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Abstract

The present doctoral thesis deals with the mathematical formulation, program-
ming and verification of the continuous adjoint method to the constituent parts
of an existing noise prediction chain for automotive aeroacoustics. The proposed
method is applied to optimize a generic vehicle, the SAE body, in order to reduce
wind noise in its interior.

When a car travels at high speeds, flow-induced noise is generated in the
region near the side mirror and is radiated towards all directions, reaching also
the side window. Its vibrational response to this acoustic load generates in turn
sound waves that propagate into the cabin and are perceived by the passengers as
noise. An existing aeroacoustic framework simulating these physical mechanisms
consists of an Improved Delayed Detached Eddy Simulation (IDDES) of the Navier-
Stokes equations to obtain the unsteady pressure distribution on the mirror, the
Kirchhoff Integral method to compute the radiated acoustic pressure on the side
window, the bending wave equation on the side window to compute its deflection
and, finally, the wave equation in the interior to obtain the interior sound field.

The continuous adjoint method in this thesis is based on the aforementioned
framework which is split in two domains; the exterior domain that includes the
flow-induced noise generation and radiation to the window and the interior do-
main that includes the vibroacoustic model for window vibration and interior wave
propagation. These systems are firstly examined separately and, then, coupled
and the contintuous adjoint chain for vehicle aeroacoustic optimization is pro-
posed.

Regarding the vibroacoustic model, the bending wave equation is solved on
the car’s side window, using as a source term the pressure load obtained by the
exterior domain. The resulting window acceleration is then used as a boundary
condition for the wave equation that is solved in the cabin to compute the interior
sound field. The Sound Pressure Level at a point near the driver’s ear is then
defined as the objective function and the adjoint wave and bending wave equations
are derived. These must be solved backwards in time and in the following order:
the adjoint wave equation is solved first by considering a monopole source term at
the location where the objective function is defined. The propagation of the adjoint
interior pressure in the cabin is computed and used thereupon as a source term
for the adjoint bending wave equation, solved at the window. The resulting adjoint
deflection is then used in the expression of the sensitivity derivative term on the
window. This term is used later to couple the interior and exterior domains
and additional emphasis is laid upon its discretization. A hand-differentiated
expression is proposed to ensure its accuracy. The developed method is verified
against Finite Differences and, then, is applied to the cabin of the SAE body to
minimize interior noise using synthetic pressure waves as a load on the window.

The continuous adjoint method for the flow-induced sound radiation with the
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Kirchhoff Integral is proposed where the differentiated Kirchhoff Integral is used
to compute the boundary condition of the adjoint velocity on the noise radiating
(Kirchhoff) surface and, then, the unsteady adjoint Navier-Stokes equations are
solved backwards in time. It should be noted that the time window where the sim-
ulation is performed and the one over which the objective function is evaluated do
not coincide. This is reflected on the adjoint boundary conditions along the body
and the time integration of the sensitivity derivatives. Furthermore, to ensure
the consistency of the continuous adjoint-based gradients, grid sensitivities are
taken into account which gives rise to the adjoint grid displacement equations
along with an additional term in the sensitivity derivatives expression. The pro-
posed method is verified against Finite Differences on a 3D turbulent flow around
a cylinder and, then, applied to the SAE body. Firstly, a sensitivity map analysis
is conducted to investigate the influence the sensitivity derivative integration time
window has on its computation but, also, to prove the importance of including
the adjoint grid displacement equations. Finally, an optimization of the side mir-
ror is performed, targeting at minimizing the radiated flow-induced sound at the
vehicle’s side window.

After the formulation and verification of the continuous adjoint method for
the systems of equations in the interior and exterior domains, their coupling is
presented. Through the solution of the adjoint aeroacoustic chain, the sensitivity
of the interior acoustic pressure with respect to a normal displacement of the
mirror is computed to indicate the way the mirror shape should change, in order
to improve the aeroacoustic performance of the vehicle. The method is applied to
compute the adjoint aeroacoustic sensitivity map on the side mirror of the generic
SAE vehicle and successfully perform several optimization cycles. In addition, the
impact that optimizing for each individual step of the noise prediction chain has
on interior noise is investigated.

Finally, two approaches are proposed, in order to perform the aforementioned
adjoint analysis, focusing however on a specific frequency range; the first ap-
proach uses an objective function which includes the Fourier Transform and is
integrated over frequencies whereas the second one uses a signal processing filter
that preserves only the necessary frequency components. The adjoint formula-
tion, advantages and drawbacks of each approach are discussed. The adjoint
aeroacoustic chain including the filtering process is finally used to compute sen-
sitivity maps on the mirror for the frequency range 800Hz-4000Hz and also for
each 1/3 Octave Band in this range.

Keywords: Computation Fluid Dynamics, Continuous Adjoint Methods, Shape
Optimization, Computational Aeroacoustics, Vehicle Aeroacoustics
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Chapter 1

Introduction

1.1 Motivation

Aeroacoustic performance is an important comfort and safety factor for modern
cars. High levels of interior cabin noise can negatively impact the perception

of the vehicle’s quality and, more importantly, lead to fatigue and reduced con-
centration of the driver. At high speeds, generally above 100 km/h, flow-induced
noise transmitting in the interior tends to contribute more to overall noise, to
other sources, such as the engine, powertrain and wheels.

Wind noise is mainly related to the exterior flow around the side mirror and the
A-pillar. The pressure fluctuations on these regions create noise which is radiated
to all directions. A part of it meets the side window and acts as an acoustic
load. This, together with the strong hydrodynamic pressure, excite the front side
window to vibration, which in turn generates sound waves, that propagate into
the cabin and are perceived as noise by the passengers, fig. 1.1.

Reducing interior noise can be achieved by isolating the cabin with high quality
sealing and acoustic glazing, however this results to increased car weight and
costs. Therefore, another approach is to focus on mitigating aeroacoustic noise
generated by the vehicle’s form, particularly by car components such as the side
mirror and the A-pillar rain gutter. This is why car manufacturers have invested
considerable effort over the last years firstly to gain insight into aerodynamic
noise creation and propagation to the interior and, secondly, to develop high-
fidelity numerical methods that can predict interior noise level, without the need
of a wind tunnel experiment.

Although recently developed numerical methods have been proved to accu-
rately predict vehicle interior Sound Pressure Level (SPL), the correlation between
geometry changes of noise generating components (side mirror) and interior noise
is still not clear for broadband (wide range of frequencies) noise. Therefore, a
numerical tool that can provide insight into geometry modifications that improve

1



2 1. Introduction

Figure 1.1: Physical mechanisms of flow-induced noise creation and transmission
into vehicle interior.

aeroacoustic performance would not only significantly support aeroacoustic en-
gineers in design decision making but also enable the shape optimization of car
components and contribute so to the automation of the virtual vehicle develop-
ment.

This doctoral thesis aims at developing the continuous adjoint method to an
existing noise prediction chain, in order to efficiently compute the sensitivity of
noise-related objective functions with respect to geometry modifications of noise-
radiating car components.

1.2 Literature Survey

1.2.1 Computational Methods for Vehicle Aeroacoustics

The numerical simulation of the aforementioned physical mechanisms of noise
generation and propagation into the vehicle interior can be split into parts. The
first one includes the flow simulation and sound radiation to the side window, by
thus coping with the external domain. The second part deals with the structural
vibration of the window and the propagation of the generated sound waves to the
cabin interior.

An aerodynamic simulation, as might be the standard process for vehicle
aerodynamic development, would not be sufficient for an aeroacoustic simula-
tion, since there is additional information about the near- and far-field acoustics
needed for an accurate aeroacoustic prediction. Computational AeroAcoustics
(CAA) is the research field that deals with the challenge of examining the different
properties of the hydrodynamic flow field and the acoustic sound field [79, 80, 30].
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In fact, the wavelengths that must be resolved for the acoustic field are 10 times
bigger, since the convection velocity of the turbulence and vortex structures fol-
low the flow velocity which is smaller than the speed of sound. In addition, the
energy content in acoustics for low Mach numbers is much smaller, compared to
the hydrodynamic one.

To tackle these challenges, two approaches can be followed [26]. In Direct
Noise Computation (DNC), the unsteady compressible Navier-Stokes equations
are solved to resolve simultaneously both the hydrodynamic and acoustic scales
[11]. In this case however, because the acoustic energy content is quite smaller
than the hydrodynamic, the accuracy of the acoustic solution is prone to numer-
ical errors and artefacts, such as numerical dissipation and dispersion. This is
not always easy to identify and, therefore, fine grid resolution, high-order meth-
ods and numerical schemes and sophisticated boundary conditions must be used
[50, 25].

The second approach, namely the hybrid-CAA methods, examines the flow and
acoustic problems separately [137]. In the first step, the hybrid methods utilize
a high-fidelity flow simulation tool to resolve the necessary turbulence and flow
structures, but not the radiated sound field. After identifying the acoustic sources
in the flow, they switch to the computation of noise radiation, either by solving
additionally simpler field equations, such as the Linearized Euler Equations (LEE)
[51, 37, 96], or by using acoustic analogies [88]. An acoustic analogy is derived
based on an aeroacoustic theory, by rearranging the equations of conservation of
mass and momentum, by making them represent the sound propagation in the
hypothetical medium (with a partial differential operator) of sound sources. The
unsteady flow field is used to compute the sound sources and, then, the operator
is inverted to compute the radiated sound field. Several approaches have been
proposed through the years, starting with the most general formulation of Ffowks
Williams and Hawkings (FW-H) [141], to many more which are tailored to specific
applications [29, 18, 19, 75].

The development of CAA methods for vehicle aeroacoustics has focused mainly
on the flow-induced noise radiation from car components such as the side mirror
and the A-pillar. These type of geometries have been firstly numerically simulated
on isolated enviroments. For instance, in [126, 9, 83], the flow and sound radi-
ation around a mirror-like shape on a flat plate was simulated whereas in [32],
several A-pillar rain gutter profiles on a flat plate were investigated.

For the purpose of investigating the flow-induced noise creation mechanisms
in real car geometries, the German Aeroacoustic Working Group 1 built a full-
scale test body of the SAE fullback type 4. Through the years, several numerical
methods were developed and compared to experimental results. In [59, 60] sun-
roof buffeting was examined. In [53], the SAE model was rebuilt so that noise in

1Members of the German Aeroacoustic Working Group were Volkswagen AG, Audi AG, Dr. Ing.
h.c. Porsche AG and Daimler AG



4 1. Introduction

the interior can be transmitted through the only side window of the vehicle. A
numerical and experimental study was performed investigating the fundamental
aspects of external flow generated sound and its propagation into the interior.
The dynamic loading on the side window, computed with several Computational
Fluid Dynamics (CFD) codes and measured in the experiments was compared.
The importance of including the acoustic part of the flow for wind noise prediction
in production car applications was indicated firstly in [57] and demonstrated in
[23].

In [128] and [68], two different process chains to simulate of wind noise gen-
eration and propagation into the vehicle interior were proposed. Schell [128]
compared several methods to compute the pressure load on the side window,
including a DNC and a hybrid-CAA utilizing a compressible DES with different
acoustic analogies (Lighthill [46], Moehring [94], Acoustic Perturbation Equations
(APE) [37]). Regarding the acoustic field, it was shown that the numerical arte-
facts caused mostly by the grid refinement transition have an impact in the case of
a DNC. The APE proved to be the most efficient approach, since it blends out this
numerical noise and predicts accurately the acoustic pressure on the side window.
The vibrational response of the latter as well as the sound field in the interior com-
partment were simulated using a combined Finite Element (FE)/Statistic Energy
Analysis (SEA) method [17].

On the other hand, Kabat vel Job used a hybrid-CAA method [68], where
an incompressible IDDES is combined with the Kirchhoff Integral method [38] to
compute the radiated acoustic pressure on the window. Its vibrational response is
then simulated by solving the bending wave equation, using a Finite Area method,
and the interior propagation is computed by solving the wave equation in a second
computational mesh, in the interior of the vehicle. The validation of the method
with experimental results on the SAE body and on a production car demonstrated
that this method can accurately predict the interior SPL.

Once a numerical method that can accurately predict noise interior has been
implemented and validated, it is possible to develop a numerical optimization
method in order to drive the shape optimization of noise radiating car components,
such as the car’s side mirror.

1.2.2 Optimization Methods for CFD/CAA problems

In shape optimization for CFD/CAA problems, the geometry to be optimized is
controlled via a number of design variables bn, n ∈ [1, N ]. To assess the perfor-
mance of a given set of bn and, thus, of a given geometry, the Partial Differential
Equations (PDEs) that govern the corresponding physical phenomena, namely the
state equations, are numerically solved at first. Afterwards, the objective function
J to be minimized is computed. Its value depends on the values of the design
variables as well as any fields computed through the solution of the state equa-
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tions. The optimization methods seeks for the optimal set of bn that minimizes
J .

In engineering problems and particularly in those in the CFD/CAA fields, two
classes of optimization methods are mostly used in the literature, the stochastic
(gradient-free) and the derministic (gradient-based) and they differentiate based
on the approach followed to search the design space for the optimal set of bn.

Stochastic methods [31, 93, 118, 10] update the design variables in a ran-
domized or heuristic-based manner. A notable representative of these are the
Evolutionary Algorithms (EA) which rely on a population-based optimization that
mimics natural evolution operations to explore the entire design space. Main ad-
vantages of EAs [58, 34, 4, 42, 81] include the ability to find global optima, the
ability to solve multi-objective optimization so as to compute the Pareto fronts of
non-dominated solutions and non-intrusiveness, since the evaluation solver can
be used as a black-box. However, a large amount of evaluations is required to
achieve convergence which makes them computationally expensive, especially for
problems with many design variables, such as the ones usually found in CFD/-
CAA problems.

Deterministic methods [45, 13, 14, 103, 86, 95, 131], also called gradient-
based methods (GBM), start from an initial set of parameters and update the
values of the design variables in each optimization iteration using the information
of the derivative of the objective function. This is achieved with the line search
method which first finds a descent direction ~p along which J will be reduced and
then solves a one-dimensional optimization problem to compute a step size α as
follows, [103]

min
a>0

J(bn + apn) for n = 1, N (1.1)

The descent direction can be computed with various methods:

1. The gradient (steepest) descent selects the opposite of the derivative of J
w.r.t. bn as the descent direction, pn = −δJ/δbnbn, and is simple to imple-
ment but can become very slow.

2. The Newton method additionaly uses the second-derivative (Hessian) of J ,
pn = −(δ2J/(δbnδbm))−1δJ/δbnbm, and exhibits a faster convergence but re-
quires additional effort for the computation of the Hessian.

3. The quasi-Newton methods, an alternative to the Newton method, such as
the BFGS [41] and the SR1 [21], which use an approximation of the Hessian
and, thus, are also very fast.

4. The conjugate gradient [40] uses pn = −δJ/δbnbn + βpprevn where pprevn is
the descent direction of the previous iteration and β a scalar that ensures
that pn and pprevn are conjugate. Although this method does not attain the
fast convergence rates of the Newton and quasi-Newton methods, it is more
efficient in terms of memory requirements.
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The step size a may be exactly determined by the algorithm that computes ~p (for
instance in the case of the conjugate gradient), otherwise it is loosely approximated
in a number of ways, such as using the backtracking algorithm [8] or the Wolfe
conditions [142, 143].

A major factor for the efficiency of a GBM is the way the derivatives of the
corresponding objective function w.r.t. the design variables, also called sensitivity
derivatives (SD), are computed. The most straightforward way is to use Finite
Differences (FD). Each design variable is perturbed by an infinitesimally small
quantity, ε, and the objective function is re-evaluated. The gradient of the objective
function can be then assessed with a Central Differences (CD) scheme as

δJ

δbn
=
J(b1, b2, ..., bn + ε, ..., bN)− J(b1, b2, ..., bn − ε, ..., bN)

2ε
(1.2)

The value of ε is usually determined with trial-and-error so that the FD values
are ε-independent. However, for small values of ε the accuracy of the derivative
is prone to round-off errors. In addition, as seen in eq. 1.2 , the number of evalu-
ations of J scales linearly with N and, thus, the derivative computation becomes
computationally expensive for problems with a large number of design variables.

A variant of FD is the complex variable method, which reads

δJ

δbn
=
Im [J(b1, b2, ..., bn + iε, ..., bN)]

ε
(1.3)

where i =
√
−1 and Im is the imaginary part of the complex function J . Using

eq. 1.3 overcomes the limitation of ε-dependence [101] but still scales linearly with
the number of design variables.

On the other hand, adjoint methods [121, 62] have already been proved to
be an efficient way to compute the derivative of J with respect to a set of design
variables, as required by the GBMs. To do so, the system of adjoint equations
is firstly solved at a cost comparable to that of the state (primal) equations and,
then, the computed adjoint and primal fields are used to compute the SDs. Hence,
the computational cost is independent of the number of design variables and
comparable to that of the numerical solution of the primal equations.

Two main approaches appear in the literature to derive the adjoint equations
and the expression of the SDs. In the discrete adjoint approach [35, 5, 7, 44],
the objective function is augmented using the discretized residuals of the primal
equations. After differentiating the augmented objective function and rearranging,
the adjoint variables are computed by numerically solving the resulting system
of adjoint equations, being already in discrete form. In this case, one way to
compute the desired derivatives is to ‘‘hand differentiate’’ any variable of the source
code of the computer program. Another approach, the Algorithmic Differentiation
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(AD) [47, 27, 54] performs this automatically, either by enriching the code with
automatically generated code [117] or by overloading the source code’s operators
in order to track all operations performed and then reproduce their derivative
[15, 48, 135].

In continuous adjoint, the augmented objective function is firstly differenti-
ated and, following a mathematical development, the adjoint equations, boundary
conditions and sensitivity derivatives are derived in a continuous form [62, 63, 6].
The continuous adjoint equations are then discretized and numerically solved to
compute the adjoint fields and, through them, the sensitivity derivatives.

The advantages of each formulation has been thoroughly discussed in the
literature [43, 97, 120]. The discrete approach delivers the exact gradient of the
discrete objective function which ensures that the optimization algorithm can fully
converge. In addition, its implementation is conceptually straightforward. The
continuous approach on the other hand, offers a much clearer view of the physical
meaning of the adjoint variables. Moreover, the implementation is simpler and
allows for different discretization of the adjoint equations, as long as they are
consistent. Finally, the memory requirements are much less compared to the
discrete approach.

1.2.3 Adjoint Methods for Design Optimization in Flow & Wave

Problems

The adjoint method has been established in engineering optimization workflows
related to problems governed by PDEs, as in fluid mechanics, as it offers an effi-
cient way to compute the gradient of objective functions. From the very first steps
made by Lions [82], Pironneau [121] and Jameson [62] until today, both continu-
ous and discrete adjoint formulations are in use in a wide range of applications,
among others in the aerospace/aeronautical industry [124, 91, 76], in the auto-
motive industry [106], in ship technology [67], in wind turbine design [133], in
seismic tomography [39, 119] and in sensitivity analysis for shallow-water wave
control [127].

From a theoretical point of view, several formulations have been presented in
the literature to develop the continuous adjoint method, with two main represen-
tatives. The first formulation [123, 66, 64], results in a SD expression which com-
prises both surface (defined along the surface to be optimized) and field (defined
over the whole computational domain) integrals. The latter include the so-called
grid sensitivities which are essentially the influence that the displacement of the
interior grid nodes have on the objective function but the extra computational
cost might not be negligible. The second formulation [6, 65, 110], results in a
SD expression which comprises only surface integrals and, thus, the information
from the interior grid is neglected. Although this approach has been considered
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advantageous due to the decreased cost of the SD computation, Kavvadias [71]
demonstrated that such an assumption may introduce high numerical errors in
the SD accuracy. To alleviate this problem and to also maintain the efficiency of
this formulation, a grid displacement equation was incorporated in [71]. It should
be noted that in the discrete adjoint approach the grid sensitivities are inherently
present in the SD expression and the adjoint to grid displacement is used to avoid
their costly computation [102, 92, 61].

Specifically in the automotive industry, the adjoint can be found in a wide
range of applications from internal ducts and exhaust systems optimization to
external aerodynamic design [106, 70, 112]. The first attempt to tackle a noise
reduction problem in cars with the adjoint method was made by Papoutsis [113].
An approximate surrogate model for aeroacoustics was used as an objective func-
tion, expressed by the integral of the squared turbulent viscosity over a volume
residing next to the driver’s window. To do so, the turbulence Spalart-Allmaras
turbulence model was differentiated [114]. As explained later on, such an objec-
tive function focuses mostly on low frequencies dominated by turbulence length
scales. The aforementioned applications were all based on the continuous adjoint
formulation. The memory requirements and the complexity of the primal flow
solver pose difficulties to discrete formulations, although a recent work [56] pro-
posed a discrete approach which was also applied to car external aerodynamics.

In the majority of the aforementioned applications, the problems are governed
or assumed to be governed by steady state equations. Continuous and discrete
formulations for unsteady problems have been presented targeting at improving
mean aerodynamic coefficients in airfoils [98, 89], wings [99, 144] and cylinders
[138, 24]. It will be shown in the following chapters that a distinct feature of
the unsteady adjoint equations is that they are solved backwards in time. In
addition, at least some of the primal flow fields are required to solve the un-
steady adjoint equations which means that they must be stored during the primal
computation. Since a full storage becomes prohibitive for large test cases, the
checkpointing technique [49] is commonly used to store only a set of the primal
fields (checkpoints) and the rest are recomputed starting from those. The bino-
mial distribution as well as dynamic reallocation [139] can be used in order to
minimize recomputations for a given number of checkpoints and time steps.

The fact that the unsteady adjoint method for real-world applications is ex-
tremely demanding in computational cost and storage requirements has delayed
its application to complex cases. With the advancements in computer technology,
it has become possible to overcome these limitations and adjoint optimization for
unsteady flows has started being used. This is imperative in scientific areas such
as aeroacoustics where all problems are inherently unsteady. Economon [33] for-
mulated the continuous approach for the inhomogeneous wave equation of Ffowcs
Williams-Hawkins, while Zhou [145] applied the discrete method for the perme-
able Ffowcs Williams-Hawkins surface approach. In [12], the discrete approach
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was applied to a coupled CFD/CAA solver using LES and the Acoustic Pertur-
bation Equations (APE), in order to minimize trailing-edge noise radiation using
a porous material. Oezkaya [147] and Hay [55] presented the discrete adjoint
method for the optimization of acoustic liners, where the Linearized Euler Equa-
tions were used as the acoustic analogy. The described research focuses however
on flows governed by periodicity which are usually dominated by a specific fre-
quency. Kim [74] used an adjoint-based optimization to reduce noise induced
by a Mach 1.3 jet by adding thermal sources to the compressible Navier-Stokes
equations. Although the objective function considered only the squared pressure
fluctuations over a control volume without any acoustic radiation, the radiated
broadband noise propagated to the far-field computed afterwards with a FW-H
formulation was also reduced.

1.3 Goal & Outline of Thesis

As seen in the described literature, recent years have seen the emergence of the
adjoint method in the field of aeroacoustics. Nevertheless, most of these are still
limited to RANS simulations of periodic problems, whereas the ones using LES
are applied to mid-size test cases and for short simulation times.

Motivated from vehicle aeroacoustics, this thesis focuses on the unsteady con-
tinuous adjoint method for real-world aeroacoustic problems governed by highly
turbulent flows and propagation of waves. Based on the hybrid CFD/CAA ap-
proach presented in [68], the continuous adjoint equations are derived to mini-
mize the interior wind noise level in a vehicle, by taking into account the external
flow, the sound radiation from the side mirror to the window, the window’s vi-
bration and, finally, the interior wave propagation. The outcome of this method
are the surface sensitivity derivatives on the mirror that indicate the directions in
which its shape should be modified to reduce noise transmitting into the vehicle
interior.

The followed approach to tackle this problem divides the described noise trans-
mission chain into two domains, the exterior and the interior one. The former
focuses on the flow-induced noise creation and its radiation from the vehicle’s
side mirror to the window; the latter domain concerns with the window vibra-
tion due to the acoustic load and the interior propagation of the generated sound
waves.a In this PhD thesis, the adjoint method is developed and verified firstly for
each domain separately and, in the last chapters, the two domains are coupled
to derive the adjoint aeroacoustic chain. All adjoint methods and the Kirchhoff
Integral solver presented in this thesis are programmed and implemented in the
open source CFD toolbox OpenFOAM©, [3]. A short summary of each chapter
follows below.

In Chapter 2, the hybrid CFD/CAA approach proposed in [68] that predicts
the wind noise transmitting into a traveling vehicle is described. The governing
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equations of the noise creation and transmission mechanisms, based on which
the following chapters of this thesis will formulate the continuous adjoint method,
are presented. In addition, the simulation process as well as validation results [68]
are summarized, with kind permission of Volkswagen Group Research. This aims
to demonstrate the accuracy of the primal analysis and to also give an overview
of the challenges faced at aeroacoustic design.

In Chapter 3, the continuous adjoint method to the bending wave and wave
equation which govern the window vibration and interior propagation, respec-
tively, is formulated. The SD w.r.t. synthetic waves imposed on the window as an
acoustic load are computed and compared to FD to verify the adjoint gradients.

Chapter 4 formulates the continuous adjoint method to the incompressible
Navier-Stokes equations, solved around the vehicle to obtain the velocity and
pressure fields and, also, to the Kirchhoff Integral (KI) acoustic analogy, used to
propagate the unsteady pressure distribution on the side mirror’s surface to the
side window. During the mathematical formulation, grid displacement models are
taken into consideration, to ensure the consistency and, consequently, accuracy,
of the computed SD. In addition, emphasis is laid upon the distinction in the
mathematical formulation between the time window of the unsteady simulation
and the time window over which the objective function is integrated.

In Chapter 5, the implementation of the KI solver, developed in this thesis
in order to facilitate functionalities needed by the adjoint method, is described.
Afterwards, the method for adjoint-based minimization of flow-induced radiation,
presented in chapter 4, is verified. To minimize the extensive computational cost
of the unsteady adjoint method and to ensure that the FD have converged, a
smaller test case is selected for the verification, investigating the turbulent flow
around a cylinder. Finally, the proposed method is applied to optimize the side
mirror of the SAE body in order to reduce noise on the vehicle’s side window.

Chapter 6 couples the adjoint equations presented in chapters 3 and 4 and
presents the adjoint aeroacoustic chain, consisting of the adjoint wave equation,
the adjoint bending wave equation, the adjoint Kirchhoff Integral and the adjoint
Navier-Stokes equations. These are solved to compute the sensitivity map on the
side mirror of the SAE body which indicate gemetry modifications that reduce
interior SPL. In addition, the impact that optimizing for each individual step of
the noise prediction chain has on interior noise is investigated.

In order to assess the SPL in the frequency domain, Chapter 7 proposes two
approaches; a frequency-defined objective function which includes the Fourier
Transform of the time-series to be minimized and a signal processing filter that
filters out any unwanted frequencies at an early part of the noise prediction chain.
The adjoint formulation as well as the advantages and drawbacks of each ap-
proach are discussed and the filter is eventually implemented to compute sensi-
tivity maps for specific frequency ranges, using the method presented in chapter
6.
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In Appendix A, the test case used for the adjoint verification in chapter 5 is
discussed and a grid independence study is also presented.
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Chapter 2

Prediction of Flow-Induced Noise
Propagation to Vehicle Interior

Aeroacoustic performance of cars is determined by flow-induced noise that trans-
mits into the vehicle interior and is perceived by the passengers. It is an important
factor for vehicle design not only for comfort but also for safety, as it is associated
with fatigue, and must be taken into consideration early on during the vehicle
development process. This is why car manufacturers have invested considerable
effort over the last years firstly to gain insight into aerodynamic noise creation
and propagation into the interior and, secondly, to develop high-fidelity numeri-
cal methods that can predict the interior noise level.

Wind noise is related mainly to the exterior flow around the side mirror and the
A-pillar and dominates the cabin noise level for mid to high driving speeds. The
vibrational response of the front window structure to the external pressure loads
generates sound waves that propagate in the vehicle’s cabin and are perceived
as noise. For today’s car configurations, the sound field is generated mainly by
pressure fluctuations on the car’s side mirror and A-pillar rain gutter, as shown
in [53], although the side mirror can also be considered as the main contributor
to wind noise.

A process that simulates the aforementioned physical mechanisms and can
accurately assess the aeroacoustic performance of vehicles has been developed
at Volkswagen Group Research by Kabat vel Job [68]. This method computes
the incompressible flow field with an Improved Delayed Detached Eddy Simu-
lation (IDDES) [129] of the Navier-Stokes equations and the Spalart-Allmaras
turbulence model. For low speed turbulent flows, it is safe to assume that the
hydrodynamic pressure on the surface of the sound radiating object dominates
its acoustic counterpart [9] and, thus, a flow solution provided by a high-fidelity
unsteady incompressible flow solver is sufficient to resolve the physics of noise
creation [68]. The generated noise on the car’s mirror is then transmitted to the
near- and far-field with an acoustic analogy, the Kirchhoff Integral method [75],

13
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which offers simplicity in implementation and accuracy for non-rotating config-
urations [19]. In order to obtain the sound pressure at a set of receivers on the
vehicle’s side window, the pressure and its time and space derivatives, weighted
by directivity coefficients, are integrated over a control surface surrounding the
noise sources on the side mirror. The Ffowcs Williams-Hawkings (FW-H) equa-
tion [141] could also be used; however, since, for low Mach number flows, the
quadrupole sources associated with viscosity effects are negligible compared to
the surface sources, these can be neglected and this formulation leads essentially
to the same sound sources on the body with the Kirchhoff Integral method, for
control surfaces on non-moving bodies. The vibrational response of the window
to the acoustic and hydrodynamic load is then simulated by solving the bending
wave equation. The last part of the process chain is the acoustic propagation
in the interior, which is computed by solving the wave equation in the interior
domain of the vehicle.

This PhD thesis aims at developing the continuous adjoint method based on
the existing primal noise prediction simulation process described above. There-
fore, this chapter presents the primal equations that govern the aforementioned
physical mechanisms of wind noise creation and transmission to the vehicle in-
terior and explains the process and the coupling between the steps of the aeroa-
coustic framework:

1. Wind noise creation controlled by the numerical solution of the unsteady
incompressible Navier-Stokes equations.

2. Acoustic radiation from the vehicle mirror to the side window using the
Kirchhoff Integral method.

3. Window’s structural vibration by solving the Bending Wave equation.
4. Propagation to interior by solving the Wave equation.

Afterwards, an overview of the noise prediction chain in OpenFOAM© is given
[68] and the test case which is used in this thesis, the SAE body, is presented.
Since the convergence and accuracy of the adjoint method depends among other
on the corresponding primal procedure, the results of the experimental validation
of the primal aeroacoustic analysis applied to the SAE body from [68] are repeated
in this chapter with kind permission of Volkswagen Group Research.

