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Preface

This doctoral thesis is a work of research into a broad spectrum of diverse fields

with symbolic logic serving as the focal point. We begin this introduction in reverse

order so that the interdisciplinary nature of the thesis becomes clearer. The third

and final part of the thesis deals with Explainable Artificial Intelligence (XAI);

specifically, it deals with symbolic artificial intelligence. We created an early form

of an information system which could produce explanations in the framework of

statistical hypothesis testing. While our model could be applied primarily on clas-

sic artificial intelligence algorithms we chose to conduct our proof of concept on

the field of hypothesis testing, as hypothesis tests are the most commonly applied

statistical methods in medical research. Therefore, it is very useful in order to both

minimize errors in interpreting statistical results and improve the ways of interpret-

ing those results. The first part of this thesis deals with theory behind practice.

We examine how we could expand the expressing capabilities of already existing

logical systems by syntactically expanding each logical system and, furthermore,

creating new semantics by utilizing semantic topologies. Finally, the second part of

the thesis deals with the concept of generic constructions, a tool of mathematical

logic which provides both syntactic and semantic constructions.
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Introduction

In Chapter 1 we present the fundamental concepts used in this work. We present the

basic concepts of category theory, topology, ultraproducts, as well as an extensive

introduction to institutional theory.

In Chapter 2 titled Aristotelian Institution-Independent Square we introduce

the square of opposition, the concept of the Rhombus of Opposition and we examine

basic cases of morphology change of the squares of opposition inside and between

logical systems. In the third section of the second chapter, we use the concept of

the Galois Connection to show the equilibrium that one can create between the

standard square of sentences and the internal semantics of Boolean connectives,

using them at a meta-level. Finally, we introduce the concept of a dual square that

can give us not only squares for propositions but also squares for sets of sentences.

Since quite a few logical systems do not have internal connectives, it is not useful

to talk about proposition graphs, but about sets of models and of sets of sentences.

In Chapter 3 titled Topology, Topological Semantic and topological Ultra-

products via/for Institution-independent model theory, we introduce the concept

of topological semantics at the level of abstract model theory provided by the

institution-independent framework. Our abstract topological logic framework pro-

vides a method for systematic topological semantics extensions of logical systems

from computer science and logic. Furthermore, it equips us with several appropriate

theoretical model tools for proving semantic completeness on arbitrary Institutions

via topological approach. We also extend the institution-independent method of

xi



xii Introduction

ultraproducts to topological semantics and prove a fundamental preservation re-

sult for abstract topo-modal satisfaction. Furthermore, we prove a fundamental

preservation result for abstract topo-modal satisfaction.

In Chapter 4 we study and compare basic characteristics for definable sets

in generic structures. We introduce calculi for (type)-definable sets allowing for

comparing their cardinalities. Using these calculi we characterize the possibility to

construct a generic structure of a given generative class.

In Chapter 5 we present an early version of a decision-making ”eco”system.

We refer to it as an “eco”system because it is primarily based on mathematical

logic and combines concepts and principles from the fields of statistics, decision

theory, artificial intelligence and modelling of human behavior. The primary goal

of the proposed approach is to address errors that occur resulting from the misuse

of statistical methods. In practice, such errors often occur either owing to the

use of inappropriate statistical methods or wrong interpretations of results. The

proposed approach relies on the LPwNF (Logic Programming without Negation

as Failure) framework of non-monotonic reasoning as provided by Gorgias. The

proposed system enables automatic selection of the appropriate statistical method,

based on the characteristics of the problem and the sample. The expected impact

could be twofold: it can enhance the use of statistical systems like R and, combined

with a Java-based interface to Gorgias, make non-monotonic reasoning easy to use

in the proposed context.



Chapter 1

Prerequisite

1.1. Category Theory

We begin this chapter with an example from literature. Readers claim that books

should be read in their original language in order to grasp subtle nuances or word-

play. Mathematics faces a similar concern; the language in which a theory is written

is of major significance concerning the expressing capabilities of the theory itself.

The choice of language becomes even more problematic when dealing with Meta-

mathematics.

Category theory is a relatively new area of meta-mathematics that comes in

addition to the standard set theoretic approach to provide greater mathematical

expression.Category theory is a relatively recent development in meta-mathematics

[52]; it supplements classic set theory and offers additional tools for expressing

mathematical concepts. It is a language and, therefore, it is highly abstract; how-

ever, it can describe mathematical entities in a succinct and economical manner.

To make this clear to the reader, we will present an example: F. William Law-

vere wrote a paper [43] in which he showed how to describe many of the classical

paradoxes and incompleteness theorems in an universal way.

Theorem 1.1.1 (Lawvere’s fixed-point theorem [43]). In a cartesian closed cate-

gory, if there is a point-surjective map φ : A→ BA then every morphism f : B → B

has a fixed point s : 1→ B f(s) = s.

1
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This theorem implied that by satisfying certain conditions in a cartesian closed

category paradoxical phenomena can occur.

Theorem 1.1.2 (Diagonal Theorem [76]). If Y is a set and there exists a set T

and a function f : T × T → Y such that all functions g : T → Y are representable

by f (there exists a t ∈ T such that g(∗) = f(∗, t)) then all functions ψ : Y → Y

have a fixed point.

We know, however, that for any set Y with two or more elements, there exist

functionsY → Y with no fixed points. If we look at this theorem, then we will find

that we can very easily come to obvious contradictions and paradoxes. It is here

that we get into trouble, ignoring the category theory which is necessary as our

language. Some instances of Diagonal Theorems [76] are the following:

• Godel’s First Incompleteness Theorem;

• Godel-Rosser’s Incompleteness Theorem;

• Tarski’s Theorem

• Parikh Sentences

• The Recursion Theorem

• Rice’s Theorem

• Von Neumann’s Self-reproducing Machines

The following is the definition of a category:

Definition 1.1.3 (Category). A category C consists of the following :

• Objects : A,B,C, . . .

• Arrows or Morphisms : f, g, h, . . .

that satisfy the following axioms :

(1) for every arrow f , there exist objects

A = dom(f), B = codom(f)

called the domain and the codomain of f , and we write

f : A→ B
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(2) Let f : A → B and g : B → C such that codom(f) = dom(g), then there

exists an arrow/morphism h

h = g ◦ f : A→ C

called the composite of f and g.

A B

C

f

g
g ◦ f

Figure 1. The scheme of arrow composition.

(3) For every object A, there exists an arrow

1A : A→ A

called the identity arrow of A

(4) For all f : A→ B, g : B → C, h : C → D

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(5) and for all f : A→ B

f ◦ 1A = f = 1B ◦ f

A category is everything that can satisfy the definition above. Let us illustrate

this concept by two elementary and fundamental examples.

Example 1.1.4 (Sets). The first example concerns the category of sets. The

objects of this category are the sets and the morphisms are the functions between

the sets – where these are defined. It is obvious that the identity arrow or identity

morphism is the identity function of the set onto itself. The triangle in Figure 2

represents the usual synthesis of functions.

Example 1.1.5 (Poset). A slightly more complex category is that of partial order

sets – Poset. A space is called partially ordered when we can define a partial order

in this space. What special feature does this category have? It is one of the most

typical examples of categories and it will help us understand why the language of
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A B

C

f

g
g ◦ f

Figure 2

the category theory is what we will be using in the rest of the chapter. Morphisms,

namely the arrows, are functions that preserve the structure.

Another concept in category theory that plays a fundamental role is that of

the functor. The concept of functor is a generalization of the concept of function

between classes of structures; it is morphism between categories.

Definition 1.1.6 (Functor). Let C,D be two categories, then a functor F with

domain C and codomain D consists of two suitably related functions:

• the object function F , which assigns an object F (X) of D to each object X

of C;

• the arrow function F which assigns the F (f) : F (X) → F (Y ) of D to each

morphism f : X → Y of C such that F (1X) = 1F (X) and:

A B F (A) F (B)

C F (C)

C D

g ◦ f

f

g
F (g ◦ f)

F (f)

F (g)

F

Figure 3. The fundamental schemes of Functors.

Example 1.1.7 (Power Set Functor). One of the most simple examples is the

power set functor P : Set → Set. The object function assigns its powerset P(X)

for each set X and the morphism function assigns the P(f) : P(X) → P(Y ) to

each f : X → Y . This sends every subset Z ⊆ X to its image F (Z) ⊆ Y .
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The notion of functor came up in algebraic topology where geometric properties

are described by means of algebraic invariants.

Example 1.1.8. The singular homology in a given dimension n assigns an abelian

group Hn(X) to each topological space X, the n-th homology group of the space X.

Additionally, it assigns a corresponding homomorphism Hn(f) : Hn(X) 7→ Hn(Y )

of groups to each continuous map f : X 7→ Y of spaces, and this in such a way that

Hn acts as a functor Hn : Top 7→ Ab.

Example 1.1.9. Functors also arise naturally in algebra. Let K be a commutative

ring, then the set of all non-singular n× n matrices with entries in K is the usual

general linear group GLn(K). For each homomorphism f : K 7→ K ′ of rings it

produces a homomorphism GLn(f) : GLn(K) 7→ GLn(K ′) of groups. This defines

a functor GLn : CRng 7→ Grp for each n ∈ N∗.

Category theory is an algebra of functions and as such it has incorporated many

concepts whose presentation goes beyond the aims of this chapter. The following

two definitions, of the initial and the final object, are two easy examples, but they

illustrate the different reading that category theory offers.

Definition 1.1.10 (Initial object). An object I is initial in a category C if for

every object X in C there exists a unique arrow in C from it to X. Initial objects

are unique up to isomorphism.

Definition 1.1.11 (Terminal object). An object is terminal (or final) T in a cat-

egory C if for every object X in C there exists a unique arrow in C from X to it.

Terminal objects are unique up to isomorphism.

Example 1.1.12. For example, the initial object in a preorder is the least element,

if it exists; the terminal object is the top. In Set the initial object is the empty set

∅, while the terminal object is the singleton set.

The notions of pullback, pushout, product or co-product come up very often in

mathematics and logic.

Definition 1.1.13 (Pullback). In any category C, given arrows f, g with cod(f) =

cod(g) the pullback of f and g consists of arrows such that f ◦ p1 = g ◦ p2 and is

universal with this property. That is, given any z1 : Z 7→ A and z2 : Z 7→ B with
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B

A C

g

f

Figure 4

P B

A

p2

p1

Figure 5

f ◦ z1 = g ◦ z2, there exists a unique z : Z 7→ P with z1 = p1 ◦ u and z2 = p2 ◦ u.

The following diagram describes the situation:

Z

A×C B B

A C

z2

z1

<z1,z2>

p2

p1 g

f

Figure 6

Definition 1.1.14 (Pushout). In any category C, given arrows f, g with dom(f) =

dom(g) the pullback of f and g consists of arrows such that p1 ◦ f = p2 ◦ g and is

B

A C

g

f

Figure 7

universal with this property. That is, given any z1 : A 7→ Z and z2 : B 7→ Z with

z1 ◦ f = z2 ◦ g, there exists a unique z : P 7→ Z with z1 = u ◦ p1 and z2 = u ◦ p2.

The following diagram describes the situation:
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P B

A

p2

p1

Figure 8

Z

A×C B B

A C

z2

z1

<z1,z2>

p2

p1 g

f

Figure 9

Definition 1.1.15 (Product). Let C be category and X,Y be objects of C. Then

a product for the objects X and Y is an object O in C with ”projection” arrows

π1 : O → X,π2 : O → Y and arrows f1 : S → X, f2 : S → Y such that for

any object S there is a unique arrow u : S → O such that the following diagram

commutes:

S

X O Y

u
f1 f2

π1 π2

Figure 10. The fundamental scheme for the product

Example 1.1.16. In Set the usual Cartesian product treated as the set X ×Y of

pairs, i.e. X × Y = {< x, y >= {x, {x, y}} | x ∈ X & y ∈ Y }, together with the

obvious projections π1 (< x, y >) = x & π2 (< x, y >) = y, form a product.

Definition 1.1.17 (Co-product). Let C be category and X,Y be objects of C.

Then a coproduct for the objects X and Y is an object O in C with ”injection”

arrows ι1 : X → O, ι2 : Y → O such that for any object S and arrows f1 : X →
S, f2 : Y → S there is a unique arrow v : O → S such that the following diagram

commutes:
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S

X O Y

v
f1 f2

ι1 ι2

Figure 11. The fundamental scheme for the coproduct

Example 1.1.18. In Set let X,Y be sets, let X ⊕ Y be the disjoint union of the

sets, i.e the set with members < x, 0 > for x ∈ X and < y, 1 > for y ∈ Y . Let the

injection arrow ι1 : X 7→ X ⊕ Y be the function ι(x) =< x, 0 > and respectively

ι2 : Y 7→ X ⊕ Y be the function ι2(y) =< y, 1 >. Then the X ⊕ Y is a coproduct

of X and Y .

Definition 1.1.19 (Diagram). Let I,C be two categories, such that I is a small

category. Then by a diagram in a category C, we denote a functor

(1.1) X : I 7→ C

and we say that I is the index category of X and that X is an I-diagram.

Definition 1.1.20 (Colimit). Let X be an I-diagram in the category C. Then the

colimit of the functor X is an object

(1.2) colimIX

of C that satisfies the following properties:

(1) For every object i ∈ I, there is a morphism in C

(1.3) fi : X (i)→ colimIX

and for every morphism φ : i→ i′ in I holds fi = fi′ ◦X (φ), i.e. the following

commutes
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X (i)

colimIX

X (i′)

fi

X (φ)

fi′

Figure 12

(2) Given an object Y in C and, for every object i ∈ I, a morphism in C, fi :

X (i)→ Y such that, for every morphism φ : i→ i′ ∈ I gi = gi′ ◦ X (φ), there

exists a unique morphism in C

(1.4) f : colimIX → Y

such that for all objects i ∈ I gi = f ◦ gi

colimIX Y

X (i)

f

figi

Figure 13

According to (i) and (ii) the colimit is well-defined up to canonical isomorphism.

Definition 1.1.21 (Natural Transformation). Let C,B be two categories and S, T

be two functors S : C 7→ D, T : C 7→ D. A natural transformation τ : S ⇒ T is

an action which assigns an arrow τc : S(c)→ T (c) of the category B to each object

c ∈ C such that for every morphism f : c → c′ in C the diagram in Figure 14 is

commutative.

Therefore a natural transformation is a set of morphisms translating (mapping)

the picture S to the picture T with all squares and parallelograms being commu-

tative. Moreover, a natural transformation is often called morphism of functors

[42].

A natural transformation is often called morphisms of functors.
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c S(c) T (c)

c′ S(c′) T (c′)

f

τc

τc′

S(f) T (f)

Figure 14. Fundamental Square of Natural Transformation

a S(a) T (a)

b S(b) T (b)

c S(c) T (c)

f

h

g

S(f)

S(h)

S(g)

T (f)

T (h)

T (g)

ra

rb

rc

Figure 15

Example 1.1.22. The determinant is a natural transformation. Let detKM be

the determinant of the n× n matrix M with entries in the commutative ring K. If

K∗ denotes the group of units of K, then M is non-singular when detKM is a unit,

and detK is a morphism GLnK 7→ K∗ of groups. Since the determinant is defined

by the same formula for all rings K, each morphism f : K 7→ K ′ of commutative

rings gives a commutative diagram, i.e.

GLnK K∗

GLnK
′ K ′

GLnf

detK

detK′

f∗

Figure 16

This means that the map det : GLn 7→ ( )∗ is natural between the functors

CRng → Grp.

Example 1.1.23. Let Id be the identity functor on Set and ∆ the diagonal functor

which assigns the (X,X) to each set X and the (f, f) to each function f . Then
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there is a natural transformation

(1.5) δ : Id 7→ ∆

such that δX : X 7→ X ×X with x 7→ (x, x).

This concludes the section presenting the basic concepts of category theory.

We refer the reader to the bibliography at the end of the thesis for further study

on category theory.

1.2. Preliminaries from Topology

Topology is a well defined mathematical discipline and a major branch of math-

ematics with enormous influence on many other branches of mathematics. The

theory of topological spaces [46] can appear in an introductory analysis lesson, a

calculus lesson, a mathematical logic lesson, a real or a functional analysis, etc.

Our aim is to present the basic definitions and basic results of topological space

theory in order to understand our work in topological semantics.

Definition 1.2.1 (Topology). Let X be a set and τ be a family of subsets of X.

Then τ is called a topology on X if :

(1) ∅ ∈ τ ;

(2) X ∈ τ ;

(3) For any family {Ai}i∈I of subsets of X the arbitrary union
⋃
i∈I

Ai belongs to

τ ;

(4) For any finite family A1, . . . , An of subsets of X the intersection

n⋂
i=1

Ai belongs

to τ ;

Definition 1.2.2. Suppose that (X, τ) is a topological space and R is an equivalent

relation on X. Let X/R denote the set of R-equivalence classes. If we define the

function f from X to X/R by f(x) = x, where x is the equivalent class of x ∈ X,

and if we define a subset U of X/R to be open if f−1(U) is open to X, then we

obtain a topology called quotient topology.

The ultraproduct construction has a long history. The beginning dates to the

early 20th century with the work of T. Skolem who built non standard models
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of arithmetic. The breakthrough however came when J. Los published his funda-

mental theorem of ultraproducts; after that the fundamental work of H.J. Keisler

and S. Shelah came to establish the theory of ultraproducts as a separate field in

mathematical logic.

Proposition 1.2.3. Let (X, τ) be a topological space, let R be an equivalence rela-

tion on X, and suppose that X/R is the quotient topology, then the map

(1.6) f : (X, τ) 7→ (X/R, τ ′)

is continuous.

Definition 1.2.4 (Filter). Let X be a set then a filter on P is a collection F of

subsets of X satisfying :

(1) X ∈ F ;

(2) If A ⊆ B and A ∈ F then B ∈ F ;

(3) If A,B ∈ F then A ∧B ∈ F ;

A filter F is called proper if ∅ 6∈ F ; A ultrafilter on X is a proper filter on X that

is not contained in any other proper filter on X.

Example 1.2.5 (Power set lattices). In power set lattices, the ultrafilters are

precisely the prime ones. Filters F are prime on I such that, if for every A,B ⊆ I,

if A ∪B ∈ F , then either A ∈ F or B ∈ F .

Definition 1.2.6 (Finite Intersection Property - FIP). If B is a family of subsets

of a set X, B is said to satisfy the Finite Intersection Property – FIP – if any finite

intersection of elements of B is non empty.

Let L be an alphabet of finitary relation and function symbols, the L-structure

X consists of an underlying set X and an interpretation of the relation and function

symbols in the standard way.

Definition 1.2.7 (Direct Product). Let 〈Xi : i ∈ I〉 be a family of L-structures,

then F be a filter over I, then the direct product denotes as∏
i∈I

Xi

and the ith coordinate if an element a denotes as a(i).
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Definition 1.2.8 (Reduct Product). Let F be a filter over I and a, b ∈
∏
i∈I

Xi,

then we define the equivalence relation

a ∼F b⇔ {i ∈ I : a(i) = b(i)}

Also, for every f ∈
∏
i∈I Xi we denote f/F := {b : f ∼F b} as the equivalence

class and
∏
F
Xi =

∏
i∈I

Xi/F =

{
f/F : f ∈

∏
i∈I

Xi

}
as the reduct product.

Let {Xi in ∈ I} be a collection of relational structures and let F be an ultrafilter

on I. Then we can use the same language L to make statements about
∏
i∈I

Xi/F

as we have to describe properties for the structures from which the reduct product

is built.

Ultraproducts from a categorical view. Let C be a category with small prod-

ucts, denoted as
∏
i∈I Ai, and let {Ai}i∈I be a family of objects, then each filter F

over the set of indices I defines a functor AF : F 7→ C such that

AF (J ⊆ J ′) =
∏
i∈J′

Ai 7→
∏
i∈J

Ai

where pJ′,J is the canonical projection. Then a filtered product of {Ai}i∈I modulo

F is a colimit µ : AF ⇒
∏
F Ai of the functor AF . Filtered products, when they

exist, are unique up to isomorphism. If F is an ultrafilter, then the filtered product

modulo F is called an ultraproduct.

The filtered product construction from classical model theory has been probably

defined categorically for the first time in [10] and has been used in some abstract

model theoretic works, such as [7].

Let F be a filter over X and Y ⊆ X. The reduction F to Y is denoted as F|Y
and is defined as

F|Y = {Y ∩B | B ∈ F}

We say that a class of filters F is closed under reductions if and only in F|X ∈ F

for every F ∈ F and X ∈ F .

Proposition 1.2.9. Let F be a filter over I and {Ai}i∈I a family of objects in a

category C with small products and direct colimits. For each J ∈ F . the filtered

product
∏
F|J

Ai and
∏
F
Ai are isomorphic.
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Definition 1.2.10 (Preservation of Categorical Filtered Product). Consider a func-

tor G : C′ 7→ C and F a filter over a set I. Then G preserves the filtered product

µ′ : BF ⇒
∏
F
Bi ,i.e. µ′G : BF ;G ⇒

∏
F G(Bi) is also a filtered product in C of

{G(Bi)}i∈I . For any class F of filters, we say a functor preserves F-filtered products

if it preserves all filtered products modulo F for all F ∈ F.

Definition 1.2.11 (Lifting of Categorical Filtered Products). Let F be a class of

filters closed under reductions. A functor G : C′ → C lifts F-filtered products when

for each F ∈ F, and each filtered product µ : AF ⇒
∏
F
Ai (where {Ai}i∈I is a

family of objects in C), for each B ∈ C′ such that G(B) =
∏
F
Ai there exists J ∈ F

and {Bi}i∈I a family of objects in C′ such that G(Bi) = Ai for each i ∈ J and such

that there exists a filtered product µ′ : BF|J ⇒ B such that µ′J′ = µJ′ for each

J ′ ∈ F|J .

1.3. Institution Theory

Institution theory [24, 11] is an important trend in so-called Universal Logic [7]. It

is a categorical abstract model theory which formalizes the notion of logical systems,

including syntax, semantics and the satisfaction relation between them. One of

the many achievements of Institution theory has been to provide a conceptually

elegant and unifying definition of the nature of logical systems [24]. It provides

a complete form of abstract model theory, including signature morphisms, model

reducts, mappings between logics noted as Institution-independent model theory.

From the Universal Logic view, Institution independent model theory signfies the

development of model theory in the very abstract setting of arbitrary institutions,

which provides an efficient framework for doing model theory by translation [17]

or borrowing via a mapping theory (homomorphisms) between institutions.

1.3.1. Definition of Institution. The purpose of this section is to provide the

definition of fundamental concepts of institution theory that will be subsequently

applied in our study of the “square of oppositions”.

Definition 1.3.1 (Institutions). An institution I =
(
SigI ,SenI ,ModI , |=I

)
con-

sists of:

(1) a category SigI , the objects of which are called signatures,
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(2) a functor SenI : SigI → Set such that it assigns a set the elements of which

are called sentences over each signature,

(3) a functor ModI :
(
SigI

)op → CAT giving a category the objects of which

are called Σ-models and the arrows of which are called Σ-morphisms for each

signature Σ, and

(4) a relation |=IΣ⊆
∣∣ModI (Σ)

∣∣×SenI (Σ) for each Σ ∈
∣∣SigI∣∣, called Σ-satisfaction

such that for each morphism φ : Σ→ Σ′ in SigI , the satisfaction condition

M ′ |=IΣ′ SenI(φ)(ρ) iff ModI(φ)(M ′) |=IΣ ρ

holds for each M ′ ∈
∣∣∣ModI

∣∣∣ and ρ ∈ SenI(Σ).

Sig

Set

CATop

( M
od
I
) op

S
en I

|=I

(a) Institution fundamental tri-

angle

Σ
∣∣∣ModI(Σ)

∣∣∣ SenI(Σ)

Σ′
∣∣∣ModI(Σ′)

∣∣∣ SenI(Σ′)

φ

|=IΣ

|=IΣ′

ModI(φ) SenI(φ)

(b) Institution fundamental square

Figure 17. Institution fundamental schemes

In the following we will examine one of the most useful examples of institution,

that of standard Propositional Logic (PL).

Example 1.3.2 (Propositional Logic). The institution PL of Propositional Logic

is defined in the following way:

• The category SigPL has sets of propositional variables as objects and the

arrows represent the functions between them.

• A signature morphism σ is a mapping between the propositional variables.
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• The functor SenPL maps every signature Σ to SenPL (Σ) which consists of

propositional formulas of propositional variables from Σ and connectives for

conjunction, disjunction, implication and negation.

• The SenPL(σ) is the extension of σ to all formulas.

• Models of Σ are truth valuations, i.e. mappings from Σ into the standard

Boolean algebra Bool = {0, 1}.

• A model morphism between Σ-models M and M ′ exists if and only if for all

p ∈ Σ, M(p) ≤M ′(p).

• Given σ : Σ1 → Σ2 and a Σ2-model M2 : Σ2 → Bool, then the reduct M2 �σ

is the composition M2 ◦ σ.

• M |=PL
Σ φ if and only if φ evaluates 1 under the standard extension of M to

all formulas.

Example 1.3.3 (Temporal Logic). The following example is a simplified version of

Temporal Logic (TL). The following is its formalization in the theory of institutions.

• The signatures SigTL consist of sets of actions;

• The models ModTL(Σ) consist of sets of runs, which are finite or infinite

sequences of (sets of) actions;

• The sentences Sen(Σ) consist of sets of sentences which are built up from

atomic sentences p using the standard propositional and temporal connectives;

• a satisfaction relation M |=TL
Σ φ holds if and only if φ holds at the beginning

of every run in M .

This section deals with examples of institutions. Next to propositional logic,

the most standard example of institution is First Order Logic FOL.

Example 1.3.4 (First Order Logic). A signature in FOL is a triple (S, F, P ) and

consists of :

• S; the set of sort symbols, for example S = {N,Z} where N is denoting the

natural numbers (N) and Z the integers (Z);

• F = {Fw→s | w ∈ S∗, s ∈ S}; a family of sets of operation symbols such

that Fw→s denotes the set of operations with arity w and sort s for example

FNN→N = {+}, FZZ→Z = {+,−};
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• P = {Pw | w ∈ S∗}; a family of set relation symbols where Pw denotes the set

of relations with arity w. For example PNN = PZZ = {≤} or Pw = ∅.

The models of FOL are related with the sort symbols in a natural way and the

sentences are the standard expansion of PL. Furthermore, the institution of PL

can be seen as a sub-institution of FOL obtained by restricting the signatures to

those with an empty set of sort symbols.

Example 1.3.5 (Weak Propositional Logic). The weak propositional logic (WPL)

designates a variation of Propositional Logic in which the sentences are the same

as in PL, but the models are valuations M : Sen(P ) 7→ {0, 1} with the standard

truth table semantics of all Boolean connectives except negation, i.e.:

• M(φ ∧ ψ) = 1 if and only if M(φ) = M(ψ) = 1;

• M(φ ∨ ψ) = 0 if and only if M(φ) = M(ψ) = 0;

• if M(φ) = 1 then M(¬φ) = 0;

Example 1.3.6 (Modal First Order Logic). The last example is the standard

Modal First Order Logic (MFOL) with modalities �,♦ and Kripke semantics.

