

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

Automated Monitoring and Security Services

in Federated Software-defined Network

Infrastructures

Doctoral Dissertation

of

Adam I. Pavlidis

Supervisor: Vasilis Maglaris, Professor Emeritus, NTUA

Athens, June 2020

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΒΕΛΤΙΣΤΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΚΤΥΩΝ ΤΗΛΕΜΑΤΙΚΗΣ

Αυτοματοποιημένες Διαδικτυακές Υπηρεσίες

Ασφάλειας και Συλλογής Δεδομένων σε

Προγραμματιζόμενες Ομόσπονδες Υποδομές

Διδακτορική Διατριβή

του

Αδάμ Ι. Παυλίδη

Συμβουλευτική Επιτροπή: Βασίλειος Μάγκλαρης, Ομότιμος Καθηγητής ΕΜΠ (επιβλέπων)

Συμεών Παπαβασιλείου, Καθηγητής ΕΜΠ

Ευστάθιος Συκάς, Καθηγητής ΕΜΠ

………………………..

Ευστάθιος Συκάς

Καθηγητής, ΕΜΠ

………………………..

Συμεών Παπαβασιλείου

Καθηγητής, ΕΜΠ

………………………..

Νεκτάριος Κοζύρης

Καθηγητής, ΕΜΠ

………………………..

Δημήτριος Σούντρης

Καθηγητής, ΕΜΠ

………………………..

John Baras

Professor, UMD

………………………..

Στυλιανός Σαρτζετάκης

Ερευνητής ‘Α, ΙΠΣΥ

 ………………………..

Δημήτριος Καλογεράς

Ερευνητής ‘Β, ΕΠΙΣΕΥ

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 25
η
 Ιουνίου 2020.

Αθήνα, Ιούνιος 2020

 2

………………………………

Αδάμ Ι. Παυλίδης

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Αδάμ Ι. Παυλίδης, 2020

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου

 3

Abstract

This dissertation explores technological advances for network programmability and

softwarization to implement automated services for network monitoring and security. Its

main focus are software-defined schemas pertaining to data collection, anomaly

detection and (collaborative) mitigation of large-scale cyber-attacks.

Initially, we introduce a monitoring architecture for the collection and processing of

network monitoring data exported from dispersed vantage points, i.e. agents within

devices. These measurements are used to create centralized and localized monitoring

views that enhance visibility into anomalous events. Typically, such processing

techniques perform well, but rely on traditional protocols for data extraction. In

contrast, data plane programmability presents a promising alternative for rapid data

processing and anomaly detection. To that end, the P4 Domain Specific Language is

investigated to offload related workloads directly within network hardware.

Specifically, we propose an in-network DDoS anomaly detection schema that combines

important metrics (flows, packet symmetry) typically associated with malicious traffic.

These metrics are maintained per protected subnets and evaluated within time-based

epochs to generate alarms for external mitigation systems.

In addition to anomaly detection, this dissertation also explores solutions for attack

mitigation. As a first step, we propose a framework that distributes filtering rules for

multi-vector anomalies to devices across an attack path, enhancing their mitigation

potential. Specifically, this is modeled as a combinatorial optimization problem that

assigns source-based mitigation actions to devices, considering operator policies for

specific attacks and hardware constraints. An important aspect of this work is the

automated distribution of rules to heterogeneous multi-vendor environments. To that

end, popular techniques for network automation are investigated to seamlessly translate

and distribute generic directives to device-specific instructions.

Subsequently, the proposed approach is extended to multi-domain scenarios by

establishing trusted federations among network providers for collaborative DDoS

mitigation. This approach attempts to preserve on-premise resources and prevent

saturation of important links by mitigating malicious traffic earlier in the attack path.

Our mitigation schema incorporates blockchain-based smart contracts for signaling,

coordination and orchestration purposes. Similarly to our earlier efforts, filtering rules

 4

for malicious sources are appropriately assigned to federated partners, factoring in the

importance of each flow and the reliability of a potential mitigator.

Source-based approaches may raise issues primarily in terms of scalability and

effectiveness. As an alternative, recent technological advances may be used to create

customized and agile solutions that employ IP-agnostic traffic characteristics for DDoS

defense. To that end, this dissertation considers a two-level schema for anomaly

detection and mitigation. The first level incorporates our P4 approach as a coarse-

grained DDoS detection mechanism; triggered alarms are used to identify the suspected

attack vector (protocol, port). Accordingly, a second protection level is instantiated

tailored to the identified attack vector. Data related to the attack are collected in a fine-

grained manner via high performance programmable XDP middleboxes. The collected

data are fed to a supervised Machine Learning algorithm, that classifies packets as

malicious or benign. Features corresponding to malicious packets are used to create

unique signatures, employed for filtering purposes. This approach relies on distinct

packet characteristics of malicious traffic and not frequently spoofed source IPs.

The proposed mechanisms are evaluated under realistic scenarios in modern

experimental setups comprised of P4/XDP-capable hardware, SDN switches, virtual

machines and physical servers, using real network data and synthesized traffic traces.

Keywords

DDoS attacks, Anomaly Detection, Attack Mitigation, Software-Defined Networking (SDN),

Network Automation, Data Plane Programmability, P4, XDP, Interdomain Federation,

Blockchain, Smart Contracts

 5

Περίληψη

Η παρούσα διδακτορική διατριβή μελετά μεθόδους συλλογής δεδομένων, ανίχνευσης

και (συνεργατικής) αντιμετώπισης κυβερνοεπιθέσεων μεγάλης κλίμακας και ιδίως

κατανεμημένες επιθέσεις άρνησης παροχής υπηρεσίας. Ιδιαίτερη έμφαση δίνεται σε

τεχνολογίες για τον προγραμματισμό των δικτυακών συσκευών καθώς και τον έλεγχο

τους μέσω λογισμικού, με στόχο τη δημιουργία αυτοματοποιημένων υπηρεσιών

ασφάλειας και συλλογής δεδομένων.

Αρχικά, προτείνεται μια αρχιτεκτονική για τη συλλογή δεδομένων από κατανεμημένα

σημεία εποπτείας – δικτυακές συσκευές – και την μετέπειτα επεξεργασίας τους. Η

ανάλυση αυτών γίνεται με απώτερο σκοπό την αυξημένη ικανότητα ανίχνευσης

κεντρικών ή τοπικά εστιασμένων δικτυακών ανωμαλιών. Σε δεύτερο χρόνο μελετάται

το P4, μια γλώσσα ειδικού σκοπού για το ριζικό προγραμματισμό των δικτυακών

συσκευών. Η μελέτη εστιάζει στη μεταφορά μηχανισμών ανίχνευσης επιθέσεων

απευθείας στο υλικό όπου και θα εκτελούνται κατανεμημένα, με στόχο την ταχύτερη

επεξεργασία δεδομένων. Κατ’ επέκταση, προτείνεται ένας αλγόριθμος ανίχνευσης που

συνδυάζει συνήθεις μετρικές (μοναδικές ροές – flows, συμμετρία κίνησης) για

ανίχνευση επιθέσεων DDoS. Αυτές οι μετρικές διατηρούνται ανά προστατευόμενο

πόρο (κόμβο, υποδίκτυο) σε διάφορα επίπεδα ευκρίνειας και αξιολογούνται ανά τακτά

διαστήματα για την έγκαιρη αποστολή μηνυμάτων σε εξωτερικά συστήματα

αντιμετώπισης επιθέσεων.

Μετά την ανίχνευση των επιθέσεων είναι αναγκαία η αποτελεσματική αντιμετώπιση

τους. Αρχικά, ο επόμενος θεματικός άξονας της διατριβής εισάγει έναν μηχανισμό

ανάθεσης κανόνων για την αποκοπή ετερογενών επιθέσεων (multi-vector attacks).

Βασικός στόχος είναι η ευέλικτη και συνολικά αποδοτικότερη αντιμετώπιση της

κακόβουλης κίνησης σε διάφορες συσκευές κατά μήκος του ίχνους της επίθεσης.

Συγκεκριμένα, η ανάθεση μοντελοποιείται σαν ένα συνδυαστικό πρόβλημα

βελτιστοποίησης ακέραιου προγραμματισμού, με γνώμονα διαχειριστικές πολιτικές και

δυνατότητες των δικτυακών συσκευών. Μια σημαντική πτυχή αυτής της προσέγγισης

είναι η αυτοματοποιημένη κατανομή κανόνων σε ετερογενή περιβάλλοντα που

απαρτίζονται από συσκευές πολλαπλών κατασκευαστών. Συνεπώς, μελετήθηκαν

σύγχρονες τεχνικές δικτυακού αυτοματισμού για τη μετάφραση γενικών κανόνων σε

ειδικού τύπου οδηγίες και τη διανομή τους στις αντίστοιχες συσκευές.

 6

Έπειτα, η προσέγγιση αυτή επεκτείνεται σε πολλαπλές διαχειριστικές περιοχές –

Αυτόνομα Συστήματα – με τη μορφή ενός ομόσπονδου περιβάλλοντος για παρόχους

δικτυακών υπηρεσιών. Βασικός στόχος είναι η προστασία εξωτερικών ζεύξεων καθώς

και οικείων, εντός ΑΣ, αμυντικών μηχανισμών. Η αρχιτεκτονική ενσωματώνει έξυπνα

ψηφιακά συμβόλαια (smart contracts) αποτυπωμένα σε αλυσιδωτές δομές συναλλαγών

(Blockchain) για την σηματοδοσία, τον συντονισμό και την ενορχήστρωση του

συνεργατικού μηχανισμού άμυνας. Η ανάθεση κανόνων αποκοπής στους ομόσπονδους

εταίρους γίνεται με γνώμονα τη σημασία της κάθε κακόβουλης ροής καθώς και την

αξιοπιστία του πιθανού συνεργάτη-εταίρου.

Οι προσεγγίσεις για ανίχνευση και αντιμετώπιση επιθέσεων πιθανώς να

αντιμετωπίσουν προβλήματα κλίμακας και επίδοσης, κυρίως λόγω ψευδεπίγραφων

διευθύνσεων IP. Με αφορμή αυτό το πρόβλημα, το τελευταίο κομμάτι της διατριβής

εστιάζει σε ένα μηχανισμό δυο επιπέδων ο οποίος προσφέρει εξειδικευμένους και

κλιμακώσιμους μηχανισμούς αντιμετώπισης επιθέσεων. Το πρώτο επίπεδο βασίζεται

στην προγενέστερη προσπάθεια στην γλώσσα P4 και χρησιμοποιείται για την

πρωτογενή αναγνώριση του τύπου της επίθεσης και του αμυνόμενου-θύματος. Στην

συνέχεια, το δεύτερο επίπεδο προσαρμόζεται στην περίσταση με χρήση

προγραμματιζόμενων ενδιάμεσων συσκευών βασισμένες στο περιβάλλον XDP

(eXpress Data Path). Δεδομένα που σχετίζονται με την επίθεση συλλέγονται με υψηλή

ευκρίνεια και εισάγονται σε ένα μηχανισμό επιβλεπόμενης μηχανικής μάθησης ο

οποίος και τα κατηγοριοποιεί ως καλόβουλα ή κακόβουλα. Οι κακόβουλοι συνδυασμοί

αποτελούν συνοπτική περιγραφή της επίθεσης και χρησιμοποιούνται για την αποκοπή

της. Σημαντικό σημείο διαφοροποίησης είναι πως οι περιγραφές βασίζονται σε εγγενή

χαρακτηριστικά της εκάστοτε επίθεσης και όχι σε διευθύνσεις IP.

Οι προτεινόμενοι μηχανισμοί αξιολογήθηκαν κάτω από ρεαλιστικές συνθήκες με χρήση

πραγματικών δεδομένων καθώς και συνθετικής κίνησης. Η αξιολόγηση τους έγινε σε

σύγχρονες πειραματικές υποδομές βασισμένες σε υλικό συμβατό με το P4 και το XDP,

μεταγωγείς SDN, καθώς και υπολογιστικούς κόμβους.

Λέξεις Κλειδιά

Δίκτυα Οριζόμενα από Λογισμικό (SDN), Κατανεμημένες Επιθέσεις Άρνησης Παροχής

Υπηρεσίας (DDoS), Αυτοματοποίηση Δικτυακών Λειτουργιών, Προγραμματισμός

Επιπέδου Δεδομένων, Ανίχνευση Δικτυακών Συμβάντων και Επιθέσεων, Αντιμετώπιση

Επιθέσεων, Συνεργασία Ομόσπονδων Δικτυακών περιοχών, XDP, P4

 7

Acknowledgements

This dissertation is the outcome of a long, continuous and laborious undertaking at the

National Technical University of Athens. As this journeys draws to an end, I reflect on

the most defining moments; it is needless to say that I would not be where I am, without

the help of a great many people. I cannot properly measure their individual contribution

on my professional and personal development, however I will do my best to thank most

of them.

First and foremost, I would like to express my deepest gratitude to my advisor,

Professor Vasilis Maglaris who has been the greatest and most important influence to

me, from my undergraduate years to the conclusion of my doctoral studies. As the

advisor of my dissertation, he has been an invaluable source of knowledge and

experience. I sincerely thank him for believing in me and giving me the opportunity to

pursue a PhD, as well as for the time he has generously invested in me.

I would like to thank Dr. Dimitris Kalogeras for his continuous contribution to our

academic and professional efforts, as well as all the important lessons that helped me

evolve as an individual; the members of my advisory committee, Professor Symeon

Papavassiliou and Professor Efstathios Sykas, for their important counsel and directions

through this journey; and the members of the examination committee for providing

valuable feedback and continuously supporting our research efforts.

In my case, doctoral research was not conducted in seclusion but among colleagues at

the NETMODE laboratory that created a pleasant working environment. I wish to all of

them good fortune in their current and future endeavors. Among them, my deepest

thanks to Dr. Kostas Giotis and Marinos Dimolianis. The former, for his considerable

help and guidance in my undergraduate years, as well as for his contribution to our

recent work. The latter, for sharing with me countless hours on joint research,

professional responsibilities, as well as numerous stimulating discussions and

brainstorming sessions. I also thank Dr. Mary Grammatikou for her important support

and collaboration during these years; Dimitris Pantazatos and Nikos Kostopoulos for

their valuable collaboration in our common obligations; Giannis Sotiropoulos,

Kostantinos Mitropoulos and all undergraduate students with whom we have worked

together as part of their undergraduate diploma thesis. A sincere thank you to all

 8

NETMODE alumni that paved the way for us and especially Dr. Christos Argyropoulos

for encouraging me onwards on various occasions during this journey.

I would like to thank Loukas Anagnostou, Dr. Theocharis Tsigkritis and Dr. Ilias

Kotinas for their collaboration in our joint research. Also, my deepest thanks to all the

members of the NTUA Network Operations Center, especially Spiros Papageorgiou and

Thanasis Douitsis, for freely sharing their considerable experience and knowledge in

various contexts, as well as providing important feedback.

A heartfelt thank you is due to all family members and friends, old & new, for all the

moments of fun we shared and much needed support that helped me mentally. Among

them, I owe a special thank you to my partner Olga, who has provided great comfort

and a calming clarity in the most difficult times.

Last but not least, I thank my parents for their unwavering support and selfless love.

Their lessons were, and still are, a moral compass for the mountainous terrain that is,

life.

 9

Table of Contents

1 Introduction ... 15
2 State-of-the-Art: Network Management and Security....................................... 21

 Software-defined Networking and Data Plane Programmability 21 2.1

2.1.1 OpenFlow Protocol ... 22
2.1.2 Programming Protocol-independent Packet Processors - P4 25

2.1.2.1 P4 Language Architectural Overview ... 27
2.1.2.2 Standard Types and Metadata ... 28
2.1.2.3 Programmable control blocks.. 30

2.1.2.4 Actions and Tables .. 31

2.1.3 Data Modeling and Abstraction Layers .. 31
2.1.3.1 YANG and OpenConfig .. 32

2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks 33
 Network Function Virtualization ... 35 2.2

 High Performance Packet Processors .. 37 2.3

 Monitoring Solutions ... 39 2.4

2.4.1 SNMP and Streaming Telemetry .. 39

2.4.2 In-band Network Telemetry ... 40

2.4.3 Packet-level and Flow-level information ... 41
2.4.4 SDN and Data Plane monitoring solutions ... 41

2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures 42

 Cyber Threats .. 42 2.5

2.5.1 Malicious Software ... 42
2.5.2 Botnets .. 43

2.5.3 Denial-of-Service attacks ... 43
 Mechanisms for Anomaly Detection and Mitigation – Interdomain 2.6

Collaborative Schemas .. 46

2.6.1 Anomaly Detection ... 46
2.6.2 Mitigation Mechanisms .. 48

2.6.3 Collaborative Schemas ... 51

3 Traffic Monitoring and Anomaly Detection based on Dispersed Vantage

Points .. 53
 Problem Statement ... 53 3.1

 Background and Related Work ... 53 3.2

 Design Principles ... 54 3.3

 Architectural Components and Implementation Details 55 3.4

3.4.1 Monitoring Data Handler.. 56
3.4.2 Centralized Data Warehouse .. 57
3.4.3 Customized Analytics ... 57
3.4.4 Orchestrator .. 58

 Evaluation .. 59 3.5

3.5.1 Experimental Setup .. 59
3.5.2 Experiments on Multi-Vantage Point Anomaly Detection 60

4 Multi-Feature DDoS Detection on Programmable P4 Hardware 62
 Problem Statement ... 62 4.1

 Background and Related Work ... 62 4.2

 Architectural Design and Selected Traffic Features .. 63 4.3

 P4 Implementation Details .. 66 4.4

 Evaluation .. 69 4.5

 10

4.5.1 Experimental Setup .. 69
4.5.2 DDoS Detection Accuracy Assessment ... 69
4.5.3 Packet Processing Performance Capabilities .. 71

5 Placement and Automated Distribution of Access Control Rules to

Heterogeneous environments ... 74
 Problem Statement ... 74 5.1

 Background and Related Work ... 74 5.2

 Architectural Overview: Principles and Components 75 5.3

 Detailed Architecture ... 78 5.4

5.4.1 Pre-processor (PP) .. 78
5.4.2 Mitigation Resolver (MR) .. 80
5.4.3 Rule Handler (RH) ... 81

 Evaluation .. 82 5.5

5.5.1 Experimental Setup .. 82
5.5.2 Traffic Profiles for Anomaly Mitigation Experiments 83
5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms 85

5.5.4 Complexity of Generalized Assignment Problem 88
 Automated Rule Distribution via Salt & NAPALM 88 5.6

6 DDoS mitigation via network provider collaborations 91
 Problem Statement ... 91 6.1

 Background and Related Work ... 92 6.2

 Overview and Baseline Design.. 93 6.3

6.3.1 Design Principles .. 93

6.3.2 Architectural Components .. 95

6.3.2.1 Collaborative Incident Response Manager 96
6.3.2.2 Data Store Service ... 97

6.3.2.3 Attack Mitigation Appliance ... 97
 Proposed Architecture: Implementation Details.. 98 6.4

6.4.1 Blockchain-based Smart Contracts ... 98

6.4.2 Orchestration Workflow ... 100
6.4.3 Reputation Schema for Collaborating Entities 101

6.4.4 Cost Optimization - Mitigation Action Assignment 102

6.4.5 Implementation of Mitigation Mechanisms ... 103
6.4.6 Verification of Mitigation Agreements .. 103

 Evaluation .. 105 6.5

6.5.1 Experimental Setup .. 105

6.5.2 Reputation Score Calculation ... 106
6.5.3 Mitigation Actions Placement .. 108
6.5.4 Mitigation Verification ... 111

7 Fine-Grained Traffic Classification and Attack Mitigation based on

Programmable Data Planes .. 113
 Problem Statement ... 113 7.1

 Background and Related Work ... 114 7.2

 High-level Design .. 114 7.3

 Architectural Components and Implementation Details 116 7.4

7.4.1 Fine-Grained Monitoring .. 117

7.4.2 Traffic Classification .. 118

7.4.3 Anomaly Mitigation ... 119
 Analysis of DNS-based Reflection and Amplification Attacks 120 7.5

 Evaluation .. 121 7.6

 11

7.6.1 Experimental Setup and Datasets ... 122
7.6.2 Accuracy of Signature-based Classification ... 122
7.6.3 Feature Importance ... 124
7.6.4 IP-based vs Signature-based filtering ... 125

7.6.5 Traffic Monitoring and Filtering Performance 126

8 Conclusions and Future Research ... 129
 Summary and Concluding Remarks .. 129 8.1

 Areas for Future Research ... 132 8.2

9 Publications .. 134
10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα Ελληνικά 135
11 References... 147

 12

List of Figures

FIGURE 2.1 OPENFLOW PROTOCOL: CONTROLLER-SWITCH COMMUNICATION [9] 23
FIGURE 2.2 OPENFLOW PIPELINE FOR VERSION 1.5.1 [22] 24
FIGURE 2.3 SDN: P4 VS OPENFLOW, SOURCE: P4 LANGUAGE CONSORTIUM 25
FIGURE 2.4 P4 COMPONENTS AND WORKFLOW [34] 27
FIGURE 2.5 P4 V1 MODEL ARCHITECTURE [36] 28
FIGURE 2.6 P4 TEMPLATE PROGRAM FOR V1 MODEL [36] 28
FIGURE 2.7 OPENCONFIG STANDARDIZATION EFFORTS [21] 32
FIGURE 2.8 OPENDAYLIGHT ARCHITECTURE [17] 33
FIGURE 2.9 NAPALM ARCHITECTURE 35
FIGURE 2.10 NFV REFERENCE ARCHITECTURE [43] 36
FIGURE 2.11 SNMP VS TELEMETRY 40
FIGURE 3.1 SMONNET ARCHITECTURAL SETUP 56
FIGURE 3.2 CONTAINER-BASED NFV ARCHITECTURE 58
FIGURE 3.3 ENTROPY VALUES FOR SOURCE IP, WORM PROPAGATION, 30 SECOND

DETECTION WINDOWS 61
FIGURE 3.4 ENTROPY VALUES SOURCE IP, PORT SCAN, 30 SECOND DETECTION WINDOWS

 61
FIGURE 4.1 HIGH-LEVEL OVERVIEW OF P4-BASED ANOMALY DETECTION 64
FIGURE 4.2 P4 ANOMALY DETECTION PIPELINE 66
FIGURE 4.3 P4 TESTBED EQUIPPED WITH 10G SMARTNICS 69
FIGURE 4.4 DDOS DETECTION ACCURACY FOR DIFFERENT DETECTION APPROACHES

AND VARYING VOLUMES 71
FIGURE 4.5 SMARTNIC FORWARDING CAPACITY 72
FIGURE 4.6 SMARTNIC MEASUREMENT CAPACITY 73
FIGURE 5.1 OPERATIONAL LIFECYCLE OF ORCHESTRATOR OF DISTRIBUTED RULE

PLACEMENT - ODRP 76
FIGURE 5.2 ODRP: DETAILED ARCHITECTURE 78
FIGURE 5.3 MALICIOUS SOURCE DISTRIBUTION (UNIQUE IPV4 /24 PREFIXES) CLUSTERED

BASED ON THE TOTAL MEGABYTES/PACKET SENT (B9 DATASET) 84
FIGURE 5.4 TOTAL ATTACK TRAFFIC DELIVERED TO THE VICTIM 86
FIGURE 5.5 BENIGN TRAFFIC THROUGHPUT (IPERF) 87
FIGURE 5.6 ATTACK IMPACT TO BENIGN HTTP TRANSACTIONS: PERCENTAGE OF

SUCCESSFUL HTTP TRANSACTIONS 87
FIGURE 5.7 RULE HANDLER IMPLEMENTED VIA AN AUTOMATION/ORCHESTRATION

FRAMEWORK 89
FIGURE 6.1 HIGH-LEVEL OVERVIEW OF COLLABORATIVE DDOS MITIGATION 93
FIGURE 6.2 COLLABORATIVE FRAMEWORK FOR DDOS MITIGATION AND COMPONENT

INTERACTIONS 95
FIGURE 6.3 PROOF OF CONCEPT TESTBED SETUP 105
FIGURE 6.4 REPUTATION SCORE EVOLUTION FOR DIFFERENT TYPES OF FEDERATED

COLLABORATORS 107
FIGURE 6.5 REPUTATION SCORE COMPARISON – BINARY REPUTATION (BLACK),

PROPOSED APPROACH (GRAY) 108
FIGURE 6.6 TOTAL MALICIOUS AND BENIGN TRAFFIC REACHING THE VICTIM 110
FIGURE 7.1 HIGH-LEVEL OVERVIEW OF THE DDOS DETECTION & MITIGATION SCHEMA

 115
FIGURE 7.2 FINE-GRAINED MONITORING, TRAFFIC CLASSIFICATION AND ANOMALY

MITIGATION INTERACTIONS 118
FIGURE 7.3 FEATURE IMPORTANCE FOR DNS TRAFFIC CLASSIFICATION PROVIDED BY

RANDOM FOREST 124
FIGURE 7.4 COMPARISON BETWEEN SOURCE IP AND SIGNATURE-BASED FILTERING FOR

BOOTERS DATASETS 125

List of Tables

TABLE 2.1 OF RULES 23
TABLE 2.2 P4 HEADER EXAMPLE [34] 29
TABLE 2.3 P4 STRUCT EXAMPLE, SOURCE [34] 30

 13

TABLE 2.4 P4 PARSER EXAMPLE 30
TABLE 2.5 P4 TABLE EXAMPLE 31
TABLE 2.6 MITIGATION TECHNIQUES 50
TABLE 4.1 P4 REGISTERS: FUNCTIONALITY, INDICATIVE DEFINITION AND USAGE 66
TABLE 5.1 GAP EXECUTION TIME IN SECONDS 88
TABLE 5.2 RENDERING JINJA2 TEMPLATES INTO ACLS 90
TABLE 6.1 TYPES OF SMART CONTRACTS 100
TABLE 6.2 PERCENTAGE OF MALICIOUS SOURCES OBSERVED UNDER VARYING

SAMPLING RATES AND MITIGATION PERFORMANCE 111
TABLE 7.1 PACKET FIELDS USED IN TRAFFIC CLASSIFICATION OF DNS VOLUMETRIC

ATTACKS 120
TABLE 7.2 TRUE NEGATIVE AND TRUE POSITIVE RATES USING BOOTERS COMBINED

WITH BENIGN DATASETS (WIDE-F, WIDE-G AND TU CAMPUS) 123
TABLE 7.3 MONITORING AND FILTERING PERFORMANCE – PERCENTAGE OF XDP

PROCESSED PACKETS 127

List of Abbreviations

Symbol Description

ACL Access Control List

API Application Programming Interface

BGP Border Gateway Protocol

CAPEX Capital Expenditures

CDN Content Delivery Networks

CnC Command and Control

COTS Commercial Off The Shelf

DDoS Distributed Denial of Service attacks

DPDK Data Plane Development Kit

DSL Domain Specific Language

EMS Element Management System

FPGA Field Programmable Gate Array

gNMI gRPC Network Management Interface

gRPC Google Remote Procedure Call

HTTP Hyper Text Transfer Protocol

HW Hardware

ICT Information and Communication Technology

IDS Intrusion Detection System

IETF Internet Engineering Task Force

INT Inband Network Telemetry

IPS Intrusion Prevention System

ISP Internet Service Providers

KPI Key Performance Indicators

MANO Management and Orchestration

 14

NAPALM

Network Automation and Programmability Abstraction Layer

with Multivendor Support

NETCONF Network Configuration Protocol

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

OF OpenFlow Protocol

ONAP Open Network Automation Project

OPEX Operational Expenditures

OPNFV Open Platform for Network Functions Virtualization

OSM Open Source MANO

OSS Operations Support System

OVS Open vSwitch

OVSDB Open vSwitch Database

P2P Peer to Peer

P4 Programming Protocol-independent Packet Processors

REST Representational state transfer

RPC Remote Procedure Calls

SDN Software-Defined Networking

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SSH Secure Shell

SW Software

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

VIM Virtualized Infrastructure Manager

VNF Virtual Network Function

XDP Express Data Path

YAML YAML Ain't Markup Language – Yet Another Markup Language

YANG Yet Another Next Generation

 15

1 Introduction

Rapidly evolving business needs are continuously reshaping ICT environments and

related services in terms of elasticity, mobility, programmability and automation.

Simultaneously, operators place considerable emphasis on high-speed data collection,

processing and analytics especially considering devastating cyber-attacks. These

requirements raise new challenges for large-scale distributed (and/or federated)

environments such as cloud facilities, data centers, internet exchanges and service

provider networks.

The Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

architectural paradigms attempt to address modern needs and requirements, offering

deep network programmability, disassociation of software (SW) from hardware (HW)

and full-fledged automation. This paradigm shift has extensively influenced researchers,

device manufacturers and network professionals, establishing a cutting-edge ecosystem

mainly centered on open and standardized solutions. Related efforts are spearheaded by

technology powerhouses [1]–[4], (ii) innovative start-ups [5]–[7] and (iii)

academic/industrial R&D consortiums [8], [9].

OpenFlow (OF) [9], one of the first SDN implementations, advocated for the separation

of data and control plane. Devices direct traffic based on forwarding rules, inserted in

tables via the OF unified control plane. Perhaps the most radical approach for network

programmability is Programming Protocol-independent Packet Processors (P4) [5], a

Domain-Specific Language (DSL) that allows developers and operators to flexibly

define the processing pipeline of a device. Another approach, whiteboxing enables

network gear to load various Network Operating Systems (NOS) (e.g. [3]), typically via

a standardized boot-loader. However, potential for programmability might vary

depending on the capabilities and APIs of each NOS.

Advances in network softwarization enabled NFV solutions that migrate functionality to

virtualized resources. These Virtualized Network Functions (VNFs) may be combined

with selected physical elements to deliver network services emphasizing on portability,

reusability and slicing (separate a resource in distinct isolated chunks). Virtualized

appliances are mostly implemented on Linux-based systems that often underperform in

terms of packet processing. To that end, various solutions have been considered to

accelerate packet processing such as the recently introduced eXpress Data Path

 16

framework (XDP) [4]. XDP is a high performance softwarized data plane based on

Linux that can be seamlessly ported between machines as a special-purpose (e.g. data

collection) middlebox.

SDN and NFV technologies may be used to address cyber-attacks, one of the most

prominent threats for modern environments. Cyber-attacks continuously evolve in terms

of sophistication and impact, pervasively affecting internetworked infrastructures.

Notably, network domains are constantly plagued by massive Distributed Denial of

Service (DDoS) attacks launched via infected hosts under the control of malicious

actors. DDoS attacks are being offered as a paid commodity service referred to as

Booters or Stressers under the guise of legitimate benchmark solutions. In response,

most commercial service providers (e.g. ISPs, CDNs) offer security solutions ranging

from monitoring/alerting to DDoS mitigation and full-fledged traffic scrubbing [10].

Important challenges and considerations for cyber-attacks are:

 Efficient Monitoring and data processing: Anomaly detection algorithms

frequently rely on exported packet samples and flow records, sent to external

systems for further processing. Related monitoring mechanisms and processing

frameworks have to keep up with high-speed traffic rates without compromising

on visibility and accuracy.

 Utilization of mitigation resources: Effective mitigation of massive

heterogeneous attacks requires appropriate utilization of all available systems

(e.g. routers, switches, servers). Massive attacks often exceed the capacity of a

network organization threatening intermediate systems and network links. The

most common solution to this problem is Remotely-Triggered Blackhole

Routing (or Blackholing for brevity) that essentially renders the destination

unreachable. Alternatively, neighboring or disjoint domains in the attack path

may collectively assist in the mitigation process. However, multi-domain

collaboration requires among others, appropriate incentives and communication

mechanisms between partners.

 Shortcomings of existing solutions: On-premise appliances are based on costly

and proprietary solutions that allow moderate, if any, flexibility. Cloud-based

alternatives may additionally introduce significant latency and raise privacy

concerns.

 17

Inspired by these challenges and enabling technologies mentioned above, this

dissertation emphasizes on programmable, automated and performant mechanisms to

monitor network traffic, detect and (collaboratively) mitigate cyber-attacks.

Initially, a monitoring architecture is proposed in section 3 that offers on-demand

network monitoring data and related analytics to users (tenants and administrators)

within shared network infrastructures. This schema considers different devices as

advantageous observation (vantage) points to increase network visibility, an approach

well-suited for anomaly detection schemas. Specifically, measurements are collected

from scattered monitoring agents and directed to a data pipeline for processing and

enrichment.

Typically, such processing techniques perform well and enable powerful analytics but

rely on packet samples and flow records, exported to separate systems (i.e. collectors)

for further processing. In contrast, data plane programmability is a promising

technology that enables rapid control loops for the detection and mitigation of cyber-

attacks. This approach aims to be one step ahead of long tested legacy approaches that

rely on monitoring data exported from network devices and similar SDN solutions that

piggyback on control plane messages [11], [12].

Thus, as a next step we designed and implemented a DDoS detection schema entirely in

P4-enabled devices (Section 4). This in-network approach offers rapid attack detection,

while enabling control plane triggers (i.e. alarms) to external mitigation systems. We

employ important traffic features typically associated with anomalous events to increase

accuracy while conforming to processing requirements. Specifically, we: (i) inspect

network traffic and compute important traffic metrics per network subnet (i.e. network

flows and packet symmetry), (ii) evaluate feature values to identify potential threats and

(iii) convey alarms to external systems. This workflow can be deployed at various

vantage points within a network architecture where each P4 device operates

independently in a distributed fashion, considering different levels of granularity (e.g.

subnets / hosts).

Monitoring and anomaly detection mechanisms are the first step towards defending

against DDoS attacks. Subsequently, this dissertation also investigates automated

techniques to mitigate network attacks (Section 5). Most SDN techniques and legacy

solutions rely on formulating and distributing Access Control Rules (e.g. OpenFlow

 18

rules and ACL entries). Consequentially, a common issue is the shortage of mitigation

resources and the appropriate placement of rules depending on the attack vector.

To that end, a framework is proposed for mitigating detected anomalies across a

network topology. Generic mitigation actions are assigned to devices along an attack

path, depending on their capabilities. These devices are organized into distinct stages

and network operators express their defense preferences (i.e. mitigation policies) for

specific attack types. The assignment of rules to defense stages is formulated as a

Generalized Assignment Problem. Items (generic mitigation actions) are assigned to

bins (defense stages) based on capacity constraints and reward values derived by

operator policies. Due to the complexity of GAP, we consider to reduce the input size in

order to achieve assignment in a timely manner. This may be accomplished by

organizing actions into groups and aggregating malicious IP sources into prefixes [13].

After assignment, generic actions are translated to device-specific access control rules

and seamlessly distributed using various southbound interfaces.

An important aspect of our work is DDoS mitigation in a device-agnostic manner. This

was initially implemented by the Ryu SDN controller employing BGP, OpenFlow and

SSH. In addition, a popular open source automation framework, Salt [14], was

investigated. Salt adheres to the fundamental principles of SDN and provides a mature

event-driven platform to manage network elements in a programmatic manner. The

desired network state (i.e. mitigation actions to be deployed) can be enforced either with

specific control plane protocols (e.g. BGP) or via configuration files each appropriately

rendered for a specific device (i.e. vendor and operating system).

Massive DDoS attacks consist of many different sources and may overwhelm on-

premise resources and saturate important external links. In both cases it is sensible to

counter such attacks in their infancy via provider collaborations deploying distributed

security mechanisms across multiple domains in an attack path. Thus, in section 6, we

investigated the establishment of trusted federations among adjacent and disjoint

network domains, i.e. autonomous systems (ASes), that collectively mitigate malicious

traffic. Our approach focuses on signaling, coordination, and orchestration of a

collaborative mitigation schema, facilitated by appropriate blockchain-based smart

contracts. Reputation scores are used to rank ASes based on their mitigation track

record. Similarly to our previous efforts, we model the allocation of defense resources

across multiple collaborators as a combinatorial optimization problem (GAP)

 19

incorporating reputation scores and network flow weights. Each collaborator is able to

employ any available mitigation mechanism; we employed source-based filtering

appliances within the XDP framework.

Maintaining network data and filtering traffic for each malicious source may raise issues

primarily in terms of scalability (i.e. volume of source IPs) and effectiveness (e.g.

spoofed IPs). As an alternative, recent advances in data plane programmability enable

customized solutions tailored to specific attack vectors.

Thus, in section 7 a two-level schema for traffic classification and attack mitigation is

investigated. The first level incorporates our P4-based approach as a rapid yet coarse-

grained mechanism to identify network anomalies and the attack vector used.

Subsequently, a refined second level schema is instantiated on-demand, tailored to the

identified attack. This level is based on high performance XDP middleboxes that extract

monitoring data and filter malicious traffic. In contrast to typically used source-based

approaches, we consider an alternative IP-agnostic solution that uses combinations of

packet characteristics (signatures) to identify malicious traffic. The underlying

assumption is that traffic related to DDoS attacks, especially UDP-based, is

characterized by a small number of salient characteristics. As a proof-of-concept, we

focus on volumetric DNS attacks and assess: (i) packet processing performance, (ii)

classification capabilities (ability to identify benign and malicious traffic) and (iii)

number of unique rules generated.

The remainder of this dissertation is structured as follows:

Section 2 initially provides a brief overview with regards to network management,

covering: softwarization/virtualization trends, high-performance software data planes,

monitoring mechanisms, anomaly detection algorithms and mitigation frameworks.

Sections 3 and 4 address the collection and processing of monitoring data, primarily for

anomaly detection. Section 3 focuses on collecting monitoring data exported from

dispersed vantage points to enhance visibility. Section 4 further extends this approach

by distributing monitoring and anomaly detection workloads to programmable data

plane devices. Section 5 introduces our mitigation framework that appropriately assigns

and automatically translates generic actions to existing on-premise devices. Section 6

extends this approach to offer DDoS mitigation via network provider collaborations.

Section 7 presents a modular two-level schema employing P4 and XDP that offers

 20

traffic classification and attack mitigation tailored to an attack vector. In addition, an IP-

agnostic approach is presented for DNS-based volumetric attacks to account for

common restrictions introduced by massive numbers of (spoofed) source IPs.

Section 8 summarizes important conclusions and discusses potential future directions.

Sections 9, 10 and 11 contain accordingly related publications, an extended abstract in

Greek and references/bibliography.

 21

2 State-of-the-Art: Network Management and Security

 Software-defined Networking and Data Plane Programmability 2.1

Network architectures are organized into three distinct planes, namely: (i) data or

forwarding, (ii) control and (iii) management. Data plane is related to packet

forwarding operations and is often implemented in hardware for increased performance.

Control plane refers to signaling operations (e.g. protocols) that affect data plane

behavior. Management plane refers to all management operations (e.g. FCAPS – Fault

Accounting Configuration Performance Security) that may directly or indirectly

influence control and data plane activities.

