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Foreword

Perhaps mathematics is not a science. This claim might be supported by the fact that there is no
real world experiments in universe of mathematics. Possibly, mathematics is the scientific language,
standing as a mental game, where anyone has to follow a certain class of rules, the axioms, where
everything has to be synchronized with them. This synchronization of mathematical universe is
governed by abstraction and generality. At the first glance, this abstraction might be useless and
difficult to understand. Although, mathematics draw their strength from their abstract nature,
and become able to treat situations, in a chic but also effective way, as a language. A language of
logical thinking, whose systematic treatment was born more than two thousand years ago in the
coasts of Aegean sea. So since mathematics is the language of logical and rational thinking, can
the mathematical universe always overcome completely irrational situations? The answer of course
is not. The history of such failures is pretty colourful. We can just name a few: Banach-Tarski
paradox, Gödel’s incompleteness theorem and Axiom of Choice may be the three most important
examples of such a failure. Of course, we have to mention that these lines are pretend to by just a
”hint” about mathematical universe and they are far from a complete epistemological approach.

However, the mathematical universe can provide a suitable framework to model several situation
of real world. Everybody (or at least, almost surely everybody) is able to imagine and understand
the impact of mathematics related to the progress of many scientific disciplines, like physics, biology,
medicine, social sciences and so on. In many cases, such a framework presents a surprising and
unexpected modelling success during last century and understanding the core components of a
certain system. This success reminds us the famous treatise of Eugene Wigner back to 60s entitled
as ”The unreasonable effectiveness of mathematics in natural sciences”.

In this direction, one of the greatest inventions (or possibly discoveries, depends on the philo-
sophical school) inside the mathematical universe is the theory of Differential Equations. Their
birthday essentially goes back to 17th century, under the hands of Isaac Newton, Gottfried Wilhelm
Leibniz and Christian Huygens. Differential equations are associated with the rate of change of
a certain quantity of a certain physical system. This physical system is associated with a specific
mechanism, a model, which describes the quantities related with it. Let us describe the main idea
of them by means of the following toy example. Imagine that we are a tiny leaf flying in the sky,
due to air. We can drifting inside the air and flying and flying inside the air, taken by the flow of
air. Wherever we are, we could calculate our rate of change of the quantities which describe our
motion, like speed or acceleration, by solving the differential equation associated to our motion.
This very simple analogy can be the starting point of understanding several physical phenomena,
which involving rate of change.

It has been huge progress, which made us able to study, understand and master the physical
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laws, and create suitable models in order to understand complex phenomena. A very importnt part
of this progress born the oldest siblings of Differential Equations, the so called Partial Differential
Equations. These siblings allowed us to build more and more powerful models in order to study
and explain more and more complex phenomena, like elasticity, gravitation, plasma physics, fluid
mechanics and so on, and answer a class of many important questions, which partially might can
justify the title of Wigner’s paper. During last century, has been developed rigorous and solid
mathematical theories, like Calculus of Variations and Nonlinear Analysis (see for example Brezis
& Browder (1998) and Klainerman (2010) for a extended historical exposition).

Although, the theory of PDEs has not only provided suitable models to explain certain classes
of systems. Essentially, they can provide us information backwards for the mathematical universe
itself. Thought 20th century, the modern theory of PDEs was the primary and standard connection
between the abstract mathematical universe and the physical world1, where there was feedback to
both sides. Let us mention two examples of such a connection. The first one can be described in
terms of Differential Geometry. Precisely, questions related with minimal surfaces and embedding
problems stands for a great motivation in order to study one of the most famous fully nonlinear
PDEs, the Monge-Ampére equation, which stands until today an active research field. The second
one stands on the bridge between PDEs and stochastics and probabilistic models. Essentially this
connection was started by N. Wiener and the study Brownian motion, extended by Itô, Levy,
Malliavin and many others to the theory of Stochastic Differential Equations, which gave arose to
the stochastic counterpart of calculus of variations, the so-called Malliavin calculus. Nowadays, this
connection is also a pretty active field research extended to non-local diffusions and Levy processes.
The list of such connections is quite long and probably does not fit in the introductory lines. But,
we have to mention that all of these connections has been useful and powerful both for physical
models and abstract mathematical universe.

The aim of this thesis is to focus to a specific class of problems related with PDEs: the so-called
gradient flows. Maybe the term ”gradient flows” is originated to J. Hadamard and the method of
gradients or method of descent for solving a PDEs by viewing them as a special case of equations
with more variables tha initial one. Accurately, Hadamard mention (see Hadamard (1923)) the
following:

“We thus have a first example of what I shall call a ’method of descent’. Creating
a phrase for an idea which is merely childish and has been used since the first
steps of the theory is, I must confess, rather ambitious; but we shall come across
it rather frequently, so that it will be convenient to have a word to denote it. It
consists in noticing that he who can do more can do less: if we can integrate
equations with m variables, we can do the same for equations with (m − 1)
variables. ”

Nowadays, Hadamard’s method of gradients is inside the heard of the standard toolbox of any
numerical analyst, employing it to solve numerically PDEs as heat equation and so on. Although, it
was the starting point of a further extension of several problems related with PDEs. More precisely,
it was the first way of understanding that behind of several problems there is a mechanism, the
so-called dissipation mechanism, where the properties of which govern the corresponding system
representing some sort of energy. Such a energy tends to minimizing, in order to drive the system
towards its stable state. So, under this perspective, solving the PDE which is associated with the
corresponding system is turned to minimization problem of a certain functional acting of certain
spaces. A standard example of such a case is the heat equations, which can be recasted as the

1We avoid to use at this point the words pure and applied mathematics, since such a distinction in many situations
does not exists in a concrete way!
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minimization Dirichlet energy L2. But, generally speaking, what about the functional and its acting
spaces? During last decades, such problems was sightly studied. Accurately, during late 60s and
70s, it has been created beautiful theories by authors like H. Brezis, J.L. Lions, M.G. Crandall, T.M.
Ligett and many others, treating the gradient flow problem in certain abstract vectorial settings,
which can be putted under the title Differential Inclusions and Maximal Monotone Operators in
Hilbert spaces.

Beyond vectorial setting, during last two decades the theory of gradient flows has been success-
fully developed in metric setting. Last decades, it has been developed a whole theory which make
us able to recast a gradient flow problem in general metric setting, instead of the classical vectorial
one. Such a procedure became possible for two specific reasons. The first one is related with the
development of the Analysis in general metric spaces, where notions like metric derivative, metric
slope and geodesic convexity has been developed, which turn the metric space setting into friendly
one to work. The second one, is concentrated to the fact, that they were builded new functionals
with desired properties, playing the role of dissipation mechanisms in certain metric space settings.
Precisely, employing the fundamental principles of Optimal Transport, a beautiful mathematical
theory which trace roots to G. Monge in 17th century and has been developed during 20th by L.
Kantorivich, Y. Brenier, R. McCann and many others, we are able to define certain functional, with
respect to which, we can recast many PDEs as gradient flows in the spaces of probability measures
eqquiped with Wasserstein distance. The latter one has been sightly developed by the seminal
work of R. Jordan, D. Kinderlehrer and F. Otto (see Jordan et al. (1998)). Moreover, the whole
theory of gradient flows in space of probability measures is presented in the the bible of gradient
flows by L. Ambrosio, N. Gigli and G. Savare (see L. Ambrosio et al. (2008)).

So, in this thesis, in order to present the metric theory of gradient flows we will follow the
following path:

− In Chapter 1, we gently review the classical formulation of gradient flows in Euclidean setting.
We present a numerical algorithm to solve such problems and finding three interesting and
equivalent metric characterizations.

− In Chapter 2, we review some basic fact about Real Analysis and proceed to a further ex-
ploration to curves in metric spaces, recalling notions as length spaces, geodesics in metric
spaces and geodesic convexity, which will be the first part of our standard toolbox in order
to study gradient flows in metric space setting.

− In Chapter 3, we present at a glance, the optimal transport problem the general theory of
Optimal Transportation, which will be the second part of our standard toolbox, in order to
fight with gradient flows in metric space setting.

− In Chapter 4, we focus to the so-called Wasserstein spaces, which arose by optimal transport
problem and enjoys several desirable properties.

− In Chapter 5, recalling the equivalent metric characterizations of gradient flows, we investigate
the gradient flows in Wasserstein space for three classical functionals, employing elements of
subddiferential calculus in Wasserstein space.
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Abstract

It is the aim of this thesis to present the theory of gradient flows in metric setting and the space of
probability measures. We revisit the classical vectorial theory, observing some powerful equivalent
variational metric characterizations. Under the light of these, characterizations, we explore the
theory of curves in metric spaces, which can be the suitable setting of such a generalization of vec-
torial environment Having this, we discuss, at a glance, the general theory of Optimal Transport,
in order to end up with the so-called Wasserstein spaces, i.e. the space of probability measures
equipped with Wasserstein distance, which enjoy several important metric, topological and geo-
metrical properties. Under all of these considerations, we revisit the metric characterizations of
gradient flows, where under suitable classes of assumptions, we are able to prove many desired
results. Moreover, we conclude presenting three classical functionals, which produce gradient flows
in Wasserstein space.
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Περίληψη

Σκοπός της παρούσας διπλωματικής εργασίας είναι η παρουσίαση της μετρικής θεωρίας των ροών βαθ-

μίδας και η εφαρμογές της στον χώρο μέτρων πιθανότητας. Εξετάζοντας προσεκτικά την διανυσματική

θεωρία των ροών βαθμίδας, διαπιστώνουμε και περιγράφουμε διάφορους ενδιαφέροντες μεταβολικούς

χαρακτηρισμούς, οι οποιοι οτι μας επιτρέπουν μια μετρική γενίκευση του διανυσματικοί πλαισίου. Ακο-

λουθώντας αυτήν την παρατήρηση, μελετάμε τις καμπύλες σε μετρικούς χώρους, βασιζόμενοι σε αρκετά

εργαλεία απο την Μετρική Γεωμετρία και την Ανάλυση σε Μετρικούς χώρους. ΄Εχοντας επικαλεστεί

τις απαραίτητες έννοιες, κάνουμε μια σύντομη παρουσίασή της θεωρίας της Βέλτιστης Μεταφοράς, και

τους χώρους και τις αποστάσεις Wasserstein, οι οποίοι εμφανίζουν πληθώρα σημαντικών μετρικών,
τοπολογικών και γεωμετρικών ιδιοτήτων. Μέσα από το πρίσμα όλων αυτών, παρουσιάζουμε την μετρι-

κή θεωρία των ροών βαθμίδας, όπου κάτω απο συγκεκριμένες κλάσεις υποθέσεων είμαστε σε θέση να

διατυπώσουμε αρκετά επιθυμητά αποτελέσματα. Τέλος, παρουσιάζουμε 3 κλασσικά συναρτησιακά στον

χωρο Wasserstein, παράγοντας συγκεκριμένες ροές βαθμίδας.

3
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CHAPTER 1

Introduction

In this introductory chapter, we will revisit the notion of gradient flows in vectorial setting, pre-
senting the gradient flow equation in Rd. We are going to one of archetypes of evolution systems:
the heat equation as a gradient flow in L2. Up to these definitions, we will present a class of useful
variational characterizations of gradient flow equation, as well as, its approximation by a time-
discretization procedure and its equivalent metric characterizations, which will be our stepping
stone for our further exploration.

1.1 Motivation: evolution through time

Perhaps, one could say that the real world is full-filled of optimization problems. Very often,
people in order to take a decision, to minimize some cost or time, or even to maximize some profit,
need to optimize some quantity which is related to their problem. The same fact holds also for
nature. The physical world is also filled with optimization problems. Physical systems tends to a
state of minimum energy with respect to a specific mechanism, a physical principle, the so called
dissipation mechanism. Roughly speaking, masses ”want” to minimize their potential energy, rays
of light follow paths that minimize their travel time, molecules in a isolated chemical system react
with each other until the total potential energy of their electrons is minimized, and so on. Although,
what is the common characteristic of all above optimization problems? Their evolution in time.

So, attracting a wide field of interest, optimization problems are foremost in modern science.
They could be divided in several classes, depending on their mathematical treatment and enjoying
many interesting approaches. Of course, these lines are not too wide to be filled with a generic
exposition of the modern ways of treatment optimization problems. However, a very interesting fact
about physical systems, where some quantity has to be optimized, is the study their time evolution.
In particular, under this perspective the study of such systems in concentrated to the description
of the evolution of their characteristic quantities through time, which conceptually described via
the dissipation mechanism.

In several situations, such an evolution can be translated in terms of Partial Differential Equa-
tions (PDEs), having as a stepping stone, the dissipation mechanism which is connected with the
corresponding physical phenomenon. This translation provide to us several hints to understand
the underlying dynamical structure (or the gradient structure) of that physical phenomenon and
many other important qualitative and quantitative properties, due to generality and flexibility of

5



6 CHAPTER 1. INTRODUCTION

this PDE approach.
Let us proceed, by making the above discussion a little bit more concrete. For that reason,

restricting ourselves to the Euclidean setting, we consider a smooth enough functional φ : Rd → R
and the minimization problem.

min
x∈Rd

φ(x). (1.1)

To describe its infinitesimal change of rate of φ, we recall the classical the notion of gradient of φ,

which is defined as ∇φ :=
(
∂φ
∂x1

, · · · , ∂φ∂xd
)>
. In the spirit of gradient of φ, we recall its connection

with directional derivative, i.e.

d

dt
φ(x0 + th) = 〈h∇φ(x)〉, for h ∈ Rd

based on which, we can derive the following ODE system

d

dt
x(t) = −∇φ(x(t)). (1.2)

Upon a suitable differentiability assumption of (1.2) has the property

d

dt
φ(x(t)) = −〈∇φ, φ〉 ≤ 0,

which means that it is decreasing along the orbits of the ODE (1.2). Therefore, starting at the
point x0 at t0 = 0, the orbit x(t; t0) moves along a path (or a curve) such that as t increases φ(x(t))
decreases. Under a supplementary condition, one may convenient that this orbit asymptotically
leads to a minimum of the functional φ. This observation has led us to a number of interesting
numerical approach to the minimization problem (1.1) having as their basic concept the evolution
of the ODE system (1.2), often called gradient flow (or gradient system), in order to provide a
subsequent approximation of the functional under consideration. The above convenient gradient
structure can be extended in a infinite dimensional separable Hilbert space setting (see e.g. Brézis
(1971)).

However, having the above heuristic description of gradient flows in our mind, we are considering
about one basic examples of such a gradient flow structure. One of the backbone examples one
may consider, reveals one of the four fundamental equations of mathematical physics, the heat
equation, and its connections with the minimization of Dirichlet energy functional. This equation
can be viewed as a dissipative evolution equation, or accurately, as the result of the principle of
conservation of total heat and Fourier’s law.

The heat equation has the typical gradient structure that was described in above discussion. To
see this, let us the forthcoming discussion a little bit more technical. For that reason, let us assume
that D ⊂ Rd be be an smooth domain (i.e. open and connected) and the following boundary value
problem for the heat equation:

d

dt
u−∆u = 0, in D × (0,∞)

u(0) = u0, in D

where u0 ∈ Rd stands for the initial condition.
Let us recall now the basic functional analytic machinery to treat the above problem. We recall

that W 1,2(D) denotes the Sobolev space of squared integrable functions with respect to Lebesgue
measure such that their second weak derivative exists, that is

W 1,2(D) :=
{
u ∈ L2(D) : Du ∈ L2(D)

}
,
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equipped with the norm ‖v‖W 1,2(D) =
(
‖u‖2L2(D)+‖Du‖

2
L2(D)

)1/2
. We consider also the subspace

W 1,2
0 (D) ⊆W 1,2(D) which is defined as the closure of space of test functions C∞c (D) in W 1,2(D), or

accurately, we will have that u ∈W 1,2
0 (D) if and only if there exists a sequence (un)n∈N ⊂ C∞c (D)

such that

‖un − u‖W 1,2(D) → 0, as n→∞.

After the functional analytic ”refuelling stop” let us return to the problem of the gradient flow
structure of heat equaton. We consider the Dirichlet energy functional E : W 1,2

0 (D)→ R ∪ {+∞}
defined as

E(u) =

∫
D
|∇u|2dx. (1.3)

The Gateaux derivative of E is defined as the operator

(1.4)

dE(u)[f ] = lim
t→0

E(u+ t f)− E(u)

t
(1.5)

which is well-defined when f belongs to L2(D). Equivalently, we ask some f ∈W 1,2
0 (D), such (1.5)

is reduced to

E(u+ tf) = E(u) + t

∫
D
∇u · ∇fdx+ t2E(f). (1.6)

So we can understand that the functional E ′(u)[·] : W 1,2
0 (D)→ R defined as

dE(u)[f ] :=

∫
D
∇u · ∇fdx, for f ∈W 1,2

0 (D) (1.7)

consists a linear operator. In the same fashion, we can define the gradient of E at u, represent-
ing dE(u) via a duality pairing. Thanks to Riesz representation theorem, there exists a unique
∇L2E(u) ∈ L2(D) such that

∇L2E(u) = 〈dE(u)[f ], f〉L2 , for all f ∈ L2(Ω). (1.8)

Employing integration by parts, we can easily obtain

dE(u)[f ] =

∫
Ω
∇u∇fdx = −

∫
Ω
f∆udx (1.9)

and based in this fact we conclude that ∇L2E(u) = −∆u. Under this perspective, we can reduce to
the analogue of the ODE (1.2) for the heat equation, as gradient flow in L2 in the following form

d

dt
u(t) = −∇L2E(u(t)). (1.10)

So, in the light of above routine calculations, we realize that the heat equation consists a flow in a
specific spaces of functions. We will call the above equation as gradient flow (or gradient system) in
Hilbert space setting, and in particular in L2 setting, since the inner product defining the Gateuax
derivative is used. Moreover, note that (1.10) can be considered as a generated flow in L2, as it
can by operator semigroup theory. In this spirit, using semigroup theory, we will be able to prove
several results about gradient structures in what follows.
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1.2 Existence and fundamental estimates

Since now, our discussion related to gradient flows was in a quite intuitive and heuristic manner.
As we have already seen, one of the fundamental PDEs, the heat equation, can be expressed as a
minimization problem in a specific function space and a specific dissipation mechanism, the Dirichlet
energy, and hence, functional analytic methods could be employed to study several important
properties of them.

We shall turn our discussion to a more rigorous one, in order to expose some important results
related to uniqueness of gradient flows and variational characterizations of them, as well as their
fundamental estimates. For simplicity, we will restrict ourselves to Euclidean setting. Note that all
of the above results could be stated and proved in any separable (finite or infinite) Hilbert space.

We will start this exploration by recalling the definition of λ-convexity, a technical relaxation
of classical notion of convexity in Rd which makes us able to recast nice equivalent variational
characterizations.

Definition 1.2.1 (λ-convexity). A functional φ : Rd → R is called λ-convex (or semiconvex) if the
map x 7→ φ(x)− λ

2 |x|
2 is convex for some λ ∈ R.

The intuition behind the above relaxation of classical convexity is concentrated to two facts.
On the one hand, one can observe that for λ > 0, the concept of λ-convexity is stronger than usual
convexity. Indeed, imagine that based on Definition 1.2.1, λ-convex functionals for λ > 0, remain

convex, even if we subtract a positive multiplier in the form of the function x 7→ |x|2
2 . On the other

hand, λ-convex functionals for λ < 0, actually need to be added with a positive multiplier in the

form of x 7→ |x|2
2 to become convex, so in this case λ-convexity is weaker that usual convexity. This

technical relaxation of convexity turn out to be very useful for treating various situation of our
interest, as we will see in the following.

In the following proposition, we present four extremely useful equivalent characterizations of
λ−convexity, under some smoothness assumption, which will play crucial role what follows this
section, providing some fundamental estimates.

Proposition 1.2.2 (Equivalent characterizations of λ-convexity). Consider that φ ∈ C2(Rd) is a
λ-convex functional, x, x0, x1 ∈ Rd and where xw is defined as the convex combination of x0 and
x1, that is, xw := (1− w)x0 + wx1, for some w ∈ [0, 1]. Then the following are equivalent:

(i) λ-monotonicity of ∇φ :

〈∇φ(x0)−∇φ(x1), φ(x0)− φ(x1)〉 ≥ λ|x0 − x1|2. (1.11)

(ii) λ-convexity inequality :

φ(xw) ≤ (1− w)φ(x0) + wφ(x1)− λ

2
w(1− w)|x0 − x1|2 (1.12)

(iii) Hessian inequality:

D2φ(x) ≥ λId (1.13)

(iv) Subgradient inequality:

〈∇φ(x1), x1 − x0〉 −
λ

2
|x1 − x0|2 ≥ φ(x1)− φ(x2) ≥ 〈∇φ(x0), x1 − x0〉+

λ

2
|x1 − x0|2. (1.14)
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The proof of this proposition follows by a typical application of the definition of λ-convexity.
For that reason it omitted. Nevertheless, shall we make some comments on theses characterizations.
First of all, the λ-monotonicity of ∇φ essentially describes nothing more but a technical relation of
the concept of monotone operator. In addition, the λ-convexity inequality and Hessian inequality
describe how this technical relaxation works, by means of a correction, in some sense, of a convex
function. Finally, the subgradient inequality, witnesses the interplay between λ-convexity and the
differential structure of Rd.

Having already a relaxation of usual convexity in our toolbox, let us define more formally the
notion of gradient flow in Rd.

Definition 1.2.3 (Gradient flow in Rd). Consider that φ : Rd → R is a smooth enough functional.
The gradient flow of a map φ is the family of maps

St : Rd → Rd, for t ∈ [0,∞),

where for every u0 ∈ Rd with S0(u0) := u0 and the map ut := St(u0) is the unique C1-solution to
the Cauchy problem

d

dt
ut = −∇φ(ut) in (0,∞) with ut → u0, as t ↓ 0. (1.15)

It is widely known that, one can employ the Cauchy-Lipschitz theory and a priori estimates,
in order to show that for every initial datum u0 ∈ Rd the equation (1.15), admits a unique (global)
solution. Moreover, the family of maps (St)t≥0 defining a continuous semigroup of Lipschitz maps,
i.e. satisfying the properties

St+h(u0) = St(Sh(u0)) and St(u0) = S0(u0) = u0, as t ↓ 0 and for every u0 ∈ Rd. (1.16)

So, based on above definition and using some smoothness and the λ-convexity assumption on
functional φ : Rd → R, we can derive three very important estimates for gradient flows, which will
play a vital role in what follows. Let us present them in the following proposition.

Proposition 1.2.4 (Fundamental estimates). Consider that the functional φ : Rd → R is C2 and
λ-convex. Let also u : [0,∞)→ Rd is a solution of (1.15). Then the following hold:

(i) Evolution Variational Inequality:

d

dt

1

2
|ut − v|2 +

λ

2
|ut − v|2 = e−λt

d

dt

(
eλt

1

2
|ut − v|2

)
≤ φ(v)− φ(ut) for every v ∈ Rd (1.17)

(ii) Energy Identity:

d

dt
φ(ut) = −

∣∣∣ d
dt
ut

∣∣∣2 = −|∇φ(ut)|2 ≤ 0 (1.18)

(iii) Slope inequality:

d

dt

(
e2λt|∇φ(ut)|2

)
=

d

dt

(
e2λt

∣∣∣ d
dt
ut

∣∣∣2) ≤ 0 (1.19)

Proof. The proof of all of these fundamental estimates rely on simple arguments based on the
equivalent characterizations of a λ−convex functional, provided by Proposition 1.2.2.
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(i) For the evolution variational inequality, by the definition of gradient flow in (1.15) and
subgradient inequality given by 1.14, we have

d

dt

1

2
|ut − v|2 = 〈 d

dt
ut, ut − v〉

(1.15)
= 〈−∇φ(ut), ut − v〉
= 〈∇φ(ut), v − ut〉

(1.14)

≤ φ(v)− φ(ut)−
λ

2
|ut − v|2 for every v ∈ Rd.

(ii) For the energy identity, again by the definition of gradient flow in (1.15), we have

d

dt
φ(ut) =

〈
∇φ(ut),

d

dt
ut

〉
(1.15)

= −|∇φ(ut)|2 ≤ 0.

(iii) For the slope inequality, we employ again the definition of gradient flow in (1.15) and the
Hessian inequality given by (1.13), we have

d

dt
|∇φ(ut)|2 = 2

〈
D2φ(ut)∇φ(ut),

d

dt
ut

〉
(1.15)

= −2
〈
D2φ(ut)∇φ(ut),∇φ(ut)

〉
(1.13)

≤ −2λ|∇φ(ut)|2

and based on this, we can obtain the desired bound.

Remark 1.2.5 (λ-contraction property). Let us remark now an important consequence of the
Proposition 1.2.4, where due to its assumptions, we can obtain a λ-contraction property. Precisely,
if v ∈ Rd is another solution to the gradient flow problem (1.15), then it holds that

d

dt

(
eλt|ut − vt|

)
≤ 0. (1.20)

To see this, if we employ again the definition of gradient flow of (1.15) and λ-monotonicity given
by (1.11), we can derive

d

dt
|ut − vt|2 = 2

〈 d
dt
ut −

d

dt
vt, ut − vt

〉
(1.15)

= −2〈∇φ(ut)−∇φ(vt), ut − vt〉
(1.11)

≤ −2λ|ut − vt|2,

and based on this, the desired bound follows.

Following the spirit of ?, we can recast useful and equivalent integral versions of the fundamental
estimates. These versions could be applied to prove existence, uniqueness and stability of the flow
under our assumptions. We highlight this fact in the following remark.

Remark 1.2.6 (Fundamental estimates-revised and well-poseness). The three basic estimates of
Proposition 1.2.4 can be translated in integral form which will be useful in order to understand
better the Lipschitz property of St. Let us make this claim more rigorous by setting

Gλ(t) :=

∫ t

0
eλrdr =

{
eλt−1
λ , if λ 6= 0

t, if λ = 0
. (1.21)
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Then, based on (1.21), the evolution variational inequality becomes

eλt

2
|ut − u|2 +Gλ(t)

(
φ(ut)− φ(v)

)
+

(
Gλ(t)

)2
2

|∇φ(ut)|2 ≤
1

2
|u0 − v|2, for every v ∈ Rd,

the energy identity becomes

φ(ut) +
1

2

∫ t

0

(∣∣∣ d
dr
ur

∣∣∣2 + |∇φ(ur)|2
)
dr = φ(u0),

and slope inequality becomes
|∇φ(ut) ≤ e−λt|∇φ(u0)|.

Moreover, after a short period of calculations, we can observe that if v ∈ Rd is another solution to
(1.15), then we can derive

|ut − vt| ≤ e−λt|u0 − v0|. (1.22)

In addition, translating in (1.22) in terms of maps St in definition of gradient flow, we obtain an
λ-contraction-type estimate in the form

d(St(u0),St(v0)) ≤ e−λtd(u0, v0), for everyu0, v0 ∈ Rd, t ∈ [0,∞).

which shows the Lipschitz property of St and thus uniqueness and stability of solution of (1.15).

1.3 Approximation of solutions by time-discretization

Since now, we have explored the well-poseness of gradient flow equation, which was a standard
application of the theory semigroups of linear operators, based on our smoothness and convexity
assumptions. A natural next step of this exploration is to find a suitable way to approximate solu-
tions of gradient flow equation. Perhaps, one of the simplest, but very useful, ways to produce such
approximations of this type is the so-called implicit Euler scheme. According to it, we can construct
discrete approximations of the solutions of gradient flow equations, using a time-discretization, and
show its existence by a limiting process.

Let us make this discussion a little bit more rigorous. Consider a time step parameter τ > 0
and the associated uniform partition of [0,+∞) in the form

Pτ := {0 = t0τ < t1τ < · · · < tnτ < · · · }, where tnτ := nτ. (1.23)

One goal is to find a discrete sequence (Unτ )n∈N, whose value Unτ has to provide an effective ap-
proximation u(tnτ ). Under this consideration, we can define the term Unτ recursively, starting from
a suitable choice of U0

τ ≈ u0, by solving at each step the well-known implicit Euler scheme

Unτ − Un−1
τ

τ
= −∇φ(Unτ ), n = 1, 2, · · · , (1.24)

or equivalently,
Unτ = Jτ (Un−1

τ ), (1.25)

where Jτ := (Id + τ∇φ)−1 is the resolvent operator for the gradient flow.
Under the light of this approximation procedure, we can obtain the existence of a discrete

approximating solution by looking for minimizers of the functional

U 7−→ φ(U) +
1

2τ
|U − Un−1

τ |2 =: Φ(τ, Un−1
τ , Unτ ). (1.26)
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To see this, we have only to check that any minimizer Unτ of (1.26) solves the equation (1.24), since
the functional defined in (1.26) is (τ−1 + λ)−convex and therefore it admits a unique minimizer,
as long as τ−1 > −λ, by a standard application of Weierstrass theorem.

But what about the convergence of this scheme? Could we have any reasonable and desired
bound? To study such a concerning, let us consider that Uτ : [0,∞) → Rd is the piecewise linear
interpolant of the values of the sequence (Unτ )n∈N, on the partition Pτ , defined by the relation

Uτ (t) :=
t− tn−1

τ

τ
Un−1
τ +

tnτ − t
τ

Unτ , for t ∈ [tn−1
τ , tnτ ]. (1.27)

The following result provides the convergence of the sequence (Unτ (t))n∈N to the solution of ut to
the problem (1.15) as τ ↓ 0.

Proposition 1.3.1. If U0
τ −→ u0 as τ ↓ 0 then the family of piecewise interpolants (Uτ )τ>0 satisfies

the Cauchy condition as τ ↓ 0 with respect to the topology of uniform convergence on each compact
interval [0, T ], for T > 0. Moreover, its unique limit is the solution ut to (1.15), and for every
T > 0 there exists a constant C(λ, L) such that

sup
t∈[0,T ]

|ut − Uτ (t)| ≤ |u0 − U0
τ |+ C(λ, T )|∇φ(u0)|τ. (1.28)

Proof. Shall we present a skertch of proof, although we refer the interested reader to e.g. Rulla
(1996) for relevant results.

Without loss of generality, we consider that λ = 0. Then we can apply the non-expansive
property of the map Jτ defined in (1.25), that is

|Jτ (x)− Jτ (y) ≤ |x− y|, for every x, y ∈ Rd. (1.29)

Based on this property, we can derive the following uniform bound

τ−1|Unτ − Un−1
τ | = |∇φ(Unτ )| ≤ |∇φ(Un−1

τ )|, for n ≥ 1. (1.30)

So, under this perspective, we can also derive that

|U ′τ (t))| ≤ sup
n∈N

τ−1|Unτ − Un−1
τ | = τ−1|U1

τ − U0
τ | ≤ |∇φ(U0

τ )|, for every t ∈ [0,∞)\Pτ . (1.31)

In addition, since |∇φ(U0
τ )| −→ |∇φ(u0)| as τ ↓ 0, we can observe that the family of piecewise

interpolants (Uτ )τ>0 satisfies uniformly a Lipschitz condition. Thus, it admits a subsequences which
is converging uniformly to a Lipschitz map u in each compact interval [0, T ], as a concequence of
Arzelá-Ascoli theorem (we will discuss it in the next chapter in detail). Moreover, if we denote
U τ (t) the piecewise constant interpolant, that is

U τ (t) := Unτ , if t ∈ (tn−1
τ , tn], (1.32)

playing the same game as in (1.31), we can derive

sup
t∈(0,∞)

|Uτ (t)− U τ (t)| ≤ τ |∇φ(U0
τ ) (1.33)

Thus, we conclude that U τ (t) converges to the same limit as Uτ . In addition, thanks to our ap-
proximation scheme defined in (1.24), we have that

U ′τ = −∇φ(Ūτ (t)), in [0,∞)\Pτ (1.34)

and passing to the limit in an integrated form, we can see that this u solves (1.15), which makes
our skertch of proof complete.
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So, we can construct an effective approximation procedure, based on the classical Euler scheme,
in order to ”reach” the discrete solutions of gradient flow equation, and then, we can pass to the
limit to obtain our genuine solutions. However, another, yet interesting and equivalent, way to see
implicit Euler scheme is standing under the light of the famous minimizing movements, which was
introduced by E. De Giorgi and his coworkers in 70s (see De Giorgi (1993); L. Ambrosio (1995)).
The following remark presents this scheme.

Remark 1.3.2 (Minimizing Movements scheme). Based on the functional Φ : (0,∞) × Rd → R
defined in (1.26), one can define an equivalent variational scheme in order to obtain solutions of
gradient flow type by solving recursively minimization problems. Precisely, for a given initial datum
u0 ∈ Rd and a time step parameter τ > 0, we are looking for a sequence (Unτ )n∈N such that U0

τ := u0

and

Φ(τ, Unτ , U
n+1
τ ) = min

U∈Rd
Φ(τ, Unτ , U), i.e. Un+1

τ ∈ argmin Φ(τ, Unτ , ·). (1.35)

Under this perspective, any sequence satisfying (1.35), generates a discrete solution Uτ : [0,∞)→
Rd, which is obtained at time step τ by a piecewise constant interpolation of values of the sequence
(Unτ )n∈N, i.e.

Uτ (0) := U0
τ = u0 and Uτ (t) := Uτ (t) := Unτ , for ((n− 1)τ, nτ ], for every n ∈ N.

Based on these considerations, a curve u : [0,∞]→ Rd is called Minimizing Movement related
to Φ with initial value u0 (denoted by MM(Φ, u0)) if the variational scheme (1.35) has a discrete
solution Uτ converging to u as τ ↓ 0, that is

Uτ (t)→ u(t), as τ ↓ 0, for t ∈ (0,∞).

In the same fashion, we can define the Generalized Minimizing Movement related to Φ with initial
value u0 (denoted by GMM(Φ, u0)) if there exists a suitable vanishing subsequence of time steps
(τk)k∈N and corresponding discrete solutions Uτk at time step τk such that

Uτk(t)→ u(t), as k →∞, for t ∈ (0,∞).

t

u

U0
τ

U1
τ

U2
τ

U3
τ

Uτ (t)

U4
τ

τ

t0 t1 t2 t3 t4 · · ·

· · ·

Unτ

τ τ τ τ

U5
τ

t5

· · ·

Figure 1.1: Minimizing Movements scheme.
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In case of gradient flow type equations, a reasonable and natural choice for Φ, is described in
(1.26). Using this fact, we can derive a variational formulation of implicit Euler scheme. Although,
Minimizing movements is a generic concept, which can applied in a plethora of contexts, with
different analytic, geometrical and topological flavor. Moreover, they will play a vital role to the
construction of gradient flows in metric space setting.

1.4 Equivalent metric characterizations of gradient flows

At this point, we have already explored the notion of gradient flow in a Euclidean setting, and we
discuss some fundamental estimates, which was presented in Proposition 1.2.4, under suitable as-
sumptions of smoothness and convexity, which made us able to prove the well-posedness of gradient
flows. Moreover, we have investigated several facts related with their numerical approximation, in
the light of the implicit Euler scheme, and its variational twin, the Minimizing Movement scheme.

Having now, the fundamental estimates of Proposition 1.2.4 as stepping stone, we shall go a
step further, by taking a closer look on them. The first interesting fact related with these estimates,
is that there are not only estimates. Accurately, through them, we can obtain important and useful
characterizations of gradient flows. Let us start the investigation of these characterizations of
gradient flows by relaxing the Energy identity in (1.18). Doing this, we can arrive to an important
characterization, which is described in the following proposition.

Proposition 1.4.1 (Energy Dissipation Inequality characterization). Consider that u : [0,∞) →
Rd is C1 map. Then u is a solution to (1.15) if and only if satisfies the Energy Dissipation Inequality
(EDI):

d

dt
φ(ut) ≤ −

1

2
| d
dt
ut|2 −

1

2
|∇φ(ut)|2, in (0,∞). (1.36)

Proof. Let u ∈ C1(Rd). Employing the chain rule we get

φ(ut) = φ(u0) +

∫ t

0

〈
∇φ(ur),

d

dr
ur

〉
dr, (1.37)

so applying the energy dissipation identity given in (1.18), we get

1

2

∫ t

0
|u′t +∇φ(ur)|2dr =

1

2

∫ t

0

(∣∣∣ d
dr
ur

∣∣∣2 + |∇φ(ur)|2
)
dr +

∫ t

0

〈
∇φ(ur),

d

dr
ur

〉
dr ≤ 0. (1.38)

From this, we can infer that

d

dr
ur = −∇φ(ur) a.e. for r ∈ (0, 1).

Moreover, by arbitrariness of t and since and u ∈ C1(Rd), we conclude to the fact u solves (1.15)
and this makes our proof.

Very often, maps satisfying (1.36) are known as curves of maximal slope. We refer to L. Ambro-
sio et al. (2008) for a detailed account. However, as one can observe the characterization of above
result did not make any use of the λ-convexity assumption of φ, which was imposed in previous
sections. The whole argument was relying on just a application of the chain rule, which was possible
due to our smoothness assumption.

Moving beyond the characterization of Energy Dissipation Inequality, we can obtain a useful
result which characterizes gradient flows based on the Evolution Variational Inequality. This fact
is presented in the following proposition.
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Proposition 1.4.2 (Evolution Variational Inequality characterization). Consider that u : [0,∞)→
Rd is a C1 map satisfying the Evolution Variational Inequality (EVI) defined by (1.17). Then u is
a solution to (1.15).

Proof. Consider the function defined as

z 7→ d(z) =
1

2
|z − v|2 for any fixed v ∈ Rd.

