NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHoOL OF ELECTRICAL AND COMPUTER ENGINEERING

o
o
&
Q
€
A
>
(=

DiviSION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

Automated Monitoring and Security Services
in Federated Software-defined Network

Infrastructures

Doctoral Dissertation
of

Adam |. Pavlidis

Supervisor: Vasilis Maglaris, Professor Emeritus, NTUA

Athens, June 2020

E®GNIKO METZOBIO IIOAYTEXNEIO

A
<
&
)
&
A
>
C

2 XOAH HAEKTPOAOI'ON MHXANIKON KAI MHXANIKON YTIOAOTIETON

TOMEAX EMNIKOINONION, HAEKTPONIKHE KAI XYEXTHMATON [TAHPO®OPIKHE

EPrASTHPIO AIAXEIPIZHE KAI BEATIETOY XXEAIAZMOY AIKTYON THAEMATIKHE

AVTOROTOTOINUEVES ALOOLKTVOKES YN PEGIEG
Ac@arerag Kol ZvAroyng Agoopnévoyv og
Hpoypoppatilopeves Opodonovoeg Ynodoopuég
Awaktopikn Alatpipn

TOV

Addp 1. ITavAion

Xvppovievtikn Emrpom): Boacileiog Mdyxkiapng, Opdtipog Kabnyntmg EMII (emPrénmv)
Yvpeav HaroPaciieion, Kabnynme EMIIT

Evotabiog Zukdg, Kadnynmg EMIIT

Evotafiog Zukdg Yopenv [arapaciieiov Nektdprog Kolvpng
Kanyntmgc, EMII Kadnynmc, EMII Kanyntmgc, EMII
Anpntplog ovvpng John Baras Zrolavog Zaptletdrng
KoaOnynmc, EMIT Professor, UMD Epgovntig ‘A, ITIXY

Anuntprog Karoyepdc

Epevvnrrg ‘B, EIIIZEY

Eykpibnke amd v entapelf eéetaotiky emrpomny v 25" Iovviov 2020,

ABnva, Tobviog 2020

Adap L. Maviiong
Awdxtop Hiektporldyog Mnyavikdg ko Mnyoavikodg Yroroyiotov E.MLIT.

Copyright © Addp I. TTawidng, 2020
Me emeoiaén movtog dikaumpatog. All rights reserved.

Amoyopevetol 1 aviypoen, amofnkevon Kot Svoun G mopovcag epyaciag, €&
OAOKANPOVL M TUAUOTOG VTG, Yo eumopikd okomd. Emtpémetor m avordnwon,
amofnKeLoN Kol SVOUT Y10 OKOTO U1 KEPOOGKOMIKO, EKTALOEVTIKNG 1| EPEVVNTIKNG
@OOoNG, VO TNV TPOHTOBEST] VO OVaPEPETAL 1] TTNYN TPOEAEVOTG KOt VO, dlaTnpeital To
mopdv uvopa. Epotipato mov agopodv) ypnon g £PYAciag Yyl KEPOOGKOTIKO
OKOTO TPEMEL VO AmEVOVVOVTOL TPOG TOV GLYYPAPEQ.

Ot amdyels Kot To GLUTEPAGLLATO TOV TEPLEYOVTOL GE AVTO TO £YYPOPO EKPPALOVV TOV

ovyypagéa Kot Oev TPEMEL va, punveLdel 0Tt avTimpocwnedovy Tig emionueg BEcELG TOv

EBvuicod Metodfrov TToAvteyveiov

Abstract

This dissertation explores technological advances for network programmability and
softwarization to implement automated services for network monitoring and security. Its
main focus are software-defined schemas pertaining to data collection, anomaly

detection and (collaborative) mitigation of large-scale cyber-attacks.

Initially, we introduce a monitoring architecture for the collection and processing of
network monitoring data exported from dispersed vantage points, i.e. agents within
devices. These measurements are used to create centralized and localized monitoring
views that enhance visibility into anomalous events. Typically, such processing
techniques perform well, but rely on traditional protocols for data extraction. In
contrast, data plane programmability presents a promising alternative for rapid data
processing and anomaly detection. To that end, the P4 Domain Specific Language is
investigated to offload related workloads directly within network hardware.
Specifically, we propose an in-network DDoS anomaly detection schema that combines
important metrics (flows, packet symmetry) typically associated with malicious traffic.
These metrics are maintained per protected subnets and evaluated within time-based
epochs to generate alarms for external mitigation systems.

In addition to anomaly detection, this dissertation also explores solutions for attack
mitigation. As a first step, we propose a framework that distributes filtering rules for
multi-vector anomalies to devices across an attack path, enhancing their mitigation
potential. Specifically, this is modeled as a combinatorial optimization problem that
assigns source-based mitigation actions to devices, considering operator policies for
specific attacks and hardware constraints. An important aspect of this work is the
automated distribution of rules to heterogeneous multi-vendor environments. To that
end, popular techniques for network automation are investigated to seamlessly translate

and distribute generic directives to device-specific instructions.

Subsequently, the proposed approach is extended to multi-domain scenarios by
establishing trusted federations among network providers for collaborative DDoS
mitigation. This approach attempts to preserve on-premise resources and prevent
saturation of important links by mitigating malicious traffic earlier in the attack path.
Our mitigation schema incorporates blockchain-based smart contracts for signaling,

coordination and orchestration purposes. Similarly to our earlier efforts, filtering rules

for malicious sources are appropriately assigned to federated partners, factoring in the
importance of each flow and the reliability of a potential mitigator.

Source-based approaches may raise issues primarily in terms of scalability and
effectiveness. As an alternative, recent technological advances may be used to create
customized and agile solutions that employ IP-agnostic traffic characteristics for DDoS
defense. To that end, this dissertation considers a two-level schema for anomaly
detection and mitigation. The first level incorporates our P4 approach as a coarse-
grained DDoS detection mechanism; triggered alarms are used to identify the suspected
attack vector (protocol, port). Accordingly, a second protection level is instantiated
tailored to the identified attack vector. Data related to the attack are collected in a fine-
grained manner via high performance programmable XDP middleboxes. The collected
data are fed to a supervised Machine Learning algorithm, that classifies packets as
malicious or benign. Features corresponding to malicious packets are used to create
unique signatures, employed for filtering purposes. This approach relies on distinct

packet characteristics of malicious traffic and not frequently spoofed source IPs.

The proposed mechanisms are evaluated under realistic scenarios in modern
experimental setups comprised of P4/XDP-capable hardware, SDN switches, virtual

machines and physical servers, using real network data and synthesized traffic traces.

Keywords

DDoS attacks, Anomaly Detection, Attack Mitigation, Software-Defined Networking (SDN),
Network Automation, Data Plane Programmability, P4, XDP, Interdomain Federation,
Blockchain, Smart Contracts

Iepidnym

H moapovoa ddaktopik] datpifn peretd pebdoovg GuALOYNG OEOOUEVMVY, OViXVELONG
Kot (CLVEPYOTIKNG) OVTIHETOMIONG KuPepvoemibBécemv peydAng kAipokog Kot 10img
Kotavepnuéveg embéoels dpvnong mapoyng vanpecioc. Idwitepn éugaon divetor oe
TEYVOAOYIES Y10 TOV TPOYPUUUATIGUO TOV OIKTLOK®OV GLUOKELAOV KAO®MG Kot Tov EAEYYO
TOVG UECE® AOYIGHIKOV, HE OTOYO TN ONUOLPYID CVTOUOTOTOUUEVOV VINPECIDOV

ACQAAELOG KO GUAAOYNG OEGOUEVMDV.

ApyiKd, TPOTEIVETAL LIl OPYLITEKTOVIKY] Y10 TN GLAAOYN OEOOUEVOV OO KOTOVEUTLEVOL
onueio emonteiog — SKTLOKEG GLOKELEG — Ko TV peténeta, enelepyacioc Tovg. H
avdAvon ovtdv yiveTol HE am®OTEPO OKOTO TNV OLENUEVI] KOVOTNTO OviYVELONG
KEVIPIKOV 1| TOTKO ECTIOCUEVOV SIKTLOKOV OVOUOM®OV. Zg 0e0TEPO YPOVO peAeTdTon
t0 P4, ma yhdooa €01kov okomol yio T0 Pikd TPOYPAUUATIOUO TOV SIKTLOK®OV
ocvokevwv. H pedém eotidler omn petopopd pnyovicpuov oaviyvevong embéocewv
anevfeiog 6To VAKO 6oL Kot Bo eKTEAOVVTOL KaTaveEUNUEVE, HE GTOYO TNV TAXVTEPT
eneEepyaoia dedopévav. Kat’ enéktaom, mpoteiveror évag alyoplBpog aviyvevong mov
ouvovalel ovvnBelg petpikég (povadikég poéc — flows, ocvupetpio kivnong) 7y
aviyvevon embécemv DDOS. Avtég ot HETPIKES OATNPOLVTAL OVA TPOCTUTEVOUEVO
opo (kopPo, vodikTvo) ce drbpopa emineda evkpivelag Kot a&loAoyouvTaL ova TOKTH
OWCTAMOTO Yo TNV €YKOLPT OTOGTOAN UNVOUATOV Ge eEMTEPIKE GLGTNLOTO.

OVTILETOTIONG ETOECEWV.

Metd v aviyvevon tov emBécemv givorl avoykaio 1 OTOTEAECUOTIKY OVTILETMOTION
TOUG. ApyKA, 0 emOUEVOS Bepatikdg aEovag TG OTpPng €lGayel Evav UNYOVIGHLO
avabeong KovoOvmv ylo. TNV amokonn etepoyevav emiBécewv (multi-vector attacks).
Boowog otoéxoc eivar - €0EMKTN KOU GUVOAIKG OTOOOTIKOTEPT OVTLUETMMION TNG
KOKOPOVANG Kivnong o€ OpOopEeS GLOKEVEG KATA HNKOG TOL {yvoug g emifeongc.
JuyKkekpluéva, 1 avabeon povtelomoteitor cav €val cLVOLOCTIKO TPOPAN LA
BeltioTomoinomg aKEPALOV TPOYPOUUOTIGLOV, LUE YVAOUOVO OOLYEIPIOTIKEG TOAITIKES Kot
SLVOTOTNTEG TOV SIKTVOKAOV GUCKELMV. Mo CNUAVTIKY TTUYN OVTNG TN TPOCEYYIONG
glvol 1 OLTOUATOTOMUEV] KOTOVOUN KOVOVOV GE €TEPOYEV] TePPdALovTa Tov
amoptiloviol amd OLOKEVEG TMOALUTAMV KOTOOKELOOTMV. XUVETMS, HEAETHOMKOV
GUYYPOVESG TEYVIKEG OIKTLOKOD OLTOUOTIGHOV Y10, TN UETAPPOOCT] YEVIKOV KAVOV®OV GE

€101K00 TOHTOL 00NYiEG KoL TN SLOVOUT TOVG OTIS AVTIGTOTYEG CVOKEVEG.

‘Eneita, n mpocéyylon oavtn emekteiveTtol o€ TMOAAUMAEG Ol0)EIPIOTIKEG TEPLOYES —
Avtovopo ZUoTAHOTE — HE TN HOPON €VOG OUOGTOVOOV TTEPIBAALOVTOS Yo TapdYOLS
OIKTLOKOV VINPESIOV. Baoikdg 6toy0g eivar 1 Tpooctacia eEmtepik®dv (evéewv Kabmg
Kol OKelwV, evIoc AZ, apuvtikdv unyovicpov. H apyrtektovikn evoopatovel EEumva
ynotlakd copPorote (Smart contracts) amotvnouéva 6€ 0AVGIOMTEG SOUEG GUVOAALY DV
(Blockchain) ywo tv onuatodocia, TOV GUVIOVIGHO KOL TNV EVOPYNOTP®GCT TOL
GUVEPYUTIKOV UNYovVIcpov auovoc. H avébeon kovovov amokomng 6Tovg 0LOGTOVOOUS
eTaipovg yivetal pe yvopova t onuocio e kdbe KakOBovAng pong Kabwg kot tnv

a&lomotio Tov TOAVOL GLVEPYATN-ETAIPOV.

Ov mpooeyyicelg Yoo oaviyvevon Kor avipuetonion embBéocwv mbavag va
avTILETOTICOVY TpoPAnuate KAlpakog kot emidoong, Kuplowg Ady®m yevdemiypopwv
dtevbvvoewv IP. Me apopur| avtd to mpofAnue, 10 TEAELTOI0 KOUUATL TNG STPIPNS
eotialel o €va punyoviopd Svo EMITESIWV O OTOI0G TPOCPEPEL EEEIOIKELUEVOLS KOt
KMUOKOGLOVS UNYAVIGHOVG avTILET®OMIoNG embécemy. To mpato eminedo Paociletan
otV TpoyevésTtePN Tpoomdbeln ommv yAwooo P4 kor ypnoyomotgiton Yoo TV
TPOTOYEV] OVOYVAOPLOT TOV TUTOL NG €mifeons kot Tov apvvopevov-0Hotoc. Xtnv
GUVEYEWD, TO OgLTEPO €mimedo mpooapuoleTon oTNV TEPIGTOCON HE YXPNON
TPOYPAUUOTICOHEVOV EVOLIAUES®Y cLoKeELAV Paciopéveg oto mepidiiov XDP
(eXpress Data Path). Aedopéva mov oyetilovtor pe v enifeon cvAAéyovTal pe LYNAN
€VKpIveElD KOl €16AYOVTOL GE €vo. UNYOVICUO EMPAETOUEVNC UNYOVIKAG HaOnong o
omoiog Ko To KaTnyoplomolel wg kaAdBovia 1 kKakoBovia. Ot kakdBoviot cuvovacuol
OTOTEAOVV GUVOTTIKY] TEPLYPUPY] TG £MOEONC KO YPNOLUOTOIOVVTOL Yi0L TNV OTOKOTY|
™mG. ZNUovtikod onueio dtapopomoinong eival mwg ot meptypaés Paciloviar oe yyevn

YOPOKTNPIOTIKA TNG ekboTOTE EMiBeonG Ko O)L o€ devBvveerg IP.

Ot potevdpevol unyavicol aEtoAoynnkay KATm amd peaMoTikEG CUVONKES LLE XpNon
TPAYLOTIKOV 0£00UEVOV KoOMOS Ko cuvOetikng kivinong. H a&loddynon tovg éywve oe
GUYYPOVEC TEPAUATIKEG VITOOOUES Paciopuéveg o LAIKO cuppatd pe 1o P4 ko to XDP,

petaywyeig SDN, kabmg Kot vToAoy1eTIKOLS KOUBOLG.

Aé&Eerg Kiewona

Aiktoa Opilopeva and Aoyiopiko (SDN), Kataveunuéveg Embéoeic Apvnong [apoyng
Ymnpeoiag (DDo0S), Avtopatomoinon Awtvakodv Agitovpyidv, IIpoypoppaticpog
Emumédov Aedopévov, Aviyvevon Awtvaxkmv Zopfdaviov kot Embécemv, Avtipetdnion
Embécewv, Zuvepyacia Opdonovdomv Aitvakov teploydv, XDP, P4

Acknowledgements

This dissertation is the outcome of a long, continuous and laborious undertaking at the
National Technical University of Athens. As this journeys draws to an end, | reflect on
the most defining moments; it is needless to say that | would not be where | am, without
the help of a great many people. | cannot properly measure their individual contribution
on my professional and personal development, however | will do my best to thank most
of them.

First and foremost, 1 would like to express my deepest gratitude to my advisor,
Professor Vasilis Maglaris who has been the greatest and most important influence to
me, from my undergraduate years to the conclusion of my doctoral studies. As the
advisor of my dissertation, he has been an invaluable source of knowledge and
experience. | sincerely thank him for believing in me and giving me the opportunity to

pursue a PhD, as well as for the time he has generously invested in me.

I would like to thank Dr. Dimitris Kalogeras for his continuous contribution to our
academic and professional efforts, as well as all the important lessons that helped me
evolve as an individual; the members of my advisory committee, Professor Symeon
Papavassiliou and Professor Efstathios Sykas, for their important counsel and directions
through this journey; and the members of the examination committee for providing
valuable feedback and continuously supporting our research efforts.

In my case, doctoral research was not conducted in seclusion but among colleagues at
the NETMODE laboratory that created a pleasant working environment. | wish to all of
them good fortune in their current and future endeavors. Among them, my deepest
thanks to Dr. Kostas Giotis and Marinos Dimolianis. The former, for his considerable
help and guidance in my undergraduate years, as well as for his contribution to our
recent work. The latter, for sharing with me countless hours on joint research,
professional responsibilities, as well as numerous stimulating discussions and
brainstorming sessions. | also thank Dr. Mary Grammatikou for her important support
and collaboration during these years; Dimitris Pantazatos and Nikos Kostopoulos for
their valuable collaboration in our common obligations; Giannis Sotiropoulos,
Kostantinos Mitropoulos and all undergraduate students with whom we have worked

together as part of their undergraduate diploma thesis. A sincere thank you to all

NETMODE alumni that paved the way for us and especially Dr. Christos Argyropoulos

for encouraging me onwards on various occasions during this journey.

I would like to thank Loukas Anagnostou, Dr. Theocharis Tsigkritis and Dr. llias
Kotinas for their collaboration in our joint research. Also, my deepest thanks to all the
members of the NTUA Network Operations Center, especially Spiros Papageorgiou and
Thanasis Douitsis, for freely sharing their considerable experience and knowledge in

various contexts, as well as providing important feedback.

A heartfelt thank you is due to all family members and friends, old & new, for all the
moments of fun we shared and much needed support that helped me mentally. Among
them, | owe a special thank you to my partner Olga, who has provided great comfort

and a calming clarity in the most difficult times.

Last but not least, | thank my parents for their unwavering support and selfless love.
Their lessons were, and still are, a moral compass for the mountainous terrain that is,
life.

Table of Contents

N | oY1 oo [T £ o] o USRS 15
2 State-of-the-Art: Network Management and Security.........ccccoecvvvvevvciesnenenn, 21
2.1 Software-defined Networking and Data Plane Programmability 21
2.1.1 OpenFIowW ProtoCol..........ccoiiieiiiii e 22
2.1.2 Programming Protocol-independent Packet Processors - P4 25
2.1.2.1 P4 Language Architectural OVerviewcccocovevvevesiieseese s 27
2.1.2.2 Standard Types and Metadatacccocereririninieieiee e 28
2.1.2.3 Programmable control bIOCKS...........ccccoeiiieiiiieiieiecc e 30
2.1.24 ACtions and TabIeS.......ccoviiiiiiieiieiiee s 31
2.1.3 Data Modeling and Abstraction Layers..........c.cccccvevevieevveiieseese e 31
2.1.3. 1 YANG and OpenContfig......ccccuierieriererineniseseseeie e 32
2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks 33
2.2 Network Function Virtualization............cccoceeveiieiienecie e 35
2.3 High Performance Packet ProCeSSOrS........cccvuiiieiiverieiieieese e 37
2.4 MONItOring SOIULIONSccuiiiiiiiiieie s 39
2.4.1 SNMP and Streaming TelEMEtY.......ccccvveviiiieieeie e 39
2.4.2 In-band Network Telemetry ..o 40
2.4.3 Packet-level and Flow-level informationccoovvvviiinenc i 41
2.4.4 SDN and Data Plane monitoring SOIUtIONS............ccccevveieieiencieiieas 41
2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures....................... 42
2.5 CYDEI TRIALS ...t 42
2.5.1 MaliCiOUS SOFIWAIE......ceeiviiiiiiiiiieiceee e e 42
2.5.2 BONBES ..ot 43
2.5.3 Denial-0f-Service attacksccccriiiiiiiiiie i 43
2.6 Mechanisms for Anomaly Detection and Mitigation — Interdomain

Collaborative SCREMASc.ciiiiiiiiiie e 46
2.6.1 ANOMAlY DEECTION......ciiiiieiiiiitieeeee e 46
2.6.2 Mitigation MeChaniSMScccccveiiiiiiiiicie e 48
2.6.3 Collaborative SChEmMAScccoiieiiie e 51

3 Traffic Monitoring and Anomaly Detection based on Dispersed Vantage
0] 1 PSS 53
3.1 Problem StatemMent.........cccoocoiiiiiiiieieee s 53
3.2 Background and Related WOrK ..o 53
3.3 DeSigN PrINCIPIESc.veiiii et 54
3.4 Architectural Components and Implementation Detailscc.ccooevveinnne. 55
3.4.1 Monitoring Data Handler.............cccocveiiiiiii i 56
3.4.2 Centralized Data WarehouSecccevveriiiieiiieni e 57
3.4.3 Customized ANAIYEICS.......coiieiii et 57
KR @ (o1 1= - o] OSSR R 58
3.5 EVAIUALION ... e 59
351 EXPerimental SEIUDcooieiiiiiiiiieee e 59
3.5.2 Experiments on Multi-Vantage Point Anomaly Detection 60
4 Multi-Feature DDoS Detection on Programmable P4 Hardware..................... 62
4.1 Problem StatEMENT..........oooiiiiiieie e e 62
4.2 Background and Related WOrKccoovvieiieieiie e 62
4.3 Architectural Design and Selected Traffic Features...........cccoocvevieiieeiiecnnnne, 63
4.4 P4 Implementation DetailScccoovveiieieiiieiieie e 66
45 EVAIUBLION ..o e 69

451 EXPerimental SEIUPcccviiiiieie e
4.5.2 DDoS Detection ACCUracy ASSESSIMENTcccevveriereerenieseerieeeesieeneenns
4.5.3 Packet Processing Performance Capabilities..........c.ccovveveviieiiiieieennnn,

5 Placement and Automated Distribution of Access Control Rules to

Heterogeneous ENVIFONIMENTSccooiiiiiiiieieie et
5.1 Problem StatemeNt..........ccoiiiiiiiiiee e
5.2 Background and Related WOrKccovviieiieiiciiecie e
5.3 Architectural Overview: Principles and COmponentsc.ccocevvvvrveiennen.
5.4 Detailed ArChitECIUIE.........ciiiiiiiieeiee e

54.1 Pre-proCesSOr (PP)eiieiiiieiieie e sttt
5.4.2 Mitigation ResSOIVEr (MR)ccccviiiiiieiecic e

5.4.3 Rule Handler (RH) ..o s
5.5 EVAIUALION ..ot s
551 EXPerimental SEIUPcccooeiiriiiiieeee s
5.5.2 Traffic Profiles for Anomaly Mitigation Experiments..............c.cccocv.ee.
5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms..............
55.4 Complexity of Generalized Assignment Problemc.ccccccceiiiivennne.
5.6 Automated Rule Distribution via Salt & NAPALMccccocviviniinniennn,
6 DDoS mitigation via network provider collaborations............c.cccccccevvvevveneane.
6.1 Problem StatemeNt..........ccceiiieiiee e
6.2 Background and Related WOrKcccccviieiiiiiiiiciiese e
6.3 Overview and Baseling DESIGN.........ccccviiriiiiininieiee e
6.3.1 Design PriNCIPIESc.civeiecie et
6.3.2 Architectural COMPONENES.......cccuiiiiiiiiererie e
6.3.2.1 Collaborative Incident Response Managerccccccevveveeveiveennnnn,
6.3.2.2 Data STOrE SEIVICEeeiieieeeeeesieesie e see et ee e e nee e
6.3.2.3 Attack Mitigation ApplianCe..........ccccovevviiiiieii e,
6.4 Proposed Architecture: Implementation Details............ccccooceriiiininiininennn,
6.4.1 Blockchain-based Smart CONtraCts...........ccoocvrvrierierinreieneseseseeeeeens
6.4.2 Orchestration WOrkfloWcccccoeieiieiiiieieee e
6.4.3 Reputation Schema for Collaborating Entities...........c.cccccevveveiieviecnnenn.
6.4.4 Cost Optimization - Mitigation Action AsSIgNMeNtcccecevvrennnne
6.4.5 Implementation of Mitigation Mechanismsccccceveveevciiececnnenn,
6.4.6 Verification of Mitigation Agreementsccocevveierierenenenene e
6.5 EVAIUBLION ..ot
6.5.1 EXperimental SEtUPcooviiieiiiccie e
6.5.2 Reputation Score CalCulationcccceoeriiiiiniiiieeee e
6.5.3 Mitigation Actions Placementc.ccoveiieiie i
6.5.4 Mitigation VerifiCationccocuoiiiiiiienene e

7 Fine-Grained Traffic Classification and Attack Mitigation based on
Programmable Data PIANesS ... e
7.1 Problem StatemeNt..........coiiiiiiieie e
7.2 Background and Related WOrKcccooeiiiiiiiiniicee e,
7.3 HIGN-16VEl DESIONc.oviiiiiiiiccce e e
7.4 Architectural Components and Implementation Detailscccceoveenene.
7.4.1 Fine-Grained MONITOMNG.......cccuviiiiiiieiie e
7.4.2 Traffic ClassifiCatioNccccoiiiiiiiiie e
7.4.3 AnOMaly MItigationcccoviiiiiiiiieiieee e
7.5 Analysis of DNS-based Reflection and Amplification Attacks
7.6 EVAIUBLION ..ot e

7.6.1 Experimental Setup and DatasetsSccccevvereieerieiieseese e 122
7.6.2 Accuracy of Signature-based Classification............ccccevveniininiiienennnnnn 122
7.6.3 Feature IMPOITANCEccveiiiiieiiii et 124
7.6.4 IP-based vs Signature-based filtering.........c.ccocvvriiiinieiinncsc e 125
7.6.5 Traffic Monitoring and Filtering Performance...........c.ccceeveveivevecnnenn, 126

8 Conclusions and Future ReSearchccocveeiiiieiin e 129
8.1 Summary and Concluding RemMarks..........c.cccevvveveiienieiie e 129
8.2 Areas for FUtUIe RESEAICHcovii i 132

9 PUBIICALIONS ...t 134
10 Extended Abstract in Greek — Extetapévn epiinyn 6ta EAAnvika 135
11 RETEIENCES.....i it et b e bbbt et 147

11

List of Figures

FIGURE 2.1 OPENFLOW PROTOCOL: CONTROLLER-SWITCH COMMUNICATION [9] 23
FIGURE 2.2 OPENFLOW PIPELINE FOR VERSION 1.5.1 [22] 24
FIGURE 2.3 SDN: P4 VS OPENFLOW, SOURCE: P4 LANGUAGE CONSORTIUM 25
FIGURE 2.4 P4 COMPONENTS AND WORKFLOW [34] 27
FIGURE 2.5 P4 V1 MODEL ARCHITECTURE [36] 28
FIGURE 2.6 P4 TEMPLATE PROGRAM FOR V1 MODEL [36] 28
FIGURE 2.7 OPENCONFIG STANDARDIZATION EFFORTS [21] 32
FIGURE 2.8 OPENDAYLIGHT ARCHITECTURE [17] 33
FIGURE 2.9 NAPALM ARCHITECTURE 35
FIGURE 2.10 NFV REFERENCE ARCHITECTURE [43] 36
FIGURE 2.11 SNMP VS TELEMETRY 40
FIGURE 3.1 SMONNET ARCHITECTURAL SETUP 56
FIGURE 3.2 CONTAINER-BASED NFV ARCHITECTURE 58
FIGURE 3.3 ENTROPY VALUES FOR SOURCE IP, WORM PROPAGATION, 30 SECOND
DETECTION WINDOWS 61
FIGURE 3.4 ENTROPY VALUES SOURCE IP, PORT SCAN, 30 SECOND DETECTION WINDOWS
61
FIGURE 4.1 HIGH-LEVEL OVERVIEW OF P4-BASED ANOMALY DETECTION 64
FIGURE 4.2 P4 ANOMALY DETECTION PIPELINE 66
FIGURE 4.3 P4 TESTBED EQUIPPED WITH 10G SMARTNICS 69
FIGURE 4.4 DDOS DETECTION ACCURACY FOR DIFFERENT DETECTION APPROACHES
AND VARYING VOLUMES 71
FIGURE 4.5 SMARTNIC FORWARDING CAPACITY 72
FIGURE 4.6 SMARTNIC MEASUREMENT CAPACITY 73
FIGURE 5.1 OPERATIONAL LIFECYCLE OF ORCHESTRATOR OF DISTRIBUTED RULE
PLACEMENT - ODRP 76
FIGURE 5.2 ODRP: DETAILED ARCHITECTURE 78
FIGURE 5.3 MALICIOUS SOURCE DISTRIBUTION (UNIQUE IPV4 /24 PREFIXES) CLUSTERED
BASED ON THE TOTAL MEGABYTES/PACKET SENT (B9 DATASET) 84
FIGURE 5.4 TOTAL ATTACK TRAFFIC DELIVERED TO THE VICTIM 86
FIGURE 5.5 BENIGN TRAFFIC THROUGHPUT (IPERF) 87
FIGURE 5.6 ATTACK IMPACT TO BENIGN HTTP TRANSACTIONS: PERCENTAGE OF
SUCCESSFUL HTTP TRANSACTIONS 87
FIGURE 5.7 RULE HANDLER IMPLEMENTED VIA AN AUTOMATION/ORCHESTRATION
FRAMEWORK 89
FIGURE 6.1 HIGH-LEVEL OVERVIEW OF COLLABORATIVE DDOS MITIGATION 93
FIGURE 6.2 COLLABORATIVE FRAMEWORK FOR DDOS MITIGATION AND COMPONENT
INTERACTIONS 95
FIGURE 6.3 PROOF OF CONCEPT TESTBED SETUP 105
FIGURE 6.4 REPUTATION SCORE EVOLUTION FOR DIFFERENT TYPES OF FEDERATED
COLLABORATORS 107
FIGURE 6.5 REPUTATION SCORE COMPARISON - BINARY REPUTATION (BLACK),
PROPOSED APPROACH (GRAY) 108
FIGURE 6.6 TOTAL MALICIOUS AND BENIGN TRAFFIC REACHING THE VICTIM 110
FIGURE 7.1 HIGH-LEVEL OVERVIEW OF THE DDOS DETECTION & MITIGATION SCHEMA
115
FIGURE 7.2 FINE-GRAINED MONITORING, TRAFFIC CLASSIFICATION AND ANOMALY
MITIGATION INTERACTIONS 118
FIGURE 7.3 FEATURE IMPORTANCE FOR DNS TRAFFIC CLASSIFICATION PROVIDED BY
RANDOM FOREST 124
FIGURE 7.4 COMPARISON BETWEEN SOURCE IP AND SIGNATURE-BASED FILTERING FOR
BOOTERS DATASETS 125
List of Tables
TABLE 2.1 OF RULES 23
TABLE 2.2 P4 HEADER EXAMPLE [34] 29
TABLE 2.3 P4 STRUCT EXAMPLE, SOURCE [34] 30

12

TABLE 2.4 P4 PARSER EXAMPLE

TABLE 2.5 P4 TABLE EXAMPLE

TABLE 2.6 MITIGATION TECHNIQUES

TABLE 4.1 P4 REGISTERS: FUNCTIONALITY, INDICATIVE DEFINITION AND USAGE

TABLE 5.1 GAP EXECUTION TIME IN SECONDS

TABLE 5.2 RENDERING JINJA2 TEMPLATES INTO ACLS

TABLE 6.1 TYPES OF SMART CONTRACTS

TABLE 6.2 PERCENTAGE OF MALICIOUS SOURCES OBSERVED UNDER VARYING
SAMPLING RATES AND MITIGATION PERFORMANCE

TABLE 7.1 PACKET FIELDS USED IN TRAFFIC CLASSIFICATION OF DNS VOLUMETRIC
ATTACKS

TABLE 7.2 TRUE NEGATIVE AND TRUE POSITIVE RATES USING BOOTERS COMBINED
WITH BENIGN DATASETS (WIDE-F, WIDE-G AND TU CAMPUS)

TABLE 7.3 MONITORING AND FILTERING PERFORMANCE — PERCENTAGE OF XDP
PROCESSED PACKETS

List of Abbreviations

Symbol Description

ACL Access Control List

API Application Programming Interface
BGP Border Gateway Protocol

CAPEX Capital Expenditures

CDN Content Delivery Networks

CnC Command and Control

COTS Commercial Off The Shelf

DDoS Distributed Denial of Service attacks
DPDK Data Plane Development Kit

DSL Domain Specific Language

EMS Element Management System
FPGA Field Programmable Gate Array
gNMI gRPC Network Management Interface
gRPC Google Remote Procedure Call
HTTP Hyper Text Transfer Protocol

HW Hardware

ICT Information and Communication Technology
IDS Intrusion Detection System

IETF Internet Engineering Task Force
INT Inband Network Telemetry

IPS Intrusion Prevention System

ISP Internet Service Providers

KPI Key Performance Indicators

MANO Management and Orchestration

13

30
31
50
66
88
90
100

111

120

123

127

Network Automation and Programmability Abstraction Layer

NAPALM with Multivendor Support

NETCONF Network Configuration Protocol

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

OF OpenFlow Protocol

ONAP Open Network Automation Project

OPEX Operational Expenditures

OPNFV Open Platform for Network Functions Virtualization
OSM Open Source MANO

0SS Operations Support System

oVvs Open vSwitch

ovsDB Open vSwitch Database

P2pP Peer to Peer

P4 Programming Protocol-independent Packet Processors
REST Representational state transfer

RPC Remote Procedure Calls

SDN Software-Defined Networking

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SSH Secure Shell

SW Software

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

VIM Virtualized Infrastructure Manager

VNF Virtual Network Function

XDP Express Data Path

YAML YAML Ain't Markup Language — Yet Another Markup Language
YANG Yet Another Next Generation

14

1 Introduction

Rapidly evolving business needs are continuously reshaping ICT environments and
related services in terms of elasticity, mobility, programmability and automation.
Simultaneously, operators place considerable emphasis on high-speed data collection,
processing and analytics especially considering devastating cyber-attacks. These
requirements raise new challenges for large-scale distributed (and/or federated)
environments such as cloud facilities, data centers, internet exchanges and service

provider networks.

The Software-Defined Networking (SDN) and Network Function Virtualization (NFV)
architectural paradigms attempt to address modern needs and requirements, offering
deep network programmability, disassociation of software (SW) from hardware (HW)
and full-fledged automation. This paradigm shift has extensively influenced researchers,
device manufacturers and network professionals, establishing a cutting-edge ecosystem
mainly centered on open and standardized solutions. Related efforts are spearheaded by
technology powerhouses [1]-[4], (ii) innovative start-ups [5]-[7] and (iii)

academic/industrial R&D consortiums [8], [9].

OpenFlow (OF) [9], one of the first SDN implementations, advocated for the separation
of data and control plane. Devices direct traffic based on forwarding rules, inserted in
tables via the OF unified control plane. Perhaps the most radical approach for network
programmability is Programming Protocol-independent Packet Processors (P4) [5], a
Domain-Specific Language (DSL) that allows developers and operators to flexibly
define the processing pipeline of a device. Another approach, whiteboxing enables
network gear to load various Network Operating Systems (NOS) (e.g. [3]), typically via
a standardized boot-loader. However, potential for programmability might vary

depending on the capabilities and APIs of each NOS.

Advances in network softwarization enabled NFV solutions that migrate functionality to
virtualized resources. These Virtualized Network Functions (VNFs) may be combined
with selected physical elements to deliver network services emphasizing on portability,
reusability and slicing (separate a resource in distinct isolated chunks). Virtualized
appliances are mostly implemented on Linux-based systems that often underperform in
terms of packet processing. To that end, various solutions have been considered to
accelerate packet processing such as the recently introduced eXpress Data Path

15

framework (XDP) [4]. XDP is a high performance softwarized data plane based on
Linux that can be seamlessly ported between machines as a special-purpose (e.g. data

collection) middlebox.

SDN and NFV technologies may be used to address cyber-attacks, one of the most
prominent threats for modern environments. Cyber-attacks continuously evolve in terms
of sophistication and impact, pervasively affecting internetworked infrastructures.
Notably, network domains are constantly plagued by massive Distributed Denial of
Service (DDoS) attacks launched via infected hosts under the control of malicious
actors. DDoS attacks are being offered as a paid commodity service referred to as
Booters or Stressers under the guise of legitimate benchmark solutions. In response,
most commercial service providers (e.g. ISPs, CDNs) offer security solutions ranging

from monitoring/alerting to DDoS mitigation and full-fledged traffic scrubbing [10].
Important challenges and considerations for cyber-attacks are:

e Efficient Monitoring and data processing: Anomaly detection algorithms
frequently rely on exported packet samples and flow records, sent to external
systems for further processing. Related monitoring mechanisms and processing
frameworks have to keep up with high-speed traffic rates without compromising
on visibility and accuracy.

e Utilization of mitigation resources: Effective mitigation of massive
heterogeneous attacks requires appropriate utilization of all available systems
(e.g. routers, switches, servers). Massive attacks often exceed the capacity of a
network organization threatening intermediate systems and network links. The
most common solution to this problem is Remotely-Triggered Blackhole
Routing (or Blackholing for brevity) that essentially renders the destination
unreachable. Alternatively, neighboring or disjoint domains in the attack path
may collectively assist in the mitigation process. However, multi-domain
collaboration requires among others, appropriate incentives and communication
mechanisms between partners.

e Shortcomings of existing solutions: On-premise appliances are based on costly
and proprietary solutions that allow moderate, if any, flexibility. Cloud-based
alternatives may additionally introduce significant latency and raise privacy

concerns.

16

Inspired by these challenges and enabling technologies mentioned above, this
dissertation emphasizes on programmable, automated and performant mechanisms to

monitor network traffic, detect and (collaboratively) mitigate cyber-attacks.

Initially, a monitoring architecture is proposed in section 3 that offers on-demand
network monitoring data and related analytics to users (tenants and administrators)
within shared network infrastructures. This schema considers different devices as
advantageous observation (vantage) points to increase network visibility, an approach
well-suited for anomaly detection schemas. Specifically, measurements are collected
from scattered monitoring agents and directed to a data pipeline for processing and

enrichment.

Typically, such processing techniques perform well and enable powerful analytics but
rely on packet samples and flow records, exported to separate systems (i.e. collectors)
for further processing. In contrast, data plane programmability is a promising
technology that enables rapid control loops for the detection and mitigation of cyber-
attacks. This approach aims to be one step ahead of long tested legacy approaches that
rely on monitoring data exported from network devices and similar SDN solutions that

piggyback on control plane messages [11], [12].

Thus, as a next step we designed and implemented a DDoS detection schema entirely in
P4-enabled devices (Section 4). This in-network approach offers rapid attack detection,
while enabling control plane triggers (i.e. alarms) to external mitigation systems. We
employ important traffic features typically associated with anomalous events to increase
accuracy while conforming to processing requirements. Specifically, we: (i) inspect
network traffic and compute important traffic metrics per network subnet (i.e. network
flows and packet symmetry), (ii) evaluate feature values to identify potential threats and
(iii) convey alarms to external systems. This workflow can be deployed at various
vantage points within a network architecture where each P4 device operates
independently in a distributed fashion, considering different levels of granularity (e.g.

subnets / hosts).

Monitoring and anomaly detection mechanisms are the first step towards defending
against DDoS attacks. Subsequently, this dissertation also investigates automated
techniques to mitigate network attacks (Section 5). Most SDN techniques and legacy

solutions rely on formulating and distributing Access Control Rules (e.g. OpenFlow

17

rules and ACL entries). Consequentially, a common issue is the shortage of mitigation

resources and the appropriate placement of rules depending on the attack vector.

To that end, a framework is proposed for mitigating detected anomalies across a
network topology. Generic mitigation actions are assigned to devices along an attack
path, depending on their capabilities. These devices are organized into distinct stages
and network operators express their defense preferences (i.e. mitigation policies) for
specific attack types. The assignment of rules to defense stages is formulated as a
Generalized Assignment Problem. Items (generic mitigation actions) are assigned to
bins (defense stages) based on capacity constraints and reward values derived by
operator policies. Due to the complexity of GAP, we consider to reduce the input size in
order to achieve assignment in a timely manner. This may be accomplished by
organizing actions into groups and aggregating malicious IP sources into prefixes [13].
After assignment, generic actions are translated to device-specific access control rules

and seamlessly distributed using various southbound interfaces.

An important aspect of our work is DDoS mitigation in a device-agnostic manner. This
was initially implemented by the Ryu SDN controller employing BGP, OpenFlow and
SSH. In addition, a popular open source automation framework, Salt [14], was
investigated. Salt adheres to the fundamental principles of SDN and provides a mature
event-driven platform to manage network elements in a programmatic manner. The
desired network state (i.e. mitigation actions to be deployed) can be enforced either with
specific control plane protocols (e.g. BGP) or via configuration files each appropriately

rendered for a specific device (i.e. vendor and operating system).

