

### ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

### ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ»

# Αξιολόγηση παραγώγων δορυφόρου Sentinel 2 ως κτηματολογικά υπόβαθρα

### ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μακρής Αλέξιος

Επιβλέπων: Γεωργόπουλος Ανδρέας

Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2020

#### ΠΕΡΙΛΗΨΗ

Σκοπός της διπλωματικής είναι η αξιολόγηση των προϊόντων του δορυφόρου Sentinel 2 και του υποβάθρου που είναι διαθέσιμο από την Κτηματολόγιο Α.Ε.. Στα πλαίσια της αξιολόγησης αυτής χρησιμοποιείται και ένα τρίτο προϊόν δηλαδή μία ορθοφωτογραφία που κατασκευάσθηκε με τη μέθοδο Structure from Motion (SfM) από αεροφωτογραφίες.

Στο πρώτο στάδιο παρουσιάζεται το θεωρητικό υπόβαθρο της εργασίας. Αρχικά γίνεται η περιγραφή της αποστολής Sentinel 2 του προγράμματος Copernicus. Στα πλαίσια του κεφαλαίου αυτού αναλύεται ο στόχος της αποστολής καθώς και των χαρακτηριστικών του δορυφόρου, όπως η τροχιά και οι δέκτες με τους οποίους είναι εξοπλισμένος. Επίσης αναφέρονται τα προϊόντα του προγράμματος και η επεξεργασία που έχουν υποστεί. Το θεωρητικό υπόβαθρο ολοκληρώνεται με την ανάλυση των αρχών βάση των οποίων λειτουργεί η διαδικασία Structure from Motion (SfM).

Το δεύτερο στάδιο της εργασίας αναφέρεται στη συλλογή των δεδομένων. Συγκεκριμένα αναλύεται ο τρόπος συλλογής κάθε τύπου δεδομένων που χρησιμοποιήθηκε στην εργασία καθώς και οι απαραίτητες τροποποιήσεις που έγιναν ώστε τα δεδομένα να είναι αξιοποιήσιμα.

Στο τελευταίο στάδιο γίνεται η σύγκριση των δεδομένων η οποία πραγματοποιήθηκε με τρεις διαφορετικούς τρόπους. Αρχικά έγινε ένας οπτικός έλεγχος των εικόνων. Ακολούθως επιλέχθηκαν σημεία των εικόνων και έγινε σύγκριση των συντεταγμένων τους και τέλος έγινε η μελέτη της διαφοροποίησης επιλεγμένων αποστάσεων από μοντέλο σε μοντέλο.

#### ABSTRACT

The purpose of this thesis is to assess the products of the Sentinel 2 mission and the substratum that is available through the national cadaster. For this assessment a third type of product was used; an orthoimage created from aerial photographs using the method "Structure from Motion".

At the first stage, the theoretical background of this thesis Is laid. In the beginning, the details of Copernicus Sentinel 2 mission are described. Under this chapter, the objective of the mission, as well as the basic features of the satellite, like its orbit and the transceivers, are explained. In addition, the products of the program along with their processing are listed. The first stage is completed with the analytical presentation of the basic principles concerning the method "Structure from Motion".

The second stage refers to the data collection process. Specifically, the way each type of data used in the assignment was collected is analyzed, as well as the modifications that took place in order to make the data usable and exploitable for the purposes described above.

At the third stage, the data comparison is presented, that was performed in three different ways. Firstly, an optical examination of the images was executed. Subsequently, several points from the images were selected in order to compare their coordinates in each image and, lastly, a comparison among the models was performed by checking the actual difference between selected distances.

| 1 | H    | ΙΑΠΟ   | DΣΤΟΛΗ SENTINEL 2                              | . 8 |
|---|------|--------|------------------------------------------------|-----|
|   | 1.1. | Т      | ο πρόγραμμα Copernicus                         | . 8 |
|   | 1.2. | O      | οι αποστολές Sentinel                          | . 8 |
|   | 1.3. | П      | Ιεριγραφή Sentinel 2                           | 10  |
|   | 1    | .3.1.  | Γενικές πληροφορίες                            | 10  |
|   | 1    | .3.2.  | Τομείς συμβολής του Sentinel 2                 | 10  |
|   | 1    | .3.3.  | Περιγραφή Δορυφόρων                            | 11  |
|   | 1    | .3.4.  | Ανάλυση του δέκτη                              | 12  |
|   | 1    | .3.5.  | Περιοχές μελέτης                               | 14  |
|   | 1    | .3.6.  | Δεδομένα                                       | 14  |
|   | 1    | .3.7.  | Μορφή δεδομένων                                | 17  |
|   | 1.4. | В      | ιβλιογραφία κεφαλαίου                          | 17  |
| 2 | . н  | MEG    | ΟΟΔΟΣ Structure from Motion                    | 18  |
|   | 2.1. | В      | ασικές αρχές                                   | 18  |
|   | 2.2. | C      | ) αλγόριθμος Scale Invariant Feature Transform | 19  |
|   | 2.3. | А      | νακατασκευή του μοντέλου                       | 20  |
|   | 2.4. | П      | ροσανατολισμός του μοντέλου                    | 20  |
|   | 2.5. | В      | ιβλιογραφία κεφαλαίου                          | 20  |
| 3 | . Σ  | γΛΛΟ   | ΟΓΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ                  | 21  |
|   | 3.1. | O      | ρθοφωτοχάρτες κτηματολογίου                    | 21  |
|   | 3.2. | E      | ικόνες Sentinel                                | 22  |
|   | 3    | .2.1.  | Εισαγωγή                                       | 22  |
|   | 3    | .2.2.  | Προσβασιμότητα δεδομένων                       | 22  |
|   | 3    | .2.3.  | Επεξεργασία εικόνων                            | 23  |
|   | 3.3. | П      | Ιαραγωγή Ορθοφωτογραφίας μέσω SfM              | 24  |
|   | 3    | .3.1.  | Εισαγωγή                                       | 24  |
|   | 3    | .3.2.  | Βήματα διαδικασίας                             | 24  |
|   | 3    | .3.3.  | Γεωαναφορά                                     | 24  |
|   | 3    | .3.4.  | Αποτελέσματα                                   | 26  |
|   | 3    | .3.5.  | Ορθοφωτογραφία                                 | 27  |
|   | 3.4. | П      | εριοχή μελέτης                                 | 28  |
| 4 | п    | ΙΕΡΙΓΓ | ΡΑΦΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗΣ   | 29  |
|   | 4.1. | E      | ισαγωγή                                        | 29  |
|   | 4.2. | Σ      | ύστημα αναφοράς                                | 29  |
|   | 4.3. | 0      | )πτικός έλεγχος                                | 29  |

#### ΠΕΡΙΕΧΟΜΕΝΑ

| 4.3.   | .1. Ορθοφωτοχάρτης κτηματολογίου-Εικόνα Sentinel 2  | 29 |
|--------|-----------------------------------------------------|----|
| 4.3.   | .2. Ορθοφωτογραφία SfM-Εικόνα Sentinel 2            | 31 |
| 4.3.   | .3. Ορθοφωτοχάρτης κτηματολογίου-Ορθοφωτογραφία SfM | 32 |
| 4.4.   | Έλεγχος συντεταγμένων                               | 34 |
| 4.5.   | Έλεγχος αποστάσεων                                  | 38 |
| 5. ΣYN | /ΠΕΡΑΣΜΑΤΑ                                          | 41 |
| 5.1.   | Εισαγωγή                                            | 41 |
| 5.2.   | Ορθοφωτοχάρτης της Κτηματολόγιο Α.Ε                 | 41 |
| 5.3.   | Sentinel                                            | 41 |
| 5.4.   | SfM                                                 | 41 |

#### ΕΥΡΕΤΗΡΙΟ ΕΙΚΟΝΩΝ

| 1.1  | Οι αποστολές Sentinel                                                     |
|------|---------------------------------------------------------------------------|
| 1.2  | Σχηματική απεικόνιση του δορυφόρου της αποστολής Sentinel 2               |
| 1.3  | Δέκτες του δορυφόρου sentinel 2                                           |
| 1.4  | Τα κανάλια διακριτικής ικανότητας 10m                                     |
| 1.5  | Τα κανάλια διακριτικής ικανότητας 20m                                     |
| 1.6  | Τα κανάλια διακριτικής ικανότητας 60m                                     |
| 1.7  | Συχνότητα ανανέωσης δεδομένων ανάλογα με την περιοχή παρατήρησης          |
| 1.8  | Το κοινό σύστημα δομής των δεδομένων των αποστολών Sentinel               |
| 2.1  | Δημιουργία τρισδιάστατου μοντέλου από επικαλυπτόμενες εικόνες από διάφορα |
|      | σημεία λήψης                                                              |
| 3.1  | Ο ορθοφωτοχάρτης του κτηματολογίου που χρησιμοποιήθηκε στην εργασία       |
| 3.2  | Η προεπισκόπηση της επιλεχθείσας εικόνας του Sentinel 2                   |
| 3.3  | Η τελική εικόνα που παρήχθη από το SNAP                                   |
| 3.4  | Τα βήματα της μεθόδου SfM                                                 |
| 3.5  | Τα σημεία ελέγχου (GCP) που χρησιμοποιήθηκαν από το PhotoScan             |
| 3.6  | Τα σημεία ελέγχου που παρουσίασαν τα μέγιστα σφάλματα ανά άξονα           |
| 3.8  | Η παραχθείσα ορθοφωτογραφία της μεθόδου SfM                               |
| 3.9  | Η βόρεια Άνδρος                                                           |
| 4.1  | Πρώτη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2              |
| 4.2  | Δεύτερη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2            |
| 4.3  | Τρίτη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2              |
| 4.4  | Πρώτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2        |
| 4.5  | Δεύτερη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2      |
| 4.6  | Τρίτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2        |
| 4.7  | Πρώτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας           |
|      | κτηματολογίου                                                             |
| 4.8  | Δεύτερη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας         |
|      | κτηματολογίου                                                             |
| 4.9  | Τρίτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας           |
|      | κτηματολογίου                                                             |
| 4.10 | Επιλεχθέντα σημεία για τη σύγκριση συντεταγμένων                          |

#### ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ

| 1.1 | Χαρακτηριστικά καναλιών δορυφόρων Sentinel 2Α και 2Β               |
|-----|--------------------------------------------------------------------|
| 3.1 | Τα σφάλματα της θέσης των φωτοσταθερών                             |
| 4.1 | Συντεταγμένες επιλεχθέντων σημείων στις 3 ορθοφωτογραφίες          |
| 4.2 | Τιμές διαφορών οριζοντιογραφικών συντεταγμένων ανά ζεύγος μεθόδων  |
| 4.3 | Μέση και τυπική απόκλιση διαφοράς συντεταγμένων ανά ζεύγος μεθόδων |
| 4.4 | Αποστάσεις επιλεγμένων ζευγών σημείων ανά μέθοδο                   |
| 4.5 | Διαφορές αποστάσεων επιλεγμένων ζευγών σημείων ανά ζεύγος μεθόδων  |
| 4.6 | Μέση και τυπική απόκλιση διαφοράς αποστάσεων ανά ζεύγος μεθόδων    |

#### **1. Η ΑΠΟΣΤΟΛΗ SENTINEL 2**

#### 1.1. Το πρόγραμμα Copernicus

Το Copernicus είναι το πρόγραμμα γεωπαρατήρησης της Ευρωπαϊκής Ένωσης. Το διαχειρίζεται η ευρωπαϊκή επιτροπή σε συνεργασία με τον ευρωπαϊκό οργανισμό διαστήματος (ESA), τα κράτη μέλη της ευρωπαϊκής ένωσης και άλλες ευρωπαϊκές υπηρεσίες και δημιουργήθηκε με τον κανονισμό Νο 377/2014. Στόχος του είναι η δημιουργία ενός αυτόνομου και συνεχούς δικτύου παρατήρησης της γης, το οποίο θα προσφέρει άμεσα, εύκολα και δωρεάν πληροφορίες υψηλής ανάλυσης. Στο πρόγραμμα συνδυάζονται δεδομένα από δορυφόρους, επίγειες, εναέριες καθώς και υποθαλάσσιες μετρήσεις για την δημιουργία μία πλήρους εικόνας του πλανήτη.