By a standard application of the chain rule on d, we infer that〈 d
dt
ut, ut − v

〉
≤ φ(v)− φ(ut)−

λ

2
|ut − v|2, for every v ∈ Rd and t > 0. (1.39)

Now, for ε > 0 and η ∈ Rd, we choose v := ut + εη and dividing by ε we obtain

−
〈 d
dt
ut, η

〉
≤ 1

ε

(
φ(ut + εη)− φ(ut)

)
− λε

2
|η|2, for every η ∈ Rd. (1.40)

Letting ε ↓ 0, we obtain

−
〈 d
dt
ut, η

〉
≤ 〈∇φ(ut), η〉, for every η ∈ Rd. (1.41)

Thus, we conclude that d
dtut = −∇φ(ut), which completes our proof.

Note again that the whole proof of the characterization through the Evolution Variational
Inequality was based on the chain rule and a clever ”radial” trick. The λ-convexity of φ does not
seem to play any key role in this situation too. Although, based on the Evolution Variational
Inequality, we can achieve a nice implication related with λ-convexity of φ, as the following result
presents.

Proposition 1.4.3. Suppose that there exists a C1-semigroup (S̃t)t>0 of smooth maps S̃t : Rd → Rd
such that the curve ut := S̃t(u0) satisfies the Evolution Variational Inequality (EVI), defined in
(1.17). The functional φ : Rd → R ∪ {+∞} is λ-convex.

Proof. With no loss of generality, let us assume that λ = 0. We pick ua, ub ∈ Rd and we define
us := (1− s)ua + sub and ust := S̃t(us). Trivially, the λ-convexity of φ is equivalent to

d

ds
φ(us)

∣∣∣
s=0
≤ d

ds
φ(us)

∣∣∣
s=1

. (1.42)

So, we only need to prove that (1.42) holds. To prove this, we will employ the definition of gradient
flow and the Evolution Variational Inequality. We can obtain

d

ds
φ(us)

∣∣∣
s=0

= 〈∇φ(ua, ub − ua〉 (1.15)
= −

〈 d
dt
uat

∣∣∣
t=0

, ub − ua
〉

=
d

dt

(1

2
|uat − ub|2

)∣∣∣
t=0

(1.17)

≤ φ(ub)− φ(ua)

(1.17)

≤ − d

dt

(1

2
|ua− ubt |2

)∣∣∣
t=0

(1.15)

≤ 〈∇φ(ub, u
b − ua〉

=
d

ds
φ(us)

∣∣∣
s=1

,

which makes our proof complete.
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1.5 Extensions and the scope of thesis

Through out this introductory chapter, in our discussion of the gradient flows we have restricted
ourselves to the simple case of the Euclidean setting, considering smooth functionals and employing
the suitable properties of the topological structure of this setting. In an intuitive way, this was
extremely useful, in order to understand the nature of gradient flows, which started by variational
characterizations, like the evolution variational inequality, the energy identity and the slope identity
as consequences of a relaxation of convexity using a technical trick and concluded by a suitable
approximation using implicit Euler scheme based on semigroup theory in PDEs. We have to
mention that many results, which are described in this chapter, based on the the fact that the
setting under consideration was the complete, compact, finite dimensional Euclidean space setting.
For that reason, this discussion on gradient flows cannot be translated, in general, to other more
general settings. Nevertheless, many analogous theories have been developed during last four
decades, in different and interesting directions. Nowadays, consists a very active research field being
on interplay of Analysis, PDEs, Calculus of Variations, Optimal Transportation and Probability.
In this section will describe some directions to extend this theory which is also a part of the scope
of this thesis.

Another direction and possibly the first one that one can imagine as a generalization of the Eu-
clidean setting, is to consider a gradient flow generated by a proper lower semicontinuous λ−convex
functional φ : H → R ∪ {+∞}, where H denotes a separable Hilbert space (possibly infinite di-
mensional). All of the estimates and results discussed in this chapter can be recasted replacing the
gradient of φ by its subgradient defined by the multivalued operator

∂φ(x) := {p ∈ H : φ(y) ≥ φ(x) + p(y − x), for all x, y ∈ H} (1.43)

using convex analysis techniques, which can be found in Hiriart-Urruty & Lemaréchal (2012);
Rockafellar (2015), avoiding any strong compactness assumption. In this framework, the resolvent
operator Jτ := (Id + τ∂φ)−1, as a refinement of the operator defined in (1.25), is single-valued and
non expansive, i.e. satisfying

d(Jτ (v), Jτ (u)) ≤ d(u, v), for u, v ∈ H and τ > 0 (1.44)

where d stands for the metric induced by the inner product of H. Based on these properties we can
prove the convergence of the exponential formula

(Jt/n)n(u0)
n→∞−→ ut and d(ut,t/n )n(u0)) ≤ 2|∂φ(u0)|t√

n
, (1.45)

and thus define a contraction semigroup of the proper domain of φ, i.e. D(φ) = {x ∈ H : φ(x) <
∞}, based on Crandall-Ligett generation argument. Under these considerations, the unique solu-
tion ut can be characterized, as in Euclidean setting, by a evolution variational inequality. This
formulation goes back to J.L.Lions and G. Stampacchia Lions & Stampacchia (1967). Moreover,
an analoguous approximation technique, that has been done in Section 1.3, can be obtained (see
e.g. Rulla (1996)). All of these tools and techniques can be placed within the name of differential
inclusions and maximal monotone operators in Hilbert spaces which has been developed in 70s by
H. Brezis, J.L.Lions, M.G. Crandall, T.M. Liggett and many others (see e.g. Lions (1969); Brézis
(1971); Crandall & Liggett (1971)).

Another, and quite more general, direction to extend the theory of gradient flows, is to forget ev-
erything about the vector structure of ambient space and consider a lower semicontinous functional
φ : X → R ∪ {+∞}, where X denotes a complete and separable metric space. The starting point
of studying gradient flows in this setting is the equivament metric characterizations, which were
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mentioned in Section 1.4. In this spirit, combining techniques from Metric Geometry and Analysis
in Metric spaces, one have to look for absolutely continuous curves satisfying the equivalent metric
characterizations. Since in metric setting, any classical notions of differentiability collapsed, under
the light of absolutely continuity, we are able to replace it with the metric analogies of it, like metric
derivative and metric slope. This theory is based on local compactness assumptions on φ and a kind
of other assumptions on its (metric) slope which lead us to achieve lower semicontinuity, providing
us a enormous flexibility but also a great disadvantange in terms of general metrics spaces many
uniqueness and stability remains still open open problems. This direction can be placed under
the roof of curves of maximal slope in metric spaces, which developed in 80s by E. De Giorgi, De
Giovanni, Marino and Tosques in series of works (see for e.g. De Giorgi E. & Tosques (1980);
De Giorgi et al. (1983); L. Ambrosio (1995); Cardinali et al. (1997)), or more recently, in work of
L. Ambrosio, N. Gigli and G. Savare (see L. Ambrosio et al. (2008)).

A third direction could be through the so-called generalized minimizing movements, introduced
by E. De Giorgi (see De Giorgi (1993)). This direction provides a general approximation scheme
which, based on compactness arguments, is constructing limit curves. It is appearing in a plethora
of cases and provides an important toolbox to treat different situations (see e.g. Gianazza & Savaré
(1996)). Perhaps, one of the most important result in this perspective is the seminal paper or R.
Jordan, D. Kinderlehrer and F. Otto (see Jordan et al. (1998)), where has been introduced the
currently well-known JKO schemes.

Having all of these directions in our mind, let us specify the scope of this thesis. Our aim is
to present the metric theory of gradient flows almost from scratch, having as starting point the
equivalent metric characterizations of gradient flows, and moreover, to present some important
applications of them. To do this, we start this investigation by considering the notion of curves
in metric spaces, starting from the classical analysis of Lipschitz maps between metric spaces.
Moreover, we will proceed to lengths of curves and length spaces, and furthermore to geodesics,
geodesic spaces and geodesic convexity. Additionally, we will present a kind of crash course on
Optimal Transport, which can provide us with a robust way to metrize the space of probability
measures and understand many qualitative properties of a plethora of objects of our interest.
Equally, based on optimal transport problem, we will study the metric, topological and geometrical
properties of the so-called Wasserstein spaces, which will provide us a powerful machinery to study
and understand PDEs in metric setting, as well as the understanding the nature of optimal transport
problem itself. The last scene of this investigation will be the exploration of gradient flows in metric
setting, where we will discuss the relations of equivalent metric characterizations, the minimal
assumptions of existence of solutions. Under this perspective, we will study the gradient flows for
geodesically convex functional, since they allow us to present several chic results. The equivalent
metric characterizations coupled with the metric nature of Wasserstein spaces will led us to the
so-called Wasserstein gradient flows.



18 CHAPTER 1. INTRODUCTION



CHAPTER 2

Curves on metric spaces

”I would like to make a confession which may seem
immoral: i do not believe in Hilbert space anymore.”

— John von Neumann,
Hungarian mathematician (1903-1957)

Trying to extent the classical theory of gradient flows in vector space setting to a pure metric
setting, one will encounter several difficulties, since the key notions which was applied in vectorial
setting might be meaningless.

In this chapter, we present the key ingredients which will make us able to study gradient flows
in pure metric setting. We will start by warming up ourselves about maps between metric spaces,
we will study the notion of length of curves in metric spaces, ending up to so-called length spaces.
Moreover, based on length spaces, we will explore geodesics and geodesic spaces, presenting many
of their properties, arriving to geodesic convexity. Almost all of the results which will follow can
be found to Burago et al. (2001); Papadopoulos (2005).

2.1 Warm up: some facts about maps in metric spaces

Before the investigation of curves in metric spaces, we shall recall some facts from Analysis of
Lipschitz maps in metric spaces.

Let us consider that the pair (X , d) is a metric space equipped with the Hausdorff (metric)
topology τd, that is the set X is equipped with a functional d : X × X → R, which satisfies the
properties of a metric, i.e it is non-negative, symmetric, indiscernible and subadditive and the open
sets of τd are defined by the open balls Br(x) with respect to distance d, for some x ∈ X and some
radius r > 0.

Having the notion of metric spaces in our mind, maybe the first reasonable question to ask is
whether, distance is preserved between two metric spaces. Or, in other words, whether could we
treat different objects, which belong in different metric spaces as the same, with respect to the
notion of distance. This concern lead us to define the so-called isometries or isometric embeddings.

Definition 2.1.1 (Isometric embedding). Consider that (X , dX ), (Y , dY) are two metric spaces. A
map f : X → Y is called isometric embedding if it holds

dY (f(x), f(y)) = dX (x, y), for every x, y ∈ X.

19
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Perhaps, in order to relax the restrictive distance preserving property of isometries, the first
thought is to allow contractions and dilations in the distance preserving relation between two metric
space. Such a thought, led us to the notion, Lipschitz maps.

Definition 2.1.2 (Lipschitz map). Consider that (X , dX ), (Y , dY ) are two metric spaces. A map
f : X → Y is called Lipschitz if for some L ≥ 0, it holds

dY (f(x), f(y)) ≤ LdX (x, y), for every x, y ∈ X . (2.1)

The minimal L in the condition (2.1) is usually referred as the Lipschitz constant and denoted
as Lip(f), that is

Lip(f) := inf{L : f : X → Y is Lipschitz map }.
Based on the definition of Lipschitz maps, we can define the bi-Lipschitz maps, which present
several nice properties, as we will see in the following.

Definition 2.1.3 (Bi-Lipschitz map). Consider that (X , dX ), (Y , dY ) are two metric spaces. A
map f : X → Y is called bi-Lipschitz if there exists L ≥ 1 such that

1

L
dX (x, y) ≤ dY(f(x), f(y)) ≤ LdX (x, y), for every x, y ∈ X .

An interesting fact about bi-Lipschitz maps is that they are homeomorphic onto their images.
From this observation, it follows that if X is a complete metric space, Y is a metric spaces and
f : X → Y is a bi-Lipschitz map, then Y should be complete too. This statement of course does
not hold for general homeomorphisms between metric spaces, since they cannot preserve properties
like completeness.

It is widely known that there are many important theorems which are built around Lipchitz
maps. Maybe the three most important are the Banach’s fixed point theorem, which is involving a
special case of Lipschitz maps where L ≤ 1, the so-called contractions, the Rademacher’s theorem,
which describes the ”boundaries” of differentiability of Lipschitz maps, and the Baire’s theorem,
which has deep and unexpected consequences in functional analysis. The latter two will play a
crucial role in our forthcoming discussion.

Although, in many situations working with Lipschitz maps, it is desired to get involved with
extensions of them, in order to obtain a suitable approximation. Studying whether two metric
spaces has such a Lipschitz extension property consists a topic of quite current research (see Jensen
(1993) or Garrido & Jaramillo (2008)). Perhaps one of most classical extension result consists the
McShane-Whitney extension, which is presented in the following.

Proposition 2.1.4 (McShane-Whitney extension). Consider that (X , d) is a metric space, a
nonempty set A ⊂ X nonempty and a Lipschitz map f : A → R. Then, there exists a func-
tion f̃ ∈ Lip(X ,R), with the same Lipschitz constant as f, which is the extension of f in X , i.e.
f̃ |A = f.

Proof. Let us define for every a ∈ A the map fa : X → R by

fa(x) := f(a) + LdX (a, x), for every x ∈ X.

Clearly, by its construction fa is L-Lipschitz. Moreover, let us define the function f̃ as

f̃(x) := inf{fa(x) : a ∈ A}, for every x ∈ X .

Again, by construction, we can see that f̃(x) < +∞ for any x ∈ X . Now, fixing a a0 ∈ A, we have

f(a) + LdX (a, x) ≥ f(a) + LdX (a, a0)− LdX (a, x)

≥ f(a0)− LdX (a0, x),
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and hence, we have that f̃(x) > −∞ for any x ∈ X . Thusly, since any fa is L-Lipschitz, we have
that f̃ is L-Lipschitz.

The only thing to prove is that f̃ extends f. To prove such a claim, we observe that for any
x ∈ A we have

f̃ ≤ fx(x) = f(x) ≤ f(y) + LdX (x, y) = fy(x), for everyy ∈ A.

Therefore, f̃ |A = f and our proof is complete.

The above result admits interesting generalizations in more general settings (like Kirszbraun
theorem on Hilbert spaces, see Schwartz et al. (1969)), but for the purposes of our discussion, such
generalization are far from our goals. Based on McShane-Whitney extensions, one can provied a
very useful approximation trick, which is presented in the following remark.

Remark 2.1.5 (Reverse extension trick). The function f̃ in above proposition is the smallest
possible extension. The largest one extension, following this spirit, for a x ∈ X , is given by

f̂(x) := inf
y∈A

{
f(y) + `dX (x, y)

}
.

This observation will be crucial in the following, making us able to prove several desired properties
of certain functionals.

Keeping the discussion in the level of extensions, Lipschitz maps, we can have also a nice
behaviour with respect to dense subspaces of their domain, as one might expect. A kind of such a
behaviour is presented in the following result.

Proposition 2.1.6 (Dense embedding). Consider that (X , dX ) is a metric space and X ′ ⊆ X is a
dense subspace. Assume that (Y , dY ) is a complete metric space and the Lipschitz map f : X ′ → Y .
Then there exists a unique Lipschitz map f̃ : X → Y such that f̃ |X ′ = f and Lip(f) = Lip(f̃).

Proof. For every x ∈ X , let us pick up a sequence (xn)n∈N such that xn ∈ X ′ for any n ∈ N and
xn → x. Then the sequence

(
f(xn)

)
n∈N is Cauchy, since Y is complete. This means that

dY (f(xn), f(xm)) ≤ LdX (xn, xm)→ 0, as n,m→∞.

Thus, L = Lip(f). Moreover, again since Y is complete, we sure that there exists y ∈ Y such
f(xn)→ y. So, we define f̃(x) = y and we can see that f̃ is well-defined, since it does not depend
on the choice of the sequence (xn)n∈N.

We claim that f̃ is L-Lipschitz. To see this, let x, y ∈ X and consider the sequences (xn)n∈N, (yn)n∈N ⊂
X such that xn → x and yn → y. Then, we have

dY(f̃(x), f̃(y)) = lim
n→∞

dY (f(xn, f(yn))

≤ L lim
n→∞

dX (xn, yn)

= LdX (x, y).

The uniqueness, of such a function f̃ comes from the fact that if there were two continuous maps
coinciding on a dense set, they have to coincide everywhere. This consideration makes our proof
complete.

Isometrical and dense embeddings can describe many important properties of metric spaces.
One of the most important of them is that every metric space can be isometrically embedded to
a complete metric space in a dense way. The procedure is the so called metric completion. In
particular, we have the following result, which proof can be found in several Analysis books (see
e.g. Bachman & Narici (2000)).
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Proposition 2.1.7 (Completion of a metric space). Consider that (X , d) is a metric space. Then
there exists a complete metric space X̃ and an isometric embedding f : X → X̃ , such that the image
f(X ) is dense in X̃ . The space X̃ is unique up to any isometry and it is called completion of X .

Since now, we have carefully seen several important results related to the extensions, approx-
imations and topological nature of Lipschitz maps. Through all of these results, several features
of Lipschitz maps can be understood. Although, one may ask, what about the approximation
of functions, using Lipschitz maps? Such a concern is very important problems in Calculus of
Variations or Approximation theory. Perhaps, there is no unique answer, since it depends on the
corresponding functional setting. Although, there is a very useful result, according to it any lower
semicontinuous map can be viewed as a limit of an increasing sequence Lipschitz maps.

Proposition 2.1.8. Consider that (X , d) is a metric space and f : X → [c,∞) is lower semicon-
tinuous for some c ∈ R. Then there exists a (increasing) sequence of Lipcschitz maps (fn)n∈N such
that

c ≤ f1 ≤ · · · ≤ fn(x) ≤ fn+1(x) ≤ f(x) and fn(x) −→ f(x), as n→∞.

Proof. In case where f(x) = +∞, we might choose fn(x) = n and the desired result will immediately
follow.

In case where f(x) < +∞, let us define for each n ∈ N the n-Lipschitz function fn by

fn(x) := inf{f(y) + ndX (x, y) : y ∈ X }.

By construction, we can see that c ≤ f1 ≤ · · · ≤ fn ≤ fn+1 ≤ f(x) for every x ∈ X . Now, fixing
x ∈ X and letting M ∈ [c, f(x)), we can choose a radius r > 0, such that f(x) > M for every
x ∈ Br(x). Then we have that fn(x) ≥ min{M, c+ nR}, so if we choose n ∈ N large enough, such
that c+ nr > M, we have fn(x) ≥M. Thusly,

fn(x) −→ f(x), as n→∞,

as desired. So our proof is complete.

We introduce now the notion of uniform equicontinuity.

Definition 2.1.9 (Uniform equicontinuity). Consider that (X , dX ) and (Y , dY) are two metric
spaces and (fn)n∈N is a sequence of maps fn : X → Y . We will say that (fn)n∈N is uniform
equicontinuous if for any ε > 0 there exists δ > 0 such that for any n ∈ N and any x, y ∈ X we
have

dX (x, y) < δ =⇒ dY(fn(x), fn(y)) < ε.

But, what about uniform equicontinuous maps between metric spaces? Why do we bother
with such objects and which is the standard example of uniform equicontinuous maps? All of
these sensible questions have specific answers, which will naturally appearing in the following.
Let us only mention at this point that, thanks to uniform equicontinuity, is closely related with
compactness-type arguments, which can be extremely useful in several situations. A standard
example of uniformly equicontinuous sequence of maps, is a sequence of L-Lipschitz maps.

At this point, let us remind the notion of diameter in metric space. For a metric space (X , d),
we define the its diameter as

diam(X ) := sup{d(x, y) : x, y ∈ X }.

Based on diameter, we can define bounded subsets of X as the subsets with finite diameter with
respect to the metric topology induced on these subsets. In order to continue this exploration, of
the interplay of limits of sequence of maps between metric spaces and compactness-type arguments,
we restrict ourselves to proper metric spaces, which are defined in the following.
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Definition 2.1.10 (Proper metric space). Consider that (X , d) is a metric space. We will say that
(X , d) is proper if every bounded subset of X is compact.

The above definition reads to the fact that we can extract a convergent subsequence from any
(infinite) bounded sequence. Under this prespective, proper metric spaces satisfies an analogue
property like Heine-Borel property in any finite dimensional normed space. In addition, one can
easily observe that a closed subset of a proper metric space, equipped with the induced metric
topology is proper, and every proper metric space is complete. Moreover, a proper metric space
is also separable space, i.e. it contains countable dense subset. All of these nice properties, turn
proper metric space into a very nice and reasonable functional setting to work with, which can be
extremely useful in many applications, in which we can characterize the limits of desired sequences
of functionals describing a certain problem.

Perhaps, the most famous result of uniform equicontinuous maps in proper metric spaces is the
Arzelá-Ascoli theorem, which characterize the boundedness of sequence of equicontinuous maps,
and make us able to play the game of extraction of subsequences.

Theorem 2.1.11 (Arzelá-Ascoli). Consider that (X , dX ) is a separable metric space, (Y , dY) is
proper metric space and (fn)n∈N is a sequence of uniformly equicontinuous maps fn : X → Y , which
is bounded for every x ∈ X . Then there exists a subsequence of (fn)n∈N which converges uniformly
on every compact subset of X to a uniformly continuous map f : X → R.

2.2 Curves in length spaces

Having warmed ourselves up about some general facts of maps between metric spaces, we shall
focus now on more specific questions related to such maps. All of such questions will lead us to
several very interesting geometric feautures of maps between metric spaces. These features can be
put under the name Metric Geometry, which consists nowadays a quite active research field and
presents unexpectected applications to many disciplines. Most of the following results can be found
in Burago et al. (2001) and Papadopoulos (2005). We will start this discussion with specific and
concrete example.

Imagine that we are sitting in a summer night on roofgarden of Hotel Grande Bretagne in
Athens, enjoying our rum fashion cocktail. If we ask ourselves what about the distance between
our table and another one in the roofgarden, the answer can be easily and intuitively occur. More
precesily, using a minimal ammount of abstraction and recalling the the Euclidean space setting,
the distance can be immediately (and locally) measured and assigned with a specific number.
Although, sitting in the roof and watching the view of Parthenon, such a concern could be realised
with a more general perspective: what about the distance between our table and the Parthenon? Of
course, in the same fashion as the distance between tables, such a distance can be measured as a
straight line using a kind of optical device. Nevertheless, this strategy of measurement seems to
be extremely useless, since this distance can going through only by birds1. So, given that we are
human beings, the distance between our table can be viewed as path or curve, which we can going
through by many ways, where its our is assigned with a specific length. Under this perspective, we
would ideally want minimize the length of the path, in order to enjoy the view of Athens from the
Parthenon, as fast as possible.

This heuristic (and maybe abuse) example contains a very clear mathematical precept. To be
more accurate, in many cases we need to start with lengths of a class of paths, and then, based
on the class of the paths, derive some kind of distance. Living locally in the Euclidean space
setting, as we were in the distance between two tables, we could easily measure a distance with the

1Perhaps, not even by birds!
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usual Euclidean metric. However, what about measuring distance as a shortest path between two
points, as in the case of distance between our table and the Parthenon? Perhaps, the most natural
thought, is to introduce a new distance which can measure the shortest path between these two
points. Mathematically speaking, we could say that this distance stands for an intrinsic metric,
where the distance between two points is constructed by the minimal connecting these points, or
more precisely, the infimum of the lengths of the paths between them.

So, the starting point of such a discussion might be the notions of a path or curve in a metric
space (X , d). Let us use by now the terminology curve, instead of path. Under this consideration,
in what will follow, as curves we mean maps of intervals to metric spaces, or accurately, we mean
maps γ : I → X defined on an interval I ⊂ R. By an interval we mean any connected subset of
real line which might be open or closed, finite or infinite or even singleton. For the purpose of our
discussion, we will assume that I = [a, b], where a, b ∈ R with a ≤ b. We will usually refer the
points a, b as endpoints.

Considering the above notion of curve, our first concern related to its length, how this curve is
changing, or more accurate, what about a notion of variation of that curve, or in terms of straight
lines, how similar is it to a piecewise linear curve. All of these concerns are captured in the notion
of the so-called total variation of that curve.

Definition 2.2.1 (Total variation of a curve). Consider that (X , d) is a metric space and γ :
[a, b]→ X . We define the total variation of γ in [a, b] as the quantity

Vγ(a, b) := sup

{ n∑
i=1

|γ(ti)− γ(ti−1)| : a ≤ t0 ≤ · · · ≤ tn ≤ b
}
.

Based on the definiton of total variation of a curve in some metric space, we can intuitevely
define its length, as its maximal variation.

Definition 2.2.2 (Length of a curve). Consider that (X , d) is a metric space and γ : [a, b] → X .
We define the length of γ in [a, b] as the quantity

`(γ) := sup
{
Vγ(a, b) : for [a, b] ⊂ I, where I is an open interval

}
.

Moreover, we will say that the curve γ is rectifiable if `(γ) <∞.

a

bγ

Figure 2.1: A curve γ connecting a with b

Having a well-defined notion of length for a curve defined in a metric space, we will focus
on two classes of properties, which they enjoy. The first class of such properties are related to
their parametrization. Reasonably, one may ask what about its behaviour along to changing of
parameters. Before of proceeding to examine such a question, let us define clearly what we mean
by change of parameter or reparametrization.

Definition 2.2.3 (Reparametrization). Consider that γ : [a, b] → X and γ′ : [c, d] → X are two
curves in X . We will say that γ′ is obtained by γ through a reparemetrization if there exists a map
ψ : [c, d]→ [a, b] which is monotone, surjective and satisfies γ′ = γ ◦ ψ.



2.2. CURVES IN LENGTH SPACES 25

Note that, topologically speaking, we don’t require that reparametrization map be homeomor-
phisms. Reparametrization of length of curves seems to be at this level very useful in many cases.

Maybe one of the most important properties of reparametrization is the invariance of length.
Accurately, the length of a curve seems to be independent of the reparametrization, as it presented
in the following result.

Proposition 2.2.4 (Length invariance under reparametrizations). Consider that γ′ : [c, d] → X
be a curve obtained from a path γ′[a, b]→ X by reparametrization. Then the curves γ and γ′ have
the same length, that is `(γ) = `(γ′).

Proof. We shall first prove the ”greater or equal” direction. For that reason, let us consider that
ψ : [c, d] → [a, b] is the change of parameter. We associate any partition a ≤ t1 ≤ · · · ≤ tn ≤ b of
[a, b], another partition c ≤ t′1 ≤ · · · ≤ t′n ≤ d of [c, d], by choosing for each i = 1, · · · , n, an arbitrary
point in the set ψ−1(ti) and re-ordering the points, if it is necessary. Then we have Vγ′(c, d) ≥
Vγ(a, b). Now, taking the supremum over all partitions of [c, d], we obtain `(γ′) ≥ Vγ(a, b). In the
same fashion, taking the supremum over all partitions of [a, b], we obtain

`(γ′) ≥ `(γ). (2.2)

We shall prove now the ”less or equal” direction. To do this, let us consider that P is a partition
of [c, d]. Then, through ψ, we have that its image is ψ(P ) = P ′, where P ′ is a partition of [a, b].
Moreover, since ψ is monotone, we have that Vγ′(c, d) = Vγ(a, b). Now, taking the supremum over
all partitions of [c, d] we obtain Vγ′(c, d) ≤ `(γ). In the same fashion, taking the supremum over all
partitions of [a, b], we obtain

`(γ′) ≤ `(γ). (2.3)

Combining (2.2) and (2.3), we infer the invariance of length under parameter changing.

Let us restrict ourselves to the case of rectifiable curves. In such a case, reparametrizations
enjoy several thankful properties. We shall start the study of this case by recalling the following
lemma. Its proof is ommitted, but in any case, we refer the interested reader to Burago et al.
(2001).

Lemma 2.2.5. Consider that γ : [a, b] → X is a rectifiable curve. Then for every u ∈ [0, `(γ)]
there exists a unique x ∈ X and a t ∈ [a, b] such that x = γ(t) with `(γ(t)) = u.

Based on above lemma, we could obtain several results related to analytical properties of
reparametrizations. An example of such results is presented in the following proposition, which
witness a Lipschitz property involved into reparametrization arguments.

Proposition 2.2.6. Consider that γ : [a, b] → X is a rectifiable curve. Let also the map ζ :
[0, `(γ)]→ X defined as ζ(u) = γ(t), where γ(t) is the unique point according Lemma 2.2, satisfying
`(γ(t)) = u. Then the map ζ is 1-Lipschitz.

Proof. Let u, u′ ∈ [0, `(γ)] such that u ≤ u′ and consider also t, t′ ∈ [a, b] such that `(γ(t)) = u and
`(γ(t′)) = u′. Then, we have that ζ(u) = γ(t) and ζ(u′) = γ(t′). Considering the trivial partition
{a, b} of [a, b], we observe that

d(u, u′) ≤ `(γ).

Using this fact, we have

d(ζ(u), ζ(u′)) ≤ d(γ(t), γ(t′)) ≤ `(γ[t,t′]

≤ `(γ(t′)− `(γ(t))

= u′ − u,

whic shows that ζ is 1-Lipschitz and makes our proof complete.
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Having by now an clear view of reparametrization, we study an important notion of parametriz-
ing curves, the so-called arc length parametrization. Intuitevely, this notion of parametrization is
trying to imitate the case of ”piecewise linearity” of a curve.

Definition 2.2.7 (Arclength parametrization). Consider γ : [a, b] → X is rectifiable curve. We
will say that γ is parametrized by arclength if for every a ≤ u ≤ v ≤ b, we have

`(γ|[u,v]) = u− v.

Moreover, if γ : [a, b]→ X is parametrized by arclength it also holds that

`(γ) = b− a.

One could extend the notion of arclength parametrization in a homeomorphic way. Accurately,
we have the following definition.

Definition 2.2.8 (Propotional to arclength parametrization). Consider the curve γ : [a, b] → X .
We will say that γ is parametrized propotionally to arclength if either γ is constant curve, or there
exists a curve γ′ : [c, d] → X wich is parametrized by arclength and which satisfies γ = γ′ ◦ ψ,
where ψ : [a, b]→ [c, d] is the unique affine homeomorphism between these to intervals, that is the
map defined as

ψ(x) :=
(d− c)x+ (bc− ad)

b− a
Extending the notion of arclength parametrization of a curve through parametrization propo-

tional to arclength one can again recast a Lipschitz property of that curve. In particular, as the
following result witnesses, any propotional to arclength parametrization of a curve, uncovers to us
a Lipschitz property with respect to the length of that curve.

Proposition 2.2.9. Consider that γ : [0, 1] → X is a curve parametrized propotionally to arc
length. Then γ is `(γ)-Lipschitz map.

Proof. Such a statement can be easily verified through the definition of parametrization propotional
to arclength and the strategy of Proposition 2.2.6. For that reason, it is omitted.

By this time, we have gently explored a class of important and significant reparametrization
properties of length of curves. Now, we will focus on another class of crucial and desirable properties
of them, that is analytical properties, which they are enjoying.

At the first level, it is no hard to see that, by construction, the length functional `(·), is additive,
that is, for a path γ : [a, b]→ X and some c ∈ [a, b] it holds that

`(γ) = `(γ|[a,c]) + `(γ|[c,b]).

Moreover, through close looking on the definition of the length functional, one might observe that
for any t ∈ [a, b], the map t 7→ γ(t) is increasing and continuous.

In order to work and explore properties of lengths of curves in a further analytical way, let us
define the space of all curves in X with domain the interval [a, b] as the set

C ([a, b],X ) := {γ : [a, b]→ X : γ(a) = x, γ(b) = y},

equipped with the topology of uniform convergence, which is defined through the metric

d(γ1, γ2) := sup
t∈[a,b]

d(γ1(t), γ2(t)).

One may observe that the map ` : C ([a, b],X )→ R∪{+∞} is not continuous in general. Although,
it satisfies a lower semicontinuity property, which is presented in the following proposition.
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Proposition 2.2.10 (Lower semicontinuity of length). Consider that (X , d) is a metric space. The
length functional ` : C ([a, b],X )→ R ∪ {+∞} is lower semicontinuous.

Proof. Let us fix a point t ∈ [a, b]. Then for any γ1, γ2 ∈ C ([a, b],X ) we have

d(γ1(t), γ2(t)) ≤ d(γ1, γ2).

Therefore, the map γ 7→ γ(t) is continuous. Hence the map

γ 7→
n∑
i=1

|γ(ti)− γ(ti+1)|

is continuous, as a sum of continuous maps. Therefore, the map

`(γ) = sup{Vγ(a, b) : for [a, b] ⊂ I where I is an open interval}

stands for a supremum of continuous functions, and hence it is lower semicontinuous.

Another, and very useful, way to present the lower semicontinuity of length function `(·) is pre-
sented, in terms of sequences, in the following corollary. Its proof stands for a standard application
of Proposition 2.2.10.

Corollary 2.2.11. Consider that (X , d) is a metric space and (γn)n∈N is a sequence of paths where
γn : [a, b]→ X , which converges to some path γ : [a, b]→ X . Then we have

`(γ) ≤ lim inf
n→∞

`(γn).

So by now, we have seen that lengths might not be continuous. Instead of continuity, we
established a lower semicontinuity property. A reasonable concern to proceed our exploration on
length of curves is related to sequences of length of curves and whether could we work with their
subsequences, in order to describe desirable properties. Luckily, such questions, restricting ourselves
to the case of proper metric spaces and thanks to the Arzelá-Ascoli theorem, can be easily treated
and reduced to the discussion of the previous section. Accurately, we have the following result.

Proposition 2.2.12. Consider that (X , d) is a proper metric space, L ≥ 0 and for n ∈ N let
γ : [0, 1] → X be a curve which is parametrized propotional to arclength such that `(γ) ≤ L.
Suppose also that the set {γn(0) : n ∈ N} is bounded. Then the sequence (γn)n∈N has a subsequence
which convergences to some curve γ : [a, b]→ X , such that `(γ) ≤ L.

Proof. We have for any n ∈ N that γn is L-Lipschitz, so the sequence (γn)n∈N is uniform equicon-
tinuous. Moreover, since X is proper metric space and the sequence (γn(0))n∈N is bounded, upon
to a subsequence, we have γn(0)→ ω, where ω ∈ X . Then, for every n ∈ N and for every t ∈ [0, 1]
we have

d(ω, γn(t)) ≤ `(γn)d(γn(a), γn(t))

≤ `(γn)d(t, 0)

≤ L.

Thus, for any t ∈ [0, 1] the sequence (γn(t))n∈N is bounded. Thanks to the Theorem 2.1.11 (Arzelá-
Ascoli), up to a subsequence, γn → γ uniformly. To conclude, thanks to Corollary 2.2.11, we
have

`(γ) ≤ lim inf
n→∞

`(γn) ≤ L,

which makes our proof complete.
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Having explored these few, but fundamental, properties of lengths of curves, we have developed
a standard machinery to obtain the most important result of this section. Literally speaking, we
are able now to prove that the infimum in the definition of length is finite, or in the other words,
there exists a curve with minimal length.

Proposition 2.2.13 (Existence of curves with minimal length). Consider that (X , d) is a proper
metric space and suppose that there exists a rectifiable curve γ : [a, b] → X , joining two points
x, y ∈ X . Then, the exists a curve whose length is equal to the infimum of lengths of all curves
joining x and y.

Proof. Let (γn)n∈N be a sequence of paths joining x to y such that `(γn)→ s, where s is defined as

s = inf{`(γ) : γ : [a, b]→ X such that γ(a) = x, γ(b) = y}.

Without loss of generality, we assume that for any n ∈ N is parametrized proportionally to ar-
clength, and so, its domain is the interval [0, 1]. Thanks to Proposition 2.2.12, keeping the same
notation up to a subsequence we have that γn → γ. Taking the limits, we have clearly that the
path γ joins x to y.

In addition, thanks to Corollary 2.2.11, we have

`(γ) ≤ lim inf
n→∞

`(γn) ≤ s. (2.4)

Moreover, by definition of s, we have that `(γ) ≥ s. Combining this fact with (2.4), we obtain
`(γ) = s, as it was desired.

Having a well-defined notion of length in our toolbox, we can define a metric associated with that
length notion, the so-called intrinsic metrics. Constructions like this, are motivate the definition
of length spaces.

Definition 2.2.14 (Length space). Consider that (X , d) is a metric space. Then for any two points
x, y ∈ X we define the associated metric between them d`(x, y) as

d`(x, y) := inf{`(γ) : γ : [a, b]→ X , γ(a) = x, γ(b) = y}.

We will called d` intrinsic metric. Moreover, if d = d`, the space (X , d`) is called length space.

Proposition 2.2.15. Consider that (X , d) is a length space, x ∈ X and r > 0. Then for every
y, z ∈ Br(x), there exists a curve γ : [a, b] → X with `(γ) < 2r joining y and z. Moreover, the
image of any such curve is contained to the B2r(x).

Proof. By a standard application of the triangle inequality in R we have

|y − z| ≤ |y − z|+ |z − x| < 2r.

In addition, since X is a length space, there exist a path γ : [a, b]→ X such that `(γ) < 2r joining
y and z.

We will prove now that the image of such a curve is contained in B2r. For the sake of contra-
diction, we suppose that there exists t ∈ [a, b] such that γ(t) /∈ B2r(x). Then we have

|y − γ(t)| ≥ |x− γ(t)| − |x− y| > r and |z − γ(t)| ≥ |x− γ(t)| − |x− z| > r.

