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Nomenclature

α Angle of attack

δ Boundary layer thickness

δ∗ Displacement thickness

θ Momentum thickness

H Shape factor, δ∗
θ

c Airfoil chord

Cf Skin friction coefficient, τ/(0.5ρU2
∞)

Cp Pressure coefficient, (p∞ − p)/(0.5ρU2
∞))

dw Distance to nearest wall

λθ Pressure gradient parameter, (ρθ2/µ)(dU/ds)

Ma Freestream Mach number

µ Molecular viscosity

µt Eddy viscosity

Ñ Local amplification factor

Ncrit Critical amplification factor

αi Spatial amplification rate

Ω Absolute value of vorticity, (2ΩijΩij)
1/2

Ωij Vorticity tensor, 0.5(∂ui/∂xj − ∂uj/∂xi)
RT Viscosity ratio, νt/ν

Re Reynolds number based on freestream conditions, ρcU∞/µ

Rev Vorticity Reynolds number, ρd2
wS/µ

Reθ Reynolds number based on momentum thickness, ρθU/µ

Reθt Transition onset momentum thickness Reynolds number

R̃eθt Local transition onset momentum thickness Reynolds number, taken from a transport equation

Rex Reynolds number based on distance from the stagnation point, ρxU0/µ

ρ Density

S Absolute value of strain rate, (2SijSij)
1/2

Sij Strain rate tensor, 0.5(∂ui/∂xj + ∂uj/∂xi)

τ Wall shear stress

Tu Turbulence intensity, (2k/3)1/2/U

k Turbulent kinetic energy

ω Turbulent specific dissipation

γ Intermittency

γ̃ Isentropic constant

U Local velocity

Ue Boundary layer edge velocity

u∗ Friction velocity

y+ Distance in wall coordinates, ρyu∗/µ

v



This page intentionally left blank



List of Figures

2.1 Two cell stencil for the reconstruction of variables on a face (f) using the PLR scheme. . . . . . . 11

2.2 Four cell stencil for the reconstruction of variables on a face (f) using the MUSCL and QUICK
schemes. In contrast to the PLR scheme, MUSCL and QUICK schemes do not utilize distance
vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The case of a subsonic inlet face. Note that on an inlet face and the normal defined to point
outwards, the normal to the boundary velocity component u = ~V · ~n < 0. This means that in
reality the flow information associated to R,R− is provided by the state defined in (a). . . . . 18

2.4 Riemann Invariants on a far-field supersonic boundary . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Riemann Invariants on a far-field subsonic boundary . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Example of the laminar region around the NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1,
Tu∞ = 0.05% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Scaled vorticity Reynolds number Rev profile in a blasius boundary layer . . . . . . . . . . . . . 44

4.1 Difference between filtered and instantaneous velocity (reproduced from [1]) . . . . . . . . . . . 63

4.2 Mann box with 512, 128 and 128 points in the x, y, and z axis and with ∆x = ∆y = ∆z = 4m 73

4.3 Contours of u′, ′v′, w′ and vorticity on the three axes on a random x-slice of the Mann Box. . . 75

5.1 NLF(1)-0416, 130 thousand element structured mesh . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 NLF(1)-0416, 110 thousand element hybrid mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 NLR-7301, 150 thousand element hybrid mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 NREL Phase VI Rotor, 256(wrap-around) x 128(normal) x 128(spanwise) element mesh . . . . 82

5.5 Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwindradius , ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.3. Comparison
with experimental data [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwindradius , ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.47. Comparison
with experimental data [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwindradius , ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.63. Comparison
with experimental data [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwindradius , ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.80. Comparison
with experimental data [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwindradius , ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.95. Comparison
with experimental data [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.10 Timestep dependence analysis. NLF(1)-0416 airfoil at Re = 4 x 106, M = 0.1, Tuamb = 0.15%,
ωamb = 50U∞c , α = 15◦. Transitional simulations using the γ-Reθ model. . . . . . . . . . . . . . 88

5.11 H and Reθ distributions on the lower side of DU-00-W212 airfoil at Re = 15 x 106, M = 0.08,
Tu∞ = 0.3346%, α = 4◦, using different mesh resolutions inside the boundary layer. Comparison
with results using XFOIL [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.12 Cp and H factor convergence rate, CFD flow boundary layer. Comparison between the final
and earlier iterations of the solver on the DU-00-W212 airfoil at Re = 15 x 106, M = 0.08,
Tu∞ = 0.3346%, α = 4◦. Cp converges faster than the H factor and thus boundary layer
equations, which are based on Cp, will converge faster than the direct integration of the CFD
flow data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



5.13 Effect of different boundary layer transition criteria. Free transition simulations for the NLF(1)-
0416 airfoil, Re = 4 x 106, Ma∞ = 0.1, Tu∞ = 0.15%. Comparison with experimental data
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.14 Effect of turbulent kinetic energy production limiter on γ-Reθ results. Free transition simulations
for the DU-00-W212 airfoil, Re = 3 x 106, Ma∞ = 0.075, Tuinlet = 0.864%, (µt/µ)inlet = 10. No
ambient turbulence production terms. Comparison with experimental data [5]. . . . . . . . . . . 94

5.15 Effect of turbulent kinetic energy production limiter on γ-Reθ results. Free transition simulations
for the DU-00-W212 airfoil, Re = 3 x 106, Ma∞ = 0.075, Tuinlet = 0.864%, (µt/µ)inlet = 10,
Cl = 1 (α = 6◦). No ambient turbulence production terms. Tu along the upper side in the region
close to the leading edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Inflow conditions and ambient source term effect on γ-Reθ results. Free transition simulations
for the DU-00-W212 airfoil, Re = 3 x 106, Ma∞ = 0.075. Parameters discussed in Section 5.5.1.
Comparison with experimental data [5]. Cl vs Cd polar. . . . . . . . . . . . . . . . . . . . . . . 96

5.17 Effect of different empirical correlations for Reθt. Free transition simulations for the NLF(1)-0416
airfoil, Re = 4 x 106, Ma∞ = 0.1, Tuamb = 0.15%, ωamb = 50u∞c . Comparison with experimental
data [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.18 Effect of different empirical correlations for Reθc and Flength. Free transition simulations for the
NLF(1)-0416 airfoil, Re = 4 x 106, Ma∞ = 0.1, Tuamb = 0.15%, ωamb = 50u∞c . Comparison
with experimental data [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.19 NLF(1)-0416 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.20 Free transition simulations for the NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, Tuamb =
0.15%, ωamb = 50U∞c . Comparison with experimental data [4]. . . . . . . . . . . . . . . . . . . 99

5.20 (concluded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.21 S809 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.22 Free-transition simulations for the S809 airfoil at Re = 2 x 106, Ma∞ = 0.1, Tuamb = 0.05%,
ωamb = 50U∞c . Comparison with experimental data [6] and results using XFOIL [3]. . . . . . . . 101

5.22 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.22 (concluded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.23 S827 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.24 Free-transition simulations for the S827 airfoil at Re = 4 x 106, Ma∞ = 0.1, Tuamb = 0.05%,
ωamb = 50U∞c . Comparison with experimental data [7]. . . . . . . . . . . . . . . . . . . . . . . . 105

5.24 (concluded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.25 DU-00-W212 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.26 Free transition simulations for the DU-00-W212 airfoil, flow conditions described in table 5.5.
Comparison with experimental data [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.27 Aerospatiale-A airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.28 Free-transition simulations for the Aerospatiale-A airfoil at Re = 2.1 x 106, Ma∞ = 0.15,
α = 13.1◦, Tuamb = 0.07%, ωamb = 50U∞c . Comparison with experimental data [8] and LES
computations [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.29 Free-transition simulations for the Aerospatiale-A airfoil at Re = 2.1 x 106, Ma∞ = 0.15,
α = 13.1◦, Tuamb = 0.07%, ωamb = 50U∞c . Mean streamwise velocity profiles vs normalized
wall distance. The individual x/c positions are separated by a horizontal offset of 1.4 with the
corresponding zero lines being located at 0, 1.4, 2.8, 4.2, 5.6. Comparison with experimental data
[8] and LES computations [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.30 NLR-7301 airfoil with flap mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.31 NLR-7301 airfoil and flap section with the locations of static-pressure holes and boundary layer
measuring stations (reproduced from [10]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.32 Free-transition simulations for the NLR-7301 airfoil with flap at Re = 2.51 x 106, α = 6◦,
Ma∞ = 0.185, Tuamb = 0.2%, ωamb = 50U∞c , α = 6◦. Comparison with experimental data [10]. 115

5.33 Free-transition simulations for the NLR7301 multi-element airfoil at Re = 2.51 x 106, Ma∞ =
0.185, Tuamb = 0.2%, ωamb = 50U∞c . Comparison with experimental data [10]. . . . . . . . . . 116

5.34 Eppler E387 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.35 Free-transition simulations for the Eppler e387 airfoil at Re = 0.3 x 106, Ma∞ = 0.075, Tuamb =
0.07%, ωamb = 50U∞c . Comparison with experimental data [11]. . . . . . . . . . . . . . . . . . . 118

5.36 NACA642015 airfoil mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.37 Free transition simulations for the NACA 642015 airfoil at Re = 10 − 40 x 106, Ma∞ = 0.27,
Tu∞ = 0.045− 0.1%, ω∞ = 50U∞c . Comparisons with experimental data [12]. . . . . . . . . . . 120

5.38 6:1 prolate spheroid surface mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



5.39 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour to experimental

data (reproduced from [13]) at α = 5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.40 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour to experimental

data (reproduced from [13]) at α = 15◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.41 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour with experimental

data (reproduced from [13]) at α = 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.42 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Comparison of computational Cp distributions. . . . . . . . 126

5.43 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Contours of computational z-axis vorticity on the y/L = 0

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.44 Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136,
Tuamb = 0.2%, ωamb = 50 U∞

Lspheroid
. Contours of computational x-axis vorticity on the x/L = 0.7

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.45 ONERA M6 wing computational mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.46 Free-transition simulations for the ONERA M6 wing at Reroot = 3.5 x 106, Ma∞ = 0.262,
Tuamb = 0.2%, ωamb = 50 U∞

croot
. Laminar-turbulent region visualization. Comparison with

experimental data [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.46 (concluded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.47 Free-transition simulations for the ONERA M6 wing at Reroot = 3.5 x 106, Ma∞ = 0.262,
Tuamb = 0.2%, ωamb = 50 U∞

croot
. Computational Cl and Cd along the spanwise axis. . . . . . . . 132

5.48 AVATAR W/T Rotor Blade computational mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.49 Simulations for the AVATAR W/T Rotor Blade. Flow conditions listed in Table 5.6. Comparison
with computational data from [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.50 Simulations for the AVATAR W/T Rotor Blade. Flow conditions listed in Table 5.6. Comparison
with computational data from [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Computational mesh for the circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Comparison with experiments [16]. . . 141

6.3 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the near wake centerline
(y/D = 0). Comparison with experiments [17] and computational results [18]. . . . . . . . . . . 142

6.4 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the x/D = 1.06 plane.
Comparison with experiments [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the x/D = 1.54 plane.
Comparison with experiments [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the x/D = 3.00 plane.
Comparison with experiments [17][19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the x/D = 6.00, 7.00, 10.00
planes. Comparison with experiments [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 S809 airfoil mesh for the high angle study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.9 Simulations on the S809 airfoil using 2D URANS, 3D URANS and 3D DDES at Re = 0.65 x 106,
Ma∞ = 0.075. Comparison with experimental data [20]. . . . . . . . . . . . . . . . . . . . . . . 148

6.10 Simulations on the S809 airfoil using 2D URANS (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075, α = 45◦. Instantaneous z-axis vorticity. . . . . . . . . . . . . . . . . . . . . . . . 149

6.11 Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65
x 106, Ma∞ = 0.075, α = 45◦. Instantaneous z-axis vorticity at three spanwise locations. . . . 150

6.12 Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65
x 106, Ma∞ = 0.075. Mean Cp contours and standard deviations at three spanwise locations for
α = 45◦ and 90◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.13 Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65
x 106, Ma∞ = 0.075, α = 45◦. Mean normal stress contours at the z/c = 0.5 position. . . . . . 152

6.14 Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65
x 106, Ma∞ = 0.075, α = 45◦. Mean u′v′ shear stress contours at the z/c = 0.5 position. . . . . 153

6.15 Simulations on the S809 airfoil using DDES (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075, α = 45◦. Mean u′w′ and v′w′ shear stress contours at the z/c = 0.5 position. . . 153

6.16 2D mesh for the periodic hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



6.17 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.18 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.19 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.20 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.21 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.22 Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h,
channel height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk
velocity Ub at the crest of the first hill. Comparison with computations from the NASA turbulence
database [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.23 LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in the absence of turbulent inflow.
Contours of vorticity magnitude on the rotor plane. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.24 LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in the absence of turbulent inflow.
Streamwise velocity deficit at various positions on the wake. . . . . . . . . . . . . . . . . . . . . 162

6.25 LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in sheared flow, without turbulent
inflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.26 Sheared flow with turbulent inflow (see Table 6.1) in the absence of wind turbine. U velocity
time series and corresponding spectrum of the velocity variations using two different mesh spacings.164

6.27 LES on the Sexbierum Wind Turbine rotor [22]. Actuator disk with turbulent inflow (see Table 6.1).165
6.28 LES and URANS on the Sexbierum Wind Turbine rotor [22]. LES utilizes both actuator disk and

actuator line approaches in sheared flow with turbulent inflow (see Table 6.1). URANS utilizes
the actuator line approach in sheared flow without turbulent inflow. Wind speed deficits and
turbulent kinetic energy in various wake positions. . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.29 LES on the Sexbierum Wind Turbine rotor [22]. Actuator line without and with turbulent inflow
(see Table 6.1). Q = 0.1 iso-surfaces on the wind turbine wake. . . . . . . . . . . . . . . . . . . . 167

A.1 Effect of numerical scheme. Fully turbulent simulations for the DU-00-W212 airfoil, Re = 3 x
106, Ma∞ = 0.75, Tu∞ = 0.086%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.1 Effect of numerical limiter on the 2nd order PLR scheme. Fully turbulent simulations for the
DU-00-W212 airfoil, Re = 3 x 106, Ma∞ = 0.75, Tu∞ = 0.086%. . . . . . . . . . . . . . . . . . . 187

x



List of Tables

2.1 Backwards Difference Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Critical Reδ∗ with respect to Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Critical Reθ difference with respect to K̄p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Resolutions for the 2D structured mesh dependence study . . . . . . . . . . . . . . . . . . . . . 80
5.2 Deviations in lift and drag coefficients for varying mesh resolution with respect to the results of

the extra fine mesh (see Table 5.1). NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, α = −6, 0,
and 6◦. Ambient turbulence source terms used. Tuamb = 0.15%, ωamb = 50U∞c . . . . . . . . . . 81

5.3 Deviations in lift and drag coefficients using the structured and hybrid fine meshes with respect
to the results of the extra fine mesh. NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, α = −6, 0,
and 6◦. Ambient turbulence source terms used. Tuamb = 0.15%, ωamb = 50U∞c . The structured
fine mesh has 512 wrap-around and 256 normal elements, resulting in approximately 130 thousand
elements (see Table 5.1). The hybrid fine mesh has 512 wrap-around elements, 128 prismatic
elements in the region up to 0.1 chords away from the wall, and the rest of the outer region
unstructured, resulting in approximately 110 thousand elements. . . . . . . . . . . . . . . . . . . 81

5.4 Resolutions for the 3D structured mesh dependence study . . . . . . . . . . . . . . . . . . . . . . 81
5.5 DU-00-W212 flow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6 AVATAR W/T operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Input parameters for the Mann turbulence generator . . . . . . . . . . . . . . . . . . . . . . . . 162

xi



This page intentionally left blank



Abstract

Laminar to turbulent transition and higher fidelity turbulence modeling have been implemented in the parallelized,
unstructured mesh, compressible Navier-Stokes solver MaPFlow.

In the case of laminar to turbulent transition, both boundary layer and transport equation approaches were assessed.
These include the eN method and the transport equation models γ-Reθ , γ and AFT. All approaches were validated against
a wide range of cases concerning airfoils, wings/blades and generic fuselage, stemming from both the wind energy and
the aeronautics sectors. The focus was on integrated loads and transition locations. In the context of two-dimensional
simulations, the boundary layer eN method and the AFT transport equation model exhibit better performance than the
other alternatives. The γ-Reθ model is also a viable option if Reynolds numbers not higher than 6 x 106 are considered.
For Reynolds numbers higher than this limit, the accuracy of the model was found to deteriorate. However, both the
eN method and the AFT model cannot be used to predict crossflow transition in three-dimensional simulations. In such
scenarios, the γ-Reθ model can give accurate results, provided that the Reynolds numbers fall within the aforementioned
limit.

In the case of higher fidelity turbulence modeling, both Large Eddy Simulation (LES) and Detached Eddy Simulation
(DES) approaches were implemented. LES utilized the Smagorinsky subgrid model. Regarding DES, both Delayed DES
(DDES) and Improved Delayed DES (IDDES) variants were considered. The focus was on flow cases with massive
separation. Both LES and DES provided more accurate results than the baseline Unsteady Reynolds Averaged Navier
Stokes (URANS) simulations when compared to experiments and reference results. Neither LES nor DES were pushed to
their limits. DES is considered computationally less demanding, due to wall modeling inside the boundary layer region.
Therefore, it is a more viable option than LES for industrial applications. However, due to wall modeling, DES is not
expected to perform well in flows where the presence and development of small turbulent scales inside the boundary layer
are important. In those cases, LES using fine meshes should be considered.
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Chapter 1

Introduction

1.1 Thesis background

In the early years of aviation, wind tunnel experiments were the primary way via which engineers could gain
insight on the flow characteristics and the aerodynamic behavior of bodies in airflow. Long before the advent
of computers, aerodynamic designs were mainly based on and verified by experimental tests. However, wind
tunnel experiments are not cheap nor are they flexible. Measuring setups are complex to build and maintain
and wind tunnels are costly to operate. This sets the financial requirement bar for wind tunnel experiments
very high. In addition, most wind tunnels are limited by their technical capabilities, meaning that not every
flow case can be adequately tackled in every experimental setup. Furthermore, some types of flows cannot be
studied in wind tunnels anyway.

As computers became more powerful, so did the process of simulating flows with the aid of computers. This
led to a whole new branch of fluid dynamics called Computational Fluid Dynamics (CFD). In comparison
to setting up a wind tunnel experiment, using computers to simulate aerodynamic flows is both cheaper and
more flexible because parameters such as flow conditions or body shape can be very easily modified. When
a new aerodynamic concept is considered, CFD can help in a significant part of the initial assessment of its
aerodynamic behavior, providing useful insight that can decisively guide the course of the design process.

The computational resources that were available in the dawn of CFD were only capable of supporting the sim-
ulation of simple, two-dimensional inviscid flows. Nowadays, it is possible to simulate complex, three-dimensional
viscous flows with the inclusion of effects such as aeroelasticity or combustion. Given the aforementioned costs
of wind tunnel experiments, the need for robust and reliable computational tools that can be used for the
prediction of flows is undeniable. Said tools can vary in concept and strategy. There exist potential flow solvers,
viscous-inviscid interaction solvers and full Navier-Stokes solvers.

A Navier-Stokes solver, which is what this thesis works on, is broadly characterized by three main aspects
that define its prediction capabilities:

• Arithmetic accuracy
Relevant examples are the employed difference schemes for variable reconstruction, the approximate
Riemann solvers, the Poisson solvers, the preconditioning for low Mach flows, the time integration for
unsteady problems, and various other parts that refer to one or more aspects of the computational solution
process.

• Turbulent flow
The application range of Navier-Stokes solvers, which may reach high Reynolds numbers, was greatly
widened by the development of turbulence models that enabled the inclusion of the effect of turbulence in
flow simulations with relatively low computational cost. However, for a given computational solver the
prediction accuracy of a simulation is inherently tied to the capabilities of the utilized turbulence model.
This means that the presence of flow phenomena such as separation may vary between different models
because of different modeling approaches or model performance.

• Modeling of transition from laminar to turbulent flow
Even though transition may be related to turbulence, it is however treated in a separate way. This occurs
because the vast majority of turbulence models used in contemporary Navier-Stokes solvers almost always
do not attempt to model transition. The behavior of the transitional process is not as well understood
as the behavior of turbulence. This occurs because the process itself is inherently different; transition is
essentially a flow stability problem. Therefore, turbulence models and transition models do not necessarily
share the same framework. Turbulence modeling and transition modeling are most often tackled in a
segregated but loosely coupled manner.
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1.2 Thesis scope

The current thesis continues the work of G. Papadakis, who developed the Navier-Stokes solver MaPFlow during
his tenure as a PhD candidate in the National Technical University of Athens [23]. Based on what was discussed
in the previous paragraph, this thesis aimed to extend the capabilities of MaPFlow in regards to turbulence
modeling and transition modeling. Arithmetic accuracy aspects were not investigated.

The objectives were therefore defined as:

• Implementation of laminar to turbulent transition models
Transition is very important not solely from a scientific standpoint. It is inherently tied to the fuel
consumption of aircraft and the energy production of wind turbines. By not including the transition
process, simulations will always lack important aspects of physics that can drastically alter the predicted
aerodynamic behavior.

• Implementation of higher fidelity turbulence modeling
Conventional one and two-equation turbulence models are mainly geared towards predicting averaged
flow phenomena, since they utilize Reynolds averaging for the turbulence quantities. The Navier-Stokes
framework which utilizes the aforementioned models bears the name Reynolds-averaged Navier-Stokes
(RANS). These models do not always cope well with inherently unsteady flows and therefore they have
a limited application range. For separated flows, which is an example of unsteady flow with great
technological interest, a different, higher fidelity turbulence modeling approach is needed in order to obtain
accurate results. The implemented approaches for the simulation of massively separated flows were Large
Eddy Simulation (LES) and Detached Eddy Simulation (DES).

1.2.1 Laminar to turbulent transition modeling

In contemporary wind turbines, rotors sometimes have a radius larger than 100 meters. At such cases, high
Reynolds numbers appear on the tip of the blade. Most wind tunnels are not suitable for the corresponding flow
measurements and thus Navier-Stokes solvers are the only viable tool that can provide aerodynamic results.
At this size the roughness on the blade surface, caused by accumulating dirt or erosion, is not enough to trim
the boundary layer and bypass the transition process. This leads to the presence of extended laminar regions
that have a significant effect on the aerodynamic behavior. A robust and reliable way to predict laminar to
turbulent transition is thus deemed very important for the initial wind turbine design. Moreover, in wind turbine
aerodynamic simulations accurate representation of separated flow is highly important. In this regard, laminar
to turbulent flow transition can have a major effect in the produced results, especially in cases that laminar
separation bubbles are present.

Laminar to turbulent transition is a topic that has been tackled in many publications over the years,
leading to the development of many different models that attempt to predict the onset of transition. However,
implementation of these models in Navier-Stokes solvers unfortunately does not cover the same spectrum as
the implementation of turbulence models. This mainly occurs because the mechanisms that drive transition
greatly depend on the type of application. In purely aerodynamic flows, transition is typically the result of
flow instability (Tollmien-Schlichting waves or crossflow instability in cases of high swept wings), where the
resulting exponential growth of two-dimensional waves eventually results in a nonlinear breakdown of turbulence.
Transition due to Tollmien-Schlichting waves is often referred to as natural transition [24]. In turbomachinery,
however, the main transition mechanism is bypass transition [25] imposed on the boundary layer by high levels
of freestream turbulence. Another important transition mechanism is separation-induced transition [26], where
a laminar boundary layer separates under the influence of a pressure gradient and transition develops within the
separated shear layer, which may or may not reattach. Furthermore, a turbulent boundary layer can relaminarize
under the influence of a strong favorable pressure gradient [27]. The importance of transition phenomena in
aerodynamic and heat transfer simulations is widely accepted, however the inclusion of all aforementioned
mechanisms in a single model poses significant difficulties.

Laminar flow break down, development of instabilities and turbulent spots and transition to fully turbulent
flow can, in principle, be simulated with great accuracy using Direct Numerical Simulation (DNS) or Large
Eddy Simulation (LES), provided that the discretization is able to resolve the transition process. However,
the computational cost of both these approaches renders them impractical for industrial applications. This
leaves the RANS equations as the only viable tool for CFD simulations and thus adding transition prediction
capabilites to Navier-Stokes solvers is desirable.

The first contribution of this thesis is the implementation of laminar to turbulent transition models in
MaPFlow. The previous versions of the solver simulated turbulent flows using one or two-equation turbulence
models and assuming that the flow is turbulent everywhere in the domain (fully turbulent approach). This led
to the need for the inclusion of the laminar to turbulent transition process. This has been achieved with the
implementation of various transition models. The primary objective regarding transition modeling is that it
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should be able to provide adequate results for a wide range of flows that are typically encountered in wind
turbine applications. The transition models should also work without user interference in regards to topology,
i.e. the whole process must be as automated as possible. Conceptually speaking, transition models can be
distinguished into two categories:

• Transition models that utilize transport equations
• Transition models that are based on the solution of the boundary layer on the wall surface

Transport equation transition models are more straightforward to implement in the context of a Navier-Stokes
solver, since transport equations are already used for the primary variables and the additional turbulence model
variables. For the transition models that require the solution of the boundary layer, a separate boundary layer
transition module is created that works in conjuction with the Navier-Stokes solver. The Navier-Stokes solver
provides the input data for the module, whereas the module returns the required topology regarding laminar
and turbulent regions. The Navier-Stokes solver then updates the laminar and turbulent regions and continues
the simulation.

1.2.2 Higher fidelity turbulence modeling: LES and DES

The motivation for the implementation of LES and DES in MaPFlow also stems from the wind energy sector.
Wind turbines are always designed to work in atmospheric flow conditions. In such cases, freestream velocity
variations are very rich and chaotic. If one attempts to tackle this flow problem using averaged methods and
without accounting for the presence of the aforementioned variations, then the simulations will not be able to
provide accurate predictions of the flow characteristics.

One and two-equation RANS turbulence models, that are typically used in Navier-Stokes solvers for turbulence
closure, are not well suited for the representation of unsteady flows. RANS models integrate all turbulent
frequencies over the time domain, and therefore can only provide an averaged estimation of the flow field and
its turbulent structures. Examples where the conventional turbulence models do not perform well are flows
with massive separation, flows with vortex shedding, or flows with turbulent inflow, all of which are of great
technological interest.

Similarly to what was discussed for laminar to turbulent transition, DNS can provide very accurate results
for highly unsteady separated flows. However, the computational cost of DNS is prohibitively high. Reynolds
numbers typically encountered in wind energy applications are most often in the region of millions, therefore
they cannot be realistically tackled using DNS. By adopting methods such as LES or DES and utilizing turbulent
inflow, small turbulent scales in the simulation are not diffused or averaged. Therefore, a high percentage of the
initial velocity fluctuation spectrum is maintained, which in turn can alter the results drastically

Both LES and DES have significantly lower computational cost than DNS. LES can also be aided by the
inclusion of wall functions that can reduce the computational cost of a simulation even further. This point is
discussed in the work of Balakumar et al [28], where the flow past periodic hills is simulated using both DNS
and LES with and without wall modeling. The employed mesh for DNS had 200 million elements whereas for
LES it only had approximately 6 million, which is a huge difference. The computational cost for DNS and LES
is also theoretically analyzed in Choi et al [29], which is a revision of the landmark paper by Chapman [30] who
initially estimated the costs for DNS and LES in 1979. Both works conclude that with realistic computational
effort, DNS can only be used for low Reynolds number flows.

Examples of LES and DES of external aerodynamic flows are the works of Mary et al [9], where an airfoil
at Reynolds number 2.1 x 106 and high angle of attack with in presence of laminar separation is simulated
with great success using LES, the works of Strelets [31] and Xu et al [32], who assess the performance of DES
for airfoils at very high angles of attack showing that DES outperforms URANS for massively separated flows,
and the work of Gilling [33] who simulated airfoils in turbulent inflow using DES. The works of Beaudan et al
[34] and Breuer [35] investigated the flow past a circular cylinder with LES, whereas Travin et al [36] tackled
the same flow problem with DES. All works were able to get good results when compared to the experiments.
Galbraith et al [37] used LES for a low Reynolds airfoil that exhibits large laminar separation bubbles. In
atmospheric flow conditions, Troldborg et al [38][39][40] used actuator methods with turbulent inflow for the
simulation of wind turbines, concluding that the presence of inflow turbulence can have a significant effect
on the produced wake. Breuer et al [41] compared the results from LES, DES and RANS for a flat plate at
high angle of attack and showed that DES is able to give results that are close to those from LES. Toms [42]
investigated the effect of mesh resolution, inflow turbulence, wall treatment and subgrid-scale model for the flow
past a backward facing step, noting that inflow turbulence is the most important contributor to downstream
flow evolution. Salvetti [43] et al were able to get good results using coarse LES to simulate the flow past 2D
sinusoidal periodic waves.

The second contribution of this thesis is the implementation of higher fidelity turbulence models that can
provide better results for highly unsteady flows. This has been achieved with the implementation of the Large
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Eddy Simulation and Detached Eddy Simulation approaches. LES and DES differ, although they may initially
seem similar. DES is essentially a modified one or two equation turbulence model that includes a RANS and
an LES branch that switch based on the local mesh resolution. If the latter is coarse, then DES will use the
RANS branch and behave like a standard RANS turbulence model. LES fully resolves the large scales of the
flow, while it only models the subgrid scales. This means that LES has a relatively tight margin in regards to
mesh resolution. Using a computational mesh with insufficient mesh may lead to significantly inaccurate results.

Both approaches were used in simulations of separated flows, in which the unsteady character is dominant
and cannot be adequately represented by conventional turbulence models.

1.3 Thesis outline

This thesis content is presented in the following 6 Chapters:

• Chapter 2 presents the CFD solver MaPFlow, which was the computational tool used in this thesis.
• Chapter 3 contains the implementation of transition models.
• Chapter 4 contains the implementation of LES and DES.
• Chapter 5 presents the results from simulations with free transition.
• Chapter 6 presents the results from simulations with LES and DES.
• Chapter 7 draws a conclusion and gives some future work recommendations.
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Chapter 2

CFD solver MaPFlow

2.1 Introduction

It is deemed useful to present the MaPFlow solver in some detail. The starting point of this thesis was the solver
as presented in [23]. In Section 2.2 the governing system of equations is defined. With regards to [23], some
improvements on spatial discretization have been made. Besides the 2nd order PLR scheme, the solver may now
also utilize 3rd order schemes, namely MUSCL and QUICK. Spatial discretization is discussed in Section 2.3.
Time discretization is discussed in Section 2.4, whereas Section 2.5 formulates the boundary conditions. MaPFlow
is equipped with one and two-equation turbulence models which are presented in Section 2.6. Section 2.7
contains the solution of the discrete system of equations whereas Section 2.8 discusses mesh deformation.

2.2 Governing equations

2.2.1 Conservative form

Let D denote a volume of fluid and ∂D its boundary. By integrating the governing equations over D, the
following integral form is obtained:∫

D

∂~U

∂t
dD +

∮
∂D

( ~Fc − ~Fv)dS =

∫
D

~QdD (2.1)

In (2.1), ~U is the vector of the Conservative Flow Variables,

~U =


ρ
ρu
ρv
ρw
ρE

 (2.2)

where ρ denotes the density, (u, v, w) the three components of the velocity field and E the total energy.

~Fc and ~Fv denote the Convective and Viscous Fluxes respectively,

~Fc =


ρV

ρuV + nxp
ρvV + nyp
ρwV + nzp
ρ(E + p

ρ )V

 (2.3)

~Fv =


0

nxτxx+ nyτxy + nzτxz
nxτyx+ nyτyy + nzτyz
nxτzx+ nyτzy + nzτzz
nxΘx + nyΘy + nzθz

 (2.4)

where V is the normal velocity,

V = ~u · ~n (2.5)
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and

Θx = uτxx + vτxy + wτxz + k
∂T

∂x

Θy = uτyx + vτyy + wτyz + k
∂T

∂y

Θz = uτzx + vτzy + wτzz + k
∂T

∂z
(2.6)

The above system is completed by the constitutive equation of state for perfect gases:

p = (γ − 1)ρ

[
E − u2 + v2 + w2

2

]
(2.7)

2.2.2 Variable Transformations

CFD solvers are formulated using the governing equations (2.1) written in primitive (~V ) or characteristic (~Vch)
variables,

~V =


ρ
u
v
w
p

 (2.8)

Primitive Variables

Starting from the differential form of the governing equations,

∂~U

∂t
+
∂ ~Fc
∂~x
− ∂ ~Fv

∂~x
=
∂ ~Q

∂~x
(2.9)

by neglecting the viscous terms and using the chain rule:

∂~U

∂t
+
∂ ~Fc

∂~U

∂~U

∂~x
=
∂ ~Q

∂~x

∂~U

∂t
+Ac

∂~U

∂~x
=
∂ ~Q

∂~x
(2.10)

the Jacobian of the convective fluxes Ac = ∂ ~Fc/∂ ~U is derived.

By introducing the transformation matrix M = ∂~U/∂~V , the system of equations is written in Primitive
Variables form [44]:

∂~U

∂~V

∂~V

∂t
+Ac

∂~U

∂~V

∂~V

∂t
=
∂ ~Q

∂~x

M
∂~V

∂t
+AcM

∂~V

∂t
=
∂ ~Q

∂~x

∂~V

∂t
+M−1AcM

∂~V

∂t
= M−1 ∂

~Q

∂~x

∂~V

∂t
+Ap

∂~V

∂t
=
∂ ~Qv
∂~x

(2.11)

The transformation matrix M is defined as:

M =
∂~U

∂~V
=


1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0

u2+v2+w2

2 ρu ρv ρw 1
γ−1

 (2.12)
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and its inverse as:

M−1 =
∂~V

∂~U
=


1 0 0 0 0
−uρ

1
ρ 0 0 0

−vρ 0 1
ρ 0 0

−wρ 0 0 1
ρ 0

γ−1
2

(
u2 + v2 + w2

)
−u(γ − 1) −v(γ − 1) −w(γ − 1) γ − 1

 (2.13)

(2.11) has the same form as (2.10) but the Jacobian of the convective fluxes, Ap, is expressed in primitive
variables.

Characteristic Variables

Diagonalization of Ac (Ac = RΛL, where R, L contain the right and left eigenvectors respectively and Λ the
eigenvalues) enables the transformation of (2.10) in characteristic variables. By that, decoupling of the system
of equations is achieved.

∂~U

∂t
+ L−1ΛL

∂~U

∂~x
=
∂ ~Q

∂~x

L
∂~U

∂t
+ ΛL

∂~U

∂~x
= L

∂ ~Q

∂~x
(2.14)

By defining Mch ≡ ∂~U/∂~Vch = L the decoupled system is acquired:

∂~Vch
∂t

+ Λ
∂~Vch
∂~x

=
∂ ~Qch
∂~x

(2.15)

with:

Λ =


V 0 0 0 0
0 V 0 0 0
0 0 V 0 0
0 0 0 V + c 0
0 0 0 0 V − c

 (2.16)

Depending on the variables chosen the diagonalization of the Jacobian Matrix (Ac for conservative variables,Ap
for primitive) will lead to different eigenvectors. However, the eigenvectors can be transformed to the desired
variables using the appropriate transformation matrix. For example in between primitive and characteristic
variables the following hold:

Ap = M−1AcM =
(
M−1R

)
Λ (LM) = RpΛLp (2.17)

where Rp = M−1R and Lp = LM are the right and left eigenvectors in primitive variables. Using the inverse
transformation matrix enables the transformation from primitive eigenvectors to conservative eigenvectors.

The right eigenvectors in primitive variables are :

Rp =



nx 0 nz −ny −nxc2

ny −nz 0 nx −nyc2

nz ny −nx 0 −nzc2

0 nx ny nz −λ1−λ4

ρc2

0 −nx −ny −nz λ1−λ5

ρc2


(2.18)

where ~n = (nx, ny, nz) is the unit normal vector, λ1 = λ2 = λ3 = V , λ4 = V + c and λ5 = V − c.
The left eigenvectors in primitive variables are :

Lp = R−1
p =



nx ny nz
ρ

λ4−λ5

ρ
λ4−λ5

0 −nz ny
λ1−λ5

λ4−λ5
nx

λ1−λ4

λ4−λ5
nx

nz 0 −nx λ1−λ5

λ4−λ5
ny

λ1−λ4

λ4−λ5
ny

−ny nx 0 λ1−λ5

λ4−λ5
nz

λ1−λ4

λ4−λ5
nz

0 0 0 ρc2

λ4−λ5

ρc2

λ4−λ5


(2.19)
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2.2.3 Low Mach Number Preconditioning

In cases where the local Mach number approaches zero there is large disparity in the wave propagation speeds.
The speed of sound (c) becomes very large compared to the flow velocity (V ) and completely deteriorates the
stability and convergence properties of the system. In such cases the equations should be modified. Low Mach
Preconditioning is applied that acts on the time derivatives of the equations and basically modifies the speed
of sound to make the two velocities comparable. By that, the convergence and stability characteristics of the
system are improved.

Neglecting the viscous terms, and using the Preconditioning Matrix Γ, the system of equations (2.10) takes
the following general form:

Γ−1 ∂
~U

∂t
+Ac

∂~U

∂~x
=
∂ ~Q

∂~x
⇒

∂~U

∂t
+ ΓAc

∂~U

∂~x
= Γ

∂ ~Q

∂~x
⇒

∂~U

∂t
+AΓ

∂~U

∂~x
= Γ

∂ ~Q

∂~x
(2.20)

Various forms of the Preconditioning Matrix Γ have been proposed [45][46]. In the present work Eriksson’s
Preconditioning Matrix [47] has been implemented, based on its successful use in [48].

In primitive variables,

Γp =


1 0 0 0 β
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 α

 (2.21)

where

α = min(1,M2
local, κpM

2
∞) (2.22)

β = (1− α)/c2

The amount of preconditioning is controlled by α in the sense that it follows the local Mach Number (Mlocal)
variations. The parameter κp takes values from 3-5. On one hand, its role is to prevent α from approaching zero
in stagnant regions and on the other to assure constant α within the boundary layer [49]. It is noted that zero
preconditioning and recovery of the original form of the equations is obtained for α = 1.

In order to express the preconditioning matrix in conservative or characteristic variables, the appropriate
transformation matrix is applied. For example,

Γc = M−1ΓpM

M =
∂~U

∂~V
(2.23)

When transforming the preconditioned system in characteristic variables, a new set of modified eigenvalues
is obtained,

ΛΓ =


V 0 0 0 0
0 V 0 0 0
0 0 V 0 0
0 0 0 V ′ + c′ 0
0 0 0 0 V ′ − c′

 (2.24)

in which the “modified” speed of sound c′ and velocity V ′ are defined as follows:

V ′ =
1

2
(1 + α)V

c′ =
1

2

√
[(1− α)V ]

2
+ 4αc2 (2.25)

leading to the following expressions for the eigenvalues:
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λ1 = λ2 = λ3 = V

λ4 =
1

2

[
(1 + α)V −

√
[(1− α)V ]

2
+ 4αc2

]
(2.26)

λ5 =
1

2

[
(1 + α)V +

√
[(1− α)V ]

2
+ 4αc2

]
Since preconditioning changes the eigenvalues, the left and right eigenvectors will also change. The right

eigenvectors in primitive variables become:

RΓp =



nx 0 nz −ny −nxc2

ny −nz 0 nx −nyc2

nz ny −nx 0 −nzc2

0 nx ny nz −λ1−λ4

αρc2

0 −nx −ny −nz λ1−λ5

αρc2


(2.27)

while the left eigenvectors in primitive variables become :

LΓp = R−1
Γp =



nx ny nz
αρ

λ4−λ5

αρ
λ4−λ5

0 −nz ny
λ1−λ5

λ4−λ5
nx

λ1−λ4

λ4−λ5
nx

nz 0 −nx λ1−λ5

λ4−λ5
ny

λ1−λ4

λ4−λ5
ny

−ny nx 0 λ1−λ5

λ4−λ5
nz

λ1−λ4

λ4−λ5
nz

0 0 0 αρc2

λ4−λ5

αρc2

λ4−λ5


(2.28)

2.2.4 Moving Meshes

In case D changes in time, the time derivative in (2.1) will also act on D(t). In order to pass time derivation
into the integral, Reynold’s transport theorem is applied:

∂

∂t

∫
D(t)

~UdD =

∫
D(t)

∂~U

∂t
+

∫
D(t)

∇
(
~U ⊗ ~uvol

)
dD

=

∫
D(t)

∂~U

∂t
+

∮
∂D(t)

~U · (~uvol · ~n) dS (2.29)

where ~uvol is the velocity that defines the time evolution of D(t).
If ~umesh denotes the mesh velocity then ~uvol = ~umesh, hence∫

D(t)

∂~U

∂t
=

∂

∂t

∫
D(t)

~UdD −
∮
∂D(t)

~U · (~uvol · ~n) dS (2.30)

Substituting the above expression in (2.1), the Arbitrary Lagrangian-Eulerian (ALE) formulation of the governing
equations is obtained:

∂

∂t

∫
D(t)

~UdD +

∮
∂D(t)

( ~Fc − Vg ~UdS − ~Fv) dS =

∫
D(t)

~QdD (2.31)

where Vg = ~umesh · ~n.
In the case of moving meshes the eigenvalues of the system must change in order to account for the mesh

velocity and become:

Λ =


V − Vg 0 0 0 0

0 V − Vg 0 0 0
0 0 Vg 0 0
0 0 0 V − Vg + c 0
0 0 0 0 V − Vg + c

 (2.32)
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The above formulation is consistent for all types of motions since no assumptions about the velocity have
been made. Thus, it can be used both for rigid body motions (rotation, translation) and for deforming meshes
where the control volume is stretched and twisted.

