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Ot Awoxpirég MéBodot YAucod Enpeiov kor Aiktoov Ztepedv Zopdtov kot Edampiov oty Edactonhactikny Avéivon Kotaokevmv




Exterapévn mepiinyn otnv EAnvuc Mudoca

1. Evcoyoyn

Ot aplOunTiéc pébodor ta tedevtaio ypovia €xovv avadeybel oe véo mulmdva TG
Mnyovikng. [opdAinia pe ™ Bempia kot To TEPAUOTEL, 1 PIOUNTIKN OVAALGT TOPEYEL
&vay amoTeEAEGUATIKO TPOTO Yoo TNV €Eehpecn ADGE®MY G TOAVTAOKO, TPOPANLUATA.
MdéMoTa, VTapYoLV TEPIMTMOGELS OOV 1| Bewpia advVaTEL Vo TAPEYEL OVOAVTIKEG ADCELS
Ko 0ev glval dvvartn M exktéleon mepapdtov. Edwkd oe mpofAnuata oyedtacpon, ot
apluntikéc pébodot divouvv T duvATOHTNTO LOVIEAOTOINGNS TOADTAOK®V YEMUETPLOV
K0l TPOGOUOIMONG TNG UM YPOUUKNG CUUTEPLPOPES TOL VAIKOV, TPOPANLOTA Y10l TO.
omoia ot ovuPatikéc pébodor dev eivon oe Béomn va ddcovv mhvto amovinoels. Ot
apBuntiég pébodot pumopodv va KatrnyopronomBovv pe Paon 1o Kivnuotikd mAaiclo
avoQOpEG GTO OO0 AVOPEPOVTAL, LLE TO OV TPOGOUOIDVOLV TO DAKO MG GLVEXEG LEGO 1|
®¢ dKPITd copatidw, Kot TEA0G avaloyd PE TO av 1 avAALGN €ivol YPOUUKY 1 U1
YPOLUIKT.

Ocov agopd Vv Teptypan g kiviong Kot TG Tapapdpemaong, ot optountikés péodot
pumopovv va dwywplobodv oe téooepilg katnyopies. Avtéc eivan or pébodotr Lagrange,
pébodor Euler, vBpidkég pébodor kar péBodol ywpic miéypo. To Aiktvo Xtepedv
Yopdtov kot Elampiov (AXXE) ovAker oty kotnyopia tov uebddmv  mov
YPNOOTOOVV TNV TEPLypapn katd Lagrange kot eivar n mpmdtn drakprrr péBodog mov
eetdleton og avtn t OwtpPr. H kataokevn ywpiletor oe xvuptd moAdywva mov
QOTELOVV TO GTEPEQ COUOTA TOV HOVIEAOL TO. omoiol cuvdéovtar petalh TOvg pe
eatnpla. Avtiotoya, 1 Mébodog Yoo Enueiov (MYZX) givar 1 devtepn aptOuntikn
péBodog mov ypnotpomoteiton kot givan pio PIkT)/vPpdkn péBodog pe v Evvola OTL
Booileton kot otic dvo meprypapés kota Lagrange kou Euler. Ou tdoeig ko ot
TOPOUOPPAOCELS OmOoONKELOVTAL GTOL DAIKA onueia, TPAYUo TO 0moio SIEVKOADVEL TNV
TPOCOLOIMGN VAIK®OV TOV 0ToimVv 1 ardkpion e&aptdtal and TV 1otopia Tovg. Ta vAKA
onuelo akoAovBobv v meprypaen Lagrange woi eumepiEyovv OAEC TIS (QUOIKEG
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TANPOQOPIES Kol 1O10TNTEG TOV VAIKOD, EVD 1 LEBOSOC YPNOILOTTOLET KO £voL TAEY O TTOV
dEV TOPOUOPPDVETOL, TO 0moio akoAovBel Tnv Teptypagpn Euler, kot 6to omoio emddovtan

01 e£l0MOELG.

Ot ap1BunTKéc péBodot pmopovv va katnyoplomoinbodv emiong avarioya pe T Bemdpnon
TOL VAKOD ¢ GLVEXEG UECO N G €vol GUVOAO SLOKPLITOV GOUOTOIOV To OToin
aAANAoemdpovy petald Toug. Ot pébooot g mapovoag dtaTpipng, To AXEE ko MYZ,
TAPOTL SPOPETIKES otV Bepntikn Tovg dSTHNTWOT, propovv va Bewpnbodv g
drakprrég péfodot. Xto AXZE vdpyovv 61eped GOUATA TOV GLVOEOVTOL LLE ELUTIPLNL OTIG
dlemdveleg Toug, evd otn MYZ ta vAkd onueia eEpovy OAEG TIC TANPOPOPIES TOV

VA0V o€ dlakpitd copatio.

ZYETIKA LLE TN GLUTEPLPOPEA TOV LAIKOV, 1 Bempia TG YpOUUIKNG eAacTIKOTNTOG Uopel
va poPréyetl e akpifelo TEPIMTAOGELS TOV TO VAIKO GUUTEPLPEPETOL EAAGTIKA KO 1)
oxéon téoemv mopapopedcewv gival ypopupukn. [Hopdia avtd, ta meplocoTEPU VAIKE
euaviCouv HOVILEG TAPALOPPDGELS KOTE TNV OmOPOPTIOT|, OTAV TO0 (opTio Eemepioet
éva Oplo ka1 ovumeplpépovtol avelaotikd. Eva cbotnpo elvar votepntikd oOtov 1
anokpion tov kabopiletar amd TV 10TOPlN TOV KATACTAGEWDV oV £xel Ppedel Ko Oyt
novo amd v Tmpvi Tov Katdotaot. Ta mponyodueva xpovia Exovv avamtuydei dSidpopa
VOTEPNTIKA HOVTEAD OV Umopolv vo dtoywploBodv 6e VO KOpleg Kotnyopies, To
TOAVYPOUUKE LOVTELD Kot TAL OUOAG VoTEPNTIKAE povTéda. Ta moAvypappikd povtéia,
dwywpiovv T ocvumepupopd o€ EMUEPOLS  YPOUMKE TUAUOTO, TO  OTOio
AVTITPOCOTEVOVV Ta JAPOPO GTASIN TNG VOTEPNTIKNG GUUTEPLPOPAS (KOKAOL POPTIONG
— amoPOPTIONG, OMOUEIDCELS OVTOYNG Kot dvokapyiog KTA.). Avrtifeta, To OpOAL
VOTEPNTIKA LOVTEAN TPOCTOOOVV VO GUUTEPIAAPBOVY OAN TNV VOTEPNTIKY CLUTEPLPOPA
o€ U0 OpAdo S10POPIKMV eEIGMOEMV, 01 OTTOlEG EKPPALoVTaL GLYVA G EMIMESD PLOUDV
petafoinc. Olao to oTAdL0 TG VOTEPNTIKNG CUUTEPLPOPAGS, OGS ATOUEIMON AVTOYNG Kot
duokopyiog, KpATUVOT N YOAAPMOOT] KOl KUKAIKY] OTOKPLIoT| EUTEPLEXOVTOL GE EVOL OLLOAD
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Exterapévn mepiinyn otnv EAAnvuc Midoco

HOVTEAO Kot EAEYYOVTOL HECH TOPAUETPWV. To aveTEP® 00N YOVV OTNV TTEPLYPAPT] TOV
KOUPLOL OKOmOV NG OTPPNg, o0 omoiog eivar 1 TPOCOUOIMON TNG AVEANCTIKNG —

VOTEPNTIKNG CLUTEPLPOPAS KOTAGKEVDV LLE TN YPNOT OLOKPITOV aplOuNTIKOV HEBOdMV.

2. Ouord VGTEPNTIKO TPOGOUOIMUY,

H votépnon eivor éva Akpog pn ypORpIKO QOIVOLEVO KOL OTOVTIOTOL GE OPKETA
emotnpovikd edio. ‘Eva cuomnpa gival votepntikd dtav 1 amdKplor tov e£optdTot amd
Vv 167T0pia TOV KATOUGTAGEDV TOVL Kol Ol LOVO amd T TOPVH TOV KATAGTACT. AvTd
elvar Wwitepa pEAvES oTA EAAGTOTAAGTIKG VAIKA, OOV 1 TOPVY TOPOUOPPOOT)
e€aptdtar amd 10 cHvVoro NG otopiag TS POpTIonS. Avtifeta, ota EAACTIKE VAIKE 01
TapoLopeacels Pacifoviar povo 610 TPvd eminedo TV Tacewv. T mponyodUEVES
dexkoetieg 10 votepnTikd poviého tov Bouc- Wen €xst ypnoylomombei gvpémg.
Xpnowonotel ecoteEPKEG LeTAPANTEG 01 omoieg eEAEYYOvVTOL omd eEEMKTIKES EEICMGELC.
AvTég meprypdpovtal wg TPog Toug pLOUOVG LETAPOANG Kot avamTOCCOVTaAL LE PACT TIg
evooypovikég Bewpnoelg g mhactikotntag. ETot, 10 votepntikd povtéro, stval og Béon
VO TEPLYPAPEL TNV TAACTIKOTNTO GE (QUIVOUEVOAOYIKO emimedo. Ot mapdpetpol tov
TPOGOUOIMHOTOS UTOPOVV VAL TPOGOLoptoBov e d1dpopeg LeBddovg mov £xovv mpotadet

Katd Kopovg ot PAoypapio.

To povoaéovikd poviélo Bouc- Wen

Méoa amd T S1aTOTOON TOV £I6MGEMV Y1 Vo LoVOBAOILL0 GUGTNLA KOl TNV TEPLYPOON
TOV UNYAVIKOD aVAA0YOL, TOPOVGLALOVTOL 01 IOOTNTES KoL 1) GUUTEPLPOPE TOV LOVTIELOV.

H pobnpartikn tov datvmmon €xel og e&ng:
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mu +cu+F® =p

F® =F +F" =aku+(1-a)kz

n (E'l)
(B+ysgn(zu))

. z
z=u(1-|—
z

y
o6mov M givon  pala Tov cvotHuatog, € glvon N amdcPeon, P N eEwTEPKN dVVaU,
F® n votepnrikny Svvoun xatd Bouc-Wen, z m votepntikny mopduetpog (ev
TPOKEIUEV®, TO VOTEPNTIKO UEPOG TOV UETATOTICEMV) KO 2 1) TOPAY®YOS TNG OG TPOG TO
xpdvo, SgN n cuvvaptnon signum, Un petatdmion Tov cvotiuatog, U n toydtnta, U n
emtdyvvon and a 1o mMAiKo TG UETEAAGTIKNG OLOKOiNG kpl TPOG TNV OPYIKN

ehaotich K dvokopyio:
a=—" (E-2)

Téhog N, B ko y eivon TapAPETPOL TOL LOVTEALOL TTOL EAEYXOVV TN LOPPT TV Ppodywv. To
povtédo PBaociletor og pio un ypoppky dteopikn e&icmon TpdS TdENG g Tpog TV
votepnTikn mopduetpo z. TNa éva povoPfdBuo cvomuo 1 ddvaun ETAVOEOPAS
omoteAsital and éva ehooticd F® xar éva mhaoted pépog F” og:

F=F¢4+FE" =Fy{auijt(l—a)ui}:akwr(l—a)kz (E-3)

y y

To unyavikd avaroyo tov eElodcemv pmopel vo ontikorombel g n TapdAinin Evoon
800 cToyeinv 10 va ypoupikd pe petopévn Svokapyio ak kor To GALO pn ypoppko

Omm¢ paivetol otV akdAoLON gkova:
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Exterapévn mepiinyn otnv EAAnvuc Fidoco
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. Pl=(l-a)kz i | |
X :I ;
! l%{z-a)k; R i
S z=u-x ........

Ewova 1: Mnyaviko avaroyo Tov povréiov Bouc-Wen.

ITapduerpot Tov opaAoD VOTEPNTIKOD LOVTEAOL

THeTIKG PE TIG TOPOUETPOVS TNG TPONYOVUEVNG TOPAypaeov, N givar éva Pabuwtd

péyebog mov eAEYYEL TNV OUAAOTNTO TG UETAPOONG OO TOV EAAGTIKO GTO LETEAAGTIKO

KAado. Oco 10 N av&dvet, 1 cvuTEPLPOPA TANGIALEL TN SUYPOUUIKT) KOL Y10 LKPES TILEG

NG TOPAUETPOV, Umopel va emitevyOel Lo opodn petdfoon.

Sy |

7]

7]

2

wn
—n=2
—n=4
—n=8
—n=16

Strain

Ewova 2: Enidpaon g mapapétpov n
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Ot mapdpetpot B Kot ¥ €héyyovv TN HOPEN TOV VOTEPNTIKOV Ppoy®v Katd v
amoPOPTIGT KO Y10 VO, £ivart To povtého Bepuoduvopikd coufatd npénet: —f <y < f xon

P +y=1.H enidpaon tovg paiveton otnv Ewkova 3:

Stress

Strain

Ewovo 3: Enidpaon tov nopapétpov S ko y

I'evikevuévn tplofovikn mepintmon

"Eva eAaotikd VAKO gV EYEL VU TOV TPONYOVUEVOV KOTAGTAGEWV TTOV £xel Ppedel Ko
HETA TNV amo@OPTION EMIGTPEPEL GE KATAGTAOT UNOEVIKOV TAGEMV - TAPUUOPPDCEMV.
To meprocdTEPO VAIKE OPOG VITOKEWVTOL GE LOVILEG TOPAUOPPAOCELS OTAV EEMEPACTEL TO
QOpTio O10PppONG TOVG. YTAPYEL IOl ETLPAVELD GTO YDOPO TOV TAGEDV TOV TEPIKAEIEL TOV
Y®OPI0 OV TO VAIKO GUUTEPIPEPETOL EAOCTIKA, 1 EMIPAVEID Oloppons. EmumpochHetn
eoption odnyel oe Swppony (] TAOOTIK pon) KOl OTNV  EUPAVIOT) TAACTIKOV
TOPALOPPAOCEDV. ZOUQ®VA LE TN Bewpia TNG KAAGGIKNG TAAGTIKOTNTOS 01 EEIGMGELS TOV
démovv 10 TPOPANUA €lvar 0 VOUOG TAOGTIKNG PONG, 1 CLVAPTNOTN SPPONG Kol 1M
ovvOnkn ovvénelag poll pe to vOpo G KPATLUVONG. ZVVETMOC, He PAon avtég Tig
eClomoelg o1 omoleg £ovv KOWO TOV TANCTIKO TOAAOTAOGLOGTY), UTOPOVUE Vo

KataAnEovpe oty oKOAOLOT LOPPT] TOV TAAGTIKOD TOAANTANCIOCTY|:
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Exterapévn mepiinyn otnv EAnvuc Mudoca

z:a[%jm{s} (-4

onov:

oo em| om0 22| e

H oyéon 10v TAacTIKoU TOAAATANGLOGTY 1oYVEL LOVO OTOV TO VAKO £xel doppedoet. H
ox£0M YEVIKEVETAL Y10 OAO TOV YMPO TV TACEWMV, KOONDC Kol opadomoteiton 1 HeTtafaon
oo TNV EAOCTIKN OTN HETEANGTIKY] TEPLOYY], LLE TN XPNON TOV aKOAOLOWV GLVOPTHGEDMV

tomov Heaviside:

A=HH,A (O—J [D]{&} (E-6)
omov:

f({o}-fa"}) s 122 | o _
S| (e e e

H, =

Téhog avTiKaf1oT®OVTAG TN GYE0T) TOL TAACTIKOD TOAANTANGLUGTY] GTN GYEGT TOL VOLOV

TAUGTIKNG PONG, EEAYETOL TO EPATTOUEVIKO UNTPDO GTIPOPOTNTOC:

{o}=[E ¢}
[E]:[D]( I]_Hle[R])

(E-8)

omov [R] sivan 1o pnepdo adnenidpaong:

Ymv Ewova 4 moapovoialovrol ot TipéC Tov opolov cvvoptioswv Heaviside ya ta
O1apopal 6TAON KUKAIKNG VOTEPTTIKNG GUUTEPLPOPAC.
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Ot Awkpirég MéBodot YAuod Enpeiov ko Awctoov Etepedv Zopdtov ko EAatnpiov oty Elactomlactikh Avaivon Katookevdv

0.8

0.6

04

0.2

Stress

Strain

Ewéva 4: Zopreprpopd opor®dv cvvaptijosov Heaviside

Amopsioon ovIoyne Kot SLGKOUWIOG

Mo v tpocopoimon TV eavouévav e amopeimong ™G avToyng Kot TG SOLeKAUYiog
ELGAYOVTOL GTO HOVTELD OVO VEEC TAPAUETPOL N, V. KoL 1] TEAKT LOPYPT) TOV EEIGDOGEDV
divetar otv oyéon (E-10). Mg avtov tov Tpdmo, Ot VOOl OTOUEImONG OVTOXNG Kot
dvoKapyiog €6AYOVIOL GTO HOVTEAO YPNCLUOTOIOVTAG Mo emupdcOetn eEeMKTIKN
eElowon 1 omoia emhdeTon TOTOYPOVA pE TIG votepnTIKES e€lomoelg Bouc — Wen. H
EMIOPOON TOV TOPAUETPOV OTNV VOTEPNTIKY] OTOUEOVUEVT] KUKMKN GUUTEPLPOPA

nmopovotaletor oty Ewova 5.
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Exterapévn mepiinyn otnv EAAnvuc Fidoco

v, =1+cge" (E-10)

Stress

" e S ~-cn=0.0002, -
: — cn=0.001
------- cv=0.010
—cv=0.002

Strain

Ewova 5: Enidpacn TopopéTpov 6TV ATOREIOG6T AVTOYNS KUl OVGKOUYINGS
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3. AIKTLO XTeps@V T Onatov Kow Elatnpiov

Ta poviéda mAéypatog ehatnpiov €xovv ypnoywomombel evpéwg oe aplOuNnTIKEg
TPOGOLOIDGELS G OLAPOPA. EMOTNUOVIKA TEdiD, Omd TNV TPOCOUOIMoN TNG VANG o€
atopkd emimedo, u€ypt v kivnon miavntdv. Xt Mnyavikr, £govv ypnotpomrom et
EMTVYDOC 0T OPAVGTOUNYOVIKY, OTN SLAO0CT EANCTIKMV KUUATWOV, GTI UNYOVIK TOV
pevotdv KTA. To diktvo Xtepemv Zoudtov kot EAammpiov amotehel éva diokpitod
Tpocopoimpo kot avartvydnke apywd and tov Kawai. H Bacikn tov déa givar o
Sy ®PIoUOS TNG KOTAGKELNG G €VOL GUVOAO GTEPEDMV CGOUAT®V TOL GLVOLOVTOL LE
EAOTNPLOL  OTIS OLEMPAVELEG TOVS. XNV Tapovoa  OatpPr), ypnoluonoteitor 1
dakprromoinon pe daypappoato VOronoi yua t dnpovpyic KuptdV TOAYOVOV KoL

OTEPEDMV GOUATOV, 1) OTTOT0L ATOTEAEL OTLLAVTIKO KOLUATL TOL HOVTELOV.

Awrypduuaza Voronoi

To mpdTo Prpa oty dokpiromoinon pe daypappato VOronoi givar n toyaio dtoomopd
onpeiov evtdg Tov yopiov. Avtd To onpeia AmoTEAOVV TOVG KOUPOLG TOL S0y PAULILATOS
\/0ronoi kat Tovg VITOAOYLETIKOVG KOUPOLE TOL povTédov. Xty Ewdva 6 Tapovoialeton
10 ddypoppo Voronoi kabmg kot to dvikd TOv YpAenua, SnNA. M TPLy®VOTOinom
Delaunay. Mg 1o didypappa VOronoi snpovpyodvtatl Kuptd toAbywva to. omoio, Kot

OTOTEAOVV TOL GTEPEQ GMOUATA TOV APOUNTIKOD LOVTELOV.

b4 ° 'Y
L ]
® .
L
\oronoi Delaunay Delaunay and
diagram triangulation \oronoi

Ewéva 6: Voronoi Avaypoppa ko tprymvoenoinen Delaunay
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Exterapévn mepiinyn otnv EAAnvuc Fidoco

Ta oteped cOUATO GLVOEOVTOL GTO HECO TNG OLEMPAVELNG TOVG E UNOEVIKOD UNKOVG

ehatpua, OTmg eaivetol oty Ewkdva 7, d0o petaxivnolakd Kot Vo GTPoQpiKko.

/
/

.‘-'———_—"/\3()‘3!‘/3)

. : \ e . Z(XZ'VZ)
T “_:‘" Pékn /5
: / o« k¢, //

l(xllyl) ‘-}_(_)__,,—/
Ay

a).'-'..'.-":.‘."b) ©)

Ewova 7: Aiktvo Ltepedv Zopdrov kot EAatnpiov, a) apyiki] katavopn

onpueiov, b) daypappa Voronoi, ¢) etorycio Tov povréhov

H mapapdpemon g Katackevns Paciletor HOVO GTIG TOPUUOPPDOCES OVTOV TOV
E0MTEPIKMOV EAATNPI®V, KOL TOL GTEPEA COUATO LITOPOVV VO OTOLOKPVVOVTOL TO EVA OO
TO GAAO, OAAG OKOUTN KO VO, ETIKAAVTTOVV TO VA TO OAAO. £TO HUEGO TNG OEMIPAVELNG

Bpiokovtor 600 PETOKIVNOIOKA EAATAPLO KO £V GTPOPIKO LLE OVTIGTOXEG OVOKAUYIEG

K., k wou k(p GT0 TOTKO GUGTNUO OvOPOPAS. Mope®VveTal £TG1 TO S10LYyMVIO UNTPAOO:

k, 0 O
[D]=| 0 k O (E-11)
0 0 Kk,

O1 OYETIKEC LETATOTIOELS TOV PEOV TG dlemipavetog (onueio P) ivar:
{d} =[5, & ¢ (E-12)

KOl Ol LETATOMIGELS TOV VTOAOYIOTIK®OV KOUPmV 1 ko 2:

{ue}T:[ul Vi ‘91 u, Vv, ‘92] (E'13)

KoL GuVSEoVTaL HETagD TOVg pe o pnTpdo [B]:

{d}=[BKu.} (E-14)
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Ot Awoxpirég MéBodot YAucod Enpeiov kor Aiktoov Ztepedv Zopdtov kot Edampiov oty Edactonhactikny Avéivon Kotaokevmv

To omoio éxet duotdoelc (3>< 6) Kol TPOKVTTEL A0 YEMUETPIKOVG VITOAOYIGLOVG!

1 Yoz X3 (_X43XP1 Vi yPl) Vi3 X3 (X43ypz + Y43yP2)
[B] = |_ X3 Yas (y43XPl - X43yP1) X4z Va3 (_y43XP2 + X43yP2) (E'15)
“lo 0 A, 0 0 l,s

omov |, givor T0 unrog g dempdvelog kar X; = X —X; . Emmpocbeto, o1 eowtepikég

duvapelg v Ehatnpiov uropoHv va vroroyisfoiv wg:

F

n

{a}=1F (=[DHd} (E-16)
M

omov F, F eivan n dOvapun 610 0pB6 ko epomtopevikd ehatipro kar M 1 ponr tov

oTpoPKoVy gratnpiov. I'la TV TPoGOHOI®OT TOV EAACTIKOV 1O0THTOV TOV VAKOD Ot
dvokapyieg TV ghotmpiov KMpok®vovior Bdacn tov dwaypdupotog VOronoi kot

COUP®VO, LLE TIC GYECELG:

Etl Etl Kol
Kk — B8 o= 43 K =tnas i
") 2@ev))h T 12 (E-17)

6mov, E eivan 1o pétpo ehastikdtnrag, V o Adyog Poisson, t o méyog tov ympiov kot h
N andeTacT TV dVo KOpPov. To untpdo dvokapyiog otolyeiov TpokHnTel omd TV opyn

TOV SLVATAOV EPYOV Kot £XEL O100TAGELS (6>< 6) :

[K], =[B] [D][B] (E-18)

Olo o uNTp®O SVoKAUWYING TOV GTOLYEIMV CLYKEVTPOVOVTOUL GTO UNTPDOO SVCKOUYIG
G KATOOKELNG ypnoomowmviag T mHéBodo dueoncg ovokapyioc. To pntpoo

duokopyiog TG KATAoKELNG elval d1oTACEDV (3nx3n) OTOV N 0 GLVOMKOG aPOUOC

TOV KOUPOV TOV HOVTELOVL.

e évo o1o01dotato opboywvikd ympio o péyletog apBudg KOUPwv mov umopodv va
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Exterapévn mepiinyn otnv EMnvuc Moo

tomoBetnBolv, ypnolwomoldvVTaG Ho TUYaio Oldtkacior Kol €V KPITHPlo EAAYLOTNG

r ’ . A 2 v / r
amdotaong, eivar: A=0.68ab/d; 6mov a xar b givor to Vyog kar to mAGTOG TOL
opboyovikod yopiov kar O eivar m eldyotn amdotaon petald Tev onpeiov.

Emiéyovtag N —N n Sokprronoinon yivetor meplocoTtEPo KAVOVIKH KOl To onpeio
KOTOVELOVTOL TEPIGGOTEPO OUOOHOPPO. AVTO emA&yetal O10TL 0dnyel 6e peyaAvTEPN
opotopopeio, 66OV APopd TIG EAUCTIKES 1O10TNTES TOV LAKOV, KaODG Kol o€ pelmon g

eEdptnong g mopeiog g peYUNS amd T SloKPLToToinso).

Evooudtmon onoiod VGTEPTIKOD TPOGOUOLDOUOTOC 6TO AlKTVO XTEPEDOV TOUATOV KoL

EAlatnpiov

Ot dvuvhpelc TV ECOTEPIKAOV ATNPi®V KOl TV VTOAOYIGTIKOV KOUPB®V GuvdEovtal

peta&d Toug pe v akoAovon oyéon:

(E-19)

ZOUQOVO LLE TO OLOAD VOTEPNTIKO TPOGOOIMLLO 01 SUVALELS TMV ECOTEPIKMV EAATNPIOV

yopiloviat o€ éva eAAcTIKO Kot £voL VOTEPNTIKO LEPOG MG

F,=ak,8, +(1-a)k,z,

F =aks, +(1-a)kz, (E-20)
M =ak o+(1-a)k,z,

N avTioTO(O GE UNTPMOIKT) LOPON:

F ak, 0 0 |[5,] |(1-a)k, 0 0 z,
Fi=| 0 ak 0 |16+ 0  (l-a)k, 0 7, ¢ (E-21)
M 0 0 ak,|le 0 0 (1-a)k, ||z,

OOV 01 VOTEPNTIKES SVVALELS etva:
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Fr (1-a)k, 0 0 z,
{F'f=1R"t=| 0 (l-a)k O Z, (E-22)
M" 0 0 (1-a)k, ||z,

Yougwvo pe 1i¢ e€lomoelg (E-14), (E-21) ko avtikabiotovtag otny (E-19) mpokidntet:

F u,

;vll Jak 0 o0 ‘gl [k, o 0o 1z,

e =[B]'| 0 ak 0 |[B] u: +[B] 0 (1-a)k 0 z.¢ (E-23)
F} 0 0 ak, W, 0 0 (1-a)k, ||z,

M? 6,

O6mov 10 votepNTKd UEPOG akorovBel Tig eehkTikég e€lomoelg Bouc-Wen, og un

YPAUUKES SLopopIkéG EEICDCELS TPMTNG TAENG TNG LOPPTG:

2,=06,[1-|= (;/+ﬂsgn(zn§n))
y
. . Z, " .
2, =6,|1- Z_t (y+ﬁsgn(zt5t )) (E-24)
y
A .
z,=¢|1- Z—‘; (7/+,Bsgn(z¢go))
To voTepNTKO UNTPDOO TPOKVTTTEL MG
(1-a)k, 0 0
[H]=[B]| O @-ak 0 (E-25)
0 0 (1-a)k,

Yuvdvdlovtog OA0 TOL VOTEPNTIKA UNTPAOO TOV GTOLYEIOV TPOKLTTEL TO VOTEPNTIKO
UNTP®OO SVCKOUWING TNG KOTAGKELNG [H]S, le Sl0OTAGELS (3>< n, 3x nel) omov N, eivan

0 opBudg TV otoryeiov Kot N gival o cuvolkdg apBnog Tov kopPmv. H egicmon

Kivnong dloTuTOVETOL OG:
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[M],{a}+[C], {u}+[K], ful +[H], {z} ={P(V)} (E-26)
Ko EmAVETAL TOTOYPOvVa LE TIG e&ehMkTikég e€lodaelc Bouc — Wen yia ka0e otoyeio.

AvorapdoTocn poyudv 6to Aiktvo Xtepedv Toudtov kot EAatnpiov

To AXEE mpoo@épel pior O10KpIT| avamopdoTaoT) TG KOTaokeLS. To dvotyua kot n
O1a000M NG POYUNG GLVERMOC, TEPLOPILETOL OTIC OEMUPAVELIEG TOV GTEPEDY COUATOV
onmg gaivetar oty Euwova 8. Avtd onpuaivetl 6Tt 1 dtddoom g poyung ennpedletot amd
1 dwakprronoinon. ' ) peiwon g enidpaong aVTNS, XPNOLLOTOLEITOL TO SLAYPOLLLLOL
Voronoi poli pe to Kprriplo eAA(IOTNG OTOGTAGNG, MOV 0ONYOUV GE TEPLGGOTEPO

OLLOLOLLOPPN SLOKPLTOTOINOT).

Ewéva 8: Avorypa poypuis peto&d TOV 6TEPEOV 6ONATOV K Kat .