Thus, we obtain
`(γ) = `(γ|[a,t]) + `(γ|[t,b]) ≥ |y − γ(t)|+ |z − γ(t)| > 2r,

which is a contradition, since `(γ) < 2r. This fact makes our proof complete.
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The following result, due to H.Hopf and W.Rinow, provides a nice characterization of compact
subsets of completely locally compact length spaces, as an imitation of compact subsets of Euclidean
space. We omit its proof, and we refer the interested reader to Gromov (2007).

Theorem 2.2.16 (Hopf-Rinow I). Consider (X , d) that is complete and locally compact length
space. Then X is proper metric space.

Let us now make some technical comments on the definition of length space. One may note
that dropping the assumption of proper metric space in above definition, the metric d` can take the
value infinity. For example, if X is a disconnected union of two components, there is no continuous
curve going from one component to other, and thus, the distance between two points in different
components will be infinity. In addition, it might be no shortest curve between two points. For
example, one can imagine the case of R2 where an open segment has been removed. In such a case,
there is no shortest curve between the endpoints of removed segment. Although, the length can be
still approximated, with a given precision, by other paths connecting endpoints.

However, under specific and reasonable assumptions, the structure of length space could a
reasonable setting to work with. As one may expect, such structures stand on the intersection of
Differential Geometry, Metric Geometry and Analysis in metric spaces, and nowadays, consist a
pretty active research field (see e.g. the great monograph of M. Gromov (Gromov (2007)) or the
bible of Metric Geometry of D. Burago et. al ( Burago et al. (2001)) for an extended presentation)
with many important applications.

For the purposes of this text, length spaces will be the basis in order to define and explore their
children: the geodesic spaces, in the forthcoming discussion.

2.3 Absolutely continuous curves and differentiability

Having all of the notions of length of curves and their properties in our mind, let us make a ”metric
differential refuelling stop”, in order to explore differentiability of curves in metric space setting,
alongside the notions which were described in the previous section.

For the sake of doing this, a first observation can hint us that the study of such a concept in
purely metric setting becomes meaningless. This happens because the classical notions of differ-
entiability are strongly lying on the vectorial nature of the corresponding space, which in metric
space has been disappeared

This fact motivates us, when one want to discuss mathematical phenomena which involving
derivatives apart from vectorial setting, to find a suitable generalization of the ”derivative” of a
curve. The key idea to do this it is hidden, as usual, in the simplest setting which we can image, the
Euclidean space setting. Thus, to recast such a notion of ”derivative”, we will focus to a specific
question: can we find an equivalent definition of derivative of smooth functions, using only the
metric structure of the space? Thankfully, the answer is positive, and stands in the core of notion
of absolutely continuity of a curve.

We recall that the standard definition of absolute continuity of a curve γ : [0, 1] → R suggests
that for every ε > 0, there exists δ = δ(ε) such that for every partition {0 = t0 ≤ t1 < · · · ≤ tn = 1}
of [0, 1] it holds that

if
n∑
i=1

|ti+1 − ti| ≤ δ then
n∑
i=1

|γ(ti+1)− γ(ti)| ≤ ε.

Based on this classical definition we recall two important facts about absolutely continuous curves.
The first one, as it is widely known, the absolutely continuity of a curve, thanks to a consequence
of Rademacher Theorem. The second one stands in a very important and interesting observation,
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which is also essentially a corollary of its definition. To be more precise, as it can be proved, a
curve is absolutely continuous if and only if there exist a function g ∈ L1([0, 1]), such that

|γ(t)− γ(s)| ≤
∫ t

s
g(r)dr, for every s, t ∈ [0, 1], with s ≤ t.

The main idea of extending the notion of absolute continuity of a function to a metric setting is
hidden in the core of observation. This fact is witnessed by the following definition.

Definition 2.3.1 (Absolutely continuous curves). Consider that (X , d) is a complete metric space
and γ : [a, b]→ X is a curve. We will say that γ is absolutely continuous if there exists g ∈ L1([a, b])
such that

d(γ(s), γ(t)) ≤
∫ t

s
g(r)dr (2.5)

Moreover, we denote the space of all absolute continuous curves from [a, b] to X by AC([a, b];X ).

The above definition, can be naturally extended for functions g ∈ Lp([a, b]) and p-absolutely
continuous curves for p ∈ [1,+∞),but such an extension is far from the purposes of this text.

Intuitively, one can observe that AC([a, b];X) ⊂ C([a, b];X). The notion of absolute continuity
is a smoothness property. In particular,i it s a weaker notion than continuity or uniform continuity,
allowing us to obtain useful generalizations between the relation of integration and differentiation
of curves in many situations. Moreover, all of Lipschitz maps are essentially absolute continuous.

An interesting consequence of above definitions is that for a given absolutely continuous curve,
among all of the functions g ∈ L1([a, b]) which satisfying (2.5), the minimal one is coincide with
the modulus of the derivative of γ, which motivates the definition of metric derivative. Precisely,
we have the following result.

Proposition 2.3.2 (Metric derivative). Consider that γ belongs to AC((a, b);X ). Then the limit

|γ′|(t) := lim
s→t

d(γ(s), γ(t))

|s− t|

exists for a.e. t ∈ (a, b), and its called the metric derivative of γ. Moreover, it is minimal in sense
that

|γ′|(t) ≤ g(t), for every g such as in (2.5).

Proof. Consider a sequence (xn)n∈N ⊂ X , which is dense in the image of [a, b] though γ. We define
the function

dn(t) = d(xn, γ(t)), for every t ∈ [a, b].

By construction, all of the terms {dn : n ∈ N} are absolutely continuous in [a, b], and therefore, the
function

d(t) = sup
n∈N
|d′n|(t)

is well-defined a.e. in for a.e. t ∈ (a, b). We choose a t ∈ [a, b] where all of the terms dn can be
differentiated and we observe that

lim inf
s→t

d(γ(s), γ(t))

|s− t|
≥ sup

n∈N
lim inf
s→t

|dn(s)− dn(t)|
s− t

= d(t). (2.6)

But, since γ is absolutely continuous we have that (2.5) holds, and therefore, we obtain combining
with (2.6), we infer that d ≥ g, a.e. and hence g ∈ L1([a, b]), which shows the minimality of |γ′|(t).
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Additionally, again thanks to construction and absolutely continuity of d, we have that

d(γ(s), γ(t)) = sup
n∈N
|dn(s)− dn(t)| ≤

∫ t

s
d(r)dr

and thus

lim sup
s→t

d(γ(s), γ(t))

|s− t|
≤ d(t). (2.7)

Now, combining (2.6) and (2.7), the desired result follows and completes our proof.

We shall now present two delicate examples, which can hint two distinct properties of metric
derivative. Both of these properties witness its the power, which may be crucial in several situations

Example 2.3.3 (Coherency with classics). The definition of metric derivative is coherent with the
classical notion of derivative in vector space setting. To see this, let us assume for a moment that
X = Rd. If a curve γ : [a, b]→ Rd is differentiable at some point t, then the metric derivative |γ′|(t)
is coincide with the norm of the classical derivative of γ at t.

Example 2.3.4 (Treating singluarities). Another powerful property of metric derivative is that it
can treat several singularities. We will see this by means of an example. Consider that (V, ‖·‖) is a
normed space, and d is the distance induced by its norm, i.e. d(x, y) :=‖x− y‖ for x, y ∈ V. Then,
for a given v ∈ V, we define the function

γ(t) := |t|v, for t ∈ [−1, 1].

One can observe that the metric derivative of γ exists everywhere and it is coincide with its norm
‖γ‖, but γ is not differentiable at t = 0, expect the trivial case where v = 0. Although, the metric
derivative exists also at t = 0.

Taking into account the notion of absolute continuity of curves in metric spaces, as we saw,
we passed through a suitable generalization of derivative, the metric derivative. So, having in our
hands the stepping stone of differentiability, we can ask the question could we define a ”gradient-
like” notion for functionals defined in pure metric setting too? Hopefully, the answer is positive,
and stands of fragments of the previous discussion about metric derivatives Thus, we have the
following definition.

Definition 2.3.5 (Metric slope). Consider that (X , d) is a metric space and φ : D(φ) ⊂ X →
∪{+∞} is a functional where D(φ) := {x ∈ X : φ(x) <∞}. Then for a given x ∈ D(φ), we define
the metric slope of φ as

|∇φ|(x) := lim sup
y→x

(
φ(x)− φ(y)

)+
d(x, y)

= max

{
lim sup
y→x

(
φ(x)− φ(y)

)+
d(x, y)

, 0

}
.

2.4 Geodesics in metric spaces

Since now, we have described some basic facts about the lengths of curves in metric spaces. In
addition we have already proceed to their notion of metric differentiability. As we discussed, we were
able to prove that in a general metric setting, there exists a curve with minimal length joining two
points of the corresponding space, that is the infimum of all curves joining two points is attained.
This led us to the notion of length space. Moreover, living the length space space setting we saw
that, thanks to Hopf-Rinow theorem, we can obtain a nice characterization of its compact sets.
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Now, roughly speaking and based on this nice compactness-type characterization, as we will
see in the following, we are able to prove that the above infimum luckily can be minimum. This
procedure led us to the notion of curves with shortest length or geodesics in metric spaces. As it
widely known, the notion of geodesics goes back to the era of F.W.Bessel and C.G Jacobi, and
the science of geodesy, which is related to measurements of surface of the Earth and preexists of
the modern mathematical treament of notion of length, which we presented in previous section.
Although, one can treat geodesics as children of lengths of curves in a reasonable but also techical
way.

To make the discussion more concrete, let us define the geodesics in metric setting.

Definition 2.4.1 (Geodesics and geodesic spaces). Consider that (X , d) is a metric space and
γ : [a, b]→ X is a curve. We will say that γ is a geodesic if

d(γ(x), γ(y)) = |x− y|, for every x, y ∈ [a, b]. with x 6= y

Moreover (X , d) is called geodesic space if for every x, y ∈ X there exists a geodesic joining them.

As one can observe, geodesics are injective, and moreover, their restriction to a closed sub-
interval of their domain remains geodesic. In addition, the above definitions reads as an isometric
embeddings of the domain of the curve to its image. This definition is sightly different and more
restrictive than the classical one in Riemannian geometry. Although, for the purposes of this text,
seems to be pretty enough. As an alternative way to see geodesic space, we can say that (X , d) is
a geodesic space if for any x, y ∈ X we have that

d(x, y) = min{`(γ) : γ : [a, b]→ X joining x and y }

Let us now a relevant notion of geodesics, that it the constant speed geodesics, which will be
very important in the following.

Definition 2.4.2 (Constant speed geodesic). Consider that (X , d) is a metric space. A curve
γ : [a, b]→ X is called constant speed geodesic if there exists K ≥ 0 such that

d(γ(x), γ(y)) = K|y − x|, for every x, y ∈ [a, b]. .

We will denote the metric space of all constant speed geodesics on X equipped with supremum
norm, as G (X ). An interesting fact is that the space G (X ) inherits all of the topological properties
of its base space X (see e.g. Carmo (1992)). Moreover, in case where [a, b] = [0, 1], we recall the
evaluation maps et : G (X )→ X defined for a geodesic γ : [0, 1]→ X and for every t ∈ [0, 1] by

et(γ) := γt.

Having now the notion of geodesics on the table, maybe the first important fact about them is
their parametrization. Thankfully, they can be parametrized by arclength, as the following result
witness.

Proposition 2.4.3. Consider that (X , d) is a metric space and γ : [a, b]→ X is a geodesic. Then
γ is parametrized by arclength.

Proof. Let x, y ∈ R such that a ≤ x ≤ y ≤ b. Then, for any partition a ≤ t1 ≤ · · · ≤ tn ≤ b of [x, y],
we have

Vγ|[x,y](a, b) =
n∑
i=1

|γ(ti)− γ(ti−1)| =
n∑
i=1

(ti − ti−1) = y − x.

Thus, we have

`(γ|[x,y] = sup{Vγ|[x,y] : for [x, y] ⊂ I, where I is an open interval} = y − x,

whichs shows that γ is parametrized by arclength and makes our proof complete.
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Except their useful parametrization, geodesics are enjoying several other very interesting prop-
erties. The following proposition presents some of them related with its length and their behavior
along the distance function. Such properties will be crucial in the following.

Proposition 2.4.4. Consider that (X , d) is a metric space and γ is a curve parametrized by
arclength. Then the following are equivalent:

(i) γ is geodesic

(ii) for any x, y ∈ R such that a ≤ x ≤ y ≤ b, we have d(γ(a), γ(y)) = d(γ(a), γ(x))+d(γ(x), γ(y))

(iii) `(γ) = d(γ(a), γ(b))

Proof. (i)⇒ (ii) : If γ is a geodesic, then, by its definition, there exist x, y ∈ R such that a ≤ x ≤
y ≤ b such that

d(γ(a), γ(y)) = y − a = y − x+ x+ a = d(γ(x), γ(y)) + d(γ(a), γ(x)),

which proves the desired conclusion.
(ii) ⇒ (iii) : Consider that a ≤ t1 ≤ · · · ≤ tn ≤ b is a partition of [a, b]. Applying n times the
property (ii) we have

Vγ(a, b) =
n∑
i=1

|γ(ti)− γ(ti−1)| = d(γ(a), γ(b)).

Moreover, taking the supremum of all partitions, we obtain

`(γ) = d(γ(a), γ(b)),

as it was desired.
(iii)⇒ (i) : For any x, y ∈ R such that a ≤ x ≤ y ≤ b, we have

`(γ) = d(γ(a), γ(b))

≤ d(γ(a), γ(x)) + d(γ(x), γ(y)) + d(γ(y), γ(b))

≤ d(γ(a), γ(x)) + `(γ|[x,y]) + d(γ(y), γ(b))

≤ `(γ|[a,x]) + `(γ|[x,y]) + `(γ|[y,b]).

Hence, all of above inequalities are equalities, and we have for any x, y ∈ [a, b]

d(γ(x), γ(y)) = `(γ|[x,y])

Moreover, since γ is parametrized by arclength, we have `(γ|[x,y]) = |x− y|, and thusly,

d(γ(x), γ(y)) = |x− y|,

which proves that γ is a geodesic, and makes our proof complete.

We shall know go a step further, exploring some fragments of the topological properties of
geodesics. In order to start such a procedure we present result, which is similar with Proposition
2.2.15, and witnesses the local behaviour of geodesics.

Proposition 2.4.5. Consider that (X , d) is a length space, x ∈ X and r > 0. If y, z ∈ Br(x) (resp.
y, z ∈ Br(x)) and if γ : [a, b] → X is a geodesic joining y and z, then the image of γ is contained
to Br(x) (resp. contained to Br(x)).



34 CHAPTER 2. CURVES ON METRIC SPACES

Proof. The proof is essentially baseed in similar arguments as the proof of Proposition 2.2.15, and
for that reason is ommitted.

Another desirable property of geodesics, it that the (pointwise) limits of sequences of them re-
mains geodesics. As it is presented in the following result, this fact stands as a standard consequence
of continuity of distance function d on the corresponding metric space.

Proposition 2.4.6 (Limits of geodesics are geodesics). Consider that (X , d) is a metric space
and a sequence of geodesics (resp. constant speed geodesics) (γn)n∈N such that γn : [a, b] → X . If
(γn)n∈N converges (pointwise) to a map γ : [a, b] → X , then γ is geodesic (resp. constant speed
geodesic).

Proof. We shall prove this result in case where γ is geodesic, since if γ is constant speed geodesic
the main arguments of the proof are essentially the same.

For any x, y ∈ [a, b] and any n ∈ N we have

d(γn(x), γn(y)) = |y − x|.

By continuity of distance d, we immediately obtain

lim
n→∞

d(γn(x), γn(y)) = d(γ(x), γ(y)) = |y − x|,

and thus, γ is geodesic.

The nice pointwise limit behaviour of geodesics (as well as constant speed geodesics) predispose
us with nice hints about the topological properties of geodesics. The following result advise us that
the game of extraction of subsequences can be in our favour in this case too. This fact is essentially
a consequence of Arzelá-Ascoli theorem.

Proposition 2.4.7. Consider that (X , d) is a compact metric space and (γn)n∈N is a sequence of
constant speed geodesics such that γn : [a, b] → X . Then the sequence (γn)n∈N has a subsequence
which converges uniformly to a constant speed geodesic γ : [a, b]→ X .

Proof. For any n ∈ N we have that `(γn) = d(γn(a), γn(b)). Since X is compact, we have that
diam(X ) <∞, and hence, the sequence

(
`(γn)

)
n∈N is bounded from above by a constant, which is

independent of n. Thanks to Proposition 2.2.12, we have that (γn)n∈N has a convergent subsequence,
and keeping the same notion, we infer that γn → γ uniformly. Moreover, thanks to Proposition
2.4.6, we have that γ is a constant speed geodesic.

By now, we have developed the standard machinery for a first understanding of geodesics. As
we have already advertised, intuitively speaking, any geodesic space seems to be length space too.
Now, based on our updated toolbox, let us rigorously proof such a statement.

Proposition 2.4.8. Consider that (X , d) is a geodesic space. Then it is also length space.

Proof. Let two points x, y ∈ X and a geodesic γ : [a, b] → X joining x and y. We have that
|a− b| = |x− y|, and moreover, since γ is geodesic, thanks to Proposition 2.4.3, is parametrized by
arclength. So we have,

`(γ) = |a− b|.

Thusly, we obtain that `(γ) = |x− y|, which proves that X is a length space.
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Although, is the opposite statement true? Or in other words, does any length space be a
geodesic space? Generally, the answer is negative. Although, restricting ourselves to the case
where we can recast compactness-type arguments, we could say that the answer is positive. Let us
start by presenting the following result, which stands for a local approach of existence of geodesics
in length spaces.

Proposition 2.4.9 (Local existence). Consider that (X , d) is locally compact length space. Then
every x ∈ X has a neighborhood U , such that for every y, z ∈ U there exists a geodesic in
γ : [a, b]→ X joining y and z.

Proof. We pick a point x ∈ X . Since X is locally compact, there exists a radius r > 0 such that
the ball Br(x) has a closure in X . Let us define U := Br(x) and pick up y, z ∈ U .

Since X is length space, there exists a sequence of curves (γn)n∈N such that γn : [a, b] → X
joining y and z with `(γn)→ |y− z| as n→∞. Hence, if we choose large enough n, we could have

`(γn) < 2r.

Moreover, thanks to Proposition 2.4.5, the image of γn is contained in B2r(x). Since this closure
is compact, it is complete, and therefore, thanks to Theorem 2.1.11 (Arzelá-Ascoli), we infer that
there exists a subsequence (γnk)k∈N which converges to a curve γ : [a, b]→ X joining y and z with
`(γ) = |y − z|. Without loss of generality, we assume that γ is parametrized by arclength. Then,
thanks to Proposition 2.4.6, we infer that γ is a geodesic. Moreover, thanks to Proposition 2.2.15,
we have tha the image of γ is contained in B2r(x)

However, the above result can be much more global, using the assumption that metric space
satisfies the property that every bounded is compact, and moreover, using standard properties of
geodesics. The following result supports such a statement and stands as an alternative version of
famous Hopf-Rinow theorem.

Theorem 2.4.10 (Hopf-Rinow II). Consider that (X , d) is a proper length space. Then for every
x, y ∈ X , there exists a geodesic γ : [a, b]→ X joining x and y.

Proof. Thanks to Proposition 2.2.13, we are ensured that there exists a curve γ : [a, b] → X such
that `(γ) = |x− y|. Without loss of generality, let us assume that γ is parametrized by arclength.
Then, thanks to Proposition 2.4.4, γ is geodesics and our proof is completed.

2.5 Geodesic convexity

Since now, we have already explored many desirable properties of curves in metric spaces, which led
us to the notion of geodesic spaces. In this section, we will close up the discussion about curves in
metric spaces, presenting one of the most important properties of geodesics spaces, that is geodesic
convexity.

As it widely known, living in vectorial setting, convexity plays crucial role in certain and quite
different situations, both abstract or not setting. It provides us several important results, as for
example the famous Mazur’s Theorem in topological vector spaces, or several important intuitive
understanding, such as the interaction of a certain functional in vector spaces with the differential
structure of the corresponding space.

One can ask, could we generalize the notion of convexity for functional on geodesic spaces? In
the other words, can we define a notion of convexity in a pure metric setting which is compatible
with some geometrical assumptions? The answer is positive and belongs in the heart of the notion
of geodesic convexity. Let us define now the notion of geodesically convex subset, imitating the
classical notion in vector space.
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Definition 2.5.1 (Geodesically convex subset). Consider that (X , d) is a proper geodesic space
and A ⊂ X . We will say that A is geodesically convex if for every x, y ∈ A, the geodesic joining x
and y is contained in A.

Of course, by above definition of geodesically convex subset, one can easily observe that if
A ⊂ X is geodesically convex subset and h : X → X is an isometry, then the image h(A) is also
geodesically convex subset. Let us mention at this point that we ask the geodesic space to be proper
for a specific reason. If it is not proper, then as one can imagine there could be more than one
notions of geodesic convexity. Accurately, we can ask for any pair of points in the subset, at least
one or any geodesic joining them, to be contained in that subset, which will lead us to different
situations. For proper geodesic spaces, these two notions are luckily coincide and makes the study
of geodesic convexity much more simpler.

Let us now study some of topological properties of of geodesically convex subsets. Perhaps,
the first one which we can imagine is related with the behaviour of set-theoretic operations of
geodesically convex subsets. The following proposition presents a quite interesting behaviour of
them with respect to set-theoretic operations.

Proposition 2.5.2 (Unions and intersections of geodesically convex sets). Consider that (X , d)
is a proper geodesic space. Then the union of any increasing family of geodesically convex subsets
is geodesically convex. Moreover, tha intersection of a family of geodesically convex subsets is
geodesically convex.

Proof. The proof stands for a standard application of definitions, and for that reason is omitted.

Having the nice behaviour of intersections of geodesically convex subsets, we are able to define a
geodesic analogue of the classical notion of convex hull in vector spaces, as it presents the following
definition.

Definition 2.5.3 (Geodesic convex hull). Consider that (X , d) is a proper geodesic metric space
and A ⊂ X . We define the geodesic convex hull of A as the intersection of all of the geodesically
convex subsets of X that contained A.

Another interesting topological property of geodesically convex subsets, is that their closure is
still a geodesically convex subset. This fact uses essentially the proper geodesic space setting and
stands as a standard application of Arzelá-Ascoli Theorem, as it presents the following proposition.

Proposition 2.5.4 (Closure of geodesically convex subsets). Consider that (X , d) is proper geodesic
space and A ⊂ X is a geodesically convex subset. Then its closure A is geodesically convex subset.

Proof. We consider two points x, y ∈ A and we pick up two sequences (xn)n∈N, (yn)n∈N ⊂ A such
that xn → x and yn → y, as n→∞. Let also a sequence (γn)n∈N where γn : [0, 1]→ X be a constant
speed geodesic joining xn and yn. Thanks to Theorem 2.1.11 (Arzelá-Ascoli), the sequence (γn)n∈N
admits a subsequence (γnk)k∈N which converges to a constant speed geodesic γ : [0, 1]→ X joining
x and y. Moreover, for any t ∈ [0, 1], since γ(t) is the limit of (γnk(t))k∈N, is contained in A. Then,
the image of γ is the unique geodesic in X joining x and y, which proves our thesis.

Having understood some basic and fundamental properties of geodesically convex subsets, we
are ready to define the analogue notion of convexity for functionals defined on geodesic spaces.
This notion, will portray a very important role in the study of gradient flows in metric spaces, as
we will see in the following.
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Definition 2.5.5 (Geodesically convex functional). Consider that (X , d) is a geodesic space. We
will say that a functional φ : X → R ∪ {+∞} is geodesically convex if for every x0, x1 ∈ X there
exists a constant speed geodesic γ : [0, 1]→ X connecting these two points such that

φ
(
γ(t)

)
≤ (1− t)φ

(
γ(0)

)
+ tφ

(
γ(1)

)
, for t ∈ [0, 1].

Similarly, we will say that φ : X → R ∪ {+∞} is λ-geodesically convex if

φ
(
γ(t)

)
≤ (1− t)φ

(
γ(0)

)
+ tφ

(
γ(1)

)
− λ

2
t(1− t)d2(γ(0), γ(1)) for t ∈ [0, 1] and λ ∈ R.

Notice that, in general, this definition is not equivalent with usual convexity along the geodesic,
since we only compare intermediate points t to 0 and 1, and not to other points. However, in
the case of uniqueness of geodesics, geodesic convexity and convexity along geodesics coincides.
Moreover, under the light of uniqueness of geodesics, we need it only for points which belong to
D(φ), and not in the whole X .
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CHAPTER 3

A glance on Optimal Transport

“There are no norms. All people are exceptions to a
rule that doesn’t exist. ”

— Fernando Pessoa,
Portuguese poet and philosopher (1888-1935)

In this chapter, we recall the fundamental principles of Optimal Transport. This field has caught
the attention of mathematical community, both of pure and applied mathematicians1, since it is
related with deep mathematical results which undercover fascinating mathematical phenomena.

3.1 Origin: Monge meets Kantorovich

The origin of Optimal Transport theory trace roots back to Gaspard Monge, a great enginerer
and mathematician, and the era of French revolution. Monge, in his famous treatise (see Monge
(1781)) formulated the first version of what we call now optimal transportation problem. Consider
that we want to move a specific amount of earth from a given area, called déblai, to a given equal
area, called remblai, with the least amount of effort, i.e. minimizing some transportation cost. As
one can easily see, this formulation of Monge’s problem is completely general and unclear, in terms
of that its key ingredients, like cost or mass, are not fully mathematical specified. Although, it
has been very famous for many decades (see e.g. Cayley (1883) and Vershik (2013)). Essentially,
it was the inside the heart of a general class if many problems arising in differential geometry and
analysis, standing as a bridge between abstract mathematical universe and physical world. For its
solution, Academy of Paris was offering a prize (see Darboux (1885)). It was some years later,
when P. Appell claimed its solution in his treatise (see Appell (1887)).

In a modern mathematical language, Monge’s problem can be formulated as following. Consider,
two complete and separable metric spaces X and Y . Let also µ ∈ P(X ) and , ν ∈ P(Y) two
probability measures which represent the mass on X and Y respectively. Since there is no free

1Maybe, this distinction is quite problematic. Instead of this one can imagine people working in mathematical
universe and people working in physical world’s problems with mathematical universe. Under this consideration, yet
interesting, as it mentioned in Santambrogio (2015), we could say about people working on Optimal Transport and
people who working with Optimal Transport. The purposes and the goals of each direction is useful, nevertheless
extremely different, but this distinction maybe seems to be more concrete.

39
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lunch, in order to move a point x ∈ X to a point y ∈ Y , we have to pay a cost defined by a non-
negative measurable function c : X ×Y → R. In this setting, we want to transport X to Y , with a
map T : X → Y , by investing the minimal effort possible. Of course, for our problem in becomes
meaningful, if we want this map T be a measurable function and naturally has to preserving the
masses, i.e. ν(B) = µ(T−1(B)) for any Borel measurable set B ⊂ Y , or equivalently ν is the
push-forward measure of µ by T which we will denote as T#µ = ν. Under these considerations,
Monge’s problem is formulated as the following minimization problem:

min
T

{∫
X
c(x,T (x))dµ(x) : T#µ = ν

}
. (3.1)

Nevertheless, a closer look to Monge’s problem reveals many structural and technical patholo-
gies, which drive to failure any possible general solution. In particular, its ill-posesness can be
understood by means of the following reasons.

1. A transport map which solves Monge’s problem may not exists or any transport map can
solve Monge’s problem. We will see this fact by means of two examples.

Firstly, imagine the case where µ = δx for some x ∈ X and ν 6= δy for some y ∈ Y . Then if
T : X → Y , then ν(T (x)) < 1 = µ(T−1(T (x)) and one can see that there is no transport
map! On the other hand, if one assume that X = [0, 1],Y = [1, 2] and c(x, y) = |x− y|, using
the linearity of integral in (3.1), we conclude that if T is a transport map then∫

X
c(x,T (x)dµ(x)

∫
X

(T (x)− x)dx =

∫
Y
ydy −

∫
X
xdx = 1 (3.2)

So, all transport maps gives the same value which is equal to 1.

2. The push-forward constraint T#µ = ν is highly nonlinear and not closed (and hence not
compact) with respect any reasonable weak topology in the space of measures2. As a con-
sequence, a limit of any minimizing sequence of transport maps (Tn)n∈N may fail to be a
transport map. In other words, there is no analogue of Weierstrass theorem available in this
setting, so the minimization becomes troublesome.

µ

ν
T

Figure 3.1: The transport of µ to ν through the map T

In order to overcome these difficulties, 150 years later, Leonid Kantorovich proposed a nice
and clever way to relax Monge’s formulation (see Kantorovich (1942)). The main idea behind
Kantorovich formulation is to focus on the fact that ”graphs” of transport maps can be represented

2 Of course, the space of measures can be equipped with the weak-* topology in L∞ to obtain such a compactness
argument. Although, this is not a reasonable choice of topology in the space of measures, since in this topology we
cannot prove any lower semicontinuity property of the functional under minimization.
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as probability measures on the product space. This is the key to a unlock limiting process, since the
transportation problem can be reformulated in a space equipped with a reasonable weak topology
of measures, and fill in enough compactness to construct such a minimizer. Technically speaking,
in order to minimize over the set of all transport maps T satisfying the constraint T#µ = ν, he
proposed to solve the following minimization problem

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) (3.3)

where Π(µ, ν) is the set of all admissible transport plans, i.e. probability measures π ∈P(X ×Y),
having µ, ν as marginals, that is

Π(µ, ν) :=

{
π ∈P(X×Y) : π(A×X ) = µ(A), π(B×Y) = ν(A) for every A ∈ B(X ), B ∈ B(Y)

}
An equivalent formulation of the above set may be in terms of canonical projections pX , pY from
the product space X × Y into X ,Y respectively, (pX )#π = µ and (pY )#π = ν.

Under this perspective, transport plans can be thought, in some sense, as ”multivalued” trans-
port maps since, for a given x ∈ X , one can write π =

∫
X πxdµ(x) with πx ∈ P({x} × Y).

Equivalently, one can say that for admissible transport plan π, the value of π(A×B) is the amount
of mass which is sent from A to B. This formulation have several advantages, which makes it, more
convenient to work with than Monge’s. A few of them are presented in the following.

1. The set of all admissible transport plans Π(µ, ν) is not empty (since trivially contains the
tensor product µ ⊗ ν) and enjoys some nice properties, such as convexity and compactness
with respect to a suitable topology of convergence of measures as we will see in the following.

2. Under very minimal assumptions and using techniques of convex analysis, one can prove that
mimimum always exists.

3. Transport plans include transport maps, since Monge’s condition T#µ = ν implies that
π = (Id× T )#µ lives in Π(µ, ν).

We shall close this introductory section by presenting two very interesting and important examples
of optimal transportation problems. The reason of doing this, is double-fold. In particular, on the
one hand and as it will be enlightened in the following examples, optimal transportation problems
can be interpreted in such a way, apprehending a useful and powerful machinery in abstract settings.
On the other hand, thanks to their nature, they also can appropriate a very suitable framework to
model unexpected applications, in many different disciplines e.g. statistics, economics or machine
learning.

Example 3.1.1 (Continuous case: connections with Monge-Ampére equation). Let X = Y = Rd
and two probability measures µ, ν ∈ P(Rd) which are absolutely continuous with respect to d-
dimensional Lebesgue measure L d. Thanks to Radon-Nikodym Theorem, we know that there exist
two probability density function f, g ∈ L1(Rd) such that µ = f(x)dx and ν = g(y)dy. If T : Rd → R
is a smooth enough transport map, then the push-forward condition T#µ = ν can be re-written as
a Jacobian equation.

More precisely, if φ : Rd → R is any test function, then the push-foward condition yields to∫
Rd
φ
(
T (x)

)
f(x)dx =

∫
Rd
φ(y)g(y)dy. (3.4)
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Assuming now that T is a diffeomorphism, if we set y = T (x) and using the change of variable
formula, we can obtain that the right hand side of (3.4) is equal to∫

Rd
φ
(
T (x)

)
g
(
T (x)

)∣∣ det(∇T (x))
∣∣dx.

Thus, by arbitrariness of test function φ, we can get

∣∣det(∇T (x))
∣∣ =

f(x)

g(T (x))
,

which can be recognized as the Monge-Ampére equation. On account of this observation, the
solution of optimal transportation problem in terms of transport maps yields to the solution of
Monge-Ampére equation. Under certain assumptions on cost function c, it is possible to recover
many interesting bidirectional results, both in the theory of Monge-Ampére equation and the opti-
mal transportation problem. A great treatise about this link and many of its further consequences
can be found expository paper of De Philippis & Figalli (2014) and the recent monograph Figalli
(2017).

Example 3.1.2 (Discrete case: optimal matching problem). Now, let us restrict ourselves in the
case where X = {x1, · · · , xn}, Y = {y1, · · · , yn} are discrete spaces, c : X×Y → R is a non-negative
cost function and µ, ν are two empirical probability measures, giving uniformly to each point of
each space the same probability, i.e.

µ =
1

n

n∑
i=1

δxi and ν =
1

n

n∑
i=1

δyi .

We can observe that any transport plan between µ and ν is represented by a n×n bistochastic
matrix, π = (πij)

n
i,j=1, where for every j = 1, · · · , n it holds that

∑
i πij = 1, and symmetrically,

for every i = 1, · · · , n it holds that
∑

j πij = 1. In this case, Kantorovich problem is reformed to
the following minimization

inf

{
1

n

n∑
i=1

n∑
j=1

πijc(xi, yj) :

n∑
j=1

πij = 1 for every i and

n∑
i=1

πij = 1 for every j

}
, (3.5)

which consists a infinite dimensional linear programming problem on the set of bistochastic matri-
ces. Thanks to Choquet’s theorem (see Phelps (2001) or Fabian et al. (2011)) and since the set of
bistochastic matrices is convex, we understand that the problem (3.5) admits solutions which are
on the extreme points of the set of bistochastic matrices. Although, thanks to Birkhoff’s theorem
(from which we know that any doubly stochastic matrix is a convex combination of permutation
matrices, see L. Ambrosio et al. (2008)), these extreme points are a much simpler version of bis-
tochastic matrices, that is, permutation matrices. Under these considerations, optimal transport
plans in Kantorovich problems are exactly the same with solutions to Monge’s problems, i.e.

inf

{
1

n

n∑
i=1

n∑
j=1

c(x1, yσ(i)) : σ any permutation of {1, · · · , n}
}
. (3.6)

In many situations, problems like (3.6) are called optimal matching problems. On the other hand,
this configuration of Kantorovich problem is important for two reasons. On the one hand, it
paves the way to perform numerical implementations for computing the solution of an optimal
transportation problem (see e.g. Peyré & Cuturi (2018) for a detailed description and many other



3.2. EXISTENCE OF OPTIMAL TRANSPORT PLANS 43

perspectives), which may appeared in many several in economics, statistics or machine learning.
On the other hand, it sheds the light to the reason of Monge’s pathological formulation. To be
more precise, in general, if two probability measures µ, ν are absolutely continuous with respect
to Lebesgue measures, it may exists extreme points of Π(µ, ν) which are not concentrated on any
graph, so the call of Choquet’s theorem is collapsed.

3.2 Existence of Optimal Transport plans

Let us focus now to the qualitative nature of optimal transport problem. Precisely, we will see
that the minimizer of Kantorovich problem is really exists. In order to prove the existence of such
a minimizer, we remind some and definitions propositions about probability measures in metric
spaces. All of their proofs, instead of their mathematical beauty, are not the main purpose of this
text and will be omitted. We refer the interested reader to Billingsley (2013) or Topsoe (2006) for
a detailed description.

For what will follow, we consider that (X , d) is a complete and separable metric space, with
Borel σ-algebra B(X ), and with Hausdorff topology τd induced by its metric. We recall that the
support of a propability measure π ∈P(X ), will be denoted as suppµ ⊂ X , and defined as

suppµ :=
{
x ∈ X : µ(U) > 0 for each neighborhood U of x

}
. (3.7)

We will say that a probability measure π ∈P(X ) is tight, if for any ε > 0, there exists a compact
set Kε such that π(Kc

ε ) < ε.
Since X is complete and separable metric space, we have that any π ∈P(X ) is regular, i.e. for

a given set A ∈ B(X ), it holds that

µ(A) = sup{µ(E) : E ⊆ A compact} = inf{µ(O) : O ⊇ A open}.

In addition, again due to structure of X , we have that any π ∈ P(X ) is concentrated in a σ-
compact set, i.e. there is a measurable set S, which can be written as the union of countably many
compact sets, such that π(S) = 1 (see for details Billingsley (2013)). Another interesting and useful
properties of probability measures on complete and separable metric spaces, is witnessed by famous
Ulam’s lemma, which is presented in the following proposition.

Proposition 3.2.1 (Ulam’s lemma). Consider that (X , d) is complete and separable metric space.
Then any Borel probability measure π ∈P(X ) is tight.

Now, turning our attention to convergence of probability measures, which will be crucial to study
what will follows. For that reason, we recall the definition of narrow convergence of measures.

Definition 3.2.2 (Narrow convergence). Consider that (X , d) is a complete and separable metric
space and (πn)n∈N ⊂ P(X ) is a sequence of probability measures. We will say that (πn)n∈N
converges to some π ∈P(X ) in narrow sense if∫

X
f(x)dπn(x) −→

∫
X
f(x)dπ(x) as n→∞ (3.8)

for every function f ∈ Cb(X ), the space of continuous and bounded functionals defined on X .