Network devices, especially legacy ones, may operate across all three planes performing

data, control and management plane actions. Internal interactions between data and

control plane were, and sometimes still are, implemented in a black-box manner lacking

flexibility/programmability. Furthermore, network management operations heavily

relied on vendor-specific APIs and proprietary software tools. Large network

deployments exhibited vendor lock-in, provided limited options for programmability

and flexibility while also requiring considerable effort in configuration and

maintenance.

These issues and considerations are addressed by SDN solutions that offer on-demand

programmatic reconfiguration of network devices across all three planes (i.e. data,

control and management). This is usually accomplished via the adoption of standardized

vendor-agnostic APIs and the functional separation of the data plane from the control

and management plane. The data plane implements rapid forwarding decisions assisted

by hardware specific implementations (e.g. ASICs and TCAM memory banks) and

communicates with an external controller that exposes northbound APIs to applications

and operators. Perhaps the two most well-known approaches with regards to SDN are

the OF (OpenFlow) protocol [9] and the P4 (Programming Protocol-independent Packet

Processors) framework [5]. The former defines a unified, vendor-agnostic control plane

protocol to communicate with devices and populate appropriate tables with forwarding

rules. The latter is a Domain-Specific Language (DSL) that allows developers to define

in-depth the processing pipeline of network devices (i.e. data plane). Past efforts,

similar to OpenFlow are:

 22

 ForCES [15]: Forwarding and Control Element Separation (ForCES) an

approach that disassociate of Forwarding and Control elements. This is achieved

using an information model and appropriately defined Logical Function Blocks

(LFBs) that describe device capabilities and related network events.

 Ethane [16]: may be viewed as the predecessor of OpenFlow. The proposed

architecture considers an omniscient, centralized controller that dictates access

control and routing policies to plain forwarding boxes.

Other SDN-related efforts are based on Abstraction Layers and Unified Data Models:

 Abstraction Layers: Multi-protocol SDN controllers such as OpenDaylight [17],

ONOS [18], Ryu [19] integrate multiple southbound protocols to interface with

managed devices. A closely related work, NAPALM [20] maps generic

operations to (i) device-specific capabilities (e.g. NETCONF, HTTP API) and

(ii) configuration commands generated from appropriate device-specific

templates (e.g. Jinja2).

 Unified Data Models: the IETF and the OpenConfig [21] informal working

group attempt to standardize operations for data retrieval and configuration

management employing YANG models.

This dissertation primarily (i) employs OpenFlow and other southbound protocols to

disseminate Access Control Rules and (ii) deploys anomaly detection algorithms

directly in P4-enabled network elements. Important frameworks used in (i) and (ii) are

analyzed in subsections 2.1.1, 2.1.3 (i) and 2.1.2 (ii) accordingly.

2.1.1 OpenFlow Protocol

Depicted in Figure 2.1 is a high level overview of the OF protocol [9] and related key

elements, i.e. Switch and the Controller. The OpenFlow protocol provides a secure

control channel via which, a controller interfaces with a switch to retrieve information

and deploy forwarding rules in a programmatic manner.

 23

Figure 2.1 OpenFlow protocol: Controller-Switch communication [9]

By design, the OF protocol separates data plane functionality from control/management

operations. Forwarding devices operate based on OF rules stored in special purpose data

structures (flow tables). OF rules consist of Match Fields, Counters and Actions (see

Table 2.1):

 Match Fields (Headers) to evaluate and match against packets. These include:

Ingress port, MAC Addresses, VLAN ID and PCP, IP Addresses, L4 Ports.

Later version of OpenFlow also include additional match fields such as MPLS

headers.

 Counters (bytes, packets) that are updated for each matching packet.

 Actions to be executed on matching packets, e.g. forward via a specific port,

drop, send to controller, and normal switch processing.

Match Fields (Headers) Counters Actions

Table 2.1 OF Rules

These rules are often deployed in hardware-based TCAM memories that allow line rate

processing but are expensive and consume a lot of power. Software-based alternatives

might suffer in terms of performance. In cases multiple rules match for a specific

packet, ties are resolved using priority, a metadata that characterizes an OpenFlow rule.

Since its initial inception and first prototype implementations (OF 1.0), OpenFlow has

changed considerably as new features were incorporated i.e. advanced pipeline,

additional matching fields and actions. The current version of the OpenFlow

specification is 1.5.1 [22]. A high level overview of the processing pipeline is depicted

in Figure 2.2.

 24

Figure 2.2 OpenFlow Pipeline for version 1.5.1 [22]

The pipeline supports multiple flow tables, that are sequentially numbered. These

numbers are used to direct packets to the corresponding table for processing. The

processing always starts with the first flow table. Each packet is associated not with one

but multiple actions (action set) to be executed on final processing. In case a matching

flow entry is found, the action set is updated. Flow rules may direct a packet to a

subsequent table for further processing or execute the entire action set. Packets can only

be directed to a flow table with a higher number than the current one. The pipeline

supports ingress and egress processing; these are logically separated by the first egress

table. Tables indexed with a lower number than the first egress table are considered

ingress tables.

Notable features added in recent OpenFlow versions are mentioned below:

 Multi Controller support: additional controllers are able to connect and manage

the switch via the OF protocol.

 Groups: Multiple actions may be grouped together into distinct buckets. Each

group is associated with one or more buckets of rules. This approach may be

used to implemented load balancing or fast-failover.

 Meters: An OF rule may be associated with a meter, comprised of multiple

bands. A band is characterized by a specific threshold; whenever the traffic rate

matching the OF rule exceeds the threshold, the band actions are executed.

Typically, these include dscp marking and drop. Meters are well suited for rate

limiting use cases.

 25

Once the most popular implementation of SDN, the OF protocol provides a vendor-

agnostic interface to insert rules and directly alter forwarding. OF was employed by

Google to perform advanced traffic engineering across its datacenter backbone [23];

Internet2 deployed OF-enabled boxes to create L2 circuits between various points of

presence. On a similar use case GÉANT, the pan European Research and Education

Network, used OF switches [24] to implement L2 circuits, both point-to-point with

reserved bandwidth as well as point-to-multipoint in a VPLS manner. Note that, in an

effort to expose additional functionality to the controller, OF implementations grew

increasingly more complicated over the years. Currently, interest in OF seems to

diminish due to limited adoption and long development cycles, especially after the

advent of the more flexible and radically programmable P4 framework [5].

2.1.2 Programming Protocol-independent Packet Processors - P4

A shortcoming of the OpenFlow architecture is its limited flexibility despite exposing

various programmable capabilities. In a nutshell, OpenFlow devices are based on

“fixed-function” hardware. Operators and experimenters cannot alter the switching

pipeline but only utilize the capabilities implemented by the device manufacturer. As

such, requested features require a revision of the specification and subsequent

implementation by vendors. The need for rapid and radical data plane programmability

and reconfiguration has led to the creation of the P4 framework.

Figure 2.3 SDN: P4 vs OpenFlow, source: P4 Language Consortium
1

1
 https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html

https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html

 26

The acronym P4 [5] stands for “Programming Protocol-Independent Packet Processors”

and in essence is a high-level Domain Specific Language that defines packet processing

functionalities of forwarding devices (targets in P4 terminology). P4 is usually

perceived as the successor of OpenFlow; although similar in some aspects, these two

approaches differ in an important way. P4 defines how a programmable device should

process packets (i.e. data plane), whereas OF provides a unified interface (i.e. control

plane) to populate forwarding rules in a fixed-function pipeline. These differences are

also depicted in Figure 2.3 above.

Important design principles for the P4 language are:

 Reconfigurability: Packet parsing and processing may be altered on-demand

based on operational requirements.

 Protocol Independence: P4 targets are not directly coupled with a specific

protocol or pipeline processing. Operations are performed via (a) parsers that

extract specific header fields and (b) multiple Match-Action tables containing

rules that match against parsed headers.

 Target-Agnostic: P4 is independent of the underlying device (target)

implementations. Appropriate compilers are used to translate P4 programs to

vendor-specific code that is ultimately executed on the device.

Advances in hardware (chip design) have demonstrated that P4 is feasible on super-high

speed switching designs. Perhaps the most well-known P4 targets are switches that

operate on Tofino chipsets [25] from Barefoot. However, P4 is not limited to a single

chip design or vendor; additional targets for P4 are smartNICs [26] and FPGAs [27].

The advent of such advanced data plane programmability coupled with moderate entry

barrier in terms of Capital Expenditures (CAPEX) has introduced the concept of in-

network computing. This promising paradigm takes advantage of the processing power

available in programmable network devices to offload processing and computation

tasks. Indicative examples range from monitoring e.g. In-Band Network Telemetry

(INT) [28], to consensus building for distributed systems [29] and Map-Reduce

algorithms for Big Data processing [30]. Additionally, prominent network use cases are

Heavy Hitter [31], [32] and DDoS [33] detection. Although appealing, implementations

need to account for memory and processing limitations, as network devices should first

and foremost forward traffic. Thus, sacrificing forwarding power to offload non-

 27

network computations requires considerable planning and weighing the benefits against

the costs.

Currently there are two different releases of the P4 language, P416 [34] and P414 [35];

for each release there are various versions. Within the scope of this thesis we focus on

P416, version 1.2.0, and provide a brief overview of workflows, data types, and other

important building blocks.

2.1.2.1 P4 Language Architectural Overview

Depicted in Figure 2.4 is a typical workflow for P4 programming. As mentioned, P4 is

target independent; this is made possible via compilers provided by device

manufacturers and reference (architectural) models. The architecture model is

essentially a P4 program that defines (i) which parts of the target are programmable and

(ii) additional capabilities offered to developers by the manufacturer.

Figure 2.4 P4 Components and Workflow [34]

A popular P4 architecture model, the “v1 model”, is depicted in Figure 2.5. From a

high-level standpoint the architecture model is comprised of the following blocks: (1)

parser, (2) ingress processing, (3) traffic manager, (4) egress processing and (5)

deparser. The (3) traffic manager is not considered programmable and refers to device

specific internals. The rest are analyzed in subsection 2.1.2.3 below.

 28

1 2 3 4 5

Figure 2.5 P4 v1 Model architecture [36]

Figure 2.6 depicts a template for P4 program based on the v1 model. Additional

libraries can be loaded into a P4 program via the “#include” operator. Note that apart

from v1model.p4, the standard library of P4 is also included (core.p4). This contains

error codes and packet_in/packet_out definitions used respectively for incoming and

outgoing packets.

Figure 2.6 P4 template program for v1 model [36]

2.1.2.2 Standard Types and Metadata

The P4 framework provides standard data types. Notable examples are:

 int<N>: signed integer, N bits

 bit<N>: unsigned integer, N bits

 bool: True, False

 match_kind: used in tables to specify the match method for parsed headers:

o exact: parsed header matches exactly

o ternary: parsed header matches using an arbitrary bitmask that supports

wildcard matching

 29

o lpm: parsed header matches using the longest most specific compatible

match, similar to the “longest prefix match” concept of IP routing.

Types bit and int support standard arithmetic (apart from division) and logical

operations as well as comparisons. Furthermore, these basic types are used to

implement a wide variety of use cases ranging from packet header definitions to

probabilistic data structures. Finally, we elaborate on two important types Header and

Struct:

 Header: Defines the exact representation of packet headers and associated object

types for each fields. Note that a given Header representation may not be

comprised of other Header types, i.e. nested header definitions are not

supported. This is attributed to complications during the validation process of

nested representations. A header is characterized as valid or invalid employing a

hidden “validity” bit. An example is presented in Table 2.2 below.

typedef bit<48> EthernetAddress;

typedef bit<32> IPv4Address;

// Standard Ethernet header

header Ethernet_h {

 EthernetAddress dstAddr;

 EthernetAddress srcAddr;

 bit<16> etherType

}

// IPv4 header (without options)

header IPv4_h {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 bit<16> totalLen;

 bit<16> identification;

 bit<3> flags;

 bit<13> fragOffset;

 bit<8> ttl;

 bit<8> protocol;

 bit<16> hdrChecksum;

 IPv4Address srcAddr;

 IPv4Address dstAddr;

}

Table 2.2 P4 Header example [34]

 Struct: These type declarations define various schemas, containing even other

structs (see Table 2.3). Also Header definitions may also contain structs. Apart

from custom structs defined by the programmer, reference architectures usually

define well-known structures, e.g. standard_metadata. Within this dissertation,

structs have been used to define metadata headers that accompany packets

across a processing pipeline.

struct ipv6_addr {

 bit<32> Addr0;

 bit<32> Addr1;

 bit<32> Addr2;

 bit<32> Addr3;

}

header ipv6_t {

 bit<4> version;

header Tcp_h { … }

header Udp_h { … }

struct Parsed_headers {

 Ethernet_h ethernet;

 IPv4_h ipv4;

 Tcp_h tcp;

 Udp_h udp;

}

 30

 bit<8> trafficClass;

 bit<20> flowLabel;

 bit<16> payloadLen;

 bit<8> nextHdr;

 bit<8> hopLimit;

 ipv6_addr src;

 ipv6_addr dst;

}

Table 2.3 P4 Struct example, source [34]

2.1.2.3 Programmable control blocks

The first programmable block is typically the Parser, essentially a Finite State Machine

declaration that defines transitions between distinct states based on packet headers. The

initial state is labeled “start”. Each state extracts packet header values to be stored in the

corresponding P4 header object. Transitions may be based on conditionals (e.g. IPv4,

IPv6). The valid final stages are either accept or reject; accordingly these denote a

successful or unsuccessful packet parsing.

Parser definitions contain as parameters (i) the packet, (ii) the struct used to store

extracted headers and (iii) custom (meta)data structures. A typical example is presented

in Table 2.4 below.

parser MyParser(

 packet_in packet,

 out headers hdr,

 inout metadata meta,

 inout standard_metadata_t standard_metadata) {

 state start {

 transition parse_ethernet;

 }

 state parse_ethernet {

 packet.extract(hdr.ethernet);

 transition select(hdr.ethernet.etherType) {

 TYPE_IPV4: parse_ipv4;

 default: accept;

 }

 }

 state parse_ipv4 {

 packet.extract(hdr.ipv4);

 transition accept;

 }

}

Table 2.4 P4 Parser example

Extracted values from packet headers are used in subsequent control blocks that define

all operations related to packet processing and forwarding. Typically, the first control

block after the Parser is the Ingress. Furthermore, Match-Action structures, i.e. tables,

are used within control blocks (e.g. Ingress) to assign actions (P4 functions) to a packet.

A control block declaration also defines all the parameters to be used within its context,

 31

e.g. metadata and parsed headers. The exact functionality and number of control blocks

may differ depending on the architecture. The final control block is the Deparser,

whose purpose is to reassemble valid headers for outgoing packets.

As mentioned, hardware (target) manufacturers use an architecture reference model to

define the processing pipeline supported by their hardware. The building blocks

mentioned above are ordered and glued together using the package definition. A P4

programmer uses the package keyword to map custom control blocks to the

placeholders provided by the manufacturer.

2.1.2.4 Actions and Tables

A P4 action may be viewed as a function that groups together multiple operations.

Match-Action tables (see Table 2.5 below) are employed to match packet headers and

perform the defined action. Important table properties may include:

 key: comprised of a list of matching scopes, e.g. extracted headers and the

match_kind, i.e. lpm, ternary, exact.

 actions: every available action to be associated with a specific rule.

 size (optional): the maximum number of entries for this table

 default_action (optional): specifies a default action in case no other entry is

matched. This was commonly referred to as “table-miss” entry in OpenFlow.

table subnet_src

 key = {

 hdr.ipv4.srcAddr : ternary;

 }

 actions = {

 get_src_subnet;

 NoAction;

 }

 size = 258;

 default_action = NoAction();

}

Table 2.5 P4 Table example

2.1.3 Data Modeling and Abstraction Layers

SDN-related efforts are not strictly limited to OF and P4. Network softwarization and

heterogeneous management can be also achieved via (i) vendor-agnostic interfaces

based on unified data models and (ii) abstraction layers that translate generic operations

to device-specific southbound APIs (e.g. BGP, OpenFlow, OVSDB, NETCONF, SSH).

The former is mainly represented by the efforts of IETF and OpenConfig [21] to

 32

provide widely adopted data models. The latter typically employs multi-protocol SDN

controllers [17]–[19], automation frameworks [14], [20], [37] in order to create layers of

abstraction.

2.1.3.1 YANG and OpenConfig

Network management relied (and perhaps still does) on the Simple Network

Management Protocol (SNMP) [38]. SNMP provides a mechanism to retrieve device

data structured into Management Information Bases (MIBs). MIBs are defined using the

Structure of Management Information (SMI) [39] language. Similarly, Yet Another

Next Generation (YANG) [40] is a data modeling language that describes information

(configuration, state data) and related operations (Remote Procedure Calls - RPCs) for

managed objects. As in SMI-based MIBs, device vendors may opt to support generic

YANG models or define their own. Currently the IETF is heavily involved into

standardizing YANG models. Similar efforts are spearheaded by the OpenConfig [21]

working group, a consortium comprised primarily from network operators such as

Google, Facebook, Cloudflare, AT&T, Deutsche Telekom, Microsoft, Netflix and

Comcast. This group focuses on vendor-neutral, widely-adopted models for

configuration management. Related efforts are illustrated in Figure 2.7 below.

Figure 2.7 OpenConfig Standardization Efforts [21]

Initially, YANG models were conceptually coupled with the NETCONF protocol.

However, management schemas that employ IETF and OpenConfig YANG models may

use a variety of protocols. Typical examples are:

 NETCONF: The Network Configuration Protocol (NETCONF) interfaces with

network devices to retrieve information and applies configuration changes.

NETCONF operations are implemented as Remote Procedure Calls (RPCs),

conveyed typically over SSH, that contain XML encoded data.

 33

 RESTCONF: This approach is similar to NETCONF but is based on the

Representation State Transfer (REST) paradigm. In short, RESTCONF supports

CRUD operations on a hierarchy of YANG-modeled resources.

 gNMI: The gRPC Network Management Interface is a mechanism developed by

Google to interface with network devices. Similar to NETCONF, gNMI allows

operators to retrieve and manipulate the device configuration via YANG

models. It is based on gRPC a modern, high performance framework for

Remote Procedure Calls, initially developed by Google.

2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks

The wide adoption of a unified API is a slow and cumbersome process, heavily reliant

on collaboration from vendors. Abstraction layers are a more flexible approach that

exposes northbound APIs to applications, while seamlessly translating and conveying

device-specific instructions.

SDN controllers, though initially supported only OpenFlow, now typically provide such

layers of abstraction. New popular implementations such as OpenDaylight [17], ONOS

[18] and Ryu [19] follow an architecture that leverages multiple southbound protocols

to interface with managed elements. High level functionality is exposed to applications

via northbound APIs. The core platform maintains important state, orchestrates data

retrieval and polling intervals while “drivers” are used to interface with devices via the

appropriate southbound protocol. A typical example for such an architecture is

presented in Figure 2.8.

Figure 2.8 OpenDaylight architecture [17]

 34

This architecture enables interoperability with other systems, a key feature for modern

environments. Note that OpenDaylight is integrated with Openstack [41] a popular

cloud management platform.

Automation frameworks provide similar abstractions as SDN controllers, typically

employing a specific syntax to declare the desired state and/or orchestrate task

executions. Puppet [42], arguably the most popular approach for managing systems,

employs a Domain-Specific Language to declare the desired state. Other approaches,

Ansible [37] and Salt (Saltstack) [14] have developed significant traction within the

network community primarily due to substantial endorsement from vendors and positive

feedback from early adopters (e.g. Cloudflare) .

Ansible adopts YAML (YAML Ain’t Markup Language), an easy to understand

serialization format to define plays (i.e. tasks). These are organized into playbooks and

executed in desired targets (e.g. network devices, servers). Ansible follows a smooth

learning curve and has significant vendor support thus making it a good fit for network

automation. Typically, Ansible heavily relies on Jinja2 templates to create different

configurations in a programmatic manner; templates are in essence predefined

configuration stanzas with appropriate placeholders. These placeholders are filled using

data from various sources e.g. Databases, Network Management Systems. Ansible

playbooks are executed from a centralized host that has access (e.g. SSH) to managed

devices.

Salt or Saltstack is an automation and configuration management framework built

around an event bus. Similarly to Puppet, Salt is based on master-minion architecture.

Minions may be perceived as software agents (daemons) deployed within managed

systems (e.g. Linux servers). Communication with the master is achieved over a

publish-subscribe messaging system. Contrary to Puppet, Salt is primarily Push-based;

at the master’s behest, minions execute Python modules or enforce a desired state as

defined in SaLt State (SLS) files. The master bears a close resemblance to the all-seeing,

omniscient SDN controllers. However, network devices are usually limited by vendor

restrictions and cannot host a Salt minion; thus support is commonly offered via

specialized proxy minions deployed in general purpose systems (e.g. Linux servers).

Proxy minions operate as regular Salt minions and interface with network elements via

a device-specific driver.

 35

Perhaps the most well-known example is NAPALM [20], an open-source Python library

providing high-layer abstractions for device programmability. These abstractions

include data retrieval APIs (“getters”) and merge configuration operations (“setters”),

based on Jinja2 device–specific templates. Abstract get actions and configuration

stanzas are conveyed via the appropriate library for each vendor and operating systems.

A functional overview of NAPALM is presented in Figure 2.9 below.

NAPALM Core Functionality

(“getters” & “setters”)

IOSXRJUNOS VyOSIOS ...

pyIOS

XR

junos-

eznc
netmiko ...

Devices

Northbound Applications

Ansible Salt User

Figure 2.9 NAPALM Architecture

Note that both Ansible and Salt, make heavy use of NAPALM and Jinja2 templates in

an effort to seamlessly integrate with heterogeneous network environments. These

approaches slightly veer from typical SDN architectures that advocate for cutting-edge

programmability and instead translate commands to configuration changes. However,

they are extremely popular enabling operators to make the most of their current

infrastructure and automate time consuming tasks.

 Network Function Virtualization 2.2

Legacy network environments usually implement network functionality via dedicated

hardware. Emerging requirements for programmability and agility brought forth a new

architectural paradigm shift in the form of Network Function Virtualization (NFV) as

defined by ETSI [43]. In a nutshell, functionalities traditionally implemented in

hardware appliances are “softwarized” and migrated to Commercial Off-The-Shelf

(COTS) hardware, as Virtual Network Functions (VNFs). Important principles of NFV

architectures are:

 36

 Separation: Network Functionalities are offered as a software-based service

disassociated from the underlying hardware. This decoupled approach allows

software and hardware to follow separate evolution paths and release cycles.

 Efficiency: Hardware can be dynamically repurposed for various purposes

amortizing Capital Expenditures (e.g. procurement costs) and Operational

Expenditures (e.g. power consumption and cooling).

 Elasticity: operators may scale the VNFs as elastic needs manifest. Moreover,

VNF deployment can be streamlined and automated via software tools. These

benefits are of considerable importance in the current dynamic landscape.

The NFV reference architecture proposed by ETSI is presented in Figure 2.10 below:

Figure 2.10 NFV reference architecture [43]

Key elements in the reference architecture are:

 Virtual (or Virtualized) Network Function (VNF): a virtualized instance of

legacy elements that offers a specific network function or service. This instance

may be based on various virtual resource pools and is not strictly limited to a

distinct component (VM).

 Element Management System (EMS): manages one or more VNFs.

 37

 NFV Infrastructure (NFVI): refers to the entire deployment and execution

environment for VNFs. This is comprised by the hardware substrate, the

virtualization layer that provides pools of resources and necessary middleware

components/software tools.

 Virtualized Infrastructure Manager (VIM): interfaces with the NFVI to

provision and manage the necessary resources (compute, storage network) for a

VNF.

 VNF Manager: is responsible for deploying, scaling, monitoring and removing

one or multiple VNFs.

 Orchestrator: Receives requests from other systems (e.g. OSS/BSS), maintains

high-level overview and manages/orchestrates the NFVI and deployed VNFs.

Over the years, various organizations pursue NFV-related goals usually based on the

reference architecture above or close adaptations. Notable mentions are OPNFV [44],

ONAP [45], OSM [46] and CORD [47].

 High Performance Packet Processors 2.3

The virtualization and softwarization of network functions introduced various

challenges; important among them is performance. Software-based VNFs are usually

based on Linux distributions that though more agile have to keep up with monolithic

albeit performant hardware implementations. A common issue is the limited packet

processing capability of Linux systems [48]. To that end, various approaches have been

introduced that enable programmable and fast packet processing. These are mostly

implemented using: (a) dedicated kernel modules, (b) kernel bypass techniques, (c)

special-purpose systems and (d) programmable hardware devices.

Kernel Modules: Approaches based on customized kernel modules attempt to increase

performance by attaching into the existing stack and perform specialized actions. This

requires considerable care since potential bugs can severely affect a system. A notable

example is the Open vSwitch (OVS) [49], perhaps the most popular virtual switch used

in various use cases; additional examples are the virtual router frameworks Contrail [50]

and Click [51].

Kernel bypass: High packet rate in general purpose operating systems is achieved via

specialized toolkits such as Netmap [52], PF_RING [53] and DPDK [54]. In a nutshell,

 38

these tools typically bypass the kernel path and directly control the underlying hardware

to avoid time consuming context switches between kernel space and user space. Often

such solutions may dedicate CPU cores to poll for new packets, a technique commonly

referred to as “BusyPolling”.

Special-purpose Systems: After the advent of NFV solutions, various efforts

investigate special-purpose systems as VNFs to offer high performance packet

processing. Prominent examples are ClickOS [55] and NetVM [56], based on Xen and

KVM hypervisors accordingly. Specifically, ClickOS employs minimal packaged

versions of the Click router framework and NetVM leverages on DPDK.

Programmable Hardware Devices: Network hardware can be reprogrammed to

achieve high-performance processing. An indicative example is NetFPGA [27], an

effort that precedes P4 and allows developers to program packet processing tasks on

FPGAs. With the advent of P4, NetFPGA is a popular hardware target for P4.

XDP system: A promising alternative to the approaches presented above is the eXpress

Data Path (XDP) framework [4], a softwarized data plane that harmonically co-exists

with the Linux kernel. XDP actions are executed prior to costly networking stack

operations and can be seamlessly ported across Linux machines. This high-performance

yet flexible framework has been widely adopted in production network environments

for various use cases and applications ranging from routing and load balancing [2] to

data collection, DDoS Detection and Mitigation [6].

XDP programs, written in C, are executed either in software within the context of the

network driver or offloaded directly in Network Interface Cards (NICs) [26]. Their

execution is initiated upon the arrival of packets on the NIC. In turn, packet field values

can be parsed, extracted and stored in persistent memory referred to as Berkeley Packet

Filter (BPF) Maps. These are key-value stores defined when the XDP program is

loaded. After processing, XDP returns an action for each packet which defines how it

should be handled. The packets can be either (i) dropped - XDP_DROP, (ii) passed to

the network stack - XDP_PASS, (iii) redirected to another interface - XDP_REDIRECT

or (iv) transmitted back from the same interface - XDP_TX. As in all programmable

data planes, the design and implementation of XDP applications require significant

attention due to specific limitations. Indicatively only (i) bounded loops, (ii) fixed-size

 39

data structures (iii) 4096 BPF instructions per program and (iv) specific kernel functions

are supported.

 Monitoring Solutions 2.4

Accurate, performant and scalable monitoring solutions are of paramount importance to

modern network environments. Rapidly changing traffic patterns and security incidents

require in-depth network visibility based on various metrics such as interface counters,

queue occupancy, flow records and packet samples.

2.4.1 SNMP and Streaming Telemetry

As mentioned SNMP is frequently employed as a standardized mechanism to poll

network devices and collect important data for various management purposes. However,

SNMP exhibits scalability limitations and modeling shortcomings inherited from SMI.

The former limitations typically force network operators to set longer polling intervals,

thus leading to coarse-grained monitoring data (e.g. interface counters). Various

alternatives have been considered in that regard. Indicatively, the sFlow [57] protocol,

may also send counters (counter samples) to the collector in addition to packet samples.

Additionally, software mechanisms can be used to efficiently orchestrate the collection

of monitoring data. Such a framework is presented in [58] employing a modern

information schema and a master/worker architecture for distributing monitoring

workloads, i.e. SNMP GET operations.

The state-of-the-art approach for continuously retrieving network measurements from

devices is streaming telemetry. This approach refers to the act of pushing measurements

or other events to appropriate equipment (collectors) for various purposes. Typical

examples for time series measurements are interface counters and ingress/egress queue

depths. In comparison to SNMP, telemetry introduces a performant Push-based

alternative, that promptly sends information streams to collectors alleviating issues

related to continuous polling. In Figure 2.11 below, an analogy of important terms

between SNMP and telemetry is presented.

 40

Figure 2.11 SNMP vs Telemetry
2

Telemetry has two different initiation mechanisms, Dial-In and Dial-Out. In both

approaches, data are streamed to a collector by the network device.

 Dial-In: The client (collector) dynamically subscribes into specific information

streams offered by the device (i.e. sensor paths).

 Dial-Out: The network device is statically configured to publish monitoring data

to a specific collector.

Moreover, telemetry may operate using different transport / application protocols, i.e.

UDP, TCP and gRPC (via gNMI). Note that, vendors such as Cisco, Juniper and Nokia

have made significant progress in integrating related telemetry capabilities in their

devices [59], [60]. Arguably the most prominent approach and also supported by all

three vendors above, is gNMI/gRPC-based Telemetry operating over HTTP/2 and

initiated in a Dial-In fashion.

2.4.2 In-band Network Telemetry

A similar but slightly different approach is In-band Network Telemetry (“INT”). INT is

a framework that enables the data plane to monitor network services without

intervention from the control/management plane. As defined in the INT architectural

model [28], packet headers are used to convey “telemetry instructions”, embedded

within normal traffic or in specialized packets (probes). Initially, instructions are

inserted by INT traffic sources (e.g. applications, servers, NICs) and subsequently

processed by other INT-capable devices. These devices interpret instructions and record

monitoring data within INT packets. Finally, INT traffic sinks retrieve related data and

act appropriately. Monitoring data include but are not limited to switch id, ingress port,

ingress timestamp, egress port, queue occupancy, queue congestion status. This

2
 http://junosandme.over-blog.com/2019/02/grpc-telemetry.html

http://junosandme.over-blog.com/2019/02/grpc-telemetry.html

 41

approach enables a thorough End-to-End monitoring of the exact network state as

observed by the packet across all intermediate devices. Though the architecture of INT

is generic and may be used within different networking environments, the use case fits

well into P4 [28], [61], and XDP [62].

2.4.3 Packet-level and Flow-level information

While the aforementioned techniques provide important traffic metrics, detailed data

related to L3 (network layer) and above are invaluable. As an example, per-packet

and/or per-flow data may be used for traffic engineering, troubleshooting and intrusion

detection/prevention. Most production solutions heavily rely on monitoring information

of such granularity (L3+) for various network management purposes. Operators

typically use protocols such as sFlow [57] or NetFlow [63] to export packet samples or

aggregated flow records. Such information is collected and processed by external

systems, usually in a centralized fashion. Alternatively, virtual or hardware appliances

can monitor the traffic directly if placed at central monitoring hubs or via mirrored

traffic streams (e.g. SPAN ports). Various related research efforts in the literature

investigate monitoring solutions within the context of SDN, Programmable Data Planes

and NFV.

2.4.4 SDN and Data Plane monitoring solutions

OF-based approaches often poll the network devices for statistics [64] or intercept

control messages, e.g. PacketIn and FlowRemoved [12]. With regards to the former, i.e.

polling for monitoring information, as exhibited in [65], the management interface (and

by extent access to monitoring information) is severely limited in comparison to the

switching ASIC. To that end, monitoring data originating from sFlow may be also used

to alleviate the controller as well as the device [66]. Other alternatives modify the OF-

protocol to enable per-flow sampling on the network device [11] and direct samples to

the controller. However, reprogramming OpenFlow devices is no easy task.

P4-based approaches leverage programmable hardware to perform in-network

computations. This approach locally processes traffic on network devices to promptly

obtain network measurements and identify various events, e.g. Heavy-Hitter detection.

Most such approaches leverage on probabilistic data structures (i.e. sketches) to respect

the constrained memory and CPU budget [31], [67].

 42

Programmable traffic processors e.g. P4 [5], NETMAP [52], PF_RING(ZC) [53],

DPDK [54] and XDP [4], have been actively used for monitoring purposes and in

general alleviate the overhead of packet processing in Linux. Indicatively we mention

nProbe [68] a solution that may operate as probe (i.e. generator), collector and proxy for

NetFlow/IPFIX traffic, typically assisted by PF_RING_ZC kernel bypass module.

2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures

Monitoring, in the context of NFV may refer to: (a) checking the health (important

KPIs) of deployed VNFs and (b) dynamically deploying VNFs that extract, collect and

process measurements. The two are closely related and somewhat difficult to separate.

The former usually involves interfacing with the NFVI and retrieving important metrics

from the underlying substrate (e.g. OpenStack) [69]. The latter, typically relies on

dynamically placed probes that receive traffic via traffic redirection/mirroring or act as a

tap in the wire [70]. Both approaches may employ various mechanisms mentioned in

section 2.3 above to extract monitoring information across the data plane of a VNF

chain in a performant manner [71]. An important challenge is extracting and isolating

user (tenant) data within a multi-tenant cloud/NFV infrastructures [72]. Note that, most

major commercial cloud providers empower their tenants (customers) with monitoring

metrics and related analytics [73]–[75] while third parties offer application monitoring

as Software-as-a-Service (SaaS) [76].

 Cyber Threats 2.5

The number of end-user devices and (inter)networked systems in general, increases in

an ever-growing rate. Each networked system or device is a potential target for cyber-

attacks; threats range from data exfiltration, malware propagation and Denial of Service

attacks. Related incidents of data theft [77] and recent regulatory legislation such as

GDPR has significantly raised awareness on the matter.

2.5.1 Malicious Software

There are different variations of malicious software such as viruses, worms and trojans.

Typically, viruses require executing an infected file obtained via different channels, e.g.

mail, file download, physical media; trojan variants usually disguise themselves as

legitimate files. Worms exploit operating system or application vulnerabilities to self-

 43

propagate and infect different machines to be used for other illicit activities (e.g. DDoS

attacks). Ransomware also exploits vulnerabilities to infect a computer and encrypts the

system or files. Typically, the actors attempt to extort payment via crypto currencies to

provide the user with the necessary decryption method/credentials. A system-centric

study of malware is beyond the scope of this dissertation; instead we focus only on the

network aspects of cyber threats and especially DDoS attacks.

2.5.2 Botnets

In general, the term bot refers to a system that automates various workflows, often

interfacing with human end-users or other services. Bots can be benign such as chatbots

used for customer support or malicious nodes that send spam e-mails and participate in

DDoS attacks. Focusing on the latter, bots or zombie computers are systems that have

been infected with malware and are under the control of an external (malicious) actor.

This malware variant is usually able to self-propagate, continuously scanning for

vulnerabilities and attempting to infect other networked systems.

Many zombies form a botnet and are used for various malicious activities orchestrated

by Command and Control (CnC) servers. Instructions are conveyed to infected hosts

using various communication patterns such as centralized, hierarchical or Peer-to-Peer

(P2P). In general, cyber-security professionals and law enforcement organizations

attempt to seize, virtually or physically, CnC servers in order to disrupt communications

and prevent malicious activity. Static IP assignment for CnC servers makes a Botnet

takedown easy, it is quite common for infected hosts to communicate with frequently

changing domain names computed via Domain Generation Algorithms [78]. The CnC

domain becomes a moving target, constantly in flux. Thus, even if a CnC is seized a

new domain will be computed and the botnet lives on.

2.5.3 Denial-of-Service attacks

Botnets are typically used to conduct Distributed Denial of Service (DDoS) attacks that

attempt to severely disrupt a network-based service, congest links and even cause

widespread outages. DDoS attacks directly employ dispersed botnet nodes and also

exploit vulnerable systems that are prone to abuse. The latter relies on two techniques

called reflection and amplification [79], [80]. Reflection allows an attacker to spoof the

source IP address of a request, thus responses are reflected back to the spoofed IP

 44

address (victim). Amplification techniques exploit vulnerabilities in well-known

protocols to send large responses with minimal effort. Note that, almost all reflection

and amplification attacks require not only IP spoofing but a connectionless protocol (i.e.

UDP) [80]. An interesting exception is TCP-based reflection where misbehaving

devices (mostly residential internet routers) send many TCP RST messages [81], in

response to a TCP SYN.

DDoS attack vectors vary from high rates attacks, using amplification techniques and/or

massive botnets, to sophisticated low rate, even stealthy attacks, that target specific

applications. We present the following categories below and briefly provide indicative

examples.

Volumetric attacks typically attempt to saturate important network links for the victim

(e.g. upstream/peering links) causing congestion. To that end, attackers employ

amplification techniques to create massive amounts of traffic. A thorough review of

protocols used for amplification is available in [79], [80], [82]. Indicatively, these are:

(a) DNS – “ANY” requests, (b) NTP – “monlist” requests, (c) CharGen – character

generation request, (d) SSDP – “SEARCH” request. Another notable amplification

vector is based on Memcached [83]; it was associated with multiple attacks over 1 Tbps

in 2018 [84].

Protocol or State Exhaustion attacks target specific protocols in L3 and L4 of the

TCP/IP stack. The goal of the attack is to starve application servers, load balancers,

firewalls and even routers of valuable resources to render the victim unreachable. A

typical example of such attack is the TCP SYN flood that sends a massive number of

SYN packets with spoofed source IP addresses. The victim server (or even intermediate

nodes) waste resources responding and/or tracking these bogus TCP sessions.

Application layer attacks (or Low and Slow) attempt to harm the application (most

commonly HTTP-based) itself focusing on inherent vulnerabilities of the protocol

and/or the server. Application attacks are typically “slow” restricted by the protocol

used by the application and related handshakes. Notably, the source IPs cannot be

spoofed, hence the attacks usually originate from infected clients, e.g. Internet of Things

(IoT) devices. Typical examples are “Slowloris” and “R.U.D.Y – Are you dead yet?”.

DDoS attacks are constantly morphing and evolving, ever-growing in scale and

sophistication. Malicious actors often employ a wide variety of vectors from all three

 45

categories, creating formidable multi-vector attacks. Such attacks simultaneously target

different aspects of a network infrastructure, thus complicating the defense effort.

Moreover, DDoS attacks are also used as diversions for other malicious activity such as

data theft and intrusion attempts (e.g. Worms) after knocking a firewall or IDS offline.

It would be fair to say that DDoS attacks constitute a major cyber security threat and

one of the most prominent problems faced by network operators. This was recently

emphasized by the Github (2018, 1.3 Terabits) and Dyn (2016, 1.2 Terabits) incidents.