Me 7o dtdrypappo. VOronoi kot to Kpitinplo EAGYIOTNG OTOGTACNG, Ol OKUES TOV GTEPEDV
COUATOV GLVAVTOVTUL GVLVNOWE 8 TPLAdES, LE HEST TIUN TV YoOVIdV Tig 120° Kat pikpn
dwomopd. Avtd odnyel o pkpdTepo Pabud avicotpomiog oyeTkd pe TV Katevbuvon
™G pOYUNG. v Tapovoa dtatpiPn 1 Evapén Kot d1ddooT TG pryLATOonS akolovdovy
éva amhd vopo tomov Mohr-Coulomb yia t1g opBég kot datpumtikég Thoels, Om®S
napovotaletar oty Ewkova 9. Ze kdbe vroroyiotikd KOKAo vroroyilovtat ot TS omd

T1G OLVAUELS TOV ghatnpimV, Kot GuYKpivovTal He To kKpitnplo. Av ot tdoelg Bpickovtan
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eKTOG TOov Kpurnpiov 10te Bewpole 0Tl Erovpe Opavon. Xe avuty TV TEPimTOON Ol

duVapELS TV eElatnpimv arelevbepdvovTal Kot o1 SueKoyieg Tovg unodeviCovtat.

St
(5,54

2f;

No fracture | /r rf

drea.

l—

b ____X

Ewova 9: Kpiripro Opavong tomov Mohr-Coulomb

4. M£0060c YIKOV Xnueiov

H Mébodog Yhikov Inueiov (MYZ) eivar po vppdkny pébodog pe v Evvola Oti
ekueTaAlevETOL TV TTEPLYpapT] Katd Lagrange ko tnv meptypogn katd Euler. Oiec ot
TANPOPOPIEG TOV LAMKOV, OTTMOC TAYVTNTA, TACT], TUPALUOPPMOOT KTA., ATOONKELOVTAL GTO
SLOKPLITO COUATIOW EVD YPNOUYLOTOLEITAL £V VTTOAOYIOTIKO TAEYIO GTO TOPOCKNVIO, Yol

™V eniAvon TV EEIGMOEMY TNG OPUNC.

O oAryopBuoc tne MYX

¥t MYZ 1o yopio dakprronoteitar o€ Evav aptBud vAK®OV onueiov (copatidiov) ta
omol0. LETAKIVOUVTOL HEGH GE £V, TAEYHO TOV TTAPAUEVEL oTaBepd KOTh TNV OvOALGN

(Ewova 10). To yopio Q mov avtimpocwnedel T0 VAIKO umopei va avorapactadsl amd

N, apOuo vikov onueiov. Kabe viikd onueio avritpoconevel éva vroympio Q) ka
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Pépel Oheg TG WB10TNTEG OMTLG PAta My, Béon X, Taydmto V, , TAPAUOPP®ON &, Kal
ton o, . To vmoloyotikd mAéyua mov akodovdel v meprypaen xatd Euler
YPNOOTOLEITOL YO0 TNV €MAVON TOV EEICMOCEMY KOl TOV VIOAOYICUO TOV YOPIKOV
TOPAYDYOV TOV O0POpmv peyebdv, kol omoteleitor amd Ng kouPovs. H apym

dtatnpnong g naloc kavomoteiton avtoépata otn HEBodo, aeov M cLVOAIKN pdla

yopiletar ota VA onueio kot Tapapével otabepn Katd T dbpKeLn TG AVAAVGOTG.

Background
Grid node

Q —

Background
Grid element

p ‘o)
/\7\ Particle P - \
’I \\\
° ° , ° PN
. “lo ~
e 1/ b \s
° \ ° . /e * ° of
S AR S | H
° ° ° ° K ° . ° ,"
x -
\,
. . N|e o
. ° . e o
. -
\—/ R Sty
o o)

Ewova 10: Avaxprromoinon pe T M£00oo Yiiko0 Xnuegiov

H pébodog ypnotponotel eniong cuvaptnoelg GYNIOTOS Yo TV TPOPOAY| 1O10THT®V Ao
o VAKG onueioa mpog 1o vmoroyiotikd mAEypa kot avtiotpogo (Ewdva 11). Xmv
napovoa dwtpPn e&etalovtar 600 0DV GLVOPTNGELS GYNUATOG, Ol YPOLLUIKES KOl TO.
kuPuca B-Splines. Ta tedevtaio eottiog g avdtepng TAENG KOl TNG GLVEYELNS TOV
TOPOYDY®V TOLS, 0ONYOVV G UEIMON TV GOUALATOV OAOKANPMOONG KaOMG Kot
e€adeipovv ta aplOuNTIKA GEAALOTO TOL OMpovVpyodvTorl Otav €va LAMKO onpeio

peTaKVeiTOL 0o £va 6TOLYEI0 TOL VTOAOYIGTIKOV KOUPOL G€ éva GALO.
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Map from material points to Solve momentum equation at grid
background grid nodes
....... QOO RN SR c LSRR A
R b) P e i e
....... O....Q...é.. .......O...................o..................Q.......

Update particle information and
map from background grid to

material points Reset background grid
............ - S
[ ) [ ] [ J [ ]
d)
............ OOO

Ewova 11: Zynpoatikn aveanapdotacn vroloyieTikoy frjpatog e MYX

O Baoikdc adyopBpog mov ypnoponoteital cuvoyileton ota akolova Pripata (Eikdva

11):

E-22

Enavagopd tov vroAoyiotikov TAEYHOTOS 6TV apyIkn ToL Kotdotaon. OAleg ot
uetaPAntég Tov undeviCovran (6mwe pala, opun, SLVAUELS KTA.).

Tavtomoinon tov ap1Bpov Tov GToTYEIOV TOL VTOAOYIGTIKOD TAEYUATOS GTO OTTO10
Bpioketon kdbe vAkO onpeio. H dadikacio avtr eivor amd] Kot VTOAOYIGTIKA
avEEOOM Y10l OOUNUEVO TAEYLOTOL.

YTOLOYIGHOG TV CLUVAPTHGEMY GYNHOTOS Kol TOV TOPAyDY®V Tovs. [ kabe
VA6 onueio voAroyilovtarl 16 cuvaptioel oyNUATog oTIg 600 S106TAGELS Kol
32 mapdymyol, otov ypnolporolovvtal kKuPikd B-Splines. Ot 1d10tnteg kabe
vAMKoV onueiov TpoPdriovtol 6Tovg KOUPOLG TOV GTOLYEIOL GTO OTOI0 OVIKEL
KaBmOG Kol 6TOVE KOUPOLG TOV YELTOVIK®V OTOLEI®V. AVTIOETO OTIC YPOLLUKES

OLVOPTNOELS GYNUOTOS, VTOAOYILOVTOL TEGOEPIS CLVOPTNOELS GYNLLOTOG KOl OKTM



Exterapévn mepiinyn otnv EAnvuc Mudoca

Topay®yol Tovg, KaBdg T0 VAIKO onueio TpoPaiiet TIC 1010TNTEG TOL LOVO GTOVG
KOUPOVG TOV GTOLYEIOV GTO OTTOT0 CVKEL.
H pala, n opun kot o1 e6mTEPIKEG dLUVANELS TPOPAAAOVTOL GTOVE KOUBOVS TOL

VTOAOYIOTIKOD TAEYLOTOG COUPOVA LE TIG AKOAOVOEC E£IGMOENG:
(mv), =2 (Mv), N, (E-27)

Ot eEmTtepkég duvapels Tpofaiioviot 6Tovg KOUBOVS TOL TAEYUATOSC MOG:
NP
= Z N;b, (E-28)
p=1

Yroloyiletat To O1dvuopa TV ETKOUPLOV OLVALE®Y TOL TAEYUOTOC:
F=F"+F" (E-29)

Ymoloyilovtat ot avave®UEVEG OPUES GTOVG KOUBOVS TOL TAEYLOTOG:
(mv), =(mv). +Fdt (E-30)

EmiaArrovtar o1 Guvoplakég cuvOnkeg.
ATO TIC avave®UEVEG OpPUEG OTOLG KOUPOUG TOL VTOAOYIGTIKOL TAEYUOTOC,

vroAoyifovTon o1 TayOTNTEG Kol 01 VEEG BEaEIS TV COUOTIOIMV:

i=1 mi
. (E-31)
X, =X, +[Z(m\2' N; ]d
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10. To televtoio Prpo e€ivor 0 €TOVOTOAOYIGUOC TOV EMKOUPLOV OPUOV TOV
TAEYLOTOG OO TIG VEEC TOYVTNTEG TOV COUATIOIOV Kot pe BAon avtég 0 TEMKOC
VTOAOYICUOG TOV EMOVENTIKMOV TOPAUOPPDCEDY KOl TACEDV:

Np

(mv), = Z M pv(xp) Ni

p=1

(mv),

'om, (E-32)

A1lEpghvVNGT GLVOPTNGEMV GYNUATOC

Ye aumn TV Topdypago dlepeuvdrtal 1 EMIOPOCT TOV GUVOPTNCEDV GYNUOTOS GTNV
VIOAOYIOTIKY akpifeia g pebodov kar ypnowomotovvtor kvPwkd B-Splines. Avo
nepmtocel e€etdlovtal. XTnv TpdTn O1EPELVATOL 1 EMIOPACT] TOVG GTOV VITOAOYIGHO TNG
Topoydyov g tayvtntag (gradient velocity), evd ot devtepn, 1 axpifela Tovg oTNV

OAOKANPMOGT] Y10 TNV TTEPITTMON TNG TAACTIKOTNTOG.

To yopio mov eEetdleton £yt draotdoeig 0.5m X 5.0m, pétpo ehacticdtntog £=10000Pa,
Loyo Poisson v=0 ka1 mokvémto 1000kg/me. Tivovrar S1dpopeg avaldoels Kot To Xopio
JLKPITOTOLEITOL [E SLOPOPETIKO aptOUd GTOLYEIV Kot e OLUPOPETIKO OPOUO VAIK®OV
onueiov ovd ototyeio. Xtn pa opddo avodlvcewv o aplBudc twv otoreiov Tov
VTOAOYIOTIKOD KOUPoL dtatnpeiton otabfepdc kot avédvetar o aplBpdg TOV VAIKOV
onueiowv avd otoyeio. O apBudg twv otoryeiov etvar 10, 20 ko 40 otoyeio, evod o
aplOpog TV VMK®V onueiwv ava ototyeio mowiiel and 1, 4, 9 éog 16 vAkd onueio. e
OAEC TIC AVOADGELG 1) apYIKT TaXOTNTO EIVOIL UITOVOEIONG Ko diveTor amd TNV akdAovom

oyéon:

PVEL = 0.0lcos(%(xp —0.5)) (E-33)
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N TapAY®YOG Uropel va vtoAoyleOel avaAvTikd oc:

Ty . T T
L =(0.01-)sin| ———x -
o =( 5) (10 c ,,J (E-34)

KOl GUYKPIVETOL e T amoTeEAEopaTO omd TV avéivon pe T MéBodo YAkov Xnueiov.

Ta anoteAéopata Topovs1alovTal GTOV TAPUKAT® TIVOKOL:

N, elements Particles per Computational 12 norm
element time (x)

10 1 1 0.0193
10 4 3.86 0.0166
10 9 8.73 0.0164
10 16 15.36 0.0164
20 1 1.97 0.004225
20 4 7.73 0.004111
20 9 17.76 0.004108
20 16 30.88 0.004106
40 1 4.03 0.0010319
40 4 15.8 0.0010282
40 9 35.02 0.0010280
40 16 62.62 0.0010280

MMivaxkag 1: Yrorhoyiotikdg ypovos kon axpipferia MYZ

Amo Tt amoteAéopOTo EAYOVTOL OPIGIEVO GUUTEPAGLOTO TOCO G TPOG TNV akpifeia
000 Kol G TPOG TOV VITOAOYLGTIKO Ypdvo. OGOV apopd ToV LITOAOYIGTIKO XpOVO, G PAcn
Bewpeiton n TpdT™ avdivon pe 10 otoryeio kot 1 vAKo onueio ava ototyeio, ONA. chHvoro
10 vAkd onueia. opatnpeitar 6TL 0 VIOAOYIGTIKOG ¥pdVOC elval 6YedOV avAA0YOg TOV

apBpod TV VAIKGOV onueimv.

Ocov apopd T0 GEAALLN TOL VITOAOYIGLOV TWV TAPUYDY®OV TNG TUYVLTNTOS, PAiVETOL OTL M

avénon eilte Tov apBuov TV otoyEimv, gite Tov aPBPOD TOV VMK®OV onueimv avd
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otoyeio, odnyel og peiwon Tov ceaipatoc. Iapora avtd, n peimon Tov cEAALNTOG Elval

LEYOADTEPT OTNV TEPITTMOT AVENONE TOV GTOLYEI®V.

Eoartouevikd untpwo

To epamtopevikd untpmo g oxéong (E-8) , vmoroyileton yro kaOe vAIKO onueio kot Exet
TPOTEHOVIA POAO OTNV JUOPP®oN NG YotepnTikng MebBddov YAwkod Xnpeiov.
Avtikaf1otd 0 unTpMO TG EAacTIKOTNTOG 6NV e&icmwon (E-32) mov cuoyetiletl to puOud
LETABOANG TOV TAPALOPOAOCEMV e TO pLOUO peTafoAns TV tdoewv. 'Etot ot thoeglg 6to
téhog kéBe ypovikov Prpatog pmopodv va vmoioyisBovv Pdorn TOV  OMKOV
Tapapope®Oce®V. To untpdo avtd yio diedidctata TpoPAnaTa £l S0GTAGELS (3>< 3) .
Mmnopel vo. TPOGOUOIDCEL 1GOTPOTIKTY, KIVIUOTIKY] Kol HIKTH KPpATuvor Kabdg kot
SAPOPES GLVOPTNGELG SLAPPONG, TOPEXOVTOS OUAAOVS VOTEPNTIKOVS PBpoyovs. Emiong
oTNV TEPITTMOOT TOL AOUPAVETOL VTOYN TO PALVOUEVO TNG ATOUEIMONG TNG AVTOYNG Kot

™G SLOKAUYING, TO EPUTTOUEVIKO UNTPDO VITOAOYILETAL MG:

[E]=[0] ([1]-vH [R)

f({o}-{a)|

iso
o, () |

H, =

H, = B+ ysign {%}T[D]{é} (E-35)

iz

A= (1—m)ng+mH’+[ oD J [D]Gi

oloy) = “olo}

-1

OOV 01 TOPALETPOL Y10 TIG AMOUEUDCELS OVTOYNG Ko SuoKayiog divovtan amd Tig oyEoEls:
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i=Cc, [ijmu ﬂH1(1+%Sgn (e {é})j‘{"}T {4 (E-36)

n
v, =1+cge"
To gpantopevikd puntpdo oty e&icwon (E-35) vroloyiletar yia kéOe vAikd onueio
Eeymprotd. O e€ehktikéc oyéoerc (E-36) mpémer va emidvbovv tawtdypove pe Tig
volowneg oyéoelg oe un memheyuévn (explicit) poper. To povtélo eivar oe Béon va
TPOGOUOIMGEL TNV VOTEPNTIKY] GULUTEPUPOPA HE KIVNUATIKY], LGOTPOTIKN KOl UIKTH

KPATLVGT), KOOMG KOl LLE ATOUEIDGELS OVTOYNG Kot SLoKAWTOG.

[TAgovéknuo g avetépm datdnwong amotelel to Yeyovdg OTL OAN 1 VOTEPNTIKN
GUUTEPLPOPE, EUTEPIEXETAL GTOV VIOAOYIGUO TOV EPOMTOUEVIKOD UNTPOOL Yo KAOE
VAo onueio. H evoopdtmon tov oe vrdpyovieg kddkeg s MYZ elvan amdn kot o
VTOAOYIGUOG TOV EPATTOUEVIKOD UNTPMOL pmopel va yiver aveEdptnra kot mopaiinio

Yo KAOE VAIKO ompeio, 6€ VTOAOYIGTES e TOAAOVG TVUPTVEG.

O1 6LVVOPTACEIC CYNULOTOC 0TV TAOCTIKOTNTA,

o 1t depedhvnon g emPPONS TOV CLVOPTICEDV CYNUATOS GTNV TAACTIKOTNTO
e€etaleron pio apEEPeIoTn 00KAOG, LLE GLYKEVIP®UEVO QOPTio 6TO HEGOV TS To LAIKS
elvar yaivPag pe pétpo ehaotikotrag 210GPa, téon dappong 240MPa kot tokvotta
7850kg/m®. H kpdtuvon ivon kivpotikod tomov pe khion 5%. Mo v Swakpiromoinon
ypnoorotovvtar 1280 vikd onpeia mov avtiototyovv o€ 4 copatiow avd ototyeio. To
VTOAOYIOTIKO TTAEYHOL £xEl uiKkog otoyeiov 0.025m. Tpaypotomotobvtot V0 avaAVCELS

LLE TN XPNON YPOUUIKOV CUVOPTHCE®V oYNUATOg Kot KuPikmv B-Splines.

Ymv Ewova 12 tapovsialovrot ta dtoypappoto opldv TioeEmV — TUPUULOPPOCEDY Y10,
éva, onueio mov Ppioketor 610 PHEGO NG OOKOV OTO KAT® TUNUo TG Mmopel va
emonpaviel 4Tl yuo TG YPOUUIKEG CLUVOPTNGELS GYNLOTOG, ELPAVILOVTOL TOAOVTMGELS KOl

B6pvPoc 660 ot tdoeig TAnclalovy Ty Téon dapporc. Avtifeta, yio ta kvPikd B-Splines
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TO OUAypoppa €lval OHOAD PAVEPMVOVTOG TIC AVAOTEPES WOOTNTEG TOovs. Emiong oty
Ewéva 13 moapovosialovior ot KOTavopeg TV STUNTIKOV TAcE®V Yoo T 00k0. Ot
YPOUUIKEG GLVOPTNOES CYNMOTOS EUEOVICOLV L0l 000VTMTY] CUUTEPLPOPE Kol OEV
LUTOPOVV VO, TPOGOUOLDOOLYV TH ow®oTn kKotoavoun. Avtibeto ta kvPucé B-Splines

VTOoA0YILOVV GOGTA TNV KATOVOUY TV STUNTIKOV TAGEMV UE OUOAD TPOTO.

. Linear B-Splines
%10 %10
257 ' ) 25
.
2 \ 2
S
g15 15
@
1 1
0.5 0.5
ol _ ‘ _ _ _ . . . ‘ | .
-3.5 -3 -25 -2 -1.5 -1 -0.5 0 -3 2.5 -2 -1.5 -1 -0.5 0

strain xx «1072 strain xx <1073

Ewova 12: Awaypappoto opOadv 1460V — TAPAPOPODOCEDV Y10 YPURPIKEG

GUVOPTNGELS SYIaTOS (aproTepd) Kot Yo kofuka B-Splines (6&&ua)

Linear B-Splines

EE';iiii!lllllllllllhﬂllll!v' 0

Ewova 13: Katavoun statunTik@v TAGEMV Y10, YPOUUIKES GUVAPTNGELS GYNILOTOS

(aproTtepd) kot o kvPika B-Splines (6&&d)

Soumepoivetol OTL OTOV LREICEPYETAL 1) TAACTIKOTNTA, 1| YPNOCLUOTOINCT YPOUUUIKOV

OLUVOPTNOCEDV GYNUOTOS OEV eVOElKVLTAL AVLTEG EVOEYETOL VO OONYNOOLV GE UN
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PEOMOTIKEG TAGEIS GE LELOVOUEVO DMKA OTLELD KOl 0E PIKPO-TOAUVIMCELS OTIS TAGELS
pHeTA TN Oppon. YTAPYOLV EMIONG MEPUITMOGES TOL TO VAMKA onueio pmopel vo
oonynBovv oe dwppon eoutiog TG AovOAGUEVNG KATAVOUNG TV TACEMV EVIOC EVOG
ypopptkov otoryeiov. I'a avtd to AOYo 1 GLUTEPLPOPA TOV VAIKOD OeV amodideTon pe
akpifeld Kol o1 TMEPIMTOON TG MANCTIKNG OCLUTEPIPOPAs 6Oo  mpémer  va

YPNOOTOLOVVTOL GUVAPTNOELS GYNUOTOS AVATEPNS TAENG.

5. E@apuoyéc

5.1 AXYE — [Thaotikn Opodon TAdkoc Titaviov

2e avtd 1o mapaderypa eEetaleton | TAaoTIK) Opavon pog mAdkag and titdvio. Ta
AmOTEAEGULATO GLYKPIVOVTOL LE amoTeEAEcHATO amd GAAES dlakpltég peBddovg (DVIB ko
DLSM) kaBdg kot pe meipapoticd dedopéva. To pétpo eAaotikdTnTog TOV VAIKOV £ivat
115 GPa, o Adyog Poisson givar 0.28, n epghkvotikn avtoyf ot €ivanl007 MPa, kot n
tdon dappong Exel v TN ay=955 MPa. Avtég ot Tipég TV TapapETpOV TPOKHTTOVY
amd melpopo HOVOoEOVIKOD EQEAKVGUOV KOl YPNCULOTOOVVTIOL OTL optOUNTIKES

TPOGOUOIDGELS.

2mv Ewova 14 napovcialetar n yewpeTpia Tov Gopéa Kabmg Kot 1) S10KPLITONOiN ot TOL
pe to Aiktvo Ztepemv Zopdtov kot Eratnpiov. Ot petokivicels tov dvo onueinv, mov
epeavioviot Le KOKKIVO YpOLL, KOToypaeovTol Kot 1 LeTa&d Toug omdoTaon LETPLETAL
kot yapaktpiletar wg Metatomion Avoiypatog Poyung (Crack Opening Displacement).
To dtbypapLpo VTG TG LETATOTIONG KoL TOV SVVARE®MY OVTIOPOOTG XPTOLLOTOLEITOL V10!
1 oLYKPLoN TOV anotelespdTov. Ta anotedéopata tapovoidlovtal otnv Ewova 15 yuo
T1G dudpopeg nebddovg kot v to AZXE. Oa mpémel va onueiwbel mog yuoo 1o AXXE n
dvvapn emPaileTon oTadIOKA GE £vo HEYEAO ¥povikd dtdotnua, agol 1 avaivon sivol

duvapuk.
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Ewoéva 14: ITAdka Titaviov kot Stokpiromoinon pe 1o AXXY

¥10 AXXE ¥pnoytomotovvtot 600 dopopeTKEG O10KPLTOTOMGELS, 1) Lt XPNGLOTOIDVTOG

éva Kprnplo eAdytotng 3mm kot 1 GAAN ypnoorotdvag kptrpto 0.9mm. Avtd odnyel

oe 218 wan 1949 kopPoug v k4be dukprronoinon. v Ewodva 14 mapovcialerar n

dwakprronoinon pe 1949 képpouc.

2mv Ewoéva 15 eaiveton g ta amotedéopata tov AZEE npooceyyilovv to meipopotid

dedopéva e KavomomTiky okpifela, yw v mEPITTOON TG TAAGTIKNG Opavorg.

AlQOPETIKEG SOKPITOTOMGELS 00NYOVV GE EAUPPAOS SLUPOPOTOUEVO OTOTELECLLATOL

OYETIKA [LE TNV KOUTOAT duvauns — petatomionc. [lapdia avtd n popen g poyung ivat

napopol e OAEG TIG mepuTOoels. H teMkn pope| g poyUng mopovctdletol otnv

Ewova 16 yio 6Aeg T1g apBuntikég pebddovg Kot to meipapia.
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«10%

Force (N)

—xperiment 1
e Experiment 2
---DviB
DLSM
———BWRBSN

0 # I I T
0 0.5 1 1.5 2 25
COD (m) %107

a) DVIB b) DLSM

¢)BWRBSN d) experiment

Ewéva 16: Tehkn popon g poyuns a)ue ) pébodo DVIB, b) pe ™ nébodo

DLSM c) pe to AXXY ko d) werpopotikd aroteléopato,

5.2 MYX — 'oviakn covdeon

Xe outd T0 Taphdetypo eEETACETOL M| UM YPOUUKY GUUTEPIPOPH YOVIOKNG GVVOECTG
eninedov mioiciov. H mepapotiky ddtadn kobmg kot 1 yeE®UETPiOL TG YOVIOKNG

ocOvdeonc ¢aivovtar oty Ewoéva 17. H dwropuqy tov puekodv sivar W30x108 xau

E-31



Ot Awoxpirég MéBodot YAucod Enpeiov kor Aiktoov Ztepedv Zopdtov kot Edampiov oty Edactonhactikny Avéivon Kotaokevmv

vIdpyovy Kot eVioyVoels. To VAo ivar yaivPoag wodtntoag A36. I'ia v mpocopoimon

TOL GYNUOTOG OITAOD TOL TMV SUTOUMY KOl TOV EVICYVGEMV, 0TVOVTOL SLOUPOPETIKA TTAYT
oto. avtioTotya VAG onueia, B yio Ta mépata ko t, yio Tov Koppod, dmmg eaiveton
otV Ewéva 17. To uikog Tov ototyeiov tov mAEYHatog Kade Kot 0 aplipidc TV LAIKOV
onueiov avd otoryeio kobopilovv v T TOL WAGTOLG TV mEAUGTOV I (MOVL
TPOCOUOIMVETOL OO TO TEPLPEPELKA VAIKA onpeio mTov @aivoviol pe KOKKIVO GtV
Ewova 17). Oka to vedrowma onpeio £xovv méyog ico pe 1o méyog tov koppov i, .
E&iodvovtog ™ ponn adpaveiog TG O10TOUNG LE TNV OPYLKT POTH adpavEing, TO T 0G

TV TEPIPEPEIOKDOY VAKOV onueiov By umopet vo vmoloyicei:

t,(D-2t) 2 3
|op et = w(P=2) o (D) bt (E-37)
12 22 12

Mo v avdivon pe ™ MéBodo YAkov Enpeiov ypnoomodnkoy 1296 viwkd onueio
Kot 9 vikd onuela avd otoryeio. To dbypappo eoptiov petatdmong mopovctdletal
omv Ewéva 18. Ta amoteréopata amd v votepntiky MYZ ovykpivovtor pe
TEPOUATIKG dedopéva Kot e amoteléopata omd pio pébodo ympic miéypo (Meshfree
method). Ta amoteléopato £XOVV IKOVOTOMTIKY OKPIBELD KOl TPOCOUOUDVOVY GMOTA
TNV OVEAUGTIKT] GUUTEPLPOPA LEXPL TOV onpeiov Tov apyilel va epeaviletor yaldpmon

070 VAKO. Xe autd 10 onueio gpeavifovrol pavopeVo TOTIKOV AVYIoHOD GTA TEALOTO.
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-~ Deflection
o gauge

Ewova 17: T'eopeTpio yOVIOKNS 60vVOEoN

Télog, 01 ToELS TOV AVATTOGCOVTOL GTY) YMVINKT] GUVIEST] Tapovstaloviat otnv Euova
19 xon ovykpivovror pe avtég amd ™ péBodo ywpic mAéypa. Ta arotehéopota oyeddv
tavtilovtal kot odnyobv e opiouéveg mapatnpnoels. H mpdt apopd o onpovpyio
TAOGTIKNG apBpmong Kovid oto onpeio odvdeong. H dedtepn, oty petatdmion tov
oLdETEPOL A&ova NG Olatoung e&attiog TG TOLTOYPOVIG KATATOVIONG HE OEOVIKN

dvvaun Kot pomr).

800

700 -

600

500

400 - |

Load (kN)

300

200 -+ Inelastic Meshfree Method
—Inelastic MPM
100 - - -Experiment 1

0 L L
0 0.02 0.04 0.06 0.08 0.1
Displacement (m)

Ewova 18: Avaypoppo @optiov HETATOTIONGS Y0 TN YOVIOKI] 6VVOEGT]
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MPa

200

100

-100

Ewoéva 19: Katavopés tacemv (MPa). Apretepa MYX 6£&1a M£Bodog ympig

ALY RO,

MYZX — Teot kpovonc Taylor

Avtd 10 TOpddstypa agopd €va KAACGGIKO TECT Kpovong mov otnv Pifioypoeic
avagépeton og Taylor test. Mia yoldvpdvn pafdog mpookpolel o€ £vo AKOUTTO TOTLYO e
peyédn tayvmra. To VA eivar odovpivio 6061-T6 pe mokvoTnto p=2700kg/m?® wou
uétpo ehaotikotnrag E=78.2GPa. O Adyog Poisson givar v=0.3 kot 1 tdomn dwoppong Von
Mises eivar 0y=0.29GPa, evd akorovbei icotponikny kpdtoven. To punkog g papfdov
etvar purAdoto g dtapétpov 6mov Lo=2.346¢m 1o pnkog kot Ro=0.782cm 1 d1dpuetpog.
H apyum yeopetpia kot n dtakprromoinon pe ) MéBodo Yiuko0 Enpeiov aivoviotl otnv

Ewoéva 20.

H pafdog €xet apykn taydTTo TPOg To KAT® iom pe Vo=-373m/sec. Avt 1 toyvtnta
epappoletor og apyikn taxvTTa og OAa To VAIKE onpeio yio Tov adlydpiBuo g MY,
Emiong ypnowonoteitat Eva opBoywvikd mAEyo e TETPOY®VIKE oTOotYEl0 TO OTTolaL £XO0VV

dwotdoelg mAevpdg Lei=0.0782 cm. H papdog drakprronoteiton og 1200 vikd onpeio pe
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4 vlkd onueia avé otoryeio. Ot cuvoplakég cLVONKES GTOV OUETAKIVIITO TOlYO €ivon

KVAloElg emtpémovtag TV optlovTio LETOKIVIOT Ko OEGUEDOVTOG TNV KATAKOPLOT.