#### 1.2. Οι αποστολές Sentinel

Στο πλαίσιο του προγράμματος Copernicus, η ευρωπαϊκή υπηρεσία διαστήματος (ESA) αναπτύσσει τις δορυφορικές αποστολές Sentinel που αποτελούνται από έξι ζεύγη δορυφόρων (Εικόνα 1.1) ώστε να πληρούν τις ανάγκες συχνότητας και κάλυψης του προγράμματος. Οι αποστολές είναι εξοπλισμένες με μία γκάμα δεκτών όπως ραντάρ και πολυφασματικούς δέκτες για απεικόνιση εδάφους, θάλασσας και ατμόσφαιρας.

#### Sentinel 1

Οι δορυφόροι Sentinel 1 βρίσκονται σε πολική τροχιά και είναι εξοπλισμένοι με δέκτη ραντάρ για χερσαίες και θαλάσσιες απεικονίσεις. Ο Sentinel 1Α εκτοξεύτηκε στις 3 Απριλίου 2014 και ο Sentinel 1Β στις 25 Απριλίου του 2016.

#### Sentinel 2

Η αποστολή Sentinel 2 βρίσκεται σε πολική τροχιά και έχει πολυφασματικούς δέκτες υψηλής ανάλυσης. Στοχεύει στην παρατήρηση κάλυψης γης και θάλασσας και στη μελέτη βλάστησης, ποταμών, παράκτιων περιοχών καθώς και στο να παρέχει πληροφορίες για φυσικές καταστροφές. Ο Sentinel 2A εκτοξεύτηκε στις 23 Ιουνίου 2015 και ο Sentinel 2B στις 7 Μαρτίου του 2017.

#### Sentinel 3

Η αποστολή Sentinel 3 έχει στόχο την θαλάσσια παρατήρηση. Είναι εξοπλισμένη με πολυφασματικό δέκτη για την ακριβή και αξιόπιστη καταγραφή της τοπογραφίας της επιφάνειας της θάλασσας. Ο δέκτης της είναι ικανός να καταγράψει με υψηλή ακρίβεια την απόχρωση των ωκεάνιων και των παράκτιων περιοχών, καθώς και να εκτιμήσει την θερμοκρασία που αναπτύσσεται στις επιφάνειες αυτές. Σκοπός της είναι να συμβάλει στην ωκεάνια πρόβλεψη και καθώς και στην παρακολούθηση της κλιματικής αλλαγής. Ο Sentinel 3A εκτοξεύτηκε στις 16 Φεβρουαρίου 2016 και ο Sentinel 3B στις 25 Απριλίου του 2018.

#### Sentinel 4

Η αποστολή Sentinel 4 θα αποτελείται από δορυφόρους σε γεωστατική τροχιά με δέκτες για ατμοσφαιρική παρατήρηση.

#### Sentinel 5 Precursor

O Sentinel 5P είναι ο πρόδρομος της αποστολής Sentinel 5 και είναι εξοπλισμένος με δέκτη υψηλής χωροχρονικής ανάλυσης για την ατμοσφαιρική παρατήρηση της ποιότητας του αέρα, μετρήσεις για το όζον, της UV ακτινοβολίας καθώς και της κλιματικής αλλαγής. Στόχος του είναι να καλύψει το κενό ανάμεσα στον δέκτη Sciamachy του δορυφόρου Envisat της ευρωπαϊκής υπηρεσίας διαστήματος (ESA) που χάθηκε το 2012 και την έναρξη της αποστολής Sentinel 5. O Sentinel 5P εκτοξεύτηκε στις 13 Οκτωβρίου του 2017.

#### Sentinel 5

Η Sentinel 5 είναι μία αποστολή δορυφόρων που θα έχουν πολική τροχιά και στόχο την ατμοσφαιρική παρατήρηση.

#### Sentinel 6

Οι δορυφόροι Sentinel 6 θα έχουν ραντάρ για την παγκόσμια καταγραφή της επιφάνειας της θάλασσας με σκοπό την ωκεανογραφία και την κλιματική μελέτη.



Εικόνα 1.1: Οι αποστολές Sentinel

#### 1.3. Περιγραφή Sentinel 2

#### 1.3.1. Γενικές πληροφορίες

Όπως προαναφέρθηκε, η αποστολή Sentinel 2 αποτελείται από δύο δορυφόρους που ακολουθούν την ίδια τροχιά αλλά έχουν διαφορά φάσης 180°, με αποτέλεσμα να επισκέπτονται το ίδιο σημείο στον ισημερινό κάθε 5 μέρες. Είναι εξοπλισμένοι με πολυφασματικούς δέκτες υψηλής ανάλυσης και ευρείας περιστροφής. Καταγράφουν 13 φασματικές ζώνες, όπου τέσσερις από αυτές είναι ανάλυσης των 10m, έξι είναι των 20m και τρείς είναι των 60m ενώ έχει πλάτος σάρωσης 290km.

Η αποστολή Sentinel 2 έχει τρείς κύριους στόχους, την συχνή και συστηματική απόκτηση πολυφασματικών εικόνων υψηλής ακρίβειας, την συνέχεια των πολυφασματικών λήψεων των δορυφόρων SPOT και LANDSAT και την παροχή πληροφοριών για προϊόντα επόμενης γενιάς όπως χάρτες κάλυψης γης και χάρτες μεταβολών.

#### 1.3.2. Τομείς συμβολής του Sentinel 2

Οι κύριοι τομείς στους οποίους θα συμβάλει ο Sentinel 2 λόγω των τεχνικών χαρακτηριστικών του είναι: η κάλυψη εδάφους, η διαχείριση κρίσεων, η ασφάλεια και η κλιματική αλλαγή.

#### Κάλυψη εδάφους

Η αποστολή Sentinel 2 λόγω της συχνής και συστηματικής κάλυψης της γης, μπορεί να συμβάλει σημαντικά στην ταξινόμηση των χρήσεων γης και στην μεταβολή τους. Οι πληροφορίες που συγκεντρώνει συνολικά το πρόγραμμα Copernicus άρχισαν να είναι διαθέσιμες από το 2012. Χωρίζονται σε τρείς τομείς ανάλογα με την εμβέλειά τους, δηλαδή σε τοπικούς, σε Ευρωπαϊκούς και σε παγκόσμιους. Με τα ευρωπαϊκά δεδομένα ασχολείται η Ευρωπαϊκή περιβαλλοντική υπηρεσία (ΕΕΑ) και ως αρχικό στάδιο έχει την κατασκευή μίας βάσης δεδομένων που θα έχει ως θεματικά επίπεδα τις τεχνητές επιφάνειες, τις δασώδεις περιοχές, τις αγροτικές εκτάσεις, τους υγροτόπους και τις λίμνες.

#### Διαχείριση κρίσεων

Στον τομέα της διαχείρισης κρίσεων, λόγω της μεγάλης συχνότητας λήψης και της διακριτικής ικανότητας των 10m, ο Sentinel 2, μπορεί να συμβάλει σημαντικά. Η υπηρεσία διαχείρισης έκτακτης ανάγκης του Copernicus (GIO EMS), έχει ξεκινήσει από το 2012 να παρέχει πληροφορίες σχετικά με φυσικές καταστροφές όπως πλημμύρες, φωτιές, κατολισθήσεις, σεισμούς και ηφαίστεια καθώς και ανθρωπιστικές κρίσεις και γεγονότα ανά τον κόσμο.

#### Ασφάλεια

Στον τομέα της ασφάλειας, ο Sentinel 2 θα συμβάλει με την παρατήρηση των χερσαίων και θαλάσσιων συνόρων της Ευρωπαϊκής Ένωσης, προσπαθώντας να μειώσει την εισροή παράνομων μεταναστών καθώς και να περιορίσει τις ζωές που χάνονται στη θάλασσα κατά την είσοδό τους.

#### Κλιματική αλλαγή

Λόγω τις συχνότητας λήψης των εικόνων, δημιουργούνται ευκαιρίες για να παρέχονται δεδομένα χωρίς σύννεφα, κάτι που μέχρι τώρα ήταν σπάνιο σε τροπικές περιοχές. Αυτό θα έχει ως αποτέλεσμα να μπορεί να μετρηθεί και να μετριαστεί η αποψίλωση των δασών.

#### 1.3.3. Περιγραφή Δορυφόρων

Κάθε ένας από τους δύο δορυφόρους της αποστολής Sentinel 2 (Εικόνα 1.2) ζυγίζει 1.2 τόνους, έχει προσδόκιμο ζωής 7.25 χρόνια και οι μπαταρίες και τα προωθητικά του συστήματα έχουν υπολογιστεί για 12 χρόνια μαζί με τους ελιγμούς για να βγει από τροχιά στο τέλος του προγράμματος.



Εικόνα 1.2: Σχηματική απεικόνιση του δορυφόρου της αποστολής Sentinel 2

Οι δύο δορυφόροι λειτουργούν ταυτόχρονα και κινούνται με διαφορά φάσης 180°, σε ηλιοσύγχρονη τροχιά με μέσο ύψος 786km, ενώ η θέση τους μετριέται με ένα διπλής συχνότητας δορυφορικό σύστημα πλοήγησης (GNSS).

Το πολυφασματικό του όργανο είναι ένας παθητικός δέκτης τύπου push-broom που συλλέγει δεδομένα καθώς ο δορυφόρος συνεχίζει την τροχιά του.

Το ανακλώμενο φως χωρίζεται με ένα φίλτρο και εστιάζεται σε δύο διαφορετικούς συλλέκτες εστιακών επιπέδων, έναν για τα δέκα ορατά και εγγύς υπέρυθρα κανάλια και ένα για τα τρία βραχέα υπέρυθρα. Και για τις δύο κατηγορίες (VNIR και SWIR) έχουν εγκατασταθεί δώδεκα δέκτες σε διάταξη των δύο σειρών, όπως φαίνεται στην εικόνα 1.3. Ο περαιτέρω διαχωρισμός των καναλιών γίνεται μέσω φίλτρων πάνω στους δέκτες.



Εικόνα 1.3: Δέκτες του δορυφόρου sentinel 2

#### 1.3.4. Ανάλυση του δέκτη

Οι δορυφόροι Sentinel έχουν τρείς διαφορετικές διακριτικές ικανότητες ανάλογα με το κάθε κανάλι. Τέσσερα κανάλια έχουν διακριτική ικανότητα 10m, έξι κανάλια έχουν 20m και τρία κανάλια έχουν 60m, όπως παρουσιάζονται αναλυτικά στον πίνακα 1.1 τόσο για τον δορυφόρο Sentinel 2A όσο και για τον Sentinel 2B.

| Spatial Possiution |             | S2A                        |                   | S2B                        |                   |
|--------------------|-------------|----------------------------|-------------------|----------------------------|-------------------|
| (m)                | Band Number | Central Wavelength<br>(nm) | Bandwidth<br>(nm) | Central Wavelength<br>(nm) | Bandwidth<br>(nm) |
| 10                 | 2           | 496.6                      | 98                | 492.1                      | 98                |
|                    | 3           | 560.0                      | 45                | 559                        | 46                |
|                    | 4           | 664.5                      | 38                | 665                        | 39                |
|                    | 8           | 835.1                      | 145               | 833                        | 133               |
| 20                 | 5           | 703.9                      | 19                | 703.8                      | 20                |
|                    | 6           | 740.2                      | 18                | 739.1                      | 18                |
|                    | 7           | 782.5                      | 28                | 779.7                      | 28                |
|                    | 8a          | 864.8                      | 33                | 864                        | 32                |
|                    | 11          | 1613.7                     | 143               | 1610.4                     | 141               |
|                    | 12          | 2202.4                     | 242               | 2185.7                     | 238               |
| 60                 | 1           | 443.9                      | 27                | 442.3                      | 45                |
|                    | 9           | 945.0                      | 26                | 943.2                      | 27                |
|                    | 10          | 1373.5                     | 75                | 1376.9                     | 76                |

Πίνακας 1.1: Χαρακτηριστικά καναλιών δορυφόρων Sentinel 2A και 2B

Τα κανάλια με την καλύτερη διακριτική ικανότητα, δηλαδή των 10m, παρουσιάζονται στην εικόνα 1.4 και είναι τα χαρακτηριστικά RGB (κόκκινο, πράσινο, μπλε) και το εγγύς υπέρυθρο.