An interesting observation is that the space of probability measures P(X ) can be identified with
a convex subset of the unitary ball of the dual space of bounded and continuous functionals

(
Cb
)∗
.

Indeed, by definition, narrow convergence is induced by the weak-* topology of
(
Cb
)∗
. Moreover,

narrow convergence have several interesting and useful consequences. In the following proposition,
we present some of them which will be in the background of many important results.
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Proposition 3.2.3 (Portmanteau). Consider that (X , d) is a complete and separable metric space
and (πn)n∈N ⊂P(X ) is a sequence of probability measures. Then, the following are equivalent:

1.
∫
X fdπn →

∫
X fdµ, for f ∈ Cb(X )

2. lim supn πn(F ) ≤ µ(F ), for every closed set F ⊆ X

3. lim infn πn(U) ≥ µ(U), for every open set U ⊂ X .

Having the suitable notion of convergence of probability measures, we are able to recast several
nice topological features, related to our problem. Perhaps, the most important of them is the
equivalence of tightness and compactness. This fact is presented in the following theorem and it
will play a fundamental role in what follows.

Theorem 3.2.4 (Prokhorov). Consider that X is a complete and separable metric space. Then, if
a collection of probability measures K ⊂ P(X ) is tight, i.e. for any ε > 0 there exists a compact
set Kε in X such that µ(X \Kε) ≤ ε, for any µ ∈ K, then K is relatively (sequentially) compact in
P(X ). Conversely, every relatively (sequentially) compact subset of P(X ) is tight.

As we have already mentioned, based on the compactness conclusion of Prokhorov’s theorem,
one can easily understand that provides a very useful tool to work, since it will allow us to play the
game of extraction of subsequences to prove convergence with respect reasonable topologies. Now,
since we recalled the necessary machinery, we can proof the first interesting property of the set of
transport plants in the following proposition.

Proposition 3.2.5 (Transport plans are tight). Consider two probability measures µ, ν ∈P(X ).
Then the set of transport plans Π(µ, ν) is tight.

Proof. Let ε > 0. By regularity of µ, ν, there exist compact sets A ⊂ X and B ⊂ Y such that
µ(A) > 1− ε and ν(Bc) < ε. For some π ∈ Π(µ, ν) we have

π(A×B) = π(A× Y)− π(A× (Bc))

≥ π(A× Y)− π(X × (Bc))

= µ(A)− ν(Bc)

> 1− 2ε

Since π ∈ Π(µ, ν) was arbitary and A × B is compact, we achieve tightness and our proof is
completed.

Based on tightness of Π(µ, ν), the existence of solution to Kantorovich problem comes from a
standard consequence of lower-semicontinuity and compactness arguments.

Proposition 3.2.6 (Existence of minimizer for Kantorovich problem). Consider that X ,Y are
complete and separable metric spaces and c : X × Y → R ∪ {+∞} is lower-semicontinuous and
bounded from below. Then, there exists a solution to the Kantorovich problem, as it stated in (3.3).

Proof. Our strategy is to recall Weierstrass theorem for existences of minimizer. To do this, we will
prove compactness of the set Π(µ, ν) and the lower semicontinuity of the functional π 7→

∫
X×Y cdπ.

We consider a minimizing sequence (πn)n∈N ⊂ Π(µ, ν). Since Π(µ, ν) ⊂ P(X × Y) is tight,
thanks to Proposition 3.2.5, due to Theorem 3.2.4 (Prokhorov’s Theorem) is also relatively compact.
Hence, there exists a subsequence (πnk)k∈N of (πn)n∈N such that πnk → π in narrow sense as k →∞.
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We claim that π ∈ Π(µ, ν). To see this, we take as test functions ϕ(x, y) = ϕ1(x), for ϕ1 ∈ Cb(X ).
Then, we note that ∫

X×Y
ϕ(x, y)dπnk

k→∞−→
∫
X×Y

ϕ(x, y)dπ =

∫
X
ϕ1dµ,

while since πnk ∈ Π(µ, ν) for every k ∈ N, we have∫
X×Y

ϕ(x, y)dπnk =

∫
X
ϕ1(x)dµ.

Therefore, we have ∫
X
ϕ1(x)dµ =

∫
X×Y

ϕ(x, y)dπ(x, y),

which is equivalent to (pX )#π = µ. In the same fashion, consider ϕ(x, y) = ϕ2(y), for ϕ2 ∈ Cb(Y).
Similarly, we note that ∫

X×Y
ϕ(x, y)dπnk

k→∞−→
∫
X×Y

ϕ(x, y)dπ =

∫
Y
ϕ2dν,

while since πnk ∈ Π(µ, ν) for every k ∈ N, we have∫
X×Y

ϕ(x, y)dπnk =

∫
Y
ϕ2(x)dν.

Thus. we have ∫
Y
ϕ2(y)dν =

∫
X×Y

ϕ(x, y)dπ(x, y),

thus we have (πY)#π = ν.

Now, we wil prove the lower semicontinuity of functional π 7→
∫
X×Y c(x, y)dπ(x, y). Since c is

only lower semicontinuous, we need to employ an approximation argument. For that reason, we
define for every ` ∈ N

c`(x, y) = inf
(x′,y′)∈X×Y

{
c(x′, y′) + `d

(
(x, y), (x′, y′)

)}
,

where d :
(
X × Y

)
×
(
X × Y

)
→ R is a metric defined on X × Y . We note that c` is `-Lipchitz,

while c`(x, y) ↑ c(x, y), i.e.

c(x, y) = sup
`∈N

c`(x, y).

Thus, thanks to Monotone Convergence Theorem, for any π ∈ Π(µ, ν), we have that∫
X×Y

c(x, y)dπ = sup
`∈N

∫
X×Y

c`(x, y)dπ.

We define the functional π 7→
∫
X×Y c`dπ, which is continuous with respect to topology of narrow

convergence, thanks to continuity of c`. Hence we have that the functional π 7→
∫
X×Y c(x, y)dπ is

lower semicontinuous, since it can be written as supremum of a family of continuous functionals.
Therefore, due to Weierstrass theorem, the problem (3.3) admits a solution, which makes our proof
complete.
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Let us comment some fact about the proof of above result. The latter approximation trick,
undercover to us several properties of the cost functional c. In general, optimal transport problems
are strongly related with the nature of their cost function. In the other words, we can prove several
results for a specific class of cost functionals. However, the above approximation trick has an
interesting extension for general cost functionals, which is presenting in the following result.

Proposition 3.2.7 (Lower semicontinuity of cost function). Consider that X ,Y are complete and
separable metric spaces and c : X × Y → R ∪ {+∞} is a lower semicontinuous cost function.
Let also h : X × Y → R ∪ {−∞} be and upper semicontinuous functional such that c ≥ h.
If (πn)n∈N ⊂ P(X × Y) is a sequence of probability measures converging to π ∈ P(X × Y),
h ∈ L1(πn), h ∈ L1(π) and ∫

X×Y
hdπn →

∫
X×Y

hdπ, as n→∞,

then ∫
X×Y

cdπ ≤ lim inf
n→∞

∫
X×Y

cdπn.

Proof. We replace the cost function c by c−h and we assume that c ≥ 0, and still lower semicontin-
uous. Then, c can be written as a pointwise limit of a non decreasing family (c`)`∈N of continuous
real-valued cost functions. Under this prospective, employing monotone convergence theorem, we
have ∫

X×Y
cdπ = lim

`→∞

∫
X×Y

c`dπ = lim
`→∞

lim
n→∞

∫
X×Y

c`dπ ≤ lim inf
n→∞

cdπn,

which proves the desired result.

So, since now we are ensured that the minimizers of Kantorovich problem exists, by standard
lower semicontinuity and compactness arguments. An interesting question arising after this fact
is related to the structure of candidate minimizers and minimizers. In the other words, beyond
existence, we are interesting about the structural properties of transport plans, as well as the
optimal transport plan.

The first step to attack such concerns is to restrict ourselves to a simple (or sometimes not
so simple) setting. Accurately, let us imagine the special case of Euclidean space setting with
quadratic cost functional, that is X = Y = Rd and c(x, y) = |x − y|2. Under this consideration,
let µ, ν ∈ P(Rd) be two probability measures supported on finite sets. After a short calculation
period, we could realize that a transport π ∈ Π(µ, ν) is optimal if and only if it holds

n∑
i=1

|xi − yi|2

2
≤

n∑
1

|xi − yσ(i)|2

2
, (3.9)

for any n ∈ N, (xi, yi) ∈ supp(π) and σ a permutation of the set {1, · · · , n}. Expanding the squares
in (3.9), we obtain

N∑
i=1

〈xi, yi〉 ≤
N∑
i=1

〈xi, yσ(i)〉.

The relation described in (3.2) is nothing more but the definition of the notion of cyclically mono-
tonicity which introduced in Convex Analysis by R.T Rockafellar in 70s (see e.g. Rockafellar
(2015)). On the basis of this observation, we can generalize this notion to c-cyclically monotonic-
ity, for a given cost function c, as follows.
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Definition 3.2.8 (c−cyclical monotonicity). We will say that a set Π ⊂ X × Y is c−cyclically
monotone if, for any (xi, yi) ∈ Π, with 1 ≤ i ≤ N, implies

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)), for all permutations σ of {1, · · · , N}

In the same fashion, we can define a kind of generalization of Fenchel-Legendre transforms, as
it is presented in the following defintion.

Definition 3.2.9 (c-transforms). Let φ : X → R ∪ {±∞} be any function. Its c+-transform,
φc+ : Y → R ∪ {−∞} and its c−-transform, φc− : Y → R ∪ {+∞} are defined as

φc+(y) := inf
x∈X

{
c(x, y)− φ(x)

}
. and φc−(y) := sup

x∈X

{
− c(x, y)− φ(x)

}
.

respectively. In the same fashion, for any function ψ : Y → R ∪ {±∞}, c+-transform, ψc+ : X →
R ∪ {−∞} and its c−-transform, ψc− : X → R ∪ {+∞} are defined

ψc+(y) := inf
y∈Y

{
c(x, y)− ψ(y)

}
, and ψc−(y) := sup

y∈Y

{
− c(x, y)− ψ(y)

}
.

Imitating the classical notions of Convex Analysis, we can define the properties of concavity
and convexity with respect to a cost function c, based on definition of c-transforms as follows.

Definition 3.2.10 (c-concavity). We will say that a function φ : X → R ∪ {−∞} is c-concave if
there exists a function ψ : Y → R∪{−∞} such that φ = ψc+ . Similarly, we will say that a function
ψ : Y → R ∪ {−∞} is c-concave it there exists a function φ : Y → R ∪ {−∞} such that ψ = φc+ .

Definition 3.2.11 (c-convexity). We will say that a function φ : X → R ∪ {+∞} is c-convex if
there exists a function ψ : Y → R∪{+∞} such that φ = ψc− . Similarly, we will say that a function
ψ : Y → R ∪ {+∞} is c-convex it there exists a function φ : Y → R ∪ {+∞} such that ψ = φc− .

Remark 3.2.12 (Stability of c-concavity/convexity). An interesting observations on above defini-
tions is that ”c-prodecures” are stable. This means that φ : X → R ∪ {−∞} is c-concave if and
only if φc+c+ = φ. The same result can be also obtained for c−convex functions.

Under the light of above generalizations of Convex Analysis notions, we are able to define the
analogous notions of superdifferential and subdifferential, as the following definition witness.

Definition 3.2.13 (c-superdifferential and c-subdifferential). Let φ : X → R∪{−∞} be a c-concave
function. The c-superdifferential of φ, ∂c+φ ⊂ X × Y is defined as

∂c+φ :=
{

(x, y) ∈ (X × Y) : φ(x) + φc+(y) = c(x, y)
}
.

In the same fashion, if φ : X → R ∪ {+∞} is a c-convex function is defined as

∂c−φ :=
{

(x, y) ∈ X × Y : φ(x) + φc+(y) = −c(x, y)
}
.

An interesting and direct consequence of the above definition is that the c-superdifferential of
a c-concave function is always a c−cyclically monotone set. Indeed, if (xi, yi) ∈ ∂c+φ it holds that

N∑
i=1

c(xi, yi) =

N∑
i=1

φ(xi) + φ

Having this machinery in our toolbox, we able to prove several desired properties of transport plans.
However, before doing this and in order to understand better the nature of these generalizations,
let us remark a few things.
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Remark 3.2.14 (Convex Analysis analogies). As it was previously partial mentioned, the above
definitions are nothing more but suitable generalizations of the basic definitions of Convex Analysis,
in a more abstract setting with respect to the cost function c. Accurately, let us see how they can
be reduced to classical definitions. Consider that X = Y = Rd and c(x, y) = −〈x, y〉. Then one can
observe that

1. a set is c-cyclically mononote, if and only if it is cyclically monotone

2. a function is c-convex (resp. c-concave) if and only if it is convex and lower semicontinuous
(resp. concave and upper semicontinuous)

3. the c- subdifferential of a c-convex (resp. c-superdifferential of a c-concave) function is the
classical subdifferential (resp. superdifferential)

4. the c− is the classical Fenchel-Legendre transform, i.e. φ∗(y) = supx∈X {−〈x, y〉 − φ(x)}.

Remark 3.2.15 (Equivalent characterization of c-superdifferential). A useful equivalent charac-
terization of c-superdifferentiability is that a y ∈ Y lives in ∂c+φ if and only if it holds that

φ(x) = c(x, y)− φc+(y) or equivalently φ(z) ≤ (z, y)− φc+(y), for all z ∈ X

or equivalently
φ(x)− c(x, y) ≥ φ(z)− c(z, y), for every z ∈ X .

As a direct consequence, we have that the c-superdifferential of a c-concave function is always a
c-cyclically monotone set. Indeed, if (xi, yi) ∈ ∂c+φ, it holds that

N∑
i=1

c(xi, yi) =
N∑
i=1

φ(xi) + φc+(yi) =
N∑
i=1

φ(xi) + φc+(yi) =
N∑
i=1

φ(xi) + φc+(yσ(i) ≤
N∑
i=1

c(xi, yσ(i)),

for every permuations σ of {1, 2, · · · , N}.

Now we are ready to prove the most important result of this section, that is the fundamental
theorem of Optimal Transport. This result provide us a nice structural intuition about optimal
transport plans and reveals many desired properties of them. Precisely, we will show that the
optimality of a transport plan, depends only on the geometry of its support, and not on the
distribution of its mass itself.

Theorem 3.2.16 (Fundamental Theorem of Optimal Transport). Consider two probability mea-
sures µ ∈ P(X ) and ν ∈ P(Y) and c : X × Y → R continuous and bounded from below, such
that

c(x, y) ≤ a(x) + b(y) (3.10)

for some a ∈ L1(µ) and b ∈ L1(ν). Also, let π ∈ Π(µ, ν). Then the following are equivalent:

(i) the transportation plan π is optimal

(ii) the set supp(π) is c-cyclically monotone

(iii) there exists a c-concave function φ such that max{φ, 0} ∈ L1(µ) and supp(π) ⊂ ∂c+φ.

Proof. At first, one can observe that for any π̃ ∈ Π(µ, ν), the function max{φ, 0} is integrable.
Indeed, we have that∫

X×Y
c(x, y)dπ̃(x, y) ≤

∫
X×Y

a(x) + b(x)dπ̃(x, y) =

∫
X
a(x)dµ(x) +

∫
Y
b(y)dν(y) <∞, (3.11)
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for any π̃ ∈ Π(µ, ν). Now, combining 3.10 with 3.11, we can derive the integrability of max{φ, 0}.
This fact together with the boundness from below of c, gives us that c ∈ L1(π) for any π ∈ Π(µ, ν).

(i)⇒ (ii) : To attack to this implication, we will follow the steps: for the sake of contradiction
we will assume that the suppπ is not c-cyclically monotone, we will construct a plan which will be
positive and will have marginals µ, ν, and then we will prove that it is better that the optimal one:
a contradiction.

So, following this strategy, let us assume that suppπ is not c-cyclically monotone. In this case,
we can find N ∈ N, a family {(xi, yi)}Ni=1 ⊂ suppπ and a permutation σ ⊂ {1, · · · , N} such that

N∑
i=1

c(xi, yi) >

N∑
i

c(xi, yσ(i)).

At this point, we can take ε > 0 such that

0 < ε <
1

2N

( N∑
i=1

c(xi, yi)−
N∑
i=1

c(xi, yσ(i))

)
. (3.12)

Thanks to continuity of c, there exists r > 0 such for every 1 ≤ i ≤ N and for every (x, y) ∈
Br(xi)×Br(yi) we have that

c(x, y) > (xi, yi)− ε. (3.13)

and for every (x, y) ∈ Br(xi)×Br(yσ(i)) we have that

c(x, y) < c(xi, yσ(i)) + ε. (3.14)

Let us divide the rest of the proof into 3 steps, according to the strategy which has been already
mentioned.

Step 1: Construction of suitable measure.

We consider the Vi = Br(xi) × Br(yi), which, by construction, consist an open set with respect
metric topology of the product space X × Y . Notice also that π(Vi) > 0, for every i ∈ N, since we
assume that (xi, yi) ∈ supp(π).

Based on definition of Vi’s, we define the measures

πi =
π|Vi
π(Vi)

and
µi = (pX )#πi, νi = (pY)#πi

Taking 0 < a < 1
k mini∈N π(Vi), we construct a measure πi ∈ Π(µi, νσ(i)) such that πi = µi ⊗ νi.

Then we define a measure

π := a

k∑
i=1

πi + a

k∑
i=1

πi.

First, we have to prove that π is a transport plan, which in our case means that is positive and have
marginals µ, ν respectively. Then we will get the contradiction if π is ”more” optimal π (which by
our assumption is optimal), or in other words∫

X×Y
c(x, y)dπ ≤

∫
X×Y

c(x, y)dπ.
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Step 2: π is positive measure and has µ and ν as marginals

Firstly, we claim that π is positive measure. Indeed, by construction of π, we have only to check
that π − a

∑N
i=1 πi is positive. To check this we have that

π − a
N∑
i=1

πi > 0⇒ π − a
N∑
i=1

π|Vi
π(Vi)

> 0⇒ π − akπ|Vi
π(Vi)

> 0⇒ π − akπi ⇒
π

k
< aπi.

So, for positiveness, we have to prove only that π
N < aπi. This inequality is true, since k ∈ N, and

based on definition of a and the definition of πi we have

aπi = πVi and
a

πi
≤ 1

N
,

So, combining the above inequalities, the desired positiveness follows.
Secondly, we claim that p has µ and ν as marginals. Indeed, by definition of π and using the

definition of push-forward measure, we have

(pX )#π = µ− a
N∑
i=1

(pX )#πi +

N∑
i=1

(pX )#πi = µ− a
N∑
i=1

µi + a

N∑
i=1

µi = µ

and in the same fashion

(pY)#π = ν − a
k∑
i=1

(pY)#πi +

k∑
i=1

(pY)#πi = ν − a
k∑
i=1

νi + a

k∑
i=1

νi = ν

Step 3: π violates optimality

Our final step is to prove that the constructed measure π violates optimality. To prove this state-
ment, we will consider the difference∫

X×Y
c(x, y)dπ −

∫
X×Y

c(x, y)dπ

and prove that it is positive. So, using (3.13),(3.14), we have∫
X×Y

c(x, y)dπ −
∫
X×Y

c(x, y)dπ = a
N∑
i=1

∫
X×Y

c(x, y)dπi − a
N∑
i=1

∫
X×Y

c(x, y)dπi

≥ a

N∑
i=1

(c(xi, yi)− ε)− a
N∑
i=1

(c(xi, yσ(i)) + ε)

= a

(
c(xi, yi)−

N∑
i=1

(c(xi, yσ(i))− 2Nε

)
> 0,

So π is ”more” optimal π, which is optimal by our assumption. This is the condradiction, which
completes our proof this implication.

(ii)⇒ (iii) : For this implication, it suffices to prove that if Π ⊂ X×Y is a c-cyclically monotone
set, then there exists a c-concave functtion φ such that Π ⊂ ∂c+φ and max{φ, 0} ∈ L1(µ). Let us
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fix (x̄, ȳ) ∈ Π. One can observe that, since we want φ to be c-concave with its c-superdifferential
containing Π, for any choice of (xi, yi) ∈ Π with 1 ≤ i ≤ N, we need to have

φ(x) ≤ c(x, y1)− φc+(y1) = c(x, y1)− c(x1, y1) + φ(x1)

≤
(
c(x, y1 − c(x1, y1)

)
+ c(x1, y2)− φc+(y2)

=
(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)− c(x2, y2)

)
+ φ(x2)

≤ · · ·
≤

(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)

)
+ · · ·+

(
c(xN , ȳ)− c(x̄, ȳ)

)
+ φ(x̄).

Based on these calculations, it is natural to define φ as the infimum of the above expression as
{(xi, yi)}1≤i≤N runs among all N − ples in Π and N runs in N. In addition, since we are free to
add a constant to φ, we can forget about the term φ(x̄) and define

φ(x) := inf

{(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2 − c(x2, y2)

)
+ · · ·+

(
c(xN , ȳ) + c(x̄, ȳ)

)}
,

where the infimum is taken on (xi, yi) ∈ Π, for 1 ≤ i ≤ N, and N ≤ 1. Choosing now N = 1 and
(x1, y1) = (x̄, ȳ), we obtain that φ(x̄) ≤ 0. In reverse direction, due to c-cyclical monotonicity of Π,
we obtain that φ(x̄) ≥ 0. So finally, φ(x̄) = 0.

Now, by its definition, it is clear that φ is c- concave. Employing the same trick as before by
choosing N = 1 and (x1, y1) = (x̄, ȳ), and using the alternative characterization of superdifferential
given by Remark 3.2.15, we obtain that

φ(x) ≤ c(x, ȳ)− c(x̄, ȳ) ≤ a(x) + b(ȳ)− c(x̄, ȳ).

This fact, combining with a ∈ L1(µ), yields that max{φ, 0} ∈ L1(µ). It left only to prove that
∂c+φ contains Π. For see this, we choose (x̃, ỹ) ∈ Π, and consider that (x1, x2) = (x̃, ỹ). Again, by
definition, of φ, we have

φ(x) ≤ c(x, ỹ)− c(x̃, ỹ) + inf

{(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)− c(x2, y2)

)
+ · · ·+

(
c(xN , ȳ) + c(x̄, ȳ)

)}
= c(x, ỹ)− c(x̃, ỹ) + φ(x̃).

Again, by Remark 3.2.15, this inequality shows that (x̃, ỹ) ∈ ∂c+φ, as our goal was.

(iii)⇒ (i) : To prove this implication, we consider that π̃ ∈ Π(µ, ν), a is a transport plan. We
want to prove that ∫

X×Y
c(x, y)dπ(x, y) ≤

∫
X×Y

c(x, y)dπ̃(x, y).

We recall that

φ(x)+φc+(y) = c(x, y) for any (x, y) ∈ supp(π) and φ(x)+φc+(y) ≤ c(x, y), for x ∈ X , y ∈ Y .

Therefore, we have ∫
X×Y

c(x, y)dπ(x, y) =

∫
X×Y

φ(x) + φc+(y)dπ(x, y)

=

∫
X
φ(x)dµ(x) +

∫
Y
φc+(y)dν(y)

=

∫
X×Y

φ(x) + φc+dπ̃(x, y)

≤
∫
X×Y

c(x, y)dπ̃(x, y),

which makes our proof complete.
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3.3 Duality Framework

Many problems in optimization are closely related with a different, but complementary problem,
their dual problem. The duality relation between the primal and the dual problem could be a
powerful tool in order to study these problems. The same fact holds also with respect to optimal
transportation problem. Usually, as it widely known, the dual objects of functions are measures.
In optimal transportation problems, perhaps, due to historically reasons, the primal dual consists
essentially an optimization problem over probability measures. So, intuitively, it will be an opti-
mization problem over functionals. To make the discussion a little bit more technical, let us define
the set

Φc =
{

(φ, ψ) ∈ L1(µ)× L1(ν) : φ(x) + ψ(y) ≤ c(x, y)
}

(3.15)

in µ-a.e. sense for every x ∈ X and ν−a.e. sence for every y ∈ Y . Note that, in many situations,
we condition φ(x) + ψ(y) ≤ c(x, y) is called cost condition, due to its economic implementation.
Under this perspective, we introduce functionals

I(π) =

∫
X×Y

c(x, y)dπ(x, y) (3.16)

and based on (3.15), we introduce the functional

J (φ, ψ) =

∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) (3.17)

Before of the closer examination of duality relations in optimal transport problem, we recall a
famous result of Convex Analysis, in the following proposition.

Theorem 3.3.1 (Fenchel-Rockafellar). Let V be a normed space and V ∗ its (topological) dual.
Consider also two convex functions Φ,Ψ : V → R ∪ {+∞} and Φ∗,Ψ∗ their Legendre transforms
respectively. We assume that there exists z0 ∈ V such that Φ(z0) < ∞ and Ψ(z0) < ∞ and Φ is
continuous at z0. Then it holds that

inf
z∈V

{
Φ(x) + Ψ(x)

}
= max

z∗∈V ∗

{
− Φ∗(z∗)−Ψ∗(z∗)

}
(3.18)

Proof. We observe that it suffiecient to prove that

sup
z∗∈V ∗

inf
x,y∈V

{
Φ(x) + Ψ(y) + 〈z∗, x− y〉

}
= inf

x∈V

{
Φ(x) + Ψ(y)

}
. (3.19)

If we choose x = y, we can see that the left hand quantity cannot be larger that the right hand.
Based on this fact we have just to proof the existence of a linear form z∗ ∈ V such that

Φ(x) + Ψ(y) + 〈z∗, x− y〉 ≥ inf
x∈V

{
Φ(x) + Ψ(y)

}
= m. (3.20)

Since there exists a z0 ∈ V such that Φ(z0) < ∞ and Ψ(z0) < ∞, we observe that infimum m is
finite.

Now, let us define

C =
{

(x, λ) ∈ V × R : λ > Φ(x)
}

and C ′ =
{

(y, µ) ∈ V × R : µ ≤ m−Ψ(y)
}
. (3.21)

Obviously, C,C ′ are convex sets, since Φ,Ψ are convex functions. From our assumptions, we can
deduce that (z0,Φ(z0) + 1) ∈ IntC 6= ∅. So, since C has not empty interior, this implies that
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C = IntC. Moreover, because of the construction of the infimum m, C and C ′ are disjoint. Thanks
to Hahn-Banach theorem, there exists a (nontrivial) linear form h ∈ (V × R)∗ such that

inf
c∈C
〈h, c〉 = inf

c∈IntC
〈h, c〉 ≥ sup

c′∈C′
〈h, c′〉. (3.22)

Equivalently, there exists w∗ ∈ V ∗ and α ∈ R, with (w∗, α) 6= (0, 0), such that

〈w∗, x〉+ αλ ≥ 〈w∗, y〉+ αµ

as soon as λ > Φ(x) and µ ≤ m − Ψ(y). This is only possible only when α > 0, and thus, with
z∗ = w∗/α we have

〈z∗, z〉+ λ ≤ 〈z∗, y〉+ µ

or equivalently,

〈z∗, x〉+ Φx ≥ 〈z∗, y〉+m−Ψ(y).

Since this holds for all x, y ∈ V, we conclude that (5.23) is true and our proof is complete.

Now we can state and prove the well-known Kantorovich duality theorem.

Theorem 3.3.2 (Kantorovich duality). Consider that X and Y be complete and separable metric
spaces, µ ∈ P(X ) and ν ∈ P(Y) is two probability measures and c : X × Y → R is a lower-
semicontinuous cost function. Then

inf
π∈Π(µ,ν)

I(γ) = sup
(φ,ψ)∈Φc

J (φ, ψ). (3.23)

Furthermore, the infimum is a minimum.

Proof. Following the spirit of Villani (2003), we divide the proof into 3 steps.

Step 1: Compact case.

At first, we assume that X ,Y are compact spaces and c is continuous. Let V = Cb(X × Y),
the set of all continuous functions equipped with supremum norm ‖·‖∞. By Riesz representation
theorem, its (topological) dual can be isomorphically identified by the set of all (regular) Radon
measures V ∗ = M (X ×Y) normed by total variation ‖·‖TV . We define the maps Φ,Ψ on Cb(X ×Y)
by

Φ(u) =

{
0, if u(x, y) ≥ −c(x, y)

+∞, else
and Ψ(u) =


∫
X
φdµ+

∫
Y
ψdν, if u(x, y) = φ(x) + ψ(y)

+∞ else.

Now, one can observe that the assumptions of Fenchel-Rockafellar theorem are satisfied with z0 = 1,
and so we obtain

inf
x,y∈V

{
Φ(x) + Ψ(y)

}
= max

z∗∈V ∗

{
− Φ∗(−z∗)−Ψ(z∗)

}
. (3.24)

Let us compute both sides of (3.24). The left-hand-side we have that

inf

{∫
X
φdµ+

∫
Y
dν : φ(x) + ψ(y) ≥ −c(x, y)

}
= − sup

{
J (φ, ψ) : (φ, ψ) ∈ Φc

}
. (3.25)



54 CHAPTER 3. A GLANCE ON OPTIMAL TRANSPORT

Computing Legendre-Fenchel tranform of Φ, for a given π ∈M (X × Y), we obtain

Φ∗(π) = sup
u∈Cb(X×Y)

{
−
∫
X×Y

u(x, y)dπ(x, y) : u(x, y) ≥ −c(x, y)

}
= sup

u∈Cb(X×Y)

{∫
X×Y

{∫
u(x, y)dπ(x, y) : u(x, y) ≤ c(x, y)

}
.

If π is not nonnegative measure then there exists a nonpositive function v ∈ Cb(X × Y) such that∫
X×Y vdπ(x, y) > 0. Choosing u = λv and taking λ −→ ∞ we obtain that supremum is equal

to +∞. In different circumstances, if π is nonnegative, then the supremum is clearly equal to∫
X×Y c(x, y)dπ(x, y). Summarizing the above discussion Φ∗ is equal to

Φ∗(−π) =

 sup
u∈Cb(X×Y)

{∫
X×Y

c(x, y)dπ(x, y)

}
if π ∈M+(X × Y)

+∞, else

and in the same fashion, Ψ∗ is equal to

Ψ∗(π) =

0, if

∫
X×Y

φ(x) + ψ(y)dπ(x, y) =

∫
X
φdµ−

∫
Y
ψdν, ∀(φ, ψ) ∈ Cb(X )× Cb(Y)

+∞, else

Changing signs and putting all together, we get

inf
π∈Π(µ1,µ2)

I(π) = sup
(φ,ψ)∈Φc∩Cb

J (φ, ψ)

Step 2: Reduction to compact case

We assume now that c is bounded and uniformly continuous. We will attack, at first, to ”less
or equal” inequality which is less technical and more more easier. We claim that.

sup
Φc∪Cb

J (φ, ψ) ≤ sup
Φc∪L1

J (φ, ψ) ≤ inf
π∈Π(µ,ν)

I(π).

To prove this claim, at first, we can the left-hand side inequality is trivial, since Cb(X )×Cb(Y) ⊆
L1(µ) × L1(ν). For the right-hand inequality, let (φ, ψ) ∈ Φc ⊆ L1 and π ∈ Π(µ, ν). Then, by
definition of π, we have that

J (φ, ψ) ≤
∫
X
φdµ+

∫
Y
ψdν =

∫
X×Y

(
φ(x) + ψ(y)

)
dπ(x, y).

But φ, ψ satisfying the price condition φ(x) + ψ(y) ≤ c(x, y) π−a.e. Indeed, let negligible sets
Nx, Ny such that µ(Nx) = ν(Ny) = 0 and price condition holds for (x, y) ∈ N c

x × N c
y . Since the

probability measure π has marginals µ and ν, we can say that π(Nx × Y) = µ(Nx) = 0 and
π(Ny × X ) = ν(Ny) = 0 and hence π

(
(N c

x ×N c
y)c
)

= 0. So from this, it follows that∫
X×Y

(
φ(x) + ψ(y)

)
dπ(x, y) ≤

∫
X×Y

c(x, y)dπ(x, y) = I(π).

Now, taking supremum and infimum in left-hand side and right-hand side respectively, we obtain
that

sup
Φc∩L1

J (φ, ψ) ≤ inf
π∈Π(µ,ν)

I(π) (3.26)
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which proves the ”less or equal” inequality.
Let us now attack to the reverse inequality, which is a bit more technical and tricky. We

define ‖c‖∞ = supX×Y c(x, y). We will reduce this case to the compact one by a careful truncation
procedure. Consider that π∗ is the optimal transport plan, i.e.

I(π∗) = inf
π∈Π(µ,ν)

I(π).

where the above infimum is finite, since c is bounded. The existence of such a π∗ is guaranteed by
compactness of Π(µ, ν), based on Theorem 3.2.4 (Prokhorov’ theorem), where details can be found
in step 3. Consider now δ > 0. Since X ×Y are complete and separable metric spaces, the product
space, since it is a finite product, is also complete and separable. In particular, π∗ is tight and
there exist compact sets Ko ⊆ X and Fo ⊆ Y such that µ(Kc

o) ≤ δ and ν(F co ) ≤ δ, so we have

π∗
(
(Ko × Fo)c

)
≤ 2δ.

We define a probability measure π∗o on Ko × Fo by

π∗o =
1Ko×Fo

π∗(Ko × Fo)
π∗

If µo, νo are the marginals of π∗o onto Ko × Fo respectively, consider the set Πo(µo, νo), i.e. the set
of probability measure on Ko × Fo having µo, νo as marginals. We define

Io(πo) :=

∫
Ko×Fo

c(x, y)dπo(x, y).

Consider now π̃o ∈ Πo(µo, νo) such that

Io(π̃o = inf
πo∈Πo(µo,νo)

Io(πo).

We construct a π̃ ∈ Π(µ, ν) from π̃o by

π̃ := π∗(Ko × Fo) · π̃o + 1(Ko×Fo)c · π
∗.

So, based on this fact we obtain

I(π̃) = π∗(Ko × Fo)I(π̃o +

∫
(Ko×Fo)c

c(x, y)dπ∗(x, y)

≤ Io(π̃o) + 2δ‖c‖∞
≤ inf

πo∈Πo(µo,νo)
Io(πo) + 2δ‖c‖∞,

and so it follows that
inf

π∈Π(µ,ν)
I(π) ≤ inf

πo∈Πo(µo,νo)
Io(πo) + 2δ‖c‖∞.

We introduce now the functional Jo on L1(µo)× L1(νo) defined as

Jo(φo, ψo) :=

∫
Ko

φodµo +

∫
Fo

ψodνo.

By step 1, we have that inf Io = sup Jo, where supremum runs over all admissible functions
(φo, ψo) ∈ L1(µo) × L1(νo), satisfying the price condition i.e. φo(x) + ψo(y) ≤ c(x, y) a.e. for
all x, y. In particular, for δ > 0 there exists a couple of admissible functions φ̃o, ψ̃o such that

Jo(φ̃o, ψ̃o) ≥ supJo − δ.
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Our strategy is the following: we will construct an efficient couple (φ, ψ), from (φ̃o, ψ̃o), for the
maximization of J (φ, ψ). We can ensure that price condition φ̃o + ψ̃o ≤ c(x, y) holds, not only in
a.e. set, but for all x, y, provided that φ̃o, ψ̃o can take values in R ∪ {−∞}. To see that, consider
Nx, Ny are two negligible sets such tat the price condition holds for (x, y) ∈ N c

x ×N c
y . Then, if we

redefine the values of φ, ψ to be −∞ on Nx and Ny respectively, the notion of a.e. walks away.

Without loss of generality, let us assume that δ ≤ 1. Then, since Jo(0, 0) = 0, we can see that
supJo = 0 and hence Jo(φ̃o, ψ̃o) ≥ δ ≥ 1. By writing

Jo(φ̃o, ψ̃o) =

∫
X×Y

(
φ̃o(x) + ψ̃o(y)

)
dπo(x, y)

where πo ∈ Πo(µo, νo), we deduce that there exists (xo, yo) ∈ Ko×Fo such that φ̃o(xo)+ψ̃o(yo) ≥ −1.
Then if we replace (φ̃o, ψ̃o) by (φ̃o+s, ψ̃o−s) for some s ∈ R, we do not change the value of functional
Jo(φ̃o, ψ̃o) and the resulting couple is still admissible. By a proper choice of s, we can obtain

φ̃o(xo) ≥
1

2
and ψ̃o(xo) ≥ −

1

2
.

This implies that for every (x, y) ∈ Ko × Fo we have that

φ̃o(x) ≤ c(x, yo)− ψ̃o(xo) ≤ c(x, yo) +
1

2

ψ̃o(y) ≤ c(xo, y)− φ̃o(xo) ≤ c(xo, y) +
1

2
.

Now we have to ”improve”, in some sense, admissible couples. The following key trick is due
Rüschendorf. Let us define for a x ∈ X ,

φo(x) := inf
y∈Fo

{
c(x, y)− ψ̃o(y)

}
We can easily see that φ̃o ≤ φo on Xo. This implies that Jo(φo, ψ̃o) ≥ Jo(φ̃o, ψ̃o). Moreover, for all
x ∈ X we control φo(x) both from above and below, that is

φo ≥ inf
y∈Fo

{
c(x, y)− c(xo, y)

}
− 1

2

φo ≤ c(x, yo)− ψ̃o(yo) ≤ c(x, yo) +
1

2

Similarly, we define, for a y ∈ Y

ψo(y) := inf
x∈Ko

{
c(x, y)− φo(x)

}
,

and still having that (φo, ψo) ∈ Φc. Then, we infer

Jo(φo, ψo) ≥ Jo(φo, ψo) ≥ Jo(φ̃o, ψ̃o).

