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Abstract

This thesis is concerned with the development of methods and numerical tools
for fast and cost-efficient aerodynamic/hydrodynamic shape optimization. De-
velopments related to the ensemble of building blocks of a shape optimization
framework, namely a) the Computational Fluid Dynamics (CFD) analysis soft-
ware, b) the optimization methods and c) the shape parameterization techniques
are performed. These reduce the overall optimization cost and make them ap-
propriate for use in industrial design processes. Both Gradient-Based (GB) opti-
mization methods assisted by the adjoint technique and Evolutionary Algorithms
(EAs) are considered, with emphasis on the development of the former. Most of the
proposed methods focus on turbomachinery design/optimization but, their range
of applicability is much wider, including also external aerodynamics applications.

The GPU-enabled in-house (U)RANS solver PUMA (Parallel Unstructured Multi-
row Adjoint), previously developed only for steady and unsteady compressible
flows, is enriched with an incompressible flow solver based on the Artificial Com-
pressibility (AC) approach. The RANS equations for both compressible and in-
compressible flows are expressed in a relative frame of reference although they
are solved for the absolute velocity components, using the Multiple Reference
Frame (MRF) approach. To enable the simulation of multi-row turbomachinery
configurations, Rotor-Stator Interaction techniques, such as the mixing interface,
frozen rotor and sliding interface approaches are employed. GPU-specific pro-
gramming techniques and numerical schemes, developed in previous works on
the PUMA software, are revisited, upgraded and re-evaluated, resulting to a GPU
implementation which is up to 40× faster than the equivalent CPU one. This is
achieved by careful code restructuring, delicate GPU memory handling, the use
of Mixed-Precision Arithmetics (MPA) and efficient utilization of the NVIDIA CUDA
programming environment, in order to optimally exploit the SIMD architecture
and hardware characteristics of modern GPUs. Especially, MPA is a technique ac-
cording to which, when solving for the update of flow quantities, double precision
storage is used for the right-hand-side (r.h.s.) terms, while single precision storage
is employed for the left-hand-side (l.h.s.) ones, reducing the overall memory usage
and increasing GPU memory bandwidth. The PUMA solver is also capable of run-
ning in parallel on multiple GPUs, using overlapping domains. Communications
among GPUs of the same computational node are carried out through the shared
on-node CPU memory, while the MPI protocol is employed for communications
among different computational nodes.

A series of test cases are studied for validation and verification purposes of
the PUMA compressible and incompressible flow solver. These concern the tur-
bulent flow around two isolated airfoils, the flow through a convergent-divergent
transonic diffuser and over a backward-facing step and the flow around a Hori-
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zontal Axis Wind Turbine (HAWT) blade, with published results to compare with.
Furthermore, the solver is also validated/verified on the prediction of the flow
field around the ONERA M6 wing, inside a propeller type water turbine and a
high-pressure turbine stator.

Throughout this thesis, the continuous adjoint method is exclusively used and
its development for both the compressible and the AC-based incompressible flow
solver is proposed. The method allows the computation of the sensitivity deriva-
tives of several objective functions (like the lift and drag forces, the torque, the
total pressure losses and the turbomachinery row efficiency) with respect to the
aerodynamic shape at a cost independent of the number of design variables con-
trolling the shape, enabling the efficient use of Gradient-Based (GB) optimization
methods.

Two different expressions for the sensitivity derivatives are developed, namely
the Surface Integral (SI) and Field Integral (FI) adjoint formulations. The former
makes use of the Leibniz rule and, usually neglecting surface integral terms con-
taining the residuals of the state equations (referred to as Severed-SI,S-SI), results
in a series of surface integrals that constitute the sensitivity derivatives expres-
sion. The latter, on the other hand, results to sensitivity derivatives expressed
as the sum of surface and volume integrals. Though mathematically equivalent,
numerically these expressions result in sensitivity derivatives of potentially differ-
ent accuracy and computational complexity. The FI approach is more accurate,
especially in turbulent flows, compared to the S-SI one but requires a properly
differentiated grid displacement model and more arithmetic operations in order
to compute the volume integrals involved in the sensitivity derivatives expres-
sions. Conversely, the SI approach results in potentially less accurate but, also,
computationally cheaper sensitivity derivatives.

In both formulations, the variations of the eddy viscosity due to shape changes
are taken into account by differentiating the Spalart-Allmaras turbulence model
for both compressible and incompressible flows. The variations of the distance
from the nearest wall are also taken into account, through the differentiation of
the Eikonal equation, i.e. a PDE computing distances from the walls. Proper
consideration of these variations results in a complete and consistent expression
for the sensitivity derivatives enhancing the convergence and robustness of the
GB optimization method.

In the field of shape parameterization for aerodynamic optimization, a para-
metric modeler for turbomachinery blade rows is developed, namely the GMTurbo
software. A bottom-up strategy is followed, where the meridional outline is con-
structed, camber lines of the blade at several spanwise positions are built using
metal and other angles, thickness is added normal to them and the blade sections
are interpolated to yield the 3D blade shape. With the GMTurbo, a wide range
of blade shapes can be generated parametrically, while maintaining a compact
CAD-compatible representation of the geometry. The GMTurbo software, together
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with the PUMA flow solver and the in-house evolutionary algorithm based opti-
mization tool (EASY software), is employed for the optimization of a propeller type
water turbine. Both the inlet guide vanes and the runner shape are optimized
for maximum efficiency. In this case, the interaction between the stationary and
rotating blades is taken into account through the mixing plane technique. The
advantage of jointly optimizing the two rows is demonstrated.

Additionally, a Free Form Deformation technique, based on Volumetric NURBS,
is developed to support optimization loops. According to this technique a NURBS
volume is defined by means of a control point lattice, in which the aerodynamic
shape under consideration is embedded together with parts of the CFD domain.
Displacements of the control points lead to displacements of any entity embedded
in the NURBS volume allowing for a monolithic approach for simultaneously dis-
placing the aerodynamic body and the CFD mesh around it. A new strategy for
extending the applicability of this technique to the shape optimization of turboma-
chinery components, based on intermediate coordinate system transformations,
is proposed.

The Volumetric NURBS parameterization is differentiated to provide the grid
sensitivities needed by the FI continuous adjoint method. Then, it is used for the
GB shape optimization of a 2D transonic airfoil and that of a linear compressor
cascade. The method is also applied to the shape optimization of a 3D transonic
wing and, finally, that of a peripheral high-pressure turbine nozzle guide vane.

Keywords: Computational Fluid Dynamics, Graphics Processing Units, Continu-
ous Adjoint Method, Shape Optimization, Thermal and Hydraulic Turbomachines,
Wind Turbines, Shape Parameterization, NURBS, External and Internal Flows,
Evolutionary Algorithms.
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Chapter 1

Introduction

During the last decades, the exponential growth of computational power of com-
puters has led to the evolution of methods for the numerical solution of the partial
differential equations (PDEs) that govern a variety of physical and social systems,
ranging from structural and fluid mechanics, chemistry and nuclear physics, up
to the behavior of economic systems.

In particular, the field of fluid dynamics is of paramount importance in a va-
riety of engineering applications, such as weather forecast, automotive design,
energy production and aerospace engineering. Despite the ongoing theoretical
research on the PDEs governing fluid flows, namely the Navier-Stokes (NS) equa-
tions, the analytical solution and even its existence and uniqueness are yet to be
found/proven by mathematicians. As a result, methods of Computational Fluid
Dynamics (CFD) are the only alternative to experimental processes, providing a
cost effective tool that can successfully be used during the design phase of several
systems and their components.

The first computer programs modeling fluid flows around aerodynamic bodies
(airfoils and aircraft configurations) appeared in the late 1960s, solving poten-
tial flow equations. Then, in the 1970s and 1980s, the scientific community
proceeded with the development of solvers for the inviscid flow equations (Eu-
ler equations) [79, 77] and, then, the first codes for solving the full Navier-Stokes
equations appeared [54, 112, 193]. In the turn of the century, numerous commer-
cial codes for solving the Reynolds Averaged Navier-Stokes (RANS) and Unsteady
RANS (URANS) equations were already available and widely used by the industry
[72, 74, 171, 62, 177]. The next step in the evolution of CFD was the computa-
tional cost reduction, allowing for increasingly accurate models to be used (Large
Eddy Simulation-LES [170, 35], Direct Numerical Simulation-DNS [132] e.t.c. ) as
well as incorporating CFD in design optimization processes. For the latter, three
aspects are of major importance, namely a) high performance computing and evo-
lution of general purpose GPU computing (GPGPU) as well as the development of
efficient numerical schemes for the solution of the Navier-Stokes equations, b) de-
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2 1. Introduction

velopment of methods for numerical optimization and c) the evolution of methods
to parameterize and numerically treat geometries of aerodynamic bodies, mainly
through Computer Aided (Geometric) Design (CA(G)D) tools.

This thesis addresses all of these three developments and targets at creating
methods and computational tools that bring CFD-based design and optimization
closer to the industrial reality.

1.1 CFD Tools Running on GPUs

GPUs are parallel co-processors to Central Processing Units (CPUs), originally
used to perform computations needed to render graphics on a computer’s screen.
The chain of tasks that need to be performed in order to render an image on the
screen are known as the "graphics pipeline" [2]. The need for increasingly realistic
and detailed graphics led to the development of GPUs which offer more Floating
Point Operations Per Second (FLOPS) and higher memory bandwidth than CPUs.
This is achieved using different hardware architecture, comprising hundreds of
specialized cores that can operate in parallel and each one has fast access to its
local memory, thus obtaining higher theoretical memory bandwidth. Since all
cores process data in parallel, they execute the same instructions, on different
data though, stored in their local memory, following the Single Instruction Mul-
tiple Data (SIMD) architecture. Such an architecture fits perfectly the needs of
graphics processing, since the operations needed to compute each pixel’s color
on the screen can be carried out independently for each pixel [49, 133]. On the
other hand, multi-core CPUs follow the Multiple Instruction Multiple Data (MIMD)
architecture, since the instruction chain executed from one core may differ from
that executed by another.

Although the SIMD architecture is responsible for the great theoretical perfor-
mance of GPUs, it also posses serious constraints when it comes to carrying out
tasks other than those of the typical graphics pipeline. This is more profound
in the earlier generations of GPUs, which had limited amount of cache, limited
mechanisms for communication between processes running simultaneously and
limited amount of GPU global memory. Another major shortcoming is that pro-
gramming languages and Application Programming Interfaces (APIs) developed
for GPUs were either extremely low-level or oriented exclusively towards graphics
processing (e.g. OpenGL, Microsoft DirectX e.t.c.).

Despite these shortcomings, the superior hardware capabilities of GPUs at-
tracted a lot of attention from the scientific community, mainly for exploiting
them for general purpose GPU programming (GPUGPU). Numerical solution of
PDEs and CFD was one of the first fields of GPGPU to evolve. By achieving notice-
able speed-up with respect to (w.r.t. ) CPU implementations, GPU-enabled CFD
codes can have a great impact on reducing the analysis and design/optimization
wall clock time. In addition, this will render higher fidelity and computation-
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ally more demanding simulation methods (such as LES, or ultimately DNS) more
appealing for industrial use.

The first works related to CFD on GPUs where concerned with linear algebra
and solution of basic PDEs on single-block structured meshes [105, 156, 17]. In
[59] a GPU implementation of the multigrid technique is presented. The imple-
mentations of the algorithm of Stam [176] for computing visually realistic flow
fields on the GPU is presented in [65, 118]. One of the first works on a CFD
method producing results of useful accuracy for engineers is found in [63] where
a GPU capable solver for the Euler equations is presented. In this work, the Cg
shader language is used to program the parts of the solver executed on the GPU.
Two latter works [20, 42] used the extension of the Brook language, originally
for multi-streaming programming, for GPUs named BrookGPU. In both of these
works, BrookGPU was chosen instead of any shader language, since it provided
a moderate level of abstraction that facilitates general purpose programming. It
is jointly pointed out that major reconsideration and restructuring of an exist-
ing CFD code is needed in order to achieve high parallel speed-up by the GPU
implementation. In [20] the use of NVIDIA Compute Unified Device Architecture
(CUDA) is also discussed. It is shown that the capabilities offered by CUDA allow
a much more efficient solver in 3D compared to the BrookGPU implementation.

Another application of GPU programming on CFD can be found in Lattice
Boltzmann Methods (LBM) [116, 129]. For such methods, there is a large margin
for code acceleration, since the interaction necessary between data manipulated
by different cores is minimal and mostly local in nature.

The use of GPUs was later extended in CFD problems involving larger meshes
by employing more than one GPUs. In [179] a multi-GPU scheme is presented us-
ing POSIX threads for inter-GPU communication. In this approach different CPU
threads are used to control every GPU. The implementation presented in [20] was
also extended to account for multiple GPUs by the same group of authors in [21].
In addition, it is shown that one option to increase the overall memory bandwidth
is the extensive use of the shared memory of the GPU, which is normally used
for communication between different threads and is also characterized by low la-
tency. The use of multiple GPUs on the same computational node was greatly
facilitated by the introduction of Unified Memory Addressing (UVA) in version 4.0
of CUDA. With this version, a single CPU thread can control more than one GPU.

Achieving considerable speed-up by implementing unstructured CFD codes
on GPUs posed a whole new challenge to the scientific community. Especially
unstructured CFD codes with vertex storage are by far the most exigent case. The
reason is that in such a case neither the neighbours of a vertex are know a pri-
ori (as in structured meshes) nor the number of neighbours (as in unstructured
codes with cell storage). The Parallel CFD & Optimization unit of Lab. of Thermal
Turbomachines at National Technical University of Athens (PCOpt/LTT/NTUA),
which will be shortly referred to as PCOpt/LTT, tackled this problem in [85] by
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optimizing the use of available cache memory on the GPU and reconsidering the
memory access patterns. A speed-up of approximately 25× for Single Precision
Arithmetics (SPA) and 17.5× for Double Precision Arithmetics (DPA) is shown.
In the same work, a Mixed Precision Arithmetics (MPA) technique is introduced,
which maintains the accuracy of DPA but improves the achieved memory band-
width reaching a speed-up of 22.5× for 3D inviscid flows. The same group of
authors studied several flux computation schemes in [8]. It is there shown that
choosing the appropriate flux computation scheme for a certain application is a
compromise between parallel speed-up and GPU memory consumption. In [56],
an implementation of an unstructured CFD code using the OpenCL programming
environment is presented. The importance of the flux and gradient computation
schemes is again highlighted. The same group presents an improved version of
their implementation in [32], achieving a speed-up of up to 63× compared to the
same code on a single CPU core. However, it must be noted that this figure corre-
sponds to a SPA implementation. In addition, the scalability of the solver is also
studied when the MPI protocol is used for communication among the GPUs.

Concerning the available APIs for GPGPU, two different options have domi-
nated most current implementations. The first is the NVIDIA CUDA [31] and the
second the OpenCL API [73]. OpenCL can be used on heterogeneous platforms
consisting of multi-core CPUs, GPUs or even the latest Intel Phi CPU architec-
ture. On the other hand, CUDA is only available for GPU applications running on
NVIDIA graphics hardware. Since the computational tools developed in the scope
of this thesis make use of the CUDA API, a short description of some basic CUDA
terminology follows.

CUDA was officially released by NVIDIA in 2007. The name refers to both the
API and the computing platform itself. Three abstractions are at the core of the
CUDA programming model, namely a hierarchy of thread groups, shared memo-
ries and synchronization barriers. A CUDA thread is the fundamental processing
unit that executes a series of instructions. A series of instructions that need to be
executed in parallel by numerous threads are organized in a kernel. All threads
have read and write access to the global memory of the GPU through the L1 and
L2 cache memories. Threads are organized in blocks, which are in turn organized
in a grid of thread blocks. Threads of the same block can communicate with each
other through shared memory. Parts of global memory can be read with lower
memory latency by using texture fetches and the constant memory. A lot of de-
tails on the optimal use of each GPU memory space can be found in [182], which
the current thesis builds upon.

1.2 Methods for Aerodynamic Shape Optimization

Numerical optimization methods can be categorized based on several criteria,
such as computational cost, search strategy, ability to treat constraints or not and
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many more. The most rational categorization is related to the strategy that each
method uses to search for the optimal solution. According to this, optimization
methods are classified in stochastic and deterministic ones.

The class of stochastic optimization methods [125, 175] includes, among oth-
ers, simulated annealing [100], particle swarm optimization (PSO) [97], genetic
algorithms (GAs) [48, 33] and evolution strategies (ES) [14]. Evolutionary algo-
rithms (EAs) combine elements of both GAs and ES [124]. EAs, like GAs, are
inspired from the theory of evolution of species, proposed by Darwin [34], by
mimicking natural processes of parent selection, crossover (recombination) and
mutation.

Every candidate solution of the optimization problem is represented by an in-
dividual, whose genotype is the set of design variables (also referred to as the
design vector), while its phenotype is the objective function value(s). Individuals
are typically organized in generations. Parent selection, crossover and mutation
operators are applied in each generation, successively producing the best perform-
ing (best fit in evolutionary terms) individuals. EAs are advantageous compared to
other optimization methods (especially deterministic ones) w.r.t. several aspects.
To name a few of them, they can easily be applied to any optimization problem
without necessitating specific knowledge of the problem itself, can easily treat
constraints, their extension for multi-objective optimization (MOO) problems for
computing Pareto fronts of non-dominated solutions is possible [194] and, given
an adequate computational budget, they tend to converge to the global optimum
even for multi-modal objective functions [200].

However, as any population-based method, they have a major disadvantage,
which is the large number of candidate solutions to be generated and evaluated
in order to approach the optimum. This can be a significant impediment in case
the software needed to evaluate each candidate solution is associated with high
computational cost, as is the case for CFD-based aerodynamic optimization. To
remedy this, surrogate evaluation models (or metamodels) are employed. Artifi-
cial Neural Networks (ANN) or other regression models are used as metamodels,
trained on a set of evaluated candidate solutions. Evolutionary algorithms em-
ploying metamodels are referred to as Metamodel-Assisted EAs (MAEAs). The use
of metamodels can be characterised as either on-line or off-line, based on whether
their training takes place during the evolution or not. Another classification of the
metamodels used in MAEAs is based on the range of the design space in which
their prediction capability is acceptable [80, 22, 91]. Based on this criterion, they
are classified in global metamodels used in the entirety of the design space, or
local ones that are valid only in the neighborhood of the individual to be evaluated.

Off-line trained metamodels make use of a single (global) surrogate model
trained with patterns appropriately selected through a Design of Experiments
(DoE) [128, 19]. During the evolution, the off-line trained metamodel is used to
inexpensively evaluate each candidate solution. The "optimal" solution(s) is (are)
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re-evaluated on the problem specific model (PSM), such as the CFD solver in this
thesis. Depending on several criteria, the algorithm may terminate or resume the
search with a newly trained metamodel (capable of reproducing the re-evaluated
solutions).

MAEAs with on-line trained metamodels make combined use of the metamodel
and the PSM during the evolution. These tools are employed on the entire popu-
lation, either periodically or by switching from metamodels to the PSM depending
on several criteria. About two decades ago, the PCOpt/LTT has proposed a MAEA
based on the Low-Cost Pre-Evaluation (LCPE) as described in [92]. In LCPE, the
metamodel is used to pre-evaluate all individuals in a generation and only a few
promising ones are evaluated using the PSM.

Another challenging approach for reducing the computational cost of EAs is
the use of distributed and hierarchical optimization schemes [37, 93]. In dis-
tributed evolutionary algorithms (DEAs or DMAEAs) [84, 199], a number of sub-
populations evolve in semi-isolation and exchange information regularly. Accord-
ing to [83], Hierarchical Evolutionary Algorithms (HEAs or HMAEAs) are multilevel
schemes categorized in three classes, namely a) multilevel evaluation, where eval-
uation tools of different cost and/or fidelity are used in each level, b) multilevel
search, where different search methods (e.g. EA and gradient-based, GB, descent
methods) are used in each level, and c) multilevel parameterization, where dif-
ferent parameterizations are used and each level corresponds to a design space
of possibly different dimensionality [198]. Again, populations in each level evolve
separately and exchange members or genetic material regularly. The commu-
nication among the different levels may be one-way or bidirectional. All of the
above variations are available in the general purpose optimization platform EASY
(Evolutional Algorithms SYstem) [1] developed by PCOpt/LTT.

When EAs are used for optimization problems with a large number of design
variables, the number of evaluations needed to reach the optimal solution may
become prohibitively large. Even in the case of MAEAs, the large number of de-
sign variables still posses a problem, since the metamodel’s computation cost in-
creases non-proportionally and, most importantly, its prediction capability tends
to deteriorate (this is the so-called "curse of dimensionality" [13]). To remedy this
condition, unsupervised learning techniques have been proposed that selectively
reduce the number of design variables. Principal Component Analysis (PCA) [66]
has been used successfully in this context, introduced in the EASY platform in
[107] and extended later in [89, 87].

Deterministic methods constitute the second class of optimization methods,
among which the GB optimization methods are by far the dominant ones. For
this reason, in what follows only the latter will be considered. There is a plethora
of GB optimization methods ranging from line search [5, 46] to trust region ones
[173, 196]. Some of them need information for the objective function gradient (also
referred to as sensitivity derivatives, SDs), while others need additional informa-
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tion for the second derivative of the objective function w.r.t. the design variables
[18, 46, 26, 25]. GB and, in general, deterministic optimization methods are
significantly more computationally efficient compared to stochastic optimization
ones [47], since they guarantee that any additional computational effort leads to
solution that better approximates the local or global optimum of the problem. A
common disadvantage of such methods is that they are easily trapped in local op-
tima (especially in complex optimization problems with high-modality). Especially
for line search methods, the convergence rate is greatly affected by the choice of
the step-size used to march the solution along the computed objective function
gradient direction. An extensive presentation of GB optimization methods can be
found in [131].

The most important aspect of GB optimization methods is the capability and
cost of computing the objective function gradient. This is more pronounced in
problems where the objective function and/or its gradient cannot be computed
analytically, as is the case in aerodynamic shape optimization. The common
workaround is to employ methods that numerically compute the necessary gra-
dient [145]. The simpler is the Finite Difference (FD) method. In FD, each design
variable bi, i = 1, . . . , N undergoes positive and negative perturbations by a small
quantity εFD. The numerical tool that computes the objective function F (i.e. a
CFD solver for aerodynamic optimization problems) is, then, used to compute F
for each perturbed configuration and the gradient components δF

δbi
are computed

by the quotient

δF

δbi
=
F (b1, b2, . . . , bi + εFD, . . . , bN)− F (b1, b2, . . . , bi − εFD, . . . , bN)

2 εFD

The above equation, approximates the gradient with second-order accuracy
w.r.t. to the selected perturbation size εFD. It is obvious that the computation of
all the gradient components requires 2N calls to the PSM (i.e. the CFD solver).
Even for 1st order accurate computation of the gradient, the cost is half but still
proportional to N . Moreover, the gradient accuracy is strongly dependent on the
choice to the parameter εFD. Large values result in low accuracy predictions of
the gradient, while very small values may lead to numerical errors due to the
denominator approaching zero. An alternative to FD is the use of the Complex
Variable Method [3, 122, 98], by which the dependency on the value of εFD is
circumvented, but the cost of computing the objective function gradient is still
proportional to N . Direct Differentiation (DD), in which the PSM is differenti-
ated w.r.t. each design variable is another commonly used method [167, 40, 12].
However, this still has a computational cost which is proportional to N , for the
gradient.

Since industrial scale applications typically call for millions, or even tens of
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millions, of CFD mesh nodes and a large number of design variables are involved
in the optimization, the dependency of the cost of computing δF

δbi
onN may render a

GB method prohibitively expensive. The most viable alternative that has attracted
a lot of academic and industrial interest in the last three decades, is the adjoint
method. The optimization problem can be viewed as a constrained one, where
a value-set of the design variables b∗i is sought that minimizes (or maximizes)
F subject to the constraint of satisfying the state equations (the flow equations,
in case of aerodynamic optimization) denoted as Rn = 0. A dual problem can
be formulated by introducing the adjoint (or dual or co-state) variables Ψ into
the Lagrangian function Faug = F + ΨnRn. Differentiation of Faug w.r.t. bi and
elimination of derivatives of flow quantities w.r.t. bi yields a set of adjoint (or co-
state) equations. The cost of solving these equations is about the cost of a single
run of the PSM, effectively making the cost of computing the objective function
gradient independent of N . The adjoint method was first introduced by Lions
in 1971 [117], though it was not until 1984 that Pironneau applied the adjoint
methods in aerodynamics, for potential flow problems [150]. Later, Jameson
mathematically developed [76] and applied [153, 78] the adjoint method for flows
governed by the compressible Euler equations. From that point on, the field of
adjoint methods for CFD-based optimization flourished, with the introduction of
different methods to develop the adjoint equations and different expressions to
compute the SDs.

Adjoint methods for CFD are categorized in two main approaches, depending
on whether the flow equations are first discretized and then differentiated (discrete
adjoint) or vice-versa (continuous adjoint).

Discrete adjoint methods are further distinguished by the approach chosen to
differentiate the discretized system of flow equations. The discretized residuals
of the flow equations can be differentiated "by hand" or by using code transfor-
mation tools and/or operator overloading. The latter approach is widely known
as Algorithmic Differentiation (AD) [61], and there are several tools available for
transforming a code that computes the flow residuals and solves the flow equa-
tions into one that solves the adjoint ones, such as TAPENADE [172], ADIFOR
[123], ADOL-C [191] to name a few. Since discrete adjoint is not the focus of this
thesis, an extensive description and literature review of related research is omit-
ted. However, it is worth noting the great advantage of discrete adjoint methods of
computing δF

δbi
with extreme accuracy and maintaining the convergence rate of the

flow equations [55]. The main drawback of "hand-differentiated" discrete adjoint
methods is the large investment in code development, while for the AD approach,
the memory consumption for the solution of the adjoint equations is typically 3-5
times that of solving the flow equations [38].

In the continuous adjoint approach, the adjoint equations, resulting by dif-
ferentiating the flow governing PDEs, are similar to the flow PDEs themselves
(though linear) and, consequently, similar techniques can be used for their nu-
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merical solution. However, the expressions arising for the computation of δF
δbi

are
not unique. One option is to differentiate Faug by employing the Leibniz rule and
obtain expressions for δF

δbi
solely on the boundaries of the CFD domain, neglecting

at the same time boundary terms containing the residuals of the flow equations
(referred to as the severed Surface Integral, severed-SI, approach) [137], while an
alternative leads to expressions that involve also field integrals on the CFD do-
main (Field Integral, FI, approach) [140]. An extensive study of the impact that
the choice between the SI and FI approach has on the accuracy of the computed
gradient is found in [95] and the concept of the adjoint grid displacement is in-
troduced to bridge the gap between the two methods. There, the inability of the
severed-SI approach to consistently match the accuracy of the FD method (used
as reference) and the strong dependency of the accuracy on the grid density and
quality is underlined. Thus, in terms of accuracy the FI approach proved to be
more reliable, accompanied, however, by more complex expressions for the objec-
tive function gradient. Incorporating the adjoint grid displacement equations led
to the introduction of the Enhanced-Surface Integral (E-SI) approach [96], result-
ing in integrals expressed only along the boundaries of the CFD domains, while
matching at the same time the accuracy of the FI approach. Depending on the
parameterization method used, the E-SI approach (that involves the solution of
an additional adjoint equation) may prove more computationally expensive com-
pared to the FI one. Thus, in most applications presented in this thesis, the FI
approach will be employed.

Another aspect of the continuous adjoint approach that has been shown to
have a significant impact on the accuracy of the computed objective function gra-
dient, is the differentiation of the turbulence model (if any) used together with the
flow equations. Early developments of the continuous adjoint method followed
the "frozen turbulence" assumption, where variations in the eddy viscosity are
neglected [139, 9]. In [202] by PCOpt/LTT, this assumption is overcome for the
first time by differentiating the Low-Reynolds Spalart-Allmaras turbulence model.
Later in [203] by the same group, the High-Reynolds k-ε turbulence model was
differentiated introducing the notion of adjoint wall functions. Both these de-
velopments were proven to improve the accuracy of the computed gradient. A
series of works by PCOpt/LTT on the continuous adjoint to different turbulence
models followed [142, 94]. In [23], the continuous adjoint approach to the Spalart-
Allmaras model for compressible flows was presented. This is the first work on
continuous adjoint to turbulence models from a group other than PCOpt/LTT.
In this work, variations of the distance from the wall were also taken into ac-
count by incorporating the Eikonal equation in the adjoint formulation, avoiding
the "frozen distance" assumption. The effects of the "frozen distance" assumption
and a systematic approach to circumvent them are also studied in [141]. The
aforementioned considerations are taken into account in the continuous adjoint
development presented in this thesis.



10 1. Introduction

Even though it not among the interests of the current thesis, it is worth noting
that an active field of research on adjoint methods for CFD is the development of
adjoint methods for unsteady flows. The major obstacle when dealing with un-
steady flows is that the adjoint equations march backwards in time, demanding
either an excessive amount of data storage for the flow field instants or, an exces-
sive amount of flow field re-computations. Techniques of flow field reconstruction
and data compression such as Singular Value Decomposition (SVD), Proper Or-
thogonal Decomposition (POD) and many other have been employed [195] and are
currently under development [159, 190] for overcoming this problem.

Hybrid optimization methods combining stochastic and deterministic meth-
ods also exist [50] and have been employed for aerodynamic shape optimization.
In some approaches, GB methods are employed to improve the resulting opti-
mal solution(s) of an EA-based optimization [99]. This is usually referred to as
post-hybridization [169]. In other works, EAs are combined with local search al-
gorithms employed during the evolution, to yield the class of memetic algorithms
(MAs) [130, 166]. An open issue exists when using hybrid algorithms for MOO
problems. This arises from the need to either combine the different optimization
objectives in a single function that the GB method can treat [83, 103] or split the
GB problem in as many sub-problems as the number of objectives and optimize
for each objective with the rest acting as constraints [99]. A different approach
making use of a PCA-assisted MAEA with the steepest-descent method assisted by
the continuous adjoint is presented in [90]. There, the PCA technique is applied
in the objective space in order to combine the optimization objectives into a single
function.

1.3 Parameterization Techniques for Aerodynamic Shape Op-

timization

A component of paramount importance for aerodynamic shape optimization is
the shape parameterization technique used. This is responsible for translating
the set of design variables in an aerodynamic shape. Since the objective function
value for each candidate shape is to be evaluated by means of CFD, the shape is
ultimately defined by the set of grid nodes on the boundary of the CFD domain.
An extension of the notion of parameterization to include also the internal nodes
of a CFD volume mesh is also valid.

For a given number of design variables, the shape parameterization method
greatly affects the shapes that arise throughout the optimization and, conse-
quently, affects the convergence rate of the whole process as well as the quality
of the optimal solution. A poor parameterization method may lack the ability to
produce a shape with optimal performance or may lead to unreasonably complex
shapes.

Another important aspect associated with the choice of a parameterization
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method is the ease of computing the so-called geometric sensitivities. These are
the derivatives of the CFD nodal coordinates, describing the shape to be optimized,
w.r.t. the values of the design variables. In case of GB optimization methods, this
information is necessary. Their accuracy and the cost for obtaining them may
greatly affect the optimization convergence rate and the overall optimization cost.

A survey of shape parameterization methods for CFD and Computational
Structural Mechanics (CSM) based optimization is presented in [158]. There, pa-
rameterization techniques are categorized in eight different approaches, namely
the a) basis vector b) domain element c) PDE-based d) discrete e) polynomial
and Spline f) CAD-based g) analytical and h) Free Form Deformation (FFD) ap-
proaches.

For a description of the basis vector, PDE-based and analytical approaches
the reader is referred to [146, 114], [15] and [68, 41, 64], respectively. In short,
the basis vector approach uses proposed shapes (and design vectors) to create a
vector basis and, then, each subsequent shape is obtained from the baseline by
superimposing a linear combination of the proposed designs. The PDE-based ap-
proach approximates the surface to be parameterized as an iso-surface obtained
from the solution of a particular PDE. Finally, the analytical approach employs
analytical functions that are superimposed on the baseline shape in order to mod-
ify it. Among these three methods, the analytical approach has recently received
a lot of attention since it is used for modeling manufacturing imperfections for
optimization under uncertainty [106]. The reason is that the analytical method
can be tuned to create shapes with bumps following predefined probability density
functions (obtained by statistical analysis of the manufacturing process results).

The discrete approach is the simplest one since CFD boundary grid nodes can
move independently. The complexity of the shape that can be achieved is only
limited by the number of CFD mesh nodes on the surface of the object whose
shape is to be optimized. Nonetheless, the number of design variables may be
extremely large (a major disadvantage for use with population based optimization
methods) and the manufacturability of the final shape is questionable. In addition,
the resulting CFD surface mesh typically requires additional smoothing before
proceeding to the volume mesh deformation.

Polynomial and Spline approaches are the most widely used methods to date,
especially for optimization of 2D aerodynamic shapes, such as airfoils, ducts
and turbomachinery blade sections. They are mostly based on Bézieror B-Spline
polynomials [147, 45], with Non-Uniform Rational B-Splines (NURBS) [149] being
the most general form among them. They can provide different levels of shape
complexity, based on the polynomial degree used and/or the number of control
points, with direct control over the shape smoothness. In addition, geometric
sensitivities can be obtained directly by differentiating the underlying polynomial
or rational formula.

Free-Form Deformation is an approach inspired by the field of interactive de-
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sign and soft object animation. FFD techniques can rely on physically based
modeling by operations such as translation, scaling, rotation e.t.c. [10] and have
been, additionally, extended to apply these operations on the whole space in which
the object to be manipulated is embedded [164]. Such an approach is based on
trivariate Béziervolumes which can be either linear in each parametric coordi-
nate or of higher degree [30], or on NURBS with multiple blocks to handle more
complex shapes. In addition, several FFD techniques have been developed that
allow the direct manipulation of the predefined points on the shape to be morphed
instead of manipulating the control points [70].

Domain element methods [152] use a set of points forming a polygon (polyhe-
dron in 3D) to control the shape to be deformed. Points’ displacement is interpo-
lated in the interior of the domain defined by the control polygon by an inverse
mapping. The harmonic coordinates method [81] is an example of this class.

Finally, CAD-based approaches provide the best compromise between com-
plexity and manufacturability but, in the general case, are difficult to incorporate
in a fully automated optimization loop. However, for a certain area of applications,
specialized CAD tools can be developed and are, in fact routinely used in auto-
matic optimization loops. An example is the area of aircraft wing design, where
CAD models based on basic operations such as airfoil positioning and skinning,
can be used. Another interesting field of application is the design/optimization
of turbomachinery components. Several parametric turbomachinery blade design
tools have been developed [101, 75, 168, 60]. Most of them use a bottom-up
process starting from the meridional flow path definition, defining airfoil sections
at several positions along the blade span and, then, creating the blade surface
through skinning [126, 155]. Depending on the choice of design variables for each
of these steps, simple up to very complicated blade shapes can be generated.

In the current thesis, several parameterization methods are developed lying on
the CAD-based, Spline or FFD approach. The advantages and disadvantages of
each approach in combination with the optimization method used are thoroughly
discussed throughout the rest of the thesis.

1.4 Thesis Outline

This PhD thesis emphasizes, without though being restricted to, turbomachinery
shape optimization applications. In the chapters of this thesis, the development
of an efficient GPU-enabled CFD software, the continuous adjoint method and
different shape parameterization techniques are presented.

Chapter 2 is concerned with the developments-extensions made on the flow
solver PUMA (Parallel Unstructured Adjoint Multi-row) of PCOpt/LTT. PUMA is a
GPU-enabled flow and adjoint solver for compressible and incompressible flows, in
external and internal aerodynamics as well as flows inside thermal and hydraulic
turbomachines [104, 108, 6, 197, 182]. The URANS equations are presented, to-
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gether with the most commonly used boundary conditions. Then, the discretiza-
tion and numerical solution of the flow equations is presented. The development
of the artificial compressibility (AC) method for solving incompressible flows with
the same software, is another focal point of Chapter 2. Attention is also drawn on
the GPU implementation of PUMA. The programming and numerical techniques
that render PUMA approximately 40× faster than a CPU solver are thoroughly
described. At the end of Chapter 2 a series of CFD benchmark cases, used for
the purpose of validation and verification, are presented. Among them, the flow
field around an Horizontal Axis Wind Turbine (HAWT) runner blade is computed
and results are compared to these obtained by other CFD codes and experimental
data.

In Chapter 3, the continuous adjoint method is presented. Both the SI and
FI approaches are developed for compressible flows, while the FI approach is also
developed for incompressible flows, where the adjoint to the AC method is intro-
duced. The adjoint to the Spalart-Allmaras (SA) turbulence model is presented for
incompressible and compressible flows. The derivation of the adjoint boundary
conditions on different kinds of CFD boundaries is thoroughly examined.

In Chapter 4 the fundamental concepts of shape parameterization are intro-
duced, together with numerical tools typically used for this purpose. NURBS
curves and surfaces are the focus, since they are extensively used in the shape
parameterization tools presented in the thesis.

Chapter 5 is concerned with the development of the software GMTurbo (Geome-
try Modeler for Turbomachines). The conformal mapping of surfaces of revolution
is presented, which is used extensively in order to treat all types of turboma-
chinery geometries, namely axial, mixed flow and radial blade rows. Then, the
methodology followed to construct turbomachinery blades starting from definition
of metal angles, camber surface construction and proceeding with superimposing
thickness is presented. The chapter ends up with the ensemble of parameters that
define the blade geometry and can be used as design variables in the optimization.

An FFD shape parameterization approach based on volumetric NURBS is pre-
sented in Chapter 6. This approach is also used, in order to undertake the
parameterization and, consequently, the deformation of the aerodynamic shape
and the CFD mesh around it in a monolithic manner. The difficulty of applying
such a parameterization approach to the optimization of turbomachinery compo-
nents, due to axisymmetry and the presence of periodic boundaries, is identified
and a novel extension is, then, introduced to overcome this shortcoming. The
developed method is differentiated in order to by coupled with the FI continuous
adjoint approach for the optimization of wings and turbomachinery blades.

Chapter 7 is concerned with the optimization of single- and multi-row turbo-
machinery configurations using EAs. The GMTurbo design and parameterization
tool, presented in Chapter 5, is used to generate candidate solutions throughout
the optimization. A propeller type water turbine consisting of the guide vanes (GV)
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and runner is optimized for maximum efficiency. The optimization is carried out
in three steps, namely a) optimizing the GV geometry coupled with the baseline
runner, b) optimizing the runner geometry with baseline GV one and c) concurrent
optimization with combined modification of the GV and runner.

In Chapter 8 applications of gradient-based optimization by means of the con-
tinuous adjoint method developed in Chapter 3 are presented. The volumetric
NURBS method developed in Chapter 6 is used to parameterize and control the
aerodynamic shape and the CFD mesh around it. A transonic airfoil is optimized
separately for minimum drag and maximum lift. Then, a 2D linear compressor
cascade is optimized for minimum total pressure losses between the inlet and
outlet. Concerning optimization of 3D geometries, the drag minimization of a
transonic wing and, finally, the minimization of the mass averaged total pres-
sure losses through a high-pressure turbine nozzle guide vane (HPT-NGV) are
presented.

The conclusions of the thesis are drawn in Chapter 9 together with some ideas
and recommendations for future developments associated with the current work.

Finally, supplementary tools supporting mostly the EA-based optimization
loops presented in Chapter 7 are presented in the Appendices.



Chapter 2

The Navier–Stokes Equations and Their
Numerical Solution

The main focus of this thesis is the aerodynamic optimization using gradient-
based techniques assisted by the continuous adjoint method. Before proceeding
to the development of the continuous adjoint method and other tools required
by the optimization workflow, the flow model (equations, discretization schemes,
numerical solution) used to evaluate the performance of each candidate solution
resulting during the optimization process is presented. The flow model consists of
the RANS equations (or URANS for unsteady problems) for either compressible or
incompressible flows and the Spalart–Allmaras turbulence model (to effect closure
in turbulent flows). Since, a large number of the problems to be dealt with in
this thesis are concerned with turbomachinery applications and rotating blade
rows, the equations are expressed w.r.t. a (relative) non–inertial frame of reference
rotating at a constant speed. The CFD solver together with its adjoint counterpart
(to be presented in Chapter 3) is called PUMA. Code development started about
two decades ago in the framework of a number of PhD theses of PCOpt/LTT
([197],[6],[182]) and, during the last years, it has been transferred to GPUs and
enriched with new features and capabilities. This PhD thesis relies exclusively
upon the GPU-enabled variant of PUMA.

In this chapter, the discretization of the governing flow equations is presented
followed by the numerical methods used to solve the discretized system of equa-
tions. Finally, issues arising from the implementation of the numerical solution
on GPUs are addressed along with GPU specific techniques to speed-up the pro-
cess of the numerical solution.

2.1 The URANS Equations for Compressible Flows

Let a coordinate system O(x1 x2 x3) which rotates at a constant rotation speed
ωm (m = 1, 2, 3), be defined. The Navier–Stokes equations for compressible flows

15
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are then expressed as

RMF
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In Eq. 2.1.1, Un stands for the conservative flow variables namely Un =[
ρ ρvA1 ρvA2 ρvA3 ρE

]
, with ρ being the fluid density, vAm (m = 1, 2, 3) being the
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where p stands for the static pressure. In Eqs. 2.1.1-2.1.2 and the rest of the
thesis, the Einstein convention is employed according to which summation is
indicated by repeated indices in the same term. The relative velocity components
vRm are linked to the absolute ones vAm through the equation vAm = vRm + vFm, with
vFm = εm`kωk

(
xk − xCk

)
being the rotating/non–inertial frame velocity and xCk the

position vector of the center of rotation. Eqs. 2.1.2 are supplemented by the
following definitions:

� (k,m) component of the viscous stress tensor (τkm) for Newtonian fluid:

τkm =
µ+ µt

Re0

(
∂vAk
∂xm

+
∂vAm
∂xk
− 2

3
δkm

∂vA`
∂x`

)
(2.1.3)

� Reynolds number (Re0) arising when the equations are solved in their non-
dimensional form. Specifically, let the velocity field be normalized by a
reference velocity (vref), the density by a reference density (ρref), all lengths
by a reference length (lref) and the molecular viscosity by a reference viscosity
(µref). Then,

Re0 =
ρref vref lref

µref

This must not be confused with the actual Reynolds number Re = ρvl
µ

.
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� k component of the heat flux (qk):

qk =
Cp

Re0

(
µ

Pr
+

µt
Prt

)
∂T

∂xk
(2.1.4)

where Cp is the specific heat under constant pressure.