Both highlighted the growth of DDoS attacks in terms of scale, diversity (attack vectors

used) and sophistication. The largest attack known today is a reflection/amplification

attack against an undisclosed customer of a U.S. based Service Provider [84], peaked at

1.7 Terabits. Other notables DDoS incidents are:

 June 2019 – Telegram: Instant messaging service Telegram was hit with

multiple attack vectors resulting to user connection issues.

 September 2016 – Krebs on Security [85]: Journalist Brian Krebs faced attacks

on his blog “Krebs on Security”.

 July 2018 – Blizzard: Gaming company Blizzard suffered massive DDoS attacks

disrupting partially or entirely the availability of servers to players.

 May 2018 – Danish Rail [86]: Series of DDoS attacks that knocked offline

ticketing and communication systems.

 March 2013: SpamHaus was targeted with a massive DDoS attack; the

organization reached out to Cloudflare for aid [87].

According to NetScout [88], DDoS attacks between 100 and 400 Gbits have increased

approximately by 700% in the first half of 2019 in comparison to the first half of 2018.

Frequent and huge attacks regularly exceeding 500 Gbits that have been observed in

2018, are attributed to the Memcached vulnerability that has now been remediated.

The DDoS market is worth approximately $2 billion and is expected to grow even more

[89]. Key players include but are not limited to NetScout-Arbor, Radware, Akamai

Prolexic, Imperva, NexusGuard, Cloudflare and Fortinet. Interestingly enough the

DDoS business is lucrative also for malicious actors, that offer DDoS attacks as-a-

Service for quite a small fee. These service providers are commonly referred to as

“Booters”.

 46

 Mechanisms for Anomaly Detection and Mitigation – Interdomain 2.6

Collaborative Schemas

As mentioned above, cyber threats, particularly DDoS attacks, constitute a major

problem for modern environments. Important topics with regards to DDoS attacks are

data collection in high-speed environments, efficient algorithms to timely detect

anomalies and techniques to effectively mitigate malicious traffic. Subsection 2.4

provided an overview of monitoring mechanisms, while this subsection focuses on

anomaly detection and mitigation [90]–[92].

2.6.1 Anomaly Detection

Anomaly detection efforts rely on different metrics ranging from coarse-grained traffic

counters (bits/sec, packets/sec) to fine-grained analytics (flows, Heavy Hitters, top N

destinations/ports). Counters are usually unable to accurately tell the difference between

a DDoS attacks and a benign anomalous event. Fine-grained analytics typically rely on

monitoring protocols that export packets and flows for processing and/or mechanisms

for fully fledged Deep Packet Inspection. Important packet/flow fields include but are

not limited to: source IP, destination IP, IP protocol, packet size, source port,

destination port. DDoS detection techniques analyze measurements as well as related

packet and byte counters on such traffic features using various methods.

Various approaches are based on Shannon entropy, in an attempt to find statistical

anomalies on traffic features and packet fields [64], [66], [93], [94], [33]. Entropy may

be used to identify various network anomalies, mapping entropy fluctuations of a packet

field to specific anomalies. As an example DDoS attacks cause entropy to increase for

source IPs and to decrease for destination IPs [94], [66]. A similar concept are change-

point detection algorithms that track changes in statistical features of the traffic,

typically caused by attacks. Closely related approaches might explore moving averages

to track the time series evolution of traffic features [33]; confidence intervals may be set

to track sudden changes in the moving averages and appropriately trigger alarms.

Often it is sensible to combine detection mechanisms for improved results in terms of

detection and performance. Indicatively, such a two-level was introduced in [13].

Initially, entropy values are calculated for the number of destination IPs and ports, with

sudden changes indicating an ongoing attack. Subsequently, the victim is identified and

 47

traffic destined towards it is redirected to an OF-enabled device. This device acts as a

second, more refined level of detection, that uses packet symmetry to identify malicious

flows. These flows are subjected to source IP-based aggregation in order to reduce the

required rules for blocking the attack traffic, due to OF device capacity limitations.

Intrusion Detection Systems such as Snort [95], Suricata [96], Zeek [97] (formerly Bro

[98]) are also applicable for DDoS detection operating on a broad set of rules. These

rules track specific attack signatures, connection states and set specific thresholds for

alarms. Commonly, they yield accurate results but struggle in large scale deployments

due to performance issues. In that regard, Suricata and Zeek (Bro) may employ AF-

XDP and Netmap respectively, for performant traffic processing.

Various efforts utilize Machine Learning algorithms to detect and identify network

anomalies [99]-[100] in general, and DDoS attacks [64], [101]–[106] in particular;

within the context on this dissertation considerable emphasis is placed on the latter. In

summary, [101] is based on a Multilayer Perceptron (MLP) whereby traffic metrics

related to flows and packet rates (UDP, ICMP) are collected and used to classify

network traffic as benign or malicious. Another approach [102], periodically collects

OpenFlow (OF) entries from OF-enabled devices, extracts flow-related features and

classifies them using Self-Organizing Maps (SOM). In [103], sharp increases in the rate

of OF Packet-In messages are considered as an indication of DDoS attacks and trigger a

mitigation pipeline. Specifically, OpenFlow rules are collected from network devices

and are classified via an appropriate Multilayer Perceptron that uses the same feature set

as in [102]. Malicious flows are ultimately blocked via appropriate mitigation entries in

OF-enabled devices. In [104], a large set of flow-related features is extracted from

packets sent to OF Controllers. These are fed to a Stacked Autoencoder, which provides

feature reduction and traffic classification of the flow as benign or attack.

In [64] ATLANTIC, a two-level framework for DDoS attack detection and mitigation

was proposed. Entropy changes for specific flow features within consecutive time

windows indicate the existence of an attack. Network flows responsible for entropy

changes are fed in a traffic classification component that uses (i) K-means to create

clusters of common flows and (ii) SVM to subsequently identify malicious ones. In

[105] DeepDefense, a DDoS Detection schema based on Recurrent Neural Networks

(RNN) was introduced. Traffic traces, collected within sliding time windows, are

translated into arrays of packet features. These are fed to an RNN that segregates

 48

malicious from benign packets. Similarly, in [106] LUCID suggested classification of

network traffic based on packet fields. These values are collected from different time

windows and organized as arrays; subsequently these arrays are fed to a Convolutional

Neural Network to identify time-dependent traffic patterns.

Though a very popular topic, machine learning and deep learning techniques for

network use cases need to account for hardware capabilities (data extraction) and strict

operational requirements pertaining to the prompt classification of attacks. Some of the

approaches mentioned above focus only on the detection whereas other also apply

filtering techniques (i.e. OF rules) for the flows classified as malicious. Another point of

note is that traffic features are of strategic importance since network anomalies (e.g.

DDoS attacks) may attempt to pass as legitimate traffic. In addition, researchers

especially in academic institutions have no access to proprietary data feeds and thus

face considerable difficulties in obtaining suitable data sets. If obtained, such datasets

are unlabeled, raising additional challenges for supervised learning methods. Internet

projects such as CAIDA [107] and WIDE [108] provide data from different sample

points within their network infrastructure. Regarding datasets containing attack traffic,

we refer to the efforts of the University of Twente [109] that performed an extensive

experiment, purchasing UDP-based DDoS attacks from Booter services. The

experiment was done with the collaboration of the Dutch NREN, SURFnet.

2.6.2 Mitigation Mechanisms

Commercial mitigation solutions may be categorized as on-premise and cloud-based.

The former typically use hardware or VM-based appliances operating in-line (always

on) or on-demand in case an attack is detected. Organizations may also opt to redirect

their traffic to dedicated infrastructures, i.e. scrubbing centers, whereby malicious traffic

is filtered and benign traffic is forwarded back to them via dedicated connections. These

cloud-based services grow in popularity; however, they may raise privacy concerns and

introduce significant latency. Powerhouses in DDoS protection services such as Arbor

and Imperva, offer both solutions to their customers. Commercial mitigation solutions

(cloud or appliance-based) employ proprietary algorithms and/or hardware but offer

moderate or no flexibility while requiring considerable capital expenses.

 49

In addition to appliances and related services, network operators may use additional

mitigation techniques to defend against DDoS attacks. A brief overview of typical

techniques is presented below:

Destination-based RTBH [110]: This mechanism is primarily used to prevent potential

collateral damage during a DDoS attack (e.g. bandwidth and CPU utilization,

degradation of other services). It is a destination-based filtering mechanism, in which

the traffic destined to the victim is redirected to an edge router’s null interface. The

dynamic redirection from the victim AS is triggered using a device that retains BGP

(iBGP) peerings with edge routers. Subsequently, the blackholed route (usually /32) is

also propagated to peers or upstream providers ([111]-[112]) to alleviate stress on

peering/upstream links. As a result, both malicious and benign traffic destined to the

victim is dropped.

Source-based RTBH [113]: Unlike the destination-based RTBH which renders the

victim unreachable, the source-based RTBH drops packets from specific source IPs via

the unicast Reverse Path Forwarding (uRPF) feature [114]. Source-based RTBH also

relies on BGP updates which contain routes to malicious IPs; attack packets from these

sources are dropped on the uRPF-enabled router interface. Although it offers more

granularity than destination-based RTBH, outgoing packets to legitimate destinations

may be blocked if attackers employ en route and fixed route spoofing [90].

Access Control Lists: Access Control Lists (ACLs) are commonly used to implement

firewall policies. Filtering rules are typically implemented in specialized hardware such

as TCAM that enables traffic processing in line-rate. ACLs may be propagated and

installed in network devices using various protocols and mechanisms, that are further

discussed in section 5.

BGP Flowspec [115]: This mechanism extends the Network Layer Reachability

Information (NLRI) field of BGP to disseminate traffic flow specification rules. These

rules are transported over BGP and dynamically installed on appropriately configured

devices. The exact hardware implementation of Flowspec rules is the responsibility of

the vendor. In comparison to ACLs, Flowspec rules provide a unified specification of

rules transmitted over BGP. However, Flowspec is not widely deployed; a notable

exception is the Firewall on Demand (FoD) [116], a service offered by GÉANT that

was initially developed by GRNET.

 50

OpenFlow [9]: OpenFlow-enabled devices contain flow tables and determine packet

forwarding based on flow rule entries matched against packet headers. There is a

plethora of matching capabilities and actions/instructions, used to instantiate typical

firewall operations such as packet rejection/redirection.

The above techniques are summarized in the following table, with emphasis on their

adoption and granularity:

Mitigation techniques Distribution Protocol Granularity Adoption

Destination–based RTBH BGP Low High

Source-based RTBH BGP Medium Medium

OpenFlow Firewall OpenFlow High Low

Flowspec BGP High Low

ACL SSH/NETCONF High High

Table 2.6 Mitigation Techniques

The entries of Table 2.6 were partially inferred from “DDoS using BGP Flowspec” by

Juniper Networks
3
. The mitigation techniques presented above need to account for the

following:

 Scalability: Sources of DDoS attacks (spoofed or not) might be considerably

large. Thus, approaches that rely on source filtering might struggle to implement

the required mitigation rules, due to hardware constraints. This was emphasized

in [13], where prefix aggregation techniques were employed to limit the number

of required rules.

 Spoofed Sources and Impact on benign traffic: Filtering techniques typically use

source IP addresses to mitigate malicious traffic rendering them ineffective or

even harmful to benign sources due to widespread spoofing. Destination-based

RTBH, frequently used for its simplicity, renders the victim inaccessible.

Considering these shortcomings, programmable data planes may be used to provide on-

demand, robust and fine-grained filtering mechanisms for DDoS mitigation.

Specifically, the XDP framework seems a promising candidate to create filters tailored

3https://www.slideshare.net/apnic/ddos-mitigation-using-bgp-flowspec

https://www.slideshare.net/apnic/ddos-mitigation-using-bgp-flowspec

 51

to specific DDoS vectors. These filters may be dynamically deployed and filter

malicious traffic based on unique characteristics, not only source IP addresses. P4 offers

similar capabilities as well, but implementations have to account for potential downtime

in case reconfiguration of the pipeline is required.

Another mechanism is anycast traffic diffusion. In short, this technique uses BGP to

advertise the victim from many different points of presence, distributed across the

internet. Consequentially, the traffic is dispersed to many sites whereby it is processed

and filtered. However, this approach assumes adequate points of presences and

sufficient link capacity and processing power to each one. These requirements can be

met only by a very small number of cutting edge organizations. Such an example is

Cloudflare that maintains a point of presence in over 200 different cities and 90

countries, fields vast processing power, peers directly in various locations and has

special bandwidth agreements.

2.6.3 Collaborative Schemas

As mentioned, organizations typically contract third party scrubbing providers or

implement mitigation within their own network domain. However, the sheer volume of

present-day cyber threats may overwhelm an individual provider, thus the emerging

need for collaborative mitigation efforts as malicious attacks are more efficiently

mitigated closer to their sources. Interdomain collaborations are manifested as part of

multilateral agreements or within trusted federated environments. An indicative

example is the hierarchical federation for the European research community: GÉANT,

NRENs (National Research and Education Networks) and Campus networks. Other

schemas can be formed, provided that collaborators follow agreed upon admission

procedures and adhere to standards such as MANRS [117]. However, defense

collaborations might be hindered by operator concerns such as unwillingness to share

victim-related information to preserve sensitive client data, lack of incentives for

cooperation and shortcomings of incident handling mechanisms.

Various research efforts have been explored for the collaborative detection and

mitigation of cyber threats. Indicatively, CoFence [118] is a framework that enables

collaborating NFV-enabled infrastructures (i.e. ISPs) to mitigate DDoS attacks using

available compute and network resources. These are allocated in a reciprocal manner

based on past mitigation collaborations. In [119], an SDN approach was proposed,

 52

featuring inter-domain collaboration via the exchange of IODEF [120] messages on top

of BGP; reputation score for neighbors is evaluated via the Beta Reputation system

[121]. 3DCoP [122] is also a P2P system for DDoS detection and mitigation whereby

network domains collaborate to provide monitoring, alerting and ultimately mitigation

of malicious flows. IETF proposed the DDoS Open Threat Signaling (DOTS) protocol

[123] that specifies interactions between domains under attack and potential mitigators

while considering adverse network conditions and related limitations of the signaling

channel. The establishment of business relationships and collaboration incentives is not

a main objective in DOTS activities.

Approaches based on Distributed Ledger Technologies (DLTs) have recently been

proposed as a promising way to enhance the coordination between collaborators for

detection and mitigation of security incidents. Indicatively, in [124] authors introduced

a federated schema where monitoring data are exchanged to collaboratively detect

network anomalies. The federation is based on a permissioned blockchain framework

that ensures transparency and business regulation. Similarly, in [125] the use of a

private blockchain was proposed to avoid verification delays commonly occurring in

public ledgers. Another approach aims at providing DDoS mitigation services to third

parties via sharing of user resources; this was orchestrated in Gladius, an Ethereum-

based platform [126] that verifies web requests and drops illegitimate ones.

In [127] a cross-domain collaborative schema for DDoS mitigation was introduced,

whereby the cooperation signaling relies on an Ethereum network. Malicious IPs are

advertised in blockchain-based Smart Contracts (SCs) issued by the victim. These are

retrieved by interested ASes which in turn may trigger mitigation actions. However,

inserting large blocks of IP addresses in the blockchain may introduce significant

latencies to the mitigation process. As an extension to [127], authors presented in [128]

a reputation scheme based on the Beta Reputation system in order to rate mitigation

services and prevent abuse/misuse by modeling customer strategies. Additionally, [129]

explored mechanisms for verifying an attack was indeed mitigated to prevent false

reporting.

 53

3 Traffic Monitoring and Anomaly Detection based on

Dispersed Vantage Points

This section considers network monitoring and anomaly detection mechanisms offered

as a service to users (tenants and administrators) within shared network infrastructures.

Measurements are collected from scattered monitoring agents and directed to a data

pipeline for processing and enrichment.

 Problem Statement 3.1

Traditionally, network environments follow a hierarchical structure organized in core,

distribution and access/edge layers, essentially defining distinct vantage (observation)

points for monitoring network traffic. Within such environments, network traffic is

aggregated at the core and exhibits localized characteristics near the edge. Selecting a

vantage point for information extraction directly influences network visibility, since

monitoring is commonly implemented via sampling mechanisms e.g. NetFlow and

sFlow.

Monitoring services are valuable to authorized users (tenants and administrators) who

own distinct subsets of networked resources (physical and/or virtual) within shared

infrastructures. Each tenant “owns” a basket (slice) of virtualized resources drawn from

distributed physical resources and normally requires measurements pertaining to these

virtual or physical resources. Slice monitoring requirements in federated

computer/networking infrastructures [130] raise considerable problems in terms of

agent location, data storage, filtering/processing and access control.

In this section a framework for data collection and processing is proposed, offering on-

demand network monitoring data and related analytics services as VNFs to users within

shared environments. Our implementation focuses on sampled measurements from

various vantage points. Collected data are associated with relevant parties and may be

accessed based on predefined policies to project dynamic monitoring views and

personalized analytics.

 Background and Related Work 3.2

Several approaches investigate monitoring system/network resources and services

within multi-tenant cloud/NFV infrastructures. MonPaaS [131] is an OpenStack based

 54

Platform-as-a-Service (PaaS) for monitoring resources owned by both cloud providers

and consumers (tenants) alike. In [69] monitoring mechanisms are presented that extract

data from the NFV Infrastructure and software agents within the VNFs. D-StreaMon

[70] is an NFV-capable distributed framework that uses containerized probes for traffic

monitoring and analysis. Most approaches interact with the infrastructure (traffic

redirection/ monitoring probes) or are tightly coupled with the cloud management

system. Our approach is decoupled from the underlying network architecture and is

applicable in hierarchical campus, spine-leaf network architectures (datacenters and

cloud environments) as well as NFV Infrastructures.

Internet measurement projects [132] deploy active/passive probes and Looking Glass

tools in a wide variety of networked infrastructures e.g. campus Local Area Networks

(LANs), Internet Exchanges (IXs) and internet provider networks. Probes and tools

essentially define scattered vantage points, useful for troubleshooting and verification.

In [133] the diversity and geographical distribution of measurement points is evaluated,

comparing results obtained from fixed network locations against measurements from

agents running on end-user equipment. In [134] a mechanism is presented for inferring

relations among Autonomous Systems (ASs) using partial views based on different

observations via looking glass tools. In [135] the suitability of a large European IX as

an advantageous observation point is investigated, offering prime visibility not only into

European but also global network behavior.

 Design Principles 3.3

Our proposed architecture is based on an NFV-compliant framework, offering sampled

network monitoring data and related detection for security incidents. These capabilities

are implemented as on-demand services available to authorized users (tenants and

administrators) within shared network environments. Network traffic monitoring

emanates from vantage points that users can dynamically select from predefined key

network locations e.g. the network core, the network edge, etc. The benefits are twofold;

(i) administrators in Network Operation Centers (NOCs) can dynamically select

monitoring views to detect, pinpoint and verify network anomalies, while (ii) tenants

are capable of requesting on-demand access to raw data pertaining to their slice. In

addition, our schema provides users with a selection of customized tools for monitoring

 55

data warehousing, analytics extraction and visualization, enabling them with actionable

intelligence. Our design adheres to:

 User Specific Monitoring Data: Initially data streams are collected on a centralized

data warehouse after being tagged appropriately (per user or vantage point).

Additionally, users are able to request data collection from specific devices (i.e.

vantage points) within the network, thus achieving a granular monitoring view. The

data are presented to authorized users, based on predefined access control policies

and attached tags.

 Monitoring Data Enrichment: Raw data streams are ingested and analyzed in a data

pipeline. To that end, we leverage on popular message brokers facilitating

asynchronous processing. Notably, a user is able to choose a number of enrichment

tasks that should take place upon the data pertaining to their monitored slice.

 Anomaly Detection based on Monitoring Views and Data Analytics: Following the

drill-down and roll-up concepts of On-line Analytical Processing (OLAP) [136],

the proposed framework offers zooming in and out between user-focused and

centralized data. This may improve network visibility for specific tenants and

localized anomaly detection mechanisms. To that end, we may deploy on-demand

lightweight anomaly detection services, each pertaining to a given monitoring view.

 NFV-Compliant Approach: Monitoring and anomaly detection functionality is

offered via the deployment and orchestration of containerized services. Our

approach leverages on a popular unified management system of virtualized

resources i.e. Kubernetes [137] that offers advanced resource allocation,

orchestration and service chaining capabilities.

 Architectural Components and Implementation Details 3.4

In this section we discuss implementation details pertaining to the architectural

components and related sub-modules. Depicted in Figure 3.1 is an indicative setup for

our proposed architecture.

Monitoring data are exported from agents within network devices assumed to be vantage

points. This operation is performed via the sFlow protocol, widely implemented by

vendors of L2 devices employed in LANs. Traffic traces are fed to an sFlow-enabled

Open vSwitch mounted in our laboratory. This switch exports packet samples to an

sFlow collector which also dispatches samples to an external cloud infrastructure

 56

through a network tunnel. The core of our NFV-compliant architecture was deployed on

~okeanos [138], the Greek National Research and Education Network (GRNET) cloud

infrastructure.

Export

sFlow

Ship data

Open

vSwitch

sMonNet Pipeline

Data

Identification

Kafka Cluster - KC

Samples

Data

Enrichment

Job1

A. MONITORING DATA HANDLER

B. CENTRALIZED

DATA WAREHOUSE

C. CUSTOMIZED

ANALYTICS

~okeanos IaaS

(GRNET)

Collector

NETMODE testbed

(NTUA LAN)

Web UI

REST API
RBAC

Provision &

Manage

D. ORCHESTRATOR

Elasticsearch

AUTH

Middleware

Traffic

Visualization

Anomaly

Detection

Docker Containers

managed by Kubernetes

(i)

(ii) (iii) (iv)

(v)

Figure 3.1 sMonNet Architectural Setup

3.4.1 Monitoring Data Handler

Our architecture requires message broker components between the various modules in

the Monitoring Data Handler shown in Figure 3.1. To account for the vast amounts of

data, expected in a large-scale networking infrastructure, an option would be to use

standard big data processing frameworks as suggested in [139]–[141]. Instead of these

approaches we opted for a lightweight customized solution based on Docker.

Consequently, we developed sMonNet (sFlow Monitored Network), a Python module

tailored to data identification (tagging) and enrichment. Regarding the latter, users may

select an enrichment such as inserting ASN and GeoIP metadata (e.g. from MaxMind).

sMonNet leverages on Kafka [142], a fast, distributed and fault tolerant messaging

system supporting large volumes of I/O per second from and/or to multiple systems.

The Kafka broker enables: (i) acceptance of incoming message streams, (ii) temporary

data storage and (iii) shipping data upon request, to the corresponding processing &

 57

enrichment instances. To improve performance during identification and enrichment we

used C libraries cjson, libmaxminddb.

As shown in Figure 3.1, Kafka brokers are organized in a cluster, denoted as KC, which

contains monitoring data separated in different topics. (i) Switches export samples to an

sFlow collector that produces (ships) all samples to KC, in a dedicated topic, named

samples. (ii) The identification component of sMonNet consumes (reads) from the

samples topic and inserts appropriate tags per user and vantage point (device). Users are

associated based on L2/L3 sample headers whereas a vantage point is identified via the

sFlow agent’s IP. (iii) Tagged data are shipped back to KC in a dedicated topic per

selected enrichment task. (iv) For each new task an sMonNet instance is created; such

instance consumes data from the dedicated topic. (v) After enrichment, processed

samples are stored within the Centralized Data Warehouse.

3.4.2 Centralized Data Warehouse

This component maintains tagged and enriched data per user and vantage point. Users

have full access rights on their data in order to drive customized management

applications e.g. traffic analysis, performance verification, intrusion detection and

prevention. In addition, network administrators are able to query the Data Warehouse

for infrastructure-wide data.

The centralized data warehouse is based on an Elasticsearch cluster; a search and

analytics engine featuring parallel data insertion (i.e. indexing) and rapid queries.

Towards our requirements for Authentication and Access Control, we implemented a

middleware component using the Elasticsearch client Python library. This middleware

enforces related tags and dispatches queries (requests) to the Elasticsearch cluster.

These tags behave as filtering mechanisms, and are applied based on either user

credentials or the originator IP associated with a request.

3.4.3 Customized Analytics

Stored data are available for a multitude of applications e.g. traffic visualization and

analysis services. Building on earlier efforts [66], we focus on identifying network

security incidents from appropriately selected vantage points. Specifically, we alternate

between a user-specific localized monitoring view and a global infrastructure view, in

order to improve incident detection mechanisms.

 58

As a proof concept we have implemented two distinct services for Anomaly Detection

and for Traffic Visualization. Additional services may be developed using the data

gathered in the Elasticsearch Data Warehouse.

 The Anomaly Detection service implements entropy-based algorithms. As

mentioned, data are gathered from multiple vantage points typically, located in core,

aggregation, and edge switches in LAN environments.

 The Traffic Visualization service is based on Kibana, a software component natively

able to visualize data stored in Elasticsearch. Users are provided with a pre-defined

but easily configurable dashboard for their network resources.

3.4.4 Orchestrator

From a high level standpoint, this component deploys and configures data collection,

processing and analysis services offered by the Monitoring Data Handler and

Customized Analytics components.

In Figure 3.2 below, we illustrate a container-based NFV Infrastructure (NFVI) which is

based on adapting the NFV framework [43] to deliver user specific Monitoring and

Analysis services. The Management and Orchestration (MANO) functionality was

implemented on Kubernetes [137].

The Orchestrator component: (i) receives and validates service requests, (ii) configures

running services and (iii) deploys Docker containers (Pods). The Monitoring Data

Identification & Enrichment modules in the Monitoring Data Handler 3.4.1 and the

Anomaly Detection and Traffic Visualization services in the Customized Analytics

component 3.4.3 are implemented as pre-packaged and configurable Docker containers

orchestrated by Kubernetes depending on user requests.

Linux Host-OS

Kubernetes

Manager

Orchestrator
Pod A

Monitoring

Docker Container Engine

Kernel Functions & Modules

Pod B

Analysis

NFVI

Containerized Services

Users

Tenants/Administrators

Figure 3.2 Container-based NFV architecture

 59

In the sequel we analyze the orchestration workflows depicted in Figure 3.1. Service

requests are received by an external-facing web/RESTful interface and are validated

based on user credentials (username, password, token). A Role Based Access Control

(RBAC) component maintains associations between users, network segments (L2/L3

headers), and tags used for data identification. Such information is conveyed to the

AUTH middleware component that enforces access control to monitoring data.

Orchestration of Monitoring Requests: Users may dynamically request monitoring data

collection combined with enrichment tasks. Based on user credentials, packet headers

and related tags are retrieved and conveyed to the Identification component. Regarding

Kafka topics, we define a general purpose topic as the default i.e. no specific enrichment

job. Else, a KC topic is specified to the Identification component, overriding the default.

In such case individualized enrichment, dedicated containers are deployed, consuming

data from the corresponding KC topic. Enrichment instances are provided with

connection details for the Elasticsearch.

Orchestration of Anomaly Detection and Traffic Visualization Requests: The

Orchestration component instructs Kubernetes to create containers implementing

Customized analytics services defined in section 3.4.3 above. These containers may

request monitoring data from various vantage points, projecting different monitoring

views. As mentioned, data filtering and isolation is enforced by the AUTH middleware

component. Granularity and localization is enabled by smart selection of sampling rate

in each vantage point as well as the algorithms used for Anomaly Detection.

 Evaluation 3.5

In this section, we present our testbed setup and discuss experimental results.

3.5.1 Experimental Setup

We provisioned 11 VMs for our Kubernetes, Elasticsearch and Kafka cluster.

Identification, enrichment and anomaly detection instances are implemented as

ephemeral containers managed by Kubernetes. Kafka and Elasticsearch clusters were

mounted on stand-alone VMs due to their considerable performance and deployment

requirements.

 60

Experiments were conducted by emulating real network conditions using benign traffic

traces from NTUA Campus LAN (core) and our laboratory switch (edge), essentially

defining two distinct vantage points. Moreover, we utilized Scapy in order to construct

network anomalies emulating: (a) worm propagation from a /24 NTUA laboratory

subnet and (b) port scans targeting the entire /16 campus network.

Our framework is modularly designed, thus allowing for a wide variety of anomaly

detection methods. In our experiments, we adopted a commonly used approach [143]

calculating the normalized entropy values for network traffic. We focused on source IP

addresses; other values may be considered as well, including but not limited to L4

headers. Learning mechanisms for anomaly detection services within our Customized

Analytics module, were based on average entropy values from normal (reference)

traces. Alerts are triggered if entropy values deviate from established references, either

above or below a threshold. We set thresholds empirically to 3% for the core and 5% for

the edge, to account for different traffic patterns. Near the edge traffic is less diverse

thus a higher threshold is needed to reduce false positive alarms. Anomalies are usually

subtler near the core that aggregates all different subnets. Hence, a lower alert threshold

might be preferable.

3.5.2 Experiments on Multi-Vantage Point Anomaly Detection

In our experiments, we considered two Anomaly Detection services focusing on data

gathered from core and edge vantage points in 30 second detection windows. For each

detection window, both services periodically query the Elasticsearch cluster for samples

(documents) stored during the last 30 seconds in order to calculate the entropy values.

We show the results for both applications for a 5-minute observation period (10 distinct

detection windows).

In Figure 3.3 we illustrate the normalized entropy for the source IP address during the

worm propagation and in Figure 3.4 during port scans. Grey and black bars refer to edge

and core vantage points respectively. Their height is significantly different

(approximately 0.2) attributed to the characteristics (traffic diversity) of each vantage

point. In both cases, anomalies were detected and alarms were issued in detection

windows 3 to 5, exactly fitting our attack injection scenarios.

 61

Figure 3.3 Entropy Values for Source IP, Worm Propagation, 30 second detection windows

Figure 3.4 Entropy Values Source IP, Port Scan, 30 second detection windows

These results demonstrate the benefit of a multi-vantage point approach in anomaly

detection. Worm propagation is better highlighted in a localized context due to lower

traffic volumes and proximity to the problem. Thus, as shown in Figure 3.3 anomaly

detection based on data obtained from the edge vantage point yields better results than

the network core. However, vantage points near the network edge are somewhat

sensitive to slight changes in traffic patterns, thus prone to false positive alarms.

Moreover, during a network-wide attack e.g. port scan, a generic/global monitoring

view is more suitable for anomaly detection. Hence, as shown in Figure 3.4, core-

centric approaches are able to highlight global issues whereas edge approaches are less

conspicuous due to limited (localized) visibility.

 62

4 Multi-Feature DDoS Detection on Programmable P4

Hardware

The approach presented in section 3 focuses on collecting and processing monitoring

data exported from dispersed vantage points in hierarchically layered network

environments. Extensions to that work are addressed in this section, specifically the

migration of monitoring and anomaly detection tasks to programmable data plane

devices. Each such device may be considered as a distinct vantage point that performs

related tasks in a distributed fashion.

 Problem Statement 4.1

As mentioned, anomaly detection relies on packet samples or flow records. These are

exported from agents within network devices (routers, switches) and relayed for

processing to external collectors (servers), typically deployed in a centralized fashion.

Similarly, SDN setups (e.g. OpenFlow [9]) employ control plane signaling between

network devices and controllers to retrieve information, detect anomalies and

subsequently deploy mitigation actions.

In contrast, continuously evolving programmable hardware, e.g. SmartNICs [26],

enable the migration of anomaly detection workloads to hardware. This distributed

approach attempts to be one step ahead of related schemas usually associated with a

form of centralized collection, processing and/or control.

In this section an in-network DDoS detection mechanism is considered that offers rapid

detection, while enabling control plane triggers to external mitigation systems. Our

approach leverages the P4 language [5] and combines important traffic features to

increase accuracy while adhering to performance penalties. In a nutshell, the proposed

mechanism: (i) inspects network traffic and computes related metrics (features) per

protected subnet, (ii) evaluates feature values within time-based epochs to identify

potential threats and (iii) conveys alarms to external systems (P4 “digests”).

 Background and Related Work 4.2

There are various efforts exploring performance capabilities of advanced network

applications implemented in programmable hardware. In [144], the impact of basic P4

operations (packet parsing, headers modifications) on packet processing performance is

 63

explored. Experiments are based on P4-enabled Netronome SmartNICs [26] (Agilio CX)

and illustrate the effect on processing latency introduced by various P4 constructs.

Similarly, in [145], the impact of XDP operations on various system resources is

investigated. Specifically, results demonstrate packet processing limitations and scaling

capabilities (number of CPU cores) considering different flavors of XDP. The main

contributors of XDP [4] also present indicative performance metrics for different use

cases such as IP routing, DDoS Mitigation and Load Balancing.

Recent research efforts on data plane programmability applied to detection of DDoS

attacks are reported in [33], [146]. In the former, a P4-based DDoS detection approach

is proposed; counting Bloom Filters are used to track the per-flow ratio of TCP SYN to

regular TCP packets in order to detect SYN flood attacks. In the latter, a DDoS

detection schema is presented that estimates entropy values of source and destination IP

addresses. These values are compared to appropriately defined thresholds and upon their

violation DDoS alarms are triggered, without however further indicating the victim.

We provide an integrated framework able to promptly detect generic DDoS attacks to

specific victim subnetworks, possibly alerting external DDoS mitigation systems via P4

digests. Furthermore, we deploy our P4 schema in hardware SmartNICs and assess its

performance in terms of attainable packet processing rate and detection accuracy.

 Architectural Design and Selected Traffic Features 4.3

Suitable environments for the proposed schema are both transit provider networks (e.g.

ISP, Research & Education Network backbones) and customer/edge network domains

(e.g. Data Centers, Campus Networks). Upstream providers may detect network

anomalies that target downstream organizations. Similarly, customer organizations may

deploy the same functionality with fine granularity for specific internal subnetworks.

Such an indicative architectural setup is presented in Figure 4.1: Traffic originating

from various Internet sources is directed towards a P4-enabled edge domain, possibly

via a P4-enabled transit provider. We precisely consider the use case of National

Research and Education Networks (NRENs) and their Pan-European interconnection

GÉANT. NRENs, e.g. GRNET, may offer DDoS Protection services to universities and

data centers downstream. These services are implemented in P4-capable devices, placed

at important vantage points to monitor traffic at different levels of granularity.

 64

Specifically, P4 devices: (i) forward network traffic, (ii) maintain important statistics for

monitored (sub)networks, (iii) perform anomaly detection tasks and (iv) raise alarms to

external mitigation systems.

Tranist Network

Provider

(NREN)

Mitigation

System

Subnetworks

Internet

Sources

Anomaly

Detection

Pipeline

University

Campus

 Data Center

Anomaly

Detection

Pipeline

Notification

Notification

Figure 4.1 High-level Overview of P4-based Anomaly Detection

Our schema maintains a list of specific monitored (sub)networks and/or hosts,

depending on the desired granularity level. DDoS attacks are detected by combining the

following traffic features: (i) total number of incoming traffic flows (srcIP, dstIP,

Protocol, srcPort, dstPort), destined to monitored subnets in a distinct time interval

henceforth denoted as "epoch", (ii) significance of a network, characterized by the

percentage of flows directed towards it out of the total incoming flows and (iii)

symmetry ratio of incoming to outgoing packets. These features have correlated

characteristics and may provide localized alarms for each protected network under

generic DDoS attacks.

Typically, massive DDoS attacks consist of a considerable amount of flows [147]. Thus,

we consider the number of total flows as an attack indicator. We adopt a moving

average approach as in [33] to track for each epoch n the number and the dispersion of

Total Incoming Flows (TIFn). Specifically, we define Mn as the Exponentially Weighted

 65

Moving Average (EWMA) and Dn as the Exponentially Weighted Moving Difference

(EWMD):

 () with

 | | () with

The parameter a is a smoothing coefficient to dampen short-term fluctuations. Network

anomalies are considered in case TIFn exceeds a threshold that depends on the values of

Mn-1 and Dn-1:

 (1)

where is a sensitivity coefficient that scales the detection threshold [33].

In order to further pinpoint the victim destination subnetwork, we also incorporate two

additional features, namely Subnet Significance and Packet Symmetry.

 Subnet Significance is expressed as the percentage of Incoming Flows

()

destined to a subnet i in epoch n out of the Total Incoming Flows TIFn.

We indicate an alert if this percentage exceeds a significance factor f that

identifies major flow recipients as potential victims:

()

 ()

 Packet Symmetry is an insightful metric [148] to avoid classification of a subnet

as a victim while it may be a recipient of heavy benign traffic, to which it

generates responses. The Current Packet Symmetry Ratio
()

 is defined as the

fraction of incoming to outgoing packets for subnet i during epoch n. These are

evaluated based on per subnet i counters and compared against a pre-computed

Normal Packet Symmetry Ratio (). We consider traffic to a subnetwork

anomalous, in case the corresponding fraction exceeds a heuristic threshold r as

described in the following condition:

()

 ()
 ()

 66

Values for f, r and () are defined based on operational experience under normal

(non-attack) network conditions. Note that, these parameters could be set by Machine

Learning algorithms that learn from past traffic patterns.

 P4 Implementation Details 4.4

In this section we elaborate on implementation details of the proposed DDoS detection

pipeline. Our mechanism utilizes P4 registers to implement counters, arrays and

probabilistic data structures. We do not use P4 counters since their values are only

accessible via control plane signaling and may not be used directly in data plane

interactions [34]. Table 4.1 contains indicative register definitions:

Functionality Indicative Definition Usage

Counters register<bit<32>>(1) epoch Epochs, Total Flows

Array of counters register<bit<16>>(256) flow_dst Per Subnet Flows, Packets

Probabilistic Data

Structures
register<bit<32>>(65536) sketch Flow Tracking

Table 4.1 P4 Registers: Functionality, Indicative Definition and Usage

The processing pipeline is depicted in Figure 4.2. Traffic arriving at the P4-enabled

device is filtered to include only relevant packets. Subsequently, we apply our multi-

feature approach in distinct serial steps to identify potential attacks. In case all

violations are observed, we generate alarms (i.e. P4 digests [34]) to an external

mitigation system.

 Anomaly Detection Pipeline

Incoming
packet TCP/UDP

Parser

Epoch
Initializations

& Updates

Protected
Network

Epoch
Processing

Flow Analysis

Outgoing
port

Packet
Symmetry
Analysis

Alarm
Checking

1 2 3a

3b

4

5 6

Same
Epoch

New
Epoch

YesYes

No No

Figure 4.2 P4 Anomaly Detection Pipeline

Step 1 selects only TCP or UDP packets to be considered within the DDoS detection

pipeline, since they are typically utilized by most attack vectors [149]. This is achieved

using simple checks on parsed headers.

Step 2 further isolates traffic originating from or destined to a monitored network

(protected network). To that end, we employ a dedicated match-action table that

 67

contains one rule for each protected network. Each rule adds a unique identifier to

matching packets as P4 metadata. The added metadata headers are used to access and

update the equivalent memory areas of various registers e.g. per subnet measurements

such as flows and packet statistics. Note that, traffic that does not meet the

aforementioned criteria (i.e. TCP/UDP and source/destination in “monitored”

networks), bypasses the DDoS detection pipeline and is appropriately handled.