The MFOL signatures are sextuples (S, S0, F, F0, P, P0), where (S, F, P ) is the

signature of FOL and (S0, F0, P0) is a sub-signature of (S, F, P ) of rigid symbols.

An MFOL model (W,R), called a Kripke model, consists of

• a family W = {Wi}i∈IW of possible worlds, which are models in FOL;

• a binary relation R ⊆ IW × IW between the possible worlds such that the

following sharing constraint holds: ∀i, j ∈ IW we have that W x
i = W x

j for

each rigid x.

The satisfaction of MFOL sentences by the Kripke models is defined in the

following way:

(1.7) (W,R) |= φ ⇔ (W,R) |=i φ ∀i ∈ IW

where (W,R) |=i φ is defined by induction:

• (W,R) |=i φ if and only if Wi |=FOL φ for all atom φ and each i ∈ IW ;

• (W,R) |=i φ ∧ ψ if and only if Wi |=FOL φ and Wi |=FOL ψ;

• (W,R) |=i �φ if and only if Wi |=k φ for < i, k >∈ R;



18 1. Prerequisite

• (W,R) |=i ∀Xφ if and only if (W ′, R) |=i φ for all expansion (W ′, R) of (W,R)

to a Kripke model;

• ♦φ is an abbreviation of ¬�¬φ;

Like in PL we get the institution of Modal Propositional Logic (MPL) as a sub-

institution of MFOL defined by the signatures with an empty set of sort symbols

and an empty set of rigid relation symbols.

1.3.2. Morphisms and Comorphisms. One of the basic notion in the Insti-

tution Theory is the morphism of two institutions. The concept of institution

morphism is formalizing the mapping from a more complex to a simpler institu-

tion.

Definition 1.3.7 (Institution Morphism). Let I and I ′ be two institutions, then

an institution morphism Φ : I → I ′ consists of:

(1) a functor Φ : Sig → Sig′ translating I-signatures to I ′-signatures;

(2) a natural transformation α : Φ;Sen′ ⇒ Sen, as a sentence translation αΣ :

SenI
′
(Φ(Σ))→ SenI(Σ);

(3) a natural transformation β : Mod ⇒ Φop; Mod′, as a model translation

βΣ : ModI(Σ)→ModI
′
(Φ(Σ));

such that the following satisfaction condition holds

(1.8) m |=IΣ αΣ(e′) iff βΣ(m) |=I
′

Φ(Σ) e
′

for any Σ-model m from I and any Φ(σ)-sentence e′ from I ′

Figures 19a and 19b show a representation of the natural transformations αΣ

and βΣ. The institution morphisms are suitable to formalize ”forgetful” maps

between more complex and simpler institutions.

Example 1.3.8. A first example is a morphism from FOL to PL. This morphism

maps any first-order logic signature to its set of sentences, because each sentence

can be regarded as a propositional variable in a propositional logic signature. Also

the αΣ(ρ) is just the first-order sentence ρ and βΣ(M) is the propositional logic

model consisting of all Σ-sentences that are true in M .
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SenI
′
(Φ(Σ)) SenI(Σ)

SenI
′
(Φ(Σ′)) SenI(Σ′)

αΣ

αΣ′

SenI
′
(Φ(φ)) SenI(φ)

(a) First Morphism square

ModI(Σ′) ModI
′
(Φ(Σ′))

ModI(Σ) ModI
′
(Φ(Σ))

βΣ′

βΣ

ModI(φ) ModI
′
(Φ(φ))

(b) Second Morphism Square

Figure 18. Fundamental Schemes

Example 1.3.9 (The morphism between FOL and MFOL.). Regarding the def-

inition of these two institutions we can define the morphism Φ : FOL 7→MFOL

which maps the FOL− (S, F, P ) signature to the MFOL− (S, S, F, F, P, P ) sig-

nature, such that the natural transformation α erases the modalities from the sen-

tences.

By reversing the translation of the signatures we get the concept of comorphism

of institutions which is formalizing the embedding of a simpler institution into a

more complex one.

Definition 1.3.10 (Institution Comorphism). Let I ′ and I be institutions, then

an institution comorphism Φ : I ′ → I consists of:

(1) a functor Φ : Sig′ → Sig translating I ′ signatures to I signatures;

(2) a natural transformation α : Sen′ ⇒ Φ;Sen, as a sentence translation αΣ :

SenI
′
(Σ)→ SenI(Φ(Σ));

(3) a natural transformation β : Φop; Mod′ ⇒Mod, as a model translation/reduct

βΣ : ModI(Φ(Σ))→ModI
′
(Σ);

such that the following satisfaction condition holds

(1.9) m |=IΦ(Σ) αΣ(e) iff βΣ(m) |=I
′

Σ e
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for any Φ(Σ)-model m from I and any Σ-sentence e from I ′.

SenI(Φ(Σ)) SenI
′
(Σ)

SenI(Φ(Σ′)) SenI
′
(Σ′)

αΣ

αΣ′

SenI
′
(Φ(φ)) Sen(φ)

(a) First Comorphism square

ModI
′
(Σ′) ModI(Φ(Σ′))

ModI
′
(Σ) ModI(Φ(Σ))

βΣ′

βΣ

ModI(φ) Mod′(Φ(φ))

(b) Second Comorphism square

Figure 19. Fundamentals Schemes

Example 1.3.11. Reversing Example 1.3.8, the embedding of PL into FOL can

be regarded as a comorphism that interprets any set of propositional variables as

a first-order signature that has only relation symbols of arity zero.

1.3.3. Galois Connection. Let Σ be a signature in an arbitrary institution

I =
(
SigI ,SenI ,ModI , |=I

)
. If E is set of sentences, then the models of E are

the a set of models such that M |= φ for every sentence in E. Moreover, the theory

of a class of models M is the a set of sentences φ such that for every model M in

this class holds M |= φ. In formal language, this is expressed as follows:

• for every set of Σ-sentences E, we have

E∗ = {M ∈Mod(Σ) | M |=Σ φ ∀φ ∈ E}

• for every class M of Σ-models, we have

M∗ = {φ ∈ Sen(Σ) | M |= φ ∀M ∈M}

Remark 1.3.12. For any sentence φ and a model M , we denote {φ}∗ = φ∗ and

{M}∗ = M∗
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It is evident that the previous definition implies two functions (−)∗, which

are known as the Galois Connection. We continue with the following definitions,

which are, as will be made clear, the basic tools employed in our demonstration.

As noted in [24], a specification provides a mathematical theory of the behaviour

of a program and if a theory consists of all the sentences that are true under that

behaviour then it is important to define the fundamental properties of theories over

an arbitrary institution.

Definition 1.3.13. Let I be a fixed but arbitrary institution. Then

(1) A Σ-presentation is a pair 〈Σ, E〉, where Σ is a signature and E is collection

of Σ-sentences.

(2) A Σ-model M satisfies a presentation 〈Σ, E〉 if it satisfies each sentence in E;

we write M |= E in this case.

(3) Given a collection E of Σ-sentences, let E∗ be the collection of all Σ-models

that satisfy each sentence in E.

(4) Given a collection M of Σ-models, let M∗ be the collection of all Σ-sentences

that are satisfied by each model in M ; also let M∗ denote 〈Σ,M∗〉 called the

theory of M .

(5) The closure of a collection E of Σ-sentences is E∗∗, denoted by E•

(6) A collection E of Σ-sentences is closed if and only if E = E•.

(7) A Σ-theory is a presentation 〈Σ, E〉 such that E is closed.

(8) The Σ-theory presented by a presentation 〈Σ, E〉 is 〈Σ, E•〉.

(9) A Σ-sentence e is semantically entailed by a collection E of Σ-sentences, writen

E |= e, if and only if e ∈ E•

Lemma 1.3.14. The two functions denoted < ∗ > in the previous paragraph form

what is known as the Galois connection (see [31]), in that they satisfy the fol-

lowing properties, for any collections E,E′ of Σ-sentences and collections M,M′ of

Σ-models:

(1) E ⊆ E′ ⇒ E′∗ ⊆ E∗.

(2) M ⊆M′ ⇒M′∗ ⊂M∗.

(3) E ⊆ E∗∗.

(4) M ⊆M∗∗.
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(5) E∗ = E∗∗∗.

(6) M∗ = M∗∗∗.

(7) There is a dual (i.e. inclusion reversing) isomorphism between the closed

collections of sentences and the closed collections of models. This isomorphism

maps unions to intersections and intersections to unions.

(a)
⋂
n

E∗n =

(⋃
n

En

)∗

(b)

(⋂
n

E∗n

)∗∗
=

(⋃
n

En

)∗

(c)

(⋃
n

E∗∗n

)∗
=
⋂
n

E∗n

(d)

(⋃
n

E∗∗n

)∗
=

(⋃
n

En

)∗

(e)

(⋂
n

E∗∗n

)∗
=

(⋃
n

E∗n

)∗∗

There are also dual identities to (a)-(e) for collections of models.

Proof. We procced to prove the (1), the (2) and the 7 (a). Let E be a set of

Σ-sentences and

E∗ = {M ∈Mod(Σ) | ∀φ ∈ E M |= φ}

a collection of models. Let E1 ⊆ E2 ⊆ |Sen(Σ)| then we take two collections of set

of models, E∗1 and E∗2 from the Galois Connection.

M ∈ E∗2 ⇒

(∀φ ∈ E2) M |= φ⇒

(∀φ ∈ E1) M |= φ⇒

M ∈ E∗1 ⇒

E∗2 ⊆ E∗1

(1.10)



1.3. Institution Theory 23

For the (2), if M ⊆M ′ ⊆ |Mod(Σ)| then

φ ∈M ′∗ ⇒

(∀m ∈M ′) m |=IΣ φ⇒

(∀m ∈M) m |=IΣ φ⇒

φ ∈M ⇒

M ′∗ ⊆M∗

(1.11)

And for the conjunction, if M ∈ E∗1 ∩ E∗2 then

M ∈ E∗1 & M ∈ E∗2 ⇔

(∀φ ∈ E1) M |=IΣ φ & (∀φ ∈ E2) M |=IΣ φ⇔

(∀φ ∈ (E1 ∪ E2)) M |=IΣ φ ⇔

M ∈ (E1 ∪ E2)
∗

(1.12)

Thus we conclude that φ∗ ∩ ψ∗ = (φ ∪ ψ)∗ �

1.3.4. Internal Logic. The semantics of the Boolean connectors can be for-

mally defined in institutions [17] also by using the Galois connection as defined

above.

Definition 1.3.15 (Internal Boolean Connectives). Let Σ be a signature in an

institution then :

• the Σ-sentence φ is a (semantic) negation of ψ when

φ∗ = |Mod(Σ)| \ ψ∗

• the Σ-sentence φ is the (semantic) conjuction of the Σ-sentence ψ1 and ψ2

when φ∗ = ψ∗1 ∩ ψ∗2

Remark 1.3.16. The Boolean connectives, such as disjunction ∨, implication ⇒,

equivalence ⇔, etc can be derived as usually from negations and conjunctions.

Remark 1.3.17. The semantic conjunction, negation, implication etc. are unique

only to semantic equivalence, which means that from this point of view sentences

satisfied by the same models are indistinguishable. This observation will be very

useful in the continuation of our work.
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The approach to defining quantifiers in institution theory is based on the funda-

mental approach by assimilating the evaluation of variables along with the extension

of models as signature extensions.

Naturally, in a certain institution one can talk about and define the valuation

of variables X in M models as functions from X to some underlying set of model

M . However, this is not the case when we want to achieve the maximum level of

abstraction. We can do this by integrating the set of variables X with the symbol

extensions, so that we can obtain this construction by adding them to the respective

signatures. We may note that for any Σ-model M , there is a canonical one-to-one

correspondence between the valuations X → M and the Σ + X-models M ′ such

that their reducts to Σ are just M . This construction, according to Diaconescu

[17], implies that variables can become part of the signatures, which breaks with

the habit of traditional approaches to logic of keeping variables separated from the

language. Hence at the level of institution independent model theory a variable of

a signature Σ is just a signature morphism χ : Σ → Σ′. Given this, the reader

can now understand that the following definitions come naturally based on our

framework.

Definition 1.3.18 (Internal Quantifiers). For any signature morphism χ : Σ→ Σ′

in an arbitrary institution

• a Σ-sentence φ is a (semantic) existential χ-quantification of a χ-sentence ψ

when φ∗ = (ψ∗) �χ; in this case we write φ as ∃χψ.

• a Σ-sentence φ is a (semantic) universal χ-quantification of a χ-sentence φ

when φ∗ = |Mod(Σ)| \ (|Mod(Σ′)| \ ψ∗) �χ; in this case we write φ as ∀χψ

1.3.5. Institutions with proofs. Approaching the definition of proof from the

perspective of syntax is fundamental in mathematics. So what is proof? As Dia-

conescu notes in [17] it is a one-way move from a set E to a set E′ of sentences,

called E proves form E′ and meaning that E′ is established true on the basis of E

being established true. There can be several different ways to prove E′ from E.

Definition 1.3.19 (Proof System). A Proof System (Sign, Sen, Pf) is a triple

whose elements are

• a category of signatures Sign
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• a functor Sen : Sign→ Set called sentence functor

• and a functor Pf : Sign → CAT called proof functor which the category of

the Σ−proofs is giving for each signature Σ.

such that

(1) Sen;P; (−)op is a sub-functor of Pf , and

(2) the inclusion P (Sen(Σ))
op
↪→ Pf(Σ) is broad and preserves finite products

of disjoint sets of sentences for each signature Σ, where PSet → CAT is the

power-set functor.

Remark 1.3.20. The inclusion P (Sen(Σ))
op
↪→ Pf(Σ) means that Pf(Σ) has

subsets of Sen(Σ) as objects, the preservation of products of which implies that

there are distinguished monotonicity proofs ⊇Γ,E : Γ → E whenever E ⊆ Γ which

is preserved by signature morphisms, i.e. φ (⊇Γ,E) =⊇φ(Γ),φ(E) and that proofs Γ→
E1]E2 are in one-one natural correspondence with pairs of proofs 〈Γ→ E1,Γ→ E2〉
[17].

Example 1.3.21 (PL). The set proof rules of propositional logic PL.

A1 ∅ ` φ⇒ (ψ ⇒ φ)

A2 ∅ ` (φ⇒ (ψ ⇒ χ))⇒ ((φ⇒ ψ)⇒ (φ⇒ χ))

A3 ∅ ` (¬ψ ⇒ ¬φ)⇒ ((¬ψ ⇒ ψ)⇒ ψ)

MP {φ, φ⇒ ψ} ` ψ

Proposition 1.3.22 (Entailment institution). Each proof system (Sig,Sen, Pf)

determines an institution I =
(
SigI ,SenI ,ModI , |=I

)
called the entailment in-

stitution of the proof system where for each signature Σ ∈ |Sig|

• the entailment Σ-models are pairs (ψ,E′) where ψ : Σ → Σ′ is a signature

morphism and E′ is a Σ′-theory

• a Σ-model homomorphism φ : (ψ : Σ′ → (Σ′, E′)) → (ψ′ : Σ→ (Σ′′, E′′)) is

just a theory morphism φ : (Σ, E)→ (Σ′, E′′) such that ψ;φ = ψ′

• a Σ-model (ψ,E′) satisfies a Σ-sentence ρ iff ψ(ρ) ∈ E′

• model reducts are obtained just by composition to the left.

We will conclude this introduction with the following theorem [17].

Theorem 1.3.23. Any entailment institution is sound and complete
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This theorem holds particular significance, being the link between institution-

independent model theory and topology, two areas virtually unrelated to each other.

In the next chapter we will examine how to use existing models of a logical system

to produce new topological semantics. This construct will enable us to explore

the properties of logical systems through the use of topological tools. We will be

able to explore the concept of completeness of a logical system by comparing two

topologies, namely syntatic topology and semantic topology.



Chapter 2

Aristotelian

Institution-Independent

Square

Abstract. In recent decades, the research interest in the square of opposition

has increased. New interpretations and extensions, including non-Aristotelian

ones, have been proposed. The need to integrate these extensions into a univer-

sal theory leads us to abstract categorical model theory (theory of institutions)

[38]. In the first section, we introduce the square of opposition; the second

section introduces the concept of rhombus of opposition and examines basic

cases of morphological change of the squares of opposition inside and between

logical systems. In the third section, we use the concept of the Galois Con-

nection to show the equilibrium that one can create between the standard

square of sentences and the internal semantics of Boolean connectives, using

them at a meta-level. Finally, we introduce the concept of a dual square that

can give us not only squares for propositions but also squares for sets of sen-

tences. Since quite a few logical systems do not have internal connectives, it

is not useful to talk about proposition graphs, but about sets of models and

of sets of sentences. Therefore, we can now write basic relationships, such as

contradiction.

2.1. Aristotelian Relations

During the second half of the twentieth century, the research in the square of op-

positionwas revived. First, Augustin Sesmat [53] and Robert Blanché [9] extended

independently the square of opposition to a logical hexagon which includes the rela-

tionships of six statements. This was followed by an extension to a “logical cube”,

27
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that paved the way to the development of a series of n-dimensional objects called

logical bi-simplexes of dimension n [47].

The second line of research was developed in the past twenty years through

Jean-Yves Beziau’s attempts to find an intuitive basis for paraconsistent negation,

which is the O-corner of the square of opposition [12].

The latter author posed the question how to compare all versions of the square

of opposition and, if possible, their different illustrations by various configurations.

This required moving to a wider framework, where the different versions of the

theory within different logics could be compared. To this effect, the author appealed

to abstract categorical model theory and specifically to the theory of institutions

[37].

The concept of the institution was introduced by Joseph Goguen and Rod

Burstall in the late 1970s, to deal with the vast variety of logical systems devel-

oped and used in computer science. The concept tries to capture the essence of the

concept of “logical system” [24]. Informally speaking, an institution is a mathemat-

ical structure for “logical systems”, based on the concept of satisfaction between

sentences and models.

In the first section, we introduce the concept of the square of opposition. In

the second section, we expose fundamental concepts from category theory and in-

stitution theory that are necessary for our study. The third section introduces the

concept of the rhombus of opposition and examines certain aspects of the configu-

rational change of the squares of opposition inside and between logical systems.

In the fourth section, we use the concept of the Galois connection, which is a

useful generalization of correspondence between subgroups and subfields that are

studied in Galois’ theory, to show the equilibrium that one can establish between the

standard square of opposition (of sentences) and the internal semantics of Boolean

connectives at a meta-level.

Finally, we introduce the concept of the dual square that can give us not only

squares for propositions but also squares for sets of sentences. Since quite a few

logical systems do not have internal connectives, it is not useful to talk about

proposition graphs, but sets of models and sets of sentences. In this way, we can

now write basic relationships, such as contradiction.
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2.2. Squares of Opposition

The theory of opposition was developed by Aristotle in De Interpretatione 6–7, 17

b 17–26 and Prior Analytics I.2, 25 a 1–25 to describe the relations between the

four basic categorical judgements. During the Middle Ages, Aristotle’s theory was

represented by a square diagram. This was done by altering the semantics of the O

form. During the 19th — 20th centuries, it assumed two major reinterpretations:

a) within the context of the algebra of logic (see Figure 1) (Boole, Venn and others),

Figure 1. Representation of the Square of Opposition in algebra of logic

(Boole, Venn, and others).

b) within the second-order predicate logic, by using the newly introduced concept

of quantified variables by Frege (see Figures 2 and 3). Within these interpretations,

the shape of the ”square” remains unaffected.

Beginning with Nicolai A. Vasiliev (1880 – 1940), the traditional “square” loses

its original square shape for the first time; it is transformed into ”triangle.” This

was through a new alteration of semantics of the O form, based on Aristotelian

concepts that had been overlooked in the Aristotelian tradition of logic, notably

the concept of indefinite judgement.
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Figure 2. Representation of the square of opposition in the functional tradi-

tion of logic (Frege and others).

During the 20th century, new transformations of the ”square” into various

shapes appear, i.e. into ”hexagon” [9], or ”cube” (Figure 3), by altering the se-

mantics and establishing relationships between truth-values. The new objects admit

various interpretations in terms of traditional logic, quantification theory, modal

logic, order theory, or paraconsistent logic.

Figure 3. Cube of opposition of quantified statements

However, a question arises: how do all these configurations relate, often realized

within different logics? Can we describe these transformations in logical terms?

What changes and what remains invariant in these transformations?

To examine these questions, we appeal to the concepts of the theory of institu-

tions, introduced by Goguen and Burstall [24]. The theory of institutions has the

advantage of not being exclusive to any specific logical system. Moreover, its high

level of abstraction allows for the accommodation of not only classical, but also
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non-classical logical systems. A structure-preserving mapping, called morphism of

institutions, is defined by Goguen and Burstall [4] and it operates as a projection

from a more complex institution into a simpler one. By reversing this operation, we

get the concept of comorphism of institutions, which embeds a simple institution

into more complex ones.

Using morphisms and co-morphisms of abstract logical systems, we will study

the transformation of the configurations, traditionally called “square of opposition”

into entities of different shape, taking into account the changes in semantics of the

underlying logical systems. We will try to study the generation of new entities

(diagrams) out of old ones with categorical tools, as well as by encoding/embed-

ding simple diagrams (squares) into entities of higher complexity (polygons or 3D

objects) and vice versa. In other words, in the context of universal algebra we will

study the following question: how a change in semantics might generate different

outcomes (of various shapes) of the so-called “square of opposition”.

2.3. Institutional Square of Opposition

2.3.1. The Aristotelian relations of judgements. The square of opposition is

commonly known as a diagram for which many extensions have been proposed in

the second half of the twentieth century. However, most of them are discussed at

an informal level.

Using the formalism introduced by Hans Smessaert and Lorenz Demey [53],

we generalize these concepts to the level of the theory of institutions. It should be

emphasized that the theory of institutions guarantees that the following definitions

apply to all logical systems under consideration. For the sake of convenience, we as-

sume that the logical systems contain the classical connectives as a syntactic method

of constructing sentences. The authors cited above define Aristotelian Geometry

as a logical system, which has the links of denial, conjunction and implication.

Definition 2.3.1 (Aristotelian Relation of Contradictoriness). Let I =
(
SigI ,SenI ,ModI , |=I

)
be an arbitrary institution and Σ ∈ SigI and φ, ψ be propositions in Sen(Σ). Then

the propositions φ, ψ are called contradictory, if the truth of one implies the falsity
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of the other, and conversely.

|=IΣ (φ⇒ ¬ψ) ∧ (¬ψ ⇒ φ)(2.1)

|=IΣ (¬φ ∨ ¬ψ) ∧ (ψ ∨ φ)(2.2)

|=IΣ ¬ (φ ∧ ψ) and |=IΣ ¬ (¬φ ∧ ¬ψ)(2.3)

We denote the relation between two contradictory sentences by RC(φ, ψ) or by a

graph

φ ψ

Figure 4. Geometrical representation of contradictory sentences.

Definition 2.3.2 (Aristotelian Relation of Contrariety). Let I =
(
SigI ,SenI ,ModI , |=I

)
be an arbitrary institution and Σ ∈ SigI and φ, ψ be propositions in Sen(Σ). Then

the propositions φ, ψ are called contrary, if they cannot both be true.

|=IΣ ¬ (φ ∧ ψ) and 6|=IΣ ¬ (¬φ ∧ ¬ψ)(2.4)

We denote the relation between two contrary sentences by Rc(φ, ψ) or by a graph

φ ψ

Figure 5. Geometrical representation of contrary sentences.

Definition 2.3.3 (Aristotelian Relation of Subcontrary). Let I =
(
SigI ,SenI ,ModI , |=I

)
be an arbitrary institution and Σ ∈ SigI and φ, ψ be propositions in Sen(Σ). Then

the propositions φ, ψ are called subcontrary, if it is impossible for both to be false.

6|=IΣ ¬ (φ ∧ ψ) and |=IΣ ¬ (¬φ ∧ ¬ψ)(2.5)

We denote the relation between two subcontrary sentences by Rs(φ, ψ) or by a

graph

φ ψ

Figure 6. Geometrical representation of subcontrary sentences.
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Definition 2.3.4 (Aristotelian Relation of Subalternation). Let I =
(
SigI ,SenI ,ModI , |=I

)
be an arbitrary institution and Σ ∈ SigI and φ, ψ be propositions in Sen(Σ). Then

the propositions φ, ψ are called subalternate, if the truth of the first (the ”superal-

tern”) implies the truth of the second (”the subaltern”), but not conversely.

|=IΣ φ→ ψ and 6|=IΣ ψ → φ(2.6)

We denote the relation between two subalternate sentences by RS(φ, ψ) or by a

graph

φ ψ

Figure 7. Geometrical representation of subalternate sentences.

Definition 2.3.5 (Boethian Diagram). Let I =
(
SigI ,SenI ,ModI , |=I

)
be

an arbitrary institution and Σ ∈ Sig. Then a Boethian diagram is an edge-

labeled graph. The vertices of the graph are pairwise non-equivalent sentences

e1, e2, . . . , en ∈ Sen(Σ) and the edges of the graph are the Aristotelian relations

(see Figure 8).

φ ψ

(a) Relation of subalternation

φ ψ

(b) Relation of subcontrariety

φ ψ

(c) Relation of contrariety

φ ψ

(d) Relation of contradictoriness

Figure 8. The fundamental Aristotelian relations.

As for Definitions 2.3.6 and 2.3.7 below, we should note that Definition 2.3.6

is the common traditional square of opposition. However, the shape in the second

Definition 2.3.7 is introduced, as we will see, in a natural way so that we can see

how the square of opposition changes from one logical system to another logical

system. For this reason, we call it the rhombus of opposition.

Definition 2.3.6 (Aristotelian Square). Let I =
(
SigI ,SenI ,ModI , |=I

)
, Σ ∈

Sig be an arbitrary institution and p, q ∈ Sen(Σ). Then an Aristotelian Square is

a graph of the following form:
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p ¬q

q ¬p

Figure 9. Aristotelian Square of Opposition

Definition 2.3.7 (Rhombus of Opposition). Let I =
(
SigI ,SenI ,ModI , |=I

)
, Σ ∈

Sig be an arbitrary institution and p, q ∈ Sen(Σ). Then a rhombus of opposition

is

p

q ¬q

¬p

Figure 10. Aristotelian Rhombus of Opposition

2.3.2. The Example of PL – Square of opposition. In this subsection, we

study the action of signature morphisms, i.e. how they affect the corresponding

configurations.

The first example that we examine is that of propositional calculus. As shown

in Figure 11 and Figure 12, after a signature morphism, the square structure is

retained, if and only if the relationship remains unaltered; otherwise the square

turns into a straight line segment. For the case of the straight line segment it is

sufficient to imagine the possibility where σ(p) = σ(q) = χ.

Fact 2.3.8. Let I =
(
SigI ,SenI ,ModI , |=I

)
be an institution with the tradi-

tional square, then for every σ : Σ→ Σ′ the square either remains invariant (Figure

11 ) or it turns into a line (Figure 12).