� Static temperature (T). Since the fluid is assumed to be a perfect gas, T is
related to pressure and density through the equation of state:

p = ρRgT,with Rg being the specific gas constant (2.1.5)

� Prandtl number (Pr) and turbulent Prandtl number (Prt)

� Specific heat ratio (γ):

γ =
Cp
Cv

(2.1.6)

where Cv is the specific heat under constant volume.

� Total or stagnation enthalpy (ht):

ht = E +
p

ρ
(2.1.7)

For a perfect gas, the total enthalpy is linked to pressure (p), density (ρ) and
velocity (vA` , ` = 1, . . . , 3) through

ht =
γp

ρ (γ − 1)
+

1

2
vA` v

A
` (2.1.8)

� Absolute Mach number (M ):

M =

√
vA` v

A
`

c
(2.1.9)

where c is the local speed of sound, which for perfect gases is given as
c =

√
γRgT .

� Total or stagnation temperature (Tt):

Tt = T +
vA` v

A
`

2Cp
(2.1.10)
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� Total or stagnation pressure for perfect gases (pt):

pt = p

(
1 +

γ − 1

2
M2

) γ
γ−1

(2.1.11)

� Dynamic viscosity (µ) related to temperature through Sutherland’s formula
[178]

µ = µ0
T0 + Su

T + Su

(
T

T0

) 3
2

(2.1.12)

where Su is an effective temperature value usually called Sutherland temper-
ature, T0, µ0 are the reference temperature and reference dynamic viscosity,
respectively and µ is linked to the kinematic viscosity ν through µ = ρν. The
Sutherland’s law is used optionally. For air, µ0 = 1.716× 10−5 kg m−1 s−1,
T0 = 273.15 K and Su = 110.4 K.

Turbulent viscosity µt is computed by employing the one-equation Spalart–
Allmaras turbulence model [174]. According to this model, an additional PDE is
solved for the turbulence field ν̃, namely

RSA =
∂ (ρν̃)

∂t
SAt

+
∂
(
ρν̃vRk

)
∂xk
SAc

− ρ

Re0 σ

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
SAd

− ρcb1 (1− ft2) S̃ν̃ +
ρ

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃
M

)2

SAs

(2.1.13)

where M stands for the distance of each point within the flow domain from the
closest wall boundary. Solving Eq. 2.1.13, µt is computed from ν̃ by µt = ρν̃fv1.
Eq. 2.1.13 is supplemented by the following relations and constants [174]:

χ =
ν̃

ν
, fv1 =

χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1

, S =

√
εk`mεkqr

∂vAm
∂x`

∂vAr
∂xq

,

S̃ = S +
ν̃fv2

Re0 κ2 M2
, fw = g

(
1 + c6

w3

g6 + c6
w3

) 1
6

, g = r + cw2

(
r6 − r

)
,

r = min

(
10,

ν̃

Re0 S̃κ2 M2

)
, µ̃ = ρν̃, ft2 = ct3e

−ct4χ
2

, (2.1.14)

cv1 = 7.1, cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1
κ2

+
1 + cb2
σ

,
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cw2 = 0.3, cw3 = 2.0, σ =
2

3
, κ = 0.41, ct3 = 1.2, ct4 = 0.5

2.2 Boundary Conditions for Compressible Flows

In order to fully define the flow problem, Eqs. 2.1.1 and 2.1.13 must be ac-
companied by a set of appropriate boundary conditions. These conditions vary,
depending on the type of each physical boundary and whether they are strongly
or weakly imposed. For example, on the symmetry boundary, the symmetry con-
ditions are imposed, i.e. ∂Um

∂xk
nsym
k = 0, (m = 1, 2, 3, 4, 5) and nsym

m , (m = 1, 2, 3) the
components of the normal to the symmetry plane.

Along pairs of periodic boundaries, appropriate periodic conditions are im-
posed. For linear cascades, two points are assumed to be periodically paired if
they have two of their coordinates equal and differ on the third by the cascade
pitch. In such cases all flow variables (scalar and vector ones) must be equal
between periodically paired points. In case of peripheral rows, two points are
periodically paired if their projections on the meridional plane coincide and their
circumferential position differs by the blade row pitch. Between paired points all
scalar quantities are the same, while every vector and tensor quantity (e.g. velocity
or spatial derivatives) is rotated by the row pitch.

Wall, inlet and outlet boundaries are analyzed separately in the following sub-
sections. Farfield boundaries are treated as a combination of inlet and outlet
boundary, depending on the local velocity field. If flow enters the domain the
boundary is locally treated as inlet, otherwise it is treated as outlet.

2.2.1 Wall boundary conditions

For slip walls, the no–penetration condition applies, namely the normal compo-
nent of the relative to the wall velocity is set to zero. Let the velocity of the wall
boundary be denoted by vWk , (k = 1, 2, 3) (i.e. vWk = 0 for stationary walls and
non-zero otherwise), then the no–penetration condition is expressed as

vAk nk = vWk nk (2.2.1.1)

For no–slip wall boundaries, the absolute velocity is set equal to the wall
boundary velocity (Eq. 2.2.1.2 ). In addition, the turbulence variable ν̃ is set
to zero in case the turbulent boundary layer is resolved down to the wall (Low-
Reynolds approach, Eq. 2.2.1.3 ).
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vAk = vWk (2.2.1.2)
ν̃ = 0 (2.2.1.3)

In case the mesh density is not adequate for fully resolving the boundary layer
down to the wall, the wall function technique is employed as described by [27].

Considering the thermal conditions for the wall boundaries, depending on the
case, these can be a) adiabatic, b) constant temperature (TW ) or c) constant heat
flux (qW ), which can respectively be written as

qknk = 0

T = TW

qknk = qW
(2.2.1.4)

2.2.2 Inlet Boundary Conditions

For subsonic inlet boundaries, the total pressure (pINt ), total temperature (T INt ),
and inlet absolute velocity direction are specified. The inlet velocity direction is
given in terms of two angles, namely θIN1 and θIN2 . For the sake of simplicity, let
x3 be the axial direction (i.e. the axis of rotation for peripheral turbomachinery
cases). For linear cascade cases, the inlet velocity components vAk , (k = 1, 2, 3) are
computed as

vA1 = |vA` |sin θ1

vA2 = |vA` |cos θ1 sin θ2

vA3 = |vA` |cos θ1 cos θ2

(2.2.2.1)

Since, within PUMA, the flow equations are always solved w.r.t. the Cartesian
coordinate system, for peripheral rows Eqs. 2.2.2.1 provide the means to compute
the absolute velocity components in cylindrical coordinates (r, θ, z ). Specifically,
vA1 is replaced by the radial velocity component (vAr ), vA2 by the peripheral (vAθ ) and
vA3 by the axial one (vAz ). Then, the Cartesian velocity components are computed
by applying an inverse transformation.

Thus, for the inlet boundaries, four quantities are specified and a fifth one has
to be extrapolated from the flow domain. The usual options are to extrapolate
a) the static pressure, b) the absolute velocity magnitude or c) the local Mach
number. Then, Eqs. 2.1.9-2.1.11 are used to compute all the necessary flow
quantities. For supersonic inlet conditions, all five necessary flow quantities are
set.
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Concerning turbulence, the inlet turbulence level is prescribed either by setting
the inlet turbulence variable ν̃IN or by setting the viscosity ratio

(
νt
ν

)IN .

2.2.3 Outlet Boundary Conditions

To maintain a well–posed boundary value problem, no flow quantity is specified
at the outlet in case of supersonic flow conditions, or a single flow quantity is
specified for subsonic flow conditions. In the latter case, the quantity to be set
can be a) the outlet static pressure distribution, b) the outlet mean static pressure
or c) the outlet mass flow rate.

For the last two options, since only the value of an integral quantity over the
whole outlet boundary is set, values for pressure and normal to the outlet velocity,
respectively, are computed iteratively by uniformly correcting the ones extrapo-
lated from the fluid domain, so as to achieve the prescribed integral quantity. The
remaining four flow quantities are extrapolated from the fluid domain. For the
turbulence model, the outlet is assumed to be convective and a zero Neumann
boundary condition is applied (ν̃ is extrapolated from the fluid domain).

2.3 Discretization of the Governing Equations

Eqs. 2.1.1 and 2.1.13 form a system of PDEs of mixed type in space and time.
The temporal term ∂Un

∂t
together with the convection terms ∂f inv

nk

∂xk
correspond to

a hyperbolic system. However, the diffusive terms ∂fvis
nk

∂xk
correspond to a system

of elliptic PDEs. Hence, the character of the system of equations depends on
the term that dominates the phenomenon and is associated with the Reynolds
number. Since, in most practical applications, this thesis is dealing with, the flow
is turbulent and, thus, associated with high Reynolds number, the hyperbolic
character dominates over the elliptic one. Consequently, Eqs. 2.1.1, 2.1.13 are
solved using a time–marching technique appropriate for the solution of systems
of hyperbolic PDEs.

According to the time–marching technique, when a steady state solution is
sought, the time derivative (which would otherwise exist in the unsteady equation)
is replaced by a pseudo-time derivative. In order to distinguish between real and
pseudo-time, the latter is denoted by τ . At each pseudo–time step τj, the system
is linearized, discretized and solved for the correction of the field variables for the
next pseudo–time step (U j+1

n −U j
n). Upon convergence of the system, the pseudo-

time derivative vanishes and the original system of the steady-state equations is
retrieved.

In case of time-dependent problems, the time-derivative remains in the initial
equations and the pseudo–time derivative is added on top of that. The system of



22 2. The Navier–Stokes Equations and Their Numerical Solution

Figure 2.1: A vertex–centered finite volume formed around node P . A boundary node
was chosen, so as to cover also the boundary treatment. The normal vectors (nk) on
the finite volume interface are also shown.

equations is linearized and then marched in time, with intermediate pseudo-time
steps. This corresponds to the so–called dual time stepping approach. In what
follows, the equations are written without the pseudo–time derivative. This term
will be added after the equations have been discretized.

For the spatial discretization of Eqs. 2.1.1 and 2.1.13 the vertex–centered
variant of the finite volume technique in used on unstructured meshes, consisting
of tetrahedra, pyramids, prisms and hexahedra. A finite volume is formed around
each mesh node P at real-time step i by connecting the edges midpoints, face
centers and element barycenters of the edges, faces and elements attached to this
node, respectively. An example of the finite volume formed around node P is
shown in Fig. 2.1, for a 2D case. A figure for the 3D case would be very confusing
so it is omitted.

For details on the formation of the finite volume and the computation of the
geometric quantities, the reader is referred to [197],[6]. It must be noted that the
mesh may undergo rigid body motion or a more general deformation in time and
so do the finite volumes the discretization is based upon.

2.3.1 Discretization of the Inviscid Terms

Applying the Green–Gauss theorem to the integral of the inviscid terms, for the
finite volume of node P, one obtains
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∫
V
ti+1
P

∂f inv
nk

∂xk
dV =

∫
∂V

ti+1
P

f inv
nk n̂kd (∂V ) (2.3.1.1)

where ∂V
ti+1

P is the boundary of the finite volume formed around node P at
real–time step ti+1 and n̂k (t) , (k = 1, 2, 3) the corresponding unit normal (pointing
outwards) components. This is discretized as∫

∂V
ti+1
P

f inv
nk n̂kd (∂V ) '

∑
∀Q∈N (P )

Φinv,PQ
n +

∑
∀
ffl
∈B(P )

Φinv,
ffl
∈VP

n (2.3.1.2)

where Q ∈ N (P ) is a node neighbouring P ,
ffl
∈ B (P ) is a boundary face (if any)

emanating from node P . In case of mesh elements other than tetrahedra, only
the nodes connected to P through a mesh edge are assumed as neighbours. For
clarity, these are sometimes referred to as direct neighbours while other nodes
of the same element are called virtual or indirect neighbours of P . Φinv,PQ

n is
computed using Roe’s approximate Riemann solver [154] as

Φinv,PQ
n =

1

2

(
f inv,P
nk + f inv,Q

nk

)
nk −

1

2

∣∣∣ÃPQnmknk∣∣∣ (UR
m − UL

m

)
(2.3.1.3)

where Anmk stands for the flux Jacobian ∂f inv
nk

∂Um
, and nk is the normal to the fi-

nite volume interface between nodes P and Q at time ti+1, with magnitude equal
with the area of the interface (see Fig. 2.1). Formally, the normal component
should be denoted as n

PQ,ti+1

k , but the superscript is omitted for the sake of
brevity.

∣∣∣ÃPQnmknk∣∣∣ = Pn` |Λ`r|P−1
rm where |Λ| is the diagonal matrix containing

the absolute eigenvalues of Anmknk computed using the Roe–averaged quantities
between the left (L) and right (R) states. The flow variables at L and R are com-
puted with extrapolation from P and Q using appropriate limiting functions to
enforce monotonicity. For more details on these functions the reader is referred
to [188, 11, 189]. Note that, on the first term of Eq. 2.3.1.3 instead of the L and R
states, the nodal values are used. This, maintains the second–order accuracy of
the scheme according to [4] and facilitates the use of a similar scheme for solving
the continuous adjoint equations, which will be discussed elsewhere.

The boundary terms, Φ
inv,
ffl
∈VP

n are computed differently for the wall and in-
let/outlet boundaries. For the wall boundaries,

ffl
∈ BW (P ),

Φinv,
ffl
∈VP

n = f
inv,
ffl
∈VP

nk nk (2.3.1.4)

where the flux f inv,
ffl
∈VP

nk is computed by Eq. 2.1.2 using the flow quantities at node
P and taking into account the appropriate slip wall conditions, as described in
section 2.2.1. In Eq. 2.3.1.4, nk are the components of the normal vector on the
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boundary
ffl

, whose magnitude is equal to the area of
ffl

contained in the finite
volume formed around node P .

On the other hand, for the inlet/outlet boundaries, namely
ffl
∈ BI (P ) ∪

BO (P ), Eq. 2.3.1.3 is used, where nk is replaced by n
ffl
∈V

ti+1
P

k and, node Q is a halo
(fake) node. The flow variables at node Q are set using the boundary conditions
as described in sections 2.2.2 and 2.2.3.

Both Eqs. 2.3.1.3 and 2.3.1.4, contain terms of the form vRk nk along the finite
volume boundaries. These can be computed as vRk nk = vAk nk − vFk nk. Term vFk nk
must be computed so as to satisfy the Geometric Conservation Law (GCL) [115].
This ensures, that no unexpected sources or sinks of the conserved quantities are
created during the mesh/frame movement. The GCL is stated as

d

dt

∫
V
ti+1
P

dV =

∫
∂V

ti+1
P

vGk n̂kd (∂V ) (2.3.1.5)

where vGk is the velocity of the grid. In aeroelastic simulations the finite volume
V
ti+1

P is computed using a 2nd order backward difference formula (BDF2). When
solving the flow equations in a relative frame of reference with a non–deformable
grid, one may substitute vFk for vGk into Eq. 2.3.1.5. Taking into account that, in
such a case, the volume of a cell remains constant, Eq. 2.3.1.5 becomes

∫
∂V

ti+1
P

vFk n̂kd (∂V ) '
∑

∀Q∈N (P )

(
vF,PQk nPQk

)ti+1

+
∑

∀
ffl
∈B(P )

(
v
F,
ffl
∈VP

k n
ffl
∈VP
k

)ti+1

= 0 (2.3.1.6)

2.3.2 Discretization of the Viscous Terms

Applying the Green–Gauss theorem to the integral of the viscous terms one obtains∫
V
ti+1
P

∂f vis
nk

∂xk
dV =

∫
∂V

ti+1
P

f vis
nk n̂kd (∂V ) (2.3.2.1)

and, by discretization, one obtains∫
∂V

ti+1
P

f vis
nk n̂k '

∑
∀Q∈N (P )

Φvis,PQ
n +

∑
∀
ffl
∈B(P )

Φvis,
ffl
∈VP

n (2.3.2.2)

where Φvis,PQ
m+1 = τPQmk n

PQ,ti+1

k , (m = 1, 2, 3) is the momentum viscous numerical
flux crossing the finite volume interface between nodes P and Q, and Φvis,PQ

5 =
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vA`

(
τPQ`k + qPQk

)
n
PQ,ti+1

k the corresponding energy viscous numerical flux, with

τPQmk and qPQk being the stress tensor and the components of the heat flux, respec-
tively. Computing τPQmk and qPQk at the finite volume interface between P and Q
involves the computation of the velocity and temperature spatial derivatives there.
For any quantity φ, ∂φ

∂xm

∣∣∣
PQ

is computed using the scheme proposed in [192], that

corresponds to a 2nd order central difference scheme involving all neighbours,
namely

∂φ

∂xm

∣∣∣∣
PQ

=

(
∂φ

∂xm

)
PQ

−

( ∂φ∂x`
)
PQ

t` −
φQ − φP√(

xQ` − xP`
)(

xQ` − xP`
)
 tm (2.3.2.3)

where

tm =
xQm − xPm√(

xQ` − xP`
)(

xQ` − xP`
) (2.3.2.4)

and (
∂φ

∂xm

)
PQ

=
1

2

[(
∂φ

∂xm

)
P

+

(
∂φ

∂xm

)
Q

]

Along the boundaries, the viscous fluxes are computed as Φ
vis,
ffl
∈VP

m+1 = τPmkn
ffl
∈V

ti+1
P

k ,

(m = 1, 2, 3) for the momentum equations and Φ
vis,
ffl
∈VP

5 =
[(
τ`kv

A
`

)ffl∈VP + q
ffl
∈VP

k

]
n
ffl
∈V

ti+1
P

k

for the energy equation, by also taking into account the appropriate boundary
conditions defined in section 2.2.

2.3.3 Discretization of the Temporal Terms

Applying the Reynolds transport theorem on the integral of the temporal term of
Eq. 2.1.1 one obtains∫

V
ti+1
P

∂Un
∂t

dV =
d

dt

∫
V
ti+1
P

UndV −
∫

∂V
ti+1
P

Unv
G
k n̂kd (∂V ) (2.3.3.1)

The first integral on the right-hand-side (r.h.s.) of Eq. 2.3.3.1 is discretized using
a second–order accurate backward difference formula (BDF2), for constant time-



26 2. The Navier–Stokes Equations and Their Numerical Solution

step ∆t, as

d

dt

∫
V
ti+1
P

UndV ' 1

2∆t

(
3UP,ti+1

n V
ti+1

P − 4UP,ti
n V ti

P + UP,ti−1
n V

ti−1

P

)
(2.3.3.2)

The second integral is discretized as∫
∂V

ti+1
P

Unv
G
k n̂kd (∂V ) '

∑
∀Q∈N (P )

Φgrid,PQ
n +

∑
∀
ffl
∈B(P )

Φgrid,
ffl
∈VP

n (2.3.3.3)

with
Φgrid,PQ
n = UPQ

n

(
vGk nk

)PQ,ti+1 (2.3.3.4)

and
Φgrid,

ffl
∈VP

n = UP
n

(
vGk nk

)ffl∈VP ,ti+1 (2.3.3.5)

The grid velocities vGk are computed so as to satisfy the GCL, Eq. 2.3.1.5 .
Employing again a BDF2 scheme, this leads to the following constraint

∑
∀Q∈N (P )

[
vGk nk

]PQ,ti+1
+

∑
∀
ffl
∈B(P )

[
vGk nk

]ffl∈VP ,ti+1
=

1

2∆t

(
3V

ti+1

P − 4V ti
P + V

ti−1

P

)
(2.3.3.6)

which must be satisfied by the discretization scheme. Employing the same scheme
for the time-integration of the flow quantities as for computing the grid velocities
fulfills the GCL. Using a different discretization scheme between these terms may
potentially lead to violation of the GCL and harm the time accuracy of the simu-
lation.

2.3.4 Discretization of the Source Terms

The source value on a finite volume SPn is assumed to remain constant within the
finite volume and the source terms are discretized as∫

V
ti+1
P

SndV ' SPn V
ti+1

P (2.3.4.1)
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2.3.5 Discretization of the Turbulence Model Terms

Concerning the Spalart–Allmaras turbulence model, for the temporal, diffusion
and source terms the same discretization schemes are followed as for the mean
flow equations. However, the discretization of the convection term is different.
Applying the Green–Gauss theorem to this term leads to the following discretized
form

∫
V
ti+1
P

∂
(
ρν̃vRk

)
∂xk

dV =

∫
∂V

ti+1
P

µ̃vRk n̂kd (∂V ) =
∑

∀Q∈N (P )

µ̃PQ
(
vRk nk

)PQ,ti+1
+
∑

∀
ffl
∈B(P )

(
µ̃vRk

)P
n
ffl
∈V

ti+1
P

k

(2.3.5.1)
where an upwind scheme is used to compute (µ̃)PQ expressed as

µ̃PQ =

{
µ̃P , for

(
vRk nk

)PQ,ti+1 > 0

µ̃Q , for
(
vRk nk

)PQ,ti+1 < 0
(2.3.5.2)

2.4 Numerical Solution of the Discretized Equations

The unsteady residuals of the discretized equations can be expressed as

RGE,P
n =

∑
∀Q∈N (P )

(
ΦGE,conv
n − ΦGE,diff

n

)PQ,ti+1

+
∑

∀
ffl
∈B(P )

(
ΦGE,conv
n − ΦGE,diff

n

)ffl∈VP ,ti+1

+ SPn V
ti+1

P +
1

2∆t

(
3QP,ti+1

n V
ti+1

P − 4QP,tin V ti
P +QP,ti−1

n V
ti−1

P

)
(2.4.1)

where Q stands for either Un (n = 1, . . . , 5) or µ̃ and GE (Governing Equation) for
either MF or SA. As mentioned, Eqs. 2.4.1 are solved using a dual time-stepping
technique, with the correction of the flow variables as unknown, namely

VP
∆τP

∆QPn = −RGE,P
n (2.4.2)

Using a point–implicit scheme and denoting the real-time iteration by i and the
pseudo–time one by j, the system of equations reads



28 2. The Navier–Stokes Equations and Their Numerical Solution

[
VP

∆τP
δnm +

(
∂RGE,P

n

∂Qm

)
i+1,j

] (
∆QPm

)
i+1,j+1

= −
(
RGE,P
n

)
i+1,j

(2.4.3)

and by splitting the left-hand-side (l.h.s.) term of these equations in diagonal and
off–diagonal terms, these are written as
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The system of Eq. 2.4.4 is solved using the Jacobi method. The Jacobi method
is chosen instead of e.g. the Gauss-Seidel one, because no synchronizations are
required in each iteration when the solution of the system is parallelized on the
GPU. The flow–chart of the numerical solution process is shown in Fig. 2.2.

2.4.1 Computation of Local Pseudo-Time Step

The time step ∆τ used to advance the system of equations in pseudo–time is
computed locally for each mesh node. As proposed in [82], this reads

∆τP = CFL
VP

T inv,P + T vis,P
(2.4.1.1)

where

T inv,P =
(∣∣vRk ∣∣+ c

)P
SPk

and T vis,P =
2 (µ+ µt)VP

ρP (SP1 + SP2 + SP3 )

with SPk =
1

2

∑
∀Q∈N (P )

∣∣∣nPQk ∣∣∣
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Figure 2.2: Numerical solution process flow–chart for unsteady flow problems. The
real time iteration is i and the pseudo–time one j. In steady flow problems, the outer
loop on real time steps is by–passed.

It can be seen that the formula for computing ∆τ locally, employs both the maxi-
mum (in terms of absolute value) eigenvalue (also referred to as the spectral radii)
as well as the local size of the computational mesh. Both measures are known
to be closely related to the consistency and the stability of the numerical solution
[69].

2.5 The URANS Equations for Incompressible Fluid Flows

This section focuses on the development of the system of equations governing
incompressible flows. For incompressible flows, the equation of state, Eq. 2.1.5,
no longer holds. The changes in pressure do not cause changes in density and,
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if, additionally, the flow is assumed to be isothermal, the last of Eqs. 2.1.1, i.e.
the energy equation, is identically satisfied. Hence, the density of the fluid (ρ)
can be considered constant and, therefore, the kinematic pressure (p

ρ
) can be

used for the pressure p. In what follows, for incompressible flows the symbol
p denotes the kinematic pressure. The set of unknown flow variables is now
Un =

[
p vA1 vA2 vA3

]
.

The terms in Eq. 2.1.2 become

f inv
nk =


vRk

vA1 v
R
k + pδ1k

vA2 v
R
k + pδ2k

vA3 v
R
k + pδ3k

 f vis
nk =


0
τ1k

τ2k

τ3k

Sn =


0

ε1`kω`v
A
k

ε2`kω`v
A
k

ε3`kω`v
A
k

 (2.5.1)

The stress tensor is now expressed as τkm = ν+νt
Re0

(
∂vAk
∂xm

+ ∂vAm
∂xk

)
since the velocity

divergence vanishes due to the continuity equation. In addition, the Mach num-
ber is no longer defined since the speed of sound is assumed infinite and pt is
connected to p through pt = p+ 1

2
vA` v

A
` .

The turbulence model equation Eq. 2.1.13 holds and is divided by the constant
density, so that the unknown quantity is now ν̃ instead of µ̃.

2.6 Boundary Conditions for Incompressible Fluid Flows

The boundary conditions for the symmetry, periodic and wall boundaries are the
same as those imposed in case of compressible flows, where the thermal condi-
tions at wall boundaries are redundant due to the isothermal assumption. How-
ever, the boundary conditions at inlet and outlet boundaries, although similar, are
not identical to the ones used for compressible flows. In the following subsections,
the boundary conditions holding along these boundaries for 3D incompressible
flow problems are presented.

2.6.1 Inlet Boundary Conditions

For the inlet boundaries, three quantities must be specified and one is extrapo-
lated from the flow domain. The two of the three quantities are the two angles
associated with the absolute velocity vector, namely θ1 and θ2. The velocity vector
is again computed using Eq. 2.2.2.1. The third quantity is either the velocity
magnitude |vA` | or the total pressure. The extrapolated quantity is the static pres-
sure (if the velocity magnitude is imposed), or even the velocity magnitude (if pt is
imposed).
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2.6.2 Outlet Boundary Conditions

For the outlet boundaries, one flow quantity must be specified and three are
extrapolated from the flow domain. The imposed quantity can be either a fixed
value for the static pressure (as a constant along the whole outlet or as radial
distribution), a fixed mean value for the static pressure over the whole outlet or
the flow rate. For the last two cases, the values of the static pressure or the
normal to the outflow boundary velocity, respectively, are computed iteratively
by correcting the ones extrapolated from the fluid domain, so as to achieve the
prescribed integral quantity value.

In general, care must be taken when specifying inlet and outlet boundary
conditions, so that they do not refute each other (e.g. inlet velocity magnitude
and outlet flow rate).

2.6.3 The Artificial Compressibility Method

Eqs. 2.1.1 and 2.5.1, although similar to the ones for compressible flows, present
a significant difference, when it comes to using the methods developed for the
numerical solution of systems of hyperbolic equations. This, is the absence
of a temporal term for the pressure in the continuity equation, which makes
time–marching techniques not directly applicable to the incompressible equa-
tions. Chorin [29] was the first to deal with this problem. He proposed adding an
artificial compressibility equation connecting pressure and density, namely

∂ρ

∂p
=

1

β2
(2.6.3.1)

in the continuity equation. Of course, this relation is assumed to hold only in
pseudo–time, since applying the same relation in real time would correspond to a
violation of the actual conservation laws expressed by Eqs. 2.1.1. By this modifica-
tion, the system of incompressible flow equations (including also the pseudo–time
derivative) is expressed as

RMF
n =Mnm

∂Um
∂t

+ Γ−1
nm

∂Um
∂τ

+
∂f inv

nk

∂xk
− ∂f vis

nk

∂xk
+ Sn = 0

with Γ−1
nm =


1

β2
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 and Mnm =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.6.3.2)
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The parameter β2 is a constant that corresponds to an artificial speed of sound.
This modification changes the mathematical nature of the incompressible flow
equations, which are now a system of hyperbolic equations (for moderate to high
Reynolds number) with similar properties to the system of compressible flow equa-
tions, thus allowing the same numerical techniques to be applied. It must be
noted that definitions of Eqs. 2.5.1 still hold.

A more general approach was later introduced by Turkel [187] by using the
pseudo–time derivative of U =

[
ρ ρvA1 ρvA2 ρvA3

]
and using Eq. 2.6.3.1 . This

leads to the preconditioned system of equations

RMF
n =Mnm

∂Um
∂t

+ Γ−1
nm

∂Um
∂τ

+
∂f inv

nk

∂xk
− ∂f vis

nk

∂xk
+ Sn = 0

with Γ−1
nm =



1

β2
0 0 0

vA1 + αvR1
β2

1 0 0

vA2 + αvR2
β2

0 1 0

vA3 + αvR3
β2

0 0 1


(2.6.3.3)

and matrix M the same as defined in Eq. 2.6.3.2. The parameter β2 can now
vary in space, while α is predefined. The generalized artificial compressibility
equations 2.6.3.3 can be viewed as a form of preconditioning, with Γ−1

nm being
the preconditioning matrix. Hence, different values of the parameter α lead to
different preconditioning.

A similar approach can be also employed to the compressible flow equations
including the energy equation as well ([43], [7]). For brevity, the thesis refrains
from the development of low Mach number preconditioning for compressible flows.
For further details on this topic, the reader is referred to [6] and [113].

To ensure a fast convergence rate and at the same time avoid numerical in-
stabilities, β2 must be selected so as to lead to a stable system for PDEs, with
condition number as close as possible to unity. This, requires the minimiza-
tion of the maximum ratio of the absolute eigenvalues of the preconditioned flux
Jacobian. The preconditioned flux Jacobian multiplied by the normal nk, reads
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Γn`A`mknk = AΓ
nmknk =
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The eigenvalues of the matrix with components AΓ
nmknk are

λ1,2 = vRk nk

λ3,4 = 1
2

[
(1− α) vRk nk ±

√
(1− α)2 (vRk nk)

2
+ 4β2nknk
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and can be proven that min
[
max

(
|λi|
|λj |

)]
is found when

β2nmnm

(vRk nk)
2 =

{
2− α , for α < 1
α , for α ≥ 1

(2.6.3.6)

Eq. 2.6.3.6 can be used to adjust the value of β2 locally, based on the flow
velocity. The minimum value of β2 must be safeguarded, since in viscous flows or
close to stagnation points it may lead to an infinitely increasing condition number.
It is proven that the condition number is always greater than unity (for non-zero
velocity) and becomes equal to unity only when α = 1. For α = −1 the original
system Eq. 2.6.3.2 is retrieved.

The incompressible equations are discretized using the same process as for
the compressible ones. The only difference lies on the computation of the inviscid
terms where the Roe scheme is modified to include the preconditioning matrix in
the artificial dissipation part. In this case, Eq. 2.3.1.3 is replaced by

Φinv,PQ
n =

1

2

(
f inv,Pnk + f inv,Qnk

)
nk −

1

2
Γ−1
n`

∣∣∣AΓ
PQ

`mknk

∣∣∣ (UR
m − UL

m

)
(2.6.3.7)

where
∣∣∣AΓ

PQ

`mknk

∣∣∣ = P`n |Λnr|P−1
rm where |Λ| is the diagonal matrix containing the

absolute eigenvalues of Anmknk computed using the mean–averaged quantities
between the left (L) and right (R) states.

2.7 GPU Implementation of the Flow Solver

The different architecture and hardware capabilities of GPUs compared to CPUs
raise some issues concerning the discretization and numerical algorithms used for
the solution of the flow equations. GPUs are shared memory processors, mean-
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ing that all GPU threads which are executed in parallel, access the same RAM.
This may lead to thread race conditions which, if not resolved properly, can make
the numerical solution process unpredictable. This issue, is more profound in
scatter–add algorithms, employed in the computation of the numerical fluxes and
the corresponding numerical flux Jacobians. In addition, the amount of cache
memory of GPUs (even the latest ones) is still limited compared to CPUs, de-
manding a more delicate memory handling, so as to minimize the overall memory
latency.

In this section, some of the GPU–specific techniques, developed in the scope of
the PhD Thesis of X. Trompoukis [182] and, also, used herein, are revisited. The
employment of these techniques results in a GPU variant of the flow solver which
can be up to 45 times faster compared to the CPU variant of the same flow solver.
At this point, it must be noted that the speed-up figures may vary, depending on
the actual GPU and CPU software used for the comparison.

2.7.1 Computation of Numerical Fluxes and Flux Jacobians

In a CPU implementation of a flow solver using the vertex–centered variant of
the finite volume method, the most efficient method for computing the numerical
fluxes and their Jacobians is via an edge–based algorithm. In such an approach,
a sweep over all mesh edges is performed, the numerical fluxes and Jacobians
are computed at the finite volume interface associated with each edge and, then,
these are added to each of the edge’s end-nodes, forming r.h.s. (residuals) and
l.h.s. (specifically the diagonal part of the Jacobian) terms. By doing so, the flux
and Jacobians are computed only once.

The GPU equivalent of such an approach is to associate each GPU thread
with a mesh edge, compute the numerical fluxes and Jacobians on this edge and,
then, add them to the memory space allocated to each node. However, since the
global GPU memory is shared, if two threads, running in parallel, attempt to add
the numerical flux simultaneously at the same memory position, the resulting
value might be wrong (or, more precisely, the outcome of such an operation is
undefined). This can easily be resolved by using atomic operations.

Atomics are operations that block any other thread attempting to modify the
memory to which the atomic function operates on, until the data modification by
the operation at this specific memory position is completed. Although the use
of atomic operations does not explicitly imply a synchronization barrier, threads
executed in parallel need to wait for each other when they reach the call to the
atomic function, if they need to access the same global memory space. This
leads to excessive number of implicit synchronizations among the threads. To
overcome this problem, three different techniques have been developed in [182],
namely the edge coloring method, the one–kernel and the two–kernel scheme.
These techniques are revisited herein.
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Computation using Edge Coloring

In the edge coloring technique, mesh edges are colored/grouped so that GPU
threads executed simultaneously (i.e. threads belonging to the same warp) do not
have to access the same memory positions. The simplest edge coloring technique
is to group edges in a way that edges of the same color do not share common
mesh nodes. The kernel that computes the r.h.s. (R) and l.h.s. (D, Z) terms is
called consecutively for each color group. All the kernel calls are associated with
the same GPU stream, so as to ensure that threads operating on edges of different
groups will not run at the same time.

Historically, this was the first method developed to avoid using atomic oper-
ations. However, especially in unstructured meshes, a large number of groups
results, thus harming the code’s parallel efficiency. The parallel efficiency de-
teriorates even more when groups with a small number of edges are created.
Furthermore, for the vertex-centered approach finite volume approach, the to-
tal number of edge groups equals the maximum number of neighbors per node,
which neither constant nor known a priori. For this reason, the edge coloring
technique is not used in the scope of this thesis.

Computation Using a One-Kernel Scheme

In this technique, each GPU thread is associated with a mesh node. A kernel
is launched in which all the numerical fluxes and Jacobians of all mesh edges
emanating from the node associated with a certain thread are computed and
added to the memory position corresponding to this node, forming the vector R
and the matrices D, Z of the node. The technique is shown schematically in Fig.
2.3.

Figure 2.3: The one–kernel technique for the computation of R, D and D. Each
thread associated with a mesh node computes numerical fluxes and Jacobian matri-
ces and adds them directly to the node. Computed fluxes are denoted by thin blue
arrows. Thick arrows denote memory write operations.

Using this technique, all problems arising from thread race conditions are
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resolved at the expense of extra computations. More specifically, the numerical
fluxes Φ and their corresponding Jacobian matrices are computed twice for all
internal mesh edges. Although this technique involves more computations, it
increases the GPU occupancy achieved by the kernel by achieving more efficient
memory access and, thus, performs better than the edge coloring technique. In
addition, no intermediate data are stored (as is the case with the two–kernel
technique to be presented right next) and, hence, there is no additional memory
consumption. Since it offers the best compromise between execution time and
memory consumption, it is the technique of choice for most scatter–add operations
in the flow solver.

Computation using a Two-Kernel Scheme

This technique was proposed in [8] as remedy to the extra computations asso-
ciated with the one–kernel technique. The scatter–add operation is split into two
steps and, consequently, two GPU kernels. Firstly, a kernel is launched associat-
ing each GPU thread with a mesh edge. The numerical fluxes and Jacobian ma-
trices at the finite volume interface corresponding to every edge are computed and
stored using intermediate memory positions. Then, a second kernel is launched
associating every GPU thread with a mesh node. This kernel sweeps all edges em-
anating from the node and adds flux and Jacobian contributions to R, D and Z,
respectively. The two–kernel technique is described in Fig. 2.4.

(a) 1st kernel (b) 2nd kernel

Figure 2.4: The two–kernel technique for the computation of R, D and D. The 1st

kernel associates each thread with a mesh edge and computes the numerical fluxes
and Jacobians and stores them on an edge basis. The 2nd kernel associates each
thread with a mesh node. It reads the already stored fluxes and Jacobians on the
attached edges and adds them to the nodes data. The computed fluxes are denoted
by the thin blue arrows. The thick arrows denote the memory write operations [182].

With the two–kernel technique, the fluxes and Jacobian matrices are computed
once for each mesh edge, rendering this technique the most efficient in terms of
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computations and the one providing the higher speed–up. However, the price
to pay for the smaller number of arithmetic operations is higher memory require-
ments. Since GPU memory is usually a limited resource, the two–kernel technique
is not used extensively in the flow solver, especially when large 3D meshes are
involved. Despite this fact, the two–kernel technique offers a very good alternative
for the solution of linear hyperbolic PDEs, where the memory consuming numeri-
cal flux Jacobian matrices D, Z do not change at each pseudo–time iteration and
so need not be stored using extra memory. This will become more clear later on,
when the adjoint PDEs are introduced.

2.7.2 GPU Memory Handling

Another important aspect affecting the parallel efficiency of the GPU code is the
memory handling. GPUs, even the latest ones, offer less cache memory than CPUs
and, as a result, the pattern used to store and access data in memory, greatly
affects the efficiency of the code. In this section, the patterns used for storing
l.h.s. coefficients of Eqs. 2.4.4, are described, since accessing them represents
the majority of the memory accesses performed during the numerical solution of
the flow equations.

In the CPU implementation of the flow solver, the diagonal terms D are stored
as a list of 5×5 ( or 4×4, in the case of incompressible flow) matrices. However, for
a GPU implementation this is far from optimal. The reason is that the amount of
cached memory is small and, in order to minimize cache miss memory accesses,
each memory segment transferred through the bus to each multi–processor must
contain as much useful data for the threads of the current warp (executed in
parallel) as possible. For this reason, a different pattern is followed. The (0, 0)
element of matrixD for the node associated with thread 0 is stored, followed by the
(0, 0) matrix element of the node associated with thread 1 and so on, up to thread
31, completing the first thread warp (collection of 32 threads which are executed
simultaneously). Then, the second element of D for node of thread 0 follows, and
so on. After the whole matrix D is stored for all the nodes associated with the first
warp, storage continues similarly for the next warps. In case the number of nodes
on the mesh is not a multiple of 32, a small amount of extra memory is used so
as to ensure that even the last warp will follow the same memory access pattern.
This method ensures that the memory accesses performed by the threads of a
warp are as few as possible and, as a result, the memory bandwidth achieved is
close to the hardware nominal value.

The storage in memory of the off–diagonal terms Z is even more challenging.
The number of Z matrices that need to be stored is equal to two times the number
of mesh edges. Consequently, in a serial code, the matrices Z would be stored
as matrices D, one after another, but following the ordering of mesh edges. Of
course, using such an approach on a GPU code would not guarantee that the
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memory accesses needed by the threads of a warp are minimized. To overcome
this, the Z matrices for the first edges emanating from the nodes associated with
the warp 0 are first stored, followed by the Z matrices for the second edges and
so on. The storage of each matrix Z follows the same pattern used for storing
matrices D. However, since the number of neighbours per node is not fixed,
threads of the same warp may need to access different number of Z matrices. To
eliminate redundant memory accesses, the nodes of the mesh are ordered w.r.t.
the number of their neighbours. By doing so, we ensure that the threads of the
same warp need to access approximately the same number of Z matrices. To
keep the same memory pattern for all the threads of a warp, even if the number
of neighbours differs slightly among them, the memory space allocated for each
node is equal to the one needed from the warp thread with the greater number of
neighbours.

2.7.3 Mixed Precision Arithmetics

The time spent on accessing memory can be reduced in two ways, namely by
improving the memory access patterns (already described in subsection 2.7.2)
and by reducing the amount of data that need to be accessed. This is achieved in
PUMA by what is called Mixed Precision Arithmetics (MPA) [85].

In MPA, different arithmetics are used to store the l.h.s. and r.h.s. terms of
Eqs. 2.4.4. Using a numerical procedure as the one described in section 2.4, the
r.h.s. terms (R), contain the residuals of the flow equations represent the physics
of the system of equations, while l.h.s. terms (D and Z matrices) are linked to the
convergence properties of the numerical solution. This means that using inexact
values for l.h.s. terms will slightly affect the convergence history of the numerical
solution without any impact on the solution accuracy.

For this reason, a mixed precision arithmetics (MPA) technique is proposed.
In such an approach, r.h.s. terms are computed and stored using double preci-
sion arithmetics (DPA), while single precision arithmetics (SPA) are used to store
l.h.s. terms. It must be noted that the flux Jacobians are still computed using
double precision operations, but their values are truncated to single precision
before these are stored in the global GPU memory.

The MPA could also be used in a CPU code but this would only decrease the
memory consumption without any significant effect on its performance, since MPA
does not involve any single precision arithmetic operations (only single precision
storage). Thus, MPA differs from what is a common practice in several commer-
cial CFD codes, which selectively use SPA (for both arithmetic operations and
memory transactions) in order to accelerate the numerical solution. In the case
of a GPU code, the advantage of the MPA is twofold. It reduces the number of
memory accesses and, consequently, cache–miss operations needed for accessing
the l.h.s. terms and, additionally, it reduces memory consumption for storing the
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demanding l.h.s. terms, which can be crucial in applications involving meshes
with a large number of nodes.

