
Real-time Virtual Sensor for NOx emisions and
stoichiometric air-fuel ratio λ of a Marine Diesel Engine

Using Neural Networks

Pantelis Dimitrakopoulos

MSc Thesis

School of Naval Architecture and Marine Engineering
National Technical University of Athens

Supervisor: Assistant Prof. George Papalambrou

Committee Member : Prof. N. Kyrtatos

Committee Member : Associate Prof. C. Papadopoulos

November 2019

Acknowledgements

This work has been carried out at the Laboratory of Marine Engineering (LME) at the
School of Naval Architecture and Marine Engineering of the National Technical University
of Athens, under the supervision of Assistant Professor George Papalambrou.

I would like thank Professor Nikolaos Kyrtatos for providing the opportunity to work
with the full-scale hybrid diesel-electric marine propulsion powertrain of LME. Access
to LME experimental facilities was essential in order to verify theoretical concepts from
a practical perspective, gather valuable data and evaluate experimentally the designed
models. I also thank him for being a member of my supervisors committee.

My greatest appreciation is owed to my thesis supervisor Assistant Professor George
Papalambrou, for giving me the chance and motivation to work on the artificial intelligence
topic for marine engines. I would also like to thank him for his patience and persistent
support. His spirit motivated me all this time to carry out this thesis. The door to his
office was always open whenever I ran into a trouble spot or had a question about my
research or writing.

I would also like to thank Associate Professor Christos Papadopoulos for evaluating
my work and being a member of my supervisors committee.

It is imporant to express my sincere gratitude to Mr. Nikolaos Planakis, researcher of
LME for his contribution to unlock several milestones. I am extremely thankful to him
for sharing expertise, and sincere and valuable guidance and encouragement extended to
me.

Finally, I must express my very profound gratitude to my girlfriend, my classmates,
my colleauges at Gamma Technologies and my parents for providing me with unfailing
support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have been
possible without them. Thank you.

1

Abstract

λ value and NOx mass species have been proven important variables to emissions control
and reduction for marine diesel engines. Models for these quantities can substitute real
sensors that are often cost ineffecient and faulty. On top of that, model based control for
emissions must operate on the basis of fast and accurate models. Artificial neural networks
(ANN) are data based models that calculate predictions on relatively simple operations
using non-linear functions. They appear in many flavors and configurations. In the present
work, the time-delay neural network (TDNN) and recurrent neural networks (RNN) with
inputs delay are investigated as models for λ value and NOx variables.

Specifically, virtual sensors were developed for marine diesel engine’s turbine-out NOx
emisions and λ value based on raw measurements from laboratory data acquisition. A
method was developed to search for the optimal neural network configuration between
time-delay neural network models and recurrent neural network models with inputs de-
lay. Model inputs are decided based on traditional thermodynamic models, such as the
Zeldovich mechanism for NOx formation, and the available quantities sensors in any in-
market marine engine. The resulting models capture the non-linear phenomenon of NOx

formation and changes in λ value of the marine diesel engine. Calculations performance
is fast and portability of the models is easy. The resulting neural network models are de-
ployed on an ECU prototype machine and they are validated in real-time side by side with
the real system’s sensors. The validation tests include engine operating points within the
training range but of different pattern. The real-time validation for the recurrent neural
network models shows that their predictions stay consistent in most operating areas and
the dynamic behavior of the emissions variables is captured and reproduced accurately.
The recurrent neural network model for λ value was compared against a first principle
physics based virtual sensor with more accurate results. Therefore, the validation proves
that the RNN models generalize adequately within the training range with the minimum
possible complexity. On the other hand, the time-delay neural network models are more
complex and they do not exemplify the same accuracy in the validation tests, especially
in unknown to them operating areas. As a result, the recurrent neural network models
with input delay are suggested to be used as benchmark models for emissions control
applications.

2

Contents

1 Introduction 5

2 Experimental Facility 10
2.1 Mechanical Componets . 11
2.2 Sensors and Data Acquisition System . 12

3 Modeling 14
3.1 Introduction . 14
3.2 NOx Emissions . 14

3.2.1 Emissions Modeling . 15
3.2.2 Relative Air-Fuel Ratio: λ value . 16
3.2.3 Model Inputs selection . 17

3.3 Overview of Neural Networks . 20
3.3.1 Artificial Neural Network (ANN) . 20
3.3.2 Neural Network Calculation Mechanism 22
3.3.3 Time-Delay Neural Network . 27
3.3.4 Recurrent Neural Networks . 28

4 Models Design and Training 30
4.1 Data preparation . 30

4.1.1 Training Data . 30
4.1.2 Data Pre-processing . 35

4.2 ANN Design . 37
4.2.1 Pyrenn: RNN and TDNN Python toolbox 37
4.2.2 Model development methodology . 38

5 Model Training 41
5.1 TDNN models for λ value and NOx . 41
5.2 RNN models for λ value and NOx . 47
5.3 Training conclusion . 52

6 Real-time Validation with ICE testbed 53
6.1 Experimental Setup . 53
6.2 Validation Results . 56

6.2.1 TDNN models for λ value and NOx 56
6.2.2 RNN models for λ value and NOx 56

6.3 Validation Evaluation . 90

7 Conclusions and Future Work 91

Appendices 92

3

CONTENTS 4

A Pyrenn module improvement 93
A.1 Levenberg-Marqaurdt Implementation modification 93

Bibliography 95

Chapter 1

Introduction

Framework

The growing environmental hazards and the never-ending strive for fuel efficient systems
apply pressure to the marine diesel engine industry for optimized controls, emissions and
fuel economy strategies. These strigent goals have forced manufacturers of marine engines
to develop new technologies related to the propulsion power units of ships, aiming at
lower exhaust emission and enhanced power management. Typical applications in new
marine powertrains are exhaust gas recirculation (EGR), inteligent fuel injection with three
phase common rail injection systems, cylinder de-activation strategies, selective catalytic
reduction systems (SCR) with catalyst injection for emissions neutralization and others.
For example, EGR systems are effective in reducing the NOx emissions but they can be
very complex as shown in the Fig. 1.1 . Another approach that manufacturers follow is
the hybrid marine powertrains. Nowadays, they are widely developed and offered by most
manufacturers despite the low market share as of today. The hybrid powertrain combines
the combustion engine with battery powered propulsion and thus they optimize the engine
operation and fuel efficiency while reducing emissions signficiantly1.

Different types of vessels operate in various conditions. For example, marine power-
plants in cargo vessels usually operate in steady state sea going condition. On the other
hand, some ship types operate in coastal areas and within port range, such as passenger
ships, yachts, tugs, special purpose vessels, etc. This diverse scenario of operation affect
significantly the overall efficiency of the marine powertrain system. As a result often is
the case where these systems operate far from the high efficiency range.

Consequently, marine diesel engines operate outside of steady-state conditions in many
situations such as maneuvering, port operation or rough seas. These transient operation
circumstances are the most unpredictable of a diesel engine, especially, in terms of exhaust
emission and fuel consumption. During load transients, all the engine variables change
continuously, deterring the engine from its high efficiency operating area. At the same
time, the exhaust gas quality is drastically affected, mainly due to the delayed response of
the turbo-charger to provide the sufficient amount of air on time. As a result of the lean
combustion, λ value, which is an indication for the air-fuel mixture quality, drops in the
area of fuel rich mixtures with a consequent rise of the pollutant emissions of the engine.

These phenomena are typically tackled by advanced and complex controls systems
that control the emissions reduction systems, such as the EGR and SCR. The controls
systems rely on high sampling frequencies of the controlled subsystems; high enough to
produce effective re-actions that will acomplish the emissions reduction and fuel consump-

1https://www.man-es.com/docs/default-source/default-document-library/man-
esl3factsheets4pmanhybrid− propulsionpreview.pdf?sfvrsn = 267c03fb6

5

6

Figure 1.1: MAN NOx reduction system by exhaust gas recirculation EGR.

tion standards. In some cases the marine engine powertrain’s sensor can provide the
necessary information to the controls system. Although, there are cases where this does
not happen in a timely manner, the sensors installation and maintance is expensive or the
quantities are not measured at all in important engine positions, e.g. in-cylinder quanti-
ties. For these cases, virtual sensors can provide information with regards to the necessary
engine variables.

Literature Review

Mathematical models can be used to substitute expensive and fault-prone sensors or intro-
duce new quantities that are not traditionally measured by sensors to the control system.
These models are often called virtual sensors because they measure quantities values just
as any traditional sensor but the measurements are not captured by sensors. Instead the
“measured” quantities are products of calculations based on already installed sensors in
the system. The additional quantities facilitate the optimal control, cost-efficient system
maintenance and early fault prediction or detection.

Global market researchers expected the global virtual sensors market size to grow
from 235$ million in 2018 to 910$ million by 2023. The major growth drivers include
predictive maintenance and potential reduction in the time and cost compared to physical
sensors as well as rising adoption of the internet of things (IoT) cloud platforms. Virtual
sensor solutions help organizations to estimate product properties or process conditions
based on mathematical models. In a sentence, virtual sensors are mathematical models
which estimate the desired values based on the inputs from other physical sensors already
installed in a system. Organizations use virtual sensors mainly to achieve efficiency and
in locations where physical sensors cannot be implemented. Systems such as the marine
diesel powertrains are not being exempt from this trend.

As any system, marine diesel engine systems can benefit from virtual sensors for opti-
mal emissions control or fuel consumption. Sensors upstream and downstream the cylinder
provide control and diagnostic system valuable measurements in a timely manner. How-
ever, sensors installation , maintenance and replacement at their end-of-life bare significant

7

cost, especially in the after cylinders exhaust air path. In other cases a direct measurement
by sensors might not be even possible or just too expensive to justify the sensor instal-
lation in the first place. On the other hand, a virtual sensor can be developed and used
for the estimation of the unmeasured engine parameters. Such sensors are based either
on first principles or measured data. As shown before, neural network models are data
based and require measurement data for their training in the direction of minimizing their
predictions errors. Additionally they also require the existence of pre-installed sensors
in order to use the measured data as inputs for their calculations during real conditions
operation. Commercial marine engines are equipped with sensors and diagnostics that
can cover these requirements. Therefore, model-based virtual sensors can be harnessed
for replacing costly traditional sensors or even predict faster and more accurate quanti-
ties that were not measured directly, e.g. the λ value. Such models can reproduce the
benchmark system behavior for a controls strategy or the on-board diagnostics systems.
In the present work, models of NOx emissions and λ value are developed using the two
neural network model permutations presented in the following chapters, the time-delay
neural network (TDNN) and the recurrent neural network (RNN). Each one of the neural
network types is evaluated as a virtual sensor for real time operation.

A virtual sensor for marine engine powertrain variables should enable reliable system
operation by enhancing the diagnostics and fault-detection control system with more and
accurate information. Map-based approaches have been used widely in the literature.
Their benefit is that they can execute seamlessly fast but they produce poor results dur-
ing transient phenomena [4]. Marine diesel engines often operate outside of steady-state
conditions. Therefore a model should be able to capture the non-linear phenomena during
the transient operation which occurs typically during maneuvering and operation within
the port range, where strict emissions regulations apply. Traditional flow and thermody-
namic differential equations and semi-empirical models are capable of reproducing ade-
quately both steady state and transient phenomena. Some NOx formation models, such
as the zero-dimensional Zeldovich mechanism, can execute relatively fast but they take
into account combustion quantities that are rarely available or computationally expensive
to calculate via combustion models [1]. These models might require data to calibrate
their results to a specific marine engine. In the same principle, measurement data often
show correlation between most marine engine quantities of interest. When there are avail-
able sufficient measurements data, data-driven models such as artificial neural networks
(ANN) can be used to describe the relationship between the various quantities. A sub-
stantial number of neural networks permutations have been validated as virtual sensors
in the automotive, railway and aerospace industry [8] [9] [10] [12]. Specifically, in [6],
neural network models are developed successfully for the diesel engine-out emissions, in-
cluding soot, in static and transient conditions for assisting advanced model-based engine
control strategies, such as the economic model predictive control (eMPC). [13] have put
to the same test multiple network architectures and validated that the neural networks
with inputs delay and derivative inputs provide good predictions for NOx emissions of
CI engines and generalize adequately within the operating range. Additionally recurrent
neural network (RNN) models have been identified and validated for virtual sensing of
NO emissions in spark ignition (SI) internal combustion engines (ICE) with an cumulative
estimation error lower than 2% throughout transient operation [7]. Methodologies have
been propose to satisfy reliable on-board installation of advanced virtual sensors validat-
ing results with a production automotive diesel engine [9]. Installed virtual sensors, such
as RNN, models have been proven sustainable by adjusting their predictions with least
square technique to account for an engine’s aging [14]. More complex neural network
architectures have been validated for multiple target recognition in the field of intelligent

8

driving by learning historical visual semantics and target position information [11]. As
a result, neural networks models, especially those which take into consideration previous
states of the simulated system such as the TDNN and RNN architectures are capable of
producing accurate predictions. For powertrain system, such models have been validated
for reproducing diesel engines quantities successfully.

Figure 1.2: Recurrent NN (a) and Time delay NN (b).