2.3.3. After the action of morphisms. In this section, we present several ex-

amples (shown in Figures 13, 14, 15 and 16) in which the square of opposition

changes under the action of certain functors, i.e. we will illustrate how the square

of opposition changes when we pass from one logical system to another.
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p ∨ q ¬(p ∧ q)

p ∧ q ¬(p ∨ q)

σ : Σ Σ′

σ(p ∨ q) σ(¬(p ∧ q))

σ(p ∧ q) σ(¬(p ∨ q))

Figure 11. Square of opposition in institution with Boolean connectives

p ∨ q ¬(p ∧ q)

p ∧ q ¬(p ∨ q)

σ : Σ Σ′
σ(p ∨ q) σ(¬(p ∧ q))

Figure 12. Line of opposition in institution with Boolean connectives

�p �¬p

p ¬p

♦p ♦¬p

Φ

Figure 13. The modal system S5

The square of opposition of the modal logic S5 changes when the “forgetful”

functor acts and assigns the shape to the primary logical system. In the case of the

square of opposition, the configuration changes and becomes a straight-line segment,

as the Sherwood-Czezowski Hexagon does. On the other hand, the Sesmat-Blanche

and the Beziau hexagons become a rhombus. As we mentioned earlier, we can have

a morphism Φ : FOL 7→MFOL which represents the projection of Modal Logic

into First Order Logic.

2.4. Institution-theoretic treatment of the square of opposition

In general, in the square of opposition we have a relation between two sentences.

We have defined the relations of sentences Ri(φ, ψ) where i belongs to {C, c, S, s}.
In order to pass to dual relations R∗i (φ

∗, ψ∗), we appeal to the concept of the Galois
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�p ∨�¬p

�p �¬p p ∨ ¬p

p ¬p

♦p ♦¬p p ∧ ¬p

♦p ∧ ♦¬p

Φ

Figure 14. Sesmat-Blanche hexagon

�p �¬p

p ¬p p ¬p

♦p ♦¬p

Φ

Figure 15. Sherwood-Czezowski hexagon

�p ∨�¬p

�p �¬p p ∨ ¬p

p ¬p p ¬p

♦p ♦¬p p ∧ ¬p

♦p ∧ ♦¬p

Φ

Figure 16. Beziau octagon for S5

connection, which is defined as follows:

(2.7) ∗ : R(φ, ψ) 7→ R∗(φ∗, ψ∗)
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Thus, the Galois connection forms the dual relation, as well as the dual square of

opposition in a natural way [42, 17].

2.4.1. Aristotelian Relations and the Galois connection. According to the

previous section, we have four fundamental relations Ri( , ) where i belongs to

{C, c, S, s}. In order to give an institution-independent form of these definitions

using the Galois connection, we will first translate these relations in terms of the

Galois connection.

1) |=IΣ ¬ (φ ∧ ψ). In terms of the Galois connection this means that:

(2.8)

∀M ∈Mod(Σ)
(
M |=IΣ ¬φ or M |=IΣ ¬ψ

)
⇔

∀M ∈Mod(Σ)
(
M ∈ φ∗ or M ∈ ψ∗

)
⇔

φ∗ ∩ ψ∗ = φ∗ ∪ φ∗ = Mod(Σ)

2) |=IΣ ¬(¬φ ∧ ¬ψ). In terms of the Galois connection this means that:

(2.9)

∀M ∈Mod(Σ)
(
M |=IΣ φ or M |=IΣ ψ

)
⇔

∀M ∈Mod(Σ) (M ∈ φ∗ or M ∈ ψ∗)⇔

φ∗ ∪ ψ∗ = Mod(Σ)

3) 6|=IΣ ¬ (φ ∧ ψ). In terms of the Galois connection this means that:

(2.10)

∃M ∈Mod(Σ) : M |=IΣ φ ∧ ψ ⇔

∃M ∈Mod(Σ) : M |=IΣ φ & M |=IΣ ψ ⇔

∃M ∈Mod(Σ) : M ∈ φ∗ & M ∈ ψ∗ ⇔

∃M ∈Mod(Σ) : M ∈ φ∗ ∩ ψ∗ ⇔

φ∗ ∪ φ∗ ⊂Mod(Σ)⇔

φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ 6= Mod(Σ)
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4) 6|=IΣ ¬(¬φ ∧ ¬ψ). In terms of the Galois connection this means that:

(2.11)

∃M ∈Mod(Σ) : M |=IΣ ¬φ ∧ ¬ψ ⇔

∃M ∈Mod(Σ) : M ∈ φ∗ & M ∈ ψ∗ ⇔

∃M ∈Mod(Σ) : M ∈ φ∗ ∩ ψ∗ ⇔

∃M ∈Mod(Σ) : M ∈ φ∗ ∪ ψ∗ ⇔

φ∗ ∪ ψ∗ ⊂Mod(Σ)⇔

φ∗ ∪ ψ∗ 6= Mod(Σ)

We should note that in the initial definition we talked about relations between

sentences. However, by introducing the concept of the Galois Connection, we will

now talk now about relations between collections of models. Then, applying again

the concept of Galois Connection, we pass to collections of sentences, i.e. essentially

to relations of sentences again. Thus, in terms of relations we have the following

scheme:

(2.12) R(φ, ψ)
∗−−−→ R∗(φ∗, ψ∗)

∗−−−→ R∗∗(φ∗∗, ψ∗∗)

This scheme is transferred in a natural way to the square’s schemes. According to

the following definitions we have:

Definition 2.4.1. Two sets of models φ∗, ψ∗ are in dual contradictory relation

R∗C(φ∗, ψ∗) if φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ = Mod(Σ) and φ∗ ∪ ψ∗ = Mod(Σ) which is

equivalent to

(2.13) φ∗ = ψ∗

Definition 2.4.2. Two sets of models φ∗, ψ∗ are in a dual contrary relationR∗c(φ
∗, ψ∗)

if

(2.14) φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ = Mod(Σ) and φ∗ ∩ ψ∗ 6= ∅

Definition 2.4.3. Two sets of models φ∗, ψ∗ are in dual subcontrary relation

R∗s(φ
∗, ψ∗) if

(2.15) φ∗ ∪ ψ∗ = Mod(Σ) and φ∗ ∩ ψ∗ 6= ∅

Definition 2.4.4. Two sets of models φ∗, ψ∗ are in dual subalternate relation

R∗S(φ∗, ψ∗) if

(2.16) φ∗ ⊂ ψ∗
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p ¬q

q ¬p

∼=

p∗ q∗

q∗ p∗

Figure 17. Transformation of square

p

q ¬q

¬p

∼=

p∗

q∗ q∗

p∗

Figure 18. Transformation of rhombuses

2.4.2. The dual square of opposition. The scheme above is transferred in a

natural way to the dual square’s schemes.

Definition 2.4.5. Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual contradictory

relation R∗∗C (φ∗∗, ψ∗∗), if R∗C(φ∗∗∗, ψ∗∗∗);

Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual contrary relation R∗∗c (φ∗∗, ψ∗∗), if

R∗c(φ
∗∗∗, ψ∗∗∗);

Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual subcontrary relation R∗∗s (φ∗∗, ψ∗∗),

if R∗s(φ
∗∗∗, ψ∗∗∗);

Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual subalternate relation R∗∗S (φ∗∗, ψ∗∗),

if R∗S(φ∗∗∗, ψ∗∗∗)

We know that E∗ = E∗∗∗ and M∗ = M∗∗∗. Therefore, we can obtain the

following generalization for abstract set of models and sentences.

Definition 2.4.6. Two sets of models D,E are in a dual contradictory relation

R∗C(D,E), if

(2.17) D ∩ E = D ∪ E = Mod(Σ) and D ∪ E = Mod(Σ)
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Two sets of models D,E are in a dual contrary relation R∗c(D,E), if

(2.18) D ∩ E = D ∪ E = Mod(Σ) and D ∩ E 6= ∅

Two sets of models D,E are in a dual subcontrary relation R∗s(D,E), if

(2.19) D ∪ E = Mod(Σ) and D ∩ E 6= ∅

Two sets of models D,E are in a dual subalternate relation R∗S(D,E), if

(2.20) D ⊂ E

Two sets of sentences D,E are in a dual dual contradictory relation R∗∗C (D,E), if

their duals D∗, E∗ are in a dual contradictory relation R∗C(D∗, E∗);

Two sets of sentences D,E are in a dual dual contrary relation R∗∗c (D,E), if their

duals D∗, E∗ are in a dual contrary relation R∗c(D
∗, E∗);

Two sets of sentences D,E are in a dual dual subcontrary relation R∗∗s (D,E), if

their duals D∗, E∗ are in a dual subcontrary relation R∗s(D
∗, E∗);

Two sets of sentences D,E are in a dual dual subalternate relation R∗∗S (D,E), if

their duals D∗, E∗ are in a dual subalternate relation R∗S(D∗, E∗);

φ∗ ψ∗

ψ∗ φ∗

∗−−−−−−→

φ∗∗ (ψ∗)∗

ψ∗∗ (φ∗)∗

Figure 19. Dual square of opposition

φ∗

ψ∗ ψ∗

φ∗

∗−−−−−−→

φ∗∗

ψ∗∗ (ψ∗)∗

(φ∗)∗

Figure 20. Dual rhombus of opposition
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E D

D E

∗−−−−−−→

E∗ (D)∗

D∗ (E)∗

Figure 21. Generalized dual square of opposition

E

D D

E

∗−−−−−−→

E∗

D∗ D∗

E∗

Figure 22. Generalized dual rhombus of opposition

2.5. Conclusions

In this Chapter we examined the transformations of the logical object conventionally

called “square of opposition” undergoes under changes of semantics. For this reason,

we appealed to concepts from category theory and the theory of institutions. By

introducing the concept of the rhombus of opposition we examined the basic cases

of configuration changes of the ‘squares’ of opposition inside a logical system and

between different logical systems.

Furthermore, by introducing the concept of the Galois connection we showed

the equilibrium that can be established between the sentences of the traditional

square of opposition and the internal semantics of Boolean connectives, using them

at a meta-level. Furthermore, the introduction of the concept of the dual square

enabled us to examine not only squares for propositions but also squares for sets of

sentences.

Since quite a few logical systems do not have internal connectives, it not useful

to talk about proposition graphs, but about sets of models and sets of sentences.

Therefore, we can now write basic relationships, such as contradiction.
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This is the first time that different ‘squares’ of opposition were compared by

using abstract model theory. We aim at integrating the different versions of the

‘square’ of opposition into this universal framework.



Chapter 3

Topological Semantics and

Institutions

3.1. Introduction

Abstract. In this chapter, we will introduce the notion of topological seman-

tics in the framework of abstract model theory through institution-independent

theory. This task will provide us with a method for expanding established

models to topological models of any logic system present in Logic as well as

computer science. Furthermore, we will examine the properties of semantic

topological spaces according to the Kolmogorov classification [74, 71, 72].

The methodology we will present equips us with the appropriate tools in order

to study semantic completeness through topological notions. Finally, we will

prove a fundamental preservation result for abstract topo-modal satisfaction.

In “Logical topologies and Semantic Completeness” V. Goranko [68] set the

foundation for a different kind of connection between logic and topology. He pro-

posed a novel topological approach which allowed for studying the semantic com-

pleteness of a logical system with respect to one family of models taking into ac-

count that completeness is valid for a different family of models. More specifically,

he proposed a topological approach to prove the semantic completeness of a logical

system with respect to a class of “standard models” by utilizing the completeness

result with respect to a larger class of “general models”. He stated that:

43
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Proposition 3.1.1 (Goranko). If the following two conditions hold for some topol-

ogy T of general models, then the completeness of general models implies complete-

ness with respect to standard models.1

• The class of standard models is dense to general models with respect to T

• Validity is a continuous property with respect to T .

In First order logic (FOL) we can note all the models of the FOL as ”general

models” and the ”standard models” to be only the finite models. Then we have the

well known result of completeness with respect to general models and the failure of

the completeness with respect to standard models. Goranko has pointed out that

there is no general method for solving the problem described above, but usually

some specific model-theoretic constructions which transform general into standard

models while preserving satisfiability are applied. Furthermore, he has pointed out

that standanrd topological methods and results have so far been under-utilized for

solving purely logical problems. Our goal is to establish an appropriate framework

for all of the above within an axiomatic setting. For this reason, we appeal to

Institution-independent model theory [24].

Building on the expressive power provided by category theory we introduce

the concept of topological semantics at the level of abstract model theory pro-

vided by the institution-independent framework. Our first step was to construct

an abstract topological logic framework which will provide a method for system-

atic topological semantics extensions of logical systems from computer science and

logic. The ultimate goal of this framework is to equip us with several appropriate

model theoretical tools for proving semantic completeness on arbitrary Institutions

via topological approach.

3.1.1. Topologic and Possible Worlds in institution-independent model the-

ory. The starting point in standard logic is McKinsey and Tarski’s topological in-

terpretation of modal logic [45, 44] which introduces the connection between logic

and topological space through studying the laws of the basic topological operators.

Based on the modern truth-conditional format, the basic language L consists of

a countable set P of proposition variables, the standard Boolean connectives, the

modal operators �, ♦ and the topo-model i.e. a topological space 〈X, τ〉 equipped

1Goranko V., Logical Topologies and Semantic Completeness
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with a value function ν : P → P(X). This field saw rapid development and new

tools like bisimulation and topo-games came to be added [3]. The perspective of

modal logic has changed; it is crystal clear that we can deal with several geometrical

structures like affine spaces, metric spaces, vector-based spaces etc. [4]

In 1938 Tarski [60] proved that S4 is complete with respect to topological

spaces. In 1944 Mckinsey and Tarski [45] showed that S4 is the modal logic of real

numbers. A number of interesting results can be found in several articles [21, 69]

A different approach can be found in the works of Lawvere [22] and Goldblatt [28].

In Universal Logic, a different approach of logical systems is presented by Le-

witzka in [[55], [54]] where he constructs a theory of logical representations (a logic

map) to make use of the fact that every logical system can define a topology within

its theory set.

Institution theory [24] is an important trend within so-called Universal Logic [7].

It is a categorical abstract model theory which formalizes the notion of a logical

system, including syntax, semantics and the satisfaction relation between them.

One of the many achievements of Institution theory has been to provide a con-

ceptually elegant and unifying definition of the nature of logical systems [24]. It

provides a complete form of abstract model theory, including signature morphisms,

model reducts and mappings between logics noted as Institution-independent model

theory.

From the Universal Logic view, Institution-independent model theory means

the development of model theory in the very abstract setting of arbitrary insti-

tutions, which provides an efficient framework for doing model theory by transla-

tion [17] or borrowing via a mapping theory (homomorphisms) between institutions.

Possible worlds semantics or Kripke semantics is a classical development in

the area on non-classical logics. In addition to their singnificance on logic, Kripke

semantics have been applied to computer science and AI. In [16] and [18] the

authors have developed the satisfaction of standard modalities possibility ♦ and

necessity � on top of an abstract satisfaction relation. This is the first work which

has provided a method for systematic Kripke semantic extension at the categorical

abstract model theoretic level provided by institutions.
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3.1.2. Universal Topologic. Our aim is to construct topologies containing

models of a logical system as their elements. The following definition, cited from

[55, 54, 16], is what we need to begin our construction.

Theorem 3.1.2. Let Σ be a signature of an Institution I =
(
SigI ,SenI ,ModI , |=I

)
,

then if we define for every set of Σ-sentences E

E∗ = {M ∈Mod(Σ) | M |=Σ e ∀e ∈ E}

then the class |Mod(Σ)| of all Σ-models admits a natural topology, where the open

sets are

τΣ =

{⋃
i∈I

E∗i | {Ei}i∈I family of finite sets of Σ-sentences

}

Making use of the above definition and of the possibilities afforded through

the abstract level of institution-independent model theory, we may start to explore

model topologies according to the Kolmogorov classification [74].

Definition 3.1.3. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
and M1 and M2 two models in |Mod(Σ)| such that for every φ ∈ Sen(Σ)

M1 |= φ ⇔ M2 |= φ

then T h(M1) = T h(M2). Models M1 and M2 are equivalent, denoted as M1 ∼M2,

if T h(M1) = T h(M2).

Definition 3.1.4. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
and Mod(Σ) the class of its models; we define the class invariant under the relation

∼.

|Mod(Σ)|/ ∼

The next corollary comes naturally.

Proposition 3.1.5. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
and F be the function which maps each point to its equivalence class

F : |Mod(Σ)| → |Mod(Σ)|/ ∼

Then F is continuous and defines the Identification Semantic Topology (ISM).

Theorem 3.1.6. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
with negation and conjunction. Then the ISM topology is T2 topology.
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Proof. We want to prove that for every M1 6= M2 ∈ |Mod(Σ)|/ ∼ two disjoint

open sets V1, V2 exist such that M1 ∈ V1 and M2 ∈ V2. Indeed, M1 6= M2 implies

that Th(M1) 6= Th(M2) which means that there exists φ ∈ Sen(Σ) such that

M1 |=Σ φ and M2 |=Σ ¬φ

That means

M1 ∈ {φ}∗ = V1 and M2 ∈ {¬φ}∗ = V2

with V1 ∩ V2 = ∅

�

Theorem 3.1.7. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
with negation and conjunction. Then the ISM topology is a regular topology.

Proof. To understand the methodology, we will present two different situations.

First, let x ∈ X be a point and F ∈ X a closed set, such that x /∈ F .

Let X = |Mod(Σ)/ ∼ then if E∗ and if F = X \ E∗ is closed and

M ∈ F ⇔ ∃φ ∈ E : M 2Σ φ⇔ ∃φ ∈ E : M |= ¬φ

Therefore, M ∈ {¬φ}∗. Therefore, an open set exists, namely {¬φ}∗ such that

M ∈ {¬φ}∗.
Now, for all M ∈ F ∃φM ∈ E : M 2Σ φM ; therefore, we set

V =
⋃
M∈F

{¬φM} ∗

and F ⊆ V .

Now x /∈ F implies that

x /∈ X \ E∗ ⇔ x ∈ E∗ ⇔ x |=Σ φ ∀φ ∈ E

which implies

x ∈
⋃
M∈F
{φM}∗ = U

and V ∩ U = ∅.
If F = X \

⋃
i∈I E

∗
i =

⋂
i∈I X \ E∗i then

M ∈ F ⇔M ∈
⋂
i∈I

X \ E∗i ⇔ ∀i ∈ I M ∈ X \ E∗i ⇔

∀i ∈ I ∃φMi ∈ Ei : M |=Σ ¬φMi
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we can set

V =
⋃
M∈F
{¬φMi }∗

and

x /∈ F ⇔ x /∈ X \
⋃
i∈I

E∗i ⇔ x /∈
⋂
i∈I

X \ E∗i ⇔

∃j : x /∈ X \ E∗j ⇔ ∃j : x |=Σ φ∀φ ∈ Ej

Therefore, there exists a φ ∈ Ej such that

x ∈ {φ}∗ = U

and V ∩ U = ∅ �

Theorem 3.1.8. Let Σ be a signature of an institution I =
(
SigI ,SenI ,ModI , |=I

)
with negation and conjunction. Then ISM topology is a normal topology.

Proof. Let F1 and F2 be two closed sets; the goal is to find two disjoint open sets

V1 and V2 such that

F1 ⊆ V1 and F2 ⊆ V2 and V1 ∩ V2 = ∅

If F1 = X \
⋃
i∈I E

∗
i =

⋂
i∈I X \ E∗i then

M ∈ F1 ⇔M ∈
⋂
i∈I

X \ E∗i ⇔ ∀i ∈ I M ∈ X \ E∗i ⇔

∀i ∈ I ∃φMi ∈ Ei : M |=Σ ¬φMi

we can set

V1 =
⋃

M∈F1

{¬φMi }∗

Accordingly, if N ∈ F2 then N /∈ F1 therefore there exists φNi ∈
⋃
i∈I E

∗
i such that

N |=Σ. We define

V2 =
⋃
N∈F2

{φNi }∗

Then V1 ∩ V2 = ∅ �

Summing up all of the above, we reach the following theorem, which constitutes

the starting point of our work on topological semantics.



3.2. Topological Semantics 49

Theorem 3.1.9 (Entailment Topology). Let (Sig,Sen, Pf) be an Institution with

proofs (proof system), then there is a topology (Entailment topology) such that

the entailment logic of the proof system is sound and complete with respect to its

entailment topological semantic i.e.

φ ` ψ ⇐⇒ ψ∗ ⊆ φ∗

Proof. We define the topology (W, τw) where open sets are:

E∗ = {(ψ,E′) ∈Mod | ψ[E] ⊆ E′}

One basis of the topology is

ρ∗ = {(ψ,E′) ∈Mod | ψ(ρ) ∈ E′}

The proof of soundness and completeness arises in a natural way from Theorem

1.3.23 and Proposition 1.3.22 . �

For the preceding theorem to be meaningful, a theory on how to study the

notion of completeness by utilizing topological tools needs to be constructed. We

will set the basis of that theory in the following section.

3.2. Topological Semantics

Internal Topological Models. In this section we begin our attempt to construct

a universal topological theory of logical systems. In order to achieve this, our first

objective is to construct a (modal) topological institutional IT =
(
SigIT ,SenIT ,T-ModIT , |=

)
from an old one I =

(
SigI ,SenI ,ModI , |=I

)
where SigI = SigIT . Our construc-

tion consists of several components:

(1) An extension of institution I. The signatures remain the same, but new

sentences are built from the sentences of I by approximation of sentences

building Boolean connectives, quantifiers and modalities;

(2) Topological models built from the models of institution I;

(3) The definition of a new modal satisfaction relation between the topological

models and the new sentences;
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The concept of a topological model can be defined internally to any ”base”

institution I =
(
SigI ,SenI ,ModI , |=I

)
providing the base models of the topo-

logical models, the sharing parameter being handled by a forgetful institution mor-

phism
(
Φ∆, α∆, β∆

)
to a domain institution ∆ providing the shared domains. Our

methodology consists of three steps: The first step is to define the Internal Topo-

logical Models; the second step is to define a new functor T-Mod which maps the

”old” signatures Sig to a new category of models, the topological-models; finally, the

third step is to define a functor SenIT which will extend the ”old” sentences to the

new one and all of them with respect to the ”old” I =
(
SigI ,SenI ,ModI , |=I

)
.

We will start with the definition of Internal Topological models, an extension

of the models of the initial-base Institution inspired by [18].

Definition 3.2.1 (Internal Topological Models). Let
(
Φ∆, α∆, β∆

)
:
(
SigI ,SenI ,ModI

)
→

∆ be an institution morphism from the base Institution to the Domain Institution,

then for any Σ signature in Sig, a Topological Σ-model (T , τ)Σ consists of

• a family of Σ-models T : IT → |Mod(Σ)| such that β∆
Σ (Mi) = β∆

Σ (Mj) for

every i, j ∈ IT

• τ a topology on T

where IT is an index set.

Remark 3.2.2. Henceforth we will use the following T =
⋃
i∈IT

Mi with Mi ∈

|Mod(Σ)|;

Remark 3.2.3. Condition β∆
Σ (Mi) = β∆

Σ (Mj) for every i, j ∈ IT in definition 3.2.1

stems from the need to express that the models share something common at the level

of abstract institution. For example, in the case of MFOL it is necessary for the

models Mk to have the same underlying set; this is because we want quantification

to work properly.

Remark 3.2.4. Let Σ be a signature, then the collection of the topological Σ-

models form a category, namely the T-Mod(Σ) category.

Morphisms of topological models. A topological Σ-model (T1, τ1) is a topol-

ogy, therefore it is natural to define Σ-model homomorphisms between two topolog-

ical models in such a way as to preserve the mathematical structure of topological
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models. A homomorphism of Σ-topological models (h, g) : (T1, τ1) 7→ (T2, τ2) con-

sists of :

• A function h : IT1 7→ IT2 between the index sets such that the function γ :

T1 7→ T2 defined by γ(M1
i ) = γ (T1(i)) = T2 (h(i)) = M2

h(i) is a continuous

function;

• An IT1 index family of Σ-model homomorphisms g = {gi : M1
i → M2

h(i)}.
Family g can be regarded as a natural transformation g : T1 ⇒ h; T2 between

functions (see Figure 1) – the functions can be regarded as functors IT1 7→
|Mod(Σ)| – such that β∆

Σ (gi) = β∆
Σ (gj) for i, j ∈ IT1 ;

M1
i M2

h(i)

M1
j M2

h(j)

gi

gj

σi σh(i)

Figure 1

Remark 3.2.5. The topological Σ-models and their morphisms form a category

labeled as T-Mod(Σ).

This was the first step in the construction of the T-Mod functor, as we just

proved that the T −Mod(Σ) forms a category. Now we must define the functor

with respect to the arrows of Sigop.

Definition 3.2.6 (T-Mod funtor). Functor T-Mod maps the φ : Σ → Σ′ to

T-Mod(φ) : T-Mod(Σ′)→ T-Mod(Σ).

Σ T-Mod(Σ)

=⇒

Σ′ T-Mod(Σ′)

φ T-Mod(φ)

Figure 2

in such a way that :
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• the functor maps each (h′, g′) : (T ′1 , τ ′1) → (T ′2 , τ ′2) to T-Mod(φ)(h, g) :

T-Mod(φ) (T ′1 , τ ′1)→ T-Mod(φ) (T ′2 , τ ′2) which is defined as: T-Mod(φ) (T ′i , τ ′i) =

(T ′i ; Mod(φ),Mod(φ) [τ ′i ]) = (Ti, τi) where

Ti =
⋃
M∈Ti

{M} =

= T ′i ; Mod(φ) =

=
⋃

M ′∈T ′i

{Mod(φ)(M ′)} =

=
⋃

k∈IT ′
i

{
Mod(φ)(IT ′i (k))

}
=

=
⋃

k∈IT ′
i

{Mk}

(3.1)

From equation 3.1 we can deduce that for everyM i
k ∈ ITi M i

k = Mod(φ)(ITi(k))

holds. This implies that we can define ITi = IT ′i for i ∈ {1, 2} and Mod(φ) [τ ′i ]

as the minimum topology where map Mod(φ) is open and continuous.

• T-Mod(φ)(h′, g′) = (h, g) = (h′,Mod(φ)g′) such that the square in Figure 3

is commutive

Mod(φ)(M1
i ) Mod(φ)(M2

h(i))

Mod(φ)(M1
j ) Mod(φ)(M2

h(j))

Mod(φ)g′i

Mod(φ)g′j

Mod(φ)(σi) Mod(φ)(σh(i))

Figure 3
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Fact 3.2.7. Function γ : T1 7→ T2 is a continuous function.

Proof. Let V ⊆ T2 be an open subset. Then

V =
⋃

k∈T −1
2 [V ]

{
M2
k

}
=

=
⋃
k∈J

{
Mod(φ)(N2

k )
}(3.2)

such that T −1
2 [V ] = J and N2

k ∈ T ′2 . For the inverse image we have:

γ−1[V ] =
{
M ∈ T1 : γ(M) = M2

k for some k ∈ J
}

=

= γ−1

[⋃
k∈J

M2
k

]
=

=
⋃
k∈J

γ−1[Mk] =
⋃
k∈J

⋃
λ∈h−1[k]

Mλ =
⋃

λ∈h−1[J]

{Yλ}

(3.3)

Figure 4 helps us understand how to prove that γ−1[V ] is an open set.