Massive DDoS attacks consist of many different sources and may overwhelm on-
premise resources and saturate important external links. In both cases it is sensible to
counter such attacks in their infancy via provider collaborations deploying distributed
security mechanisms across multiple domains in an attack path. Thus, in section 6, we
investigated the establishment of trusted federations among adjacent and disjoint
network domains, i.e. autonomous systems (ASes), that collectively mitigate malicious
traffic. Our approach focuses on signaling, coordination, and orchestration of a
collaborative mitigation schema, facilitated by appropriate blockchain-based smart
contracts. Reputation scores are used to rank ASes based on their mitigation track
record. Similarly to our previous efforts, we model the allocation of defense resources
across multiple collaborators as a combinatorial optimization problem (GAP)

18

incorporating reputation scores and network flow weights. Each collaborator is able to
employ any available mitigation mechanism; we employed source-based filtering

appliances within the XDP framework.

Maintaining network data and filtering traffic for each malicious source may raise issues
primarily in terms of scalability (i.e. volume of source IPs) and effectiveness (e.g.
spoofed IPs). As an alternative, recent advances in data plane programmability enable

customized solutions tailored to specific attack vectors.

Thus, in section 7 a two-level schema for traffic classification and attack mitigation is
investigated. The first level incorporates our P4-based approach as a rapid yet coarse-
grained mechanism to identify network anomalies and the attack vector used.
Subsequently, a refined second level schema is instantiated on-demand, tailored to the
identified attack. This level is based on high performance XDP middleboxes that extract
monitoring data and filter malicious traffic. In contrast to typically used source-based
approaches, we consider an alternative IP-agnostic solution that uses combinations of
packet characteristics (signatures) to identify malicious traffic. The underlying
assumption is that traffic related to DDoS attacks, especially UDP-based, is
characterized by a small number of salient characteristics. As a proof-of-concept, we
focus on volumetric DNS attacks and assess: (i) packet processing performance, (ii)
classification capabilities (ability to identify benign and malicious traffic) and (iii)

number of unique rules generated.
The remainder of this dissertation is structured as follows:

Section 2 initially provides a brief overview with regards to network management,
covering: softwarization/virtualization trends, high-performance software data planes,

monitoring mechanisms, anomaly detection algorithms and mitigation frameworks.

Sections 3 and 4 address the collection and processing of monitoring data, primarily for
anomaly detection. Section 3 focuses on collecting monitoring data exported from
dispersed vantage points to enhance visibility. Section 4 further extends this approach
by distributing monitoring and anomaly detection workloads to programmable data
plane devices. Section 5 introduces our mitigation framework that appropriately assigns
and automatically translates generic actions to existing on-premise devices. Section 6
extends this approach to offer DDoS mitigation via network provider collaborations.

Section 7 presents a modular two-level schema employing P4 and XDP that offers

19

traffic classification and attack mitigation tailored to an attack vector. In addition, an IP-
agnostic approach is presented for DNS-based volumetric attacks to account for

common restrictions introduced by massive numbers of (spoofed) source IPs.

Section 8 summarizes important conclusions and discusses potential future directions.
Sections 9, 10 and 11 contain accordingly related publications, an extended abstract in
Greek and references/bibliography.

20

2 State-of-the-Art: Network Management and Security

2.1 Software-defined Networking and Data Plane Programmability

Network architectures are organized into three distinct planes, namely: (i) data or
forwarding, (ii) control and (iii) management. Data plane is related to packet
forwarding operations and is often implemented in hardware for increased performance.
Control plane refers to signaling operations (e.g. protocols) that affect data plane
behavior. Management plane refers to all management operations (e.g. FCAPS — Fault
Accounting Configuration Performance Security) that may directly or indirectly

influence control and data plane activities.

Network devices, especially legacy ones, may operate across all three planes performing
data, control and management plane actions. Internal interactions between data and
control plane were, and sometimes still are, implemented in a black-box manner lacking
flexibility/programmability. Furthermore, network management operations heavily
relied on vendor-specific APIs and proprietary software tools. Large network
deployments exhibited vendor lock-in, provided limited options for programmability
and flexibility while also requiring considerable effort in configuration and

maintenance.

These issues and considerations are addressed by SDN solutions that offer on-demand
programmatic reconfiguration of network devices across all three planes (i.e. data,
control and management). This is usually accomplished via the adoption of standardized
vendor-agnostic APIs and the functional separation of the data plane from the control
and management plane. The data plane implements rapid forwarding decisions assisted
by hardware specific implementations (e.g. ASICs and TCAM memory banks) and
communicates with an external controller that exposes northbound APIs to applications
and operators. Perhaps the two most well-known approaches with regards to SDN are
the OF (OpenFlow) protocol [9] and the P4 (Programming Protocol-independent Packet
Processors) framework [5]. The former defines a unified, vendor-agnostic control plane
protocol to communicate with devices and populate appropriate tables with forwarding
rules. The latter is a Domain-Specific Language (DSL) that allows developers to define
in-depth the processing pipeline of network devices (i.e. data plane). Past efforts,

similar to OpenFlow are:

21

e ForCES [15]: Forwarding and Control Element Separation (ForCES) an
approach that disassociate of Forwarding and Control elements. This is achieved
using an information model and appropriately defined Logical Function Blocks
(LFBs) that describe device capabilities and related network events.

e Ethane [16]: may be viewed as the predecessor of OpenFlow. The proposed
architecture considers an omniscient, centralized controller that dictates access

control and routing policies to plain forwarding boxes.
Other SDN-related efforts are based on Abstraction Layers and Unified Data Models:

e Abstraction Layers: Multi-protocol SDN controllers such as OpenDaylight [17],
ONOS [18], Ryu [19] integrate multiple southbound protocols to interface with
managed devices. A closely related work, NAPALM [20] maps generic
operations to (i) device-specific capabilities (e.g. NETCONF, HTTP API) and
(if) configuration commands generated from appropriate device-specific
templates (e.g. Jinja2).

e Unified Data Models: the IETF and the OpenConfig [21] informal working
group attempt to standardize operations for data retrieval and configuration
management employing YANG models.

This dissertation primarily (i) employs OpenFlow and other southbound protocols to
disseminate Access Control Rules and (ii) deploys anomaly detection algorithms
directly in P4-enabled network elements. Important frameworks used in (i) and (ii) are
analyzed in subsections 2.1.1, 2.1.3 (i) and 2.1.2 (ii) accordingly.

2.1.1 OpenFlow Protocol

Depicted in Figure 2.1 is a high level overview of the OF protocol [9] and related key
elements, i.e. Switch and the Controller. The OpenFlow protocol provides a secure
control channel via which, a controller interfaces with a switch to retrieve information

and deploy forwarding rules in a programmatic manner.

22

Flow
Table

OpenFlow Switch

Figure 2.1 OpenFlow protocol: Controller-Switch communication [9]
By design, the OF protocol separates data plane functionality from control/management
operations. Forwarding devices operate based on OF rules stored in special purpose data
structures (flow tables). OF rules consist of Match Fields, Counters and Actions (see
Table 2.1):

e Match Fields (Headers) to evaluate and match against packets. These include:
Ingress port, MAC Addresses, VLAN ID and PCP, IP Addresses, L4 Ports.
Later version of OpenFlow also include additional match fields such as MPLS
headers.

e Counters (bytes, packets) that are updated for each matching packet.

e Actions to be executed on matching packets, e.g. forward via a specific port,

drop, send to controller, and normal switch processing.

Match Fields (Headers) | Counters | Actions

Table 2.1 OF Rules
These rules are often deployed in hardware-based TCAM memories that allow line rate

processing but are expensive and consume a lot of power. Software-based alternatives
might suffer in terms of performance. In cases multiple rules match for a specific

packet, ties are resolved using priority, a metadata that characterizes an OpenFlow rule.

Since its initial inception and first prototype implementations (OF 1.0), OpenFlow has
changed considerably as new features were incorporated i.e. advanced pipeline,
additional matching fields and actions. The current version of the OpenFlow
specification is 1.5.1 [22]. A high level overview of the processing pipeline is depicted

in Figure 2.2.

23

Find highest oo eniry Flow Table
matching =
flow entry
flow entry/' ow ety B
Match .
[y flow entry v
$ tabie miss Clear-actions
;::lon ; flow entry « ampty action set Y
......... pom | = = Write-actions -3 Got?-tab&e
§ ¥ {set of actions) PR
Pipeline Apply-actions * merge in action set
Flelds | |-i .5 (st of actions) >
* modify packet
Extract * update match fieids
Packet ¥ header | > - update pipeline fields »
fields * if output or group
« clone packel

Packet clones -

Figure 2.2 OpenFlow Pipeline for version 1.5.1 [22]
The pipeline supports multiple flow tables, that are sequentially numbered. These
numbers are used to direct packets to the corresponding table for processing. The
processing always starts with the first flow table. Each packet is associated not with one
but multiple actions (action set) to be executed on final processing. In case a matching
flow entry is found, the action set is updated. Flow rules may direct a packet to a
subsequent table for further processing or execute the entire action set. Packets can only
be directed to a flow table with a higher number than the current one. The pipeline
supports ingress and egress processing; these are logically separated by the first egress
table. Tables indexed with a lower number than the first egress table are considered

ingress tables.
Notable features added in recent OpenFlow versions are mentioned below:

e Multi Controller support: additional controllers are able to connect and manage
the switch via the OF protocol.

e Groups: Multiple actions may be grouped together into distinct buckets. Each
group is associated with one or more buckets of rules. This approach may be
used to implemented load balancing or fast-failover.

e Meters: An OF rule may be associated with a meter, comprised of multiple
bands. A band is characterized by a specific threshold; whenever the traffic rate
matching the OF rule exceeds the threshold, the band actions are executed.
Typically, these include dscp marking and drop. Meters are well suited for rate

limiting use cases.

24

Once the most popular implementation of SDN, the OF protocol provides a vendor-
agnostic interface to insert rules and directly alter forwarding. OF was employed by
Google to perform advanced traffic engineering across its datacenter backbone [23];
Internet2 deployed OF-enabled boxes to create L2 circuits between various points of
presence. On a similar use case GEANT, the pan European Research and Education
Network, used OF switches [24] to implement L2 circuits, both point-to-point with
reserved bandwidth as well as point-to-multipoint in a VPLS manner. Note that, in an
effort to expose additional functionality to the controller, OF implementations grew
increasingly more complicated over the years. Currently, interest in OF seems to
diminish due to limited adoption and long development cycles, especially after the

advent of the more flexible and radically programmable P4 framework [5].
2.1.2 Programming Protocol-independent Packet Processors - P4

A shortcoming of the OpenFlow architecture is its limited flexibility despite exposing
various programmable capabilities. In a nutshell, OpenFlow devices are based on
“fixed-function” hardware. Operators and experimenters cannot alter the switching
pipeline but only utilize the capabilities implemented by the device manufacturer. As
such, requested features require a revision of the specification and subsequent
implementation by vendors. The need for rapid and radical data plane programmability

and reconfiguration has led to the creation of the P4 framework.

’ P4 & OpenFlow p

Apps |

: R | Northbound API
Program r
1 l [OpenFiow Controller

OpenFlow Protocol

OpenFlow Agent

Compile & W [

| Auto-Generated AP|

Driver

5| Programmable Data Plane ASIC
Target Binary P

Figure 2.3 SDN: P4 vs OpenFlow, source: P4 Language Consortium*

! https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html
25

https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html

The acronym P4 [5] stands for “Programming Protocol-Independent Packet Processors”
and in essence is a high-level Domain Specific Language that defines packet processing
functionalities of forwarding devices (targets in P4 terminology). P4 is usually
perceived as the successor of OpenFlow; although similar in some aspects, these two
approaches differ in an important way. P4 defines how a programmable device should
process packets (i.e. data plane), whereas OF provides a unified interface (i.e. control
plane) to populate forwarding rules in a fixed-function pipeline. These differences are

also depicted in Figure 2.3 above.
Important design principles for the P4 language are:

e Reconfigurability: Packet parsing and processing may be altered on-demand
based on operational requirements.

e Protocol Independence: P4 targets are not directly coupled with a specific
protocol or pipeline processing. Operations are performed via (a) parsers that
extract specific header fields and (b) multiple Match-Action tables containing
rules that match against parsed headers.

e Target-Agnostic: P4 is independent of the underlying device (target)
implementations. Appropriate compilers are used to translate P4 programs to

vendor-specific code that is ultimately executed on the device.

Advances in hardware (chip design) have demonstrated that P4 is feasible on super-high
speed switching designs. Perhaps the most well-known P4 targets are switches that
operate on Tofino chipsets [25] from Barefoot. However, P4 is not limited to a single
chip design or vendor; additional targets for P4 are smartNICs [26] and FPGAs [27].

The advent of such advanced data plane programmability coupled with moderate entry
barrier in terms of Capital Expenditures (CAPEX) has introduced the concept of in-
network computing. This promising paradigm takes advantage of the processing power
available in programmable network devices to offload processing and computation
tasks. Indicative examples range from monitoring e.g. In-Band Network Telemetry
(INT) [28], to consensus building for distributed systems [29] and Map-Reduce
algorithms for Big Data processing [30]. Additionally, prominent network use cases are
Heavy Hitter [31], [32] and DDoS [33] detection. Although appealing, implementations
need to account for memory and processing limitations, as network devices should first

and foremost forward traffic. Thus, sacrificing forwarding power to offload non-

26

network computations requires considerable planning and weighing the benefits against
the costs.

Currently there are two different releases of the P4 language, P46 [34] and P44 [35];
for each release there are various versions. Within the scope of this thesis we focus on
P46, version 1.2.0, and provide a brief overview of workflows, data types, and other
important building blocks.

2.1.2.1 P4 Language Architectural Overview

Depicted in Figure 2.4 is a typical workflow for P4 programming. As mentioned, P4 is
target independent; this is made possible via compilers provided by device
manufacturers and reference (architectural) models. The architecture model is
essentially a P4 program that defines (i) which parts of the target are programmable and
(i1) additional capabilities offered to developers by the manufacturer.

User-supplied § E

/] :

1]

PR SR Ta i O~ (8 e e ! 1
i 7 I_ : Control-plane :
H H P4 I ' 1
API = !

: tARgan | i | compiler || 10 | i
: LT : . :
i P4 : / | signals | 1
] ' H 1
! : ! Dataplane i
i architecture - P extern |Data plane ' |
: ! ; |

Manufacturer supplied
Figure 2.4 P4 Components and Workflow [34]
A popular P4 architecture model, the “v1 model”, is depicted in Figure 2.5. From a
high-level standpoint the architecture model is comprised of the following blocks: (1)
parser, (2) ingress processing, (3) traffic manager, (4) egress processing and (5)
deparser. The (3) traffic manager is not considered programmable and refers to device

specific internals. The rest are analyzed in subsection 2.1.2.3 below.

27

@)

Parser

:

)

Checksum Verification /
Ingress Match-Action
A

f \

=

AAAdd

® @

®

Checksum Update / Deparser
Egress Match-Action
A I
I BIE
= B :
Traffic B || |0
Manager g E g -1
- e =

Figure 2.5 P4 v1 Model architecture [36]

Figure 2.6 depicts a template for P4 program based on the vl model. Additional

libraries can be loaded into a P4 program via the “#include” operator. Note that apart

from vimodel.p4, the standard library of P4 is also included (core.p4). This contains

error codes and packet_in/packet_out definitions used respectively for incoming and

outgoing packets.

nclude <core.pss |
nclude <yinadel vnu'
HEADERS */

struct metadata { ...

struct headers {

~f=]=

—

ethernet t ethernet;
ipvé_t fpva;
/% PARSEN */

parser MyParser(packet_in packet,
out headers hde,
inout metadata meta,
inout standard_metadata_t sweta) (

§ 2T

/* CHECKSUM VERIFICATION */

contral MyVerifyChecksum(in headers hdr,
inout motadata meta) (

e

/* INGRESS PROCESSING */

control MyIngress(inout headers hdr,
irout metadata meta,
inout standard metadats t std meta) {

/* EGRESS PROCESSING */
control MyEgress(inout headers hdr,
irout metadata weta,
inout standard_metadata_t std meta) {

mn’ ol 4

control MyComputeChecksum(inout headers hdr,

inout metadata meta) {
'Hanm 7

control MyDeparser(inout headers hdr,
inout metadata weta) {

1

7% SHITCH %)

ViSwiteh(
MyParser(),
MyVerifyChecksun(),
MyIngress(),
MyEgrass(),
MyComputeChecksun(),
MyDeparser()

) main;

Figure 2.6 P4 template program for v1 model [36]

2.1.2.2 Standard Types and Metadata

The P4 framework provides standard data types. Notable examples are:

e int<N>: signed integer, N bits

e bit<N>: unsigned integer, N bits

e bool: True, False

e match_kind: used in tables to specify the match method for parsed headers:

o exact: parsed header matches exactly

o ternary: parsed header matches using an arbitrary bitmask that supports

wildcard matching

28

o Ipm: parsed header matches using the longest most specific compatible
match, similar to the “longest prefix match” concept of IP routing.

Types bit and int support standard arithmetic (apart from division) and logical
operations as well as comparisons. Furthermore, these basic types are used to
implement a wide variety of use cases ranging from packet header definitions to
probabilistic data structures. Finally, we elaborate on two important types Header and
Struct:

e Header: Defines the exact representation of packet headers and associated object
types for each fields. Note that a given Header representation may not be
comprised of other Header types, i.e. nested header definitions are not
supported. This is attributed to complications during the validation process of
nested representations. A header is characterized as valid or invalid employing a

hidden “validity” bit. An example is presented in Table 2.2 below.

typedef bit<48> EthernetAddress; /I 1Pv4 header (without options)
typedef bit<32> IPv4Address; header IPv4_h {
bit<4> version;
/I Standard Ethernet header bit<4> ihl;
header Ethernet_h { bit<8> diffserv;
EthernetAddress dstAddr; bit<16> totalLen;
EthernetAddress srcAddr; bit<16> identification;
bit<16> etherType bit<3> flags;
} bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
IPv4Address srcAddr;
IPv4Address dstAddr;
)s

Table 2.2 P4 Header example [34]

e Struct: These type declarations define various schemas, containing even other
structs (see Table 2.3). Also Header definitions may also contain structs. Apart
from custom structs defined by the programmer, reference architectures usually
define well-known structures, e.g. standard_metadata. Within this dissertation,
structs have been used to define metadata headers that accompany packets

across a processing pipeline.

struct ipv6_addr { header Tcp h { ... }
bit<32> Addr0; header Udp h { ...}
bit<32> Addrl; struct Parsed_headers {
bit<32> Addr2; Ethernet_h ethernet;
bit<32> Addr3; IPv4_hipv4;

} Tcp_h tep;

header ipv6_t { Udp_h udp;
bit<4> version; }

29

bit<8> trafficClass;

bit<20> flowLabel;
bit<16> payloadLen;
bit<8> nextHdr;
bit<8> hopLimit;

ipv6_addr Src;
ipv6_addr dst;

Table 2.3 P4 Struct example, source [34]

2.1.2.3 Programmable control blocks

The first programmable block is typically the Parser, essentially a Finite State Machine
declaration that defines transitions between distinct states based on packet headers. The
initial state is labeled “start”. Each state extracts packet header values to be stored in the
corresponding P4 header object. Transitions may be based on conditionals (e.g. IPv4,
IPv6). The valid final stages are either accept or reject; accordingly these denote a

successful or unsuccessful packet parsing.

Parser definitions contain as parameters (i) the packet, (ii) the struct used to store
extracted headers and (iii) custom (meta)data structures. A typical example is presented
in Table 2.4 below.

parser MyParser(
packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4,
default: accept;
}

}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}

Table 2.4 P4 Parser example
Extracted values from packet headers are used in subsequent control blocks that define

all operations related to packet processing and forwarding. Typically, the first control
block after the Parser is the Ingress. Furthermore, Match-Action structures, i.e. tables,
are used within control blocks (e.g. Ingress) to assign actions (P4 functions) to a packet.
A control block declaration also defines all the parameters to be used within its context,

30

e.g. metadata and parsed headers. The exact functionality and number of control blocks
may differ depending on the architecture. The final control block is the Deparser,

whose purpose is to reassemble valid headers for outgoing packets.

As mentioned, hardware (target) manufacturers use an architecture reference model to
define the processing pipeline supported by their hardware. The building blocks
mentioned above are ordered and glued together using the package definition. A P4
programmer uses the package keyword to map custom control blocks to the

placeholders provided by the manufacturer.

2.1.2.4 Actions and Tables
A P4 action may be viewed as a function that groups together multiple operations.

Match-Action tables (see Table 2.5 below) are employed to match packet headers and
perform the defined action. Important table properties may include:

e key: comprised of a list of matching scopes, e.g. extracted headers and the
match_Kkind, i.e. Ipm, ternary, exact.

e actions: every available action to be associated with a specific rule.

e size (optional): the maximum number of entries for this table

o default_action (optional): specifies a default action in case no other entry is

matched. This was commonly referred to as “table-miss” entry in OpenFlow.

table subnet_src
key ={
hdr.ipv4.srcAddr : ternary;
}
actions = {
get_src_subnet;
NoAction;
}
size = 258;
default_action = NoAction();

Table 2.5 P4 Table example

2.1.3 Data Modeling and Abstraction Layers

SDN-related efforts are not strictly limited to OF and P4. Network softwarization and
heterogeneous management can be also achieved via (i) vendor-agnostic interfaces
based on unified data models and (ii) abstraction layers that translate generic operations
to device-specific southbound APIs (e.g. BGP, OpenFlow, OVSDB, NETCONF, SSH).
The former is mainly represented by the efforts of IETF and OpenConfig [21] to

31

provide widely adopted data models. The latter typically employs multi-protocol SDN
controllers [17]-[19], automation frameworks [14], [20], [37] in order to create layers of

abstraction.

2.1.3.1 YANG and OpenConfig

Network management relied (and perhaps still does) on the Simple Network
Management Protocol (SNMP) [38]. SNMP provides a mechanism to retrieve device
data structured into Management Information Bases (MIBs). MIBs are defined using the
Structure of Management Information (SMI) [39] language. Similarly, Yet Another
Next Generation (YANG) [40] is a data modeling language that describes information
(configuration, state data) and related operations (Remote Procedure Calls - RPCs) for
managed objects. As in SMI-based MIBs, device vendors may opt to support generic
YANG models or define their own. Currently the IETF is heavily involved into
standardizing YANG models. Similar efforts are spearheaded by the OpenConfig [21]
working group, a consortium comprised primarily from network operators such as
Google, Facebook, Cloudflare, AT&T, Deutsche Telekom, Microsoft, Netflix and
Comcast. This group focuses on vendor-neutral, widely-adopted models for

configuration management. Related efforts are illustrated in Figure 2.7 below.

Updatad: 05-15-2018 | device
=) el =S O Enon SEE 0
ochoe =
e
SIS =D en ,
o
€223

Figure 2.7 OpenConfig Standardization Efforts [21]
Initially, YANG models were conceptually coupled with the NETCONF protocol.

However, management schemas that employ IETF and OpenConfig YANG models may

use a variety of protocols. Typical examples are:

e NETCONF: The Network Configuration Protocol (NETCONF) interfaces with
network devices to retrieve information and applies configuration changes.
NETCONF operations are implemented as Remote Procedure Calls (RPCs),
conveyed typically over SSH, that contain XML encoded data.

32

e RESTCONF: This approach is similar to NETCONF but is based on the
Representation State Transfer (REST) paradigm. In short, RESTCONF supports
CRUD operations on a hierarchy of YANG-modeled resources.

e gNMI: The gRPC Network Management Interface is a mechanism developed by
Google to interface with network devices. Similar to NETCONF, gNMI allows
operators to retrieve and manipulate the device configuration via YANG
models. It is based on gRPC a modern, high performance framework for

Remote Procedure Calls, initially developed by Google.

2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks

The wide adoption of a unified API is a slow and cumbersome process, heavily reliant
on collaboration from vendors. Abstraction layers are a more flexible approach that
exposes northbound APIs to applications, while seamlessly translating and conveying

device-specific instructions.

SDN controllers, though initially supported only OpenFlow, now typically provide such
layers of abstraction. New popular implementations such as OpenDaylight [17], ONOS
[18] and Ryu [19] follow an architecture that leverages multiple southbound protocols
to interface with managed elements. High level functionality is exposed to applications
via northbound APIs. The core platform maintains important state, orchestrates data
retrieval and polling intervals while “drivers” are used to interface with devices via the
appropriate southbound protocol. A typical example for such an architecture is

presented in Figure 2.8.

/) N
. b

| Bl] DC e
Figure 2.8 OpenDaylight architecture [17]
33

This architecture enables interoperability with other systems, a key feature for modern
environments. Note that OpenDaylight is integrated with Openstack [41] a popular

cloud management platform.

Automation frameworks provide similar abstractions as SDN controllers, typically
employing a specific syntax to declare the desired state and/or orchestrate task
executions. Puppet [42], arguably the most popular approach for managing systems,
employs a Domain-Specific Language to declare the desired state. Other approaches,
Ansible [37] and Salt (Saltstack) [14] have developed significant traction within the
network community primarily due to substantial endorsement from vendors and positive

feedback from early adopters (e.g. Cloudflare) .

Ansible adopts YAML (YAML Ain’t Markup Language), an easy to understand
serialization format to define plays (i.e. tasks). These are organized into playbooks and
executed in desired targets (e.g. network devices, servers). Ansible follows a smooth
learning curve and has significant vendor support thus making it a good fit for network
automation. Typically, Ansible heavily relies on Jinja2 templates to create different
configurations in a programmatic manner; templates are in essence predefined
configuration stanzas with appropriate placeholders. These placeholders are filled using
data from various sources e.g. Databases, Network Management Systems. Ansible
playbooks are executed from a centralized host that has access (e.g. SSH) to managed

devices.

Salt or Saltstack is an automation and configuration management framework built
around an event bus. Similarly to Puppet, Salt is based on master-minion architecture.
Minions may be perceived as software agents (daemons) deployed within managed
systems (e.g. Linux servers). Communication with the master is achieved over a
publish-subscribe messaging system. Contrary to Puppet, Salt is primarily Push-based,;
at the master’s behest, minions execute Python modules or enforce a desired state as
defined in SalLt State (SLS) files. The master bears a close resemblance to the all-seeing,
omniscient SDN controllers. However, network devices are usually limited by vendor
restrictions and cannot host a Salt minion; thus support is commonly offered via
specialized proxy minions deployed in general purpose systems (e.g. Linux servers).
Proxy minions operate as regular Salt minions and interface with network elements via

a device-specific driver.

34

Perhaps the most well-known example is NAPALM [20], an open-source Python library
providing high-layer abstractions for device programmability. These abstractions
include data retrieval APIs (“getters”) and merge configuration operations (“setters”),
based on Jinja2 device-specific templates. Abstract get actions and configuration
stanzas are conveyed via the appropriate library for each vendor and operating systems.
A functional overview of NAPALM is presented in Figure 2.9 below.

| Northbound Applications

:66@@:

|_ Ansible Salt User_ _,

NAPALM Core Functionality
(“getters” & “setters”)

junos- | pylOS
eznc XR

JUNOS | IOSXR| IOS| WyOS | ...

&

Devices

netmiko

Figure 2.9 NAPALM Architecture
Note that both Ansible and Salt, make heavy use of NAPALM and Jinja2 templates in

an effort to seamlessly integrate with heterogeneous network environments. These
approaches slightly veer from typical SDN architectures that advocate for cutting-edge
programmability and instead translate commands to configuration changes. However,
they are extremely popular enabling operators to make the most of their current

infrastructure and automate time consuming tasks.
2.2 Network Function Virtualization

Legacy network environments usually implement network functionality via dedicated
hardware. Emerging requirements for programmability and agility brought forth a new
architectural paradigm shift in the form of Network Function Virtualization (NFV) as
defined by ETSI [43]. In a nutshell, functionalities traditionally implemented in
hardware appliances are “softwarized” and migrated to Commercial Off-The-Shelf
(COTYS) hardware, as Virtual Network Functions (VNFs). Important principles of NFV

architectures are:

35

Separation: Network Functionalities are offered as a software-based service
disassociated from the underlying hardware. This decoupled approach allows
software and hardware to follow separate evolution paths and release cycles.
Efficiency: Hardware can be dynamically repurposed for various purposes
amortizing Capital Expenditures (e.g. procurement costs) and Operational
Expenditures (e.g. power consumption and cooling).

Elasticity: operators may scale the VNFs as elastic needs manifest. Moreover,
VNF deployment can be streamlined and automated via software tools. These

benefits are of considerable importance in the current dynamic landscape.

The NFV reference architecture proposed by ETSI is presented in Figure 2.10 below:

NFV Management and
Orchestration

Os-Ma
OSS/BSS - Orchestrator
k- Se-Ma
$ Service, VNF and Infrastructure |
—-- y
Description Or-Vnfm
: =)
EMS | EMS 2 EMS 3 Ve-Vnfm
. v - L VNF
= T = ¥ Manager(s)
VNF | VNF 2 VNF 3 4 Or-Vi
: 1 1= Vo i 4 Vi-vnfm
NFVI
Virtual Virtual Virtual
Computing Storage Network
= o4 Nf-Vi Virtualised
Virtualisation Layer | Infrastructure
VI-Ha l Manager(s)
Hardware resources
wepe Computing Storage Network
Hardware Hardware Hardware
#—& Execution reference points | Other reference points = Main NFV reference points

Figure 2.10 NFV reference architecture [43]

Key elements in the reference architecture are:

Virtual (or Virtualized) Network Function (VNF): a virtualized instance of
legacy elements that offers a specific network function or service. This instance
may be based on various virtual resource pools and is not strictly limited to a
distinct component (VM).
Element Management System (EMS): manages one or more VNFs.

36

e NFV Infrastructure (NFVI): refers to the entire deployment and execution
environment for VNFs. This is comprised by the hardware substrate, the
virtualization layer that provides pools of resources and necessary middleware
components/software tools.

e Virtualized Infrastructure Manager (VIM): interfaces with the NFVI to
provision and manage the necessary resources (compute, storage network) for a
VNF.

e VNF Manager: is responsible for deploying, scaling, monitoring and removing
one or multiple VNFs.

e Orchestrator: Receives requests from other systems (e.g. OSS/BSS), maintains

high-level overview and manages/orchestrates the NFVI and deployed VNFs.

Over the years, various organizations pursue NFV-related goals usually based on the
reference architecture above or close adaptations. Notable mentions are OPNFV [44],
ONAP [45], OSM [46] and CORD [47].

2.3 High Performance Packet Processors

The virtualization and softwarization of network functions introduced various
challenges; important among them is performance. Software-based VNFs are usually
based on Linux distributions that though more agile have to keep up with monolithic
albeit performant hardware implementations. A common issue is the limited packet
processing capability of Linux systems [48]. To that end, various approaches have been
introduced that enable programmable and fast packet processing. These are mostly
implemented using: (a) dedicated kernel modules, (b) kernel bypass techniques, (c)

special-purpose systems and (d) programmable hardware devices.

Kernel Modules: Approaches based on customized kernel modules attempt to increase
performance by attaching into the existing stack and perform specialized actions. This
requires considerable care since potential bugs can severely affect a system. A notable
example is the Open vSwitch (OVS) [49], perhaps the most popular virtual switch used
in various use cases; additional examples are the virtual router frameworks Contrail [50]
and Click [51].

Kernel bypass: High packet rate in general purpose operating systems is achieved via
specialized toolkits such as Netmap [52], PF_RING [53] and DPDK [54]. In a nutshell,

37

these tools typically bypass the kernel path and directly control the underlying hardware
to avoid time consuming context switches between kernel space and user space. Often
such solutions may dedicate CPU cores to poll for new packets, a technique commonly

referred to as “BusyPolling”.

Special-purpose Systems: After the advent of NFV solutions, various efforts
investigate special-purpose systems as VNFs to offer high performance packet
processing. Prominent examples are ClickOS [55] and NetVM [56], based on Xen and
KVM hypervisors accordingly. Specifically, ClickOS employs minimal packaged
versions of the Click router framework and NetVM leverages on DPDK.

Programmable Hardware Devices: Network hardware can be reprogrammed to
achieve high-performance processing. An indicative example is NetFPGA [27], an
effort that precedes P4 and allows developers to program packet processing tasks on
FPGAs. With the advent of P4, NetFPGA is a popular hardware target for P4.

XDP system: A promising alternative to the approaches presented above is the eXpress
Data Path (XDP) framework [4], a softwarized data plane that harmonically co-exists
with the Linux kernel. XDP actions are executed prior to costly networking stack
operations and can be seamlessly ported across Linux machines. This high-performance
yet flexible framework has been widely adopted in production network environments
for various use cases and applications ranging from routing and load balancing [2] to

data collection, DDoS Detection and Mitigation [6].

XDP programs, written in C, are executed either in software within the context of the
network driver or offloaded directly in Network Interface Cards (NICs) [26]. Their
execution is initiated upon the arrival of packets on the NIC. In turn, packet field values
can be parsed, extracted and stored in persistent memory referred to as Berkeley Packet
Filter (BPF) Maps. These are key-value stores defined when the XDP program is
loaded. After processing, XDP returns an action for each packet which defines how it
should be handled. The packets can be either (i) dropped - XDP_DROP, (ii) passed to
the network stack - XDP_PASS, (iii) redirected to another interface - XDP_REDIRECT
or (iv) transmitted back from the same interface - XDP_TX. As in all programmable
data planes, the design and implementation of XDP applications require significant

attention due to specific limitations. Indicatively only (i) bounded loops, (ii) fixed-size

38

data structures (iii) 4096 BPF instructions per program and (iv) specific kernel functions
are supported.

2.4 Monitoring Solutions

Accurate, performant and scalable monitoring solutions are of paramount importance to
modern network environments. Rapidly changing traffic patterns and security incidents
require in-depth network visibility based on various metrics such as interface counters,

queue occupancy, flow records and packet samples.
2.4.1 SNMP and Streaming Telemetry

As mentioned SNMP is frequently employed as a standardized mechanism to poll
network devices and collect important data for various management purposes. However,
SNMP exhibits scalability limitations and modeling shortcomings inherited from SMI.
The former limitations typically force network operators to set longer polling intervals,
thus leading to coarse-grained monitoring data (e.g. interface counters). Various
alternatives have been considered in that regard. Indicatively, the sFlow [57] protocol,
may also send counters (counter samples) to the collector in addition to packet samples.
Additionally, software mechanisms can be used to efficiently orchestrate the collection
of monitoring data. Such a framework is presented in [58] employing a modern
information schema and a master/worker architecture for distributing monitoring
workloads, i.e. SNMP GET operations.

The state-of-the-art approach for continuously retrieving network measurements from
devices is streaming telemetry. This approach refers to the act of pushing measurements
or other events to appropriate equipment (collectors) for various purposes. Typical
examples for time series measurements are interface counters and ingress/egress queue
depths. In comparison to SNMP, telemetry introduces a performant Push-based
alternative, that promptly sends information streams to collectors alleviating issues
related to continuous polling. In Figure 2.11 below, an analogy of important terms

between SNMP and telemetry is presented.

39

SNMP TELEMETRY gRPC

Collect mode; POLL Collect mode: PUSH - STREAM
Transporst Layer: IP / LIDP Transport Layer: I / TCF
Port: 161 Port : unresarved
Application layer: SNMPv1; v2 or v3 Application layer: HTTF/2 gRF

Data moded; MIB proprietary or standardized VERsus Data model: vendor specific or Vendor Neutral
Data format: SM1 / ASN-] Data format: YANG ar prota file
Encoding : BER Encoding : ProtoBuff (GPE) or JSON
Security: Community k=y with SNMP3 Security: login/owd or via T ertificats

Figure 2.11 SNMP vs Telemetry?
Telemetry has two different initiation mechanisms, Dial-In and Dial-Out. In both

approaches, data are streamed to a collector by the network device.

e Dial-In: The client (collector) dynamically subscribes into specific information
streams offered by the device (i.e. sensor paths).
e Dial-Out: The network device is statically configured to publish monitoring data

to a specific collector.

Moreover, telemetry may operate using different transport / application protocols, i.e.
UDP, TCP and gRPC (via gNMI). Note that, vendors such as Cisco, Juniper and Nokia
have made significant progress in integrating related telemetry capabilities in their
devices [59], [60]. Arguably the most prominent approach and also supported by all
three vendors above, is gNMI/gRPC-based Telemetry operating over HTTP/2 and

initiated in a Dial-In fashion.
2.4.2 In-band Network Telemetry

A similar but slightly different approach is In-band Network Telemetry (“INT”). INT is
a framework that enables the data plane to monitor network services without
intervention from the control/management plane. As defined in the INT architectural
model [28], packet headers are used to convey “telemetry instructions”, embedded
within normal traffic or in specialized packets (probes). Initially, instructions are
inserted by INT traffic sources (e.g. applications, servers, NICs) and subsequently
processed by other INT-capable devices. These devices interpret instructions and record
monitoring data within INT packets. Finally, INT traffic sinks retrieve related data and
act appropriately. Monitoring data include but are not limited to switch id, ingress port,

ingress timestamp, egress port, queue occupancy, queue congestion status. This

2 http://junosandme.over-blog.com/2019/02/grpc-telemetry.html
40

http://junosandme.over-blog.com/2019/02/grpc-telemetry.html

approach enables a thorough End-to-End monitoring of the exact network state as
observed by the packet across all intermediate devices. Though the architecture of INT
is generic and may be used within different networking environments, the use case fits
well into P4 [28], [61], and XDP [62].

2.4.3 Packet-level and Flow-level information

While the aforementioned techniques provide important traffic metrics, detailed data
related to L3 (network layer) and above are invaluable. As an example, per-packet
and/or per-flow data may be used for traffic engineering, troubleshooting and intrusion
detection/prevention. Most production solutions heavily rely on monitoring information
of such granularity (L3+) for various network management purposes. Operators
typically use protocols such as sFlow [57] or NetFlow [63] to export packet samples or
aggregated flow records. Such information is collected and processed by external
systems, usually in a centralized fashion. Alternatively, virtual or hardware appliances
can monitor the traffic directly if placed at central monitoring hubs or via mirrored
traffic streams (e.g. SPAN ports). Various related research efforts in the literature
investigate monitoring solutions within the context of SDN, Programmable Data Planes
and NFV.

2.4.4 SDN and Data Plane monitoring solutions

OF-based approaches often poll the network devices for statistics [64] or intercept
control messages, e.g. Packetln and FlowRemoved [12]. With regards to the former, i.e.
polling for monitoring information, as exhibited in [65], the management interface (and
by extent access to monitoring information) is severely limited in comparison to the
switching ASIC. To that end, monitoring data originating from sFlow may be also used
to alleviate the controller as well as the device [66]. Other alternatives modify the OF-
protocol to enable per-flow sampling on the network device [11] and direct samples to

the controller. However, reprogramming OpenFlow devices is no easy task.

P4-based approaches leverage programmable hardware to perform in-network
computations. This approach locally processes traffic on network devices to promptly
obtain network measurements and identify various events, e.g. Heavy-Hitter detection.
Most such approaches leverage on probabilistic data structures (i.e. sketches) to respect
the constrained memory and CPU budget [31], [67].

41

Programmable traffic processors e.g. P4 [5], NETMAP [52], PF_RING(ZC) [53],
DPDK [54] and XDP [4], have been actively used for monitoring purposes and in
general alleviate the overhead of packet processing in Linux. Indicatively we mention
nProbe [68] a solution that may operate as probe (i.e. generator), collector and proxy for
NetFlow/IPFIX traffic, typically assisted by PF_RING_ZC kernel bypass module.

2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures

Monitoring, in the context of NFV may refer to: (a) checking the health (important
KPIs) of deployed VNFs and (b) dynamically deploying VNFs that extract, collect and
process measurements. The two are closely related and somewhat difficult to separate.
The former usually involves interfacing with the NFVI and retrieving important metrics
from the underlying substrate (e.g. OpenStack) [69]. The latter, typically relies on
dynamically placed probes that receive traffic via traffic redirection/mirroring or act as a
tap in the wire [70]. Both approaches may employ various mechanisms mentioned in
section 2.3 above to extract monitoring information across the data plane of a VNF
chain in a performant manner [71]. An important challenge is extracting and isolating
user (tenant) data within a multi-tenant cloud/NFV infrastructures [72]. Note that, most
major commercial cloud providers empower their tenants (customers) with monitoring
metrics and related analytics [73]-[75] while third parties offer application monitoring

as Software-as-a-Service (SaaS) [76].
2.5 Cyber Threats

The number of end-user devices and (inter)networked systems in general, increases in
an ever-growing rate. Each networked system or device is a potential target for cyber-
attacks; threats range from data exfiltration, malware propagation and Denial of Service
attacks. Related incidents of data theft [77] and recent regulatory legislation such as

GDPR has significantly raised awareness on the matter.
2.5.1 Malicious Software

There are different variations of malicious software such as viruses, worms and trojans.
Typically, viruses require executing an infected file obtained via different channels, e.g.
mail, file download, physical media; trojan variants usually disguise themselves as
legitimate files. Worms exploit operating system or application vulnerabilities to self-

42

propagate and infect different machines to be used for other illicit activities (e.g. DDoS
attacks). Ransomware also exploits vulnerabilities to infect a computer and encrypts the
system or files. Typically, the actors attempt to extort payment via crypto currencies to
provide the user with the necessary decryption method/credentials. A system-centric
study of malware is beyond the scope of this dissertation; instead we focus only on the
network aspects of cyber threats and especially DDoS attacks.