Step 3a delimits time-based epochs, each defined by a start time and duration. Packets

are associated with an epoch using the ingress_global_timestamp packet metadata. This

denotes the exact time a packet arrived at the P4-enabled device. If a packet’s

timestamp fits within the current time window [start_time, start_time + epoch duration),

it is directly fed to Step 4. Otherwise, the packet is assigned to a new epoch and

proceeds to Step 3b. The latter performs the following: (i) update the new epoch start

time, (ii) increment the index tracking the current epoch, (iii) compute the new EWMA

and EWMD values as described in section 4.3 and (iv) reset the number of total flows.

Step 4 performs flow traffic analysis and maintains appropriate flow counters for

packets exiting from either Step 3a or 3b. This operation is based on modified Bloom

Filters [150], used to track unique active flows within an epoch. Specifically, we

calculate hash values from the following packet headers (srcIP, dstIP, Protocol,

srcPort, dstPort) that identify a flow tuple. We employ hash functions available in the

P4 pipeline, i.e. CRC32, CRC16 and CSUM16. The resulting hash values are used as

indices to access distinct memory areas of P4 registers. Each area stores the last epoch a

flow was observed. A flow is considered “active” in the current epoch when all indices

point to register areas containing values equal to the current epoch. Else, the flow is

considered as newly observed within this epoch and the register contents for these

indices are set to the value of the current epoch. Additionally, when a new flow is

observed, counters pertaining to total flows and per subnet flows are incremented.

Based on these counters, conditions pertaining to inequalities (1), (2) of section 4.3 are

evaluated. In case a threshold is violated, the equivalent flag is stored in distinct packet

metadata headers.

Step 5 performs packet symmetry analysis employing incoming and outgoing packet

counters from/to a monitored network. We maintain separate per-subnet packet counters

for TCP and UDP traffic, as well as historical normal packet symmetry ratios for both

protocols. These are used to evaluate the
()

 against the () as depicted in

 68

inequality (3). In case this fraction exceeds the threshold r, a flag is raised similarly to

the ones for threshold violations (1), (2).

The final Step 6 of our pipeline checks packets for metadata headers corresponding to

identified anomalies. In case all metadata headers are set to “True”, an appropriate

alarm is generated pinpointing the network under attack and the current epoch. These

alarms were implemented as P4 packet digests that enable the communication between

the data plane and external systems; in our case appropriate mitigation mechanisms able

to enforce countermeasures.

Note that, P4 is a programming language with specific restrictions, e.g. no support for

floating point arithmetic or division operations. We needed to adapt to P4 limitations

using various workarounds since our approach uses real values e.g. the smoothing

coefficient a in EWMA, EWMD values and divisions, e.g.
()

/ (), for its

calculations.

The former are approached by multiplying all elements of an equation with a power of 2

and subsequently dividing them by the same factor. The latter, are conducted via

appropriate bitwise shifting operations. We present an example for the EWMA

equation; specifically, for the smoothing coefficient a, we selected the value of 1/256 (~

0.004):

 (

)

 ()

where eight bits right shifting corresponds to division by a factor 2
8
 = 256. We satisfied

requirements for division via a plain comparison between two numbers. Note that, we

are not interested in the quotient of a fraction but whether it is greater or lower than

another value. For example, the threshold evaluation in inequality (3) was implemented

as:

()
 ()

 69

 Evaluation 4.5

4.5.1 Experimental Setup

In order to validate our DDoS detection framework, we implemented the proposed

pipeline in P4 and evaluated it in the testbed illustrated in Figure 4.3. We used as a P4

target the 10G version of Netronome Agilio CX SmartNIC [26]. Programs were

developed and compiled via the Netronome Programmer Studio and ultimately loaded

to the NIC. Additionally, we used two VMs operating as the Sender and the Receiver,

equipped with 10G Intel-based NICs, able to generate and count packets in high packet

rates. The evaluation process and related results focus on the detection accuracy and

packet processing performance of our DDoS detection schema.

Bare
Metal

Intel NICs
Netronome NICs

Servers VMs
(NIC Passthrough)

QEMU/KVM

QEMU/KVM

Compile/Deploy P4
programs to Targets

Programmer
Studio

P4 Target

Receiver

Sender

SFP+ 10GbE

Figure 4.3 P4 testbed equipped with 10G SmartNICs

4.5.2 DDoS Detection Accuracy Assessment

In order to create realistic conditions for our experiments, we used publicly available

network traces both for benign and malicious traffic. The benign traffic is based on

traces available from the WIDE backbone [108]; specifically traffic from a 10G transit

link between WIDE and DIX-IE, an experimental Internet Exchange (IX) in Tokyo. The

traces contain network traffic between 12:00 - 12:15 on 09/04/2019.

 70

For malicious traffic traces we used the fourth dataset, B4, as reported in [109]. This

contains a DNS-based reflection attack generated by Booter services. Protected

subnetworks were identified based on an analysis of the benign dataset. We selected the

top 255 networks, assuming /24 prefixes, as ordered by the total number of packets

traversing each subnetwork.

The experimentation process considered 1 second epochs and was conducted as follows:

We injected the benign traffic and ignored alarms for the first 30 seconds, considering

them as a “learning” period for the moving averages. Between seconds 30 and 60 we

observed alarms for False Positives. At the 60th second, we launched the attack

targeting an IP address within one of the 255 subnets that we monitor. Attack traces

were injected between seconds 60 and 90. Packet digests were collected via the Run

Time API offered by Netronome and used to calculate the detection accuracy. Note that

each subnet is able to send a digest only once during a given epoch to avoid floods of

digests that DoS the control plane. The exact number may be appropriately tuned.

Accuracy in binary classification is defined as:

 ()

where TP, TN, FP and FN are defined for each subnet in any given 1s epoch:

 TP: Number of True Positives i.e. digests received for a subnet when the subnet

was the victim of an attack

 TN: Number of True Negatives with no digests generated in non-attack cases

 FP: Number of False Positives i.e. digests received for a subnet when the subnet

was not the victim of any attack

 FN: Number of False Negatives with no digests generated in attack cases.

The malicious traces were replayed at different rates to showcase the detection

capabilities of the proposed mechanism. These correspond to three different attack

scenarios: (i) an Underscaled attack, i.e. 10% of the reported Booter trace, (ii) the

Booter trace as was originally reported and (iii) an Overscaled attack, comprised of 5

times the volume of the reported Booter trace. For all scenarios the benign traffic was

injected as it was originally captured.

In the charts of Figure 4.4 we depict accuracy of our framework, evaluated using (4),

according to the following values α = 0.004, k = 3, f = 0.15 and r = 2, for two cases:

 71

 Two-feature case (F2) that combines conditions (1), (2) corresponding to Flow

Analysis features

 Three-feature case (F3) that also incorporates the Packet Symmetry feature

based on condition (3)

For the Underscaled attack scenario, F2 performs slightly better than the F3. The former

is more sensitive and thus able to identify attacks that generate small fluctuations on the

number of flows. The latter due to the added traffic symmetry feature does not identify

the attack in every epoch resulting in a greater number of FNs.

Figure 4.4 DDoS Detection Accuracy for different detection approaches and varying volumes

For the original Booter trace scenario, both approaches detect the victim, with F3

achieving higher detection accuracy as it has a reduced amount of FPs in comparison to

F2. Finally, for the Overscaled Attack scenario FNs are eliminated due to the vast

volume of the attack, achieving accuracy close to 100%. In general, using either two or

three features (F2 or F3) we successfully detect ongoing attacks and identify the victim

subnetwork within a single epoch.

4.5.3 Packet Processing Performance Capabilities

Additional stress tests were conducted to evaluate the processing capabilities of the

Netronome cards. To that end, we synthesized traffic in various packet rates to (i) assess

the performance capabilities of our pipeline and (ii) measure its impact on forwarding

throughput. We use the same testbed setup but employ pf-send and pf-receive utilities of

the PF_RING framework [53] on the sender and the receiver respectively.

In our experiments we considered the following use cases:

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Underscaled Attack B4 Booter Trace Overscaled Attack

A
cc

u
ra

cy
 (

%
)

DDoS Detection Accuracy

F2 F3

 72

 Plain forwarding case whereby the target performs only switching (SW)

 One-feature case (F1) that incorporates anomaly identification based on Total

Flow evaluation using condition (1) only

 Two-feature case (F2) that combines both Flow Analysis features based on

conditions (1), (2)

 Three-feature case (F3) that also incorporates the Packet Symmetry feature

based on condition (3)

Note that, the synthesized traffic we used does not bypass our DDoS detection pipeline,

thus stressing to the limit the capabilities of the SmartNIC.

Figure 4.5 SmartNIC Forwarding Capacity

Figure 4.5 depicts the forwarding capacity of Netronome cards for various packet rates

ranging from 0.1 to 5 Million packets per second (Mpps). The forwarding capacity is

calculated as the fraction of traffic that successfully traverses the card.

Traffic rates of 0.1, 0.5, 1 and 2 Mpps show no performance degradation for all four

cases. A higher traffic rate of 5 Mpps exhibits considerable degradation of the

Netronome SmartNIC for adding the DDoS detection pipeline in cases F1, F2 and F3.

These amounts to degradation between 35% to 45%. However, our detection pipeline is

relevant in many enterprise and/or carrier networks since 10G links usually correspond

to packet rates ranging between 1-2 Mpps [151].

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.1 0.5 1 2 5

F
o
rw

ar
d

ed
 P

ac
k
et

s
(%

)

Mpps

Forwarding Capacity

SW

F1

F2

F3

 73

The proposed DDoS detection schema heavily depends on accurate packet

measurements through SmartNICs. To assess the impact of adding the DDoS detection

pipeline, we further investigated the packet counting measurements available in the data

plane via P4 registers. These were observed for all cases (SW, F1, F2 and F3) and

attainable packet rates (from 0.1 to 5 Mpps), as depicted in Figure 4.6.

Figure 4.6 SmartNIC Measurement Capacity

For all cases even moderate packet rates of 0.5 Mpps start to exhibit degradation of

measurement capabilities even in the simplistic “SW” scenario. Our DDoS pipeline

successfully detects attacks with high accuracy despite measurement limitations of the

SmartNICs. As also illustrated in Figure 4.5 packet forwarding is not degraded for rates

up to 2 Mpps, a typical value for a fully utilized 10G link.

These measurement limitations are present only in P4 registers. We attribute this

problem to simultaneous accesses of the memory areas used for packet counting. We

have performed additional experiments using P4 counters and observed significant

improvement. However, as mentioned in section 4.4, counters are only accessible from

external controllers and thus of limited use for our efforts.

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.1 0.5 1 2 5

M
ea

su
re

d
 P

ac
k

et
s

(%
)

Mpps

Measurement Capacity

SW

F1

F2

F3

 74

5 Placement and Automated Distribution of Access Control

Rules to Heterogeneous environments

Sections 3 and 4 emphasized on collecting monitoring data for traffic analysis and

anomaly detection. This section moves to the topic of attack mitigation, focusing on

techniques to appropriately assign and subsequently deploy filtering rules via a unified

abstraction layer.

 Problem Statement 5.1

Modern DDoS attacks consist of multiple attack vectors, presenting a big challenge to

network operators since traditional mitigation mechanisms struggle against such diverse

and dynamic attacks. Important considerations for commercial DDoS solutions are:

CAPEX/OPEX (procurement costs, licenses, support contracts), limited interoperability,

privacy concerns and increased latency especially for cloud-based scrubbing. An

analysis of various mitigation techniques for network anomalies is presented in section

2.6.2.

In this section, we propose an on-premise, distributed and non-proprietary mitigation

schema. Our approach offers flexibility and cost-effectiveness by distributing access

control rules over an existing enterprise network topology, consisting of diverse

network nodes and operating at various protocol layers. Our framework leverages on the

SDN paradigm that disassociates control-plane functionality from data-plane

forwarding. Anomaly mitigation policies are implemented as separate northbound

applications and employ diverse control/management plane mechanisms to

communicate with the network substrate. Our motive is to enable network operators to

appropriately mitigate network anomalies by enforcing custom security policies tailored

to specific enterprise networks, while adhering to performance objectives and device-

specific constraints.

 Background and Related Work 5.2

A closely related approach is the Bohatei framework [152] that provides an elastic,

NFV-based platform offering DDoS Mitigation-as-a-Service in ISP environments.

Incoming traffic is inspected and according to the type and the scale of the attack,

Bohatei determines and deploys appropriate mitigation resources (i.e. VMs). While not

 75

excluding virtualized middleboxes, we consider a more generalized approach that

appropriately allocates generic mitigation rules to appropriate layers of an enterprise

network for simultaneous attack vectors.

VNGuard [153] defines a high-level firewall policy for virtual networks configured

within a cloud environment. Firewall instances are created and appropriate rules are

placed within them based on an integer program formulation. Their objective is to

minimize the number of virtual firewalls to be provisioned while respecting constraints

on the number of rules, as specified by the cloud provider. Our work stems from a

different perspective, notably the rule placement in existing attack mitigation resources

(e.g. firewall instances) tailored to specific attack types based on capacity constraints

and reward values guided by operator policies.

In [154] the VGuard DDoS mitigation mechanism is introduced. Traffic is classified

according to the likelihood of malicious nature. Malignant flows are blocked, benign

flows are routed to their destination as high priority traffic and suspicious flows are

routed via low priority links. Another approach, CoFence [118], enables reciprocal

sharing of compute and network resources to handle large volume DDoS attacks. Note

that all approaches described above, heavily rely on a virtualized infrastructure to

redirect and filter traffic. Related customized solutions for attack mitigation are further

discussed in section 7. In this section we consider an agile mitigation schema for multi-

vector attacks that blocks attack traffic at various stages of an enterprise network.

Cloudflare uses a similar system, Gatebot [155], that distributes mitigation rules across

its PoPs around the world. While limited information is available on Gatebot’s internal

specifics (e.g. anomaly detection algorithms) the XDP [4] is used as mitigation

mechanism to perform advanced filtering of malicious traffic on commodity edge

servers. Our approach is based on an integrated SDN framework to interface with

distributed mitigation capable resources (either physical or virtual) via

diverse/heterogeneous southbound protocols (not only OpenFlow).

 Architectural Overview: Principles and Components 5.3

A high-level overview of the proposed framework, labeled “Orchestrator of Distributed

Rule Placement” (ODRP) is depicted in Figure 5.1: Environment capabilities and

constraints together with security events generated by anomaly detection mechanisms,

 76

e.g. Intrusion Detection System (IDS) are periodically collected by a Pre-processor

(PP) component. This component correlates network security policies modeled as

Event-Condition-Action (ECA) with security incidents, to formulate an optimization

problem for distributing anomaly mitigation actions. In turn, this problem is assigned to

the Mitigation Resolver (MR), a component tasked with computing a solution, i.e. an

assignment of generic mitigation rules to network devices. These are converted to

device-specific Access Control Rules (ACRs) and conveyed to the network

infrastructure by the Rule Handler (RH) component through a range of supported

southbound protocols.

Figure 5.1 Operational Lifecycle of Orchestrator of Distributed Rule Placement - ODRP

Our proposed framework embodies the following principles:

 High-level abstraction of Access Control Rules (ACRs): For typical

heterogeneous multi-vendor environments, we create an abstraction layer for

high-level mitigation actions (primitives). Our framework maps these generic

actions to device-specific ACRs through standardized operations and protocols

(e.g. Blackhole Routing, BGP Flowspec) or vendor-specific implementations.

Thus, network operators may leverage on the capabilities offered by the existing

infrastructure to mitigate network anomalies in a uniform manner.

 Orchestration of mitigation resources driven by optimization considerations:

Our proposed approach assigns generic mitigation rules to relevant network

devices in various hierarchical layers. This was abstracted as a Generalized

 77

Assignment Problem (GAP) [156], whereby the process of assigning mitigation

actions to network devices yields specific rewards. Reward values can be based

on: (i) firewall capabilities of a specific network environment, (ii) policies for

different network anomalies/attacks and (iii) the actual network attack

characteristics. Based on the computed solution for the described GAP, attack

traffic is blocked across the attack path at the most appropriate stage given a

network architecture model (e.g. hierarchical). Note that in terms of the GAP

complexity, there is a trade-off between input size (e.g. size of attackers) and

solution time.

 Adaptive mitigation of multi-vector network attacks: Enterprise network

infrastructures are commonly structured in architectural hierarchies essentially

defining distinct defense stages (i.e. core routers/switches, distribution switches,

access switches and hosts). Modern sophisticated attacks consist of multiple

attack vectors (volumetric, protocol-based, application-based) typically targeting

specific network/host resources. Our approach implements an automated

network workflow (Figure 5.1) whereby security incidents trigger mitigation

actions assigned to various stages across the attack path.

The 3 main components of ODRP are presented briefly below:

 Pre-processor (PP): The purpose of this component is to properly formulate the

GAP for a multi-vector attack tailored to a specific network environment. The

Pre-processor component considers: (i) security events exported from an IDS,

(ii) network security policies and (iii) environment-specific mitigation

capabilities and constraints. Based on these, an appropriate input for GAP is

structured and assigned to the Mitigation Resolver.

 Mitigation Resolver (MR): This component (i) receives data to be fed as input to

the GAP from the PP, (ii) attempts to reduce the input size of the algorithm to

account for scalability issues, (iii) computes a solution for the GAP through a

modular framework and (iv) exports the solution to the Rule Handler. The

computed solution describes the generic mitigation rules to be distributed across

the network elements.

 Rule Handler (RH): This component is responsible for: (i) mapping the abstract

mitigation rules to substrate-specific ACRs and (ii) distributing them to the

network elements. An abstract mitigation rule may be defined as a typical

 78

firewall rule with the following 6-tuple: (source_ip, destination_ip, source_port,

destination_port, protocol, action). Different variations may exist due to device

limitations; these variations contain at least the malicious source that should be

blocked. Subsequently, the abstract mitigation rule is mapped to device-specific

ACR employing common mitigation techniques (see section 2.6.2). The RH may

employ both multi-protocol SDN controllers and automation frameworks to

manage heterogeneous devices via a wide variety of supported southbound

protocols (e.g. OpenFlow, BGP, NETCONF, SSH, APIs).

 Detailed Architecture 5.4

In this section we elaborate upon implementation details pertaining to the architectural

components and related sub-modules of the ODRP. An indicative setup for our

proposed architecture is depicted in Figure 5.2 consisting of the components described

in subsections 5.4.1, 5.4.2, and 5.4.3.

Figure 5.2 ODRP: Detailed Architecture

5.4.1 Pre-processor (PP)

This component consists of four modules: the Security Events Collector, the Reward

Evaluator, the GAP Composer and the Capacity Collector. These correlate security

 79

events, management policies and network environment details to formulate the input of

the GAP algorithm.

Security Events Collector: This module extends the event handling capabilities offered

by Ryu. It receives alerts generated by an external IDS e.g. Suricata [96] and processes

them to extract relevant information pertaining to a network anomaly. Specifically, the

Security Events Collector identifies the exact type of the network anomaly and the

network attributes required to create a mitigation action (e.g. source IP of the attacker).

During a given time window (e.g. every 30 seconds), it generates structured data

pertaining to observed alerts aggregated by the attack type and containing all assumed

malicious source IPs. Finally, for scalability reasons, such information is conveyed

periodically (every time window) to the Reward Evaluator module.

Reward Evaluator: This module receives the information from the Security Events

Collector and in combination with operator-defined policies, maps anomaly types to a

specific defense stage among Core, Distribution, Access and Host. We provide below a

simplified model based on Event-Condition-Action (ECA) policies that enables network

operators to express mitigation policy statements.

ECA Syntax of high-level security policy

Event = {Network Anomaly Alert}

Condition = {Attack type}

 Attack type = {Volumetric | Protocol | Application}

Action = {Block Core | Block Distribution | Block Access | Block Host}

The security policy above associates anomaly alerts triggered by the IDS with a generic

mitigation rule conditioned to the attack type. This action selects the stage at which the

specific type of attack should be mitigated as defined by the network operator. The

mitigation action specified by the security policy is used to generate a reward array for

each type of anomaly.

In order to appropriately mitigate multi-vector attacks the Reward Evaluator formulates

a reward array based on the desired defense stage for each attack vector. For volumetric

attacks, it is reasonable to select the most upstream core stage, whereas application layer

attacks may be blocked at the downstream access or host stages. Interim cases such as

protocol attacks may be handled in transit stages. The Reward Evaluator assigns the

highest reward to the selected defense stage, while lower values are assigned to the

remaining defense stages that may be activated in case the selected stage cannot

 80

accommodate all required generic mitigation rules. In case the selected defense stage is

the transit distribution stage, we assign the highest value to this stage, a lower interim

value to the upstream core stage and the lowest to the downstream access stage. This

way, links of the access network, generally of smaller bandwidth than the upstream

links, are better protected. Note that, exact reward values are not important, just their

relative order.

Capacity Collector: The Capacity Collector module obtains the number of currently

installed ACRs from routers, switches and end-hosts via SNMP, OpenFlow and SSH

respectively, defining a residual capacity vector. The maximum capacities may be tuned

based on device specifications and operational experience related to performance

degradation per specific network device.

GAP Composer: This module receives the reward array along with generic mitigation

rules, generated per attack type, for all malicious IP sources observed during the

previous time window. In addition, the residual capacity vector is received from the

Capacity Collector. It subsequently exports to the Generic Rule Validator (i) generic

mitigation rules per attack type, (ii) the reward array and (iii) residual capacities of

network devices.

5.4.2 Mitigation Resolver (MR)

MR receives the generic mitigation rules, computes a solution to the problem formulated

as a Generalized Assignment Problem (GAP) and exports to the Rule Handler. It

consists of two modules: (i) the Generic Rule Validator and (ii) the GAP Solver.

Generic Rule Validator: This module compares candidate generic mitigations rules

with the ones previously computed and maintained within the module. These are filtered

to isolate new malicious source IPs identified during the previous time window.

GAP Solver: The Generalized Assignment Problem assumes n items to be assigned to

m bins. Assignment of item j to bin i yields a reward rij and carries a weight of wij. A

feasible solution is an assignment in which for each bin i the total weight of assigned

items is at most ci (the capacity of bin i). The goal is to assign each item to exactly one

bin in order to maximize the sum of rewards. In our case, items are the generic

mitigation rules per malicious source IP and attack type, bins are the defense stages,

weights are assumed equal to 1, capacities are the available resources of each defense

 81

stage and rewards are provided by the reward array. The problem can be formulated as

an integer program:

 ∑∑

 ()

 ∑

 ()

∑

 ()

 { } ()

As GAP is an NP-hard problem, in order to reduce its solution time, we decrease the

size of input to the integer programming algorithm. As an example, we may apply

various prefix aggregation techniques [157] on malicious IP sources. Additionally,

generic mitigation rules can be further organized into groups of equal size g, equal to

the minimum between all the residual capacities across the attack path. In case of an

attack requiring a small number of generic mitigation rules (equivalent to a small

number of malicious source IPs), the rules are treated as a single group. In the reduced

problem, the integer program formulation is transformed with items xij corresponding to

assignments of groups j to stages i and n, the maximum value of j, divided by the group

size g. Weights wij are equal to the number of the rules they contain.

The reduced problem is solved via a branch price and cut [158] method implemented

on Dippy [159], a framework for advanced integer programming problems. The

computed solution consists of the assigned groups of access control rules to the defense

stages of the attack path and is conveyed to the RH component.

5.4.3 Rule Handler (RH)

The RH component may be implemented using various approaches. We precisely use

the Ryu SDN Controller that employs BGP, OpenFlow and Iptables (configured via

SSH) to conduct all experiments presented in section 5.5. We also demonstrate a

separate, more generic alternative in section 5.6, based on Salt and NAPALM that fits

neatly into modern heterogeneous environments.

 82

The role of the RH is to: (i) translate the MR solution to device-specific filtering

capabilities, (ii) withdraw ACRs that are considered obsolete e.g. no attack reported

from a specific source in two consecutive time windows (iii) avoid violation of the

existing traffic flows and (iv) maintain and disseminate access control rules for each

device. RH is configured appropriately to distribute mitigation via the available

southbound protocols on the specific network environment. It consists of the Device-

specific Rule Translator and the ACR Distributor modules.

Device-specific Rule Translator: This module maps groups of generic mitigation rules

to each network device along the attack path. Specific rules, actual device and

southbound protocol are conveyed to the ACR Distributor.

ACR Distributor: This module uploads device specific Access Control Rules (ACRs)

through a corresponding southbound protocol specified by each mitigation technique.

The proposed approach should override existing network management policies (e.g.

already deployed OpenFlow rules, routing preferences, end host firewalls). Indicatively:

 BGP: our ACRs should match a predefined route policy which sets a high local

preference, based on the IP address of the BGP-peer (i.e. the BGP speaker of Ryu)

or rely on more specific (/32) announcements.

 OpenFlow: we use the optional fields for flow identification: cookie, cookie-mask

and flow priority. Our ACRs (i.e. OpenFlow rules) are tagged with a specific cookie

identifier and a specified value for high priority.

 End-hosts: we consider Linux-based machines and utilize the iptables firewall. A

special-purpose chain labeled ODRP is used consisting of all the ACRs inserted by

our framework. Their distribution on the end hosts is performed on top of the SSH

protocol.

 Evaluation 5.5

5.5.1 Experimental Setup

We implemented a proof-of-concept testbed deployed in our laboratory based on Ryu

Controller. Offered functionalities were implemented as distinct customized

applications modules. We incorporated in our testbed a Juniper MX80 router and an

OF-enabled OVS [49]. End-hosts were implemented as Linux Containers (LXC),

 83

Virtual Machines and physical hosts. The Ryu Controller was customized to support

RTBH over BGP on the MX80 router. Additional southbound interfaces were enabled

on Ryu, notably OpenFlow for the OVS and SSH for Linux-based end-hosts.

The proof-of-concept testbed used to validate our proposed framework is illustrated in

Figure 5.2, depicting an enterprise network section with a router placed in the upstream

position, a switch as a transit device and Linux-based machines in the downstream end.

Connectivity between these devices were selected to relatively represent typical

hierarchical enterprise networks. Namely we assumed 1Gbps for upstream links and

100Mbps for the access network downstream.

5.5.2 Traffic Profiles for Anomaly Mitigation Experiments

The experimentation process considered the following types of traffic: (i) background

traffic (benign) generated by the iperf
4
 traffic generator emulating a dedicated TCP

stream with bandwidth demand, (ii) benign HTTP requests via the wrk
5
 benchmarking

tool and (iii) artificially generated attack traffic via the bonesi
6
and slowloris

7
. Our

artificially generated attack scenario was tuned by considering attack characteristics

inferred from the Booter traffic traces [109].

To better highlight the potential benefits of mitigating the attack in distinct defense

stages, we conducted an in-depth analysis of the B9 dataset, consisting of a high

bandwidth CHARGEN attack [109]. Specifically, considering the amount of total bytes

sent and total packets sent, we clustered the attack sources into 3 distinct groups via the

k-means classifier [160], as shown in Figure 5.3.

Note that clustering is commonly suggested to classify network traffic [161] into benign

and malicious traffic groups based on various network metrics such as quantity of bytes

sent/received. Specifically, in [13] clustering based on malicious source IP prefixes was

employed as a means to significantly reduce the number of flow entries.

From Figure 5.3 we considered the following mapping of attack types to groups:

4
 https://iperf.fr/

5
 https://github.com/giltene/wrk2

6
 https://github.com/Markus-Go/bonesi

7
 https://github.com/gkbrk/slowloris

https://iperf.fr/
https://github.com/giltene/wrk2
https://github.com/Markus-Go/bonesi
https://github.com/gkbrk/slowloris

 84

 Volumetric attacks correspond to the green group exhibiting higher values of bytes

per second (bps) and packets per second (pps).

 Protocol-based attacks correspond to the red group exhibiting interim values for bps

and pps.

 Application layer attacks correspond to the black group, characterized by the lower

values for bps and pps.

Figure 5.3 Malicious Source distribution (unique IPv4 /24 prefixes) clustered based on the total

megabytes/packet sent (B9 dataset)

In our experiments, malicious attack traffic was generated via the bonesi attack

simulator following the mapping above from 3,779 malicious IP sources. In particular,

for application layer attacks we assumed malicious HTTP requests that reserve

application level resources; this was emulated via the Slowloris attack tool from

additional 1,500 different unique IP addresses. The resulting attack mix was combined

to emulate a multi-vector attack scenario, in which the total amount of unique IP

sources was 5,279 and the attack rate was 350 Mbps. Note that we downscaled the

attack rate to this value due to the link size limitations and traffic generation constraints

of our testbed.

Benign traffic was generated as 200 HTTP requests/sec to an Apache Web Server and a

continuous 50 Mbps TCP stream via the iperf tool.

 85

5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms

Our experimental evaluation was conducted during 300 seconds per mitigation

mechanism. During the first 30 seconds only benign traffic was present in the network;

subsequently we launched the multi-vector attack targeting a victim host. We

considered that malicious sources are detected within the next 30 seconds interval.

Subsequently, mitigation countermeasures are instantiated (at the 60
th

 second) and

remain deployed for the duration of the experiment.

In order to evaluate our framework, we compared three different mitigation

mechanisms: (i) Single Firewall, (ii) Arbitrary Distribution of ACRs and (iii) ODRP -

Orchestrator of Distributed Rule Placement.

We considered that the Single Firewall mechanism is implemented with the OVS acting

as a security middlebox [13]. We assumed that a moderate cost switch, emulated by

OVS, can adequately support up to 4,000 flow entries.

For the distributed mitigation mechanisms (Arbitrary Distribution and ODRP), we

considered that all network devices across the attack path (see Figure 5.2) may be used

for the mitigation process. The device capacities are 2,000 routes for the router, 2,000

flow table entries for the OpenFlow-enabled switch and 1,500 rules for the iptables at

the end-host firewall. Thus, all 5,279 malicious IP sources of subsection 5.5.2 can be

blocked with an appropriate rule distribution.

The Arbitrary Distribution of ACRs, was modeled by rules assigned in a round robin

fashion while respecting the capacity constraints of our devices. Our proposed schema,

ODRP, translates operator policies into rule assignments to stages based on the attack

type. The ODRP preference is to block volumetric attacks on the router, protocol-based

attacks on the switch and application layer attacks on the end host.

In Figure 5.4 we illustrate the amount of attack traffic that is delivered to the victim

while employing different mitigation approaches. The generated attack traffic is

characterized by a bandwidth of 350 Mbps. However, only 94 Mbps actually reach the

victim since the access link capacity in our testbed is 100 Mbps. While using the Single

Firewall mitigation mechanism 62 Μbps of the attack traffic reaches the victim, since

the installed 4,000 mitigation rules do not block all 5,279 malicious IP sources. The

Round-Robin placement of rules performs slightly better, blocking all but 40 Mbps of

attack traffic. Although this mechanism distributes mitigation rules to block all

 86

malicious sources, some were arbitrarily placed on the victim end-host. Thus, part of the

attack reached the victim’s access network. By contrast, ODRP distributes ACRs on the

most appropriate defense stage, with volumetric attacks blocked early in the attack path.

Hence, ODRP better protects the victim from malicious traffic.

Figure 5.4 Total Attack traffic delivered to the victim

In Figure 5.5 we depict the impact of the attack on a benign TCP stream by plotting its

throughput in various scenarios. The baseline stream value with no attack present is 50

Mbps. Unmitigated attacks result in TCP stream throughput dropping to almost 0 Mbps,

due to congestion caused by the attack. The Single Firewall mechanism is able to block

4,000 of the malicious sources, thus the TCP stream is stabilized at 18 Mbps (36% from

its baseline value). Placement of ACRs in an Arbitrary Round-Robin fashion improves

performance with rates varying from 30 to 33 Mbps, (60% and 66% respectively).

Finally, ODRP outperforms both previous mechanisms, since volumetric and protocol-

based interference is blocked early in the attack path, thus preserving the bandwidth of

the access link utilized by the TCP stream.

In Figure 5.6 we present an evaluation of the different mitigation mechanisms based on

the percentage of successful HTTP transactions to a Web service running on the victim.

Such a transaction was considered successful if completed within 1 second.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

Time(s)

M
al

ic
io

u
s

tr
af

fi
c

(M
b

p
s)

Amount of attack traffic delivered to victim

Attack traffic No mitigation Single Firewall

Round-Robin ODRP

 87

Figure 5.5 Benign traffic throughput (iperf)

Naturally with no attack injected, the percentage of successful HTTP transactions is

100%. Generated attacks had a two-fold impact: (i) HTTP Requests are dropped due to

congestion and (ii) active sessions are consumed by maliciously crafted packets of

Slowloris application-layer attack.

Figure 5.6 Attack Impact to benign HTTP transactions: Percentage of Successful HTTP

transactions

Thus, unmitigated attacks exhibit a very low percentage of successful transactions, close

to 1%. The amount of attackers blocked by the Single Firewall is not sufficient;

unblocked attackers still manage to consume valuable bandwidth and server resources.

The Round-Robin placement performs considerably better at 36% success. Finally,

ODRP significantly outperforms both mechanisms reaching to 80% success. Note that

in general, the effect of Slowloris-based attacks on the HTTP service persists even after

0 50 100 150 200 250 300

0

10

20

30

40

50

Time(s)

T
C

P
 S

tr
ea

m
 (

M
b

p
s)

Impact of attack to the benign TCP stream

No Attack No mitigation Single Firewall

Round-Robin ODRP

No attack No

mitigation

Single

Firewall

Round

Robin

ODRP

0

10

20

30

40

50

60

70

80

90

100

S
u

cc
es

sf
u

l
 T

ra
n

sa
ct

io
n

s
(%

)

Impact of attack to benign HTTP transactions

 88

blocking all malicious sources. This occurs because sessions reserved under false

pretenses, stay open for a period of time even after a Slowloris attack is mitigated. Thus

legitimate transactions attempted in the meantime might still fail. This affects every

mechanism used in our experiment including our ODRP approach that could not exceed

the 80% successful transaction rate.

5.5.4 Complexity of Generalized Assignment Problem

The efficiency of our ODRP approach depends on solving GAP in a fraction of a

detection time window. As already mentioned, GAP is an NP-hard problem, thus it may

present scaling issues according to its input size. To address them, we have

implemented a customized solver whereby the generic mitigation rules (items) are split

into groups and assigned to 4 defense stages (bins). We are presenting below the

execution time of our solver considering indicative values for the number of generic

mitigation rules and possible groupings.

Group Size
Generic Mitigation Rules

1000 5000 10000

1 0.5 2.74 5.72

10 0.09 0.25 0.56

50 0.008 0.05 0.1

100 0.004 0.03 0.05

Table 5.1 GAP Execution Time in seconds

The results in Table 5.1 above, demonstrate that the grouping technique we employed,

reduces the execution time of GAP solution in reasonable values within a 30 second

time window. Even the worst case scenario (10,000 generic mitigation rules in 10,000

groups) find a solution in 5.72 seconds. In a case that a large botnet is used to launch an

attack e.g. 100,000 malicious sources require 100,000 generic mitigation rules to block

the attack. With a group size of 10 items, the assignment problem would be solved in

approximately 6 seconds. Thus, our proposed ODRP approach is expected to solve GAP

in a fraction of a detection time window for attacks emanating from a large number of

unique malicious sources.

 Automated Rule Distribution via Salt & NAPALM 5.6

In this subsection we discuss a close parallel effort that focuses on vendor-agnostic

network management for attack mitigation purposes. The alternative approach is based

 89

on the Salt automation framework [14] to distribute ACRs in a streamlined, device-

agnostic manner. Salt may be considered as an even more generic, drop-in replacement

of the Ryu SDN controller. In a nutshell, Salt follows an event-based architecture where

minions (i.e. softwarized agents) communicate with the master to receive data (e.g.

ACRs) and tasks for execution (e.g. enforce a new state). Usually devices cannot host a

minion, thus specialized Proxy minions are employed that interface with network

elements via a southbound driver. To that end we utilize the NAPALM Python library

providing high-layer abstractions for device/vendor agnostic programmability.

Depicted in Figure 5.7 below, is the modified version of our testbed, managed by Salt

and NAPALM. Indicatively we consider 3 defense stages: (i) a Juniper MX80-48T

router, (ii) a Cisco IOS Catalyst 9300 multi-layer switch in L3 mode and (iii) a Linux

server hosting various services. During a detected DDoS attack, the mitigation process

deploys: (a) firewall terms for the MX80, (b) access control lists for the Catalyst 9300

and (c) iptables rules for the Linux server operating as the victim.

Figure 5.7 Rule Handler implemented via an Automation/Orchestration Framework

After the MR component computes a feasible solution that meets device constraints and

operator preferences, it assigns ACRs to devices in different defense stages. As shown

in the figure, ACRs are inserted in a MongoDB, as distinct documents. A document

associates malicious sources with the device (network or host) on which ACRs should

be deployed. Furthermore, the MongoDB is also used by Salt as an external Pillar, i.e. a

 90

data store that maintains minion specific data. Note that a device is directly mapped to a

distinct minion. A separate minion continuously monitors the MongoDB and upon

change triggers an appropriate event. This event is published in the Salt event bus and

received by the master. In turn, the master instructs minions to apply the desired state

(i.e. ACRs for each device) based on: (a) Pillar data i.e. malicious IPs, (b) Jinja2

templates that describe access control list, firewall terms, or iptables rules and (c) SLS

files defining the configuration rendering and distribution process.

Proxy minions hosted within a dedicated server use NAPALM to convey mitigation

policies to network substrate devices via southbound protocols, i.e. NETCONF, SSH. In

turn NAPALM employs the eznc library (NETCONF-based) for the MX device and the

netmiko library (SSH-based) for the Catalyst 9300 accordingly to deploy rendered

configuration commands. An indicative example for the rendering process is presented

in Table 5.2 below.

Jinja2 template

ip access-list {{ filter_name }}

 {%- for prefix in prefixes %}

 deny ip host {{ prefix }} any

 {%- endfor %}

 permit ip any any

end

pillar data

prefixes = [

 “1.2.3.4”,

 “5.6.7.8”,

 “9.10.11.12”

]

Rendered ACL

ip access-list acl-malicious

 deny ip host 1.2.3.4 any

 deny ip host 5.6.7.8 any

 deny ip host 9.10.11.12 any

 permit ip any any

end

Table 5.2 Rendering Jinja2 templates into ACLs

 91

6 DDoS mitigation via network provider collaborations

In section 5, we proposed a mechanism that appropriately assigns mitigation actions to

existing on-premise devices based on operator preferences and device constraints.

Massive attacks may be comprised of a considerably large number of sources or

endanger important links. To that end, this section further extends the assignment of

mitigation actions to an Interdomain schema for the collaborative mitigation of massive

DDoS attacks.