Rotating frame of reference

In several applications, the solid bodies are rotating. Often it is preferred to formulate the problem in the
rotating frame of reference, especially in cases where the relative flow attains a steady state. The governing
equations in a rotating frame take the following form (see [44] for details):

∂ρ

∂t
+∇ · (ρ~ur) = 0 (2.33)

∂ρ~ur
∂t

+∇ ·
(
ρ~ur~ur + p~I − ~τ

)
= − 2ρ

(
~Ω× ~ur

)
− ρ~Ω× (~Ω× ~R) (2.34)

∂Er
∂t

+∇ · [~ur (Er + p) + ~τ · ~ur] = 0 (2.35)

where

~ur = ~u− (~Ω× ~R) (2.36)

is the relative velocity and

Er = p/(γ − 1) + 1/2ρu2
r + 1/2ρ|(~Ω× ~R)|2 (2.37)

is the total energy per unit volume in the rotating frame. In the momentum equation, the Coriolis and Centrifugal
forces are also added.

A variant of the above formulation is easily obtained by introducing the absolute flow velocity as expressed
in the rotating frame:

∂ρ

∂t
+∇ · ρ

(
~u− ~Ω× ~R

)
= 0 (2.38)

∂ρ~u

∂t
+∇ ·

[
ρ~u(~u− ~Ω× ~R) + p~I − ~τ

]
= − ρ

(
~Ω× ~u

)
(2.39)

∂E

∂t
+∇ ·

[
(~u− ~Ω× ~R) (E + p) +

(
~Ω× ~R

)
p+ ~τ · ~u

]
= 0 (2.40)

According to [50][51] the absolute velocity formulation results in a more accurate evaluation of the fluxes in
Finite Volume solvers.

2.3 Spatial discretization

In MaPFlow the flow variables are calculated and stored at cell centers. Assuming that the cell volume remains
constant in time:

∂

∂t

∫
D

~UdD = D
∂~U

∂t
(2.41)

where:

~U =
1

D

∫
D

~UexactdD (2.42)

Thus equation (2.1) becomes:

∂~U

∂t
= − 1

D
[

∮
∂D

(~Fc − ~Fv)dS −
∫
D

~QdD] (2.43)

The surface integral is approximated by the sum of fluxes through the faces of each cell. The usual assumption
is that the flux is evenly distributed over every face and its mean is computed at its center. For cell I, (2.43)
takes the form:

d ~UI

dt
= − 1

DI
[

Nf∑
m=1

(~Fc − ~Fv)m∆Sm)− ( ~QD)I ]︸ ︷︷ ︸
RI

= − 1

DI

~RI (2.44)

where Nf is the number of faces the cell has and ∆Sm is the area of face ”m”. The terms (~Fc)m, (~Fv)m represent
the convective and viscous fluxes through face m.
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2.3.1 Reconstruction of variables

In order to calculate the fluxes appearing in the right hand side of (2.44), the values of all flow variables at
the face centers are needed. This information is absent, since all flow variables are defined at the cell centers.
Passing the flow information from the cell centers to the faces is carried out by means of variable reconstruction.

Consider two cells I,J being in contact over face f. Variable reconstruction on f can be defined either starting
from cell I or cell J. For compressible solvers it is assumed that across the face the flow experiences a jump
defined by the left L and right R states. The L/R specification depends on the normal to f which directs from L
to R. These states are used because the interpolation of variables on a specific face is done twice; once for the
left side and once for the right side of the face. Afterwards, the flux on the face is computed.

PLR

Figure 2.1: Two cell stencil for the reconstruction of variables on a face (f) using the PLR scheme.

PLR is a 2nd order accurate scheme which utilizes Venkatakrishnan’s limiter [52]. The utilized stencil consists
of two cells (one cell in both L and R directions), as shown in fig. 2.1. The assumption that the solution is
partially and linearly distributed in the finite volume is made. Left and right states are computed as follows:

~WL = ~WI + ΨI(∇ ~WI · ~rL) (2.45)

~WR = ~WJ −ΨJ(∇ ~WJ · ~rR) (2.46)

where ~W is the primitive variables vector:

~W =


ρ
u
v
w
E

 (2.47)

and ~rL, ~rR is the corresponding distance of each cell center from the shared cell face between these two cells.

An important factor in the described scheme is the computation of ∇( ~WI) in (2.45),(2.46). The derivative
computation utilizes the Green-Gauss approximation, thus:

∇ ~W ≈ 1

Ω

∫
∂Ω

~W~ndS (2.48)

In cell centered schemes, (2.48) is discretized as follows:

∇ ~WI ≈
1

Ω

Nf∑
J=1

1

2
( ~WI + ~WJ)~nIJ∆SIJ (2.49)

Ψ is the limiter function that prevents variables from reaching extreme values in regions with discontinuities.
Venkatakrishnan’s limiter [52] is a limiter applied to ∇U . The implementation is as follows:

Ψi = minj


1

∆2
[

∆2
1,max+ε2)∆2+2∆2

2∆1,max

∆2
1,max+2∆2

2+∆1,max∆2+ε2
] ∆2 > 0

1
∆2

[
∆2

1,min+ε2)∆2+2∆2
2∆1,min

∆2
1,min+2∆2

2+∆1,min∆2+ε2
] ∆2 < 0

1 ∆2 = 0

(2.50)
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where

∆1,max = Umax − Ui (2.51)

∆1,min = Umin − Ui (2.52)

The purpose of the parameter ε2 is to define limiter strictness. If it has zero value the limiter is very strict
whereas for large values of the parameter the limiter reaches values close to unity and eventually does not have
a significant effect on variable values. Parameter ε is practically proportional to mesh length scale:

ε2 = (K∆h)3 (2.53)

where K is a free parameter. Small values of K make the limiter strict rendering the PLR first order, while
K =∞ leads to an unlimited scheme. Typically the value of K = 5 is used.

MUSCL

Figure 2.2: Four cell stencil for the reconstruction of variables on a face (f) using the MUSCL and QUICK schemes.
In contrast to the PLR scheme, MUSCL and QUICK schemes do not utilize distance vectors.

The MUSCL scheme was first introduced by B. van Leer in [53]. Starting from the scheme of Godunov [54],
the piecewise constant approximation is replaced by reconstructed states, which are derived from cell-averaged
states from the previous timestep. For every face, slope limited, reconstructed left and right states are obtained
and used to calculate fluxes at the cell boundaries. MUSCL takes into account the second order derivative
whereas the third order derivative is ignored, thus the scheme is considered 3rd order accurate.

For the equations presented below, the following subscript notation is adopted (see fig. 2.2):

• The 1st Left cell is noted with ”I”
• The 2nd Left cell is noted with ”I-1”
• The 1st Right cell is noted with ”J”
• The 2nd Right cell is noted with ”J+1”

The left and right states are computed as follows:

~WL = ~WI +
1

4
((1− κ)( ~WI − ~WI−1)φ(rI−1) + (1 + κ)( ~WJ − ~WI)φ(rI)) (2.54)

~WR = ~WJ +
1

4
((1− κ)( ~WJ+1 − ~WJ)φ(rJ) + (1 + κ)( ~WJ − ~WI)φ(rJ+1)) (2.55)

where κ = 1/3.
In contrast to the PLR scheme, rI is not a distance vector. It is instead calculated as:

rI =
~WI − ~WI−1

~WJ − ~WI

(2.56)

If the denominator is lower than 0, rI = 1. Finally, φ(r) is the limiter function which can either be the
superbee limiter [55] or the limiter of van Albada [56].

The superbee limiter reads:

φ(rI) = max(0,min(2rI , 1),min(rI , 2)) (2.57)

whereas that of van Albada reads:

φ(rI) =
r2
I + rI
r2
I + 1

(2.58)
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QUICK

QUICK is a higher-order differencing scheme that considers a three-point upstream weighted quadratic inter-
polation for the cell face values. The scheme was first introduced by B. P. Leonard in 1979 [57]. A quadratic
function passing through two bracketing or surrounding nodes and one node in the upstream side is used in
order to find the cell face value. In central differencing schemes and second order upwind schemes the first order
derivative is included whereas the second order derivative is ignored. QUICK takes the second order derivative
into account, but ignores the third order derivative and thus is considered 3rd order accurate.

For the equations presented below, the following subscript notation is adopted (see fig. 2.2):

• The 1st Left cell is noted with ”I”
• The 2nd Left cell is noted with ”I-1”
• The 1st Right cell is noted with ”J”
• The 2nd Right cell is noted with ”J+1”

The implemented algorithm is based on [58] and is as follows:

Left state:

If | ~WJ − ~WI−1| ≤ 10−8, then

~WL =
1

2
( ~WI + ~WJ)− 1

8
( ~WJ − 2 ~WI + ~WI−1) (2.59)

Else if | ~WJ − 2 ~WI + ~WI−1| ≤ 0.3| ~WJ − ~WI−1|, then

~WL =
1

2
( ~WI + ~WJ)− 1

8
( ~WJ − 2 ~WI + ~WI−1) (2.60)

Else

~WInvd =
~WI − ~WI−1

~WJ − ~WI−1

(2.61)

If ~WInvd ≥ 1.5 or ~WInvd ≤ −1 or 0.35 ≤ ~WInvd ≤ 0.65

~Wface = 0.75 + 0.75( ~WInvd − 0.5),

else if − 1 < ~WInvd ≤ 0,

~Wface = 0.375 ~WInvd

else if 0 < ~WInvd ≤ 0.35 or 0.65 < ~WInvd ≤ 1, (2.62)

~Wface =

√
~WInvd(1− ~WInvd)3 − ~WI

2

nvd

1− 2 ~WInvd

else if 1 < ~WInvd ≤ 1.5,

~Wface = ~WInvd

~WL = ~WI−1 + ( ~WJ − ~WI−1) ~Wface (2.63)

Right state:

If | ~WJ − ~WJ+1| ≤ 10−8, then

~WR =
1

2
( ~WJ + ~WI)−

1

8
( ~WI − 2 ~WJ + ~WJ+1) (2.64)

Else if | ~WI − 2 ~WJ + ~WJ+1| ≤ 0.3| ~WI − ~WJ+1|, then

~WR =
1

2
( ~WJ + ~WI)−

1

8
( ~WI − 2 ~WJ + ~WJ+1) (2.65)
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Else

~WJnvd =
~WJ − ~WJ+1

~WI − ~WJ+1

(2.66)

If ~WJnvd ≥ 1.5 or ~WJnvd ≤ −1 or 0.35 ≤ ~WJnvd ≤ 0.65,

~Wface = 0.75 + 0.75( ~WJnvd − 0.5)

else if − 1 < ~WJnvd ≤ 0,

~Wface = 0.375 ~WJnvd (2.67)

else if 0 < ~WJnvd ≤ 0.35 or 0.65 < ~WJnvd ≤ 1

~Wface =

√
~WJnvd(1− ~WJnvd)3 − ~WJ

2

nvd

1− 2 ~WJnvd

else if 1 < ~WJnvd ≤ 1.5

~Wface = ~WJnvd

~WR = ~WJ+1 + ( ~WI − ~WJ+1) ~Wface (2.68)

2.3.2 Convective Fluxes

The discretization of the convective fluxes can be based on central, flux-vector or flux-difference schemes. Central
schemes calculate the convective fluxes across faces as the arithmetic average of the values obtained at the
two sides of the face plus an artificial dissipation term added to enhance stability [59]. Flux-vector schemes
are based on upwinding which respects the direction of propagation of waves [60][61]. Finally, flux-difference
schemes calculate convective fluxes at cell faces by solving the Riemann problem for the Left and Right states
defined on the face [62].

The present work uses Roe’s approximate Riemann solver [62], which is a flux-difference scheme. Roe’s
scheme consists of constructing the convective flux as a sum of wave contributions:

(~Fc)I+ 1
2

=
1

2
[~Fc(~VR) + ~Fc(~VL)− |ARoe|I+ 1

2
(~VR − ~VL)] (2.69)

where the Left and Right states (~VL, ~VR) are calculated using one of the available numerical schemes. The Roe
matrix ARoe has the same form as the convective flux Jacobian but instead of formally averaged values, the
following Roe-averaged variables are used:

ρ̃ =
√
ρLρR

ũ =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

ṽ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

w̃ =
wL
√
ρL + wR

√
ρR√

ρL +
√
ρR

H̃ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

c̃ =

√
(γ − 1)(H̃ − q̃2/2)

q̃ = ũ2 + ṽ2 + w̃2

In (2.69), |ARoe| is constructed using the absolute values of the eigenvalues and the the right eigenvector
matrix R:

|ARoe| = R−1|Λ|R (2.70)

In case the preconditioned system of equation is used, the eigenvalues and the eigenvectors of the precondi-
tioned system must be used (ΛΓ, RΓ). Thus, according to [63], |ARoe| is changed to:
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|AΓRoe| = |Γ−1ΓARoe|
' Γ−1|ΓARoe|
' Γ−1R−1

Γ |ΛΓ|RΓ (2.71)

2.3.3 Viscous Fluxes

For the calculation of Viscous Fluxes, variable values and space derivatives are needed. For the face in between
cells I and J, variable values are obtained from simple averaging:

~VIJ =
1

2

(
~VI + ~VJ

)
(2.72)

while for the gradients, the Green-Gauss formula is applied using the face averaged values ~VIJ as defined in
(2.72) but supplemented with a directional derivative[64]:

∇~VIJ = ∇~VIJ −

[
∇~VIJ · ~tIJ −

(
∂~V

∂l

)
IJ

]
· ~tIJ (2.73)

where

∇~VIJ =
1

2

(
∇~VI +∇~VJ

)
(2.74)

is the mean gradient, (
∂~V

∂l

)
IJ

≈
~VJ − ~VI
lIJ

(2.75)

and lIJ is the distance between cell centers I and J and ~tIJ is the unit vector pointing from cell center I to cell
center J.

2.4 Temporal discretization

For the temporal discretization the method of lines is used. This means that temporal and spatial discretization
are done separately leading for every control volume to the following equation:

d
(
DI

~UI

)
dt

= −RI (2.76)

In comparison to (2.43) the form of equation (2.76) is more general in the sense that the control volume can
vary with time.

Temporal discretization can be either explicit or implicit. Explicit methods use the ~Un known solution and
march in time using the corresponding residual ~Rn to obtain solution at (t+ ∆t). On the other hand the implicit

schemes use R(~Un+1) = ~Rn+1 to obtain the new solution and are favored because they allow larger time-steps.

Since ~Rn+1 is unknown, the following linear approximation is used:

~Rn+1 ≈ ~Rn +

(
∂ ~R

∂~U

)
n

·∆~Un, ∆~Un = ~Un+1 − ~Un (2.77)

In MaPFlow a finite difference scheme is used for the time derivative [65]:

1

∆t

[
φn+1

(
D~U

)n+1

+ φn

(
D~U

)n
+ φn−1

(
D~U

)n−1

+ φn−2

(
D~U

)n−2

+ . . .

]
= −Rn+1 (2.78)

Depending on the choice of φn the corresponding backwards difference formulae (BDF) of the temporal
scheme is defined. BDF2OPT , refers to a class of optimized, second-order, backward difference methods with
an error constant half as large as the conventional 2nd order scheme [66].
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Table 2.1: Backwards Difference Schemes

order φn+1 φn φn−1 φn−1

1st 1 -1 0 0
2nd 3/2 -2 1/2 0
3rd 11/6 -3 3/2 −1/3

BDF2OPT 3/2− φn−2 −2 + 3φn−2 1/2− 3φn−2 −0.58/3

2.4.1 Steady State Computations

Even when steady state simulations are considered a pseudo-unsteady technique is followed. For steady state
simulations 1st order scheme is chosen to march the solution in pseudo-time until convergence is reached. At 1st

order, after linearizing Rn+1, (2.78) becomes:(
DI∆~UnI

)
∆tI

= ~RnI +

(
∂ ~R

∂~U

)
I

∆~UnI (2.79)

By rearranging the terms the final system of discrete equations is obtained in which the system matrix
defines the implicit operator of the scheme:[

(D)I
∆tI

+

(
∂ ~R

∂~U

)
I

]
︸ ︷︷ ︸

Implicit Operator

∆~UnI = −~RnI (2.80)

Local Time Stepping

In order to facilitate convergence, the Local Time Step technique is used [67]. The time step for steady state
calculation can be defined using the spectral radii of each cell. For every cell, a different time step is defined by:

∆t = CFL
DI(

Λ̂c + CΛ̂v

)
I

(2.81)

where Λ̂c, Λ̂v is the sum of convective and viscous eigenvalues over all cell faces. The convective spectral radii is
defined by:

(Λ̂c)I =

Nf∑
J=1

(|~uIJ · ~nIJ |+ cij)∆SIJ (2.82)

and the viscous spectral radii by:

(Λ̂v)I =
1

DI

Nf∑
J=1

[max(
3

3ρIJ
,
γIJ
ρIJ

)(
µL
PrL

+
µT
PrT

)IJ(∆SIJ)2] (2.83)

2.4.2 Time True Computations

When making Time True computations, temporal discretization is crucial because any remaining numerical
error will propagate in the flow as a disturbance. In order to minimize temporal errors higher order schemes
should be used in conjunction with the Dual Time-Step technique [68].

Dual Time-Stepping

The Dual Step approach adds an extra time-like derivative in the transport equation that refers to a different
“time variable” τ , called “pseudo-time”. The conservative variables in the pseudo-time problem are denoted by
U?, because they don’t satisfy the original unsteady problem until convergence is reached

Using this approach the unsteady problem is transformed into a steady one. In every true time-step the
following problem is solved in the pseudo-time (τ) :

∂(Dn+1~U?)

∂τ
+ ~R? = 0 (2.84)
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Setting,

~R? =
∂(D~U?)

∂t
+R(~U?) (2.85)

the following final form is obtained:

∂(Dn+1~U?)

∂τ
+
∂(D~U?)

∂t
= −R(~U?) (2.86)

When (2.84) converges, R? = 0, ~U? = ~U which satisfies the original unsteady problem.

The discretized form of (2.86) can be written as:

Dn+1∆U?k

∆τ
+

1

∆t

[
φn+1

(
D~U?

)n+1

+ φn

(
D~U

)n
+ φn−1

(
D~U

)n−1
]

= −Rk+1 (2.87)

or

Dn+1∆U?k

∆τ
= −R?k+1 (2.88)

with

∆U?k = U?k+1 − U?k (2.89)

and

R?k+1 = Rk+1 − 1

∆t

[
φn+1

(
D~U?

)n+1

+ φn

(
D~U

)n
+ φn−1

(
D~U

)n−1
]

(2.90)

where k denotes the steady state problem sub-iteration.

In order to apply an Implicit Scheme in the Dual Time-Step procedure we must linearize the unsteady
residual R?k+1:

~R?k+1 ≈ ~R?k +

(
∂ ~R

∂~U?

)
k

·∆~U?k (2.91)

or

~R?k+1 ≈ ~Rk − 1

∆t

[
φn+1

(
D~U?

)n+1

+ φn

(
D~U

)n
+ φn−1

(
D~U

)n−1
]

+
∂ ~R

∂~U?
∆~U? − φn+1

Dn+1

∆t
∆~U? (2.92)

The correction ∆U? refers to the steady problem defined in pseudo-time. Thus, when the steady problem
converges, ∆U? = 0 . However, this does not correspond to Un+1 −Un = 0 but to Uk+1,n+1 −Uk,n+1 = 0. The
φ coefficients change according to the desired time discretization scheme (see Table 2.1).

Substituting in (2.88) the final form is obtained:[
Dn+1

∆τ
+ φn+1

Dn+1

∆t
+

∂ ~R

∂~U?

]
∆U?k = −Rk −Qkdual (2.93)

where the dual step unsteady source-like terms Qkdual are given by:

Qkdual =
1

∆t

[
φn+1

(
D~U?

)n+1

+ φn

(
D~U

)n
+ φn−1

(
D~U

)n−1
]

(2.94)

It is noted here that the pseudo time step ∆τ is defined as in the Steady state computations using local
timestepping (2.81).
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2.5 Boundary conditions

In external aerodynamics the following boundary conditions are needed:

• Far-field Boundaries
• Solid wall Boundaries
• Symmetry Boundaries
• Periodic Boundaries

Before analyzing each one of the boundary condition types, it is important to discuss the concept of dummy
cells. Dummy cells are additional virtual cells that extend the computational domain. Their purpose is to
provide assistance in calculating the flow variables at the computational domain boundaries. Far-field and solid
wall conditions are defined exactly at the boundary face while the other two are applied at the center of the
dummy cell.

2.5.1 Far-field Boundaries

In the far-field, it is important to comply with the hyperbolic character of the problem as expressed when
formulated in characteristic variables. The information provided is related to the sign of the eigenvalues of
the flow state at the far-field boundary and the associated Riemann invariants. Both must be respected and
therefore the far-field boundary conditions must be accordingly defined. The approach followed is based on the
characteristics of the 1D Euler equations along the normal direction to the boundary [44], u = ~V · ~n. The sign
of each of the three eigenvalue u, u+ c, u− c, defines the direction of propagation while along the corresponding
characteristic the associated Riemann invariants R, R+, R− (see fig. 2.3).

R± = u± 2c

γ − 1

R = s (2.95)

remain constant.

Figure 2.3: The case of a subsonic inlet face. Note that on an inlet face and the normal defined to point outwards, the
normal to the boundary velocity component u = ~V · ~n < 0. This means that in reality the flow information
associated to R,R− is provided by the state defined in (a).

Thus on an inflow face (and similarly for an outflow face), using the invariants:

fromR+ uf +
2cf
γ − 1

= uc +
2cc
γ − 1

fromR− uf −
2cf
γ − 1

= ua −
2ca
γ − 1

(2.96)

isentropic assumption sf = sa

Although the flow variables at boundary faces can be obtained as linear combinations of these invariants, in
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the present formulation, the characteristic equations are used instead:

dρ− 1

c2
dp = 0 along λ1 = u

du+
1

ρc
dp = 0 along λ2 = u+ c (2.97)

du− 1

ρc
dp = 0 along λ3 = u− c

Supersonic Inlet-Outlet

(a) Supersonic Inlet (b) Supersonic Outlet

Figure 2.4: Riemann Invariants on a far-field supersonic boundary

In the supersonic case all eigenvalues are positive since V > c. This means that in the case of inflow, all flow
information is propagating from outside into the domain (fig. 2.4) and therefore all flow variables must be given
as input:

~Vinlet = ~V∞ (2.98)

On the contrary in the case of outflow all flow information propagates from inside of the domain:

~Voutlet = ~Vdomain (2.99)

Subsonic inlet-outlet

(a) Subsonic Inlet (b) Subsonic Outlet

Figure 2.5: Riemann Invariants on a far-field subsonic boundary
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For subsonic inflow and along the normal to the boundary, the two characteristics propagate information from
outside of the domain while the third propagates flow information from inside of the domain (fig. 2.5). The
situation reverses in case of subsonic outflow where two characteristics propagate information from inside the
domain while the third propagates information from outside into the flow domain. Note that the three Riemann
invariants, associated with the eigenvalues, are defined with respect to the normal direction; hence for the
subsonic inlet with the normal vector pointing outwards u − c < 0, u < 0, u + c > 0, while for the subsonic
outlet u− c < 0, u > 0, u+ c > 0.

Based on (2.97), with the normal pointing outwards of the inlet face:

pf
ργf

=
pa
ργa

along λ1 = u, (R)

pf − pc +
1

ρaca
(uf − uc) = 0 along λ2 = u+ c, (R+) (2.100)

pf − pa −
1

ρaca
(uf − ua) = 0 along λ3 = u− c, (R−)

By combining R+ and R− pressure and velocity at the boundary are determined. Density can be retrieved from
the isentropic relation. As reference state at the inlet, that at the exterior of the domain is used. Similarly,
under the assumption that the normal direction is pointing outside of the domain, at the outlet boundary,

pf
ργf

=
pc
ργc

along λ1 = u, (R)

pf − pc +
1

ρccc
(uf − uc) = 0 along λ2 = u+ c, (R+) (2.101)

pf − pa −
1

ρccc
(uf − ua) = 0 along λ3 = u− c, (R−)

in which the reference state is defined from inside of the computational domain.

Preconditioned characteristic equations

As already discussed in Low Mach Preconditioning (Section 2.2.3) , the eigenvalues and eigenvectors of the
system change (2.26). Hence, it is expected that the characteristic equations change too. When Eriksson’s
Preconditioning Matrix is used, like in the present case, the 1-D characteristic equations take the form [69]:

dρ− 1

c2
dp = 0 along λ1 = u

du+
c′ − αmu
ραc2

dp = 0 along λ2 = u′ + c′ (2.102)

du− c′ + αmu

ραc2
dp = 0 along λ3 = u′ − c′

with,

αm =
(1− α)

2

u′ =
1

2
(1 + α)u (2.103)

c′ =
1

2

√
[(1− α)u]

2
+ 4αc2

As in the un-preconditioned case, the characteristic equations are combined to obtain ρ, ~u, p at the boundary
face,

ρf = ρo

(
pb
po

)γ
Vnf = Vnc +

(
1

ρc′

)(
pc − pa

2

)
−
(

1− αmVno
c′

)(
Vnc − Vna

2

)
pf = pa +

(
1− αmVno

c′

)(
pc − pa

2

)
+

(
ραc2

c′

)(
Vnc − Vna

2

)
(2.104)

uf = uo + (Vnf − Vno) · nx
vf = vo + (Vnf − Vno) · ny
wf = wo + (Vnf − Vno) · nz
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where

Vn(·) = u(·) · nx + v(·) · ny + w(·) · nz (2.105)

The reference state, here denoted by subscript o, is decided by the isentropic wave, λ1. At a subsonic
inlet face it corresponds to the outer flow data whereas at a subsonic outlet face the values from inside of the
computational domain are used.

2.5.2 Wall Boundary Conditions

Inviscid Wall

When the fluid is assumed inviscid on solid boundaries,

(~u− ~ug) · ~n = 0 (2.106)

where ~ug denotes the mesh velocity. Density and pressure are set equal to their values at the cell center next to
the wall,

pw = pI , ρw = ρI (2.107)

Viscous Wall

In the general case, the fluid is viscous and the no slip wall condition is applied,

~u = ~ug (2.108)

Density and pressure are treated as in the inviscid case. Regardless of the assumptions made for the fluid,
the convective fluxes take the form,

~Fcwall =


0

nxpw
nypw
nzpw
pwVg

 (2.109)

where

Vg = ~ug · ~n (2.110)

2.5.3 Symmetry and Periodic Boundary Conditions

Symmetry

When the flow is symmetric with respect to a plane, the simulation can only concern half of the flow domain.
Over the symmetry plane, the condition imposed resembles to that applied to an Inviscid Wall. In both cases
there is no flux across the boundary. However, in symmetry conditions gradients normal to the boundary must
also vanish [64]. So,

~u · ~n = 0, zero flux

∇~U · ~n = 0, zero normal gradients (2.111)

Periodic Flows

If the flow is periodic, the simulation is conducted on one single period. In such cases, parts of the outer
boundary of the mesh will correspond to the periodic surfaces on which explicit boundary data are not available.
Closure of the problem is done by the Periodic boundary conditions that basically transfer the flow variables
from one periodic surface to the next one. Periodicity can be either translational (e.g. as in the case of a wing
equipped with an array of vortex generators) or rotational (e.g. as in the case of multi-bladed rotors) depending
on the motion required for collapsing a periodic surface to its associate. The implementation is based on ghost
cells [64].

Let A,B denote the two associated periodic surfaces (fig. 2.6). For every cell in contact with A, it’s
corresponding ghost cell is associated to a cell in contact with B. Scalar quantities are transferred from B to
the ghost cells of A as they are, while vector (and tensor) variables follow the motion required for collapsing A
on B. The motion is defined as a transformation matrix RA, and so,
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(a) Translational Periodicity (b) Rotational Periodicity

Figure 2.6: Periodic Boundary Conditions

UA = UB

~UA = RA~UB (2.112)

In translational periodicity RA = I while in rotational periodicity RA is the corresponding rotation matrix.

2.6 Turbulence modeling

In order to account for turbulence modeling, flow variables are split in their mean:

ui = lim
T→∞

1

T

∫ t+T

t

uidt (2.113)

and fluctuating parts u′i:

ui = ui + u′i (2.114)

with

u′i = 0 (2.115)

u′iu
′
j 6= 0 (2.116)

The above is known as Reynold’s time averaging and is suitable for statistically stationary turbulence. In
compressible flows due to the fluctuation of density, the Favre (Mass) Averaging is applied:

ũi =
1

ρ
lim
T→∞

1

T

∫ t+T

t

ρuidt (2.117)

where

ui = ũi + u′′i (2.118)

with

ρ̃ui = ρũi (2.119)

ρu′′ = 0 (2.120)

u′′i 6= 0 (2.121)

Favre’s averaging is similar to Reynold’s averaging but not identical. Again, ũ′′i = 0 and ũ′′i u
′′
j 6= 0.

Application of Favre’s averaging to the governing equations leads to a considerably more complex system. Thus,
Reynold’s averaging is applied to density and pressure while Favre’s averaging is applied to all other variables
[64]. Dropping the bar and the tilde sign for the averaged variables:
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∂ρ

∂t
+
∂ρui
∂xi

= 0

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂p

∂t
+

∂

∂xj

(
τij − ρũ′′i u′′j

)
(2.122)

∂ρE

∂t
+
∂ρujH

∂xj
=

∂

∂xj

(
k
∂T

∂xj
− ρũ′′j h′′ + ˜τiju′′i − ρũ′′jK)

+
∂

∂xj

[
ui

(
τij − ρũ′′i u′′j

)]
where ρK = 1/2ρũ′′i u

′′
i denotes the Turbulent Kinetic Energy.

The above system defines the compressible Reynolds-averaged Navier-Stokes equations or the Favre-averaged
Navier-Stokes equations. By introducing the Favre-Averaged Reynolds-stress tensor as:

τFij = −ρũ′′i u′′j (2.123)

and by neglecting temperature variations, molecular diffusion of K and turbulent transport, the equations
(2.122) become:

∂ρ

∂t
+
∂ρui
∂xi

= 0

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂p

∂t
+

∂

∂xj

(
τij + τFij

)
(2.124)

∂ρE

∂t
+
∂ρujH

∂xj
=

∂

∂xj

[
ui
(
τij + τFij

)]
Eddy-Viscosity Hypothesis

The turbulence models implemented in MaPFlow are first order closures based on the Boussinesq approximation
for the Reynold’s stresses:

τFij = 2µT

(
Sij −

1

3

∂uk
∂xk

)
− 2

3
Kδij (2.125)

where:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.126)

and µT denotes the turbulent molecular viscosity. Depending on the specific turbulence model, turbulent kinetic
energy is either used or neglected in the state equation,

p = (γ − 1)

[
ρE − ρu

2 + v2 + w2

2
− ρK

]
(2.127)

2.6.1 Spalart-Allmaras (S-A) Turbulence Model

The Spalart-Allmaras model [70] solves the following transport equation for ν̃:

µT = ρν̃fv1 (2.128)

∂ρν̃

∂t
+

∂

∂xj
(ρν̃uj) = ρCb1 [1− ft2] S̃ν̃ − ρ

[
Cw1fw −

Cb1
κ2

ft2

](
ν̃

dw

)2

+

ρ

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(2.129)

where

S̃ = Ω +
ν̃

κ2d2
w

fv2 (2.130)

Ω =
√

2WijWij

Wij =
1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
(2.131)

23



In (2.129) dw is defined as the distance from the cell center to the nearest wall and

χ =
ν̃

ν
(2.132)

fv1 =
χ3

χ3 + Cv1
(2.133)

fv2 = 1− χ

1 + χfv1
(2.134)

g = r + cw2(r6 − r) (2.135)

r = min

[
ν̃

S̃κ2d2
w

, 10

]
(2.136)

fw = g

[
1 + c6w3

g6 + cw3

6
]

1

6
(2.137)

ft2 = ct3 exp(−ct4χ2) (2.138)

with constants

Cb1 = 0.1355

σ = 2/3

Cb2 = 0.622

k = 0.41

Cw2 = 0.3 (2.139)

Cw3 = 2

Cv1 = 7.1

Ct3 = 1.2

Ct4 = 0.5

Cw1 =
Cb1

κ2
+

1 + Cb2
σ

In order to avoid numerical problems, the production term S̃ must be kept positive. Thus, S̃ = max(S̃, 10−20).
In case the equation tends to yield a negative solution for ν̃ then it is recommended to set ν̃ equal to a small
positive number.

Boundary Conditions

The boundary conditions as suggested in [70] are:

ν̃wall = 0 (2.140)

ν̃∞ = [3− 5] ν∞ (2.141)

In cases where transition from laminar to turbulent flow is considered, the boundary conditions become:

ν̃wall = 0 (2.142)

ν̃∞ = 0.01ν∞ (2.143)

2.6.2 Menter k − ω Shear Stress Transport (SST) Turbulence Model

Menter’s Shear Stress Transport (SST) turbulence model [71] is a modification of Wilcox’s two equation
Eddy-Viscosity model [72] defined for the turbulence kinetic energy k and the specific dissipation rate ω. The
transport equations of k and ω are given below:

∂ρk

∂t
+

∂

∂xj
(ρkuj) = P − β?ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(2.144)

∂ρω

∂t
+

∂

∂xj
(ρωuj) =

γ

νT
P − β?ρω2 +

∂

∂xj

[
(µ+ σωµT )

∂k

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
(2.145)
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where:

P = τij
∂ui
∂xj

(2.146)

τij = µT

(
2Si −

2

3

∂uk
∂xk

)
− 2

3
ρkδij (2.147)

Sij is the stress tensor given by (2.126) and νT = µT /ρ. Eddy viscosity µT is given by:

µT =
ρα1k

max(α1ω,ΩF2)
(2.148)

with Ω being the vorticity magnitude as in (2.131).

The constants for Menter’s SST turbulence model are a blend of inner (1) and outer (2) constants defined by
the following weighted expression:

φ = F1φ1 + (1− F1)φ2 (2.149)

with F1 being defined by:

F1 = tanh(arg4
1) (2.150)

arg1 = min

[
max

( √
k

β?ωd

500ν

d2
wω

)
,

4ρσω2k

CDKωd2
w

]
(2.151)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(2.152)

F2 = tanh(arg2) (2.153)

arg2 = max

(
2

√
k

β?ωdw

500ν

d2
wω

)
(2.154)

In the above equations, dw is the distance from the cell center to the viscous wall boundary.

The inner constants (those denoted with subscript 1) are:

γ1 =
β1

β?
− σω1κ

2

√
β?

(2.155)

σk1 = 0.85

σω1 = 0.5

β1 = 0.075

β? = 0.09

κ = 0.41

α1 = 0.31

The outer constants (those with subscript 2) are:

γ2 =
β2

β?
− σω2κ

2

√
β?

(2.156)

σk2 = 1.0

σω2 = 0.856

β2 = 0.0828

In [73], a limiter on the production term in the K equation is recommended. Hence, the production term in
the K-equation is replaced by:

P = min(P, 20β?ρkω) (2.157)
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Boundary Conditions

The boundary conditions as defined in [71] are:

U∞
L

< ω∞ < 10
U∞
L

(2.158)

10−5U2
∞

ReL
< k∞ <

10−1U2
∞

ReL
(2.159)

ωwall =
6ν

β1d2
1

(2.160)

kwall = 0 (2.161)

where L is the approximate length of the computational domain and d1 the distance to the next point off the
wall.

2.6.3 Remarks on the formulation of turbulence equations

Even though both models were presented in their differential form, their integral form is actually used. The
transport equation for a generic turbulence model variable UT , takes the form,∫

D

∂UT
∂t

dD +

∫
D

∂

∂xj
(ρujUT ) dD −

∫
D

ρ
∂

∂xj

[
. . .

∂UT
∂xj

]
dD =

∫
D

ρ(SProd + SDestr)dD (2.162)

which by means of the Green Gauss formula is transformed into:∫
D

∂UT
∂t

dD +

∮
∂D

(ρujUT )~ndS −
∮
∂D

ρ(. . . )
∂UT
∂xj

~ndS =

∫
D

ρ(SProd + SDestr)dD (2.163)

where

FTc = (ρujUT )~n (2.164)

FTv = ρ(. . . )
∂UT
∂xj

~n (2.165)

denote the convective and viscous fluxes respectively and SProd, SDestr the Production and Destruction source
terms.

From (2.163) the following differential form is obtained,

DUT
Dt

= SProd +Diff − SDestr (2.166)

DUT
Dt

=
∂UT
∂t

+ uj
∂UT
∂xj

=
∂UT
∂t

+
∂

∂xj
(ujUT )− UT

∂uj
∂xj

(2.167)

Diff =
∂

∂xj

[
. . .

∂(UT )

∂xj

]
(2.168)

For incompressible flows, ∂uj/∂xj = 0 and thus:

∂UT
∂t

+ uj
∂UT
∂xj

=
∂UT
∂t

+
∂

∂xj
(ujUT ) (2.169)

However, when the compressible equations are solved ∂uj/∂xj 6= 0. In order to bring (2.167) in conservative
form, the continuity equation is used,

∂UT
∂t

+ uj
∂UT
∂xj

+ UT

(
∂ρ

∂t
+

∂

∂xj
(ρuj)

)
=

1

ρ

∂

∂t
(ρUT ) +

1

ρ

∂

∂xj
(ρujUT ) (2.170)

leading to the final conservative form of the turbulence model equation:

∂

∂t
(ρUT ) +

∂

∂xj
(ρujUT )− ρ ∂

∂xj

[
. . .

∂UT
∂xj

]
= ρ · (SProd − SDestr) (2.171)
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2.6.4 Discretization

Convective terms

For the convective term first order up-winding is applied:

ρujnjUT = max(ρLVLnUTL, 0) +min(ρRVRnUTR, 0) (2.172)

When the PLR scheme is used, boundness and monotonicity are not guaranteed [52]. The left and right
states are thus taken as the values at the cell centers I, J , which corresponds to a first order approximation,
and V is the corresponding contravariant velocity.

UL = UI (2.173)

UR = UJ (2.174)

V(·)n = ~u(·) · ~n (2.175)

For higher order schemes (MUSCL and QUICK), the left and right states are calculated in the same way as
for the primary variables.

Diffusion terms

The discretization of the diffusion terms consists of first order central differencing. The value of the diffusion
terms at a face is taken as an arithmetic mean of the values at the center of the cells sharing the face. The
gradient that appears on that term is calculated in the same manner as the gradients of flow variables that
contribute to the governing equation diffusion terms (2.73).

Finally the discretization of the temporal and source terms is done in the same manner as for the governing
equations.

2.7 Solution of the System of Equations

The final form of the discrete equations corresponds to a linear system

AX = B (2.176)

of large dimension. The above system can be either solved directly or iteratively. Direct solvers are accurate but
have demanding memory requirements and are not easily parallelised. On the contrary, iterative solvers might
need many iterations to converge but are suitable for parallel coding and have limited memory requirements.
Therefore in the present work, an iterative solver was chosen. Following the work of [74], the Jacobi iterative
solver was implemented.