2.1 Unsteady Flow Simulation

The governing equations of the flow problem for automotive applications are the
unsteady Navier-Stokes equations for incompressible fluid flows. These are writ-
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ten as, [77],

Rp =
∂vj
∂xj

= 0 (2.1)

Rv
i =

∂vi
∂t

+ vj
∂vi
∂xj
− ∂τij
∂xj

+
∂p

∂xi
= 0 , i = 1, 2, 3 (2.2)

where vi are the velocity components, p the static pressure divided by the density,
τij = (ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
the stress tensor and ν and νt are the bulk and turbulent

viscosities, respectively. Throughout this thesis, repeated indices imply that the
Einstein summation rule is applied.

The one-equation Spalart-Allmaras (S-A) turbulence model [130], enhanced
by the Improved Delayed Detached Eddy Simulation (IDDES) technique [129],
is added to the primal equations. This approach blends a Wall Modelled LES
(WMLES) with a DDES, depending on the inflow turbulent content. The sub-grid
length-scale of this strategy depends on both grid spacings and wall distances.
Furthermore, by modifying the definition of the DDES length scale, the DDES
behavior of the model gives improved solutions for attached (compared to RANS)
and separated (compared to DES) flows.

The turbulence model equation reads

Rν̃ =
∂ν̃

∂t
+ vj

∂ν̃

∂xj
− ∂

∂xj

[(
ν +

ν̃

σ

)
∂ν̃

∂xj

]
− σ2

b

σ

(
∂ν̃

∂xj

)2

− ν̃P (ν̃) + ν̃D(ν̃) = 0

(2.3)

where ν̃ is the turbulence state variable. The eddy viscosity coefficient νt is, then,
expressed in terms of ν̃ as

νt = ν̃fv1 (2.4)

The production and dissipation terms in eq. 2.3 are given by

P (ν̃) = cb1S̃ , D(ν̃) = cw1fw(S̃)

(
ν̃

d̃

)2

(2.5)

where
S̃ = Sfv3 +

ν̃

d2
wk

2
fv2 , S =

∣∣∣∣eijk ∂vk∂xj

∣∣∣∣ (2.6)

with S standing for the vorticity magnitude.
What distinguishes the IDDES technique is the definition of the length scale d̃
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in the destruction term as

d̃ = f̃d(1 + fe)lRANS + (1− f̃d)lLES (2.7)

where lRANS and lLES are the RANS and LES turbulence length scales respectively.
For the Spalart-Allmaras turbulence model, lRANS = dw, where dw is the wall
distance and lLES = CDES Ψ ∆, where CDES = 0.65 is the fundamental empirical
constant of DES, Ψ is a low-Reynolds number correction and ∆ is the subgrid
length-scale [129].

The blending function f̃d is defined by

f̃d = max{(1− fdt), fB} (2.8)

where fdt = 1− tanh[(8rdt)
3] and rdt is a marker of the wall region equal to 1 in a

log layer and to 0 in a free shear flow. Function fB varies from 0 (LES mode) to 1
(RANS mode) and is given by fB = min{2exp(−9a2), 1.0} with a = 0.25− dw/hmax,
where hmax is the maximum local cell size.

The empirical blending function fe is designed to be close to zero when the grid
used in the simulation is sufficient for a wall-resolved LES or when the IDDES
model, eq. 2.7 , performs solely as a RANS model. This is to prevent the exces-
sive reduction in the RANS Reynolds stresses which has been observed in the
interaction of the RANS and LES regions in the vicinity of their interface.

Functions f̃d and fe blend the two branches of the IDDES model, depending
on the inflow conditions:

• DDES branch: responsible for the DDES-like functionality of IDDES, becom-
ing active only when the inflow conditions do not have any turbulent content.
In this case fe = 0 and f̃d = fB = 1, so eq. 2.7 reduces to d̃ = lRANS.

• Wall Modelled LES (WMLES) branch: intended to be active only when the
inflow conditions used in the simulation are unsteady and impose some
turbulent content and the grid is fine enough to resolve boundary layer
dominant eddies. In this case rdt � 1 and, consequently, f̃d = fB = 0, so
eq. 2.7 reduces to d̃ = lLES.

The remaining model functions are given by

fv1 = χ3

χ3+x3
v1
, fv2 = 1(

1+ χ
cv2

)3

fv3 = (1+χfv1)
cv2

[
3
(

1 + χ
cv2

)
+
(

χ
cv2

)2
](

1 + χ
cv2

)−3

χ = ν̃
ν
, fw = g

(
1+c6w3

g6+c6w3

)1/6
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g = r + cw2(r6 − r), r = ν̃

S̃k2d2
w

(2.9)

The values used for the constants of the model [130] are cb1 = 0.1355, cb2 =
0.622, k = 0.41 , σ = 2/3, cw1 = cb1/k

2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2 , cv1 = 7.1
and cv2 = 5.

The boundary conditions that close the mathematical problem are summarized
below. At the inlet, velocity takes its farfield value, the vehicle’s speed, a zero
Neumann condition is imposed on the pressure and the turbulence variable ν̃
is computed through eq. 2.4 based on the eddy viscosity ratio. On the vehicle
and the wind tunnel floor, a zero Dirichlet condition is imposed on the velocity
and ν̃ and a zero Neumann condition on pressure. The side walls of the wind
tunnel are considered as symmetry planes and a symmetry boundary condition
is imposed on all variables. At the outlet, a zero Neumann condition in imposed
on the velocity, which is clipped to zero in case of backflow, a zero Neumann
condition is imposed on the ν̃ and a zero Dirichlet on the pressure.

2.2 Flow-Induced Noise Radiation

After solving the unsteady Navier-Stokes and Spalart-Allmaras equations in the
external domain, as presented in the previous section, the unsteady pressure
distribution on the mirror is obtained and a surface integral method for sound
extrapolation to the far-field, the Kirchhoff Integral method, is used.

The Kirchhoff Integral method is derived based on the wave equation and
encloses the source sound sources with a control surface that is mathematically
represented by a function, f(x, t) = 0, defined such that ∂f

∂xi
= n̂i, where n̂i is the

unit normal vector pointing into the fluid. The Kirchhoff equation reads, [38],

22p′(x, t) = −
(
∂p′

∂t

vsn
a2

0

+
∂p′

∂n

)
δ(f)

− ∂

∂t

(
p′
vsn
a2

0

δ(f)

)
− ∂

∂xi
(p′n̂iδ(f))

≡ Qkir (2.10)

where 2 = 1
a2

0

∂2

∂t2
− ∂2

∂xi2
is the D’Alembert operator, δ(f) is the Dirac delta function

and vsn is the surface normal velocity, in case this is moving.
Due to the fact that the Kirchhoff acoustic analogy is valid only in the region

of the flow governed by the linear wave equation, the assumption that nonlinear
effects are negligible is overall made. This can be shown by examining a more
general acoustic analogy, namely the Fwocks-Williams Hawkings (FW-H), [141],
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that is derived based on the conservation laws in fluid mechanics and reads

22p′(x, t) =
∂

2

∂xi∂xj
[TijH(f)]

− ∂

∂xi
[(p′δijn̂j + ρvi(vn − vsn))δ(f)]

+
∂

∂t
[(ρ0v

s
n + ρ(vn − vsn))δ(f)] (2.11)

where Tij = ρvivj is the Lighthill stress tensor, H(f) is the Heaviside function and
vn is the fluid velocity in the direction normal to the surface f = 0.

In [18], eqs. 2.10 and eq. 2.11 are compared and it is shown that the first can
be rewritten as

22p′(x, t) = Qkir +
∂

2
Tij

∂xi∂xj
H(f) (2.12)

It is seen that the additional term in FW-H is a tensorial volume source term that
is associated with viscosity effects. For low-Mach flows, surface noise sources
dominate the volume sources [18], so the latter can be neglected and is, thus, ac-
curate to use the Kirchhoff Integral. This assumption is valid for the applications
presented in this paper, as explained in section 2.5.

In [68] and also in this thesis, the Kirchhoff integration surface is selected to
coincide with the surface of the side mirror, SWP

and is, thus, non-moving and
impermeable. An applicable form can then be derived for the calculation of the
radiated acoustic pressure at the receiver xrec,i which reads

pac(t, ~xrec) =
ρ

4π

∫
SWP

[
− 1

R

∂p

∂n
+

(
1

R2
p+

1

a0R

∂p

∂t

)
r̂in̂i

]
ret

dS = 0 (2.13)

Here, a0 is the ambient speed of sound, ri = xrec,i − xi the vector connecting
the source and the receiver positions and R its magnitude whereas r̂i = ri

R
. In

addition, density appears anew in eq. 2.13 , because p is derived by the CFD
pressure field which is already divided by ρ.

The terms on the r.h.s. of eq. 2.13 have a clear physical meaning; the first is
known as thickness noise whereas the second and third as loading noise. The
r.h.s. of eq. 2.13 is expressed at the retarted time which is the time instant that a
sound wave leaves the source to reach the receiver at t

τ = t− R

a0

(2.14)

In addition, since a zero Neumann condition is imposed on the pressure along SW
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in the preceding CFD solution, the first term vanishes and the Kirchhoff integral
reduces to

Rpac = pac(t, ~xrec)−
1

4π

∫
SW

[
1

R2
p+

1

a0R

∂p

∂t

]
ret

r̂i︸ ︷︷ ︸
gret,i

n̂i dS = 0 (2.15)

For each receiver placed on the side window, eq. 2.15 is solved and the sound
sources are integrated over the noise radiating side mirror to compute the acoustic
pressure.

2.3 Window Vibration

The main contribution to sound radiation into the vehicle interior compartment
comes from the lateral vibrational response of the side window. Although fre-
quency domain-based methods, such as Statistical Energy Analysis (SEA) meth-
ods are frequently used for this case [16, 128], a time-domain method was de-
veloped in [68], which can utilize the complete transient and spatial information
obtained from the CFD solution and the Kirchhoff Integral propagation.

The window can be approximated as a thin plate with thickness h and density
ρw and its lateral deformation is described by the Kirchhoff plate theory [84, 122],
which is sufficient for bending wavelengths that remain smaller than the thickness
of the window. The governing equation of the window deflection is thus governed
by the 2D bending wave equation that reads

Rw =
∂2w

∂t2
+
D

m′
∂4w

∂x2
i∂x

2
j

+
∂

∂t

[
η1
D

m′
∂4w

∂x2
i∂x

2
j

+ η2w − η3

√
D

m′
∂2w

∂xj2

]
− pload

m′
= 0

(2.16)

where pload = pac + p, pac is the radiated acoustic pressure and phyd the hydro-
dynamic (incompressible CFD) pressure computed on the side window, m′ = ρwh
is the normalised window mass and D = EI the window bending stiffness that
depends on the Young modulus E and the moment of inertia for the thin plate
cross-section.

Eq. 2.16 consists of the biharmonic wave operator of the window deflection
w as well as three damping terms that ensure a frequency dependent damping
behavior. In order to calibrate the values of the damping coefficients ηi, i = 1, 2, 3
a hammershock experiment can be conducted, where the damping characteristics
of the window are measured after a hit with a hammer, as explained in [68].

Since the PDE of eq. 2.16 is of fourth order, two boundary conditions must
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be imposed on w at each window edge, which depend on the window’s mounting
type. A clamped window imposes a zero Dirichlet and zero Neumann condition

w = 0 and
∂w

∂xi
ne,i = 0 (2.17)

where ne,i is a unit vector tangent to the window surface and also normal to
its edge. For a simply supported window, a zero Dirichlet and zero Laplacian
condition

w = 0 and
∂2w

∂xj2
= 0 (2.18)

is imposed.

In addition, two initial conditions are imposed for the starting time tstart of the
simulation

w = 0 and
∂w

∂t
= 0 for t = tstart (2.19)

The bending wave equation differentiates substantially from other wave equa-
tions, due to its dispersive behaviour, as bending waves propagate with different
speeds for different frequencies. The dispersion relation derived from the homo-
geneous bending wave equation reads

kB =
√
ω

4

√
m′

D
and cB =

√
ω

4

√
D

m′
(2.20)

where ω, kB and cB are the frequency, wavelength and speed of the bending waves,
respectively.

Furthermore, the coincidence frequency is defined as

fc =

√
3a2

0

πh

√
ρ(1− ν2)

E
(2.21)

This is the frequency where the acoustic wavelengths match the bending wave-
lengths and energy is efficiently transferred from the side window into the cabin
by radiation. Bending waves that have a much smaller propagation speed are ra-
diated, but decay exponentially on the distance from the window. Bending waves
travelling faster than the ambient speed of sound will radiate in an angle that
depends on their speed [28].
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2.4 Interior Propagation

The previous section described the propagation of bending waves and how energy
is transferred through the side window. A combination of SEA and Boundary
Element Methods (BEM) is often used in literature to compute the reverberant and
direct sound field in the vehicle cabin [16, 128], due to their low computational
time and lack of need for an interior acoustic computational domain. In the
method developed in [68] and used in this thesis however, the complete spatially
resolved sound field is computed by solving the acoustic wave equation in the
interior domain, Ωint,

Rpint =
1

a2
0

∂2pint
∂t2

− ∂2pint

∂x2
i

2 = 0 (2.22)

The resulting field is composed of the direct radiated field of the side window and
the reverberant field resulting from reflections on the boundary interior walls.

The boundary condition on the interior side of the window is associated with
the window deflection. The induced acoustic field at the surface of a vibrating
panel Swi is expressed by its lateral acceleration as

∂pint
∂xi

ni = ρ0
∂2w

∂t2
(2.23)

where ni refers to the components of the unit vectors which are normal to the
wall, pointing outwards from the computational domain.

An impedance boundary condition is imposed for the acoustic pressure at the
remaining wall boundaries of the vehicle interior, given by [22],

∂pint
∂xi

ni = − 1

vc

∂pint
∂t

(2.24)

Here, a part of the acoustic waves is reflected and another part is absorbed,
depending on the convective velocity vc. The latter is defined as [22]

vc = 2v0
1 +
√
R

1−
√
R

(2.25)
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where R is the average reflection coefficient R, given by

R = 1− 24ln(10)Vint
a0T60Aint

(2.26)

The constants of eq. 2.26 depend on the geometry of the interior compartment,
specifically its volume Vint and overall surface area Aint. T60 is the reverberation
time measured for the cabin, that is the time required for sound to decay by 60dB.

This formulation ensures the correct long term energy loss of a diffusive acous-
tic field in Vint and reproduces the correct T60 time. When the convective velocity
tends to infinity, the boundary condition turns to a zero Neumann, representing
an acoustically hard wall. When the convective velocity is equal to the ambient
sound velocity there is no reflection and the boundary condition allows a full
transmission through acting as an open window.

In addition, two initial conditions are imposed at the starting time tstart of the
simulation

pint = 0 and
∂pint
∂t

= 0 for t = tstart (2.27)

2.5 Noise Prediction Chain in OpenFOAM© and the SAE Body

Test Case

The described steps for an aeroacoustic simulation in cars have been implemented
in the open source toolbox OpenFOAM© by Kabat vel Job [68]. The noise predici-
tion chain is also used in this thesis for the primal analysis and an overview
follows.

The flow equations are solved using the standard transient incompressible
solver pisoFoam using the Spalart-Allmaras turbulence model and the built-in
IDDES technique. The Kirchhoff Integral solver is significantly enhanced in this
PhD thesis in order to accommodate functionalities, such the backward in time
integration needed for its adjoint, and, therefore, its implementation is discussed
in detail in section 5.1.2. The bending wave equation is solved on the car’s side
window using the Finite Area functionality of OpenFOAM [134] whereas a Finite
Volume approach is used to solve the wave equation in the car’s interior. The
numerical setup for the IDDES and the simulation of the vibroacoustic model are
thoroughly discussed in sections 5.1 and 3.4 respectively.

In this PhD thesis, a generic vehicle geometry, the SAE Body, is used as a
test case to verify and apply the continuous adjoint method to the aeroacoustic
optimization framework based on the described equations. The SAE Body test
case is based on the SAE Type 4 car body and was firstly presented in [59, 60],
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where sunroof buffeting was investigated and, afterwards, in [53], where the same
set-up shown in this PhD thesis was used. More information about the design
and construction of the model can be found in the same publication. This model,
shown in fig. 2.1, is built in such a way that only the noise transmission through
the front side window is relevant, except for very low frequencies. In fact, the front
side window at the driver’s side is the only window of the model, while the rest of
the structure is nearly rigid and highly damped.

The CAE (Computer-Aided Engineering) model consists similarly of two shells,
as presented in fig. 2.2. The outter shell is used to mesh the geometry and the
external domain, Ωext, where the equations governing the external aerodynam-
ics, eqs. 2.1 , 2.2 and 2.3, are solved. The inner shell is used to mesh the inte-
rior domain Ωint, that is the vehicle cabin including the vibrating window, where
eqs. 2.16 and 2.22 are solved. The sound radiation from the mirror to the side
window, eq. 2.13 , uses the surface elements on the side mirror as sources and
the surface elements of the internal domain on the side window as receivers. The
mirror geometry used in this PhD thesis is shown in fig. 2.3.

Figure 2.1: SAE Type 4 Model in wind tunnel at AUDI AG from [68]: Exterior (left) and
interior (right) vehicle geometry. Sound can be transmitted to the interior through the
only window of the vehicle, on its left side. The accelerator sensors on the side window
(left) and the microphones in the interior (right) were used to measure the window
acceleration and interior sound pressure level respectively, in order to compare the
measured data with the numerical results.

In order to demonstrate the accuracy of the existing noise prediction chain,
based on which the continuous adjoint method is developed in this PhD thesis, the
results of the experimental validation of the aforementioned method performed by
Kabat vel Job [68] are summarized in this chapter, with kind permission of Volk-
swagen Group Research. In fig. 2.4, the data computed by the numerical method
and those measured during the experiments conducted in the AUDI wind tunnel,
are compared. Specifically, the Sound Velocity Level, averaged over all sensors
on the vibrating side window (fig. 2.1, left), and the Sound Pressure Level (SPL),
averaged over all the vehicle’s cabin microphones (fig. 2.1, right), are presented.
Two main conclusions are drawn, by analysing the figures. Firstly, the numerical
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Figure 2.2: SAE Type 4 CAE Model: Exterior (left) and interior (right) vehicle walls.
The only window of the vehicle, through which sound is transmitted to the interior,
is coloured in magenta.

Figure 2.3: Side mirror of the SAE Type 4 CAE Model.

method proposed in [68] and also used in this PhD thesis for the primal analysis
shows good agreement with the experimental data, in a frequency window between
800Hz and 4000Hz, which is of interest for passenger comfort. The discrepancies
seen for frequencies above 5KHz can be due to the grid resolution, while the ones
seen for frequencies below 300Hz are practically irrelevant for consideration in
vehicle aeroacoustics. Secondly, both the hydrodynamic and acoustic part of the
pressure on the window contribute to the windows vibration and interior SPL. The
former is responsible for low frequency noise, up to 1kHz and the latter for higher
frequencies, above 1kHz. The hydrodynamic pressure excitation is derived by the
instantaneous pressure field on the window, while the acoustic pressure is the
radiated acoustic field mainly from the side mirror to the window.
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(a) pure hydrodynamic pressure (b) pure acoustic pressure (c) total pressure (hydrody-
namic + acoustic)

Figure 2.4: Comparison of results derived by the described method and experiment
reproduced from [68]: Resulting Sound Velocity Level on side window (top row) and
Sound Pressure Level in cabin (bottom row) due to different types of excitation; aver-
age of all sensors shown in 1/24 th octave bands.

2.6 Conclusions

This chapter presented the constituent steps and the corresponding governing
PDEs of an OpenFOAM-based aeroacoustic framework that can be used in the au-
tomotive industry to assess the aeroacoustic performance of cars, as proposed in
[68]. There are the unsteady incompressible Navier-Stokes equations, the Kirch-
hoff Integral acoustic analogy, the bending wave equation and the wave equation
solved on the corresponding exterior and interior domains of the car geometry.

Equations governing the physical mechanisms of flow-induced noise genera-
tion and transmission to the vehicle’s interior are the starting point of the contin-
uous adjoint method formulation in the following chapters.
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Chapter 3

Continuous Adjoint Formulation to the
Vibroacoustic Model of the Vehicle Interior

This chapter presents the development of the continuous adjoint method for the
physical mechanisms that govern the noise propagation into the vehicle interior
through the vibrating window. In the primal process presented in chapter 2, the
lateral response of the window to the pressure load is governed by the bending
wave equation and the acoustic propagation in the vehicle interior by the wave
equation. By simulating the window vibration and the radiation of the generated
sound waves in the interior compartment, the sound field in the interior becomes
known and an objective function related to the sound pressure level can be as-
sessed for specific points or regions of interest, such as the area near the driver’s
ear.

In the past, the adjoint method has been used for problems governed by equa-
tions that include wave operators but is mostly found in the research fields of
seismic tomography for wave field inversion [39, 119] or of sensitivity analysis for
shallow-water wave control [127]. In the context of aeroacoustics, the continu-
ous adjoint formulation was used in [33] for the FW-H equation, however it was
restricted to a 2D isolated airfoil. Moreover, no continuous or discrete adjoint
formulation has been proposed before for acoustics in vehicle applications.

In this chapter, the mathematical formulation of the continuous adjoint method
for the computation of derivatives of objective functions used in sound propaga-
tion in the interior of vehicles, governed by the coupled system of the 2D bending
wave equation for the 3D surface of the window and the 3D wave equation in the
interior is presented for the first time in the literature.

Later on it is shown that the adjoint equations are solved backwards in time
but also in reverse order. In the primal process, information travels from the
vibrating side window to the vehicle interior whereas in the adjoint process, adjoint
information travels from the internal domain to the external one. Therefore, the
mathematical derivation of the adjoint equations considers first the wave equation

27
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in the interior, afterwards the bending wave equation at the window and, finally,
the coupled vibroacoustic model.

The accuracy of the developed method is verified against Finite Differences
(FD). The method computes the sensitivity derivatives expression of an objective
function, defined in the vehicle interior, with respect to design variables that affect
the acoustic load on the window. This is the first step to couple the interior adjoint
process with the exterior one, presented in the next chapter.

Throughout this thesis, several objective functions of the same form are de-
fined which target at minimizing the fluctuations of a quantity Φ. Such an objec-
tive function can be defined as

J =
1

Tof

∫
Tof

(Φ− Φ)2dt =
1

Tof

∫
Tof

Φ′ 2dt (3.1)

where Tof is the time-window over which the objective function is integrated, Φ′

is the fluctuation of Φ and the overbar symbols indicates a mean value over Tof .
The differentiation of eq. 3.1 w.r.t. bn yields

δJ

δbn
=

2

Tof

∫
Tof

Φ′
(
δΦ

δbn
− δΦ

δbn

)
dt

=
2

Tof

(∫
Tof

Φ′
δΦ

δbn
dt− δΦ

δbn

∫
Tof

Φ′dt︸ ︷︷ ︸
=0

)

=
2

Tof

∫
Tof

Φ′
δΦ

δbn
dt (3.2)

In the development that follows in this and the next chapters, all objective func-
tions used are cast in the form of eq. 3.1 and their derivatives in the form of
eq. 3.2 .

3.1 Adjoint to the Wave Equation

This section focuses only on the wave equation solved in the vehicle compart-
ment, Ωint, to compute the interior propagation of waves generated by a given side
window deflection. It is assumed that the design variables bn affect w, thus

w = w(~b, ~x, t) (3.3)



3.1. Adjoint to the Wave Equation 29

For example, bn could be the thickness or density of the side window which influ-
ence its vibrational response.

3.1.1 Objective Function Expression for Vehicle Interior and

its Differentiation

When considering the aeroacoustic performance of a vehicle, the main point of
interest is the region near the driver’s ear (receiver). The perceived noise is related
to the interior pressure fluctuations and, thus, an appropriate objective function
can be defined as

Jint =
1

Tof

∫
Tof

p′ 2int dt

∣∣∣∣
P

(3.4)

where P is the point of interest, i.e. the receiver. In this thesis, this point coincides
with a microphone placed near the driver’s ear. Eq. 3.4 is differentiated and yields

δJint
δbn

=
2

Tof

∫
Tof

p′int
δpint
δbn

dt

∣∣∣∣
P

(3.5)

3.1.2 Formulation of the Field Adjoint Equation and its Initial

Condition

Starting point of the continuous adjoint formulation is the definition of the aug-
mented objective function which includes the time and space integral of the inner
product of the equation residual with its adjoint quantity, here

LWE = Jint +

∫
Ts

∫
Ωint

qintR
pintdΩdt (3.6)

where WE stands for Wave Equation, Rpint is the residual of the wave equation,
eq. 2.22 , qint is the adjoint interior pressure and Ts is the time window over which
the simulation is performed, starting at tstart and ending at tend. This time window
does not necessarily coincide with Tof , over which the objective function is inte-
grated, as depicted in the example of fig. 3.1. The impact of these time windows
on the adjoint solution is discussed in chapter 4.

The derivative of LWE w.r.t. bn yields

δLWE

δbn
=

δJint
δbn

+

∫
Ts

∫
Ωint

qint
δRpint

δbn
dΩdt (3.7)
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Tof

Ts

tstart tof tend

Figure 3.1: Example of the time windows used in the primal analysis: the simulation
is performed over Ts, starting at tstart and ending at tend, whereas the objective
function is integrated only over Tof , starting at tof .

Notice that, since the interior geometry remains fixed during the optimization and
domain Ωint does not vary by changing the design variables bn, the total variation
of the volume integral is equal to the integral of the total variation of its integrand.

The second r.h.s. term of eq. 3.7 is developed as

∫
Ts

∫
Ωint

qint
δRpint

δbn
dΩdt =

∫
Ts

∫
Ωint

qint

(
1

a2
0

δ

δbn

(
∂2pint
∂t2

)
− δ

δbn

(
∂2pint
∂xi2

))
dΩdt

=

∫
Ts

∫
Ωint

qint

(
1

a2
0

∂2

∂t2

(
δpint
δbn

)
− ∂2

∂xi2

(
δpint
δbn

))
dΩdt

(3.8)

The first term on the r.h.s. of eq. 3.8 is further developed by using the Green-
Gauss theorem in time∫

Ts

∫
Ωint

qint
1

a2
0

∂2

∂t2

(
δpint
δbn

)
dΩdt = −

∫
Ts

∫
Ωint

1

a2
0

∂qint
∂t

∂

∂t

(
δpint
δbn

)
dΩdt

+

∫
Ωint

1

a2
0

qint
∂

∂t

(
δpint
δbn

)
dΩ

∣∣∣∣tend
tstart

=

∫
Ts

∫
Ωint

1

a2
0

∂2qint
∂t2

δpint
δbn

dΩdt

−
∫

Ωint

1

a2
0

∂qint
∂t

δpint
δbn

dΩ

∣∣∣∣tend
tstart

+

∫
Ωint

1

a2
0

qint
∂

∂t

(
δpint
δbn

)
dΩ

∣∣∣∣tend
tstart

(3.9)

where tstart and tend are the starting and ending times of the simulation respec-
tively.
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The second term on the r.h.s. of eq. 3.8 is developed by using the Green-Gauss
theorem in space

−
∫
Ts

∫
Ωint

qint
∂2

∂xi2

(
δpint
δbn

)
dΩdt =

∫
Ts

∫
Ωint

∂qint
∂xi

∂

∂xi

(
δpint
δbn

)
dΩdt

−
∫
Ts

∫
Sint

qint
∂

∂xi

(
δpint
δbn

)
nidΩdt

= −
∫
Ts

∫
Ωint

∂2qint
∂xi2

δpint
δbn

dΩdt

+

∫
Ts

∫
Sint

∂qint
∂xi

ni
δpint
δbn

dΩdt

−
∫
Ts

∫
Sint

qint
∂

∂xi

(
δpint
δbn

)
ni dΩdt (3.10)

where Sint is the boundary of the interior domain, comprising the interior side of
the side window Swi and the other interior walls Swa.

For surface integrals on Swa, eq. 2.24 is used and these terms yield

−
∫
Ts

∫
Swa

qint
∂

∂xi

(
δpint
δbn

)
nidSdt+

∫
Ts

∫
Swa

∂qint
∂xi

ni
δpint
δbn

dSdt

= −
∫
Ts

∫
Swa

qint
δ

δbn

(
∂pint
∂xi

ni

)
dSdt+

∫
Ts

∫
Swa

∂qint
∂xi

ni
δpint
δbn

dSdt

=

∫
Ts

∫
Swa

qint
δ

δbn

(
1

vc

∂pint
∂t

)
dSdt+

∫
Ts

∫
Swa

∂qint
∂xi

ni
δpint
δbn

dSdt

=

∫
Ts

∫
Swa

1

vc
qint

∂

∂t

(
δpint
δbn

)
dSdt+

∫
Ts

∫
Swa

∂qint
∂xi

ni
δpint
δbn

dSdt

= −
∫
Ts

∫
Swa

1

vc

∂qint
∂t

δpint
δbn

dSdt+

∫
Swa

1

vc
qint

δpint
δbn

dS

∣∣∣∣tend
tstart

+

∫
Ts

∫
Swa

∂qint
∂xi

ni
δpint
δbn

dSdt

=

∫
Ts

∫
Swa

(
− 1

vc

∂qint
∂t

+
∂qint
∂xi

ni

)
δpint
δbn

dSdt+

∫
Swa

1

vc
qint

δpint
δbn

dS

∣∣∣∣tend
tstart

(3.11)

The surface integrals on Swi are further developed, with the use of the boundary
condition imposed on the interior side of the window, eq. 2.23 , and yields

−
∫
Ts

∫
Swi

qint
∂

∂xi

(
δpint
δbn

)
nidSdt+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt

= −
∫
Ts

∫
Swi

qint
δ

δbn

(
∂pint
∂xi

ni

)
dSdt+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt
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=

∫
Ts

∫
Swi

qint
δ

δbn

(
ρ0
∂2w

∂t2

)
dSdt+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt

=

∫
Swi

(
−qintρ0

δ

δbn

(
∂w

∂t

)
dSdt+

∂qint
∂t

ρ0
δw

δbn

)
dS

∣∣∣∣tend
tstart

+

∫
Ts

∫
Swi

ρ0
∂2qint
∂t2

δw

δbn
dSdt+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt (3.12)

By replacing eqs. 3.5 , 3.9, 3.10, 3.11 and 3.12 into eq. 3.7 , the expression for
the derivative of LWE w.r.t. bn yields

δLWE

δbn
=

∫
Ts

∫
Ωint

(
1

a2
0

∂2qint
∂t2

− ∂2qint
∂xi2

)
δpint
δbn

dΩdt+

∫
Tof

∫
Ωint

2

Tof
p′int

δpint
δbn

dΩdt

+

∫
Ωint

1

a2
0

qint
∂

∂t

(
δpint
δbn

)
dΩ

∣∣∣∣tend
tstart

−
∫

Ωint

1

a2
0

∂qint
∂t

δpint
δbn

dΩ

∣∣∣∣tend
tstart

+

∫
Swa

1

vc
qint

δpint
δbn

dS

∣∣∣∣tend
tstart

+

∫
Swi

(
−qintρ0

δ

δbn

(
∂w

∂t

)
+
∂qint
∂t

ρ0
δw

δbn

)
dS

∣∣∣∣tend
tstart

+

∫
Ts

∫
Swa

(
− 1

vc

∂qint
∂t

+
∂qint
∂xi

ni

)
δpint
δbn

dSdt+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt

+

∫
Ts

∫
Swi

ρ0
∂2qint
∂t2

δw

δbn
dSdt (3.13)

The second term on the r.h.s. of eq. 3.13 can be expressed as a time integral over
Ts by using the Heaviside function H as∫

Tof

∫
Ωint

2

Tof
p′int

δpint
δbn

dΩdt =

∫
Ts

∫
Ωint

2

Tof
p′intH(t− tof )

δpint
δbn

dΩdt (3.14)

where tof is the starting time of the objective function integration.