T ′1 T ′2

T1 T2

γ′

γ

Mod(φ) Mod(φ)

Figure 4

By definition of Mod(φ)[τ ′i ] set Mod−1(φ)[V ] = {Nk ∈ T ′2 : k ∈ J} is an open

set and

(3.4) γ−1
[
Mod−1(φ)[V ]

]
=
{
X ∈ T ′1 : γ(X) = N2

k for some k ∈ J
}

is also an open set. The final step is to observe that Mod(φ) is an open map, so

the set

Mod(φ)

 ⋃
k∈h−1[J]

{Xk}

 = {Y ∈ T1 : Yk ∈ T1 : Yk = Mod(φ)Xk} =

=
⋃

k∈h−1[J]

{Yk}
(3.5)

is also an open set. Hence, γ is a continuous function. �

The syntax of the topological institution is defined as follows:



54 3. Topological Semantics and Institutions

Definition 3.2.8. Let
(
Φ∆, α∆, β∆

)
:
(
SigI ,SenI ,ModI

)
→ ∆ be an institution

morphism from the base Institution to the Domain Institution, then we can extend

the SenI to a topological sentence functor SenIT : Sig → Set such that each

SenIT sentence is syntactically accessible from the base institution’s sentences by:

• Boolean connectives;

• Topological Modalities �,♦;

• D-quantifiers, for a class D of signature morphisms stable under pushouts and

such that any pushout between any morphism from D and any other signature

morphism is an amalgamation square in the base Institution and gets mapped

by Φ∆ to an amalgamation square in the domain Institution.

Furthermore, we extend the new set of sentences in such a way so that the following

holds: Sen(φ) (�ρ) = �Sen(φ)(ρ);

Definition 3.2.8 could be described as follows:

(1) SenI(Σ) ⊆ SenIT (Σ);

(2) φ • ψ ∈ SenIT (Σ) for all φ, ψ ∈ SenIT (Σ) and for all • ∈ {⇒,∧,∨};

(3) ¬φ ∈ SenIT (Σ) for all φ ∈ SenIT (Σ);

(4) Fφ ∈ SenIT (Σ) for all F ∈ {�,♦} and for all φ ∈ SenIT (Σ);

(5) (∀χ)φ, (∃χ)φ ∈ SenIT (Σ) for all φ ∈ SenIT (Σ) and χ : Σ 7→ Σ′ ∈ D;

To clarify, number (1) tells us that propositions in the base institution are also,

in a natural way, propositions in the new modal institution. Numbers (2) and (3)

describe how propositions in the (modal) topological institution are constructed,

using Boolean connectors. Number (4) introduces modalities as topologic operators

for the construction of sentences. Finally, number (5) demonstrates how to con-

struct sentences with quantifiers. It is important to note here that quantifiers are

utilized in an institution-theoretic manner. As noted in [14], not every signature

morphism can serve as a quantifier. Therefore, those morphisms which can perform

that function constitute quantification space D.

Definition 3.2.9 (Topological Satisfaction). Let IT be a topological institution

and Σ a signature, then for every topological Σ-model (T , τ) and each Σ sentence

φ we define locally the satisfaction of φ at the point x ∈ T , denoted as (T , τ) |=x
Σ φ

as:
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(1) (T , τ) |=x
Σ φ if and only if Mx |=IΣ φ whenever φ ∈ SenI(Σ);

(2) (T , τ) |=x
Σ φ ∧ ψ if and only if (T , τ) |=x

Σ φ and (T , τ) |=x
Σ ψ and similar for

the others Boolean connectors in {∨,⇒};

(3) (T , τ) |=x
Σ �φ if and only if ∃O ∈ τ (x ∈ O & ∀y ∈ O ((T , τ) |=y

Σ φ));

(4) (T , τ) |=x
Σ ♦φ if and only if ∀O ∈ τ (x ∈ O → ∃y ∈ O y ((T , τ) |=y φ));

(5) (T , τ) |=x ∀χφ if and only if (T ′, τ ′) |=x φ for all χ expansion (T ′, τ ′) of (T , τ)

such that Mod(χ) (T ′, τ ′) = (T , τ);

(6) (T , τ) |=x ∀χφ if and only if (T ′, τ ′) |=x φ for all χ expansion (T ′, τ ′) of (T , τ)

such that Mod(χ) (T ′, τ ′) = (T , τ);

We can now define universal satisfaction as

(T , τ) |=IT φ if and only if (T , τ) |=x φ for all x ∈ T

Remark 3.2.10. It is important to note that (T , τ) |= ¬φ is not equivalent to

(T , τ) 6|= φ because the latter means that there is an x such that (T , τ) 6|=x φ and

not that we have (T , τ) 6|=x φ for all x which is equivalent to (T , τ) |= ¬φ.

Before we prove our main theorem, we must prove the next fundamental theo-

rem.

Theorem 3.2.11 (Topological Model Amalgamation). Let an institution mor-

phism
(
Φ∆, α∆, β∆

)
: (Sig,Sen,Mod) → ∆ any commuting square of signature

morphisms in Sig of signature morphisms in Sig such that:

Σ Σ1

Σ2 Σ′

φ1

θ2

φ2 θ1

(1) it is a model amalgamation square in the base institution;

(2) Φ∆ maps it to a model amalgamation square in the domain institution,

then it is a model amalgamation square with respect to the topological model functor

T-Mod.
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Proof. Let (T1, τ1) be a Σ1-topological model and (T2, τ2) a Σ2-topological model

such that

T-Mod(φ1) (T1, τ1) = T-Mod(φ2) (T2, τ2) = (T , τ) ∈ T-Mod(Σ)(3.6)

with IT ′ index set. Then

(T1; Mod(φ1),Mod(φ1)[τ1]) = (T2; Mod(φ2),Mod(φ2)[τ2])⇔

T1; Mod(φ1) = T2; Mod(φ2) & Mod(φ1)[τ1] = Mod(φ2)[τ2]⇔⋃
M∈T1

{Mod(φ)(M)} =
⋃

M ′∈T2

{Mod(φ)(M ′)} & Mod(φ1)[τ1] = Mod(φ2)[τ2]

Given that the model amalgamation square holds in the base institution, we

can define the new topological model (T ′, τ ′) ∈ T-Mod(Σ) naturally. Figure 5

helps us understand the way of proof which will be followed.

M M1

M2 M ′

Mod(φ1)

Mod(φ2)

Figure 5

Let (T1, τ1) ∈ T-Mod(Σ1) and (T2, τ2) ∈ T-Mod(Σ2) be models such that

equation 3.6 holds. Then for each pair (M1 ∈ T1,M2 ∈ T2) with Mod(φ1)(M1) =

Mod(φ2)(M2) there exists a M ′ ∈Mod(Σ′) such that

(3.7) Mod(θ2)(M ′) = M2 and Mod(θ1)(M ′) = M1

Taking into account that the model amalgamation square functions as a choice

function, we define:

• T ′ =
⋃
M∈T

{M ′M ∈Mod(Σ′) : M ′M = M1 ⊗φ1,φ2
M2}

• τ ′ the smaller topology where Mod(θ1) and Mod(θ2) are open and continuous

maps.

Furthermore this extension is unique up to homeomorphism. Having demonstrated

the construction, we need to prove that the Sharing Condition holds; namely we
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Mod(Σ) Mod(Σ1)

Mod(Φ(Σ)) Mod(Φ(Σ1))

Mod(Φ(Σ2)) Mod(Φ(Σ′))

Mod(Σ2) Mod(Σ′)

Mod(φ1)

Mod(φ2)

Mod(θ2)

Mod(θ1)

Mod(Φ(φ1))

Mod(Φ(φ2))

Mod(Φ(θ2))

Mod(Φ(θ1))

βΣ βΣ1

βΣ2
βΣ′

Figure 6

want to prove that for each M ′i ,M
′
j ∈ T ′ we get β∆

Σ′(M
′
i) = β∆

Σ′(M
′
j).

Let M ′i ,M
′
j ∈ T ′ i.e. M ′i ,M

′
j ∈Mod(Σ′), working in the big square :

Mi,Mj ∈Mod(Σ) such that

(3.8)

Mi = Mod(φ1)(M1
i ) = Mod(φ2)(M2

i ) and Mj = Mod(φ1)(M1
j ) = Mod(φ2)(M2

j )

Working on the base institution and due to the amalgamation property there

exists exactly one M ′i ∈Mod(Σ′) such that :

(3.9) Mod(θ1)(M ′i) = M1
i and Mod(θ2)(M ′i) = M2

i

Also Mi,Mj ∈Mod(Σ) such that :

(3.10)

Mi = Mod(φ1)(M1
i ) = Mod(φ2)(M2

i ) and Mj = Mod(φ1)(M1
j ) = Mod(φ2)(M2

j )

Working on the base institution and due to amalgamation property there exists

exactly one M ′j ∈Mod(Σ′) such that :

(3.11) Mod(θ1)(M ′j) = M1
j and Mod(θ2)(M ′j) = M2

j

Now using the properties of the natural transformation β:

(1) M1
i ,M

1
j ∈Mod(Σ1) such that β∆

Σ1
(M1

i ) = β∆
Σ1

(M1
j ) ∈ModΦ(Σ1)

(2) M2
i ,M

2
j ∈Mod(Σ2) such that β∆

Σ2
(M2

i ) = β∆
Σ2

(M2
j ) ∈ModΦ(Σ2)
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(3) Mi,Mj ∈ Σ such that β∆
Σ (Mi) = β∆

Σ (Mj) ∈ModΦ(Σ)

We have

(3.12) Mod(Φ(φ1))βδΣ1
(M1

i ) = βΣ(Mod(φ1)(M1
i )) = βΣ(Mi)

and

(3.13) Mod(Φ(φ2))βδΣ1
(M1

i ) = βΣ(Mod(φ1)(M1
i )) = βΣ(Mi)

From Φ-amalgmation there is exactly one C ∈ Φ(Σ′) such that

(3.14) Mod(θ2)C = βΣ(M2
i ) and Mod(θ2)C = βΣ(M1

i )

However, Mod(θ1)βΣ′(M
′
i) = βΣ1

(Modθ1(M ′i)) = βΣ1
(M1

i ) so C = βΣ′(M
′
i),

also Mod(θ2)βΣ′(M
′
j) = βΣ2

(Modθ2(M ′i)) = βΣ(M1
i ) and also C = βΣ′(M

′
j) and

βΣ′(M
′
j) = βΣ′(M

′
i) �

Theorem 3.2.12. Given an institution morphism
(
Φ∆, α∆, β∆

)
: (Sig,Sen,Mod)→

∆ for any topological functor constructed by the previous description the IT =(
SigIT ,SenIT ,T−ModIT , |=

)
forms an institution.

Proof. We should be able to prove the satisfaction condition for every signature

morphism φ : Σ→ Σ′

(3.15) (T ′, τ ′) |=ITΣ′ Sen
IT (φ)(ρ) iff T−ModIT (φ) (T ′, τ ′) |=ITΣ ρ

Note that when ρ ∈ SenI(Σ), the relation 3.15 follows from the satisfaction

condition of the base institution. The induction step can be checked easily for the

Boolean connectives, and for the modalities.

The proof of the base case: Let ρ ∈ SenI(Σ), then

T−Mod (T ′, τ ′) |=ITΣ ρ⇔

∀M ∈ T ′; Mod(φ) |=IΣ ρ⇔

∀M = Mod(φ)(Y ) for some Y ∈ T ′ |=IΣ ρ⇔

∀M ′ ∈ T ′ |=IΣ′ SenI(φ)(ρ)⇔

(T ′, τ ′) |=ITΣ′ Sen
IT (φ)(ρ)

(3.16)
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The next inductive step involves Boolean connectives. Let ρ1, ρ2 ∈ Sen(Σ) for

which the inductive hypothesis holds, then

T−Mod (T ′, τ ′) |=ITΣ ρ1 ∧ ρ2 ⇔

T−Mod (T ′, τ ′) |=ITΣ ρ1 and T−Mod (T ′, τ ′) |=ITΣ ρ2 ⇔

(T ′, τ ′) |=ITΣ′ Sen
IT (φ)(ρ1) and (T ′, τ ′) |=ITΣ′ Sen

IT (φ)(ρ2)

(3.17)

The next inductive step involves modalities. Let ρ ∈ SenIT (Σ) for which the

inductive hypothesis holds, then

T−Mod(T ′, τ ′) |=ITΣ �ρ⇔

∀M ∈ T ′; Mod(φ) |=ITΣ �ρ⇔

∀M there exists OM ∈Mod(φ)[τ ′] such that: M ∈ OM & ∀N ∈ OM N |=ITΣ ρ

(3.18)

If we set OM ′ = OMod−1[OM ], with M = Mod(φ)(M ′). Then OM ′ is open and if

M ′ ∈ O1, then

∀M ′ there exists OM ′ ∈ τ ′ such that: M ′ ∈ OM ′ & ∀Y ′ ∈ OM ′ Y ′ |=ITΣ′ Sen
IT (φ)ρ

∀M ∈ T ′ |=ITΣ �SenIT (φ)(ρ)⇔

∀M ∈ T ′ |=ITΣ SenIT (φ)(�ρ)⇔

(T ′, τ ′) |=ITΣ SenIT (φ)(�ρ)

(3.19)

It is important to mention again the informal definition of universal quantifi-

cation. We write M |=IΣ ∀χρ1 when we get M1 |=IΣ1
ρ1 for all χ-expansions M1 of

M (see page 94 [17]).

Let T −Mod(T ′, τ ′) |=ITΣ ρ = ∀χρ1. If φ : Σ → Σ′ is a signature morphism

which belongs to D and ρ ∈ SenIT (Σ) is an universal χ-quantification sentence

of a Σ1-sentence ρ1 and if the induction hypothesis holds for ρ1, then for every

M ∈ T ′; Mod(φ) there exist M ′ ∈Mod(Σ′) with M = Mod(φ)(M ′) such that:

(3.20) M |=IΣ ρ = ∀χρ1

Let χ : Σ→ Σ1 be a morphism ∈ D such that M = Mod(χ)(M1), then

(3.21) M1 |=IΣ1
ρ1
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From Theorem 3.2.11 and the induction hypothesis (Figure 7) we can imply that

for Σ′1 signature such that χ′ : Σ′ → Σ′1, M ′1 ∈Mod(Σ′1) with Mod(φ1)M ′1 = M1

and Mod(χ′)(M ′1) = M ′ the following holds:

(3.22) M ′1 |=IΣ′1 Sen
IT (φ1)ρ1

Σ Σ1

Σ′ Σ′1

χ

χ′

φ φ1

Figure 7. Pushout square

Equation 3.22 implies

(3.23) M ′ |=IΣ′ ∀χ′SenIT (φ1)ρ1

Therefore we have the purpose

(3.24) (T ′, τ ′) |=ITΣ′ ∀χ
′SenIT (φ1)ρ1

�

3.3. Categorical Topological Untraproducts

In the previous section we examined how to expand a classic logical system to one

with topological semantics. In this section we will examine how to introduce the

notion of ultraproducts in this new modal extension. Definitions 1.2.11 and 1.2.10

serve as the basis for the definitions which follow.

Definition 3.3.1. For a signature Σ in an institution, a Σ-sentence ρ is :

• preserved by F-filtered factors if
∏
F
Ai |=Σ ρ implies {i ∈ I | Ai |=Σ ρ} ∈ F ;

• preserved by F-filtered products if {i ∈ I | Ai |=Σ ρ} ∈ F implies
∏
F
Ai |=Σ ρ;

for each filter F ∈ F over a set I and for each family {Ai}i∈I of Σ-models.

Remark 3.3.2. Note that {i ∈ I | Ai |=Σ ρ} ∈ F is equivalent with ∃J ∈ F , & ∀i ∈
J Ai |=Σ ρ.
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The following definition comes as a complement to definition 3.3.1.

Definition 3.3.3. Let F be a class of filters. For a signature Σ, a sentence ρ is:

(1) topo-modally preserved by F-filtered factors, when for each i ∈ ITF ,
∏
F

(Tj , τj) =

(TF , τF ) |=i
Σ ρ there exists k ∈ µ−1

J (i) and J ∈ F such that (Tj , τj) |=
kj
Σ ρ for

all j ∈ J ;

(2) topo-modally preserved by F-filtered products, when for each i ∈ ITF there

exists k ∈ µ−1
J (i) and J ∈ F such that (Tj , τj) |=

kj
Σ ρ for all j ∈ J it implies∏

F
(Tj , τj) = (TF , τF ) |=i

Σ ρ;

for each filter F ∈ F over a set I and for every family {(Tj , τj)}j∈I of toplogical

models

3.3.1. Filtered products of topological models. The aim of this section is to

develop an extension of the institution-independent method of ultraproducts of [18]

to topological semantics and to topo-modal satisfaction. The first step of our proof

is to show that categorical filtered products can be lifted from the categories of the

base models to the categories of topological models. Following that, we develop the

first ultraproduct fundamental theorem for the topo-modal satisfaction.

Let us assume that:

• a class F of filters;

• an institution morphism from a base institution to a domain institution

(3.25)
(
Φ∆, α∆, β∆

)
: I =

(
SigI ,SenI ,ModI , |=I

)
→ ∆

such that:

(FP): for each signature Σ the category of Σ-models Mod(Σ) has products

and F-filtered products which are preserved by the β∆
Σ ;

(LI): for each signature Σ, β∆
Σ lifts isomorphisms, i.e. if β∆

Σ (M) is isomor-

phic to N there is an M ′ such that β∆
Σ (M ′) = N ;

Proposition 3.3.4. For all signatures Σ, the category of topological models T-

Mod(Σ) has filtered products.
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Proof. Let F be any filter over a set I and let {(Tj , τj) | j ∈ I} be an I-index

family of topological models. For each J ∈ F we denote the topological product

(3.26)
∏
j∈J

(Tj , τj) =

∏
j∈J
Tj , τJ

 = (TJ , τJ)

where τJ is the standard product topology. It is important to mention that the

elements of the
∏
j∈J
Tj have the form

∏
j∈J

M
kj
j where M

kj
j ∈ Tj models in Mod(Σ).

Let {〈Ti, τi〉}i∈I be a family of topological models, such that Ti : ITi 7→ Mod(Σ).

We know that the Mod(Σ) has products, which means that for any {Mi}i∈I family

of Σ-models product
∏
i∈I

Mi is also a Σ-model. So we can define

(3.27) TI =
∏
i∈I
Ti : I∏

i∈I Ti =
∏
i∈I

ITi 7→Mod(Σ)

such that for every k =
∏
i∈I

ki ∈
∏
i∈I

ITi we have

(3.28)
∏
i∈I
Ti(k) =

∏
i∈I

Mki
i

such that for each i ∈ I Mki
i ∈ Ti. Furthermore, for all k, k′ ∈

∏
i∈I

ITi we get

β∆
Σ

(∏
i∈IM

ki
i

)
= β∆

Σ

(∏
i∈IM

k′i
i

)
. In order to construct

∏
F
Ti we will work as

follows: as a first step we will work on category of Set so as to construct the

appropriate index set ITJ . For every J ∈ F and for all j ∈ J , we have an index set

ITj to Tj . The category of sets has the products; this implies that
∏
j∈J

ITj belongs to

the category of sets. Taking the colimit as a new index set,
∏
F
ITi = IF , with pJ′,J

being the canonical projections as shown in Figure 8. we can now move onward to

∏
j′∈J′

ITj′
∏
j∈J ITj

∏
F
ITi

pJ′,J

µJ′
µJ

Figure 8

the next step.
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Setting canonical projections pk′,k :
∏
i∈J′Mi 7→

∏
i∈JMi for every J ⊆ J ′ ∈

F , in a natural way for every k ∈ µ−1
J′ (i) and k′ ∈ µ−1

J′ (i) with pJ′,J(k′) = k we

have the new colimit (see Figure 9). As for the set defined through the previous

∏
j′∈J′

Mj′
∏
j∈JMj

∏
F
Mi = M i

F

pk′,k

µk′
µk

Figure 9

construct (Equation 3.29) we attribute to it the reduct topology as per its standard

definition.

(3.29) TF =
∏
F
Ti : IF 7→Mod(Σ)

With the previous construct we achieved attributing a colimit F-filtered product

in Mod(Σ), to every i ∈ ITJ , that colimit being a F-filtered product in Mod(Σ).

Furthermore it holds that for every i ∈ IF and for all (kj)j∈J , the
∏
F
Mi = M i

F is

the filtered product modulo F of the family {Mkj
j | j ∈ I}. �

Theorem 3.3.5 (First Topological Modal Fundamental Theorem). (1) Each sen-

tence of the base institution which is preserved by F-filtered products in the base

institution is also topo-modally preserved by F-filtered products of topological

models;

(2) Each sentence of the base institution which is preserved by F-filtered factors

in the base institution is also topo-modally preserved by F-filters factors of

topological models;

Proof. Let F ∈ F be a filter over a set I of a family {(Tj , τj}j∈I .

(1) If i ∈ ITF such that there exists k ∈ µ−1
J (i) and J ∈ F , then from hypothesis

we have
∏
F
Mi |=Σ and from Proposition 3.3.4 we have the purpose.
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(2) If i ∈ ITF with (TF , τF ) |=Σ ρ, then from Proposition 3.3.4 we have
∏
F
Mi |=Σ

ρ, which implies that {i ∈ I | Mki
i |=Σ ρ} ∈ F . If we set J = {i ∈ I | Mki

i |=Σ

ρ} and k′ = pI,J(k), µJ = µI ◦ pJ,I we have the purpose.

�

3.4. Conclusions

In general we can say that a coalgebra consists a set (or a category) X , labelled

as state space, and a function ξ : X 7→ T (X) where the elements of T (X) called

transitions from X. In the language of category theory:

Definition 3.4.1. Let L be a category and T : L 7→ L an endofunctor, then a

T -coalgebra is a pair (X, ξ), where Z is an object in L and ξ is an arrow such that

ξ : X 7→ T (X).

Definition 3.4.2. Let T : L 7→ L be an endofunctor, then a morphism between

two coalgebras (X, ξ) and (Y, γ) is a morphism f : X 7→ Y such that the following

diagram commutes:

X Y

T (X) T (Y )

f

T (f)

χ γ

Figure 10

Example 3.4.3 (Kripke models). This example is coming from the area of Stan-

dard Modal Logic. A Kripke model for a set of atomic formulas is a triple M =

(W, {Rm}m∈MOD, V ) where W is a nonempty set whose elements called as points

or states or possible worlds. Each Rm is a binary relation on W and V is the val-

uation function, which assigns a subset of the domain to each basic propositional

symbol of the language. According Definition 3.4.1, we can define Kripke models

[26] through a coalgebraic formalization:

• next(w) = {w′ ∈W | wRw′} is the set of states that are possibly next of w;

• prop(w) = {p ∈ P | w ∈ V (p)} is the formulas which are true in w;
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• the Kripke model is (W, ξ, where ξ =< next,prop >: W 7→ P(W ) × P(P ),

and

• the standard modalities can be defined as [�φ]ξ = {w ∈W | ξ(w) ⊆ [φ]ξ}

In this chapter we defined the topological semantic extension of an arbitrary

logical system and we examined the extension of classic results from ultraproduct

theory. In the following, our aim will be to examine the new topolocial seman-

tics standards so that the theorem extensions hold for  Loś sentences. The next

for our work is to develop an extension of the institution-independent method of

ultraproducts to coalgebraic semantics and to colgebraic-modal satisfaction.





Chapter 4

Generic Structures

Abstract. Analyzing diagrams which form generative classes we describe de-

finable sets and their links in generic structures as well as cardinality bounds

for these definable sets, finite or infinite. Introducing basic characteristics for

definable sets in generic structures we compare them with each others and

with cardinalities of these sets. We introduce calculi for (type-)definable sets

allowing for comparing their cardinalities [29, 73]. In terms of these calculi

we prove a Trichotomy Theorem. Using these calculi we characterize the pos-

sibility to construct a generic structure of a given generative class. The notion

of the definable set is one of the basic notions in Model Theory. Studying

definable sets one can observe what properties can be described by formulas.

Definable sets play an important role in describing the structural properties

of elementary theories both in general and for valuable classes [70, 41, 15].

Cardinalities of definable sets for superstructures and Fräıssé structures were

examined in [77, 33]. In [33], examples for semantic generative classes which

the forbid existence of Fräıssé limits, for uncountable cases, are proposed. In

this chapter, considering syntactic approach to generic constructions and their

limits [65, 62, 63, 67, 66, 58] we study and compare basic characteristics for

definable sets in generic structures.

4.1. Preliminaries

This chapter is organized as follows. In Section 1 we present preliminary notions

and necessary results. In Section 2 we introduce fragments of definable sets in

generic structures, characterize (co)finite definable sets, and describe bounds for

finite definable sets and their covers. Basic characteristics and their bounds for

infinite definable sets are described in Section 3. In Section 4 we introduce calculi for

definable and type-definable sets allowing to compare and control their cardinalities.

In terms of these calculi, we prove a Trichotomy Theorem. Using these calculi, in

67
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Section 5, we introduce the notion of meeting of cardinality contradiction and, for

given generative class, characterize the existence of a generic structure. In section

6 [34] we define and study lattices in generative classes associated with generic

structures. It is shown that these lattices can be non-distributive and, moreover,

sufficiently arbitrary enough. The height and width of the lattices is described. A

model-theoretic criterion for linear ordering is proved and these linear orders are

described. Boolean algebras generated by the considered lattices are described.

Considering syntactic approach to generic constructions and their limits [65,

62, 63, 67, 66, 58, 75] we study lattices in generative classes associated with

generic structures. We show that these lattices can be non-distributive. Standard

notions on the lattice theory can be found in [8, 25, 10].

We consider collections of sentences and formulas in first order logic in a lan-

guage Σ. Thus, as usual, ` means proof from no hypotheses deducing ` ϕ for a

formula ϕ of language Σ, which may contain function symbols and constants. If

deducing ϕ, hypotheses can be used in a set Φ of formulas and we write Φ ` ϕ.

Usually Σ will be fixed in context and not mentioned explicitly. Henceforth we

write X,Y, Z, . . . for finite sets of variables and denote finite sets of elements by

A,B,C, . . ., as well as finite sets in structures or structures with finite universes

themselves.

In the diagrams, A,B,C, . . . denote finite sets of constant symbols disjoint from

the constant symbols in Σ. We denote the vocabulary with the constants from A

adjoined by Σ(A) . Φ(A),Ψ(B),X(C) stand for Σ-diagrams (of sets A, B, C), that

is, consistent sets of Σ(A)-, Σ(B)-, Σ(C)-sentences, respectively. These sets A, B,

C are called universes of correspondent diagrams.

In the following we assume that for any considered diagram Φ(A), if a1, a2 are

distinct elements in A, then ¬(a1 ≈ a2) ∈ Φ(A). This means that if c is a constant

symbol in Σ, then there is at most one element a ∈ A such that (a ≈ c) ∈ Φ(A).

If Φ(A) is a diagram and B is a set, we denote the set {ϕ(ā) ∈ Φ(A) | ā ∈ B}
by Φ(A)|B . Similarly, for a language Σ, we denote the restriction of Φ(A) to the

set of formulas in the language Σ by Φ(A)|Σ.