Similarly with φo, we can control ψo both from above and below, that is, for all y ∈ Y

ψo ≥ inf
x∈Ko

{
c(x, y)− c(x, yo)

}
− 1

2

ψo ≤ c(xo, y)− φo(yo) ≤ c(xo, y)− φ̃o(yo ≤ c(xo, y) +
1

2
.
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Moreover, we obtain that

φo(x) ≥ −‖c‖∞ −
1

2
and ψo(y) ≥ −‖c‖∞ −

1

2
.

Now, combining all of these bounds we have

J (φo, ψo) =

∫
X
φodµ+

∫
Y
ψodν =

∫
X×Y

(
φo(x) + ψo(y)

)
dπ∗(x, y)

= π∗(Ko × Fo)
∫
Ko×Fo

(
φo(x) + ψo(y)

)
dπ∗o(x, y) +

∫
(Ko×Fo)c

(
φo(x) + ψo(y)

)
dπ∗(x, y)

≥ (1− 2δ)

(∫
Ko

φodµo +

∫
Fo

ψodνo

)
(2‖c‖∞)π∗

(
(Ko × Fo)c

)
≥ (1− 2δ)Jo(φo, ψo)− 2δ(2‖c‖∞ + 1)

≥ (1− 2δ)Jo(φ̃o, ψ̃o)− 2δ(2‖c‖∞ + 1)

≥ (1− 2δ)(inf I − δ)− 2δ(2‖c‖∞ + 1)

≥ (1− 2δ)
(

inf I − (2‖c‖∞ + 1)δ
)
− 2δ(2‖c‖∞ + 1).

Since δ ≤ 1 is arbitary small, we conclude, taking account the inequality in (3.26), we conclude
that supJ = inf I , which completes step 3.

Step 3: General case

Let us now define c := supn cn, where (cn)n∈N stands for a nondecreasing bounded sequence of
nonnegative, uniformly continuous cost functions. Consider also the functional In, defined on
Π(µ, ν) defined as

In(π) :=

∫
X×Y

cn(x, y)dπ(x, y).

By step 2, we have that

inf
π∈Π(µ,ν)

In = sup
(φ,ψ)∈Φcn

J (φ, ψ). (3.27)

We will show that

inf
π∈Π(µ,ν)

I(π) = sup
n

inf
π∈Π(µ,ν)

In(π) (3.28)

and for every n ∈ N,
sup

(φ,ψ)∈Φcn

J (φ, ψ) ≤ sup
(φ,ψ)∈Φc

J (φ, ψ). (3.29)

Indeed, if we combine (3.27), (3.28) and (3.29), we obtain

inf
π∈Π(µ,ν)

I(π) ≤ sup
(φ,ψ)∈Φc

J (φ, ψ)

and since we know by 3.26 that the converse inequality is true, we get the equality. By construction,
we have that cn ≤ c, obviously it follows that Φcn is a subset of Φc, on which Jn coincides with J ,
so (3.29) becomes trivial.

In consideration of construction of In, as a nondecreasing sequence of functionals, it is clear
that (inf In)n∈N is a nondecreasing sequence, bounded from above by inf I . Therefore, we only
have to prove that

lim
n→∞

inf
π∈Π(µ,ν)

In(π) ≤ inf
π∈Π(µ,ν)

I(π). (3.30)
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As it has been proved in Proposition 3.2.5, the set of all transport plans Π(µ, ν) is tight. Then,
by Proposition 3.2.4 (Prokhorov’s theorem), this implies that Π(µ, ν) is relatively compact for
the weak topology of probability measures. In particular, if (πnk)k∈N is a mimimizing sequence
for inf In(π), extracting a subsequence and keeping the same notation, πnk converges narrowly to
some probability measure πn ∈P(X ×Y) as k −→∞, i.e. there exists a g ∈ Cb(X ×Y) such that∫

X×Y
g(x, y)dπnk(x, y)

k→∞−→
∫
X×Y

g(x, y)dπn(x, y).

From that, we can see that πn ∈ Π(µ, ν) and

inf
π∈Π(µ,ν)

In(π) = lim
n→∞

∫
X×Y

cn(x, y)dπnk(x, y) =

∫
X×Y

cn(x, y)dπn(x, y),

from which we obtain the existence of minimizing probability measure πn. In this spirit, due com-
pactness of Π(µ, ν), the sequence (πn)n∈N admits a cluster point π∗. Whenever n ≥ m, we have

In(πn) ≥ Im(πn),

and by continuity of Im, we have that

lim
n→∞

In(πn) ≥ lim sup
n→∞

Im(πn) ≥ Im(π∗).

At last, by Monotone Convergence theorem, we have that Im(π∗) −→ I(π∗) as m → ∞, so we
obtain

lim
n→∞

In(πn) ≥ lim
m→∞

Im(π∗) = I(π∗) ≥ inf
π∈Π(µ,ν)

I(π),

which proves (3.30).
To conclude our proof, we will prove that infinum is really attained. This is again a collorary of

compactness of Π(µ, ν). Indeed, if (πk)k∈N is a minimizing sequence for I and π∗ is a weak cluster
point of (πk)k∈N, employing Monotone Convergence theorem for the sequence (cn)n∈N, we obtain

I(π∗) = lim
n→∞

In(π∗) ≤ lim
n→∞

lim
k→∞

In(πk) ≤ lim sup
k→∞

I(πk) = inf I ,

which makes our proof complete.

The duality relation of optimal transport problem has a plethora of many important and useful
consequences. Between them, there are two which are related with c-concavity of the corresponding
functional and a specific cost function induced by a metric on the base space. Both of them, because
of their importance in what follows are presented in the following remarks.

Remark 3.3.3 (Duality and c-concavity). An interesting property of the maximizing couple (φ, ψ)
is dual problem is that in the form (φ, φc

+
). To see this, the only one that we have to do is employing

Theorem 3.2.16. To be more accurate, thanks to the later theorem, we have that there exist a c-
concave function φ, susch that supp(π) ⊂ ∂c+φ, max{φ, 0} ∈ L1(µ) and max{φc+ , 0} ∈ L1(ν).
Under this consideration, and recalling the strategy of proof that this fact means optimality of
π ∈ Π(µ, ν), we have∫

X×Y
c(x, y)dπ(x, y) =

∫
X×Y

φ(x) + φc
+
dπ(x, y) =

∫
X
φ(x)dµ(x) +

∫
Y
φc+dν(y).

Therefore, we have that φ ∈ L1(π) and φc+ ∈ L1(ν), which means that the couple (φ, φc+) is an
admissible couple of the dual problem. Such as c-concave functions, which hold the property that
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the couple (φ, φc+) is a maximizing couple for the dual problem are usually called Kantorovich
potentials. Such kind of potentials enjoy two related but different imporant properties with respect
to optimal transport problem. Precisely, at first, as we mentioned, they are maximizing functions
in the dual problem, and secondly, the support of optimal transport plans, as we have seen in
Theorem 3.2.16, is contained in the superdifferential of c-concave functions.

Remark 3.3.4 (Kantorovich-Rubinstein duality). In case where c = d is a distance, then a c+-
convex function is just a 1-Lipschitz function and its own c+ transform. To see this, consider that
if ψ is c+ convex, then it is obviously 1-Lipschitz. On contrary, if ψ is 1-Lipschitz, then we have
that ψ(x) ≤ ψ(y) + d(x, y), so we arrive the fact that ψ(x) = infy{ψ(y) + d(x, y)} = ψc

+
(x). Under

this pespective and recalling Theorem 3.3.2, we can lead to a important duality formula, that is

W1(µ, ν) = sup
‖ψ‖Lip≤1

{∫
X
ψdµ−

∫
X
ψdν

}
,

which is the so-called Kantorovich-Rubinstein duality.

3.4 Existence and Characterizations of Optimal Transport Maps

As we mentioned, Monge’s relaxation of transportation problem from transport plans to transport
maps thanks to its nature, allow us to use powerful tools from Variational and Convex Analysis.
Under specific (and weak) assumptions, all of these chique tools make us able to obtain existence
and uniqueness of solution of optimal transportation problem, and moreover, to understand several
structural properties of its solution, which were strongly connected with its the topological and
geometrical nature and provide us chique, abstract and quite general results.

Nevertheless, going backwards to looking for optimal transport maps, instead of plans, we have
seen that in general this problem admits several degenerate cases (i.e. maybe there is no optimal
transport map or every transport map is optimal). Having, this observation in our mind, a natural
question arising is: under which additional assumptions can we find at least optimal transport plan
which induced by an optimal transport map? In the other words, this question can be translated
in terms of fine properties of the transport maps.

The first step of answering such a question relies on their interplay with the structure of optimal
transport plans. Moreover, having as starting point the equivalence of optimality of a plan and the
c-monotonicity of its support (Proposition 3.2.16), one can ask how ”far”, in some sense, is this
support from being a graph of a transport map. Such a vague and unclear concern stands in the
heart of the necessary assumptions which we mentioned above. This answer of this concern is relies
on the following proposition.

Proposition 3.4.1 (Knott-Smith Optimality criterion). Consider µ, ν ∈ P(X × Y) and π ∈
Π(µ, ν) be an optimal transport plan. Then π induced by a measurable map T : X → Y if and only
if there exists a π-measurable set Γ ⊆ X × Y where π is concentrated, such that for µ-a.e. x ∈ X
there exists only one y = T (x) with (x, y) ∈ Γ. In this case, π is induced by the map T .

Proof. We shall prove only the one implication.
(⇐) : Consider a π-measurable set Γ ⊆ X ×Y where π is concentrated, such that for µ-a.e. x ∈ X ,
T : X → Y N ⊂ X be a µ-null set. Removing from Γ the product N × Y we can assume that
Γ consists a graph. Thanks X ,Y are complete and separable metric spaces, we have that µ, ν are
automatically regular. Then, thanks to inner regularity of them, we can write Γ as

Γ =
⋃
n∈N

Γn
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which is σ-compact. Under this consideration, the domain of T is also σ- compact, hence it is a
Borel set. Hence the restriction of T to the set pX (Γn) is continuous. Therefore, T is measurable
map. In addition, since y = T (x) π-a.e. in X × Y , we have for a test function ϕ ∈ C∞c (X × Y)
that ∫

X×Y
ϕ(x, y)dπ(x, y) =

∫
X×Y

ϕ(x,T (x))dπ(x, y) =

∫
X
ϕ(x,T (x))dµ(x).

Thus, we have that π = (Id× T )#µ.

The above proposition witnesses the interplay of optimal transport maps and plans. We have
seen that optimal transport maps are concentrated on c-cyclically monotone sets, which can be
obtain by the c-supperdifferential of a c-concave function (or c-subdifferential of a c-convex function
respectively). This fact is reflected to the question about whether the c-superdifferential of a c-
concave (or again c-subdifferential of a c-convex function resp.) consists a singleton.

Unfortunately, this question has not any answer in general setting. Although, there are many
interesting cases of specific problems in different settings. These cases were examinated through the
last decades by many authors (see e.g. Smith & Knott (1987); Brenier (1991); Gangbo & McCann
(1996); L. Ambrosio et al. (2004); Champion et al. (2008)).

One of the most important of such a case, is the situation of Euclidean spaces and quadratic
cost functions. This case, which was mainly explored by C.S. Smith, M. Knott and Y. Brenier and
others, providing us various interesting characterisations of optimal transport maps, in terms of
Convex Analysis. Such a characterisation is presented in the following proposition.

Proposition 3.4.2. Consider that X = Y = Rd, c(x, y) = 1
2 |x − y|

2 and φ : Rd → R ∪ {−∞}.
Then the following hold:

(i) we have that ϕ is c-concave if and only if the map

x 7→ ϕ(x) :=
|x|2

2
− ϕ(x)

is convex and lower semicontinuous,

(ii) we have that y ∈ ∂c+ϕ(x) if and only if y ∈ ∂φc−ϕ(x).

Proof. (i) Let us assume that φ is c-concave. We will construct φ by equivalent operations and
then we will conclude that it is convex and lower semicontinous, by its form.

By definition of c-concavity, we have that φ = ψc+ for a function φ : Rd → R∪{−∞}. This this
is equivalent to

φ(x) = inf
y∈Y

{
c(x, y)− ψ(y)

}
= inf

y∈Y

{
1

2
|x− y|2 − ψ(y)

}
= inf

y∈Y

{
|x|2

2
+ 〈x,−y〉+

(
|y|2

2
− φ(y)

)}
,

which is equivalent to

φ(x)− |x|
2

2
= inf

y∈Y

{
〈x,−y〉+

(
|y|2

2
ψ(y)

)}
and thus, changing the signs and using again c-concavity, is equivalent to

φ(x) = sup
y∈Y

{
〈x, y〉 −

(
|y|2

2
− φ(y)

)}
,
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which is convex and lower semicontinous, as the Fenchel-Legendre transform of a convex function.
(ii) Let y ∈ ∂c+φ(x). Then, by definition we have that this is equivalent to

φ(x) = c(x, y)− φc+(y)

φ(z) ≤ c(z, y)− φc+(y), for every z ∈ Rd.

These two relations can be translated in terms of cost function c as
φ(x) =

|x− y|2

2
− φc+(y)

φ(z) ≤ |z − y|
2

2
− φc+(y)

⇐⇒

φ(x)− |x|

2

2
= 〈x,−y〉+

|y|2

2
− φc+(y)

φ(z)− |z|
2

2
= 〈z,−y〉+

|y|2

2
− φc+(y)

 ,

for every z ∈ Rd. Combining them, we conclude that

φ(z)− |z|
2

2
≤ φ(x)− |x|

2

2
+ 〈z − x,−y〉, for everyz ∈ Rd.

This means that −y ∈ ∂c+(φ − | · |2)(x), or equivalently, y ∈ ∂c−φ(x). This fact makes our proof
complete.

Before we proceed to discussion of the above result, let us present a standard (and extremely
useful) consequence of it.

Corollary 3.4.3 (Special pertubations preserves optimality). If ϕ ∈ C∞c (Rd), then there exists
ε > 0 such that the map (Id + ε∇ϕ) is optimal transport map, for any |ε| ≤ ε.

Proof. We pick up ε > 0 such that −Id ≤ ε∇2ϕ ≤ Id. Under this consideration, the map

x 7→ |x|
2

2
+ εϕ(x), for |ε| ≤ ε.

Therfore, its gradient is optimal transport map

The above proposition and its consequence shows up a very important phenomenon which
occurs in the Euclidean case under the consideration of quadratic cost. To be more precise, in
such a case the condition of concentration on the c-superdifferential of a c-concave map means
is translated to the fact that we optimal transport map has to be concentrated on the graph of
the subdifferential of a convex function. Moreover, the above proposition reduce the problem of
existence of optimal transport maps to the structure of the set of non-differentiability points of
a convex function. Differentiability of convex functions has been widely studied last half century
under different prespectives and it is appearing many extraordinary results. In order to understand
this set in our case, we recall the definition of (CC)- hypersurfaces3

Definition 3.4.4 ((CC)-hypersurfaces). Let O ⊂ Rd. If for a suitable system of coordinates,
this set is the graph of the difference of two real-valued fuctions, we will say that O is a (CC)-
hypersurface. In the other words, the set O is a (CC)-hypersurfaces, if there exist to convex
functions f, g : Rd−1 → R, such that

O :=
{

(s, t) ∈ Rd : s ∈ Rd−1, t ∈ R, t = f(s)− g(s)
}
.

3 The notation (CC) stands for convex minus convex, following Ambrosio L., Gigli N. (2013), and it has nothing
to do about the cost function c. Such a hypersurfaces where introduced in Zaj́ıček (1979) and appearing in many
situations (see e.g. Borwein et al. (2010); Benyamini & Lindenstrauss (1998).
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Having in our minds the notion of (CC)-hypersurfaces, the break points of non-differentiability
of a convex function and moreover the structure of their set are described in the following propo-
sition.

Proposition 3.4.5 (Zaj́ıček (1979)). If O ⊂ Rd then there exists a convex function φ : Rd → R
such that O is contained in the set of non-differentiability points of φ if and only if O can be covered
by countably many (CC)-hypersurfaces.

Proof. This proof, due to its technicalities, is omitted Although, it can be found in original paper
Zaj́ıček (1979) in general Banach space setting. Moreover, a modern approach can be found in
Benyamini & Lindenstrauss (1998).

Corollary 3.4.6 (Regularity of measures on (CC)-hypersurfaces). If a measure µ ∈ P(Rd) is
regular, then for every (CC)-hypersurface O ⊂ Rd holds that µ(O) = 0.

Having explore the set of non-differentiability of a convex function, we are ready to state and
prove one of the most important result in Euclidean setting under quadratic costs, the famous
Brenier’s Theorem.

Theorem 3.4.7 (Brenier). Consider a regular measure µ ∈ P(Rd) such that
∫
Rd |x|

2dµ(x) < ∞.
Then for every ν ∈P(Rd) with

∫
Rd |y|

2dν(y) <∞, there is a unique transport plan between µ and
ν and its induced by a measurable map T : Rd → R. Moreover, the optimal transport map T is the
gradient of a convex function.

Proof. We recall the cost condition in Kantorovich problem, which was describted in n describted
in Theorem 3.2.16, that is

c(x, y) ≤ a(x) + b(y) (3.31)

We plug in 3.31 a(x) = b(x) = |x|2. Then, thanks to our assumptions on measure µ ∈P(Rd), the
measure ν ∈ Rd ensure us that the cost condition (3.31). Therefore, both of Theorem 3.2.16 and
Theorem 3.3.2 are in our favour. Thanks to relation between duality and c-concavity, which was
describted in Remark 3.3.3, we know that for any c-concave potential φ and any optimal transport
plan π ∈ Π(µ, ν), it holds that supp(π) ⊂ ∂c+φ.

Now, Proposition 3.4.2 ensure us that the functional

φ(·) :=
| · |2

2
− φ(·)

is convex, and moreover, it holds that ∂cφ = ∂c−φ. Using again our assumptions on µ ∈ P(Rd)
and since φ is convex, we know that the set O of the points of nondifferentiability of φ is µ-null
set. Hence, the map ∇φ : Rd → Rd is well-defined µ-a.e. and every transport plan has to be
concentrated on its graph. Thus, the optimal transport plan is unique and it is induced by the
gradient of the function φ, which as we have seen is convex. This fact makes our proof complete.



CHAPTER 4

Wasserstein spaces

“I prefer concrete things and I don’t like to learn
more about abstract stuff than I absolutely have to.
”

— Mark Kac,
Polish-American mathematician (1914-1984)

In this chapter, we will focus on the optimal transport problem under a specific cost function,
which will be defined through a distance in a metric space, i.e. c(x, y) = dp(x, y), for p ∈ [1,∞).
This consideration gives rise to the notion of so-called Wasserstein distance and Wasserstein spaces
which naturally appears from the optimal transport problem and it presents a plethora of interesting
and important topological and geometrical properties. Moreover, based on those properties we will
recast the dynamical formulation of the optimal transport problem, which will play a crucial role
to understanding many geometrical features of Wasserstein spaces.

4.1 Preliminaries and background

It is well-known that the set of Borel probability measures on a complete and separable metric space
can be endowed with the topology of narrow convergence (see e.g. Parthasarathy (2005); Aliprantis
& Border (2006)). This topology is a metrizable topology for several metrics, as for example the
bounded Lipschitz metric, the Lévy-Prokhorov metric or many others1. Heuristically speaking,
having the transportation problem between two probability measures, which was described in the
previous chapter, one can somehow understand its minimal value as a vague notion of distance
between probability measures. This heuristic and vague consideration might not be true in general
for arbitrary cost functions, nevertheless, if one considers a distance as a cost function, optimal
transportation problem, as we will see in the following, can provide us with a true notion of distance
with respect to the topology of narrow convergence in the space of probability measures, the so-
called Wasserstein distances.

During the 20th century, Wasserstein-type distances were discovered and rediscovered under dif-
ferent names, by many authors in different settings, and by different scientific communities. Even
the so-called term Wasserstein maybe is a debatable, enjoying a colorful history. More precisely,

1The number of such metrics is surprisingly large! An excellent treatise about these definitions and the metric
methods in Probability and Statistics can be found in Rachev et al. (2013).
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it was R.L Dobrushin who introduced that term (see Dobrushin (1970)), based on the work of
Russian, US-based, mathematician L. Vaserstein (see Vaserstein (1969)). Essentially, the notion
of such distances does not appearing explicitly in the work of Vasserstein (or possibly respelled
as Wasserstein), and probably he actually didn’t play any key role that could on the development
of the theory of these distances. Despite that fact, there are many names in the modern litera-
ture referring to the same concept, such as minimal Lp-distance (established by Rüschendorf and
Rachev), Earth Mover’s distance (established in Computer Science literature), Mallow’s distance
(established in Probability and Statistics literature), Kantorovich-Rubinstein distance and possibly
many others. Nowadays, the term Wasserstein is an undistinguished and widely accepted termi-
nology in a wide range of scientific disciplines2, from differential geometry and partial differential
equations to optimization and machine learning, and therefore it may be impossible to change.

The aim of this chapter is to provide a gentle investigation of the topological and geometrical
properties of Wasserstein distances, and moreover, of the Wasserstein spaces. As we will see, the
notion of Wasserstein distances enjoy several interesting properties, which essentially lies to the
topological and the geometrical structure of its base space.

4.2 Metric nature and topology

We are starting our trip to Wasserstein spaces by an investigation of the metric nature and its
topological properties, which we have already advertised. We shall start this investigation by
considering that (X , d) is a complete and separable metric space. We define the p-Wasserstein
distance between µ, ν ∈P(X ) as

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

dp(x, y)dπ(x, y)

)1/p

. (4.1)

As we have already mentioned, the quantity defined in (4.1) is a true distance in the space of
probability measures P(X ). In order to prove that claim, we recall the famous gluing lemma,
which makes a clever use of the disintegration theorem (see L. Ambrosio et al. (2008)).

Lemma 4.2.1 (Gluing). Let X ,Y ,Z be complete and separable metric spaces and two probability
measures π1 ∈P(X × Y) and π2 ∈P(Y × Z) such that (pY)#π1 = (pY)#π2. Then there exists a
measure π ∈P(X × Y × Z) such that

(pX ,Y)#π = π1 and (pY ,Z)#π = π2

Proof. Consider µ = (pY)#π1 = (pY)#π2. Using the disintegration theorem, we can write that

dπ1(x, y) = dµ(y)dπy1 and dπ2(y, z) = dµ(y)dπy2(z).

We conclude the proof defining π as

dπ(x, y, z) := dµ(y)d(πy1 × π
y
2)(x, z).

Now, having already developed the necessary machinery, we are ready and able to prove that
the quantity (4.1) is a true distance on P(X ) in the following proposition.

2Many people quoting this fact as Wassersteinization, i.e. introducing optimal transportation methods into an
optimization or machine learning problem.
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Proposition 4.2.2 (Wp is a distance on P(X )). The p-Wasserstein distance Wp satisfies the
axioms of a distance on P(X ), i.e. if µ1, µ2, µ3 ∈P(X ) then

(i) Wp(µ1, µ2) ≥ 0 (non negativity)

(ii) Wp(µ1, µ2) =Wp(µ2, µ1) (symmetry)

(iii) Wp(µ1, µ2) = 0 implies that µ1 = µ2 (identity of indiscernibles)

(iv) Wp(µ1, µ3) ≤Wp(µ1, µ2) +Wp(µ2, µ3). (triangle inequality)

Proof. The claims (i), (ii) are straightforward.
For (iii), we pick an optimal transport plan π and we observe that

∫
X×X d

p(x, y)dπ(x, y) = 0
implies that π is concentrated on the diagonal of X × X , which means that the two canonical
projection maps p1, p2 coincide π-a.e. Thus, we have that (p1)#π = (p2)#π.

For (iv), we will use the Gluing lemma, in order to construct two optimal transport plans. Let
µ1, µ2, µ3 ∈ P(X ) and let π1,2 be the optimal transport plan between µ1 and µ2 and π2,3 be the
optimal transport plan between µ2, µ3. Thanks to the Gluing lemma we know that there exists
π ∈P(X × X × X ) such that

(p1,2)#π = π1,2 and (p2,3)#π = π2,3.

Since (p1)#π = µ1 and (p3)#π = µ3, we have that (p1,3)#π ∈ Π(µ1, µ3) and therefore from the
triangle inequality in Lp(π), we obtain

Wp(µ1, µ3) ≤
(∫
X×X

dp(x1, x2)d(p1,3)#π(x1, x3)

)1/p

=

(∫
X×X×X

dp(x1, x3)dπ(x1, x2, x3)

)1/p

≤
(∫
X×X×X

(
d(x1, x2) + d(x2, x3)

)p
dπ(x1, x2, x3)

≤
(∫
X×X×X

dp)(x1, x2)dπ(x1, x2, x3)

)1/p

+

(∫
X×X×X

dp(x2, x3)dπ(x1, x2, x3)

)1/p

=

(∫
X×X×X

dp(x1, x2)dπ1,2(x1, x2)

)1/p

+

(∫
X×X×X

dp(x2, x3)dπ2,3(x2, x3))

)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).

To make sure that Wp is finite, we restrict ourselves to the space of propability measures with
p-finite moments, i.e. P(X ). In this spirit, we define the Wasserstein space as follows.

Definition 4.2.3 (Wasserstein space). Consider that (X , d) is a complete and separable metric
space. We define the p−Wasserstein space as the space of probability measures with finite p-
moments equipped with p-Wasserstein distance, that is

Wp(X ) := (Pp(X ),Wp) =
{
µ ∈P(X ) :

∫
X
dp(x0, x)dµ <∞, for some x0 ∈ X

}
.

Therefore, by now, the space of probability measures with p-finite moments enjoys all of the
classical metric properties that we know from Analysis. In what will follow, we will focus in the
case where p = 2.

The reason of doing this threefold: firstly, the case where p = 2 enjoys a interesting and nice
geometrical flavour, secondly, it is also appearing in many applications, in an natural way, for
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example, it reassembles notion the covariance of two random variables in probability theory, and
thirdly most of the results which will follow can be generalized for general p ∈ [1,+∞) by minor
changes.

As we mention in the introductory paragraph of this chapter, there are many ways to metrize
the space of probability measures. Probably, the simplest and more classical way to do this is using
the total variation between two probability measures µ, ν ∈Pp(X ), i.e. the quantity

‖µ− ν‖TV := |µ− ν|(X ) = 2 sup
{
|µ(A)− ν(A)| : A ∈ B(X )

}
.

Although,the later notion of distance in space of probability measures may be sightly dangerous. To
be more precise, the total variation distance in several situations cannot measure very large or very
small distances, and admits several pathologies, such as the case where µ, ν are Dirac measures.
Nevertheless, having the metric nature of Wasserstein space W2(X ) in our mind, an interesting
question to ask is: what about the relation of total variation and Wasserstein distance in the space
of probability measures? A first understanding of such a concern comes from the probabilistic
representation of total variation. In particular, having two random variables X,Y where X ∼ µ,
and Y ∼ ν, we know that total variation between µ and ν, can be translated in the following nice
formula

‖µ− ν‖TV = 2 inf P(X 6= Y ),

where the infimum is taken along joint probability distributions (X,Y ) having X,Y as marginals.
This formulation reads as a very particular case of Kantorovich duality, where was discussed in
previous section, by considering as cost function the indicator 1X 6=Y .

Based on this observation, controlling some quantity in Wasserstein distance seems to be much
more weaker than controlling the same quantity in total variation. Nevertheless, this intuitive
consideration it is not completely true, since as we mention above total variation does not cares
about possible huge or tiny distances between measures. In any case, the good news, is that
Wasserstein distance can be controlled by a weighted version of total variation, as is presented in
the following proposition.

Proposition 4.2.4 (Total variation bound). Let (X , d) be a complete and separable metric space,
two probability measures µ, ν ∈P2(X ) and z ∈ X . Then it holds that

W2(µ, ν) ≤ 21/2

(∫
X×X

d2(z, x)d|µ− ν|(x)

)1/2

(4.2)

Proof. Let π ∈ Π(µ, ν) be a transport plan, which is obtained by fixing the mass shared by µ and
ν and distributing the rest uniformly, that is

π := (Id, Id)#(µ ∧ ν) +
1

α
(µ− ν)+ ⊗ (µ− ν)−,

where µ∧ν = µ− (µ−ν)+ and α = (µ−ν)−(X ) = (µ−ν)+(X ). Then, by definition of Wasserstein
distance, the definition of transport plan π, the triangle inequality for metric d, the above relation
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for α and using the simple inequality (A+B)2 ≤ 21/2(A2 +B2) for A,B ≥ 0, we have

W2
2 (µ, ν) ≤

∫
X×X

d2(x, y)dπ(x, y)

=
1

α

∫
X

∫
X
d2(x, y)d(µ− ν)+(x)d(µ− ν)−(y)

≤ 2

α

∫
X×X

(
d2(x, z) + d2(z, y)d(µ− ν)+(x)d(µ− ν)−(y)

≤ 2
(∫
X
d2(x, z)d(µ− ν)+ +

∫
X
d2(z, y)d(µ− ν)−

)
= 2

∫
X×X

d2(x, z)d
(
(µ− ν)+ + (µ− ν)−

)
(x)

= 2

∫
X×X

d2(x, z)d|µ− ν|(x).

Thus, we have

W2(µ, ν) ≤ 21/2
(∫
X×X

d2(z, x)d|µ− ν|(x)
)1/2

,

which makes our proof complete.

One might observe that above weighted bound of total variation coincides with the distance
W1, when the cost function is given by c(x, y) := (d(x, z) + d(z, y)1x 6=y. This observation will play
a crucial role in order to investigate topological properties of W2(X ) in a deeper level, as we will
see in the following.

Having established the metric structure of W2(X ) and explored a specific weighted bound
for Wasserstein distances, we will focus our attention to a class of certain and finer topological
properties. In order to investigate such properties, we recall the notions of quadratic growth and
2-uniform integrability.

Property 4.2.5 (Quadratic growth). We remind that a functional f : X → R has quadratic
growth if

|f(x)| ≤ a(d2(x, x0) + 1) (4.3)

for some a ∈ R and some x0 ∈ X .
The property of quadratic growth of a certain functional with play a crucial role in the following,

translated as the convergence of 2-moment of probability measures. An important consequence of
this definition is that if f has quadratic growth and µ ∈P2(X ), then f ∈ L1(X , µ).

Property 4.2.6 (2-uniform integrability). For given ε > 0 and some x0 ∈ X , we will say that
K ⊂P2(X ) is 2-uniformly integrable if there exists Rε > 0 such that

sup
µ∈K

∫
X \BRε (x0)

d2(x, x0)dµ ≤ ε.

The property of 2-uniform integrability has a nice important collateral consequence, which will
be also very useful in the following. To be more accurate, if X ,Y are complete and separable metric
spaces, one can prove that if K1 ⊂ P2(X ) and K2 ⊂ P2(Y) are 2-uniformly integrable, then the
set {

π ∈P(X × Y) : (pX )#π ∈ K1 and (pY)#π ∈ K2

}
is also 2-uniformly integrable.
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Note that these notions become also meaningful for general p ∈ [1,+∞).

Moreover, intuitively, 2-uniform integrability is a compactness-type concept, which will be vital
in the following. Precisely, combined with the convergence of integrals of functionals with quadratic
growth, it will make us able to resembling the tightness combined with the convergence of integrals
of bounded functions.

The following proposition witness this connection, and moreover, describes and provides a first
characterization of the convergence notion in Wasserstein space W2(X ).

Proposition 4.2.7. Let (µn)n∈N ∈ P2(X ) be a sequence of probability measures narrowly con-
verging to some µ. Then the following statements are equivalent:

(i) the sequence (µn)n∈N is 2-uniformly integrable

(ii)

∫
X
fdµn −→

∫
X
fdµ, as n→∞ for any continuous function f with quadratic growth

(iii)

∫
X
d2(·, x0)dµn −→

∫
X
d2(·, x0)dµ, as n→∞ for some x0 ∈ X .

Proof. (i) ⇒ (ii) : Without loss of generality, we assume that f ≥ 0. Based on this fact, f can be
written as supremum of a family of continuous and bounded functions, and clearly we have that∫

X
fdµ ≤ lim inf

n→∞

∫
X
fdµn.

Therefore, it suffices to prove is the limsup inequality, in order to obtain the limit. For that reason,
we fix ε > 0, x0 ∈ X and we find a radius Rε > 1 such that∫

X \BRε (x0)
d2(·, x0)dµn ≤ ε, for every n.

Now, if χ is the function with bounded support, values in [0, 1] and identically equal with 1 in BRε ,
then for every n ∈ N and a ∈ R, we obtain∫

X
fdµn =

∫
X
fχdµn +

∫
X
f(1− χ)dµn ≤

∫
X
fχdµn +

∫
X\BRε

fdµn ≤
∫
X
fχdµn + 2aε.

Since the function fχ is continuous and bounded, we have that
∫
X fχdµn →

∫
X fχdµ, thus we

obtain

lim sup
n→∞

∫
X
fdµn ≤

∫
X
fχdµ+ 2aε ≤

∫
X
fdµ+ 2aε.

Thanks to the arbitrariness of ε > 0, we get also the limsup inequality, so our thesis is proved.
(ii)⇒ (iii) : Since d2 are trivially continuous with quadratic growth the proof is straightforward.
(iii)⇒ (ii) : Suppose for the sake of contradiction that there ε > 0 and x̃0 ∈ X such that for every
R > 0, it holds that

sup
n∈N

∫
X \BR(x̃)

d2(·, x̃0)dµn > ε.

Then, it is not hard to see that it also holds

lim sup
n→∞

∫
X \BR(x̃0)

d2(·, x0)dµn > ε. (4.4)
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Now, for every R > 0, let χR be a continuous cut-off function with values in [0, 1], supported on
BR(x̃0) and be identically equal with 1 on BR/2(x̃0). Since d2(·, x̃0)χR is continuous and bounded,
we obtain ∫

X
d2(·, x̃0)χRdµ = lim

n→∞

∫
X
d2(·, x̃0)χRdµn

= lim
n→∞

(∫
X
d2(·, x̃0)dµn −

∫
X
d2(·, x̃0)(1− χR)dµn

)
=

∫
X
d2(·, x̃0)dµ− lim

n→∞

∫
X
d2(·, x̃0)(1− χR)dµn

≤
∫
X
d2(·, x̃0)dµ− lim inf

n→∞

∫
X \BR(x̃0)

d2(·, x̃0)dµn

=

∫
X
d2(·, x̃0)dµ− lim sup

n→∞

∫
X \BR(x̃0)

d2(·, x̃0)dµn

(4.4)

≤
∫
X
d2(·, x0)dµ− ε.

On the other hand, we have∫
X
d2(·, x̃0)dµ = sup

R>0

∫
X
d2(·, x̃0)χRdµ ≤

∫
X
d2(·, x̃0)dµ− ε,

a contradiction, which concludes our proof.

Having by now a first characterization of the meaning of convergence in Wasserstein space
W2(X ), we proceed our investigation by exploring a important property of Wasserstein distance
W2, that is lower semicontinuity. As a byproduct of that, we can obtain that a sequence of optimal
transport plans are stable, that is, the limit of a sequence of optimal transport plans is still optimal.
Both of these claims are presented in the following proposition.

Proposition 4.2.8 (Lower semicontinuity ofW2 and stability of optimality). Consider that (X , d)
is a complete and separable metric space. Then the distance W2 is lower semicontinuous with
respect to the topology of narrow convergence of measures. Moreover, if (πn)n∈N ⊂P2(X × X ) is
a sequence of optimal transport plans, its narrow limit π ∈ P2(X × X ) is also optimal transport
plan.

Proof. At first, let us prove lower semicontinuity of W2. We consider two sequences of probability
measures (µn)n∈N, (νn)n∈N ⊂ P2(X ) having their narrow limits µ, ν ∈ P2(X ) respectively. We
pick a sequence of optimal transport plans (πn)n∈N. Thanks to Proposition 3.2.5, we know that the
set of transport plans is tight, and moreover, thanks to Proposition 3.2.4 (Prokhorov’s theorem),
the sequence (πn)n∈N admits a subsequence, which is converging narrowly to some π ∈P2(X ×X ).
Thusly, it is clear that (p1)#π = µ and (p2)#π = ν, and hence it holds that

W2
2 (µ, ν) ≤

∫
X×X

d2(x, y)dπ(x, y) ≤ lim inf
n→∞

∫
X×X

d2(x, y)dπn(x, y) = lim inf
n→∞

W2
2 (µn, νn).

So, we have
W2

2 (µ, ν) ≤ lim inf
n→∞

W2(µn, νn),

which proves the lower semicontinuity of W2.
Now, let us prove the stability of optimality. Using the same notation, the only thing we have

to prove that the first statement holds true and that the narrow limit π ∈ P(X × X ) is also
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optimal. To do this, we choose a(x) = b(x) = d2(x, x0) for some x0 ∈ X satisfying the cost
condition c(x) ≤ a(x) + b(x) as it given in Theorem 3.2.16. Under this perspective, and since
µ, ν ∈ P2(X ), it is not hard to observe that Theorem 3.2.16 can be applied, thus the optimality
of π is equivalent to c-monotonicity of supp(π). The same fact also holds for the transport plans
πn. Under this considerations, we fix a N ∈ N and we pick a sequence (xi, yi)Ni=1 ∈ supp(π). Since
(πn)n∈N converges to π in narrow sense, one can infer the existence of (xin, y

i
n)n∈N ∈ supp(πn) such

that

lim
n→∞

(
d(xin, x

i) + d(yin, y
i)
)

= 0, for i = 1, · · · , N.

