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Introduction 

 

Mechanicals systems are often uncertain in their response under different conditions. Examples 

of such uncertainties include experimental errors, lack of data, uncertain model parameters, and 

systematic model inadequacy. This uncertainty is most of the times a hard task to define properly. 

The overall uncertainty can be decomposed on a number of different parameters that affect the 

system with several ways. These parameters are not always straight forward and the connection 

of their probabilistic structure with that of the whole system’s may not be possible to be found 

from beforehand. A characteristic example of this issue is the investigation of the uncertainty of 

the microstructure for heterogeneous materials. The direct investigation of the microstructure is 

a very challenging and costly task. This issue can be countered efficiently by taking advantage of 

the high amount of information and data that can be collected and stored while observing the 

system’s response macroscopically and with a multiscale approach update the random 

microscale parameters.  

The Bayesian framework, which combines new information with preexisting models, can be used 

in order to update the microscopic scales with acquired data from the investigation of either 

those scales or related macroscopic scales. Several studies have been done for the stochastic 

formulation of microstructures that ultimately define the macrostructure (i.e. random wrinkling 

of graphene sheets [16], stochastic geometric formulation of carbonate rocks [17]), without 

however any consideration of real data that can reformulate the microstructure. On the other 

hand, multiscale Bayesian updating has been implemented mainly on image processing studies 

(i.e. speckle removal in ultrasound images [18], image segmentation [19,20]). However, Bayesian 

updating on microscopic stochastic parameters of heterogeneous materials based on multiscale 

procedures have yet to be investigated thoroughly, in spite of the useful information that can be 

gathered from it. 



P a g e  | 2 

 

 
 

Here the Bayesian updating of the probabilistic structure of the uncertain parameters describing 

the interaction between carbon nanotubes (CNTs) and the surrounding polymer matrix is 

considered. A MCMC technique with the use of the Metropolis Hastings is implemented on a 

semi-concurrent multiscale approach (FE2) in order to update the beliefs of the microscopic 

parameters according to a macroscale deformation observation. The posterior distributions of 

these parameters are then compared to deterministic solutions of the multiscale model in the 

direction of verifying the efficiency of the procedure. 
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1. Multiscale analysis 

The modeling of heterogeneous materials can be accomplished with several ways. The most 

straightforward way it to create a single scale macroscopic model. This model relies on brute 

computational force, since it has to be densely discretized in order to include all the 

heterogeneities. It is obvious that such a model can be used in some special occasions only, such 

as structures with linear material behavior and highly distinguishable heterogeneities. In an effort 

to overcome this issue multiscale approaches have been developed. These approaches can be 

classified in two main categories [2]: 

2.  Sequential methods.  
  
A thorough microscopic analysis gives all those mechanisms responsible for the macroscopic 

behavior of the structure. A macroscopic model is produced by taking into consideration all of 

the above mechanisms. This model can then be solved by discretizing it with some method. 

Although this method is easy to implement and with low computational effort, much of the 

information is lost and the progression of the model in different phases cannot be accurately 

predicted. 

2.  Integrated methods.   
 
The microscopic scale can be linked with the macroscopic by using some homogenization rule. 

This can be achieved by discretizing the microstructure and with the use of some analytical 

equations describe the model progression. Then all the information is transferred to the 

macromodel through the established link. This method is computationally heavier than the 

previous approach, but it can accurately predict the model progression through different phases. 

The discretized microstructure is expressed in the form of the so-called Representative Volume 

Element (RVE), in which numerical computations take place and then according to a 

homogenization scheme the results are transferred to the macrostructure.  

The second method is used in this thesis with a two-scale first-order homogenization analysis. 
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Homogenization scheme 

The homogenization procedure was developed according to [1] by imposing linear displacement 

as boundaries on the RVE.  