Definition 4.1.1. [65, 62, 63, 67, 66, 58] We denote by [Φ(A)]AB the diagram

Φ(B) obtained by replacing a subset A′ ⊆ A by a set B′ ⊆ B of constants disjoint

from Σ and with |A′| = |B′|, where A\A′ = B \B′. Similarly we call the consistent
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set of formulas denoted by [Φ(A)]AX type Φ(X) if it is the result of a bijective

substitution into Φ(A) of variables of X for the constants in A. In this case, we

say that Φ(B) is a copy of Φ(A) and a representative of Φ(X). We also denote the

diagram Φ(A) by [Φ(X)]XA .

Remark 4.1.2. If the vocabulary contains functional symbols, then diagrams Φ(A)

containing equalities and inequalities of terms can generate both finite and infinite

structures. The same effect is observed for purely predicate vocabularies if it is

written in Φ(A), then the model for Φ(A) should be infinite. For instance, diagrams

containing axioms for finitely axiomatizable theories have this property.

By the definition, for any diagram Φ(A), each constant symbol in Σ appears in

some formula of Φ(A). Thus, Φ(A) can be considered as Φ(A∪K), where K is the

set of constant symbols in Σ.

We now give conditions on a partial ordering of a collection of diagrams suffi-

cient for it to determine a structure. We modify some of the conditions for structures

by d to signify they are conditions on diagrams and not structures.

Definition 4.1.3. [65, 62, 63, 67, 66, 58] Let Σ be a vocabulary. We say

that (D0;6) (or D0) is generic, or generative, if D0 is a class of Σ-diagrams of

finite sets so that D0 is partially ordered by a binary relation 6 such that 6 is

preserved by bijective substitutions, i. e., if Φ(A) 6 Ψ(B) and A′ ⊆ B′ such that

[Φ(A)]AA′ = Φ(A′) and [Ψ(B)]BB′ = Ψ(B′) are defined, then [Φ(A)]AA′ , [Ψ(B)]BB′ are

in D0 and [Φ(A)]AA′ 6 [Ψ(B)]BB′ .
1 Furthermore:

(1) if Φ(A) ∈ D0, then for any quantifier free formula ϕ(x̄) and any tuple ā ∈ A
either ϕ(ā) ∈ Φ(A) or ¬ϕ(ā) ∈ Φ(A);

(2) if Φ 6 Ψ then Φ ⊆ Ψ;2

(3) if Φ 6 X Ψ ∈ D0, and Φ ⊆ Ψ ⊆ X, then Φ 6 Ψ;

(4) a diagram Φ0(∅) is the least element of the system (D0;6);

(5) (the d-amalgamation property) for any diagrams Φ(A), Ψ(B), X(C) ∈ D0, if

there exist injections f0: A → B and g0: A → C with [Φ(A)]Af0(A) 6 Ψ(B)

1Note that D0 is closed under bijective substitutions since 6 is preserved by bijective substitutions

and 6 is reflexive.
2Note that Φ(A) 6 Ψ(B) implies A ⊆ B, since if a ∈ A then (a ≈ a) ∈ Φ(A), so Φ(A) 6 Ψ(B)

implies Φ(A) ⊆ Ψ(B) and we have (a ≈ a) ∈ Ψ(B), whence a ∈ B.
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and [Φ(A)]Ag0(A) 6 X(C), then there are a diagram Θ(D) ∈ D0 and injections

f1: B → D and g1: C → D for which [Ψ(B)]Bf1(B) 6 Θ(D), [X(C)]Cg1(C) 6

Θ(D) and f0 ◦ f1 = g0 ◦ g1; diagram Θ(D) is called the amalgam of Ψ(B) and

X(C) over the diagram Φ(A) and witnessed by the four maps (f0, g0, f1, g1)

(see Figure 1);

B [Ψ(B)]Bf1(B)

A D Θ(D)

C [X(C)]Cg1(C)

f0

g0

f1

g1

≥

≥

Figure 1

(6) (the local realizability property) if Φ(A) ∈ D0 and Φ(A) ` ∃x ϕ(x), then

there is a diagram Ψ(B) ∈ D0, Φ(A) 6 Ψ(B) and an element b ∈ B for which

Ψ(B) ` ϕ(b);

(7) (the d-uniqueness property) for any diagrams Φ(A),Ψ(B) ∈ D0 if A ⊆ B and

the set Φ(A) ∪Ψ(B) is consistent, then Φ(A) = {ϕ(b̄) ∈ Ψ(B) | b̄ ∈ A}.

(8) A diagram Φ is called a strong subdiagram of a diagram Ψ if Φ 6 Ψ.

Example 4.1.4. Consider a vocabulary Σ = {<, f} where < is a linear order and

f is a unary function. For A = {a} and assuming that ∀x(f(x) > x) and a = a

belongs to a diagram Φ(A), it follows that the diagram consists of the formulas

f (n+1)(a) > f (n)(a) for every n ∈ ω. Thus the finite set A generates an infinite

structure.

Example 4.1.5. Consider a vocabulary Σ = {<, f} where < is a linear order and

f is a function. For B = {a, b} and assuming that ∀x∀y(x < f(x, y) < y) and

a = a, b = b belong to a diagram Φ(B), it follows that the diagram consists of the

formulas x < f (n)(x, y) < y for every n ∈ ω. Thus the finite set B generates an

infinite structure where the order is dense.

Definition 4.1.6. A diagram Φ(A) is said to be (strongly) embeddable in a diagram

Ψ(B) if there is an injection f : A→ B such that [Φ(A)]Af(A) ⊆ Ψ(B) ([Φ(A)]Af(A) 6
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Ψ(B)). The injection f , in this instance, is called a (strong) embedding of diagram

Φ(A) in diagram Ψ(B) and is denoted by f : Φ(A) → Ψ(B). A diagram Φ(A) is

said to be (strongly) embeddable in a structureM if Φ(A) is (strongly) embeddable

in a diagram Ψ(B), where M |= Ψ(B). The corresponding embedding f : Φ(A)→
Ψ(B), in this case, is called a (strong) embedding of diagram Φ(A) in structure M
and is denoted by f : Φ(A)→M.

Let D0 be a class of diagrams, P0 be a class of structures of some language andM
be a structure in P0. The class D0 is cofinal in the structure M if for each finite

set A ⊆ M there is a finite set B, A ⊆ B ⊆ M and a diagram Φ(B) ∈ D0 such

thatM |= Φ(B). The class D0 is cofinal in P0 if D0 is cofinal in every structure of

P0. We denote the class of all structures M by K(D0), under the condition that

D0 is cofinal inM, and a subclass of K(D0) by P such that each diagram Φ ∈ D0

is true in some structure in P.

Now we extend the relation 6 from the generative class (D0;6) to a class of

subsets of structures in the class K(D0).

Definition 4.1.7. Let M be a structure in K(D0) and A and B be finite sets in

M with A ⊆ B. We call A a strong subset of the set B (in the structure M) and

write A 6 B, if there exist diagrams Φ(A),Ψ(B) ∈ D0, for which Φ(A) 6 Ψ(B)

and M |= Ψ(B).

A finite set A is called a strong subset of a set M0 ⊆M (in the structureM), where

A ⊆ M0, if A 6 B for any finite set B such that A ⊆ B ⊆ M0 and Φ(A) ⊆ Ψ(B)

for some diagrams Φ(A),Ψ(B) ∈ D0 with M |= Ψ(B). If A is a strong subset

of M0 then, as above, we write A 6 M0. If A 6 M in M then we refer to A as

a self-sufficient set (in M).

Notice that, by the d-uniqueness property, diagrams Φ(A) and Ψ(B) specified

in the definition of strong subsets are defined uniquely. A diagram Φ(A) ∈ D0,

corresponding to a self-sufficient set A in M, is said to be a self-sufficient diagram

(in M).

Definition 4.1.8. [65, 62, 63, 67, 66, 58] A class (D0;6) possesses the joint

embedding property (JEP) if for any diagrams Φ(A),Ψ(B) ∈ D0 there is a diagram

X(C) ∈ D0 such that Φ(A) and Ψ(B) are strongly embeddable in X(C).
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Clearly, every generative class has JEP since JEP means the d-amalgamation

property over the empty set.

Definition 4.1.9. [65, 62, 63, 67, 66, 58] A structureM∈ P has finite closures

with respect to the class (D0;6), or is finitely generated over Σ, if any finite set

A ⊆M is contained in some finite self-sufficient set in M, i. e., there is a finite set

B with A ⊆ B ⊆ M and Ψ(B) ∈ D0 such that M |= Ψ(B) and Ψ(B) 6 X(C) for

any X(C) ∈ D0 with M |= X(C) and Ψ(B) ⊆ X(C). A class P has finite closures

with respect to the class (D0;6), or it is finitely generated over Σ, if each structure

in P has finite closures (with respect to (D0;6)).

Clearly, an at most countable structure M has finite closures with respect

to (D0;6) if and only if M =
⋃
i∈ω

Ai for some self-sufficient sets Ai with

Ai 6 Ai+1, i ∈ ω.

Note that the finite closure property is defined modulo Σ and does not correlate

with the cardinalities of algebraic closures. For instance, if Σ contains infinitely

many constant symbols then acl(A) is always infinite whereas a finite set A can or

cannot be extended to a self-sufficient set.

Additionally, for the finite closures of sets A we consider finite self-sufficient

extensions B in a given structure M with respect to (D0;6) only and B can

be both a universe of a substructure of M or not. Moreover, it is permitted that

corresponding diagrams Ψ(B) can have only finite, finite and infinite, or only infinite

models.

Thus, for instance, a finitely axiomatizable theory without finite models and

with a generative class (D0;⊆), containing diagrams for all finite sets and with

axioms in diagrams, has identical finite closures whereas each diagram in D0 has

only infinite models.

Definition 4.1.10. [65, 62, 63, 67, 66, 58] A structureM∈ K(D0) is (D0;6)-

generic, or a generic limit for the class (D0;6) and denoted by glim(D0;6), if it

satisfies the following conditions:

(a): M has finite closures with respect to D0;

(b): if A ⊆ M is a finite set, Φ(A),Ψ(B) ∈ D0, M |= Φ(A) and Φ(A) 6 Ψ(B),

then there exists a set B′ 6M such that A ⊆ B′ and M |= Ψ(B′);
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Theorem 4.1.11. [65, 62, 63, 58] For any generative class (D0;6) with at most

countably many diagrams the copies of which form D0, there exists a (D0;6)-

generic structure.

Theorem 4.1.12. [67, 58] Every ω-homogeneous structure M is (D0;6)-generic

for some generative class (D0;6).

Thus any first-order theory has a generic model and therefore can be repre-

sented by it.

Definition 4.1.13. [65, 62, 63, 67, 66, 58] A generative class (D0;6) is self-

sufficient if the following axiom of self-sufficiency, or coherence axiom, holds:

If Φ,Ψ,X ∈ D0, Φ 6 Ψ, and X ⊆ Ψ, then Φ ∩X 6 X.

Theorem 4.1.14. [65, 62, 63, 58] Let (D0;6) be a self-sufficient class, M be at

most countable (D0;6)-generic structure and K be the class of all models of T =

Th(M) which has finite closures. Then the generic structure M is homogeneous.

Thus, since any ω-homogeneous structure can be considered as generic with

respect to a generic class with complete diagrams, a countable structure M is

homogeneous if and only if it is generic for an appropriate self-sufficient generative

class (D0;6).

4.2. Definable sets, their fragments and finite cardinalities

Let (D0;6) be a generative class in a language Σ, and M be a (D0;6)-generic

structure. Take a Σ-formula φ(x̄) and a tuple ā ∈ M . Considering inductive steps

of the construction of φ(x̄) we observe the relation M |= φ(ā):

(1) if φ(x̄) is a quantifier-free formula, then M |= φ(ā) if and only if Φ(A) ` φ(ā)

in the propositional calculus for some/any Φ(A) ∈ D0 satisfying M |= Φ(A)

with ā ∈ A;

(2) if φ(x̄) has a form ∃yψ(x̄, y), then M |= φ(ā) if and only if M |= ψ(ā, b) for

some/any Ψ(B) ∈ D0 satisfying M |= Ψ(B) with ā, b ∈ B;

(3) if φ(x̄) is a Boolean combination of formulas ψi(x̄) with defined satisfaction

M |= ψδii (ā), δi ∈ {0, 1}, i ∈ {1, . . . , n}, then M |= φ(ā) if and only if
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the Boolean function f(x1, . . . , xn) has the value f(δ1, . . . , δn) = 1 for the

combination φ(x̄) and variables xi corresponding to ψi(x̄);

(4) as usual, M |= ∀yψ(x̄, y) if and only if M |= ¬∃y¬ψ(x̄, y).

If the generic structure M is finite, then there is a diagram Φ(M) ∈ D0. Thus,

Φ(M) completely defines the relationM |= φ(ā). Therefore in the following mainly

we consider infinite M.

Now we fix a definable set X = Xφ = {ā | M |= φ(ā)} in the generic structure

M. For any Φ(A) ∈ D0 with M |= Φ(A) we denote by XΦ(A) the finite Φ(A)–

fragment X ∩Al(ā) of X. We will omit Φ(A)– if that diagram is fixed or clear from

the context.

Combining X from its finite fragments, we have:

(4.1) X =
⋃

Φ(A)

XΦ(A).

Having Equality (4.1) we will also say that the diagrams Φ(A) cover the set X.

Clearly, Equality (4.1) stays true taking only minimal diagrams Φ(A) such that all

coordinates of each tuple ā ∈ X are contained in some A. Moreover, if (D0;6) is

self-sufficient it suffices to take least diagrams Φ(A) with that property. In these

cases, Equality (4.1) holds since described Φ(A) cover the set X. The latter case

means that there are atoms covering X.

Recall that a partially ordered set 〈U ;≤〉 is said to be downward (upward) directed

if for each x, y ∈ U there exists z ∈ U such that z ≤ x and z ≤ y (respectively,

x ≤ z and y ≤ z).

Remark 4.2.1. Following the definition of generic structure and the amalgamation

property we have the finite upward direction for X relative to finite fragments: for

any finite fragments X1, X2 ⊆ X there is a finite fragment Y ⊆ X such that

X1 ∪X2 ⊆ Y .

Studying definable sets X in M it is natural to start with (co)finite sets.

Proposition 4.2.2. The following conditions are equivalent for the definable set

X:

(1) X is finite;

(2) X = XΦ(A) for some Φ(A) ∈ D0;
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(3) there is Φ(A) ∈ D0 such that XΦ(A) = XΨ(B) for any Ψ(B) with M |= Ψ(B)

and Φ(A) 6 Ψ(B).

Proof. (1)⇒ (2). If X is finite then we have the following cases:

(1) X ⊆ XΦ(A) for some Φ(A) ∈ D0; then X = XΦ(A) since X ⊇ XΦ(A);

(2) X =
⋃n
i=1XΦi(Ai) for some n > 1 and Φi(Ai) ∈ D0; then we consider induc-

tion on n:

• for n = 2, if X = XΦ(A1) ∪ XΦ(A2) then by the amalgamation property

there exists a diagram Ψ2(C2) ∈ D0 such that Φ(A1) and Φ(A2) are

identically strongly embeddable in Ψ2(C2) and by the definition of generic

structure M, M |= Ψ2(C2) with X = XΨ2(C2);

• if Ψn−1(Cn−1) is already defined covering Φ1(A1), . . . ,Φn−1(An−1) we

repeat the process above for Ψn−1(Cn−1) and Φn(An) taking their amal-

gam Ψn(Cn) such that Ψn−1(Cn−1) and Φn(An) are identically strongly

embeddable in Ψn(Cn), andM |= Ψn(Cn). Hence we have X = XΨn(Cn)

for some Ψn(Cn) ∈ D0.

(2) ⇒ (1). If X = XΦ(A) for some Φ(A) ∈ D0 then X is finite by the definition of

XΦ(A).

(2)⇔ (3) is true again applying Equality (4.1) and Remark 4.2.1, since Φ(A) 6

Ψ(B) implies XΦ(A) ⊆ XΨ(B). �

Remark 4.2.3. Proposition 4.2.2 means that a definable sets is finite if and only

if it can be covered by a unique diagram.

The following propositions are implied by Remark 4.2.3 and the standard finite

combinatorics.

Proposition 4.2.4. If X ⊆ Mn is finite with X = XΦ(A), where |A| = k, then

|X| ≤ kn.

Definition 4.2.5. Let X ⊆Mn be finite, X = XΦ(A) with |A| = k, U be a covering

set of diagrams Ψ ∈ D0 for X, where M |= Ψ, Ψ 6 Φ(A), |U | = m. Then U is

called a m-cover, or simply an cover, of X with respect to A. If V ⊆ U is again a

cover of X then V is called a |V |-subcover, or simply a subcover, of U .

Proposition 4.2.6. Any cover U of X contains an s-subcover V with s ≤ k.
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Proposition 4.2.7. Any finite X has a 1-cover {Ψ}. Moreover, if (D0;6) is

self-sufficient then the 1-cover {Ψ} can be chosen with the least Ψ.

Proposition 4.2.2 immediately implies

Corollary 4.2.8. For the definable set X the following conditions are equivalent:

(1) X is cofinite;

(2) M \X = (M \X)Φ(A) for some Φ(A) ∈ D0;

(3) M \X ⊆ YΦ(A) for some Φ(A) ∈ D0 and a definable set Y ;

(4) there is Φ(A) ∈ D0 such that (M \X)Φ(A) = (M \X)Ψ(B) for any Ψ(B) with

M |= Ψ(B) and Φ(A) 6 Ψ(B).

Remark 4.2.9. Since each diagram Φ(A) ∈ D0 implies a quantifier-free diagram

over A, if X = X{φ} for a quantifier-free formula φ, in view of Proposition 4.2.2

we can characterize quantifier-free formulas for (co)finite definable sets in terms of

(D0;6), counting the number of tuples satisfying φ (¬φ) and not taking the generic

structure M.

Thus, if Th(M) has quantifier elimination, then the set of algebraic types is

defined in terms of (D0;6), too.

Definition 4.2.10. [70, 15, 5, 51]. A structure N is definably minimal if any

subset of N , definable by a formula φ(x, ā), ā ∈ N , is either finite or cofinite. A

structure N is strongly minimal if each N ′ � N is definably minimal.

Remark 4.2.11. Consider the set F (respectively CF of Σ-formulas having (co)finitely

many solutions in M). We set FCF = F ∪CF. Clearly, F and CF are closed un-

der positive Boolean combinations preserving arity and under projections. Thus,

FCF is closed under Boolean combinations preserving arity and under projections.

Moreover, it holds for ΣA-formulas, where A ⊆ M , forming the set FCFA. In

such a case we write FCF∅ for FCF. Thus, restrictions of the Morleyzation ofM
to some unions of FCFA form definably minimal fragments of that Morleyzation.

Moreover, if a sublanguage Σ′ of Σ forms the set of formulas in the union of FCFA

with one free variable then the Σ′-restriction ofM is definably minimal. Preserving

the definable minimality under elementary extensions of M we get strongly min-

imal restrictions. Characterizing (co)finite definable sets in Proposition 4.2.2 and

Corollary 4.2.8 we deduce a characterization for the definable minimality of generic
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structures. Considering appropriate extensions of (D0;6) we can also characterize

the strong minimality.

Clearly, fragments (in particular, the greatest fragment) of a finite definable

set allow, to count its cardinality.

4.3. Bounds for infinite definable sets in generic structures

We will now define characteristics allowing to find lower and upper bounds and the

cardinality for an infinite definable set X.

For a diagram Φ(A) ∈ D0 the set of copies Φ(B) of Φ(A) we denote by cΦ(A)(X)

such that XΦ(B) 6= ∅, and the set of copies Φ(B) of Φ(A) by cmΦ(A)(X) such that

Φ(B) is minimal among diagrams Ψ ∈ D0 with M |= Ψ and XΨ 6= ∅. Since X is

infinite and each of its Φ-fragment is finite, in view of Equality (4.1) we have:

(4.2) |X| ≤
∑
Φ(A)

|cmΦ(A)(X)| ≤
∑
Φ(A)

|cΦ(A)(X)|.

Remark 4.3.1. The first inequality in (4.2) can be strict if D0 is not closed under

intersections. Indeed, in such a case a singleton {a} can be a subset of unboundedly

many sets A in minimal diagrams Φ(A) ∈ D0. Thus, having, say, countable X we

can form uncountably many minimal diagrams for each element a ∈ X producing∑
Φ(A) |cmΦ(A)(X)| > ω. At the same time, if D0 is self-sufficient then each finite

subset X0 of X defines a set A with least diagram Φ(A) ∈ D0 containing all

coordinates of tuples in X0 and, collecting all these least diagrams, we get

|X| =
∑
Φ(A)

|cmΦ(A)(X)|.

The arguments above show that diagrams in D0, containing these Φ(A), can pro-

duce the strict inequality simultaneously∑
Φ(A)

|cmΦ(A)(X)| <
∑
Φ(A)

|cΦ(A)(X)|.

Remark 4.3.2. The inequalities in (4.2) become equalities if |X| = |M |, since

diagrams in the union
⋃

Φ(A)

cΦ(A)(X) form a covering of M by finite sets.
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In general, for the equality

(4.3) |X| =
∑
Φ(A)

|cΦ(A)(X)|

it suffices to take a minimal covering, for X, subset of the set of diagrams Φ(A). In

particular, Equality (4.3) holds if chosen diagrams Φ(A) are disjoint with respect

to A and cover X.

Proposition 4.3.3. A covering set U of diagrams Φ(A) for X (with M |= Φ(A))

is minimal if and only if for each Φ(A) ∈ U there is a coordinate ai for a tuple ā in

X such that ai belongs to A and does not belong to universes B of other diagrams

Ψ(B) ∈ U .

Proof. Let U be minimal and some Φ(A) ∈ U not have coordinates ai tuples

ā in X such that ai ∈ A and does not belong to universes B of other diagrams

Ψ(B) ∈ U . Then U \ {Φ(A)} is covering too, contradicting the minimality of U .

Conversely, if for each Φ(A) ∈ U there is a coordinate ai for a tuple ā in X

such that ai belongs to A and does not belong to universes B of other diagrams

Ψ(B) ∈ U , then U \ {Φ(A)} is not covering. Therefore, U is minimal. �

Remark 4.3.4. If the covering set U consists of diagrams for singletons, then U

is minimal. More generally, any covering set U , with universes A for Φ(A) ∈ U of

bounded cardinalities, contains a minimal covering subset U0.

In contrast to this, taking a covering set U of diagrams Φn(An) with An ⊂
An+1, n ∈ ω, one can not find a minimal covering subset U0.

Remark 4.3.5. In any case, taking an infinite set X ⊆Mn, whether it is definable

or not, and indexing elements of X we can choose step-by step a covering set U of

diagrams Φ(A) ∈ D0 such that |X| = |U |.

We denote by d(D0, X) (respectively, dm(D0, X)) the cardinality of a minimal

set W of diagrams Φ(A) ∈ D0 such that each diagram in cΦ(A)(X) (cmΦ(A)(X))

has a copy in W . We set d(D0) = d(D0,M) and dm(D0) = dm(D0,M). By

the definition of generic structure, d(D0) is the cardinality of minimal set W ′ of

diagrams in D0, with non-empty universes, such that each diagram in D0 has a

copy in W ′. Respectively, dm(D0) is the cardinality of minimal set W ′ of diagrams
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in D0 such that each minimal diagram Φ(A) ∈ D0 with nonempty A has a copy in

W ′.

Remark 4.3.6. Clearly, dm(D0, X) ≤ dm(D0) and dm(D0, X) ≤ d(D0, X) ≤
d(D0). Moreover, dm(D0, X) and even dm(D0) can be finite: if, for instance, the

generic structureM realizes only finitely many n-types, for some n ≥ 1, and all n-

element sets {a1, . . . , an}, ai ∈M , are represented by diagrams in D0. IfM realizes

unique 1-type and some (equivalently, all) singletons {a}, a ∈ M , are represented

by diagrams in D0 then dm(D0) = 1. Therefore, in general, the only estimation for

dm(D0) is dm(D0) ≥ 1.

At the same time, d(D0, X) are always infinite (for nonempty X and infinite

M).

The value d(D0) is bounded by the cardinality of the language Σ: d(D0) ≤
2max{|Σ|,ω}. Besides, dm(D0, X) and d(D0, X) are monotone with respect to the

second coordinate and, by Remark 4.3.6, d(D0, X) are always infinite (although

dm(D0, X) can be finite).

Proposition 4.3.7. For any definable set Y ⊇ X in the generic structure M,

ω ≤ d(D0, X) ≤ d(D0, Y ) ≤ d(D0) ≤ 2max{|Σ|,ω}.

Remark 4.3.8. In contrast with Proposition 4.3.7, in general, we cannot assert a

fixed inequality comparing |X| and d(D0, X), and even |X| and dm(D0, X). Indeed,

X can be covered by copies of a fixed minimal diagram Φ(A). In such an instance,

dm(D0, X) = 1 implying dm(D0, X) < |X|. If d(D0, X) = ω we can get both

d(D0, X) = |X|, if X is countable, and d(D0, X) < |X|, if X is uncountable.

Now, having dm(D0, X) = dm(D0, X) = d(D0) = 2max{|Σ|,ω} we face three

possibilities: d(D0, X) > |X| taking a countable definable set X with 2max{|Σ|,ω}

diagrams which are not copies of one another and the universes of which have

nonempty intersections with X; d(D0, X) = |X| or d(D0, X) < |X| for X of ap-

propriate cardinalities. We have similar possibilities for dm(D0, X). But if the

generative class (D0;6) is self-sufficient, then minimal diagrams Φ(A) should be

least producing the inequality dm(D0, X) ≤ |X|, which is strict if each least dia-

gram, for X, is a copy of a diagram in a finite list.
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We denote by sc(X) the value sup{|cΦ(A)(X)| | Φ(A) ∈ D0} producing the

supremum of numbers of copies Φ(B) for diagrams Φ(A) in D0 with nonempty

fragments of X, and by scm(X) the value sup{|cmΦ(A)(X)| | Φ(A) ∈ D0} producing

the supremum of numbers of minimal copies Φ(B) for diagrams Φ(A) in D0 with

nonempty fragments of X. We set sc(M) = sc(M) and scm(M) = scm(M).

Remark 4.3.9. Clearly, scm(X) ≤ sc(X), 1 ≤ sc(X), and as above for d(D0, X),

three possibilities sc(X) < |X|, sc(X) = |X|, sc(X) > |X| can be realized. Replac-

ing sc by scm we again have three realizable relations.

Equation (4.2) implies

(4.4) |X| ≤ dm(D0, X) · scm(X) ≤ d(D0, X) · sc(X).

Inequalities (4.4) can be strict and they can be equalities. In particular, we

have

(4.5) |M | = dm(D0,M) · scm(M) = d(D0,M) · sc(M) = d(D0) · sc(M).