2.8 Validation and Verification Test Cases

In this section, a series of validation test cases are presented. They all refer to 2D
flow problems widely used for the validation of CFD codes. The code treats 2D
flow problems as pseudo–3D ones by using a fake third direction, along which all
contributions of numerical fluxes are set to zero. The purpose of these test cases
is to check the implementation of the various numerical schemes for correctness
and accuracy in comparison with other computational results and experiments.
As a consequence, even though these test cases may not represent the current
industrial needs, they provide the opportunity of extensively testing the developed
software. Validation of the software is also included in the next chapters, in more
complex configurations before proceeding to their optimization.

2.8.1 Flow around the RAE2822 Transonic Airfoil

The first test case is an external aerodynamics application and refers to the flow
around the RAE2822 airfoil. The freestream flow conditions correspond to a Mach
number M = 0.725, a Reynolds number Rec = 6.5× 106 based on the chord length
and an infinite flow angle α = 2.92°.

The computational mesh consists exclusively of quadrilaterals (in practice hex-
ahedra; a one element thick 3D mesh in employed), and is of C-type (Fig. 2.5).
Even though the mesh is fully structured, it is treated by PUMA as an unstruc-
tured one consisting exclusively of a single element type. The size of the mesh
is ∼4.8× 104 nodes. The Spalart–Allmaras turbulence model is employed. The
non–dimensional first wall distance is y+ ' 1.

The numerical solution for convergence to machine accuracy takes ∼1 min on
a single NVIDIA Tesla K20 GPU. In Fig. 2.6 the Mach number field is presented,
where the presence of the shock wave on the suction side is evident. In Fig. 2.7
the pressure coefficient distribution around the airfoil is presented and is also
compared with other computational results, as well as experimental measure-
ments. The agreement between computational and experimental results is very
satisfactory.
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(a) (b)

Figure 2.5: RAE2822 Airfoil: (a) C–type structured mesh around the airfoil. (b) Mesh
view close to the airfoil. Highly stretched cells are used close to the airfoil to provide
adequate resolution of the turbulent boundary layer.

(a) (b)

Figure 2.6: RAE2822 Airfoil: (a) Mach number field around the airfoil. A shock
wave appears over the suction side. (b) View close to the airfoil, at the shock wave
position. Velocity vectors are also plotted. The turbulent boundary layer captured
by the numerical solution can be seen. The sudden increase of the boundary layer
thickness right after the shock wave, a common feature of shock wave/boundary
layer interaction, can be seen.
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Figure 2.7: RAE2822 Airfoil: Pressure coefficient cp around the airfoil. The abscissa
corresponds to normalized chordwise positions (x/c). Comparison with results from
the CFD code WIND [58] and experimental results [134]. The position and intensity
of the shock wave are properly captured.
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2.8.2 Flow through a Transonic Diffuser

The second test case refers to the flow through a transonic diffuser, namely the
Sajben test case. The flow conditions are given in Table 2.1. The geometry of
the diffuser is presented in Fig. 2.8. Under these flow conditions, a weak shock
appears slightly downstream the diffuser’s throat.

Quantity Symbol Value

Inlet Total Pressure pin
t 134 999.35 Pa

Inlet Total Temperature T in
t 277.78 K

Outlet Static Pressure pout 110 660.85 Pa
Molecular Viscosity (constant) µ 1.725× 10=5 kg m=1 s=1

Inlet Viscosity Ratio (µt/µ)in 20.0

Table 2.1: Sajben Transonic Diffuser: Flow conditions.

Figure 2.8: Sajben Transonic Diffuser: Geometry of the transonic diffuser. All lengths
are scaled by the throat diameter (H∗). The positions at which velocity profiles are
computed are marked with bold lines.

The mesh consists of ∼9× 103 nodes and exclusively quadrilateral elements.
Again, even though the mesh is structured (H-type) it is treated by PUMA as
unstructured. The Spalart-Allmaras turbulence model is used and the turbulent
boundary layer is resolved down to the wall. The simulation took ∼30 s on a single
NVIDIA Tesla K20 GPU. The pressure distribution along the top and bottom wall
of the diffuser is presented in Fig. 2.9. Fig. 2.10 presents the velocity profiles at
several positions along the diffuser.
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Figure 2.9: Sajben Transonic Diffuser: Pressure distribution along (a) the top and (b)
bottom wall of the diffuser. The distributions computed are compared to experimental
ones [28], [16] and those computed by the CFD code WIND [58].
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Figure 2.10: Sajben Transonic Diffuser: Velocity profiles of the flow through the
Sajben transonic diffuser at streamwise positions (a) 2.88, (b) 4.61, (c) 6.34 and
(d) 7.49 times the throat diameter, downstream from the throat. Comparison with
experimental results at the respective positions.
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2.8.3 Flow over a Backward-Facing Step

The third case concerns the flow over a backward-facing step. In this case, an
already developed turbulent boundary layer encounters a sudden step-like ex-
pansion, which causes immediate flow separation. The flow, then, reattaches
downstream. The Reynolds number based on the step height (H) is approximately
ReH = 3.6× 104. This is a low-speed flow case and, thus, the incompressible flow
assumption is valid. Consequently, both the compressible and incompressible
flow solvers can be used and validated. In addition, the two variants are com-
pared as far as accuracy of the results and computational cost are of concern.

Quantity Symbol Value

Inlet Total Pressure pin
t 101 325 Pa

Inlet Total Temperature
(only for compressible solver)

T in
t 300 K

Outlet Static Pressure pout 100 471.43 Pa
Molecular Viscosity (constant) µ 1.846× 10=5 kg m=1 s=1

Inlet Viscosity Ratio (µt/µ)in 20.0

Table 2.2: Backward-Facing Step: Flow conditions.

The flow conditions are summarized in Table 2.2. The computational mesh
is multi-block structured consisting of 3 H-type blocks and a total of 6.5× 105

nodes. Even thought the mesh is multi-block structured, it is, again, treated by
PUMA as an unstructured one. The overall computation with the compressible
flow solver takes ∼ 20 min on a single NVIDIA K20 GPU. On the other hand, for
the incompressible flow solver the computation on the same hardware and for
the same level of convergence takes ∼ 15 min. This was expected since (a) the
system of equations solved is reduced by one equation (no energy equation for
incompressible isothermal flow) and (b) the size of the l.h.s. and r.h.s. terms is less
and as a result less memory accesses are needed. The increased wall-clock time
for this test case, compared to the previous two, is attributed to the significantly
larger mesh size which is needed to properly capture the flow separation and
reattachment.

The results obtained by the compressible and the incompressible flow solver
are compared in Fig. 2.11 along with other computational and experimental re-
sults. Also, Fig. 2.12 presents the flow field close to the flow separation and
reattachment areas.
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Figure 2.11: Backward-Facing Step: Velocity profiles at streamwise positions (x/H )
(a) -4, (b) 1, (c) 4 and (d) 6 where H is the step height and x/H = 0 corresponds
to the step position corresponds to the step position. Comparison with experimental
and computational results from the CFD code CFL3D at the same positions. It can be
seen that the comparison is good (apart from the velocity profile right after the flow
separation) and also both the compressible and incompressible flow solvers compare
equally well with the experimental data. However, the incompressible solver has lower
computational cost.

(a) (b)

Figure 2.12: Backward-Facing Step: (a) Streamlines at the sudden step position.
Flow separation and be seen. Flow reattachment is captured right after the recircu-
lation area. (b) Vorticity field at the separation/reattachement area.
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2.8.4 Flow around the NACA0012 Isolated Airfoil

This test case is concerned with the 2D flow around the NACA 0012 airfoil. The
infinite Mach number is M = 0.15 so the incompressible flow solver can be used
as well. The Reynolds number based on the airfoil chord is Rec = 6× 106. The
simulation is performed at different infinite flow angles in the range α = 0°− 15°.
The computational mesh consists of 4.5× 105 nodes and is single-block C-type,
but is treated by PUMA as unstructured. Both the compressible and incom-
pressible solvers are tested, using the Spalart-Allmaras turbulence model. The
compressible solver needs ∼10 min per operating point to reach machine accu-
racy. The incompressible solver needs ∼8 min per operating point for the same
level of convergence. Both solvers run on a single NVIDIA Tesla K40 GPU. The
computed values of the lift and drag coefficient at the several infinite flow angles
are used to draw the lift and drag polars, which are compared with experimental
data and with computational data from a variety of CFD codes (Fig. 2.15). The
pressure coefficient distribution, as well as the skin friction coefficient along the
suction side of the airfoil are compared with CFD results from the code CFL3D
(Fig. 2.14).

The comparison with the experimental and other computational results is very
good. Only close to the stall conditions (around 15°) the lift and drag coefficients
measured differ from the computed ones. This is probably due to 3D flow features
which appear in the experiment but are not accounted for in the computation.
The flow separation close to the trailing edge at α = 15° is shown in Fig. 2.13.

(a) (b)

Figure 2.13: NACA0012 Airfoil: (a) Mach number field and velocity streamlines for
the flow around the airfoil at 15° angle of attack. (b) Close-up view at the trailing edge
(TE) where flow separation occurs.
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Figure 2.14: NACA0012 Airfoil: (a)-(c) Comparison of the pressure coefficient distri-
butions around the airfoil contour for different angles of attack. (d)-(f) Comparison of
skin friction coefficient distributions along the suction side of the airfoil contour for
different angles of attack. All results are compared with the CFD code CFL3D.
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Figure 2.15: NACA0012 Airfoil: (a) Comparison of the computed cL for several an-
gles of attack with other computational and experimental data. (b) Comparison of
the computed polar (cL vs cD). The comparison with other computational results is
excellent. The results compare very well also with the experimental ones. A discrep-
ancy is observed at the higher angles of attack. However, since this appears at near
stall conditions the two–dimensionality of the flow as captured by the experiment is
questionable.

2.8.5 Flow around a HAWT Blade

This test case is concerned with the analysis of the flow around a Horizontal Axis
Wind Turbine (HAWT) blade, namely that of the MEXICO wind turbine. MEXICO
(Model Rotor Experiments In Controlled Conditions) was an EU funded project in
which 10 institutes cooperated in experiments carried out on an instrumented 3
bladed wind turbine. The experiments took place in the Large Low-Speed Facility
of DNW (German Dutch Wind Tunnels) in the Netherlands [162, 161].

A hybrid mesh of ∼2.4× 106 nodes and ∼4.5× 106 elements is built around
the blade using the commercial software Pointwise [151]. The CFD domain and
the CFD mesh are shown in Fig. 2.16.

The wind speed is 10 m/ s and the wind yaw 0°. The incompressible flow solver
of the PUMA software is used to predict the flow field, running on 4 NVIDIA Tesla
K40 GPUs. The overall simulation takes ∼ 70 min. The resulting flow field is
presented in Fig. 2.17. The pressure coefficient distribution at different spanwise
positions of the blade is shown in Fig. 2.18 and compared with wind tunnel
measurements and results CFD results from the code MaPFlow (compressible
flow solver) of the Lab. of Aerodynamics, NTUA [135]. The two CFD codes are
in full agreement but they do not compare well with the experimental results at
sections closer to the blade root. There are many possible explanations for this
discrepancy, mainly related to sensitivity of the experimental measurements and
turbulence modelling. Nevertheless, the agreement between the two CFD codes
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(a)

(b)

Figure 2.16: MEXICO Wind Turbine Blade: (a) CFD domain around one blade of
MEXICO wind turbine. (b) Hybrid CFD mesh built around the blade.

presented in Fig. 2.18 and other CFD and lifting line codes [160] verify the ability
of the PUMA incompressible solver to produce accurate and consistent results.
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(a) (b)

(c) (d)

Figure 2.17: MEXICO Wind Turbine Blade: Pressure coefficient distribution on the
(a) pressure side and (b) of the wind turbine blade. (c) Streamlines computed based
on the relative velocity field close to the tip region. (d) Structure of the tip vortex.
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Figure 2.18: MEXICO Wind Turbine Blade: Comparison between of the pressure
coefficient as computed by PUMA and MaPFlow [135] and as measured by experiments
[162].
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Chapter 3

The Continuous Adjoint Method for
Aerodynamic Shape Optimization

This chapter is concerned with the development of the continuous adjoint method
for aerodynamic/hydrodynamic shape optimization problems. In gradient-based
shape optimization, a main concern is the cost of computing the gradient of an
objective function F with respect to a set of design variables bi, i = 1, . . . , N .
Hereafter, This gradient δF

δbi
will be referred to as the sensitivity derivatives, to

avoid any confusion with the spatial gradient of flow quantities.
Let F be an integral quantity defined along some surface boundaries of the

flow domain SObj and/or over the fluid volume Ω.

F =

∫
Ω

FΩdΩ +

∫
SObj

FSdS (3.1)

In what follows, SObj should not be confused with the whole boundary of the flow
domain ∂Ω. Specifically, SObj is a subset of ∂Ω along which the objective function
F is defined.

Any field quantity Φ can be expressed as a function of the flow variables
Qn, (n = 1, . . . , 6 with Qm := Um for m = 1, . . . , 5 and Q6 := ν̃) and the position in
space xk, (k = 1, . . . , 3). At this point a distinction must be made between the

partial derivative of a field quantity Φ with respect to bi

(
∂Φ

∂bi

)
and the corre-

sponding total derivative
(
δΦ

δbi

)
. The partial derivative refers to the change in

Φ caused exclusively by changes in the flow variables Qn caused by changes in
bi, while the total derivative includes also the change in Φ caused by the change
in position xk of a mesh node. Thus, the partial and total derivative are linked
through

53
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δΦ

δbi
=
∂Φ

∂bi
+
∂Φ

∂xk

δxk
δbi

(3.2)

Taking Eq. 3.2 into account and differentiating Eq. 3.1 using also the Leibniz rule,
one obtains

δF

δbi
=

∫
Ω

∂FΩ

∂Qn

∂Qn

∂bi
dΩ +

∫
∂Ω

FΩ
δxk
δbi

nkdS +

∫
SObj

∂ (FSdS)

∂Qn
δQn
δbi

+

∫
SObj

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi
+

∫
SObj

∂ (FSdS)

∂xk

δxk
δbi

(3.3)

The second, fourth and fifth integrals of Eq. 3.3 can be computed by taking the
parameterization of the surface under consideration into account. However, the
first and third integrals contain variations in the flow variables w.r.t. bi which are
associated with high computational cost. If central finite differences are used, the
cost is equal to two equivalent flow solutions (EFS) for each design variable (one
around the geometry resulting by altering the design variable by a small number
e and one around the geometry resulting by altering the design variable by −e.)
Even if direct differentiation is employed, the cost is equivalent to one EFS per
design variable. The adjoint method, however, makes the cost of computing δF

δbi
independent of the number of design variables.

Between the two variants of the adjoint method (discrete and continuous), the
continuous adjoint method for compressible turbulent flows will be developed in
the following sections. The continuous adjoint method will be formulated in two
different ways, namely the surface integral (SI) [138, 201], and field integral (FI)
[119, 143] formulations. They are proved to be mathematically equivalent but lead
to different sensitivity derivative expressions with different accuracy, especially in
turbulent flow cases. Upon completion of the continuous adjoint method devel-
opment for compressible fluid flows, the development of the continuous adjoint
method for incompressible flows will be presented based on the FI formulation.
The SI formulation for incompressible fluid flows can be found in [102].

3.1 Continuous Adjoint Method - SI Formulation

In order to avoid computing the computationally expensive terms of Eq. 3.3, the
augmented objective function Faug is introduced, which is defined as
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Faug = F +

∫
Ω

ΨnRndΩ +

∫
Ω

ν̃aRµ̃dΩ, n = 1, . . . , 5 (3.1.1)

In Eq. 3.1.1 , Ψn, (n = 1, . . . , 5) are the mean flow adjoint variables and ν̃a the
adjoint turbulence model variable. Both Ψn and ν̃a act as Lagrange multipliers
since they multiply the equality constraints of the flow equations in the problem
of minimizing Faug. Upon convergence of the flow equations (i.e. Rn = 0 and
Rµ̃ = 0 ) Faug = F and, consequently the sensitivity derivatives can be computed
from δFaug

δbi
. This is developed as follows,

δFaug

δbi
=
δF

δbi
+

∫
Ω

Ψn
∂Rn

∂bi
dΩ

︸ ︷︷ ︸
IMF

+

∫
∂Ω

ΨnRn
δxk
δbi

nkdS︸ ︷︷ ︸
LMF

+

∫
Ω

ν̃a
∂Rµ̃

∂bi
dΩ

︸ ︷︷ ︸
ISA

+

∫
∂Ω

ν̃aRµ̃
δxk
δbi

nkdS︸ ︷︷ ︸
LSA

(3.1.2)
Terms LMF and LSA do not contain any variation of flow quantities and, conse-
quently, contribute to the expression of sensitivity derivatives. Term δF

δbi
can be

developed after having defined the objective function F .
During the mathematical development of δFaug

δbi
, volume integrals containing

∂Qn
∂bi

arise. These integrals will be collected to one and the factor multiplying δQn
δbi

will be set equal to zero. By doing so, a new set of PDEs, the so-called field adjoint
equations (FAE) arises. Using Eq. 3.2, one may notice that changing δQn

δbi
with ∂Qn

∂bi

and eliminating the factors multiplying ∂Qn
∂bi

leads to the same FAE. Upon conver-
gence of the FAE, the extra term (arising from the last term of Eq. 3.2) vanishes
since ∂Qn

∂xk

δxk
δbi

is multiplied by the FAE themselves. Satisfaction of the FAE leads
to elimination of the volume integrals associated with high computational cost.
Similar approach is followed for the surface integrals leading to the introduction
of adjoint boundary conditions (ABC). However, for surface integrals the factors
multiplying strictly the total derivatives of Qn must be set to zero.

3.1.1 Differentiation of the Mean Flow Equations

Term IMF will be expanded first as

IMF =

∫
Ω

Ψn
∂

∂bi

(
∂f inv

nk

∂xk

)
dΩ

︸ ︷︷ ︸
IMF_inv

−
∫
Ω

Ψn
∂

∂bi

(
∂f vis

nk

∂xk

)
dΩ

︸ ︷︷ ︸
IMF_vis

+

∫
Ω

Ψn
∂Sn
∂bi

dΩ

︸ ︷︷ ︸
IMF_src

(3.1.1.1)
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Since the terms ∂
∂bi

are decoupled from any variation in the physical coordinates

xk, partial and spatial derivatives permute
(

i.e. ∂
∂bi

(
∂
∂xk

)
= ∂

∂xk

(
∂
∂bi

))
. By doing

so and, then, applying the divergence theorem, term IMF_inv becomes

IMF_inv =

∫
∂Ω

Ψn
∂f inv

nk

∂bi
dS

︸ ︷︷ ︸
S1

−
∫
Ω

∂Ψn

∂xk
Anmk

∂Um
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

(3.1.1.2)

All volume terms containing ∂Um
∂bi

must vanish so as to avoid their expensive
computation. So, these volume terms give contribution to the mean flow Field
Adjoint Equations (FAE_MF). The surface integral of Eq. 3.1.1.2 must be treated
by considering the flow boundary conditions. This is done at a later stage of the
formulation, separately for each type of boundary.

Proceeding with the treatment of term IMF_vis, this can be split as

IMF_vis = −
∫
∂Ω

Ψn
∂f vis

nk

∂bi
nkdS︸ ︷︷ ︸

S2

+

∫
Ω

∂Ψn

∂xk

∂f vis
nk

∂bi
dΩ

= S2 +

∫
Ω

∂Ψm+1

∂xk

∂τkm
∂bi

dΩ

︸ ︷︷ ︸
IMomVis

+

∫
Ω

∂Ψ5

∂xk

∂

∂bi

(
vAmτkm

)
dΩ

︸ ︷︷ ︸
IEnerVis1

+

∫
Ω

∂Ψ5

∂xk

∂qk
∂bi

dΩ

︸ ︷︷ ︸
IEnerVis2

(3.1.1.3)

The first integral (IMomVis) is expanded using Gauss’ theorem and leads to the
following terms

IMomVis =

∫
∂Ω

µ+ µt
Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
− 2

3
δkm

∂Ψ`+1

∂x`

)
nk
∂vAm
∂bi

dS

︸ ︷︷ ︸
S3

−
∫
Ω

∂

∂xk

[
µ+ µt

Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
− 2

3
δkm

∂Ψ`+1

∂x`

)]
∂vAm
∂Uq

∂Uq
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

τkm

µ+ µt

∂Ψm+1

∂xk

∂µt
∂ρ

∂ρ

∂bi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

τkm

µ+ µt

∂Ψm+1

∂xk

∂µt
∂ν̃

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA
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+

∫
Ω

τkm

µ+ µt

∂Ψm+1

∂xk

(
1 +

∂µt
∂µ

)
∂µ

∂Uq

∂Uq
∂bi

dΩ

︸ ︷︷ ︸
Suth

(3.1.1.4)

Here, we can identify surface terms (S2,S3) and FAE_MF terms. Additionally,
terms with variations of the turbulence model variable ∂ν̃

∂bi
arise, whose compu-

tation must also be avoided and, so, contribute to the Spalart–Allmaras Field
Adjoint Equations (FAE_SA). Finally, the terms denoted as Suth are contributions
to the FAE_MF, but appear only if the molecular viscosity of the fluid is assumed
to obey Eq. 2.1.12. Following the same steps for terms IEnerVis1 and IEnerVis2, these
lead to

IEnerVis1 =

∫
∂Ω

µ+ µt
Re0

(
∂Ψ5

∂xk
vAm +

∂Ψ5

∂xm
vAk −

2

3
δkm

∂Ψ5

∂x`
vA`

)
nk
∂vAm
∂bi

dS

︸ ︷︷ ︸
S4

−
∫
Ω

∂

∂xk

[
µ+ µt

Re0

(
∂Ψ5

∂xk
vAm +

∂Ψ5

∂xm
vAk −

2

3
δkm

∂Ψ5

∂x`
vA`

)]
∂vAm
∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk
τkm

(
∂vAm
∂Un

+
vAm

µ+ µt

∂µt
∂ρ

∂ρ

∂Un

)
∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt

∂µt
∂ν̃

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt

(
1 +

∂µt
∂µ

)
∂µ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
Suth

(3.1.1.5)

IEnerVis2 =

∫
∂Ω

∂Ψ5

∂xk

Cp
Re0

(
µ

Pr
+

µt
Prt

)
nk
∂T

∂bi
dS

︸ ︷︷ ︸
S5

−
∫
Ω

∂

∂xk

[
Cp

Re0

(
µ

Pr
+

µt
Prt

)
∂Ψ5

∂xk

]
∂T

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk

Cp
Re0

∂T

∂xk

1

Prt

∂µt
∂ρ

∂ρ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk

Cp
Re0

∂T

∂xk

1

Prt

∂µt
∂ν̃

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA
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+

∫
Ω

∂Ψ5

∂xk

Cp
Re0

∂T

∂xk

(
1

Pr
+

1

Prt

∂µt
∂µ

)
∂µ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
Suth

(3.1.1.6)

Finally, term IMF_src, assuming the rotation speed of the frame ω remains
constant, leads to

IMF_src =

∫
Ω

Ψm+1ρεm`kω`
∂vAk
∂Un

∂Un
∂bi

dΩ +

∫
Ω

Ψm+1εm`kω`v
A
k

∂ρ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

(3.1.1.7)

3.1.2 Differentiation of the Spalart–Allmaras Model Equation

Taking into account Eq. 2.1.13 the term ISA is split into three terms for the dif-
ferentiation of the convection, diffusion and source terms of the Spalart–Allmaras
turbulence model PDE.

ISA =

∫
Ω

ν̃a
∂SAc

∂bi
dΩ

︸ ︷︷ ︸
ISA_conv

+

∫
Ω

ν̃a
∂SAd

∂bi
dΩ

︸ ︷︷ ︸
ISA_diff

+

∫
Ω

ν̃a
∂SAs

∂bi
dΩ

︸ ︷︷ ︸
ISA_src

The convection term reads

ISA_conv =

∫
∂Ω

ν̃ank
∂
(
ρν̃vRk

)
∂bi

dS

︸ ︷︷ ︸
S6

−
∫
Ω

∂ν̃a
∂xk

ρvRk
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

−
∫
Ω

∂ν̃a
∂xk

ν̃vRk
∂ρ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

−
∫
Ω

∂ν̃a
∂xk

ρν̃
∂vAk
∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

��
�
��

�
��

��

+

∫
Ω

∂ν̃a
∂xk

ρν̃
∂vFk
∂bi

dΩ (3.1.2.1)

The last term in Eq. 3.1.2.1 vanishes since the frame velocity does not depend on
any flow quantity and, thus, its partial derivative w.r.t. bi must be zero

(
∂vFk
∂bi

= 0
)

.
Note, however, that since the frame velocity is related to the position of a point in
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space its total variation w.r.t. bi is not necessarily equal to zero
(
δvFk
δbi
6= 0
)

.

Term ISA_diff is first expanded as follows

ISA_diff =− 1

Re0 σ

∫
Ω

ν̃a

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
∂ρ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

− 1

Re0 σ

∫
Ω

ρν̃a
∂

∂xk

[
∂

∂bi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}]
dΩ

︸ ︷︷ ︸
ISA_diff1

+
cb2

Re0 σ

∫
Ω

ρν̃a
∂

∂bi

(
ν̃
∂2ν̃

∂x2
k

)
dΩ

︸ ︷︷ ︸
ISA_diff2

After applying the Gauss’ theorem, terms ISA_diff1 and ISA_diff2 result in

ISA_diff1 =− 1

Re0 σ

∫
∂Ω

ρν̃ank
∂

∂bi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
dS

︸ ︷︷ ︸
S7

+
1

Re0 σ

∫
∂Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

∂ν̃

∂bi
dS

︸ ︷︷ ︸
S8

+
1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

− 1

Re0 σ

∫
Ω

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

}
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

− 1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk

µ

ρ2

∂ρ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

+
1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk

1

ρ

∂µ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
Suth
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ISA_diff2 =
cb2

Re0 σ

∫
∂Ω

ρν̃aν̃nk
∂

∂bi

(
∂ν̃

∂xk

)
dS

︸ ︷︷ ︸
S9

− cb2
Re0 σ

∫
∂Ω

∂ (ρν̃aν̃)

∂xk
nk
∂ν̃

∂bi
dS

︸ ︷︷ ︸
S10

+
cb2

Re0 σ

∫
Ω

ρν̃a
∂2ν̃

∂x2
k

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

+
cb2

Re0 σ

∫
Ω

∂2 (ρν̃aν̃)

∂x2
k

∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

Before differentiating the source terms of the Spalart–Allmaras model, the
variations of some of the functions defined in Eq. 2.1.14 are calculated. The
operator P (a, c) denoting the partial derivative of function a w.r.t. quantity c is
introduced, by assuming that any other quantity appearing in the expression of
a as given in Eq. 2.1.14 is constant. Therefore:

∂ν

∂bi
= P (ν, ρ)

∂ρ

∂bi
+ P (ν, µ)

∂µ

∂Un

∂Un
∂bi

(3.1.2.2)

∂χ

∂bi
= P (χ, ν̃)

∂ν̃

∂bi
+ P (χ, ν)

∂ν

∂bi
(3.1.2.3)

∂fv1

∂bi
= P (fv1 , χ)

∂χ

∂bi
(3.1.2.4)

∂fv2

∂bi
= P (fv2 , χ)

∂χ

∂bi
+ P (fv2 , fv1)

∂fv1

∂bi
(3.1.2.5)

∂ft2
∂bi

= P (ft2 , χ)
∂χ

∂bi
(3.1.2.6)

∂S

∂bi
=

1

S
εk`mεkqr

∂vAr
∂xq

∂

∂bi

(
∂vAm
∂x`

)
(3.1.2.7)

∂S̃

∂bi
= P

(
S̃, S

) ∂S
∂bi

+ P
(
S̃, ν̃

) ∂ν̃
∂bi

+ P
(
S̃, fv2

) ∂fv2

∂bi
+ P

(
S̃,∆

) ∂∆

∂bi
(3.1.2.8)

∂r

∂bi
=

{
0 , for r > 10

P
(
r, S̃
)
∂S̃
∂bi

+ P (r, ν̃) ∂ν̃
∂bi

+ P (r,∆) ∂∆
∂bi

, else (3.1.2.9)

∂g

∂bi
= P (g, r)

∂r

∂bi
(3.1.2.10)

∂fw
∂bi

= P (fw, g)
∂g

∂bi
(3.1.2.11)

Taking into account the Eqs. 3.1.2.2-3.1.2.11 the differentiation of the source
terms leads to
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ISA_src =

∫
Ω

ν̃a

[
−cb1 (1− ft2) S̃ν̃ +

1

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃
∆

)2
]
∂ρ

∂bi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

ρν̃a

[
−cb1 (1− ft2) S̃ +

2

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)]
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃a
cw1

Re0

C4
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

− 2

Re0

∫
Ω

ρν̃a

(
cw1fw −

cb1
κ2
ft2

) ν̃2

∆3

∂∆

∂bi
dΩ +

cw1

Re0

∫
Ω

ρν̃aC5
∂∆

∂bi
dΩ

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ω

ρν̃a

[
−cb1 (1− ft2) ν̃ +

cw1

Re0

C3

]
∂S̃

∂bi
dΩ

︸ ︷︷ ︸
IS̃

+

∫
Ω

ρν̃a

[
cb1S̃ν̃ −

cb1
Re0 κ2

(
ν̃

∆

)2
]
∂ft2
∂bi

dΩ

︸ ︷︷ ︸
Ift2

(3.1.2.12)

where

C1 = P
(
S̃, fv2

) [
P (fv2 , χ) + P (fv2 , fv1)P (fv1 , χ)

]
C2 =

{
0 , for r > 10

P (fw, g)P (g, r)
(
ν̃
∆

)2 , else
C3 = C2P

(
r, S̃
)
, C4 = C2P (r, ν̃) , C5 = C2P (r,∆)

(3.1.2.13)

Term I S̃ is further expanded as

I S̃ =

∫
Ω

ρν̃aC6P
(
S̃, S

) ∂S
∂bi

dΩ

︸ ︷︷ ︸
IVORTICITY

+

∫
Ω

ρν̃aC6P
(
S̃, ν̃

) ∂ν̃
∂bi

dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC6P
(
S̃,∆

) ∂∆

∂bi
dΩ

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ω

ρν̃aC6C1P (χ, ν̃)
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC6C1P (χ, ν)P (ν, ρ)
∂ρ

∂bi
dΩ

︸ ︷︷ ︸
FAE_MF
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+

∫
Ω

ρν̃aC6C1P (χ, ν)P (ν, µ)
∂µ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
Suth

(3.1.2.14)

where, C6 =

[
−cb1 (1− ft2) ν̃ +

cw1

Re0

C3

]

Taking Eq. 3.1.2.7into account and applying the Gauss’ theorem, term IVORTICITY

is expanded as follows

IVORTICITY =

∫
∂Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vAr
∂bi

dS

︸ ︷︷ ︸
S11

−
∫
Ω

∂

∂xq

[
ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

]
∂vAr
∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
FAE_MF

(3.1.2.15)

Finally, term Ift2 becomes

Ift2 =

∫
Ω

ρν̃aC7P (χ, ν̃)
∂ν̃

∂bi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC7P (χ, ν)P (ν, ρ)
∂ρ

∂bi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

ρν̃aC7P (χ, ν)P (ν, µ)
∂µ

∂Un

∂Un
∂bi

dΩ

︸ ︷︷ ︸
Suth

(3.1.2.16)

with C7 =
{
cb1

[
S̃ν̃ − 1

Re0 κ2

(
ν̃
∆

)2
]}
P (ft2 , χ)

3.1.3 Field Adjoint Equations

Having differentiated all the terms resulting from the mean flow and the Spalart–
Allmaras PDEs, all terms denoted as FAE_MF may vanish by setting them to
zero, which gives rise to the mean flow field adjoint PDEs. Similarly, setting
the terms denoted as FAE_SA equal to zero gives rise to the adjoint SA PDE.
The terms denoted as Suth are also grouped with the FAE_MF terms if Suther-
land’s law is used to account for variations in the fluid’s dynamic viscosity. The
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FAE_DISTANCE terms (i.e. the ones containing variations in distance) are either
computed directly by the parameterization and mesh morphing technique (as-
suming that the distance of a particular node from the wall is always measured
from the same closest to this node point on the wall) or included into the adjoint
distance equation (by differentiating the Eikonal equation for the distance) [144].

The mean flow field adjoint equations read

− Anmk
∂Ψn

∂xk
−Km +KSA

m + Sadj
m + Bm + BSA

m +
∂FΩ

∂Um
= 0 (3.1.3.1)

where the terms Km and KSA
m result from the differentiation of the mean-flow

viscous terms and the differentiation of the turbulence model, namely

Km =
∂τadj

kq

∂xk

∂vAq
∂Um

+
∂qadj

k

∂xk

∂T

∂Um
− τkq

∂Ψ5

∂xk

∂vAq
∂Um

(3.1.3.2)

KSA
m = KSA,ρ

m

∂ρ

∂Um
+KSA,vAk

m
∂vAk
∂Um

(3.1.3.3)

with

τ
adj
kq =

µ+ µt
Re0

(
∂Ψk+1

∂xq
+
∂Ψq+1

∂xk
− 2

3
δkq

∂Ψ`+1

∂x`
+
∂Ψ5

∂xk
vAq +

∂Ψ5

∂xq
vAk −

2

3
δkq

∂Ψ5

∂x`
vA`

)
qadj
k =

Cp
Re0

(
µ

Pr
+

µt
Prt

)
∂Ψ5

∂xk

KSA,ρ
m =

τkq

µ+ µt

[
∂Ψq+1

∂xk
+
∂Ψ5

∂xk
vAq +

Cp
Re0 Prt

∂Ψ5

∂xk

∂T

∂xk

]
ν̃fv1

− ∂ν̃a
∂xk

ν̃vRk −
1

Re0 σ
ν̃a

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
− 1

Re0 σ

∂

∂xk
(ρν̃a)

∂ν̃

∂xk

µ

ρ2
(3.1.3.4)

− ν̃a

[
cb1 (1− ft2) S̃ν̃ − 1

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃
∆

)2
]

+ ρν̃a (C6C1 + C7)P (χ, ν)P (ν, ρ)

KSA,vAk
m = −ρν̃ ∂ν̃a

∂xk
− ∂

∂xq

[
ρν̃aC6P

(
S̃, S

) 1

S
εr`nεrqk

∂vAn
∂xk

]

Term Sadj
m stands for the adjoint to the Coriolis force expressed as

Sadj
m = ρεnk`Ψk+1ω`

∂vAn
∂Um

+ εnk`Ψk+1ω`v
A
n

∂ρ
∂Um

and, finally terms Bm and BSA
m are
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present only when Sutherland’s law is differentiated. Term ∂FΩ

∂Um
arises from the

differentiation of the objective function only if it is defined as a volume integral
and is non-zero only at the region of the flow domain that the objective function is
defined. Objective functions including exclusively surface integrals do not affect
the FAE.

Similarly, the field adjoint equation for the Spalart–Allmaras model reads

− ∂

∂xk

(
ρvRk ν̃a

)
−DSA,adj + GSA,diff + GSA,src + Gµt ∂µt

∂ν̃
+
∂FΩ

∂ν̃
= 0 (3.1.3.5)

where,

DSA,adj =
1

Re0 σ

∂

∂xk

{
[ν + (1 + cb2)]

∂

∂xk
(ρν̃a)

}
− cb2

Re0 σ

∂2

∂x2
k

(ρν̃aν̃)

GSA,diff =
1

Re0 σ

∂ (ρν̃a)

∂xk
(1 + cb2)

∂ν̃

∂xk
+

cb2
Re0 σ

ρν̃a
∂2ν̃

∂x2
k

GSA,src = ρν̃a

[
−cb1 (1− ft2) S̃ +

2

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)
(3.1.3.6)

+
cw1

Re0

C4 + C6P
(
S̃, ν̃

)
+ C6C1P (χ, ν̃) + C7P (χ, ν̃)

]
Gµt =

τkm

µ+ µt

(
∂Ψm+1

∂xk
+
∂Ψ5

∂xk
vAm

)
+

Cp
Re0 Prt

∂Ψ5

∂xk

∂T

∂xk

Since Eqs. 3.1.3.1 and 3.1.3.5 are a set of linear PDEs, a numerical solu-
tion procedure similar to the one described in Section 2.4 can be followed with
l.h.s.terms of the system of discretized equations computed a priori and only the
r.h.s.recomputed during the numerical solution. Since the r.h.s.consumes much
less memory, the two-kernel scheme described in Section 2.7.1 can be employed.
As a result, a single pseudo-time iteration for the solution of the adjoint equations
in PUMA, is faster compared to one iteration for the solution of the flow equations.
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3.1.4 Adjoint Boundary Conditions

After having treated all volume integrals arising from the differentiation of Faug,
the surface integrals remain. These are summarized below

S1 =

∫
∂Ω

ΨnAnmknk
∂Um
∂bi

dS

S2 = −
∫
∂Ω

Ψn
∂f vis

nk

∂bi
nkdS

S3,4 =

∫
∂Ω

τ
adj
kmnk

∂vAm
∂bi

dS

S5 =

∫
∂Ω

qadj
k nk

∂T

∂bi
dS

S6 =

∫
∂Ω

ν̃ank
∂
(
ρν̃vRk

)
∂bi

dS

S7 = − 1

Re0 σ

∫
∂Ω

ρν̃ank
∂

∂bi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
dS

S8 =
1

Re0 σ

∫
∂Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

∂ν̃

∂bi
dS

S9 =
cb2

Re0 σ

∫
∂Ω

ρν̃aν̃nk
∂

∂bi

(
∂ν̃

∂xk

)
dS

S10 =
cb2

Re0 σ

∫
∂Ω

∂ (ρν̃aν̃)

∂xk
nk
∂ν̃

∂bi
dS

S11 =

∫
∂Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vAr
∂bi

dS

(3.1.4.1)

In order to eliminate any dependency of the sensitivity derivatives computa-
tion formula from variations in flow variables along the boundaries, any integral
containing such variations must be eliminated. However, the flow boundary con-
ditions must also be taken into account, meaning that variations in the imposed
quantities (such as velocity for the wall or static pressure for the outlet bound-
aries) are zero. Consequently, integrals are developed so that variations in im-
posed quantities are eliminated. The factors multiplied with the remaining flow
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quantity variations (like variations in pressure for the wall boundaries) should
be set to zero giving rise to the boundary conditions of adjoint mean-flow and
Spalart-Allmaras PDEs (ABC).

Upon convergence of the adjoint PDEs (with the appropriate boundary con-
ditions), the expression for computing the sensitivity derivatives includes only
surface integrals containing variations in geometric quantities.

Each type of boundary is separately considered in the following sections.

3.1.4.1 Wall Boundaries

Wall boundaries are split to slip or no-slip, stationary or rotating ones. Some of
the surface integrals are treated in a similar manner for some of these boundaries,
while others require a different treatment. The flow boundary conditions for the
wall boundaries are described in Section 2.2.1.

Slip Wall Boundaries SW Slip

Integrals, the treatment of which is common between stationary and rotating slip
wall boundaries are presented first:

Term S5 is expanded as

S5 =



∫
SWSlip

qadj
k nk

δT

δbi
dS

︸ ︷︷ ︸
ABCT

−
∫

SWSlip

qadj
k nk

∂T

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

, for adiabatic or constant heat flux wall.

�
��

�
��

��
∫

SWSlip

qadj
k nk

δT

δbi
dS−

∫
SWSlip

qadj
k nk

∂T

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

, for constant temperature wall.

(3.1.4.2)
For slip wall boundaries, apart from the no-penetration condition and any

thermal condition, if the flow is assumed turbulent, a mirror condition for ν̃ is
imposed, namely ∂ν̃

∂xk
nk = 0. This is taken into account when the variation of the

normal derivative of ν̃ appears in the development of the surface integrals. The
rest of the terms are developed as follows:

S7 =

(((
((((

(((
((((

(((
((((

((((

− 1

Re0 σ

∫
SWSlip

ρν̃a
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk
nkdS

}
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+
1

Re0 σ

∫
SWSlip

ρν̃a [ν + (1 + cb2) ν̃]
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

+
1

Re0 σ

∫
SWSlip

ρν̃ank
∂

∂x`

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
∂x`
∂bi

dS

︸ ︷︷ ︸
SD

(3.1.4.3)

S8 =
1

Re0 σ

∫
SWSlip

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

− 1

Re0 σ

∫
SWSlip

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

∂ν̃

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.4)

S9 =

��
���

���
���

���
��cb2

Re0 σ

∫
SWSlip

ρν̃aν̃
δ

δbi

(
∂ν̃

∂xk
nkdS

)
− cb2

Re0 σ

∫
SWSlip

ρν̃aν̃
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

− cb2
Re0 σ

∫
SWSlip

ρν̃aν̃nk
∂

∂x`

(
∂ν̃

∂xk

)
δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.5)

S10 = − cb2
Re0 σ

∫
SWSlip

∂ (ρν̃a)

∂xk
ν̃nk

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

+
cb2

Re0 σ

∫
SWSlip

∂ (ρν̃a)

∂xk
ν̃nk

∂ν̃

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.6)

Terms marked with SD contribute to the sensitivity derivatives expression. In
the next two paragraphs, the rest of the integrals are developed separately for
stationary and rotating slip walls.

Stationary Slip Wall Boundaries SW Slip,St

For stationary slip wall boundaries, the no-penetration condition applies
(
vAk nk = 0

)
.

Additionally, in order to simulate stationary walls, when solving the steady state
flow equations in a relative reference frame in PUMA, the geometry of these bound-
aries must be such that vFk nk = 0. The combination of the two leads to vRk nk = 0.

