EOvik6 Metoofro IToAvteyveio
YxoAn} HAextpordywv Mnyavikov kot Mnyovikedv YToAoylotov
Topéag ITAnpogopikng kot Texvoroyiag Ymoloyiotodv

MovteAoToiNnNG EQPAPUOYDV KO TEAEGTOV HEYAAWV dedopévv ot
TePPAALOVTO VTOAOYIGTIKDOV VEQDOV

AIAAKTOPIKH AIATPIBH

Iodavvng K. INavvakoémovlog

ABnva, NoépuPprog 2018

EOvikd Metoofro [ToAvteyveio

SxoA Hiextporoywv Mnyoavikev ko Mnyavikodv YToAoylotov

e
!ni';'
%
mcvs
NSH=
VP Poro

v

W

Topéag ITAnpogopikrg kot Teyvoroylag Yroloyiotmdv

Movtelomoinon eQaAPHOYDOV KOl TEAEGTOV HEYXA®V dedopévov o
TePPIALOVTU VTOAOYIGTIK®OV VEQOV

AIAAKTOPIKH AIATPIBH

Iodavvng K. lNavvakoémoviog

SvpPovArevtikn Emrponn:

Nektaprog Kolopng
Anpntplog Toovpdkog

Moavaydtng Toavakag

Eyxpifnke amd tnv entopelr e€etaotiky emrpomny tnv 26m NoegpPpiov 2018.

Nektdprog Kolopng Anpritplog Toovpdkog Movayuwdng Toavakog
Kabnyntng EMII AvamAnpwtic Kabnyntrg Kabnyntng EMII

I6vio Iavemiotpio
Tecdpyrog ITaAAng Iwdavvng Kotidng Anpntpa Povsomoviov
Emnixovpog Kabnyntrig Avartinpwtig Kabnyntig Avarminpotpra Kabnyntpia

IMavemotipo Korpou

Owcov. Iavemotipo ABnvov

Evayyeria ITitovpa
KoOnyrtpuo

Movemotipo Inavvivov

ABnva, NoépuPprog 2018

EKIIA

Iodvvng K. TavvakoTovrog
Adaxtwp HAektpordyog Mnyavikdg kot Mnyavikdg Ymoloylotodv
EBviko MetooPro IToAvteyveio (2018)

Copyright © Iwavvng K. Tavvakomovrog, 2018

Me emupOro€n mavtog dikondpatog. All rights reserved.

Amayopeveton) avtrypagn, arodrkevon kot Staevopn Tng mapovoag epyaciog, €€ OAOKAPOU 1} THIHATOG
aLTNG, Yla epmoplkd okomd. Emitpéneton n avatdnwor), amobrikevon kot Stavopr) yiox okostd pr kepdo-
OKOTLKO, EKTTOSEVLTIKNG 1] EPELVNTIKTG PVONG, LTTO TNV TPoLTOOEST) Vo avapépetan 1) TNy TPoéAevong
Ko vae Swaetnpeiton to opdv pjvope. Epotripota mov agopoidv T xprion g epyasiog yio kepdooko-

KO OKOTTO TTPETEL Vo arteLBVVOVTAL TTPOG TOV GLYYPAPEQ.

O amoYelg Ko Tot GUUTEPAGHOTA TTOV TEPLEXOVTOL GE XUTO TO £YYPOLPO EKPPALOLY TOV CLYYPOPER KL

dev mpémeL va eppunvevbel 6TL avtipoowevouvy Tig enionpeg Oéoelg Tov EOvikod Metodfov IloAvteyveiov.

Contents

Evyopiotieg XV
xvii
FAwocdpro Teyvikmv Opmv xix
Exteroapévn Hepiinyn 1
....................................... 1
D.1.1 Kivntpd . . o oo 1

D.1.2 TOVELGOOPED « o o o e e e e 3

D.2 Tpoocopupoctikiy Movtelomoinon Anddoonc Teheotry Meydhwv Aedopévi 4
0.2.1 OgpeMwon TOL TPOPAUATOT « « o o v o v e e e e e 4

0.2.2 MeBoSOAOYIOl . « .« o o 5

0.2.3 TapatnPAoeld . . o o o o 8

0.3 Boaowouévn oto epieyduevo Movtehomoinon Teleotov Avélvonc Aedopévwy . 9
0.3.1 OeueAMwon TOU TPOPAALOTOT « « o v v o o e e e 9

0.3.2 MeBOSOMOYIOl .« - « v v o o e e 10

0.3.3 TIapotnpioeld . . o o o v v e 13

D.4 SUOUTEPAOUOTO . - « o v o oo e e e e e e e e 15

1 Introduction 17
.1 Motivation| 17

1.2 Contribution] 21

vi Contents
.3 Document Qutlind 24
P Adaptive Performance Modeling of Big Data Applications and Operators 27
.. 28
R.2 Preliminaries o oo 30
P.21 Problem formulation] 30

p.2.2 Decision Treed 31

P.3 Profiling Methodology| 32
3.1 Method overviewl oo 32

R.3.2 Decision Tree Expansion i 34

R.3.3 Adaptive Sampling 37

3.4 Modeling 41

R.3.5 Complexity analysid 42

R.3.6 Anend-to-end example 43

p.4 Experimental Evaluation| 44
p.4.1 Comparison of end-to-end profiling methods for varying Sampling Rate 47

p.4.2 Impact of performance function complexity and dimensionality] 49

p.4.3 Impact of per-iteration number of deployments 50

P.4.4 Impact of oblique boundaried 52

P.4.5 Cost-aware profiling 54

R.5 DiIScusSion oo 55
B A Content-Based Approach for Modeling Analytics Operators 57
.. 58
B.2 Preliminaried o 60
B.2.1 Problem Description] o 60

B.2.2 Operators and Dataset Propertie] o o v v v v i 60

B.3 Methodolosyl o 62
B.3.1 Methodology Overview| i i 62

B.3.2 Similarity Estimation] 63

B.3.3 Dataset Space Projection] 67

B.3.4 Modeling 69

B.3.5 Optimizationd 69
[Approximate Similarity Matriced 69

Online Indexing] o o o o 71

B.4 Accommodating graph datasets 72

B.4.1 Operators and Graph properties o i 72

Contents vii
B.4.2 Similarity metric estimation 73

B.5 Experimental Evaluation| 75
B.5.1 Dataset Space Construction| v i 77

B.5.2 Operator Modeling| 81

B.5.3 Combining Similarity Metricd 83

B.5.4 Distribution Similarity Granularity] 84

B.5.5 Approximate Similarity Matriced 85

B.5.6 OnlineIndexing 86

B.5.7 Extensionto graphdata 88

B.6 Discussiono 95

U Related Work 97
.1 Performance Modeling of Big Data Applicationd 97

#.2 Data-driven Modeling of Analytics Operatord 103

5 Conclusions and Future Directions 109
113
Bibliography 117
/A Cloud Application Deployment with Transient Failure Recovery] 131
[A.1 Introduction 131
A2 Related Workl 134
A3 Application Deploymentl 137
[A3.1 Architecturd 138

[A3.2 Deployment Model 139

[A.3.3 FError Recoveryl o o 141

[A3.4 Tdempotencyl oo v v 145

A4 TImplementation Aspects oo 146
[A41 Optimizationd o v v e 147

[A.4.2 Portability and Reusability] 148

A5 Experimental Evaluation| 150
[A.5.1 Deployment Model Scalability| 153

[A5.2 Transient Error Frequencyl o v v v i i 155

|A.5.3 Snapshot Implementation Overhead 157

[A.5.4 End-to-End Performance Comparisor] 159

IA.6 Conclusions and Future Workl 161

viii Contents

List of Figures

il Emiokomnon pedddou TposopUOGTIKAC LOVTEAOTTOINONG .« « « « « v o v o o v . .
R Emoxoénnon peBodoloyioc povrelomoinonc tne eE68ov evoc teheotd
.1 The4V’sofBigDatd
[.2 Two dimensions of modeling operator behaviod
P.1 Modeling errors of different profiling schemed
P.la Random sampling
P.1b Uncertainty sampling
p.2 Example of an Oblique Decision Tred
p.2a Oblique Decision Tree structurd o ..
R.2b Space partitioningo
R.3 Method OVEIVIEW o v v v oo
P.4 An example of Decision Tree Expansion for f(z,vy) = (x + y)exp(z +y) . . .
P.4a 3d projection of the performance functiony
pP.4b Top view of the performance function
R.4c Topviewwithsampled
p.4d Candidate splitlines
p.5 Distribution of samples for different weightd
P.5a Original function|
5D Weppor = 1.0, Weize = 0.0 o o L
R.5C Weppor = 1.0, Weize = 0.5 . o o o o o
R.5d Werpor = 0.0, Weive = 1.0 . o o o o o o

ix

18
21

28
28
28
32
32
32
33

36
36
36
36
39
39
39
39
39

List of Figures

R.6 Algorithm execution for Wordcount| 43
R.6a Firstiteration| 43
R.6b Seconditeration. 43
R.7 Accuracy vs sampling rate (MSE) 47
R7a K-meanso 47
..................................... 47
R.7c Wordcount 47
P.7d MongoDB 47
P.8 Accuracy vs sampling rate (MAE) 48
P.8a k-meand 48
..................................... 48
P.8c Wordcount 48
R.8d MongoDB 48
P.9 Per-iteration number of deployments evaluatior| 51
R.9a ACCUTACY . « « v o e e e e 51
R.9b Execution time 51
P.10 Accuracy for flat and oblique cuty 53
R.10a Accuracy fork-meand 53
P.10b Accuracy for EXPABS - entire spaceo 53
R.10c Accuracy for EXPABS - ABNspace 53
2.10d _ Relative error for different testsets 53
B.1 Relationship between Data Distribution and Operator behaviof 58
B.la Statistical distribution of 6 datasets 58
B.1b Output of operators for the 6 datasety 58
B.2 Methodology Workflow] 63
B.3 Distribution Similarity Exampld 65
B.4 Example of MDS and Sammon mappingo 69
B.5 Dataset diStances oot ot 70
B.6 Node degree estimation in different leveld 74
B.6a Graphoverview 74
B.6b Adjacency list and node degreed 74
B.7 Two example graphs with average degree 2. 75
B.7a Ring graph with averase desree 2., 75
B.7b Graph with triangles with average degree 4 75
B.8 Dataset spaces, GoF and F,plotd 78

B.8a Goodness-of-Fit plofl 78

List of Figures xi

B.8b Sammon Stress E plof 78
B.8c HPO dataset Space o o i 78
B.8d WEAdataset spacd v oo 78
B.9 Combining data properties 83
B.9a Modeling accuracy for WEA-AVQo i 83
B.9b Modeling accuracy for WEA-SUM 83
B.10 Distribution Similarity Granularityl 85
B.10a Modeling accuracy for varying number of partitiond 85
B.10b Execution time of different phases 85
B.10c Sammon Stress for varying dimensionality] 85
B.10d Modeling accuracy for varying dimensionality] 85
B.11 Approximate Similarity Matrix Evaluation] 86
B.11a Achieved speedup vs % datasety 86
B.11b Relative modeling error vs % datasetd 86
B.12 Online Indexing Evaluation 87
B.12a Relative Sammon Stress vs # of new datasets 87
B.12b Relative Modeling Error vs # of new datasety 87
B.13 Similarity Metrics Comparison for TW Dataset| 93
B.13a Spectral Radiug 93
B.13b Eigenvector C| 93
B.13¢c Betweenness C| 93
B.13d Edge Betweenness C| 93
B.13e Closeness Cl. 93
B.13f PageRanK 93
B.13g Execution Time (Sec) o v v v e 93
B.14 Similarity Metric Comparison for Betweenness C| 94
B.14a ASdatasell 94
B.14b BAdatasetl 94
[A.1 AURA Architecturd o o i 138
|A.2 Message exchange between different software modules and circular dependencies 140
IA.3 Wordpress deployment graph with 1 Web Server and 1 Database Server 143
IA.4 Message exchange between modules of different multiplicityf 147
IA.5 Wordpress deployment graph with 2 Web Servers and 1 Database Serveq 152
IA.6 Hadoop deployment graph with 1 master and 2 slavenodes 152
|A.7 Execution times of different deployment phases for varying module multiplicity|

psing vanilla imageso 154

xii

List of Figures

IA.8 Execution times of different deployment phases for varying module multiplicity|

psing prebaked imaged 154

|A.9 Number of script executions and configuration times for varying error probabilityl 156
IA.10 Overhead of AUFS and BTRFS for Wordpress v oo v .. 158
|[A.11 Overhead of AUFS and BTRFS for Hadoop v ... 158

List of Tables

R.1 Applications under profiling 45
P.2 Synthetic performance functiond 46
R.3 Accuracy vs function complexityl. 50
P.4 MSE decrease % for linear classifiers 52
R.5 MSE and Cost for different cost weights 54
B.1 Operators and Dataset Propertied 61
B.2 Datasets and Operatory o oo 76
B.3 Modeling Accuracy and Execution Speedup of Operatory 80
B.4 Datasets OVEIVIEW v v v v o o 89
B.5 Modeling Errors and Execution Speedup for Different Sampling Rated 90
IA.1 Requirements of AUFS and BTRFS 158
|A.2 Relative Deployment Time for Openstack Heat vs AURA| 160

xiii

Xiv

List of Tables

Evyoaplotieg

H napotdoa dwatpiPry exmovrifnke oto Epyoaotiplo Yrmoloylotik®v Zuotnudtenv tng ZxoAng
HAektpoldywv Mnyovikodv ko Mnyovikodv Yroloyiotodv tov EQvikod Metoofrov IloAvteyveiov,
vrtd v emifAeym tov kabnyntov Anuitpiov Toovpdkov kou Nextaprov Kolopr. Ilepiéyer
TNV €PELVAL KO TAL UTOTEAECPOTO TV PETOITTUYLAKOV HOU GIOLIMV KOTQ TNV TApousiol fov
ot SZHMMY tov EMIL KaBbg Aowmdv awtdg o kbkAog kAeivel, Ba beha v ekpphow tnv
EVYVWOHOG VT HOL 6TOVG avBpdIToug Tov eiyov koBoploTikr) GURPOAT] TNV OAOKA pWGT) AUTHG
g SatpiPrc.

Apywcd, B iBela va evyaplotiow Tov emPAémovta konynth pov Nektdpro Kolopn yia tnv
evukalpila oL pov £dwae vor o YoANB® pe oYY pova peLVITIKG BT OE EVa APTLO okadNPOikd
nepLlpdArov. H cuvexnc vmootrpén, 10660 LALKT 660 KoL TVeLPATLKT, KHOOG KoL 1) kabodriynom
7OV pov Topeixe OAa avtd T Xpovia EmatEay kaBoploTikd pOAO GTNV OAOKANPWGT QLTS
g mpoomdbeiag. To @LAdEevo epevvnTicd mepiPdrlov péoa oto omoio dovAeya, épabo ko
0AOKANpOOQ TG 6TTOLSEG oL €xeL dnpovpynBel artd exeivov kot Tpowbel TNV KoLvoTOpLO Ko
TNV LYLT] EPELYNTIKT OKEYT).

Oa 1l emtiong va evyaplotow tov emPArémovta kabnyntr pov Anpntpn Toovpdxo yia
v oAvTn PonBeld Tov ko T cuvvexn Tpoomabeld Tov kad OAN TN didpkela TWV GTOLSWOV
HOU Yylow TV emtiTevEn evog epevvnTiko autoteAécpotog vPnAov emimédov. TIépa amod Tig moAvTLEG
oupPovAég Touv mou pe foribnoav vor avarttOEW OAeg EKELVES TIG LKOVOTITEG TTOL TTPETTEL VoL £XEL
EVOLG EPELVTNG, OTIWG ELVAL T] GLYYPOLUPT] ETILOTIHOVLKOD KELLEVOL KaL 1) KPLTLKT] oKEYT), pe Epabe
VO OKEQPTOHOL EPELVITIKG Kol Hov peTédwae t difa yio cuvexn pabnomn. H mapodooa daxtpPi
dev B elye olokAnpwBel Toté ywpig TN dikr) Tov GLEPOAN KoL Yl TO AOYO atLTO TOL OPeiAw TNV

EVYVOHOG VT HOV.

XV

xvi List of Tables

Katd tn duiaprela Twv omovdev pov, onpeio avagpopag vrrp&e to Epyactriplo Yroloyioti-
KoV Zvotnpatev. H kabnpepivr pov cuvavaotpoer] pe 6Ao tor péAn touv énoiée koboplotikd
poro otV e€EMEN PO KaL TNV SIHOPPWoT) oL o€ epevvnTr. BEAw va evyaploTiow Beppd Tov
petadidaxtopikog epevvntég Ap. Tdvvn Kovotavtivov kou Ap. Katepiva Adka yioe tnv mo-
Abtipn Ponibeld Toug, Tig culnTHoELG HOG KaL TIG GUHPOVAEG TOL OV TTPOGEPepaV OAQ AT ToL
xpovia. Eniong, Ba nbela va evyoapiotiow Beppd tov v.8. Tdyko Mutidnvny ko Tov Ap. Niko
[MamanAiov, pe TOLG 0TOLOVG HOLPAGTHKAE TNV KOUOTLEPLVOTNTA UG GTO HEYXADTEPO PEPOG TWV
omovdwVv pog. Or ovvexeig ovlntioelg pag kot 1 kabnpepvr) aAAnienidpaot pog pe Porbnoe
TOAD otV mopeia pov wg voymglo ddaktopa. Téhog, Ba Beda va evyaploTrow O o T péAN
tov Epyactnpiov YToloyloTikdv Zuotnudtev yio tnv cuvepyacia toug kot tn Porfeia wov
HOV TTPOGEPEPOY O QLUTA TaL X pOVLIL.

T to Téhog, dpnoa Tovg onpavTikotEpoLs avBpmmovg ot (W POV, TNV OLKOYEVELX OV,
TN GOVTPOPO HOL KoL TOLG PLAOLG 1OV oL omoiol jtav dimAa pov oe OAn avtr) Vv mopeia. O
avBpwmor awtot dev PoriBnoav oty cuyypaen awtig g diatpifric. Bpiokovrav opwg mhvta
eKel yLot var atoppo@ovv Toug Kpadacpove, vo potpdlovtal T yopd ko Tn Abmn ko vo divovv

eAmido. T Toug Adyoug v Tog, TOUG EVYAPLOTE HEGHK OTTO TV Kopdid PHov.

Abstract

The Big Data revolution has created new requirements for the design of applications and op-
erators that are able to handle the volume of the data sources. The adoption of distributed ar-
chitectures and the increasing popularity of the Cloud paradigm has complexed their structure,
making the problem of modeling their behavior increasingly difficulty. Moreover, the wide vari-
ety of the existing datasets have complicated the problem of selecting the appropriate inputs for a
given operator, since the examination of the data utility for a given workflow is a largely manual
process that requires exhaustive execution for the entirety of the available datasets. This thesis
attempts to model the behavior of an arbitrary Big Data operator from two different viewpoints.

First, we wish to model the operator’s performance when deployed under different resource
configurations. To this end, we present an adaptive performance modeling methodology that
relies on recursively partitioning the configuration space in disjoint regions, distributing a pre-
defined number of samples to each region based on different region characteristics (i.e., size,
modeling error) and deploying the given operator for the selected samples. The performance is,
then, approximated for the entire space using a combination of linear models for each subre-
gion. Intuitively, this approach attempts to compromise the contradicting aspects of exploring
the configuration space and exploiting the obtained knowledge through focusing on areas with
higher approximation error.

Second and in order to accelerate data analysis, we wish to model the operator’s output when
deployed over different datasets. Based on the observation that similar datasets tend to affect
the operators that are applied to them similarly, we propose a content-based methodology that
models the output of a provided operator for all datasets. Our approach measures the similarity

between the different datasets in the light of some fundamental properties commonly used in

XVvii

xviii List of Tables

data analysis tasks, i.e., the statistical distribution, the dataset size and the tuple ordering. These
similarities are, next, projected to a low dimensional metric space that is utilized as an input
domain by Neural Networks in order to approximate the operator’s output for all datasets, given
the actual operator output for a mere subset of them.

Our evaluation, conducted using several real-world operators applied for real and synthetic
datasets, indicated that the introduced methodologies manage to accurately model the operator’s
behavior from both angles. The adoption of a divide-and-conquer approach that equally respects
space exploration and knowledge exploitation for the performance modeling part, proved to be
the main reason that our scheme outperforms other state-of-the-art methodologies. On the same
time, the construction of a low dimensional dataset metric space for the second part, proved to
be particularly informative in order to allow Machine Learning models to approximate operator

output for a wide variety of operators with diverse characteristics.

Iwoodaplo Teyvikov Opwv

AyyAucog Opog EAAnvikog Opog
Application Egpappoyn

Big Data Meydha Aedopéva
Cloud Computing YmoAloyiotikég Nepéheg
Dataset Y Ovolo Aedopévwv
Decision Tree Aévtpo Amopaong

Infrastructure (cloud)

Ymodopr] (vtoAoyioTikr)

Machine Learning

Mnyowvikr) Mébnon

Performance Amddoon
Resources YmoAoyloTikol TopoL
Operator Teheotr|g

Virtual Machine (VM)

Ewcovikr) Mnyoovr

XixX

XX

List of Tables

Extetopévn HepiAnym

0.1 Ewayoyn

0.1.1 Kivnrpo

H £é\evon g emoxng twv Meydhwv Aedopévov éxel pépel emavdoTaoT 6ToV TPOTO HE TOV
o7oio 0 KOGpOG PAéTeL koL AANAETIOPG e AUTA. 2TIG pépeg pHag, Evag oavEavOopevog aplBpog
enmiyelprioewv otnpiletal ot ovAhoyr, dtoyeiplon kot avaAvoTn peydAwy Sedopévwy £ToL OoTE
Vo TTopEXEL TTPOCWIOTOLNUEVES LI PeTieg LYMA0D emutédov otovg meddteg Ttovg. To peydro
TAEOVEKTIHO UTHG TNG TPAKTIKNAG eival OTL 1) AP amo@&oewV yiveTar OAO KoL TEPLOGOTEPO
Baoiopévn oto dedopéva: H avédvon twv Meydhwv Aedopévov amokaldntel potifo kot ma-
PAYEL YVOOT) TTOL 0SNYEL TIG ETTLYELPTOELG VA TTALPVOUV KOADTEPES TOPAGELG KL VXX OTHLLOVPYOUV
npoildvta ta omola evBLYpoppifovTon e TIg avykeg TV eAat®v Toug. MlapdAinia n tAndopo
TV TNYOV deSOpEVWV TTOL GLVEXDG dnpLovpyovV véa Sdedopéva pe vYMAO pLOPO €xel Soel TNV
wOnon otov akadnuaikd kKOGHo Yo va avalntrioel o otodotikovs TPOToLg vor arodnketet,
va Storxelpiletan kot va avadvel To dedopéva.

IMopdha vt 1) TEXVOAOYLKT] QLUTT) ETOVACTAGCT) £XEL SULOVPYTOEL LPKETEG TTPOKATCELG TTOV
a@opovV TNV oxediaot Kol apyLTEKTOVIKT TEAEGTOV oL epappolovtal oe Meyaha Aedopéva,
omwg avagépetal ko otn PifAtoypagio [TT13, Al13, LJ12]. H avéykn Sioyeipiong evog peyélov
oyxov dedopévv éxel odnynoel otnv adénom tng TOALTAOKOTNTOG TOGO TG OPYLTEKTOVIKNG
600 Ko TV alyopiBpwv mov vAoToLoVY oL TeAeoTég, kKabloTdVTOG TO TPOPANHA TNG povTELO-
TOLNGNG TNG CUUTEPLPOPAS TOVG OPKETA SVGKOAOTEPO GE GUYKPLOT) HE TAALOTEPEG EPAPHOYES.
H povtelomoinon g cupmepLpopdg evog teAeath elvor évae TOAD onpavTikd TpOPANpa, kKabog

TOPEYEL YVAOOT) G€ OXECT) He TN AELTOUPYLKOTNTA Tov. Ze avtr tn SatpiPr] B aoyoAnBodpe

2 List of Tables

pe To TPOPANpa TNG povTeEAOTOINONG £VOG TeAeoTr) MeydAwv Aedopévwv, eeTalovtag To amod
dvo okomiég. Ipwrtov, Ba aoyoAnboodpe pe tn povrelomoinon g 63061 Tov, CLVAPTHOEL
TOV TAPAHETPOV EYKATAOTAONG He TIG omoleg eykabiotaton ko devtepov, B aoyoAnBooype e
TN povtedomoinon g e€68ov tov (dnAadt| pe To amotélespd Tov) dtav avTOG exTeAeiTaL Yo

Sropopetikd oOvora dedopévav.

H povtelomoinon tng anddoong evog teAesth 1) HLag eQoppoyng eivon éva TpOPAnpe to
omolo éxel peAetnBOel moA0 ot PipAtoypapic. Ttnv meployn twv Meybdhwv Aedopévav, o TTpod-
BAnpo avtod yiveton Wiaitepa ddokoro e€aitiag Tng moAlvmAokotnTag Twv telectdv. H mo-
Avmhokotnta avth ogeidetan o Vo Adyous. Ilpwrov, ol telectég Meydhwv Aedopévwv ako-
AovBolV, Kot KovOve, KOUTAVEUTHEVT] ALPXLTEKTOVLKT] ETOL OGTE VO EXOLV TNV QITALTOOHEVT] KAL-
HOKOOOTNTR. ALTO onpaivel Tog kdbe vITOpOVAdX TOL TeAeoTr) Pmopel va eykatootabel pe
droupopetikd aplBpd diepyaciowv, KATL TOL e TH CELPA TOL CLEAVEL TIG EMLAOYEG TTOPOUETPO-
moinong tov. Agltepov, ot tedeotéc Meydhwv Aedopévov eykabiotavtol, kot kbplo Adyo, o€
Cloud vmodopég yix pa TAnBopo Adywv mov apopovv v duect dnpovpyio kot a€lomoiner
peydAov TANBovG LITOAOYLGTIKOV TOPWV, TNV EVKOAGTEPT) Stayelplon, k.o. H mpoypoppartiotiv
dnpovpyia etkovikdv mOpwv divel Tn duvaTdOTNTA GTOV KATOXO TOL TEAESTH TNV SLVaTOTNTX
TNG TOPOHETPOTTOLNOTG TOL TTEPLPAAAOVTOG TOV pe TOAAY peyddn Aemtopépera. Ou Svo autég
mopdypetpol 0dnyodv oe exBetikr} ad&nomn Tov XOPOL TAPOPETPWV TNG EGAPHOYTS, HE TTOTENE-
oot oL TOPOSOCLOKEG TEXVIKEG HOVTEAOTTOLNGTG VoL outaltovy ekBeTikd meploodTepa delypata

TOPAPETPWOV £TCL OOTE VO ITOPEGOLY VXX TTETVYOLVY TTPOGEYYLOT) TNG arddoong e LYMAT akpifeto.

Amo v QAL pepd, 1 SuvatodtnTo TPOPAEYNG TOL ITOTEAECHATOG EVOC TEAEGTT] TTOL €K-
teheital oe éva 6OVOAO Sedopévmv YwpIig TNV YUOLKT EKTEAEGT] TOV, UITOPEL VOL ETTLTALXVVEL TN)
drdikaoia emhoyng evog ouvolov dedopévwy Tov TANPEL KATOLL KPLTHPLO KO HEYLOTOTOLEL
TN XPNopoTnTa Tewv dedopéveov yix évav tedeotr). Amd i okomd avtr, Oéhovpe va povte-
Aomotfjoovpe v €080 evOg TeEAETTH] GUVAPTNOEL TOV GLVOAWVY dedopévev oTa omolo popet
va exteheotel. H dvoxoria emilvong avtod tov mpofAfpartog éykeltor 6to yeyovog OtL Ta
obvola dedopévwv elcddov dev akolovBodv kdutolx oyéor Sdta&ng peta€d Tovg Kalt, GLVETMG,
0 HETPLKOG XWPOG €16080L Tov TTpoPAfpatog povtedomoinong dev opiletar. Me dAla Aoyia,
amotteiton 1) Snpovpyla vog SLovOOUATOG XOPAKTNPLOTIKOV Yl kGBe cOvoro dedopévev To
07t0l0 ATTOTEAEL HOVADLKO OVOYVWOPLOTIKO TOU KOl HITOPEL VO KATHOKEVAGTEL EVOLV HETPLKO XDPO

TTOV QATTOKTA OHAGLOAOYLA KO OVTOVOKAQ TIG GLOYETIOELS HETAED TV GLVOAWVY Sedopévav.

[Ipémer v Tovicoupe 6tL T dvo mpoPAfpata mov avtipetwrilovpe oe ot T SatpLfPn
avtovokAoOv Tig dvo kuplapyeg diaothoelg evog clyxpovoy tedeotr) Meydhwv Aedopévwv.
Agevog, e T povrelomoinon g atddoong BEAOVLE VO KOATAGKEVAGOUE £V TTPOPIA TO 000
propel va fonbricel otn AMYn amopdoewv yia T PEATIoTN AetTovpyic TOL TEAEG T Ao AToY)

amddoong. Apetépou, pe Tn povtedonoinon g e£6dov Tov Tedeatr, OéAovpe va dnpovpyrjcovpe

0.1. Ewcaywyn 3

éva Tpo@iA dedopévwv mov Bonba TNV edpecn TwV GLVOAWV SedOHEVKOV e TN HEYLOTH XPNOLUO-

TNT Yo TV Agttovpyio Tov.

0.1.2 Xvveio@opég

Sy dwetpiPr] awtr, mapovoidlovpe dvo peBodoroyieg mov 6TOXEDOLY T HOVTEAOTOLNOT) TNG
OUUTTEPLPOPAS TeEAEOTOV Meydhwv Aedopévev, amd dvo dpopetikég ontikég. [IpodTov, emi-
AVovpe To TPOPANpO TNG povTeAomoinong NG ardd0ong eVOg TEAEGTY CLVAPTHOEL TWV TOPOL-
HETPOV EYKATAOTAONG HE TIG 0Toieg exteAeital. AgVtepov, emADOVHE TO TPOPANHA TG HOVTE-
Aomoinong tng e£6dov evodg tedeotr) Otav extedeiton yio droepopeTikd cOvora dedopévav. Or

ouveloPopES TNG dratpiPrig awwtrig cuvoyilovton ota e€ng onpelo:

« EEetalovpe To mpOPAnNpa TnG HOVTEAOTIOINGTG TNG CUNTEPLPOPASG EVOG TEAEGTI] LTI TO

nplopa Tng amddoong Tov kot Tng e£6d0L Tov.

« IIpoteivoupe pLa TEXVIKT] TPOCAPUOCTIKNG HOVTEAOTIOINGTG TNG arOS00N G £VOG TeEAETTT
7OV oTNPilel TN AetTovpyio TNG GTNV AvadPOLLKT] SLAUEPLOT) TOV XOPOL TOPAPETPWOV TNG
EPAPHOYTG, TNG TPOCAPUOCTIKNG KATAVOUNG TOL dtobéaipov aptBpot Serypdtwv ot kabe
VITOYWPO AVAAOYQ HE TO CPAMI TTPOCEYYLOTG KoL TO PéYeBOG Tou Ko, TEAOG, TNG KaTa-
OKELNG VOGS HOVTELOV GtV GUVOLAGHO AITAOVGTEPWV YPUHUILKOY HOVTEL®MY TTOVL QLPOPOVV
dwapopetikd ywpio. H potervopevn pebBodoroyio cupfialer Tig 0o avtippomneg tdoelg
NG e€epediviiong TOL XMPOL TAPAUETPWV KL TNV EKHETAAAEVOT) TNG YVOOTG OV €XEL

amoktnBel yia To x®Opo pe Phomn to delypata.

« IIpoteivoupe pia texvikr povrelomoinong tng €680V evOG TEAEGTH) CLVAPTHGEL TWV GL-
vOAwv dedopévav elcddov ov Paciletal oty avaALoT) Kol GUYKPLOT) TOV TTEPLEXOHEVOU
TV cLVOAWVY. Xvykekpyéva, 1 peBodoroyia pag copmepthopfavel Tov LITOAOYLOUO TNG
OHOLOTNTOG HETOED TV SLoLPOPETLKOV GLVOAWV SeBOHEVLV, LT TO PWG TPLHOVY BepeAWdGOV
WothATwv Tovg: () TNG OTATIOTIKNG KATavoprg Toug, (B) tov peyéBoug toug kai (y) tng
oelpag ePPAvIoNG TwV aTolxelwv Toug. Me Phon autég TIg OpoLOTNTEG, 1) TPOGEYYLOT] HOG
TOPAYEL EVOV PETPLKO XWDPO TTOL TTPpoPdAdel Ta Sapopetikd cOvola dedopéva oe ALTOV
KL Ol HETOED TOVG AMOCTAGELG 08 aLT®V deiyvouv Tnv opotdtnTd Tovg. H €€odog tov
teleotn] mpooeyyiletou pe tn xprion Nevpwvikdv Ak tOwv mov ekmatdebovToL Yo To XOpo
avtd, pe Paomn e£68oug Tov Tedeotr] ov xovv cLAAeYOel yia éva [kpo delypa TV GLVO-

Awv dedopéEvmv.

+ Extelodpe Aemtopepr) metpapatikr aloddynon ko yio tig dvo pebodoloyieg, ypnotpomnot-
oOvtag TANODPo TPAYUATIKGOV KoL SNHOPIAGV TEAESTOV KBNS KoL SLAPOopar TPAyHATIKE
Kot ouvBeTicd ovvora dedopévwv eladdov. H a€loddynon pog vodetkviel 6TL oL TpoTeL-

vopeveg peBodoloyieg eival Lkavég vo LOVTEAOTTOLGOLY TI) GUUTEPLPOPE EVOG TEAETTH) KO

4 List of Tables

oo Tig dvo e€etalOpeveg OmTIKEG e YOUUNAO GPAApQ, VG TopdAANAa 1) atddocT] ToUG

Eemepvi AAAEG AVTAYWVLIOTIKEG TEXVIKEG LOVTEAOTTOLNGTG.

0.2 IIpocappootikn Movielomoinon An6doong Tedeot MeydAwv

Agdopévmv

Sty evotnta vt B eoxoAnBoope pe To TPOPANHA TNG povTEAOTOINGTG TG ATTOSOCTG HLAG
epappoyng Meydhwv Aedopéveov cuvapTroeL TV TapapéTpwy oL TNV ennpedlovv. H mpotel-
vopevn pebodoroyio avtipeTwmilel To TPOPANpHA TNG HOVTEAOTOINGNG G Evar TopadocLaKo
npoPAnpo mpocéyylong ovvaptnong: H amddoot tng epoppoyng avTipeTomileTol oo po
HOONHATIKY) CUVAPTNGT TOL E€XEL WG €l00J0 €V GUVOAO TAPAUETPWOV TTOV AVTLITPOCKITEVOLY
puBuicelg eykatdotoong kot £xel oG ££0do pia T mov vodnAvel TNV addocT). ZKOTOG
g mpotewvopevng peBodoroyiog eivar 1) e€€Tact) TOL XOPOL TAPAPETPWV HE TPOTO TETOLO TTOV
emtpémnel v euPabuvon oe meploxég mouv 1 atddoon AopPdvel akovovioTn Hoper Tov eival
dvokoro v povtedomoinBei. T To Adyo awtd, 0 X®OPog TapapéTpwv diopepiletar oe EEva
vtoc VoA, AapPdvovton delypoto otd k&Be meployr yio To omoio 1) epappoyn eykabictaTol
KOl EKTEAEITOL KO, TEALKK, OL TOLpoYOPeVeS TIHEG arOO00NG X PICLLOTOLOVVTOL YL TNV KOTO-

okevn evog AévTpou ATTOPAGTG TTOL AVAITTAPLETE TO TEALKO HOVTEAO.

0.2.1 Osepelioon Tov wpofAnparog

‘Eotw epappoyn A, n omoia Aapfével n etoddoug ko topdyet pia £€0do. Kdbe puor amd awtég
TIG €L6OS0VG AVTLITPOCHWITEVEL Lt TTOUPAHPETPO TTOV PITOPEL VoL EMNPERGEL TNV TOSOCT] TNG KoLl
propel voo AdPel Tipég amd éva mpokaboplopévo ovvoro TV, tov Ba cupfoAilovpe pe d;. To
KOPTESLAVO YIVOHEVO OAWV TwV 1008wV TG epappoyng D = dy X da X ...dy, ocvviotd tov
Xpo mapapétpwy g epappoyng. Kabe onpeio tov yodpov avtod avarapiotd éva povadikd
oUVOLACHO TAPAPETPWV e TOV 0TT0l0 ptopel va eykartaotadei n epappoyr). H é€odog tng eivon
L0 TTPOLYHOLTLKT] TLUT) TTOL elval eVvOELKTIKT] TNG ardS0oNG TG ePappoyng kot cUpPoAileTal pe To
ypoppo P. Me Béon avtoig Toug 0pLopong HItopove Vo 0picOUpE T 6LVAPTHOT arrdd0ong TG
A og o atewkdvion m : D — P. T tnv mpocéyyion auThg TG cuvapTnong, apkei 1 emloyr
evog vtoovvorov Dy C D yux T pédn tov omoiov n A B eykataotabel ko Ooe Anebodv ot
avtictolyeg Tiég amddoong twv onpeiwv. H povrelomoinon tng atddoong oe oAdOkANpo T0
XWPO HITOpEl, eV oLVEYELD, VO YiVEL e XPT)OT) CTATIOTIKNG 1) TEXVIKGOV Mnyaviky Mabnong mov
BonBolv ot yevikevon g atddoong oe OAOKANPO TO XWOPO TopapéTpwv D.

Iopodro mov to cuykekpiévo TpdPAnpa eival cvnBeg kKot cuvavTdtol cLxva ot didpopa
TpoPApOTO HOVTEAOTTOINGTG, TNV TEPITTWOT) TG HOVTEAOTOLNGTNG TNG AITO00TC EYAPHOYDV

Meydhwv Aedopévawv eppavilel mpokAnoelg mov to kévouv Wiaitepa dvckoro. O ciyypoveg

0.2. TIpocappootikry Movtelomoinon Anddoong Teeotr) Meybhwv Aedopévwv 5

epappoyég Meyadwv Aedopévev emnpedloviol amd éva peYaAo aplOpd TapapéTpwy Tov Exel
WG oLVETELR TNV ekBeTIKT) AOENOT) TOL XOPOL TOUPAUETPWV. AULTO GNHALVEL TTOG YLt TNV KOTO-
okeLr] povtéAwv amddoong vyning akpifelag, amaiteital évag oloéva avEavopevog aplBpog
deypdtov. HopdAAnio, av cLVLTOAOYICOUHE TWG 1) EYKATAGTACT] TG EQPXPUOYAG ELVOL o
xpovoPopa ko otkovoptkd akptPr) Sadikacia, kabictator capég o0tL 1 pebodoroyio povredo-
noinong mpémet va Sroyetpiletor moAd copd to dbéoipo aplBpd derypdtwv mov propetl va
dwabéoer. To mpdPAnpa, Aoutdv, To omoio avtipeTwTi{ovpe propel va ekppactel wg e€ng: Eotw
epapuoyry A ue yopo rwapapétpov D, cvvdprnon anédoong m @ D — P kau e Oetiktj orabepd
B. Aval{ntotue éva oabvoro Ds peyéBovs B 10 0moio kataokevdlel pia mpooéyyion the ouvapTnong

aréSoongm’ : Dy — P pe eAdyioro opddua, 1j icoSvvaua |m — m/| — 0.

0.2.2 MeOodoroyia

SOUPWVOL LE TNV TPONYOOHEVY) TEPLYPOLPT] TOVL TTPOPANHATOC, elval copég OTL 1) EOPECT) EVOG
Pédtiorov cuvolov Dy to omolo eAaXlOTOTOLEL TO GOAAPN TNG HOVTEAOTIOINGTG Elvarl éva oLV-
Svaotikd TpoPAnpa To omoio dev propei va Avbei oe ToAvwvupkd Xpovo. Tlapoia avtd, expe-
TOAAEVOHEVOL TIG LOLOLTEPOTNTEG TTOV TAPOLOLALOVTOL KATA T HOVTEAOTOLNOT) CUVAPTHOEWY
o6doong teheoTdV MeydAwv Aedopévwv, PITOPOVHE VO TTPOTELVOUE it EVPLOTLKY Ao 1)
omoia, 6mwg Ba dovpe, TapovoLdlel apkeTd KoAn atddooT Ko TPEXEL G TOAVWVLHLKO XPOVO.
ITio cuykekpLéva, PITopoLpEe Vo KaVvoLpe TIG eEfg apatnprioels. IIpdTov, oL oly)XpovoL TEAECTEG
Meyddwv Aedopévmv eivat o eSLOGHEVOL VO TPEXOLY GE KATAVEUNHEVR TTEPLPAALOVTO 6T OOl
0 LTOAOYLOTLKOG POPTOG UITopel var katavépetal oe meploocotepeg depyaoieg. H kApdkwon
QLTI GLY VA PTTOPEL VaL TTEPLYPOUPEL HE PLO YPOUILLKT) T) TUNHOTIKY YPOHULKT] oXECT): AVOpHEVOULE
OTL av évog tereotng Tpéel oe SutAdoio aplBud unyovnuatwv Ba xpewactel mepinov to oo
xpovo extéheonsg. H mapatnpnon avtr Bo avapépeton oto e€Ng wg ypapuikotnta. Aedtepov,
opellovpe va TapaTpricovpe OTL 1) ardd00T) evOG TeEAETTH) AVOEVETAL Vo AapPvel TapOpOLEG
TWEG O YELTOVIKEG TLEPLOXEG TOL XWPOL TOPAPETPWY. ALTO onpaivel g av emhéEovpe dvo
YELTOVIKG OTHELD TOV XOPOL TAPOPETPWV, 1) artddocT 1ov Ba TopaTprjcovpE avapéveTol va

eivon apketd mapopora. H mapatipnon auvtr Bo avopépetor oto e€1g wg TomKoThTa.

AIAMEPIZH XQPOY | ETKATASTAsH
HAPAMETPON AEITMATOAHWIA s CAEIrMaTaN] MONTEAOMOIMEH

\ 4

A

Figure 1: Emiokomnon pebddov mpocsappootikng povrelomoinong

6 List of Tables

Me Baon avtég TG SVO CNHAVTIKEG TAPATNPNOELS, HITOPOUHE TOPX VA TEPLYPAYOUpE TT|
HeBoSoNoYiar TPOGAPPOGTIKHC povTeAomOiNonG evoc TeAeath Meydhov Aedopéveov. H Ewkdva [l
TOPOLGLALEL pLa EMLOKOMNOT TNG TPOTELVOHEVNG etavoAnTikhg peBodoroyiog. Apyikd, otn-
pLlopevoL otV WOLOTNTA TNG TOTLKOTNTOG, TPOXWPANE GE Mo SLAPEPLOT] TOU XWOPOL TOPOLE-
TpwV, otV apyr k&be emavdAnyng tov aryopibpov. H dwopépion avrr éxel wg okomd v
OHadOTTOLN O] TTEPLOY MOV TOV XDPOL GTLG OTOLEG 1) AITODOOT) PALVETAL VO XKOAOVLOEL YPOrppiKT
oupmepLpopd. XTn cuvvéxela, AapPdvovtar deiypata and kdbe ywpio mov €xel TpokLYeEL GTO
nponyovpevo Prpa. O aptBpog twv detypdtov mov Aappaveton omd k&be ywpio kabopileton pe
Béon to péyebog Tov xwplov ko To GPAApA HOVTEAOTOLNGTG TNG CLUVAPTNONG addoong. Ztn
ouvéyela, to detypoata avtd eykabiotavtor kot 1 dadikacio eavadopfavetal yio £va mtpo-
kaBopropévo apBud popov. TeAkd,) cvvdptnon anddocng povteAomoleitol ge OAO TO XWDOPO
xpnotponotovtog éva Aoko Aévtpo Amdpactg.

Ag e€etdioovpe TOpa kb pdon Tov adyopiBpov pe peyoddtepr AemTopépeLo:

Alapépion YOPoL ToPAPETPOV XTOX0G TNG GUYKEKPLUEVNG PAoNG elval 1) Sapéplon Tov X®-
pov mapopéTpwy oe Eéva (peTa€d Toug) Ywpla, EToL BGoTe Ta SelypaTo TOL AVHKOLY G
K&Be xwplo va KaTaokeLALOLVY YPaPPULKE HOVTEAX e 600 TO duVaTO PIKPOTEPO CPAANQL.
H diadikacio Swapépiong opotalet e tn Stadikacio kataokevng evog Aévpov Aopacng:
Ké&Be ywpio avtiotoryel oe éva OALO To dévtpov. Katd tn dwdikacia tng Siopépiong,
10 Ywpio (UAANO) petatpémetal e éva gOVOLo S0 Ywpiwv (evdiapesog kopBog Aévtpov
Amdpaong) Ta ool Ywpilovtor pe Paor po evBeio Sixpépiong. H emdoyn awtrig ng
evfelag mailel katalvTikd poAO oTNV KaTaAoKeLT) TOL dévTpov: Oéloupe 1 evbeior Stoyé-
pLong vo mopayel dvo ywpio T delypata Twv omoiwv akolovbovv dco to duvatd Lo
YPOUHLKY) GUHTTEPLPOPA, T} LEOSOVOHQ, VO TTOPEYOLY YPOUULKA HOVTEAQ pe OGO TO duvaTd

HIKPOTEPO CPAAPQ HOVTEAOTTOLNGT|G.

Yta mapadootokd Aévtpo Amodgaong, ot evbeieg Siopéplong eival mapdAinieg oe évav
artd tovg GEoveg Tov XDdpov elcddov. Katd tn pedétn pog eidope 6TL avtd eivor apketd
SeopeLTIKO KL PeLVeL TNV ek@paoTikdTnTo Tov AévTpou. o to oKkomd avtd, viobetoaye
TNV TeXVIKN oL cuvavtdtal oto Aokd Aévtpa Amopdoewv, ot ool dokipudlovrol
drapopetiiég evbeieg SLPEPLOTC TOV EUTEPLEXOVV TEPLEGOTEPES ATTO HLX JLXGTACELG TOV
xOpov mapapétpwy. H katackeun tov vmoyneuwy evbetodv Stopépiong yio kabe @OAAO
yivetal pe) Ponfeta k&olov adyopibpov PeAtiotomnoinong (otnv Tapodoa TEPITTOOT
Tov alyopiBpov Mlpocopoiwpévng Avomtnong) dmov eyyvdtal T oOykAlon o€ pua Adon
mov Ppioketon apketd kovtd ot PéAtiotn. TeAkd, n Sadikacio vt emavadapfdveton
yia OAa T Ywplio Tov éxouvv mapoyBel péxpL GTLYHNG, KATL TTOL €XEL WG MITOTEAEGHA TNV

eMEKTOOT) TOV SEVTPOL KT évar emtimedo oe ke emavdAnym.

0.2. TIpocappootikry Movtelomoinon Anddoong Teeotr) Meybhwv Aedopévwv 7

AgvypatoAnyio 1o onpeio avtd, 0 Xdpog éxel dwapeploTel kot mpémel va emiheyel Eva GOVOLO
deltypatov mpog eykatdotoon otd kabe ywplo. e kdbe emavaAnym, mpémnel va emideyovv
b detypata. H epdtnon mov mpémel va amavinbel oe awtd to onpeio elval 1 akdAovdn:
Héoa deiypara mpémer va emideyovv amo kabe ywpio; Aedopévou OtL Tor Selypoto avtimpo-
oWTELOLV T1 YVAOOT oL AapPavoupe yia T ouvaptnot amddoong, eivor copég 0TL 1)
AN meplocdTepV SELYHATOV o€ pia meployt] pog divel meplocdTepn TANpopopio yiow
TNV GUUTEPLPOPA TNG GLVAPTNONG ATOOCTG OTNV TTEPLOYT] AUTH), €IS PApog OHWG AAAWY
meploy®v. Tevikd, BéAovpe 1 mwoAitikr) SerypatoAnyiag va éxel Ta akdAovBa oTolyeio:
[Ip&dTov, va peyLoTomoLel TNV KAAUYT TOL XOPOL TAPAUETPWY £TGL DGTE VAL UV VITAPYOLV
aveEepetivteg mepLoyég ko devTepov, va epPabivel oe TEPLOYES TTOL TO GPAAUA PLOVTENO-

moinong eivat LYMAOS xat, GLVETMOG, atalteiTon TEPLEGOTEPT) TANPOPOpPic.