Εικόνα 1.4: Τα κανάλια διακριτικής ικανότητας 10m

Τα κανάλια των 20m παρουσιάζονται στην εικόνα 1.5, βρίσκονται στο εγγύς και μέσο υπέρυθρο φάσμα και έχουν εφαρμογές σε ανίχνευση χιονιού, σύννεφων και υγρασίας σε βλάστηση.



Εικόνα 1.5: Τα κανάλια διακριτικής ικανότητας 20m

Τα τρία κανάλια των 60m που παρουσιάζονται στην εικόνα 1.6 χρησιμοποιούνται κυρίως για σάρωση νεφών.



Εικόνα 1.6: Τα κανάλια διακριτικής ικανότητας 60m

#### 1.3.5. Περιοχές μελέτης

Η αποστολή Sentinel 2 έχει ως εύρος παρατήρησης τις χερσαίες και παράκτιες περιοχές που κυμαίνονται σε γεωγραφικό πλάτος από 56° νότια έως 84° βόρεια. Συγκεκριμένα περιλαμβάνει όλες τις ακόλουθες κατηγορίες:

- 1. Όλες τις ακτογραμμές μέχρι πλάτος 20km μέσα στη θάλασσα
- 2. Όλα τα νησιά που είναι μεγαλύτερα από 100km<sup>2</sup>
- 3. Κάθε Ευρωπαϊκό νησί
- 4. Ολόκληρη τη Μεσόγειο θάλασσα
- 5. Όλες τις κλειστές θάλασσες

Κάθε δορυφόρος παρέχει καινούργια δεδομένα ανάλογα με την περιοχή παρατήρησης περίπου κάθε 5-10 μέρες, όπως φαίνεται στην εικόνα 1.7.



Εικόνα 1.7: Συχνότητα ανανέωσης δεδομένων ανάλογα με την περιοχή παρατήρησης

#### 1.3.6. Δεδομένα

Όλοι οι χρήστες μπορούν να έχουν πρόσβαση στα δεδομένα της αποστολής Sentinel 2 ελεύθερα και δωρεάν. Τα δεδομένα που είναι διαθέσιμα για το κοινό είναι επιπέδου 1C και 2A.

Και οι δύο αυτοί τύποι δεδομένων είναι ορθοφωτογραφίες διαστάσεων 100x100km<sup>2</sup> και έχουν ως σύστημα αναφοράς το UTM/WGS84. Το UTM (Universal Transverse Mercator) χωρίζει τη γη σε 60 ζώνες που έχουν εύρος γεωγραφικού μήκους 6° και εύρος γεωγραφικού πλάτους 8°.

#### Επίπεδα δεδομένων

Το πρόγραμμα των Sentinel δορυφόρων χωρίζει τα δεδομένα του σε τρείς κύριες κατηγορίες (επίπεδα 0, 1, 2) ανάλογα με το βαθμό επεξεργασίας τους.

• Level 0

Είναι οι αρχικές εικόνες σε συμπιεσμένη μορφή μαζί με τα αντίστοιχα μεταδεδομένα τους

Level 1A

Είναι η εικόνα σε αποσυμπιεσμένη μορφή. Καλύπτει μία περιοχή 25km μήκους και 23km πλάτους όπου το κέντρο κάθε εικονοστοιχείου (pixel) έχει γνωστές συντεταγμένες. Μία περιφορά του δορυφόρου παράγει περίπου 3500 εικόνες.

Level 1B

Το προϊόν 1Β συγκροτείται από ένα σύνολο εικόνων επιπέδου 1Α που έχουν υποστεί τις ραδιομετρικές και γεωμετρικές διορθώσεις που ακολουθούν:

- 1. Dark signal: Είναι η μέτρηση που έχει η κάμερα σε απόλυτο σκοτάδι, η ραδιομετρική του διόρθωση αφαιρεί το συστηματικό αυτό σφάλμα από την εικόνα.
- 2. Pixels response non uniformity: Είναι ένα συστηματικό σφάλμα που αντιπροσωπεύει την ανομοιόμορφη αντιστοίχιση του σήματος που δέχεται ο δέκτης σε σχέση με την τιμή που αποδίδει σε κάθε εικονοστοιχείο.
- 3. Crosstalk correction: Είναι η ραδιομετρική διόρθωση του σήματος από παρεμβολές εξωγενών σημάτων.
- 4. Defective pixels interpolation: Είναι το σφάλμα που παρουσιάζεται σε ορισμένα εικονοστοιχεία από τη συμπίεση των δεδομένων.
- 5. High spatial resolution bands restoration (deconvolution plus denoising): Είναι μία μέθοδος βελτίωσης της ανάλυσης μίας εικόνας μέσω αλγορίθμων ενίσχυσης της και απαλοιφής θορύβου.
- 6. Binning (spatial filtering) for 60m bands: Είναι ένα φίλτρο μέσου όρου που εφαρμόζεται στα κανάλια των 60m.

• Level 1C

Είναι ορθοφωτογραφίες διαστάσεων 100x100km<sup>2</sup> στο σύστημα UTM/WGS84. Για την προβολή έχει χρησιμοποιηθεί ένα ψηφιακό μοντέλο επιφάνειας 90m (PlanetDEM 90). Περιλαμβάνεται επίσης η υπολογισμένη ατμοσφαιρική ανάκλαση (TOA reflectance), που η ραδιομετρική της διόρθωση παράγει την επιφανειακή ανάκλαση ή ανάκλαση στη βάση της ατμόσφαιρας (BOA). Η ορθοφωτογραφία χωρίζεται ανάλογα με το κανάλι προέλευσης της σε εικονοστοιχεία 10, 20 και 60m, όπου οι συντεταγμένες τους αναφέρονται στην πάνω αριστερά γωνία τους.

Τα προϊόντα επιπέδου 1C είναι διαθέσιμα για το κοινό.

• Level 2A

Είναι ορθοφωτογραφίες διαστάσεων 100x100km<sup>2</sup> στο σύστημα UTM/WGS84 με ανακλάσεις στη βάση της ατμόσφαιρας (BOA). Η παραγωγή της μπορεί να γίνει και από το χρήστη, κάνοντας της απαραίτητες ραδιομετρικές διορθώσεις στην εικόνα επιπέδου 1C.

Τα προϊόντας επιπέδου 2Α είναι διαθέσιμα για το κοινό.

#### 1.3.7. Μορφή δεδομένων

Το πρόγραμμα των δορυφόρων Sentinel χρησιμοποιεί ένα κοινό σύστημα δομής και μορφής όλων των δεδομένων, όπως παρουσιάζεται στην εικόνα 1.8. Τα προϊόντα επιπέδου 2 που χρησιμοποιήθηκαν έχουν τις ακόλουθες κατηγορίες:

- Φάκελο μεταδεδομένων (XML)
- Προεπισκόπηση εικόνας (JPEG2000 με GML γεωεντοπισμό)
- Αρχείο με τις ανακλάσεις στη βάση της ατμόσφαιρας (BOA) (GML/JPEG2000)
- Αρχείο δεδομένων (datastrip)
- Βοηθητικά δεδομένα
- Επικουρικά δεδομένα



Εικόνα 1.8: Το κοινό σύστημα δομής των δεδομένων των αποστολών Sentinel

#### 1.4. Βιβλιογραφία κεφαλαίου

[1] https://sentinel.esa.int/web/sentinel/home

#### 2. H ME $OO\Delta O\Sigma$ Structure from Motion

#### 2.1. Βασικές αρχές

Η μέθοδος Structure from Motion (SfM) σε συνδυασμό με την Multi-View Strereo (MVS) είναι μία φωτογραμμετρική διαδικασία δημιουργίας τρισδιάστατων αναπαραστάσεων υψηλής ακρίβειας. Είναι ιδανική για εργασίες χαμηλού κόστους και περιορισμένης προσβασιμότητας.

Η λειτουργία της Structure from Motion στηρίζεται στις ίδιες αρχές της στερεοσκοπικής φωτογραμμετρίας, όπου ένα τρισδιάστατο μοντέλο μπορεί να κατασκευαστεί από μία σειρά επικαλυπτόμενων δισδιάστατων εικόνων. Η κύρια διαφοροποίηση από τις κλασικές μεθόδους είναι ότι η θέση των σημείων λήψης και ο προσανατολισμός των εικόνων δεν χρειάζεται να είναι προκαθορισμένος αλλά επιλύονται ταυτόχρονα με μία επαναλαμβανόμενη διαδικασία προσανατολισμού δεσμών με χρήση πολλαπλών δεδομένων από επικαλυπτόμενες εικόνες. Οι εικόνες θα πρέπει να έχουν υψηλό ποσοστό επικάλυψης και το αντικείμενο θα πρέπει να καλύπτεται από πληθώρα σημείων λήψεως, όπως φαίνεται στην εικόνα 2.1.



Εικόνα 2.1: Δημιουργία τρισδιάστατου μοντέλου από επικαλυπτόμενες εικόνες από διάφορα σημεία λήψης

Στην κλασική φωτογραμμετρική μέθοδο χρειάζονται είτε οι τρισδιάστατες συντεταγμένες των σημείων λήψεως των εικόνων, είτε των σημείων ελέγχου (control point), ώστε να μπορούν να υπολογισθούν οι συντεταγμένες των υπολοίπων σημείων. Τα σημεία λήψεως γίνονται γνωστά με χρήση GPS πάνω στην κάμερα ή μέσω φωτοτριγωνισμού ανακατασκευάζοντας τη γεωμετρία τη στιγμή της λήψης. Στην περίπτωση που χρησιμοποιούνται σημεία ελέγχου, θα πρέπει τα σημεία αυτά να εντοπισθούν πάνω στις εικόνες και να γίνει εκτίμηση των κέντρων λήψεως.

Στην περίπτωση της διαδικασίας Structure from Motion, δεν χρειάζεται να είναι γνωστό τίποτα από τα ανωτέρω, καθώς τόσο τα σημεία όσο και η γεωμετρία της λήψης ανακτώνται αυτόματα μέσω μίας διαδικασίας ταύτισης χαρακτηριστικών σημείων σε πολλαπλές εικόνες. Με την ανακατασκευή της γεωμετρίας της λήψης συνδυαστικά σε πολλαπλές εικόνες και σημεία, προσεγγίζονται οι αρχικές τιμές των σημείων λήξεως, οι οποίες βελτιστοποιούνται μέσω μίας επαναληπτικής διαδικασίας που εφαρμόζει ελάχιστα τετράγωνα στις αποκλίσεις της τομής των ευθειών.

Η έλλειψη χρήσης σημείων με γνωστές συντεταγμένες στον υπολογισμό των θέσεων λήψεως, οδηγεί στη δημιουργία μοντέλων που στερούνται κλίμακας και προσανατολισμού. Η εξάρτηση των μοντέλων αυτών σε γνωστά συστήματα αναφοράς, γίνεται μέσω ενός μετασχηματισμού ομοιότητας χρησιμοποιώντας φωτοσταθερά (ground control points) με γνωστές συντεταμένες. Τα σημεία αυτά μπορεί να είναι υπάρχοντα χαρακτηριστικά σημεία τα οποία μετρήθηκαν με άλλες μεθόδους, είτε ένα δίκτυο φυσικών σημαδιών που τοποθετήθηκαν και μετρήθηκαν στην περιοχή πριν από την λήψη των εικόνων. Με τον τρόπο αυτό έχει εξασφαλιστεί η ευκρίνεια των σημείων και η ορθή κατανομή τους στο εύρος των εικόνων.