Consequently,
δ
(
vAk nk

)
δbi

= 0 and
δ
(
vRk nk

)
δbi

= 0. In case of shape optimization in-

volving parameterized slip stationary wall boundaries, the parameterization of
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these boundaries must adhere to these last to expressions.
Integral S1 is, then, expanded as

S1 =

∫
SWSlip,St

Ψ1nk
∂f inv1k

∂bi
dS

︸ ︷︷ ︸
SCONTINUITY

1

+

∫
SWSlip,St

Ψm+1nk
∂f inv(m+1)k

∂bi
dS

︸ ︷︷ ︸
SMOMENTUMm

1

+

∫
SWSlip,St

Ψ5nk
∂f inv5k

∂bi
dS

︸ ︷︷ ︸
SENERGY

1

(3.1.4.7)

where

SCONTINUITY
1 =

��
���

���
��

��
∫

SWSlip,St

Ψ1
δ

δbi

(
ρvRk nkdS

)
−
∫

SWSlip,St

Ψ1nk
∂
(
ρvRk

)
∂x`

δx`
δbi

dS −
∫

SWSlip,St

Ψ1ρv
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.8)

SMOMENTUMm
1 =

���
���

���
���

��
∫

SWSlip,St

Ψm+1
δ

δbi

(
ρvAmv

R
k nkdS

)
+

∫
SWSlip,St

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWSlip,St

Ψm+1nk
∂

∂x`

(
ρvAmv

R
k + pδmk

) δx`
δbi

dS −
∫

SWSlip,St

Ψm+1ρv
A
mv

R
k

δnkdS

δbi︸ ︷︷ ︸
SD

(3.1.4.9)

SENERGY
1 =

���
���

���
���

���
���∫

SWSlip,St

Ψ5
δ

δbi

[(
ρhtv

R
k nk + vFk nkp

)
dS
]
−
∫

SWSlip,St

Ψ5nk
∂

∂x`

(
ρhtv

R
k + vFk p

) δx`
δbi

dS

︸ ︷︷ ︸
SD

−
∫

SWSlip,St

Ψ5

(
ρhtv

R
k + vFk p

) δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.10)

The S2 term is similarly expanded as follows

S2 = −
∫

SWSlip

Ψm+1
∂τkm
∂bi

nkdS

︸ ︷︷ ︸
SMOMENTUMm

2

−
∫

SWSlip

Ψ5
∂

∂bi

(
vA` τ`k + qk

)
nkdS

︸ ︷︷ ︸
SENERGY

2

(3.1.4.11)
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where

SMOMENTUMm
2 = −

∫
SWSlip,St

Ψm+1nm
δ

δbi
(τk`nkn`) dS

︸ ︷︷ ︸
ABC(τk`nkn`)

+

∫
SWSlip,St

Ψm+1τk`nkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD

��
���

���
���

���
��

−
∫

SWSlip,St

Ψm+1
δ

δbi
(τk`nkt`tmdS)

+

∫
SWSlip,St

Ψm+1τkm
δ (nkdS)

δbi
+

∫
SWSlip,St

Ψm+1nk
∂τkm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.12)

SENERGY
2 =

���
���

���
���

��
−
∫

SWSlip,St

Ψ5
δ

δbi

(
vA` τk`nkdS

)
+

∫
SWSlip,St

Ψ5
∂

∂x`

(
vAmτmk + qk

)
nk
δx`
δbi

dS

︸ ︷︷ ︸
SD

+

∫
SWSlip,St

Ψ5

(
vA` τ`k + qk

) δ (nkdS)

δbi
dS

︸ ︷︷ ︸
SD

−
∫

SWSlip,St

Ψ5
δ

δbi
(qknkdS)

︸ ︷︷ ︸
ABC(qknk)

(3.1.4.13)

The last integral in Eq. 3.1.4.13 contributes to the adjoint boundary condition if
a constant temperature condition is imposed on the wall. Otherwise (adiabatic or
constant heat flux wall), this term vanishes since δ(qknk)

δbi
= 0.

The rest of the surface integrals result in

S3,4 =

∫
SWSlip,St

τ
adj
k` nkt`

δ
(
vAmtmdS

)
δbi︸ ︷︷ ︸

ABC(vAmtm)

−
∫

SWSlip,St

τ
adj
kmnk

∂vAm
∂x`

δx`
δbi

dS −
∫

SWSlip,St

τ
adj
k` nkn`v

A
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWSlip,St

τ
adj
k` nkt`v

A
m

δ (tmdS)

δbi︸ ︷︷ ︸
T1

(3.1.4.14)

S6 = −
∫

SWSlip,St

ν̃ank
∂
(
ρν̃vRk

)
∂x`

δx`
δbi

dS −
∫

SWSlip,St

ν̃aρν̃v
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

��
���

��
���

���
+

∫
SWSlip,St

ν̃a
δ
(
ρν̃vRk nkdS

)
δbi

(3.1.4.15)
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S11 = −
∫

SWSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vAr
∂xn

δxn
δbi

dS

︸ ︷︷ ︸
SD

((((
((((

((((
(((

((((
(((

((((
((

+

∫
SWSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqns
δ

δbi

(
vAr nrdS

)
−
∫

SWSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqnsv
A
r

δ (nrdS)

δbi︸ ︷︷ ︸
SD

+

∫
SWSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqts
δ

δbi

(
vAr trdS

)
︸ ︷︷ ︸

ABC(vAr tr)

−
∫

SWSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqtsv
A
r

δ (trdS)

δbi︸ ︷︷ ︸
T 2

(3.1.4.16)

The third integral in Eq. 3.3 for stationary slip wall boundaries can be ex-
pressed as

∫
S

Obj
WSlip,St

δFS
δbi

dS =

∫
S

Obj
WSlip,St

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T3

+

∫
S

Obj
WSlip,St

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WSlip,St

∂FS
∂T

δT

δbi
dS

︸ ︷︷ ︸
ABCT

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (qknkdS)

δ (qknkdS)

δbi

︸ ︷︷ ︸
ABC(qknk)

+

∫
S

Obj
WSlip,St

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

��
���

���
���

���
��

+

∫
S

Obj
WSlip,St

∂Fs
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS
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���
���

���
���

���
�

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (vAk nkdS)

δ
(
vAk nkdS

)
δbi

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (vAk tkdS)

δ
(
vAk tkdS

)
δbi

︸ ︷︷ ︸
ABC(vAk tk)

+

∫
S

Obj
WSlip,St

∂FS
∂ν̃

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

���
���

���
���

���
���

�

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
(3.1.4.17)

In order to eliminate the terms denoted as ABCp, the following boundary con-
ditions must be set

Ψm+1nm =

−
∂FS
∂p

, at SObj
W Slip,St

0, at SW Slip,St \ SObj
W Slip,St

(3.1.4.18)

Similarly, terms denoted as ABC(τk`nkn`) are eliminated

Ψm+1nm =


∂FS

∂ (τk`nkn`)
, at SObj

W Slip,St

0, at SW Slip,St \ SObj
W Slip,St

(3.1.4.19)

From Eq. 3.1.4.18 and Eq. 3.1.4.19 it is evident that, in order to obtain a unique
adjoint boundary condition along SObj

W Slip,St, the objective function must be such that
∂FS

∂ (τk`nkn`)
= −∂FS

∂p
. For common objective functions such as force and torque

computed on slip wall boundaries, this condition is satisfied.
Elimination of the rest of the ABC terms leads to

τ
adj
k` nkt` + ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nqts =

−
∂ (FSdS)

∂ (vAk tkdS)
, at SObj

W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.1.4.20)

1

Re0 σ

∂ (ρν̃a)

∂xk
(ν + ν̃) nk =

−
∂FS
∂ν̃

, at SObj
W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.1.4.21)

If the wall is adiabatic or a constant heat flux is imposed, then the elimination of
terms ABCT leads to
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qadj
k nk =

−
∂FS
∂T

, at SObj
W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.1.4.22)

while terms ABC(qknk) vanish automatically. Similarly, for a constant temperature
wall, ABCT terms vanish automatically and the elimination of the ABC(qknk) terms
leads to the following adjoint thermal boundary conditions,

Ψ5 =


∂ (FSdS)

∂ (qknkdS)
, at SObj

W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.1.4.23)

All of the aforementioned adjoint boundary conditions are taken into ac-
count when computing the l.h.s.and r.h.s.terms of the discretized adjoint equa-
tions. It must be noted that the application of the adjoint boundary condi-
tion defined by Eq. 3.1.4.20 leads to elimination of the terms T1, T2, T3, when
∂ (FSdS)

∂ (tkdS)
=

∂ (FSdS)

∂ (vAk tkdS)
. For common objective functions defined along slip wall

boundaries (such as force and torque) this constraint is satisfied. In any other
case, these integrals contribute to the sensitivity derivative formula.

Rotating Slip Wall Boundaries SW Slip,Rot

For rotating slip walls, the no-penetration condition applies which, in this case,

is expressed as vRk nk = 0. As a result,
δ
(
vRk nk

)
δbi

= 0 and
δ
(
vAk nk

)
δbi

=
δ
(
vFk nk

)
δbi

=

vFk
δnk
δbi

+ nk
∂vFk
∂x`

δx`
δbi

. The integrals arising from the differentiation of the inviscid
terms are

SCONTINUITY
1 =

���
���

���
���

∫
SWSlip,Rot

Ψ1
δ

δbi

(
ρvRk nkdS

)
−
∫

SWSlip,Rot

Ψ1nk
∂
(
ρvRk

)
∂x`

δx`
δbi

dS −
∫

SWSlip,Rot

Ψ1 ρv
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.24)

SMOMENTUMm
1 =

���
���

���
���

���
∫

SWSlip,Rot

Ψm+1
δ

δbi

(
ρvAmv

R
k nkdS

)
+

∫
SWSlip,Rot

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp



3.1. Continuous Adjoint Method - SI Formulation 73

−
∫

SWSlip,Rot

Ψm+1nk
∂

∂x`

(
ρvAmv

R
k + pδmk

) δx`
δbi

dS −
∫

SWSlip,Rot

Ψm+1ρv
A
mv

R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.25)

SENERGY
1 =

���
���

���
���

��
∫

SWSlip,Rot

Ψ5
δ

δbi

(
ρhtv

RknkdS
)

+

∫
SWSlip,Rot

Ψ5v
F
k nk

δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWSlip,Rot

Ψ5ρhtv
R
k

δ (nkdS)

δbi
−

∫
SWSlip,Rot

Ψ5pnk
δvFk
δx`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.26)

Similarly, term S2 leads to

SMOMENTUM
2 = −

∫
SWSlip,Rot

Ψm+1nm
δ

δbi
(τ`knkn`) dS

︸ ︷︷ ︸
ABC(τ`knkn`)

+

∫
SWSlip,Rot

Ψm+1τ`knkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD

��
���

���
���

���
��

−
∫

SWSlip,Rot

Ψm+1
δ

δbi
(τ`knkt`tmdS)

+

∫
SWSlip,Rot

Ψm+1nk
∂τkm
∂x`

δx`
δbi

dS +

∫
SWSlip,Rot

Ψm+1τmk
δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.27)

SENERGY
2 =

��
���

���
���

���
���

−
∫

SWSlip,Rot

Ψ5
δ

δbi

(
vR` τmknknmn`dS

)
−
∫

SWSlip,Rot

Ψ5v
F
` n`

δ

δbi
(τmknknm) dS

︸ ︷︷ ︸
ABC(τmknknm)

+

∫
SWSlip,Rot

Ψ5nk
∂

∂x`

(
vA` τ`k + qk

) δx`
δbi

dS +

∫
SWSlip,Rot

Ψ5

(
vA` τ`k + qk

) δ (nkdS)

δbi︸ ︷︷ ︸
SD

+

∫
SWSlip,Rot

Ψ5v
F
` τmknknm

δ (n`dS)

δbi
−

∫
SWSlip,Rot

Ψ5τmknknmn`
∂vF`
∂xq

δxq
δbi

ddS

︸ ︷︷ ︸
SD
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−
∫

SWSlip,Rot

Ψ5
δ

δbi
(qknkdS)

︸ ︷︷ ︸
ABC(qknk)

(3.1.4.28)

The development of term S3,4 leads to

S3,4 =

∫
SWSlip,Rot

τ
adj
k` nkt`

δ

δbi

(
vRmtmdS

)
︸ ︷︷ ︸

ABC(vRmtm)

−
∫

SWSlip,Rot

τ
adj
kmnk

∂vAm
∂x`

δx`
δbi

+

∫
SWSlip,Rot

τ
adj
kmnk

∂vFm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

−
∫

SWSlip,Rot

τ
adj
k` nkn`v

R
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD

���
���

���
���

���

+

∫
SWSlip,Rot

τ
adj
k` nkn`

δ

δbi

(
vRmnmdS

)
+

∫
SWSlip,Rot

τ
adj
k` nkt`v

R
m

δ (tmdS)

δbi︸ ︷︷ ︸
T1

(3.1.4.29)

The remaining terms (S6, S11) are expanded below

S6 =

��
���

���
���

��
∫

SWSlip,Rot

ν̃a
δ

δbi

(
ρν̃vRk nkdS

)
−
∫

SWSlip,Rot

ν̃ank
∂
(
ρν̃vRk

)
∂x`

δx`
δbi

dS −
∫

SWSlip,Rot

ν̃aρν̃v
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.30)

S11 = −
∫

SWSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vRr
∂xn

δxn
δbi

dS

︸ ︷︷ ︸
SD

((((
((((

(((
((((

(((
((((

(((
((((

+

∫
SWSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqns
δ

δbi

(
vRr nrdS

)
−
∫

SWSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqnsv
R
r

δ (nrdS)

δbi︸ ︷︷ ︸
SD
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+

∫
SWSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqts
δ

δbi

(
vRr trdS

)
︸ ︷︷ ︸

ABC(vRr tr)

−
∫

SWSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqtsv
R
r

δ (trdS)

δbi︸ ︷︷ ︸
T 2

(3.1.4.31)

The third integral of Eq. 3.3 for inviscid rotating wall boundaries can be ex-
pressed as

∫
S

Obj
WSlip,Rot

δFS
δbi

dS =

∫
S

Obj
WSlip,Rot

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T3

+

∫
S

Obj
WSlip,Rot

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WSlip,Rot

∂FS
∂T

δT

δbi
dS

︸ ︷︷ ︸
ABCT

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (qknkdS)

δ (qknkdS)

δbi

︸ ︷︷ ︸
ABC(qknk)

+

∫
S

Obj
WSlip,Rot

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

���
���

���
���

���
��

+

∫
S

Obj
WSlip,Rot

∂Fs
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

���
���

���
���

���
�

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (vRk nkdS)

δ
(
vRk nkdS

)
δbi

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (vRk tkdS)

δ
(
vRk tkdS

)
δbi

︸ ︷︷ ︸
ABC(vRk tk)

+

∫
S

Obj
WSlip,Rot

∂FS
∂ν̃

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

���
���

���
���

���
���

�

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
(3.1.4.32)

In order to eliminate terms ABCp and ABC(τkmnknm), the following adjoint bound-
ary conditions are imposed
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(
Ψm+1 + Ψ5v

F
m

)
nm =

−
∂FS
∂p

, at SObj
W Slip,Rot

0 , at SW Slip,Rot \ SObj
W Slip,Rot

(3.1.4.33)

(
Ψm+1 + Ψ5v

F
m

)
nm =


∂FS

∂ (τk`nkn`)
, at SObj

W Slip,Rot

0 , at SW Slip,Rot \ SObj
W Slip,Rot

(3.1.4.34)

From the combination of Eqs. 3.1.4.33 and 3.1.4.34, in order to obtain a unique

adjoint boundary condition it must hold that
∂FS
∂p

= − ∂FS
∂ (τk`nkn`)

.

The elimination of the ABC(vRk tk) term leads to one more boundary condition
for rotating slip wall boundaries, namely

τ
adj
k` nkt` + ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqs

∂vAm
∂x`

nqts =

−
∂ (FSdS)

∂ (vRk tkdS)
, at SObj

W Slip,Rot

0 , at SW Slip,Rot \ SObj
W Slip,Rot

(3.1.4.35)
Terms ABCν̃, ABC(qknk) and ABCT are eliminated as for the stationary slip

walls. Again, we note that the boundary condition described by Eq. 3.1.4.35 leads

to the elimination of terms T1, T2 and T3, when F is such that
∂ (FSdS)

∂ (tkdS)
=

∂ (FSdS)

∂ (vRk tkdS)
.

No-Slip Wall Boundaries SWNoSlip

Along no-slip walls, the boundary condition imposed for the Spalart-Allmaras
variable is ν̃ = 0. The integrals whose treatment is common between stationary
and rotating no-slip wall boundaries are presented first. These are treated as
follows:

Term S5 is expanded as for slip walls ( Eq. 3.1.4.2). Terms S7 to S10 lead to

S7 = − 1

Re0 σ

∫
SWNoSlip

ρν̃a [ν + (1 + cb2) ν̃]
δ

δbi

(
∂ν̃

∂xk
nkdS

)
︸ ︷︷ ︸

ABC

(
∂ν̃
∂xk

nk

)

− 1

Re0 σ

∫
SWNoSlip

ρν̃a
∂ν̃

∂xk
nkP (ν, ρ)P (ρ, p)

δp

δbi
dS

︸ ︷︷ ︸
ABCp
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− 1

Re0 σ

∫
SWNoSlip

ρν̃a
∂ν̃

∂xk
nk [P (ν, µ)P (µ, T ) + P (ν, ρ)P (ρ, T )]

δT

δbi
dS

︸ ︷︷ ︸
ABCT

��
���

���
���

���
���

���

− 1

Re0 σ

∫
SWNoSlip

ρν̃a
∂ν̃

∂xk
nk (1 + cb2)

δν̃

δbi
dS

+
1

Re0 σ

∫
SWNoSlip

ρν̃ank
∂

∂x`

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
δx`
δbi

dS

︸ ︷︷ ︸
SD

+
1

Re0 σ

∫
SWNoSlip

ρν̃a [ν + (1 + cb2) ν̃]
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.36)

S8 =

((((
((((

((((
(((

((((
(((1

Re0 σ

∫
SWNoSlip

∂ (ρν̃a)

∂xk
nk [ν + (1 + cb2) ν̃]

δν̃

δbi
dS

− 1

Re0 σ

∫
SWNoSlip

∂ (ρν̃a)

∂xk
nk [ν + (1 + cb2) ν̃]

∂ν̃

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.37)

S9 =

���
���

���
���

���
��

cb2
Re0 σ

∫
SWNoSlip

ρν̃aν̃nk
∂

∂bi

(
∂ν̃

∂xk

)
dS (3.1.4.38)

S10 =

��
���

���
���

���
��

− cb2
Re0 σ

∫
SWNoSlip

∂ (ρν̃aν̃)

∂xk
nk
δν̃

δbi
dS+

cb2
Re0 σ

∫
SWNoSlip

∂ (ρν̃aν̃)

∂xk
nk
∂ν̃

∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.39)

In the following two paragraphs, the rest of the terms are developed separately
for stationary and rotating no-slip wall boundaries.

Stationary No-Slip Wall Boundaries SWNoSlip,St

Along the stationary no-slip wall boundaries, the flow boundary condition is
expressed as vAk = 0, (k = 1, 2, 3). Consequently, it holds that δvAk

δbi
= 0. The S1

and S2 integrals lead to
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SCONTINUITY
1 =

��
���

���
���

��
∫

SWNoSlip,St

Ψ1
δ

δbi

(
ρvAk nkdS

)
���

���
���

���
��

−
∫

SWNoSlip,St

Ψ1
δ

δbi

(
ρvFk nkdS

)
−

∫
SWNoSlip,St

Ψ1nk
∂
(
ρvRk

)
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

−
∫

SWNoSlip,St

Ψ1ρv
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.40)

SMOMENTUMm
1 =

���
���

���
���

���
�∫

SWNoSlip,St

Ψm+1
δ

δbi

(
ρvAmv

R
k nkdS

)
���

���
���

���
���

−
∫

SWNoSlip,St

Ψm+1ρv
A
mv

R
k

δ (nkdS)

δbi
+

∫
SWNoSlip,St

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWNoSlip,St

Ψm+1nk
∂

∂x`

(
ρvAmv

R
k + pδkm

) δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.41)

SENERGY
1 =

��
���

���
���

���
∫

SWNoSlip,St

Ψ5
δ

δbi

(
ρvRk htnkdS

)
−

∫
SWNoSlip,St

Ψ5ρhtv
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

���
���

���
���+

∫
SWNoSlip,St

Ψ5v
F
mnk

δp

δbi
dS

+

∫
SWNoSlip,St

Ψ5pnk
∂vFk
∂x`

δx`
δbi
−

∫
SWNoSlip,St

Ψ5nk
∂

∂x`

(
ρhtv

R
k + pvFk

) δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.42)

SMOMm
2 = −

∫
SWNoSlip,St

Ψm+1nm
δ

δbi
(τ`knkn`) dS

︸ ︷︷ ︸
ABC(τ`knkn`)

−
∫

SWNoSlip,St

Ψm+1tm
δ

δbi
(τ`knkt`) dS

︸ ︷︷ ︸
ABC(τ`knkt`)

+

∫
SWNoSlip,St

Ψq+1τ`knkt`tqtm
δ (tmdS)

δbi︸ ︷︷ ︸
T 1

+

∫
SWNoSlip,St

Ψm+1nk
∂τkm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

+

∫
SWNoSlip,St

Ψm+1τmk
δ (nkdS)

δbi
+

∫
SWNoSlip,St

Ψm+1τ`knkn`
δ (nkdS)

δbi︸ ︷︷ ︸
SD
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−
∫

SWNoSlip,St

Ψq+1nqτ`knkt`tm
δ (nmdS)

δbi︸ ︷︷ ︸
SD

(3.1.4.43)

SENER
2 =

���
���

���
���

��

−
∫

SWNoSlip,St

Ψ5nk
δ
(
vAmτmk

)
δbi

dS−
∫

SWNoSlip,St

Ψ5
δ (qknkdS)

δbi︸ ︷︷ ︸
ABC(qknk)

+

∫
SWNoSlip,St

Ψ5qk
δ (nkdS)

δbi︸ ︷︷ ︸
SD

+

∫
SWNoSlip,St

Ψ5nk
∂

∂x`

(
vAmτkm + qk

) δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.44)

Analyzing the S3,4 term, we get

S3,4 =

��
��

�
��

�
��
�∫

SWNoSlip,St

τ
adj
kmnk

δvAm
δbi

dS−
∫

SWNoSlip,St

τ
adj
kmnk

∂vAm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.45)

Similarly, terms S6 and S11 become

S6 =

���
���

���
���

�
∫

SWNoSlip,St

ν̃a
δ

δbi

(
ρν̃vRk nkdS

)
−

∫
SWNoSlip,St

ν̃aρv
R
k ν̃
δ (nkdS)

δbi
−

∫
SWNoSlip,St

ν̃ank
∂
(
ρν̃vRk

)
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.46)

S11 =

((((
((((

((((
(((

((((
(((

((∫
SWNoSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
δvAr
δbi

dS

= −
∫

SWNoSlip,St

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vAr
∂xp

δxp
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.47)

For stationary no-slip stationary wall boundaries, the third integral of Eq. 3.3
, can be expressed as
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∫
S

Obj
WNoSlip,St

δFS
δbi

dS =

∫
S

Obj
WNoSlip,St

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T2

+

∫
S

Obj
WNoSlip,St

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WNoSlip,St

∂FS
∂T

δT

δbi
dS

︸ ︷︷ ︸
ABCT

+

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂ (qknkdS)

δ (qknkdS)

δbi

︸ ︷︷ ︸
ABC(qknk)

+

∫
S

Obj
WNoSlip,St

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

+

∫
S

Obj
WNoSlip,St

∂Fs
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkt`)

�
��

�
��

�
��

��

+

∫
S

Obj
WNoSlip,St

∂FS
∂vAk

δvAk
δbi

dS

�
��

�
��

�
��
�

+

∫
S

Obj
WNoSlip,St

∂FS
∂ν̃

δν̃

δbi
dS+

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
︸ ︷︷ ︸

ABC

(
∂ν̃
∂xk

nk

)
(3.1.4.48)

Collecting and eliminating terms denoted as ABCp in Eqs. 3.1.4.36-3.1.4.48, the
following relation arises

Ψm+1nm −
1

Re0 σ
ρν̃a

∂ν̃

∂xm
nmP (ν, ρ)P (ρ, p) =

−
∂FS
∂p

, at SObj
WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.49)
Similarly, elimination of terms denoted as ABC(τk`nkn`) and ABC(τk`nkt`) leads to

Ψm+1nm =


∂FS

∂ (τk`nkn`)
, at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.50)

Ψm+1tm =


∂Fs

∂ (τk`nkt`)
, at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.51)

In order to eliminate the ABC
(
∂ν̃
∂xk

nk

)
terms, the following relation
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1

Re0 σ
ρν̃aν =


∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) , at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.52)

must hold. This leads to the adjoint boundary condition for ν̃a on stationary
no-slip walls, expressed as

ν̃a =


Re0 σ

ρν

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) , at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.53)

Importing Eq. 3.1.4.53 into Eq. 3.1.4.49 and combining it with Eq. 3.1.4.50 in
order to obtain a single adjoint boundary condition for Ψm+1nm, the objective func-
tion expression on stationary viscous wall boundaries must satisfy the following
constraint

∂FS
∂ (τl`nkn`)

− 1

ν

∂ν̃

∂xm
nm

∂FSdS

∂
(
∂ν̃
∂xk

nk
)P (ν, ρ)P (ρ, p) +

∂FS
∂p

= 0 (3.1.4.54)

If, additionally, the objective function satisfies
∂FS

∂ (τk`nkt`)
τ`knkt`tm+

∂ (FSdS)

∂ (tmdS)
= 0,

then terms T1 and T2 vanish automatically. Else, these terms contribute to the
final expression of sensitivity derivatives.

For stationary no-slip adiabatic or constant heat flux walls, where δ(qknk)
δbi

= 0,
terms ABC(qknk) vanish. If Eq. 3.1.4.53 is taken into account, the elimination of
the ABCT terms leads to the following thermal adjoint boundary condition

qadj
k nk =


1

ν

∂ν̃

∂xk
nk [P (ν, µ)P (µ, T ) + P (ν, ρ)P (ρ, T )] +

∂FS
∂T

, at SObj
WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.55)
For stationary no-slip constant temperature walls, where δT

δbi
= 0, the ABCT terms

vanish and the thermal adjoint boundary conditions arise from the elimination of
the ABC(qknk) terms, namely

Ψ5 =


∂ (FSdS)

∂ (qknkdS)
, at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.1.4.56)
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Rotating No-Slip Wall Boundaries SWNoSlip,Rot

On rotating no-slip walls, the flow boundary condition is expressed as vRk =

0, (k = 1, 2, 3). Consequently, it holds that δvRk
δbi

= 0. In addition, vAk = vFk and so
δvAk
δbi

=
∂vFk
∂x`

δx`
δbi

. The integrals S1 and S2 lead to

SCONTINUITY
1 =

���
���

���
���

∫
SWNoSlip,Rot

Ψ1nk
δ
(
ρvRk

)
δbi

dS−
∫

SWNoSlip,Rot

Ψ1nk
∂
(
ρvRk

)
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.57)

SMOMENTUMm
1 =

���
���

���
���

���
∫

SWNoSlip,Rot

Ψm+1nk
δ
(
ρvRk v

A
m

)
δbi

dS+

∫
SWNoSlip,Rot

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWNoSlip,Rot

Ψm+1nk
∂

∂x`

(
ρvRk v

A
m + pδkm

) δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.58)

SENERGY
1 =

��
���

���
���

���
∫

SWNoSlip,Rot

Ψ5nk
δ

δbi

(
ρhtv

R
k

)
dS+

∫
SWNoSlip,Rot

Ψ5v
F
k nk

δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWNoSlip,Rot

Ψ5nk
∂

∂x`

(
ρhtv

R
k + vFk p

) δx`
δbi

dS +

∫
SWNoSlip,Rot

Ψ5nkp
∂vFk
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.59)

The S2 integrals are expanded as follows

SMOMENTUMm
2 =

���
���

���
��

���
���

�

−
∫

SWNoSlip,Rot

Ψq+1nqτ`knkt`
δ (tmnmdS)

δbi
+

∫
SWNoSlip,Rot

Ψq+1nqτ`knkt`tm
δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψm+1nm
δ (τ`knkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τ`knkn`)

−
∫

SWNoSlip,Rot

Ψm+1tm
δ (τ`knkt`)

δbi
dS

︸ ︷︷ ︸
ABC(τ`knkt`)
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+

∫
SWNoSlip,Rot

Ψm+1nk
∂τmk
∂x`

δx`
δbi

dS +

∫
SWNoSlip,Rot

Ψm+1τmk
δ (nkdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψm+1τ`knkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψq+1tqτ`knkt`tm
δ (tmdS)

δbi︸ ︷︷ ︸
T1

(3.1.4.60)

SENERGY
2 =

���
���

���
���

���
���

−
∫

SWNoSlip,Rot

Ψ5v
A
q nqτ`knkt`

δ (nmtmdS)

δbi
+

∫
SWNoSlip,Rot

Ψ5v
A
q nqτ`knkt`tm

δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψ5v
A
mnm

δ (τ`knkn`)

δbi︸ ︷︷ ︸
ABC(τ`knkn`)

−
∫

SWNoSlip,Rot

Ψ5v
A
mtm

δ (τ`knkt`)

δbi︸ ︷︷ ︸
ABC(τ`knkt`)

−
∫

SWNoSlip,Rot

Ψ5
δ (qknkdS)

δbi︸ ︷︷ ︸
ABC(qknk)

−
∫

SWNoSlip,Rot

Ψ5v
A
mτ`knkn`

δ (nmdS)

δbi
+

∫
SWNoSlip,Rot

Ψ5v
A
mτmk

δ (nkdS)

δbi
+

∫
SWNoSlip,Rot

Ψ5qk
δ (nkdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψ5nkτmk
∂vFm
∂x`

δx`
δbi

dS +

∫
SWNoSlip,Rot

Ψ5nk
∂

∂x`

(
τmkv

A
m + qk

) δx`
δbi

dS

︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

Ψ5v
A
q tqτ`knkt`tm

δ (tmdS)

δbi︸ ︷︷ ︸
T2

(3.1.4.61)

The S3,4 term leads to

S3,4 =

∫
SWNoSlip,Rot

τ
adj
kmnk

∂vFm
∂x`

δx`
δbi

dS −
∫

SWNoSlip,Rot

τ
adj
kmnk

∂vAm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.62)

Finally, terms S6 and S11 are expanded as follows
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S6 =

��
���

���
���

���
∫

SWNoSlip,Rot

ν̃ank
δ

δbi

(
ρν̃vRk

)
dS−

∫
SWNoSlip,Rot

ν̃ank
∂

∂x`

(
ρν̃vRk

) δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.63)

S11 =

∫
SWNoSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vFr
∂xp

δxp
δbi

dS

︸ ︷︷ ︸
SD

−
∫

SWNoSlip,Rot

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAm
∂x`

nq
∂vAr
∂xp

δxp
δbi

dS

︸ ︷︷ ︸
SD

(3.1.4.64)

The third integral of Eq. 3.3 for rotating no-slip wall boundaries is expressed
as for the case of stationary no-slip walls, Eq. 3.1.4.48. Collecting and eliminating
the ABCp terms in Eqs. 3.1.4.36-3.1.4.39, Eq. 3.1.4.48 and Eqs. 3.1.4.57-3.1.4.64
the following relation arises

Ψm+1nm+Ψ5v
F
mnm−

1

Re0 σ
ρν̃a

∂ν̃

∂xm
nmP (ν, ρ)P (ρ, p) =

−
∂FS
∂p

, at SObj
WNoSlip,Rot

0 , at SWNoSlip,Rot \ SObj
WNoSlip,Rot

(3.1.4.65)
Elimination of the ABC(τ`knkn`) and ABC(τ`knkt`) terms leads to

Ψm+1nm + Ψ5v
F
mnm =


∂FS

∂ (τk`nkn`)
, at SObj

WNoSlip,Rot

0 , at SWNoSlip,Rot \ SObj
WNoSlip,Rot

(3.1.4.66)

Ψm+1tm + Ψ5v
F
mtm =


∂Fs

∂ (τk`nkt`)
, at SObj

WNoSlip,Rot

0 , at SWNoSlip,Rot \ SObj
WNoSlip,Rot

(3.1.4.67)

Elimination of terms ABC
(
∂ν̃
∂xk

nk

)
leads to the same adjoint boundary condition

for ν̃a as for stationary no-slip walls (Eq. 3.1.4.53). Importing Eq. 3.1.4.53 into
Eq. 3.1.4.65 and combining with Eq. 3.1.4.66, in order to obtain a single adjoint
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boundary condition for Ψm+1nm the objective function expression on rotating no-
slip wall boundaries must satisfy the following constraint

∂FS
∂ (τ`knkn`)

− 1

ν

∂ (FSdS)

∂
(
∂ν̃
∂xk

nk
) ∂ν̃

∂xm
nmP (ν, ρ)P (ρ, p) +

∂FS
∂p

= 0 (3.1.4.68)

If, additionally, the objective function satisfies
∂FS

∂ (τk`nkt`)
τ`knkt`tm+

∂ (FSdS)

∂ (tmdS)
= 0,

then terms T1, T2 and term T2 of Eq. 3.1.4.48, expressed at the SWNoSlip,Rot bound-
aries, vanish automatically. Finally, the adjoint thermal boundary conditions for
rotating no-slip walls are the same as for the SWNoSlip,St boundaries, as given by
Eqs. 3.1.4.55, 3.1.4.56.

3.1.4.2 Inlet and Outlet Boundaries SI/O

The flow conditions for the inlet and outlet boundaries are the ones de-
scribed in Sections 2.2.2 and 2.2.3, respectively. A set of local flow quantities
(V loc

` , ` = 1, . . . , 5) is defined at these boundaries. This set consists of the flow
quantities for which a Dirichlet boundary condition is imposed and the flow quan-
tities which are extrapolated from the flow domain.

The surface integrals that arise from the differentiation of the viscous terms S2

to S4 are neglected, by assuming that the total variation in the viscous stresses
and heat flux is zero along the inlet and outlet.

In addition, inlet and outlet boundaries are considered unparameterized. Con-
sequently, there is no variation in geometric quantities and no contribution in
computing the sensitivity derivatives.

Inlet and outlet are split to subsonic and supersonic, inlet and outlet ones
and the development of the surface terms is presented separately for each one of
them, in the following paragraphs.

Subsonic Inlet Boundaries SIsub

For subsonic inlet boundaries let V loc
` , (` = 1, . . . , 4) be the quantities for which

a Dirichlet condition is imposed and V loc
5 the flow quantity whose value is extrap-

olated from the interior domain. This leads to δV loc
`

δbi
= 0, (` = 1, . . . , 4). Taking this

into account and developing the S1 term the following terms arise
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S1 =

��
���

���
���

���
∫

SIsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

1

δV loc
1

δbi
dS +

���
���

���
���

��
∫

SIsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

2

δV loc
2

δbi
dS +

���
���

���
���

��
∫

SIsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

3

δV loc
3

δbi
dS

+

���
���

���
���

��
∫

SIsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

4

δV loc
4

δbi
dS +

∫
SIsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

5

δV loc
5

δbi
dS

︸ ︷︷ ︸
ABCV

loc
5

(3.1.4.69)

Eliminating term ABCV loc
5 leads to the following expression

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

5

=

−
∂FS
∂V loc

5

, at SObj
Isub

0, at SIsub \ SObj
Isub

(3.1.4.70)

When the adjoint flux is computed along subsonic inlet boundaries, Eq. 3.1.4.70
is taken into account and the boundary flux is modified accordingly. Since a
Dirichlet boundary condition is imposed on ν̃ for inlet boundaries, terms S6, S8

and S10 vanish automatically. The remaining terms are eliminated by setting
ν̃a = 0.

Supersonic Inlet Boundaries SIsup

For supersonic inlet boundaries, all V loc
` , (` = 1, . . . , 5) quantities are constant

and their values set by the user. As a result, term S1 vanishes and the adjoint
flux is computed by extrapolating quantities from the flow domain. The adjoint
boundary condition for ν̃a is the same as for a subsonic inlet.

Subsonic Outlet Boundaries SOsub

For a subsonic outlet, let V loc
` , (` = 1, . . . , 4) be the quantities that are extrap-

olated from the flow domain and V loc
5 the quantity for which a Dirichlet condition

is set. As a result δV loc
5

δbi
= 0. Taking this into account, term S1 is written as

S1 =

∫
SOsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

1

δV loc
1

δbi
dS

︸ ︷︷ ︸
ABCV

loc
1

+

∫
SOsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

1

δV loc
2

δbi
dS

︸ ︷︷ ︸
ABCV

loc
2

+

∫
SOsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

1

δV loc
3

δbi
dS

︸ ︷︷ ︸
ABCV

loc
3
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+

∫
SOsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

1

δV loc
4

δbi
dS

︸ ︷︷ ︸
ABCV

loc
4

+

��
���

���
���

���
∫

SOsub

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

5

δV loc
5

δbi
dS (3.1.4.71)

Eliminating the ABCV loc
` , (` = 1, . . . , 4) terms, the following conditions result

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

`

=

−
∂FS
∂V loc

`

, at SObj
Osub

0 , at SOsub \ SObj
Osub

for ` = 1, . . . , 4 (3.1.4.72)

Eq. 3.1.4.72 is taken into account in the computation of the adjoint boundary
flux along a subsonic outlet. A zero Neumann condition is imposed on ν̃, which

means that
δ

δbi

(
∂ν̃

∂xk
nk

)
= 0. The remaining integrals from the development of

terms S6 to S11 are eliminated by setting the multiplier of δν̃
δbi

equal to ∂FS
∂ν̃

at SObj
Osub

and equal to zero at SOsub \ SObj
Osub.

Supersonic Outlet Boundaries SOsup

Along a supersonic outlet (SOsup), the process of deriving the adjoint boundary
conditions is the same as for a subsonic one. The only difference is that all flow
quantities are extrapolated from the flow domain and, consequently, Eq. 3.1.4.72
holds for ` = 1, . . . , 5.

3.2 The Continuous Adjoint Method - FI Formulation

As for the SI formulation (Section 3.1), instead of directly computing the sensi-
tivity derivatives of F , Faug is introduced which is repeated here for the sake of
completeness,

Faug = F +

∫
Ω

ΨnRndΩ +

∫
Ω

ν̃aRµ̃dΩ

In contrast to the SI approach, instead of using the Leibniz rule, the volume
integrals of Faug are differentiated by directly passing the δ

δbi
operator inside the

integrals. Since these integrals contain spatial gradients of flow related quantities
(e.g. inviscid and viscous fluxes), a useful relation of treating variations of such
quantities is sought [143, 96]. Using Eq. 3.2 and computing the spatial gradient
of the total variation of an arbitrary flow related quantity Φ one obtains
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∂

∂x`

(
δΦ

δbi

)
=

∂

∂x`

(
∂Φ

∂bi

)
+

∂2Φ

∂xk∂x`

δxk
δbi

+
∂Φ

∂xk

∂

∂x`

(
δxk
δbi

)
(3.2.1)

From Eq. 3.2 one can also get an expression for the total derivative of the
spatial gradient of Φ as

δ

δbi

(
∂Φ

∂x`

)
=

∂

∂bi

(
∂Φ

∂x`

)
+

∂2Φ

∂xk∂x`

δxk
δbi

(3.2.2)

Subtracting Eq. 3.2.1 from Eq. 3.2.2, the total variation of the gradient of Φ is
linked to the gradient of the total variation of Φ through

δ

δbi

(
∂Φ

∂x`

)
=

∂

∂x`

(
δΦ

δbi

)
− ∂Φ

∂xk

∂

∂x`

(
δxk
δbi

)
(3.2.3)

Eq. 3.2.3 is extensively used in the remainder of this section, in which the FI
continuous adjoint is presented.

Differentiation of Faug results to

δFaug

δbi
=
δF

δbi
+

∫
Ω

Ψn
δRn

δbi
dΩ

︸ ︷︷ ︸
IMF

+

∫
Ω

ν̃a
δRµ̃

δbi
dΩ

︸ ︷︷ ︸
ISA

(3.2.4)

3.2.1 Differentiation of the Mean Flow Equations

Term IMF is expanded first as

IMF =

∫
Ω

Ψn
δ

δbi

(
∂f invnk

∂xk

)
dΩ

︸ ︷︷ ︸
IMF_inv

−
∫
Ω

Ψn
δ

δbi

(
∂f visnk

∂xk

)
dΩ

︸ ︷︷ ︸
IMF_vis

+

∫
Ω

Ψn
δSn
δbi

dΩ

︸ ︷︷ ︸
IMF_src

(3.2.1.1)

Employing Eq. 3.2.3 on the IMF_inv term we obtain

IMF_inv =

∫
Ω

Ψn
∂

∂xk

(
δf invnk

δbi

)
dΩ−

∫
Ω

Ψn
∂f invnk

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

(3.2.1.2)

The second term on the r.h.s.of Eq. 3.2.1.2 contains only variations of geometric
quantities and, since it is a volume integral, it is marked as volume sensitivity
derivative (VSD). All terms denoted as VSD constitute the first of the two main
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differences between the FI and the SI continuous adjoint formulations, the second
being the absence of the Leibniz terms in the FI one. The computation of the
VSD terms requires the differentiation of the mesh morphing technique that is
employed to deform the CFD mesh in each optimization cycle. This differentiation
is done either analytically, if this is permitted by the mesh morphing method, or
through finite differences (if a PDE is solved for deforming the mesh). A novel
approach has also been developed by PCOpt/LTT where the mesh morphing PDE
is included in the adjoint formulation. In this approach, the residual of the
mesh morphing PDE multiplied with the so-called adjoint deformation field is
added in the expression of the augmented function. This way, the computation
of grid sensitivities ( δxk

δbi
) of internal mesh nodes is avoided and the sensitivity

derivatives are computed based only on surface integrals. This approach is called
the Enhanced Surface Integral (E-SI) , opposed to the severed-SI where the Leibniz
term is neglected, and was developed in [96]. In the scope of this thesis the E-SI
approach will not be used and any further reference to the SI method will implicitly
correspond to the severed-SI one.

