EYXEPUAO YOl VAL OVTITOOCKOTEVOLY X0k VA
enelepydlovton mAnpogopieg. H xotorywyr| tng umohoyiotixrg veupoemothung Peloxeton xotd
TNV XOWT| ETUCTNUOVIXT] YVOUT OTO pordnuotixd wovtého mou ol vixntég tou Beafeiov Noumeh
Allan Hodgkin ot Andrew Huxley avéntugayv yior To Suvaixd 8pdomne UEAOUS EVOC XAUAUO-
elol To 1952, Auto elvan 10TOpXd TO TEOTO HOVTEAD BLOAOYIXOVY VEURHOVGY Tou e&Nyel Toug
tovixolg unyoaviogols otoug omoloug Bactleton 1 exxivnon xou 1 SLEB0CT TWV BUVITOTATWY
dpdiong otov peydro d&ova Tou xahauaplol. To povtého Hodgkin-Huxley woylel yio 6houg
Toug Veupdgoveg xau e€oxohouiel va ypnotuonoleiton Yéypl GHUEQL:

im = gNam®hW(V — Eng) + gxn*(V — Ex) + g(V — Ep)

Nevpdveg

Ou vevpwveg ebvan nhexteixd SleyepTind xVTTAUPA TOU ETUXOWVWVOUY UE GAAA xOTTUPN UECK
eCEWWEVPEVLY OUVOECEWY ToU ovoudlovTon ouvddelc. Autd elvan Tar xUpLo XUTTOELXE G ToLyEl
Tou amoTeEAOUV TN Bdon Tng Asttovpyiag TOU VELEIXOU CUGTAUATOS. XYEOOV OAOL Ol TOAU-
#«0TTOEOL 0P YAVIOUOL €Y0LUY VELPWVES. 'Evag TUTXOC VELPMVAS ATOTEAE(TOL UG EVOL XEVTOIXO
XUTTOPIXO WU, 0evdpiteg xan éva uovo d&ova. Ou veuptveg yevixwe yapoxtneiCovial amd
TO CWUA TOUG TOU EQYETUL OE OLPORETXE Y NUATA, XS UTopel Vo o TECOUVTOL DEVORLTHV
1 Vo unv €youv dova. Eivan e€edixevpéva yioo v emelepyaoia xou YeTddoor xUPehoetdey
oNUATLY. AdYe TNG TOAAAC TV AELTOURYLHOY TOU EXTEAOUVTAL GE BLA(POpa UEET TOU VEURLXOD
CUCTHUOTOC, UTEEYEL UEYEAT TowtAlo 6T0 YU, To UEYEVOC Xal TIC NAEXTROYNUXES LOLOTT-
€ Toug. To ooua TepIEyel Tov TUERVaL TOU XUTTAEOU XaL TO UEYUADTEQO HEPOS TNG YOVIOLIXTC
Exppaone ot cUVIETIXOU Unyaviopol ou efvon utedduvog yia T cuvieon tewTeivey. [evixd,
Ol VEUP(VES UTOROLY VOl TERLYRAPOLY ¢ £YOVTES EVay TOMO E16OO0U xou 600U, 0 omtolog OEV
ebvon amoAuTog, xadoe umopel vo utdpyet atousta Slaxhddwons. 20T6C0, Yo TNV TAELOVOTNTA
TWY VEUPWVWY 0 TOAOC Adng (ew0bbou) anoteheiton and viAuoTa Tou e&€pyovTal and To GOU
xou ovoudleton devopitne. O devdpiteg eupavilovTon GE VEUPMVES OTOVOUAWTMY aneudeiag oo

xeM Tou owupatog xon cuVlwe Stohadilouvy dpdova, Gho xo o hemtol pe xdde BLohddw-
on. O moéhog yetddoong (e€600v) eyxotaheinel o0 oW o€ oldnua mou ovopdleton hogioxog
Tou alovou, Tokldelel péypet 1 pétpo o avilpwnoug N TEpLocOTEPR G dhhar L0 xou xohelton
d&ovac. Ale&dyel NAEXTEOY NS GHUNTA TOAATAAGIACHOV ToU ovoudlovTal duvaixd dpdonc.
Av xon autog ebvon 0 YEVIXOC xovOvag, UTopel Vol UTEpY oLy EEURECELS T.Y. OF TEQLPERELONOVS
UcUNTARLOUC VEURPWVES 6TOU 1) {l0000¢ YIVETAL UECE AOVWY.
Yuvdiperg

Or veup®veg emovewvoly Yetadh Toug péow cuVAeny, 6Tou elte o dovag TEQUUTIXOU
EVOC XUTTAPOL EpYETOL OF ETOPT HE TOV OEVOP(TN, TO CWUA 1), AYOTEPO GUY VA, TOV VEURMTY
evog dANou vevpova. Efvon Souéc mou emitpémouy 6e Eva VEUPMVOL VoL TEQACEL £VaL NAEXTEIXO
1 YNUx6 ofjuor oe dhho veupwva 1 6To x0TTapo TeheoTr| oToyou. H peufBodvn midouatog tou
VEUPOVXL BIEAEUONC GHUATOC (TPOCUVITTIXAC) EPYETAL OE GUVEYXATAGTOO UE TN UEPPEdvn Tou
OTOYEVOUEVOU (LETOOUVOTTIXOD) XUTTdpou ot o obvaldm. Téoo n mpoouvantiny oo xa 1
UETAOLVATTIXY VEOT) TEQLEYOLUY EXTETAUEVES GUOTOLYIEG LOPLUXNG UNYAVAS TIOU CUVOEOLY TIG
000 PeuPedvec petadhd Toug xon Sleldyouv T dladxacia oNUaTod6TNoNG.
Boduidec tov Aentoucpeiyv Movtehonoinong Neupdvev

To 3 Pacind HOVTEN YloL TNV OVATUEIOTACT] VEUROVWY Efval:

o To povtéha pe Bdon v dwrywyuotnta: Hepeyouv peydho Podud Aemttouepeldv xoog
TPOGOUOLWVOUY TNV BOUY| TV VEUROVWY UECE TOMATAGY, SLUCUVOESEUEVKDY TUNUATWY
TOU TO XAYEVA CUUTIEQLPEPETOL GOV VoL eVl NAEXTEWXE GUUTAYES

o To povtera Yuoowpevone-xou-ITupoddtnong: Hpdxeiton yio To apnENUEVO LOVTEAD VEU-
eWVLY oo To TeKTo. T'er var tupodotnloly meénel To Buvauxd To omolo uTohoyileTo
UEo £VOC GUUPBOAXOU HOVTEROL Va efval UEYAADTERO ATd TO XATW@QAL TouS. ATAonolo0v
el TNV YEOUETPIA TWY XUTTARWY

e To yovtéha Luyvotnrag Exxevoong: Hpdxeiton yia 1o To a@nenuévo HovtELo, EYoVTag
War GUVEY NS TWNAG, METOPBUANOUEVNC UE TOV YPOVO TIAS Yiar TNV Buyvotnta Exxévewong
¢ €€H00U TV VEURMVGY

Hpoypaupotiopoc I'evixod Yxonol ye GPU

To 2003, o Mark Harris avayviploe T SuvatoTnTa ¥R1HONG YRUPIXWY HOVEdWY eNECEp-
yaotag (GPU) yu egopuoyéc yevixol oxonol. Aedouévou 6t oo GPU éyouv oyediootel pe
Toh) TeploobTepa TpavlioTop mou dlatilevton oty enelepyacio SedopEvwy Tapd Tov EAEYYO
NG POY|S 1) TNV TEOCWELVY amoUAXEUCT| GE00UEVWLY, eivon EEEIBIXEVUEVDL Yol EEPETIXG TORSANT-
Aoug eVToTiNoUC UTOAOYLOHOUE, UE OTOTEAEGUO TOAD UPNAGTERN TOCOGTE AELTOURYLMY XIVNTNAS
UTOBLAG TOAYG X TOAD LPniéTepoug puluote MEFLOPs and toug mohueninedoug CPUs. 'E-
ToL YEVWNONXE 0 6POC TROYPUUUATIOUOU YEVIXOU OXOTIOU OF UOVADES ENEEERYAUCIOC YRUPIXWY
(GPGPU), dnhadh n yenon woc povadog enclepyasiog ypapxwy (GPU), n onola cuvideg
YeelleTal ToV UTOAOYLIOHO UOVO YL YROPIXA UTOAOYIGTH, Yo TOV UTOAOYIOUO OF EQPUPUOYES
Tou mapadootoxd yetpllovton and v xevtpixn eneiepyaocta yovédac (CPU). O biétntes tne
GPU odnyolv oc par TOAD BLapORETIXT) APy ITEXTOVIXY| ETEEEPYAUCTAOV A TIC TOEAUOOCLAXES

CPU. Ot enelepyac tég agiepdvouy ToAAOUC TOPOUS, XURlkE amd TNV TEQLOYT| TWY TOLT, Yo Vo
EXTEAOLUY YOI YORU HELOVWUEVA PEDUATO OONYLOY, CUUTEQLAAUSBUVOUEVNS TN TROCKPELVAS ATO-
Wxeuone Yo Ty amdxpudn g Aovidvoucog UVAUNG o 1) EXTEAECT) EVIOADY EXTOC GELRAC.
Ov GPU, and v dhAn mAcupd, Yenolomololy TNy TEPLOYT| TOLT YLo UELOVOUEVH G TolyEl
eneéepyaolac Tou EXTEAOUV TOUTOYEOVA EVOL UOVO PEVUN EVIOADY GE TOAUTAS G Totyela Sedo-
uéveyv. H havidvouca uviun amoxpirteton Ue Yeryoen evaihayn mepiddAiovtog. O bavixéc
eqpopuoyéc GPGPU yapoxtneiCovtar and peydio ohvolo 6e60UEVLY, LPNAG TURPUAANAIGUS Xou
eNdytotn e€dptnon Yetald Twv oTolyElwy dedouévey. Emmiéov, eivar onuovtind ol egapuoyéc
GPGPU va éyouv udmiy) unohoyiotixy| évtaon oAAaS 1 Aavidvouoa meoclacn 6Ty UWvAun
Yo meploploel Ty unohoyto x| ToyvtnTe. H aprduntud évtaon opileton wg o aptiudg twy
TEGEEWY TTOU EXTEAOVVTOL OVE PUETAUPEPOUEVY) AEET (word pvAune.

To Movtélo Hpoypappotiopod CUDA

H miotgoépua CUDA ebvar éva otpmua hoylopxol mou mapéyel dueon tpéofBact oTo €l-
x0ovx6 oUvoho eviodwy g GPU xa o mopdAAnio uToAoYLoTIXd GTolyEla Yior TNV EXTEAEDT
UTOAOYIG TV TUETHVWY. TTooTind Bieuxolivel Toug eWIxoUE 6TOV TUEAAANAO TEOYEUUUATIOUO
yenowonoiwvtag Toug mopous twv GPU yweic va diadétel mponyuéveg 0e€lOTNTEC OTOV TEO-
Yeaupotioud yeapxay. To pyoviého mapdAiniou mpoypoupatiopod CUDA éyel tpeic xdpleg
AUPOLPETIXES EVVOLES - [ULaL LEQORY Ll OUEDWY VARATOS, XOWES UVAUES X (PROYUOUE CUYYROVIOUOD.
Kdéle pmhox vrpdtwy puropel vo mpoypoupatio Tel yio EXTEAEOT) G OTOLOVOATOTE Ad TOUG OLo-
Véououg Tuprveg eMelepyaoT®Y, TAUTOYEOVA 1 Slodoytxd. AuTd ETTEENEL GE Vol TEOY PO
CUDA vo exteheotel og onowodhnote aprdud mupivey enelepyactmy. Yrdpyouv Tela enineda
tepapytag yioe o viApota CUDA. Nrjuata, umhox viudtov xon mhéyupato. Kdde viua extelel pia
oxohoudior 0dNYLOY 1) Tuprva, oNA. To ‘mpdypauua’ TOU OAo ToL VARKTA EXTEAOUV TAUTOYEOVA.
Enfong €yet €vo povadind avoryvwploTixd To omolo umopel va yenoulomoltniel Yo Tov Tpocdlo-
PLOUO TV AEITOLVEYLDY TOU dQoEoUV To VAUA Ueoa otov tuphva. Tao vAuota opadomtolodvTal
OE UTAOX VNUATWY TOU TEPLEYOUV OTOLOOHTOTE 0ELIUO TV VNUATKY PEYPL Xdmoto 6plo, TO O-
molo oe clyypoveg cuoxeuég etvan 1.024 threads ovd umiox. To pmhox extehobvton eviehde
ove€dpTnTo XaL UmopoLy va opyavekoly mepaitépw oe dixtua. ‘Evo mhéyua etvar ohéxAnen
N cuAloyn Ty vrudtwy CUDA yio vy extéheorn evoc ouyxexpyévou muphva. Lt GPU
TEEYOVOUS YEVIAG, UTIHQOYEL (Lol TROCWEWVY) UVAIY ETUTEOOU-2 (L2) nou otoryetplCeton LAXS %ou
uolpdletan PETOEY OAWY TwV TUENVeY Tolamhov encéepyaot®y ot GPU xou uvAung cache
emnédou-1 (L1) mou ebvar tomny| oe xdle muprva. Emmhéov, undpyet n xowdyenotn uviun,
1 omolo €lvol TPOYEUUUATIOUEVT XL TOTUXH OE €VOL UTAOX VNUATWY, TOU GUVOUALETOL UE TNV
xpuen uviun L1 yio v €yer uéyedog 64 KB. Téhog, ol olyypoveg povadec GPU npocpépouy
emmAéov nocoHTNTa oTadepnic UVAUNG YeEvrc yerone uovo 48KB, xodoe xou peydho apyeia
xotorypopric (register files) yior tnv urnootAplEn hardware multithreading.

Yxetwxd ‘Epyo otnv Emitayuvopevrn Y nolhoyioTtixy
NevgoenmioThun

Aedoyévou 6Tt 1 UToAOYIoTIXY| VELpOETo TAUN Baotleton ot peydho Bodud ot padnuatt-
%) LOVTEAOTIOINOT| TROXEWEVOU VAL AVUAUCEL T1) AELTOURYLXOTNTA TOU EYXEQPIAOU, TA TELOYUTA
mou oyetilovrtar pe Tov Touéa Baoilovtar ot Bapléc aprdunTinéc meddelc mou TopdyovTaL Yid
TORAOELY U UE TIC HEYOBOUE TTOL OmoUTOVVTAL Yior TNV ETEAUCT] TWV BLpopIX®Y EELOMOEWY TOU
TEPLYPAPOUV TO BEBOUEVO VELELXO HoVTELOD. Enopévie, To metpduata meénet va exTeAolvToL in
silico, dnA. Tpocopolwoel Tou exteAOLYVTL O UTOAOYIOTEC. To YeEyYovdg OTL oL VEup®VES Xou
ot ouvaelg Toug etvar cUVHETES OVTOHTNTEC TOU YpeeLdlovTal Evay TERAOTIO oELIUs TURAUUETRMY
YL TV OMOTEAEOUATIXNT TEQLYQUPT| TNG BEUC TNELOTNTAC TOUC, Xarddg o 1) avdryxn Slelorywyhc
TELRUUATWY OYETXE UE T1) DPUCTNELOTNTA CUC TNUATWY TOU UTOTEAOUVTAL OO EXATOVIEOES N
YLMOES vevpveg odnyel o audavouevn (Htnon tne utoloylotixic woyvog. Emmhéoyv, tpo-
XEWEVOL Va BLEuxoALYYOUY oL ETIG TAOVES OTN) BleCarywyr) UEYEAou apLiuol TelpaudTewy Ywelc
TEYVOYVOGIO GTOV TEOYPUUUATIONO, EVE OEV UTdEYEL eVialo epyalelo mpocouolwong mou va
AVTATOXPIVETOL GTO GOVORO TWV OVOYXWY TN UTOAOYLOTIXNC VEUROAOYaG, Wial TowAlar Thot-
olwv mpocouolwong €yel xadicpwoel To pdAo Toug otny erdapyio. Mepixd amd To o EVPENS
Yenoulomololueva Thalolo TpocouolwT!) vevpwvey eivon to Neuron, to NEST, to BRIAN,
70 MOOSE xou 1o Genesis. Ewdur| avagopd aliler oto Brainframe, and to onolo mpoéxule
ouTY| 1) Otmhwpatxt|. To Brainframe eivon pio online miot@oépua emtdyuvorng e wiadtepn yen-
oTxoTNTYL, XS elvan Tpocapuoouévn 6to cbotnue e PyNN xaw yenowonotel tnv eupéng
OLBEDOUEYT] O ETUO TNUOVIXOUS TopElC YAWooa Tpoypauuatiopol Python yio tn diemagn tng.

ITepuvypapr, IpoAuatog

Y11 otdwacto epmhoutionol tou Brainframe pe véo yovtéha veuphvwy, 1 evdivn tou a-
VERBor i T BITAWUATIXT oL YTy 1 TeocVxn evog Tpocapuootinol Exdetinod Movtélou
Yuoowpeuong-xa-ITupodotnone (Adaptive Exponential Integrate-and-Fire model) (AdEx),
10 omolo yapaxtnelleton emlong amd TV TAACTIXOTNTO ELUQTOUEVT OmO TIC OTLYUES TUPO-
86tnone twv veupwvwy (Spike-timing Dependent Plasticity, STDP). Auté to padnuatixé
UOVTEAO €UTVEUCTNXE OO Lol ONUOGIEUCT) VEUROETIG TNV TOU BLEREDVNOUY TNV LXAVOTNTA
TWY OLVAPERDY VO ATOUVNUOVEDCOUY (Lol CUYXEXPWIEVT] GUUTIEQLPORE. Xou oY UTopolcay YeY|Yo-
OOl VO AVOXUAEGOUY QUTT) T CUUTEQLPORY oV EVEQYOTIOLOLYTAY amtd TapoUoLles ouypes. Evag
CUUPOLTNTAC X EYG avahdBape To xadrixov Vo emTay OVOUUE TO YPOVO TEOCOUOIWCNE oUTO-
U TOU UOVTEAOU OF BLUPORETIXEG TAUTPOPUES TPV TO Elodyoupe oto Brainframe. Kou ot 500
TAATPOQUES ATOUTOVOAY VoL ELGAYOUUE TNV TEOGOUOIWOT] TOU GUYXEXPLIEVOLU UOVTEAOL OF Vi
mpocapuocuévo medypappa C. Autd 081 ynoe ot euéva XL TOV GUVEDEAPO VoL ATOXWOLXOTOL-
fiooude Tov oxElf3r) Teémo Ue Tov omoio cpydleTon o mpocouoiwthc Brian o oyedidlovtog
EVOY TPOCOUOLWTY CUYXEXPWEVOU UOVTEAOU OTN YAWOGW Tpoypauuatiopol C mou unopel va
OLeEdryEL TELRQUOTO GYETXG UOVO PE TO HOVTEAD OVAPORAS, EMITRETOVINS WO TOCO GTOV YENoTN
vor xadopilel THIEC TUPUUETEWY %ot YLl TIC B0 TOUC VEURMVES XAl TIC CUVAELS TouC. XT1 OU-

VEYEL, 1) OtxY| ou eudivn NTary vor ety e BEATIO TN AmdBOGCT| Y ENOLOTOLOVTUS TNV TUESAANAN
vnoloylo T mhatgopua CUDA, emitaydvovtog Ti¢ tpocouolnoels otic wovadeg GPU.

To Ipocupuootind Extetind Moviého Yuoowpeuonec-xa-Ilupoddtnong etvon Eva povtéio
veupwva e 000 petafintéc. H mpddtn ediowon meprypdgpet 0 duvauixry Tou duvouxo) Tng
ueuPBedvne xou TepthaufBdvel €vay 6po evepyomoinong pe Wi exdetind| tdon e€dptnone. H tdon
ouvdEeTal U Wi OeVTEPT e&lowan 1) omola TepLypdpEL TNV TEOCUEUOYT TOL Veupwva. Kot ot 800
ueTaBANTEC emavapépovTon av evepyoroinUel éva Suvopxd dpdong. AVoAuTxd ot eEloOOELS TOU
LovTEAOU uTopoLY va Beedoly 6To ayYAS T TG Topolcas BIMALUATIXASC. O cUYBUACUOS
NG TEOCUPUOY NS Xak TN EXVETIXAS TUONG AMOTEAEL TNV TEOEAEUGT] TOLU OVOUATOS TOU UOVTENOU.

H IThaoctixdtnta e€apt®dUeVn amd TIC oTLYUES Tupodotnone twv Neupdvwy eltvar pio un
OLUPETEWT Lop@n Tng pdinong tou Hebbian mou eduptdton amd tov ypdvo xou xou Wbwitepa
oo TG YPOVIXES OTIYHES UETAED TNE TUPODBOTNONG TWV TEO- X0 HETU-CUVATTIXWY VEURMOVWY.
Ocewpeitar mwe yall ue dhheg popgéc IMaotixdtnrog, eudiveton yio Ty udinon xaw Ty amo-
VAXEVCT) TANPOPOPLIY GTOV EYHEPUAD XoIWE Xou TNV oVETTUEN X0 TNY PEATIOON TWY VEURIXGY
HUXAOUATOV XOTE TNV AvETTUET TOU EYXEPANOU. 2TT) CUYXEXPWIEVT] TROCOUOIWGT] 0oy ONOUUO-
OTE XU UE TIC D00 UOPQYES EXPEACTC TNG, ONAADYN %ol UE TOV TEO- XU TOV UETO-CUVITTIXG
VEURMVOL X0l Tol OYETIXG pouvopeva. Ou avahutixég eglonaoelc eniong Beloxovta oto oy yAixd
TUAMA TNG OLTAWUOTIXNC.

YAoroinon tou Ilgocopoiwtr o C

‘Eva onuavtind uépog tng e@opuoyic ATay 1 TA0YY| TV B0UOY BEBOUEVKY Tou Yo yerot-
womotndoly yio vor Stotnendody Oha Tar amapalTNTO BEBOPEVO TWY VEUROVLY X0l TWV GUVAPEDY
Touc. ‘Evag povodudotatog mivoxag and axepatoug uixoug N_S + N_Group_S ypenowonote-
fran yior vor avTimpooweEL GUUBAVTA TUPOBOTNONG GTOUS AVTIOTOLYOUGC VEUPWVES, UE TO OVOUX
SpikeArray. Aedouévou 6Tl 0 HOVABIXOC OHOTIOC TWV ELCERYOUEVHY VEUPWVGY EiVOL 1) TopoY N
CUUPAVTOY TUEOBOTNONG, AVTITPOoWTEVOVTUL ETEX®S amd Tig NS deoeic tou mivaxa. 2-
071600, 0 TVAXC CUUTANEMVETAUL TEWTA oo OAEC TIg amapaitrnteg Véoelg yio AdEx Neuptveg
TPV Ao QUTEG TOU avTITpoowTeLoUY Toug Nevpwveg Eioddou.

Adyw TV SLapope TV UETUBANTOY Tou povTéhou vevpwvwy AdEx mou ypeetdlovton e€ot-
XOVOUNOT) TROXEWEVOL VoL ETALTOLY GG T OL ECIGMOOELC HOVTEAWY OE XdE ypovixr o Tiyur, ot
Nevpdvee AdEx avtintpoownedovton ané uio Sour| tou ovoudleton Neuron 1 onola TEpLEYEL TI
UETUBANTES TOU %EATOUV TNV T TOU XAT@Aiou Tdong, To duvauixd PeUBedvng, To PELU XAl
™ PETUBANTH TPoCEUOY TS Tou HovTélou, Tou Ola opiCovtar we double Yo emapxr axpifela,
xoddC wan Evar Tedio axépanmv TGV Twv omolwy 1 o&ia e&nyel €dv o vevpwvag €yel Tupo-
dotniel oto TEEYOV YEoVid BdoTnua. Eve autd avuinpoowneletar and to SpikeArray, €yl
dlatnenel yio var e€aopolioel Thfien aviio Totyio Ue Tov apyixd xoowo Brian, 6mwe {ntidnxe.
H B apyy| epopuoleton 6 TOAG TUAUNTA XWOXO TOU TROCOUOWTY UAS YWElC ONUavTIX
emPBdpuvon uviune.

To povtého STDP xou ot Sagopixéc e€lowoelc Tou Teptypdpouy TIc cuvaels odnyolv
oty vhoroinon tou struct Synapse yio vo anoUnxeuToVY OAEC OL GYETIXEC TANPOPOPRiES TTOU

yeetdlovton ot cuvdelc. Autd TeplhauPdvel TIc cuVATTIXES PETOPANTES, €var tedio Tou SloTnpet
TNV TeheuTalol QOPd TOU [Lal T TNG DOPNS EVIUEROUNXE, TO PEVUUN TTOU TTEOXELTAUL VoL UETUOOVEL
OTOV UETACUVOITTIXG VEUROVO Xl TEAOG Uiot HETUBANTY| TOU OTNV TEOYUATIXOTNTO EXPEACEL
€dv 1 0edouévn olvadrn undpyel amd Ty drodr Tou mewpduoatos. H edfynon tou teheutaiou
elvar OTL TO0O T GUVOAA TWV VEUPOVLY 0G0 X0l TwV ouvddewy owlovial wg dUo mivaxeg
Souwv (AoS). Auth n didtaln npotiwAlnxE apyd AoYw TS YWEXAS TOTXOTNTOS UETUEY
TWV OLICLUVOESEUEVLY UETUBANTOV XAl TEOCEPEQE TASOVEXTIUUTA OTOBOCTG G GUYXQELON UE
utor povodixs dopry amd mivoxes (SoA) yia xdlde otoryeio, oty apyixh oetplaxy TepinTwon.
Ernopévng, ot ouvdeig amodnxedovton oe yior cuoTotyio Topaxévinong (Tev Bopdv) peyédouc
NxM 7 MxM, avéloya ye v npocopoinon. H yetafinty conn opilel tn cuvdeowdtnta, 1
omolo umopet vo StaBaoTel amd €va opyelo L0600V xamE X Vo TapaUEivVEL 6TO TPOoX U 0PLOUEVO
yopaxtnetotix6 50 %.

Ye xdlde Py e mpooouolwone ypeeldleton va extereotoly 4 Booixéc Aeitovpyieg ue
™V oglpd pe Ty omola Yo avapepdoly, Aoyw uetall toug e€aptioswy. H mpmtn elvan 1
ouvdptnor SolveNeurons, 1 onolo evnuepmvel Ti¢ YetaBintéc Twv AdEx Nevpwvwy. H dedtepn
elvan 1 ouvdptnon InitializeSpikeArray mou unohoyilel mowol and toug Neuphveg Eioodou
YeewdleTon Vo Topdyouv Evay ka6 0To CUYXEXPLIEVO Brua Tne Tpocouoiwong. H tpitn elvon
n ouvdptnon UpdateSynapses_pre 1 omolo evuep®VeL TI¢ TWES TV GLVAPEWY avdhoyo e
TNV BEACTNELOTNTA TWV VELRPKOVKY Tou eivor tpocuvantixol (Eweddou ¥ AdEx). H teheutoio
ouvdptnon etvon 1 UpdateSynapses_post 1 omolo eviuep®dvel Tic TES TV CUVAPEWY avdloya
UE TNV BRACTNELOTNTA TOV UETACUVATTIXWY VEURMOVOY. AUTEC OL GUVAPTACELS £Y0LY WS OTOYO
VoL ETAUOUY TIC BLAPOPXES EEIGMOELS TWV HOVTEAWY TWYV VEURMVOY X0k TV GUVAPEDY.

YAoroinon IagdAAniou llpoypoppaticuon

Metd tnv uhornoinon Tou tpocopolwt o C oe cuvepyaoio ue évay dAAO @ottnTr, 0 TEo-
OWTXOE UOU GTOYOG OE aUTH TNV Epyacior Aoy vor avamTOge Uiar TaedAAnAn UTOAOYIO TIXT €X-
5001 TOU TEOCOUOIWTH YioL Vo cuYXpive Tar xépdT anddoone 6tay Teéyw ot (max) mopahnAio
otig GPU yenowonowdvrtag 1o APT CUDA. Eminiéov, npoypauuatiotnxe wa Bacucr éxdoon
ETUTAYLVOTS TOU Yenotdonoinoe T dienagy| Ttpoypoupatiopo’d OpenMP yio emitdyuvorn ToAlo-
AV vpdtwy CPU, étol wote va xotovondody amoTEAEoUATING Tol TRy UOTLXG TAEOVEX THUOTA
xan petovexthuota e yerions Twv GPU ylo To Teloduota Tou CUYXEXQUEVOU TROGOUOLWTY).
Kadog 1 éxdoon OpenMP tehel xadopd Borintixole oxonol oto mhalclo Tng Simhwuatixhc,
T TEQLYQPUPY| TNG CUYXEXQUIEVNG EXDOONC APAVETOL ATOXAELGTIXG OTO TANPES, oy YAXO TURAUA
¢ epyaolag.