TNo v Tpoypotonoinen avtig TG TOALTIKNG, SnpLovpYolie o cuvdpTnoT 1 omoia
amodidel Papn oe k&b ywpio (@OAN0 To AévTpov Amdpaong) oe k&be emavdAnym Tov oA-
yopiBpov ko, ot ovvéyela, katavépel ta b deiypata pe faon to Papog k&be xwpiov. H
oLVAPTNON aTH elvan VBEWS avaroyT Tov peyéBoug Tov Ywplov, pe T AoyLkn OTL peydha
Xopiot KOAOTTOUY PeyAAeg TEPLOXEG TOL XWPOL TUPOUETPWV KAl €vag LYNAGG aptBpog
detypatwv Bonbé tnv e€epebivor] Tov, KoL AVTLETPOP®OG AVAAOYT) TOU CPAANOTOG HOVTE-
Aomoinomng, He tn Aoytkn OTL Hikpd cEApa eival eVOELKTIKO TNG YPOHHULKTG CUUITTEPLPOPAS
NG amo6docng ko, GLVEN®G, dev Xpetaleton va e€epevvnBel mepaltépw To ywpio. Metd
Vv katovopr] Tewv b detypdtov pe Bdomn to Papog k&be ywplov, exteleiton dertypatornio
oe ke éva amd avTd, 610U TO Selypata emAéyovTon pe BAOT) LA OHOLOHOPPT) KATOVOLT).
lNa mopdderypa, av Ta ywpia ¢ kot j éxovv Papn w;, w; avricTolya, TOTE To Xwpio ¢ O

Aot ijj - b Setyparo.

Wi+

w;jfwj - b deiyporta evdd To ywpio j O AdPer

Eykoatdoraon derypdtowv Metd tnv emihoyr) Towv Setypdtwv oe K&Be emavanm, 1 epoppoyn
eykobiotatal yio Toug emiheyBévteg cuVSLAGHOUE TOUPOAPETPWV Kot AQUPAVOVTOL OL TLHEG
™G addoong g epappoyng. To Pripo cvtd eivat, katd kavove, kot to o xpovoPopo: H
EYKATAOTOOT) HLoG epoppoyng oe pia cloud vtodopn eivan pra dadikacio 1) omoio aontel
oML Xpovo, kabahg poimobétel T dnpovpyia etkovik®dv mopwv (Etkovikov Mnyoavav,
dlokwv, KAL), TNV EVopYXNOTPWGT) TNG SLadIKACLOG EYKATAGTAONG, TNV EKTEAEDT) TG EPOL-
PHOYNG KoL T GLAAOYY TV atoTeAeopdTwV. Katd tnv odokAjpwon g ektéleong TG
ePappoYNG Yo kBe éva amd Ta emhexBévta delyparta, oL Tiég TG outdd0oTg TG GLA-
Aéyovton amd Tov adyopLlOpo HovTeAOTOINGTG KAl X PI)CLLOTOLOVVTOL EITE YLK TNV €K VEOU
Sropépion ko derypotoAnPior Tov xdpov (av vTdpyxoLvy KoL GAAeg emavoAPeLg) eite yio

TNV TeALKY) HOVTEAOTTOINGT) TNG tddocNG.

8 List of Tables

Movrelomoinon Télog, petd TNV eTAVAANYT TRV TPLOV TPOTWV PNHATOV Yo Eva Tpokado-
PLopEVO aplBpd gopwv, Ta delypata o éxovy eykataotabel Katd TNV eKTéAEOT) TOUL OA-
yopiBpov xpnoipomotodval yio TN Kataokeur evog Aool Aévtpov ATdépacng, To émoLlo
EXEL OG PUAAD YPAPULKX HOVTEAQ TTOV HOVTEAOTTOLODV TNV aItOS0CT) TNG EPUPUOYTG YLO T

xwpio 6mov opilovrat. To Aévtpo avtd eival kot To TeAKO amotéheopa Tov alyopibpov.

0.2.3 IMapatnpnosig

Y10 onpeio auTod, AG HOG ETLTPATIEL VO KAVOULE HEPLKES TTALPALTTPYOELS OXETLKG pe T peBodoloyio
OV TEPLYPAYAHE TTAPATAVE.

Apyxka, To amotédecpa tng pebodoroyiag mov meprypayope eivor éva Aogd Aévtpo Amo-
(QOCTG TO OTTOL0 AVTLITPOCWITEVEL KOL TO TEALKO povTélo amddoong. To povrého awtd pmopet
vo xpnottornownBel pe moArovg Srapopetikovg Tpdmovg: Mmopei va fonbricel oxetikd pe tnv
EVPECT] TOV GLVOLACUDOV TTOPOUETPWVY HE TNV KOAVTEPY atddOOT), 1] TOV TOPAUETPWV EKELVOV
7OV £XOLV TO MIKPOTEPO OVTIKTUTO GTNV atddooT) eve, TapdAAnAa, puropel va Ponbricet ko
OTNV EVPECT] TOV ONHELWVY eKELVOVY TTOL 1) tdd0o T AapPAvel TIG XELPOTEPES TIHEG TNG, dELYVOVTOG
Kokt kKApdkwor. ToapdAAnho, oakopo ko proe amAn pedétn tng dopng tov Aévtpov pmopei vo
oL TOAVTLUES TANPOPOPLEG GYETLKA HE T1) CVOXETLOT) TV SLOUPOPETIKADV TAPUHETPWV KAL TOV
avtiktund touvg otnv arddoot). Ot evbeieg Siapépiong mov ywpilovv to dévtpo ot LYNAdTEP
entimeda, TELVOLV va €YouV HeYoADTEPY onpacio aTnv artddoot g epaproyng cuvorwkd. Emo-
HEVWG, [TappeTpog ov AapPhvel peydro Papog o po evBeiar Srapépiong mov Ppioketon
YnAd& otn devrpikn Sopr), onpaivel OTL elvol CNHAVTIKOTEPT) & GXECT HE P T oL PplokeTan
xopunAotepo. Ymd owtd TO Mpiopa, HITOPOVUE ETICNG VO TOPATHPHGOVHE OTL TOPAHETPOL HE
pikpn onpocio ayvoovvror amd o Aévtpo, apod dev Pfonbodv otnv xadvtepn Siopépior Tov
xwpov. Auvtd emitpémel ot pebodoloyia pog va Aettovpyel pe peydho aplbpd mapapétpwy kot
vo propei va epPabivel povo oe avTég oL EXOUV PHEYADTEPO AVTiKTLIIO 6NV addoot).

Aebtepov, Omwg oulnTroape KoL TPONyoLpeva, 1 eEaywyr] evog Bapoug Katd Tn GAcT) TG
detypatoiniog yiox kdbe ywpio Tov YOPOL TAPAPETPWY, EXEL WG OKOTTO v GLpTEPLAAPEL dvo
avtippomneg thoelg: Avth NG eEepevvnOnG TOL XDPOL TAPAUETPWVY KO QUTH TNG EKUETAAAEVONG
NG YVOGOTG oL el amoktnOel ko Tnv mepontépw epfabuvon oe meployxég mov vapyeL EAAeLY
yvoong yl Tnv amddoon tng epappoync. H Papitnta kabe piog and avtég Tig taoelg kabo-
pileton amtd to Yprioty kabwg avaloya pe Tov TOIO Kot To €id0g NG cuvapTnong amddoong,
propel ov avéykeg yia e€epedvnon kot ekpetdAievon va adialovv. Emiong, 1 xprion puog
poOnpatikng éxepoong yio tov kaboplopd tov Papovg k&be xwplov pog divel tn duvatdtnTa
vo. 6UVLTTOAOYiGOUpE KOl GAAEG TAPAPETPOUG TTOV TLXOV evdlapépouv To Xprioth. T mapd-
delyla, o€ TEPIMTWOTN TOL HOG EVOLAPEPEL 1) EACYLOTOTTOLNGT TOL KOGTOVG TNG HOVTEAOTTOLN-

ong, Oa propovoale Vo ELGRYOUHE Lo otkOPO TTOGOTNTA GTH Habnpatiky ék@poct) Tov Bapoug

0.3. Baoiwopévn oo Hepiexdpevo Movtelomoinorn Teleotodv Avédvong Aedopévwv 9

TOUL XWPLOL TTOL TO GLVSEEL [TO KOGTOG TNG EYKATACTAGTG HE AVTIOTPOPWG ALVAAOYO TPOTO
(dnAadn do0 o akpLPod eivor To KOGTOG EYKATAOTAONG EVOG XWPLOL TOGO HIKPOTEPO VAL eivat
0 Bdpocg). Me tov Tpdmo avTd, popel k&olog va cupTepLAGPel kot dAAeg TapapéTpoug 6T
povtelomoinot ywplg va xpetdletar vo adAAdEel k&t otnv pebodoroyia.

Téhog, o Tapadoyr) mov k&vayle katd T Oepedinon Tov tpoPAnpatog eival 6TL 1) atddoom
HLOG EQOPUOYNIG LITopeL va tepLypaupel oo pio podnpotikr) cuvaptnon. Avtod onpaivel 0Tt kabe
QOp& TTOV 1) POPHOYT eyKaBloTATAL YLt VO GUYKEKPLHEVO CUVOVAGHO TTapapéTpwV, 1| AneBeica
T g addoong Ba eivor mavta ida. Hoapoio avtd yvwpilovpe 0Tl oe éva meplfaiiov
cloud vrdpyovv moAroi Adyor yia Tovg omoiovg avtd propei vor unv oyver: O SLapolpaopog
TOPWV HETOED SLOLPOPETIKMV XPTOTMOV, OL ELKOVIKOTTOLNHEVOL TTOPOL TTOV TTPOGHETOLY EMUTAEOV
TOALTTAOKOTNTA KAB®OG KoL Tuy oo 1] YPovikd povopeva propovv va tpocBésouvv Bopufo otig
HETPTIOELG UTOSOOTG KL VO HELDOOTOLY TNV ETOVOANYLHOTNTA TV eYKaTOoTAoE®Y. AvTh eivon

Hio Siiotaot oto TPOPANp 1) ool PplokeTal EKTOC TV 6TOXWV TNG TTapovoas SiatpLPrc.

0.3 Boaowopévn oto Ilepreyopevo Movtehonoinon TeAeotodv Avd-

Avong Aedopévov

311 oy povn emoyT) 6TTOL OAOEVA KOl TTEPLoCOTEPEG TTNYES dedopévwv eival ehevBepa drabéoipeg
POG XP1oT], TO TPOPANHa eMAOYAC TV KaTdAARAwV Sedopusvowv yuo évov TedeoTr] yivetal on-
povtikoTepo ad moté. H ouvibng taktikn mov akolovBeitar amd avaduTég Kal Py ovikong
dedopévwv katd tn oxedioor teleoTtoVv eival 1 eEavtAntik ekTéAeot) evOg TEAEOTN] Yl TO
o0volo Twv drabéoipwv Sedopévmv Kal, 0TI GUVEXELA, 1) ETILAOYT] TV SedOPEVWV TTOL GLYKE-
VIPAOVOUV OPLoPEVOL ETTLOVUNTA YOLPOKTNPLOTIKA YIot TO GUYKEKPLHEVO TeAeaTr]. Aopfdavovtog
vrtoYn OtL 1660 10 TARBOG TV Sabéoipwy TNYOV dedopévmv 660 KaL 0 aplBPOC TwV TEAEGTOV
OV Y PNCLHOTOLOOVTAL KAONHEPLVE GUVEX MG CtVERVEL, YiveTOl GaupéG OTL 1) EEQVTANTIKT EKTENEDT)
TWV TEAEGTOV €Tl OAWV TV dedopévmv eival acdppopn. Ta to Adyo awto, ot SaetpiPry ot
e€eTOlovplE TO TTPOPANIA TNG HOVTEAOTTOLNGTG TNG GUIITEPLPOPAS VOGS TEAEGTT], OTTWG QLTI K-
@paleton atd TNV €€0d0 TOL AL TOG TTaPhyel, OTay exteAeital yio StopopeTikd chvora dedopévav.
2TV evoOTNTA CUTH) SLALTLTTOVOUHE TO TPOPANHA TO 0TTOlo EMAVOUE, elaryoupe T peBodoroyia

HOVTEAOTOLN GG KOl KAVOULE OPLOHEVES TTAPATPHCELG OXETIKA e TN AeLTovpyia TNG.

0.3.1 Ogpedivon Tov TpoPAnpartog

Eotw tedeotnig F' kat éva 60voro amtd ovvoda dedopévwov D = {Dy, Ds, ..., D,}. Ta Sioago-
peTikd oVvvola dedopévwv aotehovvtol artd TAELddeg oL omoieg éxouvv To idlo oy (aptBpd
droothoewy Kot TOTO TIHOV o€ k&Be dihotoon). Oewpolpe OTL 0 TeEAeaTS AapPfavel wg eicodo

évar cOvoro dedopévev D; € D ko mapdyel pia tpaypotikr Tr, dndadny F @ D — R. To

10 List of Tables

TpOPAnpa To omoio kahovpaoTe va emtAboovpe eival To e€ng: Aobévrog evog tedeotr F' ko evog
ovvédov D, Bélovue va mpoceyyicoupe v é€odo Tov F yia kdbe D; € D. H mpopavig amdvtnon
o010 TPOPANpa avtd eivar vo ektedeatel o F oyl Oha to ovvora dedopévwv. Iapdia avtd,
Aoppavovtag voyYn 0TL 0 apldpog Twv dedopévwy n propel va eival TOAD peydhog xat OTL 1)
vroAoylotikr ToAvmAokdTnTa Tov F' pmopel va eivan emtiong peyddn, kobictator copég OtL
eEavTANTIKT ekTéleon Tov Teleatn elvan akpLPr] Kol ©G TPOG TO XPOVO AAAX KL WG TTPOG TO
k6oT0g ektédeonc. T'a To Adyo autd, Bélovpe v avtipeTwicovpe To TPOPANpHA avTd oV Eva
QKON TPOCEYYLOTIKO TTPOPANp: BéAovpe va ekTeAEGOUHE TOV TeEAETTH Yo éva pikpd TARB0g
TV Sabéoipwv cuvorwv dedopévwv, va eEdyoupe TNV T €680V TOL TEAESTT) KOL VO YEVIKED-

OOUME Yl OAa Tal cOVOAa SedOpEVWV.

Y& avtiBeon pe mpv Opwe, To TPOPANpa oL KahoVpaoTe vo emtAdGoVpE dev prtopel va Avbel
HE KAITOLa YVWOTT] TeEXVIKT Tpocéyylong. O Adyog mov ovpPaivel avtod eivar 6TL To GVUVOAO €Lo-
680v NG oLVapTNoNG oL KaAoVpaoTe va tpoceyyicovpe (dnAadn to D) dev amotedel petpid
XOPO, apo? dev eival yvwoth kapio oyéorn peta€d twv Dy, Do, ..., D,. YrevBopilovpe oe avtod
TO OMELO OTL OAEG OL TEXVIKES OTATIOTIKNG TTPOGEYYLOTG (CUUTTEPLAAUPOVOHEVOV TV TEXVIKOV
Mnyavikrig MaOnong) mpotmobétovy tnv vitdpéel pua oxéong “omdotaong” yo Ta onpein elo-
680V NG cLVAPTNONG TTOL elval LTTO TPOGEYYLOT). ZTNV TTPOTYOOHEVT) EVOTNTA, ELOOE OTL 1) LTTO
pocéyylon cuviptnor arddoong eixe cav GOVOLO £L.6OS0V TO XDOPO TAPAPETPWV, T GTELCL
TOUL omoiov propovoay va cuykptBovv. Avtifeta, 6to TPOPANHX avTd T onpeiar D; avrjcovv

oe éva atakLvopnTo oOvoAo, yia To omoio dev vTtdpyel GAAN TANpopopia.

0.3.2 MeOodoroyia

Am6 1t Satdnwon Tov TpoPAfpatog ov mponyndnke, eivon capég 6TL TO TPDOTO Pripar yio
vo petatpéPoupe to TPOPANHO o€ pLa Hop@r] oL prtopel vo emAvBel e KAXOGOLKES TEXVIKEG
OTATLOTIKNG TPOCEYYLOTG, ELVAL VAL KATAOKEVAGOVE Evar PHETPLKO XDPO Yio Tar dedopéva eLeo-
dov, 1§ loodvvapa, v opicovpe pia cuvaptnon “amdéotacns” peta€d Touvg. T 1o okomd auto,
HITopoUpe vor kKAvoupe pua kaipla mapatripnorn: Hopopoia cvvora dedopévwv teivouv va emn-
pedlovv TOLG TEAEGTEG OV eKTEAODVTAL ETAV® GE QT pe Topopoto Tpodmo. Ta mapaderypa,
ag Bewpricovpe évav amAd aplOuntikd Teleotr) mov ekteAel aplOunTIkég mpakelg peTaEd TwV
AeLdwV £VOG GUVOAOL Sedopévwy Kot Tpiot cOVOA dedopévmv ov £xouvv tpokLeL pe Tov eEng
Tpémo: T sOvora A ko B éxovv pokOeL amd tuyaion katavopés ko To abvoro C' eivat motod
avtiypago tov A, oto omoio éxel mpootebel BOpLPOC 60 e TO 1% TOV TIHOV TWV APXLKOV
AL WV. Xe avTO TO TOPASELYHA, AVOUEVOULLE OL TIHEG TOV TEAEGTH] OTAY VTG EKTEAEITOL YLoL
ta ovvora A kou C va eivon mopodpoleg, eved avtifeta n T yio to B elval ampoodidopio.

Amo autd 10 TopAdelypa, mpokvITEL OTL 1) opoLdTNTO PeTaED GLVOAWY Sedopévwy (OTTWG Tov

0.3. Baoiwopévn oo Hepiexdpevo Movtelomoinorn Teleotodv Avédvong Aedopévwv 11

A xou tov C), propei v 0dnynoeL oe opoldOTNTA TIHOV ToL TeAeoTh. Ilwg Opwg pmopolpe va
a€loloyrnoovpe TOGO OpoLa elval Toe VVOAX SedOpEVOV OTaV SeV EYOUHE Kool YVMOOT] Yot aUTd;

T TNV TOC0TIKOTTOINGT) TNG OHOLOTNTAG HETAED GLVOAWY SeSOUEVOV, PHITOPOVLE VO LKOAOL-
Brjooupe Sropopetikég mpooeyyioels. apodia avtd, otn SatpPry avty e€etdlovpe TV opoLod-
T VIO TO TPIoHA TPLOVY Beperlwd®dV WilothTwV: () TNG oTATIoTIKYG Kertavourc Toug, (B) Tng
oewpdg diaradns twv mAelddwv Toug kot () Tov peyéfovg Tovg. H opotdtnTa g xartavopng dvo
oUVOAWV dedopévwv £xel wg okomd va eEetdoel To Pabpd otov omoio ot mAelddeg Twv dvo ov-
VOAWV emkaAbITovTOL, SNACSY AITOVTOVTOL GE TTOUPOHOLES TTEPLOYES TOV XWDPOU TWV TAELASWV.
3to mponyolpevo apddetypa, ol mAelddeg Twv cuvOAwY dedopévev A xal C eppdvicoy TolD
HeYaAn emikdAvym, emeldn) akplPag o tpootiBépevog B6puvPog rTav moAd pkpds. H opordtnTa
g oelpd drtakng (epdoov opileton) e€etdlel To katd TOG0 dvo GOVOAX dedopévev Loaméxouy
e€loov amd éva TANpwg drateTarypévo cvoro dedopévwv. Télog, 1 e€étaon Tov peyéboug Twv
ouvOLwV eEeTalel To kaTd TOo0 dvo ahvoAa dedopévwv éxouv mapopolo péyebog. O Tpelg autég
1Ootnteg dev eivan povadikég, kabdg Oa propooe kaveig va e€etdoel To cOVOAX dedopévwv
Ko oo SropopeTikég okomies. IMapoda avtd, WoyvpllopacTe TG oL WLOTNTEG AVTEG elva
Bepertderg ko eEetdlovtal ToAD oLV Kot TNV avdAvot) dedopévav emeld) ennpedlovv éva

TTOAD PEYOAO AU TEAECTOV.

N xN]
PR S INx K ,
D, H 5 e et . b F(D).D,ED,
N i ! 1
! MINAKAZ ! g !
D, ! OMOIOTHTAS | o2 l
— | H | s \
: EMIZKOMHZH L E MPOBOAH ZE _’E 9 5 MONTEAOMOIHEH
i OMOIOTHTAZX METPIKO XQPO ' 4 !
D, [B
! o 1
] 1 g 1
[: MPOBAEWH

Figure 2: Emoxomnnomn pebodoroylag povrelomoinong tng e£68ov evog teheatn

Me Bbon auvtég Tig mopatnproels, meptypd@ovpe topa T peBodoloyic povrelomoinong
g e€680v evog Tedeatr. Bty Ewova B mapadétovpe piar emiokomnon e mpoTELVOpEVIC
peBodoroyiag. e mpdTn QA&oT, To cVVOAX dedopévv cuykplvovTol HETAED TOVG WG TPOG T
XOPOKTNPLOTIKA IOV arvapépOnNKoy TPOYOUHEVKOG KOl KATAOKEVALETAL £VOG TTLVOKAG OHOLOTT)-
tog. KéBe kel [4, j] tov mivako mepiéyet puo tiph oto Suotnpo [0— 1] wov eiyver tnv opotdtnTa
TV GLVOA®YV ¢ Kot § (To 0 dnAdvel TApn avopoldTnTa kot To 1 vtodnAwvel TApN TadTION).
3TN GUVEXELD, O TLVAKOG HETOTPETETAL G€ VAL HETPLKO XWOPO YOUNANG SlAGTOOTG, GTOV 0TT0i0
amtetkovilovtot OAa Tar GUVOA SeSOPEVMV KAl OL ATTOGTACELG TOUG ELVOAL AVTLOTPOPWS AVAAOYEG
TWV OHOLOTHTWV TTOL TEPLEXOVTOL OTOV Tivaka. TéAog, o Lo e€étaot TeleoTrg ekTeAeiTan yia
éva pkpo AN 0og amd T Stabécipor GUVOAX Kol OL TopayOpeVES TLUEG X PTOLILOTTOLODVTOL Ot
évae Nevpwvikd AlkTuo ylo TNV TpocéyyLoT TV TIHOV 6 OAO TO HETPLKO XDPO KAL, GUVETWG, OE

OAa ta oOvola dedopévwv. Ag mteprypdovpe topa T pebodoroyio e peyoddTepr) AemTopépeLa:

12 List of Tables

Extipnon Oporotntag komog avtod Tov Tupatog tng pebodoroyiag eival n rosotikomoinen
NG opoLdTNTAG PeTAED OAWV TV GLVOAWY dedopévwv Kot 1) dnpovpyic evog Tivako opt-
0LOTNTOG TTOL TEPLEXEL aUTH) TNV TTANpoopia. Omwg eimaye ponyodpevea, otnv dtatpiPr)
vty e€etdlovpe TNV opoLOTNTA AT TPELG GKOTMLEG: (@) TN oTATIoTIKY Kotavopr], (B)
oelpa duatokng ko (y) to péyeboc. Aveloptritwg tng e€etalopevng diotntog, fewpoiye
OTL yuo TV opoldtnTa dvo cLVOrwY dedopévwv woyvel S(A, B) = S(B, A) koau 611 0 <
S(A, B) < 1. Ag dovpe Topa mog yiveTon 0 vtoloylopdg yo kébe 1W8iotnta EexwploTd.

Koravopry H opoidtnta otnv kotavopr] duo cuvorwv dedopévwv mocotikomnotel To fadbpod
670V 07oio Ta 00 GOVOAX ep@avilovv TAeLddeg OTIG ILEG 1) € KOVTLVEG TTEPLOXEG TOV
XOpov Tovg. Ia TV Toc0TLKOTOLNoT) AUTT), XPT)CLLOTTOL|CAYLE L0 KAVOVIKOTTOLNHEVT)
ekdox1 Tov ovvteleotr) Bhattacharyya [[CRMO00]:

Distribution(A, B) = M
|All Bl
0 01t010G, e B&on pio SLaEPLET) TOL XOPOL TwV TAELGdWV o€ | Tufpata, vtohoyiletal
pe tov moportave tomo. O apbpog A; cvpPoAiler tov aptBpd tov mAelddwv mov
Bpiockovton oto xwpio i, eve to |A| cvpfolriler to péyebog Tov cuvorov A. Twx
TOV LTTOAOYLOPO evOg “dikalov” oxrpatog dtopépiong mov xwpiler T TAeLddeg pe
dixaro tpomo, emAé€ope Tnv dwopépion pe tn PorBerx Tov adyopiBpov k-means++
[AV07], mov exteAeiton o€ éva chvoro Sedopévwv ov mepiéyet évo pikpd delypo Tov

TAELEO WV OAWV TV GLVOAWV.

Tepd Avdtagng H oeipd didto€ng vioroyiletou pe pua maporiayr tov Kendall 7 [Ken43§]:

concord(a,b) — discord(a,b) 1
n(n—1) 2

Order(A,B) =

OTOL @ KoL b AVTLIITPOGMITEVOVV TOVG TLVOKEG TTOL TEPLEXOLV TLG OXETLKEG BECELS TV
oToyeiwv Twv ouvdrwv A ko B avtictowya, 1 oxéon concord(a, b) emotpégel Tov
aptbpo twv Levyapiodv (aq, by) kaw (aj, bj), i # j yw Ta omoiar toyveL dtL av a; > a;
tote b; > bj jav a; < aj toTe by < bj xau) oxéon discord(a, b) eivou n dpvnon g
oxéong concord.

MéyeBog H oxéon tov ekppaletal pe Tnv akdAovdn oxéon:

min(|AJ, | B|

Size(A,B) = LA 1B))

IIpoPoin oe petpikd xopo O mivoakag opoloTnTag mov mapkyOnke oto mponyodpevo Pripa

TOPEXEL TOADTIHES TIAT POQOPieg OYETLK e TN GXEOT) TV cLVOAWY dedopévwv. Tlapdia

0.3. Baoiwopévn oo Hepiexdpevo Movtelomoinorn Teleotodv Avédvong Aedopévwv 13

QUTA, 0 TPOTOG ATTELKOVIOTG VTG TNG TTANPOPOPLag eivat TPOPANPATLKOG YLt TOVG OXKO-
AovBoug Adyoug: (o) o Tivakog peyod®vel TOAD ypryopa pe Tov oplBpd towv dedopévwv,
(B) n ypapikny aetcdvion tov mivoka prropet va yivel pe heatmaps ov dev emitpénouvy tnv
QaEKOVIOT) TNG AT POYopiag o€ Kovoviky KAlpako kot (y) Ta mepiocdtepa povréha Mn-
xovikng Mabnong mpotmobétovv tnv daPEN KAVOVIKOV GUVTETAYHEVOVY Yo T OTHela
€160d0V Kol OYL OXEGEWV OPOLOTNTOG/ATTOCTACTG HETAED (evy®V avT®V. I To Adyo avto,
KOAOOHOGTE VO AUITELKOVIGOUE TNV TANPOPOPLOL TTOL TEPLEXETOL GTOV VKX OHOLOTITOG
oe éva peTplcd xopo (Wovikd xapnAng dibotaong), o omoiog amelkovilel k&Be chvoro
dedopévav ot éva onpeio. H ammdotaot petad dvo onpeinv eival avtioTpd@wg avaAoyn
TNG OMOLOTNTAG TV AVTIGTOLY®WV GUVOAWV: TTapopolx onpeio Oa PpickovTot KOVT&, eV

avopola onpeio Ba éxovv peydn amdotaon.

T v entidvon avtot Tov TPoPARHATOG, XPTICLIHOTOLCOE SVO EVPEWS YVWOTEG TEXVLKEG
7oL e@appolovron Sradoyikd. ApxLKd, To TPOPANUA TNG OTELKOVIOTG HITOPEL Vo TTpo-
oeyylotel cav TpoPAnpa Pedtiotonoinong ov propet va Avbei pe tn PorBeia tng tdio-
avaivone. H teyvikr) tov Multidimensional Scaling [Gow66] kovovikomotel tov mivoko
opoLoTN TG Ko amelkovilel ta oOvola dedopévev oe onpeiol TV 0oLV OL SLACTAGELS
éxouv pBivovoa onpoacio. Xto onpeio avtd, prtopel va atopoaciotel évag (cuvrBwg pkpog)
oplBpodg SLaoTACEWY TOL APKEL YLt TNV QUTELKOVLOT) HE LKAVOTIOWTIKY akpifeio. Ao
€0 TTPOKDTTEL KAl £V TPDOTO COVOAO CUVTETAYHEVWV TwV onpelwv. Xe de0dTepn paon,
epappoletar o petooynpotiopdsg Sammon [Sam69] mov éxel wg OKOMO TNV TEPAUTEP®
EMOVATOTOBETN O TWV ONUELOV OOTE VO ITELKOVILOLY TNV TATPOPOPLA TOL TIVOKO OPOL-
otnrag pe peyodvtepn axpifeio. To teAkd ammotédecpa eivo éva GOVOAO GUVTETAYHEV®V

yo kéBe éva amd ta apytkd chvora dedopévav.

Movrelomoinon Télog, otn @&oT TNG HOVTEAOTTOINGNG, O TEAECTNG EKTEAELTOL VIO VXX HLKPO
AN0og amd ta dabéopa obvola dedopévwv kot ot Tipég g €€06dov Tov pall pe Tig
OUVTETOYHEVEG TV OVTIOTOLYWV oTpeiwv divovTon cav ovvoro ekmaidevong oe éva Nev-
pwvikd Aiktvo. To Nevpwvikd Aiktvo prmopel va mpooeyyioet TIG TYEG TOL TeEAEGTH Y

OAo toe ovvoAra Sedopévmv.

0.3.3 IMaparnpnosig

310 onpeto awtd, elvor okOMTIHO Vo yivouv oplopéveg tapatnpricelg yia tn pebodoroyio wov
mepLypaople ToPATAVE GTO GOVOAD TNG. Ap)Lkd, opeiAovpe Vo TAPATPHCOLHE OTL TO LITO-
AoyloTikd akplPo Koppdatt tng Sadikaciog, mov apopd TNV e€aywyr) TV OHOLOTHT®V KL TT)
Snpovpyio TOL HETPLKOD YWDPOU, Topapével aveEAPTNTO TOL TeEAETTH) TTOUL eival Tpog eEéTaom.
Avto onpaivel Tog 1 eEoywyr) Twv OHOLOTHTWV deV GLOYETILETAL [lE TOV TEAEGTH] KOlL, WG QLTTOTE-

Aeopa, o 810G PeTpLrdG XWPOG Prtopel va xpnotpomotnOel yio T HOVTEAOTOINGT) SLAPOPETIKGOV

14 List of Tables

TeEAeGTOV Xwpig va xpetdleton emavaAnyn tng dwadikaciog amwd Tnv apyn. Avth n oAb evdia-
QEPOLCQL TTOPATHPNOT] KATASELKVDEL TNV SLVATOTNT ETAVOY PICLHOTOLNONG TG YVOOTG TTOV
éyovpe yia o dedopéva e dAAOVG TeEAEGTEG. Me TOV TPOTTO aUTO, 1) EMLTAYLVOT) TTOV HITOPOVHE
Vo eMLTOYOVHE HECW TNG povTelomoinong katd tn dwadkacio tng avaivong dedopévwv peyt-
otomoteiton KoB®G To apxLlkd KOGTOG OV TANPOVOULE YLO TOV VITOAOYLGHO TOU HETPLKOD Y-
poL aTtOcPEVETOUL e TN XPTIOT) TEPLETOTEPWV TEAESTOV. AUTOG elval ko 0 akpoywviaiog AlBog
g Wéag miow omd n pebBodoroyic: IlapdAo mov o aplBpdg TV TEAEGTOV TOL PITOPOLY VoL
ekteAecBo0v oe kol clvola dedopévmv eivar TOAD peydAog, oL LOLOTNTES ad TIG OTTOLEG

avtoi ennpedlovtal eivar apketd Aydtepeg kot Ltopovv edkoAa vor peAetnBovv.

AeOtepov, oL 1810TNTEG OL 0TOoleg e€eTdaTNKAY Yia TNV e€atywYT] TOL TTIVOKA OHOLOTN TG TTPO-
éxujoy emeld) SLamioTdOnKe TELpapaTIKA (KO Yo KATToLeg mepLntddoelg amodeiyOnke ko Oeco-
pnTké) 6T emnpedlovv oe TOAD peydho Pobpd To amoTéAeopa SLOPOPETIKGOV TOTWOV TEAEGTMOV
IOV X ProLpoTotobvToL Kabnpepvé oe didpopeg epyocieg avalvong dedopévav. Iapdia avtd,
avoyvopilovpe 0TL 1 Aot TV 3ot Tev dev eivor eEavtAntikr: Alopopetikol teAecTég pmopel
va ennpealovTaL TEPLEGOTEPO 1) ALYOTEPO QIO KATOLEG LOLOTNTEG TV dedOHEVQV, QAN TTAVTOL
oL 1310t TEG aruTéG Bt elvart AydTepeg outd To TANBOG TV TEAEGTOV KO TLO EDKOAQ HETPTOLUES
ylot TV £KQpaoT) THG OHOLOTNTAG. 2KOTOG TNG ovykekpLpévng peBodoloyiag, Aoutdv, eivor 1
Snpovpyio piog “PrAodnkng” cvvaptioewv opotdtntag mov e€etdlovv dnpogileig 181OTN-
TEG KOL 0 GUVOLAGHOG TILVAKWV OUOLOTNTOG e TPOTO TETOLO MOTE Vo TPOKLYOLV Lo cOvOeTOoL

TLVOLKEG TTOL EPTTEPLEXOLY TTEPLGOOTEPT) TTATPOPOpPLcL.

Téhog, pia mopadoxr Tov KAvope ad TNV apyr avThAG TG evOTNTHG eival OTL To GOVOAX
dedopévmv Exouv TNV poper cLVOAWYV oL autoteAobVTAL otd TAELAdeS Lo oxnpatog. Mlopdia
AUTA, KAVEV XOPAKTNPLOTIKO TNG TTpoTELVOpEVN G peBododoying dev tn deopevel va epappooTei
Hovo ce tétotov tomov dedopéva. Ilpaypartt, doxipdoope v povrehomotjoovpe dedopévor Tov
Bpiokovtal oe popyr] ypopwv oto omoia exkteAodvTal avtiototyol tedectés. H ovvéprtnon op-
OLOTNTOG YLO TNV TEPLITTWGT] CLUTH) TV 1] OHOLOTNTA TG KATOVOUAG TwV Pabpdv twv kOpPov
TOV YPAP®V, o LBLOTN T 1) omoia xopakthpilel povadikd Toug SLapopeTLkong TOTOVS YPAPwV.
To evdigpépov amotédeopa and avth T dadikacio rav 6Tt 1 pebodoroyia pag prdpeoe va
povTeAoTIOLOEL SLPOPETIKODG TeEAEGTEG pe TTOAD peydAn akpifeta. To povo okédog tng mpoo-
£yylong mov xpetdotnke va aAddel yio tnv ektéleon o dedopéva ypapwv T 1) GuVApPTNoN
OHOLOTNTOG. XTT) YEVIKY TTEPLITTMOT), AoLTdv, quTh 1) Tapatrpron eivart evdelktik tng duvartdTn-
Tog yevikevong Tng ovykekpipévng pebodoroyiong oe Stapopetikotg Tomovg dedopévwv: Epocov
HTopel vor opLoTel e o) €oT) OpOLOTNTOG HETOED VOGS LebYOLG TOL GLUVOAOL SedOpEV®V, 1) TTPOTEL-
vopevn peBodoloyio propel v eQoPHOCTEL KAl VO LOVTEAOTTOLGEL GUHTTEPLPOPE EVOG TEAETTT

70V epappoletal ot vid eEétaon dedopéva.

0.4. Svpmepbopoto 15

0.4 ZvpmepdopotTo

e avtr)) SwtpiPn, e€etdoape To TPOPANHA TNG HOVTEAOTOLNGNG TNG GUHTEPLPOPAS EVOG
teleotn) Meydhwv Aedopévwv amd dvo drapopetikéc ontikés. [ipmTov, avtipetwricaps to Tpod-
BAnpa tng povredomoinong tng atddoct|g Tov, Yo SLoupopeTLKODG GUVOLAGHOVS TIOLPAHETPWY
7oL Tov emnpedlovv kai, devTepov, mpoteivope pio peBodoroyio Paoiopévry oto meplexOpEVO
7oL povtelomolel TV €080 Tov dTaV ATOG ePappOleTan oe dapopetikd cOVoAa dedopévwv.
[TopdAo OV 0L CLVELGPOPEG Pag TTPoceYYILouV TO TPOPANHAE OO SLOUPOPETLKEG TTPOOTITLKES, O
oUVOLAGHOG TOUG TTapEXEL P OAOKANPWHEVT) ADGT) TOL TPOPARHATOG TNG HOVTEAOTTOINONG TNG
OULUTTEPLPOPAS EVOG CVYYPOVOL TEAEGTH.

H npotn cvvelopopd pag oyetiletal pe tn povrelomoinon g anddoong evog teAeatr) Otav
ovtog eykabiotatal pe dStopopeTikovg ocuvdvacpois tapopétpwy. Mopodro mov avtd eivor Eva
TpOPANpO oL Exel pedeTnOel evPEWC, OL TTPOTELVOHEVEG EpELVNTIKEG TTpooeYYioelg dev Aopfdvouy
VoYM TNV OAOEV ALEAVOUEVT] TTOALTTAOKOTNTA TNG SOUAG TNG EQAPHOYTG, ATALTOVTAG EVOLY
ov€ovopevo aptBpd detypdtwv mov kabloTobV Th HOVTEAOTOLNGT] AVATTOTEAEGHATLKY KL KO-
otoPopa. T'a To KOO AVTO, 1) EPELYNTLKT HOG TPOSTADEL EMIKEVTPOONKE GTNV TAPOYT HLOG
peBodoroyiag mov propotv var 081NYHooLV TO HOVTEAO VO LEYLOTOTTOLOEL TNV okpifeld yio v
dedopévav péyioto aplBpd detypdtwy.

H mpotevopevn “duaipet-kat-Paciteve” mpooéyyion amodeiytnke Wiaitepa roTeAEGHATLKT
yia ovtd o TPOPANpa. Aappavovag vtdyn otL, Adyw ToL 6XeSLAOHOD TOVG, TO KATAVEUNIEVA
CUCTHHATA TELVOLV Vo €XOVV aItOS0CT) TTOL TTPOGEYYILOVTOL EDKOAN HE YPOHHLKES 1] THNHATIKA
YPOUULKEG GUVPTNOELS, 1) SLAEPLOT) TOL XOPOL G TEPLOCOTEPES KO ULKPOTEPEG TTEPLOYES SLEL-
KOALVe TN povtelomoinon kol emétpefe TNV eoTiooT o€ K&Be pia XwpLoTd.

EmunAéov,) ammodotikn} Stovopr] twv Stabécipwv detypdtwv pe otdxo 1600 Vv e€epedvnon
TOL XWPOL OGO KO TNV EKPETAAAEVLGT] TNG TTAPAYOHEVIG YVAOONG LG ETETPEYE VO ALTTOPVYOUVHE
™V vepPoAlkr) TPOCNAWGT) Ge TEPLOYEG PE OVWHAALEG, XWPIG OHWG VO HOG OUTOYOPEDEL TNV
epPabuvon yia tnv mepattépw Stopépion pe peyodvtepn Aemtopépeta. TéAog, 1 vioBétnon AoEmv
SEVTPWV moPaoewv abENCE TNV EKPPACTIKOTITA TOL TEALKOD HOVTEAO e TO KOGTOG TNG outati-
TNONG TEPLEGOTEPWV VITOAOYLOHOV. AUTH 1] EKPPACTIKOTN T peTapphletal oe képdN akpifetog
NG povtedomoinong 6tav o aptfpdg Twv Stabéoipwy detypdtov eivar pikpodg. Qotoco0, pio ev-
dwupépovoa mapevépyela TG LLOBETNONG TV AOEDOV SLaYWPLOTIKOV YPOUHOV elval OTL poTifo
OTWG eLVOLL OL AGVVEYELEG, TOL LEYLOTO KATL., TTOV TEPLAapPavouy meplocdTepeg amd pict SLGTAOELS
€Lo0d0L TaUTOY POV, avayvwpilovTal ToydTEPO.

H 8ebtepn oupPorn awtng tng epyaciag oxetiletal pe tn poviehonoinon tng e£06dov evog
TeheoTr) OTav avTdHg ekTeleitan yio StopopeTikd oOvora dedopévwv. H amovsia onmotacdrmote
oxéong petakd twv ovvolwv dedopévwv elddov kabiotd to TPOPAnpa Wiaitepa dbokolo.

Me yvopova v mapatrpnor ot mopopola cvvora dedopévev emnpedlovv Toug TeEAETTES Le

16 List of Tables

TAPOOLO TPOTIO, 1] EPELVA HOLG EGTIACTNKE GTN dNpLOVPYiat EVOG HETPLKOD XWOPOL deSOpEVWV TTOV
QVTOVOKAQ TIG PETOED TOUG OXETELS, HETPOVUEVEG LTTO TO PWG TPLOV BepeAlwddv WlothTeVv: TN
OTATLOTIKT) KoTavopr], To péyefog tov cuvorov dedopévwv kat Tnv celpd dSidtagng.

H mpotetvopevn pebBodoroyio katdpepe vor KATAOKELAGEL HETPLKOVG XWOPOLS XOUUNANG didt-
OTOOTG OV TOPEXOLV XPTOLHES TANPOPOPIEG TTOL YIVOVTOL XVTIANTTTEG OUKOHO KOl HE QTTAT|
onttikn) e€étaon tov. H wapdud tng pebodoroyiag pag Ppioketor otnv emloyn katdAANAov
ouvaptroewy opoldtntag. Ilapdho mov 1 TANpoopic oL TapéxeTal O TO HETPLKO XDOPO
elvar Eévn ¢ Tpog Tov TeAeaTH, OL LOLOTNTEG OL OTTOLEG TIPETEL VAL EEETAGTOVV Yo TNV e€aywy
TWV OPLOLOTHTWV PETAED TV GLUVOAOUL Sedopévwv Tpémel v entr)pedlovv Tov LTTO e€éTaoT) TeAeoTel
YLOt VoL LTTOpODV VO TTOLPAYOVTOL X PTICLUO HOVTEAQL. X TNV EPYOCLOL PHOG OTTOPHOVOCOHE TPELS LOLOTN-
TeG OV emnpedlovy SLaPopeTikéC kaTnyopieg TeAeotov. Ymootnpilovpe OTL oL LOLOTNTES QUTEG
elval TOAD AyOTepeg amd 10 6OVOAO TV TBAVOV TEAEGTMOV TOL PTOPOVV VA EYAPHOGTOVV
EMAV® 0TO 6UVOAO JeSOpEVOV. TUVETHOG TOHOVOVOVTAS Kol cuVdLALovTag éva pikpd GOVOAO
amd W10tnTeg ov ennpedovy ToAA0UG dnpo@LAeic TEAEGTEG LITOPOVIE VAL ETTLTAYUVOUHE KATK
TOAD TNV avéhvon dedopévov. IapdAinia n Bewpnon Sopopetik®dv TOTWY dedopévav, OTwWG
eivon yia mopaderypo o dedopéva ypapwv, vteptovilel TNV epappootpdtnta tng pebodooyiog

HOG YLt SLUPOPETLKA GEVAPLAL X PHOTGC.

CHAPTER 1

Introduction

1.1 Motivation

The advent of the Big Data era has revolutionized the way the world views and interacts with
data. Nowadays, an increasing number of enterprises rely on collecting, handling and analyzing
Big Data in order to provide personalized services of higher quality to their customers. The key
asset of this practice is that decision making becomes more and more data-driven [Loh12]: Big
Data analysis reveals patterns and produces knowledge that leads industries to take better deci-
sions and create products that align with their customers’ needs. Simultaneously, the plethora
of data sources that constantly generate new data with high rates has given the boost to the
academic world to search for more efficient ways to store, manage and analyze data.

Data oriented research fields, such as Data Management, Data Science and Machine Learning
have been gaining an increasing amount of attention in the last years. This interest is far from
declining: The latest research achievements of Deep Learning [LBH15] that bases its success on
even higher data volumes than traditional Machine Learning approaches, the constant increase
in IoT [WF15] devices that generate data streams of high velocity and the increasing adoption
of alternative data formats (e.g., images, videos) in communication and social networks pose the
necessity to keep creating systems and algorithms that are not only able to efficiently manage
Big Data, but also analyze them in higher detail and produce meta-knowledge more efficiently.

According to the NIST definition of Big Data [G™ 15], this term can describe data that have the
following key properties (also referred to as the 4 V’s): Volume, Velocity, Variety and Variability.

17

18 Chapter 1. Introduction

Volume refers to the massive data size that makes any centralized database system inappropriate
to cope with it. Velocity refers to the rate with which new data are created. Variety refers to
their diverse origins, schemas and representations of different data sources and, finally, variabil-
ity refers to the rate that existing data are modified. Note that even though different Big Data
definitions propose a varying number of characteristics that may reach up to 10 [10v] or even 42
V’s [42v], the consensus among the research community is that a system qualifies as a “Big Data”
one when at least the aforementioned properties are met. Figure [L.1 depicts the key properties
of Big Data.

Big Data

Figure 1.1: The 4 V’s of Big Data

The 4 V’s render traditional, centralized techniques for managing and analyzing Big Data
inappropriate. To this end, Big Data systems usually exploit distributed architectures, in order
to extend their scalability limits and cope with increasing data sizes efficiently. Moreover, Big
Data systems are commonly deployed over cloud infrastructures, in order to fully exploit its mer-
its: Dynamically allocated resources billed in a pay-as-you-go manner, reduced administrative
costs, high availability, practically zero infrastructure administration costs and the ability to elas-
tically scale with load are some of the reasons that explain why the Cloud paradigm [[AFGo09] is
gaining increasing attention for Big Data applications and is, thus, preferred against on-premise
installations.

Nevertheless, the adoption of the Big Data principles did not came with zero cost. Big Data
systems and operators, i.e., binaries and executable files that read from one or more datasets and
produce outputs of different types, consist of different cooperating software pieces and become

increasingly complex in order to achieve their goals. This inevitable complexity propagates to the

1.1. Motivation 19

general behavior of an operator and make it unpredictable and hard to model. Even though one
can identify multiple dimensions in the term “operator behavior”, the fundamental components
that best characterize it and, eventually, determine the operator’s success are two: Its performance
as a piece of software and its ability to produce insightful outputs that facilitate decision making.

Although in the general case these two aspects are orthogonal, an operator’s success relies
on both: Slower operators and systems that produce smart results are not more usable than
faster systems that produce results of lower quality. In the quest of satisfying both behavior
dimensions, modeling plays a crucial role. The ability to forecast an operator’s behavior given
a set of parameters that affect it, is crucial for running it in an efficient and cost effective way
and, on the same time, guarantee that its output is of high quality. This is the main motivation
behind this dissertation: It presents an approach that aims at capturing both dimensions of an
operator’s behavior and successfully deal with the underlying complexity without requiring prior
knowledge or any insight regarding its functionality.