The first term of Eq. 3.2.1.2 is further developed as

∫
Ω

Ψn
∂

∂xk

(
δf invnk

δbi

)
dΩ =

∫
∂Ω

Ψnnk
δf invnk

δbi
dS

︸ ︷︷ ︸
S1

−
∫
Ω

Anmk
∂Ψn

∂xk

δUm
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

(3.2.1.3)

Similarly, term IMF_vis results in

IMF_vis = −
∫
∂Ω

Ψnnk
δf visnk

δbi
dS

︸ ︷︷ ︸
S2

+

∫
Ω

∂Ψn

∂xk

δf visnk

δbi
dΩ

= S2 +

∫
Ω

∂Ψm+1

∂xk

δτkm
δbi

dΩ

︸ ︷︷ ︸
IMomVis

+

∫
Ω

∂Ψ5

∂xk

δ
(
vAmτkm

)
δbi

dΩ

︸ ︷︷ ︸
IEnerVis1

+

∫
Ω

∂Ψ5

∂xk

δqk
δbi

dΩ

︸ ︷︷ ︸
IEnerVis1

(3.2.1.4)

with

IMomVis = −
∫
Ω

∂

∂xk

[
µ+ µt

Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
− 2

3
δkm

∂Ψ`+1

∂x`

)]
∂vAm
∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF
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+

∫
Ω

∂Ψm+1

∂xk

τkm

µ+ µt
[P (µt, ρ) + P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, ρ)]

δρ

δbi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψm+1

∂xk

τkm

µ+ µt
[P (µt, ν̃) + P (µt, fv1)P (fv1 , χ)P (χ, ν̃)]

δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

∂Ψm+1

∂xk

τkm

µ+ µt
[1 + P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, µ)]

∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
Suth

−
∫
Ω

µ+ µt
Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
− 2

3
δkm

∂Ψ`+1

∂x`

)
∂vAm
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

µ+ µt
Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
− 2

3
δkm

∂Ψ`+1

∂x`

)
nk
δvA

δbi
dS

︸ ︷︷ ︸
S3

(3.2.1.5)

IEnerVis1 =

∫
Ω

∂Ψ5

∂xk
τkm

δvAm
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

−
∫
∂Ω

µ+ µt
Re0

(
∂Ψ5

∂xk
vAm +

∂Ψ5

∂xm
vAk −

2

3
δkm

∂Ψ5

∂x`
vA`

)
nk
δvAm
δbi

dS

︸ ︷︷ ︸
S4

−
∫
Ω

∂

∂xk

[
µ+ µt

Re0

(
∂Ψ5

∂x+ k
vAm +

∂Ψ5

∂xm
vAk −

2

3
δkm

∂Ψ5

∂x`
vA`

)]
∂vAm
∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt
[P (µt, ρ) + P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, ρ)]

δρ

δbi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt
[P (µt, ν̃) + P (µt, fv1)P (fv1 , χ)P (χ, ν̃)]

δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt
[1 + P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, µ)]

∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
Suth



3.2. The Continuous Adjoint Method - FI Formulation 91

−
∫
Ω

µ+ µt
Re0

(
∂Ψ5

∂xk
vAm +

∂Ψ5

∂xm
vAk −

2

3
δkm

∂Ψ5

∂x`
vA`

)
∂vAm
∂xq

∂

∂xk

(
δxq
δbi

)
dΩ

︸ ︷︷ ︸
VSD

(3.2.1.6)

IEnerVis2 = −
∫
Ω

∂

∂xk

[
Cp

Re0

(
µ

Pr
+

µt
Prt

)
∂Ψ5

∂xk

]
∂T

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

Cp
Re0

∂Ψ5

∂xk

∂T

∂xk

1

Prt

[P (µt, ρ) + P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, ρ)]
δρ

δbi
dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

Cp
Re0

∂Ψ5

∂xk

∂T

∂xk

1

Prt

[P (µt, ν̃) + P (µt, fv1)P (fv1 , χ)P (χ, ν̃)]
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

Cp
Re0

∂Ψ5

∂xk

∂T

∂xk

[
1

Pr
+

1

Prt

P (µt, fv1)P (fv1 , χ)P (χ, ν)P (ν, µ)

]
∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
Suth

−
∫
Ω

Cp
Re0

∂Ψ5

∂xk

(
µ

Pr
+

µt
Prt

)
∂T

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

Cp
Re0

∂Ψ5

∂xk

(
µ

Pr
+

µt
Prt

)
nk
δT

δbi
dS

︸ ︷︷ ︸
S5

(3.2.1.7)

Finally, term IMF_src leads to

IMF_src =

∫
Ω

εm`kΨm+1ρω`
∂vAk
∂Uq

δUq
δbi

dΩ +

∫
Ω

εm`kΨm+1ω`v
A
k

∂ρ

∂Uq

δUq
δbi︸ ︷︷ ︸

FAE_MF

(3.2.1.8)

3.2.2 Differentiation of the Spalart–Allmaras Equation

The term ISA in Eq. 3.2.4 is split in three terms arising from the differentiation of
the convection, diffusion and source terms of the Spalart–Allmaras PDE,
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ISA =

∫
Ω

ν̃a
δSAc

δbi
dΩ

︸ ︷︷ ︸
ISA_conv

+

∫
Ω

ν̃a
δSAd

δbi
dΩ

︸ ︷︷ ︸
ISA_diff

+

∫
Ω

ν̃a
δSAs

δbi
dΩ

︸ ︷︷ ︸
ISA_src

Convection term (ISA_conv) can be developed as

ISA_conv = −
∫
Ω

∂ν̃a
∂xk

ν̃vRk
∂ρ

∂U`

δU`
δbi

dΩ−
∫
Ω

∂ν̃a
∂xk

ρν̃
∂vAk
∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

−
∫
Ω

∂ν̃a
∂xk

ρvRk
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
∂Ω

ν̃ank
δ

δbi

(
ρν̃vRk

)
dS

︸ ︷︷ ︸
S6

−
∫
Ω

ν̃a
∂
(
ρν̃vRk

)
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ +

∫
Ω

∂ν̃a
∂xk

ρν̃
∂vFk
∂x`

δx`
δbi

dΩ

︸ ︷︷ ︸
VSD

(3.2.2.1)

The diffusion term is treated similarly

ISA_diff = − 1

Re0 σ

∫
Ω

ν̃a

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
∂ρ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

− 1

Re0 σ

∫
Ω

ρν̃a
δ

δbi

(
∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

})
dΩ

︸ ︷︷ ︸
ISA_diff1

+
cb2

Re0 σ

∫
Ω

ρν̃a
δ

δbi

(
ν̃
∂2ν̃

∂x2
k

)
dΩ

︸ ︷︷ ︸
ISA_diff2

(3.2.2.2)

where

ISA_diff1 =
1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
P (ν, ρ)

∂ρ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+
1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
P (ν, µ)

∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
Suth
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+
1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)

δν̃

δbi
dΩ− 1

Re0 σ

∫
Ω

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

}
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+
1

Re0 σ

∫
Ω

ρν̃a
∂

∂x`

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

− 1

Re0 σ

∫
Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃]

∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

− 1

Re0 σ

∫
∂Ω

ρν̃ank
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
dS

︸ ︷︷ ︸
S7

+
1

Re0 σ

∫
∂Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

δν̃

δbi
dS

︸ ︷︷ ︸
S8

(3.2.2.3)

ISA_diff2 =
cb2

Re0 σ

∫
Ω

ρν̃a
∂2ν̃

∂x2
k

δν̃

δbi
dΩ +

cb2
Re0 σ

∫
Ω

∂

∂xk

[
∂ (ρν̃aν̃)

∂xk

]
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

− cb2
Re0 σ

∫
Ω

ρν̃aν̃
∂

∂x`

(
∂ν̃

∂xk

)
∂

∂xk

(
δx`
δbi

)
dΩ +

cb2
Re0 σ

∫
Ω

∂ (ρν̃aν̃)

∂xk

∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+
cb2

Re0 σ

∫
∂Ω

ρν̃aν̃nk
δ

δbi

(
∂ν̃

∂xk

)
dS

︸ ︷︷ ︸
S9

− cb2
Re0 σ

∫
∂Ω

∂ (ρν̃aν̃)

∂xk
nk
δν̃

δbi
dS

︸ ︷︷ ︸
S10

(3.2.2.4)

For the differentiation of the turbulence model equation source terms, Eqs.
3.1.2.2-3.1.2.11 are used with the only difference that all direct variations

(
∂
∂bi

)
are replaced by the total variations of the same quantity

(
δ
δbi

)
. Then, the differ-

entiation of the source terms leads to
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ISA_src =

∫
Ω

ν̃a

[
−cb1 (1− ft2) S̃ν̃ +

1

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃
∆

)2
]
∂ρ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

ρν̃a

[
−cb1 (1− ft2) S̃ +

2

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)]
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

− 2

Re0

∫
Ω

ρν̃a

(
cw1fw −

cb1
κ2
ft2

) ν̃2

∆3

δ∆

δbi
dΩ +

cw1

Re0

∫
Ω

ρν̃aC5
δ∆

δbi
dΩ

︸ ︷︷ ︸
FAE_DISTANCE

+
cw1

Re0

∫
Ω

ρν̃aC4
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC6
δS̃

δbi
dΩ

︸ ︷︷ ︸
IS̃

+

∫
Ω

ρν̃a

{
cb1

[
S̃ν̃ − 1

Re0 κ2

(
ν̃

∆

)2
]}

δft2
δbi

dΩ

︸ ︷︷ ︸
Ift2

(3.2.2.5)

Term I S̃ leads to

I S̃ =

∫
Ω

ρν̃aC6P
(
S̃, S

) δS
δbi

dΩ

︸ ︷︷ ︸
IVORTICITY

+

∫
Ω

ρν̃aC6

[
P
(
S̃, ν̃

)
+ C1P (χ, ν̃)

] δν̃
δbi

dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC6P
(
S̃,∆

) δ∆
δbi

dΩ

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ω

ρν̃aC6C1P (χ, ν)P (ν, ρ)
∂ρ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

ρν̃aC6C1P (χ, ν)P (ν, µ)
∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
Suth

(3.2.2.6)

with

IVORTICITY = −
∫
Ω

∂

∂x`

[
ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

]
∂vAm
∂Up

δUp
δbi

dΩ

︸ ︷︷ ︸
FAE_MF
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−
∫
Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

∂vAm
∂xp

∂

∂x`

(
δxp
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
δvAm
δbi

dS

︸ ︷︷ ︸
S11

(3.2.2.7)

Finally, term Ift2 expands to

Ift2 =

∫
Ω

ρν̃aC7P (χ, ν)P (ν, ρ)
∂ρ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

ρν̃aC7P (χ, ν̃)
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ρν̃aC7P (χ, ν)P (ν, µ)
∂µ

∂U`

δU`
δbi

dΩ

︸ ︷︷ ︸
(3.2.2.8)

3.2.3 Field Adjoint Equations and Adjoint Boundary Condi-

tions

Eliminating all volume integrals, denoted as FAE_MF, leads to the mean-flow field
adjoint equations, while eliminating the FAE_SA integrals gives rise to the adjoint
Spalart–Allmaras equation. Terms denoted as Suth contribute to the mean flow
field adjoint equations if Sutherland’s law is used to derive the fluid’s dynamic
viscosity. Finally, the FAE_DISTANCE terms are either computed directly by the
parameterization and mesh morphing techniques or are included into the adjoint
distance equation [144]. It can be observed that the adjoint equations derived are
the same as the ones derived in the SI approach.

Similarly, terms S1–S11 are the same with the only difference being that in-
stead of the partial derivative of flow quantities

(
∂
∂bi

)
the total variation appears(

δ
δbi

)
. Consequently, eliminating these terms leads to the same adjoint boundary

conditions as the ones developed in Section 3.1.4.
However, the surface SD terms that arise (and contribute to the expression

of the sensitivity derivatives) are different, since the terms arising from the ap-
plication of Eq. 3.2 on surface terms, in the SI approach, are absent in the FI
one. Finally, all the VSD terms are volume integrals contributing to the final ex-
pression of the sensitivity derivatives. Further details on how the variation of the



96 3. The Continuous Adjoint Method for Aerodynamic Shape Optimization

mesh nodes positions
(
δx`
δbi

)
and their spatial gradient

(
∂
∂xk

(
δx`
δbi

))
are computed

are given in the next chapters where the parameterization and mesh morphing
techniques are presented.

3.3 The Continuous Adjoint Method for Incompressible Fluid

Flows - FI Formulation

The governing equations in cases of incompressible flows are described in Section
2.5. In this case Faug is expressed as

Faug = F +

∫
Ω

ΨnRndΩ +

∫
Ω

ν̃aRν̃dΩ (3.3.1)

where n = 1, . . . , 4 and the flow variables are U =
[
p vA1 vA2 vA3

]T with p denoting
the kinematic pressure (pressure divided by the constant density). It is repeated,
herein, as a reminder, that the unknown velocity components are the absolute
ones (observed in an inertial reference frame), even though the governing equa-
tions are expressed and solved w.r.t. a relative frame of reference.

In what follows, the FI adjoint approach is employed and so Eqs. 3.2, 3.3
as well as Eq. 3.2.3 are used extensively. By differentiating Eq. 3.3.1 in order to
derive the field adjoint equations, boundary conditions and sensitivity derivatives,
we obtain

δFaug

δbi
=
δF

δbi
+

∫
Ω

Ψn
δRn

δbi
dΩ

︸ ︷︷ ︸
IMF

+

∫
Ω

ν̃a
δRν̃

δbi
dΩ

︸ ︷︷ ︸
ISA

(3.3.2)

Each term of Eq. 3.3.2 is separately developed in the following sections.

3.3.1 Differentiation of the Mean Flow Equations

The mean flow equations in the form of Eq. 2.5.1, before applying the artificial
compressibility method, are differentiated. Their differentiation leads to

IMF =

∫
Ω

Ψn
δf invnk

δbi
dΩ

︸ ︷︷ ︸
IMF_inv

−
∫
Ω

Ψn
δf visnk

δbi
dΩ

︸ ︷︷ ︸
IMF_vis

+

∫
Ω

Ψn
δSn
δbi

dΩ

︸ ︷︷ ︸
IMF_src

(3.3.1.1)

The term IMF_inv is fully expanded since, for incompressible flows, we cannot
take advantage of the identity f invnk = AnmkUm. The reason for this is that the
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incompressible flow equations (or more precisely their inviscid part) do not form
a homogeneous system of equations of 1st degree (as is the case of compressible
fluid flow equations). As a result term IMF_inv is split as

IMF_inv =

∫
Ω

Ψ1
δf inv1k

δbi
dΩ

︸ ︷︷ ︸
IMF_inv,CONTINUITY

+

∫
Ω

Ψm+1

δf inv(m+1)k

δbi
dΩ

︸ ︷︷ ︸
IMF_inv,MOMENTUMm

(3.3.1.2)

The first term in Eq. 3.3.1.2 is expanded as

IMF_inv,CONTINUITY = −
∫
Ω

∂Ψ1

∂xk

δvAk
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψ1

∂xk

∂vFk
∂x`

δx`
δbi

dΩ

︸ ︷︷ ︸
VSD

−
∫
Ω

Ψ1
∂vRk
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

Ψ1nk
δvRk
δbi

dS

︸ ︷︷ ︸
SINCO

1

(3.3.1.3)

Similarly, term IMF_inv,MOMENTUMm is expanded as

IMF_inv,MOMENTUMm = −
∫
Ω

∂Ψm+1

∂xk
vAm
δvAk
δbi

dΩ−
∫
Ω

∂Ψm+1

∂xk
vRk
δvAm
δbi

dΩ−
∫
Ω

∂Ψm+1

∂xm

δp

δbi
dΩ

︸ ︷︷ ︸
FAE_MF

−
∫
Ω

Ψm+1
∂

∂x`

(
vRk v

A
m + δkmp

) ∂

∂xk

(
δx`
δbi

)
dΩ +

∫
Ω

∂Ψm+1

∂xk
vAm
∂vFk
∂x`

δx`
δbi

dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

Ψm+1nk
δ

δbi

(
vRk v

A
m + pδkm

)
dS

︸ ︷︷ ︸
SINCO

2

(3.3.1.4)

The IMF_vis term is also expanded, by taking additionally into account that
since the flow is considered isothermal and incompressible, kinematic viscosity
remains constant and, so, δν

δbi
= 0.
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IMF_vis = −
∫
Ω

∂

∂xk

[
ν + νt
Re0

(
∂Ψm+1

∂xk
+

Ψk+1

xm

)]
δvAm
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

+

∫
Ω

∂Ψm+1

∂xk

τkm

ν + νt
(P (νt, ν̃) + P (νt, fv1)P (fv1 , χ)P (χ, ν̃))

δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

Ψm+1
∂τkm
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ−

∫
Ω

ν + νt
Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
∂vAm
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

−
∫
∂Ω

Ψm+1nk
δτkm
δbi

dS

︸ ︷︷ ︸
SINCO

3

+

∫
∂Ω

ν + νt
Re0

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
nk
δvAm
δbi

dS

︸ ︷︷ ︸
SINCO

4

(3.3.1.5)

Finally, term IMF_src expands as follows

IMF_src =

∫
Ω

Ψm+1εm`kω`
δvAk
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

(3.3.1.6)

3.3.2 Differentiation of the Spalart–Allmaras equation

Taking into account Eq. 2.1.13 for incompressible flows (all terms divided by the
constant density), term ISA is split into terms arising from the differentiation of
the convection, diffusion and source terms of the Spalart–Allmaras turbulence
model PDE.

The convection term reads

ISA_conv = −
∫
Ω

∂ν̃a
∂xk

ν̃
δvAk
δbi

dΩ

︸ ︷︷ ︸
FAE_MF

−
∫
Ω

∂ν̃a
∂xk

vRk
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
∂Ω

ν̃ank
δ
(
vRk ν̃

)
δbi

dS

︸ ︷︷ ︸
SINCO

5
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−
∫
Ω

ν̃a
∂
(
vRk ν̃

)
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ +

∫
Ω

∂ν̃a
∂xk

ν̃
∂vFk
∂x`

δx`
δbi

dΩ

︸ ︷︷ ︸
VSD

(3.3.2.1)

The diffusion term is split into two terms, namely ISA_diff1 and ISA_diff2, which
are expanded separately. Their development follows

ISA_diff = − 1

Re0

∫
Ω

ν̃a
δ

δbi

(
∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

})
dΩ

︸ ︷︷ ︸
ISA_diff1

+
cb2
Re0

∫
Ω

ν̃a
δ

δbi

(
∂2ν̃

∂x2
k

)
dΩ

︸ ︷︷ ︸
ISA_diff2

(3.3.2.2)

where

ISA_diff1 =
1

Re0 σ

∫
Ω

∂ν̃a
∂xk

∂ν̃

∂xk
(1 + cb2)

δν̃

δbi
dΩ− 1

Re0 σ

∫
Ω

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ν̃a
∂xk

}
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

+
1

Re0 σ

∫
Ω

ν̃a
∂

∂x`

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

− 1

Re0 σ

∫
Ω

∂ν̃a
∂xk

[ν + (1 + cb2) ν̃]
∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD

− 1

Re0 σ

∫
∂Ω

ν̃ank
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
dS

︸ ︷︷ ︸
SINCO

6

+
1

Re0 σ

∫
∂Ω

∂ν̃a
∂xk

[ν + (1 + cb2) ν̃] nk
δν̃

δbi
dS

︸ ︷︷ ︸
SINCO

7

(3.3.2.3)

ISA_diff2 =
cb2

Re0 σ

∫
Ω

∂2 (ν̃aν̃)

∂x2
k

δν̃

δbi
dΩ +

cb2
Re0 σ

∫
Ω

ν̃a
∂2ν̃

∂x2
k

δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

− cb2
Re0 σ

∫
Ω

ν̃aν̃
∂

∂x`

(
∂ν̃

∂xk

)
∂

∂xk

(
δx`
δbi

)
dΩ +

cb2
Re0 σ

∫
Ω

∂ (ν̃aν̃)

∂xk

∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
VSD
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+
cb2

Re0 σ

∫
∂Ω

ν̃aν̃nk
δ

δbi

(
∂ν̃

∂xk

)
dS

︸ ︷︷ ︸
SINCO

8

− cb2
Re0 σ

∫
∂Ω

∂ (ν̃aν̃)

∂xk
nk
δν̃

δbi
dS

︸ ︷︷ ︸
SINCO

9

(3.3.2.4)

Finally, the differentiation of the turbulence model source terms is presented.
Eqs. 3.1.2.2–3.1.2.11 are used, again, with ∂

∂bi
replaced by δ

δbi
. In addition, since

the flow is incompressible, all dependencies on density vanish and, since the flow
is also considered to be isothermal, ν is constant and δν

δbi
= 0. The ISA_src term is

developed as follows

ISA_src =

∫
Ω

ν̃a

[
−cb1 (1− ft2) S̃ +

2ν̃

Re0 ∆2

(
cw1fw −

cb1
κ2
ft2

)] δν̃
δbi

dΩ

︸ ︷︷ ︸
FAE_SA

+
cw1

Re0

∫
Ω

ν̃aC4
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

− 2

Re0

∫
Ω

ν̃2

∆3

(
cw1fw −

cb1
κ2
ft2

) δ∆
δbi

dΩ +
cw1

Re0

∫
Ω

ν̃aC5
δ∆

δbi
dΩ

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ω

ν̃a

[
−cb1 (1− ft2) ν̃ +

cw1

Re0

C3

]
δS̃

δbi
dΩ

︸ ︷︷ ︸
IS̃

+cb1

∫
Ω

ν̃a

[
S̃ν̃ − 1

Re0 κ2

(
ν̃

∆

)2
]
δft2
δbi

dΩ

︸ ︷︷ ︸
Ift2

(3.3.2.5)

with

I S̃ =

∫
Ω

ν̃aC6P
(
S̃, S

) δS
δbi

dΩ

︸ ︷︷ ︸
IVORTICITY

+

∫
Ω

ν̃aC6

[
P
(
S̃, ν̃

)
+ C1P (χ, ν̃)

] δν̃
δbi

dΩ

︸ ︷︷ ︸
FAE_SA

+

∫
Ω

ν̃aC6P
(
S̃,∆

) δ∆
δbi

dΩ

︸ ︷︷ ︸
FAE_DISTANCE

(3.3.2.6)

IVORTICITY = −
∫
Ω

∂

∂x`

[
ν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

]
δvAm
δbi

dΩ

︸ ︷︷ ︸
FAE_MF
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−
∫
Ω

ν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

∂vAm
∂xp

∂

∂x`

(
δxp
δbi

)
dΩ

︸ ︷︷ ︸
VSD

+

∫
∂Ω

ν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
δvAm
δbi

dS

︸ ︷︷ ︸
SINCO

10

(3.3.2.7)

Ift2 =

∫
Ω

ν̃aC7P (χ, ν̃)
δν̃

δbi
dΩ

︸ ︷︷ ︸
FAE_SA

(3.3.2.8)

All coefficients C1 to C7 are the same as in the case of compressible flows, see
3.1.2.

3.3.3 Field Adjoint Equations

The mean-flow and Spalart–Allmaras Field Adjoint Equations (FAE) result, as in
the case of compressible flows, by eliminating the terms denoted as FAE_MF and
FAE_SA, respectively. The mean flow field adjoint equations are expressed as

− Anmk
∂Ψn

∂xk
−Km +KSA

m + Sadj
m +

∂FΩ

∂Um
= 0 (3.3.3.1)

where Anmk is the inviscid flux Jacobian of the flow equations given by

Anmk =
∂f invnk

∂Um
=


0 δ1k δ2k δ3k

δ1k vRk + vA1 δ1k vA1 δ2k vA1 δ3k

δ2k vA2 δ1k vRk v
A
2 δ2k vA2 δ3k

δ3k vA3 δ1k vA3 δ2k vRk + vA3 δ3k


Term Km stems from the differentiation of the mean-flow viscous part and is given
by

Km =
∂τadj

kn

∂xk

∂vAn
∂Um

with the adjoint stresses τadj
kn given by

τ
adj
kn =

ν + νt
Re0

(
∂Ψn+1

∂xk
+
∂Ψk+1

∂xn

)
(3.3.3.2)
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The KSA
m term arises from the differentiation of the convection and source (due

to vorticity) terms of the Spalart–Allmaras equation and is expressed as

KSA
m = −∂ν̃a

∂xk
ν̃
∂vAk
∂Um

− ∂

∂x`

[
ν̃aC6P

(
S̃, S

) 1

S
εk`nεkqr

∂vAr
∂xq

]
∂vAn
∂Um

(3.3.3.3)

Finally, the Sadj
m term stands for the adjoint Coriolis force term and is expressed

as Sadj
m = εnk`Ψk+1ω`

∂vAn
∂Um

and, the ∂FΩ

∂Um
term arises from the differentiation of the

objective function and is zero if the objective function is defined only along the
boundaries of the flow domain. Similarly, the adjoint to the Spalart–Allmaras
equation for incompressible flows reads

− ∂

∂xk

(
vRk ν̃a

)
−DSA,adj + GSA,diff + GSA,src + Gνt ∂νt

∂ν̃
+
∂FΩ

∂ν̃
= 0 (3.3.3.4)

where

DSA,adj =
1

Re0 σ

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ν̃a
∂xk

}
− cb2

Re0 σ

∂2 (ν̃aν̃)

∂x2
k

GSA,diff =
1 + cb2
Re0 σ

∂ν̃a
∂xk

∂ν̃

∂xk
+

cb2
Re0 σ

ν̃a
∂2ν̃

∂x2
k

GSA,src = ν̃a

[
−cb1 (1− ft2) S̃ +

2

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)
(3.3.3.5)

+
cw1

Re0

C4 + C6P
(
S̃, ν̃

)
+ C6C1P (χ, ν̃) + C7P (χ, ν̃)

]
Gνt =

τkm

ν + νt

∂Ψm+1

∂xk

From Eq. 3.3.3.1, it can be seen that the mean flow field adjoint equations are
similar to the primal ones, yielding only different signs and source terms. More
precisely, the adjoint convection term (first term in Eq. 3.3.3.1) is the same as the
primal flow convection term with opposite sign and transposed Jacobian matrix.
This means that the first adjoint variable Ψ1 (also called the adjoint pressure) is
absent from the adjoint continuity equation, and, thus the system of equations
cannot be solved using coupled solvers for hyperbolic systems of equations. This
problem is circumvented by employing a preconditioning method to the adjoint
equations, similar to the artificial compressibility. Since the eigenvalues of the
adjoint system of equations are the same with the primal ones, with different sign
though, the transpose of the same preconditioning matrix can be used. Thus,
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after adding the pseudo-time contribution to the adjoint system of equations,
these read

Γ−1
nm

∂Ψn

∂t
− Anmk

∂Ψn

∂xk
−Km +KSA

m + Sadj
m +

∂FΩ

∂Um
= 0, m = 1, . . . , 4 (3.3.3.6)

where matrix Γnm is given by Eq. 2.6.3.3.

3.3.4 Adjoint Boundary Conditions

After eliminating all volume integrals, the surface integrals S1 to S10 remain.
Taking into account the flow boundary conditions, these are split into terms con-
taining variations of flow quantities and terms containing variations of geometric
quantities. The first are eliminated by applying appropriate adjoint boundary
conditions, while the latter contribute to the expression of sensitivity derivatives.
Each type of boundary is separately presented in the following paragraphs.

3.3.4.1 Wall Boundaries

Slip Wall Boundaries SW Slip

On slip wall boundaries, the primal boundary condition for ν̃ is zero Neumann.
Thus, δ

δbi

(
∂ν̃
∂xk

nk
)

= 0.

Integrals S6 and S8 are developed as

S6 =

((((
(((

((((
(((

((((
(((

(((

− 1

Re0 σ

∫
SWSlip

ν̃a
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk
nk

}
dS+

1

Re0 σ

∫
SWSlip

ν̃a [ν + (1 + cb2) ν̃]
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.1)

S8 =

��
���

���
���

���
��cb2

Re0 σ

∫
SWSlip

ν̃aν̃
δ

δbi

(
∂ν̃

∂xk
nkdS

)
− cb2

Re0 σ

∫
SWSlip

ν̃aν̃
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.2)

whereas integrals S7 and S9 become
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S7 =
1

Re0 σ

∫
SWSlip

∂ν̃a
∂xk

nk [ν + (1 + cb2) ν̃]
δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

(3.3.4.3)

S9 =

���
���

���
���

��
− cb2

Re0 σ

∫
SWSlip

ν̃a
∂ν̃

∂xk
nk
δν̃

δbi
dS− cb2

Re0 σ

∫
SWSlip

ν̃
∂ν̃a
∂xk

nk
δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

(3.3.4.4)

The rest of the integrals are developed separately for stationary and rotating
walls since the no-penetration condition is expressed differently at these two types
of boundaries.

Stationary Slip Wall Boundaries SW Slip,St

For stationary slip walls, the no-penetration condition is expressed as vAk nk =
0. Additionally, in order to simulate stationary walls with a steady solver, these
boundaries must be such that vFk nk = 0. Consequently, the following expressions
are true for the variation of the absolute and relative velocity components

δ
(
vAk nk

)
δbi

= 0 (3.3.4.5)

δ
(
vRk nk

)
δbi

=
�
�
�
�
�δ

(
vAk nk

)
δbi

−
�
�
�
�
�δ

(
vFk nk

)
δbi

= 0 (3.3.4.6)

First, integral S1 is expanded

S1 =

��
��

�
��

�
��
�∫

SWSlip,St

Ψ1

δ
(
vRk nkdS

)
δbi

−
∫

SWSlip,St

Ψ1v
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.7)

and integral S2 leads to
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S2 =

��
���

���
���

���
∫

SWSlip,St

Ψm+1
δ

δbi

(
vRk nkv

A
mdS

)
+

∫
SWSlip,St

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWSlip,St

Ψm+1v
R
k v

A
m

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.8)

The integrals arising from the viscous terms differentiation are expanded as

S3 = −
∫

SWSlip,St

Ψm+1nm
δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

−
∫

SWSlip,St

Ψm+1τk`nkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD

���
���

���
���

���
�

−
∫

SWSlip,St

Ψm+1
δ

δbi
(τk`nkt`tmdS) +

∫
SWSlip,St

Ψm+1τkm
δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.9)

S4 =

���
���

���
���

�∫
SWSlip,St

τ
adj
k` nkn`

δ
(
vAmnmdS

)
δbi

−
∫

SWSlip,St

τ
adj
k` nkn`v

A
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD

+

∫
SWSlip,St

τ
adj
k` nkt`

δ
(
vAmtmdS

)
δbi︸ ︷︷ ︸

ABC(vAmtmdS)

−
∫

SWSlip,St

τ
adj
k` nkt`v

A
m

δ (tmdS)

δbi︸ ︷︷ ︸
T1

(3.3.4.10)

Integrals S5 and S10 lead to

S5 =
���

���
���

��
∫

SWSlip,St

ν̃a
δ
(
vRk nkν̃dS

)
δbi

−
∫

SWSlip,St

ν̃av
R
k ν̃
δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.11)

S10 =

((((
(((

((((
(((

((((
(((

((((
(∫

SWSlip,St

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`np
δ
(
vAmnmdS

)
δbi

−
∫

SWSlip,St

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`npv
A
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD
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+

∫
SWSlip,St

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`tp
δ
(
vAmtmdS

)
δbi︸ ︷︷ ︸

ABC(vAmtmdS)

−
∫

SWSlip,St

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`tpv
A
m

δ (tmdS)

δbi︸ ︷︷ ︸
T2

(3.3.4.12)

Finally, the last term of Eq. 3.3 is split into the following terms

∫
S

Obj
WSlip,St

δFS
δbi

dS =

∫
S

Obj
WSlip,St

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T3

+

∫
S

Obj
WSlip,St

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WSlip,St

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

���
���

���
���

���
�

+

∫
S

Obj
WSlip,St

∂FS
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

���
���

���
���

���
�

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (vAk nkdS)

δ
(
vAk nkdS

)
δbi

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂ (vAk tkdS)

δ
(
vAk tkdS

)
δbi

︸ ︷︷ ︸
ABC(vAk tk)

+

∫
S

Obj
WSlip,St

∂FS
∂ν̃

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

���
���

���
���

���
���

�

+

∫
S

Obj
WSlip,St

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
(3.3.4.13)

Eliminating the ABCp and ABC(τk`nkn`) terms leads to the following adjoint
boundary condition

Ψm+1nm =

−
∂FS
∂p

, at SObj
W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.3.4.14)

Ψm+1nm =


∂FS

∂ (τk`nkn`)
, at SObj

W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.3.4.15)
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In order to obtain a unique adjoint boundary condition for Ψm+1nm, FS must be
such that ∂FS

∂p
= − ∂FS

∂(τk`nkn`)
at SObj

W Slip,St. To eliminate the ABC(vAk tk) terms, we must
set

τ
adj
k` nkt` + ν̃aC6P

(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`tp =

−
∂ (FSdS)

∂ (vAk tkdS)
, at SObj

W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.3.4.16)
Eq. 3.3.4.16 is taken into account when computing the adjoint boundary flux at
stationary slip wall boundaries. Since Eq. 3.3.4.16 holds the sum of terms T1, T2

and T3 vanishes automatically, if ∂(FSdS)
∂(tkdS)

= ∂(FSdS)

∂(vAk tkdS)
. Finally, in order to eliminate

the terms denoted as ABCν̃, the following boundary condition is imposed:

∂ν̃a
∂xk

nk =

−
Re0 σ

ν + νt

∂FS
∂ν̃

, at SObj
W Slip,St

0 , at SW Slip,St \ SObj
W Slip,St

(3.3.4.17)

Rotating Slip Wall Boundaries SW Slip,Rot

For rotating slip walls, the no-penetration condition is expressed as vRk nk = 0

As a result,
δ(vRk nk)
δbi

= 0. The variation in the absolute velocity is given by

δ
(
vAk nk

)
δbi

=
δ
(
vFk nk

)
δbi

(3.3.4.18)

Integrals S1 to S4 expand as

S1 =
���

���
���

��
∫

SWSlip,Rot

Ψ1

δ
(
vRk nkdS

)
δbi

−
∫

SWSlip,Rot

Ψ1v
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.19)

S2 =

��
���

���
��

���
��∫

SWSlip,Rot

Ψm+1
δ

δbi

(
vRk nkv

A
mdS

)
+

∫
SWSlip,Rot

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

−
∫

SWSlip,Rot

Ψm+1v
R
k v

A
m

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.20)

S3 = −
∫

SWSlip,Rot

Ψm+1nm
δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

−
∫

SWSlip,Rot

Ψm+1τk`nkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD
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��
���

���
���

���
��

−
∫

SWSlip,Rot

Ψm+1
δ

δbi
(τk`nkt`tmdS) +

∫
SWSlip,Rot

Ψm+1τkm
δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.21)

S4 =

���
���

���
���

���
∫

SWSlip,Rot

τ
adj
k` nkn`

δ
(
vRmnmdS

)
δbi

dS+

∫
SWSlip,Rot

τ
adj
k` nkt`

δ
(
vRmtmdS

)
δbi

dS

︸ ︷︷ ︸
ABC(vRmtm)

−
∫

SWSlip,Rot

τ
adj
k` nkn`v

R
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWSlip,Rot

τ
adj
k` nkt`v

R
m

δ (tmdS)

δbi︸ ︷︷ ︸
T1

+

∫
SWSlip,Rot

τ
adj
kmnk

∂vFm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.3.4.22)

Similarly, terms S5 and S10 expand to

S5 =
��

���
���

���
∫

SWSlip,Rot

ν̃a
δ
(
vRk nkν̃dS

)
δbi

−
∫

SWSlip,Rot

ν̃aν̃v
R
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.23)

S10 =

((((
((((

(((
((((

((((
(((

((((∫
SWSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`np
δ
(
vRmnmdS

)
δbi

+

∫
SWSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`tp
δ
(
vRmtmdS

)
δbi︸ ︷︷ ︸

ABC(vRmtm)

−
∫

SWSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`npv
R
m

δ (nmdS)

δbi︸ ︷︷ ︸
SD

−
∫

SWSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`pεkqr

∂vAr
∂xq

n`tpv
R
m

δ (tmdS)

δbi︸ ︷︷ ︸
T2

+

∫
SWSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
∂vFm
∂xp

δxp
δbi

dS

︸ ︷︷ ︸
SD

(3.3.4.24)
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Finally, the last term of Eq. 3.3 is split into the following terms

∫
S

Obj
WSlip,Rot

δFS
δbi

dS =

∫
S

Obj
WSlip,Rot

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T3

+

∫
S

Obj
WSlip,Rot

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WSlip,Rot

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

���
���

���
���

���
��

+

∫
S

Obj
WSlip,Rot

∂FS
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

���
���

���
���

���
�

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (vRk nkdS)

δ
(
vRk nkdS

)
δbi

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂ (vRk tkdS)

δ
(
vRk tkdS

)
δbi

︸ ︷︷ ︸
ABC(vRk tk)

+

∫
S

Obj
WSlip,Rot

∂FS
∂ν̃

δν̃

δbi
dS

︸ ︷︷ ︸
ABCν̃

���
���

���
���

���
���

�

+

∫
S

Obj
WSlip,Rot

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
(3.3.4.25)

Eliminating the ABCp and ABC(τk`nkn`) terms leads to the following adjoint
boundary conditions

Ψm+1nm =

−
∂FS
∂p

, at SObj
W Slip,Rot

0 , at SW Slip,Rot \ SObj
W Slip,Rot

(3.3.4.26)

Ψm+1nm =


∂FS

∂ (τk`nkn`)
, at SObj

W Slip,Rot

0 , at SW Slip,Rot \ SObj
W Slip,Rot

(3.3.4.27)

Eqs. 3.3.4.26, 3.3.4.27 are the same as Eqs. 3.3.4.14, 3.3.4.15. Thus, on slip
stationary and rotating wall boundaries, the same adjoint boundary condition is
imposed to Ψm+1nm. In addition the same restriction on the objective function is
implied, namely ∂FS

∂p
= − ∂FS

∂(τk`nkn`)
.

To eliminate the ABC(vRk tk) terms, we must set
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τ
adj
k` nkt` + ν̃aC6P

(
S̃, S

) 1

S
εk`pεkqr

∂vRr
∂xq

n`tp =

−
∂ (FSdS)

∂ (vRk tkdS)
, at SObj

W Slip,Rot

0 , at SW Slip,Rot − SObj
W Slip,Rot

(3.3.4.28)
Eq. 3.3.4.28 is taken into account when computing the adjoint boundary flux
across the rotating slip wall boundaries. Since Eq. 3.3.4.28 holds the sum of
terms T1, T2 and T3 vanishes automatically, if ∂(FSdS)

∂(tkdS)
= ∂(FSdS)

∂(vRk tkdS)
. Finally, in

order to eliminate terms marked as ABCν̃, the boundary condition expressed by
Eq. 3.3.4.17 is applied with SW Slip,St and SObj

W Slip,St replaced by SW Slip,Rot and SObj
W Slip,Rot

respectively.

No-Slip Wall Boundaries SWNoSlip

Along no-slip walls, the boundary condition imposed for the turbulence model
variable is ν̃ = 0. Consequently, integrals S7-S9 vanish automatically for these
boundaries and integral S6 leads to

S6 =

���
���

���
���

���
���

�

− 1

Re0 σ

∫
SWNoSlip

ν̃ank
∂ν̃

∂xk
(1 + cb2)

δν̃

δbi
dS− 1

Re0 σ

∫
SWNoSlip

ν̃a [ν + (1 + cb2) ν̃]
δ

δbi

(
∂ν̃

∂xk
nkdS

)
︸ ︷︷ ︸

ABC

(
∂ν̃
∂xk

nk

)

+
1

Re0 σ

∫
SWNoSlip

ν̃a [ν + (1 + cb2) ν̃]
∂ν̃

∂xk

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.29)

Additionally, the no-slip condition is imposed to the velocity components,
which is expressed as vAm = 0, (m = 1, . . . , 3) for stationary walls and vRm =
0, (m = 1, . . . , 3) for rotating wall boundaries. Integrals including the vR and vA

components are expanded separately for SWNoSlip,St and SWNoSlip,Rot boundaries in the
next paragraphs.

Stationary No-Slip Wall Boundaries SWNoSlip,St

Along them, since vAm = 0, (m = 1, . . . , 3), the variation in the absolute velocity
components is zero. In addition, the stationary wall geometry must be such that
vFmnm = 0 so as to model such a boundary by solving the steady state equations
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expressed in a rotating frame of reference. Thus, the following conditions are
taken into account

δvAm
δbi

= 0, m = 1, . . . , 3

δ
(
vFmnm

)
δbi

= 0⇒
δ
(
vRmnm

)
δbi

= 0

(3.3.4.30)

Integrals S4, S5 and S10 vanish automatically, while integrals S1 to S3 and S5

lead to

S1 =
��

���
���

���
∫

SWNoSlip,St

Ψ1

δ
(
vRk nkdS

)
δbi

+

∫
SWNoSlip,St

Ψ1v
F
k

δ (nkdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.31)

S2 =

���
���

���
���

��∫
SWNoSlip,St

Ψm+1

δ
(
vRk nkv

A
mdS

)
δbi

��
���

���
���

���
�

−
∫

SWNoSlip,St

Ψm+1v
R
k v

A
m

δ (nkdS)

δbi
+

∫
SWNoSlip,St

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

(3.3.4.32)

S3 = −
∫

SWNoSlip,St

Ψm+1nm
δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

−
∫

SWNoSlip,St

Ψm+1tm
δ (τk`nkt`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkt`)

+

∫
SWNoSlip,St

Ψm+1τkm
δ (nkdS)

δbi
+

∫
SWNoSlip,St

Ψm+1τk`nkn`
δ (nmdS)

δbi︸ ︷︷ ︸
SD

+

∫
SWNoSlip,St

Ψq+1tqtmτk`nkt`
δ (tmdS)

δbi︸ ︷︷ ︸
T1

−
∫

SWNoSlip,St

Ψq+1nqτk`nkt`tm
δ (nmdS)

δbi︸ ︷︷ ︸
SD

(3.3.4.33)

Finally, the term that originates from the differentiation of the FS part of the
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objective function is expressed as∫
S

Obj
WNoSlip,St

δFS
δbi

dS =

∫
S

Obj
WNoSlip,St

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T2

+

∫
S

Obj
WNoSlip,St

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WNoSlip,St

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

+

∫
S

Obj
WNoSlip,St

∂FS
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkt`)

��
��

�
��

�
��
�

+

∫
S

Obj
WNoSlip,St

∂FS
∂vAk

δvAk
δbi

dS

��
��

�
��

�
��

+

∫
S

Obj
WNoSlip,St

∂FS
∂ν̃

δν̃

δbi
dS+

∫
S

Obj
WNoSlip,St

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
︸ ︷︷ ︸

ABC

(
∂ν̃
∂xk

nk

)
(3.3.4.34)

The ABCp and ABC(τk`nkn`) terms are eliminated in the same way as for the slip
stationary walls. Thus, the adjoint boundary conditions are given by Eq. 3.3.4.14
or Eq. 3.3.4.15 , expressed on SWNoSlip,St with the same constraint on the objective
function, namely ∂FS

∂p
= − ∂FS

∂(τk`nkn`)
on SWNoSlip,St.