 

 

 

 

1.1 Linear displacements as boundary conditions 

 

We assume an equilibrium state: 

0div u + =  in B  

where B the solid part of the RVE 

By integrating and applying the Gauss theorem in the above relation: 
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The averaging theorem [8] equates the average microscopic stress with the macroscopic stress: 
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In a similar manner: 
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1.2 Association of a point in the macrostructure with a heterogenous microstructure 

 

 

The boundary conditions on the microstructure are chosen in order for the condition 

 

to be satisfied a priori. 

The assumption that the tractions are zero in the interior part of the RVE is made. 

On the other hand, the boundary conditions on the dV must be chosen in a relative manner to 

the macroscopic point behavior. These conditions may take the form of periodic/aperiodic 

displacements or tractions.  

By formulating the boundary conditions in terms of displacements that are dependent on the 

macroscopic strain   we get the form: 

( , ) ( )u x t t x=  at x dV  

which is a linear deformation of the boundary. 
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A discretization technique has to be implemented on the above analytical equations of the RVE 

for the purpose of computing the macroscopic properties. On top of that in the nonlinear case a 

convergent iterative procedure must be carried out. A FEM with a standard Newton-Raphson 

method will be used here. 

If n are the nodes on the boundary dV after the discretization the imposed boundary equation 

takes the form: 

n nu x=  for 1,2,3...n =  

By writing  and u in the form: 

11 22 12[     ]    =  

1 2[   ]T

nuq u u=  

The previous equation can be written as 

T

n nu D =    , where 

1 2

2 1

2 01

0 22

T

n

n

x x
D

x x

 
=  

 
 

The complete set of the system’s nonlinear equations is: 

0a

b

T

b

f

f

u D





=

=

=

 

Where λ are the external forces on the system nodes formulated as a Lagrange multiplier. 

 

By separating the external from the internal nodes, the tangent stiffness matrix along with the 

internal forces can be written as: 
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 The linearized system equations then take the form: 

0aa ab a a

ba bb b b

K K u f

K K u f 
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The procedure to solve the nonlinear equation in linear increments is: 

1) For the first iteration of the increment where the microscopic equilibrium is satisfied a 

displacement increment bu  is imposed as 
T

b nu D  =   resulting in a 

1

a aa ab bu K K u− =   

2) For the following iterations where bu =0 the internal deformations are updated as 

1

a aa au K f− = −  until convergence has been achieved in the sense that 0af  

3) If convergence has been reached the macroscopic stress and the macroscopic tangent 

moduli are calculated: 

1 1
  ,  C T

bbD DK D
V V

 = =  , where  1

bb bb ba aa abK K K K K−= −  

4) Continue to the next increment 

 

FE2 solution scheme 

FE2 is an integrated multiscale method proposed by [2] where simultaneous computations of the 

mechanical response at two different scales take place. The macroscopic scale represents the 

whole structure while the microscopic is the RVE at each macroscopic numerical integration point 

(i.e. Gauss-Legendre quadrature). With this method all the macroscopic phenomenological 

relations are not required even in the nonlinear case, since these relations are emerging fully 
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from the microscopic scale and affect directly the mechanical properties of the macroscopic 

system. 

The three main steps that characterize the FE2 procedure are: 

(1) a modeling of the mechanical behavior at the RVE and the discretization of it. 
(2) a localization rule which determines the local solutions inside the RVE, for any given overall 
strain. 
(3) a homogenization rule giving the macroscopic stress tensor, knowing the micromechanical 

stress state. 

1.3 Multiscale steps with FE2 procedure 

 

In a more detailed way, the procedure followed here can be described as follows. The 

macroscopic model, which consists of a microscopically heterogeneous material is analyzed 

simultaneously on two separate levels. On the macroscopic level, the model is analyzed as if it 

consisted of a homogeneous material with nonlinear behavior, using a standard Newton–

Raphson iterative procedure. The FE2 solution scheme dictates that material properties at the 

macroscopic level are not calculated using a constitutive law, but by solving an appropriate 

boundary value problem at the microscopic level, using a homogenization technique. The steps 

of the method can be summarized as follows: The macroscopic structure is discretized and an 

appropriate RVE is chosen to represent the microstructure, which is subsequently discretized as 

well. For the first step of the Newton–Raphson algorithm, zero displacements are assigned to all 
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the nodes of the macrostructure. The macroscopic nodal displacements are used to calculate the 

macroscopic strain ε at every Gauss Point, using the macroscopic shape function derivatives B. 

