
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Low-Cost Metamodel-Assisted Evolutionary Algorithms with
Application in Shape Optimization in Fluid Dynamics

PhD Thesis

Dimitrios H. Kapsoulis

Supervisor: Kyriakos C. Giannakoglou
Professor NTUA

Athens, 2019

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Low-Cost Metamodel-Assisted Evolutionary Algorithms with
Application in Shape Optimization in Fluid Dynamics

PhD Thesis

Dimitrios H. Kapsoulis

Examination Committee:

1. Kyriakos C. Giannakoglou* (Supervisor), Professor, NTUA,
School of Mechanical Engineering

2. Nikolaos Lagaros*, Associate Professor, Dean, NTUA,
School of Civil Engineering

3. Andreas Boudouvis*, Professor, NTUA,
School of Chemical Engineering

4. Konstantinos Mathioudakis, Professor, NTUA,
School of Mechanical Engineering

5. Dimitrios Bouris, Associate Professor, NTUA,
School of Mechanical Engineering

6. Athanasios Tolis, Associate Professor, NTUA
School of Mechanical Engineering

7. Ioannis Nikolos, Professor, Technical University of Crete
School of Production Engineering & Management

*Member of the Advisory Committee.

Athens, 2019

iii

Abstract
The scope of this PhD is to propose, develop and assess several upgrades

to existing shape optimization methods based on Evolutionary Algorithms (EAs).
The efficiency of the proposed improvements is demonstrated in a number of real-
world applications in the field of fluid mechanics (aerodynamic, hydrodynamics
and turbomachinery) which are associated with computationally expensive eval-
uation software. They noticeably reduce the computational cost of optimization
compared to the available (background) methods, which are still based on EAs
enhanced by metamodels (Metamodel-Assisted EAs or MAEAs) and distributed
search. Metamodels, mainly Radial Basis Function networks, are on-line trained
personalized surrogate evaluation models, meaning that a local metamodel is
trained for the pre-evaluation of each new individual generated during the evolu-
tion. This is in contrast to the common use of off-line trained metamodels widely
used by other relevant methods. Parallelization, in the form of concurrent evalu-
ations of the candidate solutions on the multi-processor platform of the Parallel
CFD & Optimization Unit (PCOpt) of the Lab of Thermal Turbomachines of the
NTUA is an indispensable feature of the proposed method variants. All develop-
ments have been made in the generic optimization platform EASY (Evolutionary
Algorithm SYstem) developed by the PCOpt/NTUA. In all but one optimization
problems, the problem-specific model to evaluate the candidate solutions is the
GPU-enabled CFD solver PUMA developed by the same group. Only in the case of
the optimization of the valveless diaphragm micropump, a different in-house CFD
tool based on the cut-cell method is used instead.

The most important contributions of this thesis are listed below:
a) The use of Principal Component Analysis (PCA) to assist the EAs during

the evolution. In this thesis, the Kernel PCA is used and is shown to provide
better results compared to the Linear PCA used so far. In each generation of
the EA, the PCA performs an eigendecomposion of the offspring population. The
resulting eigenvectors define a new feature space, which the population members
are transformed into; the evolution operators are applied in the feature space in
which they perform optimally. Moreover, the PCA assists the MAEAs. Metamodels
are only trained on the most important variables (directions in the feature space)
indicated by the PCA, while the rest are safely truncated, as these generate noise
at the predictions. The metamodels are trained with transformed by the PCA
patterns, with truncated design variables, leading to reduced training cost and
more dependable predictions. The two-fold usage of PCA drives the EA-based
search in a much better way.

b) A PCA-based Hybrid Algorithm aiming at maximum efficiency in Multi-
Objective Optimization (MOO). This hybrid method combines the advantages of EA
and Gradient-Based (GB) optimization. The EA explores the design space while the
GB method regularly upgrades the most promising solutions. The required gradi-
ents of the objective functions with respect to the design variables are efficiently

iv

computed with the continuous adjoint method developed and programmed in the
PCOpt/NTUA, at a cost which is independent of the number of design variables.
In MOO, the direction along which the GB method updates the selected individ-
uals is of outmost importance. Herein, the Linear PCA computes the principal
components of the objective space by processing the objective function values of
individuals forming the current front of non-dominated solutions. The principal
component (direction) corresponding to the minimum variance is perpendicular to
the current front and points towards the direction of the simultaneous improve-
ment of all objective functions, so this is used for the GB refinement. The proposed
hybrid method performs better than the non-hybridized EA-based search.

c) Multi-Criteria Decision Making (MCDM) within EAs to account for the De-
cision Maker’s (DM) preferences during the evolution. In contrast to standard
multi-objective EAs which may insufficiently populate the preferred area(s) of the
objective space, more non-dominated solutions are now driven towards them. This
is achieved by using the MCDM Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), which affects the parent selection and the non-dominated
front trimming operators.

d) Flow prediction with Deep Neural Networks (DNNs) to assist the design/op-
timization of aerodynamic shapes. Trained on databases of CFD simulations,
DNNs learn to predict the flow field around/inside these bodies, such as airfoils,
wings and turbomachinery cascades. In this thesis, inputs and outputs are pro-
cessed as images, in 2D cases, or raw data, in 3D cases. The DNNs are validated
on new shapes and their ability to replicate the CFD results with high precision
and low computational cost is demonstrated. The DNNs are employed as off-line
trained metamodels during the EA-based search, in contrast to the on-line trained
metamodels used in the aforementioned MAEAs.

The background and the aforementioned methods can work synergistically
or separately to improve the performance of EA-based optimization methods as
it is demonstrated in two groups of CFD applications. The first group consists
of some "standard" CFD-based optimization problems, the so-called benchmark
cases. Each time a new variant is presented, these are revisited. By doing so, the
reader should clearly assess the improvement offered by the proposed method. In
a separate chapter of this thesis, a number of industrial cases are presented and
optimized with the most efficient methods presented. These include the shape
optimization of : (a) an Aircraft Wing-Body Configuration, (b) the DrivAer Car,
(c) an Ultra-light Aircraft, (d) a Francis Runner and (e) a Valveless Diaphragm
Micropump.

Keywords: Evolutionary Algorithms, Multi-Objective Optimization, Metamod-
els, Kernel Principal Component Analysis, Hybrid Optimization, Multi-Criteria
Decision Making, Gradient-Based Optimization, Deep Neural Networks, Compu-
tational Fluid Dynamics.

Acknowledgements

I would like to express my gratitude towards all those who supported me dur-
ing my PhD thesis, especially my supervisor Professor K. Giannakoglou, School
of Mechanical Engineering, National Technical University of Athens (NTUA), for
giving me the opportunity to carry out my diploma and PhD thesis under his su-
pervision. I feel honored to have been involved in the research activities of the
Parallel CFD & Optimization Unit (PCOpt) of NTUA and to have contributed to the
enrichment of its computational tools and methods. I wish to express my warm
and sincere gratitude towards him, for his guidance and support over the last 6
years, for the patience and time he devoted throughout our cooperation, including
his thorough corrections on this text and all papers published within those years.

Next, I would like to thank the other two members of the three-member Ad-
visory Committee, Professor at NTUA, A. Boudouvis and Assistant Professor at
NTUA, N. Lagaros, for the confidence they have bestowed upon me in trusting me
with this dissertation, their apt observations on this work and their suggestions
regarding its presentation.

I am also grateful towards the members of the research group, Dr. Var-
vara Asouti, Dr. Konstantinos Tsiakas, Dr. Xenofon Trompoukis, Konstantinos
Samouchos, Dr. Evangelos Papoutsis-Kechagias, and to all the others I have been
fortunate to collaborate with. They have contributed to the pleasant and friendly
atmosphere and cooperation that prevailed daily. I would in particullar like to
especially thank Dr. Varvara Asouti with whom I have worked closely throughout
my work at PCOpt/NTUA. She has always been by my side, ready to provide me
with all the knowledge needed for the completion of this thesis. I want to thank
her warmly for all the time and support she has offered me. Furthermore, I would
like to thank Dr. Konstantinos Tsiakas and Dr. Xenofon Trompoukis for their
continuous assistance on any problem I encountered during my thesis.

At this point, I also have to mention the funding sources that supported parts
of my thesis (a) the project "Design-Optimization of Diaphragm Pumps under Op-
erational and Manufacturing Uncertainties based on the Cut-Cell and the Poly-
nomial Chaos Methods" (MIS 5004541), implemented under the Action "Support-
ing Researchers with an Emphasis on Young Researchers", in the context of the
call EDBM34, funded by the Operational Programme "Human Resource Devel-
opment, Education and Lifelong Learning" (NSRF 20142020), (b) the European
project RBF4AERO, "Innovative benchmark technology for aircraft design and ef-
ficient design phase optimization", Grant Agreement 605396, FP7 and (c) other
projects running in the PCOpt/NTUA, such as a project funded by TITAN Cement
Company and a recent one funded by Toyota Motor on Deep Neural Netwrorks.

Last but not least, I would like to thank my family and all the friends who
encouraged and supported me during my PhD thesis.

Contents

Contents i

1 Optimization in Engineering Applications - EAs & Other Optimiza-
tion Methods 1
1.1 Developement of EAs in the PCOpt/NTUA 2
1.2 Development of Gradient-based Optimization Methods in the PCOp-

t/NTUA . 4
1.3 EAs-based Optimization and Parallel Processing 6
1.4 Thesis’ Contributions . 7

2 Evolutionary Algorithms 9
2.1 Definition of the Optimization Problem 9
2.2 Overview of EAs . 11
2.3 The Evolutionary Algorithm SYstem (EASY) 13

2.3.1 The (µ, λ) EA . 13
2.3.2 Evolution Operators . 15
2.3.3 MOO in EASY . 21
2.3.4 Constrained Optimization . 23
2.3.5 Metamodel-Assisted Evolutionary Algorithms (MAEAs) 24
2.3.6 Distributed EAs . 31
2.3.7 Hierarchical EAs . 32

2.4 Benchmark Cases . 33
2.4.1 Benchmark Case 1: Shape Optimization of an Isolated Airfoil

for max. Lift Coefficient . 34
2.4.2 Benchmark Case 2: Shape Optimization of a Transonic Wing

for max. Lift and min. Drag Coefficient 36
2.4.3 Benchmark Case 3: Optimization of a Three-Element Airfoil for

max. Lift Coefficient and min. Moment Coefficient 40
2.4.4 Benchmark Case 4: Optimization of a 2D compressor for max.

Flow Turning and min. Losses 43

3 Principal Component Analysis 49
3.1 Curses of Engineering Optimization Problems 50
3.2 Basics of the Principal Component Analysis 53

i

ii Contents

3.3 EA with PCA-driven Evolution Operators 58
3.3.1 PCA-Driven Crossover . 58
3.3.2 PCA-Driven Mutation . 62

3.4 EAs with PCA-Truncated Metamodels 63
3.5 Mathematical Optimization Problems 66

3.5.1 Demonstration of EA(L) and EA(K) Performance 68
3.5.2 Demonstration of M(L)AEA(L) and M(K)AEA(K) Performance . . 70

3.6 Benchmark Cases Revisited . 72
3.6.1 Benchmark Case 1 . 73
3.6.2 Benchmark Case 2 . 74
3.6.3 Benchmark Case 3 . 74
3.6.4 Benchmark Case 4 . 76

4 PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods 79
4.1 SPEA2-based Hybrid Optimization Algorithm. 81
4.2 The PCA-Assisted Hybrid Algorithm, in detail 82
4.3 Benchmark Cases Revisited . 85

4.3.1 Benchmark Case 1 as a Three-Objective Problem 88
4.3.2 Benchmark Case 2 . 88
4.3.3 Benchmark Case 3 . 89

5 Multi-Criteria Decision Making within EAs 93
5.1 MCDM Techniques . 94

5.1.1 The TOPSIS Technique . 95
5.1.2 TOPSIS-driven EAs . 96

5.2 Applications . 99
5.2.1 Benchmark Case 1 with two objectives 99
5.2.2 Benchmark Case 2 . 99

6 Industrial Optimization Problems 103
6.1 Industrial Case 1: Shape Optimization of an Aircraft Wing-Body Con-

figuration . 104
6.2 Industrial Case 2: Shape Optimization of the DrivAer Car 108
6.3 Industrial Case 3: Shape Optimization of an Ultra-light Aircraft . . . 112
6.4 Industrial Case 4: Shape Optimization of a Francis Runner 115
6.5 Industrial Case 5: Optimization of a Valveless Diaphragm Micropump117

7 Flow Prediction using Deep Neural Networks 127
7.1 Basics of DNNs . 129

7.1.1 Basic DNN Mathematics and the Back-Propagation Algorithm . 132
7.2 Gradient-Based Optimization for DNN training 134
7.3 Network Architecture . 136

7.3.1 Convolutional Neural Networks 136
7.3.1.1 Convolution Layer . 137

Contents iii

7.3.1.2 Pooling Layer . 139
7.3.2 Encoding-Decoding CNNs . 139

7.4 Applications in Aerodynamic Cases 142
7.5 Flow Prediction around an Isolated Airfoil 144
7.6 Transonic Flow Prediction around an Isolated Wing 145

7.6.1 Optimization Assisted by a DNN 147
7.7 Transonic Flow Prediction around an Aircraft Wing-Body Configuration149

8 Conclusions 155
8.1 Future Work . 158

Bibliography 159

iv Contents

Chapter 1

Optimization in Engineering Applications -
EAs & Other Optimization Methods

Practically, in all branches of engineering, any design of devices and operations is
susceptible to optimization. Civil engineering requires the design of more robust
buildings, bridges, etc. with less materials. Electrical engineers wish to design
computers and integrated circuits consuming less energy while performing faster.
Engineers wish to design faster cars and airplanes consuming less fuel. For so
many years, engineers were optimizing designs by trial-and-error or experience-
based methods. However, recent advances in computing have made numerical
optimization the dominant (most efficient and most effective) way to design prod-
ucts. Even though the optimization methods developed and assessed in this
thesis may fit to any engineering sector, shape optimization problems in aerody-
namic/fluid mechanics are exclusively exposed. These problems are associated
with a Computational Fluid Dynamics (CFD) software which simulates the flow by
solving the governing flow equations. The post-processing of the CFD simulations
computes the objective and constraint functions values for the problem in hand.
The evaluation of a candidate solution is costly even on modern multi-processor
systems equipped with many CPUs and/or GPUs.

During the last two decades, Evolutionary Algorithms (EAs) successfully pen-
etrated into the industries and have widely been used to solve a variety of op-
timization problems. In general, they can reach global optima and can easily
accommodate any black-box problem specific model (PSM) without extra pain.
They can handle both Single-Objective (SOO) and Multi-Objective (MOO) Opti-
mization problem, being ideal for computing Pareto fronts of non-dominated so-
lutions. They can also handle problems with any number of constraints. Over
and above, they can easily be parallelized by performing simultaneous evalua-
tions on multiprocessor systems. Their main drawback is that they likely need
an excessive amount of calls to the PSM (i.e. the CFD software) resulting in high
overall optimization cost. The cost becomes higher in problems with many design

1

2 1. Optimization in Engineering Applications - EAs & Other Optimization Methods

variables, which is the case in a great number of modern engineering problems.
Moreover, some characteristics of the problem in hand, such as the fact that the
objective functions are rarely separable (the optimization of a separable problem
is much easier) and the possible existence of many local optima within the search
domain, further increase the optimization cost. This thesis focuses on methods
which assist EAs to reduce their overall cost. Before, however, presenting material
developed in this thesis, an overview of similar developments proposed by the Par-
allel Computational Fluid Dynamics & Optimization Unit of NTUA (PCOpt/NTUA),
in the past, is necessary.

1.1 Developement of EAs in the PCOpt/NTUA

An overview of previous PhD theses on EAs which have been carried out in the
PCOpt Unit of NTUA follows.

Giotis’ thesis (2003) [57] developed a unified and generalized formulation of
an EA for SOO and MOO problems. This EA keeps and constantly updates three
population sets (offspring, parent and elite populations) and combines evolution
operators and variables encoding techniques borrowed by Genetic Algorithms and
Evolutionary Strategies. In [59, 52, 93], for the first time in the history of EAs,
the dynamic cooperation of the PSM with a metamodel or surrogate model, (Arti-
ficial Neural Networks, ANNs, in specific) for the pre-evaluation of the candidate
solutions was proposed to reduce the optimization cost. The new feature of this
search algorithm, to be referred to as Metamodel-Assisted EA (MAEA), was the
implementation of on-line trained metamodels, instead of off-line trained ones, as
other researchers used to do by that time. At the beginning of each generation, the
Inexact Pre-Evaluation, which will hereafter be referred to as the Low-Cost Pre-
Evaluation (LCPE), of all individuals belonging to the current offspring population
takes place and, subsequently, only the few most promising of them are evaluated
on the PSM. Metamodels are trained on the fly before each pre-evaluation to keep
training cost negligible and increase predictive capabilities. Further improvement
of the metamodel prediction capabilities was achieved by introducing importance
factors for every design variable in order to identify noisy or less important ones
and downgrade their role during the training. The elapsed or optimization wall-
clock time was also reduced using parallel processing with open message passing
protocols (primarily PVM, being the standard protocol, by that time). Paralleliza-
tion was based on the concurrent evaluations of offspring within the same gen-
eration. The benefits of the combination of metamodels, parallel processing and
EAs was demonstrated in 2D airfoils and axial compressor blade airfoil shape
optimization cases, using the ancestor of the CFD code used in the present thesis
as evaluation tool. Giotis’ PhD thesis concluded by the first release of the EASY
optimization platform [49] which was the basis of (also, upgraded during) most of
the next PhD theses.

1.1. Developement of EAs in the PCOpt/NTUA 3

Karakasis’ thesis (2006) [91, 93, 92, 94] was mainly focused on how EAs or
MAEAs can efficiently solve MOO problems. One of the most important outcome
of this thesis was that the updated MAEA performed equally well for both SOO
and MOO problems. The use of metamodels with high generalization ability, the
careful selection of training patterns and the detection and special treatment of
outliers, for which the accuracy of the performance prediction becomes question-
able, improve the gain from the LCPE phase. The Radial Basis Function (RBF) net-
works, used as metamodels, were enhanced by techniques for the self-organizing
selection of centres. The LCPE phase was extended to Distributed EAs (DEAs)
in [93], according to a many-island model, with the aim of both improved design
space exploration and efficient use of parallel processing systems. The availabil-
ity of more than one evaluation tools, i.e. CFD solvers with different accuracy
and computational cost, gave rise to Distributed Hierarchical EAs (DHEAs). In
a two-level configuration, the low-level islands, by performing evaluations on the
low-cost CFD tool, undertake the exploration of the design space and forward
promising individuals to the high-level islands, utilizing the high-cost CFD tool,
in order for them to be further evolved. The proposed methods offered a reduction
in the computational cost by roughly one order of magnitude in comparison with
standard EAs, without compromising the exploration effectiveness.

The third EA-oriented PhD thesis (Kampolis, 2009) [77, 81, 82, 55, 78, 117] up-
graded the multilevel algorithm of the DHEA. Each level was associated with (a) an
evaluation tool, (b) a search technique and/or (c) a parameterization scheme. On
each level, the multilevel evaluation scheme resorted to different evaluation tools,
the multilevel parameterization handles problem variants with different numbers
of degrees of freedom (coarse and fine) and the multilevel search employed differ-
ent optimization methods (gradient-based and bio-inspired heuristics). Support
Vectors Machines (SVMs) [65] were used to classify the candidate solution as
feasible or non-feasible, in constrained optimization problems. The metamodels,
RBF and Multi-Layer Perceptrons were trained on individuals that exclusively re-
side within the feasible region of the design space. A new class of metamodels,
able to take both objective functions and their gradients into account was pro-
posed; these possess superior generalization abilities, compared to conventional
metamodels. Lastly, three types of multiprocessing for the aforementioned algo-
rithms were tried: (a) the concurrent evolution of each level (and all demes within
each level) using threads, (b) the concurrent evaluation of more than one candi-
date solutions during the evolution of the multilevel algorithm and (c) the parallel
execution of the evaluation software of each candidate solution.

Later on, Kyriacou’s thesis (2014) [112], funded by the EU project "HYDROACTION-
Development and laboratory testing of improved action and Matrix hydro turbines
designed by advanced analysis and optimization tools" was implemented partially
in NTUA and Andritz Hydro Linz, and contributed to the even greater penetration
of EASY into a turbomachinery industry. This thesis’ main contribution was the

4 1. Optimization in Engineering Applications - EAs & Other Optimization Methods

introduction of the Principal Component Analysis (PCA) within an EA or MAEA.
The linear variant of the PCA assisted the EAs or MAEAs, during the application
of evolution operators and the training phase of metamodels. Kyriacou’s thesis
prepared the ground for the present thesis, in this respect, a central part of which
is the use of the Kernel variant of PCA, for similar purposes. The PCA is also
used in different ways to improve the EAs performance, as shown in the following
chapters.

Lastly, three other relevant theses from the PCOpt/NTUA should be reported;
though not exclusively focused on EAs, they significantly contributed to them and
the further development of the EASY platform. In Asouti’s thesis (2009) [5, 6, 8],
a new way for increasing the parallel efficiency of EAs or MAEAs was proposed.
The proposed Asynchronous EAs (AEAs) or MAEAs (AMAEAs) [5] operates with
a number of strongly interconnected demes, the structure of which determines
the communication between demes and the implementation of evolution opera-
tors. The lack of generations removes synchronization problems and allows the
maximum utilization of all available processors. Georgopoulou’s thesis (2009)
[47, 45, 43, 46, 44] proposed the so-called Metamodel-Assisted Memetic Algo-
rithm (MAMA). Memetic algorithms (MA) are hybrid optimization algorithms that
combine global and local search, aiming at improving the quality of promising
candidate solutions. The proposed MAMA combined MAs with metamodels which
undertake a dual role: pre-evaluation of the MA population during the global
search and approximation of the objective functions gradients during the gradient-
based refinement of promising solutions. Finally, Kontoleontos’ PhD thesis (2012)
[105, 106] focused, among other, on the combined use of an Asynchronous Evo-
lutionary Algorithm (AEA) together with a gradient-based method, giving rise to
a new asynchronous metamodel-assisted memetic algorithm (AMAMA). In MOO
problems solved using MAs, a new scheme for the gradient computation, ac-
cording to which the adjoint equations are solved only once, instead of as many
times as the objectives, was proposed in order to further reduce the CPU cost.
This scheme is based on the synthesis of the objectives into a scalar function,
scaled by properly computed coefficients. The developed method was used to op-
timize energy production systems, such as geothermal power plants and a ground
source heat pump system. From all the aforementioned methods improving the
EA performance, only the hierarchical and asynchronous search methods are not
revisited, updated or utilized, in this thesis.

1.2 Development of Gradient-based Optimization Methods in

the PCOpt/NTUA

A brief review of gradient-based optimization methods follows, to complete the
picture of optimization methods developed by the PCOpt/NTUA Unit and which
are used, even partially, in this thesis. A part of this thesis is about the hybridiza-

1.2. Development of Gradient-based Optimization Methods in the PCOpt/NTUA 5

tion of EAs and gradient-based methods, in aerodynamic shape optimization, by
profiting of the (continuous) adjoint methods also developed by the same group.
In contrast to EAs, the gradient-based methods require less computational cost
but may be entrapped into local optima(um). So, a hybrid optimization algorithm
combining and coordinating both methods presents great advantages.

During the last years, the PCOpt/NTUA Unit was/is developing adjoint-based
methods for computing first- and higher-order derivatives of objective functions
used in aerodynamic optimization. The computational cost for computing the
gradient of a function is more or less equal to that of solving the flow PDEs
and independent of the number of optimization/design variables. Both discrete
and continuous adjoint approaches have been developed on the in-house GPU-
enabled CFD solver named PUMA, the OpenFOAM flow solver and the in-house
CFD solver based on the cut-cell method. In this thesis, PUMA [173, 9, 172] de-
veloped during Trompoukis’ and Tsiakas’ theses [174, 171], provide the required
derivatives for the hybrid algorithm presented in a different chapter. The cut-cell
CFD solver developed during Samouchos’ thesis [150] provides the derivatives in
the optimization of a valveless diaphragm micropump presented in chapter 6. In
Zervogiannis’ thesis [182], the discrete adjoint method was developed. Till re-
cently, two different mathematical approaches were available for the continuous
adjoint method. The first one, developed in Papadimitriou’s PhD thesis [58], ex-
presses the gradient in terms of only boundary/surface integrals (surface integral
or SI adjoint). It is computationally cheap but, as shown later, depending on the
grid, may compute inexact gradients. The second one expresses the gradient in
terms of both surface and field integrals (Field Integral or FI adjoint); it is accurate,
though computationally much more expensive. A new enhanced surface integral
formulation (E-SI) assisted by the adjoint to a grid displacement model, which is
both accurate and cheap as it is free of volume integrals, has been recently pro-
posed in Kavvadias’ PhD [96, 97]. Usually, in the literature, "frozen turbulence"
(assuming that turbulent quantities remain unaffected by the changed optimiza-
tion shape) is employed along with the continuous adjoint method. In Zymaris’
thesis [187, 131], the turbulence model equations were differentiated for the first
time in continuous adjoint, showing that the "frozen turbulence" assumption can
lead to even wrongly signed sensitivities. In the sake of completeness, it must
be reported that the PCOpt/NTUA Unit contributed to CFD-based optimizations
in three subjects: (a) the efficient but flexible and automatic parameterization of
arbitrary shapes, (b) the development of ’back-to-CAD’ processes to deliver the
optimized geometries in CAD-compatible formats and (c) the imposition of design
constraints.

6 1. Optimization in Engineering Applications - EAs & Other Optimization Methods

1.3 EAs-based Optimization and Parallel Processing

During the aerodynamic shape optimization problems this thesis is dealing with,
each evaluation may cost even more than a day, on a single computing unit
(typical example is the analysis of 3D turbulent flows, around or in complex
geometries). Even if the evaluation tool runs in parallel on many computing units,
the evaluation cost may rise up to several hours. Thus, it is important for the
optimization method to be susceptible to parallelization. Fortunately, this is the
case for EAs, since their population members can simultaneously be evaluated
on different computing units. The parallelization is applied without modifying
the evaluation tool. Practically, in computationally demanding problems with
small cost of transferring files which might be necessary for the evaluation, it
may induce ideal parallel performance (linear cost reduction). This occurs only
if the available computing units are continuously fed with population member to
be evaluated. To this end, for an aerodynamic optimization problem solved using
EAs, the calls to the evaluation tool are parallelized and the evaluation (PSM or
CFD) tool is also executed in parallel on different computing units, reducing as
much as possible the wall-clock time of the optimization.

During this thesis, the majority of the performed optimizations are large scale
ones and, thus, computationally demanding. For this reason, these have been
performed on the "VELOS" platform of the PCOpt/NTUA Unit which comprises two
clusters with 72 Teraflop computing power in total. The clusters are composed
by a number of computing units (nodes) communicating via the TCP/IP proto-
col. The first cluster has 70 CPU computing nodes and the second one has 10
Graphics Processing Units (GPUs) computing nodes based on NVIDIA cards. The
necessary services required for communication and data storage are handled by
two dedicated servers, with the Network Information Service (NIS, holding the nec-
essary user information) and Network File System Service (NFS, for file sharing).
The computationally consuming numerical simulations employ the MPI protocol,
according to the MIMD (Multiple Instruction Multiple Data) model. Parallel pro-
cessing with the SIMT (Single Instruction Multiple Thread) model is performed on
GPUs.

All the following optimizations take advantage of both the EA and CFD solver’s
parallelization. The CFD solver, used during the whole thesis and described briefly
in chapter 2.4, is GPU-enabled and runs in parallel on the PCOpt/NTUA GPU
cluster. Regarding the EAs, during each generation, the evaluation of population
members is carried out in parallel since each of them runs on a different GPU unit
and/or node. The gain in performance due to the parallelization is not included
that much during the presentation of results since relevant new contributions or
developments are rather limited. Nevertheless, parallelization is implicit within
this thesis.

1.4. Thesis’ Contributions 7

1.4 Thesis’ Contributions

A short overview of this PhD thesis’ contributions follows:
1) Kernel PCA driven EAs and MAEAs: The PCA is incorporated into EAs and

MAEAs to reduce their computational cost, particularly in complex problems with
many design variables. By extending the method proposed in Kyriacou’s thesis
[112], the Kernel (instead of the Linear) variant of the PCA transforms the initial
design space into a new feature space, in which the unknowns are as separable
as possible. The evolution operators perform optimally in this separable feature
space improving the optimization convergence speed. Moreover, the metamodels
efficiency remains very high even in problems with many design variables. The
PCA, used as a dimensionality reduction tool, decreases the input units of the
patterns the metamodels are trained on, leading to lower training cost and better
prediction ability.

2) PCA-Assisted Hybrid Optimization Algorithm: A PCA-Assisted hybrid op-
timization algorithm which combines the EAs for the exploration of the design
space and gradient-based methods for the exploitation of the obtained informa-
tion is proposed for solving MOO problems. During the optimization, all the EAs
population members evolve through the application of the standard evolution op-
erators, apart from a few most promising individuals which are updated using
the gradient-based method. The required gradients of the objective functions are
computed by the continuous adjoint method. In MOO problem, the individuals to
be updated using the gradient should improve the front of non-dominated solu-
tions by descending along the so-called Pareto Advancement Direction (PAD); the
latter is computed by appropriately concatenating the gradients of all the objective
functions. It should also be "perpendicular" to the current front, to achieve the
simultaneous minimization of all the objectives. The hybrid algorithm proposed in
Kampolis’ PhD [77] was computing the PAD based on the SPEA method. Herein,
the Linear PCA method computes the PAD, making the algorithm independent
from the Strength Pareto Evolutionary Algorithm (SPEA) method [185].

3) Multi-Criteria Decision Making assisting EAs: Multi-Criteria Decision Mak-
ing (MCDM) techniques are introduced into the EA used in MOO problems. After
the EAs optimization, the Pareto front is usually presented to the Decision Maker
(DM), who, based on some not previously articulated preferences and MCDM
techniques, selects the most appropriate among the computed non-dominated
solutions. In this thesis, without loss of generality, the TOPSIS [72] technique is
used. TOPSIS may assist EAs either ’a-posteriori’ (when the DM’s preferences are
known after the EAs termination) or ’a-priori’ (preferences known before running
the optimization). In the former, TOPSIS is applied on the computed front of non-
dominated solutions to select the preferred solution while, in the latter, it guides
the evolution and computed fronts in the preferred areas of the objective space.

4) Flow Prediction using Deep Neural Networks: Herein, specifically modified

8 1. Optimization in Engineering Applications - EAs & Other Optimization Methods

networks, based on the Deep Neural Networks (DNN), are utilized to predict the
flow field around aerodynamic bodies. The purpose of this study is to build
surrogate evaluation models able to replicate the expensive CFD tools with low
evaluation cost during design/analysis procedures or optimizations. The DNNs
are trained on a database of CFD solutions and, then, can predict the flow field
around newly presented designs, such as airfoils and wings. Convolutional Neural
Networks, a DNNs sub-category, are mainly utilized due to their ability to handle
large amount of data. They are also flexible with architectures easily adjusted
to each case in hand. Regarding the flow field representation, two methods are
used. The first one (recommended for 2D cases) is based on images which are
given as inputs and outputs and are handled optimally by the DNNs. The second
one (recommended for 3D cases) expresses the inputs and outputs as raw data,
making it possible to handle of 3D flow fields. Studies of flows around airfoils,
wings and in turbomachinery cascades are performed.

The aforementioned methods are demonstrated in a number of benchmark
and industrial aerodynamic shape optimization problems, which rely on a GPU-
enabled in-house CFD solver for the flow simulations. Only a single industrial
case studied is using the in-house CFD solver based on the cut-cell method.

Chapter 2

Evolutionary Algorithms (EAs)

2.1 Definition of the Optimization Problem

An optimization problem with Mo objective functions to be minimized (cast into
the objective functions vector ~f) and Mc constraints (~c) is defined as:

min~f(~b) = (f1(~b), . . . , fMo(~b)) ∈ RMo (2.1.1)

subject to ck(~b) ≤ 0, k = 1,Mc (2.1.2)

where~b ∈ RN (N is the number of design variables) is the vector of design variables
or design vector. The design variables determine the design space restricted by
the vectors of upper and lower bounds ~U, ~L. Note that, in this PhD thesis, all
optimization problems are expressed as minimization problems.

In contrast to a SOO, which handles only one objective, in MOO, the EA has to
handle a vector of objective functions values (objective vector ~f). There are several
techniques available in the literature [124, 19, 20] to transform the objective vec-
tor to a scalar utility value. Among them, the most commonly used techniques,
such as the SPEA and NSGA, likely in their most recent forms [185, 184, 186, 25],
transform the objective function values into a single value by using either weights
or criteria based on distances and/or ranking. In this PhD thesis, techniques
based on the Pareto dominance criteria [183] are exploited for solving MOO prob-
lems. Some basic definitions regarding Pareto dominance follow:

Weak Pareto Dominance: Individual ~b1 weakly dominates individual ~b2 (~b1 4
~b2) if and only if ~f(~b1) is partially less than ~f(~b2), i.e.

~b1 4 ~b2 ⇔ (∀i ∈ [1,Mo] : ~fi(~b
1) ≤ ~fi(~b

2)) ∧ (∃ ~fi(~b1) < ~fi(~b
2)), ~b,~b1 ∈ [~L, ~U](2.1.3)

Strong Pareto Dominance: Individual ~b1 strongly dominates ~b2 (~b1 ≺ ~b2) if

9

10 2. Evolutionary Algorithms

and only if ~f(~b1) is less than ~f(~b2), i.e.

~b1 ≺ ~b2 ⇔ (∀i ∈ [1,Mo] : ~fi(~b
1) < ~fi(~b

2)), ~b,~b1 ∈ [~L, ~U] (2.1.4)

Pareto Optimality: Individual ~b1 is a Pareto optimal individual if and only if
there is no other ~b that dominates it, i.e.

@~b : ~b ≺ ~b1, ~b,~b1 ∈ [~L, ~U] (2.1.5)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

f 2

f1

b-1

Figure 2.1: Pareto dominance in a two-objective minimization problem. Pareto opti-
mal individuals are marked with filled circles to distinguish them from the dominated
ones plotted as empty circles. A Pareto optimal individual~b1 dominates all individuals
inside the grey box.

Fig. 2.1 gives a schematic representation of the Pareto optimality in a two-
objective minimization problem (min. f1 and min. f2). Engineering optimization
problems must also satisfy constraints which divide the objective space into feasi-
ble and infeasible regions. Many methods have been developed for EAs to handle
constraints. Some of them are adding a penalty to the objective function values
whenever constraints are violated [24, 125]. Others are adjusting the surviving

2.2. Overview of EAs 11

possibility of individuals in the infeasible area of the objective space by adapting
appropriately the evolution operators [135]. Alternatively, constraints can also be
handled as extra objective functions to be minimized [166]. As described in sec-
tion 2.3.4, this PhD thesis uses penalty functions in all constrained optimization
problems.

2.2 Overview of EAs

Several stochastic optimization methods are based on the Darwin’s theory of evo-
lution regarding the origin of species [23]. Over the years, many variants, which
herein are generally referred to as Evolutionary Algorithms (EAs) [123], have been
devised and used for all kinds of optimization problems. Industrial use of EAs
has been increasing due to the increasing power and availability of modern High-
Performance Computers (HPCs). EAs combined with existing evaluation tools can
efficiently be used as industrial design tools. In all the aerodynamic shape opti-
mization problems presented in this PhD thesis, solved using EAs, the evaluation
tool or problem-specific model (PSM) is a Computational Fluid Dynamics (CFD)
solver/software. The overall optimization time/cost needed by the EAs to solve
a CFD-based optimization problem is the cost of a single call to the CFD solver
times the number of evaluations required to obtain the optimal solution. Note
that EAs have the option of running evaluations in parallel, leading to a reduction
in the optimization wall clock time with the same CPU cost, though.

During mid-50’s, Friedberg, Bremermann and Box laid the ground for EAs as
problem solving techniques. EAs were used by Bremermann [14] to solve numer-
ical (linear, convex) optimization problems including systems of nonlinear equa-
tions. Box [12, 13] initiated the industrial use of EAs for optimizing both processes
and productivity. After these first steps, three broad categories of EAs came up;
these are known as Evolutionary Programming (EP) (an ancestor of EP, created
by Friedberg [39, 40]), Evolutionary Strategies (ES) and Genetic Algorithms (GA).

During mid-60’s, Fogel [35, 36, 38] developed the first EP, based on machine
learning tasks by means of finite-state machines (FSM). FSM is a mathematical
model for computations. It can be in exactly one of a finite number of states at
any given time. External inputs (similar to the design variables) can change the
FSM’s state, causing a transition. The optimization method proposed by Fogel
was an algorithm evolving with the objective to predict the optimal time series
of the phenomenon under consideration. During a generation of EP, parents are
selected among the previous generation offspring based on their fitness values and
new offspring are created by randomly mutating the parents. Problems regarding
predictioning models, automatic control and pattern recognition were successfully
optimized using EP. Later on, EP was extended and applied in problems with
continuous functions and real-valued design vectors. A self-adaptive EP including
mutation variance in the evolution was proposed in [37]. Currently, EP is a wide

12 2. Evolutionary Algorithms

evolutionary computing dialect with no fixed structure or representation, thus it
could hardly be distinguished from ES.