AopBdvovtag vnddn otL Adyw Tng apyttextovixiic Tou Tpoyeduuatoc C mou avollinxe
6ot oL UTOAOYLoUOL TOU HOVTEAOU Elval EOLXOL VLol TO VEURMVOL Xoi TN oOvar), Tou onualvel 6Tt
uTdEYoLY EAdyLoTES 1) xadohou e€apTHOELS UETAED BEBOUEVMY OE plo UOVO ypovixY| GTiyuY),)
TEOCEYYLON Tou eTAEYUNXE Yioe TNV emtdyuvor o GPU ftav va exywenotel xdlde dour mou
YenoulomoLe{Ton YLot UTOAOYLoROUS GE BlopopeTnd viua. Kdlde veupivag xan xatd ouvéneta xdie
oOvar - avdroya Tov muprva - yelleton Ue éva uovo, avedpTnTo VAW, ETTEETOVING TOV

UEYIOTO BUVATO TUPUAANALOUS Xl TO IXEOTERO BUVATO YopTio uTohoYiouoD Yo xdie viua. H
emAoyn auth eacgarileton ue Tov xadoplopd evog ueyEdoug SixThou avdhoyou Ue Tov aptiud
TV Tpog enelepyaoio oToyelwy Tou dixTlou.

Teononoinon douwy 6edoPEVELV

Aedopévou 61t o CUDA etvan pior Siemopt| tpoypauatiopo) mou unootneilel TAfews
yiwooo C, yeetdlovtar UoVo AYEC TPOTOTOLACELS OTIC UTHPYOUCES DOUES DEBOUEVWY TOU TN
Yaiou xMBA TOL TPOCOUOLWTH, hauBdvovTag UTOYN OTL OAES OL AMUPAITNTES UTHPYOVUCES DOUES
0edOPEVWLY BlatiievTal GTN CUOXEUT XL Tol DEDOUEVA TOUG UVTLYRAPOVTOL YPTOULOTOLOVTOC [ULd
amoxheloTixy) Aertoupylo CUDA. Tlpdtor amd Ohat, meénel var onuewwdel 6TL yiar vor enelepyo-
otoLy dedopéva ot pa GPU exteldvtag évay mupfiva CUDA, To amapaitnto dedopéva Teémel
va Btoveundolv 1 / o vor tepdoouy 6Tr GUGXEVY|. LNy tepintwon twy ouvddewy, to CUDA
API mpbogepe 800 BUVATOTNTES Yial TN UETAOO0T TwV OEBOUEVWY TOUC OTN CLUOXELY. Autd
ogethetar 0T0 YEYOVOC OTL 1 cuoTotyia dopdv (AoS) mou evepyel we phTEo CUYYEVELS Xo-
Vg xon amoUnxelel Ti¢ TANpogopieg Tou amoutolvTon Yiar xdde clvalr utopel vo etvon elte pla
xhoowx| Sloddo tatn cuototyla C (twy Soudv) elte pa uovodido oty avormapdo taoT Tng (Lo
cucTotyioag, BEBOPEVOL OTL Ol GELREC PLaG DLOBLEO TATNG CLGTOLY oG UTOPOUY VoL amoUnxeELTOOY
oe ouveyelc Véoeig puviung xon va €youv mpocPaoct ue TN Yerorn aprduntixey dextov. T
Aoyoug e€oixovounong UvAung emiéydnxe évag povodido tatog mivaxag amd dopés cuVAPEWY.
O uTEVVUVEC CLUVAPTHOELS YL TNV XATUVOUT) X0 TN UETUPORE TUNUETWY UVAUNG O QUTHY TNV
nepintwon ebvan ov cudaMalloc xou cudaMemcepy.

H pévn dAAn dagopd oyetxd Pe TG DOUEC DEBOUEVLY elvor 1 TpocUxrn evog double
datatype mivoxo mou ovopdleton testvar. O oxomdc Tou testvar €lval Vo EAOYLOTOTOLAOEL
TNV TOGOTNTA TNG UVAUNG TTou Teémel var LeTofiBaoTel 6ToV XevTEd UTOROYIG TH), xome xde
oOvar - xotd cuvénela xdde viua - anodnxelel Ty Ty mou Yo mpootedel oTn UETABANTN
peav oTic avtioToryeg Véoelc Tou testvar. YNTn cUVEYEL, UOVO TO testvar avTlypd@EToL GTOV
AEVTPIXG UTOAOYLO TY|, O OTOLOG XUTAVIAWDVEL ONUOVTIXE ALy bTEEN VAU WS double Tivoxag mapd
yio o oepd Synapses, xahotovrog TV Aettovpylo cudaMemcepy yenyopdtepn.
2yedtaopog Tuprvwv

H apywr) mpocéyyion yiol ToV 0ploud Tov TUpvwy Tay Vo TpooTadoeL Vo oyedlaoTel To
mpoyeapuo GPU oe avtiotoyla e tov mnyolo xmdxo Tou apytxol TEOCOoUOLOTY. LUYXEXL-
UEva, oAOxAneT 1 Tpocouolwaor Yo Eyel Ty Bl por| e v €xdoon g CPU, adrd avtl twv
xh\oewv Tpog T Aettovpylec SolveNeurons, UpdateSynapses_pre xou UpdateSynapses _post
Yo uTdipyouv xANoEKG GToLG avTioToloug Topdhhnhoug TUEHVES. Aedouévou 6Tl To GUVOAO
TV ApLIUNTIXGY UTOAOYLOUGY TOU OYETILOVTOL UE TOL LOVTEANL TV VEUROVWY X0l TwV GLVAE-
oV Teaypatonoteitol 6T Tpoavagepleioeg Asttovpyieg, @dvnxe enlong 6Tt av umotelel OTL O
TEOGOUOWWTAC YPEWILETOL Vol EXTIEUTEL BEBOUEVA GTOV YPNOTN UOVO UETE TNV OAOXANR®GT) TNG
TPOGOUOIWONG, YEEIOTNXOY UOVO To BEQOUEVO TEOGOUOIWONS VoL HETAPEQVOUY OTI GUOXELN
ula popd 6T0 GUVOAG TOUG GTO BrUA CEYIXOTOINONG XAl VO ATOCTAAOUY oW GTOV XEVTEIXO
UTOAOYIG TH) HOVO 0o xde UETABANTY HOVTENOL EYEL amoXTHOEL TNV TEAXT TNG THY. 2 xde
Tuprva 00UNKE To (B0 Gvoua PE TIC UPYIXES AElTOLEYIES Yol AmAGTNTAL.

Yy neplntwon tou nuprva UpdateSynapses_pre, eugaviotnxe 1o €&fig dihnuua: otov

TEPLOGOTEPOL O EVOC TEO-CUVATTIXOL VEUPKVEC GUVOEOVTOL TAUTOYQEOVA PE TOV (Dl0 UETH-
CUVATITIXO VEURMVA X0 TUPODOTOUVTOL TaUTOYeoVA, xdie T target _I avtixahotd Tnv T
oL €yl NoN xataywenlel oTo yetacuvanTnd vevpwva. Adyw tng enavdindng xotd oTHAeg,
1 TEAXT) TYT| TOL XaToryedPETOL EIVOL TOU VEURMVA TOU AVTIOTOLYEL OTO UEYAADTEPOU OVOLY V-
ELOTIXOV VAUOL UETAED EXEIVWY TWV TEO-GUVATTIXMY VEURMV®Y, TOU VIO TOLYEl 0TOV ‘TEAEUTH(O’
XATE OELRA VEURWVOL TTIOU TUPOBOTNCE eXElVN TN Ypovixt oty Acdouyévou 6Tl Bev UTAEYEL
Aertoupyla CUDA v v emBolr} cuyypoviolol VIUGTLY O GAO TOV TURTVA, 1) OVATUQOLY w-
Y1 AUTAC TNG CUUTERLPOEAS amoutel TNV €000 amd ToV TPV TRV amd aUTOV TOV TEAELTULO
Beodyo, TN UeTapopd TV dedoUEVLY target I xou TNy exTEAETT) TOL 6TOV XWOOWA TNG I, peTo-
pEpoVTOC TN neurons dour Tlow 6T CUCXEUT| Yia TOUS amdpaitnToug uTohoyiopols. 26160,
ueTah Twv xAoewy CUDA, dnuovpyeitar 1 peyohtepn ypovixy| mowr tay yenotuonoteital
10 cudaMemcpy (xou ToL TUEEYWYE TOL) Yo TN PETAPORE BEBOUEVWY UETOED GUGKEUNC Xl
xeVTEoL untoloyio Th.Emmiéoy, 1 oeipd mou €yl tepdoel To pedua ebval auo TNEA EVaG TEPLO-
PLOU6S x@OLxar Tou Brian, xadog dev undpyel utootheEn Tou Brian yua vo xadopicel molog
TPO-CLVATTIXOG VELRGOVAS XUELapYEl enl Tng Tawtdypovne mupoddtnong. Ovte 1 dnuocicuon
otnv omola Baciotnxe o apyxd melpopa oUTE To HoVTEAA TV Vevpovwy AdEx 1 twv ou-
vapewv mou yapaxtneiloviar ané STDP moapéyouv xdmow oyetn|) mAnpogopia. Téhog, dev
uTdpyel TEOBANUO Vo €YOUPE TOMATAG VAUATA TOU Vo YRdpouy uua eviodor (xowdyenot 1
noryxoopa) 9éon pviune oto CUDA, oxdun xou ‘towtdypove’ dniads omd tny Bl yeouun
AOOWXA, EPOCOV BEV UTEEYOLY GUVIAXES TAUTOYPOVNG avayVKoTc-eYYeapnc. 2¢ ex TtolTou,
T ETAEYUEVT TEOCEYYLOT ATV VoL ETUTEATEL AMTAWS OF VARNTA VO EVIUEPMCOUY TUEdAANANL T1)
UETUBANTY| VELPWVOY ToRdAANALL, Ywelc va EAEyyEToL 1) oelpd Tou Yo €youv TpdofacT oe autd
TO TEDLO, UE ATOTEAEOUA EVOL ONUAVTIXG XEEOOS ATODOCT.

Téhog, o nuprivag UpdateSynapses_post. ‘Onwe avagépeton otny evotnta 4.2, 1 cuvde-
non UpdateSynapses_post amoteleiton and 800 Pedyoug Tou TepvAve OAES TIC BOUEC GUVAENY
%At OTAAES, YEYOVOS Tou xahoTé eAdytoTn T Olapopd otny Teononolnon g Asttoupylog
mou exteheltan Tapdhinia. 261660, 0 LUTOAOYIOUOS TNG UEOTC TYHAC OPLOUEVKY GUVITTIXOY
UETABANTOV peTad) auT®V TV Peoyny amodelydnxe mpdxAnon. Auth n Ty, xowy| oc dAeg
TIc ouvael xou cLVETKE xdde VAua, efvon amapaltnTy Yo TIC Asttoupyieg Tou exteloVVTLL
otov 0eUTepo [pdyo, ondte mpénel va Beforwiel dTL xavéva Vo Bev el uetageplel oTov
0eUTERO Bpoyo TRV 1 UEom PETOPANTY €yel oploTel 0T owoTH TYY. AucTUY®S, TO UOVTEROD
mpoypaupotiogol CUDA edixedeton 6tny eniAuoy meoBANUdTe:Y SLacTOVTIC ToL OE UTAOX Xl
CLYYEOVIOUS VAUXTOS EVTOC TUEY VA UTtopel Vo YIVEL UOVO UEGU GE EVOL UTAOX Y PNOHIOTIOLOVTAS
™ owvdptnon CUDA __syncthreads. O cuyypoviouog extog nuprivae CUDA unopel vo emiteu-
YOl uévo pe pedddouc mou ceptonolovy Ty extéheon (m.y. xheidwuo mutex). ‘Etol, n mo
amAr) ADom oy Vo ywelo Tel 1) cLVAETNOT ot 800 YWELOTOUS TUETVES, oL oTofol elvar uTebYuvoL
yioo TV ToRdAANAY exTéleoT) xdide évieTou for-loop, emtpémovTtag 6Tov XeEvTpind enelepyao TN
(CPU) va yelptotel Tov unohoyloud tou péoou toug dtaPiBdlovtoc Gho o anapaitnTo dedouévo
U€ow Tou testvar. AedouEvou 6TL Ol TUPTIVES EXTEAOUYTOL AUTOUATO BLABOY XS EQY EXXVACOUV
OTNV TEOETUAEYHEVY POT), OIS CUUPBUVEL GTO GUVOAO TOU GYETIXOU XWOWA TN TAPOLCAS OL-
TAOUATIXAC EpYAOLAC, BEV UTHPYEL AOYOC VoL GUYYPOVIC TEL p1Td 1 CUGKELT] Yol VoL EEUTPOIMG TEl

oTL 0 péoog bpog umoroyileTon.
Hewpdpota Meydhng Khluoncog

Ye mepdpota pueyédoug mou Lemepvder ta Gpla tou Tievton and TN cuoxevr) GPU yia va
TopoAAnrotomndel TANPwS 1 EXTEAEST WG TEOG TIC CLUVAPELS, EYOUV avamTUY Vel TPOCUPUOYES
TOU TEOCOUOWWTY Yiar plar ohhd xou yior meptocdtepeg amod ula GPU. Xtnv neplntwon povig
CUOXEVNC, 1) TROCUPUOYY| TOU TEOCOUOWWTY GTNY EXTEAECT] HEYUAVTEQMY TELRUUATWY UE TEO-
XTI xavévar Opto peyEédoug elvon apxeTd eUxoln amd TNV drodn tng avdmtuéng, xaddg avt
vou xahettan xde muprvag ula gopd, epapudleton €vag Bedyog yia xdie muprva, 6mou ot xdie
eTaVIANdN TO GUVORO TWV TUNUETOY TWY BOYMY TOU UTOEOUY Vo ETEEEQYACTOUY TAUTOYPOVA
uetofiBdleTon ot cuoxeur, 0 TUENVaG ExTERELTAL X ToL DEBOUEVYL UETUPEROVTAL EavE GTOV XE-
VTIPS UTOAOYIO TY|, Xod ™G 1 EROUEVT ETAVEAN(T Vol v TIXUTAC THOEL ToL BEBOPEVA TNG CUGKEVNS.
Av xon outh elvan mpdryportt wior £yxupr YEV0d0C Yo TV ooy YewenTnd anepldpto TS XAL-
UEXWONG Yol ToL TELPSUATA TOU TROGOUOLWTY|, UTHEYEL EVAL CNUAVTIXG XOOTOG AmdOOCNS TOU
TPOXUAELTAL aTd TO YEVIXO XOOTOG TWV UTOYPEMTIXGMY UETUPOLWY UVAUNG TWV XAUTATUACEWDY
TWV BOUMY UETAED TG CUOXEUTC XAl TOU XEVTEXOU UTOAOYIGTH Ot Xdie ypovixt| oTiyu.

AxohovdmvTog Tig apyéc Tou eENYo0VTOL TUPATAVE EVOTNTA, UAOTOLAUNXE X0t SOXUAC TNXE
xou ot €xdoor mou unootrneiletar and morhamiéc GPU oe évav xoufo pe 80o cuoxeuéc. H
epopuoyt) toraridv GPU npoogépel auénuévo ebpog {odvng uvhung, xadae 1 oimhn toootnTta
0EDOPEVWY UTtOPEl Var peTapepUel 0T UV TNG GUOKELHG OYEDOY TNV (Blor oTiyun xou 1 @OoT
TWY VELPOVOY X0 TWV CUVITTIXMY UOVTEAWY ETUTEETEL TNV Ave€dpTNTY TUUTOY POV EXTEAEDT
OLOUPOPETIXCY XOUHATIOV TWV DEDOUEVMV OE CEYWPIOTEC CUOXEVES, TPOCPEPOVTUS AXOUO X0
ANotepeg emdooelc. To yeyolltepo x€pdog amddoong oe clyxplon Ye TN Yerorn plag povddog
GPU emruyydveton mpogaveg 6tay extehobval Telpduato yeyévoug mou tpooeyyilel To bpto
XU TV 000 GUOXELKY, “oTe va emteuy Vel uéyloto elpog LHVNG Xl ENOYIOTOTOOUVTOL OL
METAQOPES PVINC.

Bektiotonoioeic CUDA
Metd) Booixr uhonolnon Tng emtayLUPEVNG EXBOCTC TOU TPOCOUOWTH, EEUVUTXAY OL-

8popeS BEATIOTOTOIACELS WG TPOG TO GYEBLIOUO XL TIG TEYVIXEC AeTTOpERElES. Apynd, doxi-
udo tnxe N yerjon tou 4-byte tOnou dedopévwy float avtl Ttou 8-byte double, Kote va yewwdoiv
Ol OMOUTACELS UVAUNG Xou Vo emtoyuvdoly ol utohoylopol oe xde ypovixr otiyun. Ilopdio
TOU O XAVOUPLOG TUTIOG OEBOUEVLY ETEPERE UEUEVT axpifela otoug padnuatixols utolo-
YiopoUg, BedOUEVOU OTL TO UEYIOTO TUPATNPOVUEVO GQAAUA YO OTOLEGOYTOTE TUPUUETEOUC
Tpocouolwong dev unepefn noté o 1.00E-13, 1 €xdoorn ue pAoats €yve amodexTr yio Vo
AVTIXATAC THOEL TO TEMTOTUTIO XAl TROGEPERPE ONUAVTIXOTATY adENoT emdéoewY. Emnpdoie-
Ta, dtepeuviinxe o cuvduaoudg tupnvoy CUDA oe peyolitepoug evialoug mupriveg Ue xdde
mdavd TEOT0, WOTOHCO 1) UETATEOTH| AUTY| OEV EMEPERE XATOLO XEEDOSG o amedely VT avolota
o¢ emBoupivouca.

Y10V TapdAANAO TEOYEUUUATIONO, oL AEtTovpYlec Uelwong elvor exelveg TOL UEWOVOLY La
cLAoYT TWoY ot ula wovo T, H ddpoton twv otovyeiwy wag cuotovylauc eivar éva xowvd
ToEdOEy UL Wiag Bradixaotag peiwong, 1 omolo umopet vo e€&nyniel we e&vg:

e Troétovtac tov N w¢ tov apiud towv ctolyeiwy ot uo cuototyia, dnuovpyolvtor N

10

/ 2 viuata, évo viua yia xdde 80o (Sadoyxd) ototyeio.

7 7 7 4 4 7 7 /
o Kde vAua unohoy(let to dipotopa twv avtioTorywy 0o cTotyeiwy, arodnxedovtag o
amotéheoua ot YEon Tou TEHOTOUL.

o EnoavoAnmtixd, oe xdie Priuc

— O opriude TV VNPATWY UEWVETAUL OTO ULOO.

— u&e unohetmépevo Vi eivon Théov ureduvo Yo To adpolopévo cTolyeio Tou xou
yior auTO TOL TaPoXEluEVoL, agarpedévtog oTolyelou.

— 70 péyedoc Pruatog petalld Twv avticTolywy dVo oTolyeiny SitAactdleTo.

o ‘Otav éva viuo mapouetvel, to anotéleopa Uelwong amodnxedetal 6To TP®TO GToLyElo
Tou Tivaxa.

H CUDA napéyel otov mpoypoupatioty| oplopéves BIBMoUXES €TOWWY CUVAPTACEWY Yo €-
Eedieuuévoug yeptopole. Mio tétota PiBhtotfxn eivon) Thrust, n onola yenowwonowidnxe oe
auUTY| TNV TEPITTWOT Yo ToV TaEdAAnho uTohoYloud TNg pEoTg Tg Tng ouvdptnong UpdateSy-
napses_pre YENOWOTOWWVTAS Evay BeATioTononuévo alyoprduo uelwong, wote vo eCalelpiet
1 xouoTéENoT TOU TEOXAAEITOL AVAPESH 0TOUC BU0 TUPHVES ToL TEoéxuday amd Tr cuVdp-
mon. o v xkndel 1) ouvdptnon, o delxtng oe mivaxa testvar mou Peloxeton HoN oty GPU
uetateéneTon o€ €6 Oeixtn tne Thrust, emtpénovtoc Ty enclepyacia TV cToElOY TOU
mhvooca ywplc var yeetaoVel xopio evEpYELd 0TO YMEO UVAUNG TOU XEVTELXOU UTOAOYLOTY. TN
oLVEYEL, xaheltar 1 cuvdptnon reduce tng PiBAoUAXNC Kote v adpoloel dAa o oToLyEld TOU
oo testvar, xou TEA0OG To amoTéAEoUa dlonpeiton améd To TANYOC TwY avTIcToL WY CUVAPEWY
UE Wi Topamdvey evTohr] otov xwoxa tng CPU.

Eminpocieta, o mivoxag and douéc cuvaeny uetatpdmnxe oc Wi eviako dour) Tou Tepéyel
TVOXES TTIOL AVTIOTOLY 00V 0TIC UETUBANTES xde alvadng, xadde 1 véa Bour) BEdoPEVKY amépe-
o€ BeATiwuéva amoteléopata o€ GLYOLAOUO e TN Yehor TS Molpalduevne Mviung twy umhox
¢ CUDA. Acdopévou otL 1 xowoyenotn pviun tne CUDA GPU Beioxeton on-chip, npo-
OQEREL ONUOVTIXG TAEOVEXTAPOTOL Toy UTNTOC OE GYEoT PE TNV Tomixr xou ‘mayxooua’ (global)
UVIUT TNG XEETOG YRUPLXWY. LTNY EXDOCT] TROCOUOWDTY| TTOU YENOHIOTOLEL Ulor CUVITTIXY| DOUT
TWVAxWY, €vog Tivoxag Tou avtioTolyel o xdle Tivaxo TG OTEUCT BNAMVETOL UE TNV EVTOAN
__shared__, opllovtac xatovourn tTng xowdyenoTng (&cxpmpoc{épevng) uvAune. Kodog n xol-
voYeno T uvhun bvon tpocBdouun and Ol Tor VioTo evog Umhox, o xdie mivoxa dlvetar To
uéyedog tou apriuol TV YNUdTLY Yoo o éva umhox. o va emtayuviel 1 tpdooon ot
UVAUT), To VAROTA AmoUnXEVouY TEmTo ToL BE0OUEVA TNV XOWOYENO TN UV UT, UE x00Tog i
VALY VRO O THY TOYXOOWLOL UVARTY avd TpdoBact), cuveyilouv va exteholv T Aettoupyieg
TOUG PE TPOOPaoT) OTIC XOWbOYENOTEG cuoToLyieg ot TEAOG amoUNXelOLY To ATOTEAECUUTA
OTNV TAYXOOULL UVAUN HE XO0TOG Wia eyYpapt| avd UeTaBAnTr avd viAua. H apyttextoviny| tng
XOWOYENCTNS UVARNG 00YYNoe 61N Beltinon Tng amddoong otny TEpITTwong TNE eviatag SoUHC
TVAxwy (SoA), xodde auTh) 1 Bour| TROGPEREL LoYVEOTERT YWELXH TOTUXOTNTOL Yiol T VAUOTO

11

xon €T OVEL %L GO TV TedoBaor. H mpootixn tne yenong tng xowodyenotne UVAUNG &-
popudotxe otoug nupnves UpdateSynapses_pre xou UpdateSynapses_post_Partl, xodog oy
oL pévol Tuprveg pe ouontd tepridpta BeAtivong.

Arcore)\éoptoc'coc

Or petprioeic anddoone UAEYINxay Ue Tn BLe€ory YT TEWUUATOY TEOGOUOIWONG OE EVay
x6uPo pe 80o GPU tou unepunohoyioth ARIS (Advanced Research Information System) mou
avamtOyUnxe xo hertolpynoe and o Elnvind Aixtuo ‘Egeuvac xaw Teyvohoyiog (EAET).
O x6ufor GPU tou ARIS mepiapfidvouy améd 2 povddeg eneéepyaoiog tou tinou Hasbell-
Intel® Xeon® E5-2660v3, mou n xodepla diodéter 10 muprjvee, 64 GB ouvolixic uvAung
xon emtoyuvtéc 2 GPU NVIDIA Tesla K40 ye pviun emtayuvty) 12 GB oavd xadéva. Ta
OVOUAUTIXS YUEOXTNPIOTIXG TV ETUTOYLYTOVY TopoTidevVToL 6T0 oy yYAxd TuAUa NG Epyaciag.

H tehixr} €xdoor Tou TPOCOUOWTH TOU YENOWOTOLELTAL YLol TNV avdAUGCT] ambdB0CTC TEQL-
EYEL LU0 CUVOTTIXY| DOUT| PE TVAXES Yol TG CUVATTIXES HETUPBANTES TOU XATAVEUOVTAL TOGO OTT|
UVAUT TNG CUOXEUNS OGO XAl GTO XEVTPXO UTOAOYIGTH|, YENOWOTOLEL TNV XOWOYENO TN UVAUT
NG OUOXEVHC avd UTAOX 6TV AeLTovpYel 0Ty ev AOYw Bour) xou utoloyilel Tn uéorn Ty Tou
amoute{ton amd Tov TEAELTAlO TURTVaL pE TN Porjiela Tng ouvdpTtnong mou mapéyel N BiBAlovrxn
Thrust. émwe mapovotdleton ota TuApata 5.1.5.4, 5.1.5.5 xoun 5.1.5.3 avtiotorya. o Ty TAcl0-
VOTNTU TV PETAPBANTOV Tpocouoiwong emhéyinxe tomog dedopevey float, dedouévou 6TL TO
UEYIOTO avapepOUEVo opdhua oy wxeotepo and 1,00E-13, énwe avagpépinxe oto 5.1.5.1,
xou Vewprinxe aueintéo. O %x@OXAG TWV TUPHVLY ©G Tog Ti¢ Baoéc Acttoupyleg Tapéuetve
TOVOHOLOTUTIOC LE TIC apytxég LhoTotfoelg Tou epgaviCoviar oto 5.1.3.1. ‘Ocov agopd T Bia-
UOPPMOT EXTEAECTC TOU TUEY VA, To Uéyetog umhox 256 amédeile 6Tl Lemépace OAeC TIC GAAES
OLLOPPWOELS OE OAOL TAL TEWHUATA, CUVETKOS ATAY TO amOAUTO PEYEVOG UTAOX TIOU Y PNCULOTOL-
HUnxe o Ohat To TELRduoTa. OTOLdHTOTE Blopopd amd Tar avapepUEVTA TEETEL VoL OVOPECETAL
oTNV oxOhoLYN TAPOLGINCT) TV TERUUATIXWY aroTeEAEoUdTOY. O Ypdvog mepduatog TEVNxE
1 deutepoienTO.

Yuyxploec we mpog To Méyedoc Axtiou

Ol 0Py XOTOLACELC TOGO TWV VEURMV®OY 0G0 X0l TwV GUVAPEWY HToY amoAlTwS avTioTolyES
ue to éyypagpo otnv omoio otneileton 1 Simhwpotixn. ot oauTtd Tor TEWRdUOTA, 1) CUVATTIXT
ouvdeotpotnTo puipiotnxe oto 100%, medyua tou onpoivel 6t xdie veupdvoe AdEx 1 Ewoéou
oLVOEeToL PE %ddE dARO VEupKVa Tou BixTOou. EmnAfov, 1 ouyvotnTa tupoddtnong puiuictnxe
oto 1 xHT xou to epoc mupoddtnone eivon 100 Tolg exortd, mou onuaivel 6Tt xdle Yepovwpévoc
VELPWVOC EYEl PLILCTEL Vo TUPOBOTE(TAL GUVEY KOS Xt oTIC BVOo Tepintoelc NxM xon MxM.

12

Acceleration rate

Acceleration rate

400

300

200

Acceleration by Network Size

0 2500 5000 7500 10000

1250

1000

Total number of neurons

® Acceleration GPUvs CPU @ Acceleration GPU vs OpenMP

Yyfuo 1: Emtdyuvon GPU vs CPU vs OpenMP, MxM

Acceleration by Network Size

0 2500 5000 7500 10000

Total number of neurons

@ Acceleration GPU vs CPU @ Acceleration GPU vs Brian

Yyfuo 2: Emtdyuvon GPU vs CPU vs Brian, MxM

13

Acceleration by Network Size

1500

R 1

@
m
[
=
=l
o
5
8 500
< P —o» o
0
10000 20000 30000 40000 50000
Total Number of Meurons
@ Acceleration GPUvs CPU @ Acceleration GPU vs Brian
Eyfuo 3: Emtdyuvon GPU vs CPU vs Brian, NxM
Acceleration by Network Size
300
2
[1:]
o
5 4
= 200
o
Q
a
=< 100
&F—e »
0
10000 20000 30000 40000 50000

Total Number of Meurons

@ Acceleration GPUvs CPU @ Acceleration GPU vs OpenMP

Yyfua 4: Emtdyuvon GPU vs CPU vs OpenMP, NxM

Ipdtov, meémel va onuetwlel 6Tt 68 OAEC TIC TEQINTAOOELS, 0 Tuprvac SolveNeurons xatova-
AOVEL €VOL EAGYLOTO TOGOGTO TOU GUVOAXOU YPOVOU TEOGOUOIWoNG. AUTO €YEl (G ATOTEAECUA
ol cuvanTixéc Aettovpylec va xadopllouy TNy amddooT Tou TEocouolwTr. Emmiéov, xodng ol
TPOCOUOWWOELS Tou Brian elvar onuavtixd yelpoTeReg O€ amddoon and TNy oetploxy) Lhotolnon
ToU TPocOUOIWTY YAWGoug C, mapaheipinxe amd TNV TAELOVOTNTA TOV TELRAUITLY XS OEV
uThEYE %€EPOOC TN GUYXEIOT TWV ETTEdWY EMTAYLVONG Ue exciva Tou YeTprinxoy houBdvo-
vTog unédn to yeovo tne 1IT.