#### 2.2. Ο αλγόριθμος Scale Invariant Feature Transform

Το κύριο πρόβλημα της διαδικασίας Structure from Motion, είναι ο εντοπισμός διαφόρων ομόλογων σημείων σε πολλαπλές εικόνες από διαφορετικές γωνίες λήψης. Αρχικό βήμα στη διαδικασία αυτή είναι ο εντοπισμός σε κάθε εικόνα χαρακτηριστικών σημείων που θα μπορούσαν να χρησιμοποιηθούν για αντιστοίχιση. Ένας χαρακτηριστικός αλγόριθμος που αντιμετωπίζει αυτό το πρόβλημα είναι ο Scale Invariant Feature Transform (SIFT).

Ο αλγόριθμος αυτός εντοπίζει σημεία τα οποία δεν μεταβάλλονται από την κλίμακα, τη στροφή ή τον φωτισμό στον τρισδιάστατο χώρο. Αυτό επιτυγχάνεται εντοπίζοντας τα μέγιστα και ελάχιστα της Λαπλασιανής ή των διαφορών των Γκαουσιανών στο πεδίο κλίμακας χώρου. Για κάθε τέτοιο σημείο εξετάζονται τα γειτονικά του εικονίδια για να υπολογιστεί ο βέλτιστος προσανατολισμός του. Τέλος δημιουργείται ένας περιγραφέας των σημείων που έχει πληροφορίες για την κλίμακα και των προσανατολισμό τους. Η κωδικοποίηση των χαρακτηριστικών αυτών είναι αρκετά μοναδική ώστε να μπορεί να χρησιμοποιηθεί σε μεγάλα σύνολα δεδομένων.

Ο αριθμός των σημείων που εντοπίζει ο αλγόριθμος είναι ανάλογος της ανάλυσης και της περιπλοκότητας της εικόνας. Έτσι εικόνες με υψηλή ανάλυση και έντονο ανάγλυφο θα δημιουργήσουν ένα καλύτερης ποιότητας αποτέλεσμα.

#### 2.3. Ανακατασκευή του μοντέλου

Στο επόμενο στάδιο της διαδικασίας Structure from Motion, εφαρμόζεται επιπολική γεωμετρία για τον υπολογισμό του επιπολικού πίνακα (fundamental matrix), ώστε να γίνει ο προσδιορισμός των σημείων λήψης των εικόνων και η εξαγωγή ενός αραιού νέφους σημείων. Δημιουργούνται έτσι ευθείες που ενώνουν τα αντίστοιχα χαρακτηριστικά σημεία στις διάφορες εικόνες. Οι ευθείες αυτές πρέπει να συνδέουν τουλάχιστον δύο σημεία και τρεις εικόνες, ενώ όσες δεν πληρούν τα κριτήρια αποκλείονται από τους υπολογισμούς. Με τον τρόπο αυτό αποκλείονται κινούμενοι στόχοι από τον αλγόριθμο. Στη συνέχεια ο επιπολικός πίνακας μετασχηματίζεται σε προβολικό πίνακα. Από τα στοιχεία του προβολικού πίνακα και την θέση τους στις εικόνες, μπορούν να υπολογιστούν οι τρισδιάστατες συντεταγμένες των χαρακτηριστικών σημείων μέσω εμπροσθοτομίας (τριγωνισμού).

Λόγω της ύπαρξης σφαλμάτων όμως, δεν επιτυγχάνεται τομή των ευθειών προβολής, με αποτέλεσμα να εφαρμόζεται μία μέθοδος ελαχίστων τετραγώνων σε μη γραμμικές εξισώσεις ώστε να βρεθεί η βέλτιστη λύση, ελαχιστοποιώντας τα σφάλματα [4].

Το σύστημα που υπολογίζονται όλες οι συντεταγμένες είναι αυθαίρετο, αλλά το γεγονός πως όλη η διαδικασία, από την επιλογή των χαρακτηριστικών σημείων, μέχρι τον ακριβή υπολογισμό της γεωμετρίας της λήψεως είναι τελείως αυτοματοποιημένη, αποτελεί ένα από τα πλεονεκτήματα της μεθόδου.

Σε επόμενο στάδιο, εφόσον έχουν ήδη υπολογισθεί οι συντεταγμένες των σημείων λήψεως των εικόνων, μπορούν να προστεθούν ως δεδομένα στις εξισώσεις και τελικά να δημιουργήσουν ένα πυκνό νέφος σημείων.

#### 2.4. Προσανατολισμός του μοντέλου

Ο προσανατολισμός του μοντέλου γίνεται μέσω της αντιστοίχισης στην εικόνα σημείων ελέγχου στο έδαφος ώστε να μπορεί να γίνει ο μετασχηματισμός ομοιότητας. Οι επτά παράμετροι του μετασχηματισμού χρειάζονται την ταύτιση τουλάχιστον τριών σημείων ώστε να μπορούν να λυθούν οι εξισώσεις.

#### 2.5. Βιβλιογραφία κεφαλαίου

[1] M.J. Westoby, J. Bransington, N.F. Glasser, M.J. Hambrey, J,M, Reynolds, «'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications», ELSEVIER, 2012

[2] Edgar Ferreira, Jim Chandler, Rene Wackrow, Koji Shiono «Automated extraction of free surface topography using SfM-MVS photogrammetry », ELSEVIER, 2007

[3] D.P. Robertson, R. Cipolla, «Practical Image Processing and Computer Vision», Wiley-Blackwell, 2008

[4] Szeliski, S.B. Kang Recovering, «3-D shape and motion from image streams using nonlinear least squares», Journal of Visual Communication and Image Representation 5,10-28, 1994

#### 3. ΣΥΛΛΟΓΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ

#### 3.1. Ορθοφωτοχάρτες κτηματολογίου

Για τις συγκρίσεις της εργασίας χρησιμοποιήθηκαν τρία είδη δεδομένων, το πρώτο εκ των οποίων είναι οι ορθοφωτοχάρτες της Κτηματολόγιο ΑΕ (Εικόνα 3.1). Το ελληνικό κτηματολόγιο, στην επίσημη ιστοσελίδα του, παρέχει δωρεάν υπηρεσίες θέασης ορθοφωτογραφιών που είναι γεωαναφερμένες στο ΕΓΣΑ 87. Οι ανωτέρω ορθοφωτογραφίες καλύπτουν το σύνολο της Ελληνικής επικράτειας, με εξαίρεση ορισμένες παραμεθόριες περιοχές και κάποιες διαβαθμισμένες εγκαταστάσεις οι οποίες υπόκεινται σε περιορισμούς και απαγορεύσεις από τις αρμόδιες αρχές και υπηρεσίες για τη διάθεση γεωγραφικών προϊόντων. Οι περιοχές αυτές ενδέχεται να φαίνονται αλλοιωμένες ή παραμορφωμένες για λόγους εθνικής ασφάλειας.

Οι αστικές περιοχές, δηλαδή οι πρωτεύουσες νομών και οι μεγάλες πόλεις, είναι πλήρως ορθοανηγμένες και έχουν μέγεθος εικονοστοιχείου 20cm, ενώ οι υπόλοιπες περιοχές έχουν μέγεθος εικονοστοιχείου 50cm.

Το ελληνικό κτηματολόγιο παρέχει τέσσερα διαφορετικά υπόβαθρα ορθοφωτοχαρτών, κάθε ένα εκ των οποίων προέρχεται από διαφορετική περίοδο φωτοληψίας. Αυτές οι περίοδοι είναι: i) 1945-1960, ii) 2007-2009, iii) 2015-2016 και iv) 2010-2011 (αποκλειστικά για την Αττική). Τα δεδομένα που χρησιμοποιήθηκαν στην παρούσα εργασία, προέρχονται από φωτοληψίες που έγιναν την περίοδο 2007-2009 και διατέθηκαν σε ψηφιακή μορφή.

Οι ορθοφωτοχάρτες του κτηματολογίου είναι έτοιμα προϊόντα. Ως εκ τούτου, τα αρχικά τους δεδομένα καθώς επίσης και οι μέθοδοι επεξεργασίας τους δεν είναι άμεσα διαθέσιμα για το κοινό.



Εικόνα 3.1: Ο ορθοφωτοχάρτης του κτηματολογίου που χρησιμοποιήθηκε στην εργασία

#### 3.2. Εικόνες Sentinel

#### 3.2.1. Εισαγωγή

Το δεύτερο είδος δεδομένων που χρησιμοποιήθηκαν για τις συγκρίσεις της εργασίας, είναι εικόνες από τον δορυφόρο Sentinel 2 του προγράμματος Copernicus. Όπως αναφέρθηκε και στο Κεφάλαιο 1, οι εικόνες του Sentinel 2 είναι έτοιμες ορθοφωτογραφίες. Οι αρχικές εικόνες καθώς και οι ακριβείς παράμετροι της ορθο-απεικόνισής τους δεν είναι διαθέσιμες για τους χρήστες.

#### 3.2.2. Προσβασιμότητα δεδομένων

Η πολιτική του προγράμματος Copernicus, είναι η ανοιχτή και δωρεάν πρόσβαση στα δεδομένα του. Από την επίσημη ιστοσελίδα του προγράμματος, κάθε χρήστης μπορεί να μεταβεί στη σελίδα Copernicus open access hub, στην οποία χρειάζεται μία δωρεάν εγγραφή ώστε να μπορεί να την χρησιμοποιήσει. Στη σελίδα αυτή, ο χρήστης μπορεί να επιλέξει τον δορυφόρο του προγράμματος που επιθυμεί και εν συνεχεία να διαλέξει πάνω σε ένα παγκόσμιο χάρτη την περιοχή αναζήτησης εικόνων καθώς επίσης και την περίοδο λήψης τους. Επιπλέον, μπορεί να επιλέξει κάποιον από τους δύο δορυφόρους του κάθε προγράμματος (Α ή Β), καθώς και το είδος των προϊόντων που επιθυμεί, που για τον Sentinel 2 όπως αναφέρθηκε στο Κεφάλαιο 1 είναι τα 1C και 2A. Στα αρχεία που επιλέγονται από την αναζήτηση, είναι διαθέσιμη η προεπισκόπησή τους και στη συνέχεια η λήψη τους.

Για τις ανάγκες την εργασίας, λήφθηκαν με τον ανωτέρω τρόπο 14 φωτογραφίες των δορυφόρων sentinel 2, από την πλατφόρμα Α με τύπο προϊόντος 1C. Οι εικόνες είχαν ληφθεί την περίοδο 2015-2019. Η τελική επιλογή της εικόνας που χρησιμοποιήθηκε για τις συγκρίσεις φαίνεται στην εικόνα 3.2 και έγινε με κριτήρια τη νεφοκάλυψη, το φωτισμό και την ευκρίνεια των φωτογραφιών, ενώ η ημερομηνία λήψης της ήταν 8/10/2018.



Εικόνα 3.2: Η προεπισκόπηση της επιλεχθείσας εικόνας του Sentinel 2

#### 3.2.3. Επεξεργασία εικόνων

Όπως αναφέρθηκε και στο Κεφάλαιο 1, τα προϊόντα του προγράμματος Sentinel δεν είναι μεμονωμένες εικόνες, αλλά ένα σύνολο αρχείων με πληροφορίες για τα διάφορα κανάλια του κάθε δέκτη και μετα-δεδομένα της λήψης.