Next, the macroscopic strain is used to apply appropriate boundary displacements to every RVE, 

according to the localization rule of the homogenization scheme. After the solution of the 

resulting boundary value problem, the macroscopic stress σ and the macroscopic tangent 

modulus C at every macroscopic Gauss Point are calculated according to the homogenization rule 

of the homogenization scheme. These are then used to calculate the internal nodal force vector 

Q and tangential stiffness matrix K of the macroscopic structure. If the internal nodal force vector 

is in equilibrium with the external one, the procedure is terminated. Else, the macroscopic nodal 

displacements are updated according to the Newton–Raphson algorithm and the procedure is 

repeated, until convergence is achieved [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             1.4 Flow chart of FE2 algorithm 
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Representation of CNTs 

At the lowest scale the interatomic relations between carbon atoms are governed by a quadratic 

force field potential. With the use of the mMSM approach [21] the C-C covalent bonds are 

substituted by beam elements, making feasible the modeling of the atomic lattice of the carbon 

nanotube with a space frame structure at the nanoscale. 

The C-C bond potential energy is calculated as a function of the bond stretching, bond in-plane 
bending, torsion and out of plane bending. Thus, the relations for the calculations of the beam 
element properties are derived:  

 
 

Although an efficient modeling of the carbon atom interactions has been achieved with the 
mMSM approach the formed space-frame structure is still significantly complex and requires high 
computational effort. In order to simplify this structure without substantial loss of the mechanical 
properties the mMSM model is projected to an equivalent beam element (EBE) with linear 
behavior. This model transition can be achieved by subjecting the mMSM structure of length L0 
to an axial displacement ux, a transverse displacement uy and a torsional displacement φ 
respectively at the one end while the other end is fixed. By calculating the resulting forces in the 
fixed end for each loading case the mechanical properties of the EBE can be derived [4]: 
 

                     1.5 FE mesh and boundary conditions for different types of loading 
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The profile section of the beam is considered to be a solid cylinder with diameter Deq. 

The section properties are given by: 

 

 

 

Consequently, the EBE’s diameter can be written in terms of these properties as: 
 

 

 

 

 

 

 

 

 

 

 

 

1.6 Hierarchical multiscale homogenization step 
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CNT-Polymer interaction 

 

The CNT-Polymer interaction plays a major role in the overall response of the composite 

structure. There are several traction-separation approaches that can describe this interaction. A 

bilinear bond-slip with kinematic hardening approach is easy to be implemented without losing 

much accuracy compared to similar approaches such as an exponential.  

The bilinear behavior of the slippage can be approximated according to the following relation: 

 

D  

 

 

 

 

 

 

1.7 Bond-Slip constitutive law 

 

In order to simulate this interaction an analytical method that connects the CNT with the polymer 

surface must be considered. Such a method is the Cohesive Zone Model (CZM) [22] which is 

widely used in the fracture mechanics. According to CZM the domain Ω can be divided according 

to the existing discontinuity and create a new boundary surface Γcoh. The boundary conditions 

over this surface can be denoted as: 

 

Where + is the positive (upper) part and – is the negative (lower) part of the discontinuity. 
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Writing the equilibrium equation in the weak form by applying the principle of virtual work the 

following is obtained: 

 

These can be stated as one equation as: 

 

By assuming a mid-surface between the two subdomain boundary surfaces, using the + surface 

as reference and transforming the coordinate system from local to global the equation is 

transformed to: 

 

 

The only part of the equation that is going to be simulated with the CZM is: 

  

Implementing the standard FE procedure in order discretize the above equation to a finite 

number of dofs a matrix-vector notation is generated: 

 

 

 