The ABC(τk`nkt`) terms are eliminated by setting

Ψm+1tm =


∂FS

∂ (τk`nkt`)
, at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.3.4.35)

If, additionally, the objective function satisfies the following constraint

∂FS
∂ (τk`nkt`)

tmτpqnptq +
∂ (FSdS)

∂ (tkdS)
= 0 (3.3.4.36)

then the sum of terms T1 and T2 vanishes automatically.

Finally, terms ABC
(
∂ν̃
∂xk

nk

)
are eliminated by setting

ν̃a =


Re0 σ

ν + (1 + cb2)

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) , at SObj

WNoSlip,St

0 , at SWNoSlip,St \ SObj
WNoSlip,St

(3.3.4.37)



3.3. The Continuous Adjoint Method for Incompressible Fluid Flows - FI Formulation113

Rotating No-Slip Wall Boundaries SWNoSlip,Rot

For rotating no-slip walls, the no-slip condition is expressed as vRm = 0, (m = 1, . . . , 3)
and, consequently, the variation in the relative velocity is zero. Hence, the condi-
tions that must be taken into account read

δvRm
δbi

= 0

δvAm
δbi

=
�
�
�δvRm

δbi
+
∂vFm
∂x`

δx`
δbi

(3.3.4.38)

Integrals S1 and S5 vanish automatically. Integral S3 is expanded in the same
way as for the stationary no-slip walls (Eq. 3.3.4.33 ). The remaining surface
integrals are treated as follows

S2 =

���
���

���
���

���
∫

SWNoSlip,Rot

Ψm+1
δ

δbi

(
vRk nkv

A
m

)
dS

���
���

���
���

���

−
∫

SWNoSlip,Rot

Ψm+1v
R
k v

A
m

δ (nkdS)

δbi

+

∫
SWNoSlip,Rot

Ψm+1nm
δp

δbi
dS

︸ ︷︷ ︸
ABCp

(3.3.4.39)

S4 =
��

���
���

���
∫

SWNoSlip,Rot

τ
adj
kmnk

δvRm
δbi

dS+

∫
SWNoSlip,Rot

τ
adj
kmnk

∂vFm
∂x`

δx`
δbi

dS

︸ ︷︷ ︸
SD

(3.3.4.40)

S10 =

((((
(((

((((
(((

((((
(((

((∫
SWNoSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
δvRm
δbi

dS

+

∫
SWNoSlip,Rot

ν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
∂vFm
∂xp

δxp
δbi

dS

︸ ︷︷ ︸
SD

(3.3.4.41)

The term originating from the differentiation of the objective function (part FS)
is expressed as
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∫
S

Obj
WNoSlip,Rot

δFS
δbi

dS =

∫
S

Obj
WNoSlip,Rot

∂FS
∂xk

δxk
δbi

dS +

∫
S

Obj
WNoSlip,Rot

∂ (FSdS)

∂ (nkdS)

δ (nkdS)

δbi

︸ ︷︷ ︸
SD

+

∫
S

Obj
WNoSlip,Rot

∂ (FSdS)

∂ (tkdS)

δ (tkdS)

δbi

︸ ︷︷ ︸
T2

+

∫
S

Obj
WNoSlip,Rot

∂FS
∂p

δp

δbi
dS

︸ ︷︷ ︸
ABCp

+

∫
S

Obj
WNoSlip,Rot

∂FS
∂ (τk`nkn`)

δ (τk`nkn`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkn`)

+

∫
S

Obj
WNoSlip,Rot

∂FS
∂ (τk`nkt`)

δ (τk`nkt`)

δbi
dS

︸ ︷︷ ︸
ABC(τk`nkt`)

��
�
��

�
��

�
��

+

∫
S

Obj
WNoSlip,Rot

∂FS
∂vRk

δvRk
δbi

dS

��
�
��

�
��

��

+

∫
S

Obj
WNoSlip,Rot

∂FS
∂ν̃

δν̃

δbi
dS+

∫
S

Obj
WNoSlip,Rot

∂ (FSdS)

∂
(
∂ν̃
∂xk

nkdS
) δ

δbi

(
∂ν̃

∂xk
nkdS

)
︸ ︷︷ ︸

ABC

(
∂ν̃
∂xk

nk

)
(3.3.4.42)

Terms ABCp and ABC(τk`nkn`) are eliminated in the same way as for no-slip
rotating wall boundaries. Thus, the adjoint boundary conditions are given by Eq.
3.3.4.26 or Eq. 3.3.4.27, expressed on SWNoSlip,Rot with the same constraint on the
objective function definition, namely ∂FS

∂p
= − ∂FS

∂(τk`nkn`)
on SWNoSlip,Rot.

Terms ABC(τk`nkt`) are eliminated by the same adjoint boundary condition ex-
pressed by Eq. 3.3.4.35. Finally, the adjoint boundary condition Eq. 3.3.4.37

expressed along SWNoSlip,Rot leads to the elimination of the ABC
(
∂ν̃
∂xk

nk

)
terms.

3.3.4.2 Inlet and Outlet Boundaries SI/O

The flow boundary conditions for the inlet and outlet are described in Sections
2.6.1 and 2.6.2, respectively. A set of local flow quantities (V loc

` , ` = 1, . . . , 4) is
defined at these boundaries. This set is formed by the flow quantities for which
a Dirichlet condition is imposed and the flow quantities which are extrapolated
from the interior of the domain.

As in the case of compressible flows, the surface integrals that arise from the
differentiation of the viscous terms, S3 and S4, are neglected, by assuming that
the variation in viscous stresses is zero along the inlet and outlet. Inlet and outlet
are considered unparameterized, so their contribution on the surface sensitivity
derivative terms is zero.
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Inlet Boundaries SI

For the inlet, let V loc
` , (` = 1, . . . , 3) be the quantities for which a Dirichlet con-

dition is imposed and V loc
4 the flow quantity the value of which is extrapolated from

the interior of the domain. This leads to δV loc
`

δbi
= 0, (` = 1, . . . , 3). Developing terms

S1 and S2, the following terms arise

S1 =

��
���

���
���

���
∫
SI

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

1

δV loc
1

δbi
dS

���
���

���
���

���

+

∫
SI

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

2

δV loc
2

δbi
dS

��
���

���
���

���
�

+

∫
SI

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

3

δV loc
3

δbi
dS+

∫
SI

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

4

δV loc
4

δbi
dS

︸ ︷︷ ︸
ABCV

loc
4

(3.3.4.43)

S2 =

���
���

���
���

���
��∫

SI

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

1

δV loc
1

δbi
dS

���
���

���
���

���
���

+

∫
SI

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

2

δV loc
2

δbi
dS

��
���

���
���

���
���

�

+

∫
SI

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

3

δV loc
3

δbi
dS+

∫
SI

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

4

δV loc
4

δbi
dS

︸ ︷︷ ︸
ABCV

loc
4

(3.3.4.44)

Eliminating the ABCV loc
4 term leads to the following adjoint boundary condition

which is taken into account when computing the boundary adjoint flux

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

4

=

−
∂FS
∂V loc

4

, at SObj
I

0 , at SI \ SObj
I

(3.3.4.45)

Since a Dirichlet boundary condition is imposed on ν̃ along the inlet, terms S5,
S7 and S9 vanish automatically. The remaining terms are eliminated by setting
ν̃a = 0.

Outlet Boundaries SO

For the outlet, let V loc
` , (` = 1, . . . , 3) be the quantities extrapolated from the

interior of the domain and V loc
4 the quantity for which a Dirichlet boundary con-

dition is set. As a result δV loc
4

δbi
= 0. Taking this into account, terms S1 and S2 are

written as
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S1 =

∫
SO

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

1

δV loc
1

δbi
dS

︸ ︷︷ ︸
ABCV

loc
1

+

∫
SO

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

2

δV loc
2

δbi
dS

︸ ︷︷ ︸
ABCV

loc
2

+

∫
SO

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

3

δV loc
3

δbi
dS

︸ ︷︷ ︸
ABCV

loc
3

��
���

���
���

���
�

+

∫
SO

Ψ1nk
∂f inv1k

∂Um

∂Um
∂V loc

4

δV loc
4

δbi
dS (3.3.4.46)

S2 =

∫
SO

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

1

δV loc
1

δbi
dS

︸ ︷︷ ︸
ABCV

loc
1

+

∫
SO

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

2

δV loc
2

δbi
dS

︸ ︷︷ ︸
ABCV

loc
2

+

∫
SO

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

3

δV loc
3

δbi
dS

︸ ︷︷ ︸
ABCV

loc
3

���
���

���
���

���
���

+

∫
SO

Ψm+1nk
∂f inv(m+1)k

∂U`

∂U`
∂V loc

4

δV loc
4

δbi
dS (3.3.4.47)

Eliminating the ABCV loc
` , (` = 1, . . . , 3) terms gives rise to the following adjoint

boundary conditions

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

`

=

−
∂FS
∂V loc

`

, at SObj
O

0 , at SO \ SObj
O

(3.3.4.48)

Eq. 3.3.4.48 is taken into account in the computation of the adjoint boundary
flux along the outlet. Since a zero Neumann condition is imposed on ν̃ along the

outlet,
δ
(
∂ν̃
∂xk

nk

)
δbi

= 0 and integrals S6 and S8 vanish automatically. The remaining
integrals are eliminated by setting the multiplier of δν̃

δbi
equal to ∂FS

∂ν̃
along SObj

O and
equal to zero along SO \ SObj

O .



Chapter 4

Basics of Shape Parameterization

In Chapter 3, the adjoint method for aerodynamic/hydrodynamic shape optimiza-
tion was presented. The adjoint method computes the sensitivity derivatives of the
objective function w.r.t. a set of design variables. In order to update the shape dur-
ing the optimization loop, the design variables need to be linked to the geometry
through a parameterization method. In addition, the differentiation of the parame-
terization process provides the means to compute δxk

δbi
, (k = 1, . . . , 3, i = 1, . . . , N),

that is involved in the expression of sensitivity derivatives and, from now on, is
referred to as geometric sensitivities.

The simplest approach to compute such terms is to assume that any mesh
node can move independently from the rest of the computational mesh and, thus,
its coordinates are design variables. Let xjk be the k-coordinate of mesh node j.
Then

δxjk
δxim

= δijδkm (4.1)

The variation of the surface normal vector w.r.t. the coordinates of each node can
also be computed by expanding the geometric formulas that lead to the computa-
tion of normal vector and applying the chain rule combined with Eq. 4.1.

The field of the objective function sensitivity w.r.t. the coordinates of the mesh
nodes

(
δF
δxk
, k = 1, . . . , 3

)
gives the so-called sensitivity map. When using the ad-

joint SI approach the map is a vector field on the surface to be optimized. Based
on differential geometry considerations and assuming smooth surfaces, any node
movement tangent to the surface does not change its shape (only its discretiza-
tion). Thus, the sensitivity map can be plotted as a scalar field containing only(
δF
δxk

nk
)

. When using the adjoint FI approach the sensitivity map is a vector
field in the whole flow domain. If a certain mesh morphing technique, linking
the movement of internal mesh nodes with the movement of surface nodes, is also
taken into account a surface sensitivity map can be computed on the shape under

117
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consideration.
Using the sensitivity map during an automatic optimization process has some

obvious drawbacks. Firstly, if each node is displaced independently, the resulting
boundary surface will most likely lack smoothness. Smoothness is very impor-
tant since it is associated with manufacturability and endurance of a structure.
To overcome the smoothness problem, smoothing of the sensitivity map can be
performed. However, a posteriori smoothing of the sensitivity map may potential
destroy useful information for the optimization progress and, therefore slow down
the optimization algorithm or even cause the optimization to fail. A remedy to
this problem is the inclusion of the smoothing process in the computation of the
sensitivity derivatives that comprise the sensitivity map. Nevertheless, such an
approach adds complexity in the computation of the smoothed sensitivity deriva-
tives and, even though it seems as parameterization-free, it actually implies some
type of space parameterization, in the sense that nodes are not allowed to move
independently in space but interact with each other. Another drawback of di-
rect, sensitivity map-based node displacement is that imposition of geometric
constraints is far from trivial.

Finally, in case of population based optimization methods (such as Evolu-
tionary Algorithms) or, if the cost of the method used to compute the sensitivity
derivatives depends on the number of design variables (not the case for the ad-
joint method), the large number of nodes renders the optimization prohibitively
expensive.

Figure 4.1: Shape parameterization may be considered as a process linking the N
design variables to the coordinates of the Ns nodes.

Solution to the aforementioned problems is sought through the use of a param-
eterization method. One may consider a parameterization as a function/process
that links the Cartesian coordinates of a point with a set of parameters bi which,
for optimization problems, also serve as design variables (Fig. 4.1). The desired
features from a parameterization method are:

� Smoothness: A parameterization method must be smooth and allow smooth
deformations to be performed on the shape/space under consideration.

� Flexibility: A parameterization method must be applicable to a variety of
shapes and provide the means for a wide range of shapes to be generated.

� Constraints: Geometric constraints must be easy to implement in the pa-
rameterization.
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� Intuitive: The less intuitive a parameterization method, the greater the num-
ber of design variables needed to describe a shape and the more difficult for
the engineer to decide on design variables values and limits.

� Compactness: A parameterization method must be as compact as possi-
ble in order to provide low dimensionality design spaces. The higher the
dimensionality of the design space, the higher the optimization cost when
population based techniques are used and/or the sensitivity derivatives are
computed at a cost proportional to the number of design variables. Usually,
this feature is contradicting with the need for flexibility and a compromise
is sought by most parameterization methods.

� Differentiability: If a parameterization method is to be used within a gradient-
based optimization process, this must be differentiable. For analytically dif-
ferentiable parameterization methods δxjk

δbi
can be computed by closed form

relations. On the other hand, for more complicated methods (which cannot
be differentiated analytically) an algorithmic differentiation approach must
be followed for the computation of the geometric sensitivities.

� Computational efficiency: Any possible shape must be computed with as
little computational effort as possible, so that the impact of the parameteri-
zation on the overall optimization wall-clock time is minimal.

� CAD compatibility: Ideally, if the parameterization method provides the op-
timized shape in neutral CAD formats (such as IGES, STEP etc.), used by
the majority of commercial and open-source CAD packages, the link be-
tween the optimization and the development/production phase of a product
is greatly facilitated. Of course, this means that the shape under consider-
ation must be described with a mathematical model that each format uses
(typically parametric curves and surfaces and/or solid modeling).

One way to categorize shape parameterization methods is the following. A
certain parameterization can describe the shape solely (it is only defined along
a shape) or it can describe/parameterize a region in space, in which the shape
to be designed is embedded. We will refer to the first class as direct boundary
parameterization methods while the ones falling to the second class will be referred
to as free-form parameterization methods.

In this chapter, the basic mathematical tools used by both methods are pre-
sented. Specifically, Non-Uniform Rational B-Spline (NURBS) curves and surfaces
are described, together with a few fundamental algorithms/operations involving
them. An extensive analysis of NURBS, as well as algorithms related to NURBS,
can be found in the classic book from Piegl and Tiller [149].
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4.1 B-Spline Basis Functions

In order to define the B-Spline basis functions, we first need to define a sequence
of non-decreasing real values ui, i = 0, . . . ,m − 1 called the knots. The knots
divide a curve (surface, volume etc. for higher dimensions) in segments linked
with a certain degree of continuity. The collection of all ui is called the knot
vector. The ith B-Spline basis function of degree p (Ni,p) is then defined by the
recursive formula

Ni,0 (u) =

{
1 , ui ≤ u < ui+1

0 , elsewhere

Ni,p (u) =
u− ui
ui+p − ui

Ni,p−1 (u) +
ui+p+1 − ui
ui+p+1 − ui+1

Ni+1,p−1 (u)

(4.1.1)

Eq. 4.1.1 may yield the quotient 0/0 which is defined to be zero [149]. The basis
function Ni,p (u) is a piecewise polynomial defined on the whole real line. Since
the knots in the knot vector are arranged in a non-decreasing order, they need
not be distinct. Two or more consecutive knots with the same value constitute a
multiple knot. The times a knot is repeated is called the multiplicity of the knot.
Multiple knots imply knot spans of zero length. Some important properties of
B-Spline basis functions can be found in [149]. Out of them, the most important
ones when it comes to parameterization methods, are

� Ni,p ≥ 0 on the whole real line (non-negativity).

� Ni,p (u) 6= 0 only in the knot span [ui, ui+p+1 ) (local support).

�

i∑
j=i−p

Nj,p = 0 for all u ∈ [ui, ui+1) .

� only p + 1 basis functions are non-zero in any given knot span, namely
Ni−p,p, . . . , Ni,p in knot span [ui, ui+1) .

� All derivatives of a basis function exist in the interior of a knot span. At a
knot of multiplicity s, the basis function is p− s times differentiable.

Some examples of basis functions are shown in Fig. 4.2. The effect of adding a
multiple knot several times is presented in Fig. 4.3 where it can be seen that the
differentiability of the basis functions on the multiple knot position is reduced up
to 0th order when the knot multiplicity equals the degree of the basis functions.
In these figures, only the non-zero basis functions are presented.
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Figure 4.2: B-Spline basis functions of (a) 1st, (b) 2nd and (c) 3rd degree defined on
the knot vector U = (0 0 0 0 0.1 0.2 0.3 0.5 0.7 0.8 0.9 1 1 1 1)

Considering the derivatives of the B-Spline basis functions the first derivative,
is given by

N ′i,p (u) =
p

ui+p − ui
Ni,p−1 −

p

ui+p+1 − ui+1

Ni+1,p−1 (4.1.2)

while the kth derivative is computed by

N
(k)
i,p =

p

p− k

(
u− ui
ui+p − ui

N
(k)
i,p−1 +

ui+p+1 − u
ui+p+1 − ui+1

N
(k)
i+1,p−1

)
(4.1.3)

For a proof of Eqs. 4.1.2 , 4.1.3 the reader is referred to [149] and [24].
Another discussion on the B-Spline basis functions is related to the catego-

rization of knot vectors. A knot vector can be clamped or unclamped. A clamped
knot vector of degree p has the first and last knot with multiplicity equal to p+ 1.
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Figure 4.3: (a)–(c): B-Spline basis functions for the knot vector U =
(0 0 0 0 0.1 0.2 0.3 0.5 0.7 0.7 0.8 0.9 1 1 1 1). (d)–(f): B-Spline basis functions for the
knot vector U = (0 0 0 0 0.1 0.2 0.3 0.5 0.7 0.7 0.7 0.8 0.9 1 1 1 1). The effect of knot
multiplicity on the continuity of the basis functions is evident comparing with Fig.
4.2.

If this does not hold, the knot vector is characterized as unclamped. In litera-
ture, unclamped knot vectors are also referred to as periodic and clamped ones
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as non-periodic. Taking into account Eq. 4.1.1 it is evident that, for a given knot
vector containing m knots, the basis functions of degree p can be computed only
for u ∈ [up, um−p−1]. Unclamped knot vectors are useful for representing closed
shapes and merging or extending shapes represented by B-Splines with a certain
degree of continuity.

Knot vectors are also characterized by the length of their knot spans (distance
between knots in terms of parameter u). An unclamped knot vector is called
uniform if all knot spans have equal length. A clamped knot vector is called
uniform if all internal knot spans (not the zero length ones in the beginning and
end of the knot vector) have the same length. In any other case, the knot vector
is characterized as non-uniform.

Finally, a knot vector of the form

U = ( 0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

) (4.1.4)

yields the Bernstein polynomials which are alternatively defined as

Bi,p (u) =
p!

i! (p− i) !
ui (1− u)p−i (4.1.5)

4.2 NURBS Curves

If we define a set of n points Pi, i = 0, . . . , n − 1 then, using the B-Spline basis
functions we can define a parametric curve C (u) as

C (u) = Ni,p (u) Pi , with u ∈ [a, b] and i = 0, . . . , n− 1 (4.2.1)

and Ni,p is the ith B-Spline basis function defined on the knot vector

U = ( a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−2, b, . . . , b︸ ︷︷ ︸
p+1

)

The points Pi are called control points and the polygon they form, if connected by
lines, is called the control polygon.

In what follows bold letters correspond to vector fields in the 2D,3D (or 4D as
will be seen hereafter) space. With this convention, the position of the ith control
point in the 3D Cartesian space is Pi = (xi yi zi)

T .
Some of the many properties of B-Spline curves are

� If a clamped knot vector is used, C interpolates P0 and Pn−1, that is C (a) =
P0 and C (b) = Pn−1 (endpoint interpolation).
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� C is a piecewise polynomial curve, formed by polynomials of degree p.

� The number of knots m, number of control points n and the degree p are
linked through m = n+ p+ 1.

� Any affine transformation can be applied to C by applying it to its control
points (affine invariance).

� C is contained in the convex hull of the polygon formed by Pi−p, . . . ,Pi

(strong convex hull property).

� Modification of the position of control point Pi changes only the part of C (u)
for u ∈ [ ui, ui+p+1 ) (local modification property).

� C has continuity and differentiability at a certain u that corresponds to
the continuity and differentiability of the basis functions at this parametric
position. Hence, C is infinitely differentiable in the interior of knot intervals
and, only p− s times differentiable at a knot with multiplicity s.

A B-Spline curve defined by n = p + 1 control points and a knot vector of the
form U = ( 0, . . . , 0︸ ︷︷ ︸

p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

) is a Bezier curve. Thus, Bezier curves are a subset

of B-Spline curves.
An extensive discussion on the properties of B-Spline curves can be found

in [149]. Fig. 4.4presents a cubic B-Spline with its control polygon. The curve
segments influenced by P4 and P6 are also shown.
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Figure 4.4: B-Spline cubic curve: A cubic curve (black) with its control polygon
(gray). (a) The black solid part of the curve is the domain of influence of P4. (b) The
black solid part is the domain of influence of P6. The curve is non-uniform since it is
defined on the knot vector U = (0, 0, 0, 0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8, 0.85, 1, 1, 1, 1).
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Even though non-uniform B-Spline curves offer great flexibility they have a
shortcoming when it comes to exactly representing conics. Specifically, the only
family of conics that can be represented exactly by polynomial curves, such as
B-Splines, is parabolas. Circles, ellipses and hyperbolas are rational curves by
definition. By using weights to scale the effect of each control point on the curve,
Eq. 4.2.1 becomes

C (u) = Ri,p (u) Pi (4.2.2)

where, Ri,p is the ith rational basis function of degree p given by

Ri,p =
Ni,p (u)wi
Nj,p (u)wj

(4.2.3)

no summation on p and i, while wi are the weights corresponding to each basis
function and control point. Eq. 4.2.2 defines what is called a Non-Uniform Ra-
tional B-Spline (NURBS) curve. In that sense NURBS are a superset of B-Spline
curves. All the aforementioned properties of B-Spline curves are also valid for
NURBS curves.

An alternative expression for defining a NURBS curve stems from the use of
homogeneous coordinates. A point P (x, y, z) in 3D Euclidean space can also be
written as Pw (wx,wy, wz, w) in a 4D space (assuming that w 6= 0). The coordi-
nates (wx,wy, wz, w) are called the homogeneous coordinates. P can be retrieved
from Pw by dividing all coordinates with w. Geometrically, this is equivalent to a
perspective projection Π of Pw with the origin as the vanishing point and w = 1
as the projection plane Fig. 4.5.

Figure 4.5: Perspective projection Π from 3D homogeneous coordinates to 2D Eu-
clidean space. The same process is generalized to map 4D homogeneous coordinates
to 3D Euclidean space.
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Using homogeneous coordinates a NURBS curve is expressed as

Cw (u) = Ni,p (u) Pw
i, i = 0, . . . , n− 1 (4.2.4)

The curve resulting from Eq. 4.2.4 is embedded in the 4D space. Using the per-
spective projection Π the locus described by Eq. 4.2.4 can be mapped onto the 3D
Euclidean space. Homogeneous coordinates are very useful when developing geo-
metric algorithms, since their use allows the treatment of a 3D piecewise rational
curve as a 4D piecewise polynomial one.

4.2.1 Derivatives of NURBS Curves

Let C(k) (u) denote the k-th derivative of a B-Spline curve w.r.t. the parameter u.
Differentiating (k) times Eq. 4.2.1 w.r.t. u yields

C(k) (u) = N
(k)
i,p (u) Pi (4.2.1.1)

where, the derivatives of the basis functions N (k)
i,p are computed using Eq. 4.1.3.

Since the coordinates of the points on the curve are given as univariate func-
tions of the parameter u, C(1) (u) represents the direction tangent to the curve at
parametric position u (Fig. 4.6).

Figure 4.6: The first derivative of a B-Spline curve C(1) (u) is a vector tangent to
the curve at position u. The magnitude of the vector is equal to the parameterization
speed, namely ds

du where s would represent a natural or arc-length parameterization
of the curve.
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The derivatives of a NURBS curve are slightly more complicated to compute.
First, a NURBS curve can be expressed as

C (u) =
A (u)

W (u)

where A (u) = W (u) C (u) and W (u) = Ni,p (u)wi

(4.2.1.2)

Using the general Leibniz rule, the k-th derivative of A (u) is obtained as

Ak (u) =

(
k

j

)
C(k−j) (u)W (i) (u) δij with i, j = 0, . . . , k

and
(
k

j

)
=

k!

j! (k − j)

(4.2.1.3)

In Eq. 4.2.1.3 no summation is implied on k. Rearrangement of the terms in Eq.
4.2.1.3 lead to the following expression for C(k) (u)

C(k) (u) =
A(k) (u)−

(
k
j

)
C(k−j) (u)W (i) (u) δij

W (u)
with i, j = 1, . . . , k (4.2.1.4)

where no summation is implied on k.

4.2.2 Construction of Circular Arcs

Circular arcs are a common geometrical shape in many engineering applications.
In the field of turbomachinery, which is the main focus of this thesis, they are
used in defining the shape of leading and trailing edges, designing cooling holes
on turbine blades e.t.c.. Furthermore, surfaces of revolution are all constructed
using the mathematical description of circular arcs. For these reasons, the ability
of the mathematical tool, used by a parameterization method, to be able to handle
circular arcs is of great importance.

Construction of circles, ellipses and hyperbolas through NURBS is described
in [149]. Herein, only the construction of circular arcs with sweep angle 0 ≤
∆θ ≤ 90° is considered. Circular arcs of sweep angle larger than 90° are created
in pieces and, then, merged together to form a single NURBS curve. For a proof
and detailed analysis of the NURBS circle the reader is referred to [148]. Let us
assume the circle centered at the origin O and î1, î2 the unit vectors for the x,
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and y axis respectively, and sweeping from angle θS to θE with radius r. The two
endpoints (which are also control points) are given by

P0 = O + r cos θS î1 + r sin θS î2

P2 = O + r cos θE î1 + r sin θE î2
(4.2.2.1)

where both control points are associated with a unit weight (w0 = w2 = 1). The
circle’s tangent directions t̂0, t̂2, at points P0 and P2 respectively, are given as

t̂0 = − sin θS î1 + cos θS î2

t̂2 = − sin θE î1 + cos θE î2
(4.2.2.2)

The Euclidean coordinates of the intermediate control point P1 are given by
computing the tangents intersection. Finally, the weight associated with P1 is
w1 = cos

(
∆θ
2

)
. The control points Pw

0 , Pw
1 and Pw

2 form a rational Bezier curve
that represents the target circular arc. A graphical representation is shown in
Fig. 4.7.

Figure 4.7: Construction of circular arc sweep less than 90° using NURBS curves.

4.3 NURBS Surfaces

NURBS curves presented in Section 4.2 can be considered as a mapping of
a straight line segment (represented by the single parameter u) to the multi-
dimensional Euclidean space of dimensionality corresponding to the this of the
control points. Similarly, a surface may be considered as the mapping of a part of
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a planar area (represented by two parameters u and v) to the multi-dimensional
space.

B-Spline and NURBS surfaces are tensor product surfaces. Tensor product
surfaces follow a bidirectional curve scheme, meaning that they use bivariate
basis functions which are the product of univariate basis functions defined on
the two distinct parametric directions.

Considering a m × n grid of control points Pij, ( i = 0, . . . , n − 1 and j =
0, . . . ,m− 1), a B-Spline surface S (u, v) is expressed as

S (u, v) = Ni,pu(u)Nj,pv(v) Pi,j (4.3.1)

where, Ni,pu (Ni,pv ) are the basis functions of degree pu (pv) defined on the knot
vectors U (V respectively) as given by Eq. 4.1.1. An example of a B-Spline surface
is presented in Fig. 4.8.

Figure 4.8: Example of a polynomial B-Spline surface defined by a 7 × 4 grid of
control points and basis functions of degree 3 and 2, respectively, defined on uniform
knot vectors. Some of the control points lay below the surface and, for this reason,
the surface is rendered slightly transparent.

As with curves, if each control point is associated with a weight, a NURBS
Surface is created. A NURBS surface is, thus, defined as

S (u, v) = Rij,pupv(u, v) Pi,j (4.3.2)

where, Rij,pupv is the {i, j}-th rational basis function of degree {pu, pv} defined as

Rij,pupv =
Ni,pu (u)Nj,pv (v)wij
Nk,pu (u)N`,pv (v)wk`

(4.3.3)
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where no summation is implied on i, j, pu and pv. Using homogeneous coordinates
a NURBS surface is expressed as

Sw = Ni,puNj,pvP
w
ij, i = 0, . . . , n− 1, j = 0, . . . ,m− 1 (4.3.4)

The main properties of NURBS curves (endpoint interpolation, local support,
strong convex hull property, differentiability e.t.c.) are also extended to NURBS
surfaces. Clearly, freezing one of the two parametric coordinates yields an isopara-
metric curve. For example the isoparametric curve CW

u∗ (v) at u = u∗ obtained by
the surface Sw (u, v) is expressed as

Cw
u∗ (v) = Nj,pv (v) Qwj

with Qw
j = Ni,pu (u∗) Pw

ij

(4.3.5)

and a similar equation hold for CW
v∗ (u) iso-v curves.

Several basic families of surfaces can be constructed as NURBS surfaces.
Some examples are described in the following sections.

4.3.1 Derivatives of NURBS Surfaces

By differentiating Eq. 4.3 k times w.r.t. u and ` times w.r.t. v, the following ex-
pression results for the derivative of a B-Spline surface

∂k+`

∂ku∂`v
S (u, v) = N

(k)
i,pu

(u)N
(`)
j,pv

(v) Pij (4.3.1.1)

A rational B-Spline (NURBS) surface can be expressed as

S (u, v) =
W (u, v) S (u, v)

W (u, v)
=

A (u, v)

W (u, v)

where W (u, v) = Ni,pu (u)Nj,pv (v)wij

(4.3.1.2)

For brevity, in what follows in this section, S will be used instead of S (u, v), A
instead of A (u, v) and W instead of W (u, v). Moreover, the partial derivatives
∂k+`S
∂ku∂`v

, ∂k+`A
∂ku∂`v

and ∂k+`W
∂ku∂`v

will shortly be referred to as S(k,`), A(k,`) and W (k,`),
respectively. Application of the general Leibniz’s rule twice leads to
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A(k,`) =
(
A(k,0)

)(0,`)
=
[
(WS)(k,0)

](0,`)

⇒ A(k,`) = W (0,0)S(k,`) +

(
k

j

)
S(k−j,`)W (i,0)δij +

(
`

q

)
S(k,`−q)W (0,r)δqr

+

(
k

j

)(
`

q

)
S(k−j,`−q)W (i,r)δijδqr (4.3.1.3)

where no summation is implied on k and `, i, j = 1, . . . , k and q, r = 1, . . . , `.
Rearranging terms in Eq. 4.3.1.3 S(k,`) is expressed as

S(k,`) =
1

W

[
A(k,`) −

(
k

j

)
S(k−j,`)W (i,0)δij −

(
`

q

)
S(k,`−q)W (0,r)δqr

−
(
k

j

)(
`

q

)
S(k−j,`−q)W (i,r)δijδqr

] (4.3.1.4)

Similar to NURBS curves the first derivatives of a B-Spline surface represent
the direction of the tangent vectors on the surface. Specifically, S(1,0) (u, v) results
in the tangent vector on the surface that is also tangent to the iso-v line passing
through (u, v), and S(0,1) (u, v) results in the tangent vector of S that is also tangent
to the iso-u line passing through (u, v). Finally, the normal to the surface vector
N on (u, v) can be computed as

N =
S(1,0) × S(0,1)

|S(1,0) × S(0,1)|
(4.3.1.5)

4.3.2 Bilinear Surfaces

Given four points P0,0, P1,0, P0,1 and P1,1 in the 3D Cartesian space, a surface
that linearly interpolates the four lines defined by these points, namely {P0,0P1,0},
{P1,0P1,1}, {P1,1P0,1} and {P0,1P0,0} is sought. Such a surface is easily con-
structed as

S (u, v) = Ni,1 (u)Nj,1 (v) Pij (4.3.2.1)

with i, j = 0, 1 and Ni,1, Nj,1 the 1st degree B-Spline basis functions defined on
the knot vectors U = V = (0 0 1 1).
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Figure 4.9: The first order partial derivatives of a NURBS surface define vectors
tangent to the surface in the two parametric directions. S(1,0) is tangent to the iso-v
lines while S(0,1) is tangent to the iso-u ones.

Figure 4.10: Example of a bilinear NURBS surface constructed from the four corner
control points. Isoparametric curves are also drawn on the surface, in the form of a
structured grid.

4.3.3 General Cylinder Surfaces

A general cylinder surface is obtained by sweeping a profile curve Cw (u) by a
distance d along the unit vector D̂w. Point D̂w results from a 3D point D̂ by
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mapping it to homogeneous space with w = 1. Such a surface is computed as

Sw (u, v) = Ni,pu(u)Nj,1(v) Qw
ij

with Qw
i0 = Pw

i and Qw
i1 = Pw

i + dD̂w
(4.3.3.1)

where Pw
i are the control points defining the profile curve Cw, Ni,pu the B-Spline

basis functions of degree pu defined on the knot vector U and Nj,1 the basis
functions of 1st degree defined on the knot vector V = (0 0 1 1). An example of a
general cylinder surface is show in Fig. 4.11.

(a) (b)

Figure 4.11: (a) A profile curve, its control points Pi and the displacement vector are
used to create a general cylinder surface. (b) The resulting general cylinder surface
and its control points Qij . On both figures only the first and last control points are
labeled. In addition, the base curve is chosen to be polynomial for ease of graphic
representation.

4.3.4 Surfaces of Revolution

Surfaces of revolution are very useful, especially when dealing with turbomachin-
ery geometries due to the axisymmetric configurations encountered. They are
used extensively in the turbomachinery specific parameterization methods that
are developed in the following chapters.

A surface of revolution is defined by revolving a curve Gw (u), called the gen-
eratrix, around a given axis. For the sake of simplicity and, without lacking
generality, the axis around which curve Gw is revolved is assumed to coincide
with the z-axis passing through the origin O. Let us also assume that the sweep
angle of the surface of revolution is 0 ≤ ∆θ ≤ 90°. The surface of revolution
exhibits the following characteristics
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� For a fixed value v = v∗ the isoparametric curve Cw
v∗ (u) is the generatrix

rotated by a certain angle around z corresponding to the value v∗.

� For a fixed value u = u∗ the isoparametric curve Cw
u∗ (v) is a circular arc

lying on a plane perpendicular to axis z. The intersection of this plane with
the z-axis is the centre of this arc.

The surface of revolution is created by creating circular arcs starting from each
control point of the generatrix, centered at the projection of each respective control
point on z-axis. As for circular arcs, surfaces of revolution sweeping more than
90° are created by merging surfaces sweeping less than 90° degrees. For brevity,
we refrain from the presentation of the full algorithm of constructing a surface
of revolution using NURBS, which can be found in several texts (e.g. [149]). It
is important to note that even if the generatrix is a piecewise polynomial curve,
the resulting surface of revolution is still a rational tensor product surface. An
example of a surface of revolution as well as its generatrix is shown in Fig. 4.12.

(a) (b)

Figure 4.12: (a) Example of a generatrix curve and the axis that define a surface of
revolution. (b) Resulting NURBS surface and its control polygon. In both figures, only
some of the control points are labeled.
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4.3.5 NURBS Parameterization Examples

In this section some simple parameterization examples using NURBS curves and
surfaces are presented. Examples of parameterization of more complex geometries
are presented in the following chapters where more advanced parameterization
techniques are introduced.

The first example presents the parameterization of an airfoil shape using two
NURBS curves, namely one for the pressure and one for the suction side of the
airfoil (Fig. 4.13). The effect of modifying a control point position and its weight is
presented in Fig. 4.14.

Figure 4.13: Parameterization of the two sides of an airfoil using two NURBS curves.
In order to keep tangent continuity on the leading edge, the three control points in
the leading edge area must remain co-linear.

The second example is a 3D flying wing configuration. The wing planform
is of cranked arrow type. The pressure and suction sides are parameterized by
different NURBS surfaces. The control grid is 7 × 5 and results in a total of 35
control points. The wing and its parameterization are presented in Fig. 4.15.
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(a)

(b)

Figure 4.14: (a) Effect of displacing the 4th control point on the suction side. The
original shape is shown with dashed line and empty control points, while the modified
one with solid line and filled control points. (b) Effect of modification of the weight
of the 3rd suction side control point on the suction side shape. The original shape
is shown with dashed line, while the modified one is displayed with solid line. On
the original shape all control points have w = 1 while on the modified one the third
control point has w = 2.
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(a)

(b)

Figure 4.15: Shape parameterization of a flying wing configuration with cranked
arrow planform. (a) The wing geometry. Only half of the flying wing is parameterized
due to symmetry. The pressure and suction sides are represented by separate NURBS
surfaces. (b) The control points creating the half-wing geometry. Even though a crank
exists (discontinuity of the tangent to the surface), a multiple knot in the spanwise
direction allows the full span of the half-wing to be modeled using a single quadratic
(in both parametric directions) NURBS surface.
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Chapter 5

Geometric Modeling of Turbomachinery
Components

In Chapter 4, the basics of shape parameterization techniques have been pre-
sented. Geometric modeling and parameterization of turbomachinery components
is a challenging field of application of shape parameterization techniques, due to
the complexity of the components, presence of axisymmetric features and high
sensitivity of the flow to the changes in shape.

Directly using NURBS surfaces to model a compressor or turbine blade, for ex-
ample, would fail to provide the required compactness, while the effects of control
point variations on the geometry would not be intuitive. In addition, geometric re-
quirements such as thickness extrema, leading and trailing edge shape, tip gaps
etc. would be extremely difficult to handle.

Additionally, altering the blade shape can, potentially lead to surfaces that
are either detached from or intersect the hub and shroud. These geometries
are invalid (if not corrected properly), which can become a major performance
bottleneck when using gradient-free population based optimization methods such
as Evolutionary Algorithms (EAs). Thus, modeling a blade directly using NURBS
surfaces may also harm computational efficiency.

The aforementioned problems are even more pronounced when dealing with
mixed and radial flow components. To circumvent these shortcomings, a
turbomachinery-oriented parameterization technique is developed within this the-
sis. This technique is implemented in the software GMTurbo, using an object
oriented programming model and C++ as a programming language. Most of the
operations involved in geometry generation by GMTurbo are based on NURBS
theory (presented in Chapter 4), ensuring thus CAD compatibility.

In addition, since turbomachinery blades are typically arranged in multiple
row configurations, GMTurbo provides the option for designing multiple rows
simultaneously, ensuring proper assemblage among them.

In this chapter, the process of designing turbomachinery components with

139
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GMTurbo is presented, together with the inputs that define a geometry and may
serve as design variables in a shape optimization process. At the end of the
chapter several example geometries are presented.

At this point it must be noted that, apart from using GMTurbo during an op-
timization, the engineering significance of the parameters involved renders GM-
Turbo a useful tool even for initial and preliminary turbomachinery component
design.

5.1 Meridional Section Design

The first step that defines a turbomachine geometry is the meridional section
shape. Different types of components that can be designed by GMTurbo are
classified as follows:

� Shrouded blade rows, namely compressor/pump/turbine rotor/runner or
stator/bladed diffuser rows.

� Blade rows with tip clearance, where a tip gap is present either between the
hub and the blade (for stators) or between the shroud and the blade (for
rotors).

� Open blade rows, where the shroud surface is absent (like helicopter rotors,
aircraft propellers and horizontal axis wind turbine rotors).

� Duct components, such as inlet or outlet ducts, nozzles etc. in which the
hub surface is still present.

� Duct components that do not include the hub surface (like draft tubes of
hydraulic turbines and aircraft engine nozzles).

� Components where only the hub surface is present and exposed to external
flow (like jet engine inlet and exhaust cones).

Some examples of components that can be designed and parameterized using
GMTurbo are presented in Fig. 5.1.

The meridional section geometry definition and parameterization is described
for the case of a blade row with tip-clearance since this is the most complex
component in terms of meridional section shape. Without loss of generality it will
be assumed that the axis of rotation of the machine (or, else, axis of axisymmetry
for hub, shroud and tip surfaces) is the z axis and consequently, the meridional
plane is the (z, r) plane, with r =

√
x2 + y2. The hub, shroud and tip surfaces

are defined by their generatrices, which are specified as NURBS curves on the
meridional (z, r) plane. An upstream and downstream boundary curve is also
needed for each component. These two curves must intersect the generatrices of
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(a) (b)

(c) (d)

Figure 5.1: Example geometries generated by GMTurbo. (a) Rotor of an horizontal
axis wind turbine. This case is treated by GMTurbo as an open rotor component since
there is no shroud surface. (b) A transonic fan rotor with tip clearance. The blades,
hub, shroud and tip surfaces are modeled by GMTurbo. (c) A high-pressure turbine
nozzle guide vane row. The blades are attached to both hub and shroud surfaces. (d)
A propeller type hydraulic turbine stage. The whole assembly (guide vanes and the
runner) are modeled by GMTurbo.

hub, shroud and tip. The part of the geometry that lies outside the area bounded
by the hub and shroud generatrices and the upstream and downstream boundary
curves is not modeled at all. Next, the meridional curves defining the leading and
trailing edge of the blade are specified again as NURBS curves.
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Since multiple components can be modeled simultaneously by GMTurbo, the
hub and shroud generatrices need not be distinct for each component.