Focusing on the first dimension, performance modeling is a long discussed problem the ori-
gins of which date back to the appearance of the first computer programs. The ability to model an
application’s performance based on the resources it occupies is crucial for taking multiple deci-
sions throughout its lifecycle. Such a performance model can facilitate deploying the application
using the most effective and cost efficient configuration, it can help with identifying performance
bottlenecks, it can assist elastic scaling and, in general, support any decision that requires an es-
timation of the application’s performance for a given configuration. The existing approaches can
be broadly divided in two categories: The analytical and the “black-box” approaches. The analyt-
ical or “white-box” approaches (e.g., [LZZ" 10, LZK" 11, MWS ™07, WCB10]) study the applica-
tion architecture and describe the way that different components interact with each other using
mathematical expressions. The final model represents a function that projects the application’s
inputs (which are defined by the analyst) to its output. On the contrary, “black-box” approaches
(e.g., [DPIK18, MAJ " 17, GCMS15, GTPK15]) make no assumption on application structure but,
instead, follow a function approximation formulation. Specifically, they deploy the application
using different input configurations, they collect the respective performance metrics and use
statistical or Machine Learning methodologies to approximate application performance for the
entire configuration space.

Although methodologies of both categories have produced satistying results for certain use
cases, their inability to cope with the increasing application complexity of modern Big Data op-
erators either reduce their practicality or accuracy. Specifically, analytical modeling of complex
Big Data workflows that comprise many elements is a non-trivial task that requires deep under-
standing of the architecture of each component. On the other hand, the distributed nature of
modern operators exponentially increases the application configuration space and, thus, mas-

sively increases the number of configurations that need to be tested in order to obtain a model of

20 Chapter 1. Introduction

acceptable accuracy. The absence of a performance modeling methodology that combines prac-
ticality with accuracy when modeling Big Data operators is the main motivation point for the
first part of this dissertation.

Considering the quality of the operator’s output, the original motivation that lead to the Big
Data era was to exploit the massive amounts of data in order to build smarter systems that are
able to take better decisions based on them. Nevertheless, massive data volumes do not always
lead to smarter systems and algorithms: Noisy and irrelevant data, missing data points and un-
trustworthy sources are some of the reasons that undermine data utility for a given operator.
Interestingly so, many researchers have introduced the concept of Medium data [tab17, blo14] in
order to highlight that it is the data utility rather than the volume of the data per se that benefits
modern operators and enable them to drive strategic decisions. This is not only related to data
sources themselves, but it is also highly affected by the purpose of the operator.

As an example, take the case of Security Information and Event Management (SIEM) sys-
tems [MHH ™ 10], commonly deployed to identify and mitigate cyberattacks. These systems are
reported to increasingly fail to identify and stop advanced persistent attacks because of their
inability to cope with the increasing amount of available datasets utilized to train them [Pet16].
They lack the analytics capabilities to process a vast amount of data and, hence, their adminis-
trator needs to make a key decision: Which datasets out of the available ones should be used in
order to train such a system to stop cyberattacks of a certain type in tight time constraints? In
other words, which dataset has the highest utility for this workflow?

Many research approaches have attempted to extract meta-knowledge out of a given set of
datasets, in order to provide hints to a data analyst regarding their content and possible usages.
Data Integration approaches (e.g., [Len02, HSG™ 17, MS] " 16]) conduct statistical analysis to the
existing datasets (that form a Data Lake) and attempt to extract a set of metadata that char-
acterize their contents. Data Exploration methodologies [JGMP16, SCJ16, BGM™17] are mostly
focused on identifying a region of the data space that best satisfies a set of given constraints.
Note that, neither of these methodologies connect the underlying datasets with the operators.
Moreover, even the same operators may be benefited from different data properties under differ-
ent occasions, e.g., a clustering operator may require datasets of different densities when used for
different tasks. For this reason, a methodology that models an operator’s outcome when applied
to each of the different datasets without exhaustively executing it for each dataset, can highly
accelerate data analysis.

Taking into consideration that modern data sources are consumed by multiple operators and
that new datasets are constantly born, the gains of avoiding exhaustive operator executions pile
up and accelerate data analysis tasks even further. The lack of a methodology with these goals
in the literature motivated the design and implementation of the second part of this dissertation.

This contribution enables a data analyst to quickly obtain a prediction of an operator’s output

1.2. Contribution 21

when applied over different datasets. This can be further utilized for ranking different datasets
(e.g., Give me the top-k datasets with the highest first eigenvalues), identifying datasets with spe-
cific properties (e.g., Give me all datasets that 10% of their tuples are outliers), filtering (e.g., Give

me all the datasets where the averages of column i and j are less than c), etc.

Operator — Performance

1

Utility

Figure 1.2: Two dimensions of modeling operator behavior

The two challenges that this dissertation addresses represent two sides of the same problem.
The success of any modern service equally relies on both of these parameters: It should not only
target to perform within certain standards but also produce results of high quality, as a conse-
quence of utilizing the right data. Figure [1.2 visualizes how these two problem dimensions are
related. On a high level, both modeling problems seek for an expression of either the perfor-
mance or the operator’s outcome in relation to the input resource configurations and datasets

respectively.

1.2 Contribution

This dissertation models the behavior of an arbitrary, provided Big Data operator from two dif-
ferent perspectives. First, it models its performance, measured using an indicator that quantifies
the extent to which the operator fulfills its objectives, in relation to its deployment configuration.
Even though the deployment configuration is a relatively loose term that may contain different

parameters, the types of dimensions that are studied in this thesis are related to: (a) the resources

22 Chapter 1. Introduction

(e.g., number of cores), (b) the workflow (e.g., dataset size) and (c) application level parameters
(e.g., amount of cache). Second, in order to be able to quickly estimate the utility of a dataset for
a provided operator, it models its outcome when it is applied to a set of different datasets. In con-
trast to the previous case, the modeling problem here is not well defined: The different datasets
belong to an unordered set where no relationship between them is known, i.e., they do not be-
long to a metric space. This makes the problem particularly challenging, since the traditional
statistical inference approaches require the input and output domains to be metric spaces.

For addressing the first challenge, this thesis presents a performance modeling methodology
the goal of which is to select the most representative points of the application configuration space
and train a model that approximates performance for the entire space. The goal of this approach
is to tackle all the challenges encountered when modeling Big Data applications: (a) Narrow
down the enormous amount of possible configurations that are exponentially increased with
application complexity, (b) reduce the cost of deployment, (c) prioritize configurations according
to their importance and (d) identify interesting performance areas. Selecting the appropriate
training points plays a dominant role for tackling these challenges. Nevertheless, this problem
is not well explored in the performance modeling area and to the best of our knowledge, this
methodology is the first that investigates the strategy of selecting good sample configurations.

Towards the direction of modeling an operator’s outcome when applied over different datasets,
a content-based modeling methodology is proposed, aiming at constructing a metric space for
the examined datasets and applying Machine Learning techniques for approximating an opera-
tor’s outcome for each of them. Based on the observation that similar datasets tend to impact
an operator’s output in similar ways, the proposed methodology quantifies dataset similarity,
constructs a metric space that projects these relationships and exploits the power of Machine
Learning in order to predict the operator’s output for all of them. The goal of this approach is
to address the challenges of common data analysis tasks: (a) avoid exhaustive operator execu-
tion for an enormous number of datasets, (b) minimize number of executions for operators of
high complexity, (c) accommodate newly added datasets and (d) satisfy time-critical workflows
that demand quick decisions based on data utility. To the best of our knowledge, this is the first
approach that studies this problem from this point of view and, as discussed later in this disser-
tation, it presents encouraging results for a plethora of operators with diverse characteristics.

Hence, the work of this dissertation can be divided in two major parts:

Performance Modeling
In the first part of this thesis, an adaptive performance modeling methodology [GTK17,
GTK18hb] that focuses on Big Data applications is provided. Driven by the observation that
many popular operators tend to present linear behavior on their performance for neigh-

boring deployment setups, a divide-and-conquer modeling approach is employed, aiming

1.2. Contribution 23

at decomposing the configuration space in smaller disjoint regions and study each one sep-
arately. Our methodology relies on the mechanics of Oblique Decision Trees. At first, a
set of randomly sampled configurations are obtained and the operator is executed for each
one. Based on the obtained performance values, the space is partitioned in two regions
with respect to maximizing the fit of each sample to a linear hyperplane (one for each sub-
region). The per-iteration deployment budget, i.e., the number of samples that are selected
at each iteration, is distributed to each region considering a set of region properties such as
its size, the modeling error, etc. Finally, the process is repeated until the global deployment
budget exceeds. Intuitively, this methodology attempts to adaptively “zoom-in” to the re-
gions of the configuration space that present certain peculiarities and are hard to model,
without overlooking, though, to equally explore the entire configuration space in order to
capture patterns for its entirety. Our experimental evaluation, conducted for multiple real-
world, popular Big Data operators and various synthetic performance functions indicates
that this approach outperforms other state-of-the-art modeling methodologies that solely
focus either on exploring the configuration space or exploiting the obtained knowledge to
further focus on space abnormalities. Moreover, the adoption of Oblique Decision Trees
proves particularly efficient for identifying space abnormalities that entail multiple input

dimensions.

Content-Based Modeling of Analytics Operators
In the second part of this dissertation, a content-based methodology [GTK184, BGTK18]
that aims at modeling an operator’s outcome when applied for different datasets is intro-
duced. Based on the observation that datasets with similar properties tend to affect the
operators that are applied to them in similar ways, the approach attempts to quantify the
similarity between the different datasets in the light of three foundational properties: their
statistical distribution, their size and their tuple ordering. After calculating the pairwise
similarities for all datasets, Multidimensional Scaling is utilized to convert the obtained
Similarity Matrix to a low-dimensional metric space each point of which represents one
dataset. The distance between different datasets in this metric space provide an estimate
of their similarity (smaller distances implying higher similarity). Finally, the provided op-
erator is executed for a small number of the available datasets and using the constructed
metric space and the obtained operator outputs, a Neural Network is trained that approx-
imates the operator outputs for all datasets. It should be stressed that the computationally
intensive part of the scheme, i.e., the construction of the metric space, remains entirely
operator agnostic, since the similarity estimation does not involve the execution of the
operator. This property makes the approach scalable to an increasing number of oper-

ators, a property that is especially important considering the ever-increasing number of

24 Chapter 1. Introduction

operators that are utilized in typical data analysis tasks. Our experimental evaluation has
demonstrated that the proposed methodology can efficiently express the relationship be-
tween different datasets and accurately model the behavior of different types of operators
with a minimal number of operator executions. Moreover, the introduced methodology
is demonstrated to be applicable for datasets of different type, including tuple-based and

graph-based datasets, only requiring the utilization of an appropriate similarity function.
The contributions made by this dissertation as a whole can be summarized as follows:

« This dissertation studies the problem of modeling the behavior of Big Data operators from
two different angles including their performance for varying deployment configurations

and their output for different datasets.

« It proposes an adaptive performance modeling methodology that aims at identifying and
focusing on the areas of the performance function that present irregularities and are, thus,
hard to be modeled. The proposed methodology particularly tackles the problem of select-
ing appropriate configurations to be deployed in order to maximize the modeling accuracy,
given a fixed maximum number of configurations. Albeit the problem of constructing a
training set with particular properties is discussed in other learning problems, this ap-
proach is the first that provides a solution for this problem for application performance

modeling.

« It presents a content-based data modeling methodology that aims at modeling the output of
an arbitrary operator when applied for a set of different datasets. The introduced approach
particularly tackles the problem of creating a metric space that reflects the relationship
between the different datasets when examined in the light of different data properties. This
approach is the first that attempts to conduct such “black-box” modeling without involving

the operator in the most computationally expensive part.

« All of the proposed methodologies have been implemented and are freely available as open
source projects [soul8§]. Their extensive experimental evaluation for a variety of operators
and different datasets demonstrates their ability to model a wide variety of real-world
operators from two different perspectives: The operator’s performance and its output. The
presented results demonstrate that both approaches construct models of high modeling

accuracy and outperform other state-of-the-art methodologies.

1.3 Document Outline

The rest of this dissertation is organized as follows:

1.3. Document Outline 25

Chapter [presents the first contribution of this thesis that is the adaptive performance mod-
eling methodology for Big Data applications. After the formal problem introduction, in this
Chapter, a thorough description of the proposed methodology is provided and evaluated using
both real-world applications and synthetic performance functions.

Chapter [introduces the second contribution of this dissertation, which is a content-based
approach for modeling analytics operators. After providing the problem formulation, we proceed
with a detailed analysis of the suggested workflow, provide an interesting extension to graph-
based data and, finally, conclude with a thorough evaluation of the introduced scheme.

Chapter [compares this work with the related work in the literature, where Chapter § pro-
vides the conclusions and possible directions for future research.

Finally, Appendix [A] presents AURA, a fully automated cloud deployment system with error-
recovery capabilities. AURA has been developed in order to accelerate application deployments
conducted for the performance modeling methodology; Nevertheless, the problem solved by

AURA is radically different from the one presented at Section fl and is, thus, presented separately.

26

Chapter 1. Introduction

CHAPTER 2

Adaptive Performance Modeling of Big Data
Applications and Operators

This chapter describes a performance modeling methodology for Big Data Applications and Op-
erators. Our work models application performance using a divide-and-conquer approach: The
application configuration space is decomposed to smaller regions recursively and each partition
is modeled independently. According to the achieved accuracy, each partition is sampled and
a few representative application configurations are deployed. Using these deployment values,
the Performance Function for the entire space is approximated. Intuitively, our methodology
attempts to maximize the configuration space coverage and, on the same time, “zooms-in” the re-
gions of it that require further examination in order to be accurately modeled. A thorough evalu-
ation, conducted for both real-world applications and synthetic performance functions, indicates
that the proposed methodology is capable of producing highly accurate performance models than
other, end-to-end profiling approaches. The key reason for that is that it efficiently achieves to
bridge the gap between the necessity of exploring the application configuration space, i.e., se-
lect representative values and exploiting the previously obtained knowledge so that the available

deployment budget is spent wisely.

27

28 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

2.1 Overview

As a motivating example, take the case of Wordcount, one of the most popular Big Data oper-
ators. Wordcount accepts as input a number of text files and produces a dictionary containing
tuples in the form <word, counters>, where word represents any word that was encoun-
tered in any of the text files and counter refers to the number of its occurrences to them.
For this batch operator, the performance metric, i.e., the measure that quantifies how well the
operator functions, is the execution time. The execution time is affected by a wealth of input
parameters: The number of machines it utilizes, the amount of memory each machine has, its
CPU, etc. A traditional “black-box” modeling approach requires the operator to be executed
for a handful, representative configurations, so that the performance metric for them becomes
available, and then approximate the remainder configurations through statistical inference or a
Machine Learning model. The building blocks of this scheme are two: (a) the sampling algorithm,
that decides which configurations should be deployed and (b) the modeling approach, that deter-
mines how the sample configurations will be utilized in order to provide high-quality inference
for all configurations. Figure .1 provides an estimate of the achieved modeling accuracy when
two state-of-the-art sampling algorithms and modeling methodologies are utilized. Figure
depicts the modeling error of Random Forests (RF) and Artificial Neural Networks (ANN) when
the configuration sampling is done in a Uniform fashion, whereas Figure represents the case

where Uncertainty Sampling [LC94] is utilized.

Random Sampling Uncertainty Sampling

_ RF <+ ANN ¢ _ RF <+ ANN ¢

o : o 5

i ' i .

g 7 (b) 2 (b)

© : © :

gl 8|

= |(a) = |(a)

0 5 30 40 0 5 30 40
Examined Configurations (%) Examined Configurations (%)
(a) Random sampling (b) Uncertainty sampling

Figure 2.1: Modeling errors of different profiling schemes

Note that regardless of the selection of the sampling and modeling schemes, both figures can
be decomposed in three areas. Area (a) represents the case where a very small number of con-
figurations has been tested and, hence, little knowledge for the operator’s behavior is available.
Evidently, the modeling error is massive and independent of the underlying modeling tools. On

the contrary, area (c) represents the opposite case: Many configurations are tested and, hence,

2.1. Overview 29

the operator is profiled with high detail. Although different modeling and sampling schemes
may produce models of different accuracy, the obtained knowledge at this point is massive and
one can easily model the operator’s performance. This knowledge, though, came with a cost:
One has to deploy a massive amount of operator configurations, a practice which is cumbersome
in terms of time and cost. Area (b), though, is located in an intermediate state between (a) and
(c). At this point, the selection of the appropriate sampling and modeling policies can have a
massive impact to the model’s accuracy. A wise selection of representative configurations, can
help a smart model to build the application’s profile faster and with reduced costs. The task
of finding representative samples, though, is not trivial as it is strongly operator-dependent (as
different operators may be benefited from different sampling distributions) and computationally
infeasible to calculate: The selection of a “representative” set of configurations is a combinatorial
problem that entails incremental trial of different application setups that should be available at
first place.

To tackle this challenge, in this work, we propose an adaptive performance modeling method-
ology that aims at iteratively refining the sampling policy in order to concurrently satisfy two
key objectives: (a) maximize the configuration space coverage in order to capture all patterns
and (b) focus on areas where the performance presents a more obscure behavior and it is mod-
eled harder. Out methodology relies on the mechanics of Decision Trees. The main idea behind
it is to decompose the configuration space in disjoint regions and model each one independently.
Each region claims a specific portion of the deployment budget, i.e., number of samples, accord-
ing to its size and modeling accuracy. The final outcome is a composite model that combines
the results of simpler linear models, each of which covers a specific region of the configuration
space. Intuitively, our approach attempts to model the entire space and adaptively “zoom-in” to
areas where the performance function presents irregularities and it is hard to model.

In summary, we make the following contributions:

« We propose an adaptive, accuracy-driven profiling technique for Big Data applications that
utilizes oblique Decision Trees. Our method natively decomposes the multi-dimensional
input space into disjoint regions, naturally adapting to the complex performance appli-
cation behavior in a fully automated manner. Our scheme utilizes three unique features
relative to the standard Decision Tree algorithm: First, it proposes a novel expansion algo-
rithm that constructs oblique Decision Trees by examining whether the obtained samples
fit into a linear model. Second, it allows developers to provide a compromise between ex-
ploring the configuration space and exploiting the previously obtained knowledge. Third,

it adaptively selects the most accurate modeling scheme, based on the achieved accuracy.

« We perform an extensive experimental evaluation over diverse, real-world applications

and synthetic performance functions of various complexities. Our results showcase that

30 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

our methodology is the most efficient, achieving modeling accuracies even 3 higher that
its competitors and, at the same time, it is able to create models that reflect abnormalities
and discontinuities of the performance function orders of magnitude more accurately. Fur-
thermore, our sampling methodology proves to be particularly beneficial for linear classi-
fiers, as linear models trained with samples chosen by our scheme present even 38% lower

modeling error.

2.2 Preliminaries

2.2.1 Problem formulation

Application profiling can be formulated as a function approximation problem [CMS16, GTPK15].
The application is viewed as a black-box that receives a number of inputs and produces a single
(or more) output(s). The main idea behind constructing the performance model is to predict
the relationship between the inputs and the output, without making any assumption regarding
the application’s architecture. Inputs reflect any parameters affecting application performance,
such as the number and quality of different types of resources (e.g., cores/memory, number of
nodes, etc.), application-level parameters (e.g., cache used by an RDBMS, HDFS block size, etc.),
workload-specific parameters (e.g., throughput/type of requests) and dataset-specific parameters
(e.g., size, dimensionality, distribution etc.).

Assume that an application comprises n inputs and one output. We assume that the 7
input, 1 < ¢ < n, receives values from a predefined finite set of values, denoted as d;. The
Cartesian product of all d;, 1 < ¢ < n is the Deployment Space of the application D = dj X dg X

- X dp. Similarly, the application’s output reflects values that correspond to a performance
metric, indicative of its ability to fulfill its objectives. The set of the application’s output will
be referred to as the application’s Performance Space. Based on the definitions of D and P, we
define the performance model m of an application as a function m : D — P. The estimation of
the performance model entails the estimation of the performance value b; € P for each a; € D.
), thus the identification of all

However, | D| increases exponentially with n (as |D| = [[;", |d;
performance values becomes prohibitive, both in terms of time and cost. A common approach
to tackle this challenge is the extraction of a subset Dy C D (| Ds| < | D|) and the estimation of
the performance points Ps for each a; € D;. Using Dy and Ps, model m can be approximated,
creating an approximate model m’. While m’ — m, the approximation is more accurate.

Note that this formulation is valid only under the assumption that distinct deployments are
reproducible, i.e., in case where a given Deployment Space point is redeployed, the measured
outcome is identical. For many reasons, such as the “noisy neighbor” effect [GVCL14], net-

work glitches, power outages, etc., such an assumption can be violated when the application

2.2. Preliminaries 31

is deployed to cloud environments, because of the introduced unpredictability that distorts the
application’s behavior. The treatment of this dimension of the problem is outside the scope of
our work. This works tackles the complexity introduced by the excessive dimensionality of the
Deployment Space. The presented methodology can be, thus, directly applied to predictable envi-
ronments with reduced interference, such as private cloud installations that, according to [rig],
remain extremely popular, since they will host half of the user generated workloads for 2017,

maintaining the trend from the previous years.

2.2.2 Decision Trees

Classification and Regression Trees (CART) [BFSO84], or Decision Trees (DT), are a very popular
classification and regression approach. They are formed as tree structures containing interme-
diate (test) and leaf nodes. Each test node represents a boundary of the data space and each
leaf node represents a class, if the DT is used for classification, or a linear model, if used for
regression. The boundaries of the DT divide the original space into a set of disjoint regions.

The construction of a DT is based on recursively partitioning the space of the data so as to
create disjoint groups of points that maximize their intra-group homogeneity and minimize their
inter-group homogeneity. The homogeneity metric of a group differs among the existing algo-
rithms: GINI impurity has been used by the CART algorithm [BFSO84], Information Gain has
been used by ID3 and C4.5 [Qui86] for classification, whereas the Variance Reduction [BFSO84]
is commonly used for regression. These heuristics are applied to each leaf to decide which dimen-
sion should partitioned and at which value. The termination condition of the DT construction
varies between different algorithms as the tree height is either pre-defined or dynamically de-
cided, i.e., the tree grows until new leaves marginally benefit its accuracy.

Each boundary of a DT is parallel to one axis of the data, since it involves a single dimension
of the data space, i.e., the boundary line is expressed by a rule of the form z; = ¢, where c is
a constant value. Generalizing this rule into a multivariate line, we obtain the oblique DTs that

consist of lines of the form: .

Zcixi—l—’yzo

i=1
To better illustrate this, in Figure .9 we provide an example where we showcase the tree structure
along with the respective partitions of the Deployment Space for a tree that has 3 leaves and 2
test nodes. Original (or flat) Decision Trees can be considered as a special case of the oblique
Decision Trees. The multivariate boundaries boost the expressiveness of a DT, since non axis-
parallel patterns can be recognized and expressed, as discussed in [HKS93].
In this work, we utilize oblique DTs in two ways: First, they are employed to create an ap-

proximate model of the performance function. Second, their construction algorithm is modified

32 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

(b) Space partitioning

Figure 2.2: Example of an Oblique Decision Tree

to adaptively sample the Deployment Space of the application, focusing more on regions where
the application presents a complex behavior and ignoring regions where it tends to be easily

predictable.

2.3 Profiling Methodology

2.3.1 Method overview

The main idea of the suggested algorithm is to partition the Deployment Space by grouping
samples that better fit different linear models, infer knowledge about the performance function
through sampling the Deployment Space, deploying the selected configurations and, when a pre-
defined number of deployments is reached, model the performance function utilizing different
linear models for each partition. This is schematically represented in Figure R.3. Specifically, at
each step, the Deployment Space is partitioned by grouping the already obtained samples accord-
ing to their ability to create a linear model that accurately approximates the application perfor-
mance. Estimates are then created regarding the intra-group homogeneity, which corresponds to
the prediction accuracy of the performance function for the specified region. Therefore, poorly
approximated regions need to be further sampled in order to be better approximated, whereas
accurate regions need not to be further explored.

Intuitively, the suggested algorithm is an attempt to adaptively “zoom-in” to areas of the De-
ployment Space where the behavior of the performance function is more obscure, in the sense
that it is unpredictable and hard to model. This enables the number of allowed application de-

ployments to be dynamically distributed inside the Deployment Space, leading to more accurate

2.3. Profiling Methodology 33

PARTITION SAMPLE DEPLOY MODEL

T

Figure 2.3: Method overview

predictions as more samples are collected for performance areas that are harder to approximate.
This smart distribution of the deployed samples requires the closer examination of regions of the
Deployment Space independently, something that is inherently conducted by DTs. Their proper-
ties, such as their scalability to multiple dimensions, robustness, their innate divide-and-conquer
functionality, etc., render them a perfect fit for the application profiling problem and facilitate
the decomposition of the Deployment Space in an intuitive and efficient manner. In Algorithm

fl we provide the pseudocode of the suggested methodology.

Algorithm 1 DT-based Adaptive Profiling Algorithm

1: procedure DTApaprTIVE(D, B,)

2: tree < TREEINIT((), samples < ()
3. while |samples| < B do

4 tree <— PARTITION({Tee, samples)
5: s < sAMPLE(D, tree, samples, b)
6

7

8

9

d < DEPLOY(S)

samples <+ samples U d
model <— CREATEMODEL(samples)
return model

Our Algorithm takes three input parameters: (a) the application’s Deployment Space D, (b)
the maximum number of samples B and (c) the number of samples selected at each algorithm
iteration b. The tree variable represents a DT, while the samples set contains the obtained samples.
While the number of obtained samples is less than B, the following steps are executed: First, the
leaves of the tree are examined and tested whether they can be replaced by subtrees that further
partition their regions (Line 4). The leaves of the expanded tree are, then, sampled with the
SAMPLE function (Line 5), the chosen samples are deployed (Line 6) according to the sample’s
deployment configuration and performance metrics are obtained. Note that, s C D whereas
d C D x P,ie., s contains the sampled configurations and samples contains the deployment
configurations along with their performance value. Finally, when B samples have been chosen,
the final model is created (Line 8).

34 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

2.3.2 Decision Tree Expansion

The main idea behind the expansion of a DT lies on the identification of a split line that maximizes
the homogeneity between the two newly created leaves. The selection of an appropriate line
greatly impacts the accuracy of the partitioning, ergo the future partitions. Recall that, the uti-
lization of oblique DTs allows the test node to be represented by a multivariate line and enhances
their adaptability to different performance functions. Nevertheless, calculating an optimal mul-
tivariate split line is NP-complete [HKS93]. Since we want to exploit the expressiveness of the
oblique partitions without introducing a prohibitive computation cost for their estimation, we
express the problem as an optimization problem [HKS93] and utilize Simulated Annealing (SA)
[VLAS87] to identify a near-optimal line. In Algorithm [, we present the PARTITION function.
For each leaf of the tree (Line 3), SA is executed to identify the best multivariate split line (Line
5), considering solely the samples whose Deployment Space-related dimensions (d.in) lie inside
the specified leaf (Line 4). The samples of the specified leaf are then partitioned in two disjoint
sets according to their position (Lines 7-11), in which the symbol < indicates that a sample s is
located below line. Finally, a new test node is generated (Line 12), replacing the original leaf

node of the tree and the new tree is returned.

Algorithm 2 Partitioning Algorithm

1: procedure PARTITION(tree, samples)
2: newTree < tree

3. for !l € leaves(tree) do

4 v < {d|d € samples,d.in € l}
5: line <~ SA(v)

6 L1 — (D, L2 — @

7 for s € v do

8 if s < line then

9 Li <+ LiUs

10: else

11: Lo+ LyUs

12: testNode < {line, L1, L2}

13: newT'ree <replace(l, test Node)

14: return newT'ree

SA is a prominent methodology for solving complex optimization problems. It functions in
an iterative manner and is based on the idea of generating possible solutions (split lines), evalu-
ating their goodness using a score function and, finally, returning the best. The key factor that

diversifies SA from a simple random search lies on the targeted creation of candidate solutions.

2.3. Profiling Methodology 35

Assuming a split line of the form
l=a1x1 4+ -+ anTy +apy1 =0

SA seeks for a solution vector v = (a1, - - - , an41) that minimizes an expression Score(v). Dur-

ing the first algorithm steps (2), the consecutive candidate solutions present great differences, i.e.,

the difference |v; —v;11], is large, but for an increasing number of iterations, |v; — v;4+1| — 0 and
SA converges to a close-to-the-optimal solution. During the algorithm’s execution, SA may pick
worse solutions, i.e., split lines with worse scores, as the best examined this-far. This guarantees
that the algorithm will not be trapped into a local minimum. Both the probability of substituting
a better solution with a worse one and the size of the neighborhood of solutions that SA exam-
ines at each step is determined by Temperature factor, decaying with time. Intuitively, higher
temperatures mean that SA attempts diverse solutions and accepts worse solutions with high
probability and lower temperature implies that SA converges to the neighborhood of the best

solution.

The cornerstone of SA’s effectiveness is the score function that quantifies the efficacy of each
candidate solution. The methodologies utilized by various DT construction algorithms make no
assumption regarding the nature of the data. Although this enhances their adaptability to dif-
ferent problem spaces, their utilization in this work resulted in poorly partitioned Deployment
Spaces. The data that our work attempts to model belong to a performance function. Intuitively,
if all the performance function points were available, one would anticipate that a closer observa-
tion of a specific region of the Deployment Space would present an approximately linear behav-
ior, as “neighboring” Deployment Space points are anticipated to produce similar performance.
When focusing on a single neighborhood, this “similar performance” could be summarized by
a linear hyperplane. A split line is considered to be “good” when the generated leaves are best
summarized by linear regression models or, equivalently, if the samples located in the two leaves
can produce linear models with low modeling error. Given a Deployment Space D, a line and
two sets L1, Lo that contain D’s samples after partitioning it with / (as in lines 6-10 of the al-
gorithm), we estimate two linear regression models for L; and Ly and estimate their residuals

using the coefficient of dzetermination R2. I’s score is:

LR, + |Lo| BT,
|L1] + | Lo

Score(l) = (2.1)

Note that, 0 < R? < 1 and a value of 1 represents perfect fit to the linear model. Score(l)
is minimized when both L; and Ly generate highly accurate linear models or, equivalently, if
the two sets can be accurately represented by two linear hyperplanes. We weight the impor-

tance of each set according to the number of samples they contain as an inaccurate model with

36 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

more samples has greater impact to the accuracy than an inaccurate model with fewer samples.
The negative sign is employed in order to remain aligned with the literature, in which SA seeks
for minimum points. Finally, one SA property not discussed this far is the ability to achieve a
customizable compromise between the modeling accuracy and the required computation. Specif-
ically, prior to SA’s execution, the user defines a maximum number of iterations to be executed
for the identification of the best split line. When one wants to maximize the quality of the parti-
tioning, many iterations are conducted. On the contrary, the number of iterations is set to lower

values in order to allow for a rapid split line estimation.

=

X

<

SN

a) 3d projection of the performance function

= =

X X

< <
SN N

[

(c) Top view with samples (d) Candidate split lines

X

Figure 2.4: An example of Decision Tree Expansion for f(z,y) = (z + y) exp(z + v)

In order to better illustrate the functionality of the Decision Tree expansion algorithm, con-
sider the example depicted in Figure R.4. Figure depicts a synthetic three dimensional per-
formance function where f(x,y) = (z + y) exp(x + y). Figure depicts a top view of it,
where the horizontal and vertical axis represent = and y of Figure respectively and the col-

ors represent the value of the function (lighter colors means larger f values). For example, one

2.3. Profiling Methodology 37

can see that when both x and y obtain large values, f is maximized and this is highlighted with
lighter colors on the top right corner of Figure P.4H. Figure provides the same top view, but
now we assume that the values of the performance functions for the depicted points are known.

Figure provides an example of execution of Algorithm [for these samples. Initially, the
algorithm picks a random line (I;) that is likely to produce a poor space partition. The values
R%l,R%Q and the size of the two regions (i.e., the one on the left and on the right of [;) are
calculated and, subsequently, the Score of Equation P.1 is estimated. Observe that although L;
presents linear behavior and, hence, R%l receives values close to 1, Ly contains the non-linear
region where the Performance Function presents a strong exponential increase, hence the values
of R%z will be much lower. Simulated Annealing generates other possible split lines (e.g., l2, I3,
etc.) until a close-to-optimal line (i.e., l4) is found. By comparison of Figures and P.4d, the
reason of selecting this line is evident: It separates the Performance Function in two subregions
each of which is accurately represented by a linear hyperplane. Note that the separation objective
is not to create a perfect fit for any one of the two generated hyperplanes. The utilization of the
partition size in Equation .1 facilitates weighting the achieved modeling accuracy. For example,
the modeling accuracy for the left partition when [y was utilized was higher than the respective
accuracy for l4. However, if we consider the modeling accuracies at both partitions, /4 produces

better results and was, thus, selected.

2.3.3 Adaptive Sampling

The previously described construction of the Decision Tree is based on the principle that areas
of the Deployment Space that make the Performance Function present a linear behavior, i.e., the
values of the latter can be expressed as a linear combination of the dimensions of the former with
high accuracy, should belong to the same partition(s). What happens, though, for areas where
the linear approximation presents poor results? In this section, we examine how our method
approaches these strongly non-linear areas with the help of an adaptive sampling scheme.

One initial observation that should be made is that any continuous non-linear function can
be approximated by a piecewise linear function with accuracy that is proportional to the number
of segments of the later. More segments make the piecewise function to better approximate the
non linear one. In theory, if the number of segments tends to infinity, the achieved accuracy
is 100%, or, equivalently, the approximation error tends to zero. Nevertheless, given that the
computation of each segment requires (at least) two points of the non-linear line, more segments
can only be employed if more points of the original function are estimated. If we apply the
same reasoning to our multidimensional problem, a non-linear curve (which might be a part of
the Performance Function under examination) can be decomposed to smaller linear hyperplanes

only if enough Deployment Space points are deployed and available for this region. Intuitively,

38 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

this means that the decomposition described in the previous section can only take place only
when more information becomes available for the region where the behavior of the Performance
Function is harder to approximate. Thus, the sampling algorithm should favor such areas and

select more samples from regions that are poorly approximated.

On the contrary, one should not overlook that some parts of the Deployment Space may
present certain peculiarities that are not resolved by selecting more samples. For example, take
the case of a two-tier Web Application that runs a given workload with the minimum available
resources. Some workloads may fail or others may take an enormous time to finish for a vari-
ety of reasons (e.g., thrasing, OOM Kkills, etc.). Points of the Performance Function close to that
region (i.e., the one that represents minimum resources setups) will present a random behavior
that cannot by realistically modeled by any approximation technique. One should not invest a
big portion of the available deployment budget to areas of this type, since they do not offer any
knowledge regarding the performance function and they only waste the given budget. Evidently,
there is a clear trade-off that needs to be compromised in order to maximize the modeling ef-
ficiency: More samples should be selected for areas that present non-linear behavior but there
should be a constraint on how much samples one should deploy for each region. Given these

notes, we now provide the sampling algorithm that compromises this trade-off.

Algorithm 3 Sampling algorithm

1: procedure saMpLE(D), tree, samples, b)
2. errors, sizes <), maxError, maxSize < 0
3. for [€ leaves(tree) do
4 points < {d|d € samples,d.in € 1}
5: m <— regression(points)
6 errors[l] < crossValidation(m,points)
7 sizes[l] < |{ele € DN1}]
8 if maxError < errors|l] then
9 max Error < errors|l]
10: if mazSize < sizes[l] then
11: maxSize < sizes|l]
12: scores,newSamples < (), sumScores < 0
13: forl € leaves(tree) do
errors|l]

14 scores|l] < Werror * gz Error T Wsize -
15: sumScores < sumsScores + scores|l]

sizes|l]
maxSize

16: forl € leaves(tree) do
17: leaf NoDeps + [L&Sm - b]

sumScores
18: s <—RANDOMSELECT({d|d € D N}, leafNoDeps)
19: newSamples < newSamples U s

20: return newSamples

2.3. Profiling Methodology 39

After the tree expansion, the SAMPLE function is executed (Algorithm B). The algorithm
iterates over the leaves of the tree (Line 3). For the samples of each leaf, a new linear regression
model is calculated (Line 5) and its residuals are estimated using Cross Validation [Gei93]: The
higher the residuals, the worse the fit of the points to the linear model. The size of the specified
leaf is then estimated. The size is equal to the number of acceptable deployment combinations,
i.e,, the points of the Deployment Space lying inside the region of the specified leaf. Thus, the
portion of the Deployment Space that is represented by the leaf is an estimate of its size. Different
estimates could also be used (e.g., measuring the surface of the leaf). This representation was
chosen due to its simplicity. After storing both the error and the size of each leaf into a map, the
maximum leaf error and size are calculated (Lines 8-11). Subsequently, a score is estimated for
each leaf (Lines 13-15). The score of each leaf is set to be proportional to its scaled size and error.
This normalization is conducted so as to guarantee that the impact of the two factors is equivalent.
Two coefficients Werror and wg;ze are used to assign different weights to each measure. These
scores are accumulated and used to proportionally distribute b to each leaf (Lines 16-19). In that
loop, the number of deployments of the specified leaf is calculated and new samples from the
subregion of the Deployment Space are randomly drawn with the RANDOMSELECT function, in

a uniform manner. Finally, the new samples set is returned.

| 10
S 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(2) Original function (b) werror = 1.0, wsize = 0.0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(©) Werror = 1.0, wyize = 0.5 (d) werror = 0.0, Wgize = 1.0

Figure 2.5: Distribution of samples for different weights

40 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

To further analyze the sampler’s functionality, we provide an example of execution for a
known performance function of the form y = 0.8x1 4+ 0.2z2. On a randomly selected point,
an abnormality is introduced, modeled by a Gaussian function. In Figure P.3 (a) a projection
of the performance function is provided. The horizontal and vertical axes represent x1 and x5
respectively and the colors represent y values, where the lighter colors demonstrate higher y
values. Algorithm E] is executed for different werror, Wsize during the SAMPLE step. We assume
a maximum number of deployments B of 100 points out of the 2500 available points and a per-
iteration number of deployments b of 10 points. In Figures R.5 (b), (c) and (d) we provide the
distribution of the selected samples, for different weight values. Each dimension is divided in 20
intervals and for each execution we keep count of the samples that appear inside each region.
The color of the regions demonstrate the number of the samples within the region (lighter colors

imply more samples).

The adaptiveness of the proposed methodology lead the samples to immediately identify the
abnormal area. In Figure R.5 (b) the score of each leaf is only determined by its error. Most
samples are gathered around the Gaussian distribution: The first leaves that represent the area
of the Gaussian function produce less accurate models since they cannot express the perfor-
mance function with a linear model. Since the score of each leaf is only determined by its error,
these leaves claim the largest share of b at each step, thus the samples are gathered around the
abnormality. On the contrary, when increasing wy;.. as in Figure R.5 (c), the gathering of the
samples around the abnormality is neutralized as more samples are now distributed along the
entire space, something that is intensified in Figure R.5 (d), where the abnormality is no longer

visible.

The consideration of two factors (error and size) for deciding the number of deployments
spent at each leaf targets the trade-off of exploring the Deployment Space versus exploiting the
obtained knowledge, i.e., focus on the abnormalities of the space and allocate more points to
further examine them. This is a well-known trade-off in many fields of study [SB98]. In our
approach, one can favor either direction by adjusting the weights of leaf error and size, respec-
tively. Note that this schemes enables the consideration of other parameters as well, such as the
deployment cost through the extension of tre score function (Line 14). This way, more “expen-
sive” deployment configurations, e.g., ones that entail multiple VMs with many cores, would be

avoided in order to regulate the profiling cost.

Taking this one step further, using a score function allows us to take multiple parameters
into consideration. Big Data applications are inherently deployed to cloud environment and,
thus, the deployment cost is one such criterion. Deployment coordinates are not equally costly
as providers charge for specific resources. For example, VMs with more cores or main memory

may cost more. In order to profile an application taking into consideration the monetary cost as

2.3. Profiling Methodology 41

well, we could assume a score function of the following form, / being the specified leaf:
score(l) = Werror - €r1or(l) + Wsize - Size(l) — Weost - cost(l) (2.2)

in which the cost of the leaf is calculated as the average cost of the deployment points inside the
leaf. Such a function would penalize leaves that contain more expensive deployment configura-
tions. Adjusting the way each factor affects the scoring function allows developers to achieve a
satisfactory compromise between the contradicting parameters of focusing on the most unpre-
dictable regions (error), exploring the space (size) and minimizing the monetary cost of deploy-

ments (cost).

2.3.4 Modeling

After B samples are returned by the profiling algorithm, they are utilized by the CREATEMODEL
(Algorithm [l, Line 8) function to train a new DT. The choice of training a new DT instead of ex-
panding the one used during the sampling phase is made to maximize the accuracy of the final
model. When the first test nodes of the former DT were created, only a short portion of the
samples were available to the profiling algorithm and, hence, the original DT may have initially
created inaccurate partitions. Moreover, in cases where the number of obtained samples is com-
parable to the dimensionality of the Deployment Space, the number of constructed leaves is
extremely low and the tree degenerates into a linear model that covers sizeable regions of the
Deployment Space with reduced accuracy. To overcome this limitation, along with the final DT,
a set of Machine Learning classifiers are also trained, keeping the one that achieves the lowest
Cross Validation error. However, when the DT is trained with enough samples, it outperforms
all the other classifiers. This is the main reason for choosing the DT as a base model for our
scheme: The ability to provide higher expressiveness by composing multiple linear models in ar-
eas of higher unpredictability, make them a perfect choice for modeling a performance function.
Note that, the linearity of this model does not compromise its expressiveness: Non-linear per-
formance functions can also be accurately approximated by a piecewise linear model, through
further partitioning the Deployment Space.

The case where the tree is poorly partitioned during the initial algorithm iterations, can
also produce vulnerabilities during the sampling step. Specifically, the Deployment Space may
be erroneously partitioned on the first levels of the tree and then, as new samples arrive, more
deployments will be spent on creating more and shorter regions that, would otherwise have been
merged into a single leaf. To address this problem, commonly anticipated when constructing a
Tree in an “online” fashion, several solutions have been proposed [TO09]. In our approach,
the DT is recreated from scratch prior to the sampling step. This optimization, albeit requiring

extra computation, boosts the performance of the profiling methodology, as better partitioning

42 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

of the space leads to more representative regions and better positioned models. Nevertheless, the
time needed for this extra step is marginal compared to the deployment time for most modern

distributed applications.

2.3.5 Complexity analysis

In order to estimate the complexity of Algorithm fil, let us first, estimate the complexity of its
building blocks, i.e., the PARTITION and SAMPLE functions provided in Algorithms P and
respectively.

Considering a d-dimensional Dataset Space with a maximum number of samples B and a
maximum number of Simulated Annealing iterations equal to Ng 4, the simplified complexity of
Algorithm [is

O(d*- B*- Nga).

The most computationally expensive part of Algorithm J takes place at line 5, where SA produces
and evaluates candidate split lines. For each generated line, two linear regression models are
estimated (in time O(d? - B) in the worst case) and evaluated and this is repeated at worst Ng4
times and for all the available tree leaves, i.e., B, hence the above. Note that this is the worst case;
In the case where the Decision Tree is balanced, i.e., the samples are equally divided to all leaves),
the number of leaves are log(B) and, hence, fewer computations are required. Nevertheless,
since this strongly dependent to the objective performance function, we continue our analysis

estimating the worse complexity. The sampling step, has a complexity of
O(d* - B?)

which is calculated considering that a linear regression model is constructed for each leaf of the
tree, i.e., B leaves at worst and d? - B computations for linear regression. Since this complexity
is smaller than the Tree expansion step, this factor can be omitted.

Finally, considering that the PARTITION and SAMPLE steps take place at each algorithm

iteration, i.e., % times, the total algorithm complexity equals:

d?>- B3 Nsa

o=,

Evidently, the above complexity seems prohibitive for Deployment Spaces of high dimension-
ality d and large deployment budgets B as the Algorithm’s execution time grows rapidly with
these quantities (i.e., in a quadratic and cubic way respectively). Nevertheless, the following con-
siderations should be made. First, we do not anticipate the Deployment Space dimensionality to

grow beyond limits. Most typical performance modeling approaches analyze the applications in

2.3. Profiling Methodology 43

the light of a handful of parameters, that do not typically surpass 5 dimensions. It is, thus, not
expected that the application dimensionality is soon to become the bottleneck of this approach.
Second, the cubic factor on the number of samples implies that Algorithm [l scales badly with
an increasing number of samples. However, the entire idea behind this algorithm is to minimize
this quantity: The algorithm was designed with the principle that B will be relatively small and
complex operations will be executed in order to choose samples wisely. Finally, this analysis
did not consider the cost of running the DEPLOY step in line 6 of Algorithm [l] since this is ex-
pected to remain unaffected by B, d and Ng4. In the reality, though, this step is the most time
consuming since B deployments need to take place in a cloud platform, which is a complex and
error-prone procedure. From this perspective, we consider the above complexity to be marginal
in comparison to the time needed to actually deploy a cloud application in numerous different

ways.

2.3.6 An end-to-end example

Finally, before proceeding to evaluating Algorithm [l, it is useful to provide an example of the
Algorithm’s execution that highlights how different algorithm steps evolve through time. For
this example, consider the execution of the Wordcount operator. The operator is executed for a
100G synthetic dataset, on a Hadoop cluster of varying sizes, i.e., the Deployment Space is 1-d
and it represents the number of nodes of the Hadoop cluster (4-256 nodes) and the Performance
Space represents the execution time. We execute our methodology for a budget of B = 14
configurations and b = 7 for each iteration. In Figures .q (a) and (b) we depict the actual and

approximated performance functions for the first and second algorithm iterations, respectively.

5>2.0 |, Actual — | " Actual —
- : Samples @ Samples @
(>§ 1.6 | . Approximated - - Approximated - -
212} : (12) © (1-3)
()
£0.8 [
13}
© 04 ¢ r V-
X | ot ‘ ‘ ‘ (1 1): | ‘ - ‘

0 50 100 150 200 250 O 20 40 60 80

Cluster nodes Cluster nodes
(a) First iteration (b) Second iteration

Figure 2.6: Algorithm execution for Wordcount

During the first iteration, 7 samples are randomly picked and the first partitioning of the
Deployment Space takes place (for a cluster of 96 nodes) generating the areas (1) and (2) of

Figure .4 (a). Note that, the performance function in area (2) presents linear behavior and,

44 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

hence, is extremely accurately approximated with only 4 tested configurations. On the contrary,
the performance function is strongly non-linear in area (1) and, hence, poorly approximated. The
scores of the two Deployment Space areas are, then, calculated, and in the following iteration all
the 7 available configurations are assigned to area (1), because the error of the area (2) is zero
(we assume that wg;,. = 0).

In Figure (b) we only depict area (1) as the rest of the Deployment Space remains the same.
The new samples contribute in the creation of more and shorter partitions which, in turn, make
the model accurately approximate the Actual performance function using a piecewise linear
function. The final model achieved to approximate the actual performance function extremely
accurately, examining only a mere 5% of the Deployment Space. This example is indicative of
our methodology’s power: Our divide-and-conquer approach allows us to sample and model
each region separately, assigning different level of detail to different regions of the Deployment
Space.

Moreover, the piecewise linear function is extremely effective for the performance functions
of typical Big Data applications and operators, as the one examined in this example, since the
behavior observed in this example (i.e., the “Actual” line) is commonly encountered, especially
when the Deployment Space consists of resource-related dimensions. This enables us to provide
extremely accurate approximations with a minimal number of deployments. Finally, even when
addressing performance functions of high complexity and strongly non-linear behavior, the uti-
lization of more and shorter partitions (as in the area (1) of Figure P.§ (a)) guarantees that the

actual line can be accurately approximated through the deployment of more samples.

2.4 Experimental Evaluation
At this point, the previously discussed methodology is evaluated. The evaluation aims at demon-
strating that the proposed algorithm:

« outperforms other, state of the art, end-to-end profiling methodologies (Section .4.1)).

« scales to performance functions of varying dimensionality and complexity with satisfying

accuracy (Section P.4.7).

« can be configured in order to accelerate modeling or provide higher modeling accuracy

(Section P.4.3).

« exploits oblique decision trees in order to approximate regions of the deployment space
with abnormalities and discontinuities (Section P.4.4).

« can take into consideration other deployment parameters such as the cost of the selected
deployment configurations (Section .4.5).