 Problem Statement 6.1

As a general observation, DDoS attacks are better pinpointed near the victim and more

efficiently mitigated closer to their sources. Moreover, the sheer volume of present-day

cyber threats may overwhelm an individual provider, thus the pressing need for

collaborative mitigation efforts. However, defense collaborations might be hindered by

operator concerns such as unwillingness to share victim-related information to preserve

sensitive client data, lack of incentives for cooperation and shortcomings of incident

handling mechanisms.

In this section, we propose an automated mechanism to orchestrate the collaborative

mitigation of distributed attacks. Our schema fits best to Network and Wholesale

Network Providers that share relevant and credible incident reports within a trusted

federation. Network providers serve client organizations in their domains via

interconnected Autonomous Systems (ASes). Our proposed solution enables a member

of the trust federation under attack, directly or as the upstream provider, to (i) receive

and process all available mitigation offerings pertaining to a particular attack scenario,

(ii) identify the optimal sets of flows that should be mitigated based on costs and

historical records i.e. reputation scores, and (iii) announce these sets by issuing Smart

Contracts towards the appropriate mitigation collaborators.

The actual mitigation is undertaken by appropriately deployed filtering appliances

within each collaborating domain. Similarly to our efforts described in section 5, this

was modeled as a combinatorial optimization problem (Generalized Assignment

Problem - GAP) aiming at distributing defense resources in multi-domain attack paths.

We further introduce a reputation score that is calculated and maintained to evaluate the

behavior of the respective collaborator on past incidents, while updating its credentials

 92

for future incident handling. We have also considered a verification mechanism, capable

of maintaining and exposing necessary monitoring information for dispute settlement.

 Background and Related Work 6.2

An analysis of Collaborative Schemas is provided in section 2.6.3. Summarizing

notable mentions, [118] and [119] employ NFV and SDN techniques respectively. In

both architectures mentioned above, DDoS mitigation is based in a reciprocal, quid pro

quo schema. Approaches based on Distributed Ledger Technologies (DLTs) attempt to

dampen such arguments against collaboration by enhancing, automating and tokenizing

coordination efforts between collaborators [124]–[129].

Inspired by [119], [127], [128] we designed a modular collaborative, Blockchain-

powered platform for mitigating massive DDoS attacks. Similarly to related efforts on

collaborative DDoS defense [119] and [128], we adopted the Beta Reputation system

and appropriately modified it to weigh partner contributions in the mitigation process

(i.e. number of malicious sources blocked). Furthermore, other approaches [118], [119]

employ scores that characterize a domain’s past behavior to decide on how to allocate

mitigation resources, or whether to provide assistance. Alternatively, given specific

offerings from potential mitigators, we focus on enabling the victim to distribute

mitigation actions (i.e. sources to be blocked) to the most reliable (e.g. higher

reputation) AS/ASes. The distribution process is formulated as a cost optimization

problem that considers the reputation of potential mitigators and may also include

additional operational parameters and business policies.

Finally, disputed mitigation claims may be settled via a verification procedure relying

on network monitoring data as provided by the victim and mitigator ASes; other

mechanisms have been considered in [129] that require infrastructure access and

specialized equipment for verification purposes. Note that we considered a trusted

federated environment whereby collaborators follow agreed upon admission procedures

and adhere to standards as in MANRS [117], a global initiative amongst network

providers.

 93

 Overview and Baseline Design 6.3

6.3.1 Design Principles

A high-level overview of our schema is depicted in Figure 6.1. Malicious flows

(continuous lines) that collectively form a DDoS attack, originate from - or transit

through - interconnected federated ASes (dashed lines). Instances of the Collaborative

Incident Response Manager (CIRM), deployed in each AS, are responsible for

coordinating the mitigation of the malicious flows, and registering all interactions

within two distinct data stores based on Distributed Ledger Technology. The entire

process is orchestrated using data (logged messages, encrypted sensitive information)

stored in a federation-wide Distributed Data Store Service (DDSS). CIRM also takes

advantage of ad-hoc instances, realizing the respective Private Data Store Services

(PDSS), between sets of ASes. These are used to support the exchange of additional

(private and/or sensitive) information and to automatically settle the resulting

agreements. Malicious flows are accurately detected by the victim or the Network

Provider of the victim (AS1) via an independent detection mechanism (see sections 3, 4

and 2.4.3).

AS-AS Interconnect

Malicious Flows

Collaborative Incident

Response Manager (CIRM)

Distributed Data Store

Service (DDSS)

Private Data Store Service

(PDSS)

AS1

VICTIM

AS2

AS3

AS4

AS6

AS5

Figure 6.1 High-level Overview of Collaborative DDoS Mitigation

Upon detecting a distributed attack, the victim AS (vAS henceforth) issues an SC for the

incident; this digital agreement includes among others (i) the adjacent neighboring

 94

domains that forward attack traffic, (ii) a URL pointing to a document containing the

DDoS attack sources stored within a distributed file storage system (e.g. Inter-Planetary

File System – IPFS [162]) and (iii) the encrypted IP address(es) of the victim. ASes

update the agreement above to include their adjacent ASes located in the attack path.

Once the initial SC is issued, each AS located in the path of the attack is considered as a

possible mitigator AS (mAS henceforth) and may offer via relevant SCs to fully or

partially block malicious traffic. The vAS is then able to coordinate with the federated

ASes leveraging the various types of SCs available in DDSS and PDSS. The resulting

mitigation plan is obtained by feeding appropriate data to the cost optimization and

reputation algorithms implemented as applications on top of each CIRM. The different

types of SC implemented in our framework, as well as details on the related applications

are further documented in section 6.4.

The design principles of our federated schema are:

● Privacy-aware propagation of malicious network events and out-of-band

communication: Our schema enables a vAS to: (i) report a detected network

attack respecting the privacy of sensitive information, and (ii) propagate the

report to ASes along the attack path. We consider that ASes under attack

potentially face adverse network conditions (e.g. link saturation), severely

impairing communication. To that end, participants may employ some sort of

dedicated secure channels for collaboration.

● Collaborative mitigation of security incidents: Federated partners are able to

collaboratively deploy appropriate mitigation mechanisms. Our decentralized

approach tends to push filtering rules near attack sources thus alleviating the

victim domain from the total burden of a highly distributed attack. This schema

refines commonly used blackholing techniques that may lead to blind service

disruption.

● Reputation-based Federation: Our proof of concept implementation reflects a

federated multi-domain network environment whereby partners are rated by

reputation scores for past incident handling. The reputation score depicts the

quality of the mitigation service provided, i.e. the capability of a collaborator to

consistently block malicious flows.

 95

● Accountability and Consensus: Collaboration schemas need to account for

scenarios whereby partners may have diverging incident handling priorities or

unintentionally report inaccurate information. As such, federation members

should be able to: (i) log transactions, (ii) verify logged transactions, (iii)

enforce Service Level Agreements (SLAs) and (iv) settle disputes via

appropriate verification mechanisms.

Our vision is that such capabilities will introduce business workflows with potential

financial benefits (rewards), thus incentivizing members of the federation to deliver

high quality mitigation services.

6.3.2 Architectural Components

Figure 6.2 presents an overview of our proposed framework, as well as the interactions

between the main components, namely (i) the CIRM and related applications built on

top, (ii) the distributed ledgers realizing the Data Store Services (i.e. DDSS and PDSS),

and (iii) the Attack Mitigation Appliance.

Figure 6.2 Collaborative Framework for DDoS Mitigation and Component Interactions

 96

6.3.2.1 Collaborative Incident Response Manager

CIRM components are responsible for coordinating the mitigation effort within the

federation. A CIRM is initially triggered by alerts, generated by DDoS detection

schemas e.g. [96]. Our approach assumes that incident alert messages contain the

following information: (i) a set of network flows related to the incident extracted via

various mechanisms (e.g. sFlow/NetFlow) and (ii) the initial incident timestamp. CIRM

then creates an Attack Information Document (AID) containing the incident flows, as

well as its hashed digest (e.g. SHA-256) to be used for AID integrity check. This is

stored off-chain, in a distributed file storage system (IPFS) accessible by all federation

members.

The CIRM design is modular, consisting of two core elements, namely the Blockchain

Communication Module (BCM) and the Mitigation Triggering Module (MTM).

Specifically, BCM is used to register and perform transactions to the DDSS and the

relevant PDSS instances in order to receive, acknowledge, or forward mitigation

requests (as well as the related information) to other ASes. The communication between

CIRM and the Distributed Data Stores is facilitated by deploying or updating instances

of the various types of SCs we have implemented, as described in section 6.4. MTM is

responsible for the communication with mitigation appliances upon the conclusion of

transactions in DDSS and PDSS blockchain networks, triggered by a particular incident.

In our implementation, MTM conveys malicious sources to an XDP-based mitigation

appliance that implements the actual mitigation process.

Apart from the above core modules, the proposed framework relies on the following set

of support applications, built on top of CIRM, that enable vAS to select the appropriate

collaborators within the federated network and orchestrate the mitigation:

● Reputation Score Calculation: The cooperation track record of each AS in the

federation is evaluated using SC attributes related to DDSS and PDSS past

transactions. These are supplemented with monitoring metrics (e.g. verified

blocked flows per incident) and dispute resolution results.

● Mitigation Action Placement - Cost Optimization: vASes are able to retrieve and

evaluate offers posted in the PDSS for the mitigation of malicious sources

related to a specific incident. The evaluation of offers is formulated as a

 97

Generalized Assignment Problem based on the flows to be dropped and the

respective reputation scores of potential collaborators (mAS).

● Mitigation Verification: This application facilitates business-oriented

verification i.e. verify that the appropriate flows were actually blocked in our

specific use-case, indicating whether the victim should consider the respective

SC as fulfilled and consequently close it.

● Interface to Distributed File Storage: Large blocks of information are stored and

retrieved from an external distributed file storage (e.g. IPFS) interworking with

blockchain-based architectures to separately store files such as AIDs which may

include hundreds or thousands of malicious sources. The CIRM application

facilitates the communication with the distributed file storage system.

6.3.2.2 Data Store Service

Our architecture requires a form of distributed transactional data store available to all

participants, accompanied by a consensus mechanism. As mentioned, the platform is

not open to the public internet but only to approved members of the federation. Thus,

there is no specific need to use complicated or computationally intensive consensus

mechanisms (e.g. Proof-of-Work). We adopted a permissioned blockchain in which

predefined miners (i.e. federated participants) are authenticated and authorized within

the blockchain infrastructure. To that end, our implementation is based on a blockchain-

based federation [163] using the Proof-of-Authority (PoA) [164] consensus mechanism,

to fulfill the requirements mentioned above. Another objective is to preserve the

victim’s privacy (e.g. IP address) even within a trusted federation, while enabling on-

demand reward and settlement of verified transactions. This is achieved via dedicated

ad-hoc communication channels between collaborating ASes, forming private

blockchain networks i.e. Sidechains [165]. Such Sidechains enable exchanging and

updating of information related with an SC stored on the public blockchain network

(Mainchain henceforth). Note that in our architecture, Mainchain realizes the DDSS

component, while each Sidechain is a PDSS instance between two collaborating ASes.

Recall that, both types of blockchain networks use dedicated out-of-band connections.

6.3.2.3 Attack Mitigation Appliance

The Attack Mitigation Appliance (AMA) represents an important component of the

proposed architecture, responsible for the actual mitigation of malicious traffic. While

 98

any mitigation appliance could be an appropriate candidate, we implemented and

deployed a flexible fine-grained and high performance mitigation mechanism based on

XDP. Triggered by the MTM, this component is deployed and drops all IP sources

described by MTM as malicious.

 Proposed Architecture: Implementation Details 6.4

6.4.1 Blockchain-based Smart Contracts

The proposed approach leverages both public and private distributed ledger instances

(i.e. Mainchain and Sidechains) as transactional distributed data stores. For our

implementation we selected Ethereum [166] as the underlying platform of our

distributed application, mostly due to the sizable resources and community surrounding

the project. However, the proposed framework is not conceptually intertwined with a

particular DLT.

Upon initialization, all federation members have a unique Ethereum address and a

private key, authenticating them against their Ethereum account. Their public Ethereum

address is explicitly configured within the Genesis block of the network (i.e. a JSON

file containing static configuration parameters related to the network). Regarding the

Mainchain, all federation members assume the role of a Sealer i.e. they can validate any

network-generated block. Notably, in a Proof-of-Authority (PoA) deployment such as

the one described for Mainchain, only accounts specified on the Genesis block as

Sealers, are eligible for block verification. The Ethereum architecture also utilizes the

Bootnode, that assists the respective BCM nodes of each member in discovering the

DDSS network. Thus, each BCM can connect to the DDSS as an authorized member of

the network. The PDSS is deployed following the same principles as the DDSS, with

the only difference being that each PDSS is a PoA network between only two ASes, and

only these two are configured as Sealers.

The business logic in both DDSS and PDSS networks is introduced via different

archetypes of Smart Contracts (SCs) developed in Solidity Programming Language.

Once an SC is deployed to the appropriate PoA network via the BCM, a unique address

(hexadecimal number) is assigned to it. In order to interact with an SC, Ethereum

defines an Application Binary Interface (ABI), as the data encoding scheme. Thus, SC

data are encoded according to their type, based on the information described in the

 99

respective ABI. The ABI specification is shared among all federation participants upon

initialization of a blockchain network, since, without this information the BCM modules

would not be able to decode and interact with any deployed SCs.

We implemented four types of SCs: (i) SC
(A)

 is issued (owned) by the victim AS and

contains basic information about the incident; (ii) SC
(B)

 is used to recursively notify

potential mitigators; (iii) SC
(C)

 is issued by transit ASes, offering to block malicious

flows; (iv) SC
(D)

 is issued by the victim AS to finalize collaborative mitigation

assignments. All four SCs are used to orchestrate collective actions across an incident

attack path.

In Table 6.1 we present specific attributes of the aforementioned SC types. Specifically,

the current status attribute may be modified by the vAS and/or mAS as denoted in the

table. In the last column, we indicate the specific component of the Data Store Services

(DDSS or PDSS) that each SC type should be deployed on.

SC Type Attributes Short Description Deployed

SC
(A)

Owner Public Ethereum Address

DDSS

Status

Current Status - Modification Rights

● Seek Assistance - vAS

● Attack Graph Update - vAS, mAS

● Bidding closed - vAS

● Under Mitigation - vAS

● Under Verification - vAS

● Fulfilled - vAS

● Not Fulfilled - vAS

vIP Encrypted Victim IP Address

Graph Attack Graph

AID_URL
IPFS URL to retrieve Attack Information

Document (AID)

AID_Digest AID Hashed Digest

SC
(B)

SCA_Address Address of relevant SC
(A)

PDSS

Owner Public Ethereum Address

Status

Current Status - Modification Rights

● Sent - vAS

● Acknowledged - mAS

 100

M_Address DDSS Address of a potential Mitigator

D_KEY Decryption key

SC
(C)

SCA_Address Address of relevant SC
(A)

PDSS

Owner Public Ethereum Address

Status

Current Status - Modification Rights

● New bid - mAS

● Approved - vAS

● Rejected - vAS

SIP_URL
IPFS URL for the list of Source IP addresses

to block

Reward Requested Reward for Mitigation

SC
(D)

SCA_Address Address of relevant SC
(A)

DDSS

Owner Public Ethereum Address

Status

Current Status - Modification Rights

● Offer - vAS

● Fulfilled - mAS

● Verified- vAS

M_Address DDSS Address of a potential Mitigator

Reward Reward for Mitigation

Table 6.1 Types of Smart Contracts

6.4.2 Orchestration Workflow

The steps described in this subsection constitute a recursive process between adjacent

ASes within a federation-wide attack graph. This includes: (i) the notification

mechanism of all ASes in the graph, and (ii) the propagation mechanism of decryption

keys.

The Collaborative Incident Response Manager (CIRM) instance advertises the

necessary information (e.g. malicious flows within AID, hiding privacy sensitive victim

identification) to DDSS via an SC
(A)

. Subsequently, the CIRM deploys SC
(B)

 instances

on the PDSS of each adjacent AS found in the path of the attack; these include the

decryption key for the victim IP. Initially the decryption key is sent by the victim to

adjacent nodes and then it is recursively propagated to all potential mitigators (i.e.

 101

adjacent ASes that forward attack traffic). Each SC
(B)

 is fulfilled upon

acknowledgement by the adjacent AS.

As mentioned, federated members additionally maintain secure out-of-band

communication channels to exchange signaling messages. Optionally, we could also

employ asymmetric encryption (e.g. PKI, GPG) to encrypt and distribute the decryption

key. Note that, the decryption key itself is kept secure within the infrastructure of a

federated domain, using well-known and accepted security practices (e.g. hardened

systems, firewalls, physical/logical access control and auditing).

ASes in the attack path should update the disclosed attack graph within SC
(A)

, to include

their relevant neighbors that forward malicious traffic. The attack graph is represented

and stored as an array of linked lists. Each array record represents a given AS of the

federation, while each list represents a valid branch of the attack graph. In addition to

SC
(B)

 related communication, each AS may retrieve blockchain-verified SC
(A)

 instances

via their respective BCM. Thus, by inspecting the attack graph an AS may decide on

their role in forwarding ongoing attacks (i.e. whether they belong to the attack path).

ASes on the attack path may offer to assist (placing a bid) the vAS in the mitigation of

the attack by deploying an SC
(C)

. This SC maintains an attribute pointing to a list of

source IP addresses that can be blocked by the bidding AS. The list of source IP

addresses that can be blocked by the mAS, is also stored in the IPFS [162]. All SC
(C)

instances are stored within the PDSS; they may be retrieved by the CIRM and conveyed

to the Mitigation Action Placement application to select appropriate bids.

The original SC
(A)

 owner will create SC
(D)

 contracts in the DDSS for all the approved

SC
(C)

 bids. Upon the creation of the relevant SC
(D)

, each mAS should start the mitigation

process and update the status attribute of the SC
(D)

 to “Fulfilled”. All Fulfilled SC
(D)

s

should then be verified by the owner of SC
(A)

 in order to complete the transaction

allowing bidders to claim the agreed reward. Finally, once all the SC
(D)

s of the initial

SC
(A)

 have been verified, the SC
(A)

 is fulfilled and updated accordingly in the DDSS.

6.4.3 Reputation Schema for Collaborating Entities

Each AS is characterized by a reputation score, representing the quality of mitigation

service provided to members of the federation in past incidents. The proposed

reputation schema is based on the Beta(a,b) distribution [121]. The reputation value

 102

after n incidents is equal to the mean value of the beta distribution, ()

 (), and represents a “forecast” for the outcome of future mitigation tasks.

Such information is available to all ASes in the federation and may be used to

appropriately assign mitigation tasks. Similar approaches [119], [128] that utilize Beta

distribution consider only whether an AS provides mitigation service, disregarding the

magnitude of its contribution. Hence, we extended the update process for the values of

shape parameters, and , quantifying an AS’s assistance, according to the following

equations:

 ,

The variables and represent the flows blocked and not blocked respectively, for a

given instance n of an SC
(D)

. Both values are based on the flows that a specific AS is

assigned to block via SC
(D)

 and not the total flows involved in the attack incident. Note

that is a discount factor affecting past reputation scores; means that the

reputation score incorporates the cumulative contribution of a contributor along the past

n incidents, whereas indicates that only the last mitigation service offered may

affect the reputation score. We used the former in our experiments.

In a typical scenario should be equal to the length of the list of flows the respective

SC
(D)

 is pointing to. However, in case of disputes between a mAS and vAS, the two ASes

calculate and compare the exact number of blocked sources for an ad-hoc bilateral

settlement. This is further discussed in section 6.4.6.

6.4.4 Cost Optimization - Mitigation Action Assignment

We treat the aforementioned evaluation of available offerings to assist in the mitigation

of an attack event as a Generalized Assignment Problem (GAP) as in section 5. From

the vAS perspective, the GAP is considering the assignment of n items to m bins.

Assignment of an item j to bin yields a reward and carries a weight of . A

feasible solution dictates the total weight of assigned items for each bin should not

exceed the capacity of the bin (Ci) and each item should be assigned to exactly one bin.

The optimal solution is an assignment maximizing the sum of all the rewards. In our

case, each item represents the filtering of a malicious flow via a respective entry on a

mitigation appliance with weight equal to one. Network providers within the described

federation are represented by bins while their capacity denotes the available mitigation

 103

resources. Finally, the GAP reward is calculated as the product of reputation score of

a collaborator and the importance of the flow j, where the importance denotes the

amount of bytes corresponding to the flow j. Then:

 () ()

Intuitively, our approach tends to assign the most important flows, e.g. heavy hitters, to

the collaborators with the higher reputation values. Consequently, the victim tends to

receive better mitigation service for a specific incident. In turn, collaborators apart from

any direct rewards as part of the agreement, establish and maintain a high reputation

score increasing the possibility to be selected in the future.

GAP is an NP-hard problem and its input size affects the time needed to be solved. The

input size of the algorithm can be reduced using grouping and/or prefix aggregation

techniques (section 5). Such or similar methods are also applicable to the

aforementioned formulation and can be used for reducing the execution time of the

solver i.e. Dippy integer programming tools [159].

6.4.5 Implementation of Mitigation Mechanisms

As noted in previous sections, various mitigation mechanisms may be employed to

block a set of malicious source IP addresses. Each mAS maintains one or more Attack

Mitigation Appliances (AMAs) capable of filtering malicious sources. Τhe Mitigation

Trigger Module (MTM) module is responsible to communicate and configure an AMA

via protocols including but not limited to: BGP, NETCONF, OpenFlow, SSH.

We implemented the AMA leveraging on the XDP capabilities that allow matching of

specific packet fields in the filtering process. Specifically, our implementation parses

packet headers, matches the source IP addresses of malicious actors coupled with the

destination IP of the victim and drops it, whereas legitimate traffic is forwarded

normally to its destination. Note that we could also utilize the capabilities offered by

XDP to implement a DDoS mitigation solution that is not dependent only on IPs but

combines other packet features, tailored to specific attack vectors (see section 7).

6.4.6 Verification of Mitigation Agreements

The proposed framework relies on the existence of a trusted federation, composed of

ASes operating according to a predefined policy e.g. [117]. Hence, we assume that

 104

mishaps in contract fulfillment should not occur due to malicious intent but as a result

of defense mechanism malfunction and/or misconfigurations. However, operating in

this environment cannot completely alleviate the need for mitigation verification of

SC
(D)

s.

To that end, we consider an approach that leverages monitoring data collected from the

peering (interconnection) links of the ASes. Specifically, each mAS should maintain

flow information for the egress traffic directed towards the vAS. At the same time, vAS

should maintain the respective data for ingress traffic on each corresponding link.

Malicious flows pertaining to a particular incident are extracted from appropriate

monitoring data and are stored in distinct timeframes i.e. 60 seconds); subsequently they

can be retrieved upon request, for dispute settlement purposes. Note that flows are

identified by their source IP; additional information may include destination IP, IP

protocol type and TCP/UDP ports.

Moreover, aiming to tackle potential storage issues that might arise in cases of

extremely distributed attacks, we opted for maintaining these malicious flows within a

Bloom Filter probabilistic data structure [150], similar to the DNS approach in [167].

We based this selection on the observation that the actual counters are not required for

the verification process. Hence, the malicious flows related to an attack incident are

hashed in space-efficient Bloom Filters, each pertaining to a particular time-window of

an incident. Indicatively, a Bloom Filter of 176 KBytes and 10 Hash Functions would

be sufficient to accurately store 100,000 malicious sources (e.g. Memcached DDoS

attack [168]), with a false positive probability of 0.1% according to [169].

Typically network operators employ widely adopted protocols for network monitoring,

such as NetFlow or sFlow; these are usually combined with sampling mechanisms to

alleviate load on network devices. We employed NetFlow monitoring data with varying

sampling rates; since there is a trade-off between sampling rate and monitoring

accuracy, there might be inconsistencies in the data collected that are not due to faulty

mitigation but to visibility limitations of the sampling process. However, we do not

expect the accuracy under massive attacks to be impacted by sampling [13], [94].

 105

 Evaluation 6.5

6.5.1 Experimental Setup

We implemented a proof-of-concept testbed for experimental evaluation deployed at the

NETMODE laboratory of the National Technical University of Athens, Greece. We

considered the following areas for experimentation: (i) Reputation Score Calculation,

(ii) Mitigation Action Placement and (iii) Mitigation Verification.

Our testbed incorporates three Linux machines operating as distinct elements: (i) the

Traffic Generator, (ii) the Mitigation Box (emulating the Attack Mitigation Appliance)

and (iii) the Victim (vAS). As depicted in Figure 6.3, machines are connected in a star-

like topology, with a Cisco Catalyst 9300 Multilayer Switch at the center. All the links

operate at 10G.

The Traffic Generator is responsible for replaying and multiplexing benign and

malicious network traffic, emulating traffic originating from AS2, AS3 and AS4 as

depicted in Figure 6.3. The traffic is directed to the victim via the Mitigation Box with

two bridged interfaces, each in a separate VLAN. Appropriate XDP programs, applied

in the ingress interface of the Mitigation Box (VLAN B), are used to block malicious

sources while allowing benign traffic. Verification points (vAS, mAS) are implemented

as separate flow exporters on the NetFlow-enabled switch.

Victim Traffic Generator

Mitigation Box

Cisco Catalyst 9300

VLAN A

VLAN B

Traffic Flow

AS{2,3,4}AS1

Verification Points

mAS

vAS

Figure 6.3 Proof of Concept Testbed Setup

 106

In our experiments we used both benign and malicious traffic. The legitimate traffic is

based on the CAIDA Anonymized Internet Traces 2016 [107] dataset while the attack

traffic utilizes the Booter traces [109]. We synthesized a total mixture of traffic that

emulates a production network environment under attack; it has an approximately 1.77

ratio of malicious to benign traffic, with the total average packet rate approximately at

584 Kpps. In our experiments malicious flows are aggregated via their source IP

attribute; we further assume that each AS blocks a flow (source) assigned to it with a

probability equal to its reputation score since the latter ranks an AS mitigation service

quality. We expect some incidents for which the mitigation fails to meet the promised

requirements. As discussed in section 6.4, we considered that such incidents might

occur due to human errors (misconfiguration of the security appliance) or hardware

malfunction.

Moreover, aiming to evaluate the DLT-based orchestration of the proposed federated

schema we deployed an Ethereum blockchain network consisting of six nodes, based on

the Go Ethereum implementation [170]. Along with each node, we deployed a CIRM

instance and a Sealer service, with the authority to validate each block on the

blockchain network. Additionally, we deployed two more nodes for coordination and

monitoring purposes: (i) Bootnode that facilitates the interconnectivity of the blockchain

nodes by providing them with the necessary details to connect to the correct blockchain

network; (ii) Monitoring-node that retrieves statistics and displays information about the

current status of the blockchain network as in [171] and [172].

6.5.2 Reputation Score Calculation

To evaluate our proposed reputation mechanism, we selected three types of federated

collaborators: (i) a reliable mitigator blocking a high percentage of the agreed malicious

flows, (ii) an unreliable mitigator blocking a low percentage of the agreed malicious

flows and (iii) an unpredictable mitigator, whose performance might vary both

regarding the success rate and the volume of the promised flows. We considered two

simulation experiments to assess the impact of mitigation service to the reputation

score.

In the first experiment, we assume that a reliable mitigator AS (mAS) blocks the agreed

malicious sources (i.e. 1000 flows) with a probability ranging from 90% to 100% for

the first 500 incidents. For the next 500 incidents the mAS behaves as an unreliable

 107

mitigator, blocking the agreed sources with a probability ranging from 40% to 50%. We

also consider the opposite i.e. an unreliable mitigator that turns reliable. In both cases,

we calculate the reputation score and present its evolution during 1000 consecutive

attack incidents.

Figure 6.4 Reputation Score Evolution for Different Types of Federated Collaborators

As expected, Figure 6.4 indicates that the reputation score closely resembles the

performance of the mAS during past attacks. Note that, the proposed schema allows

collaborators to recover from low reputation scores in case they start providing high-

quality mitigation services, while low-quality ones result to a significant drop in the

reputation score. The rate of recovery depends not only on their reliability but also on

the volume of promised flows. Thus, an AS is able to establish a high reputation score

faster by seeking and fulfilling Smart Contracts for incidents involving large numbers of

malicious sources.

In the second experiment we compare our proposed schema against approaches that

consider only binary outcomes i.e. a collaborator is providing assistance or not [119],

[128]. Specifically, we showcase the reputation score of the unpredictable collaborator

mentioned above, that exhibits inferior performance in terms of (i) mitigation reliability

and (ii) inability to fulfill excessive mitigation promises in a SC. The former indicates

the probability that an attack will be mitigated; for simplicity we consider that the entire

batch of agreed flows in a SC are either mitigated successfully or not. The latter defines

a multiplier for the number of flows the collaborator promised but was not able to

 108

block. Specifically, in our simulation experiments we used 1000 flows as the base

value.

In Figure 6.5 we compare the “binary” reputation schema (black surface) and our

approach (gray surface) that considers the number of malicious flows promised but not

blocked. Each point in the figure is the average reputation score calculated after 1000

consecutive DDoS attacks emulated in our testbed. The binary approach is only affected

by the mitigation reliability and yields significantly higher reputation scores. Our

approach also accounts for the actual number of mitigation actions successfully

deployed by a collaborator and yields lower reputation scores, especially when the

mASes fail to block large numbers of malicious flows (i.e. high factor of excessive

promises). As an example a mitigation reliability of 0.9 and a factor of excessive

promised flows of 10 means that a collaborator successfully mitigates an attack

blocking 1000 flows with probability 0.9, while it fails to block excessive numbers of

promised flows (10,000 flows) with probability 0.1. For this case, our schema would

rank the mAS with a reputation score of 0.5, whereas “binary” reputation schemas

would yield a reputation score of 0.9.

Figure 6.5 Reputation Score Comparison – Binary Reputation (Black), Proposed Approach (Gray)

6.5.3 Mitigation Actions Placement

To evaluate the mitigation actions placement on collaborating ASes we considered the

topology depicted in Figure 6.1. We analyzed the first Booter dataset, B1, as reported in

[109] and allocated all IP sources within distinct /24 subnets, distributed uniformly to

 109

AS2, AS3 and AS4. This coupled with the actual attack dataset resulted to attack traffic

emanating from the three ASes in proportion to 33%, 31% and 36% of the total attack

traffic. Note that, attack traffic originating from AS3 and AS4 may be also blocked by

AS2. In our experimentation process, the mASes offer to block the malicious traffic that

flows through their network and the vAS assigns mitigation actions based on the

aforementioned approaches. The cumulative capacity of all mASes is sufficient to

collectively block the attack flows.

We consider two options for the mitigation actions placement using the following

reward functions:
 () and

 () (). Note that, in both cases

all malicious flows are assigned to some mASes but possibly in a different manner: The

former tends to assign mitigation actions to the mASes with the best reputation score.

The latter additionally considers the importance of a flow for the mitigation process (i.e.

flow importance). Flow importance is a metric identifying the danger a specific flow

represents and may be calculated via sophisticated Intrusion Detection and Intrusion

Prevention systems that evaluate multiple parameters across various attack vectors. This

formulation enables operators to define policies focusing on traffic features they

consider as the highest risks to their infrastructures. In our experiments we adopted the

total amount of bytes that correspond to each malicious flow, considering typical

volumetric DDoS attacks.

We showcase the mitigation of a real-time attack scenario, employing again the same

traffic mixture of benign and malicious traffic. We consider four different mitigation

approaches: (i) vAS assigns mitigation actions to all ASes based on:
 , (ii) vAS assigns

mitigation actions to all ASes based on:
 , (iii) vAS assigns mitigation tasks only to

AS2 based on:
 (i.e. top 1000 sources) and (iv) vAS assigns mitigation tasks only to

AS2 based on:
 . The last approach is a random assignment, since all rewards are

equal; we illustrate the worst case scenario in which the assigned 1000 malicious

sources have the least contribution to the attack.

For approaches (i), (ii) we assumed AS2, AS3 and AS4 have a reputation equal to 0.9,

0.6 and 0.5 respectively. For (iii), (iv) the reputation score of AS2 is assumed to be 1,

thus blocks every flow assigned to it. The attack is detected and countermeasures are

deployed after 30 seconds. This accounts for solving the Generalized Assignment

Problem (GAP) and applying the mitigation actions to the XDP-enabled mitigation box.

 110

Figure 6.6 Total Malicious and Benign Traffic reaching the Victim

Figure 6.6 depicts the amount of traffic that is delivered to the victim. The attack traffic

ranges between 2.5-3 Gbps. When multiple ASes collaborate, i.e. approaches (i) and

(ii), the assignment of mitigation actions based on
 is significantly inferior to

 that

incorporates flow importance. As shown in the figure approach (i) results to twice the

volume of the malicious traffic reaching the victim, as opposed to (ii). Similarly, this is

also illustrated in approaches (iii) and (iv), whereby only AS2 is contributing to the

attack mitigation. Assigning mitigation tasks in a random fashion as in approach (iv)

might lead to an unsuccessful mitigation while considering flow importance in approach

(iii) mitigates a larger volume of malicious traffic. Note that, both approaches (iii) and

(ii) perform comparably well in terms of the total attack traffic reaching the victim.

However, approach (iii) assumes that there exists a top notch strategically placed

collaborator that is able to consistently block all malicious sources and has adequate

capacity to sustain massive DDoS attacks. On the contrary approach (ii) relies on

collaborative efforts and smart distribution of mitigation actions across multi-domain

attack paths. Thus, we consider approach (ii) as the most appropriate for our

collaborative schema.

 111

6.5.4 Mitigation Verification

Additional experiments were conducted to evaluate the applicability of propabilistic

data structures in the verification process. As mentioned in subsection 6.4.6, the

verification relies on malicious flows as monitored by SC participants, both vAS and

mASes. We used NetFlow data exported by separate flow exporters within the

multilayer switch, sampled at two different rates: (i) 1 out of 100 and (ii) 1 out of 1000.

NetFlow data are sent to a collector machine running two distinct processes of the

nfdump toolset [173].

In Table 6.2, we represent the percentage of identified sources out of the agreed 1000,

for successful and unsuccessful mitigation considering different sampling rates. The

exact number for which assistance has been requested is 1000 (the top 1000 hitters in

B1 dataset).

Experiment parameters

Successful Mitigation Unsuccessful Mitigation

Set Bloom Filter Set Bloom Filter

mAS – sampling 1/100 packets 0 sources 0 sources 88.86% 88.9%

vAS - sampling 1/100 packets 0 sources 0 sources 88.62% 88.74%

mAS - sampling 1/1000 packets 0 sources 0 sources 78.02% 78.1%

vAS - sampling 1/1000 packets 0 sources 0 sources 76.8% 76.88%

Table 6.2 Percentage of Malicious Sources Observed under varying Sampling Rates and Mitigation

Performance

As expected, none of the 1000 sources are observed when mitigation is performed

successfully, since the Bloom Filters only maintain the agreed upon malicious sources

which in this case do not reach the victim and have no False Negatives. In the

unsuccessful mitigation scenario, we expect most of the sources that were not mitigated

to be hashed in the vAS Bloom Filters. However, packet sampling limits our vAS

identification rates for non-mitigated malicious sources to 88.62% for a sampling rate of

1/100 and 76.8% for a sampling rate of 1/1000. In massive DDoS attacks though, we

expect the identification of flows at the vAS to be closer to 100%, since the probability

of malicious traffic being selected in the sampling process would be significantly

higher. Note that the small discrepancies between the vAS and mAS identification rates

are due to hardware limitations in our testbed (e.g. Netflow processing and cache size).

 112

Apart from the sampling process, Bloom Filters also affect the accuracy of our

identification process due to their inherent limitation of producing some false positives

[150]. Thus, a flow might be identified as present (not blocked) although it has been

successfully blocked. Note that false positive probabilities in Bloom Filters can be

reduced to acceptable levels with very modest space consumption. Thus, we selected

this option to fulfill our major concern, i.e. the verification of flows blocked by

collaborating ASes. Specifically, in our experiments for 1000 distinct sources, we opted

for a fairly small false positive of 1% that according to [169] is attainable with a Bloom

Filter of 1.17 Kbytes and 7 hash functions.

 113

7 Fine-Grained Traffic Classification and Attack Mitigation

based on Programmable Data Planes

Previous sections investigated mechanisms for anomaly detection mechanisms (sections

3 and 4) and mitigation schemas that assign source-based filtering rules to on-premise

devices (section 5) and external collaborators (section 6). Source-based approaches may

raise cumbersome issues primarily in terms of scalability (i.e. volume of source IPs) and

effectiveness (e.g. IP spoofing). In this section we build upon previous efforts and

implement a two-level network architecture focusing on fine-grained traffic

classification and customized attack mitigation for each vector based on programmable

data planes.

 Problem Statement 7.1

DDoS protection solutions often maintain statistics based partially (network flows) or

entirely on IP sources in order to detect and ultimately mitigate malicious traffic.

Source-based filtering requires significant memory resources which increase

proportionally to the number of IPs. Moreover, IPs can be spoofed, further affecting

source-based data collection and mitigation solutions [174]. Recent advances in data

plane programmability enable customized solutions tailored to various network

applications such as attack detection and mitigation.

To that end, this section introduces a two-level architecture based on P4 and XDP that

(i) continuously monitors the network for suspicious traffic and (ii) reactively deploys

softwarized appliances to further identify and filter malicious traffic. The first level uses

the P4 approach presented in section 4 to implement a coarse-grained detection

mechanism. The second level uses XDP to dynamically create portable appliances

(middleboxes) tailored to the detected anomaly i.e. attack vector. These appliances

collect monitoring data for classification purposes and ultimately filter packets with

malicious characteristics. Packet classification is conducted via a supervised Machine

Learning (ML) algorithm, i.e. Random Forest, appropriately trained with benign and

malicious traffic focusing on distinct packet fields (features). Though not strictly limited

to a particular attack vector, our approach emphasizes on reflection and amplification

attacks that typically employ connectionless protocols over UDP (e.g. DNS and NTP).

 114

 Background and Related Work 7.2

There are various mechanisms in the literature related to DDoS protection. In general,

these may (i) detect on-going attacks, (ii) identify the victim, (iii) segregate malicious

from benign traffic and (iv) ultimately mitigate the attack. Such mechanisms for

detection and mitigation were discussed in subsections 2.6.1 and 2.6.2 respectively.

Summarizing the most closely related efforts [13], [64], [101]–[106], traffic features are

extracted with OF signaling (stats requests and Packet-In messages) or via traditional

monitoring methods (e.g. sFlow). Subsequently different techniques are applied ranging

from statistical analysis, e.g. entropy, to supervised and unsupervised Machine Learning

algorithms.