Since d(D0, X) · sc(X) is monotone with respect to X and both for d(D0, X)

and sc(X), then using Proposition 4.3.7 and equations (4.4), (4.5) we have the

following:

Proposition 4.3.10. For any definable set Y ⊇ X in the generic structure M,

|X| ≤ d(D0, X) · sc(X) ≤ d(D0, Y ) · sc(Y ) ≤ |M | = d(D0) · sc(M).

Clearly, the estimate in Proposition 4.3.10 is precise since the cardinality of X

can vary from 0 to |M |. Note also that, in general case, sc(M) can vary from 1 to

|M |.

The following examples illustrate Proposition 4.3.10.

Example 4.3.11. Take a generic structureM consisting of λ ≥ ω constants form-

ing the language. We have that any unary definable set X is either finite of cofinite,

d(D0) = λ, sc(M) = 1, and |M | = λ = d(D0) = d(D0) · sc(M).

Example 4.3.12. Take a structure M′ in the empty language and with λ ≥ ω

elements. We again have either finite of cofinite unary definable sets, d(D0) = ω,

sc(M) = λ, and thus |M | = λ = ω · λ = d(D0) · sc(M).
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Example 4.3.13. Extending Example 4.3.12 letM′′ be a structure in the language

with µ disjoint unary predicates Pi, |Pi| = λi, i ∈ µ,
∑
i∈µ

λi = λ. Diagrams Φ(A),

in a generative class (D0;6) for M′′, describe finite cardinalities λi, |Pj | ≥ ω, and

colorings i ∈ µ ∪ {∞} [65, 61] of elements a ∈ A corresponding to |= Pi(a) or

|= p∞(a), where p∞(x) = {¬Pi(x) | i ∈ µ}. If there are finite λi then the choices of

elements a ∈ A in correspondent predicates Pi can be counted by standard formu-

las of finite combinatorics. Having only infinite λi we get max{µ, ω} possibilities

forming d(D0) and sc(M) = λ producing |M | = λ = max{µ, ω}·λ = d(D0)·sc(M).

In general, concerning unary predicates, d(D0) can vary from ω to max{2µ, ω}
and sc(M) has a cardinality between 1 and λ.

Example 4.3.14. (cf. [33, Proof of Theorem 2.1]) Let N be a structure in the

language with µ ≥ ω equivalence relations Ei such that E0 = N2, each Ei-class

is divided into ki Ei+1-classes, ki ∈ ω \ {0, 1}, i ∈ µ, and every intersection of a

⊆-chain of Ei-classes Xi, i ∈ µ, has κ elements for some fixed κ > 0.

Clearly, |N | = 2µ · κ. In particular, if κ ≤ ω then |N | = 2µ. Since Th(N ) has

µ complete types, d(D0) = µ, too. Therefore sc(N ) = 2µ · κ, and if κ ≤ ω then

sc(N ) = 2µ.

4.4. Links between definable sets

In this section we consider links between definable sets implying cardinality estima-

tions for these definable sets and forcing for these cardinalities. Thus, in families

of definable sets, we consider relations which allow us to compare cardinalities of

these definable sets.

Definition 4.4.1. If X and Y are definable sets in a structure M, X = φ(M, ā),

Y = ψ(M, b̄), ā, b̄ ∈ M , |X| = λ, |Y | = µ, then we write X ⇒µ,M Y , Xλ,M⇐ Y ,

and Xλ,M⇔µ,M Y . If X ⇒µ,N Y ′ (respectively, Xλ,N⇐ Y ; Xλ,N⇔µ,N Y ) for

any N such that ā, b̄ ∈ N , M ≺ N or M � N , X = φ(N , ā), Y ′ = ψ(N , b̄)
(X ′ = φ(N , ā), Y = ψ(N , b̄); X ′ = φ(N , ā), Y ′ = ψ(N , b̄), and |X ′| = λ or

|Y ′| = µ), then we say that X forces the cardinality µ for Y (Y forces the cardinality

λ for X; X and Y mutually force cardinalities λ and µ), written X ⇒µ Y (Xλ⇐ Y ;

Xλ⇔µ Y ). Here X ′ (respectively, Y ′) is called a copy of X (Y ).
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Replacing λ by ≤ λ or ≥ λ or < λ or > λ, and/or µ by ≤ µ or ≥ µ or < µ or

> µ, we get a series of related notions and notations, for instance, X≤λ,N⇔>µ,N Y .

Having X ⇒µ,M Y , X ⇒≤µ,M Y , or X ⇒≥µ,M Y for any X we write⇒µ,M Y ,

⇒≤µ,M Y , or ⇒≥µ,M Y respectively.

Example 4.4.2. Taking a structure M with infinite disjoint unary predicates

P0 and P1 of cardinalities λ and µ respectively and without any links, we have

Xλ,M⇔µ,M Y for X = P0(M) and Y = P1(M), whereas Xλ6⇔µ Y , even X 6⇒µ Y

and Xλ6⇐ Y . If λ ≥ µ, we can extend the language forM by a function f : P0 → P1

which guarantee X ⇒µ Y .

The example confirms that the relation X ⇒µ Y is not preserved under lan-

guage restrictions.

The following properties for definable sets are obvious.

1.: If Y is finite, then X ⇒n Y for some unique n ∈ ω and for any/some X.

Conversely, if Y is infinite, then X 6⇒n Y for any n ∈ ω and for any/some X.

Thus, we have ⇒<ω Y for finite Y and 6⇒<ω Y for infinite one.

2.: If Y is infinite, then X ⇒≥ω Y for any/some X. Conversely, if Y is finite,

then X 6⇒≥ω Y for any/some X. Thus we have ⇒≥ω Y for infinite Y and

6⇒≥ω Y for finite ones.

3.: (Monotony) If X ⇒≤λ Y , λ ≤ µ and Y ⊆ Z, then X ⇒≤µ Z.

4.: (Transitivity) If X,Y, Z are definable sets in a structure M, X ⇒λ Y
′ and

Y ′ ⇒µ Z
′ for any copies Y ′ and Z ′ of Y and Z, respectively, then X ⇒µ Z.

The same is true replacing λ by ≤ λ or ≥ λ, and µ by ≤ µ or ≥ µ.

5.: If Xi are disjoint subsets of Y and ⇒≥λi Xi, i ∈ κ, then ⇒≥∑
i∈κ

λi Y . In

particular, if Y is implied by λ disjoint nonempty definable sets then ⇒≥λ Y .

6.: If X and Y have a definable function f : X → Y and |Y | = λ then X≥λ⇐ Y .

In particular, if X and Y have a definable bijection f : X ↔ Y , then for any

λ Xλ⇔λ Y .

Property 6 can be generalized taking, for instance, an infinite Y and a definable

relation R ⊂ X × Y such that each a ∈ X has uniformly finitely many R-images,

i.e., the sets R(a,M) have bounded finite cardinalities. In such an instance we

have X≥|Y |⇐ Y . Similarly, having a definable almost bijection R ⊂ X × Y with
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uniformly finitely many R-images and R-preimages, then, for infinite X and Y , we

get |X| = |Y | and, moreover, X |X|⇔|X| Y .

The following example shows that the condition Xλ⇔λ Y does not imply that

there exists a definable almost bijection.

Example 4.4.3. Take a structureM in a language {P0, P1, f} with disjoint unary

predicates P0 and P1 and a language with unary acyclic operation f in universe

P0 ∪ P1 such that each element a ∈ Pi has infinite f−1(a) ⊂ P1−i, i ∈ {0, 1}. By

the definition of f , we have |P0| = |P1| for any N ≡ M. Thus, Xλ⇔λ Y , where

X = P0(M) and Y = P1(M).

Note that we have a similar effect, with Xλ⇔λ Y , replacing f by a relation

R ⊂ (X × Y ) ∪ (Y ×X) with infinite R−1(a) and uniformly bounded finite R(a),

a ∈ X ∪ Y .

For definable sets X = φ(M, ā) and Y = ψ(M, b̄) we denote the set of solutions

by X ∨ Y , inM, of a formula φ(x̄, ā)∨ψ(ȳ, b̄), by X ∧ Y — of φ(x̄, ā)∧ψ(ȳ, b̄), by

¬X — of ¬φ(x̄, ā), by ∀xX — of ∀xφ(x̄, ā), by ∃xX — of ∃xφ(x̄, ā).

7.: If ⇒<ω X and ⇒<ω Y , then ⇒<ω X ∧ Y , ⇒<ω X ∧ ¬Y , ⇒<ω X ∨ Y .

8.: If X ⇒≤λ Y and X ⇒≤λ Z for some infinite λ, then X ⇒≤λ Y ∨ Z. If

X ⇒λ Y and X ⇒<λ Z for some infinite λ, then X ⇒λ Y ∨ Z.

9.: If X ⇒λ Y for some infinite λ and ⇒<ω Z, then X ⇒λ Y ∨ Z and X ⇒λ

Y ∧ ¬Z.

10.: For every variable x, if X ⇒≤λ Y , then X ⇒≤λ ∀xY and X ⇒≤λ ∃xY ,

and, by Monotony, if X ⇒≤λ ∃xY then X ⇒≤λ ∀xY

The properties above allow us to define a calculus D with formulas for definable

sets, and calculi DM for definable sets in structuresM. If |M| = λ0 ≥ ω, then the

calculus D for the family of definable sets X in M is restricted to the cardinalities

λ ≤ λ0, producing the calculus Dλ0 together with the calculus DM. In particular,

if λ0 = ω, then we have the calculus Dω saying that definable sets are either finite

or infinite, without comparing infinite cardinalities.

Definition 4.4.4. If for any set X of elements in a modelM of a theory T , then the

union of sets of solutions of formulas ϕ(x, ā), ā ∈ X, such that M |= ∃=nx ϕ(x, ā)
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for some n ∈ ω is said to be an algebraic closure of X. The algebraic closure of X

(in M) is denoted by acl(X).

Definition 4.4.5. The sets X and Y are cardinality independent if for any λ and

µ, X 6⇒µ Y and Xλ 6⇐ Y . Otherwise, if, for instance, X ⇒µ Y , we say that Y is

cardinality dependent with respect to X. Having X ′λ⇔µ Y
′ for some λ, µ with X ′

and Y ′ as in Definition 4.4.1, we say that X and Y are cardinality dependent, and

if λ = µ we write X ∼ Y .

Clearly, all finite definable sets are cardinality dependent. At the same time,

the following theorem, describing cardinality links between infinite definable sets

X and Y , shows that if Xλ⇔µ Y then λ = µ.

Theorem 4.4.6. (Trichotomy Theorem) For any infinite definable sets X and Y

in a structure M, either X and Y are cardinality independent, or exactly one of X

and Y is cardinality dependent with respect to another, or X ∼ Y .

Proof. Let X = φ(M, ā), Y = ψ(M, b̄), ā, b̄ ∈M , |X| = λ, |Y | = µ. Without loss

of generality we assume that ā ∈ X and b̄ ∈ Y . Considering acl(X) and acl(Y ) we

have the following possibilities:

i): Y ′\acl(X) 6= ∅ andX ′\acl(Y ) 6= ∅ for some Y ′ = ψ(N1, b̄) andX ′ = φ(N2, ā),

whereM≺ N1,M≺ N2, X = φ(M, ā) = φ(N1, ā), Y = ψ(M, b̄) = ψ(N2, b̄);

ii): either Y ′ ⊆ acl(X) or X ′ ⊆ acl(Y ) but not both for all X ′ and Y ′ as above;

iii): Y ′ ⊆ acl(X ′) and X ′ ⊆ acl(Y ′) for all X ′ = φ(N , ā) and Y ′ = ψ(N , b̄),
where M≺ N or N ≺M, ā, b̄ ∈ N .

In case i), X and Y are cardinality independent since, using compactness, the

structures N1 and N2 can be chosen with unbounded cardinalities for Y ′ \ acl(X)

and X ′ \ acl(Y ), preserving X and Y , respectively.

In case ii) we immediately get exactly one of the conditions X ⇒µ Y and Xλ⇐ Y

implying that exactly one of X and Y is cardinality dependent with respect to

another.

Case iii) means that cardinalities of X ′ and Y ′ correlate. These cardinalities are

unbounded but |Y ′| ≤ |acl(X ′)| ≤ max{|X ′|,Σ(M), ω} and |X ′| ≤ |acl(Y ′)| ≤
max{|Y ′|,Σ(M), ω}. Choosing a cardinality λ > max{Σ(M), ω} for X ′ and Y ′
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we observe that the conditions Y ′ ⊆ acl(X ′) and X ′ ⊆ acl(Y ′) imply X ′λ⇔λ Y
′.

Hence, X ∼ Y . �

Remark 4.4.7. Arguments for Theorem 4.4.6 show that ∼ is an equivalence rela-

tion for every structure M. By the transitivity and the reflexivity for ⇒· we have

a preorder on the set of definable sets in M forming an order for ∼-quotients.

Definition 4.4.8. [64] (cf. [65, 49, 57, 6]). Let T be a complete theory,M |= T .

We consider closed (under the natural topology) nonempty sets p(x) ⊆ S1(∅), i. e.,

sets p(x) such that p(x) =
⋂
i∈I

[φp,i(x)], where [φp,i(x)]
 {p(x) ∈ S1(∅) | φp,i(x) ∈

p(x)} for some formulas φp,i(x) of T .

For closed sets p(x),q(y) ⊆ S(∅) of types, realized in M, we take all (p,q)-

preserving, (p,q)-semi-isolating, (p→ q)-, or (q← p)-formulas φ(x, y) of T , i. e.,

formulas for which if a ∈ M realizes a type in p(x), then every solution of φ(a, y)

realizes a type in q(y). Now, for each such a formula φ(x, y), we define a binary

relation Rp,φ,q 
 {(a, b) | M |= φ(a, b)∧p(a)}, where |= p(a) means that a realizes

some type in p. If (a, b) ∈ Rp,φ,q, (a, b) is called a (p, φ,q)-arc.

If, in addition, φ(x, y) is a (p ↔ q)-formula, i. e., it is both a (p → q)- and a

(q→ p)-formula, then the set [a, b]
 {(a, b), (b, a)} is said to be a (p, φ,q)-edge.

The definition above can be obviously transformed for sets p(x̄),q(ȳ) ⊆ S(A),

where types in p(x̄), respectively in q(ȳ), have a same arity for free variables.

Remark 4.4.9. The arguments above for definable sets stay valid for type-definable

sets [50], i.e., for sets X = p(M) = {ā ∈M | M |= p(ā)}. Here, for links between

type-definable sets X and Y = q(M), we use (p,q)-preserving formulas and (q,p)-

preserving formulas.

In particular, if a (p,q)-preserving formula φ defines a bijection between ar-

bitrary copies X ′ and Y ′ of X and Y respectively, then φ defines (p, φ,q)-edges

confirming the relation Xλ⇔λ Y . At the same time, (p, φ,q)-arcs, as above, can

confirm the relation X ⇒≤λ Y .

4.5. Meetings of cardinality contradictions and criteria of existence of

generic structure

In this section we prove the criteria of existence of generic structure in terms of

forcing for cardinalities.
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Definition 4.5.1. We say that a generative class (D0;6) forces cardinality λ (re-

spectively, ≤ λ, ≥ λ, < λ, > λ) for a (type-)definable set X, written (D0;6)⇒λ X

((D0;6)⇒≤λ X, (D0;6)⇒≥λ X, (D0;6)⇒<λ X, (D0;6)⇒>λ X) if the union

of Φ(A)-fragments for X, where Φ(A) ∈ D0, has cardinality λ (a cardinality ≤ λ,

≥ λ, < λ, > λ).

For a generative class (D0;6), we say that a (type-)definable set X meets a

contradiction for its cardinality if (D0;6) ⇒≤λ X and (D0;6) ⇒>λ X for some

cardinality λ.

Example 4.5.2. (cf. [33, Proof of Theorem 2.1]) Consider a structure N in Exam-

ple 4.3.14 with µ ≥ ω sequential equivalence relations Ei, whose chains of Ei-classes,

i ∈ µ, have unique elements in intersections and are forming a unary predicate P0.

Now we extend P0 and the language {P0} ∪ {Ei | i ∈ µ} by:

1): a disjoint unary predicate P1 which is divided by λ > 2µ disjoint infinite

unary predicates Qi;

2): a function f : P0 → P1 such that f−1(a) is infinite for every a ∈ P1.

The resulted hypothetical structure N ′ has the universe P0 ∪ P1. We denote the

generative class consisting of all diagrams being copies of quantifier free diagrams

for finite subsets of N ′ by (D0;⊆). As shown in Example 4.3.14, |P0| = 2µ. There-

fore (D0;⊆)⇒2µ P0.

At the same, time by Property 5 for λ definable sets Xi = Qi and Y = P1 we

have ⇒>2µ P1, and by Property 6 the definable function f : P0 → P1 confirms that

P0 >2µ⇐ P1.

Having (D0;⊆) ⇒2µ P0 and (D0;⊆) ⇒>2µ P0 we observe that X meets a contra-

diction for its cardinality. Hence the (D0;⊆)-generic structure N ′ does not exist.

The following example modifies Example 4.5.3 producing a meeting of cardi-

nality contradiction for type-definable sets.

Example 4.5.3. We take Example 4.5.3 and replace the structure of P1 with

µ′ > 2µ sequential equivalence relations E′j , whose chains of E′j-classes, j ∈ µ, have

infinitely many elements in intersections. Now, we observe that formulas P0(x) and

P1(x) isolate complete 1-types. Introducing a language function f , as in Example

4.5.3, we again meet the cardinality contradiction for X = P0 which is forced with

Y = P1.
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This example can be easily transformed replacing definable sets P0 and P1 by

correspondent type-definable sets with non-isolated p0(x), p1(x) ∈ S(∅). To this

purpose, it suffices to introduce two sequences of predicates P0,n, P1,n, n ∈ ω,

satisfying the following conditions:

i): Pk,0 = Pk, k ∈ {0, 1};

ii): Pk,n ⊃ Pk,n+1, k ∈ {0, 1}, where P0,n \ P0,n+1 consists of infinitely many

E0-classes and P1,n \ P1,n+1 consists of infinitely many E′0-classes;

iii): if a ∈ P1,n \ P1,n+1 then f−1(a) ∈ P0,n \ P0,n+1;

iv):
⋂
n∈ω

Pkn has infinitely many E0-classes.

We denote the (unique) complete nonisolated 1-type which is isolated by the set

{Pk,n(x) | n ∈ ω}, k ∈ {0, 1} by pk(x).

The formula f(x) ≈ y defines links between a type-definable set X of realiza-

tions of p0(x) and a type-definable set Y of realizations of p1(y). As in Example

4.5.3 we have |X| = 2µ, |Y | = 2µ
′
, |X| < |Y | by choice of µ′, but the links with

respect to f(x) ≈ y imply |X| ≥ |Y |. Thus, X meets the cardinality contradiction.

Note that since formula-definable sets consist of type-definable sets, lower car-

dinality bounds for type-definable sets imply similar bounds for formula-definable

ones.

Now we will show that meetings of cardinality contradictions for (type)-definable

sets are the only reason why generic structures, for given generative class, can not

exist.

Theorem 4.5.4. For any generative class (D0;6) the following conditions are

equivalent:

(1) there exists a (D0;6)-generic structure;

(2) there are no type-definable sets X constructed with respect to (D0;6) such

that these X meet contradictions for their cardinality;

(3) there are no definable sets X constructed with respect to (D0;6) such that

these X meet contradictions for their cardinality.
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Proof. (1)⇒ (2) is obvious since having a structureM we can not meet cardinality

contradictions for (type-)definable sets in M. (2) ⇒ (3) is also obvious because

each definable set is type-definable.

(3) ⇒ (1). If D0 consists of copies of a countable set of diagrams, then a

(D0;6)-generic structure exists by Theorem 4.1.11.

Now, we assume that there are only ν > ω diagrams the copies of which form

the generative class (D0;6) and start to construct a required generic structure

M. We enumerate the set X of all pairs (Φ(X),Ψ(X,Y )), X ∩ Y = ∅, such that

Φ(A) 6 Ψ(B) for some sets A and B, A ⊆ B, and in this case we assume that

any such pair is enumerated ν times. Since the set of all considered types Φ(X)

has the cardinality ν, then the set of enumerated pairs has also the cardinality ν:

X = {(Φi(Xi),Ψi(Xi, Yi)) | i ∈ ν}, (Φ0(X0),Ψ0(X0, Y0)) = (Φ0(∅),Φ0(∅)). Using

the enumeration of X , we construct, by transfinite induction, some consistent set

S =
⋃
i∈ν

Si of propositions in a language Σ ∪ K̂, where K̂ is a set with ν constant

symbols that do not occur in Σ and appear in the diagrams in D0. In this case,

for each step i, the set Si will equal some closed set Ui(Vi) ∈ ∪D0 containing

all previous sets Uj(Vj). “Closed” here means that each finite subset of Ui(Vi) is

contained in a diagram belonging to D0.

In the initial step i = 0, we set S0 
 Φ0(∅), where Φ0(∅) is the diagram that

exists by Axiom (iv).

Assume that for a step i > 0, the sets Sj = Uj(Vj), j < i, are already con-

structed and Vj ⊂ K̂.

If i is a limit ordinal we set Si = Ui(Vi) =
⋃
j<i

Uj(Vj) and observe that Si is

consistent and closed.

If i = j+1, we consider the pair (Φi(Xi),Ψi(Xi, Yi)). If Uj(Vj) does not contain

sets Φi(A) such that Φi(A) ∈ Uj(Vj), we set Si 
 Sj . If such sets Φi(A) exist, we

enumerate all of them: Φk(Ak), k ∈ µ. Now, using the d-amalgamation property,

we find step-by-step a consistent set Di of diagrams Θ ∈ D0 satisfying the following

conditions:

• all new constant symbols in Θ belong to K̂;

• if Θ ⊆ Uj(Vj), then Θ ∈ Di;
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• each diagram Θ1,Θ2 ∈ Di is identically strongly embeddable in some their

amalgam Θ;

• for any Φi(A) ∈ Uj(Vj) and for some B with Φi(A) ≤ Ψi(A,B), Ψi(A,B) is

strongly embeddable in some Θ, identically over Φi(A);

• Di is generated by the items above.

The process for Di is realizable since definable sets composed by diagrams Θ

do not meet contradictions for their cardinality.

Now we set Si = ∪Di.

Since for any step of construction the set Si is consistent, the set S =
⋃
i∈ν

Si

is consistent as well. Note also that, since the diagrams Θ contain quantifier free

subdiagrams and these Θ, by amalgams, form a upward directed set, set K ′ of all

constant symbols in language Σ united with the set of all constant symbols in K̂,

that appear in S, has a quantifier free diagram which is a subdiagram of S.

For K ′, we define an equivalence relation ∼ such that c1 ∼ c2 ⇔ (c1 ≈ c2) ∈ S.

Since for any diagram Φ(A) ∈ D0 and distinct elements a1, a2 ∈ A we have ¬(a1 ≈
a2) ∈ Φ(A), then each ∼-class contains exactly one element in K ′.

Now, we define structure M with a universal set of ∼-classes c̃ and with pred-

icate and functional symbols interpreted by the following rules:

• if P ∈ Σ is a n-ary predicate symbol, then

M |= P (c̃1, . . . , c̃n)⇔ P (c1, . . . , cn) ∈ S;

• if f ∈ Σ is a n-ary functional symbol, then

M |= (f(c̃1, . . . , c̃n) ≈ c̃)⇔ (f(c1, . . . , cn) ≈ c) ∈ S.

A routine check shows the correctness of the definition for satisfaction. It should

be mentioned that, by the local realizability property, for any term t(x1, . . . , xl) of

the language Σ and for any constant symbols c1, . . . , cl in K ′, there exists a constant

symbol c in K ′ such that (t(c1, . . . , cl) ≈ c) ∈ S.

We are going to prove that for any Θ(C) ∈ D0 with Θ(C) ⊆ S, structure M
satisfies all formulas deducible from [Θ(C)]C

C̃
, where C̃ = {c̃ | c ∈ C}. Let ϕ 


ϕ(c̃1, . . . , c̃n) be an arbitrary formula that is a consequence of [Θ(C)]C
C̃

. Consider

a formula ψ 
 ψ(c̃1, . . . , c̃n) that is equivalent to ϕ and is in the prenex normal
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form. We shall show thatM |= ψ, using the induction on the number of quantifiers

in ψ. If ψ is quantifier free, then M |= ψ, because language symbols in Σ ∪K ′ are

interpreted as described in S ⊇ Θ(C). Now consider two possible induction steps.

If ψ equals ∀xχ(x), then M |= χ(a) for any a ∈ M , since Θ(C) ` ∀xχ(x)

implies S ` ∀xχ(x) and, hence, we get S ` χ(c) for any constant symbol c ∈ K ′.

If ψ equals ∃xχ(x), then M |= χ(b) for some b ∈ M , because, by the local

realizability property and by the construction of S, Θ(C) ` ∃xχ(x) implies S ` χ(c)

for some constant symbol c ∈ K ′.

Now we shall show thatM has finite closures. Since any finite set of elements

in M is contained in some set C̃ with M |= [Θ(C)]C
C̃

, it suffices to see that the

set C̃ is self-sufficient in M. This is true, however since by Axioms (iii), (vii), and

by transitivity of the relation 6, diagram [Θ(C)]C
C̃

is a strong subdiagram of any

diagram ∆(D̃) ∈ D0, where C̃ ⊆ D̃ and M |= ∆(D̃).

Therefore, by the construction of S, any diagram Φi(A) ∈ S, where Φi(A) 6

Ψi(B), is extended to some self-sufficient diagram Ψi(B
′), we get Ã ⊆ B̃′, B̃′ 6M ,

and M |= Ψi(B̃
′).

Thus, all properties of (D0;6)-genericity for structure M are satisfied and

M = glim(D0;6). �

4.6. Lattices associated with generic structures

Note that if (D0;6) be a self-sufficient class, then for Φ,Ψ ∈ D0 with consistent

Φ ∪ Ψ, we have Φ ∩ Ψ ∈ D0 and there is the least amalgam Θ ∈ D0 containing

Φ ∪Ψ. We denote Φ ∩Ψ by Φ ∧Ψ and Θ by Φ ∨Ψ. Hence, for a (D0;6)-generic

structure M, the set L(M,D0,6) of all diagrams Φ ∈ D0 with M |= Φ forms a

lattice L = 〈L(M,D0,6);∧,∨〉. Structure L is called the lattice associated with

the generic structure M.

Note that lattice L can be non-distributive admitting both lattice M3 and

lattice P5 (see Figures 2(a) and 2(b), respectively).

Indeed, having always (Φ ∧ Ψ) ∨ (Φ ∧ X) 6 Φ ∧ (Ψ ∨ X) and Φ ∨ (Ψ ∧ X) 6

(Φ ∨Ψ) ∧ (Φ ∨ X), we can consider a 3-element structure M with constants a, b, c

and diagrams Φ = Φ({a}), Ψ = Ψ({b}), X = X({c}), Θ = Θ({a, b, c}) such that

Φ ∨Ψ = Φ ∨X = Ψ ∨X = Θ. We have (Φ ∧Ψ) ∨ (Φ ∧X) = Φ0 ∨Φ0 = Φ0 whereas
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Figure 2

Φ ∧ (Ψ ∨ X) = Φ ∧ Θ = Φ, and similarly Φ ∨ (Ψ ∧ X) = Φ ∨ Φ0 = Φ whereas

(Φ ∨Ψ) ∧ (Φ ∨X) = Θ ∧Θ = Θ, realizing lattice M3 (see Figure 3(a)).