2.4. Experimental Evaluation 45

Methodology and Applications: To evaluate the accuracy of our profiling algorithm, we test
it over various real and synthetic performance functions. The Mean Squared Error (MSE) and
Mean Absolute Error (MAE) metrics are utilized for the comparison, estimated over the entire
Deployment Space, i.e., we exhaustively deploy all possible combinations of each application’s
configurations, so as to ensure that the generated model successfully approximates the origi-
nal function for the entire space. We have deployed four different popular real-world Big Data
operators and applications, summarized in Table R.]. We opted for applications with diverse
characteristics with Deployment Spaces of varying dimensionality (3 — 7 dimensions). The first
three operators are implemented in Spark (k-means, Bayes) and Hadoop (Wordcount) and they
are deployed to a YARN cluster. In all cases, the performance metric corresponds to the execu-
tion time. MongoDB is deployed as a sharded cluster and it is queried using YCSB [CST™10].
The sharded deployment of MongoDB consists of three components: (a) A configuration server
that holds the cluster metadata, (b) a set of nodes that store the data (MongoD) and (c) a set of
loadbalancers that act as endpoints to the clients (MongoS). Each application was deployed in a

private Openstack cluster with 8 nodes aggregating 200 cores and 600GB of RAM.

Table 2.1: Applications under profiling

Appllcatlol.l Dimensions Values
(perf. metric)

YARN nodes 2-20

cores per node 2-8

memory per node 2-8 GB
Spark k-means # of tuples 200-1000 (x10%)
(execution time) # of dimensions {1,2,3,5,10}

data skewness 5 levels

k {2,5,8,10,20}

YARN nodes 4-20

cores per node 2-8
Spark Bayes memory per node 2-8 GB
(execution time) # of documents 0.5-2.5 (x106)

of classes 50-200 classes

YARN nodes 2-20
Hadoop Wordcount | # cores per node 2-8
(execution time) memory per node 2-8 GB

dataset size 5-50 GB

of MongoD 2-10
MongoDB # of MongoS 2-10
(throughput) request rate 5-75 (x103) req/s

We have also generated a set of synthetic performance functions using mathematical expres-

sions, listed in Table 2.3, Each function maps the n-dimensional Deployment Space to a single

46 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

dimensional metric and consists of n dimensions such that x = (x1, 9, - - - , ;). The listed func-
tions are chosen with the intention of testing our profiling algorithm against multiple scenarios
of varying complexity and dimensionality. To quantify each function’s complexity, we measure
how accurately can each function be approximated by a linear hyperplane. Linear performance
functions can be approximated with only a handful of samples, hence we regard them as the least
complex case. For each of the listed functions, we calculate a linear model that best represents
the respective data points and test its accuracy using the coefficient of determination R?, whose
value indicate the linearity of the respective function (1 indicating total linearity and 0 the op-
posite). Based on R? values for each case, we generate three complexity classes: Functions of
LOW complexity (when R? is higher than 0.95), functions of AVERAGE complexity (when R? is
between 0.5 and 0.7) and functions of HIGH complexity when R? is close to 0. The values of R?
depicted in Table .d refer to two-dimensional Deployment Spaces.

Table 2.2: Synthetic performance functions

Complexity | Name Function R?
LIN fi(x) =a1x1 + - + apx, | 1.00
Low POLY fo(x) = a12? + -+ apz? | 0.95
EXP f3(x) = 1™ 0.65
AVG EXPABS | fi(x) = el 0.62
EXPSQ | f5(x) = ¢ 1(®)? 0.54
GAUSS | fo(x) = e 20 0.00
HIGH WAVE | fr(x) = cos(f1(x)) - f3(x) | 0.00
HAT f3(x) = fa(x) - fo(x) 0.00

Finally, we compare our profiling methodology against other end-to-end profiling schemes.
Our approach is referred to as DT-based Adaptive methodology (DTA). Active Learning [Set10]
(ACTL) is a Machine Learning field that specializes on exploring a performance space by obtain-
ing samples assuming that finding the class or the output value of the sample is computationally
hard. We implemented Uncertainty Sampling that prioritizes the points of the Deployment Space
with the highest uncertainty, i.e., points for which a Machine Learning model cannot predict their
class or continuous value with high confidence. PANIC [[GTPK15] is an adaptive approach that fa-
vors points belonging into steep areas of the performance function, utilizing the assumption that
the abnormalities of the performance function characterize it best. Furthermore, since most pro-
filing approaches use a randomized sampling algorithm [GCMS15, CMS16, KRDZ10, KRG™ 12]
to sample the Deployment Space and different Machine Learning models to approximate the
performance, we implement a profiling scheme where we draw random samples (UNI) from the
performance functions and approximate them using the models offered by WEKA [HFH™09],

keeping the most accurate in each case. In all but a few cases, the Random Committee [Rok10]

2.4. Experimental Evaluation 47

algorithm prevailed, constructed using Multi-Layer Perceptron as a base classifier. For each of
the aforementioned methodologies, we execute the experiments 20 times and present the median

of the results.

2.4.1 Comparison of end-to-end profiling methods for varying Sampling Rate

We first compare the four methods against a varying Sampling Rate, i.e., the portion of the De-

ployment Space utilized for approximating the performance function (SR = ‘ﬁﬂl x 100%). SR

varies from 3% up to 20% for the tested applications. In Figure .7 we provide the accuracy of
each approach measured in terms of MSE and in Figure R.§ in terms of MAE.

UNI —=— PANIC —¢&— UNI —— PANIC —%—
ACTL DTA —@— ACTL DTA —@—

—_
(o]

—_
N
T

L

N

Mean Squared Error (x 103)
Mean Squared Error (x 103)
o)

L L L L L L L L O L L L L L L L L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Sampling Rate (%) Sampling Rate (%)
(a) k-means (b) Bayes
UNI —— PANIC —%¢— UNI —=— PANIC —%—

ACTL DTA —@— ACTL DTA —@—

N w A
T

Mean Squared Error (x 103)
w
Mean Squared Error (x 107)

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Sampling Rate (%) Sampling Rate (%)
(c) Wordcount (d) MongoDB

Figure 2.7: Accuracy vs sampling rate (MSE)

Figure R.7 showcases that DTA outperforms all the competitors for increasing SR, something
indicative of its ability to distribute the available number of deployments accordingly so as to
maximize the modeling accuracy. In more detail, all algorithms benefit from an increase in SR
since the error metrics rapidly degrade. Both in k-means and Bayes, when the SR is around
3% UNI and DTA construct models of the highest accuracy. As mentioned in Section .34, for

48 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

UNI —=— PANIC —%— UNI —— PANIC —%¢—
ACTL DTA —@— ACTL DTA —@—
— T T T T T T T T — 80 T T T T T T T T
e e
5 5 70
e e 607}
=] =2 50
g § 40 |
< <
30
§ % 20
E L L L L L L L L E 10 L L L L L L L L
2 4 6 8 101214161820 2 4 6 8 1012 14 16 18 20
Sampling Rate (%) Sampling Rate (%)
(a) k-means (b) Bayes
UNI —=— PANIC —¢— UNI —— PANIC —¢—
ACTL DTA —@— N AL DTA —@—
5 70 — = 5.2 —_—————
& 60| S 45
L 50 £ 4
= w 35
g 40t 2 3
Q 2 25
<< 30 r o 2
c 3
S 20 < 1.?
= 10 —_— § 0.5 —
2 4 6 8 1012 1416 18 20 s 2 4 6 8 1012141618 20
Sampling Rate (%) Sampling Rate (%)
(c) Wordcount (d) MongoDB

Figure 2.8: Accuracy vs sampling rate (MAE)

such low SR the linearity of the DT would fail to accurately represent the relationship between
the input and the output dimensions, thus a Random Committee classifier based on Multi-Layer
Perceptrons is utilized for the approximation. The same type of classifier also achieves the highest
accuracy for the rest of the profiling algorithms (ACTL, PANIC) that also present higher errors
due to the less accurate sampling policy at low SR. As S R increases, the DT obtains more samples
and creates more leaves, which contributes in the creation of more linear models that capture a
shorter region of the Deployment Space and, thus, producing higher accuracy. Specifically, for

SR > 3%, DT created a more accurate prediction than other classifiers and was preferred.

In the rest of the cases, DTA outperforms its competitors for the Wordcount application and,
interestingly, this is intensified for increasing S R. Specifically, DTA manages to present 3X less
modeling error than UNI when SR = 20%. Finally, for the MongoDB case, DTA outperforms
the competitors increasingly with SR. In almost all cases, DTA outperforms its competitors and
creates models even 3 times more accurate (for Bayes when SR = 20%) from the best competitor.

As an endnote, the oscillations in PANIC’s and ACTL’s behavior are explained by the aggressive

2.4. Experimental Evaluation 49

exploitation policy they implement. PANIC does not explore the Deployment Space and only
follows the steep regions, whereas ACTL retains a similar policy only following the regions of
uncertainty, hence the final models may become overfitted in some regions and fail to capture
most patterns of the performance function. Our work identifies the necessity of both exploiting
the regions of uncertainty but also for exploring the entire space. This trade-off is only addressed
by DTA and explains its dominance for difficult to approximate applications.

The respective plots depicted in Figure ., where the error is expressed in terms of Mean
Absolute Error, provide a similar picture as the ones in Figure .7. DTA is, again, showcased to be
the most efficient profiling methodology and the accuracies achieved by the different approaches
are equivalent to the ones discussed previously. However, one notable difference with the plots
of Figure .7, is that the methodologies with the highest errors (e.g., UNI for Wordcount, PANIC
for Bayes) tend to present lower errors when measured with MAE instead of MSE. Taking into
consideration that MSE is heavily weighted by outliers [BC01], we are lead to the conclusion that
the less accurate methods present highly misclassified deployment configurations, i.e., poorly
approximated outliers. On the contrary, DTA presents similar behavior for both error metrics.
This is indicative of DTA’s ability to avoid strongly outlying points, i.e., points for which the
error is too large. The inherent divide-and-conquer functionality of DTA and its ability to focus

on each region of the Deployment Space separately and, thus, avoid strong outliers.

2.4.2 Impact of performance function complexity and dimensionality

We now compare the accuracy of the profiling algorithms against synthetic profiling functions
with varying complexity and dimensionality. We create synthetic performance functions using
the ones presented in Table 2.9 for 2 and 10 dimensions, employing 2 different SR (0.5% and
2%). Specifically, we assume that there exist 2 dimensions that highly impact the function’s
output and, in the 10-d case, the remainder dimensions are of much lower significance, i.e., their
coefficients tend to zero. This simulates the real-world use case where one wants to profile an
application with many dimensions, but only a handful of them are, indeed, significant to the
output performance. The results are depicted in Table P.3. Since the output of each dataset is in
different scale, we normalize all the results, dividing the error of each methodology with the error
produced by UNI. All methodologies approximated LIN, POLY, EXP and EXPSQ with minimal
error and hence are not provided. The lowest errors for each case are demonstrated in bold.
Table P.3 showcases that all the synthetic functions were more accurately approximated by
DTA than the rest of the profiling schemes. Specifically, when the dimensionality of the space
is low, DTA achieves considerably lower modeling errors than the UNI case, whereas ACTL and
PANIC produce much worse results, compared to UNI, something intensified with increasing
SR. This is ascribed to the fact that ACTL and PANIC only exploit the space abnormalities

50 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

Table 2.3: Accuracy vs function complexity

n ACTL PANIC DTA
0.5% | 2% || 05% | 2% || 0.5% | 2%

EXPABS 2| 199 | 529 || 1.29 | 2.63 || 0.58 | 0.52
10 || 0.40 | 0.31 || 0.33 | 0.28 || 0.13 | 0.11
2| 1.55 | 591 || 1.32 | 5.63 || 0.68 | 0.52
GAUSS 10 || 0.42 | 0.39 || 0.45 | 0.42 || 0.42 | 0.36
2] 098 | 234 || 1.01 | 2,51 || 0.71 | 0.79
WAVE 10 || 0.30 | 0.28 || 0.31 | 0.28 || 0.18 | 0.15
HAT 2| 1.17 | 649 || 1.25 | 4.85 | 0.60 | 0.42
10 || 0.52 | 0.43 || 0.49 | 0.45 || 0.32 | 0.29

whereas UNI focuses on space exploration. In cases where the space consists of 2 dimensions
with high impact, UNI is, understandably, better than the exploitation-centric ACTL and PANIC
approaches, DTA standing in the middle and producing the best results.

Interestingly, though, when the dimensionality of the space increases, UNI becomes insuffi-
cient, as in these cases all the other approaches exhibited a considerably more accurate behav-
ior. The spaces now consist of 10 dimensions, the 8 of which are of low importance: All the
approaches that focus on the abnormalities of the space (ACTL and PANIC) benefit from their
exploitation-based functionality since they ignore deployment space regions with uninterest-
ing, i.e., non oscillating, behavior. DTA, on the other hand, achieves the same results, but for
another reason: The construction of the DT during the sampling and modeling phases, is con-
stantly ignoring the unimportant dimensions, executing a form of Dimensionality Reduction to
the deployment space and only focusing on the dimensions of higher interest. This functionality
renders our approach suitable both for cases where there exist several non-interesting dimen-
sions and need to be ignored and cases where there exist equally important dimensions that
should be evaluated. This discussion highlights that DTA manages to elegantly compromise the
contradicting aspects of exploration and exploitation. Furthermore, the recursive Deployment
Space partitioning manages not only to distribute the deployment budget appropriately, but also

ignore the dimensions that present no interest.

2.4.3 Impact of per-iteration number of deployments

We now evaluate b’s impact, i.e., the number of deployments spent in each algorithm iteration,
in DTA’s performance. In Figure P.9, we provide results where b is set as a portion of B (the
total number of allowed deployments) for three different SR. The horizontal axis represents the
ratio B/b. The Figure on the left depicts the MSE while the right one represents the respective

execution time of DTA.

2.4. Experimental Evaluation 51

5% —@— 10% —X— 20% ——— 5% —@— 10% 20% —
= 30
¢)
g i?’, 25
LE -Gé 20
3 :
3]
()] Q 5 I f
: S uséeeeves
) 0
= 1 2 3 456 7 8 910
B/b
(a) Accuracy (b) Execution time

Figure 2.9: Per-iteration number of deployments evaluation

When B/b = 1, the algorithm degenerates into UNI, since the tree is constructed in one step.
At this point, the algorithm presents the highest error and the lowest execution time, since the
tree is only constructed once and the most erroneous leaves are not prioritized. When the ratio
increases, the algorithm produces more accurate results and the error decrease intensifies for
increasing S R. For example, when SR = 20% the error decreases more than 35% for increasing
B/b. However, when SR = 5% and SR = 10% and for low b values (e.g., B/b = 10) an
interesting pattern appears: MSE starts to increase, neutralizing the effect of lower b. This occurs
in cases where b is extremely small, compared to the dimensionality of the Deployment Space.
In such cases, the per-iteration budget becomes too small in order to be efficiently distributed
among the DT leaves, and hence, many iterations need to take place before the tree is further
expanded and analyzed. This leads to a suboptimal distribution of the b samples and, finally, a

suboptimal configuration selection policy.

The performance gain presented by increasing B/b is ascribed to two factors: (a) the final DT
has more accurate cuts and, hence, well-placed models and (b) the samples are properly picked
during the profiling. To isolate the impact of each factor, we repeat the same experiment for all
applications and train different ML classifiers instead of a DT. This way, we isolate the impact of
sampling and only examine its importance. We identified that the classifiers that consist of linear
models, i.e., regression classifiers such as OLS (Ordinary Least Squares) [DL06], or an Ensemble
of Classifiers created with Bagging [Qui9€] (BAG) that utilize linear models as base improve their
accuracy with increasing B/b. In Table .4 we provide our findings for two classifiers (OLS and
BAG), expressing the percentage decrease of MSE of each case, compared to the B/b = 1 case.

The table demonstrates that for all cases, increasing B/b benefits the linear models, some-

thing that showcases that our sampling algorithm itself achieves better focus on the interesting

52 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

Table 2.4: MSE decrease % for linear classifiers

.. . B/b
Application | Classifier 2 s 3 10
Kemeans OLS 8% | 10% | 12% | 12%
BAG 3% 8% 8% 9%
Bayes OLS 23% | 27% | 28% | 29%
BAG 23% | 22% | 21% | 23%
Wordcount OLS 23% | 17% | 19% | 23%
BAG 21% | 28% | 41% | 38%
OLS 19% | 13% | 12% 7%
MongoDB BAG 6% | 12% | 11% | 2%

Deployment Space regions. Nevertheless, we notice that an increasing B/b ratio does not al-
ways lead to linear error reduction. When B/b = 8 and B/b = 10, one can notice that the
error either degrades marginally (for k-means and Bayes) or slightly increases (for MongoDB)
when compared to B/b = 5. This is, again, ascribed to the extremely low per-iteration number
of deployments b that almost equals the dimensionality of the space. In summary, our findings
demonstrate that even utilizing solely the sampling part of our methodology can be particularly

useful in cases where linear models, or a composition of them, are employed.

2.4.4 Impact of oblique boundaries

We now evaluate the impact of flat versus oblique DTs in the profiling accuracy and execution
time. In Figure (a), we model k-means for varying S R. The oblique tree introduces a slight
accuracy gain (of about 10% for low SR) compared to the flat tree and demands about twice the
time for algorithm execution. The accuracy gains fade out when the SR increases.

This is owed to the fact that when a higher SR is employed, more leaves are created and
the profiling algorithm functions in a more fine-grained manner. At this point, the structure of
the leaf nodes is not important. However, when the algorithm must work with fewer leaves,
i.e., lower SR, the importance of the leaf shape becomes crucial, hence the performance boost
of the oblique cuts. However, a point not stressed in the results so far is that oblique DTs, apart
from a minor performance boost, offer the ability to accurately approximate points of the perfor-
mance function with patterns spanning to multiple dimensions of the Deployment Space. When
measuring the accuracy of the model in the entire space, as in Figure (a), this effect can
be overlooked, yet, it appears when focusing on the region containing the pattern. To show-
case this, we conduct the following experiment: Assume EXPABS of Table .7, minimized when
a121+- - -+anzy, = 0. We again compare the flat and oblique approaches for a two-dimensional

Deployment Space but now use two different test sets: (i) points from the entire space (as before)

2.4. Experimental Evaluation 53

depicted in Figure (b) and (ii) points close to the aforementioned line (less than e = 1073)
in Figure (©).

e 5 5 250
x =
T 457} w200 ¢
S o
m 4 S 150 |
3 >
5 35 ¢ g 100 ¢
3 3+ S 50¢
c (3]
8 25 L L L L L L L L =S 0 L L T
= 12 3 456 7 8 910 12 3 456 7 8 910
Sampling Rate (%) Sampling Rate (%)
(a) Accuracy for k-means (b) Accuracy for EXPABS - entire space
MIX ——1ABN

5 1000 v ——— 25
2 flat —@—
w oblq —— 2
3 100 ¢ 5 o
@ ® 15 ¢
= =
n 10 E 2 17
g KX e U,
= 1 ——— ~

123 456 7 8 910 0

. flat oblg flat oblq
Sampling Rate (%) EXPABS WAVE
(c) Accuracy for EXPABS - ABN space (d) Relative error for different test sets

Figure 2.10: Accuracy for flat and oblique cuts

While the difference in (b) is considerable for this case (a gain of 30% to 90%), when testing
against points close to the abnormality we observe that the oblique version manages to achieve
error rates that are orders of magnitude lower than those achieved by the flat DT. To further eval-
uate the impact of the test set into the measured accuracy for different performance functions,
we repeat the previous experiment for EXPABS and WAVE (that also contains similar complex
patterns) for a SR = 2%. We measure the accuracy of the model when the test points are picked
from (a) the entire Deployment Space (ALL), (b) close to the “abnormal” region (ABN) and (c) both
(MIX). For MIX, half of the test points are far from the abnormality and the other half is located
in a distance less than e. Figure (d) showcases the respective results. The produced errors
for MIX and ABN are divided with the error of ALL for each execution. Our results demonstrate
that when more points are picked around the abnormality region, the flat DT produce higher
modeling errors and oblique DT achieve much lower errors. A similar to the flat DT behavior
is also verified for the rest of the profiling algorithms as well (UNI, ACTL and PANIC): None of
them was able to approximate the abnormal regions of the synthetic functions with satisfying

accuracy, rendering DTA the only profiling methodology with this feature.

54 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

2.4.5 Cost-aware profiling

So far, we have assumed that all Deployment Space points are equivalent, in the sense that we
have not examined the deployment configuration they represent: A point representing a deploy-
ment configuration of 8 VMs, each of which has 8 cores, is equivalent to a point representing 1
VM with 1 core. However, since the choice of a point results in its actual deployment, it is obvi-
ous that this choice implicitly includes a (monetary) cost dimension that has not been addressed.
We now examine DTA’s ability to adapt when such a cost consideration exists. Let us define the

following cost models:

« k-means: |nodes| x |cores]

Bayes: |nodes| X |cores|
« Wordcount: |nodes| x |cores|
« MongoDB: [MongoS| + [MongoD|

We have chosen realistic cost models, expressed as functions of the allocated resources (VMs and
cores). Let us recall that MongoDB utilizes unicore VMs. Hence, their cost is only proportional
to the number of allocated VMs.

We execute DTA using the Equation R., presented in Section where the error and size
parameters positively influence the score of each leaf and cost is a negative factor. For weppor =
1.0 and weest = 0.5, we alter the weight of the cost parameter between 0.2 and 1.0 for SR of 3%
and 20%. We provide our findings in Table R.5, in which we present the percentage difference in

the profiling error (measured in MSE) and cost for each case, against the case of wgps: = 0.0.

Table 2.5: MSE and Cost for different cost weights

. MSE Cost
App/tions | SR 55470702 05| 1.0
. 3% | 1% | 3% | +3% | -1% | 5% | -6%
means | o0% | 6% | 2% | -8% | -7% | -11% | -26%
B 3% | +1% | 1% | 2% | -1% | -1% | -1%
ayes 20% | +4% | +10% | +5% | -7% | -9% | -12%
3% | 1% | 5% | -1% | 4% | -6% | -1%
Wordcount | 0 | 0 | 130 | 1199 | 6% | -8% | -18%
3% | 6% | +12% | +13% | 2% | 3% | -4%
MongoDB | 0 | 1o | 7% | 7% | 6% | -9% | -12%

For low SR, increasing values for w,,s; does not heavily influence the profiling cost. Specif-
ically, for the MongoDB case, the cost reduces by a marginal factor (around 4% in the most
extreme case) whereas the error increases by 13%. On the contrary, for high SR, the consid-

eration of the cost increases its impact as the application profiles are calculated even 26% less

2.5. Discussion 55

expensive than the case of weyst = 0, e.g., in the k-means case for wees¢ = 1.0. Furthermore, it
is obvious that for increasing w,,st, the cost becomes a more important factor for the leaf score
and, hence, the cost degradation becomes more intense. Regarding the profiling accuracy, in
most cases the error remains the same or its increase does not exceed 10%. A notable excep-
tion from this is the Wordcount case, where we can see that the MSE increases rapidly with
increasing weyst values and even reaches a growth of 19% in the case where wepst = 1.0. From
this analysis, we can conclude that cost-aware sampling becomes particularly effective for high
S R, which is also desirable since high S R entail many deployments, i.e., increased cost. In such
cases, the cost-aware algorithm has more room to improve the profiling cost whereas, on the
same time, the accuracy sacrifice is totally dependent on the nature of the performance function;
However, from our evaluation we can conclude that the accuracy degradation is analogous to
the cost reduction, allowing the user to choose between higher accuracy or reduced deployment

cost.

2.5 Discussion

Let us now discuss in more detail some delicate aspects of our methodology. First, from a high-
level, Algorithm [| attempts to compromise two contradicting aspects regarding knowledge ex-
traction from an unknown space: Exploration and exploitation. There exist many research fields
that face the same challenge. Reinforcement Learning [SB98], in particular, presents the same
dilemma during the training phase of an agent that has to select among different actions, each of
which has a certain penalty or reward. In the domain of performance modeling, though, the re-
search efforts were mainly focused either solely on exploring the space, i.e., adopting Uniform or
similar space covering sampling algorithms, or exploiting the obtained knowledge. Methodolo-
gies of the latter type are mainly encountered in domains were the global maximum/minimum
of a performance function is required. To the best of our knowledge, our work is the first that
manages to both explore and exploit the extracted knowledge in an efficient way, also presenting
superior results than other, competitive approaches. The open nature of the proposed solution,
that is serialized in a simple expression (i.e., Equation R.d), leaves great room for extensions; In
Section p.4 we already demonstrated how expressions regarding the deployment cost may be ac-
commodated. Similarly, one could easily consider alternative factors such as deployment speed,
peculiarities of specific configurations (e.g., assign higher scores to uni-core configurations), etc.

Second, our work is based on the assumption that the deployment of a given application con-
figuration (i.e., a point of the Deployment Space) is deterministic and always produces the same
performance value. This is a common assumption behind all “black-box” modeling techniques
that guarantees that a performance function has all these properties that make it able to be ap-

proximated by a statistical method. In practice, though, the reproducibility of the deployments

56 Chapter 2. Adaptive Performance Modeling of Big Data Applications and Operators

that run on real-world cloud infrastructures, are not guaranteed. Interference caused by virtu-
alization and the shared nature of the cloud resources, may introduce noise to the performance
values and distort the function under approximation. Even though this problem is outside the
scope of out work, one can overcome the introduced noise with different techniques: Running
deployment for the same configurations multiple times and use the mean performance value as
a point, running a sample of the selected configurations in order to verify the correctness of the
obtained performance values, or even utilizing a more sophisticated model with higher toler-
ance to noisy data as [FS99], could help overcoming this challenge. However, as cloud platforms
develop and mature, they achieve higher level of isolation and utilize more efficient scheduling
algorithms that minimize such interference.

Finally, one aspect that was not discussed so far, relates to the practicality of the introduced
methodology, from the cloud deployment point of view. Our analysis so far was mainly focused
on explaining the partitioning, sampling and modeling algorithms, overlooking the procedure
through which a selected configuration is deployed to the cloud. Even though this procedure
does not present any theoretical challenges, it requires multiple systems to coordinate in an
orderly fashion in order to generate a new application instance, run a given workload to it and
collect the performance value. In practice, we observed that a non negligible percentage of the
attempted deployments ended up in an inconsistent state. The main reasons behind these failed
attempts were transient errors, timeouts to the underlying services, bad synchronization between
the cloud services, etc. Correcting such errors proved to be highly impractical, especially because
it required manual intervention to fix a partially executed workflow and correcting it in place,
or cleaning everything and starting over.

Motivated by this observation, we developed AURA, a cloud deployment system with error-
recovery capabilities. An application deployment is expressed as a Directed Acyclic Graph the
edges of which represent the discrete deployment steps while the nodes represent the interme-
diate states that different application modules reach during the deployment. If a transient error
occurs during the application deployment, AURA attempts to overcome it through re-executing
the failed deployment parts. In order to ensure idempotence of the deployment scripts, it em-
ploys a file system snapshot mechanisms, that guarantees that a failed script execution leaves
no side-effects to file system related resources (configuration files, binaries, etc.). A detailed

presentation of AURA can be found in Appendix [A|.

CHAPTER 3

A Content-Based Approach for Modeling
Analytics Operators

This chapter describes a content-based approach for modeling analytics operators. The method-
ology is based on the idea that datasets that have similar characteristics influence the operators
that are applied to them in similar ways and, hence, their outputs are should be similar. In-
stead of focusing on operators, this work takes a different view on the problem: It attempts to
quantify the similarity of different datasets, in the light of a handful of fundamental properties
and constructs a Dataset space that represents this knowledge. A given operator is, subsequently,
applied to a few of the available datasets and the outcome of the operator for the remainder, non-
tested datasets is approximated using Neural Networks. Our evaluation, conducted for a variety
of real-world datasets that include monitoring metrics, weather data and time-series with stock
prices, indicate that our approach models the outcome of different operators with remarkable
accuracy and massively accelerates data analysis by a factor of up to 20x. This novel idea is also
showcased to be successfully applied to graph-based datasets as well, indicating that the sug-
gested scheme is generally applicable regardless of the data representation and it is modular in
the sense that it can easily adapt to different domains, when different dataset similarity metrics

are employed.

57

58 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

3.1 Overview

To introduce our approach, let us provide an illustrative example that showcases that there exists
a firm relationship between one of the most commonly studied data properties, i.e., data distri-
bution and the behavior of three popular data operators. Assume six 1-d datasets that follow
the Pareto distribution with different a values (i.e., exponents) and three operators: AVG, that
provides the mean value of each dataset, DBSCAN [EK™96] that executes the popular clustering
algorithm and return the number of formed clusters and Local Outlier Factor (referred to as LOF)
that executes the algorithm presented in [BKNS00] and returns the percentage of tuples that
collect a score greater than 2 and are, thus, considered outliers. Figure provides the proba-
bility density function of each dataset in a log-log plot and Figure provides the operators’
values for each of the three operators, normalized with the value obtained for the dataset where
o = 1.1. There exists a clear monotonic relationship between « and the produced operator val-
ues: The bigger the exponent the smaller the score for the AVG and the DBSCAN operators and
the larger for Local Outlier Factor. As increasing exponents contribute to the creation of datasets
with narrower ranges and values closer to 0, the behavior of all three operators is highly corre-
lated to o which controls the dataset distribution. In all three operators, the datasets with high
distribution similarity tend to present similar values for each operator. As a consequence, one
could predict the behavior of each dataset, only by examining the behavior of its most similar

one. For example, the values of the operators for av=4.3 highly resemble the cv=4.1 case.

10°p e ‘ g
-1 L] | o=1.1 H— _
10 E @ [s
102 E ~., - 3> 0=2.] EXXXXX
af N E S 15 | 0=23 -
104 3 AN \'«.\ E ‘>3 o=4.1 XXX
4L e 8 =43
210 N g mo2p Y .
S 10°F o=11 — N\ E g
o0 - - - 3
s 10°F %3 T, N = © 09| .
o 7 F T&- \ 9 (0]
107 F o0=23 — Ut I
8 0a=4.1] S 06 | 7]
10 F o=43 — N3 E
09 b B
10 100 0.3 Ph .
X AVG DBSCAN LOF
(a) Statistical distribution of 6 datasets (b) Output of operators for the 6 datasets

Figure 3.1: Relationship between Data Distribution and Operator behavior

The above example demonstrates that the examination of the similarity of such a fundamental
property such as the statistical distribution can often provide invaluable hints for predicting the
output of different operators. This is a reasonable finding: All the operators provided in the above

example are affected by the statistical distribution of the underlying datasets and hence when the

3.1. Overview 59

distributions between two datasets are similar, the respective operator output is anticipated to
be similar as well. If we want to generalize this finding, we should ask: Which dataset properties
should be used for measuring the similarity? And how can this similarity information be utilized

in order to predict the outcome of a given operator when applied to different datasets?

In order to answer the above questions, we propose a content-based methodology for mod-
eling analytics operators. It relies on quantifying the similarity of a set of datasets in the light
of different properties, encoding this information to a low-dimensional dataset space that re-
flects the similarity between them, executing a given operator for a mere subset of the available
datasets, and, finally, approximating the operator’s output for the untested datasets using Ma-
chine Learning. Our methodology is generic, in the sense that different similarity metrics can
be accommodated without requiring any changes to the codebase. Nevertheless, our study is
focused on three key dataset properties that influence many operators. These properties are the
statistical distribution of the datasets, the order of their tuples and their size, i.e., the number of
tuples they consist of. Using these three key properties, we are able to create informative dataset
spaces that, as our evaluation demonstrates, may be used as input spaces by Neural Networks
in order to model the behavior of a set of operators with diverse characteristics. Interestingly
enough, our methodology seems to be applicable not only to tabular data, i.e., datasets that com-

prise tuples, but also to graph-based data as well.

The contributions of our work are summarized as follows:

« We present an efficient, operator-agnostic dataset profiling methodology, that estimates
the similarity among the available datasets, constructing a dataset space that best reflects
their properties and modeling the output of the applied operators utilizing Neural Net-

works trained using this dataset space as input.

« We offer an open source Go prototype [soul8] of our work, through which a user can
execute the dataset profiling and export the generated ML models for integration with

other systems.

« We conduct a thorough evaluation of this approach, utilizing a variety of datasets with dif-
ferent characteristics. models the behavior of a wide variety of operators with remarkable
accuracy (less than 2% of modeling error in the best case and less than 15% in most cases
when a mere 4% of the datasets are examined). Moreover, it presents massive speedups
(more than 20X in the best case) in comparison to exhaustively executing the operators
for the entirety of available datasets. Finally, it can be customized in order to accelerate
data analysis and conduct less detailed dataset examination or increase modeling accuracy

when higher execution time is affordable.

60 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

3.2 Preliminaries

3.2.1 Problem Description

Assume a set of datasets D = {Dj, Dy,--- , Dy} and an operator F'. Each dataset D;,1 < i <
N, consists of tuples with the same number of columns, containing arithmetic values. F accepts

a single dataset as input and produces a scalar output value:
F:D—>R (3.1)

Each operator can be viewed as a function that projects any dataset D; to a scalar value F'(D;).
The problem that this work addresses, is the following: We seek for an approximation of the ex-
pression F'(D;) without exhaustively executing F' for all datasets. This resembles a typical function
approximation problem: One can sample D, execute F' for the selected subset of datasets and
utilize regression to approximate [’ for the rest of the datasets. However, this method cannot be
applied in this problem because D represents an unordered set of datasets that do not belong to
a metric space and the relationships between them are unknown. Since all function approxima-
tion approaches require D to be a metric space, i.e., the distances between datasets to be known,
regression cannot be used.

Albeit constructing a metric space for any given D is possible for a given distance function for
each dataset pair in D, the quality of the approximation is heavily affected by the choice of this
function. Ideally, the desired distance function must reflect the distance between two datasets D;,
D;,1 <14,57 < N, both in the aforementioned metric space and in the operator’s output domain,
ie., if |D; — Dj| < € (].| denoting the Euclidean norm) then |F(D;) — F(D;)| < € as well. If
this property applies, the constructed metric space can be accurately used by a model in order to
predict an operator’s output, since the topology of the datasets themselves provide excellent hints
on the behavior of the latter. Although this may initially seem an operator-dependent procedure,
we argue that only a handful of distance functions that examine specific dataset properties suffice
to generate highly informative dataset spaces, that facilitate modeling the behavior of diverse

real-world operators.

3.2.2 Operators and Dataset Properties

Associating how a property affects an operator’s behavior generally requires extensive knowl-
edge regarding the operator’s design. Nevertheless, we argue that there exist some fundamental
properties that, if examined, they can produce invaluable insight regarding an operator’s behav-
ior. Indeed, examining data interrelationships in the light of a handful of fundamental dataset
properties can generate a knowledge basis through which the behavior of different operators

can not only be explained but also predicted. These properties examined in this work are: (a)

3.2. Preliminaries 61

the statistic al distribution of the datasets, (b) the dataset size and (c) the order of their tuples.
Distribution refers to the positioning of a dataset’s tuples and it is a fundamental property that
is implicitly or explicitly examined during any data analysis task, as it uniquely characterizes
the statistical behavior of a dataset. Size is an expression of the cardinality of the dataset and it
is commonly examined when the behavior of an operator is affected by it. Order expresses the

ranking of the dataset’s tuples and is frequently examined when sequence matters.

Table 3.1: Operators and Dataset Properties

Operators
Class Name Affected by
AVG Distribution
Aggregate SOM —
Functions Distribution +
COUNT Size
. DBSCAN [EK"96] e
D t D
ensity Local Outlier Factor [BKNS0(] istribution
ML Linear Regression Distribution
Spectrum | Eigenvalue Estimation Distribution
Time-Series | Holt-Winters [Cha78] Distribution +
Forecast ARIMA [BJRL15] Order

These three fundamental properties highly affect a magnitude of real-world operators. In
order to showcase this, in this work, we use popular operators from diverse domains, which are
frequently encountered either as isolated components or as part of greater and more complex
analytics workflows. The considered operators along with the respective properties they are
affected by are summarized in Table B.1. Each operator is formulated as per Equation B.1. Specif-
ically, the Aggregate Functions represent mathematical operations that are applied to one or more
dataset columns, producing a scalar value. The Density class comprise DBSCAN [EK'94] that
executes the popular clustering algorithm and return the number of formed clusters and Local
Outlier Factor (referred to as LOF) that executes the algorithm presented in [BKNS00] and re-
turns the percentage of tuples that collect a score greater than 2 and are, thus, considered to be
outliers. The ML class consists of a fundamental Machine Learning operator, i.e., Linear Regres-
sion. This operator is trained using a dataset from D and return an estimate of the training error
when the model is tested with a given external dataset. The Spectrum class contains an operator
that returns the ¢-th eigenvalue (for a given ¢) of the provided dataset, a procedure executed in
various workflows from dimensionality reduction [Jol86] to clustering. Finally, the Time-Series
Forecast class comprises two operators [Cha78, BJRL15] that forecast the i-th value of a provided

Time-Series dataset.

62 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

The reason behind the choice of examining these operators is threefold. First, all of these
operators are popular and extensively utilized in Data Science and Machine Learning applica-
tions, either as part of data preprocessing (e.g., outlier detection, statistical analysis, etc.) or core
learning workflows (e.g., supervised/unsupervised learning). Second, their diverse characteris-
tics enforce us to design a generic solution that makes no assumptions regarding their internals.
Third, Machine Learning workflows, parts of which are frequently constructed with the above
operators, are an excellent domain for the problem this work addresses. As data scientists need to
be able to classify an increasing number of datasets [BGRS17] without actually executing their
complex workflows to them, the identification of the Right Data [BY13], i.e., data of high utility
which are essential for driving strategic decisions, is crucial. Finally, it should not be overlooked
that Table B.1 does not contain a complete list of operators. Although our work uses the men-
tioned operators for evaluation, our methodology can be used for any operator affected by the

three mentioned data properties without modifications.

3.3 Methodology

3.3.1 Methodology Overview

The key observation that datasets with similar specific properties impact certain operators in
similar ways and, hence, make them producing similar outputs, highlights a new dimension to
the problem under investigation: If one quantifies the similarity between all pairs of datasets
and executes an operator for only a handful of them, a first idea of F”’s domain would become
available, as datasets with high similarity would present similar behavior. Let us generalize this
idea: Given the relationship between dataset similarity and an operator’s output, we seek for
a projection of the datasets in D into a metric space D’ (also referred to as dataset space) that
best reflects the resemblance among them. D’ can be then utilized by F' as the domain space -
according to Equation (B.1)) - in order to project the original datasets into the anticipated values.
Interestingly so, the relationships between datasets are independent of F, allowing different op-
erators to be applied to a unique D’. For each operator, one could sample D, estimate F”’s values
for the selected datasets D; € Dy, C D and approximate F' for the rest of the datasets utiliz-
ing Machine Learning (ML) techniques. Although F is applied to some of the original datasets,
ie, F(D;),D; € Ds is calculated, the ML model is trained using D’ as the input space and
the approximated operator F’ is defined as: F’ : D’ — R. Essentially, D’ comprises a set of
features that best characterize the datasets’ interrelationships. Figure .4 depicts an overview of
the suggested methodology.

The Similarity Estimation module quantifies the similarities between datasets D1, --- , Dy.

The outcome of this process is a symmetrical N x N similarity matrix whose (¢,7) cell represents

3.3. Methodology 63

LLL oy
D, : ' e . D' F(D)DeD,
D, similarity —1 l
T simiLaRiTY || T i DATASET P B o
: ESTIMATION R SPACE — _.8 § : ML Model
Dy PROJECTION o

I Prediction

Figure 3.2: Methodology workflow

the similarity between D; and D;. The similarity matrix is then accessed by the Dataset Space
Projection module which transforms the original similarities into a metric space. In this step,
Multidimensional Scaling (MDS) [Gow66] transforms the similarity matrix into a set of points in
alow-dimensional (k-dimensional) space, with the property that the distances between the points
of the space approximate the similarity represented by the original matrix. The final outcome of
the process is a N x k matrix that represents the coordinates of each dataset in the dataset space.
Finally, an operator F' can be executed for a subset of datasets D;. Using the dataset coordinates
and the respective operator values, a Neural Network is trained in order to approximate F' for
all datasets. Based on the approximated dataset scores, interesting questions can be answered:
Which are the dataset(s) with the highest/lowest F' values (e.g., with the highest first eigenvalue),
how many datasets’ output is around a given F' value (e.g., dataset with approximately 5 DBSCAN
clusters), retrieve the top-k datasets under certain output criteria (e.g., the top-10 datasets with

highest percentage of outliers), etc.

Essentially, our approach attempts to shift the computational burden in the first phase of
data analysis: The workflow presented in Figure B.4 is executed once in an offline manner for all
datasets. This offline part is entirely operator-agnostic: The similarity estimation does not imply
the execution of any operator and only the relationships between the raw datasets are evaluated
without considering the type of the operator that may be applied to them. Whenever a new
operator emerges, it is executed for a mere subset of the available datasets and its behavior is
rapidly approximated with minimal computation. In the long run, the overhead introduced by
the suggested approach is amortized and the avoided computation linearly increases with the

number of operators that need to be executed for the analyzed datasets.

3.3.2 Similarity Estimation

The notion of similarity adopted in this work focuses on three characteristics, namely the distri-
butions of the datasets, their size and tuple ordering. Based on these primitive properties, one can

compose arbitrary similarity expressions that efficiently express multiple dataset aspects. The

64 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

similarity between two datasets is a real number in the interval [0, 1], 0 indicating total dissim-
ilarity and 1 indicating perfect similarity. We now examine the mechanism that quantifies the

similarity for each property in detail.

>Distribution: There exist several methods used to quantify the similarity of the distributions
between two datasets. One of the most popular methods used during data analysis, entails the
identification of the distribution in a closed form for each dataset separately and the comparison
of the probability density functions (pdf) in order to extract the relationships between them.
The extraction of a pdf usually occurs in a trial-and-error manner, as different distribution types
are tested for each dataset, keeping the one that maximizes a statistical fitness measure such
as the p-value. Although this analysis can provide great insight in the behavior of a statistical
sample, it also presents certain limitations. First, the size of the sample plays a determinant role,
as er datasets may not present enough evidence to accurately identify the most suitable pdf.
Second, distribution-free datasets may be erroneously represented. Third, the number of tested
distributions needs to be high in order to provide accurate data representations, increasing the
complexity of the computations. Yet for our problem, we are not interested in the identification
of each dataset’s pdf per se, but we only want to estimate the extent at which the tuples of
two datasets overlap, i.e., their relative positions in the space. If two datasets feature a large

percentage of their tuples inside the same regions, then they should have similar distributions.

Quantifying the overlap between two different statistical samples (datasets) is the main idea
behind the Bhattacharyya coefficient (BC) [CRMO00]. Its estimation relies on partitioning two
datasets into [disjoint partitions, identifying the number of tuples that belong to each of them
and, finally, summarizing the root of the product of the number of tuples for each region: BC =
22:1 V/A;B;, where A; and B; denote the number of tuples located in the i-th partition for
datasets A and B respectively. For two given datasets A and B, the upper bound of the BC
value is obtained when ! = 1. In order to compare BC values between different pairs of datasets
that might enumerate different tuples, we normalize BC' with this upper bound, reaching the

following Distribution similarity function:

22:1 VAiBi
V|4l B

Distribution(A, B) = (3.2)

Let us now provide an example that highlights how Equation .4 works. Assume three
datasets that comprise 2-d tuples and follow three distributions: D1 ~ Gauss((1,1), (1,1)) with
100 tuples, Dy ~ Gauss((1,2),(1,1)) also with 100 tuples and D3 ~ Gauss((4,3), (1,1)) with
500 tuples. The left part of Figure B.3 presents the position of the tuples of each dataset in the 2-d

dataset domain. We apply grid partitioning and count the number of tuples each dataset presents

3.3. Methodology 65

in each partition, presented the right part of Figure B.3. If we use Equation B.d for the compu-
tation of the similarity of each pair of datasets, we can see that Distribution(D;, Dy) = 0.83,
Distribution(Dy, D3) = 0.27 and Distribution(D3, D3) = 0.40, whereas the denormalized
BC scores are: BC(D1,Dy) = 83, BC(D1,D3) = 61.1 and BC(D2, D3) = 89.3. We ob-
serve that Equation B.4 manages to successfully express that D; and D, are far more similarly

distributed that D3, something also visually evident from the dataset domain.

D;o Dy x Do [1Dy Dy Ds

O R 1] 21| 2

2| 23| 2

3/ 0

4| 30| 43
0 5| 26| 44]122
6| 0 0]117
71 ol 7| o
8| ol 2|108
9] 0| o151

Figure 3.3: Distribution Similarity Example

One parameter that highly affects Equation .2 is the partitioning setup. Specifically, both the
partitioning algorithm and the number of partitions affect the equation’s behavior, in different
ways. The choice of the partitioning algorithm is crucial for ensuring fairness among different
datasets, since certain partitioning schemes may boost specific distributions and be unfair to
others. It also needs to be scalable to multiple dimensions, in order to successfully consider
datasets of high dimensionality. Voronoi partitioning [Bow81] is a popular partitioning setup
that adheres to these properties. Each partition (or cell) is represented by a centroid (seed).
Each dataset tuple is assigned to the partition represented by its closest centroid. The partition
problem is, thus, transformed to finding a set of seeds. Albeit the estimation of the optimal
seeds is NP-Hard, one can generate them using k-means [LBG80]. Since k-means’ solutions are
largely affected by the initial seed selection, in our work k-means++ [[AV07] was utilized. In order
to maximize fairness between datasets and minimize any bias inserted by skewed distributions
during the centroid selection, we sample all the available datasets, keeping a percentage (1 -
5%) of each and generate a new one that consists of all the sampled tuples. k-means is, then,
executed for this “merged” dataset, centroids are extracted and then used for partitioning each
dataset separately. The number of partitions (/) is determined by the user. More partitions lead
to a more fine-grained examination whereas fewer partitions provide greater abstraction.

From a technical perspective, after the execution of k-means, the estimated Voronoi diagram

is utilized to partition all the available datasets and, subsequently, the number of the tuples inside

66 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

each leafis estimated. For each dataset, an in-memory array is generated: The index of each array
element represents the Voronoi cell id and the value of the array element represents the number
of tuples that reside in the cell. The estimation of Equation B.d is then reduced to obtaining the
dot product of the respective arrays for A and B. Repeating the procedure for every dataset
pair provides the final similarity matrix. Note that, the construction times of the arrays, which
entails the processing of the raw data, increases linearly with the number of datasets. Essentially,
these arrays act as synopses of the datasets: The more the partitions, the more accurate the
representation and the more time-consuming is the estimation of the dot product between each
pair. Specifically, the complexity of constructing a similarity matrix using Equation B.4 equals
O(N nld + Nnl + N2), where N is the number of datasets, n is the maximum dataset size, [
is the number of partitions and d’ is the dimensionality of the domain of the datasets. The first
factor refers to the Voronoi diagram creation, the second one refers to the synopsis creation for

all datasets and the third refers to the matrix.