2.5.2 Botnets

In general, the term bot refers to a system that automates various workflows, often
interfacing with human end-users or other services. Bots can be benign such as chatbots
used for customer support or malicious nodes that send spam e-mails and participate in
DDoS attacks. Focusing on the latter, bots or zombie computers are systems that have
been infected with malware and are under the control of an external (malicious) actor.
This malware variant is usually able to self-propagate, continuously scanning for

vulnerabilities and attempting to infect other networked systems.

Many zombies form a botnet and are used for various malicious activities orchestrated
by Command and Control (CnC) servers. Instructions are conveyed to infected hosts
using various communication patterns such as centralized, hierarchical or Peer-to-Peer
(P2P). In general, cyber-security professionals and law enforcement organizations
attempt to seize, virtually or physically, CnC servers in order to disrupt communications
and prevent malicious activity. Static IP assignment for CnC servers makes a Botnet
takedown easy, it is quite common for infected hosts to communicate with frequently
changing domain names computed via Domain Generation Algorithms [78]. The CnC
domain becomes a moving target, constantly in flux. Thus, even if a CnC is seized a

new domain will be computed and the botnet lives on.
2.5.3 Denial-of-Service attacks

Botnets are typically used to conduct Distributed Denial of Service (DDoS) attacks that
attempt to severely disrupt a network-based service, congest links and even cause
widespread outages. DDoS attacks directly employ dispersed botnet nodes and also
exploit vulnerable systems that are prone to abuse. The latter relies on two techniques
called reflection and amplification [79], [80]. Reflection allows an attacker to spoof the

source IP address of a request, thus responses are reflected back to the spoofed IP
43

address (victim). Amplification techniques exploit vulnerabilities in well-known
protocols to send large responses with minimal effort. Note that, almost all reflection
and amplification attacks require not only IP spoofing but a connectionless protocol (i.e.
UDP) [80]. An interesting exception is TCP-based reflection where misbehaving
devices (mostly residential internet routers) send many TCP RST messages [81], in
response to a TCP SYN.

DDosS attack vectors vary from high rates attacks, using amplification techniques and/or
massive botnets, to sophisticated low rate, even stealthy attacks, that target specific
applications. We present the following categories below and briefly provide indicative

examples.

Volumetric attacks typically attempt to saturate important network links for the victim
(e.g. upstream/peering links) causing congestion. To that end, attackers employ
amplification techniques to create massive amounts of traffic. A thorough review of
protocols used for amplification is available in [79], [80], [82]. Indicatively, these are:
(@) DNS — “ANY” requests, (b) NTP — “monlist” requests, (¢) CharGen — character
generation request, (d) SSDP — “SEARCH” request. Another notable amplification
vector is based on Memcached [83]; it was associated with multiple attacks over 1 Thps
in 2018 [84].

Protocol or State Exhaustion attacks target specific protocols in L3 and L4 of the
TCP/IP stack. The goal of the attack is to starve application servers, load balancers,
firewalls and even routers of valuable resources to render the victim unreachable. A
typical example of such attack is the TCP SYN flood that sends a massive number of
SYN packets with spoofed source IP addresses. The victim server (or even intermediate

nodes) waste resources responding and/or tracking these bogus TCP sessions.

Application layer attacks (or Low and Slow) attempt to harm the application (most
commonly HTTP-based) itself focusing on inherent vulnerabilities of the protocol
and/or the server. Application attacks are typically “slow” restricted by the protocol
used by the application and related handshakes. Notably, the source IPs cannot be
spoofed, hence the attacks usually originate from infected clients, e.g. Internet of Things

(10T) devices. Typical examples are “Slowloris” and “R.U.D.Y — Are you dead yet?”.

DDoS attacks are constantly morphing and evolving, ever-growing in scale and

sophistication. Malicious actors often employ a wide variety of vectors from all three

44

categories, creating formidable multi-vector attacks. Such attacks simultaneously target
different aspects of a network infrastructure, thus complicating the defense effort.
Moreover, DDoS attacks are also used as diversions for other malicious activity such as

data theft and intrusion attempts (e.g. Worms) after knocking a firewall or IDS offline.

It would be fair to say that DDoS attacks constitute a major cyber security threat and
one of the most prominent problems faced by network operators. This was recently
emphasized by the Github (2018, 1.3 Terabits) and Dyn (2016, 1.2 Terabits) incidents.
Both highlighted the growth of DDoS attacks in terms of scale, diversity (attack vectors
used) and sophistication. The largest attack known today is a reflection/amplification
attack against an undisclosed customer of a U.S. based Service Provider [84], peaked at
1.7 Terabits. Other notables DDoS incidents are:

e June 2019 — Telegram: Instant messaging service Telegram was hit with
multiple attack vectors resulting to user connection issues.

e September 2016 — Krebs on Security [85]: Journalist Brian Krebs faced attacks
on his blog “Krebs on Security”.

e July 2018 — Blizzard: Gaming company Blizzard suffered massive DDoS attacks
disrupting partially or entirely the availability of servers to players.

e May 2018 — Danish Rail [86]: Series of DDoS attacks that knocked offline
ticketing and communication systems.

e March 2013: SpamHaus was targeted with a massive DDoS attack; the

organization reached out to Cloudflare for aid [87].

According to NetScout [88], DDoS attacks between 100 and 400 Gbits have increased
approximately by 700% in the first half of 2019 in comparison to the first half of 2018.
Frequent and huge attacks regularly exceeding 500 Gbits that have been observed in

2018, are attributed to the Memcached vulnerability that has now been remediated.

The DDoS market is worth approximately $2 billion and is expected to grow even more
[89]. Key players include but are not limited to NetScout-Arbor, Radware, Akamai
Prolexic, Imperva, NexusGuard, Cloudflare and Fortinet. Interestingly enough the
DDoS business is lucrative also for malicious actors, that offer DDoS attacks as-a-
Service for quite a small fee. These service providers are commonly referred to as

“Booters”.

45

2.6 Mechanisms for Anomaly Detection and Mitigation — Interdomain

Collaborative Schemas

As mentioned above, cyber threats, particularly DDoS attacks, constitute a major
problem for modern environments. Important topics with regards to DDoS attacks are
data collection in high-speed environments, efficient algorithms to timely detect
anomalies and techniques to effectively mitigate malicious traffic. Subsection 2.4
provided an overview of monitoring mechanisms, while this subsection focuses on

anomaly detection and mitigation [90]-[92].
2.6.1 Anomaly Detection

Anomaly detection efforts rely on different metrics ranging from coarse-grained traffic
counters (bits/sec, packets/sec) to fine-grained analytics (flows, Heavy Hitters, top N
destinations/ports). Counters are usually unable to accurately tell the difference between
a DDosS attacks and a benign anomalous event. Fine-grained analytics typically rely on
monitoring protocols that export packets and flows for processing and/or mechanisms
for fully fledged Deep Packet Inspection. Important packet/flow fields include but are
not limited to: source IP, destination IP, IP protocol, packet size, source port,
destination port. DDoS detection techniques analyze measurements as well as related

packet and byte counters on such traffic features using various methods.

Various approaches are based on Shannon entropy, in an attempt to find statistical
anomalies on traffic features and packet fields [64], [66], [93], [94], [33]. Entropy may
be used to identify various network anomalies, mapping entropy fluctuations of a packet
field to specific anomalies. As an example DDoS attacks cause entropy to increase for
source IPs and to decrease for destination IPs [94], [66]. A similar concept are change-
point detection algorithms that track changes in statistical features of the traffic,
typically caused by attacks. Closely related approaches might explore moving averages
to track the time series evolution of traffic features [33]; confidence intervals may be set

to track sudden changes in the moving averages and appropriately trigger alarms.

Often it is sensible to combine detection mechanisms for improved results in terms of
detection and performance. Indicatively, such a two-level was introduced in [13].
Initially, entropy values are calculated for the number of destination IPs and ports, with

sudden changes indicating an ongoing attack. Subsequently, the victim is identified and

46

traffic destined towards it is redirected to an OF-enabled device. This device acts as a
second, more refined level of detection, that uses packet symmetry to identify malicious
flows. These flows are subjected to source IP-based aggregation in order to reduce the

required rules for blocking the attack traffic, due to OF device capacity limitations.

Intrusion Detection Systems such as Snort [95], Suricata [96], Zeek [97] (formerly Bro
[98]) are also applicable for DDoS detection operating on a broad set of rules. These
rules track specific attack signatures, connection states and set specific thresholds for
alarms. Commonly, they yield accurate results but struggle in large scale deployments
due to performance issues. In that regard, Suricata and Zeek (Bro) may employ AF-
XDP and Netmap respectively, for performant traffic processing.

Various efforts utilize Machine Learning algorithms to detect and identify network
anomalies [99]-[100] in general, and DDoS attacks [64], [101]-[106] in particular;
within the context on this dissertation considerable emphasis is placed on the latter. In
summary, [101] is based on a Multilayer Perceptron (MLP) whereby traffic metrics
related to flows and packet rates (UDP, ICMP) are collected and used to classify
network traffic as benign or malicious. Another approach [102], periodically collects
OpenFlow (OF) entries from OF-enabled devices, extracts flow-related features and
classifies them using Self-Organizing Maps (SOM). In [103], sharp increases in the rate
of OF Packet-In messages are considered as an indication of DDoS attacks and trigger a
mitigation pipeline. Specifically, OpenFlow rules are collected from network devices
and are classified via an appropriate Multilayer Perceptron that uses the same feature set
as in [102]. Malicious flows are ultimately blocked via appropriate mitigation entries in
OF-enabled devices. In [104], a large set of flow-related features is extracted from
packets sent to OF Controllers. These are fed to a Stacked Autoencoder, which provides

feature reduction and traffic classification of the flow as benign or attack.

In [64] ATLANTIC, a two-level framework for DDoS attack detection and mitigation
was proposed. Entropy changes for specific flow features within consecutive time
windows indicate the existence of an attack. Network flows responsible for entropy
changes are fed in a traffic classification component that uses (i) K-means to create
clusters of common flows and (ii) SVM to subsequently identify malicious ones. In
[105] DeepDefense, a DDoS Detection schema based on Recurrent Neural Networks
(RNN) was introduced. Traffic traces, collected within sliding time windows, are
translated into arrays of packet features. These are fed to an RNN that segregates
47

malicious from benign packets. Similarly, in [106] LUCID suggested classification of
network traffic based on packet fields. These values are collected from different time
windows and organized as arrays; subsequently these arrays are fed to a Convolutional

Neural Network to identify time-dependent traffic patterns.

Though a very popular topic, machine learning and deep learning techniques for
network use cases need to account for hardware capabilities (data extraction) and strict
operational requirements pertaining to the prompt classification of attacks. Some of the
approaches mentioned above focus only on the detection whereas other also apply
filtering techniques (i.e. OF rules) for the flows classified as malicious. Another point of
note is that traffic features are of strategic importance since network anomalies (e.g.
DDoS attacks) may attempt to pass as legitimate traffic. In addition, researchers
especially in academic institutions have no access to proprietary data feeds and thus
face considerable difficulties in obtaining suitable data sets. If obtained, such datasets
are unlabeled, raising additional challenges for supervised learning methods. Internet
projects such as CAIDA [107] and WIDE [108] provide data from different sample
points within their network infrastructure. Regarding datasets containing attack traffic,
we refer to the efforts of the University of Twente [109] that performed an extensive
experiment, purchasing UDP-based DDoS attacks from Booter services. The

experiment was done with the collaboration of the Dutch NREN, SURFnet.

2.6.2 Mitigation Mechanisms

Commercial mitigation solutions may be categorized as on-premise and cloud-based.
The former typically use hardware or VM-based appliances operating in-line (always
on) or on-demand in case an attack is detected. Organizations may also opt to redirect
their traffic to dedicated infrastructures, i.e. scrubbing centers, whereby malicious traffic
is filtered and benign traffic is forwarded back to them via dedicated connections. These
cloud-based services grow in popularity; however, they may raise privacy concerns and
introduce significant latency. Powerhouses in DDoS protection services such as Arbor
and Imperva, offer both solutions to their customers. Commercial mitigation solutions
(cloud or appliance-based) employ proprietary algorithms and/or hardware but offer
moderate or no flexibility while requiring considerable capital expenses.

48

In addition to appliances and related services, network operators may use additional
mitigation techniques to defend against DDoS attacks. A brief overview of typical

techniques is presented below:

Destination-based RTBH [110]: This mechanism is primarily used to prevent potential
collateral damage during a DDoS attack (e.g. bandwidth and CPU utilization,
degradation of other services). It is a destination-based filtering mechanism, in which
the traffic destined to the victim is redirected to an edge router’s null interface. The
dynamic redirection from the victim AS is triggered using a device that retains BGP
(IBGP) peerings with edge routers. Subsequently, the blackholed route (usually /32) is
also propagated to peers or upstream providers ([111]-[112]) to alleviate stress on
peering/upstream links. As a result, both malicious and benign traffic destined to the

victim is dropped.

Source-based RTBH [113]: Unlike the destination-based RTBH which renders the
victim unreachable, the source-based RTBH drops packets from specific source IPs via
the unicast Reverse Path Forwarding (URPF) feature [114]. Source-based RTBH also
relies on BGP updates which contain routes to malicious IPs; attack packets from these
sources are dropped on the uRPF-enabled router interface. Although it offers more
granularity than destination-based RTBH, outgoing packets to legitimate destinations

may be blocked if attackers employ en route and fixed route spoofing [90].

Access Control Lists: Access Control Lists (ACLs) are commonly used to implement
firewall policies. Filtering rules are typically implemented in specialized hardware such
as TCAM that enables traffic processing in line-rate. ACLs may be propagated and
installed in network devices using various protocols and mechanisms, that are further

discussed in section 5.

BGP Flowspec [115]: This mechanism extends the Network Layer Reachability
Information (NLRI) field of BGP to disseminate traffic flow specification rules. These
rules are transported over BGP and dynamically installed on appropriately configured
devices. The exact hardware implementation of Flowspec rules is the responsibility of
the vendor. In comparison to ACLs, Flowspec rules provide a unified specification of
rules transmitted over BGP. However, Flowspec is not widely deployed; a notable
exception is the Firewall on Demand (FoD) [116], a service offered by GEANT that
was initially developed by GRNET.

49

OpenFlow [9]: OpenFlow-enabled devices contain flow tables and determine packet
forwarding based on flow rule entries matched against packet headers. There is a
plethora of matching capabilities and actions/instructions, used to instantiate typical

firewall operations such as packet rejection/redirection.

The above techniques are summarized in the following table, with emphasis on their
adoption and granularity:

Mitigation techniques Distribution Protocol | Granularity | Adoption
Destination-based RTBH | BGP Low High
Source-based RTBH BGP Medium Medium
OpenFlow Firewall OpenFlow High Low
Flowspec BGP High Low
ACL SSH/NETCONF High High

Table 2.6 Mitigation Techniques
The entries of Table 2.6 were partially inferred from “DDoS using BGP Flowspec” by
Juniper Networks®. The mitigation techniques presented above need to account for the
following:

e Scalability: Sources of DDoS attacks (spoofed or not) might be considerably
large. Thus, approaches that rely on source filtering might struggle to implement
the required mitigation rules, due to hardware constraints. This was emphasized
in [13], where prefix aggregation techniques were employed to limit the number
of required rules.

e Spoofed Sources and Impact on benign traffic: Filtering techniques typically use
source IP addresses to mitigate malicious traffic rendering them ineffective or
even harmful to benign sources due to widespread spoofing. Destination-based

RTBH, frequently used for its simplicity, renders the victim inaccessible.

Considering these shortcomings, programmable data planes may be used to provide on-

demand, robust and fine-grained filtering mechanisms for DDoS mitigation.

Specifically, the XDP framework seems a promising candidate to create filters tailored

*https://www.slideshare.net/apnic/ddos-mitigation-using-bgp-flowspec
50

https://www.slideshare.net/apnic/ddos-mitigation-using-bgp-flowspec

to specific DDoS vectors. These filters may be dynamically deployed and filter
malicious traffic based on unique characteristics, not only source IP addresses. P4 offers
similar capabilities as well, but implementations have to account for potential downtime

in case reconfiguration of the pipeline is required.

Another mechanism is anycast traffic diffusion. In short, this technique uses BGP to
advertise the victim from many different points of presence, distributed across the
internet. Consequentially, the traffic is dispersed to many sites whereby it is processed
and filtered. However, this approach assumes adequate points of presences and
sufficient link capacity and processing power to each one. These requirements can be
met only by a very small number of cutting edge organizations. Such an example is
Cloudflare that maintains a point of presence in over 200 different cities and 90
countries, fields vast processing power, peers directly in various locations and has

special bandwidth agreements.
2.6.3 Collaborative Schemas

As mentioned, organizations typically contract third party scrubbing providers or
implement mitigation within their own network domain. However, the sheer volume of
present-day cyber threats may overwhelm an individual provider, thus the emerging
need for collaborative mitigation efforts as malicious attacks are more efficiently
mitigated closer to their sources. Interdomain collaborations are manifested as part of
multilateral agreements or within trusted federated environments. An indicative
example is the hierarchical federation for the European research community: GEANT,
NRENSs (National Research and Education Networks) and Campus networks. Other
schemas can be formed, provided that collaborators follow agreed upon admission
procedures and adhere to standards such as MANRS [117]. However, defense
collaborations might be hindered by operator concerns such as unwillingness to share
victim-related information to preserve sensitive client data, lack of incentives for

cooperation and shortcomings of incident handling mechanisms.

Various research efforts have been explored for the collaborative detection and
mitigation of cyber threats. Indicatively, CoFence [118] is a framework that enables
collaborating NFV-enabled infrastructures (i.e. ISPs) to mitigate DDoS attacks using
available compute and network resources. These are allocated in a reciprocal manner

based on past mitigation collaborations. In [119], an SDN approach was proposed,

51

featuring inter-domain collaboration via the exchange of IODEF [120] messages on top
of BGP; reputation score for neighbors is evaluated via the Beta Reputation system
[121]. 3DCoP [122] is also a P2P system for DDoS detection and mitigation whereby
network domains collaborate to provide monitoring, alerting and ultimately mitigation
of malicious flows. IETF proposed the DDoS Open Threat Signaling (DOTS) protocol
[123] that specifies interactions between domains under attack and potential mitigators
while considering adverse network conditions and related limitations of the signaling
channel. The establishment of business relationships and collaboration incentives is not

a main objective in DOTS activities.

Approaches based on Distributed Ledger Technologies (DLTs) have recently been
proposed as a promising way to enhance the coordination between collaborators for
detection and mitigation of security incidents. Indicatively, in [124] authors introduced
a federated schema where monitoring data are exchanged to collaboratively detect
network anomalies. The federation is based on a permissioned blockchain framework
that ensures transparency and business regulation. Similarly, in [125] the use of a
private blockchain was proposed to avoid verification delays commonly occurring in
public ledgers. Another approach aims at providing DDoS mitigation services to third
parties via sharing of user resources; this was orchestrated in Gladius, an Ethereum-

based platform [126] that verifies web requests and drops illegitimate ones.

In [127] a cross-domain collaborative schema for DDoS mitigation was introduced,
whereby the cooperation signaling relies on an Ethereum network. Malicious IPs are
advertised in blockchain-based Smart Contracts (SCs) issued by the victim. These are
retrieved by interested ASes which in turn may trigger mitigation actions. However,
inserting large blocks of IP addresses in the blockchain may introduce significant
latencies to the mitigation process. As an extension to [127], authors presented in [128]
a reputation scheme based on the Beta Reputation system in order to rate mitigation
services and prevent abuse/misuse by modeling customer strategies. Additionally, [129]
explored mechanisms for verifying an attack was indeed mitigated to prevent false

reporting.

52

3 Traffic Monitoring and Anomaly Detection based on
Dispersed Vantage Points

This section considers network monitoring and anomaly detection mechanisms offered
as a service to users (tenants and administrators) within shared network infrastructures.
Measurements are collected from scattered monitoring agents and directed to a data
pipeline for processing and enrichment.

3.1 Problem Statement

Traditionally, network environments follow a hierarchical structure organized in core,
distribution and access/edge layers, essentially defining distinct vantage (observation)
points for monitoring network traffic. Within such environments, network traffic is
aggregated at the core and exhibits localized characteristics near the edge. Selecting a
vantage point for information extraction directly influences network visibility, since
monitoring is commonly implemented via sampling mechanisms e.g. NetFlow and

sFlow.

Monitoring services are valuable to authorized users (tenants and administrators) who
own distinct subsets of networked resources (physical and/or virtual) within shared
infrastructures. Each tenant “owns” a basket (slice) of virtualized resources drawn from
distributed physical resources and normally requires measurements pertaining to these
virtual or physical resources. Slice monitoring requirements in federated
computer/networking infrastructures [130] raise considerable problems in terms of
agent location, data storage, filtering/processing and access control.

In this section a framework for data collection and processing is proposed, offering on-
demand network monitoring data and related analytics services as VNFs to users within
shared environments. Our implementation focuses on sampled measurements from
various vantage points. Collected data are associated with relevant parties and may be
accessed based on predefined policies to project dynamic monitoring views and

personalized analytics.
3.2 Background and Related Work

Several approaches investigate monitoring system/network resources and services

within multi-tenant cloud/NFV infrastructures. MonPaaS [131] is an OpenStack based
53

Platform-as-a-Service (PaaS) for monitoring resources owned by both cloud providers
and consumers (tenants) alike. In [69] monitoring mechanisms are presented that extract
data from the NFV Infrastructure and software agents within the VNFs. D-StreaMon
[70] is an NFV-capable distributed framework that uses containerized probes for traffic
monitoring and analysis. Most approaches interact with the infrastructure (traffic
redirection/ monitoring probes) or are tightly coupled with the cloud management
system. Our approach is decoupled from the underlying network architecture and is
applicable in hierarchical campus, spine-leaf network architectures (datacenters and

cloud environments) as well as NFV Infrastructures.

Internet measurement projects [132] deploy active/passive probes and Looking Glass
tools in a wide variety of networked infrastructures e.g. campus Local Area Networks
(LANSs), Internet Exchanges (IXs) and internet provider networks. Probes and tools
essentially define scattered vantage points, useful for troubleshooting and verification.
In [133] the diversity and geographical distribution of measurement points is evaluated,
comparing results obtained from fixed network locations against measurements from
agents running on end-user equipment. In [134] a mechanism is presented for inferring
relations among Autonomous Systems (ASs) using partial views based on different
observations via looking glass tools. In [135] the suitability of a large European IX as
an advantageous observation point is investigated, offering prime visibility not only into

European but also global network behavior.
3.3 Design Principles

Our proposed architecture is based on an NFV-compliant framework, offering sampled
network monitoring data and related detection for security incidents. These capabilities
are implemented as on-demand services available to authorized users (tenants and
administrators) within shared network environments. Network traffic monitoring
emanates from vantage points that users can dynamically select from predefined key
network locations e.g. the network core, the network edge, etc. The benefits are twofold,;
(i) administrators in Network Operation Centers (NOCs) can dynamically select
monitoring views to detect, pinpoint and verify network anomalies, while (ii) tenants
are capable of requesting on-demand access to raw data pertaining to their slice. In

addition, our schema provides users with a selection of customized tools for monitoring

54

data warehousing, analytics extraction and visualization, enabling them with actionable

intelligence. Our design adheres to:

User Specific Monitoring Data: Initially data streams are collected on a centralized
data warehouse after being tagged appropriately (per user or vantage point).
Additionally, users are able to request data collection from specific devices (i.e.
vantage points) within the network, thus achieving a granular monitoring view. The
data are presented to authorized users, based on predefined access control policies
and attached tags.

Monitoring Data Enrichment: Raw data streams are ingested and analyzed in a data
pipeline. To that end, we leverage on popular message brokers facilitating
asynchronous processing. Notably, a user is able to choose a number of enrichment
tasks that should take place upon the data pertaining to their monitored slice.
Anomaly Detection based on Monitoring Views and Data Analytics: Following the
drill-down and roll-up concepts of On-line Analytical Processing (OLAP) [136],
the proposed framework offers zooming in and out between user-focused and
centralized data. This may improve network visibility for specific tenants and
localized anomaly detection mechanisms. To that end, we may deploy on-demand
lightweight anomaly detection services, each pertaining to a given monitoring view.
NFV-Compliant Approach: Monitoring and anomaly detection functionality is
offered via the deployment and orchestration of containerized services. Our
approach leverages on a popular unified management system of virtualized
resources i.e. Kubernetes [137] that offers advanced resource allocation,

orchestration and service chaining capabilities.

3.4 Architectural Components and Implementation Details

In this section we discuss implementation details pertaining to the architectural

components and related sub-modules. Depicted in Figure 3.1 is an indicative setup for

our proposed architecture.

Monitoring data are exported from agents within network devices assumed to be vantage

points. This operation is performed via the sFlow protocol, widely implemented by

vendors of L2 devices employed in LANSs. Traffic traces are fed to an sFlow-enabled

Open vSwitch mounted in our laboratory. This switch exports packet samples to an

sFlow collector which also dispatches samples to an external cloud infrastructure

55

through a network tunnel. The core of our NFV-compliant architecture was deployed on
~okeanos [138], the Greek National Research and Education Network (GRNET) cloud

infrastructure.
4
:;3\ |:| Docker Containers
(3',[;: | managed by Kubernetes
' ~okeanos laas B
| ~0Keanos laa |
| (GRNET) |
C. CUSTOMIZED
| D. ORCHESTRATOR ANALYTICS |
| web Ul [f o\ ~[[Provision &] | |[FAnomaly Traffic |
| REST API Manage Detection || Visualization |
I A. MONITORING DATA HANDLER .AUTH I
— Middleware
| [sMonNet Pipeline |
| — | |
Data Data Elasticsearch

| Identification Enrichment|J |
| (i) (iii) (V) | B.cCENTRALIZED |
| DATA WAREHOUSE |

| Samples| | Jobl I-.| O
I Kafka Cluster - KC I
. —— Y — J

ship data (N ()

| ¥
I Egpiort | NETMODE testbed
I

sFlow Open | (NTUA LAN)

vSwitch |

Figure 3.1 sMonNet Architectural Setup
3.4.1 Monitoring Data Handler

Our architecture requires message broker components between the various modules in
the Monitoring Data Handler shown in Figure 3.1. To account for the vast amounts of
data, expected in a large-scale networking infrastructure, an option would be to use
standard big data processing frameworks as suggested in [139]-[141]. Instead of these
approaches we opted for a lightweight customized solution based on Docker.
Consequently, we developed sMonNet (sFlow Monitored Network), a Python module
tailored to data identification (tagging) and enrichment. Regarding the latter, users may

select an enrichment such as inserting ASN and GeolP metadata (e.g. from MaxMind).

sMonNet leverages on Kafka [142], a fast, distributed and fault tolerant messaging
system supporting large volumes of 1/0 per second from and/or to multiple systems.
The Kafka broker enables: (i) acceptance of incoming message streams, (ii) temporary
data storage and (iii) shipping data upon request, to the corresponding processing &

56

enrichment instances. To improve performance during identification and enrichment we

used C libraries cjson, libmaxminddb.

As shown in Figure 3.1, Kafka brokers are organized in a cluster, denoted as KC, which
contains monitoring data separated in different topics. (i) Switches export samples to an
sFlow collector that produces (ships) all samples to KC, in a dedicated topic, named
samples. (ii) The identification component of sMonNet consumes (reads) from the
samples topic and inserts appropriate tags per user and vantage point (device). Users are
associated based on L2/L3 sample headers whereas a vantage point is identified via the
sFlow agent’s IP. (iii) Tagged data are shipped back to KC in a dedicated topic per
selected enrichment task. (iv) For each new task an sMonNet instance is created; such
instance consumes data from the dedicated topic. (v) After enrichment, processed

samples are stored within the Centralized Data Warehouse.
3.4.2 Centralized Data Warehouse

This component maintains tagged and enriched data per user and vantage point. Users
have full access rights on their data in order to drive customized management
applications e.g. traffic analysis, performance verification, intrusion detection and
prevention. In addition, network administrators are able to query the Data Warehouse

for infrastructure-wide data.

The centralized data warehouse is based on an Elasticsearch cluster; a search and
analytics engine featuring parallel data insertion (i.e. indexing) and rapid queries.
Towards our requirements for Authentication and Access Control, we implemented a
middleware component using the Elasticsearch client Python library. This middleware
enforces related tags and dispatches queries (requests) to the Elasticsearch cluster.
These tags behave as filtering mechanisms, and are applied based on either user

credentials or the originator IP associated with a request.
3.4.3 Customized Analytics

Stored data are available for a multitude of applications e.g. traffic visualization and
analysis services. Building on earlier efforts [66], we focus on identifying network
security incidents from appropriately selected vantage points. Specifically, we alternate
between a user-specific localized monitoring view and a global infrastructure view, in

order to improve incident detection mechanisms.
57

As a proof concept we have implemented two distinct services for Anomaly Detection
and for Traffic Visualization. Additional services may be developed using the data

gathered in the Elasticsearch Data Warehouse.

e The Anomaly Detection service implements entropy-based algorithms. As
mentioned, data are gathered from multiple vantage points typically, located in core,

aggregation, and edge switches in LAN environments.

e The Traffic Visualization service is based on Kibana, a software component natively
able to visualize data stored in Elasticsearch. Users are provided with a pre-defined
but easily configurable dashboard for their network resources.

3.4.4 Orchestrator

From a high level standpoint, this component deploys and configures data collection,
processing and analysis services offered by the Monitoring Data Handler and
Customized Analytics components.

In Figure 3.2 below, we illustrate a container-based NFV Infrastructure (NFVI) which is
based on adapting the NFV framework [43] to deliver user specific Monitoring and
Analysis services. The Management and Orchestration (MANO) functionality was
implemented on Kubernetes [137].

The Orchestrator component: (i) receives and validates service requests, (ii) configures
running services and (iii) deploys Docker containers (Pods). The Monitoring Data
Identification & Enrichment modules in the Monitoring Data Handler 3.4.1 and the
Anomaly Detection and Traffic Visualization services in the Customized Analytics
component 3.4.3 are implemented as pre-packaged and configurable Docker containers

orchestrated by Kubernetes depending on user requests.

Users
Tenants/Administrators

[Containerized Services

Pod A Pod B)A _
MonitoringD CAnaIysis) « »| Orchestrator

Docker Container Engine } t

Kernel Functions & Modules »| Kubernetes
Linux Host-OS L Manager
NFVI

Figure 3.2 Container-based NFV architecture

58

In the sequel we analyze the orchestration workflows depicted in Figure 3.1. Service
requests are received by an external-facing web/RESTful interface and are validated
based on user credentials (username, password, token). A Role Based Access Control
(RBAC) component maintains associations between users, network segments (L2/L3
headers), and tags used for data identification. Such information is conveyed to the
AUTH middleware component that enforces access control to monitoring data.

Orchestration of Monitoring Requests: Users may dynamically request monitoring data
collection combined with enrichment tasks. Based on user credentials, packet headers
and related tags are retrieved and conveyed to the Identification component. Regarding
Kafka topics, we define a general purpose topic as the default i.e. no specific enrichment
job. Else, a KC topic is specified to the Identification component, overriding the default.
In such case individualized enrichment, dedicated containers are deployed, consuming
data from the corresponding KC topic. Enrichment instances are provided with
connection details for the Elasticsearch.

Orchestration of Anomaly Detection and Traffic Visualization Requests: The
Orchestration component instructs Kubernetes to create containers implementing
Customized analytics services defined in section 3.4.3 above. These containers may
request monitoring data from various vantage points, projecting different monitoring
views. As mentioned, data filtering and isolation is enforced by the AUTH middleware
component. Granularity and localization is enabled by smart selection of sampling rate

in each vantage point as well as the algorithms used for Anomaly Detection.
3.5 Evaluation

In this section, we present our testbed setup and discuss experimental results.
3.5.1 Experimental Setup

We provisioned 11 VMs for our Kubernetes, Elasticsearch and Kafka cluster.
Identification, enrichment and anomaly detection instances are implemented as
ephemeral containers managed by Kubernetes. Kafka and Elasticsearch clusters were
mounted on stand-alone VMs due to their considerable performance and deployment

requirements.

59

Experiments were conducted by emulating real network conditions using benign traffic
traces from NTUA Campus LAN (core) and our laboratory switch (edge), essentially
defining two distinct vantage points. Moreover, we utilized Scapy in order to construct
network anomalies emulating: (a) worm propagation from a /24 NTUA laboratory

subnet and (b) port scans targeting the entire /16 campus network.

Our framework is modularly designed, thus allowing for a wide variety of anomaly
detection methods. In our experiments, we adopted a commonly used approach [143]
calculating the normalized entropy values for network traffic. We focused on source IP
addresses; other values may be considered as well, including but not limited to L4
headers. Learning mechanisms for anomaly detection services within our Customized
Analytics module, were based on average entropy values from normal (reference)
traces. Alerts are triggered if entropy values deviate from established references, either
above or below a threshold. We set thresholds empirically to 3% for the core and 5% for
the edge, to account for different traffic patterns. Near the edge traffic is less diverse
thus a higher threshold is needed to reduce false positive alarms. Anomalies are usually
subtler near the core that aggregates all different subnets. Hence, a lower alert threshold

might be preferable.
3.5.2 Experiments on Multi-Vantage Point Anomaly Detection

In our experiments, we considered two Anomaly Detection services focusing on data
gathered from core and edge vantage points in 30 second detection windows. For each
detection window, both services periodically query the Elasticsearch cluster for samples
(documents) stored during the last 30 seconds in order to calculate the entropy values.
We show the results for both applications for a 5-minute observation period (10 distinct

detection windows).

In Figure 3.3 we illustrate the normalized entropy for the source IP address during the
worm propagation and in Figure 3.4 during port scans. Grey and black bars refer to edge
and core vantage points respectively. Their height is significantly different
(approximately 0.2) attributed to the characteristics (traffic diversity) of each vantage
point. In both cases, anomalies were detected and alarms were issued in detection

windows 3 to 5, exactly fitting our attack injection scenarios.

60

® seeip EDGE W sreip CORE

Normalizd Entropy

Detection "i);dmﬂ
Figure 3.3 Entropy Values for Source 1P, Worm Propagation, 30 second detection windows

srcip EDGE & srcip CORE

Normalized Entropy

Detection Windows
Figure 3.4 Entropy Values Source IP, Port Scan, 30 second detection windows
These results demonstrate the benefit of a multi-vantage point approach in anomaly
detection. Worm propagation is better highlighted in a localized context due to lower
traffic volumes and proximity to the problem. Thus, as shown in Figure 3.3 anomaly
detection based on data obtained from the edge vantage point yields better results than
the network core. However, vantage points near the network edge are somewhat
sensitive to slight changes in traffic patterns, thus prone to false positive alarms.
Moreover, during a network-wide attack e.g. port scan, a generic/global monitoring
view is more suitable for anomaly detection. Hence, as shown in Figure 3.4, core-
centric approaches are able to highlight global issues whereas edge approaches are less

conspicuous due to limited (localized) visibility.

61

4 Multi-Feature DDoS Detection on Programmable P4
Hardware

The approach presented in section 3 focuses on collecting and processing monitoring
data exported from dispersed vantage points in hierarchically layered network
environments. Extensions to that work are addressed in this section, specifically the
migration of monitoring and anomaly detection tasks to programmable data plane
devices. Each such device may be considered as a distinct vantage point that performs

related tasks in a distributed fashion.
4.1 Problem Statement

As mentioned, anomaly detection relies on packet samples or flow records. These are
exported from agents within network devices (routers, switches) and relayed for
processing to external collectors (servers), typically deployed in a centralized fashion.
Similarly, SDN setups (e.g. OpenFlow [9]) employ control plane signaling between
network devices and controllers to retrieve information, detect anomalies and

subsequently deploy mitigation actions.

In contrast, continuously evolving programmable hardware, e.g. SmartNICs [26],
enable the migration of anomaly detection workloads to hardware. This distributed
approach attempts to be one step ahead of related schemas usually associated with a

form of centralized collection, processing and/or control.

In this section an in-network DDoS detection mechanism is considered that offers rapid
detection, while enabling control plane triggers to external mitigation systems. Our
approach leverages the P4 language [5] and combines important traffic features to
increase accuracy while adhering to performance penalties. In a nutshell, the proposed
mechanism: (i) inspects network traffic and computes related metrics (features) per
protected subnet, (ii) evaluates feature values within time-based epochs to identify

potential threats and (iii) conveys alarms to external systems (P4 “digests”).
4.2 Background and Related Work

There are various efforts exploring performance capabilities of advanced network
applications implemented in programmable hardware. In [144], the impact of basic P4

operations (packet parsing, headers modifications) on packet processing performance is
62

explored. Experiments are based on P4-enabled Netronome SmartNICs [26] (Agilio CX)
and illustrate the effect on processing latency introduced by various P4 constructs.
Similarly, in [145], the impact of XDP operations on various system resources is
investigated. Specifically, results demonstrate packet processing limitations and scaling
capabilities (number of CPU cores) considering different flavors of XDP. The main
contributors of XDP [4] also present indicative performance metrics for different use

cases such as IP routing, DDoS Mitigation and Load Balancing.

Recent research efforts on data plane programmability applied to detection of DDoS
attacks are reported in [33], [146]. In the former, a P4-based DDoS detection approach
is proposed; counting Bloom Filters are used to track the per-flow ratio of TCP SYN to
regular TCP packets in order to detect SYN flood attacks. In the latter, a DDoS
detection schema is presented that estimates entropy values of source and destination IP
addresses. These values are compared to appropriately defined thresholds and upon their
violation DDoS alarms are triggered, without however further indicating the victim.

We provide an integrated framework able to promptly detect generic DDoS attacks to
specific victim subnetworks, possibly alerting external DDoS mitigation systems via P4
digests. Furthermore, we deploy our P4 schema in hardware SmartNICs and assess its
performance in terms of attainable packet processing rate and detection accuracy.

4.3 Architectural Design and Selected Traffic Features

Suitable environments for the proposed schema are both transit provider networks (e.g.
ISP, Research & Education Network backbones) and customer/edge network domains
(e.g. Data Centers, Campus Networks). Upstream providers may detect network
anomalies that target downstream organizations. Similarly, customer organizations may

deploy the same functionality with fine granularity for specific internal subnetworks.

Such an indicative architectural setup is presented in Figure 4.1: Traffic originating
from various Internet sources is directed towards a P4-enabled edge domain, possibly
via a P4-enabled transit provider. We precisely consider the use case of National
Research and Education Networks (NRENSs) and their Pan-European interconnection
GEANT. NRENS, e.g. GRNET, may offer DDoS Protection services to universities and
data centers downstream. These services are implemented in P4-capable devices, placed
at important vantage points to monitor traffic at different levels of granularity.

63

Specifically, P4 devices: (i) forward network traffic, (ii) maintain important statistics for
monitored (sub)networks, (iii) perform anomaly detection tasks and (iv) raise alarms to

external mitigation systems.

Tranist Network
Provider
(NREN)

Internet
Sources

Anomaly
Detection
Pipeline

Notification,’
/

Mitigation
System

\
Notification\
\

Subnetworks

\

p Anomaly
Detection
Pipeline
Data Center

Figure 4.1 High-level Overview of P4-based Anomaly Detection

University
Campus

Our schema maintains a list of specific monitored (sub)networks and/or hosts,
depending on the desired granularity level. DDoS attacks are detected by combining the
following traffic features: (i) total number of incoming traffic flows (srcIP, dstIP,
Protocol, srcPort, dstPort), destined to monitored subnets in a distinct time interval
henceforth denoted as "epoch”, (ii) significance of a network, characterized by the
percentage of flows directed towards it out of the total incoming flows and (iii)
symmetry ratio of incoming to outgoing packets. These features have correlated
characteristics and may provide localized alarms for each protected network under

generic DDoS attacks.