373 m/sec

Ewova 20: Apykn yeopeTpio KOAIVOPOL Kot drokprtomtoinen pe tn MYZ

To 1010 mpdPANUa avarlveTan ot PrfAtoypagio ypMNGILOTOUOVTOG Mo 0EOVOGUUUETPIKT
dwtdmwon g MYZ og KoAMvopikég cuvteTayuéveg Kaldg kot pe dAdeg nebddovg. Xtov
[Tivaxa 2 mopovcidlovtol to TEMKO OmMOTEAEGHATO OGOV APOPE TO TEAIKO UNKOG NG
pafoov Lt kot v telkn g oduetpo Dr. Emiong perpiéton n telikn dudpetpog e
pafodov oe éva Hyog 0.25cm amod t Péon g Dh=o.25, Y100 TOV TPOGOHI0PIGHO TOV TEAKOD
g oynuatos. To amotedéopoto cvuykpivovtor pe avtd amd Tig dAAeg pnebddovg Kot
delyvouv woavomomtiky] oVykAion. To mapdostypo avtd delyvel emiong ) dvvoTdTTa
g MeBddov YAkov Znpeiov va Swyepiletor govopevo emoeng yopig kdamolo
petafoin  dAAn mpocsbnkm otov aAdydpiBuo emidvong. Emmpdcheta, oty Ewdva 21
TapovclaleTal 1 TEMKN HopPY| TS pAPoov Kot cuykpiveTar e Tig vTdAoureg HeBodoVC.
2mv Ewodva 22 eaivetor 1 katovop] TV 160S0VAU®OV TAAGTIKOV TOPUUOPPDCEDV.
Onwg avapéveral 1 meployn He T LeYOADTEPT TAACTIKOTOINON ival avtn mov Ppioketon

KOVTO GTNV TEPLOYN TNG EMAPTC.
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Lt (cm) Dt (cm) Dh=0.25(Cm)
FLIP 1.63 1.480 0.98
HEMP 1.652 1.484 1.106
CSQ 1.605 1.440 1.106
Experiment 1.651 -
BWMPM 1.595 1.452 1.103

IMivakog 2: Aroteréopato votepnTikig MYX Kot cOyKkpLon pe diheg pedodovg

%1072 %1072 - %1072

0.005 0.01 0.015 0.02
a)

Ewova 21: Tehki popon) s papoov: a) Aéisvppetpikii MYX , b) nébodog CSQ

) Yotepntiki) MYZ (povadeg m)

%107
16+
14 ¢

12}

0.005 0.01 0.015 0.02

Ewoéva 22: Katavopn 16000Vap®V TAAGTIKAOV TAPUPOoPpPMOGE®V (LOvAdes M)
H péyiom i 1ov 16000VOp®OV TAACTIKOV TOPUULOPOOCEDMY TOV KOTAYPAPETOL GTN
BpAoypaeia elvar 2.732. v Ewova 23 mapovoidletar m ypovikn eEEMEN TV

1G0OVVOU®V TAACTIKOV TAPALOPPDCEMY Y10 TO VAMKO onpeio mov Ppioketal 6To pHEGO

™G Kato empaveog g papoov. H Yotepntikn MéBodog YAkov Znueiov eivon og Béon
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Vo TPOGEYYIGEL TO TEMKO GYNLUO TNG TOPAUOPPOUEVIC PAPOOV, LE OPIGUEVES OLOPOPES

oto oynua g o Byog 0.25cm amd v empdveln KpoHong.

Plastic strain

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
computational step

Ewova 23: Xpovikn £EMEN 16000VOPU®OV TAAGTIKAV TAPUPOPPDCEDV

6. Younepaocnato — IIpotdceic yio neALovTiKi) £pevvo

v mopovoa STpPr] TPOTEIVOVTAL OLOAG VOTEPNTIKA TPOGOUOIMUATO, POCIGUEVA
ot oxéoelg Tov Bouc-Wen yio v mlactikotnto aveEdptntn tov puluod petafoinc.
Ta povtéda avtd TPOoKLTTTOLY TOGO Pdom UG TPOCEYYIoNG O TPOS Eva LovoPaduo
GUCTNUO KOl TO UNYOVIKO TOV 0VAAOYO, OGO KOl G TPOG TIG APYES TNG KAUGIKNG
TAaGTIKOTNTOG. To KUPLo TAEOVEKTNLO TNG dtaTOTTwong kotd Bouc-Wen givar n xprion
opoA®V cuvaptioemy torov Heaviside, mov Aertovpyohv mg S10KOTTEG Kot EAEYYOVY OAL
To. 6TAS0L TNG VOTEPNTIKNG cvumeplpopds. H dwutdmmon eivor yevikn kot T0 HOVTEAO
umopel va ogxbel donpodpwv THNOV Kprripla dappong kot vopovg kpdtuvong. Erot,
Satvmvovtol ot eEeMkTikES e€lomaelg Bouc-Wen mov emttpémovy v tpocsopoimwon
IGOTPOTIKNG, KIVIUOTIKNG KOl HIKTAG KPATLUVONG KOOMDS KOl OTOUEIDCELS OVTOYXNG KO

dvokapyiog.

H péBodoc tov Awktoov Xtepedv Zopdtov kot Elammpiov emekteiveton pe

EVOOUATOON TOV LOTEPNTIKOV HOVIEA®V GE emimedo otolyeiov. TOCO Ol YPOUMKES
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SLPOPIKEG EEIGMOELG KIVIION S OGO Kol 01 U YPOUUIKES VOTEPNTIKEG EELGMGELG ETADOVTOL
TOVTOYPOVO. AVTO EMITVYYAVETOL UE TN UETATPOTI] TOV GLUOTNUATOS GE LOPPN YDPOL
Katdotaons. o kdbe otoryelo HOpEAOVETOL TO VOTEPNTIKO UNTPMO Kot pe T péBodo
dpeong SLOKOUYING TO VOTEPNTIKO UNTPMO TNG KOTAGKELNG. AVTO £XEL WG AMOTEAEG LA
NV €0KOAN EVOMUATMOT TOL TPOTEWVOUEVOD HOVTIEAOL GE LIAPYOVTEG KMOOIKEG TOV
AktOov Ztepedv Zopdtov kot EAatnpiov pe t 010pdpemon Tov VeTEPNTIKOD UNTPMOV
NG KOTOOKELNG KOl TN OTOHM®ON TV €EEMKTIKOV VOTEPNTIKOV eEIGDCEMV.
[Topovcidlovtor aplBunTiKd TOPAdELYHOTO KOU £QOPUOYES TOL OVOOEIKVOOLV TNV
KOVOTNTA TOV HOVTEAOVL VO TPOGOUOLOVEL €val TANO0G VOTEPNTIKOV GLUTEPIPOPDOV.
AWpOpOOVETOL £TGL EVOL ALECO PVGIKO LLOVTELO TTOV EUTEPLEYEL TO KVPLOL YOPAKTNPLIOTIKE.
VOTEPNTIKOV GLGTNUATOV Yo dSiedtdotata TpofAnpata. Avto, divel tn duvatdTnTa KOTd
™ O18pKE TOV GYESIAGLOV, Y1 TN WEAETN TNG VOTEPNTIKNG CLUUTEPLUPOPAS SLOPOPMOV
KOTOGKELDV, TOV EVIOTIGUO TEPLOYDV EVOLLPEPOVTOG GYETIKA LUE TNV TAACTIKOTNTO KOl

TOV aKPIN VITOAOYIGUO TNG TAPALOPPMOUEVNG KOTAGTOONG TNG KATAGKELNC.

21 ovvéyela e€etdletor 1 MéBodog YAuco0 Enueiov, o€ un memAeylévn LOPON Yo TNV
TPOCOUOI®GT SLVOUIKAOV TPOPANUAT®V, G DAKE TOV GuUTEPLPEPOVTOL ovelaoTikd. H
dwtvmoon AopBdvel vTOYN TV OPOAN HETAPOCT OO TNV EAAGTIKN OTN UETEANCTIKN
TEPLOYN KO EUTMEPLEYEL LGOTPOMIKY], KIWWNUOTIKY KOl KT Kpdtuvorn kabog kot
OTOUELDCELS avToynNG Kot ovokapyiag. H dwrtimmon agopd kdbe viwkd omnpeio
LOPOOVOVTOG TO EPOTTOUEVIKO UNTPDO TOV GLOYETILEL TIG GLUVIGTOCES TOV TACEMV KoL
opaiomotel T cvumepipopd. H enidvon tov eElodoewv yiveton o€ pn memheypévr Lopon,
Ko To, aplOpmTiKd amoteAéopata delyvouy OtL umopei vo ypnoono 0l amoTeAecHaTIKE
YOPIG TNV avaykn Yo Evav odlyoplBpo TpoPreync-010pBmong 1 OKTIVIKNG EMGTPOPTG.
Emunpdobeta 1o opaipa peidvetol 660 mo opaAn yiveton 1 petdfacm and v EAUCTIKN
omv mhaotikn mepoyn. Ilapovoialovtar emiong mapodeiypato kot oplOuUnTIKEG

EPAPLOYES, KOL TO ATOTEAECLLATO, GUYKPIVOVTOL LE TELPOUATIKE OEGOUEVO, OTOTEAEGLLOTOL
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and kookeg [emepacuévov Zrotyeinv kabmg kot amd dAAeg apOuntikég peBodovg ympic

TAEYHO, €MOANOEVOVTOG TNV 1IKOVOTNTA TOV HOVTEAOL VO TTPOCOLOUDGEL VOTEPTTIKEG

ovumeplPopEs. TELOC, 0 VTTOAOYIGUOG TOV EPOUTTOUEVIKOD UNTPMOL YIVETOL V1o KAOE DAIKO

onueio Eexymplotd Kot GLVERMG 1 HEB0OOC eivan KATAAANAN Yy TO GVOYYpOovo Haliko

TopAAANA0 Tpoypoppatiopd. Xtov [ivaka 3 mapovotdleton EMOnTIKA 1) GOYKPION LETAED

TV 000 ueBOd®V TG draTpIP1s.

. Axpipara Axpipera E&aptnon ané ™ Evkoiia
Emidtng p . ; .
PETATOTICEMY TAoEWY dwakprromoinon dwakprromoinong
AXIE | Hemieypévn NN V4 v vV
Mn-
MYE | e | YYY s % VI

MMivakag 3: Loykpion TV 600 SLOKPLTOV pedodwv

Opiopéveg TPoTacELS Yoo LEALOVTIKNY £pgvva elvat:

1. Emnéxtoaon tov Aiktvov Xtepedv Zopdatov kot EAatnpiov pe vopovg Opatdong mov

Bacilovton o€ evepyelakeg OewpnoELg TOGO Y10l LOVOTOVIKES OGO KOl Y10, KUKAIKES
QOpPTICELS.

‘Eva evoapépov onueio peddoviikng épsvvag Ba pmopovcoe va givor m
EVOOUATMON OUOA®MY  TPOCOUOIOUATOV YOO TNV  MEPITTOON NG
Brokomhaotikotntog (mhactikdtnta eEapTd®UEVT] TOV PLOLOD HETAPOANC).
Evoopdtoon vopwv Bewpiog Brofov kot opoiomoinon tovg, Yoo
TPOGOUOIMOT TNG TAACTIKNG CLUUTEPLPOPAS pe yarapwon (softening).

Avantuén povtérlov Bempiog BAapdv yio ) MéBodo vikod Enueiov, mov vao unv
emmpedletarl amd TV ovAALGN TOV TAEYUOTOC.

Kotd v avalvon emunkov HEADV, Kol ¥PNCULOTOLOVTIOS TETPAYMOVIKO TAEYLO,
0 appdS TOV GTOLYEI®V KOTE KOS TOL HEAOVG £ivol TOAD HEYOADTEPOC OO TO

otoyeio otnv kabetn otov d&ova tov péEAOVG dlevbuvorn. Avtd odnyel oe
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HEYAAOVG VTTOAOYIGTIKOVG XPOVOLG Yo TNV EMITEVLEN KAVOTONTIKNG aKpifetag.
I"a 10 okomd awtd B Tav evOlaPEPOVOO 1] EVOOUAT®ON GTOLEI®V doKoD oTN
MéBodo YAkov Enueiov, 1660 Yoo TN HOVIEAOTOINGCT O0K®V OGO KOl Yio TN

LOVTEALOTTOINGT OTAIGLLOV.
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DISCRETE SYSTEMS IN THE ELASTO-PLASTIC ANALYSIS OF STRUCTURES

ABSTRACT
Hysteresis is a highly nonlinear phenomenon and can be found in many scientific fields.
A system is considered to be hysteretic when its state depends not only on its current
configuration but also on its history. This is especially true in inelastic — plastic materials,
where the current deformation depends on the complete history of the loading of the
material. Hysteretic models have been widely applied within the Finite Element Method
while little research has been carried out in discrete and particle methods, which is in
contrast with their nature since the tracking of history dependent materials is innate in
most of these methods. In this work smooth hysteretic models of Bouc — Wen type have
been applied in two discrete methods, the Rigid Body Spring Network (RBSN) and the
Material Point Method (MPM). The strains are decomposed into an elastic and an
inelastic part according to the additive decomposition of the strain tensor of classical
plasticity. Two Heaviside-type functions are introduced to account for the different
phases of a hysteretic cycle and a smooth transition from the elastic to inelastic regime.
These act as switches and can accommodate various yield functions and hardening laws
to control the entire cyclic behavior. A single expression is established for the plastic
multiplier for the entire stress space. This overcomes the need for a piecewise linear
approach and a demanding bookkeeping mechanism especially when multilinear models

are concerned that account for stiffness and strength degradation.

The RBSN is based on a physical model rather than a mathematical one, such as to divide
the structure into discrete rigid bodies that are connected with springs. Discretization is
based on Voronoi tessellation, dividing the structure into convex polygons, which are
treated as rigid bodies. VVoronoi tessellation is used to ensure uniformity. The rigid bodies
are connected with three zero length springs (normal, tangential and rotational) located at

the middle of their common facets. The springs follow the smooth hysteretic Bouc—Wen



model, which efficiently incorporates classical plasticity. Numerical results are presented
that validate the proposed formulation and verify the model’s applicability on
determining primarily the displacement field and areas of plastic zones. Moreover, the
model is extended by incorporating a Mohr-Coulomb type of stress law to simulate
fracture during monotonic loading, and by releasing the stiffness of the spring elements
that have ruptured. Even though the formulation is not based on fracture energy
calculations or variational formulations, it is capable of identifying areas of fracture and

crack paths, through its discrete nature.

The Material Point Method (MPM) is a hybrid method that employs both a Lagrangian
and an Eulerian description. In MPM, all the information and state variables are carried
by the particles (such as position, mass, velocity, acceleration, stress, strains, etc.). This
presents a significant advantage in the simulation of history dependent materials.
Moreover, the MPM is based on a weak form formulation being consistent with the FEM.
In this work, the standard explicit MPM is extended to account for smooth elastoplastic
material behavior with mixed isotropic and kinematic hardening and stiffness and
strength degradation. The final form of the constitutive stress rate—strain rate relation
incorporates the tangent modulus, which now includes the Heaviside functions and
gathers all the governing behavior, facilitating considerably the simulation of nonlinear

response in the MPM framework.

Vi
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Chapter 1: Introduction

1.1 Problem statement

Numerical methods have become over the last years a new pillar in engineering. After
theory and experiments, numerical analysis provides an effective way to seek solutions
to complex problems. In fact, there are cases where the existing theories cannot provide
analytical solutions neither is it possible to perform experiments. Especially in design
problems, numerical methods provide the means to model complex geometries, simulate
nonlinear material behaviors etc., for which conventional methods are not capable of
providing answers. This begins with the formulation of the mathematical model and ends
with the solution of the governing equations. Therefore, the term modeling implies the
representation of a physical system through a mathematical interpretation, whereas
simulation refers to the process of solving the equations that resulted from model
development [7, 25]. Numerical methods can be categorized based on the frame of
reference they employ, whether they represent the material discretely or as a continuum

and whether the analysis is linear or nonlinear.

1.1.1 Frames of reference

Numerical methods are divided into four main categories based on how they describe
motion and deformation. These are the Lagrangian methods, the Eulerian methods, hybrid
methods and meshfree methods. The advantages and disadvantages of these methods are

presented in detail below, together with a brief summary in Table 1-1.

In Lagrangian methods the material and the mesh are firmly linked. Individual elements

are connected through the mesh, which is a topological map. The mass of each element
Is constant during the computations, and its volume varies as it deforms. Lagrangian
methods are simpler than Eulerian methods in the sense that there is no advection term in

the governing equations, since there is no flow of material between element boundaries.
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In addition, interfaces can be easily defined and tracked since they coincide with element
boundaries. The most notable method in this category is the Finite Element Method
(FEM) [12, 15]. The Rigid Body-Spring Network (RBSM) [77] also belongs in this
category and is one of the methods used in this thesis. It was formulated as a numerical
model in the context of limit analysis in plasticity. The structure is discretized into rigid
bodies that are connected by normal, tangential and rotational springs. Similar to FEM,

element stiffness matrices are formed, and a connectivity matrix is employed.

In the Eulerian description the mesh is stationary and does not move or deform. This has
the evident advantage that the problem of element distortion is alleviated. The material
carries physical properties such as mass and momentum and is allowed to move between
element boundaries. This gives rise to an advection term in the governing equations
rendering them more computationally expensive as compared to Lagrangian methods. In
these methods, the volume of the element remains constant and its density changes with
time. The Finite Volume Method (FVM) is an Eulerian method applied to fluid
simulations where the flow of the material is observed through a fixed mesh in space. The
lattice Boltzmann method (LBM) [34] and cellular automata (CA) [2, 102] are notable
examples of Eulerian descriptions for the flow of discrete objects. The main difference
between the two approaches is that in a Lagrangian (or material) approach, the positions
of specific material points are tracked with time; while on an Eulerian (or spatial)

approach, the flow through fixed points in space, is measured.

Hybrid Methods. There have been several attempts to formulate new methods to take

advantage of the positive features of both the Lagrangian and Eulerian methods. These
methods are termed as Hybrid methods. One such method is the Arbitrary Lagrangian —
Eulerian method (ALE) that has been applied in Finite Difference (FD) [55] and Finite
Element context [43]. Another popular method especially in fluid mechanics is the

Particle In Cell (PIC) method [65, 64]. In this method the material is discretized into

4
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particles using the Lagrangian description and carrying some of its properties. An
Eulerian mesh is also employed but is reset to its initial configuration at the end of each
time step. The method is not purely Lagrangian because some properties are still stored
in the background grid. In Fluid Implicit Particle method (FLIP) [23], an extension of
PIC, the particles carry all of the properties. This way numerical diffusion, which is
present in PIC is eliminated. PIC and FLIP are the precursors of the Material Point
Method (MPM) [120] that is the second method used in this thesis. In MPM, contrary to
FLIP, the strain and stresses are carried by the material points, while in FLIP they are
stored at the cell centers. This allows for the effective simulation of history dependent
materials. In addition, the MPM is formulated on the basis of the weak form, like FEM.
The MPM employs the two main formulations previously developed in PIC i.e., the use
of Lagrangian material points that carry all the physical information, and a background
Eulerian grid used for the discretization of continuous fields and gradient calculations.

Therefore, the MPM combines the advantages of both Eulerian and Lagrangian methods

Method Advantages Disadvantages
= +Simpler to conceptualize
'S FEM +Easy imposition of -Element distortion
§ boundary conditions -Time steps in explicit
2 RBSN | +Easier to implement history | schemes could approach zero
— dependent materials
= HELP -Don’t explicitly track the
5 IBM +No element distortion p05|’t|on of materlgl
S EDM -Don’t follow moving
o .
VM boundaries
ALE +No element distortion
=) MPM +Mesh can be move or be -Convective terms still
|- -
2 fixed present
I PIC +Higher resolution than -Higher computational cost
FLIP Eulerian
] SPH
E +C§n handlg large -Usually higher
3 eformations computational cost
S DEM +Ease of refinement P

Table 1-1: Spatial discretization methodologies
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a) ‘ b) C)

Figure 1.1: a) Reference configuration, b) Lagrangian description, ¢) Eulerian

description

Meshfree Methods. This category includes methods that in general do not employ a mesh

but are based on the interaction between neighbor particles. They can simulate
challenging problems such as crack propagation, fragmentation and localization
problems. They can handle large deformations and use local refinement if a higher
accuracy is needed. However, in general the computational cost of these methods is
higher. Some examples in this category are the Discrete Element Method DEM [40] and
the Smoothed Particle Hydrodynamics [86, 58]. The difference of Lagrangian and

Eulerian description from a kinematic standpoint can be seen in Figure 1.1.

a)

f (x) f(x) :Z f (X X0

Figure 1.2: Continuum vs discrete

1.1.2 Continuum - discrete

In addition to the method used to describe motion and deformation, another key

categorization of the numerical methods is by considering the way the material is being

6
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modelled. The material can be regarded either as a continuum or as a set of discrete
objects interacting with each other (Figure 1.2). In the continuum, the constitutive law
that describes its behavior is valid within the whole domain and is described by a partial
differential equation (PDE) in most engineering problems. On the contrary, in discrete
systems there are discrete elements or particles interacting with their surrounding

particles. The effect on each particle is the sum of all the interactions with other particles.

Kinematics
Lagrangian Eulerian
. Continuous FEM FVM
Constitutive MPM
topolo i
pology Discrete RBSN ‘ CA

Table 1-2: Kinematics and topology categorization of numerical methods

In this thesis the RBSN and MPM methods are employed and examined. Although they
are different in their theoretical development, they fall into the category of discrete
methods. In RBSN there are discrete rigid particles interconnected with springs while in
MPM there are discrete material points that carry all the physical properties of the

material.

1.1.3 Linear — nonlinear analyses

So far, the various formulations for kinematic descriptions and continuum or discrete
modelling have been addressed. Another aspect refers to the structural analysis, which
can be mathematically either linear or nonlinear. The common types of nonlinearities in

structural analysis are:

e Material nonlinearities. The stress-strain law may be nonlinear elastic or inelastic,
where permanent deformation is manifested upon unloading.
e Nonlinear deformations. To account for large deformations equilibrium is

established at the deformed configuration. They can be divided to large
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displacements and rotations with small strains, or large displacements and
rotations with finite strains. Different strain and stress measures are employed in
each case.

e Nonlinearity in Boundary Conditions. Nonlinear support conditions or structures

in contact are few examples.

Considering material behavior, the theory of linear elasticity [82] is able to accurately
predict the behavior of a material that returns to its initial configuration after the loads are
removed. However, most materials exhibit permanent deformations after a certain level
of loading is surpassed. These permanent deformations involve the dissipation of energy
and therefore cannot be retrieved and are irreversible. The actual dissipative mechanisms
are manifested in the molecular and atomic level and are studied through a
micromechanical approach [89]. In order to circumvent these actual mechanisms in the
atomic level and facilitate the study of nonlinearities at the mesoscale, the

phenomenological approach to irreversible processes is developed.

The phenomenological approach is based on internal variables that are associated with
the dissipative behavior in microstructure. Some examples of these internal variables are
the plastic strains for plasticity or the damage variable for damage theories. Hysteresis is
a basic attribute of the dissipation process in solid mechanics and can be studied from a
phenomenological point of view. A system is hysteretic when its behavior depends not
only on its current state but also on the history of its previous states. There have been
several hysteretic models proposed through the years and can be divided into two main
categories: the multi segmental linear models and the smooth hysteretic models. The
multilinear models are divided into linear segments to account for the different stages of
hysteretic phenomena (cyclic behavior, degradations, pinching). Although simpler in
their derivation, they require a demanding bookkeeping mechanism, rendering them

impractical. Smooth hysteretic models try to encapsulate the entire hysteretic behavior

8



Chapter 1: Introduction

through a set of nonlinear equations, often expressed in rate form. All the different stages
of cyclic phenomena like stiffness degradation, strength deterioration or
hardening/softening behavior is incorporated into a single smooth model with varying

parameters.

In this section, a general overview of numerical methods in engineering, hysteresis and
discrete methods has been presented. More information about the state-of-the-art research
on each particular topic is provided in the respective chapter in order to facilitate its

presentation.

1.2 Research objectives

The overarching aim of this research to develop an efficient and robust simulation
framework for the analysis of the inelastic - hysteretic response of structures. In order to

achieve this, the following Research Objectives are identified:

e R.0.1: Formulate the hysteretic Bouc — Wen model in its uniaxial and triaxial
form. Extend it to account for stiffness degradation and strength deterioration.
Verify it against experimental and published results.

e R.0.2: Implement the Bouc — Wen hysteretic model in the Rigid Body Spring
Network framework. Extend the framework with plasticity and fracture for
monotonic loading. Examine the effectiveness and accuracy of the proposed
methodology in simulating hysteretic phenomena up to the point of fracture and
compare against published results.

e R.0.3: Implement the Bouc — Wen hysteretic model in the Material Point Method
incorporating stiffness degradation and strength deterioration. Compare basic
linear shape functions with higher order ones both with regard to their accuracy

in velocity gradient calculations as well as when plasticity is concerned. Examine
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the effectiveness and accuracy of the proposed methodology in accurately
describing hysteretic behavior with and without degradations. Compare against
published data and experimental results.

e R.0.4: Compare the two methodologies and identify their advantages as well as

their weak points.

1.3 Methodology

In order to accomplish the Research Objectives, the research has been divided into the
following tasks. All computer codes were developed for the purpose of this research. The
software used is Matlab for its ease in rapid code generation and benchmarking. In Figure

1.3 the methodology of the research is briefly presented.

Bouc — Wen hysteretic model
* Smooth hysteretic loops
* Uniaxial formulation
* Triaxial formulation
» Isotropic, kinematic, mixed hardening
+ Stiffness degradation, strength deterioration

é Material Point Method Rigid Body Spring Network model )
+ Explicit time integration + Implicit time integration
» Cubic B-Splines shape functions » Formulation of hysteretic matrices
» Explicitly solve for plasticity without the need for » Simultaneous solution of differential equations of
predictor — corrector scheme motion and nonlinear hysteretic equations
\_ » Capable of large deformations * Plasticity and fracture for monotonic loading )
, ! \

» Dynamic analysis of structures
* Analysis of hysteretic behavior

& J
, v y \
+ Stress, plastic strains calculations * Identify regions of interest of inelastic phenomena
» Identify regions of interest of inelastic phenomena * Identify crack patterns for monotonic loadings
\ J/

v v

e ~
« Benchmarks

« Comparison with experiments and published results
+ Validation and verification

Figure 1.3: Research methodology
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Task 1: Development of the Bouc — Wen model with an in-house computer code.
Formulation of the uniaxial model and incorporation of stiffness and strength
degradation. Investigation of the model parameters and the hysteretic behaviors it
can simulate.

Task 2: Development of the triaxial Bouc — Wen model with an in-house computer
code. Incorporate stiffness degradation and strength deterioration for the general
triaxial case.

Task 3: Development of an in-house computer code for the Rigid Body Spring
Network model. Investigation of its properties. Solutions both for the elastic —
static case as well as the case of hysteresis with dynamic loading. Access the
developed model’s ability to effectively identify regions of interest with regard to
plastic phenomena as well as crack patterns.

Task 4: Incorporation of Bouc-Wen hysteretic model in the Rigid Body Spring
Network framework. Examination of its behavior, and formulation of an efficient
solution process for the differential equations in their matrix form.

Task 5: Incorporation of a fracture criterion into the model for the simulation of
plasticity and fracture during monotonic loading.

Task 6: Development of an in-house computer code for the Material Point Method
in an explicit time integration scheme. Exploration of the most suited shape
function choice for plasticity. Examination of its capability in simulating
hysteretic behavior for dynamic loading. Examination of its ability in solving for
plasticity in an explicit time integration algorithm.

Task 7: Comparison of the two methods and assessment of their advantages and

disadvantages.

11
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a) Rigid Body Spring Network
(RBSN)

3(xs.y3)

k

= 2(x,y)

ky

4(xa,¥a)

b) Research Contributions

a | I

Hysteresis with Bouc — Wen

Fracture representation with

\ crack opening

c) Hysteretic RBSN

Displacement

Figure 1.4: Development methodology for the hysteretic RBSN model with

fracture

Figure 1.4 and Figure 1.5 depict the development methodology of the two hysteretic

discrete models of RBSN and MPM and the research contributions in those areas in a

visual representation.

a) Material Point Method
(MPM)

b) Research Contributions

a4 )

Bouc—Wen hysteresis, isotropic,
kinematic and mixed hardening

==

Stiffness degradation and

\ Strength deterioration /

c) Hysteretic MPM

Figure 1.5: Development methodology for the hysteretic MPM model with

12
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1.4 Outline

This thesis is organized in six chapters. In Chapter 2 the development of the Bouc — Wen
hysteretic model is presented. Starting from a phenomenological approach to hysteresis
and a simple mechanical analogue, the mathematical theory and differential equations
describing hysteretic behavior are formulated. The main parameters that govern the shape
of the hysteretic loops are explored. The model is extended into the three — dimensional
stress space, following the foundations of classical plasticity theory. Moreover, stiffness
degradation and strength deterioration are incorporated into the model, with the addition
of two parameters. For the general triaxial case, the formulation leads to an additional
evolution equation for the degradations, rendering the proposed method compact in its

solution.