Για την επεξεργασία και τη σύνθεση της τελικής εικόνας (Εικόνα 3.3), χρησιμοποιήθηκε το πρόγραμμα sentinel application platform (SNAP). Πρόκειται για ένα δωρεάν λογισμικό που μπορεί οποιοσδήποτε να προμηθευτεί από την ίδια την ΕSA για την επεξεργασία όλων των sentinel προϊόντων. Έχει αρκετά εργαλεία για την εξεργασία των εικόνων, στα οποία περιλαμβάνονται μεταξύ άλλων η δυνατότητα οπτικοποίησης μεγάλων δεδομένων, η επιλογή καναλιών και η εφαρμογή φίλτρων ή προβολών. Στο πλαίσιο της παρούσας εργασίας, η επεξεργασία που έγινε ήταν να επιλεγούν το μπλε, το πράσινο και το κόκκινο από τα συνολικά δεκατρία κανάλια που έχει κάθε εικόνα και να προβληθούν με τις αντίστοιχες αποχρώσεις τους, ώστε να συνθέσουν τελικά μία φωτογραφία με τα φυσικά της χρώματα. Και τα 3 αυτά κανάλια έχουν διακριτική ικανότητα 10m, με αποτέλεσμα αυτή να είναι και η ακρίβεια του τελικού προϊόντος.



Εικόνα 3.3: Η τελική εικόνα που παρήχθη από το SNAP

#### 3.3. Παραγωγή Ορθοφωτογραφίας μέσω SfM

#### 3.3.1. Εισαγωγή

Το τρίτο είδος δεδομένων που χρησιμοποιήθηκαν για τις συγκρίσεις της εργασίας, είναι ορθοφωτογραφίες που κατασκευάσθηκαν με τη μέθοδο Structure from Motion από αεροφωτογραφίες. Το πρόγραμμα που επιλέχθηκε για την επεξεργασία των εικόνων ήταν το PhotoScan της Agisoft.

Ως δεδομένα χρησιμοποιήθηκαν 26 φωτογραφίες της βόρειας Άνδρου που τραβήχτηκαν από πτήση που έγινε το 2008 σε ύψος 4km.

#### 3.3.2. Βήματα διαδικασίας

Στο πρώτο βήμα γίνεται η εισαγωγή των εικόνων στο πρόγραμμα και στη συνέχεια ακολουθεί ο προσανατολισμός τους (alignment). Το PhotoScan λειτουργεί βάσει των αρχών μίας Structure from Motion διαδικασίας χρησιμοποιώντας έναν αλγόριθμο SIFT για την ανίχνευση των χαρακτηριστικών σημείων. Ως εκ τούτου, στο τέλος του βήματος αυτού, έχει γίνει η παραγωγή του αραιού νέφους σημείων (sparse point cloud), καθώς επίσης και ο υπολογισμός των σημείων λήψεως των εικόνων. Στη συνέχεια μπορεί να δημιουργηθεί ένα πυκνό νέφος σημείων (dense point cloud), χρησιμοποιώντας ως δεδομένα τα σημεία που υπολογίσθηκαν στο προηγούμενο βήμα, για να γίνει η πύκνωση του νέφους. Κατασκευάζεται κατόπιν μία επιφάνεια τριγωνικού πλέγματος (mesh) της περιοχής μελέτης και τελικά γίνεται η σύνθεση της ορθοφωτογραφίας.



Εικόνα 3.4: Τα βήματα της μεθόδου SfM

#### 3.3.3. Γεωαναφορά

Το PhotoScan μπορεί να εκτελέσει ολόκληρη τη διαδικασία που περιγράφηκε παραπάνω σε ένα αυθαίρετο σύστημα αναφοράς, εφόσον δεν του δοθούν άλλα στοιχεία. Για να γίνουν οι απαραίτητες συγκρίσεις όμως, όλα τα δεδομένα θα πρέπει να είναι στο ίδιο σύστημα, δηλαδή το ΕΓΣΑ 87. Για το λόγο αυτό, είναι απαραίτητη η εισαγωγή σημείων ελέγχου με γνωστές συντεταγμένες, ώστε να γίνει ο απαραίτητος μετασχηματισμός ομοιότητας. Για τις 7 παραμέτρους του μετασχηματισμού, χρειάζονται τουλάχιστον 3 σημεία επίγειου ελέγχου. Για λόγους ακρίβειας όμως και αξιοπιστίας πάντα επιλέγονται αρκετά περισσότερα με όσο το δυνατόν καλύτερη κατανομή μέσα στο μοντέλο. Στο συγκεκριμένο μοντέλο, χρησιμοποιήθηκαν 27 σημεία γνωστών συντεταγμένων σε όλο το εύρος της περιοχής μελέτης, όπως παρουσιάζονται και στην εικόνα 3.5. Τα σημεία αυτά είχαν υπολογισθεί σε προηγούμενες μελέτες και δόθηκαν ως δεδομένα.



Εικόνα 3.5: Τα σημεία ελέγχου (GCP) που χρησιμοποιήθηκαν από το PhotoScan

Μετά την εισαγωγή των σημείων με τον πίνακα των συντεταγμένων τους, έγινε εντοπισμός και σκόπευση κάθε σημείου σε όλες τις εικόνες που ήταν ορατό. Στη συνέχεια έγινε ξανά η επίλυση του μοντέλου χρησιμοποιώντας και τα φωτοσταθερά. Το σημείο 6 δεν χρησιμοποιήθηκε, καθώς βρισκόταν εκτός της περιοχής μελέτης και τα σημεία 20 και 21 επιλέχθηκε να μη συμπεριληφθούν στη διαδικασία λόγω του μεγάλου σφάλματος που παρουσίαζαν.

#### 3.3.4. Αποτελέσματα

Ο τελικός υπολογισμός του μοντέλου έγινε με τα εναπομείναντα 24 φωτοσταθερά. Όπως φαίνεται και στον πίνακα 3.1, το μέσο σφάλμα που παρουσιάστηκε με τη συγκεκριμένη μέθοδο ήταν 35cm στον άξονα των X και 24cm στον άξονα των Y, ενώ υψομετρικά η μέση απόκλιση υπολογίστηκε περίπου στα 80cm. Το μέσο οριζοντιογραφικό σφάλμα δηλαδή ήταν 40cm, το οποίο ανήκει στην ίδια τάξη μεγέθους με το αντίστοιχο σφάλμα του κτηματολογίου.

| Count | X error (m) | Y error (m) | Z error (m) | XY error (m) | Total (m) |
|-------|-------------|-------------|-------------|--------------|-----------|
| 24    | 0.351       | 0.240       | 0.797       | 0.425        | 0.903     |

Πίνακας 3.1: Τα σφάλματα της θέσης των φωτοσταθερών

Τα μέγιστα σφάλματα που παρουσιάστηκαν κατά την επίλυση, φαίνονται στην εικόνα 3.6 και ήταν τα ακόλουθα:

Στον άξονα των Χ, το μέγιστο σφάλμα ήταν 79cm και παρατηρήθηκε στο φωτοσταθερό 13

Στον άξονα των Y, το μέγιστο σφάλμα ήταν 53cm και παρατηρήθηκε στο φωτοσταθερό 25

Υψομετρικά, το μέγιστο σφάλμα ήταν 180cm και παρατηρήθηκε στο φωτοσταθερό 26



Εικόνα 3.6: Τα σημεία ελέγχου που παρουσίασαν τα μέγιστα σφάλματα ανά άξονα

#### 3.3.5. Ορθοφωτογραφία

Το τελικό προϊόν της διαδικασίας SfM είναι μία ορθοφωτογραφία της περιοχής μελέτης. Η ορθοφωτογραφία αυτή, κατά την εξαγωγή της από το πρόγραμμα, χωρίστηκε σε επιμέρους εικόνες διαστάσεων 20480x20480 εικονοστοιχείων η κάθε μία. Καθώς το μέγεθος του κάθε εικονοστοιχείου είναι 35cm, οι επιμέρους εικόνες έχουν διαστάσεις περίπου 7km ανά άξονα. Ως εκ τούτου, για να γίνει η κάλυψη ολόκληρης της περιοχής μελέτης που είναι 250km<sup>2</sup>, χρειάστηκαν συνολικά 10 εικόνες. Ο κατακερματισμός της αρχικής εικόνας εφαρμόστηκε για να μπορέσει να διατηρηθεί μικρό το μέγεθος των αρχείων, ώστε να είναι πιο εύκολα διαχειρίσιμα από τα προγράμματα επεξεργασίας. Η τελική ορθοφωτογραφία που παράχθηκε από τη σύνθεση όλων των εικόνων παρουσιάζεται στην εικόνα 3.7.



Εικόνα 3.7: Η παραχθείσα ορθοφωτογραφία της μεθόδου SfM

#### 3.4. Περιοχή μελέτης

Η περιοχή που επιλέχθηκε για να γίνουν οι συγκρίσεις των τριών διαφορετικών μεθόδων, είναι η Βόρεια Άνδρος, όπως φαίνεται και στην εικόνα 3.8. Η Άνδρος βρίσκεται στο Αιγαίο Πέλαγος και είναι το δεύτερο μεγαλύτερο σε έκταση νησί του συμπλέγματος των Κυκλάδων. Το βόρειο τμήμα της Άνδρου είναι μία περιοχή 250km<sup>2</sup>, η οποία θεωρείται ορεινή και παρουσιάζει μέγιστο υψόμετρο περίπου 1km. Η περιοχή αυτή περιλαμβάνει δύο μεγάλα χωριά, το Μπατσί και το Γαύριο (το οποίο είναι και το λιμάνι του νησιού).



Εικόνα 3.8: Η βόρεια Άνδρος

#### 4. ΠΕΡΙΓΡΑΦΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗΣ

#### 4.1. Εισαγωγή

Στο κεφάλαιο αυτό θα γίνει η σύγκριση των τριών διαφορετικών ορθοφωτογραφιών, του υποβάθρου δηλαδή του κτηματολογίου, της εικόνας του δορυφόρου Sentinel 2 και του ορθομωσαϊκού που κατασκευάσθηκε από αεροφωτογραφίες μέσω της διαδικασίας SfM. Η σύγκριση θα υλοποιηθεί με 3 διαφορετικούς τρόπους. Αρχικά θα γίνει ένας οπτικός έλεγχος των εικόνων, στη συνέχεια θα πραγματοποιηθεί σύγκριση των συντεταγμένων σε επιλεγμένα σημεία και τέλος θα γίνει σύγκριση διαφόρων αποστάσεων. Για τις ανάγκες της επεξεργασίας των εικόνων στο συγκεκριμένο κεφάλαιο, επιλέχθηκε η χρήση του ελεύθερου λογισμικού QGIS.

#### 4.2. Σύστημα αναφοράς

Για τη πραγματοποίηση των συγκρίσεων ήταν απαραίτητο και τα τρία είδη δεδομένων να βρίσκονται σε ένα κοινό σύστημα αναφοράς. Η ορθοφωτογραφία της διαδικασίας SfM κατασκευάστηκε στο σύστημα αναφοράς ΕΓΣΑ 87, το οποίο χρησιμοποιείται και από το κτηματολόγιο για τις προβολές του, ενώ η εικόνα του δορυφόρου Sentinel 2 προβάλλεται στο WGS 84. Στο λογισμικό QGIS, όπου έγινε η επεξεργασία των εικόνων, ορίσθηκε ως σύστημα αναφοράς το ΕΓΣΑ 87 και στη συνέχεια έγινε η εισαγωγή των δεδομένων. Με τη δήλωση του συστήματος αναφοράς της κάθε εικόνας κατά την εισαγωγή της στο μοντέλο, το πρόγραμμα έκανε αυτόματα τους απαραίτητους μετασχηματισμούς, με αποτέλεσμα όλα τα δεδομένα να έχουν τελικά συγκρίσιμες συντεταγμένες.

#### 4.3. Οπτικός έλεγχος

Ο πρώτος από τους ελέγχους που έγιναν στα δεδομένα της εργασίας ήταν η οπτική σύγκριση των εικόνων. Ως μέθοδος δεν προσφέρει σαφή αποτελέσματα, αλλά παρέχει μία γενική και ταχεία εκτίμηση του αποτελέσματος και εντοπίζει χονδροειδή σφάλματα, εφόσον υπάρχουν. Οι εικόνες από τα διαφορετικά υπόβαθρα τέθηκαν σε αντιπαράθεση με σκοπό να γίνει σύγκριση της συνέχειας των στοιχείων που παρουσιάζονται σε αυτές. Τα στοιχεία μπορεί να είναι είτε γραμμικά, όπως οι δρόμοι και η ακτογραμμή, είτε επιφανειακά, όπως τα κτήρια και η χρήση γης.