14

H egapupoyr) OpenMP npocépet pa Baoixr| emttéyuvor mou xudaiveton yhpw and 6X emi-
Thyuvon and tov apyxd yeovo CPU. 8 viuata OpenMP dnuoupyRdnxay oe xde extéheon
xaL 0 TAPAAANALOUOC E@iace dpxeTd xovTd 6To BEATIOTO Ywelg exTeTouévn €peuva. Xpnotdo-
Touunxe wg PBaocur emitdyuvor xar Lo TepEl ot peydho Podud o oyEon UE TNV EQPAPUOYT| TNG
CUDA.

Hapatnewmvrac Toug yedvoue e GPU evdvtia otoug ypdvoug CPU twv melpopdtey MxM,
xadloTortar cagég 6Tl T0 PuplTERO UTOAOYLOTIXO PORETIO EYEL WG ATOTEAEGUN UEY AN TEPOLS pU-
wol¢ emtdyuvong, apxel vo utdpyouv apxetd viuato CUDA vy o mhéyua woTe va xohidpouy
OAOXANPO TO GUVOTTIXG TAEYUA TNG TEOGOMOIKONE, ool oe xdie VAU avatidetan pla olvadn
XU 1) XAUEXOOT) Lo TETOLG OLdTang unepvind o€ peydho Bodud tn oeiplaxy| enelepyaota
TOL GUVOAOU TwV cuVdewy. H péyiotn anédoon e GPU otic npocoyoiwoeic MxM €gioaoe
oyed6V ot 314x emTdyuVoT EVAVTL TOU GELELIXOL avTioTolyou.

Hopatnewvtag ta anotehéoputa npocouolwons NxM ue mopduolo xhipoxo ye tig tpoco-
wowwoelg MxM, ta mocootd emtdyuvong efvan mapduota xou axdurn xon Alyo udmioétepo oty
nepintwon NxM. H e&Aynon éyxeitaw 610 yeyovog 6t 1) dradacia tpocopoinong dlagépet
070 opTio UTOAOYIOUOL Vewp®VTaS TNV TAfjen Spac TNELOTNTA TUEOBOTNONE UETUED TwV 00
QEYLTEXTOVIXOY VEUPOVGY. ‘Otay utdpyouy Neupnveg Eioddou, evnueptvovTal ot cuvamTixég
UETABANTEC HOVO TV cuVaewy Tou cuvdEouy Toug Neupwveg Eioodou xon AdEx, evey otny
nepinTtwon twv Nevpdvov AdExX pévo, 1o 6hvoho g cuvamtixhc SoUNg EVNUERMVETOL TOXTI-
x4 Enopévee, otny nepintwon NxM 1 eviuépwon twv cuvddewy ue Bdor Tic UETAOUVITTIXES
exgedoeic STDP eahelpertan, xadog or Nevpwveg Eiobdou dev avtio ot oy 610 Teayyotid
HOVTEAO VELPGVWY xal Bev amantoVy xapia enelepyacio oe GAn Tn didpxela Tng Teocouolwong,
Tpoc@épovTag xadupd otyuéc oto dixtuo. Kadwg ou Papitepol muphvee tng CUDA ceivan ol
uetaouvantxol, ol tpocopowwoelg NxM eivan ehagpitepeg yio GPU, npocgépovtog elo-
Pews awinuévee emdooelc. O peyahltepog AoYog ETTAYLYOTC TOU ETTEVYINXE AVAUESH OTIC
exdooeic GPU xou CPU ftav 388x oto peyahitepo melpopor NxM.

Hewpdpota Meydhng Khlponcog

[vo pewwdel o ypdvog extéleong yio Eva ueyahlTepo Telpoua, 0 yeOVOS TEOGOUOIWOTS
uetddnxe oe 0,1 s avti yia xavovixd ypdvo tpocouolnwong 1 deutepohéntou, £ToL Tal TELOHUO-
o avTioToyoloay o 100 ypovixég otiypés - Privata. O péyiotog apriudg TEOCGOUOLUEVELY
VEUROVWY YL TOUG 0x0Tol¢ Tng mopovoag epyaciog etvar 20000. Ta mtococtd chvdeong xou
Tupod6TNome puiuiCovton oe 100 xou dielynoay mepduato wovic xat dimirc GPU.

‘Oneg gatveton 6ToV THhvoxa, 1) ETLTAYUVOT) oxohouVEel TopdpoLa XA{UonoL xat aLEAVETOL aXOUN
XL O OYEOT) UE T UxEOTERP TEWRduaTa o oUYXpLon U TNV anddoor tng CPU yenowonol-
ovtag évay x6pfo Ue 800 CLUOAEVEG EMTAYUVOTS, XomS xaL oL 800 GUOXEUESG AELTOUPYOUY
TUUTOY POV Xo TO PEyeDog Tou TEOPBAUATOC Blonpeiton 0To Wo6 yiot TNV TAstoPngio TV Ael-
ToupYLWY TN Tpocopoiwone. H onuoavtind mowr otny emtdyuvon 6tav yenotuomoleiton uio
GPU npoxoheiton omd TNy averyxn vor avTiypdpovTal GUVEY MG TUAUNTA OEGOUEVGY TEOGOUOLw-
O”NG UETOEY TN UVIUNG TNG CUCXEUNE X0 TOU XEVIPIXOU UTONOYLOTH), XUTL TTOU £lval YELOOTEQO
OTOV YENOWOTOLELTOL Lol CUVATTIXY BOPT| TEWVAXWY AOYW TNG EMPBAOLVONG TV EEYWELOTOVY
cudaMemcepyAsync xhfoewv yia xdde mivoxa petoAnteyv. H emitdyuvon épdace oto axpoto

15

Hivoxag 1: Emtdyuvon wg npog Méyedog Awtiou, Meyaritepne Kilpoxog, MxM

N_S 0
N_Group_S 20000
N_Group_T 20000
Bruporta 100
Yuvdeowotnta(%) 100
Xpovoc CPU 27962,93
Xpovoc OpenMP 3967,63
Xpovoc Mg GPU 890,17
Xpovoc Ao GPU 43,43
Emtdyuvon Mg GPU vs CPU 31,41
Emtdyvuvon Mg GPU vs OpenMP 4,45
Emtdyvuvon Ao GPU vs CPU 643,86
Emtdyvvon Ato GPU vs OpenMP 91,36
Emtdyuvon Avo GPU vs single GPU 20,5

eninedo twv 643x yio v €xdoon e Vo GPU, evey n amhh éxdoorn GPU enétuye uovo 31x
emtdyuvon xou BeATiddnxe pokg 4 gopéc oe oUyxplon e to OpenMP, uo anédoon mohd
YELROTERT amd TELY.

Yuyxploelc we mpog TN LuvdeouoTnTa

Aixtuo pe 50 % ouvbeoydtnta npocopolinxay yio va eheyel 1 enidpaon twv apondhv

CUVATITIXGY CUVOEGEWY GE GYECT UE TNV UTOAUTY GUVBECYOTNTA. XONCHIOTOLUNXOY TOVOUOL-
otuna potia oOvBeEoNS Yior vor TeoXOYOLY AGPUAT| CUUTEQUOUATA UETUEY TWY TEOCGOUOUNGERY
MxM xon NxM. Mévo ol VEup®VeS UE GETIO avary VeRLo Tixd dptdud oAANAOCUVOEOVTOL %ot OL
VEVPMVESG TIOU €)0UV TERLTTA oVOry VOELO TIXE 1ToY OUCLAC TIXd adpavelc oe OAT Tr) BLdpxELa TNG
mpocouolwone. H mupoddtnon Beloxeton yio dAAN wo gopd oe cuveyy| eugpdvion oe 6Lo To
dixTuo.

16

Acceleration by Amount of Synaptic Connections

400

300

200

Acceleration rate

100

0

2000 4000 6000 8000 o000
Total number of neurons

@ 100% connectivity @ 50% connectivity

Yyfuo 5: Emtdyvvon GPU vs CPU, MxM

Acceleration by Amount of Synaptic Connections

400

300

200 go—gP f

Acceleration Rate

100

0

10000 20000 30000 40000 50000

Total Mumber of Meurons

@ 100% connectivity @@ 50% connectivity

Yyfuoe 6: Emtdyvvon GPU vs CPU, NxM

To anoTeAEopaTa AMd AUTOV TOV TELRUUATIONO HTAV LOLUTEQ EVOLUPECOVTA. XTO GUVOAO
TV SLECAYOUEVWY TEROUATWY, OL YPOVOL TPOCOUOIONS HTaY (OO0l - GTNV TEAYHATIXOTNTA €-
Aoyto oL YEWOTEROL - PE AUTOUC TNG TAHPOUC GUVOECLUOTNTOS. Adouévou 6Tl 1) €xdooT TNg
CPU emtoytvinxe onuavtind w¢ amoTEAECUN TOU YOUUNAGTEROL POOTOU UTONOYLIO TIXTG EQYO-
olog, T T0c0oTd EMTdYUVONG HTay aEXETA YounidTepa. O Adyog yiol auTd Tal ATOTEAECUOTA
elvan xatd mdoo maveTnTa 0 TEOTOG exTEREOTS TwV YNudTwy CUDA mapdiinia. Kodog xdie
opdda 32 VUGtV exTehel TowTOYEOVHL TNV (Blar EVIOAN, 1) SldTaln CUVOECWOTNTAS avoryxdlet

17

TOL oG omd TOL VAUOTAL TNG OUADOS Var Elva adpavy|, EVE TO GANO UioO EXTEREL OAEC TIC CUVTTL-
x€¢ Aertovpyieg. Lty "TAA, Slhddwon vudtwy ot BlapopeTixd onueior xHoxa odnyel oe
oelplomolnon TN EXTEAEONC UECU GE Lol OB VNUATKY, ontoTe xdie miavr emtdyuvor efo-
Aelgpetan xadog tar evepyd vApata UTOBAANOVTAL OE TOROUOLX EVINOT) EXTEAEOTC oL OTIC 0UO
TEPLTTWOELS CUVOECYOTNTUC XAl ToL AVEVERYH VAUaTa OEV Bondoly 6Ty ETLTAYUVOT| TS TEOCO-
uolwong. Aedouévou 6t 1 egapuoy) OpenMP axoloudel duola mpdTuma emLTdyUVONG UE AUTS
TWY TEGTWY TOEOUCLILOUEVWY TELRUUAT®OY 6T0 oUVOAO TN dadixaoctag, ot yedvor OpenMP
TopofpUnxoay and €8¢ xou oto €. Ta potifa emtdyuvone dev dAialav 6cov aopd TNy
xhipoxa tpocopoiwong yia To metpduato MxM, xadaog emtedytnxe yeyoldtepn emtdyuvon
070 UEYUAUTEPO TElpopa, ETITUY Y dvovTag ToyLTnTo 188x. Eva napduotlo potiBo unopel va mo-
catneniel ot mewpdpota NxM, tapdro mou to yeyoritepo - 236x - speedup emtedydnxe oto
0e0TEPO PEYAAUTEQO TElpoL.

Yuyxploeic w¢ mpog 1o Ilocootd Iupoddtnong

M mapdpola tpocéyyion Ue TNV Tporyoluevn Ntay va die€oy Yoy Telpduata e o Bto-
pOpd GTOV aELIUO TV VEUPMVKY ToU Taedyouy oypés oe xdlde ypovix otyur. H Soxuur tne
YOUUNAGTERC CUYVOTNTAUC TUPOBOTNOTNS UE OLUTYENOT) TOU HELIUOU TWV VEUPMVKY TOU TUROOO-
TouvTon Yo Aoy doxomy), xadog autd Yo 00N YoLoE OE TAHEY AdEAVELY TOU CUC TAUATOS OTIC
YEOVIXES OTLYHEC TTou BeV €yl Tupodotnlel xavévag vevpvac. Ol TapdueTtpol apytxomotiinxoy
¢ CLYHIWE XA LOVO OL VEUPWVES UE GOTIO avary VORLo TiXO apliud elyay oploTel vo TupodoTtoly
oLVEY WS X "OAT TN BLdEXELL TNE TEOGOHOIWOT.

Acceleration by Amount of Firing Neurons

400

200

Acceleration rate

100

2000 4000 6000 8000 o000
Total number of neurons

@ 100% spiking @ 350% spiking

Yyfuoe 70 Emtdyuvon GPU vs CPU, MxM

18

Acceleration by Amount of Firing Neurons

500

i[l[l \\‘i

200

Acceleration Rate

100

0
10000 20000 30000 40000 50000

Total Number of Meurons

@ 100% spiking @ 50% spiking

Yyfuo 8: Emtdyvvon GPU vs CPU, NxM

2Ny MERInTOON TNG EUPAVIOTS TUPOBOTOVUEVNE TUEXXYLAC AUTWY TWY CUYXEXPUIEVKY TIEL-
EAUUAT®Y, TO GUVOAO TWY YEVWWNUEVLDY VNudTtev CUDA axolouldel Toug (Bloug xavoveg amd tny
dmodn tne SpactnetdTnTac. AUt onualvel OTL EvG xdUe BEUTEPO YEOVIXO BLAC TN OhdL TA
VAT EXTEAOUV TO GUVOAO TMV AEITOURYLHOY TOL Tuprva, e&€pyovTol eTiong amd Toug TURTVES
OYEBOY AUECWS PETE TN Oniovpyiot 0TO dALO Uiod TV timesteps, TEOXAAOYTIC TOAD UXEOTE-
on mowr ot GPU oe olyxplon e v extéheon tne CPU. H yeyoldtepn emtdyuvon nou
Topatnednxe o auth TNV epinTwon oy 262x yio TV Exdoor MxM xan yia dAAN o popd
owHinxe pall Ye TNY TOGHTNTU TWV VELUPWVGY TOU UTARYOY OTO TE(pOU, €V To TELOHUOTA
NxM epgdvicay mapoéuooug puduolc emtdyuvong, extog and éva uPnhd Adxtioua éwg 401x
TaryUTNTL TOL TaPATNEUNXE 6T TPocoUolwan 11000 veupdhvwy. AUty 1 amoPOVOUEVT abEnon
¢ emTdyuvong oTny mpaypatixdTnTo anodidetar oty CPU nou dev anédide wg ouvidng ot
aUTO TO CUYXEXEWEVO GeElploxd Telpoud, xodog dAot ol dhdot ypévor CPU elvon mapduotol ye
exelvoug TNG YOUUNAOTERTC CUVOECLUOTNTAS EXTOS amd aUTOV, €Tl OE UTtopEl Vo BYEL UE aopAAEL
%4moto GUUTERACUN 600V aopd TNy amodoor tng GPU.

19

Chapter 1

Introduction

The raising need of decreasing the simulation time of experiments related to neuronal
networks for neuroscientists motivated this Diploma Thesis. Similarly to several other dis-
ciplines, research in neuroscience nowadays includes running simulations of complex math-
ematical models that try to explain the functionality of the brain. The vast complexity of
the brain as well as the behavioral and organizational complexity of the neurons leads to
enormous simulations that take a lot of time to run, delaying research. This thesis’ goal is to
try to discover the optimal way to accelerate the Adaptive Exponential Integrate-and-fire
neuron model simulation, which is widely used in neuroscientific experiments. This simula-
tion encompasses the phenomenon of Spike-timing-dependent plasticity of the connections
of neurons called synapses.

Plenty of methods were explored in order to attain the final acceleration. At the be-
ginning of this research project, the simulation was coded for the BRIAN Simulator, a
renowned open-source neuron model solver that runs on Python. In order to effectively ac-
celerate the model, first the simulation needed to be ported to the C programming language,
which showcases overall better performance than Python as it is a lower level programming
language. Afterwards, the CUDA application programming interface (API) was used in or-
der to implement a parallel computing version which achieves higher levels of acceleration
utilizing an Nvidia GPU. Last but not least, the OpenMP API was used to accelerate the
simulation on multiple CPU threads and explore the acceleration scaling compared to the
GPU version.

1.1 Neuroscience

Neuroscience is the scientific study of the nervous system, especially the relation of nerves
to behaviour and learning. The biggest effort for neuroscientists is focused on the brain as
its increased understanding along with improved studying methods results in more clear
knowledge relating normal human behaviour and mental well-being. Knowing how exactly
the nervous system functions can help researchers find ways to prevent or treat problems
that affect the brain, nervous system, and body. This discipline’s breakthroughs enable

20

scientists to develop treatments for neurodegenerative diseases (such as Alzheimer’s disease)
and mental illnesses, while also assisting in the development of Artificial Intelligence. These
developments are likely to provide significant benefits for society and have implications for
a diverse range of public policy areas such as health, education, law, and security.[Inv]

1.1.1 Computational Neuroscience

Computational neuroscience is a branch of neuroscience which aims to understand the
information content of neural signals by utilizing mathematical models of the nervous system
at many different structural scales, including the biophysical, the circuit, and the systems
levels.[PDO1] It is an interdisciplinary science that links the diverse fields of neuroscience,
cognitive science, and psychology with electrical engineering, computer science, mathemat-
ics, and physics. The ultimate aim of computational neuroscience is to explain how electrical
and chemical signals are used in the brain to represent and process information.

1.1.1.1 History

Evidence of scientific research which leads to what is now known as neuroscience dates
back to ancient history civilisations, i.e. the Edwin Smith Surgical Papyrus, written in the
17th century BC, which contains the earliest recorded reference to the brain and describes
the symptoms, diagnosis, and prognosis of two patients wounded in the head. Around the
same period people in Ancient Greece also started to occupy themselves with the study of the
brain, expressing different opinions while being limited by the fact that the human body was
considered sacred by hippocratic doctors, forbidding themselves from operating for scientific
reasons. Little progress was made until the AD 10th century, when an Arab neurosurgeon
among plenty of neurosurgical diagnosis described the tools needed to perform surgery while
avoiding puncture of important parts of the brain. Around the 14th century, European
scientists started recording information about brain anatomy. From an experimental point
of view, Marie Jean Pierre Flourens in the 1810s was the founder of experimental brain
science and a pioneer in anesthesia. Through the study of ablations on animals, he was the
first to prove that the mind was located in the brain, not the heart. [AG87; NRARJLF84].

However, the origin of computational neuroscience is commonly traced to the mathe-
matical model that Nobel prize winners Allan Hodgkin and Andrew Huxley developed of
the squid giant axon action potential in 1952. This is historically the first model of biolog-
ical neurons explaining the ionic mechanisms underlying the initiation and propagation of
action potentials in the squid giant axon. The Hodgkin-Huxley model applies to all axons
and is still used to this day:

Z'm = gNamgh(V - ENa) + gKn4(V - EK) + gL(V - EL)

Their work in axon potentials was recognized by them receiving the Nobel Prize in Phys-
iology and Medicine in 1963. The 3rd laureate was Sir John Eccles for his work on Synapses,
an Australian neurophysiologist known for his pioneering work in neuroscience, especially

21

the synaptic transmission and nature of reflexes. [Ben13| Furthermore, they developed an
action potential theory representing one of the earliest applications of a technique of elec-
trophysiology, known as the voltage clamp. [Hod52]. One could also argue that the origin of
computational neuroscience was the introduction of the integrate-and-fire neuron by Louis
Lapicque. [BRO§]

The next big step was the work of Wilfrid Rall. Considered one of the founders of
computational neuroscience, Rall originated the use of cable theory in neuroscience, and
developed passive and active compartmental models of the neuron dendritic tree which
made it possible to show that dendritic arborizations of neurons strongly affect processing
of synaptic input. [Ral62] Before Rall, neurons were assumed to be isopotential and the
electrophysiological importance of dendrites was ignored. Moreover, he pioneered the use
of digital computers in neuroscience and developed the discretized version of cable theory,
compartmental modeling, which forms the basis for some of the most widely used software
packages in computational neuroscience (such as GENESIS [BB19] and NEURON [HCO01]).
His contribution is historically interesting for two additional reasons: his conflict with ex-
perimental neuroscientists (i.e. John Eccles) and the attention to the spatial domain. In
general, the considerations introduced by Rall had only a limited impact on the thinking
of contemporary neuroscientists. It wasn’t until the early seventies that key concepts intro-
duced by Rall, like spatial summation and dendritic attenuation of synaptic input [Ral62],
which are now part of core curricula in neuroscience, became commonplace.

The actual term computational neuroscience didn’t appear until the second half of the
eighties. [SKC88| Around the same time, plenty of initiatives related to the discipline were
started: Graduate programs (CNS program, Caltech, 1986), meetings (first Computational
Neuroscience (CNS) meeting, University of California, 1992), summer courses (Methods
in Computational Neuroscience, Woods Hole, 1988), as well as the appearance of the first
computational neuroscience textbook. [Ooy00]

1.1.2 Neurons

Neurons are electrically excitable cells that communicate with other cells via specialized
connections called synapses. They are the principal cellular elements that underlie the func-
tion of the nervous system. All multicellular organisms except sponges and Trichoplax have
neurons. They are not the only cellular types of which the central nervous system consists,
as several types of glial elements, essential in the maintenance of the neuronal network, in
neuronal migration during development and in the generation of myelin, are also present.
Scientists have distinguished neurons into three different types: sensory neurons, which re-
spond to external stimuli that affect the cells of the sensory organs and send signals to the
spinal cord or brain, motor neurons (in direct communication with muscles or glands) and
interneurons, which shoulder the task of establishing contacts between sensory and motor
neurons. The latter represent the vast majority of neurons in the brain and ganglia.

22

Biological Neuron

dendrites

> synapses

nucleus

cell body
Figure 1.1: Common parts of a neuron

A typical neuron consists of a central cell body (soma), dendrites, and a single axon.
Neurons are generally characterized by their soma that comes in different shapes, as they
can lack dendrites, or have no axon. They are highly specialized for the processing and
transmission of cellular signals. Given their diversity of functions performed in different
parts of the nervous system, there is a wide variety in their shape, size, and electrochemical
properties. The soma contains the cell nucleus and most of the genomic expression and
synthetic machinery responsible for protein synthesis. In general, neurons can be described
as having an input and an output pole, which is not absolute as there can be an absence of
branching. However, for the majority of neurons the receiving (input) pole consists of fila-
ments that extrude from the soma called dendrites. They arise in vertebrate neurons directly
from the cell body and typically branch profusely, getting thinner with each branching. The
transmitting (output) pole leaves the soma at a swelling called the axon hillock, travels for
as far as 1 meter in humans or more in other species and is called the axon. It conducts
propagating electrochemical signals termed action potentials. While this is the general rule,
there can be exceptions e.g. peripheral sensory neurons where the input occurs via axons.
[L1i08]

The cell body of every neuron is bordered by a plasma membrane, a bilayer of lipid
molecules with many types of protein structures embedded in it. It is a powerful electrical
insulator, though in neurons many of the protein structures embedded in the membrane
are electrically active. These include ion channels that permit electrically charged ions to
flow across the membrane and ion pumps that chemically transport ions from one side of
the membrane to the other. Interactions between them produce a voltage difference across
the membrane which provides a power source for protein elaboration aside from a basis for
electrical signal transmission between parts of the membrane.

In most cases, neurons are generated by neural stem cells during brain development and
childhood. The process of neuron generation is called Neurogenesis. Neurogenesis largely
ceases during adulthood in most areas of the brain. However, strong evidence supports
generation of substantial numbers of new neurons in the hippocampus and olfactory bulb.
The extent to which adult neurogenesis exists in humans, and its contribution to cognition

23

are controversial, with conflicting reports published. [Wikb] Regarding nerve regeneration,
peripheral axons can regrow if they are severed, but one neuron cannot be functionally
replaced by one of another type [L1i14]

Neurons communicate with other cells via specialized connections called synapses, fur-
ther explained below. The signaling process is partly electrical and partly chemical. Neurons
are electrically excitable, due to maintenance of voltage gradients across their membranes.
If the voltage changes by a large enough amount over a short interval, the neuron generates
an electrochemical pulse called an action potential. This potential travels rapidly along the
axon, and activates synaptic connections as it reaches them. Synaptic signals may be ex-
citatory or inhibitory, increasing or reducing the net voltage that reaches the soma. Their
functional properties can be listed as such:

e Electrical Excitability
e Secretion

e Molecular Synthesis

e Growth and Plasticity

Regarding neuronal function, electrical excitability is by far the most important prop-
erty, as neurons exhibit both passive and active electrical characteristics. Passive properties
refer to the capacitative and resistive aspects inherent in neuronal membranes, along with
the resistivity inherent in the cytoplasm and the extracellular milieu. They are often termed
cable properties, due to the resemblance of neuronal processes and conduction in electrical
cables. Across the membrane, an electric field and a voltage difference is maintained by
the action of selective ion pumps. Neurons conduct waves of membrane potential passively
(electrotonically) a short distance along their processes as the result of currents that flow
intracellularly along the longitudinal resistance and simultaneously across the plasmalem-
mal membrane as resistive or capacitative current. On the other hand, active electrical
properties refer to the effect of the activation of voltage, ligand, or second messenger gated
transmembrane ionic channels on electrical potentials across the plasma membrane. An
example of such a result is the generation of action potentials.

In an active neuron the superposition of passive and active electrical properties serves
to allow the cell the possibility of summing the transmembrane potential either linearly or
non-linearly and to reach depolarization levels sufficiently high to trigger action potentials,
also known as “nerve impulses” or “spikes”, and the temporal sequence of action potentials
generated by a neuron is called its “spike train”. Each excitable patch of membrane has two
important levels of membrane potential: the resting potential, which is the value the mem-
brane potential maintains as long as nothing perturbs the cell, and a higher value called the
threshold potential. For a typical neuron, the resting potential is around —70 millivolts (mV)
and the threshold potential is around —55 mV. Synaptic inputs may cause the membrane
to depolarize or hyperpolarize by rising or decreasing the membrane potential.

24

1.1.3 Synapses

Neurons communicate with each another via synapses, where either the axon terminal
of one cell contacts another neuron’s dendrite, soma or, less commonly, axon. They are
structures that permits a neuron to pass an electrical or chemical signal to another neuron
or to the target effector cell. The plasma membrane of the signal-passing (presynaptic)
neuron comes into collocation with the membrane of the target (postsynaptic) cell at a
synapse. Both the presynaptic and postsynaptic sites contain extensive arrays of a molecular
machinery that link the two membranes together and carry out the signaling process. [Fos97]

Synapses can be excitatory or inhibitory, either increasing or decreasing activity in the
target neuron, respectively. There are two different types of synapses, termed chemical and
electrical. In a chemical synapse, when an action potential reaches the axon terminal, it
opens voltage-gated calcium channels, allowing calcium ions to enter the terminal. Calcium
causes synaptic vesicles filled with neurotransmitter molecules to fuse with the membrane,
releasing their contents into the synaptic cleft. The neurotransmitters diffuse across the
synaptic cleft and activate receptors on the postsynaptic neuron. High cytosolic calcium
in the axon terminal triggers mitochondrial calcium uptake, which, in turn, activates mi-
tochondrial energy metabolism to produce ATP to support continuous neurotransmission.
[VIM13] In an electrical synapse, special channels called gap junctions or synaptic cleft
are responsible for connecting the presynaptic and postsynaptic cell membranes that are
capable of passing an electric current, effecting in voltage changes in the presynaptic cell
inducing voltage changes in the postsynaptic cell. These synapses present the advantage of
rapid signal transfer between connected cells. [Sil07]

It is widely accepted that the synapse plays a role in the formation of memory. Con-
nections between the two neurons are strengthened when both neurons are active at the
same time, as a result of the receptor’s signaling mechanisms when neurotransmitters ac-
tivate receptors across the synaptic cleft. The strength of two connected neural pathways
is thought to result in the storage of information, resulting in memory. This process of
synaptic strengthening is known as long-term potentiation.|[Lyn04]

By altering the release of neurotransmitters, the plasticity of synapses can be controlled
in the presynaptic cell. The postsynaptic cell can be regulated by altering the function
and number of its receptors. Changes in postsynaptic signaling are most commonly associ-
ated with a N-methyl-d-aspartic acid receptor (NMDAR)-dependent long-term potentiation
(LTP) and long-term depression (LTD) due to the influx of calcium into the post-synaptic
cell, which are the most analyzed forms of plasticity at excitatory synapses.

1.1.4 Levels of Analysis in Neural Modeling

Even though neuroscience follows the standard practice set by all other scientific disci-
plines, what distinguishes neural modeling is that brains are computational devices handling
information to control their actions. The most comprehensive neural models must there-
fore play the dual role of accounting for experimental data and interpreting it in terms of

25

underlying computations. Thus, understanding the meaning behind the existence of neural
models and their effect in practice is troublesome, due to the complexity and multiple goals
of modeling.

In order to be effective, one needs to understand the different levels of organization
within the structure of modeling. The first thread to this idea is scientific reduction, de-
scribing observable phenomena in qualitative and quantitative detail, and explaining them
in terms of descriptions of their underlying substrates at lower and less abstract levels. A
second thread, parallel to the first, is the construction or synthesis of systems to execute
some particular task, conventionally by utilizing a divide-and-conquer strategy. Thirdly,
regarding computational modeling, one must be aware of the computational, algorithmic
and implementational planes suggested by David Marr. Finally, the fourth thread is about
levels of processing as a strategy for manipulating and extracting information from input.
[Day06]

1.1.5 Types of Neural Modeling

1.1.5.1 Conventional reductive models

The first thread to the idea of levels concerns standard reductive modeling. Practically,
this approach enables scientists to describe neural phenomena and provide reductionist ex-
planations by appealing to the mechanisms that might actually be responsible for originally
generating the phenomena. The modeling process is recursive, as these mechanisms are like-
wise represented by models. Quantifying these models in an elemental manner is essential
in order to check the accuracy of capturing the phenomena. There are different levels of
modeling, subsequently creating different levels of anatomical detail in neuroscience. There
are descriptive models at a level, which capture the behavior without much regard to the
substrate, and explanatory models, which capture the behavior by reducing it to models at
lower levels. Quantitative models epitomize the different levels because they allow numerical
demonstration that the behaviour that represented by a model is truly a description of the
real phenomenon that it tries to explain.