In Chapter 3 the first discrete model that is examined in this dissertation, the Rigid Body
Spring Network model, is presented. The model is based on a physical concept rather than
a mathematical one, mainly in that it divides the structure into rigid bodies that are
connected with springs. It falls into the general category of Lattice models. In order to
model the elastic properties of the continuum properly a random initial distribution of
points is chosen. Using the Voronoi diagram and dividing the domain into convex
polygons the basis of the model is formulated. These Voronoi polygons form the rigid
bodies of the model and are interconnected with springs. In this work, these springs

behave following the Bouc — Wen hysteretic model.

In Chapter 4 the Material Point Method (MPM) for the hysteretic analysis of structures is
developed. Starting from a brief theory of continuum mechanics, the final form of the
governing equations of motion are derived. In order to solve these equations, the weak
form is derived, and the Material Point Method is established. The main algorithm of the

MPM is developed in an explicit time integration scheme. The method renders itself to

13
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different implementation choices and different formulations, which are investigated in
this work. Similar to Finite Element Method the MPM uses shape functions. Linear and
B-Spline shape functions are examined and compared regarding their accuracy and
efficiency. The general triaxial Bouc — Wen model with stiffness degradation and strength
deterioration is incorporated into the method making it efficient in simulating a wide

range of hysteretic behavior.

In Chapter 5 numerical examples both for the RBSN model and the MPM are presented.
These range from simple one — dimensional (1D) examples to verify and validate the
formulation and computer implementations, to more complex examples examining the

behavior of structures in cyclic loading and yield.

Finally, in Chapter 6 some conclusions and remarks are provided, with further
suggestions for future work. Three appendices are included. Appendix 1 involves the Von
Mises yield criterion and its gradient. Appendix 2 presents Drucker and II’iyshin’s
plasticity postulates. Appendix 3 presents some basic elements of continuum mechanics

concerning the deformation gradient employed in MPM.

14
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Chapter 2: Bouc — Wen Hysteretic Model

2.1 Introduction

A first approximation to material behavior begins with the theory of linear elasticity. This
theory is robust and can provide accurate results provided no permanent deformations
develop. However, after some level of loading, materials start to behave in a nonlinear
manner. This nonlinear material behavior is usually mathematically tackled through a
constitutive nonlinear equation. In general, many phenomena manifest material

nonlinearity, among these are:

e Viscoplasticity (Rate Dependent plasticity) [28, 78]. Permanent deformations are
manifested.

e Rate Independent plasticity [116, 22, 132]. Behavior is the same regardless of the
rate of the applied loads.

e Thermo — plasticity [101]. The material is loaded so that not only plastic strains
develop but also the temperature is changed.

e Non — linear elasticity [13]. In this case the stresses are not linearly related to
strains, but deformation is recoverable. The system is conservative and does not
lose any energy. An example of such case is the hyper-elastic behavior.

e Creep. Nonlinear phenomenon that is rate dependent. Permanent deformation
under constant stresses.

e Stress relaxation. Decrease of stresses under constant strain conditions.

Two examples of nonlinear stress — strain diagrams are presented in Figure 2.1, i.e. the
case of nonlinear elasticity and elastoplasticity. In this work, the Bouc — Wen model that
is employed, falls into the category of rate — independent plasticity. A vast majority of
engineering materials exhibit elastoplastic behavior. This means that while for the initial
elastic region any strain is recoverable, after a certain level of stress, the yield stress,

material undergoes plastic deformations. Plastic strains are not recoverable, the system is

17
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not conservative, and the current configuration is path dependent. This can be seen as
analogous to classical thermodynamics [3], where a process is irreversible if it exhibits

hysteresis.

Non — linear elasticity Elastoplasticity

UnloadM ”
4
/
/
,/ ¥ Unloading

/ Loading
V4

Strain Strain

. Loading —»

Stress
Stress

Figure 2.1: Nonlinear stress — strain behavior.

Hysteresis is a highly nonlinear phenomenon and can be found in many scientific fields.
A system is considered to be hysteretic when the state of the system depends not only on
its current state but on its history. This is especially true in inelastic — plastic materials,
where the current deformation depends on the complete history of the loading. On the

contrary, in elastic materials the state of strain depends only on the final state of stress.

Over the last decades, there has been significant development of mathematical hysteretic
models especially in the phenomenological approach of hysteresis. These models started
with the work of Massing [91] and Preisach [104] and became popular more recently
through the work of Bouc [22] and Wen [132, 133]. Some notable modifications and
extensions have been proposed since then, such as the Baber — Noori model [8] and the
Sivaselvan — Reinhorn model [115]. A common characteristic of the aforementioned
models is that they are smooth hysteretic models. They are capable of simulating a vast
range of hysteretic and plastic behavior through a single smooth hysteretic function. This
is a great improvement over the multi — segmental models that demand a complicated

bookkeeping mechanism and model the behavior with many linear segments.
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Chapter 2: Bouc — Wen Hysteretic Model

In the past decades, the smooth hysteretic model of Bouc-Wen has been widely utilized.
Hysteretic models incorporating stiffness degradation, strength deterioration, and
pinching phenomena have been effective in simulating the real behavior of various
materials such as reinforced concrete, steel and wood (Foliente [54], Sivaselvan and
Reinhorn [115]). Some deficiencies and inconsistencies of the Bouc-Wen model
regarding displacement drifts, thermodynamic admissibility etc., have been identified
(Thyagarajan and Iwan [122], Erlicher and Bursi [51]) whereas recovering of the violation
of plasticity postulates (Charalampakis and Koumousis [32]) has been recently tackled
[26]. In addition, it has been successfully applied to model hysteretic behavior in plane
stress [125], shell [94], plate [93] and beam [128] Finite Elements [127], as well as to
model RC flexural failure employing a fiber approach [59]. It has also been applied
successfully in the dynamic analysis of composite materials [124] using a multiscale

formulation.

The Bouc-Wen model introduces internal variables that are governed by evolution
equations. These are expressed in rate form and are derived from the endochronic theories
of plasticity (Valanis [129]) expressing the phenomenological behavior at the elemental
level. Many researchers [36, 72] have employed the Bouc-Wen model as a robust and
accurate method to simulate the hysteretic behavior of various materials. Moreover,
efficient algorithms were developed for the identification of the Bouc-Wen model
parameters [84, 112, 136, 30], using advanced analytical techniques (Chatzi and Smyth

[33]) or evolutionary identification approaches (Charalampakis and Koumousis [31]).
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2.2 The hysteretic loops and the concept of hysteresis

In Figure 2.2, a single degree of freedom (s.d.o.f.) oscillator is presented, consisting of a

mass and a spring. The material behavior, considering stresses and strains, is considered

to be elastic — perfectly plastic and the yield stress is o, .

% 47

Figure 2.2: Single degree of freedom (s.d.o.f) oscillator and cyclic material

behavior.

Initially, when the oscillator is first being loaded, its response is linear, and the material
behavior is following Hooke’s law. The response remains linear as long as the stresses

are smaller than the yield stress. This can be written mathematically as:
o(¢)=Ee |0'| <o, (2.1)

where E is the material Young’s modulus. With further loading and increase of strains,

stresses approach the yield stress and remain at the yield stress for all strains exciding the

yield strain &, (since there is no hardening considered). This can be formulated as:

o(e)=0, >, (2.2)

After this point, when considering cyclic behavior, unloading occurs (where the

unloading branch is parallel to the initial elastic one) and reloading at the other direction
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until new yielding. This leads to the following observation: For a given level of stain

larger than the yield strain (marked as ¢, in Figure 2.2), there are at least two possible
stress states in the range: o |-o,,0,| (marked as o, and o, in Figure 2.2).

Consequently, there does not exist a function o(g) that can uniquely map the current

level of strain to the current level of stress.

Hysteresis, through its mathematical foundation and theory, tries to define an output
function for the stresses that has the strains as a given input function, in such a way as the

derived solution coincides with the stress-strain curve presented in Figure 2.2.

2.3 The uniaxial Bouc — Wen model

In this paragraph the uniaxial Bouc-Wen hysteretic model is presented. Through the
explanation of the mathematical theory and its mechanical analogue, the properties and
expected behavior of the model can be explained. As previously mentioned, it is a smooth
hysteretic model and its mathematical description for a s.d.o.f. dynamic system is as

follows:

mii+cu+F® =p
FO =F“+F® =aku+(1-a)kz
. (2.3)

(B+ysgn(zu))

z

Z=u|1-

y
where m is the mass of the system, c is the damping coefficient, p is the external force

acting on the system, F® is the Bouc-Wen restoring force, z is the introduced
hysteretic displacement parameter with z being its derivative with respect to time, sgn
is the signum function, n, f, y are parameters that control the shape of the hysteretic loops,

uis the systems displacement, u its velocity, U its acceleration and a is the ratio of the
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post yield stiffness k,, to the initial elastic stiffness k :

a=-2% (2.4)

The model is based on a first order nonlinear differential equation with respect to z i.e.

the hysteretic parameter. For a s.d.o.f. system the restoring force consists of an elastic

F¢ and an inelastic hysteretic F” part as:

F=F"+F" :Fy[aui+(1—a)ui}:aku+(l—a)kz (2.5)

y y

The mechanical analogue of the Bouc Wen formulation can be visualized as two elements
connected in parallel, one being linear with reduced stifness ak and the other nonlinear

as presented in Figure 2.3.

%

m

LI TS

Figure 2.3: Bouc-Wen parallel model mechanical analogue.

The initial stifness of the nonlinear element is (1-a)k, the yield force is F, and the

element consists of a linear spring and a slider that are connected in series. If the force

acting on the system is smaller than F, then the system behaves elastically with stifness

k since the elastic stifness of the two parallel springs is ak and (1—a)k. On the other
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hand if the system force exceeds the yield force then the nonlinear spring force remains

constant and equal to F, and the linear spring provides the additional hardening with a

slope of the hardening branch given by parameter a.

Similalry, if the force acting on the system is smaller than the yield force then no sliding
occurs x =0 and the relative displacement of the nonlinear element is equal to the total
displacement u . When the yield force is reached sliding occurs and the relative
displacement of the nonlinear spring in the second element remains constant. This means

that the following relation holds regarding the hysteretic parameter z:
U, X<X,
zZ= (2.6)
Z,, X>X,

However X is an internal variable and is not easy or even possible to be identified in most
systems. For this reason, instead of the relative displacement, the total displacement at

which the sliding occurs can be used:
u, u<u,
zZ= 2.7

The corresponding response from a hysteretic system employing the Bouc-Wen model

can be seen in Figure 2.4.

u, / U Displacement

Figure 2.4: Bouc-Wen hysteretic response in terms of force-displacement
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2.4 Hysteretic model parameters

Regarding the parameters of the previous formulation n is a scalar that controls the
smoothness of the transition from the elastic to the inelastic regime. As n increases, the

response approaches the bilinear behavior, while for small values of n smooth transition

can be obtained (Figure 2.5)

sy

w

17,

=

w
—n=2
—n=4
—n=8
—n=16

Strain
Figure 2.5: Effect of parameter n

Parameters S and y are shape factors that affect the shape of the hysteretic loops during

unloading. For the model to be thermodynamically admissible these parameters should

satisfy [52]: - <y < and S+ y =1. Their effect on the stress strain curve can be seen

in Figure 2.6.

Stress

Strain
Figure 2.6: Effect of parameters S and y on stress strain curves
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2.5 The generalized triaxial case

An elastic material has no memory of the previous stress — strain state it has reached and
upon unloading it returns to a state of zero stress — strain. However, most materials
undergo permanent deformation after a level of loading is surpassed. There is a surface,
i.e. the yield surface that bounds the elastic domain in the stress space, and is defined by

a yield function with the following form:
(I)({O'},O'S) = f ({0'})—0'3 =0 (2.8)
where 03 in the initial yield stress. In every case, all admissible stress states must satisfy

the condition: ®<0.

Further loading leads to yielding (or plastic flow) and plastic strains are manifested as
permanent strains upon unloading. Based on the theory of classical plasticity the
governing equations are the flow rule, the yield condition, the consistency condition and

the hardening rule. The plastic flow rule is given by the following relation:

ol _ 'aQ({O'})
{¢ }_zw (2.9)

where Q({c}) is the plastic potential function, A is the rate of the plastic multiplier,

which can be zero or positive, and the dot indicates time derivative. In the case of

associative plasticity, the plastic potential function equates with the yield function

Q({o})=@({c}) [39]. The plastic strain tensor is denoted as {z"} and can be

expressed in rate form in terms of the yield function @ as:
. 0D ({0
&) :/1& (2.10)

The Kuhn-Tucker optimality conditions state that:
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A20 ®<0 A®=0 (2.11)

This means that there is a complementarity condition that requires either the yield
function to be zero or that the plastic multiplier is zero (signifying there is no plastic flow).
The total strain tensor can be decomposed to an elastic and a plastic component
(assumption of additive decomposition). Therefore, the corresponding rate form can be

also stated as:
{e}={&"}+{&"} (2.12)

The stress rate tensor is expressed by the elastic part of the strain rates with the use of the

elasticity tensor as:

{o}=[D){&"} =[D]({&}-{&"}) (2.13)

{d}=[D]{{é}—iM} 214

Moreover, hardening is described by the evolution of the yield surface and thus the yield
surface can undergo expansion (in the case of isotropic hardening) and/or translation (in

the case of kinematic hardening).

When isotropic hardening is considered, the yield surface is expanded uniformly, and this

is expressed as:
q)({o-}’ay>: f({a})—ay (gDS):O (2.15)

The initial constant yield stress a;’ from equation (2.8) is replaced by a variable yield

stress Jy(gps) that depends on the equivalent plastic strain &, [39]:
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£ = [ 40 (2.16)

This results from the accumulated plastic strain rates as:
fn= | (67:6") =B (2.17)

where:

5 z(%({o».a@({a})r .19

where, in the case of the Von-Mises (VM) yield criterion: B =1 [39].

On the contrary, when kinematic hardening is considered the yield function assumes the

following form:
o({c},0y)=f({o}~{a})-0oy =0 (2.19)

where {a} is the back-stress tensor. In this form the kinematic hardening is capable of

simulating the Bauschinger effect and the yield surface is not expanded as in the isotropic

case, but instead its center is translated in the stress space. The evolution of the back-

stress tensor is a function of the plastic multiplier A and the hardening function {G} :
{a} =A{G} (2.20)

This relation in general can be non-linear. In this work the case of linear kinematic
hardening is considered, through Prager’s relations that assume a linear relationship

between the back-stresses and the rate of plastic strains of the following form:

{a}=C, {gp'}=cp(zMJ=z[cpM]=/i{G} (2.21)

oo oo

where C, is defined as the hardening constant.
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In a more general case, one can consider the combination of kinematic and isotropic
hardening [39, 92]. This means that the yield surface can both translate and expand in the
stress space. It is achieved by considering a scalar m within the range 0 <m<1. This
scalar represents the percentage of plastic strains that are associated with the isotropic
hardening response, while 1—m represents the percentage accounting for kinematic

hardening. This way the previous relations are modified as follows:

£ =mé,, = m\E (&":6")" =miB (2.22)
and:
{a"} =(1-m) i{G} (2.23)
The final expression of the yield surface then becomes:
®=f({o}-{a"})-0,(e5) =0 (2.24)

In Figure 2.9 different responses that can be achieved for different values of m regarding
hardening are presented. For m=0 kinematic hardening is considered, for m=1
isotropic hardening is valid, while values in-between result in a mixed isotropic-kinematic
hardening formulation. The consistency condition states that the stresses must remain on

the yield surface during plastic flow and so:

g (oY, [ o0 ) w o o
Ib=0=] (@] {a}{m] {a }+ag‘;: éw|=0  (2.25)

When at yield ® =0, A >0 and relation (2.25) can be written:

oo Y o 6w ) ey 60 |
(@J {G}{a{a“"}J @} g i |0 (2:26)
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In order to derive the expression of the plastic multiplier, relation (2.14) is premultiplied

by the flow vector {ad)/a{a}}T and using equation (2.26) one obtains:

A= 4(%}T [D]{&} (2.27)

where:

A- <1m>(%] R R S

ps

If the Von Mises (VM) yield criterion is employed and linear kinematic hardening is

considered the previous relation can be written as:

3 (oo Y. o0 |
4:{(1m)ch+mH +(6{0}J [D]a{a}} (2.29)
where:
E
e
(l_yj (2.30)
E

E being the Young’s modulus, E, the tangent modulus in the plastic region and
C,=2/3H".

The previous equation for the plastic multiplier holds only when yielding has occurred.
In order to smooth the transition from the elastic to the inelastic regime and generalize

the plastic multiplier expression in the whole domain of the stress space [123, 126], the

following Heaviside type functions are introduced:
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1 ®=0 1 ®=0
H, (D)= : H, (D)= . .
(@) {o ® <0 () {o d<0 (2:31)
and are plugged into the plastic multiplier equation directly:
o )
A=HH,L| — | [D]{¢ 2.32
w22 [0l 232

This way a single expression is established for the plastic multiplier neglecting the need
for a piecewise approach for the domains of the Kuhn-Tucker condition [126]. This is
similar to a Bouc-Wen approach [22, 27], and the Heaviside functions can then be

smoothed according to the following relations:

f({oh-fa})

iso
o (e2) |

H, = ﬁ+ysign[{%}T [D]{é}‘}

where n controls the smoothness from the transition from the elastic region to the

H, =
(2.33)

inelastic, # and y are model parameters that control the shape of the unloading branches

and are explained in detail in the previous paragraph. Finally substituting the plastic
multiplier into equation (2.14) the following relation can be obtained relating stress and

strain rates:

{o}=[E]{¢}
[EI]:[D]( I]_Hle[R])

(2.34)

where [R] is the interaction matrix that correlates the interaction of the stress components

at yield:
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Thus, the tangent matrix can be obtained in the following form:

£1=(0]{ 1), @-m) e, e
+(aa{i} ] [D] ;{i} J {aa{i}H ;{i} } D] (2.36)

where H, and H, are given from equation (2.33).

This tangent matrix replaces the elastic one from equation (2.13) that relates stresses and
strains in rate form, and can express the total material behavior in a unified manner

following the evolution of the Bouc-Wen model.

In Figure 2.7 the Heaviside function values at different stages in a cyclic stress-strain
diagram are presented. At the initial stage the material is elastic and H, is close to zero
(point A). When the stresses approach the locus of the yield function, H, begins to

increase until it takes the maximum value of one (point B). If this transition where to
happen instantaneously the result would be a bilinear diagram. The material is then further

loaded until point C where a load reversal occurs and unloading begins. Up until this
moment H, is equal to unity in the loading stage. During unloading H, becomes zero
until further reloading. H, is reducing during this stage, but since it is multiplied by H,
the whole product is zero. At point D the same behavior is again manifested in a cyclic

manner.

In Figure 2.8 the various values of the plastic multiplier, the yield function and the yield
gradient are presented similar to the previous analysis. The points are different positioned

in Figure 2.8 compared to Figure 2.7. In Figure 2.7 points A and B are slightly apart to
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signify the smooth transition from the elastic to the inelastic region that the model is

capable of simulating together with the smooth evolution of H, .

08

08

0.4

02

Stress

Strain

Figure 2.7: Heaviside functions schematic behavior

On the contrary, in Figure 2.8 the regions have been selected in such a way as to better
illustrate the various signs of the plastic multiplier, yield function and yield function
gradient in each phase of the cyclic hysteretic loop. In the initial elastic stage (AB) the
plastic multiplier is zero, then material yields, and the plastic multiplier becomes positive
(BC). During unloading the plastic multiplier is zero. Recall from the Kung Tucker
optimality conditions (equation (2.11)) that the plastic multiplier is larger or equal to zero
and that the yield function must be zero or negative. This can be seen in (AB) region

where it is negative and in (BC) region where it takes its maximum value of zero.

Finally, in order to investigate the effect of parameter m controlling mixed hardening, a
specimen under uniaxial strain-controlled loading is considered. Material parameters and

BW model parameters are presented in Table 2-1
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Stress

Figure 2.8: Cyclic behavior of plastic multiplier, yield function and yield gradient

Description Symbol Value
Young’s modulus E 30 GPa
Yield stress o, 240 MPa
Post yield slope a 5%
Smoothness of the transition from elastic to
. . n 2
inelastic branch
Kinematic hardening - Case a) m 0
Mixed hardening - Case b) m 0.2
Isotropic hardening - Case d) m 1

Table 2-1: Parameters of uniaxial model investigating hardening

In Figure 2.9 the effect of the parameter m in the hysteretic loops is presented. Figure
2.9 (a) presents the response for a sinusoidal strain-controlled loading and kinematic
hardening (m=0). Kinematic hardening signifies the translation of the yield surface and
in this form is able to simulate the Bauschinger effect. In addition, the loops are symmetric
as expected. In Figure 2.9 (b) a mixed hardening law is used with parameter m=0.2.The
yield surface in this case is both translating and expanding with the percentage of each
case given by parameter m. Finally, in Figure 2.9 (c) the case of isotropic hardening is
presented, where the yield surface is expanding and m =1. The isotropic model defines

that if the yield stress is initially the same both in tension and compression, then the yield
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surface is symmetric about the stress axes. As the yield surface then expands then the
yield stress in tension and compression remain equal. This behavior can be seen in the
Figure 2.9 c¢) through the enlargement of the yield stress in successive cycles and the

symmetrical form of the hysteretic loops.
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Figure 2.9: Effect of parameter m controlling mixed hardening in stress strain

curves
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2.6 Stiffness and Strength Degradation

During strong dynamic excitations structural members are designed to dissipate energy
through a number of mechanisms such as inelastic behavior, friction, crack opening etc.
Moreover, during cyclic loading, degradation phenomena can be manifested. These alter
the properties of the structure and have to be taken into consideration for the accurate
modeling and analysis, especially for later stages of cyclic response. Two main
degradation phenomena are usually manifested, mainly stiffness degradation and strength
deterioration. Stiffness degradation is the gradual loss of stiffness in successive loading
cycles whereas strength deterioration is the reduction of the level of strength for a cross
section when loading to the same level of strain. These phenomena are manifested in
concrete structures through the formation and propagation of cracks and in steel structures

after bolt failure in steel member connections.

The Bouc-Wen model can be extended to account for stiffness degradation and strength
deterioration. This is achieved by introducing two additional parameters into the model

[9] and equation (2.3) is modified as:

z‘:ni 1-v, zi (B+ysgn(zu)) (2.37)

S

y

These parameters, n, for stiffness degradation and v, for strength deterioration are based

on the accumulated hysteretic energy due to plastic energy dissipation e" and are

increasing functions of time given by the following formulas:

n =1+ce"

2.38
v, =1+cze" (2.38)
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where ¢, >0 and c,>0 are model parameters that need to be data fitted or

experimentally identified. The aforementioned hysteretic energy is the area enclosed in

the hysteretic loops and can be calculated as:
e" = j (1-a)Ez(t)de (2.39)

Erlicher and Bursi [51] studied the thermodynamic admissibility of Bouc-Wen models
with stiffness degradation and strength deterioration and concluded that for a

thermodynamically admissible degradation rule the following relation must hold:

17 <nvé (2.40)
where 7 is a function controlling the stiffness degradation and v is a function controlling

strength deterioration. Based on endochronic theory [129], ¢ is the intrinsic time of the

model. This is defined in rate form by the following relation:

§=(1+§sgn(zu))|u|(zi] (2.41)

y

where z is the hysteretic parameter and z, the value of the hysteretic parameter at yield.

The functions for stiffness degradation and strength deterioration are given respectively

as [51]:
()
ieafy) e 242

where ¢, and m, >0 are model parameters for stiffness degradation and c, is the

parameter controlling strength deterioration.
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2.6.1 One dimensional example

In this section, a simple one-dimensional case is considered in order to investigate the
effect of the degradation parameters in the overall shape of the hysteretic loops, their
evolution and the evolution of the hysteretic energy through time. The material has an
elastic modulus equal to 210GPa and a yield stress of 235MPa. The values of the model

parameters are presented in the following Table 2-2:

Description Symbol Value
Hardening constant a 0.03
Smoothness of the transition from elastic to
. . n 16
inelastic branch
Hysteretic loop shape B 0.5
factors /4 0.5
Stiffness degradation parameter C, 30
Stiffness degradation parameter m, 1.0
Strength deterioration parameter C, 0.001
Yield strain Z, 0.00112

Table 2-2: 1-D example parameter values

The loading is a sinusoidal straining load with 3 cycles over a total time of 36 sec with a
maximum strain amplitude of 0.6%. In Figure 2.10 the resulting stress — strain diagram is
presented. It can be observed that the stiffness is decreasing in each cycle due to the
increase of the hysteretic energy (Figure 2.11). In the same Figure the effect of strength
deterioration can also be observed. Moreover, in Figure 2.12 the evolution of the stiffness

degradation parameter from equation (2.42) is presented.

Following both the evolution of the stiffness degradation parameter and the hysteretic
loops, the following observations can be made. Firstly, stiffness degradation parameter is,
as expected, an increasing function over time. Secondly, during unloading and during the
elastic phase of loading, it remains constant, since no hysteretic energy is being

accumulated.
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Figure 2.10: Stress — strain hysteretic loop with stiffness and strength deterioration
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Figure 2.12: Evolution of the stiffness degradation function n
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In the next stress - strain diagrams the effect of changing the parameters, on the hysteretic
loops produced is presented, in order to showcase the wide range of hysteretic degrading
behavior the model can produce. In Figure 2.13 the hysteretic loops produced for different

values of the stiffness degradation parameter C, are presented. It can be observed that as

the stiffness degradation parameter increases the reduction of stiffness in each cycle is

larger, altering the shape of the hysteretic loops. Furthermore, in Figure 2.14 the effect

that the stiffness degradation parameter m, has on the stress - strain diagram is presented.
The main difference between these two parameters is that ¢, controls the actual value of
the reduction between the cycles while m, affects the rate of the evolution of the stiffness

degradation phenomenon. Finally the effect of the strength deterioration parameter c,

can be seen in Figure 2.15. The reduction of the maximum stress reached in each
consecutive cycle can be observed. As the value of the parameter increases, the rate of
this reduction also increases. It should be noted that the actual values of the
aforementioned parameters should be identified through the verification with
experimental data through either numerical or real experiments. There are three additional
parameters that need to be identified in addition to the Bouc — Wen model parameters,
giving an advantage to this formulation against others that rely on more parameters.
Moreover, it is common for the unloading branches to be straight lines. This means that

for the Bouc-Wen model one can take S =y =0.5 and the other parameters remaining to

be identified would be the post yield to initial stiffness ratio a and how smooth the

transition should be, n.
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Figure 2.14: Hysteretic loops for various stiffness degradation parameter m,
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Figure 2.15: Hysteretic loops for various values of the strength deterioration

parameter C,
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2.6.2 Three-dimensional stress space generalization

Previous relations hold for single degree of freedom systems, or for systems that the
degrees of freedom are uncoupled from each other when hysteresis is considered. To
extend the aforementioned model in the stress space, equation (2.34) now incorporates

the stiffness degradation and strength deterioration parameters and becomes:

{6} ==[D]([1]-v,H.H,[R]){¢} (2.43)

e" = [{o}d{s"} (2.44)

The intrinsic time can now be written as:
=1 Zsan((a 13} (o) () 245

The final form of the equations accounting for stiffness degradation and strength

deterioration in stress space [123] are now taking the following form:

{6} =[D] = ([1]-v,H,H, [R]) {&}

n
v, =1+cge" (2.46)
i)
ay(giff) ‘
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The tangent stiffness matrix with stiffness degradation and strength deterioration for the

general triaxial stress case can then be defined as:

I:EtDEGR:I — [D]

(2.47)

where [R] is the interaction matrix defined previously in equation (2.35) using

(2.29).The effect of the degradation parameters on the stress strain diagrams can be seen

in Figure 2.16.
)]
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Figure 2.16: Effect of degradation parameters for the three — dimensional case

The main advantage of the above formulation is that stiffness and strength degradation
are incorporated into a single additional evolution equation that needs to be solved

together with the Bouc — Wen hysteretic equations.

The actual solution process is different for the two numerical methods that are
investigated in the present work. In the Rigid Body Spring Network model, in Chapter 3,
an implicit solver is used based on Runge-Kutta and Livermore algorithms [106]. The
structures stiffness matrices are expanded with hysteretic matrices and the whole system

is solved together with the evolution equations. In the Material Point Method in Chapter
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4 an explicit time marching algorithm is employed, and the solution of the equations is
done in a Forward — Euler scheme. The solvers are presented in greater detail in their

respective Chapters.
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Chapter 3: Rigid Body Spring Network model

3.1 Introduction

Lattice spring models (LSM) have been widely used for numerical simulations in many
scientific fields, ranging from the atomic level [87] to the motion of planets [80].
Engineers have used these models in structural mechanics to simulate a broad range of
physical phenomena such as fracture [18], elastic wave propagation [139], fluid dynamics
[88, 35], heat diffusion [62] and viscoplasticity [79]. They represent a continuum solid
by a discrete system. Spring networks, although discrete in nature, are capable of
simulating continuum systems by modeling them with lattices, much coarser than the
atomic ones, reducing the total degrees of freedom needed for the analysis. The lattice or
spring network model idea combines the physical structure of matter at the very small
scale with the more general engineering approach of modelling masses interacting with
spring systems.

The concept of a Rigid Body Spring Network model was first proposed by Kawai [77].
The main idea, based on a physical model rather than a mathematical one, was to divide
the structure into discrete rigid bodies interconnected with springs and hence reducing the
computational effort needed for dynamic analysis compared to the Finite Element
Method. This observation was based on the fact that the elemental stiffness matrices in
RBSN have dimensions of 6x6 irrespective of beam plate, shell or solid elements and thus
the total degrees of freedom could be reduced compared to FEM.