#### 4.3.1. Ορθοφωτοχάρτης κτηματολογίου-Εικόνα Sentinel 2

Η αρχική εκτίμηση από τη σύγκριση του υπόβαθρου του κτηματολογίου με την εικόνα Sentinel δείχνει πως τα δεδομένα δεν παρουσιάζουν μεγάλες αποκλίσεις. Υπάρχει μία σχετική μετατόπιση των στοιχείων ανάμεσα στις δύο εικόνες, αλλά, δεδομένης της χαμηλής ανάλυσης του δέκτη του δορυφόρου, εντοπίζεται εύκολα η συνέχεια των στοιχείων, τόσο των γραμμικών όσο και των επιφανειακών, όπου αυτά είναι εμφανή. Ενδεικτικά παρουσιάζονται στη συνέχεια τρεις φωτογραφίες (εικόνες 4.1-4.3) από τη σύγκριση αυτή.



Εικόνα 4.1: Πρώτη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2



Εικόνα 4.2: Δεύτερη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2



Εικόνα 4.3: Τρίτη ενδεικτική σύγκριση εικόνας κτηματολογίου – sentinel 2

#### 4.3.2. Ορθοφωτογραφία SfM-Εικόνα Sentinel 2

Τα συμπεράσματα της σύγκρισης αυτής ταυτίζονται με τα αποτελέσματα της προηγούμενης. Τα στοιχεία της ορθοφωτογραφίας που κατασκευάσθηκε με τη διαδικασία SfM σε σχέση με την εικόνα του δορυφόρου Sentinel 2 παρουσιάζουν μία μικρή απόκλιση μεταξύ τους. Όπως φαίνεται όμως και στις εικόνες 4.4 – 4.6, είναι σαφής η συνέχεια των διαφόρων αντικειμένων ανάμεσα στις φωτογραφίες, όπως των δρόμων, της ακτογραμμής, της περιοχής της παραλίας και των αγροτικών εκτάσεων.



Εικόνα 4.4: Πρώτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2



Εικόνα 4.5: Δεύτερη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2



Εικόνα 4.6: Τρίτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – εικόνας sentinel 2

#### 4.3.3. Ορθοφωτοχάρτης κτηματολογίου-Ορθοφωτογραφία SfM

Η τελευταία σύγκριση του οπτικού ελέγχου πραγματοποιήθηκε ανάμεσα στον ορθοφωτοχάρτη του κτηματολογίου και την ορθοφωτογραφία της διαδικασίας SfM. Όπως παρουσιάζεται και στις εικόνες 4.7 – 4.9, τα δύο υπόβαθρα ταυτίζονται οπτικά και σε ελάχιστες περιπτώσεις παρουσιάζονται μικρές αποκλίσεις και διπλά είδωλα, όπως στην εικόνα 4.9. Η περιοχή με τα πιο έντονα χρώματα ανήκει στο υπόβαθρο του κτηματολογίου.



Εικόνα 4.7: Πρώτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας κτηματολογίου



Εικόνα 4.8: Δεύτερη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας κτηματολογίου



Εικόνα 4.9: Τρίτη ενδεικτική σύγκριση ορθοφωτογραφίας SfM – ορθοφωτογραφίας κτηματολογίου

#### 4.4. Έλεγχος συντεταγμένων

Ο επόμενος έλεγχος που έγινε στις ορθοφωτογραφίες ήταν η σύγκριση των οριζοντιογραφικών συντεταγμένων τους. Επιλέχθηκαν συνολικά 23 σημεία στην περιοχή μελέτης (Εικόνα 4.10) και υπολογίσθηκαν οι συντεταγμένες των προβολών τους σε κάθε εικόνα, οι οποίες παρουσιάζονται στον πίνακα 4.1. Η επιλογή των σημείων έγινε με γνώμονα τη διασπορά τους σε όλο το εύρος της περιοχής και την ευκρίνεια τους και στις τρεις ορθοφωτογραφίες. Από τα σημεία που επιλέχθηκαν, τα 6 πρώτα βρίσκονται κατά μήκος της ακτογραμμής, τα επόμενα 12 είναι διασταυρώσεις του οδικού δικτύου και τα 5 τελευταία είναι γωνίες κτηρίων.



Εικόνα 4.10: Επιλεχθέντα σημεία για τη σύγκριση συντεταγμένων

|    | Ορθοφωτοχάρτης |             | Ορθοφωτο   | Ορθοφωτογραφία SfM |            | Εικόνα Sentinel 2 |  |
|----|----------------|-------------|------------|--------------------|------------|-------------------|--|
|    | Κτηματ         | ολογίου     |            |                    |            |                   |  |
|    | X(m)           | Y(m)        | X(m)       | Y(m)               | X(m)       | Y(m)              |  |
| 1  | 568908,307     | 4189964,939 | 568907,908 | 4189965,119        | 568905,474 | 4189969,987       |  |
| 2  | 566473,950     | 4191947,161 | 566473,948 | 4191948,582        | 566472,484 | 4191943,663       |  |
| 3  | 564269,529     | 4192773,500 | 564270,320 | 4192774,184        | 564274,549 | 4192774,670       |  |
| 4  | 562526,330     | 4191404,864 | 562527,864 | 4191404,840        | 562524,463 | 4191405,052       |  |
| 5  | 560136,136     | 4200583,507 | 560137,006 | 4200584,284        | 560138,538 | 4200581,956       |  |
| 6  | 563836,935     | 4203664,888 | 563837,120 | 4203665,059        | 563834,775 | 4203666,591       |  |
| 10 | 561620,664     | 4195957,737 | 561620,473 | 4195958,450        | 561626,348 | 4195961,354       |  |
| 11 | 570069,666     | 4190760,338 | 570069,400 | 4190760,560        | 570070,082 | 4190771,126       |  |
| 12 | 564218,600     | 4197344,017 | 564218,564 | 4197344,054        | 564228,278 | 4197338,246       |  |
| 13 | 564916,873     | 4199930,697 | 564915,995 | 4199930,739        | 564916,643 | 4199929,323       |  |
| 14 | 566080,907     | 4201739,369 | 566080,377 | 4201739,739        | 566091,257 | 4201734,959       |  |
| 15 | 567590,762     | 4199577,463 | 567590,343 | 4199577,498        | 567590,849 | 4199576,215       |  |
| 16 | 569180,786     | 4194710,501 | 569180,243 | 4194710,202        | 569183,267 | 4194699,252       |  |
| 17 | 571848,415     | 4197550,903 | 571848,309 | 4197550,963        | 571846,514 | 4197545,287       |  |
| 18 | 569655,503     | 4199501,403 | 569655,038 | 4199501,744        | 569657,255 | 4199514,548       |  |
| 19 | 566408,529     | 4194506,047 | 566407,937 | 4194506,533        | 566405,960 | 4194510,201       |  |
| 20 | 572801,252     | 4192519,588 | 572801,759 | 4192519,203        | 572804,542 | 4192525,050       |  |
| 21 | 566744,724     | 4197738,348 | 566744,990 | 4197738,533        | 566748,033 | 4197740,050       |  |
| 30 | 568274,204     | 4189890,051 | 568273,482 | 4189890,597        | 568277,908 | 4189890,017       |  |
| 31 | 564877,214     | 4193163,638 | 564878,147 | 4193164,195        | 564882,089 | 4193161,005       |  |
| 32 | 562392,007     | 4199745,996 | 562391,937 | 4199746,552        | 562400,298 | 4199742,134       |  |
| 33 | 567276,274     | 4192339,922 | 567276,379 | 4192340,898        | 567279,304 | 4192337,826       |  |
| 34 | 565260,988     | 4194895,369 | 565261,269 | 4194897,286        | 565266,790 | 4194893,678       |  |

Πίνακας 4.1: Συντεταγμένες επιλεχθέντων σημείων στις 3 ορθοφωτογραφίες

Στη συνέχεια, για να εκτιμηθεί η απόκλιση της κάθε φωτογραφίας από τις άλλες δύο, υπολογίστηκε η διαφορά ανάμεσα στις συντεταγμένες των προβολών κάθε ενός εκ των 23 σημείων. Με τον τρόπο αυτό υπολογίστηκαν συνολικά τρεις πίνακες διαφορών, ώστε να καλύπτουν κάθε συνδυασμό δεδομένων. Αναλυτικά, κατασκευάστηκε ένας πίνακας για τη διαφορά των οριζοντιογραφικών συντεταγμένων του ορθοφωτοχάρτη του κτηματολογίου από την ορθοφωτογραφία της μεθόδου SfM, ένας για τη διαφορά των οριζοντιογραφικών συντεταγμένων του ορθοφωτοχάρτη του κτηματολογίου από την εικόνα Sentinel και ένας για τη διαφορά των οριζοντιογραφικών συντεταγμένων της ορθοφωτογραφίας της μεθόδου SfM από την εικόνα Sentinel. Τα δεδομένα αυτά παρουσιάζονται στον πίνακα 4.2 που ακολουθεί.

|    | Ορθοφωτοχάρτης  |            | Ορθοφωτοχάρτης         |         | Ορθοφωτογραφία SfM - |         |
|----|-----------------|------------|------------------------|---------|----------------------|---------|
|    | Κτηματολογίου - |            | Κτηματολογίου - Εικόνα |         | Εικόνα Sentinel 2    |         |
|    | Ορθοφωτο        | γραφία SfM | Sentinel 2             |         |                      |         |
|    | X(m)            | Y(m)       | X(m)                   | Y(m)    | X(m)                 | Y(m)    |
| 1  | 0,400           | -0,180     | 2,833                  | -5,047  | 2,433                | -4,867  |
| 2  | 0,002           | -1,421     | 1,466                  | 3,497   | 1,464                | 4,918   |
| 3  | -0,791          | -0,684     | -5,020                 | -1,170  | -4,230               | -0,486  |
| 4  | -1,534          | 0,024      | 1,867                  | -0,188  | 3,402                | -0,212  |
| 5  | -0,870          | -0,777     | -2,402                 | 1,551   | -1,532               | 2,328   |
| 6  | -0,185          | -0,171     | 2,159                  | -1,703  | 2,345                | -1,532  |
| 10 | 0,191           | -0,712     | -5,684                 | -3,616  | -5,875               | -2,904  |
| 11 | 0,266           | -0,222     | -0,416                 | -10,788 | -0,682               | -10,566 |
| 12 | 0,036           | -0,037     | -9,678                 | 5,771   | -9,714               | 5,808   |
| 13 | 0,877           | -0,042     | 0,229                  | 1,374   | -0,648               | 1,416   |
| 14 | 0,531           | -0,370     | -10,349                | 4,410   | -10,880              | 4,780   |
| 15 | 0,419           | -0,035     | -0,088                 | 1,248   | -0,506               | 1,283   |
| 16 | 0,543           | 0,300      | -2,481                 | 11,250  | -3,024               | 10,950  |
| 17 | 0,107           | -0,060     | 1,901                  | 5,616   | 1,795                | 5,676   |
| 18 | 0,465           | -0,341     | -1,752                 | -13,145 | -2,217               | -12,804 |
| 19 | 0,591           | -0,486     | 2,568                  | -4,154  | 1,977                | -3,669  |
| 20 | -0,507          | 0,384      | -3,289                 | -5,462  | -2,782               | -5,847  |
| 21 | -0,266          | -0,185     | -3,309                 | -1,702  | -3,043               | -1,517  |
| 30 | 0,722           | -0,546     | -3,704                 | 0,033   | -4,426               | 0,579   |
| 31 | -0,934          | -0,557     | -4,875                 | 2,633   | -3,941               | 3,190   |
| 32 | 0,070           | -0,556     | -8,291                 | 3,862   | -8,361               | 4,418   |
| 33 | -0,104          | -0,977     | -3,030                 | 2,096   | -2,925               | 3,073   |
| 34 | -0,281          | -1,917     | -5,802                 | 1,691   | -5,521               | 3,608   |