Considering a 4-element structure M with constants a, b, c, d and diagrams

Φ = Φ({a}), Ψ = Ψ({b}), X = X({b, c}), Θ = Θ({a, b, c, d}) such that a and b are

separated by a formula ϕ(x) with ϕ(a) ∈ Φ, ¬ϕ(b) ∈ Ψ, Φ ∨ Ψ = Φ ∨ X = Θ we

realize lattice P5 (see Figure 3(b)).

Thus we have the following:
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Proposition 4.6.1. For any self-sufficient class (D0;6) and a (D0;6)-generic

structure M, structure 〈L(M,D0,6);∧,∨〉 is a lattice which can be a non-distri-

butive and a non modular lattice also.

Note that in the way above arbitrary finite lattices and their superatomic limits

can be constructed.

Studying lattices L we recall that the height (respectively, width) of L is the

supremum of cardinalities of (anti)chains in L. The height of L is denoted by h(L)

and the width is denoted by w(L).

Since each element Φ(A) in L corresponds to a finite set A ⊆M , the height of

L is at most countable and h(L) < ω if and only if M is finite. Finite h(L) can

vary from 2 to |M | + 1 (counting the least diagram Φ0(∅) and the greatest dia-

gram Ψ(M)). Indeed, considering a structure N consisting of n distinct constants

c1, . . . , cn we can take, for any positive k ≤ n the following chain of diagrams:

Φ0(∅) ⊂ Φ1({a1, . . . , an−k+1}) ⊂ Φ2({a1, . . . , an−k+2}) ⊂ . . . ⊂ Φk({a1, . . . , an}),

containing the formulas (ai ≈ ci). Lattice L for structure N with the described set

of diagrams is linearly ordered with h(L) = k + 1.

At the same time, for finiteM, w(L) can vary from 1 to |M | taking, for instance,

diagrams Φ1({a1, . . . , an−k+1}),Φ′2({an−k+1}), . . . ,Φ′k({an}) with (ai ≈ ci) for the

n-element example 〈M ; c1, . . . , cn〉 as above. Continuing the process of adding new

constants, we obtain 1 ≤ w(L) ≤ ω for countable M.

Since h(L) ≤ ω, we have w(L) = |M |, if M is uncountable.

Summarizing the arguments we have the following:

Theorem 4.6.2. For any self-sufficient class (D0;6) and a (D0;6)-generic struc-

ture M, the lattice L = 〈L(M,D0,6);∧,∨〉 has the following characteristics: (1)

1 < h(L) ≤ |M |+1 ifM is finite and h(L) = ω ifM is infinite; (2) 1 ≤ w(L) ≤ |M |
if M is at most countable and h(L) = |M | if M is uncountable. All values in the

described intervals can be realized in appropriate generic structures.

By 4.6.2 having a linearly ordered L, we obtain |L| ≤ ω and diagrams Φ(A) if L
corresponds to finite sets A forming at most countable well-ordered set. Therefore,
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L is well-ordered as well, and if L is infinite, i. e.,M is countable, then L is ordered

by the type ω. Thus we have the following:

Corollary 4.6.3. If the lattice L = 〈L(M,D0,6);∧,∨〉 is linearly ordered then

L is at most countable and well-ordered, being finite for finite M and having the

type ω for countable M.

Definition 4.6.4. A structure N is almost rigid if for any ā ∈ N the type tp(ā)

has finitely many realizations in N .

Theorem 4.6.5. For a generic structure M with a class K of all models of T =

Th(M) which has finite closures, the following conditions are equivalent:

(1): M has a linearly ordered lattice L;

(2): M has a linearly ordered lattice L modulo finitely many incomparable ele-

ments;

(3): M is almost rigid and at most countable.

Proof. (1)⇔ (2) holds, since finitely many incomparable elements can be replaced

by their amalgam.

(1)⇒ (3). IfM has a linearly ordered lattice L thenM can not be uncountable

in view of Corollary 2.3. So by Theorem 1.6,M is homogeneous. Now, ifM is not

almost algebraic, then for any generic class (D0;6) of diagrams the copies of which

are satisfied inM there is a diagram Φ(A) ∈ D0 withM |= Φ(A), such that tp(A)

has infinitely many realizations in M. Therefore, there is a copy Φ(A′) of Φ(A)

such that A′ is incomparable with A. Thus, 〈L(M,D0,6)〉 is not linearly ordered.

(3) ⇒ (1). Clearly, finite structures have two-element lattices L which are

linearly ordered. Now for the countable almost rigid structure M we construct a

required linearly ordered lattice L and a corresponding self-sufficient generic class

starting with the diagram Φ0(∅) = Th(M). Let linearly ordered diagrams Φ0(∅) ⊂
Φ1(A1) ⊂ . . . ⊂ Φn(An) be already constructed with M |= Φn(An) and without

copies satisfied inM. We choose an element bn ∈M \An and consider the (finite)

set Bn of all elements b ∈ M such that tp(b/An) = tp(bn/A). Now we set An+1 =

An ∪ Bn Φn+1(An+1) = [tpXn+1
(An ∪ Bn)]

Xn+1

An∪Bn . Clearly, M |= Φn+1(An+1),

Φn(An) ⊂ Φn+1(An+1) and Φn+1(An+1) does not have copies satisfied in M.
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Extending the set {Φn(An) | n ∈ ω} by all possible copies we form a generative

class (D0;6) with the linearly ordered lattice 〈L(M,D0,6);∧,∨〉. �

Since ω-saturated (infinite) structures are not almost rigid we obtain the fol-

lowing:

Corollary 4.6.6. There are no infinite ω-saturated structures M with linearly

ordered lattices L.

By the definition the lattice L has relative complements if and only if for each

Φ(A) 6 X(B) there is a diagram Ψ(C) 6 X(B) (being the relative complement of

Φ(A)) such that C ⊆ B\A and X(B) = Φ(A)∨Ψ(C). Since unions Φ(A)∨Ψ(C) are

always diagrams over finite sets, the distributive lattice L with relative complements

is a Boolean algebra if and only if L is finite, i. e., M is finite.

Summarizing the arguments we have the following:

Proposition 4.6.7. (1) The lattice L has relative complements if and only if for

each Φ(A) 6 X(B) there is a diagram Ψ(C) 6 X(B) such that C ⊆ B \ A and

X(B) = Φ(A) ∨Ψ(C).

(2) The distributive lattice L with relative complements is a Boolean algebra if and

only if M is finite.

Clearly, any finite structureM has only finite lattices L such that being Boolean

algebras their cardinalities |L| can vary from 2 to 2|M |.

Considering the dynamics of the lattices L and applying Proposition 1.7 we

note the following.

Proposition 4.6.8. LetM and N be any ω-homogeneous structures with N ≺M;

(D0;6) and (D′0;6′) be self-sufficient classes such thatM is (D0;6)-generic, N is

(D′0;6′)-generic, and (D′0;6′) is a restriction of (D0;6) coordinated with N ≺M;

L = 〈L(M,D0,6);∧,∨〉, L′ = 〈L(N ,D′0,6′);∧,∨〉. Then L′ is isomorphic to a

quotient of L. If, moreover, the restriction (D′0;6′) of (D0;6) is conservative then

L′ is a sublattice of L.

4.7. Conclusions

Ravi Rajani is developing the theory of generic structures at a general, unified

level but it is not strictly categorical. Furthermore, Kubis in [40] is developing a
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category-theoretic approach to homogeneous structures and in [39] introducing the

Katetov functors which provide a universal way to construct Fräıssé limits.

Our goal is to unify all these different approaches under the Institution-Independent

model theory. The institution theory gives us a tool to expand the main results of

the generic constructions and generic limits in abstract logical systems.

Regarding the theory of generic limits and generic constructions for standard

first order logic we will work in the institutional first order logic framework, based

on D-first order fragment [59]. The first goal is to merge the institutional definition

of diagrams with the standard theory of diagrams in a universal way. Furthermore,

we will attempt to give abstract categorical conditions on partial ordering of a

collection of Σ-diagrams with respect to Definition 4.1.3. To this end, we introduce

the Σd-amalgamation property, the semantic existential local realizability property

and the Σd-uniqueness property expanding Definition 4.1.3.

To the extent that cardinalities of generic structures as well as their languages

can unbounded it is natural to generalize generic constructions for the restrictions

Ih =
(
SigIh ,SenIh ,ModIh , |=Ih

)
of institutions I to the class of homogeneous

structures. These restrictions Ih are called h-institutions.

Taking a h-institution Ih and applying Theorem 4.1.12 we can replace theories

and their homogeneous models with appropriate generative classes obtaining a g-

institution Ig. Since by Theorems 4.1.11 and 4.1.12 generative classes allow to

reconstruct countable generic structures, up to isomorphism, and their theories, we

have:

Theorem 4.7.1. Any h-institution Ih can be transformed to a g-institution Ig
such that countable models in ModIh can be reconstructed by generative classes in

Ig, up to isomorphism, and sentences in SenI satisfied by these models as well.

An advantage of g-institutions is that these categories are syntactic, do not

contain semantic objects allowing to describe semantic links in syntactic way.

Again applying Theorems 4.1.11 and 4.1.12 we immediately get the following

theorem clarifying links between institutions and generic structures via first order

fragments of these institutions.
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Theorem 4.7.2. Let I =
(
SigI ,SenI ,ModI , |=I

)
be an Institution with D ⊆

Sig of signature morphisms then every countable D-First Order Fragment has

generic models and therefore can be represented by them.



Chapter 5

Applications of Logic in A.I.

Abstract. In this chaper we present an early stage of a decision-making sys-

tem tasked with selecting suitable statistical models by employing mathemati-

cal interpretations. This work deals with the new field of Explainable AI (XAI)

and it combines concepts and principles from the fields of statistics, decision

theory, artificial intelligence, symbolic artificial intelligence and modelling of

human behavior. The primary goal of the proposed approach is to address

errors that occur resulting from the misuse of statistical methods. In prac-

tice, such errors often occur either owing to the use of inappropriate statistical

methods or the wrong interpretations of results. The proposed approach relies

on the LPwNF (Logic Programming without Negation as Failure) framework

of non-monotonic reasoning as provided by Gorgias [36, 35]. The proposed

system enables automatic selection of the appropriate statistical method, based

on the characteristics of the problem and the sample. The expected impact

could be twofold: it can enhance the use of statistical systems like R and, com-

bined with a Java-based interface of Gorgias, make non-monotonic reasoning

easy to use in the proposed context.

5.1. Introduction

In the age of Big Data, understanding and interpreting scientific results from the

fields of Artificial Intelligence, Artificial Learning and Statistics is becoming all the

more pressing. What is at stake is not only popularizing but, above all, adopting AI

techniques from scientific fields such as medical science, where AI has proven to be

both of great use and a necessity. Interpretation depends on a multitude of factors.

It depends not only one selecting a suitable model with explainable decisions, but

also on whether the whole modelling process is accurate and consistent. In other

words, are accurate data being used? Is the applied model mathematically suitable?

Is the result valid?

97
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There is a pressing need for explanatory AI in healthcare. The motivation

for a theory explaining AI models in healthcare is clear; end users as well as the

critical significance of accurate prediction mandate transparency – for the sake

of both user involvement and patient safety. However, a simple interpretation of

the predictions of an algorithm process is insufficient. How interpretations are

communicated to end users, how they become incorporated in users’ work flows

and, finally, how they are interpreted or misinterpreted by end users is a matter

deserving of thorough investigation. Two types of interpretation/interpretability

can be found in XAI, labeled as post-hoc and ante-hoc (Fellmeth and Horwitz,

2009). Post-hoc interpretability refers to “after the fact”, i.e. that which happens

after the fact in question. In the case of XAI, it explains what the model predicts

based on what is readily explainable. Ante-hoc interpetability refers to “before the

fact”, i.e. that which happens before the fact in question. In this paper, when

referring to interpreting a conclusion, we refer both to a set of justifications for a

specific result and to a rigorous description of the decision making process.

However, being able to provide a clear explanation is predicated upon an un-

derstanding of the behavior of users, who do not necessarily grasp all the details of

the modelling process followed. Therein lies the innovation of this research paper.

However, despite its significance, describing a system that approximates human

behavior remains a problematic endeavor. Mathematical theories being a part of

symbolic logic mandate a rigorous and mathematically consistent mode of descrip-

tion.

For example, if someone mentioned that there is a plumber from Athens, it

would come naturally to most people to conclude that there are people from Athens

who are not plumbers. In the framework of a logical system, a syllogism of that

type is not obvious at all. Take another example – which might be considered

self referential: if you have been reading this thesis beginning from page 1 and

have reached this line, you would readily assume that the whole thesis is written

in English. This type of syllogism, characterized by a high degree of scientific

uncertainty, is very difficult to frame within a classic logical system.

Propositional calculus and first order logic, the two most common classic logical

systems, fail to frame such syllogisms owing in part to monotonicity. Monotonicity

is a property mandated by a number of logical systems – such as the ones mentioned
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– and it basically consists in the following: If we have already proven a conclusion

based on a set of beliefs, even if we expand the set of beliefs in question, our

conclusion would not change. However, monotonicity, which is a property of logical

systems, is not a property of typical systems which better describe human behavior,

human modes of thinking and how humans handle information.

A further simple example of the above would be the following: If you ask

someone “Can birds fly?” what are the chances that, instead of answering “yes”,

they would answer “it depends on the bird”? Probably not too high. This is due

to the fact that the proposition “birds can fly” is equivalent to the proposition

“typical birds can fly”. If you were told that Tweety is a bird, you would conclude

that he can fly, in the absence of evidence to the contrary. In the framework of a

typical logical system, any expansion of our beliefs should not alter this conclusion

about Tweety; however, if you found out that the real life Tweety is actually a

penguin, your belief on whether he can fly would change, without this leading

to contradiction. This is precisely why non-monotonic logical systems, which can

handle this type of situation, are necessary and this is the reason we resort to

Gorgias [2].

How are all these interconnected? It has been documented in the literature [56,

14, 27] that proper methodology in statistical analysis has not been always followed

and various errors occur on all levels of the research process. Errors appear in the

initial stages, such as during literature review when basic research questions are

specified. Errors related to p-values, statistical tests, usage of statistical symbols as

well as failure to summarize data and demonstrate the findings mathematically, [20,

27] all occur frequently during the important statistical/mathematical stages. Such

errors highlight the need for developing a system that supports all aspects of the

research process. The system ought to support researchers through the entire data

analysis process.

Naturally, a heated debate has begun on the role that artificial intelligence

(AI) can play in human society. A large number of scientists think that AI may not

replace human thought but extend it, but that presupposes that we have mathe-

matical theories which can explain human behaviour. A field where mathematicians

try to construct theories about human behaviour is mathematical logic, the theories

on human reasoning.
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In the field of mathematical logic, many logical systems have been proposed for

the representation of human reasoning, human behaviour etc. An important goal

is to deal with contradiction. In standard monotonic logics, proof is a sequence of

propositions in which if a proposal occurs simultaneously with its negation, then

the system is inconsistent; this is not, however, the case with human behaviour.

Our goal is not to address why this happens but how we can use non-monotonic

logics to make a system more efficient.

Our case study is on the field of statistics and its application to analysis of

medical data [35]. A large number of errors in relation to data analysis, can be

found in medical research papers [56, 32, 30, 20, 1, 14]. Despite the fact that

information is now accessible and doctors are generally considered to be highly

educated researchers, errors in the use of statistical methods occur frequently. Our

aim is, therefore, to build a new decision-making system – an assistant for the

researcher who wants to use statistical data processing tools.

In this chapter we propose an information system that uses argumentation logic,

specifically the LPwNF framework provided by Gorgias [13, 19, 2], to augment

and enhance the use of statistical methods. The information system supports au-

tomatic selection of the proper method, based on the problem at hand the features

of the statistical sample and the applicability of the statistical method accord-

ing to previously defined parameters. The proposed commited approach aims to

limit errors related to statistics applicability by users who often lack the knowledge

and/or relevant skills. Some of the errors include conceptual misrepresentations,

inappropriate use of statistical analytics software, or faulty interpretation of results

[56, 32, 30, 20, 1, 14, 27].

The main advantage of the proposed system is based on the proof procedure

employed by Gorgias; more specifically, it can give an explanation of the answer in

relation to the logical rules employed. In this way, the proposed system provides

correct answers and through repeated use the system trains the user regarding to

proper use of statistical methods.

Furthermore, within the proposed system, it is still possible to express the

logical rules that define its behavior in alignment with the relevant mathematical

theorems of statistical analysis, which leads towards the verification of employed

rules. This is possible because one can trace the logical rules that drive the program
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and interpret the result through Gorgias’ functionality. Within this framework, a

fully developed system could be used to provide verifiable answers in the same way

a mathematician would. The system could be used in many different fields and

provide valuable support to a large userbase. To demonstrate its potential, we are

going to examine common errors in applied statistics and statistical software and

explain how the LPwNF framework provided by Gorgias can limit the occurrence

of such errors. A special purpose interface has been developed in Java to inte-

grate with Gorgias, based on SWI-Prolog and system R so that the full benefits of

argumentation logic in statistical analysis may be outlined.

5.2. System design

In logical systems, such as propositional logic and first order logic, if a theory

contains a contradiction, then it is inconsistent. Furthermore, in standard logical

systems, the proof system is monotonic, i.e. if, in the linear path of a proof, types

φ,¬φ occurs then the theory is inconsistent. We can overcome this by using non-

monotonic logic, which handles the simultaneous truth of a proposition and its

negation in a completely different way.

We use a system like Logic Programming without Negation as Failure (LP-

wNF) [19]. In the context of logical programming without negation as failure

(LPwNF), logical programmes are non-monotonic theories wherein each program

is treated as a collection of propositions from which we must choose an appropriate

subset, called an “extension”.

Example 5.2.1. [19] Consider the following programme - set of rules :

bird(x)→ fly(x)(5.1)

penguin(x)→ ¬fly(x)(5.2)

penguin(x)→ bird(x)(5.3)

bird(Tweety)(5.4)

From this set of rules we can conclude fly(Tweety) because we can extract

it from the first rule and there is no way to extract ¬fly(Tweety). If we add

penguin(Tweety) as a statement then we can derive fly(Tweety) and ¬fly(Tweety)

from the rules of the program. This example may seem basic, but it is fundamentally
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important to our work. In essence, we described mathematically what everyone un-

derstands: although birds usually can fly, penguins, which are also birds, cannot

fly. Such reasoning is not invalid, because we are used to exceptions to the rules,

but when we go about modelling it within a rigid monotonic logical system, we will

face a problem.

We can assume that the non-expert can understand that the previous system of

rules-propositions allows for contradiction, and it thus constitutes an inconsistent

set of propositions, in the framework of standard logical systems. This could lead to

confusion if one does not take into account that the logical system is non-monotonic.

In this way, we allow a set of rules to be consistent and at the same time to prove

a proposition and its negation. In standard logical systems, we define only the

consistent set of formulas, but in our underlying logic there are new definitions,

such as “acceptable”, “weak conclusion” and “strong conclusion” [19, 13, 48].

5.3. Proofs within non standard logics

Here are the basic definitions of the logical programming framework without nega-

tion as a failure:

Definition 5.3.1 (Programme). We define a programme (K,<) to be a set of rules

K and a priority relationship < which is defined over the set K.

Definition 5.3.2 (Attack). Let (K,<) be a programme and T, T ′ ⊆ K. T ′ attacks

T if and only if L, T1 ⊆ T ′ and T2 ⊆ T exist such that:

(1) T1 `min L and T2 `min ¬L

(2) (∃r′ ∈ T1, r ∈ T2 such that r′ < r)⇒ (∃r′ ∈ T1, r ∈ T2 such that r < r′)

where T `min L means that T is a minimal set such that T ` L.

However, in the priority relationship we have defined, the second rule is stronger

than the first rule, so the conclusion derived from it, ¬fly(Tweety), prevails.

Definition 5.3.3 (Consistent set of rules). A set of rules T is consistent if for every

ground literal k such that T ` k we can not have T ` ¬k.

Example 5.3.4. For example, {a,¬b → a} is consistent but set {a,¬b → a, b} is

not.
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Definition 5.3.5 (Acceptable). Let (K,<) be a programme and T a close subset

of K, then set T is acceptable if and only if

(1) T is a consistent set of rules, and

(2) for each T ′ ⊆ K, if T ′ attacks T then T attacks T ′.

Definition 5.3.6 (Weak Conclusion). Let (K,<) be a programme and k be a

ground literal, then k is a weak conclusion of the programme, if k applies to a

maximum acceptable set (maximum admissible set) of K.

Definition 5.3.7 (Strong Conclusion). Let (K,<) and k be a stable literal, then

k is a strong conclusion of the programme if k is valid to any maximal admissible

set of K.

Given the basic definitions, we can now describe a proof procedure within

the Framework of Logical Programming without negation as a failure. The proof

procedure in this context consists of two types of derivation, type A derivation and

type B derivation, when constructing an acceptable subset of rules.

Every type A derivation produces a part of the theory we need. Type A deriva-

tion produces one part of theory, which is sufficient to produce an original X goal,

while at the same time the other derivation provides us with rules in order to fight

back or to defend the theory being produced. These counterattacks are manufac-

tured from the type B derivation. In the context of a Type B derivation, once an

attack has been detected, a new type A derivation is created to defend against this

attack.

Within a type B derivation, a rule ri is given as initial input with a head li,

which has has been used in a type A derivation. The goal of the type B derivation

is to block all possible proofs of ¬l, the contrary of the conclusion of ri. More

specifically, the proof procedure takes into account these proofs of ¬li whose rule rj

with ¬li as the head is higher than rule ri that has imported the type B derivation.

A type B derivation acts on a set of goals, which are parts of the initial goal

← li. If for such a rule rk there is a type A derivation of the negation of the literal in

the head of rk, then this way of proving ¬li can be counterattacked. Therefore, the

rules used in the previous procedure are added to the set that has been constructed.

At some step (the final step) of a type B derivation the empty clause is derived,

which means that the initial goal X fails.
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Example of a proof. Let there be a programme with rules:

r1 : fly(X)← bird(X)

r2 : ¬fly(X)← penguin(X)

r3 : penguin(X)← walkslikepeng(X)

r4 : ¬penguin(X)← ¬flatfeet(X)

r5 : bird(X)← penguin(X)

r6 : bird(T )

r7 : walkslikepeng(T )

r8 : ¬flatfeet(T )

If we look at the previous set of rules in a standard logic system, then a proof for

fly(T ) would either not exist or the system would be considered inconsistent, since

we would have proof of fly(T ) from r1 and r6 and proof of ¬fly(T ) from r7, r3

and r2. Here, however, is where non-monotonic logic is steps in so as eliminate

contradictions. First of all, we have the priorities among the rules r2 > r1 and

r4 > r3.

Now, if we try to prove fly(T ), then based on the procedure we have described

first, a Type A derivation will begin which will try to prove fly(T ). The r1 rule is

used to prove fly(T ), but there is rule r2 which attacks rule r1 as the head of r2;

¬fly(X) is the negation of the head of r1 and rule r2 takes priority over r1.

Thus begins a B-type derivation which tries to prove ¬fly(T ). Rules r2 and

r3 are used to prove the negation ¬fly(T ). As rule r4 exists, it begins a type

A derivation to defend against this attack. This type A derivation successfully

demonstrates ¬penguin(T ), defending against the attack on the original Type A

derivation and eventually proving the original goal fly(T ).

5.4. System implementation

5.4.1. Gorgias. Gorgias [2] is a general framework of argumentation theory. It

can form the basis of a dynamic policy framework, incomplete information notwith-

standing. Gorgias’ syntax is based on Prolog. The predicates of Gorgias are divided

into three categories:

• abducibles

• defeasible
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• background (non-defeasible)

The literals are represented by Prolog terms: A negation literal is called neg(L).

Furthermore, the language for the representation of the theories is defined by the

rules below:

rule(Signature, Head, Body).

where

• Head is a literal

• Body is a list of literals

• Signature is a compound term consisting of the name of the rule along with

selected variables from Head and the Body of the rule.

The special predicate prefer/2 is used to locally codify the relative priority of

the theory’s rules. For example, the following means that the rule with signature

Sig1 has higher priority than the rule with signature Sig2, if the conditions in Body

apply:

rule(Signature, prefer(Sig1,Sig2), Body).

Abducible literals are declared using the special predicate abducible/2; for

example:

abducible(Literal, Preconditions).

Finally, the statement conflict (Sig1, Sig2) indicates that the rules with

signatures Sig1 and Sig2 collide. In many cases conflict (Sig1, Sig2) is true

if and only if the Head of the Sig1 and Sig2 are opposite literals.

Remark 5.4.1. An SWI-Prolog installation is needed in order to use Gorgias. Us-

ing the syntax we mentioned, we can describe our own worlds adding the following

two lines to the top of the file:

: - compile (′../ lib / gorgias.pl′).

: - compile (′../ ext / lpwnf.pl′).

The first line loads the system while the second one is a collection of rules which

define a hierarchical relationship between the arguments used by the “attack” re-

lationship to encode the related power of arguments.
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5.4.2. Representation of Knowledge and Belief. To express the rules, con-

flicts and preferences between them, we will normally use Prolog terms using the

predicates of the Gorgias system as we have previously defined.

Example 5.4.2. To say that something can fly when it is a bird and that something

cannot fly when it is a penguin we write:

rule (r1 (X), fly (X), [bird (X)]).

rule (r2 (X), neg (fly (X)), [penguin (X)]).

In this example, it is clear that these two rules are in conflict when something is

both a penguin and a bird:

rule (f1, bird (tweety), []).

rule (f2, penguin (tweety), []).

To solve the conflict, we use the special hypothesis prefer/2. Therefore, in

our example we have:

rule (pr1 (X), prefer (r2 (x), r1 (x)), []).

We saw that Gorgias has the above syntax structure (signature, head, body).

The head is a literal, the body is a list of literals and the signature is a sign:

rule (signature, preferred (Sig1, Sig2), Body)

But how do we get answers in Gorgias? Our answers are essentially proofs of

arguments, as we saw in the previous section. The question we ask is:

prove(Goals, Delta)

Where Goals are a list of affirmatives or no literals and Delta is a proof of that

question. So, in our previous example:

prove([neg (fly (tweety))], Delta).

Gorgias responds with the accepted argument which supports the question we

asked:

Delta = [f2, r2 (tweety)]

This is worth mentioning because there is a preference rule named pr1, if we

put the question
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prove([fly (tweety)], Delta)

Gorgias will not be able to find a solution because the r2 rule attacks the

r1 rule and (as it is stronger ) there is no defence against it. If we subtract the

preference rule pr1 (adding % at the beginning of the line), then the system can

find a solution (i.e. an acceptable argument) for both questions.

5.5. Review and maintenance

5.5.1. Chi square test implementation. For calculating the statistics we will

use language R. Our information system will choose the appropriate statistical

test depending on the characteristics of the sample, and, whether the conditions

are satisfied, it will then use Gorgias to interpret these results and then to test

hypotheses. This architecture is chosen because:

• R is the basic scientific data analysis tool and provides many ready-made

statistical functions.