By zeroing the multipliers of δpint/δbn in the first two volume integral of eq. 3.13
the adjoint wave equation is derived

Rqint =
1

a2
0

∂2qint
∂t2

− ∂2qint
∂xi2

+
2

Tof
p′intH(t− tof )

∣∣∣∣
P

= 0 (3.15)

The wave equation is self-adjoint, meaning that the derived adjoint equation has
the same differential operators as the primal. The difference is the additional
source term, 2

Tof
p′intH(t− tof ) expressed at point P , which arises from the differ-

entiation of the Jint, eq. 3.4 , and takes non-zero values only during Tof , therefore
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acting only during the time over which the objective function is integrated.
The remaining volume integrals are expressed at t = tstart and t = tend and

contribute to the initial conditions of eq. 3.15 . At t = tstart, the interior pressure
pint and its time derivative are fixed and equal to zero, eq. 2.27 , thus their deriva-
tives w.r.t. the design variables bn is zero. At t = tend, qint and its time derivative
are set to zero, in order to eliminate the term that contains δpint/δbn. So, the
initial conditions for the adjoint problem are defined at the end of the simulation
time as

qint = 0 and
∂qint
∂t

= 0 , for t = tend (3.16)

Eq. 3.16 imposes that the adjoint wave equation must be solved backwards in
time. The surface integral on the wall Swa, which is expressed at t = tstart and
t = tend vanishes after imposing the initial conditions, eqs. 3.16 , whereas the one
defined on the window vanishes as well, because of the primal initial conditions
for the window deflection problem, eq. 2.19 .

3.1.3 Adjoint Boundary Conditions

After satisfying the adjoint wave equation in the interior, the remaining terms of
eq. 3.13 yield

δLWE

δbn
=

∫
Ts

∫
Swa

(
− 1

vc

∂qint
∂t

+
∂qint
∂xi

ni

)
δpint
δbn

dSdt

+

∫
Ts

∫
Swi

∂qint
∂xi

ni
δpint
δbn

dSdt

+

∫
Ts

∫
Swi

ρ0
∂2qint
∂t2

δw

δbn
dSdt (3.17)

Interior Walls, Swa

Similarly to the field integrals, the multiplier of δpint/δbn in the first term on the
r.h.s. of eq. 3.17 is set to zero and the boundary condition for the adjoint interior
pressure qint on the interior walls is derived as follows

∂qint
∂xi

ni =
1

vc

∂qint
∂t

(3.18)

Comparing eq. 3.18 with the primal boundary condition on Swa, eq. 2.24 , it is
clear that it is the same reflective boundary condition, having the opposite sign in
the time derivative. This can be explained by taking into consideration that the
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adjoint wave equation is solved backwards in time.

Window, Swi

The multiplier of δpint/δbn in the second term on the r.h.s. of eq. 3.17 is set to zero
and a zero Neumann boundary condition for the adjoint interior pressure qint on
the interior side of the window is derived

∂qint
∂xi

ni = 0 (3.19)

3.1.4 Final Expression of the Sensitivity Derivatives for Vehi-

cle Interior

After satisfying the adjoint wave equation for the interior and its initial and bound-
ary conditions, the remaining term of eq. 3.17 is the final expression for the sen-
sitivity derivatives and reads

δLWE

δbn
=

∫
Ts

∫
Swi

ρ0
∂2qint
∂t2

δw

δbn
dSdt (3.20)

It is the derivative of the objective function, eq. 3.4 , with respect to any design
variables bn that affect the window deflection w, which is the excitation of the
wave propagation into the interior compartment. In case there is a closed-form
expression forw, term δw/δbn can be analytically computed and eq. 3.20 is used to
compute gradients w.r.t. the parameters that directly affect w; otherwise, eq. 3.20
is used as a coupling condition with the adjoint bending wave equation solved on
the window as seen in section 3.3.

3.2 Adjoint to Bending Wave Equation

This section focuses on the adjoint to the bending wave equation that predicts the
vibrational response of a window to a given pressure load. The design variables
of the optimization problems considered here affect this load, it is thus

pload = pload(~b, ~x, t) (3.21)

In practice, bn could be the parameters of a surrogate model for computing the
pressure load on the window or the variables of a simulation of the external flow
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and sound radiation.

3.2.1 Objective Function Expression for Vehicle’s Window and

its Differentiation

A suitable objective function to investigate the window vibration can be defined
as the time average of the squared window deflection fluctuations which reads

Jvib =
1

Tof

∫
Tof

∫
Swi

w′ 2dtdS (3.22)

The derivative of eq. 3.22 w.r.t. bn yields

δJvib
δbn

=
2

Tof

∫
Tof

∫
Swi

w
δw

δbn
dtdS (3.23)

3.2.2 Formulation of the Surface Adjoint Equation and its Ini-

tial Conditions

The augmented objective function for the bending wave problem is written as

Lvib = Jvib +

∫
Ts

∫
Swi

zRwdSdt (3.24)

where Rw is the residual of the bending wave equation, eq. 2.16 , and z is the
adjoint deflection.

Its differentiation w.r.t. the design variable bn yields

δLvib
δbn

=
δJvib
δbn

+

∫
Ts

∫
Swi

z
δRw

δbn
dSdt (3.25)

The second term on the r.h.s. of eq. 3.25 is further expanded as

∫
Ts

∫
Swi

z
δRw

δbn
dSdt =

∫
Ts

∫
Swi

z

{
δ

δbn

(
∂2w

∂t2

)
+
D

m′
δ

δbn

(
∂4w

∂x2
i∂x

2
j

)
+

δ

δbn

(
∂

∂t

[
η1
D

m′
∂4w

∂x2
i∂x

2
j

+ η2w − η3

√
D

m′
∂2w

∂xj2

])
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− δ

δbn

(pload
m′

)}
dSdt

=

∫
Ts

∫
Swi

z

{
∂2

∂t2

(
δw

δbn

)
+
D

m′
∂4

∂x2
i∂x

2
j

(
δw

δbn

)
+

∂

∂t

[
η1
D

m′
∂4

∂x2
i∂x

2
j

(
δw

δbn

)
+ η2

δw

δbn
− η3

√
D

m′
∂2

∂xj2

(
δw

δbn

)]

− 1

m′
δpload
δbn

}
dSdt (3.26)

Each term on the r.h.s. of eq. 3.26 is further expanded by using the Green-
Gauss theorem in space or time as follows, with L being the boundary edge of Swi
and with ne,i being the components of the normal vector on the window edges that
is also tangent to its surface.

∫
Ts

∫
Swi

z
∂2

∂t2

(
δw

δbn

)
dSdt =

∫
Ts

∫
Swi

∂2z

∂t2
δw

δbn
dSdt+

∫
Swi

[
z
∂

∂t

(
δw

δbn

)
− ∂z

∂t

δw

δbn

]end
start

dS

(3.27)

∫
Ts

∫
Swi

z
D

m′
∂4

∂x2
i∂x

2
j

(
δw

δbn

)
dSdt = −

∫
T

∫
Swi

D

m′
∂z

∂xj

∂3

∂xi2∂xj

(
δw

δbn

)
dSdt

+

∫
T

∫
L

D

m′
zne,j

∂3

∂xi2∂xj

(
δw

δbn

)
dldt

=

∫
T

∫
Swi

D

m′
∂2z

∂xi2
∂2

∂xi2

(
δw

δbn

)
dSdt

−
∫
T

∫
L

D

m′
∂z

∂xi
ne,i

∂2

∂xj2

(
δw

δbn

)
dldt

+

∫
T

∫
L

D

m′
zne,j

∂3

∂xi2∂xj

(
δw

δbn

)
dldt

= −
∫
T

∫
Swi

D

m′
∂3z

∂xi2∂xj

∂

∂xj

(
δw

δbn

)
dSdt

+

∫
T

∫
L

D

m′
∂2z

∂xi2
ne,j

∂

∂xj

(
δw

δbn

)
dldt

−
∫
T

∫
L

D

m′
∂z

∂xi
ne,i

∂2

∂xj2

(
δw

δbn

)
dldt

+

∫
T

∫
L

D

m′
zne,j

∂3

∂xi2∂xj

(
δw

δbn

)
dldt
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=

∫
T

∫
Swi

D

m′
∂4z

∂x2
i∂x

2
j

δw

δbn
dSdt

−
∫
T

∫
L

D

m′
∂3z

∂xi2∂xj
ne,j

δw

δbn
dldt

+

∫
T

∫
L

D

m′
∂2z

∂xi2
ne,j

∂

∂xj

(
δw

δbn

)
dldt

−
∫
T

∫
L

D

m′
∂z

∂xi
ne,i

∂2

∂xj2

(
δw

δbn

)
dldt

+

∫
T

∫
L

D

m′
zne,j

∂3

∂xi2∂xj

(
δw

δbn

)
dldt (3.28)

∫
T

∫
Swi

η1
D

m′
z
∂

∂t

(
∂4

∂x2
i∂x

2
j

(
δw

δbn

))
dSdt = −

∫
T

∫
Swi

η1
D

m′
∂z

∂t

∂4

∂x2
i∂x

2
j

(
δw

δbn

)
dSdt

+

∫
Swi

η1
D

m′
z

∂4

∂x2
i∂x

2
j

(
δw

δbn

)
dS

∣∣∣∣end
start

=

∫
Ts

∫
Swi

η1
D

m′
∂

∂t

(
∂4z

∂x2
i∂x

2
j

)
δw

δbn
dSdt

+

∫
T

∫
L

η1
D

m′
∂3

∂xi2∂xj

(
∂z

∂t

)
ne,j

δw

δbn
dldt

−
∫
T

∫
L

η1
D

m′
∂2

∂xi2

(
∂z

∂t

)
ne,j

∂

∂xj

(
δw

δbn

)
dldt

+

∫
T

∫
L

η1
D

m′
∂

∂xi

(
∂z

∂t

)
ne,i

∂2 δw
δbn

∂xj2
dldt

−
∫
T

∫
L

η1
D

m′
∂z

∂t

∂3

∂xi2∂xj

(
δw

δbn

)
ne,jdldt

+

∫
Swi

η1
D

m′
z

∂4

∂x2
i∂x

2
j

(
δw

δbn

)
dS

∣∣∣∣end
start

(3.29)

∫
T

∫
Swi

η2z
∂

∂t

(
δw

δbn

)
dSdt = −

∫
T

∫
Swi

η2
∂z

∂t

δw

δbn
dSdt

+

∫
Swi

η2z
δw

δbn
dS

∣∣∣∣end
start

(3.30)
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∫
T

∫
Swi

η3

√
D

m′
z
∂

∂t

(
∂2

∂xi2

(
δw

δbn

))
dSdt = −

∫
T

∫
Swi

η3

√
D

m′
∂

∂t

(
∂2z

∂xi2

)
δw

δbn
dSdt

+

∫
T

∫
L

η3

√
D

m′
∂

∂xi

(
∂z

∂t

)
ne,i

δw

δbn
dldt

−
∫
T

∫
L

η3

√
D

m′
∂z

∂t
ne,i

∂

∂xi

(
δw

δbn

)
dldt

+

∫
Swi

η3

√
D

m′
z
∂2

∂xi2

(
δw

δbn

)
dS

∣∣∣∣∣
end

start

(3.31)

By replacing eqs. 3.27 , 3.28, 3.29, 3.30 and 3.31 into eq. 3.26 and then
eqs. 3.23 and 3.26 into 3.25 the expression of the derivative of Lvib w.r.t. bn yields

δLvib
δbn

=

∫
T

∫
Swi

{
∂2z

∂t2
+
D

m′
∂4z

∂x2
i∂x

2
j

− ∂

∂t

[
η1
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m′
∂4z

∂x2
i∂x

2
j

+ η2z − η3

√
D

m′
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]}
δw

δbn
dSdt

+

∫
Tof

∫
Ωint

2

Tof
w
δw
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dSdt

+

∫
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[
z
δ

δbn

(
∂w

∂t

)
− ∂z

∂t

δw

δbn

]end
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dS

+

∫
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[
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z
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i∂x
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√
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∂2
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+
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∫
L

{
−D
m′

∂3z
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D
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)
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√
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(
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)
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+

∫
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L
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D
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∂xi2
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D
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∂t
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∂2z
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√
D

m′
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∂t
ne,i
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∂

∂xi

(
δw
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+

∫
T

∫
L

{
−D
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∂z

∂xi
ne,i + η1

D

m′
∂

∂t

(
∂z

∂xi

)
ne,i

}
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∂xi2

(
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δbn

)
dldt

+

∫
T

∫
L

{
D

m′
zne,j − η1

D

m′
∂z

∂t

}
∂3

∂xi2∂xj
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δw

δbn
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ne,jdldt

−
∫
T

∫
Swi

1

m′
z
δpload
δbn

dSdt (3.32)

By zeroing the multipliers of δw/δbn in the first time and surface integral of
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eq. 3.32 , the adjoint bending wave equation is derived

Rz =
∂2z

∂t2
+
D

m′
∂4z

∂x2
i∂x

2
j

− ∂

∂t

[
η1
D

m′
∂4z

∂x2
i∂x

2
j

+ η2z − η3

√
D

m′
∂2z

∂xi2

]
+

2

Tof
wH(t− tof ) = 0

(3.33)

The biharmonic operator is also self-adjoint, so the adjoint bending wave equation
has the same form as the primal one. The only difference is the opposite sign of
the time derivative of the damping terms. This is attributed to the fact that the
adjoint equations are solved backwards in time, imposed by the initial conditions
derived from the third term on the r.h.s. of eq. 3.32 .

At t = tstart, δw/δbn is zero, as deflection and its time derivative are indepen-
dent of the design variables, eq. 2.19 . At t = tend, the multipliers of δw/δbn and
δ (∂z/∂t) /δbn are set to zero and, thus, the two initial conditions are

z = 0 and
∂z

∂t
= 0 for t = tend (3.34)

3.2.3 Adjoint Boundary Conditions

By satisfying the adjoint bending wave equation, eq. 3.33 and its initial conditions,
eq. 3.34 , eq. 3.32 reduces to the following expression

δLvib
δbn

=

∫
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∫
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+
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∫
L
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zne,j − η1

D
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}
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∂xi2∂xj

(
δw
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)
ne,jdldt

−
∫
T

∫
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1

m′
z
δpload
δbn

dSdt (3.35)

A zero Dirichlet condition is imposed on the window deflection along all window
edges and for both types of mounting, eqs. 2.17 and 2.18. Therefore, δw/δbn along
the edges is zero and the first term on the r.h.s. of eq. 3.35 vanishes. To eliminate
the third and fourth term on the r.h.s. of eq. 3.35 , a zero Dirichlet condition is
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imposed on z.

Clamped Window Edges, Lcla

In case of a clamping mounting type, eq. 2.18 , an addition zero Neumann condi-
tion is imposed on the deflection along the edges, thus, the second term in eq. 3.35
vanishes. A zero Neumann condition is imposed on the adjoint deflection z to set
the multiplier of ∂2 (δw/δbn) /∂x2

i to zero and eliminate the second term on the
r.h.s. of eq. 3.35 . For a clamped window, the adjoint boundary conditions for z
are summarized as follows

z = 0 and
∂z

∂xi
ne,i = 0 (3.36)

Supported Window Edges, Lsup

If the window is simply supported, a zero Laplacian condition is imposed on w
in addition to the zero Dirichlet one. In this case, the third term vanishes, since
∂2

∂xi2

(
δw
δbn

)
= 0 and a zero Laplacian condition must be imposed for the adjoint

deflection to eliminate the second term on the r.h.s. of eq. 3.35 . Consequently, for
a simply supported window, the adjoint boundary conditions are

z = 0 and
∂2z

∂xj2
= 0 (3.37)

3.2.4 Final Expression of the Sensitivity Derivatives for Vehi-

cle’s Window

After satisfying the adjoint bending wave equation on the side window and its
initial and boundary conditions, the remaining term in eq. 3.35 is the final ex-
pression for the sensitivity derivatives that reads

δLvib
δbn

= −
∫
T

∫
Swi

1

m′
z
δpload
δbn

dSdt (3.38)

Eq. 3.38 indicates the sensitivity of the window vibration, governed by the bend-
ing wave equation, w.r.t. design variables that control the pressure load on the
window, pload.
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3.3 Adjoint to the Coupled Vibroacoustic Model

Sections 3.1 and 3.2 have examined the wave and bending wave equations sep-
arately, as two systems that are solved independently. Here, the complete vi-
broacoustic model will be considered, where the window vibration is simulated
and, then, used to predict the interior sound propagation. The adjoint method
computes the gradient of the objective function defined in the vehicle interior,
eq. 3.4 , w.r.t. to design variables bn that indirectly affect the input pressure load
on the window. In the case of a two-objective optimization that targets both at
minimizing the interior pressure and window deflection, eq. 3.22 would also be
taken into account.

The augmented objective function here takes into account both equations,
eqs. 2.16 and 2.22, in order to derive the adjoint coupling of the two systems.

Lint = Jint +

∫
Ts

∫
Ωint

qintR
pintdΩdt+

∫
T

∫
Swi

zRwdSdt (3.39)

The augmented objective function is differentiated w.r.t. bn which leads to

δLint
δbn

=
δJint
δbn

+

∫
Ts

∫
Ωint

qint
δRpint

δbn
dΩdt+

∫
T

∫
Swi

z
δRw

δbn
dSdt (3.40)

The development of the three terms on the r.h.s. of eq. 3.40 has already been pre-
sented in sections 3.1 and 3.2. The wave equation is derived, eq. 3.15 with the
initial conditions, eq. 3.16 and boundary conditions eqs. 3.18 and 3.19. However,
the term on the r.h.s. of eq. 3.20 includes the derivative of the window deflection
δw/δbn and is now grouped with the first term of eq. 3.32 . After setting the mul-
tiplier of δw/δbn to zero, this term ends up in the adjoint bending wave equation,
as follows

Rz =
∂2z

∂t2
+
D

m′
∂4z

∂x2
i∂x

2
j

− ∂

∂t

[
η1
D

m′
∂4z

∂x2
i∂x

2
j

+ η2
1

m′
z − η3

√
D

m′
∂2z

∂xi2

]
+ ρ0

∂2qint
∂t2

= 0

(3.41)

As mentioned, the source term on the r.h.s. of eq. 3.41 for the coupled interior
system is now the second time derivative of the interior adjoint pressure qint. It
should be noted that the adjoint equations are not only solved backwards in time
but also in reverse order: during the primal process, energy is transmitted through
the vibrating window from the exterior to the interior, so information travels from
the external to the internal domain; in the adjoint process, the adjoint wave
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equation in the interior is solved first and the adjoint information travels from the
the internal domain to the external one, through the adjoint vibration, excited by
the adjoint interior pressure computed on the window.

If Jvib was also taken into account during the optimization, eq. 3.41 would have
two source terms, one derived from the objective function, as seen in eq. 3.33 , and
one from the coupling with the interior. The initial and boundary conditions for
both systems are the same as the ones presented in eqs. 3.34 , 3.36 and 3.37.

The final sensitivity derivatives expression yields

δLint
δbn

= −
∫
T

∫
Swi

1

m′
z
δpload
δbn

dSdt (3.42)

It is essentially the same expression as eq. 3.38 . It indicates, however, the sen-
sitivity of the objective function defined in the vehicle interior, Jint, w.r.t. design
variables that control the input pressure load on the window vibration. In case
there is a closed-form expression for pload, as in the test case shown in sections 3.5
and 3.6, the gradient of the pressure load can analytically be calculated. Other-
wise, when pload is derived from the solution of another set of equations, the right
hand side term in eq. 3.42 is coupled with the corresponding adjoint equations,
similarly to the way the adjoint wave equation was coupled to the adjoint bend-
ing wave equation. Chapter 6 presents such an example, where pload is derived
by the solution of the unsteady incompressible Navier-Stokes equations and the
Kirchhoff Integral acoustic analogy.

3.4 Implementation of the Method

The presented vibroacoustic model and its adjoint are implemented in the open
source toolbox OpenFOAM©, in version 17.12.

The bending wave equation, eq. 2.16 , is solved on a curved surface in the
three-dimensional space, the car’s side window. The Finite Area functionality of
OpenFOAM was used, where effects of surface curvature are built into the differ-
ential and discretization operators, ensuring this way high accuracy [134]. The
spatial gradients are discretized with a Least Squares scheme. The fourth-order
biharmonic operator cannot be implemented implicitly in the current finite area
infrastructure and is, thus, added explicitly as a source term. The time derivatives
are discretized with a first order scheme and an explicit time marching scheme
is used. For this reason and in order to also take the difference of propagation
speeds of waves in the window and in the air into account, eq. 2.20 , the bending
wave equation is solved with a small timestep, usually smaller than the one used
for the wave equation or the CFD solution. For the discretization of the wave
equation, a second order scheme was used to compute the spatial gradients and
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a first order scheme for the time derivative.

When the coupled vibroacoustic model is considered, the bending wave and
wave equations are solved in sequence at each iteration. The flow of informa-
tion between the equations and their different time steps is shown in fig. 3.2. The
source term of eq. 2.16 , that is the pressure load on the window, is usually derived
by a CFD solution and is expressed at the CFD time steps. The vibration problem,
as described before, utilizes a much smaller timestep and the source term values
at the vibration time steps are derived with linear interpolation between the ad-
jacent CFD time steps. At ti,jvib, which is any vibration time step between the CFD
time steps tjCFD and tj+1

CFD, the pressure load is given by

pload
∣∣
ti,jvib

= aivib pload
∣∣
tjCFD

+ (aivib − 1)pload
∣∣
tj+1
CFD

(3.43)

where 0 ≤ i < Nvib, 0 ≤ aivib = i/Nvib < 1 and Nvib is the number of additional time
steps in the vibration loop, compared to the CFD. To solve eq. 2.22 for pint, the
window acceleration is required at each interior propagation time step, eq. 2.23 .
This is derived directly from the coinciding vibration time step, as seen in fig. 3.2.

In the mathematical development of section 3.3, it was shown that information
travels backwards in time and in reverse order during the adjoint integration.
Firstly, the adjoint wave equation is solved, excited by a volume source term
which requires pint at the point where Jint is defined. The interior pressure time-
series for this point is fully stored during the primal solution, since the memory
requirements are negligible. At each interior propagation time step, the second
time derivative of qint is computed on the side window to be used as a source
term for the adjoint bending wave equation, eq. 3.33 . Similarly to the primal
procedure, this term is linearly interpolated at the adjoint vibration time steps,
which coincide with the ones of the primal vibration. Afterwards, the sensitivity
derivatives, eq. 3.20 , is computed at the corresponding CFD time steps and is
either integrated over time, or used as a coupling condition (chapter 6). Two
approaches can be used to formulate the discretization and computation of this
term.

The first approach discretizes the unsteady terms in the integrand of eq. 3.20
at the CFD time steps and the adjoint deflection z is given by the corresponding
solution of the adjoint bending wave equation for the corresponding time steps.
The numerical integration is then performed for all CFD time steps using ∆tCFD
and reads

−
∫
T

∫
Swi

1

m′
z
δpload
δbn

dSdt ' −
NCFD−1∑
j=1

∫
Swi

1

m′

[
z
δpload
δbn

]
tjCFD

dS∆tCFD
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Figure 3.2: Time discretization for the solution of the external flow, window vibration
and interior propagation. equation solution. The output (squares, second row) of the
CFD solution is linearly interpolated to the bending wave time steps (circles, second
row). The output of the bending wave equation (squares, fourth row) expressed at the
interior propagation timesteps (circles, fourth row) is used. Here, the ratio between
the timesteps was selected for the figure visualization and does not relate to the actual
one.

+

∫
Swi

1

m′
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z
δpload
δbn

]
t0CFD

+

[
z
δpload
δbn

]
t
NCFD
CFD

)
dS

∆tCFD
2
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j=1

∫
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+

∫
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t0,0vib

δpload
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∆tCFD
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+

∫
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t
0,NCFD
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∣∣∣∣
t
NCFD
CFD

dS
∆tCFD

2
(3.44)

where NCFD is the number of CFD time steps.

The second approach discretizes the term at the vibration time steps, following
the hand-differentiation of eq. 3.43 that yields

−
∫
T

∫
Swi

1

m′
z
δpload
δbn

dSdt

' −
NCFD−1∑
j=0

Nvib∑
i=0

∫
Swi

1

m′

[
z
δpload
δbn

]
ti,jvib

dS∆tvib

+

∫
Swi

1

m′

([
z
δpload
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]
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+
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z
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]
t
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CFD
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∣∣∣∣
t0,0vib

δpload
δbn

∣∣∣∣
t0CFD

dS
∆tCFD

2

+

∫
Swi

1

m′
z

∣∣∣∣
t
0,NCFD
vib

δpload
δbn

∣∣∣∣
t
NCFD
CFD

dS
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2
(3.45)

The difference between eq. 3.44 and eq. 3.45 is that the latter takes into account
the adjoint deflection computed at every vibration time step and not only at the
time steps that coincide with the CFD ones which, as observed during the verifi-
cation, leads to numerical errors. It is, thus, important to use eq. 3.45 in order
to ensure the accuracy of the sensitivity derivative term, eq. 3.20 .

The interior of the SAE body is meshed using the snappyHexMesh functionality
of OpenFOAM which leads to an appropriate for acoustics mesh, as shown in
fig. 3.3. The finite area mesh on the window is practically the boundary mesh
of the interior. The grid resolution is 10mm, apart from a refinement region in
the window cavity, which has a resolution of 5mm. The time step used for the
solutions of the bending wave and the wave equations are 10−7 and 5 × 10−6

respectively. Moreover, the window thickness is h = 3.15mm, the window density
2700kg/m3 and the damping coefficients η1 = 2 · 106 s, η2 = 200 s−1 and η3 = 0.
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Figure 3.3: SAE Type 4 geometry: Interior model (top left) and computational mesh
(top right). Cross sections at x = 1.2m (bottom-left) and at y = 0.8 (bottom-right)
show the refinement region in the window cavity and the geometry details that are an
accurate representation of the original physical model.

3.5 Verification of the Method against Finite Differences

The accuracy of the computed sensitivity derivatives with the adjoint method pre-
sented in this chapter is verified here against Finite Differences (FD). The adjoint
wave equation, adjoint bending wave equation and adjoint vibro-acoustic model
are verified separately.

Adjoint Wave Equation

To verify the adjoint wave equation, a synthetic plane wave is given as an input
for the window deflection, in the form of

w(x, z, t) = A
∑
f

sin

(
2πf

(
x

a0

+
z

a0

− t
))

(3.46)

where A is the amplitude, x and z are the corresponding cartesian coordinates
on the window and f is a frequency, in the range between 800Hz and 4kHz,
with ∆f = 10Hz. Eq. 3.46 is used in eq. 2.23 and the interior sound field is
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computed for a time window of Ts = 0.3s, based on the typical procedure used
and presented in chapter 6. The objective function, eq. 3.4 , is integrated over the
same time window, Tof = Ts = 0.3s, for a receiver placed near the driver’s ear,
as seen in fig. 3.4. The adjoint wave equation is solved and, then, the sensitivity
derivatives w.r.t. the amplitude A of the plane wave are computed with eq. 3.42 ,
where term δw/δbn is calculated analytically. The derivatives of Jint w.r.t. A are
computed also with central Finite Differences, where a step size equal to 10−6D is
chosen, so that the FD gradient value is independent of the step size. The adjoint
SD and the FD show good agreement, with a relative error of 0.13%.

Adjoint Bending Wave Equation

Similarly, in order to verify the adjoint bending wave equation, a synthetic plane
wave is imposed as a pressure load on the side window,

pload(x, z, t) = A
∑
f

sin

(
2πf

(
x

a0

+
z

a0

− t
))

(3.47)

with parameters A and f defined as before. The vibrational response of the
window is simulated for Ts = 0.3s, over which the objective function eq. 3.22 is
integrated. The derivative of Jvib w.r.t. the A is computed using the sensitivity
derivative expression of eq. 3.38 , where the term δpload/δbn is calculated analyt-
ically. The FD derivative is also computed, with a central difference scheme for
a step size equal to 10−6. Again the adjoint SD show a good agreement, with a
relative error of 0.12%. The discretization of the SD term used here, is the one
presented in eq. 3.45 . In case eq. 3.44 is used the relative error increases to more
than 10%, hence, it is important to use the former formulation.

Adjoint Vibroacoustic model

Finally, the coupled vibroacoustic model and its adjoint are verified against FD.
The input given by eq. 3.47 is imposed on the window and both its vibrational
response and interior propagation are simulated for a time window of Ts = 0.3s.
The objective function is integrated for Tof = Ts = 0.3s. The gradient of Jint
w.r.t. the amplitude A of the pressure load computed with the adjoint method is
compared to a central FD scheme, yielding a relative error of 0.34%.

In addition, a second verification case is investigated for adjoint vibro-acoustic
model, where the input pressure load is given by

pload = apac (3.48)
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where pac is the radiated acoustic pressure from the vehicle’s mirror to the window,
computed numerically with a CFD simulation and the Kirchhoff Integral acoustic
analogy, as described in chapter 2. The multiplier a is the design variable of the
problem with an initial value equal to 1. The derivative of Jint w.r.t. a computed
with the adjoint method, eq. 3.38 , is compared to FD and shows a good agreement
with a relative error of 0.16%.

The results of the verification of the sensitivity derivatives computed with the
adjoint method developed in this chapter for the vibroacoustic model are summa-
rized in table 3.1. The accuracy of the continuous adjoint method for the vehicle
interior propagation is quite satisfactory and the method can be incorporated in
larger adjoint aeroacoustic chains that include the adjoints to sound radiation
and flow solutions in order to perform aeroacoustic optimization in vehicles.