>Order: The identification of the similarity between the ordering of two datasets entails the esti-
mation of the rank correlation coefficient [Kru58], i.e., the measurement of the ranking between
their members. First, a sorted copy of the datasets is created: The columns that are utilized for the
sorting step are defined by the user, along with their importance in the comparisons (by default
all columns are utilized in increasing column-id order), i.e., if X[1] > Y[1] then X > Y. Based
on the respective sorted copy for each dataset, the rank array is generated. The ¢-th element of
the rank array represents the position of the ¢-th element in the sorted copy, e.g., if the original
array contains the elements X = [100, 99, 102] the respective rank array is x = [2, 1, 3]. Given
that, we provide the rank similarity measure utilized in this work, that resembles the Kendall

rank correlation coefficient (7) [Ken48]:

concord(a,b) — discord(a,b) N 1

Order(A,B) = Y p—

(3.3)

in which, a and b represent the rank arrays of A and B respectively, concord(a, b) returns the
number of pairs (a;, b;) and (aj,b;), i # j for which the rank of both elements agree, i.e., if
a; > a; then b; > b; or if a; < a; then b; < b;. discord(a,b) returns the respective number
of pairs whose rank disagree. When two pairs share the same rank they are considered neither
concordant nor discordant. Note that the Kendall 7 receives values in the interval [—1,1], in
which 1 means that the two ranks completely match and —1 means that the two datasets are
sorted in reverse order. Since, in our case, the similarity metric is expressed in the interval
[0, 1], we scale the Kendall 7 accordingly, producing the above expression. The complexity of
constructing a similarity matrix using Equation B.3 equals O(Nnlog(n) + N2nlog(n)). The
first factor relates to the sorting step of all the datasets and the second factor relates to the

estimation of Order for each pair of datasets. Note that, although Order seems to require the

3.3. Methodology 67

investigation of every pair of tuples of the two datasets (quadratic time to the dataset size, i.e.,
O(n?)), a merge-sort based implementation requires O(n logn) steps [Kni66].
>Size: The similarity between the size of two datasets is evaluated, using the following expres-

sion:

min(|A], | B])

Size(A, B) = AL B

(3.4)

Note that, Size(A, B) — 1, if |A| — |B|. The complexity of creating a similarity matrix with
Equation (B.4) is O(Nn + N?): The first factor represents the cost of counting each dataset’s
tuples and the second factor represents the evaluation of Size for each pair of datasets.

>Combining different metrics: While certain operators may depend on a single property,
there exist cases one would want to construct a similarity matrix that combines several ones.
In such cases, one can generate algebraic combinations of simpler matrices that reflect more so-
phisticated similarity expressions. The form of the algebraic expression (e.g., linear combination,
matrix multiplication, etc.) that combines the matrices is defined by the user and expresses the

importance of each component.

3.3.3 Dataset Space Projection

Although the information of a similarity matrix can be directly used by a data engineer, this rep-
resentation of information is cumbersome for three reasons: (a) The size of the matrix increases
quadratically with the number of datasets. (b) The matrix provides limited information as it does
not represent the relationships at scale, e.g., one can easily identify a dissimilar — to the rest -
dataset, but the magnitude of the dissimilarity is not easily comprehensible. (c) Most Machine
Learning algorithms require the input metric space to be expressed in a form where the coordi-
nates rather than the similarities of the input space points are known. Although a category of
nonparametric learning algorithms [Alt92] do support regression based similarities, these algo-
rithms are less sophisticated and are mainly used for simpler learning tasks. In order to address
these limitations, our methodology transforms the similarity matrix into a dataset space where
the positions of the datasets reflect their similarities: Datasets that are placed closer to each other

would be more similar than the more distant ones.

Toward this direction, Multidimensional Scaling (MDS) [Gow66] has been used. MDS is a
technique used to estimate the coordinates of a set of points given a square matrix that quantifies
the dissimilarity between them. According to Classical MDS, the dissimilarity expresses the
Euclidean distance between the points, although, in the general case, this dissimilarity can be
expressed using any distance function. MDS can also work based on matrices that represent
similarity. For clarity and in order to remain aligned to the literature, we will describe MDS

based on dissimilarity matrices. Either way, similarity is easily transformed into distance using

68 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

the following transformation (s being the similarity and d the distance):
s=vV1—dd=1-s (3.5)

where both s,d € [0,1]. Note that when s — 1, d — 0 and when s — 0, d — 1. Any pair
of transformation equations that respect this property can be used instead, assuming that d is
finite.

There exist several methodologies that execute MDS in order to calculate a coordinates ma-
trix. In this work, we utilize Classical MDS [Gow66] which expresses the problem as a matrix
eigendecomposition problem. In short, MDS entails the execution of eigenanalysis to the dissim-
ilarity matrix of size N x N, producing a list of eigenvalues [\, Ag, - - - , Ax] in descending order
and their respective eigenvectors. Each eigenvector represents a dimension of the metric space
and its respective eigenvalue represents the variance it captures. The number of eigenvectors to
utilize is decided based on the covered variance, expressed by the Goodness of Fit (GoF):

k .
GoF:M

Zi]\il Ai

k being the number of eigenvectors to use. A common rule-of-thumb is to set k to a value where

GoF > 0.75 [Jol84].

(3.6)

Although MDS achieves to identify the dimensionality of the final space and the initial dataset
positions to it, the difference between the distances obtained by the space and the matrix can
be further reduced through a non-linear projection. To this end, after the execution of MDS, we
apply Sammon mapping [Sam69], a non-linear space transformation that aims at slightly “mov-
ing” the projected datasets in such a manner that their projected distances best approximate the
original dissimilarity matrix. Specifically, all the datasets are initially assigned with the coor-
dinates produced through MDS. The distance between the projected and the target distances is

expressed by the Sammon Stress Ej:

1 (dij — d3;)?
Yicidig i di

B, = (3.7)

dij denoting the distance between the i-th and j-th element from the distance matrix and d;; the
respective distance as measured by the produced space. The execution of Sammon mapping en-
tails the use of an iterative optimization methodology such as Simulated Annealing (SA) [VLA87],
until the E value stops declining or a pre-defined iteration threshold is exceeded. This reduc-
tion enables the constructed space to better represent the information of the similarity matrix,

without increasing its dimensionality.

3.3. Methodology 69

D1 D2 MDSX Sammon . D3

Figure 3.4: Example of MDS and Sammon mapping

Figure B.4 depicts the constructed 1-d dataset space generated for the datasets depicted in
Figure @ After the execution of MDS for £ = 1, GoF was 0.92, therefore one dimension
suffices in order to accurately represent the datasets at scale. After the execution of MDS, we
applied Sammon mapping that slightly relocated D; and D to D} and D, respectively in order to
reduce E from 0.071 to 0.011. This reduction enables the constructed space to better represent

the information of the similarity matrix, without increasing its dimensionality.

3.3.4 Modeling

After constructing the dataset space, Neural Networks (NNs) are used for predicting a given
operator’s outputs. A sample Ds; C D of datasets is obtained, the size of which is determined by
the user. An operator F'is applied to every dataset in Dy and the output values are provided as a
training set to a NN. The trained model is, subsequently, tested using a — disjoint from D, — test
set. NNs were preferred against other Machine Learning methodologies due to their efficiency
and their ability to model arbitrary distributions. The employed models comprise 1 hidden layer
which is configured according to the rule of thumb that “the optimal size of the hidden layer is
between the size of the input and size of the output layers” [Jef05]. Note that although model

configuration greatly impacts its accuracy, this topic outside the scope of our work.

3.3.5 Optimizations

Having presented the key parts of our methodology, we now present two optimizations that aim

at accelerating data analysis without sacrificing the quality of the computations.

Approximate Similarity Matrices

The methodology discussed so far entails the calculation of a squared matrix of size N2, N being
the number of datasets, and the complexity equals O(NN2x), in which represents the complexity
of the employed similarity metric. For an increasing number of datasets, a quadratic complexity

becomes prohibitive, as the computational effort required grows rapidly. A way of tackling this

70 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

challenge is to avoid the calculation of similarities for all the distinct dataset pairs. However, this
could lead to information loss, since the non-computed similarities should be replaced by values
that approximate them, else this “approximate” similarity matrix may distort the dynamics of

the space.

Figure 3.5: Dataset distances

In order to provide a solution, assume the datasets depicted in Figure B.5 projected to a 2-d
dataset space, in which the thin lines represent the distances among them. The distances between
the datasets from the left and the right sides are much larger when compared to the distances of
the datasets of the same side, e.g., d2 3 < dj 2. Furthermore, assuming that only d; 2 is known,
one can say that

|di2 — do3| < dig < |di2 + da sl

and if dy 3 < d1 2 then dy 3 =~ dj 2. In other words, in this example one only needs to calculate
one of the “large” distances in order to avoid high approximation error. This interesting observa-
tion highlights the necessity of prioritizing for large distances when considering which of them
should be evaluated. When such a “backbone” of distances is calculated, e.g., the set of thick
lines of Figure B.5, one can easily estimate the distances between the unknown pairs, providing
the distances between the closest — to them — known datasets. We generalize this observation
in Algorithm [, in which we provide a simple heuristic to calculate the pairs with the lowest

similarities, i.e., the highest distances.

The function receives two arguments: A list of datasets and an integer ¢ that determines how
many datasets should be evaluated. At first, two indexes are initialized: Cls[i] = j indicates
that j is the most similar dataset to 4, Sim[i] = v indicates that the similarity between i and j is
v and M retains the raw similarity metrics. A random dataset D, is then picked (line 5), and ¢
iterations occur. At each iteration, the similarities between D, and the rest of the datasets is cal-
culated through the similarity function. The dataset with the least similar closest neighbor
is estimated (lines 12-14) and becomes the new D, dataset. This way, the lowest similarities are

eliminated at each iteration since when D, completes its comparison to the rest of the datasets,

3.3. Methodology 71

Algorithm 4 Approximate Similarity Matrix estimation

1: function APPROXIMATESIMILARITIES([D1, - - - , D), 1)
22 Sim=1[,Cls=[,M =1

32 forall D; € [Dy,---,D,] do

4: Simli] = 0.0, Cls[i] = 0

5: D, =random([D1, - -, Dy))

6: fork=0;k <t;k++ do

7: forall D; € [Dy,---,D,] do

8: M]c][i] =similarity(D,, D;)

9: if M{c][i] > Sim]i] then

10: Siml[i| = M|c][i], Cls[i] = ¢
11: minSim = 1.0

12: forall D; € [Dy,---,Dy,] do
13: if Sim[i] < minSim then

14: minSim = Siml[i], D, = D;

15: return Cls, M

Cls[c] = c and Sim[c] = 1, ie., the closest visited neighbor dataset is itself. Eventually, af-
ter ¢ dataset evaluations occur, Cls and M are returned. The similarity between any pair of
datasets D;, D; can be approximated with M[Cls[i]][Cls[j]]. The complexity of the Approx-
imateSimilarities function is equal to O(S - N - t), S representing the complexity of
similarity function, NV being the number of datasets and ¢ being the number of iterations.
Note that, in cases where the minimization of the computation time is of high importance, the
suggested optimization can be combined with approximate MDS approaches as in [YLMWO06],
which aim at reducing the quadratic complexity of the subsequent MDS step.

Online Indexing

In the presented approach we have not taken into account the process of dynamically introduc-
ing new datasets, i.e., datasets generated after the calculation of the similarity matrix and the
execution of MDS, as the consideration of such cases entails the re-execution of the entire work-
flow. The nature of the operations applied to the datasets cannot be enforced over newly arrived
datasets, since the existence of new datasets would affect the coordinates of all the datasets and
— possibly — the dimensionality of the space.

The problem of projecting new datasets in the dataset space, also referred to as the Online

Indexing problem, is the following: Given a set of datasets Dy, --- , Dy along with their coor-
dinates pi,- - - , pn respectively in a k-dimensional space, find the coordinates py 4 of a new
dataset Dy 1. Note that the similarities between Dy 1 and Dy, - - - , D are unknown, but eas-

ily computable. Assuming that dy, --- ,dy are the distances between Dy and Dy, --- , Dy

72 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

respectively — obtained from Equation (B.5) based on the respective similarities - we seek for a
vector py41 = (1,29, ,x}) that minimizes Equation (B.7). Note that this time, the coor-
dinates of Dy, --- , Dy are fixed and only the coordinates of Dx 1 need to be updated. Given
that, the problem reduces to a typical optimization problem with the objective to find a vector
pN+1 that minimizes the Sammon stress. Since the problem space is not convex (as more than
one local minima may exist), Simulated Annealing (SA) is employed. If the execution time of the
Online Indexing process needs to be minimized, one can estimate the distances between Dy
and a subset of Dy, - - - , Dy. This option reduces both the time needed to measure the similarity
between the datasets and the number of steps needed by SA in order to converge, because it
essentially reduces the constraints of the objective function.

Finally, although SA produces rapid results of high quality when a short portion of datasets
is appended in the existing datasets, this cannot be generalized to an ever increasing number
of datasets without introducing distortion to the dataset space. This is attributed to the fact the
methodology discussed so far tries to approximate the coordinates of new datasets in a given
space. If these datasets were available during the Similarity Estimation and MDS phases, they
could contribute to a higher space dimensionality, or they could affect the coordinates of the rest
of the datasets. To this end, Online Indexing is preferably used when the number of the new

datasets is considerably less than N.

3.4 Accommodating graph datasets

So far, our discussion was conducted under the hypothesis that the input datasets comprise a
set of tuples with specific dimensionality, i.e., they follow a tabular format. This was reflected
to the selection of the similarity metrics: The statistical distribution, the order and the size are
three metrics that are well-defined for sets (or lists, in the ordered case) of tuples. However, the
workflow depicted in Figure B.4 does not pose any limitation to the data format: Different data
types can easily be accommodated, assuming that the underlying similarity metric is defined. In

order to demonstrate this, we now discuss how our methodology extends to graphs.

3.4.1 Operators and Graph properties

One of the main differences between tuple-based and graph datasets is that while the former
behave as mathematical sets that enumerate a number of elements (tuples), the latter represent
specific structures. This structure, that is influenced by the manner through which the graph
nodes are connected with the edges, contains information that is useful in different fields of
study, including social network information (e.g., graph of friends), dependency tracking on

task graphs, structural information (e.g., road or communication networks), etc. Because of this

3.4. Accommodating graph datasets 73

difference in the representation of the information, the previously discussed similarity metrics
cannot be directly applied in graphs.

One similarity measure that is extensively used in the literature to measure the similarity
between different graphs, is the degree distribution of the graph’s nodes. We remind here that
the degree of a node in an undirected graph equals the number of edges connected to the graph.
In the case of directed graphs, we can estimate the in-degree and the out-degree of a node, i.e.,
the number of incoming/outgoing edges respectively and use both independently. Note that this
similarity metric is not only important because it strongly correlates with different graph prop-
erties as indicated by different studies, (e.g., [JU0§, BdAW12, HM11]) but also, it can be efficiently
computed. Specifically, one needs to first extract the degrees of all nodes for each graph indepen-
dently and, then, utilize Equation B.4 in order to measure the similarity between the distributions
of the degrees between the different graphs. Essentially, the previously presented methodology
needs no modification other than transforming the original graphs to tuple-based datasets that
represent the degree of each of the original graph nodes. The rest of the workflow presented in
Figure B.4 remains as is.

Apart from the similarity metric, the graph representation of the datasets affects the nature
of the applicable operators. As discussed in Section B.d, one key assumption that lies behind our
methodology is that the operator type adheres to Equation B.1, i.e., it receives a dataset as input
and produces a real value as its outcome. The same precondition must be met for graph operators
as well. As in the tuple-based case, we again focus on analytics operators; In this field of study,
these operators are commonly referred to as topology metrics. Topology metrics can be loosely
classified in three broad categories (based on [JU08, BAW12, HM11]): (a) distance, (b) connectiv-
ity and (c) spectrum metrics. In the first class, we find metrics that involve distances between
vertices such as diameter, average distance and betweenness centrality. The second class relates
to vertex degrees containing metrics such as average degree, degree distribution, clustering co-
efficient, etc. Finally, the third class comes from the spectral analysis of a graph and contains the
computation of eigenvalues, the corresponding eigenvectors or other spectral-related metrics.

For our evaluation, we chose representative topology metrics from each category.

3.4.2 Similarity metric estimation

From the above discussion, it is evident that if the input graphs are replaced by simple tuple-
based datasets where each tuple contains the degree of each graph node, one could directly use
the workflow of Figure B.4. Let us know discuss how this mapping between the graph and the
respective node degree dataset takes place.

Take the undirected graph presented in Figure B.q and assume that we want to extract the

degrees of each node. In order to do so, one should extract the adjacency list, as presented in

74 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

Table and then estimate the node degrees as presented in the Degree column. The complex-

ity of this procedure is O(|E|), E being the number of edges, as one needs to iterate over all

edges and increase the degree of each node that connect to the edge. For the case of directed
graphs, two scores should be kept: One of the ingoing and one for the outgoing degrees. In con-
clusion, with this simple methodology, the input graph of Figure B.64, is transformed to the set
{2,2,3,1,2,1,4,1, 1} that corresponds to the respective node degrees. One can note that even
though many graphs may present similar node degrees without being identical to the graph pre-
sented in this example, if the distributions of the node degrees, i.e., the frequency of each degree,
between two graphs are similar, these graphs are likely to present a similar structure. In essence,
this transformation generates a footprint for each input graph that facilitates efficient similarity
extraction between different graphs and is highly correlated with the structure represented by

the graph.

(b) Adjacency list and node degrees

Node Id | Neighbors | Degree

B, C 2
AC
A, B, D
C
C,G
G
E, F,H I

G
G

(a) Graph overview

~D QMmO Qm e
— = A N R W

Figure 3.6: Node degree estimation in different levels

Nevertheless, the examination of the degree of each graph node only for the immediate neigh-
bors, may not always suffice to generate a representative footprint. As an example, consider the
two graphs of Figure B.7. Assume that each graph comprises 1001 vertices ordered in a symmet-
rical manner as the one that is presented in the two figures. Each node of Figure has a degree
of 2 whereas all but 1 node of Figure has degree 2 and the last node has a degree of 1000.

If we examine the similarity between these two distributions, we conclude that the two graphs

1000
f 1001°

this limitation, that is introduced by the fact that we only examine the immediate neighbors of

present a similarity o but their structure is, evidently, very different. In order to overcome
each node, we extend the transformation methodology in order to consider the degree of larger
neighborhoods for each node. For example, in the graph of Figure B.6d, node G has 4 directly
attached neighbors, and hence its degree equals 4 (this is referred to as the “Level 0” degree).
The neighborhood of the graph that we examine only contains node G and it is represented with

blue color. If we extend this neighborhood so that it contains the immediate neighbors, we end

3.5. Experimental Evaluation 75

of with the nodes contained in the green area and the degree of this region (the center of which
is node) equals 1 (the edge C'E). That is referred to as the “Level 17 degree. If we extend
this even further, to the second generation neighbors, the “Level 2” degree equals 3. With this

extension, the degree level 0, 1 and 2 degrees for node G are {4, 1, 3} respectively.

(b) Graph with triangles with average degree 2

(a) Ring graph with average degree 2

Figure 3.7: Two example graphs with average degree 2

This extension provides more information regarding the way that different neighborhoods
of the graph connect to each other, something that is reflected to multi-dimensional degree dis-
tributions where the i-th dimension represents the Level ¢ degree of each node. Using this mech-
anism, the level 0 and 1 node degrees the graphs presented in Figure B.7 would be {{2,2},---}
and {{2,998},---,{999,0}} for Figures and respectively. Observe that even though
level 0 node degree may lead to wrong conclusions regarding graph similarity, the extension to
level 1 node degrees generates two-dimensional degree tuples that demonstrate the difference in
the structure of the two graphs. The complexity of this algorithm is O(|V'|(d)") where d is the
average branching factor (average degree) and [the level-depth limit. Note that the algorithm’s
complexity increases rapidly with the employed level; This is the overhead of having a much

more detailed footprint for each input graph.

3.5 Experimental Evaluation

In this section we experimentally evaluate the quality and the efficiency of our prototype using

a variety of datasets. Our goal is to demonstrate that our approach:
« Projects the datasets into low-dimensional spaces that provide interesting data insights

(Section B.5.1)).

« Models the considered operators with high quality and massively accelerates data analysis

(Section B.5.9).

76 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

+ Generates highly informative spaces through considering multiple data properties (Section

B.5.3).
« Is customizable regarding the level of analysis detail (Section j.5.4).

+ Is capable of reducing the computation burden in order to accelerate data analysis without

sacrificing accuracy (Section B.5.5).

« Supports the introduction of new datasets (Section B.5.6).
« Can be utilized to model the outcome of operators applied to graph datasets (Section B.5.7).

Experimental Setup: All experiments are conducted on a server with two Intel Xeon E5645
processors running at 2.40GHz, 96G of main memory and 2TB of hard disk, running Ubuntu
14.04.2 LTS with Linux kernel 3.13.05. Our prototype is implemented in Go (v.1.7.6). R (v.3.3.3)
was utilized for MDS and NN training.

Table 3.2: Datasets and Operators

ID Description Datasets Tuples Operators

U | ommerimg) | 7| %7218 | oo,
PO | Conmumprion [e1d) | 12| 12631440 | DTGl e, (L0
WEA | pecondings laont®) | %% | 5% | pesrenion (REG
NAS Tech.h;?c?cllz?g[zsto 7] 231 252 Holt-Winters (HOL)
WIK Page\y/ii];ie?;:ik”] 4503 551 ARIMA (ARI)

Datasets & Operators: For the evaluation, five real-world sets of datasets are utilized, provided
in Table B.4. CLU provides the monitoring metrics of 4797 physical hosts (each dataset contains
metrics from one host) of a data center at Google, running different tasks. Each tuple comprises
14 metrics of one task and different hosts run a varying number of tasks (ranging from 46 —
2188 tasks/host). HPO contains 1442 datasets with daily power measurements of a household
in Denmark. The measurements usually take place every minute (except for some days where
outages were witnessed) and each one comprises 7 features. WEA contains weather recordings
from 552 different weather stations (w.s.) in 6 countries during 2016. Different w.s. gather
measurements in different time intervals, hence, the number of tuples between different datasets
ranges from 300 — 8766. All measurements comprise 6 features. For CLU, HPO and WEA, we test
the 7 operators presented in the right column of Table B.4. The Aggregate Functions are applied
for one column of each dataset, whereas Linear Regression is applied for HPO and attempts to

construct a linear model for predicting the active power of a metering zone based on the rest

3.5. Experimental Evaluation 77

of the metrics. NAS contains various measurements of the NASDAQ Technology Sector stocks,
for the interval 2016/05/30 — 2017/05/30 (1 dataset represents 1 stock). Finally, WIK contains the
number of visits for 4503 different Wikipedia articles for an interval of 551 days. For NAS and
WIK we apply the two Time-Series forecasting algorithms. Throughout the evaluation, we will
refer to each operator using the dataset id and the operator id (indicated in bold in Table B.2).
For example, HPO-LOF refers to the Local Outlier Factor operator for the HPO dataset.

Methodology: To evaluate our methodology’s efficiency, we measure the accuracy of the trained
ML model that predicts the value of each of the operators. Specifically, we adopt the Normalized
Root Mean Squared Error, NRM SE = m \/% SN (yi — i)? and the Median Absolute

Percentage Error, MdAPE = median |42
1<i<N Yi

applied over D;, y; represents its approximated value and Ypin, Ymaz represent the minimum

, where y; represents the actual operator value

and maximum operator values respectively. MAAPE was preferred against the Mean Absolute
Percentage Error since it is less susceptible to outliers. All the error metrics are estimated for all
the datasets, i.e., each operator was exhaustively applied over all the available datasets for testing
purposes, in order to avoid cases where the model consistently fails to approximate specific
dataset space areas. Neural Network (NN) regression models are utilized for modeling. Each
model is trained by executing the operator over a portion of the available datasets (this is referred
to as the sampling ratio). The construction of similarity matrices that combine more than one

dataset properties utilizes Equation B.8§:
Similarity(A,B) =Y v (wx - X(4, B)) (3.8)

in which X € {Distribution, Order, Size} and)y wx = 1. Finally, in order to decide on the
dimensionality of the produced dataset spaces, Equations B.§ and B.7 are used.

3.5.1 Dataset Space Construction

We begin our analysis by generating five dataset spaces, one for each set of datasets. For CLU,
HPO and WEA the similarity matrix is solely calculated with the Distribution property, utilizing
32 partitions for the comparison. For NAS and WIK, the similarity matrix combines the Distri-
bution and Order properties with equal weights. Figures and provide the GoF and F
values, respectively, when obtaining dataset spaces of varying dimensionality whereas Figures
and provide 2-d projections of the constructed HPO and WEA dataset spaces respec-
tively.

Figures and provide an estimate of the dimensionality of the space that should be
employed in order to retain the distances of the similarity matrix without information loss. As

more dimensions are employed, GoF increases and E decreases, something that indicates that

78 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

1 4 oA~
0 HPO —<—
> WEA —+—
- 0.8 W3 NAS
(T ‘J)’ .
S06 ¢
3 » 0.2
504 5
S £
0] 0_2?/7 § 0.1L
0 0
12345678910 12345678910
dimensions # dimensions
(a) Goodness-of-Fit plot (b) Sammon Stress E plot

Cold X Warm o August A Northern X Southern O

X %o oo, KX
SO x%%

><><>§?5 © @OC

s &
! 0 °3° %o
o o i

X

A4

X oYe
. @)
X %
N O]
-04 -0.2 0 0.2 0.4 -0.6 -04 -0.2 0 02 04
(c) HPO dataset space (d) WEA dataset space

Figure 3.8: Dataset spaces, GoF’ and Ej plots

the constructed space retains the calculated dataset distances more accurately. Observe that
each set of datasets presents different dimensionality requirements for an approximation of high
quality: WEA and WIK require only 3 dimensions in order to be transformed with GoF' > 0.75,
whereas HPO requires 7 dimensions and NAS and CLU require approximately 15. GoF’s values
are affected by the relationships between the datasets: The more similar the distances between
the datasets, the more dimensions are required in order to generate an accurate representation
of the matrix. The Sammon mapping was successfully executed only for 3 of the 5 cases, because
CLU and WIK contained some dataset pairs with distance 0. Since the Sammon mapping requires
no points to overlap, it could not be executed for sets that presented this phenomenon. Observe
how the Sammon mapping “corrects” the dataset coordinates in order to reduce the number of
required dimensions. For example, although HPO’s GoF diagram indicates that 7 dimensions
are needed, F; presents a “knee” sooner than that: Since E presents similar values for 4 or 5

dimensions, one can use fewer dimensions without losing in accuracy. Finally, the two plots

3.5. Experimental Evaluation 79

indicate that even for the sets with increased dimensionality requirements, the application of
MDS and Sammon mapping can drastically reduce dimensionality as k < N for all cases.
Figures and demonstrate that a visual examination of the dataset spaces provides
valuable information to a data analyst, as datasets with similar behavior are projected closer. In
the HPO case, one can observe that the datasets are positioned according to the day of the year
they were collected (only datasets of 2008 are depicted for legibility reasons) and they are orga-
nized in three clusters: Datasets from cold and warm days of the year and datasets from August.
Note the interesting pattern: The household’s energy consumption is much higher during the
colder days (due to energy-hungry heating devices), decays during the warmer days and is zero
during August. Similarly, this behavior is also exhibited for WEA (only depicting Swedish w.s.):
The obtained datasets are clustered according to their geographic location and form two groups:
The Northern ones (that present lower temperatures) and the Southern ones (with warmer and

less humid climate).

Chapter 3. A Content-Based Approach for Modeling Analytics Operators

80

0T 121 per gpp | €60 OFT 02T L2T |[L€Z0 BZEO 880 S6S0 | 6100 6100 6100 6100 | RIV-MIM
9T°0 91°0 91°0 LI'0 || €560 2850 989°0 IS0 | 8100 8I00 8100 8100 | TOH-MIM
1 vz coe cpe | 9T LT €97 ¥6T 2920 T¥E0 89S0 €LL0 | ¥800 S800 0600 S60°0 || DAV-SYN
S0 090 €90 S9°0 | €820 €£€0 SHFO 00L0 | $80'0 9800 0600 £60°0 || TOH-SVN
81z S&'€ LSH 6SS | 8100 6100 1200 $20°0 | 6200 TE0°0 200 SE0°0 | OIA-VAM
$6'C 9SS 00T TIL9T || €600 LOT'0 €IT'0 SIT°0 | OIT'0 SIT'0 €210 9210 || JOT-VAM
e 16 101 gogr | SET TS 88F 909 | 8820 €060 82€0 €20 | TLIO 9LT0 0810 Z8T0 || SAG-VAM
€1 0T kT 89T | $IZ0 ¥HT0 80 H2E0 | 0800 1600 9010 6110 || LNO-VAM
€T €0C THT 89T || LFOO 65000 8L0°0 FITO | LSOO €900 8900 SL00 || WWNS-VAM
€T €0 kT 89T || 8100 0200 SZO0 SE00 | 6500 8900 FLOO 68070 | DAV-VAM
2Lz 0%F 0%L €SI || 210 HEI0 0SI'0 2910 | 6900 IL00 IL0O €070 | OTI-OdH
ZLT 06'€ L9S €€L || SS000 65000 €90°0 S90°0 | 900 £90°0 690°0 T1L0°0 | OIA-OdH
¥6'7 SSS 66'6 Y9I || LSOO 190°0 €90°0 890°0 | 2500 SSO0 1900 #90°0 || AOT-OdH
$0€ 16'S 0TI LZ0Z | 05T 9T'F €29 0€8 || 8210 €10 THI0 99T°0 | ITT0 HIT0 6IT°0 210 | SAA-OdH
[81 L9T '€ €6'S || $80°0 2600 HOI'0 SITO | 1900 6900 6400 86070 || LNO-OdH
L8T L9T '€ €6'€ | €IT0 22r0 SEI'0 6FI0 | IS00 9500 S90°0 0L0°0 | NNS-OdH
[8T 19T '€ €6'€ || 0100 1100 2I00 €100 | $80°0 8800 9600 010 | DAV-OdH
S6'T €87 S9C LZP | 0900 TLO0 6L00 680°0 | €500 8500 €900 6900 || OIA-NTO
97 6% LIS €TTI || OIT'0 SZI'0 9€T'0 9¥T°0 | 9900 0L00 ¥L00 800 | AOT-NTD
o7 zoc gge peop | 61T S8 €9F 69 | ZSI0 €410 1610 T0Z0 | €800 8800 €600 8600 | SAU-NTI
69T 2€C ¥8T ITE || 6660 LLEO TOF0 €EH0 | L600 FOT'0 80T°0 SITO || ILNO-NTD
691 2€T 8T IZE || IO 9ET0 8ST'0 28T°0 | €900 0L00 LLOO S80°0 || WAS-NTD
69T 2€C ¥8T TZ€ | 2800 0010 HIT0 SZI'0 | 9900 €L00 6400 9800 | DAV-NTO
%2E %9L %8 %V | %TE %9L %8 %% %e€ 9L %8 %b | %TE %OL %8 %V | o.oq0
(x) dnpaadg pazijroury (x) dnpaadg AdVPIW ASIWAN

s10je1odQ jo dnpoadg uornoaxy pue £0eINd0Yy SUI[PPOIN :¢'¢ d[qeL

3.5. Experimental Evaluation 81

3.5.2 Operator Modeling

For each set of datasets, we construct the similarity matrices based on the properties their oper-
ators are affected by, i.e., Distribution and Size for CLU, HPO and WEA (setting wpjstribution =
Wgize = 0.5 to Equation B.) and Distribution and Order for NAS and WIK (W pistribution =
Worder = 0.5) and, subsequently, execute MDS to obtain the respective dataset spaces. We,
then, train Neural Networks utilizing different sampling ratios that vary from 4% to 32%. In

Table B.3, we provide the error metrics and the execution speedup.

Modeling Quality: The NRMSE and MdAPE columns of Table B.3 provide the modeling
error of our approach (less is better). Generally, we can observe that increasing sampling ratios
lead to decreased modeling errors. Examining each operator class in isolation, the Aggregate
Functions, present low modeling errors for all datasets. Interestingly, when only a mere 4% of
datasets is examined, one can approximate the operators values with an M dAPFE that varies
from a minimal 2 to 15% for most cases (e.g., HPO-AVG produced less than 2% for all sampling
ratios), with the exception of CNT that presents the highest MdAPFE for CLU and WEA. In
comparison to the other aggregate operators, CNT is the one that presents values closest to 0,
something that contributes to increased M dAPE without actually indicating poor approxima-
tion [Mak93].

The Density based operators (LOF and DBS) also present a robust behavior, measured both
in terms of NRMSE and MdAPE. LOF can be modeled with remarkable accuracy (6.5%
MdAPFE when 4% of the datasets are considered) and improves with increasing sampling ratios
for all datasets. The least accurate operator of this class is DBS that presents a modeling error that
quickly reduces with increasing sampling ratios. This operator presents an interesting pattern:
Some datasets with different distributions (which are evidently located in distant positions in the
dataset space) presented similar outcomes, i.e., number of clusters. This unavoidable situation
means that there does not exist a monotonic relationship between an operator’s scores and their
position to the dataset space. This means that the model needs to obtain more samples in order

to increase its accuracy, hence the error degradation with increasing sampling ratios.

REG and EIG also present robust behavior for all the examined datasets. EIG in particular,
presented M dAPFE less than 10% for all the examined datasets. This means that one can approx-
imate the value of the most important eigenvalue of each dataset with a minimal error through
actually running the operator for a minimal subset of the available datasets. On the contrary, the
Time-Series operators exhibit a seemingly abnormal behavior where they present low N RM SE
and abnoy high M dAPF that declines fast with increasing sampling ratios. As in the CNT oper-
ator case, the fact that both HOL and ARI produce values close to 0 leads to increased MdAPE
values. The fact that these values decline fast with the sampling ratio means that while more

knowledge is obtained, the approximated scores increase and, hence, M dAPFE decreases.

82 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

In a nutshell, the demonstrated errors indicate that our methodology successfully approx-
imates all the considered operators. The fundamental idea behind our approach, that dataset
spaces constructed in such a manner so as to reflect the relationships between them, facilitates
the training of Machine Learning models that accurately approximate the behavior of the oper-

ators.

Speedup: The Speedup and Amortized Speedup columns of Table B.3 provide an estimate of the

time needed to approximate each operator in comparison to exhaustively executing them for all

(1) ;
@ Top , where T(S;)
] SRxTopy +Tsy+Typs+Tavr
is the execution time of the i-th operator for all datasets, S R is the sampling ratio, Ty is the time

datasets (more is better). Specifically, the speedup equals

needed to construct the similarity matrix, 7/ pg the time of executing Multidimensional Scaling
and Sammon mapping and Ty, is the time needed to train the Neural Network. Considering
that T'spr, Thips are only paid once for each set of datasets, we also calculate the Amortized
Speedup where TO(Z)) is replaced with), T(Si) , i.e., the execution time for all operators for each

case.

The examination of the Speedup column indicates that the sampling ratio is inversely pro-
portional to the achieved speedup. Lower sampling ratios indicate that an operator is executed
to less datasets and, hence, the achieved speedup is greater. The exact value of the speedup is di-
rectly related to the complexity of the operator. When the employed operator is complex and its
execution time is large, as in the LOF cases, the achieved speedup approximates the optimal one,
which is ﬁ. For example, HPO-LOF presents a speedup of 16.64x when 4% of the datasets are
considered. On the contrary, when the operator is less complex, the achieved speedup is limited
(e.g., CLU-AVG presents a speedup of 3.21 when 4% of the datasets are considered), because the
construction time of the similarity matrix and the MDS execution is not counterbalanced by the

avoidance of operator executions.

Nevertheless, when the similarity matrix construction and MDS execution is amortized to
more than one operators, the achieved speedup largely increases. This is visible for the first 3 sets
of datasets where the achieved speedup closely approximates S%%' For example, the amortized
speedup of HPO is 20.27 for a sampling ratio of 4%. This highlights the power of the suggested
methodology. As more operators emerge, they utilize the previously computed dataset space and

the amount of avoided computation increases linearly with their number.

However, if the cost of constructing a dataset space is high, the achieved speedup may require
many more operators in order to counterbalance the offline cost. The NAS and WIK sets require
more computation time for the construction of their similarity matrices since the Order property
entail the evaluation of Equation B.3 which is more expensive than the previous cases. This is the
reason behind the lower speedup values encountered to NAS and WIK. Nevertheless, an increas-

ing number of operators will, eventually, lead them to save an increasing amount of execution

3.5. Experimental Evaluation 83

time and, hence, accelerate the analysis for these cases as well. Evidently, the observed speedup
is strongly affected by two factors: (a) the complexity of the operators and (b) the complexity of
the similarity expression. Avoiding the execution of complex operators leads to higher speedups
as soon as the similarity expression is efficient. For example, CLU-LOF presents a remarkable
speedup of 16.64 both because the operator’s execution time is increased and due to the low
complexity of the similarity expression. Therefore, it is crucial to obtain similarity expressions

that are both efficient in terms of expressiveness and complexity.

3.5.3 Combining Similarity Metrics

WEA-AVG Operator WEA-SUM Operator
T T T T T T T 0085
Distr.
Size 0.075
0.2,0.8
0.5,0.5
0.04b—— 0055
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Sampling Ratio Sampling Ratio
(a) Modeling accuracy for WEA-AVG (b) Modeling accuracy for WEA-SUM

Figure 3.9: Combining data properties

We now evaluate the impact of combining multiple similarity metrics for the WEA case to our
scheme. Each weather station collects measurements in different intervals and, thus, the size of
the datasets varies between 300 — 9000 tuples. We construct two similarity matrices based on (a)
the Distribution similarity property and (b) the Size similarity property. Based on those, three
more similarity matrices are constructed where (wp;st-,Wsize) equals to (0.2,0.8), (0.5,0.5)
and (0.8,0.2). All matrices are then transformed to 5-d dataset spaces and, subsequently, model
WEA-AVG and WEA-SUM for each space, utilizing sampling ratios between 2% — 20%. The mod-
eling part is executed 20 times and Figure B.9 depict the results.

We remind here that AVG is only affected by the Distribution of the datasets whereas SUM is
affected both by Distribution and Size. Figure B.9d, showcases that the most informative space,
i.e,, the one with the least error, is constructed using only the Distribution property and the
sole consideration of Size creates a space with no information as regardless of the increasing
sampling ratio, the error is not reduced. However, when constructing spaces that combine both
parameters, the size seems to be ignored. Interestingly, when the respective weights are equal

or when favoring the important property, e.g., as in the (0.8, 0.2) case, the model is practically

84 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

unaffected by the consideration of the Size. On the contrary, when an operator is affected by
both properties, as in the WEA-SUM case, the spaces born from the combination of the primitive
matrices are far more informative than the primitive ones and lead the models to increase their
accuracy which is, in turn, increasing with the sampling ratio. This practically means that when
a space is constructed using a combination of dataset properties, the simpler operators tend
to ignore the non-interesting — to them — properties and do not present degraded modeling
accuracy. On the contrary, the operators that do require the property combinations to be reflected
to the space, are modeled much more efficiently than considering one property at a time. Finally,
in cases where the users are knowledgable about the applied operator, the adjustment of the
weights can result in a dataset space that best projects the property of interest, e.g., Distribution
in the WEA-AVG case.

3.5.4 Distribution Similarity Granularity

We now evaluate the impact of the number of partitions (/) during the examination of the simi-
larity of Distribution. Based on HPO, we calculate 8 different similarity matrices, using different
numbers of partitions. Each of them is, subsequently, transformed to 5-d dataset spaces and,
finally, a NN model for HPO-AVG is trained, using three different sampling ratios (2%, 8% and
16%). Recall that HPO-AVG is only affected by the Distribution of the datasets. The modeling part
is repeated 20 times and in Figure we provide the median modeling error. Figure de-
picts the execution time of the similarity matrix construction and MDS and Figure depicts
E when different dimensionality is employed for varying /.

Figure presents an interesting finding: Although an increasing [(between 4 — 64) seems
to decrease the modeling error, as more partitions imply that the similarity comparison is more
detailed, increasing [beyond a point seems to increase the error. In fact, for higher sampling
ratios, it is preferable to utilize a er [value rather than a higher one, as for the 16%, the error
for [= 4 is lower than the error in the [= 256 case. This finding is explained when examining
Figure B.10d: The utilization of more partitions increases the level of detail for the similarity
estimation and, hence, an increasing number of dimensions is necessary in order to accurately
transform the similarities to a dataset space. Since all cases from comprise 5 dimensions, the
similarity matrices with more partitions are less accurately projected and, hence, less accurately
modeled. Therefore, there exists a clear dependency between [and k: More partitions require
space of higher dimensionality. Furthermore, the execution time presents another interesting
pattern: The time needed to construct the matrix increases linearly with [but MDS seems to
require more time when fewer partitions are employed. Fewer partitions leave more room for
the “optimal” dataset placement in 5 dimensions and SA needs more time to converge to this

point. However, constructing similarity matrices with increased number of partitions and, hence,

3.5. Experimental Evaluation 85

SR=2% 4 SR=8% ><SR=16%
0.085 ‘ ‘ ‘ ‘ ;

Similarity Matrix =
MDS =

NRMSE

4 8 16 32 64 128 256 512 0 — %
partitions

o 64 79(9956‘ 579
partitions

(a) Modeling accuracy for varying number of parti- (b) Execution time of different phases

tions
0.3 ——— L =16 =64 =256
=8 —@— 0.085 ‘ ‘ % ‘ E
) l: |=64_><
w =128 ———
? 02 =256 0.075 ¢
o w [
7 N
@ S 0.065 |
o o
€ 0.1 zZ
£ 0.055]
» i
0 0045 4—r—rr—r———r
1 2 3 4 5 6 7 8 9 10 1 2 3 45 6 7 8 9 10
dimensions # dimensions

(c) Sammon Stress for varying dimensionality ~ (d) Modeling accuracy for varying dimensionality

Figure 3.10: Distribution Similarity Granularity

dimensions, does not always benefit the analysis. To evaluate this, in Figure we provide the
median error of NN models trained considering only 8% of the available datasets, using spaces
of different dimensionality (horizontal axis), estimated using three different [values. For higher
[values, more dimensions need to be utilized to decrease the modeling accuracy. However, the
utilization of more dimensions than actually needed (e.g., when [= 64 there is no need to use
more than 5 dimensions) leads to complex models and the modeling accuracy degrades. There

exists an opportune area for selecting the appropriate dimensionality.

3.5.5 Approximate Similarity Matrices

We now evaluate the optimization introduced in Section B.3.5. To this end, based on the HPO
case (which comprises the most datasets), we construct similarity matrices based solely on the

dataset distribution property, estimate an approximate similarity matrix, in which only ¢ datasets

86 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

: , : 30
20 Relative Time —@— =
I
% 2
3 3
) 3]
Q 10 1 £
® o110
=
4 | z
2t ‘ 0 — ‘ ‘
510 25 50 75 510 25 50 75
% datasets % datasets
(a) Achieved speedup vs % datasets (b) Relative modeling error vs % datasets

Figure 3.11: Approximate Similarity Matrix Evaluation

are fully calculated (expressed as a percentage of the total number of datasets). In Figure B.114,
we provide the relative construction time of the similarity matrix for varying ¢ values, i.e., the
ratio of the time needed to construct the matrix for the ¢ = 100% case, divided by the time for
each t value. Our optimization linearly reduces the computation time, according to the num-
ber of datasets which are evaluated. For example, when 5% of the datasets are considered, the
similarity matrix construction time is 20x faster. Moreover, in order to evaluate the impact to
the modeling accuracy, dataset spaces are constructed based on the similarity matrices and SVM
models are trained using the respective spaces for the HPOZ2 operator. In Figure we provide
the NRMSE increase of each model for varying ¢ values for three sampling rates. The NRMSE

: : . NRMSE;—NRMSFE100% . . . i
increase is defined as: NEASE, . The drop in accuracy becomes increasingly im

portant when higher sampling rates are employed. For example, when SR=16% and ¢t = 5%, the
NRMSE is about 30% higher. However, the error degrades quickly with increasing ¢ values, and
even when ¢ = 10%, the introduced error does not exceed 14% (when SR = 16%) compared
to the full similarity matrix but, simultaneously, the construction is accelerated by a factor of
10x. Therefore, our optimization is able to significantly speedup the construction, introducing

a relatively small increase in error.

3.5.6 Online Indexing

Finally, we evaluate the optimization introduced in Section B.3.5. Based on HPO data from 2008
(366 datasets), we construct the dataset space using the Distribution Similarity metric. We then
“insert” datasets for the next 3 months of 2009, i.e., introduce 90 new datasets. For each new
dataset, the similarity with m of the existing datasets is measured and SA is executed to identify

the best coordinates for the new entries. Parameter m is expressed as a portion of the already

3.5. Experimental Evaluation 87

m=2% @ m=32% |+ m=2%-@ m=32% 1+
mM=8% ><& m=100% m=8% ><& m=100%
1.75 1.18
0
w 1.5 - =1.12 F
L [h'd
© Z
= [0)
s 1.25 - >1.06 F
1 R A 1 W= ‘
0 30 60 a0 0 30 60 90
new datasets # new datasets

(a) Relative Sammon Stress vs # of new datasets (b) Relative Modeling Error vs # of new datasets

Figure 3.12: Online Indexing Evaluation

calculated datasets. Using the Sammon Stress in order to quantify the space distortion and the
NRSME, in order to quantify the modeling accuracy (trained with a sampling rate of 16%), we
compare the cases where the new datasets are Online Indexed for varying m against the case
where MDS is executed from scratch for the old and the new datasets. Figure provides our
findings expressed in relative terms, i.e., both E; and N RM SE are normalized with the respec-
tive values for the case where MDS is executed from scratch. When a small number of datasets is
introduced (i.e., 10), our optimization achieves both minimal F values and minimal modeling er-
ror. This renders our approach most suitable for cases where the insertion of only a few datasets
is required. When the number of new datasets increases, Es rapidly increases for two reasons:
First, the new datasets have a stronger impact and the introduced errors propagate to the new
entries. Second, while new datasets arrive, the dynamics of the space change. This means the
dimensionality of the space would differ if all datasets were available from the beginning. Com-
paring against extremely few datasets generates higher errors, hence, the rapid I increase for
m = 2%.

The above behavior is also observed for the modeling error, especially when m receives low
values. In this case, the coordinates of the new datasets become increasingly inaccurate and
this severely impairs accuracy. Interestingly, when m = 100%, the modeling accuracy follows
the accuracy achieved when the workflow is executed from scratch, even when 90 new datasets
are inserted. However, even with a considerable m = 32%, NRMSE increases after 30 new
datasets are introduced. In conclusion, this optimization is capable of dynamically introducing
new datasets by executing a marginal number of similarity comparisons (2%) with a tolerable
modeling error increase of 6%, provided that the number of new datasets does not exceed 10%

of the existing ones. When this percentage increases, one should first use an increasing number

88 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

of datasets for the comparisons; after a certain point, execution of the workflow from scratch is

suggested.

3.5.7 Extension to graph data

Datasets: For the evaluation of graph analytics operators, we consider both real and synthetic
datasets. The real datasets comprise a set of ego graphs from Twitter (TW) which consists of
973 user “circles” as well as a dataset containing 733 snapshots of the graph that is formed by
considering the Autonomous Systems (AS) that comprise the Internet as nodes and adding links
between those systems that communicate to each other. Both datasets are taken from the Stan-
ford Large Network Dataset Collection [LK14].

We also experiment with a dataset of synthetic graphs (referred to as the BA dataset) gener-
ated using the SNAP library [LS16]. We use the GenPrefAttach generator to create random
scale-free graphs with power-law degree distributions using the Barabasi-Albert model [BA99].
The degree distribution of the synthetic graphs, according to this model, can be given by the
formula: P(k) ~ k=7, where v = 3. We keep the vertex count of the graphs constant to 4K.
We introduce randomness to this dataset by having the initial outdegree of each vertex be a uni-
formly random number in the range [1,32]. The Barabasi-Albert model constructs a graph by
adding one vertex at a time. The initial outdegree of a vertex is the maximum number of vertices
it connects to, the moment it is added to the graph. The graphs of the dataset are simple and
undirected. Further details about the datasets can be found in Table 3.4,

Similarity Measures: As a similarity measure, we compare the degree distributions of different
graphs for varying levels, as discussed in B.3.4. To investigate their strengths and limitations, we
compare them against two measures functioning as our baselines. The first is a sophisticated
similarity measure not based on degree but rather on distance distributions (from which the de-
gree distribution can be deduced). D-measure [SCDG™ 17] is based on the concept of network
node dispersion (NND) which is a measure of the heterogeneity of a graph in terms of connec-
tivity distances. From a computational perspective, D-measure is based on the all-pairs shortest
E|+|V|log(]V])) using Fibonacci heaps. It

is a state-of-the-art graph similarity measure with very good experimental results for both real

paths algorithm, which can be implemented in O(

and synthetic graphs. It is considered efficient and since it incorporates additional information
to the degree distribution, it is suitable to reason about how sufficient the measures we propose
are.