So, thanks to the c-monotonicity of supp(πn) and since in our case the cost function is continuous,
our proof is completed.

We proceed now to a further topological investigation related to sequence in Wasserstein spaces.

Proposition 4.2.9 (Cauchy means tight). Consider that (X , d) is a complete and separable metric
space and (µn)n∈N ⊂Pp(X ) is a Cauchy sequence with respect to W2. Then (µn)n∈N is tight.

Proof. In order to proof this proposition, we will be based in the following purely topological strat-
egy. At first, we will employ Cauchy property of the corresponding sequence of probability measures
(µn)n∈N and the duality formula, finding a family of sets where this sequence gives ”small” mass.
Then, since there is to guarantee that this family is compact, we will find a ”nice” compact re-
placement of that family, and the desired result will follow. For a better exposition of this strategy,
we divide the proof into 2 steps.

Step 1: Finding the family of ”small” sets.
Consider that (µn)n∈N ⊂ P2(X ) is a Cauchy sequence. This means that W2(µn, µm) → 0, as
n,m→∞, and moreover, playing with the terms for some x0 ∈ X , we have∫

X
d2(x0, x)dµn(x) =W2

2 (δx0 , µn) ≤
(
W2(δx0 , µ1) +W2(µ1, µn)

)2
<∞,

as n→∞. Now, by a standard application of Hölder’s inequality, we can see that W1 ≤W2, and
thusly, the sequence (µn)n∈N is also Cauchy with respect to W1.

Let ε > 0 and N ∈ N, such that for every n ≥ N, we have

W1(µn, µN ) < ε2.

Then, for any n ∈ N, there is i ∈ {1, · · · , N} such that

W1(µi, µN ) < ε2. (4.5)

Note, that in the case where n < N, the bound (4.5) also holds, by choosing i = n. Now, since by
construction, the finite set {µ1, · · · , µN} is tight, there exists a compact set K such that µi(X \K) <
ε for any i ∈ {1, ·N}. Therefore, due to its compactness, K can be covered by finitely many balls
with centers xi and radius ε, that is

K ⊂
⋃̀
i=1

B(xi, ε).

We define the sets

U :=
⋃̀
i=1

B(xi, ε), Uε := {x ∈ X : d(x,U) < ε}
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and the map

φ(x) :=
(

1− d(x,U)

ε

)+
.

From the above definitions, we can observe that the function φ enjoys some interesting properties.
More precisely, it is bounded from above and below by the indicator functions of U and Uε respec-
tively, i.e. 1U ≤ φ ≤ 1Uε , and moreover, it is (1/ε)-Lipchitz. Recalling the Kantorovich-Rubinstein
duality formula of Remark 3.3.4, and employing the above properties of φ, for any i < N we have

µn(Uε) ≥
∫
X
φdµn =

∫
X
φdµi +

(∫
X
φdµn −

∫
X
dµi

)
≥

∫
X
φdµi −

W1(µi, µn)

ε

≥ µi(U)− W1(µi, µn)

ε
.

Therefore, on the one hand, we have that

µi(U) ≥ µi(K) ≥ 1− ε for i ≤ N,

and on the other hand, for each n ∈ N, we can find a i = i(n) such that

W1(µi, µn) ≤ ε2.

Based on these facts, we infer that

µn(Uε) ≥ 1− ε− ε2

ε
= 1− 2ε.

So, by far, we conclude that for any ε > 0, we can find a finitely many (xi)
`
i=1 such that all of the

terms of the sequence (µn)n∈N gives mass less that 1− 2ε to the set

C :=
⋃̀
i=1

B(xi, 2ε).

In this point, we note that there is no guarantee that the set C is compact. To bypass such a
technical difficult, we will use an ”approximation” type trick to find a replacement set, which is
described in Step 2.

Step 2: Find a compact replacement.
To find a compact replacement of C, the only one that we have to do is replace ε in Step 1 by

2−(s+1)ε with s ∈ N. Under this consideration, there will be a family (xi)
m(s)
i=1 such that

µn

(
X \

m(s)⋃
i=1

B(xi, 2
−sε
)
≤ 2−sε.

Therefore, we have µn(X \S) ≤ ε, where the set S is defined by

S :=

∞⋂
k=1

m(k)⋃
i=1

B(xi, 2−kε).
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Moreover, by construction, choosing ` large enough such that 2−` < δ, for some δ > 0 arbitrary
small, the set S can be covered by finitely many balls radius δ, i.e

B(xi, 2
−`ε) ⊂ B(xi, δ).

In addition, S is closed, as finite intersection of closed sets.
To conclude, since X is a complete metric space, it follows that S is compact, and (µn)n∈N is

tight, which makes our proof complete.

Having now the above nice tightness characterization in our machinery, we are ready to prove
one of the most important properties of Wasserstein space W2(X ) in the following proposition.

Theorem 4.2.10 (A fundamental property of W2(X )). Coniser that (X , d) is complete and sep-
arable metric space and (µn)n∈N ⊂P2(X ) be a sequence of probability measures with second finite
moments. Then, we have that

W2(µn, µ)→ 0 if and only if µn −→ µ in narrow sence.

Proof. We will start by proving the (⇒) implication.
Consider a sequence of probability measures (µn)n∈N ⊂P2(X ) such that W2(µn, µ)→ 0. Since X
is complete metric space, the sequence (µn)n∈N is also Cauchy, and therefore, thanks to Proposition
4.2.9 it is tight. Thus, there exists a subsequence (µnk)k∈N converging narrowly to some µ̃ ∈P2(X ).
Employing Proposition 3.2.7, we have

W2(µ, µ̃) ≤ lim inf
k→∞

W2(µ, µnk) = 0.

So, we infer that µ = µ̃, and thus, the whole sequence goes to µ. Shall we now use a constructive
byproduct of the 2-growth condition in order to prove the desired result. More precisely, for any
ε > 0, one can observe that there exists C > 0 such that for every a, b ≥ 0, it holds that

(a+ b)2 ≤ (1 + ε)a2 + Cb2. (4.6)

Combining (4.6) with classical triangle inequality of d, for every x0, x, y ∈ X , we have

d2(x0, x) ≤ (1 + ε)d2(x0, y) + Cd2(x, y). (4.7)

Now, let πn be the optimal transport plan between µn and µ. Integrating (4.7) with respect to the
measure πn and using the fact that π has marginal the measure µ, we have∫

X
d2(x0, x)dµn(x) ≤ (1− ε)

∫
X
d2(x0, y)dµ(y) + x

∫
X×X

d2(x, y)dπn(x, y).

Over and above, by our assumption, we have∫
X×X

d2(x, y)dπn(x, y) =W2
2 (µn, µ)→ 0, as n→∞,

and thusly,

lim sup
n→∞

∫
X
d2(x0, x)dµn(x) ≤ (1 + ε)

∫
X
d2(x0, x)dµ(x).

To conclude, letting ε→ 0, we obtain

lim sup
n→∞

∫
X
d2(x0, x)dµn(x) ≤

∫
X
d2(x0, x)dµ,
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and thanks to Proposition 4.2.7, we have that µn → µ in the narrow sense.
Now, let us prove the converse implication (⇐) .
Let us pick an optimal transport plan πn between µn and µ. We know that the sequence of transport
plans (πn)n∈N is tight, so up to subsequences, we assume that it narrow converges to some optimal
transport plan π By stability of optimality of optimal transport plans, given in Proposition 4.2.8,
we know that the limit optimal transport plan π is still optimal, so we obtain that∫

X×X
d2(x, y)dπ(x, y) = 0.

On the other hand, thanks to Proposition 4.2.7, and our assumption on (µn)n∈N and µ, we know
that (µn)n∈N is 2-uniformly integrable, thus thanks to 2-uniform integrability property which was
described in Property 4.2.6, (πn)n is also 2-uniformly integrable. Now, since the map (x, y) 7→
d2(x, y) has quadratic growth in X × X , we obtain

lim
n→∞

W2
2 (µn, µ) = lim

n→∞

∫
X×X

d2(x, y)dπn(x, y) =

∫
X×X

d2(x, y)dπ(x, y) = 0,

which proves our claim and concludes our proof.

The above fundamental property of Wasserstein space W2(X ) lead us to two very important
consequence, related with the topological structure of W2(X ). To be more accurate, on the one
hand it provides us with the continuity of W2, and on the other hand, it shows that if the base
space X is compact, then the Wasserstein space W2(X ) is also compact. Note, the later fact does
not hold in case of locally compactness of the base space X . Both of these facts are presented in
the following remarks.

Remark 4.2.11 (Continuity of W2). A standard corollary, coming from Proposition 4.2.10, is
that Wasserstein distance W2 is continuous. Precisely, by a standard application of the triangle
inequality, we can see that if (µn)n∈N, (νn)n∈N ∈P2(X ), such that µ→ µ and νn → ν, as n→∞
both in narrow sense, then we have

W2(µn, νn) −→W2(µ, ν), as n→∞.

Remark 4.2.12 (Compactness versus local compactness in W2(X )). Another interesting conse-
quence of Proposition4.2.10 is the fact that if X is compact, then the space W2(X ) is compact too,
since the convergence with respect to W2 is equivalent to narrow convergence.

On the other hand, if X is unbounded, then the space W2(X ) is not locally compact. In
particular, for any probability measure µ ∈ P2(X ) and any r > 0, the closed ball of radius equal
to r around µ is not compact. We can see this by means of a counterexample. Consider a sequence
(xn)n∈N ⊂ X and let us fix x ∈ X such that d(xn, x) → ∞. Now let us define the sequence of
probability measures (µn)n∈N ⊂P2(X ) by µn := (1− εn)µ+ εnδxn , where εn satisfies the relation
εnd

2(xn, x) = r2. Now, fixing (1− εn)µ, moving εnµ to x and moving εnδx into εxδxn , we can obtain
the bound

W2
2 (µn, µ) ≤ εn

(∫
X
d2(xn, x)dµ+ d2(xn, x)

)
,

and thus,
lim sup
n→∞

W 2
2 (µn, µ) ≤ r.

Then, we observe that

lim inf
n→∞

∫
X
d2(x, x)dµn = lim inf

n→∞
(1− εn)

∫
X
d2(x, x)dµ+ εnd

2(xn, x) =

∫
X
d2(x, x)dµ+ r2
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which shows that the 2-moments are not finite. So since the sequence (µn)n∈N convergences to µ
weakly, there is no local compactness.

The results of our investigation of properties Wasserstein spaces, at present, seems to be very
much delicated. More precisely, all of the above results have already undercover a nice behaviour
of Wasserstein spaces over complete a separable metric spaces. This fact leads us to pose another
related question about their topological structure: is a Wasserstein space over a complete and
separable metric space complete and separable metric space too? Luckily, the answer is positive.

Proposition 4.2.13. Consider that (X , d) is a complete and separable metric space. Then the
Wasserstein space W2(X ) = (P2(X ),W2) is also complete and separable metric space.

Proof. Thanks to Proposition 4.2.2, we can infer thatW2 is a metric on W2(X ), thus, with respect
to the metric structure of W2(X ), there is no concern. It remains to prove that W2(X) is separable
and complete space. We divide that proof into 2 steps.

Step 1: Separability
Since X is a separable space, there exists a dense sequence D ⊂ X , and moreover there exists a
family A of probability measures defined as

A =
{
µ ∈P2(X ) : µ =

N∑
i=1

aiδxi with xi ∈ D
}
.

We claim that A is dense in P2(X ). To prove such a claim, let ε > 0 and x0 ∈ D. Then if µ
belongs to P2(X ), there exist a compact set K ⊂ X such that∫

X \K
d2(x0, x)dµ ≤ ε2.

Under this consideration, we can cover K by finitely many balls B(xi, ε/2) for i = 1, · · · , n with
centers xi ∈ D, and then we can define

B′i = B(xi, ε)\
⋃
j<i

B(xj , ε).

By construction, all of the balls B′n are disjoint and they still cover the set K. Now, we define the
map f on X by

f(B′n ∩K) = {xn} and f(X \K) = {x0}.

Then, for any x ∈ K, we have that d(x, f(x)) < ε, and therefore, we can obtain∫
X
d2(x, f(x))dµ ≤ ε2

∫
K
dµ+

∫
X \K

d2(x0, x)dµ (4.8)

≤ ε2 + ε2 = 2ε2. (4.9)

Now, since (Id, f) is a transport plan of µ and f#µ, we have also that

W2(µ, f#µ) ≤ 2ε2

Moreover, f#µ can be rewritten as
∑N

i=1 aiδxi , thus µ can be approximated by a finite combination
of Dirac measures. The only thing left to prove is that the coefficients ai can be replaced by rational
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coefficients. To prove this, we will employ a total variation bound, the spirit of which was described
in Proposition 4.2.4. More precisely, according to total variation bound, we have

W2

( N∑
i=1

aiδxi ,
N∑
i=1

biδxi
)
≤ 21/2 ·

(
max
k,`∈N

d(xk, x`)
) N∑
i=1

|ai − bi|1/2.

Therefore, since the last term in above expression can be as much small as we want, we can replace
coefficients by rational ones, and this fact makes the proof of separability complete.

Step 2: Completeness
To prove completeness, we consider a Cauchy sequence (µn)n∈N ⊂ P2(X ). Since X is complete
metric space, (µn)n∈N is convergent, so thanks to Proposition 4.2.9, it is tight. Hence, thanks to
Proposition 3.2.4 (Prokhorov’s theorem), it admits a subsequence (µnk)k∈N, which converges to
some measure µ. Moreover, we have that∫

X
d2(x0, x)dµ ≤ lim inf

k→∞

∫
X
d2(x0, x)dµnk <∞,

and thus, µ belongs to P2(X ). In addition, thanks to the lower semicontinuity of W2 (Proposition
4.2.8) and up to a further subsequence (µnk` )`∈N we have

W2(µ, µnk` ) ≤ lim inf
k→∞

W2(µnk , µnk` )

and more precisely,
lim sup
`→∞

W2(µ, µnk` ) ≤ lim sup
k,`→∞

W2(µnk , µnk` ) = 0.

From this fact we infer that the subsequence (µnk` )`∈N converges to µ in W2(X ). To conclude,
since (µn)n∈N is Cauchy converging subsequence in W2(X ), by a standard analytical argument, we
infer that it converges in W2(X ). This fact proves completeness, and moreover, makes our proof
complete.

4.3 Geodesics in Wasserstein spaces

In the previous section, taking under consideration the metric nature and the topological properties
of a base space X , we saw that the Wasserstein space W2(X ) over the corresponding base space,
seems to have a very similar and nice behaviour with its base space. Under this perspective,
the following question arises: what about geometrical nature of notions like length, geodesics and
convexity in Wasserstein spaces?

In this section, we will gently present a study of the geometry of Wasserstein spaces. For that
reason, we will assume that in what will follows, the base space (X , d) is a complete, separable,
metric and geodesic space. Having this assumption as a starting point, we will explore many impor-
tant geometrical properties of Wasserstein space, which, as we have already mentioned, essentially
depends on the geodesic assumptions on its base space.

Let us start this discussion by means of an example. We recall that if x ∈ X , the map
x 7→ δx ∈ P2(X ) is an isometry. Therefore, if t 7→ πt is a constant speed geodesic connecting x
and y, the curve t 7→ δπt is a constant speed geodesic on P2(X ) which connects δx to δy. The
important thing to notice here is that the natural way to interpolate between δx and δy is given by
this -so called- displacement interpolation or McCann’s interpolation (see McCann (1997)), a very
important result which came in the mid 90s. Conversely, let us observe that the classical linear
interpolation

t 7→ µt := (1− t)δx + tδy
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generates a curve with infinite length(!) as soon as x 6= y, (since W2(µs, µt) = |t − s|1/2d(x, y)),
and for this reason is unnatural to work with this in such a setting.

But, could we have a desirable characterization of constant speed geodesics in Wasserstein space
in terms of transport plans?. Favourably, the answer is positive, but in order to prove such a result,
we need the following lemma, which stands as a closed graph argument. Its proof is omitted since
is constructed by straightforward arguments.

Lemma 4.3.1. Consider that (X , d) is a complete and separable geodesic metric space. Then the
multivalued map G : X × X → G (X ) which associates each pair (x, y) to the set G(x, y) of the
constant speed geodesic connecting x and y has closed graph.

Proposition 4.3.2. Consider that (X , d) is complete and separable geodesic metric space. Then
the following are equivalent:

(i) the map t 7→ µt ∈P2(X ) is a constant speed geodesic

(ii) There exists a measure µ ∈P2(G (X )) such that the measure (e0, e1)#µ is a optimal transport
plan between µ0 and µ1 and

µt = (et)#µ.

Proof. This proof is highly constructive and combines several important results. We will present a
skerch of it.
(ii)⇒ (i) : We choose µ(0), µ(1) ∈P2(X ) and we find an optimal transport plan γ between them.
By Lemma 4.3.1 and thanks to classical measurable selection theorems (see for details Aliprantis
& Border (2006) and Kechris (2012)), we know that there exists a Borel map Gs : X ×X → G (X )
such that for every x, y ∈ X the curve Gs(x, y) is a constant speed geodesic connecting x to y. We
define the Borel probability measure µ ∈P(G (X )) by

µ := Gs#γ,

and, using the evaluation maps, we define the measures µt ∈P(X ) by µt := (et)#µ.
Our claim is that the map t 7→ µt is a constant speed geodesic connecting µ(0) to µ(1). To see this,

we consider the map (e0, e1) : G (X )→ X ×X and we observe that since (e0, e1)
(
Gs(x, y)

)
= (x, y),

we obtain
(e0, e1)#µ = γ.

Moreover, we have that µ0 = (e0)#µ = (p1)#γ = µ(0), and in the same fashion, µ1 = µ(1). Thus,
the curve t 7→ µt connects µ(0) to µ(1). In addition, for s < t we have that

W2
2 (µt, µs) ≤

∫
X×X

d2
(
et(γ)es(γ)

)
dµ(γ)

= (t− s)2

∫
X×X

d2
(
e0(γ), e1(γ)

)
dµ(γ)

= (t− s)2

∫
X×X

d2(x, y)dγ(x, y)

= (t− s)2W2
2 (µ(0), µ(1)),

which proves that the measures µt have finite second moment and (µt) is a constant speed geodesic.
Therefore, our claim is proved.
(i) ⇒ (ii) : For n ≥ 0, we use iteratively the Gluing lemma given by Proposition 4.2.1 and the
Borel map Gs : X × X → G (X ) to construct a measures µn ∈P

(
C([0, 1]),X )

)
such that

(ei/2n , (e(i+1)/2n)#µ
n
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is an optimal transport plan between µi/2n and µ(i+1)/2n , for every i = 0, · · · 2n − 1, and µn-a.e. γ
be a geodesic in intervals [i/2n, (i + 1)/2n], for i = 0, · · · 2n − 1. Then, we fix a n ≥ 0 and observe
that for any 0 ≤ j ≤ k ≤ 2n it holds that

‖d(ej/2n , ek/2n)‖L2(µn) ≤
∥∥∥∥ k−1∑
i=j

d(ei/2n , e(i+1)/2n)

∥∥∥∥
L2(µn)

≤
k−1∑
i=j

‖d(ei/2n , e(i+1)/2n)‖L2(µn)(4.10)

=
k−1∑
i=j

W2(µi/2n , µ(i+1)/2n =W2(µj/2n , µk/2n). (4.11)

Thus, we have that (ej/2n , ek/2n)#µ
n is an optimal transport plan between µj/2n and µk/2n , for

0 ≤ j ≤ k ≤ 2n. Note also that since the inequalities given by (4.10) are equalities, we infer that
for µn-a.e. γ the points γi/2n , for i = 0, · · · , 2n, must lie along a geodesic and satisfy

d(γi/2n , γ(i+1)/2n = d(γ0, γ1)/2n), for i = 0, · · · , 2n − 1.

Hence, γ is a constant speed geodesic µn-a.e. and thus µn ∈P(G (X )). We assume now that mun

converges in narrow sense, up to a subsequence, to some µ ∈ P(G (X )). Then, by the continuity
of evaluation maps et we have that for any t ∈ [0, 1], the sequence

(
(et)#µ

n
)
n

converges in narrow
sense to (et)#µ. Combining this fact with the uniform bound which was given by (4.3), we have
that

µt = (et)#µ.

Therefore, now we have to prove that some subsequence has a narrow limit. We will prove it
by showing that µn ∈ P2(G (X)) for every n ∈ N and that subsequence is Cauchy sequence in
W2(G (X )), and then thanks to Proposition 4.2.7, we obtain the desired result.

Thanks to Theorem 3.2.4 (Prokorov’s theorem), we know that the set of transport plans in tight.
Moreover, thanks to 2-uniform integrability and convergence properties in Wasserstein spaces, we
have that for every n ∈ N the set of plans α ∈P2(X 2n+1) such that

(pi)#α = µi/2n , for i = 0, · · · , 2n

is compact in P2(X 2n+1). Thus, employing a diagonal argument, we pass to a subsequence, and
then assume that for every n ∈ N the sequence( 2n∏

i=0

(ei/2n)#µ
m

)
m∈N

converges to some transport plan with respect to W2 defined on X 2n+1. Fixing now n ∈ N, we
notice that for t ∈ [i/2n, (i+ 1)/2n] and γ, γ̃ ∈ G (X ) it holds that

d(γt, γ̃t) ≤ d(γi/2n , γ̃(i+1)/2n) +
1

2n
(
d(γ0, γ1) + d(γ̃0, γ̃1)

)
.

So, squaring and taking supremum over t ∈ [0, 1], we obtain

sup
t∈[0,1]

d2(γt, γ̃t) ≤ 2

2n−1∑
i=0

d2(γi/2n , γ̃(i+1)/2n) +
1

2n−2

(
d2(γ0, γ1) + d2(γ̃, γ̃1)

)
. (4.12)

Now, choosing γ̃ to be a constant speed geodesic and using the estimate (4.3), we get that µm ∈
P2(G (X )) for every µ ∈ N. Then, for any given ν, ν̃ ∈ P(G (X )), due to Gluing lemma (Lemma
4.2.1), for Y = G (X ) and Z = X 2n+1 we can find a plan β ∈P(G (X )× G (X )) such that

(p1)#β = ν and (p2)#β = ν̃
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and the measure ((
e0, · · · , ei/2n , · · · , e1

)
◦
(
e0, · · · , ei/2n , · · · , e1

)
◦ p2

)
#

β

is a optimal transport plan between
∏2n

i=0(ei/2n)#ν and
∏2n

i=0(ei/2n)#ν̃, where optimality stands
with respect toW2 defined on P2(X 2n+1). Now, using β to bound from above the distanceW2(ν, ν̃)
and thanks to the bound given by (4.12), we obtain that for every pair of measures ν, ν̃ ∈P2(G (X ))
it holds

W2
2 (ν, ν̃) ≤ 2W2

2

( 2n∏
i=0

(ei/2n)#ν,
2n∏
i=0

(ei/2n)#ν̃

)
+

1

2n − 2

(∫
X×X

d2(γ0, γ1)dν(γ)+

∫
X×X

d2(γ̃0, γ̃1)dν(γ̃)

)
.

Plugging ν = µm and ν̃ = µm and recalling that

W2
2

( 2n∏
i=0

(ei/2n)#µ
m,

2n∏
i=0

(ei/2n)#µ
m′
)
−→ 0, as m,m′ →∞.

Thus, for every n ∈ N, we get

lim sup
m,m′→∞

W2(µm,µm
′
) ≤ 1

2n − 2

(∫
X×X

d2(γ0, γ1)dµm(γ) +

∫
X×X

d2(γ̃0, γ̃1)dµm(γ̃)

)
=

1

2n−3
W2(µ0, µ1).

Letting n go to infinity, we obtain that (µm) ⊂ P(G (X )) is Cauchy, and the desired result
follows.

So, since now we have and general and quite abstract characterization of constant speed
geodesics in Wasserstein spaces. One might ask how this characterization can be reduced, in
classical base space settings, like Hilbert spaces. Reducing such a result to Hilbert space setting,
we can infer several nice phenomena, which are presented in the following remark.

Remark 4.3.3 (Constant speed geodesics in Hilbert space as base space). Consider that X is a
Hilbert space. Then for every x, y ∈ X there exists only one constant speed geodesic connecting
x to y, that is the curve t 7→ (1− t)x+ ty. Therefore, Proposition 4.3.2 reads as follows: the map
t 7→ µt is a constant speed geodesic if and only if there exists an optimal transport plan γ between
µ0 and µ1 such that

µt =
(
(1− t)p1 + p2

)
#
γ. (4.13)

If also γ is induced by a transport map T , the equation (4.13) becomes the classical interpolation

µt =
(
(1− t)Id + tT

)
#
µ0.

The above proof, except of its elegant consequences in simpler settings, such Hilbert spaces,
make us able to prove a very desired result. Accurately, based on such constructions, we can prove
that Wasserstein spaces enjoy several properties related to geometric features of their base space.
Precisely, we have the following result.

Theorem 4.3.4 (If X is a geodesic space, W2(X ) is too.). Let (X , d) be a complete separable and
geodesic metric space. Then the space W2(X ) is also geodesic space.

Proof. Since we have done the dirty work in the second part of Proposition 4.3.2, it is possible to
infer that if x, y ∈ X and a geodesic (µt)t∈[0,1] connecting δx to δy, using very similar arguments
we can construct a measure µ ∈P(G (X )) such that

µt = (et)#µ.

Then, every γ ∈ supp(µ) is a geodesic connecting x to y, and the desired result follows.
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4.4 Dynamical formulation and Riemannian structure

At this point, let us observe one important fact of optimal transport problems. In the previous
chapter, the formulation of optimal transport problem was developed in static framework. This
means that, under our previous perspective, the whole transportation process was depending only
on the optimal transport plan. Once we have fully understood the optimal transport plan, the
only one to have to do someone is to move points from initial position to their final one through
optimal transport map. But, what about the dynamic formulation of optimal transport problems?
Perhaps, all of these investigations have as starting point the seminal paper of J. D. Benamou and
Y. Brenier (see Benamou & Brenier (2000)), and nowadays consists a quite active research field.

To make the discussion more concrete, as is widely know in several situations with dynamic
modelling issues (like fluid mechanics), it is classical to consider two different but complementary
ways to study motion phenomena, that is Lagrangian and Eulerian.

Under the Lagrangian point of view, we see the motion of cloud of particles (or some fluid) as a
parcel, which moves in space and time. Then, we study at every time frame and every parcel, what
happens to that parcel. In other words, given two different times, t = 0 and t = 1, the motion of
a particle from a position x to a position y is characterized by its initial and final position. Under
this perspective, this descriptions resembles to the optimal transport problem, where the transport
plan is nothing more but a probability measure on these pairs (x, y). Thusly, the form of optimal
transport problem, which we have already seen, is stated in Lagrangian spirit.

On the contrary, the Eulerian point of view, studying the behaviour of a cloud of particles (of
some fluid), we are interested about what happens at every time t and every location x, describing
quantities like velocity, density of rate of flow at each time and each point. So, in this context,
the dynamical modelling of a cloud of particles (or some fluid) could be started by considering the
density of them %(t, x) and the velocity vt(x) of each of particle at time t. In this spirit, one can
write the equations which are satisfied by the density of the cloud of particles according to the
velocity field v. This task, that we prescribe the initial density %0 and that the position of particle
initially originated at point x will be obtained by the solution of the following ordinary differential
equation:

y′x(t) = vt(yx(t))

yx(0) = x.

We can define the flow map Yt(x) := yx(t) and then look for a measure %t := (Yt)#%0. Under this
persepective, we expect that the pair (%t, vt) will solve the continuity equation, that is

d

dt
%t +∇ · (%tvt) = 0.

So, under these considerations, we can understand that the continuity equation describes the link
between the evolution of density %t and the instantaneous velocity vt of every point of x. With
this fact in our mind, it is natural to think the velocity field vt as the infinitesimal variation of
continuum %t.

We shall now present the connection between the above discussion and Wasserstein spaces.
For that reason, we consider that X = Rd and (µt)t∈[0,1] ⊂ P2(Rd), is a constant speed geodesic
induced by some optimal transport map T , which means that it has the form

µt :=
(
(1− t)Id + tT

)
#
µ0.

Now, taking a test function φ ∈ C∞c (Rd) and employing integration by parts, we can arrive to

d

dt

∫
X
φdµt =

d

dt

∫
X
φ
(
(1− t)Id + tT

)
dµ0 =

∫
X
〈∇φ

(
(1− t)Id + tT

)
,T − Id〉dµ0 =

∫
X
〈∇φ, vt〉dµt,
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which means that (µt)t∈[0,1] satisfies the continuity equation

d

dt
µt +∇ · (vtµt) = 0,

with vt := (T − Id) ◦ ((1− t)Id + tT )−1 for every t ∈ [0, 1], in sense of distributions.
From this point of view, one might expect that the curves in Wasserstein space W2(Rd) (or

perhaps with a different base space like a separable Hilbert space or a Riemannian manifold), are
somehow linked with the solution of the continuity equation. Luckily, this expectation is true,
and moreover, this connection can provide us a generic characterization of absolutely continuous
curves in Wasserstein space, which is has been done by L. Ambrosio, N. Gigli and G. Savaré (see
L. Ambrosio et al. (2008)) and independently by S. Lisini (see Lisini (2007)) employing different
arguments. This characterization is presented in the following proposition. Note that, for sake of
simplicity, we consider as a base space the Euclidean one, following the presentation of the survey
of Brasco (2012).

Proposition 4.4.1 (Ambrosio, Gigli, Savaré). Consider a curve (µt)∈[0,1] ⊂W2(Rd) satisfying the
continuity equation

d

dt
µt +∇ · (vtµt) = 0 in Rd × (0, 1)

in sense of distributions, for some Borel vector field vt : [0, 1]× Rd → Rd with ‖vt‖L2(µt) ∈ L2(µt),
then (µt)t∈[0,1] is an absolutely continuous curve and

|µ′|(t) ≤‖vt‖L2(µt).

Conversely, if (µt)t∈[0,1] is a absolutely continuous curve with |µ′| ∈ L2(µt) be its metric derivative.

Then there exists Borel vector fields vt(x) : [0, 1]×Rd → Rd such that vt ∈ L2(µt) with ‖vt‖L2(µt) ≤
|µ′|(t) for a.e. t ∈ [0, 1].

Proof. (⇒) Let us start heuristically, by observing the following fact: since there is not regularity
assumption of the curve µt, based on the method of characteristics (see L. Ambrosio et al. (2008),
Chapter 8), it would be of the form (Xt)#µ0, where Xt is the flow map of vt, that is

X ′t(x) = vt(Xt(x))

X0(x) = x.

The, fixing s, t ∈ [0, 1], we can estimate the quantity W2(µs, µt), using the transport plan πst :=
(Xs ×Xt)#µ0 by

W2
2 (µs, µt) ≤

∫
Rd
|Xs(x)−Xt(x)|2dµ0(x).

Moreover, we observe that

Xt(x)−Xs(x) =

∫ t

s
X ′rdr =

∫ t

s
vr
(
Xr(x)

)
dr,

and using Cauchy-Schwartz and Jensen inequalities, we arrive to

W 2
2 (µt, µs) ≤ |t− s|

∫
Rd

∫ t

s
|vr
(
Xr(s)

)
|2drdµ0(x). (4.14)

At this point, if we could interchanging the above integrals (which we actually can) and using the
definition of push-forward measure, we could obtain

W2
2 (µt, µs)

|t− s|2
≤ 1

|s− t|

∫ t

s

∫
Rd
|vr(x)|2dµr(x)dr.
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Then taking the limit as s→ t, we would obtain the desired result. So far, this was a very heuristic
argument.

In general, we do not hav the Lipschitz property, so we have to restart from a regularization
argument. To do this, we consider µεt := µt ∗ ρε and φεt := (vtµt) ∗ ρε, where ρε is the convolution
kernel supported in the whole Rd. Then, we can see that µεt solves the continuity equation with
the smooth velocity field vεt implicitly defined by φεt := vεtµ

ε
t. Under this perspective, we have that

µεt = (Xε
t )#µ

ε
0 where Xε

t is the flow map of vεt and all of above calculations are justified.

Then, rewriting the right-hand side of (4.14), we obtain∫ t

s

∫
Rd
|vεt |2dµεtdr =

∫ t

s

∫
Rd

∣∣∣φεr(x)

φεr(x)

∣∣∣µεr(x)dxdr.

In addition, we observe that the map (µ, φ) 7→ |φ|µ is convex, both for µ and φ, so again employing
a Jensen-inequality argument, we obtain∫

Rd

∣∣∣φεr(x)

µεr(x)

∣∣∣2µεr(x)dx ≤
∫
Rd

∣∣∣dφr
dµr

(x)
∣∣∣2dµr(x)

From this fact, we conclude that

W2
2 (µεs, µ

ε
t)

|t− s|2
≤ 1

|t− s|

∫
[s,t]×Rd

∣∣∣dφr
dµr

(x)
∣∣∣2dµr(x)dr =

1

|t− s|

∫ t

s

∫
Rd
|vr(x)|2dµr(x)dr.

To conclude, using the lower semicontinuity property of W2 (Proposition 4.2.8) and letting ε→ 0,
the desired result follows.

(⇐) To prove this part is a bit more tricky. A detailed treatment of its can be found in
L. Ambrosio et al. (2008). We will present a sketch of a constructive idea which was presented
in Lisini (2007). Given an absolutely continuous curve (µt)t∈[0,1] ⊂ W2(Rd), we can always find a

probability measure Q ⊂P2(AC2((0, 1);Rd) such that µt = (et)#Q, where et is the evaluation map
at time t, satisfying et(σ) = σ(t) for any continuous curve σ : [0, 1] → Rd. Intuitively, this means
that we can understand absolutely continuous curves in W2(Rd) as a superposition of absolutely
continuous curves of their base space Rd.

In particular, these curves could be chosen is such a way, that we can control their 2-moment
velocities with their metric derivatives with respect to W2, or more precisely, we can construct a
probability measure Q ⊂P2(AC2((0, 1);Rd) which satisfies(∫

AC2((0,1);Rd)
|σ′(t)|2dQ(σ)

)1/2

≤ |µ′t|, for t ∈ [0, 1]. (4.15)

The proof of such a claim is quite long and technical. Nevertheless, the underlying idea is quite
concrete and its briefly described in the following.

We consider a partition 0 = t0 ≤ t1 ≤ · · · ≤ tk+1 ≤ 1 of [0, 1] and we discretize the curve
(µt)t∈[0,1] by considering the measures {µt0 , · · · , µtk+1

}. For any 0 ≤ i ≤ k + 1, we interpolate
between µti and µti+1 using an optimal transport plan γi,i+1. By this procedure, we construct a
measure which is concentrated on linear curves (the so-called transport rays) and parametrized
on [ti, ti+1]. Then, ”gluing” together all of these measures, we end up to a probability measure
Qk ⊂ P2(AC2((0, 1);Rd), which is concentrated on piecewise linear curves and satisfying (4.15).
Moreover, by choosing a dyadic partition and taking the limit as k →∞, we can proof a tightness-
type property of the sequence (Qk)k∈N.
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So, once we have this construction in our toolbox, we can consider the disintegration of Q with
respect to evaluation map et, concluding to the fact that

Q =

∫ 1

0
Qtxdµt,

where Qtx stands for a Borel probability measure concentrated on the fiber e−1
t ({x}) = {σ : σ(t) =

x}. Then, we can construct the desired vector field vt as the average of velocities of curves corre-
sponding to Q, that is

vt(x) :=

∫
{σ:σ(t)=x}

σ′(x)dQ(σ).

Under this perspective, we can show that (µt, vt) solves the continuity equation, and thanks to
(4.15), we have that vt ∈ Lp(Rd;µt) and ‖vt‖Lp(Rd;µt) ≤ |µ

′
t|, which makes the sketch of our proof

complete.

The above result can be (almost) easily extended to any separable Hilbert space (see L. Ambrosio
et al. (2008)), and using Nash’s emdedding theorem, it can be (alsmost) tough extended to a
Riemannian manifold setting (see Ambrosio L., Gigli N. (2013) for a skerch of proof).

Moreover, the above characterization is very important for many reasons and it has consequences
in many different situations. Let us mention three of them.

Firstly, resembling the Riemannian manifold setting, the above characterization of curves in
Wasserstein space through continuity equation strongly suggest that the scalar product in L2(µ)
should essentially be considered as the metric tensor in the Wasserstein space over that Riemmanian
manifold at point µ. Secondly, since there is no-regularity assumption on (µt)t∈[0,1], the link of
continuity equation seems to be very powerful in order to treat several PDEs, by taking the following
program: translate a curve in Wasserstein space into a PDE and then employ modern PDE methods,
like viscosity solutions (see e.g. Gangbo et al. (2008)), to study them. Thirdly, based on this
characterization, one can (almost) directly obtain, the famous Benamou-Brenier formula, as a
standard corollary3 Following the latter reasoning, we present the Benamou-Brenier formula in the
following.