Πίνακας 4.2: Τιμές διαφορών οριζοντιογραφικών συντεταγμένων ανά ζεύγος μεθόδων

Τέλος, από τον πίνακα των διαφορών, υπολογίσθηκε για κάθε ζεύγος μοντέλων η μέση καθώς και η τυπική απόκλιση των διαφορών των επιλεγμένων σημείων, τιμές που παρουσιάζονται στον πίνακα 4.3. Τα μεγέθη αυτά ουσιαστικά αντιπροσωπεύουν τη μετατόπιση που έχει ένα σημείο σε σχέση με την προβολή του στο άλλο επίπεδο, με την αντίστοιχη αβεβαιότητά της. Αυτό που παρατηρείται από τις συγκρίσεις είναι πως η τυπική απόκλιση του κτηματολογίου από την ορθοφωτογραφία της μεθόδου SfM έχει τάξη μεγέθους ίση με την ακρίβεια των δεδομένων (35cm και 50cm), ενώ τα άλλα δύο ζεύγη μοντέλων έχουν τυπική απόκλιση ισοδύναμη του μισού μεγέθους του εικονοστοιχείου της εικόνας Sentinel (10m), η οποίο έχει την μικρότερη ακρίβεια.

|        | Ορθοφωτοχάρτης     |          | Ορθοφωτοχάρτης         |        | Ορθοφωτογραφία SfM – |       |
|--------|--------------------|----------|------------------------|--------|----------------------|-------|
|        | Κτηματο            | λογίου – | Κτηματολογίου – Εικόνα |        | Εικόνα Sentinel 2    |       |
|        | Ορθοφωτογραφία SfM |          | Sentinel 2             |        |                      |       |
|        | X(m)               | Y(m)     | X(m)                   | Y(m)   | X(m)                 | Y(m)  |
| AVG    | -0,011             | -0,416   | -2,485                 | -0,085 | -2,474               | 0,331 |
| ST DEV | 0,601              | 0,524    | 3,878                  | 5,393  | 3,904                | 5,445 |

Πίνακας 4.3: Μέση και τυπική απόκλιση διαφοράς συντεταγμένων ανά ζεύγος μεθόδων

#### 4.5. Έλεγχος αποστάσεων

Ο τελευταίος έλεγχος που έγινε στα δεδομένα ήταν μέσω σύγκρισης αποστάσεων. Για τη σύγκριση χρησιμοποιήθηκαν 22 αποστάσεις, οι οποίες υπολογίσθηκαν ανάμεσα στα σημεία που χρησιμοποιήθηκαν για τον έλεγχο συντεταγμένων και παρουσιάζονταν στον πίνακα 4.4. Τόσο η αρχή όσο και το τέλος κάθε απόστασης είναι σημεία της ίδιας εικόνας.

|               |               | Ορθοφωτοχάρτης | Ορθοφωτογραφία    | Εικόνα Sentinel |
|---------------|---------------|----------------|-------------------|-----------------|
|               |               | Κτηματολογίου  | SfM               | 2               |
| Τελικό σημείο | Αρχικό σημείο | Υπολ           | ογισμένη απόσταση | m)              |
| 2             | 1             | 3139,315       | 3139,790          | 3132,865        |
| 3             | 2             | 2354,211       | 2353,210          | 2349,785        |
| 4             | 3             | 2216,282       | 2216,135          | 2222,309        |
| 5             | 4             | 9484,752       | 9485,694          | 9481,994        |
| 6             | 5             | 4815,685       | 4814,771          | 4814,264        |
| 10            | 6             | 8019,478       | 8019,062          | 8015,474        |
| 11            | 10            | 9919,606       | 9919,799          | 9911,362        |
| 12            | 11            | 8807,940       | 8807,649          | 8789,410        |
| 13            | 12            | 2679,271       | 2679,058          | 2680,956        |
| 14            | 13            | 2150,877       | 2151,340          | 2154,075        |
| 15            | 14            | 2636,948       | 2637,287          | 2628,489        |
| 16            | 15            | 5120,107       | 5120,387          | 5130,358        |
| 17            | 16            | 3896,682       | 3897,243          | 3897,795        |
| 18            | 17            | 2934,845       | 2935,299          | 2944,629        |
| 19            | 18            | 5957,888       | 5957,835          | 5967,781        |
| 20            | 19            | 6694,247       | 6695,553          | 6699,453        |
| 21            | 20            | 7994,811       | 7995,364          | 7992,342        |
| 30            | 21            | 7995,942       | 7995,398          | 7997,721        |
| 31            | 30            | 4717,618       | 4716,434          | 4714,971        |
| 32            | 31            | 7035,886       | 7036,239          | 7033,530        |
| 33            | 32            | 8871,641       | 8871,385          | 8867,270        |
| 34            | 33            | 3254,488       | 3255,117          | 3253,090        |

Πίνακας 4.4: Αποστάσεις επιλεγμένων ζευγών σημείων ανά μέθοδο

Στη συνέχεια, για να εκτιμηθούν οι παραμορφώσεις των μηκών ανάμεσα στα τρία μοντέλα, υπολογίσθηκαν οι διαφορές των αποστάσεων τους. Υπολογίσθηκε δηλαδή η απόκλιση των αποστάσεων των σημείων του ορθοφωτοχάρτη του κτηματολογίου από την ορθοφωτογραφία της μεθόδου SfM, του ορθοφωτοχάρτη του κτηματολογίου από την εικόνα Sentinel και της ορθοφωτογραφίας της μεθόδου SfM από την εικόνα Sentinel. Τα αποτελέσματα παρουσιάζονται αναλυτικά στον πίνακα 4.5. Η διαφορά των αποστάσεων αντιπροσωπεύει πόσο μεγαλύτερη ή μικρότερη είναι μία απόσταση από τη μία εικόνα στην άλλη, επομένως πρόκειται ουσιαστικά για ένα μέτρο κλίμακας ανάμεσα στις συγκρινόμενες φωτογραφίες.

|        |        | Ορθοφωτοχάρτης  | Ορθοφωτοχάρτης    | Ορθοφωτογραφία |  |
|--------|--------|-----------------|-------------------|----------------|--|
|        |        | Κτηματολογίου - | Κτηματολογίου -   | SfM - Εικόνα   |  |
|        |        | Ορθοφωτογραφία  | Εικόνα Sentinel 2 | Sentinel 2     |  |
|        |        | SfM             |                   |                |  |
| Τελικό | Αρχικό |                 |                   |                |  |
| σημείο | σημείο | Δι              | αφορα αποστασής(η | 11)            |  |
| 2      | 1      | -0,475          | 6,450             | 6,925          |  |
| 3      | 2      | 1,000           | 4,426             | 3,425          |  |
| 4      | 3      | 0,148           | -6,027            | -6,174         |  |
| 5      | 4      | -0,942          | 2,758             | 3,700          |  |
| 6      | 5      | 0,914           | 1,420             | 0,506          |  |
| 10     | 6      | 0,416           | 4,004             | 3,588          |  |
| 11     | 10     | -0,193          | 8,244             | 8,437          |  |
| 12     | 11     | 0,291           | 18,530            | 18,239         |  |
| 13     | 12     | 0,214           | -1,685            | -1,898         |  |
| 14     | 13     | -0,463          | -3,198            | -2,735         |  |
| 15     | 14     | -0,339          | 8,460             | 8,799          |  |
| 16     | 15     | -0,279          | -10,250           | -9,971         |  |
| 17     | 16     | -0,561          | -1,113            | -0,552         |  |
| 18     | 17     | -0,454          | -9,785            | -9,330         |  |
| 19     | 18     | 0,053           | -9,893            | -9,946         |  |
| 20     | 19     | -1,307          | -5,206            | -3,900         |  |
| 21     | 20     | -0,554          | 2,469             | 3,023          |  |
| 30     | 21     | 0,543           | -1,779            | -2,323         |  |
| 31     | 30     | 1,184           | 2,647             | 1,463          |  |
| 32     | 31     | -0,353          | 2,356             | 2,709          |  |
| 33     | 32     | 0,255           | 4,370             | 4,115          |  |
| 34     | 33     | -0,629          | 1,398             | 2,027          |  |

Πίνακας 4.5: Διαφορές αποστάσεων επιλεγμένων ζευγών σημείων ανά ζεύγος μεθόδων

Τέλος, από τον πίνακα των αποκλίσεων των αποστάσεων υπολογίσθηκαν η μέση τιμή και η τυπική απόκλιση που παρουσιάζουν τα δεδομένα από τη μία μέθοδο στην άλλη. Όπως παρουσιάζεται και στον πίνακα 4.6 η διαφορά αποστάσεων στον ορθοφωτοχάρτη του κτηματολογίου σε σχέση με την ορθοφωτογραφία της μεθόδου SfM είναι κατά μέσο όρο 7cm με τυπική απόκλιση 63cm, που είναι περίπου ίση με την ακρίβεια των δεδομένων στα δύο αυτά είδη φωτογραφιών (35cm και 50cm). Επίσης, οι διαφορές των αποστάσεων των εικόνων αυτών σε σχέση με την εικόνα του δορυφόρου Sentinel 2 παρουσιάζουν μέση τιμή 85cm και 91cm αντίστοιχα, ενώ η τυπική απόκλιση και στις δύο περιπτώσεις υπολογίστηκε περίπου στα 7m, τιμή που είναι μικρότερη της ακρίβειας που παρέχει η φωτογραφία του δορυφόρου (10m).

|        | Ορθοφωτοχάρτης     | Ορθοφωτοχάρτης         | Ορθοφωτογραφία SfM - |
|--------|--------------------|------------------------|----------------------|
|        | Κτηματολογίου -    | Κτηματολογίου - Εικόνα | Εικόνα Sentinel 2    |
|        | Ορθοφωτογραφία SfM | Sentinel 2             |                      |
|        |                    | Διαφορά απόστασης(m)   |                      |
| AVG    | -0,070             | 0,845                  | 0,915                |
| ST DEV | 0,634              | 6,808                  | 6,707                |

Πίνακας 4.6: Μέση και τυπική απόκλιση διαφοράς αποστάσεων ανά ζεύγος μεθόδων

#### 5. ΣΥΜΠΕΡΑΣΜΑΤΑ

#### 5.1. Εισαγωγή

Στο κεφάλαιο αυτό θα γίνει η παρουσίαση των συμπερασμάτων της παρούσας εργασίας. Αρχικά θα γίνει η αξιολόγηση του υποβάθρου του κτηματολογίου, στη συνέχεια της εικόνας Sentinel και τέλος της ορθοφωτογραφίας που κατασκευάστηκε με τη διαδικασία SfM.

#### 5.2. Ορθοφωτοχάρτης της Κτηματολόγιο Α.Ε.

Το Ελληνικό κτηματολόγιο παρέχει ορθοφωτοχάρτες σε ολόκληρη την επικράτεια με ονομαστική ακρίβεια 50cm, τιμή που επιβεβαιώνεται από τις συγκρίσεις που πραγματοποιήθηκαν. Επιπλέον, η πρόσβαση στα δεδομένα του είναι εύκολη και δωρεάν. Ως αποτέλεσμα, αποτελεί μία πολύ αξιόπιστη και εύχρηστη πλατφόρμα επιβεβαίωσης οποιασδήποτε εργασίας. Ωστόσο, το βασικό του μειονέκτημα είναι πως απαγορεύεται οποιαδήποτε εμπορική χρήση των υπηρεσιών του.