Sound
propagation

Window
Vibration

Coupled
Problem

Coupled
Problem 2

Finite Differences 2.4394E-15 1.13122E-21 1.52641E-16 4.25274E-11
Continuous Adjoint 2.4391E-15 1.12984E-21 1.52124E-16 4.24584E-11
Relative Error (%) 0.013 0.12 0.34 0.16

Table 3.1: Comparison between objective function gradient values computed with
the continuous adjoint method and finite differences.

3.6 Applications

This section presents two applications of the developed adjoint method on the SAE
body test case. To keep a focus only on the vibro-acoustic phenomena and their
adjoint, the pressure load on the window is induced by the sound radiation from
a dipole source in a moving medium, rather than by a fully developed turbulent
flow. Two different cases are considered.

3.6.1 Ellipsoid Mirror

In this test case, the mirror of the SAE body is replaced by an ellipsoid surface,
as seen in fig. 3.5. The dipole source is placed on the ellipsoid surface so that
its directivity vector is aligned with the surface normal and the radiated acoustic
pressure from the dipole source on the window is given analytically by

p′(~x, t) = −ρ0

(
∂φ

∂t
+ Ui

∂φ

∂xi

)
for i = 1, 2, 3 (3.49)



3.6. Applications 49

where ρ0 is the air density, Ui the vehicle and mean flow velocity components and
φ the acoustic potential

φ(~x, t) =
∂

∂xi

(
A

4πR∗
e
iω
(
t−R

+

c0

))
di (3.50)

with amplitude A and directivity vector ~d. Variables R+ and R∗ are related to
the distance Ri between the dipole and each receiver point where the induced
pressure is computed and take the convection of the sound waves by the mean
flow velocity into account[100],

R+ =
−M0,iRi +R∗

β2

R∗ =
√

(M0,iRi)2 + β2R2 (3.51a)

where M0,i = Ui/a0, a0 the speed of sound and β =
√

1−M2
0 .

The dipole’s position is given by the analytical expression of the ellipsoid sur-
face

Xdip = Xc + a cosk cosl
Ydip = Yc + b cosk sinl
Zdip = Zc + c sink (3.52)

where k and l are the ellipsoid’s parameters, with −π
2
≤ k ≤ π

2
and −π ≤ l ≤ π.

The optimization aims at finding the optimal position of the dipole source on
the ellipsoid that yields the minimum interior noise pressure at a receiver near the
driver’s ear, seen in fig. 3.5. By differentiating eqs. 3.49 ,3.50 and 3.52, a closed
form expression is derived for the derivative of the pressure load w.r.t. the design
variables in expression 3.38.

A line search strategy is used for updating the design variables, starting from
the initial value ~binit = (0 0). The quasi-Newton BFGS method is used for com-
puting the search direction and an interpolation based algorithm for choosing an
appropriate step length [103]. Four optimization cycles are performed in total and
the objective function is reduced by 34.3%. As seen in fig. 3.6, the optimization
algorithm moves the dipole source so that the window area affected by sound ra-
diation is minimized. This leads eventually to a decrease of interior pressure level
and, thus, Jint.
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3.6.2 Orientation of the SAE Mirror

In this application, the usteady pressure distribution on the SAE mirror is com-
puted analytically for Ts = 0.3s, using eq. 3.49 for a dipole source positioned at
the initial coordinates presented in section 3.6.1, given by eq. 3.52 for k = 0 and
l = 0. This pressure field is stored and used in eq. 2.15 to numerically compute
the sound radiation on the side window of the SAE body. For this section, the
Kirchhoff Integral is treated as a black-box in order to put emphasis only on the
vibroacoustic model.

Keeping the unsteady pressure distribution on the mirror fixed during the op-
timization, the optimal orientation of the mirror is sought, targeting at minimum
interior pressure near the driver’s ear, fig. 3.10. The mirror geometry is displaced
as a rigid body during the optimization and the x-,y- and z-orientation of the mir-
ror axis are the design variables of the optimization problem. In this case, the
derivative δpload/δbn in eq. 3.42 is computed with FD.

In total, three optimization cycles are performed, after which the obtained
mirror orientation is rather impractical, as seen in fig. 3.10, which is primarily
due to the fact that no geometrical constraints are imposed. The goal of this
application is, however, to demonstrate the ability of the adjoint vibroacoustic
model to compute accurate gradients for gradient-based optimization problems.
This is achieved, as the objective function is reduced by 39%. The mirror is
deflected away from the window, so that the sound radiation from the mirror is
pointing in a different direction.

3.7 Conclusions

In this chapter, the continuous adjoint method for a vibroacoustic model, which
predicts the vehicle interior noise induced by a pressure load on the side window,
was formulated. The primal equations include the bending wave equation, which
simulates the vibrational response of the window to the pressure load, and the
wave equation, which describes the sound radiation inside the car cabin. The
adjoint to the state equations and the corresponding boundary conditions which
couple the two equations are derived.

The method was verified with finite differences and applied to interior noise
reduction in a generic vehicle model, the SAE body. In this case, the pressure
load was induced by the sound radiation from a dipole source located at the area
of the side mirror and the optimization algorithm searched for the optimal posi-
tion of the source. It was shown that the developed method computes gradients
with sufficient accuracy and therefore can be integrated into larger aeroacoustic
chains, in which the pressure load on the window is computed by solving different
sets of equations, such as the Navier-Stokes equations. This integration follows
in the next chapters.
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Figure 3.4: Verification of the adjoint solution, using a plane wave as an input either
for the bending wave or wave equation. The plane wave is a synthesis of frequencies
between 500Hz and 5kHz and the 1000Hz component is shown, top-left. The in-
stantaneous solutions of the wave and adjoint wave equations in the vehicle interior
are presented (middle-left and right, respectively). The instantaneous solutions of
the bending wave and adjoint bending wave equation are presented (bottom-left and
right, respectively).
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Figure 3.5: Ellipsoid mirror on the SAE body: A dipole source is allowed to move on
the ellipsoid surface which replaced the mirror. The optimization target is to reduce
the perceived noise at the point near the driver’s ear (red point).

Figure 3.6: Minimizing interior noise of the SAE body: Pressure load on the window
is induced by a dipole source which moves on the surface of the ellipsoid resembling
a mirror, with directivity normal to the surface. A comparison between the starting
(bottom-left) and the optimal (bottom-right) dipole position is presented. The instan-
taneous pressure load p′ (top row) induced by the dipole source (red point) and acts
on a smaller area of the window in the optimized case. The amplitude of the acoustic
pressure in the interior is also reduced by 34% for the optimal position of the source.
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Figure 3.7: Minimizing the interior noise of the SAE body: Instantaneous fields of
deflection (top-left) and acceleration (top-right) of the window, as well as adjoint de-
flection (bottom-left) and sensitivity (bottom-right) computed at the first optimization
cycle.
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Figure 3.8: Minimizing the interior noise of the SAE body: Six equidistant (∆t =
10−3s) time snapshots during the sound radiation in the interior, computed at the
first optimization cycle. Sound waves generated by the window vibration propagate
to the interior and are partly reflected by the vehicle interior walls.
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Figure 3.9: Minimizing the interior noise of the SAE body: Six equidistant (∆t =
10−3s) time snapshots of the computed adjoint pressure. The point where the ob-
jective function is defined (red point) acts as a monopole source for the adjoint wave
equation. The adjoint pressure fluctuations propagate to the interior and reach the
window. The second time derivative of the presented field at the window is the source
for the adjoint bending wave equation.
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(a) (b)

(c) (d)

Figure 3.10: Minimizing the interior noise of the SAE body: Pressure load on the
window is induced by an unsteady pressure distribution and are kept constant during
the optimization. This distribution was computed by the same dipole source as in
section 3.6.1. The optimization procedure aims to find the optimal orientation of the
mirror, so that the interior pressure near the driver’s ear (a, red point) is reduced.
The window sensitivities w.r.t. to the x-, y- and z- orientation of the mirror axis are
shown in b,c and d respectively. These are used along with the term δpload

δbn
computed

with FD, to compute the final gradient of J.
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(a) (b)

(c) (d)

Figure 3.11: Minimizing the interior noise of the SAE body: The computed acoustic
pressure and mirror orientation for three optimization cycles are shown in e,f,g and
h.
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Chapter 4

Continuous Adjoint Formulation for
Flow-Induced Sound Radiation - Theory

This chapter focuses on the development of the continuous adjoint method in the
exterior domain of the noise prediction chain for vehicles, where noise is generated
and radiated to the side window. To predict flow-induced sound radiation from
a body in free-stream, the process presented in chapter 2 is followed, where an
incompressible Improved Delayed Detached Eddy Simulation is firstly performed.
The generated noise is then propagated with the Kirchhoff Integral method, which
uses the pressure distribution on the body surface to compute the sound pressure
at selected receivers.

The continuous adjoint method for the aforementioned process is developed
and presented for the first time in the corresponding literature. In the adjoint
process, the differentiated Kirchhoff Integral is used to compute the boundary
condition of the adjoint velocity on the body surface and, then, the unsteady
adjoint equations are solved backwards in time. It should be noted that the time
window over which the simulation is performed and the time window over which
the objective function is evaluated do not coincide. This is reflected on the adjoint
boundary condition along the body and the time integration of the sensitivity
derivatives (SD).

During the optimization process, a set of n design variables bn, are updated
and the parameterized geometry is modified accordingly. The interior nodes of
the computational grid must be displaced as well in order to maintain mesh qual-
ity. Two grid displacement models are considered in this thesis, one utilizing an
algebraic relation between the design variables and the interior nodes displace-
ment and another one that solves the Laplace equation to propage the boundary
displacement into the interior nodes. To ensure the consistency of the continu-
ous adjoint-based gradients with the complete primal procedure, grid sensitivities
(GS) are taken into account and corresponding adjoint grid displacement equa-
tions along with an additional term in the expression of the sensitivity derivatives

59
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are derived. The incorporation of the grid displacement equations during the
mathematical development of the continuous adjoint method was firstly proposed
in [71], where the significance of grid sensitivities in accurately computing the
adjoint derivatives (in continuous adjoint) was demonstrated.

Two different objective functions are considered in this chapter, one that mini-
mizes pressure fluctuation on the radiating body and another one that minimizes
the radiated acoustic pressure at a specified set of receivers. The corresponding
boundary conditions and sensitivity derivative expession are presented.

4.1 On the Derivatives of Quantities Defined in the Exterior

Domain

In contrast to the interior domain presented in 3, the shape and grid of which
remains independent of the design variables bn, the exterior domain contains the
parameterized wall boundary, SWP

, which is modified during the optimization and
affects any physical quantity computed in this domain. This should carefully be
taken into account during the differentiation process.

Here, a distinction is made between symbols δ/δbn and ∂/∂bn; the former
is used to denote the total derivative of an arbitrary quantity Φ and represents
the total change in Φ by varying bn whereas the latter is used to denote the
partial derivative which represents the change in Φ caused by changes in the
state variables without taking space deformation into account.

The total derivative w.r.t. bn of any quantity Φext

(
bn, ~x(bn)

)
in the exterior do-

main is expanded as [115]

δΦext

δbn
=

∂Φext

∂bn

∣∣∣∣
x

+
∂Φext

∂xi

∣∣∣∣
b

δxi
δbn

(4.1)

where the subscripts on the right of each vertical bar are quantities that remain
constant during differentiation. The first term on the r.h.s. of eq. 4.1 expresses
the derivative of Φext at a fixed location, by ignoring the effect of bn on xi. The
second term accounts for space changes at the same node (grid displacements, in
the discrete sense) following changes in bn for a fixed field of Φext.

In the sound radiation test cases, the physical quantities on the body surface
that contribute to the radiated acoustic pressure are expressed at the retarted time
τ , eq. 2.15 , which itself depends on the distance between the sound sources and
the receivers. This distance is not a constant quantity during the optimization,
since the sound radiating boundary is modified. Therefore, the total derivative
of quantities Φext

(
bn, ~x(bn), τ

(
x(bn)

))
expressed on such surface boundaries is
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enhanced to account for these changes as

δsΦext

δbn
=

δΦext

δbn

∣∣∣∣
τ

+
∂Φext

∂τ

δτ

δbn
(4.2a)

=
∂Φext

∂bn

∣∣∣∣
x,τ︸ ︷︷ ︸

T1

+
∂Φext

∂xi

∣∣∣∣
b,τ

δxi
δbn︸ ︷︷ ︸

T2

+
∂Φext

∂τ

∣∣∣∣
b,x

∂τ

∂xi

∣∣∣∣
b

δxi
δbn︸ ︷︷ ︸

T3

(4.2b)

The first term on the r.h.s. of eq. 4.2a expresses the derivative of Φext at a fixed
retarted time τ , as if body shape changes do not affect τ , despite changes in
distances; it is expanded as in eq. 4.1 and leads to terms T1 and T2 of eq. 4.2b .
The second term on the r.h.s. of eq. 4.2a , term T3 in eq. 4.2b , indicates changes in
Φext because of a change in τ , caused by a change in the relative position between
the modified source point and the fixed receiver. Whenever Φext is not expressed
at the retarted time, T3 vanishes.

Since ∂/∂bn takes into account only changes in the flow variables at the un-
perturbated flow domain and excludes changes in the shape/volume and time of
the flow domain, the following permutations are allowed

∂

∂bn

(
∂Φext

∂xi

)
=

∂

∂xi

(
∂Φext

∂bn

)
(4.3a)

∂

∂bn

(
∂Φext

∂t

)
=

∂

∂t

(
∂Φext

∂bn

)
(4.3b)

δ

δbn

(
∂Φext

∂t

)
=

∂

∂t

(
δΦext

δbn

)
(4.3c)

To derive eq. 4.3c , the total derivative of the time derivative of Φext w.r.t. bn is
expanded and yields

δ

δbn

(
∂Φext

∂t

)
=

∂

∂bn

(
∂Φext

∂t

)
+

∂

∂xj

(
∂Φext

∂t

)
δxj
δbn

+
∂2Φext

∂t2
∂τ

∂xj

δxj
δbn

(4.4)

where the vertical bars indicating the constant quantities are omitted.

The time derivative of the total derivative of Φext w.r.t. bn yields

∂

∂t

(
δΦext

δbn

)
=

∂

∂t

(
∂Φext

∂bn
+
∂Φext

∂xi

δxi
δbn

+
∂Φext

∂t

∂Φext

∂τ

∂τ

∂xi

)
=

∂

∂t

(
∂Φext

∂bn

)
+
∂

∂t

(
∂Φext

∂xj

)
δxj
δbn

+
∂2Φext

∂t2
∂τ

∂xj

δxj
δbn

(4.5)
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It is apparent that eqs. 4.4 and 4.5 are equal.
Although the spatial or time differentiation and the partial differentiation w.r.t. bn

permute, this is not the case for the total differentiation, where the following iden-
tity can easily be proved, similarly to eq. 4.3c ,

δ

δbn

(
∂Φ

∂xj

)
=

∂

∂xj

(
δΦ

δbn

)
− ∂Φ

∂xk

∂

∂xj

(
δxk
δbn

)
(4.6)

4.2 Grid Displacement Models

In order to modify the geometry during the optimization, a volumetric B-Splines
method is used that relates the surface displacement with a user-defined set
of control points [90], based on Splines basis-functions. In each optimization
step, the derivative of the examined objective function w.r.t. the control points
coordinates is computed and used to displace the control points [113]. This
displacement is then translated to a surface deformation.

Afterwards, the interior nodes of the computational grid must be displaced too
in order to maintain mesh quality. The grid displacement model can be based ei-
ther on an explicit/algebraic relation between the design variables and the interior
grid nodes, or on the solution of additional PDEs which propagate the boundary
deformation into the grid interior. A representative of both methods is presented
in this thesis:

1. Volumetric B-Splines: the same method used to deform the geometry can
be used to compute the interior grid nodes displacement[113], given by

RBspl
i = xi −Mi=0 , i = 1, 2, 3 (4.7)

where xi are the Cartesian coordinates of the grid nodes and Mi(bn) is a
closed-form expression that yields the grid nodes coordinates based on the
coordinates of the control points, which are the design variables bn . Al-
though, in this thesis, Mi is based on splines basis-functions formulation,
any other algebraic model could be used instead, without any change in
the formulation that follows. This approach is straight-forward and efficient
in terms of computational time and implementation complexity. As shown
in section 4.3.5, it leads to a sensitivity derivatives expression which is a
synthesis of field and surface integrals. Therefore, the visualization of the
objective function gradients on the surface, namely the surface sensitivity
map, is not possible.

2. Laplace equations: the displacement of interior nodes is derived by solving
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the Laplace PDEs

Rlap
i =

∂2mi

∂x2
j

=0 , i = 1, 2, 3 (4.8)

where mi are the Cartesian displacements of the grid nodes. Along SWP
,

mi are known from the current optimization step, while mi = 0 on the
remaining boundaries, S \ SWP

, which are not affected by the optimization.
This approach may lead to a sensitivity derivatives expression expressed only
on the parameterized surface. Therefore, it is suitable for the visualization
with sensitivity maps. The latter is especially useful for industrial cases,
where the most sensitive regions of the geometry must be identified either to
adjust the parameterization or to give insight to the designers and engineers
into areas of potential interest.

The influence of the grid displacement must be taken into account for the gradient
computation to be consistent in a numerical sense with the primal procedure.
Therefore, the grid displacement equations, denoted asRm

i in the general case, will
be included in the augmented objective function, defined later. In section 4.3 it is
shown that their contribution is an additional adjoint grid displacement equation
and an addition term in the sensitivity derivatives expression, later denoted as
Grid Sensitivities (GS). Section 4.3.6 presents the adjoint formulation for the two
aforementioned grid displacement models.

4.3 The Adjoint Formulation to the Unsteady Navier-Stokes

Equations

The continuous adjoint formulation for the Navier-Stokes equations has been
extensively covered in the literature [112, 108, 115, 72, 85]. In this section,
only an extended summary of the mathematical development to derive the adjoint
equations, initial conditions and boundary conditions is presented.

4.3.1 The Objective Function and its Differentiation

The mathematical development considers only objective functions defined on wall
boundaries which are parameterized and deformed during the optimization. For-
mulations for several other objective functions can be found in [112, 115, 72].

A generic objective function defined along the parameterized wall boundaries,



64 4. Continuous Adjoint Formulation for Flow-Induced Sound Radiation - Theory

JWP
, can be written as

JWP
=

∫
Tof

∫
SWP

FWi

(
~x,Φext

(
bn, ~x(bn), τ

(
~x(bn)

)))
nidSdt (4.9)

where Φext is any quantity defined in the exterior domain Ωext, bn are the design
variabes affecting this quantity and τ is the retarted time.

Throughout this thesis, letter J is used to denote an objective function with
its name as subscript and F is used to denote the corresponding integrand of J .

The differentiation of JWP
follows the chain rule and eqs. 4.2a and 4.2b and

reads

δJWP

δbn
=

∫
Tof

∫
SWP

(
∂FWi

∂xj

δxj
δbn

+
∂FWi

∂Φext

δΦext

δbn
+
∂FWi

∂Φext

∂Φext

∂τ

δτ

δbn

)
dSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt (4.10a)

=

∫
Tof

∫
SWP

(
∂FWi

∂xj

δxj
δbn

+
∂FWi

∂Φext

∂Φext

∂bn
+
∂FWi

∂Φext

∂Φext

∂xj

δxj
δbn

+
∂FWi

∂Φext

∂Φext

∂τ

∂τ

∂xj

δxj
δbn

)
dSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt (4.10b)

The augmented objective function L for the Navier-Stokes equations is defined
as the sum of JWP

and the time and space integrals of the product of the primal
residuals and the adjoint variable fields

L = JWP
+

∫
Ts

∫
Ωext

(uiR
v
i + qRp) dΩdt+

∫
Ωext

ma
iR

m
i dΩ (4.11)

where Ts is the time window over which the primal equations, eqs. 2.1 and 2.2, are
solved, ui, q, ma

i are the adjoint to the velocity vi, pressure p and grid displacement
mi, respectively. An adjoint turbulence field could have been introduced as in
previous works [146, 114, 73]. However, the frozen turbulence assumption is
made in this thesis and eddy viscosity is considered to be independent of changes
in the design variables and, thus, δνt/δbn = ∂νt/∂bn = 0. Results presented
in sections 5.2 and 5.3 support this assumption for the cases examined in this
thesis.

Time windows Tof and Ts, as defined in eqs. 4.10b and 4.11 respectively, do
not necessarily coincide. In order to exclude transient phenomena occurring in
the beginning of unsteady flow simulations, the flow equations are usually solved
for a large time window Ts. After a sufficient interval of time, the integration
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of the objective function begins and is performed for a time window Tof being a
part of time window Ts. This is why the general case in which Ts and Tof do not
coincide is presented. Section 5.3.2 investigates further the selection of the two
time windows by means of adjoint sensitivity maps on the side mirror of the SAE
Body.

The differentiation of eq. 4.11 yields

δL

δbn
=
δJWP

δbn
+

δ

δbn

(∫
TS

∫
Ωext

(uiR
v
i + qRp) dΩdt

)
+

δ

δbn

∫
Ωext

ma
iR

m
i dΩ (4.12)

4.3.2 Differentiation of the Unsteady Navier-Stokes Equations

The second term on the r.h.s. of eq. 4.12 is further developed as

δ

δbn

(∫
TS

∫
Ωext

(uiR
v
i + qRp) dΩdt

)
=

∫
TS

∫
Ωext

(
ui
δRv

i

δbn
+ q

δRp

δbn

)
dΩdt

+

∫
TS

∫
Ωext

(uiR
v
i + qRp)

δdΩ

δbn
dt (4.13)

The total derivatives of the residuals of the Navier-Stokes equations w.r.t. bn
yield

δRp

δbn
= − δ

δbn

(
∂vj
∂xj

)
︸ ︷︷ ︸

T1

(4.14)

and

δRu
i

δbn
=

δ

δbn

(
∂vi
∂t

)
︸ ︷︷ ︸

T2

+
∂vi
∂xj

δvj
δbn

+ vj
δ

δbn

(
∂vi
∂xj

)
︸ ︷︷ ︸

T3

− δ

δbn

(
∂τij
∂xj

)
︸ ︷︷ ︸

T4

+
δ

δbn

(
∂p

∂xi

)
︸ ︷︷ ︸

T5

(4.15)

After substituting eqs. 4.14 and 4.15 into eq. 4.13 , the corresponding integrals
of the underbraced terms are further expanded using the Green-Gauss theorem
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and eq. 4.6 ,

T1 : −
∫
Ts

∫
Ωext

q
δ

δbn

(
∂vj
∂xj

)
dΩ dt =

∫
Ts

∫
Ωext

q
∂

∂xi

(
δvi
δbn

)
dΩ dt

−
∫
Ts

∫
Ωext

q
∂vi
∂xk

∂

∂xi

(
δxk
δbn

)
dΩ dt

= −
∫
Ts

∫
Ωext

∂q

∂xi

δvi
δbn

dΩ dt+

∫
Ts

∫
Sext

q
δvi
δbn

nidSdt

−
∫
Ts

∫
Ωext

q
∂vi
∂xk

∂

∂xi

(
δxk
δbn

)
dΩ dt

(4.16)

T2 :

∫
Ts

∫
Ωext

ui
∂

∂t

(
δvi
δbn

)
dΩdt = −

∫
Ts

∫
Ωext

∂ui
∂t

δvi
δbn

dΩ dt+

∫
Ωext

ui
δvi
δbn

dΩ

∣∣∣∣tend
tstart

(4.17)

T3 :

∫
Ts

∫
Ωext

uivj
δ

δbn

(
∂vi
∂xj

)
dΩ dt =

∫
Ts

∫
Ωext

uivj
∂

∂xj

(
δvi
δbn

)
dΩ dt

−
∫
Ts

∫
Ωext

uivj
∂vi
∂xk

∂

∂xj

(
δxk
δbn

)
dΩ dt

= −
∫
TS

∫
Ωext

∂ui
∂xj

vj
δvi
δbn

dΩ dt+

∫
Ts

∫
Sext

uivjnj
δvi
δbn

dSdt

−
∫
Ts

∫
Ωext

uivj
∂vi
∂xk

∂

∂xj

(
δxk
δbn

)
dΩ dt (4.18)

T4 :

∫
Ts

∫
Ωext

−ui
δ

δbn

(
∂τij
∂xj

)
dΩ dt = −

∫
Ts

∫
Ωext

ui
∂

∂xj

(
δτij
δbn

)
dΩ dt

+

∫
Ts

∫
Ωext

ui
∂τij
∂xk

∂

∂xj

(
δxk
δbn

)
dΩ dt

=

∫
Ts

∫
Ωext

∂ui
∂xj

δτij
δbn

dΩ dt−
∫
Ts

∫
Sext

uinj
δτij
δbn

dSdt

+

∫
Ts

∫
Ωext

ui
∂τij
∂xk

∂

∂xj

(
δxk
δbn

)
dΩ dt (4.19)
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T5 :

∫
Ts

∫
Ωext

ui
δ

δbn

(
∂p

∂xi

)
dΩ dt =

∫
Ts

∫
Ωext

ui
∂

∂xi

(
δp

δbn

)
dΩ dt

−
∫
Ts

∫
Ωext

ui
∂p

∂xk

∂

∂xi

(
δxk
δbn

)
dΩ dt

= −
∫
Ts

∫
Ωext

∂ui
∂xi

δp

δbn
dΩ dt+

∫
Ts

∫
Sext

uini
δp

δbn
dSdt

−
∫
Ts

∫
Ωext

ui
∂p

∂xk

∂

∂xi

(
δxk
δbn

)
dΩ dt

(4.20)

4.3.3 Field Adjoint Equations and Initial Conditions

By substituting eqs. 4.16 into 4.20 and 4.13, the expression of the derivative of L
yields

δL

δbn
=

∫
Ts

∫
Ωext

{
−∂ui
∂t
− vj

∂ui
∂xj

+ uj
∂vj
∂xi
−
∂τaij
∂xj

+
∂q

∂xi

}
δvi
δbn

dΩ dt

−
∫
Ts

∫
Ωext

{
∂ui
∂xi

}
δp

δbn
dΩ dt

+

∫
Ωext

ui
δvi
δbn

dΩ

∣∣∣∣
tend

−
∫

Ωext

ui
δvi
δbn

dΩ

∣∣∣∣
tstart

+

∫
Ts

∫
Sext

{
uivjnj − qni + τaijnj

}
δvi
δbn

dSdt

+

∫
Ts

∫
Sext

{
uini

}
δp

δbn
dSdt+

∫
Ts

∫
Sext

{
− uinj

}
δτij
δbn

dSdt

+

∫
Tof

∫
SWP

(
∂FWi

∂p

δp

δbn
+
∂FWi

∂p

∂p

∂t

∂τ

∂xj

δxj
δbn

+
∂FWi

∂xj

δxj
δbn

)
nidSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt

+

∫
Ts

∫
Ωext

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
∂

∂xj

(
δxk
δbn

)
dΩ dt

+
δ

δbn

∫
Ωext

ma
iR

m
i dΩ (4.21)

where ταij = (ν + νt)
(
∂ui
∂xj

+
∂uj
∂xi

)
is the adjoint stress tensor.

In order to avoid the computation of δvi/δbn, δp/δbn in the field integrals on
the r.h.s. of eq. 4.21 , their coefficients are set to zero, deriving so the unsteady
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adjoint Navier-Stokes equations

Rq = −∂uj
∂xj

= 0 (4.22)

Ru
i = −∂ui

∂t
+ uj

∂vj
∂xi
− ∂(vjui)

∂xj
+
∂q

∂xi
−
∂τaij
∂xj

= 0 , i = 1, 2, 3 (4.23)

Eq 4.22 is the adjoint continuity equation whereas eqs. 4.23 are the adjoint mo-
mentum equations. The unsteady field adjoint equations draw the usual similarity
with the primal ones, with a divergence-free adjoint velocity expressed by eq. 4.22
and the adjoint momentum equation enhanced with the non-conservative adjoint
transpose convection term, uj

∂uj
∂xi

.
An important difference is that the unsteady adjoint equations are solved back-

wards in time. This is imposed by the derived initial condition, during the dif-
ferentiation of the temporal derivative of the Navier-Stokes equations. The cor-
responding terms are the third and fourth field integrals on the r.h.s. of eq. 4.21
which are expressed either at the start, tstart, or at the end, tend, of the simulation.
The primal velocities are fixed and independent of bn, thus its total variation is
zero and the first of the aforementioned terms vanishes. By setting the adjoint
velocity at tend equal to zero, the second term is eliminated, resulting to the initial
condition of the adjoint solution at the end

ui = 0 for t = tend , i = 1, 2, 3 (4.24)

4.3.4 Adjoint Boundary Conditions

After satisfying the adjoint Navier-Stokes equations and their initial conditions,
the remaining terms in eq. 4.21 yield

δL

δbn
=

∫
Ts

∫
Sext

{
uivjnj − qni + τaijnj

}
δvi
δbn

dSdt

+

∫
Ts

∫
Sext

{
uini

}
δp

δbn
dSdt+

∫
Ts

∫
Sext

{
− uinj

}
δτij
δbn

dSdt

+

∫
Tof

∫
SWP

(
∂FWi

∂p

δp

δbn
+
∂FWi

∂p

∂p

∂t

∂τ

∂xj

δxj
δbn

+
∂FWi

∂xj

δxj
δbn

)
nidSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt

+

∫
Ts

∫
Ωext

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
∂

∂xj

(
δxk
δbn

)
dΩ dt
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(4.25)

Inlet Boundaries, SI

At the exterior domain inlet boundary SI , a zero Dirichlet condition is imposed on
~v, whereas a zero Neumann on p. Since the inlet is fixed and independent of bn,
δui
δbn

= ∂ui
∂bn

= δxi
δbn

= 0. Consequently, the first integral in eq. 4.25 vanishes.
The remaining terms expressed along SI yields

∫
Ts

∫
SI

{
uini

}
δp

δbn
dSdt+

∫
Ts

∫
SI

{
− uinj

}
δτij
δbn

dSdt (4.26)

and are eliminated by imposing a zero Dirichlet condition for the adjoint velocity

u〈n〉 = 0 (4.27a)
ul〈t〉 = 0 , l = 1, 2 (4.27b)

where u〈n〉 = uini and vl〈t〉 = vit
l
i , l = 1, 2

In addition, no boundary condition for q is derived by eliminating any of the
boundary integrals along SI , so a zero Neumann boundary condition is imposed

∂q

∂xi
ni = 0 (4.28)

Outlet boundaries, SO

At the outlet boundary of the exterior domain, SO, a zero Dirichlet condition is
imposed on p, whereas a zero Neumann on ~v. The outlet is also geometrically
fixed and, thus, independent of bn. Consequently, the second integral of eq. 4.25
vanishes.