The ES were firstly developed in 1965 by Renchenberg [138], using discrete,
binomially distributed mutation, a single offspring and a single parent per gener-
ation. Later, both Renchenberg [139] and Schwefel [158] upgraded ES by utilizing
two evolution operators, namely mutation and recombination. The mutation op-
erator is performed by adding a normally distributed random value to the design
variables, represented with real values. The most popular ES is the covariance
matrix adaptation ES (CMA-ES) [64], which introduced the recombination op-
erator and proved useful for solving non-separable optimization problems. The
addition of recombination led to the multi-membered ES with µ parents and λ
offspring, referred to as a (µ, λ) ES.

In 1962, Holland proposed the GA [71, 70] as an evolution emulating tool for
better understanding adaptive systems. Adaptive systems are capable of modify-
ing their response according to the interactions with their surrounding environ-
ment. Holland ideas were based on the well known genetic operators, such as
mutation, crossover/recombination and inversion. The evolving design variables
were represented as binary strings, similar to the genetics genome (genes). This
binary representation was the main difference between ES and GA.

The establishment of EAs in the scientific community allowed the develop-
ment of Genetic Programming (GP). GP was used to encode computer programs
as sets of genes and evaluate their fitness in performing a predefined task. These
computer programs were evolved using GP-based logic so as to perform best on
the given task. Cramer [22] introduced the "tree-based" GP, which was further
improved by Koza [107]. In this "tree-based" GP, computer programs are rep-
resented as tree structures where each node is an operator function and each
terminal node an operand. This representation offers easy application of the
mutation and recombination operators. Replacing nodes at random practically
stands for the mutation operator, whereas exchanging nodes among individuals
stands for recombination one.

The standard EA is based on all the aforementioned methods by taking and
combining some of their characteristics. Basically, EA is a generalized GA and ES;
an EA becomes GA or ES by properly configuring it. An EA handles populations, in
which each member/individual represents a candidate solution. The individuals
genes are encoded using binary or real coding. Each individual is associated with
a fitness value. Populations are updated via the application of evolution operators.
Among other, these include parent selection, crossover, mutation and elitism. The
continuing evolution of the populations leads to the optimal solution(s). Standard
textbooks on EAs are the books of Goldberg [60] and Michalewitz [122].

This thesis mainly focuses on the (µ, λ) EA [57, 91, 77, 5, 112], which is a gen-
eralized scheme able to represent both GA and ES. The (µ, λ) EA is a population-
based algorithm which evolves individuals based on their fitness. The latter

2.3. The Evolutionary Algorithm SYstem (EASY) 13

stands for the ability of each individual to survive in a given environment and
is determined by its objective function value(s). Three populations are handled
in each generation, namely the elite, parent and offspring populations. In each
generation, parents are generated via the parent selection and elitism operators
applied to the offspring and elite populations of the previous generation. Then,
parents generate offspring via the application of crossover and mutation. In each
generation, the elite population holds the fittest individuals found thus far during
the evolution.

EAs have the advantage of being able to find the global optimum(a) with a
finite number of calls to the PSM. The PSM can be any ready-to-use software,
which takes the values of the design variables as input and returns the objective
function values as output. Any software (even a commercial one) can be used
as a black-box tool for the EA, without having access to its source code. On the
other hand, relatively many calls to the PSM are required for the EA to converge
to the global optimum(a). As a result, the optimization turn-around time/cost
can be prohibitively large for industrial use. This is the case with the CFD-based
optimization problems this PhD thesis is dealing with. Several methods have
been proposed as a remedy to this problem giving rise to different variants of EAs
[48, 32, 73].

2.3 The Evolutionary Algorithm SYstem (EASY)

The EASY platform [91, 77, 57] is the basic software for the development and
application of all the methods presented in this PhD thesis. EASY is a generic op-
timization platform with many different optimization algorithms. EASY supports
MAEAs with different metamodel types depending on the way they are trained.
Other methods to enhance EAs, such as distributed, asynchronous and hierar-
chical EAs (possibly combined together), are available in the platform; they are
analysed in the following sections. EASY is also Grid/Cluster-computing enabled
and can perform parallel evaluations in different High Performance Computers
[91]. A detailed analysis of the (µ, λ) EA applied in EASY, which consists the
standard EA within this thesis, is described below.

2.3.1 The (µ, λ) EA

The implemented (µ, λ) EA handles three different populations in each generation,
namely the offspring P g

λ population with λ individuals, the parent P g
µ population

with µ individuals and the elite P g
e population with ε individuals. Superscript g

stands for the generation counter. Design variables can be encoded in binary,
binary Gray or real. Each coding is associated with its own evolution operators.
The basic nomenclature of the standard EA is presented in table 2.1.

The standard (µ, λ) EA performs the following steps:

14 2. Evolutionary Algorithms

Number of design variables N
Number of objective functions Mo

Number of constraints Mc

Design vector ~b

Objective vector ~f
Utility function φ

Constraint vector ~c
Generation counter g
Number of offspring λ
Number of parents µ
Number of elites ε

Offspring population P g
λ

Parent population P g
µ

Elite population P g
e

Table 2.1: Standard EA parameters and terminology.

Initialization: First generation (g= 0). The offspring population P 0
λ is initialized

using a random number generator (RNG). This generator creates design
vectors with values within the user-defined lower (~L) and upper (~U) bound
for each design variables. An RNG seed is used to "warm up" the generator,
different seeds can lead to different initializations and, thus, conclude to
different convergence histories of the optimization runs. Moreover, the user
may inject a number of design vectors (the current design to be optimized
or other well performing individuals he/she might have access to, for any
reason) to initialize (part or whole) population with predefined design vectors.

Evaluation: All offspring (P g
λ) are evaluated on the possibly, expensive, PSM,

so as to pair the design vector (~b ∈ RN) with the corresponding objective
vector (~f ∈ RMo). The evaluated individuals are stored in a database (DB)
to avoid repeating the same evaluation if, in a subsequent generation, the
same individual comes up. Evaluation is by far the most time consuming
part of the algorithm, especially when the PSM is a CFD solver, which is the
case in this PhD thesis.

Fitness Assignment: A utility function φ is assigned to each individual ~b∈P g
λ ∪

P g
µ ∪ P g

e . In SOO, φ is equal to the objective function value (f). In MOO, φ
is computed based on a scalar utility function defined by Pareto dominance
techniques, section 2.3.3.

Elite Selection: The elite set of the current generation (P g
e) is formed from the

non-dominated individuals of P g
λ ∪P g−1

e . If these exceed than the predefined
(user-defined) maximum number ε, then a trimming process selects and

2.3. The Evolutionary Algorithm SYstem (EASY) 15

retains ε of them based (usually) on Pareto front thinning criteria.

Elitism Operator: The few best (in terms of the objective functions) elite individ-
uals replace some offspring in P g

λ .

Parent Selection: The parent population P g
µ is formed via the P g

λ ∪ P g−1
µ individ-

uals. The selection is based on their fitness value; fitter individuals have
greater probability to be selected as parents. Parent selection is symbolically
presented as P g

µ = S(P g−1
µ , P g

λ).

Crossover Operator: The new offspring population P g+1
λ is created by the crossover

operator applied to the parent population P g
µ . The operator is used λ times

per generation, one for each offspring individual. ρ(≥2) parents are selected
with a certain probability (lower fitness value leads to a higher probability)
and their genotypes/ design variables are combined in different ways (see
section 2.3.2) to produce a new offspring.

Mutation Operator: New offspring undergo mutation with a user-defined small
probability. The mutation operator is interfering with the design variables
of the individuals by slightly changing them (see section 2.3.2).

Stopping Criteria: Stopping criteria, such as the number of total evaluations on
the PSM/generations and/or the maximum allowed number of idle evalua-
tions are checked. In case these are not yet met, the algorithm returns to
the Evaluation step.

2.3.2 Evolution Operators

As mentioned before, the evolution operators used by EASY are the elitism, parent
selection, crossover and mutation, which are discussed below.

Elitism: The application of elitism guarantees the monotonic convergence of the
evolution over the generations. The elite population P g

e maintained in EASY
also guarantees that the best solutions found are retained. Elitism promotes
a certain (user-defined) number of elites to the offspring population P g

λ by
removing the worst individuals found in it.

Parent Selection: The parent selection operator generates new parents P g
µ by

selecting individuals from the P g−1
µ ∪ P g

λ populations. The most common
parent selection techniques are:

Proportional Selection: All the available individuals of P g−1
µ ∪ P g

λ are as-
sociated with a probability to become parent, which is proportional to
their fitness value φ. Smaller φ corresponds to greater selection proba-
bility. Then, a roulette wheel is formed by pairing each individual with

16 2. Evolutionary Algorithms

one slot, the angular width of which is proportional to the individual’s
selection probability. To select µ parents, µ turns of the roulette wheel
are performed.

Linear Ranking: The individuals of P g−1
µ ∪ P g

λ are sorted based on their φ
values. The probability of selecting one of them is based on its rank in
a linear manner.

Probabilistic Tournament Selection: In this technique [61], ρ different in-
dividuals are randomly selected from P g−1

µ ∪ P g
λ . The best individual

among them is selected as a parent based on a user-defined probabil-
ity, otherwise another randomly selected individual becomes a parent.
This process is repeated µ times. ρ is a user-defined parameter, typi-
cally equal to 2 or 3, and the tournament probability (for selecting the
best individual as parent) is suggested to be greater than 80%.

Crossover: Crossover is the most basic operator since the introduction of EAs.
Its purpose is to appropriately combine parents to yield offspring having an
increased probability to perform better than its parents. Many crossover
schemes [151, 152, 165] have been proposed over the years with their main
classification depending on the design variables coding.

If binary coding is used, then crossover exchanges bits of binary strings
(binary representation of the design vector) among the parents so as to pro-
duce the new offspring. The EASY platform is equipped with the following
crossover operators for binary coding:

One-Point Crossover: The binary string of the parents is divided into ρ−1
parts with the same number of digits, when the one-point crossover is
to be applied. From the P g

µ population, ρ parents are selected and they
form ρ−1 pairs (1, 2), (1, 3), . . . , (1, ρ), all of them containing the first
parent. A random integer defines the crossover point which divides the
parents into two parts. Each offspring is formed by combining the one
(left) part of the first parental string and the second (right) part of the
other parent, according to the pairing. A three-parent example (ρ= 3)
is shown in fig. 2.2.

Two-Point Crossover: This scheme is similar to the one-point scheme, the
only difference being the use of two crossover points. A three-parent
example (ρ=3) is shown in fig. 2.3.

One- or Two-Point Per Design Variable Crossover: The one- and two-point
schemes are applied to the parts of the binary string corresponding to
each design variable, separately.

The real coding crossover schemes are applied directly to the design vari-
ables (real values). The EASY platform is equipped with the following real
coding crossover operators:

2.3. The Evolutionary Algorithm SYstem (EASY) 17

1 0 1 1 0 1 0 1 1 1

0 0 1 1 1 0 0 1 0 1

1 0 1 0 0 0 1 0 1 0

1 0 1 1 1 1 0 0 1 0

1 0 1 1 0

0 0 1 1 1

1 0 1 1 1

0 1 0 1 0

1st Part 2nd Part

Parents

Offspring

Crossover Point 1 Crossover Point 2

Figure 2.2: One-Point Crossover for binary coding with ρ=3. Parents’ binary strings
are divided into two parts. The offspring is constructed by parts of the split parents.

One- or Two-Point Crossover: This scheme is inspired by the correspond-
ing variants for binary coding. Instead of exchanging binary pieces, the
crossover exchanges design variables among the selected parents. One
or two randomly selected crossover points correspond to design vari-
ables. The offspring is produced by design variables from any of the
parents. Variables corresponding to the crossover points are affected
by both parents based on randomly defined weights. An example can
be seen in fig. 2.4.

Discrete Crossover: In discrete crossover, ρ parents are selected and each
design variable of the resulted offspring has 50% probability to be the
same with the first parent and 50/(ρ − 1)% probability to be the smae
with any of the remaining ρ−1 parents. An example can be seen in fig.
2.5.

Intermediate Crossover: In this scheme, ρ parents are selected, similarly
with the other schemes. Each design variables (~b) of the resulted off-
spring is a linear combination of the first (~b1) and another randomly

18 2. Evolutionary Algorithms

1 0 1 1 0 1 0 1 1 1

0 0 1 1 1 0 0 1 0 1

1 0 1 0 0 0 1 0 1 0

1 0 1 1 0 1 0 0 1 1

1 0 1 1 0

0 0 1 1 1

1 0 1 1 1

0 1 0 1 0

1st Part 2nd Part

Parents

Offspring

Crossover Point 1,2 Crossover Point 3,4

Figure 2.3: Two-Point Crossover for binary coding with ρ=3. Parents’ binary strings
are divided into two parts. These are, then, randomly split into three parts (by two
crossover points). The final offspring is constructed by parts of the split parents.

chosen (~brandom) parent, mathematically expressed as

~b = ~b1 + r(~brandom −~b1), r ∈ [0, 1] (2.3.2.1)

where r is a random number (the same exact for all design variables)
uniformly distributed between 0 and 1.

Simulated Binary Crossover: This scheme [26] aims at recreating the one-
point binary crossover by maintaining two basic properties, namely
average and spread factor. The average property implies that decoded
variables before and after crossover have the same average value. The
spread factor (β) is defined as the ratio of the spread (how well the
population covers the design space) of offspring to that of parents. β < 1
corresponds to contracting crossover, β > 1 to expanding and β = 1 to
stationary. The spread factor property implies that the spread factor
will be closer to 1 in most cases. Taking these into consideration, the

2.3. The Evolutionary Algorithm SYstem (EASY) 19

𝑏1
1 𝑏2

1 𝑏3
1 𝑏4

1

𝑏5
1

𝑏6
1 𝑏7

1 𝑏8
1 𝑏9

1 𝑏10
1

Parents

Offspring

Crossover Point

𝑏1
2 𝑏2

2 𝑏3
2 𝑏4

2

𝑏5
2

𝑏6
2 𝑏7

2 𝑏8
2 𝑏9

2 𝑏10
2

𝑏1
1 𝑏2

1 𝑏3
1 𝑏4

1
𝑏5
1,2 𝑏6

2 𝑏7
2 𝑏8

2 𝑏9
2 𝑏10

2

Figure 2.4: One-Point Crossover for real coding with ρ=2 parents. The parents are
split into two parts. The offspring is formed by the first part of the first parent and the
second part of the second parent. The design variable of crossover point is computed
as ~b1.25 = ~b15 + r(~b25 −~b15), r ∈ [0, 1].

𝑏1
1 𝑏2

1 𝑏3
1 𝑏4

1 𝑏5
1 𝑏6

1 𝑏7
1 𝑏8

1 𝑏9
1 𝑏10

1

Parents

Offspring

𝑏1
2 𝑏2

2 𝑏3
2 𝑏4

2 𝑏5
2 𝑏6

2 𝑏7
2 𝑏8

2 𝑏9
2 𝑏10

2

𝑏1
3 𝑥2

3 𝑏3
3 𝑏4

3 𝑏5
3 𝑏6

3 𝑏7
3 𝑏8

3 𝑏9
3 𝑏10

3

𝑏1
1 𝑏2

3 𝑏3
2 𝑏4

1 𝑏5
1 𝑏6

3 𝑏7
3 𝑏8

1 𝑏9
2 𝑏10

3

Figure 2.5: Discrete Crossover for real coding with ρ=3 parents.

design vector ~b of the new offspring is computed as

~b =

{
~bmiddle − β

2
(~brandom −~b1), if r < 0.5

~bmiddle + β
2
(~brandom −~b1), otherwise

(2.3.2.2)

20 2. Evolutionary Algorithms

where r ∈ [0, 1], ~b1, ~brandom and ~bmiddle are the first, randomly selected
and middle (between the other two) parents respectively. The spread
factor β depends on the r values, if r < 0.5 then β = (2r)n else β =
(1/2r)n+2.

Mutation: The mutation operator is used to maintain diversity in the population
and to explore the design space. It prevents the premature convergence of
the population in a specific area of the design space and, thus, provides a
mean to avoid stagnation of the evolution. For each offspring generated by
the crossover operator, a random number is generated. If this number is
smaller than a small user-defined mutation probability, usually if Pm<10%,
the offspring is mutated. Similarly to the crossover operator, mutation can
be performed using different schemes based on the design variables’ coding.

For binary coding, each bit of the binary string representing the offspring is
inverted (bit flip, from 0 to 1, or vice-versa), with a probability Pm (fig. 2.6).

1 0 1 0 0 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0

Flipped Bit

Figure 2.6: Binary mutation.

For real coding, each design variable (real value) is mutated as

~bm =

{
~b, if Pm > r

M(~b,D), otherwise
(2.3.2.3)

where r ∈ [0, 1] is unique for all design variables and

M(~b,D) =

{
~b+D(g, ~U −~b), if r1 > 0.5
~b+D(g,~b− ~L), otherwise

(2.3.2.4)

where r1 ∈ [0, 1] is another randomly generated number, D(g, y) = yr2(1 −
g/gmax)

0.2 with gmax the maximum number of generations and r2 a randomly
generated number. If the maximum number of generations is not a priori
known, the total number of evaluations Emax and the current number of
evaluations E can replace gmax and g, respectively.

2.3. The Evolutionary Algorithm SYstem (EASY) 21

2.3.3 MOO in EASY

In MOO, the objective vector (~f) have to be transformed into a utility function φ
with the assistance of a scalar utility function φ(~b) = φ(~f(~b)), RMo → R1. EASY is
equipped with the SPEA [185], SPEA2 [184] and NSGA2 [25] techniques presented
below:

SPEA: SPEA (Strength Pareto Evolutionary Algorithm) was introduced in 1998
by Zitzler and Thiele [185] for assigning scalar values based on the Pareto
dominance. Firstly, the strength of each individual of P = P g

µ ∪ P
g
λ ∪ P g−1

e

is computed. The ith individual’s strength (Si) is defined as the number
of P members dominated by the aforementioned individual divided by the
population size,

Si =

∑
(j : j ∈ P ∧~bi ≺ ~bj)∑

P
,∀i ∈ P (2.3.3.1)

Then, the scalar value φ for each individual is calculated as the sum of the
strengths of individuals dominating it, fig. 2.7,

φi =
∑

j∈P∧~bj≺~bi

Sj (2.3.3.2)

SPEA2: SPEA2 [184] was a further improvement to the initial SPEA by includ-
ing density information. A more precise guidance of the exploration of the
EA is achieved by using a nearest neighbor density estimation technique.
The density of the individuals in the front of non-dominated solutions is
improved compared to that resulting with the use of SPEA. In SPEA2, the
strength functions are computed similarly to SPEA. After that, the density
metric Di for each individual is computed as its Euclidean distance from its
closest neighbor in the objective space, di=min(‖~fi − ~fk‖), k ∈ P :

Di =
1

di + 2
(2.3.3.3)

The raw cost Ri is computed similarly to the utility function of SPEA

Ri =
∑

j∈P∧~bj≺~bi

Sj (2.3.3.4)

Finally, for any individual, the utility function φ is the sum of its raw cost

22 2. Evolutionary Algorithms

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

f 2

f1

b-1

Figure 2.7: SPEA dominance applied to a population. Grey area: members domi-
nated by ~b1. Yellow area: members dominating ~b1.

Ri and its density metric Di,

φi = Ri +Di (2.3.3.5)

NSGA2: NSGA2 [25] is an improvement to the NSGA technique [186]. It has im-
proved the high computational complexity of non-dominated sorting and the
need for specifying the sharing parameter of the initial algorithm. Moreover,
the elitism operator is taken into account. NSGA2 relies upon the sort-
ing of individuals according to Pareto dominance and density criteria. The
following steps are applied:

Step 1: (Front Ranking) All individuals are classified in fronts with de-
creasing Pareto dominance.

Step a: (Initialization) Set front counter i = 0 and the individual set
to S = P g

µ ∪ P
g
λ ∪ P g−1

e .
Step b: (Find non-dominated members) Search set S for non-dominated

solutions which are, then, copied to Fi.

2.3. The Evolutionary Algorithm SYstem (EASY) 23

Step c: (Update) Remove the individuals of Fi from S and increase
the counter i= i+1. If S is non-empty, repeat steps b-c, otherwise
continue.

Step 2: (Density) For the individuals of each front Fi, the density metric
dj is calculated. dj is equal to the average side-length of the cuboid
defined by the individual’s neighbors within Fi.

Step 3: (Scalar Value) The scalar value φ of each individual is based on its
density metric and the front Fi it belongs to. φ is calculated according
to the following steps:

Step a: (Initialize) i = 0 and φb = 1.0.

Step b: (Compute φ) φj is computed as

φj = φb(1 +
dmax − dj
dmax

)

where dmax is the maximum dk among the Fi members.

Step c: (Update) Update φb = 1.1max(φj) and increase counter i= i+1.
Repeat steps b-c for all fronts Fi.

2.3.4 Constrained Optimization

The EASY platform is also capable of solving constrained optimization problems
using penalization of the objective function values. Two thresholds, "nominal"
and "relaxed", are defined by the user, separately for each constraint. The "nom-
inal" threshold indicates the limit of each constraint function, herein, set to zero
0, without loss in generality. If the constraint of an individual is greater than
zero, then a penalty term, exponentially proportional to the constraint violation,
is added to its utility function. If the violation of a constraint exceeds the "relaxed"
threshold (d∗k > 0), a death penalty is applied (theoretically, φ=∞). If the individ-
ual’s violation of constraints is less than the "relaxed" threshold, its scalar value
is penalized as in [98]:

φ(~b) = φ(~c) +
Mc∏
k=1

{
exp(ak

ck(~b)
d∗k

), if d∗k>ck(~b)>0

1, otherwise
(2.3.4.1)

where the coefficient ak is a user-defined parameter which defines the intensity of
the penalty term.

24 2. Evolutionary Algorithms

2.3.5 Metamodel-Assisted Evolutionary Algorithms (MAEAs)

Engineering optimization problems frequently employ computationally expensive
PSMs for evaluating individuals. In the problems this PhD thesis is dealing with,
the PSM is an expensive CFD software which numerically solves the flow equations
in either 2D or 3D domains. This, along with the increased number of calls to the
PSM usually needed by EAs, results to a prohibitively large computational cost
per optimization. Many methods capable of decreasing the number of evaluations
needed by EAs have been devised during the last decades. The most popular
among them is the use of surrogate models ("metamodels") [48, 99, 32, 17], which
replicate the PSM with practically negligible computational cost. As mentioned
before, this gives rise to the MAEA variant of EA which is a viable alternative for
solving large-scale industrial optimization problems, in affordable wall clock time.

Artificial neural networks (ANNs), polynomial regression, Gaussian process
and Kriging are only some of the metamodel types found in literature [65, 126].
Based on their training patterns, metamodels are categorized as global or local.
Global metamodels are trained with individuals over the entire design space and
are used to predict any given individual. On the other hand, local metamodels are
optimized for a specific individual, since their training patterns are chosen in the
close neighborhood of the individual to be predicted. Moreover, the metamodels
are categorized as off-line or on-line [92, 7] based on whether they are trained
before or during the evolution.

In the MAEA used in this PhD thesis and implemented in the EASY platform,
on-line trained personalized metamodels undertake the pre-evaluation of the off-
spring in each generation. This Low-Cost Pre-Evaluation (LCPE) phase starts once
a predefined minimum number (TM) of evaluated individuals is archived in the
DB. Up to that point, the standard EA is used and all offspring are evaluated on
the PSM. Then, each individual is pre-evaluated by training a new metamodel on
the closest individuals which have been evaluated on the PSM; these evaluations
are often referred to as "exact evaluations" to contrast them w.r.t. evaluations on
the metamodels. In MOO, different metamodels are trained to predict different
objective functions and, then, the φ utility function is computed based on the
predicted objective vector. Just a few (λε� λ) most promising offspring (based
on the predicted fitness value) undergo re-evaluation on the PSM (basically this
determines the computational cost of each generation). Note that the elite set is
populated exclusively with exactly evaluated individuals. The MAEA flowchart is
shown in fig. 2.8. The basic types of metamodels used herein are described below:
Radial Basis Function (RBF) Networks

RBF networks [65] are ANNs with three neuron layers, an input, a hidden and
an output layer as shown in fig. 2.9. The input layer corresponds to the design
vector (input vector) with N nodes (input units). The hidden layer includes L
nodes, as many as the RBF centers ~cl ∈ RN . The signal propagates forward from

2.3. The Evolutionary Algorithm SYstem (EASY) 25

Start

Offspring
Population

EA
Stopping
Criteria

IPE

Exact Evaluations

Evaluation on metamodels

Evolution
Operators

Elite
Population

Sorting Population

Parents’
Population

Evolutionary Algorithm

Initialize
Population

Individuals
for Exact

Evaluation

Train Metamodel

End

Database

LCPE

Figure 2.8: The MAEA flowchart using on-line locally trained metamodels as em-
ployed by the EASY software; developments made in this thesis (excluding application
in chapter 7 dealing with Deep Neural Networks) are all based on this MAEA option.

Figure 2.9: RBF Networks architecture.

the input to the hidden layer through a non-linear radial basis function which
connects the input unit to each hidden node G : RN → R. In this thesis, the
Gaussian activation function based on the distance between input ~b and center ~cl

given by

G(~b, r) = exp(
‖~b− ~cl‖2

r2
) (2.3.5.1)

where r is a user-defined radius (see below), is used. Then, the signal from the

26 2. Evolutionary Algorithms

hidden layer is propagated to the output layer, which has only one node/response
(in our case, one objective function is to be predicted). Note that, in MOO, Mo

metamodels are trained and used to predict the Mo objective functions for each
individual. The response is expressed as the sum of the weighted output signals
from the hidden layer, where weights wl are computed during the training. Note
that training uses a set of exactly evaluated patterns.

The RBF centers coincide with the training patterns (~cl = ~bl, l ∈ [1, T]), if
the hidden nodes are as many as the number of training patterns T = L. In
this case, a T ×T symmetric linear system of equations must be solved and
the training patterns are exactly interpolated. Generally, the network can use a
smaller number of hidden nodes than the training patterns (L < T) [134, 170].
In this case, the selection of the RBF centers is an important and complicated
procedure, which the prediction ability of the network depends on. The selection
scheme for the RBF centers used by EASY, which have been proposed in [92, 44,
41], is based on Self-Organized Maps (SOMs), fig. 2.10. This scheme consists of an
unsupervised and a supervised learning process. At the beginning (unsupervised
learning), the SOMs classify the training patterns into L clusters through standard
processes: competition, cooperation and adaptation. Each cluster is represented
by a single RBF center ~cl. The corresponding radius r needed in eq. 2.3.5.1 is
computed by a heuristic method [92, 44, 95] based on the distances between the
selected centers. In the second phase (supervised learning), the weights wl are
computed by minimizing the approximation error between the training patterns
and the corresponding predictions provided by the network.

Figure 2.10: Selection of training patterns for the RBF metamodel using SOMs from
Karakasis thesis [91].

Further improvement of the RBF network prediction ability can be achieved by
using Importance Factors (IFs) proposed in [53]. The importance of each design

2.3. The Evolutionary Algorithm SYstem (EASY) 27

variable is quantified and exploited by including N additional coefficients (In, n ∈
[1, N]). High In values indicate high importance of the nth design variable for the
response (objective function) in the vicinity of the design vector into consideration.
Each time an improved solution is found by the EA, the N partial derivatives
∂ ~f/∂bn are computed using the closed-form expressions for the response. The
importance factors (In) are then computed as

In =
∂ ~f(~b)/∂bn∑N
i=1 ∂

~f(~b)/∂bi
(2.3.5.2)

Based on these derivatives, a weighted norm is introduced and used instead of
the standard one and eq. 2.3.5.1 is re-written as

G(~b, r) = exp(

√∑N
n=0 In(bn − cln)2

r2
) (2.3.5.3)

Polynomial Regression Models
Polynomial regression [126] approximates the objective function (response)

using polynomial functions. The polynomial coefficients, which are computed
through the training phase, determine the prediction ability of the metamodel.
During the training phase, a Least Squares (LSQ) method is used to best fit the
polynomial function to the given training patterns. The polynomial regression
model is mainly used to smooth noise found in the training patterns.

The response using a polynomial regression model is given as

o(~b) = a+
N∑
i=1

Pi∑
j=1

cijb
j
i (2.3.5.4)

where Pi is the maximum power in which the ith design variable is raised to
and a, cij are the unknown coefficients computed during training. Interactions
among the design variables [21], expressed as

∏N
i=0 b

Ii
i with Ii being the power

which the ith design variable will be raised to for the particular term, can be used
to enrich eq. 2.3.5.4 . These introduce terms capable of expressing correlation
among the design variables. Note that parameters Pi and the interactions are
user-defined and require some knowledge of the problem (objective functions)
in hand. Different polynomial setup results in different metamodel’s prediction
ability. The most commonly used polynomial functions are the first-order (Pi = 1
without interactions) and the second-order (Pi = 2 without interactions) function
yielding satisfactory results in many problems [102].

The polynomial regression model relies on the Least Squares (LSQ) method

28 2. Evolutionary Algorithms

for computing the a, cij coefficients. Given a training set consisting of T individ-
uals with their design vector and the corresponding response/objective function
(~b1, . . . ,~bT → f1, . . . , fT), the LSQ method tries to minimize the error (ε) between
the responses of the training patterns and the metamodel’s predictions. The
following analysis is based on the first-order polynomial function for simplicity
reasons, given as

o(~b) = a+
N∑
i=1

cibi (2.3.5.5)

Based on this function, the estimated error for each pattern is expressed as

εt = ft − o(~bt) = ft − a−
N∑
i=1

cib
t
i (2.3.5.6)

where t ∈ [1, T] and bti is the ith design variable of the tth training pattern. The
total error is defined by

Etot =
T∑
t=1

ε2 =
T∑
t=1

(ft − a−
N∑
i=1

cib
t
i)

2 (2.3.5.7)

and should be minimized. This means that its derivatives w.r.t the a, cij coeffi-
cients should be set to zero,

∂Etot
∂ci

= −2
T∑
t=1

(ft − a−
N∑
i=1

cib
t
i)b

t
i = 0 (2.3.5.8)

or

∂Etot
∂a

= −2
T∑
t=1

(ft − a−
N∑
i=1

cib
t
i) = 0 (2.3.5.9)

Let us assume that X is the T ×N matrix including all the design vectors and
~f is the vector with the T responses of the training patterns. To this end, ~c is a
vector including all a, cij coefficients and the corresponding error is the vector ~ε.
Eq. 2.3.5.7 is re-written in a compact matrix form

Etot =
T∑
t=1

ε2t = (~f −X~c)′(~f −X~c) = ~f ′ ~f − 2~c′X′ ~f + ~c′X′X~c (2.3.5.10)

2.3. The Evolutionary Algorithm SYstem (EASY) 29

Then, the equations to be satisfied are

∂Etot
∂ci

= −2X′ ~f + 2X′X~c = 0

X′X~c = X′ ~f (2.3.5.11)

Eqs. 2.3.5.11 form a system of N equations (X′X ∈ RN×N and X′ ~f ∈ RN),
solved using the Cholesky decomposition (since the X′X matrix is symmetric). Its
solution computes the optimal coefficients (~c∗, ∗ denotes the optimal vector) for
the given training pattern and polynomial function. After the training phase, the
objective functions value of any new individual is predicted as o(~b) = ~c∗~b. The
polynomial regression model, in its general form, has been introduced into the
EASY platform, during this PhD thesis.

Multilayer Perceptrons (MLP)

The multilayer perceptron (MLP) performs a differential nonlinear mapping
between the input and output space. A MLP with L layers, [66], is formed by the
input layer with N sensory units, the output layer with Mo computational units
and a user-defined number (L−2) of intermediate layers, each of which may have
any number Kl of hidden neurons. Each hidden layer unit is fully connected
on all units on the previous and next layers. All connections (synapses) between
units are associated with synaptic weights w[j,l+1],[i,l], where the subscript denotes
the two edge nodes along with their level. For instance w[j,l+1],[i,l] represents the
weight of the synapsis between node i on the l-th layer (departure node) and node
j on the (l+1)-th layer (arrival node).

The MLP training consists of the computation of synaptic weights to ensure the
"best" mapping between given samples (bt, t ∈ [1, T]) and their known responses
(~ζt). Each training pattern bt is presented to the sensory units of the input layer
(l = 1) and creates a signal propagating towards the network output through
the intermediate layers and, finally, reaching the last (L) layer node where the
network response ot emerges. During signal propagation, the input signal ht[q,l]
([q, l] denotes the q-th neuron on layer l) is processed by an activation function
yielding the neuron output. A widely-used activation function is the logistic one,
G(h) = (1 + e−Bh)−1 with B > 1. At any computational node, the output signal
vt[q,l] is given by

v
(t)
[q,l] = G

[
Kl−1∑
s=1

w[q,l],[s,l−1]v
t
[s,l−1]

]
(2.3.5.12)

where the activation function acts on the weighted sum of all signals appearing
at the outputs of the Kl−1 previous layer neurons.

The MLP networks are trained on T paired samples (bt, ζ(t)) through the error
back-propagation algorithm. This is an iterative algorithm which consists of suc-

30 2. Evolutionary Algorithms

cessive forward (function) and backward (error) signal passing through the MLP
layers. In the forward pass, the input vector bt of each training pattern is pre-
sented to the input layer and a signal propagates forward through the network.
In the last layer, the network’s prediction ot is compared to the known response ζt

and the prediction error is computed. In the backward pass, the synaptic weights
are corrected to minimize the prediction error. This algorithm is repeated until
convergence.

Kriging

Kriging, [110], belongs to the class of Gaussian random field metamodels.
Kriging can predict not only the response of an individual but, also, a field of
confidence (Mean Squared Error, MSE) pertinent to this prediction, [179]. For
~b∈RN , the Kriging response o(~b) is expressed as

o(~b) = µ̂+ z(~b) (2.3.5.13)

where µ̂ is the expected value and the covariance function z(~b) has zero mean
value and a user–defined correlation function C with any other point in RN . So,
the model output function becomes a realization of a random field F that assigns a
1D-Gaussian distributed random variable F(~b) with constant mean µ̂ (the expected
value of F) and variance σ2 to each point in the design space. For two points ~bκ

and ~bλ, a typical correlation function is

C
(
~bκ,~bλ, ~θ

)
= exp

(
−

N∑
n=1

θn

(
~bκn −~bλn

)2)
(2.3.5.14)

where the correlation parameters ~θ = (θ1, θ2, ..., θN) ∈ RN must be computed in
order to find the best fit to the available data. Usually, an isotropic correlation
kernel is assumed and eq. 2.3.5.14 is, then, rewritten with θn ≡ θ, so that a single
θ value is to be computed. Training the kriging model consists in computing θ’s,
µ̂ and σ2, which are all assumed to be invariant with respect to F.

According to the maximum likelihood hypothesis, the probability density func-
tion of F(~bt) for each and every training pattern to be equal to its known response
ζt must be maximized. This is mathematically expressed as

max

[
1

(2π)N/2(σ2)N/2
√

det(C)
exp

[
(Z − 1µ̂)TC−1(Z − 1µ̂)

2σ2

]]
(2.3.5.15)

2.3. The Evolutionary Algorithm SYstem (EASY) 31

where 1 is a column vector of length N with unit entries and

C =

C
(
~b1,~b1, ~θ

)
· · · C

(
~b1,~bT , ~θ

)
...

C
(
~bT ,~b1, ~θ

)
· · · C

(
~bT ,~bT , ~θ

)
 , 51Z =

 ζ(1)

...
ζ(T)

 (2.3.5.16)

Eq. 2.3.5.15 can be solved by adopting generalized least-squares estimates for µ̂
and σ2 , [104], as follows

µ̂ =
1TC−1Z

1TC−11
, σ2 =

1

N
(Z − 1µ̂)TC−1(Z − 1µ̂) (2.3.5.17)

Substituting eqs. 2.3.5.17 into eq. 2.3.5.15 , leads to the solution of an equivalent
minimization problem,

min
[
N ln

(
σ2(~θ)

)
+ ln

(
det C(~θ)

)]
(2.3.5.18)

After computing the θ value by solving the nonlinear problem of eq. 2.3.5.18 , the
corresponding response and MSE predictions for any new ~b in the design space
are, [32],

o(~b) = µ̂+ (Z − 1µ̂)TC−1c(~b) (2.3.5.19)

MSE(~b) = σ2 · (1− c(~b)TC−1c(~b)) (2.3.5.20)

where
c =

[
C
(
~b,~b(1), ~θ

)
, . . . , C

(
~b,~b(T), ~θ

)]T
(2.3.5.21)

During this thesis, the Kriging model is programmed and incorporated into
the EASY platform as another type of metamodel to be used.

2.3.6 Distributed EAs

Another way to reduce the wall clock time of an optimization is by employing
a distributed search, which gives rise to Distributed EAs (DEAs) and, combined
with metamodels, Distributed MAEAs (DMAEAs). In DEAs, a number of sub-
populations (demes/islands) are evolving concurrently in semi-isolation, fig. 2.11.
The demes may follow different evolution policies (crossover scheme, mutation
probabilities, elitism operators etc.). The use of different or differently tuned
evolution operators (for instance, different mutation or crossover probabilities) per
deme is, generally, very helpful. It allows some demes (those with high mutation

32 2. Evolutionary Algorithms

probability, for instance) to explore so-far unexplored areas of the design space
and the rest to undertake the exploitation of the already accumulated information
by further improving current best solutions.