Thesis Structure

In this thesis, two neural network model structures are investigated for modeling emissions
of the Hybrid-electric powertrain of Laboratory of Marine Engineering (LME). For this
investigation it was developed a method that relies on engineering principles for the models
inputs selection and the powertrain identification and uses machine learning industry best
practices for the neural network design [25]. The quantities modeled are the NOx and λ
value downstream the turbine. The two model structures investigated are the time delay
neural networks (TDNN) and the recurrent neural networks (RNN) because they take into
account not only their input signals but also the powertrain’s previous states to calculate
their predictions, which is necessary to produce accurate predictions for the non-linear
NOx formation.

The structure of the thesis is as follows: in chapter 2 the experimental facility is pre-
sented, along with the installed engine sensors and the data acquisition system. chapter 3
describes the modeling principles from the engineering and the data scientist angle or,
in other words, it is described the development of the models with regards to the input

9

signals selection and the description and optimal tuning of their hyper-parameters respec-
tively. chapter 4 refers to the method designed to develop the neural network models and
the selection of the best models based on the training data. chapter 5 includes the model
training results and the selected models to be used for the real-time validation. chapter 6
includes the methodology of deploying the models on a prototyping ECU board for real
time validation and the results of the validation tests. Finally, the conclusions of this work
are presented in chapter 7.

Chapter 2

Experimental Facility

The hybrid diesel-electric power plant is named as HIPPO-1 for the LME and consists of a
internal combustion engine (ICE) in parallel connection to an electric motor (EM). In this
configuration the rotational speed of the ICE and the EM are identical and the supplied
torques add together to maintain the total torque demand applied by a hydrodynamic
water brake (WB). In Fig. 2.1 and Fig. 2.2 the experimental hybrid powertrain of LME is
presented, along with a schematic representation in AUTOCAD.

Figure 2.1: The HIPPO-1 hybrid diesel-electric testbed of LME.

10

2.1 Mechanical Componets 11

Figure 2.2: The HIPPO-1 hybrid diesel-electric testbed of LME. Between the internal
combustion engine (right) and the electric motor (left) stands the water brake next to its
controller board

2.1 Mechanical Componets

The ICE is a turbocharged CATERPILLAR 6-cylinder 10.3-liter 4-stroke marine diesel
engine, model 3671B, producing 425 kW at 2300 rpm. According to the speed reference
and the deviation of the speed measurement, the electronic control unit (ECU) of the ICE
controls the fuel injection in the cylinders in closed loop control, using controller in the
form of look-up tables. The installed sensors in the diesel engine are presented in Fig. 2.3

Figure 2.3: The HIPPO-1 diesel engined installed sensors.

The water brake of HIPPO-1 installation is manufactured by AVL Zoellner Gmbh,
type 9n 38F, with 1200 kW load capacity, operating up to 4000 rpm. The water brake
consists of two parts, the stator and the rotor, which is driven by the engine shaft. Between

2.2 Sensors and Data Acquisition System 12

the two WB parts, the water level is regulated in order to produce the requested torque
demand. The WB is controlled by a H∞ controller designed at LME1.

2.2 Sensors and Data Acquisition System

The installed sensors in the diesel engine are presented in Fig. 2.3. The NOx and λ values
are provided by a SmartNOx sensor in the manifold downstream of the turbocharger
(TC), manufactured by NGK. Exhaust gas opacity is measured by a AVL 439 opacimeter
in the exhaust duct of the CAT engine. Fuel mass flow measurements are provided by
two ABB Coriolis flow-meters, one at supply and one at return fuel lines. TC speed and
intake manifold pressured are also measured.

The platform for the Data Acquisition and control of the powertrain is based on the
dSpace DS1103 (Fig. 2.5) controller board, with rapid control prototyping capability,
programmed under the MATLAB/Simulink environment.

Figure 2.4: The engine control room. WB control board in front and the monitoring
system of the hybrid plant on the right. Behind the safety glass, HIPPO-1 powertrain can
be distinguished

A picture of the powertrain monitoring screen in the control room (Fig. 2.4) at LME
is shown in Fig. 2.6, where all the utilities of the monitoring and the control board are
presented.

1C. Gkerekos. 2015. Experimental Modeling and Robust Controller Design for the Transient Loading
of a Marine Diesel Engine. Diploma Thesis

2.2 Sensors and Data Acquisition System 13

Figure 2.5: The HIPPO-1 dSpace monitoring and control board.

Figure 2.6: The HIPPO-1 monitoring and control screen.

Chapter 3

Modeling

3.1 Introduction

The main aim of the modeling procedure is to construct a mathematical description of
the hybrid power plant behavior in such a way that the extracted neural network mod-
els can produce accurate results and be trained relatively fast for the smallest possible
configurations.

For this purpose, the models must be designed based on the engineering principles
of other semi-empirical models. This chapter includes the modeling principles behind
diesel engine’s physical phenomena, such as the NOx formation during combustion and
the relationship of the mixture quality for the emissions via the λ value. These principles
are essentials for the neural network model inputs selection and the models accuracy.

3.2 NOx Emissions

Nitro-oxides emissions are produced from the reaction of nitrogen and oxygen gases during
the combustion at each cycle and it is common knowledge that they are extremely harmful
to global population’s health. In ICE applications, the nitrogen-oxides emissions appear
typically in the exhaust gases of diesel engines but they can also be traced in SI engines run
on petrol and other fuels [19]. Almost all vessels use a diesel engine configuration for their
propulsion and that is why the marine industry have been heavily targeted with regulations
for the emissions reduction from the International Marine Organization (IMO). In the last
two decades the emissions reduction targets have became more and more strigent. Unless
the manufacturers and ship owners would like to be restricted from doing business in the
Emissions Control Areas (ECA) such as US and EU ports, they are racing to comply with
the latest regulations as shown in Fig. 3.1 until 2021.

The term NOx includes both mono-nitrogen oxides, NO, and NO2. The dominant
species are the NO, approx 95%, and thus NO2 is either neglected or considered as part
of the NO because the majority of NO2 species owes its existence to NO. As a result, they
can be considered as a single entity in nitrogen-oxide emissions studies. Cumulative NOx

in exhaxt, sum of NO and NO2, is considered to occur as:

• Themal NOx: it occurs from the oxidation of the atmospheric nitrogen. The rate of
formation is mainly a function of the in-cylinder temperature and local concentra-
tion of the reacting species. At the higher temperatures the N2 and O2 dissociate
into monatomic N and O which then form NO emissions after a series of chemical
reactions.

14

3.2 NOx Emissions 15

Figure 3.1: IMO’s NOx control requirements.

• Prompt NOx: it occurs when the N2 of the air is released and reacts with the diesel
fuel radicals, i.e. C or CHx, and forms NH, HCN and others. These species are
oxidized and form NOx through several reactions.

• Fuel NOx: it exists because of the nitrogen fraction in the diesel fuel. When nitrogen
content in the diesel fuel is released as a radical, then it forms N2 or NO. However the
nitrogen in diesel fuel is typically low and therefore the formed NO can be neglected
given the final NOx emissions.

Overall, the contribution of the thermal NO to the cumulative NOx is substantial
when compared to prompt or fuel NOx emissions. That is why thermal NO is a focal
emission species that marine diesel manufactures try to reduce by developing advanced
technologies and operating techniques, such as advanced injection systems for three-phase
fuel injection to reduce the in-cylinder temperature during an engine’s cycle. For this
purpose it is important that there are predictive and accurate emissions models to assist
the control strategy development and on board diagnostics.

3.2.1 Emissions Modeling

Modeling NOx formation and combustion is possible by several approaches. There are
empirical, physical and semi-empirical models. Empirical models are based on measure-
ments and use coefficients and parameters that can be tuned to use measurement data
and produce NOx results. Tuning implies a calibration of the empirical model to the mea-
surements so that the model results error from the measurements is minimized, ideally,
to zero. Physical models are based on physics and do not need measurement as inputs to
produce results. Instead they use variables such as geometry, fuel and material properties,
flow and other equations to predict results. Semi empirical models predict results under
the same principle but measurements are used to calibrate coefficients and serve as initial
conditions.

Physical models can be multi-dimensional or even zero-dimensional. For example,
computational fluid dynamics models are multi-dimensional models which take into ac-
count all 3 space dimension and time. Zero dimensional models do not produce spatial
dependent results and all phenomena are described by control volumes independent of the
fluid local position.

Regardless of the fidelity of the model, there have been several studies for the com-
bustion and NOx formation and most of them are based on the Zeldovich mechanism,

3.2 NOx Emissions 16

which is similar to Heywood’s approach. Many of the models depend on in-cylinder quan-
tities which are used as measurements or calculation results from heat release models.
Specifically, NOx formation is a highly non-linear phenomenon that can be described by
local in-cylinder temperature and air-fuel species concentration. Given the fact that in-
cylinder local quantities cannot be reliably measured, complex physics models such as the
extended and super extended Zeldovich mechanisms [1] can reproduce the NOx formation
depending on the combustion parameters, as described in 3.1:

NOx = f(mair,mfuel, λ,RPM,Pinj , Tin, SOI,EGRfraction) (3.1)

Most of these quantities are not available by sensors in commercial marine diesel en-
gines due to the lack of physical sensors and maps from the engine manufacturer, e.g.
start of injection of maps. Although some of them are available by physical sensors and in
different locations, e.g. at the intake manifold or downstream the turbine. For example,
physical sensors measure the intake manifold absolute pressure which is directly correlated
to the intake mass air flow. As a result in order to model the NOx formation during op-
eration for the engine control systems, one must rely on both what engine parameters are
available and make sense to use based on first principle’s theory.

3.2.2 Relative Air-Fuel Ratio: λ value

Marine diesel engines are equipped with multiple closed-loop control systems that take
care of the emissions reduction, e.g. EGR or SCR systems. In these cases, the controls
objective is to open or close some valve downstream or upstream the engine cylinders or
inject water or other fluids to reduce the in-cylinder temperature or the emissions species
directly in the exhaust gases. In order for these systems to perform effective actions, most
of them rely on the quality of the exhaust gas, among other variables, with regards to the
air to fuel ratio 3.2.

AFratio =
mair

mfuel
(3.2)

The air mass flow rate mair and the mass fuel rate mfuel are easily measured from
sensors as by-products of pressure and species measurements. The normal operating range
for the CI engines like the marine diesel engines is the between 12 and 70 or 0.014 and
0.056 for the FAratio, i.e. the inverse of AFR 3.2.

Fuel and air mixtures with more or less than the stoichiometric air requirements is
possible to burn and produce the required heat. However, lean or rich mixtures affect
the combustion substantially and that is why it is important to monitor the relative stoi-
chiometric ratio of the mixture. In fuel rich combustion, i.e. less than the stoichiometric
needed air, there is not sufficient oxygen to oxidize fully the diesel fuel’s C and H. With
excess air, i.e. fuel lean combustion, the extra air exists in the exhaust gases unchanged.
Because the composition of the combustion products is substantially different for lean or
rich combustion, the ratio of the actual FAratio to the stoichiometric ratio is more indica-
tive for mixture composition. The same is true for the inverse stoichiometric ratio or the
relative AFratio. In other words the relative AFratio is commonly referred as λ value 3.3.

λ =
A/Factual

AFstoichiometric
(3.3)

λ value equal to 1 indicates a stoichiometric mixtures, less than 1 is leaner mixtures
and greater than 1 is for rich mixtures. The relative ratio λ value has been proven very
important mainly because of two reasons:

3.2 NOx Emissions 17

• The behavior of lambda dynamics can be relatively easy to be modeled and provides
accurate information about the diesel engine performance and/or operating point [28]
and

• emission content can be expressed as a function of λ value, as shown in Fig. 3.2 [29].
λ value was proven suitable for indicating nitrogen oxides (NOx) and Particulate
Matter (PM) formation.

Figure 3.2: Correlation between NOx and PM emissions to λ value.

As indicated in Fig. 3.2, λ value can be used as an indicator to define several limits
for a diesel engine such as smoke, power or temperature downstream the exhaust valve
limits, while it can be used to assess the thermal load of a marine engine [15]. That is
why λ value is carefully monitored during operation.

3.2.3 Model Inputs selection

Any model is comprised of three parts: the output quantity that it attempts to predict, its
calculation mechanism with its coefficients and the input quantities that uses to predict
the output. In the beginning of the model design only one of these three is decided almost
immediately, i.e. the outputs, as it derives from the models existence purpose. In this
thesis, the designed models should predict for the NOx species and λ value in the exhaust
gases downstream the turbine. So the outputs of the models are decided as NOx species
and λ value. The calculation mechanism will be described in section 3.3. In order for the
models to be used as assistance of ICE controls system, it is important that the models
inputs are decided on rigorous selection based on the theory layed in section 3.2.

For the nitro-oxides model, NOx formation is a tough problem to solve and the models
developed so far take into consideration in-cylinder quantities as shown in . On the other
hand, λ value is easier to calculate using semi-empirical or linear models [29]. Neural
network model development must take into consideration the existing theory and most
common installed sensors in commercial marine engine systems in order to draw variables
and build accurate and useful models. In other words, accurate data based model are
in need in the emissions controls but they must use input data that are either available
from the installed sensor systems or are easily extracted from the Measured quantities via
simple calculations or maps. By doing so, the on-board usage of neural network models
is promoted and they will not be limited on research level studies for emission control.
Taking a few steps back, the installed sensors and calculations provide the essential engine
parameters data that are used for the neural network model training. Consequently, the
models inputs should be based on the available quantities and should agree with theory
simultaneously.