#### 5.3. Sentinel

Στα πλαίσια του ευρωπαϊκού προγράμματος Copernicus, ο δορυφόρος Sentinel 2 παρέχει εβδομαδιαία καινούργιες ορθοφωτογραφίες σε ένα ευρύ πεδίο του πλανήτη. Τα δεδομένα είναι δωρεάν και εύκολα προσβάσιμα, ενώ η ακρίβειά τους, βάσει των συγκρίσεων με τις υπόλοιπες μεθόδους, υπολογίσθηκε περίπου στα 5m. Ως εκ τούτου, αποτελεί μία αξιόλογη επιλογή για οποιαδήποτε μελέτη δεν χρειάζεται υψηλή ακρίβεια.

#### 5.4. SfM

Η διαδικασία Structure from Motion – Multi-View Stereo (SfM-MVS), αποτελεί μία εύκολη, γρήγορη και αυτοματοποιημένη φωτογραμμετρική διαδικασία κατασκευής τρισδιάστατων μοντέλων από ένα σύνολο μη βαθμονομημένων φωτογραφιών. Τελικό προϊόν της διαδικασίας μπορεί να είναι μία ορθοφωτογραφία υψηλής ακρίβειας. Συγκριτικά με τις άλλες δύο μεθόδους, η διαδικασία αυτή χρειάζεται τόσο δεδομένα, όπως πρωτογενείς φωτογραφίες και σημεία εξάρτησης, όσο και επεξεργασία για να παραχθεί τελικά η ορθοφωτογραφία. Ωστόσο, η μέθοδος αυτή παρέχει εν δυνάμει καλύτερης ποιότητας αποτέλεσμα τόσο σε ακρίβεια όσο και ευκρίνεια (ανάλογα με τα δεδομένα εισόδου) ενώ επιπλέον παρέχει τη δυνατότητα αξιολόγησης της ακρίβειας των παραγόμενων προϊόντων.

#### 6. ПАРАРТНМА

|    | X           | Y            | Z       |
|----|-------------|--------------|---------|
| 1  | 560354.3991 | 4197175.7716 | 18.671  |
| 2  | 561641.1579 | 4200562.5471 | 117.665 |
| 3  | 565416.0683 | 4199253.9427 | 233.137 |
| 4  | 563550.3719 | 4196442.6255 | 215.247 |
| 5  | 565016.9637 | 4201851.5184 | 242.494 |
| 6  | 567692.6801 | 4204546.8187 | 188.099 |
| 7  | 567794.5777 | 4202825.3550 | 229.496 |
| 8  | 570313.9437 | 4199881.5009 | 414.455 |
| 9  | 567893.4096 | 4198009.7339 | 498.675 |
| 10 | 565005.1155 | 4194393.7605 | 31.333  |
| 11 | 567084.5006 | 4194168.2455 | 294.675 |
| 12 | 571847.6707 | 4197551.1805 | 138.399 |
| 13 | 570863.5651 | 4194219.7387 | 133.821 |
| 14 | 566580.4984 | 4192159.9157 | 43.375  |
| 15 | 568785.2405 | 4192192.1934 | 356.434 |
| 16 | 568825.7246 | 4189898.6767 | 0.250   |
| 17 | 571330.8078 | 4191323.7633 | 126.953 |
| 18 | 573746.8875 | 4192871.3410 | 145.232 |
| 19 | 574856.8543 | 4195464.9299 | 7.711   |
| 20 | 571325.5709 | 4187597.0055 | 334.787 |
| 21 | 573364.8528 | 4189234.2608 | 511.236 |
| 22 | 564832.9727 | 4204201.6168 | 99.921  |
| 23 | 564034.2649 | 4198819.2904 | 166.126 |
| 24 | 568350.3941 | 4200421.2051 | 293.696 |
| 25 | 569170.7328 | 4196904.0489 | 291.882 |
| 26 | 573430.7428 | 4195041.1075 | 109.721 |
| 27 | 562508.8392 | 4194098.8219 | 2.854   |

Πίνακας 4.7: Πίνακας συντεταγμένων φωτοσταθερών

## Agisoft PhotoScan

Processing Report 01 February 2020



### **Survey Data**



Fig. 1. Camera locations and image overlap.

| Number of images:  | 26          | Camera stations:    | 26       |
|--------------------|-------------|---------------------|----------|
| Flying altitude:   | 4.58 km     | Tie points:         | 30,002   |
| Ground resolution: | 36.6 cm/pix | Projections:        | 69,313   |
| Coverage area:     | 259 km²     | Reprojection error: | 1.21 pix |

| Camera Model Resolution |               | Focal Length | Pixel Size | Precalibrated |
|-------------------------|---------------|--------------|------------|---------------|
| unknown                 | 16856 x 16855 | unknown      | unknown    | No            |

Table 1. Cameras.

### **Camera Calibration**



#### unknown

26 images

| Туре  |  |
|-------|--|
| Frame |  |

Resolution **16856 x 16855**  Focal Length **unknown**  Pixel Size **unknown** 

|    | Value        | Error   | F    | Сх   | Су    | B1    | B2    | К1    | P1    | P2    |
|----|--------------|---------|------|------|-------|-------|-------|-------|-------|-------|
| F  | 10897.5      | 7.4     | 1.00 | 0.05 | 0.06  | 0.24  | 0.00  | -0.21 | 0.02  | -0.05 |
| Сх | 21.0268      | 2.5     |      | 1.00 | -0.01 | -0.05 | -0.30 | 0.06  | -0.04 | -0.08 |
| Су | -68.8107     | 2.7     |      |      | 1.00  | 0.39  | 0.01  | 0.02  | 0.01  | 0.09  |
| B1 | -0.0281382   | 0.23    |      |      |       | 1.00  | 0.03  | 0.00  | 0.10  | -0.15 |
| B2 | -0.783471    | 0.21    |      |      |       |       | 1.00  | -0.04 | 0.23  | -0.00 |
| К1 | 0.000471992  | 5.3e-05 |      |      |       |       |       | 1.00  | 0.00  | 0.10  |
| P1 | 0.000106884  | 2.4e-05 |      |      |       |       |       |       | 1.00  | -0.09 |
| P2 | -0.000123727 | 2.2e-05 |      |      |       |       |       |       |       | 1.00  |

Table 2. Calibration coefficients and correlation matrix.

### **Ground Control Points**





Z error is represented by ellipse color. X,Y errors are represented by ellipse shape. Estimated GCP locations are marked with a dot or crossing.

| Count | X error (m) | Y error (m) | Z error (m) | XY error (m) | Total (m) |
|-------|-------------|-------------|-------------|--------------|-----------|
| 24    | 0.35054     | 0.239546    | 0.796659    | 0.424571     | 0.902733  |

Table 3. Control points RMSE.

X - Easting, Y - Northing, Z - Altitude.

| Count | X error (m) | Y error (m) | Z error (m) | XY error (m) | Total (m) |
|-------|-------------|-------------|-------------|--------------|-----------|
| 1     | 2.68095     | 4.37258     | 13.9308     | 5.12903      | 14.845    |

Table 4. Check points RMSE.

X - Easting, Y - Northing, Z - Altitude.

| Label | X error (m) | Y error (m) | Z error (m) | Total (m) | Image (pix) |
|-------|-------------|-------------|-------------|-----------|-------------|
| 1     | 0.114106    | 0.132501    | -0.0481591  | 0.181372  | 0.468 (6)   |
| 2     | -0.239269   | 0.0978134   | 0.278775    | 0.380174  | 0.154 (3)   |
| 3     | -0.0332726  | 0.298412    | -0.723468   | 0.783303  | 0.891 (6)   |
| 4     | -0.00618572 | -0.0580202  | 0.117308    | 0.131018  | 0.532 (6)   |
| 5     | 0.0153504   | -0.231342   | -0.523065   | 0.572147  | 0.858 (3)   |
| 7     | -0.584129   | -0.333795   | 1.35968     | 1.51702   | 0.169 (2)   |
| 8     | 0.286571    | -0.0124269  | -0.790785   | 0.8412    | 0.059 (2)   |
| 9     | 0.104746    | 0.194826    | 0.178538    | 0.284262  | 0.393 (3)   |
| 10    | 0.107611    | 0.172426    | -0.740418   | 0.767809  | 0.964 (5)   |
| 11    | 0.15699     | -0.391067   | 0.65377     | 0.777814  | 0.871 (3)   |
| 12    | 0.157324    | -0.208311   | 0.902533    | 0.939527  | 0.475 (2)   |
| 13    | 0.789528    | 0.331633    | -0.858523   | 1.2126    | 1.097 (6)   |
| 14    | -0.0983604  | -0.313133   | 0.376302    | 0.49933   | 0.678 (6)   |
| 15    | 0.0242886   | 0.159926    | -0.394784   | 0.426638  | 0.182 (2)   |
| 16    | -0.0703024  | 0.00067751  | -0.16418    | 0.1786    | 0.562 (6)   |
| 17    | -0.627607   | 0.177083    | 0.487999    | 0.814489  | 2.072 (4)   |
| 18    | 0.460185    | -0.294412   | -1.44768    | 1.54733   | 0.680 (3)   |
| 19    | -0.317606   | -0.0116298  | 0.419701    | 0.526458  | 0.729 (3)   |
| 22    | 0.0389041   | 0.0431756   | -0.318126   | 0.323391  | 0.203 (2)   |
| 23    | 0.0951064   | -0.0608436  | 0.689092    | 0.69828   | 1.041 (6)   |
| 24    | -0.580164   | -0.328492   | 1.55422     | 1.69118   | 0.259 (2)   |
| 25    | -0.665131   | -0.534767   | 0.266012    | 0.893945  | 1.133 (3)   |
| 26    | -0.349185   | -0.264748   | 1.79633     | 1.84901   | 0.156 (2)   |
| 27    | 0.354371    | -0.0848804  | 0.429276    | 0.563082  | 0.486 (3)   |
| Total | 0.35054     | 0.239546    | 0.796659    | 0.902733  | 0.830       |

Table 5. Control points.

X - Easting, Y - Northing, Z - Altitude.

| Label | X error (m) | Y error (m) | Z error (m) | Total (m) | Image (pix) |
|-------|-------------|-------------|-------------|-----------|-------------|
| 20    | 2.68095     | -4.37258    | 13.9308     | 14.845    | 0.050 (2)   |
| Total | 2.68095     | 4.37258     | 13.9308     | 14.845    | 0.050       |

Table 6. Check points.

X - Easting, Y - Northing, Z - Altitude.

## **Digital Elevation Model**



Fig. 4. Reconstructed digital elevation model.

Resolution: Point density: 1.46 m/pix 0.467 points/m<sup>2</sup>

### **Processing Parameters**

General

Cameras Aligned cameras Markers Coordinate system Rotation angles **Point Cloud** Points RMS reprojection error Max reprojection error Mean key point size Effective overlap **Alignment parameters** Accuracy Generic preselection Key point limit Tie point limit Adaptive camera model fitting Matching time Alignment time **Depth Maps** Count **Reconstruction parameters** Quality Filtering mode Processing time **Dense Point Cloud** Points **Reconstruction parameters** Quality Depth filtering Depth maps generation time Dense cloud generation time DEM Size Coordinate system **Reconstruction parameters** Source data Interpolation Processing time Orthomosaic Size Coordinate system Channels **Reconstruction parameters** Blending mode Surface Enable hole filling Processing time Software Version Platform

26 26 27 GGRS87 / Greek Grid (EPSG::2100) Yaw, Pitch, Roll 30,002 of 33,384 0.339476 (1.20797 pix) 1.08767 (11.8656 pix) 3.78438 pix 2.40397 High Yes 40,000 4,000 Yes 25 minutes 31 seconds 11 seconds 26 Medium Aggressive 21 minutes 33 seconds 94,741,016 Medium Aggressive 21 minutes 33 seconds 57 minutes 35 seconds 18,718 x 18,341 GGRS87 / Greek Grid (EPSG::2100) Dense cloud Enabled 5 minutes 17 seconds 62,811 x 58,419 GGRS87 / Greek Grid (EPSG::2100) 3, uint8 Mosaic DEM Yes 40 minutes 25 seconds

1.4.0 build 5076 Windows 64