In comparison to similar approaches, we employ a DDoS detection schema offloaded in

the data plane that provides rapid attack detection. Detected attacks are on-demand

redirected for finer-grained processing. This approach significantly reduces processing

and communication overhead of mechanisms used in similar approaches [13], [102]–

[104] such as sFlow, OpenFlow and NetFlow. Additionally, most of the reported efforts

in the literature employ metrics aggregated by IP addresses or network flows for traffic

classification [13], [102]–[104]. In contrast, we focus on various packet features to

classify traffic as malicious or benign in an IP agnostic fashion; the same packet fields

are used to block the malicious traffic, without relying on aggregated/numerous IP-

based filtering rules (ACL entries, OF rules) [13], [103]. All stages of our mechanisms

are implemented in programmable hardware (P4) and software (XDP) data planes,

realizing a dynamic, tunable yet high-performance detection and mitigation pipeline.

XDP-based middleboxes may be easily deployed in COTS hardware in various points

of a production network and scale horizontally to handle large amounts of traffic.

Additional background information on XDP is available in subsection 2.3.

 High-level Design 7.3

In Figure 7.1, we present a high-level overview of the proposed architecture for DDoS

Detection and Mitigation, applicable either in transit provider networks or

customer/edge network domains. This mechanism bundles together 4 separate

components that offer: (i) Attack Detection & Identification, (ii) Fine-Grained

monitoring, (iii) Traffic Classification based on Machine Learning (ML) algorithms and

 115

(iv) Anomaly Mitigation. These are coordinated via a DDoS Mitigation Orchestrator

component that plans the DDoS protection workflow.

Anomaly

Mitigation

Customer

Network

Customer

Network

Internet

Sources

Victim

Customer

Network

Traffic Classification

Monitoring

Data

Mitigation

Rules
DDoS Mitigation

Orchestrator

Fine-Grained

Monitoring

XDP-based

(i) (iii)

(ii)

(ii)

(iv)

Attack Detection &

Identification

(v)

Total Traffic

Control/Management

Interactions

Message Queue

Provider Network

Redirected Traffic

Benign Traffic

(Scrubbed)

Dropped Traffic

(iv)

Supervised Learning

Algorithms

Figure 7.1 High-Level Overview of the DDoS Detection & Mitigation schema

Benign and malicious traffic originating from various Internet Sources traverses through

or is destined to a network infrastructure equipped with programmable devices. Traffic

metrics are extracted and analyzed to detect ongoing DDoS attacks targeting internal or

downstream networks. Upon detecting an attack, appropriate alarms are generated for

the victim network. This service is implemented and offloaded entirely in the data plane

using P4-enabled devices. As an alternative, other solutions for DDoS detection can be

incorporated [13], [64], [103].

Based on these alarms, the DDoS Mitigation Orchestrator spawns ephemeral

components used for monitoring, classification and filtering. Subsequently, all traffic

related to the attack vector protocol, is destined to the victim network is mirrored to the

Fine-Grained Monitoring component for further analysis. Original traffic is redirected to

the Anomaly Mitigation component (e.g. for DNS attacks we mirror/redirect all DNS

traffic). The Fine-Grained Monitoring component employs high-performance

programmable mechanisms (i.e. XDP) to extract appropriate packet fields depending on

the attack vector used.

 116

Extracted monitoring data are subsequently relayed to the Traffic Classification

component, to be categorized as either benign or malicious. This component relies on

classification methods based on supervised Machine Learning algorithms. These have

been trained a priori both with attack traffic from commonly used attack vectors as well

as benign traffic. According to the resulting classification, packets classified as

malicious are used to create mitigation rules. These rules are in turn conveyed to the

Anomaly Mitigation component that: (i) drops malicious packets and (ii) returns benign

traffic back to the P4 device, in order to be forwarded appropriately. This component is

also based on XDP.

DDoS attacks are mitigated focusing on distinct packet feature combinations

(signatures) exhibited by offending traffic, ignoring altogether potentially spoofed

source IPs. As mentioned these features should be engineered and optimized depending

on the attack vector. Note that, the same features are used both for classification and

mitigation purposes.

Packet field extraction, traffic classification and mitigation rule generation are

performed continuously in distinct intervals (time windows). Selected intervals should

be small (e.g. 10 seconds) to enable rapid propagation of information and ultimately

prompt and accurate traffic scrubbing. After the corresponding components are

spawned, operations are conducted independently in an event-driven fashion, via a

Message Queue.

We opted to use COTS hardware (i.e. moderate-cost NICs) as programmable appliances

powered by the XDP framework without compromising on packet processing

performance. These can be instantiated on-demand and scaled according to traffic and

application requirements, seamlessly integrated within NFV environments. However,

the proposed schema consists of modular components that operate independently and

can be replaced by other solutions of equal functionality. Netflow and sFlow can be

used for traffic monitoring and packet analysis instead of P4 and XDP. Similarly, any

traffic classification method may be used instead of the Random Forest algorithm.

 Architectural Components and Implementation Details 7.4

Our Traffic Classification and Attack Mitigation schema consists of five distinct

modular components: (a) Attack Detection & Identification (ADI), (b) DDoS Mitigation

 117

Orchestrator (DMO), (c) Fine-Grained Monitoring (FGM), (d) Traffic Classification

(TC) and (e) Anomaly Mitigation (AM). The ADI component is largely based on the

work described in section 4. Some minor modifications were required to utilize P4

digests, i.e. alarms formatted as (dst_network, ip_protocol, src_port, dst_port), to

discern a specific attack vector; indicative examples for reflection and amplification

attacks may be found in [82].

The DMO coordinates the mitigation process for the identified anomaly, deploying

countermeasures for the attack, based on predefined network policies. In case the attack

traffic is not expected for the victim network e.g. Chargen traffic [82], [109], then this

type of traffic is unilaterally blocked. These rules can be defined in a per-subnet/domain

manner or even become part of standing policy. Alternatively, if benign traffic is

expected for the same protocol as the attack e.g. DNS, then this type of traffic requires

further analysis and refined scrubbing. To that end, DMO instantiates a sophisticated

DDoS protection schema, realized by the Fine-Grained Monitoring (FGM), Traffic

Classification (TC) and Anomaly Mitigation (AM) components. In turn, it notifies the

P4-enabled device to redirect traffic related to the attack vector for the victim network

to the FGM and AM components. Network traffic redirected (mirrored) to the FGM

component is subjected to further packet analysis, while traffic redirected to the AM

component is scrubbed and subsequently forwarded back to its destination.

Such workflows may be implemented by event-driven automation frameworks such as

Saltstack (see sections 2.1.3.2 and 5.6). However, this work focuses on programmable

traffic classification and attack mitigation delivered by FGM, TC and AM. Operations

and related interactions are illustrated in Figure 7.2 below.

7.4.1 Fine-Grained Monitoring

FGM (i) receives the mirrored traffic, (ii) extracts appropriate packet fields (i.e. packet

features) and (iii) conveys monitoring data to the TC component. Each FGM instance

consists of the Data Extractor and the Data Exporter modules. The former is a kernel

space XDP program that processes network packets to extract and store a set of

preselected field values. As mentioned the exact packet fields heavily rely on the attack

vector used; their number typically should be small for performance reasons but also to

concisely isolate malicious characteristics. The combination of packet features can be

represented by signature X = [x1, x2, …, xn], where xi represents packet field value i;

 118

each unique signature X corresponds to a row in the Monitoring Data table of Figure

7.2. In the context of FGM, every observed packet signature corresponds to a counter

stored within an appropriate BPF Map (i.e. hash table). The Data Exporter module is a

user space program that periodically retrieves the contents (i.e. signatures) of the BPF

map and compares them to the ones observed in the previous time window. Only new

signatures are conveyed to the TC component.

Supervised ML Unsupervised ML

Traffic Classification and Attack Mitigation

Data Exporter

Fine-Grained

Monitoring

Data Extractor

Attack Detection & Identification

Signature Classification

Data Handler

Traffic Classification

Packet

Field n

Rules Handler

Anomaly Mitigation

Packet Filter

Field 1 Field 2

BPF Map

Packets
Packets

Packet

Field nField 1 Field 2

BPF Map

Field 1 Field2 … Field n

Value 1

Value m1

Malicious Signatures

Value2 … Value n

Value m2 … Value mn

Redirected

Traffic

Redirected

Traffic (Mirrored)

Benign Traffic

(Scrubbed)

Dropped

Traffic

… … … …

Random Forest

Classifier
Unsupervised MLSupervised ML

Packets

Field 1 Field2 … Field n

Value 1

Value m1

Monitoring Data

Value2 … Value n

Value m2 … Value mn

… … … …

Figure 7.2 Fine-Grained Monitoring, Traffic Classification and Anomaly Mitigation interactions

Note that the FGM component could be implemented using any approach that allows

access to packet fields (e.g. sFlow). We opted for XDP that provides high-performance

monitoring capabilities and does not have potential limitations on the size of the

extracted packet payload (e.g. sFlow) and by extent the available packet fields.

7.4.2 Traffic Classification

TC (i) collects monitoring data, (ii) feeds them as input to classification (supervised

ML) methods and (iii) identifies malicious signatures. The Data Handler module

 119

collects the different signatures, X, relayed by the FGM component. In turn, the set of

signatures is used as input to the Signature Classification module which characterizes

them as benign or malicious. This module is preloaded with classification models,

trained offline with malicious and benign traffic, both related to the specific attack

vector (e.g. DNS attacks and benign DNS traffic). The trained models identify

signatures that correspond to malicious traffic (see Figure 7.2) and convey them to the

AM component via the Data Handler module. We experimented with the Random

Forest classification algorithm [175], but our schema is decoupled from the

classification method and can be extended with other algorithms. Moreover, for each

attack vector we may employ the most appropriate classification mechanism for

increased accuracy. Note that supervised classifiers rely on labeled training datasets.

Alternatively, unsupervised learning e.g. outlier detection approaches [176], may also

be employed when labeled datasets are not available.

Since packet features are used both to classify and filter packets, their selection requires

specific understanding related to the protocol used by an attack vector. In addition, an

arbitrary set of packet fields can be employed and gradually reduced using appropriate

methods. Indicatively, we used such a method in an attempt to rank the most important

features for classification of DNS packets. Note that the reduction of employed packet

fields may enhance the performance of the XDP-enabled middleboxes and the ML

models that reside in the TC component. Especially for the former, see related

experiments in subsection 7.6.5.

7.4.3 Anomaly Mitigation

AM consists of the Rule Handler and the Packet Filter modules. The former receives a

list of malicious signatures and installs them as filtering rules in a BPF map. The latter

is an XDP kernel space program similar to the Data Extractor module of the FGM

component. It parses and extracts the same set of predefined packet fields. These fields

are subsequently compared to the filtering rules within the BPF Map. If the combination

of packet fields (i.e. signature) of the received packet is contained in the BPF Map the

packet is dropped (XDP_DROP). Otherwise, the packet is transmitted back (XDP_TX).

This portion of traffic is considered benign (scrubbed) and thus normally forwarded to

the victim network. While FGM can be implemented with various monitoring solutions

 120

(e.g. sFlow), the AM component is tightly coupled with programmable data planes

solutions able to perform custom packet filtering based on any packet field (e.g. XDP).

 Analysis of DNS-based Reflection and Amplification Attacks 7.5

We selected as a case study DNS reflection and amplification attacks, one of the most

commonly used attack vectors for DDoS attacks. As in all similar attacks, malicious

hosts spoof the IP address of the selected victim and send DNS requests mostly to

vulnerable Open Resolvers or alternatively to authoritative servers. These requests are

appropriately crafted to generate large DNS responses in an attempt to overwhelm the

network capacity of the victims infrastructure. A common side effect of such attacks is

the generation of fragmented packets, since large DNS responses exceed the Maximum

Transmission Unit (MTU) of transit links. In our approach we consider that fragmented

packets destined to the victim network should be blocked during a detected anomaly.

Packet fields (features) from the IP and DNS headers that may provide insightful

information for classification are presented in Table 7.1 below; source IP addresses are

excluded entirely, thus providing an IP agnostic classification and filtering mechanism.

Packet Fields Short Description

IP_length packet size in bytes

qdcount number of entries in the question section

ancount number of Resource Records (RRs) in the answer section

nscount number of name server RRs in the authority records section

arcount number of RRs in the additional records section

qr specifies whether the message is a query (0) or a response (1)

qname requested domain name; variable length field terminated by the zero length byte

qtype type of the query (integer)

Table 7.1 Packet fields used in Traffic Classification of DNS volumetric attacks

The values of IP_length, qdcount, ancount, nscount, and arcount are numerical data and

may be fed directly into ML algorithms. In contrast qr, qtype and qname may be

considered as categorical variables, which can be handled via appropriate encoding

techniques below.

As mentioned, both the FGM (Data Extractor module) and the AM (Packet Filter

module) components need to parse and extract the aforementioned fields for each

packet. All of the selected fields, except for qname and qtype, are fixed-placed and of

 121

fixed-length and thus can be parsed by XDP with relative ease. Specifically, the kernel

space program receives each packet and extracts the IP_length from the IP header. It

then extracts from the DNS header the qdcount, ancount, nscount, arcount and the qr

values. Subsequently the qname value is required to be parsed; qname is a variable-

length field (depends on the domain name size) with a maximum value of 255

characters (i.e. bytes) [177]. Hence, our program loops up to 255 times and breaks upon

identifying the zero length byte (XDP supports only bounded loops). Note that qname is

required to be parsed as it is used (i) both for classification purposes and (ii) qtype value

extraction, that matches the two bytes following the qname.

After extraction, values are stored in or compared against the contents of BPF Maps.

The memory space for storing each fixed-length field of a packet is specified in [177]

(e.g. 2 bytes for qdcount). However, for storing the qname we would require 255 bytes,

which would heavily increase the memory requirements of our program. Thus we opted

to reduce it, using the jhash function implemented in Katran - Facebook’s Load

Balancer [2]. This implementation accepts up to 12 bytes as input (i.e. the first 12

characters of qname) and transforms it to a 4-byte integer. For the remainder of this

section qname, refers to the hashed value of the DNS name. In addition to memory

reduction, qname is encoded to a numerical value which can be directly fed in the

Signature Classification module. This transformation affects domain names that share

the first 12 characters or result in the same hash value (hash collision), as they are

considered the same. However, packets with the same qname are not necessarily treated

in the same manner by our schema, as additional features are employed both for

classification and filtering purposes.

 Evaluation 7.6

We evaluate our schema in an experimental testbed, employing real and synthetic

network traces as detailed in subsection 7.6.1 below. In short, our experiments attempt

to: (i) assess the detection accuracy of our mechanism, (ii) identify the most important

features for attack classification, (iii) evaluate our signature-based filtering against

source based mechanisms and (iv) demonstrate monitoring and filtering performance

capabilities/limitations. These may be found accordingly in subsections 7.6.2, 7.6.3,

7.6.4 and 7.6.5.

 122

7.6.1 Experimental Setup and Datasets

We used a typical experimental setup as described in section 4; the setup was used to

evaluate monitoring, classification as well as filtering capabilities. The FGM and AM

components were implemented within the XDP framework. These were deployed on a

physical machine (XDP-enabled node) equipped with a Netronome Agilio CX 2x10G

SmartNIC [26]. For packet generation purposes, we used a VM equipped with an Intel

X520 NIC 2x10G, able to generate packets at high rates using the PF_RING ZC

framework [53]. The TC component was implemented using the scikit-learn Python

library; it was deployed on a separate VM, with 12 vCPUs and 12GB RAM.

Real network traces were used to assess the detection accuracy of our schema, whereas

synthesized traffic was used to stress test packet processing capabilities (monitoring and

filtering). As benign traffic, we used traces: (i) from a 10G transit link between WIDE

and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G [108], (ii) from a

1G transit link between WIDE and an upstream provider, henceforth WIDE-F [108],

and (iii) from Thapar University Campus Network, henceforth TU Campus [178]. As

malicious traffic, we used seven of the Booters datasets (B1, … B7) [109]. These

datasets contain different DNS-based reflection and amplification attacks generated by

DDoS for hire services. All datasets apart from B4 and B5 contain qtype ANY DNS

responses, a commonly used method for DNS reflection and amplification attacks that

returns all RRs of all types for a given FQDN. In B4 and B5 attacks, the attackers

attempted to use type A requests. B4 contains multiple responses for a domain that

contains a very large number of IP addresses. B5 corresponds to a failed attack, where

type A requests were used, in an unsuccessful attempt to generate large responses.

7.6.2 Accuracy of Signature-based Classification

In this subsection we evaluate the detection accuracy of the Traffic Classification (TC)

component and specifically the Signature Classification module, using Random Forests

(RF) with 10 decision trees. The training and testing were conducted separately for each

of the following combinations:

 Each benign dataset (WIDE-G, WIDE-F, TU Campus)

 Each set Ai = {Booters - Bi}, where i = 1 … 7

e.g. A4 = {B1, B2, B3, B5, B6, B7}

 123

The total different combinations are 21. Each trained model is evaluated against a mix

of traffic (test dataset) based on the excluded attack dataset Bi and benign traffic from

the same origin (e.g. WIDE-G) but from a different time period. In Table 7.2, we

illustrate the True Negative Rate (TNR) of all combinations, which is the percentage of

benign traffic that was classified as benign and the True Positive Rate (TPR), which is

the percentage of attack traffic classified as malicious.

Train: A1

Test: B1

Train: A2

Test: B2

Train: A3

Test: B3

Train: A4

Test: B4

Train: A5

Test: B5

Train: A6

Test: B6

Train: A7

Test: B7

WIDE-F (TNR) 99.99% 99.99% 99.99% 99.99% 100.00% 99.99% 99.99%

WIDE-F (TPR) 99.94% 100.00% 100.00% 0.78% 0.14% 99.99% 99.99%

WIDE-G (TNR) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

WIDE-G (TPR) 100.00% 100.00% 100.00% 0.31% 0.10% 100.00% 99.99%

TUC (TNR) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

TUC (TPR) 99.99% 100.00% 100.00% 0.31% 0.05% 100.00% 99.99%

Table 7.2 True Negative and True Positive Rates using Booters combined with benign datasets

(WIDE-F, WIDE-G and TU Campus)

As illustrated in the table, RF is a consistent method to identify both benign (WIDE-F,

WIDE-G, TU Campus) and attack traffic (Booters) patterns, provided it is trained with

diverse attack data. However, RF is not able to recognize “unseen” (i.e. zero-day)

attacks. This is clearly illustrated when the model is trained with A4, which does not

include B4, while B4 is used as the test dataset. Recall that B4 contains large DNS

responses with multiple type A RR for a qname; it differs from the training data (A4),

which contain attack traces with type ANY DNS responses. Similarly, RF classified all

packets in B5 as benign since it corresponds to a failed attack exhibiting similarities to

benign traffic. Interestingly, during the experimentation process attack data were

discovered within the benign datasets (WIDE-F, WIDE-G). A closer manual analysis of

the original network traces revealed modest attack traffic, i.e. consecutive type ANY

queries from specific IP sources to the same destination IP; these data were manually

removed prior to the final experimentation process.

In summary, the proposed approach provides: (i) accurate detection of DNS volumetric

attacks and (ii) robust identification of benign traffic for different, heterogeneous

environments. We consider that the latter is attributed to the nature of DNS traffic,

exhibiting specific traffic characteristics. This is also supported in the experimental

results, which illustrate that RF classifiers achieve almost 100% TNR for traffic from

different network environments, using the same features. To further emphasize this

point, we also trained classifiers using data from one network environment (e.g. WIDE-

 124

F) and used it to identify benign traffic in another network environment (e.g. WIDE-G).

This was verified for all dataset combinations, thus demonstrating the generalization

capability of our classifiers in common DNS traffic patterns. We expect similar

behavior for other well-known protocols used for volumetric attacks e.g. NTP.

7.6.3 Feature Importance

As illustrated in the previous subsection, Random Forest (RF) classifiers yield accurate

results (both TPR and TNR ~100%) provided they are trained with diverse attack traffic

traces. To that end, we will showcase the most important features, as provided by the

RF. This approach provides valuable insight into the classification process which can be

used to eliminate inconsequential features. Ultimately, non-important features may be

removed from the monitoring and filtering mechanism to significantly reduce packet

processing time (XDP) and the required memory space (XDP and ML). The feature

importance is quantified as a value between [0,1], where the highest values identify the

most important features [175].

Figure 7.3 Feature Importance for DNS Traffic Classification provided by Random Forest

We trained 3 RF classifiers; each one uses all Booters datasets and one of the benign

datasets (WIDE-F, WIDE-G, TU Campus) used in the previous subsection. In Figure

7.3 above, we depict the importance of each feature for the different combinations of

datasets, as computed by the scikit-learn library. The reported values correspond to the

average feature importance for multiple training iterations:

The dominant feature in all cases is the type of the query (qtype) since most attacks in

the Booters dataset rely on DNS type ANY messages; as mentioned, this technique is

commonly used to generate large volumes of malicious traffic. The length of the IP

0 0.1 0.2 0.3 0.4 0.5

qdcount

qr

arcount

qname

nscount

ancount

IP length

qtype

Importance

Random Forest Feature Importance

TU Campus WIDE-F WIDE-G

 125

packet is the second most important feature; benign DNS traffic mainly consists of

small packets while reflection and amplification attacks use large DNS responses. The

latter are filled with a large number of (i) answers (ancount), (ii) authority (nscount) and

(iii) additional (arcount) RRs. These numbers significantly increase in attack cases.

Furthermore, attacks might use the same qname for generating large DNS packets, thus

the qname hash may also impact the resulting classification (B1, B2, B3: root-

servers.net, B6, B7: anonsc.com). Low importance of the qr is expected since

approximately half of the benign packets are DNS responses. Similarly, qdcount does

not improve classification since all DNS packets in our datasets have qdcount =1.

7.6.4 IP-based vs Signature-based filtering

Most DDoS mitigation mechanisms reported in the literature use flow-based

classification mechanisms, typically relying on IP sources to block attack traffic. In this

subsection, we compare our IP agnostic, signature-based mechanism against a filtering

approach that relies on IP sources. We extracted the total number of unique sources for

each Booter dataset. Similarly, we extracted the signatures that characterize all the

malicious traffic.

Figure 7.4 Comparison between Source IP and Signature-based filtering for Booters datasets

In Figure 7.4 above, we compare (in logarithmic scale) the number of the source IP

filtering rules to the signatures that would be required to fully block the seven DNS

1

10

100

1000

10000

B1 B2 B3 B4 B5 B6 B7

F
ilt

er
in

g

R

u
le

s
(l

o
g
ar

it
h
m

ic

sc

al
e)

Filtering Rules for Booters dataset

Source IP Rules DNS Signatures

 126

attacks of the Booters datasets. Our approach significantly reduces the filtering rules

required to mitigate the total attack traffic for every attack dataset. As illustrated, the

number of the required rules is reduced considerably (exact values range between 86%

and 99%). The benefits are twofold: (i) we do not rely on IP addresses that may be

spoofed or change during an attack and (ii) we significantly reduce the memory

consumed in the filtering process. Note that large memory utilization raises issues both

in hardware (expensive TCAMs) and especially for our case in software data planes

(lookup times are increased in large BPF maps).

7.6.5 Traffic Monitoring and Filtering Performance

In order to assess the monitoring and filtering performance of our schema, we isolated a

window of reported network traffic and replayed it at high-speed rates (1 – 6 Mpps).

Note that, a fully utilized 10G link typically corresponds to a packet rate of 2 Mpps. The

traffic used for stress testing contains 100,000 unique IP sources and 10,000 unique

combinations of packet fields (features). This proportion (10%) was selected based on

the experiments of the previous subsection; the number of the DNS signatures for

different datasets (i.e. Booters) is on average 10% of the number of source IPs.

Seven different XDP mechanisms were evaluated, four for monitoring and three for

mitigation purposes: (i) COUNT_PKT that counts the number of received packets

without extracting any fields; (ii) COUNT_IP counts packets per source-IP address; (iii)

FGM (Fine-Grained Monitoring) maintains counters per combinations of all DNS

features; (iv) FGM_LT, a streamlined version of FGM, that maintains counters per

combinations of the five dominant DNS features; (v) DROP_IP that extracts the source

IP address of each packet and compares against a blacklist of malicious sources

(100,000 sources); (vi) AM (Anomaly Mitigation) that extracts DNS packet fields and

uses a blacklist containing malicious signatures (all 10,000) to match and reject traffic;

(vii) AM_LT that mitigates traffic using the 5 most dominant DNS features.

FGM_LT and AM_LT resulted from our experiments with Random Forest classifiers

that demonstrated a clear distinction of DNS feature importance and led us to consider

five features (qtype, IP_length, ancount, nscount, qname) out of eight total (see Figure

7.3 above). Mechanism (i) depicts XDP overhead to maintain monitoring statistics.

Mechanism (ii) was implemented to compare our FGM (iii) and FGM_LT (iv) schemas

 127

to source-IP based anomaly detection alternatives. Accordingly, mechanism (v) was

implemented for comparison against AM (vi) and AM_LT (vii).

In Table 7.3, we illustrate the percentage of packets processed by XDP compared to the

total transmitted packets for various rates (in Million packets per second - Mpps). To

avoid the additional overhead of counting the dropped packets in XDP, the processing

performance of filtering mechanisms is calculated using the Netronome NIC counters

based on the following:

where is the number of packets received by the NIC and

 is the number of packets discarded without being handled by the

XDP program.

Mpps COUNT_PKT COUNT_IP FGM FGM_LT DROP_IP AM AM_LT

1 100.00% 100.00% 100% 100% 100.00% 100.00% 100.00%

2 100.00% 100.00% 100% 100% 100.00% 100.00% 100.00%

3 100.00% 99.99% 99.99% 100% 100.00% 100.00% 100.00%

4 100.00% 99.97% 99.96% 99.97% 99.98% 99.97% 99.98%

5 100.00% 91.29% 99.93% 99.95% 99.95% 99.93% 99.95%

6 100.00% 75.29% 85.73% 91.82% 85.56% 87.05% 92.86%

Table 7.3 Monitoring and Filtering Performance – Percentage of XDP Processed Packets

All monitoring approaches count almost all packets for values up to 4 Mpps. In higher

rates, as was expected simplistic COUNT_PACKETS outperforms all other approaches.

Although, FGM and FGM_LT process more packet fields than COUNT_IP, they have

significantly better performance at 5 and 6 Mpps; similarly, AM and AM_LT

outperform DROP_IP at 6 Mpps. This is attributed to the fact that FGM and FGM_LT

have a decreased number of entries in the BPF Maps (i.e. 10,000), thus performing

faster lookups. FGM_LT performs better than FGM as the former uses fewer packet

fields than the latter and therefore executes fewer processing operations. An important

observation is that the key size of a BPF Map does not impact the lookup time at all.

Indicatively, COUNT_IP uses 32-bit keys whereas FGM and FGM_LT employ 160 and

96 bits respectively, however they all exhibit comparable lookup times (less than 200

ns). All observations above apply also for filtering experiments that in general perform

better than their monitoring counterparts processing (i.e. dropping) packets for rates up

to 5 Mpps nearly at line rate. We believe this occurs since retrieving values from the

BPF Map is less intensive than updating them.

 128

In summary, our monitoring and filtering mechanisms are suitable for high-speed

modern network environments. Moreover, signature based approaches exhibit better or

similar performance than source-IP based alternatives. Lighter versions of our

mechanisms, FGM_LT and AM_LT, perform even better.

 129

8 Conclusions and Future Research

 Summary and Concluding Remarks 8.1

This dissertation investigated large-scale network attacks and specifically solutions

related to various aspects of DDoS protection such as network data collection, anomaly

detection and mitigation. Recent technological advances were combined to create

automated services for network security, applicable to modern SDN environments and

legacy network infrastructures.

Sections 3 and 4 addressed the collection and processing of monitoring data, primarily

for anomaly detection purposes. Section 3 focused on a monitoring schema for the

collection and processing of network data exported from dispersed vantage points (i.e.

devices) in an effort to enhance visibility into anomalous events. This approach is based

on the observation that different types of attacks are aggregated at central nodes, while

others exhibit localized characteristics better observed near the edge. The advent of

programmable network hardware and related softwarized appliances can be used to

further extend this concept in two ways: (i) middleboxes can be deployed on-demand

along a network path as dynamic VNFs for various purposes (e.g. monitoring and

anomaly detection) and more importantly (ii) processing tasks may be offloaded to

network devices in a distributed manner.

Thus, section 4 presented a DDoS detection schema implemented entirely in P4-

enabled devices. In-network computing is an appealing concept, but potential solutions

need to account for memory usage and processing limitations to keep up with

requirements for high speed packet forwarding. To that end, we opted for an online

algorithm that tracks typical DDoS metrics such as incoming flows and packet

symmetry ratio for specific network subnets of interest. As the mechanism was

implemented entirely in the data plane, no involvement of external controllers or

systems was necessary for detection purposes, hence enabling rapid control loops. This

approach was evaluated in a SmartNIC-based testbed yielding accurate detection

results. Furthermore, high packet-rate tests were conducted to validate the processing

performance of the mechanism P4-mechanism. The results were promising as the

mechanism conforms to the packet processing requirements of modern environments

despite being implemented on moderate-cost hardware. More powerful platforms (e.g.

 130

hardware switches, FPGAs) are expected to perform even better; however, developers

should always be wary of platform-specific limitations and intricacies despite P4 being

a universal device-agnostic language.

After the detection of an anomaly, appropriate countermeasures should be deployed.

Hence, sections 5 and 6 discuss related mechanisms and schemas for the mitigation of

distributed attacks. Specifically, sections 5 considers the assignment of generic

mitigation actions to counter multi-vector attacks in a heterogeneous network

environment, comprised of devices with different capabilities and control/management

APIs. The assignment was modeled as an integer problem that attempts to satisfy

operational requirements (reward maximization) subject to specific constraints

(hardware capacity). Assigned actions are translated to device-specific rules and

appropriately deployed. Intelligent distribution of rules utilizing defense resources from

various defense stages, yields noticeable improvements compared to rigid/standalone

mitigation mechanisms.

With regards to rule distribution, techniques for automated and homogeneous

deployment via abstraction layers were investigated, employing both SDN controllers

and general purpose automation frameworks. As a generic observation, typical SDN

solutions (e.g. OpenFlow, P4) and YANG models may be hindered by vendor-specific

issues/bugs related to implementation details and platform limitations. Abstraction

layers, be it multi-protocol controllers or generic automation frameworks, can bridge the

gap between vendors and operators enabling generic events to be translated to device-

specific instructions.

The sheer volume of present-day cyber threats comprised of multiple sources may

overwhelm on-premise resources and/or saturate important links. As network anomalies

are better pinpointed near the victim and more efficiently mitigated closer to their

sources, provider collaborations seem well-suited to mitigate massive DDoS attacks

early in the attack path. Thus, section 6 extended the approach presented in section 5,

investigating the establishment of trusted federations among adjacent and disjoint

network domains that collectively mitigate malicious traffic assisted by digital (smart)

contracts. Federated partners are able to (i) process all available mitigation offerings

pertaining to a particular attack incident, (ii) identify the optimal sets of flows that

should be mitigated by a collaborator, (iii) announce these sets by issuing Smart

Contracts to the appropriate mitigation collaborators and (iv) collaboratively deploy

 131

mitigation solutions. As mentioned above, careful selection of malicious flows (e.g.

heavy hitters) and subsequent assignment to reliable mitigators (i.e. reputation scores)

should outperform other approaches.

Note that, distributing filtering rules within a domain (sections 5) or among

collaborating domains (sections 6) alleviates the burden to an extent. However,

commonly used source-centric approaches for monitoring and filtering may raise issues

in terms of scalability (i.e. volume of source IPs) and effectiveness (e.g. spoofed IPs).

Administrators (or even tenants) within network domains may profit from customized

solutions for data collection and subsequently anomaly detection/mitigation tailored to

specific anomalies and attacks.

These considerations were addressed in section 7 via a two-level schema for Anomaly

Detection and Mitigation. Specifically, the proposed approach incorporates the P4-

based DDoS detection schema presented in section 4 and further adopts XDP to create

performant middleboxes, based on the identified attack. These middleboxes operate

either (i) as programmable Deep Packet Inspectors (DPI), extracting monitoring data, or

(ii) as flexible firewalls that block malicious traffic, using Machine Learning methods to

create appropriate malicious signatures. While our initial proof-of-concept considers

DNS volumetric attacks, this schema can extend to other attacks as well.

An important differentiation with previous efforts is that we do not rely on source IPs

but use an IP-agnostic approach (i.e. packet signatures) to classify and ultimately

mitigate attacks. This approach was based on the widely observed fact that volumetric

DDoS attacks especially UDP-based may be characterized by a modest number of

salient characteristics, thus enabling efficient Machine Learning algorithms. Note that

we did not consider temporal correlations since they may hinder timely anomaly

detection and mitigation. As a proof-of-concept, classification was based on the

Random Forests supervised Machine Learning algorithm, trained with DNS datasets

from past attacks and benign traffic from production networks. The experimental results

were promising and drew interesting conclusions in terms of (i) accuracy, (ii)

generalization capabilities of the detection mechanism and (iii) reduction of total

number of filtering rules compared to source-based mechanisms. Moreover, XDP

middleboxes also achieved high packet processing rates consistent with emerging

network traffic profiles.

 132

 Areas for Future Research 8.2

This dissertation investigated different aspects of DDoS protection, each one associated

with specific challenges and characteristics. Potential extensions may include an in-

depth study of different detection/classification techniques for common attack vectors.

Volumetric DNS attacks are summarized accurately by Random Forests, however each

vector might require specific handling and in-depth tuning of detection and

classification mechanisms, be it machine learning algorithms, time series analysis or

statistical models. In a closely related topic, researchers usually have limited or no

access to real network data, benign or malicious, primarily due to privacy concerns.

Apart from privacy-aware solutions (e.g. data anonymization), these concerns may be

also circumvented by utilizing statistical traffic attributes that can be used to artificially

synthesize traces. Related efforts may leverage generative models (e.g. Generative

Adversarial Networks [179]) to create synthetic yet realistic data, potentially used to

further enhance network security schemas.

Another area for future research are data mining and processing techniques to generate

appropriate signatures based on offline data from past incidents. These signatures will

describe characteristics of attack vectors and can be further shared or even

collaboratively created within trusted federations and defense coalitions [180].

Collaborative efforts may benefit from Federated Learning techniques that enable

multiple entities to build a common machine learning model without sharing potentially

sensitive data thus appeasing related concerns.

A common knowledge-base of malicious signatures per attack vector can embolden

mitigation mechanisms or even enable preemptive filtering. As an example frequently

abused domains could be used to filter malicious DNS responses used in volumetric

attacks. After generation, these signatures should be examined for correlations and

aggregated as much as possible. Thus, another area of potential interest are related

summarization techniques that minimize signatures to preserve memory and computing

resources. As exhibited, XDP-based processing might be delayed by memory lookups, a

fact that may be correct for other systems as well.

Note that signature based mechanisms are ideal for DDoS mitigation but specific

attacks might require additional effort (i.e. state information); a typical example are

TCP SYN attacks. Though not impossible to create stateless signature profiles for

 133

malicious TCP traffic, typically some state information needs to be maintained. DDoS

detection and mitigation services, stateless or stateful, can be offloaded within

programmable middleboxes, protecting valuable resources in firewalls, routers and

hosts. To that end, as another extension we envisage a multi-tier architecture for cyber

defense that (i) rapidly identifies and localizes an anomaly, correlating data from

multiple devices, (ii) on-demand inspects malicious traffic to identify the attack vector

and the victim and (iii) creates filters tailored to the specific attack vector, preferably

not reliant on easily spoofed source IPs. This approach can be integrated on top of

interdomain federations powered by Distributed Ledger Technologies or within NFV

environments. Federated members and users can provide XDP programs to be deployed

across network paths or slices for monitoring and filtering purposes.

 134

9 Publications

 M. Dimolianis, A. Pavlidis, V. Maglaris, "A Network Traffic Classification and Attack

Mitigation Schema based on Programmable Data Planes", IEEE Transactions on

Network and Service Management, 2020 (under review)

 A. Pavlidis, M. Dimolianis, K. Giotis, L. Anagnostou, N. Kostopoulos, T. Tsigkritis, I.

Kotinas, D. Kalogeras, V. Maglaris "Orchestrating DDoS Mitigation via Blockchain-

based Network Provider Collaborations", The Knowledge Engineering Review, 35, e16,

2020. doi:10.1017/S0269888920000259

 M. Dimolianis, A. Pavlidis, V. Maglaris, "A Multi-Feature DDoS Detection Schema on

P4 Hardware", in Proc. of the 23rd IEEE Conference on Innovation in Clouds, Internet

and Networks and Workshops (ICIN), 2020

 N. Kostopoulos, A. Pavlidis, M. Dimolianis, D. Kalogeras, V. Maglaris, "A Privacy-

Preserving Schema for the Detection and Collaborative Mitigation of DNS Water

Torture Attacks in Cloud Infrastructures", in Proc. of the 8th IEEE International

Conference on Cloud Networking (CloudNet), 2019

 A. Pavlidis, M. Dimolianis, D. Kalogeras, V. Maglaris, "Automated Distribution of

Access Control Rules in Defense Layers of an Enterprise Network", in Proc. of the 16th

IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019

 M. Dimolianis, A. Pavlidis, D. Kalogeras, V. Maglaris, "Mitigation of Multi-vector

Network Attacks via Orchestration of Distributed Rule Placement", in Proc. of the 16th

IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019

 K. Giotis, A. Pavlidis, L. Anagnostou, M. Dimolianis, T. Tsigkritis, D. Kalogeras, N.

Kostopoulos, I. Kotinas, V. Maglaris, "Blockchain-based Federation of Network

Providers for Collaborative DDoS Mitigation", 3rd Symposium on Distributed Ledger

Technology, 2018

 A. Pavlidis, G. Sotiropoulos, K. Giotis, D. Kalogeras and V. Maglaris, "NFV-compliant

Traffic Monitoring and Anomaly Detection based on Dispersed Vantage Points in

Shared Network Infrastructures," in Proc. of the 4th IEEE Conference on Network

Softwarization (NetSoft), 2018

 P. L. Ventre, J. Ortiz, A. Mendiola, C. Fernández, A. Pavlidis, P. Sharma, S.

Buscaglione, K.Stamos, A. Sevasti, D. Whittaker, "Deploying SDN in GÉANT

production network", in Proc. of the 3rd IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), 2017

 135

10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα

Ελληνικά

Η αλματώδης αύξηση της ταχύτητας ευρυζωνικών συνδέσεων και του αριθμού

διασυνδεδεμένων συσκευών έχουν προκαλέσει ριζικές αλλαγές στη λειτουργία

υπολογιστικών και δικτυακών υποδομών. Σχετικές τεχνολογίες που χρησιμοποιούνται

αφορούν την αυτοματοποίηση εργασιών μέσω λογισμικού, τη δυναμική προσαρμογή

στις εκάστοτε συνθήκες και εν γένει μηχανισμούς για τον ριζικό προγραμματισμό

συσκευών και συστημάτων. Επιπρόσθετα, βασικό μέλημα είναι η συνεχής συλλογή και

επεξεργασία δεδομένων με στόχο την εξαγωγή γνώσης (analytics) καθώς και την

προστασία από κυβερνοεπιθέσεις.