3.2 NOx Emissions 18

Figure 3.3: Selected Inputs for the NOx and λ value models.

As stated previously, cumulative NOx formation is indicated mostly by the thermal
NOx fraction, which is substantially larger than the prompt and fuel NOx. Its formation
depends on chemical kinetics in the in-cylinder local burned gas temperature, the N2 and
the O2 concentration. Therefore it is a highly non-linear phenomenon that can be affected
by local in-cylinder conditions and air-fuel species concentration. Physics models such as
the extended and super extended Zeldovich mechanisms can capture the NOx formation
depending on the combustion parameters such as the in-cylinder pressure and temperature.
In-cylinder quantities are neither available by sensors in the Laboratory testbed DAQ
system nor on a commercial marine diesel engine. Therefore, a minimalistic approach has
to be followed with regards to the model input signals selection. The most important
ones were chosen as representatives of the operating point and the dynamic behavior of
the marine engine as dictated by first principle’s theory. As a result, NOx emissions are
modeled with the intake manifold pressure and engine shaft speed as representative of the
engine’s intake air mass flow which is not measured directly. Torque shaft output and
measured λ value are used as representative quantities of the injection parameters such
as the SOI, injected fuel mass and pressure. The same principles apply to the λ value
models, as shown in fig. Fig. 3.3:

This approach is preferred not only because it adheres to the lack of multiple measured
quantities from the LME testbed, but also satisfies the portability and re-usability purposes
of the models. Therefore, NOx and λ value model are developed based on four and three
respectively fundamental and readily available quantities for commercial marine engines.
It has to be noted that two of the input variables, the engine speed and torque output,
are fixed value inputs as shown in Fig. 3.4. This means that they change as instant steps
and can be thought as operating point selectors. For the values in-between the steps, the
resulting models are expected to interpolate their predictions. It has to be noted that the
models are expected to perform worse if the engine speed or torque input signals change
in different pattern, e.g. as ramp.

Instant changes are also expected to be smoothed out from the models predictions by
the other two input signals for NOx model -the Measured λ value and manifold absolute
pressure- and the one other signal for the λ value model -the manifold absolute pressure.
These signals have been logged for their full trajectory in previous experiments and thus
they retain a dynamic profile as shown in Fig. 3.5, which the models should utilize mostly
for their predictions.

As a result, the resulting models should have enough information from their input

3.2 NOx Emissions 19

Figure 3.4: Engine speed and Shaft torque static input signals.

Figure 3.5: Measured λ value and manifold absolute pressure dynamic input signals.

3.3 Overview of Neural Networks 20

Figure 3.6: Rosenblatt’s [20] perceptron: the simplest neural network.

ports to calculate accurately the target quantities. This should be true considering that
most of the engine operating parameters, measured or unmeasured, are correlated with
these basic four variables. Therefore the neural network error minimization process, i.e.
the training, should be able to construct all the input-output relationships.

3.3 Overview of Neural Networks

In this section, all ground level principles are layed out with regards to neural networks
models. As mentioned, a model is constituted by three parts: the target output prediction,
its calculation mechanism with its parameters and the input quantities that uses to predict
the output. The paragraphs below defines the calculation mechanism and the parameters
of neural network models. Additionally, it is described the tuning of the model predictions
for error minimization and best practices to reduce the model size and training effort.

3.3.1 Artificial Neural Network (ANN)

The perceptron is the simplest neural network form invented in 1957 by Frank Rosenblatt
[20] based on the idea of the biological neuron, which, given input stimulus, fires its own
signal, the output. That is why perceptrons are typically called neurons and a format
of stacked perceptrons compromise a network which is called an artificial neural network
(ANN). The graph of single perceptron is shown in Fig. 3.6.

The calculation scheme in Fig. 3.6 expects 3 inputs x1, x2 and x3, each one is multiplied
by a weight, then all are summed in a single value which is then summed with a bias value
and the result is fed in an function that produces the final perceptron output. The function
in the end is called the activation function of the perceptron because its main role is to
activate -or not- the specific neuron. In other words, it controls if the neuron spits its
result or not. At the same time the activation function gives the neuron its calculation
super-power to predict non-linear quantities such as a marine engine’s parameters. Frank
Rosenblatt’s perceptron had a step activation function which fired the output based on
the final value the calculation before it as shown in 3.4.

yn = f(
∑

x · w + b) (3.4)

It is obvious then that the activation function plays the most important role for a
perceptron and it is responsible for the final output.

3.3 Overview of Neural Networks 21

Figure 3.7: Typical feed-forward artificial neural network (ANN).

A single perceptron can be used as a simple linear binary classifier which computes a
linear combination of inputs and if the result exceeds a threshold, it outputs the positive
or negative class. While this might seem a simple task for a single perceptron, stacking
more of them on organized formats, complicated regression problems and classification
tasks can be solved, such as fault detection or time-series prediction. A stacked format
of perceptron is what is called an Artificial Neural Network or a Multi-Layer Perceptron
(MLP) Fig. 3.7.

This structure is more complicated than the single perceptron, compromised by multi-
ple layers, each one of them containing multiple perceptrons or neurons. This architecture
is called dense because each neuron is connected to the following layer through vector of
weights as shown above. Each circle is a representation of a single perceptron with an
activation function which takes the weighted sum of the previous layer’s output as input
with a bias. The output of the m-th neuron can be defined as shown in 3.5.

Outmi = f(
∑
k

out(nk) · wij + biasmi) (3.5)

• Outmi the calculated ouput of mi

• nk the neurons of layer i

• mi the neurons of layer i+1

• f the activation function of the neuron

• wij the weight corresponding to link between ni and mj

• biasmi the bias value of mi

To sum up, one has to feed the single perceptron or the stacked neurons with one or
more inputs and propagate them through the network equations in order to get the final
one or more outputs of the network.

3.3 Overview of Neural Networks 22

3.3.2 Neural Network Calculation Mechanism

In the previous chapter, a neural network was described as more than one neurons stacked
in one or more layers. However, developing “clever” neural network architectures that can
solve complicated problems takes more than stacking neurons together. It is about tuning
the number of neurons and layers to each application. For example, a neural network
model for regression might have one or two hidden layers with five to ten neurons each.
On the other side, models for image or speech recognition might occupy more deep and
more complicated architectures than the dense network to serve their purpose. Therefore,
it is essential that one can decide on the model’s hyper parameters:

• the number of neurons

• the number of layers

These two describe the calculation structure of the ANN. While there are general rules
on choosing them, there is no rule of thumb or golden rule that always works. These
decisions are problem dependent and they are typically assisted by error minimization
algorithms. Other important decisions for the design of ANN is the:

• neurons activation function which gives the ANN its calculation power and

• training algorithm and tuning which is responsible for minimizing the ANN’s results
error given the target value

All these decisions are problem dependent and the principles behind deciding them are
layed out in the following paragraphs.

Neurons and Hidden Layers

For many problems, one can begin with a single hidden layer and will get reasonable
results [23]. It has actually been shown that an artificial neural network with just one
hidden layer can model even the most complex functions provided it has enough neurons.
For a long time, these facts convinced researchers that there was no need to investigate
any deeper neural networks architectures. Although, most of them overlooked that deep
architectures have higher parameter efficiency than shallow ones. This means they can
model complex functions using exponentially fewer neurons than shallow nets, making
them much faster to train.

Real world data is usually structured in an hierarchical way and deep neural networks
can take advantage of this fact; early neurons can adjust to features that are universal
and occur repeatedly in the data and later neurons adjust to more niche features that
discretize the final outputs [2]. For example, if a trained model with a shallow architec-
ture can adequately recognize faces in pictures, then its layers can be used in more deep
architectures which aim to recognize hairstyles as early layers. This way the deep network
will not have to learn from scratch all the low-level connections that are characteristic for
faces in pictures and it will only have to be trained on the higher-level structures, e.g.
face reactions, hairstyles etc. For many problems one can start with just one or two hid-
den layers and the model should perform as well as 97%-98% accuracy for most function
approximation or modeling the MNSIT dataset. For more complex applications, such as
non-linear systems approximation or speech recognition, they typically require networks
with more layers or more complex architectures than the dense network.

The number of neurons in the input and output layer is arbitrarily defined by the
type of input and the number of necessary outputs. This means that the model designer

3.3 Overview of Neural Networks 23

or the data itself impose the number for the input and output layers. For example, a
model for the classification of the alphabet from 64x64 pixels images will have 24 outputs
and 64*64=4096 input neurons. Predicting in-cylinder thermodynamic quantities can be
achieved by multi-input-single-output neural network models that use inputs from the
fixed set of available sensors. Regarding the neurons of hidden layers, a common practice
is to size them to form a funnel, with fewer and fewer neurons at each layer, for the reason
described in the previous paragraph.

Unfortunately, finding the perfect number of neurons for each hidden layer is described
in most references as both arbitrary and result of efficient design [24]. The truth is that
there are several ways to choose the architecture of an ANN, e.g. full factorial search
for the best architecture by sweep testing all possible architectures or occupying a more
clever algorithm to control the ANN design. Nowadays there are frameworks that can be
used to easily develop and test quickly numerous prototype neural network architectures
and therefore test a lot of permutations, before deciding what architecture is ideal for a
specific problem.

Activation functions

The activation function lays in the heart of each node and it is responsible for giving neural
networks their power to approximate tough problems such as non-linear dynamic systems.
These functions are called activation functions because they can activate the node output
based on the input of the node. There are simple activation functions such the rectifier
function or the identity and there are more sophisticated non-linear activation functions
such as the sigmoid or the Gaussian. Some are performing well for regression problems, e.g
the hyperbolic tangent, and some others are performing well for classification problems,
e.g. the softmax. This paragraph contains the activation functions that were considered,
tested or chosen in the present thesis. The current thesis tackles a complex regression
problem with only positive outputs and that is why linear, tanh and ReLU functions were
initially considered used.

In automotive applications of ANNs, it has been verified that the linear and ReLU
functions can assit an ANN produce accurate results [16]. Although, they can be used in
all layers with very good results. They are considerably simple and can be used to pass
the biased input to the node output or rectify negative values accordingly as shown in
Fig. 3.8.

Figure 3.8: ReLU activation function.

ReLU is differentiable at all points except 0, i.e. the left derivative at z=0 is 0 and

3.3 Overview of Neural Networks 24

the right derivative is 1. This may seem like ReLU is not eligible for use in gradient based
error minimization algorithms, such as the back propagation algorithm that is used to
train neural networks. In practice this is not true, because training algorithms do not
usually arrive at a local minimum of the loss function and ReLU’s non-differentiability is
acceptable. Additionally, there are a lot of variations of ReLU that can help in various
problems, such as linear, leaky ReLU, parametric ReLU.

Nonlinear activation functions are what give neural networks their non-linear approxi-
mation capabilities. For example, the sigmoid functions are the most used as they increase
monotonically, are symmetrical and are typically saturated to . The hyperbolic tangent
outputs span from -1 and 1 and function is defined in 3.6.

tanhx =
sinhx

coshx
=

expx− exp−x

expx + exp−x
=

exp2x−1

exp2x +1
(3.6)

where x in the case of a neural network node is its input.

Figure 3.9: tanh activation function.

Symmetric sigmoid functions, as the tanh, are preferred because they are more likely
to generate outputs, that are on average close to zero. As it is mentioned later, this helps
substantially with the neural network’s error minimization. This is in contrast to other
activation functions, e.g. the logistic, which produce only positive outputs and can make
the neural network training more complex [17].

In general, there are a lot of sources in bibliography that suggest activation functions
over others. However, there is no global activation function for all problems as it really
depends on what is the neural network asked to approximate, how data are framed and,
most importantly, what training process is followed. Training process and efficiency will
be discussed in the next paragraphs.

Training ANN: Back-Propagation

There are several approaches to error optimization and machine learning, but most of
the successful approaches can be categorized as gradient-based learning methods. The
learning machine is simply illustrated in Fig. 3.10.

In the simplest setup the learning problem consists of finding all values of a neural
network parameters, the weights (W), that minimize the cost function. In practice, the
performance of the system on a training data set is of small significance, because the more
relevant measure is the error of the model in the field where it would be used in practice.
As a result, it is really important to maximize the model’s ability to generalize.

3.3 Overview of Neural Networks 25

Figure 3.10: Gradient based learning flow.

A widely used method is the back-propagation training. In the simplest format, such
as training a neuron, a typical back-propagation algorithm works in three steps:

1. A feed forward pass generates an approximation ŷ of the target value, the prediction,
using the initial weight and bias values. This pass is illustrated by the the green
arrows in Fig. 3.11.

2. Then a reverse pass, i.e. starting from the output backwards, generates local deriva-
tives of each node’s output, taking a advantage of the rule chain, and generates the
differentials of weights for the error. The back-wards pass is illustrated by the the
red arrows in Fig. 3.11.

3. The differentials confess the direction of which the error moves, i.e. increases or
decreases, based on what direction the weight values move. Therefore weights are
updated accordingly to minimize the error. When the weights are updated then a
training iteration or epoch is finished.

Figure 3.11: Back-propagation zoomed at a single node.