Typically, massive DDoS attacks consist of a considerable amount of flows [147]. Thus,
we consider the number of total flows as an attack indicator. We adopt a moving
average approach as in [33] to track for each epoch n the number and the dispersion of

Total Incoming Flows (TIF,). Specifically, we define M, as the Exponentially Weighted
64

Moving Average (EWMA) and D, as the Exponentially Weighted Moving Difference
(EWMD):

M, =a-TIE, + (1 —a)-M,_, with M, = TIF,

D,=a-|M,—TIE,|+(1—a) D,_;withD; =0
The parameter a is a smoothing coefficient to dampen short-term fluctuations. Network
anomalies are considered in case TIF, exceeds a threshold that depends on the values of
Mp.1 and Dp.1:
TIFn > Mn—l + k * Dn—l (1)

where k > 0 is a sensitivity coefficient that scales the detection threshold [33].
In order to further pinpoint the victim destination subnetwork, we also incorporate two
additional features, namely Subnet Significance and Packet Symmetry.

e Subnet Significance is expressed as the percentage of Incoming Flows

SIFn(i)destined to a subnet i in epoch n out of the Total Incoming Flows TIF,.
We indicate an alert if this percentage exceeds a significance factor f that

identifies major flow recipients as potential victims:

SIE® .
TIE,

(2)

e Packet Symmetry is an insightful metric [148] to avoid classification of a subnet

as a victim while it may be a recipient of heavy benign traffic, to which it
generates responses. The Current Packet Symmetry Ratio CR,(P is defined as the
fraction of incoming to outgoing packets for subnet i during epoch n. These are
evaluated based on per subnet i counters and compared against a pre-computed
Normal Packet Symmetry Ratio NR®. We consider traffic to a subnetwork
anomalous, in case the corresponding fraction exceeds a heuristic threshold r as
described in the following condition:

CRY
NR®

>r 3)

65

Values for f, r and NR® are defined based on operational experience under normal
(non-attack) network conditions. Note that, these parameters could be set by Machine
Learning algorithms that learn from past traffic patterns.

4.4 P4 Implementation Details

In this section we elaborate on implementation details of the proposed DDoS detection
pipeline. Our mechanism utilizes P4 registers to implement counters, arrays and
probabilistic data structures. We do not use P4 counters since their values are only
accessible via control plane signaling and may not be used directly in data plane
interactions [34]. Table 4.1 contains indicative register definitions:

Functionality Indicative Definition Usage

Counters register<bit<32>>(1) epoch Epochs, Total Flows

Array of counters | register<bit<16>>(256) flow_dst | Per Subnet Flows, Packets

Probabilistic Data
Structures

register<bit<32>>(65536) sketch Flow Tracking

Table 4.1 P4 Registers: Functionality, Indicative Definition and Usage
The processing pipeline is depicted in Figure 4.2. Traffic arriving at the P4-enabled
device is filtered to include only relevant packets. Subsequently, we apply our multi-
feature approach in distinct serial steps to identify potential attacks. In case all
violations are observed, we generate alarms (i.e. P4 digests [34]) to an external

mitigation system.

) Anomaly Detection Pipeline

No No
. . . ENf)‘,’;Vh InitExFI)igg?ions Outgoing
IncorEirgg P & Updates . packet . port
packet TCP/UDP . Yes ~Protected - Yes Epoch Alarm
Parser Network ™~ Processing . 1 / Sz\lr?gjstigy > Checking

Same % Flow Analysis
Epoch

Figure 4.2 P4 Anomaly Detection Pipeline
Step 1 selects only TCP or UDP packets to be considered within the DDoS detection

pipeline, since they are typically utilized by most attack vectors [149]. This is achieved

using simple checks on parsed headers.

Step 2 further isolates traffic originating from or destined to a monitored network

(protected network). To that end, we employ a dedicated match-action table that

66

contains one rule for each protected network. Each rule adds a unique identifier to
matching packets as P4 metadata. The added metadata headers are used to access and
update the equivalent memory areas of various registers e.g. per subnet measurements
such as flows and packet statistics. Note that, traffic that does not meet the
aforementioned criteria (i.e. TCP/UDP and source/destination in “monitored”

networks), bypasses the DDoS detection pipeline and is appropriately handled.

Step 3a delimits time-based epochs, each defined by a start time and duration. Packets
are associated with an epoch using the ingress_global_timestamp packet metadata. This
denotes the exact time a packet arrived at the P4-enabled device. If a packet’s
timestamp fits within the current time window [start_time, start_time + epoch duration),
it is directly fed to Step 4. Otherwise, the packet is assigned to a new epoch and
proceeds to Step 3b. The latter performs the following: (i) update the new epoch start
time, (ii) increment the index tracking the current epoch, (iii) compute the new EWMA
and EWMD values as described in section 4.3 and (iv) reset the number of total flows.

Step 4 performs flow traffic analysis and maintains appropriate flow counters for
packets exiting from either Step 3a or 3b. This operation is based on modified Bloom
Filters [150], used to track unique active flows within an epoch. Specifically, we
calculate hash values from the following packet headers (srcIP, dstlP, Protocol,
srcPort, dstPort) that identify a flow tuple. We employ hash functions available in the
P4 pipeline, i.e. CRC32, CRC16 and CSUM16. The resulting hash values are used as
indices to access distinct memory areas of P4 registers. Each area stores the last epoch a
flow was observed. A flow is considered “active” in the current epoch when all indices
point to register areas containing values equal to the current epoch. Else, the flow is
considered as newly observed within this epoch and the register contents for these
indices are set to the value of the current epoch. Additionally, when a new flow is
observed, counters pertaining to total flows and per subnet flows are incremented.
Based on these counters, conditions pertaining to inequalities (1), (2) of section 4.3 are
evaluated. In case a threshold is violated, the equivalent flag is stored in distinct packet

metadata headers.

Step 5 performs packet symmetry analysis employing incoming and outgoing packet
counters from/to a monitored network. We maintain separate per-subnet packet counters
for TCP and UDRP traffic, as well as historical normal packet symmetry ratios for both

protocols. These are used to evaluate the CR(” against the NR® as depicted in
67

inequality (3). In case this fraction exceeds the threshold r, a flag is raised similarly to
the ones for threshold violations (1), (2).

The final Step 6 of our pipeline checks packets for metadata headers corresponding to
identified anomalies. In case all metadata headers are set to “True”, an appropriate
alarm is generated pinpointing the network under attack and the current epoch. These
alarms were implemented as P4 packet digests that enable the communication between
the data plane and external systems; in our case appropriate mitigation mechanisms able

to enforce countermeasures.

Note that, P4 is a programming language with specific restrictions, e.g. no support for
floating point arithmetic or division operations. We needed to adapt to P4 limitations

using various workarounds since our approach uses real values e.g. the smoothing

coefficient a in EWMA, EWMD values and divisions, e.g. CRS)/NR(”, for its

calculations.

The former are approached by multiplying all elements of an equation with a power of 2
and subsequently dividing them by the same factor. The latter, are conducted via
appropriate bitwise shifting operations. We present an example for the EWMA
equation; specifically, for the smoothing coefficient a, we selected the value of 1/256 (~
0.004):

1 1
M,=—"'TIE, +(1-——)-M,_
"7 256 "+< 256) n-1 <

M, = (TIE, + 255-M,,_,) » 8
where eight bits right shifting corresponds to division by a factor 2% = 256. We satisfied
requirements for division via a plain comparison between two numbers. Note that, we
are not interested in the quotient of a fraction but whether it is greater or lower than

another value. For example, the threshold evaluation in inequality (3) was implemented

as:

CRY >r.NRO®

68

4.5 Evaluation

4.5.1 Experimental Setup

In order to validate our DDoS detection framework, we implemented the proposed
pipeline in P4 and evaluated it in the testbed illustrated in Figure 4.3. We used as a P4
target the 10G version of Netronome Agilio CX SmartNIC [26]. Programs were
developed and compiled via the Netronome Programmer Studio and ultimately loaded
to the NIC. Additionally, we used two VMs operating as the Sender and the Receiver,
equipped with 10G Intel-based NICs, able to generate and count packets in high packet
rates. The evaluation process and related results focus on the detection accuracy and

packet processing performance of our DDoS detection schema.

Compile/Deploy P4
programs to Targets

Programmer & g

Studio

Bare
Metal

i Servers VMs
(NIC Passthrough)

@ Intel NICs - SFP+ 10GbE
Netronome NICs

Figure 4.3 P4 testbed equipped with 10G SmartNICs

4.5.2 DDoS Detection Accuracy Assessment

In order to create realistic conditions for our experiments, we used publicly available
network traces both for benign and malicious traffic. The benign traffic is based on
traces available from the WIDE backbone [108]; specifically traffic from a 10G transit
link between WIDE and DIX-IE, an experimental Internet Exchange (1X) in Tokyo. The
traces contain network traffic between 12:00 - 12:15 on 09/04/2019.

69

For malicious traffic traces we used the fourth dataset, B4, as reported in [109]. This
contains a DNS-based reflection attack generated by Booter services. Protected
subnetworks were identified based on an analysis of the benign dataset. We selected the
top 255 networks, assuming /24 prefixes, as ordered by the total number of packets

traversing each subnetwork.

The experimentation process considered 1 second epochs and was conducted as follows:
We injected the benign traffic and ignored alarms for the first 30 seconds, considering
them as a “learning” period for the moving averages. Between seconds 30 and 60 we
observed alarms for False Positives. At the 60th second, we launched the attack
targeting an IP address within one of the 255 subnets that we monitor. Attack traces
were injected between seconds 60 and 90. Packet digests were collected via the Run
Time API offered by Netronome and used to calculate the detection accuracy. Note that
each subnet is able to send a digest only once during a given epoch to avoid floods of
digests that DoS the control plane. The exact number may be appropriately tuned.

Accuracy in binary classification is defined as:

ACCURACY = TP+ TN 4
" TP+TN + FP +FN (4)

where TP, TN, FP and FN are defined for each subnet in any given 1s epoch:

o TP: Number of True Positives i.e. digests received for a subnet when the subnet

was the victim of an attack

o TN: Number of True Negatives with no digests generated in non-attack cases

e FP: Number of False Positives i.e. digests received for a subnet when the subnet
was not the victim of any attack

e FN: Number of False Negatives with no digests generated in attack cases.

The malicious traces were replayed at different rates to showcase the detection
capabilities of the proposed mechanism. These correspond to three different attack
scenarios: (i) an Underscaled attack, i.e. 10% of the reported Booter trace, (ii) the
Booter trace as was originally reported and (iii) an Overscaled attack, comprised of 5
times the volume of the reported Booter trace. For all scenarios the benign traffic was
injected as it was originally captured.

In the charts of Figure 4.4 we depict accuracy of our framework, evaluated using (4),
according to the following values « = 0.004, k = 3, f = 0.15 and r = 2, for two cases:

70

o Two-feature case (F2) that combines conditions (1), (2) corresponding to Flow
Analysis features
o Three-feature case (F3) that also incorporates the Packet Symmetry feature

based on condition (3)

For the Underscaled attack scenario, F2 performs slightly better than the F3. The former
is more sensitive and thus able to identify attacks that generate small fluctuations on the
number of flows. The latter due to the added traffic symmetry feature does not identify

the attack in every epoch resulting in a greater number of FNs.

DDoS Detection Accuracy
100.00%

95.00%
90.00%

85.00%

Accuracy (%)

80.00%

75.00%
Underscaled Attack B4 Booter Trace Overscaled Attack

F2 F3
Figure 4.4 DDoS Detection Accuracy for different detection approaches and varying volumes
For the original Booter trace scenario, both approaches detect the victim, with F3
achieving higher detection accuracy as it has a reduced amount of FPs in comparison to
F2. Finally, for the Overscaled Attack scenario FNs are eliminated due to the vast
volume of the attack, achieving accuracy close to 100%. In general, using either two or
three features (F2 or F3) we successfully detect ongoing attacks and identify the victim

subnetwork within a single epoch.
4.5.3 Packet Processing Performance Capabilities

Additional stress tests were conducted to evaluate the processing capabilities of the
Netronome cards. To that end, we synthesized traffic in various packet rates to (i) assess
the performance capabilities of our pipeline and (ii) measure its impact on forwarding
throughput. We use the same testbed setup but employ pf-send and pf-receive utilities of

the PF_RING framework [53] on the sender and the receiver respectively.

In our experiments we considered the following use cases:

71

« Plain forwarding case whereby the target performs only switching (SW)

e One-feature case (F1) that incorporates anomaly identification based on Total
Flow evaluation using condition (1) only

o Two-feature case (F2) that combines both Flow Analysis features based on
conditions (1), (2)

e Three-feature case (F3) that also incorporates the Packet Symmetry feature

based on condition (3)

Note that, the synthesized traffic we used does not bypass our DDoS detection pipeline,

thus stressing to the limit the capabilities of the SmartNIC.

Forwarding Capacity

100.00%
90.00%
80.00%
70.00%
60.00% : i\lN
50.00% e
40.00% F3
30.00%
20.00%

01 05 1 2 5

Mpps

Forwarded Packets (%)

Figure 4.5 SmartNIC Forwarding Capacity
Figure 4.5 depicts the forwarding capacity of Netronome cards for various packet rates

ranging from 0.1 to 5 Million packets per second (Mpps). The forwarding capacity is
calculated as the fraction of traffic that successfully traverses the card.

Traffic rates of 0.1, 0.5, 1 and 2 Mpps show no performance degradation for all four
cases. A higher traffic rate of 5 Mpps exhibits considerable degradation of the
Netronome SmartNIC for adding the DDoS detection pipeline in cases F1, F2 and F3.
These amounts to degradation between 35% to 45%. However, our detection pipeline is
relevant in many enterprise and/or carrier networks since 10G links usually correspond

to packet rates ranging between 1-2 Mpps [151].

72

The proposed DDoS detection schema heavily depends on accurate packet
measurements through SmartNICs. To assess the impact of adding the DDoS detection
pipeline, we further investigated the packet counting measurements available in the data
plane via P4 registers. These were observed for all cases (SW, F1, F2 and F3) and

attainable packet rates (from 0.1 to 5 Mpps), as depicted in Figure 4.6.

Measurement Capacity
100.00%

90.00%
80.00%
70.00%
60.00% : i\lN
50.00% -
40.00% F3
30.00% I
20.00% i

01 05 1 2 5

Mpps

Measured Packets (%)

Figure 4.6 SmartNIC Measurement Capacity
For all cases even moderate packet rates of 0.5 Mpps start to exhibit degradation of
measurement capabilities even in the simplistic “SW” scenario. Our DDoS pipeline
successfully detects attacks with high accuracy despite measurement limitations of the
SmartNICs. As also illustrated in Figure 4.5 packet forwarding is not degraded for rates

up to 2 Mpps, a typical value for a fully utilized 10G link.

These measurement limitations are present only in P4 registers. We attribute this
problem to simultaneous accesses of the memory areas used for packet counting. We
have performed additional experiments using P4 counters and observed significant
improvement. However, as mentioned in section 4.4, counters are only accessible from

external controllers and thus of limited use for our efforts.

73

5 Placement and Automated Distribution of Access Control
Rules to Heterogeneous environments

Sections 3 and 4 emphasized on collecting monitoring data for traffic analysis and
anomaly detection. This section moves to the topic of attack mitigation, focusing on
techniques to appropriately assign and subsequently deploy filtering rules via a unified
abstraction layer.

5.1 Problem Statement

Modern DDoS attacks consist of multiple attack vectors, presenting a big challenge to
network operators since traditional mitigation mechanisms struggle against such diverse
and dynamic attacks. Important considerations for commercial DDoS solutions are:
CAPEX/OPEX (procurement costs, licenses, support contracts), limited interoperability,
privacy concerns and increased latency especially for cloud-based scrubbing. An
analysis of various mitigation techniques for network anomalies is presented in section
2.6.2.

In this section, we propose an on-premise, distributed and non-proprietary mitigation
schema. Our approach offers flexibility and cost-effectiveness by distributing access
control rules over an existing enterprise network topology, consisting of diverse
network nodes and operating at various protocol layers. Our framework leverages on the
SDN paradigm that disassociates control-plane functionality from data-plane
forwarding. Anomaly mitigation policies are implemented as separate northbound
applications and employ diverse control/management plane mechanisms to
communicate with the network substrate. Our motive is to enable network operators to
appropriately mitigate network anomalies by enforcing custom security policies tailored
to specific enterprise networks, while adhering to performance objectives and device-

specific constraints.
5.2 Background and Related Work

A closely related approach is the Bohatei framework [152] that provides an elastic,
NFV-based platform offering DDoS Mitigation-as-a-Service in ISP environments.
Incoming traffic is inspected and according to the type and the scale of the attack,
Bohatei determines and deploys appropriate mitigation resources (i.e. VMs). While not

74

excluding virtualized middleboxes, we consider a more generalized approach that
appropriately allocates generic mitigation rules to appropriate layers of an enterprise

network for simultaneous attack vectors.

VNGuard [153] defines a high-level firewall policy for virtual networks configured
within a cloud environment. Firewall instances are created and appropriate rules are
placed within them based on an integer program formulation. Their objective is to
minimize the number of virtual firewalls to be provisioned while respecting constraints
on the number of rules, as specified by the cloud provider. Our work stems from a
different perspective, notably the rule placement in existing attack mitigation resources
(e.g. firewall instances) tailored to specific attack types based on capacity constraints

and reward values guided by operator policies.

In [154] the VGuard DDoS mitigation mechanism is introduced. Traffic is classified
according to the likelihood of malicious nature. Malignant flows are blocked, benign
flows are routed to their destination as high priority traffic and suspicious flows are
routed via low priority links. Another approach, CoFence [118], enables reciprocal
sharing of compute and network resources to handle large volume DDoS attacks. Note
that all approaches described above, heavily rely on a virtualized infrastructure to
redirect and filter traffic. Related customized solutions for attack mitigation are further
discussed in section 7. In this section we consider an agile mitigation schema for multi-

vector attacks that blocks attack traffic at various stages of an enterprise network.

Cloudflare uses a similar system, Gatebot [155], that distributes mitigation rules across
its PoPs around the world. While limited information is available on Gatebot’s internal
specifics (e.g. anomaly detection algorithms) the XDP [4] is used as mitigation
mechanism to perform advanced filtering of malicious traffic on commodity edge
servers. Our approach is based on an integrated SDN framework to interface with
distributed mitigation capable resources (either physical or virtual) via
diverse/heterogeneous southbound protocols (not only OpenFlow).

5.3 Architectural Overview: Principles and Components

A high-level overview of the proposed framework, labeled “Orchestrator of Distributed
Rule Placement” (ODRP) is depicted in Figure 5.1: Environment capabilities and
constraints together with security events generated by anomaly detection mechanisms,

75

e.g. Intrusion Detection System (IDS) are periodically collected by a Pre-processor
(PP) component. This component correlates network security policies modeled as
Event-Condition-Action (ECA) with security incidents, to formulate an optimization
problem for distributing anomaly mitigation actions. In turn, this problem is assigned to
the Mitigation Resolver (MR), a component tasked with computing a solution, i.e. an
assignment of generic mitigation rules to network devices. These are converted to
device-specific Access Control Rules (ACRs) and conveyed to the network
infrastructure by the Rule Handler (RH) component through a range of supported

southbound protocols.

Orchestrator of

IS sy
I Distributed Rule Placement
g _&,_, ____________________ |
~ | ! |
Security : b
f : : Pre- —y‘ Mitigation Rule '
Policies) ‘ ‘ . ,
(ke | processor == Resolver Handler |
(&) .
| ‘ [|

Network Environment
Capabilities &
Constraints

Access Control
Rules

Hpe= S = — — —
' Security Network ’ -
' " 74 31 -

E ; s Devices | Devices | E
i o I e R T D S e e R B S S SE ESSLnd 1

Network Intrastracture

Figure 5.1 Operational Lifecycle of Orchestrator of Distributed Rule Placement - ODRP
Our proposed framework embodies the following principles:

e High-level abstraction of Access Control Rules (ACRs): For typical
heterogeneous multi-vendor environments, we create an abstraction layer for
high-level mitigation actions (primitives). Our framework maps these generic
actions to device-specific ACRs through standardized operations and protocols
(e.g. Blackhole Routing, BGP Flowspec) or vendor-specific implementations.
Thus, network operators may leverage on the capabilities offered by the existing
infrastructure to mitigate network anomalies in a uniform manner.

e Orchestration of mitigation resources driven by optimization considerations:
Our proposed approach assigns generic mitigation rules to relevant network
devices in various hierarchical layers. This was abstracted as a Generalized

76

Assignment Problem (GAP) [156], whereby the process of assigning mitigation
actions to network devices yields specific rewards. Reward values can be based
on: (i) firewall capabilities of a specific network environment, (ii) policies for
different network anomalies/attacks and (iii) the actual network attack
characteristics. Based on the computed solution for the described GAP, attack
traffic is blocked across the attack path at the most appropriate stage given a
network architecture model (e.g. hierarchical). Note that in terms of the GAP
complexity, there is a trade-off between input size (e.g. size of attackers) and
solution time.

Adaptive mitigation of multi-vector network attacks: Enterprise network
infrastructures are commonly structured in architectural hierarchies essentially
defining distinct defense stages (i.e. core routers/switches, distribution switches,
access switches and hosts). Modern sophisticated attacks consist of multiple
attack vectors (volumetric, protocol-based, application-based) typically targeting
specific network/host resources. Our approach implements an automated
network workflow (Figure 5.1) whereby security incidents trigger mitigation

actions assigned to various stages across the attack path.

The 3 main components of ODRP are presented briefly below:

Pre-processor (PP): The purpose of this component is to properly formulate the
GAP for a multi-vector attack tailored to a specific network environment. The
Pre-processor component considers: (i) security events exported from an IDS,
(i) network security policies and (iii) environment-specific mitigation
capabilities and constraints. Based on these, an appropriate input for GAP is
structured and assigned to the Mitigation Resolver.

Mitigation Resolver (MR): This component (i) receives data to be fed as input to
the GAP from the PP, (ii) attempts to reduce the input size of the algorithm to
account for scalability issues, (iii) computes a solution for the GAP through a
modular framework and (iv) exports the solution to the Rule Handler. The
computed solution describes the generic mitigation rules to be distributed across
the network elements.

Rule Handler (RH): This component is responsible for: (i) mapping the abstract
mitigation rules to substrate-specific ACRs and (ii) distributing them to the

network elements. An abstract mitigation rule may be defined as a typical

77

firewall rule with the following 6-tuple: (source_ip, destination_ip, source_port,
destination_port, protocol, action). Different variations may exist due to device
limitations; these variations contain at least the malicious source that should be
blocked. Subsequently, the abstract mitigation rule is mapped to device-specific
ACR employing common mitigation techniques (see section 2.6.2). The RH may
employ both multi-protocol SDN controllers and automation frameworks to
manage heterogeneous devices via a wide variety of supported southbound
protocols (e.g. OpenFlow, BGP, NETCONF, SSH, APIs).

5.4 Detailed Architecture

In this section we elaborate upon implementation details pertaining to the architectural
components and related sub-modules of the ODRP. An indicative setup for our
proposed architecture is depicted in Figure 5.2 consisting of the components described
in subsections 5.4.1, 5.4.2, and 5.4.3.

Pre-processor Mitigation Resolver Rule Handler

Device-specific

WL
"--aA»" { / Policy
BGP
SNMP Openflow SSH Openflow N
Proof of Conceprt Setup SSH
'-.---.--- --—-_—--- .--...-.--..-....--..---...---.---...--~~
' P 6
' £ Brre)°
¢ 1
] Senvice M
¢ o e T e
. . .
: \ @ —
M P X R %~ End-Hos (Victim)
(] ~C: \ b 9 1 . ,_»R ‘ L
' B e e 1G b S ;—K-bp;—]_ T 1 0OMbps~ AN :
: Trffic ~_ \l L ;‘.’ l [perf Service '
Edge Router (MX80) Switch (Open vSwitch) e 4

L L L L L L L L L L T T

Figure 5.2 ODRP: Detailed Architecture

5.4.1 Pre-processor (PP)

This component consists of four modules: the Security Events Collector, the Reward

Evaluator, the GAP Composer and the Capacity Collector. These correlate security

78

events, management policies and network environment details to formulate the input of
the GAP algorithm.

Security Events Collector: This module extends the event handling capabilities offered
by Ryu. It receives alerts generated by an external IDS e.g. Suricata [96] and processes
them to extract relevant information pertaining to a network anomaly. Specifically, the
Security Events Collector identifies the exact type of the network anomaly and the
network attributes required to create a mitigation action (e.g. source IP of the attacker).
During a given time window (e.g. every 30 seconds), it generates structured data
pertaining to observed alerts aggregated by the attack type and containing all assumed
malicious source IPs. Finally, for scalability reasons, such information is conveyed

periodically (every time window) to the Reward Evaluator module.

Reward Evaluator: This module receives the information from the Security Events
Collector and in combination with operator-defined policies, maps anomaly types to a
specific defense stage among Core, Distribution, Access and Host. We provide below a
simplified model based on Event-Condition-Action (ECA) policies that enables network

operators to express mitigation policy statements.

ECA Syntax of high-level security policy
Event = {Network Anomaly Alert}
Condition = {Attack type}
Attack type = {Volumetric | Protocol | Application}
Action = {Block Core | Block Distribution | Block Access | Block Host}

The security policy above associates anomaly alerts triggered by the IDS with a generic
mitigation rule conditioned to the attack type. This action selects the stage at which the
specific type of attack should be mitigated as defined by the network operator. The
mitigation action specified by the security policy is used to generate a reward array for

each type of anomaly.

In order to appropriately mitigate multi-vector attacks the Reward Evaluator formulates
a reward array based on the desired defense stage for each attack vector. For volumetric
attacks, it is reasonable to select the most upstream core stage, whereas application layer
attacks may be blocked at the downstream access or host stages. Interim cases such as
protocol attacks may be handled in transit stages. The Reward Evaluator assigns the
highest reward to the selected defense stage, while lower values are assigned to the

remaining defense stages that may be activated in case the selected stage cannot

79

accommodate all required generic mitigation rules. In case the selected defense stage is
the transit distribution stage, we assign the highest value to this stage, a lower interim
value to the upstream core stage and the lowest to the downstream access stage. This
way, links of the access network, generally of smaller bandwidth than the upstream
links, are better protected. Note that, exact reward values are not important, just their

relative order.

Capacity Collector: The Capacity Collector module obtains the number of currently
installed ACRs from routers, switches and end-hosts via SNMP, OpenFlow and SSH
respectively, defining a residual capacity vector. The maximum capacities may be tuned
based on device specifications and operational experience related to performance

degradation per specific network device.

GAP Composer: This module receives the reward array along with generic mitigation
rules, generated per attack type, for all malicious IP sources observed during the
previous time window. In addition, the residual capacity vector is received from the
Capacity Collector. It subsequently exports to the Generic Rule Validator (i) generic
mitigation rules per attack type, (ii) the reward array and (iii) residual capacities of

network devices.
5.4.2 Mitigation Resolver (MR)

MR receives the generic mitigation rules, computes a solution to the problem formulated
as a Generalized Assignment Problem (GAP) and exports to the Rule Handler. It

consists of two modules: (i) the Generic Rule Validator and (ii) the GAP Solver.

Generic Rule Validator: This module compares candidate generic mitigations rules
with the ones previously computed and maintained within the module. These are filtered

to isolate new malicious source IPs identified during the previous time window.

GAP Solver: The Generalized Assignment Problem assumes n items to be assigned to
m bins. Assignment of item j to bin i yields a reward rj; and carries a weight of w;;. A
feasible solution is an assignment in which for each bin i the total weight of assigned
items is at most ¢; (the capacity of bin i). The goal is to assign each item to exactly one
bin in order to maximize the sum of rewards. In our case, items are the generic
mitigation rules per malicious source IP and attack type, bins are the defense stages,

weights are assumed equal to 1, capacities are the available resources of each defense

80

stage and rewards are provided by the reward array. The problem can be formulated as
an integer program:

n

m
maximize Z Z riXi; (5)
1

i=1 j=

n
subject to ZWijxij <(C,i=1...,m (6)

j=1

m
le-jzl,jzl,...,n (7)

i=1

xj € {0,1},i=1,.. ,mandj=1,..,n (8)
As GAP is an NP-hard problem, in order to reduce its solution time, we decrease the
size of input to the integer programming algorithm. As an example, we may apply
various prefix aggregation techniques [157] on malicious IP sources. Additionally,
generic mitigation rules can be further organized into groups of equal size g, equal to
the minimum between all the residual capacities across the attack path. In case of an
attack requiring a small number of generic mitigation rules (equivalent to a small
number of malicious source IPs), the rules are treated as a single group. In the reduced
problem, the integer program formulation is transformed with items x;; corresponding to
assignments of groups j to stages i and n, the maximum value of j, divided by the group
size g. Weights w;j; are equal to the number of the rules they contain.

The reduced problem is solved via a branch price and cut [158] method implemented
on Dippy [159], a framework for advanced integer programming problems. The
computed solution consists of the assigned groups of access control rules to the defense
stages of the attack path and is conveyed to the RH component.

5.4.3 Rule Handler (RH)

The RH component may be implemented using various approaches. We precisely use
the Ryu SDN Controller that employs BGP, OpenFlow and Iptables (configured via
SSH) to conduct all experiments presented in section 5.5. We also demonstrate a
separate, more generic alternative in section 5.6, based on Salt and NAPALM that fits

neatly into modern heterogeneous environments.

81

The role of the RH is to: (i) translate the MR solution to device-specific filtering
capabilities, (i) withdraw ACRs that are considered obsolete e.g. no attack reported
from a specific source in two consecutive time windows (iii) avoid violation of the
existing traffic flows and (iv) maintain and disseminate access control rules for each
device. RH is configured appropriately to distribute mitigation via the available
southbound protocols on the specific network environment. It consists of the Device-

specific Rule Translator and the ACR Distributor modules.

Device-specific Rule Translator: This module maps groups of generic mitigation rules
to each network device along the attack path. Specific rules, actual device and
southbound protocol are conveyed to the ACR Distributor.

ACR Distributor: This module uploads device specific Access Control Rules (ACRS)
through a corresponding southbound protocol specified by each mitigation technique.
The proposed approach should override existing network management policies (e.g.
already deployed OpenFlow rules, routing preferences, end host firewalls). Indicatively:

e BGP: our ACRs should match a predefined route policy which sets a high local
preference, based on the IP address of the BGP-peer (i.e. the BGP speaker of Ryu)

or rely on more specific (/32) announcements.

e OpenFlow: we use the optional fields for flow identification: cookie, cookie-mask
and flow priority. Our ACRs (i.e. OpenFlow rules) are tagged with a specific cookie

identifier and a specified value for high priority.

e End-hosts: we consider Linux-based machines and utilize the iptables firewall. A
special-purpose chain labeled ODRP is used consisting of all the ACRs inserted by
our framework. Their distribution on the end hosts is performed on top of the SSH

protocol.
5.5 Evaluation

5.5.1 Experimental Setup

We implemented a proof-of-concept testbed deployed in our laboratory based on Ryu
Controller. Offered functionalities were implemented as distinct customized
applications modules. We incorporated in our testbed a Juniper MX80 router and an
OF-enabled OVS [49]. End-hosts were implemented as Linux Containers (LXC),

82

Virtual Machines and physical hosts. The Ryu Controller was customized to support
RTBH over BGP on the MX80 router. Additional southbound interfaces were enabled
on Ryu, notably OpenFlow for the OVS and SSH for Linux-based end-hosts.

The proof-of-concept testbed used to validate our proposed framework is illustrated in
Figure 5.2, depicting an enterprise network section with a router placed in the upstream
position, a switch as a transit device and Linux-based machines in the downstream end.
Connectivity between these devices were selected to relatively represent typical
hierarchical enterprise networks. Namely we assumed 1Gbps for upstream links and

100Mbps for the access network downstream.
5.5.2 Traffic Profiles for Anomaly Mitigation Experiments

The experimentation process considered the following types of traffic: (i) background
traffic (benign) generated by the iperf * traffic generator emulating a dedicated TCP
stream with bandwidth demand, (ii) benign HTTP requests via the wrk® benchmarking
tool and (iii) artificially generated attack traffic via the bonesi®and slowloris’. Our
artificially generated attack scenario was tuned by considering attack characteristics

inferred from the Booter traffic traces [109].

To better highlight the potential benefits of mitigating the attack in distinct defense
stages, we conducted an in-depth analysis of the B9 dataset, consisting of a high
bandwidth CHARGEN attack [109]. Specifically, considering the amount of total bytes
sent and total packets sent, we clustered the attack sources into 3 distinct groups via the

k-means classifier [160], as shown in Figure 5.3.

Note that clustering is commonly suggested to classify network traffic [161] into benign
and malicious traffic groups based on various network metrics such as quantity of bytes
sent/received. Specifically, in [13] clustering based on malicious source IP prefixes was

employed as a means to significantly reduce the number of flow entries.

From Figure 5.3 we considered the following mapping of attack types to groups:

4

https://iperf.fr/
% https://github.com/giltene/wrk2

® https://github.com/Markus-Go/bonesi
" https://github.com/gkbrk/slowloris

83

https://iperf.fr/
https://github.com/giltene/wrk2
https://github.com/Markus-Go/bonesi
https://github.com/gkbrk/slowloris

Volumetric attacks correspond to the green group exhibiting higher values of bytes
per second (bps) and packets per second (pps).

Protocol-based attacks correspond to the red group exhibiting interim values for bps

and pps.
Application layer attacks correspond to the black group, characterized by the lower

values for bps and pps.

Booter 9 DDoS Attack - IP Sources

[(2~24) -1
|]
| @
_><
| =
. '
. g Q
h | g
.". .-'““ 'g‘.ﬁ : e . '!: - ‘ c%;-
.’d‘ v"(, l' a “ E
5 " PSS N \;.E';'l. | D
‘ _ wn o
o e o _~10000
- 8000 %
0 < 6000 0¥
2, 6 4000 &°
Tota) 2000 0%
meg, —< 2000
Otes sene 10 12 Of\o\a\“

Figure 5.3 Malicious Source distribution (unique IPv4 /24 prefixes) clustered based on the total
megabytes/packet sent (B9 dataset)

In our experiments, malicious attack traffic was generated via the bonesi attack
simulator following the mapping above from 3,779 malicious IP sources. In particular,
for application layer attacks we assumed malicious HTTP requests that reserve
application level resources; this was emulated via the Slowloris attack tool from
additional 1,500 different unique IP addresses. The resulting attack mix was combined
to emulate a multi-vector attack scenario, in which the total amount of unique IP
sources was 5,279 and the attack rate was 350 Mbps. Note that we downscaled the

attack rate to this value due to the link size limitations and traffic generation constraints
of our testbed.
Benign traffic was generated as 200 HTTP requests/sec to an Apache Web Server and a

continuous 50 Mbps TCP stream via the iperf tool.
84

5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms

Our experimental evaluation was conducted during 300 seconds per mitigation
mechanism. During the first 30 seconds only benign traffic was present in the network;
subsequently we launched the multi-vector attack targeting a victim host. We
considered that malicious sources are detected within the next 30 seconds interval.
Subsequently, mitigation countermeasures are instantiated (at the 60™ second) and

remain deployed for the duration of the experiment.

In order to evaluate our framework, we compared three different mitigation
mechanisms: (i) Single Firewall, (ii) Arbitrary Distribution of ACRs and (iii) ODRP -

Orchestrator of Distributed Rule Placement.

We considered that the Single Firewall mechanism is implemented with the OVS acting
as a security middlebox [13]. We assumed that a moderate cost switch, emulated by
OVS, can adequately support up to 4,000 flow entries.

For the distributed mitigation mechanisms (Arbitrary Distribution and ODRP), we
considered that all network devices across the attack path (see Figure 5.2) may be used
for the mitigation process. The device capacities are 2,000 routes for the router, 2,000
flow table entries for the OpenFlow-enabled switch and 1,500 rules for the iptables at
the end-host firewall. Thus, all 5,279 malicious IP sources of subsection 5.5.2 can be

blocked with an appropriate rule distribution.

The Arbitrary Distribution of ACRs, was modeled by rules assigned in a round robin
fashion while respecting the capacity constraints of our devices. Our proposed schema,
ODRP, translates operator policies into rule assignments to stages based on the attack
type. The ODRP preference is to block volumetric attacks on the router, protocol-based

attacks on the switch and application layer attacks on the end host.

In Figure 5.4 we illustrate the amount of attack traffic that is delivered to the victim
while employing different mitigation approaches. The generated attack traffic is
characterized by a bandwidth of 350 Mbps. However, only 94 Mbps actually reach the
victim since the access link capacity in our testbed is 100 Mbps. While using the Single
Firewall mitigation mechanism 62 Mbps of the attack traffic reaches the victim, since
the installed 4,000 mitigation rules do not block all 5,279 malicious IP sources. The
Round-Robin placement of rules performs slightly better, blocking all but 40 Mbps of

attack traffic. Although this mechanism distributes mitigation rules to block all
85

malicious sources, some were arbitrarily placed on the victim end-host. Thus, part of the
attack reached the victim’s access network. By contrast, ODRP distributes ACRs on the
most appropriate defense stage, with volumetric attacks blocked early in the attack path.

Hence, ODRP better protects the victim from malicious traffic.

Amount of attack traffic delivered to victim
350
300

ic (Mbps)
2 3

ff
T
o
S O

a1
o

--

Malicious tra

o

Time(s)
Attack traffic No mitigation ~ —Single Firewall

««-Round-Robin = -ODRP

Figure 5.4 Total Attack traffic delivered to the victim

In Figure 5.5 we depict the impact of the attack on a benign TCP stream by plotting its
throughput in various scenarios. The baseline stream value with no attack present is 50
Mbps. Unmitigated attacks result in TCP stream throughput dropping to almost 0 Mbps,
due to congestion caused by the attack. The Single Firewall mechanism is able to block
4,000 of the malicious sources, thus the TCP stream is stabilized at 18 Mbps (36% from
its baseline value). Placement of ACRs in an Arbitrary Round-Robin fashion improves
performance with rates varying from 30 to 33 Mbps, (60% and 66% respectively).
Finally, ODRP outperforms both previous mechanisms, since volumetric and protocol-
based interference is blocked early in the attack path, thus preserving the bandwidth of
the access link utilized by the TCP stream.

In Figure 5.6 we present an evaluation of the different mitigation mechanisms based on
the percentage of successful HTTP transactions to a Web service running on the victim.

Such a transaction was considered successful if completed within 1 second.

86

Impact of attack to the benign TCP stream

50
~40
[%2}
o
o)
=30
S
58]
£20
[92]
G
= 10

0

0 50 100 150 200 250 300
Time(s)
No Attack No mitigation ~ —Single Firewall
-++*Round-Robin = -ODRP

Figure 5.5 Benign traffic throughput (iperf)
Naturally with no attack injected, the percentage of successful HTTP transactions is
100%. Generated attacks had a two-fold impact: (i) HTTP Requests are dropped due to
congestion and (ii) active sessions are consumed by maliciously crafted packets of
Slowloris application-layer attack.

Impact of attack to benign HTTP transactions
100
90

80
70
60
50
40
30
20
10
0 — .

No attack No Single Round ODRP
mitigation Firewall Robin

Successful Transactions (%)

Figure 5.6 Attack Impact to benign HTTP transactions: Percentage of Successful HTTP
transactions

Thus, unmitigated attacks exhibit a very low percentage of successful transactions, close
to 1%. The amount of attackers blocked by the Single Firewall is not sufficient;
unblocked attackers still manage to consume valuable bandwidth and server resources.
The Round-Robin placement performs considerably better at 36% success. Finally,
ODRP significantly outperforms both mechanisms reaching to 80% success. Note that

in general, the effect of Slowloris-based attacks on the HTTP service persists even after

87

blocking all malicious sources. This occurs because sessions reserved under false
pretenses, stay open for a period of time even after a Slowloris attack is mitigated. Thus
legitimate transactions attempted in the meantime might still fail. This affects every
mechanism used in our experiment including our ODRP approach that could not exceed

the 80% successful transaction rate.
5.5.4 Complexity of Generalized Assignment Problem

The efficiency of our ODRP approach depends on solving GAP in a fraction of a
detection time window. As already mentioned, GAP is an NP-hard problem, thus it may
present scaling issues according to its input size. To address them, we have
implemented a customized solver whereby the generic mitigation rules (items) are split
into groups and assigned to 4 defense stages (bins). We are presenting below the
execution time of our solver considering indicative values for the number of generic

mitigation rules and possible groupings.

) Generic Mitigation Rules
Group Size
1000 5000 10000
1 0.5 2.74 5.72
10 0.09 0.25 0.56
50 0.008 0.05 0.1
100 0.004 0.03 0.05

Table 5.1 GAP Execution Time in seconds

The results in Table 5.1 above, demonstrate that the grouping technique we employed,
reduces the execution time of GAP solution in reasonable values within a 30 second
time window. Even the worst case scenario (10,000 generic mitigation rules in 10,000
groups) find a solution in 5.72 seconds. In a case that a large botnet is used to launch an
attack e.g. 100,000 malicious sources require 100,000 generic mitigation rules to block
the attack. With a group size of 10 items, the assignment problem would be solved in
approximately 6 seconds. Thus, our proposed ODRP approach is expected to solve GAP
in a fraction of a detection time window for attacks emanating from a large number of

unique malicious sources.
5.6 Automated Rule Distribution via Salt & NAPALM

In this subsection we discuss a close parallel effort that focuses on vendor-agnostic
network management for attack mitigation purposes. The alternative approach is based

88

on the Salt automation framework [14] to distribute ACRs in a streamlined, device-
agnostic manner. Salt may be considered as an even more generic, drop-in replacement
of the Ryu SDN controller. In a nutshell, Salt follows an event-based architecture where
minions (i.e. softwarized agents) communicate with the master to receive data (e.g.
ACRs) and tasks for execution (e.g. enforce a new state). Usually devices cannot host a
minion, thus specialized Proxy minions are employed that interface with network
elements via a southbound driver. To that end we utilize the NAPALM Python library

providing high-layer abstractions for device/vendor agnostic programmability.