Noting that all but one terms in the discrete form of the equations for cell I,[
(D)I
∆tI

+

(
∂ ~R

∂~U

)
I

]
∆~UnI = −~RnI (2.177)

refer to the cell in consideration, the following splitting

DI∆~UnI +OI
∑

∆~UnJ = −~RnI (2.178)

is introduced. In (2.178), the first term is block diagonal and is linked to cell I, while the second contains the off

diagonal contributions in (2.177) that are linked to
(
∂ ~R

∂~U

)
I
. This term involves the cells that surround I.

Jacobi iterative solver

A solution to (2.178) can be achieved using the Jacobi method:

DI∆~Un,k+1
I = −~RnI −OI

∑
∆~Un,kJ (2.179)

where k is the Jacobi iterations index.
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Gauss-Seidel iterative solver

As an alternative, the Gauss-Seidel method can be used. It is similar to Jacobi solver, except the fact that the
off diagonal terms are calculated using the current update for ~U ,

DI∆~Un,k+1
I = −~RnI −OI

∑
∆~Un,k+1

L −OI
∑

∆~Un,kJ (2.180)

where UL concerns the cell values that have been updated in k + 1 iteration.
The performance of the Gauss-Seidel method strongly depends on the type of the matrix A in (2.176). If A

is banded, the matrix can be split in an Upper and Lower part and thus Gauss-Seidel becomes:

DI∆~Un,k+1
I = −~RnI −OI

∑
∆~Un,k+1

L −OI
∑

∆~Un,kR (2.181)

However if the sparsity of A is substantial, the Gauss-Seidel solver has the same convergence properties as the
Jacobi method [75].

In case the mesh is structured, the matrix is indeed banded and the Gauss-Seidel solver will behave well.
On the contrary, if an unstructured mesh is used, because the band width of the matrix depends on the cell
numbering, good performance is directly linked to proper renumbering. In this respect the Reverse Cuthill-Mckee
(RCM) reordering scheme [75] substantially reduces the band-width and therefore the Gauss-Seidel methods
outperforms the Jacobi solver.

It is important to note here that in a parallel environment even if Gauss-Seidel iterative solver is used the
update ∆UnJ must remain in the k iteration if UJ is a multi-block ghost cell. The reason behind this constraint
is to ensure that the solution will be continuous across the blocks at all times.

2.8 Mesh Deformation

Often the mesh must deform, as in the case of a deformable trailing edge flap [76] or fluid-structure interaction.
In such cases, on one hand the mesh deformation must ensure that the mesh lines do not overlap and that the
change of the cell volume is taken into account.

For mesh deformation, the work by Zhao [77] was followed. The idea in Zhao’s scheme is to propagate the
displacements of the solid boundaries into the mesh without changing the far-field boundary while keeping the
same mesh topology. This is carried out at nodal level as follows:

d~r(node) = f(node)d~r(nodewall) (2.182)

where ~dr is the displacement of the any mesh node, ~dr(nodewall) is the displacement of a node on the solid
boundary and f is the propagation function. For a two-dimensional problem:

f(x) =
ly2(x)

lx2(x) + ly2(y)
(2.183)

lx(x) =
1− exp(−d(x)/dmax)

(e− 1)/e

ly(x) =
1− exp(1− d(x)/dmax)

(e− 1)/e
(2.184)

where d(x), is the distance of the node to the nearest solid node and dmax is the maximum distance of all nodes
from the solid boundary.

Mesh deformation will render the cell volume D(t) time dependent. Thomas and Lombard [78] proposed the
so called Geometric Conservation Law (GCL)

d

dt

∫
D(t)

dD =

∮
∂D(t)

~Vg · ~ndS (2.185)

The principle of GCL is that a uniform flow solution must remain unchanged regardless of the mesh motion.
Various numerical implementations of the GCL are found in the literature (e.g [79]). In the present work the

implementation in [80] is adopted, which consists of adding a source term to the original equations. Starting
from the integral form of the equations and assuming volume averaged approximation,

d

dt
(~UD) +R = 0 (2.186)

it follows that
d~U

dt
D +

dD

dt
~U +R = 0 (2.187)
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So by introducing (2.185),

d~U

dt
D +R = −~U

∮
∂D(t)

~Vg · ~ndS (2.188)

and applying (2.78), the following discrete formulation is obtained,

1

∆t

[
φn+1

~Un+1 + φn~U
n + φn−1

~Un−1 + φn−2
~Un−2 + . . .

]
·Dn+1 = −Rn+1 − ~U

∮
∂D(t)

~Vg · ~ndS (2.189)

It is noted that for rigid body motions
∮
∂D(t)

~Vg · ~ndS ≈ 0.

2.9 Discussion

In this Chapter, a detailed overview of the employed computational solver has been presented. However,
besides the utilized difference schemes for the discretized equations, the boundary conditions, and the employed
turbulence models, there are also other numerical parameters that can have a significant effect on the produced
results.

Regarding transitional simulations, mesh generation and mesh resolution dependence are discussed in
Chapter 5, Section 5.2. These types of simulations utilize RANS turbulence models. Reaching a mesh
independent solution is therefore possible. On the contrary, mesh resolution dependence was not assessed
explicitly in the case of LES and DES. Both these methods are not expected to yield a truly mesh independent
solution. With continuing mesh refinement, a higher amount of small scales will be resolved and not modeled.
The strategy is thus to use the finer mesh allowed by one’s computational resources.

Similarly, the effect of the employed physical timestep used in time true computations for transitional flows
is discussed in Chapter 5, Section 5.3. For LES and DES simulations, timestep dependence analysis was not
carried out due to limited computational resources. Timestep values noted in the literature were used instead.

In regards to difference scheme, the bulk of the simulations presented in this thesis utilized the 2nd order
PLR scheme for the reconstruction of variables. For simulations at low to moderate angles of attack, it was
found that the numerical scheme had a minor effect on the predicted aerodynamic performance. Since the higher
order schemes are harder to converge sufficiently, thus increasing the overall computational cost, they were only
used in supplementary simulations for selected cases with DES at higher angles of attack with massive flow
separation. For a brief view on the effect of the numerical scheme, the reader is referred to Appendix A.

Moreover, computational results can vary due to the usage, or absence thereof, of numerical limiters. As
stated previously, MaPFlow has the option for Venkatakrishnan’s limiter for the PLR scheme, and superbee and
Van Leer’s limiters for the MUSCL scheme (Section 2.3). Simulations at lower Mach numbers (Ma∞ < 0.29)
using the PLR scheme were carried out without the use of numerical limiters, in contrast to simulations on
transonic regimes. The decision to not include limiters in low Mach simulations was an important step, as
the inclusion of limiters significantly affected the final results of the simulations, preventing the solution from
reaching a mesh independent solution. For a brief view on the effect of the numerical limiter, the reader is
referred to Appendix B. However, further analysis and assessment of the behavior of numerical limiters is beyond
the scope of this work.
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Chapter 3

Transition modeling

3.1 Introduction

Throughout the years, many empirical transition models have been developed which most often correlate
transition location prediction to boundary layer development. A simple model for transition prediction is that
of Michel [81], which uses an empirical correlation between the momentum thickness Reynolds number Reθ and
the Reynolds number based on local length Rex in order to trigger transition. This model has been used for
many airfoil types [82][83] and is able to give decent results. However, it does not account for surface roughness
or freestream turbulence. Another commonly used model is that of Eppler [84], which was employed for the
design of many NREL S-series wind turbine airfoils [6][7]. This empirical method incorporates a roughness
factor in order to predict transition. Another popular transition criterion is that of Abu-Ghannam and Shaw
[85], which addresses natural as well as bypass transition. All these criteria are local in the sense that for each
wall station, boundary layer parameters are compared to critical values in order to determine whether the flow
has transitioned to turbulence.

A similarly popular empirical transition method is that of Granville [24][86] which uses experimental
correlations to predict the neutral stability point and after that calculates the difference between the local
momentum thickness Reynolds number and the neutral stability point momentum thickness Reynolds number.
This difference is then compared to a critical value in order to trigger transition. The downside of this method
is that it also does not account for surface roughness and freestream turbulence. A similar approach is the
Arnal-Habiballah-Delcourt (AHD) criterion [87] which incorporates freestream turbulence levels to predict
transition and in addition can be used for highly compressible flows, up to Mach 4 [88]. These two methods
are non-local because they require upstream boundary layer knowledge in order to define the transition onset
location. Therefore, the flow state cannot be determined using only the parameters of a single boundary layer
station.

A different approach in transition prediction is through the use of stability theory. The Orr-Sommerfeld
equations describe when the linearized modes in parallel shear flows will amplify and will result in turbulence
breakdown. The downside of this approach is that transition is treated as a purely linear phenomenon, an
assumption that is not entirely correct as nonlinear effects can create large destabilizing transients that may
result in turbulence. A commonly used method is the eN method of Smith et al [89] and Van-Ingen [90], which
both correlate the amplitude ratio of the largest mode to the location of transition. The eN method also requires
upstream boundary layer information, similarly to the Granville and AHD empirical models.

The inherent need for boundary layer calculation when using conventional transition criteria does not comply
with the local nature of the Navier-Stokes equations. Unfortunately, the transported variables ρ,u,v,w and P do
not translate to boundary layer properties. Consequently, some type of boundary layer calculation approach
must be implemented in order to apply empirical transition criteria. For local transition models, boundary layer
parameters can be calculated via an integration in the normal direction at every wall station. The process of
calculating boundary layer parameters directly from flow data in corresponding cells will be referred to as Direct
CFD Boundary Layer.

However, Direct CFD Boundary Layer integration will add computational effort that can be quite significant.
Contemporary computational solvers aim at parallel execution, thus utilizing domain decomposition for compu-
tationally demanding problems. In such cases, parts of the boundary layer map may be assigned to different
computational blocks, which makes the process impossible to fully execute in parallel. Subsequently, boundary
layer integration will require additional communication overhead and will impose barriers on the solution of the
Navier-Stokes equations, essentially behaving like an in-situ post process that halts the simulation.

Instead of using the Direct CFD Boundary Layer approach, boundary layer parameters can be calculated
via integral methods like the approximate Polhausen method or by solving boundary layer momentum and
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kinetic energy equations at the wall surface. These methods also suffer from the fact that they cannot be fully
parallelized, because their integral nature requires their solution algorithm to start from the stagnation point
and march downstream. However, since only wall elements are considered, the computation is significantly faster
than that of the Direct CFD Boundary Layer method.

In addition, non-local transition models (like AHD or eN method) require boundary layer history information.
This means that streamlines on the wall surface must also be calculated. This problem essentially does not
exist in a two-dimensional simulation, where every body has a single stagnation point and the upper and lower
boundary layers can only march towards the trailing on a single direction. However, in three dimensional
simulations the computation of streamlines can be quite complex. Three-dimensional geometries often do
not have a single stagnation point, but rather a stagnation line. The direction in which the boundary layer
moves towards would need to be calculated at every iteration, raising the required computational effort. The
computation of streamlines is essential for integral boundary layer solutions when facing three-dimensional
problems. Even though at first glance the Direct CFD Boundary Layer does not need the computation of
streamlines, due to the fact that boundary layer parameters at a given station can be computed only using flow
data in the current normal direction, unfortunately this is valid only when local transition criteria are used.
Non-local models will require the computation of streamlines, even in cases where the latter is not necessary for
boundary layer definition.

In order to avoid the shortcoming of boundary layer integration and streamline calculation, while maintaining
the parallelization of modern CFD solvers, researchers tried to develop frameworks that enable the use of
boundary layer transition criteria in transport equation form. Transport equations are utilized by the Navier-
Stokes equations and by turbulence models, and they are fully compatible with parallel execution. The main
advantage of transport equations is that only local flow data are used in every computational cell. The challenge
in transition modeling is to correlate transition onset prediction to local flow data. If this principle is satisfied,
then a model is fully suitable for modern CFD solvers without the need for additional boundary layer or
streamline interfaces. This step is really important in order to implement transition prediction capabilities in
complex geometries.

The first model in this direction was the γ −Reθ transition model, developed by F.Menter and R.Langtry
[91][92][93], which solves two transport equations for the intermittency γ and the transition onset momentum
thickness Reynolds number Reθt. The γ −Reθ model was revised by F. Menter [94] to only solve one equation
for the intermittency, while including some additional modifications that make the use of correlations Galilean
invariant. This is referred to as the γ transition model. A recently developed model is the Amplification Factor
Transport (AFT) model, developed by C.Coder [95][96][97]. This model is based on a transport equation for the
amplification factor, following the principles of the approximate eN envelope method described by M.Drela [98].
An additional intermittency transport equation is solved, similar to the ones used by the γ −Reθ and γ models.
Newer versions of the model satisfied Galilean invariance. Because the aforementioned transition models do not
attempt to model the physics of transition (unlike turbulence models), but instead utilize transition correlations,
they are referred to as correlation transition models.

A different family of transition models is those that attempt to model the physics, which are called physics
based transition models. The most notable example is the Laminar Kinetic Energy model (k-kl-ω model) by
Walters et al [99]. This model uses a transport equation for the laminar fluctuation energy which is then linked
to the underlying turbulence model through the use of sink and source terms. This way, the laminar kinetic
energy can be transferred into the turbulent kinetic energy equation and thus initiate the transition process.
However, since the pre-transitional phase can be very different between various transition scenarios (natural,
bypass, crossflow), it is quite challenging to tackle all the transition scenarios within a single physics based
transition model. Moreover, this model is not as popular as the γ-Reθ model, having been implemented only
in a few solvers. For this reason, assessment of this model was not deemed as a priority and thus it was not
implemented in MaPFlow.

In this Chapter, the transition models implemented in MaPFlow are presented. Boundary layer transition
implementation is discussed in Section 3.2. Three different approaches to calculate boundary layer parameters
are described in Section 3.2.1. The available empirical transition criteria for use within the boundary layer
transition framework are presented in Section 3.2.2, whereas the eN method is described in Section 3.2.3. The
strategy that couples the boundary layer transition model and the CFD solver is discussed in Section 3.2.4,
whereas Section 3.2.5 and Section 3.2.6 list the detailed interaction of boundary layer transition with the SST
and SA turbulence models. Section 3.2.7 gives some important remarks regarding the implementation of the
boundary layer transition module whereas Section 3.2.8 lists the steps of the boundary layer transition algorithm.
The formulation of the γ-Reθ, γ, and AFT transition models, as well as their interaction with the available
turbulence models, are presented in Section 3.3, Section 3.4, and Section 3.5 respectively.
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3.2 Boundary layer transition modeling

In this section the boundary layer transition approach will be discussed. Boundary layer transition prediction
consists of two distinct parts:

a. boundary layer calculation

b. application of a transition criterion

Most transition criteria that have been developed for aerodynamic simulations correlate transition onset
with boundary layer development. Boundary layer definition is not a straightforward task because the boundary
layer edge is not well defined within a computational flow domain. As discussed in Section 5.1, there are two
different approaches regarding boundary layer definition and calculation in the context of a Navier-Stokes solver.
The first one calculates boundary layer parameters directly from the corresponding flow elements (Direct CFD
Boundary Layer - internal method). The second one solves integral boundary layer equations on the wall surface.
One option is utilizing the approximate method of Polhausen. A second option is solving the integral momentum
and kinetic energy equations. Once the boundary layer parameters are defined, an empirical transition criterion
is applied in order to determine whether the flow has transitioned to turbulence.

3.2.1 Boundary layer calculation in a Navier-Stokes solver

Direct integration from the CFD flow data

Boundary layer parameters can be calculated by integration on the normal to the wall direction. Starting from
each wall station, the boundary layer thickness δ can be defined as the distance from the wall of the cell that
has local velocity parallel to the viscous wall which corresponds to 0.99 · Ue, where Ue can be obtained by the
compressible Bernoulli equation:

Ue
U∞

(s) =

√√√√√
1 +

1−
(

1 +
[
γ̃
2M

2
∞

]
cp(s)

) γ̃−1
γ̃

γ̃−1
2 M2

∞
(3.1)

In (3.1), cp(s) is the local pressure coefficient at the curvilinear distance s from the stagnation point on
either side of the airfoil:

cp(s) =
p(s)− p∞

1
2ρU

2
∞

(3.2)

and γ̃ = 1.4 is the isentropic constant.
The pressure p(s) on the wall is derived directly from the Navier-Stokes solver. Once the boundary layer

thickness is determined, the remaining boundary layer parameters can be calculated using their corresponding
integrals for compressible flow:

δ∗ =

∫ δ

0

(
1− ρ(y)u(y)

ρeUe

)
dy (3.3)

θ =

∫ δ

0

ρ(y)u(y)

ρeUe

(
1− u(y)

Ue

)
dy (3.4)

H =
δ∗

θ
(3.5)

where ρe is the density at the boundary layer edge.
A different approach in defining the boundary layer thickness which does not a priori require Ue is to identify

δ as the distance of the cell in the normal direction from the airfoil where the vorticity changes sign. This
approach is safer because local velocity in a Navier-Stokes simulation may not reach the 0.99 · Ue level when
trying to locate the boundary layer edge. Stations too close to the stagnation point should be excluded, as in this
region the boundary layer thickness definition criteria (Ue percentage or vorticity sign change) are not expected
to work well. In this thesis, stations with local Cp greater than 95% of the stagnation value were excluded. This
convention can be safely implemented because disturbances are always damped in this region. For higher angles
of attack where the flow is expected to overturn the physical leading edge, additional streamwise refinement is
required due to the increased curvature of the airfoil contour.
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Implementing this approach on an unstructured solver adds some extra difficulties regarding the normal to
the airfoil direction which, unlike in structured solvers, is not readily defined. However, this can be managed by
a search algorithm that builds the boundary layer map via element connectivity. Since this search algorithm
will only be called once at the start of the simulation, implementation of the approach on structured and
unstructured solvers is not expected to differ in regards to computational cost.

Approximate method of Polhausen

An approximation of the boundary layer can be achieved by applying the integral method of Polhausen, as
described in [24], which solves a single momentum equation for the boundary layer. Using the definitions of
the boundary layer thickness δ and its momentum thickness θ, the Polhausen method introduces the three
characteristic parameters:

Λ =
ρδ2

µ

dUe
ds

(3.6)

Kp =
ρθ2

µ

dUe
ds

(3.7)

Zp =
ρθ2

µ
(3.8)

which are related as follows:

Kp(Λ) = Zp
dUe
ds

=

(
37

315
− Λ

945
− Λ2

9072

)2

Λ (3.9)

Then, the calculation of the laminar boundary layer is based on the solution of the differential equation for
Zp:

dZp
ds

=
Fp(Kp)

Ue
(3.10)

where

Fp(Kp) = Fp(Λ) = 2

[
37

315
− Λ

945
− Λ2

9072

] [
2− 116

315
Λ +

(
2

945
+

1

120

)
Λ2 +

2Λ3

9072

]
(3.11)

The implemented method follows the Schlichting [24] proposal to define Zp through the simplified explicit
formula of Walz:

Zp(s) =
0.47

U6
e

∫ s

s=0

U5
e ds (3.12)

After calculating Zp, the parameter Kp is found numerically from the first part of (3.9), while Λ is determined
by solving the second part. The boundary layer parameters δ and θ are then obtained directly from (3.6). The
shape factor H is also a function of the main parameter Λ :

H =
3
10 −

Λ
120

37
315 −

Λ
945 −

Λ2

9072

= H(Λ) (3.13)

The Polhausen solution for the boundary layer is valid up to the onset of laminar separation. This happens
at H ≈ 3.8 for the laminar boundary layer velocity profiles, although laminar separation appears for even
lower shape factor values in Navier-Stokes solvers. If laminar separation occurs and transition has not yet been
predicted then the transition location is set to the laminar separation point, as the method cannot reliably solve
the boundary layer inside the bubble.

Boundary layer momentum and kinetic energy equations

This method has been succesfully used by Drela and Giles [98] in a viscous-inviscid interaction solver.
Implementation in a Navier-Stokes solver has been carried out by Johansen et al [83]. The model uses a two
equation integral model based on dissipation closure.

The first equation is the von Karman integral momentum equation, as follows:

dθ

ds
+ (2 +H)

θ

Ue

dUe
ds

=
Cf
2

(3.14)
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where Cf is the skin friction coefficient.
The second equation is the kinetic energy equation and is given by:

θ
dH∗

ds
+H∗(1−H)

θ

Ue

dUe
ds

= 2CD −H∗
Cf
2

(3.15)

where H∗ is the kinetic energy shape parameter and CD is the dissipation coefficient.
For laminar flows, the two first order differential equations are solved using the following closure relationships

obtained from the Falkner-Skan family [100] for H∗, Cf and CD respectively:

H∗ =

{
1.515 + 0.076 (4−H)2

H , H < 4

1.515 + 0.040 (H−4)2

H , H > 4
(3.16)

Reθ
Cf
2

= − 0.067 + 0.01977
(7.4−H)2

(H − 1)
(3.17)

Reθ
2CD
H∗

=

{
0.207 + 0.00205(4−H)5.5, H < 4

0.207− 0.003 (H−4)2

(1+0.02(H−4)2) , H > 4
(3.18)

Using (3.1), (3.14) and (3.15) can be solved directly using a Newton-Raphson method. From the stagnation
point and up to the point of laminar separation, the direct approach is employed and the equations are solved
with Ue as input and with respect to θ and H. When approaching separation, which takes place at H ≈ 3.8,
the direct solution approach becomes ill-conditioned due to the fact that a single Cf value corresponds to two
different velocities: one positive and one negative. To overcome this difficulty, the equations are solved inversely.
By taking Cf from the Navier-Stokes solver, Hinverse is computed using (3.17) and the equations are solved
with respect to θ and Ue.

Direct approach

The boundary layer equations are discretized using a 2nd order central difference scheme [83]. With Ue being
directly calculated by the solver, the boundary layer parameters θ and H are computed by solving (3.14) and
(3.15) directly. The discretized equations for the direct solution take the form:

f1 =
θi − θi−1

si − si−1
+

(
2 +

Hi −Hi−1

2

)
θi + θi−1

Uei + Uei−1

Uei − Uei−1

si − si−1
− Cf

2
|i− 1

2
= 0 (3.19)

f2 =
θi + θi−1

2

dH∗

dH

Hi −Hi−1

si − si−1
+H∗|i− 1

2

(
1− Hi +Hi−1

2

)
θi + θi−1

Uei + Uei−1

Uei − Uei−1

si − si−1

− 2CD|i− 1
2

+H∗|i− 1
2

Cf
2
|i− 1

2
= 0 (3.20)

where H∗,
Cf
2 and 2CD are given from (3.16)-(3.18).

The chain rule used for the discretization of H∗ is as follows:

∂H∗

∂s
=
∂H∗

∂H

∂H

∂s
(3.21)

where

∂H∗

∂H
=


0.076

(
1− 16(

Hi+Hi−1
2

)2

)
, H < 4

0.040

(
1− 16(

Hi+Hi−1
2

)2

)
, H > 4

(3.22)

The Newton-Raphson equivalent of the system of equations with respect to θ and H takes the form:

[
∂f1
∂θi

∂f1
∂Hi

∂f2
∂θi

∂f2
∂Hi

] [
δθi
δHi

]
= −

[
f1
f2

]
(3.23)
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where

∂f1

∂θi
=

1

si − si−1
+

(
2 +

Hi +Hi−1

2

)
Uei − Uei−1

Uei + Uei−1

1

si − si−1
−
∂
Cf
2

∂θi
(3.24)

∂f1

∂Hi
=

1

2

θi − θi− 1

Uei + Uei−1

Uei − Uei−1

si − si−1
−
∂
Cf
2

∂Hi
(3.25)

∂f2

∂θi
=

1

2

∂H∗

∂H

Hi −Hi−1

si − si−1

+H∗|i− 1
2

(
1− Hi +Hi+1

2

)
Uei − Uei−1

Uei + Uei−1

1

si − si−1

− ∂2CD
∂θi

+H∗|i− 1
2

∂
Cf
2

∂θi
(3.26)

∂f2

∂Hi
=
θi + θi−1

2

dH∗
dH

− 0.076 · 16 · 2 1(
Hi+Hi−1

2

)3

Hi −Hi−1

si − si−1


+

θi − θi−1

Uei + Uei−1

Uei − Uei−1

si − si−1

(
−H

∗

2
|i− 1

2
+
∂H∗

∂H

(
1− Hi +Hi−1

2

))
− ∂2CD

∂Hi
+
∂H∗

∂H

Cf
2

+H∗|i− 1
2

∂
Cf
2

∂Hi
(3.27)

The derivatives of
Cf
2 and CD are derived directly from (3.17)-(3.18). The initial solution for θ to start the

iterative process is given by the approximate Walz formula (3.12) for the momentum thickness.

Inverse approach

When the boundary layer approaches separation, the equations are solved inversely with respect to θ and Ue.
The skin friction Cf is obtained from the Navier-Stokes solution and is used in (3.17) to calculate an inverse
shape factor, Hinverse. Using (3.19) and (3.20), the following matrix for the inverse problem is obtained:

[
∂f1
∂θi

∂f1
∂Uei

∂f2
∂θi

∂f2
∂Uei

] [
δθi
δUei

]
= −

[
f1
f2

]
(3.28)

where

∂f1

∂θi
=

1

si − si−1
+

(
2 +

Hi +Hi−1

2

)
Uei − Uei−1

Uei + Uei−1

1

si − si−1
(3.29)

∂f1

∂Uei
=

(
2 +

Hi +Hi−1

2

)
θi + θi−1

si − si−1

2Uei−1

(Uei + Uei−1)2
(3.30)

∂f2

∂θi
=

1

2

∂H∗

∂H

Hi −Hi−1

si − si−1

+H∗|i− 1
2

(
1− Hi +Hi+1

2

)
Uei − Uei−1

Uei + Uei−1

1

si − si−1
− ∂2CD

∂θi
(3.31)

∂f2

∂Uei
=
θi + θi−1

si − si−1
H∗|i− 1

2

(
1− Hi +Hi+1

2

)
2Uei−1

(Uei + Uei−1
)2
− ∂2CD

∂Uei
(3.32)

The derivatives of
Cf
2 and CD are again computed using (3.17) and (3.18).

3.2.2 Transition criteria

This section contains the available empirical transition criteria that can be used in the context of boundary
layer transition. The prediction accuracy of the criteria is assessed separately in Section 5.4.2.
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Michel

A simple, local transition prediction model is the empirical criterion by Michel [81], which has been proven to
yield satisfactory results for many airfoil flows [101]. The Michel criterion is based on experimental data taken
over flat plate flow with almost zero pressure gradient and correlates local values of momentum thickness to
transition onset. It simply states that transition takes place where

Reθ,tr = 1.174

(
1 +

22400

Rex,tr

)
Re0.46

x,tr (3.33)

At first glance it seems that the model does not include pressure gradient effects. However, the effect of the
pressure gradient is included in Reθ.

Granville/Schlichting

According to Schlichting [24], the transition zone is defined as the intermittent area between the point of
instability (i) and the point of transition to turbulence (tr). He assumed that instability appears when the
Reynolds number based on the displacement thickness δ∗ reaches an empirical critical value Reδ∗,crit, which is
related to the local Polhausen parameter Λ(s):

Reδ∗ =
Ue · δ∗

ν
≥ Reδ∗,crit(Λ)(= Reδ∗,crit(s)) (3.34)

Λ(s) =
ρδ2

µ

dUe
ds

(s) (3.35)

Values of Reδ∗ with respect to Λ are given in Table 3.1.

Table 3.1: Critical Reδ∗ with respect to Λ

Λ -5.769 -2.538 -0.821 2.231 3.538 4.923 6.025 6.897 8.460
Reδ∗,crit 100 200 400 2500 5000 8000 10000 11000 11830

The location of the transition point is identified as the point where the difference between the local Reθ
number and the one at the instability point exceeds an empirical critical value. According to the experimental
data of Graville [102] regarding boundary layers under pressure gradients, this critical value is a function of the
mean value of the parameter K̄p between the transition and instability points:

δReθ,crit =

(
Ueθ

ν

)
tr

−
(
Ueθ

ν

)
i

= δReθ,crit(K̄p) (3.36)

with

K̄p =
1

str − si

∫ str

si

Kp(s)ds (3.37)

Kp =
ρθ2

µ

dU

ds
(3.38)

Values of this function are given in Table 3.2.

Table 3.2: Critical Reθ difference with respect to K̄p

K̄p 0.0242 0.0212 0.0145 0.0104 0.0056 0.0 -0.01 -0.02 -0.03
δReθ,crit 1990 1790 1390 1190 993 820 598 499 455
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Arnal-Habiballah-Delcourt (AHD)

The AHD criterion [87] is based on systematic stability calculations and was derived from N -factor stability
curves computed for attached self-similar Falkner-Skan velocity profiles. The curves are expressed as:

N = N(Reθ −Reθ,crit,Kp) (3.39)

with Reθ,crit being the critical momentum thickness Reynolds number where the first instabilities start to grow.
The criterion is based on the averaged Polhausen parameter Kp, similarly to the Schlichting-Granville criterion:

K̄p =
1

str − si

∫ str

si

Kp(s)ds (3.40)

Kp =
ρθ2

µ

dU

ds
(3.41)

with the criterion itself being:

Reθ,tr −Reθ,crit = −206 · exp(25.7K̄p)[ln(16.8Tu)− 2.77K̄p] (3.42)

In (3.42), local Tu is used in its percent form. The criterion is activated after detecting a critical location
which is set where:

Reθ ≥ Reθ,crit = exp(
52

H
− 14.8) (3.43)

This formulation was developed for incompressible flow. However, the AHD criterion has been extended to
flows up to Mach 4 [88]. In that case, (3.42) and (3.43) become:

Reθ,tr −Reθ,crit = −A · exp(BK̄p)[ln(CTu)−DK̄p] (3.44)

Reθ ≥ Reθ,crit = exp(
E

H
− F ) (3.45)

where parameters A to F are functions of the boundary layer edge Mach number Me:

A = 98.64M3
e − 356.44M2

e + 117.13Me − 236.69

B = − 13.04M4
e + 38.5M3

e − 30.07M2
e + 10.89Me + 22.7

C = 0.21M3
e + 4.79M2

e − 1.76Me + 22.56

D = − 3.48M4
e + 6.26M3

e − 3.45M2
e + 0.23Me + 12 (3.46)

E = 0.6711M3
e − 0.7379M2

e + 0.167Me + 51.904

F = 0.3016M5
e − 0.7061M4

e + 0.3232M3
e + 0.0083M2

e − 0.1745Me + 14.6

3.2.3 eN method

The eN method for transition prediction is based on linear stability analysis using the Orr-Sommerfeld equations
to determine the growth of spatially developing TS waves. The method places transition onset where the
amplitude of the most unstable frequency exceeds the initial unstable amplitude by the factor eN . The critical
value for N (Ncrit) is set by the user, with values typically ranging from 8 to 10, with Ncrit = 9 usually used to
simulate natural transition, however Ncrit can also be related to the freestream turbulence intensity Tu by the
formula proposed by Mack (taken from [103]):

Ncrit = −8.43− 2.4 · ln(Tu) (3.47)

Approximate envelope approach

This approach was first implemented in the viscous-inviscid analysis tool ISES [98] by Drela et al. Using the
Falkner-Skan velocity profile family, the Orr-Sommerfeld equation was solved for the spatial amplification rates of
a wide range of shape factors and unstable frequencies. The envelopes of the integrated rates were approximated
by straight lines as follows:

Ñ =
dÑ

dReθ
(H)[Reθ −Reθ0(H)] (3.48)
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where the slope dÑ/dReθ and the critical Reynolds number Reθ0 are approximated by the following empirical
formulas:

dÑ

dReθ
= 0.01[2.4H − 3.7 + 2.5tanh(1.5H − 4.65)]2 + 0.25]1/2 (3.49)

log10Reθ0 =

(
1.415

H − 1
− 0.489

)
tanh

(
20

H − 1
− 12.9

)
+

3.295

H − 1
+ 0.44 (3.50)

When similar flows are considered, H is constant and Reθ is uniquely related to the streamwise coordinate s.
Thus, (3.48) gives the amplification factor Ñ as a function of s. For nonsimilar flows, the amplification factor is
calculated by integrating the local amplification factor downstream from the point of instability. The integration
with respect to Reθ is expressed as follows:

Ñ =

∫ Reθ

Reθ0

dñ

dReθ
dReθ (3.51)

However, (3.51) is not suitable for determining transition in separation bubbles since Reθ hardly varies in
the laminar portion of a typical bubble and thus (3.51) implies that very little amplification will occur inside
the separation bubble, which is not realistic. A better approach is to integrate the amplification factor in the
spatial direction s.

The spatial amplification factor with respect to s is determined as follows:

dÑ

ds
=

dÑ

dReθ

dReθ
ds

=
dÑ

dReθ

1

2

(
s

Ue

dUe
ds

+ 1

)
ρeUeθ

2

µes

1

θ
(3.52)

By using the Falkner-Skan velocity profile family, the following empirical relations were derived:

ρeUeθ
2

µes
≡ l(H) =

6.54H − 14.07

H2
(3.53)

s

Ue

dUe
ds
≡ m(H) =

(
0.058

(H − 4)2

H − 1
− 0.068

)
1

l(H)
(3.54)

The amplification factor with respect to s is thus a function of H and θ:

dÑ

ds
(H, θ) =

dÑ

dReθ
(H)

m(H) + 1

2
l(H)

1

θ
(3.55)

and the explicit expression for ñ becomes:

Ñ(s) =

∫ s

s0

dÑ

ds
ds (3.56)

where s0 is the point where Reθ = Reθ0 .

Orr-Sommerfeld stability database approach

A different approach in tracking TS waves was presented by H. Stock and E. Degenhart [104] who suggested
building a database within which instability data can be evaluated. The main idea is that a discrete set of
results to the Orr-Sommerfeld equations is representative for all possible laminar velocity profiles and for all
relevant disturbance frequencies. For various values of the reduced perturbation frequency f , the N -factor can
be extracted from every frequency as:

N(H,Reθ, f) = −
∫ str

s0

αids (3.57)

where s0 is the point where the tracked wave enters the unstable zone, which occurs when the imaginary part of
the amplitude -αi, the spatial amplification rate- becomes negative and str is the point where the local integrated
N -factor exceeds the preset critical value. Tracking this amplification rate for a wide range of frequencies results
in a number of N curves, the envelope of which forms a Nmax curve which can be used to determine the point of
transition. In the implemented version of the method, the Orr-Sommerfield database from the XFOIL code [3]
is used. By utilizing the database, αi in (3.57) can be evaluated as a function of the boundary layer parameters
H and Reθ along with the normalized circular frequency ω:
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αi = αi(H,Reθ, ω) (3.58)

ω =
2πfθ

Ue
(3.59)

3.2.4 Activating turbulence - Transition location prescription

In regards to turbulence in the context of aerodynamic simulations, the region of interest is close to the solid
surface. The presence of turbulence in the freestream (far from the solid surface) does not affect the overall
aerodynamic results. This leads to defining the flow as turbulent everywhere, while containing the laminar
region close to the airfoil.

The reason for defining the region as turbulent everywhere except for the ”small” laminar region close to
the solid surface is for practical reasons. Defining the laminar region everywhere would pose difficulties in
appropriately defining the turbulent region, especially for multi-element airfoils or multiple body configurations.
Additionally, since in most applications the inflow turbulent quantities correspond to turbulent viscosity orders
of magnitude smaller than the laminar viscosity and in the absence of turbulence production in the farfield
region, the aforementioned definition of the laminar region should not introduce numerical errors. Finally, in
cases where inflow turbulence is considered, the confinement of the laminar flow in the near wall region enables
the convection of the inflow turbulence properties.

For boundary layer transition simulations, the laminar/transitional/turbulent region identification is first
carried out on the solid surface by calculating the boundary layer parameters and then applying a transition
criterion, as discussed in Section 3.2.1 and Section 3.2.2. This identification needs to be further extended
beyond the solid surface along the normal to the wall direction, in order to define the laminar region in the
computational domain. A zone of width dlaminar is defined, where dlaminar represents the maximum distance
from the nearest wall surface that a flow field point can be treated as laminar in the simulation. Beyond this
maximum distance, all points are treated as turbulent. The value of this maximum distance can either be set by
the user of computed by the solver based on the local laminar boundary layer thickness. In either case, dlaminar
is subject to two limitations:

a. The local value of the limiting distance must be greater than the local laminar boundary layer thickness,
dlaminar > max(δi=1,Nwall), with Nwall being the total number of airfoil points

b. In case of multi-element configurations, the laminar regions of downstream elements must be small enough
to not influence the turbulent regions of upstream elements and by that prevent loss of information in
turbulent wakes

When the Direct boundary layer approach is considered (Section 3.2.1), the boundary layer thickness is
directly calculated. For the Polhausen method (Section 3.2.1), the boundary layer thickness is estimated via
(3.6). However, when solving the two integral equations for the boundary layer (Section 3.2.1), boundary layer
thickness is not explicitly calculated. This can be managed by augmenting the solution with (3.6) and (3.9).
With known θ from (3.14), Zp is also known and by means of (3.6) Kp and Λ can be calculated. Λ gives an
approximation of the local laminar boundary layer thickness δ. The maximum local boundary layer thickness is
used to calculate the extent of the laminar region around the airfoil:

dlaminar = a · δ (3.60)

with 1 < a < 1.5 being a safety factor that increases the laminar region in case the approximation underpredicts
the laminar boundary layer thickness. It was found that as long as dlaminar is greater than the local boundary
thickness, the predicted aerodynamic results remain the same. Example of a laminar region and a boundary
layer vector close-up on the upper transition location are shown in fig. 3.1 with the extent of the laminar region
shown in blue.

Turbulence production is handled with the help of an additional intermittency variable γBL, which interacts
with the turbulence models. The variable γBL is defined in the following way:

a. For every mesh cell, the distance to the wall and the closest wall element are both known by the solver.

b. If the cell is located further than the maximum local boundary layer thickness, a turbulent flag is assigned
to it. This corresponds to γBL = 1.

c. If the cell is located closer than the maximum local boundary layer thickness, it takes the laminar/turbulent
flag of the corresponding closest wall element. If it is a laminar wall element, γBL = 0, whereas for a
turbulent wall element γBL = 1.
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It should be noted here that for the results presented in this thesis ”point transition” was assumed. This means
that upstream from the transition location all points are treated as laminar (γBL = 0), whereas downstream
from the transition location all stations are treated as turbulent (γBL = 1). However, in transitional flows there
are intermediate regions where the flow is not fully laminar but has not yet fully transitioned to turbulence.
This corresponds to 0 < γBL < 1. The length of this intermediate region can be estimated via a transition
length model like that of Chen et al [105] of that of Narasimha [106]. The absence of transition length will
slightly raise predicted drag levels. However, since the predicted intermittent regions are usually of low length,
differences in overall aerodynamic performance will be insignificant.
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Figure 3.1: Example of the laminar region around the NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, Tu∞ = 0.05%

3.2.5 Interaction with the k-ω SST turbulence model

The boundary layer transition routine interacts with the SST turbulence model (Section 2.6.2) by modifying the
source and destruction term of (2.144) as follows:

P̃k = γBLPk (3.61)

D̃k = min (max (γBL, 0.1) , 1.0)Dk (3.62)

where Pk and Dk are the original production and destruction terms of the SST model. This approach was
adopted based on the original formulation for the interaction of the intermittency variable used in the γ-Reθ
model and the SST production terms (see Langtry et al [91]).

3.2.6 Interaction with the Spalart-Allmaras turbulence model

The boundary layer transition model interacts with the Spalart-Allmaras turbulence model (Section 2.6.1) by
modifying the ft2 function in (2.138):

ft2 = ct3[1− γBL] (3.63)

The function ft2 has a limited basin of attraction to laminar flow. Excessive values of freestream modified
viscosity ratio may overwhelm the function [70], thus for simulations with free transition the freestream modified
viscosity ratio is limited as:

ν̃∞
ν∞
≤ 0.1 (3.64)

3.2.7 Remarks on the implementation of boundary layer transition modeling

Wall face sorting

The wall faces are sorted using face connectivity at the start of the simulation. This only needs to be done
once and works for both static and moving/deformable meshes, since face indexes do not change during the
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simulation.
For two-dimensional configurations, the connectivity criterion between two wall faces is one shared node.