1.1.5.2 Computational interpretive models

Several tasks for brains are best characterized as involving computations. For example,
hand-eye coordination actions require transforming visual input into a sequence of motor
commands timed correctly. Computational modeling is about imputing a computational
task and interpreting the collective behavior of the neural components of the system in
terms of this task. The key aspects of computations are representation, storage, and trans-
formation or algorithmic manipulation. Similar to standard computers, the semantics of the
computation are implemented by the syntax of the physical substrate.

Computational models share several properties with conventional models:

e There are different levels of abstraction, expressing a decomposition of the underlying
computation.

26

e There are both descriptive and explanatory models.

e Finally, the same computation defined on equal abstraction levels can be interpreted
and represented in diverse ways for the same computation.

The analysis of neural systems requires a combination of computational and conventional
modeling. The implementational plane of the computational model, considering a single
level, conceives exactly the experimental phenomena for which conventional reductive mod-
eling provides an account. The explanatory reduction of these phenomena needs to comprise
the lower level of the conventional model along with the implementational plane of the lower
level of the computational model. The algorithmic and computational planes at multiple
abstraction levels of the computational model as such will be forced to be consistent with
the multiple levels of the conventional model, as it is necessary in order to have a complete
understanding and representation of the operation of the human brain.

1.1.6 Degrees of Modeling Detail of Neurons

While not able to competently fit the ensemble of used models nowadays, there are
three main classes of quantitative models in common use, corresponding to different levels
of abstraction.

1.1.6.1 Conductance-based models

These models emphasize on describing a limited number of neurons with an increased
degree of detail by approximating the structure of a neuron by multiple electrically compact
interconnected subdivisions which combine to resemble neuron architecture. In standard
conductance-based models, each subdivision is given an assortment of active channels, such
as voltage sensitive or synaptic channels. Representing cells that have complex geometrical
structures in terms of minimum possible compartments is often a necessary challenge in
order to decrease computation time. Conductance-based models of single cells are ideal
for explaining spike-related phenomena and the effects of synaptic input. The main issue
of such models is the difficulty of obtaining useful experimental data critical to making
the models faithful to the neural substrate. This is due to the vast number of parameters,
plenty of whom’s values cannot be determined from experiments. Secondly, even though
compartmental models capture the electrical geometry of single cells, it is rather improbable
of them to accurately capture the three dimensional surroundings of the cells.

1.1.6.2 Integrate-and-fire models

Lying at a level of abstraction above conductance-based ones, these models use a sym-
bolic model of spike generation coupled with a leaky integrator model of a cell whenever
the voltage drops below the threshold for spike initiation. Moreover, they eliminate the
compartment-based approximation of cell geometry, including at best a time-course for
synaptic input and other time-dependent factors such as spike-rate adaptation allowance.

27

These models are best suited for simulating large, recurrently connected, networks of neu-
rons, enabling scientists to discover various mathematical issues about these networks. In
addition, details of phenomena such as synaptic plasticity are proven to be dependent to
other phenomena such as precise time differences between pre-synaptic and post-synaptic
activity. As the integrate-and-fire model is the simplest form that outputs spikes, it is com-
monly used to address such issues.

1.1.6.3 Firing-rate models

These models compose the most abstract level of characterization of neurons, as they
treat the output of cells as continuous-valued, time-varying firing rates, abandoning previous
spike-related approaches. Networks of firing-rate models can be constructed, in which the
influence of one cell on another is given by the product of the pre-synaptic cell’s firing rate
and the synaptic strength for the connection. The advantages these models offer are their
empirical and analytical tractability. Firing-rate models usually involve a mild non-linearity,
turning an internal continuous variable like somatic voltage or current into a positive firing
rate. Consequently, networks of these neurons can be treated as coupled, non-linear differ-
ential equations that can be shown to exhibit dynamical behaviors. The regularities that
are implied by attractor and oscillatory dynamical behaviors make them ideal as substrates
on which to hang analysis of network computation. Most work on computational analyses
was made using firing-rate models, due to the simplicity of the analysis of non-recurrent,
feedforward network models.

1.2 Accelerated Computation via GPU

As with all disciplines that have raised the need for simulations characterized by heavy
mathematical computations, neuroscience has deemed computation speed a significant pa-
rameter that defines the amount of output data available in a predefined experimentation
period. Thus, recent technological advances have enabled the use of accelerator devices to
decrease simulation time by executing a higher number of operations compared to standard
computers. An example of such devices is the GPU, further presented below for this thesis’
purposes.

1.2.1 Graphics Processing Unit

A Graphics Processing Unit (GPU) is a specialized device designed to rapidly manipulate
high amounts of graphical pixels and alter memory to accelerate the creation of images in a
frame buffer intended for output to a display device. Historically, GPUs were born for being
used in advanced graphics and videogames. They are used in various electronic systems
such as mobile phones, embedded systems, personal computers, workstations, and game
consoles. In a personal computer, a GPU can be present on a video card or embedded on
the motherboard or even in the same chip as the CPU. [Atk07; Pcm]

28

The first documented use of the term GPU dates to the 1980s. [HHD86] Nvidia pop-
ularized the term in 1999 stating its technical definition as “a single chip processor with
integrated transform, lighting, triangle setup/clipping, and rendering engines that is capable
of processing a minimum of 10 million polygons per second”.

Modern GPUs use most of their transistors to do calculations related to 3D computer
graphics. In addition to the 3D hardware, today’s GPUs include basic 2D acceleration and
framebuffer capabilities (usually with a VGA compatibility mode). [Olel8] Graphics cards
often avoid hardware dedicated to 2D acceleration and prefer it to be emulated by 3D hard-
ware. GPUs were initially used to accelerate the memory-intensive work of texture mapping
and rendering polygons, later adding units to accelerate geometric calculations such as the
rotation and translation of vertices into different coordinate systems. Recent developments
in GPUs include support for programmable shaders which can manipulate vertices and
textures with many of the same operations supported by CPUs, oversampling and inter-
polation techniques to reduce aliasing, and very high-precision color spaces. Because most
of these computations involve matrix and vector operations, engineers and scientists have
increasingly studied the use of GPUs for non-graphical calculations.

1.2.2 General-Purpose Computing on GPU

Parallel computing offer a great advantage in terms of performance for very large appli-
cations in different disciplines like engineering, physics, biology, chemistry, computer vision
and econometrics. The rapid technological advances of the last three decades have led to an
almost exponential increase in performance as the years go by, since modern off-the-shelf
desktops offer FLOPS rates higher than supercomputers of the previous decade. Increased
clock frequency led to the issue of overheating processors, which in turn led to the designers’
selection of multicore processors in lieu of higher clock frequency. As such, multicore pro-
cessors have turned normal desktops into truly parallel computers which were extensively
used by professionals to decrease execution time for experiments of various disciplines.

In 2003, Mark Harris recognized the potential of using graphical processing units (GPU)
for general purpose applications. [OAMD14] As GPUs are designed with a much higher
number of transistors allocated to data processing rather than flow control or data caching,
they are specialized for highly parallel intensive computations, resulting in much higher
floating point operations rates and vastly higher MFLOPs rates than multicore CPUs. Thus,
the term General-purpose computing on graphics processing units (GPGPU) was born,
meaning the use of a graphics processing unit (GPU), which typically handles computation
only for computer graphics, to perform computation in applications traditionally handled
by the central processing unit (CPU). [Owe+07]

GPU properties lead to a very different processor architecture from traditional CPUs.
CPUs devote a lot of resources, primarily from the chip area, to make single streams of
instructions run fast, including caching to hide memory latency and complex instruction
stream processing such as pipelining and out-of-order execution. GPUs, on the other hand,
use the chip area for individual processing elements that execute a single instruction stream

29

on multiple data elements simultaneously. Memory latency is hidden by swift context switch-
ing, since subsets waiting on a memory reference are set aside on free ones upon a memory
fetch issue.

Algorithms well-suited to GPGPU implementation are those that exhibit the following
properties: they are data parallel and throughput intensive. Data parallel means that a pro-
cessor can execute the same operation on different data elements simultaneously. Through-
put intensive means that the algorithm is going to process a vast amount of data elements,
so there will be plenty to operate on in parallel. Ideal GPGPU applications are character-
ized by large data sets, high parallelism, and minimal dependency between data elements.
Moreover, it is important for GPGPU applications to have high arithmetic intensity else the
memory access latency will limit computational speedup. Arithmetic intensity is defined as
the number of operations performed per word of memory transferred.

The following are example areas where GPUs for general-purpose computing has lately
been noticeably popular:

e Physical based simulation and physics engines, cloth simulation, fluid incompressible
flow by solution of Euler equations or Navier-Stokes equations [Har(04]

e GPU learning — machine learning and data mining computations, the k-nearest neigh-
bor algorithm [GDBO0S]

e Scientific computing - Monte Carlo simulation of light propagation [ASAEO08], Molec-
ular modeling on GPU [Has+15]

e Bioinformatics [Sch+07]

e Electronic design automation [Ler09]

1.2.3 Development Environment of GPGPU
1.2.3.1 Early stages

At the initial stage of GPGPU development, researchers had to write assembly instruc-
tions to conduct computation on GPU. General-purpose computing on GPUs became more
practical and popular after about 2001, with the advent of both programmable shaders
and floating point support on graphics processors. Notably, problems involving matrices
and/or vectors — especially ones of higher dimension — were easy to translate to a GPU,
which acts with native speed and support on those types. These early efforts to use GPUs
as general-purpose processors required reformulating computational problems in terms of
graphics primitives, as supported by the major APIs for graphics processors, OpenGL and
Direct3D.

GPUs are designed specifically for graphics and thus are very restrictive in operations
and programming. Due to their design, they are only effective for problems that can be
solved using stream processing. [Beal8] GPUs can only process independent vertices and
fragments, but can process a substantial amount in parallel, becoming most effective tasked

30

to process multiple vertices or fragments in the same way. In this sense, GPUs are stream
processors — processors that can operate in parallel by running one kernel on many records
in a stream at once. A stream is simply a set of records that require similar computation.
Streams provide data parallelism. Kernels are the functions that are applied to each element
in the stream. In the GPUs, vertices and fragments are the elements in streams and vertex
and fragment shaders are the kernels to be run on them. The most common form for a
stream used in GPGPU is a 2D grid, since this fits naturally with the rendering model built
into GPUs. This grid design facilitates applications like matrix algebra, image processing,
physically based simulations etc. However, programmers still needed to map the problems to
a graphics rendering procedure and understand the graphics pipeline until the early 2000s.

1.2.3.2 The CUDA programming model

CUDA is a parallel computing platform and application programming interface (API)
model created by Nvidia. [Wike] It was first introduced in 2006 by NVIDIA and allows
software developers and software engineers to use a CUDA-enabled graphics processing
unit (GPU) for GPGPU applications. At the time of its introduction CUDA supported
only the C programming language, but nowadays it supports FORTRAN , C++ , Java,
Python, etc. The CUDA platform is a software layer that gives direct access to the GPU’s
virtual instruction set and parallel computational elements, for the execution of compute
kernels. It basically facilitates specialists in parallel programming in using GPU resources
without possessing advanced skills in graphics programming. [Zunl18]

As explained before, GPUs are designed to solve problems that can be formulated as
data-parallel computations — the same instructions are executed in parallel on many data
elements with a high ratio between arithmetic operations and memory accesses. This is
similar to the SIMD (Single Instruction, Multiple Data) approach of the parallel computers
taxonomy. To fully utilize the available CUDA (GPU) cores on a GPU, CUDA adopts a
variation of SIMD, which NVIDIA refers to as the single instruction multiple thread (SIMT)
style. In SIMT, a program consists of a number of threads and all threads execute the same
sequence of instructions. Therefore, if all threads execute the same instruction at the same
time, just on different data per thread, a CUDA program would simply be a sequence
of SIMD instructions. The difference between SIMT and SIMD lies in the fact that SIMT
allows individual threads to execute different instructions (e.g. conditional statements where
threads execute different branches). The SIMT model allows this flexibility at the cost of
performance, since diverging threads’ execution is serialized.[VC13]

The CUDA parallel programming model has three main key abstractions — a hierarchy
of thread groups, shared memories, and barrier synchronization. These abstractions are
exposed to the programmer as language extensions. They provide fine grain data parallelism
and thread parallelism together with task parallelism that can be considered coarse grain
parallelism. These abstractions also guide the programmer to partition the problem into
coarse sub-problems that can be solved independently in parallel by blocks of threads, and
each sub-problem into finer pieces that can be solved cooperatively in parallel by all threads

31

within the block, thus preserving language expressivity by allowing threads to cooperate
when solving each sub-problem, while simultaneously enabling automatic scalability. Each
block of threads can be scheduled for execution on any of the available processor cores,
concurrently or sequentially. This allows a CUDA program to be executed on any number
of processor cores.

There are three layers of hierarchy for CUDA threads; threads, thread blocks, and grids.
Each thread executes a sequence of instructions, or kernel, i.e. the “program” that all
threads execute simultaneously. Each thread has a unique ID which can be used to determine
thread-specific operations within the kernel. Threads are grouped into thread blocks that
contain any number of threads up to some limit, which on current hardware is 1,024 threads
per block. Thread blocks execute completely independently and may be further logically
organized into grids. A grid is the entire collection of CUDA threads to execute a given
kernel.

The CUDA architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multiprocessors with available execu-
tion capacity. The threads of a thread block execute concurrently on one multiprocessor, and
multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors. Each SM contains a
number of CUDA cores depending on the GPU model, and at any one time they're execut-
ing a single warp of 32 threads. From a memory perspective, GPUs have multi-level memory
hierarchy similar to traditional CPUs. On current generation GPUs, there is a level-2 (L2)
cache that is hardware-managed and shared between all multiprocessor cores on the GPU
and a level-1 (L1) cache that is local to each core. Additionally, there is the shared memory,
which is programmer-managed and local to a thread block, combining with the L1 cache to
make up 64 KB in size. Finally, modern GPUs additionally offer a 48KB read-only general
purpose constant memory as well as large register files to support hardware multithreading.

Threads within a thread block may coordinate their activity. When a thread reaches a
certain point within the kernel, it can be issued to wait until all threads within the same
block are at the exact same instruction. This operation is called a barrier. This type of
synchronization is only possible within a thread block. Global synchronization can only be
achieved on the host, after the execution of a GPU kernel.

1.2.3.3 Other GPGPU frameworks

AMD Accelerated Parallel Processing (former ATI Stream technology) is a set of ad-
vanced hardware and software technologies that enable AMD graphics processors (GPU) to
cooperate with the CPU in order to accelerate applications (AMD, 2011). The APP pro-
gramming model resembles the CUDA paradigm. It supports data-parallel and task-parallel
programming models.

OpenCL (Open Computing Language) is a framework for writing programs that exe-
cute across heterogeneous platforms consisting of central processing units (CPUs), graphics

32

processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays
(FPGASs) and other processors or hardware accelerators. OpenCL provides a standard in-
terface for parallel computing using task- and data-based parallelism.

Regarding GPU acceleration, OpenCL programs are divided in two parts: one that
executes on the device (the GPU) and another that executes on the host (the CPU). The
device program is the part of the code that uses GPU for parallel execution. Programmers
have to write special functions called kernels which uses OpenCL Programming Language
(an extension to the C programming language). These kernels are scheduled to be executed
on GPU. The host program offers an API that allows programs running on the host to launch
kernels on the compute devices and manage device memory, which is (at least conceptually)
separate from host memory. It can be programmed in C or C++ and it controls the OpenCL
environment. Programs in the OpenCL language are intended to be compiled at run-time,
so that OpenCL-using applications are portable between implementations for various host
devices.[SGS10]

OpenCL shares several concepts with the CUDA programming model. For example, it
also uses the Single Instruction, Multiple Thread (SIMT) model of execution. Moreover, it
shares equivalent thread hierarchy with CUDA. Work-items are the equivalent of the CUDA
threads being the basic execution entity. Work-items cooperate between them within a work-
group, which is the OpenCL equivalent of CUDA thread blocks. In addition, OpenCL follows
the same synchronization model, as barriers can be set in kernel code which will stop all
threads within the same work-group to wait until they all reach the barrier, but provide no
work-group wide synchronization.

33

Chapter 2

Related Work on Accelerated
Computational Neuroscience

2.1 Popular Neural Simulation Frameworks

Since computational neuroscience relies heavily on mathematical modeling in order to
analyze brain functionality, experiments related to the discipline rely on heavy numerical
operations generated for example by the methods needed to solve the differential equations
that describe the given neural model. Therefore, experiments must be run in silico, i.e.
simulations performed on computers. The fact that neurons and their synapses are complex
entities which need a vast number of parameters for their activity to be described effectively,
as well as the need to conduct experiments regarding the activity of systems comprised of
hundreds or thousands of neurons leads to an increasing demand of computational power.
Moreover, in order to facilitate scientists in conducting a grand number of experiments
without programming expertise, while there is no unified simulation tool that complies
with the entirety of computational neuroscience’s needs, a variety of simulation frameworks
have established their role in the discipline. Some of the most widely-used neuron simulator
frameworks are presented below.

The NEURON Simulation Environment is designed for modeling individual neurons and
networks of neurons, and is widely used by experimental and theoretical neuroscientists.
Developed by Michael Hines, John W. Moore, and Ted Carnevale at Yale and Duke, it
provides tools for conveniently building, managing, and using models that are numerically
sound and computationally efficient. Though it began in the domain of single-cell models,
since the early 1990s it has been applied to network models that contain large numbers of
cells and connections, enhanced by the introduction of runtime-shortening features. [HCO1]

The Neural Simulation Tool NEST is a computer program for simulating large heteroge-
neous networks of point neurons or neurons with a small number of compartments. NEST
is best suited for models that focus on the dynamics, size, and structure of neural systems
rather than on the detailed morphological and biophysical properties of individual neurons.
It is developed by the NEST initiative, initially released in August, 2004. NEST possesses
the trait of extensibility, meaning that new models for neurons, synapses, and devices can

34

be added anytime. [GDO07]

Brian is an open source Python package for developing simulations of networks of spik-
ing neurons. The design is aimed at facilitating its understanding and use, enhancing its
flexibility and expressiveness and, last in priority, increasing computational efficiency. Users
specify neuron and synapse models by giving their equations in standard mathematical
form. The intent is to make the process as flexible as possible, so that researchers are not
restricted to using neuron and synapse models already built in to the simulator. The en-
tire simulator is written in Python, using the NumPy and SciPy numerical and scientific
computing packages. [GB09]

MOOSE (Multiphysics Object Oriented Simulation Environment) is an object-oriented
C++ finite element framework for the development of tightly coupled multiphysics solvers
from Idaho National Laboratory.[Wika| A key design aspect of MOOSE is the decomposition
of weak form residual equations into separate terms that are each represented by compute
kernels. The combination of these kernels into complete residuals describing the problem to
be solved is performed at run time. This allows modifications such as toggling of mechanisms
and the addition of new physics without recompilation.

GENESIS (the GEneral NEural SImulation System) is a general purpose software plat-
form that was developed to support the biologically realistic simulation of neural systems,
ranging from subcellular components and biochemical reactions to complex models of single
neurons, simulations of large networks, and systems-level models. [Wikd] It was originally
developed in the laboratory of Dr. James M. Bower at Caltech. The “building block” object-
oriented approach taken by GENESIS and its high-level simulation language allows modelers
to easily extend the capabilities of the simulator, and to exchange, modify, and reuse models
or model components.

2.2 GPU-accelerated Simulators

While frameworks such as the ones mentioned above offer the advantages of little to no
programming knowledge required coupled with the capacity to simulate user-defined net-
works without neuron architecture limitations, they exhibit important performance draw-
backs. This is due to the fact that such extended simulators cannot offer optimal perfor-
mance for every possible user-define supported experiment, in addition to lack of optimiza-
tion for particular high performance computer architectures in their standard distributions.
As neural network experiments become broader and more complex, initiatives that uti-
lize specialized, often single model-specific platforms and attempt to significantly improve
runtime performance have appeared.

A widely-used technology used for program runtime acceleration in general, which has
proven to be as effective in several neuron related experiments, is acceleration via GPU, in
which this thesis focuses. Due to significant memory (capacity for significantly large neural
networks) and performance capabilities, GPUs accelerate simulated experiments to such a
degree that computer-aided simulations can be conducted in a fraction of the time it would

35

take to conduct a much more complicated in vivo experiment. Some examples of GPU usage
for accelerated simulations is referenced below.

A team of scientists from the Computer Science and Cognitive Science departments of
the University of California Irvine have implemented a biologically realistic Spiking Neural
Network (SNN) simulator that runs on a single GPU. While the model they used for exper-
imentation included Izhikevich spiking neurons, detailed models of synaptic plasticity and
variable axonal delay, the simulator allows user-defined configuration of the exact model
architecture by means of a high-level programming interface written in C++4. The team
used an NVIDIA GTX-280 with 1 GB of memory to simulate for the simulation of 100K
neurons with 50 Million synaptic connections, firing at an average rate of 7 Hz, reaching up
to 26 times faster runtime than the CPU version of the simulation. [Nag+09]

Due to its range of realistic spiking dynamics, in combination with relatively adequate
computational efficiency, the Izhikevich neuron model has gained popularity in recent neu-
roscience research. Another team from the Imperial College of London developed NeMo, a
platform which “achieves high performance through the use of highly parallel commodity
hardware in the form of graphics processing units (GPUs)”. The implemented GPU kernel
delivers up to 400 million spikes per second, which corresponds to a real-time simulation of
around 40000 neurons, each connected through 1000 synapses, with a mean firing rate of
10 Hz. [KF+4-09]

The Brain Computation Laboratory of the Department of Computer Science and Engi-
neering of the University of Nevada presented the NeoCortical Simulator version 6 (NCS6),
a free open-source scalable CPU/GPU simulation environment for large-scale biological net-
works. It is designed to run on clusters of multiple machines equipped with GPU devices. It
expands from the Izhikevich and additionally supports the Leaky Integrate-and-Fire neu-
ron model. However, users have the capability to design their own neuron model through
the simulator interface, expanding this simulator’s usefulness to any computational neuro-
science experiment relating neurons and their synapses. NCS6 is currently able to simulate
1 million cells with 100 million synapses in total in quasi real time, distributing data across
eight nodes, each having two video cards, in order to cover memory requirements. [Hoa+13]

Last but not least, scientists from the Department of Electrical and Computer Engi-
neering of Clemson University implemented a simulator for the Hodgkin-Huxley and the
Izhikevich model that supported both CPU and GPU acceleration. They exploited CUDA
memory optimizations such as Coalesced Global Memory Accesses , Shared Memory and
Texture Memory in order to get the best results possible on GPUs and compared them to
equally researched CPU accelerations, the GPUs outperforming CPUs as the network gets
larger. The simulated neuron architecture consisted of 2 levels of neurons, the latter being
a token one compared to level 1’s number of neurons. Thus, GPUs are exploited for the
simulation of level 1’s neurons and level 2’s necessary calculations are performed on the host
CPU, combining to result in significant runtime decrease for the conducted experiments.
[BPS10]

36

2.3 BrainkFrame

The project that sparked my interest in Computational Neuroscience and urged me to
help in its development is called Brainframe. Brainframe is a heterogeneous node-level ac-
celeration platform for neuron simulations that utilizes three distinct acceleration technolo-
gies, originally an Intel Xeon-Phi CPU (Intel Xeon Phi 5110P), a Maxwell-based GP-GPU
(Nvidia Titan X) and a Maxeler Dataflow Engine (Maxeler Maia DFE), all of them using
PCle slots in order to communicate with the host system. This manner of communica-
tion ensures that Brainframe-enabled machines can be easily tailored on a per-case basis
depending on the availability of funds and hardware resources of any research laboratory.
Thus, different types of PCle-based accelerators can also be selected. Thus, depending on
the conducted experiment, the platform automatically chooses the best suitable accelerator
in order to balance satisfactory acceleration and as low as possible energy consumption.
Furthermore, the PyNN software framework is integrated into the platform, providing a
familiar bridge to the vast number of models already available, as it is a network model-
building API for the Python programming language that neuroscientists can use to run
their experiments on Brainframe while being supported by other popular simulators such
as NEURON and NEST without requiring modifications even on a single line of code. The
PyNN frontend coupled with the PCle-based host-device communication offers significant
flexibility to the Brainframe platform, as both different devices and neural models can be
added, the latter constituting part of the purpose of this thesis. [GS17; APDY09]

37

Chapter 3

Problem Statement

In the process of enriching Brainframe with new neuron models, the model I took on as a
responsibility is the addition of an Adaptive Exponential Integrate-and-Fire (AdEx) neuron
network model, which is also characterized by Spike-timing Dependent Plasticity (STDP).
This mathematical model was inspired from a neuroscience paper which researched the
ability of synapses to memorize a specific behaviour and whether they could quickly recall
that behaviour if activated by similar spikes. [RPC15] The aim of the paper was to show
that spike-timing-dependent plasticity with both pre- and postsynaptic expression develops
receptive fields with reduced variability and improved discriminability compared to post-
synaptic plasticity alone, leaving a hidden postsynaptic memory trace that enables fast
relearning of previously stored information. Its results revealed the importance of including
presynaptic plasticity so as to obtain significant characteristics that are missed when only
postsynaptic expression of long-term plasticity is considered. From an implementation per-
spective, the experiments conducted for this paper’s purposes used the PyNN interface and
the already-mentioned Brian simulator [GB09] to define model parameters and simulate
the system, respectively. However, due to the experiment’s modest size and consequently
limited resource requirements, there was no acceleration whatsoever and the Brian simula-
tor showcased prohibitive runtime increase as the experiment scaled to larger dimensions.
Thus, a fellow student and I undertook the task of accelerating this model’s simulation time
on different platforms before importing it to Brainframe. Both platforms required that we
imported the simulation of the particular model to a custom C program. This led to me
and the fellow student decoding the exact way that the Brian simulator works and design-
ing a model-specific simulator on the C programming language that can currently conduct
experiments regarding only the referenced model, though enabling the user to define pa-
rameter values for both neurons and their synapses. Afterwards, my responsibility was to
achieve optimal performance using the CUDA parallel computing platform, accelerating the
simulations on GPUs. The process of the optimization will be analyzed later. Henceforth,
the models of AdEx Neurons and STDP will be defined, followed by a description of the
process of importing the Brian simulation into a C program.

38

3.1 Adaptive Exponential Integrate-and-fire (AdEx)
Neuron Model

The Adaptive exponential integrate-and-fire model, also called AdEx, is a spiking neu-
ron model with two variables. The first equation describes the dynamics of the membrane
potential and includes an activation term with an exponential voltage dependence. Voltage
is coupled to a second equation which describes adaptation. Both variables are reset if an
action potential has been triggered. The combination of adaptation and exponential volt-
age dependence gives rise to the name Adaptive Exponential Integrate-and-Fire model. The
adaptive exponential integrate-and-fire model is capable of describing known neuronal firing
patterns, e.g., adapting, bursting, delayed spike initiation, initial bursting, fast spiking, and
regular spiking. Introduced by Brette and Gerstner in 2005 [BG05], the Adaptive exponen-
tial integrate-and-fire model AdEx builds on features of the exponential integrate-and-fire
model [NFTBO03] and the 2-variable model of Izhikevich [Izh03]. The model is especially re-
liable in high-conductance states, typical of cortical activity in vivo (experimentation using
a whole, living organism), in which intrinsic conductances were found to have a reduced
role in shaping spike trains. It has become popular in modern research due to its expressive
power, enough to reproduce qualitatively several electrophysiological classes described in
vitro (experimenting in a controlled environment outside of a living organism).