The RBSN model has been used widely in structural engineering and has been used
efficiently in the simulation of structural concrete [48, 143] and the modelling of fracture
[19, 21, 49]. In addition it has recently been used to simulate brittle fracture in rocks using
a Cohesive Zone Model [107]. Bolander and Saito [20] proposed the scaling of elemental
stiffness according to Voronoi tessellation of the domain in order to ensure elastic

uniformity and maximize the isotropy of crack path propagation, since crack movement
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is confined within the boundaries between particles and is therefore strongly affected by
the implemented meshing strategy. Their work is based on static loading, which was
applied incrementally in concrete specimens in order to investigate the crack path.
Voronoi scaling has been also used to simulate concrete fracture under dynamic loading
using viscoplastic damage models to describe the rate dependency [79, 68]. Recently,
Elias [47] studied the boundary layer effect of random geometry Voronoi tessellation
discrete models. An explicit time integration scheme has also been developed for RBSN
[137]. However, a rate independent plasticity model such as the Bouc Wen model of
hysteresis, has not yet been applied to the Rigid Body Spring Network framework to

model plasticity related phenomena.

3.2 Voronoi tessellation

Discretizing a domain with VVoronoi diagrams is a powerful meshing tool and plays a
dominant role in the RBSN formulation. This technique has been applied successfully
both in two- and three-dimensional high complexity geometries. The first step in creating
a Voronoi diagram is to distribute points inside the domain. These points are going to be
the nodes of the VVoronoi diagram and can be regularly or randomly placed. For each node
there exists an area that is called a cell of the Voronoi diagram. Cell i is defined as the
area that encloses all the points that are closer to the node i than any other node in the
mesh. This consists a basic property of VVoronoi diagrams and discretizes space into a sum
of curved polygons. The cell that corresponds to node i is:
V(Xi):n{x|d(Xi,X)£d(Xj,X)} 3.1)
j#i
where X, are the coordinates of node i, d(X;, X) is the distance between X, and

position X and the intersection refers to the set of points for j=1,...,n, except the case
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where j=i. The previous equation (3.1) defines that every point belonging to a cell of a
Voronoi diagram is closer to the node of this cell than any other node in the mesh (Figure
3.1). A set of two nearest neighbors makes up the edges of the VVoronoi diagram. The set
of three or more nearest neighbors makes up the vertices of the diagram.

Voronoi diagrams are the dual graphs of Delaunay triangulation. Delaunay triangulation
foragivenset P of discrete points in a plane, is a triangulation DT (P) such that no point

in P is inside the circumcircle of any triangle in DT (P) . Delaunay triangulations

maximize the minimum angle of all the angles of the triangles in the triangulation.

\oronoi Delaunay Delaunay and
diagram triangulation \oronoi

Figure 3.1: Voronoi diagram and its equivalent Delaunay triangulation

Several algorithms have been developed that apply VVoronoi tessellation and automate the
process for complicated domains and uniform or random distributions of points. For
orthogonal domains creating the boundaries is achieved with the use of 4 auxiliary points
for every node. These auxiliary points lie outside the domain as can been seen in Figure
3.3.

The Voronoi diagram is then constructed for all the points, both the initial points as well
as their quadruplet auxiliary points as can been seen in Figure 3.2. This way the
boundaries of the orthogonal domain are automatically generated. The points that lie

outside the orthogonal domain are then being discarded.

49



Rigid Body Spring Network and Material Point Method for the Elastoplastic Analysis of Structures

03 —

02 = A AN AN LA A LA NS DS e EAD R ar At e
PR ARG O o S R R
T

0.1 L

-0.1

Figure 3.2: Voronoi tessellation of an initial orthogonal domain and the auxiliary

points needed for boundary formation

(x,2b-y)

(a,b)

(%) (2a-x,y)

I:K, 'Y]

Figure 3.3: Auxiliary points for constructing domain boundaries

3.3 The Rigid Body Spring Network Model

3.3.1 The case of homogeneous isotropic material

In the RBSN framework the structure is divided into a set of rigid particles, which are
considered interconnected along their common boundaries with zero length springs (Figure
3.4). Structure deformation is based solely on the localized deformations of these internal
springs. Particles or cells are assumed to be rigid in the sense that they don’t deform but,

depending on loading, they can separate or overlap.

50



Chapter 3: Rigid Body Spring Network model

This predetermined set of points act as the nuclei used to define the VVoronoi diagram
(Preparata and Shamos [105]). The Voronoi diagram mainly divides the domain into
convex polygons i.e. the Voronoi cells that define the rigid particles of the model. VVoronoi
cell I is defined as the set of points that are closer to its generator node | than any other
node in the system. Each individual element consists of two rigid particles and their
common facet as shown in Figure 3.4, where by definition the line connecting the
computational points 1 and 2 will be perpendicular to the common facet connecting the

generated points 3 and 4.

3(x5,y3)

. i k . Z(Xz;yz)
— X,

Tixyyy)
4(x4,y4)

a).‘... AR, i .'.'--Ab) c)

Figure 3.4: Rigid Body Spring Network structure discretization, a) random initial
point distribution, b) Voronoi tessellation, c) single element

Let the coordinates of the computational points be (X, ;) and (x,,Y,) for the two

particles and (X;,¥,), (X, Y,) the coordinates of the end points of their common

boundary edge. The displaced position of an arbitrary point, with coordinates (x, y), that

lies inside particle 1 (Figure 3.4) can be calculated from:

(3.2)

where u,, v, and & are the translational displacements and the rotation of particle 1

computational point. At the middle of this common boundary edge (their interface, point

P in Figure 3.4) lie three zero length springs with stiffness k,, k; and k, in the normal,
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tangential and rotational sense respectively (in the local coordinate system). Therefore,

the diagonal matrix of these uncoupled stiffnesses can be defined as:

~

0 0
k. 0 (3.3)
0 k,

[D]=

o O

Considering the relative displacements at point P in the facet local system:
{dY =[5, & ¢ (3.4)
and the global nodal displacements of the two computational points - nodes:

{ue}T:[ul Vi 01 u, Vv, 92] (3.5)

These are interrelated through:
{d}=[Bl{u.} (3.6)

where [B] is a purely geometrical matrix with dimensions (3>< 6) and expressed as [20]:

Yz X3 (_X43XP1 — Y yPl) Va3 Xy3 (X43yP2 + y43YP2)

1
[B] = |_ X3 Yas (y43XP1 —Xg3 yPl) Xz Y3 (_Y43XP2 + X43Yp, ) (3-7)
1o 0 —,, 0 0 |3

where X; =X —X;, Y; =Y;—Y; and I; is the Euclidean distance between points i and j
. Point P is located at the middle of the common boundary and the terms in Equation

(8.7) are given as: X; =(X,; +X;)/2, Y =(Y4 + Yy )/ 2. Inaddition, the internal forces

of the springs {q} are evaluated in the elastic case using the relation:

F

n

{q}=1F =[DHd} (3.8)
M
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where F, F, are the spring forces along the normal, tangential direction respectively and

M the moment of the rotational spring. In order to approximate the elastic properties of
the continuum, spring stiffnesses are scaled based on the VVoronoi discretization diagram
and in order to approximate the elastic properties of the continuum, they are given from

the following equations [77, 20]:

Etl
k — 43
) (l—vz)h
 —_ Etly
Y (2(1+v))h
k,I2

_ Pnlas

712

(3.9)

For plane stress conditions and, E being the elastic modulus, v the Poisson ratio, t the
thickness of the domain and h the distance of the two nodes. In order to obtain the

elemental stiffness matrix, the principle of virtual work is applied [20] and the following

(6x6) matrix is derived:

[K], =[B] [D][B] (3.10)

All elemental stiffness matrices of every two-particle system are then combined using the

direct stiffness method [12] to form the global stiffness matrix of the structure [K]S . This

global matrix has dimensions of (3n><3n) where n is the total number of nodes.

The motion of each discrete rigid particle is determined by the displacements of its

centroid, which in the two-dimensional case consists of 3 components. If (u;,v,,6,) are

the displacements of the particle’s centroid, an arbitrary point on the particle with

coordinates (x, y), assuming small rotations, will be displaced as follows:
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u=u—(y-y,)é

vy - (x-1)6, -

Relation (3.11) is used also to express the inertia forces with respect to the computational

points. For the dynamic equation of motion, the formation of mass and damping matrices

is essential. Let m and I, be the mass and the mass moment of inertia of a given cell

about its center of mass. These are expressed about the computational point as in the

following Equation, forming the elemental mass matrix:

m 0 —-y.m
[M.]=| © m x.m (3.12)
—y.m xm I +mr?

where X_, Y, are the coordinates of the center of mass from the computational point and

r= m is the distance between the two. The final mass matrix of the system [M ]s
is assembled from all the individual cell mass matrices by combining the values that
correspond to each degree of freedom and has a size of (3n ><3n) prior to the enforcement
of boundary conditions. The damping matrix [C]_ has the form of a Rayleigh damping

matrix [37] and is assumed to be proportional to the mass and stiffness matrices and has

also dimensions (3nx3n) in the global level. For static problems the following relation

has to be solved:

[K], {u} ={F} (3.13)

[M]{a}+[C], {u}+[K], {u} ={F (1)} (3.14)
where F(t) is the vector of the external loads with dimensions of (3n xl), n being the

total number of nodes.
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3.3.2 State space formulation

In order to solve the dynamic problem, the system of equations is formulated in state
space form. State space formulation is used to convert a system of differential equations
into a set of matrix equations. For most differential equations in engineering, there are
terms that can be interpreted as inputs to a system and terms that can be interpreted as
outputs of the system with the system itself being described by its state variables (Figure

3.5).

State variables

Input function Output
gl(t) _’ / \ _’ yl(t)

g,(t) =P X (1), %), wx. @) | = Y, (t)

Figure 3.5: State Space formulation of a system

The equation of motion (3.14) is a set of second order ordinary differential equations that

has the following general form:
(A +[A ] +[A X = {F (1)} (3.15)
where:
 {x} being the vector of the generalized coordinates( displacements {U} in (3.14),

e [A].[A] [A] are matrixes describing the independent of time characteristics

of the system (mass [M] , damping [C] and stiffness matrices [K],

respectively),

55



Rigid Body Spring Network and Material Point Method for the Elastoplastic Analysis of Structures

o {F} is the vector function of time that contains the external forcing functions
acting on the dynamic system.

The mass matrix is symmetrical which simplifies the procedure. However, if the mass
matrix was not symmetrical [57] it is possible to rearrange the equations of motion, by
writing the matrices as the sum of a symmetrical and a skew-symmetrical matrix, and

then proceed as follows.

In RBSN the total number of degrees of freedom is 3n with n being the number of nodes.
A set of 3n second order differential equations can be expressed in the form of a set of
2-3n first order equations and the solution in dynamics is usually done in the first
derivatives. The state variables of the system are the independent variables and the

equations can be written as [57]:
{2} =[Al{z}+[B]{g} (3.16)
where:

. {z} is a vector of dimensions (2-3n ><1) that holds the state variables,

e [A] is a matrix with dimensions (2-3nx2-3n) which does not depend on time

and is called the dynamic matrix.

o {g} is a vector function of time that holds the input functions of the system, and
its dimensions are the same as the number of inputs of the system n, ;.
o [B] is a matrix that correlates the inputs with the equations. Its dimensions are

(2-3n><n. )

inp
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In the above equation {z} is actually a column matrix that can be described as a vector

in the (2-3n)-dimensional space. This space is called the state space of the system,

signifying that each point belonging to this space correlates to a given state of the system.

To transform the system into the state space, a set of (Sn) auxiliary variables must be

introduced. By choosing the generalized velocities as auxiliary unknown then:

o[

An equation that relates the generalized velocities and coordinates must be added.

Assigning {v} ={X} then the set of (2-3n) equations corresponding to (3.15) takes the

form:

{{V'_}=—[A]1[A2]{v}—[/x]1[A3]{x}+[A]1{F<0} (3.18)

as.

(3.20)

Since the external forces acting on the system are the input functions of the system, then

the vector function that holds them is simply:
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{9} ={F®)} (3.21)

and finally, equation (3.16) becomes:

1= M1 (e —[Mlal[KL}{z}{[MLl{F(t)}} 622)

I 0

In this above form the linearity of the equations means that a unique solution exists, and
the equations have been transformed into a set of first order differential equations, that
can be solved. The state space form of the equation of motion and the evolution equations
of Bouc — Wen are presented in Paragraph 3.4 together with the incorporation of the

hysteretic model into the RBSN.

3.3.3 Mesh generation procedure

Considering a two dimensional rectangular domain, according to Bolander and Saito [20]

the maximum number of points that can be placed using a random distribution process

and a minimum distance criterion, is i=0.68ab/d? where a and b are the height and
width of the rectangular domain respectively and d_ is the user defined minimum

allowable distance between points. By choosing n — i the mesh becomes more regular
and the points are distributed more uniformly. It should be noted that parameter i comes

from numerical experimentation.

The necessity for this formulation is that Voronoi scaling of the spring constants
essentially renders the structure elastically uniform for simple modes of straining as
shown in [20] and [16]. If the structure is discretized using a VVoronoi diagram and the
nuclei of the Voronoi diagram define the computational nodes of the model, then the
RBSN model is elastically uniform. In that regard, the use of the Voronoi diagram is not

just an efficient method meshing technique. The spring constants that are assigned are
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uniquely defined by the local structure of the network. In this way discretization becomes
more natural in a sense that is capable of expressing a directional uniformity of the
response. This property renders itself useful for the formulation presented in the next
paragraphs, in the case where plasticity is concerned and with regards to fracture

representation, by maximizing isotropy regarding potential crack direction.

a) .‘.. N . ‘..' -7 -...-."... b)

Figure 3.6: Different mesh generation procedures for the VVoronoi diagrams, a)

without a minimum distance criterion, b)with the criterion

3.3.4 Equivalency to beam element

The Rigid Body Spring Network can be considered as a special type of beam spring
network. In general, the elemental stiffness matrices that are formed are different from
those of ordinary beam elements. There is, however, a case where they can be made the

same that manifests in the case of a regular square lattice.

Figure 3.7: Single element aligned with global axes
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Consider the single element depicted in Figure 3.7 that consists of two particles that align

with the global axis in the x-direction and their interface is aligned with the axis in the y-

direction. Then y,; =Y,, =X,; =0 and y,, =1,,. Also, for the sake of clarity let 1,, =1,

then:
Xo1 = (X + %) 1 2=((%, =% )+ (X%, =% ) /2=(h +h)/2=h (3.23)
and
Xoo = (X + %) 1 2=((X, =%, )+ (X =%, )) [ 2=(-h, =)/ 2=-h,  (3.24)
This leads to [B] matrix of equation (3.7) simplifying to:
0O 0 -1 0 O

|
01 Ih 0 -1 -h, (3.25)
00 -1 0 0 I

[B]=%

and the following elemental stiffness matrix is formed:

K K
[Ke]:{ H 12} 3.26
(6x6) Ko Ky (3.26)
where:
Etl
— 0 0
(1—v2)h
Etl Etlh,
K, = 0 — 1
" 2(1+v)h 2(1+v)h (3.27)
Etlh, Etlh/ Etl®
0 +
2(1+v)h | 2(1+v)h (1—v2)12h
and:
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Etl
- 0 0
(1—v2)h
Etl Etlh
K, = 0 — —2_
2 2(1+v)h 2(1+v)h
0 __Etlh Etlhh,  EtP
2(1+v)h {2(L+v)h (1-v*)12h
Etl
0 0
(1—v2)h
Etl Etlh
K,=| 0 - =
# 2(1+v)h 2(1+v)h
0 __ Etlh, Etlh? . Etl®
2(1+v)h | 2(1+v)h (1—v2)12h

[Ke]=

0 0
12El 6El
L2 L*
481
L
SYM

=
L
. _12LE|
6El
e
g,
L
12EI
L3

a square beam element network are essentially identical.

6El
L2

281
L

0

6El
e
481
L

|

|

(3.28)

(3.29)

Assuming further that the network is square, h=1, h =h, =h/2and that Poison ratio is

zero v=0, and setting A=tl, I =tI*/12 then the beam element stiffness matrix is

(3.30)

This leads to the conclusion that the RBSN for the strict conditions mentioned above, and
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3.4 Incorporation of Bouc — Wen model in RBSN

The spring forces at the middle of the facet (Figure 3.4) are equilibrated at the

computational nodes by F,, F, and M, which are expressed using the relation:

Fn
=[B] F, (3.31)
M

According to Bouc-Wen model spring forces can be decomposed into an elastic and a

hysteretic part:

F, =ak, s, +(1-a)k,z,

F =aksd, +(1-a)kz (3.32)
M= ak(pqo+(1—a)kgzw

or in matrix form:

F, ak, 0 0 |[s,] |(1-a)k, 0 0 Z,
Fit=| 0 ak O |4 ¢+ 0 (1-a)k 0 Z, ¢ (3.33)
M 0 0 ak,|le 0 0 (1-a)k, ||z,
where the hysteretic forces are:
F" (1-a)k, 0 0 z,
(F'y=<F"t=| 0 (1-a)k, 0 z, (3.34)
M" 0 0 (1-a)k,||z,

Considering equations (3.6), (3.33) and substituting into (3.31) the following relation can

be derived:
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F! u,

;yll Jak 0 0 ‘gl [a-ay, o 0o 1z,

=2 =[B] | 0 ak 0 [[B] uz +[B] 0 (1-a)k, 0 z ¢ (3.35)
F} 0 0 ak, W, 0 0 (1-a)k, ||z,

M2 6,

where the hysteretic part is following a Bouc-Wen nonlinear first order differential

equation of the form:

. z .
2. =0, | 1-|—= 1)
z,=9, n (;/+ﬁsgn(zn n))
. . Zt " .
z, =9, 1—2—t (7+ﬂsgn(ztét)) (3.36)
y
7 n
2,=¢ 1—2—2 (7+,Bsgn(z¢qb))
The hysteretic matrix is defined as
(1-a)k, 0 0
[H]=[B]| o @-ak O (3.37)
0 0 1-a)k,

where parametersn, «, S, are considered the same for all springs, but in general may be

different. The formulation takes into account the coupling of axial and shear forces and

moments through the inherent equilibrium coupling. One way to treat interaction of
internal variables during plasticity is through the evaluation of the yield parameters z
zty and zy. The interaction of these parameters can be implicitly accounted for, through

the evaluation for example, of the bending yield parameter for the anticipated level of
axial forces, considering axial-bending interaction. A more formal formulation would be

to employ the interaction matrix of equation (2.35) together with a yield criterion
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expressed in terms of hysteretic forces which results in the following modification of

equations (3.36):
Zn Sn
2, t=([1]-HH,[R])< &, (3.38)
Z(P 5(0

with | being a 3x3 identity matrix. The evolution equations of the hysteretic forces are

expressed as:

R (1-a)k, 0 0 5,
(Fl=1R"r=[Bl| 0o (-a)k 0 |[I]-HH[R]){4 (339)
M" 0 0 (1-a)k, 5,

In the above equations H, and H, are evaluated as:

H=[o(F R M")+1

n

o (3.40)
H,=y+Bsgn| {F F" M"}44
5(/7
and @ is the yield criterion such that:
o({F"})-1<0 (3.41)

Finally, the interaction matrix can be expressed as:

| el [ e ] e

Combining all the elements hysteretic stiffness matrices the structure hysteretic matrix

[H], can be derived, with dimensions (3xn,3xn, ) where n, is the number of elements

and n is the number of nodes. The dynamic equation of motion has the following form:
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[M], {a}+[C], {u}+[K], fu}+[H], {z} = {P(1)} (3.43)

The equation of motion together with the differential equations of Bouc-Wen type are

solved simultaneously. The linear equations of motion with respect to the displacement

vector {u} can be solved using Newmark’s method together with a Runge-Kutta

integrator for the nonlinear evolution equations in coupled form. An alternative approach

is to transform the system into state-space form by introducing as additional unknown the

vector of nodal velocities {u} This way the dynamic equilibrium equations are

transformed into a set of linear differential equations of first order coupled with the

nonlinear first order Bouc-Wen evolution equations.

Lot v il
7)) - ey 4

{zh=1({u}.{z}) (3.45)
Combined the previous relations lead to the following augmented system to be solved
{3 =G({x)+{FO) (3.46)
where the matrix G is a state dependent operator and has the form:

0 ! 0
G({x})=|-[M]"[K] —['V'.]'l[C] -[MT[H] (3.47)

and {x} is the augmented vector:
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{3=1{u} (3.48)

In relation (3.47) evolution equations are in implicit form in the third row for all elements.
The above system of differential equations, for a given dynamic loading and initial
conditions can be integrated using robust numerical integrators such as Runge-Kutta or
Livermore algorithms [106]. In this work a variable order solver based on numerical
differentiation formulas is used [111] that is proved more efficient. In addition, since the
differential equations of each element are uncoupled, they can be solved in parallel

allowing for effective use of massively parallel supercomputers and faster calculations.

The entire formulation focuses on the displacement field and the forces and moments
developed at the rigid cells. In this respect the stress field is concentrated at the facets
while at the cells is circumvented rendering the method appropriate for the contemporary

displacement based and performance-based design procedures.

3.5 Fracture representation in RBSN

There are three modes of fracture depicted in Figure 3.8. They are distinguished based on
the stress that drives the crack opening. In Mode I the crack tip is propagating due to
tensile stress, normal to the crack surface. In Mode I, there is shear stress driving the
crack movement that is parallel to the crack surface. Mode 111 is a tearing mode in a sense

that the shear stress acting on the crack is out of the plane of the crack surface.

Several criteria have been proposed for the simulation of initiation and propagation of the
crack as well as to best determine its path. [76]. In Linear Elastic Fracture Mechanics, the

most common used criteria are the Maximum Tangential Stress criterion (MTS [50]), the
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Minimum Strain Energy Density (MSED [113]) criterion and the Maximum Energy

Release Rate (MERR [100]) criterion.

Mode | crack Mode Il crack Mode I11 crack
(opening mode) (sliding mode) (tearing mode)

v~ 4 “
v

Figure 3.8: Three fracture models.

In numerical methods the models simulating crack initiation and propagation can be

divided into three main categories:

e Continuum damage models.
e Discrete models of fracture.

e Models based on variational principles.

The RBSN model provides a discrete representation of the structure. Crack opening and
crack propagation is therefore bound to develop at the interfaces of the cells. This means
that crack movement is directly affected by the local shape of the tessellation. According
to [110] regular meshing strategies create a bias of fracture movement towards the
predetermined cracking directions. A triangular lattice for example offers three distinct
directions for crack movement. Some authors have developed adaptive algorithms for
remeshing the area around the crack tip in finite element [70] and boundary element [29]
methods. When adaptive strategies are not implemented or the fracture is not localized,
random mesh design is an effective strategy for minimizing bias towards crack
movement.
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Figure 3.9: Typical three cell Voronoi assembly and crack opening at the interface

of two cells k and j.

Using the Voronoi tessellation, the edges of the cells that are created are met, except under
special conditions, in triple junctions as in Figure 3.9. Because Voronoi tessellation
divides the domain into convex polygons all the angles at the junctions will be smaller
than 180°. For a random distribution of points using the minimum distance criterion and
the number of points approaching i as previously mentioned the mean value of the

angles a that are formed is 120° with smaller variance. This leads to a greater degree of

isotropy regarding possible crack movement.

Several spring braking rules have been proposed by authors mainly based on critical
energy or critical stress [73]. In this work a simpler approach is utilized. Both crack
initiation and crack propagation obey simple cut-off rule in combination with a Mohr-

Coulomb type of criterion for normal and tangential stresses, following the work in [20].

In each computational cycle the stress of the normal and tangential (s, and s,

respectively) springs are calculated as:

Sn — qn , St — qt
(S;t) (S;t)

(3.49)

68



Chapter 3: Rigid Body Spring Network model

where S; is the length of the common facet of particles i and j, t is the thickness of the

structure, ¢, and g, are the normal and tangential forces acting on the respective local

springs. These are then used to calculate r as:
r=(s+s’) (3.50)

i.e. the distance from the origin in the normal and tangential stress space, and are

compared to the fracture surface with the criterion:
r
R=—>1 (3.51)

where 1, defines the area in the stress field, inside which every pair of normal ant

tangential stresses don’t lead to fracture, and can be seen in Figure 3.10.
St

(S5t

2f;

No fracture | /¥ rf

area.

._f -~
)
Figure 3.10: Mohr-Coulomb type of criterion with cut-off for normal stresses

If the fracture criterion is satisfied then for this surface, and therefore element, brittle
fracture is assumed. This means that the element spring forces are released and the local
spring stiffnesses are set to zero. Only one fracture event is allowed for each
computational cycle and that is the element with highestR . In order to advance to the

next computational step all stresses must lie within the fracture surface. In addition, the
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criterion assumes traction free cracks and although, using the Voronoi tessellation the
mesh bias regarding crack movement is minimized, crack propagation is not objective
with different mesh sizes. Although simple in its apprehension and implementation, the

fracture criterion should be extended to account for proper fracture energy calculation.

3.6 RBSN — Single element verification

3.6.1 Plasticity

For this first example a 1x0.5m domain is discretized with 2 nodes and 1 element as shown
in Figure 3.11 using the RBSN model. This demonstrates the hysteretic behavior at the
elemental level, which is easier to follow, as in models with a large number of elements
the overall behavior is reflected. The material is steel S235 with an elastic modulus of
210GPa, the Poisson ratio is set to 0.3 and the thickness of the model is assumed to be
0.02m. The first node is fixed and a sinusoidal force of increasing amplitude with a
maximum value of 2700kN is applied to the second node in the horizontal direction as in
Figure 3.12. The analytical expression of the applied force time history is as follows.

P(t)=2700—sin (3xt) (352)

end

The analysis run for Teng=5sec. The Bouc-Wen parameters are set to n=8 and
p =y =0.5. The ratio of the inelastic to the elastic stiffness, i.e. the slope of the post yield
branch is considered to be 5%.

The resulting force-displacement diagram is shown in Figure 3.13. The results display the
hysteretic loops due to the dynamic external loading exceeding the yield force of 2350kN
and the slope of the post elastic regime is at 5% of the initial elastic stiffness validating

the numerical code.

70



Chapter 3: Rigid Body Spring Network model

Force (kN)

7
1 2
0.5m [ c
«— 0.5m > 0.5m ——

Figure 3.11: Single element geometry for plasticity
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Figure 3.12: Applied load time history
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Figure 3.13: Force-Displacement diagram
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3.6.2 Plasticity and fracture

For a second example a 1x0.1m domain is discretized with 2 nodes and 1 element as

shown in Figure 3.14 and the thickness of the model is 0.05m:

1. 2. I 0.1m

A\

+«—— 0.5m

\4
A

0.5m —

Figure 3.14: Single element geometry for plasticity and fracture

This example demonstrates the hysteretic behavior and fracture propagation at elemental
level and is used to verify the methodology and the developed codes. The material

parameters are depicted in the following Table:

Description Symbol Value
Elastic modulus E 210GPa
Yield stress o, 16
Hysteretic loop shape factors B=y 0.5
Smoothness parameter n 8
Post yield stiffness ratio a 2%
Yield strain Z, 0.00112

Table 3-1: Parameters of single element example with plasticity and fracture

The specimen is fixed on one side and the force is pseudo static applied in the x direction
on the other side. The yield force for this simple tensile case can be evaluated analytically

as:
F, =0, - A=240000(kN /m*)-0.1(m)-0.05(m) =1200kN (3.53)

Fracture is considered at 1.150y = 1320kN. A monotonically increasing force is applied
with maximum value of 1400kN. Force — displacement results are shown in Figure 3.15.
As expected, yielding occurs around 1200kN while fracture occurs at 1318kN denoted in

Figure 3.15 by the red dot. After that time the algorithm followed a straight line since the
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stiffnesses of the internal springs where released and thus the structures stiffness matrix

was singular.

1400

1200

1000 |

800 ¢

600 |

Force (kN)

400

200 -

1 1 1 1 1 L
0 0.2 0.4 0.6 0.8 1.0 1.2 .
’ x 10
Displacement (m)

Figure 3.15: Single element force displacement curve with fracture at the red dot

3.7 Mesh sensitivity in RBSN

3.7.1 Elasticity

In this analysis, the effect the RBSN mesh density has on the overall solution, is
examined. To this end, a cantilever beam is assumed with dimensions of 1x0.1m. The
beam is considered elastic and is loaded at its free end. For this case, the analytical
solution is known for the deflection of the free end and is given by the following formula:

3
5= Pl

=s=r (3.54)

Assuming the Young’s modulus, load and depth of the beam are E=400000 N/m?, P=1N
and b=1m respectively, then from Equation 1, the deflection of the beam is calculated as
0.01m. For the RBSN a Poisson ration of 0.3 is additionally considered. Eight set of
analyses were run. In each set a different minimum distance criterion is chosen starting
from 0.05m for a crude mesh to 0.005m for a very fine mesh. Moreover, since the point
generation is random, three analyses are carried out in each set. The eight minimum

distances studied, as well as an indicative discretization for each case, are shown in Figure
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3.16. At the two ends of the beam the points are strategically placed in a uniform manner

in order to facilitate the imposition of essential boundary conditions and loads. Results

regarding the deflection of tip of the beam are presented in Figure 3.17 as well as in Table

3-2, together with the number of nodes and number of elements for each model. As it can

be observed, the RBSN approaches the correct solution and can reach satisfactory results

even with the crude mesh. However, as the minimum distance is lowered, the mesh

becomes finer, and results appear to deviate from the correct solution, with the overall

structure becoming less stiff. This mesh dependency is a characteristic of lattice systems

in general. The ability of a lattice model to be used as an idealization of a structure should

be investigated further and validated.