Corollary 4.4.2 (Benamou-Brenier). Consider two probability measures ν, ν ′ ∈ W2(Rd). Then it
holds that

W2(ν, ν ′) = inf

{∫ 1

0
‖vt‖L2(µt)dt

}
, (4.16)

where the infimum is taken over the distributional solutions of the continuity equation (µt, vt) such
that ν = µ0 and ν ′ = µ1

Proof. Let (µt, vt) be a solution of continuity equation. If
∫ 1

0 ‖vt‖L2(µt) = +∞ and proposition
becomes trivial.

In other cases, we apply the first part of Proposition 4.4.1 to obtain an absolutely continuous
curve (µt)t∈[0,1] ⊂P2(Rd), and thus, we can arrive to

W2(ν, ν ′) ≤
∫ 1

0
|µ′t|dt ≤

∫ 1

0
‖vt‖L2(µt)dt.

Therefore, our proof will be complete if we prove the converse inequality. To do this, it suffices
to consider a constant speed geodesic (µt)t∈[0,1] connecting ν to ν ′, and applying the first part of

3We have to emphasize that Benamou-Brenier formula was a pre-existing result than Ambrosio, Gigli, Savaré’s
characterization. Although, it can be achieved as chic corollary using the characterization of absolute continuous
curves through continuity equation.
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Proposition 4.4.1. From this, we obtain the existence of vector fields vt such that the continuity
equations is satisfied and

‖vt‖L2(µt) ≤ |µ
′
t| =W2(ν, ν ′), a.e. t ∈ [0, 1].

Thus, we have that

W2(µ0, µ1) ≥
∫ 1

0
‖vt‖L2(µt)dt. (4.17)

Combining (4.16) and (4.17), the desired result follows.

Based on the dynamical formulation of optimal transport problem, let us turn now our attention
to another important phenomenon. According to above discussion, one can also observe that, in
general, given an absolutely continuous curve (µt)t∈[0,1] ∈ W2(Rd), there is no unique choice of
vector field (vt) such that the continuity equation is satisfied. Such a non-uniqueness can be easily
seen by the fact that if the continuity equation holds true and (wt) is a Borel family of vector fields
such that

∇ · (wt, µt) = 0, a.e. t ∈ [0, 1].

then the continuity equation is also satisfied with vector fields (vt+wt)t. A natural question arising
from this observation is whether there exists a ”way”, in some sense, to associate uniquely a family
of vector fields to a given absolutely continuous curve. To answer such a question, we can follow
two, different but equivalent strategies.

The first strategy, having an algebraic essence, traces the roots from the fact that the distri-
butional solutions of the continuity equation, act only on the gradient of smooth functions and
suggests that the family of vt should be taken in the set of gradients. Making this fact more
rigorous, we can see that vt should live in

{∇φ : φ ∈ C∞c (Rd)}
L2(µt)

for a.e. t ∈ [0, 1].

The second strategy, has a variational essence, and is based on the observation that the continuity
equation is linear in vt and the L2-norm is strictly convex. This fact implies that there exists a
unique family of vector fields vt ∈ L2(µt), for a.e. t ∈ [0, 1], among the vector fields compatible
with the absolutely continuous curve µt via the continuity equation. In other words, for any other
vector field ṽt, compatible with the curve µt in sense the that the continuity equation is satisfied,
it holds that

‖ṽt‖L2(µt) ≥‖vt‖L2(µt), for a.e. t ∈ [0, 1].

Then, it is not hard to verify that vt has the minimal norm if and only if lives in the set{
v ∈ L2(µt) :

∫
〈v, w〉dµt = 0 : for any w ∈ L2(µt) with ∇ · (wµt) = 0

}
.

These two strategies motivate the definition of tangent space for some probability measure in
P2(Rd).

Definition 4.4.3 (Tangent space). Let µ ∈P2(Rd). We define the tangent space Tanµ P2(Rd) of
P2(Rd) in µ as

TanµP2((Rd) := {∇φ : φ ∈ C∞c (Rd)}
L2(µt)

=

{
v ∈ L2(µt) :

∫
Rd
〈v, w〉dµt = 0 : for any w ∈ L2(µt) with ∇ · (wµt) = 0

}
.
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Based on this definition of the tangent space of P2(Rd), and since it is defined as a closed subset
of L2(µt), we can see that it is endowed with a scalar product on L2(µ). Although, working on the
space W2(Rd), we can realize that we cannot define an exponential map from a neighbourhood of
Tanµ P2(Rd) into P2(Rd) which is an homeomorphism, and therefore, the space W2(Rd), is not a
Riemannian manifold. All of these facts resembles a Riemannian flavor of Wasserstein spaces. So,
standing on geometric features and analogies with Riemannian case (see Carrillo et al. (2006)), we
could say that the characterization of curves given in Proposition 4.4.1, is the core component of
the so-called Riemannian structure of W2(Rd). Perhaps, the most appropriate analogy is that the
Wasserstein metric is the Riemannian metric induced by the tangent bundle, and its inner product
is defined as above. This fact was noticed at first by J.D. Benamou and Y. Brenier (see Benamou
& Brenier (2000) ) in Euclidean space setting and its related with the Benamou-Brenier formula,
which we have already discussed. More general Riemannian analogies have been introduced by F.
Otto (see Otto (2001)).

For completeness reasons, based on the above characterizations, let us present, without proof,
some important results related with Wasserstein distances, which will add some extra hints about
the Riemannian structure of Wasserstein spaces. Its proof can be found in L. Ambrosio et al.
(2008).

Proposition 4.4.4. Consider that (µt)t∈[0,1], (νt)t∈[0,1] ⊂W2(Rd) are defined as Proposition 1.2.2

and ν ∈W2(Rd). Then:

(i) vt can be recovered by infinitesimal displacements, that is, if T st is the optimal transport map
from µt to µs, then it holds

vt = lim
s→t

T st − Id

s− t
, for a.e. t ∈ [0, 1].

(ii) we have ”displacement tangency”, that is,

lim
h→0

W2(µt+h, (Id + hvt)#µt)

h
= 0

(iii) the derivative of squere Wasserstein distance has the form

d

dt
W2

2 (µt, ν) = −2

∫
Rd
〈ut, Tt − Id〉dµt,

where Tt is the optimal transport map between µt and ν.



CHAPTER 5

Gradient flows in metric spaces

“Problems worthy of attack prove their worth by
fighting back”

— Paul Erdös,
Hungarian mathematician (1913-1996)

In this chapter we present the last scene our exploration, which was essentially the goal of this
thesis: gradient flows in metric spaces. Having as starting point the metric variational characteri-
zations as well as the approximation ideas of Minimizing movements scheme, which were described
in Chapter 1 and employing the theory of curves in metric spaces, we will explore the gradient
flows in metric space setting. Moreover, we will present four groups of assumptions, which will
make us able to recast many important results, such as existence, uniqueness and contractivity. All
of our results can be found in the bible of gradient flows of L. Ambrosio, N. Gigli and G. Savare
(L. Ambrosio et al. (2008)) or in the very well-written lectures notes of L. Ambrogio and N. Gigli
(Ambrosio L., Gigli N. (2013)) and the expository paper of F. Santambrogio (?), in detail. Let us
mention the following disclaimer: during this chapter, for simplicity, for a given u ∈ X , shall we
denote as ut, the dependence of u on variable t. This will not be true for geodesics and constant
speed geodesics, where their variable dependence will still be denoted as γ(t).

5.1 Metric characterizations-revisited

As it was presented in Section 1.4, living in Euclidean space, we were able to prove three im-
portant metric variational characterizations of gradient flows, that is Energy Dissipation Equality
(EDE), Energy Dissipation Inequality (EDI) and Evolution Variational Inequality (EVI). All of
these characterizations had provide us interesting features related with the nature of gradient flows
in Euclidean space, where we just ask only λ-convexity and smoothness assumptions of functional
φ. So, one may ask can we recast all of these characterizations in metric setting, in order to extend
the notion of gradient flows?

At first glance, the answer might be negative, since they involved the differential structure
of Euclidean space, which actually lies to its vector nature. Nevertheless, under the light of the
discussion which was presented in Chapter 2, and based on quite weak and reasonable assumptions,
we are able to recast differentiability notions in metric space setting, like metric derivative and
metric slope. Thus, having the theory of curves in metric spaces in our toolbox, naively, it seems

85



86 CHAPTER 5. GRADIENT FLOWS IN METRIC SPACES

to be possible to explore all of these metric variational characterizations in metric setting, instead
of the classical vector space setting which we have already discussed. So, under this considerations,
and based to these variational characterizations, let us present three notions of gradient flows
beyond vectorial setting.

Definition 5.1.1 (Gradient flow-Energy Dissipation Inequality sense). Consider that (X , d) is a
metric space, φ : X → R ∪ {+∞} is a functional and u ∈ X such that φ(u) < ∞. Then, we will
say that ut ∈ ACloc((0,∞);X ) is a gradient flow, in Energy Dissipation Inequality (EDI) sense,
starting at u with u0 = u and

φ(us) +
1

2

∫ s

0
|u′r|2dr +

1

2

∫ s

0
|∇φ(ur)|2dr ≤ φ(u), for every s ≥ 0 (5.1)

φ(us) +
1

2

∫ s

t
|u′r|2dr +

1

2

∫ t

s
|∇φ(ur)|2dr ≤ φ(ut), a.e. t > 0, and for every s ≥ t. (5.2)

Definition 5.1.2 (Gradient flow-Energy dissipation equality sense). Consider that (X , d) is a
metric space, φ : X → R ∪ {+∞} is a functional and u ∈ X such that φ(u) < ∞. Then, we will
say that ut ∈ ACloc((0,∞);X ) is a gradient flow, in Energy Dissipation Equality (EDE) sense, at
u with u0 = u and

φ(us) +
1

2

∫ s

t
|u′r|2dr +

1

2

∫ t

s
|∇φ(ur)|2dr = φ(ut), for every t ∈ [0, s].

Definition 5.1.3 (Gradient flow-Evolution variational inequality sense). Consider that (X , d) is
a metric space, φ : X → R ∪ {+∞} is a functional and u ∈ X such that φ(u) <∞. Then, we will
say that ut ∈ ACloc((0,∞);X ) is a gradient flow, in Evolution Variational Inequality (EVI) sense,
with respect λ, starting at u, where ut → u as t→ 0 and

φ(ut) +
1

2

d

dt
d2(ut, y) +

λ

2
d2(ut, v) ≤ φ(v), for every v ∈ X and a.e. t > 0.

We have seen that all of these characterizations are equivalent in a linear environment for λ-
convex functionals. An interesting question arising from this observation is: is that also true in
metric space setting? Unfortunately, the answer is negative. In particular, we have the follow-
ing implication: Energy Dissipation equality implies Energy dissipation Inequality, and Evolution
Variational inequality implies Energy Dissipation equality. Although, none of above converse im-
plications is true. We will see a specific pathological case in Example 5.2.9). Before of exploring
these converse implications, let us present the latter implication of these notions of gradient flows
in the following proposition.

Proposition 5.1.4 (From EVI to EDE). Consider that (X , d) is a metric space and φ : X →
R ∪ {+∞} is a lower semicontinuous functional. Given a point u ∈ X and λ ∈ R, we assume that
ut ∈ ACloc((0,∞);X ) is a gradient flow in Evolutional Variational Inequality (EVI) sense starting
at point u. Then it holds

φ(us) +
1

2

∫ s

t
|u′r|dr +

1

2

∫ t

s
|∇φ(ur)|2dr = φ(ut), for 0 ≤ t ≤ s.

Proof. For simplicity, let us assume that ut ∈ ACloc((0,∞);X ) is locally Lipschitz. Given this,
the statement of the proposition will be proved if we prove that the map t 7→ φ(ut) is also locally
Lipschitz and it holds that

− d

dt
φ(ut) =

1

2
|u′t|2 +

1

2
|∇φ(ut)|2, a.e. for t > 0. (5.3)
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Note, that the assumption that ut is locally Lipschitz is not implausible. Let us sketch the argument
of the proof of this statement. At first, one can observe that the map t 7→ ut+h is a gradient
flow in Evolutional Variational Inequality sense, starting from uh for some h > 0. Now, thanks
to Corollary 4.3.3. of L. Ambrosio et al. (2008), the distance between these curves, satisfying
Evolutional Variational Inequality, is contractive up to an exponential factor. Thus we have

d(us, us+h) ≤ eλ(s−t)d(ut, ut+h), for every s > t and for some λ ∈ R. (5.4)

Now, calling B ⊂ (0,∞), the set where the metric derivative of |u′t| exists, dividing (5.4) by h,
letting h travel to zero, we obtain

|u′s| ≤ |u′t|eλ(s−t), for every s, t ∈ B with s > t,

from which we infer that ut is Lipschitz in (0,∞).
Back to the proof of the statement of the proposition, one can observe that thanks to the

triangle inequality, we obtain

1

2

d

dt
d2(ut, v) ≥ −|u′t|d(ut, v), for every v ∈ X and a.e. t > 0. (5.5)

Plugging the bound given in (5.5) in the Evolution Variational Inequality we obtain

−|u′t|d(ut, v) +
λ

2
d2(ut, v) + φ(ut) ≤ φ(v), for every v ∈ X and a.e. t > 0,

which implies

|∇φ(ut)| = lim sup
v→ut

(
φ(ut)− φ(v)

)+
d(ut, v)

≤ |u′t|, a.e. t > 0. (5.6)

We choose an interval [a, b] ⊂ (0,+∞) and consider that L is the Lipschitz constant of ut in [a, b].
Then for any v ∈ X , it holds that

d

dt
d2(ut, v) ≥ −|u′t|d(ut, v) ≥ −Ld(ut, v), a.e. t ∈ [a, b]. (5.7)

Plugging again the bound given by (5.7) in Evolution Variational Inequality, we obtain

− Ld(ut, v) +
λ

2
d2(ut, v) + φ(ut) ≤ φ(v), a.e. t ∈ [a, b]. (5.8)

Thanks to the lower semicontinuity condition on φ, we have that the inequality (5.8) is also true
for every t ∈ [a, b]. Taking y = us, for some s ∈ [a, b], and exchanging the roles of ut and us, we
deduce that

|φ(ut)− φ(us)| ≤ Ld(ut, us)−
λ

2
d2(ut, us)

≤ L|t− s|
(
L+

|λ|
2
L|t− s|

)
, for everyt, s ∈ [a, b],

thus the map t 7→ φ(ut) is locally Lipschitz. Then, we obseve that

− d

dt
φ(ut) = lim

h→0

φ(ut)− φ(ut+h)

h

= lim
h→0

φ(ut)− φ(ut+h)

d(ut+h, ut)
· d(ut+h, ut)

h

≤ |∇φ(ut)| · |u′t|

≤ 1

2
|∇φ(ut)|2 +

1

2
|u′t|2, a.e. t > 0.
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Therefore, it suffice now to prove the converse inequality. To do this, we integrate the Evolution
Variational Inequality in [t, t+ h], and we obtain

d2(ut+h, v)− d2(ut, v)

2
+

∫ t+h

t
φ(us)ds+

λ

2

∫ t+h

t
d(us, v)ds ≤ hφ(v), for every v ∈ X and a.e. t > 0.

In the same fashion as we before, letting v = ut, we get

d2(ut+h, ut)

2
≤
∫ t+h

t
φ(ut)− φ(us)ds+

|λ|
6
L2h3 = h

∫ 1

0
φ(ut)− φ(ut+hr)dr +

|λ|
6
L2h3. (5.9)

Consider now A ⊂ (0,+∞), the set where the map t 7→ φ(ut) is differentiable and the metric
derivative |u′t| exists. Choosing t ∈ A ∩ (a, b), and dividing the inequality (5.9) by h2, taking the
limit as h goes to zero and using Lebesgue’s dominated convergence theorem, we obtain

1

2
|u′t|2 ≤ lim

h→0

∫ 1

0

φ(ut)− φ(ut+hr)

h
dr = − d

dt
φ(ut)

∫ 1

0
rdr =

1

2

d

dt
φ(ut). (5.10)

Conbining now (5.6) and (5.10), we obtain

− d

dt
φ(ut) ≥

1

2
|u′t|2 +

1

2
|∇φ(ut)|2, a.e. t > 0,

and thus we obtain the equality, which concludes our proof.

5.2 Existence in the metric setting

Having all of these three notions of gradient flows in metric spaces in our mind, perhaps the first and
most important questions arising, in this setting, is related with their existence. How we can prove
the existence of them? In order to tackle such a concern we will employ the Minimizing Movements
scheme, which was discussed in Remark 1.3.2 in Euclidean setting. Heuristically, the idea of the
programme that will follow is quite simple: discretize in time and then find the suitable assumptions
to pass to the limit. However, as we will see in the following, there are some technical difficulties.
Let us make a step further beyond Euclidean setting, in order to dis-mystify these technicalities.
For that reason let us consider that H is separable Hilbert space, and φ : H → R ∪ {+∞} is a
convex and lower semicontinuous functional. In the same fashion as Euclidean setting, we pick a
u ∈ D(φ) = {u ∈ H : φ(u) <∞}, we fix τ > 0 and define the sequence (uτn)n∈N, recursively by
setting uτn := u and defining uτn+1 as a minimizer of

u 7→ φ(x) +
|u− uτn|2

2τ
.

Up to a direct method of Calculus of Variations argument, we can observe that the minimizer is
unique, and thus the sequence (uτn)n∈N is well-defined. The Euler-Lagrange equation of uτn+1 is

uτn+1 − uτn
τ

∈ −∂φ(uτn+1)

and is a typical time-discretization of the gradient flow system of problem.

Back to metric setting, and imitating the above discussion, it is natural to introduce the rescaled
curve (uτt )t∈(0,+∞) by setting

uτt := uτ[t/τ ].
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Having this time-discretization procedure in our mind, a natural question about this discretiza-
tion scheme is whether the curves (uτt )t∈(0,+∞) convergence, in some sense and under certain as-
sumptions, to a limit curve which solves the system of gradient flow, as τ ↓ 0.

The generality of the above scheme could be very important in the following. Precisely, this
minimization problem, due to its nature, can be posed in a purely metric setting for a general
functional φ : X → R∪{+∞}. To see this, it is sufficient to pick a u ∈ D(φ), consider τ > 0, define
uτ0 = u and recursively solve

uτn+1 ∈ argmin

{
φ(u) +

d2(uτn, u)

2τ

}
.

This observation motivates the definition of discrete solution, which is a key ingredient of Minimiz-
ing Movements scheme.

Definition 5.2.1 (Discrete solution). Consider that (X , d) is a complete and separable metric
space and φ : X → R ∪ {+∞} be a lower semicontinuous functional. Consider also u ∈ D(φ) and
τ > 0. A discrete solution is a map uτt : [0,+∞)→ X defined by uτt := uτ[t/τ ], where uτ0 := u and

uτn+1 ∈ argmin

{
φ(u) +

d2(uτn, u)

2τ

}
(5.11)

Clearly, in the metric space setting, it is important to identify of suitable assumptions that
ensure that the minimization problem (5.11) admits at least a solution, so these discrete solutions
exist. Now, we will see under what conditions on functional φ or the space (X , d) is it possible to
prove the existence of solutions in that Energy Dissipation Inequality, Energy Dissipation Equality
or Evolution Variational Inequality sense.

Essentially, there are two classes of assumptions which we have to keep in mind. The first class
consists of assumptions that can ensure the existence of discrete solutions under all of above sense.
The second class consists of assumptions that can guarantee that we can pass to the limit. We
shall now present the first class.

Assumptions 5.2.2. Consider that (X , d) is complete and separable metric space and φ : X →
R ∪ {+∞} a lower semicontinuous and bounded from below functional. We assume that there
exists a τ > 0 such that for every 0 < τ < τ and u ∈ D(φ) there exists at least a minimum of the
functional

x 7→ φ(u) +
d2(u, u)

2τ
(5.12)

Thanks to Assumptions 5.2.2 we know that discrete solutions exists for every starting point
u ∈ D(φ) for sufficient small τ. The big problem is to show that the discrete solutions satisfy
the discretized version of Energy Dissipation Inequality in order to pass to the limit. The crucial
fact which enable us to do this comes from E. de Giorgi legacy and its described in the following
proposition.

Proposition 5.2.3 (E. De Giorgi). Consider that (X , d) is a metric space and a functional φ :
X → R ∪ {+∞} which satisfies Assumptions 5.2.2. We fix a u ∈ X and for any 0 < τ < τ, we
choose uτ among the minimizers of 5.12. Then the map

τ 7→ φ(uτ ) +
d2(u, uτ )

2τ

is locally Lipschitz in (0, τ) and it holds

d

dt

(
φ(uτ ) +

d2(u, uτ )

2τ

)
= −d

2(u, uτ )

2τ2
, a.e. τ ∈ (0, τ).
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Proof. By a straightforward observation, we can see that for τ0, τ1 ∈ (0, τ) with τ0 < τ1, it holds

φ(uτ0) +
d2(uτ0 , u)

2τ0
≤ φ(uτ1) +

d2(uτ1 , u)

2τ1
. (5.13)

Then, we can deduce that

φ(uτ0) +
d2(uτ0 , u)

2τ0
− φ(uτ1) +

d2(uτ1 , u)

2τ1
≤
(

1

2τ0
− 1

2τ1

)
φ2(uτ1 , u) =

τ1 − τ0

2τ0τ1
d2(uτ1 , u).

In the same fashion working symmetrically, we obtain

φ(uτ0) +
d2(uτ0 , u)

2τ0
− φ(uτ1) +

d2(uτ1 , u)

2τ1
≥ τ1 − τ0

2τ0τ1
d2(uτ0 , u).

Based on these calculations, the map u 7→ φ(uτ ) + d2(u,uτ )
2τ is locally Lipschitz and we can also see

that the desired equation is true, which concludes our proof.

So, since now, we have a first important existence result in order to study the gradient flow
problem in metric space setting. To make a further step in this direction, let us present a useful
bound for the metric slope, in the following lemma.

Lemma 5.2.4 (Metric slope bound). Under the assumptions of Proposition 5.2.3, the map τ →
d(uτ , u) is non-decreasing and it holds

|∇φ(xτ )| ≤ d(xτ , x)

τ
. (5.14)

Proof. Let τ0, τ1 ∈ (0, τ) with τ0 < τ1. Thanks to the minimality of uτ0 and uτ1 , we obtain

φ(uτ0) +
d2(uτ0 , u)

2τ0
≤ φ(uτ1) +

d2(uτ1 , u)

2τ0
(5.15)

φ(uτ1) +
d2(uτ1 , u)

2τ1
≤ φ(uτ0) +

d2(uτ0 , u)

2τ1
(5.16)

Since τ−1
0 + τ−1

1 ≥ 0, adding (5.15) and (5.16), we can see that d(uτ0 , u) ≤ d(uτ1 , u). By a rear-
rangement of the quantities in both sides, we can obtain that

φ(uτ1) +
d2(uτ0 , u)

2τ1
≤ φ(uτ1) +

d2(uτ1 , u)

2τ1
≤ φ(uτ0) +

d2(uτ0 , u)

2τ1
,

which proves that the map τ 7→ φ(uτ ) is non decreasing.

The bound of metric slope comes from the observation that it holds

φ(uτ ) +
d2(uτ , u)

2τ
≤ φ(y) +

d2(y, u)

2τ
, for every y ∈ X .

Based on this observation, we have that

φ(uτ )− φ(y)

d(uτ , y)
≤ d2(y, u)− d2(xτ , u)

2τd(uτ , y)
=

(
d(y, u)− d(uτ , u)

)(
d(uτ , u) + d(y, u)

)
2τd(uτ , y)

≤ d(uτ , u) + d(y, u)

2τ
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and thus,

lim sup
y→uτ

φ(uτ )− φ(y)

d(uτ , y)
≤ lim sup

y→uτ

d(uτ , u) + d(y, u)

2τ

which implies

|∇φ(uτ )| ≤ d(uτ , u)

τ
.

This fact makes our proof complete.

In the same fashion as for the Euclidean setting and having the existence of discrete solutions
in our toolbox, we can define a suitable notion of interpolation in the metric setting, imitating the
usual constant interpolation. More precisely, we introduce the following variational interpolation
in Minimizing Movements scheme, as opposed to the classical piecewise affine (or even constant)
interpolations which are commonly used in many other problems with similar numerical nature.
Moreover, in the same spirit of the new notion of interpolation, we define the ”discretized” versions
of speed and slope with respect to a time step parameter τ. Both of them are presented in what
follows.

Definition 5.2.5 (Variational interpolation). Consider that (X , d) is metric space and φ : X →
R ∪ {+∞} is a functional satisfying Assumptions 5.2.2, u ∈ D(φ) and 0 < τ < τ. We define the
map uτ (t) : [0,+∞)→ X satisfying

(i) uτ0 := u

(ii) uτ(n+1)τ is chosen among the minimizers of (5.12) with u replaced by unττ

(iii) uτ (t) with t ∈ (nτ, (n+1)τ) is chosen among the minimizers of 5.12 with u and τ are replaced
by uτnτ and t− nτ respectively.

For such a map uτ (t), we define the discrete speed dspτ : [0,+∞)→ [0,+∞) and the discrete slope
dslτ : [0,+∞)→ [0,+∞) as

dspτt :=
d(uτnτ , u

τ
(n+1)τ )

τ
and dslτt :=

d(uτt , u
τ
nτ )

t− nτ
for t ∈ (nτ, (n+ 1)τ).

Let us note an important byproduct of the above definition. Based on the definition of discrete
slope, we can understand that it stands for a completely different quantity that the metric slope.
Nevertheless, after a some calculations and having the metric slope bound by Lemma 5.2.4 in our
toolbox, we prove that |∇φ(uτt )| ≤ dslτt . Thus, taking the limiting process, dslτ produces the slope
term of gradient flow in Energy Dissipation Inequality sense, which justifies the term ”discrete
slope”. We state the latter observation in the following corollary.

Corollary 5.2.6. Consider that (X , d) is a metric space and φ : X → R ∪ {+∞} satisfying the
Assumptions 5.2.2, u ∈ D(φ), 0 < τ < τ, and uτt defined via variational interpolation. Then it
holds

φ(uτs) +
1

2

∫ s

t
|dspτr |2dr +

1

2

∫ s

t
|dslτr |2dr = φ(uτt ), (5.17)

for every t = nτ and s = mτ, with n < m ∈ N.

Thus, under quite general assumptions, at the level of discrete solutions, it is possible to obtain
a discrete form of the Energy Dissipation Inequality. Although, this procedure sheds the light on
a fundamental question on our time discretization scheme: can we pass to the limit? The answer
is positive, but since there is no free lunch, we have to recall a class of several compactness and
regularity-type assumptions of the functional φ. The latter class of assumptions is presented in the
following.
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Assumptions 5.2.7. We assume that the functional φ : X → R ∪ {+∞} satisfies:

(i) φ is bounded from below and its sublevel sets are bounded and compact i.e. the set

{u ∈ X : φ(u) ≤ c} ∩Br(u)

is compact for any c ∈ R and r > 0.

(ii) the metric slope |∇φ| : D(φ)→ [0,+∞] is lower semicontinuous

(iii) φ satisfies the following continuity-compactness property

if un → u with sup
n∈N

{
|∇φ(un)|, φ(un)

}
<∞ then φ(un) −→ φ(u).

Based on Assumptions 5.2.7, we can obtain the Energy Dissipation Inequality characterization
of gradient flow, as it witness the following proposition.

Proposition 5.2.8. Consider that (X , d) is a complete and separable metric space and φ : X →
R ∪ {+∞} satisfies Assumptions 5.2.7 and 5.2.7. Let also u ∈ D(φ) and 0 < τ < τ and define the
discrete solutions via variational interpolation. Then:

(i) the set of curves {uτt : τ ≥ 0} is relatively compact in the set of absolutely continuous curves
in X with respect to topology of local uniform convergence.

(ii) any limit curve (ut)t∈[0,+∞) is a gradient flow in the Energy Dissipation Inequality sense.

Proof. (i) Thanks to Corollary 5.2.6 we have that

d2(uTt , u) ≤
(∫ T

0
|dspτr |dr

)2

≤ T
∫ T

0
|dspτr |2dr ≤ 2T (φ(u)− inf

u∈X
φ(u)), (5.18)

for every t ≤ T, where T = nτ. Therefore, for any T > 0, the set {uτt : t ≤ T} is uniformly bounded
in τ. Since this set is contained in {u ∈ X : φ(u) ≤ φ(u)}, it is relatively compact. The fact that
it is also relatively compact with respect to the topology of uniform convergence comes from a
standard application of the Arzelá-Ascoli theorem, based on the inequality

d2(uτt , u
τ
s) ≤

(∫ t

s
dspτrdr

)2

≤ 2(s− t)(φ(u)− inf
u∈X

φ(u)), (5.19)

for every t = nτ and s = m, with n < m ∈ N. Now, let (τn)n∈N with τn ↓ 0 such that (uτnt )n∈N con-
verges locally uniformly to a limit curve ut. Then, by standard arguments and based on inequality
(5.19), one can check that the map t 7→ ut is locally absolutely continuous and satisfies∫ s

t
|u′r|2dr ≤ lim inf

n→∞

∫ s

t
|dspτnr |2dr, for 0 ≤ t ≤ s. (5.20)

Then by the lower semicontinuity of |∇φ| and the slope bound given by (5.2.4), we obtain

|∇φ(ut)| ≤ lim inf
n→∞

|∇φ(uτnt )| ≤ lim inf
n→∞

dslτnt dr, for every t ∈ [0,+∞).

Thus, employing Fatou’s lemma, we have that∫ s

t
|∇φ(ur)|2dr ≤

∫ s

t
lim inf
n→∞

|∇φ(uτr )|2dr ≤ lim inf
n→∞

∫ s

t
|dslτnr |2dr ≤ 2T

(
φ(u)− inf

u∈X
φ(u)

)
. (5.21)
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If we write (5.17) for t = 0 and pass to the limit, we obtain the Energy Dissipation Inequality
characterization of gradient flow. In addition, if we define the function

f(t) := lim inf
n→∞

|∇φ(uτnt )|

we can see that ‖f‖L2([0,∞)) < ∞. Therefore, the set A := {t ∈ [0,∞) : f(t) < ∞} has full
Lebesgue measure. Based on this fact, for every t ∈ A, we can find a subsequence (τnk)k∈N such
that τnk ↓ 0 such that supk∈N |∇φ(u

τnk
t )| < ∞. Using the continuity-compactness assumption,

which was given in (iii) of Assumptions 5.2.7, we obtain that φ(u
τnk
t )→ φ(ut). Moreover, thanks to

lower semicontinuity of φ, we have that φ(us) ≤ lim infk→∞ φ(u
τnk
s ), for any s ≤ t. So using (5.21)

and (5.20), and taking limit in (5.17) as τnk ↓ 0, we obtain

φ(us) +
1

2

∫ s

t
|u′r|2dr +

1

2
|∇φ(ur)|2dr ≤ φ(ut), for every t ∈ A and for every s ≥ t,

which concludes our proof.

In general, there are situations where we have no hope obtain equality in Energy Dissipation
Inequality. The core component of such a pathology is purely technical and stands to the fact
that we don’t know whether the map t 7→ φ(ut) is an absolutely continuous map. In the following
example, we construct such a case based on the singularities of Cantor function.

Example 5.2.9 (No hope for equality). Let X = [0, 1] equipped with Euclidean metric, C ⊂ X
the Cantor set with null Lebesgue measure and a continuous and integrable function f : [0, 1] →
[0,+∞] such that f(x) = +∞ for any x ∈ C and f(x) be smooth for any x ∈ X \C. Consider also
g : [0, 1]→ [0, 1] be the Cantor function, i.e. satisfying g(0) = 0, g(1) = 1 and be constant in each
of connected components of X \C. Then we define the functionals φ, φ̃ : [0, 1]→ R by

φ(u) := −g(u)−
∫ u

0
f(s)ds and φ̃(u) := −

∫ u

0
f(s)ds.

It is now hard to verify that both φ and φ̃ satisfy both Assumptions 5.2.2 and 5.2.7, since f is
continuous which implies that ∇φ and ∇φ̃ are continuous If we construct a gradient flow starting
from u(0) = 0, we can check that Minimizing Movements scheme converges in both cases to two
absolutely continuous curves ut and ũt respectively, and satisfying

u′t = −|∇φ(ut)| and ũ′t = −|∇φ̃(ut)|, a.e. for t ∈ [0, 1].

Then, we can see that |∇φ(u)| = |∇φ̃(u)| for every u ∈ [0, 1], and thus, since f is smooth in
[0, 1]\C, both of the above Cauchy problems admit a unique solution. So if ut and ũt are the
gradient flows, they must coincide. In particular, the effect of g cannot be seen via the gradient
flow structure. Based on this observation, one can verify that there is an Energy Dissipation
Inequality characterization for both gradient flows, but there is an Energy Dissipation Equality
characterization only for the functional φ.

5.3 Geodesically convex functionals

As a next step, let us proceed to a further exploration of gradient flow notions employing a geo-
metrical flavour in our study. More precisely, we will assume that the space (X , d) is complete and
separable metric space and also geodesic metric space, with several compactness-type properties.
Under this consideration, we will assume that the functional φ stands for λ-geodesically functional,
recalling the related discussion of Chapter 2. To make this discussion a bit more rigorous, let us
present all the necessary assumptions more formally.
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Assumptions 5.3.1. Let (X , d) be a complete and separable geodesic metric space and φ : X →
R∪{+∞} be a lower semicontinuous, λ-geodesically convex functional for some λ ∈ R. We assume
that the sublevel sets of φ are bounded and compact, i.e. the set {u ∈ X : φ(u) ≤ c} ∩ Br(u) is
compact for any c ∈ R, r > 0 and u ∈ X .

Using Assumptions 5.3.1, we are able to study gradient flow problem with a different and quite
important perspective. Precisely, as we will see we will be able to obtain gradient flow in Energy
Dissipation Equality sense, which as we have see in Example 5.2.9, was a little bit problematic.

Let us present some useful results.

Lemma 5.3.2 (Metric slope representation). Consider that (X , d) is a complete and separable
geodesic metric space and φ : X → R ∪ {+∞} a λ-geodesically convex functional. Then it holds
that

|∇φ(u)| = sup
v 6=u

(
φ(u)− φ(v)

d(u, v)
+
λ

2
d(u, v)

)+

, for every u ∈ X .

Proof. One can observe that, by the definition of metric slope, it holds

|∇φ(u)| = lim sup
v→u

(
φ(u)− φ(v)

d(u, v)
+
λ

2
d(u, v)

)+

≤ sup
v 6=u

(
φ(u)− φ(v)

d(u, v)
+
λ

2
d(u, v)

)+

.

To obtain the converse inequality, we fix v 6= u, and a constant speed geodesic γ : [0, 1]→ X as in
definition of λ-geodesic convexity (see Definition 2.5.5). Then we have that

|∇φ(u)| ≥ lim sup
t↓0

(
φ(u)− φ(v)

d(u, γ(t))

)+

=

(
lim sup
t↓0

φ(u)− φ(v)

d(u, γ(t))

)+

≥
(

lim sup
t↓0

(
φ(u)− φ(v)

d(u, γ(t))
+
λ

2
(1− t)d(u, v)

))+

≥ sup
v 6=u

(
φ(u)− φ(v)

d(u, v)
+
λ

2
d(u, v)

)+

,

so the equality is true.

The usefulness of the metric slope representation stands to the fact that it allows us to prove and
interesting implication about the three classes of assumptions, which we have already presented.
In other words, based on metric slope representation, we are able to show that Assumptions 5.3.1
implies both of Assumptions 5.2.2 and 5.2.7, as the following proposition presents.

Proposition 5.3.3. If Assumptions 5.3.1 are true, then Assumptions 5.2.2 and 5.2.7 are also true.

Proof. From λ-geodesically convexity and lower semicontinuity of φ we can deduce that it has at
most quadratic decay at infinity, i.e. there exists a, b > 0 and u ∈ X such that

φ(u) ≥ −a− bd(u, u) + λ−d2(u, u), for every u ∈ X .

Therefore, again from lower semicontinuity and bounded compactness of sublevel sets of φ, we can
conclude that 5.12 admits a solutions whenever τ < 1/λ−.
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The lower semicontinuity of slope comes directly from Lemma (5.3.2) and again by lower semi-
continuity of φ. Thus, in order to prove the implication we have to prove only that the continuity-
compactness property holds too, i.e.

if un → u with sup
n∈N

{
|∇φ|(un), φ(un)

}
<∞ then lim sup

n→∞
φ(un) ≤ φ(u).

This can be obtained using Lemma 5.3.2, and replacing u, y by un, u respectively, i.e

φ(u) ≥ φ(un)− |∇φ|(un)d(u, un) +
λ

2
d2(u, un).

Taking the limit as n→∞, we obtain the desired result.

Based on above interesting implication, we are able to prove the Energy Dissipation Inequality
formulation of gradient flow. Although, in order to obtain Energy Dissipation Equality formula-
tions, we need a kind of weak chain rule, which could predict pathological cases as Example 5.2.9.
Such type of weak chain rule, is presented in the following proposition.