 

where  
int,ce ,top

kr and 
int,ce ,bot

kr are the internal force vectors of the top and bottom surfaces in 

the cohesive zone respectively. 
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Writing these equations in a first-order incremental scheme the [12x12] tangent stiffness takes 

the form: 

 

1

11

tan

tan
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and

is the tangent elasticity matrix
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while the [12x1] current internal force vector is: 
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, i being the integration points 

 

 

 

 

 

 

1.8 Mid-surface according to upper/lower surface of the cohesive zone 
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In order to correlate the dofs of the cohesive element with the dofs of the surrounding matrix 

the embedding technique is implemented. This yields the final form of the cohesive element 

tangent stiffness matrix: 

 

, where constrT is the embedding matrix and it has the form: 

 

 

 

 

 

 

with i the cohesive beam dofs, iu  the matrix dofs and iN the FE shape functions 

After having fully characterized the cohesive zone element the complete tangent stiffness 

matrix and internal forces of the system can be written: 

 

and 
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Bayesian updating 

With the rapid growth of information and data collection technologies a lot of knowledge can be 

gathered around engineering systems. The need to take into consideration this information and 

based on it modify the current uncertainty of the system parameters led to the development of 

mathematical and computational models that update the beliefs as new data emerge.  

A robust and effective technique for combining new observations with existing models is based 

on the Bayes theorem and it is called Bayesian analysis. With this, prior probabilistic information 

about the uncertain parameters are updated according to the new available data based on real 

and in most cases also uncertain measurements of the mechanical system’s response. The 

uncertainty of the measurements plays a major role in the resulted uncertainty of the updated 

probabilistic model. With the shift in the prior beliefs critical decisions can be made on the 

engineering systems concerning the reliability and the risk assessments. 

 

 

 

 

 

Random variables 

Random variable is a measurable function which assigns probabilities in a sample space Ω which 

is the set of all possible outcomes of an experiment. Random variables can take the form of 

discrete functions, where they can be described by a probability mass function which assigns 

probabilities for every discrete outcome or they can take the form of continuous functions named 

as probability density functions (PDF), where in this case the probability is assigned to continuous 

intervals. 
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A PDF can be fully characterized by its moments. A moment is a measure of a specific aspect of a 

function. By taking into consideration all the relevant moments the shape of a function can be 

described. The most popular moments are the mean value and the standard deviation. 

[ ] ( )X XE X xf x dx


= =   

2 2[( ) ] ( ) ( )X x XE X x f x dx  



= − = −  

The most common PDF which is widely used in many statistical applications is the Gaussian 

(normal) distribution. The two moments mentioned above are enough to fully describe this 

function of the form: 

 

The main properties of a Gaussian distribution can be described as followed: 
1. The linear functions of Gaussian random variables remain Gaussian distributed. If X ∼ N (μX, 
σ2

X) then Y = aX + b ∼ N (μY = aμX + b, σ2 Y = a2σ2
X) 

 
2. If X1, X2 are independent Gaussian random variables with mean values μ1 ,μ2 and standard 
deviations σ1, σ2, respectively, then the random variable X = X1 + X2 is also Gaussian with mean 

value μ = μ1 + μ2 and standard deviation σ =√𝜎1
2 + 𝜎2

2 
 
3. The nth moment of the standard Gaussian random variable Z can be computed from: 

 
4. A Gaussian random variable X with mean μX and standard deviation σX can be obtained from 
the standard Gaussian random variable: X = σX Z + μX . Then the central moments of X are given 
from: E[(X − μX )n] = E[(σX Z)n] = σn

X E[Zn]. 
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When there is more than one random variable in a system, a PDF where also the correlation 

between those must be employed. This is the joint PDF and has the form: 

 

 

The moment that describes the relation of the random variables in a joint PDF is the covariance 

and is written as: 

11 [( )( ))] ( )( ) ( , )

[ ]

y
x

X Y X X Y Y XY X Y X y

X Y

E X Y f d d

E XY
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 

−
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= − − = − − =
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While the normalized covariance is: 

11

X Y




 
=  

Which is equal to zero in the case of uncorrelated random variables and unity in the case of 

them being fully correlated. 