Minimum flecti Number of Number of
distance (m) Case Deflection (m) cells elements
A 0.009212 40 78
0.050 B 0.009529 43 86
C 0.009448 42 82
D 0.009528 63 138
0.040 E 0.009501 63 137
F 0.009542 61 130
G 0.010029 97 224
0.030 H 0.009999 92 212
I 0.010677 96 221
J 0.010559 130 313
0.025 K 0.010511 128 307
L 0.010421 129 310
M 0.010299 193 487
0.020 N 0010569 194 489
o) 0.010701 189 473
P 0.010684 326 862
0.015 Q 0.010829 335 882
R 0.010738 331 873
S 0.011433 705 1931
0.010 T 0.011407 725 1992
U 0.011623 715 1958
V 0.011728 2765 7784
0.005 w 0.011683 2760 7769
X 0.011651 2770 7791
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Figure 3.17: Cantilever beam tip displacement for all analyses
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3.7.2 Plasticity

In order to investigate the mesh dependency of RBSN when plasticity is concerned two
cases are being investigated. In the first case, a steel beam with dimensions 1x0.2m is
examined. The beam is loaded with a sinusoidal load that leads to the beam exciding its
yield point. Firstly, results are compared with Finite Element codes for the dynamic
problem to ensure and verify the accuracy of the proposed formulation. Secondly, 10
more analyses are being carried out. In these analyses the total number of nodes that the
beam is discretized is kept the same. This explores how the randomness of the directions

of the facets affects the results in hysteretic simulations.

For the second case an aluminum plate with a central hole is studied. The load is a
constantly increasing one that leads to the plates yielding. In this case the plate is
discretized with a various number of nodes and different minimum distance criteria. The
structure is discretized with 53, 109 and 315 nodes. This is to investigate how mesh and
element size affects the numerical results, which are compared with results from Finite

Element codes.

3.7.3 Random node positions, fixed beam,

This example refers to the dynamic response of a beam with dimensions 1x0.2m and
0.02m thickness, to a sinusoidal excitation. Material is steel S235 with 5% hardening and

5% damping. Beam discretization is presented in Figure 3.18.

The number of nodes is 64 for this first analysis and the number of elements is 146 with
a minimum distance of 5¢cm. The force at the end of the beam is harmonic and acts in the
vertical direction with a maximum value of 75kN. In ANSYS [6] a bilinear model with

kinematic hardening is used with 1cm quadrilateral elements. In Figure 3.18 the plastic
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regions developed in the beam at the final instance of the applied dynamic loading are

presented. These are concentrated as expected near the fixed support.

Figure 3.18: Beam plastic regions (ANSYS up vs RBSN model down)

The regions that underwent plasticity are similar in both cases for this specific coarse
discretization, although in the Rigid Body Spring Network model with Bouc-Wen they
seem to extend further along the length of the beam. In Figure 3.19 the displacements of
the free end of the beam are compared between ANSYS and the proposed formulation.
The results are in good agreement considering the differences of the two methods. It is
apparent that the proposed method is capable of expressing the main characteristics of the

hysteretic behavior.

In addition to the previous analysis, the same structure is discretized 10 different times
using, for all cases, the same minimum distance criterion of 5¢cm. Since the node
generation is based on a random procedure, each discretization will be slightly different
from one another, resulting in different shaped elements and various facet orientations.
The purpose of this analysis is to examine the effect of the randomness of discretization
in the overall behavior of the structure when hysteresis is involved, for similar element
numbers. In Figure 3.20 the different discretization of the beam for the 10 different cases
are presented while the corresponding results are all plotted in Figure 3.21. They are

presented in the form of the displacements of the free end of the beam.
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Figure 3.19: Beam free end displacement vs time

It can be observed that the global behavior of the structure is indeed slightly affected for
this crude discretization criterion similarly to the results from the elastic static analyses
of Paragraph 3.7.1. In the next example, the effect of the mesh element size on the overall

hysteretic response is going to be investigated.

Figure 3.20: Different discretization with same minimum distance criterion of 5cm
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Figure 3.21: Beam free end displacement vs time for 10 different discretization

schemes

3.7.4 Increasing number of elements, perforated sheet

In this example, an aluminum plate with a central circular hole is examined. Material

parameters are E=72GPa, v=0.22, o, =262 MPa, a=0.002. Bouc-Wen parameters

used are S =y =0.5 and n=8. Due to symmetry of the model only a quarter is analyzed

with the boundary conditions and loads applied on nodes. The geometry is presented in
Figure 3.22, while the reduced discretized model due to symmetry, with the appropriate

support conditions are schematically presented in Figure 3.23.

Three analyses are carried out. For the first analysis the minimum distance between nodes
is set to 5cm. This way the total number of nodes for the simulation is 53, while the
number of elements is 128. For the second case the minimum distance is set to 3cm thus
creating 109 nodes and 289 elements and for the third a minimum distance of 2cm
resulting in 315 nodes and 873 elements. In all cases the nodes along the perimeter are
manually placed, while interior nodes are placed automatically following the minimum

distance rule.
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Figure 3.22: Geometry of metal sheet with central hole
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Figure 3.23: Different discretization (873, 289 and 128 elements) for the reduced

model

The displacement of the upper left node of the model is examined and the force-
displacement diagram is presented in Figure 3.24. Results are compared with those
obtained using the elastoplastic Finite Element HYPLAS code [97] as well as in [126].
The solution obtained from the proposed formulation is in good agreement with the other
solutions, showing the model’s ability to simulate hysteretic behavior of various plane
structures. There are some differences present in the transition from the elastic to the
inelastic branch for the discretization with 5cm minimum distance criterion (128

elements). For this case, the load — displacement curve of the proposed model appears to
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be smoother and yielding seems to occur at a smaller load. This can be attributed to the

coarse discretization due to the larger minimum distance criterion used.

120

100

80

60

Load (kN)

HPSE (284 elements)

40t ——Hyplas (414 elements)
—Proposed (128 elements)
—--Proposed (289 elements)
201 - -Proposed (873 elements)

0 5 10 15
Displacement (mm)

Figure 3.24: Load displacement curves comparison

By reducing the minimum distance, the structure is discretized with more nodes and
elements and gives better results. This indicates the mesh density dependency of the
RBSN models. However even with coarser discretization numerical results approach the

correct solution in an effective manner
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4.1 Introduction

The Material Point Method (MPM) is a hybrid method in a sense that it employs both a
Lagrangian and an Eulerian description. It is also a discrete method in a sense that all the
information is carried by the particles and the mesh is only used for calculations. The
Material Point Method can be considered as a successor of Particle-In-Cell (PIC) methods.
The first PIC formulation was developed in 1955 by Harlow [63, 65, 64] and was mainly
used in fluid mechanics problems. In PIC both Lagrangian and Eulerian descriptions are
employed, in a sense that the fluid is discretized with Lagrangian particles but the
computational mesh is Eulerian. The Lagrangian particles in PIC carry some material
properties like position and mass. The method can be divided into two distinct phases for
each computational step. The first phase is the Lagrangian one, where all the variables
are updated. This includes the nodal positions of the mesh. In the second phase, the
Eulerian one, the computational mesh is reset to its original position and the particles
remain at their updated positions. In PIC some information is stored in the computational
grid while particles carry only mass and positional information. The main issue of the
P1C method was numerical dissipation, because of the mapping process from the particles
to the grid and vice versa. This was later solved in 1986, by Brackbill and Ruppel with
the formulation and development of the FLIP method, the Fluid Implicit Particle method
[23, 24]. In this method, the particles are fully Lagrangian, all the information is stored
in the particles, including energy and momentum and thus convective transport, the
largest source of computational diffusion in calculations of fluid flow is removed. The
FLIP has been later modified and extended for applications in solid mechanics in 1994

by Sulsky et al. [120] and the Material Point Method has been formed.

MPM has a significant advantage over FLIP for the simulation of history dependent

materials, in a sense that stresses and strains are stored in the particles, and not in the
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element centers as in FLIP. Moreover, the MPM is formulated in the weak form, similar
to FEM, and thus bears many similarities with existing FEM procedures. The particles in
MPM hold the full physical state of the material such as position, mass, velocity,
acceleration, stress, strains etc. The MPM employs both kinematic descriptions similar to
PIC algorithms, which are the use of Lagrangian material points that carry all the physical
information, and a background Eulerian grid used for the discretization of continuous
fields (i.e., displacement field). Therefore, the MPM combines the advantages of both

Eulerian and Lagrangian methods.

Considering the Lagrangian description, the material points and the background grid are
attached and deform together during loading in a similar manner to FEM. This means that
since each material point carries the deformation gradient and stresses, as well as history
variables, modeling of history-dependent materials is straightforward. The grid is reset at
the end of each time step to its original configuration. This means that the grid does not
become distorted in large deformation problems. MPM employs a grid from an Eulerian

point of reference that is fixed in space and the material points that move along the mesh.

The mathematical formulation of MPM from the basics of continuum mechanics to the

weak form and spatial discretization are presented in the subsequent paragraphs.

4.1.1 Continuum Mechanics

In order to proceed with the formal mathematical description of the Material Point
Method, several fundamental notions of continuum mechanics [141] will be presented in
the following paragraphs. We start by considering a continuum body that is moving
(Figure 4.1). The body is its initial undeformed configuration is occupying a region Q at
time t =0. Within this body we isolate a material point or particle that moves from its

original position. The initial position of the particle is P at time t =0 with coordinates
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given by vector X, while its current position is p at time t with coordinates given by

vector X .

X2 oX)

Figure 4.1: Initial and deformed configuration

The coordinates are given by:

X=Xe, =123 (4.1)

where €, is the unit vector of the spatial coordinate system (which is considered the same

both for the material and the spatial coordinates). The region of space that the body
occupies at time t is called the current — deformed configuration, . One configuration
should be chosen as the reference configuration, meaning the configuration to which the
motion will be referred to. Usually the initial configuration is chosen as the reference

configuration.

The deformation of the body is defined by a smooth one-to-one function ¢:
Q> 4.2)
which maps each material particle from its original position P to its current position p:
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x=xg =¢(X), i=12,3 (4.3)

where, as presented in Figure 4.1, X is the position vector of a particle in the reference
configuration. The coordinates X, are the material (Lagrangian) coordinates while x; are

the spatial (Eulerian) coordinates.

In the Lagrangian description, an observer is standing in the body-frame and observes the
changes in the position and physical properties as the continuum body moves in space
with time, which is commonly used in solid mechanics. These physical properties are
described in terms of the material coordinates X and the reference configuration is the

initial one. The body motion is given as:
x=X(X,t) (4.4)

signifying the mapping from the initial configuration Q to the current one @ . The

displacement field can then be expressed as:
u=x(X,t)-X (4.5)
which is in terms of the material coordinates.

The Eulerian description on the other hand, is focused on what is occurring at a fixed
point in space as time progresses. The current configuration is the reference configuration
and the description is in terms of spatial coordinates x.Therefore, no history-dependency
is considered in the Eulerian description. This approach is commonly used in fluid

mechanics. The body motion is given as:
X =X(xt) (4.6)

signifying that the particle with position vector xin the current configuration is the same
that had position vector X in the undeformed one. The displacement field can then be

expressed as:
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u=x-X(x,t) (4.7)
which is in terms of the material coordinates.

In order to obtain the velocity and acceleration field, the partial derivative of X with

respect to time has to be calculated with X being constant:

. 8u(X,t)
X =5 (4.8)
and:
~ o’u(X,t)
=—0 4.9

4.1.2 Strong form

In this section the equations that govern the mechanical problems are presented and are
derived from an updated Lagrangian approach [141,53], which is common in MPM. In
the updated Lagrangian approach, the stress and strain measures are defined with respect

to the current configuration.

The continuum must satisfy the conservation laws of thermodynamics. These are the
conservation of mass, the conservation of momentum and finally energy conservation.
Moreover, a constitutive equation is required, relating stresses and strains together with
initial and boundary conditions.

4.1.2.1 Conservation of mass

The total mass of the body remains constant and thus the conservation of mass can be

written as:

p(X,t)I(X,t)=p,(X) (4.10)
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where p is the current density at a local region of the body while po is the local density of
the body referring to the initial configuration and J is the Jacobian. In the MPM the mass
of each material point remains constant during the analysis, and the volume it represents
and its density vary, thus the conservation of mass is automatically satisfied.

4.1.2.2 Conservation of momentum

The conservation of linear momentum represents the motion of the body, i.e. Newton’s

second law of motion. Conservation of momentum is given by:
pX—pb-6-V=0 (4.11)

where X is the acceleration, b is the vector of the body forces per unit mass acting on the
body, & is the stress and V stands for the gradient operator. This represents a dynamic
formulation since acceleration and inertia terms are taken into account. The equation of
conservation of linear momentum relates the forces acting on a body (internal and

external) with its kinematics. In the previous relation -V is the internal force while pb

are the external forces acting on the body

4.1.2.3 Conservation of energy

If E is the internal energy per unit mass and ¢ the strains, the mechanical energy

conservation equation is written as
PE=6:6+pv-b (4.12)

In the previous equation thermal energy and heat effects are neglected. The only source

of energy is mechanical work.

4.1.2.4 Initial and boundary conditions

The initial conditions are given for the displacements, velocities and stresses as:
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u(X,t=0)=u,(X), u(X,t=0)=u,(X) ¢(X,t=0)=0,(X) (4.13)
While the boundary conditions are given in equation (4.14):

u(X,t=0)=0y(X), u(X,t=0)=uy(X) o(X,t=0)=0,(X) (4.14)

4.1.2.5 Constitutive relation

In order to completely describe the material behavior, a constitutive relation is needed,
relating the stresses ¢ and strains gin a simple form, or in a more general case relating
the stresses of a body with some of it kinematics variables (such as the velocity gradient

etc.):
6= f(o,¢etc) (4.15)

This relation can take many forms for different formulations, materials or problems. The
Cauchy stress can be used to express stresses, but its rate ¢ is not objective. For this
reason, the Jaumann stress rate 6’ can be employed, which is objective and is given

from:
6’=6+6-2-Q-¢ (4.16)

where @ is the spin tensor (or rate of rotation).

4.1.3 Weak form and spatial discretization

The previous equations can completely describe the kinematics of a body and form a
group of partial differential equations (PDESs). The solution of these differential equations
analytically, is not trivial except for some simple cases. For this reason, they have to be
solved numerically. There are mainly two categories of numerical methods for the
solution of partial differential equations. The first, tries to find an approximate solution

of the differential equations directly together with their boundary and initial conditions.
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A notable example in this category is the finite difference method (FDM). The second
category establishes a weak form of the PDEs, using test functions. The weak form is
equivalent to the original PDEs, and is solved numerically. The MPM belongs in the
second category and is based on the weak form formulation similar to FEM. The
momentum equation (4.11) is multiplied by a test function which is the virtual

displacements vector ou, and after rearranging:

[ 5u; (o7 = pX, + pby )dQ2=0 (4.17)

Q

or:

[su0y ;dQ—[ su,prdQ+ [ 5u, pbdQ =0 (4.18)
Q Q Q

The first term of equation (4.18) is given by the following equation:

j5ui0ij,de :J.(5uiaij),idQ_I5u‘viG‘idQ (4.19)
Q Q Q

Using the divergence theorem (Gauss theorem) the first term on the right-hand side of

equation (4.19) can be written as:

5[(5Ui6ij)'de: ,,E[[ 5uitids (420)

where the traction boundary is denoted as €2, and dS is the surface integral which is
zero everywhere except the traction boundary and t is the vector containing the
components of tractions.

Substituting equations (4.19) and (4.20) into (4.18), leads to the weak form of the

momentum equation with traction boundary conditions:

j out,dS —I&ui'jqde—Jﬁui p5<'id£2+j5ui pbdQ2=0
Q Q Q

oy

(4.21)
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and after rearranging:

i 8U, 0, dO+ i su pxdﬂziﬁui pbidQ+a£ Sut,ds (4.22)

Which signifies the virtual work balance:

SW™ 4+ oWH" = Sw™ (4.23)

int ext

where sw™ is the virtual work of the internal forces, ow®™ is the virtual work of the

kin

external forces and ow*™ is the virtual work of the inertial terms:

SW™ = I&ui pbdQ + j sutds
Q a0,

ow™ :J.é‘uiij'ide (4.24)
o

oW = Idui px,dQ
Q

4.2 The MPM Algorithm

In the Material Point Method, a body is discretized into a number of material points

(particles) that move through an Eulerian background grid (Figure 4.2). The material

domain Q can be represented by N, number of material points. Each material point
represents a subdomain €2 and holds all the properties such as mass m, position X,
velocity v, strain ¢, and stress o, . The Eulerian background grid is employed to solve
the equations of motion and to calculate the spatial gradient terms with N, number of

nodes. Since the total mass is divided into the material point set and the material points
have constant mass through the simulation, the mass conservation is fulfilled. The strain

rate is expressed in terms of the gradient velocity as:

de 1 T
&= w)) (4.25)
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and for the linear elastic case the constitutive equation relating stress rates and strain rates

can be expressed using the constitutive matrix D as:

dJ_Ddg

—~=D-> 4.26
dt ot (4.20)

where D in the general case, is the fourth-order elasticity tensor or in the case of

plasticity the tangent stiffness matrix.

Background
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Figure 4.2: MPM discretization

In the Material Point Method each particle represents a sub-domain of the whole domain
Q) . Using the Dirac delta function 6 the mass density can be expressed as a function of

the material point masses and the material point positions as:
NP
p=>ma5(x-x,) (4.27)
i=1
Substituting equation (4.27) into the weak form equation (4.22) results in:

> Mo (%), (6,)+ S m % (x,)8U, (X)) =...
i i (4.28)

t; (I:(p) su (Xp)

Np Np
MU (X)) SU (X)) + D> m,
p=1 p=1
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Equation (4.27) plays an important role in the MPM since volume integrals can be
converted to the sums of values of the integrand evaluated at each particle position and

multiplied with the particle volume as:
NP
[y 2)dxdydz =" g(x,.17,., )V, (4.29)
p=1

Similar to the Finite Element Method, the material gradient terms are calculated on a
background computational grid. Shape functions are used to approximate the solution and
the velocity and acceleration of any material point are expressed in terms of the nodal

accelerations of the grid as:

v(xp):iviNi (4.30)
and:
Nd
a(x,)= led—\i (4.31)

where in both relations the summation refers to the nodes of the element of the
background grid that the material point resides in. In general, using shape functions the

particle displacement u;(x) and virtual displacement 6u;(x,) can be calculated from

the grid nodal displacement values as:

U; (Xp) = N| (Xp)ui (X|)

8U,(%,) = N, (x,)6U;(x,) (4.32)

Finally using equations (4.32) and (4.28) the momentum equation is retrieved in its

discrete form at each grid node:

Ng
dV Flnt I:iext (433)

i=1

The internal and the external forces are defined as:
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_ Nomo
F"=-> o VN, (4.34)
it P
and:
F* =7 +b (4.35)

where the subscript p,i denotes the material point i.

In this work two types of shape functions are employed, either linear, for cases where the
material points stay inside their original elements, or cubic B-Splines [4, 56, 117] for
large deformation problems. A comparison between the two shape functions is
investigated in Paragraph 4.6. In addition, for some benchmark problems a moving mesh
MPM method is employed. For the majority of the presented examples though B-Splines
are used. They have been shown to reduce the quadrature errors and the grid crossing
errors associated with discontinuous shape function gradients when a material point
crosses from an element to a neighbor one, and also prove to be superior in terms of stress

calculations.

Many implementations are possible [118] and are explained in detail in the following
Paragraph. The main algorithm of the MPM is described below and show schematically

in Figure 4.3:

The structure is discretized into a set of material points and the relevant properties are
given to the initial particle distribution including initial conditions. For each time step the

following procedure is followed:

e The background structured mesh is generated.
e The shape functions and their derivatives are calculated.
e The state variables needed for the analysis are mapped from the material points

to the background grid nodes.
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e Momentum equation is solved at the background grid nodes.

o Material point state variables are updated.

Map from material points to Solve momentum equation at grid
background grid nodes
....... o LTI, VR o W C)OC
g e D e e
....... O..................o..................O....... .......O...................o..................o.......

Update particle information and
map from background grid to

material points Reset background grid
............ - -
o ® ° °
c) = d)

ST S

Figure 4.3: Schematic illustration of one MPM computational step

In this work the following algorithm is used for each time step in more detail, following
a MUSL (Modified Update Stress Last) approach, which is explained in more detail in

Paragraph 4.4:

1. Background grid is reset, and all its variables are set to zero (mass, momentum,
forces).

2. The element number that each material point lies in is identified (which is trivial
for a structured grid).

3. The shape functions and their derivatives are calculated. For each material point
in 2D, 16 shape function values are calculated and 32 derivatives, since every

material point maps its properties to 16 nodes when the cubic B-Splines shape
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functions are used. The properties are mapped not only to the nodes of the cell the
material point resides in but also in the surrounding cells. Instead, for the linear
shape functions, 4 values are calculated and 8 derivatives. In this case the material

points map their properties to the 4 nodes of the cell they reside in.

. The material point mass, momentum and internal forces are mapped to the nodes

of the background grid according to:

(mv). = (Mv)p N, (4.36)

. The external forces are mapped to the grid nodes according to the following

relation:

NP
Fo = Z N;b, (4.37)
p=1

. The total grid force vector is calculated.

Fi — Fiext + Fiint (438)

. The grid momenta are updated as:

(mv). =(mv). + Rdt (4.39)

Essential boundary conditions are applied to the grid nodes.
From the updated momenta at the grid nodes the positions and velocities of

particles are updated:
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v(xp):v(xp)+[iﬂ}n

it M
. (4.40)
X, =X, +[Z(m\r’nﬂ]dt

10. Employing the Modified Update Stress Last (MUSL) scheme the final step is to
recalculate the grid nodal momentum based on the new particle velocities and

from there calculate the particle strain and stress increments as:

om, (4.41)
Ag, = ZN:V(XP)VNid'[
i=1

Ao, =[D]As,

4.3 Considerations and implementation choices

In this section, the various formulations and modification to the original MPM method
are presented. Firstly, some problematic behavior of the Material Point Method algorithm
is discussed in Paragraph 4.3.1. It consists of grid crossing instabilities when a particle
crosses between elements, and numerical fracture when two material points are farther
than one cell distance away. Several shape functions and modifications to the original
MPM algorithm have been proposed to overcome these problems and are discussed in
Paragraph 4.3.2. Moreover, a discussion comparing the use of Cartesian structured grid
versus unstructured grid is presented in paragraph 4.3.3. Implementations regarding the
time integration are presented in 4.3.4 distinguishing between explicit and implicit
algorithms. Finally in Paragraph 4.3.5 the critical time step is calculated which is essential

for the stability of the explicit time integration algorithm.
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4.3.1 Grid crossing error and numerical fracture

It has already been mentioned that there is a source of numerical instability inherent in
the MPM when the shape functions have C° continuity, which is the grid crossing error.
It manifests, as the name suggests, when a material point crosses from one element to a
neighbor one. The problem lies with the calculation of the internal forces. For this
calculation, the gradient of the shape functions is needed as in equation (4.36). If the
shape functions are C° continuous, then the gradient of the shape functions is
discontinuous and a discontinuous function has to be integrated. Schematically the error

can be seen in Figure 4.4 and is explained as follows.

Let’s isolate the internal forces of node 2 of Figure 4.4. These are calculated from the
contribution of the four material points that lie in elements 2 and 3. In addition, suppose
that the stress field is uniform and all the material points have the same equal stress state,
the same mass and the same density. Then from (4.36) the internal forces are:

N Y
F"=->—"Lo,VN, =
p=1 pp

. M M M M
Fgmt = ——10'1VN2 __2(72VN2 +_363VN2 +_404VN2 = (4'42)

1 2 3 4

F"=0

Since all the material points have the same mass, density and stresses then
M,=M,=M,=M,=m, p=p,=p,=p,=p and o, =0, =0, =0, =0c. The shape
function gradients have a positive value for the material points on element 2 and a
negative value for the material points in element 3 (Figure 4.4 b). This means that the

internal force of node 2 is zero.
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Figure 4.4: Grid crossing error illustration

However, supposing material point 2 moves and crosses from element 2 to element 3
(Figure 4.4 c) then a sudden change of the internal force of node 2 is occurring as shown
in Equation (4.43):

) No M
" =—Z—papVNi =
p=1 pp

| M
P Mion, Mg on, Mg un, e Migun, = (443)

1 2 3 4

=206 uN,
p

Generally, when the material point volumes are constant, every unequal distribution of
material points between elements will create these errors. The use of higher order shape
functions that have smooth gradients without discontinuities can remedy this problem.
This is one of the reasons that cubic B-Splines are used in this work, as is explained in

more detail in a subsequent paragraph.
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Another numerical issue present in the Material Point Method is numerical fracture. This
means that the solid is separated and appears to fracture without any fracture or damage
law specified. It occurs when two particles (in 1D for example) are separated by such a
length so that they can no longer interact through the background grid. For linear shape

functions the distance is the length of the element as shown in Figure 4.5.

a)c ’—% ‘_%‘ ' "X
SORNORNORNOR
S 2
b) ¢ —— +@ H X
SORNORNORNOR

Figure 4.5: Numerical fracture illustration

In case a), material point 1 maps its properties to element 2 with nodes 1 and 2 while
material point 2 maps its properties to element 3with nodes 2 and 3. Since the interactions
are carried out through the background grid these material points will interact through
their common node 2 when the grid momentum will be updated (Equation (4.39). On the
contrary the particles cannot interact in case b) of Figure 4.5, since they don’t share a

common node.

4.3.2 Use of different shape functions

In the original MPM, the shape functions used are linear shape functions similar to those
in FEM. Linear shape functions have C° continuity, resulting in grid-crossing errors
when particles cross the cell boundaries. These errors become larger the finer the mesh,

although accuracy in other variables such as stresses etc. may improve.

A modification in order to overcome this problem and improve quadrature in MPM was

proposed by Bardenhagen and Kober [11], introducing the generalized interpolation
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material point (GIMP) method. The main difference is that in standard MPM particles are
considered to be points with no dimensions, while in GIMP they have sizes that represent
their volume. This results in C'continuous functions that improve accuracy and remedy

the grid crossing errors.

An extension of GIMP is the Convected Particle Domain Interpolation (CPDI) method
that was developed by Sadeghirad et al [108]. In CPDI particle domains are tracked as
parallelograms or quadrilaterals in 2D with better accuracy. There are other formulations
also developed that can be distinguished by the spatial discretization they employ
(quadrilaterals, triangles, tetrahedra for 3D etc.) [99, 114, 109, 98]. Another formulation
worth mentioning is the Dual Domain MPM [140, 41] in which constant gradient fields
are reproduced exactly at material points thus rendering the energy error second order in

time and space discretization.

Finally, B-Splines [67] have been presented for MPM [117, 56]. Recently they have been
employed in unstructured triangular grids [81]. The B-splines Material Point Method
(BSMPM) has been programmed in Matlab and is used in this work and will be presented
in more detail in Paragraph 4.6, where a more extensive comparison with linear shape

functions is made.

4.3.3 Cartesian grid versus unstructured grid

The vast majority of MPM publications and research employs a regular Cartesian grid.
When using a uniform grid, the identification of which cell each material point lies in is
straightforward and computationally inexpensive. Avoiding a taxing nearest neighbor
search algorithm constitutes a computational advantage of the method over other
meshless methods. However unstructured grids have been employed in the context of

MPM, especially in geotechnical engineering applications [140, 134, 17, 74].
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Unstructured grids have the same drawback with meshless methods, which is a
computationally expensive search, in order to determine the element that a material point
belongs to. On the upside, they facilitate the enforcement of complex boundary conditions,

straight into the nodes of the computational grid.

4.3.4 Explicit and implicit time integration schemes

In MPM the most common implementation is an explicit time integration scheme. It is
easier to implement, and as explained in the next paragraph, if the chosen time step is
smaller than a critical value, the algorithm is unconditionally stable. Implicit solvers have
also been developed in the context of MPM, allowing for a more efficient simulation of
static or quasi-static loadings. For a single time step, implicit solvers are more
computationally expensive than explicit ones. However they can become more efficient

as they can solve for larger time steps.

Implicit version of MPM can be found in the literature. Guilkey and Weiss [60] employed
the similarities of MPM and FEM to develop an implicit solution scheme. In their work,
Guilkey and Weiss form the tangent stiffness matrix and solve the equilibrium equations
using a Newmark integration scheme, similar to FEM. Sulsky and Kaul [119] avoid the
formulation of a tangent stiffness matrix, which is computationally expensive and used a
matrix free Newton — Krylov algorithm. Finally, Beuth [17] developed an implicit MPM

formulation with higher order elements used in quasi-static problems.