Demes communicate regularly by exchanging a few individuals (usually the
most promising ones) during the migration cycles. The inter-deme migration
operator exchanges the best performing (and/or some other randomly selected)
individuals. Migration topology and/or frequency and the selection-replacement
policies are user-defined parameters leading to different convergence speed.

Using a DEA, rather than a single-population EA, is more efficient in terms of
CPU cost. By additionally using metamodels within each deme (DMAEA, with a
single DB of already evaluated individuals shared by all its demes), the gain in the
optimization turnaround time is even higher. In addition, distributed schemes
are, by definition, amenable to parallelization.

DB

(μ,λ)EA or
MAEA
(deme)

(μ,λ)EA or
MAEA
(deme)

(μ,λ)EA or
MAEA
(deme)

Migration

Figure 2.11: Schematic representation of a DEA or DMAEA equipped with a ring
migration topology.

2.3.7 Hierarchical EAs

The hierarchical EA (HEA) consists of a number of levels, each of which can be
associated with a different search technique, evaluation tool and/or parameteri-
zation/number of design variables, [159, 30, 78, 79, 80, 54]. Adjacent levels may
exchange their best (and/or some other solutions apart from the current best,
depending on the scheme) individuals using one- or two-way inter-level commu-
nications. In the majority of cases, HEAs are restricted to two levels only.

The incorporation of metamodels into hierarchical schemes is straightforward,
by simply using MAEAs instead of EAs. This gives rise to the so-called hierarchical
MAEAs (HMAEAs). Note that, on each level, different DBs of previously evaluated
solutions are kept for the purpose of training the corresponding metamodels.

2.4. Benchmark Cases 33

2.4 Benchmark Cases

All the aforementioned EA variants are demonstrated in the same five bench-
mark cases. In the following chapters, where new EA or MAEA etc. variants
are proposed, their performance is assessed on the same cases. Without loss in
generality, real encoding of the design variables is used in all cases. Each opti-
mization, for each variant of EAs, has been performed three times with different
RNG seeds, so as to reduce any randomness caused by the selected RNG seed.
The presented results are the average of the three optimization runs performed in
each case. The hypervolume indicator IH [27] is used to measure the quality of the
computed fronts of non-dominated solutions, fig. 2.12. Given a set A of objective
vectors, the indicator is formulated via the function IH(A) =

∫ zenith
nadir

aA(z)dz where
aA(z)=1 if A dominates z and aA(z)=0 otherwise. This quantifies the percentage
of the area dominated by the front of non-dominated individuals within a "box"
defined by user-defined nadir and zenith points; higher values of the hypervolume
indicator denote better front quality. The nadir point should be selected by con-

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.8 -0.6 -0.4 -0.2 0

f 2

f1

Figure 2.12: Definition of the Hypervolume Indicator in a two-objective minimization
problem. Grey area dominated by the front.

sidering the worst individual, whereas the zenith point corresponds to the optimal
solution. Practically, the nadir point is set to a solution which is worse than the
worst attainable solution and the zenith one is set to a optimal solution which is
not attainable. In this way, the front will always be contained by these points.
The hypervolume indicator varies from 0 to 1, with 0 being the worst and 1 the
best possible value.

A GPU-enabled Reynolds-Averaged Navier-Stokes equations’ solver developed
by PCOpt/NTUA, called PUMA, [174, 171], acts as the PSM in all the cases exclud-
ing one (section 6) that is solved using the in-house CFD code based on the cut-cell
method. The first solver may handle unstructured grids, on which the discretiza-
tion of the governing equations is carried out using the finite volume technique

34 2. Evolutionary Algorithms

with vertex-centered storage of the flow variables. It solves compressible and in-
compressible flows (both variants are used in this thesis). For the discretization
of the convection fluxes, the Roe’s flux [140] difference splitting scheme is used.
For second order spatial accuracy, appropriate limiting functions are used. The
software is programmed by fully exploiting the NVIDIA’s CUDA programming envi-
ronment and can run on a cluster of GPUs. In order to minimize the overall com-
munication overhead, GPUs belonging to the same computational node exchange
data using the on-node shared CPU memory, while inter-node communication
protocols, such as the MPI, are used for passing data among GPUs on different
nodes. In addition, elimination of synchronization barriers and maximization of
memory bandwidth are achieved by programming techniques for discretizing and
solving the PDEs which are specifically programmed for GPUs. All these features
make the GPU variant of the flow solver (running on a single NVIDIA K20 GPU)
about 40 times faster than its CPU variant (running on a single Intel Xeon E5-
2620 CPU core). The second solver is based on the cut-cell variant of the general
class of Immersed Boundary Methods and the finite volume approach. It is par-
allelize with the MPI protocol to run on a cluster of CPUs and shares the same
numerical features with PUMA.

2.4.1 Benchmark Case 1: Shape Optimization of an Isolated

Airfoil for max. Lift Coefficient

The first case is concerned with the design of an isolated airfoil for maximum lift
coefficient (CL); this is a SOO problem, constrained only by the lower and upper
bounds of the control point coordinates. The 2D flow is inviscid with M∞ = 0.4
and a∞= 5o. As a starting point, an existing airfoil geometry was parameterized
using Bézier polynomial curves with 8 control points per airfoil side, fig. 2.13.
Using the starting/reference airfoil, the design variables and their bounds were
defined; practically, all control points (apart from the first and last ones on each
side, i.e. those corresponding to the airfoil leading and trailing edge) are allowed
to vary along the y-axis by ±20% of the reference position, summing up to N=12
design variables in total. An unstructured grid with about 20K nodes is generated
around each airfoil; a single run of the PUMA code, including grid generation,
takes ∼10 secs on an NVIDIA K20 GPU.

The optimization is carried out using a (20, 40)EAand MAEA, a (10, 20)DEA
and DMAEA. In both DEA and DMAEA, the accompanying (µ, λ) values refer to
the populations of each deme. In this case, there are just two demes, which
results to a total of 20 parents and 40 offspring per generation. This allows a "fair"
comparison with the single-population EA and MAEA. Demes communicate every
second generation by exchanging their 3 current best individuals. In the MAEA
and DMAEA, on-line trained RBF networks are used as metamodels. The LCPE

2.4. Benchmark Cases 35

-0.1

 0

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

Reference Airfoil
Bezier Points

Figure 2.13: Benchmark Case 1: Parameterization/reproduction of the reference
airfoil using two Bézier curves. Left: Axes in scale. Right: Axes not in scale.

phase is activated after the first TMM = 40 evaluations on the PSM which are, of
course, stored in the DB. After that, only the top λe = 3 individuals within any
generation, based on the metamodels’ predictions, are re-evaluated on the PSM.
The same stopping criterion of 1000 evaluations on the CFD solver is imposed;
this also allows a fair comparison to be made, since all of them have practically
the same computational cost.

Comparison of the convergence histories of the aforementioned variants is
presented in fig. 2.14. One may notice that a solution characterized by the same
objective function value as the optimal solution of the EA, computed with the
allowed computational budget, can be found by the MAEA with half of this budget.
Moreover, the use of a distributed search can further improve the optimization
with the DMAEA variant outperforming any other variant. This case shows, that,
should the user of the optimization software be satisfied with the optimal solution
reached by the EA after 1000 PSM calls, then the DMAEA could provide a solution
of same quality with about 1/6 of the overall budget. Fig. 2.17 shows the evolution
of the best solution performance within each deme; it can be seen that both
demes contribute to the faster convergence of the overall search method. Different
initialization of the population does not affect greatly the drawn conclusions, as it
can be seen in fig. 2.16. Even though, the MAEA presented in fig. 2.14 uses RBF
metamodels, for comparison reasons, the same MAEA is also performed with the
RSM and Kriging local metamodels. Their convergence histories are presented in
fig. 2.15, which shows that the RSM and Kriging provide more or less the same
results (depending on the setup and the problem in hand). Fig. 2.18 illustrates
the Mach number field around the reference and the optimal airfoil and clearly
shows why lift is higher in the optimized geometry: a much greater percentage of
the suction side of the optimal airfoil is covered by supersonic flow, contributing
to higher lift.

36 2. Evolutionary Algorithms

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0 200 400 600 800 1000

C
L

PSM Calls

EA
MAEA

DEA
DMAEA

Figure 2.14: Benchmark Case 1: Comparison of the averaged convergence histories
of EA, MAEA, DEA and DMAEA (average of three runs per method, with different RNG
seeds) in terms of the number of CFD evaluations (or equivalently, PSM calls), being
proportional to the CPU cost.

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 100 200 300 400 500 600 700 800 900 1000

C
L

PSM Calls

EA
MAEA with RBF

MAEA with Kriging
MAEA with RSM

Figure 2.15: Benchmark Case 1: Comparison of the averaged convergence histories
of EA and MAEA with RBF, RSM or Kriging metamodels in terms of the number of
CFD evaluations.

2.4.2 Benchmark Case 2: Shape Optimization of a Transonic

Wing for max. Lift and min. Drag Coefficient

The second benchmark problem is dealing with the MOO (two-objective) shape
optimization of an isolated wing, [154], for max. lift coefficient (CL) and min.
drag coefficient (CD). The flow is inviscid with M∞ = 0.8395, a∞,pitch = 3.06o and
a∞,yaw=0o.

The wing shape is parameterized using a 6×3×3 volumetric NURBS control
grid, fig. 2.19. 12, out of the 54 total control points, are allowed to move in the

2.4. Benchmark Cases 37

 0.24
 0.245
 0.25

 0.255
 0.26

 0.265
 0.27

 0.275
 0.28

 0.285
 0.29

 0 200 400 600 800 1000

C
L

PSM Calls

RNG 1
RNG 2
RNG 3

Figure 2.16: Benchmark Case 1: Convergence histories of the DMAEA with different
RNG seeds.

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0 200 400 600 800 1000

C
L

PSM Calls

Deme 1
Deme 2

Figure 2.17: Benchmark Case 1: Comparison of the convergence histories of the two
demes of the DMAEA run in terms of the number of CFD evaluations (PSM calls). The
plotted curves correspond to a single run with the same RNG seed.

chordwise and the normal-to-the-planform direction, resulting to N = 24 design
variables in total. In this case, this control grid is responsible only for morphing
the wing shape (and the corresponding surface grid) and not the 3D CFD grid.
The spring analogy technique is applied to deform the 3D CFD grid, according to
the wing’s surface grid deformation. For the CFD runs, the initial unstructured
grid generated around the reference geometry is comprised by tetrahedra, prisms,
pyramids and hexahedra, with ∼ 1.33 million nodes in total. A single run of the
PUMA software (by solving Euler equations) requires ∼ 2 minutes on an NVIDIA
K20 GPU.

Similarly to the previous case, a (10, 20)EA and MAEA, a (5, 10)DEA and DMAEA
are used. In the distributed variants, the two demes exchange their 3 best indi-
viduals every second generation. In the MAEA and DMAEA, TMM =30 and λe=4.

38 2. Evolutionary Algorithms

Mach: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Figure 2.18: Benchmark Case 1: Mach number fields around the reference (left,
CL=0.222) and the ‘‘optimal’’ (right, CL=0.288) airfoils. The latter is the outcome of
the DMAEA run using one RNG seed as in fig. 2.16.

Figure 2.19: Benchmark Case 2: Control points of the volumetric NURBS, used to
parameterize the wing. Blue points are kept fixed, whereas red ones are allowed to
vary in the chordwise and normal-to-the-planform directions, during the optimiza-
tion.

A termination criterion of 500 evaluations on the CFD solver is imposed. As men-
tioned before, the hypervolume indicator quantifies the quality of the fronts and
the convergence of the optimization procedure. The averaged evolution histories
for three different RNG seeds of the hypervolume indicator are compared in fig.
2.21. Moreover, the computed fronts of non-dominated solutions, for all the runs
with different RNG seeds are presented in fig. 2.20 (left). In fig. 2.20 (right), the
contribution of each front (different variant of EA) to the front of the overall non-
dominated solutions is depicted with the DMAEA having most of the individuals.
It is obvious that the use of on-line trained metamodels improves the convergence
speed of the EA. Fig. 2.22 shows that the MAEAs using the RBF, Kriging or RSM
metamodels have similar convergence speeds. Over and above, the introduction
of a distributed search scheme further boosts search, reaching improved fronts
of non-dominated solutions computed with the same budget with the EAs.

The Mach number fields on the wing surface for the reference, the max. lift and

2.4. Benchmark Cases 39

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

C
D

/C
D

,r
ef

CL/CL,ref

EA
MAEA

DEA
DMAEA

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

/C
D

,r
ef

CL/CL,ref

EA
MAEA

DEA
DMAEA

Figure 2.20: Benchmark Case 2: Comparison of the fronts of non-dominated so-
lutions resulted from EA, MAEA, DEA and DMAEA, with the same computational
budget. Both objective functions have been normalized using the corresponding val-
ues of the reference wing geometry. Especially, in the part of the front with the highest
lift values, the DMAEA clearly outperforms any other method. Top: Fronts from three
runs per optimization method with different RNG seeds. Bottom: Individuals from
each front outperforming all the others.

the min. drag coefficient wings are shown in fig. 2.23. The optimized geometries
result in different shock positions compared to the reference one. On the geometry
with the min. CD, the shock strength is reduced, the pressure difference between
the pressure and suction sides is decreased and so does the drag. Regarding the
other extreme point on the front of non-dominated solutions, the higher pressure
difference on the max. CL geometry is produced by the more cambered geometry.
This difference increases the shock strength and, simultaneously, the lift of the
wing.

40 2. Evolutionary Algorithms

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 100 200 300 400 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA

DEA
DMAEA

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA

DEA
DMAEA

Figure 2.21: Benchmark Case 2: Top: Comparison of the averaged convergence
histories of EA, MAEA, DEA and DMAEA in terms of the number of CFD evaluations.
Bottom: Close-up view after the first TMM = 30 evaluations on the PSM (CFD tool),
during which phase metamodels are in use.

2.4.3 Benchmark Case 3: Optimization of a Three-Element

Airfoil for max. Lift Coefficient and min. Moment Co-

efficient

The third benchmark case is dealing with the two-objective optimization of a three-
element airfoil for max. lift coefficient(CL) and min. pitching moment coefficient(CM).
This case was firstly presented in [58]. Herein, it is revisited with two objectives
instead of one. The airfoil consists of a main body, a slotted flap and a leading edge
slat. The flow conditions are: freestream Mach number M∞=0.12 and flow angle
a∞=17.18o. The flow is inviscid. This problem, although 2D, is representative of
the design of high-lift devices and is studied at a high angle of attack to mimic
take-off conditions. During the optimization, only the positioning of the flap and

2.4. Benchmark Cases 41

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 100 200 300 400 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA with RBF

MAEA with Kriging
MAEA with RSM

Figure 2.22: Benchmark Case 2: Comparison of the averaged convergence histories
of the EA and MAEA with RBF, Kriging and RSM, in terms of the number of CFD
evaluations.

Figure 2.23: Benchmark Case 2: Mach number fields on the surface of the reference
(left), the max. CL (center) and min. CD (right) wings. Top: Spanwise cuts at 30%
for the wing root. Bottom: Spanwise cuts at 70% for the wing root. The presented
optimized geometries resulted from the one of the DMAEA runs.

slat w.r.t. the main body is allowed to vary, while their shapes remain intact. This
leads to 3 design variables (position vector and rotation angle in the 2D space)
per element or 6 design variables in total. The CFD grid comprises triangles and
quadrangles with ∼ 20K nodes in total. Each individual to be evaluated on the

42 2. Evolutionary Algorithms

PSM needs to be re-meshed but this is done at almost negligible cost by means of
a fast in-house grid generator. The overall cost per evaluation is ∼ 2min on one
NVIDIA K20 GPU.

A (10, 20)EA and MAEA are used to optimize the case, with λe = 1 and ε = 10.
The computational budget is restricted to 200 PSM calls. The LCPE phase is
activated after TMM = 20 evaluated individuals have been recorded in the DB.
Comparison of the convergence histories of the optimization runs based on the
hypervolume indicator is presented in fig. 2.24. All three MAEAs assisted by the
RBF, Kriging and RSM metamodels perform better than the EA. Fig. 2.25 presents
the front of non-dominated solutions resulted using the different variants (for the
same RNG seed), both EA and MAEA have concluded to similar fronts but the
MAEA with a much faster convergence.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 20 40 60 80 100 120 140 160 180 200

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA with RBF

MAEA with Kriging
MAEA with RSM

Figure 2.24: Benchmark Case 3: Comparison of the averaged convergence histories
of the EA and MAEA with RBF, Kriging or RSM metamodels in terms of the number
of CFD evaluations.

The different positioning of the flap and slat for the max. lift, min. moment and
the reference configurations can be seen in fig. 2.26. A comparison of the Mach
number field around these configurations is shown in fig. 2.27. For the max. lift
configuration, both the flap and slat are deployed as much as possible in order to
accelerate the flow along the main body suction side, thus generating more lift.
For the computed min. moment configuration, the flap deployment is smaller so
as to decrease the lift of the aft section as well as the moment.

2.4. Benchmark Cases 43

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

C
M

CL

EA
MAEA

Figure 2.25: Benchmark Case 3: Fronts of non-dominated solutions computed by
the EA and MAEA with RBF (for the same RNG seed), all of them with the same
computational cost.

2.4.4 Benchmark Case 4: Optimization of a 2D compressor for

max. Flow Turning and min. Losses

The fourth benchmark case is dealing with the shape optimization of a 2D section
of the TurboLab compressor stator. The TurboLab compressor stator model is
a stator blade row tested in the measurement rig of the Chair for Aero Engines
at TU Berlin (TUB), [176]. The stator is an aerodynamic model representative of
modern jet engine compressor bladings. A two-objective optimization is carried
out aiming at maximum difference of the exit flow from the axial direction (max.
∆α) and minimum total pressure losses (min. ∆pt). The flow is incompressible
with inlet velocity 48.13m/s, flow inlet angle a1 =−42o and stagger angle ast=12o.
The Reynolds number, based on the chord, is equal to Re = 3.58 × 106 and the
Spalart-Allmaras turbulence model [164] is used. The shape is parameterized
using two Bezier curves, with 8 control points each, see fig. 2.28. All 16 control
points but the four at the edge of the stator are allowed to move along the y axis,
giving rise to 12 design variables in total. The CFD grid is unstructured with
∼ 30K nodes. Each CFD evaluation on the PUMA software takes about ∼ 30s on
an NVIDIA K20 GPU, including re-meshing.

A (15, 30)EA and MAEA, with 600 PSM calls as the allowed computational bud-
get, λe = 1 and ε = 20, are used. The on-line trained metamodels are used after
the first generation of the MAEA, i.e. by setting TMM = 30. Fig. 2.29 shows
the convergence of the EA and MAEA with all different metamodels based on the
hypervolume indicator. Fig. 2.30 presents the front of non-dominated solutions
(for the same RNG seed). It can be seen that the MAEA outperforms the EA,
irrespective of the type of the metamodel that is used.

The different shapes for max. ∆α and min. ∆pt compared with the reference

44 2. Evolutionary Algorithms

-0.2

-0.1

0.0

0.1

0.2

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y

x

Reference
Min CM
Max CL

-0.2

-0.15

-0.1

-0.05

 0

 0.05

-0.25 -0.2 -0.15 -0.1 -0.05 0

Reference
Min CM
Max CL

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2 1.25

Reference
Min CM
Max CL

Figure 2.26: Benchmark Case 3: Comparison of the reference airfoil (black, solid),
the one with max. CL (red, dotted) and the one with min. CM (blue, dashed) on the
MAEA’s front of non-dominated solutions. Top: Main body, flap and slat. Bottom:
Details of the slat (left) and flap (right).

one are presented in fig. 2.31. Note that, in the stator blade airfoil corresponding
to max. ∆α, the curvature of the pressure side and the thickness of the stator
blade airfoil are increased, causing more intensive flow separation. In the stator
blade airfoil achieving min. ∆pt, small changes occur compared to the reference
one. Both flow separation and flow turning are reduced.

2.4. Benchmark Cases 45

Figure 2.27: Benchmark Case 3: Mach number fields around the min. CM (top, left),
max. CL (top, right) and reference (bottom) airfoils.

Figure 2.28: Benchmark Case 4: Stator’s blade airfoil along with 2 Bezier curves
used to parameterize its contour.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 200 300 400 500 600

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA with RBF

MAEA with Kriging
MAEA with RSM

Figure 2.29: Benchmark Case 4: Comparison of the averaged convergence histories
of EA and MAEA with RBF, Kriging and RSM metamodels in terms of the number of
CFD evaluations.

46 2. Evolutionary Algorithms

 8

 9

 10

 11

 12

 13

 14

 15

 27.5 28 28.5 29 29.5 30 30.5

∆p
t (

P
as

ca
l)

∆α (degrees)

EA
MAEA

Reference Solution

Figure 2.30: Benchmark Case 4: Fronts of non-dominated solutions computed by
the EA and MAEA (for the same RNG seed), all of them with the same computational
cost. The reference blade airfoil gives an exit flow angle equal to a2 = −14.3o.

-0.15
-0.1

-0.05
 0

 0.05

 0 0.2 0.4 0.6 0.8 1

y

x

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 0.2 0.4 0.6 0.8 1

y

x

Reference
max ∆α
min ∆pt

Figure 2.31: Benchmark Case 4: Comparison of the reference stator (black, solid),
that with max. ∆α (red, solid) and that with min. ∆pt (blue, dashed). These solutions
are selected from the DMAEA’s front of non-dominated solutions obtained with one of
the RNG seeds. Left: Axes in scale. Right: Axes not in scale.

2.4. Benchmark Cases 47

(a) Max. ∆α (∆pt = 13.8Pa & ∆α = 29.9o)

(b) Min. ∆pt (∆pt = 8.6Pa & ∆α = 29.4o)

(c) Reference (∆pt = 9.1Pa & ∆α = 27.6o)

Figure 2.32: Benchmark Case 4: Velocity magnitude fields for the min. ∆pt, the
max. ∆α and the reference stators.

48 2. Evolutionary Algorithms

Chapter 3

Principal Component Analysis

Industrial optimization problems deal with many objective functions introducing
constraints along with complex parameterizations and a great number of design
variables. Working with an EA that does not perform wrll reflects upon the total
number of evaluations on the PSM needed to find the global optimum or optima,
leading to an increased optimization turnaround time. The cost of the industrial
use of EAs can thus become prohibitive and this hinders their extensive use in
industrial optimization workflows. A possible way to alleviate this problem is
by developing methods that may handle cases with a great number of design
variables, as efficiently as possible. This is where this chapter focuses on. The
methods proposed in this section can also be used with not so many design
variables in which cases the gain is also non-negligible.

In general, any (direct) change in the parameterization and the so-defined
design variables might have negative effects on the outcome of the optimization or
could even be impossible. During the establishment of an optimization problem,
the experienced designer sets up the design variables based on existing knowledge
on this or similar problems and the goal(s) to be achieved. The designer may not
be able to modify the parameterization so as to achieve the given goal. Even
if the above were possible, there is no guarantee that the new parameterization
results in a well-posed problem with uncorrelated design variables. Note that
correlated variables are variables related with each other. Finally, very often, the
most appropriate parameterization cannot be ‘a priori’ known, since the optimal
solution(s) might be needed to extract the required information about this.

In a survey on GAs presented in [149], it was clearly explained that the effi-
ciency of GAs is reduced when the objective functions are not separable. Though,
[149] was based on GAs, the conclusions drawn there can be extended to EAs as
well. In [143, 144], it was stated that, in most industrial optimization problems,
the design variables are possibly correlated ("variable dependency") and the ob-
jectives are non-separable ("inseparable function interaction"), introducing several
issues during optimization. As stated in [144], multi-modality, deception and dis-

49

50 3. Principal Component Analysis

continuity may also occur based on the variables correlation, causing additional
loss in the optimization algorithm’s efficiency. In optimization, multi-modality is
the existence of many optimal (local optimal, at least) solutions of the problem
in hand, as opposed to a single best solution. Deceptive optimization problems
exhibit one or more deceitful optima located far away from the global optimum
and the attraction of the local optima are much bigger than the one of the optimal
solutions misleading the optimization algorithms. The methods proposed in this
chapter aim at overcoming some of the aforementioned problems.

3.1 Curses of Engineering Optimization Problems

Engineering optimization problems usually suffer from three different, but closely
connected, problems. They are often ill-posed and/or non-separable and they may
also deal with a high number of design variables (N �). These factors degrade
the performance of EAs and/or MAEAs and that is why they are often referred to
as "curses". An "ill-posed" problem [75, 63] is one which does not meet the three
Hadamard criteria for being well-posed. These criteria are: (a) having a solution,
(b) having a unique solution or (c) having a solution that depends continuously on
the parameters or input data. Another criterion is that the solution procedure is
unstable, i.e. arbitrarily small changes in the design variable values may lead to
large differences in the objective function. Usually, the aerodynamic optimization
problems lack in the latter criterion. Most difficulties in solving ill-posed problems
are caused by the objective(s) instability, meaning the change of the objective(s)
values with a slight change in the design variables values. Moreover, "ill-posed"
problems use to have anisotropic objective function(s). An objective function f(~b)

with ~b ∈ RN is anisotropic if it is differently affected by the same changes in
different design variables. This means that the same change in value for two
different design variables may cause extremely different changes in the objective
function value (∂f

∂bi
� ∂f

∂bj
). Anisotropy leads to more or less important directions

in the design space. These negatively affect the EA convergence, which perform
optimally in "well-posed" problems with more or less the same importance in each
design variable. The metamodel prediction ability also suffers due to the high
complexity of the objective function.

The high number of design variables (N�), which many engineering optimiza-
tion problems are dealing with, gives rise to the so called "curse of dimensionality".
When dimensionality (N) increases, the volume of the design space increases. The
EAs require a great number of evaluations to search this space which is drastically
increased with N . Furthermore, individuals forming the population appear to be
dissimilar in many ways, which prevents their proper organization into popula-
tions with common characteristics. Regarding the metamodels used in MAEAs,
they are negatively affected by the increasing value of N . More training patterns
and computational cost are required, while the predictions may not be accurate

3.1. Curses of Engineering Optimization Problems 51

enough. The higher prediction error decreases the efficiency of the pre-evaluation
phase of MAEAs and reduces further the overall performance of the optimization.

Lastly, the engineering optimization problems usually deal with non-separable
objective function(s). An objective function f(~b) is separable if it can be minimized
or maximized separately with respect to each design variable bi, i= [1, N]. If the
optimal value of bi is independent of the values other design variables take on at
the optimal solution, then the objective is separable with respect to bi. Mathemat-
ically expressed, a function f is separable if there exists functions f1, f2, . . . , fN
such that: f(b1, b2, . . . , bN) = f1(b1)f2(b2) . . . fN(bN) (see fig. 3.1). In optimization
problems with separable objective function(s), the maximum optimization time
for finding the global optimum/optima is increased with N , because, in the worst
case scenario, the optimization solves N distinct optimization problems, one for
each design variable. In other words, it suffices to minimize fi(bi) in terms of
bi, ∀ i 6 N . However, things are not as simple in non-separable optimization
problems and, as one might easily guess, this is practically never the case in
aerodynamic optimization. Since complexity of search is increased exponentially
with the number of design variables, the overall cost is also greatly increased
[129].

In conclusion, the EAs or MAEAs do not perform well in non-separable, "ill-
posed" problems dealing with large N values, which is usually the case in en-
gineering. All these "curses" are connected with each other leading to problems
which suffer from all of them simultaneously. It would be ideal if there was a
method capable of transforming the initial problem into a new one which is sep-
arable, "well-posed" and artificially deals with less design variables. So, the goal
is to find an appropriate transformation mapping a problem that is difficult to be
solved onto another that can more easily be solved (by EAs and MAEAs). Only
the design variables the EA or MAEA sees are allowed to be modified, because,
in general, the PSM computing the objective function(s) is a black-box tool. This
transformation should "change" the initial design variables so as for the objective
function to be expressed as separable as possible with respect to these new vari-
ables. Moreover, the significance of each new variable should be computed, so
as to emphasize the most important ones during the EAs evolution, which assist
at solving the "ill-posed" problem. Metamodels can also be trained only with the
new significant variables, so as to alleviate the "curse of dimensionality" which
they suffer from; by doing so, their prediction ability is expected to improve by
reducing their training cost.

In a previous PhD thesis [112] carried out also in the PCOpt/NTUA Unit, the
Principal Component Analysis (PCA) had efficiently been introduced into EAs. The
PCA transforms the initial design space into a "more separable" one (referred to
as the "feature space"). In the feature space, the problem is "well-posed" and as
separable as possible, with new optimization variables the significance of which
becomes known from the PCA. Thus, the evolution operators are applied in the

52 3. Principal Component Analysis

-10 -5 0 5 10
b1

-10

-5

 0

 5

 10

b 2

-10 -5 0 5 10
b1

-10

-5

 0

 5

 10

b 2

Figure 3.1: Iso-lines of a separable (top) and a non-separable (bottom) function with
two design variables. The separable one is f = b31 + b21 + b1 + b32 + b22 + b2

and the non-separable one is the same but with design variables
b∗1 = b1sin(π/4) + b2cos(π/4) and b∗2 = b1cos(π/4)− b2sin(π/4). Both have

minimum F for b1, b2 =0, 0.

new feature space in which they perform optimally. Moreover, during the LPCE
phase of the MAEAs, the PCA in its capacity as a dimensionality reduction tool
reduces the number of design variables the metamodels are trained with. Both
usages of PCA reduce the overall optimization cost of EAs, as convincingly shown
in [112]. In the latter, the Linear PCA was used. In the present thesis, the Kernel
variant of PCA is introduced [85], which seems to further improve the convergence
speed of EAs, as it is demonstrated in the cases examined in this chapter. One
should keep in mind that the coupling of EAs and PCA is different compared to
[112], as described below in detail.

3.2. Basics of the Principal Component Analysis 53

3.2 Basics of the Principal Component Analysis

The PCA [65, 74] method is an unsupervised learning technique capable of con-
verting a data-set (B) of observations~b∈RN of possibly correlated variables into a
set of uncorrelated ones called principal components (PCs). These define a new de-
sign space, to be referred to as the feature space, in which the transformed design
variables become as separable as possible. By doing so, non-separable "ill-posed"
problems are transformed into separable "well-posed" ones, thus speeding-up the
EA-based search. Ideally, the PCA should produce a transformation that makes
the objective function(s) as separable as possible based on a data-set representa-
tive of the problem in hand. Unfortunately, this is not possible prior to the opti-
mization, because such a data-set has not been formed or evaluated yet. Thus,
one should use the PCA in each generation anew, updating and introducing newly
collected information about the problem. Thus, the method is gradually improved
as the optimization loop evolves, consequently producing better transformations.

The selection of the data-set (B), which the PCA is trained on in each gen-
eration, greatly affects the resulting feature space. The data-set should contain
all the important information about the problem in hand, the progress of the op-
timization as well as the fittest individuals, so as to further promote them and
guide the search in the important directions of the design space. Each one of
the population (elite, offspring and parent) used by the EA contains different in-
formation about the optimization procedure. The elite set, containing the most
fit individuals, after some generations can be populated by individuals which are
"extremely" close to each other (based on their Euclidean distance on the design
space), especially in SOO. This will eventually reduce diversity, which is an im-
portant feature of PCs. Moreover, the elite set does not contain vital information
about the current generation of the optimization procedure, since it might have
not been changed or is stagnated during the last generations. The offspring or
parent population are more diverse, while containing important fit individuals.
Note that some of the best elites are inherited from generation to generation by
means of the elitism operator. The offspring clearly depict the evolution state in
each generation, containing some unique characteristics. Hereafter, the PCA is
trained on the offspring population, due to its diversity and the unique information
it contains.

Linear PCA The PCA can be either Linear (LPCA) or Kernel (KPCA). EAs and
MAEAs assisted by LPCA were firstly presented in [113] and [114]. The covariance
matrix (P) for the LPCA is computed as PN×N = 1

M
BBT , where M is the number

of observations (herein, the number of offspring, M = λ) and N the number of
design variables. This matrix represents correlations among observations. Then,
the spectral decomposition [34] of the matrix is written as PN×N =VΛVT where Λ
is a diagonal matrix with the eigenvalues of P and V a N×N matrix formed by the
eigenvectors of P as rows. The Singular Value Decomposition method solves this

54 3. Principal Component Analysis

eigenproblem. The produced eigenvectors are the PCs, which construct the feature
space, and the corresponding eigenvalues are the variances connected to the PCs.
An observation ~b (or, practically, any possible new design vector/individual) can
be transformed into the corresponding vector ~c in the feature space, meaning its
projection to this space, through the equation

~c=V(~b− ~µb) (3.2.1)

where ~µb is the vector formed by the mean values of the data-set’s design variables.
The inverse transformation (from an observation into the feature space to the
design space) is given by the equation

~b = V−1~c+ ~µb (3.2.2)

It is important to note that the CPU cost to compute V−1 is negligible since V is
an orthogonal matrix and, thus, V−1 =VT .

Kernel PCA On the other hand, the KPCA transforms the design space into the
feature one through a mapping function, φ :RN→RL, where L can be arbitrarily
large. For the same data-set B used for the LPCA, the new covariance matrix
PL×L (or just P, hereafter) is expressed as

Pτσ=
1

M

M∑
i=1

φτ (~b
i)φσ(~bi), τ, σ=1, . . . , L (3.2.3)

or, in matrix form as, P = 1
M

ΦΦT where Φ ∈ RL×M is formed by the ~φ(~bi) ∈ RL

vectors as columns. The corresponding eigenproblem is expressed by the following
system of L equations

P~V r=λr~V r, r=1, . . . , L (3.2.4)

where ~V r∈RL is the rth eigenvector of P, λr is the rth eigenvalue of the L×L
diagonal matrix Λ. Depending on the value of L, the above eigenproblem can
become large and, thus, expensive to solve. The so-called kernel trick helps
alleviating this problem by avoiding explicitly computing the function φ. The
kernel matrix K∈RM×M is introduced expressed as

Kij = k(~bi,~bj) = ~φ(~bi)~φT (~bj) =
L∑
p=1

φp(~b
i)φp(~b

j) (3.2.5)

A widely used kernel [155, 177] is the polynomial function k(~bi,~bj) = (a(~bi)T~bj +

3.2. Basics of the Principal Component Analysis 55

c)d, where adjustable parameters are the slope a, the constant term c and the
polynomial degree d. Another one is the sigmoid function k(~bi,~bj)= tanh(a(~bi)T~bj+
c), where the slope a and the intercept constant c are parameters. However,
herein, without loss of generality, another function, the RBF kernel function [89]

k(~bi,~bj) = exp

(
− ||

~bi −~bj||22
2σ2

)
(3.2.6)

is used, where σ is the width constant. This function is equivalent to the that
used in RBF networks, see section 2.3.5, with different width constant σ. σ is
automatically calculated as the variance of the data-set the PCA is trained on.
Each eigenvector can alternatively be written as ~V r=

∑M
m=1 arm

~φ(~bm), r=1, . . . , L
or in a matrix form V = ΦA, where matrix A∈RM×L includes the unknown aim
coefficients. By substituting the eigenvectors, eqs. 3.2.4 are re-written as

L∑
j=1

Pij

M∑
τ=1

arτφj(
~bτ) = λr

M∑
τ=1

arτφi(
~bτ), i = 1, . . . , L (3.2.7)

The inner products of eqs. 3.2.7 and ~φ(~bq), q = 1, . . . ,M yield a system of M
equations,

L∑
i=1

L∑
j=1

M∑
τ=1

arτPijφi(~b
q)φj(~b

τ) = λr
L∑
i=1

M∑
τ=1

arτφi(
~bτ)φi(~b

q), q = 1, . . . ,M (3.2.8)

By means of eqs. 3.2.3 , eqs. 3.2.8 become

L∑
i=1

L∑
j=1

M∑
τ=1

M∑
z=1

arτφj(
~bz)φi(~b

z)φi(~b
q)φj(~b

τ) =

Mλr
L∑
i=1

M∑
τ=1

arτφi(
~bτ)φi(~b

q), q = 1, . . . ,M (3.2.9)

Finally, the kernel matrix is introduced into eqs. 3.2.9 . This reduces the number
of equations from L to M , which are solved with reasonable computational cost.
The final system of equations to be solved is

K~aq = Mλq~aq, q = 1, . . . ,M or KA = MAΛ (3.2.10)

56 3. Principal Component Analysis

The solution of eqs. 3.2.10 can provide all the necessary information for the
definition of the feature space, without solving eqs. 3.2.4 . The A,Λ matrices have
insignificant elements with low values after the M th element and can be replaced
by truncated matrices Â, Λ̂ ∈ RM×M . The resulted equivalent eigenproblem of
smaller size (M�L) can be solved, where the eigenvector matrix V̂∈RL×M is given
by V̂ = ΦÂ, similarly with the non-truncated matrices. These eigenvalues and
eigenvectors produce the feature space in which the given data-set is expressed
as uncorrelated as possible, based on the nonlinear kernel function used.