 

Bayes’ Theorem 

For two events A and B, according to the Bayes’ Rule, the possibility of A happening while 

knowing that B is true is given by the following relation: 

 

In the context of random variables this relation can be expressed as: 
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, where X are the system’s random variables. 

 

The joint PDF ( )f X is called prior distribution and represent the beliefs of the probabilistic 

model before new information are known. The likelihood function ( | )L X Data represent the 

beliefs of the probabilistic model based solely on the emerged data. By multiplying these two 

functions one can acquire a proportional function to the posterior distribution  ( | )f X Data  

which is the transformed probabilistic model after taking into consideration the new data. In 

order to calculate the exact posterior distribution, one has to calculate the integral 

(normalization factor) which lies in the denominator of the relation. This is a very hard task to 

solve analytically as more random variables exist in the system and the need to resort to other 

approaches arise. 

 

The likelihood can represent the deviation of the observations from the statistical model 

predictions in a form: 

 

, where iy are the observations, ( )ih x  are the model predictions and i is the deviation( 

( )i i iy h x − = ) which may be influenced from measurement or model errors. 
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Markov Chain Monte Carlo (MCMC) 

The introduction of the MCMC methods were motivated by the impossible in most cases task of 

finding the exact posterior distribution. Instead they can work with a proportional function of the 

posterior: ( | ) ( | ) ( )f X Data L X Data f X  

Stochastic processes with the Markovian property are those in which every future state can be 

predicted by the knowledge of the present state while it does not get affected by previous states 

and that is why it is also called memoryless process. A subcategory of these processes is the 

Markov Chain which is described in the space of discrete random variables  :nX n N  and 

discrete state space S: 

 

If the Markov Chain is also independent of the time that the transition n→n+1 took place then 

the stochastic process is also called homogeneous.  

 

 

The basic properties of a Markov Chain are: 



P a g e  | 21 

 

 
 

1)Reducibility: A state j is said to be communicate with another state i if there is a positive 

probability for the chain to reach the state j from the state I and vice versa. If this condition holds 

for all of the pairs of chains then the Markov chain is called irreducible. 

2)Periodicity: A state i has a period d if the chain is returned to state i in multiples of d time steps 

and it is expressed as the greatest common divisor                                       . In the case where d=1 

an irreducible Markov Chain is said to be aperiodic. 

3)Recurrence: A state i is called recurrent if the probability of returning to i in finite or infinite 

chain steps is non-zero and it is expressed as:               

 

 

In the case that the above relation equals to less than unity the state is called transient. When 

the return happens in finite steps the state is called positive recurrent otherwise it is called null 

recurrent. 

Transition matrix 
( )( ) m

ijP m p= is called the probability of moving from state i to state j in m 

steps. Stationary distribution   of a Markov Chain is a distribution, which independently of the 

n implementations of the transition matrix on it, remains the same: 

 , where  
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There can be different chains having the same stationary distribution. 

An irreducible chain has a stationary distribution only if it is positive recurrent.  

 

The MCMC methods, by adopting these properties that a Marcov Chain has, can draw efficiently 

samples from the posterior distribution. They work by finding after some number of steps the 

transition that has as a stationary distribution the posterior. They perform better than simple 

Monte Carlo methods such as Acceptance Rejection Sampling (ARS) in most cases, especially in 

higher dimension spaces. The Markov Chain procedure though adds some drawbacks in the 

whole process. There is correlation between subsequent samples which needs to be taken into 

consideration in order to draw efficiently from the posterior. That can be achieved by lengthening 

the algorithm steps but another issue rises with this step shift, which is the chain trying to exit 

the highest probability region. Also, some samples must be discarded at the start of the 

procedure, the number depending on how close is the proposal transition to the true transition 

of the stationary-posterior. Consequently, the optimal adjustments must be made so to 

overcome these issues. 