The loop goes on until the final approximation ŷ satisfies the expected error threshold
between y and ŷ. After the cost function generates an acceptable error then training loop
is finished. The last update for the neural network’s weight and bias vector is saved and
used for predictions. The last iteration values and the ANN architecture is what is called
a trained neural network and what is used during simulation.

3.3 Overview of Neural Networks 26

Consequently, training a neural network is a standard optimization process and, like
every optimization problem, there is no standard settings with regards how to tune it to be
successful always. Nevertheless, there are settings that can make the optimization process
faster and more effective. These settings are described in the next paragraph.

Efficient Back-Propagation

Back propagation is a very popular neural network training algorithm because it is simple,
computationally efficient and often works. However, getting it to work well, and sometimes
to work at all, is considered more of an art than science. Designing and training a network
using back-propagation requires making many seemingly arbitrary choices such as the
number of node and layers, type of node activation functions, algorithm learning rates,
deciding training and test set and a lot of other choices. These choices can be fairly critical,
yet there is no golden rule that should be always followed, as they are problem and data
dependent. This means that no formula could guarantee that a network architecture will
converge to a good solution, convergence will be quick and if it will even occur. In this
section, a set of best practices will be presented as they were followed later on to make
the training process easier for the algorithms used.

Normalizing the inputs is one of the most known practices. Convergence is usually
faster if the average of each input variable over the training set is close to zero. Any shift
of the average input away from zero will bias the updates of the weights in a particular
direction, i.e. increase or decrease, and thus slow down learning. Therefore, it is good to
shift the inputs so that the average over the training set is close to zero. Additionally,
convergence is faster not only if the inputs are shifted but also if they are scaled so that
all have about the same covariance or covariance coefficient.

For marine engine applications, normalizing data is necessary in order to accelerate
training because most of the quantities are positive for most of the time and their values
differ in orders of magnitude, especially if it is considered that each variable is described
by units and units can differ for the same variables, e.g. pressure, temperature, mass flows,
pressure ratio and various other quantities. In the current thesis, same quantities use the
same unit and all of them are normalized with a minmax scale between 0 or the variable’s
minimum range value, if it is less than 1, and maximum value equal to 1, in order for the
input variables to adjust better to the activation functions used, i.e. tanh.

Activation function affect substantially how training will be accomplished. The most
common functions are the sigmoid. As described before tanh is ideal for accelerating
training. Especially, Yann LeCun et al [25] recommended the sigmoid in 3.7, because it
can speed-up training when used with normalized inputs of same covariance.

f(x) = 1.7159 tanh(
2x

3
) (3.7)

The simple tanh is used as the activation function of all neural networks developed
under the current thesis. NOx and λ value are two quantities that follow non-linear tra-
jectories through the operating area of a marine engine, that is why tanh is the most
appropriate activation function. The covariance study for the inputs and outputs is ne-
glected given that the inputs have already been decided by the engine sensors configuration
and traditional first principle’s theory.

Choosing target values is also very important, especially if sigmoid functions are used
as activation functions. It is usually best to avoid using target values that are close to
the sigmoid’s asymptotes and rather be spread to within the “leaner” part of the sigmoid.
Care must be taken though to ensure that the target values don’t restrict nodes only
to the linear part of the sigmoid, or else the non-linear capabilities of sigmoid are not

3.3 Overview of Neural Networks 27

taken advantage [25]. For example, if a normalized dataset between -1 and 1 is dense
at maximum or minimum values, probably a normalization between -0.98 and 0.98 could
accelerate training. Another solution might be to use biased versions of the simple tanh.

Some advanced training options can also affect training speed and efficiency. Optimal
initialization of neural network weights can have a significant effect on the training process.
Weights should be chosen randomly but in such a way that the sigmoid activation functions
are primarily activated in their linear region. If weights are all very large then the sigmoid
will saturate resulting in small gradients that make learning slow. If weights are very small,
then gradients will also be very small. Intermediate weights that range over the sigmoid
linear region have the advantage that the gradients are large enough for learning to proceed
and the network will learn the linear part of the mapping before the more difficult nonlinear
part. This can be achieved by choosing initial weights randomly from a distribution with
zero mean and standard deviation of = m(− 1/2), with m the number of connections
feeding into the node, assuming first that normalized uncorrelated training variables and
tanh function are used. Finally, advanced learning techniques and algorithms might also
be occupied to improve training, e.g. using adaptive learning rates algorithms [25].

When the aforementioned techniques are used, they can accelerate and optimize train-
ing of a neural network. Training speed-up is essential for the time series approximation
problems and even more for marine engine parameters approximation. This is the case be-
cause the engine parameters must be sampled with relatively low intervals, e.g. 1-100ms,
when compared to other machine learning problems. The low sampling of diesel engine
quantities are directly correlated to the cycle duration and the systems time constant and
they must not be neglected. However, more target data lead to more calculations during
training and therefore training slowdown. In general, the accuracy of traditional ANN
models is not guaranteed to converge fast or be optimal during training and that is why
more complex model architectures than the multi-layer perceptron have been developed.

3.3.3 Time-Delay Neural Network

A multi-layer perceptron can be a universal function approximator as long as it has enough
nodes and layers [23]. This means that even the more complex non-linear systems can be
approximated accurately enough with a multi-later perceptron without the need to use very
complex cell architectures. In practice, the training effort to train huge stack of perceptron
layers is substantial. As a result alterations of the typical multi-layer perceptrons are used
to accelerate training and achieve good accuracy with smaller neural network models. One
alteration is the multi-layer perceptron that use as inputs their inputs and their previous
values and it is known as time delay neural network (TDNN).

Figure 3.12: Time-delay Neural Network (TDNN).

In principle, these models have been chosen because a dynamic system, such as the

3.3 Overview of Neural Networks 28

marine engine of the laboratory facility, depends on its initial conditions and its previous
states. As a result, a neural network model is more accurate if it takes into account the
system’s previous states to calculate its next ones. Independent of the other model inputs,
using previous input variable states as additional inputs improves the model’s accuracy
with smaller architectures compared to typical multi-layer perceptron models.

3.3.4 Recurrent Neural Networks

Multi-layer perceptron models have significant mapping capabilities and can perform well
prediction unknown data within the training range, even with a reduced set of identi-
fication data. However, advanced neural network architectures have been proven to be
effective for modelling non-linear dynamic systems by introducing feedback connections
a recursive computation structure, i.e. Recurrent Neural Networks. Among others Arsie
et al. [16] proposed such a model based on predicted output feedback for simulating the
nonlinear dynamics of the two phase fuel flow in the intake manifold of an SI engine.
Such an application proves that this type of Neural Networks can be used to simulate
non-linear dynamic systems. the Recurrent Neural Networks (RNN) meet this require-
ment because of their dynamic properties. They are derived from a stack of neurons that
include feedback connections among themselves. Thus a dynamic effect is introduced into
the computational mechanism of the model by a local state. Moreover, by retaining the
non-linear capability of the typical MLPs, the RNNs are suitable for non-linear dynamic
modelling because of the state recursion functionality. Depending on the feedback topol-
ogy, state can be retained after each prediction for each neuron or the complete neural
network structure. Under this principle, the RNNs are classified as local and external
Recurrent Neural Network when the feedback happens locally at each neuron or if only
the output prediction is fed back to the input layer respectively [18].

Figure 3.13: Neuron with internal state.

What happens at the first prediction in Fig. 3.13 is that the neuron is fed by an input
x0, produces h0 that is the neuron output and at the same time is kept as the neuron state
for the next prediction. Next, the neuron is fed by an input x1 and produces h1 with the
contribution of both h0 and x1 and so on and so forth. This capability is helpful when
the model prediction depends on the internal state of the model, i.e. neural network.
In most of the marine engine problems, the state of the system depends substantially
on the system’s previous state and that is why marine engine variables are traditionally
described by differential equations. Taking this into account, any candidate model of a
marine engine should be more accurate, if it takes into account the previous state of the
system and that is why RNNs with external feedback of the prediction and the previous
input values are studied in the current thesis.

3.3 Overview of Neural Networks 29

Figure 3.14: External Recurrent Neural Network with Input delays.

In this approach previous predictions are appended as inputs of the complete model
and they take part in the calculations for the next prediction. This way a dynamic effect is
introduced to the model. Overall, RNNs are capable of behaving similarly to dynamic sys-
tems and their dynamics can be described through a set of equivalent nonlinear ordinary
differential equations. Hence the time evolution of an RNN can exhibit a convergence to a
fixed point, periodic oscillations with constant or variable frequencies or even a chaotic be-
havior. The stability problem is significantly important, especially when control strategies
depend on the dynamic model, thus an appropriate mathematical processing is required.
However, in this project the dynamic models developed are only used for simulations.
That is why the generated models are not tested in depth in terms of stability, but are
extensively validated based on their generalization capability.

Finally, recurrent neural networks are trained under the same principles as the typical
Multi-Layer Perceptron, typically with the Back Propagation algorithms. The standard
recurrent node adds one more parameter, i.e. one more weight, to train. There are more
sophisticated and complex recurrent node architectures, such as the Long-Short Term
Memory cells, but they are not investigated in this project.

Chapter 4

Models Design and Training

In this chapter, the ground is layed for the application side of the thesis. Most of the
principles presented at the previous chapters are effective when used with careful plan-
ning. The absolute goal for this thesis is to develop models for the LME marine engine
hybrid test-bed with regards to the NOx emissions and λ value. The resulting models will
be used either as virtual sensors or reference models for controls applications in future
projects of the LME. The models developed are data-based and their quality depends
on the quantity and quality of data. For that reason, measurements data and system
identification studies have been used from previous projects and thesis of the LME. In
this chapter, past measurements are presented, prepared and used for the neural network
models development. In order to create the model an automated script is designed and
used to decide the models’ architecture. The script is designed in a modular way so that
it can be re-used for other applications or variations of the same problem with different
datasets. Finally, the training results are presented.

4.1 Data preparation

4.1.1 Training Data

The data acquisition and sensors systems presented in 2 were used to acquire the measure-
ment data. Developing a neural networks model depends on the data quality and density
because:

1. the models draw their trusted range on the training data range and

2. the predictions depend on the training input signals dynamic

Therefore, the data should be enough to represent the complete operation range of a
dynamic system, such as the hybrid marine engine test-bed.The measurement data used
contain the intake manifold absolute pressure, λ value, NOx emissions, engine shaft speed
and torque for each operating point combination. Specifically, the dataset used in this
project is derived from measurements with the ICE warm and the operating point is
determined by the shaft speed request which is increased from 1000 RPM to 2200RPM at
100RPM increments with alternating torque step requests as presented in Fig. 3.4. The
full combination of training operating points is shown in Fig. 4.1.

This values are used as static values because the raw measurement of engine speed and
shaft torque include a lot of noise mainly from the speed governor of the testbed - which
is affected by the water brake- as shown in Fig. 4.2 and Fig. 4.3.

The training datasets come as raw data and snapshots from 135 minutes of continuous
measurements, which are then stiched together in the full 8000s figures, e.g. Fig. 4.6.

30

4.1 Data preparation 31

Figure 4.1: ICE shaft speed and Torque load training data coverage within engine envelope.

Figure 4.2: Raw ICE shaft speed and alternating step torque load request for 1900 RPM.

Each engine speed target is tested for a time period of 30s to 70s depending on the torque
request alternations for the key quantities of the test-bed. For example, figures Fig. 4.2
and Fig. 4.3 are snapshots from static command engine speed tests. After stitching the
tests together, the result is the full training trajectories for inputs and outputs of the

4.1 Data preparation 32

Figure 4.3: Raw ICE shaft speed and alternating step torque load request for 2100 RPM.

models. In Fig. 3.4 only two of the training inputs are illustrated. There are also used
the manifold absolute pressure and, only for the NOx models, the measured λ value as
inputs.

Figure 4.4: Manifold absolute pressure (bar) for the complete training timeseries.

The full training trajectory for each one of these quantities is more than 8000s sampled

4.1 Data preparation 33

Figure 4.5: Zoomed manifold absolute pressure (bar).

Figure 4.6: Measured λ value from sensors: used both as input to the NOx models and
as target trajectory for the λ value models.

by the default DAQ rate of 1ms, which leads to numerous data points. Even if all the
best practices were followed to accelarate the models training, it would still be too long
because of the huge matrix inversions the training algorithm has to perform. As a result

4.1 Data preparation 34

Figure 4.7: Measured NOx [ppm] from sensors: used both as target trajectory for the
NOx.

Figure 4.8: Zoomed Measured NOx [ppm] from sensors: used both as target trajectory
for the NOx.

data must be reduced and cleaned before training.

4.1 Data preparation 35

4.1.2 Data Pre-processing

As mentioned in 3.3.2 , it is very important for the training of a neural network model
to pre-process the data before training in order to accelerate it and lead it to a successful
error minimization. Both data normalization and cleaning from redundant values that
are going to slow-down the training algorithm, e.g. if the very dense datasets that were
presented earlier are used directly. Finally the sensors locations introduce a delay between
the inputs and the outputs that could affect significantly the correlation of the data and
therefore affect negatively the model training. That is why the delay is identified and
removed by cross-correlating input torque signal and target NOx and λ value.