Normal vectors to the faces are used in order to ensure that the faces are sorted in clockwise order. For
three-dimensional configurations, the chordwise, normal and spanwise directions also need to be given as input.
The final sorting is carried out in two-dimensional sections. Starting from a random face, the faces that form a
two-dimensional section in clockwise order are located. Thus, the connectivity criterion is two shared nodes
in the chordwise direction. The sorting then moves to the next spanwise section, by utilizing the connectivity
criterion of two shared nodes in the spanwise direction.

In both two and three-dimensional cases, the sorted faces are then re-indexed. The first face on the lower
side starting from the trailing edge is always the first face (index= 1), while the rest are indexed accordingly
assuming clockwise order.

For the definition of the leading and trailing edges, the following algorithm is employed:

a. For every wall station in a two-dimensional section, calculate distance from all other stations.

b. Locate the maximum distance between two wall stations. These two stations define the biggest chord and
will be used to approximate the leading and trailing edges.

c. Between these two stations, set leading and trailing edge according to the flow direction. The employed
convention is that the leading edge is the one located upstream.

Flow initialization

When using the Polhausen method or the two integral boundary layer equations for boundary layer calculation
(see Section 3.2.1), the flow around the airfoil can be initialized as either turbulent or laminar. This is possible
because the Cp contour is used as input. Laminar and turbulent Cp levels may differ, however the transition
method can utilize both leading to slightly different transition locations. However, when Direct CFD boundary
layer integration is considered the flow around the airfoil must be initialized as laminar because the turbulent
boundary layer, which will be calculated in case of turbulent flow, cannot be used to predict transition. For
laminar flow, the initial transition locations are set far downstream (close to the trailing edge).

Laminar separation check

At the initial phase of the simulation, the wall faces are checked for laminar separation (Cf < 0 in the laminar
region). This process starts at a prescribed number of solver iterations. In MaPFlow, this number was set to
500 iterations, during which the flow on the wall surface has most likely started to develop. Nevertheless, this
number can be set to any value. However, laminar separation is not expected to develop during the very early
transient phase of the simulation, thus checking for laminar separation at lower stages of the simulation is most
likely redundant.

If laminar separation is detected, the separation point is used as an approximation of the transition location.
The laminar separation location is underrelaxed as:

x̃u,lsep(iter
k) = xu,lsep(iter

k) + a · (xu,lsep(iterk)− xu,lsep(iterk−1)) (3.65)

with 0 < a < 0.5.
Under relaxing prevents the laminar separation from being placed too far upstream in during the converging

phase. After the initial check at 500 iterations, the check is repeated every 100 iterations. There is no need to
repeat the search at every iteration, since in that case the flow will not have changed drastically. If laminar
separation is detected, it is again underrelaxed. The Navier-Stokes equations are iterated until the lift coefficient
has reached an almost constant value. From then on, the boundary layer module is called.

Wall face repaneling in the case of integral boundary layer methods

At the initial call of the boundary layer transition module, the wall geometry is repaneled to a specified number
of surface panels. Based on what was presented in Section 3.2.1 for the integral methods, the curvilinear distance
ds between two airfoil stations is mostly present on the denominator of fractions. Very fine meshes will result in
very low ds values that may lead to convergence problems during the iterative boundary layer solution. This
step was therefore necessary in order to ensure that the boundary layer transition module can converge even on
very fine meshes. It should be noted that the Direct CFD boundary layer approach does not require repaneling.

The default number of panels is 140. The paneling routine starts from the wall points of the Navier-Stokes
simulation, which serve as the starting buffer geometry. It first searches for sharp edges in the buffer geometry,
which indicate the presence of blunt trailing edges. These are excluded from paneling. Since the flow on sharp
edges will separate, there is no need for boundary calculation beyond those points. The routine then applies a
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b-spline curve on the remaining buffer points, forming the panel geometry. More panels are placed close to the
stagnation point, since at that region the velocity gradients are higher.

Calling the boundary layer module

The boundary layer transition module is called every 500 iterations. The module utilizes either the initial
Navier-Stokes geometry (in the case of Direct CFD boundary layer) or the repaneled geometry (in the case of
integral methods).

When integral boundary layer methods are considered, input flow quantities on the buffer geometry are
interpolated on the panel geometry (Cp, Cf , ρ, µL, boundary layer edge velocity Ue calculated via (3.1), and
their corresponding gradients, all derived from the Navier-Stokes simulation).

The boundary layer solution marches from the stagnation point towards the trailing edge on both sides. For
each station, after calculating the boundary layer parameters, the chosen transition criterion is examined. When
the criterion is met, the boundary layer transition module stops. The predicted transition locations xu,ltr (iterk)
are underrelaxed in the same manner as the laminar separation ones:

x̃u,ltr (iterk) = xu,ltr (iterk) + a · (xu,ltr (iterk)− xu,ltr (iterk−1)) (3.66)

with 0 < a < 0.5.
Underrelaxation damps the transition point shift and prevents too abrupt changes that may possibly hold

the transition location from converging. At the last iteration, a = 0.

Checking for transition convergence

The boundary layer transition module is checked for convergence as follows:

∆x̃u,ltr = |x̃u,ltr (cyck)− x̃u,ltr (cyck−1)| < ε (3.67)

ε = c · chord (3.68)

with c being a percentage of the local chord (usually 1e−5 < c < 1e−3). If the convergence criterion is met for
both sides, the iterations for the transition locations are stopped.

3.2.8 Boundary layer transition modeling algorithm

The boundary layer transition module algorithm consists of the following steps:

1. Sort wall faces.

2. Set initial flow conditions and start the simulation.

3. After a prescribed number of iterations, start checking for laminar separation on the wall
surface.

4. Underrelax laminar separation locations and set as a transition location approximation.

5. Flag laminar/turbulent wall stations (0 or 1, respectively) and define γBL, based on what
was discussed in Section 3.2.4.

6. Continue the simulation until a converged solution has been obtained, repeating steps 3-5
at a fixed step of iterations.

7. If the solution has converged, continue; else go to step 6.

8. In case of integral boundary layer methods, repanel wall geometry.

9. Call the boundary layer module to solve the boundary layer and apply the transition crite-
rion.

10. Underrelax transition locations.

11. Flag laminar/turbulent wall stations (0 or 1, respectively) and define γBL, based on what
was discussed in Section 3.2.4.

12. Check module for convergence.

13. If convergence is reached, stop calling the transition module; else go to step 9.
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3.3 γ-Reθ transition model

The first version of the model implemented in MaPFlow is the one of Langtry and Menter, originally presented
in [91], and then further modified in [107][92][93][108]. The main idea behind the model is that the vorticity
Reynolds number, concept first presented by Van Driest and Blumer [109], can be used to provide a link between
the transition onset momentum thickness Reynolds number Reθt obtained from an empirical correlation and the
local boundary layer quantities. This assumption helps the model avoid the need for explicit boundary layer
integration in order to predict transition. This idea was first presented by Menter [110].

The vorticity or strain-rate Reynolds number used in the model is defined as:

Reν =
ρd2
w

µ

∣∣∣∣∂u∂y
∣∣∣∣ =

ρd2
w

µ
S (3.69)

where dw is the distance from the nearest wall and S the strain rate magnitude. (3.69) suggests that Reν can
be computed at every cell because it depends on density, viscosity, wall distance, and shear-strain rate.

A scaled profile of the vorticity Reynolds number is shown in fig. 3.2 (reproduced from Langtry [92]) for a
Blasius laminar boundary layer. The profile is scaled in order to have a maximum of one inside the boundary
layer. This is achieved by dividing the Blasius velocity profile by the corresponding momentum thickness
Reynolds number and a constant of 2.193. This essentially means that the maximum of the profile is proportional
to the momentum thickness Reynolds number and can be related to the transition correlations via the formula:

Reθ =
max(Reν)

2.193
(3.70)

Based on this observation, a general, locally defined framework can be built, which can incorporate correlation-
based transition models in a Navier-Stokes simulation.

Figure 3.2: Scaled vorticity Reynolds number Rev profile in a blasius boundary layer

The γ-Reθ model is based on a transport equation for the intermittency γ, which can be used to trigger
transition locally. In addition to γ, a second transport equation is solved for the transition onset momentum-
thickness Reynolds number R̃eθt. This is required to capture the non-local influence of the turbulence intensity.
The second transport equation is an essential part of the model as it ties the empirical correlation to the
onset criteria in the intermittency equation. The correlation used by the authors is a modified version of the
Abu-Ghannam and Shaw correlation [85], although the model can utilize any locally defined correlation.

3.3.1 Transport equation for the intermittency (γ)

The transport equation for the intermittency γ reads:

∂(ργ)

∂t
+

(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(3.71)

with the source term defined as:

Pγ = Flength [γFonset]
0.5
cα1ρS (1− ce1γ) (3.72)

where S is the strain-rate magnitude. Flength is an empirical correlation that controls the length of the transition
region, and Fonset controls the transition onset location. Both are dimensionless functions that are used to
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control the intermittency equation in the boundary layer. The destruction/relaminarization source is defined as
follows:

Eγ = cα2ρΩγFturb (ce2γ − 1) (3.73)

where Ω is the vorticity magnitude.
The transition onset is controlled by the following functions:

Fonset = max (Fonset2 − Fonset3, 0) (3.74)

Fonset3 = max

(
1−

(
RT
2.5

)3

, 0

)
Fonset2 = min

(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
Fonset1 =

Rev
2.193 ·Reθc

Fturb = e−(RT /4)4 (3.75)

Reν =
ρd2
w

µ
S (3.76)

RT =
ρk

µω
(3.77)

Reθc = f(R̃eθt) (3.78)

Flength = f(R̃eθt) (3.79)

The constants for the intermittency transport equation are

ce1 = 1.0

cα1 = 2.0

ce2 = 50 (3.80)

cα2 = 0.06

σf = 1.0

A modified γ is also calculated in order to predict separation induced transition:

γsep = min

(
s1max

[
0,

(
Rev

3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt (3.81)

Freattach = e
−
(
RT
20

)4

s1 = 2

The effective value for γ used in the interaction with turbulence models (see Section 3.3.7 and Section 3.3.8)
is the maximum of the one calculated via (3.71) and the one calculated via (3.81):

γeff = max (γ, γsep) (3.82)

In (3.78) and (3.79), R̃eθt is transition onset momentum thickness Reynolds number obtained from the
second transport equation for the γ-Reθ model, which is presented in the following section. Reθc and Flength
are calculated from correlations discussed in Section 3.3.3.

3.3.2 Transport equation for the transition onset momentum thickness Reynolds

number (R̃eθt)

The transport equation for the transition momentum-thickness Reynolds number R̃eθt reads:

∂
(
ρR̃eθt

)
∂t

+
∂
(
ρUjR̃eθt

)
∂xj

= Pθt +
∂

∂xj

[
σθt (µ+ µt)

∂R̃eθt
∂xj

]
(3.83)
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Outside the boundary layer, the source term Pθt is designed to force the transported scalar R̃eθt to match
the local value of Reθt calculated from an empirical correlation. The source term is defined as follows:

Pθt = cθt
ρ

t

(
Reθt − R̃eθt

)
(1.0− Fθt) (3.84)

t =
500µ

ρU2
(3.85)

where t is a time scale, which is present for dimensional reasons. The blending function Fθt is used to turn off
the source term in the boundary layer and allow the transported scalar R̃eθt to diffuse in from the freestream.
Fθt is equal to zero in the freestream and one in the boundary layer. The Fθt blending function is defined as
follows:

Fθt = min

max
Fwake · e−(−yδ )

4

, 1.0−

(
γ − 1

ce2

1.0− 1
ce2

)2
 , 1.0


θBL =

R̃eθtµ

ρU

δBL =
15

2
θBL (3.86)

δ =
50Ωdw
U

· δBL

Reω =
ρωd2

w

µ

Fwake = e−( Reω
1E+5 )

2

The Fwake function ensures that the blending function is not active in the wake regions downstream of solid
boundaries. The model constants for the R̃eθt transport equation are:

cθt = 0.03

σθt = 2.0 (3.87)

The empirical correlations for Reθt present in (3.84) are discussed in Section 3.3.4.

3.3.3 Empirical correlations for Reθc and Flength

In (3.74), Reθc is the critical Reynolds number where the intermittency first starts to increase in the boundary
layer. This occurs upstream of the transition Reynolds number R̃eθt , and the difference between the two is
obtained from an empirical correlation. Flength is a function that controls the length of the transitional region.
The available correlations in MaPFlow arep presented below. The accuracy of the correlations is discussed
separately in Section 5.5.2.

Langtry

Langtry et al [92] proposed the following correlations for Flength and Reθc:

Flength =


[398.189 · 10−1 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6)R̃e2

θt], R̃eθt < 400

[263.404 + (−123.939 · 10−2)R̃eθt + (194.548 · 10−5)R̃e2
θt + (−101.695 · 10−8)R̃e3

θt], 400 ≤ R̃eθt < 596

[0.5− (R̃eθt − 596.0) · 3.0 · 10−4], 596 ≤ R̃eθt1200

[0.3188], 1200 ≤ R̃eθt

Reθc =


[R̃eθt − (396.035 · 10−2 + (−120.656 · 10−4)R̃eθt + (868.230 · 10−6)R̃e2

θt

+(−696.506 · 10−9)R̃e3
θt + (174.105 · 10−12)R̃e4

θt), R̃eθt ≤ 1870

[R̃eθt − (593.11 + (R̃eθt − 1870.0) · 0.482)], R̃eθt > 1870

(3.88)

In addition, Langtry et al [91][92] suggest the following modification to Flength:
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Flength = Flength(1− Fsublayer + 40.0 · Fsublayer)

Fsublayer = e−
Rω
0,4

2

(3.89)

Rω =
ρd2
wω

500µ

This modification was suggested because the R̃eθt scalar may decrease to very small values in the boundary
layer shortly after transition. Because Flength is based on R̃eθt values, this can result in a local increase in
the source term for the intermittency equation, which in turn can increase the skin friction significantly. This
behavior is unphysical and seems to happen due to a sharp increase of the y+ in the viscous sublayer where
intermittency decreases to its minimum value as a result of its destruction term. This effect can be eliminated
by forcing Flength to always take its maximum value (in this case 40.0) in the viscous sublayer.

Suluksna

The correlations of Suluksna et al [111] are as follows:

Flength = min((0.1e−0.22Reθt+12 + 0.45), 300)

Reθc = min(max((−(0.025Reθt)
2 + 1.47Reθt − 120), 125), Reθt) (3.90)

Malan

The correlations of Malan et al [112] are as follows:

Flength = min((e7.168−0.01173Reθt + 0.5), 300)

Reθc = min((0.615Reθt + 61, 5), Reθt) (3.91)

3.3.4 Empirical correlations for Reθt

The empirical correlation for Reθt is based on the following parameters:

λθ =
ρθ2

µ

dU

ds
(3.92)

Tu = 100

√
2k/3

U
(3.93)

The parameter λθ should not be confused with the Polhausen Kp parameter (3.9). The latter is used in the
context of boundary layers whereas the former is calculated everywhere in the flowfield. The adopted notation
for λθ was chosen as it follows the formulation of the model presented in [91][92].

In (3.92), dU/ds is the velocity gradient along the streamwise direction and can be computed by taking the
derivative of the velocity U in the x, y, and z directions and then summing the contribution of these derivatives
along the streamwise flow direction:

U =
(
u2 + v2 + w2

) 1
2 (3.94)

dU

dx
=

1

2

(
u2 + v2 + w2

)− 1
2 ·
[
2u
du

dx
+ 2v

dv

dx
+ 2w

dw

dx

]
dU

dy
=

1

2

(
u2 + v2 + w2

)− 1
2 ·
[
2u
du

dy
+ 2v

dv

dy
+ 2w

dw

dy

]
(3.95)

dU

dz
=

1

2

(
u2 + v2 + w2

)− 1
2 ·
[
2u
du

dz
+ 2v

dv

dz
+ 2w

dw

dz

]
dU

ds
=

[
(u/U)

dU

dx
+ (v/U)

dU

dy
+ (w/U)

dU

dz

]
(3.96)

The use of the streamline direction is not Galilean invariant. However, this deficiency is inherent to all
correlation-based models, as their main variable, the turbulence intensity, is already based on the local freestream
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velocity and does therefore violate Galilean invariance. This is not problematic, as the correlations are defined
with respect to a wall boundary layer and all velocities are therefore relative to the wall. Nevertheless, multiple
moving walls in one domain will likely require additional information.

The available transition onset correlation are presented below. The accuracy of the correlations is discussed
separately in Section 5.5.2.

Langtry

The empirical correlation is presented in [93]. For pressure gradient flows, the correlation predictions are similar
to the correlation of Abu-Ghannam and Shaw [85]. The empirical correlation is defined as follows:

Reθt =

{
[1173.51− 589.428Tu+ 0.2196

u2 ]F (λθ), Tu ≤ 1.3

331.50[Tu− 0.5658]−0.671F (λθ), Tu > 1.3
(3.97)

F (λθ) =

{
1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ]e
−[Tu1.5 ]

1.5

, λθ ≤ 0

1 + 0.275
[
1− e[−35.0Fλθ]

]
e[
−Tu
0,5 ], λθ > 0

(3.98)

Abu-Ghannam and Shaw

The correlation of Abu-Ghannam and Shaw is presented in [85]. Transition takes place when:

Reθt = 163 + e(F (λθ)−F (λθ)

6.91 Tu) (3.99)

F (λθ) =

{
6.91 + 12.75λθ + 63.64λ2

θ, λθ ≤ 0

6.91 + 2.48λθ − 12.27λ2
θ, λθ > 0

(3.100)

Variable limiting

For numerical robustness, the acceleration parameter, the turbulence intensity and the transition onset momentum
thickness Reynolds number are limited as follows:

−0.1 ≤ λθ ≤ 0.1

Tu ≥ 0.027 (3.101)

Reθt ≥ 20

According to [93] and [92], a minimum turbulence intensity of 0.027% results in a transition momentum-
thickness Reynolds number of 1450, which is the largest experimentally observed flat-plate transition Reynolds
number based on the Sinclair and Wells [113] data. For cases where larger transition Reynolds number are
believed to occur (e.g., aircraft in flight), the authors suggest that this limiter may need to be adjusted downwards.
The empirical correlation is used only in the source term of the transport equation for the transition onset
momentum-thickness Reynolds number (3.83). An iterative process must be utilized in order to solve (3.97) and
(3.98) (or (3.99) and (3.100)), because the momentum thickness θt is present in the left-hand side of the Reθt
equation and also in the right-hand side of the Flength equation in the pressure gradient parameter λθ.

3.3.5 Predicting crossflow transition

The original version of the γ-Reθ model is geared towards the prediction of two-dimensional transition mechanisms.
Such mechanisms are transition due to Tollmien-Schlichting waves, laminar separation induced transition or
bypass transition. However, for simulations of external flows on three dimensional configurations, a major
transition mechanism is transition due to crossflow instability. For low freestream turbulence environments,
stationary crossflow instability is the main transition mechanism present on swept wings. As turbulence
levels become higher, traveling crossflow modes become more important and eventually dominate the crossflow
mechanism.

In recent years, many publications have proposed various models that aim towards the implementation of
crossflow transition capabilities in the γ-Reθ transition model. Examples are the works of Medida et al [114],
who developed a semi-local empirical crossflow model based on experimental data, and of Grabe et al [115], who
incorporated the well known Arnal C1 crossflow transition criterion [87] into the γ-Reθ framework. However,
both approaches required a priori knowledge of the topology. In addition, the models were suitable for wing-like
configurations and not for arbitrarily shaped geometries. Choi et al [116][117] also evaluated the C1 criterion
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locally by creating a database of solutions to the Falkner-Skan-Cooke velocity profiles [118]. Even though they
were able to get promising results, the use of a database in the framework of a locally defined model is not
always desirable.

The first crossflow transition model implemented in MaPFlow is due to Langtry et al [119], who proposed a
new model for stationary crossflow that accounts for surface roughness. The crossflow model is based on the
local streamwise vorticity, also known as helicity. The second is due to Grabe et al [13], who proposed two
different crossflow transition models. The first one (named Crossflow C1 -CFC1-), was based on the C1 criterion
[87] and was semi-local. The second one (named Crossflow helicity -CFHE-), which is the one implemented in
MaPFlow, is also based on the local helicity. Both model formulations are presented below.

Langtry crossflow model

The crossflow model was first presented in [119]. The streamwise helicity is defined as follows:

~U =

(
u√

(u2) + (v)2 + (w)2
,

v√
(u2) + (v)2 + (w)2

,
w√

(u2) + (v)2 + (w)2

)
(3.102)

~Ω =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
(3.103)

Hestreamwise = |~U · ~Ω| (3.104)

Hestreamwise is non-dimensionalized into a measure of the crossflow strength, similar to the pressure gradient
parameter (3.92) that is used in empirical transition correlations. The non-dimensional crossflow strength is
defined as follows:

Hcrossflow =
dwHestreamwise

U
(3.105)

Langtry [119] notes that the use of the velocity U in (3.105) is not Galilean invariant. However, this practice
is deemed as acceptable due to the fact that the turbulence intensity in (3.93) is also not Galilean invariant.
Hcrossflow is constant near the wall, peaks in the middle of the boundary layer and goes to 0 at the edge of the
boundary layer.

The empirical correlation for crossflow transition was built based on experimental data on the NLF(2)-0415
swept airfoil by Radeztsky et al [120] and on a 6:1 prolate spheroid [121] and is defined as follows:

ReSCF =
θtρ
(
U

0.82

)
µ

= −35.088ln

(
h

θt

)
+ 319.51 + f(+∆Hcrossflow)− f(−∆Hcrossflow) (3.106)

where h is the surface roughness.
The correlation is a logarithmic fit to the NLF experiment with a shift up f(+∆Hcrossflow) or down

f(−∆Hcrossflow) depending on the local crossflow strength. The velocity magnitude U on the left hand side is
divided by 0.82 to account for the approximate difference between freestream velocity and the local velocity in
the boundary layer where vorticity Reynolds number is maximum and transition starts.

The crossflow strength shift terms are defined as follows:

∆Hcrossflow = Hcrossflow

(
1.0 +min

[
1.0

µt
µ
, 0.4

])
(3.107)

The additional eddy viscosity ratio present on the right hand side of (3.107) counteracts the decrease of the
Hcrossflow term that may be caused by the change in velocity profile when transition starts. When crossflow
strengths are different than the NLF experiment, the shift up the logarithmic fit is defined as:

+∆Hcrossflow = max(0.1066−∆Hcrossflow, 0)

f(+∆Hcrossflow) = 6200(+∆Hcrossflow) + 50000(+∆Hcrossflow)2 (3.108)

whereas for strengths greater than the NLF experiment the shift down is defined as:

−∆Hcrossflow = max(−1.0(0.1066−∆Hcrossflow), 0)

f(−∆Hcrossflow) = 75tanh

(
−∆Hcrossflow

0.0125

)
(3.109)
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The interaction with the baseline γ-Reθ model is achieved with the inclusion of a new stationary crossflow
sink term DSCF in the transport equation for R̃eθ (3.83) as follows:

∂
(
ρR̃eθt

)
∂t

+
∂
(
ρUjR̃eθt

)
∂xj

= Pθt +DSCF +
∂

∂xj

[
σθt (µ+ µt)

∂R̃eθt
∂xj

]
(3.110)

DSCF = cθt
ρ

t
ccrossflowmin(ReSCF − R̃eθt, 0.0)(Fθt2) (3.111)

Fθt2 = min
(
Fwakee

−( dwδ )4 , 1.0
)

(3.112)

ccrossflow = 0.6 (3.113)

The Fθt2 term is used to confine the crossflow sink term so that it is only active inside the laminar boundary
layer. The DSCF term is also active only when the stationary crossflow correlation ReSCF drops below the
transported value R̃eθt. When two-dimensional flowfields are considered, DSCF is zero and the original form of
the γ-Reθ model is recovered.

Crossflow helicity (CFHE) crossflow model

The crossflow model was first presented in [13]. The helicity Reynolds number, which is a local quantity, is
defined as:

ReHe =
ρd2
w

µ

Hestreamwise
U

(3.114)

where He is given from (3.104). It is again noted that the explicit use of the helicity is not Galilean invariant.
For the new proposed crossflow criterion the authors define a helicity Reynolds number at transition onset,

Re+
He,t, which is a function of the streamwise shape factor H12. This is carried out in order to account for the

influence of the pressure gradient on the transition location. The critical crosswise Reynolds number ration is
thus:

ReHe,max

Re+
He,t

= 1 (3.115)

The superscript + is used to note crossflow quantities. Through calibration against experimental data of
infinite swept wing flows and of a 6:1 prolate spheroid, the following criterion is proposed:

Re+
He,t = max(−456.83H+ + 1332.7, 150.0)) (3.116)

The shape factor H+ is approximated by a pressure gradient parameter similar to (3.92). It is not possible
to use the same equation because the helicity Reynolds number has its maximum at a different wall-normal
position than the vorticity Reynolds number (3.69). A new parameter λ+

θ is defined by using a length scale θ+

which represents the momentum thickness at the point where the helicity Reynolds number reaches its maximum
in the boundary layer:

λ+
θ =

ρθ+

µ

d|~ue|
d~s

(3.117)

where

θ+ =
1

cHe,max

2

15
dw (3.118)

cHe,max = 0.6944

The velocity at the boundary-layer edge |~ue| is calculated via:

|~ue| =

√√√√u2
∞ +

2γ̃

γ̃ − 1

[
1−

(
p

ρ∞

)1− 1
γ̃

]
p∞
ρ∞

(3.119)

where γ̃ = 1.4 is the isentropic constant.
The gradient d|~ue|/d~s is calculated via:

50



d|~ue|
d~s

=
u

|~u|
d|~ue|
dx

+
v

|~u|
d|~ue|
dy

+
w

|~u|
d|~ue|
dz

(3.120)

d|~ue|
dx

= − 1

|~ue|ρ∞

(
p

p∞

) 1
γ̃ dp

dx

d|~ue|
dx

= − 1

|~ue|ρ∞

(
p

p∞

) 1
γ̃ dp

dx

d|~ue|
dx

= − 1

|~ue|ρ∞

(
p

p∞

) 1
γ̃ dp

dx

The shape factor H+ is computed using the correlation of Cliquet [122]:

H+ = 4.02923−
√
−8838.4λ+4

θ + 1105.1λ+3
θ − 67.962λ+2

θ + 17.754λ+
θ + 2.0593 (3.121)

The interaction with the baseline γ-Reθ model is achieved with the addition of a crossflow term in the
production of γ (3.72):

Pγ =
(
Flength [γFonset]

0.5
+ Flength,cf [γFonset,cf ]

0.5
)
cα1ρS (1− ce1γ) (3.122)

where:

Fonset,cf = max (Fonset2,cf − Fonset3,cf , 0) (3.123)

Fonset3,cf = max

(
1−

(
RT
2.0

)3

, 0

)
Fonset2,cf = min

(
max

(
Fonset1,cf , F

4
onset1,cf

)
, 2.0

)
Fonset1,cf =

ReHe

c ·Re+
He,t

c = 0.7

3.3.6 Boundary conditions

The boundary condition for γ at a wall is zero normal flux, while for an inlet γ is equal to 1.0 . An inlet γ equal
to 1.0 is necessary to preserve the original turbulence model’s freestream turbulence decay rate. The boundary
condition for R̃eθt at a wall is zero flux. The boundary condition for R̃eθt at an inlet should be calculated from
the empirical correlations based on the inlet turbulence intensity.

3.3.7 Interaction with the k-ω SST turbulence model

The γ-Reθ model interacts with the SST turbulence model (Section 2.6.2) by modifying the source and destruction
terms of the k-equation (2.144 as follows (also discussed in Section 3.2.5 for boundary layer transition):

P̃k =γeffPk (3.124)

D̃k =min (max (γeff , 0.1) , 1.0)Dk (3.125)

where Pk and Dk are the original production and destruction terms for the SST model and γeff is the effective
intermittency calculated via (3.82).

In addition, the F1 function of the SST model is modified as:

F1 =max (F1orig, F3) (3.126)

F3 =e
−
(
Rdw
120

)8

Rdw =
ρdw
√
k

µ

where F1orig is the baseline SST blending function given from (2.150).
The production term in the ω equation is not modified. To capture the laminar and transitional boundary

layers correctly, the mesh must have a y+ of approximately 1 at the first point off the wall. If y+ is too large
(i.e., greater than 5), then the transition onset location moves upstream as y+ increases.
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3.3.8 Interaction with the Spalart-Allmaras turbulence model

The γ-Reθ model interacts with the Spalart-Allmaras turbulence model (Section 2.6.1) by modifying the ft2
function (2.138) used by the employed transport equation for the modified viscosity ratio (2.129) as follows (also
discussed in Section 3.2.6):

ft2 = ct3[1− γ] (3.127)

However, additional modifications are necessary because the original formulation for the γ −Reθ model uses
the local turbulent kinetic energy k and dissipation ω which are directly available in the SST model but not in
the Spalart-Allmaras model. The adopted formulation is based on the work by Medida et al [123] and Crivellini
et al [124]. The viscosity ratio RT and the Fθt blending function are calculated as:

RT =
νt
ν

(3.128)

Fθt = min

max
exp−( U2

375Ων ˜Reθt

)4

, 1.0−

(
γ − 1

ce2

1.0− 1
ce2

)2
 , 1.0

 (3.129)

In addition, the γ − Reθ model utilizes the local turbulence intensity for the empirical correlations that
trigger transition. When using the Spalart-Allmaras turbulence model, local turbulence intensity is not directly
calculated. In order to apply the transition model, the freestream value for the turbulence intensity is used in
the whole domain. With this value, the pressure gradient parameter is calculated in the same way as the SST
model and the correlations return the critical Reθt number.

Tulocal = Tu∞ (3.130)

The freestream modified eddy viscosity is again limited as (Section 3.2.6):

ν̃∞
ν∞
≤ 0.1 (3.131)
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3.4 γ transition model

The implemented version is that of Menter [94] who proposed a revised version of the γ-Reθ model. According
to the author, the main objective of the revision was to reduce the overall complexity of the model by including
only one transport equation for γ and provide meaningful calibration coefficients that can be altered by the end
user to match specific applications, while also achieving a Galilean invariant formulation. The model is again
driven by the concept that the vorticity Reynolds number is tied to the transition onset momentum thickness
Reynolds number (Section 3.3).

3.4.1 Transport equation for the intermittency (γ)

The transport equation for the intermittency γ is the same as the one used by the γ-Reθ model:

∂(ργ)

∂t
+

(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(3.132)

However, the intermittency source term has been simplified as:

Pγ = FlengthρSγ (1− γ)Fonset (3.133)

where S is the strain rate magnitude. Due to the Fonset function, the source term is designed to be equal to zero in
the laminar boundary layer upstream of transition and is activated once the local transition onset criteria are met.
In addition, Flength was previously a function while now is a constant value. The destruction/relaminarization
term is the same as the one used in the γ-Reθ model:

Eγ = cα2ρΩγFturb (ce2γ − 1) (3.134)

where Ω is the magnitude of the absolute vorticity rate.
The formulation of the Fonset function, which is used to trigger the intermittency production, is similar to

the one used in the γ-Reθ model. However, in the γ model the critical momentum thickness Reynolds number
Reθc is not computed from a transport equation but algebraically, using local flow variables. Thus, transition
onset is controlled by the following functions:

Fonset = max (Fonset2 − Fonset3, 0) (3.135)

Fonset3 = max

(
1−

(
RT
3.5

)3

, 0

)
(3.136)

Fonset2 = min (Fonset1, 2.0) (3.137)

Fonset1 =
Rev

2.2 ·Reθc
(3.138)

Fturb = e−(RT /2)4 (3.139)

Rev =
ρd2
wS

µ
(3.140)

RT =
ρk

µω
(3.141)

Reθc = f(TuL, λθL) (3.142)

The model constants are:

Flength = 100

ce2 = 50

ca2 = 0.06

σf = 1.0 (3.143)

In (3.142), R̃eθc is calculated from an empirical correlation. Similarly to what was discussed for the γ-Reθ
model in Section 3.3, any local transition correlation for Reθc can be used. The effect of the employed transition
correlations is discussed in Section 5.5.2. The new empirical correlation proposed by Menter in [94] is presented
below.
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3.4.2 New empirical correlation for Reθc

The subscript L used for the Tu and λθ values in the transition correlation (3.142) essentially notes that both
of these quantities are now approximated locally, in contrast to the original γ-Reθ model. This removes the
need for an additional transport equation for Reθ and renders the formulation Galilean invariant. These two
arguments are calibrated so that Reθc has the correct values in a region between the middle and the edge of the
boundary layer, where the γ model triggers transition. The local form for turbulence intensity (TuL) reads:

TuL = min

(
100

√
2k/3

ωdw
, 100

)
(3.144)

where dw is the distance from the wall and the combination ωdw provides a velocity scale inside the boundary
layer that replaces the freestream velocity U used in the γ-Reθ model:

U ∼ Sdw ∼ ωdw

This formulation ensures that in the middle of the boundary layer, TuL approximately equals the freestream
Tu value. The pressure gradient parameter used in empirical correlations is defined as follows:

λθ = −θ
2

µ

1

U

dP

ds
=
ρθ2

µ

dU

ds
(3.145)

where dU/ds is the velocity gradient in the streamwise direction. For a flat plate, one can write:

λθ =
ρθ2

µ

dU

dx
= −ρθ

2

µ

dV

dy
(3.146)

where V and y are the wall-normal velocity and coordinate in the freestream. In the general case:

dV

dy
≡ ∇(~n · ~V ) · ~n (3.147)

In order to provide a local approximation of λθ, the momentum thickness θ is replaced by the wall distance
dw. As already noted, transition triggering starts at the middle of the boundary layer. At that location,
dw = δ/2 ∼ θ (δ is the boundary layer thickness). Menter [94] calibrated (3.147) against the Falkner-Skan family
of velocity profiles in order to ensure that in the middle of the boundary layer, λθ ≈ λθL. The final formula for
λθL reads:

λθL = −7.57 · 10−3 dV

dy

d2
w

ν
+ 0.0128 (3.148)

For numerical robustness, λθL is again limited such that:

λθL = min(max(λθL,−1.0), 1.0) (3.149)

The constant 0.0128 accounts for the fact that in the middle of the boundary layer the velocity gradient
dV/dy is not zero even for zero pressure gradient flows, due to the growth of the boundary layer. The basic
transition correlation was recalibrated and simplified. The new correlation reads:

Reθc(TuL, λL) = CTU1 + CTU2exp(−CTU3TuLFPG(λθL)) (3.150)

CTU1 = 100.0 CTU2 = 1000.0 CTU3 = 1.0

For zero pressure gradient flows, the form of (3.150) is similar to the Abu-Ghannam and Shaw correlation.
The constants in (3.151) are model parameters that can be changed by the user. CTU1 defines the minimal value
of Reθc, whereas the sum of CTU1 + CTU2 defines its maximal value. CTU3 controls how fast Reθc decreases
with increasing turbulence intensity Tu.

The function FPG(λθL) is an empirical function which modifies the correlation for non-zero pressure gradient
flows. The function was calibrated using the Falkner-Skan profiles. The resulting formula for FPG(λθL) reads:

FPG(λθL) =

{
min(1 + CPG1λθL, C

lim
PG1), λθL ≥ 0

min(1 + CPG2λθL + CPG3 ·min[λθL + 0.0681, 0], ClimPG2), λθL < 0
(3.151)

CPG1 = 14.68 CPG2 = −7.34 CPG3 = 0.0 (3.152)
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ClimPG1 = 1.5 ClimPG2 = 3.0 (3.153)

A limiter is then applied to FPG in order to avoid negative values:

FPG = max(FPG, 0) (3.154)

The constants in (3.152) are model parameters. CPG1 controls the value of the critical Reθc number in areas
with favorable pressure gradient, whereas CPG2 controls in areas with adverse pressure gradient. CPG3 becomes
active in regions with separation. The constants in (3.153) define the limits of the FPG function and typically
do not require adjustments.

In addition, the implemented γ model also includes a modification to the constant 2.2 present in the
denominator of (3.135). This modification was proposed by Colonia et al [125] and essentially substitutes the
constant with a logarithmic fitting formula that accounts for different Reynolds numbers. The modification
changes (3.135) as follows:

Fonset1 =
Rev

Conset ·Reθc
(3.155)

where

Conset1 = min(4.84,max(2.2, 1.388ln(Re · 10−6) + 0.705)) (3.156)

The motivation behind the modification was that with increasing Re the original formulation of the model
predicted transition too early. With the proposed modification, the parameter in (3.135) can vary between the
original value of 2.2 up to the value of 4.84, essentially delaying the predicted onset of transition. In addition,
according to [125] the constants CTU1 and CTU2 present in Menter’s transition correlation (3.150) were also
modified as:

CTU1 = 163.0 CTU2 = 1002.25 (3.157)

3.4.3 Boundary conditions

The boundary condition for γ at a wall is again zero normal flux, while at the inlet it is equal to 1.

3.4.4 Interaction with the k-ω SST turbulence model

The γ model interacts with the SST turbulence model in the same way as the γ-Reθ model (Section 3.3.7):

P̃k =γeffPk (3.158)

D̃k =min (max (γeff , 0.1) , 1.0)Dk (3.159)

where Pk and Dk are the original production and destruction terms for the SST model. Since no additional γsep
is calculated by the γ transition model, the effective value for γ is the one calculated via (3.132):

γeff = γ (3.160)

The F1 function of the SST model is modified as:

F1 =max (F1orig, F3) (3.161)

F3 =e
−
(
Rdw
120

)8

Rdw =
ρdw
√
k

µ

where F1orig is the baseline SST blending function given from (2.150).
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3.4.5 Interaction with the Spalart-Allmaras turbulence model

The γ model interacts with the Spalart-Allmaras turbulence model in the same way as the γ-Reθ model
(Section 3.3.8), by modifying the ft2 function as:

ft2 = ct3[1− γ] (3.162)

Since k and ω are not available, (3.141) is different:

RT =
νt
ν

(3.163)

Similarly, local Tu is not directly calculated, thus:

Tulocal = Tu∞ (3.164)

The freestream modified eddy viscosity is again limited as (Section 3.2.6):

ν̃∞
ν∞
≤ 0.1 (3.165)
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3.5 Amplification Factor Transport transition model

The Amplification Factor Transport (AFT) model was first published by C.Coder and M.Maughmer in [95],
and further modified in [126][127][128]. The employed transition prediction approach is the approximate eN

envelope method of Drela et al (Section 3.2.3) modified to fit the transport equation framework.

3.5.1 Transport equation for the amplification factor (Ñ)

The first publication of the model utilized a single equation for the amplification factor as follows:

∂(ρÑ)

∂t
+
∂(ρujÑ)

∂xj
= ρΩFcritFgrowth

dÑ

dReθ
+

∂

∂xj

[
1

σn
(µ+ µt)

∂Ñ

∂xj

]
(3.166)

where Ω is the vorticity magnitude.
The source term of (3.166) is a rewritten form of the integrand from (3.48) and is an expression of the

streamwise growth of the T-S instabilities. The Fcrit function is used to determine if the local boundary layer is
capable of containing unstable modes and is defined as:

Fcrit =

{
0, Rev < Rev,0

1, Rev ≥ Rev,0
(3.167)

with

Rev,0 = kyReθ,0 (3.168)

ky = (0.246175H2 − 0.141831H + 0.008886) (3.169)

Rev =
ρSd2

µ+ µt
(3.170)

The function ky is based on the Falkner-Skan profiles and describes the proportionality of the two Reynolds
numbers Rev and Reθ, where HL is maximum in the profile. The stability characteristics are taken from the
approximate envelope method:

log10(Reθ,0) = 0.7tanh

(
14

H − 1
− 9.24

)
+

2.492

(H − 1)0.43
+ 0.62 (3.171)

dÑ

dReθ
= 0.028(H − 1)− 0.0345exp

[
−
(

3.87

H − 1
− 2.52

)]
(3.172)

The function Fgrowth in (3.166) is a combination of correlations describing the shape factor dependency of
the local boundary layer growth rate in the streamwise direction:

Fgrowth = D(H)[1 +m(H)]
l(H)

2
(3.173)

where

l(H) =
6.54H − 14.07

H2
(3.174)

m(H) =

(
0.058

(H − 4)2

H − 1
− 0.068

)
1

l(H)
(3.175)

are the same as (3.53) and (3.54) and

D(H) =
H

0.5482H − 0.5185
(3.176)

is a correlation that relates the local flow velocity and wall vicinity effects to the local vorticity along the locus
of maximum HL for the Falkner-Skan profiles.