• The underlying logic of the interpretation is concentrated in a Gorgias rule

file and it fully corresponds to what is reported in statistics literature. If in

the future a part of the rules needs to be corrected or extended, the software

code will not need to be modified in its entirety.

• The user, who is often not a expert, will be trained in statistical methods and

will use the tools of statistical methods correctly.

In order to show that our system works, we will conduct a statistical test to

check if there is any dependence between two nominal variables: A and B. One way

we can do this by applying a χ2–independent test. To apply this test, we typically

represent the data from one sample size n in the form of a 2×2 contingency table

(Table 1). This matrix is a contingency Table where we have two subpopulations

(the categories of the variable B) and two cases namely “successes” and “failures”

(the categories of the variable A).

The user usually considers that the conditions of the Central Limit Theorem

apply, which in our case translates into the condition: all the expected frequencies

being ≥ 5.

The programming language R supplies us with the appropriate functions, such

as the chisq.test () and fisher.test (), which implements Fisher’s exact test
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Success Failure Total

First subpopulation n11 n12 n1

Second subpopulation n21 n22 n2

Total n1 n2 n

Table 1. Contingency Table

when the conditions of the Central Limit Theorem do not apply. Afterwards, the

user uses standard statistical analysis software to check the appropriate conditions

to see whether two features of the population are independent.

In the following section, we will be using AL to build our application, which

will explain to the user how to select the appropriate statistical test as well as which

hypothesis we accept. In this case, it is not necessary for the user to know all the

“details” of mathematical statistics. The programme will work as a “mathemati-

cian” and will suggest answers. This can help to avoid errors which may occur

when non-experts use statistical tools, for example in medicine.

Over time, such an application can easily expand without its operation being

corrupted. All that would be added to the programme would be new rules for the

interpretation of statistical results and questions for the user to answer about the

type of data and the type of problem.

5.5.2. Implementing a Java Interface with R. In order to enable Java to

communicate with R, we will use rJava to supply R with the Java interface library.

This allows us to have the results as a Java variable. We will implement–using the

JRI–the Statistics.java class that contains the relevant functions.

The next step is to apply the χ2 independence test or Fisher’s exact test using

the chisq () and fisher () functions. The results of these tests are stored in a

different variable for each contingency table and, therefore, we can retrieve them

with several functions.

5.5.3. Policy for Statistics in Gorgias. In the previous section, we described

the Statistics class responsible for handling R and the collection of statistical

results. Based on what we said in the introduction, these results will be interpreted

in our system using the functions of interface Logic. We will utilize the under-

lying logic of Gorgias, which allows us to express our beliefs, as a mathematician
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Java

R

Logic

(Interface)

Prolog

Gorgias

Figure 1. The basic structure of our system

would. Furthermore, through the production of the acceptable argument made by

Gorgias,we can inform the user of what rules and data have led to this answer.

We have thus managed to use Gorgias as a knowledge database of the char-

acteristics of a population. Maybe, in the future, this knowledge database can be

extended to include additional queries. Furthermore, the policy defined by the Gor-

gias rules avoids calling functions that will not be needed. For example, Fisher’s

exact test is running only when the χ2 test is invalid. Finally, thanks to the ability

to set preferences between rules and higher order preferences (as described in the

Chapter 5), the extension of the rules and the introduction of new rules is easy

without need to change the old ones, and we can use tools such as Gorgias-B and

SoDA development methodology (Software Development for Argumentation).

5.5.4. Example Usage. To demonstate how the application functions as well

as the format the results are presented in, we will try three different context tables

for the variables A and B from samples of four different populations. The crosstabs

of our case studies are [23]:

The final application response and hypothesis testing with the help of Gorgias

is:

Cannot reject null hypothes7s, data1 are independent

Why? [[h0_is_not_rejected(data1)]]
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Defective products Non-defective products

First Production Process 12 288

Second Production Process 20 380

Table 2. First crosstab of our case study

Defective products Non-defective products

Third Production Process 12 288

Fourth Production Process 100 380

Table 3. Second crosstab of our case study

Non-Smoker Smoker Heavy Smoker

Man 28 8 22

Woman 26 2 14

Table 4. Third crosstab of our case study

Defective products Non-defective products

Fifth Production Process 1 10

Sixth Production Process 14 15

Table 5. Fourth crosstab of our case study

Null hypothesis rejected, data2 are codependent.

Why? [[f1, f6, f5, chisq_is_valid(data2), f5, chisq_rejects_h0(data2)]]

Cannot reject null hypothesis, data3 are independent

Why? [[h0_is_not_rejected(data3)]]

Null hypothesis rejected, data4 are codependent.

Why? [[f1, f17, f16, fisher_rejects_h0(data4)]]

Gorgias state

-------------

consult(stats.pl).
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rule(f1,significance(0.050000000000000044),[]).

rule(f2,chisq(data1),[]).

rule(f3,chisq_pvalue(data1,0.6570195719690067),[]).

rule(f4,chisq_minexpected(data1,13.714285714285714),[]).

rule(f5,chisq(data2),[]).

rule(f6,chisq_pvalue(data2,1.386470999319574E-10),[]).

rule(f7,chisq_minexpected(data2,43.07692307692308),[]).

rule(f9,chisq_pvalue(data3,0.22674842690343286),[]).

rule(f10,chisq_minexpected(data3,4.2),[]).

rule(f11,fisher(data3),[]).

rule(f12,fisher_pvalue(data3,0.24022012054762612),[]).

rule(f14,chisq_pvalue(data4,0.05485393990013243),[]).

rule(f15,chisq_minexpected(data4,4.125),[]).

rule(f16,fisher(data4),[]).

rule(f17,fisher_pvalue(data4,0.030221989999279542),[]).

By interpreting these results, we see that, for Table 2, a χ2 test was valid but

insufficient evidence was found and the null hypothesis H0 was rejected. In Table 4,

the result of the χ2 test provided sufficient data to reject the null hypothesis and

this is reflected in the accepted argument. As for Table 5, Fisher’s exact test had

to be applied because the expected frequencies that resulted from chisq.test ()

made χ2 invalid.

5.6. Conclusions

We have suggested that the framework of logic programming without negation

as failure (LPwNF) provided by Gorgias can be applied to the use of existing

statistical packages like R and provide ease of use and correctness. More specifically,

a common source of errors in the use of statistics in various fields, like medicine and

business, stems from the misuse of statistical methods and misinterpretation of the

results, since the researchers are often not experts in the field of statistical analysis.

The system we propose acts as an intelligent agent that solves this problem by

automatically selecting the appropriate method and interpreting the result like a

mathematician while also explaining the answer to the user with references to the

relevant rules and conditions. Furthermore, by keeping the logic of Gorgias rule file,
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and using of custom ordering relation of rules and default reasoning (abduction),

there are development benefits, such as increased encapsulation, easier extensibility

without disrupting current functionality and verification of correctness due to the

natural mapping of rules to the relevant mathematical theorems.

The information system we presented is in its early state. Additional work is

needed to integrate other basic parametric and non-parametric statistical tests and

to integrate the process of selecting the correct statistical test. The latter requires

the creation of a specialized knowledge base, but the creation and integration of

such a knowledge base will be a simple matter, if the fundamental structure of

our cognitive bases has been described successfully. Finally, the methodology we

described can bring the benefits of non-monotonic logic, to different fields, such as

legal reasoning and business cases, and combine existing software packages which

use different technologies, with Gorgias and thus augment their use.
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Appendix A

Implementation

A.1. Logic Interface

package logic;

import java.util.List; public interface Logic {

public abstract void load(String file);

public abstract void claim(String condition);

public abstract void claim(String condition , String

label);

public abstract boolean test(String condition);

public abstract List <String > query(String variable ,

String condition);

public abstract List <List <String >> query(List <String >

variables , String condition); public abstract

List <List <String >> why(); // explain the last

test()/query ()

public abstract List <String > listPredicates (); public

abstract void disclaimAll ();

public abstract void disclaimLast ();

public abstract void disclaim(String condition); public

abstract String negate(String condition);

119
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}

A.2. Prolog Class

package logic;

import java.util.ArrayList; import java.util.LinkedList;

import java.util.List; import java.util.Map;

import org.jpl7.Query; import org.jpl7.Term;

public class Prolog implements Logic {

private Query q;

private List <List <String >> explanation = new

ArrayList <>(); private final List <String > claims =

new LinkedList <>(); private final List <String >

loadedFiles = new ArrayList <>();

@Override

public void load(String file) {

String string = "consult(’" + file + "’)."; q = new

Query(string);

q.hasSolution ();

loadedFiles.add(file);

}

@Override

public void claim(String condition) {

if (claims.contains(condition)) { // avoid duplicate

claims disclaim(condition);

}

String string = "assert(" + condition + ")."; q = new

Query(string);

q.hasSolution ();

claims.add(condition);

}

@Override

public void claim(String condition , String label) {
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claim(condition); }

@Override

public void disclaimLast () {

String string = "retract(" + claims.get(claims.size() -

1) + ")."; q = new Query(string);

q.hasSolution ();

claims.remove(claims.size() - 1);

}

@Override

public boolean test(String condition) { // throws

$\hookleftarrow$ org.jpl7.PrologException {

String string = condition + "."; boolean bool;

q = new Query(string);

try {

bool = q.hasMoreSolutions ();

q.close(); // we don’t care for more solutions }

catch(org.jpl7.PrologException e) {

bool = false; }

explanation = new ArrayList <>(); explanation.add(new

ArrayList <>()); return bool;

}

@Override

public List <String > query(String variable , String

condition) {

List <String > listOfVariables = new ArrayList <>();

listOfVariables.add(variable);

List <List <String >> listOfLists = query(listOfVariables ,

condition); List <String > reply = new ArrayList <>();

for (List list : listOfLists) { reply.add(( String)

list.get (0));

}
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return reply; }

@Override

public List <List <String >> query(List <String > variables ,

String condition) {

Map <String , Term > terms;

List <List <String >> reply = new ArrayList (); explanation

= new ArrayList <>(); // reset explanation q = new

Query(condition + ".");

while (q.hasNext ()) {

terms = q.next();

List <String > solution = new ArrayList <>(); for (String

variable : variables) {

solution.add(terms.get(variable).toString ()); }

reply.add(solution);

explanation.add(new ArrayList <>()); }

return reply; }

@Override

public List <List <String >> why() {

return explanation; }

@Override

public List <String > listPredicates () {

List <String > predicates = new ArrayList <>(); for (String

claim : claims) {

predicates.add(claim + "."); }

return predicates; }

@Override

public void disclaimAll () {

for (int i = claims.size() - 1; i >= 0; i--) {

q = new Query("retract(" + claims.get(i) + ").");

q.hasSolution ();

claims.remove(i);
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} }

@Override

public String toString () {

String reply = "";

for (String file : loadedFiles) {

reply += "consult(" + file + ").\n"; }

for (String predicate : listPredicates ()) { reply +=

predicate + "\n";

}

}

return reply; }

@Override

public void disclaim(String condition) {

if (claims.indexOf(condition) != -1) {

q = new Query("retract(" + condition + ").");

q.hasSolution ();

claims.remove(condition);

} }

@Override

public String negate(String condition) {

return "not(" + condition + ")"; // not(foo).

deprecated , use \+ foo. }

A.3. Gorgias Class

package logic;

import java.util.ArrayList; import

java.util.LinkedHashMap; import java.util.List;

import java.util.Map;

import org.jpl7.Query;

import org.jpl7.Term;

public class Gorgias implements Logic { private Query q;
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private final String factPrefix = "f"; private int

factCounter = 0;

private List <List <String >> explanation = new

ArrayList <>();

private final Map <String , String > claimsToRules = new

LinkedHashMap <>(); private final List <String >

loadedFiles = new ArrayList <>();

@Override

public void load(String file) {

q = new Query("consult(’" + file + " ’).");

q.hasSolution ();

loadedFiles.add(file);

//q.close(); // is this necessary?

}

@Override

public void claim(String condition) {

claim(condition , ""); }

@Override

public void claim(String condition , String label) {

if (claimsToRules.containsKey(condition)) { // avoid

duplicate claims disclaim(condition);

}

if (label.equals("")) {

label = factPrefix + ++ factCounter; }

q = new Query(wrapAssert(condition , label));

q.hasSolution ();

//q.close(); // is this necessary?

claimsToRules.put(condition , "rule(" + label + "," +

condition +

" ,[])"); }

@Override
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public void disclaimLast () {

String lastClaim = (String)

claimsToRules.keySet ().toArray ()[claimsToRules.size()

- 1];

String lastRule = claimsToRules.get(lastClaim); q = new

Query("retract(" + lastRule + ").");

q.hasSolution (); claimsToRules.remove(lastClaim);

}

private String wrapAssert(String condition , String

label) { String string;

string = "assert(rule("; string += label;

string += "," + condition; string += " ,[])).";

return string; }

@Override

public boolean test(String condition) {

Map <String , Term > termmap;

boolean bool;

explanation = new ArrayList <>(); // reset explanation q

= new Query(wrapProve(condition ,"Delta "));

bool = q.hasMoreSolutions ();

if (bool) {

termmap = q.next();

List <String > deltaList = new ArrayList <>();

for (Term term : termmap.get("Delta").toTermArray ()) {

deltaList.add(term.toString ()); }

explanation.add(deltaList); }

q.close (); // we don’t care for more solutions return

bool;

}

private String wrapProve(String condition , String delta)

{ String string;
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string = "prove([";

string += condition;

string += "]," + delta + ")."; return string;

}

@Override

public List <String > query(String variable , String

condition) {

List <String > listOfVariables = new ArrayList <>();

listOfVariables.add(variable);

List <List <String >> listOfLists = query(listOfVariables ,

condition); List <String > reply = new ArrayList <>();

for (List list : listOfLists) { reply.add(( String)

list.get (0));

}

return reply; }

@Override

public List <List <String >> query(List <String > variables ,

String <- condition) {

Map <String , Term > terms;

List <List <String >> reply = new ArrayList <>();

String delta = getDelta(variables);

explanation = new ArrayList <>(); // reset explanation q

= new Query(wrapProve(condition , delta));

while (q.hasNext ()) {

terms = q.next();

List <String > solution = new ArrayList <>(); for (String

variable : variables) {

solution.add(terms.get(variable).toString ()); }

reply.add(solution);

List <String > solutionDelta = new ArrayList <>(); for

(Term term : terms.get(delta).toTermArray ()) {

solutionDelta.add(term.toString ()); }
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explanation.add(solutionDelta); }

return reply; }

private String getDelta(List <String > variables) { String

delta = "Delta";

if (variables.indexOf(delta) != -1) {

for (String variable : variables) { delta += variable;

} }

return delta; }

@Override

public List <List <String >> why() {

return explanation; }

@Override

public List <String > listPredicates () {

List <String > rules = new ArrayList <>();

for (String claim : claimsToRules.keySet ()) {

rules.add(claimsToRules.get(claim) + "."); }

return rules; }

@Override

public void disclaimAll () {

String [] claims = claimsToRules.keySet ().toArray( new

String[claimsToRules.keySet ().size()]

);

for (int i = claimsToRules.size() - 1; i >= 0; i--) {

q = new Query("retract(" + claims[i] + ").");

q.hasSolution (); claimsToRules.remove(claims[i]);

}

factCounter = 0; }

@Override

public String toString () {

String reply = "";
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}

for (String file : loadedFiles) {

reply += "consult(" + file + ").\n";

}

for (String predicate : listPredicates ()) {

reply += predicate + "\n"; }

return reply; }

@Override

public void disclaim(String claim) {

if (claimsToRules.containsKey(claim)) {

q = new Query("retract(" + claimsToRules.get(claim) +

")."); q.hasSolution ();

claimsToRules.remove(claim);

} }

@Override

public String negate(String condition) {

return "neg(" + condition + ")"; }

A.4. Examples using Logic, Prolog, Gorgias classes

import java.util.ArrayList; import java.util.List;

import logic .*;

public class logic {

public static void testLogic(Logic l) {

System.out.println("\n> Claim alice mother , bob father

of charlie , <- david ...");

l.claim("mother(alice ,charlie)");

l.claim("father(bob ,charlie)");

l.claim("mother(alice ,david)");

l.claim("father(bob ,david)");
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System.out.println("\n> Is alice mother , bob father of

charlie?");

System.out.println(l.test("mother(alice ,charlie)"));

System.out.println(l.test("parent(bob ,charlie)"));

System.out.println("\n> Is bar foo of baz?"); try {

System.out.println(l.test("foo(bar ,baz)")); } catch

(org.jpl7.PrologException e) {

System.out.println("a prolog error caught");

//e.printStackTrace ();

}

System.out.println("\n> Parents of charlie?");

List <String > solution;

solution = l.query("X", "parent(X,charlie)"); for

(String string : solution) {

System.out.println(string); }

System.out.println("\n> Why?"); List <List <String >>

explanations;

explanations = l.why();

for (int i = 0; i < explanations.size(); i++) {

System.out.print(solution.get(i) + " because ");

for (String argument : (List <String >)

explanations.get(i) ) {

System.out.print(argument + ", ");

}

System.out.println (); }

System.out.println("\n> Parent/child pairs?");

List <List <String >> parents_children; List <String >

variables = new ArrayList <>(); variables.add("X");

variables.add("Y");

parents_children = l.query(variables , "parent(X,Y)");

for (List parent_child : parents_children) {
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System.out.println(parent_child); }

System.out.println("\n> Why?"); for (List explanation :

l.why()) {

System.out.println(explanation); }

}

public static void banana(Logic l) { boolean b;

System.out.println("\n> About bananas");

bananaQuestions(l);

System.out.println("\n> Claim banana is too ripe and ask

again"); l.claim("tooripe(b)", "banana_b_is_ripe");

bananaQuestions(l);

}

public static void bananaQuestions(Logic l) { boolean b;

b = l.test("color(b,yellow)"); System.out.println("-

Banana yellow? " + b); System.out.println("--

because " + l.why()); b = l.test("color(b,black)");

System.out.println("- Banana black? " + b);

System.out.println("-- because " + l.why()); b =

l.test("taste(b,sweet)"); System.out.println("-

Banana sweet? " + b); System.out.println("-- because

" + l.why()); b = l.test("taste(b,mushy)");

System.out.println("- Banana mushy? " + b);

System.out.println("-- because " + l.why()); }

public static void multiple () { // doesn’t work , there

is always one <- instance of prolog

Logic a, b;

String time_a , time_b;

a = new Gorgias ();

b = new Gorgias ();

a.claim("time(day)"); b.claim("time(night)");
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time_a = a.query("X", "time(X)").get (0); time_b =

b.query("X", "time(X)").get(0);

System.out.println("a says " + time_a);

System.out.println("b says " + time_b);

}

public static void listAndClean(Logic l) {

System.out.println("\nPredicates before <-

clean :\n------------------------");

for (String predicate : l.listPredicates ()) {

System.out.println(predicate); }

l.disclaimAll ();

System.out.println("\npredicates after <-

clean:\n-----------------------");

for (String predicate : l.listPredicates ()) {

System.out.println(predicate);

}

System.out.println("\nClaim

something :\n----------------");

l.claim("foo(bar ,baz)");

System.out.println(l);

System.out.println("Test it:\n-------");

System.out.println(l.test("foo(bar ,baz)"));

System.out.println("\nDisclaim last:\n--------------");

l.disclaimLast ();

System.out.println(l);

System.out.println("Test it:\n-------");

System.out.println(l.test("foo(bar ,baz)")); }
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public static void numbers(Logic l) {

System.out.println("\nnumbers :\n--------");

System.out.println("claim a is 4.0 and b is 6.0");

l.claim("valueof(a,4.0)", "a_is_4");

l.claim("valueof(b,6.0)", "b_is_6");

System.out.println(

"is a larger than 5? " + l.test("largerthan(a,5.0)") +

", because " + <- l.why() + "\n" +

"is b larger than 5? " + l.test("largerthan(b,5.0)") +

", because " + <- l.why()

); }

public static void queryWithNoSolution(Logic l) {

System.out.println("\nChildren of

Charlie\n-------------------");

System.out.println(l.query("X",

"parent(charlie ,X)")); System.out.println("Result is

empty? " + l.query("X", <-

"parent(charlie ,X)").isEmpty ()); }

public static void testNegation(Logic l) {

System.out.println("\nTest

Negation\n-------------"); boolean b;

String cond;

cond = "increasing (1,2,3)";

b = l.test(cond);

System.out.println(cond + "?\t" + b + ", because " +

l.why());

b = l.test(l.negate(cond));

System.out.println("not " + cond + "?\t" + b + ",

because " + l.why());

cond = "decreasing (1,2,3)";

b = l.test(cond);
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System.out.println(cond + "?\t" + b + ", because " +

l.why());

b = l.test(l.negate(cond));

System.out.println("not " + cond + "?\t" + b + ",

because " + l.why());

cond = "increasing (3,2,1)"; b = l.test(cond);

System.out.println(cond + "?\t" + b + ", because " +

l.why());

b = l.test(l.negate(cond));

System.out.println("not " + cond + "?\t" + b + ",

because " + l.why());

cond = "decreasing (3,2,1)";

b = l.test(cond);

System.out.println(cond + "?\t" + b + ", because " +

l.why());

b = l.test(l.negate(cond));

System.out.println("not " + cond + "?\t" + b + ",

because " + l.why());

System.out.println("\nHow negation looks: " +

l.negate("foo(bar)")); }

public static void main(String [] args) {

System.out.println("\nProlog\n-------"); Logic prolog =

new Prolog (); prolog.load("prolog.pl");

testLogic(prolog);

System.out.println("\nGorgias\n-------"); Logic gorgias

= new Gorgias (); gorgias.load("gorgias.pl");

testLogic(gorgias);

gorgias.load("banana.pl"); banana(gorgias);

listAndClean(prolog); listAndClean(gorgias);

prolog.load("numbers.pl");
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gorgias.load("numbers.pl"); // we don’t have to load

both because <- there is always one prolog running

numbers(prolog); numbers(gorgias);

queryWithNoSolution(prolog);

queryWithNoSolution(gorgias);

prolog.load("increasing.pl");

gorgias.load("increasing.pl"); testNegation(prolog);

} }

testNegation(gorgias);

System.out.println("\nTypes of

objects\n----------------");

System.out.println("prolog is " +

prolog.getClass ()); System.out.println("gorgias is "

+ gorgias.getClass ());

A.5. Connection Java - R, Statistics.java

import org.rosuda.JRI.REXP; import

org.rosuda.JRI.Rengine;

public class Statistics {

private final Rengine re;

public Statistics () {

String [] args = {"--vanilla"};

re = new Rengine(args , false , null);

}

public void load(String rfile) {

String string = "source(’" + rfile + "’)";

re.eval(string);

}

public void closeR () { re.end();

}

public void printData(String variable) { REXP x;
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System.out.println(x = re.eval(variable)); }

/* ----------- */ /* CHISQ STUFF */ /* ----------- */

public void chisq(String variable) {

String string = variable + "_chisq = chisq.test(" +

variable + ")"; re.eval(string);

}

public double getChisqStat(String variable) { String

string = variable + "_chisq$statistic"; return

re.eval(string).asDouble ();

}

public int getChisqDf(String variable) {

} }

String string = variable + "_chisq$parameter";

return re.eval(string).asInt(); }

public double getChisqPValue(String variable) { String

string = variable + "_chisq$p.value"; return

re.eval(string).asDouble ();

}

public double getMinExpected(String variable) {

String string = "min(" + variable + "_chisq$expected)";

return re.eval(string).asDouble ();

}

/* ------------ */ /* FISHER STUFF */ /* ------------ */

public void fisher(String variable) {

String string = variable + "_fisher = fisher.test(" +

variable + ")"; re.eval(string);

}

public double getFisherPValue(String variable) { String

string = variable + "_fisher$p.value"; return

re.eval(string).asDouble ();

A.6. Connection R - Gorgias, stats.java
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import logic .*; public class stats {

public static void chisq(Logic l, Statistics s, String

data) { s.chisq(data);

double pvalue = s.getChisqPValue(data); double

minExpected = s.getMinExpected(data);

l.claim("chisq(" + data + ")"); // because many

data/objects can be <- loaded

l.claim("chisq_pvalue(" + data + "," + pvalue + ")");

l.claim("chisq_minexpected(" + data + "," + minExpected

+ ")"); }

public static void fisher(Logic l, Statistics s, String

data) { s.fisher(data);

double pvalue = s.getFisherPValue(data);

l.claim("fisher(" + data + ")"); // because many

data/objects can be <- loaded

l.claim("fisher_pvalue(" + data + "," + pvalue + ")"); }

public static void main(String [] args) {

// String data = "data3";

String [] allData = {"data1", "data2", "data3", "data4"};

double confidence = 0.95;

double significance = 1 - confidence;

Statistics s = new Statistics ();

Logic l = new Gorgias ();

l.load("stats.pl");

l.claim("significance(" + significance + ")");

for (String data: allData) {

s.load(data + ".txt"); chisq(l, s, data);

} }

if (l.test("chisq_valid(" + data + ")")) { } else {

l.disclaim("chisq(" + data + ")"); // not needed anymore

but <- nice to have - remind that chisq is not valid

for this data
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fisher(l, s, data); }

boolean rejecth0 = l.test("rejecth0(" + data + ")"); if

(rejecth0) {

System.out.println("Null hypotheses rejected , " + data +

" are <- codependent.");

} else {

System.out.println("Cannot reject null hypotheses , " +

data + <-

" are independent");

l.test(l.negate("rejecth0(" + data + ")")); // just to

fill <-

the explanation

}

System.out.println("Why? " + l.why());

System.out.println ();

}

System.out.println("Gorgias state");

System.out.println("-------------");

System.out.println(l);

// close R

s.closeR ();

A.7. Hypothesis Test in Gorgias stats.pl

% stats.pl - chisq & fisher

% load gorgias

:- compile(’lib/gorgias.pl’). :- compile(’ext/lpwnf.pl’).

rule(chisq_is_valid(X), chisq_valid(X),

[chisq(X)]).

rule(chisq_is_not_valid(X), neg(chisq_valid(X)),

[chisq(X), chisq_minexpected(X,MinExpected), MinExpected

< 5]).
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rule(prefer_chisq_is_not_valid(X),

prefer(chisq_is_not_valid(X),

chisq_is_valid(X)),

[]).

rule(h0_is_not_rejected(X), neg(rejecth0(X)),

[]).

rule(chisq_rejects_h0(X), rejecth0(X),

[chisq(X),

chisq_valid(X), chisq_pvalue(X,Pvalue),

significance(Significance), Pvalue < Significance ]).

rule(prefer_chisq_rejects_h0(X),

prefer(chisq_rejects_h0(X),

h0_is_not_rejected(X)),

[]).

rule(fisher_rejects_h0(X), rejecth0(X),

[fisher(X),

fisher_pvalue(X,Pvalue), significance(Significance),

Pvalue < Significance ]).

rule(prefer_fisher_rejects_h0(X),

prefer(fisher_rejects_h0(X),

[]).

h0_is_not_rejected(X)) ,[]).
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