Metropolis-Hastings algorithm (MH) 

The most popular algorithm for the implementation of a MCMC procedure is a random walk 

algorithm called Metropolis-Hastings which later has led to the creation of alternative or 

modified algorithms but with the same general concept. 

 

 

Two conditions must be met in order for MH algorithm to work: 

1. Existence of a stationary distribution ( )x , which requires that every transition x→ x’ is 

reversible, meaning that the probability of being in state x and transitioning to state x’ 

must me equal to the probability of being in state x’ and transitioning to state x. 
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2. Uniqueness of the stationary distribution ( )x , which required that every state x must 

be aperiodic and positive recurrent 

 

The approach is so to decompose the transition probability ( ' | )P x x  in two sub-probabilities.                       

The proposal distribution ( ' | )g x x  is the probability of moving from a state x to x’ and the 

acceptance ratio ( ', )A x x  is the probability to accept the proposed state x’. Rewriting the above 

equation after this change yields: 

 

 

, where  

 

The next step is to choose an appropriate acceptance ratio. The Metropolis choice is either 

( ', )A x x =1 or ( , ')A x x =1. This can be written as: 

 

 

The MH algorithm can be described as followed: 

1. Choose an initial starting point x0 and a proposal density ( ' | )g x x . A common proposal 

density is the normal distribution and the x0 can be the mean value of the prior 

distribution. 

2. Get a random proposed sample x’ from ( ' | )tg x x , where t is the number of the iteration. 

3. Calculate the acceptance ration ( ', )A x x  from the relation above 

4. Generate a random number u   with uniform distribution in the interval [0,1] 

5. Accept the proposed sample if 'u x  / Reject the proposed sample if 'u x  

6. Go to step 2 for the next sample / End if the required samples have been gathered 
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Numerical Example 

 

In this section a numerical example which demonstrates the procedure of Bayesian update with 

MCMC in a nonlinear multiscale model is implemented. The coding for this example was 

developed entirely on MATLAB. Specifically, a pushover analysis was carried out on a beam 

constructed with a composite material. The composite material can be described as a carbon 

nanotube-reinforced polymer matrix.  

 

 

 

 

 

 

 

 

 

 

3.1 Beam element in the macroscopic scale 

 

The interaction between the CNTs and the surrounding polymer matrix was examined in the 

microstructure. The modulus of elasticity of the polymer is 2.79pE GPa=  and Poisson’s ratio 

0.4 = . Implementing the EBE procedure the CNTs were formed as beam elements with a solid 

circular profile section with mean equivalent diameter 4.57eqD nm= and modulus of elasticity 

1051CE GPa= . The dimensions of the RVE are 200x200 nm2 in which 25 CNTs with length 
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30L nm=  with random positioning and orientation were placed. The number and the length of 

the CNTs where chosen for a weight fraction of 1%wf = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Representation of the RVE 

 

 

 

The interface between the polymer and the CNTs was simulated with a bond-slip kinematic 

hardening and the connection between the dofs was done with a cohesive zone model and the 

embedding technique. The parameters than define the interface are the Interfacial Shear Stress 

(ISS) which is the stress at which the slip happens, the relation of traction-separation in the full 

bonded case (Del) and the same relation after the maximum separation before the slip has been 

reached (Dpl).  
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              3.3 Bilinear slippage constitutive law 

Firstly, a microscopic testing was carried out in order to observe how a single RVE is responding 

to different values of the interface parameters. A homogenization scheme with the linear 

boundary displacement method was applied to the discretized RVE and was solved with a FE 

model. The RVE was subjected to increasing values of macroscopic strains of the form 

11 22 12[     2 ] [   0.4   0]      = = −  until a maximum strain of  max 5% = . Below 

shows the relation 11 11 −   for different values of interface parameters (Del and Dpl in GPa/nm, 

ISS in GPa).  
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A macroscopic testing was performed with the FE2 procedure. The beam with 20m length and 