First step is to clean the raw measurement data points and reduce them in the order
of thousands in order to speed-up training. Although the data reduction should not occur
randomly or important details may be lost from the training dataset. It is important that
the reduced datasets cover the dynamics of the test bed dynamic behavior. If the datasets
are reduced to intervals lower than the time constant of the system, then an aliasing effect
is introduced to the measured data sets and the neural network models training will be in
wrong data. On the other hand, the training will not converge promptly and the resulting
neural network model will overfit, if the model is trained with more than necessary data
points. That is why it is important that the system is identified and its time constant is
taken into consideration when reducing the training datasets. The identification of the
HIPPO-1 testbed is not carried out in this thesis but it is known from previous work in
the LME. Papalambrou G. et al ?? carried out the system identification of the HIPPO-1
testbed and step response analysis showed that the system’s time constant is approximately
0.4s, as a typical diesel engine.

The measurements are carried out with a sampling interval of 1ms which is approxi-
mately 2000 times more frequent than the HIPPO-1 system’s time constant. This means
that the training datasets are over-sampled and it is ok to reduce them. Despite the time
constant being in the magnitude of seconds, the data must not be reduced in that scale
because a lot of details will be skipped. For example, the models are data based models,
but the NOx formation and λ value quantities vary through the engine cycles which are
less than the system’s time constant, approx. 50-240ms depending the ICE shaft speed.
That is why the data are re-sampled per 100 ms and therefor all information is preserved
according to the Nyquist theorem. As shown in Fig. 4.9 , the resulting data do not lose
the important details in the transient response area despite the fact that the datasets are
thinned by a factor of 100. Additionally to reducing the data, the curves are smoothed
from the staircase profile of the Measured trajectories that the data acquisition system
introduces due to continuous high rate measurements, which is inconsistent with the value
update. In other words, there were too many data points in the initial datasets, even more
than the DAQ logged and that is why each value was held for several 1ms instances before
it changed. This effect would have been present in the resulting models.

Moreover, it is essential to normalize data depending on the activation function that
is going to be used for each layer. The scaled data capture the dynamic behavior of
HIPPO-1 testbed and no aliasing effect is introduced. All training input and output data
are normalized between 0 and 1 and the resulting data sets mean is close to zero. The
scale for each quantity is global for all training datasets and it is equal to the operating
range of the test-bed in order for the models to capture the systems’ complete behavior.
As a result, each quantity is scaled with a single global range, regardless if there are
more than one dataset used per quantity and if each training data set spans in a different
range. The data normalization happens automatically inside the Python code used for
the model development and the resulting models memorize the data min and max range
in an internal vector as it will be presented later. During simulation the model uses this

4.1 Data preparation 36

Figure 4.9: Measured NOx [ppm] from sensors: Reducing oversampled training set.

range to convert the input quantities and produce its output.
Lastly, sensors location at the exhaust duct introduce delay in the measurement data.

Laboratory NOx/O2 sensor is installed approx. 1m downstream from ICE turbine and the
measurements are found to be delayed with regards to other more synchronized quantities.
For example the torque and ICE shaft speed commands are signals that are control by
the HIPPO-1 operator and occur instantly. After a few seconds of delay and system’s
time constant, the resulting shaft torque output is reached simultaneously with the NOx

emissions. As a result the NOx measurements should be synchronized with the resulting
torque. This is not the case for the HIPPO-1 testbed and that why the normalized
correlation coefficient method is used to identify the delay duration for both of the target
signals, NOx and λ value which are measured in the same location. The correlation
coefficient is calculated between the requested torque step command, which agrees timely
with the simultaneous change in ICE shaft torque output, and the Measured NOx. As
shown in Fig. Fig. 4.10, the correlation coefficient was calculated to estimate the delay
between the input and the output signals.

The shifted data sets reach a correlation of 0.97 on average between the torque pulse
and the NOx measurement. Other inputs data such as the engine speed or λ value cannot
be shifted or transformed in a more friendly to correlation value format because they will
lose their dynamic. As a result they are left as they are for the NOx models.

Overall, data preparation was essential because the training data contained measure-
ment noise, delays, redundant data points and they had different value ranges and these
could have slowed down the model training.

4.2 ANN Design 37

Figure 4.10: Normalized cross-correlation coefficient between NOx emissions and torque
request.

4.2 ANN Design

This section summarizes the process created to generate the neural networks models. From
a software development point of view, the problem of developing neural network models is
very generic, despite the project’s goal. As a result, the process is designed carefully, in a
modular way, in order to allow future projects to re-use the Python program developed and
tackle any supervised learning regression problem training neural network model. This
means that the method described below is not problem or data dependent, as soon as a
set of minimum requirements are met:

• Data are timeseries, provided in csv files and each column includes one variable

• All columns have the same length

• Pyrenn module is required for model creation

• Pandas, Numpy, Matplotlib, scikit-learn modules were used

The method designed is using open-source and free Python modules and frameworks.
If the aforementioned prerequisites are met, it can be used to generate ANN models with
inputs delay and prediction feedback loop for any dataset.

4.2.1 Pyrenn: RNN and TDNN Python toolbox

Pyrenn is a recurrent neural network toolbox for Python and MATLAB developed by
Dennis Atabay from Technical University of Munich (TUM) [22]. It is an open source

4.2 ANN Design 38

Figure 4.11: Neural Network Architecture guideline from [22].

neural network builder which enables fast prototyping of wide variety of Recurrent Neural
Networks using a set of 5 commands. It differs from popular mainstream neural network
development frameworks, because it is very simplistic using purely NumPy and Pandas
to create, train and use neural networks. Other mainstream neural network builders have
been studied, such Keras and Tensorflow, but they have been found cumbersome enough
to produce RNN models for time-series predictions and at the same time they need a huge
effort to transfer to a ECU prototyping board, i.e. compile their source code to C.

Regarding activation functions, tanh and linear functions are the only ready-to-use
activation functions and the training algorithm is Levenberg-Marquardt (LM) [26], which
converges much faster than gradient descent algorithms for time-series predictions due
to its nature. The number of training epochs needed is lower than other applications
might need, e.g. image recognition applications. The LM algorithm implementation for
the initial Pyrenn toolbox was prone to freeze when it reached very small incremental
improvements on the error minimization. That is why the author introduced a new input
variable for the algorithm, i.e. the minimum error minimization step, which forces the
training to stop if very small improvements are met, it has been submitted in GitHub
stream and it is part of the main Pyrenn stream shown in Appendix A.

After model training, trained models are saved in Python dictionaries which can be
used to make predictions by the Pyrenn prediction code. Models that are trained in
Python can also be transferred to MATLAB through the Pyrenn MATLAB interface and
vice versa. Fig. 4.11 illustrates how a typical RNN structure looks like for Pyrenn.

Overall, Pyrenn was selected for its portability and rapid prototying RNN capabilities.
It takes small effort to build neural network models and this promotes quick testing of a lot
of model architecture variations. At the same, models can be trained in Python algorithm
and easily transferred in MATLAB/Simulink. This enables the portability of the trained
models from Python to Simulink and as a last step to compile them for hardware boards,
such as the dSPACE ECU prototyping board of the LME. As a result, model creation and
portability is accelerated significantly with Python

4.2.2 Model development methodology

In this project, model development takes place by performing a full factorial design of ex-
periments (DOE) looking for the minimum model architecture with the optimal accuracy.
The same method is used for both TDNN and RNN models. The difference between the
two models is the RNN’s additional feature of the predictions feedback loop. This feature
is characterized by its duration and that is why a design decision has been made. The
additional decision for the RNN is the difference between the design of experiments for

4.2 ANN Design 39

the RNN and the TDNN models.
Specifically, a Python script is developed to carry out the two designs of experiments

and decide on the final models architecture. It performs a full parametric study over
the neurons, hidden layers, inputs and output delay duration. All models are multiple
input and single output. The models are selected as candidate best models based on the
R-squared (R2) scoring. The final models are chosen based on the accuracy and stability
of the predictions curve for the best candidate modes, i.e. the models with the higher R2

results. All architectures are considered because in time-series predictions modelers have
to visually select the model if the only metric available is R2. The algorithm is designed
as a generic software that can generated neural network models. That is why it uses a set
of inputs, regardless of the problem tackled:

• Training data in csv files with each time-series in each column.

• Maximum number of hidden layers

• Maximum number of nodes

• Maximum inputs delay duration

• Maximum output feedback loop duration

In summary, the algorithm investigates what the feedback loops duration should be
for inputs and output delays. Additionally it decides on the optimal number of hidden
layers and nodes by creating, training and validating each model architecture one by one.
After validation, the R2 score is saved in a log file. Lastly, the log file helps to choose the
best candidate models. These models results are inspected visually, i.e. the results are
plotted and evaluated manually, and the final model is chosen based on the noise in the
results and the lack of over-fitting on the training set.

The models are created with the Pyrenn module [22]. In the beginning, training data
sets are created using the scripts’s inputs. The data are inserted in csv files and they are
reduced and normalized as mentioned previously. Each model is built within a 3-levels deep
for loop that build models depending on the number of hidden layers, nodes per layer,
input and output feedback duration. At each pass a new neural network architecture,
i.e. TDNN or RNN, is created and it is populated with layers, neurons and activation
functions. In this project, several network architectures have been tested and a full sweep
of models up to 2 hidden layers, 20 neurons per layer and 12 samples memory of in- puts
and output values were studied. Each model is trained for a maximum of 200 epochs with
the Levenberg-Marquardt [26] algorithm. After each model is created, it is tested based
on the training set for the last time and the R2 score of the predictions is calculated. If the
R2 is higher than 0.925 then the model is considered as a best candidate model, the R2,
the name and the trained model is saved in log file and in a folder in the working directory.
The algorithm continues until all model architectures are created and evaluated. This can
be a time-consuming approach and that is why each model is trained for a maximum of
200 epochs and the training stops, if the error minimization is low using the new input
variable that was introduced by the author. As a result the training is sped up significantly
and how the model architecture size affects the model efficiency to capture the system’s
behavior.

Lastly, the best model is qualified visually and manually. The results on the training
set are plotted and they are inspected for noises, signs of over-fitting and inaccuracies in
the most interesting operating areas of the marine engine.

To sum up, the Python script creates and tests all model architectures depending on
the maximum number of hidden layers, the maximum number of nodes per layer and the

4.2 ANN Design 40

Figure 4.12: Model development flow chart.

output feedback duration as shown in Fig. 4.12. It saves the best models in the csv format,
given an acceptable error. The final model selection takes place visually depending on how
accurately reproduces the dynamic behavior of the system.

Chapter 5

Model Training

This chapter includes the results and notes from the training process of the TDNN and
RNN models. Two models were developed for each ANN architecture, one for NOx and
one for λ value. That is why this chapter is split in two sections, one for the TDNN models
and one for the RNN models.

5.1 TDNN models for λ value and NOx

TDNN models are characterized by their capability of using input sensor data from current
or previous instances in order to calculate their predictions. Such models have been
developed using the method and the algorithm described in the previous chapter. So a
full sweep of TDNN models were tested with up to 2 hidden layers, 20 neurons per layer
and 12 steps input delay, i.e. 1200ms, memory of inputs were studied. Each model is
trained for a maximum of 200 epochs with the LM algorithm. Multiple architectures have
been evaluated for λ value and NOx approximation and the best models are presented in
Fig. 5.1 and Fig. 5.2.

Figure 5.1: The resulting TDNN model for NOx.

41

5.1 TDNN models for λ value and NOx 42

Figure 5.2: The resulting TDNN model for λ value.

The two models are chosen among the best candidate models based on the R2, as
described in the method description section. During training it was noticed that a single
hidden layer is enough for the TDNN models to be accurate as they draw their prediction
capabilities from the previous states of the inputs. Nevertheless, it was noticed that models
with a second hidden layer score high R2 values but their results are noisy and around the
target values, which is a clear indication of overfitting the training set as show in Fig. 5.7.
That is why only models with one hidden layer are considered. Additionally models with
longer inputs delay duration are more accurate than models with smaller inputs delay
duration as shown in Fig. 5.3. However, models with very high R2 values are overfitting
the training dataset. This is observed in the figure which shows that the over-fit model
demonstrates high oscillations despite the highest R2 over all the λ value models equal
to 0.9883. A model with lower R2 scoring, e.g. 0.9498, is producing more steady results
with no significant oscillations over the steady state and the transient phenomena. That
is why the models are chosen after plotting their results, compared with the target values
and the choice of the best model for each application was done manually.

Figure 5.3: Effect of sensors inputs delay on R2 for λ value TDNN models

5.1 TDNN models for λ value and NOx 43

For λ value, the TDNN models has 7 neurons and 6 steps input delay. For NOx, the
TDNN model has 10 neurons and 12 steps input delay. The results of both models are
plotted on top of the training set. Additionally, the predicted values are compared with
the target values in typical predicted versus measured plots.

Figure 5.4: Training results for λ value TDNN model.

Figure 5.5: Training results for λ value TDNN model zoomed.

As shown in the figures, the best models results exemplify good agreement in the
transient behavior of the training dataset, while at the same time they approximate steady
state adequately. In some cases there is a steady state error, mainly close to the inputs
range, but in most case the steady state results are very close to the target values.

5.1 TDNN models for λ value and NOx 44

Figure 5.6: Measured versus Predicted plot for TDNN λ value model training.

Figure 5.7: Overfit results for λ value TDNN model versus best model and measured
values.