Each individual ~b ∈ RN can be projected onto the feature space to yield
~c=~c(~b)∈RM by applying the transformation

~c(~b) = V̂T ~φ(~b) = ÂTK(~b)⇔ cr(~b) =
M∑
i=1

arik(~bi,~b), r = 1, . . . ,M (3.2.11)

During each generation, parents are transformed into the feature space using
eq. 3.2.11 , crossover and mutation operators are applied on them to produce
offspring and, finally, the new offspring (expressed into the feature space) are
transformed back to the design space. Thus, the inverse transformation ~c(~b) ∈
RM→~b∈RN is absolutely necessary. This is done by mapping both ~c and ~b into
the RL space and minimizing the Euclidean distance between their projections.
The projection of ~c is denoted by ~p∈RL and that of ~b by ~φ(~b)∈RL. The following
problem practically expresses the minimization of their distances,

~b = argmin||~p− ~φ||= argmin{~pT~p+ ~φT ~φ− 2~pT ~φ} (3.2.12)

Since ~c = V̂T~c and V̂T V̂ = I, ~p can be expressed as ~p = V̂~c leading to ~pT~p =
~cT V̂T V̂~c = ~cT~c which is a known constant. Since, also, ~φT ~φ=1, the minimization

problem of Eq. (3.2.12) leads to ∂

∂~b

(
− 2~pT ~φ

)
= 0. Replacing ~p and ~φ, yields

∂

∂~b

(
− 2~φ(~z)

M∑
j=1

Cj(~z)
~̂
V j

)
= 0

or, equivalently,
∂

∂~b

(
− 2~φ(~z)

M∑
j=1

Ci(~z)
M∑
i=1

aji~φ(~bj)

)
= 0

3.2. Basics of the Principal Component Analysis 57

After some re-arrangements, the problem becomes

∂

∂~b

(
− 2

M∑
j=1

M∑
i=1

Ci(~z)aji~φ(~bj)~φ(~z)

)
= 0⇔

∂

∂~b

(
− 2

M∑
j=1

M∑
i=1

Ci(~z)ajik(~bj, ~z)

)
= 0 (3.2.13)

If the RBF kernel, eq. 3.2.6 is used in eq. 3.2.13 , resulting in:

∂

∂~b

(
− 2

M∑
j=1

M∑
i=1

Ci(~z)ajiexp

(
− ||

~bj − ~z||22
2σ2

))
= 0

or

− 2
M∑
j=1

M∑
i=1

Ci(~z)aji
∂

∂~b

(
exp

(
− ||

~bj − ~z||22
2σ2

))
= 0

and, finally,

− 2
M∑
j=1

M∑
i=1

Ci(~z)ajiexp

(
− ||

~bj − ~z||22
2σ2

)
(~z −~bj)
σ2

= 0 (3.2.14)

Eq. 3.2.14 is solved with the fixed point iterative algorithm, [177]. Firstly, it is
separated into two terms

M∑
j=1

M∑
i=1

Ci(~z)ajiexp

(
− ||

~bj − ~z||22
2σ2

)
~z =

or
M∑
j=1

M∑
i=1

Ci(~z)ajiexp

(
− ||

~bj − ~z||22
2σ2

)
~bj

or

~z =

∑M
j=1

∑M
i=1Ci(~z)ajiexp

(
− ||

~bj−~z||22
2σ2

)
~bj

∑M
j=1

∑M
i=1Ci(~z)ajiexp

(
− ||

~bj−~z||22
2σ2

) (3.2.15)

Having divided the equation into two terms, the solution ~z can be found iteratively

58 3. Principal Component Analysis

according to the following scheme

~znew =

∑M
i=1

∑M
j=1Ci(~z

old)aijexp(− ||
~bj−~zold||22

2σ2)~bj∑M
i=1

∑M
j=1Ci(~z

old)aijexp(− ||
~bj−~zold||22

2σ2)
(3.2.16)

In this thesis, both variants of the PCA method are used in a similar manner, and
the text below does not practically distinguishes between Linear and Kernel PCA.
Small changes that might occur are clarified.

3.3 EA with PCA-driven Evolution Operators

The PCA is used to transform the design space into a new feature space, which
is as separable as possible and where the evolution operators are expected to
perform better. Initially, the EA evolves without PCA and, when a number of
user-defined evaluations and/or generations are reached, the PCA takes over.
At the beginning of each generation, the PCA, trained with the current offspring,
constructs a feature space (inRMo for the LPCA andRλ for the KPCA). The current
parent population is transformed into this space using eq. 3.2.1 for the LPCA or
eq. 3.2.11 for the KPCA. The evolution operators are applied there to produce the
new offspring population. Then, the new offspring, just created into the feature
space, are transformed back to the design space using eq. 3.2.2 for the LPCA and
eq. 3.2.16 for the KPCA. This procedure is limited to the evolution operators only,
thus, the other processes are not affected by the transformation. The EA or MAEA
assisted by the PCA during the evolution is referred to as EA(L) or MAEA(L), if the
LPCA is used, and EA(K) or MAEA(K), if the KPCA is used instead.

3.3.1 PCA-Driven Crossover

Before explaining the application of crossover in the LPCA or KPCA feature space,
a simple mathematical optimization example with two optimization variables (bi∈
[−32.768, 32.768], i = 1, 2) is presented, in brief, for the purpose of demonstra-
tion. It suffices to work with a single-objective function, namely the Ackley func-
tion [3]. This is a non-convex function used as a performance test problem for
optimization algorithms. This is defined as f(~b) = −20exp[−0.2

√
0.5(b21 + b22)] −

exp[0.5(cos(2πb1) + cos(2πb2))] + e + 20 for two optimization variables. It has lot
of local optima as it can be seen in fig. 3.2, and a single global optimum located
at (0, 0), with f(0, 0)=0. Starting with the KPCA, this creates a Rλ feature space,
where the individuals are clustered according to their importance (based on their
variance). The crossover operator, applied in the feature space, promotes the first
few important components, by neglecting all the others. Thus, the most signif-

3.3. EA with PCA-driven Evolution Operators 59

-30 -20 -10 0 10 20 30
-30
-20
-10

 0
 10
 20
 30

 0
 5

 10
 15
 20
 25

f

b1

b2

f

Figure 3.2: Ackley function for two optimization variables.

icant characteristics are evolved into the new offspring population and the next
generation. A (30, 60) EA with KPCA is used to optimize the Ackley case. During
its evolution, the offspring population of the 40th generation is extracted. Note
that the population size is selected based on experience and tests and, in general,
does not affect the conclusions drawn. Then, some individuals in the optimization
space are generated at random in the vicinity of this population to be transformed
by the PCA. Then, the KPCA is trained on the isolated offspring and both the ran-
domly selected individuals and offspring are transformed into the feature space
(R60). After processing them, their principal component iso-lines projected onto
the original optimization space are showcased in fig. 3.3.

60 3. Principal Component Analysis

(a) 1st principal component (b) 2nd principal component

(c) 3nd principal component (d) 4th principal component

(e) 5th principal component (f) 10th principal component

(g) 20th principal component (h) 50th principal component

Figure 3.3: Ackley optimization problem: The 40th generation offspring population
(60 empty squares) and the iso-lines of the 8 first, out of the 60, principal components
in the optimization space.

3.3. EA with PCA-driven Evolution Operators 61

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 0.05 0.1 0.15 0.2

c 2

c1

Figure 3.4: Ackley optimization problem: The first two principal components of the
40th generation offspring population.

By examining fig. 3.3, three clusters, which practically classify the whole pop-
ulation, are readily identified. The first cluster (fig. 3.3a) is characterized by the
highest values of the first PC (c1) and consists of about 20 individuals located in
the middle of the design space. The second cluster (fig. 3.3b) is characterized
by the highest values of the second PC (c2) and consists of about 20 individuals
clustered in the right corner of the design space. The last clearly seen cluster (fig.
3.3c) is characterized by the highest values of the third PC (c3) and consists of 10
individuals scattered to the bottom of the design space. The classification of the
first two principal components can also be seen in fig. 3.4. Note that the most
populated cluster corresponds to the first PC, whereas all the others correspond to
the second PC. For the remaining PCs ci, i ≥ 4 (fig. 3.3), the offspring have more
or less the same PC value, their variances become increasingly smaller, which
shows that their importance is reduced. In such a case, the crossover operator
is used mainly in the first two PCs, while neglecting (or making small changes to)
the rest PCs. As a result, the important characteristics (as identified by the KPCA)
are promoted and evolved into the next generation.

The KPCA creates aRM feature space. Crossover, applied on the feature space,
evolves the offspring towards the important directions (the ones with larger vari-
ances), thus, promoting them towards the optimal solutions. The demonstration
case is revisited, but now the EA is assisted by the LPCA. During the evolution,
the offspring population of the 10th generation is extracted and used to train the
LPCA. Its PCs along with the offspring are plotted into the design space in fig.
3.5. The directions of the LPCA are pointing towards the optimal solution (~b=~0),
thus, promoting there new individuals. Moreover, in fig. 3.6, the probability of the
offspring appearance in the design space using the SBX crossover, with and with-

62 3. Principal Component Analysis

-8

-6

-4

-2

 0

 2

 4

 6

 8

-6 -4 -2 0 2 4 6

b 2

b1

c2

c1

Figure 3.5: Ackley optimization problem: The offspring population of the 10th gener-
ation along with the principal directions computed by the LPCA. Directions are scaled
so as to be plotted along with the offspring population.

out LPCA is shown. The probability of SBX with LPCA seems to be rotated with
respect to the one without PCA and, particularly, pointing towards the optimal
solution. The use of the LPCA assigns higher offspring appearance probability in
the less-populated direction and, thus, offspring generated after the application
of crossover have higher probability to have better objective function(s).

3.3.2 PCA-Driven Mutation

The mutation operator is also applied into the feature space, as created by either
the Kernel or Linear PCA. In the standard EA, the mutation probability is a user-
defined value, which is uniformly applied to all design variables. When the PCA
is used, this probability changes according to the variance of the corresponding
variable. However, the overall mutation probability of an individual is kept con-
stant and equal to the user-defined one. The PCA computes the feature space
along with a variance for each direction of this space. This variance expresses the
spread of the training patterns (herein, the current offspring population) in the
corresponding direction. Mutation is responsible for the exploration of the design
space. Thus, it is beneficial to give higher mutation probability to the less ex-
plored areas of the design space, which correspond to the directions of the feature
space with low variances. Mutation probability is thus increased in these direc-
tions. In practice, the mutation probability (pimut) for each principal component

3.4. EAs with PCA-Truncated Metamodels 63

𝑏1 𝑏1

𝑏
2

𝑏
2

Figure 3.6: Ackley optimization problem: Probability of an offspring to appear in the
design space after crossover with (right) and without (left) KPCA.

(superscript i∈ [1,M]) is given by, [113],

pimut = αpmut +M(1− α)pmut
yi∑M
i=1 yi

(3.3.2.1)

where pmut is a constant, user-defined global mutation probability, α∈ [0, 1] and

yi =
λmax − λi
λmax − λmin

(3.3.2.2)

where λi are the variances/eigenvalues of the current offspring population af-
ter being mapped into the feature space and λmax = max{λ1, ..., λM}, λmin =
min{λ1, ..., λM}. The use of probabilities as defined in eq. 3.3.2.1 enhance the
exploration capabilities of the mutation operator and direct search towards the
not yet explored areas of the design space.

3.4 EAs with PCA-Truncated Metamodels

According to section 2.3.5, metamodels employed within MAEAs must be capable
of predicting the objective and constraint (if any) functions with small computa-
tional cost (compared to the PSM). The metamodels prediction ability is greatly
affected by the selected training patterns and the number (N) and correlation of in-
put units (design variables). Metamodel’s accuracy deteriorates for higher values

64 3. Principal Component Analysis

of N . Moreover, more training patterns are needed for accurate training, leading
to an increased training time, too. This is the so-called "curse of dimensionality",
the main challenge regarding metamodels, which arise when coping with complex
objective functions having many design variables. In the past, different tech-
niques have been used to reduce the number of input units the metamodel "sees"
[155, 177]. A dimensionality reduction tool can cut-off the unwanted/insignifi-
cant input units and, thus, reduce the metamodel’s training time and patterns,
while increasing its prediction accuracy.

The PCA is also used as a dimensionality reduction tool. As mentioned, the
eigenvectors computed by the PCA, define the feature space and each one of them
is associated with a variance. These variances indicate how much scattered the
data-set (current offspring) is along the feature space directions. High variance
corresponds to highly scattered data along the corresponding direction. Directions
with low variances have individuals clustered around the same value. These
directions do not contribute important information to the metamodel’s training,
metamodel’s predictions should not be greatly affected by the small changes in
values occurred in these directions and, thus, they can be omitted. On the other
hand, the high variance directions hold significant information for the training and
should be retained. By cutting theNdr insignificant (based on the variances) input
units (directions) off, N−Ndr input units remain, resulting in better predictions
and faster training for the metamodels.

In the proposed MAEA variant, the PCA truncates the input variables. The
PCA computes the feature space once at the beginning of each generation. After
that, it is available to be used during the application of evolution operators (as
mentioned in subsection 3.3) or/and during the pre-evaluation phase within the
same generation. As in section 2.3.5, a "personalized" metamodel is built for each
individual to be pre-evaluated. Firstly, the training patterns are selected from the
individual’s neighborhood. These together with the individual are transformed
into the feature space computed by the PCA. Ndr PCs associated with the lowest
eigenvalues (smaller variances) are truncated/cut-off. Thus, each metamodel is
trained on patterns with less input units, which are also as uncorrelated as pos-
sible due to the PCA-based transformation, leading to more accurate predictions
at lower cost. Regarding the LPCA, each truncation with Ndr>0 is advantageous
for the metamodel. When KPCA is used, its feature space has M = λ directions.
Thus, the truncated input units should be more than the difference between the
design variables and the offspring population (Ndr >M−N), for the metamodels
to benefit from the truncation.

Having established how the PCA is used to truncate the unnecessary input
units from the metamodels, it is useful to check if the prediction ability of the
metamodels becomes better by integrating the PCA. During the evolution of the
demonstration case discussed above (subsection 3.3.1), offspring population of
the 10th generation was extracted. Both variants of PCA are using the offspring

3.4. EAs with PCA-Truncated Metamodels 65

population as the required data-set. A grid of uniformly distributed individuals
is created in the vicinity of the offspring population (fig. 3.7). Firstly, all of them
are evaluated on the PSM. Then, they are divided into two groups: 25 of them are
used for training and the rest 100 for testing (fig. 3.7). A standard metamodel, a
metamodel with the LPCA and one with the KPCA are trained and their prediction
accuracies are finally tested on the testing patterns. The iso-lines of the objective
function produced by the three different metamodels and the PSM are shown
in fig. 3.8. Judging from the iso-line contours, the accuracy of the metamodel
assisted by the PCA (fig. 3.8d) seems to be closer to the PSM in comparison with
the standard metamodel. Differences between the metamodels assisted by the
LPCA or KPCA are not that clear, but the one with the KPCA performs better as
it can be seen by comparing their mean error (expressed as the mean difference
between the predicted values and the real values over the testing patterns).

-4

-2

 0

 2

 4

 6

 8

-2 -1 0 1 2 3 4

b 2

b1

Training Patterns
Testing Patterns

PCA Training Patterns

Figure 3.7: Ackley optimization problem: Training (filled squares) and testing pat-
terns (empty squares) used for the metamodel. The 20th generation offspring (filled
circles) were used as training patterns for the KPCA.

A MAEA in which the PCA is employed during the training of metamodels
is referred to as M(K)AEA for the KPCA and M(L)AEA for the LPCA. Therefore,
M(K)AEA(K) denotes a MAEA with a dual use of the KPCA and M(L)AEA(L) with a
dual use of the LPCA. Practically, the PCA is carried out once per EA generation.
The resulting eigenvalues and eigenvectors can be used twice, i.e. during the
evolution operators and the metamodel training,

66 3. Principal Component Analysis

(a) PSM (b) Metamodel without PCA

(c) Metamodel with LPCA (d) Metamodel with KPCA

Figure 3.8: Ackley optimization problem: Iso-lines of the objective function values
evaluated by four different models. The use of the PCA improves the prediction
accuracy of metamodels.

3.5 Mathematical Optimization Problems

In order to demonstrate the effects the presented methods have on the EA effi-
ciency, four mathematical cases are presented for demonstration purposes, before
switching to the benchmark cases.

The first mathematical optimization problem is a multi-dimensional ellipsoid
test case, described by the separable function

f(~b) =
N∑
i=1

a
i−1
N−1 b2i (3.5.1)

where the value a determines the anisotropy of the objective function. Herein, a
was set to 10, defining a fairly anisotropic function. Eq. 3.5.1 can easily be turned
into a non-separable function by applying a rotation to the vector of optimization

3.5. Mathematical Optimization Problems 67

variables expressed as

f(~b) =
N∑
i=1

a
i−1
N−1

N∑
j=1

Rijb
2
j (3.5.2)

where R is a N×N rotation matrix. A 45o rotation is applied in all optimization
variables. Both functions with two optimization variables can be seen in fig. 3.9.
The number of optimization variables is set to N = 30 to examine the effects the
"curse of dimensionality" has upon EAs. Their bounds are set to −100 < bn <
100, n = 1, 30. Based on the literature, the ellipsoid problem with N=30 requires
above 105 PSM calls to reach an objective function value close to zero. Both
versions (separable or not) of this problem are investigated and are referred to as
the ellipsoid separable and non-separable problems, respectively.

-4
-2

 0
 2

 4 -4
-2

 0
 2

 4

 0

 50

 100

 150

 200

 250

 300

f

Separable Ellipsoid
 250
 200
 150
 100
 50

b1

b2

f

(a) Separable

-4
-2

 0
 2

 4 -4
-2

 0
 2

 4

 0

 100

 200

 300

 400

 500

 600

f

Non-Separable Ellipsoid
 500
 400
 300
 200
 100

b1

b2

f

(b) Non-Separable

Figure 3.9: Ellipsoid Problem: Both problems are illustrated herein for two design
variables.

The second mathematical optimization problem is a multi-dimensional shifted
Rastrigin test case [137], expressed by

f(~b) = 10N +
N∑
i=1

(
z2i − 10cos(2πzi)

)
(3.5.3)

where ~z = ~b − ~bopt with ~z,~bopt ∈ RN . ~bopt is the optimal design vector given by
bopt,i = i/N2 and is used to shift the optimal point from the start of the axes,
which was the optimal design in the initial case. Even though this problem is not
separable, it is a complex one due to the existence of many local minima, as shown
in fig. 3.10. Moreover, the shift of the optimal design introduces extra difficulty.

68 3. Principal Component Analysis

Eq. 3.5.3 can easily be turned into a non-separable function by applying a rotation
to the optimization variables vector and redefining f(~b) as

f(~b) = 10N +
N∑
i=1

(
y2i − 10cos(2πyi)

)
(3.5.4)

where ~y = R~z with R being a N ×N rotation matrix. A 30o rotation per direction
is applied in this case. Both functions with two optimization variables are plotted
on the optimization space in fig. 3.10. Once again, the number of optimization
variables is set to N = 30, Their limits are set to −5.12 < bn < 5.12, n = 1, 30.
Both versions (separable or not) of this problem are investigated and are referred
to as the Rastrigin or the non-separable Rastrigin problem.

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0
 10
 20
 30
 40
 50
 60
 70
 80

f

Separable Rastrigin
 60
 40
 20

b1

b2

f

(a) Separable

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0
 10
 20
 30
 40
 50
 60
 70
 80

f

Non-Separable Rastrigin
 60
 40
 20

b1

b2

f

(b) Non-Separable

Figure 3.10: Rastrigin Problem: Both problems are illustrated herein for two design
variables.

Having defined four mathematical optimization problems with different char-
acteristics each, we can now demonstrate the gains of using all the presented
methods.

3.5.1 Demonstration of EA(L) and EA(K) Performance

The problems presented in section 3.5 are investigated to demonstrate the effect
the PCA has on the EAs performance when its role is to exclusively assist the
evolution operators. Each of them using three EA variants, the standard one, the
EA(L) and the EA(K). For each one of these low-cost mathematical case, 10 runs
per variant were performed with different RNG seeds, so as to reduce randomness.

3.5. Mathematical Optimization Problems 69

The EA for the ellipsoid problems has µ=15, λ=30 and ε=15. The PCA starts
after 30 evaluations i.e. by the end of the first generation. A comparison of the
convergence histories of the optimization runs is presented in fig. 3.11a for the
separable problem and fig. 3.11b for the non-separable one. Note that the plotted
convergences are the mean objective functions values of 10 runs performed with
different RNG seeds. The EA(K) outperforms all other variants. It achieves an opti-
mal solutions which has three times less objective function values in comparison
with the one found by standard EA and two times less than the one found by the
EA(L). The EA(L) outperforms the EA in either case. As expected, it performs op-
timally in the non-separable problem in which the optimal solution found (within
the pre-defined computational budget) is approximately 2.5 times better than the
one computed by EA.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

EA
EA(L)
EA(K)

(a) Separable

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

EA
EA(L)
EA(K)

(b) Non-Separable

Figure 3.11: Ellipsoid Problem: Convergence histories of EA, EA(L) and EA(K).

For the Rastrigin problems (separable and non-separable), a (10, 20) EA is
used. The PCA starts after either 20 evaluations or the first generation. Fig. 3.12a
corresponds to the convergence histories for the separable problem, while fig.
3.12b for the non-separable one. The EA(L) may not perform very well in a sep-

70 3. Principal Component Analysis

arable complex case, such as the separable Rastrigin problem, but performance
improves significantly when the problem turns to a non-separable one. On the
other hand, the EA(K) performs well in the separable problem; however, in the
non-separable problem, the use of KPCA boosts the EA performance by making it
∼65% faster.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

EA
EA(L)
EA(K)

(a) Separable

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

EA
EA(L)
EA(K)

(b) Non-Separable

Figure 3.12: Rastrigin Problem: Convergence histories of EA, EA(L) and EA(K).

3.5.2 Demonstration of M(L)AEA(L) and M(K)AEA(K) Performance

To demonstrate the gain in performance from the use of the proposed PCA-assisted
metamodels, the mathematical problems of section 3.5.1 are revisited. The op-
timization of these problems is performed using the MAEA, MAEA(L), MAEA(K),
M(L)AEA, M(K)AEA, M(L)AEA(L) and M(K)AEA(K). Each one of them is repeated 10
times with different RNG seeds and the convergence histories presented below re-

3.5. Mathematical Optimization Problems 71

sult from averaging all these runs. Since in a previous chapter, is has been shown
that the MAEA outperforms the EA, this comparison is not repeated herein.

Regarding the ellipsoid problems, the EA has µ = 15,λ = 30 and ε = 15. The
pre-evaluation phase and the PCA usage(s) start after the first 20 individuals are
evaluated on the PSM and stored in the DB. Metamodels are trained on 30 to 60
training patterns and only the 2 or 3 most promising individuals are re-evaluated
on the PSM in each generation. When the PCA is used as a dimensionality reduc-
tion tool, Ndr = 15 input units are cut-off from the initial N =30 the metamodels
"see". The convergence histories, figs. 3.13a and 3.13b, correspond to the sepa-
rable and non-separable problems, respectively. The MAEAs variants using the
PCA only to assist the metamodels, namely M(L)AEA, M(K)AEA, seem to provide
negligible (in the non-separable or separable problem) gains. This can be at-
tributed to the fact that the evolution operators are applied to design spaces other
than the one metamodels are trained on. The metamodels are trained with pat-
terns transformed into the feature space produced by the PCA. The MAEA(L) has
the same performance as the MAEA for the separable problem, but for the non-
separable one it improves the optimized solution by ∼60%. The MAEA(K) greatly
affects the performance over the MAEA. ∼ 100% improvement is recorded on the
separable problem and ∼ 300% on the non-separable one. The two-fold usage
of LPCA (M(L)AEA(L)) does not show any significal performance improvement in
comparison with the LPCA to assist only the evolution operators (MAEA(L)). Fi-
nally, the M(K)AEA(K) outperforms all the other variants leading to ∼300% overall
improvement of the optimal solution in either case.

Moving on to the Rastrigin problems, a (10, 20) MAEA is used. Having eval-
uated 20 individuals on the PSM, the use of metamodels and PCA starts. 30 to
60 individuals are selected to train each metamodel. From the most "promising"
(according to the metamodels predictions) individuals of each generation only 2
or 3 of them are re-evaluated on the PSM. The 15 most insignificant based on the
PCA variables are cut-off for the M(L)AEA, M(K)AEA, M(L)AEA(L) and M(K)AEA(K)
runs, reducing the input units to half of the initial ones. In fig. 3.14a, the con-
vergence histories of the optimization performed for the separable problem are
presented, whereas fig. 3.14b repeats the same for the non-separable problem. In
the separable problem, the use of LPCA in the evolution operators sees to deterio-
rate the EA performance, probably because the problem is neither non-separable
nor anisotropic, thus any possible transformation on the design space does not
offer any advantage over the original one. The M(L)AEA improves the optimized
solution for ∼20% basically due to the reduction in the number of input units the
metamodels "see". On the other hand, the use of KPCA offers great performance
improvement. The M(K)AEA’s solution is ∼43% better than the one found by the
MAEA. The M(K)AEA(K) and MAEA(K) converge around the same value, which is
by∼90% better than the MAEA solution. For the non-separable problem, variants
using LPCA perform better, with the MAEA(L) providing ∼ 6% improvement over

72 3. Principal Component Analysis

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

MAEA
MAEA(L)
M(L)AEA

M(L)AEA(L)
MAEA(K)
M(K)AEA

M(K)AEA(K)

(a) Separable

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

MAEA
MAEA(L)
M(L)AEA

M(L)AEA(L)
MAEA(K)
M(K)AEA

M(K)AEA(K)

(b) Non-Separable

Figure 3.13: Ellipsoid Problem: Convergence histories of MAEA, MAEA(L), MAEA(K),
M(L)AEA, M(K)AEA, M(L)AEA(L) and M(K)AEA(K).

the MAEA. The M(L)AEA and M(L)AEA(L)provides ∼ 50% improvement over the
MAEA. In this case, the LPCA seems to identify the rotation of the design space
and, thus, assist the optimization to converge better. Moreover, the use of KPCA
speeds-up the convergence of the MAEA. Both MAEA(K) and M(K)AEA(K) reach
the global optimal solution after ∼3000 evaluations, while the MAEA is unable to
do so.

3.6 Benchmark Cases Revisited

The aforementioned variants of EAs including PCA, either the Linear or Kernel
one, are demonstrated in the four benchmark cases presented in section 2.4.
The performance of the new variants of EAs are compared with the ones used in
section 2.4.

3.6. Benchmark Cases Revisited 73

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

MAEA
MAEA(L)
M(L)AEA

M(L)AEA(L)
MAEA(K)
M(K)AEA

M(K)AEA(K)

(a) Separable

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

PSM Calls

MAEA
MAEA(L)
M(L)AEA

M(L)AEA(L)
MAEA(K)

M(K)AEA(K)

(b) Non-Separable

Figure 3.14: Rastrigin Problem: Convergence histories of MAEA, MAEA(L), MAEA(K),
M(L)AEA, M(K)AEA, M(L)AEA(L) and M(K)AEA(K).

3.6.1 Benchmark Case 1

In addition to the optimization of section 2.4, a (20, 40) MAEA(L), MAEA(K), M(L)AEA(L)
and M(K)AEA(K) are used. In all cases, the use of PCA for the evolution operators
started after the 2nd generation. Dimensionality reduction during the training of
the metamodel driven by the PCA, begins at TMM = 40, and reduces the meta-
model sensory units by half. This means that RBF networks with 6, rather than
12, input units are trained.

Convergence histories of the MAEA, MAEA(L), M(L)AEA(L), MAEA(K) and M(K)AEA(K)
runs are computed in fig. 3.15. The MAEA curve, fig. 2.14, is also repeated for
the sake of comparison. It can be seen that the use of PCA for either only the
evolution operators or both the evolution operators and metamodel training, leads
to a faster convergence. From this case, at least, it is difficult to conclude whether
the Linear or Kernel PCA performs better.

74 3. Principal Component Analysis

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0 200 400 600 800 1000

C
L

PSM Calls

MAEA
MAEA(L)
MAEA(K)

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0 200 400 600 800 1000

C
L

PSM Calls

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.15: Benchmark Case 1: Comparison of the convergence histories of MAEA,
MAEA(L) and MAEA(K) (left) and MAEA, M(L)AEA(L) and M(K)AEA(K) (right) in terms
of the number of CFD evaluations (PSM Calls).

3.6.2 Benchmark Case 2

The shape optimization of an isolated wing with respect to max. lift coefficient (CL)
and min. drag coefficient (CD), (second benchmark) is examined anew using the
PCA. A (10, 20)MAEA(L), MAEA(K), M(L)AEA(L) and M(K)AEA(K) are used. Regard-
ing the metamodels, the setting is exactly the same. The PCA starts after the first
generation and, in the LCPE phase, the PCA serves as a dimensionality reduction
tool, cutting 12 out of the 24 sensory units of the RBF networks. Comparisons of
the convergence histories of the aforementioned runs and the MAEA run (shown
in section 2.4) are presented in fig. 3.16. The fronts of non-dominated solutions
for a single RNG seed are presented in fig. 3.17. Even though the final fronts
of MAEA(L) and MAEA(K) do not dominate the front computed by the MAEA, the
convergence speed has increased when PCA is used. It is possible that the initial
design space is ("almost") separable and the PCA cannot provide further improve-
ment. However, if the KPCA is used for both metamodels and evolution operators,
the M(K)AEA(K) produces sensibly better front and convergence than any other
presented EA variant. Its great advantage comes from the well-spread front (bet-
ter than any other front thus far). Herein, the KPCA variants of EA seems to
outperform the corresponding LPCA ones.

3.6.3 Benchmark Case 3

The third benchmark case is revisited and optimized for two objective functions
for max. lift coefficient (CL) and min. moment coefficient (CM). A (10, 20)MAEA(L),
MAEA(K), M(L)AEA(L) and M(K)AEA(K) are used to perform the optimization and
their results are compared with the corresponding MAEA. Both usages of PCA
start after the 2nd generation. Comparison of the convergence histories of the

3.6. Benchmark Cases Revisited 75

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 100 200 300 400 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(L)
MAEA(K)

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(L)
MAEA(K)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 100 200 300 400 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
M(L)AEA(L)
M(K)AEA(K)

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.16: Benchmark Case 2: Left: Comparison of the convergence histories of
MAEA, MAEA(L), MAEA(K) (top) and MAEA, M(L)AEA(L), M(K)AEA(K) (bottom). Right:
Close-up views after the activation of metamodels and PCA.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

/C
D

,r
ef

CL/CL,ref

MAEA
MAEA(L)
MAEA(K)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
D

/C
D

,r
ef

CL/CL,ref

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.17: Benchmark Case 2: Comparison of the fronts of non-dominated solu-
tions resulted from MAEA, MAEA(L) and MAEA(K) (left) and MAEA, M(L)AEA(L) and
M(K)AEA(K) (right). Both objective functions are normalized using the corresponding
values of the reference wing geometry.

new runs and the MAEA is presented in fig. 3.18 and the corresponding front of
non-dominated solutions in fig. 3.19. Herein, the two-fold usage of PCA seems
to perform poorly, whereas the assistance of the KPCA on the evolution operators

76 3. Principal Component Analysis

increases the performance of the optimization. This indicates that all the design
variables are important. When the PCA truncates half of the variables, metamod-
els perform poorly, deteriorating the convergence speed, as it can be seen from
the M(L)AEA(L) and M(K)AEA(K) convergence plots. In this case, the use of LPCA
is significantly inferior to the use of the KPCA.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(L)
MAEA(K)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.18: Benchmark Case 3: Comparison of the convergence histories of MAEA,
MAEA(L) and MAEA(K) (left) and MAEA, M(L)AEA(L) and M(K)AEA(K) (right).

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

C
M

CL

MAEA
MAEA(L)
MAEA(K)

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

C
M

CL

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.19: Benchmark Case 3: Comparison of the fronts of non-dominated solu-
tions resulted from MAEA, MAEA(L) and MAEA(K) (left) and MAEA, M(L)AEA(L) and
M(K)AEA(K) (right).

3.6.4 Benchmark Case 4

The shape of a 2D section of the TurboLab compressor stator blade is optimized
for max. deviation of the exit flow from the axial direction (max. ∆α) and minimum
total pressure losses (min. ∆pt). Herein, this case is revisited and optimized using
a (15, 30)MAEA(L), MAEA(K), M(L)AEA(L) and M(K)AEA(K), with the PCA starting
after the first generation. Fig. 3.20 and 3.21 shows the convergence of all the PCA

3.6. Benchmark Cases Revisited 77

variants of EA and MAEA based on the hypervolume indicator and the front of non-
dominated solutions produced by a single RNG seed. In this case, both MAEA(L)
and M(L)AEA(L) performs worse than the standard MAEA, which indicates the
non-linear correlation between the design variables. Indeed, the MAEA(K) and
M(K)AEA(K), which are able to uncouple non-linearly correlated design variables,
perform better than other EA variants.

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 100 200 300 400 500 600

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(L)
MAEA(K)

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 200 300 400 500 600

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.20: Benchmark Case 4: Comparison of the convergence histories of MAEA,
MAEA(L), MAEA(K) (left) and MAEA, M(L)AEA(L), M(K)AEA(K) (right).

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.512 0.516 0.52 0.524 0.528

∆p
t

∆α

MAEA
MAEA(L)
MAEA(K)

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.512 0.516 0.52 0.524 0.528

∆p
t

∆α

MAEA
M(L)AEA(L)
M(K)AEA(K)

Figure 3.21: Benchmark Case 4: Comparison of the fronts of non-dominated
solutions computed by MAEA, MAEA(L), MAEA(K) (left) and MAEA, M(L)AEA(L),
M(K)AEA(K) (right).

78 3. Principal Component Analysis

Chapter 4

PCA-Assisted Hybrid Algorithm Combining
EAs and Adjoint Methods

As mentioned before, solving SOO or MOO problems using EAs becomes pro-
hibitively expensive if the PSM used to evaluate candidate solutions is computa-
tionally demanding, as it is the case for the CFD solvers used in this thesis. Even
if the aforementioned methods/techniques assist the EAs reduce the number of
calls to the PSM, the optimization can still be expensive in some cases. In con-
trast, Gradient-Based (GB) optimization methods require a considerably smaller
number of calls to the PSM, but they can easily be "trapped" into local minima.
For the GB methods to work, the computation or approximation of the gradient(s)
of the objective function(s) with respect to the design variables are required. For
problems having a CFD solver as the PSM, the gradients can be computed with
the adjoint method at a cost which is more or less equal to that of solving the flow
problem. A reasonable extension is to combine the advantages of both methods
(EAs and GB methods) in a hybrid optimization algorithm, which performs better
than its individual components.

In general, hybrid optimization algorithms combine two or more optimization
methods, for solving the same problem by periodically switching between them,
[118]. The desired features of each optimization method are combined. Hybrid op-
timization algorithms usually combine a variant of EA and a GB method [16, 162],
since the former is best suited for the exploration of the design space (randomized
search) and the latter for the refinement of promising solutions (deterministic
search). Memetic Algorithms (MA) [127, 160, 4] are a sub-category of hybrid
methods, which couple EAs with local search algorithms. In a MA [106, 78, 128],
the local search method (usually a GB one) selectively updates the design vector
and/or the objective vector of some offspring. MA can further be divided into two
main categories, namely the Baldwinian [10] and the Lamarckian search algo-
rithm [178]. In the former, each individual of the population has the ability to
learn new behaviors, so as to adapt to the changing environment. These behav-

79

80 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

iors have an effect on the genetic makeup of the next generation through natural
selection. In the Lamarckian search algorithm, parents can pass on genetic ma-
terial acquired through adaptation during their lifetime, directly to their offspring.
Some of the parents characteristics are inherited to the offspring while bypassing
the evolution. Multi-meme [108, 147], hyper-heuristic [100] and self-generating
MA [109, 161] are some variants of MAs developed thus far. The first two se-
lect individuals to perform local refinement in a smart way. They use a pool of
individuals, each of which is rewarded based on its ability to generate local im-
provements so far. Their rewards determine whether they will be further refined
or not. In self-generated MA, the way communication takes place between the EA
and the local search is not known ’a-priori’, as was the case in all aforementioned
variants. A rule-based local search is used to introduce individuals in the evo-
lution of the EA, thus recognizing regularly repeated features or patterns in the
objective space, such as local optima, to speed-up the convergence, [121].

This thesis presents a new hybrid algorithm which is suitable for MOO prob-
lems and combines a variant of EA with a GB method. It belongs to the Lamar-
ckian MA as it will become clear below. Aiming at maximum efficiency, the
M(K)AEA(K), proposed in the section 3, is used instead of a standard EA, because
it has been demonstrated to perform better than any other EA variant. Regard-
ing the GB method, this is assisted by the continuous adjoint method [56, 130],
which computes gradients by first differentiating the flow equations to produce
the adjoint Partial Differential Equations (PDEs) and, then, discretizing and nu-
merically solving them. With the adjoint method, the number of design variables
does not reflect on the cost for computing the gradients. During the last years, the
PCOpt/NTUA Unit develops both discrete and continuous adjoint-based methods
for computing the objective function derivatives, details can be found in section
1.2. Adjoint to both the PUMA solver and the cut-cell in-house CFD solver have
been developed. Hereafter, the PUMA solver computes the required gradients us-
ing continuous adjoint, for all the cases, instead of one industrial case, in which
the cut-cell CFD solver is used.