The source term thus depends on the local boundary layer shape factor H. However, the shape factor H
used by M.Drela et al [98] cannot be exactly defined within a Navier-Stokes simulation by using only local flow
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data. The authors of the model utilize a formula which estimates the H factor using a local pressure gradient
parameter HL. The version implemented in this work follows the formulation presented by Coder at al in [96]:

HL =
d2
w

µ
[∇(ρ~u · ~nwall) · ~nwall] (3.177)

In (3.177), ~nwall represents the wall-normal unit vector. This formulation renders the model Galilean
invariant. HL, which is essentially the wall-normal gradient of wall-normal momentum, relates to the boundary
layer shape factor H as:

H = 0.376960 +

√
HL + 2.453432

0.6531181
(3.178)

For numerical robustness, HL is limited such that −0.25 ≤ HL ≤ 200, which corresponds to 2.21 ≤ H ≤ 17.98.
(3.178) is used everywhere in the flow field despite being developed for a small region of HL. Lower values of
HL correspond to favorable pressure gradients, which have slower growing amplification factors.

3.5.2 Transport equation for the intermittency (γ)

Moreover, the implemented version of the model also uses an additional transport equation for the intermittency
γ, similar to the one used by the γ −Reθ and γ transition models (Section 3.3 and Section 3.4):

∂(ργ)

∂t
+

(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(3.179)

with source and destruction terms:

Pγ1 = Flengthcα1ρS [γFonset]
0.5

(1− ce1γ) (3.180)

Eγ1 = cα2ρΩγFturb (ce2γ − 1) (3.181)

The blending F functions are also similar:

Fonset = max[Fonset,2 − Fonset,3, 0] (3.182)

Fonset3 = max

[
1−

(
µt

3.5µ

)
, 0

]
(3.183)

Fonset2 = min(Fonset,1, 2) (3.184)

Fonset1 = Ñ/Ncrit (3.185)

Fturb = exp

[
−
(
µt
2µ

)4
]

(3.186)

Transition occurs then the transported amplification factor ñ reaches Ncrit. Ncrit can be calculated by
Mack’s relation (3.47). The constants for the intermittency equation are given by Menter:

ce1 = 1.0

cα1 = 2.0

ce2 = 50

cα2 = 0.06

σf = 1.0 (3.187)

while Flength is set to 100, similar to the γ model.

3.5.3 Boundary conditions

The boundary condition for both the amplification factor and the intermittency transport equations at a solid
wall is zero normal flux, while in the freestream Ñ∞ = 0 and γ∞ = 1.
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3.5.4 Interaction with the k-ω SST turbulence model

The AFT model interacts with the SST turbulence model in the same way as the γ-Reθ and γ models
(Section 3.3.7, Section 3.4.4):

P̃k =γeffPk (3.188)

D̃k =min (max (γeff , 0.1) , 1.0)Dk (3.189)

where Pk and Dk are the original production and destruction terms for the SST model. Since no additional γsep
is calculated by the AFT transition model, the effective value for γ is the one calculated via (3.179):

γeff = γ (3.190)

The F1 function of the SST model is modified as:

F1 = max (F1orig, F3) (3.191)

F3 = e
−
(
Rdw
120

)8

Rdw =
ρdw
√
k

µ

where F1orig is the baseline SST blending function given from (2.150).

3.5.5 Interaction with the Spalart-Allmaras turbulence model

The AFT model interacts with the Spalart-Allmaras turbulence model in the same way as the γ-Reθ and γ
models (see section 3.3.8, section 3.4.5):

ft2 = ct3[1− γ] (3.192)

The viscosity ratio is again calculated as:

RT =
νt
ν

(3.193)

The freestream modified eddy viscosity is again limited as (Section 3.2.6):

ν̃∞
ν∞
≤ 0.1 (3.194)
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Chapter 4

High fidelity turbulence modeling

4.1 Introduction

As far as aerodynamic simulations are considered, computational solvers most often utilize some type of model
for turbulence closure. Throughout the years, both algebraic and transport equation turbulence models have
been used, however in recent the focus has shifted towards the latter. Examples of transport equation models are
the Spalart-Allmaras model (Section 2.6.1) and the k-ω SST model (Section 2.6.2), which is a modified version
of the Wilcox two equation model [129]. Other notable turbulence models are the two equation k-ε model [130],
which is often used for atmospheric flow simulations, and the algebraic Baldwin-Lomax model [131].

These are referred to as Reynolds-Averaged Navier-Stokes (RANS) turbulence models because they employ
Reynolds-Averaging for the modeling of turbulence. Therefore, they are primarily geared towards predicting the
averaged effect of turbulence in the context of a Navier-Stokes simulation. In that sense, the averaged effect of
the Reynolds stresses on the flow is completely modeled, bypassing the need to resolve the eddies of any scale in
the computational mesh. This decreases the required computational resources significantly. For two-dimensional
flow and attached boundary layers, RANS models are able to give very accurate predictions when compared to
experimental data. This is backed up by results available from the turbulence modeling resource of NASA [132],
where results for different solvers using various available turbulence models indicate that attached flows are
predicted with great accuracy at least up to the point of stall. Other examples include the works of Seyfert et al
[133] and Johansen et al [83], who considered turbulent and transitional flows, showing that 2D simulations
with RANS models work well in the linear region where either no stall or mild stall are present.

However, the same does not hold true for highly unsteady, separated flows. Utilization of time or ensemble
averaging, which is carried out by RANS models, hinders the development of instantaneous, three dimensional
turbulent structures. This is also discussed in the works of Strelets [31] and Xu et al [32], who use 3D Unsteady
RANS (URANS) to simulate the flow past airfoils at angles up to 90◦. Both works show that 3D URANS
supresses the development of 3D turbulent structures and severely overpredicts lift and drag in the deep stall
region.

The use of Direct Numerical Simulation (DNS), where all turbulent scales are resolved, can in theory eliminate
the need for turbulence modeling. However, this requires very fine meshes and very low physical timesteps,
bringing the cost for DNS to unacceptable levels for most industrial applications. The mesh requirements of
DNS are discussed in Choi et al [29], where DNS for turbulent boundary layer on a flat plate is shown to have
mesh point requirement that scales with Reynolds number as:

NDNS ∼ Re37/14
Lx

(4.1)

Therefore, DNS is used only for research purposes at very low Reynolds numbers. Most often it serves as a
numerical experiment, in the sense that due to its accuracy it can aid in the understanding of physics which in
turn can be useful for the development and calibration of turbulence models.

Large Eddy Simulation (LES) was initially proposed as a DNS/RANS hybrid. Contrary to the RANS
approach, LES resolves the large scales (eddies) of the turbulent flows directly, leaving only the small scales
(sub-grid scales, SGS) to be modeled. This is achieved by applying a spatial filter in the governing equations,
separating the eddies into large and sub-grid components. Due to the fact that the smaller scales are the most
expensive to fully resolve, the cost of LES is significantly lower than the cost of DNS. LES was proposed as
early as 1960 by J. Smagorinsky [134]. If mesh resolution is fine enough, LES can provide more accurate results
than RANS because large eddies carry most of the turbulent energy and are thus responsible for most of the
momentum transfer and turbulent mixing. The effect of the large eddies is captured in full with LES, whereas it
is only modeled with RANS.
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In the work of Choi et al [29], the mesh point requirements for LES are also discussed. The cost for wall
resolved LES for a flat plat turbulent boundary layer is show as:

NLES,wr ∼ Re13/7
Lx

(4.2)

whereas for wall modeled LES is shown as:

NLES,wm ∼ ReLx (4.3)

It is evident that the cost of LES is significantly lower than that of DNS, especially when wall modeling is
used. In that sense, LES can be used to simulate flows with Reynolds numbers at least one order of magnitude
higher than DNS.

Even though the cost of LES is significantly lower than that of DNS, it remains high for everyday applications
at moderate to high Reynolds numbers. This is primarily due to the mesh requirements for the solution of
boundary layers. As stated previously, this cost can be alleviated via use of wall models. However, wall models
are not suitable for the prediction of separated boundary layers.

This led to the development of hybrid techniques that try to combine the best aspects of RANS and LES
methodologies within a single strategy. This idea was first presented by P. Spalart [135], as a modification to the
Spalart-Allmaras turbulence model. P. Spalart also introduced the term Detached Eddy Simulation (DES) in
the same paper. The modification enables boundary layer and separation regions to be treated in a RANS-like
manner, whereas downstream of separation the turbulence model behaves like a Smagorinsky-SGS model and
large eddies are fully resolved and not modeled. The RANS equations are well suited for attached boundary
layers and can produce decent results with relatively coarse meshes. For separated regions and free shear layers,
where the RANS predictions are not expected to have sufficient accuracy, the turbulence model switches to the
LES mode.

DES can be used with any turbulence model that has an appropriately defined length scale. Besides the
Spalart-Allmaras model, other candidates are the SST k-ω and the k-ε models. Compared to classical LES
methods, DES requires less computational effort due to the lower costs of the RANS approach inside the
boundary layer region, while also offering some of the advantages of an LES method in separated regions and
wakes. The initial version of DES [135], called DES97, has since evolved to the Delayed DES (DDES) concept,
initially presented by Menter et al in [136], and the Improved Delayed DES (IDDES) concept, initially presented
by Spalart et al in [137], which addressed some of the deficiencies of the DES97 approach.

In addition, some simulations require the presence of turbulent inflow. In such cases, the freestream velocity
is not constant but, rather, varies around a mean value. The values for the variations are created using a
synthetic turbulence generator. Simulations with turbulent inflow usually LES in order to fully capture the
effect of the unsteady velocity fluctuations. On the contrary, turbulent inflow is rarely used in conjuction with
RANS methods, in which the averaging of turbulent structures will most likely eliminate their time-dependent
character.

In this Chapter, the LES and DES strategies implemented in MaPFlow are presented. LES is discussed in
Section 4.2. The filtered governing equations are presented in Section 4.2.1, whereas the process of filtering is
discussed in Section 4.2.2. Subgrid-scale modeling is discussed in Section 4.2.3. Detached eddy simulation is
discussed in Section 4.3. Section 4.3.1 presents the initial DES idea, as presented by Spalart in [135], followed
by the DDES and IDDES concepts for both Spalart-Allmaras and k-ω SST models in Section 4.3.2. Finally,
turbulent inflow implementation is presented in Section 4.4.
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4.2 Large Eddy Simulation

4.2.1 Filtered equations

The governing equations are the Navier-Stokes equations, presented in Section 2.2. However, since in LES only
large eddies are resolved directly, a low-pass spatial filter is applied to the equations in order to formulate the 3D
unsteady system for large eddies. This is called explicit filtering. By applying a filter, the velocity components
and the energy are decomposed as:

u = ũ+ u′ (4.4)

where ũ is the filtered and u′ the sub-filter component. In fig. 4.1, the difference between the filtered velocity ũ
and the instantaneous velocity u is shown.

Figure 4.1: Difference between filtered and instantaneous velocity (reproduced from [1])

For the governing equations of compressible flow, each equation is filtered. Starting with the conservation of
mass, we get:

∂ρ̄

∂t
+
∂uiρ

∂xi
= 0 (4.5)

In (4.5), an additional sub-filter term (uiρ) is present. Having to model the sub-filter scales of the mass
conservation equation is generally not desirable. In order to overcome this, Favre filtering is employed, which is
a density-weighted filtering operation. For an arbitrary quantity g, Favre filtering is defined as:

g̃ =
ρg

ρ̄
(4.6)

which becomes the normal filtering operation in the limit of incompressibility. The filtered conservation of mass
thus becomes:

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0 (4.7)

Applying the Favre filtering concept to the momentum equation, one gets:

∂ρũi
∂t

+
∂(ρũj ũi)

∂xj
+

∂p

∂xi
− ∂σ̃ij
∂xj

= −
∂ρτ rij
∂xj

+
∂

∂xj
(σij − σ̃ij) (4.8)

where σij is the shear stress tensor. For a Newtonian fluid, σij is given by:

σij = 2µ(T )Sij −
2

3
µ(T )δijSkk (4.9)

The term ∂
∂xj

(σij − σ̃ij) in (4.8) represents a sub-filter viscous contribution from evaluating the viscosity

µ(T ) using the Favre-filtered temperature T̃ . The subgrid stress tensor is given by:

τ rij = ρ̄( ˜ui · uj − ũiũj) (4.10)

The filtered energy field is [64]:

∂ρ̄ẽ

∂t
+

(∂(ρ̄ũj ẽ))

∂xj
+

∂q̃

∂xj
+ p̄ ˜Skk − σ̃ijS̃ij = −A−B − C +D (4.11)

where
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A =
∂

∂xj
[ρ̄(ũje− ũj ẽ)]

- divergence of subgrid-scale heat flux

B =
∂

∂xj
[q̄j − q̃j ]

- divergence of subgrid scale heat diffusion

C = [pSkk − p̄ ˜Skk]

- subgrid scale pressure dilatation

D = [σijSij − σ̃ijS̃ij]
- subgrid scale viscous dissipation

and

σij = 2µSij +

(
µB −

2µ

3

)
δijSkk

σ̃ij = 2µ̃S̃ij +

(
µ̃B −

2µ̃

3

)
δij ˜Skk

S̃ij =
1

2

(
ũi
∂xj

∂uj
∂xi

)
(4.12)

q̄j = − k ∂T
∂xj

q̃j = − k̃ ∂T̃
∂xj

In (4.7)-(4.12), µ, µB and k stand for molecular viscosity, bulk viscosity and thermal conductivity, respectively,
whereas µ̃, µ̃b and k̃ are the respective values at the filtered temperature T̃ .

The right hand side of (4.7),(4.8) and (4.11) contains terms which have to be modeled. In the momentum
equation, the subgrid stress tensor (4.10) is approximated with the use of subgrid scale models, but the second
term (σij − σ̃ij) is usually neglected. In the filtered energy equation, term A can be expressed through the
subgrid stress tensor, term B can be neglected and terms C and D can be modeled [64].

4.2.2 Filter implementation

The filtering operation in LES can be either implicit or explicit. In explicit filtering, an LES filter is applied to
the discretized Navier-Stokes equations. LES filters have a well-defined filter shape and they reduce truncation
errors. Examples of LES filters include the tophat, cut-off and Gaussian filters [64]. When using the finite volume
method, integration is carried out over control volumes. This is in practice equivalent to a convolution with a
top-hat filter. Therefore, there does not exist a need to apply additional explicit filtering to the instantaneous
equations. The use of control volumes as filter is called implicit filtering.

However, it is worth noting that with implicit filtering truly mesh independent results cannot be obtained,
because by refining the mesh the solver will solve more of the sub-grid scales. Eventually, with continuing mesh
refinement, a DNS simulation will be reached. On the other hand, explicit filtering requires a finer mesh than
implicit filtering, and the computational cost increases with (∆x)4.

4.2.3 Subgrid-scale modeling

Subgrid-scale modeling refers to the important small-scale physical processes which occur at length scales that
cannot be adequately resolved by the computational mesh. In LES, subgrid-scale modeling is used to represent
the effects of unresolved small-scale turbulent structures (eddies, vortices) in the Navier-Stokes equations which
govern the solution of the large-scale motions. The SGS stress is a symmetric tensor, invariant to Galilean
transformation, and, as a proper tensor quantity, it must transform from one frame to another that may be
rotated in appropriate fashion.

When compared to the large scales, the SGS scales are more isotropic and homogenous in nature. This
makes SGS modeling simpler than RANS modeling, which tries to captures all turbulent scales within a single
framework. Various subgrid-scale models have been developed throughout the years and the research is still
ongoing. Different subgrid-scale models are compared in the work of Lenormand et al [138].
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Eddy-Viscosity models

The majority of the SGS models are based on the eddy-viscosity concept. These models are able to represent
the global dissipative effects of the small scales. However, they are unable to reproduce the local details of
the energy exchange between large and small scales. Traditionally, the effect of SGS motions upon resolved
scales are modeled in analogy with molecular degrees of freedom in e.g. kinetic theory of gases, in which the
momentum fluxes are linearly dependent on the rate of strain of the large scales. This leads to the following
eddy-viscosity closure:

τevij = −2νsgsS̄ij (4.13)

where νsgs is the kinematic eddy viscosity. This approach complies with Galilean invariance, symmetry, and
transformations from one frame to another. Like turbulence models, the units of the eddy viscosity are velocity
times a characteristic length-scale, or kinetic energy density multiplied by a time-scale.

Smagorinsky model

The best known eddy-viscosity SGS model is that of Smagorinsky [134], which was published in 1963. In this
model, the subgrid scale eddy viscosity is expressed as a characteristic length scale ∆ times a velocity scale |S̄|,
representing a Galilean invariant estimation of velocity derivatives over length-scales of order ∆. The model
itself can be written as:

τsmagij = −2(Cs∆)2|S̄| (4.14)

where |S̄| = (2S̄ijS̄ij)
1/2 is the magnitude of the strain-rate tensor and Cs is the Smagorinsky constant. The

theoretical value found by Lilly [139] is Cs = 0.18. However, the value of the constant is largely dependent on the
type of flow. The filter width ∆ in (4.14) is chosen to be the average mesh cell size, hence ∆ = (∆x1∆x2∆x3)1/3.
Other common filter widths are twice the average width size ∆ = 2(∆x1∆x2∆x3)1/3 or the maximum dimension
of the mesh cell ∆ = max(∆x1,∆x2,∆x3).

Small scales exhibit reduced growth near solid walls. In order to account for this, the Smagorinsky eddy
viscosity νsmag is adjusted according to Van Driest damping as follows:

νsmag =
[
Cs∆(1− e−y

+/25)
]2
|S̄| (4.15)

where y+ is the dimensionless wall distance.
There are also versions of the Smagorinsky model in which the value for Cs is dynamic in space and time.

These are called dynamic subgrid scale models. The most popular dynamic model is that of Germano et al [140].
However, dynamic models are not considered in this thesis.
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4.3 Detached Eddy Simulation

4.3.1 Original Detached Eddy Simulation (DES97)

The transport equation solved by the Spalart-Allmaras model (Section 4.3.2) is repeated here:

∂ρν̃

∂t
+

∂

∂xj
(ρν̃uj) = ρCb1 [1− ft2] S̃ν̃ − ρ

[
Cw1fw −

Cb1
κ2

ft2

](
ν̃

dw

)2

+

ρ

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(4.16)

The initial modification proposed in [135] replaced the wall distance dw in (4.16) with a modified distance
function d̃ defined as:

d̃ = min [dw, CDES∆] (4.17)

In (4.17) CDES is constant in the order of 1. CDES = 0.65 is used most often. ∆ is a local mesh length
scale, similar to the one used in LES subgrid-scale models (Section 4.2.3):

∆ = (∆x∆y∆z)1/3 (4.18)

or

∆ = max(∆x,∆y,∆z) (4.19)

Both length scales can be used. DES simulations most often use (4.19). However, selection of ∆ is a separate,
discussion raising issue [41]. The modification to the original turbulence model may seem simple, however it
drastically changes the model behavior. In regions with fine enough mesh resolution, the model behaves like
Smagorinsky-LES one with a wall model. Inside boundary layers or when approaching separation, the model
switches to the original form, behaving like a RANS turbulence model. Even though the modification presented
here refers to the Spalart-Allmaras model, the DES approach can be implemented in any turbulence model that
has an appropriately defined length scale.

Early development of DES is noted in Spalart et al. [141][142], where results from separated flow around the
NACA0012 airfoil as well as from channel flow are presented in an effort to assess the computational cost and
the feasibility of the DES strategy. The ”classic” problem of flow past a circular cylinder was tackled using
DES by Travin et al [36]. Both laminar and turbulent separation cases were considered, with Reynolds numbers
ranging from 50000 for the laminar separation case up to 3 x 106 for the turbulent separation case. Deviations
from the experimental data were noted. It was also found that simulations with unsteady RANS were much less
accurate than DES for the laminar separation case, but the two were similar for the turbulent separation case.

In the work of M. Strelets [31], massively separated flow around the NACA0012 airfoil at very high angles
of attack was simulated and compared to experiments, using DES versions of both the Spalart-Allmaras and
k-ω SST turbulence models. The comparison was favorable, especially in very high angles of attack where the
unsteady RANS solution deviated from the experiments significantly. Breuer et al [41] considered the flow past
an inclined flat plate using unsteady RANS, DES and LES. The initial results showed that the unsteady RANS
approach failed to predict the unsteady characteristics of the separated flow, whereas DES results were closer to
LES. However, some deviations between DES and LES were noted, even when using the same computational
mesh. A revised version of the Spalart-Allmaras for the DES strategy was also suggested, which was able to give
results closer to LES. Johansen et al [143] performed DES around the parked NREL phase VI blade rotor at
fixed angle of attack. DES results show more three-dimensional flow structures when compared to conventional
two-equation RANS. However, no significant improvement was shown in the global blade characteristics. The
DES approach has also been combined with transport equation transition models for transitional flows. An
example is the work of Srensen et al [144], who combined the original DES version of the SST k-ω model
proposed in [31] with the γ-Reθ correlation transition model (see Section 3.3). Flow around the circular cylinder
and the DU-96-W-351 airfoil was considered. Results using the transition model were shown to improve the
results of the standard, fully turbulent DES simulation.

4.3.2 Delayed Detached Eddy Simulation

The original DES formulation discussed in Section 4.3.1 was found to contain some inconsistencies in the quality
of the produced results. In [136], two main concerns with the original DES formulation were discussed. The first
was how quickly the unsteady turbulent structures develop after the model has switched from the RANS to the
LES mode. This is important in the prediction of separated shear layers, because the delayed onset of resolved
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turbulent structures would lead to underprediction of turbulent stresses due to reduced unresolved turbulence
levels by the DES formulation. The second was the robustness of the switching mechanism employed by the
original DES formulation. In order to prevent the activation of the DES limiter in attached boundary layers, a
lower limit on the local surface mesh resolution is typically enforced. If this condition is violated, the consistency
of the RANS model is severely compromised. In most cases, this results in Grid Induced Separation (GIS).

Moreover, Spalart et al [137] note that GIS begins when the mesh spacing parallel to the wall becomes
less than the boundary-layer thickness δ. This may occur due to either mesh refinement or boundary layer
thickening. In both scenarios, mesh spacing is fine enough for the DES length scale to follow the LES branch
(4.17), lowering the eddy viscosity below the RANS level. However, resolved Reynolds stresses deriving from
velocity fluctuations, which Spalart et al note as ”LES content”, have not replaced the modeled Reynolds
stresses. Pure LES content derived from the velocity fluctuations may be lacking because the resolution is not
fine enough to fully support it, or because its generation is hindered by the presence of instabilities. The reduced
eddy viscosity will, thus, not be counteracted by any sizable resolved stress. The depleted stresses reduce skin
friction, which can lead to premature separation. Spalart et al [137] referred to this behavior as modeled-stress
depletion (MSD).

The new DES version was named Delayed Detached Eddy Simulation (DDES), because it addresses this
concern by delaying the onset of artificial separation caused by local mesh refinement.

Spalart-Allmaras Delayed Detached Eddy Simulation

In [137], the DDES version of the Spalart-Allmaras model is presented. The original parameter r for the model
(Section 2.6.1) reads:

r = min

[
ν̃

S̃κ2d2
w

, 10

]
(4.20)

The modified parameter rd is defined as:

rd ≡
νt + ν

√
ui,jui,jκ2d2

w

(4.21)

where subscript d stands for ”delayed”. When compared to the original DES model, the length scale now
depends not only on the local mesh spacing, but also on the flow solution.

In (4.21), νt is the eddy viscosity, ν the kinematic viscosity, κ the Von Karman constant and d the distance
to the wall. Similar to the original version of the Spalart-Allmaras model, r equals 1 in the logarithmic layer
and drops to 0 towards the boundary layer edge. The addition of ν in the numerator helps in ensuring that rd
does not reach 0 even in regions with y+ ≤ 10. When using the Spalart-Allmaras model, ν̃ can be used instead
of νt + ν. The value rd from (4.21) is used to calculate the function fd as follows:

fd ≡ 1− tanh([8r3
d]) (4.22)

The function fd is designed to be 1 in LES regions, where rd � 1, and 0 elsewhere. Using tanh also makes
the function insensitive to rd exceeding 1 in very near-wall regions. The values 8 and 3 for the constants in
(4.22) were calculated in [137] by matching DDES and RANS results for flat plate boundary layer simulations.

The function fd is used in the modified length scale:

d̃ ≡ dw − fd ·max(0, dw − CDES∆) (4.23)

Setting fd equal to 0 returns the RANS mode (d̃ = dw), while setting it equal to 1 returns the original DES
formulation d̃ = min(dw, CDES∆).

Spalart-Allmaras Improved Delayed Detached Eddy Simulation

In [145], a newer strategy which combines delayed detached-eddy simulation (DDES) with an improved RANS-
LES hybrid model aimed at wall modelling in LES (WMLES) was presented. The modification aims at providing
a different response based on whether the simulation does or does not contain inflow turbulent content. The
new version was named Improved Detached Eddy Simulation (IDDES).

In cases with turbulent inflow, the model behaves like a Wall Modelled LES and most of the turbulent
content is resolved except near the wall. Empirical improvements to the model were added in order to provide
an increase in the resolved turbulence activity in near-wall regions. This step was crucial in addressing the issue
of ”log layer mismatch” which was present in earlier DES and other Wall Modeled LES methods. Simulations
with DES or Wall Modeled LES produced two logarithmic layers: the inner log-layer, which is calculated by the
RANS mode of the model, and the outer log-layer, which is calculated by the LES mode of the model, which is
functioning well when the local mesh sizes are smaller than the local distance to the wall. These two log-layers
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turned out unmatched , resulting in underpredicted friction coefficients. The primary addition to remedy this
behavior was a different definition for the subgrid length-scale which depends not only on the mesh spacing, but
also takes the distance to the wall into account. For the case without inflow turbulent content, IDDES performs
as DDES, and thus returns a pure RANS solution for attached flows and a DES-like solution for massively
separated ones. The two branches are combined using a blending function.

In [145], simulations showed that the Spalart-Allmaras IDDES performs well in all modes that it was designed
for. Channel flow in a wide Reynolds-number range and flow over a hydrofoil with trailing-edge separation, which
are Wall Modeled LES test cases, an airfoil in deep stall, which is a natural DES case, and a backward-facing
step flow, which utilizes both branches of the model in different flow regions, all produced satisfactory results.

New length scale

The IDDES model definition for the local length scale ∆ reads:

∆ = min[max(Cwdw, Cwhmax, hwn), hmax] (4.24)

where Cw is an empirical constant, hwn is the mesh step in the wall normal direction and hmax = max(∆x,∆y,∆z).
For Cw, the value of 0.15 was chosen.

DDES branch

Replacing distance notation d with length notation l, (4.23) can be rewritten as:

lDDES = lRANS − fdmax(0, lRANS − lLES) (4.25)

where for the Spalart-Allmaras model, lRANS = dw. The blending function fd is again given by:

fd ≡ 1− tanh([8r3
d]) (4.26)

Moreover, the definition for rd is similar to the one for the DDES model:

rd ≡
νt + ν

max(
√
ui,jui,j , 10−10)κ2d2

w

(4.27)

The LES length scale lLES in (4.25) reads:

lLES = CDESΨ∆ (4.28)

where CDES is the empirical DES constant used in all DES models and ∆ is the length scale calculated via
(4.24).

Ψ is a low Reynolds number correction defined as:

Ψ = min

[
102,

1− cb1
cw1κ2f∗w

[ft2 + (1− ft2)fυ2]

fυ1max(10−10, 1− ft2)

]
(4.29)

Only f∗w is different than the baseline Spalart-Allmaras model:

f∗w = 0.424 (4.30)

The rest of the definitions remain the same and are repeated for completeness:

µT = ρν̃fυ1 (4.31)

fυ1 =
x3

x3 + C3
υ1

(4.32)

x =
ν̃

ν
(4.33)

S̃ = Ω +
ν̃

κ2d2
w

fυ2 (4.34)
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fυ2 = 1− x

1 + xfυ1
(4.35)

Ω =
√

2ΩijΩij (4.36)

µT = ρν̃fυ1 (4.37)

fw = g
1 + C6

w3

g6 + C6
w3

1/6

(4.38)

g = r + Cw2(r6 − r) (4.39)

r = min

[
ν̃

S̃κ2d2
w

, 10

]
(4.40)

ft2 = Ct3exp(−Ct4x2) (4.41)

WMLES branch

RANS and LES approaches are coupled by introducing the following blended RANS-LES length scale:

lWMLES = fB(1 + fe)lRANS + (1− fB)lLES (4.42)

where similar to the DDES branch, lRANS and lLES are the RANS and LES length scales, respectively. The
empirical blending function fB is calculated using the dw/hmax ratio as:

fB = min(2exp(−9α2), 1.0) (4.43)

where

α = 0.25− dw
hmax

(4.44)

The values for the function fB vary from 0 to 1. When fB = 1 the model is on the RANS mode, whereas
when fB = 0 the model is on the LES mode. The function enables the model to switch rapidly from RANS to
LES mode within the range of wall distance 0.5hmax < dw < hmax.

The second empirical blending function in (4.42), the elevating function fe, helps preventing excessive
reduction of the RANS Reynolds stresses in the interaction of RANS and LES regions. The presence of fe helps
address the log-layer mismatch discussed in previous paragraphs. The function itself reads:

fe = max((fe1 − 1), 0)Ψfe2 (4.45)

where

fe1 =

{
2 · exp(−11.09 · α2), α ≥ 0

2 · exp(−9.0 · α2), α < 0
(4.46)

fe2 = 1.0−max(ft, fl) (4.47)

ft = tanh
(
(C2

t · rdt)3
)

(4.48)

fl = tanh
(
(C2

l · rdl)10
)

(4.49)

rdl =
ν

κ2d2
w

√
0.5(S2 + Ω2)

(4.50)

rdt =
νt

κ2d2
w

√
0.5(S2 + Ω2)

(4.51)

Constants ct and cl depend on the background RANS turbulence model and should be adjusted so that
function fe2 is virtually zero when either rdt or rdl is close to 1.0.

Blending the DDES and WMLES branches

The DDES length scale in (4.25) and the WMLES scale in (4.42) do not blend directly in a way that the
proper mode will be automatically selected. The blending is however possible via the use of a modified version
of (4.25):

l̃DDES = f̃dlRANS + (1− f̃dlLES) (4.52)
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where f̃d is defined by

f̃d = max((1− fdt), fB) (4.53)

with

fdt = 1− tanh[(8rdt)
3] (4.54)

By utilizing (4.52), the required IDDES length scale which combines the DDES and WMLES branches can
be implemented as:

lhyb = f̃d(1 + fe)lRANS + (1− f̃d)lLES (4.55)

As noted in [145], fe in (4.45) should become insignificant (i.e close to 0) in cases when the mesh is sufficient
for a wall-resolved LES or when the IDDES model given by (4.55) performs as the background RANS model.
For simulations with inflow turbulence, rdt � 1. This returns fdt close to 1.0 and thus f̃d is equal to fB . The
length scale in (4.55) reduces to lhyb = lWMLES . In the absence of turbulent inflow, fe is zero and (4.55) reduces

to lhyb = l̃DDES .

SST k-ω Delayed Detached Eddy Simulation

Initial modifications to the SST-DES model were presented by Menter et al in [136]. However, the SST-DDES
version implemented in MaPFlow is that presented in Gritskevich et al [146]. As stated previously, the primary
concern with the initial DES formulation was the unwanted switch to LES mode close to the wall which led to
Grid Induced Separation. The shielding function initially developed in [137] was considered generic enough to
be used in most RANS turbulence models. However, in [146] it is shown that the shielding function is essentially
calibrated for the Spalart-Allmaras model and requires different calibration to be used with the SST model.

The governing equations for the SST-DDES model are the same k and ω equations used in the original SST
model (Section 2.6.2), which are repeated here:

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= Pk −Dk +

∂

∂xj
[(µ+ σκµt)

∂k

∂xj
] (4.56)

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=

γ

µt
Pk −Dω +

∂

∂xj
[(µ+ σωµt)

∂ω

∂xj
] + 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
(4.57)

Pk and Dk are both modified in the DDES version, whereas Dω is not:

Pk = min(µtS
2, 10 · Cµρkω) (4.58)

Dk = ρ
√
k3/lDDES (4.59)

Dω = β∗ρω2 (4.60)

The original definition for the turbulent molecular viscosity reads:

µt =
ρα1k

max(α1ω,ΩF2)
(4.61)

However, the newer definition for µt presented in [147] can also be used:

µt =
ρα1k

max(α1ω, SF2)
(4.62)

Blending functions and other parameters are the same as those used in the original SST model:

F1 = tanh(arg4
1) (4.63)

arg1 = min

(
max

( √
k

βωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

)
(4.64)

CDkω = max(2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20) (4.65)

F2 = tanh2(arg2
2) (4.66)

arg2 = max

(
2

√
k

βωd
,

500ν

d2ω

)
(4.67)
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The length scale lDDES in (4.59) reads:

lDDES = lRANS − fdmax(0, lRANS − lLES) (4.68)

lLES = CDES∆ (4.69)

lRANS =

√
k

Cµω
(4.70)

CDES = CDES1
· F1 + CDES2

· (1− F1) (4.71)

(4.72)

In (4.69), ∆ is the mesh length scale. This is most often chosen as the maximum edge length of the cell
(Section 4.3.1). The empiric blending function fd in (4.68) is computed with the use of the following relations:

fd = 1− tanh
[
(Cd1rd)

Cd2
]

(4.73)

rd =
νt + ν

κ2d2
w

√
0.5 · (S2 + Ω2)

(4.74)

where S is the magnitude of the strain rate tensor and Ω is the magnitude of the vorticity tensor.
The constants are defined as follows:

γ1 =
β1

β∗
− σω1κ

2

√
β∗

(4.75)

γ2 =
β2

β∗
− σω2κ

2

√
β∗

(4.76)

σκ1 = 0.85

σω1 = 0.5

σκ2 = 1.00

σω2 = 0.856

β1 = 0.075

β2 = 0.0828

α1 = 0.31

α2 = 0.44

β∗ = 0.09

κ = 0.41

Cµ = 0.09

CDES1
= 0.78

CDES2
= 0.61

Cd1 = 20

Cd2 = 3

Constants without index are a blend of an inner (1) and outer (2) constant, defined by:

ϕ = F1ϕ1 + (1− F1)ϕ2 (4.77)

where φ1 represents constant 1 and φ2 represents constant 2.

SST k-ω Improved Delayed Detached Eddy Simulation

In addition to the calibration for the DDES approach for the SST model, in [146] a newer version is also presented
which improves the near-wall capabilities of the DDES modification, named Improved Delayed Detached Eddy
Simulation (IDDES).

The governing equations of the SST IDDES are presented in Section 4.3.2, with lDDES in (4.59) being
replaced by lIDDES :

lIDDES = f̃d · (1 + fe) · lRANS + (1− f̃d) · lLES (4.78)

71



lLES = CDES∆ (4.79)

lRANS =

√
k

Cµω
(4.80)

CDES = CDES1
· F1 + CDES2

· (1− F1) (4.81)

However, the definition for the length scale ∆ is different than the one used in the SST-DDES model. Let
hmax = max(∆x,∆y,∆z). One then gets ∆ for the IDDES model by:

∆ = min [Cwmax[dw, hmax], hmax] (4.82)

The empiric blending functions f̃d and fe in (4.78) are computed with the use of the following relations:

rdt =
νt + ν

κ2d2
w

√
0.5 · (S2 + Ω2)

rdl =
ν

κ2d2
w

√
0.5(S2 + Ω2)

α = 0.25− dw/hmax
fb = min[2exp(−9α2), 1.0]

fdt = 1− tanh
[
(Cdt1 · rdt)Cdt2

]
f̃d = max[(1− fdt), fb] (4.83)

ft = tanh
(
(C2

t · rdt)3
)

fl = tanh
(
(C2

l · rdl)10
)

fe1 =

{
2 · exp(−11.09 · α2), α ≥ 0

2 · exp(−9.0 · α2), α < 0

fe2 = 1.0−max(ft, fl)

fe = fe2max[(fe1 − 1.0), 0.0]

Alternatively, a simplified version of IDDES can be utilized. In that case, fe in (4.78) is set to zero, and
thus the length scale lIDDES becomes:

lIDDES = f̃d · lRANS + (1− f̃d) · lLES (4.84)

The additional constants for the SST-IDDES model are:

Cw = 0.15
Cdt1 = 20
Cdt2 = 3
Cl = 5
Ct = 1.87
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4.4 Turbulent inflow

In order to generate inflow turbulence, the generator of J. Mann [148] is used. The inputs to the generator are
the characteristics of the velocity field:

a. Γ: Parameter of the sheared spectral tensor

b. L: Length scale of the spectral velocity tensor

c. αε2/3: Product of the Kolmogorov constant (α) and the dissipation of turbulent kinetic energy (ε)

along with the spacings (∆x, ∆y, ∆z) and the number of points in each direction.
The output of the generator is a 3D box that contains the velocity fluctuations. Example of a box that was

created using ∆x = ∆y = ∆z = 4m and 512, 128 and 128 elements in the x, y, and z directions respectively is
shown in fig. 4.2, whereas examples of velocity fluctuation and vorticity contours are shown in fig. 4.3.

Figure 4.2: Mann box with 512, 128 and 128 points in the x, y, and z axis and with ∆x = ∆y = ∆z = 4m

The most commonly adopted approach when applying pre-generated turbulent fluctuations in a computational
domain is to superimpose the fluctuating velocities to the mean velocities at the inlet boundary. This approach
requires that the resolution of the computational mesh on the upstream part be fine enough to resolve the
turbulence all the way to the region of interest. However, since the region of interest is most often required to
be located far away from the inlet in order to avoid boundary effects, this leads to a large number of mesh cells
for the upstream region in order to preserve turbulence. This can raise the computational cost of a simulation
significantly. Alternatively, the turbulent fluctuations can be imposed in the interior of the computational
domain in a cross section located close to the region of interest. This saves computational resources and leads
to less distorted turbulence impacting the region of interest. This approach was used by Gilling [33] for the
simulation of turbulent flows over airfoils and by Troldborg et al in [38][39][40] for the simulation of atmospheric
flows.

The effect of the velocity variances on the main equations is carried out via use of source terms. According
to momentum theory, the force per unit volume required to accelerate the fluid from U to U + U ′, where U and
U ′ are vectors containing the three components of the mean and fluctuating velocity is [40]:

fp =
ρU ′

∆n

(
Un +

1

2
U ′n

)
(4.85)

In (4.85), Un and U ′n are the magnitude of the mean and fluctuating velocity which are perpendicular to the
turbulence plane. In [38] and [40], where actuator methods were considered, ∆n is taken to be the mesh spacing
normal to the actuator.

The source terms are not only applied on the turbulence plane locations. They are instead smeared in the
direction normal to the turbulence plane using a one-dimensional Gaussian approach as:

fe = fp ∗ ηε

ηε(n) =
1

ε
√
π
exp

[
−
(
n− nd
ε

)2
]

(4.86)
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where ε is a parameter that adjusts the concentration of the regularized load and n− nd is the normal distance
from a mesh point to the turbulence plane. Besides adding the source terms to the momentum equations, the
work of the source terms is also added to the energy equation as:

fw = (fe,xU + fe,yV + fe,zW ) ∗ ηε (4.87)

where fe,x, fe,y and fe,z are the momentum equation source terms for the three axis, calculated via (4.85) and
(4.86)

Implementation in MaPFlow assumes that the Mann Box moves with velocity U∞ (defined by the simulation)
on the x-axis. The Mann Box is used in conjuction with the computational mesh. This means that the y and z
axis represent the yz space, whereas the x axis represents time. Let i, j and k be the indexes for the x, y and z
axis of the Mann Box. If ∆t is the physical timestep, we then get:

tmann(x) = (i− 1)∆t (4.88)

which is the discreet physical time t corresponding to each Mann Box i position.
Therefore, a random time t in the simulation is located between two i positions of the Mann Box. Similarly,

each element of the computational mesh lies between two y planes and two z planes (j and k positions). In
order to calculate the variance for each cell of the computational domain, the Mann Box values are interpolated
in space and time. The implemented algorithm for a point P is as follows:

• Based on the y and z coordinates of the element P , the previous and next j and k planes of the Mann
Box are located. Let jp and jn be the previous and next y planes and kp and kn the previous and next z
planes.