4.3.5 Critical time step - Stability

In general, the explicit time integration used in MPM is unconditionally stable if the time

step is less than a critical value At .This is a convergence criterion named after Courant—

Friedrichs—Lewy and it is known as CFL condition [38]. It arises when numerical solvers
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are used for partial differential equations that are formed in explicit time integration
scheme. The condition implies that the time step size has to be lower than the time it takes
for a wave to travel across the smallest element of the mesh [12]. For the one-dimensional

case the CFL condition is:

VAU 1 ap <X (4.44)
AX Vv

In FEM, the smallest period of any element is always larger than or equal to the smallest

natural period in the system [71]. Therefore, the following relation holds:

e

At, =min— (4.45)
c

where 1° signifies that the critical time step has to be calculated for all elements, where
c is the speed of sound in the material. For a linear elastic material, the sound speed is

given from [141]:

c= \/( E(-v) (4.46)

1+v)(1-2v)p

For a nonlinear system the time step is usually chosen as a fraction of the At of the linear
system usually in the range of 80%-98% [141].
However, in MPM the background grid is not deforming, and only material points are

moving. This means that particle velocity has to be accounted for when calculating the

critical time step [5]. Eq. (4.45) can now be reformulated as (for an orthogonal

background grid with element length of 19):

Ig

At = m (4.47)

where C, is the sound speed of particle p and v, is its velocity.
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4.4 Different MPM Formulations

Three main formulations that have been developed for explicit MPM, mainly the Update
Stress Last (USL), the Modified Update Stress Last (MUSL), that is being used in this
thesis and was presented in Paragraph 4.2, and the Update Stress First (USF) [10]
formulation. Their similarities and differences are being presented schematically in

Figure 4.6:

USL MUSL USF
s v s

Map mass and momentum to the background grid nodes and impose boundary conditions
Np

m, :iMpNi (mv), =2 (Mv) N,

p=1

¥

Calculate particle strain and stress increment
N
Az, =D V(% )VNdt Ao, =EAg,
i=1

¥

Calculate background grid nodal forces and update background grid nodal momenta
. No M
Fin = _ZTPavai J(mv), = (mv), + Fdt

p=1 Mp

¥ v v

Update particle positions and velocities
N

v(xp)—v(xp)+[2':r‘n'\|‘]dt ,xp—xp+[i(mv)‘N']dt

i=1 i i=1 mi

¥

Recalculate grid nodal momenta from the new particle velocities

(mv), =:Z:MDV(XD)Ni Vi _(mv)

m;
Calculate particle strain and stress increment
N
Ag, :ZV(XP)VNidt Ao, = EAgp
i=1

Figure 4.6: Different MPM explicit time integration formulations

The main difference between USF and USL formulation is the calculation of grid nodal
velocities. In USF they are calculated at the beginning of the time step straight from the

grid nodal momenta. This means that equation (4.36) is modified as:
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m => M,N,
(mv), =3 (Mv), N (4.48)

USF schemes are found to be conservative while USL schemes are dissipative according

to [10]. Also, MUSL and USF lead to generally improved energy calculations compared

to USL schemes as reported in [95].

4.5 Advantages and disadvantages of MPM

The Material Point Method inherits the positive features of both Lagrangian and Eulerian

descriptions and has some advantages that are outlined below:

Mesh distortion and element entanglement problems are eliminated, since the
background grid is not moving and remains fixed. Only the material points move
through the computational grid and so there is no mesh deformation. This implies
also that no remeshing is needed, which is usually encountered in FEM
simulations with large displacements, and it can be the source of numerical errors
and an increase in computational time [83].

Connectivity between particles is achieved through the background grid. If it is a
structured orthogonal grid, then the identification of which element every material
point lies in, is trivial. This renders the method generally faster than meshfree
methods that usually employ neighbor search algorithms for connectivity, since
these algorithms usually take up significant amount of computational time in each

time step.
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A no-slip contact algorithm is inherent in MPM. The method can handle this type
of contact problems without any additional computational cost or complexity. The
contact is inherent in MPM since the material points share the same velocity field.
If two material points map their properties to the same node of the computational
grid, then contact is bound to occur. However, this contact is based on the grid
resolution and there is ongoing research to improve and expand the MPM contact
procedures [96, 66].

The discretization of the structure is relatively easy and fast. It is algorithmically
and computationally efficient to distribute points inside a bounded volume or area
of any arbitrary geometrical shape. Converting images or 3D models [61] to
numerical models for simulation is therefore effortless.

Can be easily programmed for parallel, distributed-memory computers [44] since
each material point is independent of others and through decomposition of the

computational domain.

The main disadvantages of MPM are summarized below
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The MPM is slower in its explicit formulation than FEM. This is due to the fact
that in each computational cycle the MPM has to perform extra calculations of the
mapping from and to the computational grid. In addition, the shape functions are
not constant like in FEM but have to be recalculated every time a material point
changes its position.

Grid crossing error and numerical fracture that have been discussed in previous
paragraph.

Lower accuracy than FEM, since the material points can be positioned anywhere
inside an element and not at the optimal positions required for numerical

integration (such as Gauss points in FEM). In order to circumvent this problem
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higher order shape functions must be used and larger particle densities, which lead

to higher computational cost for the same accuracy.

4.6 Shape function investigation

In this section the use of different shape functions in MPM, linear and cubic B-splines, is
considered. In order to investigate the computational accuracy of the aforementioned
shape functions two cases are examined. In the first case the calculation of gradient
velocity is examined, in this paragraph, while for the second one, the quadrature accuracy

during plasticity is studied in paragraph 4.7.2.

Owing to their compact support, ease of computation, and partition of unity property,
piecewise linear shape functions are probably the most commonly used choice in MPM
algorithms as they are in FEM. Their plot together with their formula for the 1D case is
shown in Figure 4.7 both for the shape functions and for their derivatives Moreover, in
Figure 4.9 plots of linear shape function for the two dimensional case are presented. These
linear basis functions are the same as in many low-order FEMSs, but in MPM the
discontinuous nature of VN is important as it is a mixed Lagrangian—Eulerian method

and is the reason grid crossing errors occur.

In FEM, integration over the domain is decomposed into the sum of integrals over
elements with quadrature points remaining fixed within elements at optimal positions. In
MPM, however, particles act as quadrature points and are allowed to move freely through
the domain and across these discontinuities in VN . Therefore, grid-crossing errors occur
when shape functions with discontinuous gradients are used. The main difference
between MPM and meshfree particle methods (SPH, EFG and RKPM) is that the
equations of motion are solved on the background grid and material points are used as the

quadrature points to approximate nodal forces and nodal masses, while in meshfree
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methods the equations of motion are solved on the material points and a background mesh

is constructed for quadrature purposes to approximate the nodal forces.

1/L b L SEEE—

l+(x—xi)/h, xi—h<x<x;

Gi(x)=3 1—(x—x))/h, xi<x<xj+h
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Figure 4.7: Piecewise-linear functions [117], their derivatives and single element.

Cubic B-Splines are presented in Figure 4.8 as well as their derivatives for the one-
dimensional case as well as a single element. It should be noted that the cubic spline
interpolation is used for each individual material point and each m.p. maps its values to
nodes that lie a maximum distance of two grid nodes away in either direction. In two
dimensions, this means that each material point maps its properties to 16 neighboring
nodes, both for the element it resides in but also for the neighboring ones, as shown in

Figure 4.8.
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Figure 4.8: Cubic B-spline functions [117], their derivatives and single element.

The values of the cubic B-Spline shape functions for the two-dimensional case are
presented in Figure 4.10. In order to obtain two-dimensional or three-dimensional shape
functions the tensor product of the different one-dimensional shape functions has to be
calculated. In FEM B-Splines are used to improve the representation of complex
geometries. In MPM however, since the background grid is static and orthogonal, they
are used to provide better quadrature results and smooth derivatives that improve strain

calculations.
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Figure 4.10: Cubic B-spline shape functions values at each element node
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4.6.1 1-D Domain

For this analysis a pseudo 1D domain as depicted in Figure 4.11 is considered with
dimensions 0.5mx5.0m. Several analyses are carried out where the domain is discretized
with various number of elements and particles per element. In the first set of analyses the
number of elements is kept constant while the number of particles per element is
increased. The number of points per element varies from 1, 4, 9 and 16 and the total
number of elements changes from 10 to 20 and finally 40 elements. In all analyses an

initial sinusoidal velocity field is applied:
PVEL = 0.01cos(%(xp —0.5)] (4.49)
For this velocity field the gradient velocity can be analytically calculated:

T, . T T
L =(0.015)sin| ——=x
o =( 5) (10 c pj (4.50)

and is compared with the MPM calculation. The geometry of the domain is presented in

Figure 4.11. The total length is 5m, the height is 0.5m and the depth is considered to be

1m, with E =10000Pa , v=0, and the density is 1000kg / m°.

O.Sml :':'5'5030 .:.I

5.0m

Figure 4.11: Pseudo 1-D Domain

Results are presented in the following Figures and Tables. In Table 4-1 results regarding
computational time as well as accuracy are presented. The baseline with regard to the

computational time is considered the first case where the domain is discretized with 10
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elements containing 1 particle per element. Cubic B-Splines are used as shape functions.
It can be observed in the third column of the table that the computational time for each
analysis is almost analogous to the number of material points used. This is expected since
the explicit MPM algorithm used, spends most of the computational time in loops that
have the length of the total number of material points and in its current formulation avoids
the unnecessary calculation of inactive background grid cells. For example, if one
calculates the total material points used for the last analysis (in the last row of the table)
there are 40-16 =640 material points which is 64 times larger than the 10-1 material
points used in the baseline analysis. The computational time is 62.62 times larger in this
case than the baseline. Similarly, for the case of 20 elements and 4 points per element 8

times more material points are used and the computational time is 7.73 times larger.

N. elements Particles per Computational 12 norm
element time (x)

10 1 1 0.0193
10 4 3.86 0.0166
10 9 8.73 0.0164
10 16 15.36 0.0164
20 1 1.97 0.004225
20 4 7.73 0.004111
20 9 17.76 0.004108
20 16 30.88 0.004106
40 1 4.03 0.0010319
40 4 15.8 0.0010282
40 9 35.02 0.0010280
40 16 62.62 0.0010280

Table 4-1: Computational time and accuracy for different discretization

In Figure 4.12, Figure 4.13 and Figure 4.14 in the net pages, the results are plotted and

compared with the analytical solution. In Table 4.1 the L2 error norms are presented for
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each case in the last column. As can be expected increasing either the number of elements

or the number of material points per element generally increases the accuracy of the

solution. However, the benefits of increasing the material points per element are

negligible compared to increasing the number of elements, when taking into account the

additional computational time. For example, the case of 10 elements and 16 material

points per element has almost the same computational time as 40 elements and 4 material

point per element (15.36 vs 15.8). However, the 40 element discretization gives much

better accuracy. In Figure 4.15 the same conclusion can be reached from the plotted MPM

calculations.
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Figure 4.12: Discretization with 10 elements results
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Figure 4.13: Discretization with 20 elements results
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Figure 4.14: Discretization with 40 elements results
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Figure 4.15: Different number of elements accuracy

All the analyses so far employed the cubic B-Splines shape functions. For the next
analyses the linear shape functions are used and the same problem is analyzed. In Figure
4.16 and Table 4-2 the results and L2 error norms are presented for a discretization with
10 elements and an increasing number of material points, for linear shape functions.
Several remarks can be made from these results. Firstly, when using linear shape
functions and 1 material point per element, the quadrature and projections give increased
accuracy. This is attributed to the fact that the material point lies on the center of the
background grid node element in its optimum position, similar to using 1 Gauss point
quadrature in FEM. However, when more material points per element are present the
linear shape functions cannot capture the correct solution and only present a constant
velocity gradient within each element, therefore degrading the accuracy of the solution.
This is attributed to the linear shape unction gradient that is a constant value and

discontinuous across elements.
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LINEAR SHAPE FUNCTIONS
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Figure 4.16: Discretization with 10 elements results — linear shape functions

N. elements

Particles per

L2 linear s.f.

L2 B-Splines s.f.

element
10 1 0.0070 0.0193
10 4 0.0785 0.0166
10 9 0.0854 0.0164
10 16 0.0877 0.0164

Table 4-2: L2 error norms for different shape functions

In addition, as can been observed from Figure 4.17, when using linear shape functions, if
the material point does not lie in the center of the background grid element (which in a
general simulation will be the case most of the time), it cannot correctly represent the

velocity gradient correct solution and results appear to diverge as the material point leaves

its optimum position.
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LINEAR SHAPE FUNCTIONS
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Figure 4.17: Linear shape functions, 1 material point per element in displaced

positions

4.7 Bouc — Wen implementation in MPM

4.7.1 Tangent modulus and algorithm modifications

The tangent stiffness matrix that was previously developed in Chapter 2, is evaluated at
every material point and has a dominant role in the proposed MPM formulation as it is
used in relation (2.36). Thus, the updated stresses at the end of each time step can be
calculated on the basis of the total strains. The main algorithm is presented in Figure 4.18
for the case where no degradations are considered. For the calculation of the tangent

stiffness matrix with no degradations the following relations hold:
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[E]=[D]([1]- HH. [R])
f ({0} -}

o) |
H, =ﬂ+7signH%F[D]{é}} (4.51)
- e @

;ﬁ[(l_m)gcpmw{;{i}j [D]%}

H, =

In the context of MPM the tangent stiffness matrix presented above relates strain
increments with stress increments and has dimensions of (3x3) for 2D simulations. It can
encapsulate isotropic, kinematic or mixed hardening and various yield functions
providing a smooth representation of the hysteretic loops. In the case where stiffness and

strength degradation are considered, the tangent stiffness matrix is calculated as:

[E]=[D]_([1]-vH.H.[R])
_ f ({a}—{aki”})‘
H, o, (8:)5:) ‘

H,= ﬁ+7sign£{%} [D]{e‘}] (4.52)
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For every particle p=1,2,... given: C, {[zj’
(1x1) X

gt—l t—1 1 .

(1x1)

[D

(3:3)

{aef fa"|
(3x1) (3x1)

| {o

(3x1) (3x1)

1. Calculate effective stresses using the
back stress tensor. For the Von Mises yield
criterion for kinematic hardening (for
isotropic hardening the back stress tensor is
0). This signify the movement of the yield
surface in the stress space:

’ O_ell'

xx = O-XX - ai’}(
off _ _
Oy =0y —dy

eff _
(o _O_xy axy

X

off
o, =0- (_“,u - ”,x,.,-)

2. Calculate the variable yield stress for
isotropic hardening (in case of the Von Mises
yield criterion ¢, =4""):

var __ [N
o =c,+mH'e,

n

off _eff )’ off _eff ) off _off\? | o [ eff)
3. Evaluate H,, which for the Von . ‘(\/((U-“ _O-W) +(O-** 9= ) +(O-w % ) +6 (U.:y ) )/2}
Mises yield criterion is: oD o ‘
od({c})
4. Calculate: d{a)
(3x1)
aq 'lT
o®
5. Calculate H,: H,= ig, D&
alculate H, e B+ ysign {?{G}J [ ]{5}}
6. Compute: | 22 T[D] a(D.?l
' pute: (o a{c} a{o}
T
7. Calculate: [R]_;ﬁ{ ¢ [D]
(x) o{a}] ot}
8. And finally: [(fgg=[D]([]]*Hle[R])
{Ae,}=H,H,[R]{As'}
(3x1)
{Aa’}=(l—m}Cp{Az,‘p,’}
(3x1)
9.  Finally update variables for next time E}q;({o-}) r
step: %ﬂ)’HIHZf'{ @{a} }[D]{A{—;'}
A =27 AR

(1x1)

{at} = {a[’] } + {Aar}

(3x1)

10. Update stresses and strains:

{ac'}=[E]{ae"}

(3x1)

fo'j={o""}+{ac]

(3x1)

terf =l ias)

(3x1)

Figure 4.18: MPM pseudocod

e for kinematic, isotropic or mixed hardening

Where the degradation parameters are calculated from:

ﬁ=cn(1juﬂH
n

[ son(ia) 13}) Jfo) )

(4.53)
v, =1+ce"
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The tangent stiffness matrix of equation (4.52) is calculated for every material point.
Equation (4.53) has to be solved simultaneously in incremental form in the explicit time
integration MPM scheme. The model can simulate hysteretic behavior with kinematic,

isotropic or mixed hardening with stiffness degradation and strength deterioration.

An advantage of the proposed formulation is that the whole hysteretic behavior, is
enclosed in the calculation of the tangent stiffness matrix. The model can be easily
incorporated into existing MPM codes. In addition, the calculation of the tangent stiffness
matrix can be done in parallel computations for massive simulations taking advantage the

discrete nature of the method.

4.7.2 Shape functions in plasticity

In order to investigate the use of different shape functions when plasticity is concerned,
a simply supported beam is subjected to a concentrated tip load on its middle (Figure
4.19). Material is steel with a Young’s modulus of 210GPa, a yield stress of 240MPa and
a mass density of 7850kg/m®. Kinematic hardening is considered with a 5% ratio. For the
beam discretization 1280 material points were used corresponding to 4 points per element
(4ppel). The background grid elements have a length of 0.025m. The load is applied
gradually in small increments over a long time period of 20 seconds until its maximum
value to simulate quasi-static conditions within the present MPM explicit dynamic
formulation. Two analyses are carried out one with the use of linear shape functions and

the second using cubic B-Splines.

L=2m

Figure 4.19: Simply supported beam
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In Figure 4.20 the normal stress- normal strain diagrams are presented. It can be observed

that for the linear shape functions, oscillations and noise begin to appear when the stresses

approach the yield stress. For cubic B-Splines the diagram is smooth revealing their

superior properties. In addition, it can be noticed that both shape functions produce stress

contours for normal stresses that are in good agreement, with minor differences (Figure

4.21). However, for shear stresses, presented in Figure 4.22, the linear shape functions

fail to capture the real distribution of stresses and exhibit a saw tooth pattern similar to

Linear B-Splines
%10 <10
3 - - 37 - ;
25 25
: N‘,\M\
2 \ 2
%
g 15 15+
&
1 1
0.5 0.5
ol . 0 ‘ ‘ . .
a5 3 25 2 15 . 05 0o -3 25 2 15 A 05
strain xx <1072 strain xx

0
%10

Figure 4.20: Normal stress — strain curves for linear and B-Spline shape functions

Linear B-Splines
| — | —

Figure 4.21: Normal stress contours for linear and B-Spline shape functions
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123



Rigid Body Spring Network and Material Point Method for the Elastoplastic Analysis of Structures

Linear B-Splines

SR L 0

Figure 4.22: Shear stress contours for linear and B-Spline shape functions

When elastoplasticity is considered, using linear shape functions can lead to unrealistic
stresses at individual material points, and stress oscillations after yielding. There can also
be cases where material points reach yielding due to the non-physical stress variation
within a linear element. As a result of this, the material behavior is not modelled correctly

and higher order shape functions such as cubic B-Splines is advisable to be used.

4.7.3 Different discretization in plasticity

In this paragraph different mesh sizes are investigated when plasticity is concerned. A
steel cantilever beam is considered with dimensions 1x0.2m. The support conditions are
simply supported for the middle of the beam and rollers for all the other points, and the
load is distributed in all the points lying in the edge. The various parameter values used
in the analyses are given in Table 4-3. A vertical load is applied at the free end of the
beam. In order to simulate static conditions, the load is applied gradually over the

timespan of 1sec.

Symbol Value
Young’s modulus E 210GPa
Yield stress oy 240MPa
Post yield stiffness/elastic a 10%
BW shape parameters b=y 0.5
BW smoothness parameter n 16
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Thickness t 0.06m

Load F 160kN

Table 4-3: Parameters of cantilever beam

Analyses are carried out with various mesh sizes. Starting from a crude mesh size with
elements of 0.1m edge length up to a fine mesh with elements of 0.02m length. In addition,
analyses are carried out with various number of material points per element. Results are
presented in the following Figures. In Figure 4.23, the stress strain diagram the normal
stresses and normal strains are presented for the material point that is closest to the fixed
base and at the further end from the centerline. As expected, with finer meshes and more
points per element, this material lies closer to the corner of the beam, where the maximum
stress is theoretically expected. This means that the maximum stress that the material

reaches should increase with smaller mesh sizes.

%10

Stress-xx (Pa)

—Lel=0.10m,ppel=4
—Lel=0.10m,ppel=9| |
—Lel=0.05m,ppel=4
Lel=0.05m,ppel=9
--Lel=0.02m,ppel=4
---Lel=0.02m,ppel=9

0 1 L 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5

Strain-xx (-) %1073

Figure 4.23: Stress —strain diagram for various mesh sizes and point per element

Moreover, in Figure 4.24 the final Von Mises stress distributions are plotted for the
various mesh sizes and points per element. Figure 4.24 a) refers to an element length of
0.1m and 4 points per element (ppel), b) is 0.1m and 9ppel, c) is 0.05m and 4 ppel, d) is

0.05m and 9 ppel, e) is 0.02m and 4 ppel and finally f) is 0.02m and 9 ppel respectively.
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The present formulation is able to capture the correct stress distribution with better

resolution for finer meshes.

a) | oiiiiiiiiiiil

b) i

d) ﬂﬂ

x10°

f ai

Figure 4.24: Von Mises stress distribution at final step for different mesh sizes and

points per element
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Chapter 5: Numerical Examples

The following paragraphs provide several examples both for RBSN and MPM in order to
verify and validate the proposed methodologies as well as examine their accuracy and
ability to simulate hysteretic phenomena and plasticity. All the examples presented are

solved using Matlab codes developed for this thesis.

5.1 RBSN — Cantilever beam with tip load

In this example a cantilever beam with a concentrated load applied at the free end, is
examined. Material is considered as elastic — perfectly plastic (with parameter a set to

0), Young’s modulus is E =210GPa, Poisson ratio is set to 0.3, material yield stress is
o, =240MPa, beam thickness is 5cm and Bouc-Wen parameters are setto g =y =0,5
and n=8. Beam geometry is presented in Figure 5.1 and for the discretization a

minimum distance of 5cm and 3cm is used, resulting in two different discretization

schemes.

¥

r3

1.00 m

D.fﬂm
¥

SIS

L 4

Figure 5.1: Cantilever beam geometry

The applied concentrated load is monotonically increased. For beams with span/depth
ratios larger than 3 the initial yield load and a lower bound for the ultimate load can be

calculated analytically [85] by Equation (5.1) with the following results:

b _ ()'ybh2

y

=20kN

51
b _ O'ybh2 61)

u

= 30kN
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In Figure 5.2, the tip load — tip vertical deflection curve is presented. For this analysis the
beam is discretized in two different ways, one using 39 nodes and 78 elements resulting
from the 5cm minimum distance criterion and the other using 94 nodes and 219 from the
3cm distance criterion. Results are compared with those from Hysteretic Bouc-Wen Plane
Stress Element (HPSE) [126] using 328 elements and those obtained from Abaqus code
[1] using 2094 CPS3 elements. Abaqus implements the full Newton-Raphson scheme for
the solution, while HPSE employs the Livermore solvers for ordinary differential
equation [106]. Results are in good agreement and indicate the proposed hysteretic RBSN
model’s ability to simulate the smooth transition from the elastic to the inelastic regime,
as well as to predict the correct yield load of the beam. For the discretization with 39
nodes yielding seems to occur at a higher displacement. This can be attributed to the small

number of nodes and the resulting few elements along the height of the beam.

35 : - ; - :

Load (kN)

— HPSE (328 elements)
- Abaqus, CPS3-2094 elements
== Proposed (78 elements)

— Proposed (219 elements)

O.b5 - 0:1
Displacement (m)

Figure 5.2: Tip load — tip deflection curves for cantilever beam

In Figure 5.3, the distribution of Von Mises stresses is presented at the final state where
all the facets near the fixed support are approaching their ultimate plastic state. Results

are presented in normalized form and are compared with HPSE in Figure 5.4.
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1 0.75 0.50 0.25 0

0 0.25 0.5 0.75 1

Figure 5.4: Normalized VVon Mises yield criterion for HPSE [126]

5.2 RBSN - Plasticity and fracture

In this example a simply supported beam with a load at its middle is examined. Two
different discretization schemes are employed using 275 and 689 nodes. Material is
elastic, concrete C20/25 with a Young’s modulus of E=29Gpa, Poisson ratio v=0.2 and
the dimensions of the beam are 1x0.2m. The tensile strength is 2MPa and the shear
strength 6MPa. The final configuration of the deformed beam together with the developed
cracks are presented in Figure 5.5. The model is able to predict the correct form and shape
of the cracks with one major crack developing as expected in the middle of the simply

supported beam. Other cracks are also developing although they are smaller in magnitude.
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Figure 5.5: Crack patterns in simply supported beam

For a second example a cantilever beam with a concentrated load at the free end is

examined. This time both plasticity and fracture are considered. The beam geometry

together with the discretization can be seen in Figure 5.6. For this example, the beam was

discretized with 94 nodes producing 219 elements.

Im

Figure 5.6: Beam geometry and discretization

210Gpa while Poisson

E=

s modulus is

2

Material is steel with 6y=240MPa and Young

8 and

Wen parameters are n

ratio is v=0.3. Beam thickness is 0.05m and the Bouc

0.5 while the ratio of the post yielding branch to the initial elastic one is set to 2%

a=fi=
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hardening. Since the beam has a span to depth ratio larger than 3, the beam yield load and

ultimate load can be calculated analytically as in Equation (5.1).

35

Load (kN)
> B S & 8
T T T T T
L L L 1 L

o

|
0 0.05 0.1
Displacement (m)

Figure 5.7: External load-tip displacement diagram

Figure 5.8: Magnified crack pattern

In Figure 5.7, results obtained from two analyses are presented. In the first analysis, only
plasticity is considered for the internal springs and no fracture is involved (black line). In
the second analysis fracture was also taken into account (blue line). Results show that
after initial yield some elements near the support rupture, resulting in a gradual stiffness
loss until the external force reached around 30kN when most of the cross section has lost
its stiffness and essentially became a plastic hinge. In Figure 5.8 the crack patterns

developed in the beam are also presented. The red lines denote the facets in which the
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springs have ruptured. Also, in the same figure the base of the beam near the support is
presented magnified in order to show the main cracks developed and their propagation

through the beam.

5.3 RBSN - Plastic fracturing of a titanium alloy plate

In this example, the plastic fracture of a titanium alloy plate is examined. Experimental
procedures, as well as simulations using a discretized virtual internal bond (DVIB)
technique are conducted in Ding et al. [42]. The same problem is also analyzed in [142]
using a distinct lattice spring model (DLSM) with a modified Drucker — Prager plasticity
model, that is simplified to a Von Mises one. The elastic modulus of the titanium alloy is
115 GPa, Poisson’s ratio is 0.28, and the tensile strength ot is 1007 MPa while the yield
stress is oy=955 MPa. These parameters are directly taken from [42] and are obtained
from an experimental uniaxial tension test. These experimental measured stress strain
curves in uniaxial tension and RBSN simulation are presented in Figure 5.9. The Bouc
Wen model in RBSN is able to predict the elastoplastic behavior at elemental level, up to

the point where softening behavior is manifested.

1200
1000 h
© 800
o
=
» 600
w
o
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200 Experimental
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O n
0 0.05 0.1 0.15
Strain

Figure 5.9: Uniaxial tensile stress-strain curve (simulated vs experimental)
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Two measurement points are tracked, marked with red dots in Figure 5.10, in order to
record the corresponding Crack Opening Displacement (COD). The COD versus reaction
force curve recorded in the experimental test [42] is used for verification, and the results
from RBSN simulations are compared with those from the other numerical methods. In
RBSN simulations the force is gradually applied in a dynamic simulation framework

during a large timespan. Results are presented in Figure 5.11.
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Figure 5.10: Titanium alloy plate geometry and RBSN discretization

In RBSN two meshing schemes are adopted, one using a 3mm minimum distance
criterion and one using a 0.9mm criterion. This leads to 218 and 1949 nodes for each
model respectively and the initial discretization with 1949 nodes is presented in Figure

5.10.

In Figure 5.11 results are presented for the elastic model as well as the elastoplastic one
comparing with an elastoplastic DLSM model. The model appears to be less stiff for the
RBSN formulation and as explained in previous Chapters its stiffness is slightly affected
by the discretization scheme. The 218 nodes model appears to be closer to the DLSM

method (that employs a particle size of 0.5mm) in terms of initial stiffness.
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From Figure 5.12, it can be seen that the simulated load-COD curves of the RBSN model
considering both plasticity and fracture, agree reasonably with the tested results. Different
mesh size schemes give slightly different results regarding the load-COD curve.
However, the fracture pattern remains consistent. The fracture pattern is presented in
Figure 5.13 together with results from the DVIB method, the DLSM method as well as

experimental results.

x10*

Force (N)

== Elastic DLSM -
——Elastic RBSN, 1949 nodes
----- Plastic DLSM
----- Plastic RBSN, 1949 nodes
—-— —Elastic RBSN, 218 nodes
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COD (m) %1073

Figure 5.11: Comparison of simulation and experimental results
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Figure 5.12: Comparison of simulation and experimental results
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b) DLSM

d) experiment

Figure 5.13: a), ¢): Magnified (10times) crack opening, b) Fracture pattern in

DLSM and d) experiment

&

Qa6 ann!
B o omeeiatt
RS PSRN
9 ";.’.""J‘

Figure 5.14: RBSN fracture patterns for a) 218 and b) 1949 nodes
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Finally, in Figure 5.14 the fracture patterns are presented for a crude discretization with
218 nodes and a mode refined with 1949 nodes. This simulation results signify that the
present RBSN method with plasticity and fracture can quantitatively simulate the plastic

fracture in this titanium alloy plate.

5.4 MPM - Square patch under tension

As a first numerical example concerning the Material Point Method, the benchmark [119]
of a square patch under tension is examined and extended for the inelastic regime. The
square patch is attached to a rigid body on the right end and is fixed on the other. Two
loading cases are considered. The first refers to a constant velocity applied on the rigid
body, while in the second case a sinusoidal velocity is applied. This is essentially a
displacement control analysis. The square dimensions are 0.3mx0.3m, and is discretized
either with 9 elements and 4 material points per element (37 material points, Figure 5.15),
or 36 elements and 16 material points per element (576 material points, Figure 5.16). The

rigid body has dimensions of 0.1mx0.3m, with 4 material points per element. The
Young’s modulus is E =1000Pa, and the density is set to p =10kg/m?®. The velocity is
imposed on the x-direction of the rigid body for both load cases. For the first case the

velocity is v, =0.001m/sec, while for the second case is given by the following formula:

v, =0.015co0s (47t /T,

end

). The analysis is run for T, =10.34sec. In both cases the yield

stress is set at o, =25MPa and the hardening ratio at 10%. For the proposed model the

parameters used were n=32 to approach bilinear behavior and g =y =0.5. Various
time step sizes are investigated, and no degradations are considered for this example.
Since this is a small deformation problem, linear shape functions were chosen to verify
the proposed model in the original MPM formulation. For the case were 36 elements were

used and 16 material points per element, to avoid the grid crossing errors, the background
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grid was displaced, following the deformation of the square patch (moving mesh MPM

[130]).