The remaining expression along SO yields

∫
Ts

∫
SO

{
uivjnj − qni + τaijnj

}
δvi
δbn

dSdt+

∫
Ts

∫
SO

{
− uinj

}
δτij
δbn

dSdt (4.29)

The second term of expression 4.29 can be neglected, since the outlet boundary
is placed far enough so that the velocity profile’s uniformity is independent of bn.

The integrand of the remaining term must now be eliminated. However, there
are 4 unknown quantities, the three components of ui and q, but only three
equations. Consequently, one of these must be extrapolated from the interior field
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and here, this is the normal adjoint velocity [112]. The integrand is then multiplied
with the normal and tangential to the surface vectors, ni and ti respectively, and
the boundary conditions for the adjoint pressure and the tangential components
of the adjoint velocity along SO are derived

q = u〈n〉v〈n〉 + 2(ν + νt)
∂u〈n〉
∂xi

ni (4.30)

ul〈t〉v〈n〉 + (ν + νt)

(
∂ul〈t〉
∂xi

ni +
∂u〈n〉
∂xi

tli

)
= 0 (4.31)

where v〈n〉 = vini and vl〈t〉 = vit
l
i , l = 1, 2

Parameterized & Unparameterized wall boundaries, SWP
& SW

The primal conditions on wall boundaries are similar to the ones used along SI ,
that is a Dirichlet for ~v and a zero Neumann for q.

For the unparameterized wall boundaries, the same terms of eq. 4.25 vanish,
due to δvi/δbn = δxi/δbn = 0 and the boundary conditions are derived, which are
the same as eqs. 4.27 and 4.28.

For the parameterized boundaries however, the remaining terms expressed
along SWP

yield

∫
Ts

∫
SWP

{
uini +

∂FWi

∂p
niH(t− tof )

}
δp

δbn
dSdt+

∫
Ts

∫
SWP

{
− uinj

}
δτij
δbn

dSdt

+

∫
Ts

∫
SWP

uknkτij
δ(ninj)

δbn
dSdt

+

∫
Tof

∫
SWP

(
∂FWi

∂p

∂p

∂t

∂τ

∂xj

δxj
δbn

+
∂FWi

∂xj

δxj
δbn

)
nidSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt (4.32)

where H is the Heaviside function and tof is the starting time of the objective
function integration window Tof . Note that an additional term arises, the third
integral of expression 4.32, which contributes to the sensitivity derivatives [115],
along with the last two integrals of expression 4.32.

The multipliers of eq. 4.32 are set to zero and the boundary conditions for the
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wall boundaries are derived

u〈n〉 = −∂FWi

∂p
niH(t− tof ) (4.33a)

ul〈t〉 = 0 , l = 1, 2 (4.33b)

and

∂q

∂xi
ni = 0 (4.34)

4.3.5 Sensitivity Derivatives Expression

After satisfying the field adjoint equations, eq. 4.22 and 4.23, along with their
initial, eq. 4.24 , and boundary conditions, eq. 4.27 to eq. 4.34 , the remaining
terms in the expression of the augmented function derivatives read

δL

δbn
=

∫
TS

∫
Ωext

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
∂

∂xj

(
δxk
δbn

)
dΩ dt

+

∫
Ts

∫
SWP

uknkτij
δ(ninj)

δbn
dSdt

+

∫
Tof

∫
SWP

(
∂FWi

∂p

∂p

∂t

∂τ

∂xj

δxj
δbn

+
∂FWi

∂xj

δxj
δbn

)
nidSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt

+
δ

δbn

∫
Ωext

ma
iR

m
i dΩ (4.35)

The first term on the r.h.s. of eq. 4.35 can further be expanded as

∫
TS

∫
Ωext

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
∂

∂xj

(
δxk
δbn

)
dΩ dt

= −
∫
TS

∫
Ωext

∂

∂xj

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
δxk
δbn

dΩ dt

+

∫
Ts

∫
SWP

{
−uivjnj

∂vi
∂xk︸ ︷︷ ︸

~v=0

−ujnj
∂p

∂xk︸ ︷︷ ︸
u〈n〉=−

∂FWi
∂p

ni

−τaij
∂vi
∂xk

+ ui
∂τij
∂xk

nj + q
∂vj
∂xk

nj

}
δxk
δbn

dSdt
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= −
∫
TS

∫
Ωext

∂

∂xj

{
− uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

}
δxk
δbn

dΩ dt

+

∫
Ts

∫
SWP

{
∂FWi

∂p

∂p

∂xk
ni−τaij

∂vi
∂xk

nj + ui
∂τij
∂xk

nj + q
∂vj
∂xk

nj

}
δxk
δbn

dSdt

(4.36)

The field integral on the r.h.s. of eq. 4.36 is used in the development of term
δ
δbn

∫
Ωext

ma
iR

m
i dΩ of eq. 4.35 , which leads to the adjoint grid displacement equa-

tions, solved along with the aforementioned adjoint equations, as well as to the
grid sensitivities term, G.S., which contributes to the sensitivity derivatives ex-
pression. The development of these terms follows in the next section, 4.3.6.

After substituting the remaining surface integral of eq. 4.36 into eq. 4.35 , the
final expression of the sensitivity derivatives yields

δL

δbn
=

∫
Ts

∫
SWP

{
−τaij

∂vi
∂xk

nj + ui
∂τij
∂xk

nj + q
∂vj
∂xk

nj

}
δxk
δbn

dSdt

+

∫
Ts

∫
SWP

uknkτij
δ(ninj)

δbn
dSdt

+

∫
Tof

∫
SWP

(
∂FWi

∂p

(
∂p

∂t

∂τ

∂xj
+

∂p

∂xj

)
+
∂FWi

∂xj

)
δxj
δbn

nidSdt

+

∫
Tof

∫
SWP

FWi

δ(nidS)

δbn
dt

+G.S. (4.37)

4.3.6 Adjoint Grid Displacement & Grid Sensitivities

The adjoint grid displacement equations and the grid sensitivities term depend
on the grid displacement model that is utilized, and the derivation for the models
investigated in this thesis follow. The significance of incorporating the adjoint grid
displacement equations is demonstrated in sections 5.2 and 5.3, where the ob-
jective function derivatives are computed with and without the grid displacement
term.

Volumetric B-Splines

For the case of the volumetric B-Splines model that relies on algebraic expressions
to compute the interior grid node displacements, eq. 4.7 , the differentiation of the
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model yields

δ

δbn

∫
Ωext

ma
iR

bspl
i dΩ =

∫
Ωext

ma
i

δRbspl
i

δbn
dΩ +

∫
Ωext

ma
iR

bspl
i

δ(dΩ)

δbn︸ ︷︷ ︸
=0

=

∫
Ωext

ma
i

δxi
δbn

dΩ−
∫

Ωext

ma
i

δMi

δbn
dΩ (4.38)

The second term on the r.h.s. of eq. 4.38 includes the derivative of the algebraic
relation between the interior displacement and the design variables.

The r.h.s. of eq. 4.38 is grouped with the remaining field integral on the r.h.s. of
eq. 4.36 and yields the expression

∫
Ωext

{
ma
i −

∫
Ts

∂

∂xj

(
−uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

)
dt

}
δxi
δbn

dΩ

−
∫

Ωext

ma
i

δMi

δbn
dΩ (4.39)

By seting the multiplier of δxi/δbn to zero, the adjoint grid displacement equa-
tion is derived

Rma

k = ma
k−
∫
Ts

∂

∂xj

{
−uivj

∂vi
∂xk
−uj

∂p

∂xk
−τaij

∂vi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

}
dt = 0, k = 1, 2, 3

(4.40)
Eq. 4.40 is an algebraic equation, too. Since the primal and adjoint fields are
time-dependent, the source term in the steady adjoint grid displacement equation,
eq. 4.40 , includes one time integral over Ts. During the solution of eqs. 4.22 and
4.23, contributions from the computed primal/adjoint velocity and pressure fields
are accumulated in time to obtain the source term of eqs. 4.40 . Then, eq. 4.40
can be solved at a post-processing step, once per optimization cycle, in order to
compute the adjoint grid displacements ma

i , i = 1, 2, 3.
After the computation of ma

i , the remaining terms yield the grid sensitivities
expression

G.S. = −
∫

Ωext

ma
i

δMi

δbn
dΩ (4.41)

Eq. 4.41 is a field integral that represents the impact that a change in the design
variables has on the interior nodes coordinates.

Although this approach is straightforward and efficient to use during the op-
timization, the field integral cannot be transformed to a surface integral and,
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therefore, it is not possible to represent the derivative of the objective function on
the parameterized surface by means of a sensitivity map.

Laplace Equations

In case the Laplace equations are used for the grid displacement of the interior
nodes, the mathematical development is [71]

δ

δbn

∫
Ωext

ma
iR

lap
i dΩ =

∫
S

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS −

∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS

+

∫
Ωext

∂2ma
i

∂x2
j

∂mi

∂bn
dΩ +

∫
SWP

ma
iR

m
i nk

δxk
δbn

dS︸ ︷︷ ︸
=0

(4.42)

For the third term on the r.h.s. of eq. 4.38 , the identity ∂mi
∂bn

= δxi
δbn

is used [72]
and the term is grouped with the remaining field integral on the r.h.s. of eq. 4.36 ,
yielding the expression

∫
Ωext

{
∂2ma

i

∂xj2
−
∫
Ts

∂

∂xj

(
−uivj

∂vi
∂xk
− uj

∂p

∂xk
−τaij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

)
dt

}
δxi
δbn

dΩ

+

∫
S

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS −

∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS (4.43)

By seting the multiplier of δxi/δbn to zero, the adjoint grid displacement equa-
tions are derived

Rma

k =
∂2ma

k

∂x2
j

−
∫
Ts

∂

∂xj

{
uivj

∂vi
∂xk

+ uj
∂p

∂xk
+ τaij

∂vi
∂xk
− ui

∂τij
∂xk
− q ∂vj

∂xk

}
dt

= 0 , k = 1, 2, 3 (4.44)

Similarly to the grid displacement model, the adjoint grid displacement equation
is a Poisson equation, using a time integral of the primal and adjoint fields as a
source term. The boundary conditions ma

i = 0, i = 1, 2, 3 are imposed along S,
[71].

After the computation of ma
i , the remaining terms yield the grid sensitivities

expression

G.S. = −
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS (4.45)
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The SD expression with eq. 4.45 now includes only surface integrals and can be,
thus, represented with a sensitivity map.

4.3.7 Objective Function for Minimizing Pressure Fluctuations

As discussed in chapter 2, noise generation is associated with pressure fluctu-
ations on radiating bodies. Thus, an objective function that could potentially
suppress noise targets at minimizing the pressure fluctuations on the body sur-
face and reads

Jpfluc =
1

Tof

∫
Tof

∫
SWP

(p− p)2dtdS =
1

Tof

∫
Tof

∫
SWP

p′ 2dtdS (4.46)

The differentiation of eq. 4.46 w.r.t. bn yields

δJpfluc
δbn

=

∫
Tof

∫
SWP

2

Tof
p′︸ ︷︷ ︸

∂Fpfluc
∂p

(
∂p

∂bn
+
∂p

∂xi

δxi
δbn

)
︸ ︷︷ ︸

δp
δbn

dSdt

+
1

Tof

∫
Tof

∫
SWP

p′ 2
δdS

δbn
dt (4.47)

For JWP
= Jpfluc, the boundary condition on the wall, eq. 4.33a , yields

u〈n〉 = − 2

T
p′H(t− tof ) (4.48a)

ul〈t〉 = 0 , l = 1, 2 (4.48b)

The sensitivity derivative expression for Jpfluc, based on eq. 4.37 , yields

δJpfluc
δbn

=

∫
Ts

∫
SWP

{
−τaij

∂vi
∂xk

nj + ui
∂τij
∂xk

nj + q
∂vj
∂xk

nj

}
δxk
δbn

dSdt

+

∫
Ts

∫
SWP

uknkτij
δ(ninj)

δbn
dSdt

+
2

T

∫
Tof

∫
SWP

p′
∂p

∂xi

δxi
δbn

dt

+
1

T

∫
Tof

∫
SWP

p′2
δ(dS)

δbn
dt

+G.S. (4.49)



76 4. Continuous Adjoint Formulation for Flow-Induced Sound Radiation - Theory

The grid sensitivities term is derived either by solving eq. 4.40 to compute
eq. 4.41 , if volumetric B-Splines are used for the interior grid displacement, or by
solving eq. 4.44 to compute eq. 4.45 , if the Laplace equations are used.

4.4 The Adjoint Method to Flow-Induced Sound Radiation

An objective function related to sound radiation is investigated in this section
and the adjoint boundary conditions and sensitivity derivatives expressions are
presented.

4.4.1 Objective Function for Radiated Noise and its Differenti-

ation

The Kirchhoff Integral method, eq. 2.15 , is considered for the adjoint derivation.
Its input is the pressure distribution on the body surface, p, and its output the
radiated acoustic pressure pac at the receivers. A suitable objective function
for shape optimization targeting minimal noise is defined as the time-averaged
squared acoustic pressure fluctuation

JKI =
1

Tof

∫
Tof

(pac − pac)2dt =
1

Tof

∫
Tof

p′ 2acdt (4.50)

In case a set of receivers is studied, the objective function is simply the sum of the
r.h.s. integrals of eq. 4.50 over all receivers. For the sake of readability, only one
receiver is considered for the mathematical development, although the verification
and application test cases include more than one.

The differentiation of eq. 4.50 w.r.t. bn yields

δJKI
δbn

=
2

Tof

∫
Tof

p′ac
δpac
δbn

dSdt (4.51)

4.4.2 Differentiation of the Kirchhoff Integral

The derivative of the acoustic pressure on the r.h.s. of eq. 4.51 , is expanded fur-
ther based on eq. 2.15

δpac
δbn

=
ρ

4π

∫
SW

[
δgret,i
δbn

n̂idS + gret,i
δ(n̂idS)

δbn

]
(4.52)
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As the integrand of eq. 4.52 is expressed at the retarded time τ , the derivative of
gret,i is developed according to eq. 4.2b as

δ

δbn

(
r̂i
R2
p

)
=

[(
3r̂ir̂j

δxj
δbn
− δxi
δbn

)
1

R3

]
p

+
r̂i
R2

[
∂p

∂bn
+

∂p

∂xj

δxj
δbn

+
∂p

∂t

r̂j
a0

δxj
δbn

]
(4.53)

and

δ

δbn

(
r̂i
a0R

∂p

∂t

)
=

[(
2r̂ir̂j

δxj
δbn
− δxi
δbn

)
1

a0R2

]
∂p

∂t

+
r̂i
a0R

[
∂

∂bn

(
∂p

∂t

)
+

∂2p

∂t∂xj

δxj
δbn

+
∂2p

∂t2
r̂j
a0

δxj
δbn

]
(4.54)

where p and its derivatives are expressed at τ .

By substituting eqs. 4.53 and 4.54 into 4.52, the derivative of the acoustic
pressure radiated to a receiver from a source surface Sw w.r.t. the design variables
bn is given by

δpac
δbn

(t, ~xrec) =
ρ

4π

∫
SW

(3r̂in̂ir̂j − n̂j)
1

R3
p

∣∣∣∣
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dS
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ρ
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1

a0R2

∂p

∂t
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ρ

4π
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R
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1
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∂p

∂xj

∣∣∣∣
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1
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∂t∂xj
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δxj
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+
1
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∂2p
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∣∣∣∣
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δxj
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dS
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ρ

4π
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[
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∣∣∣∣
ret

+
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∂

∂t
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) ∣∣∣∣
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]
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+
ρ
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∫
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gret,i
δ(n̂idS)

δbn
(4.55)

On the r.h.s. of eq. 4.55 , the time-varying flow quantities p,∂p/∂t, ∂2p/∂t2 as well
as their partial derivatives w.r.t. the design variables are expressed at the retarted
time τ which depends on the distance between the receiver and the corresponding
sender.

The final expression of the sensitivity derivatives of JKI w.r.t. bn, can now be
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written for a set of NR receivers, by substituting eq. 4.55 into eq. 4.51 ,
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where pr ′ac, r̂r and Rr refer to the corresponding receiver r during the summation.
The sum of the integrands of the first two terms on the r.h.s. of eq. 4.56 denote part
∂FKI
∂xj

δxj
δbn

of the total derivative of the objective function, eq. 4.10b . The integrand of

the third term is the ∂FKI
∂p

∂p
∂xj

and the integrand of the fourth term is ∂FKI
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∂p
∂t

∂τ
∂xj
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.
The fifth term is further expanded, in order for this to take the form of ∂FKI

∂p
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, as
follows
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+
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dS (4.57)

where in the last integral on the r.h.s. of eq. 4.57 the advance time is introduced,
τadv = t+ r

c
, at which pr ′ac and ∂pr ′ac/∂t are expressed. This way, δp/δbn is expressed

at t and can be grouped with the remaining multipliers of δp/δbn derived by differ-
entiating the Navier-Stokes equations, in order to derive the boundary condition
on the parameterized wall, as shown later.

4.4.3 Adjoint Boundary Condition on the Wall & Sensitivity

Derivatives Expression

In sound radiaton problems, the adjoint equations remain unchanged (eqs. 4.23
and 4.22). The condition on the wall boundary of the radiating body depends, how-
ever, on the objective function. For JWP

= JKI and using eq. 4.57 , the boundary
condition for ui, eq. 4.33a , yields

u〈n〉 = −
NR∑
r=1

ρ

2πTof

[
r̂jn̂j
R2

p′ac −
r̂jn̂j
a0R

∂p′ac
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]
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H(t− tof )

−
NR∑
r=1

ρ

2πTof
pr ′ac

r̂ri n̂i
a0R

∣∣∣∣tof+Tof

tof

(4.58a)

ul〈t〉 = 0 , l = 1, 2 (4.58b)

The adjoint velocity has a constant direction that is normal to the surface and
its instantaneous value at t depends on the acoustic pressure, computed at the
advanced time τadv = t + r

c
. During the primal solution, the acoustic pressure

and its temporal derivative at any receiver at time t are computed based on the
contributions of the time instants at retarted time τ . Conversely, the acoustic
pressure and its time derivative contributing to the adjoint boundary condition
at a time instant t are expressed at the ‘‘adjoint retarted’’ time, which is, in fact,
an advanced time τadv, given that the adjoint simulation runs backwards this
time. Details about the algorithmic implementation can be found in section 5.1.2.
Furthermore, since eq. 4.58 involves the differentiation of the objective function,
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it is valid only for the time window Tof and has no contribution, i.e. ui = 0, at any
other time instant of Ts. Finally, numerical experiments showed that the second
term on the r.h.s. of eq. 4.58a , expressed only at the start and end of the JKI
time window can be neglected with no impact on the accuracy of the sensitivity
derivatives.

The sensitivity derivative expression for JKI , based on eqs. 4.37 and 4.56 yields
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+G.S (4.59)

The first two integrals indicate geometry changes which affect directly the flow
and, consequently, the pressure distribution and noise creation on the body. The
following four integrals on the r.h.s. of eq. 4.59 are associated with the directivity
of the sound field and how this is affected by geometry changes. It is important to
point out the difference in the integration time windows of the sensitivity derivative
terms; the first two are integrated over the simulation window Ts whereas the last
three over the objective function window Tof . Finally, the grid sensitivities term is
derived either by solving eq. 4.40 to compute eq. 4.41 , if volumetric B-Splines are
used for the interior grid displacement, or by solving eq. 4.44 to compute eq. 4.45 ,
if the Laplace equations are used.
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4.5 Conclusions

The formulation of the continuous adjoint method for flow-induced sound radi-
ation with the Kirchhoff Integral is presented in this chapter for the first time in
the literature. To predict the near- and far-field sound radiation from a body in
free-stream, an incompressible flow computation with IDDES is performed, to re-
solve the noise creation phenomena, followed by the sound pressure propagation
with the Kirchhoff Integral method, which uses the hydrodynamic pressure and
its time derivative computed on the Kirchhoff surface, coinciding with the body’s
boundary.

Furthermore, in the primal unsteady simulations, two time windows are com-
monly defined; Ts, where the flow equations are solved and Tof , placed at the end
of Ts, where the objective function is evaluated. Their distinction was taken into
account in the adjoint development and the derivation of the sensitivity deriva-
tive expression. Chapter 5 sheds light upon their influence on the SD and the
optimization solution.

In order to take the impact of interior grid node displacement into account,
grid displacement models were incorporated in the mathematical development.
This gave rise to the adjoint grid displacement equations (aGDE) as well as a
Grid Sensitivity (GS) term. Two different displacement models were considered;
the first model is based on volumetric B-Splines to displace the geometry and the
interior grid nodes whereas the second uses the Laplace equations to propagate an
already computed geometry displacement into the grid interior. The former results
in an algebraic adjoint grid displacement equation, similar to the primal one, and
in a field integral SD term. In this case, the computation of the aGDE and the
GS term are performed in a straightforward manner, since grid sensitivities are
computed analytically with the volumetric B-Splines model. However, since the
GS term is a field term, the visualization of the grid sensitivities with a sensitivity
map is not possible. On the other hand, the Laplace model results in an Poisson
aGDE. The GS term is expressed at the parameterized surface so this approach
proved to be advantageous for various investigations that followed in the thesis.
The significance of the GS term in the SD expression is demonstrated in chapter
5.
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Chapter 5

Continuous Adjoint Formulation for
Flow-Induced Sound Radiation -
Applications

This chapter focuses on the implementation, verification and application of the
continuous adjoint method for flow-induced noise radiation, developed in chapter
4. The primal analysis utilizes an IDDES of the external flow and the Kirchhoff In-
tegral (KI) acoustic analogy to propagate noise from a radiating body to a specified
set of receivers. The adjoint method includes the differentiated Kirchhoff Integral
and the unsteady adjoint Navier-Stokes equations.

Firstly, the implementation of the KI method is presented. In order to take ad-
joint requirements into account, such as storing the primal acoustic pressure, the
original KI code used in [68] is significantly enhanced. A few practical issues are
also discussed to facilitate the development of similar approaches in the future.

The verification of adjoint gradients is typically performed by comparing the
computed values with the ones computed with a Finite Differences (FD) scheme.
For unsteady turbulent flows, this process may be dubious due to the fact that the
convergence of the FD gradients is not always guaranted [145]. In fact, the longer
the simulation/integration time windows are and the more turbulent the flow is
(thus increasing its chaotic nature) the more difficult is to compute converged and,
thus, accurate FD. Therefore, a simpler test case is selected to verify the accuracy
of the proposed method that investigates the turbulent flow around a 3D cylinder.
The accuracy of the adjoint gradients of the two objective functions defined in
chapter 4, targeting at minimum pressure fluctuations on the radiating body and
at minimum radiated pressure at the receivers, is demonstrated in section 5.2.

In section 5.3, the method is applied to optimize the shape of the side mirror
the SAE body w.r.t. the sound radiation to the vehicle’s side window. Firstly, a
sensitivity map analysis is conducted to investigate the influence the sensitivity
derivative integration time window has on its computation but, also, to prove the
importance of including the adjoint grid displacement equations. Afterwards, an
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optimization of the side mirror is performed, targeting at minimizing the radiated
flow-induced sound at a number of receivers on the vehicle’s side window, which
is associated to the cabin noise level [68].

5.1 Implementation

This section describes some practical issues of the Kirchhoff Integral (KI) algo-
rithm, as well as the unsteady adjoint solution.

5.1.1 Kirchhoff Integral Method

The KI solver and its adjoint were programmed as a stand-alone library in the
OpenFOAM© environment, are version independent and can be practically used
with any CFD solver, provided there is an interface to read the pressure input.

Different approaches have been proposed in the literature on the algorithmic
implementation for aspects such as retarted-/forward-time or memory handling,
[88]. In this thesis, the KI algorithm is developed by taking the requirements
of the adjoint/differentiated KI into consideration. Among other processes, the
following variables must be computed requiring a time stencil of several time
steps: pressure time derivative, acoustic pressure, acoustic pressure fluctuation
and its time derivative and the multipliers for the adjoint sensitivities. Storing all
the necessary variables to memory and performing the aforementioned computa-
tions modularly, after the CFD simulation is finished, deemed to be advantageous
compared to an in situ computation. The complexity of the algorithm highly in-
creases when so many computations must be performed on-the-fly and makes
the algorithm less versatile to future enhancements, such as the filtering process
described in 7.

In order to deal with the excessive memory load, the coordinates as well as
the computed field values at both the sources and receivers are distributed to all
processors. It should be made clear that the KI kernel does not utilize the same
grid decomposition as the CFD solver but distributes evenly the stored values
to all available processors. Therefore, in this section the process of ‘‘distribut-
ing’’ concerns the gathering of all information from the CFD decomposition to
the master processor and, then, scattering it to the processors based on the KI
decomposition.

For the primal KI, eq. 2.15 is computed, which requires the pressure field and
its time derivative on the radiating body. During the primal solution, the surface
hydrodynamic pressure, p, is distributed over all processors and stored. After
the flow simulation has ended, the pressure field is used to compute the time
derivative with an 8th order central differences scheme. In this thesis’ applica-
tions, the number of sources greatly exceeds the number of receivers, therefore
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the sources are distributed over all processors. This has no impact on the com-
putational time, as it is constant regardless of distributing the receivers or the
sources. However, in terms of memory, distributing the sources leads to less
memory load per processor.

At this point, all necesssary fields, p and ∂p/∂t, are computed and distributed
to all processors. As seen in fig. 5.1, a forward-time approach is used to compute
the KI, which computes the contribution of all sources at a CFD iteration (time
step) to pac of all receivers at corresponding future time instants. The KI algorithm
marches through the source time steps (practically the CFD time steps) and for
each source-receiver pair computes the forward time that the sound waves have
reached the receiver. This time does not necessarily coincide with any of the
receiver’s time steps and is, thus, linearly interpolated to its adjacent time steps.

The computation of pac at a receiver at a time instant t requires the sum of the
contribution from all sources, which stems from different time steps in the past;
the time that a sound wave needs to reach from the source to the receiver depends
on their distance, τ = ri/a0. Therefore, the complete computation of pac at t lasts
for a specific number of time steps which is determined by the difference of the
longest (tmax/∆t) and the shortest (tmin/∆t) time between the receiver and the
sources, defined by the longest and shortest distances respectively. If more than
one receivers are examined, this time window is practically the range between
the minimum tmin and the maximum tmax. When the simulation reaches the time
instant t−tmin+∆t, the computation of pac at all receivers for t is completed and pac
can be distributed to all processors in order to reduce the memory requirements
per processor.

The adjoint KI algorithm, fig. 5.2, follows the same exact procedure only that
the contributions are from the receivers to the sources. Marching through the
source time steps, the future time instants are found where the source had con-
tributed to the receivers, during the primal KI computations. Then, the contri-
bution of the adjoint acoustic pressure at the affected receivers is added to the
sources.

5.1.2 Unsteady Primal & Adjoint Navier-Stokes

The primal and adjoint flow simulations are performed in the OpenFOAM© en-
vironment. The flow equations are solved using the standard transient incom-
pressible solver pisoFoam. A blending convection scheme is utilized [132] which
based on wall distance, velocity gradient and eddy viscosity, switches between a
low-dissipative linear scheme in the vorticity dominated LES (finely resolved) re-
gions and a numerically robust upwind-biased scheme in irrotational and RANS
(coarsely-resolved) regions.

The adjoint equations are solved with an in-house adjoint solver using the PISO
algorithm with two outer correction iterations when needed,to better converge the
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Source
Time
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Time

p at sources
is distributed

to all processors

tmin
tmax

pac has been computed
and distributed
to all processors

Receivers are known globally.
Each processor knows pac
by its contributing sources

Figure 5.1: Forward-time computation of the KI between one source and one receiver.
In dashed boxes is the time stencil where the acoustic pressure of all receivers are
known by all processors. In other time steps, this information is evenly distributed
among all processors.

Source
Time

Receiver
Time

Receivers are known globally.
Each processor knows pac
by its contributing sources

Figure 5.2: Backward-time computation of the adjoint KI between one receiver and
one source. The information distribution among the processors follows the rules of
the primal KI computation.
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adjoint momentum equations. For the convection term in the adjoint solution,
a second-order downwind scheme is used. In case of convergence instabilities
that usually occur in industrial applications, a first-order scheme is used for
the convection term and a dissipative limited scheme for the spatial gradient
discretization of the so-called Adjoint Transposed Convection term, uj

∂vj
∂xi

, in the
adjoint momentum equation, eq. 4.23 .

As seen in eq. 4.23 , the instantaneous primal velocities are needed for the
backward time integration of the adjoint solution. Since storing all time steps
requires a great amount of memory, the binomial checkpointing technique is used
[139], where only a set of time steps, the so-called checkpoints, is stored. During
the adjoint solution, if the primal flow fields are not available, the primal equations
are solved again starting from the latest stored checkpoint. The recomputation
time depends on the number of checkpoints and the total iterations. In this thesis,
60 checkpoints are used for the SAE Body where a total of 58800 time steps are
simulated, leading to an additional recomputation cost of 2.3 times the cost of a
complete unsteady primal computation, during the adjoint solution.

5.2 Verification

The accuracy of the computed sensitivity derivatives with the adjoint method pre-
sented in this chapter is verified here against gradients computed with FD. In this
section, an additional test case is considered that investigates the 3D turbulent
flow around a cylinder. As explained later, this is to ensure the accuracy of the
FD gradients, since they are prone to numerical errors for large time integrations
of turbulent/chaotic flows. The mesh independency study for this test case as
well as its setup is presented in appendix A.

The differentiation of the Kichhoff Integral is firstly tested, verifying the geo-
metric sensitivities, the constituent terms of δJKI

δbn
, eq. 4.56 , that do not include

the derivative δp/δbn. To do so, the flow fields computed for each test case are
kept ‘‘frozen’’ during the investigation and, therefore, δp/δbn = 0. Afterwards, the
adjoint derivatives for flow problems are considered.

5.2.1 Kirchhoff Integral - Geometric Sensitivities

5.2.1.1 3D Cylinder - Verification with Finite Differences

The first test case examines the sound radiation from the flow around an isolated
3D cylinder, and uses the KI to propagate the noise from the unsteady pressure
distribution on the cylinder to 120 receivers placed at 15D distance on the z-Plane
crossing the middle of the cylinder, fig. 5.3.
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The pressure distribution on the cylinder over a period of T = 10s is stored and
used for the KI computation. The flow field is considered frozen and independent
of the cylinder’s geometry during the optimization, thus δp/δbn = 0, and the fifth
integral on the r.h.s. of eq. 4.56 vanishes.