Depicted in Figure 5.7 below, is the modified version of our testbed, managed by Salt
and NAPALM. Indicatively we consider 3 defense stages: (i) a Juniper MX80-48T
router, (ii) a Cisco 10S Catalyst 9300 multi-layer switch in L3 mode and (iii) a Linux
server hosting various services. During a detected DDoS attack, the mitigation process
deploys: (a) firewall terms for the MX80, (b) access control lists for the Catalyst 9300
and (c) iptables rules for the Linux server operating as the victim.

Network |
Environment —A ypoa0enn Salt ;

: (‘Iplb“lﬂt‘\ Ext. Darastore /ﬂ“a“f' I
|) ::._ i P (Pillar) t"‘* | SLS g
R Aaa i J Repal g (v) Signal |

&] £53
ot .
_"E > | ' o “7 L‘K‘ 8 on Event . P 9
2o s G Ty nm mm Py (i) Monisor e Eveat "’"""'""i" '
Intrusion e-Dro T O /\x“-ﬁ | MongoDi o 2 (Jonfa2) |

%o o " A S LU el A < 0s - .‘|/.’ '\
Detection bl > Resolver [©cr T e 5w
. = gy b
Svstem — " \\\/:',.\“ /| (v) Applv Nenvark Sraso I
l A S 3]/ 'l SIS+ Tempiates + MongoDR '
: ReRs li Sa ! |

Network ~ — — ST e e s
Environment -
Capabilities

Figure 5.7 Rule Handler implemented via an Automation/Orchestration Framework

After the MR component computes a feasible solution that meets device constraints and
operator preferences, it assigns ACRs to devices in different defense stages. As shown
in the figure, ACRs are inserted in a MongoDB, as distinct documents. A document
associates malicious sources with the device (network or host) on which ACRs should

be deployed. Furthermore, the MongoDB is also used by Salt as an external Pillar, i.e. a
89

data store that maintains minion specific data. Note that a device is directly mapped to a
distinct minion. A separate minion continuously monitors the MongoDB and upon
change triggers an appropriate event. This event is published in the Salt event bus and
received by the master. In turn, the master instructs minions to apply the desired state
(i.e. ACRs for each device) based on: (a) Pillar data i.e. malicious IPs, (b) Jinja2
templates that describe access control list, firewall terms, or iptables rules and (c) SLS

files defining the configuration rendering and distribution process.

Proxy minions hosted within a dedicated server use NAPALM to convey mitigation
policies to network substrate devices via southbound protocols, i.e. NETCONF, SSH. In
turn NAPALM employs the eznc library (NETCONF-based) for the MX device and the
netmiko library (SSH-based) for the Catalyst 9300 accordingly to deploy rendered
configuration commands. An indicative example for the rendering process is presented
in Table 5.2 below.

Jinja2 template Rendered ACL

ip access-list {{ filter_name }} ip access-list acl-malicious
{%- for prefix in prefixes %} deny ip host 1.2.3.4 any
deny ip host {{ prefix }} any deny ip host 5.6.7.8 any
{%- endfor %} deny ip host 9.10.11.12 any
permit ip any any permit ip any any

end end

pillar data

prefixes = [
“1.2.3.4”,
“5.6.7.8”,
“9.10.11.12”

]

Table 5.2 Rendering Jinja2 templates into ACLs

90

6 DDoS mitigation via network provider collaborations

In section 5, we proposed a mechanism that appropriately assigns mitigation actions to
existing on-premise devices based on operator preferences and device constraints.
Massive attacks may be comprised of a considerably large number of sources or
endanger important links. To that end, this section further extends the assignment of
mitigation actions to an Interdomain schema for the collaborative mitigation of massive
DDoS attacks.

6.1 Problem Statement

As a general observation, DDoS attacks are better pinpointed near the victim and more
efficiently mitigated closer to their sources. Moreover, the sheer volume of present-day
cyber threats may overwhelm an individual provider, thus the pressing need for
collaborative mitigation efforts. However, defense collaborations might be hindered by
operator concerns such as unwillingness to share victim-related information to preserve
sensitive client data, lack of incentives for cooperation and shortcomings of incident

handling mechanisms.

In this section, we propose an automated mechanism to orchestrate the collaborative
mitigation of distributed attacks. Our schema fits best to Network and Wholesale
Network Providers that share relevant and credible incident reports within a trusted
federation. Network providers serve client organizations in their domains via
interconnected Autonomous Systems (ASes). Our proposed solution enables a member
of the trust federation under attack, directly or as the upstream provider, to (i) receive
and process all available mitigation offerings pertaining to a particular attack scenario,
(i) identify the optimal sets of flows that should be mitigated based on costs and
historical records i.e. reputation scores, and (iii) announce these sets by issuing Smart

Contracts towards the appropriate mitigation collaborators.

The actual mitigation is undertaken by appropriately deployed filtering appliances
within each collaborating domain. Similarly to our efforts described in section 5, this
was modeled as a combinatorial optimization problem (Generalized Assignment
Problem - GAP) aiming at distributing defense resources in multi-domain attack paths.
We further introduce a reputation score that is calculated and maintained to evaluate the

behavior of the respective collaborator on past incidents, while updating its credentials

91

for future incident handling. We have also considered a verification mechanism, capable

of maintaining and exposing necessary monitoring information for dispute settlement.
6.2 Background and Related Work

An analysis of Collaborative Schemas is provided in section 2.6.3. Summarizing
notable mentions, [118] and [119] employ NFV and SDN techniques respectively. In
both architectures mentioned above, DDoS mitigation is based in a reciprocal, quid pro
quo schema. Approaches based on Distributed Ledger Technologies (DLTs) attempt to
dampen such arguments against collaboration by enhancing, automating and tokenizing
coordination efforts between collaborators [124]-[129].

Inspired by [119], [127], [128] we designed a modular collaborative, Blockchain-
powered platform for mitigating massive DDoS attacks. Similarly to related efforts on
collaborative DDoS defense [119] and [128], we adopted the Beta Reputation system
and appropriately modified it to weigh partner contributions in the mitigation process
(i.e. number of malicious sources blocked). Furthermore, other approaches [118], [119]
employ scores that characterize a domain’s past behavior to decide on how to allocate
mitigation resources, or whether to provide assistance. Alternatively, given specific
offerings from potential mitigators, we focus on enabling the victim to distribute
mitigation actions (i.e. sources to be blocked) to the most reliable (e.g. higher
reputation) AS/ASes. The distribution process is formulated as a cost optimization
problem that considers the reputation of potential mitigators and may also include
additional operational parameters and business policies.

Finally, disputed mitigation claims may be settled via a verification procedure relying
on network monitoring data as provided by the victim and mitigator ASes; other
mechanisms have been considered in [129] that require infrastructure access and
specialized equipment for verification purposes. Note that we considered a trusted
federated environment whereby collaborators follow agreed upon admission procedures
and adhere to standards as in MANRS [117], a global initiative amongst network

providers.

92

6.3 Overview and Baseline Design

6.3.1 Design Principles

A high-level overview of our schema is depicted in Figure 6.1. Malicious flows
(continuous lines) that collectively form a DDoS attack, originate from - or transit
through - interconnected federated ASes (dashed lines). Instances of the Collaborative
Incident Response Manager (CIRM), deployed in each AS, are responsible for
coordinating the mitigation of the malicious flows, and registering all interactions
within two distinct data stores based on Distributed Ledger Technology. The entire
process is orchestrated using data (logged messages, encrypted sensitive information)
stored in a federation-wide Distributed Data Store Service (DDSS). CIRM also takes
advantage of ad-hoc instances, realizing the respective Private Data Store Services
(PDSS), between sets of ASes. These are used to support the exchange of additional
(private and/or sensitive) information and to automatically settle the resulting
agreements. Malicious flows are accurately detected by the victim or the Network
Provider of the victim (AS1) via an independent detection mechanism (see sections 3, 4
and 2.4.3).

Response Manager (CIRM)
Distributed Data Store
Service (DDSS)

Private Data Store Service
(PDSS)

— — — AS-AS Interconnect
VICTIM

@ Collaborative Incident

Malicious Flows

Figure 6.1 High-level Overview of Collaborative DDoS Mitigation

Upon detecting a distributed attack, the victim AS (VAS henceforth) issues an SC for the
incident; this digital agreement includes among others (i) the adjacent neighboring
93

domains that forward attack traffic, (ii) a URL pointing to a document containing the
DDosS attack sources stored within a distributed file storage system (e.g. Inter-Planetary
File System — IPFS [162]) and (iii) the encrypted IP address(es) of the victim. ASes
update the agreement above to include their adjacent ASes located in the attack path.
Once the initial SC is issued, each AS located in the path of the attack is considered as a
possible mitigator AS (mAS henceforth) and may offer via relevant SCs to fully or
partially block malicious traffic. The VAS is then able to coordinate with the federated
ASes leveraging the various types of SCs available in DDSS and PDSS. The resulting
mitigation plan is obtained by feeding appropriate data to the cost optimization and
reputation algorithms implemented as applications on top of each CIRM. The different
types of SC implemented in our framework, as well as details on the related applications

are further documented in section 6.4.
The design principles of our federated schema are:

e Privacy-aware propagation of malicious network events and out-of-band
communication: Our schema enables a VAS to: (i) report a detected network
attack respecting the privacy of sensitive information, and (ii) propagate the
report to ASes along the attack path. We consider that ASes under attack
potentially face adverse network conditions (e.g. link saturation), severely
impairing communication. To that end, participants may employ some sort of

dedicated secure channels for collaboration.

e Collaborative mitigation of security incidents: Federated partners are able to
collaboratively deploy appropriate mitigation mechanisms. Our decentralized
approach tends to push filtering rules near attack sources thus alleviating the
victim domain from the total burden of a highly distributed attack. This schema
refines commonly used blackholing techniques that may lead to blind service

disruption.

e Reputation-based Federation: Our proof of concept implementation reflects a
federated multi-domain network environment whereby partners are rated by
reputation scores for past incident handling. The reputation score depicts the
quality of the mitigation service provided, i.e. the capability of a collaborator to

consistently block malicious flows.

94

e Accountability and Consensus: Collaboration schemas need to account for
scenarios whereby partners may have diverging incident handling priorities or
unintentionally report inaccurate information. As such, federation members
should be able to: (i) log transactions, (ii) verify logged transactions, (iii)
enforce Service Level Agreements (SLAs) and (iv) settle disputes via

appropriate verification mechanisms.

Our vision is that such capabilities will introduce business workflows with potential
financial benefits (rewards), thus incentivizing members of the federation to deliver

high quality mitigation services.
6.3.2 Architectural Components

Figure 6.2 presents an overview of our proposed framework, as well as the interactions
between the main components, namely (i) the CIRM and related applications built on
top, (ii) the distributed ledgers realizing the Data Store Services (i.e. DDSS and PDSS),
and (iii) the Attack Mitigation Appliance.

——p Lock state or submit o » Signaling to @« = . = lramsactions ona
state changes trigger mtigation blockchain

Figure 6.2 Collaborative Framework for DDoS Mitigation and Component Interactions

95

6.3.2.1 Collaborative Incident Response Manager

CIRM components are responsible for coordinating the mitigation effort within the
federation. A CIRM is initially triggered by alerts, generated by DDoS detection
schemas e.g. [96]. Our approach assumes that incident alert messages contain the
following information: (i) a set of network flows related to the incident extracted via
various mechanisms (e.g. sFlow/NetFlow) and (ii) the initial incident timestamp. CIRM
then creates an Attack Information Document (AID) containing the incident flows, as
well as its hashed digest (e.g. SHA-256) to be used for AID integrity check. This is
stored off-chain, in a distributed file storage system (IPFS) accessible by all federation

members.

The CIRM design is modular, consisting of two core elements, namely the Blockchain
Communication Module (BCM) and the Mitigation Triggering Module (MTM).
Specifically, BCM is used to register and perform transactions to the DDSS and the
relevant PDSS instances in order to receive, acknowledge, or forward mitigation
requests (as well as the related information) to other ASes. The communication between
CIRM and the Distributed Data Stores is facilitated by deploying or updating instances
of the various types of SCs we have implemented, as described in section 6.4. MTM is
responsible for the communication with mitigation appliances upon the conclusion of
transactions in DDSS and PDSS blockchain networks, triggered by a particular incident.
In our implementation, MTM conveys malicious sources to an XDP-based mitigation

appliance that implements the actual mitigation process.

Apart from the above core modules, the proposed framework relies on the following set
of support applications, built on top of CIRM, that enable vAS to select the appropriate
collaborators within the federated network and orchestrate the mitigation:

e Reputation Score Calculation: The cooperation track record of each AS in the
federation is evaluated using SC attributes related to DDSS and PDSS past
transactions. These are supplemented with monitoring metrics (e.g. verified

blocked flows per incident) and dispute resolution results.

e Mitigation Action Placement - Cost Optimization: vASes are able to retrieve and
evaluate offers posted in the PDSS for the mitigation of malicious sources

related to a specific incident. The evaluation of offers is formulated as a

96

Generalized Assignment Problem based on the flows to be dropped and the
respective reputation scores of potential collaborators (mAS).

e Mitigation Verification: This application facilitates business-oriented
verification i.e. verify that the appropriate flows were actually blocked in our
specific use-case, indicating whether the victim should consider the respective
SC as fulfilled and consequently close it.

e Interface to Distributed File Storage: Large blocks of information are stored and
retrieved from an external distributed file storage (e.g. IPFS) interworking with
blockchain-based architectures to separately store files such as AIDs which may
include hundreds or thousands of malicious sources. The CIRM application

facilitates the communication with the distributed file storage system.

6.3.2.2 Data Store Service

Our architecture requires a form of distributed transactional data store available to all
participants, accompanied by a consensus mechanism. As mentioned, the platform is
not open to the public internet but only to approved members of the federation. Thus,
there is no specific need to use complicated or computationally intensive consensus
mechanisms (e.g. Proof-of-Work). We adopted a permissioned blockchain in which
predefined miners (i.e. federated participants) are authenticated and authorized within
the blockchain infrastructure. To that end, our implementation is based on a blockchain-
based federation [163] using the Proof-of-Authority (PoA) [164] consensus mechanism,
to fulfill the requirements mentioned above. Another objective is to preserve the
victim’s privacy (e.g. IP address) even within a trusted federation, while enabling on-
demand reward and settlement of verified transactions. This is achieved via dedicated
ad-hoc communication channels between collaborating ASes, forming private
blockchain networks i.e. Sidechains [165]. Such Sidechains enable exchanging and
updating of information related with an SC stored on the public blockchain network
(Mainchain henceforth). Note that in our architecture, Mainchain realizes the DDSS
component, while each Sidechain is a PDSS instance between two collaborating ASes.
Recall that, both types of blockchain networks use dedicated out-of-band connections.

6.3.2.3 Attack Mitigation Appliance

The Attack Mitigation Appliance (AMA) represents an important component of the

proposed architecture, responsible for the actual mitigation of malicious traffic. While
97

any mitigation appliance could be an appropriate candidate, we implemented and
deployed a flexible fine-grained and high performance mitigation mechanism based on
XDP. Triggered by the MTM, this component is deployed and drops all IP sources
described by MTM as malicious.

6.4 Proposed Architecture: Implementation Details

6.4.1 Blockchain-based Smart Contracts

The proposed approach leverages both public and private distributed ledger instances
(i.e. Mainchain and Sidechains) as transactional distributed data stores. For our
implementation we selected Ethereum [166] as the underlying platform of our
distributed application, mostly due to the sizable resources and community surrounding
the project. However, the proposed framework is not conceptually intertwined with a

particular DLT.

Upon initialization, all federation members have a unique Ethereum address and a
private key, authenticating them against their Ethereum account. Their public Ethereum
address is explicitly configured within the Genesis block of the network (i.e. a JSON
file containing static configuration parameters related to the network). Regarding the
Mainchain, all federation members assume the role of a Sealer i.e. they can validate any
network-generated block. Notably, in a Proof-of-Authority (PoA) deployment such as
the one described for Mainchain, only accounts specified on the Genesis block as
Sealers, are eligible for block verification. The Ethereum architecture also utilizes the
Bootnode, that assists the respective BCM nodes of each member in discovering the
DDSS network. Thus, each BCM can connect to the DDSS as an authorized member of
the network. The PDSS is deployed following the same principles as the DDSS, with
the only difference being that each PDSS is a PoOA network between only two ASes, and
only these two are configured as Sealers.

The business logic in both DDSS and PDSS networks is introduced via different
archetypes of Smart Contracts (SCs) developed in Solidity Programming Language.
Once an SC is deployed to the appropriate POA network via the BCM, a unique address
(hexadecimal number) is assigned to it. In order to interact with an SC, Ethereum
defines an Application Binary Interface (ABI), as the data encoding scheme. Thus, SC
data are encoded according to their type, based on the information described in the

98

respective ABI. The ABI specification is shared among all federation participants upon
initialization of a blockchain network, since, without this information the BCM modules

would not be able to decode and interact with any deployed SCs.

We implemented four types of SCs: (i) SC® is issued (owned) by the victim AS and
contains basic information about the incident; (ii) SC® is used to recursively notify
potential mitigators; (iii) SC is issued by transit ASes, offering to block malicious
flows; (iv) SC® is issued by the victim AS to finalize collaborative mitigation
assignments. All four SCs are used to orchestrate collective actions across an incident

attack path.

In Table 6.1 we present specific attributes of the aforementioned SC types. Specifically,
the current status attribute may be modified by the vAS and/or mAS as denoted in the
table. In the last column, we indicate the specific component of the Data Store Services
(DDSS or PDSS) that each SC type should be deployed on.

SC Type Attributes Short Description Deployed

Owner Public Ethereum Address
Current Status - Modification Rights
e Seek Assistance - VAS
e Attack Graph Update - VAS, mAS

Status e Bidding closed - VAS
e Under Mitigation - vVAS
e Under Verification - VAS
o Fulfilled - VAS

sc® e Not Fulfilled - vAS DDSS
vIP Encrypted Victim IP Address
Graph Attack Graph
IPFS URL to retrieve Attack Information
AID_URL
Document (AID)
AID_Digest AID Hashed Digest
SCA_Address Address of relevant SC*®
Owner Public Ethereum Address PDSS
SC(B)

Current Status - Modification Rights

Status e Sent-VAS
e Acknowledged - mAS

99

M_Address

DDSS Address of a potential Mitigator

D_KEY

Decryption key

SCA_Address

Address of relevant SC®

Owner Public Ethereum Address
Current Status - Modification Rights
Status e New bid - mAS
sc© e Approved - VAS PDSS
e Rejected - VAS
IPFS URL for the list of Source IP addresses
SIP_URL
to block
Reward Requested Reward for Mitigation
SCA_Address Address of relevant SC*®
Owner Public Ethereum Address
Current Status - Modification Rights
sc® Status e Offer - VAS DDSS
e Fulfilled - mAS
e Verified- VAS
M_Address DDSS Address of a potential Mitigator
Reward Reward for Mitigation

6.4.2 Orchestration Workflow

The steps described in this subsection constitute a recursive process between adjacent
ASes within a federation-wide attack graph. This includes: (i) the notification

mechanism of all ASes in the graph, and (ii) the propagation mechanism of decryption

keys.

The Collaborative Incident Response Manager (CIRM) instance advertises the
necessary information (e.g. malicious flows within AID, hiding privacy sensitive victim
identification) to DDSS via an SC™. Subsequently, the CIRM deploys SC® instances
on the PDSS of each adjacent AS found in the path of the attack; these include the
decryption key for the victim IP. Initially the decryption key is sent by the victim to

adjacent nodes and then it is recursively propagated to all potential mitigators (i.e.

Table 6.1 Types of Smart Contracts

100

adjacent ASes that forward attack traffic). Each SC® is fulfilled upon
acknowledgement by the adjacent AS.

As mentioned, federated members additionally maintain secure out-of-band
communication channels to exchange signaling messages. Optionally, we could also
employ asymmetric encryption (e.g. PKI, GPG) to encrypt and distribute the decryption
key. Note that, the decryption key itself is kept secure within the infrastructure of a
federated domain, using well-known and accepted security practices (e.g. hardened

systems, firewalls, physical/logical access control and auditing).

ASes in the attack path should update the disclosed attack graph within SC*, to include
their relevant neighbors that forward malicious traffic. The attack graph is represented
and stored as an array of linked lists. Each array record represents a given AS of the
federation, while each list represents a valid branch of the attack graph. In addition to
SC® related communication, each AS may retrieve blockchain-verified SC® instances
via their respective BCM. Thus, by inspecting the attack graph an AS may decide on

their role in forwarding ongoing attacks (i.e. whether they belong to the attack path).

ASes on the attack path may offer to assist (placing a bid) the vAS in the mitigation of
the attack by deploying an SC©. This SC maintains an attribute pointing to a list of
source IP addresses that can be blocked by the bidding AS. The list of source IP
addresses that can be blocked by the mAS, is also stored in the IPFS [162]. All SC©
instances are stored within the PDSS; they may be retrieved by the CIRM and conveyed
to the Mitigation Action Placement application to select appropriate bids.

The original SC® owner will create SC® contracts in the DDSS for all the approved
SC© bids. Upon the creation of the relevant SC®, each mAS should start the mitigation
process and update the status attribute of the SC® to “Fulfilled”. All Fulfilled SC®s
should then be verified by the owner of SC®™ in order to complete the transaction
allowing bidders to claim the agreed reward. Finally, once all the SC®)s of the initial
SC™ have been verified, the SC® is fulfilled and updated accordingly in the DDSS.

6.4.3 Reputation Schema for Collaborating Entities

Each AS is characterized by a reputation score, representing the quality of mitigation
service provided to members of the federation in past incidents. The proposed

reputation schema is based on the Beta(a,b) distribution [121]. The reputation value

101

after n incidents is equal to the mean value of the beta distribution, rep,(AS) =
a,/ (a, + by), and represents a “forecast” for the outcome of future mitigation tasks.
Such information is available to all ASes in the federation and may be used to
appropriately assign mitigation tasks. Similar approaches [119], [128] that utilize Beta
distribution consider only whether an AS provides mitigation service, disregarding the
magnitude of its contribution. Hence, we extended the update process for the values of
shape parameters, a,, and b,,, quantifying an AS’s assistance, according to the following

equations:
ny1 =V A+ By, bpy1 =y by + Ny

The variables B,, and N,, represent the flows blocked and not blocked respectively, for a
given instance n of an SC®). Both values are based on the flows that a specific AS is
assigned to block via SC® and not the total flows involved in the attack incident. Note
that y is a discount factor affecting past reputation scores; y =1 means that the
reputation score incorporates the cumulative contribution of a contributor along the past
n incidents, whereas y = 0 indicates that only the last mitigation service offered may

affect the reputation score. We used the former in our experiments.

In a typical scenario B, should be equal to the length of the list of flows the respective
SC® is pointing to. However, in case of disputes between a mAS and VAS, the two ASes
calculate and compare the exact number of blocked sources for an ad-hoc bilateral
settlement. This is further discussed in section 6.4.6.

6.4.4 Cost Optimization - Mitigation Action Assignment

We treat the aforementioned evaluation of available offerings to assist in the mitigation
of an attack event as a Generalized Assignment Problem (GAP) as in section 5. From
the VAS perspective, the GAP is considering the assignment of n items to m bins.
Assignment of an item j to bin i yields a reward r;; and carries a weight of w;;. A
feasible solution dictates the total weight of assigned items for each bin should not
exceed the capacity of the bin (C;) and each item should be assigned to exactly one bin.
The optimal solution is an assignment maximizing the sum of all the rewards. In our
case, each item represents the filtering of a malicious flow via a respective entry on a
mitigation appliance with weight equal to one. Network providers within the described

federation are represented by bins while their capacity denotes the available mitigation

102

resources. Finally, the GAP reward r;; is calculated as the product of reputation score of
a collaborator i and the importance of the flow j, where the importance denotes the

amount of bytes corresponding to the flow j. Then:
rij = rep(i) - flow_imp(j)

Intuitively, our approach tends to assign the most important flows, e.g. heavy hitters, to
the collaborators with the higher reputation values. Consequently, the victim tends to
receive better mitigation service for a specific incident. In turn, collaborators apart from
any direct rewards as part of the agreement, establish and maintain a high reputation

score increasing the possibility to be selected in the future.

GAP is an NP-hard problem and its input size affects the time needed to be solved. The
input size of the algorithm can be reduced using grouping and/or prefix aggregation
techniques (section 5). Such or similar methods are also applicable to the
aforementioned formulation and can be used for reducing the execution time of the

solver i.e. Dippy integer programming tools [159].
6.4.5 Implementation of Mitigation Mechanisms

As noted in previous sections, various mitigation mechanisms may be employed to
block a set of malicious source IP addresses. Each mAS maintains one or more Attack
Mitigation Appliances (AMAs) capable of filtering malicious sources. The Mitigation
Trigger Module (MTM) module is responsible to communicate and configure an AMA
via protocols including but not limited to: BGP, NETCONF, OpenFlow, SSH.

We implemented the AMA leveraging on the XDP capabilities that allow matching of
specific packet fields in the filtering process. Specifically, our implementation parses
packet headers, matches the source IP addresses of malicious actors coupled with the
destination IP of the victim and drops it, whereas legitimate traffic is forwarded
normally to its destination. Note that we could also utilize the capabilities offered by
XDP to implement a DDoS mitigation solution that is not dependent only on IPs but

combines other packet features, tailored to specific attack vectors (see section 7).
6.4.6 Verification of Mitigation Agreements

The proposed framework relies on the existence of a trusted federation, composed of

ASes operating according to a predefined policy e.g. [117]. Hence, we assume that

103

mishaps in contract fulfillment should not occur due to malicious intent but as a result
of defense mechanism malfunction and/or misconfigurations. However, operating in
this environment cannot completely alleviate the need for mitigation verification of
sc®s,

To that end, we consider an approach that leverages monitoring data collected from the
peering (interconnection) links of the ASes. Specifically, each mAS should maintain
flow information for the egress traffic directed towards the vAS. At the same time, VAS
should maintain the respective data for ingress traffic on each corresponding link.
Malicious flows pertaining to a particular incident are extracted from appropriate
monitoring data and are stored in distinct timeframes i.e. 60 seconds); subsequently they
can be retrieved upon request, for dispute settlement purposes. Note that flows are
identified by their source IP; additional information may include destination IP, IP

protocol type and TCP/UDP ports.

Moreover, aiming to tackle potential storage issues that might arise in cases of
extremely distributed attacks, we opted for maintaining these malicious flows within a
Bloom Filter probabilistic data structure [150], similar to the DNS approach in [167].
We based this selection on the observation that the actual counters are not required for
the verification process. Hence, the malicious flows related to an attack incident are
hashed in space-efficient Bloom Filters, each pertaining to a particular time-window of
an incident. Indicatively, a Bloom Filter of 176 KBytes and 10 Hash Functions would
be sufficient to accurately store 100,000 malicious sources (e.g. Memcached DDoS
attack [168]), with a false positive probability of 0.1% according to [169].

Typically network operators employ widely adopted protocols for network monitoring,
such as NetFlow or sFlow; these are usually combined with sampling mechanisms to
alleviate load on network devices. We employed NetFlow monitoring data with varying
sampling rates; since there is a trade-off between sampling rate and monitoring
accuracy, there might be inconsistencies in the data collected that are not due to faulty
mitigation but to visibility limitations of the sampling process. However, we do not

expect the accuracy under massive attacks to be impacted by sampling [13], [94].

104

6.5 Evaluation

6.5.1 Experimental Setup

We implemented a proof-of-concept testbed for experimental evaluation deployed at the
NETMODE laboratory of the National Technical University of Athens, Greece. We
considered the following areas for experimentation: (i) Reputation Score Calculation,

(if) Mitigation Action Placement and (iii) Mitigation Verification.

Our testbed incorporates three Linux machines operating as distinct elements: (i) the
Traffic Generator, (ii) the Mitigation Box (emulating the Attack Mitigation Appliance)
and (iii) the Victim (vAS). As depicted in Figure 6.3, machines are connected in a star-
like topology, with a Cisco Catalyst 9300 Multilayer Switch at the center. All the links
operate at 10G.

The Traffic Generator is responsible for replaying and multiplexing benign and
malicious network traffic, emulating traffic originating from AS2, AS3 and AS4 as
depicted in Figure 6.3. The traffic is directed to the victim via the Mitigation Box with
two bridged interfaces, each in a separate VLAN. Appropriate XDP programs, applied
in the ingress interface of the Mitigation Box (VLAN B), are used to block malicious
sources while allowing benign traffic. Verification points (VAS, mAS) are implemented

as separate flow exporters on the NetFlow-enabled switch.

AS1 AS{2,3,4}
Cisco Catalyst 9300
S
VAS € I
l &&
mAS
Victim Traffic Generator
VLAN A
VLANB

—_ Traffic Flow Mitigation Box
. ‘ Verification Points

Figure 6.3 Proof of Concept Testbed Setup

105

In our experiments we used both benign and malicious traffic. The legitimate traffic is
based on the CAIDA Anonymized Internet Traces 2016 [107] dataset while the attack
traffic utilizes the Booter traces [109]. We synthesized a total mixture of traffic that
emulates a production network environment under attack; it has an approximately 1.77
ratio of malicious to benign traffic, with the total average packet rate approximately at
584 Kpps. In our experiments malicious flows are aggregated via their source IP
attribute; we further assume that each AS blocks a flow (source) assigned to it with a
probability equal to its reputation score since the latter ranks an AS mitigation service
quality. We expect some incidents for which the mitigation fails to meet the promised
requirements. As discussed in section 6.4, we considered that such incidents might
occur due to human errors (misconfiguration of the security appliance) or hardware

malfunction.

Moreover, aiming to evaluate the DLT-based orchestration of the proposed federated
schema we deployed an Ethereum blockchain network consisting of six nodes, based on
the Go Ethereum implementation [170]. Along with each node, we deployed a CIRM
instance and a Sealer service, with the authority to validate each block on the
blockchain network. Additionally, we deployed two more nodes for coordination and
monitoring purposes: (i) Bootnode that facilitates the interconnectivity of the blockchain
nodes by providing them with the necessary details to connect to the correct blockchain
network; (ii) Monitoring-node that retrieves statistics and displays information about the

current status of the blockchain network as in [171] and [172].
6.5.2 Reputation Score Calculation

To evaluate our proposed reputation mechanism, we selected three types of federated
collaborators: (i) a reliable mitigator blocking a high percentage of the agreed malicious
flows, (ii) an unreliable mitigator blocking a low percentage of the agreed malicious
flows and (iii) an unpredictable mitigator, whose performance might vary both
regarding the success rate and the volume of the promised flows. We considered two
simulation experiments to assess the impact of mitigation service to the reputation

score.

In the first experiment, we assume that a reliable mitigator AS (mAS) blocks the agreed
malicious sources (i.e. 1000 flows) with a probability ranging from 90% to 100% for

the first 500 incidents. For the next 500 incidents the mAS behaves as an unreliable

106

mitigator, blocking the agreed sources with a probability ranging from 40% to 50%. We
also consider the opposite i.e. an unreliable mitigator that turns reliable. In both cases,
we calculate the reputation score and present its evolution during 1000 consecutive

attack incidents.

g

Reputation score

#Incidents

—nreliable to Reliabl el
Figure 6.4 Reputation Score Evolution for Different Types of Federated Collaborators

As expected, Figure 6.4 indicates that the reputation score closely resembles the
performance of the mAS during past attacks. Note that, the proposed schema allows
collaborators to recover from low reputation scores in case they start providing high-
quality mitigation services, while low-quality ones result to a significant drop in the
reputation score. The rate of recovery depends not only on their reliability but also on
the volume of promised flows. Thus, an AS is able to establish a high reputation score
faster by seeking and fulfilling Smart Contracts for incidents involving large numbers of

malicious sources.

In the second experiment we compare our proposed schema against approaches that
consider only binary outcomes i.e. a collaborator is providing assistance or not [119],
[128]. Specifically, we showcase the reputation score of the unpredictable collaborator
mentioned above, that exhibits inferior performance in terms of (i) mitigation reliability
and (ii) inability to fulfill excessive mitigation promises in a SC. The former indicates
the probability that an attack will be mitigated; for simplicity we consider that the entire
batch of agreed flows in a SC are either mitigated successfully or not. The latter defines

a multiplier for the number of flows the collaborator promised but was not able to

107

block. Specifically, in our simulation experiments we used 1000 flows as the base
value.

In Figure 6.5 we compare the “binary” reputation schema (black surface) and our
approach (gray surface) that considers the number of malicious flows promised but not
blocked. Each point in the figure is the average reputation score calculated after 1000
consecutive DDoS attacks emulated in our testbed. The binary approach is only affected
by the mitigation reliability and yields significantly higher reputation scores. Our
approach also accounts for the actual number of mitigation actions successfully
deployed by a collaborator and yields lower reputation scores, especially when the
mASes fail to block large numbers of malicious flows (i.e. high factor of excessive
promises). As an example a mitigation reliability of 0.9 and a factor of excessive
promised flows of 10 means that a collaborator successfully mitigates an attack
blocking 1000 flows with probability 0.9, while it fails to block excessive numbers of
promised flows (10,000 flows) with probability 0.1. For this case, our schema would
rank the mAS with a reputation score of 0.5, whereas “binary” reputation schemas

would yield a reputation score of 0.9.

Reputation Score

<

)
%, @Q N

< ©

coo Ao 8 — e

% 10749 0.88 0.83 0.75 0.5 0
{'& Mitigation reliability
>

Figure 6.5 Reputation Score Comparison — Binary Reputation (Black), Proposed Approach (Gray)

6.5.3 Mitigation Actions Placement

To evaluate the mitigation actions placement on collaborating ASes we considered the

topology depicted in Figure 6.1. We analyzed the first Booter dataset, B1, as reported in

[109] and allocated all IP sources within distinct /24 subnets, distributed uniformly to
108

AS2, AS3 and AS4. This coupled with the actual attack dataset resulted to attack traffic
emanating from the three ASes in proportion to 33%, 31% and 36% of the total attack
traffic. Note that, attack traffic originating from AS3 and AS4 may be also blocked by
AS2. In our experimentation process, the mASes offer to block the malicious traffic that
flows through their network and the vAS assigns mitigation actions based on the
aforementioned approaches. The cumulative capacity of all mASes is sufficient to

collectively block the attack flows.

We consider two options for the mitigation actions placement using the following
reward functions: rj = rep(i) and rfj’- = rep(i) - flow_imp(j). Note that, in both cases
all malicious flows are assigned to some mASes but possibly in a different manner: The
former tends to assign mitigation actions to the mASes with the best reputation score.
The latter additionally considers the importance of a flow for the mitigation process (i.e.
flow importance). Flow importance is a metric identifying the danger a specific flow
represents and may be calculated via sophisticated Intrusion Detection and Intrusion
Prevention systems that evaluate multiple parameters across various attack vectors. This
formulation enables operators to define policies focusing on traffic features they
consider as the highest risks to their infrastructures. In our experiments we adopted the
total amount of bytes that correspond to each malicious flow, considering typical

volumetric DDoS attacks.

We showcase the mitigation of a real-time attack scenario, employing again the same
traffic mixture of benign and malicious traffic. We consider four different mitigation
approaches: (i) VAS assigns mitigation actions to all ASes based on: 7}, (ii) VAS assigns

b

mitigation actions to all ASes based on: r;}, (iii) VAS assigns mitigation tasks only to

AS2 based on: r}} (i.e. top 1000 sources) and (iv) VAS assigns mitigation tasks only to
AS2 based on: ;. The last approach is a random assignment, since all rewards r;; are

equal; we illustrate the worst case scenario in which the assigned 1000 malicious

sources have the least contribution to the attack.

For approaches (i), (ii) we assumed AS2, AS3 and AS4 have a reputation equal to 0.9,
0.6 and 0.5 respectively. For (iii), (iv) the reputation score of AS2 is assumed to be 1,
thus blocks every flow assigned to it. The attack is detected and countermeasures are
deployed after 30 seconds. This accounts for solving the Generalized Assignment

Problem (GAP) and applying the mitigation actions to the XDP-enabled mitigation box.

109

Total traffic delivered to victim (Gbps)

Gigabits per second (Gbps)

Time(s)

- e 1 Traffic J— o Tr

R x Flow NPOran AS2 (u1) Leputation

Figure 6.6 Total Malicious and Benign Traffic reaching the Victim

Figure 6.6 depicts the amount of traffic that is delivered to the victim. The attack traffic
ranges between 2.5-3 Gbps. When multiple ASes collaborate, i.e. approaches (i) and

(i), the assignment of mitigation actions based on 7 is significantly inferior to rl-’} that

incorporates flow importance. As shown in the figure approach (i) results to twice the
volume of the malicious traffic reaching the victim, as opposed to (ii). Similarly, this is
also illustrated in approaches (iii) and (iv), whereby only AS2 is contributing to the
attack mitigation. Assigning mitigation tasks in a random fashion as in approach (iv)
might lead to an unsuccessful mitigation while considering flow importance in approach
(iii) mitigates a larger volume of malicious traffic. Note that, both approaches (iii) and
(it) perform comparably well in terms of the total attack traffic reaching the victim.
However, approach (iii) assumes that there exists a top notch strategically placed
collaborator that is able to consistently block all malicious sources and has adequate
capacity to sustain massive DDoS attacks. On the contrary approach (ii) relies on
collaborative efforts and smart distribution of mitigation actions across multi-domain
attack paths. Thus, we consider approach (ii) as the most appropriate for our

collaborative schema.

110

6.5.4 Mitigation Verification

Additional experiments were conducted to evaluate the applicability of propabilistic
data structures in the verification process. As mentioned in subsection 6.4.6, the
verification relies on malicious flows as monitored by SC participants, both vAS and
mASes. We used NetFlow data exported by separate flow exporters within the
multilayer switch, sampled at two different rates: (i) 1 out of 100 and (ii) 1 out of 1000.
NetFlow data are sent to a collector machine running two distinct processes of the
nfdump toolset [173].

In Table 6.2, we represent the percentage of identified sources out of the agreed 1000,
for successful and unsuccessful mitigation considering different sampling rates. The
exact number for which assistance has been requested is 1000 (the top 1000 hitters in
B1 dataset).

Successful Mitigation Unsuccessful Mitigation

Experiment parameters Set Bloom Filter Set Bloom Filter
mAS — sampling 1/100 packets 0 sources 0 sources 88.86% 88.9%
VAS - sampling 1/100 packets 0 sources 0 sources 88.62% 88.74%
mAS - sampling 1/1000 packets | 0 sources 0 sources 78.02% 78.1%
VAS - sampling 1/1000 packets 0 sources 0 sources 76.8% 76.88%

Table 6.2 Percentage of Malicious Sources Observed under varying Sampling Rates and Mitigation
Performance

As expected, none of the 1000 sources are observed when mitigation is performed
successfully, since the Bloom Filters only maintain the agreed upon malicious sources
which in this case do not reach the victim and have no False Negatives. In the
unsuccessful mitigation scenario, we expect most of the sources that were not mitigated
to be hashed in the vAS Bloom Filters. However, packet sampling limits our VAS
identification rates for non-mitigated malicious sources to 88.62% for a sampling rate of
1/100 and 76.8% for a sampling rate of 1/1000. In massive DDoS attacks though, we
expect the identification of flows at the VAS to be closer to 100%, since the probability
of malicious traffic being selected in the sampling process would be significantly
higher. Note that the small discrepancies between the vAS and mAS identification rates

are due to hardware limitations in our testbed (e.g. Netflow processing and cache size).

111

Apart from the sampling process, Bloom Filters also affect the accuracy of our
identification process due to their inherent limitation of producing some false positives
[150]. Thus, a flow might be identified as present (not blocked) although it has been
successfully blocked. Note that false positive probabilities in Bloom Filters can be
reduced to acceptable levels with very modest space consumption. Thus, we selected
this option to fulfill our major concern, i.e. the verification of flows blocked by
collaborating ASes. Specifically, in our experiments for 1000 distinct sources, we opted
for a fairly small false positive of 1% that according to [169] is attainable with a Bloom
Filter of 1.17 Kbytes and 7 hash functions.