N
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3
e e

Figure 5.15: Square patch in tension benchmark geometry (9 elements and 4

particles per element)

The results are presented and compared with FEM results [6] from a fine mesh (the
FEM elements have dimensions of 0.0125mx0.0125m). In more detail, for the constant
velocity and quasi static conditions, the evolution of Von Mises stress is presented in

Figure 5.17, regarding the point A with coordinates x =y =0.175m (as marked in Figure

9) for the discretization with 9 elements and 4 material point per element. The final

difference in VM stress is 0.42% and the time step used was dt = 0.01sec in both analyses.
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0.3 m

0.3 m 0.1m

Figure 5.16: Square patch in tension benchmark geometry (36 elements and 16
particles per element)
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Figure 5.17: Time evolution of Von Mises stress — constant velocity loading case

In addition, the final displacement and stress distribution in the square patch are compared
with FEM results (for a discretization with 36 elements and 16 material points per element
in the MPM) and are presented in Figure 5.18. Results are in very good agreement,
especially for the displacements, while for the stresses, the maximum Von Mises stress
developed in the square patch is 26.36MPa in MPM and 26.42MPa in FEM and the
minimum VM stress is 25.34MPa and 25.21MPa respectively, showing small

differences.

It should be noted that for this structure stress concentrations are located at the 4 corner
nodes, which increases the maximum stresses as the mesh is refined. This behavior is
observed both in FEM and MPM analyses. For this reason, a more refined analysis was
conducted using a very fine mesh of plane stress elements with dimensions
0.001m % 0.001m for the FEM and the MPM model. In MPM 4 particles per element were
employed for a total of 3600 material points. The results considering the VVon Mises
stresses for the central region (omitting the 4 corners where stress concentrations manifest)

with dimensions 0.3mx0.25mare presented in Figure 5.19.
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Figure 5.18: Square patch final displacement profiles and Von Mises stress

distribution comparison at final time step (Left FEM — right MPM)
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Figure 5.19: Von Mises stress distribution - central region (left FEM — right MPM)
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Finally, in order to examine the error in satisfying the yield criterion using a Forward

Euler explicit scheme for plasticity, the time evolution of the H, function, representing

the yield criterion is plotted for different time steps in Figure 5.20.
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Figure 5.20: Time evolution of H1 function (yield criterion) for different time steps

for constant velocity

This function takes values between zero and one with one representing a fully yielded

material. Three different time step sizes are used namely: dt =0.01sec, dt=0.001sec

and dt=0.0001sec . The maximum errors recorded where: err,,, =4.09x10%

eI, 0, = 2.62x107°% err, .., =1.14x10°% respectively. It can be observed that even
with the highest time step dictated by the CFL condition of dt =0.01sec, the error
remained low for this problem. In addition, even for the highest time step H, tends to
return to its theoretical value of one (1) as time increases. This will be more evident in

next part of this example when a sinusoidal velocity is applied.

In the second part of this benchmark example the sinusoidal velocity is applied to study

the dynamic behavior of the square patch. Again, the velocity is imposed on the rigid
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body in the x direction. All the parameters are the same as in the previous case and two
different cases are considered one for isotropic and one for kinematic hardening. Stress
and strain results are presented in Figure 5.22 for the point with coordinates
X =Yy =0.175m (as marked in Figure 5.15) and are compared with FEM. As it can be
observed, for this small deformation problem, the results are essentially identical between
the two methods verifying the proposed model ability to accurately simulate hysteretic

behavior. Moreover, the evolution of the H, function, representing the yield criterion is

plotted for different time steps in Figure 5.21. As it can be observed the accuracy is better

for smaller time steps and even for the highest time step of dt =0.01sec, the error is low
at err,,, =2.9x10°% . The error is observed at the first instances when the material

reaches the yield surface and as time evolves it returns to the correct value. It should be
emphasized here that this behavior manifests for higher values of n, where the response
approaches the bilinear behavior. For smaller values and smoother transition from the
elastic to the inelastic regime the error is lower. For example, if n=8 the maximum error

was err,,, =0.59x10°% .
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Figure 5.21: Time evolution of Hy function (yield criterion) for different time steps

for sinusoidal velocity and kinematic hardening
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Figure 5.22: Results comparison for sinusoidal load case

5.5 MPM — Hysteretic simply supported beam

In this example, a simply supported beam is subjected to a concentrated tip load on its

middle as depicted in Figure 5.23. The material is structural steel with Young’s modulus

E =210GPa, yield stress of o, =240MPa and a mass density of p=7850kg /m°.
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Material is considered as elastic — perfectly plastic. The beam has a length of 2m and a
height of 0.1m, while the width is 0.05m. For the beam discretization 1280 material
points were used corresponding to 4 points per element (4ppel). The background grid
elements have a length of 0.025m. The load is applied gradually in small increments over
a long time period of 20 sec until its maximum value to simulate quasi-static conditions
within the present MPM explicit dynamic formulation. The time step is chosen as

dt =5-10"° sec, which although bigger than the one suggested from the CFL condition

i.e. dt,, =4.15-107, offers quite satisfactory and stable results.

The force-displacement diagram of the free end of the beam is presented in Figure 5.24
and is compared with results from Finite Element code [6]. Finally, the Von Mises stress
contour plot for the beam is presented in Figure 5.25 and compared with the results from
FE model. Results are essentially identical with an exception near the boundary corners
of the beam, due to B-Spline shape functions used in this example. This has been observed
also by other researchers in [56] and [4] regarding discrepancies in stress calculations
near the boundaries attributed to B-Spline shape functions. However, since the plasticity
dominates the central part of the beam this does not affect the overall behavior and final
stress state of the beam. Using more particles per element and more elements theses
discrepancies become smaller. The hysteretic MPM model can predict accurately the

nonlinear response of the beam as well as its stress state.

5cm
-

/\/ D ElOcm

[=2m

>

Figure 5.23: Geometry of simply supported beam
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Figure 5.24: Force-displacement diagrams for the middle of the beam
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Figure 5.25: Von Mises stress distribution

Furthermore, a second analysis has been performed concerning the dynamic inelastic
response of the beam under a sinusoidal load and a hardening of 5%. The imposed
sinusoidal dynamic load has a duration of 6 sec and an amplitude of 60kN. It is applied

at the middle of the simply supported beam like in the previous example. The analytical

expression for the load is: F:605in(7rt). In Figure 5.26 the time history of the

displacement of the middle beam is presented and compared with results from FEM code.
Analyses were carried out both for isotropic and kinematic hardening. In addition, the

stress strain curves regarding the normal stresses in the horizontal direction that dominate
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the beams response are presented in Figure 5.27 regarding the material point located in

the bottom half length of the beam for kinematic and isotropic hardening and are

compared with FEM. Results are in good agreement verifying the accuracy of the

hysteretic MPM formulation for inelastic dynamic analysis. Finally, results considering

stiffness degradation and strength deterioration are presented both for stress — strain

diagrams (Figure 5.27) and the beam displacements (Figure 5.28). It can be observed that

the reduction in stiffness or strength leads to an increasing amplitude response
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Figure 5.27: Stress strain curves for different hardening and degradation

parameters
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Figure 5.28: Beam displacement time history comparison with degradations

5.6 MPM — Frame corner connection

In this example, the nonlinear response of a frame corner is examined. The experimental
setup and the whole investigation is presented in [14]. Both members of the frame
connection are made of W30x108 members and stiffeners and material is steel A36. The
geometry and the details of the model can be seen in Figure 5.29. A more detailed
discussion of the parameters chosen for the analysis can be found in [138]. In order to

simulate the | shaped beams and stiffeners, different thicknesses were assigned to

individual material points, namely b, for the flanges and t, for the web, as can be
visualized in Figure 5.29 (left). The grid spacing and the material points per element
define the value of the width of the flanges of the | beam t, (represented by the outermost
particles). All the other intermediate particles have a depth value of t,. The moment of

inertia of the cross section must remain the same as the original cross section and can be

written as the sum of the contributions from the web and the flanges:

2
I, =1 +|f=—tW(D_2tf)

XX w

2 3
1 2bt, (%-%} +2%f (5.2)
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Solving the previous equation for b, the equivalent flange thickness perpendicular to the

2D domain, that is used in the simulations, is obtained. For the MPM analysis 1296
material points were used with 9 points per element. The force-displacement diagram is
presented in Figure 5.30. Results from inelastic MPM simulations are compared against
experimental observations as well as results from Meshfree method [138]. The results
are in good agreement between the two numerical methods. Differences are observed for
both numerical methods with experimental data, after a point where softening behavior is
manifested when local buckling of the flanges was reported. It is natural a force controlled
numerical model cannot capture this behavior since it only accounts for hardening.
However, up to that point the inelastic MPM results follow satisfactory the experimental

ones.

-

-+ Deflection
' gauge

Figure 5.29: Geometry of frame connection

Finally, the stresses developed in the frame corner are plotted in Figure 5.31 and
compared against those reported in [138]. They match closely one another, and some
observations can be made. A plastic hinge is formed near the corner connection and the

beam’s neutral axis has shifted towards the flange that is in tension. This is attributed to
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the combined axial and bending load state of the beam. These observations are manifested

in the numerical results validating the formulation
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Figure 5.30: Load-displacement diagram for the frame connection
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Figure 5.31: Frame corner connection stresses (MPa). Left MPM, right Meshfree

Method (adopted from [138])
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5.7 MPM — Steel frame

In this example a steel portal frame structure is considered [90]. Material is steel with
Young’s modulus of 207GPa, yield strength of 470MPa and a 5% hardening. Both
columns of the frame are fixed, and a constant load is applied at the top of the frame with
a value of 444.82kN. The column cross section is W12x120 while for the beam the cross
section is W16x36. Similarly to the previous example, in order to simulate the | beam
shape different thicknesses were assigned to material points based on whether they are
part of the flanges or the web. Two dynamic analyses are performed, one where the

material is considered to be elastic and one for elastoplastic.

P(t), u_

u(cm)
u (cm)

. 00 05 10 15 20 25 30 35 40 45
Time (s) Time (s)

Figure 5.32: Time history of the displacement of the upper left node of the frame

(elastic and elastoplastic behavior)

In Figure 5.32, the displacement time history of the top left node of the frame is plotted
both when the frame is considered elastic (left) and when plasticity is taken into account
(right). Results are compared with an inelastic beam finite element code and appear to be
in good agreement [90]. The slight differences that are observed for the inelastic case can
be attributed to the difference in the parameter value n that controls the smoothness from
the elastic to the inelastic region as well as in the fact that in FEM a lumped mass approach

is employed. With the black solid line and dots are the results using beam elements while
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the MPM results are plotted in red solid lines. Finally, in Figure 5.33 the deformed shape

of the frame is presented its maximum amplitude.

0.0z

0.01

Figure 5.33: Deformed shape for the frame at maximum amplitude

5.8 MPM — Taylor impact test

This example refers to a classical cylinder impact test often referred to as Taylor test. A
steel rod is impacting a rigid surface at high velocity. The material of the rod is aluminum
6061-T6 with a density of p=2700kg/m® and a Young’s modulus of E=78.2GPa. The
Poisson ratio is set to v=0.3 and the Von Mises yield stress is 6y=0.29GPa with isotropic
hardening. The length of the rod is considered to be three times its radius with its length
being Lo=2.346cm and the radius Ro,=0.782cm. The initial geometry and the MPM

discretization are presented in Figure 5.34.

The rod has an initial downwards vertical velocity of vo=-373m/sec. This velocity is
applied as an initial velocity to all material points in the MPM algorithm. For the MPM
analysis a regular orthogonal grid is chosen with square elements of edge length

Lei=0.0782 cm. Four material points per element are used in this simulation for a total of
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1200 material points. The rigid wall is modelled with roller boundary conditions in the

horizontal direction and fixed in the vertical direction.

373 m/sec

Figure 5.34: Elastoplastic aluminum cylinder initial geometry and MPM

discretization

The same problem is analyzed in [121] by Sulsky using an axisymmetric form of the
Material Point Method. Results are compared with those from 2D axisymmetric MPM in
cylindrical coordinates, as well as other methods also reported in [121] and [103], in Table
5-1, for the final length of the rod Lt and its final diameter Ds. Furthermore, the diameter
of the rod at a height 0.25cm from base is also presented, Dn=0.25 as a measure of the final
shape of the rod. For BWMPM (Bouc-Wen Material Point Method) the distances were
calculated between the furthest material points, vertically or horizontally, for each case.
Since each material point represents an area of the continuum the actual boundaries of the
rod are not explicitly tracked by the material points. Results appear to be in good
agreement and the BWMPM is able to capture the final deformed shape of the rod. This
showcases the ability of the Material Point Method to handle contact problems easily
without any modification of the numerical codes and algorithms. Moreover, in Figure
5.35 the final deformed shape of the rod is presented and compared with the deformed
shape reported in [121] in Figure 5.35 a) and [103] in Figure 5.35 b) outlined above the

BWMPM results. In [121] the coordinates and the problem parameters are normalized in
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such a way as Ro=1. This implies that that the rod length is Lo=6 since half of the rod is
actually simulated with symmetric boundary conditions in the middle. All the other units
were also made dimensionless by scaling them, for example velocity was scaled using the
uniaxial wave speed. In Figure 5.36 the equivalent plastic strains are plotted. As can be

expected plasticity is concentrated around the impact area.

Lt (cm) Dt (cm) Dh=0.25(Cm)
FLIP [121] 1.63 1.480 0.98
HEMP [103] 1.652 1.484 1.106
CSQ [103] 1.605 1.440 1.106
Experiment [135] 1.651 -
BWMPM 1.595 1.452 1.103

Table 5-1: Results regarding the final length of the rod, its final diameter, and its

diameter at 0.25cm height for isotropic hardening

%1073 %1072 %1072

N ST
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b) c)

Figure 5.35: Final deformed shape of the rod for isotropic hardening: a)

comparison with [121], b) comparison with [103], and c) BWMPM (all units in m)
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Figure 5.36: Equivalent plastic strains — isotropic hardening
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The maximum equivalent plastic strains reported in [121] is 2.732. The BWMPM is able
to capture the final shape of the deformed rod with some minor differences regarding the

shape of the bulge at 0.25cm height.
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Figure 5.37: Equivalent plastic strain evolution for material point in the middle of

the rod impact area.
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Figure 5.38: Plastic strain distribution, a) &”'x, b) &Py, ) &y

In Figure 5.37 the evolution of the equivalent plastic strains for the material point lying
in the middle of the impacting face of the rod are presented. It can be observed that the

plastic strains remain unchanged after the 2500 computational step which signifies that
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the collision with the rigid wall has occurred and the rod is at rest. Finally, in Figure 5.38

the distribution of normal, tangential and shear plastic strains are presented.

In addition, the same impact problem is analyzed, and the material is considered to be
elastic perfectly-plastic. In Table 5-2 results are presented again with regards to the final
length of the rod Ly, its final diameter at impact Dr and its final diameter at 0.25cm height
Dh=0.25. In Figure 5.39 the final deformed shape of the rod is presented. In Figure 5.39 a)
results from [121] are plotted and in Figure 5.39 b) the black outline represents the final
shape of the CSQ results [103] plotted over the BWMPM results. Moreover, in Figure
5.39 c) the deformed shape of the BWMPM alone is presented for clarity. Finally, in
Figure 5.40 the equivalent plastic strains are plotted for the case of elastic perfectly plastic
material. The maximum plastic strain reported in [121] is 3.559. Results appear to be in

good agreement with some shape differences around the impact area of the rod.

Lt (cm) Dt (cm) Dh=0.25(CM)
FLIP [121] 1.42 1.880 1.00
HEMP [103] 1.479 1.796 1.164
CSQ [103] 1.477 1.652 1.170
BWMPM 1.427 1.753 1.029

Table 5-2: Results regarding the final length of the rod, its final diameter, and its

diameter at 0.25cm height for perfectly plastic material

L 0.005 0.01 0.015 0.02 0.005 0.01 0.02

Figure 5.39: Final deformed shape of the rod for perfectly plastic material: a)

comparison with [121], b) comparison with [103], and ¢) BWMPM (all units in m)
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Figure 5.40: Equivalent plastic strains — perfectly plastic
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6.1 Summary, comparisons and concluding remarks

In this dissertation, smooth, rate independent Bouc-Wen hysteretic models are derived
based on both a physical based approach with a mechanical analogue, as well as on
classical plasticity theory concepts. The main advantage of the Bouc-Wen formulation is
the use of smooth Heaviside type functions, acting as switches, and controlling all the
stages of a hysteretic loop, avoiding the stepwise prediction correction incremental
procedure. A single relation is established for the plastic multiplier in rate form that is
valid for the entirety of the stress space. The formulation is quite general so as the model
can accommodate various yield criteria and hardening laws. Consequently, the Bouc-Wen
equations are established in a compact form allowing for isotropic, kinematic and mixed
hardening as well as stiffness degradation and strength deterioration. By adjusting the
parameters of the hysteretic model, a wide range of inelastic response can be simulated.
These parameters are the exponent n, which controls the smoothness of the transition
from the elastic to the inelastic regime,  and y that control the shape of the hysteretic
loops during unloading, parameter « that controls the slope of the inelastic branch and c,,

my, and cy that control stiffness degradation and strength deterioration.

The Rigid Body Spring Network method is investigated next. A nonlinear Rigid Body
Spring Network element that incorporates the Bouc-Wen hysteretic model is developed,
together with effective methods for the solution of the resulting equations of motion in
implicit form. An element consists of two rigid cells connected at their common facet.
This connection is established using three zero length springs that follow a Bouc-Wen
hysteretic behavior. For each spring, the total force is decomposed into an elastic and an
inelastic part. Both linear differential equations of motion and the nonlinear hysteretic
equations are solved simultaneously by being converted into state space form. A

hysteretic matrix is being established for each element rendering the proposed
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formulation suitable for incorporation into existing RBSN codes. This is accomplished
mainly by evaluating the hysteretic matrices and establishing the evolution equations.
Numerical examples are presented that demonstrate the validity of the model in
simulating hysteretic behavior. These are compared with Abaqus and Ansys commercial
code, as well as the HYPLAS code and results obtained from a hysteretic Bouc-Wen type
plane stress finite element approach. From an engineering perspective, a direct physical
model that has the ability to incorporate the main characteristics of hysteresis in plane 2D
problems has been presented. This provides designers the ability to study the behavior of
various structures and identify regions of interest with regards to plastic phenomena to
accurately determine the final deformed state of the structure. As such, the entire approach
does not account accurately for the stress field within the rigid cells and is more suitable

for the contemporary performance based and displacement-based design.

The Material Point Method is addressed next, in an explicit formulation to model dynamic
or quasi-static problems, incorporating hysteretic-inelastic behavior. This formulation
accounts for a smooth transition from the elastic to the inelastic regime and incorporates
isotropic, kinematic and mixed hardening law, accommodating stiffness degradation and
strength deterioration for the whole behavior at each material point, employing the Bouc
-Wen model. The hysteretic model has been efficiently incorporated into the MPM
framework by deriving a tangent modulus for each material point taking into account the
interaction between the stress components and a smooth behavior from elastic to inelastic
transition. The formulation can accommodate various yield criteria, hardening laws and
stiffness degradation and strength deterioration. The model is used in an explicit time
integration scheme and the numerical results show that it can be quite effective in a
Forward Euler scheme without the need for a predictor — corrector, or radial return
algorithm, achieving lower errors for smoother transitions. Numerical examples are

presented and compared with results from finite element codes, experimental results and
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meshless methods, which validate the proposed model ability to simulate hysteretic
inelastic phenomena in the framework of MPM. Since the tangent modulus is calculated
for each material point, incorporating the proposed formulation into existing MPM codes
Is quite straightforward. In addition, these calculations are discrete, rendering the method

suitable for the use in massive parallel computations in high performance computing.

s Displacement Stress Mesh size Ease of mesh
olver _
accuracy accuracy dependency generation
RBSN [ Implicit VAN v v vV
MPM | Explicit VAN VY vV VAN

Table 6-1: Comparison of the two discrete methods

Both these methods are termed as discrete. The RBSN employs the VVoronoi tessellation
as a main characteristic of the method. There are numerous algorithms available in the
literature for automatic VVoronoi tessellation of complex geometries. This means that the
RBSN with Bouc-Wen as presented, provides effective means to effectively identify areas
of interest through its discrete representation of plasticity and crack patterns with
automated meshing. The MPM can be used for plane stress and plane strain problems
involving hysteretic behavior and provide a better resolution of internal variables, such
as stresses and strains. In comparison with the RBSN, the MPM is able to provide better
results concerning the calculation of stresses in 3D stress space. The accuracy of both
methods with regard to the displacement field can be regarded as similar. Both methods
are adequate in correctly capturing the displacements of structures during dynamic

loadings and when plasticity is manifested.
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6.2 Future research

Research directions that further improve the work presented in this dissertation are listed

below.

164

Extend the RBSN model with fracture laws that are based on energy calculations
both for monotonic and cyclic loadings.

In this dissertation, the material response is regarded as independent of the rate of
application of loads and/or the timescale of the problems considered. An
interesting point of future research could be the use of Bouc-Wen hysteretic model
in the case of viscoplasticity (or rate-dependent plasticity).

Incorporate Damage laws in Bouc-Wen model in order to model the softening
behavior of various materials.

Develop a Damage model for the MPM, taking into account localization
phenomena and mesh dependencies.

In the analysis of elongated structural members, using a rectangular grid results in
having a vastly larger number of elements in one direction than in the
perpendicular one. This leads to higher computational times. In FEM this can be
partially overcome, by discretizing with orthogonal plane stress elements. An
interesting study would be to incorporate beam models in the MPM to model part
of the elongated structure. Moreover, embedded reinforcement in concrete could

be modelled with such beam elements.
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APPENDIX 1 — VON MISES YIELD CRITERION

The Von Mises yield criterion has been widely used to describe the ductile behavior of
materials. Its hypothesis is that plastic deformation is manifested when the second
invariant of the deviatoric stress reaches a critical value. In three — dimensional stress

space the criterion forms the yield surface that is defined by the following relation [85]:

o™ =0 (8.1)

where:
M — (O-ll 92 )2 +(O-22 _0-33)2 +(011 _0-33)2 + 6[(012 )2 +(O-23 )2 +(013 )2} 1 2
- 20y2 )

which can also be written using the second invariant of the deviatoric stress tensor as:

J

ZGy

M =251 (8.3)

The 3D representation of the Von Mises yield surface in principal stress space can be seen

in the Following Figure:

2 G .

Figure 8.1: Von Mises yield surface
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When 2D plasticity is considered, the VM yield surface is given by the following relation:

oM™ — (011 ~ O )2 +(62;)2 :_(611)2 +6(O_12 )2 -1 (8.4)
Oy

In some equations in Chapter 2 the yield gradient must be calculated. This is given for

the case of VM plasticity as:

)
oD :{2%—022 20, -0y, 6612} (8.5)
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APPENDIX 2 — PLASTICITY POSTULATES OF RATE —
INDEPENDENT PLASTICITY

In plasticity several postulates have been proposed over the years, mainly to distinguish
the plastic part of strains or stresses. These are proposed as mathematical inequalities and
the two most well-known are those by Drucker [46,45] and II’iyshin [69]. They are

outlined below.

Drucker’s Postulate.

Consider a material volume which is in a homogeneous state of stress and strain. Focusing
on the one-dimensional case without loss of generality, the initial stress state is denoted
by &°, point A in Figure 8.2. This stress state is general in the sense that the material may

have undergone any type of deformation and it may have yielded or not.

1o Hardening . Softening
B .
d : cmmmsC Ao <0< e
P S S— D —— A o i
: [ \I.dO' >0 N
O e Jrasssassnnnans \...:..:.... /.\/:\A do_dg < 0
dode >0
W
0 A D Aa D’
R Y A i 1 (S s
de, >0
. :
de, >0 e

Figure 8.2: Illustration of Drucker’ s stability postulate

Applying an additional load (or as is commonly referred to as external agency) the
material reaches its current yield stress o, at point B. If the stress is increased by a
infinitesimal increment de , a change in strain is produced, denoted by de and the material
reaches point C. Upon removing the incremental infinitesimal stress (removing the
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external agency), the material returns to the original stress state ¢° and a strain is
recovered. By applying and removing stress a stress cycle is formed [78], i.e. a closed

loop. The strain that is recovered depends on whether plastic deformation has occurred.

For softening behavior, the material is loaded and reaches point B’. In order to reach point
C’ the stress must be reduced. However, this is not feasible in a stress control experiment
since unloading from point B’; will lead to elastic unloading near point A’. In order to
complete the stress cycle a strain-controlled experiment must be used. In this case the
strains will increase, and the stresses will drop by de <0 bringing the material to point
C’. Unloading after that will carry out the stress cycle. If we suppose now that the material
is already on point B’ so that ¢ = ¢°, it is not possible for the material to undergo a stress
cycle. This distinguishes strain hardening from strain softening materials since a strain

softening material cannot in all cases go through a stress cycle.

Drucker’ Postulate define a stable material and asserts that the following relation is

satisfied:

W= [ (e(&)-06°):de>0 (8.6)

ABCD

Where W is the work per unit volume done by the external agency and the integral is

evaluated over the stress cycle ABCD. This leads to the following statements:

e The work done by the external agency during the loading phase must be positive:
do:de>0
e Over astress cycle the work done by the external agency must be nonnegative. In

case of elastic deformation, the work is zero.

If a material abides by these postulates it is said to be stable. It is also evident that a strain
hardening material is stable. For a softening material (or a perfectly plastic one), plastic

loading gives a non-positive work de : de < 0. These materials are defined as unstable.
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Furthermore, assuming an additive decomposition of strains, de =de® +de” and noting

that the elastic work is recoverable, then, assuming de is infinitesimal:
0y . pl 1 . pl
W=(6—-06"):de +§da.d£ (8.7)

If in the first term: (6 —6°) >> de and so:
(6—6°):de” >0 (8.8)
If however 6 =6° then Drucker’s postulate reduces to:

do:de” >0 (8.9)

Drucker’s postulate relates to the yield surface and states that the yield surface should be
convex. If the yield surface were concave then it might be possible to find a stress point
inside the yield surface for which (¢ —6°):de” would be negative and Drucker’s

postulate would be violated.

1l’iyshin’ s Postulate

I’1yshin’ s plasticity postulate is similar to Drucker’s postulate, but it is based on a strain
cycle instead of a stress cycle. It is stated as: Consider a strain cycle. Assume that the
material is in equilibrium and that strain is homogeneous. The material is plastic is, during
the cycle, the total work done is positive, and is elastic when the work done is zero. The

postulate can be mathematically stated as:

W = j o(¢):de>0 (8.10)

ABCD

Where again the integral is evaluated over the closed cycle of strains ABCD (Figure 8.3).
One of the differences with Drucker’s postulate is that in I1’iyshin’ s plasticity postulate
the work done cannot be negative as can be seen in Figure 8.3. It includes both stable and

unstable materials and characterizes the behavior of a very large class of materials.
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1o Hardening R Softening .
:B, C’
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Figure 8.3: Illustration of I’iyshin’ s postulate
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APPENDIX 3 — ELEMENTS OF CONTINUUM MECHANICS

Deformation gradient

The deformation gradient is a second order asymmetric tensor that relates to both the

reference and current configuration. Considering the motion ¢ of Figure 8.4 the

deformation gradient is:
F(Xt)=Vo(X,t) =% (8.11)
oX

@

Reference /\ Deformed
configuration

configuration

V'S

Figure 8.4: The deformation gradient

In Figure 8.4, dX is an infinitesimal linear material fiber that connect the two material
particles P and Q. Particle P has a position vector X while Q has a position vector of
X +dX in the reference configuration. In the current configuration the linear element
becomes dx and material particles P and Q are mapped to p and q respectively. The
deformation gradient is a linear operator relating infinitesimal linear fibers dX with their

deformed counterparts dx:
dx=F-dX (8.12)

The deformation gradient is termed as a two-point tensor in a sense that it acts on vectors

in the reference configuration to produce other vectors in the deformed configuration.
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When the deformation gradient is independent of the reference configuration X then the
deformation gradient is uniform and the deformation is called homogeneous. Rigid body
translations and rotations are homogeneous deformations and don’t contribute to stress
and strain. Another useful quantity is the determinant of the deformation gradient
J =detF that represents the local change of volume after the deformation per unit

reference volume:

oX, OX  0OX
oX, oX, oX,

j_ ox|_|ox,  ox, X, 6.13)
oX| |oX, X, oX,
0%y 0% OX
oX, oX, X,

The determinant of the deformation gradient for any deformed configuration of the body

should be positive:
J>0 (8.14)

Velocity gradient

If v is the spatial velocity:
v(X,t)=x(p(x,1),t) (8.15)

then, we can define the velocity gradient as:
oV
L=— 8.16
v (8.16)

that accounts for the difference between the velocity of a particle P and its neighboring

particle P’ at time t:
dv =v(x+dx,t)—v(x,t)=L-dx (8.17)

The velocity gradient can be split into symmetric and skew parts
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L=D+Q (8.18)

and the rate of deformation and the spin tensor can then be derived:

(8.19)
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