The following are the differential equations describing the AdEx model:

AV 9L(EL = Vin) + 9L A7 exp(Ye¥2) + [— ¢

T

dt C
dVr V1 = Vrrest
dt TV
de _ o(Vm —Ep) —x
dt Tw

Parameters:
Vin: Membrane potential

x: Adaptation Variable
I: Input Current
C: Membrane Capacitance
g1 Leak Conductance
E;: Leak Reversal Potential
V. Threshold
Ar: Slope Factor
c: Adaptation Coupling Parameter
Tw: Adaptation Time

39

3.2 Spike-Timing Dependent Plasticity (STDP)

Spike-Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian
learning induced by tight temporal correlations between the spikes of pre- and postsynaptic
neurons. As with other forms of synaptic plasticity, it is widely believed that it underlies
learning and information storage in the brain, as well as the development and refinement
of neuronal circuits during brain development. [BP01; SP08] According to the Hebbian
rule, synapses increase their efficiency if the synapse persistently takes part in firing the
postsynaptic target neuron. [Heb49] Experiments that stimulated two connected neurons
with varying interstimulus asynchrony confirmed the importance of temporal precedence
implicit in Hebb’s principle: the presynaptic neuron has to fire just before the postsynaptic
neuron for the synapse to be potentiated. [CDO08] In addition, it has become evident that the
presynaptic neural firing needs to consistently predict the postsynaptic firing for synaptic
plasticity to occur robustly. [BLNO1] With STDP, repeated presynaptic spike arrival a few
milliseconds before postsynaptic action potentials leads in many synapse types to Long-
Term Potentiation (LTP) of the synapses, whereas repeated spike arrival after postsynaptic
spikes leads to Long-Term Depression (LTD) of the same synapse. The neural substrate
of learning is believed to be long-term synaptic plasticity and after years of research and
debate, it has become more clear that it can be expressed as pre- or postsynaptic or both.
The paper this thesis is based on attempts to study the functional consequences of the
division between pre- and postsynaptic plasticity by developing a biologically tuned spike-
timing dependent plasticity model that involves both parts of the stdp expression. [RPC15]

Inspired by earlier work, the model presented by the referenced paper relies on expo-
nentially decaying traces of the pre- and postsynaptic trains, X and Y. The synaptic weight
is the product of a presynaptic factor P and a postsynaptic factor q. The presynaptic trace
x4 tracks past presynaptic activity, for example, glutamate binding to postsynaptic NMDA
receptors. When presynaptic activity x; is rapidly followed by postsynaptic spikes, unblock-
ing NMDA receptors, postsynaptically expressed long-term potentiation (LTP) is triggered
and increases the postsynaptic factor q, which can be interpreted as the quantal amplitude.
Conversely, the postsynaptic trace y4 represents prior postsynaptic activity, for example,
retrograde nitric oxide (NO) signalling, which when paired with presynaptic spikes leads to
presynaptically expressed LTP. Finally, the trace y_ tracks postsynaptic activity such as
endocannabinoid (eCB) retrograde release and elicits presynaptically expressed long-term
depression (LTD) when coincident with presynaptic spikes. Presynaptically expressed plas-
ticity is conveyed by long-term changes in the presynaptic factor P, which can be interpreted
as the presynaptic release probability.

From a mathematical point of view, plasticity in this model is divided into Short-term
and Long-term, each having their seperate set of differential equations. Below are listed the
equations related to Short-term plasticity:

dr(t) 1-r(t)
dd D

—p)r(t)X(t)

40

to:

a F

r: (Normalized) Number of Vesicles
p: Presynaptic Factor
D: Depression Time Constant
P: Baseline Presynaptic Factor
F: Facilitation Constant

As for the Long-term plasticity model, the postsynaptic depression trace is defined as:

dy-(t)) _ —y-(1)

Y(t
dt Ty_ +Y()
for the postsynaptic potentiation trace:
dy(t —y+(t
dt Ty,
and for the presynaptic potentiation trace:
dr(t —x4(t

dt Ty

+

where:
Y+, y—: Postsynaptic Traces

x4 Presynaptic Traces

The postsynaptic factor q is modified with every postsynaptic spike Y according to:

Aq = cray(y-(t— Y ()

The presynaptic factor p is modified whenever the presynaptic cell is active according

AP = —d_y_(t)y (DX (1) + dya (t - ys (DX (1)

The total synaptic strength is a product of both pre- and postsynaptic factors:

w(t) = qp(t)r(t)
For a synapse that has not been stimulated recently this simplifies to:

w = Pq

41

Chapter 4

Initial Approach

As mentioned before, in order to achieve an ideal acceleration environment compati-
ble with multiple devices, a fellow student working on a related thesis and I implemented
a C port of the Python-based Brian version of the simulation. As a matter of fact, we
extended over replicating the specific experiment and coded a standalone simulator that
currently supports only the AdEx neuron model with its synapses characterized by Spike-
Timing Dependent Plasticity. However, several features such as neuron connectivity, spike
frequency, parameter values and of course neuron and synapse quantity have been turned
into user-defined attributes, allowing neuroscientists interested in this model to indepen-
dently conduct personalized experiments. In order to successfully implement our simulator,
a thorough analysis of Brian’s characteristics, namely the code responsible for handling the
particular network and solving differential equations that describe this model’s different
parts.

4.1 Brian Architecture

The following is an explanation of Brian’s python code related to the model of Costa et
al. and the experiment mentioned in their paper. [RPC15] The code can be divided into three
segments, analogous to the definition of Input Neurons, which represent artificially induced
neural spikes that are feeded directly into the AdEx neurons as input of the experiment,
hence not following any specific physical model, the definition of the Neurons of the AdEx
model, from now on often referred to as model neurons, and the Synapses used to connect
both Input and AdEx neurons to each other. Regarding network connectivity, it shall be
noted here that both Input and AdEx neurons have been made possible to connect to any

other neuron created for the simulation, stating the fact that all synapses follow the same
STDP model.

4.1.1 Input Neurons

Input Neurons are created by calling the constructor of a PoissonGroup class. This
Python class’ purpose is to create the network of neurons that feed the model neurons with

42

artificial spikes in random moments. It requires passing the following parameters:
e N : (int) Number of Input Neurons

e rates : Either a constant rate, an array of rates (one rate per neuron), or a string
expression evaluating to a rate as an argument. This parameter will be evaluated at
every time step and therefore allows the use of time-dependent rates, i.e. inhomoge-
neous Poisson processes, thus the name PoissonGroup.

In order to replace passing spikes on a given rate as input with explicitly manually defined
spikes at user-defined time steps, the class SpikeGenerator is used. It defines a quantity of
Input Neurons that spike based on a given array that defines independent neuron- and
time-specific spikes. The parameters required by this class are:

e N : (int) Number of Input Neurons

e spiketimes : (int, int) Array of tuples that contain the indices of Input Neurons to
fire spikes and the timesteps these spikes will be produced and passed to the model
neurons.

4.1.2 Model Neurons

Neurons corresponding to the model defined by the user are created as a NeuronGroup
class, which contains all the necessary neuron variables for the simulation and is responsible
for keeping record of the neurons that spike, propagating the list to the Synapses class in
order to update the corresponding synaptic variables. Moreover, this class chooses auto-
matically (unless explicitly shown else) the method that solves the differential equations of
the models. It is called with the following parameters:

e N : (int) Number of Neurons

e model : (Equations class/string/StateUpdater class) This parameter states The dif-
ferential equations defining the behavior of the neurons that are created by this class
initializer. The first two possibilities are essentially a string representing the differ-
ential equations, while the latter is a class that updates the state variables of the
neurons at every timestep depending on the defined method.

e threshold : (Threshold object /function/scalar quantity/string) This parameter defines
the condition under which the neuron produces spikes. Usually a string describing a
boolean expression between variables or a variable and a constant.

e reset : (Reset object/function/scalar quantity/string) This parameter defines what
happens when a neuron spikes. It is basically The (possibly multi-line) string with the
code to execute on reset.

e freeze : (True/False) If True, parameters are replaced by their values at the time of
initialization

43

4.1.3 Synapses

Synaptic connections are created by calling the Synapses class constructor. This class
connects two Neuron Groups (e.g. PoissonGroup, NeuronGroup) given some user-submitted
synaptic model and updates the values of the produced synapses on every timestep. Apart
from the Neuron Groups, this class also requires these parameters:

e model : (Equations object/string) The (differential) equations that define the synaptic
variables and their relations. Same syntax as the Neuron Group

e pre : (list/tuple of strings) TThe code that will be executed after every pre-synaptic
spike. Can be either a single (possibly multi-line) string, or a touple of strings defining
seperate commands.

e post : (list/tuple of strings) The code that will be executed after every post-synaptic
spike. Same conventions as for pre.

4.1.4 Brian Code

The code used to run the simulation in Brian is the following:

44

NN N
N =)

NN NN NN
® N o o

B

30
31
32
33
34
35
36
37
38
39

40

46

799

eqs_neuron =
dvm/dt=(gL*(EL—vm)+gL*DeltaTxexp ((vin—vt)/ DeltaT)+I-x)/C : volt
dvt/dt=—(vt—vtrest)/tauvt : volt
dx/dt=(c*(vin—EL)—x)/tauw : amp #In the standard formulation x is w
I : amp

F_inputl = ones(N)xFoff
for i in range(O ,N): #Define gaussian input
F_inputl[i] = exp(—((((i+1)—inputl_pos)**2)/(2.0xrad**2)))*(Fon—Foff)+Foff;

input = PoissonGroup (N, rates=F_inputl)

neurons = NeuronGroup (M, model=eqs_neuron, threshold="vin>vt’,
reset="vin=Vr;x+=b; vt=VTmax”, freeze = True)
InitializeNeurons (neurons)

#user_input = SpikeGeneratorGroup (N, spiketimes)

model="""w : 1
FFp : 1
FBp : 1
FBn : 1
R :
u
U :
A1
dFFp/dt=FFp/tau_FFp : 1 (event—driven)
dFBp/dt=FBp/tau_FBp : 1 (event—driven)
dFBn/dt=FBn/tau_ FBn : 1 (event—driven)
dR/dt=(1-R)/tau-r : 1 (event—driven)
du/dt=(U-u)/tau_u 1 (event—driven)

—_ ==

syn = Synapses (my_input, neurons, model,
pre="""I=s*AxRxu;
U=clip (U+etaUsx*(—AFBn+FBnxFBp + AFBp*FBp«FFp) ,Umin, Umax) ;
w=Ux*A ;

FFp+=1; R—=Rxu; ut=Ux(l—-u)’’’,
post="""A=AtetaA x (AFFp+«FFp+FBn) ;
A=A—ctaA x0.5*mean (AFFp+FFp«FBn) ;
A=clip (A, Amin, Amax) ;
w=Ux*A ;
FBp+=1.;FBn+=1.""")
syn[:,:]=True

5 InitializeSynapses (syn)

run (stime)

A gaussian expression defines the rate at which Input Neurons will spike. In line 16,
a user-input assignment is commented out which would be an alternative Input Neuron
instance that could be passed to the Synapses class. The parameter called spiketimes would
be an array of touples descripting spikes. In addition, in line 42 every synapse is defined as
“connected” to its corresponding neurons by changing a value of a two-dimensional boolean
matrix to 1. Creating a Synapses class alone does not connect any synapse with a neuron.

45

In order to connect neurons, it needs to be defined explicitly in the form of a connectivity
matrix that the Synapses class offers.

4.2 C Simulator Architecture

After obtaining a thorough understanding of its backend and the exact process behind
the simulations conducted in Brian, my fellow student and I implemented the simulator in
the C programming language. The original simulation was a ModelDB project that used 100
Input Neurons to feed spikes to a single AdEx Neuron and monitor its behaviour, defining
the synapses according to the STDP model. The extended simulator allows for user-defined
experiments of N Input Neurons feeding spikes to M AdEx Neurons. Synapses also follow
the STDP model, connecting both Input to AdEx Neurons as well as AdEx Neurons with
one another, enabling the option of Model-only , MxM experiments apart from the original
NxM ones. In the case of MxM, AdEx spikes cannot be caused automatically as a result
of input, but users can freely choose spike density and frequency percentage-wise.

AdEx
Neuron

Input
Neuron

Figure 4.1: Neuron architectures

In order to select the network architecture to be simulated, users need to define 3 param-
eters. First is the number of Input Neurons (N_S, as of Number_Source, the ones feeding
spikes to the network). As of the current version, AdEx neurons need to be defined twice in
the form of Number of AdEx Group Source neurons (N_Group_S) and Number of AdEx
Group Target neurons (N_Group_T), in order to match the original source (Input) - target
(AdEx) template. When non-zero, the last two parameters must be set equal. To summarize,
the following neuron architectures are allowed:

e N _SxN_Group_T, where N_Group_S is set to zero.
e N_Group_SxN_Group_T, in which case N_S is set to zero.

An important part of the implementation was the selection of the data structures to
be used to keep all the necessary data of neurons and their synapses. An array of integers

46

of length N_S + N_Group_S is used to represent spike occurrences on the corresponding
neurons, named SpikeArray. As Input Neurons’ sole purpose is spike feeding, they are suffi-
ciently represented by N_S array slots. However, the array is first filled by all the necessary
AdEx Neuron slots before the ones representing Input Neurons. Even though a boolean
definition of SpikeArray would be more memory-efficient, much larger data structures lead
to this overhead being negligible, hence we rest on this datatype in order to increase further
development assistance e.g. debug codes, expanded Input Neuron functionality etc.

Due to the different variables of the AdEx neuron model that need saving in order
to correctly solve the model equations on every timestep, AdEx Neurons are represented
by a struct named Neuron which contains the variables holding the value of the voltage
threshold, membrane potential, input current and the model’s adaption variable, all of
which are defined as double for sufficient precision, as well as an integer field whose value
explains whether the neuron has spiked on the current timestep. While this is represented by
SpikeArray, it has been preserved to ensure complete correspondence to the original Brian
code, as asked. The same principle is applied on several code segments of our simulator with
no significant memory overhead.

The STDP model and the differential equations that describe the synapses lead to the
implementation of struct Synapse to save all the related information that synapses need.
This includes the synaptic variables, a field that maintains the last time a value of the struct
was updated, the current to be propagated to the post-synaptic neuron and lastly a variable
that actually expresses whether the given synapse exists from the experiment’s point of view.
The explanation for the latter is that both the ensembles of neurons and synapses are saved
as two arrays of structs (AoS). This layout was preferred because of spatial locality between
interconnected variables and offered performance advantages compared to a single struct of
arrays (SoA) for each element, in the original serial case. Therefore, synapses are stored in
an adjacency array (of structs) of size NxM or MxM, depending on the simulation. The
conn variable defines connectivity, which can be read by an input file as well as left to a
default attribute of 50%.

The code for the datatype definitions is the following:

47

int

type

type

SpikeArray [N];

def struct {

double vt; /* Voltage threshold. =/
double vm; /* Membrane potential. */
double I; /* Neuron input current. x/
double x; /* Adaption variable (w). x/
int Spike; /* Spike occurence x/

} Neuron;

def struct {

int conn; /x Synapse connectivity. */
double w; /% Weight of a synapse. (not used in STDP) x/

double FFp; /*x FFp variable of a synapse. (x+) x*/

double FBp; /* FBp variable of a synapse. (y+) */

double FBn; /* FBn variable of a synapse. (y—) x/

double R; /* R value of a synapse. (r) x/

double u; /* u value of a synapse. (p) x/

double Uj; /* U value of a synapse. (P) %/

double Aj; /* A value of a synapse. (q) */

double lastupdate; /* Last time a synapse was updated. x/
double target_I; /+ The I value for the postsynaptic neuron. x/

} Synapse;

When a simulation runs on Brian, the functions that occur in order to accurately up-

date

the variables defined by the model can be distinguished into three different subsets

corresponding to the action-phenomena that happen on spike occurences. Thus, we have

coded three main functions that shall be explained below along with their C code mildly

simplified for clarity reasons.

The first function is responsible for the update of the values of AdEx Neurons by
solving the differential equations that define the model on every timestep.

void SolveNeurons(Neuronx neurons, int N, int *xSpikeArray){
for(int i = 0; i < N; i++){
/*update variables according to solutionx/
if (neurons[i].vm > neurons[i].vt){
resetNeuron(&neurons[i]) ;
SpikeArray[i] = 1;

)

else SpikeArray[i] = 0;
¥
}

In the case that an AdEx neuron’s membrane potential crosses the voltage threshold,
it indicates that the neuron has fired. Therefore, the SpikeArray field that corresponds
to the particular neuron is updated accordingly and the neuron’s variables are reset
to rest status.

When a spike occurs, synaptic variables of the synapses connecting the neuron that
fired to other neurons must be updated according to STDP and the value of the
current that appears needs to be propagated to the post-synaptic neurons. Therefore,
this function was implemented:

48

1

2

1

void UpdateSynapses_pre(Synapsesx Synapses, Neuronkx neurons, int N_S,
int N_Group-S, int N_Group.T, intx*x SpikeArray, double t){
for (int i = 0; i < N_.S + N_Group_S; i++){
if (SpikeArray [i+N_Group-T—N_Group-S] > 0){
for (int j = 0; j < N_Group_T; j++){
if (Synapses[i][j].conn) update_variables();
}
¥
¥
for (j = 0; j < N_Group-T; j++){
for (i = 0; i < N_.S + N_Group-S; i++){
if (Synapses[][j]-conn && SpikeArray [i+N_Group-T—N_Group-S]) {
neurons[j].I = Synapses[i][j].target_I;

}
}
}

Here it should be noted that in the case of NxM experiments, changes to synaptic
variables ensue only when Input Neurons fire (hence the conditions on lines 3 and
11), while in MxM experiments calculations are done on every AdEx Neuron spike.
Moreover, target electric current propagation needs to be done on a seperate nested
for-loop due to the different way neurons are accessed (column-wise instead of row-
wise). For every Input Neuron (i) that has generated a spike, the synapses that start
from it and the post-synaptic neuron (j) are updated.

Last but not least, new values are calculated for synaptic variables when the post-
synaptic AdEx Neurons fire, based on the differential equations describing the post-
synaptic expression of STDP. Following is the function responsible for this phe-
nomenon:

void UpdateSynapses_post (Synapsex* Synapses, Neuronx neurons, int N.S,
int N_Group-S, int N_Group.T, int*x SpikeArray, double t){
for (int i = 0; i < N_Group_T; i++){
if (SpikeArray[i] > 0){
for (int j = 0; j < N.S + N_Group_S; j++){
if (Synapses[j][i].conn) update,variables,l();
¥
}
}

calculate_mean_value () ;

for (i = 0; i < N_Group_T; i++){
if (SpikeArray[i] > 0){
for (j = 0; j < N.S + N_Group_S; j++){
if (Synapses[j][i].conn) update_variables_2();
}
}
}
}

49

This function follows similar principles to the second one. Even though the for-loops
are based on the same conditions, the average of two synaptic variables’ values over
all firing neurons of the particular timestep must be calculated in between so as to
perform correct calculations.

To conclude, taking into consideration that SpikeArray needs to be reinitialized on every
timestep after the solution of the AdEx model equations, the loop that encapsulates the
simulation resembles the following:

for (int t = 0; t < timesteps; t++){
SolveNeurons (neurons, N_Group.-T, SpikeArray);

InitializeSpikeArray (SpikeArray, N_S);

UpdateSynapses_pre (synapses, neurons, N_S, N_Group_S, N_Group.T,
SpikeArray , txdefaultclock_dt);

UpdateSynapses_post (synapses, N_.S, N_Group_.S, N_Group_T, SpikeArray, t=x
defaultclock_dt);

50

Chapter 5

Parallel Programming Optimization

After having implemented the simulator in C in cooperation with another student, my
personal task on this thesis was developing a parallel computing version of the simulator to
compare the performance gains when running in (max) parallel on GPUs using the CUDA
API. Moreover, a baseline acceleration version was coded that utilized the OpenMP pro-
gramming interface for multi-threaded CPU acceleration, so as to effectively understand the
actual advantages and drawbacks of using GPUs for the particular simulator’s experiments.

5.1 CUDA implementation

5.1.1 General Design Features

Modern (CUDA-compatible) GPUs contain a multitude of processing units termed as
CUDA cores, which in turn support plenty of threads running simultaneously on each. For
example, calling CUDA’s cudaGetDeviceProperties() on a PASCAL GeForce Titan X GPU
lists the specs of the card as follows:

e Maximum number of threads per block: 1024
e Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
e Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

As mentioned before, a grid is the entire collection of CUDA threads to execute a given
kernel. Therefore a Titan X can theoretically execute a program using up to (maxGridSize
x maxThreadsPerBlock) threads, even though per thread resource limitation might restrict
the total number of threads per block to less than this maximum. Therefore, taking into
consideration that due to the C program architecture analyzed before all computations of
the model are neuron- and synapse-specific, meaning there are little to no data dependencies
between their structs on a single timestep, the approach chosen for the GPU acceleration was
to assign every single struct used for computations to a different thread. Each neuron and
consequentially every synapse -depending on the kernel- is handled by a single, independent
thread, enabling maximum possible parallelism and the least possible calculation load for

ol

V]

each thread. This choice is ensured by defining a grid size analogous to the number of
elements to be processed, for example:
int blocksize = 256; /+ chosen block size x/

int gridsize = (N_Group_-T + blocksize — 1) / blocksize; /% number of neurons
divided by number of blocks x/

3 neuron_kernel<<<gridsize , blocksize >>>(neurons); /x launch GPU kernel x/

1

2

It shall be noted here that a CUDA kernel call is recognised by the <<<...>>>
execution configuration syntax.

5.1.2 Data Structures and Memory Handling

Since CUDA is a programming interface that fully supports the C language, only a few
modifications needed to be done to the existing data structures of the simulator’s source
code, taking into consideration that all necessary existing data structures are allocated on
the device and their data is copied using a CUDA dedicated function. First of all, it should
be noted that in order to process data on a GPU by running a CUDA kernel the necessary
data must be allocated on and/or passed to the device. In the case of synapses, the CUDA
API offered two possibilities for passing their data to the device. This is due to the fact that
the array of structs (AoS) that acts as an adjacency matrix as well as stores the information
needed for every synapse can be either a classic two-dimensional C array (of structs) or a
one-dimensional representation of the same array, since the rows of a two-dimensional array
can be stored in contiguous memory locations and accessed by utilizing pointer arithmetics.

eikona

eikona

eikona

eikona

Regarding the 2D version, for simplicity purposes we initially consider that the array is
allocated statically:
typedef struct { /% synaptic variables %/ } Synapse;

Synapse syn [N_S+N_Group_S|[N_Group.T]; /* rows = N_.S + N_Group_S; columns =

N_Group-T =/

This ensures that a contiguous block of memory is allocated for the two-dimensional
array which is stored by rows in C and C++. Array allocation and/or copying requires
every array item to be in adjacent memory positions with its neighboring ones, as there
is no CUDA operation to handle discontinuity between array elements. When accessing
2D arrays in CUDA, memory transactions are much faster if each row is properly aligned.
CUDA provides the cudaMallocPitch function to properly pad each row with extra bytes so
to achieve the desired alignment. Device memory allocation for the array is therefore coded
as such:

Synapse xdev_syn;

cudaMallocPitch ((void*x*)&dev_syn , &dev_pitch , N_Group.T % sizeof (Synapse),
N_S+N_Group_S) ;

52

Where dev_syn is a pointer to the allocated memory space, dev_pitch is a size_t output
variable denoting the length, in bytes, of the padded row and the last two parameters
define array size in columns and rows, noting that columns size is also defined in bytes.
cudaMallocPitch will allocate a memory space of size, in bytes, equal to N_.S+N_Group_S *
pitch. However, only the first N_Group_T * sizeof(Synapse) bytes of each row will contain the
array data. Accordingly, cudaMallocPitch consumes more memory than strictly necessary
for the 2D array storage, but this is returned in more efficient memory accesses.

Obviously, the fact that I am allocating an array of structs instead of e.g. a float array
has no consequences other than the extensive memory allocation needs. Assuming data is
allocated on device memory using cudaMallocPitch, the function responsible for copying
the data between host and device memory space is called cudaMemcpy2D, its syntax being
as follows:

1 cudaMemcpy2D (devPtr, devPitch, hostPtr, hostPitch, Ncols % sizeof(float),

Nrows, cudaMemcpyHostToDevice)

Where:

e devPtr and hostPtr are input pointers to the (source) device and (destination) host
memory spaces, respectively;

e devPitch and hostPitch are size_t input variables denoting the length, in bytes, of
the padded rows for the device and host memory spaces, respectively, hostPitch being
equal to the number of columns allocated for the array on the host space

e array size is defined as in cudaMallocPitch and the last parameter defines source and
target memory space.

Therefore, memory copies on my code are written as follows:

1 cudaMemcpy2D (dev_syn , pitch, syn, N_Group.T x sizeof(Synapse), N_Group_-T =x
sizeof (Synapse), N_S+N_Group.S, cudaMemcpyHostToDevice) ;

3 synapses_kernel<<<gridsize , blocksize >>>(dev_syn);

5 cudaMemepy2D (syn, N_Group_T * sizeof (Synapse), dev_syn, pitch, N_Group.T =x
sizeof (Synapse), N_S+N_Group.S, cudaMemcpyDeviceToHost) ;
describing host-to-device and device-to-host copies respectively. From a kernel stand-
point, the access to elements of the 2D array allocated by cudaMallocPitch can be performed
as in the following example:
1 int tidx = blockldx.xxblockDim.x + threadldx.x;

2> int tidy = blockldx.yxblockDim.y 4+ threadldx.y;
s if ((tidx < Ncols) && (tidy < Nrows))

A

5 Synapsex row = (Synapse x*)((charx*)Synapses + tidy * pitch);
6 if (row[tidx].conn){

7 /* perform operations x/

-

9 }

53

The pointer to the first element of a row is calculated by offsetting the initial pointer
Synapses by the row length tidy * pitch in bytes (char * is a pointer to bytes and sizeof(char)
is 1 byte), where the length of each row is computed by using the pitch information.

Finally, below is the actual code used for dynamic memory allocation of the two-
dimensional array of structs of synaptic data, ensuring that rows are stored in contiguous
memory locations:

Synapse (*syn)[N_Group-T] = malloc(sizeof *Synapse % (N_Group_S + N_S));
if (syn)

s

/% do stuff with syn[i][j] */
free (syn);
}

In reality, the improvements arising from the use of cudaMallocPitch depend on the
compute capability and are more significant for older ones. For GPUs with most recent
compute capabilities, such as the ones used for this thesis, pitched memory allocation does
not seem to lead to a relevant speedup. Moreover, using cudaMallocPitch leads to a slight
increase in memory occupancy which, while usually negligible, is preferred to be avoided in
the simulator’s case due to the vastly memory-consuming data structure.

The above reasons subsequently led to choosing a one-dimensional representation of the
2D array. The code for memory allocation on the device and copies between host and device
memory space is listed below:

//allocate device memory
Synapse *xdev_syn;

s cudaMalloc(&dev_syn, sizeof (Synapse) % (N_S+N_Group.-S) * (N_Group.-T));

5 //pass data to device

cudaMemcpy (dev_syn, syn, sizeof(Synapse) * (N_S+N_Group.-S) * (N_Group.T),
cudaMemcpyHostToDevice) ;

synapses_kernel<<<gridsize , blocksize >>>(dev_syn);

//get data back
cudaMemecpy (syn, dev_syn, sizeof(Synapse) * (N_S+N_Group.S) x (N_Group.T),
cudaMemcpyDeviceToHost) ;

Access to array elements is achieved in regular C manner, using the thread ID as array
subscript. This approach also offers the advantage of significantly simpler code.

Apart from adapting the synapses array of structs to a one-dimensional representation,
the only other difference regarding data structures is the addition of a double datatype
array called testvar (“test variable”, the name comes from debugging purposes) of the same
dimensions as syn. The third function mentioned in section 4.2 contains the calculation
of a mean value by combining three synaptic variables. On the CUDA implementation,
this operation initially couldn’t be done in parallel by running a kernel (shall be explained
later). Thus, the data needed to calculate this value had to be sent back to the host and
the result had to be propagated back to the device for completing the function’s operations.
testvar’s purpose is to minimize the amount of memory to be passed to the host, as each

o4

synapse -subsequently each thread- stores the value to be added to the mean variable in
the corresponding testvar element. Then, only testvar is copied back to the host, which
consumes significantly less memory as a double array instead of a Synapses array, making
the cudaMemcpy operation faster.

5.1.3 Kernel Design

The most important part of the GPU implementation is obviously designing the kernel
architecture for the program to run optimally in parallel. There have been various consid-
erations regarding kernel size, contents and quantity, taking into account the flexibility and
limitations imposed by the process of solving the equations of the models of AdEx Neurons
and their STDP-characterized synapses. Final design choices were made bearing in mind
optimal program functionality, adequate acceleration and output flexibility, i.e. being able
to output multiple variable values on every timestep, maintaining the possibility for user-
defined loquaciousness levels. Moreover, datatype variances were explored as well as other
minor features that could or could not have affected overall performance.

5.1.3.1 Device code

The initial approach towards kernel definition was to try and design the GPU program
on a similar note to the original simulator’s source code. Specifically, the entire simula-
tion would have an identical flow to the CPU version but instead of calls to the functions
SolveNeurons, UpdateSynapses_pre and UpdateSynapses_post there would be calls to cor-
responding kernels. Since the entirety of the arithmetic calculations relevant to the neuron
and synapse models is performed in the aforementioned functions, it also seemed that, as-
suming the simulator needed to output data to the user only after the completion of the
simulation, simulation data only needed to be transferred to the device once in its entirety
on the initialization step and then sent back to the host after every model variable has
acquired its final value. Each kernel was given the same name as the original functions for
simplicity.

To properly indicate the kernel-solver function correspondence while presenting kernel
implementations, the following general concept should be noted. As the final implementation
used a 1D-representation for all arrays, the CUDA grid is also set to be one-dimensional
along with the thread blocks. In this case a thread’s unique ID can be retrieved by executing
a simple command:

int id = blockldx.x*xblockDim.x + threadldx.x;

This command sets id to a value that equals to the thread global index (and not the one
within the block) and can be used to access data structures’ positions that the particular
thread is responsible for. As already stated, the key concept of the GPU implementation
is to assign every single model “element” (i.e. neurons and synapses) to a different thread,
meaning that each CUDA thread shall perform all necessary calculations for updating the
variables of the specific struct of its corresponding element. The implemented kernels shall

95

now be analyzed in the order of their execution in the simulation, same as the sequence of

the original function calls in every timestep.