• Based on the current physical time t, the previous and next x planes of the Mann Box are located. Let ip
and in be the previous and next x planes.

• A bilinear interpolation in space is carried out separately on ip and in, using the jp, jn, kp and kn planes.
This results in two variance values, one for ip and one for in which correspond to tp = (ip − 1)∆t and
tn = (in − 1)∆t.

• The variance value for time t is derived by using linear interpolation between tp and tn.

The resulting variances for the each mesh cell are used in (4.85), (4.86) and (4.87) in order to calculate the
source terms for the momentum and energy equations.
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(a) u′ (b) Vorticity on the x-axis

(c) v′ (d) Vorticity on the y-axis

(e) w′ (f) Vorticity on the z-axis

Figure 4.3: Contours of u′, ′v′, w′ and vorticity on the three axes on a random x-slice of the Mann Box.
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Chapter 5

Transition modeling verification and
validation

5.1 Introduction

In this Chapter, a comparative verification and validation of the transition models is made. The choice of
the computational mesh is discussed in Section 5.2, whereas Section 5.3 contains the timestep dependence
analysis for unsteady simulations. In Section 5.4, the various aspects of the boundary layer transition model
are analyzed. Section 5.4.1 compares the different approaches for boundary layer calculation, as presented in
Section 3.2.1, whereas in Section 5.4.2 the empirical criteria for transition prediction discussed in Section 3.2.2
are assessed. Similarly, in Section 5.5 the various aspects regarding the performance of transport equation
transition models are discussed. For these models, correct definition of inflow turbulence parameters is crucial.
Due to the local nature of the transport equations, it is important for the turbulence quantities in the wall
region (i.e. airfoil/rotor blade) to have the appropriate levels. Defining suitable inflow values and counteracting
turbulent decay imposed by the computational mesh are both equally important. The effect of these parameters
is discussed in Section 5.5.1. Specifically for the γ-Reθ and γ transition models, different local transition
correlations are available. The effect of these correlations is assessed in Section 5.5.2. Finally, 2D airfoil cases
are presented in Section 5.6, whereas 3D cases are presented in Section 5.7.
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5.2 Computational mesh generation and resolution dependence

5.2.1 2D geometries

For two-dimensional simulations, O-type meshes were utilized. The domain inlet was set to at least 1000 chords
away from the airfoil, in order to minimize farfield influence on viscous walls, while the first layer was set to
values that guaranteed y+ ≤ 1 at all times. In the normal to the wall direction the cells were distributed using
geometric expansion, with ratio always being less than 1.1.

It is useful to assess how mesh resolution affects the final solution of the solver. It was decided to present
this part of the study only for one airfoil. However, the conclusions derived from this analysis can also be used
for other 2D airfoil configurations. For this part of the analysis, a structured approach was adopted for mesh
generation, even though the solver treats the mesh as unstructured. This was decided because the structured
approach is more straightforward in regards to how the resolutions translate to the contour of the airfoil and the
farfield, thus being more suitable for the first part of the mesh resolution analysis.

The NLF(1)-0416 airfoil is considered, at Re = 4 x 106, Ma∞ = 0.1, Tu∞ = 0.15%, which corresponds
to Ncrit = 7 via (3.47). Example of a mesh is shown in fig. 5.1. This is a classic airfoil case for transition
modeling validation on airfoils. Experimental aerodynamic loads as well as transition locations are available
[4], thus forming a complete reference point. This airfoil is also proposed as a standard validation case for
CFD laminar-turbulent transition modeling in the work of Coder [149], where many configurations that are of
particular interest with regards to transition modeling are suggested. However, for this part of the analysis the
focus is on mesh resolution convergence and not on prediction accuracy against experimental data. The analysis
is performed on three angles: α = −6◦, 0◦, and 6◦.

The k-ω SST turbulence model is used, although similar results are expected when using the Spalart-Allmaras
turbulence model. Regarding transition modeling, the original formulations for the γ-Reθ and AFT transition
models are used, presented in Section 3.3, and Section 3.5, respectively. Results for the γ model are omitted, since
the model utilizes the same framework as the γ-Reθ model and therefore exhibits similar behavior. Boundary
layer transition modeling is tested using the eN database method presented in Section 3.2.3, paired with the
Falkner-Skan velocity profiles for boundary layer calculation, presented in Section 3.2.1. The reasoning behind
the choice of boundary layer method is discussed in Section 5.4.1. For the AFT model and the eN method, Ncrit
was set to 7 using Mack’s formula (3.47).

The simulations utilized ambient turbulence terms to counteract turbulent decay, in addition to using the
Kato-Launder production limiter for the SST model [150]. The details of turbulent parameter specification are
discussed in Section 5.5.1. Ambient values were set to Tuamb = 0.15% and ωamb = 50U∞c , which corresponds
to (µt/µ)amb = 0.27. It should be noted that the usage of ambient turbulence terms does not affect the final
outcome of the mesh resolution analysis. Similar results are expected when modified inlet turbulence values are
used or when no particular handling of turbulence is adopted, besides the use of a standard turbulence model.

The employed mesh resolutions are presented in Table 5.1. The extra fine mesh was created first. In the
normal direction, 256 elements were placed up to 0.1 chords away from the wall, 128 were placed in the region
between 0.1 and 10 chords, and 128 were placed in the region between 10 and 1000 chords. After creating the
extra fine mesh, each coarser level was created by removing every 2nd, 4th, and 8th node in both dimensions. For
the considered test case, the extra fine mesh had y+(1) < 0.1 whereas the fine mesh had y+(1) < 0.2. For the
transport equation transition models, the solver needs to be able to accurately solve the thin laminar boundary
layer [94]. Ensuring proper y+ values is thus crucial. However, the meshes utilized should not yield excessively
low y+ values, as the simulation will not sufficiently converge.

The results from the analysis are presented in Table 5.2. Each row lists the deviations in lift and drag
coefficients with respect to the results of the extra fine mesh. The results of the fine mesh have deviations of
2% or less. The medium mesh is able to produce adequate results for α = 0◦. However, for the other angles of
attack the discrepancies are higher due to errors induced by insufficient mesh resolution.

For the second part of the mesh dependence analysis, a hybrid mesh was generated based on the baseline
structured mesh. Up to 0.1 chords away from the airfoil, the two meshes had the same number of wrap around
and normal elements. This was achieved by keeping this near wall region structured-like. The rest of the
domain was unstructured, using quad elements. This approach is more suitable for multi-element configurations.
Trying to use a structured approach in such cases can severely deteriorate the quality of the mesh, especially for
geometries where two bodies overlap on one of the axes (for example main element-flap configurations with small
or negative flap overhang). Hybrid meshes can have independent structured-like boundary layer regions around
each of the elements, while filling the rest of the domain with unstructured quads. An example of the hybrid
mesh for the NLF(1)-0416 airfoil is shown in fig. 5.2, whereas fig. 5.3 shows the mesh used for the NLR-7301
airfoil with flap. The results from the structured and hybrid meshes for the NLF(1)-0416 are shown in Table 5.3,
with the hybrid mesh having approximately 110 thousand elements. It is evident that the results are almost
identical and thus both structured and unstructured approaches can be used. Using unstructured meshes with
less elements produced results that deviated from those using the baseline structured mesh. This led to the
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choice of the 110 thousand mesh as the hybrid baseline, which when compared to the 130 thousand element
structured mesh can be up to 15% faster for the same flow case.

Based on these observations, the 512 x 256 mesh with the guidelines discussed in this section will be used for
single element configurations, whereas multi-element meshes will be created based on the hybrid mesh guidelines.
It should be noted that for airfoil cases where a wide range of Re numbers is considered, the first layer spacing
of the employed mesh should be adjusted accordingly between different Re. Ensuring that y+ < 1 for moderate
Re flows does not guarantee that the same will hold true for higher Re. However, excessive refinement close to
the wall should be avoided due to the fact that lower Re cases may reach regions where y+ << 1, which could
lead to convergence problems.

(a) Partial view (b) Trailing edge detail

Figure 5.1: NLF(1)-0416, 130 thousand element structured mesh

(a) Partial view (b) Trailing edge detail

Figure 5.2: NLF(1)-0416, 110 thousand element hybrid mesh

5.2.2 3D geometries

Regarding 3D simulations, the meshes for wing-like geometries were created from the corresponding 2D meshes
by extrusion in the spanwise direction. For wind turbine blades the meshes were created from scratch, as they
cannot be extruded from a 2D geometry. For multi-bladed rotors, only one of the blades was simulated using
periodic boundary conditions. The domain extent was set to at least 50 rotor diameters away from the viscous
walls. First layer spacing was again set to values that guaranteed y+ < 1. Mesh examples for the NREL Phase

79



(a) Partial view (b) Flap detail

Figure 5.3: NLR-7301, 150 thousand element hybrid mesh

Table 5.1: Resolutions for the 2D structured mesh dependence study

Mesh Level Wrap-around elements Normal elements Total elements
Coarse 128 64 8192

Medium 256 128 32768
Fine 512 256 131072

Extra Fine 1024 512 524288

VI Rotor are shown in fig. 5.4. This particular wind turbine has two rotating blades so the computational mesh
is build around one blade with 180 degrees rotational periodicity. Other wind turbine meshes were created using
a similar strategy. Openly available meshes were also used in some cases.

It is again useful to assess how mesh resolution affects the final solution of the solver. The NREL Phase VI
Rotor is chosen as the test case for this analysis. The employed resolutions are listed in Table 5.4. Unfortunately,
an even finer mesh than the fine mesh listed on this table would contain 32 million elements, which is prohibitively
expensive in regards to required computational time. The flow conditions were Uwind = 7m/s, Ma∞ = 0.11,
ν∞ = 1.56 x 10−5, Tu∞ = 0.07%, which corresponds to Ncrit = 9. The rotational speed was set to 72 RPM.
Ambient turbulence terms were again used, similar to what was used for the 2D mesh dependence analysis.
For this simulation, Tuamb = 0.07%, ωamb = 50U∞c , with c being equal to 5 m which is the rotor radius. The
rationale behind the ambient terms is explained in detail in Section 5.5.1.

Pressure coefficients are compared to experimental data in fig. 5.5-5.9. Clearly, the fine mesh outperforms
both the medium and coarse meshes, which exhibit significant deviations from the experiments and the fine
mesh, especially for r/R = 0.63 and 0.80. On the contrary, results using the fine mesh are adequately close to
the experiments at all spanwise positions. For all Wind Turbine rotor blades presented in this thesis, the fine
mesh resolution is used.
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Table 5.2: Deviations in lift and drag coefficients for varying mesh resolution with respect to the results of the extra
fine mesh (see Table 5.1). NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, α = −6, 0, and 6◦. Ambient
turbulence source terms used. Tuamb = 0.15%, ωamb = 50U∞

c
.

Mesh Level Cl, α = −6◦ Cd, α = −6◦ Cl, α = 0◦ Cd, α = 0◦ Cl, α = 6◦ Cd, α = 6◦

Coarse 6.70% 22.54% 1.09% 3.13% 0.17% 10.20%
Medium 0.73% 0.98% 0.71% 1.04% 0.51% 0.28%

Fine 0.19% 0.98% 0.32% 0.01% 0.19% 0.11%

(a) Fully turbulent

Mesh Level Cl, α = −6◦ Cd, α = −6◦ Cl, α = 0◦ Cd, α = 0◦ Cl, α = 6◦ Cd, α = 6◦

Coarse 6.76% 27.58% 0.60% 10.15% 0.20% 16.29%
Medium 0.61% 2.30% 0.55% 0.01% 0.34% 0.85%

Fine 0.57% 1.15% 0.35% 0.01% 0.01% 0.30%

(b) eN method with Orr-Sommerfeld database

Mesh Level Cl, α = −6◦ Cd, α = −6◦ Cl, α = 0◦ Cd, α = 0◦ Cl, α = 6◦ Cd, α = 6◦

Coarse 0.30% 25.35% 1.35% 1.78% 1.78% 41.62%
Medium 0.86% 1.41% 0.78% 1.78% 1.21% 21.18%

Fine 0.56% 1.41% 0.19% 0.01% 0.10% 0.68%

(c) γ-Reθ transition model

Mesh Level Cl, α = −6◦ Cd, α = −6◦ Cl, α = 0◦ Cd, α = 0◦ Cl, α = 6◦ Cd, α = 6◦

Coarse 4.45% 22.41% 0.95% 8.77% 2.5% 35.01%
Medium 0.53% 2.30% 0.51% 1.75% 1.44% 15.40%

Fine 0.28% 0.01% 0.16% 1.75% 0.41% 1.21%

(d) AFT transition model

Table 5.3: Deviations in lift and drag coefficients using the structured and hybrid fine meshes with respect to the results
of the extra fine mesh. NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, α = −6, 0, and 6◦. Ambient
turbulence source terms used. Tuamb = 0.15%, ωamb = 50U∞

c
. The structured fine mesh has 512 wrap-around

and 256 normal elements, resulting in approximately 130 thousand elements (see Table 5.1). The hybrid fine
mesh has 512 wrap-around elements, 128 prismatic elements in the region up to 0.1 chords away from the
wall, and the rest of the outer region unstructured, resulting in approximately 110 thousand elements.

Mesh Level Cl, α = −6◦ Cd, α = −6◦ Cl, α = 0◦ Cd, α = 0◦ Cl, α = 6◦ Cd, α = 6◦

Structured, 130k elements 0.19% 0.98% 0.32% 0.01% 0.19% 0.11%
Hybrid, 110k elements 0.27% 0.01% 0.31% 0.01% 0.25% 0.16%

Table 5.4: Resolutions for the 3D structured mesh dependence study

Mesh Level Blade Blade Blade Tip Tip Tip Total
Wrap-around Spanwise Normal x-axis y-axis z-axis

Coarse 64 32 32 16 32 16 73728
Medium 128 64 64 32 64 32 589824

Fine 256 128 128 64 128 64 4718592
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(a) 3D computational domain (b) Blade close-up

(c) Root close-up (d) Tip close-up

Figure 5.4: NREL Phase VI Rotor, 256(wrap-around) x 128(normal) x 128(spanwise) element mesh
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Figure 5.5: Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwind

radius
, ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.3. Comparison with

experimental data [2].
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Figure 5.6: Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwind

radius
, ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.47. Comparison with

experimental data [2].
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Figure 5.7: Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwind

radius
, ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.63. Comparison with

experimental data [2].
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Figure 5.8: Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwind

radius
, ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.80. Comparison with

experimental data [2].

86



x/c

C
p

0 0.2 0.4 0.6 0.8 1

­3

­2

­1

0

1

2

Experiment

Coarse

Medium

Fine

(a) Fully turbulent

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­3

­2

­1

0

1

2

Experiment

Coarse

Medium

Fine

(b) Boundary layer transition, eN

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­3

­2

­1

0

1

2

Experiment

Coarse

Medium

Fine

(c) γ-Reθ

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­3

­2

­1

0

1

2

Experiment

Coarse

Medium

Fine

(d) γ

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­3

­2

­1

0

1

2

Experiment

Coarse

Medium

Fine

(e) AFT

Figure 5.9: Effect of mesh resolution. NREL Phase VI rotor, Uwind = 7m/s, Ma∞ = 0.11, Tuamb = 0.07%,
ωamb = 50 Uwind

radius
, ν∞ = 1.56 x 10−5, ω = 75 rpm. Pressure coefficient at r/R = 0.95. Comparison with

experimental data [2].
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5.3 Timestep dependence

For unsteady calculations, it is useful to assess the influence of the employed physical timestep. The NLF(1)-0416
airfoil at Re = 4 x 106, Ma = 0.1 and Tu∞ = 0.15% is considered. Angle of attack was set to 15◦. This angle is
located in the post stall region and thus oscillations are expected. The simulations were run in free transition
using the γ-Reθ model. This was chosen because fully turbulent simulations are more amenable to a timestep
dependence analysis due to the absence of transition locations that can influence the final results. In the context
of transitional simulations, transition locations should also converge with decreasing timestep in order to provide
timestep independent results.

Results are presented in fig. 5.10. It is evident that different timestep values may produce oscillations and
may also alter the mean value of the results. For timesteps of 0.002 and 0.001 nondimensional units, the results
are similar in mean value and barely show any oscillations. For transitional unsteady computations in this thesis,
the timestep of 0.002 nondimensional units will be used.
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Figure 5.10: Timestep dependence analysis. NLF(1)-0416 airfoil at Re = 4 x 106, M = 0.1, Tuamb = 0.15%,
ωamb = 50U∞

c
, α = 15◦. Transitional simulations using the γ-Reθ model.
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5.4 Boundary layer transition model aspects

5.4.1 Evaluating the available boundary layer calculation approaches

In this section, boundary layer results from the approaches discussed in Section 3.2.1 are compared. The
investigation is carried out for the DU-00-W212 airfoil at Re = 15 x 106, Ma = 0.08, Tu∞ = 0.3346%
(Ncrit = 5.25) and an angle of attack of 4◦. When extracting the boundary layer characteristics from the CFD
solution, mesh resolution within the boundary layer is crucial. The baseline mesh follows the guidelines presented
in Section 5.2. Variants of the baseline mesh were generated, with increasing number of cells in a region close
to the wall (50,75 and 100 cells in the normal direction). In order to ensure that the boundary layer will be
contained in the refined area, the width of this region was taken to be 0.01 length units. However the height of
the first cell as well as the number of cells outside of this region remained constant (h = 5 · 10−6 chords, yielding
y+ < 1). It is evident that the integral boundary layer approach (using either the Polhausen method or the two
boundary layer equations with the Falkner-Skan profiles) do not require additional boundary layer refinement,
since they only utilize the Cp distribution. Nevertheless, all methods were tested using all created meshes. The
purpose of this comparison is to highlight differences in boundary layer prediction up to an a priori prescribed
transition point. In the simulations, transition locations were fixed at the locations predicted using XFOIL [3]
for the same flow conditions.
Boundary layer results from the Direct CFD boundary layer solution (noted as RANS BL), the Polhausen
one-parameter profile, and the Falkner-Skan two-parameter profiles are compared to reference XFOIL results
in fig. 5.11. The distributions of H and Reθ are considered. Only the lower side is shown along which the
differences are more pronounced compared to those over the upper side. As expected, since mesh resolution
within the boundary layer does not affect the surface pressure distribution, results from the Polhausen and
Falkner-Skan profiles remain the same for all mesh resolutions, as shown in fig. 5.11a. On the contrary, fig. 5.11b
shows that the results that are obtained directly from the CFD data depend on the mesh resolution. In fact,
the comparison indicates that a significantly finer boundary layer region than the baseline is required in order
to achieve sufficient mesh convergence. Having poor resolution leads to overall lower H levels. However, the
converged results obtained from the CFD data closely resemble those from XFOIL and those based on the
Falkner-Skan profiles. In contrast to the CFD data and Falkner-Skan approaches, use of the Polhausen profile
has a slightly different trend, exhibiting an overall lower H level at all mesh resolutions and an earlier rise at
x/c = 0.3. In a free transition scenario, using the Polhausen method would possibly lead to upstream transition
prediction with respect to the Falkner-Skan and CFD data predictions for the same transition criterion.
While the above confirms that the necessary information can be obtained directly from the CFD solution,
convergence of said solution is a critical issue. In fig. 5.12a-5.12b, the convergence of the pressure and H
distributions during a simulation is shown by cross-plotting the difference of the current iteration from the final
solution, which in this case was obtained at 20000 steady-state iterations. Since the pressure converges fast,
transition predictions based on the solution of the boundary layer equations will converge equally fast. On
the contrary, use of direct integration requires all cells in the boundary layer regions to also converge, thus
increasing the overall computational cost.
As a result of the above analysis, the option of using the Falkner-Skan boundary layer solution will be primarily
used for boundary layer calculation. This choice does not eliminate the possibility of using direct integration in
other applications. One such application is transition prediction in transonic airfoils. The profiles used in the
boundary layer equation approaches are developed for incompressible flow. In order to calculate the boundary
layer characteristics in transonic flows, CFD data are needed. However, it is important to have sufficient mesh
resolution and monitor convergence.

5.4.2 Evaluating available transition criteria

In this section, the empirical transition criteria described in Section 3.2.2 are compared in the context of
boundary layer transition. Based on what was discussed in Section 5.4.1, the Falkner-Skan profiles are used
for boundary layer calculation. Once more the NLF(1)-0416 at Re = 4 x 106, Ma∞ = 0.1, Tu∞ = 0.15%
(Ncrit = 7) is chosen because transition locations are available from the experiment [4]. The mesh chosen is the
baseline one, as described in Section 5.2. Ambient turbulence terms are employed (Section 5.5.1), even though
they do not have a significant effect in boundary layer transition simulations. The main purpose of these source
terms is to counteract turbulent decay in the freestream, ensuring that adequate turbulence levels reach the
airfoil. However, this only affects boundary layer cells and has little effect on the final pressure coefficient, which
is the main parameter required for boundary layer calculation. Nevertheless, primarily for consistency reasons,
it was decided to include the ambient terms.

The results are presented in fig. 5.13. The Granville and Michel criteria seem to predict transition downstream
for higher angles of attack, which is not the case when using the variants of the eN method or the AHD criterion.
On the other hand, the former criteria are able to give a very accurate prediction at α = 0◦, in contrast to the
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Figure 5.11: H and Reθ distributions on the lower side of DU-00-W212 airfoil at Re = 15 x 106, M = 0.08, Tu∞ =
0.3346%, α = 4◦, using different mesh resolutions inside the boundary layer. Comparison with results
using XFOIL [3].
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Figure 5.12: Cp and H factor convergence rate, CFD flow boundary layer. Comparison between the final and earlier
iterations of the solver on the DU-00-W212 airfoil at Re = 15 x 106, M = 0.08, Tu∞ = 0.3346%, α = 4◦.
Cp converges faster than the H factor and thus boundary layer equations, which are based on Cp, will
converge faster than the direct integration of the CFD flow data.
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AHD criterion and the approximate envelope eN method. However, the main downside of the Granville and
Michel criteria is that they do not take the freestream turbulence intensity into account and therefore their use
is limited to flows with very low turbulence levels.

Based on these observations, the eN method is chosen as the default criterion for boundary layer transition
simulations. Out of the envelope and database approaches, the latter was more consistent in predicting the
transition locations for the examined case. Therefore, transitional simulations with the eN method will utilize
the database approach. However, when transonic and supersonic transition predictions are considered the AHD
criterion should be used, since the eN method is calibrated only for incompressible flows.
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Figure 5.13: Effect of different boundary layer transition criteria. Free transition simulations for the NLF(1)-0416
airfoil, Re = 4 x 106, Ma∞ = 0.1, Tu∞ = 0.15%. Comparison with experimental data [4].
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5.5 Transport equation transition model aspects

5.5.1 Inflow turbulence specification

For the γ-Reθ and γ models it is crucial to specify appropriate inflow conditions to ensure that Tu near the
wall region is at the desired level. Turbulent parameters naturally decay in the computational domain and thus
only specifying inlet turbulence is not sufficient.

One approach is to specify turbulent parameters at the inlet in a way that ensures that the desired Tu levels
near the wall region are reached. As noted in [92], in order to account for turbulent decay the inlet viscosity
ratio ((µt/µ)inlet) should be increased. For given inlet turbulence intensity (Tuinlet), this essentially decreases
the turbulent dissipation (ω). Doing so can ensure that the inlet value for Tu will not decay when traveling
towards the wall region. The inlet parameters can be calculated via the following turbulent decay equation also
given in [92]:

Tutarget =

√√√√√√Tu2
inlet

1 +
3 · ρ · U · dist · β · Tu2

inlet

2 · µ ·
(
µt
µ

)
inlet

−β∗/β (5.1)

where dist is the distance from the inlet to the region of interest (i.e. airfoil), Tutarget is the target turbulence
intensity at the region of interest and β = 0.09, β∗ = 0.0828.

Using (5.1) and specifying Tutarget, Tuinlet can be calculated as a function of the inlet viscosity ratio.
However, higher values of Tutarget will require increasing inlet viscosity ratios. For instance, if Tutarget = 1%
is to be achieved at a distance of 50 chords from the domain inlet (which is typical for CFD computational
meshes), the resulting inlet viscosity ratio will exceed the value of 10 ((µt/µ)inlet ≥ 10). Using high viscosity
ratios alters the freestream Reynolds number, so this option should be avoided. In cases where (µt/µ)inlet = 10
is not enough to calculate the desired Tutarget based on a specified value for Tuinlet, then the latter is also
increased.

A different approach than setting higher viscosity ratio and turbulence intensity at the inlet is to add
production terms in the k − ω SST turbulence model. These terms are used to ensure that the ambient values
of k and ω are sustained throughout the domain (this modification is known as k − ω SST SUST) [151]. The
additional production terms are calculated as follows:

Pk,amb = β∗ωambkamb (5.2)

Pω,amb = βω2
amb (5.3)

where

kamb =
3

2
Tu2
∞U

2
∞ (5.4)

ωamb =
ρkamb

µ
[
µt
µ

]
∞

(5.5)

In this thesis, ambient values for k were calculated using the turbulence intensity noted in the corresponding
experiment. Ambient values for ω were set in such a way that the solver has as small ambient viscosity ratio as
possible. Since µt = k/ω, lower viscosity ratio for given laminar µ results in higher ω.

Additionally, as denoted in [152], there is overproduction of k in the stagnation region when using the
baseline SST model. The second transport equation of the γ-Reθ model (3.83) transfers the transition onset
momentum thickness number. The source term for the equation is switched off inside the boundary layer and
thus the Reynolds number values just outside the boundary layer are left to naturally diffuse in. Higher values of
k in the stagnation region will lead to lower Reθ values which will in turn act as a sink for the source term of the
transport equation. This will bring the transition location upstream. To mitigate this artifact the Kato-Launder
limiter can be employed [150]:

Pk = µtSΩ (5.6)

It is here noted that even though the γ model does not solve the second transport equation, it however
calculates Reθ values for each cell in order to trigger transition. Using the k production limiter is, thus, also
important for the γ model.

The last modification follows Menter’s work [94]. An additional production term P limk is introduced in the
k-equation in order to ensure proper generation of k at transition locations for really low Tu levels. The need
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for this term stems from the observation that for very low values of freestream turbulence, the baseline SST k-ω
model requires a relatively long running length to produce turbulence inside the boundary layer, even when
correctly triggered by the transition model. This additional term is designed to be turned off when the transition
process is completed and the boundary layer has reached its fully turbulent state. The P limk term is calculated
as follows:

P limk = 5Ck ·max(γ − 0.2, 0) · (1− γ)F limon ·max(3Csepµ− µt, 0) · S · Ω (5.7)

F limon = min

[
max

(
Rev

2.2 ·Relimθc
− 1, 0

)
, 3

]
(5.8)

Relimθc = 1100 (5.9)

Ck = 1.0, Csep = 1.0 (5.10)

In order to investigate the effect of the Kato-Launder limiter on k production, the DU-00-W212 airfoil is
considered, with flow conditions Re = 3 x 106, Ma∞ = 0.075, Tu∞ = 0.0864%. The computational mesh
followed the guidelines discussed in Section 5.2. However, the domain extent was set to 50 chords instead of
1000. The latter value for the domain extent requires too high inlet turbulence and viscosity ratio values due to
the increased distance from the inlet to the wall region, therefore it is not suitable for this part of the analysis.
For 50 chords domain extent, the values Tuinlet = 0.864% and (µt/µ)inlet = 10 (corresponding to ω ≈ 34U∞c )
are used, which were calculated via (5.1). Results presented in fig. 5.14a show that without the limiter, laminar
bucket corners appear at lower Cl values in the positive Cl region and in higher Cl values in the negative Cl
region. This is explained by the results in fig. 5.14b, where it is shown that transition at Cl = 1 (α = 6◦) on the
suction side is predicted too early. This occurs because in the un-limited case, over-production of k (and thus of
Tu), lowers the value of Reθt which is calculated by the transition correlation ((3.97) in this case). Lower values
of Reθt essentially act as a sink in the equation of R̃eθt, leading to earlier transition onset [152]. Contour plots
in fig. 5.15 correspond to predictions without/with the limiter at Cl = 1 (α = 6◦). Tu levels are significantly
lower when the limiter is not used.

The effects of the inflow conditions and of the source terms are discussed next. The DU-00-W212 airfoil with
same flow conditions is again considered. The simulations with adjusted inflow conditions had Tuinlet = 0.864%
and (µt/µ)inlet = 10 (ω ≈ 34U∞c ). The simulations with ambient source terms are noted with the subscript amb.

For these simulations, the ambient dissipation was set as ωamb = 5, 50 and 100U∞c and the ambient turbulence
intensity as Tuamb = Tu∞ = 0.0864%, corresponding to (µt/µ)amb = 0.74, 0.074 and 0.037 respectively. It
is noted that when source terms are used, the ambient values for k and ω are also set as inlet values in the
domain. In fig. 5.16, the results indicate that the two approaches are close when ωamb = 5U∞c . When ωamb = 50

or 100U∞c , the resulting freestream turbulent viscosity is lower and thus the drag level within the laminar bucket
decreases. In spite of that, the corners of the bucket are predicted at the same angle, as they are only affected by
turbulence intensity. If the measured turbulence intensity is to be used as inlet condition, then the best option
is to add ambient source terms in the turbulence equations. For ωamb, the intermediate value 50U∞c is selected,

which yields lower freestream turbulent viscosity as compared to that obtained with 5U∞c . This value for ωamb
is also low enough for the solver to converge deeply. High dissipation values will also keep the viscosity ratio
low, which will not add extra turbulent viscosity inside the turbulent boundary layer at increasing Reynolds
numbers, keeping overall drag values lower. This point is also discussed in [151], where it is shown that ωamb
values up to 100U∞c are considered safe. The range of ωamb is, thus, not too narrow. Above this upper ωamb
value, the simulation may not converge, especially at higher Reynolds numbers.

For the purpose of this work, simulations will utilize the ambient term approach. In each case, kamb will be
calculated from the given freestream turbulence intensity measured in the experiment, whereas ωamb will be
always set to 50U∞c .

5.5.2 Evaluating available correlations for Reθc, Flength, and Reθt

Similar to what was discussed in Section 5.4.2, it is also useful to assess the performance of the various empirical
correlations available for use with the two correlation transition models (γ-Reθ and γ). The test case is again
the NLF(1)-0416 airfoil at Re = 4 x 106, Ma∞ = 0.1, for which transition locations have been measured.
Freestream turbulence intensity is set to Tu∞ = 0.15%, as suggested by G. Coder in [149]. Experimental data
are taken from [4]. Ambient turbulent source terms were used, based on what was discussed in Section 5.5.1:
Tuamb = 0.15%, ωamb = 50u∞c .

The available correlations for Reθt are those of Langtry (3.97), of Abu-Ghannam and Shaw (3.99) and of
Menter (3.150). From these three, the former two have been widely used with the γ-Reθ model, whereas the
latter is relatively new and was mainly developed in an effort to make the γ model more amenable to fine-tuning.
The γ-Reθ model was only tested using the correlations of Langtry and of Abu-Ghannam and Shaw, whereas
the γ model was tested with all three correlations. For this part of the analysis, the γ-Reθ model utilized
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Figure 5.15: Effect of turbulent kinetic energy production limiter on γ-Reθ results. Free transition simulations for the
DU-00-W212 airfoil, Re = 3 x 106, Ma∞ = 0.075, Tuinlet = 0.864%, (µt/µ)inlet = 10, Cl = 1 (α = 6◦).
No ambient turbulence production terms. Tu along the upper side in the region close to the leading edge.
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the original correlations for Reθc (3.88) and for Flength (3.98). For the γ model, Flength was set to 100.0, as
suggested in the original formulation of the model [94]. It should be noted that the γ model does not use the
critical momentum thickness Reynolds number but replaces it with the transition onset momentum thickness
Reynolds number in (3.135), in contrast to what is used in (3.74) for the γ-Reθ model. Reθc is the momentum
thickness Reynolds number where the intermittency first starts to increase in the boundary layer, and is always
lower than Reθt, which is the momentum thickness Reynolds where transition starts to take place.

The results are presented in fig. 5.17. Cl-Cd polars and transition locations are considered. As shown in
fig. 5.17a-5.17b, the γ-Reθ model gives fairly accurate predictions using both Langtry and Abu-Ghannam and
Shaw correlations. The correlation of Abu-Ghannam and Shaw predicts transition slightly upstream, with the
most notable difference being the lower side transition at α = −2◦. The overall upstream transition locations
also explain the Cl-Cd polar behavior, with the Abu-Ghannam and Shaw correlation predicting slightly higher
drag levels inside the laminar bucket. The γ model is also adequately close to the experimental data when using
either the correlation of Langtry or that of Abu-Ghannam and Shaw, as shown in fig. 5.17c-5.17d, whereas
the correlation of Menter does not give as accurate results. Overall, the γ model predicts transition upstream
from the experiment, which is the opposite from what is observed in the predictions of the γ-Reθ model. Apart
from the overall upstream transition locations, the most notable difference between the two models is the lower
side transition location shift towards the leading edge with decreasing α. For the γ-Reθ model this occurs at
α = −2o whereas for the γ model it starts at α = 2o. This difference is crucial, as it alters the location of the
laminar bucket corner on the Cl-Cd curve. Nevertheless, this initial comparison shows that both models can
give decent results using two different correlations. The fact that the γ model predicts transition upstream than
the γ-Reθ model can be justified. By substituting Reθc with Reθt in (3.135), the γ model essentially utilizes
a higher Re number in order to trigger transition. The fact that Reθc is always lower than Reθt [91] brings
transition upstream for the γ model. In this work, the Abu-Ghannam and Shaw correlation for Reθt will be
utilized for both γ-Reθ and γ models.

The effect of different correlations for Reθc is discussed next. Those are the correlations of Langtry (3.88),
of Suluksna et al (3.90) and of Malan et al (3.91). The results presented in fig. 5.18 use the Abu-Ghannam
and Shaw correlation for Reθt. Both the correlations of Suluksna and Malan are closer to the experimental
data when compared to the correlation of Langtry. Transition locations are predicted upstream, which results
in slightly higher drag levels inside the laminar drag bucket. The most pronounced difference is at α = −2◦,
where the correlations of Suluksna and Malan both predict significantly upstream transition location on the
lower side of the airfoil. However, this behavior indicates better performance only partially, as there are not
experimental data for the transition location on the lower side at that angle of attack. Nevertheless, given the
fact that at α = 0◦ the transition point starts shifting towards the leading edge, it is valid to assume that the
lower side transition location for α = −2◦ will be located somewhere between x/c = 0.4 and 0.5. The original
correlation of Langtry predicts transition at x/c ≈ 0.56, which is downstream than the one measured at α = 0◦

(x/c ≈ 0.53). Overall, the results do not deviate significantly. Therefore, it is safe to use any of the available
correlations. For this work, the correlation of Malan will be used.
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5.6 Two-dimensional test cases

This section presents the results from two dimensional simulations. Based on what was discussed in Section 5.4.1,
boundary layer calculation utilizes the two integral equations paired with the Falkner-Skan velocity profile
closures. For boundary layer transition prediction, according to what was presented in Section 5.4.2, the eN

method with the Orr-Sommerfeld database is used. For all simulations, ambient turbulent production terms
are introduced based on the results presented in Section 5.5.1. From what was discussed in Section 5.5.2, both
γ-Reθ and γ models use the correlation of Abu-Ghannam and Shaw for Reθt, and the γ-Reθ model uses the
correlations of Malan for Reθc and Flength.

5.6.1 NLF(1)-0416 airfoil at Re = 4 x 106

Figure 5.19: NLF(1)-0416 airfoil mesh

The laminar airfoil NLF(1)-0416 was experimentally investigated in the low-speed NASA Langley Low-
Turbulence Pressure Tunnel LTPT [4] at Re = 4 x 106 and Ma∞ = 0.1 with Tu∞ = 0.15% giving Nc = 7.17.
Ambient turbulent production terms were: Tuamb = 0.15%, ωamb = 50U∞c .

In fig. 5.20 predictions are compared to measurements over the range [−6◦, 12◦]. The γ model deviates
from the experimental results slightly more than all the other models, since it predicts all transition locations
upstream. The other three approaches yield similar results. For the lower side, best agreement is obtained
with the eN method. Specifically at α = 0◦, the γ-Reθ and AFT models predict transition slightly downstream.
Apart from this specific angle, the AFT model and the eN method are very close. This is expected, as the
AFT model is also based on the eN method. For the upper side, the γ-Reθ model is closer to the experimental
transition locations, whereas results from the eN method and the AFT model are located slightly upstream.

Apart from the γ model, all transition models predict aerodynamic loads with good accuracy. Since this
particular airfoil is characterized by laminar flow, strong low-drag laminar bucket corners do not appear and the
transition location shift with increasing α exhibits a relatively linear trend. However, for higher α values some
differences in the predicted transition locations on the upper side are noted. Beyond α = 2◦, the discrepancies
between the results from the γ-Reθ model and from the eN method and the AFT model increase. The eN

method and the AFT model move faster towards the leading edge of the airfoil. This explains the differences
in predicted Cd as Cl increases. Lacking experimental measurements on the upper side beyond α = 2◦, it is
not possible to verify which model gives better predictions in regards to transition locations. Nevertheless, the
Cl-Cd polar shows that the γ-Reθ model is in better agreement with the experiment at higher Cl values, which
suggests that it also predicts transition locations with sufficient accuracy. On the contrary, both the eN method
and the AFT model predict increased Cd and lower Cl, which are caused by upstream transition locations.
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5.6.2 S809 airfoil at Re = 2 x 106

Figure 5.21: S809 airfoil mesh

This S-series airfoil is used in the NREL wind turbine and has behavior that is dominated by effects of
transition. The back half of the upper surface is designed to have a ”transition ramp”, an extended region of
gentle pressure recovery which encourages smooth transition from laminar to turbulent flow [153]. In contrast
to the NLF(1)-0416 airfoil discussed in Section 5.6.1, the S809 airfoil exhibits a very pronounced laminar bucket
with sharp upper and lower corners, due to the fact that the laminar bubbles essentially prevent the transition
location from changing position for a wide range of angles of attack. The airfoil was measured by D.Somers [6] at
Re = 2 x 106, Ma∞ = 0.1 and Tu∞ < 0.05%. The ambient turbulent production terms were: Tuamb = 0.05%,
ωamb = 50U∞c .

Computational results for this airfoil for the region between −10◦ and 10◦ are presented in fig. 5.22. The
drag bucket (fig. 5.22a) is adequately predicted by all transition models, although a slightly lower level than the
experiment is observed. Simulations do not predict stall inside the examined range; experimental stall appears
at Cl = 1 (α = 8◦). This behavior is common and is attributed to the turbulence model, which predicts stall
at higher angles especially in two dimensional simulations. When comparing transition locations (fig. 5.22b),
the predictions are close to the experimental measurements on both sides of the airfoil. Both γ-Reθ and AFT
models predict slightly upstream transition, whereas the γ model predicts transition even more upstream. At
positive angles, the eN method predicts the laminar bucket corner at α = 6◦, which is also the angle observed in
the experiments, whereas the γ-Reθ and AFT models exhibit a delay of 1◦. At negative angles, the eN method
predicts the laminar bucket corner at α = −4◦, which is earlier than the experiment by 2◦, whereas the γ-Reθ
and AFT models again exhibit a delay of 1◦ when compared to the experimental laminar bucket which appears
at α = −6◦. On the contrary, the γ model predicts the bucket corners at α = 5◦ and −3◦ for positive and
negative angles, respectively. The location of laminar bucket corner for negative angles using the γ model agrees
with the experiment.