Proposition 5.3.4. Consider that (X , d) is a complete separable and geodesic space and φ :
X → R ∪ {+∞} id λ-geodesically convex lower semicontinuous functional. Then for every ut ∈
AC((0,+∞);X ) such that for every t ∈ (0,+∞) it holds that φ(ut) <∞, then we have

|φ(us)− φ(ut))| ≤
∫ s

t
|u′r||∇φ|

(
ur
)
dr, for every t < s. (5.22)

Proof. Let us assume that the right hand side of (5.22) is finite for any s, t ∈ [0, 1], and, up to a
reparametrization argument which can achieved based on the discussion on the relevant results of
Chapter 2 (Section 2.2.). We can also assume that |u′t| = 1 and moreover (ut)t∈[0,1] is 1-Lipschitz
Thus, the map t 7→ |∇φ

(
ut
)
| belongs to L1((0, 1)). If the map t 7→ φ

(
ut
)

is absolutely continuous,
then it holds

lim sup
h↑0

φ(ut+h)− φ(ut)

h
≤ lim sup

h↑0

φ
(
ut+h

)
− φ(ut)

+

|h|

≤ lim sup
h↑0

φ(ut+h)− φ(ut)
+

d(ut, ut+h)
lim sup
h↑0

d(ut, ut+h)

|h|
≤ |∇φ(ut)||u′t|,

for every t ∈ [0, 1] and implies the inequality (5.22). So our job is to prove the absolute continuity
of t 7→ φ

(
ut
)
. To do this, we will following an approximation procedure. We define the functions

f, g : [0, 1]→ R by

f(t) := φ
(
ut
)

and g(t) := sup
s 6=t

(
f(t)− f(s)

)+
|s− t|

.

Let also D be the diameter of the compact set {ut : t ∈ [0, 1]}. Now, since ut is 1-Lipschitz, thanks
to Lemma 5.3.2 and the fact that for any a, b ∈ R it holds that a+ ≤ (a+ b)+ + b−, we obtain that

g(t) ≤ sup
s 6=t

(
φ(ut)− φ(us)

)+
d(us, ut)

≤ |∇φ(ut)|+
λ−

2
D.

Thus, our claim we will be proved, if we prove the following implication

if g ∈ L1((0, 1)) then |f(s)− f(t)| ≤
∫ s

t
g(r)dr, for every t < s. (5.23)
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To do this, we fix M > 0 and define fM = min{f,M}. Then we fix ε > 0, and consider ρε : R→ R
be a the convolution kernel, supported in [−ε, ε]. Under these considerations, we define fMε , gMε :
[ε, 1− ε]→ R by

fMε (t) := fM ∗ ρε(t) and gMε (t) := sup
s 6=t

(
fMε (t)− fMε (s)

)+
|s− t|

.

Then one can observe that by construction it holds gMε ≥ (fMε )′, and since fMε is smooth, it holds

|fMε (s)− fMε (t)| ≤
∫ s

t
gMε (r)dr. (5.24)

Now, using the trivial fact that for a given function h : [0, 1]→ R it holds (
∫
hdx)+ ≤

∫
h+dx, we

obtain

gMε ≤ sup
s∈[ε,1−ε]

∫ t

s

(
fM (t− r)− fM (s− r)

)+
ρε(r)dr

|s− t|
≤ sup

s∈[ε,1−ε]

∫ t

s

(
f(t− r)− f(s− r)

)+
ρε(r)dr

|s− t|

= sup
s∈[ε,1−ε]

∫ t

s

(
f(t− r)− f(s− r)

)+
ρε(r)dr

|(s− r)− (t− r)|
≤
∫ t

s
g(t− r)ρε(r)dr

= g ∗ ρε(t).

Therefore, the family of functions (gMε )ε>0 is dominated in L1((0, 1)). Using (5.24) and the above
domination, we can infer that the family of functions (fMε )ε>0 converges to a functions f̃M on [0, 1]
with respect to the topology of uniform convergence as ε ↓ 0. For this limit it holds that

|f̃M (s)− f̃M (t)| ≤
∫ s

t
g(r)dr. (5.25)

Although, by construction we have that fM = f̃M on a set A ⊂ [0, 1] such that L 1
(
[0, 1]\A

)
= 0.

Our purpose is to prove that actually they coincide everywhere. We remember that fM is lower
semicontinuous and its limit, i.e. f̃M , is continuous and hence fM ≤ f̃M in [0, 1].

For the sake of contradiction, let assume that there exists a t0 ∈ [0, 1] such that fM (t0) < c <
C < f̃M (t0), for some c, C ∈ R. Then, we can find δ > 0 such that f̃M (t) > C for t ∈ [t0− δ, t0 + δ].
Therefore fM (t) > C for t ∈ [t0 − δ, t0 + δ] ∩A. Under this perspective, we have∫ 1

0
g(t)dt ≥

∫
[t0−δ,t0+δ]∩A

g(t)dt ≥
∫

[t0 − δ, t0 + δ] ∩AC − c
t− t0

= +∞,

which consists a contradiction, thanks to (5.25). Hence, we just proved that

if g ∈ L1((0, 1)) then |fM (t)− fM (s)| ≤
∫ s

t
g(r)dr, for every t < s ∈ [0, 1] and M > 0.

Passing to the limit as M →∞, we obtain the implication (5.23), which makes up proof complete.

Now, based on previous proposition, we are ready to pass from existence of gradient flow in
Energy Dissipation Inequality sense, to the existence in Energy Dissipation Equality sense.
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Proposition 5.3.5. Consider that (X , d) is a complete, separable and geodesic space and φ : X →
R ∪ {+∞} satisfying the Assumptions 5.3.1. Let also u ∈ D(φ). Then, any gradient flow in the
Energy Dissipation Inequality sense is also a gradient flow in the Energy Dissipation Equality sense.

Proof. Thanks to Proposition 5.2.8, we have that the limit curve ut is absolutely continuous and
satisfies

φ(us) +
1

2

∫ s

0
|u′r|2dr +

1

2

∫ s

0

∣∣∇φ(ur)|dr ≤ φ(u), for every s ≥ 0.

Moreover, the maps t 7→ |u′t| and t 7→ |∇φ(ut)| belongs to L2
loc((0,+∞)). Thanks to Proposition

5.3.4, we have

|φ(u)− φ(us) ≤
∫ s

0
|u′r||∇φ(ur)|dr ≤

1

2

∫ s

0
|u′r|2dr +

1

2

∫ s

0
|∇φ(ur)|2dr, for any s ≥ 0.

Thus, the map t 7→ φ(ut) is absolutely continuous and it holds that

φ
(
us
)

+
1

2

∫ s

0
|u′r|2dr +

1

2

∫ s

0
|∇φ(ur)|2dr = φ(u). (5.26)

Therefore, if we write (5.26) for s = t and subtracting from itself, the desired result follows, and
our proof is completed.

At this point, we have to mention that in general λ-geodesically convexity hypothesis on func-
tional φ does not play any important role about for what concerns compactness of the sequence of
discrete solutions. Nevertheless, this hypothesis ensures several regularity properties for the limit
curve. Some of theses properties are presented in the following proposition, which can be found in
L. Ambrosio et al. (2008).

Proposition 5.3.6. Consider that (X , d) is a complete, separable and geodesic metric space and
φ : X → R ∪ {+∞} satisfying Assumptions 5.3.1. Consider also that ut is any limit curve of a
sequence of discrete solutions. Then the following holds:

(i) the limit

|u′t| := lim
h↓0

d(ut+h, ut)

h

exists for every t > 0.

(ii) the equation
d

dt
φ(ut) = −|∇φ(ut)|2 = −|u′t|2 = −|ut||∇φ(ut)|,

is satisfied for every t > 0.

(iii) the map t 7→ e−2λ−tφ(ut) is convex, the map t 7→ eλt|∇φ(ut)| is non increasing, right contin-
uous and satisfies

t

2
|∇φ(ut)|2 ≤ e2λ−t

(
φ(u0)− inf

y∈X

{
φ(y)− d2(u, y)

2t

})
and

t|∇φ(ut)|2 ≤ (1 + 2λ+t)e−2λt

(
φ(u0)− inf

y∈X

{
φ(y)− d2(u, y)

2t

})
(iv) if λ > 0, then φ admits a unique minimum u∗ and it holds

λ

2
d2(ut, u

∗) ≤ φ(u∗)− φ(u∗) ≤ e−2λt
(
φ(u0)− φ(u∗)

)
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At this level of discussion, this observation is quite important, since it might be no hope for
uniqueness of gradient flow in Energy Dissipation Equality sense without some additional assump-
tions. The following example present such a non-uniqueness case, quite less pathological than
Cantorian case of no equality in Example 5.2.9.

Example 5.3.7 (No hope for uniqueness). Let X = R2 equipped with supremum norm, φ : X → R
defined as as φ(u1, u2) := u1 and initial datum u = (0, 0). Then, we can see that |∇φ| = 1 and that
any Lipschitz curve t 7→ u(t) = (u1(t), u2(t)) satisfying

u1(t) = −t, for every t ≥ 0 and |u′2(t)| ≤ 1 a.e. t > 0,

satisfies also
φ(ut) = −t with |x′(t)| = 1.

Therefore, any such ut satisfies Energy Dissipation Equality.

So, under the light of Example 5.3.7, in general uniqueness of the limit curve ut obtain via Min-
imizing Movements scheme may collapse for a general λ-geodesically convex functional in Energy
Dissipation Equality sense, which, as we have seen, is the weakest sense of a gradient flow. For that
reason, in order to achieve properties like uniqueness and contractivity, we will introduce several
assumptions between the functional φ and the distance d defined on (X , d) which links them in a
stronger sense. These assumptions are imitating again convexity along to a geometrical flavor and
they are described in the following.

Assumptions 5.3.8. Consider that (X , d) is a complete, separable and geodesic metric space,
φ : X → R ∪ {+∞} is a lower semicontinuous functional and for any u0, u1, v ∈ X , there exists a
curve (γ(t))t∈[0,1] such that

φ(γ(t)) ≤ (1− t)φ(u0) + tφ(u1)− λ

2
t(1− t)d2(u0, u1), (5.27)

d2(γ(t), v) ≤ (1− t)d2(u0, v) + td2(u1, y)− t(1− t)d2(u0, u1), (5.28)

for every t ∈ [0, 1].

One can see that any compactness assumptions on sublevel sets of functional φ has been avoided.
Although, in a Hilbert space setting, the inequality (5.28) is satisfied by geodesics. Therefore, λ-
geodesically convex functionals are compatible with the metric ipso facto.

Adapting the same strategy as we have done previously, one can probe that Assumptions 5.3.8
implies 5.2.2. Nevertheless, in order to obtain the implication to Assumptions 5.2.7, we have to
assume that the sublevels sets of φ satisfy some boundedness and compactness property. Then,
thanks to Proposition 5.2.8, we can obtain gradient flow in Energy Dissipation Inequality sense.
In addition, since under these assumptions the metric slope representation given by Lemma 5.3.2
holds, we can also obtain the gradient flow in Energy Dissipation Equality sense.

However, at this point, we will wipe the slate clean, and we will not follow the general the-
ory which was developed previously. Under this consideration and based on Assumptions 5.3.8,
we are able to prove much stronger results than those was developed in previous sections. More-
over, following the line of discrete solutions, we can prove the existence gradient flow in Evolution
Variational Inequality sense, as it witnessed in the following proposition.

Proposition 5.3.9. Consider that (X , d) is a complete, separable and geodesic metric space (X , d)
and φ : X → R ∪ {+∞} is a functional, satisfying Assumptions 5.3.8. Then the following hold

(i) for every u ∈ D(φ) and 0 < τ < 1/λ− there exists a unique discrete solution uτt
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(ii) if u ∈ D(φ) is an initial datum and (uτt )τ>0 is a family of discrete solutions then (uτt (t))τ>0

converges to a unique limit curve ut with respect to topology of uniform convergence as τ ↓ 0.
Moreover, ut is the unique solution of the system of differential inequalities

1

2

d

dt
d2(ũt, y) +

λ

2
d2(ũt, y) + φ(ũt)) ≤ φ(y), a.e fort ≥ 0 and for every y ∈ X , (5.29)

among all absolutely continuous curves ũt converging to u as t ↓ 0, that is ut is a gradient
flow in Evolution Variational Inequality sense.

Proof. Without loss of generality, we assume that φ ≥ 0, λ > 0 and consider u ∈ D(φ).

(i) We will prove that the sequence of discrete solutions (u
τ/2n

t )nN converges to a limit curve ut as
n→∞ for any given τ > 0.

To do this, we pick u ∈ X , and we have to prove that there exists a unique minimizer for
(5.12). Let I ≥ 0 be the infimum of (5.12) and (un)n∈N be a minimizing sequence for (5.12). We
fix n,m ∈ N and we consider γ : [0, 1] → X be a curve satisfying Assumptions 5.3.8 for u0 := un,
u1 := um and y = u. Using now the inequalities given by Assumptions 5.3.8 at t = 1/2, we obtain

I ≤ φ
(
γ(1/2)

)
+
d2(γ(1/2), x)

2τ

≤ 1

2

(
φ(un) +

d2(un, u)

2τ
+ φ(um) +

d2(um, u)

2τ

)
− 1 + λτ

8τ
d2(un, um)

Thus, we have

lim sup
n,m→∞

1 + λτ

8τ
d2(un, um) ≤ lim sup

n,m→∞

1

2

(
φ(un) +

d2(un, u)

2τ
+ φ(um) +

d2(um, u)

2τ

)
− I = 0.

Therefore, the sequence (un)n∈N is Cauchy as soon as 0 < τ < 1/λ, which shows the uniqueness
of discrete solution. On the other hand, thanks to lower semicontinuity of φ, we also obtain the
existence.
(ii) We claim that the following discrete version of the Evolution Variational Inequality is true,
that is for any u ∈ X we have that

d2(uτ , v)− d2(u, v)

2τ
+
λ

2
d2(uτ , v) ≤ φ(v)− φ(uτ ), for any v ∈ X , (5.30)

where uτ is the minimizer of (5.12). Indeed, if we pick a curve γ : [0, 1] → X , as in Assumptions
5.3.8 for u0 := uτ , u1 := v and v := x, thanks to minimality of uτ , it holds that

φ(uτ ) +
d2(uτ , u)

2τ
≤ φ

(
γ(t)

)
≤ (1− t)φ(uτ ) + tφ(v)− λ

2
t(1− t)d2(uτ , v)

+
(1− t)d2(uτ , u) + td2(u, v)− t(1− t)d2(uτ , v)

2τ
.

Thus, taking the limit as τ → 0, we obtain the desired discrete version of Evolution Variational
Inequality, as it was described in (5.30).

Now we will obtain the full convergence of discrete solutions to the limit curve. Given u, v ∈
D(φ) and uτt , v

τ
t their discrete solutions respectively, our strategy is to bound the distance d(u

τ/2
τ , vττ )

in terms of distance d(u, v). To do this, we write the discrete version of Evolution Variational
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Inequality given by (5.30) two times for τ := τ/2 and v := v. The first time with u := u and

secondly with u := u
τ/2
τ/2. Therefore, using the assumption of non-negativeness of λ, we obtain

d2
(
u
τ/2
τ/2, v

)
− d2(u, v)

τ
≤ φ(v)− φ

(
u
τ/2
τ/2

)
(5.31)

d2(u
τ/2
τ , v)− d2

(
u
τ/2
τ/2, v

)
τ

≤ φ(v)− φ
(
uτ/2τ

)
. (5.32)

Adding up the inequalities (5.31) and (5.32), observing that φ(u
τ/2
τ ) ≤ φ(u

τ/2
τ/2), we can see that it

holds
d2(u

τ/2
τ , v)− d2(u, v)

τ
≤ 2
(
φ(v)− φ(uτ/2τ )

)
. (5.33)

On the other hand, from discrete version of the Evolution Variational Inequality given by (5.30),

written for u := v and v := u
τ/2
τ , we have

d2(vττ , u
τ/2
τ )− d2(u

τ/2
τ , v)

τ
≤ 2
(
φ(uτ/2τ )− φ(vττ )

)
. (5.34)

Again, adding up (5.33) and (5.34), we obtain

d2(yτ (τ), u
τ/2
τ )− d2(u, y)

τ
≤ 2
(
φ(y)− φ(yττ )

)
. (5.35)

Now, we pick t = nτ and s = mτ with t < s, and re-write the discrete version of the Evolution
Variational Inequality given by (5.30), for u := uτiτ , for i = n, · · · ,m− 1 and adding everything up
to get

d2(uτt , v)− d2(uτs , v)

2(s− t)
+

λτ

2(s− t)

m∑
i=n+1

d2(uτiτ , v) ≤ φ(v)− τ

s− t

m∑
i=n+1

φ(uτiτ ). (5.36)

In the same fashion, we pick t = nτ and rewrite (5.35) for u := u
τ/2
iτ and v := vτiτ , for i = 0, ·, n− 1.

Adding them all up, we obtain

d2(u
τ/2
t , vτt )− d2(u, v)

τ
≤ 2
(
φ(v)− φ(vτt )

)
Let v = u, and since φ ≥ 0, we obtain

d2(u
τ/2
t , uτt ) ≤ 2τ

(
φ(u)− φ(uτt )

)
≤ 2τφ(u). (5.37)

Now, we are proceed to a limiting process. For that reason, we consider τ = τ/2n and thus we
obtain

d2
(
u
τ/2n+1

t , u
τ/2n

t

)
≤ τ

2n−1
φ(u).

Therefore, we have that

d2(u
τ/2n

t , u
τ/2m

t ) ≤ τ(22−n − 22−m)φ(u), for any n < m ∈ N.

This tells us that the sequence (x
τ/2n

t )n∈N a is Cauchy sequence for any t ≥ 0. In addition, setting
n = 0 and letting m→∞ we can obtain the discrete version of Evolution Variational Inequality.

In order to achieve the Evolution Variational Inequality, we let τ → 0 in (5.36), and after
calculations, we obtain

d2(ut, v)− d2(us, v)

2(s− t)
+

λ

2(s− t)

∫ s

t
d2(ur, v)dr ≤ φ(y)− 1

s− t

∫ s

t
φ(ur)dr,

which is the Evolution Variational Inequality in integral form, so our proof is completed.
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5.4 Gradient flows in Wasserstein space

Recalling the discussion related with Wasserstein spaces in Chapter 4, we have already seen that,
given a metric space (X , d), the space W2(X ) enjoys several nice metric, topological and geometrical
properties. So, given all of these nice and desired properties of Wasserstein spaces, and recalling the
discussion of gradient flows in metric setting, one may concern about the possibility to define and
study gradient flows in Wasserstein space. Such a concern was the key ingreading of the seminal
and revolutionary paper of R. Jordan, D. Kinderlehrer and F. Otto, in late 90s (see Jordan et al.
(1998)), which essentially was the begining of study of gradient flows in Wasserstein spaces and the
ancestor of series of papers, answering several important related questions (see e.g Otto (2001)).

We will focus in the following programme: at first we will discuss some important facts of
subdifferentials of λ-geodesically convex functionals defined on W2(Rd), which in effect comes from
the dynamic formulation of optimal transport problem and the underlying Riemannian structure
of the Wasserstein space W2(Rd). Secondly, we will present three classical applications, for which
we can employ Evolution Variational Inequality formulations, in order to obtain solutions and
characterizations of corresponding gradient flows.

5.4.1 Subbdifferential Calculus

As we have see in Chapter 4, Wasserstein spaces enjoy a rich and important geometrical structure.
Perhaps, one of the key facts of the importance of this geometrical structure stands to the possibility
which gives us to imitating Hilbert spaces and develop an analogous ”subdifferential ”theory” about
λ-geodesically convex functionals defined on W2(Rd). The basic ideas behind of this approach, as
we will see, have surprisingly many similarities with the classical subdifferential calculus of convex
functionals defined in any separable Hilbert space.

So, following the spirit of their similarities, we will develop the whole theory based on regular
measures defined on Rd, keeping the level of technicalities through discussion as simple as possi-
ble, presenting the main ideas. Although, paying the costs of (beautiful but pretty complicated)
technicalities one can extend the whole theory to more general setting and more general measures.

So, under this perspective, let us begin the exploration of subdifferential calculus in Wasserstein
space, by recalling the definition of subdifferential in any separable Hilbert space. Hence, let us
recall that X = Rd, (or even a Hilbert space), and φ : X → R is a λ-convex functional, then the
subdifferential of F at point x ∈ X is defined as the set

∂F (x) :=

{
v ∈ X : F (x) + 〈v, y − x〉+

λ

2
|x− y|2 ≤ F (y) for every y ∈ X

}
.

Following this spirit, any recalling the λ-convexity of a functional φ : P2(Rd)→ R ∪ {+∞}, let us
extended analogously the above classical subdifferential definition in Wasserstein space W2(Rd).

Definition 5.4.1 (Subdifferential in W2(Rd)). Consider that φ : P2(Rd) → R ∪ {+∞} be a λ-
geodesically convex and lower semicontinuous functional, µ ∈ P2(Rd) be a regular measure such
that φ(µ) <∞. If for every ν ∈P2(Rd), denotes as T νµ the optimal transport map between µ and
ν, we define the subdifferential of φ at µ as

∂Wφ(µ) :=

{
v ∈ L2(µ) : φ(µ) +

∫
Rd
〈T νµ − Id, v〉dµ+

λ

2
W2

2 (µ, ν) ≤ φ(ν)

}
.

Let us mention that under this perspective, we have no worries about the existence of such
an optimal transport map since that Brenier’s theorem (Theorem 3.4.7), guarantees this fact. So,
given the notion of subdifferentials in Wasserstein spaces, shall we proceed a closer examination
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of them. Moreover, let us explore one of their fundamental properties, their monotonicity, which
imitates the monotonicity property of λ-convex functional in Rd (or of course, any separable Hilbert
space). This property is presented in the following lemma.

Lemma 5.4.2 (Monotonicity of ∂W). For every µ, ν ∈ D(φ), v ∈ ∂Wφ(µ) and w ∈ ∂Wφ(ν). Then
it holds that ∫

Rd
〈v, T νµ − Id〉dµ+

∫
Rd
〈w, T νµ − Id〉dν ≤ −λW2

2 (µ, ν).

Proof. By the definition of the subdifferential in W2(Rd), we have that

φ(µ) +

∫
Rd
〈T νµ − Id, v〉dµ+

λ

2
W2

2 (µ, ν) ≤ φ(ν), (5.38)

and also

φ(ν) +

∫
Rd
〈T νµ − Id, w〉dν +

λ

2
W2

2 (µ, ν) ≤ φ(µ). (5.39)

Adding up (5.38) and (5.39), the desired result follows.

Based on the definition of subdifferential ∂W , we can obtain a first notion of gradient flow in
Wasserstein spaces. Again, its definition stands as an analogue of the Hilbert space theory, except
one important fact. In such a case, we employ the rich geometrical structure of Wasserstein spaces,
which is based on the dynamical formulation optimal transport problem, as it was presented in
Section 4.4.

Definition 5.4.3 (Subdifferential Gradient Flow formulation). Consider that φ : P2(Rd) is a λ-
geodesically convex functional and µ ∈ P2(Rd) be a regular measure. Then a locally absolutely
curve (µt)t∈[0,1] is a Gradient Flow for φ, starting at µ, if µt → µ with respect to W2 and it holds

−vt ∈ ∂Wφ(µ, t), a.e. for t > 0

where (vt)t is the vector field which is uniquely identified by the curve (µt)t∈(0,1) via continuity
equation

d

dt
µt +∇ · (vtµt) = 0, for every vt ∈ Tanµt(P2(Rd)) a.e. for t > 0.

On account of the subdifferential formulation, we have by now four ways to study the gradi-
ent flows of λ-geodesically convex functionals defined on P2(Rd), which are Energy Dissipation
Inequality, Energy Dissipation Equality, Evolution Variational Inequality, and Subdifferential for-
mulation.

The good news are that all of these four formulations are equivalent for λ-geodesically convex
functionals. This fact is witness by the following proposition.

Proposition 5.4.4 (Equivalence between formulations). Consider that φ : P2(Rd) → R ∪ {+∞}
is a λ-geodesically convex functional and (µt)t∈(0,1) is a curve made by regular measures for every
t > 0. Then, the Energy Dissipation Inequality, Energy Dissipation Equality, Evolution Variational
Inequality, and Subdifferential formulations are equivalent.

Proof. Thanks to (iii) of Proposition 4.4.4, we have

1

2

d

dt
W2

2 (µt, ν) = −
∫
Rd
〈vt, T νµt〉dµt, a.e. t > 0,
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where T νµt stands for the optimal transport map between µt and ν. Then, we have that

−vt ∈ ∂Wφ(µt)⇐⇒ φ(µt) +

∫
Rd
〈−vt, T νµt − Id〉dµ+

λ

2
W2

2 (µt, ν) ≤ φ(ν), for every ν ∈P2(Rd),

which is equivalent to

φ(µt) +
1

2

d

dt
W2

2 (µt, ν) +
λ

2
W2

2 (µt, ν) ≤ φ(ν), for every ν ∈P2(Rd) a.e. t > 0.

5.4.2 Three Classical Gradient Flows in Wasserstein spaces

Now we are ready to present three classical examples of gradient flows in Wasserstein spaces. The
most suitable way to proceed to such an application, comes from the metric theory of gradient
flows for λ-geodesically convex functionals, which was developed in previous section. Moreover, we
will study of the associated PDE with the corresponding gradient flow.

To do this we introduce the notion of interpolating curves (or McCann interpolants (see McCann
(1997))) in the following definition.

Definition 5.4.5 (Interpolating curves). Consider that µ, ν0, ν1 ∈ P2(Rd), where µ is a regular
measure. If T0,T1 are the optimal transport maps between µ and ν0, ν1 respectively, then the
interpolating curve (νt)t∈(0,1) between ν0 and ν1 with base µ is defined as

νt :=
(
(1− t)T0 + tT1

)
#
µ

Let us now make some comments on the above definition of interpolating curves. Firstly, it is
now hard to see that if for the base measure holds that µ = ν0, then the above definition is reduced to
the classical definition of geodesic connecting ν0 to ν1. In addition, another interesting observation
is that, in account of the application of the theory for λ-geodesically convex functionals which was
described in Section 5.3, we should define interpolating curves having as base measure any measure
µ ∈P2(Rd), and not just a regular one. This cab be possible, and all of the forthcoming discussion
can be applied in more general settings.

We shall now present an important and useful characterization of interpolating curves.

Proposition 5.4.6. For any interpolating curve, as it described in Definition 5.4.5, and for any
t ∈ [0, 1] it holds that

W2
2 (µ, νt) ≤ (1− t)W2

2 (µ, ν0) + tW2
2 (µ, ν1)− t(1− t)W2

2 (ν0, ν1).

Proof. Since T0,T1 are optimal transport maps between µ and ν0, ν1, due to Brenier’s theorem
(Theorem 3.4.7), we know that each of them are gradient of a convex function, let us say φ0, φ1

respectively. Moreover, we know the convex combination of them is still convex. Thus, (1−t)T0+tT1

is a gradient of (1− t)φ0 + tφ1 and therefore, again thanks to Brenier’s theorem, it is still optimal.
In addition, generally speaking, if f, g : X → Y are two Borel measurable maps between metric

spaces (X , dX ) and (Y , dY), then it holds trivially that

W2
2 (f#µ, g#µ) ≤

∫
X
d2
Y (f(x), g(x))dµ(x).

Employing this observation in our case, we can obtain

W2
2 (ν0, ν1) ≤‖T0 − T1‖2L2(µ).
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Moreover, based on this fact we have that

W2
2 (µ, νt) = ‖(1− t)T0 + tT1‖2L2(µ)

= (1− t)|T0 − Id‖2L2(µ)+‖T1 − Id‖2L2(µ) − t(1− t)|T0 − T1‖2L2(µ)

≤ (1− t)W2
2 (µ, ν0) + TW2

2 (µ, ν1)− t(1− t)W 2
2 (ν0, ν1),

which makes our proof complete.

Now, we are ready to proceed to the definitions of three important functionals, which we will
study in the following.

Definition 5.4.7 (Potential energy). Consider that V : Rd → R∪{+∞} is a lower semicontinuous
and bounded from below functional. The potential energy functional V : P2(Rd) → R ∪ {+∞}
associated with V is defined as

V (µ) :=

∫
Rd
V dµ.

Definition 5.4.8 (Interaction energy). Consider that W : Rd → R∪{+∞} is lower semicontinuous,
even and bounded from below functional. The interaction energy functional W : P2(Rd) →
R ∪ {+∞} associated with W is defined as

W (µ) :=
1

2

∫
W (x1 − x2)dµ⊗ µ(x1, x2).

Notice that the definition of interaction energy makes sense, non only for even functionals. The
assumptions of evenness, comes truly for technical reasons. To be more precise, evenness allow us
to replace the quantity W (x) by W (x) +W (−x)/2 and keep the value of functional invariant.

Definition 5.4.9 (Internal energy). Let u : [0,+∞) → R ∪ {+∞} is a convex and bounded from
below functional such that u(0) = 0 and

lim inf
z→0

u(z)

zα
< −∞, for α >

d

d+ 2
.

Let also u′(∞) = limz→∞
u(z)
z . The internal energy functional E associated with u is defined as

E (µ) :=

∫
u(ρ)L d + u′(∞)µs(Rd),

where µ = ρL d + µs is the Lebesgue decomposition into absolute continuous and singular parts.

Under certain assumptions of V ,W and E , they can be compatible with the distance W2.
Therefore, we can ensure that it is possible to apply the theory which developed in previous section.

The core component of doing this, is nothing more but the definition of interpolating curves.
This fact is witnessed by the following proposition.

Proposition 5.4.10. Consider that λ > 0 and the functionals V ,W and E , as they were defined
in Definitions 5.4.7, 5.4.8 and 5.4.9 respectively. Then the following holds:

(i) The functional V is λ-convex along then interpolating curves in W2(Rd) if and only if V is
λ-convex.

(ii) The functional W is λ-convex along the interpolating curves in in W2(Rd) if and only if W
is λ-convex.



5.4. GRADIENT FLOWS IN WASSERSTEIN SPACE 105

(iii) If the map z 7→ zdu(z−d) is convex and nondecreasing in (0,+∞), then the functional E is
convex along interpolating curves in W2(Rd).

Theorem 5.4.11 (General existence result for gradient flows). Consider that F is either V ,W
or E and is also λ-convex along interpolating curves. Then for every µ ∈ P2(Rd) there exists
gradient flow (µt)t∈[0,1] for F starting from µ in Evolution Variational Inequality sense. Moreover,
the curve (µt)t∈[0,1] is locally absolutely continuous, µt → µ, and if µt is regular for every t ∈ [0, 1],
then it holds

− vt ∈ ∂WF (µt), for a.e. t ∈ [0, 1] (5.40)

where vt is the velocity field related to µt and characterized by

d

dt
µt +∇ · (vtµt) = 0

vt ∈ TanµtP2(Rd) for a.e. t ∈ [0, 1].

Remark 5.4.12 (What kind of equation is satisfied?). So far, we have to understand which kind
of equations is satisfied by the gradient flow µt. As (5.40), witness this is equivalent to compute the
subdifferential of each of one the corresponding functionals at an arbitrary point µ ∈P2(Rd). The
basic idea behind of this calculations is the following. Under suitable smoothness assumptions, we
will focus the equivalence:

v ∈ ∂WF (µ)
smooth⇐⇒ lim

ε→0

F ((Id + ε∇ϕ)#µ)−F (µ)

ε
=

∫
Rd
〈v,∇ϕ〉dµt, (5.41)

for every ϕ ∈ C∞c (Rd) is true for any λ-geodesically convex functional. At this point, let us clarify
why (5.41) is true. For the implication (⇐), let us fix ϕ ∈ C∞c (Rd) and recall that for small
enough ε, the map (Id + ε∇ϕ) is still optimal (see Corollary 3.4.3). Hence, thanks to definition of
subdifferential in Wasserstein spaces, we have

F (µ) + ε

∫
Rd
〈v,∇ϕ〉dµ+ ε2

λ

2
‖∇ϕ‖2L2(µt)

≤ F ((Id + ε∇ϕ)#µ).

Having this relation on the table, we can subtract F (µ) on both sides, divide by ε and letting
ε→ 0. Then the implication follows clearly.

For the implication (⇒), let us pick ν ∈P2(Rd), and let T : Rd → Rd optimal transport map
between µ and ν. Thanks to Brenier’s theorem (Theorem 3.4.7), we know that T is the gradient
of a convex function, let us say φ. Under this perspective, we define ϕ(x) := φ(x)− |x|2/2, and we
observe that µt can be rewritten as

µt =
(
(1− t)Id + tT

)
#
µ =

(
(1− t)Id + t∇ϕ

)
#

= (Id + t∇ϕ)#µ.

Moreover, upon to λ-convexity assumption on F , we have

F (ν) ≥ F (µ) +
d

dt

∣∣∣
t=0

F (µt) +
λ

2
W2(µ, ν).

Hence, since we have that

d

dt

∣∣∣
t=0

F (µt) =

∫
Rd
〈v,∇ϕ〉dµ,

thanks to arbitrariness of ν, we conclude that v ∈ ∂WF (µ).



106 CHAPTER 5. GRADIENT FLOWS IN METRIC SPACES

Proposition 5.4.13 (Gradient flow w.r.t. V ). Consider that V : Rd → Rd is λ-convex and C1.
Let also V defined according to Definition 5.4.7 and a regular measure µ ∈ P2(Rd) such that
V (µ) < ∞. Then ∂W is non-empty if and only if ∇V ∈ L2(µ). In such a case, ∇V = ∂WV (µ).
Moreover, if (µt)t∈[0,1] is a gradient flow of V , constructed by regular measures, it solves the equation

d

dt
µt = ∇ · (∇V µt), in distributional sense.

Proof. Let us pick up ϕ ∈ C∞c (Rd) and observe that

lim
ε→0

V ((Id + ε∇ϕ)#µ− V (µ)

ε
= lim

ε→0

∫
Rd

V ◦ (Id + ε∇ϕ)− V

ε
dµ =

∫
Rd
〈∇V ,∇ϕ〉dµ.

Thusly, taking into account (5.41), the desired result follows. This fact makes our sketch of proof
complete.

Proposition 5.4.14 (Gradient flow w.r.t. W). Consider that W : Rd → Rd is λ-convex and
C1. Let also W defined according to Definition 5.4.9 and a regular measure µ ∈ P2(Rd) such
that W (µ) < ∞. Then ∂WW (µ is non-empty if and only if (∇W ) ∗ µ ∈ L2(µ). In such a case
∂WW (µ) = (∇W ) ∗ µ. Moreover, if (µt)t∈[0,1] is a gradient flow of V , constructed by regular
measures, it solves the non local equation

d

dt
µt = ∇ · ((∇W ∗ µt)µt), in distributional sense.

Proof. Let us pick up ϕ ∈ C∞c (Rd) and define µε := (Id + ε∇ϕ). Then, we observe that

W (µε =
1

2

∫
Rd×Rd

W (x− y)dµε(x)dµε(y) =
1

2

∫
Rd×Rd

W (x− y + ε(∇ϕ(x)−∇ϕ(y)))dµ(x)dµ(y)

=
1

2

∫
Rd×Rd

W (x− y)dµ(x)dµ(y) +
ε

2

∫
Rd×Rd

〈∇W (x− y),∇φ(x)−∇(y)〉dµ(x)dµ(y) + o(ε).

Moreover, we observe that∫
Rd×Rd

〈∇W (x− y),∇ϕ(x)〉dµ(x)dµ(y) =

∫
Rd

〈∫
Rd
∇W (x− y)dµ(y),∇ϕ(x)

〉
dµ(x)

=

∫
Rd
〈∇W ∗ µ(x),∇ϕ(x)〉dµ(x).

In the same fashion, we can obtain∫
Rd×Rd

〈∇W (x−y),∇ϕ(y)〉dµ(x)dµ(y) =

∫
Rd
〈∇W∗µ(y),∇ϕ(y)〉dµ(y) =

∫
Rd
〈∇W∗µ(x),∇ϕ(x)〉dµ(x).

So, employing (5.41), the desired result follows, and concludes our sketch of proof.

Proposition 5.4.15 (Gradient flow w.r.t. E). Consider that u : [0,+∞) → R is a convex C2

and bounded from below functional satisfying equations A,B. Let also µ = ρL d ∈ P2(Rd) be an
absolutely continuous measure with smooth density. Then ∂WE (µ) = ∇(u′(ρ)). Moreover, if µt is
a gradient flow for E and absolutely continuous with smooth density ρt for every t > 0, then the
map t 7→ ρt solves the equations

d

dt
ρt = ∇ · (ρt∇(u′(ρt))).
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Proof. Let us pick ϕ ∈ C∞c (Rd) and define µε := (Id + ε∇ϕ)#µ. Then for small enough ε, µε is
absolutely continuous. Moreover, up to a change of variable formula, its density ρε satisfies the
formula

ρε(x+ ε∇ϕ(x)) =
ρ(x)

det(Id + ε∇2ϕ(x))
.

Then, using the fact that
d

dε

∣∣∣∣
ε=0

(det(Id + ε∇2ϕ(x))) = ∆ϕ(x),

we can obtain

d

dε

∣∣∣∣
ε=0

E (µε) =
d

dε

∣∣∣∣
ε=0

∫
Rd
u(ρε(y))dy

=
d

dε

∣∣∣∣
ε=0

∫
Rd
u
( ρ(x)

det(Id + ε∇2ϕ(x))

)
det(Id + ε∇2ϕ(x)))dx

=

∫
Rd
−ρ′(ρ)∆ϕ+ u(ρ)∆ϕdx =

∫
Rd
〈∇(ρu′(ρ)− u(ρ)),∇ϕ〉dx

=

∫
Rd
〈∇(u′(ρ)),∇ϕ〉ρdx.

Under this considerations, the desired result follows from equivalence (5.41), which makes our
sketch of proof complete.
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