2

1

The first kernel to be presented is the SolveNeurons kernel, which was also the
simplest due to the lack of data dependencies other than a one-by-one connection
between the neurons struct and the SpikeArray array. As already shown, due to
these data structures’ design, the same thread responsible for position ¢ of neurons
also handles the corresponding element i of SpikeArray. The SolveNeurons function
encapsulates all commands within a loop that iterates the AdEx neurons, updates
their variables according to the solution of the AdEx model’s differential equations
and, in case of a spike, resets the firing neurons and sets the matching SpikeArray
position to 1. Since these two data structures are both logically and code-wise one-
dimensional, the identical dimensions of the CUDA grid spawned on kernel launch
lead to the complete removal of the loop and the replacement of array subscripts with
the thread ID, ensuring correct functionality due to the fact that all array elements
are independent of each other:

__global__

void SolveNeurons(Neuronx neurons, int N, int *xSpikeArray){
int id = blockldx.x*blockDim.x + threadldx.x;

double _vm, _vt, _x;
if (id < N){
vm = (gL*(EL-neurons[id].vm)+gLxDeltaT+exp ((neurons[id].vm—neurons
id].vt)/DeltaT)+neurons[id |.I-neurons[id].x)/C;
vt = —(neurons[id].vt—vtrest)/tauvt;
x = (c*(neurons[id].vin—EL)—neurons[id].x)/tauw;

neurons[id] vmm += vm x defaultclock_dt;
neurons [id].vt += _vt * defaultclock_dt;
neurons [id].x += _x * defaultclock_dt;
if (neurons[id].vm > neurons[id].vt){

/* reset neuron x/

neurons [id] v = Vr;

neurons [id].x 4= b
neurons [id]. vt = VTmax
SpikeArray [id] =

}

else SpikeArray[id] = 0;

The CUDA __global__ keyword indicates that the function it accompanies runs on
the device and is called from the host code (CUDA kernels). For GPUs with compute
capability of 3.5 or higher, kernel calls can also be issued from within kernels, useful for
dynamic parallelism. Another note is that kernels do not recognize global variables
declared in CPU code, therefore every variable must be passed to the kernel as a
parameter. This detail has been omitted from the presented kernel codes for pure
simplicity reasons.

Next is the UpdateSynapses_pre kernel. In this kernel’s design a decision was

56

needed to be made as behaviour correspondence to the original Brian simulator was
weighed against significant performance increase. The original UpdateSynapses_pre
function is also characterized by a loop that iterates the synapses’ structs and up-
dates all relevant variables. However, there is a subsequent loop that iterates the
synapses by columns and propagates each synapse’s target_I current -generated by
the pre-synaptic neuron- to the post-synaptic neuron.

for (j = 0; j < N_Group.T; j++){

for (1 = 0; i < N.S 4+ N_Group.S; i++){

if (Synapses[i][j].conn && SpikeArray [i+N_Group-T—N_Group-S]|){
neurons[j].I = Synapses[i][]j]. target_I;

}
}

While this seemed to lead to a straightforward parallel implementation, the following
case led to the dilemma: when more than one pre-synaptic neurons connected to the
same post-synaptic neuron fire simultaneously, each synapse’s target_I overwrites the
value already written to the post-synaptic neuron’s variable. Due to the iteration
by columns, the final value passed is of the neuron corresponding to the largest
thread ID among those of firing pre-synaptic neurons, that is the last neuron that
fired if we iterated the SpikeArray struct by rows. Since there is no CUDA function
to impose global thread synchronization inside a kernel, replicating this behavior
requires exiting the kernel before this last loop, transferring the target_I data and
executing it in the CPU code, passing the updated neurons struct back to the device
for further calculations. However, among CUDA API calls, the greatest time penalty
is generated when using cudaMemcpy (and its derivatives) to transfer data between
device and host. Moreover, the order the current is passed is strictly a Brian source
code limitation, as there is no Brian support to define which pre-synaptic neuron
prevails on simultaneous spiking. Neither the paper the original experiment was based
on nor the models of AdEx neurons or STDP-characterized synapses provide any
relevant information. Finally, there is no problem having multiple threads writing a
single (shared or global) memory location in CUDA, even “simultaneously” i.e. from
the same line of code, as long as there are no read-write race conditions. Hence, the
chosen approach was to simply allow threads to update the neuron variable in parallel,
having no control over the order they will access that field whatsoever, resulting in a
significant performance gain.

57

1

2

10

__global__
void UpdateSynapses_pre(Synapsex Synapses, Neuronkx neurons, intx
SpikeArray) {
int id = blockldx.x % blockDim.x + threadldx.x;
if (SpikeArray[id/N_Group-T + N_Group-T — N_Group-S| > 0){
if (Synapses[id].conn){

/* update variables x/

Synapses [id | .FFp = Synapses[id|.FFp * exp(—(—Synapses[id].
lastupdate + t)/tau_FFp);

Synapses [id | .FBn = Synapses|[id].FBn * exp(—(—Synapses[id].
lastupdate + t)/tau_FBn);

Synapses[id].u = Synapses[id].U 4+ (—Synapses[id].U +
Synapses|[id].u) * exp(—(—Synapses[id].lastupdate + t)/tau_u);

Synapses [id | .FBp = Synapses[id].FBp * exp(—(—Synapses[id].
lastupdate + t)/tau_FBp);

Synapses [id | .R = (Synapses[id].R — 1) x exp(—(—Synapses[id].
lastupdate + t)/tau-r) + 1;

Synapses|[id]. target_.I = s % Synapses[id].A % Synapses[id].R
* Synapses[id].u

Synapses [id] .U = Synapses[id].U + etaU * (—AFBn % Synapses]|
id].FBn % Synapses[id]|.FBp + AFBp * Synapses|[id|.FBp x Synapses|[id].
FFp) ;

if (Synapses[id].U < Umin) Synapses[id].U = Umin;

else if (Synapses [id].U > Umax) Synapses[id].U = Umax;

Synapses [id].w = Synapses[id].U * Synapses[id].A;

Synapses [id]. FFp += 1;

Synapses[].R Synapses[id].R *x Synapses[id].u;
Synapses|[id].u += Synapses[id].U % (1 — Synapses[id].u);

Synapses|[id].lastupdate = t;

/* pass current to neurons x/

neurons [id%N_Group_-T 4+ N_Group-T — N_Group-S].I Synapses]|id
]. target_T;

}
}

5 }

Once again, the first double loop is essentially replaced with thread ID retrieval.

Last, the UpdateSynapses_post kernel. As mentioned in section 4.2, the UpdateSy-
napses_post function consists of two loops iterating all synapse structs by columns,
which makes little difference in modifying the function to run in parallel. However,
the calculation of the mean value of certain synaptic variables between those loops
proved to be a challenge. This value, common to all synapses hence every thread, is
necessary for the operations performed in the second loop, so it has to be assured that
no thread has moved on to the second loop before the mean variable is set at the right
value. Unfortunately, the CUDA programming model specializes on solving problems
by breaking them down onto blocks, and thread synchronization can be done within a
block using CUDA’s __syncthreads function. However, global thread synchronization
within a CUDA kernel can only be achieved with methods that serialize execution (e.g.
mutex locks). Thus, the most straightforward solution was to split the function into 2
seperate kernels responsible for running each nested for-loop in parallel, allowing the

58

2

14

15

16

© w0

NN N NN

W oW W NN N NN
N OH O O W 9 O W

34

host (CPU) to handle the mean calculation in between by passing all the necessary
data through the testvar array. Since kernels are automatically executed sequentially
if launched in the default stream, as happens in the entirety of this thesis’ related code,
there is no need to explicitly synchronize the device to ensure the mean is calculated.

__global__
void UpdateSynapses_post_Partl(Synapse *Synapses, intx SpikeArray,
double xtestvar){
int id = blockldx .x*blockDim.x + threadldx.x;
if (id < (N_.S + N_Group-S) * N_Group-T)
{
if (SpikeArray [id%N_Group-T + N_Group-T — N_Group_-S] > 0){
if (Synapses[id].conn){
Synapses [id |.FFp = Synapses[id]|.FFp * exp(—(—Synapses|[id
|.lastupdate + t)/tau_FFp);
Synapses [id | .FBn = Synapses[id].FBn * exp(—(—Synapses[id
|. lastupdate + t)/tau-FBn);
Synapses [id].u = Synapses[id].U 4+ (—Synapses[id].U +
Synapses [id].u) * exp(—(—Synapses[id].lastupdate + t)/tau_u);
Synapses [id | .FBp = Synapses[id]|.FBp * exp(—(—Synapses|[id
|.lastupdate + t)/tau-FBp);
Synapses [id |.R = (Synapses[id].R — 1) * exp(—(—Synapses]|
id |.lastupdate + t)/tau_r) + 1;
Synapses [id | .A = Synapses[id].A + etaA % (AFFp x
Synapses|[id | .FFp % Synapses|[id].FBn);
/* save values for mean calculation x/
testvar [id] = AFFp * Synapses[id].FFp * Synapses[id].FBn

__global__

void UpdateSynapses_post_Part2(Synapse xSynapses, intx SpikeArray,
double mean){
int id = blocklIdx.x*blockDim.x + threadldx.x;
if (id < (NS + N_Group-S) * N_Group-T)

{
if (SpikeArray [id%N_Group-T] > 0){
if (Synapses[id].conn){
Synapses [id|.A = Synapses[id].A — etaA % 0.5 * mean;
if (Synapses[id].A < Amin) Synapses[id].A = Amin;
else if (Synapses[id].A > Amax) Synapses|[id].A = Amax;
Synapses[id].w = Synapses[id].U % Synapses[id].A;
Synapses [id | .FBp += 1;
Synapses [id | .FBn += 1;
Synapses[id |. lastupdate = t;
}
}
}

59

5.1.3.2 CPU code

After the implementation of the CUDA kernels responsible to perform (most of) the work
of the three main simulator functions in parallel, it is time to present the code executed on
the host CPU that controls the flow of the simulation. The CPU code is:

1 Initialize_host_structures();
> Initialize_device_structures () ;
for(t = 0; t < timesteps; t++){

5 SolveNeurons<<<gridsizel ,blocksizel >>>(d_neurons, N_Group_-T, d_SpikeArray

) ;

7 /* spike generation x*/

8 for(i =0; i <M ; i++) if (i%2 = 0) SpikeArray[i] = 1;

9 cudaMemcpy (d_SpikeArray , SpikeArray, sizeof(int) * (N_Group . T+N_S),
cudaMemcpyHostToDevice) ;

11 UpdateSynapses_pre<<<gridsize2 ,blocksize2 >>>(d_syn, d_neurons,
d_SpikeArray) ;

13 UpdateSynapses_post_Partl<<<gridsize2 , blocksize2>>>(d_syn, d_SpikeArray ,
d_testvar);

15 /* mean calculation x*/
16 cudaMemcpy (testvar , d_testvar, sizeof(double) % (N_S+N_Group.-S) * (
N_Group-T'), cudaMemcpyDeviceToHost) ;
for (int k = 0; k < (N_S+N_Group-S) * N_Group-T; k++){
if (syn[k].conn && SpikeArray [k%N_Group_-T]){
mean += testvar [k];
num-+-;

~

oo

}
}

if (num > 0) mean = mean / num;

NOONNNN NN R = e
SO N R

UpdateSynapses_post_Part2<<<gridsize2 , blocksize2>>>(d_syn, d_SpikeArray ,
mean) ;

St

~

/* print variables of interest =/

if (verbose){
cudaMemcpy (syn, d_syn, sizeof(Synapse) * (N_S+N_Group.S) % (N_Group.-T

), cudaMemcpyDeviceToHost) ;

30 cudaMemcpy (SpikeArray , d-SpikeArray, sizeof(int) * (N_Group-T4+N._S),
cudaMemcpyDeviceToHost) ;

31 cudaMemcpy (neurons , d_neurons, sizeof(Neuron) % N_Group.-T,
cudaMemcpyDeviceToHost) ;

32 output_sim (syn, SpikeArray, neurons, t);

i }
s]

NN NN
o

Due to the models’ nature, in the case of MxM experiments user-defined spikes need
to be hard coded and passed to the device on every timestep. As of the time this thesis is
composed, there is limited functionality related to users choosing spike properties, so they
need to be explicitly coded for the CPU before compilation. Moreover, the option to output

60

N

a plethora of significant variables on every timestep is available to the user, in addition to
a standard simulation that outputs its results on finish.

5.1.4 Large Scale Experiments Support

As already mentioned, the simulator is an application limited by available memory,
meaning that there are strict limitations to the amount of neurons and synapses that can
be allocated and used on the device on a single experiment at once without surpassing
device memory limits. The largest experiment carried out successfully by operating on
the entirety of data simultaneously on the GPU comprised of 12500 interconnected AdEx
neurons (MxM). Larger experiments using the already presented code led to a not enough
memory error and as a result two different approaches were implemented for larger scale
experiments, supporting single and dual GPU nodes correspondingly.

5.1.4.1 Single GPU

Since there is a limit in the amount of data that can be transferred and operated on
by the device, all data dependencies needed to be carefully analyzed in order to ensure
correct execution and output of “larger” simulations. The fact that for each synapse to be
updated, its pre-synaptic or post-synaptic neuron needs to have fired on that timestep, leads
to splitting the data to be elaborated at once based on a specific pattern and executing the
original, unmodified kernels on independent portions of the data structures. Considering
the following branch condition in UpdateSynapses_pre:

if (SpikeArray[tidx/N_Group-T + N_Group-T — N_Group-S]){
/* operate on synapses|[tidx] x/

s [

Passing a part of the synaptic structure of size ROWS * COLUMNS to the device
requires to additionally pass a size ROWS/(N_Group_T + N_Group_T - N_Group_S)
portion of SpikeArray that contains all pre-synaptic neurons that correspond to the synapses
updated by the device. Following the same logic, due to the branch condition of UpdateSy-
napses_post, passing a ROWS%(N_Group_T 4+ N_Group_T - N_Group_S) portion is
necessary. In the SolveNeurons case, as SpikeArray is actually a spiking log of all neurons,
there is a one-to-one correspondence between the array and the neurons structure and the
same partition of both data structures must be passed to the device. Finally, the testvar
array complies absolutely with the synaptic structure’s partitioning. Thus, adjusting the
simulator to executing larger experiments with practically no size limit is fairly easy from
a development standpoint, as instead of calling each kernel once, a loop is implemented for
each kernel where on each iteration the ensemble of structure partitions to be operated on
get passed to the device, the kernel is executed and the data is transferred back to the host,
as the next iteration will overwrite device data.

61

I thrust:: device_ptr<float> testvar_ptr = thrust:: device_pointer_cast(d_testvar

w

)3

/* CPU code executed on each timestep x/

for

for

2 for

for

}

for

}

for

(i = 0; i < N_Group_-T/neuron_tempsize; i++){

cudaMemcpy (d-neurons , neurons + i * neuron_tempsize, sizeof (Neuron) x

neuron_tempsize , cudaMemcpyHostToDevice) ;

SolveNeurons<<<gridsizel ,blocksizel >>>(d_neurons, N_Group.T, d_SpikeArray

, neuron_tempsize) ;

cudaMemcpy (neurons + i * neuron_tempsize, d_neurons, sizeof(Neuron) x

neuron_tempsize , cudaMemcpyDeviceToHost) ;

(i =0; i < (NS + N_Group.T) /(spike_tempsize);

cudaMemcpy (d_SpikeArray , SpikeArray, sizeof(int

N_Stemp), cudaMemcpyHostToDevice) ;

i++)
) * (N_Group_Ttemp +

(i =0; i < (NS + N_Group_S)*N_Group_-T/synapses_tempsize; i++){

cudaMemepy (d_syn, syn + i x synapses_tempsize ,
synapses_tempsize , cudaMemcpyHostToDevice) ;

sizeof (Synapse) =

UpdateSynapses_pre<<<gridsize2 , blocksize2 >>>(d_syn, d-neurons, N_S,
N_Group-S, N_Group_-T, d_SpikeArray, synapses_tempsize);

cudaMemcpy (syn + i % synapses_tempsize, d_syn,
synapses_tempsize , cudaMemcpyDeviceToHost) ;

sizeof (Synapse) =*

(i = (NS + N_Group-S)*N_Group-T/synapses_tempsize; i >= 0; i——){
if (i < (N.S + N_Group-S)*N_Group_-T/synapses_tempsize){
cudaMemcpy (d_syn, syn + i % synapses_tempsize, sizeof (Synapse) x

synapses_tempsize , cudaMemcpyHostToDevice) ;

}

UpdateSynapses_post_Partl<<<gridsize2 , blocksize2>>>(d_syn, N_.S, N_Group.S

, N_.Group_-T', d_-SpikeArray, d_-testvar, synapses_tempsize);

cudaMemcpy (syn + i * synapses_tempsize , d_syn,
synapses_tempsize , cudaMemcpyDeviceToHost) ;

sizeof (Synapse)

cudaMemcpy (testvar + 1 * synapses_tempsize, d_testvar, sizeof(float) =

synapses_tempsize , cudaMemcpyDeviceToHost) ;

7 /% mean calculation , save result to average x*/

(i =0; i < (NS + N_Group_S)*N_Group_-T/synapses_tempsize; i++){
mean = thrust::reduce(testvar_ptr, testvar_ptr + (synapses_tempsize));

mean /= ((N_S+N_Group-S) * (N_Group.-T));
average —+— mean;

cudaMemcpy (d_testvar , testvar 4+ i * synapses_tempsize, sizeof(float) x

synapses_tempsize , cudaMemcpyHostToDevice) ;

(i =0; i < (NS + N_Group_S)*N_Group_-T/synapses_tempsize; i++){

if (i > 0){

cudaMemcpy (d_syn, syn + i % synapses_tempsize, sizeof (Synapse) x

synapses_tempsize , cudaMemcpyHostToDevice) ;

}

UpdateSynapses_post_Part2<<<gridsize2 , blocksize2 >>>(d_syn, N_.S, N_Group.S

, N_Group_-T, d_SpikeArray, average, synapses_tempsize);

cudaMemcpy (syn + i * synapses_tempsize, d_syn,

62

sizeof (Synapse)

synapses_tempsize , cudaMemcpyDeviceToHost) ;
5}

While this is indeed a valid method to provide theoretically unlimited scaling for the
simulator’s experiments, there is a vast performance cost caused by the overhead of the
mandatory memory transfers of the structures’ partitions between device and host on every
timestep. However, there is still a significant performance increase compared to the original
linear version, to be presented on the next chapter. Partitions are transferred by looping
over parts of the data structures and constantly overwriting the device allocated structures
in order to perform necessary calculations. Thus, by setting the loops on a first-to-last then
last-to-first then first-to-last chain, two memory copies are omitted on every timestep by
operating on data that were written on device buffers in the previous loop, on the first
iteration of each loop.

5.1.4.2 Dual GPU

Following the principles explained in the above section, a multi-GPU supported version
was also implemented and tested on a node with two devices. The multi-GPU implementa-
tion offers increased memory bandwidth, as the double amount of data can be transferred
to device memory spending almost the same time, and the neuron and synaptic models’
nature permits independent concurrent execution of different chunks of the data on sepa-
rate devices, offering even greater performance than that of the version shown in 5.1.4.1.
The greatest performance gain compared to using a single GPU is obviously achieved when
running experiments of a size nearing both devices’ limit of all-at-once execution, so that
maximum bandwidth is achieved and memory transfers are minimized. Serving simplicity
and clarity purposes, a relevant example of a non-parametrized code running a simulation
of 20000 neurons is shown below, noting that all data structures first need to be separately
allocated and copied to each GPU:

63

| #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }

> thrust :: device_ptr<float> testvar_ptr0 = thrust:: device_pointer_cast (
d_testvar0);

; thrust ::device_ptr<float> testvar_ptrl = thrust:: device_pointer_cast (
d_testvarl);

5 for(t = 0; t < timesteps; t++){

6 gpuErrchk (cudaSetDevice (0)) ;

7 SolveNeurons<<<gridsizel ,blocksizel >>>(d_neurons0, N_Group.T,
d_SpikeArray0, N_Group-Tpergpu);

8 gpuErrchk (cudaSetDevice (1)) ;

9 SolveNeurons<<<gridsizel , blocksizel >>>(d_neuronsl, N_Group_T,
d_SpikeArrayl , N_Group_Tpergpu);

10

11 for(i = 0; i < N_Group-S ; i++) SpikeArray[i] = 1;

13 gpuErrchk (cudaSetDevice (0)) ;

14 cudaMemcpyAsync(d_SpikeArray0, SpikeArray, sizeof(int) x (N_Group_Tpergpu

+N _Spergpu), cudaMemcpyHostToDevice) ;
15 gpuErrchk (cudaSetDevice (1)) ;

16 cudaMemcpyAsync(d_SpikeArrayl, SpikeArray, sizeof(int) % (N_Group_-Tpergpu

+N_Spergpu), cudaMemcpyHostToDevice) ;

18 gpuErrchk (cudaSetDevice (0)) ;

19 UpdateSynapses_pre<<<gridsize2 ,blocksize2 >>>(d_syn0, d_neurons0O, N_S,
N_Group-S, N_Group-T, d_SpikeArray0, N_Spergpu, N_Group_Spergpu,
N_Group_Tpergpu) ;

20 gpuErrchk (cudaSetDevice (1)) ;

21 UpdateSynapses_pre<<<gridsize2 ,blocksize2 >>>(d_synl, d_neuronsl, N_S,
N_Group_S, N_Group_.T, d_SpikeArrayl, N_Spergpu, N_Group_Spergpu,
N_Group_Tpergpu) ;

gpuErrchk (cudaSetDevice (0)) ;

UpdateSynapses_post_Partl<<<gridsize2 ,blocksize2 >>>(d_syn0, N.S,
N_Group_S, N_Group_.T, d_SpikeArray0, d_testvar0O, N_Spergpu,
N_Group_Spergpu, N_Group_Tpergpu);

5 gpuErrchk (cudaSetDevice (1)) ;

UpdateSynapses_post_Partl<<<gridsize2 ,blocksize2>>>(d_synl, N.S,
N_Group_S, N_Group.T, d_SpikeArrayl, d_testvarl, N_Spergpu,
N_Group_Spergpu, N_Group_Tpergpu);

NN N
Bw N

NN

gpuErrchk (cudaSetDevice (0)) ;
9 cudaMemecepyAsync(testvar + 0 x (N_Spergpu+N_Group_Spergpu) x

NN N
0

N_Group_Tpergpu, d_testvar0, sizeof(float) x (N_Spergpu+N_Group_Spergpu) =

(N_Group_Tpergpu), cudaMemcpyDeviceToHost) ;
30 gpuErrchk (cudaSetDevice (1)) ;
31 cudaMemcpyAsync(testvar + 1 x (N_Spergpu+N_Group_Spergpu) x

N_Group-Tpergpu, d_testvarl , sizeof(float) % (N_Spergpu+N_Group_Spergpu) x

(N_Group_Tpergpu), cudaMemecpyDeviceToHost) ;

gpuErrchk (cudaSetDevice (0)) ;

mean0) = thrust ::reduce(testvar_ptr0, testvar_ptr0 + ((N_S+N_Group_Spergpu

) » (N.Group.T))):
35 mean0 /= ((N_Group-S+N_S) * N_Group-T);
36 gpuErrchk (cudaSetDevice (1)) ;

64

meanl = thrust::reduce(testvar_ptrl, testvar_ptrl + ((N_S+N_Group_Spergpu
) + (N.Group.T)));

meanl /= ((N_Group_S+N_S) * N_Group.T);

average = mean0) + meanl;

gpuErrchk (cudaSetDevice (0)) ;

UpdateSynapses_post_Part2<<<gridsize2 ,blocksize2 >>>(d_syn0, N_S,
N_Group_S, N_Group_.T, d_SpikeArray0, average, N_Spergpu, N_Group_Spergpu,
N_Group_Tpergpu) ;

gpuErrchk (cudaSetDevice (1)) ;

UpdateSynapses_post_Part2<<<gridsize2 ,blocksize2 >>>(d_synl, N_S,
N_Group_S, N_Group.T, d_SpikeArrayl , average, N_Spergpu, N_Group_Spergpu,
N_Group_Tpergpu) ;

A notable part of the code is the usage of cudaMemcpyAsync for memory transfers. It is
a cudaMemcpy variant that is asynchronous with respect to the host, so the call may return
before the copy is complete, enabling memory transfers to and from different devices and
even kernel calls to execute in parallel. Moreover, gpuFrrchk is a standard error checking
practice for debugging purposes, which is left on the device setting calls even in the final
code as it is a critical CUDA call and there are no viable slowdowns from this addition.

5.1.5 CUDA Optimizations
5.1.5.1 Float vs Double Datatype

Up until the point of a functioning prototype, GPU-accelerated simulator design was
based on achieving zero error compared to the original. However, this consideration leads
to all data processed by the GPU being represented by 64-bit doubles, which has the
following consequences: First of all, due to double precision arithmetics requiring 64-bit
variables (on most devices), an excessive amount of memory is consumed by simulation
data compared to a single precision (float) implementation. The main cause is the memory
dominant array of synaptic structs, limiting scaling possibilities unless speedup is sacrificed
for loop-based partial memory transfers to fit the entirety of data in the GPU. Moreover,
since the models used for this simulator render it a memory-limited application, there is a
vast difference in the number of bytes to be read or written in a kernel which are doubled
when using double precision, resulting in a corresponding performance penalty. Taking into
consideration the additional fact that mean calculation is performed on the CPU, resulting
in device-to-host memory transfers - which are the most costly CUDA operations from a
time perspective - of a considerably large array on every timestep, a significant amount of
time is sacrificed on the altar of absolute zero error. Therefore, an implementation using
mostly floats to represent simulation data was chosen. The new implementation is identical
to its predecessor except for the datatype of the defined synaptic and neuron variables, both
global and struct-restricted. The only variables represented as double are the one related to
the summation of the values needed to calculate mean (for overflow prevention) and those
related to simulation time representation, due to arithmetic accuracy issues.

65

In order to approve this modification, certain output variables of both neurons and
synapses were analyzed in order to assess output inaccuracy compared to the original when
using single precision variables. As maximum observed error for any output variables never
surpassed 1.00E-13, the float version was accepted to replace the original and offered vast
performance increase that reached almost double acceleration rates.

5.1.5.2 Kernel Merge

Another explored optimization was to slightly alter the design of the CUDA kernels, so
as to diminish kernel launch overhead and further accelerate the simulator. Specifically, the
only operation taking place on the CPU between the SolveNeurons and UpdateSynapses_pre
kernels is explicitly setting SpikeArray’s elements corresponding to firing neurons to 1. A
modification was attempted by assigning spike setting to CUDA threads and merging the
two kernels into a single, aggregate kernel launched with thread configuration analogous to
the size of the synaptic AoS:

__global__

void SolveNeurons_UpdateSynapses_pre_merged (Neuron* neurons, int N, int =x
SpikeArray, Synapsex Synapses){
int id = blockldx .x*blockDim.x 4+ threadldx.x;
/* SolveNeurons operations x/

/* AdEx Neurons fire x/
if (id < N_Group_S) SpikeArray[i] = 1;

/* UpdateSynapses_pre operations x/

Jo oo %

However, even though a memory transfer operation is also eliminated by this mod-
ification as spikes do not need to be passed to the device anymore, the merged kernel
proved to perform equally if not slightly worse than the two seperate ones. An equivalent
performance decrease was presented with the merge of UpdateSynapses_pre and UpdateSy-
napses_post_Part1. A possible explanation would be the exceeding amount of branches com-
bined as a result of the merge, considering that the original two kernels were meant to
operate on separate data structures (neurons and Synapses). The absence of a practical
speedup along with the preference of defining the firing neurons in the CPU code to facili-
tate future code modifications relevant to spike-related user request resulted in discarding
the merged kernel and moving forward with the original design.

5.1.5.3 Parallel Mean Calculation

The most time consuming operation of the simulation is the calculation of the mean
value of certain synaptic variables throughout all synapses connected to spiking neurons on
the CPU. As already mentioned, this operation breaks down to passing the testvar array
back to the host and performing a serial summation by going through every struct of the

66

synaptic array by rows, the code of which is under the comment “mean calculation” in
5.1.3.2, and dividing by the number of the corresponding synapses. Therefore, methods to
accelerate this code segment by also running it in parallel were investigated. In parallel
programming, reduction operations are those that reduce a collection of values to a single
value. Summing the elements of an array is a common example of a reduction operation,
which can be explained as follows:

e Assuming N as the number of the elements in an array, N/2 threads are spawned, one
thread for each two (sequential) elements.

e Each thread computes the sum of the corresponding two elements, storing the result
at the position of the first one.

e [teratively, each step:

— the number of threads is halved.

— each remaining thread is now responsible for its summed element and that of the
adjacent, removed one.

— the step size between the corresponding two elements is doubled.

e When one thread is left, the reduction result is stored in the first element of the array.