If Memetic Algorithms are applied in SOO problems, the direction in which
the GB method updates the individuals is straightforward. The individuals move
along the computed gradient or its negative direction, depending on whether the
objective is minimized or maximized. In MOO problems, as many gradients as
the objective functions are computed. The descending or ascending direction for
each individual to be refined should be a combination of these gradients [31].
It should always point towards the improvement of all objective functions, for
the new individual to be an improvement to the previous one and (hopefully)
the previous front of non-dominated solutions. Hereafter, this direction will be
referred to as the Pareto Advancement Direction (PAD), fig. 4.1, because it is
one direction that gradually improves/advances the current front. A technique
defining the PAD, based on an existing front of non-dominated solutions, has

4.1. SPEA2-based Hybrid Optimization Algorithm. 81

Figure 4.1: PAD for each individual of a given front in a problem with two objectives.

been proposed in [106, 78] from the PCOpt/NTUA Unit, see section 4.1. In these
papers dealing with MOO problems, the objective functions are combined into a
scalar utility value according to the SPEA2 technique [184]. Thus, the derivatives
of a differentiable approximation to the SPEA2 utility function together with the
gradients of the objective functions were used for the GB refinement.

Herein, the LPCA [2, 74] recomputes the PAD, in each generation. The objective
function values of the elite members in each generation are used as training
patterns for the LPCA. The LPCA gives the principal components of the objective
space. The principal component with the smallest variance is aligned with the
PAD. This direction is "perpendicular" to the current fronts hyper-surface and
points towards the simultaneous minimization of all objective functions. Having
computed the PAD, the GB method updates the design variables of the selected
individual(s) by moving along its direction so as to improve the current front of
non-dominated solutions. In the following section, the new hybrid algorithm,
called PCA-assisted hybrid method, is discussed in detail.

4.1 SPEA2-based Hybrid Optimization Algorithm.

In the hybrid method proposed in [106, 78], weights wj = δφ
δfi

SPEA2
are computed

as the derivatives of the SPEA2 function. A major difference from the PCA-Assisted
Hybrid Algorithm proposed in the following section, is that the method of [106, 78]
uses a different PAD for each individual undergoing steepest descent within the
same generation. In the objective space, directions "perpendicular" to the SPEA2
utility function isoline or isosurface for the non-dominated solutions imply that
such a displacement improves all objective functions, fig. 4.2. As mentioned

82 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

before in details (2.3.3), in SPEA2,

φSPEA2j =
1

2 + dj
+
∑
k∈Kj

skH
(Mo∑
m=1

H(fj,m − fk,m) + 0.5−Mo)

)

whereMo is the number of objectives and fj,m is themth objective function value of
the jth individual. It is basically the sum of the so-called strength (s) and density
(d) function values of all individuals dominating the jth individual. Here, Kj is
the population size excluding the jth individual and H is the Heaviside function.
In its standard form, the SPEA2 function cannot be differentiated, since the H is
not differentiable. In [78], a sigmoid function replaces the non-differentiable part
yielding a closed-form expression for δφ

δfj
. Note that, in [78], the fj included in the

gradient computation is approximated by metamodels (unless this individual has
been evaluated on the PSM in a previous generation), which yields a less accurate
PAD. A restriction of the previous method is that, for the purpose of compatibility,
the EA should exclusively rely upon the SPEA2 technique. This restriction is
abolished by implementing the PCA-Assisted Hybrid Algorithm.

Figure 4.2: Direction PAD for each individual computed by the SPEA2-based Hybrid
Algorithm [106, 78].

4.2 The PCA-Assisted Hybrid Algorithm, in detail

This section dives into the details of the PCA-Assisted Hybrid Algorithm. As in
the MAEA described in section 2.3.5, once there are enough archived results from
previous evaluations on the PSM to rely upon, all Sgλ members are pre-evaluated
using local personalized metamodels. Then, the top λe of them are re-evaluated

4.2. The PCA-Assisted Hybrid Algorithm, in detail 83

on the PSM. In the PCA-Assisted Hybrid Algorithm, the top λGB out of them
(λGB 6 λe) are selected to undergo a single descent step by the GB method. This
step, which involves the computation of gradients, generates the first λGB mem-
bers of the next generation offspring Sg+1

λ . The remaining λ−λGB members of Sg+1
λ

result from the evolution operators as applied in the standard EA. As mentioned
before, the PCA-Assisted Hybrid Algorithm is considered to be a Lamarckian MA,
because it promotes the refined individuals directly to the next generation (inher-
itance). Before performing any refinement or call to the adjoint solver (gradient
computation), the error among the objective functions values (~f) computed by
the PSM and the metamodel(s) are checked. If they are close enough, which is
a clear indication that the metamodel accuracy is acceptable, the algorithm pro-
ceeds with the PAD computation for the top λGB individuals (and the subsequent
GB refinement). This ensures that gradient computations are carried out only for
really promising individuals.

As mentioned in section 2.3.3, φ is the scalar utility function which is com-
puted using the objective vector (~f). Once, the PAD, equal to ∇φ = (δφ

δb1
, . . . , δφ

δbN
),

at the λi offspring of generation has been computed by the adjoint method, the
offspring’s design vector is updated by performing a single descent step, as follows

~bg+1
λi

= ~bgλi − η∇φ(~bgλi) (4.2.1)

where η is a user-defined step. The outcome of eq. 4.2.1 , ~bg+1
λi

, is directly injected
into the new offspring population (Sg+1

λ), without being affected by the evolution
operations.

In MOO, the simplest way to compute the scalar utility function φ (having in
mind that this is used by the GB method) is by concatenating the Mo objective
functions multiplied with weights wj as

φ(~b) =
Mo∑
j=1

wjfj(~b) (4.2.2)

By differentiating eq. 4.2.2 , the gradient of φ becomes equal to the weighted sum
of the gradients of all objective functions,

∇φ(~b) =
Mo∑
j=1

wj
δfj

δ~b
(4.2.3)

The automatic selection of weights wj is crucial since these determine the PAD.
In each generation, the PCA-Assisted Hybrid Algorithm computes a single set
of weights, which are used by all the individuals to undergo refinement. These

84 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

weights are computed at the beginning of each generation and are known before
any call to the CFD or adjoint solver. For each individual, if all fj are able to be
computed by a single call to the CFD solver, then the gradients of f will also result
from a single call to the adjoint solver developed by differentiating eq. 4.2.2 . If
the weights were not known before the gradient computation, the adjoint solver
would have been called as many times as the number of objective functions.

In the PCA-Assisted Hybrid Algorithm, LPCA computes the weights used in
eq. 4.2.2 . This usage should not be confused with the previous usages of PCA
inside the EA presented in chapter 3. In each generation, the data set D used to
train the LPCA comprises the Mo objective function values of the ε current elite
individuals, with one objective vector per column of D. It is important that the
elite set is exclusively populated by individuals exactly evaluated on the PSM. The
elite individuals define the front to be improved, thus the "almost perpendicular"
direction to it should be the PAD. This is characterized as "almost perpendicular"
because there is not a single perpendicular direction at all points of the front in
the Mo objective space.

The Mo ×Mo covariance matrix P of D is computed as Pij = 1
M

∑M
k=1DkiDkj

where Dki is the fi value of the kth individual. The eigenvalues Λ and eigenvectors
U defining the new feature space are computed by solving the eigenproblem P=
UΛUT through the Singular Value Decomposition method. The equation which
maps any objective vector ~f into the feature space, is given as

c = c(~f)=U(~f − ~µ), c∈RMo (4.2.4)

where ~µ is the vector of mean values of the objective functions of D. The elements
of ~c correspond to directions with variances in descending order. The direction
with the smallest variance is the one along which the members are comparatively
less scattered and is almost perpendicular to the current front of non-dominated
solutions. Thus, the GB method should update the elite members by making
them move along this direction.

Having computed the transformation from the design to the feature space, the
gradients δ~φ

δ~b
are transformed there with the equation δ~c

δ~b
= U δ~φ

δ~b
which results by

differentiating eq. 4.2.4 (U is constant w.r.t. the design variables). Then, the M th
o

row of the δ~c

δ~b
matrix replaces ∇φ(~b), in eq. 4.2.1 , and forming the PAD in this

case. Instead of computing each gradient of ~φ separately, a single adjoint run
computes directly the M th

o row of δ~c

δ~b
and each GB refinement costs as much as a

single call to the PSM. This is possible only in problems in which objectives can
be computed with a single call to the PSM.

The PCA-Assisted Hybrid Algorithm is applicable with any scalar utility func-
tion overcoming the restriction of the previous hybrid method (the method in
[106, 78] can be used, theoretically at least, only with SPEA2). The scalar utility

4.3. Benchmark Cases Revisited 85

function solely affects the EA component of the hybrid algorithm. In the method
of [106, 78], each individual had its unique descent direction; in contrast, in the
PCA-Assisted Hybrid Algorithm, the PAD is the same for all individuals, varying
only from generation to generation or, practically, whenever the training set (elite)
changes. Lastly, the PCA is trained with the objective function values of the elite
set evaluated on the PSM, in contrast to the method of [106, 78] which basically
uses metamodel-based approximations. Thus, the computed PAD is thought to
be more precise and reliable than the one computed by the method of [106, 78].
The pseudo-code and the corresponding flowchart for the PCA-Assisted Hybrid
Algorithm are presented in algorithm 1 and fig. 4.4.

For better understanding of the PAD along which the GB method updates
the individuals, a simple mathematical example with two design variables (bi ∈
[−10, 10], i=1, 2; N=2) and two objectives to be minimized is presented

f1 =b21 + b22, f2 =(b1 − 2)2 + (b2 − 2)2 (4.2.5)

The EA used in the hybrid algorithm has µ=10, λ=20 and ε=20. Fig. 4.3 shows
the PAD of the elites in different generations. The magnitude of the plotted vectors
is just for visualization purposes and does not quantify the computed gradients.
Directions computed by the method of [106, 78] and the PCA-Assisted Hybrid
Algorithm are compared. Both of these methods provide very similar descent
directions pointing towards the minimization of both objectives. Both of them
provide satisfactory results, if individuals are updated along these directions. For
the method of [106, 78], the arrows are perpendicular to the SPEA2 utility function
isoline defined by the front and they are slightly curved according to the front.
For the PCA-Assisted Hybrid Algorithm, the arrows are parallel to the direction
of the smallest variance produced by the PCA and have all the same angle and
magnitude. Note that the remaining direction with the largest variance is almost
parallel to the front. The PCA-Assisted Hybrid Algorithm takes the difference in
scale between the given objective function values into account and this is why the
PAD is more inclined towards the second objective than the one produced by the
method of [106, 78]. Both objectives are expected to be improved equal for each
individual updated towards this direction.

4.3 Benchmark Cases Revisited

The PCA-Assisted Hybrid Algorithm is demonstrated in the benchmark cases (see
section 2.4). In all cases, the gradients of the objective function with respect
to the design variables are computed with a continuous adjoint solver, which is
embedded to the PUMA software used to solve the flow equations. During the
optimization with the PCA-Assisted Hybrid Algorithm, the weights which concate-
nate the gradients are known before the adjoint runs. They are included in the

86 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

Algorithm 1 The PCA-Assisted Hybrid Algorithm
g ← 0; {g: generation counter}
nevals ← 0; {nevals: evaluation counter}
Sgλ ← Initialization()
while nevals ≤ nevals,max do
PCA Training(~f(~bg1), · · · , ~f(~bgλ))
if nevals < TMM then

~f(~bg1), · · · , ~f(~bgλ)← Evaluate(); {on the PSM}
nevals ← nevals + λ

else
~̂f ← Low−Cost Pre−Evaluation(Sgλ)

λe ← Sorting(~̂f)
for i∈ [1,λe] do

~f(~bgi)← Evaluate()
if i ≤ λGB then
∇f(~bi)← ComputeGradients(); {using PCA-transformed adjoint }

end if
end for
nevals ← nevals + λe + λGB

end if
Sgε ← Dominance(Sgε , {~f(~bg1), · · · , ~f(~bgλe)}); {update elite set}
Sgµ ← ParentSelection(Sgε , S

g
λ)

for i∈ [1,λ] do
if nevals ≥ TMM & i ≤ λGB then
~bg+1
i ← ~bgi + η∇f(~bgi); {GB refinement}

else
~bg+1
i ← Evolution Operators(Sgµ, S

g
ε)

end if
end for
Sg+1
λ ← {~bg+1

1 , · · · ,~bg+1
λ }

g ← g + 1
end while
Export Front of Non−Dominated Solutions Sgε

4.3. Benchmark Cases Revisited 87

-2.5

-2

-1.5

-1

-0.5

 0

-0.01 -0.005 0 0.005 0.01 0.015 0.02

f 2

f1

PCA-Based
SPEA2-Based

-2.5

-2

-1.5

-1

-0.5

 0

-0.01 -0.005 0 0.005 0.01 0.015 0.02

f 2

f1

PCA-Based
SPEA2-Based

Figure 4.3: Two-objective mathematical minimization problem, eq. 4.2.5 : Elite sets
at two generations (left: 6th, right: 20th). Directions computed by the method of
[106, 78] (red vectors) and the present one (black).

Start

Offspring
Population

EA
Stopping
Criteria

𝑛𝑒𝑣𝑎𝑙
> 𝑇𝑀𝑀

Exact Evaluations

Evaluation on
metamodels

Evolution
Operators

Elite
Population

Sorting
Population

Parents’
Population

Initialize
Population

Train
Metamodel

& PCA

End

Database

LCPE

𝑖 < 𝜆𝑒

𝑖 < 𝜆𝐺𝐵
Compute
Gradients

Steepest
Descent

GB

Figure 4.4: The PCA-Assisted Hybrid Algorithm workflow.

adjoint software, a single call of which computes all the gradients needed by the
GB method to update the individuals to be refined. The performance of the PCA-
Assisted Hybrid Algorithm is compared with the M(K)AEA(K) described in section
5.2, which was shown to outperform all the other EA variants presented in other
sections.

88 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

4.3.1 Benchmark Case 1 as a Three-Objective Problem

The first benchmark problem, the shape optimization of an airfoil, is modified
to become a MOO, so as to use the PCA-Assisted Hybrid Algorithm. Two more
objective functions are introduced and the case is optimized for max. lift (L), min.
drag (D) and min. moment (M). Flow conditions, CFD grid and design variables
remain the same.

The optimization is carried out using an M(K)AEA(K) and the PCA-Assisted
Hybrid Algorithm. In both variants, µ=10, λ=20 and ε=20 and the LCPE phase
begins after the first TMM = 20 evaluations on the PSM. In the PCA-Assisted
Hybrid Algorithm, λGB = λe = 2 members undergo refinement based on the GB
method. The computational budget is restricted to 500 calls to the PSM which
include calls to the flow and the adjoint solver (considered as having the same
cost). Fig. 4.5 compares the convergence histories of the hypervolume indicator
of all the optimization runs. The PCA-Assisted Hybrid Algorithm outperforms
the M(K)AEA(K) and this shows that the local advancement can accelerate an
already well performing EA. During the optimization runs of the PCA-Assisted
Hybrid Algorithm, 275 evaluations are spent for the PSM calls and the rest 225
evaluation for the adjoint calls. Fig. 4.6 compares the reference airfoil shape with
the optimal solutions for min. drag, max. lift and min. moment resulted from a
single run (one RNG seed) of the PCA-Assisted Hybrid Algorithm. For these four
airfoils, a comparison of the Mach number field can be seen in fig. 4.7. For the
min. drag airfoil, the suction side becomes practically ‘‘flat" and the shock wave
is reduced leading to drag reduction. For the max. lift airfoil, the airfoil is more
cambered, the pressure is even lower on the suction side and increased along the
pressure side so as to produce more lift. For the min. moment airfoil, the shape is
modified so as to make the shock move upstream (fig. 4.7c) and, thus, minimize
the effect of the shock induced compression on the pitching moment.

4.3.2 Benchmark Case 2

The Benchmark Case 2, the shape optimization of an isolated wing, is revisited
with the PCA-Assisted Hybrid Algorithm, with settings (µ, λ) = (10, 20), ε = 20
and λGB = 2. 263 evaluations are spent for CFD evaluations whereas the rest
237 for the adjoint solver. Comparison of the convergence histories based on the
hypervolume indicator is shown in fig. 4.8 and the corresponding fronts of non-
dominated solutions in fig. 4.9. The PCA-Assisted Hybrid Algorithm outperforms
the M(K)AEA(K) during almost the entire evolution and the final front is slightly
better in all regions of the objective space. With the PCA-Assisted Hybrid Algo-
rithm, the GB refinement delivered 7 out of the 20 elite individuals of fig. 4.9. Fig.
4.10 shows how the GB method upgrades the front of non-dominated solutions,
from generation to generation.

4.3. Benchmark Cases Revisited 89

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

M(K)AEA(K)
PCA-Assisted Hybrid Algorithm

Figure 4.5: Benchmark Case 1 with three objectives: Comparison of the conver-
gence histories of the M(K)AEA(K) and the PCA-Assisted Hybrid Algorithm in terms
of the number of PSM calls. Adjoint runs are included and counted as an extra CFD
evaluation/ PSM calls.

-0.1

-0.0

-0.0

0.0

0.0

0.0

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y

x

Reference
Min Drag
Max Lift

Min Moment

Figure 4.6: Benchmark Case 1 with three objectives: Comparison of the reference
and optimized airfoil shapes corresponding to the three extreme points of the Pareto
front. Axes not in scale.

4.3.3 Benchmark Case 3

The Benchmark Case 3 problem is revisited using the method of [106, 78] and the
PCA-Assisted Hybrid Algorithm with λe=λGB =1. This is performed only once, in
this case, in order to make an interesting comparison between the two (old/new)
Hybrid Algorithms. Fig. 4.11 shows that the PCA-Assisted Hybrid Algorithm per-
forms better than both the M(K)AEA(K) and the SPEA2-Based Hybrid Algorithm
of [106, 78]. The superiority of the proposed method over the one of [106, 78] is
due to the way PAD is computed, since the two algorithms practically share all
other features. Fig. 4.12 shows the improvement of the front from generation to

90 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

(a) Reference (b) Max. Lift

(c) Min. Moment (d) Min. Drag

Figure 4.7: Benchmark Case 1 with three objectives: Mach number iso-areas around
the reference, the max. lift, the min. moment and the min. drag airfoils.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

M(K)AEA(K)
PCA-Assisted Hybrid Algorithm

Figure 4.8: Benchmark Case 2: Comparison of the convergence histories of the
M(K)AEA(K) and the PCA-Assisted Hybrid Algorithm in terms of the number of the
CFD evaluations.

generation, each time a GB-refinement takes place. Fig. 4.13 presents the front
of non-dominated solutions produced by the optimization runs using the three
methods (for the same RNG seed). During the optimization with the PCA-Assisted
Hybrid Algorithm, 263 out of the 500 evaluations are spent to evaluate individuals,
i.e. to run the PSM, whereas the rest 237 to compute the gradients (adjoint runs).

4.3. Benchmark Cases Revisited 91

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
PCA-Assisted Hybrid Algorithm

Figure 4.9: Benchmark Case 2: Comparison of the fronts of non-dominated solutions
resulted from the M(K)AEA(K) and the PCA-Assisted Hybrid Algorithm.

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0.8 1 1.2 1.4 1.6 1.8 2 2.2

C
D

/C
D

,r
ef

CL/CL,ref

Gen. 7
Gen. 8
Gen. 9

Grad. 7-8
Grad. 8-9

Figure 4.10: Benchmark Case 2: Fronts of non-dominated solutions at three succes-
sive generations computed by the PCA-Assisted Hybrid Algorithm. Vectors represent
the improvements made by the GB method.

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 50 100 150 200 250 300 350 400 450 500

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

M(K)AEA(K)
SPEA2-Based Hybrid Algorithm
PCA-Assisted Hybrid Algorithm

Figure 4.11: Benchmark Case 3: Comparison of the convergence histories of
M(K)AEA(K), PCA-Assisted Hybrid Algorithm and the method of [106, 78] (SPEA2-
Based Hybrid Algorithm) in terms of the number of CFD evaluations (including flow
and adjoint runs, both considered at the same cost).

92 4. PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95

 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

C
M

CL

Gen. 10
Gen. 11
Gen. 12

Grad. 10-11
Grad. 11-12

Figure 4.12: Benchmark Case 3: Fronts of non-dominated solutions for three sub-
sequent generations (Gen. = 10, 11 and 12) computed by the PCA-Assisted Hybrid
Algorithm. Vectors represent improvements made by the GB method.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

C
M

CL

M(K)AEA(K)
SPEA2-Based Hybrid Algorithm
PCA-Assisted Hybrid Algorithm

Figure 4.13: Benchmark Case 3: Comparison of the fronts of non-dominated solu-
tions resulted from M(K)AEA(K), the PCA-Assisted Hybrid Algorithm and the method
of [106, 78].

Chapter 5

Multi-Criteria Decision Making within EAs

A Multi-Objective Optimization (MOO) problem consists of more than one conflict-
ing objective functions to be minimized, min.~f(~b)=min.f1(~b), . . . ,min. fMo(~b). As
already explained, the optimization ends up with a front of non-dominated solu-
tions see chapter 2. Decision Maker (DM) usually needs to isolate one solution
from this front, according to not articulated ’a priori’ additional preferences. They
may have more interest in some objectives over the others and MCDM techniques
can help the DM eliminate solutions which are not of interest to them and select
one according to their preferences.

For the MCDM techniques to be applied, the DM preferences must be quan-
tified, which can be done in various ways. During this thesis, weights express
and quantify the DM preferences with respect to each objective function. In gen-
eral, MCDM techniques can be used in three different ways to enhance the EAs,
[181]. The first way is ’a posteriori’, in which the DM preferences are not known
during the EA-based search. The EA (or any of its variants) is performed without
any change, the final front of non-dominated solutions is produced and, then,
processed by the MCDM technique which selects the final ’optimal’ solution(s)
based on the DM preferences. In contrast, when preferences are known ’a pri-
ori’, the EAs take advantage of these preferences and, to this end, they undergo
appropriate modifications. During the evolution, the MCDM technique replaces
the method computing the scalar utility function φ for each individual in the
EA populations. Consequently, the value of φ depends on the DM preferences
(weights for each objective function). The more preferred individuals are assigned
smaller φ, thus, get higher chances to create offspring during the evolution. The
scalar utility function φ and, through it the MCDM technique, affect the parent
selection and trimming processes, evolving the front of non-dominated solutions
towards areas preferred by the DM. The final front is different than the one that
would result from an EA without having access to the DM preferences. Lastly, the
MCDM techniques can be used ‘interactively’ with the EAs, [180]. In this case,
DM preferences may change during the evolution. The EA is affected as in the ‘a

93

94 5. Multi-Criteria Decision Making within EAs

priori’ usage of MCDM. The algorithm stops periodically and presents the front of
non-dominated solutions computed thus far to the DM. The latter, after judging
the front, may change the preferences given to the EA. Thus, the EA interactively
changes the focus of the evolution converging to fronts much closer to the updated
DM preferences.

5.1 MCDM Techniques

Many different MCDM techniques [72, 168] have been devised and applied in
different kind of problems. For a better understanding, it is important to start
with the most important relevant definitions.

A decision Matrix P is formed by elements which quantify the performance of
the i solution of the MOO problem over the j objective function. P is, thus, a
Me×Mo matrix, where Me is the number of processed solutions (herein, the elite
set) and Mo the number of objective functions.

For the MCDM techniques presented below, the decision matrix should be
normalized. The normalized Me ×Mo matrix r is computed as ri,j =

pi,j√∑Me
k=1 p

2
k,j

or

ri,j =
pi,j

minMe
k=1p

2
k,j

. The DM preferences are introduced into matrix r by multiplying
each element with the weight corresponding to its objective function; the resulting
matrix V has elements computed as vi,j = ri,jwj where wj is the jth objective
function’s weight. Without loss of generality, the sum of weights is equal to∑Mo

j=1wj = 1.
The MCDM techniques rank the given solutions, from best to worst, based

on the weights/DM preferences. This rank essentially affects the selection of the
best solutions of a front of non-dominated solution (’a posteriori’). The population
members of each generation can be ranked based on the MCDM technique to
continuously promote solutions preferred by the DM. Some MCDM techniques
are presented epigrammatically:

1) TOPSIS (Technique for the Order of Preference by Similarity to the Ideal Solu-
tion, [72]): This technique is the one programmed and used in this thesis; it
is thus described below in detail.

2) VIKOR (VIseKriterĳuska Optimizacĳa I Komoromisno Resenje, [133]): This
technique ranks the solutions based on their distance from the ideal so-
lution, which is formed by combining the minimum value of all objective
functions as in the V matrix. Three different metrics based on the distance
are computed and solutions with smallest metric values are prioritized.

3) WS or WP (Weighted Sum or Weighted Product, [33]): The summation or prod-
uct of the V values for each solution is computed correspondingly for the
Weighted Sum or Product. Better solutions correspond to smaller overall
values.

5.1. MCDM Techniques 95

4) AHP (Analytic Hierarchy Process, [146]): The DM preference for each objective
function is expressed with a new scale corresponding to the priority one
objective has over the others. The objectives weights are computed based
on the new scale and multiplied with the r elements to compute matrix V.
For each solution, the V elements are added and the solutions are ranked
based on the resulted values.

5) PROMETHEE (Preference Ranking Organization METHod for Enrichment Eval-
uations, [111]): Rather than pointing out a "right" decision, this method
helps the DM find the alternative that best suits DM’s goal and understand-
ing of the problem. At first, pairwise comparisons will be made between all
the solutions for each objective. The notion of preference function is intro-
duced to translate the difference into a uni-criterion preference degree for
each couple. A multi-criteria preference degree is then computed, based on
the DM weights, to globally compare every couple of solutions. In order to
position every solution with respect to all other, two scores are computed: (a)
the positive preference flow which quantifies how a given solution is globally
preferred with respect to all the other solutions and (b) the negative pref-
erence flow quantifies how a given solution is being globally preferred by
all the other solutions. The difference between these scores determines the
solutions’ ranking, where smaller values correspond to better solutions.

This thesis focuses only on the TOPSIS technique, but any other method can
be applied instead, with just some minor modifications to the algorithm.

5.1.1 The TOPSIS Technique

TOPSIS was developed by Hwang and Youn [72] for MOO problems. It ranks the
presented solutions based on the DM preferences, which must be expressed in
the form of weights associated with each objective function. Two reference/ideal
points are used, the zenith corresponding to the point with all objectives at their
minimum values and the nadir corresponding to the point with all objectives at
their maximum values. This technique can be used without any change for both
’a priori’ and ’a posteriori’ articulated DM preferences. For the former, TOPSIS
ranks the EA populations in each generation while, for the latter, it ranks only
the final front of non-dominated solutions presented to the DM. Either way, a
data-set is presented to TOPSIS, which ranks its members.

TOPSIS steps are:

Step 1: Construction of the decision matrix P.

Step 2: Construction of the normalized decision matrix r.

96 5. Multi-Criteria Decision Making within EAs

Step 3: Construction of matrix V by processing matrix r with the weights articu-
lated by the DM.

Step 4: Computation of two ideal solutions, the positive (I+) and the negative (I−)
one. I+ corresponds to the minimum objective functions found in the data-
set, whereas I− corresponds to the maximum objectives, fig. 5.1. Note that,
for the ’a priori’ use of TOPSIS within an EA, the data-set and, consequently,
the ideal solutions are changed in each generation,

I+ = (maxivi1,maxivi2, . . . ,maxiviMo) = (v+1 , v
+
2 , . . . , v

+
Mo

) (5.1.1.1)
I− = (minivi1,minivi2, . . . ,miniviMo) = (v−1 , v

−
2 , . . . , v

−
Mo

) (5.1.1.2)

Step 5: Computation of the Euclidean in the objective space distances of each
solution from the positive and negative ideal solutions, fig. 5.2,

d+i =

√√√√ Mo∑
j=1

(vij − v+j)2 (5.1.1.3)

d−i =

√√√√ Mo∑
j=1

(vij − v−j)2 (5.1.1.4)

Step 6: Computation of the relative distance of each solution from the ideal so-
lutions

Di =
d−i

d−i + d+i
(5.1.1.5)

Di is the scalar utility value φ assigned in the ith solution and used for the
application of the evolution operators.

5.1.2 TOPSIS-driven EAs

For the ’a-priori’ articulated DM preferences, TOPSIS is introduced into EAs for
the solution of MOO problems. Its purpose is to drive the optimization towards
areas of the objective space preferred by the DM. Given that the M(K)AEA(K) vari-
ant outperforms any aforementioned EA ’s variant, as shown in previous sections,
TOPSIS is incorporated into this variant to further improve its performance, pro-
ducing a new variant called TOPSIS-driven M(K)AEA(K) or TO-M(K)AEA(K). Need-
less to say that TOPSIS can be used with any other variant of EA or MAEA. It

5.1. MCDM Techniques 97

𝒇𝟏

𝒇𝟐

𝑰+

𝑰−

Figure 5.1: Front of non-dominated solutions along with the two ideal solutions
defined in TOPSIS.

𝒇𝟏

𝒇𝟐

𝑰+

𝑰−

𝑨

𝒅𝑨
−

𝒅𝑨
+

𝑩

𝒅𝑩
−

𝒅𝑩
+

Figure 5.2: Euclidean distances between candidate solutions and the ideal solutions
in TOPSIS.

replaces the scalar utility function, assigns to each individuals values φ based
on the DM preferences and affects the parents and elites selection. The resulting
algorithm gradually moves the front of non-dominated solutions towards the pre-
ferred objective space areas. Finally, it generates better fronts in these areas in
comparison with the ones generated by the M(K)AEA(K) or any other EA variant.
TO-M(K)AEA(K)’s prerequisite is the DM preferences to be available in the form of
weights for each objective function before the optimization.

TO-M(K)AEA(K) includes the following steps (excluding steps for the PCA pro-
cedures), which are also shown, in flowchart form, in fig. 5.3:

Initialization: First generation (g = 0). The DM preferences are known in the
form of weights for each objective function. The offspring population P 0

λ is
initialized using a random number generator (RNG).

98 5. Multi-Criteria Decision Making within EAs

Evaluation: All offspring (P g
λ) are evaluated on either the PSM or the metamodels

(in case of a MAEA).

Fitness Assignment: TOPSIS assigns a scalar utility value φ to each individual
~b∈P g

λ ∪P g
µ ∪P g

e . This values are based on the DM preferences and distances
in the objective space as computed by TOPSIS.

Elite Selection: The elite set of the current generation (P g
e) is formed based on

the aforementioned φ values computed by the TOPSIS algorithm.

Elitism Operator: A small number of elite individuals replace the offspring mem-
bers of P g

λ .

Parent Selection: The parent population P g
µ is formed by processing the P g

λ ∪
P g−1
µ individuals. The selection is based on their fitness value φ computed

by TOPSIS.

Crossover and Mutation Operators: The new offspring population P g+1
λ is cre-

ated by applying the crossover and mutation operators (see section 2.3.2).

Stopping Criteria: If the stopping criteria are met, terminate the algorithm; oth-
erwise, return to the Evaluation step.

Figure 5.3: TO-M(K)AEA(K) flowchart.

5.2. Applications 99

5.2 Applications

The previously presented TO-M(K)AEA(K) is demonstrated in four benchmark
cases. These optimization problems have already been presented in section 2.4.
The new EA variant performance is compared with the one of M(K)AEA(K), which
has been shown to outperform all the other variants used in section 5.2.

5.2.1 Benchmark Case 1 with two objectives

Herein, the shape optimization of an isolated airfoil, as in section 2.4, is modified
to perform a MOO problem with two objective functions: max. lift coefficient (CL)
and min. drag coefficient (CD). All the other optimization parameters are kept the
same. Three case studies are performed with the DM giving three different sets of
weights which corresponds to his/her preferences for each objective function. The
first set is (w1, w2)=(0.9, 0.1) which gives emphasis on the first objective function,
while the second one (w1, w2)=(0.1, 0.9) giving empashis on the second objective
function. For the third set (w1, w2)=(0.5, 0.5), both objectives appear to be equally
important. In this case, the convergence speed should not be measured with
the hypervolume indicator, since the latter does not include the DM preferences
(unless defined in a different manner). On the other hand, the comparison of
the final fronts of non-dominated solution for the TO-M(K)AEA(K) with different
weights and the M(K)AEA(K) runs, which is presented in fig. 5.4, shows that the
optimization is driven towards preferred areas of the objective space. For the first
set of weights, the final front is gathered in the area of high CL values, while, for
the second set, in the area of low CD values. Weights set to (0.5, 0.5) drive the
front towards the middle of the Pareto front.

5.2.2 Benchmark Case 2

The shape optimization of an isolated wing, [154], for max. lift coefficient (CL) and
min. drag coefficient (CD) is examined anew using a (10, 20) TO-M(K)AEA(K). The
usage of KPCA and metamodels is made according to the algorithm presented in
section 5.2. The final front is compared in fig. 5.5 with the one produced by the
M(K)AEA(K) run. Once again, the DM preferences are set to: (a) (w1, w2)=(0.9, 0.1)
with emphasis on the max. lift area of the objective space, (b) (w1, w2) = (0.1, 0.9)
with emphasis on the min. drag area, (c) (w1, w2) = (0.5, 0.5) with emphasis on
the middle of the Pareto front. The corresponding fronts are shown in fig. 5.5.
In all cases, the TO-M(K)AEA(K)’s fronts outperform the M(K)AEA(K)one in the
corresponding areas.

100 5. Multi-Criteria Decision Making within EAs

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.9,0.1)

(a) (w1, w2)=(0.9, 0.1)

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 0.7 0.8 0.9 1 1.1 1.2 1.3

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.1,0.9)

(b) (w1, w2)=(0.1, 0.9)

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.5,0.5)

(c) (w1, w2)=(0.5, 0.5)

Figure 5.4: Benchmark Case 1: Front of non-dominated solutions computed by
TO-M(K)AEA(K) and M(K)AEA(K).

5.2. Applications 101

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0.8 1 1.2 1.4 1.6 1.8 2 2.2

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.9,0.1)

(a) (w1, w2)=(0.9, 0.1)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.1,0.9)

(b) (w1, w2)=(0.1, 0.9)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0.8 1 1.2 1.4 1.6 1.8 2

C
D

/C
D

,r
ef

CL/CL,ref

M(K)AEA(K)
(0.5,0.5)

(c) (w1, w2)=(0.5, 0.5)

Figure 5.5: Benchmark Case 2: Front of non-dominated solutions computed by
TO-M(K)AEA(K) and M(K)AEA(K).

102 5. Multi-Criteria Decision Making within EAs

Chapter 6

Industrial Optimization Problems

This section presents a number of industrial optimization problems, taken from
real-world applications. Once again, the GPU-enabled PUMA solver developed
by the PCOpt/NTUA Unit acts as the PSM in all but one case (the optimization
of a valveless diaphragm micropump) in which the cut-cell in-house CFD solver
is used instead. Each CFD evaluation requires much more computational time
than the Benchmark Cases, that is why only a few of the EA variants (mainly the
best of them according to the findings thus far) are utilized for their optimization.
The aircraft and Francis runner optimizations are both carried out in the con-
text of research funded by European industries. The shape optimization cases
of the ultra-light aircraft and the DrivAer car were provided by the partners of a
European project in which the PCOPT/NTUA Unit participated, too. Lastly, a 3D
valveless diaphragm micropump, for use in medical and biochemical processes, is
designed. Its diaphragm motion, which induces the fluids flow inside the pump, is
parameterized and the incompressible cut-cell CFD solver simulates the unsteady
flow. This micropump is optimized so as to minimize the back-flow at the exit and
maximize the net volume flux [84, 83]. This research was funded by the project
"Design-Optimization of Diaphragm Pumps under Operational and Manufactur-
ing Uncertainties based on the Cut-Cell and the Polynomial Chaos Methods" (MIS
5004541), implemented under the Action "Supporting Researchers with an Em-
phasis on Young Researchers", in the context of the call EDBM34, funded by the
Operational Programme "Human Resource Development, Education and Lifelong
Learning" (NSRF 2014-2020) and co-financed by Greece and the European Union
(European Regional Development Fund).

103

104 6. Industrial Optimization Problems

6.1 Industrial Case 1: Shape Optimization of an Aircraft Wing-

Body Configuration

The first industrial problem is concerned with the re-design of an aircraft wing-
body configuration, [15], by only changing the shape of the wing, for max. lift
coefficient (CL) and min. drag coefficient (CD). The flow conditions are: Reynolds
number Rec=106 based on the mean aerodynamic chord, freestream Mach num-
ber M∞ = 0.75 and flow angles at the farfield are 0o. The flow is turbulent, so
the Navier-Stokes equations with the Spalart-Allmaras [164] turbulence model
are solved. Only half of the aircraft is simulated due to symmetry. A customized

dLE

hLE

z1

z2

dTE

hTE

z1

z2

Figure 6.1: Industrial Problem 1: Definition of the 8 design variables
(αLE , αTE , dLE , dTE , hLE , hTE , z1, z2). Top: wing planform. Middle: wing dihedral
angle at the leading edge. Bottom: wing dihedral angle at trailing edges.

parameterization model with 8 design variables is used to control the wing shape
(fig. 6.1). In specific, the first two of them (αLE, αTE) control the sweep angle.
Distances dLE and dTE affect the leading and trailing edge curvature close to
mid-span. The wing span is affected by hLE and hTE which change the wing tip,
whereas the variables z1 and z2 can lift and/or twist the wing. The aforementioned
design variables affect, in turn, the coordinates of some of the internal nodes of

6.1. Industrial Case 1: Shape Optimization of an Aircraft Wing-Body Configuration 105

the 3×5×4 NURBS control grid (fig. 6.2). Out of a total of 60 control points, some
are kept fixed to ensure continuity with the surrounding undeformed CFD grid
while others are adapted to the values of the aforementioned design variables.
The morphing box (fig. 6.2) leaves the wing-pylon and pylon-nacelle junctions in-
tact and acts complementarily to the wing parameterization of fig. 6.1, affecting
exclusively the grid (displacement) in the interior of the flow domain. The CFD
grid consists of tetrahedra and prisms, with ∼0.77M nodes. Each PSM call costs
∼16min on an NVIDIA K20 GPU, including the morphing process.