Our second baseline comes from the extensively researched area of graph kernels. Kernel
methods for comparing graphs were first introduced in [GFW03]. Many kernels have been since
proposed to address the problem of similarity in structured data [GDG™ 18]. In our evaluation,

we incorporate the Random Walk Kernel [GFW03] which intuitively performs random walks on

3.5. Experimental Evaluation 89

Table 3.4: Datasets overview

Name | Size (N) | |V| | |E| | Range |V| Range | E|
in: 6 in: 9
TwW | 973 | 132 | 1841 2;1; 248 2:}1{ 12,387
in: 103 | min: 248
AS 733 | 4183 | 8540 | O 6,474 max 13,895
in: 3,999
BA | 1,000 | 4,000 | 66,865 4,000 2:}1(127472

a pair of graphs and counts the number of matching walks as a measure of their similarity. For
the purposes of our evaluation, we opted for the geometric Random Walk Kernel (rw-kernel) as a
widely used representative of this class of similarity measures. The complexity of random walk
kernels is in the order of O(|V|%), however faster implementations with speedups up to O(|V|?)
exist [VSKB10]. In order to avoid the halting phenomenon due to the kernel’s decay factor (*)
we set A = 0.1 and the number of steps k& < 4, values that are considered to be reasonable for
the general case [SB15].

Graph Operators: As stated in Section B.3.4, graph operators can be clustered in three cate-
gories: distance, connectivity and spectrum operators. As representatives of the distance class, we
choose betweenness (bc), edge betweenness (ebc) and closeness centralities (cc) (NG04, BE05]),
three metrics that express how central a vertex or edge is in a graph. The first two consider the
number of shortest paths passing from a vertex or edge while the third is based on the distance
between a vertex and all other vertices. From the spectrum class, we choose spectral radius (sr)
and eigenvector centrality (ec). The first is defined as the largest eigenvalue of the adjacency
matrix of the graph. As a metric, it is associated with the robustness of a network against the
spreading of a virus [JKMvDO6]. The second is another measure that expresses vertex centrality
[Bon87]. It is based on the eigenvectors of the adjacency matrix. Finally, as a connectivity re-
lated metric we consider PageRank (pr), a centrality measure used for ranking web pages based
on popularity [BP98]. All measures, except spectral radius, are centrality measures expressed
at vertex level (edge level in the case of edge betweenness). Since we wish all our measures to
be expressed at graph level, we will be using a method attributed to Freeman [Fre77] to make
that generalization. This is a general approach that can be applied to any centrality [BE05],
and measures the average difference in centrality between the most central point and all others:
(@) = W ¢(@) being the measure at graph level, c(7) the centrality value of the
i-th vertex of G and ¢(j)* the largest centrality value foralli € V.

Chapter 3. A Content-Based Approach for Modeling Analytics Operators

90

{4 0¢ 9°¢ S0°0 00 90°0 6'S 9 L9 xd
(187 99 6'6 €00 700 700 |4 a4 ¥'¢ N
Y '8 9¢t 10°0 600 01°0 68 €6 601 999
LYy 06 €91
vy LL 9¢1 200 00 01°0 96 1°01 €01 q ve
Ve T'e L'¢ 10°0 10°0 10°0 €0 €0 0 9
0'¢ A4 9°G €00 €00 00 60 81 €¢e IS
vy 6L cel S0°0 90°0 L0°0 C'L LL 6 ad
vy 6'L 0¢t 60°0 01°0 01°0 6¢C 0¢ €e D
vy 0’8 Gel c1o AN\ ¢ro 9°8¢ 8°6¢ G'6¢ Q3
9¥ 6’8 8V1
vy 8L 0¢t ¥1°0 S1°0 91°0 891 LT 8LI 2q ML
vy 6L el €10 ¥1°0 Y10 LL LL 08 29
¥y 08 €l 01°0 010 010 L'yl €ql €91 IS
I'e vy LS €00 00 S0°0 L0 80 60 ad
Sy C'8 (N7} 10°0 10°0 10°0 €0 ¥0 70 by
8Y €6 €LI 700 ¥0°0 700 ¥'e Le e 999
67 G6 08T
LYy 88 L'ST €00 €00 ¥0°0 I'1T 1 ¥l q SV
e Sy LS 00°0 000 100 00 1°0 o 929
£e 8¢ ¥'9 00 €00 S0°0 60 I'T €1 IS
) =d o =d ovc=d | o =d o =d v c=d) =d o =d vc=d | o =d o =d vc=d
%0¢C %01 %S %02 %01 %S %0¢C %01 %S %02 %01 %S SLPIN 19SEIe(
x dnpoaadg paziroury x dnpaadg ASINYU (%) IdVPIN .

sajey Surdwres juarapi 10] dnpaadg uorinoaxy pue s1oirg SUIPPOIN :G°¢ 9[qel

3.5. Experimental Evaluation 91

Modeling Accuracy: To evaluate the accuracy of our approximations, we calculate MdAPE and
nRMSE for a randomized 20% of our dataset: For a dataset of 1,000 graphs, 200 will be chosen
at random for which the error metrics will be calculated. We vary the sampling ratio p, i.e., the
number of graphs for which we actually execute the operator, divided by the total number of
graphs in the dataset. The results are displayed in Table B.9. Each row represents a combination
of a dataset and a graph operator with the corresponding error values for different values of p
between 5% and 20%.

The results in Table B.9 showcase that our method is capable of modeling different classes of
graph operators with very good accuracy. Although our approach employs a degree distribution-
based similarity measure, we observe that the generated similarity matrix is expressive enough to
allow the accurate modeling of distance- and spectrum-related metrics as well, achieving errors
well below 10% for most cases. In AS graphs, the MdAPFE error is less than 3.2% for all the
considered operators when only a mere 5% of the available graphs is examined. Operators such
as closeness or eigenvector centralities display low M dAPFE errors in the range of < 8% for all
datasets. Through the use of more expressive or combined similarity measures, our method can
improve on these results, as we show later in this Section. We also note that the approximation
accuracy increases with the sampling ratio. This is expressed by the decrease of both MdAPFE
and nRM SE when we increase the size of our training set. These results verify that modeling
such graph operators is not only possible, but it can also produce highly accurate models with

marginal errors.

Specifically, in the case of the AS dataset, we observe that all the operators are modeled more
accurately than in any other real or synthetic dataset. This can be attributed to the topology of
the AS graphs. These graphs display a linear relationship between vertex and edge counts. Their
clustering coefficient displays very little variance, suggesting that as the graphs grow in size they
keep the same topological structure. This gradual, uniform evolution of the AS graphs leads to

easier modeling of the values of a given graph topology metric.

On the other hand, our approach has better accuracy for degree- than distance-related met-
rics in the cases of the TW and BA datasets. The similarity measure we use is based on the
degree distribution that is only indirectly related to vertex distances. This can be seen, for ex-
ample, in the case of BA if we compare the modeling error for the betweenness centrality (bc)
and PageRank (pr) measures. Overall, we see that eigenvector and closeness centralities are the
two most accurately approximated metrics across all datasets. After we find PageRank, spectral
radius, betweenness and edge betweenness centralities. Willing to further examine the connec-
tion between modeling accuracy and the type of similarity measure used, we have experimented
with different similarity measures, leading to the inclusion of D-measure and rw-kernel in our

evaluation. This has also lead to the development of the degree-level similarity measures and

92 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

the combination of similarity matrices in the cases of degree distribution similarity matrix and
vertex count similarity matrix.

Execution Speedup: Next, we evaluate the gains our method can provide in execution time
when compared to the running time of a graph operator being executed for all the graphs of each
dataset. Similarity matrix computation is a time-consuming step that is executed once for each
dataset. Yet, an advantage of our scheme is that it can be reused for different graph operators.
Consequently, time costs can be amortized over different operators. In order to provide a better
insight, we calculate two types of speedups: One that considers the similarity matrix construction
from scratch for each operator separately (provided in the Speedup column of Table B.5) and one
that expresses the average speedup for all six metrics for each dataset, where the similarity matrix
has been constructed only once (provided in the Amortized Speedup column of Table B.5). For
example, in the case of the AS dataset and for the spectral radius metric, our approach is 6.4 x
faster when using 5% sampling ratio than the computation of the spectral radius for all the graphs
of AS. Additionally, if we utilize the same matrix for all six operators, this increases the speedup
to 18x.

The observed results highlight that our methodology is not only capable of providing models
of high quality, but also does so in a time-efficient manner. A closer examination of the Speedup
columns shows that our method is particularly efficient for complex metrics that require more
computation time (as in the ebc and cc cases for all datasets). The upper bound of the theoretically
anticipated speedup equals %, i.e., inthe p = 5% case each operator runs on 20 times fewer graphs
than the exhaustive modeling, without taking into account the time required for the similarity
matrix and the training of the kNN model. Interestingly, the Amortized Speedup column indicates
that when the procedure of constructing the similarity matrix is amortized to the six operators
under consideration, the achieved speedup is very close to the theoretical one. This is indeed the
case for the AS and BA datasets that comprise the largest graphs, in terms of number of vertices:
For all p values, the amortized speedup closely approximates %. In the case of the TW dataset
which consists of much smaller graphs and, hence, the time dedicated to the similarity matrix
estimation is relatively larger than the previous cases, we observe that the achieved speedup is
also sizable. In any case, the capability of reusing the similarity matrix, which is calculated on
a per-dataset rather than on a per-operator basis, enables our approach to scale and be more
efficient as the number and complexity of graph operators increases.

Comparing Similarity Measures: The results of the similarity measure comparisons, in the
case of the TW dataset, are displayed in Figure B.13, where MdAPE is used to express the
modeling error. We compare six similarity measures: The degree distribution + levels measure
(for levels equal from 0 to 2), a combination of level-0 degree distribution with vertex count
(denoted by level-0 + size) (combined using Equation B.§ with equal weights), D-measure and the

Random Walk Kernel based similarity measure (denoted by rw-kernel). The results indicate the

3.5. Experimental Evaluation

93

el

0.17

0
005 01 015 02 025 03 035
‘Sampling Ratio

level-0 + lovel-2 2 d-sim
level-1 X level-O+size rw-kernel

(a) Spectral Radius

005 01 015 02 025 03 035
Sampling Ratio

B L b S it
(b) Eigenvector C.
0.6 —

o 0T

05 To—O

L S e e]

2& _—
0.13 — *

o
005 01 015 02 025 03 035
Sampling Ratio

level-0 4 level-2 A d-sim 5
level-1 X level-0+size rw-kernel

(e) Closeness C.

0
005 01 015 02 025 03 035

Sampling Ratio
level- level-2 A d-sim
rw-kernel 5

0+
level-1 X level-O+size

(f) PageRank

0.1

0
005 01 015 02

level-0 + lovel-2 2 d-sim
level-1 3 level-O+size

(c) Betweenness C.

Execution Time (sec)

S = s an
T

e

025 03 035
Sampling Ratio Sampling Ratio
level-0 + level-2 A

rw-kernel level-1 X level-O+size [-]

level-0 -

[~ level-1 =

]

%
b’

Y
o

e
XX
XXXX]

XRXXX
R

ot

R

e
oFotete%

X
2!

L
0
2R

s
otodo

s
55

||
3%

I
L
K

AS ™w
(g) Execution Time (sec)

Figure 3.13: Similarity Metrics Comparison for TW Dataset

0
005 01 015 02 025 03 035

d-sim
rw-kernel

(d) Edge Betweenness C.

impact that the choice of similarity measure has on modeling accuracy. A more suitable to the

modeled operator and detailed similarity measure is more sensitive to topology differences and

can lead to better operator modeling.

In all figures, with the exception of PageRank, we observe that the degree distribution + levels

similarity measure, for a number of levels, can model an operator more accurately than the

simple degree distribution-based, effectively reducing the errors reported in Table B.5. Indeed,

the addition of more levels to the degree distribution incorporates more information about the

connectivity of each vertex. This additional topological insights contribute positively to better

estimate the similarity of two graphs. For instance, this allows the MdAPE error to drop from

29.5% to about 15% when utilizing a level-2 similarity for edge betweenness centrality and p = 5%.

Examining the modeling quality, we observe that it increases but only up to a certain point,

in relation to the topology of the graphs in the dataset. For example, since TW comprises of ego

graphs, all the degrees of level > 2 are zero, since there exist no vertices with distance greater

than 2; therefore, employing more levels does not contribute any additional information about

the topology of the graphs when computing their similarity.

Finally, we observe that, in specific cases, such as PageRank (Figure B.13f), enhancing the

degree distribution with degrees of more levels introduces information that is interpreted as noise

during modeling. PageRank is better modeled with the simple degree distribution as a similarity

measure. As such, we argue that for a given dataset and graph operator, experimentation is

required to find the number of levels that give the best tradeoff between accuracy and execution

time.

We next concentrate on the effect of the combination of degree distribution with vertex count

in the modeling accuracy. We note that the vertex count contributes positively in the modeling

94 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

0.04
L
o
% 0.02 1
=
0.02 + 1
0 0)))))
005 01 015 02 025 03 035 005 01 015 02 025 03 035
Sampling Ratio Sampling Ratio
level-0 + level-2 A rw-kernel © level-0 + level-2 A
level-1 X level-O+size level-1 > level-O+size
(a) AS dataset (b) BA dataset

Figure 3.14: Similarity Metric Comparison for Betweenness C.

of distance-related metrics while having a neutral or negative impact on degree- and spectrum-
related metrics. This is attributed to the existence of, at least, a mild correlation, between vertex
count and bc, ebc and cc [JUO§]. For our least accurately approximated task, edge betweenness

centrality, employing the combination of measures results in a more than 6 x decrease in error.

For D-measure, our experiments show that, for distance-related metrics it performs at least
as good as the degree distribution + levels similarity measures for a given level, with the notable
exception of the PageRank case. On the other hand, the degree distribution can be sufficiently ac-
curate for degree- or spectrum-related metrics. As D-measure is based on distance distributions
between vertices, having good accuracy for distance-related measures is something to be ex-
pected. However, degree distribution + levels measures exhibit comparable accuracy for distance-
related metrics as well. A good example of the effectiveness of D-measure is shown in the case
of closeness centrality that involves all-pairs node distance information directly incorporated in
D-measure as we have seen in Section B.5.7. In Figure we observe that by adding levels we
get better results, vertex count contributes into even better modeling but D-measure gives bet-
ter approximations. Yet, our methods’ errors are already very small (less than 3%) in this case.
Considering the rw-kernel similarity measure, we observe that it performs poorly for most of the
modeled operators. Although its modeling accuracy is comperable to the degree distribution +
levels similarity measures for some operators, we find that for a certain level or in combination
with vertex count a degree distribution-based measure has better accuracy. Notably, rw-kernel
has low accuracy for degree and distance related operators while performing comperably in the

case of spectrum operators.

Identifying betweenness centrality as one of the hardest operators to model accurately, we
present M dAPE approximation errors for AS and BA in Figures B.14d, B.14H. These Figures do

3.6. Discussion 95

not include D-measure, since it was not possible to compute it because of its running time. We
note that the approximation error is below 12% and that the degree distribution + levels measures
further improve on it for both datasets. Compared to TW (Fig. B.13), we observe that the level-2
similarity measure provides better results for AS and BA but not TW, something we attribute to
the fact that TW consists of ego graphs with their level-2 degree being equal to zero. Finally, it
is expected that level-0 + size for BA to be no different than plain level-0 since all the graphs in
BA have the same vertex count by construction.

Although the above similarity measures are comparable in modeling accuracy, they are not in
execution time. A comparison in computation time for different levels of the degree distribution
+ levels similarity measure is presented in Figure B.13g. In the case of D-measure, the actual
execution time is presented for the TW dataset, since it was prohibitively slow to compute it
for the other two datasets. For the remaining two datasets, we have computed D-measure on a
random number of pairs of graphs and then projected the mean computation time to the number
of comparisons performed by our method for each dataset.

Our results show that the overhead from level-0 to level-1is comparable for all the datasets.
However, that is not the case for level-2. The higher the level, the more influential the degree
of the vertices becomes in the execution time. Specifically, while we find level-0 to be 3.2x
faster than level-2 for TW, we observe that in the case of AS and BA it is 19x and 76x faster.
The computation of the D-measure and the rw-kernel, on the other hand, are orders of magnitude
slower, i.e., we find level-0 to be about 385K times faster than D-measure for the TW dataset, while
it is 273K and 933K times faster for the BA and AS datasets, respectively. Given the difference in
modeling quality between the presented similarity functions, we observe a clear tradeoff between

quality of results and execution time in the context of our method.

3.6 Discussion

Let us now discuss in more detail some aspects of the proposed methodology. First, the moti-
vation behind this methodology is to accelerate exploratory data analysis, in order to provide
insights on the properties of each dataset that make them more suitable for specific analytics
tasks. Although accuracy is not our primary concern, in the sense that our method does not
provide theoretical guarantees on the approximated operator values, in practice we saw that the
tested operators are modeled accurately enough for a plethora of real-world datasets. On the
same time, a data analyst can obtain an estimate of an operator’s outcome applied to different
datasets many times faster than applying it for all of them in an exhaustive manner. This is the
true power of this work: As new operators emerge the amount of exhaustive operator executions
is massively increased and, hence, the achieved speedup is inversely proportional to the desired

modeling accuracy (higher accuracy implies more operator executions, hence lower speedup).

96 Chapter 3. A Content-Based Approach for Modeling Analytics Operators

This property of constructing operator-agnostic dataset spaces, in the sense that the coordinates
of each dataset into the space are only influenced by dataset similarity and not any operator,
render the core part of our work reusable for different operators.

Second, even though our analysis was initially based on tuple-based data, we already demon-
strated that an extension to graph datasets is not only possible, but it also produces results of
high quality. In fact, the key idea behind this work, i.e., that similar datasets should have a sim-
ilar impact to an operator’s outcome, is not solely tailored for tuple-based and graph datasets.
The key aspect behind the adoption of a new dataset format such as text, image, etc., is the def-
inition of a similarity function that manages to quantify the key properties that affect most the
respective operator. There is a profound relationship between the similarity function and the
applied operator. If the similarity metric achieves to point out these data characteristics that
mostly influence the operator, then a smart Machine Learning model will be able to capture this
relationship.

Although this seems to violate the “operator-agnostic” property that was discussed before,
as there must be a relationship between the operator and the similarity metric (thus, the space),
note that this operator-to-similarity metric relationship is not one-to-one. In the tuple-based
case, we identified 3 key similarity metrics that have very high impact to a variety of operators,
either directly (e.g., Aggregate Functions are instantly affected by distribution) or indirectly (e.g.,
density and spectrum operators are both affected by distribution). A similar observation can
also be done for graph datasets. We argue that although the number of applicable operators to a
dataset is huge, the properties that different operators are affected by is not equivalently large, but
only a few properties (hence, similarity functions) suffice. Domain knowledge and experience
is required for selecting the appropriate ones. However, when the appropriate properties are
selected, the same methodology can be applied without modifications.

Finally, even though our work was exclusively focused on static datasets, it should not be
overlooked that modern data sources are constantly evolving both through the insertion of new
datasets and through updating the existing ones. The first case, is largely addressed by the algo-
rithm introduced in Section B.3.5. Using this approach, we can augment existing dataset spaces
through introducing up to 10% of new datasets without causing severe distortions to them. On
the contrary, updating existing datasets through, e.g., adding/removing tuples or nodes/edges, is
not addressed by this work. In order to efficiently support this capability, we should be able to
run both the similarity metrics and MDS in an incremental fashion. This extension can find inter-
esting applications to high-velocity and latency-sensitive operators applied on evolving graphs,

time-series, etc., and it provides an interesting foundation for future work.

CHAPTER 4

Related Work

This thesis presents two methodologies aiming at modeling the behavior of an operator from
two different perspectives. The first methodology is focused on modeling its performance when
executed with different resource configurations and application-level parameters. The second
one focuses on modeling the operator’s outcome when executed over different datasets. There-
fore, the research presented in this thesis spans multiple diverse fields of related work. In the
following sections we present research works that relate to the methodologies presented in this

thesis, where we also examine how our work exploits or differentiates from them.

4.1 Performance Modeling of Big Data Applications

Performance modeling is a vividly researched area. The challenge of accurately predicting the
performance of a Big Data application emerged since the very beginning of the Big Data era,
where the newly proposed systems need to modeled appropriately in order to be utilized in the
most cost efficient manner. Although performance modeling of Big Data applications can be
viewed as a subcategory of the performance modeling field of research, the deployment of these
systems presents two peculiarities that strongly influence the modeling approaches presented in
the literature. First, their distributed nature radically increase their configuration space, since
different application modules may span to a varying number of machines that may theoretically

grow beyond limits. Second, in order to fully exploit this design, Big Data applications typically

97

98 Chapter 4. Related Work

run on Cloud infrastructures that add extra complexity to measuring the impact of the input
resources to the output performance.

The distinct approaches that attempt to partially or fully tackle this challenge can be cate-

gorized in four categories. First, cloud benchmarks attempt to quantify the impact of virtualiza-
tion to an application’s performance. Second, simulation methodologies attempt to theoretically
model the relationship between the input (i.e., the resources and application level parameters)
and the output (i.e., the performance metric) of the application. Third, emulation techniques are
also based on simulation but also try to utilize actual performance metrics for application parts
by running the application in a smaller scale. Finally, black-box approaches approach the prob-
lem from the opposite direction: They deploy the Big Data application for some configurations,
obtain the respective performance metrics for these and use statistical inference and Machine
Learning in order to construct the performance model. Let us know present each category sep-
arately:
Cloud benchmarking: The tools and systems that belong in this category mainly attempt to
model the underlying resources rather than the behavior of the application itself. Nevertheless,
they are mentioned here since they provide invaluable insight to understanding an application’s
behavior when this is executed over a cloud platform.

HiBench [HHD™11] is one of the first cloud benchmarking suites that exclusively focuses
on Big Data applications. The first versions of this benchmark consisted of a variety of Big Data
operators implemented on Hadoop whereas in the later versions Spark jobs were added as well.
It supports both batch and streaming operators. It is one of the most popular benchmarking
tools as it is frequently used not only for measuring the performance of the Cloud but also for
measuring the performance of components of the Hadoop stack.

Cloudsuite [FAK"12] is another popular cloud benchmarking suite that is not restricted to
typical Big Data applications, but also contains a variety of applications that are commonly
encountered to cloud deployments. This suite focuses on providing certain benchmarks with
dedicated resource requirements (e.g., purely network-bound as in the Video Streaming case or
memory-bound as in the memcached case) in order to benchmark the hardware configuration
of the underlying host. Special efforts have been put in making this suite as easily usable as
possible, since each benchmark application is shipped in a Docker container that can be directly
pulled and executed without requiring manual installation.

PerfKitBenchmarker [per] is an initiative backed by numerous companies and academic insti-
tutions in order to create a standard benchmarking suite that covers all modern needs of bench-
marking. It contains a variety of applications that are utilized as memory caches (e.g., Redis),
document stores (e.g., MongoDB), distributed NoSQL databases (e.g., Cassandra), etc.

These benchmark suites can facilitate understanding the performance of the virtualized hard-

ware of the cloud infrastructure, but also, they can be used as a means of comparison between

4.1. Performance Modeling of Big Data Applications 99

different platforms. CloudCMP [LYKZ10] is one of the first works that tackle the challenge of
measuring the performance offerings between different providers also considering the efficiency
of the resources. The proposed methodology targets to compare different providers in terms of
all type of resources, i.e., compute, storage and network and it remains generic enough in order

to be applicable to different providers.

The importance of measuring cloud performance has given birth to industrial solutions such
as CloudHarmony [clog], Cloud Spectator [clod] and Load Impact [lod] in order to collect and
process statistics regarding the performance of the cloud platforms. Through them, these com-
panies can provide insightful comparisons that aim at providing suggestions to a cloud user

regarding which cloud provider should be preferred for different workflows.

Simulation: Simulation approaches attempt to do “white-box” modeling of the application un-
der examination: They construct analytical models that explain how different application com-
ponents interact with each other and what is the expected performance output of each input.
The inputs, the output and the intermediate stages of the model are defined by the application,
usually in terms of mathematical function. This model is then used by simulators in order to

predict the anticipated performance for a given model input.

CloudSim [CRB™ 11] is a toolkit that focuses on modeling the performance of the cloud envi-
ronment when simulated workloads are executed. The focus of this tool is to evaluate resource
provisioning policies according to the application that run on the Cloud. Even though the focus
is mainly put on the infrastructure side, rather than the application side, CloudSim can also act
as a simulation environment where the user can provide their workflow and measure the Cloud’s

efficiency for it.

CDOSim [FFH12] is an approach that targets to model the Cloud Deployment Options (CDOs)
and simulate the cost and performance of an application. It relies on CloudSim and its main
objective is to model the possible configuration options the application can be deployed with,
estimate their performance and cost and, finally, through simulating the workload to the cloud,

returns the best possible CDOs to the user.
CloudAnalyst [WCB10] is another CloudSim based tool that focuses on simulating the be-

havior of large scale distributed applications deployed on cloud infrastructures. It accepts de-
scriptions of application workloads that contain information regarding the geographic location
of the service’s users and the location of data centers, their size and latency requirements. It is
particularly useful for modeling latency-sensitive applications with deployments that span all
over the globe.

WebProphet [LZZ"10] is a performance modeling system that specializes in web services.

The main idea behind this work lies on identifying the dependencies of a given web service.

Since delays in requests at any given service will be propagated to the depending components,

100 Chapter 4. Related Work

WebProphet generates a service dependency graph and, through simulation, statistically predicts
the latency of the web service.

Simulation based approaches have been extensively used in different fields of study as they
present some characteristics that make them more preferable than other modeling techniques.
They are easy to build, as they do not require any interaction with the application. They achieve
high accuracy for applications with simpler structure and they are usually agnostic of the un-
derlying implementation, something that makes them portable. Nevertheless, they also present
downsides that reduce their applicability. First of all, the generation of such a model require high
expertise and deep understanding of the application’s functionality. For more complex cases, the
generated models will either become extremely complicated or they will suffer from latent vari-
ables that hinder their accuracy. Finally, although models of these type can provide high-level
overview of the application’s design, they do not consider deployment details (e.g., the storage
type, network connection, etc.) that may have a great impact to the final performance.
Emulation: Methodologies based on emulation resemble the simulation-based approaches, with
the difference that they also attempt to run real benchmarks for small parts of the application,
gather traces based on these benchmarks and “replay” them at higher scale in order to predict ap-
plication performance. Their target is to create more complete application models that rely both
on white-box, analytical models but also consider infrastructure-related information through
micro-benchmarking.

CloudProphet [LZK ™ 11] is a system that bases its functionality on the principle of “trace-and-
replay” and it tackles the problem of predicting the performance of an application that is under
migration to the cloud. Instead of deploying the application to the target cloud environment
and measuring its performance, CloudProphet follows a different approach: Traces are collected
when the application is stressed in a local environment and these traces are, then, replayed to the
cloud in order to obtain an estimate of the application’s performance. This is particularly tested
for storage resources, where instead of actually deploying the entire application, CloudProphet
tracks the disk access pattern in a local environment and then attempts to replay it in the cloud,
measuring the deviation and predicting the total performance.

Similarly to CloudProphet, //Trace [MWS™07] is a system that aims at modeling the I/O be-
havior of a given application. Specifically, using traces from given workloads to various filesys-
tems, //Trace measures the response times of each filesystem call. In parallel, the application
model that contains its structure and module interdependencies, is utilized and the gathered
traces are applied to it through the “causality” engine, that is responsible to replay the traces in
order to extract a performance model for the final application.

The work in [MTK™"15] also aims at modeling the performance of Big Data applications
through studying their I/O behavior. Initially, using a set of well-known benchmarks an ini-

tial profile is obtained for the performance of the storage medium in cloud environments. In

4.1. Performance Modeling of Big Data Applications 101

order to tackle heterogeneity, different storage types are examined, spanning from traditional
mechanical HDDs, to fast SSDs and distributed filesystems. Next, the known application model

is interpolated with these traces and an estimate of the final performance is provided.

The approach presented in [HPET04] solves a slightly different problem: Given a number
of platforms and a set of applications, this work aims at selecting an appropriate platform for
each application, based on the type of the workloads of the latter. The main idea of this work
lies on executing a set of pre-defined micro-benchmarks to each platform and obtaining the per-
formance characteristics for each one. Later, when a new application needs to be deployed to
one of these platforms, its similarity to each of the examined benchmarks is calculated, using
different approaches. In essence, this begins from a set of micro-benchmarks and constructs a
metric space that is formed of dimensions that represent microarchitecture-independent charac-
teristics and its points represent the application under examination. According to their features,

the respective platform is selected.

In conclusion, emulation-based approaches represent an attempt to augment known appli-
cation models with infrastructure-related information. Even though they work well for applica-
tions with accurate models and require minimal deployment overhead in order to be constructed,
they suffer from the limitations of the pure simulation-based models: The modeling part requires
experience and its accuracy can be jeopardized by latent models variables or poorly approximated

application behavior.

Black-box: Finally, and in contrast to the previous modeling categories, the “black-box” ap-
proaches take a purely mathematical view to the modeling problem. The performance is viewed
as a function and the problem is formulated as a function approximation problem. The input
space of the function represents the available configuration setups and the output space of the
function represents the application performance. The application is deployed for some of the
available configurations and the relationship between the inputs and the output is obtained ei-
ther using statistical inference or machine learning techniques. Although Machine Learning can
be perceived as a subset of statistical inference, the main difference between them is that purely
statistical methods make assumptions regarding the function’s behavior (e.g., linear, polynomial,

etc.) in contrast to Machine Learning that makes no assumptions on it.

The work in [DPIK18] aims at modeling the performance of distributed applications deployed
to cloud infrastructures in order to predict the resource allocation that is required so that the
application performs with given SLO requirements. The work focuses on a Video Streaming ap-
plication that presents two components: a video encoder and a cache component. After running
the service for different setups, the authors utilize Support Vector Regression and Polynomial Re-
gression in order to predict the application’s throughput and latency for different configuration

combinations.

102 Chapter 4. Related Work

Marathe et al. in [MAJ™17] attempt to overcome one of the problems that are presented with
the adoption of the “black-box” paradigm: The selection of the input parameters. As statistical
inference assumes that the input space comprises a set of uncorrelated dimensions, this principle
is violated for more complex applications since their input dimension may present correlations
that are easily identifiable. In order to overcome this limitation, this work presents a modeling
attempts that relies o deep-learning. The main idea is that the modeling algorithm per se iden-
tifies correlations between dimensions and prune the input space. Moreover, in order to avoid
an excessive amount of deployments, this work combines observations gathered at smaller scale,
i.e., with pruned number of input dimensions, with fewer observations gathered at higher scale.

Kundu et al. in [KRG™12] demonstrate the efficiency of Neural Networks and Support Vector
Machines for modeling the performance of cloud based applications. This work emphasizes on
the problem of parameter selection, considering the number of cores, the available memory and
the latency of the virtualized I/O device. After an extensive experimental evaluation, the authors
demonstrate that the adoption of the two aforementioned Machine Learning learners overcomes
traditional regression approaches that produce results of lower quality. Interestingly, their work
also proves capable of modeling not only the average performance values, but also the 90th
percentile, showcasing that the induced learners provide a robust behavior.

Goncalves et al. in [GCMS15] present a performance inference methodology that aims at
improving capacity planning. The main idea of this work is the following: Instead of blindly
deploying the application for different configurations, heuristics can be applied in order to re-
duce the number of deployment that need to be tested in order to extract an accurate profile.
Assuming an ordering of application workflows that demonstrates the resource requirements,
ie, W1 < W indicates that W5 requires more resources than W in order to meet some given
SLO objectives, it is safe to consider that if configuration C leeds W} to failure, then it shall lead
W to failure as well. The authors showcase that the generalization of this idea leads to pruning
of the configuration space of up to 80%.

PANIC [GTPK15] is another work that constructs performance models using Machine Learn-
ing and addresses the problem of selecting a set of representative points for training the learner.
This approach favors the points that belong to the most steep regions of the Deployment Space,
based on the idea that these regions characterize most appropriately the entire performance func-
tion. This work is the predecessor of the work presented in Section P}: The idea of favoring regions
of the configuration space where application performance is harder to model is common to both
works. However, PANIC’s feature to solely focus on exploiting the obtained knowledge, over-
looking space exploration leads the methodology presented in this thesis to outperform PANIC.

In conclusion, methodologies that belong to the “black-box” category seem to improve all
these characteristics that reduce the applicability of simulation and emulation approaches. First

of all, they require no application knowledge (hence, “black-boxes”) since the structure of the

4.2. Data-driven Modeling of Analytics Operators 103

model is dynamically generated during training. Second, their accuracy is only proportional to
the number of tested configuration, something that make them perfect for modeling more com-
plex applications. Third, they do not suffer from the problem of latent variables since the model
takes everything into consideration: The application structure, the infrastructure, etc. On the
contrary, the number of configurations that need to be tested grows rapidly with the application
complexity and radically increase the deployment time and cost. Moreover, the extracted profiles
are not portable to other infrastructures (since they encapsulate all infrastructure-related infor-
mation). Nevertheless, the advent of the Machine Learning era and the research improvements

it introduced has made “black-box” modeling compelling in comparison to the other methods.

4.2 Data-driven Modeling of Analytics Operators

The problem of modeling the outcome of an operator when applied to different datasets has been
extensively researched and expressed in different forms. The advent of the Big Data era and the
tremendous increase in the computation power and storage capacity that the cloud paradigm has
delivered, has gradually shifted the attention of both academia and industry from performance to
data efficiency. From this perspective, the success of a newly deployed service is no longer solely
affected by the performance measured in terms of traditional computing, i.e., throughput, latency,
etc., but is also affected by the quality of the results it produces. This quality is determined by
the data it can access. Hence, the problem of selecting these datasets that maximize the utility
for a given operator is extremely important for the success of any application.

The diverse applications can be categorized in three categories. Data Integration approaches
seek for a statistical summarization of the underlying data. Approaches of this category aim at
exporting summaries, metadata and any other information that can help data scientists to quickly
obtain an initial idea of the datasets. The concept of Dataspaces, in particular, can be viewed as a
subfield of Data Integration, where the proposed systems aim at solving problems that come up
because of the difference in storage locations, indexing, schemas, etc., of different datasets. The
second category is Data Exploration. Although different works from this category may present
radically different characteristics, they share one thing in common: Data Exploration seeks for
a subset of a given dataset in order to maximize a given utility metric. Finally, Feature Selection
techniques aim at finding features of a given dataset that exhibit a desired behavior. Let us now
provide some representative research works for each category:

Data Integration & Dataspaces: The idea of combining data from different sources in order to
increase their utility is the key idea behind Data Integration. Since diverse datasets may differ in
origin, schema, size, storage location, etc., research works of this category focus on generating
an initial statistical view of the underlying datasets and possible encoding this knowledge in a

set of metadata. The concept of Dataspaces and Data Lakes is based on the same principle: Data

104 Chapter 4. Related Work

Lake Systems also attempt to solve the engineering problem that come up from having a massive
number of datasets living in different locations.

Lenzerini et al. in [Len02] outline the requirements for the implementation of data integra-
tion systems and provides the theoretical models to express the basic operations over distinct
datasets. Different aspects of data integration systems are considered, such as data modeling,
reasoning and query answering.

Ground [HSG™17] is a data context service that focuses on the creation of the appropriate
metadata that informs the data scientist on the possible use of each dataset. The context of the
data retains information regarding the representation of the dataset, details about how data was
created and versioning history, in order to keep track of data updates.

CrossCat [MS]J ™ 16] focuses on analyzing high dimensional data. It relies on mixture model-
ing and Bayesian structure learning. It evaluates each data column separately, constructs differ-
ent views of the data and uses a separate non-parametric mixture to model each view. Although
this work attempts to obtain better knowledge for existing datasets, it does not take into consid-
eration the relationships between different datasets.

Abedjan et al. in [AGN15] present different approaches towards data profiling that aim at
automatically extracting metadata for given datasets. This metadata can, in turn, be utilized
for clustering and categorizing them according to their usage and utility for different operators.
Our work is also based on this idea and extends it: Using a unique (i.e., not operator-dependent)
knowledge basis, our methodology can infer the outcome of diverse operators when applied to
datasets that belong to the same clusters.

In [FHMO035], the authors discuss the necessity of adopting a new abstraction mechanism that
supports indexing of different datasets to a data engineer through a unified view. The proper-
ties that differentiate the distinct datasets, though, should not be eliminated: Different origins,
schemas, storage locations, etc., should be respected.

Goods [HKN ™ 16] is the implementation of such a dataspace system, used by Google to index
26B datasets. Goods supports an indexing mechanism that extracts the schema of the unstruc-
tured data and ‘guesses’ the types of specific columns.

To recap, Data Integration is an interesting field that aims to produce meta-knowledge on
top of existing datasets in order to provide better insights to data scientists for their content. Our
approach, presented in Section [J, also has the same motivation. Nevertheless, our work exceeds
the scope of providing static knowledge for the datasets through bridging the gap between the
datasets and the operators.

Data Exploration: In contrast to Data Integration that seeks for labeling datasets and extracting
metadata out of them that summarize their utility, Data Exploration approaches have a different
focus. Their objective is to navigate through a massive dataset and isolate a set of tuples that are

most suitable for a specific purpose.

4.2. Data-driven Modeling of Analytics Operators 105

Joglekar et al. in [JGMP16] present a “drill-down” mechanism which is an interactive ap-
proach that aims at finding a set of “interesting tuples” that best summarize a given dataset. The
users can provide custom rules according to the properties that they want to explore and the
mechanism will, eventually, return the tuples that best fit the given criteria. Although this work
differs from our work since the latter focuses on modeling the dataset space, both works rely on
the identification of the factors that best summarize and diversify a dataset.

Similarly, DBExplorer [SCJ16] attempts to provide an “in context” summary of a database, in
the sense that a user may possess previous knowledge and want to explore a specific part of a
database which is relevant to this knowledge. DBExplorer is the implementation of Conditional
Attribute Dependency (CAD) View which showcases the dependencies between specific attribute
values according to the user-defined context. Again, the objective of this work is to explore a
specific portion of a given database rather than comparing different datasets.

Cafarella et al. in [CHW708], millions of different databases are compared, collected from
a set of raw HTML tables crawled through the Google search engine. The authors compare
the schemas of the different databases and apply attribute correlation statistics in order to find
similarities. Although the motivation behind this work is different from our work, the necessity
of identifying the similarity between different datasets is highlighted.

MacroBase [BGM ™ 17] aims at prioritizing attention to fast data streams. The incoming tuples
are classified to inliers and outliers. It, then, attempts to summarize the outliers’ properties and
provide explanations to the users. This work examines streaming data on the hypothesis that
“interest” is gathered around outlying points. In cases where the “interest” changes, one needs
to structurally modify the default pipeline, something cumbersome when one needs to analyze
the same stream from different viewpoints. On the contrary, our work focuses on data themselves
and applies different operators (i.e., the equivalent of MacroBase’s concept of “interest”) without
requiring explicit re-execution of parts of our workflow.

Data Canopy [WWDI17] demonstrates the power of statistical analysis over unknown datasets
in order to infer knowledge. The main idea of this work lies on generating a set of basic aggre-
gates, which can be synthesized in order to infer knowledge without constantly accessing the
raw data. Data Canopy, similarly to our work, highlights the necessity of statistically analyzing
the datasets once and utilizing the analysis for consequent tasks. Yet, in this work, we are inter-
ested in predicting complex analytics operator performance considering more complex statistical
properties for the datasets (such as distribution) than simple aggregates.

AIDE [DPD16] is a database exploration system using Active Learning. It implements an
iterative methodology, in which it requests feedback from the users whether the returned tuple
is of interest to them. While the users provide more responses, AIDE isolates the interesting areas
of the database and returns them to the user in the form of SQL queries. This work is driven by

the assumption that the user is unaware of the database and only provides yes/no responses.

106 Chapter 4. Related Work

On the contrary, our work requires no feedback from the user and the “interesting” datasets are

determined by operator performance.

To summarize, Data Exploration is an interesting field with many works that share similar
objectives with our work. Nevertheless, our approach differs from traditional Data Exploration
approaches in the sense that the output of our methodology, i.e., the Dataset Space, can be reused
as is in order to model the output of different operators. Moreover, all the listed approaches are
applicable ta tuple-based data; On the contrary, our work is demonstrated to be applicable to

graph-based datasets with the utilization of a suitable similarity metric.

Feature selection: Finally, feature selection methodologies tackle a similar problem to this work
but from a different angle. The main idea behind instance selection is the extraction of a set
of features that maximize a given utility metric. In contrast to the approaches listed above,
approaches of this category mostly focus on a smart space exploration in order to isolate these

dataset features or tuples that best server a particular purpose.

Brainwash [[AAB™13] is a system that aims at reducing the Explore-Extract-Evaluate loop
happening in modern systems that implement or rely on Machine Learning trained classifiers.
Brainwash supports the execution of a set of statistical operators in the provided dataset in order
to facilitate exploration. Based on the statistical importance of different features, the system
proposes a set of features (extraction) and, finally, evaluate the utility of its results through using

lazy code execution.

Zhang et al. in [ZKR16] study the problem of computation materialization in feature selec-
tion techniques. This interesting work attempts to adopt materialization methodologies that are
widely used in the database realm in order to avoid re-computation in feature selection work-
loads. Interestingly, their work indicates that the adoption of simple, well-known materialization

techniques can lead to tremendous speedups in feature selection workflows.

Zombie [AC16] is a system that conducts input selection for feature engineering. The main
idea of this work is to focus on the appropriate tuples of a given dataset in order to accelerate
feature selection for machine learning tasks. Specifically, Zombie manages to accelerate the
“inner-loop” of the feature evaluation loop, i.e., the selection of a subset of the existing features,
through applying heuristic techniques that achieve to generate approximate subsets of features

with the desired characteristics.

Fu et al. in [FZL13] present an interesting survey that summarizes the works in the area of
instance selection for Active Learning. Active Learning [Set1(] is utilized for training Machine
Learning classifiers when the extraction of labeled training sets is expensive. In this setup, a
classifier is trained in an online fashion and the labels of the training points are either unknown
or hard to be obtained. The objective of these approaches is to provide efficient heuristics to

select a subset of points that minimize the classifier’s uncertainty under given cost constraints.

4.2. Data-driven Modeling of Analytics Operators 107

Although feature selection approaches present many commonalities with our work, in the
sense that both seek for entities that maximize data utility, their objectives and outcomes are
slightly different as feature selection is primarily used as a preprocessing step to Machine Learn-

ing algorithms whereas our work is mostly used during exploratory analysis.

108 Chapter 4. Related Work

CHAPTER D

Conclusions and Future Directions

In this thesis, we revisited the problem of modeling the behavior of a Big Data operator from
two different angles. First, we addressed the problem of modeling its performance when de-
ployed with different deployment configurations and application level parameters and, second,
we proposed a content-based methodology that models its output when it is applied over differ-
ent datasets. Even though our contributions approach the problem from different perspectives,
their combination provide an holistic view of the problem of modeling the behavior of a modern
operator.

Our first contribution relates to modeling the operator’s performance for different resource
configurations. Even though this is a widely studied problem, the proposed research approaches
do not take into consideration the ever increasing complexity on the application structure, re-
quiring an increasing number of samples that make profiling cuambersome and cost inefficient.
To this end, our research effort was focused on providing a methodology that identifies repre-
sentative configurations that can lead the model to maximize its accuracy under a given number
of sample configurations.

The proposed divide-and-conquer approach proved to be particularly effective for this prob-
lem. Considering that by virtue of their design, distributed systems tend to produce performance
functions that are easily approximated by linear or piecewise linear functions, the decomposition
of the space into more and smaller regions facilitated modeling and allowed focusing on each one
separately. Moreover, the consideration of both exploration and exploitation when distributing

the deployment budget to the generated subregions allowed us to avoid over fitting to areas with

109

110 Chapter 5. Conclusions and Future Directions

abnormalities without prohibiting us to “zoom-in” as required in order to partition the space in
higher detail. Finally, the adoption of oblique Decision Trees increased the expressiveness of the
final model with the cost of requiring more computation in order to estimate good split lines.
This expressiveness translates to modeling accuracy gains when the deployment budget is rel-
atively small. However, an interesting side-effect of the adoption of oblique split lines is that
performance function patterns such as discontinuities, maxima, etc., that involve more than one

input dimensions on the same time, are identified faster.

The second contribution of this thesis relates to modeling the operator’s output when it is ap-
plied for different datasets. The absence of any ordering relationship between the input datasets
makes the problem particularly challenging since traditional statistical modeling methodologies
cannot be used. Driven by the observation that similar datasets make an operator present sim-
ilar similar outputs, our research was focused on creating a dataset metric space that reflects
the inter-relationships between them, measured in the light of three fundamental properties, i.e.,

statistical distribution, dataset size and ordering of tuples.

The suggested scheme achieved to construct highly informative, low dimensional dataset
spaces that provide useful insights even with a plain visual examination. The heart of our
methodology lies on the selection of appropriate similarity metrics. Even though the informa-
tion represented by the dataset space is entirely operator agnostic, the properties that need to be
examined for extracting dataset similarity must affect the operator under examination in order
to provide meaningful models. Interestingly, in our work we isolated three properties that affect
5 different categories of operators. We argue that the data properties of interest are much fewer
than the possible operators that can be applied to a datasets. Hence, isolating and combining
a handful of key properties that affect many operators can massively accelerate data data anal-
ysis. Moreover, the consideration of different types of datasets, such as graphs, highlights the

applicability of our scheme for different use cases.

Finally, this work provides a strong foundation for future research. Both modeling method-
ologies were developed under the hypothesis that the operator has batch characteristics, i.e.,
it operates with given static data and its runtime behavior receives the same inputs as in the
training phase. Nevertheless, this might not be the case: Constantly evolving datasets and new
data sources would require an operator with streaming characteristics. This parameter creates a
new dimension for modeling: Since deployment reproducibility is now compromised, since the
performance measurements for each deployment now have a temporal dimension as well, how
could we update the performance modeling methodology to predict the performance for stream-
ing operators? Moreover, for the second part of this thesis, the dynamic introduction of new
datasets is mostly tackled with the optimization described in Section B.3.5. However, how could

the data modeling scheme be adjusted in order to accommodate updates to the existing datasets

111

without having to repeat the entire workflow from scratch? This interesting variation could find

interesting applications for data with a temporal dimension such as logs, sensor data, etc.

112 Chapter 5. Conclusions and Future Directions

Publications

Journals

« 1. Giannakopoulos, I. Konstantinou, D. Tsoumakos and N. Koziris: Cloud application de-
ployment with transient failure recovery. Journal of Cloud Computing. Advances, Systems
and Applications, 2018, 7:11

Conferences

+ L. Giannakopoulos, D. Tsoumakos and N. Koziris: A Content-Based Approach for Mod-
eling Analytics Operators. In Proceedings of the 2018 Conference on Information and

Knowledge Management (CIKM 2018), October 22-26, 2018, Lingotto, Turin, Italy.

« F. Loukidis-Andreou, I. Giannakopoulos, K. Doka, N. Koziris: Docker-Sec: A Fully Au-
tomated Container Security Enhancement Mechanism. In Proceedings of the 38th IEEE
International Conference on Distributed Computing Systems (ICDCS 2018), Demo track,
2-5 July, 2018, Vienna, Austria.

« L. Giannakopoulos, D. Tsoumakos and N. Koziris: Towards an Adaptive, Fully Automated
Performance Modeling Methodology for Cloud Applications. In Proceedings of the IEEE
International Conference on Cloud Engineering (IC2E 2018), April 17-20, Orlando, Florida,
USA.

113

114

Chapter 5. Conclusions and Future Directions

L. Giannakopoulos, D. Tsoumakos and N. Koziris: A Decision Tree Based Approach To-
wards Adaptive Modeling of Big Data Applications. In Proceedings of the 2017 IEEE In-
ternational Conference on Big Data (BigData 2017), December 11-14, 2017, Boston, MA,
USA.

L. Giannakopoulos, K. Papazafeiropoulos, K. Doka and N. Koziris: Isolation in Docker
through Layer Encryption. In Proceedings of the 37th IEEE International Conference on
Distributed Computing Systems (ICDCS 2017), Demo track, 5-8 June, 2017, Atlanta, GA,
USA.