Part of the CUDA toolkit are NVIDIA GPU-accelerated libraries that provide highly-
optimized functions for compute-intensive applications in different areas. One such GPU-
accelerated library is Thrust, a library of parallel algorithms and data structures that
provides a flexible, high-level interface for GPU programming by providing access to its
algorithms through the standard template interface. [Thr] Thrust automatically manages
low-level functionality like memory access and allocation, allowing the user to focus on
algorithm development. Below is the code responsible for mean calculation in the case of
all AdEx Neurons constantly spiking and 100% connectivity:

thrust :: device_ptr<float> testvar_ptr = thrust::device_pointer_cast(d_testvar
mearz — thrust :: reduce(testvar_ptr , testvar_ptr + ((N_S+N_Group.S) = (

N_Group.T)));
mean /= ((N_Group_-S+N_S) * N_Group-T);

After including the necessary header files, the only requirement of the library is to use the
thrust namespace when calling any function. The code used for the mean calculation shall
be explained. The first line defines a thrust device pointer called testvar_ptr by casting the
already set d_testvar pointer into a thrust-compatible. Then, the reduce function is called
with two arguments which are the beginning and the end of the newly defined pointer to
set the memory space the reduction will be applied. Normally, a third argument can be the
binary operator that defines the kind of reduction to be performed. However, the default
operator is the plus sign, hence there is no need to explicitly set it. Finally, the summed
value is divided by the synaptic quantity to receive the desired mean value.

67

As expected, the replacement of 64-bit doubles with 32-bit single-precision floats led
to an impressive total performance increase even with the elimination of the data transfer
necessary for originally calculating the mean value on the CPU, as operations such as it-
erating through a grandiose data structure and transferring large amounts of memory (i.e.
SpikeArray) on a timestep basis gain significant speedups when decreasing element size.
However, the reduction approach requires noting a minor detail regarding simulator param-
eterization. The advantage of using a reduction method is the entirely parallel execution
of the desired operation, avoiding serial iteration through the synaptic data. In order to
actually avoid serial access, the number of both spiking neurons and connected synapses
needs to be known from the beginning of the simulation, so as to calculate the divisor in
line 3 of the above code, which is normally a variable set during program execution. This is
obviously solved by a simple extra parameter set by the user before execution. In the NxM
case, due to the possible occurrence of additional spikes on the AdEx Neurons, only part of
the data structure is iterated to count additional significant synapses, causing a negligible
time penalty.

5.1.5.4 AoS vs SoA

One of the most important targets during CUDA optimizations is to achieve memory
coalescence. During execution, apart from grids and blocks, there is a finer grouping of
threads into warps of 32 threads. Multiprocessors on the GPU execute instructions for
each warp in SIMD (Single Instruction Multiple Data) fashion. Threads in the same warp
execute in full parallel, that is executing the same instruction simultaneously on every step.
Global memory loads and stores by threads of a warp are coalesced by the device into
as few as one transaction when certain access requirements are met. Thus, when parallel
threads running the same instruction access to consecutive locations in the global memory,
the most favorable access pattern is achieved. On the contrary, memory accesses to distant
locations by adjacent threads lead to a significant performance penalty because of hardware
constraints.

A common optimization technique related to memory coalescing is turning any major
array of structs (AoS) into a struct of arrays (SoA). As all threads of a single warp execute
the same instruction at the same time, in the simplest case where an instruction refers
to modification of one variable of the struct it is rather obvious that by utilizing a SoA
every thread will access consecutive elements of the corresponding array of the variable,
achieving optimal coalescence. Therefore, a new version of the simulator was implemented
that showcased a synaptic struct of arrays instead of the original AoS. The neurons struct
remained as is, since the synapse-focused kernels are dominant in terms of time consumption
and there is no adequate potential for increased performance from a neuron perspective.
The only differences in this new version’s code are the declaration of the synaptic structure,
where each synaptic variable is now declared as a pointer to this data type, and relevant
memory allocation and management.

68

1

2

/* host structure x/
Synapse xsyn = (Synapse x*)malloc(sizeof(Synapse));

3 syn—>conn = (int #*)malloc(sizeof(int) % (N_S+N_Group.S) * (N_Group.T));

5 syn—>target_I = (float x)malloc(sizeof(float) % (N_S+N_Group-S) * (N_Group.T)

6

8

9

10

11

12

);

7 /+* host copy of the device structure x/

h_syn = (Synapsex)malloc(sizeof(Synapse));
cudaMalloc (& (h_syn—>conn), sizeof(int) *x (N_S+N_Group-S) * (N_Group.T));

cudaMalloc (& (h_syn—>target_I), sizeof(float) * (N_S+N_Group_S) * (N_Group.-T))

)

/* transfer data to device x/
cudaMemepy (h_syn—>conn, syn—>conn, sizeof(int) % (N_S+N_Group-S) * (N_Group.-T
), cudaMemcpyHostToDevice) ;

; cudaMemcpy (h_syn—>target_I , syn—>target_I, sizeof(float) x (N_S+N_Group-S) =x

(N_Group-T), cudaMemcpyHostToDevice) ;

/* device structure x/
cudaMalloc(&d_syn, sizeof (Synapse));
cudaMemcpy (d_syn, h_syn, sizeof(Synapse), cudaMemcpyHostToDevice) ;

As shown above, in order to declare and use a structure that contains pointers to other
data structures on the device, first a copy of that structure needs to be declared and built
on the host and then copied to the device copy that is allocated exclusively on the device
(commonly termed “deep copy”). The SoA approach led to a rather insignificant speedup.
While not absolute, a possible explanation for this similarity in execution time between SoA
and AoS versions is the fact that most kernel instructions contain read or write operations
on different fields of struct Synapse. Considering the following instruction as an example:
Synapses [id] .FFp = Synapses[id].FFp % exp(—(—Synapses[id].lastupdate + t)/

tau_FFp) ;

It is evident that both FFp and lastupdate values of the struct are loaded. Therefore,
while a SoA approach may lead threads to load their FFp values from adjacent memory
positions, the lastupdate values have been led to a further distance memory-wise, apparently
obstructing the opportunity for a significant speedup presented by memory coalescence.

5.1.5.5 Shared Memory

Since a CUDA GPU’s shared memory is located on-chip, it offers significant speed ad-
vantages related to local and global memory. This makes the use of shared memory a popular
optimization choice for most algorithms running on GPUs. The impact of integrating shared
memory in the simulator was investigated for both AoS and SoA versions. The code respon-
sible for shared memory operations has no logical difference between the two, hence the SoA
version’s code for UpdateSynapses_pre is presented below, noting that there is no necessary
modification of the CPU code at all:

69

1 __global__

2 void UpdateSynapses_pre(Synapse* Synapses, Neuronx neurons, intx SpikeArray){
__shared__ float sharedFFp [BLOCKSIZE];
__shared__ float sharedFBn [BLOCKSIZE]|;

6 __shared__ float sharedlastupdate [BLOCKSIZE];

8 int tidx = threadldx.x; /* local indexing x*/
9 int id = blockIdx.x % blockDim.x + threadldx.x; /x global indexing x/4

1 if (SpikeArray[id /N_Group-T + N_Group.T — N_Group-S| > 0){
2 if (Synapses—>conn[id]) {

3 /* move data to shared memory x*/

n sharedFFp[tidx] = Synapses—>FFp[id];

5 sharedFBn[tidx] = Synapses—FBn[id];

16 [* ... %/

17 sharedlastupdate [tidx] = Synapses—>lastupdate [id];
19 /* synaptic operations x/

/* save data back x/
Synapses—>FFp[i]| = sharedFFp|[tidx];

NN NN
W N =

Synapses—>FBn|[i]| = sharedFBn|[tidx];
5 Synapses—>lastupdate[i] = sharedlastupdate [tidx];
6 }

1
—

I R I I

oC
—

In the simulator version using a synaptic struct of arrays, an array corresponding to each
array of the struct is declared with the __shared__ keyword, instructing allocation of shared
memory. As shared memory is accessible from all the threads of a thread block, each array
is given the size of the number of threads within a block. In order to accelerate memory
access, threads first store data in shared memory, costing one global memory read per access,
proceed to execute their operations by accessing the block-shared arrays and finally store
back the results to global memory, costing one global memory write per variable per thread.
Since each thread is responsible for only a single synapse, there was little room available for
performance gains due to minimal data re-use, and in the AoS version execution time for
most experiments was almost identical to the pure global memory implementation. However,
performance in the presented version presented an adequate increase that scaled along with
experiment size.

The difference in the effect in execution speed is attributed to the elimination of bank
conflicts in the synaptic struct of arrays version. To achieve high memory bandwidth for
concurrent accesses, shared memory is divided into equally sized memory modules called
banks that can be accessed simultaneously. Therefore, any memory load or store of n
addresses that spans n distinct memory banks can be serviced simultaneously, yielding an
effective bandwidth that is n times as high as the bandwidth of a single bank. If multiple
addresses of a memory request map to the same memory bank, the accesses are serialized.
The hardware splits a memory request that has bank conflicts into as many separate conflict-

70

free requests as necessary, decreasing the effective bandwidth by a factor equal to the number
of separate memory requests. This leads to the deduction that coalesced memory access is
critical to achieving optimal shared memory performance, and optimal coalescence in this
model’s case proves to be achieved with a synaptic struct of arrays.

An important point to be made regarding kernel code is that all shared memory accesses
are performed only in the case the branch conditions regarding spiking and connectivity
are met. While this presents a little performance cost due to the struct’s conn variable
being accessed in global memory in order to determine the branching outcome, it also
ensures that there is no unnecessary workload on CUDA threads that correspond to an
unconnected or non-firing neuron. Last but not least, the exact same modification was
applied on UpdateSynapses_post_Partl, while the other kernels remained intact, as their
execution times make up for a trivial percentage of total program runtime.

Since the shared memory optimization showed the best results on the Struct-of-Arrays
version, the latter was also modified to address larger experiment scaling. Concerning run-
ning the simulator on a single device, even though the CPU code follows identical logic
compared to the version presented in 5.1.4.1, in this version each array of the struct needs
to be copied separately on every timestep instead of passing the entirety of syn and d_syn
at once, leading to both -negligible- performance penalty due to the excessive cudaMemcpy
calls and extensive repetitive code segments.

5.1.5.6 Other Attempts

The research process included several additional optimization attempts following differ-
ent CUDA concepts presented below:

e Since the models supported by the simulator encapsulate a vast number of constant
parameters, the choice was made to store all said parameters in the device’s constant
memory. Modern devices have a constant memory space of 64KB. This memory space
is cached, meaning that a read from constant memory costs one memory read from
device memory only on a cache miss; otherwise, it just costs one read from the constant
cache. In general, there are two reasons why reading from the 64KB of constant
memory can save bandwidth over standard reads of global memory: First, a single
read from constant memory can be broadcast to other “nearby” threads, effectively
saving up to 15 reads. Second, since constant memory is cached, consecutive reads
of the same address will not incur any additional memory traffic. In the simulator’s
case, the first reason was important enough to attempt this approach. First, an array
with the keyword __constant __ is declared, and then all constant values are passed
to the device array using the cudaMemcpyToSymbol function which is cudaMemcpy’s
equivalent for data transfers between host and constant memory on the GPU. This
modification did not cause performance decrease, though it didn’t offer any kind of
speedup either.

e Another technique used with the aim of gaining speedup was loop unrolling. A

71

common parallel design is to create a kernel where each loop iteration is mapped to
one GPU thread, as happens in the simulator’s code. The logic behind loop unrolling
is to theoretically unroll the loop X times before writing the GPU code, and then map
it to the GPU so that each thread is responsible for X more work and X times fewer
threads are spawned, X usually being a power of 2. There are numerous published
occasions on which such a modification resulted in a large speedup, but the STDP
synaptic model proved to be an absolute obstacle to performance increase in this case.
The reason the simulator actually slowed down in most tests is excessive branching
on every loop, since unrolling a loop two times leads to having to branch twice as
much on an already branch-heavy kernel, which is detrimental to GPU performance.
A warp executes one common instruction at a time, so full efficiency is only realized
when all threads of a warp agree on their execution path, otherwise each branch
path is executed serially with a corresponding performance penalty. Adding such a
technique to the simulator would hence actually result in a slowdown for every spike or
connection configuration that doesn’t match the warps layout. Loop unrolling was also
tested at the same time with utilization of shared memory to enable fastest memory
reads for each thread, though there were no positive results either.

e Modern GPUs running latest CUDA versions and adequate compute architectures
offer the advantage of CUDA’s Unified Memory model. In a typical PC or cluster
node today, the memories of the CPU and GPU are physically distinct and separated
by the PCI-Express bus. Data that is shared between the CPU and GPU must be
allocated in both memories, and explicitly copied between them by the programmer.
Since CUDA 6, Unified Memory creates a pool of managed memory that is shared
between the CPU and GPU and requires a single pointer to be accessed by any of
them. The system automatically migrates data allocated in Unified Memory between
host and device so that it looks like CPU memory to code running on the CPU, and
like GPU memory to code running on the GPU. The only prerequisite code-wise is to
allocate memory space using cudaMallocManaged (same parameters as cudaMalloc).
This ability to automatically migrate data at the level of individual pages between
host and device memory enables the elimination of “deep copies” mentioned in 5.1.5.4
, resulting in both significantly clearer code and minimal performance advantages.
The reason this model was researched apart from development facilitation was the
ability of devices of SM architecture 6.X or newer to oversubscribe device memory
in order to virtually fit more data than allowed by the GPU’s physical constraints.
However, the GPUs used for experimentation for this thesis’ purposes did not cover the
prerequisites for memory oversubscription, meaning that memory allocation for the
simulator’s data structures was actually limited for both host and device by device
constraints, eliminating experiment scaling support. Consequently, utilizing unified
memory for the simulator was deemed needless.

e Finally, Host (CPU) data allocations are pageable by default. The GPU cannot access

72

data directly from pageable host memory, so when a data transfer from pageable
host memory to device memory is invoked, the CUDA driver must first allocate a
temporary page-locked, or “pinned”, host array, copy the host data to the pinned
array, and then transfer the data from the pinned array to device memory. The cost
of the transfer between pageable and pinned host arrays can be avoided by directly
allocating host arrays in Pinned host memory. Therefore, SpikeArray was allocated
in pinned memory by invoking the cudaMallocHost function with the same arguments
as the classic cudaMalloc, as it is passed to device memory on every timestep of the
simulation. This modification however also proved indifferent, as performance was
identical to allocating the array in pageable memory even on the largest experiments.

5.2 OpenMP implementation

The models’ nature of loop-centric simulations characterized by absolute dependency be-
tween timesteps and minimal dependency between simulation elements on a single timestep
greatly facilitates the basic implementation of another accelerated version of the simula-
tor compatible with the C language. Useful for systems with no/weak GPU as well as a
comparison tool to improve the CUDA version, the OpenMP API was utilized, providing
adequate results for a secondary tool. In this implementation, data structures are left intact
and there is no addition or modification to the code of the program’s main function, leaving
it identical to the original C version. The only difference occurs with the addition of specific
code lines in the three model functions:

73

1 void SolveNeurons(Neuron* neurons, int N, int *SpikeArray) {

¥

=

NN NN NN NN NN
e o R W >

#pragma omp parallel for shared(neurons) private(.vm, _vt, _x)
for (int i = 0; i < N; i++){
/* update variables according to solution using _vm, _vt, _-x x/
if (neurons|[i].vm > neurons[i].vt){
resetNeuron(&neurons|[i]) ;
SpikeArray[i] = 1;
}
else SpikeArray[i] = 0;

void UpdateSynapses_pre(Synapsexx Synapses, Neuronx neurons, intx SpikeArray)

{

#pragma omp parallel for collapse(2) shared(Synapses)
for (int i = 0; i < N.S + N_Group-S; i++){
if (SpikeArray [i+N_Group.T—N_Group_-S] > 0){
for (int j = 0; j < N_Group.T; j++){
if (Synapses[i][j].conn) update_variables();
}

}
}
#pragma omp parallel for collapse(2) shared(Synapses,neurons)
for (j = 0; j < N_Group_.T; j++){

for (i = 0; i < N_.S 4+ N_Group-S; i++){

if (Synapses[i][j].conn && SpikeArray [i4+N_Group-T—N_Group_S]) {
neurons[j]|.I = Synapses[i][j].target_T;

void UpdateSynapses_post (Synapsexx Synapses, Neuronx neurons, intx SpikeArray

) A

#pragma omp parallel for collapse(2) shared(Synapses)
for (int i = 0; i < N_Group-T; i++){
if (SpikeArray[i] > 0){
for (int j = 0; j < N_.S + N_Group-S; j++){
/* update synaptic variables x/
}

}

#pragma omp parallel for collapse (2) shared(Synapses) reduction (+:mean,
num)
for (int k = 0; k< N_S + N_Group-S; k++){
for (int 1 = 0; 1< N_Group._T; I14++){
/* calculate mean and num values x/
}
}

if (num > 0) mean = mean / num;

#pragma omp parallel for collapse(2) shared(Synapses)

74

}

for (i = 0; i < N_Group_T; i++){
if (SpikeArray[i] > 0){
for (j = 0; j < N.S 4+ N_Group.-S; j++){
/* update synaptic variables x/
¥

The OpenMP instructions are distinguished by beginning with the hash symbol (#) followed

by the keyword pragma. In C, the pragma directive is used to instruct the compiler to use

pragmatic or implementation-dependent features:

The omp parallel directive explicitly instructs the compiler to parallelize the chosen
block of code.

The parallel for directive simply divides loop iterations between the spawned threads.

The collapse clause allows parallelization of multiple loops in a nest without introduc-
ing nested parallelism, given that the loops are perfectly nested (there is no intervening
code) and form a rectangular iteration space and the bounds and stride of each loop
is invariant over all the loops, as happens in this case.

shared and private clauses define whether the enclosed variables are visible to and
accessible by all threads running in associated parallel regions (Synapses, neurons), or
each thread owns a private copy of the variables, keeping their modifications hidden
(_um, _vt, _z).

Finally, reduction(+:mean,num) enables the spawned threads to calculate the mean
and num variable that need different summations by avoiding possible race conditions.
Adding this clause instructs OpenMP to make a copy of the reduction variable per
thread, initialized to the identity of the reduction operator. Each thread then reduces
into its local variable and at the end of the loop the local results are combined, again
using the reduction operator, into the global variable.

I6)

Chapter 6

Performance Analysis

6.1 Simulation Environment

Performance measurements were collected by running simulation experiments on a dual-
GPU node of the ARIS (Advanced Research Information System) supercomputer developed
and operated by the Greek Research and Technology Network. ARIS’ GPU nodes each
contain 2 processing units of the Haswell - Intel(R) Xeon(R) E5-2660v3 type, each
possessing 10 cores, 64 GB of total memory and 2 NVIDIA Tesla K40 accelerators with 12
GB accelerator memory per each. Accelerator information, obtained by running the CUDA
deviceQuery sample on a node, is listed below:

1 Device 0: ”Tesla K40m”

> CUDA Driver Version / Runtime Version 7.5 / 7.5

5 CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 11520 MBytes (12079136768
bytes)

2880 CUDA Cores

876 MHz (0.88 GHz)
3004 Mhz

384—Dbit

1572864 bytes
1D=(65536) , 2D=(65536,

5 (15) Multiprocessors, (192) CUDA Cores/MP:

¢ GPU Max Clock rate:

7 Memory Clock rate:

s Memory Bus Width:

o L2 Cache Size:

1o Maximum Texture Dimension Size (x,y,z)
65536) , 3D=(4096, 4096, 4096)

11 Maximum Layered 1D Texture Size,

12 Maximum Layered 2D Texture Size,

layers

1D=(16384), 2048 layers
2D=(16384, 16384), 2048

(num) layers
(num) layers

Total amount of
Total amount of
Total number of
Warp size:

Maximum number of threads per multiprocessor:

constant memory:
shared memory per block:
registers

Maximum number of threads per block:

Max dimension size of a thread block (x,y,z):
Max dimension size of a grid size

Maximum memory pitch:
Texture alignment :

Concurrent copy

and kernel execution:

Run time limit on kernels:

76

available per block:

(x,y,2):

65536 bytes
49152 bytes
65536

32

2048

1024

(1024, 1024, 64)
(2147483647, 65535, 65535)

2147483647 bytes

512 bytes

Yes with 2 copy engine(s)
No

Integrated GPU sharing Host Memory:
Support host page—locked memory mapping:

Device has ECC support:

Device supports Unified Addressing (UVA):
Device PCI Domain ID / Bus ID / location ID:

Device 1: ”Tesla K40m”

CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:

Total amount of global memory:

bytes)

(15) Multiprocessors, (192) CUDA Cores/MP:

GPU Max Clock rate:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:

Maximum Texture Dimension Size (x,y,z)

65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size,
Maximum Layered 2D Texture Size,

layers

Total amount of constant memory:

(num) layers
(num) layers

Total amount of shared memory per block:

Total number of registers available per block:

Warp size:

Maximum number of threads per multiprocessor:
Maximum number of threads per block:
Max dimension size of a thread block (x,y,z):

Max dimension size of a grid size

Maximum memory pitch:
Texture alignment :

(x,y,2):

Concurrent copy and kernel execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:
Support host page—locked memory mapping:

Device has ECC support:

Device supports Unified Addressing (UVA):
Device PCI Domain ID / Bus ID / location ID:

No

Yes
Enabled
Yes
0/4/0

7.5 / 7.5
3.5
11520 MBytes (12079136768

2880 CUDA Cores

876 MHz (0.88 GHz)
3004 Mhz

384—Dbit

1572864 bytes
1D=(65536), 2D=(65536,

1D=(16384), 2048 layers
2D=(16384, 16384), 2048

65536 bytes
49152 bytes
65536

32

2048

1024

(1024, 1024, 64)
(2147483647, 65535, 65535)

2147483647 bytes

512 bytes

Yes with 2 copy engine(s)
No

No

Yes

Enabled

Yes

0/ 131 /0

61 deviceQuery , CUDA Driver = CUDART, CUDA Driver Version = 7.5, CUDA Runtime

Version = 7.5, NumDevs = 2,

The final version of the simulator used for performance analysis contains a synaptic
struct of arrays allocated in both device and host memory, utilizes the device’s shared

7

memory per block when operating on the said struct and calculates the mean value needed
by the last kernel with a reduction function of the Thrust CUDA library, as presented in
sections 5.1.5.4, 5.1.5.5 and 5.1.5.3 respectively. Single-precision float datatype was chosen
for the majority of the simulation variables, since maximum reported error was lower than
1.00E-13, as reported in 5.1.5.1, and was deemed negligible. Kernel code remained identical
to the initial implementations shown in 5.1.3.1. Regarding kernel execution configuration, a
block size of 256 proved to outperform any other configurations on all experiments, so that
was the absolute block size used in all experiments. Any difference to this version shall be

reported on the following experimental results listing.
The parameters differing between experiments are:

e Number of Input and AdEx Neurons: The purpose is discovering the differences in
acceleration in relation to the size of the problem, keeping all other parameters stable.

e Overall Spike Frequency: Defining total spiking activity which directly affects thread
workload per neuron and its connected synapses.

e Synapse Connectivity: Same purpose as spike frequency, as variables of unconnected
synapses are never operated on, reducing overall workload.

e Timesteps: simulation time, each timestep corresponds to 1 millisecond on the follow-
ing experiments.

6.2 Experimental Results

6.2.1 Comparisons based on network size

Initializations of both Neurons and Synapses were absolutely corresponding to the paper
this thesis is based on. For these experiments, synaptic connectivity was set to 100%, mean-
ing that every Input or AdEx Neuron is connected to every other neuron of the network.
Moreover, spiking frequency was set to 1 kHz (spikes appearing on every timestep) and 100
percent spiking frequency means that every single neuron was set to fire constantly on both
NxM and MxM cases. It shall be reminded that N_S refers to the number of the network’s
Input Neurons, N_Group_S corresponds to the number of the presynaptic AdEx Neurons
and N_Group_T corresponds to the network’s postsynaptic AdEx Neurons.

Table 6.1: Acceleration by Network Size, MxM

N_S 0 0 0 0 0
N_Group_S 100 500 1000 5000 10000
N_Group_ T 100 500 1000 5000 10000
Timesteps 1000 | 1000 1000 1000 1000
Connectivity (%) 100 100 100 100 100
Brian time 6,88 | 305,81 | 2459,35 | 41052,4 | 99621,59
CPU time 4,25 | 112,08 | 563,23 | 14800,12 | 67553,38
OpenMP time 0,79 17,9 89,97 | 2488,77 | 10381,62
GPU time 0,2 0,71 2,3 53,98 215,18
Acceleration GPU vs Brian 34,4 | 430,71 | 1069,28 | 760,51 462,96
Acceleration GPU vs CPU 21,25 | 157,85 | 244,88 274,17 313,93
Acceleration GPU vs OpenMP | 3,95 | 25,21 39,11 46,11 48,24

78

Table 6.2: Acceleration by Network Size, NxM

NS 200 200 200 500 500 500 1000 1000 1000
N_Group_S 0 0 0 0 0 0 0 0 0
N_Group_ T 5000 10000 50000 5000 10000 50000 5000 10000 50000
Timesteps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Connectivity (%) 100 100 100 100 100 100 100 100 100
CPU time 5475 | 1076,16 | 5426,05 | 1384,46 | 2689,74 | 13610,42 | 3102,15 | 5454,1 | 29920,12
OpenMP time 92,33 | 170,79 | 889,51 | 232,68 | 433,83 | 2126,63 | 534,85 | 894,11 | 4749,23
GPU time 1,68 3,17 15,45 3,99 7,76 38,41 8,11 15,51 76,98
Acceleration GPU vs CPU 325,89 | 339,48 | 351,20 | 346,98 | 346,61 354,34 382,50 | 351,65 | 388,67
Acceleration GPU vs OpenMP | 54,95 53,87 57,57 58,31 55,91 55,36 65,94 57,64 61,69

Acceleration by Network Size

400

300

200

Acceleration rate

100

&
.

9

0 2500 5000 7500 o000
Total number of neurons

® Acceleration GPUvs CPU @ Acceleration GPU vs OpenMP

Figure 6.1: Acceleration GPU vs CPU vs OpenMP, MxM

79

Acceleration rate

Acceleration Rate

1250

1000

Acceleration by Network Size

0 2500 5000 7300

Total number of neurons

@ Acceleration GPU vs CPU @ Acceleration GPU vs Brian

Figure 6.2: Acceleration GPU vs CPU vs Brian, MxM

Acceleration by Network Size

1500

b

10000

1000

10000 20000 30000 40000
Total Number of Meurons

@ Acceleration GPUvs CPU @ Acceleration GPU vs Brian

Figure 6.3: Acceleration GPU vs CPU vs Brian, NxM

80

50000

Acceleration by Network Size

400 ;\' J

300

200

Acceleration Rate

100
e ot

0

10000 20000 30000 40000 50000

Total Number of Meurons

@ Acceleration GPU vs CPU @ Acceleration GPU vs OpenMP

Figure 6.4: Acceleration GPU vs CPU vs OpenMP, NxM

First, it should be noted again that in all cases, the SolveNeurons kernel consumes
a minimal percentage of total simulation time. This results in synaptic operations defin-
ing simulator performance. Moreover, as Brian’s simulations perform far worse than the
serial implementation of the thesis’ simulator, it has been omitted from the majority of
experiments as there was no gain in comparing acceleration rates against ones measured
considering CPU time.

The OpenMP implementation offers a basic speedup that fluctuates around 6x original
CPU time. 8 OpenMP threads were spawned at each execution and parallelism reached
adequately close to optimal without extensive research. It was used as a baseline acceleration
and is vastly outperformed by the CUDA implementation.

By observing GPU against CPU times of the MxM experiments, it is made clear that
heavier computational load results in greater acceleration rates, as long as there are enough
CUDA threads for the grid to cover the entire synaptic grid of the simulation, since each
thread is assigned a single synapse and scaling such a layout greatly outworks a serial mod-
ification of the entirety of synapses. Maximum GPU acceleration on the MxM simulations
reached almost 314x speedup against its serial counterpart.

By observing NxM simulation results with a similar scale to the MxM simulations,
speedup rates are similar and even a little higher in the NxM case. The explanation lies
in the fact that the simulation process differs in calculation load considering full spiking
activity between the two neuron architectures. When there are Input Neurons, the synaptic
variables of only the synapses that connect Input and AdEx Neurons are updated, as shown
in 5.1.3.1, while in the case of solely AdEx Neurons the ensemble of the synaptic structure
is updated regularly. Therefore, in the NxM case updating synapses based on postsynap-
tic STDP expressions is eliminated, as Input Neurons do not correspond to actual model

81

Neurons and require no modification whatsoever throughout the simulation, purely offering
spikes to the network. As the CUDA version’s heaviest kernels are the postsynaptic ones,
NxM simulations are lighter for the GPU, slightly increasing performance. The greatest
acceleration ratio achieved between GPU and CPU versions was 388x on the largest NxM
experiment.

Large Scale Experimentation

In order to decrease execution time for a larger experiment, simulation time was re-
duced to 0.1 s instead of regular 1 second simulation time, so experiments corresponded
to 100 timesteps. The maximum number of Neurons simulated for this thesis’ purposes is
20000. Connectivity and spiking percentages are set to 100 and both single and dual-GPU
experiments were conducted.