Η έγκαιρη και αποτελεσματική ανίχνευση και αντιμετώπιση επιθέσεων είναι πεδίο

ζωτικής σημασίας για την ομαλή λειτουργία των δικτύων. Ειδικότερα, σύγχρονες

πρακτικές χρησιμοποιούν τις αρχιτεκτονικές Δικτύων Οριζόμενων από Λογισμικό

(Software-Defined Networking - SDN) και Εικονικοποίησης Δικτυακών Λειτουργιών

(Network Function Virtualization - NFV). Οι αρχιτεκτονικές αυτές παρέχουν τη

δυνατότητα υλοποίησης ευέλικτων και κλιμακώσιμων μηχανισμών για την κατ’

απαίτηση ανίχνευση και αντιμετώπιση μαζικών ετερογενών επιθέσεων.

Η άνθηση των δικτύων SDN ταυτίστηκε με το πρωτόκολλο OpenFlow. Κύριο

χαρακτηριστικό τους είναι η διάκριση του επίπεδο ελέγχου (control plane) από το

επίπεδο προώθησης δεδομένων (data/forwarding plane). Ως εξέλιξη των δικτύων SDN

και του OpenFlow, η διεθνής ερευνητική κοινότητα προτείνει την ανάπτυξη

προγραμματιζόμενων συσκευών επεξεργασίας και προώθησης πακέτων (Programmable

Data Planes) με κύριο εκφραστή τη γλώσσα P4 (Programming Protocol-Independent

Packet Processors).

Παράλληλα με τη γλώσσα P4, ιδιαίτερη άνθηση έχουν και άλλες σχετικές τεχνολογίες

που προσφέρουν ευέλικτη προώθηση και επεξεργασία πακέτων σε υψηλές ταχύτητες.

Αυτές οι λύσεις βασίζονται συνήθως στο λειτουργικό GNU/Linux και μεταφέρουν τα

πακέτα απευθείας από την κάρτα δικτύου στην εφαρμογή, παρακάμπτοντας τις

λειτουργίες του πυρήνα (kernel-bypass). Ενδεικτικά, αναφέρουμε το Data Plane

Development Kit (DPDK) και το PF_RING. Μια εναλλακτική λύση είναι το XDP

(eXpress Data Path), το οποίο επιτρέπει την εκτέλεση «προγραμμάτων» επεξεργασίας

εντός του kernel, αλλά σε χαμηλό επίπεδο (οδηγούς δικτυακών καρτών). Το XDP ήδη

 136

χρησιμοποιείται σε εφαρμογές Εξισορρόπησης Φόρτου, Συστημάτων

Ανίχνευσης/Αποτροπής Εισβολής, και Απόρριψης Κακόβουλης Κίνησης. Αυτές οι

λύσεις αποκτούν ακόμα μεγαλύτερη σημασία υπό το πρίσμα του NFV, καθώς οι

δικτυακές λειτουργίες βασίζονταν παραδοσιακά σε ειδικό εξοπλισμό υψηλού κόστους.

Πλέον είναι ιδιαίτερα συνηθισμένο, οικονομικά προσιτές συσκευές γενικού σκοπού

(Commercial off-the-shelf - COTS Hardware) να υποστηρίζουν διάφορες τεχνικές για

γρήγορη προώθηση και επεξεργασία πακέτων.

Οι σύγχρονες τεχνολογίες έχουν δημιουργήσει νέες δυνατότητες για την

παρακολούθηση, ανίχνευση και αντιμετώπιση επιθέσεων οι οποίες εξαπλώνονται

ραγδαία κυρίως λόγω του πλήθους των διασυνδεδεμένων συσκευών και των κενών

ασφαλείας που παρουσιάζουν. Χαρακτηριστικά παραδείγματα του παρελθόντος

αφορούν δυσθεώρητες σε κλίμακα επιθέσεις άνω του 1 Terabit/δευτερόλεπτο (Github,

Dyn). Ανεξαρτήτως αν πρόκειται για μεμονωμένες ή μαζικές ενέργειες, οι

κυβερνοεπιθέσεις συνήθως αποσκοπούν σε: απώλεια δεδομένων, μόλυνση συσκευών

για μελλοντική συμμετοχή τους σε επιθέσεις ή/και στην παρακώλυση παρεχόμενων

υπηρεσιών (Κατανεμημένες Επιθέσεις Άρνησης Παροχής Υπηρεσίας - Distributed

Denial of Service Attacks / DDoS). Ειδικότερα οι επιθέσεις DDoS προσπαθούν να

πλημμυρίσουν δικτυακούς πόρους (π.χ. ζεύξεις) ή/και να κατασπαταλήσουν

υπολογιστικούς πόρους σε συσκευές (π.χ. δρομολογητές, εξυπηρετητές) μέσω

κατάλληλα κατασκευασμένων μηνυμάτων. Εν γένει, οι επιθέσεις DDoS ταξινομούνται

σε (1) όγκου (volumetric), (2) πρωτοκόλλου (protocol) και (3) εφαρμογής (application)

οι οποίες αντίστοιχα προσπαθούν να πλήξουν ζεύξεις, υπολογιστικούς πόρους και

εφαρμογές.

Αποκορύφωμα των σύγχρονων επιθέσεων είναι οι ταυτόχρονες ετερογενείς επιθέσεις

(multi-vector) που συνδυάζουν διάφορες επιθέσεις δημιουργώντας (1) δυσκολία στην

ανίχνευση επιμέρους συνιστωσών ή/και (2) δημιουργώντας μεγάλο όγκο κίνησης.

Ιδιαίτερο ενδιαφέρον παρουσιάζει και η άνθηση πλατφορμών (Booters & Stressers) που

πραγματοποιούν επιθέσεις κατ’ απαίτηση έναντι σημαντικά μικρής χρηματικής

αμοιβής.

Σημαντικές προκλήσεις και πιθανά προβλήματα των μηχανισμών άμυνας είναι:

 Αποδοτική εξαγωγή και επεξεργασία δεδομένων κίνησης: Οι μηχανισμοί

ανίχνευσης επιθέσεων και δικτυακών ανωμαλιών συνήθως βασίζονται σε

 137

δείγματα πακέτων και ομαδοποιημένες δικτυακές ροές (flow records). Αυτά

εξάγονται από τις δικτυακές συσκευές και αποστέλλονται σε ξεχωριστά

συστήματα επεξεργασίας. Οι σχετικοί αλγόριθμοι καθώς και τα υποκείμενα

συστήματα πρέπει να μπορούν να ανταπεξέλθουν στην πυκνή και συνεχή ροή

δεδομένων δικτυακής κίνησης, χωρίς να υστερούν σε ευκρίνεια και ακρίβεια.

 Έξυπνη χρήση αμυντικών πόρων για αντιμετώπιση επιθέσεων: Η

αποτελεσματική αντιμετώπιση ετερογενών επιθέσεων απαιτεί κατάλληλη

αξιοποίηση όλων των διαθέσιμων πόρων (π.χ. δρομολογητές, μεταγωγείς SDN

και εξυπηρετητές). Ωστόσο οι επιθέσεις υπερβαίνουν της δυνατότητες του κάθε

δικτύου προκαλώντας προβλήματα σε ζεύξεις και ενδιάμεσα συστήματα. Η πιο

συνηθισμένη λύση είναι η ανακατεύθυνση της κίνησης στο «κενό»

(Blackholing) μέσω διάδοσης κατάλληλων ανακοινώσεων BGP. Ωστόσο, η

προσέγγιση αυτή οδηγεί στην απόρριψη και της καλόβουλης κίνησης που

συνήθως είναι ο στόχος της επίθεσης. Εναλλακτικά, συνεργαζόμενα δίκτυα

μπορούν να αιτηθούν και να λάβουν βοήθεια για την συλλογική αντιμετώπιση

της επίθεσης. Βασικά προβλήματα της πιθανής συνεργασίας αφορούν την

έλλειψη κατάλληλων κινήτρων και μηχανισμών επικοινωνίας μεταξύ εταίρων.

 Συνήθεις περιορισμοί αμυντικών μηχανισμών: Οι υπάρχοντες μηχανισμοί

ανίχνευσης και αντιμετώπισης κυβερνοεπιθέσεων βασίζονται είτε σε κλειστές

λύσεις προσφερόμενες ως φυσική/εικονική συσκευή είτε σε υποδομές/παρόχους

υπηρεσιών αντιμετώπισης επιθέσεων (DDoS Protection Service Providers).

Στην πρώτη περίπτωση χρησιμοποιείται εξειδικευμένος εξοπλισμός με τις

αντίστοιχες εμπορικές άδειες. Ταυτόχρονα, οι δυνατότητες προγραμματισμού

για αυτές τις συσκευές είναι παραδοσιακά περιορισμένες και εξαρτώμενες από

τον εκάστοτε κατασκευαστή. Συνεπώς δημιουργούνται μονολιθικές λύσεις,

υψηλού κόστους και περιορισμένης ευελιξίας, με τελικό αποτέλεσμα την

προσκόλληση σε συγκεκριμένου τύπου εξοπλισμό και κατασκευαστή (vendor

lock-in). Οι πάροχοι υπηρεσιών από την άλλη πλευρά ανακατευθύνουν όλη την

κίνηση προς το θύμα στην υποδομή τους, όπου εντοπίζεται και φιλτράρεται η

επίθεση ενώ η καλόβουλη κίνηση επιστρέφει στο επιχειρησιακό δίκτυο. Οι

μηχανισμοί αυτοί συνήθως εισαγάγουν καθυστέρηση προς τον τελικό αποδέκτη

και επίσης εγείρουν προβληματισμούς ως προς την ιδιωτικότητα και το

απόρρητο των επικοινωνιών.

 138

Η παρούσα διδακτορική διατριβή μελετά μεθόδους συλλογής δεδομένων, ανίχνευσης

και (συνεργατικής) αντιμετώπισης κυβερνοεπιθέσεων με έμφαση σε κατανεμημένες

επιθέσεις άρνησης παροχής υπηρεσίας. Επιπρόσθετα, διερευνώνται τεχνολογίες για τον

προγραμματισμό του επιπέδου δεδομένων των δικτυακών συσκευών καθώς και τον

έλεγχο τους μέσω λογισμικού, με στόχο την δημιουργία αυτοματοποιημένων

υπηρεσιών ασφάλειας και συλλογής δεδομένων.

Η κύρια συνεισφορά της εργασίας μπορεί να χωριστεί σε τέσσερις διακριτούς αλλά όχι

ανεξάρτητους άξονες, οι οποίοι αντιστοιχούν στα κεφάλαια 3, 4, 5, 6 και 7. Συνοπτικά:

 Τα κεφάλαια 3, 4 ασχολούνται με μηχανισμούς συλλογής και επεξεργασίας

δεδομένων κυρίως για ανίχνευση δικτυακών ανωμαλιών και επιθέσεων. Αρχικά

προσεγγίζεται το θέμα μέσω συνηθισμένων μηχανισμών συλλογής και

επεξεργασίας δεδομένων. Στην συνέχεια μελετώνται δυνατότητες των

δικτυακών συσκευών για κατανεμημένη επεξεργασία και ανίχνευση επιθέσεων.

 Το κεφάλαιο 5 εστιάζει στην αυτοματοποιημένη αντιμετώπιση

κυβερνοεπιθέσεων με βάση διαχειριστικές πολιτικές και τους εκάστοτε

περιορισμούς (υλικό/λογισμικό) των συσκευών. Επίσης διερευνώνται τεχνικές

για την μετάφραση αφαιρετικών οδηγιών σε ειδικούς κανόνες καθώς και την

αυτοματοποιημένη διανομή τους μέσω κατάλληλων διεπαφών και

πρωτοκόλλων.

 Το κεφάλαιο 6 επεκτείνει την προσέγγιση του προηγούμενου κεφαλαίου σε

πολλαπλές διαχειριστικές περιοχές υπό την μορφή ενός ομόσπονδου

περιβάλλοντος για παρόχους δικτυακών υπηρεσιών. Σημαντικό πλεονέκτημα

είναι η προστασία των ζεύξεων καθώς και των σχετικών αμυντικών μηχανισμών.

 Το κεφάλαιο 7 πηγάζει από ζητήματα που προέκυψαν σε προηγούμενα

κεφάλαια και συνδυάζει διαφορετικές τεχνολογίες σε έναν ολοκληρωμένο και

ευέλικτο μηχανισμό δυο επιπέδων για την αποδοτική ανίχνευση και

αντιμετώπιση επιθέσεων.

Αναλύοντας με μεγαλύτερη λεπτομέρεια, το κεφάλαιο 3 εστιάζει σε υπηρεσίες

συλλογής και επεξεργασίας δεδομένων δικτυακής κίνησης, οι οποίες προσφέρονται σε

χρήστες (ενοίκους και διαχειριστές) κοινών δικτυακών υποδομών. Κάθε δικτυακή

συσκευή αποτελεί εν δυνάμει ένα διακριτό σημείο εποπτείας (vantage point) με

δυνατότητα παρατήρησης και εξαγωγής δεδομένων διαφορετικής ευκρίνειας. Η

ανάλυση των δεδομένων, είτε αυτά αφορούν συγκεκριμένους χρήστες είτε τους

 139

διαχειριστές της υποδομής, μπορεί να ενισχύσει την ικανότητα ανίχνευσης κεντρικών ή

τοπικά εστιασμένων ανωμαλιών και επιθέσεων.

Αυτό γίνεται εμφανέστερο αν αναλογιστεί κανείς τη διαστρωμάτωση που

παρουσιάζουν τόσο παραδοσιακά επιχειρησιακά δίκτυα όσο και μοντέρνες υποδομές

υπολογιστικών νεφών. Αναλόγως τον ρόλο της, η κάθε συσκευή έχει διαφορετική

οπτική ως προς την δικτυακή κίνηση. Αυτό ενισχύεται με τις συνήθεις πρακτικές

δειγματοληψίας της κίνησης κατά την συλλογή δεδομένων (δείγματα πακέτων και

ομαδοποιημένες ροές) που εφαρμόζονται συνήθως με στόχο την αποφόρτιση των

κεντρικά τοποθετημένων δικτυακών συσκευών.

Γενικώς, οι τεχνολογίες για την επεξεργασία μεγάλου όγκου δεδομένων όπως ουρές

μηνυμάτων (π.χ. Apache Kafka) αλλά και κατάλληλες αποθηκευτικές δομές

χρησιμοποιούνται εκτενώς σε παραγωγικά δίκτυα. Ωστόσο, οι σχετικές λύσεις

βασίζονται εγγενώς σε παραδοσιακά πρωτόκολλα και τεχνικές για την αποστολή

δεδομένων στα αντίστοιχα συστήματα. Πιθανοί προβληματισμοί είναι η μειωμένη

ακρίβεια λόγω δειγματοληψίας, οι απαιτούμενοι πόροι για την επεξεργασία μεγάλου

όγκου δεδομένων και οι ανάγκες για συνεχή πληροφορία (π.χ. συχνά ερωτήματα σε

αποθηκευτικές δομές). Εναλλακτική προσέγγιση όσον αφορά τις επιθέσεις, μπορούν να

αποτελέσουν μηχανισμοί για τον προγραμματισμό των δικτυακών συσκευών που θα

μειώσουν τον χρόνο ανίχνευσης και κατ’ επέκταση αντίδρασης.

Σε αυτή τη λογική, παρουσιάζεται στο κεφάλαιο 4 ένας μηχανισμός για την ανίχνευση

επιθέσεων σε προγραμματιζόμενες δικτυακές συσκευές. Ο προτεινόμενος μηχανισμός

διενεργεί απλούς αλλά αποτελεσματικούς στατιστικούς υπολογισμούς με χρήση της

γλώσσας P4 για την ανίχνευση επιθέσεων DDoS. Σημαντικά πλεονεκτήματα είναι η

άμεση ανίχνευση επιθέσεων χωρίς την παρέμβαση εξωτερικών συστημάτων και η

άμεση αποστολή ειδοποιήσεων για περεταίρω ενέργειες. Συνοπτικά, ο μηχανισμός: (1)

παρακολουθεί την κίνηση και διατηρεί μετρικές ομαδοποιημένες σε διαφορετικά

επίπεδα ευκρίνειας (π.χ. ανά προστατευόμενο υποδίκτυο) – οι μετρικές αφορούν

μοναδικές ροές και ασυμμετρία κίνησης, (2) συγκρίνει τις μετρικές αυτές με τιμές

αναφοράς (κατώφλια) και (3) πυροδοτεί μηνύματα κινδύνου σε περίπτωση που όλες οι

μετρικές παραβιάσουν τα αντίστοιχα κατώφλια. Αυτή η διαδικασία σχετίζεται άμεσα με

την προσέγγιση του κεφαλαίου 3, καθώς επιτρέπει την αυτόνομη εκτέλεση αλγορίθμων

σε διάφορες συσκευές – σημεία εποπτείας – με στόχο την κατανεμημένη και συλλογική

ανίχνευση της επίθεσης.

 140

Ο μηχανισμός αξιολογήθηκε σε υλικό (κάρτες Netronome SmartNIC) ως προς την

ακρίβεια και την ικανότητα προώθησης πακέτων. Συγκεκριμένα, αφενός συγκρίνουμε

την ακρίβεια του μηχανισμού για διαφορετικά μεγέθη επιθέσεων καθώς και για δυο

διαφορετικούς τρόπους λειτουργίας – με ή χωρίς χρήση συμμετρίας κίνησης σαν

μετρική. Τα αποτελέσματα δείχνουν πως ο μηχανισμός παρουσιάζει βελτίωση ως προς

την ακρίβεια με την χρήση της συμμετρίας, ιδίως για τυπικές και μεγάλες επιθέσεις.

Αφετέρου, παρουσιάζεται η επίπτωση που έχει η χρήση της εκάστοτε μετρικής στην

ικανότητα του μηχανισμού να προωθεί και να μετράει πακέτα. Παρατηρούμε πως η

διαδικασία συλλογής δεδομένων υστερεί της προώθησης, δηλαδή οι μετρήσεις

παρουσιάζουν χαμηλότερες τιμές από τις πραγματικές. Αυτό οφείλεται σε θέματα

υλοποίησης των «καταχωρητών» (registers) του P4 στην συγκεκριμένη συσκευή και

ειδικότερα, στον βαθμό που μπορέσαμε να το διασταυρώσουμε, στην ταυτόχρονη

προσπέλαση θέσεων μνήμης από παράλληλες διεργασίες. Αυτό οδηγεί και σε μια

γενικότερη παρατήρηση πως η υποκείμενη υλοποίηση παίζει σημαντικό ρόλο και

εξαρτάται σχεδόν αποκλειστικά από τον κατασκευαστή παρότι το P4 αποτελεί μια

ενοποιημένη γλώσσα προγραμματισμού ανεξαρτήτως υλικού («στόχου» – target).

Συνολικά, αξιοσημείωτο είναι πως ακόμα και με κάρτες σχετικά μικρού κόστους ήταν

εφικτό να υλοποιήσουμε έναν μηχανισμό που να μπορεί να ανταποκριθεί σε τυπικές

ταχύτητες μιας πλήρως χρησιμοποιούμενης γραμμής (2 εκατομμύρια

πακέτα/δευτερόλεπτο στα 10 Gigabit). Είναι αναμενόμενο συσκευές με μεγαλύτερες

δυνατότητες π.χ. μεταγωγείς και FPGAs, να μπορούν να ανταπεξέλθουν σε ακόμα

υψηλότερες ταχύτητες.

Όπως έχει αναφερθεί, η ανίχνευση είναι ένα από τα πρώτα στάδια των αμυντικών

μηχανισμών. Στην συνέχεια, η διατριβή ασχολείται με τεχνικές για την αποτελεσματική

αντιμετώπιση επιθέσεων. Στο κεφάλαιο 5, παρουσιάζεται ένας μηχανισμός για την

αποκοπή ετερογενών επιθέσεων μεγάλης κλίμακας (multi-vector attacks). Ο στόχος

είναι η ευέλικτη και συνολικά αποδοτικότερη αντιμετώπιση της κακόβουλης κίνησης

αναθέτοντας κανόνες σε διάφορες συσκευές κατά μήκος του ίχνους της επίθεσης. Η

ανάθεση μοντελοποιείται σαν ένα συνδυαστικό πρόβλημα βελτιστοποίησης ακέραιου

προγραμματισμού. Ειδικότερα, αντικείμενα (γενικοί κανόνες) ανατίθενται σε κάδους

(συσκευές ομαδοποιημένες σε στάδια άμυνας) με στόχο την βελτιστοποίηση κάποιας

συνάρτησης κέρδους υπό συγκεκριμένους περιορισμούς. Το κέρδος προκύπτει άμεσα

από διαχειριστικές πολιτικές που υποδεικνύουν την αποκοπή συγκεκριμένων επιθέσεων

 141

και των αντίστοιχων κακόβουλων ροών, σε κάποιο στάδιο άμυνας. Οι περιορισμοί

επηρεάζονται άμεσα από την χωρητικότητα των δικτυακών συσκευών π.χ. πόσες

εγγραφές υποστηρίζει το hardware. Γενικώς, οι αλγόριθμοι ακέραιου προγραμματισμού

χαρακτηρίζονται από αυξημένη υπολογιστική πολυπλοκότητα. Παρόλα αυτά στην

περίπτωση μας το πρόβλημα προσεγγίζεται με τεχνικές συμπύκνωσης των αντικειμένων

προς ανάθεση (π.χ. μαζική ανάθεση ροών του ίδιου τύπου) για την μείωση της εισόδου

και την εύρεση λύσης σε λογικά χρονικά πλαίσια.

Βασικό κομμάτι της προτεινόμενης αρχιτεκτονικής είναι επίσης η μετάφραση και

τελική διανομή των κανόνων στις συσκευές. Για αυτό το σκοπό εξετάζονται τεχνικές

μέσω ελεγκτών SDN αλλά και σχετικών μηχανισμών για δικτυακή αυτοματοποίηση.

Αρχικά χρησιμοποιήθηκε ο ελεγκτής SDN Ryu, ο οποίος υποστηρίζει διάφορα

πρωτόκολλα διαχείρισης όπως BGP και OpenFlow. Ως εναλλακτική διερευνήθηκε το

Salt, μια δημοφιλής πλατφόρμα σχεδιασμένη για ταυτόχρονη διαχείριση πολλαπλών

συσκευών μέσω κατάλληλων διεπαφών, πρωτοκόλλων αλλά και εγκατεστημένου

λογισμικού εντός των συσκευών (σπανίως). Τέτοιες λύσεις παρουσιάζουν ιδιαίτερο

ενδιαφέρον καθώς υλοποιούν ένα επίπεδο αφαίρεσης προς τις εφαρμογές ενώ

ταυτόχρονα προσαρμόζονται στις απαιτήσεις και ιδιαιτερότητες των εκάστοτε

δικτυακών συσκευών. Εν γένει, αποτελούν τον συνδετικό κρίκο ανάμεσα σε

διαχειριστές δικτύων και κατασκευαστές συσκευών προσφέροντας ευελιξία και πολλές

δυνατότητες για αυτοματοποίηση.

Σε περιπτώσεις επιθέσεων μεγάλης κλίμακας, ενδεχομένως δεν επαρκούν οι παραπάνω

μηχανισμοί οι οποίοι λειτουργούν στο πλαίσιο μιας δικτυακής περιοχής. Πιθανά

προβλήματα και περιορισμοί σχετίζονται με την έλλειψη αμυντικών πόρων καθώς και

την υπερφόρτωση/κορεσμό των εξωτερικών ζεύξεων. Συνεπώς η αποκοπή δεν είναι

εφικτή εντός του δικτύου που δέχεται την επίθεση και αποκτά νόημα η αντιμετώπιση

των επιθέσεων σε συνεργασία με τρίτες διαχειριστικές οντότητες.

Αποτρεπτικοί παράγοντες για την συνεργασία μεταξύ οργανισμών συνήθως είναι: (1) η

έλλειψη εμπιστοσύνης, (2) κατάλληλοι μηχανισμοί ανταλλαγής πληροφοριών και (3) τα

περιορισμένα κίνητρα. Καινοτόμες τεχνολογίες βασισμένες σε αρχιτεκτονική Αλυσίδων

Επιβεβαιωμένων Συναλλαγών (Blockchain), οι οποίες άνθισαν με την εμφάνιση των

κρυπτονομισμάτων, προσφέρουν διαφάνεια των συναλλαγών - ανακοινώσεων,

αποκεντρωμένη φύση καθώς και μη δυνατότητα άρνησης συναλλαγής (non

repudiation). Τα παραπάνω χαρακτηριστικά καθιστούν τέτοιες τεχνολογίες κατάλληλες

 142

για τη διαμόρφωση αυτοματοποιημένων συνεργατικών σχημάτων μεταξύ έμπιστων

ομόσπονδων φορέων περιορίζοντας τυχόν αποτρεπτικούς παράγοντες.

Κατ’ αυτόν τον τρόπο, η προσέγγιση του κεφαλαίου 5 επεκτείνεται στο κεφάλαιο 6, το

οποίο εστιάζει σε ένα συνεργατικό σχήμα για την συλλογική αντιμετώπιση μαζικών

κυβερνοεπιθέσεων. Η αρχιτεκτονική βασίζεται σε ένα ομόσπονδο σχήμα εμπιστοσύνης

μεταξύ παρόχων δικτυακών υπηρεσιών και ενσωματώνει έξυπνα ψηφιακά συμβόλαια

(smart contracts) αποτυπωμένα σε αλυσιδωτές δομές συναλλαγών. Σημειώνεται πως

τεχνολογίες Blockchain δεν αποτελούν αυτοσκοπό για την συγκεκριμένη προσέγγιση,

αλλά έναν «επίσημο» και κοινώς αποδεκτό δίαυλο επικοινωνίας μεταξύ εταίρων, για

την σηματοδοσία, τον συντονισμό και την ενορχήστρωση του συνεργατικού

μηχανισμού άμυνας. Τα συμβόλαια καταγράφονται, επιβεβαιώνονται από τους

αντισυμβαλλόμενους και εφαρμόζονται αυτόματα. Το όφελος δεν συνεπάγεται κατ’

ανάγκη την ύπαρξη κάποιου κρυπτονομίσματος αλλά ένα ευρύτερο ανταλλακτικό

πλαίσιο επιβράβευσης (π.χ. μονάδες εμπιστοσύνης) για την από κοινού αντιμετώπιση

επιθέσεων.

Η ανάθεση κανόνων αποκοπής στους ομόσπονδους εταίρους πραγματοποιείται από τον

αμυνόμενο με μια παραλλαγή του αλγορίθμου που παρουσιάστηκε στο κεφάλαιο 5. Σε

αυτή την περίπτωση, βασικό κριτήριο είναι η σημασία της εκάστοτε κακόβουλης ροής

που δεσμεύεται να αποκόψει ένας ομόσπονδος εταίρος καθώς και η αξιοπιστία του σε

προηγούμενα περιστατικά. Οι ακριβείς μηχανισμοί για την αποκοπή κακόβουλης

κίνησης εξαρτώνται αποκλειστικά από την δυνατότητα και τεχνογνωσία του κάθε

εταίρου. Χωρίς να είναι δεσμευτικό, υλοποιήθηκε πιλοτικά ένας μηχανισμός αποκοπής

πηγών (blacklist) στο περιβάλλον XDP.

Σημειώνεται πως, οι περισσότεροι μηχανισμοί ανίχνευσης και αντιμετώπισης

επιθέσεων χρησιμοποιούν σε κάποιο βαθμό τις διευθύνσεις IP των επιτιθέμενων

(κακόβουλες πηγές). Αφενός, το μεγάλο πλήθος πηγών δημιουργεί πρόβλημα κλίμακας

τόσο κατά την αντιμετώπιση αλλά και κατά την διαδικασία παρακολούθησης και

διατήρησης δεδομένων για όλες τις πηγές (πιθανές λύσεις: κατανομή πόρων,

συνεργασία, ομαδοποίηση πηγών). Αφετέρου, οι πηγές είναι αμφιβόλου γνησιότητας

καθώς κακόβουλοι κόμβοι πλαστογραφούν την διεύθυνση τους. Σε αντίθετη

περίπτωση, η ιχνηλάτιση και αποκοπή τους θα ήταν απλούστερη διαδικασία. Ωστόσο,

παρά τις σχετικές προσπάθειες, το πρόβλημα των ψευδεπίγραφων διευθύνσεων IP

εξακολουθεί να υφίσταται.

 143

Σαν λύση στα παραπάνω, μπορούν να χρησιμοποιηθούν καινοτόμες προσεγγίσεις για

τον προγραμματισμό του επιπέδου δεδομένων με στόχο την δημιουργία ευέλικτων

μηχανισμών, ειδικά προσαρμοσμένων στους διάφορους τύπους επιθέσεων. Έτσι

φτάνουμε και στον τελευταίο θεματικό άξονα της διατριβής, ο οποίος αποτυπώνεται

στο κεφάλαιο 7. Το κεφάλαιο αυτό πηγάζει από εμπειρίες και προβλήματα

προηγούμενων κεφαλαίων και προτείνει έναν ευέλικτο μηχανισμό δυο επιπέδων για την

ταξινόμηση κίνησης σε καλόβουλη ή κακόβουλη και την τελική αποκοπή της.

Το πρώτο επίπεδο προσφέρει έναν γρήγορο μηχανισμό ανίχνευσης/αναγνώρισης της

επίθεσης υλοποιείται μέσω του P4 μηχανισμού που παρουσιάζεται στο κεφάλαιο 4. Η

αναγνώριση βασίζεται στις θύρες που χρησιμοποιούν συγκεκριμένοι τύποι επιθέσεων.

Παραδείγματος χάριν, δικτυακή κίνηση που προέρχεται (πηγή) από την θύρα 53, αφορά

επιθέσεις μεγάλου όγκου σχετικές με το Σύστημα Ονοματοδοσίας Τομέων (Domain

Name System – DNS). Κατόπιν της αναγνώρισης, ενεργοποιείται το δεύτερο επίπεδο

για την λεπτομερή συλλογή δεδομένων και αποκοπή της κακόβουλης κίνησης. Αυτό

βασίζεται σε XDP προγράμματα υλοποιημένα σε γενικού σκοπού δικτυακές διεπαφές.

Η συλλογή δεδομένων εστιάζεται κυρίως σε χαρακτηριστικές τιμές των πεδίων των

πακέτων, κατάλληλα επιλεγμένες ανάλογα με τον τύπο της επίθεσης. Μετά από την

συλλογή, τα δεδομένα αποστέλλονται ομαδοποιημένα (με βάση τις άνω τιμές) προς

ταξινόμηση σε συστήματα που χρησιμοποιούν μεθόδους επιβλεπόμενης μηχανικής

μάθησης (supervised Machine Learning). Τα ομαδοποιημένα στοιχεία που

ταξινομούνται ως κακόβουλα, αποτελούν συνοπτικές περιγραφές κακόβουλης κίνησης

και εγκαθίστανται δυναμικά σε προγραμματιζόμενα φίλτρα XDP με στόχο την άμεση

αποκοπή επιθέσεων.

Η ειδοποιός διαφορά με συναφή συστήματα είναι ότι δε βασιζόμαστε σε διευθύνσεις IP

για ταξινόμηση και αποκοπή επιθέσεων. Για την ακρίβεια, προσπαθούμε να μην

χρησιμοποιούμε καθόλου τέτοια πληροφορία, παρακάμπτοντας πιθανώς ψευδεπίγραφες

διευθύνσεις. Η προσέγγιση πηγάζει από την υπόθεση πως επιθέσεις όγκου (volumetric)

που βασίζονται στο πρωτόκολλο UDP, εκμεταλλεύονται ευαίσθητα συστήματα με

προβλέψιμο τρόπο. Έτσι, η κίνηση μπορεί να αξιολογηθεί από ένα σχετικά μικρό

πλήθος χαρακτηριστικών γνωρισμάτων. Η αρχική υλοποίηση εστιάζει σε επιθέσεις με

βάση το DNS ωστόσο ο ίδιος μηχανισμός μπορεί να επεκταθεί και σε άλλους τύπους

επιθέσεων.

 144

Ειδικότερα για την ταξινόμηση, χρησιμοποιούμε τον αλγόριθμο Random Forest. Παρά

ταύτα η διαδικασία δεν είναι άμεσα συνδεδεμένη με κάποια συγκεκριμένη μέθοδο. Για

τις ανάγκες της πειραματικής αξιολόγησης χρησιμοποιήθηκαν δεδομένα πραγματικής

κίνησης από παρελθοντικές επιθέσεις αλλά και καλόβουλης κίνηση από πραγματικά

περιβάλλοντα.

Ως αποτέλεσμα της αξιολόγησης, προκύπτουν ενδιαφέροντα αποτελέσματα και

συμπεράσματα. Γενικώς, η ταξινόμηση μέσω Random Forest αποδεικνύεται εξαιρετικά

ακριβής, με την προϋπόθεση ότι τα δέντρα έχουν εκπαιδευτεί με αντιπροσωπευτικό

δείγμα δεδομένων. Σε διαφορετική περίπτωση, π.χ. νέες επιθέσεις, είναι αρκετά πιθανό

να μην ανιχνευτεί σωστά η επίθεση. Ωστόσο, οι διαχειριστές μπορούν να εκπαιδεύσουν

σε μεγάλο βαθμό τέτοια μοντέλα ως προς την καλόβουλη κίνηση. Έτσι πιθανότατα θα

μετριαστούν οι ψευδώς θετικές (False Positives) ταξινομήσεις που θα οδηγήσουν σε

απώλεια καλόβουλης κίνησης. Ιδιαίτερο ενδιαφέρον παρουσιάζει επίσης η ανακύκλωση

των περιγραφών/υπογραφών από τους επιτιθέμενους. Χαρακτηριστικά αναφέρεται πως

το πλήθος των μοναδικών περιγράφων σε σύγκριση με τις αντίστοιχες πηγές

(διευθύνσεις IP) παρουσιάζει μείωση από 86% μέχρι 99%.

Αυτό αποκτά μεγαλύτερη βαρύτητα στα πειράματα επίδοσης (throughput), τα οποία

δείχνουν πως οι υλοποιήσεις σε XDP επηρεάζονται περισσότερο από το πλήθος των

στοιχείων που αποθηκεύουν σε δομές μνήμης, παρά από επιπρόσθετες ενέργειες

σχετικά με ανάγνωση επικεφαλίδων. Έτσι, οι προτεινόμενοι μηχανισμοί είχαν

ισοδύναμη και καλύτερη επίδοση από αντίστοιχους που βασίζονται στις διευθύνσεις IP

των επιτιθέμενων. Η επίδοση πραγματοποιήθηκε τόσο την εξαγωγή δεδομένων όσο και

την αποκοπή επιθέσεων και τα αποτελέσματα αποδίδονται στις σημαντικά λιγότερες

μοναδικές περιγραφές πακέτων σε σχέση με το πλήθος των πηγών.

Τα προηγούμενα κεφάλαια εξερευνούν το φαινόμενο των κυβερνοεπιθέσεων από

διάφορες οπτικές γωνίες, όπου κάθε μια παρουσιάζει ενδιαφέρουσες ιδιαιτερότητες και

δυσκολίες. Συνεπώς, στη συνέχεια αναφέρονται πιθανές μελλοντικές επεκτάσεις.

Ξεκινώντας από το τελευταίο κεφάλαιο, ενδιαφέρον θα παρουσίαζε μια εκτενής μελέτη

μηχανισμών ανίχνευσης επιθέσεων και ταξινόμησης της κίνησης, εστιάζοντας σε

σύγχρονους τύπους επιθέσεων. Κατά πάσα πιθανότητα ο κάθε τύπος μπορεί να

χρειάζεται εξειδικευμένη μελέτη και βελτιστοποίηση των παραμέτρων για τους

σχετικούς αλγόριθμους, π.χ. μηχανική μάθηση, ανάλυση χρονοσειρών ή/και στατιστικά

 145

μοντέλα. Ένα σχετικό πρόβλημα είναι η σημαντικά περιορισμένη πρόσβαση σε

πραγματικά δεδομένα κυρίως για λόγους προστασίας προσωπικών δεδομένων και

απορρήτου επικοινωνίας. Παραδοσιακά, τέτοιες καταστάσεις αντιμετωπίζονται με

τεχνικές ανωνυμοποίησης των διευθύνσεων IP και περικοπής των πακέτων ώστε να μην

περιέχουν τυχόν ευαίσθητες πληροφορίες. Εναλλακτικά, ο διαμοιρασμός στατιστικών

στοιχείων της κίνησης δεν παρουσιάζει τέτοια προβλήματα. Αυτές οι πληροφορίες θα

μπορούσαν να χρησιμοποιηθούν για την δημιουργία συνθετικών αλλά αληθοφανών

δεδομένων δικτυακής κίνησης που θα ανταποκρίνονται στην πραγματικότητα. Πιθανά

οφέλη είναι βεβαίως η χρήση για την αξιολόγηση και βελτίωση μηχανισμών άμυνας.

Επιπρόσθετα, ενδιαφέρον πεδίο είναι η μελέτη τεχνικών εξόρυξης και επεξεργασίας

δεδομένων για την δημιουργία περιγραφών επίθεσης. Αυτές μπορούν να βασίζονται σε

παρελθοντικά δεδομένα και να διαμοιράζονται μεταξύ συνεργαζόμενων εταίρων (π.χ.

ομοσπονδίες ακαδημαϊκών φορέων και παρόχων δικτυακών υπηρεσιών). Συνεργατικά

σχήματα μπορούν να υπάρξουν και κατά τη δημιουργία των περιγράφων π.χ. με

τεχνικές Ομόσπονδης Μάθησης (Federated Learning), οι οποίες επιτρέπουν την

εκπαίδευση ενός κοινού μοντέλου, αμβλύνοντας προβληματισμούς περί προσωπικών

δεδομένων και ιδιωτικότητας.

Κοινά μοντέλα και περιγραφές για κάθε τύπο επίθεσης μπορούν να ενισχύσουν

σημαντικά μηχανισμούς αντιμετώπισης, ακόμα και να οδηγήσουν στην προληπτική

αποκοπή επιθέσεων με κοινά χαρακτηριστικά. Χαρακτηριστικό παράδειγμα είναι

ονόματα DNS (domains) τα οποία συχνά χρησιμοποιούνται για επιθέσεις. Ωστόσο,

σημαντική είναι και η ομαδοποίηση των περιγραφών με στόχο την βέλτιστη υλοποίηση

μηχανισμών αποκοπής στο επίπεδο δεδομένων είτε πρόκειται για λύσεις τύπου P4

(υλικό) είτε για XDP (λογισμικό και υλικό). Συνεπώς, ιδιαίτερο ενδιαφέρον

παρουσιάζουν σχετικές τεχνικές επεξεργασίας και ομαδοποίησης.