The cylinder surface is morphed using volumetric B-Splines, [113]. A set of 8
control points around the cylinder is selected, as shown in fig. 5.3, and the design
variables are the x- and y- coordinates of each control point, thus 16 in total.

Figure 5.3: 3D Cylinder - Verification with FD: Distribution of 120 receivers around
the cylinder (left). The volumetric B-Splines control points (right) deform the cylinder’s
surface for the FD verification.

The derivatives of eq. 4.50 at the receivers w.r.t. bn are computed with central
differences, where a step size equal to 10−6D is chosen, after conducting a study
on independence of the step size. For each perturbation, the cylinder geometry is
modified by the morpher and, afterwards, keeping the same unsteady distribution,
the sound radiation from the updated geometry is evaluated.

The gradients of JKI are also computed with the expression of the differentiated
KI, eq. 4.56 , and the comparison with the FD gradient is presented in fig. 5.4
showing an excellent agreement. In addition, the SD is decomposed in its different
components, where term ∂JKI

∂xi

δxi
δbn

is denoted as dJdx, term ∂JKI
∂p

(
∂p
∂xi

+ ∂p
∂t

∂τ
∂xi

)
δxi
δbn

as dJdp and the one including δ(nidS)
δbn

as dndSdb. The latter is the most important
term in this test case.
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Figure 5.4: 3D Cylinder - Verification with FD: Comparison of the geometric sensi-
tivities of JKI computed with FD and the adjoint method (left). The contribution of
each term of eq. 4.56 is shown on the right.

5.2.1.2 3D Cylinder - ‘‘Frozen Flow’’ Optimization

In this section, an optimization is performed on the cylinder, during which the
flow is kept ‘‘frozen’’, as described in section 5.2.1.1. In order to allow for greater
surface deformations, a new parameterization is used where 9 control points on
the z-plane crossing the cylinder middle are allowed to vary, as shown in fig. 5.5.

Using steepest descent with a fixed step in each optimization cycle, the sound
radiation of the cylinder at the receivers is completely suppressed, fig. 5.5. Of
course, this does not mean that there is no radiation at all; as seen in the history
of the cylinder surface during the optimization, fig. 5.6, the new shape has most
of its face normals at a near-right angle with the z-plane where the receivers are
placed, so that the directivity towards the receivers (term r̂in̂i in eq. 2.15 ) is set to
zero.

5.2.1.3 SAE Body - Verification with Finite Differences

The approach of section 5.2.1.1 is followed to verify the geometric sensitivities on
the SAE Body. The unsteady pressure distribution on the mirror is computed
with the IDDES methodology, as discussed in chapter 2 and in section 5.1 and
then stored for the study that follows.

A set of volumetric B-Splines control points are placed around the neck of
the mirror which is the most sensitive region for aeroacoustics, as presented in
section 5.3. In total 75 control points are used, as shown in fig. 5.7, 5 × 3 × 5 in
the x-, y- and z-direction, respectively, and only the internal ones are allowed to
move in x- and z- direction, giving rise to 18 design variables.

The receivers are distributed uniformly on the side window on a structured
grid of 1 cm, not coinciding with the CFD surface grid nodes, leading to a total
number of 10000.
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Figure 5.5: 3D cylinder optimization with fixed (frozen) flow: a 5×5×3 control box
parameterizes the cylinder surface (top-left), where only interior control points (red
squares) are allowed to vary during the optimization. The directivity (top-right) for
the baseline (blue) and optimal (red) geometry is also presented. The optimization
algorithm converged after around 82 optimization cycles (bottom).

The gradient of JKI w.r.t. the design variables is computed firstly with a cen-
tral FD scheme, and afterwards with eq. 4.55 . The two methods are in excellent
agreement, as depicted in fig. 5.8. In this case, both the variation of the normal
component and area of each element as well as ∂JKI

∂xi

δxi
δbn

are significantly contribut-
ing to the gradient value.

5.2.1.4 SAE Body - ‘‘Frozen Flow’’ Optimization

Here, an optimization is performed to find the shape of the mirror that radiates less
noise to the side window, assuming that the sound sources are fixed (recall that
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(a) Baseline (b) 10th Iteration (c) 20th Iteration

(d) 40th Iteration (e) 60th Iteration (f) 80th Iteration

Figure 5.6: 3D cylinder optimization with fixed (frozen) flow: Shape of the cylinder
for several optimization steps.

the unsteady pressure distribution remains ‘‘frozen’’ throught the optimization).
The same volumetric B-Splines control box is used for the mirror parameteriza-
tion, however, more points are used this time, 8× 4× 8 in x-, y- and z- direction
respectively, as shown in fig. 5.9.

After 19 optimization cycles, the objective function is reduced by around 20%
and the optimization is terminated because the mirror shape quality deteriorated
as seen in fig. 5.10. It must be noted however that this reduction does not repre-
sent the actual one, if flow changes were taken into consideration and the sources
on the mirror were recomputed for each updated geometry. In fact, the flow field
of the geometry of the 1st optimization cycle is evaluated again and yielded 1.4%
increase in JKI .
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Figure 5.7: SAE Body - Verification with FD: a 5×3×5 control box parameterizes the
mirror surface and the derivative of the interior control points (red squares) w.r.t. their
x- and z coordinates are compared with FD.
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Figure 5.8: SAE Body - Verification with FD: Comparison of the geometric sensitivi-
ties of JKI computed with FD and the adjoint method (left). The contribution of each
term of eq. 4.55 is shown on the right.

5.2.2 Unsteady Adjoint Flow Sensitivities

This section verifies the accuracy of the adjoint flow derivatives computed with the
proposed method. For the unsteady adjoint method, as the integration time of J
increases, the accuracy of the FD derivatives deteriorates, often to the order of the
sensitivity itself, due to round-off errors [145]. In addition, for complex industrial
cases, such as the SAE body, the values of the FD gradients do not converge
as the step size decreases. Therefore, to make FD as accurate as possible, the
verification is conducted for the 3D turbulent flow around the cylinder.

Two objective function are investigated targeting at pressure fluctuations min-
imization, eq. 4.46 computed over the cylinder’s surface, and radiated acoustic
pressure minimization, eq. 4.50 computed at the 120 receivers around the cylin-
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Figure 5.9: Optimization of the SAE mirror with fixed (frozen) flow: A set of
volumetric-Splines control points is defined around the neck of the mirror (top) and
only interior points (red squares) are allowed to vary during the optimization. The
optimization terminates after 19 optimization cycles, as the mirror geometry’s quality
started deteriorating.

der defined previously, (section 5.2.1.1, fig. 5.3). The primal procedure computes
the flow for Ts = 10s, starting from a stored initial condition of a flow field with
fully developed vortex shedding. The corresponding objective function is inte-
grated over the same time window, thus Tof = Ts = 10s.

To modify the cylinder surface, the volumetric B-Splines control points pre-
sented in section 5.2.1.1 are used and their x and y coordinates are the design
variables bn, as shown in fig. 5.3. The derivatives of the objective function w.r.t. bn
are computed with central differences, where a step size equal to 10−6D is chosen,
after conducting a study on independence of the step size. For each perturba-
tion, the cylinder geometry is modified by the morpher and, afterwards, these
displacements are propagated into the interior of the grid either with the volu-
metric B-Splines morpher, eq. 4.7 , or by solving the Laplace equations, eqs. 4.8 .
Then, the objective function is computed again, leading to two sets of derivatives
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(a) Baseline (b) 5th Iteration

(c) 10th Iteration (d) 15th Iteration

Figure 5.10: Optimization of the SAE mirror with fixed (frozen) flow: Shape of the
cylinder during the optimization, which is terminated after 19 optimization cycles, as
the mirror geometry’s quality started deteriorating.

per objective function in total. It should be noted that, depending on the mesh
resolution, the two grid displacement methods should converge to the same value
of gradient, since the impact of interior nodes on the derivative of the objective
function reduces.

The developed adjoint method is used to obtain the sensitivities of Jpfluc and
JKI w.r.t. bn, and the grid sensitivities are computed using eqs. 4.40 and 4.41 and
eqs. 4.44 and 4.45. A snapshot of the adjoint flow targeting at minimizing JKI is
presented in fig. 5.11.

In figs. 5.12 and 5.13, the sensitivity derivatives values for Jpfluc and JKI re-
spectively computed with FD are plotted against the ones computed with the
adjoint method. Firstly, it is clear that the adjoint gradients are in a very good
agreement with FD. To emphasize the importance of the grid sensitivities, the SD
without the corresponding term is also plotted and it is observed that the accuracy
of the SD strongly deteriorates.
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Figure 5.11: Turbulent flow around a 3D cylinder for Re=500. Left:
Instantaneous flow structure visualized by the isosurface of Q =
1
8

(
‖∇v − (∇v)T ‖2 − ‖∇v + (∇v)T ‖2

)
= 10−1s−2 and colored according to the

velocity magnitude. Right: Adjoint vorticity iso-surfaces colored by the adjoint
velocity magnitude (s−3). Black lines are the primal velocity streamlines.
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Figure 5.12: Turbulent flow around a 3D cylinder for Re=500: Comparison of the
derivative of Jpfluc computed with FD and the adjoint method using the Laplace
equation (left) and the volumetric B-Splines (right) as a grid displacement model. In
both cases, it seen that neglecting the grid sensitivities term (GD) is detrimental to
the accuracy of the sensitivity derivatives.

5.3 Applications

In this section, the proposed adjoint-based optimization is applied to minimize the
flow-induced sound radiation from the side mirror of the SAE body, presented in
chapter 2, to the vehicle’s side window. Cabin noise is related to the acoustic load
on the window, so its minimization is a first step towards interior noise reduction.

The KI is computed over the mirror surface, and its accuracy relies solely on
that of the pressure predicted over the surface. For this reason, the grid in this
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Figure 5.13: Turbulent flow around a 3D cylinder for Re=500: Comparison of the
derivative of JKI computed with FD and the adjoint method using the Laplace equa-
tion (left) and the volumetric B-Splines (right) as a grid displacement model.

region as well as in areas that strongly affect the flow around the mirror, such
as the A-pillar region, is fine enough to resolve the vortex structures and capture
possible flow separations.

The unstructured computational grid used in this thesis, fig. 5.14, is generated
with the snappyHexMesh tool of OpenFOAM© and comprises around 80 million
cells, with a grid resolution of 1mm on and around the mirror that results in
120000 faces-senders on the mirror surface. In addition, 15 layers are used within
the first 3mm, yielding an average y+ of the first cell center off the wall of around 1.
10000 receivers on the window are distributed uniformly on a structured surface
grid of 1 cm, which does not coincide with the CFD surface grid nodes.

The flow computation with IDDES is performed for a total of Ts = 1.3s; the
first 0.9s is the initial transient phase and this is why a bigger time step is used
compared to the remaining simulation, ∆t = 5×10−5 instead of ∆t = 2×10−5; the
flow-induced noise radiation from the mirror is then assessed starting at tof = 1s,
for Tof = 0.3s.

The A-pillar vortex and the mirror wake at a flow velocity of 40 m/s, computed
numerically, are shown in fig. 5.15 (bottom-left). The interaction of these two
typical vehicle flow structures leads to strong pressure fluctuation on the mirror
and, consequently, noise generation and radiation to all directions and towards
the vehicle side window, fig. 5.15 (bottom-right).

5.3.1 On the time integration of the unsteady adjoint problem

Flow-induced noise from the side mirror is computed according to the aforemen-
tioned procedure. According to the mathematical formulation presented in section
4.3, the adjoint problem must be solved for the time window of the primal simu-
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Figure 5.14: Computational grid for the exterior domain of the SAE Body: different
refinement layers around the car and the mirror at cross-section plane normal to the
z-axis. The finest resolution is 1mm in the region around the side mirror.

lation Ts, in conformity to the time integrals in eq. 6.1 during which the residuals
of the unsteady equations are satisfied. As shown in fig. 5.16, the boundary con-
dition of eq. 4.58 is acting only on Tof . This means that, as the adjoint is solved
backwards in time, the source in the adjoint equations takes non-zero values only
until t = tof and is set to zero afterwards; thus, the adjoint fields start decaying
until the end of the adjoint simulation, t = 0s. This is depicted in fig. 5.17, where
the adjoint flow statistics of a simulation performed over Ts, later referred to as
approach A, is presented.

5.3.2 Sensitivity map analysis

A sensitivity map analysis is performed here to compare the approach for tackling
the unsteady adjoint problem proposed in section 4.3 with a different approach,
which appears intuitively to be equivalent. The computed sensitivity map on the
side mirror of the SAE body stands for the derivatives of the objective function
w.r.t. the normal surface displacement, eq. 4.59 with δxi

δbn
= ni, and gives insight

into the local geometry changes that may contribute to performance improvement.
The two approaches examined are summarized below:

• Approach A computes the primal flow for a total of Ts = 1.3s and integrates
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Figure 5.15: Geometry of the SAE body and numerical simulation of the flow-induced
sound radiation: The CAE model of the SAE body and the tested mirror are shown.
The area marked in purple is the vehicle’s side window, where 10000 receivers are
placed and the radiated acoustic pressure is numerically computed. The unsteady
flow is computed with an IDDES and the instantaneous flow structure visualized by
the isosurface of Q = 1

8

(
‖∇v − (∇v)T ‖2 − ‖∇v + (∇v)T ‖2

)
= 5 · 105s−2 and colored

according to the velocity magnitude is presented (bottom-left). The radiated acoustic
pressure at the receivers lying over the window is computed using the Kirchhoff
Integral method (bottom-right).

the objective function for the last Tof = 0.3s of Ts. The adjoint equations
are then solved for Ts = 1.3s and the adjoint velocity boundary condition
along the side mirror is given by eq. 4.58 only during the first Tof = 0.3s
of the adjoint simulation; afterwards, this is set to zero until the end of the
simulation. Time integrals of eqs. 4.59 , 4.44 and 4.45 are computed at the
time windows marked in the provided formulas.

• Approach B, starting from t = tof = 1s, computes the primal flow and J for
the remaining time, Tof = 0.3s. The objective function value computed in the
first optimization cycle is obviously the same as in approach A. However, the
adjoint solution and the sensitivity derivative terms are computed only over
Tof . This is consistent with the adjoint velocity boundary condition, eq. 4.58 ,
as long as the initial field of each primal simulation during the optimization
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Primal

Adjoint

ui = 0 on mirror ui by eq. 4.58

TofInitial Phase of Flow

Ts

0 1 1.3 t (s)

Figure 5.16: Time windows of primal and adjoint analysis. The sensitivity deriva-
tives, eq. 4.59 , are integrated during the solution of the adjoint equations for the
corresponding time window in which each time integral is defined.
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Figure 5.17: Adjoint flow statistics for flow-induced sound reduction on the SAE
body: The time integration of J starts at tof = 1s (red vertical line) and is performed
over the last Tof = 0.3s. The sum of the first two instantaneous surface integrals of
eq. 4.59 (SD) is an indication of the impact this time step has on the objective function
variation. As expected, J is influenced mostly by time instants belonging to Tof , after
which the order of magnitude drops significantly.

is kept the same and, thus, independent of the design variables, so that
δvi/δbn

∣∣
tstart

= 0.

The total wall-clock time for the sensitivity derivatives computation was around
145hrs and 71hrs, for approaches A and B respectively, without accounting for
the additional overhead for grid displacement and data management. The wall-
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Approach A Approach B
Primal Flow 23.15 12.82

Kirchhoff Integral 0.28 0.25
Adjoint Kirchhoff Integral 0.56 0.58

Adjoint Incl. Primal Recomputations 120.49 57.20
Total Time 145.24 70.54

Table 5.1: Wall-clock time (in hours) of each step of the primal and adjoint procedure
for approaches A and B: computations performed on 960 CPUs.

clock time cost for the individual parts of the primal and adjoint procedures is
presented in detail in table 5.1.

The two aeroacoustic sensitivity maps computed with approaches A and B are
shown in fig. 5.18(a) and fig. 5.18(b) respectively. For both approaches, two main
sensitive areas appear, the mirror neck and the casing of the mirror glass. In
fig. 5.19, two cross sections over these two areas are presented. High sensitivities
can be seen on the downwind edges of both the upper and lower side of the
neck. As seen in fig. 5.19(c), flow separation occurs in this area, which creates
pressure fluctuations that in turn generate and radiate noise. Similarly, on the
edges around the casing of the mirror glass, the flow is disturbed by the geometry
curvature or specific design features, such as the small step on the underside of
the mirror, fig. 5.19(d).

Although high sensitivity values appear on the same areas for both approaches,
differences arise on the way the mirror surface should be displaced. More dis-
tinctly, on the upper side of the mirror neck, approach A suggests an outward
displacement on the part up to the downwind edge, where the sign changes and
this area should be pushed inwards. On the contrary, approach B is dominated
by an inward displacement on the upper side, with a small area of outward normal
displacement in between.

A morphing step was performed to show how this difference on the sensitivity
maps translates to changes in the objective function. The mirror was parameter-
ized using the volumetric B-Splines method, similarly to section 5.2. 256 control
points, 8, 4 and 8 in the x-, y- and z-direction, respectively, are used to define the
part of the mirror geometry to be morphed. As seen in fig. 5.20, the control box
surrounds the neck of the mirror which is the area with the highest potential in
improvement. The placement of the bounding box is acceptable from the design
point of view as well, as areas important for rain water management, such as
the mirror glass casing, are left intact. During the morphing, only the internal
control points are allowed to move in all three directions, giving rise to 216 design
variables in total and the maximum displacement of the surface was 1mm.

The morphed geometries are presented in fig. 5.21 and the difference between
the two approaches can be seen. The objective function for the two geometries was
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evaluated again. The objective functions are reduced by 17% and 22% respec-
tively, thus, in each respective optimization problem the geometry was displaced
to the right direction. An additional primal run was performed using approach
A for the morphed mirror of approach B. The obtained value yielded a reduced
objective function by 11%, a smaller reduction than that observed with approach
A. In fig. 5.22, the time-averaged squared acoustic pressure fluctuation radiated
to the side window from the baseline and the two optimized mirror geometries is
presented. This practically stands for the integrand of JKI , eq. 4.50 , plotted for
each receiver on the side window and the reduction is indeed bigger for approach
A.

Consequently, this study shows, through the comparison of the sensitivity
maps, that Approach B does not guarantee that the correct optimization problem,
as defined by the benchmark procedure (approach A), is solved. This would be
the case, if the integration time of approach B was sufficiently long, which would
require, however, an a-priori and case-dependent ‘‘trial and error’’ investigation.

In addition, the significance of the proposed method that includes the grid dis-
placement in its formulation can also be clearly visualized in fig. 5.18(c). Similarly
to section 5.2.2 and fig. 5.13, the sensitivity map computed based on the formula-
tion without the grid sensitivities term in the sensitivity derivatives expression is
presented. According to this map, an additional area on the top part of the mirror
neck must be pushed inwards. These sensitivities guide in fact the optimization to
the opposite direction, compared to the one that improved the objective function,
as shown in the one-step displacement of fig. 5.21(a).

5.3.3 Optimization of the Side Mirror of the SAE Vehicle Tar-

geting at Minimizing Acoustic Pressure at the Window

The side mirror of the SAE body, is optimized in this section, using approach A,
as presented in section 5.3.2. Memory requirements of the individual parts for
each optimization cycle are presented in fig. 5.23. After the computation of the
derivatives of J w.r.t. the control points, their coordinates are updated and the
geometry and internal grid are morphed.

Three optimization cycles are performed with an approximate cost of 20 days
on 960 CPUs. After this, the optimization process is terminated, since another
cycle would exceed the allowed overall cost from the industrial point of view. The
averaged squared acoustic pressure fluctuation computed over the receivers on
the side window, as defined in eq. 4.50 , is reduced by 35%. The optimization
history and the total computational cost per optimization cycle is shown in table
5.2.

The maximum displacement is around 2.6mm and the total geometry displace-
ment, projected on the normal direction is presented in fig. 5.24. In fig. 5.25, the
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(a) Approach A

(b) Approach B

(c) Approach B without grid sensitivities

Figure 5.18: Flow-induced sound reduction on the SAE body: Adjoint sensitivity
maps targeting at minimum the radiated sound to the vehicle side window. Red
areas must be pushed inwards whereas blue areas must be pulled outwards in order
to minimize the objective function.

objective function J at each receiver placed on the side window is presented, as
computed for the starting and optimized mirror geometry. The radiated sound
has decreased in magnitude which is associated to the influence the geometry
change has on the flow and, thus, on sound generation. Moreover, by looking at
the iso-lines of the squared acoustic pressure on the window, it is seen that the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Flow-induced sound reduction on the SAE body: Two cross-sections
over the mirror are presented. The first section covers the area around the mirror
neck (depicted with the orange plane, first row), whereas the second the area around
the casing of the mirror glass (depicted with the blue plane, first row). Primal (second
row) and adjoint (third row) velocity magnitudes are shown for the mirror neck (left)
and casing (right) cross-sections.

directivity of the generated sound field of the optimized mirror shape has moved



1045. Continuous Adjoint Formulation for Flow-Induced Sound Radiation- Applications

Figure 5.20: Flow-induced sound reduction on the SAE body: Bounding box of the
control points of the volumetric B-Splines method used to parameterize the mirror.
The control points are coloured based on their z-coordinate and, during the optimiza-
tion loop, only the internal points are allowed to vary.

(a) Approach A

(b) Approach B

Figure 5.21: Flow-induced sound reduction on the SAE body: Normal displace-
ment after one morphing step with the volumetric B-splines method. Red areas were
pushed inwards whereas blue areas were pulled outwards, in order to minimize the
objective function.

upwind, affecting in this way less the area of the window.
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(a) baseline

(b) Approach A (c) Approach B

Figure 5.22: Flow-induced sound reduction on the SAE body: Time-averaged
squared acoustic pressure fluctuation radiated to the side window from the base-
line (top) and the optimized mirror with approaches A and B. Both optimized geome-
tries are assessed with a flow computation for Ts = 1.3s, during which the objective
function is computed over the last Tof = 0.3s.

∆Jiter
Jbase

%
Wall-Clock
Time (days)

Baseline - 6.05
1st Iteration 17.1% 6.17
2nd Iteration 25.3% 6.33
3rd Iteration 35.2% 1.07

Total time 19.62

Table 5.2: Optimization results and wall-clock time per iteration on 960 CPUs. The
primal and adjoint simulations as well as the geometry modification were performed
during the 1st and 2nd iteration and taken into account in wall-clock time. Only the
primal simulation was performed at the last iteration in order to assess the gain in
performance.
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Baseline
Mirror Ge-

ometry

Primal Flow
Computation

Stored p on
the Mirror
Memory:
12.5GB

Kirchhoff Integral
Mirror→ Side Window

Stored pac
on the Side

Window
Memory: 1.5GB

Adjoint
Kirchhoff Integral

Side Window → Mirror

Checkpointing
Stored p, ~v and νt

Memory:
1500GB

Stored B.C. for
~u on the Mirror

Memory:
12.5GB

Adjoint Flow
Computation

Adjoint
Sensitivities

on the Mirror

Figure 5.23: Overview of the primal and adjoint procedure for each optimization
cycle. Square boxes indicate a simulation/computation, while rounded boxes in bold
indicate fields stored in memory.

Figure 5.24: Flow-induced sound reduction on the SAE body: Total normal displace-
ment performed during the optimization (top view left, bottom view right). Red areas
indicate an inward displacement whereas blue areas an outward. With a maximum
displacement of 2.6mm, the time-averaged squared acoustic pressure fluctuation ra-
diated from the mirror to the side window is reduced by 35%.

5.4 Conclusions

In this chapter, the unsteady continuous adjoint method was verified for unsteady
turbulent flows and was applied in complex, real-world problems. The efficiency
and accuracy of the proposed method is demonstrated not only for a mid-size
academic test case but also for a large-scale problem, the generic SAE body. In
a 3D turbulent flow around a cylinder, a good agreement between the gradients
computed with adjoint and FD was achieved. It was shown that, in aeroacoustic
shape optimization problems, it is important to incorporate grid displacement
equations in the adjoint formulation, in order to account for grid sensitivities.
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Figure 5.25: Flow-induced sound reduction on the SAE body: Time-averaged
squared acoustic pressure fluctuation radiated to the side window from the start-
ing (left) and the optimized (right) mirror. The optimization reduced the radiated
sound magnitude and also pushed its directivity upwind, to have a smaller influence
on the window.

Otherwise, the sensitivity derivative computation is prone to inacurracies.
In the mathematical formulation of chapter 4, a distinction between the time

window Ts of the flow simulation and the time window Tof over which the objective
function is evaluated was taken into account. To investigate the impact they
have on the SD, a sensitivity map analysis was conducted for minimizing flow-
induced noise radiation from the side mirror of the SAE body to its side window.
It was demonstrated that, in order for the adjoint gradients to be consistent with
the primal problem, the adjoint equations must not be integrated only along the
objective function window. The adjoint boundary conditions that depend on the
objective function, here the adjoint velocity on the body, are imposed during Tof
and, afterwards, are set to zero for the remaining time, while the magnitude of the
adjoint fields decays. Solving the adjoint equations only for Tof computes different
gradient values which do not guarantee to solve the same optimization problem.

Based on these findings, three optimization cycles are performed and the ob-
tained optimized shape of the mirror of the SAE body was displaced by a maximum
of 2.6mm. The objective function, the time averaged squared sound pressure at
the vehicle’s side window, was minimized by 35%.
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Chapter 6

The Continuous Adjoint Formulation to
Vehicle Aeroacoustics - Complete Chain

During the early development phase of the car design, aeroacoustic engineers
introduce changes to the baseline mirror geometry in order to reduce objective
functions such as Jint, eq. 3.4 , and, consequently, to improve the aeroacoustic
performance of the vehicle. However, this is not a straightforward task. Although
specific noise phenomena such as tonal noise have been identified and tackled,
there is still no clear connection between mirror geometry changes and their effect
on broadband noise.

A numerical tool that can potentially provide an insight to engineers is that of
a sensitivity map; it is effectively the gradient of the objective function with respect
to the normal displacement of each node on the computational mesh on the mirror
and shows the magnitude and direction of the displacement of each node in the
normal direction, which results in an improvement of the aforementioned objective
function. In other words, it indicates which regions of the vehicle mirror should
be pulled outwards and which inwards, in order to achieve a reduction of the
interior noise level. Moreover, this sensitivity map can be used in conjuction with
a morphing tool to drive a numerical optimization which, after several optimization
cycles, can provide a better mirror shape.

This chapter formulates the continuous adjoint method to the complete noise
prediction chain based on the developments presented in chapters 3 and 4, in
order to efficiently compute the aeroacoustic sensitivity map on the mirror. Af-
terwards, the proposed adjoint aeroacoustic framework is applied to optimize the
side mirror of the SAE body and also to extract useful conclusions on the influence
that each step of the noise prediction chain has on interior pressure level.

109
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6.1 The Generic Augmented Objective Function and the De-

rived Coupled Systems

In this chapter all four objective functions, Jint, Jvib, JKI and Jpfluc, as defined
in chapters 3 and 4, are taken into consideration during the continuous adjoint
development. In addition, the augmented objective function L includes the time
and space integral of the residuals of all equations defined in the previous chapters
multiplied with their respective adjoint variables.

The augmented objective function expression reads

L = Jint +

∫
TSint

∫
Ωint

qintR
pintdΩdt

+ Jvib +

∫
TSint

∫
Swi

zRwdSdt

+ JKI +

∫
TSint

∫
Swi

qacR
pacdSdt

+ Jpfluc +

∫
TSext

∫
Ωext

(uiR
v
i + qRp) dΩdt (6.1)

On the r.h.s. of eq. 6.1 , Rp and Rv
i are the residuals of the flow continuity and

momentum equations, eqs. 2.1 and 2.2 respectively, solved in the domain Ωext

outside the vehicle, Rpac is the Kirchhoff Integral equation, eq. 2.15 , Rw is the
residual of the bending wave equation solved on the side window Swi and Rpint

is the residual of the wave equation solved in the domain Ωint inside the vehicle.
The adjoint variables appearing on the r.h.s. of eq. 6.1 are the adjoint velocity
and pressure, defined in section 4.3.2 as ~u and q, the adjoint acoustic pressure,
defined later on in this chapter as qac, the adjoint deflection, defined in section 3.2
as z and the adjoint interior pressure, defined in section 3.1 as qint. In addition,
windows TSint and TSext correspond to the simulation time for the interior and
exterior domain respectively. The formulation of eq. 6.1 includes all four objective
functions, defined in the previous chapters, in order to present the mathematical
development that follows in a generic way. In the applications of section 6.3, only
one objective function will be considered at a time, although, a multi-objective
optimization targeting at any combination of Jint, Jvib, JKI and Jpfluc would be
possible.

The total derivative of L w.r.t. bn yields

δL

δbn
=

δJint
δbn

+

∫
TSint

∫
Ωint

qint
δRpint

δbn
dΩdt
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+
δJvib
δbn

+

∫
TSint

∫
Swi

z
δRw

δbn
dSdt

+
δJKI
δbn

+

∫
TSint

∫
Swi

qac
δRpac

δbn
dSdt

+
δJpfluc
δbn

+

∫
TSext

∫
Ωext

(
ui
δRv

i

δbn
+ q

δRp

δbn

)
dΩdt

+

∫
TSext

∫
Ωext

(uiR
v
i + qRp)

δdΩ

δbn
dt (6.2)

The development of individual terms in eq. 6.2 follows the same procedure pre-
sented in the previous chapters and the resulting expression yields

δL

δbn
=

∫
TSint

∫
Ωint

Rqint
δpint
δbn

dΩdt+

∫
TSint

∫
Swi

(
Rz δw

δbn
+Rqac

δpac
δbn

)
dSdt

+

∫
TSext

∫
Ωext

(
Rui

δvi
δbn

+Rq δp

δbn

)
dΩdt

+

∫
Ωint

[
Iqint1

∂

∂t

(
δpint
δbn

)
+ Iqint2

δpint
δbn

]
tend

dΩ

+

∫
Swi

[
Iz1

δ

δbn

(
∂w

∂t

)
+ Iz2

δw

δbn

]
end

dS +

∫
Ωext

Iui
δui
δbn

∣∣∣∣
end

dΩ

+

∫
TSint

∫
Sint

Bqint
δpint
δbn

dSdt+

∫
T

∫
L

Bz δw

δbn
dldt

+

∫
TSext

∫
Sext

(
Bui

δvi
δbn

+Bq δp

δbn
+Bτaij

δτij
δbn

)
dSdt

+ S.D. (6.3)

On the r.h.s. of eq. 6.3 , Rqint, Rz, Rui and Rq are the residuals of the adjoint
equations, as defined in eqs. 3.15 , 3.33, 4.23 and 4.22, respectively. Terms Iqinti ,
Izi and Iui are the initial conditions for the wave, bending wave and flow problems,
eqs. 3.16 , 3.34 and 4.24 respectively. Finally, termsBqint, Bz andBu stand for the
boundary conditions, as defined in sections 3.1.3, 3.2.3 and 4.3.4 respectively.
Term S.D. stands for the sensitivity derivatives and is discussed later on.