112

[/ Fine-Grained Traffic Classification and Attack Mitigation
based on Programmable Data Planes

Previous sections investigated mechanisms for anomaly detection mechanisms (sections
3 and 4) and mitigation schemas that assign source-based filtering rules to on-premise
devices (section 5) and external collaborators (section 6). Source-based approaches may
raise cumbersome issues primarily in terms of scalability (i.e. volume of source IPs) and
effectiveness (e.g. IP spoofing). In this section we build upon previous efforts and
implement a two-level network architecture focusing on fine-grained traffic
classification and customized attack mitigation for each vector based on programmable

data planes.
7.1 Problem Statement

DDoS protection solutions often maintain statistics based partially (network flows) or
entirely on IP sources in order to detect and ultimately mitigate malicious traffic.
Source-based filtering requires significant memory resources which increase
proportionally to the number of IPs. Moreover, IPs can be spoofed, further affecting
source-based data collection and mitigation solutions [174]. Recent advances in data
plane programmability enable customized solutions tailored to various network

applications such as attack detection and mitigation.

To that end, this section introduces a two-level architecture based on P4 and XDP that
(i) continuously monitors the network for suspicious traffic and (ii) reactively deploys
softwarized appliances to further identify and filter malicious traffic. The first level uses
the P4 approach presented in section 4 to implement a coarse-grained detection
mechanism. The second level uses XDP to dynamically create portable appliances
(middleboxes) tailored to the detected anomaly i.e. attack vector. These appliances
collect monitoring data for classification purposes and ultimately filter packets with
malicious characteristics. Packet classification is conducted via a supervised Machine
Learning (ML) algorithm, i.e. Random Forest, appropriately trained with benign and
malicious traffic focusing on distinct packet fields (features). Though not strictly limited
to a particular attack vector, our approach emphasizes on reflection and amplification

attacks that typically employ connectionless protocols over UDP (e.g. DNS and NTP).

113

7.2 Background and Related Work

There are various mechanisms in the literature related to DDoS protection. In general,
these may (i) detect on-going attacks, (ii) identify the victim, (iii) segregate malicious
from benign traffic and (iv) ultimately mitigate the attack. Such mechanisms for
detection and mitigation were discussed in subsections 2.6.1 and 2.6.2 respectively.
Summarizing the most closely related efforts [13], [64], [101]-[106], traffic features are
extracted with OF signaling (stats requests and Packet-In messages) or via traditional
monitoring methods (e.g. sFlow). Subsequently different techniques are applied ranging
from statistical analysis, e.g. entropy, to supervised and unsupervised Machine Learning

algorithms.

In comparison to similar approaches, we employ a DDoS detection schema offloaded in
the data plane that provides rapid attack detection. Detected attacks are on-demand
redirected for finer-grained processing. This approach significantly reduces processing
and communication overhead of mechanisms used in similar approaches [13], [102]-
[104] such as sFlow, OpenFlow and NetFlow. Additionally, most of the reported efforts
in the literature employ metrics aggregated by IP addresses or network flows for traffic
classification [13], [102]-[104]. In contrast, we focus on various packet features to
classify traffic as malicious or benign in an IP agnostic fashion; the same packet fields
are used to block the malicious traffic, without relying on aggregated/numerous IP-
based filtering rules (ACL entries, OF rules) [13], [103]. All stages of our mechanisms
are implemented in programmable hardware (P4) and software (XDP) data planes,
realizing a dynamic, tunable yet high-performance detection and mitigation pipeline.
XDP-based middleboxes may be easily deployed in COTS hardware in various points
of a production network and scale horizontally to handle large amounts of traffic.
Additional background information on XDP is available in subsection 2.3.

7.3 High-level Design

In Figure 7.1, we present a high-level overview of the proposed architecture for DDoS
Detection and Mitigation, applicable either in transit provider networks or
customer/edge network domains. This mechanism bundles together 4 separate
components that offer. (i) Attack Detection & Identification, (ii) Fine-Grained

monitoring, (iii) Traffic Classification based on Machine Learning (ML) algorithms and

114

(iv) Anomaly Mitigation. These are coordinated via a DDoS Mitigation Orchestrator
component that plans the DDoS protection workflow.

Provider Network
Traffic Classification

Supervised Learning
@ Algorithms
L4 gg
e
i< N\
\

W o7 o O
PR (Message Queue @

o . L P——) —
DDoS Mitigation| < | Mentoring / 7/ ypp pased \ y \ Mitiation
Orchestrator ™ L2 Tl
®|'| Fine-Grained Anomaly
Monitoring Mitigation
= ~ X *
S - SIS 4 }J

X o
- <
o I
S~o "~ .
() S~ Gi) S~ \U
\\ \\
\\ \\\
< -
h'S

Attack Detection & KNS
Identification

Control/Management
= Interactions

e Total Traffic

Customer
Network

Benign Traffic
= (Scrubbed)

@ = «dJ Dropped Traffic
Redirected Traffic

Customer
Network

Internet
Sources

Figure 7.1 High-Level Overview of the DDoS Detection & Mitigation schema

Benign and malicious traffic originating from various Internet Sources traverses through
or is destined to a network infrastructure equipped with programmable devices. Traffic
metrics are extracted and analyzed to detect ongoing DDoS attacks targeting internal or
downstream networks. Upon detecting an attack, appropriate alarms are generated for
the victim network. This service is implemented and offloaded entirely in the data plane
using P4-enabled devices. As an alternative, other solutions for DDoS detection can be
incorporated [13], [64], [103].

Based on these alarms, the DDoS Mitigation Orchestrator spawns ephemeral
components used for monitoring, classification and filtering. Subsequently, all traffic
related to the attack vector protocol, is destined to the victim network is mirrored to the
Fine-Grained Monitoring component for further analysis. Original traffic is redirected to
the Anomaly Mitigation component (e.g. for DNS attacks we mirror/redirect all DNS
traffic). The Fine-Grained Monitoring component employs high-performance
programmable mechanisms (i.e. XDP) to extract appropriate packet fields depending on

the attack vector used.

115

Extracted monitoring data are subsequently relayed to the Traffic Classification
component, to be categorized as either benign or malicious. This component relies on
classification methods based on supervised Machine Learning algorithms. These have
been trained a priori both with attack traffic from commonly used attack vectors as well
as benign traffic. According to the resulting classification, packets classified as
malicious are used to create mitigation rules. These rules are in turn conveyed to the
Anomaly Mitigation component that: (i) drops malicious packets and (ii) returns benign
traffic back to the P4 device, in order to be forwarded appropriately. This component is
also based on XDP.

DDoS attacks are mitigated focusing on distinct packet feature combinations
(signatures) exhibited by offending traffic, ignoring altogether potentially spoofed
source IPs. As mentioned these features should be engineered and optimized depending
on the attack vector. Note that, the same features are used both for classification and
mitigation purposes.

Packet field extraction, traffic classification and mitigation rule generation are
performed continuously in distinct intervals (time windows). Selected intervals should
be small (e.g. 10 seconds) to enable rapid propagation of information and ultimately
prompt and accurate traffic scrubbing. After the corresponding components are
spawned, operations are conducted independently in an event-driven fashion, via a

Message Queue.

We opted to use COTS hardware (i.e. moderate-cost NICs) as programmable appliances
powered by the XDP framework without compromising on packet processing
performance. These can be instantiated on-demand and scaled according to traffic and
application requirements, seamlessly integrated within NFV environments. However,
the proposed schema consists of modular components that operate independently and
can be replaced by other solutions of equal functionality. Netflow and sFlow can be
used for traffic monitoring and packet analysis instead of P4 and XDP. Similarly, any

traffic classification method may be used instead of the Random Forest algorithm.
7.4 Architectural Components and Implementation Details

Our Traffic Classification and Attack Mitigation schema consists of five distinct
modular components: (a) Attack Detection & Identification (ADI), (b) DDoS Mitigation

116

Orchestrator (DMO), (c) Fine-Grained Monitoring (FGM), (d) Traffic Classification
(TC) and (e) Anomaly Mitigation (AM). The ADI component is largely based on the
work described in section 4. Some minor modifications were required to utilize P4
digests, i.e. alarms formatted as (dst_network, ip_protocol, src_port, dst_port), to
discern a specific attack vector; indicative examples for reflection and amplification
attacks may be found in [82].

The DMO coordinates the mitigation process for the identified anomaly, deploying
countermeasures for the attack, based on predefined network policies. In case the attack
traffic is not expected for the victim network e.g. Chargen traffic [82], [109], then this
type of traffic is unilaterally blocked. These rules can be defined in a per-subnet/domain
manner or even become part of standing policy. Alternatively, if benign traffic is
expected for the same protocol as the attack e.g. DNS, then this type of traffic requires
further analysis and refined scrubbing. To that end, DMO instantiates a sophisticated
DDoS protection schema, realized by the Fine-Grained Monitoring (FGM), Traffic
Classification (TC) and Anomaly Mitigation (AM) components. In turn, it notifies the
P4-enabled device to redirect traffic related to the attack vector for the victim network
to the FGM and AM components. Network traffic redirected (mirrored) to the FGM
component is subjected to further packet analysis, while traffic redirected to the AM

component is scrubbed and subsequently forwarded back to its destination.

Such workflows may be implemented by event-driven automation frameworks such as
Saltstack (see sections 2.1.3.2 and 5.6). However, this work focuses on programmable
traffic classification and attack mitigation delivered by FGM, TC and AM. Operations

and related interactions are illustrated in Figure 7.2 below.
7.4.1 Fine-Grained Monitoring

FGM (i) receives the mirrored traffic, (ii) extracts appropriate packet fields (i.e. packet
features) and (iii) conveys monitoring data to the TC component. Each FGM instance
consists of the Data Extractor and the Data Exporter modules. The former is a kernel
space XDP program that processes network packets to extract and store a set of
preselected field values. As mentioned the exact packet fields heavily rely on the attack
vector used; their number typically should be small for performance reasons but also to
concisely isolate malicious characteristics. The combination of packet features can be
represented by signature X =[xy, X2, ..., Xn], Where X; represents packet field value i;

117

each unique signature X corresponds to a row in the Monitoring Data table of Figure
7.2. In the context of FGM, every observed packet signature corresponds to a counter
stored within an appropriate BPF Map (i.e. hash table). The Data Exporter module is a
user space program that periodically retrieves the contents (i.e. signatures) of the BPF
map and compares them to the ones observed in the previous time window. Only new

signatures are conveyed to the TC component.

Traffic Classification and Attack Mitigation

i Traffic Classification |

Signature Classification

. Random Forest E Unsupervised ML :: I

________________ CIaSSifier | *

| Data Handler I

:) ¥ ¥ i i i :

| ! | ! v vy |

. Monitoring Data \ Malicious Signatures .

I Field1 | Field2 [... [Fieldn | Field1 | Field2 [... [Fieldn |

Valuel | Value2 | ... | Valuen | Valuel | Value2 [... | Valuen | I

I \ Value m1 [Value m2 [[Value mn | Valte mi | Value m2 | | Value mn] |
. yY yy 7y]]]

| ! ! ! A 4 A 4 A 4 |

Fine-Grained e

o Anomaly Mitigation .

| Monitoring |
i Data Exporter Rules Handler

. BPF Map BPF Map I

I Data Extractor Packet Filter |

I - - > Dropped .

Field 1| Field 2 |eee | Fieldn Field 1| Field 2 |eee | Field n | Traffic ||

I Packet Packet) 2 |

Redirected Redirected Benign Traffic .

|_ Traffic (Mirrored) Traffic (Scrubbed) 1
{[paces ([pastes |

P Attack Detection & Identification

Figure 7.2 Fine-Grained Monitoring, Traffic Classification and Anomaly Mitigation interactions
Note that the FGM component could be implemented using any approach that allows
access to packet fields (e.g. sFlow). We opted for XDP that provides high-performance
monitoring capabilities and does not have potential limitations on the size of the

extracted packet payload (e.g. sFlow) and by extent the available packet fields.
7.4.2 Traffic Classification

TC (i) collects monitoring data, (ii) feeds them as input to classification (supervised

ML) methods and (iii) identifies malicious signatures. The Data Handler module

118

collects the different signatures, X, relayed by the FGM component. In turn, the set of
signatures is used as input to the Signature Classification module which characterizes
them as benign or malicious. This module is preloaded with classification models,
trained offline with malicious and benign traffic, both related to the specific attack
vector (e.g. DNS attacks and benign DNS traffic). The trained models identify
signatures that correspond to malicious traffic (see Figure 7.2) and convey them to the
AM component via the Data Handler module. We experimented with the Random
Forest classification algorithm [175], but our schema is decoupled from the
classification method and can be extended with other algorithms. Moreover, for each
attack vector we may employ the most appropriate classification mechanism for
increased accuracy. Note that supervised classifiers rely on labeled training datasets.
Alternatively, unsupervised learning e.g. outlier detection approaches [176], may also

be employed when labeled datasets are not available.

Since packet features are used both to classify and filter packets, their selection requires
specific understanding related to the protocol used by an attack vector. In addition, an
arbitrary set of packet fields can be employed and gradually reduced using appropriate
methods. Indicatively, we used such a method in an attempt to rank the most important
features for classification of DNS packets. Note that the reduction of employed packet
fields may enhance the performance of the XDP-enabled middleboxes and the ML
models that reside in the TC component. Especially for the former, see related

experiments in subsection 7.6.5.
7.4.3 Anomaly Mitigation

AM consists of the Rule Handler and the Packet Filter modules. The former receives a
list of malicious signatures and installs them as filtering rules in a BPF map. The latter
is an XDP kernel space program similar to the Data Extractor module of the FGM
component. It parses and extracts the same set of predefined packet fields. These fields
are subsequently compared to the filtering rules within the BPF Map. If the combination
of packet fields (i.e. signature) of the received packet is contained in the BPF Map the
packet is dropped (XDP_DROP). Otherwise, the packet is transmitted back (XDP_TX).
This portion of traffic is considered benign (scrubbed) and thus normally forwarded to

the victim network. While FGM can be implemented with various monitoring solutions

119

(e.g. sFlow), the AM component is tightly coupled with programmable data planes
solutions able to perform custom packet filtering based on any packet field (e.g. XDP).

7.5 Analysis of DNS-based Reflection and Amplification Attacks

We selected as a case study DNS reflection and amplification attacks, one of the most
commonly used attack vectors for DDoS attacks. As in all similar attacks, malicious
hosts spoof the IP address of the selected victim and send DNS requests mostly to
vulnerable Open Resolvers or alternatively to authoritative servers. These requests are
appropriately crafted to generate large DNS responses in an attempt to overwhelm the
network capacity of the victims infrastructure. A common side effect of such attacks is
the generation of fragmented packets, since large DNS responses exceed the Maximum
Transmission Unit (MTU) of transit links. In our approach we consider that fragmented

packets destined to the victim network should be blocked during a detected anomaly.

Packet fields (features) from the IP and DNS headers that may provide insightful
information for classification are presented in Table 7.1 below; source IP addresses are

excluded entirely, thus providing an IP agnostic classification and filtering mechanism.

Packet Fields Short Description

IP_length packet size in bytes

gdcount number of entries in the question section

ancount number of Resource Records (RRs) in the answer section

nscount number of name server RRs in the authority records section

arcount number of RRs in the additional records section

qr specifies whether the message is a query (0) or a response (1)

gname requested domain name; variable length field terminated by the zero length byte
gtype type of the query (integer)

Table 7.1 Packet fields used in Traffic Classification of DNS volumetric attacks
The values of IP_length, gdcount, ancount, nscount, and arcount are numerical data and
may be fed directly into ML algorithms. In contrast qr, qtype and gname may be
considered as categorical variables, which can be handled via appropriate encoding

techniques below.

As mentioned, both the FGM (Data Extractor module) and the AM (Packet Filter
module) components need to parse and extract the aforementioned fields for each

packet. All of the selected fields, except for gname and qtype, are fixed-placed and of

120

fixed-length and thus can be parsed by XDP with relative ease. Specifically, the kernel
space program receives each packet and extracts the IP_length from the IP header. It
then extracts from the DNS header the gdcount, ancount, nscount, arcount and the gr
values. Subsequently the gname value is required to be parsed; gname is a variable-
length field (depends on the domain name size) with a maximum value of 255
characters (i.e. bytes) [177]. Hence, our program loops up to 255 times and breaks upon
identifying the zero length byte (XDP supports only bounded loops). Note that gname is
required to be parsed as it is used (i) both for classification purposes and (ii) qtype value

extraction, that matches the two bytes following the gname.

After extraction, values are stored in or compared against the contents of BPF Maps.
The memory space for storing each fixed-length field of a packet is specified in [177]
(e.g. 2 bytes for gdcount). However, for storing the gname we would require 255 bytes,
which would heavily increase the memory requirements of our program. Thus we opted
to reduce it, using the jhash function implemented in Katran - Facebook’s Load
Balancer [2]. This implementation accepts up to 12 bytes as input (i.e. the first 12
characters of gname) and transforms it to a 4-byte integer. For the remainder of this
section gname, refers to the hashed value of the DNS name. In addition to memory
reduction, gname is encoded to a numerical value which can be directly fed in the
Signature Classification module. This transformation affects domain names that share
the first 12 characters or result in the same hash value (hash collision), as they are
considered the same. However, packets with the same gname are not necessarily treated
in the same manner by our schema, as additional features are employed both for

classification and filtering purposes.
7.6 Evaluation

We evaluate our schema in an experimental testbed, employing real and synthetic
network traces as detailed in subsection 7.6.1 below. In short, our experiments attempt
to: (i) assess the detection accuracy of our mechanism, (ii) identify the most important
features for attack classification, (iii) evaluate our signature-based filtering against
source based mechanisms and (iv) demonstrate monitoring and filtering performance
capabilities/limitations. These may be found accordingly in subsections 7.6.2, 7.6.3,
7.6.4and 7.6.5.

121

7.6.1 Experimental Setup and Datasets

We used a typical experimental setup as described in section 4; the setup was used to
evaluate monitoring, classification as well as filtering capabilities. The FGM and AM
components were implemented within the XDP framework. These were deployed on a
physical machine (XDP-enabled node) equipped with a Netronome Agilio CX 2x10G
SmartNIC [26]. For packet generation purposes, we used a VM equipped with an Intel
X520 NIC 2x10G, able to generate packets at high rates using the PF_RING ZC
framework [53]. The TC component was implemented using the scikit-learn Python
library; it was deployed on a separate VM, with 12 vCPUs and 12GB RAM.

Real network traces were used to assess the detection accuracy of our schema, whereas
synthesized traffic was used to stress test packet processing capabilities (monitoring and
filtering). As benign traffic, we used traces: (i) from a 10G transit link between WIDE
and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G [108], (ii) from a
1G transit link between WIDE and an upstream provider, henceforth WIDE-F [108],
and (iii) from Thapar University Campus Network, henceforth TU Campus [178]. As
malicious traffic, we used seven of the Booters datasets (B;, ... B7) [109]. These
datasets contain different DNS-based reflection and amplification attacks generated by
DDoS for hire services. All datasets apart from B, and Bs contain qtype ANY DNS
responses, a commonly used method for DNS reflection and amplification attacks that
returns all RRs of all types for a given FQDN. In B4 and Bs attacks, the attackers
attempted to use type A requests. B, contains multiple responses for a domain that
contains a very large number of IP addresses. Bs corresponds to a failed attack, where

type A requests were used, in an unsuccessful attempt to generate large responses.
7.6.2 Accuracy of Signature-based Classification

In this subsection we evaluate the detection accuracy of the Traffic Classification (TC)
component and specifically the Signature Classification module, using Random Forests
(RF) with 10 decision trees. The training and testing were conducted separately for each

of the following combinations:

e Each benign dataset (WIDE-G, WIDE-F, TU Campus)
e Each set A; = {Booters - B}, wherei=1... 7
e.g. A= {Bu, B2, Bs, Bs, B, B7}

122

The total different combinations are 21. Each trained model is evaluated against a mix
of traffic (test dataset) based on the excluded attack dataset B; and benign traffic from
the same origin (e.g. WIDE-G) but from a different time period. In Table 7.2, we
illustrate the True Negative Rate (TNR) of all combinations, which is the percentage of

benign traffic that was classified as benign and the True Positive Rate (TPR), which is

the percentage of attack traffic classified as malicious.

Train; A1 | Train: A2 | Train: A3 | Train: A4 | Train: A5 | Train: A6 | Train: A7

Test: B1 Test: B2 Test: B3 Test: B4 Test: BS Test: B6 Test: B7
WIDE-F (TNR) 99.99% 99.99% 99.99% 99.99% 100.00% 99.99% 99.99%
WIDE-F (TPR) 99.94% 100.00% 100.00% 0.78% 0.14% 99.99% 99.99%
WIDE-G (TNR) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
WIDE-G (TPR) 100.00% 100.00% 100.00% 0.31% 0.10% 100.00% 99.99%
TUC (TNR) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
TUC (TPR) 99.99% 100.00% 100.00% 0.31% 0.05% 100.00% 99.99%

Table 7.2 True Negative and True Positive Rates using Booters combined with benign datasets
(WIDE-F, WIDE-G and TU Campus)

As illustrated in the table, RF is a consistent method to identify both benign (WIDE-F,
WIDE-G, TU Campus) and attack traffic (Booters) patterns, provided it is trained with
diverse attack data. However, RF is not able to recognize “unseen” (i.e. zero-day)
attacks. This is clearly illustrated when the model is trained with A4, which does not
include B4, while By is used as the test dataset. Recall that B, contains large DNS
responses with multiple type A RR for a gname; it differs from the training data (A4),
which contain attack traces with type ANY DNS responses. Similarly, RF classified all
packets in Bs as benign since it corresponds to a failed attack exhibiting similarities to
benign traffic. Interestingly, during the experimentation process attack data were
discovered within the benign datasets (WIDE-F, WIDE-G). A closer manual analysis of
the original network traces revealed modest attack traffic, i.e. consecutive type ANY
queries from specific IP sources to the same destination IP; these data were manually

removed prior to the final experimentation process.

In summary, the proposed approach provides: (i) accurate detection of DNS volumetric
attacks and (ii) robust identification of benign traffic for different, heterogeneous
environments. We consider that the latter is attributed to the nature of DNS traffic,
exhibiting specific traffic characteristics. This is also supported in the experimental
results, which illustrate that RF classifiers achieve almost 100% TNR for traffic from
different network environments, using the same features. To further emphasize this

point, we also trained classifiers using data from one network environment (e.g. WIDE-

123

F) and used it to identify benign traffic in another network environment (e.g. WIDE-G).
This was verified for all dataset combinations, thus demonstrating the generalization
capability of our classifiers in common DNS traffic patterns. We expect similar

behavior for other well-known protocols used for volumetric attacks e.g. NTP.
7.6.3 Feature Importance

As illustrated in the previous subsection, Random Forest (RF) classifiers yield accurate
results (both TPR and TNR ~100%) provided they are trained with diverse attack traffic
traces. To that end, we will showcase the most important features, as provided by the
RF. This approach provides valuable insight into the classification process which can be
used to eliminate inconsequential features. Ultimately, non-important features may be
removed from the monitoring and filtering mechanism to significantly reduce packet
processing time (XDP) and the required memory space (XDP and ML). The feature
importance is quantified as a value between [0,1], where the highest values identify the

most important features [175].

Random Forest Feature Importance

qtype

IP length
ancount

nscount

—
gname
[
-
i

arcount

qr

qdcount TU Campus WIDE-F = WIDE-G

0 0.1 0.2 0.3 0.4 0.5
Importance

Figure 7.3 Feature Importance for DNS Traffic Classification provided by Random Forest

We trained 3 RF classifiers; each one uses all Booters datasets and one of the benign
datasets (WIDE-F, WIDE-G, TU Campus) used in the previous subsection. In Figure
7.3 above, we depict the importance of each feature for the different combinations of
datasets, as computed by the scikit-learn library. The reported values correspond to the

average feature importance for multiple training iterations:

The dominant feature in all cases is the type of the query (qtype) since most attacks in
the Booters dataset rely on DNS type ANY messages; as mentioned, this technique is

commonly used to generate large volumes of malicious traffic. The length of the IP

124

packet is the second most important feature; benign DNS traffic mainly consists of
small packets while reflection and amplification attacks use large DNS responses. The
latter are filled with a large number of (i) answers (ancount), (ii) authority (nscount) and
(iii) additional (arcount) RRs. These numbers significantly increase in attack cases.
Furthermore, attacks might use the same gname for generating large DNS packets, thus
the gname hash may also impact the resulting classification (B;, B, Bs: root-
servers.net, Bg, B7: anonsc.com). Low importance of the qgr is expected since
approximately half of the benign packets are DNS responses. Similarly, qdcount does

not improve classification since all DNS packets in our datasets have gdcount =1.
7.6.4 1P-based vs Signature-based filtering

Most DDoS mitigation mechanisms reported in the literature use flow-based
classification mechanisms, typically relying on IP sources to block attack traffic. In this
subsection, we compare our IP agnostic, signature-based mechanism against a filtering
approach that relies on IP sources. We extracted the total number of unique sources for
each Booter dataset. Similarly, we extracted the signatures that characterize all the

malicious traffic.

Filtering Rules for Booters dataset
10000

1000
100
| ‘ |
Bl B2 B3 B4 B5 B6 B7

B Source IP Rules DNS Signatures

o

Filtering Rules (logarithmic scale)

=

Figure 7.4 Comparison between Source IP and Signature-based filtering for Booters datasets
In Figure 7.4 above, we compare (in logarithmic scale) the number of the source IP
filtering rules to the signatures that would be required to fully block the seven DNS
125

attacks of the Booters datasets. Our approach significantly reduces the filtering rules
required to mitigate the total attack traffic for every attack dataset. As illustrated, the
number of the required rules is reduced considerably (exact values range between 86%
and 99%). The benefits are twofold: (i) we do not rely on IP addresses that may be
spoofed or change during an attack and (ii) we significantly reduce the memory
consumed in the filtering process. Note that large memory utilization raises issues both
in hardware (expensive TCAMs) and especially for our case in software data planes

(lookup times are increased in large BPF maps).
7.6.5 Traffic Monitoring and Filtering Performance

In order to assess the monitoring and filtering performance of our schema, we isolated a
window of reported network traffic and replayed it at high-speed rates (1 — 6 Mpps).
Note that, a fully utilized 10G link typically corresponds to a packet rate of 2 Mpps. The
traffic used for stress testing contains 100,000 unique IP sources and 10,000 unique
combinations of packet fields (features). This proportion (10%) was selected based on
the experiments of the previous subsection; the number of the DNS signatures for

different datasets (i.e. Booters) is on average 10% of the number of source IPs.

Seven different XDP mechanisms were evaluated, four for monitoring and three for
mitigation purposes: (i) COUNT_PKT that counts the number of received packets
without extracting any fields; (il) COUNT _IP counts packets per source-IP address; (iii)
FGM (Fine-Grained Monitoring) maintains counters per combinations of all DNS
features; (iv) FGM_LT, a streamlined version of FGM, that maintains counters per
combinations of the five dominant DNS features; (v) DROP_IP that extracts the source
IP address of each packet and compares against a blacklist of malicious sources
(100,000 sources); (vi) AM (Anomaly Mitigation) that extracts DNS packet fields and
uses a blacklist containing malicious signatures (all 10,000) to match and reject traffic;
(vii) AM_LT that mitigates traffic using the 5 most dominant DNS features.

FGM_LT and AM_LT resulted from our experiments with Random Forest classifiers
that demonstrated a clear distinction of DNS feature importance and led us to consider
five features (qtype, IP_length, ancount, nscount, gname) out of eight total (see Figure
7.3 above). Mechanism (i) depicts XDP overhead to maintain monitoring statistics.

Mechanism (ii) was implemented to compare our FGM (iii) and FGM_LT (iv) schemas

126

to source-IP based anomaly detection alternatives. Accordingly, mechanism (v) was
implemented for comparison against AM (vi) and AM_LT (vii).

In Table 7.3, we illustrate the percentage of packets processed by XDP compared to the
total transmitted packets for various rates (in Million packets per second - Mpps). To
avoid the additional overhead of counting the dropped packets in XDP, the processing
performance of filtering mechanisms is calculated using the Netronome NIC counters
based on the following:

dropped_packets = dev_rx_pkts — dev_rx_discards

where dev_rx_pkts is the number of packets received by the NIC and
dev_rx_discards is the number of packets discarded without being handled by the
XDP program.

Mpps | COUNT_PKT | COUNT_IP | FGM | FGM_LT | DROP_IP AM AM LT
1 100.00% 100.00% 100% 100% 100.00% | 100.00% | 100.00%
2 100.00% 100.00% 100% 100% 100.00% | 100.00% | 100.00%
3 100.00% 99.99% 99.99% 100% 100.00% | 100.00% | 100.00%
4 100.00% 99.97% 99.96% | 99.97% 99.98% 99.97% | 99.98%
5 100.00% 91.29% 99.93% | 99.95% 99.95% 99.93% | 99.95%
6 100.00% 75.29% 85.73% | 91.82% 85.56% 87.05% | 92.86%

Table 7.3 Monitoring and Filtering Performance — Percentage of XDP Processed Packets

All monitoring approaches count almost all packets for values up to 4 Mpps. In higher
rates, as was expected simplistic COUNT_PACKETS outperforms all other approaches.
Although, FGM and FGM_LT process more packet fields than COUNT _IP, they have
significantly better performance at 5 and 6 Mpps; similarly, AM and AM_LT
outperform DROP_IP at 6 Mpps. This is attributed to the fact that FGM and FGM_LT
have a decreased number of entries in the BPF Maps (i.e. 10,000), thus performing
faster lookups. FGM_LT performs better than FGM as the former uses fewer packet
fields than the latter and therefore executes fewer processing operations. An important
observation is that the key size of a BPF Map does not impact the lookup time at all.
Indicatively, COUNT _IP uses 32-bit keys whereas FGM and FGM_LT employ 160 and
96 bits respectively, however they all exhibit comparable lookup times (less than 200
ns). All observations above apply also for filtering experiments that in general perform
better than their monitoring counterparts processing (i.e. dropping) packets for rates up
to 5 Mpps nearly at line rate. We believe this occurs since retrieving values from the

BPF Map is less intensive than updating them.

127

In summary, our monitoring and filtering mechanisms are suitable for high-speed
modern network environments. Moreover, signature based approaches exhibit better or
similar performance than source-IP based alternatives. Lighter versions of our

mechanisms, FGM_LT and AM_LT, perform even better.

128

8 Conclusions and Future Research

8.1 Summary and Concluding Remarks

This dissertation investigated large-scale network attacks and specifically solutions
related to various aspects of DDoS protection such as network data collection, anomaly
detection and mitigation. Recent technological advances were combined to create
automated services for network security, applicable to modern SDN environments and

legacy network infrastructures.

Sections 3 and 4 addressed the collection and processing of monitoring data, primarily
for anomaly detection purposes. Section 3 focused on a monitoring schema for the
collection and processing of network data exported from dispersed vantage points (i.e.
devices) in an effort to enhance visibility into anomalous events. This approach is based
on the observation that different types of attacks are aggregated at central nodes, while
others exhibit localized characteristics better observed near the edge. The advent of
programmable network hardware and related softwarized appliances can be used to
further extend this concept in two ways: (i) middleboxes can be deployed on-demand
along a network path as dynamic VNFs for various purposes (e.g. monitoring and
anomaly detection) and more importantly (ii) processing tasks may be offloaded to

network devices in a distributed manner.

Thus, section 4 presented a DDoS detection schema implemented entirely in P4-
enabled devices. In-network computing is an appealing concept, but potential solutions
need to account for memory usage and processing limitations to keep up with
requirements for high speed packet forwarding. To that end, we opted for an online
algorithm that tracks typical DDoS metrics such as incoming flows and packet
symmetry ratio for specific network subnets of interest. As the mechanism was
implemented entirely in the data plane, no involvement of external controllers or
systems was necessary for detection purposes, hence enabling rapid control loops. This
approach was evaluated in a SmartNIC-based testbed yielding accurate detection
results. Furthermore, high packet-rate tests were conducted to validate the processing
performance of the mechanism P4-mechanism. The results were promising as the
mechanism conforms to the packet processing requirements of modern environments

despite being implemented on moderate-cost hardware. More powerful platforms (e.g.

129

hardware switches, FPGAs) are expected to perform even better; however, developers
should always be wary of platform-specific limitations and intricacies despite P4 being

a universal device-agnostic language.

After the detection of an anomaly, appropriate countermeasures should be deployed.
Hence, sections 5 and 6 discuss related mechanisms and schemas for the mitigation of
distributed attacks. Specifically, sections 5 considers the assignment of generic
mitigation actions to counter multi-vector attacks in a heterogeneous network
environment, comprised of devices with different capabilities and control/management
APIs. The assignment was modeled as an integer problem that attempts to satisfy
operational requirements (reward maximization) subject to specific constraints
(hardware capacity). Assigned actions are translated to device-specific rules and
appropriately deployed. Intelligent distribution of rules utilizing defense resources from
various defense stages, yields noticeable improvements compared to rigid/standalone

mitigation mechanisms.

With regards to rule distribution, techniques for automated and homogeneous
deployment via abstraction layers were investigated, employing both SDN controllers
and general purpose automation frameworks. As a generic observation, typical SDN
solutions (e.g. OpenFlow, P4) and YANG models may be hindered by vendor-specific
issues/bugs related to implementation details and platform limitations. Abstraction
layers, be it multi-protocol controllers or generic automation frameworks, can bridge the
gap between vendors and operators enabling generic events to be translated to device-

specific instructions.

The sheer volume of present-day cyber threats comprised of multiple sources may
overwhelm on-premise resources and/or saturate important links. As network anomalies
are better pinpointed near the victim and more efficiently mitigated closer to their
sources, provider collaborations seem well-suited to mitigate massive DDoS attacks
early in the attack path. Thus, section 6 extended the approach presented in section 5,
investigating the establishment of trusted federations among adjacent and disjoint
network domains that collectively mitigate malicious traffic assisted by digital (smart)
contracts. Federated partners are able to (i) process all available mitigation offerings
pertaining to a particular attack incident, (ii) identify the optimal sets of flows that
should be mitigated by a collaborator, (iii) announce these sets by issuing Smart
Contracts to the appropriate mitigation collaborators and (iv) collaboratively deploy
130

mitigation solutions. As mentioned above, careful selection of malicious flows (e.g.
heavy hitters) and subsequent assignment to reliable mitigators (i.e. reputation scores)

should outperform other approaches.

Note that, distributing filtering rules within a domain (sections 5) or among
collaborating domains (sections 6) alleviates the burden to an extent. However,
commonly used source-centric approaches for monitoring and filtering may raise issues
in terms of scalability (i.e. volume of source IPs) and effectiveness (e.g. spoofed IPs).
Administrators (or even tenants) within network domains may profit from customized
solutions for data collection and subsequently anomaly detection/mitigation tailored to
specific anomalies and attacks.

These considerations were addressed in section 7 via a two-level schema for Anomaly
Detection and Mitigation. Specifically, the proposed approach incorporates the P4-
based DDoS detection schema presented in section 4 and further adopts XDP to create
performant middleboxes, based on the identified attack. These middleboxes operate
either (i) as programmable Deep Packet Inspectors (DPI), extracting monitoring data, or
(ii) as flexible firewalls that block malicious traffic, using Machine Learning methods to
create appropriate malicious signatures. While our initial proof-of-concept considers
DNS volumetric attacks, this schema can extend to other attacks as well.

An important differentiation with previous efforts is that we do not rely on source IPs
but use an IP-agnostic approach (i.e. packet signatures) to classify and ultimately
mitigate attacks. This approach was based on the widely observed fact that volumetric
DDoS attacks especially UDP-based may be characterized by a modest number of
salient characteristics, thus enabling efficient Machine Learning algorithms. Note that
we did not consider temporal correlations since they may hinder timely anomaly
detection and mitigation. As a proof-of-concept, classification was based on the
Random Forests supervised Machine Learning algorithm, trained with DNS datasets
from past attacks and benign traffic from production networks. The experimental results
were promising and drew interesting conclusions in terms of (i) accuracy, (ii)
generalization capabilities of the detection mechanism and (iii) reduction of total
number of filtering rules compared to source-based mechanisms. Moreover, XDP
middleboxes also achieved high packet processing rates consistent with emerging

network traffic profiles.

131

8.2 Areas for Future Research

This dissertation investigated different aspects of DDoS protection, each one associated
with specific challenges and characteristics. Potential extensions may include an in-
depth study of different detection/classification techniques for common attack vectors.
Volumetric DNS attacks are summarized accurately by Random Forests, however each
vector might require specific handling and in-depth tuning of detection and
classification mechanisms, be it machine learning algorithms, time series analysis or
statistical models. In a closely related topic, researchers usually have limited or no
access to real network data, benign or malicious, primarily due to privacy concerns.
Apart from privacy-aware solutions (e.g. data anonymization), these concerns may be
also circumvented by utilizing statistical traffic attributes that can be used to artificially
synthesize traces. Related efforts may leverage generative models (e.g. Generative
Adversarial Networks [179]) to create synthetic yet realistic data, potentially used to

further enhance network security schemas.

Another area for future research are data mining and processing techniques to generate
appropriate signatures based on offline data from past incidents. These signatures will
describe characteristics of attack vectors and can be further shared or even
collaboratively created within trusted federations and defense coalitions [180].
Collaborative efforts may benefit from Federated Learning techniques that enable
multiple entities to build a common machine learning model without sharing potentially
sensitive data thus appeasing related concerns.

A common knowledge-base of malicious signatures per attack vector can embolden
mitigation mechanisms or even enable preemptive filtering. As an example frequently
abused domains could be used to filter malicious DNS responses used in volumetric
attacks. After generation, these signatures should be examined for correlations and
aggregated as much as possible. Thus, another area of potential interest are related
summarization techniques that minimize signatures to preserve memory and computing
resources. As exhibited, XDP-based processing might be delayed by memory lookups, a
fact that may be correct for other systems as well.

Note that signature based mechanisms are ideal for DDoS mitigation but specific
attacks might require additional effort (i.e. state information); a typical example are

TCP SYN attacks. Though not impossible to create stateless signature profiles for

132

malicious TCP traffic, typically some state information needs to be maintained. DDoS
detection and mitigation services, stateless or stateful, can be offloaded within
programmable middleboxes, protecting valuable resources in firewalls, routers and
hosts. To that end, as another extension we envisage a multi-tier architecture for cyber
defense that (i) rapidly identifies and localizes an anomaly, correlating data from
multiple devices, (ii) on-demand inspects malicious traffic to identify the attack vector
and the victim and (iii) creates filters tailored to the specific attack vector, preferably
not reliant on easily spoofed source IPs. This approach can be integrated on top of
interdomain federations powered by Distributed Ledger Technologies or within NFV
environments. Federated members and users can provide XDP programs to be deployed

across network paths or slices for monitoring and filtering purposes.

133

9 Publications

M. Dimolianis, A. Pavlidis, V. Maglaris, "A Network Traffic Classification and Attack
Mitigation Schema based on Programmable Data Planes”, IEEE Transactions on
Network and Service Management, 2020 (under review)

A. Pavlidis, M. Dimolianis, K. Giotis, L. Anagnostou, N. Kostopoulos, T. Tsigkritis, 1.
Kotinas, D. Kalogeras, V. Maglaris "Orchestrating DDoS Mitigation via Blockchain-
based Network Provider Collaborations”, The Knowledge Engineering Review, 35, €16,
2020. doi:10.1017/S0269888920000259

M. Dimolianis, A. Pavlidis, V. Maglaris, "A Multi-Feature DDoS Detection Schema on
P4 Hardware", in Proc. of the 23rd IEEE Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN), 2020

N. Kostopoulos, A. Pavlidis, M. Dimolianis, D. Kalogeras, V. Maglaris, "A Privacy-
Preserving Schema for the Detection and Collaborative Mitigation of DNS Water
Torture Attacks in Cloud Infrastructures”, in Proc. of the 8th IEEE International
Conference on Cloud Networking (CloudNet), 2019

A. Pavlidis, M. Dimolianis, D. Kalogeras, V. Maglaris, "Automated Distribution of
Access Control Rules in Defense Layers of an Enterprise Network", in Proc. of the 16th
IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019

M. Dimolianis, A. Pavlidis, D. Kalogeras, V. Maglaris, "Mitigation of Multi-vector
Network Attacks via Orchestration of Distributed Rule Placement”, in Proc. of the 16th
IFIP/IEEE Symposium on Integrated Network and Service Management (1IM), 2019

K. Giotis, A. Pavlidis, L. Anagnostou, M. Dimolianis, T. Tsigkritis, D. Kalogeras, N.
Kostopoulos, I. Kotinas, V. Maglaris, "Blockchain-based Federation of Network
Providers for Collaborative DDoS Mitigation", 3rd Symposium on Distributed Ledger
Technology, 2018

A. Pavlidis, G. Sotiropoulos, K. Giotis, D. Kalogeras and V. Maglaris, "NFV-compliant
Traffic Monitoring and Anomaly Detection based on Dispersed Vantage Points in
Shared Network Infrastructures,” in Proc. of the 4th IEEE Conference on Network
Softwarization (NetSoft), 2018

P. L. Ventre, J. Ortiz, A. Mendiola, C. Fernandez, A. Pavlidis, P. Sharma, S.
Buscaglione, K.Stamos, A. Sevasti, D. Whittaker, "Deploying SDN in GEANT
production network”, in Proc. of the 3rd IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2017

134

10 Extended Abstract in Greek — Exktetapévn Ilepiinyn oto
EAnvika

H oApotodng avénon g toydumntag €vpuloviK®V GLVOEGE®MY Kol TOL aplOpov
Ol0IoVVOEOEUEVMY GLOKELAV €xovv TPpoKaAéoel pulikég alhayég ot Asttovpyio
VIOAOYIOTIKOV Kol OIKTLOK®MV DTOOOUDV. XYETIKEG TEXVOAOYIEG TTOV YPNCLOTOLOVVTOL
aPOpovV TNV OVTOUATOTOINGY EPYAUCIOV HEG® AOYICUIKOV, TN SUVOUIKT TPOCUPLOYT|
OTIG EKAOCTOTE CLVONKEG KOl €V YEVEL UNYOVIGUOVS Yo, TOV PO TPOYPUUUATIGHO
GLOKELMOV Kot cuoTnudTey. Emnpocheta, Pacikd péinua stvor n cuveyng cuAloyn kot
enelepyooia dedopévav pe otodyxo v e€aymyn yvoong (analytics) xoabog ot v

npoctacio and KuPepvoembEcels.