Σημειώνεται πως, παρότι οι προσεγγίσεις που βασίζονται σε διακριτές περιγραφές

φαίνονται ιδανικές, υπάρχουν επιθέσεις που απαιτούν εναλλακτικές προσεγγίσεις.

Χαρακτηριστικό παράδειγμα είναι οι επιθέσεις TCP SYN, που σχεδόν πάντοτε

βασίζονται σε ψευδεπίγραφες διευθύνσεις IP. Σχετικές λύσεις αρχικά επιχειρούν να

επιβεβαιώσουν τη γνησιότητα κάθε πηγής (SYN Cookie) και στη συνέχεια επιτρέπουν

την επικοινωνία.

 146

Συνοψίζοντας, υπηρεσίες που αφορούν συλλογή δεδομένων, ανίχνευση και

αντιμετώπιση επιθέσεων, μπορούν να μεταφερθούν με ικανοποιητικές επιδόσεις σε

προγραμματιζόμενες ενδιάμεσες συσκευές προστατεύοντας πολύτιμους πόρους σε

δρομολογητές, κόμβους και firewalls. Οραματιζόμαστε μια πλατφόρμα υπηρεσιών

κυβερνοασφάλειας πολλαπλών επιπέδων η οποία (1) ανιχνεύει έγκαιρα τυχόν επιθέσεις

συνδυάζοντας πληροφορία από πολλαπλές πηγές (2) εξάγει επιπλέον δεδομένα

δικτυακής κίνησης, (3) εντοπίζει το θύμα καθώς τον τύπο της επίθεσης και (4)

δημιουργεί με δυναμικό τρόπο μηχανισμούς αποκοπής επιθέσεων, ειδικά

κατασκευασμένους για την κάθε περίπτωση. Ιδιαίτερο ενδιαφέρον, θα παρουσίαζε η

ενσωμάτωση μιας τέτοιας πλατφόρμας πάνω σε ομόσπονδα σχήματα συνεργασίας ή/και

υποδομές NFV όπου εταίροι και χρήστες διαλέγουν/παρέχουν το μηχανισμό αποκοπής

προς εγκατάσταση (π.χ. XDP πρόγραμμα).

 147

11 References

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined WAN,” ACM

SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013, doi:

10.1145/2534169.2486019.

[2] N. Shirokov and R. Dasineni, “Open-sourcing Katran, a scalable network load balancer -

Facebook Engineering.” available at: https://engineering.fb.com/open-source/open-

sourcing-katran-a-scalable-network-load-balancer/ [accessed 28 April 2020].

[3] “SONiC: Software for Open Networking in the Cloud.” available at:

https://azure.github.io/SONiC/ [accessed 13 May 2020].

[4] T. Høiland-Jørgensen et al., “The eXpress data path: Fast programmable packet

processing in the operating system kernel,” in Proceedings of the 14th International

Conference on Emerging Networking EXperiments and Technologies (CoNEXT 2018),

pp. 54–66, 2018.

[5] P. Bosshart et al., “P4: Programming protocol-independent packet processors,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014, doi:

10.1145/2656877.2656890.

[6] M. Majkowski, “How to drop 10 million packets per second - Cloudflare.” available at:

https://blog.cloudflare.com/how-to-drop-10-million-packets/ [accessed 28 April 2020].

[7] G. Bertin, “XDP in practice: integrating XDP in our DDoS mitigation pipeline,” in

NetDev 2.1 - The Technical Conference on Linux Networking.

[8] “Stratum - Open Networking Foundation.” available at:

https://www.opennetworking.org/stratum/ [accessed 13 May 2020].

[9] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008, doi:

10.1145/1355734.1355746.

[10] M. Jonker, A. Sperotto, R. Van Rijswijk-Deij, R. Sadre, and A. Pras, “Measuring the

adoption of DDoS protection services,” in Proceedings of the 2016 ACM Internet

Measurement Conference (IMC 2016), pp. 279–285, 2016.

[11] S. Shirali-Shahreza and Y. Ganjali, “Efficient implementation of security applications in

OpenFlow controller with FleXam,” in Proceedings of the 21st IEEE Annual Symposium

on High-Performance Interconnects (HOTI 2013), pp. 49–54, 2013.

[12] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “FlowSense:

Monitoring Network Utilization with Zero Measurement Cost,” in Proceedings of the

14th International conference on Passive and Active Measurement (PAM 2013), pp. 31–

41, 2013.

[13] K. Giotis, G. Androulidakis, and V. Maglaris, “A scalable anomaly detection and

 148

mitigation architecture for legacy networks via an OpenFlow middlebox,” Security and

Communication Networks, vol. 9, no. 13, pp. 1958–1970, 2016, doi: 10.1002/sec.1368.

[14] “SaltStack.” available at: https://www.saltstack.com/ [accessed 28 April 2020].

[15] A. Doria et al., “RFC 5810 - Forwarding and Control Element Separation (ForCES)

Protocol Specification.” available at: https://tools.ietf.org/html/rfc5810 [accessed 15

May 2020].

[16] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane,”

ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 1–12, 2007, doi:

10.1145/1282427.1282382.

[17] “OpenDaylight.” available at: https://www.opendaylight.org/ [accessed 28 April 2020].

[18] “ONOS.” available at: https://onosproject.org/ [accessed 28 April 2020].

[19] “Ryu.” available at: https://osrg.github.io/ryu/ [accessed 28 April 2020].

[20] “NAPALM (Network Automation and Programmability Abstraction Layer with

Multivendor support).” available at: https://github.com/napalm-automation/napalm

[accessed 28 April 2020].

[21] “OpenConfig.” available at: http://openconfig.net/ [accessed 28 April 2020].

[22] ONF, “OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06),” 2015.

[23] C. Y. Hong et al., “B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for

Availability and Scale in Google’s Software-Defined WAN,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication (SIGCOMM

2018), pp. 74–87, 2018.

[24] P. L. Ventre et al., “Deploying SDN in GÉANT production network,” in Proceeding of

the 2017 IEEE Conference on Network Function Virtualization and Software Defined

Networking (NFV-SDN 2017), pp. 1–2, 2017.

[25] “Tofino 2 - Barefoot.” available at: https://www.barefootnetworks.com/products/brief-

tofino-2/ [accessed 28 April 2020].

[26] “Agilio CX SmartNICs - Netronome.” available at:

https://www.netronome.com/products/agilio-cx/ [accessed 28 April 2020].

[27] “NetFPGA.” available at: https://netfpga.org/ [accessed 02 May 2020].

[28] “In-band Network Telemetry.” available at: https://p4.org/assets/INT-current-spec.pdf

[accessed 15 May 2020].

[29] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos: Consensus at

network speed,” in Proceedings of the 2015 ACM Symposium on SDN Research (SOSR

2015), pp. 1–7, 2015.

[30] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-network computation

is a dumb idea whose time has come,” in Proceedings of the 16th ACM Workshop on

Hot Topics in Networks (HotNets 2017), pp. 150–156, 2017.

 149

[31] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,

“Heavy-hitter detection entirely in the data plane,” in Proceedings of the 2017 ACM

Symposium on SDN Research (SOSR 2017), pp. 164–176, 2017.

[32] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-Wide Heavy Hitter Detection

with Commodity Switches,” in Proceedings of the 2018 ACM Symposium on SDN

Research (SOSR 2018), pp. 1–7, 2018.

[33] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-time DDoS

attack detection to programmable data planes,” in Proceeding of the 2019 IFIP/IEEE

Symposium on Integrated Network Management (IM 2019), pp. 19–27, 2019.

[34] “P4 16 Language Specification version 1.2.0.” available at: http://p4.org [accessed 28

April 2020].

[35] “P4 Language Specification version 1.0.5,” 2018. available at: http://p4.org [accessed 28

April 2020].

[36] C. Kim, “SLIDES: P4 Language Tutorial,” 2017. available at: http://p4.org [accessed 28

April 2020].

[37] “Ansible.” available at: https://www.ansible.com/ [accessed 28 April 2020].

[38] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “RFC 1157 - Simple Network

Management Protocol (SNMP).” available at: https://tools.ietf.org/html/rfc1157

[accessed 30 May 2020].

[39] M. Rose and K. McCloghrie, “RFC 1155 - Structure and identification of management

information for TCP/IP-based internets.” available at: https://tools.ietf.org/html/rfc1155

[accessed 30 May 2020].

[40] M. Bjorklund, “RFC 7950 - The YANG 1.1 Data Modeling Language.” available at:

https://tools.ietf.org/html/rfc7950 [accessed 30 May 2020].

[41] “Openstack - Build the future of Open Infrastructure.” available at:

https://www.openstack.org/ [accessed 28 April 2020].

[42] “Puppet.” available at: https://puppet.com/ [accessed 28 April 2020].

[43] “Network Functions Virtualisation (NFV); Architectural Framework Group

Specification - ETSI GS NFV 002 V1.1.1,” ETSI, 2013.

[44] “OPNFV.” available at: https://www.opnfv.org/ [accessed 28 April 2020].

[45] “ONAP.” available at: https://www.onap.org/ [accessed 28 April 2020].

[46] “OSM.” available at: https://osm.etsi.org/ [accessed 28 April 2020].

[47] “CORD - ONF.” available at: https://www.opennetworking.org/cord/ [accessed 31 May

2020].

[48] M. Majkowski, “Why we use the Linux kernel’s TCP stack - Cloudflare.” available at:

https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/ [accessed 16 May

2020].

 150

[49] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker, “Extending

Networking into the Virtualization Layer,” in 8th ACM Workshop on Hot Topics in

Networks (HotNets 2009), 2009.

[50] “Contrail Virtual Router - Juniper.” available at: https://github.com/Juniper/contrail-

vrouter [accessed 28 April 2020].

[51] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular router,” ACM

Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263–297, 2000, doi:

10.1145/319344.319166.

[52] L. Rizzo, “NetMap: A novel framework for fast packet I/O,” in Proceedings of the 2012

USENIX Annual Technical Conference (USENIX ATC 2012), pp. 101–112, 2012.

[53] “PF_RING – ntop.” available at: https://www.ntop.org/products/packet-capture/pf_ring/

[accessed 28 April 2020].

[54] “DPDK.” available at: https://www.dpdk.org/ [accessed 28 April 2020].

[55] J. Martins et al., “ClickOS and the Art of Network Function Virtualization,” in

Proceedings of the 11th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 2014), pp. 459–473, 2014.

[56] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High performance and flexible

networking using virtualization on commodity platforms,” in Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 2014),

pp. 445–458, 2014.

[57] P. Phaal and M. Lavine, “sFlow Version 5.” available at:

https://sflow.org/sflow_version_5.txt [accessed 29 April 2020].

[58] A. Douitsis and V. Maglaris, “Towards a scalable management collector,” in

Proceedings of the 2016 Global Information Infrastructure and Networking Symposium

(GIIS 2016), pp. 1–6, 2016.

[59] “Model Driven Telemetry - Cisco.” available at:

https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-

solutions/model-driven-telemetry.html [accessed 29 April 2020].

[60] “Overview of the Junos Telemetry Interface - TechLibrary - Juniper Networks.”

available at: https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-

telemetry-interface-oveview.html [accessed 29 April 2020].

[61] M. Hira and L. Wobker, “Improving Network Monitoring and Management with

Programmable Data Planes.” available at: https://p4.org/p4/inband-network-telemetry/

[accessed 29 April 2020].

[62] J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson, and G. Pongracz,

“Programmable Event Detection for In-Band Network Telemetry,” 2019. available at:

http://arxiv.org/abs/1909.12101 [accessed 29 April 2020].

 151

[63] E. B. Claise, “RFC 3954 - Cisco Systems NetFlow Services Export Version 9,” Oct.

2004. available at: https://tools.ietf.org/html/rfc3882 [accessed 29 April 2020].

[64] A. Santos Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,

“ATLANTIC: A framework for anomaly traffic detection, classification, and mitigation

in SDN,” in Proceedings of 2016 IEEE/IFIP Network Operations and Management

Symposium (NOMS 2016), pp. 27–35, 2016.

[65] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,

“DevoFlow: Scaling Flow Management forHigh-Performance Networks,” in

Proceedings of the 2011 Conference of the ACM Special Interest Group on Data

Communication (SIGCOMM 2011), pp. 254–265, 2011.

[66] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,

“Combining OpenFlow and sFlow for an effective and scalable anomaly detection and

mitigation mechanism on SDN environments,” Computer Networks, vol. 62, pp. 122–

136, 2014, doi: 10.1016/j.bjp.2013.10.014.

[67] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide measurements,” in

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data

Communication (SIGCOMM 2018), pp. 561–575, 2018.

[68] “nProbe – ntop.” available at: https://www.ntop.org/products/netflow/nprobe/ [accessed

29 April 2020].

[69] G. Gardikis et al., “An integrating framework for efficient NFV monitoring,” in

Proceedings of the 2016 IEEE Conference on Network Softwarization (NetSoft 2016),

pp. 1–5, 2016.

[70] D. Palmisano et al., “D-STREAMON - NFV-Capable Distributed Framework for

Network Monitoring,” in Proceedings of the 29th International Teletraffic Congress

(ITC 2017), pp. 30–35, 2017.

[71] M. A. Kourtis et al., “Enhancing VNF performance by exploiting SR-IOV and DPDK

packet processing acceleration,” in Proceedings of the 2015 IEEE Conference on

Network Function Virtualization and Software Defined Networking (NFV-SDN 2015),

pp. 74–78, 2015.

[72] A. TaheriMonfared and C. Rong, “Multi-tenant network monitoring based on software

defined networking,” in Proceedings of OTM Confederated International Conferences

“On the Move to Meaningful Internet Systems,” pp. 327–341, 2013.

[73] “Amazon CloudWatch - Application and Infrastructure Monitoring.” available at:

https://aws.amazon.com/cloudwatch/ [accessed 29 April 2020].

[74] “Azure Monitor overview | Microsoft Docs.” available at: https://docs.microsoft.com/en-

us/azure/azure-monitor/overview [accessed 29 April 2020].

[75] “Stackdriver | Google Cloud.” available at: https://cloud.google.com/stackdriver/

 152

[accessed 29 April 2020].

[76] “Cloud Monitoring as a Service | Datadog.” available at: https://www.datadoghq.com/

[accessed 29 April 2020].

[77] “2019 Data Breaches: 4 Billion Records Breached So Far | Norton.” available at:

https://us.norton.com/internetsecurity-emerging-threats-2019-data-breaches.html

[accessed 29 April 2020].

[78] M. Kührer, C. Rossow, and T. Holz, “Paint it black: Evaluating the effectiveness of

malware blacklists,” in Proceedings of the 2014 International Workshop on Recent

Advances in Intrusion Detection, pp. 1–21, 2014.

[79] F. J. Ryba, M. Orlinski, M. Wählisch, C. Rossow, and T. C. Schmidt, “Amplification

and DRDoS Attack Defense - A Survey and New Perspectives,” 2015. available at:

http://arxiv.org/abs/1505.07892 [accessed 29 April 2020].

[80] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS Abuse,” in

2014 Symposium on Network and Distributed System Security (NDSS 2014), 2014.

[81] M. Kuhrer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a Handshake : Abusing TCP

for Reflective Amplification DDoS Attacks,” in 8th USENIX Workshop on Offensive

Technologies (WOOT 2014), 2014.

[82] M. Majkowski, “Reflections on reflection (attacks) - Cloudflare.” available at:

https://blog.cloudflare.com/reflections-on-reflections/ [accessed 29 April 2020].

[83] M. Majkowski, “Memcrashed - Major amplification attacks from UDP port 11211 -

Cloudflare.” available at: https://blog.cloudflare.com/memcrashed-major-amplification-

attacks-from-port-11211/ [accessed 29 April 2020].

[84] C. Morales, “NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack ; The Terabit Attack

Era Is Upon Us.” available at: https://www.netscout.com/blog/asert/netscout-arbor-

confirms-17-tbps-ddos-attack-terabit-attack-era [accessed 29 April 2020].

[85] “KrebsOnSecurity Hit With Record DDoS — Krebs on Security.” available at:

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/ [accessed 29

April 2020].

[86] “Cyber attack hits Danish rail network - The Local.” available at:

https://www.thelocal.dk/20180514/cyber-attack-hits-danish-rail-network [accessed 29

April 2020].

[87] M. Prince, “The DDoS That Knocked Spamhaus Offline (And How We Mitigated It) -

Cloudflare.” available at: https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-

offline-and-ho/ [accessed 15 May 2020].

[88] Arbor NETSCOUT, “Threat Intelligence Report -Powered by ATLAS Findings from

First Half 2019,” 2019. available at: https://www.netscout.com/sites/default/files/2019-

07/SECR_010_EN-1901 – NETSCOUT Threat Report 1H 2019 – Web.pdf [accessed 25

 153

May 2020].

[89] E. Osterweil, A. Stavrou, and L. Zhang, “20 Years of DDoS: a Call to Action,” 2019.

available at: http://arxiv.org/abs/1904.02739 [accessed 25 May 2020].

[90] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense

mechanisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp.

39–53, 2004, doi: 10.1145/997150.997156.

[91] S. M. Specht and R. B. Lee, “Distributed Denial of Service: Taxonomies of Attacks,

Tools and Countermeasures,” International Workshop on Security in Parallel and

Distributed Systems, no. 9, pp. 543–550, 2004, doi: 10.1.1.133.4566.

[92] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against

distributed denial of service (DDOS) flooding attacks,” IEEE Communications Surveys

and Tutorials, vol. 15, no. 4, pp. 2046–2069, 2013, doi:

10.1109/SURV.2013.031413.00127.

[93] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network traffic using

maximum entropy estimation,” in Proceedings of the 2005 ACM Internet Measurement

Conference (IMC 2005), pp. 345–350, 2005.

[94] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network Anomaly

Detection and Classification via Opportunistic Sampling,” IEEE Network, vol. 23, no. 1,

pp. 6–12, 2009, doi: 10.1109/MNET.2009.4804318.

[95] “Snort - Network Intrusion Detection & Prevention System.” available at:

https://snort.org/ [accessed 15 May 2020].

[96] “Suricata | Open Source IDS / IPS / NSM engine.” available at: https://suricata-ids.org/

[accessed 15 May 2020].

[97] “The Zeek Network Security Monitor.” available at: https://www.zeek.org/ [accessed 15

May 2020].

[98] V. Paxson, “Bro: A system for detecting network intruders in real-time,” Computer

Networks, vol. 31, no. 23–24, pp. 2435–2463, 1999, doi: 10.1016/S1389-

1286(99)00112-7.

[99] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” IEEE Communications Surveys and Tutorials,

vol. 10, no. 4, pp. 56–76, 2008, doi: 10.1109/SURV.2008.080406.

[100] D. Berman, A. Buczak, J. Chavis, and C. Corbett, “A Survey of Deep Learning Methods

for Cyber Security,” Information, vol. 10, no. 4, p. 122, 2019, doi:

10.3390/info10040122.

[101] C. Siaterlis and V. Maglaris, “Detecting DDoS attacks using a multilayer Perceptron

classifier,” in Proceedings of the 2004 International conference on Artificial neural

networks (ICANN 2004), pp. 1–14, 2004.

 154

[102] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection using

NOX/OpenFlow,” in Proceedings of the 2010 IEEE Local Computer Network

Conference (LCN 2010), pp. 408–415, 2010.

[103] Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in software-defined

networks,” Journal of Network and Computer Applications, vol. 68, pp. 65–79, 2016,

[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1084804516300480.

[104] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection System

in Software-Defined Networking (SDN).” available at:

https://arxiv.org/pdf/1611.07400.pdf [accessed 23 May 2020].

[105] X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS Attack via Deep Learning,”

in Proceedings of the 2017 International Conference on Smart Computing

(SMARTCOMP 2017), pp. 1–8, 2017.

[106] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon, and D.

Siracusa, “LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack

Detection,” IEEE Transactions on Network and Service Management (Early Access), pp.

1–14, 2020, [Online]. Available: https://ieeexplore.ieee.org/document/8984222/.

[107] “The CAIDA Anonymized Internet Traces 2016 Dataset.” available at:

http://www.caida.org/data/passive/passive_2016_dataset.xml [accessed 15 May 2020].

[108] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE project,” in

Proceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC

2000), 2000.

[109] J. J. Santanna et al., “Booters - An analysis of DDoS-as-a-service attacks,” in

Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM 2015), pp. 243–251, 2015.

[110] D. Turk, “RFC 3882 - Configuring BGP to Block Denial-of-Service Attacks.” available

at: https://tools.ietf.org/html/rfc3882 [accessed 15 May 2020].

[111] C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On the Effectiveness of

DDoS Mitigation in the Wild,” in Proceedings of the 17th International Conference on

Passive and Active Network Measurement (PAM 2016), pp. 319–332, 2016.

[112] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann, and A. Berger,

“Inferring BGP blackholing activity in the internet,” in Proceedings of the ACM Internet

Measurement Conference (IMC 2017), pp. 1–14, 2017.

[113] W. Kumari and D. McPherson, “RFC 5635 - Remote Triggered Black Hole Filtering

with Unicast Reverse Path Forwarding (uRPF).” available at:

https://tools.ietf.org/html/rfc5635 [accessed 15 May 2020].

[114] “RFC 3704 - Ingress Filtering for Multihomed Networks.” available at:

https://tools.ietf.org/html/rfc3704 [accessed 15 May 2020].

 155

[115] “RFC 5575 - Dissemination of Flow Specification Rules.” available at:

https://tools.ietf.org/html/rfc5575 [accessed 15 May 2020].

[116] “Firewall on Demand - GRNET.” available at: https://grnet.gr/en/services/internet-

services/firewall-on-demand/ [accessed 15 May 2020].

[117] “MANRS – Mutually Agreed Norms for Routing Security.” available at:

https://www.manrs.org/ [accessed 15 May 2020].

[118] B. Rashidi, C. Fung, and E. Bertino, “A Collaborative DDoS Defence Framework Using

Network Function Virtualization,” IEEE Transactions on Information Forensics and

Security, vol. 12, no. 10, pp. 2483–2497, 2017, doi: 10.1109/TIFS.2017.2708693.

[119] K. Giotis, M. Apostolaki, and V. Maglaris, “A reputation-based collaborative schema for

the mitigation of distributed attacks in SDN domains,” in Proceedings of the 2016

IEEE/IFIP Network Operations and Management Symposium (NOMS 2016), pp. 495–

501, 2016.

[120] “RFC 7970 - The Incident Object Description Exchange Format Version 2.” available at:

https://tools.ietf.org/html/rfc7970 [accessed 15 May 2020].

[121] A. Jøsang and R. Ismail, “The Beta Reputation System,” in Proceedings of the 15th Bled

Electronic Commerce Conference, pp. 2502–2511, 2002.

[122] “3DCoP: DDoS Defense for a Community of Peers - Galois, Inc.” available at:

https://galois.com/project/3dcop-ddos-defense/ [accessed 15 May 2020].

[123] “DDoS Open Threat Signaling (dots).” available at:

https://datatracker.ietf.org/wg/dots/about/ [accessed 15 May 2020].

[124] O. O. Malomo, D. B. Rawat, and M. Garuba, “Next-generation cybersecurity through a

blockchain-enabled federated cloud framework,” Journal of Supercomputing, vol. 74,

no. 10, pp. 5099–5126, 2018, doi: 10.1007/s11227-018-2385-7.

[125] K. Kim, Y. You, M. Park, and K. Lee, “DDoS Mitigation: Decentralized CDN Using

Private Blockchain,” in Proceedings of the 2018 International Conference on Ubiquitous

and Future Networks (ICUFN 2018), pp. 693–696, 2018.

[126] “Decentralized CDN, WAF, and DDoS protection.” available at: https://gladius.io/

[accessed 15 May 2020].

[127] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B. Stiller, “A

Blockchain-Based Architecture for Collaborative DDoS Mitigation with Smart

Contracts,” in Proceedings of the 11th IFIP International Conference on Autonomous

Infrastructure, Management and Security (AIMS 2017), pp. 16–29, 2017.

[128] A. Gruhler, B. Rodrigues, and B. Stiller, “A Reputation Scheme for a Blockchain-based

Network Cooperative Defense,” in Proceedings of the 2019 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM 2019), pp. 71–79, 2019.

[129] S. Mannhart, B. Rodrigues, E. Scheid, S. S. Kanhere, and B. Stiller, “Toward Mitigation-

 156

as-a-Service in Cooperative Network Defenses,” in Proceedings of the 16th IEEE

International Conference on Dependable, Autonomic and Secure Computing (DASC

2018), pp. 362–367, 2018.

[130] V. Maglaris et al., “Toward a holistic federated future internet experimentation

environment: The experience of NOVI research and experimentation,” IEEE

Communications Magazine, vol. 53, no. 7, pp. 136–144, 2015, doi:

10.1109/MCOM.2015.7158277.

[131] J. M. Alcaraz Calero and J. G. Aguado, “MonPaaS: An adaptive monitoring platform as

a service for cloud computing infrastructures and services,” IEEE Transactions on

Services Computing, vol. 8, no. 1, pp. 65–78, 2015, doi: 10.1109/TSC.2014.2302810.

[132] V. Bajpai and J. Schonwalder, “A survey on internet performance measurement

platforms and related standardization efforts,” IEEE Communications Surveys and

Tutorials, vol. 17, no. 3, pp. 1313–1341, 2015, doi: 10.1109/COMST.2015.2418435.

[133] Y. Shavitt and U. Weinsberg, “Quantifying the importance of vantage points distribution

in internet topology measurements,” in Proceedings of the 2009 IEEE International

Conference on Computer Communications (INFOCOM 2009), pp. 792–800, 2009.

[134] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet

hierarchy from multiple vantage points,” in Proceedings of the 2002 IEEE International

Conference on Computer Communications (INFOCOM 2002), pp. 618–627, 2002.

[135] N. Chatzis, G. Smaragdakis, J. Böttger, T. Krenc, and A. Feldmann, “On the benefits of

using a large IXP as an Internet vantage point,” in Proceedings of the 2013 ACM

Internet Measurement Conference (IMC 2013), pp. 333–346, 2013.

[136] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP

Technology,” ACM SIGMOD Record, vol. 26, no. 1, pp. 65–74, 1997, doi:

10.1145/248603.248616.

[137] “Kubernetes.” available at: https://kubernetes.io/ [accessed 02 December 2019].

[138] V. Koukis, C. Venetsanopoulos, and N. Koziris, “∼Okeanos: Building a cloud, cluster

by cluster,” IEEE Internet Computing, vol. 17, no. 3, pp. 67–71, 2013, doi:

10.1109/MIC.2013.43.

[139] A. TaheriMonfared, T. W. Wlodarczyk, and C. Rong, “Real-time handling of network

monitoring data using a data-intensive framework,” in Proceedings of the 5th IEEE

International Conference on Cloud Computing Technology and Science (CloudCom

2013), pp. 258–265, 2013.

[140] D. Sarlis, N. Papailiou, I. Konstantinou, G. Smaragdakis, and N. Koziris, “Datix: A

system for scalable network analytics,” ACM SIGCOMM Computer Communication

Review, vol. 45, no. 5, pp. 21–28, 2015, doi: 10.1145/2831347.2831351.

[141] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

 157

computing with working sets.,” in Proceedings of the 2nd USENIX Conference on Hot

Topics in Cloud Computing (HotCloud 2010), 2010.

[142] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a Distributed Messaging System for Log

Processing,” in Proceedings of the 2011 ACM SIGMOD Workshop on Networking Meets

Databases, pp. 1–7, 2011.

[143] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic feature

distributions,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 4, pp.

217–228, 2005, doi: 10.1145/1090191.1080118.

[144] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards Understanding the

Performance of P4 Programmable Hardware,” in Proceedings of the 2019 ACM/IEEE

Symposium on Architectures for Networking and Communications Systems (ANCS

2019), pp. 1–6, 2019.

[145] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Ruth, and K. Wehrle, “Demystifying the

Performance of XDP BPF,” in Proceddings of the 2019 IEEE Conference on Network

Softwarization (NetSoft 2019), pp. 208–212, 2019.

[146] J. Hill, M. Aloserij, and P. Grosso, “Tracking Network Flows with P4,” in Proceedings

of the 2018 IEEE/ACM Innovating the Network for Data-Intensive Science Conference

(INDIS 2018), pp. 23–32, 2018.

[147] R. Sadre, A. Sperotto, and A. Pras, “The effects of DDoS attacks on flow monitoring

applications,” in Proceedings of the 2012 IEEE Network Operations and Management

Symposium, NOMS 2012, pp. 269–277, 2012.

[148] H. Liu, Y. Sun, and M. S. Kim, “Fine-grained DDoS detection scheme based on

bidirectional count sketch,” in Proceedings of the 20th IEEE International Conference

on Computer Communications and Networks (ICCCN 2011), pp. 1–6, 2011.

[149] “DDoS Attack Glossary: Top 12 Attack Vectors - CPO Magazine.” available at:

https://www.cpomagazine.com/cyber-security/ddos-attack-glossary-top-12-attack-

vectors/ [accessed 16 May 2020].

[150] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970, doi:

10.1145/362686.362692.

[151] “Monitoring Tools - GRNET.” available at: https://mon.grnet.gr/ [accessed 16 May

2020].

[152] S. K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, and M. Bailey, “Bohatei: Flexible and

Elastic DDoS Defense,” in Proceedings of the 24th USENIX Conference on Security

Symposium (USENIX Security 2015), pp. 817–832, 2015.

[153] J. Deng et al., “VNGuard: An NFV/SDN combination framework for provisioning and

managing virtual firewalls,” in Proceedings of the 2015 IEEE Conference on Network

 158

Function Virtualization and Software Defined Networking (NFV-SDN 2015), pp. 107–

114, 2015.

[154] C. J. Fung and B. McCormick, “VGuard: A distributed denial of service attack

mitigation method using network function virtualization,” in Proceedings of the 11th

International Conference on Network and Service Management, CNSM 2015, pp. 64–70,

2015.

[155] M. Majkowski, “Meet Gatebot - a bot that allows us to sleep.” available at:

https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep/ [accessed 16

May 2020].

[156] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the generalized

assignment problem,” Mathematical Programming, vol. 8, no. 1, pp. 91–103, 1975, doi:

10.1007/BF01580430.

[157] F. Soldo, K. Argyraki, and A. Markopoulou, “Optimal source-based filtering of

malicious traffic,” IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 381–395,

2012, doi: 10.1109/TNET.2011.2161615.

[158] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance,

“Branch-and-price: Column generation for solving huge integer programs,” Operations

Research, vol. 46, no. 3, pp. 316–329, 1998, doi: 10.1287/opre.46.3.316.

[159] M. O’sullivan, Q.-S. Lim, C. Walker, I. Dunning, and S. Mitchell, “Dippy-a simplified

interface for advanced mixed-integer programming,” 2011.

[160] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters,

vol. 31, no. 8, pp. 651–666, 2010, doi: 10.1016/j.patrec.2009.09.011.

[161] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “DDoS attack detection method using

cluster analysis,” Expert Systems with Applications, vol. 34, no. 3, pp. 1659–1665, 2008,

doi: 10.1016/j.eswa.2007.01.040.

[162] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” 2014. available at:

http://arxiv.org/abs/1407.3561 [accessed 15 May 2020].

[163] “On Public and Private Blockchains - Ethereum.” available at:

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ [accessed 15

May 2020].

[164] “Proof-of-Authority Chains · Parity Tech Documentation.” available at:

https://wiki.parity.io/Proof-of-Authority-Chains [accessed 15 May 2020].

[165] A. Back et al., “Enabling Blockchain Innovations with Pegged Sidechains,” 2014.

available at: https://blockstream.com/sidechains.pdf [accessed 15 May 2020].

[166] “Ethereum.” available at: https://github.com/ethereum/ [accessed 15 May 2020].

[167] R. Van Rijswijk-Deij, G. Rijnders, M. Bomhoff, and L. Allodi, “Privacy-conscious

threat intelligence using DNSBLoom,” in Proceedings of the 2019 IFIP/IEEE

 159

Symposium on Integrated Network and Service Management (IM 2019), pp. 98–106,

2019.

[168] “Memcached DDoS Attacks: 95,000 Servers Vulnerable to Abuse.” available at:

https://www.bankinfosecurity.com/memcached-ddos-attacks-95000-servers-vulnerable-

to-abuse-a-10705 [accessed 15 May 2020].

[169] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”

Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004, doi:

10.1080/15427951.2004.10129096.

[170] “Ethereum Go Implementation.” available at: https://github.com/ethereum/go-ethereum

[accessed 15 May 2020].

[171] “Ethereum Network Intelligence API.” available at: https://github.com/cubedro/eth-net-

intelligence-api [accessed 15 May 2020].

[172] “Ethereum Network Stats.” available at: https://github.com/cubedro/eth-netstats

[accessed 15 May 2020].

[173] “nfdump: Netflow processing tools.” available at: https://github.com/phaag/nfdump

[accessed 29 April 2020].

[174] M. Majkowski, “The real cause of large DDoS: IP Spoofing - CloudFlare.” available at:

https://blog.cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/ [accessed 25 May

2020].

[175] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[176] “Novelty and Outlier Detection.” available at: https://scikit-

learn.org/stable/modules/outlier_detection.html [accessed 25 May 2020].

[177] P. Mockapetris, “RFC 1035 - Domain Names Implementation and Specification.”

available at: https://www.ietf.org/rfc/rfc1035.txt.

[178] M. Singh, M. Singh, and S. Kaur, “10 Days DNS Network Traffic from April-May,

2016,” Mendeley Data, v1, 2018, doi: http://dx.doi.org/10.17632/zh3wnddzxy.1.

[179] Q. Yan, M. Wang, W. Huang, X. Luo, and F. R. Yu, “Automatically synthesizing DoS

attack traces using generative adversarial networks,” International Journal of Machine

Learning and Cybernetics, vol. 10, no. 12, pp. 3387–3396, 2019, doi: 10.1007/s13042-

019-00925-6.

[180] “National Anti-DDoS-coalition - No More DDoS.” available at:

https://www.nomoreddos.org/en/ [accessed 31 May 2020].

	1 Introduction
	2 State-of-the-Art: Network Management and Security
	2.1 Software-defined Networking and Data Plane Programmability
	2.1.1 OpenFlow Protocol
	2.1.2 Programming Protocol-independent Packet Processors - P4
	2.1.2.1 P4 Language Architectural Overview
	2.1.2.2 Standard Types and Metadata
	2.1.2.3 Programmable control blocks
	2.1.2.4 Actions and Tables

	2.1.3 Data Modeling and Abstraction Layers
	2.1.3.1 YANG and OpenConfig
	2.1.3.2 Multi-protocol SDN Controllers and Automation Frameworks

	2.2 Network Function Virtualization
	2.3 High Performance Packet Processors
	2.4 Monitoring Solutions
	2.4.1 SNMP and Streaming Telemetry
	2.4.2 In-band Network Telemetry
	2.4.3 Packet-level and Flow-level information
	2.4.4 SDN and Data Plane monitoring solutions
	2.4.5 Monitoring-as-a-Service: NFV and Cloud Infrastructures

	2.5 Cyber Threats
	2.5.1 Malicious Software
	2.5.2 Botnets
	2.5.3 Denial-of-Service attacks

	2.6 Mechanisms for Anomaly Detection and Mitigation – Interdomain Collaborative Schemas
	2.6.1 Anomaly Detection
	2.6.2 Mitigation Mechanisms
	2.6.3 Collaborative Schemas

	3 Traffic Monitoring and Anomaly Detection based on Dispersed Vantage Points
	3.1 Problem Statement
	3.2 Background and Related Work
	3.3 Design Principles
	3.4 Architectural Components and Implementation Details
	3.4.1 Monitoring Data Handler
	3.4.2 Centralized Data Warehouse
	3.4.3 Customized Analytics
	3.4.4 Orchestrator

	3.5 Evaluation
	3.5.1 Experimental Setup
	3.5.2 Experiments on Multi-Vantage Point Anomaly Detection

	4 Multi-Feature DDoS Detection on Programmable P4 Hardware
	4.1 Problem Statement
	4.2 Background and Related Work
	4.3 Architectural Design and Selected Traffic Features
	4.4 P4 Implementation Details
	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 DDoS Detection Accuracy Assessment
	4.5.3 Packet Processing Performance Capabilities

	5 Placement and Automated Distribution of Access Control Rules to Heterogeneous environments
	5.1 Problem Statement
	5.2 Background and Related Work
	5.3 Architectural Overview: Principles and Components
	5.4 Detailed Architecture
	5.4.1 Pre-processor (PP)
	5.4.2 Mitigation Resolver (MR)
	5.4.3 Rule Handler (RH)

	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 Traffic Profiles for Anomaly Mitigation Experiments
	5.5.3 Experimental Evaluation of Anomaly Mitigation Mechanisms
	5.5.4 Complexity of Generalized Assignment Problem

	5.6 Automated Rule Distribution via Salt & NAPALM

	6 DDoS mitigation via network provider collaborations
	6.1 Problem Statement
	6.2 Background and Related Work
	6.3 Overview and Baseline Design
	6.3.1 Design Principles
	6.3.2 Architectural Components
	6.3.2.1 Collaborative Incident Response Manager
	6.3.2.2 Data Store Service
	6.3.2.3 Attack Mitigation Appliance

	6.4 Proposed Architecture: Implementation Details
	6.4.1 Blockchain-based Smart Contracts
	6.4.2 Orchestration Workflow
	6.4.3 Reputation Schema for Collaborating Entities
	6.4.4 Cost Optimization - Mitigation Action Assignment
	6.4.5 Implementation of Mitigation Mechanisms
	6.4.6 Verification of Mitigation Agreements

	6.5 Evaluation
	6.5.1 Experimental Setup
	6.5.2 Reputation Score Calculation
	6.5.3 Mitigation Actions Placement
	6.5.4 Mitigation Verification

	7 Fine-Grained Traffic Classification and Attack Mitigation based on Programmable Data Planes
	7.1 Problem Statement
	7.2 Background and Related Work
	7.3 High-level Design
	7.4 Architectural Components and Implementation Details
	7.4.1 Fine-Grained Monitoring
	7.4.2 Traffic Classification
	7.4.3 Anomaly Mitigation

	7.5 Analysis of DNS-based Reflection and Amplification Attacks
	7.6 Evaluation
	7.6.1 Experimental Setup and Datasets
	7.6.2 Accuracy of Signature-based Classification
	7.6.3 Feature Importance
	7.6.4 IP-based vs Signature-based filtering
	7.6.5 Traffic Monitoring and Filtering Performance

	8 Conclusions and Future Research
	8.1 Summary and Concluding Remarks
	8.2 Areas for Future Research

	9 Publications
	10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα Ελληνικά
	11 References