5.1 TDNN models for λ value and NOx 45

Figure 5.8: Training results for NOx TDNN model.

Figure 5.9: Training results for NOx TDNN model zoomed.

5.1 TDNN models for λ value and NOx 46

Figure 5.10: Measured versus Predicted plot for TDNN NOx model training.

5.2 RNN models for λ value and NOx 47

5.2 RNN models for λ value and NOx

In addition to TDNN models, there were developed RNN models that use previous in-
stances of both inputs and output in order to calculate their next output. This helps
improve accuracy in the transient area of the training set with smaller model architec-
tures. In other word, the RNN models developed are substantially smaller than the TDNN
models for the same target values.

During training of multiple RNN architectures, it was noticed that increasing the
output loop duration increased accuracy of the models, similarly to the effect of the inputs
delay. Similarly to the TDNN models, it was noticed very early that a second hidden layer
was not necessary because the deep architectures overfit the training dataset. It was
decided to test architecture with a maximum 12 steps, i.e. up to 1200ms, inputs delay
and 12 steps, i.e. up to 1200ms, output delay. So a full sweep of RNN models up to 2
hidden layers, 20 neurons per layer and 12 samples memory of inputs and output values
was studied. Each model is trained for a maximum of 200 epochs with the LM algorithm.
The candidate RNN models were chosen based on their R2 score on the training set. If a
model scored higher than 0.925 R2 was saved and its predictions were inspected visually
for signs of overfitting, i.e. noise, before the final models were selected. For most of the
models the training converged in less than 75 epochs and the LM algorithm stopped for
many models by the newly added minimum error stop criterium developed by the author.
The two best RNN models for NOx and λ value are shown in Fig. 5.11 and Fig. 5.12.

Figure 5.11: The resulting RNN model for NOx.

Comparing the final TDNN and RNN models, it is noticed immediately that the RNN
models are not equally complex but they are as accurate on the training set. This means
that the RNN models can predict better results on the training set with less parameters.
Specifically, they have smaller input delay duration for the input variables and the hidden
layer has less nodes for both the NOx and λ value models. This was expected because the
RNN models are using their previous predictions to calculate the next. It has to be noted
that the RNN models must also produce accurate predictions because bad predictions
could worsen their next results even more as a chain reaction and the model will go into

5.2 RNN models for λ value and NOx 48

Figure 5.12: The resulting RNN model for λ value.

instabilities. This another reason why the training of RNNs must be as accurate as possible
without overfiting at the same time. The RNN training results are show in the Fig. 5.13
and Fig. 5.16.

Figure 5.13: Training results for λ value RNN model.

The results for the RNN show better correlation with the target training data than the
TDNN models. This is proved both by the R2 and the predicted-measured plot, which is
more compact in the 45o line. The RNN results are less accurate close to the training set
maximum and minimum limits than the results in the middle of the data range, which is

5.2 RNN models for λ value and NOx 49

Figure 5.14: Training results for λ value RNN model zoomed.

Figure 5.15: Measured versus Predicted plot for RNN λ value model training.

acceptable since in that area are usually non-interesting NOx spikes. Additionally, this
demonstrates the fit of the sigmoid activation function, which produces accurate results at
its main lean area but less accurate at the range’s limit. Regarding λ value RNN model,
the λ value results are less accurate as the λ value values increase, which is acceptable
since this represents the high λ value values spikes shown in the figure which is a less
important area than the rest of the transient area that lambda is equal to 0.9-7.

5.2 RNN models for λ value and NOx 50

Figure 5.16: Training results for NOx RNN model.

Figure 5.17: Training results for NOx RNN model zoomed.

5.2 RNN models for λ value and NOx 51

Figure 5.18: Measured versus Predicted plot for RNN NOx model training.

5.3 Training conclusion 52

5.3 Training conclusion

The four best models were chosen among all the different architecture permutations of
the TDNN and RNN models. The structure of the final models for NOx and λ value
prediction is presented in table 5.1.

The training is considered successful due to multiple factors, such as the fact that the
LM algorithm converged relatevily fast with high R2 score for each model as shown in
table 5.2, the visual inspection of the predicted-measured and the full training-predicted
set plot, which shows that the models follow the measured data trajectories successfully
in both transient and static areas. At the same time the input selection assumptions are
considered equally successfull. In the next chapter, the four selected models are ported
from Python to Simulink and then to the LME ECU prototyping system in real-time
conditions.

Table 5.1: Internal architecture of the neural network models.
Parameter NOx RNN NOx TDNN λ value RNN λ value DNN

Hidden Layers 1 1 1 1
Nodes of hidden layer 2 10 6 7
Inputs size 8 48 17 18
Inputs Delay 1 12 4 6
Output Feedback Delay 4 - 5 -

Table 5.2: R2 accuracy score of the NN models during training.
Dataset NOx RNN NOx TDNN λ value RNN λ value TDNN

Training data 0.987 0.9833 0.9812 0.9498

Chapter 6

Real-time Validation with ICE
testbed

The trained models have been verified with the training set and they proved that their
predictions are accurate enough to consider using them as the representative models of the
system. However, the models need to be proved accurate in areas that it is not included
in the training dataset but in the same range as the training set. In other words it has to
be proved that the models did not overfit the training data and they can both reproduce
the dynamic behaviour of the system and interpolate between different ICE engine speeds
and torque commands.

That is why the models are ported from Python to MATLAB, then to a Simulink
model and lastly code is generated and the models are built and run on an ECU prototype
machine. The latter is controlling the test bed system during operation and at the same
time it uses the data acquisition system to sense quantities from various locations, e.g.
intake manifold or after the turbine. The measured values are used as inputs to the TDNN
and RNN models and the model predictions are compared with the quantities from the
sensors. This way the models are validated to patterns both similar and unknown to them.

6.1 Experimental Setup

The testbed facility equipment has been thoroughly described in paragraph earlier and
that is why it is not going to be described in this one. As mentioned, the laboratory
equipment includes a dSPACE DS1103 board which is responsible for data acquisition
and control of the test-bed. The same dSPACE board is used to test control strategies
harnessing its rapid control prototyping capability and MATLAB/Simulink compatibility.
In order to do so, the Python models must be exported.

There were several ways investigated porting the Python models in Simulink, such as
compiling the Python code from source, direct coupling between Python and Simulink via
handwritten C code s-function. All of them have been proven inefficient due to the high
effort needed to tune them up. However, the module used to create and build models,
i.e. Pyrenn, can export a trained model as a comma-separated file (.csv). Additionally, it
has a MATLAB portion that can interpret the saved CSV file in MATLAB variables for
the MATLAB workspace. The loaded MATLAB variables can be indexed accordingly in
order to reconstruct the neural network models in Simulink with simple Simulink blocks.
This is possible because the neural networks model calculations can be easily reproduced
by matrix calculations. The true value of the neural networks is their parameters after a
successful training, i.e. model is producing accurate results. The resulting Simulink model
are shown in Fig. 6.1.

53

6.1 Experimental Setup 54

Figure 6.1: λ value RNN in simulink.

As a first step the Simulink model is validated with training inputs from Python and
the model predictions are compared with the Python output values. This is necessary
because it proves that no mistakes have been done during the porting of the four neural
networks. All predicted Simulink results are exactly equal to the predictions from Python
tests, as shown for example in Fig. 6.2.

Figure 6.2: Validation of succesul porting NOx RNN model to Simulink from Python.

While the investigation of porting the models to the board for Real-Time validation
was time-consuming, once it was decided and validated, Python models can be easily
transferred to Simulink.

Finally, the Simulink model is comprised of simple components that can be compiled
via the Simulink Coder for the dSPACE target. As a result the neural network models
were deployed for real-time validation tests on the dSPACE board. The tests were carried
out in two series. The first is 6 validation sets that replicate the part load conditions that
the four models were trained with. This means that both engine speed and torque change

6.1 Experimental Setup 55

in step command at different instances between each other. The second series of validation
is two fully transient routes with step torque commands and constantly changing engine
speed. In the first validation case, pulses occur for longer duration than the training pulses,
e.g. the pulse height is 200-250 Nm whereas in training the typical width is 50 Nm. For
this case, models exemplify that they can reproduce well transient response for NOx and λ
value during a pulse response, regardless of the pulse width. The second validation scenario
includes two tests; the first is performed under arbitrarily alternating ICE torque and shaft
speed demand between 1200 and 1630 RPM and 300-500 N-m, which is a focal operating
point in many test for the ICE tested. The second test is a random case of alternating
ICE torque and shaft speed demand, which intended to push the models to their limits.
The two last scenarios are challenging because the transient patterns are unknown to the
models, close and outside their training limits. Fig. 6.3 shows the validation test area,
which is included in the training limits but the validation operating points do not overlap
with training ones neither in dynamics or the torque command pulse height and duration.
This is enough to test the performance of the NN models within the operating area of the
marine ICE.

Figure 6.3: Validation area and scenarios for the NOx and λ value models. The validation
is performed within the training area but with different pulse width and more highly
transient patterns

6.2 Validation Results 56

6.2 Validation Results

6.2.1 TDNN models for λ value and NOx

NOx and Lambda TDNN Models The TDNN models follow the part load validation sets
adequately but not very accurately. The results for the fully transient dataset are not
accurate and they consider unacceptable. The main reason is because the models are
trained in part load dataset that change in steps and remain constants until they change
again, i.e. the engine speed and the torque command. It appears that once the models
are stimulated differently, then their predictions are decrease significantly in accuracy and
their R2 score is very low. This means that the TDNN models not only need be used
within the training area, as any data based model, but also they have to use inputs of
similar dynamics. It is also important to point out that the TDNN model for λ valueis
more accurate than the NOx model and this is due to the fact that it is simpler and has
not overfit the training set. This stems from the fact that the NOx TDNN model produces
very noisy results for areas and input data that it is not familiar with. All these are shown
in the table 6.1 and the Fig. 6.4 from to Fig. 6.19.

Table 6.1: R2 accuracy score of the TDNN models during validation experiments.
Dataset NOx TDNN Cum. NOx % Error λ value TDNN

Valid. exp. 1 0.6873 -13.05% 0.7723
Valid. exp. 2 0.766 -12.36% 0.8818
Valid. exp. 3 0.79063 -2.58% 0.91646
Valid. exp. 4 0.835 -0.248% 0.8626
Valid. exp. 5 0.8148 -2.86% 0.9022
Valid. exp. 6 0.81414 1.816% 0.85697
Valid. exp. 7 0.3402 -3.7654% 0.73284
Valid. exp. 8 0.021 -31.8% 0.60167

Overall, the TDNN models while they can produce accurate results for the training set
and similar areas like validation set 3 and 5, it is proven by the real operation validation
that they cannot be trusted to reproduce the benchmark ICE behaviour. A comparison
between the NOx and the λ value model shows that the NOx model produces worse results
than the λ value model, despite the fact that during training it scores a higher R2 and it
occupies more parameters. As a result, they cannot generalize well enough to be used to
drive a controls strategy or onboard diagnostics and that is why the focus is turned to the
RNN models.

6.2.2 RNN models for λ value and NOx

On the other hand the RNN models score relatively high R2 values on the part load tests
and they stay consistent in the two tests that are stimulated with unfamiliar to them inputs
quantities patterns. Especially the NOx model does not score less than 0.92 R2 even for
the validation test that is unknown to it. The λ value RNN is less accurate than then
NOx RNN and this is mainly because the NOx model uses one more input with dynamic
behaviour, i.e the λ value from sensor. Therefore the λ valuemodel depends in two static
inputs, the engine speed and torque command pointers, and draws its dynamics partially
from the manifold absolute pressure signal and the non-linear activation functions. To
sum up, the table 6.20 includes all the R2 scores for the two RNN models.

The NOx model not only scores high on R2 but also follows the dynamics of the NOx

curve from the sensor. The λ value model follows the dynamics adequately but its results

6.2 Validation Results 57

0 50 100 150 200 250
0

200

400

600

800
T

or
qu

e
[N

m
]

 TDNN Validation Test-1

1049

1049.5

1050

1050.5

1051

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

0.1

0.2

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

1

2

3

4

5

6

7

8

9

 v
al

ue
 [-

]

Measured
TDNN Validation-1

 Observer

Figure 6.4: λ value TDNN results for validation test 1.

have a significant steady state error which affects negatively the R2 scoring. The RNN
models do not fall apart at the validation sets 7 and 8 in comparison to the TDNN models
and it is possible to see that results get noisy during the engine speed and torque changes.

6.2 Validation Results 58

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800
T

or
qu

e
[N

m
]

 TDNN Validation Test-2

1269

1269.5

1270

1270.5

1271

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

1

2

3

4

5

6

7

8

 v
al

ue
 [-

]

Measured
TDNN Validation-2

 Observer

Figure 6.5: λ value TDNN results for validation test 2.

Specifically in the validation set 8, the two models show the same noisy results at 50s,
which is an indication that both of the models results become unstable when all the input
quantities defer from the training pattern. The same issue is also shown in NOx model

6.2 Validation Results 59

0 50 100 150 200
0

200

400

600

800
T

or
qu

e
[N

m
]

 TDNN Validation Test-3

1479

1479.5

1480

1480.5

1481

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

1

2

3

4

5

6

7

8

 v
al

ue
 [-

]

Measured
TDNN Validation-3

 Observer

Figure 6.6: λ value TDNN results for validation test 3.

results for validation set 7 at 30s and 100s, but the model results stay accurate. Overall
the models results are accurate and follow the dynamics adequately as shown in the figures
from Fig. 6.21 to Fig. 6.36.