Cp contours for various angles are also compared. For the case of 1◦ (Cl = 0.29, fig. 5.22f), all models are
very close to the experimental data, with the eN method capturing the laminar bubbles with greater accuracy.
For the cases of 6◦ (Cl = 0.89, fig. 5.22g) and 8◦ (Cl = 1.05, fig. 5.22h), all transition models give very good
results of the Cp levels near the suction peak. For the case of −5◦ (Cl = −0.44, fig. 5.22e), the eN method
predicts lower side transition close to the leading edge (fig. 5.22b). This leads to trailing edge separation on the
lower side; Cp levels close to the trailing edge are similar to those of the fully turbulent simulation, which also
exhibits trailing edge separation. Similarly, for the case of −6◦ (Cl = −0.55, fig. 5.22d) both eN method and γ
model predict lower side transition close to the leading edge, leading to trailing edge separation, in contrast
to the results of the γ-Reθ and AFT models. Lastly, for −8◦ (Cl = −0.62, fig. 5.22c) all transition models
predict the same lower side transition location. However, all simulations fail to predict the onset of separation
that is present on the experiments, leading to different Cp levels on the suction (lower) side. The differences in
separation prediction could be attributed to the turbulence model.

An interesting observation is the behavior of the transition models in the vicinity of laminar bucket corners.
Cf contours for α = 6◦ and α = −6◦ (Cl = 0.89 and −0.55) are compared in fig. 5.22i-5.22j. At α = 6◦, no
leading edge separation bubble is observed and the predicted Cf contours have similar trends, even though
the models do not predict transition at the same position. However, this does not occur at α = −6◦. Both
γ-Reθ and AFT models exhibit leading edge laminar separation bubbles, whereas the transition locations are
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Figure 5.22: Free-transition simulations for the S809 airfoil at Re = 2 x 106, Ma∞ = 0.1, Tuamb = 0.05%, ωamb =
50U∞

c
. Comparison with experimental data [6] and results using XFOIL [3].

still located close to the middle of the chord. On the contrary, the transition location from the eN method
has already moved close to the leading edge. In order to have a more concise understanding of this deviation
between the transition models, the predicted shape factor H and critical amplification factor N for α = −6◦

using the eN method are plotted in fig. 5.22k-5.22l, accompanied by results using XFOIL [3]. The implemented
eN method yields very similar results to those taken from XFOIL and predicts transition locations at almost
identical positions. However, it is clear that both boundary layers are separated. Separation occurs at H ≈ 3.9
in boundary layer solvers, whereas in Navier-Stokes simulations separation can occur at even lower values of H.
Moreover, at H = 7.4 the boundary layer can be assumed to be well separated [83]. Both XFOIL and MaPFlow
predict H values higher than 7.4. In these scenarios, N -factor grows rapidly and thus transition is predicted
close to the leading edge. On the other hand, the results using γ-Reθ and AFT models show laminar bubbles
that are contained close to the leading edge. In fig. 5.22m, the z-axis vorticity from the AFT model is shown
along with streamtraces. Even though two small laminar bubbles are present, they do not cause separation
induced transition, as shown in the intermittency contour in fig. 5.22n. Inside the bubbles, γ is clearly greater
than 1, suggesting turbulent flow. However, these values of γ are not diffused downstream in the boundary layer
and thus transition locations are not affected.
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Figure 5.22: (continued)

102



x

H N

0 0.01 0.02 0.03 0.04 0.05
0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

16

18

20

XFOIL

e
N

N
crit

=9.8

Solid lines: H

Dashed lines: N
crit

(k) Shape factor H and critical amplification ratio
Ncrit, α = −6◦ (Cl = −0.55), lower side

x

H N

0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

16

18

20

XFOIL

e
N

N
crit

=9.8

Solid lines: H

Dashed lines: N
crit

(l) Shape factor H and critical amplification ratio Ncrit,
α = −6◦ (Cl = −0.55), upper side

(m) Laminar separation bubbles, α = −6◦ (Cl =
−0.55), lower side, AFT transition model

(n) γ (intermittency) contour, α = −6◦ (Cl = −0.55),
lower side, AFT transition model

Figure 5.22: (concluded)

103



5.6.3 S827 airfoil at Re = 4 x 106

Figure 5.23: S827 airfoil mesh

The S827 airfoil is used in stall-regulated wind turbines and is designed to deliberately stall beyond a
prescribed angle of attack. The airfoil was measured by D. Somers [7] at Re = 4 x 106, Ma∞ = 0.1 and
Tu∞ < 0.05%. For these flow conditions, the angle in which stall occurs is ≈ 4◦. A distinct feature of this airfoil
is the two lift slopes [153], one corresponding to angles below stall and the other to the post stall region which
begins at α ≈ 5◦. Ambient turbulence production terms were: Tuamb = 0.05%, ωamb = 50U∞c .

Computational results for the region between −5 and 16 degrees are presented in fig. 5.24. As shown in
fig. 5.24c, predicted transition locations remain unchanged for angles between −4◦ and 4◦. In this respect, lift is
expected to vary linearly and drag to remain approximately constant as seen in the measurements and predicted
by the transition models in fig. 5.24b, with the slight exception of the γ model which predicts upstream transition
and earlier onset of drag bucket corners. The Cl slope is slightly over-predicted by all transition models and
the first peak value differs when compared to the experiment (fig. 5.24a). This behavior is common and is
attributed to the two-dimensional simulation that delays the onset of stall. The angle where the peak occurs
varies between the transition models; for the eN method it is shifted by 1◦, appearing at α = 5◦, in contrast
to the experimental angle of 4◦. The γ-Reθ model has a slight drop in lift at 4◦ caused by the corresponding
transition location shift on the upper side (fig. 5.24c). However, the shift in transition location between 4◦

and 5◦ is not big enough and thus the Cl drop from the γ-Reθ model is not as steep as the experiment. The
γ model predicts transition shift at 3◦ and thus exhibits earlier stall than the experiment accompanied by a
lower Cl peak value. Overall, the best agreement is observed using the AFT model, even though the shift in
transition location starts at 6◦. Nevertheless, the AFT model predicts the drop in lift coefficient between 5◦ and
6◦ with good accuracy and has similar trend to the one observed in the experiments. The separation locations
for the upper side are plotted in fig. 5.24d, where it is evident that the onset of transition alters the point of
separation. The fully turbulent simulation exhibits trailing edge separation from α = −2◦, and thus has a
completely different lift slope than the transitional simulations in low angles of attack.

Cp values are also compared in fig. 5.24e-5.24h. For α = −4◦ and 4◦, the predictions are close to the
experimental measurements, even though there is a slight difference in overall Cp levels on both sides. Nevertheless,
fig. 5.24f shows that both fully turbulent and γ simulations predicts separation close to the trailing edge, in
contrast to what is observed in the experiments and the other three transition models. At α = 8◦, transition
locations on the upper side are predicted close to the leading edge (fig. 5.24c). Separation, however, is delayed
in the simulations when compared to the experiment (fig. 5.24g), leading to higher suction peak levels. The
predicted transition locations could be different than those present in the experiment, although separation onset
delay could also be caused by the turbulence model. Lacking experimental transition locations, it is not possible
to further analyze why these deviations occur. For the case of α = 14◦, where the transition locations are
all predicted at the leading edge, predicted Cp is closer to the experiments. The separated region is similar,
suggesting that different Cp levels on the upper sided are probably caused by the turbulence model.
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Figure 5.24: Free-transition simulations for the S827 airfoil at Re = 4 x 106, Ma∞ = 0.1, Tuamb = 0.05%, ωamb =
50U∞

c
. Comparison with experimental data [7].
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5.6.4 DU-00-W212 airfoil at Re = 3 to 15 x 106

Figure 5.25: DU-00-W212 airfoil mesh

This airfoil was recently measured by O.Ceyhan and O. Pires [5] in the DNW-HDG Wind Tunnel at
Goettingen. The flow conditions are presented in Table 5.5. Experimental data are available for various Reynolds
numbers, and thus a direct evaluation of how Reynolds affects the performance of transition models is possible.
Since the comparison focuses on the behavior of transition effects, angles beyond stall are omitted.

Table 5.5: DU-00-W212 flow conditions

Re (millions) 3 9 15
Ma∞ 0.075 0.082 0.08

Tu∞ = Tuamb (%) 0.0864 0.1988 0.3346

ω∞ = ωamb 50 U∞
c 50 U∞

c 50 U∞
c

Ncrit 8.50 6.60 5.25
α(◦) -10 to 10 -10 to 10 -10 to 10

Computational results are presented in fig. 5.26. For Reynolds numbers higher than 3 x 106, the γ −Reθ
model predicts higher drag levels inside the laminar drag bucket, with the difference becoming even higher as
Re rises. The model also fails to capture the drag increase trends near the bucket corner. On the contrary, at
Re = 3 x 106 the behavior is different, with the γ −Reθ model giving lower drag values inside the bucket.

The eN method and the AFT model are both in good agreement with the experiments at all Reynolds
numbers, with the AFT model giving slightly higher drag levels inside the bucket at Re = 9 and 15 x 106.
Predicted laminar bucket corners are also very similar for these two transition approaches, with the only notable
difference being the corner on the negative angles at Re = 3 x 106, which the eN predicts earlier than the AFT
model.

Focusing on the sensitivity of the γ−Reθ model, it is evident that the discrepancies between the experimental
data and the computational results become larger as Re increases. At Re = 3 x 106, the γ −Reθ model predicts
transition downstream and thus yields lower drag values, whereas at Re = 9 and 15 x 106, besides predicting
earlier transition, the model also exhibits a significant, early upstream jump in transition onset, behavior that is
not observed with the eN method and the AFT model (fig. 5.26e- 5.26f). Moreover, fig. 5.26d shows that when
using the γ-Reθ model the predicted minimum drag coefficient increases with increasing Re, behavior which
disagrees with the trends in the experiments and both the eN and AFT predictions. This deviation is caused by
the upstream transition onset prediction.
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Figure 5.26: Free transition simulations for the DU-00-W212 airfoil, flow conditions described in table 5.5. Comparison
with experimental data [5].
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5.6.5 Aerospatiale-A airfoil at Re = 2.1 x 106

(a) Full view (b) Refined region close-up

Figure 5.27: Aerospatiale-A airfoil mesh

The Aerospatiale-A airfoil was designed in 1986 and tested in different wind tunnels. The experimental
results used here are from the Onera F2 wind tunnel [8]. This particular airfoil has been used as a validation
case by many reasearchers [91][154]. Flow conditions for the experiment were Re = 2.1 x 106 and Ma∞ = 0.15,
with turbulence levels being in the range of Tu∞ ≈ 0.07% (Ncrit = 9). The simulations were unsteady, using
a timestep of 0.002 nondimensional time units. Ambient turbulence production terms were: Tuamb = 0.07%,
ωamb = 50U∞c .

The pressure and skin friction coefficients were measured at α = 13.1◦. At this angle, laminar separation
occurs on the upper side of the airfoil. The turbulent reattachment is located at x/c ≈ 12%. Additionally,
the flow separates at the trailing edge due to the adverse pressure gradient. In the experiment, this occurs
at x/c ≈ 82%. In order to capture the laminar bubble with sufficient accuracy, a modified baseline mesh was
created, shown in fig. 5.27a-5.27b. This mesh is refined in the region where laminar separation is detected in the
experiment. This refinement was carried out according to Menter [94], who suggests placing at least 20 elements
in the streamwise direction of the bubble in order to have adequate resolution to resolve the separation induced
transition.

The computational results are compared to experimental data and to results using LES (Mary et al [9]).
The pressure and friction coefficients are shown in fig. 5.28. The fully turbulent simulation deviates from the
experiments significantly, especially close to the trailing edge (fig. 5.28e). This is expected, as the absence
of laminar flow on the airfoil leads to earlier trailing edge separation. The fully turbulent simulation is also
not able to predict the laminar bubble in the leading edge (fig. 5.28c). Regarding transitional simulations, all
employed models predict trailing edge separation at x/c ≈ 82%, which agrees with the experiment. In addition,
all transition models predict Cf levels close to the experimental data (fig. 5.28b). However, the results differ
close to the leading edge. The eN method predicts transition at x/c ≈ 11% and subsequently does not predict
laminar separation. The AFT and γ models predict transition slightly upstream than x/c = 12% and exhibit
only a small laminar bubble. The best agreement is achieved with the γ-Reθ model which predicts turbulent
reattachment at x/c = 12.5%, which is adequately close to the experimental location of x/c = 12%. The laminar
bubble predicted by the γ-Reθ model is also similar to the one predicted by the LES of Mary et al, although
the latter is significantly bigger. However, since no experimental Cf data are available for this region, these
deviations cannot be further evaluated.

Velocity profiles at various positions on the upper side are compared in fig. 5.29. The fully turbulent
simulation again deviates significantly, even in regions with turbulent flow. On the contrary, the transitional
simulations are very close to the experiment and to LES, showing that the laminar-turbulent transition is the
driving mechanism in this particular flow case. The only notable difference between LES and current URANS
with transition modeling is observed at the x/c = 0.15 and 0.2 profiles. Even though boundary layer thickness is
similar, the velocity profiles differ. This suggests that the flow in the URANS simulation is not fully developed
yet, in contrast to turbulent velocity profiles present in the LES simulation. Further downstream at x/c = 0.3
the profiles are again similar. As for the profiles close to the trailing edge (fig. 5.29), the transitional simulations
are almost identical to the LES ones. However, both approaches slightly deviate from the experimental data
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for the positions between x/c = 0.825 and x/c = 0.93. Nevertheless, given the low computational cost of the
transitional simulations, the comparisons are very favorable.
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Figure 5.28: Free-transition simulations for the Aerospatiale-A airfoil at Re = 2.1 x 106, Ma∞ = 0.15, α = 13.1◦,
Tuamb = 0.07%, ωamb = 50U∞

c
. Comparison with experimental data [8] and LES computations [9].

111



u/U
max

(y
­y

w
)/

c

0 1.4 2.8 4.2 5.6 7
0

0.004

0.008

0.012

Experiment
LES ­ Mary et al. (2001)
Fully turbulent

e
N

­Re

AFT

x/c=0.1 x/c=0.15 x/c=0.2 x/c=0.3 x/c=0.5

(a) x/c=0.1-0.5

u/U
max

(y
­y

w
)/

c

0 1.4 2.8 4.2 5.6 7

0.02

0.06

Experiment

LES ­ Mary et al (2001)
Fully turbulent

e
N

­Re

AFT

x/c=0.7 x/c=0.825 x/c=0.87 x/c=0.93 x/c=0.99

(b) x/c=0.7-0.99

Figure 5.29: Free-transition simulations for the Aerospatiale-A airfoil at Re = 2.1 x 106, Ma∞ = 0.15, α = 13.1◦,
Tuamb = 0.07%, ωamb = 50U∞

c
. Mean streamwise velocity profiles vs normalized wall distance. The

individual x/c positions are separated by a horizontal offset of 1.4 with the corresponding zero lines being
located at 0, 1.4, 2.8, 4.2, 5.6. Comparison with experimental data [8] and LES computations [9].

112



5.6.6 NLR-7301 airfoil with flap at Re = 2.51 x 106

(a) Full view (b) Flap close-up

Figure 5.30: NLR-7301 airfoil with flap mesh

The NLR-7301 multi-element airfoil was measured by B. Van Der Berg et al at the NLR LST [10]. This
case tests the capabilities of the transition models in multi-body transition predictions. Flow conditions were
Re = 2.51 x 106, Ma∞ = 0.185, Tu∞ = 0.2% (Ncrit = 6.5). The experimental measurements were carried out
for α = 6◦ and 13◦. Only the case of 6◦ is considered because velocity profile measurements are also available,
in contrast to the case of 13◦. Ambient turbulence production terms were: Tuamb = 0.2%, ωamb = 50U∞c .

Cp and transition locations are compared in fig. 5.32. Overall, all simulations are close to the experimental
Cp values for the main element (fig. 5.32a). In fig. 5.32b it is shown that the transport equation models predict
a similar laminar bubble as the one in the experiment. However, this does not hold true for the eN method,
which exhibits a significantly oversized bubble due to predicting the transition location further downstream. The
Cp levels for the flap are captured relatively well. However, the suction peak level is not well predicted by any
simulation (fig. 5.32d). Higher suction levels in the experiment suggest that the mass flow between the main and
flap elements is less than the computations. Comparing the transition locations on the upper sides of the main
element and the flap (fig. 5.32e-5.32f), the results from all models are adequate. The overall best agreement for
this problem is observed with the AFT model, however the deviations between different models are small.

Comparison with experimental boundary layer measurements is given in fig. 5.33. The location of the
measuring stations is shown in fig. 5.31. At stations 1-8 (fig. 5.33a), the transitional simulations are very close
to the experiments, whereas the fully turbulent simulation deviates slightly. The transitional simulations are
also close to the experimental data at stations 9-11 (fig. 5.33b). The only notable difference is at station 10,
where the predicted boundary layer profile from the transition models is not as turbulent as the experimental.
This may occur because the flow in the simulation has not fully developed yet; station 10 is the first station
downstream from the transition point on the lower side. This could also explain the difference in suction levels
observed in fig. 5.32d. Lower velocity in the simulations decreases the mass flow rate between the main element
and the flap, leading to higher pressure levels in the stagnation region of the latter. For stations 12 and 13
the results are close to the experiments, whereas for station 14 deviations occur (fig. 5.33c-5.33d). At station
14, which is located at the flap trailing edge, predicted boundary layer profile is not well developed in the
region close to the wall surface (fig. 5.33d). At station 16, which is located in the separated shear layer, there is
qualitative agreement with the experiments, even though the results deviate slighlty (fig. 5.33e).
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Figure 5.31: NLR-7301 airfoil and flap section with the locations of static-pressure holes and boundary layer measuring
stations (reproduced from [10])
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Figure 5.32: Free-transition simulations for the NLR-7301 airfoil with flap at Re = 2.51 x 106, α = 6◦, Ma∞ = 0.185,
Tuamb = 0.2%, ωamb = 50U∞

c
, α = 6◦. Comparison with experimental data [10].
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Figure 5.33: Free-transition simulations for the NLR7301 multi-element airfoil at Re = 2.51 x 106, Ma∞ = 0.185,
Tuamb = 0.2%, ωamb = 50U∞

c
. Comparison with experimental data [10].
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5.6.7 Eppler e387 airfoil at Re = 3 x 105

Figure 5.34: Eppler E387 airfoil mesh

The Eppler e387 airfoil was measured by McGhee [11] in the NASA Langley low turbulence pressure tunnel.
This airfoil is characterized by the presence of laminar separation bubbles which induce transition, and thus has
been used as a validation case for transition models (Crivellini et al [124]). The measurements were carried out
for Re = 0.3 x 106 and Tu∞ < 0.07%, which corresponds to Ncrit = 9 for the eN methods. For the simulations,
Ma∞ was set to 0.075. Ambient turbulence production terms were: Tuamb = 0.07%, ωamb = 50U∞c .

Computational results are presented in fig. 5.35. Lift and drag coefficients are compared in fig. 5.35a and
fig. 5.35b. The lift curve is captured with good accuracy up to the point of stall. The laminar drag bucket is
also well predicted in regards to drag level in the low-drag region and to drag bucket corner location. Overall,
the eN method predicts upstream transition on the upper side, as seen in fig. 5.35c. The transition point jumps
to the leading edge at α = 7◦, which is 1◦ earlier than the jump observed in all other transition models. This
early jump is responsible for the increase in drag just after Cl = 1, whereas the other models predict the bucket
corner on the same Cl as the experiment (fig. 5.35b).

Cp values are also compared at three different angles, shown in fig. 5.35d-5.35f. Both the cases of α = −2◦

and 4◦ show that all transport equation transition models are better than the eN method at capturing the
laminar separation effect on the Cp. The comparison for these two angles is very favorable. For the case of 10◦

however, the comparison shows that the simulations have mild stall, contrary to the experiment which has not
stalled yet. This difference is also visible in the lift polar fig. 5.35a, where it is clear that the simulations start
developing trailing edge separation at α ≈ 8◦ whereas the experiment starts at α = 10◦.
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Figure 5.35: Free-transition simulations for the Eppler e387 airfoil at Re = 0.3 x 106, Ma∞ = 0.075, Tuamb = 0.07%,
ωamb = 50U∞

c
. Comparison with experimental data [11].
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5.6.8 NACA642015 airfoil at Re = 10 to 40 x 106

Figure 5.36: NACA642015 airfoil mesh

The next case concerns the NACA642015 airfoil at high Re numbers. This airfoil was measured in the NASA
Ames 12-Foot Pressure Tunnel [12] at Reynolds numbers ranging from 10 x 106 to 40 x 106, Ma∞ = 0.27 and
angles α = 0◦ and 1◦. Since turbulence levels are not mentioned in the experimental reference, three different
freestream turbulence levels were considered, namely Tu∞ = 0.1%, 0.07% and 0.045%, which correspond to
Ncrit = 8, 9 and 10. This case has also been studied by H. Stock in [155]. In regards to the computational
mesh, different first layer spacings were used for the different Re numbers in order to ensure that y+ < 1 for all
simulations. Ambient turbulence production terms were Tuamb = 0.1%, 0.07% and 0.045% respectively, with
ωamb = 50U∞c for all three cases.

For this particular airfoil, the boundary layer eN method was used with both the database approach of Stock
[156] and the approximate envelope approach of Drela [98]. This was chosen in order to evaluate more transition
models at these high Reynolds numbers. Results presented in fig. 5.37 show that the eN database approach
predicts transition locations with great accuracy at both angles and at all Re. At a = 0◦, best agreement is
observed for Tu∞ = 0.07% whereas at a = 1◦ best agreement is observed for Tu∞ = 0.045%, However, lacking
additional experimental data, it is currently not possible to further investigate why different Tu values lead
to better agreement for different angles. Transition locations from the AFT model at 1◦ are very close to the
experimental data, although at 0◦ the predicted transition location slopes are different than the experiments.
At Re < 16 x 106 the predicted transition locations are located upstream whereas for Re > 16 x 106 they are
located downstream. The approximate eN approach has similar behavior for the higher Re numbers at 0◦. For
the case of a = 0◦, the database eN method for Tu∞ = 0.045% and the Drela eN method for Tu∞ = 0.1%
predict the same transition locations. On the other hand, both γ −Reθ and γ models predict transition too
early at all Re numbers. However, the slope of the transition locations vs Re is similar to that predicted by the
other transition models.
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(b) Transition locations, upper side, α = 1◦

Figure 5.37: Free transition simulations for the NACA 642015 airfoil at Re = 10 − 40 x 106, Ma∞ = 0.27, Tu∞ =
0.045 − 0.1%, ω∞ = 50U∞

c
. Comparisons with experimental data [12].
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5.7 Three-dimensional test cases

5.7.1 6:1 prolate spheroid at Re=6.5 x 106

Figure 5.38: 6:1 prolate spheroid surface mesh

The flow around the 6:1 prolate spheroid was measured by Kreplin et al in the DFVLR low speed wind
tunnel [121]. The experiment was carried out at Reynolds number 6.5 x 106 (based on spheroid length), whereas
M∞ was 0.136. Turbulence intensity was about 0.2%. Three angles of attack were considered: 5◦, 15◦ and 20◦.
Ambient turbulence source terms were: Tuamb = 0.2%, ωamb = 50U∞L , with L being the length of the spheroid.

This case is of particular interest because the three-dimensional nature of the flow around spheroids leads to
strong crossflow instabilities that dominate the transition process, which makes it a solid validation case for
transition models that try to capture crossflow effects. First efforts (Nebel et al [157], Stock [158]) considered
boundary layer transition using the eN method, whereas more recently the focus has shifted towards the available
transport equation transition models (Langtry et al [92], Grabe et al [115][13], Denison et al [159], Vallinayagam
Pillai et al [160], Choi et al [116][117], Vizinho et al[161]). Due to the presence of crossflow effects, this case has
also been suggested as a standard transition model validation case [149].

The generated computational mesh had 256 cells in the wrap-around, 128 in the normal, and 128 in the
spanwise directions, resulting in approximately 5 million cells. The domain extent was set to 100 spheroid
lengths. The γ-Reθ model is used in the computations in its baseline version (Section 3.3), as well as equipped
with two different crossflow transition variants (specifically discussed in Section 3.3.5). The surface roughness of
the spheroid is not known, and thus for the crossflow model of Langtry a value of 10µm was assumed, which
corresponds to a rough painted surface finish.

Computational results for the friction coefficient are compared with experiments in fig. 5.39-5.41. Simulations
without crossflow terms are unable to produce results that resemble the experimental data. When using either
of the crossflow models the results are significantly improved, especially at the two higher angles. The only
exception is the case of 5◦, where the crossflow models fail to give results that resemble the experiments. Similar
deviations from the experimental data at this particular angle have also been noted by other researchers [13][161].
Between the Langtry and CFHE crossflow models, performance of both is comparable, with the latter having a
slight edge in this particular case.

The extracted Cp distributions are compared in fig. 5.42. For the case of α = 5◦, results from all models are
similar. This is expected, as the angle is relatively low and the crossflow is weak and manifests itself upon exit.
For the cases of α = 15◦ and 20◦, the differences start to apppear. At α = 15◦, where both crossflow models
give results that are close to the experimental Cf , the upper side of the spheroid exhibits higher suction levels
towards the trailing edge. Moving to the case of α = 20◦, the same behavior is observed; however this time
only for the CFHE crossflow model, since the Langtry crossflow model deviates from the experiment. In the
simulations where transition is predicted further downstream, larger regions of laminar flow on the upper side
allow for higher pressure levels towards the trailing edge. This occurs because the laminar boundary layer does
not dissipate energy as fast as the turbulent boundary layer. When comparing Cp distributions on the pressure
side, the results are almost identical among the three models. This is expected, as the flow on the lower side for
increasing α is mostly laminar.

Contours of z-axis vorticity on the y/L = 0 plane and x-axis vorticity on the x/L = 0.7 plane are presented
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in fig. 5.43-5.44 for α = 5◦ and 20◦. The three approaches have similar patterns, however at 20◦ the CFHE
model produces slightly bigger z-axis and x-axis structures (fig. 5.43f and fig. 5.44f) due to upstream transition
prediction.
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(a) Experiment

(b) Free transition using the γ-Reθ model without crossflow terms.

(c) Free transition using the γ-Reθ model with crossflow terms. Langtry crossflow
model.

(d) Free transition using the γ-Reθ model with crossflow terms. CFHE crossflow
model.

Figure 5.39: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour to experimental data (reproduced from [13])

at α = 5◦.
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(a) Experiment

(b) Free transition using the γ-Reθ model without crossflow terms.

(c) Free transition using the γ-Reθ model with crossflow terms. Langtry crossflow
model.

(d) Free transition using the γ-Reθ model with crossflow terms. CFHE crossflow
model.

Figure 5.40: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour to experimental data (reproduced from [13])

at α = 15◦.
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(a) Experiment

(b) Free transition using the γ-Reθ model without crossflow terms.

(c) Free transition using the γ-Reθ model with crossflow terms. Langtry crossflow
model.

(d) Free transition using the γ-Reθ model with crossflow terms. CFHE crossflow
model.

Figure 5.41: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Comparison of computational Cf contour with experimental data (reproduced from

[13]) at α = 20◦.
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Figure 5.42: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Comparison of computational Cp distributions.
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(a) α = 5◦, γ-Reθ model without crossflow terms (b) α = 20◦, γ-Reθ model without crossflow terms

(c) α = 5◦, Langtry crossflow model (d) α = 20◦, Langtry crossflow model

(e) α = 5◦, CFHE crossflow model (f) α = 20◦, CFHE crossflow model

Figure 5.43: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Contours of computational z-axis vorticity on the y/L = 0 plane.

127



(a) α = 5◦, γ-Reθ model without crossflow terms (b) α = 20◦, γ-Reθ model without crossflow terms

(c) α = 5◦, Langtry crossflow model (d) α = 20◦, Langtry crossflow model

(e) α = 5◦, CFHE crossflow model (f) α = 20◦, CFHE crossflow model

Figure 5.44: Free-transition simulations for the 6:1 prolate spheroid at Re = 6.5 x 106, Ma∞ = 0.136, Tuamb = 0.2%,
ωamb = 50 U∞

Lspheroid
. Contours of computational x-axis vorticity on the x/L = 0.7 plane.
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5.7.2 ONERA M6 wing at Re=3.5 x 106

Figure 5.45: ONERA M6 wing computational mesh

The ONERA M6 wing is a widely used three-dimensional aerodynamic case. The design of the wing is
based on a symmetric ONERA D airfoil section perpendicular to the 40% line. It is a single element semi-span
swept, tapered wing with an aspect ratio of 3.8 and a taper ratio of λ = 0.562. The leading edge sweep angle is
φLE = 30◦ whereas the trailing edge sweep angle is φTE = 15.8◦.

The flow around the wing has been measured for various operational conditions. The simulations in this thesis
are based on the experiments presented in [14], which were performed in the ONERA S2Ch (Chalais-Meudon)
wind tunnel. Re was 3.5 x 106, Ma 0.262. The freestream turbulence intensity of the wind tunnel was about
Tu∞ = 0.2%. Laminar regions on the surface of the wing were visualized using sublimation of naphthalene.

The generated computational mesh had 256 wrap-around, 128 normal and 64 spanwise cells, resulting total
number of approximately 3 million. Domain extent was set to 1000 root chords. First layer spacing was set to 5
x 106 root chords, which yielded y+ < 1 at all times. The γ-Reθ model is used, both without crossflow treatment
and with two different crossflow transition models (see Section 3.3.5). For the Langtry crossflow model, surface
roughness was set to 5µm. Ambient turbulence production terms were: Tuamb = 0.2%, ωamb = 50 U∞

croot
.

The experimental visualizations are compared to results from transitional simulations in fig. 5.46. Without
crossflow transition modeling, the predicted transition locations are located far downstream at all angles
considered (fig. 5.46b). For the case of 0◦ the inclusion of crossflow terms improves the results significantly.
When compared to the results without crossflow transition modeling, the transition locations on both sides
are located close to the leading edge (fig. 5.46c-5.46d) and they agree with the experimental visualizations
(fig. 5.46a). At 5◦ the agreement was not as good, as both crossflow models deviated from the experimental
transition locations on the lower side. At 20◦, results from the CFHE crossflow model were accurate, whereas
the Langtry crossflow model predicted transition downstream.

Integrated loads are also presented in fig. 5.47. Simulations with crossflow terms predict upstream transition,
which raises predicted sectional Cd. On the contrary, the effect on Cl is negligible.
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(a) Experimental transition locations (sublimation of naphthalene).

(b) Cf visualization, γ-Reθ model without crossflow terms.

Figure 5.46: Free-transition simulations for the ONERA M6 wing at Reroot = 3.5 x 106, Ma∞ = 0.262, Tuamb = 0.2%,
ωamb = 50 U∞

croot
. Laminar-turbulent region visualization. Comparison with experimental data [14].
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(c) Cf visualization, γ-Reθ model with crossflow terms using the crossflow model of
Langtry et al.

(d) Cf visualization, γ-Reθ model with crossflow terms using the CFHE model.

Figure 5.46: (concluded)
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Figure 5.47: Free-transition simulations for the ONERA M6 wing at Reroot = 3.5 x 106, Ma∞ = 0.262, Tuamb = 0.2%,
ωamb = 50 U∞

croot
. Computational Cl and Cd along the spanwise axis.
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5.7.3 AVATAR Wind Turbine Rotor Blade

(a) Computational domain (b) Blade close-up

(c) Root surface mesh (d) Tip surface mesh

Figure 5.48: AVATAR W/T Rotor Blade computational mesh

The AVATAR Wind Turbine was employed in the AVATAR Project [15]. It consists of three blades and
has a rotor diameter of 205 m. Operating conditions are given in Table 5.6. Experimental measurements have
not been carried out, therefore comparison with experimental data is not possible. However, the results are
compared to those of other researchers who participated in the AVATAR project. The goal is to assess the effect
of transition on integrated blade loads.

The computational mesh was generated by DTU-Risoe and was freely available to the contributors of the
AVATAR project. It consisted of 256 wrap-around, 128 normal and 128 spanwise cells, resulting in a total
number of approximately 5 million (fig. 5.48). Only one blade was simulated, using 120◦ periodic conditions.
Regarding transitional simulations, the eN method with the approximate envelope approach was used. Natural
transition was assumed (Ncrit = 9). A sectional approach was adopted for the boundary layer, which means that
the boundary layer was solved separately in each 2D airfoil section of the blade. Ambient turbulence production
terms were not used, since they are not necessary for boundary layer transition methods.

Computational mechanical power and thrust are compared to those of other researchers in fig. 5.49, where
it is shown that fully turbulent and transitional curves agree. As expected, the presence of laminar regions
raises both power and thrust. The presence of laminar regions is able to harness more energy from the wind
flow. However, the increase in power comes with an increase in construction cost, as higher levels of thrust will
require a tower that is able to withstand the increased loads.
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Table 5.6: AVATAR W/T operating conditions

Uwind(m/s) RPM Pitch (◦)

4 6.0000 0
5 6.0000 0
6 6.0000 0
7 6.0146 0
8 6.8738 0
9 7.7330 0
10 8.5922 0

10.5 9.0218 0
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Figure 5.49: Simulations for the AVATAR W/T Rotor Blade. Flow conditions listed in Table 5.6. Comparison with
computational data from [15].
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Figure 5.50: Simulations for the AVATAR W/T Rotor Blade. Flow conditions listed in Table 5.6. Comparison with
computational data from [15].
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5.8 Discussion

In this Chapter, the results from transitional simulations have been presented. The focus was on external
aerodynamic flows around airfoils, wings, and a generic fuselage configuration (spheroid). The initiative and
background of the analysis was always in reference to aerodynamic loads and transition locations (where
available), as well as to boundary layer velocity profiles for some cases.

In the two-dimensional test cases, different types of airfoils were tested in a wide range of Re numbers and
freestream turbulence levels. The boundary layer transition approach paired with the eN method provided
accurate results for the aerodynamic loads and transition locations in the majority of cases, especially when Re
numbers higher than 9 x 106 were considered. However, in cases with laminar separation (see Section 5.6.5,
Section 5.6.7) the agreement with experiments in regards to bubble location and size was not always as good. On
the other hand, the γ-Reθ model rivaled the boundary layer eN method for Re numbers up to 4 x 106, providing
accurate results for both aerodynamic loads and transition locations. However, its accuracy deteriorated
significantly for Re higher than 4 x 106 (Section 5.6.4, Section 5.6.8), as it always predicted early transition.
This behavior had a significant effect on the produced aerodynamic loads. On the contrary, in cases with laminar
separation (see Section 5.6.5, Section 5.6.7) the γ-Reθ model provided more accurate results, predicting laminar
separation locations and bubble sizes that closely resembled the measurements and reference computations. The
γ model most often predicted transition upstream from other models and experimental data, resulting in higher
Cd values. Large discrepancies were observed in cases with low freestream turbulence levels and Re = 2−4 x 106

(Section 5.6.1, Section 5.6.2, Section 5.6.3). For Re numbers higher than 4 x 106 (Section 5.6.4, Section 5.6.8), its
accuracy also deteriorated in a similar fashion to the γ-Reθ model. The AFT model was in good agreement with
the experimental data for all examined cases and, unlike γ-Reθ and γ models, its accuracy did not deteriorate
drastically in the high Re cases (Section 5.6.4, Section 5.6.8). However, despite being based on the eN method,
for the majority of cases it yielded results that resembled those from the other transport equation transition
models.

In the context of two-dimensional airfoil polars, which is what was examined in most cases considered in
this thesis, the focal points are drag level inside the laminar bucket and location of laminar bucket corners. In
most examined cases, the boundary layer eN method predicted corners earlier than the γ-Reθ and AFT models,
which often coincided with the experiments. The γ-Reθ and AFT models usually exhibited a delay of 1− 2◦

with respect to the eN method in both positive and negative angles, which in some cases brought the results
closer to the experimental data than the eN method. The γ model usually predicted earlier laminar bucket
corners caused by upstream transition predictions.

In the three-dimensional test cases, two configurations with strong crossflow transition effects were assessed
(Section 5.7.1, Section 5.7.2). The γ-Reθ model was used for transition prediction, with and without crossflow
treatment. In the latter cases, two different crossflow models were considered. The transition locations from
simulations that accounted for crossflow effects were significantly more accurate with respect to experimental
data. Out of the two crossflow models, the CFHE model was able to give more accurate results than the Langtry
model for both cases. Lastly, the boundary layer eN method was used in a rotating wind turbine rotor blade
simulation (Section 5.7.3), where the resulting integrated loads highlighted the importance of transition in
aerodynamic simulations.

However, for transition predictions in three dimensions boundary layer definition and calculation can become
quite complex. In such cases, the boundary layer eN method is not always easy to implement, because it requires
both a boundary layer and a streamline calculation interface. Nevertheless, the three-dimensional boundary
layer can be approximated by two-dimensional sections, skipping the need for an explicit streamline interface.
However, this assumption is case specific and is not always valid. Furthermore, the integral boundary layer
equations are inherently two-dimensional and cannot solve three-dimensional boundary layers. This leaves
Direct CFD integration as the only viable approach for crossflow transition prediction, as the latter requires
boundary layer parameters in the crossflow direction. Due to all these reasons, transport equation transition
models have a clear advantage in three dimensional simulations. as they do not require boundary layer and
streamline calculation interfaces and, by including the corresponding modeling terms, can be used to predict
crossflow transition without additional modifications.

Based on the results and the discussion in this Chapter, the following are derived:

• If two-dimensional simulations are considered, the boundary layer eN method and the AFT transport
equation model are recommended. These two approaches were able to provide accurate results for all
examined cases.

• For two-dimensional simulations at Re numbers not higher than ≈ 6 x 106, the γ-Reθ model is also a
viable option. However, for Re number beyond this limit the prediction accuracy of the model deteriorates.
• The γ model behaves similarly to the γ-Reθ model, however it predicts upstream transition in most cases.

For Re numbers beyond 4 x 106, the prediction accuracy of the model also deteriorates.
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• If the γ-Reθ and γ models are considered, inflow turbulence should be defined appropriately (as discussed
in Section 5.5.1).

• In three-dimensional simulations, the implementation of boundary layer methods is complicated, therefore
transport equation models have a clear advantage because they are significantly easier to implement.

• If crossflow transition prediction is important, then the γ-Reθ model with crossflow terms is the only
viable option.
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Chapter 6

LES-DES verification and validation

6.1 Introduction

In this chapter the results from simulations using LES and DES are presented. The focus is cases that exhibit
massive separation, in which URANS predictions are expected to deviate from experimental data. The aim is to
compare different approaches on the same mesh and using same arithmetic parameters, in order to focus on the
effect of turbulence modeling on the produced results. The classic case of a circular cylinder at critical Reynolds
number is discussed in Section 6.2.1 using Spalart-Allmaras (S-A) URANS, S-A DDES and LES equipped with
the Smagorinsky subgrid model. In Section 6.2.2 the flow around the S809 airfoil at angles up to α = 90◦ is
considered using S-A URANS and S-A IDDES. The classic validation case of the periodic hills is discussed
in Section 6.2.3 using Smagorinsky LES whereas in Section 6.2.4 the flow through the Sexbierum rotor with
Smagorinsky LES, using turbulent inflow and actuator methods, is considered.

6.2 Test cases

6.2.1 Circular cylinder at Re = 3900 using 3D URANS, DDES and LES

(a) 2D hybrid mesh
(b) 3D surface mesh with AR=3.2 and 32 layers on

the spanwise direction

Figure 6.1: Computational mesh for the circular cylinder

The flow around circular cylinders is a classic test for turbulence modeling validation and assessment. Due
to the separated nature of the flow, conventional RANS turbulence models are not able to produce accurate
results when compared to experimental data. This occurs because the separated flow exhibits strong vortex
shedding, which RANS models fail to capture adequately. The use of LES or DES is expected to give a better
representation of the turbulent characteristics in the near wake region, which is the most active region in regards
to the presence of turbulence structures.
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A critical Reynolds number of 3900 is considered. At this Reynolds number, the wake is fully turbulent but
the boundary layer remains laminar. Experimental results are taken from Nordberg [16], Lourenco et al [17]
(data taken from [34]) and Ong et al [19]. This specific case has also been numerically studied by Blackburn et
al [18], Breuer [35] and Beaudan et al [34].

3D Unsteady RANS using the S-A model, S-A DDES and LES with the Smagorinskgy subgrid model are
considered. Laminar to turbulent transition is not considered in this case. The simulations are carried out on
the same hybrid mesh, consisting of 280 wrap-around elements, 60 elements in the region up to 0.1 cylinder
diameters and 60 elements in the region from 0.1 to 1 diameter. The rest of the mesh was unstructured using
triangles. The aspect ratio is 3.2 based on what was discussed in [18], where an aspect ratio of at least π is
suggested. The spanwise direction had 32 layers, resulting in a total of approximately 2 x 106 elements for the
3D mesh. A timestep of 0.001 nondimensional time units was used.