I. Giannakopoulos, I. Konstantinou, D. Tsoumakos and N. Koziris: AURA: Recovering
from Transient Failures in Cloud Deployments (demo paper) . In Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID
2017), May 14-17, 2017, Madrid, Spain.

N. Korasidis, I. Giannakopoulos, K. Doka, D. Tsoumakos and N. Koziris: Fair, Fast and
Frugal Large-Scale Matchmaking for VM Placement. In Proceedings of the 2nd Interna-
tional Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2016), in
conjunction with the ALGO 2016 Conference, August 22, 2016, Aarhus, Denmark.

L. Giannakopoulos, I. Konstantinou, D. Tsoumakos and N. Koziris: Recovering from Cloud
Application Deployment Failures through Re-execution. In Proceedings of the 2nd Inter-
national Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2016), in
conjunction with the ALGO 2016 Conference, August 22, 2016, Aarhus, Denmark.

L. Giannakopoulos, P. Karras, D. Tsoumakos, K. Doka and N. Koziris: An Equitable Solution
to the Stable Marriage Problem. In Proceedings of the 27th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2015), 9-11 November, Vietri sul Mare, Italy.

I. Mytilinis, I. Giannakopoulos, I. Konstantinou, K. Doka, D. Tsitsigkos, M. Terrovitis, L.
Giampouras and N. Koziris: MoDisSENSE: A Distributed Spatio-Temporal and Textual
Processing Platform for Social Networking Services. In Proceedings of the 2015 ACM SIG-
MOD/PODS International Conference on Management of Data (Demo Track), May 31-
June 4, 2015, Melbourne, Australia.

I. Giannakopoulos, D. Tsoumakos, N. Papailiou and N. Koziris: PANIC: Modeling Appli-
cation Performance over Virtualized Resources. In Proceedings of the 2015 IEEE Interna-
tional Conference on Cloud Engineering (IC2E 2015), 9-13 March, Tempe, AZ, USA.

115

« 1. Mytilinis, I. Giannakopoulos, I. Konstantinou, K. Doka and N. Koziris: MoDisSENSE:
A Distributed Platform for Social Networking Services over Mobile Devices. In Proceed-
ings of the 2014 IEEE International Conference on Big Data (BigData 2014), 27-30 October,
Washington DC, USA.

« 1. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou, D. Tsoumakos and N. Koziris:
CELAR: Automated Application Elasticity Platform. In Proceedings of the 2014 IEEE In-
ternational Conference on Big Data (BigData 2014), 27-30 October, Washington DC, USA.

116 Chapter 5. Conclusions and Future Directions

Bibliography

[10v]

[42v]

[AABT13]

[AC16]

[AFGT10]

[AFG009]

[AGN15]

The 10 Vs of Big Data. https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx.

The 42 V’s of Big Data and Data Science. https://www.kdnuggets.com/2017/04/42-

vs-big-data-data-science.html.

Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael]
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
Brainwash: A data system for feature engineering. In CIDR, 2013.

Michael R Anderson and Michael Cafarella. Input selection for fast feature engi-
neering. In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on,
pages 577-588. IEEE, 2016.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of Cloud Computing. Communications of the ACM, 53(4):50-58, 2010.

Michael Armbrust, Armando Fox, Rean Griffith, and Joseph others. Above the
clouds: A berkeley view of cloud computing. Technical report, Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, 2009.

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data:
a survey. The VLDB Journal—The International Journal on Very Large Data Bases,
24(4):557-581, 2015.

117

118

Bibliography

[Al13]

[Alt92]

[ans]

[ARB12]

[auf]

[aur]

[AV07]

[awsa]

[awsb]

[awsc]

[awsd]

[BT08]

[BA99]

[BCO1]

Nrusimham Ammu and Mohd Irfanuddin. Big data challenges. International Jour-

nal of Advanced Trends in Computer Science and Engineering, 2(1):613-615, 2013.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175-185, 1992.

Ansible. https://www.ansible.com/. Accessed December 11th, 2017.

A-F Antonescu, Philip Robinson, and Torsten Braun. Dynamic Topology Orches-
tration for Distributed Cloud-Based Applications. In Network Cloud Computing
and Applications (NCCA), 2012 Second Symposium on, pages 116—123. IEEE, 2012.

AUFS. http://aufs.sourceforge.net/. Accessed December 11th, 2017.

AURA Source Code. https://github.com/giagiannis/aura/. Accessed December
11th, 2017.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 1027-1035. Society for Industrial and Applied Mathematics, 2007.

AWS CloudFormation Documentation. https://docs.aws.amazon.com/
AWSCloudFormation latest/UserGuide/troubleshooting.html. ~Accessed March
31st, 2018.

AWS Elastic Load Balancing Documentation. https://docs.aws.amazon.com/
elasticloadbalancing/latest/classic/ts-elb-error-api-response.html. Accessed
March 31st, 2018.

AWS Incident. https://goo.gl/f9591l. Accessed December 11th, 2017.

AWS Maintenance. https://aws.amazon.com/maintenance-help/. Accessed De-
cember 11th, 2017.

Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53, 2008.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random net-
works. Science, 286(5439):509-512, 1999.

Sergio Bermejo and Joan Cabestany. Oriented principal component analysis for
large margin classifiers. Neural Networks, 14(10):1447-1461, 2001.

Bibliography

119

[BAW12]

[BE05]

[bea]

[Ber14]

[BFSO84]

[BGM117]

[BGRS17]

[BGTK18]

[BJRL15]

[BKNS00]

[blo14]

[Bong&7]

[Bow81]

Gergana Bounova and Olivier de Weck. Overview of metrics and their correlation
patterns for multiple-metric topology analysis on heterogeneous graph ensembles.
Phys. Rev. E, 85:016117, 2012.

Ulrik Brandes and Thomas Erlebach. Network Analysis: Methodological Founda-
tions (Lecture Notes in Computer Science). Springer-Verlag New York, Inc., 2005.

AWS Flastic BeanStalk. http://aws.amazon.com/elasticbeanstalk/. Accessed De-
cember 11th, 2017.

David Bernstein. Containers and cloud: From Ixc to docker to kubernetes. IEEE
Cloud Computing, 1(3):81-84, 2014.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifi-

cation and regression trees. CRC press, 1984.

Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. Macrobase: Prioritizing attention in fast data. In Proceedings of the
2017 ACM International Conference on Management of Data, pages 541-556. ACM,
2017.

Peter Bailis, Edward Gan, Kexin Rong, and Sahaana Suri. Prioritizing attention in

fast data: Principles and promise. CIDR, 2017.

Tasos Bakogiannis, Giannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios
Koziris. A Similarity-based Approach to Modeling Graph Operators. arXiv preprint
arXiv:1802.05536, 2018.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jorg Sander. Lof:
identifying density-based local outliers. In ACM sigmod record. ACM, 2000.

The Big Problem Is Medium Data. http://goo.gl/5nYrrz, 2014.

Phillip Bonacich. Power and centrality: A family of measures. American Journal
of Sociology, 92(5):1170-1182, 1987.

Adrian Bowyer. Computing dirichlet tessellations. The computer journal,
24(2):162-166, 1981.

120

Bibliography

[BP9S]

[BWZ15]

[BY13]
[cfe]

[Cha78]

[che]

[CHWT08]

[cloa]

[clob]
[cloc]
[clod]

[clul5]

[CMS16]

[CRBT11]

[CRMO0]

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30(1-7):107-117, 1998.

Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015.

Ricardo A Baeza-Yates. Big Data or Right Data? In AMW, 2013.
CFEngine. https://cfengine.com/. Accessed March 31st, 2018.

Chris Chatfield. The holt-winters forecasting procedure. Applied Statistics, pages
264-279, 1978.

Chef. https://www.chef.io/chef/. Accessed December 11th, 2017.

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
Webtables: Exploring the Power of Tables on the Web. Proceedings of the VLDB
Endowment, 1(1):538-549, 2008.

AWS CloudFormation. http://aws.amazon.com/cloudformation/. Accessed De-
cember 11th, 2017.

CloudFoundry. https://www.cloudfoundry.org/. Accessed December 11th, 2017.
CloudHarmony. https://cloudharmony.com/.
CloudSpectator. http://cloudspectator.com/.

Google Cluster Monitoring Dataset. https://github.com/google/cluster-data/,
2015. Online; accessed Feb 2018.

M Cunha, NC Mendonga, and A Sampaio. Cloud Crawler: a declarative per-
formance evaluation environment for infrastructure-as-a-service clouds. Concur-

rency and Computation: Practice and Experience, 2016.

Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Ra-
jkumar Buyya. CloudSim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1), 2011.

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of
non-rigid objects using mean shift. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, volume 2, pages 142-149. IEEE, 2000.

Bibliography

121

[CSTT10]

[DL06]

[DPD16]

[DPIK18]

[DV]T15]

[EKT96]

[ela]

[FAK*12]

[FFH12]

[FHMO5]

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing. ACM, 2010.

Clara Dismuke and Richard Lindrooth. Ordinary least squares. Methods and De-
signs for Outcomes Research, 93, 2006.

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Aide: An active
learning-based approach for interactive data exploration. IEEE Transactions on
Knowledge and Data Engineering, 28(11):2842-2856, 2016.

Sevil Draxler, Manuel Peuster, Marvin Illian, and Holger Karl. Towards pre-
dicting resource demands and performance of distributed cloud services. KuVS-

Fachgesprdch Fog Computing 2018, page 9, 2018.

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip]
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
et al. Pegasus, a workflow management system for science automation. Future

Generation Computer Systems, 46:17-35, 2015.

Martin Ester, Hans-Peter Kriegel, et al. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Kdd, 1996.

AWS Elastic Load Balancing. http://aws.amazon.com/elasticloadbalancing/. Ac-
cessed December 11th, 2017.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the clouds: a study of emerging scale-out work-
loads on modern hardware. In Proceedings of the seventeenth international confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’12, New York, NY, USA, 2012. ACM.

Florian Fittkau, Soren Frey, and Wilhelm Hasselbring. CDOSim: Simulating cloud
deployment options for software migration support. In Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems (MESOCA), 2012 IEEE 6th International
Workshop on the. IEEE, 2012.

Michael Franklin, Alon Halevy, and David Maier. From Databases to Dataspaces:
anew Abstraction for information management. ACM Sigmod Record, 34(4):27-33,
2005.

122

Bibliography

[Fre77]

[FS99]

[FZL13]

[GT15]

[GCMS15]

[GDGT18]

[Gei93]

[GFW03]

[GKTK16]

[GKTK17]

[goo]

[Gow66]

Linton C. Freeman. A set of measures of centrality based on betweenness. Sociom-
etry, 40(1):35-41, 1977.

Yoav Freund and Robert E Schapire. Large margin classification using the percep-
tron algorithm. Machine learning, 37(3):277-296, 1999.

Yifan Fu, Xingquan Zhu, and Bin Li. A survey on instance selection for active

learning. Knowledge and information systems, 35(2):249-283, 2013.

NIST Big Data Public Working Group et al. Nist big data interoperability frame-
work. Special Publication, pages 1500—6, 2015.

Marcelo Gongalves, Matheus Cunha, Nabor C Mendonca, and Américo Sampaio.
Performance Inference: A Novel Approach for Planning the Capacity of IaaS
Cloud Applications. In Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on. IEEE, 2015.

Swarnendu Ghosh, Nibaran Das, Teresa Gongalves, Paulo Quaresma, and Mahan-
tapas Kundu. The journey of graph kernels through two decades. Computer Science
Review, 27:88-111, 2018.

Seymour Geisser. Predictive inference, volume 55. CRC press, 1993.

Thomas Gértner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness
results and efficient alternatives. In Computational Learning Theory and Kernel Ma-
chines, 16th Annual Conference on Computational Learning Theory and 7th Kernel
Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceed-
ings, pages 129-143, 2003.

Ioannis Giannakopoulos, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nec-
tarios Koziris. Recovering from cloud application deployment failures through
re-execution. In International Workshop of Algorithmic Aspects of Cloud Comput-
ing, pages 117-130. Springer, 2016.

Ioannis Giannakopoulos, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nec-
tarios Koziris. Aura: Recovering from transient failures in cloud deployments. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 762-765. IEEE Press, 2017.

Google App Engine Incident. https://goo.gl/ICI0OMo.

John C Gower. Some distance properties of latent root and vector methods used

in multivariate analysis. Biometrika, pages 325-338, 1966.

Bibliography

123

[GPMT14]

[GTK17]

[GTK18a]

[GTK18b]

[GTPK15]

[GVCL14]

[had]

[heaa]

[heab]

[her]

[HFHT09]

Ioannis Giannakopoulos, Nikolaos Papailiou, Christos Mantas, loannis Konstanti-
nou, Dimitrios Tsoumakos, and Nectarios Koziris. Celar: automated application
elasticity platform. In Big Data (Big Data), 2014 IEEE International Conference on,
pages 23-25. IEEE, 2014.

Ioannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios Koziris. A Decision
Tree Based Approach Towards Adaptive Profiling of Distributed Applications (Ex-
tended Version). arXiv preprint arXiv:1704.02855, 2017.

Ioannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios Koziris. A Content-
Based Approach for Modeling Analytics Operators. In International Conference on
Information and Knowledge Management (CIKM) 2018. ACM, 2018.

Ioannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios Koziris. Towards an
Adaptive, Fully Automated Performance Modeling Methodology for Cloud Appli-
cations. In Cloud Engineering (IC2E), 2018 IEEE International Conference on, pages
148-158. IEEE, 2018.

Ioannis Giannakopoulos, Dimitrios Tsoumakos, Nikolaos Papailiou, and Nectarios
Koziris. PANIC: Modeling Application Performance over Virtualized Resources.
In Cloud Engineering (IC2E), 2015 IEEE International Conference on. IEEE, 2015.

Marisol Garcia-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in real-
time virtualization and predictable cloud computing. Journal of Systems Architec-
ture, 60(9), 2014.

Hadoop AURA application description. https://github.com/giagiannis/aura/ tree/-
master/example/hadoop. Accessed December 11th, 2017.

Openstack Heat. https://wiki.openstack.org/wiki/Heat.

Openstack Heat Signaling and Coordination.
https://wiki.openstack.org/wiki/Heat/Signaling-And-Coordination. Accessed
March 31st, 2018.

Heroku. https://www.heroku.com/. Accessed December 11th, 2017.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1), 2009.

124

Bibliography

[HHD™11]

[HHD16]

[HKN'16]

[HKS93]

[HM11]

[HP94]

[HPE™06]

[HROE13]

[HSG17]

[JD11a]

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis. In New

Frontiers in Information and Software as Services. Springer, 2011.

Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. Asserting reliable
convergence for configuration management scripts. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 328-343. ACM, 2016.

Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven Euijong Whang. Goods: Organizing Google’s Datasets.
In Proceedings of the 2016 International Conference on Management of Data, pages
795-806. ACM, 2016.

David Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision
trees. In IFCAIL 1993.

Javier Martin Hernandez and Piet Van Mieghem. Classification of graph metrics.
pages 1-20, 2011.

John S Heidemann and Gerald J Popek. File-system development with stackable
layers. ACM Transactions on Computer Systems (TOCS), 12(1):58-89, 1994.

Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K John,
and Koen De Bosschere. Performance prediction based on inherent program sim-
ilarity. In Proceedings of the 15th international conference on Parallel architectures

and compilation techniques. ACM, 2006.

Waldemar Hummer, Florian Rosenberg, Fabio Oliveira, and Tamar Eilam. Testing
idempotence for infrastructure as code. In ACM/IFIP/USENIX International Con-
ference on Distributed Systems Platforms and Open Distributed Processing, pages
368-388. Springer, 2013.

Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton, Akon
Dey, Nag, et al. Ground: A data context service. In CIDR, 2017.

Gideon Juve and Ewa Deelman. Automating application deployment in infras-
tructure clouds. In Cloud Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on, pages 658—665. IEEE, 2011.

Bibliography 125

[JD11b] Gideon Juve and Ewa Deelman. Wrangler: Virtual cluster provisioning for the
cloud. In Proceedings of the 20th international symposium on High performance
distributed computing, pages 277-278. ACM, 2011.

[Jef05] TH Jeff. Introduction to neural networks with java, heaton research, 2005.

[JGMP16] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Interactive
data exploration with smart drill-down. In Data Engineering (ICDE), 2016 IEEE
32nd International Conference on, pages 906-917. IEEE, 2016.

[JKMvDO06] A. Jamakovic, R. E. Kooij, P. Van Mieghem, and E. R. van Dam. Robustness of
networks against viruses: the role of the spectral radius. In 2006 Symposium on
Communications and Vehicular Technology, pages 35-38, 2006.

[Jol86] Ian T Jolliffe. Principal component analysis and factor analysis. In Principal com-
ponent analysis, pages 115-128. Springer, 1986.

[JU08] Almerima Jamakovic and Steve Uhlig. On the relationships between topological
measures in real-world networks. NHM, 3(2):345-359, 2008.

(juj] Juju. https://juju.ubuntu.com/. Accessed December 11th, 2017.

[Ken43] Maurice George Kendall. Rank correlation methods. 1948.

[KIMT14] Rakesh Kumar, Kanishk Jain, Hitesh Maharwal, Neha Jain, and Anjali Dadhich.
Apache cloudstack: Open source infrastructure as a service cloud computing plat-
form. Proceedings of the International Journal of advancement in Engineering tech-
nology, Management and Applied Science, pages 111-116, 2014.

[Kni66] William R Knight. A computer method for calculating kendall’s tau with un-
grouped data. Journal of the American Statistical Association, 61(314):436-439,
1966.

[KP14] Kailash C Kapur and Michael Pecht. Reliability engineering. John Wiley & Sons,
2014.

[KRDZ10] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao. Application per-
formance modeling in a virtualized environment. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010.

[KRGT12] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta. Mod-

eling virtualized applications using machine learning techniques. In ACM SIG-
PLAN Notices, volume 47. ACM, 2012.

126

Bibliography

[Kru58]

[KT15]

[LBG80]

[LBH15]

[LC94]

[Len02]

[Lic13]

[LJ12]

[LK14]

[LMVdMF11]

[loa]

[Loh12]

[LS16]

[LYKZ10]

William H Kruskal. Ordinal measures of association. Journal of the American
Statistical Association, 53(284):814-861, 1958.

Yasuharu Katsuno and Hitomi Takahashi. An automated parallel approach for
rapid deployment of composite application servers. In Cloud Engineering (IC2E),
2015 IEEE International Conference on, pages 126—-134. IEEE, 2015.

Yoseph Linde, Andres Buzo, and Robert Gray. An algorithm for vector quantizer

design. IEEE Transactions on communications, 28(1):84-95, 1980.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for super-
vised learning. In Proceedings of the eleventh international conference on machine

learning, 1994.

Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 233-246. ACM, 2002.

Lichman. Uci machine learning repository, 2013.

Alexandros Labrinidis and Hosagrahar V Jagadish. Challenges and opportunities
with big data. Proceedings of the VLDB Endowment, 5(12):2032-2033, 2012.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford. edu/data, June 2014.

Changbin Liu, Yun Mao, Jacobus Van der Merwe, and Mary Fernandez. Cloud
resource orchestration: A data-centric approach. In Proceedings of the biennial

Conference on Innovative Data Systems Research (CIDR), pages 1-8, 2011.
LoadImpact. https://loadimpact.com/.
Steve Lohr. The age of big data. New York Times, 11(2012), 2012.

Jure Leskovec and Rok Sosi¢. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST), 8(1):1, 2016.

AngLi, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: comparing
public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement. ACM, 2010.

http://snap.stanford.edu/data

Bibliography

127

[LZKT11]

[LZZT10]

[MAJ*17]

[Mako3]

[MHHT10]

[MSJT16]

[MTK*15]

[MWST07]

[NG04]

[noal6]

Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-
Prophet: towards application performance prediction in cloud. In ACM SIGCOMM

Computer Communication Review, volume 41. ACM, 2011.

Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert G Greenberg, and Yi-
Min Wang. WebProphet: Automating Performance Prediction for Web Services.
In NSDI volume 10, 2010.

Aniruddha Marathe, Rushil Anirudh, Nikhil Jain, Abhinav Bhatele, Jayaraman
Thiagarajan, Bhavya Kailkhura, Jae-Seung Yeom, Barry Rountree, and Todd Gam-
blin. Performance modeling under resource constraints using deep transfer learn-
ing. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 31. ACM, 2017.

Spyros Makridakis. Accuracy measures: theoretical and practical concerns. Inter-
national Journal of Forecasting, 9(4):527-529, 1993.

David R Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask.
Security Information and Event Management (SIEM) Implementation (Network Pro
Library). McGraw Hill, 2010.

Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and
Joshua B Tenenbaum. Crosscat: a fully bayesian nonparametric method for an-
alyzing heterogeneous, high dimensional data. The Journal of Machine Learning
Research, 17(1):4760-4808, 2016.

Ioannis Mytilinis, Dimitrios Tsoumakos, Verena Kantere, Anastassios Nanos, and
Nectarios Koziris. I/O Performance Modeling for Big Data Applications over Cloud
Infrastructures. In Cloud Engineering (IC2E), 2015 IEEE International Conference on.
IEEE, 2015.

Michael P Mesnier, Matthew Wachs, Raja R Simbasivan, Julio Lopez, James Hen-
dricks, Gregory R Ganger, and David R O’hallaron. //Trace: parallel trace replay
with approximate causal events. USENIX, 2007.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69(2):026113, 2004.

National Centers for Environmental Information.
https://www1.ncdc.noaa.gov/pub/data/noaa/, 2016. Online; accessed May
2017.

128 Bibliography

[per] PerfKitBenchmarker. https://goo.gl/b4Xcij.

[Pet16] Peter Schlampp. Spark takes on the big security threats.
http://www.ibmbigdatahub.com/blog/spark-takes-big-security-threats, 2016.

[(PJ13] Rahul Potharaju and Navendu Jain. When the network crumbles: An empirical
study of cloud network failures and their impact on services. In Proceedings of the
4th annual Symposium on Cloud Computing, page 15. ACM, 2013.

[PKBO03] Philip M Papadopoulos, Mason J Katz, and Greg Bruno. Npaci rocks: Tools and
techniques for easily deploying manageable linux clusters. Concurrency and Com-
putation: Practice and Experience, 15(7-8):707—-725, 2003.

[PRS09] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth. Service level agreement in
cloud computing. 2009.

[pup] Puppet. https://puppet.com/. Accessed December 11th, 2017.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1), 1986.

[Qui9e6] J Ross Quinlan. Bagging, boosting, and c4. 5. In AAAI/IAAL Vol. 1, 1996.

[RBM13] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree filesystem.
ACM Transactions on Storage (TOS), 9(3):9, 2013.

[rig] RightScale 2017 State of the Cloud Report. https://www.rightscale.com/lp/2017-
state-of-the-cloud-report.

[Rok10] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2),
2010.

[sah] Openstack Sahara. https://wiki.openstack.org/wiki/Sahara. Accessed December
11th, 2017.

[sal] SaltStack. https://saltstack.com/. Accessed March 31st, 2018.

[Sam69] John W Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-
tions on computers, 100(5):401-409, 1969.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 1998.

Bibliography

129

[SB15]

[SCDG*17]

[SCJ16]

[Set10]

[soul8]
[sto17]

[TT13]

[tab17]

[TO09]

[vag]

[vel]

[VLAS87]

[VSKB10]

Mahito Sugiyama and Karsten M. Borgwardt. Halting in random walk kernels.
In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 1639-1647, 2015.

Tiago A Schieber, Laura Carpi, Albert Diaz-Guilera, Panos M Pardalos, Cristina
Masoller, and Martin G Ravetti. Quantification of network structural dissimilari-

ties. Nature communications, 8:13928, 2017.

Manish Singh, Michael J. Cafarella, and H. V. Jagadish. DBExplorer: Exploratory
Search in Databases. In Proceedings of the 19th International Conference on Extend-
ing Database Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016, Bor-
deaux, France, March 15-16, 2016., pages 89-100, 2016.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66), 2010.

Data Profiler source code. https://github.com/giagiannis/data-profiler, 2018.
Google Finance API. https://www.google.com/finance/historical, 2017.

Alexandru Adrian Tole et al. Big data challenges. Database systems journal,
4(3):31-40, 2013.

Medium Data is the New Sweet Spot. https://goo.gl/mnxnEx, 2017.

Yingying Tao and M Tamer Ozsu. Efficient decision tree construction for mining
time-varying data streams. In Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp., 2009.

Vagrant. https://www.vagrantup.com/. Accessed December 11th, 2017.

VMware vCloud Automation Center Documentation Center.
http://goo.gl/YkKNic. Accessed December 11th, 2017.

Peter JM Van Laarhoven and Emile HL. Aarts. Simulated annealing. In Simulated

Annealing: Theory and Applications. Springer, 1987.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. Graph kernels. Journal of Machine Learning Research, 11:1201-1242, 2010.

130

Bibliography

[WCB10]

[WF15]

[Whi12]

[wik17]

[wor]

[WWDI17]

[YLMWO06]

[YMTU14]

[ZCWF14]

[ZKR16]

Bhathiya Wickremasinghe, Rodrigo N Calheiros, and Rajkumar Buyya. Cloud-
analyst: A cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications. In Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on. IEEE, 2010.

Felix Wortmann and Kristina Fliichter. Internet of things. Business & Information
Systems Engineering, 57(3):221-224, 2015.

Tom White. Hadoop: The definitive guide. “ O’Reilly Media, Inc.”, 2012.

Web Traffic Time Series Forecasting. https://www.kaggle.com/c/web-traffic-time-

series-forecasting/data, 2017. Online; accessed Feb 2018.

Wordpress AURA application description. https://github.com/giagiannis/aura/

tree/master/example/wordpress. Accessed December 11th, 2017.

Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. Data canopy: Acceler-
ating exploratory statistical analysis. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 557-572. ACM, 2017.

Tynia Yang, Jinze Liu, Leonard McMillan, and Wei Wang. A Fast Approximation
to Multidimensional Scaling. In IEEE workshop on Computation Intensive Methods
for Computer Vision, 2006.

Yoji Yamato, Masahito Muroi, Kentaro Tanaka, and Mitsutomo Uchimura. De-
velopment of template management technology for easy deployment of virtual

resources on openstack. Journal of Cloud Computing, 3(1):7, 2014.

Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading off
correlated failures through independence-as-a-service. In OSDI, pages 317-334,
2014.

Ce Zhang, Arun Kumar, and Christopher Ré. Materialization optimizations for
feature selection workloads. ACM Transactions on Database Systems (TODS),
41(1):2, 2016.

APPENDIX A

Cloud Application Deployment with Transient

Failure Recovery

A.1 Introduction

The advent of the Cloud computing [AFG"10] era has been a key enabler for the migration of
many applications from traditional, on-premise servers to public clouds, in order to fully exploit
the advantages of the latter: Seemingly infinite resources, billed in a pay-as-you-go manner allow
the cloud users to not scale their applications in a cost-effective way. The ability to dynamically
allocate and utilize new virtualized resources has liberated the cloud users from the burden of
managing the physical infrastructure, since the cloud provider itself is responsible for mainte-
nance and any administrative tasks. The dynamic nature of the resources, though, gave birth
to new requirements: Applications need to be deployed and utilize the resources in an auto-
mated manner, without requiring human intervention. This concept is the cornerstone behind
automation, i.e., the ability to run complex tasks that entail resource provisioning and software
configuration in a fully automated manner. Automation is an integral part of the Cloud, that
helped traditional system administration principles to evolve in order to consider dynamic in-

frastructures and virtualized resources [BWZ15, KP14].

Especially during the application deployment phase, automation is essential in order to guar-

antee that different software components such as the cloud’s software stack, the Virtual Machines

131

132 Appendix A. Cloud Application Deployment with Transient Failure Recovery

(VMs), external services, etc., will cooperate in a synchronous manner so as to successfully de-
ploy a given application to the cloud. This challenging task has been both an active research field
[HHD16, HROE13, KT15, JD11a, PKB03, DVJ 15, YMTU14, ARB12] and the objective of many
production systems, operated by modern cloud providers [heaa, sah, juj, cloa]. These approaches
differ in various aspects: Some of them specialize to specific applications (e.g., Openstack Sahara
[sah] focuses on deploying data processing systems to Openstack) whereas others [JD114, J]D11b]
support an application description language and allow the user to define the application struc-
ture. Moreover, some tools operate on specific providers (e.g., [juj]), whereas other retain a
cloud-agnostic profile and abstract the provider specific details from the application description
(e.g., [vag]). In spite of their differences, these systems share the same objective: They expect
an application description along with any other runtime configuration option and they are re-
sponsible to allocate new resources, provision them and configure a new application instance in

a fully automated manner.

However, achieving a fully automated application deployment assumes that all the compo-
nents participating to it (e.g., cloud compute, storage and metadata services, Virtual Machines
(VMs), external services, etc.) function in a coordinated and failure-free manner. Even if coordi-
nation between different modules is achievable, failures are not rare: Network glitches, request
timeouts due to delays in VM bootstrapping, etc., are commonly encountered. Moreover, even
the most popular cloud providers, often encounter severe infrastructure failures [awsg, goa] that,
according to their severity, may lead to service failures for considerable amount of time (span-
ning from seconds up to several minutes). A key characteristic of this type of errors is their
transient nature: They appear for a short time period and vanish without any obvious, from the
application’s viewpoint, reason. In most cases, the appearance of such errors may be tolerable.
For example, during a network glitch, the application may lose some requests, but after the glitch
disappears the requests can be easily repeated and the application will be completely functional
again. However, during the sensitive application deployment phase, such glitches may lead an
entire deployment to failure, requiring human intervention either to terminate the allocated VM

instances or to manually fix the failed deployment parts.

To tackle this challenge, a crucial observation can be made: When such a transient failure
occurs during the deployment phase, in many cases, one only needs to repeat the deployment
scripts that failed in order to overcome it. For example, take the case of installing new software
packages to a newly allocated VM: If one wants to download a software package (e.g., through
apt) and a network glitch occurs, all one has to do in order to overcome this error is to repeat
the download command until the glitch vanishes. Evidently, the transient nature implies that
the cloud user does not have control over it. Hence, an optimistic error-recovery policy would

aim at repeating the script execution until the error disappears.

A.1. Introduction 133

Given this crucial observation, in this work we propose a cloud application deployment
methodology that aims at identifying the parts of an application deployment that failed due to a
transient failure and repeat them until the deployment is successfully accomplished. Specifically,
building upon previous work [GKTK16, GKTK17], we propose a deployment model, perfectly
suited for distributed applications with multiple software components deployed to different VMs.
The application description is serialized to a Directed Acyclic Graph (DAG) that describes the de-
pendencies between different application modules. The application deployment effectively leads
to the traversal of the dependency DAG in a specific order, in order to satisfy the module depen-
dencies. In case of transient errors, our methodology first examines the DAG and isolates the
part of it that failed and, then, executes the failed scripts until the transient errors vanish. In
order to ensure that the re-executed deployment parts (i.e., deployment scripts) always have the
same effects (i.e., they are idempotent), we adopt a lightweight filesystem snapshot mechanism
that ensures that each configuration script can be re-executed as many times as required, until
the error vanishes.

The contributions of this work can be, thus, summarized as follows:

+ We propose a powerful deployment model, which is capable of efficiently expressing the
configuration actions that need to take place between different application modules, in the

form of a Directed Acyclic Graph.

« Using this model, we formulate the application deployment problem as a DAG traversal
problem and suggest an efficient algorithm for identifying the scripts that failed, along

with their respective dependencies.

« We suggest a lightweight filesystem snapshot mechanism in order to ensure that the con-

figuration scripts are idempotent and, hence, can be re-executed as many times as needed.

« We offer AURA, an open-source Python prototype of the proposed methodology [auz],

which is capable of issuing application deployments to Openstack instances.

« Finally, we provide illustrative examples of our deployment model for various popular real-
world applications and thoroughly evaluate the performance of our prototype through

deploying them in a private Openstack cluster.

Our evaluation demonstrated that the proposed approach is capable of deploying diverse ap-
plications with different structures in cloud environments that exhibit high error probabilities
(reaching up to 0.8), while inserting minimal performance overhead for ensuring the deploy-
ment script idempotency. Moreover, the efficiency of the proposed approach is showcased to
be increasing with the application structure complexity, as more complex applications are more

susceptible to transient failures since they occupy more resources.

134 Appendix A. Cloud Application Deployment with Transient Failure Recovery

A.2 Related Work

Since the emergence of the cloud computing era, the challenge of fully automated software con-
figuration and resource provisioning has attracted a lot of interest, both by the academia and the
industry. The importance of automation was diagnosed early and, thus, many solutions have
been proposed and are currently offered to the cloud users. We now briefly discuss the distinct

approaches and outline their properties.

Industrial Systems: There exist several tools and systems offered by modern cloud providers
to their users that aim at providing fully automated application deployment. In the Open-
stack ecosystem, Heat [heaa] is an orchestration system which aims at managing an application
throughout its lifecycle. The users submit application descriptions (named HOT, i.e., Heat Or-
chestration Template), where they define: The application modules, the resources each module
will occupy, the dependencies between different modules (if any) and any other runtime param-
eter (e.g., name of the SSH key to use, flavor id, etc.). In order to maximize reusability, Heat
templates can be parameterized, abstracting the installation-specific details (e.g., image/flavor
IDs, key names, etc.) from the application description. Sahara [sah] is a different deployment
tool for Openstack that specializes in provisioning Data Processing clusters, i.e., Hadoop and
Spark clusters. Sahara uses Heat as the deployment engine and differs from it as it enables the
users to provide Hadoop-specific deployment parameters (e.g., HDFS replication size, number
of slaves, etc.) and applies them to the cluster. The AWS counterpart of Openstack Heat is the
AWS CloudFormation [clod]. Similar to Heat, CloudFormation receives templates that describe
what resources will be utilized and by which components. The cloud user can then define a set
of parameters (keys, image ids, etc.) and launch the deployment. AWS Elastic Beanstalk [bea]
specializes in deploying web applications to the AWS cloud, hiding the infrastructure internals

and automating the provisioning of load balancers, application-level monitoring, etc.

The aforementioned systems are implemented and offered as components of the cloud soft-
ware stacks they operate on. However, there exist many systems that operate outside the target
cloud and are capable of deploying to different providers. Vagrant [vag] is an open source tool
for building and maintaining portable virtual software development environments. It is mainly
used during the development phase of a system which will be deployed to a cloud provider and
its main objective is to simplify the software configuration process. Juju [juj] is another open
source system, developed and maintained by Canonical that works on top of Ubuntu images.
According to Juju, each application comprise of building blocks named Charms. When deploy-
ing an application, each Charm is deployed independently and, finally, the different Charms are
unified through passing parameters to each other. Finally, CloudFoundry [clob] and Heroku
[her] are two systems that focus on providing a more platform-oriented view of the cloud, i.e.,

Platform-as-a-Service (PaaS) semantics on top of Infrastructure-as-a-Service (laaS) clouds. The

A.2. Related Work 135

difference between them and the previous solutions is that both CloudFoundry and Heroku de-
ploy applications to different providers but their objective is to provide access to the platform
level, rather than the VM level, decoupling this way the underlying virtualized hardware from
the deployed application.

All the aforementioned systems generate a dynamic landscape of deployment tools, with
diverse characteristics and different strengths. Nevertheless, none of these tools considers the
dynamic and, frequently, error-prone nature of the cloud, as none of them provides a mechanism
of overcoming transient errors in a fully automated manner, as they require human intervention
either to resume the deployment or trigger a new one. For example, CloudFormation’s offi-
cial documentation suggests to manually continue rolling back an update when a Resource is
not stabilized due to an exceeded timeout period [awsa]. A similar suggestion is also made for
the Elastic Load Balancing [ela] component, extensively utilized both by CloudFormation and
Beanstalk instances: In case where a delay in certificate propagation is encountered, the users
are advised to wait for some minutes and retry to setup a new load balancer [awsb].

Research Approaches: The complexity on the structure of modern applications comprising
different software modules has, inevitably, complicated their deployment to cloud infrastruc-
tures and has been the center of research from different works. NPACI Rocks [PKB03] attempts
to automate the provisioning of high-performance computing clusters in order to simplify soft-
ware installation and version tracking. Although this approach was suggested prior to the wide
adoption of the cloud and focuses on the HPC world, it is one of the first works that discusses
the problem of resource provisioning and software configuration at a big scale and proposes a
tool set in order to automate common tasks. Wrangler [JD11a] is a generic deployment sys-
tem that receives application descriptions in XML format and deploys them to different cloud
providers (Amazon EC2, OpenNebula and Eucalyptus). Each description comprises different
plugins, i.e., deployment scripts, executed on different VMs in order to install a particular soft-
ware component, e.g., a monitoring plugin, a database plugin, etc. Antonescu et al. in [ARB12]
propose a novel specification language and architecture for dynamically managing distributed
software and cloud infrastructure. The application is now expressed as a set of services each of
which is adjusted (dynamically started and stopped) according to the achieved SLAs and the user-
defined constraints. Katsuno et al. in [KT15] study the problem of deployment parallelization
in multi-module applications. Specifically, the authors attempt to detect the dependencies be-
tween different modules through the extension of the Chef [che] configuration tool and execute
the deployment scripts in a parallel fashion. Finally, Pegasus [DV]J ™ 15] is another deployment
system that specializes to deploying scientific workloads. All the discussed systems, attempt to
either achieve complete automation or speedup application deployment, ignoring the frequently
unstable nature of the cloud resources, in contrast to our work that aims at overcoming transient

cloud failures.

136 Appendix A. Cloud Application Deployment with Transient Failure Recovery

Interestingly, the problem of failure overcoming has been the center of interest for many

research works lately. Liu et al. in [LMVdAMF11] provide an interesting formulation where an
application deployment is viewed as a database transaction and the target is to implement the
necessary mechanisms to achieve the ACID properties of the latter. To this end, the authors
assume that each deployment script must be accompanied by an undo script that reverts the
changes of the former. This way, in case of errors, any unwanted side effects are nullified. Note
that, although this is an interesting formulation, the hypothesis that each script is accompanied
by another script that executes undo actions is rather strong and, in many cases, impossible.
Yamato et al in [YMTU14] diagnosed some insufficiencies of the state of the art Heat and Cloud-
Formation deployment tools and proposed a methodology through which Heat Templates can be
shared among users, extracted from existing deployments and trigger resource updates. The au-
thors of this work also diagnosed the problem of partial deployments due to transient errors and
describe a rollback mechanism in order to delete resource generated due to failed deployments.
Although deletion of stale resources is a positive step, there exists much room for an automated
failure overcoming mechanism. Hummer et al. in [HROE13] highlight the necessity of achieving
idempotency in production systems, for cases where a new software version is released. In cases
where one needs to return to a previous, stable version, it is crucial for the deployment system
to rapidly do the rollback and converge to a healthy system state. To this end, this paper fo-
cuses on the theoretical model that guarantees theoretical convergence to a healthy deployment
state. Rather than wandering to the — possibly enormous - state space, our approach adopts a
lightweight filesystem snapshot mechanism that guarantees fast convergence. Finally, the work
in [HHD16] shares a similar solution to the previous one and extends the previous work using a
different configuration management language.
Generic Deployment Systems: Although the prevalence of the Cloud paradigm accentuated
the importance of fully automated software configuration, the problem is long discussed prior to
the wide adoption of the Cloud and many solutions that operate on the resources per se (either
virtualized or not) have been proposed. These solutions do not consider resource allocation.
Nevertheless, the problems of synchronization and dependency resolution are also addressed by
them and resemble the problem addressed by our work.

CFEngine [cfe] is one of the first systems that was proposed to deal with automated soft-
ware configuration. It introduced the idea of convergent operators: Each operation should have a
fixed-point nature: Instead of explaining what needs to be done, a user explains the desired state.
CFEngine is, then, responsible to perform the necessary actions to reach it. Chef [che] is a pop-
ular software configuration system, adopted by Facebook. The deployment scripts (recipes) are
written in a Ruby-based domain-specific language. Multiple recipes are organized in cookbooks
which describe the desired state of a set of resources. Puppet [pup] is another widely used soft-

ware configuration system used by Twitter and Mozilla. Similarly to CFEngine, Puppet adopts a

A.3. Application Deployment 137

declarative syntax and users describe the resources and the state that should be reached when the
deployment is over. It is released in two flavors: Enterprise Puppet, that supports coordination

between different hosts and Open Source Puppet that comes with a limited number of features.

Unlike the rest of the systems proposed so far, Ansible [ans] follows an agentless architecture.
Instead of running daemon services inside the machines, Ansible utilizes plain SSH connections
in order to run the deployment scripts, configure software, run services, etc. Although its archi-
tecture supports coordination between different machines, Ansible users need to carefully design
the deployment scripts (i.e., playbooks) in order to achieve idempotency. Finally, Salt [sal] (or
SaltStack Platform) is a software configuration and remote execution platform written in Python.
Similar to Ansible, Salt also uses an agentless architecture; recent Salt versions also support dae-
mon processes inside the target machines in order to accelerate deployment. It is highly modular
as a user can customize the behavior of a deployment workflow through extending the default

functionality using Python.

Although these tools are extensively utilized in modern data centers and cloud infrastruc-
tures, none of them offers a built-in support of coordination between software modules that
span to multiple hosts, as our work. This is supported either on premium versions of them or
through adopting community-based plugins. Moreover, although these tools attempt to repeat
the execution of configuration scripts in order to reach convergence, none of them guarantees
idempotence to the extent our work does, i.e., full idempotence to file system related resources.
As all of these tools do support the execution of possibly non-idempotent calls (e.g., through
the execute- calls in Chef) that cannot be undone or leave the burden of writing idempo-
tent scripts to the users (Ansible), our work decouples idempotency from the ability of undoing
actions and achieves a greater level of decoupling scripts from their side effects. Finally, since
our work is based on executing simple bash scripts in the correct order to different machines,
it is much easier to exploit existing deployment scripts written in bash in order to compile new
application descriptions and eschew the learning curve of a new language that reflects the target

deployment states.

A.3 Application Deployment

In this section, a thorough description of the proposed methodology is provided. We, first, pro-
vide the architecture of the system we implemented. Next, we discuss an efficient deployment
model, through which one can describe the deployment of any arbitrary application. We, then,
examine how this model is utilized for the identification and recovery from transient cloud fail-
ures and, finally, we examine the mechanism through which our prototype guarantees the idem-

potency of each deployment part.

138 Appendix A. Cloud Application Deployment with Transient Failure Recovery

A.3.1 Architecture

We begin our discussion through introducing the architecture of the system that implements the
deployment methodology this work proposes. Our prototype is named AURAJ] and Figure [A.1]
depicts its architecture. AURA comprises two components: The AURA Master and the AURA Ex-
ecutor(s). AURA Master is deployed to a dedicated host (VM or physical host) and consists of a set
of submodules that coordinate the deployment process and orchestrate error recovery. Specifi-
cally, the Web UI and REST API submodules export AURA’s functionality to its users. Through
them, an authenticated AURA user can submit new application descriptions, launch new deploy-
ments, query a deployment’s state, obtain monitoring metrics and terminate a deployment. The
Provisioner is responsible to contact the underlying Openstack cluster in order to allocate the nec-
essary resources. The Scheduler is the core component that coordinates the deployment process
and orchestrates failure overcoming. The application descriptions, the deployment instances, the
user configuration options and any other relative information is persisted to a database inside
the AURA Master host and it is accessible by the Scheduler.

webul || REST 7 e — |
API \/\ﬂ \

| | AURA Executar

AURA Executar
L —
> Scheduler - AURA Executor
Y

- VM
N
N ~— A VM
e’ Y

" F VM

Provisioner -

S

AURA Master

Figure A.1: AURA Architecture

AURA Executors are lightweight processes, running inside the VMs which are allocated to
host the application and they are responsible to execute the configuration scripts of the respective
modules they are deployed to. The Executors communicate with the AURA Master through
a Queue that acts as the communication channel between the different components. In case
of a transient error, the Scheduler identifies which deployment parts need to be replayed and

transmits messages to the Executors that, in turn, cancel any unwanted side effect a previous

*According to Greek mythology, Aura was the goddess of breeze, commonly encountered to cloudy environments.

A.3. Application Deployment 139

script execution left. Note that, although the Queue is depicted as an external module in order to
increase the figure’s readability, it also belongs to AURA Master, in the sense that it is statically
deployed in the same AURA Master host and Executors from different deployments utilize the

same queue to exchange messages.

Before analyzing AURA’s functionality is detail, let us provide the key assumptions that
drove AURA’s design. First of all, the errors that emerge have a transient nature. This means
that they are only present for a short period of time and vanish without requiring any manual
intervention. Second, we assume that the communication channel between the Executors and
the Master is reliable, i.e., in case where an Executor sends a message to the Queue, this message
always reaches its destination. Third, we assume that the AURA Master is always available, i.e.,
it may not fail. Given the above, we now proceed with describing AURA’s deployment model

and mechanisms through which it achieves error recovery and deployment script idempotence.

A.3.2 Deployment Model

Assume a typical three-tier application consisting of the following modules: A Web Server (ren-
dering and serving Web Pages), an Application Server (implementing the business logic) and a
Database Server (that persists the application’s data). For simplicity’s sake, we assume that each
module runs in a dedicated server and the application will be deployed in a cloud provider. If
the application deployment occurred manually, one should create three VMs and connect (e.g.,
via SSH) to them in order to execute scripts that take care of the configuration of the software
modules. In many cases, the scripts need input that is not available prior to the resource alloca-
tion. For example, the Application Server needs to know the IP address and the credentials of
the Database Server in order to be able to establish a connection to it and function properly. In

such cases, the administrator should manually provide this dynamic information.

The automation of the deployment and configuration process requires the transmission of
such dynamic information in a fully automated manner. For example, upon the completion of
the configuration of the Database Server, a message can be sent to the Application Server con-
taining the IP address and the credentials of the former, through a communication channel.
Such a channel can be implemented via a simple queueing mechanism. Each module publishes
information needed by the rest of the modules and subscribes to queues, consuming messages
produced by other modules. The deployment scripts are executed up to a point where they ex-
pect input from another module. At these points, they block until the expected input is received,
i.e., a message is sent from another module and it is successfully transmitted to the blocked mod-

ule. The message transmission is equivalent to posting a new message into the queue (from the

140 Appendix A. Cloud Application Deployment with Transient Failure Recovery

sender’s perspective) and consuming this message from the queue (from the receiver’s perspec-
tive). In cases that no input is received (after the expiration of a fixed time threshold), the error
recovery mechanism is triggered.

Albeit the content of the messages exchanged between two modules depends on the executed
deployment scripts and the type of the modules (e.g., passwords, SSH keys, static information
regarding the environment a module is deployed to, etc.), each message belongs to one of the
following three categories: Static, Dynamic and ACK messages. Static messages are considered
the ones that contain information that does not change when a deployment script is re-executed
(e.g., VM’s IP address, amount of memory, number of cores, etc.). Dynamic messages contain
information that change any time a deployment script is re-executed. For example, if a script
running on a Database Server generates a random password and transmits it to the Web Server,
in case of a script re-execution a new password will be generated and a new message will be
sent (containing a different password). Finally, ACK messages assist synchronization of the de-
ployment between different software modules and are used to enforce a script execution in a

particular order as they do not contain any useful information.

(1) (2)
A —p. A

£ ; ;
B F B

v . :

Figure A.2: Message exchange between different software modules and circular dependencies

To provide a better illustration of the deployment process, consider Figure [A.. In this Figure,
a deployment process between two software modules named (1) and (2) is depicted. The vertical
direction represents the elapsed time and the horizontal arrows represent message exchangef]. At
first, both (1) and (2) begin the deployment process until points A and A’ are reached respec-
tively. When (1) reaches A, it sends a message to (2) and proceeds. On the other side, (2) blocks

*Note that message transmission might not be instant (as implied by the Figure) since consumption of a specific
message might occur much later than the message post, but the arrows are depicted perpendicular to the time axis
for simplicity.