6.2 Validation Results 60

0 50 100 150 200
0

200

400

600

800
T

or
qu

e
[N

m
]

 TDNN Validation Test-4

1689

1689.5

1690

1690.5

1691

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

1

2

3

4

5

6

7

8

9

 v
al

ue
 [-

]

Measured
TDNN Validation-4

 Observer

Figure 6.7: λ value TDNN results for validation test 4.

In conclusion, both of the models are affected by continuous changes to their static
inputs and their accuracy deteriorates. The λ value is less accurate than the NOx model,
but it still follows the dynamic changes correctly. The RNN models are qualified to be

6.2 Validation Results 61

0 50 100 150 200 250
0

200

400

600

800
T

or
qu

e
[N

m
]

 TDNN Validation Test-5

1907

1907.5

1908

1908.5

1909

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

1

2

3

4

5

6

7

8

9

10

 v
al

ue
 [-

]

Measured
TDNN Validation-5

 Observer

Figure 6.8: λ value TDNN results for validation test 5.

used as virtual sensor because their results are accurate and stay consistent with the target
values non-linearities.

6.2 Validation Results 62

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
 TDNN Validation Test-6

2117

2117.5

2118

2118.5

2119

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

5

10

15

20

25

 v
al

ue
 [-

]

Measured
TDNN Validation-6

 Observer

Figure 6.9: λ value TDNN results for validation test 6.

6.2 Validation Results 63

0 20 40 60 80 100 120 140
200

300

400

500

600

T
or

qu
e

[N
m

]
 TDNN Validation Test-7

1000

1200

1400

1600

1800

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140
0

0.2

0.4

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140

Time [s]

0

1

2

3

4

5

 v
al

ue
 [-

]

Measured
TDNN Validation-7

 Observer

Figure 6.10: λ value TDNN results for validation test 7.

6.2 Validation Results 64

0 50 100 150 200 250 300
0

500

1000

T
or

qu
e

[N
m

]

 TDNN Validation Test-8

0

1000

2000

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250 300
0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200 250 300

Time [s]

0

2

4

6

8

10

12

14

16

 v
al

ue
 [-

]

Measured
TDNN Validation-8

 Observer

Figure 6.11: λ value TDNN results for validation test 8.

6.2 Validation Results 65

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-1

1049

1049.5

1050

1050.5

1051

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

N
O

x
 [p

pm
]

Measured
TDNN Validation-1 NOx

NOx MAP

Figure 6.12: NOx TDNN results for validation test 1.

6.2 Validation Results 66

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-2

1269

1269.5

1270

1270.5

1271

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140 160 180 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

200

400

600

800

1000

N
O

x
 [p

pm
]

Measured
TDNN Validation-2 NOx

NOx MAP

Figure 6.13: NOx TDNN results for validation test 2.

6.2 Validation Results 67

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-3

1479

1479.5

1480

1480.5

1481

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

N
O

x
 [p

pm
]

Measured
TDNN Validation-3 NOx

NOx MAP

Figure 6.14: NOx TDNN results for validation test 3.

6.2 Validation Results 68

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-4

1689

1689.5

1690

1690.5

1691

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

700

800

N
O

x
 [p

pm
]

Measured
TDNN Validation-4 NOx

NOx MAP

Figure 6.15: NOx TDNN results for validation test 4.

6.2 Validation Results 69

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-5

1907

1907.5

1908

1908.5

1909

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

100

200

300

400

500

600

700

N
O

x
 [p

pm
]

Measured
TDNN Validation-5 NOx

NOx MAP

Figure 6.16: NOx TDNN results for validation test 5.

6.2 Validation Results 70

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-6

2117

2117.5

2118

2118.5

2119

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

N
O

x
 [p

pm
]

Measured
TDNN Validation-6 NOx

NOx MAP

Figure 6.17: NOx TDNN results for validation test 6.

6.2 Validation Results 71

0 20 40 60 80 100 120 140
200

300

400

500

600

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-7

1000

1200

1400

1600

1800

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140
0

2

4

6

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

0.3

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140

Time [s]

0

500

1000

1500

2000

2500

N
O

x
 [p

pm
]

Measured
TDNN Validation-7 NOx

NOx MAP

Figure 6.18: NOx TDNN results for validation test 7.

6.2 Validation Results 72

0 50 100 150 200 250 300
0

500

1000

T
or

qu
e

[N
m

]
NOx TDNN Validation Test-8

0

1000

2000

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250 300
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200 250 300

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

N
O

x
 [p

pm
]

Measured
TDNN Validation-8 NOx

NOx MAP

Figure 6.19: NOx TDNN results for validation test 8.

6.2 Validation Results 73

Figure 6.20: R2 accuracy score of the NN models during validation experiments.
Dataset NOx RNN Cum. NOx % Error λ value RNN

Valid. exp. 1 0.9315 -8.49% 0.7723
Valid. exp. 2 0.9859 -9.13% 0.83527
Valid. exp. 3 0.99138 -3.71% 0.9026
Valid. exp. 4 0.9888 -4.75% 0.9044
Valid. exp. 5 0.9854 -1.26% 0.9023
Valid. exp. 6 0.9777 -0.19% 0.94257
Valid. exp. 7 0.91801 -0.88% 0.7078
Valid. exp. 8 0.9466 -7.78% 0.58854

6.2 Validation Results 74

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-1

1049

1049.5

1050

1050.5

1051

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

0.1

0.2

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

1

2

3

4

5

6

7

8

9

 v
al

ue
 [-

]

Measured
RNN Validation-1

 Observer

Figure 6.21: λ value RNN results for validation test 1.

6.2 Validation Results 75

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-2

1269

1269.5

1270

1270.5

1271

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

1

2

3

4

5

6

7

8

 v
al

ue
 [-

]

Measured
RNN Validation-2

 Observer

Figure 6.22: λ value RNN results for validation test 2.

6.2 Validation Results 76

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-3

1479

1479.5

1480

1480.5

1481

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

1

2

3

4

5

6

7

8

 v
al

ue
 [-

]

Measured
RNN Validation-3

 Observer

Figure 6.23: λ value RNN results for validation test 3.

6.2 Validation Results 77

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-4

1689

1689.5

1690

1690.5

1691

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

1

2

3

4

5

6

7

8

9

 v
al

ue
 [-

]

Measured
RNN Validation-4

 Observer

Figure 6.24: λ value RNN results for validation test 4.

6.2 Validation Results 78

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-5

1907

1907.5

1908

1908.5

1909

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

1

2

3

4

5

6

7

8

9

10

 v
al

ue
 [-

]

Measured
RNN Validation-5

 Observer

Figure 6.25: λ value RNN results for validation test 5.

6.2 Validation Results 79

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]

 RNN Validation Test-6

2117

2117.5

2118

2118.5

2119

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

5

10

15

20

25

 v
al

ue
 [-

]

Measured
RNN Validation-6

 Observer

Figure 6.26: λ value RNN results for validation test 6.

6.2 Validation Results 80

0 20 40 60 80 100 120 140
200

300

400

500

600

T
or

qu
e

[N
m

]

 RNN Validation Test-7

1000

1200

1400

1600

1800

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140
0

0.2

0.4

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140

Time [s]

0

1

2

3

4

5

 v
al

ue
 [-

]

Measured
RNN Validation-7

 Observer

Figure 6.27: λ value RNN results for validation test 7.

6.2 Validation Results 81

0 50 100 150 200 250 300
0

500

1000

T
or

qu
e

[N
m

]

 RNN Validation Test-8

0

1000

2000

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250 300
0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200 250 300

Time [s]

0

2

4

6

8

10

12

14

16

 v
al

ue
 [-

]

Measured
RNN Validation-8

 Observer

Figure 6.28: λ value RNN results for validation test 8.

6.2 Validation Results 82

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-1

1049

1049.5

1050

1050.5

1051

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

200

400

600

800

1000

1200

N
O

x
 [p

pm
]

Measured
RNN Validation-1 NOx

NOx MAP

Figure 6.29: NOx RNN results for validation test 1.

6.2 Validation Results 83

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-2

1269

1269.5

1270

1270.5

1271

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140 160 180 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

200

400

600

800

1000

N
O

x
 [p

pm
]

Measured
RNN Validation-2 NOx

NOx MAP

Figure 6.30: NOx RNN results for validation test 2.

6.2 Validation Results 84

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-3

1479

1479.5

1480

1480.5

1481

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

N
O

x
 [p

pm
]

Measured
RNN Validation-3 NOx

NOx MAP

Figure 6.31: NOx RNN results for validation test 3.

6.2 Validation Results 85

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-4

1689

1689.5

1690

1690.5

1691

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.2

0.4

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

700

800

N
O

x
 [p

pm
]

Measured
RNN Validation-4 NOx

NOx MAP

Figure 6.32: NOx RNN results for validation test 4.

6.2 Validation Results 86

0 50 100 150 200 250
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-5

1907

1907.5

1908

1908.5

1909

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250
0

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

M
A

P
 [b

ar
]

0 50 100 150 200 250

Time [s]

0

100

200

300

400

500

600

700

N
O

x
 [p

pm
]

Measured
RNN Validation-5 NOx

NOx MAP

Figure 6.33: NOx RNN results for validation test 5.

6.2 Validation Results 87

0 50 100 150 200
0

200

400

600

800

T
or

qu
e

[N
m

]
NOx RNN Validation Test-6

2117

2117.5

2118

2118.5

2119

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200

Time [s]

0

100

200

300

400

500

600

N
O

x
 [p

pm
]

Measured
RNN Validation-6 NOx

NOx MAP

Figure 6.34: NOx RNN results for validation test 6.

6.2 Validation Results 88

0 20 40 60 80 100 120 140
200

300

400

500

600

T
or

qu
e

[N
m

]
NOx RNN Validation Test-7

1000

1200

1400

1600

1800

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 20 40 60 80 100 120 140
0

2

4

6

M
ea

s.

 v
al

ue
 [-

]

0

0.1

0.2

0.3

M
A

P
 [b

ar
]

0 20 40 60 80 100 120 140

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

N
O

x
 [p

pm
]

Measured
RNN Validation-7 NOx

NOx MAP

Figure 6.35: NOx RNN results for validation test 7.

6.2 Validation Results 89

0 50 100 150 200 250 300
0

500

1000

T
or

qu
e

[N
m

]
NOx RNN Validation Test-8

0

1000

2000

IC
E

 S
ha

ft
S

pe
ed

 [R
P

M
]

0 50 100 150 200 250 300
0

5

10

M
ea

s.

 v
al

ue
 [-

]

0

0.5

1

M
A

P
 [b

ar
]

0 50 100 150 200 250 300

Time [s]

0

200

400

600

800

1000

1200

N
O

x
 [p

pm
]

Measured
RNN Validation-8 NOx

NOx MAP

Figure 6.36: NOx RNN results for validation test 8.

6.3 Validation Evaluation 90

6.3 Validation Evaluation

Overall, the real-time validation proves that the RNN models can generalize in patterns
similar but different than their training dataset. On the other hand, the TDNN models
for both λ value and NOx cannot keep up well with input stimulus different that those
they were trained with, they are very sensitive to the static engine speed and torque input
signals and fail to draw the dynamics from the other dynamic inputs, such as the intake
manifold absolute pressure. Both TDNN and RNN models input ports rely on the pattern
they were trained at and they do not demonstrate good interpolation capability between
their input quantities. The difference between these two is that the RNN models results
become a little noisy and follow at the same curve as the target values, while the TDNN
models results are completely off.

At the same time the RNN models perform relatively better than existing map-based
and first principles models for NOx emissions and λ value predictions respectively. In some
cases both the first principles λ value model and the RNN model are producing unstable
results which is an indication that both models suffer from the input stimulation at that
particular operating area. On the other hand, the map-based NOx model is not following
the measured NOx trajectory as close as the RNN model and the same time it misses all
the spikes as shown in Fig. 6.32 and transient phenomena due to its static nature.

Conclusively, as stated previously, the RNN models can be qualified to be used as
virtual sensor instead of NOx maps because their results are accurate and stay close with
the measured NOx emissions.

Chapter 7

Conclusions and Future Work

Conclusions

In this thesis, the feasibility of using artificial neutal networks for λ value and NOx

emissions predictions has been investigated. Initially, it was decided to use models that
take into account the previous states of a system to calculate their predictions. That is why
the recurrent neural network and the time-delay architectures were selected for the models.
The models should take advantage of already installed sensors to draw their inputs, but
the inputs selection has been decided based on first principles thermodynamics and the
ome of the inputs correlation to output quantities. Several model architectures have been
identified and evaluated. However, only one model is selected for each output variable and
each architecture, resulting in four multiple-input-single-output (MISO) models. Each
one of the four models has been evaluated based on its performance on the training data.
The accuracy of the trained models was verified experimentally under realistic operating
conditions on the hybrid diesel-electric testbed at LME. Experimental results showed
accurate results at step load operation and during transients for the RNN models. The
ANN models results are compared to existing map-based and first principles models and
the comparison shows that the ANN predictions are better or equally accurate.