The residual of the equation for the adjoint acoustic pressure on the window,
Rqac, is derived by the following development, where the sensitivity derivatives
term of the bending wave equation, eq. 3.38 , is used along with the KI expression
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for pac, eq. 2.15 ,

∫
Ts

∫
Swi

[
− 1

m′
z
δpac
δbn

+
∂JKI
∂pac

δpac
δbn

+ qac
δRpac

δbn

]
dSdt

=

∫
Ts

∫
Swi

[
− 1

m′
z
δpac
δbn

+
∂JKI
∂pac

δpac
δbn

+ qac
δpac
δbn
− qac

δ

δbn

(
1

4π

∫
Smir

gret,i n̂idS

)]
dSdt

=

∫
Ts

∫
Swi

[(
− 1

m′
z + qac +

∂JKI
∂pac

)
δpac
δbn
− qac

δ

δbn

(
1

4π

∫
Smir

gret,i n̂idS

)]
dSdt

(6.4)

The multiplier of δpac/δbn in the first term on the r.h.s. of eq. 6.4 is set to zero to
derive the equation for the adjoint acoustic pressure, qac,

Rqac = qac −
1

m′
z +

∂JKI
∂pac

= 0 (6.5)

This is the coupling equation between the interior and exterior domain, where the
adjoint deflection on the window is transformed to the adjoint acoustic pressure.
The latter is then propagated to the mirror with the adjoint Kirchhoff Integral.

The second term on the r.h.s. of eq. 6.4 is expanded as presented in section
4.4.2 and yields

−
∫
T

∫
Smir

qac
δ

δbn

(
1

4π

∫
Smir

gret,i n̂idS

)
dSdt

= −
∫
T

∫
Smir

∫
Swin

ρqac
4π

∂gret,j
∂p

δp

δbn
n̂jdSdSdt

−
∫
T

∫
Smir

∫
Swin

qac
4π

∂gret,j
∂xi

δxi
δbn

n̂jdSdSdt

−
∫
T

∫
Smir

∫
Swin

qac
4π
gret,j

δn̂jdS

δbn
dSdt (6.6)

The first term of eq. 6.6 is grouped with another surface integral expressed on
the mirror boundary, derived from the differentiation of the pressure term in the
Navier-Stokes equations,

−
∫
T

∫
Smir

∫
Swin

ρqac
4π

∂gret,j
∂p

δp

δbn
n̂jdSdSdt+

∫
T

∫
Smir

uini
δp

δbn
dSdt

=

∫
T

∫
Smir

(
uini −

∫
Swin

ρqac
4π

∂gret,i
∂p

n̂idS

)
δp

δbn
dSdt (6.7)
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To avoid computing δp/δbn, its multipliers are set to zero and the boundary con-
dition for the adjoint velocity is derived

ui =

∫
Swin

ρ

4π

[
r̂jn̂j
R2

qac +
r̂jn̂j
a0R

∂qac
∂t

]
adv

dS ni (6.8)

Note that eq. 6.8 is only a generalized form of eq. 4.58 presented in chapter 4 for
sound radiation problems. In case only JKI is considered, without taking into
account the interior part of the vehicle (thus z = 0), eq. 6.5 yields qac = −2p′ac and
eq. 6.8 takes the form of eq. 4.58 .

Finally, the second and third terms on the r.h.s. of eq. 6.6 contribute along
with terms derived from the differentiation of the Navier-Stokes equations and the
grid sensitivities to the sensitivity derivatives expression, referred to as S.D.. The
latter is practically the same with the one presented in chapter 4, section 4.4.3,
which is repeated here for the sake of completeness,

δL

δbn
=

∫
Ts

∫
SWP

{
−τaij

∂vi
∂xk

nj + ui
∂τij
∂xk

nj + q
∂vj
∂xk

nj

}
δxk
δbn

dSdt

+

∫
Ts

∫
SWP

uknkτij
δ(ninj)

δbn
dSdt

+

∫
Tof

∫
SWP

ρ

2πTof

NR∑
r=1

pr ′ac (3r̂in̂ir̂j − n̂j)
1

R3
p

∣∣∣∣
ret

δxj
δbn

dSdt

+

∫
Tof

∫
SWP

ρ

2πTof

NR∑
r=1

pr ′ac (2r̂in̂ir̂j − n̂j)
1

a0R2

∂p

∂t

∣∣∣∣
ret

δxj
δbn

dSdt

+

∫
Tof

∫
SWP

ρ

2πTof

NR∑
r=1

pr ′ac
r̂in̂i
R

(
1

R

∂p

∂xj

∣∣∣∣
ret

+
1

a0

∂2

∂t∂xj

∣∣∣∣
ret

)
δxj
δbn

dSdt

+

∫
Tof

∫
SWP

ρ

2πTof

NR∑
r=1

pr ′ac
r̂in̂ir̂j
a0R

(
1

R

∂p

∂t

∣∣∣∣
ret

+
1

a0

∂2p

∂t2

∣∣∣∣
ret

)
δxj
δbn

dSdt

+

∫
Tof

∫
SWP

ρ

2πTof

NR∑
r=1

pr ′acg
r
ret,i

δ(n̂idS)

δbn
dt

+G.S (6.9)

where G.S. is the grid sensitivity term, depending on the grid displacement model.
In case the volumetric B-splines model is used, eq. 4.44 is solved along with the
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adjoint equations, and

G.S. = −
∫

Ω

ma
i

δMi

δbn
dΩ (6.10)

In case the Laplace equations are solved to propagate the boundary movement
into the grid interior, eqs. 4.44 is solved along with the adjoint equations and

G.S. =
∂ma

i

∂xj
nj
δxi
δbn

dS (6.11)

6.2 An Overview of the Continuous Adjoint Framework for Vehicle

Aeroacoustic Optimization

This section presents an overview of the adjoint aeroacoustic framework and cov-
ers the practical aspects of its implementation. First of all, the numerical setup
for the solution of each individual step are the ones presented in chapters 3 and
5, sections 3.4 and 5.1 respectively.

Regarding the adjoint integration time, the exact mathematical formulation is
followed (approach A in chapter 5) and the primal simulation windows are used
for the adjoint solution as well; the exterior flow is simulated for TSext = 1.3s and
the sound radiation and interior domain equations for the last TSint = 0.3s. For
Jpfluc and JKI , the time window Tof = 0.3s was used whereas for Jvib and Jint
Tof = 0.3s. All objective function windows are located at the end of TSext and TSint.

The steps performed in order to assess the aeroacoustic performance of the
vehicle and compute the continuous adjoint sensitivities on the side mirror are
summarized below:

1. Solve the Navier-Stokes equations in the exterior domain, eqs. 2.2 , 2.1, 2.3,
over TSext.

2. Store the hydrodynamic pressure time-series on the mirror, p, over the last
Tof = 0.3s.

3. Using p, compute the radiated acoustic pressure, pac, on the window using
the KI, eq. 2.15 .

4. Using the acoustic load pac, solve the bending wave equation on the window,
eq. 2.16 , over TSint.

5. Using the window acceleration as input, eq. 2.23 , solve the wave equation
in the interior domain, eq. 2.22 , to compute pint, over Tof .
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6. Compute objective function Jint, over Tof .

7. Solve the adjoint wave equation, eq. 3.15 , over Tof .

8. Using qint on the window, solve the adjoint bending wave equation, eq. 3.33 ,
over Tof .

9. Compute the adjoint velocity boundary condition on the mirror, eq. 6.8 , with
qac, eq. 6.5 , over Tof .

10. Solve the adjoint Navier-Stokes, eqs. 4.23 and 4.22, over TSext.

11. Solve the adjoint grid displacement equation, eq. 4.44 or eq. 4.40 .

12. Compute the sensitivity derivatives, using expression eqs. 6.9 , using the
corresponding G.S. term, eq. 6.10 or 6.11 respectively.

It has to be noted that the presented methods for the exterior domain (solution
of Navier-Stokes equation and KI) and for the interior domain (solution of bending
wave and wave equations) are implemented in different OpenFOAM versions, due
to the fact that, at the time this thesis was conducted, versions which included
the Finite Area functionality were not compatible with the versions that included
the required libraries for the external flow analysis. Therefore, the interior and
exterior domains are examined separately, by two different processes/executables
and an additional I/O interface based on file exchange was developed. In additon,
the exterior domain is decomposed in 960 CPUs, significantly more than the 12
CPUs in which the interior domain is decomposed.

As seen in fig. 6.1, the external flow and sound radiation are firstly simulated.
The primal fields ui, ∂ui/∂t, p, νt and ∂νt/∂t are stored to be used by the adjoint
flow solver at the last step of the chain. Only instantaneous fields at 60 time
steps at the corresponding checkpointings are stored. In addition, the acoustic
pressure on the window is stored and read by the interior process at its start.

The window vibration and interior propagation are then simulated and the
interior pressure near the driver’s ear is stored. The adjoint solution in the interior
follows, using pint in the source term of the adjoint wave equation, which leads to
the computation and storing of the adjoint deflection time-series on the window.
This concludes this interior process and the second and last part of the exterior
process begins.

The stored adjoint deflection and primal flow fields are read and the adjoint
KI is used to ‘‘radiate’’ the adjoint acoustic pressure from the window to the side
mirror, in order to compute the adjoint boundary condition for ui. The adjoint
flow is then simulated and the unsteady adjoint sensitivities as well as the adjoint
grid displacement source term are integrated, according to the time windows over
which the time integrals are defined.
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Figure 6.1: Continuous adjoint framework for vehicle aeroacoustic optimization:
Flowchart of memory requirements for stored fields.
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6.3 Applications

This section presents the application of the developed continuous adjoint frame-
work to compute the aeroacoustic sensitivities that take the complete primal
aeroacoustic chain into consideration. Firstly, the side mirror of the SAE body is
optimized w.r.t. the interior pressure level. Secondly, an analysis is conducted to
investigate the influence that the optimization with regard to an objective func-
tion defined at each individual step of the primal procedure has on the objective
function defined in the interior.

6.3.1 Optimization of the Side Mirror of the SAE Vehicle Tar-

geting at Interior Pressure Level Minimization

In this section an optimization is performed taking into account all four steps
of flow-induced noise generation and propagation into the vehicle interior. The
objective function aims at reducing the interior pressure fluctuations, Jint, at a
point near the driver’s ear, as seen in fig. 3.5.

The results of the wind noise prediction process can be seen in fig. 6.2. The
strong hydrodynamic pressure fluctuations on the mirror create noise that radi-
ates to all directions and meets the side window. Its vibrational response to the
acoustic load generates, in turn, sound waves that propagate to the cabin.

Upon computation of the primal chain steps, the adjoint equations are solved,
backwards in time and in reverse order, and snapshots of the solution are pre-
sented in fig. 6.3. At the point near the driver’s ear there is a monopole source
acting, which is the input for the wave equation. The variation of the objective
function propagates in the vehicle interior and excites the window to adjoint vi-
bration. The adjoint acoustic pressure on the window, connected to its adjoint
deflection, is radiated from the side window towards the vehicle mirror, where
it contributes to the boundary condition of the adjoint velocity. The latter flows
in the external computational domain through the boundary condition on the
mirror and is convected backwards in time by the primal velocity field. By the
end of the simulation, the aeroacoustic adjoint sensitivity map is computed, as
seen in fig. 6.4(c); it indicates the optimal normal direction in which the mirror
geometry should be deformed, in order to achieve a reduction in the wind noise
transmission to the driver’s ear and thus improve the aeroacoustic performance
of the vehicle.

In fig. 6.4, sensitivity maps computed at the first optimization cycle with and
without the grid sensitivities are compared (fig. 6.4(a) and fig. 6.4(c) respectively).
To enable the plotting of the adjoint derivatives on the surface, the Laplacian equa-
tions are used as the grid displacement model. Similarly to the sensitivities for
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Figure 6.2: The continuous adjoint method for shape optimization in vehicle aeroa-
coustics: Snapshots of the wind noise prediction chain: On the left, the solution
in the exterior domain is presented. The flow in the region of focus is described
by the A-pillar and mirror vortices, here shown by the iso-surface (magenta) of
Q = 1

8

(
‖∇v − (∇v)T ‖2 − ‖∇v + (∇v)T ‖2

)
= 10−1s−2. On the right, the vibrational

response of the window is depicted. In the interior, a surface at z = 1.1m is ele-
vated based on pint values to represent the propagation of sound waves in the interior
compartment.

sound radiation presented in 4, the inclusion of grid sensitivities, eq. 6.4(b) has a
great impact on the computed sensitivities, fig. 6.4(c). As demonstrated in section
5.2, the addition of this term ensures the accuracy of the adjoint derivatives.

The wall-clock time required for each individual step is presented in table 6.1.
Comparing the times required for this simulation with table 5.1 in chapter 5, it
is observed that the solution of the adjoint Navier-Stokes equations in the case of
the complete chain has a reduced duration, compared to the solution of the same
equations where the source term is the one of the sound radiation. This occurs
because the pressure correction step required fewer steps to converge, leading to
around 25% less time per iteration.

To perform an optimization cycle, the volumetric B-Splines tool is used for
both the surface and interior mesh displacements, therefore eqs. 4.40 and 6.10
are used for the grid sensitivities. The total adjoint sensitivities are computed
for the user-defined control points and their coordinates are updated based on
steepest descent. Afterwards, the new coordinates of the surface and interior
nodes are computed with eq. 4.7 .

The displacement projected in the normal direction for the first and third opti-
mization cycle are presented in fig. 6.5. In total, a 14.1% reduction in the interior
pressure at the selected receiver was achieved. The objective function conver-
gence and the required wall-clock time for each optimization cycle is presented in
table 6.2.

The impact that the optimized geometry has on several primal fields of the
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Figure 6.3: The continuous adjoint method for shape optimization in vehicle aeroa-
coustics: Snapshots of the continuous adjoint chain in the interior. The adjoint wave
equation is solved first in the interior and the source term is a monopole at the po-
sition where the objective function is defined, here at the red spot near the driver’s
ear (left). After having propagated the adjoint solution into the interior, it reaches the
side window and excites it to adjoint vibration (right).

aeroacoustic chain is presented in fig. 6.6. First of all, a reduction of the squared
acoustic pressure fluctuation is observed. This in turns excites the side window
at a smaller magnitude and, as a consequence, the squared deflection fluctua-
tion and acceleration of the window are minimized. With a reduced vibrational
response of the window, the generated sound waves are reduced as well and the
interior pressure level computed near the driver’s ear is minimized.
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(a) Without grid sensitivities

(b) Grid sensitivities term, eq. 6.11

(c) With grid sensitivities: (a) + (b)

Figure 6.4: Interior noise reduction for the SAE body: Sensitivity maps targeting
at minimum the interior noise. Red areas must be pushed inwards whereas blue
areas must be pulled outwards in order to minimize the objective function. They
take into consideration all four steps of the aeroacoustic chain: unsteady flow, sound
radiation, window vibration, interior propagation.
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Primal Flow (hrs) 23.32
Kirchhoff Integral (hrs) 0.28

Vibration and Interior Propagation (hrs) 6.33
Adjoint Vibration and Interior Propagation (hrs) 4.41

Adjoint Kirchhoff Integral (hrs) 0.61
Adjoint Incl. Primal Recomputations (hrs) 113.81

Total Time (hrs) 148.76

Table 6.1: Wall-clock time of each step of the primal and adjoint procedure for
the complete chain. The primal and adjoint flow and KI are computed at 960 CPUs,
whereas the primal and adjoint vibration and interior propagation are computed at 12
CPUs. Time needed for data management, such as uploading/downloading to/from
the cluster, is not included.

(a) Total displacement after 1 morphing step

(b) Total displacement after 3 morphing steps

Figure 6.5: Interior noise reduction for the SAE body: Total normal displacement
after one morphing step (top) and after three (bottom). Red areas were pushed in-
wards, whereas blue areas were pulled outwards, in order to minimize the objective
function.

6.3.2 Investigation of the Impact of each Step of the Aeroa-

coustic Chain on Interior Noise

The noise prediction chain is a series of steps, where the output of each individ-
ual step is the input to the following one. Therefore, one could argue that the
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Jiter
Jbase

%
Computational
Time (days)

Baseline - 6.20
1st Iteration 11.8% 6.08
2nd Iteration 13.9% 6.80
3rd Iteration 14.1% 1.25

Total time 20.33

Table 6.2: Interior noise reduction on the SAE body: Optimization results and wall-
clock time per iteration on 960 CPUs. The primal and adjoint simulations as well as
the geometry modification were performed during the 1st and 2nd iteration and taken
into account in wall-clock time. Only the primal simulation was performed at the last
iteration in order to assess the gain in performance.

suppression of the output of one step would eventually reduce the output of the
last step. For instance, based on this rationale, performing a shape optimization
for mirror pressure fluctuation would consistently result in minimizing interior
noise.

A closer look at the KI, eq. 2.15 , indicates that the radiated pressure at a
receiver is the weighted integral of the contributions of all surface sources on the
mirror. This means that the reduction in the unweighted integral, Jpfluc, does not
necessarily translate to a reduction in the radiated acoustic pressure, unless the
pressure fluctuation magnitude of all sources reduces simultaneously.

This section investigates the influence that an optimization with regard to each
individual step of the noise prediction chain has on the interior sound pressure
level. The four noise-related objective functions expressed at different stages of
the aforementioned simulation chain were defined in chapters 3 and 4 and are
Jint, Jvib, JKI and Jpfluc. For each objective function, the respective steps, as
defined in section 6.2, are performed to compute the corresponding sensitivity
map:

• Pressure Fluctuations: Step 1 is performed and, then, Jpfluc is computed.
Afterwards, steps 9, 10, 11 and 12 are performed to compute the adjoint
sensitivity map.

• Acoustic Pressure: Steps 1,2 and 3 are performed and, then, JKI is com-
puted. Afterwards, steps 9, 10, 11 and 12 are performed to compute the
adjoint sensitivity map.

• Window Vibration: Steps 1,2,3 and 4 are performed and, then, Jvib is com-
puted. Afterwards, steps 8, 9, 10, 11 and 12 are performed to compute the
adjoint sensitivity map.

• Interior Pressure Level: All steps 1-12 are performed.
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The four computed sensitivity maps are presented in fig. 6.7. The most sensitive
areas of the mirror appear to be the upper and lower sides of the mirror neck.
This is expected since, as explained in chapter 5, these are the regions where flow
separates and, hence, strong pressure fluctuations, occur. However, in the case
presented in fig. 6.7(a), the lower side seems to be of less important for Jpfluc, since
the magnitude there is considerably smaller than at the other objective functions.
Moreover, there are significant differences on the sign of the sensitivities, where
positive (red) indicate a need for an inward displacement, whereas negative (blue)
an outward one.

To quantify the actual difference of the sensitivity maps and the corresponding
reductions in the objective functions, a single step optimization is performed.
The baseline mirror geometry is deformed at a fixed maximum displacement of
1mm once per sensitivity map and four new shapes are obtained. The geometry
displacement for each new geometry is presented in fig. 6.8, where the smooth
normal surface displacement depicts the differences more clearly.

For each new mirror geometry, the noise prediction chain is repeated and the
four objective functions at the different stages are evaluated anew. The objective
function values that each of the four new mirror geometries yields are presented
in table 6.3. Firstly, the objective function that each optimization step is actually
targeting at is reduced (diagonal of the table). However, a reduction in one step,
does not necessarily translate to a reduction in the following steps. The biggest
reduction achieved in the interior is performed indeed by targeting at the respec-
tive function, Jint. Table 6.3 demonstrates that there is not a clear correlation
between the stages of the noise prediction chain. For instance, a minimization of
the mirror pressure fluctuations does not necessarily correspond to a minimiza-
tion of the radiated acoustic pressure on the window, although this does not have
a negative impact on the interior pressure level. Therefore, the incorporation of
all four steps in the adjoint chain is important in order to guarantee a reduction
in the interior pressure level.

6.4 Conclusions

In this chapter, the continuous adjoint formulation for an existing multi-disciplinary
framework for wind noise prediction in vehicles was presented. This includes an
unsteady IDDES flow simulation to compute the hydrodynamic pressure on the
mirror, the dominant noise source that is investigated, the KI formulation to ex-
tract and radiate the acoustic components from the mirror to the vehicle side
window, a structural vibration simulation to compute the window vibration and
the interior propagation simulation, to compute the interior acoustic pressure
field.

The continuous adjoint formulations presented in chapters 3 and 4 were com-
bined to develop a multi-disciplinary adjoint framework for vehicle aeroacoustic



124 6. The Continuous Adjoint Formulation to Vehicle Aeroacoustics

Change in Objective Function

Targeted Objective Function Pressure
Fluctuations

Acoustic
Pressure

Window
Vibration

Interior
Pressure

Level
Pressure Fluctuations -14% +2% -8% -2%

Acoustic Pressure -9% -17% +13% -7%
Window Vibration -3% -5% -6% -7%

Interior Pressure Level -5% -7% -5% -12%

Table 6.3: Investigation of the influence of the noise prediction steps in vehicle
aeroacoustic adjoint optimization: Impact that a geometry change has on the four
different stages of the noise prediction chain (columns 2 to 5). Each row represents
a different mirror geometry improved with regard to the objective function defined in
column 1.

optimization. After the computation of each step of the primal and adjoint pro-
cess chains, it is possible to obtain the aeroacoustic adjoint sensitivity map on the
mirror. It takes the physics of all noise creation and transmission mechanisms
into consideration and it provides guidance to the aeroacoustic engineer for the
optimal normal deformation of the mirror that will improve the aeroacoustic per-
formance of the vehicle. It is, practically, the first time that the unsteady contin-
uous adjoint method is applied to a multi-disciplinary industrial problem of high
complexity. The aeroacoustic sensitivity map offers an alternative for engineers to
gain insight into vehicle aeroacoustics, and it can also be used in an optimization
loop, in order to iteratively find the optimal mirror shape for minimum interior
sound pressure level.

However, it must be pointed out, that the computational cost of the method
remains an issue. Although the storage of the primal field is reduced by using
checkpointing , there is still a trade-off between memory needs and computation
time. Moreover, the implementation of an objective function in the frequency
domain would also be advantageous for an aeroacoustic investigation, which is
presented in chapter 7.
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Figure 6.6: Interior noise reduction on the SAE body: Time-averaged squared fields
computed on the window for the baseline (left column) and optimized (right column)
mirror geometry. The optimized shape affects the window in a different way so that
interior pressure level computed at a point near the driver’s ear is reduced.
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(a) Minimizing pressure fluctuations, Jpfluc

(b) Minimizing acoustic pressure, JKI

(c) Minimizing window vibration, Jvib

(d) Minimizing interior pressure level, Jint

Figure 6.7: Investigation of the influence of the noise prediction steps on vehicle
aeroacoustic adjoint optimization: Sensitivity maps targeting at different objective
functions expressed at different stages of the noise prediction chain. Red areas must
be pushed inwards whereas blue areas must be pulled outwards in order to minimize
the corresponding objective function.
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(a) Minimizing pressure fluctuations, Jpfluc

(b) Minimizing acoustic pressure, JKI

(c) Minimizing window vibration, Jvib

(d) Minimizing interior pressure level, Jint

Figure 6.8: Investigation of the influence of the noise prediction steps in vehicle
aeroacoustic adjoint optimization: Geometry displacement based on sensitivity maps
targeting at different objective functions. Red areas were pushed inwards, whereas
blue areas were pulled outwards, in order to minimize the objective function.
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Chapter 7

Sensitivities in the Frequency Domain

In the previous chapters, the mirror of the SAE body was optimized with regard
to several objective functions which are related to flow-induced noise generation
and propagation to the vehicle interior. In fact, in chapter 5 the radiated acoustic
pressure on the window was reduced by 35%, whereas in chapter 6 the interior
acoustic pressure at a point near the driver’s ear was reduced by 14%. The
objective function computation and, thus, its reduction concerns the complete
frequency spectrum. Due to the fact that low frequencies have a greater energy
content, the optimization is rather biased towards lower frequencies.

The One-Third Octave Sound Pressure Level (SPL) of pint computed at a point
in the vehicle interior near the driver’s ear for the baseline and optimized mirror
geometry is presented in fig. 7.1. Although the optimization was successfull in
minimizing the overall interior pressure fluctuations, this reduction was obtained
mostly from the dominating low frequencies. More energy is contained in this
range and, therefore, a smaller change has a greater impact on the objective func-
tion. On the other hand, vehicle aeroacoustics are more relevant for a frequency
range of 800−4000Hz. In this chapter, a frequency domain approach is proposed,
so that the optimization can target specific frequency ranges.

7.1 Considered Approaches

Two approaches are considered to investigate the optimization problem in the
frequency domain. The first one decomposes the time series of the variables to
be integrated in the objective function in the frequency domain, using the Fourier
Transform, and performs the integration afterwards over a given frequency range.
The second approach uses a signal processing filter to remove unwanted frequency
components from the pressure time-series on the mirror. The rest of the primal
and adjoint chain remain unchanged, making this approach attractive in terms
of non-intrusiveness and versatility. For these practical reasons, although both

129
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Figure 7.1: Sound Pressure Level in the interior near the driver’s ear computed for
the baseline mirror geometry (red curve) and the optimized (blue) obtained in section
6.3.1.

approaches are formulated, only the signal filtering is implemented and applied
to the SAE test case.

7.1.1 Objective Function with Fourier Transform

This approach introduces an objective function in the frequency domain by trans-
forming the time signal of the considered variable with the Fourier Transform. A
suitable expression would be

JFT =

∫ fmax

fmin

∥∥Φ̂(f)
∥∥2
df =

∫ fmax

fmin

(
R2

Φ̂
+ I2

Φ̂

)
df (7.1)

where fmin and fmax are the lower and upper bounds respectively of the considered
frequency range and Φ̂(f) is the Fourier Transform of Φ(t)

Φ̂(f) =

∫ ∞
−∞

Φ(t)e−i2πftdt
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=

∫ ∞
−∞

Φ(t) cos (2πf t) dt︸ ︷︷ ︸
RΦ̂

−
∫ ∞
−∞

Φ(t) sin (2πf t) dt︸ ︷︷ ︸
IΦ̂

(7.2)

The differentiation of JFT w.r.t. bn yields

δJFT
δbn

=

∫ fmax

fmin

(
2RΦ̂

δRΦ̂

δbn
+ 2IΦ̂

δIΦ̂

δbn

)
df

=

∫ fmax

fmin

(
2RΦ̂

∫ ∞
−∞

δΦ(t)

δbn
cos (2πf t) dt+ 2IΦ̂

∫ ∞
−∞

δΦ(t)

δbn
sin (2πf t) dt

)
df

=

∫ ∞
−∞

∫ fmax

fmin

(
2RΦ̂ cos (2πf t) + 2IΦ̂ sin (2πf t)

)
df︸ ︷︷ ︸

∂JFT
∂Φ

δΦ(t)

δbn
dt (7.3)

The expansion of eq. 7.3 can now be coupled with any boundary condition or
source term of the aeroacoustic chain, as explained in chapters 3 and 4. For
instance, in case Φ is the interior pressure at a point near the driver’s ear, pint,
then eq. 7.3 is used to obtain the source term on the r.h.s. of eq. 3.15 , which
yields

∂JFT
∂pint

H(t− tof ) =

∫ fmax

fmin

(
2Rp̂int cos (2πf t) + 2Ip̂int sin (2πf t)

)
dfH(t− tof )

(7.4)

where
Rp̂int(f) =

∫ ∞
−∞

pint(t) cos (2πf t) dt (7.5)

and
Ip̂int(f) = −

∫ ∞
−∞

pint(t)sin (2πf t) dt (7.6)

This approach is objective function-dependent and must be tailored to any
defined objective function that must be computed in the frequency domain.

7.1.2 Filtering

In this approach, the signal processing method of filtering is considered and the
signal (time-series) of pressure is filtered at an early stage of the noise predic-
tion chain, in order to remove frequency components that are not relevant to the
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investigation. Therefore, once the filter is implemented, no additional code en-
hancement is required, neither for the computation of the objective function, nor
for its differentiation and the adjoint chain.

The time-domain operation that has an equivalent effect to filtering is convo-
lution [52], which combines two signals to generate a third one. If the first signal
is the acoustic signal and the second one is the impulse response of a filter, then
the result of convolution is a filtered signal.

This is expressed mathematically as

Φfilt(t) ,
∫ te

ts

Φ(τ)F (t− τ)dτ (7.7)

where F is the filter function, Φ(t) is the signal, in this thesis the time-series of
pac, and ts and te are the start and end of the signal respectively.

Moreover, the ‘‘inverted’’ signal can be defined as

Φ∗(t) , Φ(ts + te − t) = Φ(t∗) (7.8)

which is practically the signal Φ backwards, that is the time-series of Φ start-
ing at te and ending at ts. In addition, the following identity is useful for the
mathematical development that follows,

Φfilt−(t) ,
∫ te

ts

Φ(τ)F (τ − t)dτ (7.9)

Eq. 7.9 is further developed using eq. 7.8 and the substitution τ = ts + te − u

Φfilt−(t) =

∫ te

ts

Φ(τ)F (τ − t)dt

= −
∫ ts

te

Φ(ts + te − u)F (ts + te − t− u)du

=

∫ te

ts

Φ∗(u)F (t∗ − u)du

= Φ∗filt(t∗) (7.10)

The last expression on the r.h.s. of eq. 7.10 denotes the inverted outcome of the
filtering of the inverted Φ. Practically, the time-signal Φ is firstly inverted, then
filtered and then inverted again.

In the aeroacoustic framework, the variable that is filtered is the radiated
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acoustic pressure as computed with the KI and yields

pfiltac (t) =

∫
Tof

pac(τ)F (t− τ)dt (7.11)

For the solution of the bending wave equation, eq. 2.16 , the source term pload =
pfiltac is used. The following steps of the noise prediction process remain unaffected.
This time, however, they contain only the filtered frequencies that are of interest.