H éykapn kol amoteAeopatikn aviyveuorn Kot ovIYETOMoN embécewv givar medio
Cotkng onuociog yw v OpoAn Aettovpyia tov Owtdmv. Ewdikodtepa, cOyypoveg
TPOKTIKEG YPNOYOTOOVV TIS OopYLTEKTOVIKEG Aktomv Opldpevov amd Aoyiopikd
(Software-Defined Networking - SDN) kot Ewovikomoinong Aktvokdv Agitovpytdv
(Network Function Virtualization - NFV). Ot apyitektovikég avtég mapéyovv ™
SUVOTOTNTO LAOTOINGONG EVEMKTMV Kol KAMOKAOGU®OV UNYXOVICUOV Yot TNV Kot

amoitnon aviyvevon Kol aVIHETOTION LAlIK®OV ETEPOYEVAV EMBECEWV.

H évOnon tov dwrtdov SDN tovtiotnke pe 10 mpowtoxkorro OpenFlow. Kvpio
YOPOKINPIOTIKO TOLG glvarl 1M O1dkpion tov eminedo ehéyyov (control plane) amd TO
eninedo npodOnong dedopévarv (data/forwarding plane). Q¢ e€€MEn tov Sty SDN
kot tov OpenFlow, m 01€0viic epevvnTikny kowvOTTOL TPOTEIVEL TNV AVATTLEN
TPOYPAUUATICOUEVOV GLOKELOV enesepyaciag kot TpomOnong makétmv (Programmable
Data Planes) pe kopro exppacty m yAdooa P4 (Programming Protocol-Independent

Packet Processors).

[Mopdiinia pe ™ yAdooa P4, daitepn dvOnom €xovv kot GALEG OYETIKES TEXVOLOYiES
OV TPOGPEPOVY EVEMKT TPODON O™ Ko EMEEEPYNTIN TAKETOV GE LYNAEG TOVTNTEG.
Avtég o1 Moelg Pacilovrar cuvnBmg oto Asttovpyikd GNU/Linux kot peETO@EPOLY TO
mokéto amevbeiog amd TV KAPTO OIKTOOL OTNV EPOPUOYN, TOUPUKAUTTOVINS TIG
Aertovpyleg tov moprva (kernel-bypass). Evdewrtikd, avagépoope to Data Plane
Development Kit (DPDK) kot to PF RING. M gvolhoaktiky Abon eivon to XDP
(eXpress Data Path), to omoio emitpénel v ektédeon «mpoypoupdtovy encEepyaciog

evtog tov kernel, aALd og yapnAd eninedo (0dnyolg diktvak®v kaptdv). To XDP 1on

135

ypnowyonoleiton o€ epapuoyés E&iooppodmnong doprov, ZVoTNUATOV
Aviyvevong/Amotponnig EwofoAng, kar Amdppiyng Kaxopfoving Kivnong. Avtéc ot
AMOGEC amokTohV aKOue UEYOAVTEPT onpacia vwod 1o mpicpa tov NFV, xabnhg ot
dkTvokéG Aettovpyieg Paciloviav Tapadostakd ce E01KO EEOTAICUO VYNAOD KOGTOVG.
[TAéov eivar Waitepa cVVNOICUEVO, OIKOVOLIKG TTPOCITEC GUOKEVEG YEVIKOD GKOTOL
(Commercial off-the-shelf - COTS Hardware) vo vrootpilovv dtdpopeg TEXVIKES Yiol

YPNYOPN TPOodON o™ Ko ETEEEPYACIO TOKETWV.

Ot oOyypoveg teYVOAOYiEG £xovv OMMOVPYNOEL VEEG OLVOTOTNTEG Yo TNV
mapakolovdnomn, aviyvevon kol aviipetomion emnBécewv ol omoieg eamAdvoviat
paydaio Kupiowg Ady®m Tov TANOOVE TV S10GVVIEIEUEVOV CLUGKEVMV KOl TOV KEVMV
acpaleiag mov mapovcstalovy. XapoKTnPloTiKa Topadelypato Tov TapeABOVTOC
apopov dvchedpnteg og KAipaka embéoelg dvo tov 1 Terabit/devteporento (Github,
Dyn). Aveloptitog av mpokeltal Yoo pepovouévec M polikég evépyeleg, ot
KuPepvoeniféoelg cuVNO®G aTOGKOTOVV GE: OMMOAEL OESOUEVAOV, LOAVVOT] GUOGKELMOV
Y. LEALOVTIKT] GUUUETOYN TOVG GE €MOEGEIS 1)/KOL GTNV TOPUAKDOAVCT TOPEXOUEVOV
vimpeowov (Katavepnpuéveg Embéoeic Apvnong IMapoyng Ymanpeoiog - Distributed
Denial of Service Attacks / DDoS). Ewdwkotepa ot emibféocic DDoS mpoomabodv va
TANUpVpicovy diktvakoVg mOpovg (my. Levéel) M/Kol Vo KATOGTATOANGOVV
VIOAOYIGTIKOVG TOPOVE O€ GLOKEVES (T, OpopHoAOYNTEG, eEumnpemTés) HECM
KatdAANAL KataoKkevacuévoy unvopdtov. Ev yévet, ot embéosig DDoS ta&ivopovvran
oe (1) dykov (volumetric), (2) mpotokdArov (protocol) kat (3) epappoyng (application)
ol omoieg avtiotorya mpoomaBobv va mAnEovv (ebEelg, LTOAOYIOTIKODG TOPOLS Kot
EQUPLOYEGS.

AmoxopVoopo Tov chyypovev emBEcemy eival ol Tavtdypoveg etepoyevelg embéoelg
(multi-vector) mov cvvévalovv ddpopeg embécelg dnuovpydvtas (1) dvokorior otV
aviyvevon empéPOVg cLVICTOoOV H/Kol (2) dnuovpydvioag peydio Oyko Kivhonc.
[d1aitepo evdlapépov Tapovotdletl kot 1 davOnon mhateopumv (Booters & Stressers) mov

TPOYUOTOTOOVV eMBECELS KOT' omodtnomn £vavtl ONUOVTIKG UIKPNG YPMUOTIKNG
apotpng.

INUOVTIKEG TPOKANGELS Kot THOVA TPOPANLOTA TOV UNYOVIGUAOV AUVvag ivor:

e Amodotikn efaywmyn kot emeEepyacia dedouévav kivnong: Ot pnyovicpol

aviyvevong emBécewv Kol OKTLOK®V ovouoMoav cuvibog Pacilovior o€

136

delypoto makétov kot opodomomuéves diktvakés poég (flow records). Avta
e€dyovior amd TIC OIKTLOKEG GLOKEVLEG KOl amocTéAAoviol o€ Eeymplotd
ovotiuata emneepyosiog. Ot oyetikol alyopifuol kabdc kol To vIwoKeipeva
GLOTAHOTO TPENEL VO, UTOPOVV VoL avTameEEADOVY GTIV TLUKVI Kol GUVEYY] Pon
OedOUEVMV SIKTLOKNG KIVNoNG, XOPIg VoL DOTEPOVV GE EVKPIVELX KoL akpiBELa.

‘Eévmvn yprion auuvtikdv mopwv Yo, ovtwetomion embéoswv: H

OTOTELECUATIKY] OVTIUETMOMION ETEPOYEVAOV emBECE®V amortel KOTAAANAN
a&lonoinon 6Awv TV dabéciumy Topmv (). dpoporoyntés, petaywyeigc SDN
Kot e&ummpemTéc). QoTdG0 01 emBécels vepPaivouy T duvatdTNTEG TOV KAOE
OKTOOV TPpoKaAdVTaG TpoPAnpata oe (ev&elc Kot evoldpeso cvotiurota. H mo
ocovnOwopévn Avon eivar M avakotedBovon g kivnomg oTo «KEVO»
(Blackholing) péom d14600mg KotdAANA®v avakowvdoewyv BGP. Qotdco, 1
TpocEyylon autny odnyel omv andppiyn kol TG KaAOPovAng Kivnong mov
ocuvbog eivar o otdxog g emiBeong. EvaAlaktikd, cvvepyaldueva odiktoa
pmopotv va artnfodv kot va Adfovv fonbeia Yo TV GLALOYIKY] AVTLETOTION
¢ emifeong. Baowd mpoPfAnuato tg mboving cvvepyaciag apopodv v
EMAEWYT] KOTAAANA®V KIVIITPOV KO UNXOVIGUAOV EMKOWVOVING LETAED ETAip®V.

2uvnlelg mePLopiopol apuvVTIKOV pnyovicpudv: Ot vadpyovteg UNYOVIGHOT

aviyvevong kot avTipetdniong kuPepvoenifécewv Pacilovtan gite 6e KAEIOTEG
AMOGELG TPOCPEPOEVES MG PLGIKT/EIKOVIKT) GUOKELN EITE GE LITOSOUES/ TAPOYOVG
vanpectov avtipetomiong embéoewv (DDoS Protection Service Providers).
Xmv mpotn TEPinTon ypnolonoleiton eEEOIKEVUEVOS EEOTAICUOG HE TIC
avtiotoryeg epumopikés adeeg. Tavtdypova, ot SLVOTOTNTEG TPOYPOLUATIGHLOD
YU OVTEG TIG CLOKEVEG €IVl TAPASOCIOK(A TEPLOPIGUEVES Kol EEAPTAOUEVES AT
TOV €KOOTOTE KOTOOKELOOTH. XVVETMOC ONpovpyovvtol povoMBikég AVGELS,
VYNAOL KOGTOVLG Kot TEPOPICUEVNG eveMElaG, ME TEAMKO OmOTEAEGUO TNV
TPOCKOAANGN G GLYKEKPUEVOL TOOV £E£0MAIGUO Kol KoTaokevootn (vendor
lock-in). Ot Tapoyor vInpecIdOV omd TV GAAN TAELPE avoakateLHHVOLY OAN TNV
Kkivnon mpog 10 OO otV VIOdouUn Tovg, OOV eVTOMILETOL KOl PIATPAPETOL M|
enifeon evd 1 kaAOPovAN kivon emoTpEPEl 6TO emMyePNolokd OlkTvo. Ot
unyoavicpol awtoi cuvnB®g elcaydyovy KaBLGTEPTON TPOG TOV TEAIKO OMOOEKTN
Kot emiong eyeipovv TPOPANUATICUOVS ®C TPOS TNV WIOTIKOTNTO KOl TO

amOPPNTO TOV EMKOIVOVIDV.

137

H mopovca dwdaktopikn dwotpiPr] peretd peboddove cvAloyng dedopévmv, aviyvevong
Kot (GLVEPYOTIKNG) OVTILETOTIONG KLUPEPVOETIOEGEWV IE EUPACT] O KOTAVEUNUEVES
embéoelg apvnong mapoyng vanpecioc. Emmpdcoberta, diepevvarvion teyvoroyieg yio Tov
TPOYPOUUOTIGUO TOL EMUTEOOV OEOOUEVOV TOV OIKTLOK®OV GLOKEL®V KAOMG Kol TOV
EleyYo TOVG HECH AOYIOUIKOV, HE OTOYXO TNV ONUIOLPYID OUTOUATOTOUUEVMV

VINPECLOV AGPAAELNG KOl GLAAOYNG OEdOUEVOV.

H xipra cvvelspopd ¢ epyosciog umopel vo ympiotel o€ T€00EPLS OUKPITONG OAAL OYL

aveEdptnrovg dEoveg, o1 0moiotl avTIeTOLOVV oTa Ke@diara 3, 4, 5, 6 kan 7. Xvvomtikd:

o To kepahorwa 3, 4 acyorlobvtorl pe PUNYOVICHOVS GLAAOYNG Kot emeepyaciog
0edoEVOV KUPIMGS Y10 aviyVELON SIKTLOKADV OVOUOMOV Kol EMBECEDV. APy KA
npooceyyileton 1o 0épo péow ocuvnoUEVOV UNYOVIGU®OV GLAAOYNG Kol
enefepyaciag OEOOUEVMV. XTNV GLVEXEWL UEAETOVTOL OLVOTOTNTES TV
OIKTLAK®MV GLOCKELAOV Yo Kataveunuévn enegepyacio Kot aviyvevon embécemv.

e To «kepdroro 5 eotdlet oMV OVTOUOTOTONUEVY] OVTULETAOTION
KuPepvoemiBécev pe PAon OOYEPIOTIKEG TOMTIKEG KOl TOVS €KAGTOTE
TEPLOPIopoDS (VAIKO/AOYIGHIKO) TV cvokev®v. Emiong diepguvaviol teyvikég
YL TNV UETAPPOCT] OPOLPETIKMY 0OMNYLOV GE EOIKOVG KOVOVEG KaBmG Kot TV
OLTOUOTOTOMUEVT] OLOVOUT] TOUG UECE® KOTAAANA®WV OlEMOQAOV Kol
TPOTOKOAAWV.

o To kepdrowo 6 emekteivel TNV TPOCEYYIGN TOV TPONYOVUEVOL KEPAAAIOV GE
TOAMOTALG OOXEPIOTIKEG TEPLOYEG LG TNV HOPEN €VOC OUOGTOVOOL
TEPPAAAOVTOC V1oL TAPOYOVS OIKTLOK®MV VLINPECIAV. ZNUOVIIKO TAEOVEKTNLOL
elvar m Tpootacio Tov (eHEEMV KOOMG Kol TOV GYETIKMOV OLLVTIKMOV UNYUVIGUOV.

e To kepdrowo 7 mnydler omd INTMUOTA TOL TPOEKLYOV GE TPONYOVUEVO
KePdAao Kot cuVOLALEL OOPOPETIKEG TEYVOLOYIES G €vav OAOKANPOUEVO KoL
EVEMKTO UNYOVICHO OVO EMITES®V Ylo. TNV OMOdOTIKY aviyvevon Kot

OVTILETOTION EMOEGEDV.

Avolvovtag pe peyoAvtepn Aemtopépeln, To kePdAao 3 eotidlel oe vanpeocieg

GLALOYTG Ko emegepyaciog 0ed0UEVOV OIKTLOKNG KIVIONG, Ol OTOlEg TPOCPEPOVTOL GE

xpNoTeG (evoikovg kol SLYEPIOTES) KOWVAV OIKTLOK®OV vmodopmv. Kdabe dwktvaxn

OLOKEVY] amoteAel ev duvauel éva dakpitd onueio emomteiag (vantage point) pe

dvvotdtTo Topatnpnong kKot eEaymyng OedopEVOV OPOPETIKNG evukpivelng. H

avdAvon Tov dedopévov, €ite aVTA OEOPOVV GCULYKEKPLUEVOLS YPNOTES E€ITE TOLG
138

OLYELPIOTEG TNG VITOGOUNG, UTOPEL VO EVIGYVGEL TNV IKOVOTITO OVIYVELGNG KEVIPIKMV 1|

TOTIKA EGTIOCUEVAOV VO UMDV Kol EMOEGEDV.

Avtd yivetor eUQOVESTEPO OV OVOAOYIOTEL KavelG TN OLNCTPOUATOCT TOL
ToPoVCALovV TOCO TAPUOOGLOKA EMLYEPNOLOKA OIKTVO OGO KOl LOVIEPVEC VTTOOOUES
VIOAOYIOTIKOV VEQOV. AVOAdYmg Tov pOAO NG, M KAOe cuokeLvn €YEl SLOPOPETIKY
OTTIKN OC TPOG TNV OIKTLOKN Kivnon. Avtd evioyletol pe TG cLVNOEIS TPOUKTIKES
detypotoAnyiog tng Kivnong katd TV GLAAOYN OedopEVOV (SelyHoTO TOKETOV KOl
OUOOOTOMUEVEG POEG) TOL epapuoloviol cuvnBme pe oTOYO TNV OTOPOPTION TV

KEVTIPIKA TOTODETNUEVOV SIKTVAKMV GUGKELDOV.

[evikdg, ot teyvoloyieg yuoo TNV emelepyacio LEYAAOL OYKOL OEJOUEVOV OTMOC OVPES
umvopdtov (my. Apache Kafka) old kot katdAAnAec omoOnkevTikéG SOUEC
YPNOOTOOVVTOL EKTEVMDS GE TAPAYOYIKE oiktva. Qotd60, 01 GYETIKEG AVOCELS
Bacilovtar eyyevg o€ mOpadOCIOKA TPOTOKOALD KOL TEYVIKEG YOl TNV OTOGTOAN
dedopévov ot avtictoyo cvotiuata. [TiBavoi mpoPAnuatiopol eivor 1 petmpévn
axpifela Adym derypatoAnyiog, ot amortovpevol mopot yuo v emnegepyacio LeyaAov
OYKOL OEOOUEVMV KOl Ol OVAYKES YL GLVEXT TANPOQOpia (.. GLYVA EPOTALATO GE
amoOnkevtikég dopéc). Evailaktikn mpocseyyion 6cov apopd TG emBECELS, LmTopovv va
OTOTEAEGOVV UNYAVICUOT Y10 TOV TPOYPOUUOTIGUO TOV OIKTLOK®OV GLGKEL®V oL Oa

LELOGOVY TOV YPOVO aVIXVELOTG KOL KOT® EMEKTOCT) OVTIOPOONG.

2g VT TN AOYIKT, TopoVGaleTon 6T0 KeEPAAao 4 Evag unyaviopdg yio Ty aviyvevon
embéoewv o€ TPOYPOUUUOTILONEVEG OIKTVOKES GLOKEVEG. O TPOTEIVOUEVOS UNYOAVIGHLOG
Otevepyel amAovg oAAG OMOTEAECUATIKODG OTATIGTIKOVS LIOAOYIGHOVG HE YPNON TNG
yhoooag P4 ywo v aviyvevon emBécewv DDOS. Enpoviucd mheovektipoto eivor M
dueon aviyvevorn embBéoemv yopig v mopéupocn e£MTEPIKOV CLOTNUATOV Kol M
GLECT] OTOGTOAN] EI00TOGEMV Y10 TEPETOIP® EVEPYELEG. ZVVOTTIKA, O pnyoviopos: (1)
nmapakorlovdel v kivnon kot Swotnpel UETPIKEG OUOAOOTOMUEVEG GE OLOPOPETIKA
emimeda evkpivelag (m.y. vl TPOCTOTEVOUEVO VTOOIKTLO) — Ol HETPIKES OQPOPOVV
HOVOdIKEG poéc Kot acvupetpio kivnong, (2) cvykpivel TIg HETPIKES aVTEG HE TYEG
avoeopdg (katdeia) kat (3) mopodotel unvopaTe Kivddvov o€ TEPITT®OT Tov OAES Ol
UETPIKEG TTOPpaPLdcovy Ta avTioToy o KaTOeALd. Avti N dtodikocio oyeTileTon Auesa e
TNV TPOGEYYIoT TOV KEPOANIOV 3, KOOMOC eMTPETEL TNV AVTOVOUN EKTEAEGT aAyOPIOUWV
o€ O1POPEG GUOKEVEC — ONUELN ETOTTEIOG — [LE GTOYO TNV KOTAVEUNLEVT] KOl GUAAOYIKY|
aviyvevon g emibeong.

139

O unyovioude a&oroyndnke oe vakod (kdpteg Netronome SmartNIC) ¢ mpog v
akpifela Kot TV KavOTNTO TPOMONONG TOKETOV. TVYKEKPUEVA, OPEVOC GUYKPIVOLLE
™mv akpifela Tov pPNyovicpol Yoo SpopeTIkd peyeédn embéoewv Kabmg Kot yio dvo
OLLPOPETIKOVG TPOTOVE AElTovpYiog — HE N Yopig ypnon ovuuetpiog kivnong ocav
petpkn. Ta amotehéspota delyvouy TS 0 UNYOVIGHOS Tapovctldlel PeAtimon wg Tpog
™V axpifelo pe TV ¥PNoN NG GLUUETPIOG, 10IMG Yo TUTIKEG Kot peydleg embBéoers.
Aetépov, mapovctdletal 1 EXIMTOON TOL EYEL 1 YPNOT TNG EKACTOTE UETPIKNG OTNV
KavOTNTO TOV pNnyoviopob vo tpowbel kot va petpast mokéta. [Hapammpodue mog n
Owdkacio GLAAOYNG OedOUEVOV VOTEPEL TNG TPodbnone, OmAadr oL HETPNOELS
TPOVCIALoVY YOUNAOTEPES TWES amd TIG TPAYHOTIKEG. AVTO opeiletal oe OEpota
vAomoinong tov «kataympntov» (registers) tov P4 oty cuykekpiuévi GLoKELT Kat
€101KOTEPA, 6TOV Pafud mOL UTMOPEGALE VO TO OGTOVPDOGOVUE, GTNV TOVTOXPOVT|
npooméhacn Bécewv uvung amd mopaAAnieg diepyaciec. Avtd odnyel kol o puo
YEVIKOTEPN TOPATAPNON TG 1 VIOKEIPEVN LAomoinon mailel onuaviikd polo Kot
e€aptdtar oxeddV AMOKAEIGTIKA OO TOV KOTOGKELAOTH MapOTLt 10 P4 amotedel pia

EVOTIOMNUEVT] YADOOO TPOYPUUUOTIOUOD aveEAPTATOG VAKOV («otdyov» — target).

2UVOAIKA, aE100MUEIMTO Elval TOG AKOUO KOl LE KAPTES GYETIKA UIKPOV KOGTOVG NTOV
€QIKTO VO, VAOTOMGOVUE Evay pUNYovIGHd Tov va umopel va avtamokplfel o tumikég
TOYOTNTEG UG TANP®OG YPNOCWLOTOWOVUEVNG YPOUUNS (2 exoToppvplo
nokéTo/devtepdiento ota 10 Gigabit). Eivar avopevopevo cuokevéc pe peyaldtepeg
dvvatomteg my. petaywyeic ko FPGAS, va pmopovv vo avtameEEABovv oe akoOua

VYNAOTEPEG TAYVTNTEG.

Onwg &yl avapepbel, n aviyvevon eivar éva amd T TPMOTO GTAOD TOV OUVVTIKOV
UNYOVIGU®V. ZTNV GUVEXELL, 1 SotpiPr] AoYOAEITOL [LE TEYVIKES Y10 TNV OTOTEAEGLLOTIKN
AVTILETOTION emBécemV. X0 KePAAao S5, mapovotdletar évag pnyavicpdg yuo v
amoKOTY €TEPOYEVOV emBécemv peyding kAipakag (multi-vector attacks). O otoy0g
elval 1 EVEMKTN KOL GUVOMK(OITOOOTIKOTEPTN OVTIILETAOTION TNG KAKOPOLANG Kivnong
avaBETovVTag KOvOVeS GE OPOPES CLOKEVEG KOTA UNKOG TOL {yvoug g emiBeonc. H
avdBeon povieAomoleitol cav £va GLVOLAGTIKO TPOPANLA PEATIGTOTOINGONG AKEPOLOV
npoypappoticpov. Edwkotepa, avtikeipeva (yevikol kavoveg) avatibevtal oe KAOOVG
(ocvokevEG OPOSOTOMUEVES GE OTASIOL AULVOG) HE OTOYXO TNV PEATIOTOTOINGT KATOL0G
oLVAPTNONG KEPOOVG VTG GLYKEKPIUEVOVG TEPLOPIGHOVS. To kEPSOG TPOKLITEL AUECH

Ao OLAYEIPLOTIKEG TOALTIKES TOV VITOOEIKVVOVV THV OMOKOTT GUYKEKPIUEVOV EMOEGEDV

140

Kol TOV avtioToly®wv KokOBovlmv podv, ce kdmoto otado auvvag. Ot mepropiopol
emnpealovtol Gpeco amd TNV YOPNTIKOTNTO TV SIKTVOK®V CLUGKELMV T.Y. TOGES
gyypapéc vrootnpilet to hardware. I'evik®dg, o1 aAyop1Ouol aKEPUIOD TPOYPOUUATIGHOD
yopaxtnpifovior omd ovENuévn VITOAOYIOTIKY] ToAvmAokotnta. I[loapoia avtd otnv
nepintowon pag 1o TpdPAnua mpoceyyiletan te TEYVIKESG GUUTVIKVOONG TOV OVTIKEUEVOV
pog avabeon (m.y. polikn avébeon podv tov id1ov THTOL) Yo TV peimon g 10650V

KoL TNV €0PECT AVONG G€ AOYIKA YPOVIKE TAAIGLA.

Baowd koppdtt g mpoTeElvOUEVNC OPYLITEKTOVIKNG €ival emiong m HETAQPOOT Kol
TEMKN SLOVOUT| TOV KAVOVOV OTI cLOKEVEG. o avtd 10 okomd e€etdlovTol TEXVIKES
pécm eleyktdv SDN aAld Kol GYETIKAOV UNYOVIGU®V Y10, SIKTVOKY OVTOUOTOTOINOT).
Apywad ypnopomombnke o eieyktng SDN Ryu, o omolog vmoomnpiler oidpopa
TpOTOKOAQ dtaxeipiong 6mwg BGP kot OpenFlow. Qg evolloktiky diepguviOnke to
Salt, por NUOPING TAATEOPUE GYESIAGUEVT Y10 TAVTOXPOVT dlaxeiplon TOAAUTAGDY
CLOKELMV UECH KOTAAANA®V OETOPOV, TPOTOKOAA®V OAAL KOl EYKATEGTNUEVOL
AOYIOUIKOV €VTOG TV cvokev®v (omaving). Tétoleg Aboelc mapovoidlovv 1dtaitepo
evolapépov KaBdS vAomowoOv éva emimedo aQoipeons mPOg TS EPAPUOYES VD
TOVTOYPOVE. TPOGOPUOLOVTOL OTIG OMOITNOELS KOl 1OUTEPOTNTES TOV EKAGTOTE
OIKTLOKOV ovoKeLV®V. Ev yével, amoteAodv TOV GLVOETIKO Kpiko avdpeco o€
OLYELPIOTEG SIKTVMV KOl KATOOKEVAGTEG GUCKEVMV TPOSPEPOVTAG EVEMEID Kot TOAAES

SLVATOTNTES Y10 AV TOUOTOTOINOT).

Xe TEPMTMOOELG EMBEGEDMV PEYOIANG KALOKOG, EVOEXOUEVMG OEV ETAPKOVV Ol TAPOTAV®
unyaviopoi ot omoiot Agrtovpyodv 610 TANIGIO MG OKTLOKNG meployns. [lboava
mpofAnpata kol teplopicpol oyetilovion pe TNV EAAELYN OULVTIKOV TOP®V KaBdG Kot
TNV VIEPPOPTOCT)/KOPEGHO TV eEMTEPIKAOV (eVEE®V. TVUVENMDC 1 ATOKOTY Ogv gival
EQPIKTN €VTOG TOL SIKTVOL TOV OYETOL TNV EMIBECT KO ATOKTA VONUA 1] OVTLILETOTION

TV emBEcewv 6€ cuvepyasio Le TPITES OAXEPIOTIKEG OVTOTNTEG.

Amotpentikol Tapdyovteg yia TV cuvepyacia petacd opyavicudv cvuvibwg eivat: (1) n
EMAenymn gumotToovvng, (2) KatdAiniot unyovicpol avtaliayng TAnpogopidv kot (3) ta
nepropopéva kivnpa. Kovotopeg texvoroyieg Baciopéveg oe apyttekToviky] AAvGidmv
EmBeparopévov Zovorlrayodv (Blockchain), ol omoieg dvbicav pe v guedvion tomv
KPLTTOVOUICUATOV, TPOCPEPOLY OIPAVEID. TOV GUVOAAAYDV - OVOKOWVOGE®YV,
ATOKEVIPOUEVT, QDo KaOMG Kot pn dvvatdétnto dpvnong ovvoriayng (non
repudiation). Ta mapaTAvV® YOPOKTNPIOTIKE KOOIGTOOV TETOLEG TEXVOLOYIEG KATAAANAEG

141

Yoo T SpOPP®CN CLTOUATOTOMUEVEOV GUVEPYATIKOV GYNUATOV HeTald Eumotov

OUOGTOVO®V POPEWMV TTEPLOPILOVTOC TUYOV ATOTPENMTIKOVS TAPAYOVTES,.

Kot’ avtév tov tpdmo, n Tpocéyyion tov kepaAaiov S5 emekteivetal 6to Ke@dAao 6, TO
omoio eoTdlel 6€ £va GLVEPYATIKO GYNUO YO TNV GUAAOYIKN OVTILETOTION HOLIKOV
KuPepvoemiBéocmv. H apyrtektovikn| Baciletal og £va OHOGTOVIO GYNLO EUTICTOCVLVNG
petalh mapoYOV SIKTVAK®OV VINPECIOV KOl EVOMUOTOVEL EEVTVAL YMeLokd cupBoroto
(smart contracts) amotumouEva 6€ OAVGIOMTEG OOUEC GUVOAALYMV. ZNUEIDVETOL TOG
teyvoroyiec Blockchain dev amotedovv avTockomd Y10 TNV GUYKEKPIUEVT TPOCEYYIoN,
OAAG Evay «ETIONUO» KOl KOO 0modekTd SdlowAo emkowvmviog HETaED ETOip®V, Yo
TNV ONUOTOd0GI0, TOV GLVIOVIGHO KOl TNV EVOPYNOTP®CT TOV GLVEPYOTIKOV
pnyxoviopod apovas. Ta ocvpPoriota Koataypdeovtal, emiPefordvovtor amd TOVG
avticvpforridpevoug kot epappdlovtar avtopata. To dpehog dev cuvemndyston kot
avlykn v Odmopén KAmoov KPLTTOVOMIGUATOS OAAG €va €VPVUTEPO AVTOALUKTIKO
mhaiclo emPpaPfevong (T.y. HOVAdES EUMIGTOGVVNG) YO TV OO KOWOU OVTILETOTION

emOécemv.

H avéBeom koavovov amokonng 6Toug 0LOGTOVOOVS ETOIPOVS TPAYLLOTOTOLEITAL 0O TOV
OLLUVOLEVO LLE L TAPOAAOYT) TOVL aAYOPiOLOV TOV TOPOVCIACTNKE GTO KEPAAOLO 5. Xg
QLT TNV TEPIMTOON, PaciKo KpiTnplo givol n onpacio T eKEAGTOTE KOKOBOVANG poNng
OV OEGUEVETAL VO ATOKOWEL VOGS OLOGTOVIOG £TALPOG KOOMG KAt 1) 0E0MIGTIO TOV GE
mponyovpeva meplototikd. Ot oakpiPelg pnyoviopol yw v amokomn KokOBOovANg
kivnong eoptdviol amoKAEIGTIKA Omd TNV OLVATOTNTA KOl TEYVOYVAOGIO TOL KAOe
etaipov. Xwpig va glvarl 0eGHeEVTIKO, VAOTOMONKE TAOTIKA Evag UNYOVIGUOG OITOKOTNG

ayov (blacklist) oto mepipaiiov XDP.

INUEIOVETOL TMG, Ol TMEPIGCOTEPOL UNYOVIGHOL OVIYVELONG KOl OVIYUETOTICNG
emBécewv ypnoyonolovv oe kdmolo Pabud tig devbivoelg IP tov emtiBépevov
(kakoBovreg mYEQ). Apevog, To peydro mAnbog mymv dnpovpyel TpOPANUa KApaKOG
TOG0 KOTA TNV OVIIHETOMION OAAA Kol Katd TNV dtodikocio mapokolovdnong kot
dwmpnong osdopévav vy OAeg Tic myég (mBavEG AVCES: KATOVOUY TOPOV,
cuvepyacia, opadomoinon mymv). Aeetépov, ot TyES eitvar apueiPoOAov yvnolOTNTOG
kabmng KaxoBoviotr kouPor mAactoypapovv TV devbuvorn Ttove. Xe avtifemn
TEPIMTOON, 1 YVNAATION Kot omokonn Tovg Oa rav ardovotepn dwadikacio. QoT16c0,
Tapd TIG OYETIKEG TPOSTADEIEG, TO TPOPANUL TV yevdeniypapwv devbivoewv IP
eEaxorovbei va veiotatat.

142

Zav A0oT 61O TOPOTAVE, UTOPOVY VA ¥PNCLOTON000V KAVOTOUES TPOGEYYIGELS Yo
TOV TPOYPOUUATIOUO TOV EMTEIOL OEOOUEVOV HE OTOYO TNV OMovpyic ELEMKTOV
UNYOVICU®V, EWIKA TPOGOPUOCUEVOV GTOVG Oldpopovg TOmovg embécewv. 'Etot
@TAVOLLE Kol oToV TeEAeLTaio Oepatikd dEova g daTpPng, 0 omoiog amoTLITMVETL
ot0 keeaiowo 7. To kepdioo ovtd mnydler amd eumepieg Kot TPOPAN 0T
TPOTYOVUEV®V KEPOAI®V KOl TPOTEIVEL EVOV EVEMKTO UNYXOVIGUO dVO EMTESWOV Y1 TNV

tavounon kiviong oe KaAoBovAn 1 KakOBOLAN Kol TNV TEAIKT] ATOKOTY) TNC.

To mpdtO £MiNedO TPOGPEPEL Evay YPYOPO UNYOVIGUO OViXVELOTG/ OVOYyVMdPIoNG TNG
enifeong viomoleiton pécsm tov P4 unyovicpov mov mapovcstdletar oto kepdiawo 4. H
avayvoptlon Paciletol otig BOPEG TOV YPNOUOTOOVY GVYKEKPIUEVOL TUTOL EMOECEMV.
[Mopadetyparog xapv, diktvaxn Kivnon mov mpoépyetat (mmyn) amd v Bdpa 53, apopd
embéoelg peydlov Oykov oyetikég pe to Xvomua Ovopatodosiag Topéwv (Domain
Name System — DNS). Kotomv g avoyvdpione, evepyonoleitatl to dg0TePo Eminedo
Yo TNV AETTOUEPT) GLALOYN OEJOUEVMV KOl OTOKOTY| TNG KakOBOLANG Kivnong. Avto

Baciletar oe XDP mpoypdppato vAomompéva o€ Yevikod 6KOTOU SIKTVOKES OLETAPES.

H ocvAloyn dedopévov eotidletor Kuplog 68 YOUPOKTNPIOTIKES TIUEG TOV TTESIWOV TOV
TOKETOV, KATOANAQ emAeyUEveg avirloyo pe tov tomo ¢ enifeone. Metd amd v
GLAAOYN, TO 0€dOUEVO amOCTEALOVTOL opadomompéva (Le PBdon T dve Tiég) mTpog
TavOUNoT GE GLGTHUOTO OV YPNCUYOTOOVV HEBOSOVS EMPAETOUEVNC UNYOVIKNG
padnong (supervised Machine Learning). Ta opodomompéva otoleion oV
ta&vopovvtol ©¢ KaKOPOLAW, OTOTEAOVV GUVOTTIKEG TEPLYPAPES KOKOBOVLANG Kiviong
Ko eykafiotavrol dvvopkd oe tpoypappatiiopeva eidtpoa XDP pe otdéyo v dueon

ATOKOTN EMOEGEWV.

H &1d0mo16¢ drapopd e cuvaen cvotiuota givar 6tt o facilopacte oe devbivoelg IP
vy tawounon kot amokonmn emiBéoewv. o v oaxpifewa, mpoomabodue vo pnv
YPNOUOTOL0VE KABOAOV TETOLN TANPOPOPIN, TOPAKAUTTOVTOG TOAVAS WYEVOETLYPAPES
devbuvoelc. H mpocéyyion anydalet omd v vobeon nog embéoelg dykov (volumetric)
mov Pacilovtar oto mpwtoékoArlo UDP, expetaiiedovrar evaicOnta cvotiuoto pe
mpoPAéyipo tpémo. ‘Etotl, m kivnon pmopel va aglohoynfel and éva oyxetikd pikpo
TAN00¢ YapakTPLoTIKOV Yvopispudtov. H apyikn viomoinon eotialel oe embécelg pe
Bdaon to DNS mo1660 0 1010 pnyoviopog pmopet va emextadel Kol oe GALOVG TOTOVG

embécemv.

143

Ewwotepa yio v ta&vounon, ypnoponotodpe tov adyopiduo Random Forest. ITapd
TaTo 1 OadtKacio Oev eival AUESH GUVOEdEUEVT e KAmolo cuykekpluévn nébodo. T
TIC aVAYKES TNG MEPAUATIKNG aSl0A0YNoNG YpNoomoOnKay deS0UEVO TPAYIATIKNG
kivnong amd mopeAbovtikég embécels aAld Kot KOAOPOVANG Kiviion amd TPOyHOTIKA

neppdAlovroa.

Q¢ amotéheopo NG a&OAOYNONG, TPOKLITOVV EVOLAPEPOVTIO OMOTEAECUOTO KO
ovunepdoparto. Ievikog, n tagvounon uéom Random Forest amodeikvieton eEoupetikd
axping, pe Vv mpodmdOeon OTL Ta OEVTIPA £YOVV EKTALOEVTEL UE AVIUTPOCHOTEVTIKO
delypa dedopévmy. Ze SopOPETIKN TEPITTMON, T.Y. VEEG EMBETELC, elval apKeETA TOAVO
Vo UV aviyveutel cwotd 1 enifeon. QQoT1060, 01 S1aYEPIOTEG UTOPOVV VO, EKTOLOEVCOVY
oe peydro Pabud tétoa poviéla g mpog v kaAdfovin kivnon. ‘Etor mbavortato Oa
peTplaotodv ot yevdmg Betikég (False Positives) ta&wvounceig mov o odnynoovv oe
ammAEln KaAOBoVANG Kivnong. [dtaitepo evolapépov Tapovctdlel emiong 1 avaKOKAMON)
TOV TEPLYPAPDV/VTOYPAPDV OO TOVG EMTIOEUEVOVG. XAPAKTNPIOTIKE OVAPEPETOL TMG
10 TNOOC TOV HOVOOIK®V TEPLYPAP®V GE GUYKPIOT HE TIG OVIIOTOWES TNYEG

evBvvoelc IP) mapovcialet peimon and 86% péxpt 99%.
(S18v00 IP) j i 5 86% péxpt 99%

Avtd amoktd peyolvtepn Papvtnta ota mepauato emxidoong (throughput), to omoia
delyvouv wg o1 vAomomoelg o XDP enmpedlovtar mepiocdtepo and 10 mANHog TV
otolelov mov amoBnkevovv ce dopég PUVAUNG, Tapd amd emumpOcOETEC EVEPYELES
oxeTiKd pe avhyvoon emkepoiidov. 'Etcl, ov mpotewvdpevor unyovicpol eiyov
160UV Kol KAAVTEPT EMIO0ON amd avtioToryovg mov Pacilovion otig oevbiveelg IP
tov emtiféuevav. H enidoon npaypatorombnke t6co v eEaywyn dedopévmv 0G0 Kot
TNV OMOKOTY| EMOECEDMV KOl TO AMOTEAEGUOTO ATOSIOOVTIOL GTIC CNUAVTIKE AydTEPES

LOVOSIKEG TTEPLYPAPES TAKETMV GE GXECN UE TO TANOOG TOV TNYDV.

Ta mponyovpeva keedhiowo e&epevvodv 10 @avolLeEVO TV KuPepvoemiBécewv amd
OLAPOPES OMTIKES YWVieg, OTOV KAOE [TOPOVGLALEL EVOLOPEPOVGES 1O1OUTEPOTNTES KO

OVOKOAIEG. ZVVETMDC, GTI CLVEYELD AvAPEPOVTOL TIOOVEC LEAALOVTIKEG EMEKTACELS.