4m height was fixed in the left end while in the right end was subjected to a vertical load Fincr of 

increasing magnitude from the unloaded case until it reaches Fmax=30MN which was achieved 

with the introduction of a scale factor λ (Fincr=λFmax). The macrostructure was discretized and then 

was connected with the microstructure with the localization and homogenization rule.  The 

detailed algorithm procedure was described in paragraph 2.2  

 

 

 

 

 

 

 

 

3.7 Semi-concurrent multiscale approach 

 

The response of the macrostructure was tested for the same values of the CNT-polymer 

interaction parameters with those in the microscopic testing. In the pushover analysis the 

macroscopic displacement of the node A in the bottom right corner (maximum displacement 

point) was observed and it is shown below. 
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Having observed the responses of the micro and the macro structure for several deterministic 

values of the interface parameters a probabilistic model is implemented. In this model the three 

parameters are considered to be random variables. 

It is assumed that a real experiment has been implemented on the composite beam by imposing 

the same loading condition as described before. The measurement that has been observed for 

F=30MN is uA=3.1m, where A is the node defined before. The prior distributions prP  are 

considered to be normal for the three parameters. The mean value and standard deviation for 

each parameter is presented below: 

(10,2)

(1,0.2)

(0.1,0.02)

el

pl

D N

D N

ISS N

→

→

→
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The likelihood function has the form: 

(X) [ ( )]AL f u u X= −  

Where X is the vector of the random variables and ( )u X is the displacement which resulted from 

the multiscale model solution, while ε is the uncertainty of the measurement. 

The uncertainty of this measurement is expressed with a standard deviation 0.06m = , so the 

likelihood function is assumed to be a normal variable defined as: 

(3.1,0.06)Au N→  

The MCMC procedure is followed in order to sample from the posterior distribution: 

It has to be pointed out that in order to accept a candidate sample from the posterior the whole 

FE2 algorithm must be solved in order to find the displacement at A, making the application a 

heavy computational task. The Metropolis Hastings algorithm was used as the MCMC method. 

The process can be shown schematically with the flow chart below. 

 

 

  

 

 

 

 

 

 

 

                                         3.11 Flow chart of complete procedure 



P a g e  | 33 

 

 
 

For the MH algorithm only a burn-in period of 20 samples was chosen in order the Markov Chain 

to converge to the target distribution. Additionally, none of the accepted samples is thrown away 

for the sake of correlation issues. That is because from a Bayesian update perspective the 

problem is not considered complex and the target distribution is expected to have similar shape 

and values as the prior. 

After the whole process has finished and the necessary samples have been gathered it is possible 

to create the histogram of the three random variables and fit an appropriate distribution to them 

which will be the posterior/target distribution. 

If we consider the target distribution to be normal the transformed statistical parameters after 

the Bayesian update for each random variable are: 

(8.372,2.566)

(0.684,0.213)

(0.745,0.023)

el

pl

D N

D N

ISS N

→

→

→
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The distribution of the node displacement can also be derived. 
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It can be seen that all of the distributions have lower mean values, while the standard deviations 

are approximately the same. This is to be expected considering the results are fully compatible 

with the deterministic solutions of the multiscale model conducted before. 
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Conclusions 

 

A numerical example has been developed where the importance of Bayesian updating in a 

complex engineering system such as the response of a highly heterogeneous material on a 

specific loading condition has been highlighted. By taking into consideration new emerged data 

on the macroscopic structure such as a deformation observation, the update of the probabilistic 

structure of the parameters that lie in the microscopic structure has been achieved. This is of 

high importance since these parameters are hard and most of the times costly to be examined 

directly.  

Specifically, the MCMC procedure with the Metropolis Hastings algorithm has been used on a 

semi-concurrent multiscale method (FE2) in order to draw samples from the target distribution 

of the microscopic parameters that describe the CNT-polymer interaction, after a real 

measurement of the macroscopic deformation on the edge of a composite beam is known. 

Comparing these updated samples with deterministic solutions of the model for fixed 

microscopic parameters reveals the efficient implementation of the Metropolis Hastings 

algorithm making it a very promising methodology for the investigation of updated microscopic 

uncertainties in a multiscale model. 
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