Conclusively, it can be derived that ANN models with calculations using previous
states can successfully predict the NOx and λ value emissions inside their training range
for known load-speed patterns while some of them, i.e. the RNN models, can produce
accurate results even in patterns that are uknown to them.

Suggestions for Future Work

In this work, ANN models are occupied for the NOx and λ value approximation during
real operating conditions.

Regarding the models accuracy, it can be suggested that the models are trained based
not only at part-load operation data but also during transient data, i.e. a propeller load
test or similar to a ”driving” cycle. This could lead in more accurate models during
transient operation. Additionally, the usage of internal state feedback for each neuron can
be investigated as it was completely ignored in this thesis and it could lead to more stable
results. Regarding the models usage, the models could be attached to MPC controllers or
in other applications in order provide more accurate results for the testbed variables and
therefore lead to more effective control strategy.

Using the same principles, models for new variables can be created, on top of NOx

and λ value, as the model creation methodology described in this thesis can be used for
any of the LME engine variables that come as time-series, based upon reasonable inputs
selection, e.g. prediction of fuel flow or exhaust gases opacity.

91

Appendices

92

Appendix A

Pyrenn module improvement

A.1 Levenberg-Marqaurdt Implementation modification

In this thesis, there were developed TDNN and RNN models. In order to create and train
the models, Pyrenn module was used. It is a recurrent neural network toolbox for Python
and MATLAB developed by Dennis Atabay from Technical University of Munich (TUM)
[22]. It is an open source neural network builder which enables fast prototyping of wide
variety of Recurrent Neural Networks using a set of 5 commands. The training algorithm
is Levenberg-Marquardt (LM) [26], which converges much faster than gradient descent
algorithms for time-series predictions due to its nature. The number of training epochs
needed is lower than other applications might need, e.g. image recognition applications.
The LM algorithm implementation for the initial Pyrenn toolbox was prone to freeze when
it reached very small incremental improvements on the error minimization. That is why
the author introduced a new input variable for the algorithm, i.e. the minimum error
minimization step, which forces the training to stop if very small improvements are met,
it has been submitted in GitHub stream and it is part of the main Pyrenn stream.

These changes solve an open issue with the module. Specifically the author forked the
Pyrenn repository and applied changes to fix issue with tittle neural network training 6
which was reported more than a year ago from the time of fix. The fix was submited as
Update Train LM with minimum error step criterium [27] and was accepted in the main
stream of the module for every user to utilize it. The code changed is the LM function
shown in A.1, while the rest of the code can be found in GitHub1.

.

.
e a r l y=0 #ear l y s topp ing counter
while True :
#run loop u n t i l e i t h e r k max or E stop i s reached

JJ = np . dot (J . t ranspose () , J) #J . transp ∗ J
w = net [’w ’] #weigh t v ec t o r
while True :
#repea t u n t i l op t im i z ing s t ep i s s u c c e s s f u l
#c a l c u l a t e g rad i en t
g = np . dot (J . t ranspose () , e)

#ca l c u l a t e s ca l e d in v e r s e hes s ian
try :

1https://github.com/yabata/pyrenn/blob/master/python/pyrenn.py

93

A.1 Levenberg-Marqaurdt Implementation modification 94

G = np . l i n a l g . inv (JJ+dampfac∗np . eye (net [’N ’]))
except np . l i n a l g . LinAlgError :

Go smal l s t e p in g rad i en t d i r e c t i o n
w delta = 1.0/1 e10 ∗ g

else :
ca l c u l a t e we igh t mod i f i ca t i on
w delta = np . dot(−G, g)

net [’w ’] = w + w delta #new weigh t v e c t o r

Enew = c a l c e r r o r (net , data)

i f Enew<E and abs (E−Enew)>=min E step :
#Optimizat ion Step s u c c e s s f u l !
dampfac= dampfac/dampconst
e a r l y=0 #re s e t the e a r l y s t opp ing counter
break #go to next i t e r a t i o n

else :
#Optimizat ion Step NOT su c c e s s f u l !
dampfac = dampfac∗dampconst
i f abs (E−Enew)<=min E step :

e a r l y=e a r l y+1 #increa se ea r l y s t opp ing counter
i f verbose :

print (’E−Enew<=min E step Encountered ! ! ’)
i f ear ly >=5.0:
print (’ 5 Times ∗ E−Enew<=min E step Encountered ! ! ’)

break

#Ca lcu l a t e Jacobian and Error
J ,E, e = RTRL(net , data)
k = k+1
ErrorHis tory [k] = E
i f verbose :
print (’ I t e r a t i o n : ’ , k , ’ Error : ’ ,E, ’ s c a l e f a c t o r : ’ , dampfac)

#Ceck i f t erminat ion cond i t i on i s f u l f i l l e d
i f k>=k max :
print (’Maximum number o f i t e r a t i o n s reached ’)

break
e l i f E<=E stop :
print (’ Termination Error reached ’)
break

.

.

As a result, if a training of a model is stuck in very small incremental changes of the
error, now the algorithm breaks the loop via the early stopping criteria that was added.
This change is helpful for this thesis because there were tested a lot of model architectures
- in order to decide the optimal architecture - and often was the case where the automated
model creation and training script was stuck without obvious reason.

Bibliography

[1] Heywood J.B.: ’Internal Combustion Engine Fundamentals’, (McGraw-Hill, New York,
1988)

[2] Hinton, G., Osindero, S. and Teh, Y.: ’A Fast Learning Algorithm for Deep Belief
Nets.’ Neural Computation, 18(7), pp.1527-1554, 2006

[3] Gambarotta, A., Luchetti, G., Fiorani, P., de Cesare, M. et al.: ’A ther-
modynamic Mean Value Model of the intake and exhaust system of a tur-
bocharged engine for HiL/SiL applications’, SAE Technical Paper 2009-24-0121, 2009,
https://doi.org/10.4271/2009-24-0121.

[4] Hagena, J., Filipi, Z., and Assanis, D.: ’Transient Diesel Emissions: Analysis
of Engine Operation During a Tip-In’ SAE Technical Paper 2006-01-1151, 2006,
https://doi.org/10.4271/2006-01-1151

[5] Papalambrou, Georgios Samokhin, Sergey Topaloglou, Sotirios Planakis, Niko-
laos Kyrtatos, Nikolaos Zenger, Kai.: ’Model Predictive Control for Hybrid Diesel-
Electric Marine Propulsion’ 20th IFAC World Congress, 2017, 50, pp. 11064-11069.
https://doi.org/10.1016/j.ifacol.2017.08.2488.

[6] Li, H., Butts, K., Zaseck, K., Liao-McPherson, D. et al.: ’Emissions Model-
ing of a Light-Duty Diesel Engine for Model- Based Control Design Using Multi-
Layer Perceptron Neural Networks’, SAE Technical Paper 2017-01-0601, 2017.
https://doi.org/10.4271/2017-01-0601.

[7] Ivan Arsie, Dario Marra, Cesare Pianese, Marco Sorrentino: ’Real-Time Estima-
tion of Engine NOx Emissions via Recurrent Neural Networks’, 6th IFAC Sym-
posium Advances in Automotive Control Munich, Germany Munich, July, 2010
https://doi.org/10.3182/20100712-3-DE-2013.00117

[8] Kamat, S., Diwanji, V., Smith, J., Javaherian, H. et al., ’Virtual Sensing of SI En-
gines Using Recurrent Neural Networks’, SAE Technical Paper 2006-01-1348, 2006,
https://doi.org/10.4271/2006-01-1348.

[9] Arsie, I., Pianese, C., and Sorrentino, M., ’Development of recurrent neural networks
for virtual sensing of NOx emissions in internal combustion engines’, SAE Int. J. Fuels
Lubr. 2(2):354-361, 2010, https://doi.org/10.4271/2009-24-0110.

[10] Amin, S., Gerhart, V., and Rodin, E., ”System Identification via Artificial Neural
Networks: Applications to On-line Aircraft Parameter Estimation*,” SAE Technical
Paper 975612, 1997, https://doi.org/10.4271/975612.

[11] Wang, H., Chi, J., Wu, C., Yu, X. et al., ”A Multi-Objective Recognition Al-
gorithm with Time and Space Fusion,” SAE Technical Paper 2019-01-1047, 2019,
https://doi.org/10.4271/2019-01-1047.

95

BIBLIOGRAPHY 96

[12] Arsie, I., Cricchio, A., De Cesare, M., Pianese, C. et al., ”A Methodology to Enhance
Design and On-Board Application of Neural Network Models for Virtual Sensing of
Nox Emissions in Automotive Diesel Engines,” SAE Technical Paper 2013-24-0138,
2013, https://doi.org/10.4271/2013-24-0138.

[13] De Cesare, Matteo Covassin, Federico: ’Neural Network Based Models for Virtual
NOx Sensing of Compression Ignition Engines’, SAE International, USA, September
2011. https://doi.org/10.4271/2011-24-0157

[14] Ivan Arsie, Anrea Cricchio, Matteo De Cesare, Franceso Lazzarini, Cesare Pianese,
Marco Sorentino: ’Neural network models for virtual sensing of NOx emissions in
automotive diesel engines with least square-based adaptation’, Control Engineering
Practice, April 2017 ,61 , pp 11-20. https://doi.org/10.1016/j.conengprac.2017.01.005.

[15] Spara, H., Milink, G., Klass, V., Douwe, S., Dijktsra,C.: s’Experimental and
simulation-based investigations of marine dieselengine performance against static back
pressure’, Applied Energy 204 pp78-92, Delft University of Technology, The Nether-
lands, 2017. http://dx.doi.org/10.1016/j.apenergy.2017.06.111

[16] Arsie, I., Di Iorio, S., Pianese, C., Rizzo, G. and Sorrentino, M.: ’Recurrent Neural
Networks for air-fuel ratio estimation and control in SI Engines’, IFAC Proceedings
Volumes, 41(2), pp.8508-8513., 2008

[17] Orr, G.: ’Neural networks.’, Springer, pp.9-50, Berlin, 1998.

[18] Patterson, D. W.: ’Artificial Neural Networks – Theory and Applications’, Prentice
Hall., 1995

[19] Chaichan, Miqdam Abass, Qahtan. (2010). Study of NOx Emissions of S.I. Engine
Fueled with Different Kinds of Hydrocarbon Fuels and Hydrogen. Al-Khwarizmi Eng
J. 6. 11-20.

[20] Rosenblatt, F.: ’The perceptron: A probabilistic model for information storage and
organization in the brain’, Psychological Review, 65(6), pp.386-408, 1958

[21] Papalambrou, G. Samokhin, S. Topaloglou, S. Planakis, N. Kyrtatos, N.
Zenger, K.: ’Model Predictive Control for Hybrid Diesel-Electric Marine Propulsion.’,
IFAC-PapersOnLine. 50. 11064-11069, 2017. 10.1016/j.ifacol.2017.08.2488.

[22] Dennis Atabay: ’Pyrenn: A recurrent neural network toolbox for python and mat-
lab’, Institute for Energy Economy and Application Technology, Technische Universität
München.

[23] Hornik, K.: ’Approximation capabilities of multi-layer feed forward networks.’ Neural
Networks, 4(2), pp.251-257. 1991

[24] Géron, A.: ’Hands-on machine learning with Scikit-Learn and TensorFlow.’ 1st ed.
O’Reily., 2017.

[25] Orr, G. and Muller, K.:’Neural Networks: tricks of the trade’, Springer, 1998

[26] Williams, R., Zipser, D.: ’A Learning Algorithm for Continually Running Fully Re-
current Neural Networks.’ Neural Computation, Nummer 2, Vol. 1,S. 270-280 , 1989

[27] Dimitrakopoulos, P.: ’Update Train LM with minimum error step criterium 8’, 2019.
https://github.com/yabata/pyrenn/pull/8/files.

BIBLIOGRAPHY 97

[28] S. Topaloglou, G. Papalambrou, N. Kyrtatos. 2016. Energy Management Controller
Design for Hybrid Ship Propulsion During Transient Operation. CIMAC congress,
Helsinki, 6-10 June 2016, paper No. 50.

[29] L. Guzzella, C. Onder. 2004. Introduction to Modeling and Control of Internal Com-
bustion Engine Systems. Springer, 2nd edition.

	Introduction
	Experimental Facility
	Mechanical Componets
	Sensors and Data Acquisition System

	Modeling
	Introduction
	NOx Emissions
	Emissions Modeling
	Relative Air-Fuel Ratio: value
	Model Inputs selection

	Overview of Neural Networks
	Artificial Neural Network (ANN)
	Neural Network Calculation Mechanism
	Time-Delay Neural Network
	Recurrent Neural Networks

	Models Design and Training
	Data preparation
	Training Data
	Data Pre-processing

	ANN Design
	Pyrenn: RNN and TDNN Python toolbox
	Model development methodology

	Model Training
	TDNN models for value and NOx
	RNN models for value and NOx
	Training conclusion

	Real-time Validation with ICE testbed
	Experimental Setup
	Validation Results
	TDNN models for value and NOx
	RNN models for value and NOx

	Validation Evaluation

	Conclusions and Future Work
	Appendices
	Pyrenn module improvement
	Levenberg-Marqaurdt Implementation modification

	Bibliography