EeKvdvTog amd To TeEAeLTAio KEPAAAL0, evolapépov Ba mapovsiale o EKTEVIG LEAETN
Unyoviopmv oviyvevong embécewv kot tagvounong g kivnong, eotidlovtag oe
oVYxpovovg TOmovg embécewv. Katd mhoo mbovomnta o kdbe tOmog pmopel vo
ypedletan eEedkevpévn HeAET Kot PEATIOTONOINON TOV TOPOUETPOV Y10, TOVG

GYETIKOVG OAYOPLOLOVG, .. UNXAVIKY LAONGOT), AVAALGT YPOVOCELP®V 1/KOL GTATICTIKA

144

povtéda. ‘Eva oyetkd mpdPfAnuo elvar m onuovtikd mepopiopévn mpdcPaocrn oe
TpoypoTikd dedopéva kupimg yoo AGYOLS TTPOCTOGIOG TPOCOMIKAOV OeS0UEVOV KOt
amoppntov emikowovioc. Ilapadociakd, TéTOlEg KATAOTACELS OVTIUETOTILOVTAL LE
TEXVIKEC OVOVOLOTOINONG TV 01eV00vVeewV IP Ko TEPIKOMNG TOV TOKET®V OGTE VO UNV
epEyovv VYOV gvaicnteg minpopopies. Evalloktikd, o S10101paGHOC GTOTICTIKMOV
otolyelov ¢ kivnong dev mapovctdlel tétola mpofAnpato. Avtég ol TAnpoopieg Oa
umopovoav va. ypNoorombovy yio v dnuovpyio cuvleTIKOV aAAd aAnBopavadv
0edopEVmV OIKTVAKNG Kivnong mov Ba avtarokpivovtal oty mpaypatikotnta. [Tibava

o0& gtvan PePaicng N xpnon v v a&oAdynon Kot BeATioon unyavicuoy Guovag.

Emumpdobeta, evolapépov medio sivar n pehétn texvikav e£6puéng kot emeepyaciog
dedopévev Yo v onpovpyia meptypapav enifeong. Avtéc pmopovv va Pacilovtal ce
nmapelBovticd dedopéva kot vo dwapotpalovran petald cvvepyalopevov etaipov (T.y.
OHOGTOVOIES AKAOTUOIK®OV POPEDV KOl TAPOY®V SIKTVOKAOV VINPECIDV). ZVVEPYOTIKA
OYNUOTO. UTOPOVV Vo LAPEOLY Kol KOTd TN Onpuovpyio. TOV TEPLYPAP®V T.Y. UE
teyvikég Opoomovong Mabnong (Federated Learning), ot omoieg emitpémovv tnv
eKTAidEVO €VOG KOO HOVTEAOVL, auPAUVOVTEG TPOPANUOTIGULOVG TTEPT TPOCOTIKMOV

OO0UEVOV KOl 1O1OTIKOTNTOG.

Kowd povtéha xor meprypoég yia kdbe tomo emiBeong umopodv va eVIGYOCOLV
ONUAVTIKE UNYOVIGHOVS OVIYLETMMIONG, OKOUO KOL VO 0ONYNOOVV GTNV TPOANTTIKY|
amokom emBécE®V UE KOWE YOPOKTNPIOTIKA. XOPOKTNPIOTIKO mTopadetypo givan
ovouata DNS (domains) ta omoio. cuyvd ypnowwonotovvor yo enbécec. Qotdco,
oNUOVTIKN €fvor Kot 1 opadomoinon tev TEPypap®v Pe 6tdyo TV PEATIOTN VAOTOINoN
UNYOVIGL®V OMOKOTNG OTO EMimedo dedopévmv glte mpdkettar ywoo AOGeEG Tomov P4
(VAko) eite yio XDP (Aoyiopikd kot VAKO). Xvvenrdg, 10aitepo eVOAPEPOV

Tapovclalovy GYeTIKEG TEYVIKES emelepyaciog Kl opadomoinong.

InpetdveTtol g, TapoTl ot mTpooeyyicelg mov Pacilovial o OKPITEG TEPTYPUPES
Qoivovtol 100VIKEG, LIAPYOVV EMOECELS MOV ATOUTOVV EVOAAOKTIKEG TPOGEYYIGELC.
Xopakmplotikd moapddetypo eivor or embBéoelg TCP SYN, mov oyeddv mdévtote
Bacilovtar oe yevdemiypapeg devbivoelg IP. Eyetuc€g AOGEIS apyIKd ETLYEPOVLY Vi
emPepardoovv) yvnodonto kabe nyng (SYN Cookie) kat otn cuvéyeia enttpénovy

TNV ENKOWVOVICL.

145

Yvvoyiloviog, VINPEciec MOV OPOPOVV GLAAOYN dedopévVmV, aviyvevon Kot
OVTILETOTION eMOBECEMY, UTOPOVV VO HETAPEPOOVV LE IKOVOTOMTIKES EMOOCELS OF
TPOYPOUUOTICOUEVEG EVOLAUESES CLOKEVEG TPOGTATEVOVTAG TOAVTILOVS TOPOVS GE
dpouoroyntég, kopPovg kar firewalls. Opopatilopacte por TAATEOPUE VIANPECLOV
KuPepvoac@drelag ToAATA®V emédwmv 1 omoio (1) aviyvedel Eykalpa ToyOV emBEcELC
ocvvovalovtag mAnpogopio. amd moAdamAiéc mnyég (2) e&dyer emumAéov dedopéva
diktvokng kivnong, (3) evromiler 1o OOua kobmg tov TOMO NG emibeong ko (4)
onuovpyet pe OSLVOIKO TPOTO PUNYOVIGUOVG OmOKOTMNG emfécemv, €101KA
KOTOOKEVOAGUEVOLS YloL TNV KAOe mepintwon. Idwitepo evolapépov, Ba mapovsiale M
EVOOUATMON U0 TETOLOC TAOTPOPUOG TAVE G OUOGTOVON GYNUATO CLUVEPYUGTOG 1)/Kat
vrodopég NFV o6mov etaipot ko ypnoteg SALYOVV/TOPEXOVY TO UNYOVIGO OTOKOTNG

npog gykatdotoon (m.y. XDP mpdypoppa).

146

11 References

[1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

S. Jain et al., “B4: Experience with a globally-deployed software defined WAN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3-14, 2013, doi:
10.1145/2534169.2486019.

N. Shirokov and R. Dasineni, “Open-sourcing Katran, a scalable network load balancer -
Facebook Engineering.” available at: https://engineering.fb.com/open-source/open-
sourcing-katran-a-scalable-network-load-balancer/ [accessed 28 April 2020].

“SONIC: Software for Open Networking in the Cloud.” available at:
https://azure.github.io/SONIC/ [accessed 13 May 2020].

T. Heiland-Jorgensen et al., “The eXpress data path: Fast programmable packet
processing in the operating system kernel,” in Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies (CONEXT 2018),
pp. 54-66, 2018.

P. Bosshart et al., “P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014, doi:
10.1145/2656877.2656890.

M. Majkowski, “How to drop 10 million packets per second - Cloudflare.” available at:
https://blog.cloudflare.com/how-to-drop-10-million-packets/ [accessed 28 April 2020].
G. Bertin, “XDP in practice: integrating XDP in our DDoS mitigation pipeline,” in
NetDev 2.1 - The Technical Conference on Linux Networking.

“Stratum - Open Networking Foundation.” available at:
https://www.opennetworking.org/stratum/ [accessed 13 May 2020].

N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008, doi:
10.1145/1355734.1355746.

M. Jonker, A. Sperotto, R. Van Rijswijk-Deij, R. Sadre, and A. Pras, “Measuring the
adoption of DDoS protection services,” in Proceedings of the 2016 ACM Internet
Measurement Conference (IMC 2016), pp. 279-285, 2016.

S. Shirali-Shahreza and Y. Ganjali, “Efficient implementation of security applications in
OpenFlow controller with FleXam,” in Proceedings of the 21st IEEE Annual Symposium
on High-Performance Interconnects (HOTI 2013), pp. 49-54, 2013.

C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “FlowSense:
Monitoring Network Utilization with Zero Measurement Cost,” in Proceedings of the
14th International conference on Passive and Active Measurement (PAM 2013), pp. 31—
41, 2013.

K. Giotis, G. Androulidakis, and V. Maglaris, “A scalable anomaly detection and

147

[14]
[15]

[16]

[17]
[18]
[19]
[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

mitigation architecture for legacy networks via an OpenFlow middlebox,” Security and
Communication Networks, vol. 9, no. 13, pp. 1958-1970, 2016, doi: 10.1002/sec.1368.
“SaltStack.” available at: https://www.saltstack.com/ [accessed 28 April 2020].
A. Doriaet al., “RFC 5810 - Forwarding and Control Element Separation (ForCES)
Protocol Specification.” available at: https://tools.ietf.org/html/rfc5810 [accessed 15
May 2020].
M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane,”
ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 1-12, 2007, doi:
10.1145/1282427.1282382.
“OpenDaylight.” available at: https://www.opendaylight.org/ [accessed 28 April 2020].
“ONOS.” available at: https://onosproject.org/ [accessed 28 April 2020].
“Ryu.” available at: https://osrg.github.io/ryu/ [accessed 28 April 2020].
“NAPALM (Network Automation and Programmability Abstraction Layer with
Multivendor support).” available at: https://github.com/napalm-automation/napalm
[accessed 28 April 2020].
“OpenConfig.” available at: http://openconfig.net/ [accessed 28 April 2020].
ONF, “OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06),” 2015.
C. Y. Hong et al., “B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for
Availability and Scale in Google’s Software-Defined WAN,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
2018), pp. 74-87, 2018.
P. L. Ventre et al., “Deploying SDN in GEANT production network,” in Proceeding of
the 2017 IEEE Conference on Network Function Virtualization and Software Defined
Networking (NFV-SDN 2017), pp. 1-2, 2017.
“Tofino 2 - Barefoot.” available at: https://www.barefootnetworks.com/products/brief-
tofino-2/ [accessed 28 April 2020].
“Agilio CX SmartNICs - Netronome.” available at:
https://www.netronome.com/products/agilio-cx/ [accessed 28 April 2020].
“NetFPGA.” available at: https://netfpga.org/ [accessed 02 May 2020].
“In-band Network Telemetry.” available at: https://p4.org/assets/INT-current-spec.pdf
[accessed 15 May 2020].
H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos: Consensus at
network speed,” in Proceedings of the 2015 ACM Symposium on SDN Research (SOSR
2015), pp. 1-7, 2015.
A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-network computation
is a dumb idea whose time has come,” in Proceedings of the 16th ACM Workshop on
Hot Topics in Networks (HotNets 2017), pp. 150-156, 2017.

148

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]

[48]

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,
“Heavy-hitter detection entirely in the data plane,” in Proceedings of the 2017 ACM
Symposium on SDN Research (SOSR 2017), pp. 164-176, 2017.
R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-Wide Heavy Hitter Detection
with Commodity Switches,” in Proceedings of the 2018 ACM Symposium on SDN
Research (SOSR 2018), pp. 1-7, 2018.
A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-time DDo0S
attack detection to programmable data planes,” in Proceeding of the 2019 IFIP/IEEE
Symposium on Integrated Network Management (IM 2019), pp. 19-27, 2019.
“P4 16 Language Specification version 1.2.0.” available at: http://p4.org [accessed 28
April 2020].
“P4 Language Specification version 1.0.5,” 2018. available at: http://p4.org [accessed 28
April 2020].
C. Kim, “SLIDES: P4 Language Tutorial,” 2017. available at: http://p4.org [accessed 28
April 2020].
“Ansible.” available at: https://www.ansible.com/ [accessed 28 April 2020].
J. Case, M. Fedor, M. Schoffstall, and J. Davin, “RFC 1157 - Simple Network
Management Protocol (SNMP).” available at: https://tools.ietf.org/html/rfc1157
[accessed 30 May 2020].
M. Rose and K. McCloghrie, “RFC 1155 - Structure and identification of management
information for TCP/IP-based internets.” available at: https://tools.ietf.org/html/rfc1155
[accessed 30 May 2020].
M. Bjorklund, “RFC 7950 - The YANG 1.1 Data Modeling Language.” available at:
https://tools.ietf.org/html/rfc7950 [accessed 30 May 2020].
“Openstack - Build the future of Open Infrastructure.” available at:
https://www.openstack.org/ [accessed 28 April 2020].
“Puppet.” available at: https://puppet.com/ [accessed 28 April 2020].
“Network Functions Virtualisation (NFV); Architectural Framework Group
Specification - ETSI GS NFV 002 V1.1.1,” ETSI, 2013.
“OPNFV.” available at: https://www.opnfv.org/ [accessed 28 April 2020].
“ONAP.” available at: https://www.onap.org/ [accessed 28 April 2020].
“OSM.” available at: https://osm.etsi.org/ [accessed 28 April 2020].
“CORD - ONF.” available at: https://www.opennetworking.org/cord/ [accessed 31 May
2020].
M. Majkowski, “Why we use the Linux kernel’s TCP stack - Cloudflare.” available at:
https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/ [accessed 16 May
2020].

149

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker, “Extending
Networking into the Virtualization Layer,” in 8th ACM Workshop on Hot Topics in
Networks (HotNets 2009), 2009.
“Contrail Virtual Router - Juniper.” available at: https://github.com/Juniper/contrail-
vrouter [accessed 28 April 2020].
R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular router,” ACM
Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263-297, 2000, doi:
10.1145/319344.319166.
L. Rizzo, “NetMap: A novel framework for fast packet I/O,” in Proceedings of the 2012
USENIX Annual Technical Conference (USENIX ATC 2012), pp. 101-112, 2012.
“PF_RING — ntop.” available at: https://www.ntop.org/products/packet-capture/pf_ring/
[accessed 28 April 2020].
“DPDK.” available at: https://www.dpdk.org/ [accessed 28 April 2020].
J. Martins et al., “ClickOS and the Art of Network Function Virtualization,” in
Proceedings of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2014), pp. 459-473, 2014.
J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High performance and flexible
networking using virtualization on commodity platforms,” in Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 2014),
pp. 445-458, 2014.
P. Phaal and M. Lavine, “sFlow Version 5.” available at:
https://sflow.org/sflow_version_5.txt [accessed 29 April 2020].
A. Douitsis and V. Maglaris, “Towards a scalable management collector,” in
Proceedings of the 2016 Global Information Infrastructure and Networking Symposium
(GIIS 2016), pp. 1-6, 2016.
“Model Driven Telemetry - Cisco.” available at:
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-
solutions/model-driven-telemetry.html [accessed 29 April 2020].
“Overview of the Junos Telemetry Interface - TechLibrary - Juniper Networks.”
available at: https://mww.juniper.net/documentation/en_US/junos/topics/concept/junos-
telemetry-interface-oveview.html [accessed 29 April 2020].
M. Hira and L. Wobker, “Improving Network Monitoring and Management with
Programmable Data Planes.” available at: https://p4.org/p4/inband-network-telemetry/
[accessed 29 April 2020].
J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson, and G. Pongracz,
“Programmable Event Detection for In-Band Network Telemetry,” 2019. available at:
http://arxiv.org/abs/1909.12101 [accessed 29 April 2020].

150

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

(78]

E. B. Claise, “RFC 3954 - Cisco Systems NetFlow Services Export Version 9,” Oct.
2004. available at: https://tools.ietf.org/html/rfc3882 [accessed 29 April 2020].
A. Santos Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,
“ATLANTIC: A framework for anomaly traffic detection, classification, and mitigation
in SDN,” in Proceedings of 2016 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2016), pp. 27-35, 2016.
A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,
“DevoFlow: Scaling Flow Management forHigh-Performance Networks,” in
Proceedings of the 2011 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM 2011), pp. 254-265, 2011.
K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,
“Combining OpenFlow and sFlow for an effective and scalable anomaly detection and
mitigation mechanism on SDN environments,” Computer Networks, vol. 62, pp. 122—
136, 2014, doi: 10.1016/j.bjp.2013.10.014.
T. Yang et al., “Elastic sketch: Adaptive and fast network-wide measurements,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM 2018), pp. 561-575, 2018.
“nProbe — ntop.” available at: https://www.ntop.org/products/netflow/nprobe/ [accessed
29 April 2020].
G. Gardikis et al., “An integrating framework for efficient NFV monitoring,” in
Proceedings of the 2016 IEEE Conference on Network Softwarization (NetSoft 2016),
pp. 1-5, 2016.
D. Palmisano et al., “D-STREAMON - NFV-Capable Distributed Framework for
Network Monitoring,” in Proceedings of the 29th International Teletraffic Congress
(ITC 2017), pp. 30-35, 2017.
M. A. Kourtis et al., “Enhancing VNF performance by exploiting SR-IOV and DPDK
packet processing acceleration,” in Proceedings of the 2015 IEEE Conference on
Network Function Virtualization and Software Defined Networking (NFV-SDN 2015),
pp. 74-78, 2015.
A. TaheriMonfared and C. Rong, “Multi-tenant network monitoring based on software
defined networking,” in Proceedings of OTM Confederated International Conferences
“On the Move to Meaningful Internet Systems,” pp. 327-341, 2013.
“Amazon CloudWatch - Application and Infrastructure Monitoring.” available at:
https://aws.amazon.com/cloudwatch/ [accessed 29 April 2020].
“Azure Monitor overview | Microsoft Docs.” available at: https://docs.microsoft.com/en-
us/azure/azure-monitor/overview [accessed 29 April 2020].
“Stackdriver | Google Cloud.” available at: https://cloud.google.com/stackdriver/

151

[76]

[77]

[78]

[79]

(80]

(81]

[82]

(83]

[84]

[85]

(86]

(87]

(88]

[accessed 29 April 2020].

“Cloud Monitoring as a Service | Datadog.” available at: https://www.datadoghq.com/

[accessed 29 April 2020].

“2019 Data Breaches: 4 Billion Records Breached So Far | Norton.” available at:

https://us.norton.com/internetsecurity-emerging-threats-2019-data-breaches.html

[accessed 29 April 2020].

M. Kiihrer, C. Rossow, and T. Holz, “Paint it black: Evaluating the effectiveness of

malware blacklists,” in Proceedings of the 2014 International Workshop on Recent

Advances in Intrusion Detection, pp. 1-21, 2014.

F.J. Ryba, M. Orlinski, M. Wihlisch, C. Rossow, and T. C. Schmidt, “Amplification

and DRDoS Attack Defense - A Survey and New Perspectives,” 2015. available at:

http://arxiv.org/abs/1505.07892 [accessed 29 April 2020].

C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS Abuse,” in

2014 Symposium on Network and Distributed System Security (NDSS 2014), 2014.

M. Kuhrer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a Handshake : Abusing TCP

for Reflective Amplification DDoS Attacks,” in 8th USENIX Workshop on Offensive

Technologies (WOOT 2014), 2014.

M. Majkowski, “Reflections on reflection (attacks) - Cloudflare.” available at:

https://blog.cloudflare.com/reflections-on-reflections/ [accessed 29 April 2020].

M. Majkowski, “Memcrashed - Major amplification attacks from UDP port 11211 -

Cloudflare.” available at: https://blog.cloudflare.com/memcrashed-major-amplification-

attacks-from-port-11211/ [accessed 29 April 2020].

C. Morales, “NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack ; The Terabit Attack

Era Is Upon Us.” available at: https://www.netscout.com/blog/asert/netscout-arbor-

confirms-17-tbps-ddos-attack-terabit-attack-era [accessed 29 April 2020].

“KrebsOnSecurity Hit With Record DDoS — Krebs on Security.” available at:

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/ [accessed 29

April 2020].

“Cyber attack hits Danish rail network - The Local.” available at:

https://www.thelocal.dk/20180514/cyber-attack-hits-danish-rail-network [accessed 29

April 2020].

M. Prince, “The DDoS That Knocked Spamhaus Offline (And How We Mitigated It) -

Cloudflare.” available at: https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-

offline-and-ho/ [accessed 15 May 2020].

Arbor NETSCOUT, “Threat Intelligence Report -Powered by ATLAS Findings from

First Half 2019,” 2019. available at: https://www.netscout.com/sites/default/files/2019-

07/SECR_010_EN-1901 — NETSCOUT Threat Report 1H 2019 — Web.pdf [accessed 25
152

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

May 2020].
E. Osterweil, A. Stavrou, and L. Zhang, “20 Years of DDoS: a Call to Action,” 2019.
available at: http://arxiv.org/abs/1904.02739 [accessed 25 May 2020].
J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense
mechanisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp.
39-53, 2004, doi: 10.1145/997150.997156.
S. M. Specht and R. B. Lee, “Distributed Denial of Service: Taxonomies of Attacks,
Tools and Countermeasures,” International Workshop on Security in Parallel and
Distributed Systems, no. 9, pp. 543-550, 2004, doi: 10.1.1.133.4566.
S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against
distributed denial of service (DDOS) flooding attacks,” IEEE Communications Surveys
and Tutorials, vol. 15, no. 4, pp. 2046-2069, 2013, doi:
10.1109/SURV.2013.031413.00127.
Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network traffic using
maximum entropy estimation,” in Proceedings of the 2005 ACM Internet Measurement
Conference (IMC 2005), pp. 345-350, 2005.
G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network Anomaly
Detection and Classification via Opportunistic Sampling,” IEEE Network, vol. 23, no. 1,
pp. 6-12, 2009, doi: 10.1109/MNET.2009.4804318.
“Snort - Network Intrusion Detection & Prevention System.” available at:
https://snort.org/ [accessed 15 May 2020].
“Suricata | Open Source IDS / IPS / NSM engine.” available at: https://suricata-ids.org/
[accessed 15 May 2020].
“The Zeek Network Security Monitor.” available at: https://www.zeek.org/ [accessed 15
May 2020].
V. Paxson, “Bro: A system for detecting network intruders in real-time,” Computer
Networks, vol. 31, no. 23-24, pp. 2435-2463, 1999, doi: 10.1016/S1389-
1286(99)00112-7.
T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Communications Surveys and Tutorials,
vol. 10, no. 4, pp. 5676, 2008, doi: 10.1109/SURV.2008.080406.
D. Berman, A. Buczak, J. Chavis, and C. Corbett, “A Survey of Deep Learning Methods
for Cyber Security,” Information, vol. 10, no. 4, p. 122, 2019, doi:
10.3390/inf010040122.
C. Siaterlis and V. Maglaris, “Detecting DDoS attacks using a multilayer Perceptron
classifier,” in Proceedings of the 2004 International conference on Artificial neural
networks (ICANN 2004), pp. 1-14, 2004.

153

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection using
NOX/OpenFlow,” in Proceedings of the 2010 IEEE Local Computer Network
Conference (LCN 2010), pp. 408-415, 2010.

Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in software-defined
networks,” Journal of Network and Computer Applications, vol. 68, pp. 65-79, 2016,
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1084804516300480.
Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection System
in Software-Defined Networking (SDN).” available at:
https://arxiv.org/pdf/1611.07400.pdf [accessed 23 May 2020].

X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS Attack via Deep Learning,”
in Proceedings of the 2017 International Conference on Smart Computing
(SMARTCOMP 2017), pp. 1-8, 2017.

R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon, and D.
Siracusa, “LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack
Detection,” IEEE Transactions on Network and Service Management (Early Access), pp.
1-14, 2020, [Online]. Available: https://ieeexplore.ieee.org/document/8984222/.

“The CAIDA Anonymized Internet Traces 2016 Dataset.” available at:
http://www.caida.org/data/passive/passive_2016_dataset.xml [accessed 15 May 2020].
K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE project,” in
Proceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
2000), 2000.

J. J. Santanna et al., “Booters - An analysis of DDoS-as-a-service attacks,” in
Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2015), pp. 243-251, 2015.

D. Turk, “RFC 3882 - Configuring BGP to Block Denial-of-Service Attacks.” available
at: https://tools.ietf.org/html/rfc3882 [accessed 15 May 2020].

C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On the Effectiveness of
DDoS Mitigation in the Wild,” in Proceedings of the 17th International Conference on
Passive and Active Network Measurement (PAM 2016), pp. 319-332, 2016.

V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann, and A. Berger,
“Inferring BGP blackholing activity in the internet,” in Proceedings of the ACM Internet
Measurement Conference (IMC 2017), pp. 1-14, 2017.

W. Kumari and D. McPherson, “RFC 5635 - Remote Triggered Black Hole Filtering
with Unicast Reverse Path Forwarding (uRPF).” available at:
https://tools.ietf.org/html/rfc5635 [accessed 15 May 2020].

“RFC 3704 - Ingress Filtering for Multihomed Networks.” available at:
https://tools.ietf.org/html/rfc3704 [accessed 15 May 2020].

154

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

“RFC 5575 - Dissemination of Flow Specification Rules.” available at:
https://tools.ietf.org/html/rfc5575 [accessed 15 May 2020].

“Firewall on Demand - GRNET.” available at: https://grnet.gr/en/services/internet-
services/firewall-on-demand/ [accessed 15 May 2020].

“MANRS — Mutually Agreed Norms for Routing Security.” available at:
https://lwww.manrs.org/ [accessed 15 May 2020].

B. Rashidi, C. Fung, and E. Bertino, “A Collaborative DDoS Defence Framework Using
Network Function Virtualization,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 10, pp. 2483-2497, 2017, doi: 10.1109/TIFS.2017.2708693.

K. Giotis, M. Apostolaki, and V. Maglaris, “A reputation-based collaborative schema for
the mitigation of distributed attacks in SDN domains,” in Proceedings of the 2016
IEEE/IFIP Network Operations and Management Symposium (NOMS 2016), pp. 495—
501, 2016.

“RFC 7970 - The Incident Object Description Exchange Format Version 2.” available at:
https://tools.ietf.org/html/rfc7970 [accessed 15 May 2020].

A. Jgsang and R. Ismail, “The Beta Reputation System,” in Proceedings of the 15th Bled
Electronic Commerce Conference, pp. 2502-2511, 2002.

“3DCoP: DDoS Defense for a Community of Peers - Galois, Inc.” available at:
https://galois.com/project/3dcop-ddos-defense/ [accessed 15 May 2020].

“DDoS Open Threat Signaling (dots).” available at:
https://datatracker.ietf.org/wg/dots/about/ [accessed 15 May 2020].

0. O. Malomo, D. B. Rawat, and M. Garuba, “Next-generation cybersecurity through a
blockchain-enabled federated cloud framework,” Journal of Supercomputing, vol. 74,
no. 10, pp. 5099-5126, 2018, doi: 10.1007/s11227-018-2385-7.

K. Kim, Y. You, M. Park, and K. Lee, “DDoS Mitigation: Decentralized CDN Using
Private Blockchain,” in Proceedings of the 2018 International Conference on Ubiquitous
and Future Networks (ICUFN 2018), pp. 693-696, 2018.

“Decentralized CDN, WAF, and DDoS protection.” available at: https://gladius.io/
[accessed 15 May 2020].

B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B. Stiller, “A
Blockchain-Based Architecture for Collaborative DDoS Mitigation with Smart
Contracts,” in Proceedings of the 11th IFIP International Conference on Autonomous
Infrastructure, Management and Security (AIMS 2017), pp. 16-29, 2017.

A. Gruhler, B. Rodrigues, and B. Stiller, “A Reputation Scheme for a Blockchain-based
Network Cooperative Defense,” in Proceedings of the 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM 2019), pp. 71-79, 2019.

S. Mannhart, B. Rodrigues, E. Scheid, S. S. Kanhere, and B. Stiller, “Toward Mitigation-

155

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]
[138]

[139]

[140]

[141]

as-a-Service in Cooperative Network Defenses,” in Proceedings of the 16th IEEE
International Conference on Dependable, Autonomic and Secure Computing (DASC
2018), pp. 362-367, 2018.
V. Maglaris et al., “Toward a holistic federated future internet experimentation
environment: The experience of NOVI research and experimentation,” |IEEE
Communications Magazine, vol. 53, no. 7, pp. 136-144, 2015, doi:
10.1109/MCOM.2015.7158277.
J. M. Alcaraz Calero and J. G. Aguado, “MonPaaS: An adaptive monitoring platform as
a service for cloud computing infrastructures and services,” IEEE Transactions on
Services Computing, vol. 8, no. 1, pp. 65-78, 2015, doi: 10.1109/TSC.2014.2302810.
V. Bajpai and J. Schonwalder, “A survey on internet performance measurement
platforms and related standardization efforts,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 3, pp. 1313-1341, 2015, doi: 10.1109/COMST.2015.2418435.
Y. Shavitt and U. Weinsberg, “Quantifying the importance of vantage points distribution
in internet topology measurements,” in Proceedings of the 2009 IEEE International
Conference on Computer Communications (INFOCOM 2009), pp. 792-800, 2009.
L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet
hierarchy from multiple vantage points,” in Proceedings of the 2002 IEEE International
Conference on Computer Communications (INFOCOM 2002), pp. 618-627, 2002.
N. Chatzis, G. Smaragdakis, J. Bottger, T. Krenc, and A. Feldmann, “On the benefits of
using a large IXP as an Internet vantage point,” in Proceedings of the 2013 ACM
Internet Measurement Conference (IMC 2013), pp. 333-346, 2013.
S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP
Technology,” ACM SIGMOD Record, vol. 26, no. 1, pp. 65-74, 1997, doi:
10.1145/248603.248616.
“Kubernetes.” available at: https://kubernetes.io/ [accessed 02 December 2019].
V. Koukis, C. Venetsanopoulos, and N. Koziris, “~Okeanos: Building a cloud, cluster
by cluster,” IEEE Internet Computing, vol. 17, no. 3, pp. 67-71, 2013, doi:
10.1109/MIC.2013.43.
A. TaheriMonfared, T. W. Wlodarczyk, and C. Rong, “Real-time handling of network
monitoring data using a data-intensive framework,” in Proceedings of the 5th IEEE
International Conference on Cloud Computing Technology and Science (CloudCom
2013), pp. 258-265, 2013.
D. Sarlis, N. Papailiou, I. Konstantinou, G. Smaragdakis, and N. Koziris, “Datix: A
system for scalable network analytics,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 5, pp. 21-28, 2015, doi: 10.1145/2831347.2831351.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
156

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

computing with working sets.,” in Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing (HotCloud 2010), 2010.

J. Kreps, N. Narkhede, and J. Rao, “Kafka: a Distributed Messaging System for Log
Processing,” in Proceedings of the 2011 ACM SIGMOD Workshop on Networking Meets
Databases, pp. 1-7, 2011.

A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic feature
distributions,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 4, pp.
217-228, 2005, doi: 10.1145/1090191.1080118.

H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards Understanding the
Performance of P4 Programmable Hardware,” in Proceedings of the 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS
2019), pp. 1-6, 20109.

O. Hohlfeld, J. Krude, J. H. Reelfs, J. Ruth, and K. Wehrle, “Demystifying the
Performance of XDP BPF,” in Proceddings of the 2019 IEEE Conference on Network
Softwarization (NetSoft 2019), pp. 208-212, 2019.

J. Hill, M. Aloserij, and P. Grosso, “Tracking Network Flows with P4,” in Proceedings
of the 2018 IEEE/ACM Innovating the Network for Data-Intensive Science Conference
(INDIS 2018), pp. 23-32, 2018.

R. Sadre, A. Sperotto, and A. Pras, “The effects of DDoS attacks on flow monitoring
applications,” in Proceedings of the 2012 IEEE Network Operations and Management
Symposium, NOMS 2012, pp. 269-277, 2012.

H. Liu, Y. Sun, and M. S. Kim, “Fine-grained DDoS detection scheme based on
bidirectional count sketch,” in Proceedings of the 20th IEEE International Conference
on Computer Communications and Networks (ICCCN 2011), pp. 1-6, 2011.

“DDoS Attack Glossary: Top 12 Attack Vectors - CPO Magazine.” available at:
https://www.cpomagazine.com/cyber-security/ddos-attack-glossary-top-12-attack-
vectors/ [accessed 16 May 2020].

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970, doi:
10.1145/362686.362692.

“Monitoring Tools - GRNET.” available at: https://mon.grnet.gr/ [accessed 16 May
2020].

S. K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, and M. Bailey, “Bohatei: Flexible and
Elastic DDoS Defense,” in Proceedings of the 24th USENIX Conference on Security
Symposium (USENIX Security 2015), pp. 817-832, 2015.

J. Deng et al., “VNGuard: An NFV/SDN combination framework for provisioning and

managing virtual firewalls,” in Proceedings of the 2015 IEEE Conference on Network
157

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

Function Virtualization and Software Defined Networking (NFV-SDN 2015), pp. 107—
114, 2015.
C.J. Fung and B. McCormick, “VGuard: A distributed denial of service attack
mitigation method using network function virtualization,” in Proceedings of the 11th
International Conference on Network and Service Management, CNSM 2015, pp. 64-70,
2015.
M. Majkowski, “Meet Gatebot - a bot that allows us to sleep.” available at:
https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep/ [accessed 16
May 2020].
G. T. Ross and R. M. Soland, “A branch and bound algorithm for the generalized
assignment problem,” Mathematical Programming, vol. 8, no. 1, pp. 91-103, 1975, doi:
10.1007/BF01580430.
F. Soldo, K. Argyraki, and A. Markopoulou, “Optimal source-based filtering of
malicious traffic,” IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 381-395,
2012, doi: 10.1109/TNET.2011.2161615.
C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Operations
Research, vol. 46, no. 3, pp. 316-329, 1998, doi: 10.1287/opre.46.3.316.
M. O’sullivan, Q.-S. Lim, C. Walker, 1. Dunning, and S. Mitchell, “Dippy-a simplified
interface for advanced mixed-integer programming,” 2011.
A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters,
vol. 31, no. 8, pp. 651-666, 2010, doi: 10.1016/j.patrec.2009.09.011.
K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “DDoS attack detection method using
cluster analysis,” Expert Systems with Applications, vol. 34, no. 3, pp. 1659-1665, 2008,
doi: 10.1016/j.eswa.2007.01.040.
J. Benet, “IPES - Content Addressed, Versioned, P2P File System,” 2014. available at:
http://arxiv.org/abs/1407.3561 [accessed 15 May 2020].
“On Public and Private Blockchains - Ethereum.” available at:
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ [accessed 15
May 2020].
“Proof-of-Authority Chains - Parity Tech Documentation.” available at:
https://wiki.parity.io/Proof-of-Authority-Chains [accessed 15 May 2020].
A. Back et al., “Enabling Blockchain Innovations with Pegged Sidechains,” 2014.
available at: https://blockstream.com/sidechains.pdf [accessed 15 May 2020].
“Ethereum.” available at: https://github.com/ethereum/ [accessed 15 May 2020].
R. Van Rijswijk-Deij, G. Rijnders, M. Bomhoff, and L. Allodi, ‘“Privacy-conscious
threat intelligence using DNSBLoom,” in Proceedings of the 2019 IFIP/IEEE

158

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Symposium on Integrated Network and Service Management (IM 2019), pp. 98-106,
2019.

“Memcached DDoS Attacks: 95,000 Servers Vulnerable to Abuse.” available at:
https://www.bankinfosecurity.com/memcached-ddos-attacks-95000-servers-vulnerable-
to-abuse-a-10705 [accessed 15 May 2020].

A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2004, doi:
10.1080/15427951.2004.10129096.

“Ethereum Go Implementation.” available at: https://github.com/ethereum/go-ethereum
[accessed 15 May 2020].

“Ethereum Network Intelligence APL.” available at: https://github.com/cubedro/eth-net-
intelligence-api [accessed 15 May 2020].

“Ethereum Network Stats.” available at: https://github.com/cubedro/eth-netstats
[accessed 15 May 2020].

“nfdump: Netflow processing tools.” available at: https://github.com/phaag/nfdump
[accessed 29 April 2020].

M. Majkowski, “The real cause of large DDoS: IP Spoofing - CloudFlare.” available at:
https://blog.cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/ [accessed 25 May
2020].

L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
“Novelty and Outlier Detection.” available at: https://scikit-
learn.org/stable/modules/outlier_detection.html [accessed 25 May 2020].

P. Mockapetris, “RFC 1035 - Domain Names Implementation and Specification.”
available at: https://www.ietf.org/rfc/rfc1035.txt.

M. Singh, M. Singh, and S. Kaur, “10 Days DNS Network Traffic from April-May,
2016,” Mendeley Data, v1, 2018, doi: http://dx.doi.org/10.17632/zh3wnddzxy.1.

Q. Yan, M. Wang, W. Huang, X. Luo, and F. R. Yu, “Automatically synthesizing DoS
attack traces using generative adversarial networks,” International Journal of Machine
Learning and Cybernetics, vol. 10, no. 12, pp. 3387-3396, 2019, doi: 10.1007/s13042-
019-00925-6.

“National Anti-DDoS-coalition - No More DDoS.” available at:
https://www.nomoreddos.org/en/ [accessed 31 May 2020].

159

	1 Introduction
	2 State-of-the-Art: Network Management and Security
	2.1 Software-defined Networking and Data Plane Programmability
	2.1.1 OpenFlow Protocol
	2.1.2 Programming Protocol-independent Packet Processors - P4
	2.1.2.1 P4 Language Architectural Overview
	2.1.2.2 Standard Types and Metadata
	2.1.2.3 Programmable control blocks
	2.1.2.4 Actions and Tables

	2.1.3 Data Modeling and Abstraction Layers
	2.1.3.1 YANG and OpenConfig
	2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks

	2.2 Network Function Virtualization
	2.3 High Performance Packet Processors
	2.4 Monitoring Solutions
	2.4.1 SNMP and Streaming Telemetry
	2.4.2 In-band Network Telemetry
	2.4.3 Packet-level and Flow-level information
	2.4.4 SDN and Data Plane monitoring solutions
	2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures

	2.5 Cyber Threats
	2.5.1 Malicious Software
	2.5.2 Botnets
	2.5.3 Denial-of-Service attacks

	2.6 Mechanisms for Anomaly Detection and Mitigation – Interdomain Collaborative Schemas
	2.6.1 Anomaly Detection
	2.6.2 Mitigation Mechanisms
	2.6.3 Collaborative Schemas

	3 Traffic Monitoring and Anomaly Detection based on Dispersed Vantage Points
	3.1 Problem Statement
	3.2 Background and Related Work
	3.3 Design Principles
	3.4 Architectural Components and Implementation Details
	3.4.1 Monitoring Data Handler
	3.4.2 Centralized Data Warehouse
	3.4.3 Customized Analytics
	3.4.4 Orchestrator

	3.5 Evaluation
	3.5.1 Experimental Setup
	3.5.2 Experiments on Multi-Vantage Point Anomaly Detection

	4 Multi-Feature DDoS Detection on Programmable P4 Hardware
	4.1 Problem Statement
	4.2 Background and Related Work
	4.3 Architectural Design and Selected Traffic Features
	4.4 P4 Implementation Details
	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 DDoS Detection Accuracy Assessment
	4.5.3 Packet Processing Performance Capabilities

	5 Placement and Automated Distribution of Access Control Rules to Heterogeneous environments
	5.1 Problem Statement
	5.2 Background and Related Work
	5.3 Architectural Overview: Principles and Components
	5.4 Detailed Architecture
	5.4.1 Pre-processor (PP)
	5.4.2 Mitigation Resolver (MR)
	5.4.3 Rule Handler (RH)

	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 Traffic Profiles for Anomaly Mitigation Experiments
	5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms
	5.5.4 Complexity of Generalized Assignment Problem

	5.6 Automated Rule Distribution via Salt & NAPALM

	6 DDoS mitigation via network provider collaborations
	6.1 Problem Statement
	6.2 Background and Related Work
	6.3 Overview and Baseline Design
	6.3.1 Design Principles
	6.3.2 Architectural Components
	6.3.2.1 Collaborative Incident Response Manager
	6.3.2.2 Data Store Service
	6.3.2.3 Attack Mitigation Appliance

	6.4 Proposed Architecture: Implementation Details
	6.4.1 Blockchain-based Smart Contracts
	6.4.2 Orchestration Workflow
	6.4.3 Reputation Schema for Collaborating Entities
	6.4.4 Cost Optimization - Mitigation Action Assignment
	6.4.5 Implementation of Mitigation Mechanisms
	6.4.6 Verification of Mitigation Agreements

	6.5 Evaluation
	6.5.1 Experimental Setup
	6.5.2 Reputation Score Calculation
	6.5.3 Mitigation Actions Placement
	6.5.4 Mitigation Verification

	7 Fine-Grained Traffic Classification and Attack Mitigation based on Programmable Data Planes
	7.1 Problem Statement
	7.2 Background and Related Work
	7.3 High-level Design
	7.4 Architectural Components and Implementation Details
	7.4.1 Fine-Grained Monitoring
	7.4.2 Traffic Classification
	7.4.3 Anomaly Mitigation

	7.5 Analysis of DNS-based Reflection and Amplification Attacks
	7.6 Evaluation
	7.6.1 Experimental Setup and Datasets
	7.6.2 Accuracy of Signature-based Classification
	7.6.3 Feature Importance
	7.6.4 IP-based vs Signature-based filtering
	7.6.5 Traffic Monitoring and Filtering Performance

	8 Conclusions and Future Research
	8.1 Summary and Concluding Remarks
	8.2 Areas for Future Research

	9 Publications
	10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα Ελληνικά
	11 References