Figure 6.2: Industrial Problem 1: Control points of the volumetric NURBS grid, used
to deform the wing and the CFD grid around it (not shown in this figure). Blue points
are kept fixed so as to ensure CFD grid continuity. Red ones are allowed to vary. The
volumetric NURBS grid is used for displacing the internal CFD nodes (the wing shpae
is affected by the parameterization of fig. 6.1).

The shape optimization problem is solved using a (5, 10)EA, MAEA, MAEA(K)
and M(K)AEA(K). The LCPE phase starts after TMM = 20 calls to the PSM and
the λe = 4 most "promising" individuals are re-evaluated in each generation. The
stopping criterion was set to 200 CFD evaluations. Fig. 6.3 presents the mean
convergence of the hypervolume indicator obtained by averaging the results of
three runs (with three different RNG seeds) of the EA and MAEA. During the first
generations, the metamodels seem to perform poorly. By enriching the DB with
new individuals evaluated on the PSM, the on-line trained metamodels improve

106 6. Industrial Optimization Problems

their performance, resulting to better solutions for the optimization and faster
convergence than the standard EA. Fig. 6.4 compares the convergence of the KPCA
variants with the MAEA and fig. 6.5 the corresponding fronts of non-dominated
solutions from a single RNG seed. While the MAEA(K) converge faster than MAEA,
the final fronts are more or less the same. In contrast, the M(K)AEA(K) computed
an improved front, due to the wide spreading of the optimal solutions.

 0.27
 0.28
 0.29
 0.3

 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37

 20 40 60 80 100 120 140 160 180 200

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

EA
MAEA

Figure 6.3: Industrial Problem 1: Comparison of the averaged convergence histories
for three RNG seeds of EA and MAEA, in terms of the number of CFD evaluations.

A comparison of the pressure coefficient distributions at three span-wise po-
sitions and the pressure field around the whole aircraft over the reference shape
and the ones optimized for max. CL and min. CD, obtained from the best run of
the M(K)AEA(K), are shown in fig. 6.6 and fig. 6.7, respectively. Figs. 6.8 and 6.9
highlight differences among the aforementioned wings. The corresponding airfoil
geometries at the same span-wise positions are also shown in fig. 6.10. In the
optimal solution for max. CL, due to the change in the shape, the angle of attack
has increased. For the min. CD design, the pressure side close to the trailing edge
is straightened, minimizing the effect of high pressure on the drag. Also, the wing
surface has decreased, reducing the effect of viscous stresses on drag.

6.1. Industrial Case 1: Shape Optimization of an Aircraft Wing-Body Configuration 107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(K)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
M(K)AEA(K)

Figure 6.4: Industrial Problem 1: Comparison of the convergence histories of MAEA
and MAEA(K) (top) and MAEA and M(K)AEA(K) (bottom), in terms of the number of
CFD evaluations.

 0.033
 0.0335
 0.034

 0.0345
 0.035

 0.0355
 0.036

 0.0365
 0.037

 0.0375
 0.038

 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

C
D

CL

MAEA
MAEA(K)

 0.033
 0.034
 0.035
 0.036
 0.037
 0.038
 0.039
 0.04

 0.041
 0.042

 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

C
D

CL

MAEA
M(K)AEA(K)

Figure 6.5: Industrial Problem 1: Comparison of the fronts of non-dominated solu-
tions resulted from MAEA and MAEA(K) (left) and MAEA and M(K)AEA(K) (right).

108 6. Industrial Optimization Problems

(a) 50% span (b) 68% span

(c) 85% span

Figure 6.6: Industrial Problem 1: Comparison of the pressure coefficient (Cp) dis-
tributions at different spanwise positions for the wings with max. CL (red), min. CD
(blue) and the reference one (black).

6.2 Industrial Case 2: Shape Optimization of the DrivAer Car

The second industrial problem is concerned with the optimization of the shape
of the fastback configuration of the DrivAer car model [68]. The air flows in the
axial direction with 11m/s, while road and car wheels remain static. The aim is
to redesign the car for min. drag coefficient (CD). The car shape parameterization
(together with the displacement of a part of the 3D grid around it) was based on
the volumetric NURBS method, [132]. In particular, a 7×7×7 NURBS control box
is used to parameterize the volume around the car boat tail and rear under-body,
fig. 6.11. The three Cartesian coordinates of the internal rows of control points
in each direction are allowed to vary. All other control points are kept fixed, in
order to ensure grid continuity and smooth transition between deformable and
non-deformable areas. This setup results in 81 design variables in total. Due
to symmetry, only half of the car is modeled. The volumetric NURBS method

6.2. Industrial Case 2: Shape Optimization of the DrivAer Car 109

(a) Reference. (b) Max. CL.

(c) Min. CD.

Figure 6.7: Industrial Problem 1: Comparison of the pressure fields for different wing
shapes.

Figure 6.8: Industrial Problem 1: Comparison between the reference wing (grey) and
the one optimized for max. CL (red).

additionally undertakes the deformation of the CFD grid according to the changing
geometry of the car.

Each candidate solution is evaluated on the incompressible fluid flow solver
of the PUMA software. Even though mild flow unsteadiness might appear at the

110 6. Industrial Optimization Problems

Figure 6.9: Industrial Problem 1: Comparison between the reference wing (grey) and
the optimized for min. CD (blue).

50% span

68% span

85% span

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝑴𝒂𝒙. 𝑪𝑳
𝑴𝒊𝒏. 𝑪𝑫

Figure 6.10: Industrial Problem 1: Airfoil shapes at three span-wise positions of the
wings optimized for min. CD (blue) and max. CL as well as the reference one.

rear part of the car, a steady flow solver is used. To extract valid results for
the objective function, the objective function is the time-averaged drag of the last
iterations. The Spalart-Allmaras [164] turbulence model is used. The CFD grid
consists of ∼1.4M nodes and each evaluation takes about ∼40min on an NVIDIA
K20 GPU, including morphing.

The optimization is carried out using a (10, 20) EA, MAEA, MAEA(K) and M(K)AEA(K).
The stopping criterion is 200 evaluations on the CFD model. In the variants using
metamodels, TMM =20 and λe=3. The convergence histories of the EA and MAEA
are presented in fig. 6.12, while those of the MAEA(K) and M(K)AEA(K) in fig. 6.13.
It is clear that, the use of metamodels accelerates the optimization algorithm and
make it find better solutions with the same computational budget. Only the pop-
ulation of the first generation evolves without the assistance of the KPCA. Judging

6.2. Industrial Case 2: Shape Optimization of the DrivAer Car 111

Figure 6.11: Industrial Problem 2: The NURBS morphing box encapsulating the rear
part of the car is shown.

from the convergence results, more generation should have passed before starting
the KPCA, because, at the beginning, the KPCA under-performs. This shows that
each optimization should be carefully setted up and tuned. Once enough calls to
the PSM have been made and the population used for the KPCA training is rep-
resentative of the problem in hand, the optimization take advantage of the usage
of KPCA. Finally, both variants outperform the standard MAEA. A comparison
between the pressure fields on the optimal and reference car shapes is shown in
fig. 6.14. The rear part of the optimized geometry exhibits higher pressure and
this reduces the drag coefficient (CD).

 101.8

 102

 102.2

 102.4

 102.6

 102.8

 103

 103.2

 20 40 60 80 100 120 140 160 180 200

O
bj

ec
tiv

e
F

un
ct

io
n

PSM Calls

EA
MAEA

Figure 6.12: Industrial Problem 2: Comparison of the averaged convergence histo-
ries for three different RNG seeds of EA and MAEA, in terms of the number of CFD
evaluations.

112 6. Industrial Optimization Problems

 101.8

 102

 102.2

 102.4

 102.6

 102.8

 103

 103.2

 20 40 60 80 100 120 140 160 180 200

O
bj

ec
tiv

e
F

un
ct

io
n

PSM Calls

MAEA
MAEA(K)

M(K)AEA(K)

Figure 6.13: Industrial Problem 2: Comparison of the averaged convergence histories
of MAEA, MAEA(K) and M(K)AEA(K), in terms of the number of CFD evaluations.

Figure 6.14: Industrial Problem 2: Comparison of the pressure field on the optimal
(right) and the reference (left) car shapes.

6.3 Industrial Case 3: Shape Optimization of an Ultra-light Air-

craft

The third industrial case is concerned with the re-design/optimization of an ultra-
light aircraft [11] aiming at the minimization of its drag force (D). The aircraft ge-
ometry was kindly provided by Pipistrel, a light aircraft manufacturer, partner in
the RBF4AERO project (Innovative benchmark technology for aircraft engineering

6.3. Industrial Case 3: Shape Optimization of an Ultra-light Aircraft 113

design and efficient design phase optimization, Grant Agreement 605396, FP7).
The re-design focuses on the wing root-body junction, which is control by 343
NURBS control points shown in fig. 6.15. These control points form a paral-
lelepiped control box with 7 control points in each direction. The two outside
layers (black points in fig. 6.15) are not allowed to move so as to limit the mor-
phing action and ensure the CFD grid continuity. Thus, the remaining control
points are 27 and are allowed to move along the y and z axis, resulting in a total
of 54 design variables.

Figure 6.15: Industrial Problem 3: Left: Control box along with the ultra-light air-
craft. Right: Close-up view of the wing root-body junction and control points.

The flow conditions are M∞ = 0.08, flow angle 10o and Re = 106 (based on
the wing chord). Each candidate solution is evaluated on the aforementioned
PUMA incompressible flow solver coupled with the Spalart-Allmaras turbulence
model [164] with wall functions and it takes ∼ 70min on two NVIDIA K20 GPUs,
including grid morphing. The CFD grid around the aircraft is unstructured and
consists of ∼1.4M nodes.

A (10, 20) MAEA, MAEA(K) and M(K)AEA(K) are used to optimize the aircraft’s
shape. The computational budget is limited to 500 calls to the PSM. The variant
utilizing metamodels, started using them after TMM = 40 individual evaluations.
From the ε = 10 elites of each generation, λe = 1 are re-evaluated with the exact
evaluation tool. Fig. 6.16 shows convergence plots of the drag normalized with the
reference one (D/Dref) for all EA variants. At the beginning, MAEA(K) converges
slowly probably due to poor population quality. KPCA may not be able to identify
the "correct" feature space (the one that makes the objective function separable),
due to the poor characteristics of populations in the first generations. After ∼240
evaluations, the KPCA starts improving the convergence speed. This shows that
the KPCA cannot properly reduce the design variables for the metamodels, thus

114 6. Industrial Optimization Problems

their prediction accuracy worsens. There is always a small possibility for this to
happen, because the EAs are stochastic algorithms.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 50 100 150 200 250 300 350 400 450 500

D
/D

re
f

PSM Calls

MAEA
MAEA(K)

M(K)AEA(K)

Figure 6.16: Industrial Problem 3: Comparison of the averaged convergence histories
of MAEA, MAEA(K) and M(K)AEA(K), in terms of the number of CFD evaluations.

The optimized geometry yields a drag which is lower by ∼ 8% compared to
the reference one. The displacement of the junction towards the rear and bottom
part of the fuselage (fig. 6.17) is responsible for the observed drag reduction. A
by-product of this optimization is that the lift of the optimized geometry becomes
higher, though this is not included in the objective function. Figs. 6.17, 6.18 and
6.19 compare the pressure field on the aircraft’s surface for the reference and
optimized geometries.

Figure 6.17: Industrial Problem 3: Comparison of the reference (left) and optimized
(right) aircraft geometries. Close-up front view of the wing root-body junction.

6.4. Industrial Case 4: Shape Optimization of a Francis Runner 115

Figure 6.18: Industrial Problem 3: Comparison of the reference (left) and optimized
(right) aircraft geometries. Top view.

Figure 6.19: Industrial Problem 3: Comparison of the reference (left) and optimized
(right) aircraft geometries. Bottom view.

6.4 Industrial Case 4: Shape Optimization of a Francis Runner

This optimization problem is concerned with the shape optimization of a Francis
runner with two objectives: max. efficiency and min. cavitation (practiaclly, max-
imization of the minimum pressure on the blade surface). The flow conditions at
the inlet of the runner are Vinlet = 8.198m/s, aswirl = 22.36o and aaxial = 0o, for the
outlet the static pressure is 39900Pa and the rotation speed is 117.8rad/s. This
Francis runner is a mixed flow type turbine, the geometry of which can be seen
in fig. 6.20. The GMTurbo software, developed by the PCOpt/NTUA [175, 174], is
used to parameterize the geometry and provide the design variables for the opti-
mization. It may handle multiple rows and is CAD compatible. A single blade row
geometry is defined by meridional projections of the geometry, mean camber lines
and thickness profiles. In this case, the GMTurbo tool defines 75 design vari-
ables corresponding to the span-wise distributions of quantities parameterizing
the camber surface. An unstructured CFD grid of ∼300K nodes is generated on
the CAD model (exported from the GMTurbo software) of the reference geometry.
A CFD grid is generated for the reference geometry and morphed accordingly to
adapt it to each newly generated blade surface, by means of the spring analogy
technique, [171]. The CFD evaluation of each candidate solution takes about

116 6. Industrial Optimization Problems

Figure 6.20: Shape Optimization of a Francis Runner: Solid walls along with the
inlet (red) and outlet (green) domain.

1hour on one NVIDIA K40 GPU.

A (10, 20)MAEA, MAEA(K) and M(K)AEA(K) are used. In the MAEA, the meta-
models start being used after the first generation (TMM = 20) with λe = 2. A
stopping criterion of 300 evaluations on the CFD solver is imposed. The average
evolution histories of the hypervolume indicator for three different RNG seeds are
compared in fig. 6.21. The performance of the EA driven by the KPCA is poor
during the initial generation, but is quickly improved through the evolution. In
general, the MAEA(K) does not provide significant improvement over the MAEA,
because, probably, the design variables are not highly correlated and the PCA
can hardly un-correlate them. On the other hand, truncating of the 55 design
variables improves the metamodel prediction accuracy and assists the MAEA to
converge faster to even better solutions. It can be seen from fig. 6.22 that the
fronts of non-dominated solutions produced by the variants with PCA dominate
the MAEA although they are less scattered. Fig. 6.23 shows the reference geom-
etry (suction side) in comparison with the optimized ones for maximum efficiency
and minimum cavitation. The pressure distribution on the suction side of each of
the aforementioned runners is presented in fig. 6.24.

6.5. Industrial Case 5: Optimization of a Valveless Diaphragm Micropump 117

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300

H
yp

er
vo

lu
m

e
In

di
ca

to
r

PSM Calls

MAEA
MAEA(K)

M(K)AEA(K)

Figure 6.21: Industrial Problem 4: Comparison of the averaged convergence histories
of MAEA, MAEA(K) and M(K)AEA(K), in terms of the number of CFD evaluations.

-14

-12

-10

-8

-6

-4

-2

 0.936 0.937 0.938 0.939

M
in

. P
re

ss
ur

e

Efficiency

MAEA
MAEA(K)

M(K)AEA(K)

Figure 6.22: Industrial Problem 4: Comparison of the fronts of non-dominated solu-
tions resulted from MAEA, MAEA(K) and M(K)AEA(K).

6.5 Industrial Case 5: Optimization of a Valveless Diaphragm

Micropump

This case aims at the optimization of a 3D valveless diaphragm micropump [163].
Diaphragm pumps mainly consist of a main chamber, a moving diaphragm and
an inlet and outlet channel. Their key characteristic is that they do not have ro-
tating parts, which is why they are preferred over conventional pumps with blades
(especially in medical applications). Instead of blades, the periodic motion of the
diaphragm induces the fluids flow inside the chamber. They can also handle var-
ious types of fluids with high efficiency and their operation is relatively noiseless.
They are manufactured in large or small scales. The large scale pumps are used
for cleaning tank bottoms or sewage, while the small scale ones (micropumps)

118 6. Industrial Optimization Problems

Figure 6.23: Industrial Problem 4: Comparison between the reference runner (grey)
and the one with max. efficiency (red, left) and min. cavitation (blue, right).

X
Y

Z

pressure

220
200
180
160
140
120
100
80
60
40
20

X
Y

Z

pressure

220
200
180
160
140
120
100
80
60
40
20

X
Y

Z

pressure

220
200
180
160
140
120
100
80
60
40
20

Figure 6.24: Industrial Problem 4: Pressure distribution on the surface of the refer-
ence (left), the one with max. efficiency (middle) and that with min. cavitation (right)
runners. The optimized geometries resulted from the MAEA run.

are used as medical analysis devices, in biochemical-processing applications or
to deliver drugs to patients [18]. Usually, the large scale pumps are equipped
with valves do not allow the back-flow, while micropumps are valveless and have
diffusers as inlet and outlet channels. Unfortunately, during some time instants
of the valveless micropump’s operation, some back-flow may appear at the out-
let/exit. This is not ideal for medical applications or drug injections and should
be minimized during the optimization.

The 3D valveless diaphragm micropump to be optimized is based on an ex-
isting design found in the literature [163], fig. 6.25. The main chamber of this
pump, fig. 6.26, is modeled as a parallelepiped box, covered by the moving di-
aphragm. The inlet and outlet diffusers are attached to the two opposite sides
of the chamber. The micropump length is ∼ 10mm. The chamber volume is
∼40mm3, the inlet cross-sectional area is 0.03mm2 and the outlet area is 0.2mm2.
Both straight diffusers are the same for cost and manufacturing purposes. The mi-

6.5. Industrial Case 5: Optimization of a Valveless Diaphragm Micropump 119

Figure 6.25: Optimization of a Valveless Diaphragm Micropump: The existing mi-
cropump found in [163], which was the basis for this design.

cropump operation relies on the periodic motion of the diaphragm, which changes
the chamber’s volume and the pressure of the contained fluid. Technically, the
diaphragm moves thanks to a piezoelectric device. This generates a periodic mo-
tion with a predetermined frequency. The needed volume flow rate at the outlet is
achieved by the motion’s adjustment, which is the ultimate goal of the undertaken
optimization.

The diaphragm motion over time is parameterized using 8 design variables in
total, which are also the optimization variables. The diaphragm position of rest
is at y = 0, the x axis points in the longitudinal direction and the z axis in the
span-wise direction. The first two design variables b1 and b2 is a percentage of
the length Lmx and the width Lmz of the chamber ceiling; they vary from 75% to
90%. The defined rectangular area contains the diaphragm motion. This area
is a bit smaller than the whole chamber’s area; the border remains fixed for the
diaphragm to be able to mount on the chamber. The rest 6 design variables define
the motion over time. The maximum displacement ymax(t) over time is computed
by the exponential function ymax = b3exp(− b4(t − T/2)2)(1 − |1 − 2t

T
|), where

b3 ∈ [0.1mm, 1.5mm] is the maximum displacement over all time-steps given in
millimeters, achieved at the half period, b4 controls the function’s abruptness and
T = 0.02s. is the period. Thus, ymax is increased till the half period and, then, is
decreased. The position x in which the maximum displacement occurs at a certain
time-step (t) can be computed as x=Lmx t/T ; ymax is linearly correlated with the
longitudinal direction. The longitudinal instantaneous diaphragm motion is a
bell-shape deformation, fig. 6.27. Its (right) half curve is defined through the
Bezier curve with 5 control points. The first two control points at on y=0 and the
remaining at y = ymax. The final Bezier equation is y(x, t) = ymax(t)(6τ

2
x − 8τ 3x +

3τ 4x), τx = x+δx
Dx

, where δx = b5min(x + Lmx /2, L
m
x /2 − x) and Dx = (1 − b6)δx.

120 6. Industrial Optimization Problems

𝐿𝑥
𝑚

𝐿𝑧
𝑚

𝒃𝟐

𝒃𝟏

𝑰𝒏𝒍𝒆𝒕 𝑫𝒊𝒇𝒇𝒖𝒔𝒆𝒓

𝑪𝒉𝒂𝒎𝒃𝒆𝒓

𝑫𝒊𝒂𝒑𝒉𝒓𝒂𝒈𝒎

0.5

Figure 6.26: Optimization of a Valveless Diaphragm Micropump: Top: The pump
with its moving diaphragm. Bottom: Instantaneous diaphragm shape, not in scale.

6.5. Industrial Case 5: Optimization of a Valveless Diaphragm Micropump 121

Thus, two design variables b5∈ [0.8, 1.0] and b6∈ [0.0, 0.2] control the Bezier curve.
The other (left) half curve of the deformation results from mirroring the right one.
The span-wise (along z axis) deformation of the diaphragm is defined through

Figure 6.27: Optimization of a Valveless Diaphragm Micropump: Instantaneous
deformation of the diaphragm at the symmetry plane. Detailed view of the Bezier
curve’s control points.

another Bezier curve with 5 control points, similarly with the previous one, fig.
6.27. The design variables b7∈ [0.8, 1.0] and b8∈ [0.0, 0.2] define the δz=b7min(z+
Lmz /2, L

m
z /2 − z) and Dz = (1 − b8)δz, which are required to compute the Bezier

curve with equation y(z, t) = ymax(t)(6τ
2
z − 8τ 3z + 3τ 4z), τz = z+δz

Dz
. Finally, the

overall diaphragm motion is given by combining the longitudinal and span-wise
deformation as

y(x, z, t) = ymax(t)(6τ
2
x − 8τ 3x + 3τ 4x)(6τ 2z − 8τ 3z + 3τ 4z) (6.5.1)

with ymax, τx and τz as defined above. Fig. 6.28 shows the final deformation of the
diaphragm at four different time instants.

Having defined the shape/geometry of the micropump and the motion of the
diaphragm, the unsteady CFD simulation of the flow within a period T follows.
The CFD grid is formed by hexahedral elements and ∼ 260K nodes for the half
micropump, fig. 6.29. Only the half pump is simulated due to its symmetry along
the xy plane. The kinematic viscosity of the working fluid is 10−6m2/s, the inlet
total pressure is 101325.383Pa, the outlet static pressure 101325Pa, which (for
an arbitrarily selected diaphragm motion; the reference one) induces a small flow
from the inlet to the outlet. The CFD software simulates the laminar flow for 20
time instants per period. Due to the unsteadiness of the phenomenon, 3 periods
are required to be solved to suppress any transient phenomena and establish
periodicity, fig. 6.30. Each simulation takes ∼ 1hours in one NVIDIA K40 GPU.
Moreover, the cut-cell software is capable of solving the unsteady adjoint PDEs
to compute the gradient of the objective function(s) with respect to the design
variables. The adjoint solution has more or less the same computational cost as

122 6. Industrial Optimization Problems

Figure 6.28: Optimization of a Valveless Diaphragm Micropump: Reference di-
aphragm motion. Diaphragm shapes/strokes at t = 0.25T ,0.4T , 0.6T and 0.75T ,
from top-left to bottom-right, respectively. Axes not in scale.

a single flow simulation.

Figure 6.29: Optimization of a Valveless Diaphragm Micropump: CFD grid in half of
the pump.

During medical applications, the back-flow at the outlet is unwanted and,
thus, this is minimized during the optimization, while the net volume flux should
be maximized. The net volume flux at the exit within a period T is computed
Qnet = 6·1010

T

∫
T

∫
Soutlet

~V (t) · ~ndSdt(µl/min), where ~V (t) is the velocity vector and
~n the outward unit normal vector. The volume flow entering from the outlet
(back-flow, index bf) is computed by integrating the negative velocity, Qbf =

−6·1010
T

∫
T

∫
Soutlet

min(0, ~V (t) · ~n)dSdt(µl/min). The instantaneous velocity at the
outlet is shown in fig. 6.31. A (5, 10) PCA-Assisted Hybrid Algorithm is used for the
two objective optimization problem (min. Qbf and max. Qnet), since this usually
gives the best convergence speed compared to other EA variants. Both meta-

6.5. Industrial Case 5: Optimization of a Valveless Diaphragm Micropump 123

Figure 6.30: Optimization of a Valveless Diaphragm Micropump: Velocity iso-lines
and stream-lines.

Figure 6.31: Optimization of a Valveless Diaphragm Micropump: Left: Velocity vec-
tors at the outlet used to compute Qnet. Right: Negative velocity vector for the outlet
used to compute Qbf . Both correspond to the same (arbitrarily selected) time instant.

124 6. Industrial Optimization Problems

models and PCA start being used after the first generation. The cut-cell based
unsteady adjoint solver provides the required gradients and the GB method re-
fines one individual per generation. The computational budget is restricted to 200
calls to the PSM (or its adjoint), due to their high computational cost (∼1hour on
an NVIDIA K40 GPU). From these, 63 calls are spent on the adjoint solver. The
final front of non-dominated solutions is presented in fig. 6.32.

 183
 183.5

 184
 184.5

 185
 185.5

 186
 186.5

 187
 187.5

 188

 0 50 100 150 200 250 300

Q
ne

t (
µl

/m
in

)

Qbf (µl/min)

Front

Figure 6.32: Optimization of a Valveless Diaphragm Micropump: Computed front of
non-dominated solutions computed by the PCA-Assisted Hybrid Algorithm. The point
(Qbf = 0.516µl/min, Qnet = 5µl/min) which corresponds to the pump operation with
the reference diaphragm motion cannot be represented within the selected graph
limits.

Fig. 6.33 shows how the back-flow and net volume flux evolves over time,
within a period, for the two edges of the front and the reference solution. The
solution corresponding to max. Qnet, has negative net volume flux for a bit less
than half of the period, so there is a noticeable back-flow. However, the positive
overweighs the negative part resulting in max. Qnet. Regarding the min. Qbf

solution, back-flow becomes negative during only one step given a time resolution
of 20 steps within a period. During this time step, the instantaneous net volume
flux remains positive. In contrast, the reference solution has much greater back-
flow and less net volume flux compared with the other solutions. The net volume
flux is positive during half of the period yielding a small Qnet. From this point of
view, any of the Pareto solutions by far outperforms the reference pump.

6.5. Industrial Case 5: Optimization of a Valveless Diaphragm Micropump 125

Figure 6.33: Optimization of a Valveless Diaphragm Micropump: Qbf and Qnet time-
series for the reference (top), min. Qbf (middle) and max. Qnet motion (bottom).

126 6. Industrial Optimization Problems

Chapter 7

Flow Prediction using Deep Neural
Networks

In design/optimization practices, a number of different designs, usually evaluated
by CFD runs, are processed to finally derive the optimal solution(s). As it has
already been mentioned, CFD methods may generate highly accurate results but
are computationally expensive. While industrial requirements are increased, CFD
codes are used to solve more and more complex flow problems and, thus, the
computational cost increases a lot. Significant efforts have been made to reduce,
as much as possible, the cost of a CFD analysis. State-of-the-art solvers, such as
the PUMA used herein, take advantage of the GPU processing power and speed,
which dramatically reduce the simulation cost but this is still quite high. On
the other hand, for big data [119], Artificial Neural Networks (ANNs) and, in
specific, Deep Neural Networks (DNNs) [29], which is a special class of ANNs,
have been repeatedly proven to learn complex and non-linear features that are
informative for the task in hand; these features make them appealing for modeling
complex aerodynamic problems. In addition to this, industries have been making
similar designs of their products, for years, building up massive databases with
the results of the corresponding CFD analyses. These databases can be used to
train DNNs to replicate the expensive CFD solvers with negligible cost (this cost
does not include the cost of training the DNNs). That is why dedicated ANNs
or DNNs are developed to approximate as accurately as possible the outcomes
of CFD simulations and provide a viable alternative to the way expensive CFD
solvers are used within an optimization loop.

ANNs are in widespread use in aerodynamic optimization in the last two, at
least, decades. In the literature, two major categories of ANN applications can be
found based on the end goal of the problem in hand. The first one deals with the
prediction of the integral aerodynamic quantities, otherwise computed by post-
processing the outcome of the CFD analysis. The second one deals with the use
of ANNs for flow field predictions around or inside aerodynamic bodies. The first

127

128 7. Flow Prediction using Deep Neural Networks

category is more popular and more widely used than the second one. A brief
description of both methods follows.

The first category is used to predict a small number (sometimes, a single one
only) of integral responses (such as the lift, drag or moment) of CFD simulations
in optimization loops involving a relatively low number of design variables (com-
pared to the second category, see below). These predictions replace the objective
function values. This is exactly the way ANNs are implemented within the MAEAs,
or any of their variants, presented in this thesis (as in the previous chapters). A
distinguishing feature of the implementation of ANNs in this thesis, so far at least,
is that there is no single ANN covering the whole design space; instead, personal-
ized ANNs are trained for each new individual to be (pre-)evaluated. Based on the
standard terminology of this thesis, this usage of ANNs is referred to as "on-line
trained", to distinguish them from "off-line trained" ANNs. Regarding ANN types,
the feedforward ANNs and Recurrent Neural Networks (RNNs) are often utilized in
these applications, where only integral responses are predicted. RNNs are used in
time/history-dependent problems; they incorporate memory effects in their sys-
tems and can predict responses affected by previous states, such as unsteady
flows. Despite the complexity of aerodynamic problems, the ANNs architecture
is usually compact with a low number of layers, neurons and weights/parame-
ters (such as the RBF networks used in previous chapters), due to the relatively
small set of design/input variables. Usually, more input variables require more
layers, neurons and weights. Even with compact architectures, ANNs are able to
accurately predict 3D unsteady aerodynamic metrics/objective functions.

On the other hand, in the second category of ANN applications, the flow field
around/inside aerodynamic bodies is predicted. In [157, 62, 69], ANNs and more
specifically DNNs, are used to predict entire flow fields. Networks of this category
are bound to deploy larger, more complex ANN architectures to cope with spatial
dependencies in the flow domains. The Convolutional Neural Networks (CNNs),
a subcategory of DNNs, have been proved powerful at solving similar problems
with spatial dependencies. CNNs are specialized in extracting patterns and fea-
tures from topological data and are widely used in image processing. These CNNs
display great potential to replicate the CFD solvers with significantly lower com-
putational cost. In [62], a general and flexible approximation model based on
CNNs for real-time predictions of steady laminar flow in 2D or 3D domains is
proposed. Trained CNNs are shown to accurately estimate the velocity field faster
than any GPU- or CPU-enabled CFD solver. This approach can provide immediate
feedback for real-time design at early design stages. In [69], a method based on
DNNs to perform automated design on complex real-world engineering tasks is
proposed. A DNN is trained to compute the pressure field which is, then, inte-
grated to calculate the objective function(s) used in an optimization. This method
is demonstrated in shape optimization cases of airfoils and wings aiming at max-
imum lift to drag ratio. In [156], unsteady surface pressures on a wing pitching

7.1. Basics of DNNs 129

beyond static stall are firstly measured. Then, both linear and non-linear ANNs
trained on these data learn to predict unsteady surface pressures and unsteady
aerodynamic loads. ANNs predictions are compared directly to surface pressures
and aerodynamic loads computed by CFD codes and proved to accurately pre-
dict both. In [157], an efficient surrogate model is developed for the prediction of
motion-induced unsteady surface pressure fluctuations, integral forces and mo-
ment coefficients. A recurrent linear neuro-fuzzy approach is deployed to capture
the characteristics of the dynamic system. Once the reduced-order model (ROM)
is trained, it can replace the CFD solver in unsteady aerodynamic or aeroelas-
tic simulations for a fixed aerodynamic shape but different flow conditions. For
demonstration purposes, the ROM approach is applied on the LANN wing in high
subsonic and transonic flow yielding a close match between the ROM’s predic-
tions and the CFD solutions. This surrogate approach significantly speeds-up
the unsteady aerodynamic calculations, which is beneficial for multidisciplinary
computations. Even though, in some problems only integral flow quantities are
required for the aerodynamic bodies analyses, DNN-based predictions of whole
flow fields show great potential and capabilities, which industries may appreciate
and use in several applications.

Herein, complex DNNs, which combine different state-of-the-art layers and
architectures, are used to predict the flow fields in 2D or 3D aerodynamic cases,
such as flows around airfoils and wings. The set of training patterns (database)
consists of flow fields of aerodynamic shapes simulated with the PUMA solver,
using unstructured grids. Their predictions, as it will be demonstrated later in
this chapter, have acceptably low error compared to the CFD simulations and
their cost is negligible compared to that of the PUMA solver (it is lower by several
orders of magnitude, excluding the training cost of DNNs). This makes these DNNs
a viable tool for quick CFD design/optimization and other applications requiring
CFD simulations. Nevertheless, the use of CFD simulations is a prerequisite for
the preparation of the database used to train the DNNs as well as for verifying the
quality of the optimized (using exclusively the DNN) solution.

7.1 Basics of DNNs

During the last decade, DNNs have been successfully applied in fields including,
but not limited to, computer vision, speech/audio/image recognition, natural
language processing. They were introduced to the machine learning community
by Rina Dechter in [28, 153].

For a better understanding of DNNs, an introduction to ANNs is first required.
ANNs are a set of algorithms designed after the human brain and mammal nervous
system and inspired by information processing in biological systems. Their main
computational units are the artificial neurons which are organized in layers, fig.
7.1, and modeled based on the structure and synapses of biological neurons,

130 7. Flow Prediction using Deep Neural Networks

fig. 7.2. Each biological neuron receives signals from other neurons via their
dendrites. The cell (neuron) body processes the signals and it sends an output
down its one axon, only if this exceeds a given threshold. The axon splits into
multiple branches, connecting the axon via synapses to the dendrites of numerous
other neurons. Detailed discussion about biological neurons is beyond the scope
of this thesis.

Artificial neurons are built similarly, fig. 7.2. Their synapses correspond to
weighted signals forwarded from other neurons. Their dendrites carry those sig-
nals to the cell body where the main processing is performed. The main operation
is the summation of the weighted signals, which is passed down through the
dendrites. The threshold for sending the output down the axon is modeled using
activation functions. These are mathematical functions applied to each neuron
and are used to filter the neuron’s output by introducing non-linearities that help
the DNN to handle complex functions/tasks. The most popular activation func-
tions are the sigmoid (g(z) = 1

1+e−z), the tangent hyperbolic (g(z) = tanh(z)), the
rectifier linear unit (ReLU) (g(z) = max(0, z)) and the softmax [42] along with its
variations, expressed by system of equations not presented here.

Artificial neurons perform a transformation of their input followed by an element-
wise non-linearity (i.e. one that is applied on each neuron, separately), mathemat-
ically shown in fig. 7.2 and the corresponding operation is

oj = g(
r∑
i

wijxi + bj) (7.1.1)

where wij are the weights connecting the ith with the jth neuron, xi are the signals
passed from the ith neuron, bj is the jth neuron’s bias, g is the activation function
and r is the number of the layer’s neurons. ANN consisting of multiple neu-
rons and layers, can be expressed mathematically via a complex function which
combines each individual neuron’s expression. The parameters v are computed
during the training phase and determine the properties and prediction ability of
the ANN. These are essentially the weights and bias of all available neurons.

The procedure of computing these parameters is the training phase of the
ANN, which is computationally expensive. During the training, some training
patterns of the task to be approximated are fed into the ANN. which are essen-
tially the combination of the inputs and the corresponding outputs found in the
database. The ANN learns to predict the outputs from the given set of inputs. In
"swallow" ANNs (networks with one intermediate layer, such as an RBF network),
the training process is the solution of a system of equations computing the ANN
parameters. In DNNs, the training process is an optimization which minimizes
an appropriate cost function by adjusting accordingly the values of the param-
eters. This cost function measures the DNN’s prediction ability by checking the
difference between the real outputs paired with the training patterns and their

7.1. Basics of DNNs 131

Figure 7.1: Multi-layer ANN with a single output unit.

Figure 7.2: Graphical representation of an artificial neuron.

predictions. Mathematically, if the input units are ~x and the outputs are ~y, then
the cost function to be minimized is expressed as C = 1

N

∑N
i=0Ci(w, b, ~x

(i), ~y(i))
where Ci is the cost function for a single training pattern/example and N is the
total number of training patterns. Ci can be many different functions such as the
absolute difference or the mean square value of the ith pattern compared to its
prediction. In general, the DNNs are expressed with analytical functions, thus,
the derivatives ∂C

∂v
of the cost function with respect to (w.r.t.) the parameters are

easily calculated analytically. Note that parameters are the weights and biases
of the DNN neurons. This is why the optimization methods utilized for training
DNNs are mainly gradient-based ones. These methods, firstly, compute the gra-
dients of the cost function w.r.t. the parameters. The latter are updated via the
equation vnew = vold − η ∂C

∂v
where η is the learning rate. This procedure is per-

formed repetively till convergence. The result of the optimization/training phase
is the optimal values of the parameters with which DNNs predict, as accurately
as possible, the training patterns.

132 7. Flow Prediction using Deep Neural Networks

wkij weight for the jth neuron of the kth layer
coming from the ith neuron of the previous layer

bki bias for the ith neuron of the kth layer
aki product sum plus bias for the ith neuron of the kth layer
oki output for the ith neuron of the kth layer
rk number of neurons in the kth layer
g activation function

Table 7.1: Basic DNN symbols.

7.1.1 Basic DNN Mathematics and the Back-Propagation Algo-

rithm

Even though the gradients required for training DNNs can be computed analyti-
cally, this analytical method has been shown to be extremely slow for the DNNs.
An efficient method for updating the parameters is the back-propagation algo-
rithm proposed by Rumelhart in [145], which is a key method in machine learn-
ing. Back-propagation allows the information from the cost function to propagate
backwards through the DNN architecture, in order to compute the gradients of
each neuron through each layer. This is implemented with the assistance of the
chain rule for the gradients. According to LeCun [115], the premise of back-
propagation is that "the derivative of the output w.r.t. the input of a layer can
be computed by working backwards from the gradient with respect to the output
of that layer (or the input of the subsequent layer)". This procedure is applied
repetitively from the output layer to the input layer, so as to compute all required
gradients.