For the comparisons, the computational results have been averaged over more than 30 shedding cycles. Cp
and Cf distributions are compared to experiments in fig. 6.2a-6.2b. Both LES and DDES are able to capture
the experimental pressure coefficient, in contrast to URANS which predicts a lower suction level after the 50◦

position. The Cf distribution is not available from the experiments. However, the experimental separation point
is located at approximately 88◦ [18]. Both LES and DES capture the separation location with good accuracy,
whereas the URANS solution predicts separation slightly downstream at 95◦.

Results on the wake centerline are compared to experimental data and to LES results from [18] in fig. 6.3.
Both LES and DES are closer to measurements (fig. 6.3a) than URANS. Mean stresses are compared to results
from [18] in fig. 6.3b-6.3d. LES and DDES give similar results which are close to the results from [18]. Regarding
u′u′ and v′v′, URANS predicts slightly higher values and a smoother distribution overall. However, URANS
predicts very small w′w′ values when compared to all other methods, suggesting that the 3d character of the
separated flow is significantly suppressed.

In fig. 6.4-6.7 computational results are compared to experimental data at various x/D wake positions. At
x/D = 1.06 (fig. 6.4a), URANS captures the mean U distribution well, but both DDES and LES are closer to
the experiments. For the mean V distribution, URANS fails to capture the variations that are present in the
experiments. It is noted that the experimental values for V on the edge of both distributions do not approach 0,
contrary to what is expected. Therefore, a straight comparison for the mean V distribution cannot be made.
However, a qualitative comparison shows that both DDES and LES resemble the experimental variation pattern,
in contrast to URANS.

At the x/D = 1.54 position (fig. 6.5), URANS overpredicts the mean U value and LES slightly underpredicts
it, whereas the results from DDES are very accurate (fig. 6.5a). In regards to the mean V distribution (fig. 6.5b),
the experimental data again do not approach 0 over the edges. However, all three simulations predict similar
variation patterns. No variations of mean V are present on the experimental data at this position. However,
URANS slightly underpredicts mean V when compared to DDES and LES. Normal stresses u′u′, v′v′ and shear
stress u′v′ are compared in fig. 6.5c-6.5e. DDES results are very close to the experiment. URANS underpredicts
the normal u′u′ stress and the shear u′v′ stress, whereas it overpredicts the normal v′v′ stress. LES underpredicts
all three stresses, with the most notable deviation being noted for the v′v′ stress. It is possible that this was
caused by insufficient mesh resolution in the near wall region, which led to higher diffusion. Since the RANS
mode of DDES is active within the boundary layers, DDES is able to perform well even with coarser meshes in
the wall region. However, for a wall resolved LES (as is the one considered here) a higher resolution for the
boundary layer is probably needed.

At the x/D = 3 position (fig. 6.6), the comparison of the results from DDES, LES and URANS have similar
trends to those at the x/D = 1.54 position. Two different sets of experimental results are available [17][19],
which deviate from each other significantly. For the mean U distribution (fig. 6.6a), LES and DDES agree with
the experimental results from [17], whereas the results using URANS seem to agree with the experimental results
from [19]. However, the latter agreement is probably coincidental. For the mean V distribution (fig. 6.6b), no
fluctuations are present in the experimental data. All three simulation predict similar trends, albeit with different
values than the experiments. For the normal and shear stresses (fig. 6.6c-6.6e), comparisons of computational
results to experimental data vary in trend. DDES results for the normal u′u′ stress are closer to the experimental
data from [17] whereas LES results are closer to the data from [19]. For the normal v′v′ stress, the experimental
data from the two sources are similar and LES is able to give better results. On the contrary, for the u′v′ shear
stress the experimental results again deviate from each other; LES and DES are close to the data from [17]
whereas URANS is close to the data from [19].

Moving on, comparison of the u′u′ stress with experimental data at x/D = 6, 7, and 10 (fig. 6.7) shows that
URANS always predicts a symmetrical distribution around the y/D = 0 axis. On the contrary, both DDES and
LES predict variations and exhibit non-symmetric distributions. The comparison of DDES and LES results to
the experiments is favorable. However, LES always gives lower levels of the normal stress.

Overall, the comparisons show that simulations using URANS cannot provide accurate results for this
flow case. The averaged nature of the URANS approach produces almost symmetrical distributions, which do
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not agree with the experimental findings. On the other hand, DDES and LES seem to agree more with the
experiments. However, the comparisons presented here are not conclusive as to which of the two methods is
better. The LES simulation may not have sufficient resolution inside the boundary layer region. This could
explain some of the deviation between LES and DDES in the near wake region, although at some positions the
results using LES were closer to the experimental findings. In addition, the Smagorinsky subgrid model may be
too dissipative for this particular flow case. Perhaps a different subgrid model could provide more accurate
results.
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Figure 6.2: Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Comparison with experiments [16].
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Figure 6.6: Flow past a circular cylinder at Re = 3900, Ma∞ = 0.08. Values on the x/D = 3.00 plane. Comparison
with experiments [17][19].
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6.2.2 S809 airfoil at Re = 0.6 x 106 using 3D URANS and DDES

(a) 200 wrap-around x 100 normal element 2D mesh (b) 3D surface mesh, AR=1c, 25 spanwise layers

Figure 6.8: S809 airfoil mesh for the high angle study

The S809 airfoil was measured by Butterfield et al [20] in the Colorado State University (CSU). The
experiment covers a wide range of angles of attack up to 90◦, at freestream Re 0.65 x 106 and freestream Ma
0.076. The wide range of angles covers all flow regimes; attached flow, mildly separated flow and massively
separated flow. This case has also been numerically studied by Xu et al in [32].

The employed mesh is shown in fig. 6.8. The 2D mesh consisted of 200 wrap-around and 100 normal elements
(fig. 6.8a). For the 3D simulations, the 2d mesh was extruded in the lateral direction. The aspect ratio of the
3d configuration was equal to 1 chord and had 25 layers (fig. 6.8b), which brought the 3d mesh to a total of
500 thousand elements. Symmetry conditions were used on the lateral boundaries. For the employed timestep,
according to what was suggested in [32], a value of 0.01 nondimensional time units was used. The simulations
utilized the Spalart-Allmaras (S-A) turbulence model.

The simulations presented here aim at capturing the effect of large turbulence structures. Therefore, angles
located in the mild separation regime (below 20◦) are omitted. Below 20◦, trailing edge separation is caused
by the development of small turbulent scales inside the boundary layer, where DDES will be on the RANS
mode (Section 4.3). Therefore, separation prediction is greatly dependent on the underlying turbulence model
capabilities. In order to capture the effect of these small scales, a finer mesh than the one utilized here is
required, which will enable DDES to switch on the LES mode inside the boundary layer and resolve the LES
flow content. On the contrary, at higher angles of attack separation on the upper side occurs near the leading
edge of the airfoil and is not dependent on the turbulence model. Due to the development of large turbulent
structures on the separated region, DDES will utilize the LES mode and is expected to yield different results
than the baseline URANS.

Computational results are compared to experimental data in fig. 6.9. For the 3D URANS and 3D DDES
simulations, both PLR and MUSCL schemes are used (Section 2.3). For the cases of 20◦ and 30◦, the DDES
results are similar to those using 3D URANS, with the MUSCL scheme being overall closer to the experiment.
For angles greater than 45◦, where the flow is massively separated, 3D URANS and DDES results differ,
especially with respect to the predicted Cd. The presence of large turbulent structures in the flow gives way to
the LES mode of the DDES model. The DDES results are very close to the experimental data, in contrast to
the 2D and 3D URANS results which overpredict both lift and drag coefficients in all cases. Especially at 90◦,
3D URANS overpredicts the drag coefficient significantly, as expected. At 90◦ the airfoil behaves like a bluff
body and the measured drag coefficient is close to the value of 0.2 which is also the value for a flat plate at 90◦.

Instantaneous spanwise-axis vorticity contours are shown in fig. 6.10 and 6.11 for the 2D and 3D simulations,
respectively. Contours are plotted at three different spanwise locations, namely z/c = 0.25, 0.50 and 0.75. It
is evident that the vorticity structures in 3D URANS are similar to the 2D results and they do not exhibit
significant variations in the spanwise direction. The structures in DDES results on the other hand are more
chaotic and exhibit significantly different structures at the three spanwise planes. Suppression of the 3D character
of the flow is typical in 3D URANS, as also discussed in Section 6.2.1.

In fig. 6.12 averaged pressure coefficient contours using 3D URANS are compared to those using DDES at
α = 45◦ and 90◦. Three different spanwise positions are presented. 3D URANS underpredicts Cp on the suction
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side, especially at 90◦. This explains the differences in fig. 6.9a-6.9d.
Mean normal and shear stresses using URANS and DDES are compared in fig. 6.13 and 6.14. 3D URANS

is able to give results that resemble those from DDES only for the normal u′u′ and v′v′ stresses (fig. 6.13a
and 6.13c) and the u′v′ shear stress (6.14a). For all other stresses, results from URANS deviate from DDES
significantly. Due to the suppressed 3D character in 3D URANS, the predicted levels of the spanwise velocity w
are relatively low. Therefore, normal and shear stresses involving the spanwise velocity are equally low when
compared to those using DDES.

This flow case shows that when massively separated flows are considered, the accuracy of the URANS
predictions is compromised. Especially at angles higher than α = 45◦, DDES is able to give significantly more
accurate results than URANS even when the same mesh is used.
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Figure 6.9: Simulations on the S809 airfoil using 2D URANS, 3D URANS and 3D DDES at Re = 0.65 x 106,
Ma∞ = 0.075. Comparison with experimental data [20].
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Figure 6.10: Simulations on the S809 airfoil using 2D URANS (2nd order PLR scheme) at Re = 0.65 x 106, Ma∞ =
0.075, α = 45◦. Instantaneous z-axis vorticity.
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(a) 3D URANS, z/c = 0.25 (b) DDES, z/c = 0.25

(c) 3D URANS, z/c = 0.50 (d) DDES, z/c = 0.50

(e) 3D URANS, z/c = 0.75 (f) DDES, z/c = 0.75

Figure 6.11: Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075, α = 45◦. Instantaneous z-axis vorticity at three spanwise locations.
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Figure 6.12: Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075. Mean Cp contours and standard deviations at three spanwise locations for α = 45◦ and
90◦.

151



(a) 3D URANS, mean u′u′ (b) DDES, mean u′u′

(c) 3D URANS, mean v′v′ (d) DDES, mean v′v′

(e) 3D URANS, mean w′w′ (f) DDES, mean w′w′

Figure 6.13: Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075, α = 45◦. Mean normal stress contours at the z/c = 0.5 position.
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(a) 3D URANS, mean u′v′ (b) DDES, mean u′v′

Figure 6.14: Simulations on the S809 airfoil using 3D URANS and DDES (2nd order PLR scheme) at Re = 0.65 x 106,
Ma∞ = 0.075, α = 45◦. Mean u′v′ shear stress contours at the z/c = 0.5 position.

(a) DDES, mean u′w′ (b) DDES, mean v′w′

Figure 6.15: Simulations on the S809 airfoil using DDES (2nd order PLR scheme) at Re = 0.65 x 106, Ma∞ = 0.075,
α = 45◦. Mean u′w′ and v′w′ shear stress contours at the z/c = 0.5 position.
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6.2.3 Flow past periodic hills at Re = 10596 using LES

Figure 6.16: 2D mesh for the periodic hill

The flow past periodic 2D hills is a popular test case for validating turbulence models in regards to separation
and reattachment predictions. The present study follows the experiment of Breuer et al [162]. The Reynolds
number based on the hill crest height, h, and the bulk velocity, Ub, is equal to 10596. The length of the domain is
equal to 9h and the spanwise direction size is 4.5h. This flow case is also computationally studied by Balakumar
et al [28], Frolich et al [163] and Gritskevich et al [146].

LES using the Smagorinsky model is considered. The computational mesh consisted of 196 x 128 elements
on the xy plane. In the spanwise direction 128 layers were used, bringing the 3D mesh to 4.7 million elements. A
timestep of 0.002 nondimensional time units was used. The lower wall was fully resolved whereas wall functions
were used for the upper wall.

The streamwise periodicity suggests that the inlet mass flow rate must be constant. If no external forces are
used, inlet mass flow rate cannot remain constant in the simulation. It will instead decrease in value due to
the presence of surface friction on viscous walls. There should be a pressure gradient that drives the flow and
enables the conservation of mass flow rate. Following Xu [164], the pressure is decomposed into periodic and
aperiodic components as:

p̄(x, y, z, t) = βx+ p̄p(x, y, z, t) (6.1)

where β is the average streamwise pressure gradient. The constitutive equation of state thus becomes:

ρ̄ =
p̄

RT̄
=

βx

RT̄
+

p̄p
RT̄

(6.2)

For moderate Reynolds numbers, the pressure gradient term is much smaller than the periodic pressure and
therefore βx

RT̄
is negligible compared to

p̄p
RT̄

. The density can thus be approximated as:

ρ̄ ≈ p̄p
RT̄

(6.3)

The periodic component p̄p replaces p̄ in the governing equation and the streamwise pressure gradient is
added as a body force term in the right hand side of the u-momentum equation. The periodic assumption for
pressure is thus satisfied and the periodic pressure component is determined in the simulation by requiring that
the mean mass flow rate be constant. The average streamwise pressure gradient is dynamically calculated in
each physical time step in order to provide the desired mass flow rate as:

βn+1 = βn − 1

∆t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n
+

(
ṁ

Ac

)n−1
]

(6.4)

where Ac is the crossflow area of the computational domain and ∆t is the physical timestep. The average mass
flow rate, ṁ/Ac, is defined as:

ṁ

Ac
=

1

Ac

∫
< ρu >s dA (6.5)
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where <>s denotes an ensemble average along the normal and spanwise direction and (ṁ/Ac)0 is the desired
mass flow rate which was set equal to a non-dimensional value of 1.0 for the simulation.

Computational results are compared to LES results available from the NASA turbulence modeling database
[21] in fig. 6.17-6.22. Mean u contours differ slightly in the region close to the upper wall (fig. 6.17). This may
be attributed to different wall modeling between the two simulations. However, moving away from the upper
wall the contours become similar. Similarities are also observed for the mean v (fig. 6.18). The presence of small
contour fluctuations close to the lower wall when compared to the reference results suggests that a smaller time
averaging period was used. Slight differences observed in the mean u′u′ contour (fig. 6.19) also imply that a
larger time-averaging frame is needed.

According to the experimental measurements, separation occurs near x/h = 0.2 and reattachment near
4.6 − 4.7h. In fig. 6.20-6.22 it is shown that both separation and reattachment locations are captured well.
The tail of the recirculation region is slightly different in MaPFlow when compared to the reference results
(fig. 6.21b), exhibiting lower mean u values. The reattachment point is located slightly downstream at x/h ≈ 5.
Separation is predicted very close to the experimental value of 0.2 (fig. 6.22b).

Overall, the present results are very close to the reference ones. The discrepancies could be caused by
different subgrid models. Unfortunately, the subgrid model employed in the reference computations is not known.
In addition, usage of longer time averaging periods than the one considered here will produce results that will
be closer to the reference data. The averaging period used in this work was Tavg = 360 nondimensional time
units, whereas Breuer et al [162] used a value of Tavg = 1277. However, such a long time-averaging period was
beyond our computational capabilities.

(a) Mean u/Ub, NASA, LES

(b) Mean u/Ub, MaPFlow, LES, Smagorinsky

Figure 6.17: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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(a) Mean v/Ub, NASA, LES

(b) Mean v/Ub, MaPFlow, LES, Smagorinsky

Figure 6.18: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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(a) Mean u′u′/U2
b , NASA, LES

(b) Mean u′u′/U2
b , MaPFlow, LES, Smagorinsky

Figure 6.19: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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(a) Recirculation region, NASA, LES

(b) Recirculation region, MaPFlow, LES, Smagorinsky

Figure 6.20: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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(a) Reattachment, NASA, LES

(b) Reattachment, MaPFlow, LES, Smagorinsky

Figure 6.21: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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(a) Separation, NASA, LES

(b) Separation, MaPFlow, LES, Smagorinsky

Figure 6.22: Flow around periodic hills. h is the height of the hill crest. Distance between hill crests Lx = 9h, channel
height Ly = 3.035h. Spanwise depth Lz = 4.5h. Re = 10596, based on h and on bulk velocity Ub at the
crest of the first hill. Comparison with computations from the NASA turbulence database [21].
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6.2.4 Atmospheric flow past the Sexbierum rotor using turbulent inflow and LES

The Sexbierum wind turbine was measured by Cleijne [22] in the Sexbierum Wind farm. Flow and turbulence
quantities at various wake positions were measured. The availability of such data renders this case suitable for the
validation and assessment of higher fidelity turbulence models. Smagorinsky LES is performed under turbulent
inflow conditions using the Mann Box generator (Section 4.4), which is representative of a real atmospheric
turbulent spectrum including all three velocity components and spatial variation. The wind velocity at hub
height is Uhub = 8m/s, whereas the diameter D is 30m and the hub height H is 35m. Turbulence intensity at
hub height is Tuhub = 13.5%. The rotor is rotating with rotational speed ω = 4.1rad/s. The employed timestep
was 0.08513s, which corresponds to 180 timesteps per rotor rotation.

The Wind turbine rotor is simulated using two approaches: a) a simple actuator disk and b) an actuator
line considering each blade as a rotating line along which loading is distributed through blade element theory.
The implemented actuator line theory is presented in [39]. In order to capture the whole range of turbulent
eddies and the formation of tip vortices, mesh spacing should be really small and as uniform in all directions
as possible, which results in very dense meshes. The results using LES are compared to 3D Unsteady RANS
predictions using the k-ω SST turbulence model in order to assess the prediction capabilities of both methods.
The results are distinguished in three different categories according to the successive steps taken.

Wind turbine simulation in the absence of turbulent inflow

The first step aims at evaluating the formation of vortex structures in the wake and assess the effect of shear
imposed by the presence of ground. Both uniform and sheared inflow simulations were performed at this step.
The computational domain extend was −8D to 16D in the main flow direction (x-axis) and −12D to 12D in
the lateral direction (y-axis). For uniform inflow, domain dimensions in z and y axis remain the same whereas
for sheared inflow the z (vertical) dimension is extended to 30D in order to avoid flow blockage. The mesh is
equidistant for x ∈ [−2D, 8D] and y ∈ [−D,D], with a D/60 spacing. Outside this refined region, the spacing
increases following a geometric progression.

The magnitude of vorticity on the rotor plane is presented in fig. 6.23, showing the mesh density and the
increased vorticity close to the blade tips. In fig. 6.25, contours in the wind turbine wake for the averaged
vorticity magnitude (fig. 6.25a) and the averaged x-axis vorticity (fig. 6.25b), whereas fig. 6.24 contains the
velocity deficits at three wake positions. The velocity deficit remains significant in the far wake. There is also an
artificial acceleration in the wake center due to the modeling of the blade root as a cylinder. This acceleration
remains high due to the absence of turbulent inflow. Overall, the effect of sheared inflow is the decrease of the
off-center velocity deficit in the far wake.

Figure 6.23: LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in the absence of turbulent inflow. Contours
of vorticity magnitude on the rotor plane.

Turbulent inflow simulation in the absence of wind turbine

The second step is to check the evolution of turbulent inflow along an empty computational domain. Both
uniform and sheared inflow are again considered. The Mann box has a discretization of 2m using 64 points in
all directions. The input parameters correspond to neutral atmospheric conditions in the case of the Sexbierum
blade (see Table 6.1).
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Figure 6.24: LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in the absence of turbulent inflow. Streamwise
velocity deficit at various positions on the wake.

Table 6.1: Input parameters for the Mann turbulence generator

Parameter of the sheared spectral tensor, Γ 3.7
Length scale of the spectral velocity tensor, L 19.6 m

Product of the Kolmogorov constant (α) and the dissipation of turbulent kinetic energy (ε), αε2/3 0.072

In order to assess the effect of mesh density on the evolution of turbulent inflow, two different computational
meshes with spacings 0.5m and 1m are compared. The resulting U velocity time series and turbulence spectra
are presented in fig. 6.26 for positions x = −1D, 3D and 7D. It is evident that the time variations using the
coarser mesh are smoother, which explains why high frequencies are not reproduced (fig. 6.26a, 6.26c, 6.26e).
This is confirmed by analyzing the turbulence spectra in fig. 6.26b, 6.26c and 6.26f. It is shown that the spectral
density is retained for frequencies up to 1Hz when the fine mesh is used. On the contrary, there is a significant
reduction in turbulent kinetic energy when using the coarse mesh, suggesting that the high frequency part of
the spectra has been eliminated due to increased diffusion.

Wind turbine simulation with turbulent inflow

The third step is the simulation of the wind turbine using turbulent inflow. Both uniform and sheared inflow
were considered, using the actuator disk and actuator line approaches. Results from this step are compared to
URANS results and experimental data [22].

Based on the analysis from the previous step, a mesh spacing of 0.5m is used in order to properly maintain
the frequency spectrum of the turbulent inflow. This spacing was used for simulations using the actuator disk
approach. However, for this mesh spacing the actuator line approach exhibited numerical instabilities, especially
for sheared inflow. For the uniform flow case, the alternative of resolving the turbulent inflow field upstream of
the rotor with a 1m mesh spacing while retaining the 0.5 spacing in the wake was investigated.

In fig. 6.27a-6.27b, velocity contours for the mean and instantaneous flow fields using LES with the
actuator disk approach and turbulent inflow are presented. The velocity deficit is clearly visible. However, the
instantaneous field also exhibits the variations caused by the turbulent inflow. In fig. 6.28a, 6.28c and 6.28e the
wind speed deficits at distance x = 2.5D, 5.5D and 8D downstream of the rotor are compared. The URANS
predictions have been obtained using the actuator line approach and sheared inflow, whereas the LES predictions
assume uniform inflow for both actuator disk and actuator line approaches. In addition, LES utilizes turbulent
inflow. In the vertical direction the mesh spacing equals 0.5m up to 1.6D above ground level. In the x and
y directions the minimum mesh spacing equals 0.5m in the rotor region and increases following a geometric
progression outwards. In the near wake, it is evident that LES gives better predictions of the wind speed deficit,
even when utilizing a simpler actuator disk approach and assuming uniform inflow. In the far wake, both LES
and URANS predictions are similar and are able to give adequate predictions of the wind speed deficit. Similar
observations can be made for the turbulent kinetic energy predictions, shown in fig. 6.28b, 6.28d and 6.28f. The
differences between fig. 6.28c and fig. 6.28e at the x = 2.5 position are due to less turbulent mixing in the case
of LES. It is also noted that the presence of ground reduces the wake speed and therefore results in a better
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(a) Averaged vorticity magnitude on the xz plane.

(b) Averaged x-axis vorticity on the xz plane.

Figure 6.25: LES on the Sexbierum Wind Turbine rotor [22]. Actuator line in sheared flow, without turbulent inflow.

prediction of the off-center deficit when compared to the experiments. The Q criterion iso-surfaces in the wake
(Q = 0.1) are presented in section 6.2.4, without and with turbulent inflow. The simulation without turbulent
inflow used a finer mesh, as discussed in the first paragraph of this section. When comparing the two figures, it
is shown that even for the coarser mesh the presence of turbulent inflow has a significant effect on the turbulent
structures past the wind turbine rotor.
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(b) Streamwise velocity variations spectrum, x = −1D.
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(c) Streamwise velocity time series, x = 3D.
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(d) Streamwise velocity variations spectrum, x = 3D.
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(e) Streamwise velocity time series, x = 7D.
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(f) Streamwise velocity variations spectrum, x = 7D.

Figure 6.26: Sheared flow with turbulent inflow (see Table 6.1) in the absence of wind turbine. U velocity time series
and corresponding spectrum of the velocity variations using two different mesh spacings.
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(a) Mean U contour

(b) Instantaneous U contour

Figure 6.27: LES on the Sexbierum Wind Turbine rotor [22]. Actuator disk with turbulent inflow (see Table 6.1).
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(b) LES, actuator disk, turbulent kinetic energy
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(c) LES, actuator line, wind velocity deficit
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(d) LES, actuator line, turbulent kinetic energy
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(e) URANS, actuator line, wind velocity deficit
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Figure 6.28: LES and URANS on the Sexbierum Wind Turbine rotor [22]. LES utilizes both actuator disk and actuator
line approaches in sheared flow with turbulent inflow (see Table 6.1). URANS utilizes the actuator line
approach in sheared flow without turbulent inflow. Wind speed deficits and turbulent kinetic energy in
various wake positions.
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(a) Without turbulent inflow.

(b) With turbulent inflow.

Figure 6.29: LES on the Sexbierum Wind Turbine rotor [22]. Actuator line without and with turbulent inflow (see
Table 6.1). Q = 0.1 iso-surfaces on the wind turbine wake.
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6.3 Discussion

In this Chapter, the results from simulations with LES and DDES have been presented. The comparisons were
mostly carried out in locations away from the solid surface, with an emphasis on various positions on the wake.
However, some cases included integrated load measurements, which were also compared.

For the classic case of circular cylinder (Section 6.2.1), both LES and DDES outperform URANS on the
same computational mesh, providing more accurate predictions when compared to experimental data. URANS
suppressed the three-dimensional character of the flow in the simulations, behavior which was not observed
with LES or DDES. The case of the S809 airfoil (Section 6.2.2) showed that DDES outperforms URANS at
very high angles of attack with massive separation, especially when approaching 90◦. Aerodynamic results from
DDES were in very good agreement with the experiments, whereas URANS seemed to overpredict both Cl and
Cd. Suppression of the three-dimensional character was again observed when using URANS. The simulation of
flow past periodic hills with LES (Section 6.2.3) gave results that were in very good agreement with reference
computations. However, some deviations highlighted the importance of a sufficient time-averaging period. Lastly,
a wind turbine with turbulent inflow was simulated using LES and actuator methods (Section 6.2.4). Velocity
deficits at the wake were compared to experimental data, showing good agreement. The effect and importance
of turbulent inflow in aerodynamic simulations with LES was also highlighted.

Based on the results and the discussion in this Chapter, the following are derived:

• Regarding the implementation of LES and DES, simulations with finer meshes will yield more accurate
results. Due to the nature of both approaches, a true mesh independent solution cannot be obtained.

• Increasing Re will require higher mesh resolution, therefore a mesh that is able to provide accurate results
for a given case will not necessarily have the same prediction accuracy for cases with higher Re. For a
given mesh, its capability to simulate a particular flow problem should thus be assessed appropriately.

• For the cases that involved both LES and DES, both approaches utilized the same computational mesh.
Neither LES nor DES were pushed to their limits.

• LES was not further refined in order to assess how it performs according to literature. The use of finer
meshes will improve the accuracy of the results.

• In the test cases considered in this thesis, LES proved to be operational. The general know-how has been
implemented and the results presented here were in good agreement with reference data. Therefore, LES
can be used in aerodynamic problems.

• Due to not having an underlying RANS mode, the computational cost of LES is considered higher than
that of DES. This also means that insufficient mesh resolution may lead to inaccurate results.

• For the simulations presented in this thesis, the utilized computational meshes and the simulated physical
time really tested our available resources. Therefore, if a large number of simulations for practical or
engineering applications are considered, use of LES is unrealistic.

• DES proved to be a very honest compromise. For the examined cases, comparison of computational results
on the wake to measurements was favorable. This means that the underlying Spalart-Allmaras turbulence
model was able to predict the boundary layer with good accuracy, which led to good results on the wake.

• DES is not expected to give accurate results for flows with mild stall (i.e. below 20◦), because at those angles
the separation point will be mostly defined by the underlying RANS model and not by the development
of small scales inside the boundary layer. In practice, the results from DES at those angles will closely
resemble those from URANS.

• For flows with massive separation, DES has a clear advantage over URANS.
• Overall, the lower computational cost of DES renders it a viable option when a large number of simulations

are considered, especially if cases with massive separation are of interest.
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Chapter 7

Concluding remarks

7.1 Synopsis

The first objective of the present work concerned transitional simulations which were carried out in a wide
range of test cases from the wind energy and aeronautics sectors. Boundary layer and transport equation
approaches were both considered. Regarding boundary layer transition, different ways to obtain the boundary
layer parameters in a Navier-Stokes solver were discussed and evaluated. The complete module that couples the
transition prediction algorithm with the Navier-Stokes simulation was discussed in detail. Regarding transport
equation transition, three different models were discussed and suggested practice guidelines were given. The
computational results were compared to available experimental data in order to assess the performance of each
model. The comparisons focused on integrated loads (Cl-Cd curves), transition locations, and boundary layer
velocity profiles. The prediction accuracy of the models with increasing Re number was also assessed.

The second objective of the present work concerned simulations with massive separation. The Large Eddy
Simulation (LES) and Detached Eddy Simulation (DES) approaches were implemented. Simulations with LES
utilized the Smagorinsky subgrid scale model. Regarding simulations with DES, the Spalart-Allmaras turbulence
model was used. The objective was to assess the prediction accuracy of both approaches by comparing to
available experimental data. In some cases, computational results from LES and DES were also compared to
those from baseline URANS, in an effort to highlight notable differences. Turbulent inflow capabilities were also
implemented, in order to have more realistic simulations of cases with atmospheric flows.

In the context of two-dimensional transitional simulations, the boundary layer eN method and the AFT
transport equation transition model proved reliable for all examined cases. Regarding airfoil polars, the focal
points are drag levels inside the laminar bucket as well as laminar bucket extent (location of laminar bucket
corners), which are both greatly affected by the transition locations. The eN method and the AFT model were
able to accurately predict transition locations, therefore leading to very good agreement with experimental
data. The γ-Reθ model was also able to provide accurate results for cases up to 4 x 106. However, its accuracy
was significantly compromised for Re numbers beyond this limit as it always predicted transition locations
significantly upstream, leading to higher drag levels inside the bucket. The overall upstream transition prediction
also caused the laminar bucket corners to appear earlier, thus decreasing the extent of the laminar bucket. The
γ model exhibited similar behavior to the γ-Reθ model, as it also predicted transition upstream for Re numbers
beyond 4 x 106. However, some notable deviations in predicted transition locations were also noted in cases
with Re number lower 4 x 106.

In the context of three-dimensional transitional simulations, application of boundary layer transition methods
is complex. The integral equations cannot be used to solve three-dimensional boundary layers. This leaves direct
CFD integration as the only approach that can provide the required boundary layer parameters. Moreover,
application of specific transition criteria (such as the eN method) in three dimensional boundary layers will
require the calculation of streamlines on the solid surface. This problem does not exist in two-dimensional
simulations, where the solid surface has a single stagnation point and the boundary layer can only march towards
the trailing edge on the two sides of the wall surface. In three-dimensional simulations, the calculation of
streamlines must be repeated at every iteration, thus raising the overall computational cost of the boundary layer
transition module. In some cases, the three dimensional boundary layer can be approximated by two-dimensional
sections, each treated as a separate, two-dimensional boundary layer. However, this approach cannot be applied
to arbitrary geometries (i.e. spheroids) and is greatly dependent on the flow characteristics. Streamlines
on the solid surface must be approximately parallel to the two-dimensional sections of the geometry. This
assumption is valid on rotating wind turbine blades, where rotation causes the boundary layer to be parallel to
the two-dimensional sections at least up to the point of separation. In swept wings, however, the boundary
layers have a strong three-dimensional character that cannot be approximated by solving the boundary layer
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on two-dimensional sections. For flow cases and geometries which hinder the application of boundary layer
methods, usage of transport equation models is more favorable, as they bypass the need for additional boundary
layer integration and streamline calculation interfaces. In their baseline versions, all transport equation models
account only for natural transition in the streamwise direction. However, accurate prediction of crossflow
transition can be quite important, as was highlighted from the results in this thesis. This can be achieved by the
inclusion of additional terms which aim at including the effect of crossflow instabilities on the transition models.
Such terms were implemented in the γ-Reθ transport equation model. For the examined three-dimensional cases
with crossflow transition, which were carried out at Re numbers up to 6.5 x 106, comparisons of computational
results to experimental data were favorable.

Regarding LES and DES approaches, both were able to give results that closely resembled the available
experimental data, and, in addition, outperformed baseline URANS. The presence of inflow turbulence was also
found to be important, as it had significant impact on the produced results on the near wake. It should be
noted that for the case of circular cylinder, in which both LES and DES approaches were considered, the same
computational mesh was used in all simulations. Deviations between the results of LES and DES were probably
caused by insufficient mesh resolution. LES does not model the boundary layer, and thus requires a relatively fine
mesh in order to accurately resolve all turbulent scales. The resolution must be fine enough for LES to resolve
the relevant scales and not rely on the Smagorinsky subgrid scale model, as the latter was not designed and
calibrated to model boundary layers. On the contrary, DES utilizes the underlying Spalart-Allmaras turbulence
model, which is known to be reliable for the modeling of attached boundary layers. Therefore, it is able to give
accurate predictions of the boundary layer even in cases which utilize a relatively coarse mesh.

It should also be noted that, in comparison to RANS, mesh dependence in both LES and DES approaches has
a different meaning. With continuing mesh refinement, a larger percentage of turbulent scales will be resolved
and not modeled. Therefore, a truly mesh independent solution of LES and DES will practically reach Direct
Numerical Simulation (DNS) levels, although it is possible to obtain mesh independent results for the mean
values of the simulations. However, even when similar mean values are obtained, simulations with varying mesh
refinement will have significantly different subgrid scale content. In this thesis, the considered cases utilized
the finer meshes possible. Usage of even finer meshes would definitely improve the results, however this was
not possible due to both limited computational resources and time constraints. For these types of simulations,
access to supercomputing platforms is necessary. Proposals for such platforms are submitted once or twice per
year. Therefore, there may be a big downtime period during which the development of the solver has finished
but simulations are not yet possible.

In regards to overall computational cost, application of LES is prohibitively expensive if a large number of
cases is considered, since it requires meshes that are fine enough to fully resolve the boundary layer. For the
cases presented in this thesis, LES was used in relatively low Re numbers (3900 for the cylinder and 10596 for
the periodic hills). In order to use LES in flow cases with Re ∼ 1 x 106, the required mesh for the solution of
the boundary layer would greatly increase the computational cost. On the contrary, the fact that DES utilizes
boundary layer modeling lowers the computational cost and renders it a more viable approach for practical
applications, provided that Re numbers do not exceed 1− 2 x 106. DES is better suited for massively separated
flows, where the separation locations are driven by the geometry and not by the solution of the boundary layer.
For flows with mild trailing edge separation (i.e. airfoil at α = 12◦), the predicted separation locations will
depend on the capabilities of the underlying RANS turbulence model. Therefore, results from DES will be
similar to those from 3D URANS. At those cases, separation onset is caused by the development of small scales
inside the boundary layer and therefore only LES with fine enough meshes is expected to be able to provide
accurate results.

Lastly, it is possible to combine higher fidelity turbulence modeling and transition modeling within the same
simulation. These types of simulations most often utilize DES paired with a transport equation transition model.
Transition modeling and higher fidelity turbulence modeling were not combined in this thesis due to limited
computational resource availability. In addition, the focus of the LES and DES cases was on massively separated
flows, which are not significantly affected by the presence of transition.

7.2 Main conclusions

Transition modeling

• In regards to two-dimensional transitional simulations, the eN method and the AFT transport equation
model are recommended, as they proved to be reliable for all examined cases.

• In three-dimensional simulations, prediction of crossflow transition is important. It is difficult to apply
boundary layer transition methods in such flow cases, because they require the calculation of streamlines.
Usage of transport equation models augmented with crossflow terms is thus recommended in order to
predict crossflow transition.
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• Calculating boundary layer parameters directly from the CFD solution requires finer meshes near the wall
surface. Therefore, in cases where integral boundary layer equations can be used, direct CFD integration
is not recommended.

• Comparisons of transition models in the literature are most often carried out up to moderate Re numbers
(4 x 106). However, it is also necessary to assess the validity of the models in higher Re (> 20 x 106).
• Mesh requirements for two-dimensional simulations are in the order of 100 thousand elements, whereas for

three-dimensional simulations are in the order of 4 million elements.

Higher fidelity turbulence modeling

• DES is a decent approach with manageable computational cost. It is considerably more accurate than
RANS and therefore is a viable option for engineering purposes.

• LES is a better choice than DES for cases where flow details are important. However, the computational
requirements are considerably higher when compared to those of DES.

7.3 Future work recommendations

In regards to transition modeling, the AFT model should be extended to include prediction capabilities for
crossflow transition. Based on the results presented in this thesis, when flow cases with Re numbers higher than
6.5 x 106 are considered, the AFT model is a more suitable candidate than the γ-Reθ model, as in such cases
the prediction accuracy of the latter was found to deteriorate significantly. By including crossflow transition
prediction in the AFT model, three-dimensional transitional simulations for a wide range of Re numbers will be
made possible. Moreover, the different models should be assessed in cases with bypass transition, as this thesis
focused only on natural, crossflow, and separation induced transition. When comparing the accuracy of different
models in flow cases with bypass transition, one could end up in completely different conclusions than what was
discussed in this thesis, due to the fact that bypass transition is a notably different transition mechanism.

When it comes to LES and DES, it is clear that neither method was pushed to its limits in this thesis.
Additional test cases should be considered in order to acquire more experience on the application range of both
methods, as well as in their computational requirements. In the context of LES, this work focused solely on
the baseline Smagorinsky subgrid scale model. Even though this model is popular, it does have its limitations.
Different subgrid models should, thus, also be assessed. Among others, the first one that should be tested is the
dynamic Smagorinsky model, in which the Smagorinsky constant varies in space and time.

Regarding the MaPFlow solver itself, the effect of arithmetic parameters such as difference schemes should be
assessed in the context of LES and DES. Different schemes were only used in the case of the S809 airfoil, which
was simulated using 3D DDES and 3D URANS, and it was shown that they can impact the produced results.
Future work will include a more rigorous analysis of higher order schemes, such as MUSCL and QUICK. Moreover,
for simulations with LES and DES, which both can have high computational cost, implementation of acceleration
techniques can be quite important. One such technique is multigrid, which will enable the simulations to
converge significantly faster. The solver should also be further optimized in regards to parallelization performance,
especially for simulations with LES and DES which are very computationally demanding.
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Appendix A

Influence of numerical scheme

The DU-00-W212 airfoil is considered at Re = 3 x 106, Ma∞ = 0.75, Tu∞ = 0.086%. The simulations assumed
fully turbulent flow using the baseline SST k-ω turbulence model as presented in [71]. Four different meshes were
used, with resolutions ranging from 96 (chordwise) x 48 (normal) to 800 (chordwise) x 500 (normal) elements.

The results are presented in fig. A.1. It is shown that the 3rd order schemes converge faster towards a mesh
independent solution. Deviations between the 256 x 128 and 512 x 256 meshes are higher when using the 2nd

PLR scheme whereas for the 3rd order MUSCL and QUICK schemes the three finer meshes yield very similar
results.
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(a) 2nd order PLR scheme
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(b) 3rd order MUSCL scheme
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Figure A.1: Effect of numerical scheme. Fully turbulent simulations for the DU-00-W212 airfoil, Re = 3 x 106,
Ma∞ = 0.75, Tu∞ = 0.086%.
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Appendix B

Influence of numerical limiter

The DU-00-W212 airfoil is considered at Re = 3 x 106, Ma∞ = 0.75, Tu∞ = 0.086%. The simulations assumed
fully turbulent flow using the baseline SST k-ω turbulence model as presented in [71]. Four different meshes were
used, with resolutions ranging from 96 (chordwise) x 48 (normal) to 800 (chordwise) x 500 (normal) elements.

The 2nd order PLR scheme is used. Simulations with limiter utilized Venkatakrishnan’s limiter [52]. The
results are presented in fig. B.1. For the simulations with limiter (fig. B.1a), results from the two finer meshes
have some deviations on the higher and lower angles. On the contrary, if the limiter is turned off (B.1b) the
results from the two finer meshes are almost identical. In addition, the 192x96 and 96x48 meshes give results
that are closer to those from the finer meshes.
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(a) 2nd order PLR scheme, Venkatakrishnan’s limiter
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Figure B.1: Effect of numerical limiter on the 2nd order PLR scheme. Fully turbulent simulations for the DU-00-W212
airfoil, Re = 3 x 106, Ma∞ = 0.75, Tu∞ = 0.086%.
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