Table 6.3: Acceleration by Network Size, Large Scale, MxM

N_S 0
N_Group_S 20000
N_Group_T 20000
Timesteps 100
Connectivity (%) 100
CPU time 27962,93
OpenMP time 3967,63
Single GPU time 890,17
Double GPU time 43,43
Acceleration single GPU vs CPU 31,41
Acceleration single GPU vs OpenMP 4,45
Acceleration dual GPU vs CPU 643,86
Acceleration dual GPU vs OpenMP 91,36
Acceleration dual GPU vs single GPU 20,5

As seen in the table, acceleration follows a similar scale and is even increased related to
smaller experiments when compared to CPU performance using a node with two accelerator
devices, since both devices operate concurrently and problem size is divided in half for the
majority of the simulation’s functions. The significant penalty in acceleration when using a
single GPU is caused by the need to constantly copy portions of simulation data between
device and host memory, which is worse when using a synaptic struct-of-arrays due to the
overhead of separate cudaMemcpyAsync calls for each variable array. Acceleration reached
the impressive level of 643x for the dual GPU version, while the single GPU version only
achieved a 31x speedup and improved by just a limited factor of 4x compared to OpenMP,
a performance significantly worse than on previous attempts.

82

6.2.2 Comparisons based on connectivity

A network of 50% connectivity was simulated to check the impact of sparse synaptic

connections relative to absolute connectivity. Identical connection patterns were used in

order to provide safe conclusions between MxM and NxM simulations, as only neurons

with an even ID were interconnected, and neurons having odd IDs were basically inactive

throughout the simulation. Spiking is once again set to network-wide, constant occurrence.

Table 6.4: Acceleration by Amount of Synaptic Connections, MxM

NS 0 0 0 0 0 0 0 0
N_Groupg 500 500 1000 1000 5000 5000 10000 10000
N_Group T 500 500 1000 1000 5000 5000 10000 10000
Timesteps 1000 | 1000 | 1000 1000 1000 1000 1000 1000
Connectivity (%) 100 50 100 50 100 50 100 50
CPU time 112,08 | 60,7 | 563,23 | 317,03 | 14800,12 | 8735,66 | 67553,38 | 40631,44
GPU time 0,71 0,7 2,3 2,31 53,98 54,27 215,18 215,91
Acceleration GPU vs CPU | 157,85 | 86,71 | 244,88 | 137,24 | 274,17 | 160,96 | 313,03 | 188,18
Table 6.5: Acceleration by Amount of Synaptic Connections, NxM
N_S 200 200 200 500 500 500 1000 1000 1000
N_Group_S 0 0 0 0 0 0 0 0 0
N_Group_T 5000 | 10000 | 50000 5000 10000 50000 5000 10000 50000
Timesteps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Connectivity (%) 50 50 50 50 50 50 50 50 50
CPU time 309,82 | 607,65 | 3078,36 | 786,43 | 1524,31 | 9093,08 | 1592,63 | 3161,05 | 17737,7
GPU time 1,69 3,19 15,5 4,03 7,82 38,53 8,17 15,61 T
Acceleration GPU vs CPU | 183,32 | 190,48 | 198,61 | 195,14 | 194,92 236 194,93 | 202,50 | 230,35

Acceleration by Amount of Synaptic Connections

Acceleration rate

4000

ann
6000

Total number of neurons

@ 100% connectivity

@ 50% connectivity

TlaTh
2000

Figure 6.5: Acceleration GPU vs CPU, MxM

83

rrrrr
oy

Acceleration by Amount of Synaptic Connections

400 ;\' J

300

200 go—gP r

Acceleration Rate

100

0

10000 20000 30000 40000 50000

Total Number of Meurons

@ 100% connectivity @@ 50% connectivity

Figure 6.6: Acceleration GPU vs CPU, NxM

Results from this experimentation were especially interesting. In the entirety of con-
ducted experiments, simulation times were equal to, or even minimally worse than, those
of full connectivity. Since the CPU version was sped up significantly as a result of lower
computational workload, acceleration rates were fairly lower. The reason for these results
is most probably the way CUDA threads are executed in parallel. As each warp of 32
threads executes the same instruction simultaneously, the connectivity layout forces half of
every warp’s threads to be idle while the other half executes all the synaptic operations.
In CUDA, thread divergence leads to serialization of execution inside a warp, so any pos-
sible speedup is eliminated as active threads undergo similar execution intensity in both
connectivity cases and inactive threads do not aid in speeding up the simulation. As the
OpenMP implementation followed identical acceleration patterns to those of the first pre-
sented experiments, OpenMP times were omitted from hereafter. Speedup patterns did not
change regarding simulation scaling for the MxM experiments, as greatest acceleration was
achieved on the largest experiment, reaching a 188x speedup. A similar pattern can be no-
ticed on the NxM experiments, even though largest - 236x - speedup was reached on the
second largest experiment.

6.2.3 Comparisons based on firing percentage

A similar approach to the previous subsection was conducting experiments with a differ-
ence in the number of neurons that are producing spikes on every timestep. Testing lower
spiking frequency while keeping the number of firing neurons intact was pointless as that
would lead to total program inactivity on the timesteps that no neuron has fired. Param-
eters were initialized as usual and only neurons with an even ID number were set to fire
constantly throughout the simulation.

84

Table 6.6: Acceleration by Amount of Firing Neurons, MxM

N_S 0 0 0 0 0 0 0 0
N_Group_S 500 500 1000 1000 5000 5000 10000 10000
N_Group_T 500 500 1000 1000 5000 5000 10000 10000
Timesteps 1000 1000 1000 1000 1000 1000 1000 1000

Connectivity (%) 100 100 100 100 100 100 100 100
Spiking (%) 100 50 100 50 100 50 100 50
CPU time 112,08 | 64,07 | 563,23 | 338,8 | 14800,12 | 8991,75 | 67553,38 | 45335
GPU time 071 | 0,59 | 2.3 | 1,86 | 53,98 | 42,75 | 21518 | 172,95
Acceleration GPU vs CPU | 157,85 | 108,59 | 244,88 | 182,15 | 274,17 210,33 313,93 | 262,12
Table 6.7: Acceleration by Amount of Firing Neurons, NxM
N_S 200 200 200 500 500 500 1000 1000 1000
N_Group_S 0 0 0 0 0 0 0 0 0
N_Group_T 5000 | 10000 | 50000 5000 10000 50000 5000 10000 50000
Timesteps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Connectivity (%) 100 100 100 100 100 100 100 100 100
Spiking (%) 50 50 50 50 50 50 50 50 50
CPU time 332,58 | 665,45 | 3335,21 | 847,13 | 1657,04 | 8351,59 | 1692,31 | 4527,19 | 16831,73
GPU time 1,24 2,33 11,12 2,89 5,63 27,59 5,9 11,29 55,13
Acceleration GPU vs CPU | 268,21 | 285,61 | 299,92 | 203,12 | 294,32 | 302,70 | 286,83 | 400,99 | 305,31

Acceleration rate

Acceleration by Amount of Firing Neurons

AN ann
4000 6000

Total number of neurons

@ 100% spiking @ 50% spiking

ANC
8000

Figure 6.7: Acceleration GPU vs CPU, MxM

85

rrrrr
10000

Acceleration by Amount of Firing Neurons

500

400 7
300 N

200

Acceleration Rate

100

0
10000 20000 30000 40000 50000

Total Number of Meurons

@ 100% spiking @ 50% spiking

Figure 6.8: Acceleration GPU vs CPU, NxM

In the case of sparser firing occurence of these particular experiments, the entirety of
spawned CUDA threads follow the same rules from an activity standpoint. This means that
while every second timestep all threads execute the entirety of the kernel operations, they
also exit the kernels almost immediately after creation in the other half of the timesteps,
inflicting much less penalty to the GPU compared to the CPU execution. Greatest acceler-
ation noted in this case was 262x for the MxM version, once again increasing along with the
amount of neurons present in the experiment, while NxM experiments showcased similar
acceleration rates except for a high kick up to 401x speedup noticed in the 11000 neurons
simulation. This isolated increase in speedup is actually attributed to the CPU underper-
forming in that particular serial experiment, as all other CPU times are similar to those of
lower connectivity except for that one, so there is no significant induction regarding GPU
performance.

86

Chapter 7

Conclusion

7.1 Remarks

As Neuroscience research follows the modern rhythms of scientific progress, it becomes
significantly dependent on computer simulations. As proven through both a research and an
implementation point of view throughout my occupation with this diploma thesis, neuron
and synapse modeling almost definitively contains highly complex arithmetic operations
(differential equations solutions by numerical methods etc.), proper experimentation that
could allow experts to push Brain Research farther demands significant simulation speedup
to the point that regular (serial) implementations of neuroscience simulations burden ex-
perts with extensive waiting time between simulations. The increased demand for simulation
outputs that enable effective data processing calls for universal acceleration of the imple-
mented corresponding algorithms.

This Diploma Thesis successfully attempted to contribute to this demand by suggesting
a highly efficient solution to the problem of large network simulations concerning the AdEx
neuron model and synapses characterized by STDP. Firstly, there was a basic acceleration
of the simulation by porting the code used by the Brian Simulator for the models of interest
into a new simulator that used the low-level C programming language, which was then
available for experimentation using two different parallel programming interfaces, OpenMP
and Nvidia’s CUDA parallel platform. The OpenMP implementation utilized 8 OpenMP
threads and consistently achieved performance increase equal to around 6 times the original
C simulator runtime. The CUDA implementation was the main research point this thesis
evolved around and showcased impressive results, as experiments of a considerable size were
offered speedup levels of above 100 times the serial version, reaching as high as almost a
401x speedup rate versus the C simulator and a 1069x speedup rate against Brian, though
Brian approached the C version’s times as network size increased to vast levels.

Throughout my work on this thesis I have discovered that algorithms with high paral-
lelism potential are complemented perfectly with a CUDA-enabled GPU accelerator, as the
very high amount of modern GPUs’ processing cores offer immense performance advantages
when used correctly. The CUDA memory model provides various memory distinctions that
hasten memory access from GPU threads, which is extremely important since the major-

87

ity of neuroscientific experiments are characterized by grand memory requirements. In the
STDP synaptic model’s case, CUDA’s shared memory proved most advantageous for the
execution of the corresponding arithmetic operations. Performance penalties from memory
transaction between host and accelerating device were minimized, since the greatest possi-
ble amount of necessary data is passed to the device at the beginning of the simulation and
needs not be transferred back before final results are calculated.

In general, acceleration results were even better than expected for all but one parameter
change. Due to the model’s architecture, device kernels were implemented enclosing numer-
ous branch instructions that force diverging adjacent CUDA threads to execute serially.
This resulted to execution time remaining almost identical for the GPU implementation
when decreasing the amount of synaptic connections while keeping other network parame-
ters unmodified, while the serial C implementation would greatly benefit from this change
due to lesser workload. Hence, optimal speedup could be achieved only while maintaining
the densest possible network.

Concluding, the CUDA API in total offers firm performance advantages for the models
investigated on this diploma thesis. It was proven that neuron models of similar architecture
benefit greatly from GPU accelerators, which scale competently enough along with network
size. This thesis showed that a GPU can outperform its CPU counterparts significantly,
especially on the synaptic models. However, supposing that scientists do not have access to
such a device, the OpenMP version offers an adequate backup for basic runtime acceleration,
while also posing a much lighter challenge from a development standpoint.

7.2 Future work

An important aspect that could be further explored based on this implementation is
the optimization of neuron simulations that utilize multiple GPUs as accelerating devices,
as my diploma thesis reached as far as splitting a network’s workload between two CUDA
GPUs without any device intercommunication.

Moreover, GPU devices of Pascal architecture or newer offer the possibility of oversub-
scribing GPU memory, enabling out-of-core computations for any code that is using CUDA’s
Unified Memory for allocations. There may be room for improvement regarding scaling the
acceleration when utilizing a single GPU, as explained briefly in 5.1.5.6.

Finally, the CUDA implementation of the AdEx model simulation could be integrated
into the Brian simulator, making the model natively accelerated. As GPU acceleration of
the entire Brian simulator is still in early stages, such an addition can accelerate neuroscien-
tists” research even further, since there would be no need of learning a different framework
other than Brian in order to conduct desired experiments. This could prove very impor-
tant modification, as ease of usage is one of the most important factors when developing
frameworks that are to be used by scientists of disciplines not closely related to computer
science.

88

Bibliography

[Fos97]
[Hebd9]

[Hod52]

[Ral62]

[NRARJLF84]

[HHDSE]

AGS7]

[SKCSS]

[Ooy00]

[BLNO]

C.S. Foster M. & Sherrington. Teztbook of Physiology. Volume 3. London
: Macmillan, 1897.

Donald O. Hebb. The organization of behavior: A neuropsychological theory.
New York: Wiley, June 1949. 1sBN: 0-8058-4300-0.

A. F. Hodgkin A.L. & Huxley. “A quantitative description of membrane
current and its application to conduction and excitation in nerve”. In:
Journal of physiology (1952).

Wilfrid Rall. “Theory of Physiological Properties of Dendrites”. In: Annals
of the New York Academy of Sciences 96.4 (1962), pp. 1071-1092. DOT:
10.1111/3j .1749-6632. 1962 . tb54120 . x. eprint: https : //nyaspubs .
onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1962.
tb54120.x. URL: https://nyaspubs.onlinelibrary.wiley.com/doi/
abs/10.1111/3j.1749-6632.1962.tb54120.x.

M.B.B.S. Nayef R.F. Al-Rodhan and M.D. John L. Fox. Al-Zahraw:i and
Arabian Neurosurgery, 936-1013 AD. Tech. rep. Department of Neuro-
sciences, King Faisal Specialist Hospital and Research Centre, Riyadh,
Saudi Arabia, 1984. DOI: 10.1016/0090-3019(86)90070-4.

F. R. A. Hopgood, R. J. Hubbold, and D. A. Duce, eds. Advances in
Computer Graphics II. Berlin, Heidelberg: Springer-Verlag, 1986. 1SBN:
3-540-16910-5.

Gross Charles G. Adelman George. ”Neuroscience, Early History of” in
”Encyclopedia of Neuroscience”. Birkhauser Verlag AG, 1987, 843-847.
ISBN: 3764333332.

Terrence Sejnowski, Christof Koch, and Pat Churchland. “Computational
Neuroscience”. In: Science (New York, N.Y.) 241 (Oct. 1988), pp. 1299—
306. DOTI: 10.1126/science.3045969.

Arjen Ooyen. “Methods in Neuronal Modeling (2nd Edition), by C. Koch
I. Segev (eds.)” In: International Journal of Neural Systems 10 (Jan. 2000),
pp- 331-332.

E P Bauer, J E LeDoux, and K Nader. “Fear conditioning and LTP in
the lateral amygdala are sensitive to the same stimulus contingencies.” In:
Nature neuroscience 4.7 (2001), pp. 687-8.

89

https://doi.org/10.1111/j.1749-6632.1962.tb54120.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1962.tb54120.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1962.tb54120.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1962.tb54120.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1962.tb54120.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1962.tb54120.x
https://doi.org/10.1016/0090-3019(86)90070-4
https://doi.org/10.1126/science.3045969

[HCO1]

[PDO1]

[BPO1]

[1zh03)]

[INFTBO3]

[Har04]

[Lyn04]

[BGO5)

[Day06]

[Atk07]

[GDO7]

[Owe+07]
Sch+07]
Si107]

[ASAEOS]

M. L. Hines and N. T. Carnevale. “Neuron: A Tool for Neuroscientists”.
In: The Neuroscientist 7.2 (2001). PMID: 11496923, pp. 123-135. DOTI:
10.1177/107385840100700207.

L.F. Abbott Peter Dayan. ”Theoritical Neuroscience”. The MIT Press,
2001, 11-14. 18BN: 0-262-54185-8.

Guo qgiang Bi and Mu ming Poo. “SYNAPTIC MODIFICATION BY
CORRELATED ACTIVITY: Hebb’s Postulate Revisited”. In: (2001). DOI:
https://doi.org/10.1146/annurev.neuro.24.1.139.

Eugene M. Izhikevich. Simple Model of Spiking Neurons. 2003. URL: https:
//www.izhikevich.org/publications/spikes.pdf.

C. van Vreeswijk N. Fourcaud-Trocme D. Hansel and N. Brunel. “How
spike generation mechanisms determine the neuronal response to fluc-
tuating inputs”. In: (2003). URL: https://neurophys . biomedicale .
parisdescartes.fr/~carl/papers/jns2003.pdf.

Mark Harris. Fast Fluid Dynamics Simulation on the GPU. 2004. URL:
https://developer .nvidia . com/ gpugems / GPUGems / gpugems _ ch38 .
html.

MA Lynch. “Long-term potentiation and memory”. In: Physiological re-
views 84.1 (2004), pp. 87-136.

Romain Brette and Wulfram Gerstner. “Adaptive exponential integrate-
and-fire model as an effective description of neuronal activity”. In: Journal
of neurophysiology 94.5 (2005), pp. 3637-3642.

P. Dayan. “Levels of Analysis in Neural Modeling. Encyclopedia of Cogni-
tive Science.” In: (2006). DO1: 10.1002/0470018860.s00363.

Denny Atkin. The Right GPU for You. 2007. URL: https://web.archive.
org/web/20070506033224 /http : / / computershopper . com/ feature/
200704_the_right_gpu_for_you.

M. Gewaltig and M. Diesmann. “NEST (NEural Simulation Tool)”. In:

Scholarpedia 2.4 (2007). revision #130182, p. 1430. DO1: 10.4249/scholarpedia.

1430.

John D Owens et al. “A Survey of general-purpose computation on graphics
hardware”. In: Computer graphics forum. Vol. 26. 1. 2007, pp. 80-113.

Michael C Schatz et al. “High-throughput sequence alignment using Graph-
ics Processing Units”. In: BMC bioinformatics 8.1 (2007), p. 474.

Dee Unglaub Silverthorn. ”Human Physiology: An Integrated Approach”.
Pearson/Benjamin Cummings, 2007, p. 271. 1SBN: 978-0-8053-6851-2.

E. Alerstam, T. Svensson, and S. Andersson-Engels. “Parallel computing
with graphics processing units for high-speed Monte Carlo simulation of
photon migration”. In: Journal of Biomedical Optics 13 (2008), p. 060504.

90

https://doi.org/10.1177/107385840100700207
https://doi.org/https://doi.org/10.1146/annurev.neuro.24.1.139
https://www.izhikevich.org/publications/spikes.pdf
https://www.izhikevich.org/publications/spikes.pdf
https://neurophys.biomedicale.parisdescartes.fr/~carl/papers/jns2003.pdf
https://neurophys.biomedicale.parisdescartes.fr/~carl/papers/jns2003.pdf
https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch38.html
https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch38.html
https://doi.org/10.1002/0470018860.s00363
https://web.archive.org/web/20070506033224/http://computershopper.com/feature/200704_the_right_gpu_for_you
https://web.archive.org/web/20070506033224/http://computershopper.com/feature/200704_the_right_gpu_for_you
https://web.archive.org/web/20070506033224/http://computershopper.com/feature/200704_the_right_gpu_for_you
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430

[BROS]

[CDOS]

[GDBOg]
[L1i08]

[SPOS]

[APDY09)]

(GB0Y]

[KF+09]

[Ler09]

[Nag+09]

[BPS10]

[SGS10]

[Ben13]
[Hoa+13]

Nicolas Brunel and Mark van Rossum. “Lapicque’s 1907 paper: From frogs
to integrate-and-fire”. In: Biological cybernetics 97 (Jan. 2008), pp. 337-9.
DOI: 10.1007/s00422-007-0190-0.

Natalia Caporale and Yang Dan. “Spike Timing—Dependent Plasticity: A
Hebbian Learning Rule”. In: Annual review of neuroscience 31 (Feb. 2008),
pp- 25-46. DOT1: 10.1146/annurev.neuro.31.060407.125639.

V. Garcia, E. Debreuve, and M. Barlaud. “Fast k-nearest neighbor search
using GPU”. In: CVPR Workshop on Computer Vision on GPU. 2008.

Rodolfo Llinas. Neuron. 2008. URL: http://www.scholarpedia.org/
article/Neuron.

Roth A Hausser M. Sjostrom PJ Rancz EA. “Dendritic excitability and
synaptic plasticity”. In: (2008). DOI: https://doi . org/10. 1152/
physrev.00016.2007.

Jochen Eppler Jens Kremkow Eilif Muller Dejan Pecevski Laurent Perrinet
Andrew P. Davison Daniel Briderle and Pierre Yger. “PyNN: a common
interface for neuronal network simulators”. In: (2009). DOTI: https://doi.
org/10.3389/neuro.11.011.2008.

Dan F. M. Goodman and Romain Brette. “The Brian simulator”. In:
(2009). DOT: https://doi.org/10.3389/neuro.01.026.2009.

Andreas K. Fidjeland et al. “NeMo: A Platform for Neural Modelling of
Spiking Neurons Using GPUs”. In: July 2009, pp. 137-144. bo1: 10.1109/
ASAP.2009.24.

Larry Lerner. Viewpoint: Mass GPUs, not CPUs for EDA simulations.
2009. URL: https://www.eetimes.com/document.asp?doc_id=1170767.

Jayram Moorkanikara Nageswaran et al. “A configurable simulation envi-
ronment for the efficient simulation of large-scale spiking neural networks
on graphics processors”. In: Neural Networks 22.5 (2009). Advances in Neu-
ral Networks Research: IJCNN2009, pp. 791 —800. 1ssN: 0893-6080. DOTI:
https://doi.org/10.1016/j.neunet.2009.06.028. URL: http://www.
sciencedirect.com/science/article/pii/S0893608009001373.

Mohammad Bhuiyan, Vivek Pallipuram, and Melissa Smith. “Acceleration
of spiking neural networks in emerging multi-core and GPU architectures”.
In: Apr. 2010, pp. 1-8. DO1: 10.1109/IPDPSW.2010.5470899.

John Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems”. In: Comput-
ing in science engineering 12 (May 2010), pp. 66-72. DO1: 10.1109/MCSE.
2010.69.

Lubica Benuskova. Lecture notes in Computational Neuroscience. 2013.

Roger V Hoang et al. “A novel CPU/GPU simulation environment for
large-scale biologically realistic neural modeling.” In: Frontiers in neuroin-
formatics 7 (2013), p. 19. DOI: 10.3389/fninf.2013.00019.

91

https://doi.org/10.1007/s00422-007-0190-0
https://doi.org/10.1146/annurev.neuro.31.060407.125639
http://www.scholarpedia.org/article/Neuron
http://www.scholarpedia.org/article/Neuron
https://doi.org/https://doi.org/10.1152/physrev.00016.2007
https://doi.org/https://doi.org/10.1152/physrev.00016.2007
https://doi.org/https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1109/ASAP.2009.24
https://www.eetimes.com/document.asp?doc_id=1170767
https://doi.org/https://doi.org/10.1016/j.neunet.2009.06.028
http://www.sciencedirect.com/science/article/pii/S0893608009001373
http://www.sciencedirect.com/science/article/pii/S0893608009001373
https://doi.org/10.1109/IPDPSW.2010.5470899
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.3389/fninf.2013.00019

[VIM13] Maxim V Ivannikov and Gregory Macleod. “Mitochondrial Free Ca2+ Lev-
els and Their Effects on Energy Metabolism in Drosophila Motor Nerve
Terminals”. In: Biophysical journal 104 (June 2013), pp. 2353-61. DOT:
10.1016/3.bpj.2013.03.064.

[VC13] Richard Vuduc and Jee Choi. “A brief history and introduction to GPGPU”.
In: Modern accelerator technologies for geographic information science (Aug.
2013), pp. 9-23. DOI: 10.1007/978-1-4614-8745-6_2.

[L1i14] Rodolfo Llinds. “Intrinsic electrical properties of mammalian neurons and
CNS function”. In: Frontiers in cellular neuroscience 8 (Nov. 2014), p. 320.
DOTI: 10.3389/fncel.2014.00320.

[OAMD14] Bogdan Oancea, Tudorel Andrei, and Raluca Mariana Dragoescu. “GPGPU
Computing”. In: Challenges of the Knowledge Society 2 (Aug. 2014).

[Has+15] Khondker Hasan et al. “Performance Prediction Model and Analysis for
Compute-Intensive Tasks on GPUs”. In: (Sept. 2015).

[RPC15] P Jesper Sjostrom Mark CW van Rossum Rui Ponte Costa Robert C

Froemke. “Unified pre- and postsynaptic long-term plasticity enables reli-
able and flexible learning”. In: (2015). DOTI: https://doi.org/10.7554/
elLife.09457.001.

[GS17] Rahul Kukreja Harry Sidiropoulos Dimitrios Rodopoulos Ioannis Sourdis
Zaid Al-Ars Christoforos Kachris Dimitrios Soudris Chris I. De Zeeuw
Christos Strydis Georgios Smaragdos Georgios Chatzikonstantis. “Brain-
Frame: A node-level heterogeneous accelerator platform for neuron simula-
tions”. In: (2017). DOI: https://doi.org/10.1088/1741-2552/aa7fch.

[Inv] Why is neuroscience important? 2017. URL: http://invigorate.royalsociety.
org/ksb/learning-its-all-in-your-head/why-is-neuroscience-
important.aspx.

[Beal§] Jonathan Beard. A SHORT INTRO TO STREAM PROCESSING. 2018.

URL: http://www. jonathanbeard.io/blog/2015/09/19/streaming-
and-dataflow.html.

[Wikb] Movement Disorders. 2018. URL: https://www.neuromodulation. com/
movement-disorders.

[Olel8] Olena. A Brief History of GPU. 2018. URL: https://medium . com/
altumea/a-brief-history-of-gpu-47d98d6a0f8a.

[Zun18| Peter Zunitch. CUDA vs. OpenCL vs. OpenGL. 2018. URL: https://wuw.
videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl.

[BB19] James Bower and D Beeman. “Exploring Realistic Neural Models with the
GEneral NEural SImulation System”. In: (May 2019).

[Pem] Definition of: GPU. 2019. URL: https://www.pcmag.com/encyclopedia/
term/43886/gpu.

[Wika)] MOOSE Framework - Open Source Multiphysics. Idaho National Labora-

tory. URL: https://mooseframework.inl.gov/.

92

https://doi.org/10.1016/j.bpj.2013.03.064
https://doi.org/10.1007/978-1-4614-8745-6_2
https://doi.org/10.3389/fncel.2014.00320
https://doi.org/https://doi.org/10.7554/eLife.09457.001
https://doi.org/https://doi.org/10.7554/eLife.09457.001
https://doi.org/https://doi.org/10.1088/1741-2552/aa7fc5
http://invigorate.royalsociety.org/ks5/learning-its-all-in-your-head/why-is-neuroscience-important.aspx
http://invigorate.royalsociety.org/ks5/learning-its-all-in-your-head/why-is-neuroscience-important.aspx
http://invigorate.royalsociety.org/ks5/learning-its-all-in-your-head/why-is-neuroscience-important.aspx
http://www.jonathanbeard.io/blog/2015/09/19/streaming-and-dataflow.html
http://www.jonathanbeard.io/blog/2015/09/19/streaming-and-dataflow.html
https://www.neuromodulation.com/movement-disorders
https://www.neuromodulation.com/movement-disorders
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
https://www.videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl
https://www.videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl
https://www.pcmag.com/encyclopedia/term/43886/gpu
https://www.pcmag.com/encyclopedia/term/43886/gpu
https://mooseframework.inl.gov/

[Wikc] Nvidia CUDA Home Page. URL: https://developer.nvidia.com/cuda-

zone.

[Thr] The API reference guide for Thrust, the CUDA C++ template library.
NVIDIA. URL: https://docs.nvidia.com/cuda/thrust/index.html.

[Wikd]

The GENESIS 2 simulator home page. URL: http://genesis-sim.org/
GENESIS/.

93

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/thrust/index.html
http://genesis-sim.org/GENESIS/
http://genesis-sim.org/GENESIS/

	Περιληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Σχετικό Έργο στην Επιταχυνόμενη Υπολογιστική Νευροεπιστήμη
	Περιγραφή Προβλήματος
	Υλοποίηση του Προσομοιωτή σε C
	Υλοποίηση Παράλληλου Προγραμματισμού
	Αποτελέσματα

	Introduction
	Neuroscience
	Computational Neuroscience
	History

	Neurons
	Synapses
	Levels of Analysis in Neural Modeling
	Types of Neural Modeling
	Conventional reductive models
	Computational interpretive models

	Degrees of Modeling Detail of Neurons
	Conductance-based models
	Integrate-and-fire models
	Firing-rate models

	Accelerated Computation via GPU
	Graphics Processing Unit
	General-Purpose Computing on GPU
	Development Environment of GPGPU
	Early stages
	The CUDA programming model
	Other GPGPU frameworks

	Related Work on Accelerated Computational Neuroscience
	Popular Neural Simulation Frameworks
	GPU-accelerated Simulators
	BrainFrame

	Problem Statement
	Adaptive Exponential Integrate-and-fire (AdEx) Neuron Model
	Spike-Timing Dependent Plasticity (STDP)

	Initial Approach
	Brian Architecture
	Input Neurons
	Model Neurons
	Synapses
	Brian Code

	C Simulator Architecture

	Parallel Programming Optimization
	CUDA implementation
	General Design Features
	Data Structures and Memory Handling
	Kernel Design
	Device code
	CPU code

	Large Scale Experiments Support
	Single GPU
	Dual GPU

	CUDA Optimizations
	Float vs Double Datatype
	Kernel Merge
	Parallel Mean Calculation
	AoS vs SoA
	Shared Memory
	Other Attempts

	OpenMP implementation

	Performance Analysis
	Simulation Environment
	Experimental Results
	Comparisons based on network size
	Comparisons based on connectivity
	Comparisons based on firing percentage

	Conclusion
	Remarks
	Future work