Before diving into the mathematics of DNNs and back-propagation algorithm,
some essential symbols are defined in Table 7.1.

The outputs (oki is the output after and aki before the activation function) of
each neuron in a multi-layer structure are computed as:

aki =
rk∑
l

wklio
k−1
l + bki

oki = g(
rk∑
l

wklio
k−1
l + bki) = g(aki) (7.1.1.1)

For simplicity, a single-output DNN is assumed with the output of the last m layer
(output layer) denoted by f̂=g(am1). During the training phase, the cost function
C should be minimized. The derivatives of the cost function w.r.t. w and b are

7.1. Basics of DNNs 133

computed with the back-propagation algorithm. Firstly, the partial derivative of
C w.r.t. wkij is computed as:

∂C

∂wkij
=
∂C

∂akj

∂akj
∂wkij

(7.1.1.2)

The decomposition of this partial derivative shows that the change in the cost
function from the weight is the product of the change due to its activation and the
activation’s change due to the weight.

∂akj
∂wk

ij
is computed as

∂akj
∂wk

ij
= ∂

∂wk
ij

(
∑rk−1

l=0 wkljo
k−1
l) =

ok−1i and ∂C
∂akj

=δkj is essentially the neuron’s error, δ is Kronecker delta. Eq. 7.1.1.2
is re-written as:

∂C

∂wkij
= δkj o

k−1
i (7.1.1.3)

Now, the neuron’s error δkj can be computed. For the output layer, this error is
based on the cost function. For the remaining layers, it can be written as:

δkj =
∂C

∂akj
=

rk+1∑
l=1

∂C

∂ak+1
l

∂ak+1
l

∂akj

or,

δkj =
rk+1∑
l=1

δk+1
l

∂ak+1
l

∂akj

Based on the definition of ak+1
l , eq. 7.1.1.1 , re-written as

ak+1
l =

rk∑
j=1

wk+1
jl g(akj)

its derivative is
∂ak+1

l

∂akj
= wk+1

jl g′(akj)

Plugging all the equations together, δkj is expressed as

δkj = g′(akj)
rk+1∑
l=1

δk+1
l wk+1

jl

134 7. Flow Prediction using Deep Neural Networks

and the derivatives of the cost function w.r.t. the weights are

∂C

∂wkij
= ok−1i g′(akj)

rk+1∑
l=1

δk+1
l wk+1

jl (7.1.1.4)

The derivatives of the cost function w.r.t. the biases bkj , are

∂C

∂bkj
=
∂C

∂akj

∂akj
∂bkj

= δkj
∂akj
∂bkj

(7.1.1.5)

bkj is the biases and
∂akj
∂bkj

is equal to unit, thus, the eq. 7.1.1.5 is written as

∂C

∂bkj
= g′(akj)

rk+1∑
l=1

δk+1
l wk+1

jl (7.1.1.6)

Eqs. 7.1.1.6 and 7.1.1.4 show that the information flows backwards and the
algorithm is named after that. First, the error terms based on the cost function
are computed. Then, the error terms for the previous layer are computed by per-
forming a weighted product sum of the neurons error for the next layer (the errors
are multiplied with weights and, then, summed) and scaling it by the activation
function’s derivatives and this is repeated until the input layer is reached. The
DNN output is updated in the forward phase, while the backward phase com-
putes neurons errors’ and derivatives. Furthermore, the neurons outputs after
the application of the activation function must be computed before the backward
phase, because the derivatives and errors are dependent on them. Thus, in each
cycle of the gradient-based optimization, the forward phase computes the activa-
tion functions and outputs, the backward phase computes the required partial
derivatives and only then the weights and biases can be updated. This process is
repeated till the minimization of the cost function.

7.2 Gradient-Based Optimization for DNN training

As already mentioned, DNNs are trained using of Gradient-Based (GB) methods
which minimize the cost function by adjusting the network parameters, so as for
the DNN to accurately predict the output(s) of the training patterns. Recall that
GB methods can quickly reach optimal solutions, but they may get "trapped" into
local optima. For this reason, an efficient GB method capable of overcoming local
optimum has been devised. In previous chapter(s), the simplest GB, steepest

7.2. Gradient-Based Optimization for DNN training 135

descent, was used. The gradients w.r.t. the parameters are computed via the
back-propagation algorithm. Except from these gradients, the method requires
the definition of the learning rate η. Its selection is a compromise between speed
and accuracy of the learning process. Big learning rate means big jumps in the
objective space, which may hinder the optimization’s convergence to the global
minimum, without though being "trapped" into a local minimum. On the other
hand, small learning rate means small steps resulting on a higher number of
iterations and higher computational cost. Several methods have been proposed
for optimally calculating η and avoiding local minima. Usually, these methods are
based on the steepest descent algorithm. Some of the most popular methods are
briefly explained:

Gradient descent with momentum [145]: This method takes advantage of ex-
ponentially weighted averages (EWA) to avoid problems with gradients close
to zero. The algorithm gains momentum from the previously computed gra-
dients, so as to move forward even if some local gradients are zero. The
weights and biases are updated with the used of EWA focusing the opti-
mization on the most important parameters. Parameters (aforementioned
trainable weights and biases) helping the minimization are amplified and
those being responsible for the oscillations of the algorithm’s convergence
are slowly eliminated. This leads to faster convergence and reduced oscilla-
tions, but, while the minimum is approached, the momentum may become
so large that the algorithm will not be able to stop at the global minima.

RMSProp [169]: The Root Mean Squared Propagation is an adaptive method us-
ing EWA, which means that it allows for the adjustment of the learning rate
separately for each parameter. The current parameters are based on gra-
dients computed during the previous iterations. In each iteration, EWA is
used to average the element-wise squares of derivatives of the cost func-
tion w.r.t. the parameters. This averaged square root is summed for each
element and then divides the parameter’s update. This algorithm reduces
oscillations and prevents noise. The drawback of this method is that as the
denominator of the updates increases in each iteration, the learning rate is
getting smaller.

Adam [103]: The Adaptive Moment Estimation which takes advantage of the
biggest advantages of RMSProp and combine them with ideas known from
momentum optimization. The result is a method that allows for quick and
effective optimization, but has a complex and more expensive algorithm.

Apart from these methods, another way to improve the convergence speed of
the optimization/training is to break the training data into subsets or batches
[116]. If large sets are to be implemented, there is no need to compute the exact
gradients using each sample. In fact, the training process can be run faster, if

136 7. Flow Prediction using Deep Neural Networks

rapid estimates of the gradients can be used instead of the computationally heavy
exact gradients. This reduces the overall computational cost per optimization
cycle and requires less memory. The methods using batches are named batch
gradient descent methods and are essential in large DNNs with millions of training
patterns. Further analysis of the training methods used for the networks training
is beyond the scope of this thesis. As it will be mentioned below, the DNNs in this
thesis are trained with the Adam method and the training patterns are broken
into subsets.

7.3 Network Architecture

The first type of DNN is the feedforward neural network. It consists of multiple
neurons arranged into layers and connected with each other. There are three
general types of layers found in any DNN:

Input Layer: The input layer contains all the input neurons, the input informa-
tion provided to the network to learn the given task. This layer does not
perform any computation.

Hidden Layers: These layers perform all the computations and transformation
of information from the input to the output layer. They do not interact with
the outside environment of the DNN, hence the name "hidden".

Output Layer: This layer contains the results of the DNNs processes. It is re-
sponsible for transferring information from the network to the outside envi-
ronment.

It is reminded that "Swallow" ANNs are the simplest types of ANN with only one
hidden layer. Every ANN containing more hidden layers is called DNN. Each hid-
den layer can perform different operations and computations, contains different
number of neurons and uses different activation functions. In this thesis, the
types of layers used are mainly convolution, pooling and fully-connected. Accord-
ing to the layer types, DNNs many have different names and applications. Some
of the most popular DNN types are the Convolutional, Fully Connected, Recurrent
and Long Short-Term Memory Neural Networks. In this thesis, only the convo-
lutional neural networks are used for the applications and that is why they are
analyzed in more detail in the next section.

7.3.1 Convolutional Neural Networks

Nowadays, Convolutional Neural Networks (CNNs) are one of the most popular
DNNs, since they are efficient in many applications. They are named after the
type of its hidden layers which are mainly convolution layers based on local con-
nections in contrast with the fully-connected ones. However, they may contain

7.3. Network Architecture 137

all other types of layers, such as pooling and fully-connected ones. The fully-
connected networks may need a prohibitively large number of parameters for
tasks with large number of input data. CNNs are ideal for processing big data
due to the reduced number of parameters involved, resulting from the locally con-
nected neurons. Thus, they are preferred over the fully-connected ones. They
are also able to successfully capture the spatial and temporal dependencies in a
data-set through the application of relevant filters/kernels. These filters learn to
identify different features of the processed input (feature extraction). They exploit
spatially local correlation by enforcing a sparse local connectivity pattern between
neurons of adjacent layers: each neuron is connected to only a small part of the
previous layer. A more detailed analysis follows.

7.3.1.1 Convolution Layer

Term convolution is borrowed from the field of Computer Vision. Convolution
is the operation which takes two signals, the first one called "input" and the
other "kernel" or "filter", and produces an output signal. It takes an input signal
and applies a filter to it. The convolution is mathematically expressed as the dot
product of the "input" array (f) and the "filter" array (g) as fg(i) =

∑m
j=1 g(j) ·f(i−

j+m/2) where i, j are the arrays’ indices andm is the stride (explained below). The
convolution is easily extended into 2D and 3D matrices usually manipulated by
DNNs and expressed in matrix form as O=W·X with X,O and W being the input,
output and weight matrices with dimensions wi×hi×d, wo×ho×d and F ×F ×d
respectively. Images are represented as 3D matrices with dimensions h × w × d
which corresponds to the two spatial directions and the color of each pixel. In the
case of image processing, the convolution is visualized as a filter/kernel sliding
over the spatial directions of the entire image and changing the value of each pixel
in the process. Fig. 7.3 shows this process in a 2D matrix. At the beginning, the
filter is convoluted with the top left part of the input matrix computing the top
left element of the output matrix. Then, it slides by two elements (defined by the
stride, see below) to the right and is convoluted again so as to compute the top
right element. This process continues through all the rows of the input matrix
resulting to the output matrix. If the input processed is a 3D matrix, the filter is
also extended through the third direction (depth). Through this process, the filter
identifies different features presented in the image helping the DNN predict the
task in hand.

During the design of a DNN architecture, the size of each hidden layer is
of great interest. Using convolutional layers, this size can be computed and is
affected by three variables, the depth of the filter, the stride and the zero-padding
applied during the convolution. The depth d controls the number of neurons in a
layer that connect to the same region of the previous layer. Stride S controls how
the filter slides around the width and height of the input, meaning the elements
that it "jumps" after each computation. When the stride is 1, the filter "jumps"

138 7. Flow Prediction using Deep Neural Networks

Figure 7.3: 2D representation of the operations/computations performed by a con-
volutional layer.

one element at a time, leading to overlapping receptive fields and large output
dimensions. Similarly, for any stride S > 0, the filter moves S elements at a time.
When S is increased, the receptive fields overlap less and the output dimensions
is decreased. The padding P is a common practice, when the layer’s width and
height should be preserved as in previous layer’s. Before the application of the
convolution, the previous layer is padded with zeros on its borders. All these
result in a layer with width and height computed as a function of the previous
layer’s size wi and hi, the filters size F , the padding size P and the stride S:

wo =
hi − F + 2P

S
+ 1 ho =

hi − F + 2P

S
+ 1 (7.3.1.1)

This function shows that convolution reduces the previous layer’s size and com-
pacts the information into the most important one.

In some cases, the inverse of the convolution layer (Transpose Convolution
Layer, [136]) is desired in application where the DNN output is of the same di-
mension as the input. The transpose/inverse operation increases the layer’s size
and expands/decompresses the information. If the convolution layer changes the
layers dimensions from wi× hi× d to wo× ho× d, then the transpose convolution
take a layer with size wo × ho × d and expands it to wi × hi × d, where wo < wi
and ho < hi. This is done by applying the inverse operation of the convolution
operator. Transpose layers increase information; an element of the previous layer
is expanded into a square area for the next one. The transpose convolutional
matrix form is computed as O=WT ·X. The dimensions wo and ho are computed
based on the previous layer’s dimensions via the reverse (of the convolution layers)

7.3. Network Architecture 139

formula
wo = s(wi − 1) + F − 2Pho = s(hi − 1) + F − 2P (7.3.1.2)

7.3.1.2 Pooling Layer

Pooling is a sample-based discretization process which down-samples the input
signal/image, reduces its dimensionality and allows for assumptions to be made
about contained features. Intuitively, it expresses the notion that the exact loca-
tion of a feature is less important than its rough location relative to other features.
This is practically done by taking one after another all the regions of the previous
layer and applying a specific function which compresses the information. There
are three main types of pooling commonly known as max. , min. and average pool-
ing. As the name suggests, max. pooling is based on picking up the maximum
value from the selected region from the previous layer, fig. 7.4, the min pooling
is based on picking up the minimum value and the average pooling is averaging
the values. It is common to periodically insert a pooling layer between succes-
sive convolution layers in a CNN architecture. The combination of convolution
and pooling layer reduces input’s dimensions and they are often referred to as
down-sampling layers.

Figure 7.4: 2D representation of the calculations performed by a averaging pooling
layer. Each element of the output layer is the sum of all the values of a 3× 3 square
in the input layer.

7.3.2 Encoding-Decoding CNNs

CNNs are often used for classification purposes, such as for classifying objects
shown in images. In these cases, the inputs are labeled with a limited number
of classes; there are only a few possible outcomes/outputs. The DNNs copying
with classification problems, first, encode the inputs through the down-sampling

140 7. Flow Prediction using Deep Neural Networks

layers, which subtract features from the images and compress the important in-
formation. Then, fully connected layers follow to connect the subtracted features
with the outputs and predict the predefined labels. Even though this method
can process dense and spatially correlated inputs, the outputs are restricted to
only few labels or classes. For the flow prediction, the CNN architecture should
be modified to be able to predict large numbers of outputs, which is not pos-
sible with the aforementioned architectures. There are many cases in which
input dimensions must be preserved to the output. Numerous image processing
tasks from the field of semantic segmentation [120] require the label and feature
recognition of the whole input image. These led to the development of a CNN ar-
chitecture capable of preserving the resolution of the input images to the output
image, called herein encoding-decoding architecture or ED-CNN. The architec-
ture is based on the simultaneous usage of encoders and decoders. Encoder is
a stack of convolution and pooling layers used to down-sample the input layer,
compress its information and recognize its features. An encoder is basically the
down-sampling part of a CNN architecture used for classification. Contrary to
the encoder, the decoder consists of transpose convolution layers to up-sample
the features extracted from the encoder, enhance the compact information and
connect it with the output layer. The architecture of ED-CNN is shown in fig. 7.5,
where the down-sampling and up-sampling is presented.

Figure 7.5: Architecture of the ED-CNN. Each box represents a convolution layer.

Recent studies have shown that the ED-CNN is capable of predicting steady
state aerodynamic flow fields. In [62], ED-CNNs predict steady velocity fields
around 2D and 3D objects. The network inputs are the object geometries and the
outputs are the corresponding flow fields. The CFD simulations used to train the
DNN has been performed on a CFD solver based on the Lattice Bolzmann Method
(LBM), the CFD grid is given and fixed and the ED-CNN predicts the velocity at
all the CFD nodes simultaneously. A great number (100000) of training patterns
are required to properly train the ED-CNN. Since each pattern corresponds to one
CFD run, the required computational cost to collect the database outweights the
advantage of the proposed ED-CNN.

A solution to the big database problem required in [62] is proposed in [69]. In
[69], the main ED-CNN architecture logic is similar with the one of [62], but with

7.3. Network Architecture 141

one key difference. The U-net framework [141] is built and added to the previous
ED-CNN. The simple convolutional layers are upgraded into convolutional blocks,
gated residual blocks [148]. The resulting new network requires only 5000 training
patterns to predict the flow fields around the objects with the same accuracy.
Moreover, the study is extended to the prediction of the pressure fields around
airfoil geometries. The network prediction ability made it possible to employ it in
optimization for searching the optimal airfoil geometry.

In this thesis, this U-net architecture is utilized to predict the flow fields. This
architecture is similar with the one presented in the literature and shown in this
paragraph. However, variations occur at the overall ED-CNN architecture at it is
shown specifically in each application. It starts with an encoder which reduces
the inputs size and extracts its features and continues with a decoder which
up-samples the extracted features and restores similar dimensionality with the
input. The network employs large depth dimension which is a method to allow
information to transfer fluently inside the layers. Each encoder’s layer halves the
width and height of the layer while doubling its depth. The reverse applies to
the encoder, each layer doubles the width and height, while the depth is halved.
Moreover, skip connections between the layers help transfer the features through
the networks architecture. The simple convolution layers are substituted with
gated residual blocks [148], for further reduction of the training cost and incre-
ment of the predictions accuracy. The gated residual blocks, as proposed in [69],
are schematically shown in fig. 7.6. It consists of three convolution layers. The
first two pass through a non-linear activation and keep both the input size (w, h, d)
unchanged. The third convolution doubles the depth d while it keeps the height
and width the same. Then, the output of the convolution is split in half along its
depth, yielding two layers of equivalent sizes. The first half remains unchanged,
while the second half is fed through a sigmoid gate (activation function). After
that, both halves are multiplied together, in an element-wise manner. Finally,
the residual connection, which is the main branch, is added to the shortcut con-
nection. The advantage of using such gated residual blocks is that the gating
mechanism (the split process) has been shown to improve network performance
and convergence speed [167]. The gated residual blocks are also used in [69] to
down-sample data, by applying two differences in the block structure. The first
convolution layer of the block applies a stride larger than one, i.e. when the kernel
slides through the input it moves over more than one neuron. This results in a
layer at the first branch’s end with smaller size along all three dimensions. The
shortcut connection should match this size, thus, the input data in the corre-
sponding branch passes through an average pooling layer with a stride equal with
the one used before (in the other branch).

Lastly, in [69], the proposed gated residual blocks are inspired and based on
the ResNet architecture [67], fig. 7.7, which are introduced as a solution to the
vanishing gradient problems and are widely used for faster training of the net-

142 7. Flow Prediction using Deep Neural Networks

Figure 7.6: Gated residual block.

works. Their key characteristic is the so-called identity shortcut connection. The
convectional convolution layers propagate the data along a single route, passing
through similar operations. The identity connection bypasses these operations
and is added directly to the outputs of the block. These connections are similar
to the skip connections of the U-net.

7.4 Applications in Aerodynamic Cases

Industrial designers perform hundreds or thousands of CFD-based analyses dur-
ing the process of optimizing (according to several criteria) aerodynamic or hydro-
dynamic shapes. These CFD simulations are usually stored in large databases,
for future reference or usage. In general, it would be of great importance for in-
dustries to be able to quickly and accurately analyze the flow around new shapes
(often similar with the ones already stored in the database). DNNs can be trained
on these large databases so as to replicate the CFD code and produce results
around new shapes. To this end, in this chapter, DNNs learn how to predict the

7.4. Applications in Aerodynamic Cases 143

Figure 7.7: ResNet block.

flow field around airfoils and wings. Their training databases are built by CFD
results produced by the PUMA software used also in the majority of Benchmark
Cases in previous chapter 2.4.

Regarding the ANNs, their architecture is adapted for each application; this is
explained on a case-by-case basis. However, some general settings are globally
applied to all of them. They are based on the aforementioned theory on DNN and
consist mainly of convolution layers. Even though, any other optimizer may be
chosen, the Adam optimizer is used and this is proved to be quite fast. Subsets
of training patterns are fed into the DNNs during the training, which further
increase the convergence speed of the training. For maximum accuracy in the
results, the cost function C is the absolute difference between the prediction and
the exact output. The RELU activation functions are applied in each convolution
layer, but other activation functions do not greatly affect the resulting predictions.
The DNN architectures along with the pre- and post-processing of the data in each
application has been implemented on Python 2.7 [142] linked with the TensorFlow
library [1]. TensorFlow is a symbolic math open-source library used widely for
machine learning applications and DNN. It is easily intrinsically parallel and runs
on both GPUs and CPUs by taking full advantage of their parallel processing
power.

Two different methods are devised to train the DNNs with the available CFD
data. The first one is based on image processing and is applied in 2D aerodynamic
shapes (such as airfoils). This is done because, as it has been already shown
before and in [69], CNNs are powerful at manipulating images and capable of
performing similar tasks with flow field predictions (equally complex tasks). The

144 7. Flow Prediction using Deep Neural Networks

second method is based on raw data processing and is preferably used in 3D
flows. This is done because it is prohibitively expensive to extract and process
images from 3D flow fields and essential information may be lost in the process. In
the examined cases, input data include shape parameterization data and spatial
coordinates of the points at which predictions should be made which are fed
into the DNN to predict flow variables at discrete points in the computational
domain. This greatly decreases the computational cost and memory requirements.
Moreover, it is independent of the CFD grid coordinates, it can predict the flow
variables in new grid not previously seen during the training phase.

7.5 Flow Prediction around an Isolated Airfoil

This application is concerned with the prediction of the Mach number field around
an isolated airfoil. The flow is inviscid with M∞ = 0.15 and a∞ = 0o. The airfoil
is parameterized using two Bézier curves with 12 control points per airfoil side
(separately for the pressure and the suction side). All control points (apart from
the first and last ones on each side) are allowed to vary along the y-axis by ±20%
of their reference position. Different airfoils are created by randomly changing
the control points within the predetermined bounds. The database for training
is formed by 50 different airfoils evaluated on the PUMA s/w. An unstructured
CFD grid with about 10K nodes is generated from scratch for each airfoil; all
these grids have different sizes and, of course, different connectivities. The PUMA
code takes ∼10secs on an NVIDIA K20 GPU to perform one run. Regarding the
DNN, the image processing method is used to handle the data. For each airfoil
in the database, both its shape and Mach flow field are converted into colored
images comprising the input and output set for the training pattern, respectively.
Each input image (airfoil shape) has a width of 800 pixels and a height of 800
pixels. Its depth is 3 as many as a colored image (RGB) channels. Overall,
each input data has dimensions 800 × 800 × 3. Each output image (Mach flow
field) is of dimensions 1024 × 1024 × 3. The role of the DNN is to predict the
flow field image (output) given the shape image (input). The DNN used for this
application is a CNN based on the gated residual blocks, as proposed in [148, 69].
33 gated residual blocks are used for down-sampling the input and 22 for up-
sampling and connecting with the output, fig. 7.8. Note that each block is a
cluster of convolution and pooling layers with a non-linear activation function.
This architecture was carefully selected after trying different architectures and
checking their prediction abilities and convergence characteristics. Via this trial
and error process, the optimal architecture for this application is constructed.
For the training phase, a total of 50 training patterns are used. Training costs
around 20hours running in parallel on 20 CPUs. The network prediction ability is
tested on two new airfoil shapes. These have not been presented to the network
during its training. Moreover, they are also evaluated on the PUMA s/w and the

7.6. Transonic Flow Prediction around an Isolated Wing 145

Figure 7.8: Isolated Airfoil: DNN architecture. Each box represents a convolution
layer. Each cluster of boxes with the same size represent a gated residual block.

CFD results are compared with the DNN predictions in fig. 7.9. Differences are
not visible in the figures due to the high network accuracy. In this application,
the relative error is computed as ε = 1

N

∑N
i=0

(p̂i−pi)2
pi

where N is the number of
pixels of each image (N = 800 × 800 = 1600), p̂i is the predicted value of the ith

pixel and pi is the value produced by the CFD analysis. The relative error between
predictions and CFD runs is 0.12% for the first airfoil and 0.17% for the second.
It is clear that the trained DNN has excellent accuracy and could have been used
instead of the CFD analysis, during design/optimization processes.

7.6 Transonic Flow Prediction around an Isolated Wing

The isolated wing of the Benchmark Case 2 in section 2.4 is revisited herein for
predicting the surface pressure field. Parameterization, CFD grid and all other
setting are the same. The database used for training is comprised of the first
offspring population generated while running the EA-based optimization in section
2.4. Basically, they are wings produced by changing the position of the pre-
defined parameterization control points picked at random by the EA. From each
CFD simulation, only the 100K surface nodes are of interest. Regarding the DNN,
the raw data method is used to handle the data. The input data are the 24
design/optimization variables and the 3 coordinates of the node to be evaluated;
27 variables in total. In contrast to the previous application, this network predicts
the pressure value of each node separately. This means that the trained DNN must
be used 100K times so as to predict the pressure oat all the surface nodes of a
new wing. Note that the coordinates of the node to be predicted must be inside
the maximum and minimum coordinated bounds used for the network training.
The input is an array with 27 values and the output is a single value. In this
case, the input and output data cannot easily be represented by images and this
representation would not have physical meaning compared to the previous case.
A new DNN architecture, fig. 7.10, is proposed to efficiently handle the small input
size. To extract as much information as possible from the input, the DNN, firstly,
expands in size with 10 up-sampling convolution layers. Then, it compresses the

146 7. Flow Prediction using Deep Neural Networks

Figure 7.9: Isolated Airfoil: Two new airfoil shapes not included in the training set
(the first one on the right column and the second one on the left). Top: CFD analyses.
Bottom: DNN predictions.

information with 6 down-sampling transpose convolution layers leading to the
single output. This architecture allows to optimally extract all information from
the input. In contrast with this DNN, the DNN used in the previous application has
reverse architecture (first the down-sampling and then the up-sampling layers),
which is the usual practice, and its input/output can easily be represented with
images. Herein, the architecture is made so as to handle relatively small number
of input/output data with no physical image representation.

For the training phase, only 10 wings are used, each of them with ∼ 100K
surface nodes resulting in 10 wings × 100K nodes = 1M training patterns in
total. In this application, the training is performed on a single NVIDIA K20 GPU
and takes ∼10hours. The trained DNN is tested on two new wing shapes, which
are also simulated by means of the PUMA software. Figs. 7.11 shows comparisons
between the predictions and the CFD simulations for these two wings. Herein, the
relative error is computed as ε= 1

N

∑N
i=0

(f̂i−fi)2
fi

where N =' 100K is the number

7.6. Transonic Flow Prediction around an Isolated Wing 147

Figure 7.10: Isolated Wing: DNN architecture.

of the surface nodes, f̂i is the predicted and fi the CFD computed pressure value
on the ith node. Even though, the relative error has been increased compared to
the first application (2.3% and 3.57%, in the two studied 3D cases), it is still low
enough for the DNN to be reliably used as a metamodel in a EA-based optimization,
as shown in the section below.

7.6.1 Optimization Assisted by a DNN

This optimization demonstrates how DNNs can be used within the EA-based opti-
mization to reduce its computational cost. It is concerned with the aforementioned
isolated wing and aims at maximizing the lift (L). Two different EA variants using
metamodels are compared. The first one is the MAEA as described in section
2.3.5 and the second one is an MAEA with a single off-line metamodel (i.e. the
DNN). In the former, personalized on-line trained RBF networks are used and, in
the latter, the previously off-line trained DNN is used as metamodel. The DNN
predicts the pressure field on the surface of each new wing/individual presented
to it and, then, a post-processing tool integrates the pressure to compute the lift
force. This procedure requires around ∼ 1sec in a personal computer, whereas
a CFD evaluation requires ∼ 2min on a NVIDIA K20 GPU. Before running the
EA with the off-line metamodel (DNN), a database of 50 individuals evaluated on
the expensive CFD tool is gathered, the DNN is trained based on a subset of this
database and its prediction accuracy is tested, as shown in the previous section.
Then, a (10, 20) EA performs the optimization using only the DNN as evaluation
tool. The optimal solution is re-evaluated using the exact CFD tool and the error
between the predicted and "exact" lift is computed. If the error is smaller than
a user-defined threshold or other termination criteria are met, the optimization
terminates. Otherwise, the database is enriched with one CFD simulation of the
optimal solution found, the DNN is trained again incrementally with newly eval-
uated individual and, then, a new EA-based optimization starts. The procedure
continues till convergence.

The convergence histories of the MAEA with an off-line trained DNN as meta-

148 7. Flow Prediction using Deep Neural Networks

Figure 7.11: Isolated Wing: Two new wing shapes not included in the training set
(the first one on the right column and the second one om the left). Top: CFD analyses.
Bottom: DNN Predictions.

model and MAEA are compared in fig. 7.12. Notice that the first 50 evaluations
for the EA with off-line metamodels are used to build the initial database. The
off-line usage of metamodels improves the performance of EAs in this case. This
happens due to the high prediction accuracy achieved by the DNN. A comparison
between the predicted and "exact" pressure fields on the surface of the optimal
wing is shown in fig. 7.13. It is noted that the DNN was adequately trained during
the optimization cycles and the average error on the optimal wing has dropped to
0.7%.

7.7. Transonic Flow Prediction around an Aircraft Wing-Body Configuration 149

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 50 100 150 200

L/
L r

ef

PSM Calls

MAEA
EA with off-line metamodels

Figure 7.12: Isolated Wing: Convergence histories of the MAEA (based on on-line
RBF networks, as in all previous chapters of this thesis) and the MAEA with off-line
DNN.

7.7 Transonic Flow Prediction around an Aircraft Wing-Body

Configuration

The first industrial problem presented in section 6 concerned with an aircraft
wing-body configuration is revisited herein to predict the pressure field on its sur-
face. The same setup is used here with 8 design variables controlling the wing
shape. Training patterns are selected from the previously formed EA database
with individuals evaluated on the CFD code; 80 different wings are used in total.
The aforementioned raw data method is used to handle the data and the DNN pre-
dicts the pressure at each wing surface node separately. The input data are the
8 design variables plus the 3 coordinates of the node position to be evaluated; 11
variables in total. Each wing gives 34K training patterns, as much as the nodes
on its surface. In contrast with previous applications, the DNN architecture is
based on the ResNet architecture, fig. 7.14, which provides a more compact ar-
chitecture with only 3 fully-connected layers greatly reducing the computational
cost of the training phase. The same architecture performs poorly in the previous
application. On the other hand, many training patterns are required to accurately
train this minimalistic DNN. Once again, only the surface nodes are predicted due
to limitations in the computational budget. The training required ∼5hours on one
NVIDIA K20 GPU. A new aircraft wing-body configuration is used to validate the
DNN prediction accuracy. Figs. 7.11 shows a comparison between the prediction
and the CFD simulation on this configuration. The relative error computed sim-
ilarly with the previous application remains relatively small (3.18%), even though
the network’s architecture has been significantly decreased. Note that by training
the DNN with only 10 different wings instead of 80, the prediction accuracy of the

150 7. Flow Prediction using Deep Neural Networks

Figure 7.13: Isolated Wing: Predicted and exact pressure field on the surface of the
optimal wing

DNN would be worse. DNN prediction of a new wing-body configuration, fig. 7.16,
in the case of less training patterns, has an error of ∼10% in comparison with the
CFD simulation.

7.7. Transonic Flow Prediction around an Aircraft Wing-Body Configuration 151

Figure 7.14: Aircraft Wing-Body Configuration: DNN architecture. Each circle rep-
resents a neuron and arrows represent intermediate connections. The actual number
of neurons is written below each layer.

152 7. Flow Prediction using Deep Neural Networks

Figure 7.15: Aircraft Wing-Body Configuration: A new wing-body configuration not
included in the 80 training patterns. Left: CFD analyses. Right: DNN predictions.

7.7. Transonic Flow Prediction around an Aircraft Wing-Body Configuration 153

Figure 7.16: Aircraft Wing-Body Configuration: A new wing-body configuration not
included in the 10 training patterns. Left: CFD analyses. Right: DNN predictions.

154 7. Flow Prediction using Deep Neural Networks

Chapter 8

Conclusions

This PhD thesis aimed at developing, applying and demonstrating methods capa-
ble of making Evolutionary Algorithms as efficient as possible. The result is an
enhanced EA with reasonable computing cost, which cab be used to solve any
optimization problem, even large-scale ones in the field of CFD. Throughout this
PhD thesis, all the proposed methods have been embedded into the EASY platform
used to perform all the optimizations. The advantages of the methods assisting the
EAs have been demonstrated in a wide range of problems, from low-cost mathe-
matical minimization problems up to 2D or 3D aerodynamic shape optimizations.
In this thesis these are the shape optimization of an Aircraft Wing-Body Configu-
ration, the DrivAer Car, an Ultra-light Aircraft, a Francis Runner and a Valveless
Diaphragm Micropump. Of course, the fact that all applications presented in
this thesis are in the field of aerodynamics/fluid mechanics is not restrictive at
all; the CFD evaluation software could easily be replaced by any other software
in computational mechanics, making thus the proposed methods applicable to
any other application domain. A great part of this thesis is based on the use of
low-cost metamodels (on-line trained personalized surrogate models, such as RBF
networks or other regression models), assisted by Principal Component Analysis
technique. On the other hand, off-line trained metamodels, in the form of Deep
Neural Networks are also used to predict flow fields around/inside aerodynamic
bodies. After their training procedure, they can be used for design-optimization
of aerodynamic bodies instead of the expensive CFD software.

The contribution of the PhD thesis can be summarized in the three innovative
methods presented below:

(a) The Principal Component Analysis (PCA) assists EAs so as to increase their
performance in problems with many design variables. In this thesis, the Kernel
variant of PCA, applied to the offspring population in each generation, transforms
each individual from the design space to a new (feature) space with directions
(the so-called Principal Directions) in decreasing order of importance. Through
this transformation, the design variables are redefined as these directions in the

155

156 8. Conclusions

feature space. Then, the evolution operators are applied to the new design vari-
ables/space, in which they perform "optimally" and, thus, the EA has a more
efficient search mechanism able to deal with initially non-separable, "ill-posed"
and high dimensional problems. In addition, PCA can alleviate the "curse of di-
mensionality" of metamodels. This problem is related to the fact that, while the
number of design variables/ input units to the metamodels is increased, their
prediction accuracy is decreased and their training requires more patterns, which
is additional cost for the EAs (since the start of the Low-Cost Pre-Evaluation
phase is delayed), and more computational cost. With the help of the Kernel PCA,
the metamodels are trained with input units that correspond to the most impor-
tant variables (the principal directions with the highest variance) of the feature
space, by appropriately truncating the less significant ones. The number of input
units a metamodel "sees" becomes lower, which is always beneficiary to improve
the metamodel prediction ability and limits their training requirements. This re-
search ended with a conference paper presentation [89] and a journal [85] paper
publication.

(b) A hybrid optimization method for Multi-Objective Optimization problems is
assessed. It combines the already efficient PCA-driven MAEA for the exploration
of the design space and a Gradient-Based (GB) optimization method for the ex-
ploitation of the space and combines the advantages of both method. For the
GB method, the gradients of the objective functions w.r.t. the design variables
are computed in an efficient way using the (continuous) adjoint method, which
computational cost is independent from the number of design variables. The key
feature of the proposed method is the definition of the descending direction or
the so-called Pareto Advancement Direction (PAD) along which the GB method
updates a few selected individuals in each generation. The Linear PCA method,
applied to the elite set of the previous generation, identifies the important direc-
tions of the objective space. From these, the one with smallest variance (most
insignificant for the PCA) is always "perpendicular" to the current front of non-
dominated solutions and points in the direction all objectives are reduced. This
is the direction aligned with the PAD; in each generation, the GB method refines
a few selected individuals along the PAD. In the presented applications, where
all objectives are computed by a single CFD run, one call to the adjoint solver
suffices for the computation of the gradients of each individual to be updated by
the GB. Judging from the results, this hybrid method can efficiently approximate
the Pareto front faster than a MAEA or the hybrid method presented by the same
group of authors in [106, 78]. Note that this method has been validated on CFD-
based problems but it is not restricted only to these problems. It can also be
used in any optimization problem governed by different set of PDEs, provided that
the numerical solver and its adjoint are available. The hybrid method applied in
aerodynamic optimization problems ended in a journal [90] paper publication.

(c) Multi Criteria Decision Making (MCDM) techniques are introduced into EAs

157

or MAEAs solving MOO problems. The "a priori’’ articulated Decision Maker (DM)
preferences (known before the beginning of the optimization) help the optimiza-
tion to focus on specific parts of the Pareto front, thus, driving the EA towards
preferred areas in the objective space. Herein, the DM’s preferences are processed
by the known MCDM technique, namely TOPSIS; however, this could be replaced
by any other similar method. TOPSIS relies upon weights expressing the DM pref-
erences for each objective function. Based on these, in each generation, distances
in the objective space are used to rank the given solutions (offspring population)
and the method assigns them a scalar utility value corresponding to this rank.
These values affect the parent selection, elitism and non-dominated front trim-
ming operators and the front is driven towards areas preferred by the DM. Finally,
the front of non-dominated solutions provides better results in the corresponding
areas than the EA or MAEAs computed without implementing MCDM techniques
. Note that TOPSIS can work synergistically with all the other methods used to
improve the performance of EAs or MAEAs. This EA variant applied in indus-
trial aerodynamic optimization problems has been demonstrated in a journal [85]
paper publication.