If, however, they are specified separately for each component, then proper
assembly of the generatrices is checked to avoid geometry gaps between compo-
nents. In Fig. 5.2, an example of the meridional shape definition for a compressor
row is presented. The meridional section definition is the basis for constructing
the blade since all blade sections are constructed on isospan surfaces of revolu-
tion defined between hub and shroud by generatrices interpolated from the hub,
shroud and tip ones. If the hub, shroud and tip generatrices are of the same
degree and defined on the same knot vector, then an intermediate generatrix can
be computed by directly interpolating the control points. In case the generatrices
are NURBS curves of either different degree or defined on different knot vectors,
they are brought to the least common multiple of the degrees and to common knot
vectors, using knot insertion and degree elevation algorithms for NURBS curves.
Then, intermediate generatrices are computed by control point interpolation.

Figure 5.2: Definition of the meridional section of a compressor row. Hub and
shroud generatrices, as well as upstream (left) and downstream (right) curves are
shown in black. The rotor leading and trailing edge curves are shown in dark green,
while the stator ones in red. The generatrix defining the rotor tip surface (tip gap
between rotor blade and shroud) is in blue color. The generatrix defining the stator
tip surface (tip gap between stator blade and hub) is drawn with purple color. The
light green line between the rotor trailing edge and the stator leading edge shows
the positioning and shape of the rotor/stator interface surface (auxiliary surface for
mesh generation). Finally, intermediate generatrices, arising from interpolating the
hub and shroud generatrices, are drawn in gray. It is important that the blade and
upstream/downstream boundary curves clearly intersect the generatrices, since any
geometrical entity lying outside these boundaries is not modeled.

5.2 Conformal Mapping of Surfaces of Revolution

Since a unified algorithm is sought for all kinds of turbomachinery, namely axial,
radial and mixed flow, instead of using a Cartesian coordinate system to create
blade sections, these are defined on different surfaces of revolution along the blade
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span. The mathematical tool that enables a blade section to be compactly and
easily drawn directly onto a surface of revolution is the conformal mapping.

A diffeomorphism between two manifolds, with their metrics being conformally
equivalent is called a conformal map. Two metrics g and h are said to be con-
formally equivalent if there exists a positive function c, such that g = ch, where
c is the so-called conformal factor. Conformal mapping refers to the process of
building a conformal map. Now, assume two curves C1 and C2 lying on surface
S intersecting at point P with signed angle ζ. Let C′1, C′2 be the mapping of these
curves on surface S′, and their intersection with angle ζ ′ being located at point P′.
If the mapping S 7→ S′ is conformal, then ζ = ζ ′ (Fig. 5.3).

Figure 5.3: Conformal map of a surface S to S′. The angles between directed curves
are preserved throughout the mapping (ζ = ζ ′).

The conformal map that is of interest in the design process of a turboma-
chinery blade is the mapping of a surface of revolution S (r cos θ, r sin θ, z) to a
plane Π (m, θ). Since r = r (u), z = z (u) and m = m (u), both S and Π are
bivariate vector valued functions with variables u and θ and domain of definition
[ua, ub] × [−∞,∞], where [ua, ub] is the parameter range in which the generatrix
of the surface of revolution is defined. The mapping is defined as

S (r cos θ, r sin θ, z) 7→ Π (m, θ) , with m (u) =

∫ u

ua

√
ṙ2 (t) + ż2 (t)

r (t)
dt (5.2.1)

Proposition 1. The mapping introduced by Eq. 5.2.1 is conformal [155].

Proof. The coefficients of the first fundamental form of S and Π are

ES =
∂S

∂u
· ∂S

∂u
= ṙ2 + ż2 EΠ =

∂Π

∂u
· ∂Π

∂u
=
ṙ2 + ż2

r2

FS =
∂S

∂u
· ∂S

∂θ
= 0 FΠ =

∂Π

∂u
· ∂Π

∂θ
= 0

GS =
∂S

∂θ
· ∂S

∂θ
= r2 GΠ =

∂Π

∂θ
· ∂Π

∂θ
= 1

(5.2.2)
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From Eq. 5.2.2 it is evident that ES = r2EΠ, FS = r2FΠ and GS = r2GΠ.

The mapping introduced by Eq. 5.2.1 preserves the angles of intersecting
curves between S and Π. Hence, a shape with desirable angles can be drawn
in the 2D plane Π and mapped back to S using the inverse mapping, by pre-
serving all the prescribed angles. The inverse mapping of Eq. 5.2.1 requires
the inversion of the function m (u) as u (m), which cannot be done analytically.
To overcome this obstacle, a look-up table is created when performing the direct
mapping. Then, the inverse mapping is performed by searching the look-up table
and interpolating between stored pairs of (m,u). The interpolation can be either
linear or higher order. For higher order interpolation the mapping curve M is
constructed as a NURBS curve M : [ua, ub] → [ma,mb] interpolating the known
(m,u) pairs. Computation of u that corresponds to a given m is performed by
point inversion on curve M. Once u is computed, the evaluation of S can also be
completed.

Proposition 2. The infinitesimal lengths d`S and d`Π on S and Π, respectively, are

linked through d`S = rd`Π.

Proof. The infinitesimal length on S is given by

d`S =
√
ESdu2 + FSdudθ +GSdθ2 (5.2.3)

while on Π is given by

d`Π =
√
EΠdu2 + FΠdudθ +GΠdθ2 (5.2.4)

Combining Eqs. 5.2.3 , 5.2.4 and 5.2.2 leads to

d`S = rd`Π (5.2.5)

5.3 Camber Surface Design

Having defined the meridional shape, the next step is the definition of the blade’s
camber surface. This is constructed by defining camber lines at several positions
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along the blade span. Each camber line is defined on the plane Π. The method
described herein provides two options for defining the camber line, namely

� Circular arc camber line.

� Cubic Bézier curve camber line.

For both types of camber lines, the leading (LE) and trailing edge (TE) points
need to be positioned. Their m coordinate is computed by intersecting the gen-
eratrix of the isospan surface, associated with this blade section, with the curves
defining the meridional shape of the LE and TE curves, respectively. The θ coordi-
nate of the LE and TE point is given as a function of the spanwise position η (from
hub to shroud), namely θLE : η (u) ∈ [0, 1]→ θLE (u) and θTE : η (u) ∈ [0, 1]→ θTE (u).
Both functions, θLE (u) and θTE (u) are defined as NURBS curves. Special care must
be taken when specifying θLE (u) and θTE (u) as NURBS curves so that their span-
wise distribution constitutes a function (i.e. a single θ for a given η). An example
distribution of the circumferential position of the LE and TE is shown in Fig. 5.4.
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Figure 5.4: Spanwise distribution of the LE and TE circumferential positions. The
distributions are defined as NURBS curves on a (η, θ) space and can be modified by
moving their control points. Note that the LE curve corresponds to the left ordinate,
while the TE to the right one.

The following subsections introduce the method the construction of the two
types of camber lines is based upon. Once a number of camber lines at different
spanwise sections is computed, the blade’s camber surface can be computed by
spanwise skinning. Skinning is the process of constructing a surface that passes
from a number of section curves. The implementation of NURBS skinning in
GMTurbo is based on the algorithm presented in [149].



146 5. Geometric Modeling of Turbomachinery Components

5.3.1 Circular Arc Camber Lines

In this case the camber line is part of a circular arc. In order to compute the
center, radius and sweep angle of the arc, apart from the leading and trailing
edge positioning, one more parameter need to be specified. This is the metal
angle β of either the leading edge (βLE) or the trailing edge (βTE). The βLE or βTE,
are specified as spanwise distributions, similar to the θ angles. Once all the
necessary parameters are defined, the radius ρ of the arc is computed by rB−rA =
ρ (nLE − nTE) and the center of the circle K by rK = rA + ρnLE. The symbol r is
used to denote the position vector of a point on plane Π. Useful definitions for the
aforementioned construction are shown in Fig. 5.5. From this figure, the following
relation between the stagger angle γ and the metal angles βLE and βTE must hold

2γ = βLE + βTE (5.3.1.1)

If the position of the leading and trailing edge is fixed, then, from Eq. 5.3.1.1, it
is evident that only one of βLE and βTE can be defined for creating a circular arc
camber line.

Figure 5.5: Construction of a circular arc camber line. Points A and B represent
the leading and trailing edges respectively. The stagger angle γ is, then, fully defined.
If one of the metal angles βLE, βTE is defined, the second is computed by Eq. 5.3.1.1.
With known βLE, βTE the tangents to the camber line tLE, tTE and their corresponding
normal vectors nLE, nTE are computed. The center of the circle K on which the camber
line belongs is computed by intersecting the straight line from point A and direction
nLE and the straight line from point B and direction nTE. Once point K is computed,
the radius ρ and sweep angle of the circular arc can easily be computed as well.
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5.3.2 Cubic Bézier Camber Lines

In this case, the camber line is a cubic polynomial Bézier curve. In order to
define a cubic Bézier curve, four control points must be positioned. Let these
control points be denoted as Pi, i = 0, . . . , 3. Clearly, P0 and P3 correspond to
the leading and trailing edge, respectively. Since the metal angles βLE and βTE are
two parameters that the designer wishes to control directly, the other two control
points should lie on the tangents defined by these angles. More specifically, the
positions of control points P1 and P2 must satisfy

P1 = P0 + λ1tLE

P2 = P1 + λ2tTE

(5.3.2.1)

From Eq. 5.3.2.1 it is evident that two more free parameters arise for controlling
the position of control points P1 and P2. Instead of controlling directly the two
free parameters of Eq. 5.3.2.1, namely λ1 and λ2 we define two angles starting
from the chord midpoint and intersection the lines of tLE and tTE. These angles are
denoted by δLE and δTE, respectively. The construction of a cubic Bézier camber
line is shown in Fig. 5.6. Angles δLE and δTE are controlled through spanwise
distributions in a similar manner as the β and θ angles.

Figure 5.6: Construction of cubic Bézier camber line. The leading and trailing edge
metal angles βLE and βTE, together with the leading and trailing edge positions (points
P0 and P3) and angles δLE and δTE, define the control points of the cubic Bézier camber
line.
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There are some combinations of βLE, γ and δLE that do not allow the definition
of point P1. This happens if one of the following relations holds

βLE − γ = 0

βLE + γ = 0

δLE = 0

γ + δLE − βLE = 0

(5.3.2.2)

Similarly, if one of the following relations is true, then, the combination of βTE,
γ and δTE does now allow the definition of point P2.

βTE − γ = 0

βTE + γ = 0

δTE = 0

γ + δTE − βTE = 0

(5.3.2.3)

Special care is taken to remedy such occasions, specifically, if one of P1, P2

cannot be defined, then, instead of a cubic Bézier curve a quadratic one is created.
In such a case, there is no control on the metal angle of the leading edge (if P1

is undefined) or the trailing edge (if P2 is undefined). If both P1 and P2 are
undefined, then a linear camber line results.

Compared to the circular arc camber line, the cubic Bézier camber line pro-
vides more flexibility. More complex camber lines with change in curvature can
be created. The price to pay for the additional flexibility is the increased number
of parameters needed to specify the camber line shape. Additionally, it must also
be noted that, a circular arc camber line cannot be created using the technique
for cubic Bézier lines, since polynomial Bézier curves are used instead of rational
ones and, a circular arc cannot be exactly represented by a polynomial curve.

5.4 Adding Blade Thickness

Once the camber line of each section is computed, thickness is assigned so as
to create the airfoil for the section at hand. The half-thickness is assigned for
each blade side, normal to the camber line. In order to allow flexibility to the
designer/user and also maintain parameterization compactness, half-thicknesses
are specified in two steps.

The first step is to define the normalized half-thickness profile. Each profile is
defined as a NURBS curve with the normalized camber line arc length (s) as the



5.4. Adding Blade Thickness 149

abscissa and the normalized half-thickness (τ̂) as the ordinate. If τ is the actual
half-thickness at a certain point and τmax the maximum half-thickness for the
given blade section, then τ̂ = τ

τmax
. Several normalized profiles can be specified.

When building a certain section, the corresponding normalized half-thickness
profile is computed by interpolating the given profiles in the spanwise direction.
An example of normalized half-thickness profiles can be seen in Fig. 5.7.
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Figure 5.7: Normalized half-thickness profile curves for several spanwise positions
are specified as NURBS curves. For clarity, only the control points that correspond
to the 0% span profile are shown. The maximum ordinate value for all curves is 1.
However, the control points do not necessarily lie in the range [0, 1]. If, by altering
the control points, a τ̂ value larger than 1 results, then the whole profile is scaled
accordingly so as to maintain normalization.

It must be noted that the normalized half-thickness at the leading and trailing
edge need not be 0. The reason for this is that extra modification will be performed
later on at these points so as to achieve the desired shape (blunt,sharp, arbitrary
or circular). A zero normalized half-thickness at an edge (leading or trailing) is
required only if no further geometrical modification is to be performed at this edge.

The second step for specifying half-thickness is to prescribe a spanwise dis-
tribution of τmax. This is specified as a NURBS curve whose control points are
defined on (η, τmax). For a certain spanwise position and a certain position along
the camber line, the actual half-thickness is computed as

τ (s, η) = τ̂ (s, η) τmax (η) (5.4.1)

Points on the blade side are computed by offseting the camber line points by
the appropriate half-thickness value. However, since the offset is carried out on
the transformed plane Π the value computed by Eq. 5.4.1 must be divided by the
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radius r which is the conformal factor (according to Eq. 5.2.5). For a given s, the
value of m can be retrieved, then the parameter u on the generatrix (associated
with this spanwise position) is computed and, finally, the radius r is computed
by evaluating the corresponding point on the generatrix. The offset is performed
normal to the camber line and its direction (left of right w.r.t. the camber line)
depends on a) whether the suction or pressure side is computed, b) whether a rotor
or stator blade is designed, c) whether the row rotates in the positive or negative
circumferential direction (for rotor blades) and d) whether the blade belongs to a
compressor/pump or a turbine. The process of computing half-thickness for a
point on the blade given its spanwise position η and its corresponding position on
the camber line s is shown in Fig. 5.8.

5.5 Leading and Trailing Edge Shapes

Having drawn the pressure and suction side (PS and SS, respectively), the leading
and trailing edge shape should be defined. The options available are the following:

� Sharp edge: The thickness of the blade vanishes.

� Blunt edge: The thickness of the blade is non-zero and the two sides are
linked through a linear interpolation between the PS and SS boundary
curves.

� Wedge edge: The two sides are linked by two linear surfaces forming a wedge
surface.

� Dovetail edge: The two sides are linked by two linear surfaces forming a
dove tail.

� Circular arc edge: The two sides are linked with a circular arc with specified
radius.

� Smooth edge: The two sides are linked by a smooth surface.

For a sharp edge the thickness profiles must be such that the half-thickness
vanishes at the corresponding edge position. For smooth edges, the half-thickness
vanishes as well but the NURBS curve of the profiles must be such that a tangent
continuity is ensured around the edge. For circular arc edges, the thickness
profiles need not vanish. The generated airfoil sides are extended and, then, a
part of them is truncated in the process of modifying the edge shape. Finally,
for blunt, wedge and dovetail edges the half-thickness must be non-zero. In case
of wedge edges part of the profile is truncated, while in case of dovetail ones the
blade sides are extended. An example of each kind of edge is presented in Fig.
5.9.
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Figure 5.8: Process of adding half-thickness and computing a point on the blade
sides in GMTurbo.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: The different types of edges are presented. These shapes can be produced
either for the leading or the trailing edge of a blade. (a) A sharp edge is created by
vanishing half-thickness profiles, without any slope continuity. (b) A blunt edge is
created by specifying a non-zero half-thickness. (c) A wedge type edge is created
by specifying non-zero half-thickness and controlling the wedge half-angle (for 90° it
reduces to a blunt edge). (d) A dovetail type edge is created as a wedge type edge, but
with a half-angle greater than 90°. In addition, the blade sides need to be extended.
(e) A circular arc edge is created by extending the blade sides and fitting a circle of
specified radius between them. (f) A general smooth edge is created by vanishing
half-thickness profiles with slope continuity.

The cases of blunt, wedge and dovetail edges can be unified in one. The user
needs to control only the half-angle generated by the trailing edge and the mean
camber line. These angles are given as spanwise distributions. Depending on the
value of these angles, one of the three types of edges emerges or even a hybrid
type is possible. For circular arc edges, the radius of the arc is also specified as a
spanwise distribution.

5.6 Creating the 3D blade surfaces

After having defined several sections of the blade at different spanwise positions,
a spanwise skinning NURBS algorithm is used to create the pressure and suction
side surfaces, as well as the leading and trailing edge ones. Before perfoming
the skinning, the sections are mapped in 3D Cartesian coordinates using an
approximate inverse mapping (by algorithmically inverting Eq. 5.2.1). The process
of creating the 3D blade is shown in Fig. 5.10.

Since the curves used by the skinning algorithm may be defined on greatly
differing knot vectors, the CAD description of the blade may be rather complex. In
order to reduce the number of control points present in the final CAD description
and enhance the CAD representation compactness, the blade sides can be re-
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Figure 5.10: Creating the 3D blade from the computed blade sections. (a) The section
curves in 3D are created from inverse mapping of the sections created on the several
planes Π for each isospan position. (b) Generating the 3D blade surfaces throught
spanwise skinning of the section curves.

interpolated using common knot vectors that arise from averaging the section
curves knots. Then, the resulting points can be interpolated using a surface
interpolation algorithm (instead of skinning).

The hub, shroud and tip surfaces, as well as the upstream and downstream
boundary surfaces are generated by revolution of the corresponding generatrices
or meridional curves. When no tip gap exists, the hub and shroud surfaces
need to be trimmed by the blade. Since most commercial CAD packages and
mesh generation software are sensitive to the tolerance used for creating trimmed
surfaces, the blade surfaces are extended in the spanwise direction, prior to CAD
export, so as to ensure proper trimming from the third party package. When a tip
gap exists, the same trimming, between the blade and the surface generated by
revolving the tip generatrix, is performed to compute the actual tip surface.

The final collection of surfaces representing the full multi-component config-
uration is exported in neutral CAD formats such as IGES or STEP. If a faceted
geometry representation is sought, a surface triangulation algorithm based on a
hybrid Delaunay-Advancing Front process is employed and the resulting surfaces
are exported in STL format files.

5.7 Summary of Design Variables

In the following table a list of parameters that arise from the design/parameteri-
zation process are summarized. It must be noted that each parameter refers to a
set of control points (e.g. the parameter ‘‘Hub Generatrix’’ refers to all the control
points that define the shape of the hub generatrix). Some additional variables



154 5. Geometric Modeling of Turbomachinery Components

may be available, depending on the case (e.g. the type of camber line, the type of
leading or trailing edge). All of the variables may or may not be altered during
the optimization process. However, they need to be defined (even with a constant
value) so that the set of design parameters is complete and a geometry can be
generated.

In the following tables, the following convention is used for naming component
families

� SBR: Shrouded blade row.

� HTBR: Blade row with hub tip.

� STBR: Blade row with shroud tip.

� OBR: Open blade row.

� DH: Duct with hub surface present.

� DNH: Duct with no hub surface present.

� HO: Hub only components (inlet cones etc.).

In addition, must of the distributions are defined as NURBS curves, so their
control points (P) are used as parameters.

Parameter Symbol Type Mandatory Constant

Hub generatrix PHub (z, r) vector SBR/HTBR/STBR/ NoOBR/DH/HO

Shroud generatrix PShroud (z, r) vector SBR/HTBR/ NoSTBR/DH/DNH
Hub tip generatrix PHT (z, r) vector HTBR No

Shroud tip generatrix PST (z, r) vector STBR/OBR No
Upstream boundary

PUp (z, r) vector All Nomeridional shape
Downstream boundary

PDown (z, r) vector All Nomeridional shape
Leading edge

PLE (z, r) vector SBR/HTBR/STBR Nomeridional shape
Trailing edge

PTE (z, r) vector SBR/HTBR/STBR Nomeridional shape

Leading edge θ PθLE (η, θLE) vector SBR/HTBR/ NoSTBR/OBR

Trailing edge θ PθTE (η, θTE) vector SBR/HTBR/ NoSTBR/OBR
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Leading edge β PβLE (η, βLE) vector SBR/HTBR/ NoSTBR/OBR

Trailing edge β PβTE (η, βTE) vector SBR/HTBRR NoSTBR/OBR
Spanwise position of nth

ηPS_profile-n scalar SBR/HTBR/ Yeshalf-thickness PS profile STBR/OBR
nth half-thickness

Pτ̂PS_profile-n (s, τ̂)
SBR/HTBR/ NoPS profile shape STBR/OBR

Spanwise position of nth
ηSS_profile-n scalar SBR/HTBR/ Yeshalf-thickness SS profile STBR/OBR

nth half-thickness
Pτ̂SS_profile-n (s, τ̂)

SBR/HTBR/ NoSS profile shape STBR/OBR
PS spanwise

PPS_τmax (η, τmax)
SBR/HTBR/ Nohalf-thickness factor STBR/OBR

SS spanwise
PSS_τmax (η, τmax)

SBR/HTBR/ Nohalf-thickness factor STBR/OBR

Table 5.1: List of parameters used to define a turbomachinery component geometry.
The component type for which a parameter is mandatory is also shown. If more
rows or multiple components are parameterized, these parameters must be specified
for each one of them separately. Some parameters, marked as constant, need to be
defined and remain constant during an optimization process, since their modification
is not sensible. The type of each parameter (scalar or vector) is also shown.

If the camber line is of cubic Bezier type two additional parameters are avail-
able, namely

Parameter Symbol Type Mandatory Constant

Leading edge δ PδLE (η, δLE)
SBR/HTBR/ NoSTBR/OBR

Trailing edge δ PδTE (η, δTE)
SBR/HTBR/ NoSTBR/OBR

Table 5.2: Additional parameters available when a cubic Bezier camber type is used.

In addition, when a blunt/wedge/dovetail type edge is used two more param-
eters become available, namely the distributions of angles φ between the camber
line and the edge surface towards the pressure (PS) and suction side (SS) of the
blade. These are given for each edge separately.

Finally, when a circular arc edge is chosen, instead of the parameters of Table
5.3 the spanwise distribution of the arc radius ρ (η) becomes available, again
separately for each such edge.
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Parameter Symbol Type Mandatory Constant

PS φ
PφPS (η, φSS)

SBR/HTBR/ Nospanwise distribution STBR/OBR
SS φ

PφSS (η, φPS)
SBR/HTBR/ Nospanwise distribution STBR/OBR

Table 5.3: Additional parameters available when a blunt/wedge/dovetail edge shape
is used.

Parameter Symbol Type Mandatory Constant

ρ spanwise
Pρ (η, ρ)

SBR/HTBR/ Nodistribution STBR/OBR

Table 5.4: Additional parameters available when a circular arc edge shape is em-
ployed.



Chapter 6

Free-Form Deformation based on
Volumetric NURBS

In Chapter 4 the basics of shape parameterization techniques are presented.
There, the various parameterization methods are categorized in two classes, namely
direct boundary and free-form ones. In the last section of this chapter, some in-
dicative examples of direct boundary parameterizations for simple external aero-
dynamic shapes are presented.

As it has already been discussed in Chapter 4, direct boundary parameteri-
zation methods have a major drawback when coupled with CFD analysis. This
originates from the fact that these methods provide a mechanism for controlling
only the boundary surface mesh shape and, consequently, an additional tool is
needed for propagating the deformation in the interior of the CFD domain.

This chapter is concerned with a method falling in the class of free-form de-
formation methods. The method is based on trivariate NURBS volumes which
will be referred to as volumetric NURBS. As a free-form deformation technique,
volumetric NURBS provide the means for controlling the shape of an entire region
in space. The method is used for parameterizing the shape under consideration,
which is embedded in the trivariate NURBS volume and, also, the part of the CFD
mesh that is embedded in the same volume. In previous works using volumetric
B-Splines and NURBS, these are used only for controlling the shape under con-
sideration [121]. In this thesis, their use is extended in deforming the volume
mesh as well.

Using a parameterization method that directly controls also the volume mesh
has an additional advantage when it comes to adjoint-based shape optimization.
If the parameterization method is differentiated, then the FI adjoint approach can
be used with almost negligible additional cost compared to the SI one, since the
costly finite difference approach is avoided.

In this chapter, the volumetric parameterization method is introduced and
explained. Then, its differentiation that enables the low-cost exact computation

157
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of δxjk
δbi

(with i = 1, . . . , N , k = 1, . . . , 3, j = 1, . . . , NV , N the number of design
variables and NV the number of mesh nodes) is described.

As shown below, despite their advantages, especially in external aerodynamic
shape optimization problems, the use of volumetric NURBS has major short-
comings when applied in shape optimization of turbomachinery blade rows. To
improve the applicability of the volumetric NURBS technique in such cases, the
turbomachinery volumetric NURBS method (TMVNURBS) is introduced later in
this chapter. Finally, the differentiation of TMVNURBS is presented. The param-
eterization tools developed in the chapter are employed in the next chapters, in
several shape optimization applications, both in the field of external and internal
aerodynamics, including turbomachinery.

6.1 NURBS volumes

The basis for the volumetric parameterization method to be presented is the
NURBS volume. A NURBS volume is a trivariate vector valued function V (u, v, w)
mapping a point from the 3D parametric space (u, v, w) to 3D Cartesian space
(x, y, z), defined as

V (u, v, w) = Rijk,pupvpwPijk

where Rijk,pupvpw =
Ni,pu (u)Nj,pv (v)Nk,pw (w)wijk
N`,pu (u)Nq,pv (v)Ns,pw (w)w`qs

i = 0, . . . , nu − 1, j = 0, . . . , nv − 1 and k = 0, . . . , nw − 1

(6.1.1)

The B-Spline basis functions Ni,pu, Nj,pv and Nk,pw , of degrees pu, pv and pw re-
spectively, are defined on the knot vectors U = [u0, . . . , umu−1], V = [vo, . . . , vmv−1]
andW = [wo, . . . , wmw−1]. The control points Pijk and their corresponding weights
wijk are arranged is a 3D control grid (hence the three indices in the notation). As
with curves and surfaces, a NURBS volume can be expressed as a function map-
ping the parametric space (u, v, w) to the 4D homogeneous space (wx,wy,wz,w).
In such a case a NURBS volume can be expressed as

V (u, v, w) = Ni,pu (u)Nj,pv (v)Nk,pw (w) Pw
ijk

with Pw
ijk =

[
(wx)ijk , (wy)ijk , (wz)ijk ,wijk

] (6.1.2)

Clearly, keeping one of the three parameters constant leads to an iso-parametric
surface. The basic arrangement of a NURBS volume is shown in Fig. 6.1.

In order to control a shape embedded inside a NURBS volume, its parametric



6.1. NURBS volumes 159

(a) (b)

(c) (d)

Figure 6.1: (a) Definition of 4× 3× 3 NURBS volume. The control points are shown
in red. The iso-u, iso-v and iso-w surfaces are shown in (b), (c) and (d) respectively.

coordinates must be known. Practically, for a space region discretized by a mesh,
it is enough to compute the parametric coordinates (u, v, w) of its nodes given
their Cartesian coordinates. This is done by inverting Eq. 6.1.2 . The inversion
leads to a non-linear system of three equations with three unknowns for each
mesh node. The system reads

V (u, v, w)− r = 0 (6.1.3)

where r = (x, y, z) is the position of the mesh node. The system is solved iteratively
by the Newton-Raphson method
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(6.1.4)

To achieve a fast and robust convergence of Eq. 6.1.4, a good approximate
solution is needed. The complexity of the NURBS volume shape is directly related
to the number of control points. Based on this fact, a number of points are
seeded uniformly in the three parametric directions. The number of seed points
is directly related to the number of control points in each of these directions.
Then, the initial values of the parametric coordinates for each node are chosen
to be the parametric coordinates of the nearest seed point. Typically, with a
good initialization, the iterative process described by Eq. 6.1.4 converges with
adequate accuracy in no more than five to ten iterations. For points lying outside
the NURBS volume the iterative process fails to converge. Thus, the failure or
success of convergence may serve as a criterion for identifying which nodes lie
outside or inside the NURBS volume.

In order to speed-up the point inversion process, Eq. 6.1.4 is solved on the
GPU in parallel. An additional gain in computational time is achieved by marking
all the nodes that lie outside the bounding box of the control points as outliers.
Such a decision is reasonable and based upon the strong convex hull property
that characterizes NURBS volumes. The process of point inversion with some
details about its GPU implementation is presented in Fig. 6.2.

Once the process of point inversion is completed, any change in a control
point position or weight affects the position of the CFD nodes inside the NURBS
volume. Consequently, both surface nodes as well as volume mesh nodes inside
the NURBS volume can be controlled through this modification. However, spe-
cial care must be taken to ensure mesh continuity. Specifically, if mesh nodes
are positioned on both sides of a NURBS volume boundary, any displacement of
this boundary will destroy mesh continuity. The reason is that nodes inside the
NURBS volume will move due to control point displacement, but nodes outside
the NURBS volume will remain still. This problem is overcome by ensuring that a
layer of control points remains intact, thus maintaining C0 continuity throughout
the mesh. Higher degrees of continuity are achieved by freezing additional layers
of control points of the NURBS volume.
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Figure 6.2: Flowchart of the point inversion process for a NURBS volume. The blue
processes are executed on the CPU and the yellow ones on the GPU. Practically, all
the computationally expensive tasks run on the GPU. Intermediate data transfers
between CPU and GPU are shown in green. Partial overlapping of data transfers and
computations is possible within the NVIDIA CUDA environment.

6.2 Computation of Geometric Sensitivities

This section is concerned with the computation of the so called geometric sensitiv-
ities. These are denoted as δxjk

δbi
, where k = 1, . . . , 3, j = 1, . . . , ND and i = 0, . . . , N .

ND is the number of nodes associated with the sensitivity derivative integral
(see Chapter 3) to be computed, thus it can be ND = NS for surface integrals
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or ND = NV for volume integrals. Moreover, N is the total number of design
variables. More specifically, if all three Cartesian coordinates and the weight of a
control point are allowed to vary, then four design variables bi are associated with
this control point.

Let x`r, (r = 1, . . . , 3, ` = 1, . . . , ND) denote the Cartesian coordinates of a point
in space and Xs,ijk, (s = 1, . . . , 3, i = 0, . . . , nu, j = 0, . . . , nv, k = 0, . . . , nw) the
Cartesian coordinates of a NURBS volume control point. Then, by differentiating
Eq. 6.1.1 the geometric sensitivity is computed as

δx`r
δXs,ijk

= Rijk,pupvpw

(
u`, v`, w`

)
δrs (6.2.1)

For the derivative of a node’s Cartesian coordinates w.r.t. a control point
weight, the differentiation of Eq. 6.1.1 leads to

δx`r
δwijk

= Xr,mnq

δRmnq

(
u`, v`, w`

)
δwijk

(6.2.2)

where the degrees of the basis functions are omitted for brevity. Let the symbol
R`
mnq denote the trivariate basis function of degrees pu, pv, pw computed with the

parametric coordinates
(
u`, v`, w`

)
of point `. Let, also, the symbol Nu,`

m denote
the univariate B-Spline basis function of degree pu in the u parametric direction,
computed at u = u`. Taking into account the second of Eqs. 6.1.1 , δR`mnq

δwijk
is

computed as

δR`
mnq

δwijk
=

Nu,`
i N v,`

j Nw,`
k(

Nu,`
a N v,`

b Nw,`
c wabc

)2

(
Nu,`
d N v,`

h Nw,`
s wdhs −Nu,`

m N v,`
n Nw,`

q wmnq
)

(6.2.3)

where no summation is implied on indices m, n, q.
Combining Eqs. 6.2.2 and 6.2.3 leads to

δx`r
δwijk

= Xr,mnqN
u,`
i N v,`

j Nw,`
k

(
Nu,`
d N v,`

h Nw,`
s wdhs −Nu,`

e N v,`
f Nw,`

g wmnqδmeδnfδqg
)

(
Nu,`
a N v,`

b Nw,`
c wabc

)2

(6.2.4)
From Eq. 6.2.1, it can be seen that, once the parametric coordinates

(
u`, v`, w`

)
of a mesh node are computed, and, if the weights of the control points are not
design variables, then, the geometric sensitivities can be computed and stored,
since they remain fixed during the optimization (no dependence on the control
point position). However, since the geometric sensitivities are computed for all
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mesh nodes inside the NURBS volume, the memory consumption for large meshes
can be prohibitively large. Specifically, storing only the non-zero terms leads to
the storage of NCP × NI double precision values, where NCP is the number of
free control points and NI the number of volume mesh nodes inside the NURBS
volume.

Taking into account that for the FI adjoint approach, spatial gradients of the
geometric sensitivities are also needed and that a great deal of memory is already
consumed for storing the solution of the flow and adjoint field, the storage of all a
priori computed geometric sensitivities becomes inapplicable.

In addition, geometric sensitivities w.r.t. control point weights need to be com-
puted again in each optimization cycle, since their value depends also on the
current position and weight of the control points (Eq. 6.2.4). Thus, the geometric
sensitivities are (re)computed on the fly for each control point. To minimize the
computation cost of computing δx`r

δbi
, the computation is carried out in parallel for

all mesh nodes on the GPU.

6.3 NURBS Volumes for Turbomachinery

Clearly, the use of a volumetric NURBS free-form deformation technique has many
advantages compared to direct boundary ones, especially in terms of complexity
and differentiability. However, it is not directly applicable for the parameterization
of turbomachinery components. There are two reasons for this.

The first is the presence of surfaces of revolution (hub and shroud surfaces),
which should remain so throughout the optimization. This is difficult to ensure
with traditional NURBS volumes, since a very complicated and combined dis-
placement of control points is typically needed to maintain axisymmetry in each
optimization cycle. In addition, the more complicated the shape of the hub and
shroud surfaces the more control points and interaction among them is needed
to achieve this effect.

The second reason is the presence of periodic boundaries and geometry/mesh
periodicity in general. If the CFD volume mesh is also modified by the NURBS
volume, this must be done is such a way that each blade passage be discretized
in exactly the same way to avoid introducing numerical non-axisymmetry. This
means that mesh nodes whose position differs only by a multiple of the blade row
pitch in the circumferential direction, must be displaced in the same way and an
analogous periodic displacement is implied for the control points.

The first obstacle can be overcome by defining NURBS volumes that do not
include the hub and shroud surfaces at all. However, such an approach is of little
engineering value since these areas are very important for 3D flow features arising
in flows inside turbomachinery blade rows. Similarly, the second obstacle can
be surpassed by defining NURBS volumes that exclude the periodic boundaries.
This, in turn, is very restrictive in terms of the shapes that can be generated and
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the mesh quality after each modification, especially in turbine rows or rows with
large blade count, where the periodic boundaries usually lie relatively close to the
blade.

The remedy to the axisymmetry problem is sought through an intermediate
transformation inspired by the coordinate systems used for the design of turbo-
machinery bladings. The coordinate system introduced will be referred to as the
passage coordinate system (PCS) and the transformation from the 3D Cartesian
coordinate system to this one as the 3D Cartesian to passage coordinate transfor-
mation. Then, an implicit treatment is introduced as a remedy to the periodicity
treatment problem. Both of these solutions are developed in the following sub-
sections.

6.3.1 Cartesian to PCS Transformation

Let the axisymmetric hub and shroud surfaces be represented by a generatrix
revolved around the z-axis. The choice of the z-axis is not restrictive at all. More
specifically, let CH (ξ) be the hub generatrix and CS (ξ) the shroud one and let ξ
be defined as a normalized parametric coordinate. This curves can be viewed as
univariate vector functions mapping a value of the parameter ξ on the meridional
plane (z, r), namely

CH (ξ) : ξ ∈ [0, 1]→ (z, r) on hub

CS (ξ) : ξ ∈ [0, 1]→ (z, r) on shroud
(6.3.1.1)

Using a linear combination of CH and CS allows the description of any point
on the meridional plane by introducing a single additional parameter, namely
the parameter of the linear interpolation η. Thus, any point r = (z, r) can be
expressed as

r (ξ, η) = (1− η) CH(ξ) + η CS(ξ) (6.3.1.2)

By doing so, a coordinate transformation is defined mapping the (z, r) coordi-
nates of any point between hub and shroud to the newly defined (ξ, η) ones. By
introducing the circumferential position of the point θ, a new 3D coordinate sys-
tem is defined, namely the (ξ, θ, η) system, which is the Passage Coordinate Sys-
tem (PCS). The PCS is not an orthonormal coordinate system. However, it forms
a curvilinear system that can be shown to preserve the orientation. Moreover, if
the passage does not degenerate (hub and shroud generatrices do not intersect
or touch each other and defined both with the same orientation, i.e. upstream to
downstream or vice versa) it can be shown that the mapping (r, θ, z) 7→ (ξ, θ, η) is
one-to-one.
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The transformation relationships between the Cartesian, cylindrical systems
and PCS are given below.

x = r cos θ , y = r sin θ , z = z

r =
√
x2 + y2 , θ = tan−1 (y/x) , z = z

r = (1− η) rH(ξ) + η rS(ξ) , θ = θ , z = (1− η) zH(ξ) + η zS(ξ)
(6.3.1.3)

Therefore, if the passage coordinates are known for a certain point, computing its
Cartesian or cylindrical coordinates is straight forward. However, if the Cartesian
or cylindrical coordinates are known, there is no closed form relation that allows
the computation of the passage coordinates.

To circumvent this problem, a Newton-Raphson iteration method is used to
solve the following system of non-linear equations for each mesh node `,[

r` − r
(
ξ`, η`

)
z` − z

(
ξ`, η`

) ] = 0 (6.3.1.4)

Figure 6.3: Flowchart of the process of transforming the computational mesh from
Cartesian to passage coordinates. Blue processes are executed on the CPU, while
the yellow ones are carried out on the GPU. Intermediate data transfers between CPU
and GPU are shown in green.

Again, a good initialization is needed for a robust and fast convergence. Seed
points are used again to assign the initial values to the passage coordinates for
each mesh node. The process of computing the passage coordinates for each
mesh node is described in Fig. 6.3.
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(a) (b)

(c) (d)

Figure 6.4: (a) The hub and shroud surface generatrices are extracted from the
initial 3D geometry. (b) The PCS coordinate system is defined. Iso-ξ and iso-η lines
are drawn in red. Solving Eq. 6.3.1.4 for each point on the initial 3D mesh (c) leads
to the mapping of the flow domain onto the (ξ, θ, η) space (d).

Having created the PCS, a NURBS volume can be defined in this coordinate sys-
tem. The advantage of such an approach is that the η coordinate of the boundary
control points at hub and shroud can remain fixed. Since the θ and ξ coordinates
of these points are not fixed, the surface hub and shroud mesh nodes are allowed
to move by sliding along the corresponding surfaces.



6.3. NURBS Volumes for Turbomachinery 167

6.3.2 Periodicity Treatment

The first choice that must be done to ensure geometry and mesh periodicity con-
cerns the position of the NURBS volume control points along the circumferential
direction. The boundary control points in the circumferential direction must be
periodically aligned. This means that each control point on the one side of the
NURBS volume is paired with a control point on the other periodic side. The points
of a pair must have the same ξ and η coordinates, and their θ ones must differ
by the angular pitch. By ensuring periodic displacement of the control points as
well, periodicity is maintained throughout the optimization process.

Moreover, the NURBS volume may be constructed in a way that intersects the
periodic boundary of the CFD mesh. In such a case, some points of the CFD mesh
may lie outside the control volume. However, if the image of a mesh node on the
(ξ, η) plane lies inside the projection of the control volume on the same plane,
then this mesh node must be controlled and thus parametric coordinates (u, v, w)
must be computed for this node. This is made possible by rotating these mesh
nodes around the axis of revolution by a multiple of the angular pitch, until their
transformed counterpart falls inside the NURBS volume. In PCS, this rotation is
equivalent to a translation along the θ direction. An value is stored per mesh node
corresponding to the times it was rotated by the angular pitch to fall inside the
NURBS volume. The treatment of periodicity is shown in the form of a flowchart
in Fig. 6.5. After having displaced the control points, the new position for these
nodes is computed and the opposite rotation is performed to bring them in place
for the new CFD mesh. The process is better explained in Fig. 6.6.

6.3.3 Computation of Geometric Sensitivities

The computation of the geometric sensitivities is partially the same as for the
general case of NURBS volumes. More specifically, the relations given is section
6.2 are use to provide the term δξ`m

δΞs,ijk
, where m, s = 1, . . . , 3, (ξ1 ξ2 ξ3) ≡ (ξ θ η),

` stands for the mesh node index and Ξs,ijk denotes the passage coordinates of
the control point with indices i, j, k in each parametric direction. For brevity
the computation of the geometric sensitivities w.r.t. the weights of the control
points is omitted, since the process is the same as the one for computing the
geometric sensivities w.r.t. the passage coordinates of the control points, with
the only difference that the appropriate relation of section 6.2 must be employed.
Let c`p, p = 1, . . . , 3 denote the cylindrical coordinates of mesh node `. Then, by
applying the chain rule, its geometric sensitivities can be expressed as

δx`r
δΞs,ijk

=
∂x`r
∂c`p

∂c`p
∂ξ`m

∂ξ`m
∂Ξs,ijk

(6.3.3.1)
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Figure 6.5: Flowchart of the series of processes executed by a single GPU thread in
order to compute the parametric coordinates of a mesh node. Periodicity is taken into
account.

(a) (b)

Figure 6.6: Construction of the NURBS volume on the PCS. Control points are shown
in red. (a) A large part of the blade and the mesh around the blade initially lies outside
the NURBS volume. (b) However, if the mesh is rotated twice by the angular pitch,
then the whole blade and its surrounding mesh nodes fall inside the NURBS volume
and, thus, parametric coordinates can be computed.