The influence of the filtering in the adjoint process is seen by taking eq. 3.42
into consideration, where pload = pfiltac

δLint
δbn

= −
∫
T

∫
Swi

1

m′
z(t)

δpload
δbn

(t)dSdt

= −
∫
T

∫
Swi

1

m′
z(t)

δpfiltac

δbn
(t)dSdt

= −
∫
T

∫
Swi

1

m′
z(t)

∫
T

δpac(τ)

δbn
F (t− τ)dτdSdt

= −
∫
T

∫
Swi

1

m′

(∫
T

z(t)F (t− τ)dt

)
︸ ︷︷ ︸

zfilt−

δpac
δbn

(τ)dSdτ (7.12)

where zfilt−, as shown in eq. 7.10 , is the inverted outcome of the filtering of
inverted z. Practically the time-signal of the adjoint deflection is inverted, filtered
and then inverted again, in order to be used for the adjoint KI. Substituting
eq. 7.12 in eq. 6.4 yields

∫
Ts

∫
Swi

[
− 1

m′
zfilt−

δpac
δbn

+
∂JKI
∂pac

δpac
δbn

+ qac
δRpac

δbn

]
dSdt

=

∫
Ts

∫
Swi

[(
− 1

m′
zfilt− + qac +

∂JKI
∂pac

)
δpac
δbn
− qac

δ

δbn

(
1

4π

∫
Smir

gret,i n̂idS

)]
dSdt

(7.13)

and consequently

Rqac = qac −
1

m′
zfilt− +

∂JKI
∂pac

= 0 (7.14)

In this approach, pac is filtered, in order to maintain only the frequency compo-
nents of interest. In the adjoint chain, the same filtering process is performed for
the adjoint deflection, this time backwards. The main advantage of this method
is that it is less intrusive (the filtering for both the primal and adjoint signals is
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easily added as an additional function) and thus very versatile. The primal and
adjoint process of the aeroacoustic framework remain the same.

In addition, by filtering the signal early on in the process chain, any objective
function defined afterwards can be computed for the desired frequency range
automatically, without the need for implementing the Fourier Transform.

7.2 Implementation

The implementation of a digital filter can be specified by the difference equation
[104] which is a formula for computing an output sample at time n based on past
and present input samples and past output samples in the time domain

y(n) = b0x(n) + b1x(n− 1) + · · ·+ bMx(n−M)

− a1y(n− 1)− · · · − aNx(n−N)

=
M∑
i=0

bi(x(n− 1)−
N∑
j=1

ajy(n− j) (7.15)

where x is the input signal, y is the output (filtered) signal and bi, i = 0, ...,M
and ai, i − 1, ..., N are coefficients that depend on the filter. The bi coefficients
are called feedforward coefficients whereas the ai are called feedback coefficients,
since they allow for the use of past output samples, y(n − j), a process called
feedback. A filter is called recursive or infinite-impulse-response (IIR) filter when
ai 6= 0 for some i > 0. When there is no feedback (ai = 0,∀i > 0), the filter is
called nonrecursive or finite-impulse-response (FIR) digital filter.

The Butterworth filter is used in this thesis, which is designed to have a fre-
quency response as flat as possible in the passband [20]. The feedforward and
feedback coefficients required for the filtering process, eq. 7.15 , can be computed
using any signal-processing tool, such as GNU Octave [2] or MATLAB® [1]. Al-
though this process is out of the scope of this thesis, a short description of an
algorithm that computes these coefficients follows:

1. Given the desired filter order, the poles of the normalized analog Butterworth
filter for cut-off frequency ωc = 1rad/s are firstly computed [20, 140].

2. Given the desired cut-off frequencies, the upper and lower bounds of the
desired frequency range, the poles of the analog Butterworth filter are com-
puted in the complex Laplace domain [116].

3. Using the bilinear transform, the poles are transformed from the complex
Laplace domain to the z-domain and the analog filter is converted to a digital
one [105, 87].
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4. The poles and zeros are converted to polynomials with the coefficients bi and
ai and the transfer function in the z-domain yields the general form

Y (z) =
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
X(z) (7.16)

where X(z) and Y(z) is the z-transform of the input Φ and output Φfilt signal
respectively.

7.3 Applications

In this section, the filtering process is applied to compute sensitivity maps for
several frequency ranges. Firstly, the objective function-based analysis study pre-
sented in section 6.3.2 is repeated for a frequency range between 800 − 4000Hz.
Afterwards, in order to demonstrate the influence that the selected frequency
range has on the sensitivity derivatives, the sensitivity maps for the 1/3rd fre-
quency bands in the aforementioned frequency range are computed.

7.3.1 Frequency Range 800-4000Hz

In this study, a 4th-order bandpass Butterworth filter is used to filter pac in the
range of 800 − 4000Hz. As explained in the previous section and seen in fig. 7.2,
the filtering process is performed after the KI and, correspondingly, the adjoint
filtering process is performed before the adjoint KI.

The interior SPL computed for the filtered signal is presented in fig. 7.3, where
it is seen that the amplitude at frequencies lower than 800Hz and higher than
4000Hz has significantly decreased and, thus, these do not affect the optimization.

Similarly to section 6.3.2, a sensitivity map is computed for the noise-related
objective functions defined in the previous chapters and, this time, only a specific
frequency range is considered. Since the filtering process is performed after the KI
computation, the pressure fluctuations on the mirror are not taken into account
as an objective function. Therefore, three sensitivity maps are computed targeting
at minimizing the acoustic pressure at the window, JKI in eq. 4.50 , the window
vibration, Jvib in eq. 3.22 and the interior pressure level near the driver’s ear, Jint
in eq. 3.4 .

The three computed sensitivity maps are presented in fig. 7.4. Similarly to
section 6.3.2, the mirror geometry is displaced by 1mm, fig. 7.5 and the aeroa-
coustic process is performed again. The newly computed objective functions for
each geometry are presented in table 7.1. Compared to the results of table 6.3,
obtained for the complete frequency spectrum, in this frequency range it is clearer
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Figure 7.2: Continuous adjoint framework for vehicle aeroacoustic optimization with
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Figure 7.3: Sound Pressure Level in the interior near the driver’s ear computed for
the baseline geometry, with (green curve) and without (red curve) filtering.

that the minimization of one step in the noise prediction chain does not translate
to a minimization of the steps that follow. Therefore, the incorporation of all four
steps in the adjoint chain is important in order to guarantee a reduction in the
interior pressure level.

Computed Objective Function

Targeted Objective Function Acoustic
Pressure

Window
Vibration

Interior
Pressure

Level
Acoustic Pressure -2.7% +0.1% +2%
Window Vibration +3.9% -1.8% -2.9%

Interior Pressure Level +7.0% 2.2% -5.0%

Table 7.1: Investigation of the influence of the noise prediction steps for vehicle
aeroacoustic adjoint optimization using filtering for 800-4000Hz: Impact that a ge-
ometry change has on the four different stages of the noise prediction chain (columns
2 to 4). Each row represents a different mirror geometry improved with regard to the
objective function defined in column 1.

7.3.2 One Third Octave Bands Between 800-4000Hz

This section investigates further the frequency dependency of the sensitivity maps
and how these are affected by targeting different frequency ranges. Specifically,
the desired frequency range 800− 4000Hz is divided to its third-octave frequency
bands, as presented in table 7.2. For each band, a different sensitivity map is
computed, firstly for minimizing the acoustic pressure on the window and after-
wards for minimizing interior pressure.
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(a) Minimizing acoustic pressure, JKI

(b) Minimizing window vibration, Jvib

(c) Minimizing interior pressure level, Jint

Figure 7.4: Investigation of the influence of the noise prediction steps for vehicle
aeroacoustic adjoint optimization using filtering for 800-4000Hz: Sensitivity maps
targeting at different objective functions expressed at different stages of the noise
prediction chain. Red areas must be pushed inwards whereas blue areas must be
pulled outwards in order to minimize the corresponding objective function.

Minimization of acoustic pressure on the window

In figs 7.6 and 7.7, the sensitivity maps for acoustic pressure minimization on
the window, computed for the eight one-third frequency bands in the range 800-
4000Hz are presented. In addition, the displacement according to these maps is



7.3. Applications 139

(a) Minimizing acoustic pressure, JKI

(b) Minimizing window vibration, Jvib

(c) Minimizing interior pressure level, Jint

Figure 7.5: Investigation of the influence of the noise prediction steps for vehicle
aeroacoustic adjoint optimization using filtering for 800-4000Hz: Geometry displace-
ment based on sensitivity maps targeting at different objective functions defined in
the noise prediction chain.

presented in figs 7.8 and 7.9, where the differences are more clear.

For frequencies up to 1413Hz, a sensitivity indicating an outward displace-
ment dominates the upper side of the mirror neck, whereas above this frequency
the sensitivity sign changes, apart from the downwind edge which remains the
same up to 2818Hz. Changes w.r.t. frequency ranges are stronger, on the lower
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1/3 Octave Bands
Lower Band Limit (Hz) Nominal Band Limit (Hz) Upper Band Limit (Hz)

708 800 891
891 1000 1122
1122 1250 1413
1413 1600 1778
1778 2000 2239
2239 2500 2818
2818 3150 3548
3548 4000 4467

Table 7.2: Lower, upper and nominal frequencies for one-third octave bands.

side of the mirror, where there is no easily identifiable trend. In addition, at the
last two frequency bands of the adjoint sensitivities, numerical noise is becoming
more apparent. This is due to the fact that the energy content is quite small
at these high frequencies, and the magnitude of numerical errors of the adjoint
method becomes more significant.

Minimization of interior pressure level

Similarly, in figs 7.10 and 7.11, the sensitivity maps for interior noise minimiza-
tion, computed for the eight one-third frequency bands in the range 800-4000Hz
are presented. The corresponding displacements are presented in figs 7.12 and
7.13.

A similar pattern is observed on the upper side of the mirror neck for frequency
ranges between 708-891Hz and 1122-2239Hz, where an outward displacement for
most of the upper region and an inward for the most downwind edge, are indicated
as optimal. These sensitivities are opposite from the sensitivity map computed
without filtering, presented in fig. 6.5(a). This means that the optimization in
section 6.3.1 was on the opposite direction from the optimal one required for
frequencies between 700-2000Hz. This can be actually observed in fig. 7.1, where
the baseline geometry performs better for this range than the optimal.

7.4 Conclusions

This chapter enhanced the continuous adjoint aeroacoustic framework presented
in chapter 6 with a signal filtering process in order to compute sensitivity maps
for specific frequency ranges. Specifically the Butterworth filter was utilized and
its adjoint was formulated and implemented.

Two studies were presented, both focusing in the frequency range between
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800-4000Hz which is of interest for vehicle aeroacoustic test cases. Firstly, the
influence that each step of the noise prediction chain has on interior pressure level
was investigated. It was demonstrated, both by means of sensitivity maps and by
a one-step morphing of the mirror geometry, that the minimization of an objective
function early in the aeroacoustic process does not translate to a reduction in the
interior pressure level. This lack of correlation between the several steps was more
obvious in the aforementioned frequency range than in the complete frequency
spectrum, presented in chapter 6.

Moreover, the proposed continuous adjoint method was applied to compute
a sensitivity map for each one-third frequency band in the range 800-4000Hz,
for two objective functions, JKI and Jint. This study demonstrated that, for both
objective functions, each frequency band required a different change in the mirror
surface geometry. Therefore, the reduction in the interior pressure level for an ex-
tended frequency range can practically be seen as a multi-objective optimization,
where different frequencies may compete with each other.
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(a) Frequency Range: 708 Hz - 891 Hz

(b) Frequency Range: 891 Hz - 1122 Hz

(c) Frequency Range: 1122 Hz - 1413 Hz

(d) Frequency Range: 1413 Hz - 1778 Hz

Figure 7.6: Minimization of acoustic pressure on the vehicle’s window: Sensitivity
maps computed for different one-third octave frequency bands.



7.4. Conclusions 143

(a) Frequency Range: 1778 Hz - 2239 Hz

(b) Frequency Range: 2239 Hz - 2818 Hz

(c) Frequency Range: 2818 Hz - 3548 Hz

(d) Frequency Range: 3548 Hz - 4467 Hz

Figure 7.7: Minimization of acoustic pressure on the vehicle’s window: Sensitivity
maps computed for different one-third octave frequency bands.
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(a) Frequency Range: 708 Hz - 891 Hz

(b) Frequency Range: 891 Hz - 1122 Hz

(c) Frequency Range: 1122 Hz - 1413 Hz

(d) Frequency Range: 1413 Hz - 1778 Hz

Figure 7.8: Minimization of acoustic pressure on the vehicle’s window: Geometry
displacement based on sensitivity maps computed for different one-third octave fre-
quency bands.
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(a) Frequency Range: 1778 Hz - 2239 Hz

(b) Frequency Range: 2239 Hz - 2818 Hz

(c) Frequency Range: 2818 Hz - 3548 Hz

(d) Frequency Range: 3548 Hz - 4467 Hz

Figure 7.9: Minimization of acoustic pressure on the vehicle’s window: Geometry
displacement based on sensitivity maps computed for different one-third octave fre-
quency bands.
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(a) Frequency Range: 708 Hz - 891 Hz

(b) Frequency Range: 891 Hz - 1122 Hz

(c) Frequency Range: 1122 Hz - 1413 Hz

(d) Frequency Range: 1413 Hz - 1778 Hz

Figure 7.10: Targeting at minimization of interior acoustic pressure near driver’s
ear: Sensitivity maps computed for different one-third octave frequency bands.
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(a) Frequency Range: 1778 Hz - 2239 Hz

(b) Frequency Range: 2239 Hz - 2818 Hz

(c) Frequency Range: 2818 Hz - 3548 Hz

(d) Frequency Range: 3548 Hz - 4467 Hz

Figure 7.11: Targeting at minimization of interior acoustic pressure near driver’s
ear: Sensitivity maps computed for different one-third octave frequency bands.
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(a) Frequency Range: 708 Hz - 891 Hz

(b) Frequency Range: 891 Hz - 1122 Hz

(c) Frequency Range: 1122 Hz - 1413 Hz

(d) Frequency Range: 1413 Hz - 1778 Hz

Figure 7.12: Targeting at minimization of interior acoustic pressure near driver’s ear:
Geometry displacement based on sensitivity maps computed for different one-third
octave frequency bands.
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(a) Frequency Range: 1778 Hz - 2239 Hz

(b) Frequency Range: 2239 Hz - 2818 Hz

(c) Frequency Range: 2818 Hz - 3548 Hz

(d) Frequency Range: 3548 Hz - 4467 Hz

Figure 7.13: Targeting at minimization of interior acoustic pressure near driver’s ear:
Geometry displacement based on sensitivity maps computed for different one-third
octave frequency bands.



150 7. Sensitivities in the Frequency Domain



Chapter 8

Closure-Conclusions

This doctoral thesis aimed at formulating and developing the continuous adjoint
method to an existing framework for automotive aeroacoustics. The program-
ming of the proposed method was carried out using the open-source CFD toolbox
OpenFOAM© and was applied to minimize the wind noise transmission into the
interior of the SAE body, a generic vehicle. In the next paragraphs, the presented
developments and the conclusions drawn in each chapter are summarized.

In Chapter 2, the constituent parts of the noise prediction chain for vehicle
aeroacoustics were presented. The equations governing the physical mechanisms
of noise creation and transmission to the interior as well as their coupling were
described. These were the starting point for the continuous adjoint development
in the following chapters. In order to demonstrate the accuracy of the primal
analysis and to give an overview of the challenges faced at aeroacoustic design,
the results of the experimental validation of the aforementioned process performed
by Kabat vel Job [68] were summarized here with kind permission of Volkswagen
Group Research.

To formulate the continuous adjoint method, the aforementioned framework
was split in two domains; the exterior domain includes the flow-induced noise
generation and radiation to the window whereas the interior domain includes the
vibroacoustic model for window vibration and interior wave propagation. These
systems were firstly examined separately and were afterwards coupled to propose
the continuous adjoint chain for vehicle aeroacoustic optimization.

In Chapter 3, the adjoint to the vibroacoustic model was developed. Here,
the adjoint wave and bending wave equations, their boundary and initial condi-
tions, their coupling and the sensitivity derivatives (SD) expression were derived.
The SD expression on the window w.r.t. input pressure load can be either used
directly if there is an analytical expression of the load or used to couple the vi-
broacoustic model to the external flow simulation, where the input pressure load
is computed. It was demonstrated that in order to ensure the accuracy of the SD
expression/coupling term on the side window, its discretization must be derived

151
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based on a discrete adjoint perspective, in this thesis with hand-differentiation.
Specifically, the source term of the bending wave equation, namely the pressure
load obtained by the CFD solution, is expressed at the CFD time steps which
do not coincide to those of the bending wave solution. The differentiation of this
term contributes to the SD/coupling term on the window and using an ordinary
discretization scheme neglects several time steps of the adjoint deflection, becom-
ing so prone to numerical errors. The interior propagation and window deflection
were firstly verified separately against Finite Differences (FD), using a synthetic
wave as an input, parameterized by its amplitude. Afterwards the adjoint coupled
vibroacoustic model was verified against FD, using the aforementioned synthetic
wave as an input and also using an actual acoustic pressure field, computed with
CFD/CAA. In all cases, the adjoint gradients showed a very good agreement with
the FD and the adjoint vibroacoustic model can be coupled to any simulation
chain that computes the exterior flow and sound radiation to the window.

In Chapter 4, the continuous adjoint method was formulated for the Navier-
Stokes equations and the Kirchhoff Integral acoustic analogy. The unsteady ad-
joint Navier-Stokes equations, their boundary and initial conditions and the ad-
joint Kirchhoff Integral were derived. In order to take the impact of interior grid
node displacement into account, grid displacement models were incorporated in
the mathematical development. This gave rise to the adjoint grid displacement
equations (aGDE) as well as a Grid Sensitivity (GS) term. Two different displace-
ment models were considered in this thesis. The first model is based on volumetric
B-Splines to displace the geometry and the interior grid nodes whereas the sec-
ond one uses the Laplace equations to propagate an already computed geometry
displacement into the grid interior. The former results in an algebraic adjoint grid
displacement equation, similar to the primal one, and in a field integral SD term.
In this case, the computation of the aGDE and the GS term are performed in a
straightforward manner, since grid sensitivities are computed analytically with
the volumetric B-Splines model. However, since the GS term is a field term, the
visualization of the grid sensitivities with a sensitivity map is not possible. The
Laplace equation on the other hand results in an Poisson aGDE. Since the GS
term is expressed as a surface integral along the parameterized surface, it can be
visualized with a sensitivity map so this approach proved to be advantageous for
various investigations that followed in the thesis.

Chapter 4 also laid emphasis upon the time window Ts over which the sim-
ulation is performed and the time window Tof over which the objective function
is evaluated. These do not necessarily coincide which is reflected on the ad-
joint boundary condition along the noise radiating body as well as on the time
integration of the sensitivity derivatives. It was demonstrated in chapter 5 that,
in order for the adjoint gradients to be consistent with the primal problem, the
adjoint equations must not be integrated only along Tof . The adjoint boundary
conditions that depend on the objective function are imposed during Tof and, af-
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terwards, are set to zero for the remaining time, while the magnitude of the adjoint
fields decays. A comparative study by means of sensitivity maps on the mirror of
the SAE body targeting at minimizing flow-induced noise radiation at the vehicle’s
window showed that solving the adjoint equations only for Tof computes different
gradient values which do not guarantee to solve the same optimization problem.

Chapter 5 focused on the verification of the proposed adjoint method for flow-
induced sound radiation. Due to the fact that for long and turbulent flow sim-
ulations it is difficult to compute converged and, thus, accurate FD, a simpler
test case was selected that investigates the turbulent flow around a 3D cylinder.
Firstly, the differentiated geometric terms of the Kirchhoff Integral were verified
against FD by perturbing the design variables while keeping the flow ‘‘frozen’’ and
showed an excellent agreement. Afterwards, the flow SD were verified against FD
targeting at minimizing pressure fluctuations on the cylinder as well as radiated
acoustic pressure at receivers placed around the cylinder. In both cases, the
adjoint SD showed a very good agreement with the FD. In addition, the signifi-
cance if incorporating the grid displacement model in the adjoint formulation was
demonstrated. The proposed method was then applied to optimize the mirror of
the SAE body so as to reduce the radiated acoustic pressure on its side window.
Three optimization cycles were performed and the obtained optimized shape of
the mirror was displaced by a maximum of 2.6mm. The objective function, the
time average of the squared sound pressure at the vehicle’s side window, was
minimized by 35%.

After the development of the continuous adjoint method to the interior and
exterior domain, Chapter 6 coupled the two domains to present the adjoint aeroa-
coustic chain to efficiently compute the aeroacoustic sensitivity map on the side
mirror of vehicles; it indicates the optimal normal direction in which the mirror
geometry should be deformed, in order to achieve a reduction in the wind noise
transmission to the driver’s ear and thus improve the aeroacoustic performance
of the vehicle. The proposed adjoint aeroacoustic framework was used to optimize
the side mirror of the SAE body and, after three optimization cycles, yielded a
14.1% reduction in the interior SPL. Afterwards, an investigation into the influence
that an optimization with regard to each individual step of the noise prediction
chain has on the interior sound pressure level was conducted. Four noise-related
objective functions expressed at different stages of the aforementioned simulation
chain were used, targeting at minimizing

1. pressure fluctuations on the side mirror
2. acoustic pressure fluctuations on the side window
3. window deflection
4. interior pressure fluctuations near the driver’s ear.

A sensitivity map was computed for each of these objective functions and the
baseline geometry was modified based on these maps, yielding four new geome-



154 8. Closure-Conclusions

tries. The steps of the aeroacoustic framework were simulated again for each one
of new geometries to compute the new objective function value at each step. It was
observed that a reduction in one step, did not necessarily translate to a reduction
in the following steps meaning that is not a clear correlation between the stages
of the noise prediction chain. Consequently, the incorporation of all four steps
in the adjoint chain is important in order to guarantee a reduction in the interior
pressure level.

The aforementioned 14% reduction in interior noise achieved in Chapter 6
concerned the complete frequency spectrum. Due to the fact that low frequen-
cies have a greater energy content, the optimization is rather biased towards
those. Since vehicle aeroacoustics are more relevant for a frequency range of
800 − 4000Hz, Chapter 7 proposed a frequency domain approach, so that the
optimization can target at specific frequency ranges. A Butterworth filter was
implemented at an early stage of the noise prediction chain in order to maintain
only the frequency components of interest. Therefore, no additional code enhance-
ment is required, neither for the computation of the objective function, nor for its
differentiation and the adjoint chain. The influence that each step of the noise
prediction chain has on interior pressure level was investigated, this time focus-
ing only on the frequency range 800− 4000Hz. It was demonstrated that the lack
of correlation between the several steps was more obvious in the aforementioned
frequency range than in the complete frequency spectrum, presented in chapter 6.
Finally, the proposed continuous adjoint method was applied to compute a sensi-
tivity map for each one-third frequency band in the range 800-4000Hz, targeting
at minimizing acoustic pressure at the SAE body’s side window and its interior.
It was shown that each frequency band required a different change in the mirror
surface geometry. Therefore, the reduction of interior pressure level for an ex-
tended frequency range can be practically seen as a multi-objective optimization,
where different frequencies may conflict with each other.

8.1 Novel Contributions

This PhD thesis has several novelties and findings. The main contributions are
summarized below:

• Formulation, development and verification of the continuous adjoint method
for an aeroacoustic prediction process which consists of an unsteady IDDES
flow simulation and the Kirchhoff Integral method for sound propagation.
This method was succesfully applied to a large scale problem investigating
the flow-induced sound radiation from the side mirror of the SAE vehicle to
its side window.

• Formulation, development and verification of the continuous adjoint method
for a vibroacoustic model which consists of the bending wave and wave equa-
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tions, used to predict the pressure-excited window vibration of a traveling
vehicle and the interior propagation of sound waves.

• Development of a continuous adjoint framework for vehicle aeroacoustic op-
timization. It is the first time in the literature that aeroacoustic sensitivity
maps are computed in automotive applications. These take all physical
mechanisms of noise generation and transmission into account and are a
powerful tool that provides an insight to the aeroacoustic engineers and
designers into potential geometry modifications that can improve the aeroa-
coustic performance of a vehicle.

• The impact of the time windows over which the adjoint simulation is per-
formed and the unsteady adjoint sensitivities are integrated have on the
consistency of the computed sensitivities w.r.t. the primal procedure was
demonstrated here for the first time in the literature of the unsteady adjoint
method.

• The significance of incorporating grid displacement models in the mathemat-
ical formulation of the continuous adjoint method for aeroacoustic shape
optimization problems was demonstrated.

• Development and implementation of the adjoint to the Butterworth filter.
This enabled a straightforward way to compute sensitivity derivatives for
specific frequency ranges. An alternative way would be to include the
Fourier Transform in a time-domain objective function. The mathematical
formulation and its differentiation were also presented in this thesis.

• Regarding vehicle aeroacoustics, it was demonstrated that there is no direct
correlation between the four steps of the noise prediction chain. This means
that, for instance, minimizing pressure fluctuations on the mirror will not
necessarily result in a reduction of interior SPL. Therefore, during aeroa-
coustic design the complete aeroacoustic framework must be considered.

8.2 Publications, Talks & Seminars

Journal publications, conference papers and seminar talks resulted, thus far,
from the research carried out in this thesis are listed below:

• C.S. Kapellos, E.M. Papoutsis-Kiachagias, K.C. Giannakoglou and M. Hart-
mann, ‘‘The unsteady continuous adjoint method for minimizing flow-induced
sound radiation’’, Journal of Computational Physics, Volume 392, 1 Septem-
ber 2019, Pages 368-384
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• C.S. Kapellos and M. Hartmann, ‘‘A Continuous Adjoint Framework for Vehi-
cle Aeroacoustic Optimization’’, Internoise Conference, 25-29 August 2018,
Chicago, USA

• C.S. Kapellos, ‘‘Aeroacoustic optimization by means of sensitivity maps’’, Ger-
man OpenFOAM User Meeting, February 2018, Braunschweig, Germany

• C.S. Kapellos, ‘‘Adjoint Theory & Solver in OpenFOAM’’, German OpenFOAM
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interior noise reduction’’, ECCOMAS Congress, June 2016, Crete, Greece
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ried out during this thesis in the field of adjoint optimization and parameterization
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Design and Applications, Volume 16, Issue 4, Pages 703-719, 2019

• D. Agarwal, T. Robinson, C. Armstrong and C. Kapellos, ‘‘Enhancing CAD-
based shape optimization by automatically updating the CAD model’s pa-
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• C. Kapellos, P. Alexias and E. De Villers, ‘‘Das Adjungiertenverfahren in
der Fahrzeugoptimierung unter Verwendung eines Sphärizität-basierten Mor-
phers’’, ‘‘The adjoint method for automotive optimisation using a Sphericity
based morpher’’, NAFEMS CFD Seminar, October 2016, Wiesbaden

• D. Agarwal, C. Kapellos, T. Robinson, C. Armstrong, ‘‘Parametric CAD model
based shape optimization using adjoint functions’’, 11th ASMO UK/ ISSMO/
NOED2016, July 2016, Munich, Germany

• C.S. Kapellos, I.S. Kavvadias, E.M. Papoutsis-Kiachagias and K.C. Gian-
nakoglou, ‘‘A contribution to the unsteady continuous adjoint method for the
optimization of jet-based flow control systems’’, EUROGEN 2015, September
2015, Glasgow, UK
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8.3 Future Work

• The proposed adjoint aeroacoustic framework can be applied to several ve-
hicle geometries, together with wind tunnel experiments, in order to extract
more information regarding noise creation mechanisms. In addition, the
synergy of the adjoint method with a noise source localization method [36]
may prove to be useful.

• Several approaches have been proposed to minimize the excessive compu-
tational cost of the unsteady adjoint method, either by compressing the pri-
mal time-series needed for the adjoint method [136, 111], or by increasing
computational time but reducing memory requirements [109], or by solving
the unsteady equation forward in time [107]. However, none of these has
reached the maturity to be applied to large-scale problems. Therefore, large
memory requirements and the long simulation times of the unsteady adjoint
method remain a challenge that must be addressed.

• The proposed adjoint method for flow-induced sound radiation problems can
be extended to sound pollution problems from motorways to the surrounding
enviroment. The design variables of such a problem would be the design of
noise-absorbing structures or the integration of vegetation (trees etc.).

• The development of the adjoint vibroacoustic model enables the investiga-
tion into optimizing cabin components in order to suppress interior noise
propagation. Feasibility studies for active noise control systems in vehicle
interior, for example in the form of actuators on the window to cancel out
the propagating bending waves, can be now conducted.
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Appendix A

Turbulent flow around a 3D Cylinder,
Re=500

In chapter 5, a simpler test case was used in order to verify the adjoint derivatives,
due to the less computational time it required. In this case, the turbulent flow
around an isolated 3D cylinder and the flow-induced sound radiation is investi-
gated.

The Reynolds number based on the cylinder diameter D = 0.1m is ReD = 500;
in this case, the wake exhibits fully turbulent behavior for a cylinder spanwise
length greater than π diameters [69]. In the case presented in this PhD thesis, the
spanwise length of the cylinder is 4D, with a far-field distance of the flow domain
15D and symmetry planes at the cylinder’s edges.

A.1 Grid independence study

A grid independence study on the selection of a fine enough O-type structured
grid is conducted at first, see table A.1. The time step is 5 · 10−3s and yields
a Courant number between 0.3 and 0.7, the latter obtained on the finest grid.
After the initial transient phase, 40 periods in total are considered to compute the
mean and Root Mean Square (RMS) values of the drag and lift coefficients, table
A.1. The resulting shedding frequency is about 0.3Hz, fig. A.1, and the Strouhal
number about 0.214, which both belong into the experimental range according to
[78] and [125]. The sound radiation from the cylinder is computed over the same
40 periods and the directivity pattern at 120 receivers placed at a distance of 15D
on the Z-plane crossing the middle of the cylinder is shown in fig. A.1.

From table A.1 and fig. A.1 it is clear that the aerodynamic coefficient values as
well as the sound radiation computed for Grid 2 are comparable to those computed
over the finer Grids 3 and 4, at a smaller computational cost though. Therefore,
Grid 2 is used in chapter 5 for the adjoint verification through comparisons with
FD.
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Grid Nodes
(circum.× radial × span)

Cells
Number y+ cD

RMS
cD

RMS
cL

Grid 1 152 × 125 × 40 760K 0.127 1.216 0.037 0.381
Grid 2 208 × 165 × 40 1373K 0.099 1.197 0.052 0.345
Grid 3 318 × 247 × 40 3082K 0.066 1.206 0.039 0.350
Grid 4 318 × 247 × 60 4624K 0.063 1.204 0.047 0.330

Table A.1: Turbulent flow around a 3D cylinder at ReD = 500, grid independence
study.
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Figure A.1: Turbulent flow around a 3D cylinder at ReD = 500, grid independence
study: Comparison among the different grids (as in table A.1) examined for the drag
(top-left) and lift (top-right) coefficient spectra and directivity patterns (bottom-right)
at 120 receivers placed at a distance of 15D on the Z-plane crossing the middle of the
cylinder span (dark squares, bottom-left).
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