A.3. Application Deployment 141

at point A’ until the message sent from (1) arrives and, upon arrival, consumes it and contin-
ues with the rest of the script. If the message does not arrive, then the recovery procedure is
triggered, as described in the next section.

The functionality of the above message exchange mechanism resembles the functionality of
a UNIX pipe: Message receiving is blocking for the receiver end, whereas the sender module
posts something to the channel and proceeds instantly. In some cases, though, blocking mes-
sage transmissions may be desired. For example, take the case of two modules negotiating about
avalue, e.g., arandomly generated password assigned to the root account of the Database Server.
Assume that module (1) (the Application Server) decides on the value and sends it to module (2)
(the Database Server). Module (1) must ensure that the password is set, prior to trying to connect
to the database. To this end, (2) can send an acknowledgment as depicted between points B and
B’. In this context, the message exchange protocol can also function as a synchronization mech-
anism. This scheme represents a dependency graph between the application’s modules, since
each incoming horizontal edge (e.g., the one entering at point A’) declares that the execution of
a configuration script depends on the correct execution of another.

Note that, schemes like the one depicted in Figure [A.d present a circular dependency, since
both modules (1) and (2) depend on each other, but on different time steps. This feature enhances
the expressiveness of the proposed deployment model, as one can easily describe extremely com-
plex operations between different modules, which depend on each other in a circular manner.
Various state-of-the-art deployment mechanisms do not handle this circularity (e.g., Heat [heaa],
CloudFormation [cloa]) since they lack the concept of time during the configuration process and,
hence, forbid their users to declare dependencies that create loops. In our view, this circularity
naturally occurs to a wealth of modern cloud applications, that comprise many modules deployed
to different VMs and, hence, the prohibition of such loops leads to application descriptions that
rely on “hacks” to work. On the other side, the allowance of circular dependencies leaves room
for application descriptions that contain deadlocks, i.e., pathological cases where each module
waits for another and the deployment blocks forever. This problem is outside the scope of our
work; it is the user’s responsibility to generate correct, deadlock-free application descriptions

that, if no failures occur, reach to termination.

A.3.3 Error Recovery

We now describe the mechanism through which the deployment errors are identified. During the
deployment process, a module instance may send a message to another module. This message
may contain information needed by the latter module in order to proceed with its deployment, or
it could just be a synchronization point. In any case, the second module blocks the deployment

execution until the message arrives, whereas the first module sends its message and proceeds

142 Appendix A. Cloud Application Deployment with Transient Failure Recovery

with the execution of its deployment script. In the case of an error, a module will not be able to
send a message and the receiver will remain blocked. To this end, we set a timeout period that, if
exceeded, the waiting module sends a message to the AURA Master informing it that a message
has been missed and a possible error might have occurred. From that point on, the error recov-
ery mechanism takes control, evaluates whether an error has, indeed, occurred or the running
scripts need more time to finish, i.e., the script is still running. In the former case, the error is
evaluated, as we will shortly describe, and the necessary actions are performed in order for the
deployment to be restored. The selection of an appropriate timeout period is not trivial. While
smaller thresholds may trigger an unnecessary large number of health checks in cases where the
deployment scripts need much time to complete, larger ones make our approach reacting slower
to errors. The default timeout period used by AURA equals to 1 minute. Nevertheless, if the users
are knowledgeable about the real deployment time of their application, they can further optimize
it. In the experimental evaluation, we provide a rule of thumb that facilitates with this choice.
Finally, when a module’s configuration successfully terminates, it reports its terminal state to
AURA Master; the entire deployment is considered successful when all software modules have
successfully been deployed.

Upon the identification of a (possible) failure, the error recovery mechanism is triggered. The
error recovery process aims at overcoming the transient cloud failure encountered during the de-
ployment and is based on the repetition of the execution of scripts/actions which led the system
to failure. In order to identify the parts of the deployment that need to be re-executed, AURA
needs to be aware of the dependencies that exist between different deployment scripts. These
dependencies can be easily resolved, when considering that the executions of the scripts and the
message exchange between different modules (as presented in Figure [A.J) constitute a graph (re-
ferred as the deployment graph henceforth) that express the order with which different actions
must take place. For example, consider the graph presented in Figure [A.5, that presents the de-
ployment graph of a Wordpress application comprising a Web Server and a Database Server. The
graph nodes represent the states of the deployment, the solid edges represent a script execution
and the dotted edges represent a message exchange. The examination of the deployment graph
indicates that the execution of, e.g., the web-server/3 script depends on the execution of
two other scripts: web-server/2 and db-server/3 (that sends an ACK message). In the
general case, if one wants to identify the dependencies of any script, one needs to traverse the
graph in reverse edge direction.

Having defined the methodology used to identify the dependencies between different de-
ployment scripts, we can now formally describe the Error Recovery procedure, as presented in
Algorithm B. The algorithm accepts two parameters: A deployment graph T (as the one depicted
in Figure |A.5) and the id of a failed node n. The algorithm traverses 7" in a Breadth-First order

beginning from the failed node and traversing the graph in opposite edge direction. The goal

A.3. Application Deployment 143

web-server/1

p eb-server/2

\‘e/b-server

y f4

db-server/2 db-SeF\ﬁe‘ﬁ'

/

&s_erverf

Figure A.3: Wordpress deployment graph with 1 Web Server and 1 Database Server

of the algorithm is to identify a list of nodes that have been successfully reached by the deploy-
ment. Starting from the node that triggered the Error Recovery, the algorithm retrieves all the
node’s dependencies (depends function). For example, if the failed node is C’, the depends
function returns the nodes B’ and D. The failed function checks the respective Executor’s
state and returns true if the Executor reports that the intermediate state has not been reached.
For example, if D has not been reached then failed (D) returns true and D is placed to the
failed list in order to be later examined. If B’ is successfully reached, then B’ is placed in the
healthy list and its dependencies are not examined. This procedure is iterated until all failed
nodes are identified. Using this healthy list, the AURA Master contacts the respective Executor
for each node and instructs them to resume their execution from their last successfully reached
healthy state. In the previous example, if we assume that C' was successful, then the db-server
Executor is instructed to repeat db-server/3.

It should not be overlooked, that when certain parts of the deployment graph are re-executed,
the replayed scripts may produce new or require to consume older messages previously trans-
mitted by other modules. In case where a replayed script needs to consume older messages
previously sent by other modules, AURA keeps track of all the messages and forwards the ones
required by a replayed script. What happens, though, when a replayed script produces new mes-
sages? In these cases, AURA’s behavior is affected by the type of the message: If the new message
is of type Static or ACK, the message is sent by the replayed script and ignored by AURA’s Queue

144 Appendix A. Cloud Application Deployment with Transient Failure Recovery

Algorithm 5 Error Recovery Algorithm

Require: deployment graph T, failed node n
Ensure: list of healthy nodes healthy

. failed + {n}

2: healthy < ()

3: while failed # () do

4: v = pop(failed)
for ¢t €depends(T, v) do

if failed(t) then

failed < failed U {t}
else

healthy < healthy U {t}
return healthy

Y 2® O

module. Since both message types are not affected by a script re-execution, there is no need to
propagate the new messages to other, healthy deployment parts. However, when a Dynamic
message is sent, the recipient module need to repeat the configuration since the receiving in-
formation changed. For example, if a Database Server script re-generated a new password and
sent it to a Web Server, the latter needs to be reconfigured in order to reflect the updates. It
is, now, evident, why AURA implements different message types and how these affect error-
recovery. Through this mechanism, AURA’s user has the liberty to define the message types of
the deployment scripts and affect the algorithm’s behavior.

Finally, before proceeding to the examination of the idempotency enforcement mechanism,
we should not overlook that since different deployment parts run in parallel, race conditions
between different modules may be encountered. For example, take the case where one mod-
ule broadcasts a health-check request, and while the master runs Algorithm [, another module
broadcasts a new request. Since parallel algorithm executions may lead to contradicting actions
(i.e., different healthy sets), we need to ensure that the algorithm executions are properly syn-
chronized. To this end, each health-check request is placed to a FIFO queue and examined one
at a time: The first health-check request is examined by the master, which runs Algorithm f and
informs the failed modules about the necessary actions. Subsequently, the next health-check
request is examined, Algorithm [runs again, but now the previously failed modules are in an
“Executing” state. If the new health-check request was issued for another module (i.e., not one
of the modules that failed in the previous Algorithm execution), then this module is resumed.
In any other case, the failing module is already in an “Executing” state and, hence, the health-
check request is ignored. In essence, the serialization of both the health-check requests and the
algorithm’s executions, ensure that the actions taking place for resuming the failed deployment

parts leave the deployment in consistent states and eschew race conditions.

A.3. Application Deployment 145

A.3.4 Idempotency

The idea of script re-execution when a deployment failure occurs, is only effective when two im-
portant preconditions are met: (a) the failures are transient and (b) if a script is executed multiple
times it always leads the deployment into the same state, i.e., it is idempotent. In this, section we

discuss these preconditions and describe how are these enforced through our approach.

First, a failure is called “transient” when caused by a cloud service and was encountered
for a short period of time. Network glitches, routers unavailability due to a host reboot and
network packet loss are typical examples of such failures caused by the cloud platform but, in
most cases, they are only observed for a short period of time (seconds or a few minutes) and
when disappeared the infrastructure is completely functional. Various works study those types
of failures (e.g., [P]13]) and attribute them to the complexity of the cloud software and hardware
stacks which presents strong correlations between seemingly independent cloud components
[ZCWF14]. Although most cloud providers protect their customers from such failures through
their SLAs [PRS09], they openly discuss them and provide instruction for failures caused by spo-
radic host maintenance tasks [awsd] and various other reasons [vcl]. Since the cloud environ-
ment is so dynamic and the automation demanded by the cloud orchestration tools requires the
coordination of different parties, script re-execution is suggested on the basis that such transient

failures will eventually disappear and the script will become effective.

However, in the general case, if a script is executed multiple times it will not always have
the same effect. For example, take the case of a simple script that reads a specific file from the
filesystem and deletes it. The script can only be executed exactly once: The second time it will be
executed it will fail, since the file is no longer available. This failure is caused by the side effects
(the file deletion) of the script execution, which lead the deployment to a state in which the same

execution cannot be repeated.

In order to overcome this challenge, we employ a lightweight filesystem snapshot mecha-
nism, that aims at persisting the filesystem state prior to each script execution and, in case of
failure, revert to it, in order to cancel any changes committed by the failed script. Filesystem
snapshotting is a widely researched topic in the Operating Systems field [RBM13, HP94], and it
is commonly used for backups, versioning, etc. The mechanics behind the snapshot implementa-
tion differs among various filesystems: A straightforward implementation requires exhaustively
copying the entire VM filesystem to a secure place (and copying it back during the revert ac-
tion), whereas more sufficient approaches rely on layering or copy-on-write techniques. The
huge overhead of copying the entire filesystem lead us to favor the latter techniques. To this
end, we implemented two different snapshot mechanisms, using two different widely popular
filesystems: AUFS [auf], that relies on layering and BTRFS [RBM13] that relies on copy-on-write.

146 Appendix A. Cloud Application Deployment with Transient Failure Recovery

AUFS is one of the most popular layered filesystems that rely on union mounting. The main
idea behind union mount is that a set of directories are mounted with a specific order and the
final filesystem is the union of the files contained to each distinct directory. Whenever one wants
to read a file, the uppermost layers are scanned first and, if the file is not found, the search is
continued to the bottom layers. Each layer may be mounted with different permissions; usually,
the topmost layer is mounted with read-write access and the rest of the layers are mounted
with read-only access. When a write operation takes place, the updates are only written to
the topmost, read-write layer, keeping the rest of the layers intact. The same happens when
deleting a file: Instead of physically removing the file from its layer, a new special file is generated,
demonstrating that the target file is not available. This mechanism inherently supports filesystem
snapshots: Prior to each script execution, a new layer is mounted on top of the others. If the
script fails, then the newly allocated layer is removed and, hence, all the scripts’ side-effects are
canceled. In different case, new layers are appended on top of the existing ones.

BTREFS, on the other hand, is a much newer and promising filesystem that relies on copy-on-
write for snapshotting. It supports the concept of volume, which acts as an endpoint used by
the OS to mount it to the root filesystem. Snapshotting occurs on a per-volume basis: One can
create a snapshot, which represents a state of a volume. When something changes (e.g., new
files are created/updated/deleted), BTRFS only creates the inodes that are updated, minimizing
the number of filesystem structures which are updated. The main difference between BTRFS
and AUFS is that the latter works on a file level, i.e., when a file is updated, the entire file is
replicated to the topmost layer, whereas the former works on a block level, i.e., only the filesystem
blocks which are affected are replicated. On the other side, AUFS is more generic, since it can be
implemented on top of other filesystems, whereas BTRFS is more restrictive since the application
data must be persisted to a BTRFS partition. In the experimental evaluation, we continue the
discussion for their differences and evaluate their impact to the efficiency of our approach.

Finally, we should note that the discussion around idempotency, is only limited to filesystem
related resources because the configuration process of most applications usually relates to mod-
ifying configuration files. We shall not overlook, though, that modern applications may demand
idempotency to other resources, as well: The memory state of a module, for example, cannot
be reset when a script need to be re-executed. This is an interesting extension of our approach

which will be addressed in the future.

A.4 Implementation Aspects

Upon presenting AURA’s architecture and describing its main functionality, we now wish to
extend the discussion to specific implementation aspects of the proposed system. Our analysis

comprises two dimensions. We first introduce two optimizations that boost AURA’s applicability

A.4. Implementation Aspects 147

and, subsequently, discuss the technical means through which the proposed system approaches

the concepts of Portability and Reusability.

A.4.1 Optimizations

We now provide some optimizations that were implemented to enhance AURA’s applicability.
So far, we have made the assumption that there exists a one-to-one mapping between applica-
tion modules and VMs, i.e., each module (e.g., (1) of Figure [A.2) is deployed to a dedicated VM.
Bearing in mind, though, that modern distributed applications, inherently deployed to cloud en-
vironments, rely on deploying the same software modules to more than one VMs (e.g., HDFS
clusters [BT08] comprise many datanodes), this assumption is rather restrictive. To this end,
AURA’s implementation supports augmenting application description with an extra deployment
parameter that refers to each module’s multiplicity. This means that prior to deploying, a
user can define a (strictly positive) module multiplicity and this, practically, leads to replicating
the same software module description as many times as required in different VMs. In this case,
the Queue module modifies message exchange accordingly: During message transmission, mes-
sages from VMs that host the same software modules are merged in a predefined order (ascending
Executor UUID) and offered to the recipient(s), whereas during message reception, the Queue
replicates the message as many times as needed. Figure [A.4 graphically represents this process,
being a variation of Figure [A., where (2) is deployed to two VMs. Note that, the fact that the
Queue replicates and merges messages, abstracts the concept of multiplicity from application

descriptions and maximize their reusability.

(2.2) (

an - A
: S

LI BN T I BN
~~—
N
—
~—"

time

Figure A.4: Message exchange between modules of different multiplicity

Furthermore, apart from the initial deployment phase, the suggested workflow can be ex-
tremely helpful during an application’s lifetime, for different occasions. For example, take a
two-tier application comprising a Web and a Database Server and assume that an administrator
wants to run a maintenance task, e.g., update the Database Server software. This task can easily
be described in the form of a DAG, where one would, first, gracefully shutdown the Web Server
(closing any stale DB connections), then shutdown the DBMS, update it and, finally, start the

148 Appendix A. Cloud Application Deployment with Transient Failure Recovery

services in reverse order. Note that, this chain of events can be much more complex and may
span to more than two modules (e.g., assume that there exist more than one Web Servers). In
order to support these actions, AURA supports the definition of a second deployment parameter
which defines the address of a VM: If set, the Provisioner submodule does not allocate a new
VM. In this case, the (already deployed) AURA Executor, receives a new set of scripts that need
to be executed according to the proposed methodology. It must be emphasized that this is a first
step towards dynamic application scaling, i.e., resource allocation and software configuration in
order for an application to utilize the new resources, and it is a very interesting future direction

that will be explored.

A.4.2 Portability and Reusability

Two dimensions that highly affected AURA’s design choices and have not been examined this
far, are Portability and Reusability. Portability is related to AURA’s ability to be able to deploy
new application instances in different environments. Reusability is the ability to utilize existing
deployment scripts in order to compose new application descriptions compliant with AURA.
Although these aspects are not considered Functional Requirements in the narrow sense, they are
both highly desirable and, if achieved, they can drastically increase AURA’s utility.

AURA’s modular architecture, as depicted in Figure [A.1} allows different modules (e.g., Pro-
visioner, Scheduler, etc.) to communicate in a transparent way, without relying on the design
of each other. For example, when the Scheduler module issues a new request to the Provi-
sioner module to allocate new VMs, the latter communicates with Openstack without exposing
Openstack-specific semantics to the former. This means that if one wants to utilize AURA in a
different cloud environment that adheres to a different API (e.g., AWS, CloudStack [KJM ™ 14]) or
utilizes a different virtualization technology (e.g., Kubernetes [Ber14] utilizing Linux Contain-
ers), one could provide a custom Provisioner module that contacts the respective cloud platform
without altering anything else to AURA’s functionality. The only requirement for a custom Pro-
visioner module is to respect the CloudOrchestrator AP as seen from AURA’s source
code [aur], and implement the create_vmand delete_vms functions. In a similar manner,
the user may also override AURA’s default behavior regarding VM creation that in case where
a VM allocation request fails, the whole deployment is aborted. One could easily change this
behavior through adding a loop that eagerly spawns new VM allocation requests in case where
the underlying Openstack calls fail.

Finally, we should note that the design choice of supporting DAGs for AURA’s application
descriptions was favored against other options (e.g., describing the state of the different VMs) for
the following reason: The users can easily utilize existing deployment scripts, written in bash or

any other language, in order to compose more complex application descriptions. One can easily

A.4. Implementation Aspects 149

transform a set of existing deployment scripts to a DAG-based description, as the one depicted

in Figure [A.3, following two steps:

1. “Break” a larger deployment script in smaller parts, identifying which ones should be ex-

ecuted on which VMs and what input is anticipated for each module,

2. Generateadescription. json file that encodes the order of execution inside a mod-

ule and the input/output messages each script anticipates.

The syntax of the description file is simple, and contains the bare minimum information re-
quired to generate the deployment graph. Listing [A.1 provides an example description file for
the Wordpress application. Initially, the users define the application modules of their application
(e.g.,db-server and web-server). For each module, the user provides a list of scripts that
contain its sequence number (Seq parameter) that indicates its order of execution, the path of
the deployment script (file parameter) that may be any executable file, and (if applicable) a
list of script names in which the current script depends to or the scripts to which the current

script will send messages to (i.e., input and output parameters respectively).

Listing A.1: Wordpress description file

{
"name": "Wordpress",
"description": "Simple Wordpress installation",
"modules": [{
"name": "db-server",
"scripts": [{
"seq": 1,
"file": "db_server/install.sh"
3 q
"seq": 2,
"file": "db_server/configure.sh"
3s{
"seq": 3,
"file": "db_server/create_ user.sh",
"input" : ["web-server/1"],
"output": ["web-server/3"]
1]
5 {
"name": "web-server",

"scripts": [{
"seq": 1,
"file": "web_server/send_ip.sh",
"output":["db-server/3"]

150 Appendix A. Cloud Application Deployment with Transient Failure Recovery

IR
"seq": 2,
"file": "web_server/install.sh"

3 {
"seq": 3,
"file": "web_server/configure.sh",
"input": ["db-server/3"]

1]

1]

Note that the actual deployment scripts (such as web_server/send_ip. sh) need not
be modified in order to publish messages to the AURA Queue. Instead, the AURA Executors
that run the deployment scripts, collect their output (everything a script has produced in its
standard output) and send it through the AURA Queue to their recipients. On the other end,
the Executor that runs a script awaiting for a message, serializes this output and stores it to
a temporary file. The path of this temporary file is, then, given as the first argument to the
deployment script that opens it, parses it and utilizes its content as it wishes. For example, the
script web_server/send_ip. sh echoes the VM’s IP address. The Web Server Executor
collects it and sends it to the Database Server Executor through the Queue module. When the
script db_server/create_user. sh need to be executed, the Database Server Executor
collects the IP address and places it to a file; the script is then launched with this path as the
first argument. Subsequently, the script reads the IP address and utilizes it to grant access to
Wordpress’ database so that the Web Server can access it.

It should be stressed that the choice of not exporting the Queue’s semantics to the deploy-
ment scripts, liberate the users from writing “AURA-compliant” application descriptions and
allow them to write simple scripts that produce and consume information in a traditional way,
i.e.,, through files. In our view, this option greatly simplifies the application description gen-
eration process and makes AURA more user-friendly and maximize the reusability of existing

deployment scripts.

A.5 Experimental Evaluation

We now provide a thorough experimental evaluation of the proposed approach that attempts
to quantify AURA’s efficiency and suitability for deploying real-world application in unstable
environments.

Experimental Setup: All experiments were conducted on a private Openstack cluster installa-
tion, that comprises 8 nodes, each of which has 2 x Intel Xeon E5-2630 v4 (2.20GHz) and 256G
RAM (totaling 320 HW threads and 2TB of RAM). The nodes are connected with 10G network

A.5. Experimental Evaluation 151

interfaces and the VM block devices are stored over a CEPH cluster that consists of 8 OSDs (4
x 3TB 3.5” HDDs on RAID-5 setup each) and 98TB storage. The cluster runs the latest stable
Openstack version (Pike) and the hosts run Ubuntu 16.04 with Linux kernel 4.4.0-97.

Applications: In order to evaluate the efficiency of our approach, we opted for popular, real-

world applications, commonly encountered to cloud environments:

« Wordpress is a popular Content Management System, used to run and manage Web Appli-
cations for different purposes. It requires two components: A Web Server, which renders
the user interface and a Database Server, which persists the application’s data. Therefore,
the application description comprise these modules: One module that installs the Apache
Web Server along with any other dependency and one module that hosts MariaDB, i.e., the
application’s database backend. Each module is installed to a dedicated VM and the Web
Server may be replicated to more than one VMs, i.e., the Web Server’s multiplicity may be

greater than one.

« Hadoop [Whil2] is a popular data processing system, commonly deployed to cloud infras-
tructures in order to persist and process Big Data. It also comprises two modules: A Master
node that acts as the coordinator of the cluster and the Slave node(s) that are responsible
both to persist the cluster’s data and to run tasks from MapReduce jobs. In each deploy-
ment, there only exists one Hadoop Master node and a set of Slave nodes, determined by
the module’s multiplicity. We should emphasize that Hadoop is a typical application de-
ployed to the Cloud; for this reason, the most popular cloud providers offer tools to their
users that automate the provisioning of Hadoop clusters and also consider their elastic
scaling (e.g., Amazon EMRY).

Both application descriptions contain: (a) the appropriate scripts in order to install the necessary
software components (e.g., Web/Database servers, Hadoop daemons, etc.) along with any other
software (e.g., Java, PHP, etc.) or other requirements (e.g., SSH keys, setting up the hosts file, etc.)
and (b) the deployment DAG that describes the order of the script execution. For brevity, we omit
a detailed description of each configuration scriptff; Figures [A.5 and [A.4 depict the structure of
the deployment graphs for Wordpress (that consists of 1 Web Server and 1 Database Server) and
Hadoop (that consists of 1 Hadoop Master and 2 Hadoop Slaves) respectively.

The graph nodes represent the states of the modules, the solid edges represent script execu-
tions and the dotted edges represent message exchanges between different modules/VMs. Each
script execution is labeled in the form <module>/<sequence>. When the module multi-

plicity is greater than 1, the module name in the label also contains the VM’s serial number as a

*https://aws.amazon.com/emr/
*More details, though, can be found online at [had] for Hadoop and [wo1] for Wordpress.

152

Appendix A. Cloud Application Deployment with Transient Failure Recovery

web-serverl/3 web-serverl/1

eb-serverl/.

.‘fiBtseNer!B)
p db—serven‘;z‘ i¥server/ .
! 1
I
!
|

/
b-server2/
web—gerverZB

web-server2/1

Figure A.5: Wordpress deployment graph with 2 Web Servers and 1 Database Server

oop=slavel/5
hadoop-slavel/4

A\
oop-slave:

hadoop-master/6
A\
A}
hadonp -Slavel/2

“ ham}p:ma/sg!
hadoop-slavel/l “

hadoop- masterM

\

\\
hadoop-master/3 "
.\

;.h?p.—masterm |

hadoop-slave2/5
L doop-sla¥e:
1
hadoop.—m/astenfl ‘\

hadoog,—élavezk’i

. ’hﬂb‘op—sla{m‘
vgnp—sla\.reﬂl

Figure A.6: Hadoop deployment graph with 1 master and 2 slave nodes

suffix, e.g., hadoop-slave2/3 denotes the third configuration script for the second hadoop
slave node.

A.5. Experimental Evaluation 153

Methodology: In order to quantify AURA’s efficiency, we deployed the previously described
applications, using different deployment parameters (e.g., different module multiplicity, filesys-
tem snapshot methodology, etc.) and studied the deployments’ behavior. In order to eliminate
the unavoidable noise attributed to the randomness of our setup, we executed each deployment
10 times and provide the mean of our results. Our evaluation unfolds in four dimensions. First,
we test the deployment behavior for varying module multiplicity, measuring the scalability of the
proposed deployment scheme, i.e., the ability to deploy an application comprising more nodes
with minimal execution overhead. Second, we study the deployment behavior when transient
errors appear with varying frequency, measuring not only the total execution time but also the
overhead introduced due to our filesystem snapshot mechanism. Third, we outline the differ-
ences between the implemented snapshot mechanisms, i.e., AUFS and BTRFS. Finally, we compare

AURA to Openstack Heat, a popular, state-of-the-art deployment system.

A.5.1 Deployment Model Scalability

We begin our discussion through evaluating our scheme’s scalability when an increasing number
of modules/VMs is deployed to an error-free environment, i.e., no transient failures occur. We
deploy the two considered applications and increase the multiplicity parameter for one
of their modules, i.e., the Web Server and Hadoop Slave modules for Wordpress and Hadoop
respectively and measure the time needed to complete each deployment phase. We consider
three deployment phases: (a) The resource allocation (Alloc) phase, in which Openstack allocates
the necessary resources, (b) the VM booting phase (Boot), in which the guest OS boots and (c)
the software configuration phase (Conf), where the deployment scripts are executed. Note that,
when multiple VMs/modules are considered, each phase is concurrently executed on each one
separately. The presented time equals the real execution time, i.e., the time between the first VM
entering a phase until the last VM leaving this phase. Figure [A.7 presents our results (mean times
of 10 runs).

Figure [A.7 demonstrates that both applications present similar behavior. The resource allo-
cation time presents a marginally increasing trend when more VMs are deployed, whereas the
boot time remains constant. In both cases, the configuration phase presents the largest increase,
which is, in fact, linear to the number of deployed VMs. The reason behind this rapid increase,
though, is not attributed to the deployment model, but to the resource contention introduced
when multiple VMs compete for the same resources. Specifically, the configuration scripts for
both toy applications assume that they operate on a vanilla VM image and try to configure the
entire environment from the beginning, download many software packages from the Web and
increasing the deployment’s network requirements. This means that an increase in module mul-

tiplicity results in a linear increase to the size of files needed to be downloaded and, hence, linear

154 Appendix A. Cloud Application Deployment with Transient Failure Recovery

Alloc g Boot mm Conf Alloc g Boot mm Conf

800 1

1 2 4 8
Web Server(s) # slaves
(a) Wordpress (b) Hadoop

Figure A.7: Execution times of different deployment phases for varying module multiplicity using
vanilla images

increase in the configuration time. In order to eschew this misleading behavior and avoid the
network bottleneck, we repeat the same experiment, but this time we utilize a prebaked image

that contains the raw software packages (though unconfigured). Figure [A.§ demonstrates our

findings.

Alloc EE Boot mmm Conf Alloc B Boot mmm Conf
200 200
150 150
))
@100 g/ 100
£ £
= 50 = 50
0 0
1 2 4 8
Web Server(s) # slaves
(a) Wordpress (b) Hadoop

Figure A.8: Execution times of different deployment phases for varying module multiplicity using
prebaked images

Figure [A.g depicts that now that the network bottleneck is removed, our deployment scheme
achieves to execute the configuration phase in practically constant time, regardless of the num-
ber of deployed VMs. This behavior drastically changes the relationships between the times
of the deployment phases, making the resource allocation phase dominant of the entire deploy-
ment, whereas, again, the booting time is constant and the configuration phase presents marginal
increase with the number of deployed VMs. Moreover, note that the absolute times remain ex-

tremely low: AURA achieved to deploy a Hadoop cluster of 1 Master and 8 Slaves in less that

A.5. Experimental Evaluation 155

200 seconds, a time that can be further decreased if AURA operates on an enterprise cluster with

a faster storage medium that accelerates resource allocation.

A.5.2 Transient Error Frequency

We now evaluate our deployment model’s behavior when transient errors appear. In order to
produce such transient errors in a controllable and reproducible way, we inserted code snippets
inside all application configuration scripts that lead them to failure with a given probability.
Specifically, every time a deployment script is executed, a random number is drawn from a uni-
form distribution between [0, 1] and if it is lower than p, where 0 < p < 1, the script is terminated
with a non-zero exit code, leading AURA to interpret this as a failure. The code snippet that gen-
erates this behavior is introduced in the beginning of each deployment script, hence, each failing

script has minimal running time.

One option that highly impacts AURA’s behavior for error identification is the timeout period
used for detecting errors. As described previously, the default value equals 1 minute. However,
when comparing this interval with the actual configuration time for both applications depicted
in Figure [A.7, one can notice that 60 seconds is a sizeable portion of the entire configuration
time. Hence, it can produce slow reactions to errors. To this end, and after experimenting with

different values, we concluded that a good approximation of the best timeout interval equals

real deployment time
25% x max no. scripts/module”

time per script”, as if the deployment time was uniformly distributed to all scripts of the module

Intuitively, the fractional part represents the “mean deployment

with the most scripts. The percentage indicates the portion of this “mean deployment time”
that AURA should wait before checking for errors. In our case, 25% indicates that AURA will
approximately do 3 — —4 health-checks before the script terminates (in an error-free case). This
allows both fast reactions and a minimal number of unnecessary health-checks. With this rule of
thumb in mind, we calculate the timeout interval for both applications as follows: tyyordpress =
25% x % ~ 10 sec and tgadoop = 25% X % ~ 10 sec. The real deployment time for each
application is obtained by Figure [A.7 for the 1 Slave/Web Server case and the maximum number
of scripts/module is obtained by Figures [A.5 and [A.6: 3 (for db-server) and 6 (for hadoop-

master) respectively.

Given this, we deploy Wordpress (2 Web Servers and 1 Database Server) and Hadoop (1
Master and 2 Slaves) 10 times for varying p values from 0.05 to 0.8, measuring the total number
of script executions and the real time of the configuration deployment phase. In Figure [A.9
we provide the mean values and the respective deviation. We utilized AUFS as the filesystem

snapshot mechanism.

156 Appendix A. Cloud Application Deployment with Transient Failure Recovery

Wordcount ¢ Hadoop Wordcount —< Hadoop
100 ; ; ; ; :) : : : . .
& 400 | 1
o 75 |] 0 [l]
c L i
S = 300
3 c
g S 200} 0 >l<
©
LL] S
= 25 | @ > 100 | HEE]
g g 8 g g ¥ X X x
» | X X >¥< . 8 0
0.05 0.10 0.20 0.40 0.80 0.05 0.10 0.20 0.40 0.80
Error Probability (%) Error Probability (%)
(a) Script Executions (b) Configuration Time

Figure A.9: Number of script executions and configuration times for varying error probability

Both Figures [A.9 (a) and (b) present very similar patterns: When the error probability is low
(e.g., 0.05 — 0.20), a minimal number of script executions occur and the configuration time re-
mains very close to the configuration time witnessed to the error-free (i.e., p = 0) case. However,
when p increases one can observe that both the mean and the standard deviation values rapidly
increase. This is attributed to the fact that achieving error-free execution becomes exponentially
more difficult, since the execution of a deployment script requires the successful execution of all
the scripts it depends on and, hence, much more script executions and time is needed in order to
achieve this. Moreover, the two plots also showcase that an increase in p has a greater impact on
more complex deployment graphs: Indeed, Hadoop presents a faster increase both in terms of
the number of Script Executions and the respective configuration time it requires to be deployed,
since it presents more dependencies (Figure [A.6) than Wordpress (Figure [A.5) and, hence, is more

susceptible to script re-executions when errors appear more frequently.

A subtle point of the above discussion, is that this experiment implies that transient failures
are independent of each other, in the sense that the emergence of a transient failure in a certain
deployment script does not affect another, concurrently executed deployment script. In reality,
different transient errors may be strongly correlated: If a network glitch occurred due to a failed
switch, chances are that VMs belonging to the same host or rack will equally be affected, hence,
their error probabilities are not independent. Although we do recognize that such correlated
failures may prolong deployment times, we opted for a simpler transient failure generator in or-
der to simplify the evaluation and obtain a better understanding of AURA’s ability to overcome
random failures. Furthermore, we should note that the p values used for this discussion are ex-
tremely large and only used in order to investigate what happens even in the most unstable cloud

environments. It is interesting, though, that even when p = 0.2, AURA achieves to overcome

A.5. Experimental Evaluation 157

any transient error and lead the deployment to successful termination with marginal delays, i.e.,

less than 10% when compared to the error-free case, both for Wordpress and Hadoop.

A.5.3 Snapshot Implementation Overhead

We now evaluate the performance of the two snapshot mechanisms we implemented in order to
guarantee the idempotent script execution. Specifically, we want to evaluate the overhead that
AUFS and BTREFS introduce to the configuration time, i.e., how much time is spent to snapshots
and rollbacks against the “useful” deployment time, i.e., the time spent executing the configu-
ration scripts. To this end, we deploy Wordpress and Hadoop using the same multiplicities as
before, but now repeat each deployment twice: Once using AUFS for snapshots and once using
BTRFS. We launch deployments for varying error frequencies, i.e., different error probabilities,
and repeat each deployment 10 times. In Figures and we provide the mean values of
those runs for Wordpress and Hadoop respectively. The left figures depict the total snapshot
time (including both snapshots and rollbacks) for all application scripts and the right figures ex-
press this time as a percentage of the total execution time. Observe the difference between this
time expression and the time expression used so far: The total snapshot time represents the sum
of time periods that the snapshot mechanism is triggered for each module without taking into
consideration that different modules may run in parallel. For example, if module (1) and (2)
required times ¢ and ¢, for snapshotting, the Total Snapshot time equals ¢1 4t whereas the real
snapshot time (if running in parallel) would be max(ty,o)f. Finally, the Relative Time equals
the Total Snapshot Time divided by the Total Running Time, i.e., the sum of execution time for
each script of each module.

Both Figures demonstrate that BTRFS outperforms AUFS measured both in terms of Total
Snapshot Time and in terms of relative time. In fact, the difference between the two mechanisms
is increasing for larger p values, i.e., more snapshots and rollbacks are essential. Interestingly,
one can also observe that AUFS achieves similar to BTRFS snapshot times for lower p values
for Wordpress but, in the Hadoop case, AUFS requires much more time that BTRFS to snapshot
and restore the filesystem layers. This interesting finding can be explained when examining the
content that is snapshot: In both cases, AURA snapshots the /opt directory which is used as
the root directory for all application modules. In the Wordpress case, /opt contains fewer files
(Wordpress files) that aggregate 30MB, whereas in the Hadoop case /opt contains much more
files that aggregate 500MB (Hadoop bin and configuration files). This is indicative of BTRFS’

ability to handle massive storage in a more efficient way: Due to the powerful copy-on-write

°In the Operating Systems realm, the running time of a process is distinguished to real, user and sys, where the
first denotes the actual clock time, the second equals the total time spent at user space for all threads and the last
equals the time spent at kernel for all threads. So far, we have used the real time; in this experiment we prefer to
demonstrate the user time in order to better isolate the snapshot behavior.

158 Appendix A. Cloud Application Deployment with Transient Failure Recovery

AUFS—¢— BTRFS—{H4— AUFS—¢— BTRFS—-1—
30 , , , , 10% , . : ,
) | 9% | 1
;8/ 25 o 8% | |
220 | £ 7%t]
£ O 6% r 1
+— L - >
3 15 il " 5% 1
é 10 | 1 E 4% | 1
g 5 | | 3% | * 1
HEE |
s O : 1% : ‘ : ‘ ‘
E 0.05 0.10 0.20 0.40 0.80 0.05 0.10 0.20 0.40 0.80
Error Probability (%) Error Probability (%)
(a) Total Snapshot Time (b) Relative Time
Figure A.10: Overhead of AUFS and BTRFS for Wordpress
AUFS—¢— BTRFS—{+4— AUFS—¢— BTRFS—-1—
40 v v v , 9% , , , , ,
’g 35 1 8% | 1
L300 t 1 g 7% 1
g 25 + 1 5 6% | 1
=20 | 1 25% 1
% 15 |] S 4% |]
210 + 1] 1] 1 3% 1
©
G 5 | [— 2% | [0 m 1
s O : : : : : 1% : : : : ‘
E 0.05 0.10 0.20 0.40 0.80 0.05 0.10 0.20 0.40 0.80
Error Probability (%) Error Probability (%)
(a) Total Snapshot Time (b) Relative Time

Figure A.11: Overhead of AUFS and BTRFS for Hadoop

mechanism that operates on the inode level, BTRFS is able to create snapshots and revert to
existing snapshots much faster than AUFS that needs to re-assemble the chain of layers from
scratch any time a new layer is added/removed. On the contrary, when fewer data are persisted

(as in the Wordpress case), both mechanisms can produce equivalent results.

Table A.1: Requirements of AUFS and BTRFS

Requirement AUFS | BTRFS
kernel support Yes Yes
block device No Yes
Cooperates with other FS Yes No

Despite presenting superior performance, BTRFS has more runtime requirements than AUFS.
To begin with, both mechanisms require kernel support. However, AUFS can operate on top of

other filesystems and require no special devices (e.g., a dedicated block device) since it only

A.5. Experimental Evaluation 159

requires a set of directories in order to work, which are located in the VM’s filesystem. On
the contrary, BTRFS requires a dedicated block device to be formatted and mounted in order to
work. Although this does not limit its applicability, it reduces AURA’s transparency towards the
application to-be-deployed, as the user needs to take into consideration BTRFS’ requirements in
order to utilize it. In Table [A.] we summarize AUFS’ and BTRFS’ requirements. Given the above,
we can conclude that when one wants to snapshot a filesystem containing massive amounts of
data, BTRFS must be preferred, despite its higher requirements; in cases where one needs to
snapshot filesystems with fewer data, AUFS presents a decent behavior and has much fewer

requirements.

A.5.4 End-to-End Performance Comparison

We now wish to evaluate AURA’s end-to-end performance in comparison to Openstack Heat
[heaa], i.e., a state-of-the-art deployment system that is frequently used in the Openstack ecosys-
tem in order to orchestrate application deployments. Our evaluation’s objective is to compare the
deployment times of Hadoop and Wordpress for different multiplicities, when these are deployed
through AURA and Heat. Since Heat does not support recovery from transient failures, only the
error-free cases are considered. Furthermore, since Heat does not support circular dependencies
between different software modules, we re-wrote the application descriptions of both applica-
tions, constructing two Heat Orchestration Templates (HOTs) that avoid such loops. Specifically,

we conducted the following modifications:

« Inthe Hadoop case, we used predefined SSH keys (hence no negotiation is required between
the master and the slaves) and only kept the dependencies from the slaves to the master
(sending their IPs and informing the latter that the former ones are ready). Schematically,
only the dotted edges beginning from Hadoop slaves towards the Hadoop master are kept,
as seen in Figure [A.4.

« In the Wordpress case, the Database Server does not wait for obtaining the IP address(es)
of the Web Server(s), as it is configured to listen to any connection. Schematically, we re-
moved the dotted edges from the output states of web-server1/1,web-server2/2
scripts to the input of db-server/3 of Figure [A.5.

Finally, since Heat does not support an information exchange mechanism as the one supported
by AURA [heab], messages are exchanged inside the deployment scripts that securely transfer
(through scp) any piece of information is anticipated by a consumer script. Given the above,
Table [A.9 provides the relative deployment times for each application when a varying number
of modules (i.e., slaves for Hadoop and Web Servers for Wordpress) is utilized. The relative de-

ployment time is expressed as the ratio between the deployment time in Heat divided by AURA’s

160 Appendix A. Cloud Application Deployment with Transient Failure Recovery

time, i.e., Treiative = &75;2. Each deployment was repeated 10 times and the mean values are

presented.

Table A.2: Relative Deployment Time for Openstack Heat vs AURA

Application | Deployment Phase Number of modules
1 2 4 8
Allocation 1.0010 0.9991 1.0001 1.0020
Hadoop Booting 1.0001 0.9999 0.9991 0.9997
Conﬁguration 1.0000 0.9964 0.9951 0.9889
Allocation 1.0005 1.0030 0.9997 0.9995
Wordpress Booting 1.0001 0.9999 1.0003 1.0020
Conﬁguration 0.9991 0.9965 0.9903 0.9862

A closer examination of Table [A.g presents some interesting findings. First of all, both Heat
and AURA present similar times during the Allocation and Booting phases of the deployment and
this is not affected by the number of employed modules. This is a reasonable finding, since both
tools use the same mechanism to instantiate the VMs, i.e., they both contact the nova compo-
nent in order to issue requests for new VMs. Furthermore, the VM boot time is independent of
the employed deployment tool, hence no differences in the VM booting time is observed. This
is the reason behind obtaining 7}.¢jq1ive Values close to 1 for both applications during these first

deployment phases.

Investigating the respective times during the Configuration phase, nevertheless, showcases
that Heat requires slightly less time when deploying applications of higher multiplicity (i.e., for
8 modules) than AURA; a difference that does not surpass 2% in the worst case. This marginal
difference is ascribed to two factors. First, and as described previously, before the execution of
any configuration script, AURA keeps a snapshot of the underlying filesystem in order to achieve
idempotency. Although this extra time is negligible, it is an extra step that is avoided by Heat.
Second, in this experiment Heat deploys slightly modified deployment graphs that present fewer
dependencies between different modules. Consequently, the synchronization points for Heat are
fewer and the deployment scripts are allowed to be executed without waiting for other scripts

to finish.

It should be stressed, though, that Heat’s lack of support for dynamic information exchange
between different modules leads to slightly reduced deployment times in comparison to AURA,
but also limits its expressiveness for describing complex applications. On the other hand, AURA’s
ability to execute complex deployment graphs and support recovery from transient failures, add

a negligible time overhead that is instantly counterbalanced in the emergence of transient errors.

A.6. Conclusions and Future Work 161

A.6 Conclusions and Future Work

In this work, we revisited the problem of application deployment to cloud infrastructures that
present transient failures. The complexity of the architecture of modern data centers makes
them susceptible to errors that hinder automation and jeopardize the execution of application
deployment, a complex task that requires coordination between multiple different components.
To address this challenge, we introduced AURA, a cloud deployment system that attempts to
fix transient errors through re-executing the part of the deployment that failed. In order to en-
force script idempotency, AURA implements a lightweight filesystem snapshot mechanism and,
in case of script failure, cancels any unwanted side effects through reverting the filesystem to
a previous, healthy state. Our evaluation, conducted for popular, real-world applications, fre-
quently deployed to cloud environments, indicated that AURA manages to deploy applications
even in infrastructures presenting high error probabilities and only introduces a minimal over-
head to the deployment time that does not surpass 10% of the total deployment time in the worst

case.

Let us, now, summarize the takeaways of our work. The suggested deployment model that
formulates an application deployment as a DAG of dependencies, provides the necessary building
blocks for expressing extremely complex tasks in an efficient way. The introduction of synchro-
nization through message exchange between different modules (or VMs), in particular, increases
our model’s expressiveness and efficiently addresses the limitation of many real-world deploy-
ment systems that assume that two software modules will not depend on each other on the
same time, i.e., they only support unidirectional dependencies. Furthermore, in this work we
attempted to utilize the well-known technique of filesystem snapshot, in order to give a solution
to the problem of idempotent script execution, which is a key requirement for re-executing failed
scripts. In our best knowledge, our work is the first that tries to achieve idempotency through
it and, according to our evaluation, this technique achieves to nullify any unwanted script side
effects to filesystem related resources in an efficient manner and only introduces marginal over-
head. As the existing filesystems improve and new ones emerge, this technique can produce

even better results.

Finally, the contributions of this work provide a strong foundation for future work. First, the
expressiveness of the suggested deployment model renders it as a suitable candidate for express-
ing complex tasks not only in the initial application deployment phase, but also during the run-
time of an application. Elastic scaling, which is a key concept to the cloud industry [GPM™ 14],
requires automated resource provisioning and software configuration, so that resources are uti-
lized appropriately. The adoption of a deployment model as the one suggested in our work
would facilitate enforcing complex application resizing actions and increase resource reliability.

Second, in this work we studied script idempotency in the light of resources that reside in the

162 Appendix A. Cloud Application Deployment with Transient Failure Recovery

filesystem. Even if this hypothesis seems realistic for the deployment phase, as a typical software
configuration script handles and modifies files (configuration files, binaries, libraries, etc.), in the
general case, idempotency is not achieved to other resources, e.g., the memory state of a process.
This is an interesting future direction of investigation that would maximize our work’s appli-
cability and allow for considering alternative tasks that exceed the scope of this work. Third,
although AURA is capable of addressing concurrent errors in different software modules, it as-
sumes that these errors are independent of each other, as each part of the deployment graph
is treated independently. However, as previously discussed, in practice errors can be strongly
correlated. This observation provides an interesting foundation for future research as studying
the nature of this correlation can contribute to taking smarter decisions during recovery actions

and further accelerate deployments.

	Ευχαριστίες
	Abstract
	Γλωσσάριο Τεχνικών Όρων
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Κίνητρο
	Συνεισφορές

	Προσαρμοστική Μοντελοποίηση Απόδοσης Τελεστή Μεγάλων Δεδομένων
	Θεμελίωση του προβλήματος
	Μεθοδολογία
	Παρατηρήσεις

	Βασισμένη στο Περιεχόμενο Μοντελοποίηση Τελεστών Ανάλυσης Δεδομένων
	Θεμελίωση του προβλήματος
	Μεθοδολογία
	Παρατηρήσεις

	Συμπεράσματα

	Introduction
	Motivation
	Contribution
	Document Outline

	Adaptive Performance Modeling of Big Data Applications and Operators
	Overview
	Preliminaries
	Problem formulation
	Decision Trees

	Profiling Methodology
	Method overview
	Decision Tree Expansion
	Adaptive Sampling
	Modeling
	Complexity analysis
	An end-to-end example

	Experimental Evaluation
	Comparison of end-to-end profiling methods for varying Sampling Rate
	Impact of performance function complexity and dimensionality
	Impact of per-iteration number of deployments
	Impact of oblique boundaries
	Cost-aware profiling

	Discussion

	A Content-Based Approach for Modeling Analytics Operators
	Overview
	Preliminaries
	Problem Description
	Operators and Dataset Properties

	Methodology
	Methodology Overview
	Similarity Estimation
	Dataset Space Projection
	Modeling
	Optimizations
	Approximate Similarity Matrices
	Online Indexing

	Accommodating graph datasets
	Operators and Graph properties
	Similarity metric estimation

	Experimental Evaluation
	Dataset Space Construction
	Operator Modeling
	Combining Similarity Metrics
	Distribution Similarity Granularity
	Approximate Similarity Matrices
	Online Indexing
	Extension to graph data

	Discussion

	Related Work
	Performance Modeling of Big Data Applications
	Data-driven Modeling of Analytics Operators

	Conclusions and Future Directions
	Publications
	Bibliography
	Cloud Application Deployment with Transient Failure Recovery
	Introduction
	Related Work
	Application Deployment
	Architecture
	Deployment Model
	Error Recovery
	Idempotency

	Implementation Aspects
	Optimizations
	Portability and Reusability

	Experimental Evaluation
	Deployment Model Scalability
	Transient Error Frequency
	Snapshot Implementation Overhead
	End-to-End Performance Comparison

	Conclusions and Future Work