(d) Deep Neural Networks predict flow fields around aerodynamic bodies and
can be used as a quick evaluation tool for shape design or optimization. DNNs are
trained on databases of CFD analysis on different aerodynamic shapes, such as
airfoils and wings, and learn to predict the pressure or Mach number distribution
around/inside/on new shapes, not previously seen by the network. The net-
works inputs contain information about the shape and the output is the sought
flow field. For the data handling and representation of the problem, two scenarios
are adopted. The first one, applied in 2D cases, is based and processes images,
because the Convolutional Neural Networks (CNNs), used herein, perform opti-
mally in image processing tasks. The input image is the shape of the airfoil to be
predicted, while the output is the flow field (Mach number around the airfoil) as a
colored image. The second scenario is based on raw data, because it is extremely
computationally expensive to represent 3D flow fields with 2D images. A node-
based approach is used for the 3D cases, where the DNN predicts the pressure
at each CFD node, separately. The networks inputs are the parameterization or
some description of the shape along with the (x,y,z) coordinates of the node to be
predicted and the output is its pressure. Both scenarios are implemented with
different network architectures. The architecture is a crucial part of the network
and is selected carefully to achieve the satisfactorily predictions. It is based on
all the state-of-the-art networks, such as CNN and ResNet. Finally, DNNs provide
acceptable predictions on both 2D and 3D cases, proving their ability to assist
CFD analysis.

Industrial and other applications/demonstrations of the material presented in
this PhD thesis can be found in the conference paper presentations [87, 86], a
journal [88] paper publication and VKI Lectures on Optimization [50, 51].

158 8. Conclusions

8.1 Future Work

Future research topics that could be considered as a follow up of the work pre-
sented in this PhD thesis are:

• The investigation of other non-linear activation functions for the Kernel PCA
and their effect on the convergence of EAs.

• The integration of the proposed methods into the Asynchronous EA for better
parallel efficiency.

• The migration of the proposed ideas/methods in other stochastic population
methods, such as the PSO [101] and the pity beetle algorithm [76].

• The investigation of methods for constraint treatment involving metamodels and
classification techniques.

• The use of EAs with adaptive populations size would be of interest. The popula-
tion could be varied in order to keep quantities such as population diversity
constant.

• The investigation of other MCDM techniques for driving the EAs evolution or
other implementation methods, such as interactive communication of EAs
and DM.

• The extension and/or generalization of the DNNs so as to be able to predict
accurately a wide range of shapes and flow conditions.

Bibliography

[1] M. Abadi, A. Agarwal, and P. Barham. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] H. Abdi and L. Williams. Principal component analysis. Wiley Interdisci-
plinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[3] D. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston MA, 1987.

[4] J. Amaya, C. Cotta, and A. Fernandez-Leiva. Memetic and hybrid evolu-
tionary algorithms. pages 1047–1060, 01 2015.

[5] V.G. Asouti. Aerodynamic analysis and design methods at high and low
speed flows, on multiprocessor platforms. PhD thesis, National Technical
University of Athens, 2009.

[6] V.G. Asouti and K.C. Giannakoglou. Aerodynamic optimization using a par-
allel asynchronous evolutionary algorithm controlled by strongly interacting
demes. Engineering Optimization, 41(3):241–257, 2009.

[7] V.G. Asouti and K.C. Giannakoglou. A low-cost evolutionary algorithm for
the unit commitment problem considering probabilistic outages. Interna-
tional Journal of Systems Science (SI: Computational Intelligence in the Pres-
ence of Uncertainties), 43(7):1322–1335, 2012.

[8] V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. A grid-enabled asyn-
chronous metamodel-assisted evolutionary algorithm for aerodynamic op-
timization. Genetic Programming and Evolvable Machines, 10(3):373–389,
2009.

[9] V.G. Asouti, X.S. Trompoukis, I.C. Kampolis, and K.C. Giannakoglou. Un-
steady CFD computations using vertex-centered finite volumes for unstruc-
tured grids on Graphics Processing Units. International Journal for Numeri-
cal Methods in Fluids, 67(2):232–246, 2011.

159

160 Bibliography

[10] M. Baldwin. A new factor in evolution. The American Naturalist,
30(354):441–451, 1896.

[11] M. Biancolini, E. Costa, U. Cella, C. Groth, G. Veble, and M. Andrejasic.
Glider fuselage-wing junction optimization using CFD and RBF mesh mor-
phing. Aircraft engineering and aerospace technology, 88:740–752, 01 2016.

[12] G. Box. Evolutionary Operation: A method for increasing industrial pro-
ductivity. Applied Statistics, 6(2):81–101, 1957.

[13] G. Box and N. Draper. Evolutionary Operation: A Statistical Method for
Process Improvement. Wiley, New York, 1969.

[14] H. Bremermann. Optimization through evolution and recombination. Self-
Organizing Systems, pages 93–106, 1962.

[15] O. Brodersen. Drag prediction of engine–airframe interference effects using
unstructured Navier–Stokes calculations. Journal of Aircraft, 39(6):927–
935, 2002.

[16] S. Chakradeo, A. Hendre, and S. Deshpande. Generalized theory for hy-
bridization of evolutionary algorithms. In IEEE International Conference on
Computational Intelligence and Computing Research, Coimbatore, India, De-
cember 2014.

[17] R. Cheng, H. Cheng, Y. Jin, and X. Yao. Model-based evolutionary algo-
rithms: a short survey. Complex & Intelligent Systems, 08 2018.

[18] H. Chun-Wei, H. Song-Bin, and L. Gwo-Bin. A microfluidic device for precise
pipetting. Journal of Micromechanics and Microengineering, 18(3):35–39,
2008.

[19] C.A. Coello Coello. An updated survey of evolutionary multiobjective opti-
mization techniques: State of the art and future trends. Progress on Evolu-
tionary Computation, 1999.

[20] C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary
algorithms for solving multi-objective problems. Kluwer Academic Publisher,
2002.

[21] D.R. Cox. Interaction. International Statistical Review. Wiley, 1984.

[22] N. Cramer. A representation for the adaptive generation of simple sequen-
tial programs. In International Conference on Genetic Algorithms and the
Applications, pages 183–187, 1987.

[23] C. Darwin. On the origin of species by means of natural selection. 1859.

Bibliography 161

[24] K. Deb. An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2):311–338,
2000.

[25] K. Deb, S. Agarwal, A. Pratap, and T. Meyarivan. A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. Technical Report 200001, Indian Institute of Technology Kanpur,
2000.

[26] K. Deb and R.B. Agrawal. Simulated binary crossover for continuous search
space. Technical report, IITK/ME/SMD-94027, 1994.

[27] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multi–
objective genetic algorithm NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[28] R. Dechter. Learning while searching in constraint-satisfaction-problems.
In AAAI’86 Proceedings of the Fifth AAAI National Conference on Artificial
Intelligence, pages 178–185, 1 1986.

[29] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations
and Trends in Signal Processing, 7(3-4):1–199, 2014.

[30] J. Désidéri and A. Janka. Hierarchical parametrization for multilevel evolu-
tionary shape optimization with application to aerodynamics. In EUROGEN
2003, Evolutionary Methods for Design, Optimisation and Control with Appli-
cations to Industrial Problems, Barcelonn, Spain, 2003.

[31] J. Desideri, J. Periaux, and Z. Tang. Multi-objective design strategies using
deterministic optimization with different parameterizations in aerodynam-
ics. In ECCOMAS 2004, Jyvaskyla, Finland, July 2004.

[32] M. Emmerich, K.C. Giannakoglou, and B. Naujoks. Single- and multi-
objective evolutionary optimization assisted by Gaussian random field
metamodels. IEEE Transactions on Evolutionary Computation, 10(4):421–
439, 2006.

[33] P. Fishburn. Additive utilities with incomplete product set: Applications to
priorities and assignments. Operations Research Society of America (ORSA),
Baltimore, USA, 1967.

[34] I. Fodor. A survey of dimension reduction techniques. Technical Report,
UCRL ID-148494, 9:1–18, 2002.

[35] L. Fogel. Autonomous automata. Industrial Research Magazine, 4(2):14–19,
1962.

162 Bibliography

[36] L. Fogel. On The Organization of Intellect. PhD thesis, University of Califor-
nia, 1964.

[37] L. Fogel, P. Angeline, and D. Fogel. An evolutionary programming approach
to self-adaptation on finite state machines. In Proceedings of the fourth
annual conference on evolutionary programming, pages 355–365, 1995.

[38] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated
Evolution. In John Wiley & Sons, New York, 1966.

[39] R. Friedberg. A learning machine: Part i. IBM J. Res. Dev., 2(1):2–13, 1958.

[40] R. Friedberg, B. Dunham, , and J. North. A learning machine: Part II. IBM
J. Res. Dev., 3(3):282–287, 1959.

[41] B. Fritzke. Fast learning with incremental RBF Networks. Neural Processing
Letters, 1(1):2–5, 1994.

[42] B. Gao and L. Pavel. On the properties of the softmax function with applica-
tion in game theory and reinforcement learning. Arxiv Preprint:1704.00805,
04 2017.

[43] C.A. Georgopoulou and K.C. Giannakoglou. A multi-objective metamodel-
assisted memetic algorithm with strength-based local refinement. Engineer-
ing Optimization, 41(10):909–923, 2009.

[44] C.A. Georgopoulou and K.C. Giannakoglou. Multiobjective Metamodel-
Assisted Memetic Algorithms. Springer Series, 2009.

[45] C.A. Georgopoulou and K.C. Giannakoglou. Two-level, two-objective evolu-
tionary algorithms for solving unit commitment problems. Applied Energy,
86(7-8):1229–1293, 2009.

[46] C.A Georgopoulou and K.C. Giannakoglou. Metamodel-assisted evolution-
ary algorithms for the unit commitment problem with probabilistic outages.
Applied Energy, 87(5):1782–1792, 2010.

[47] H.A. Georgopoulou. Optimization techniques for committing combined cycle
power plants and designing their components. PhD thesis, National Techni-
cal University of Athens, 2009.

[48] K.C. Giannakoglou. Design of optimal aerodynamic shapes using stochas-
tic optimization methods and computational intelligence. Progress in
Aerospace Sciences, 38(1):43–76, 2002.

[49] K.C. Giannakoglou. The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY., 2008.

Bibliography 163

[50] K.C. Giannakoglou, V.G. Asouti, D.H. Kapsoulis, and K.T. Tsiakas. Low
cost evolutionary algorithms for engineering applications. In Introduction
to Optimization and Multidisciplinary Design, Lecture Series. von Karman
Institute, Rhode–St–Genése, Belgium, May 2016.

[51] K.C. Giannakoglou, V.G. Asouti, D.H. Kapsoulis, K.T. Tsiakas, X.S.
Trompoukis, and F. Gagliardi. Low cost evolutionary algorithms for en-
gineering applications. In Introduction to Optimization and Multidisciplinary
Design, Lecture Series. von Karman Institute, Rhode–St–Genése, Belgium,
September 2018.

[52] K.C. Giannakoglou, A.P. Giotis, and M.K. Karakasis. Low-cost genetic op-
timization based on inexact pre-evaluations and the sensitivity analysis of
design parameters. Inverse Problems in Engineering, 9(4):389–412, 2001.

[53] K.C. Giannakoglou, A.P. Giotis, and M.K. Karakasis. Low-cost genetic op-
timization based on inexact pre-evaluations and the sensitivity analysis of
design parameters. Inverse Problems in Engineering, 9:389–412, 2001.

[54] K.C. Giannakoglou and I.C. Kampolis. Multilevel Optimization Algorithms
based on Metamodel- and Fitness Inheritance-Assisted Evolutionary Algo-
rithms., chapter 3. Springer-Verlag, 2009.

[55] K.C. Giannakoglou, D.I. Papadimitriou, and I.C. Kampolis. Aerodynamic
shape design using evolutionary algorithms and new gradient-assisted
metamodels. Computer Methods in Applied Mechanics and Engineering,
195(44-47):6312–6329, 2006.

[56] M. Giles and N. Pierce. Improved lift and drag estimates using adjoint Euler
equations. In AIAA Paper 1999-3293, 14th Computational Fluid Dynamics
Conference, Norfolk, U.S.A, 1999.

[57] A.P. Giotis. Application of evolutionary algorithms, computational intelligence
and advanced computational fluid dynamics techniques to the optimization-
inverse design of turbomachinery cascades, using parallel processing. PhD
thesis, National Technical University of Athens, 2003.

[58] A.P. Giotis. Application of evolutionary algorithms, computational intelligence
and advanced computational fluid dynamics techniques to the optimization-
inverse design of turbomachinery cascades, using parallel processing. PhD
thesis, National Technical University of Athens, 2003.

[59] A.P. Giotis and K.C. Giannakoglou. Low-cost genetic optimization based on
inexact pre-evaluations and the sensitivity analysis of design parameters.
Advances in Engineering Software, 29(2):129–138, 1998.

164 Bibliography

[60] D.E. Goldberg. Genetic Algorithm in Search, Optimization and Machine Learn-
ing. Massachusett, Addison-Wesley, 1989.

[61] D.E. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. FGA1, pages 69–93, 1991.

[62] X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow
approximation. In 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 481–490, New York, USA, 2016.

[63] J. Hadamard. Sur les problemes aux derivees partielles et leur signification
physique. Princeton University Bulletin, pages 49–52, 1902.

[64] N. Hansen, S. Muller, and P. Koumoutsakos. Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18, 2003.

[65] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
New Jersey, USA, 2nd edition, 1999.

[66] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
New Jersey, USA, 2nd edition, 1999.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, June 2016.

[68] A. Heft, T. Indinger, and N. Adams. Experimental and numerical inves-
tigation of the DrivAer model. In ASME 2012, Symposium on Issues and
Perspectives in Automotive Flows, pages 41–51, Puerto Rico, USA, July 8-
12 2012.

[69] O. Hennigh. Automated design using neural networks and gradient descent.
ArXiv e-prints, arXiv:1710.10352, 10 2017.

[70] J. Holland. Outline for a logical theory of adaptive systems. Journal ACM,
9(3):297–314, 1962.

[71] J. Holland. Adaptation In Natural and Artificial Systems. The University of
Michigan Press, 1975.

[72] C. Hwang and K. Yoon. Multiple Attribute Decision Making: Methods and
Applications. Springer-Verlag, New York, 1981.

[73] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimiza-
tion with approximate fitness functions. IEEE Transactions on Evolutionary
Computation, 6(5):481–494, 2002.

Bibliography 165

[74] I. Jolliffe. Principal Component Analysis, 2nd Edition. Springer Series in
Statistics, 2002.

[75] S. Kabanikhin, N. Tikhonov, V. Ivanov, and M. Lavrentiev. Definitions and
examples of inverse and ill-posed problems. Journal of Inverse and Ill-posed
Problems, 16:317–357, 01 2008.

[76] N. Kallioras, N. Lagaros, and D. Avtzis. Pity beetle algorithm - a new meta-
heuristic inspired by the behavior of bark beetles. Advances in Engineering
Software, 121:147–166, 2018.

[77] I.C. Kampolis. Parallel, multilevel algorithms for the aerodynamic optimiza-
tion in turbomachines. PhD thesis, National Technical University of Athens,
2009.

[78] I.C. Kampolis and K.C. Giannakoglou. A multilevel approach to single- and
multi-objective aerodynamic optimization. Computer Methods in Applied
Mechanics and Engineering, 197(33-40):2963–2975, 2008.

[79] I.C. Kampolis and K.C. Giannakoglou. Distributed evolutionary algorithms
with hierarchical evaluation. Engineering Optimization, 41(11):1037–1049,
2009.

[80] I.C. Kampolis and K.C. Giannakoglou. Synergetic use of different evaluation,
parameterization and search tools within a multilevel optimization platform.
Applied Soft Computing, 11(1):645–651, 2011.

[81] I.C. Kampolis, E.I. Karangelos, and K.C. Giannakoglou. Gradient-assisted
radial basis function networks: theory and applications. Applied Mathemat-
ical Modelling, 28(13):197–209, 2004.

[82] I.C. Kampolis, D.I. Papadimitriou, and K.C. Giannakoglou. Evolutionary
optimization using a new radial basis function network and the adjoint
formulation. Inverse Problems in Science and Engineering, 14(4):397–410,
2006.

[83] D. Kapsoulis, K. Samouchos, X. Trompoukis, and K. Giannakoglou. Design-
optimization of a valveless diaphragm micropump under uncertainties us-
ing evolutionary algorithms. In ADMOS 2019, Alicante, Spain, May 2019.

[84] D. Kapsoulis, K. Samouchos, X. Trompoukis, and K. Giannakoglou. Hy-
brid optimization of a valveless diaphragm micropump using the cut-cell
method. Journal of Mechanics Engineering and Automation, to be published,
2019.

166 Bibliography

[85] D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.
Evolutionary multi-objective optimization assisted by metamodels, Kernel
PCA and multi-criteria decision making techniques with applications in
aerodynamics. Applied Soft Computing, 64(2):182–197, 2017.

[86] D.H. Kapsoulis, V.G. Asouti, K.C. Giannakoglou, S. Porziani, E. Costa,
C. Groth, U. Cella, and M.E. Biancolini. Evolutionary aerodynamic shape
optimization through the RBF4AERO platform. In ECCOMAS Congress
2016, VII European Congress on Computational Methods in Applied Sciences
and Engineering, Crete island, Greece, June 5-10 2016.

[87] D.H. Kapsoulis, V.G. Asouti, E.M. Papoutsis-Kiachagias, K.C. Gian-
nakoglou, S. Porziani, E. Costa, C. Groth, U. Cella, M.E. Biancolini, M. An-
drejavsivc, D. Ervzen, M. Bernaschi, A. Sabellico, and G. Urso. Aircraft &
car shape optimization on the RBF4AERO platform. In 11th HSTAM Inter-
national Congress on Mechanics, Athens, Greece, May 27-30 2016.

[88] D.H. Kapsoulis, K. Samouchos, X.S. Trompoukis, and K.C. Giannakoglou.
Optimization under uncertainties of a valveless diaphragm pump using
the cut-cell method. The International Journal of Engineering and Science,
8(8):7–14, 2019.

[89] D.H. Kapsoulis, K.T. Tsiakas, V.G. Asouti, and K.C. Giannakoglou. The use
of kernel pca in evolutionary optimization for computationally demanding
engineering applications. In 2016 IEEE Symposium Series on Computational
Intelligence (IEEE SSCI 2016), Athens, Greece, December 2016.

[90] D.H. Kapsoulis, K.T. Tsiakas, X.S. Trompoukis, V.G. Asouti, and K.C. Gi-
annakoglou. PCA-assisted hybrid algorithm combining EAs and adjoint
methods for CFD-based optimization. Applied Soft Computing, 73:520–529,
2018.

[91] M.K. Karakasis. Hierarchical, distributed evolutionary algorithms and com-
putational intelligence in aerodynamic shape optimization, on multiprocessing
systems. PhD thesis, National Technical University of Athens, 2006.

[92] M.K. Karakasis and K.C. Giannakoglou. On the use of metamodel-
assisted, multi-objective evolutionary algorithms. Engineering Optimization,
38(8):941–957, 2006.

[93] M.K. Karakasis, A.P. Giotis, and K.C. Giannakoglou. Inexact information
aided, low-cost, distributed genetic algorithms for aerodynamic shape op-
timization. International Journal for Numerical Methods in Fluids, 43(10-
11):1149–1166, 2003.

Bibliography 167

[94] M.K. Karakasis, D.G. Koubogiannis, and K.C. Giannakoglou. Hierarchical
distributed evolutionary algorithms in shape optimization. International
Journal for Numerical Methods in Fluids, 53(3):455–469, 2007.

[95] N.B. Karayiannis and G.W. Mi. Growing radial basis neural networks: Merg-
ing supervised and unsupervised learning with network growth techniques.
IEEE Transactions on Neural Networks, 8(6):1492–1506, 1997.

[96] I.S. Kavvadias. Aerodynamic optimization for turbulent flows using adjoint
methods and GPUs (in progress). PhD thesis, National Technical University
of Athens.

[97] I.S Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for
shape optimization. Journal of Computational Physics, 301:1–18, 2015.

[98] S. Kazarlis and V. Petridis. Varying fitness functions in genetic algorithms:
Studying the rate of increase of the dynamic penalty terms. In Parallel Prob-
lem Solving from Nature, pages 211–220, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[99] A. Keane and B. Nair. Computational approaches to aerospace design. In
John Wiley & Sons, Chichester UK, 2nd edition, 205.

[100] G. Kendall, E. Soubeiga, and P. Cowling. Choice function and random
hyperheuristics. Proceedings of the Fourth Asia-Pacific Conference on Simu-
lated Evolution and Learning, pages 667–671, 2002.

[101] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks IV, pages 1942–1948,
1995.

[102] J. F. Kenney and E. S. Keeping. Linear Regression and Correlation, Ch. 15
in Mathematics of Statistics, Pt. 1. 3 edition, 1962.

[103] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference for Learning Representations, San Diego, 2015.

[104] J.R. Koehler and A.B. Owen. Handbook on Statistics, volume 13, chapter
Computer Experiments, pages 239–245. Elsevier-Science, 1996.

[105] E.A. Kontoleontos. Designing Thermo-Fluid Systems using Gradient-based
Optimization Methods and Evolutionary Algorithms. PhD thesis, National
Technical University of Athens, 2012.

168 Bibliography

[106] E.A Kontoleontos, V.G. Asouti, and K.C. Giannakoglou. An asynchronous
metamodel-assisted memetic algorithm for CFD-based shape optimization.
Engineering Optimization, 44(2):157–173, 2012.

[107] J. Koza. Genetic programming ii: Automatic discovery of reusable pro-
gramms. MIT Press, 1994.

[108] N. Krasnogor. Coevolution of genes and memes in memetic algorithms.
Graduate Student Workshop, page 371, 2000.

[109] N. Krasnogor and S. Gustafson. A study on the use of ‘‘self-generation’’ in
memetic algorithms. Natural Computing, 3(1):53–76, 2004.

[110] D.G. Krige. A study of gold and uranium distribution patterns in the Klerks-
dorp gold field. Geoexploration, 4(1):43–53, 1966.

[111] A. Krstic, J. Figueira, S. Greco, and M. Ehrgott. Multicriteria Decision
Analysis: State of the art surveys. Springer-Verlag, Ekonomski horizonti,
20:189–191, 2018.

[112] S. Kyriacou. Evolutionary Algorithm-based Design-Optimization Methods in
Turbomachinery. PhD thesis, National Technical University of Athens, 2013.

[113] S.A Kyriacou, V.G Asouti, and K.C. Giannakoglou. Efficient PCA-driven
EAs and metamodel-assisted EAs, with applications in turbomachinery.
Engineering Optimization, 46(7):895–911, 2014.

[114] S.A. Kyriacou, S. Weissenberger, and K.C. Giannakoglou. Design of a ma-
trix hydraulic turbine using a metamodel-assisted evolutionary algorithm
with PCA-driven evolution operators. International Journal of Mathematical
Modelling and Numerical Optimization, 3(2):45–63, 2012.

[115] Y. LeCun, Y. Bengio, and G. Hinton. Learning representations by back-
propagating errors. Nature, 521(7553):436–444, 2015.

[116] M. Li, T. Zhang, Y. Chen, and A. Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 661–670,
New York, USA, 2014.

[117] P.I.K. Liakopoulos, I.C. Kampolis, and K.C. Giannakoglou. Grid-enabled,
hierarchical distributed metamodel-assisted evolutionary algorithms for
aerodynamic shape optimization. Future Generation Computer Systems,
24(7):701–708, 2008.

Bibliography 169

[118] L. Lin and G. Mitsuo. Hybrid evolutionary optimisation with learning for
production scheduling: state-of-the-art survey on algorithms and applica-
tions. International Journal of Production Research, 56(1-2):193–223, 2018.

[119] S. Lohr. The origins of ’big data’: An etymological detective story. The New
York Times, Retrieved 28 September, 2016.

[120] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[121] A. Maesani, G. Iacca, and D. Floreano. Memetic viability evolution for con-
strained optimization. CoRR, abs/1810.02702, 2018.

[122] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlang, 3rd edition, 1996.

[123] Z. Michalewicz and D. Fogel. How to solve it: Modern heuristics. In Springer-
Verlag, 2000.

[124] K. Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Pub-
lishers, Boston, 1999.

[125] A.K. Morales and C.V. Quezada. A universal eclectic genetic algorithm for
constrained optimization. In 6th European Congress on Intelligent Tech-
niques & Soft Computing, Verlag Mainz, pages 518–522, 1998.

[126] R. Myers and D. Montgomery. Response Surface Methodology Process and
Product Optimization Using Designed Experiments. 2nd edition, 2002.

[127] F. Neri and C. Cotta. Memetic algorithms and memetic computing optimiza-
tion: A literature review. Swarm and Evolutionary Computation, 2:1–14,
2012.

[128] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic comput-
ing optimization: A literature review. Swarm and Evolutionary Computation,
2:1–14, 02 2018.

[129] M. Omidvar, X. Li, and X. Yao. Cooperative co-evolution with delta grouping
for large scale non-separable function optimization. In IEEE Congress on
Evolutionary Computation, pages 1–8, July 2010.

[130] D.I. Papadimitriou and K.C. Giannakoglou. A continuous adjoint method
with objective function derivatives based on boundary integrals for inviscid
and viscous flows. Computers & Fluids, 36(2):325–341, 2007.

170 Bibliography

[131] E.M. Papoutsis-Kiachagias. Adjoint Methods for Turbulent Flows, Applied to
Shape or Topology Optimization and Robust Design. PhD thesis, National
Technical University of Athens, 2013.

[132] L. Piegl and W. Tiller. The NURBS book. Springer, 1997.

[133] Y. Po Lung. A class of solutions for group decision problems. Management
Science, 19(8):936–946, 1973.

[134] T. Poggio and F. Girosi. Networks for approximation and learning. Proceed-
ings of the IEEE, 78(9):1481–1497, 1990.

[135] D. Powell and M.M. Skolnick. Using genetic algorithms in engineering de-
sign optimization with non-linear constraints. In 5th International Confer-
ence on Genetic Algorithms, Morgan Kaufmann Publishers Inc., pages 424–
431, 1993.

[136] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2015.

[137] L. A. Rastrigin. Systems of extremal control. Mir, Moscow, 1974.

[138] I. Rechenberg. Cybernetic solution path of an experimental problem. In
Library Translation 1122, Royal Aircraft Establishment, Farnborough, UK,
1965.

[139] I. Rechenberg. Optimierung technischer Systeme nach Prinzipien der biolo-
gischen Evolution. PhD thesis, Technical University of Berlin, 1971.

[140] P. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43:357–372, 1981.

[141] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention, pages 234–241. Springer International Publishing,
2015.

[142] G. Rossum. Python tutorial. Technical Report CS-R9526, 1995.

[143] R. Roy and A. Tiwari. Generalised regression GA for handling inseparable
function integration: Algorithm and application. Parallel Problem Solving
from Nature - PPSN VII, Lecture Notes in Computer Science, 2439:452–461,
2002.

[144] R. Roy and A. Tiwari. Variable dependence interaction and multi-objective
optimizations. Genetic and Evolutionary Computation Conference, 2002.

Bibliography 171

[145] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, October 1986.

[146] T. Saaty. The analytic hierarchy process. McGraw-Hill, New York, 1980.

[147] M. Sakharov and A. Karpenko. Multi-memetic Mind Evolutionary Computa-
tion Algorithm Based on the Landscape Analysis, pages 238–249. Dublin,
Ireland, 01 2018.

[148] T. Salimans, A. Karpathy, X. Chen, and D. Kingma. PixelCNN++: Improving
the PixelCNN with discretized logistic mixture likelihood and other modifi-
cations. CoRR, abs/1701.05517, 2017.

[149] R. Salomon. Re-evaluating genetic algorithm performance under coordinate
rotation of benchmark functions. a survey of some theoretical and practical
aspects of genetic algorithms. BioSystems, 39:263–278, 1996.

[150] K. Samouchos. The continuous adjoint method to immersed boundary meth-
ods for turbomachinery applications. PhD thesis, National Technical Uni-
versity of Athens, (in progress).

[151] J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary viable
strategy. In Forth International Conference on Genetic Algorithms, pages
61–68, 1991.

[152] J.D. Schaffer and A. Morishima. An adaptive crossover distribution mech-
anism for genetic algorithms. In Second International Conference on Genetic
Algorithms, pages 36–40, 1992.

[153] J. Schmidhuber. Deep Learning. Scholarpedia, 10(11):32–38, 2015.

[154] V. Schmitt and F. Charpin. Pressure distributions on the ONERA M6 wing
at transonic mach numbers, experimental data base for computer program
assessment. Technical report, AGARD 138, 1979.

[155] B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Journal of Neuron Computation, 10(5):1299–
1319, 1998.

[156] S. Schreck, W. Faller, and M. Luttges. Neural network prediction of three-
dimensional unsteady separated flowfields. Journal of Aircraft, 32(178),
1995.

[157] S. Schreck, W. Faller, and M. Luttges. Efficient unsteady aerodynamic loads
prediction based on nonlinear system identification and proper orthogonal
decomposition. Journal of Fluids and Structures, 67(1), 2016.

172 Bibliography

[158] H. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technical University of Berlin, 1975.

[159] M. Sefrioui and J. Périaux. A hierarchical genetic algorithm using multiple
models for optimization. In 6th international conference on parallel problem
solving from nature (PPSN VI). Lecture Notes in Computer Science, volume
1917, pages 879–888. Paris, France, 2000.

[160] R. Shang, J. Wang, L. Jiao, and Y. Wang. An improved decomposition-based
memetic algorithm for multi-objective capacitated arc routing problem. Ap-
plied Soft Computing, 19:343–361, 2014.

[161] V. Shim, K. Tan, and H. Tang. Adaptive memetic computing for evolutionary
multiobjective optimization. IEEE Transactions on Cybernetics, 45(4):610–
621, 2015.

[162] K. Sindhya, K. Miettinen, and K. Deb. A hybrid framework for evolutionary
multi-objective optimization. IEEE Transactions on Evolutionary Computa-
tion, 17:495–511, 2013.

[163] L. Songjing, J. Liu, and D. Jiang. Dynamic characterization of a valveless
micropump considering entrapped gas bubbles. Journal of Heat Transfer,
135, 2013.

[164] P. Spalart and S. Allmaras. A one–equation turbulence model for aerody-
namic flows. La Recherche Aerospatiale, 1:5–21, 1994.

[165] W.M. Spears. Crossover or mutation? In Foundations of Genetic Algorithms
2, Morgan Kaufmann, pages 221–237, 1992.

[166] P.D. Surry and N.J. Radcliffe. The COMOGA method: Constrained op-
timisation by multiobjective genetic algorithms. Control and Cybernetics,
26:391–412, 1997.

[167] K. Tan, J. Chen, and D. Wang. Gated residual networks with dilated con-
volutions for monaural speech enhancement. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 27(1):189–198, 2019.

[168] L. Thiele, K. Miettinen, P. Korhonen, and J. Molina. A preference–based
evolutionary algorithm for multi–objective optimization. Evolutionary Com-
putation, 17(3):411–436, 2009.

[169] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012.

Bibliography 173

[170] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, and A.G. Yagola. Nu-
merical methods for the solution of ill-posed problems. Kluwer Academic
Publishers, 1995.

[171] X.S. Trompoukis. Solving aerodynamic-aeroelastic problems on Graphics
Processing Units. PhD thesis, National Technical University of Athens, 2012.

[172] X.S. Trompoukis, V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. CUDA
implementation of Vertex-Centered, Finite Volume CFD methods on Unstruc-
tured Grids with Flow Control Applications, chapter 17. Morgan Kaufmann,
2011.

[173] X.S. Trompoukis, K.T. Tsiakas, M. Ghavami Nejad, V.G. Asouti, and K.C.
Giannakoglou. The continuous adjoint method on graphics processing units
for compressible flows. In OPT-i, International Conference on Engineering
and Applied Sciences Optimization, Kos Island, Greece, June 4-6 2014.

[174] K. Tsiakas. Development of optimization methods for use on Graphics Pro-
cessing Units, with turbomachinery applications. PhD thesis, National Tech-
nical University of Athens, 2019.

[175] K.T. Tsiakas, F. Gagliardi, X.S. Trompoukis, and K.C. Giannakoglou. Shape
optimization of turbomachinery rows using a parametric blade modeller and
the continuous adjoint method running on GPUS. In ECCOMAS Congress
2016, VII European Congress on Computational Methods in Applied Sciences
and Engineering, Crete island, Greece, June 5-10 2016.

[176] TUBStator. TurboLab Stator Description, 2018. http://aboutflow.sems.
qmul.ac.uk/events/munich2016/benchmark/testcase3/.

[177] Q. Wang. Kernel principal component analysis and its applications in face
recognition and active shape models. Technical Report, arXiv:1207.3538,
2012.

[178] C. Wellock and B. Ross. An Examination of Lamarckian Genetic Algorithms.
In 2001 Genetic and Evolutionary Computation Conference Late Breaking
Papers, pages 474–481, 2001.

[179] L. Willmes, T. Back, Y. Jin, and B. Sendhoff. Comparing neural networks
and kriging for fitness approximation in evolutionary optimization. In Pro-
ceedings of the 2003 Congress on Evolutionary Computation – CEC ’03, vol-
ume 1, pages 663–670, 2003.

[180] B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu. Interactive
multiobjective optimization: A review of the state-of-the-art. IEEE Access,
6:41256–41279, 2018.

174 Bibliography

[181] X. Yu and X. Lu, Y. Yu. Evaluating multiobjective evolutionary algorithms
using mcdm methods. Mathematical Problems in Engineering, 2018:1–13,
03 2018.

[182] T. Zervogiannis. Optimization methods in aerodynamics and turbomachinery
based on the adjoint technique, hybrid grids and the exact Hessian matrix.
PhD thesis, National Technical University of Athens, 2011.

[183] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8:173{195, 2000.

[184] E. Zitzler, M. Laumans, and L. Thiele. SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization. In EUROGEN
2001: Evolutionary Methods for Design, Optimisation and Control with Ap-
plications to Industrial Problems, Barcelona, Spain, pages 19–26, 2002.

[185] E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective op-
timization: The strength Pareto approach. TIK-Report No. 43, Computer
Engineering and Communication Networks Lab, ETH Zurich, 1998.

[186] E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective opti-
mization: The strength Pareto approach. Computer Engineering and Com-
munication Networks Lab, 1998.

[187] A.S. Zymaris. Adjoint methods for the design of shapes with optimal aero-
dynamic performance in laminar and turbulent flows. PhD thesis, National
Technical University of Athens, 2010.

	Contents
	Optimization in Engineering Applications - EAs & Other Optimization Methods
	Developement of EAs in the PCOpt/NTUA
	Development of Gradient-based Optimization Methods in the PCOpt/NTUA
	EAs-based Optimization and Parallel Processing
	Thesis' Contributions

	Evolutionary Algorithms
	Definition of the Optimization Problem
	Overview of EAs
	The Evolutionary Algorithm SYstem (EASY)
	The (,) EA
	Evolution Operators
	MOO in EASY
	Constrained Optimization
	Metamodel-Assisted Evolutionary Algorithms (MAEAs)
	Distributed EAs
	Hierarchical EAs

	Benchmark Cases
	Benchmark Case 1: Shape Optimization of an Isolated Airfoil for max. Lift Coefficient
	Benchmark Case 2: Shape Optimization of a Transonic Wing for max. Lift and min. Drag Coefficient
	Benchmark Case 3: Optimization of a Three-Element Airfoil for max. Lift Coefficient and min. Moment Coefficient
	Benchmark Case 4: Optimization of a 2D compressor for max. Flow Turning and min. Losses

	Principal Component Analysis
	Curses of Engineering Optimization Problems
	Basics of the Principal Component Analysis
	EA with PCA-driven Evolution Operators
	PCA-Driven Crossover
	PCA-Driven Mutation

	EAs with PCA-Truncated Metamodels
	Mathematical Optimization Problems
	Demonstration of EA(L) and EA(K) Performance
	Demonstration of M(L)AEA(L) and M(K)AEA(K) Performance

	Benchmark Cases Revisited
	Benchmark Case 1
	Benchmark Case 2
	Benchmark Case 3
	Benchmark Case 4

	PCA-Assisted Hybrid Algorithm Combining EAs and Adjoint Methods
	SPEA2-based Hybrid Optimization Algorithm.
	The PCA-Assisted Hybrid Algorithm, in detail
	Benchmark Cases Revisited
	Benchmark Case 1 as a Three-Objective Problem
	Benchmark Case 2
	Benchmark Case 3

	Multi-Criteria Decision Making within EAs
	MCDM Techniques
	The TOPSIS Technique
	TOPSIS-driven EAs

	Applications
	Benchmark Case 1 with two objectives
	Benchmark Case 2

	Industrial Optimization Problems
	Industrial Case 1: Shape Optimization of an Aircraft Wing-Body Configuration
	Industrial Case 2: Shape Optimization of the DrivAer Car
	Industrial Case 3: Shape Optimization of an Ultra-light Aircraft
	Industrial Case 4: Shape Optimization of a Francis Runner
	Industrial Case 5: Optimization of a Valveless Diaphragm Micropump

	Flow Prediction using Deep Neural Networks
	Basics of DNNs
	Basic DNN Mathematics and the Back-Propagation Algorithm

	Gradient-Based Optimization for DNN training
	Network Architecture
	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer

	Encoding-Decoding CNNs

	Applications in Aerodynamic Cases
	Flow Prediction around an Isolated Airfoil
	Transonic Flow Prediction around an Isolated Wing
	Optimization Assisted by a DNN

	Transonic Flow Prediction around an Aircraft Wing-Body Configuration

	Conclusions
	Future Work

	Bibliography