The last term is computed by Eq. 6.2.1. The first two terms are easily computed
by the Jacobian matrices of the corresponding transformations given as
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∂x`r
∂c`p

=

 cos θ` −r` sin θ` 0
sin θ` r` cos θ` 0

0 0 1

 (6.3.3.2)

and

∂c`p
∂ξ`m

=

 (1− η`) ṙH (ξ`)+ η`ṙS
(
ξ`
)

0 −rH
(
ξ`
)

+ rS
(
ξ`
)

0 1 0(
1− η`

)
żH
(
ξ`
)

+ η`żS
(
ξ`
)

0 −zH
(
ξ`
)

+ zS
(
ξ`
)
 (6.3.3.3)

In Eq. 6.3.3.3 the
(
zH , rH

)
and

(
zS, rS

)
denote the radial and axial coordinate

for the hub and shroud generatrices at the parametric position ξ`, respectively.
Moreover, the dot over them corresponds to differentiation w.r.t. the parameter
ξ.
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Chapter 7

Shape Optimization of Turbomachinery
Components using Evolutionary Algorithms

In this chapter a series of turbomachinery component shapes are optimized. The
configurations to be optimized are parameterized using the tool GMTurbo de-
scribed in Chapter 5. The PUMA CFD code running on GPUs described in Chap-
ter 2 will be used to evaluate the performance of each candidate solution during
the optimization. The optimization itself will be performed using the Evolutionary
Algorithm (EA) software EASY developed by PCOpt/LTT [1].

The use of EAs is preferred at this point instead of the use of gradient-based
(GB) optimization methods, since EAs tend to converge to the global optimum
(within the design space, as determined by the user-defined bounds of the design
variables), while GB methods are more easily trapped to local minima/maxima
(i.e. stationary points). Making use of GMTurbo for the parameterization of the
geometry leads to a compact representation, thus, reducing the number of design
variables and avoiding the curse of dimensionality (a typical problem in EA-based
optimization processes), while maintaining a reasonably rich variety of shapes
that may arise.

Since the shapes to be optimized are initially available in either neutral CAD
formats (as NURBS surfaces) or in the form of a CFD mesh, a process capable of
extracting the GMTurbo parameters that reconstruct the given geometry is first
needed. Then, the original CFD mesh (if available) is adapted to the reparameter-
ized geometry. Finally, for each shape modification throughout the optimization,
the initial CFD mesh is adapted accordingly, using mesh deformation techniques.
These three steps are described in appendices A and B.

171
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7.1 Shape Optimization of a Propeller Type Turbine Runner

and Guide Vanes

The first case is concerned with the optimization of a propeller type hydraulic
turbine runner with guide vanes. The initial geometry and its corresponding CFD
mesh are provided by ANDRITZ Hydro. The configuration consists of 20 inlet
guide vanes (IGVs) and 5 runner blades. The tip gaps in both the runner and the
guide vane bladings are not modeled. Water enters radially and encounters the
IGVs, then, the runner blades and exits axially. A steady state solution is sought
using the mixing plane technique (circumferential averaging of flow quantities) to
account for the interaction between the stationary guide vanes and the rotating
rotor blades. An overview of the configuration is presented in Fig. 7.1.

(a) (b)

Figure 7.1: Propeller Water Turbine: (a) 3D view of the propeller water turbine con-
figuration. The 20 IGVs and 5 runner blades are visible in gold. The hub and shroud
surfaces are drawn in grey. No tip gap is modeled. (b) Meridional section of the IGV
and runner configuration. The IGV is drawn in red while the runner blade in green.
The grey and black lines correspond to the hub and shroud generatrices, respectively.
The position of the interface between the stationary IGVs and the rotating runner is
shown in purple. Blue arrows show the direction of the water stream through the
turbine.

The baseline mesh, provided by ANDRITZ Hydro is composed by two sub-
meshes. The first, consisting of ∼6× 105 nodes and ∼5.8× 105 hexahedra, is
used to model a single IGV. The second, used to model the runner, consists of
∼4.5× 105 nodes and ∼4.3× 105 hexahedra. The surface mesh for a single IGV
and a single runner blade is shown in Fig. 7.2.

Data for the operating conditions of the turbine are presented in Table 7.1.
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(a) (b)

(c)

Figure 7.2: Propeller Water Turbine: (a) Computational surface mesh for the IGV. The
hub is shown in orange and the shroud in blue. (b) Computational surface mesh
for the runner. The hub is shown in magenta and the shroud surface in purple. (c)
Both the IGV and runner meshes combined. The IGV itself is shown in red, while the
runner blade mesh in green.

Quantity Symbol Value

Hydraulic head H 13.11 m
Runner angular speed n 1651.86 rpm

Specific speed ns 524.02
Inlet swirl α1 45°

Inlet Viscosity Ratio (νt/ν)in 20.0

Table 7.1: Propeller Water Turbine: Operating conditions. The turbine specific speed
in computed with the power output in kW.

Before proceeding to the parameterization and optimization, a simulation
is carried out and the results of PUMA are compared with those provided by
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ANDRITZ Hydro.
The simulation is carried out on the National HPC Infrastructure ARIS of the

Greek Research & Technology Network [157]. PUMA ran on two NVIDIA Tesla
K40 GPUs on the same computational node, for ∼1 h and 15 min. The pressure
coefficient (cp) is shown in Fig. 7.3 where

cp =
p− pvap

ρgH

where p stands for the static pressure, ρ the constant water density, g the gravita-
tional acceleration, H the hydraulic head of the turbine and pvap the water vapour
pressure.

(a) (b)

(c) (d)

Figure 7.3: Propeller Water Turbine: Pressure coefficient on the IGV row wall surfaces.
View from (a) the hub and (b) the shroud side. Pressure coefficient on the runner wall
surfaces. View of the blades’ (c) pressure and (d) suction side.

The comparison between the two CFD solvers is shown in Fig. 7.4. The
commercial software used by ANDRITZ Hydro and PUMA are in good agreement
with each other, , even though different turbulence models have been employed,
namely, the PUMA solver uses the Spalart-Allmaras model, while k-ω SST model



7.1. Shape Optimization of a Propeller Type Turbine Runner and Guide Vanes 175

is used in the commercial software simulations.

7.1.1 Parameterization with GMTurbo

The process described in appendix A is used to extract the design parameters
used by GMTurbo to generate the geometry. Using more design parameters to
GMTurbo reduces the error of approximating the geometry as described by the
CFD mesh provided but, in turn, has a negative impact on the compactness of the
parameterization. In this case, 8 generatrices were used to extract the parameters
that generate the IGV and runner blade. Then, the initial mesh was adapted so
as to match exactly the reconstructed geometry. Fig. 7.5 presents the error of the
geometry reconstruction. The local error is measured by the quantity ∆ which
corresponds to the displacement of a mesh node as a percentage of the midspan
chord cmid (which is different between IGV and runner blade), namely

∆% = 100
r− r0

cmid

where r is the position vector of the displaced node and r0 the initial position
vector of the same node.

In order to quantify the effect of the geometry reconstruction on the value of
integral quantities of engineering interest, four CFD runs have been performed.
The first run corresponds to the baseline geometry as provided in the form of a CFD
mesh (the corresponding results are presented in the figures above). The second
run is performed on the baseline runner geometry but using the reconstructed IGV
one. The third run refers to the evaluation of the baseline IGV geometry coupled
with the reconstructed runner and, finally, the fourth run evaluates the fully
reconstructed configuration (both runner and IGV). The results of the first run are
used as reference to quantify the deviation of each quantity due to reconstruction.
The geometry reconstruction effect is summarized in Table 7.2.

It is evident that the quality of the reconstruction is adequate for starting an
optimization loop and considering that the reconstructed geometry performance
is representative for the baseline design as well. The maximum error in flow
quantities is bound below 0.2%.

7.1.2 Optimizing the IGV with Baseline Runner

The first loop concerns the optimization of the IGV while keeping the runner
blade geometry fixed. The design vector consists of 32 design variables which
are summarized in Table 7.3. The design variables together with their bounds
(defining the search space of the MAEA) are shown in Fig. 7.6. The maximization
of the efficiency will be the optimization objective.
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Figure 7.4: Propeller Water Turbine: Comparison between the results obtained by
PUMA and those provided by Andritz HYDRO using a commercial CFD solver (Com.
CFD). Pressure coefficient distribution on the runner blade at (a) the hub, (b) midspan
and (c). The distributions are in good agreement. Outlet spanwise distributions of the
non-dimensionalized (d) axial, (e) circumferential and (f) radial velocity components.
The distributions are in good agreement apart from the axial velocity one close to
the hub region. This may be attributed to the absence of the hub gap of the IGV
which, however, is present in the simulation performed by ANDRITZ Hydro with the
commercial software.
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(a) (b)

Figure 7.5: Propeller Water Turbine: Geometry reconstruction error. For the recon-
struction, 8 sections of each blade were used. (a) The maximum error in the IGV
geometry is ∼1% based on the midspan chord length. (b) For the runner blade, the
maximum geometry reconstruction error is ∼0.2% of the blades midspan chord.

A (10, 20) MAEA (Metamodel-Assisted EA with 10 parents and 20 offspring) is
employed for the optimization. RBF networks are used as metamodels to speed-
up the optimization process, once 30 candidate solutions have been successfully
evaluated. The overall computational budget is restricted to 200 CFD solver calls.

The comparison between the baseline and optimized IGV geometry is shown
in Fig. 7.7. The optimization convergence history is shown in Fig. 7.8.

As can be seen in Fig. 7.8, the improvement of the turbine efficiency is minor.
This is expected since the runner shape remains the same and the guide vanes
are mainly used to control the flow rate. Altering the thickness of the blade
would potentially lead greater improvement in efficiency (due to a consequent
reduction in viscous losses). However, the blade’s thickness is kept constant due
to manufacturing constraints.

The runner shape is expected to have a more pronounced effect on the turbine
efficiency. This is investigated in the next subsection.

7.1.3 Optimizing the Runner with Baseline IGV

This optimization test case concerns the maximization of the turbine’s efficiency
by changing only the shape of the runner blade, while keeping the IGV shape fixed.
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Error in hydraulic head εH (%)

Runner

IGV
Baseline Reconstructed

Baseline 0.0000 0.0031
Reconstructed −0.0272 −0.0240

Error in flow rate εQ (%)

Runner

IGV
Baseline Reconstructed

Baseline 0.0000 0.0010
Reconstructed −0.0384 −0.0326

Error in power output εP (%)

Runner

IGV
Baseline Reconstructed

Baseline 0.0000 0.0146
Reconstructed −0.1594 −0.1312

Error in efficiency εη (%)

Runner

IGV
Baseline Reconstructed

Baseline 0.0000 0.0106
Reconstructed −0.0938 −0.0751

Table 7.2: Propeller Water Turbine: Effect of geometry reconstruction error on the
head, flow rate, power output and efficiency of the propeller turbine. For all quantities,
the configuration consisting of both baseline geometries is used as reference.

Design Variable Type Number of Variables

rLE 12
βLE 10
βTE 10

Table 7.3: Propeller Water Turbine IGV only Optimization: The 32 design variables
used for optimizing the IGV while keeping the runner geometry fixed.

A total of 30 design variables are used. More specifically, 10 controlling the shape
of the runner blade LE meridional projection, 10 controlling the βLE spanwise
distribution and, another 10 controlling the βTE one. The design variables bounds
are shown in Fig. 7.9.

A (10, 20) MAEA is used with the same settings as the one used in the opti-
mization of subsection 7.1.2. The computational budget in this case is restricted
to 250 CFD evaluations. The convergence history of the optimization is shown in
Fig. 7.10. In this case, the gain is greater compared to optimizing the IGV only.
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Figure 7.6: Propeller Water Turbine IGV only Optimization: Design variables used for
optimizing the IGV shape. (a) Design variables controlling the shape of the IGV LE on
the meridional plane. The bounds of the design space are shown as bars. (b) Design
variables controlling the spanwise distribution of the LE and TE metal angle (βLE, βTE).
Bars also show the bounds for each design variable.

This is due to the essential role of the runner in extracting energy from the fluid
and transforming it into mechanical energy on the turbine’s shaft. In addition,
the wetted surface of the runner blades is much greater, thus, generating more
viscous losses compared to the IGVs.

The resulting runner blade shape is presented in Fig. 7.11. It can be seen that
the optimization leads to a design with a wavy trailing edge shape. This is shown
in Fig. 7.11b as well as in Fig. 7.11d. In contrast to the TE, the optimization leads
to a less wavy LE as seen by Fig. 7.11c.

7.1.4 Combined Optimization of the Runner and IGV

In this optimization problem the turbine IGV and runner shapes are allowed to
vary concurrently. The design variables set is the union of the ones used in the
optimizations presented in the two previous subsections and, consequently, the
dimensionality of the design space is equal to 62. The objective function is still
the turbine efficiency, whose maximization is sought.

The convergence history of the optimization is shown in Fig. 7.12.
It can be seen that optimizing both the IGV and runner geometries concurrently

is beneficial since the optimal solution reached dominates the ones achieved by
optimizing each row separately. In addition, combining the geometries resulting
from the two first runs (IGV only and runner only optimization) proves worse
compared even to the initial one. In fact, the efficiency is by 0.6% lower compared
to the baseline one. This gives the message that the Rotor-Stator Interaction
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Figure 7.7: Propeller Water Turbine IGV only Optimization: Comparison between the
baseline and optimized IGV shape. (a) Comparison of the meridional shape of the IGV
leading edge. A much more wavy shape is obtained by the optimization process. (b)
The same can be seen in the 3D shape of the IGV. (c) Comparison of the leading edge
metal angle (βLE) spanwise distribution. (d) Comparison of the trailing edge metal
angle (βTE) spanwise distribution.

must be taken into account during the optimization, otherwise it may lead to
non-optimized designs.

In Fig. 7.13, the meridional shapes obtained by the three different optimiza-
tion runs, as well as the spanwise distributions of the blades metal angles are
compared. It can be seen how the IGV shape is adapted to modifications of the
runner and vice-versa.

In Fig. 7.14, the 3D shape of the optimized turbine IGV and runner and the
pressure coefficient distribution on the solid surfaces are shown. The wavy shape
of the optimized blade for both the IGV and the runner is shown.
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Figure 7.8: Propeller Water Turbine IGV only Optimization: Convergence history of
the optimization. The objective function improvement is shown as percentage of the
baseline performance.
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Figure 7.9: Propeller Water Turbine Runner Only Optimization: (a) Design variables
used to control the meridional shape of the runner blade LE. Points are allowed to
move only in the axial direction. (b) Design variables controlling the LE and TE metal
angle spanwise distribution for the runner blade. The bounds of each design variable
(defining the search space of the MAEA) are shown with error bars.
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Figure 7.10: Propeller Water Turbine Runner Only Optimization: Convergence history
of the optimization. The objective function improvement as percentage of the baseline
performance reaches approximately 0.37% at a computational cost of∼ 250 CFD runs.
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Figure 7.11: Propeller Water Turbine Runner Only Optimization: (a) Comparison of the
runner blade LE meridional shape with the baseline one. The modification is minor.
(b) 3D shape of the optimized blade. The wavy shape at the trailing edge can be seen.
(c) Comparison between the βLE spanwise distribution of the baseline geometry and
the optimized one. (d) Same comparison for the βTE spanwise distribution.
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Figure 7.12: Propeller Water Turbine IGV and Runner Optimization: Convergence
history of the three optimizations performed. It can be seen that simultaneously
optimizing the IGV and runner blades, leads to a better solution, than optimizing one
row at a time. The optimization for the IGV only case (green line) was stopped earlier,
since the improvements without modifications of the runner geometry were minor.
The runner only optimization (blue line) could not improve the design’s performance
during the last half of the optimization (after first 250 CFD evaluations). However, for
the simultaneous optimization (purple line), even though more CFD runs are needed
to reach a comparable solution to the one optimizing only the runner (due to increased
dimensionality of the design space), finally, a better solution has been achieved.
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Figure 7.13: Propeller Water Turbine IGV and Runner Optimization: Comparison of
the shapes obtained by the three separate optimization runs. The same color code
is used in all figures, namely black lines correspond to the baseline geometry, green
ones to the IGV only optimized, blue ones to the runner only optimized and purple
onces in the simultaneous optimization geometry. (a) Comparison of the meridional
shape of the IGV LE. Comparison of the spanwise distributions of (b) βLE of the IGV,
(c) βTE of the IGV, (d) βLE of the runner and (e) βTE of the runner.
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(a)

(b)

Figure 7.14: Propeller Water Turbine IGV and Runner Optimization: (a) Shape arising
from the optimization. The large number of control points used to define the spanwise
distribution of the metal angles for the IGV and runner blades, allows wavy shapes
as the optimized ones to arise during the optimization. (b) Pressure coefficient drawn
on the solid surfaces of the water turbine.



Chapter 8

Shape Optimization using Adjoint

In this chapter, the continuous adjoint technique (developed in Chapter 3) is cou-
pled with parameterization methods presented in Chapters 4 and 6 and used to
assist gradient-based methods (such as steepest-descent) for the shape optimiza-
tion of external and internal aerodynamic shapes, including turbomachinery.

In contrast to the parameterization method used for turbomachinery compo-
nents in the applications of Chapter 7, the parameterization methods used in
this chapter are characterized by a much larger number of design variables. This
makes the adjoint method an appealing (one might say, an "exclusive") option
since the cost of computing the gradient of the objective function is independent
of the number of design variables. Even though the free-form parameterization
methods, used herein, lack the compactness of the CAD based method used in
the applications of Chapter 7, they provide the means to deform the CFD mesh
around the geometry under consideration at a much lower cost compared to the
mesh deformation methods used to adapt the CFD mesh (described in Appendix
B). Furthermore, these methods allow the use of the FI adjoint variant, which pro-
vides more accurate sensitivity derivatives, with practically negligible extra cost
compared to the SI one.

8.1 Optimization of a Transonic Airfoil

The first application concerns the optimization of a transonic airfoil. The RAE
2822 airfoil is used as the baseline shape to be optimized. A mesh of ∼ 4.8× 104

nodes, consisting exclusively of quadrilateral elements, is used for the discretiza-
tion of the flow equations around the airfoil. The flow is turbulent and the Spalart-
Allmaras turbulence model is employed. The flow conditions are presented in
Table 8.1. These flow conditions correspond to an infinite flow Mach number
M∞ = 0.729 and a Reynolds number based on the airfoil chord of Rec = 6.5× 106.

A 8×7 control point NURBS volume is used to parameterize the shape of the

187



188 8. Shape Optimization using Adjoint

Quantity Symbol Value

Infinite Flow Pressure p∞ 1.013 25× 105 Pa
Infinite Flow Density ρ∞ 1.2 kg/m3

Infinite Flow Velocity V∞ 250.55 m/ s
Infinite Flow Angle α∞ 2.31°

Air Dynamic Viscosity µ 4.627× 10=5 kg/m s
Infinite Viscosity Ratio (µt/µ)∞ 1.0

Table 8.1: Transonic Airfoil Optimization: Flow conditions.

airfoil, as well as to deform the mesh around it. The weights of all control points
are kept fixed throughout the optimization and only some of them are allowed to
move along the y-direction. The mesh around the airfoil and the NURBS control
volume are shown in Fig. 8.1. The B-Spline basis functions are of degree 2 in both
parametric directions.

Figure 8.1: Transonic Airfoil Optimization: Mesh around the transonic airfoil. The
mesh provides a distance of the first node off the wall that leads to a y+ < 1. The
airfoil and the surrounding mesh are parameterized by a 8×7 NURBS control volume
(blue lines). Control points in green are allowed to move along the y-direction. Two
layers of control points in red are kept fixed so as to ensure C1 continuity with the
surrounding, rigid mesh. Control points are not allowed to move in the x-direction
constraining the airfoil chord to its initial value.

A flow field solution takes on the average ∼ 1 min to converge on a singe
NVIDIA Tesla K40 GPU. Two separate optimization runs are performed. One for
maximizing the lift coefficient (cL) of the airfoil and one for minimizing its drag
coefficient (cD). Since the airfoil chord remains constant, optimizing for the lift
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or drag coefficients is the same as optimizing for the force components that are
associated with these coefficients, namely the lift (L) and drag forces (D). These
are expressed as

L =

∫
SObj

(pnk − τkmnm) rLk dS

D =

∫
SObj

(pnk − τkmnm) rDk dS

(8.1.1)

where the indices (k,m =1, 2), rL = (− sinα∞, cosα∞) and rD = (cosα∞, sinα∞).
From Eqs. 8.1.1 and taking Eqs. 3.1.4.49-3.1.4.56 into account, the following

adjoint boundary conditions arise at the airfoil boundaries

Ψm+1 = −rm, m = 1, 2

ν̃a = 0

qadj
k nk = 0

(8.1.2)

where rm can be either rLm or rDm depending on the chosen objective.
For both objective functions, the adjoint field equations converge in approxi-

mately the same number of pseudo-time iterations and need ∼ 45 s each on the
same hardware (NVIDIA Tesla K40 GPU). Fig. 8.2 presents the fields of the adjoint
momentum

(√
Ψ2
m+1,m = 1, 2

)
and adjoint Spalart-Allmaras variable (ν̃a) for the

two objectives.
The steepest-descent method is used to drive the optimization towards the

optimum. The convergence history of the two optimization runs is shown in Fig.
8.3.

The optimization for max cL stops prematurely (before reaching a stationary
point) after 9 cycles, because the mesh morphing led to a mesh with invalid
elements. On the other hand, the optimization for min cD drag stops after 15
cycles after reaching the available computational budget set for the run. It can be
noted that a stationary point (local minimum) is approached. However, it can be
seen that the more the optimum is approached the more the optimization appears
to stagnate. This is a known disadvantage of the steepest-descent method.

The shapes of the airfoils resulting from the two optimizations are compared
to the baseline one in Fig. 8.4. In the same figure, the pressure coefficient dis-
tribution along the three different airfoils are compared. It can be seen that the
optimization for min cD resulted in a slightly flatter suction side reducing signifi-
cantly the shock intensity and, consequently, shock induced drag. On the other
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(a) (b)

(c) (d)

Figure 8.2: Transonic Airfoil Optimization: (a), (c) Field of adjoint momentum mag-
nitude for the lift and drag as the objective function, respectively. Streamlines of
adjoint momentum are also drawn. (b), (d) Spalart-Allmaras variable field for the lift
and drag as the objective function, respectively.

hand, the optimization for max cL led to an airfoil shape that accelerated the flow
further downstream along the suction side, moving the shock wave towards the
trailing edge (TE) and avoiding the shock compression for a longer part of the
airfoil, thus, increasing lift.

The Mach number field around the baseline, the max cL and min cD airfoils are
presented in Fig. 8.5.
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Figure 8.3: Transonic Airfoil Optimization: Optimization history for (a) Maximum lift
coefficient (max cL) and (b) Minimum drag coefficient (min cD).
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Figure 8.4: Transonic Airfoil Optimization: (a) Comparison of the baseline airfoil shape
and the ones arising from the optimization for max cL and min cD. The shape of the
airfoil for min cD is very close to the baseline one but slightly flatter on the suction
side. For max cL the airfoil is less cambered in its mid-section (delaying the shock
formation) but cambers more drastically close to the trailing edge. The effect of shape
changes on the distribution of the pressure coefficient (cp) along the airfoil is shown
in (b).
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(a) (b) (c)

Figure 8.5: Transonic Airfoil Optimization: Mach number fields around the (a) base-
line, (b) max cL and (c) min cD airfoils. It can be seen that the shock intensity has
increased and the shock is moved further downstream on the max cL airfoil. For the
min cD one, the shock intensity has been reduced.

8.2 Total Pressure Losses Minimization through a Linear 2D

Compressor Cascade

In this application, the shape of a linear 2D compressor blade is optimized for min
total pressure losses. A hybrid mesh is generated around the compressor blade,
consisting of ∼ 8.8× 104 nodes with ∼ 4.7× 104 triangles and ∼ 2× 104 quadri-
laterals. Stretched quadrilateral elements are used to capture the boundary layer
close to the blade, while triangular elements cover the remaining CFD domain.
The distance of the first node off the wall leads to y+ < 1 and, consequently, the
Spalart-Allmaras model resolves the boundary layer down to the wall (the Low-
Reynolds number variant of the model). The geometry of the CFD domain and the
CFD mesh is presented in Fig. 8.6.

The flow conditions defining the operating point on which the optimized solu-
tion will be sought are summarized in Table 8.2.

The objective function is defined as

F = −
∫
SI

ptρv
A
k nkdS −

∫
SO

ptρv
A
k nkdS (8.2.1)

where the negative sign in front of the first term is used to account for the direction
of the normal at the inlet boundary (pointing outside the flow domain).

The solution of the flow field takes on the average ∼ 2.5 min on a single NVIDIA
Tesla K40 GPU. The adjoint field is solved on the average in ∼ 2 min on the same
hardware.
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(a)

(b)

Figure 8.6: 2D Linear Compressor Cascade Optimization: (a) Geometry of the CFD
domain. The linear pitch between two consecutive blades is 1 m, equal to the chord
length. The blade is positioned with a stagger angle γ = 28.8°. (b) CFD mesh around
the blade.
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Quantity Symbol Value

Inlet Total Pressure pin
t 1.151× 105 Pa

Inlet Total Temperature T in
t 293.0 K

Outlet Static Pressure pout 1.084× 105 Pa
Inlet Flow Angle αin 42.0°

Molecular Viscosity (constant) µ 1.716× 10=5 kg m=1 s=1

Inlet Viscosity Ratio (µt/µ)in 20.0

Table 8.2: 2D Linear Compressor Cascade Optimization: Flow conditions used for
the minimization of the total pressure losses of the flow through a linear compressor
cascade. The flow conditions correspond to an outlet isentropic Mach number of
M2,is = 0.295.

The geometry of the blade and its surrounding CFD mesh are parameterized
using a 13×7 polynomial NURBS control volume (all weights fixed to unity). Two
layers of control points are kept fixed to ensure C1 continuity of the mesh around
the blade with the surrounding mesh throughout the optimization. The NURBS
control volume is shown in Fig. 8.7. It can be seen that the periodic boundaries
are excluded from the control volume, even though they could be included us-
ing the method described in Section 6.3.2. The reason is that the pitch of the
linear cascade is relatively large, providing enough room for displacement of the
blade throughout the optimization process, without the need for periodic bound-
ary modification.

The steepest-descent method is employed. The optimization process ran for
15 cycles and led to a reduction of ∼ 5% in the objective function (Fig. 8.8).

Let the quantity f stand for the mass-weighted flow rate total pressure at a
certain axial position, namely

f =

∫
Spos

ptρv
A
k nkdS (8.2.2)

where Spos stands for the surface obtained by transverse cuts of the flow field.
Fig. 8.9 presents the distribution of f−f

in
f in along the axial direction for the baseline

and the optimized geometry. In can be seen that the reduction on the objective
function results mainly from the reduction in the total pressure losses generated
by the wake of the blade.

8.3 Drag Minimization of a Transonic Wing

This application concerns the optimization of an isolated wing in transonic flow
conditions for drag minimization. The ONERA M6 wing is used as the baseline
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Figure 8.7: 2D Linear Compressor Cascade Optimization: NURBS control volume
defined around the blade. The control volume is used to deform the blade as well as
the surrounding CFD mesh. Red control points are kept fixed to ensure C1 continuity
with the non-deformed mesh outside the control volume. Green control points are
allowed to move along the y-direction leading to a total of 27 design variables.
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Figure 8.8: 2D Linear Compressor Cascade Optimization: Optimization history. The
optimization ran for 15 cycles and a reduction of ∼ 5% of the objective function is
achieved.
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Figure 8.9: 2D Linear Compressor Cascade Optimization: (a) Mach number field
through the cascade for the baseline geometry. The flow is subsonic. However,
compressibility effects are not negligible. Several positions are chosen from inlet to
outlet to compute the quantity f defined in Eq. 8.2.2 . (b) Comparison between the
baseline and the optimized blade shape. The modification is more evident close to
the trailing edge, in order to enhance diffusion control. (c) Total pressure losses in-
tegrated at several positions along the axial direction. The function f defined by Eq.
8.2.2 is used. The total pressure losses are presented as a percentage of f in. It is
seen that the main effect of the optimization appears in the wake region.
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shape. A hybrid mesh of tetrahedra, pyramids, prisms and hexahedra is generated
around the wing consisting of ∼ 1.3× 106 nodes. The distance of the first nodes
off the wall is chosen to allow for resolution of the turbulent boundary layer down
to the wall (y+ < 1). The Spalart-Allamaras turbulence model is used and is
also differentiated in the adjoint formulation (as in all adjoint-based optimizations
performed within this thesis). The CFD mesh is shown in Fig. 8.10. The flow
conditions are shown in Table 8.3.

(a) (b)

Figure 8.10: Transonic Wing Optimization: (a) Hybrid surface mesh on the wing
surface. Stretched quadrilateral elements are used close to the LE and tip regions, to
help properly capturing the surface curvature at these areas. (b) Hybrid volume mesh
around the wing. The wing surface is shown in pink and the symmetry boundary in
blue. Stretched hexahedra and prism elements are used close to the wing surface to
obtain proper boundary layer resolution.

Quantity Symbol Value

Infinite Flow Pressure p∞ 1.013 25× 105 Pa
Infinite Flow Density ρ∞ 1.2 kg/m3

Infinite Flow Velocity V∞ 2.886 373× 102 m/ s
Infinite Flow Angle α∞ 3.06°

Air Dynamic Viscosity µ 1.909 35× 10=5 kg/m s
Infinite Viscosity Ratio (µt/µ)∞ 1.0

Table 8.3: Transonic Wing Optimization: Flow conditions.

Before proceeding to the optimization of the wing, a CFD analysis is performed
and results are compared to experimental ones and other CFD results from the
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literature [163]. The isentropic Mach number field on the wing surface is shown
in Fig. 8.11.

(a) (b)

Figure 8.11: Transonic Wing Optimization: (a) Isentropic Mach number field drawn
on the suction side of the baseline wing surface. The λ-shock pattern can be seen. (b)
Streamlines close to the wing tip for the baseline geometry. The tip vortex structure
is visible. Streamlines are coloured w.r.t. the Mach number value.

In Fig. 8.12, the pressure coefficient at different positions along the span of
the wing is presented and compared to other CFD, as well as experimental results
[163]. Each flow solution takes ∼ 38 min on a single NVIDIA Tesla K40 GPU.

The wing and its surrounding CFD mesh are parameterized by a 7 × 9 × 5
NURBS control volume, with B-Spline basis functions of 2nd degree along each
parametric direction. All weights of the control points are kept fixed and equal to
unity throughout the optimization. The NURBS control volume built around the
wing is shown in Fig. 8.13.

The FI continuous adjoint method is used to compute the sensitivity derivatives
of the drag force w.r.t. each NURBS control point position. Each adjoint field
solution takes ∼ 30 min on a single NVIDIA Tesla K40 GPU. Together with the
solution of the flow and adjoint field each optimization cycle takes ∼ 70 min. It
is clear that the time required for computing the sensitivity derivatives, adapting
the CFD mesh and re-computing the necessary geometric data is very small ( 2
min) compared with the 70 min needed for each optimization cycle. A total of 15
optimization cycles ran. The drag is reduced by ∼ 30 drag counts (Fig. 8.14).

The change on the wing’s shape is presented in Fig. 8.15 together with a
comparison of the isentropic Mach number on the suction side, while Fig. 8.16
presents the pressure coefficients of the optimized wing in comparison with the
ones of the baseline shape. It is seen that the drag is reduced mainly by decreasing
the intensity of the shock wave on the suction side of the wing. In addition, the
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Figure 8.12: Transonic Wing Optimization: Comparison of the pressure coefficient
distributions at (a) 44% (b) 65% (c) 80% (d) 90% (e) 96% (f) 99% of the wing span,
for the baseline shape. The results obtained by PUMA are compared to results from
three other CFD codes, namely CFL3D[109], FUN3D[110] and USM3D[111], as well
as experimental results from wind tunnel testing [163].
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Figure 8.13: Transonic Wing Optimization: NURBS control volume built around the
wing for the purpose of controlling its shape throughout the optimization and de-
forming the surrounding CFD mesh accordingly. Red control points are kept fixed to
ensure continuity with the non-deformed outer mesh, while green control points are
allowed to move along the z-direction. The wing’s spanwise chord distribution is kept
fixed.
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Figure 8.14: Transonic Wing Optimization: Optimization history. A reduction of ∼ 30
drag counts is obtained after 15 optimization cycles. The overall wall clock time is
17 h and 30 min on a single NVIDIA Tesla K40 GPU. Even though a stationary point
has not been reached yet, the optimization was stopped due to a limitation set on the
computational budget.

shape of the suction side close to the tip is modified in an effort to control the tip
vortex and reduce the drag induced by it.
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(a)

(b)

Figure 8.15: Transonic Wing Optimization: (a) Normal displacement of the suction
(left) and pressure side surface of the optimized wing. Positive normal displacement
corresponds to the geometry being pushed towards the solid, while negative means
that the wing is inflated towards the fluid region. (b) Comparison of the isentropic
Mach number field on the suction side of the wing between the baseline and optimized
shape. It can be seen that the shock intensity is reduced on the optimized wing.



202 8. Shape Optimization using Adjoint

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(a)

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(b)

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(c)

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(d)

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(e)

-1.50

-1.00

-0.50

0.00

0.50

1.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c p

x/c

Baseline
min cD

(f)

Figure 8.16: Transonic Wing Optimization: Comparison of the pressure coefficient
distributions at (a) 44% (b) 65% (c) 80% (d) 90% (e) 96% (f) 99% of the optimized wing
span with the baseline one. The shock intensity on the suction side of the wing is
greatly reduced in the inner sections of the wing leading to lower drag coefficient.

8.4 Total Pressure Losses Minimization of a Turbine Nozzle

Guide Vane

This application concerns the optimization of turbine nozzle guide vane (NGV) row
for min. total pressure losses of the flow between inlet and outlet. The baseline
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turbine geometry is provided by Rolls-Royce Deutschland. The row consists of 34
blades and is presented in Fig. 8.17.

(a) (b)

(c)

Figure 8.17: Turbine NGV Optimization: (a) Full annulus geometry of the turbine NGV
row, consisting of 34 blades. The hub surface is shown in yellow and the shroud one
in green. (b) Close-up view of the geometry on a single blade. The blade is shrouded
and no tip gap exists between the blade and the hub. (c) Meridional projection of the
turbine NGV row geometry. The hub and shroud generatrices are shown in yellow
and green color, respectively. The blue line is the inlet to and the purple one the
outlet from the row. Finally, the projection of the leading edge on the meridional
plane is shown in red, while the one of the trailing edge in orange.

A multi-block structured mesh is generated around the blade, consisting of
∼ 1.5× 106 nodes. Even though the mesh is multi-block structured, it is treated
by PUMA as unstructured consisting solely of hexahedral elements. The Spalart-
Allmaras model is used to integrate the governing equations down to the wall
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(y+ < 1). A perspective view of the boundary mesh is presented in Fig. 8.18.

(a) (b)

Figure 8.18: Turbine NGV Optimization: (a) Surface mesh used for the analysis and
optimization of the turbine NGV. The mesh is shown only on the solid wall surfaces.
(b) Volume mesh cut at a certain radial and axial position. The surface mesh on the
blade is shown in pink color.

Before proceeding with the optimization, a flow analysis is performed with
PUMA and the results are compared with those from a computation performed by
the provider of the test case with its in-house CFD software. The flow conditions
are shown in Table 8.4. Some of the conditions are specified as inlet or outlet
radial profiles, as presented in Fig. 8.19.

Quantity Symbol Value

Inlet Total Temperature T in
t 565.0 K

Molecular Viscosity(constant) µ 1.785× 10=5 kg/m s
Specific Heat Ratio γ 1.379 047

Table 8.4: Turbine NGV Optimization: Flow conditions. The data presented in this
table are supplemented with the radial profiles provided in Fig. 8.19.

Comparison of the radial distribution of the outlet velocity components pre-
dicted by PUMA with those predicted by the in-house CFD software of the test case
provider are presented in Fig. 8.20. In the same figure, the radial distributions of
the loss coefficient are also compared.

The CFD run takes ∼ 1 h and 45 min on a single NVIDIA Tesla K40 GPU.
In order to proceed to the optimization of the NGV, a NURBS control volume

is defined around the blade on the PCS. The control volume consists of 8× 6× 3
control points. The basis functions are of 3rd degree in the u-direction (roughly
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Figure 8.19: Turbine NGV Optimization: Flow conditions which supplement the ones
shown in Table 8.4. (a) Radial profile of the inlet flow angles, where vr and vθ stand
for the circumferential and radial velocity components. (b) Radial profile of the inlet
viscosity ratio. (c) Radial profile of the isentropic Mach number at the stator outlet.

associated with the streamwise direction) and of 2nd degree in the other two para-
metric directions. The control volume is presented in Fig. 8.21. The blade has
been axially duplicated as many times as needed to ensure periodicity. The con-
trol volume is presented both on the PCS, as well as on 3D Cartesian space. It
must be noted, however, that even though the coordinates of the control points
in the 3D Cartesian space are exact, the lines of the control polygon are not, in
the sense that a straight line defined on the PCS does not map to a straight line
in the 3D Cartesian space.

The objective function to be minimized is the mass-averaged total pressure
losses between inlet and outlet. Mathematically, these are expressed as
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Figure 8.20: Turbine NGV Optimization: Comparison of the outlet flow characteris-
tics predicted by PUMA, with those predicted by the CFD software of the test case
provider. (a) Normalized axial velocity component, (b) normalized peripheral velocity
component, (c) normalized radial velocity component and (d) normalized total pres-
sure losses computed as ωlosses =

pin
t −pt

pin
t −pin . The results compare very well with each

other.

F = fSI − fSO

where fS =

∫
S

ptρv
A
i nidS∫

S

ρvAi nidS

(8.4.1)

The optimization runs for 10 cycles and an ∼ 20% reduction in the objective
function is achieved. The wall clock time of the overall optimization process is ∼
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(a) (b)

Figure 8.21: Turbine NGV Optimization: (a) NURBS control volume defined around
the blade in PCS. Green control points are allowed to move in all three directions
(streamwise, circumferential and spanwise). Red points are kept fixed to ensure
continuity of the deforming part of the mesh with the non-deformed one. Blue control
points are allowed to move only along the streamwise (ξ) and pitchwise (θ) directions.
Periodic movement is ensured by the method described in 6.3.2. (b) NURBS control
volume mapped in the Cartesian space. It must be noted that the lines connecting
the control points are not actual lines of the control grid, since these are only defined
in PCS. Keeping the spanwise (η) coordinate of the blue control points fixed ensures
that the CFD mesh at the hub and shroud will slide along the corresponding surfaces.

34 h on a single NVIDIA Tesla K40 GPU. The solution of the primal field consumes
51.2% of the overall optimization wall clock time. Another 46.3% is consumed by
the adjoint solver and, finally, 2.5% of the optimization wall clock time is consumed
by mesh morphing, computation of sensitivities and mesh related operations. The
objective function convergence throughout the optimization is shown in Fig. 8.22
together with the field of normal displacement on the wall boundaries. It can be
seen that the normal displacement on the hub and shroud is zero, due to the
constrained displacement of the blade airfoil and surrounding mesh along these
surfaces.

Airfoils of the blade at different spanwise positions are presented in Fig. 8.23
where the shape of the airfoils is compared to the baseline one. The shape modifi-
cation is more pronounced at midspan, compared to the hub and shroud airfoils.

Fig. 8.24 presents the field of the isentropic Mach number on the blade suction
side for the baseline and optimized blades. It can be seen that a small shock starts
to appear on the suction side of the baseline shape, while for the optimized one
this shock is greatly diffused.
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Figure 8.22: Turbine NGV Optimization: (a) Objective function history throughout the
optimization. After 10 optimization cycles the objective function (massflow averaged
total pressure losses) has been reduced by ∼ 20% of the initial value. (b) Normal
displacement field on the wall boundaries for the optimized NGV shape. The major
modification takes place at the suction side (close to the position of the maximum
camber/maximum flow acceleration) in an attempt to reduce the total pressure losses
induced by the presence of a shock. Red color is associated with displacement of the
blade’s surface towards the solid area. In addition, the effect of sliding along the
hub and shroud surfaces (zero normal displacement), as a result of the TMVNURBS
parameterization, can be seen.

The effect of minimizing the mass-averaged total pressure losses on the loss
coefficient radial distribution at the NGV outlet is shown in Fig. 8.25. The same
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(a) Hub (b) 1/4 span (c) 1/2 span (d) 3/4 span (e) Shroud

Figure 8.23: Turbine NGV Optimization: Comparison of the optimized (red) and base-
line (blue) NGV airfoils at different positions along the blade span. It can be seen
that the modification is more pronounced at the sections away from hub and shroud.
Also, the trailing edge appears to guide the flow downstream with smaller turning,
mainly due to modifications in the pressure side shape. In addition, the blade also
appears shortened in the 1/4, mid-span and 3/4 sections, which leads to smaller
viscous losses.

(a) (b)

Figure 8.24: Turbine NGV Optimization: Isentropic Mach number field on the suction
side surface of (a) the baseline and (b) the optimized blade. The weak shock that
appears on the baseline blade is diffused on the optimized one.

figure shows the distribution of the mass-averaged total pressure (f of Eq. 8.4.1 )
along the flow path. It can be seen that the greatest reduction in generated losses
is obtained by increasing the mass-averaged total pressure right after the position
of the weak shock.
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Figure 8.25: Turbine NGV Optimization: (a) Radial distribution of ωlosses coefficient at
the outlet of the baseline and optimized NGV. It can be seen that the losses are sig-
nificantly lower for the optimized geometry, especially around the midspan position.
(b) Streamwise distribution of mass-averaged total pressure losses. In the optimized
geometry, the mass-averaged total pressure losses are significantly lower around the
weak shock position and remain lower up to the outlet.



Chapter 9

Closure

9.1 Summary-Conclusions

The target of this thesis was the development of an integrated workflow for aerody-
namic shape optimization, versatile and efficient enough to be incorporated in the
design of real-life aerodynamic components. To this end, acceleration of the CFD
using GPUs, development of the continuous adjoint method for both compress-
ible and incompressible flows and development of compact and efficient shape
parameterization methods have been presented.

More specifically, the development of the compressible and incompressible
flow (U)RANS equations solver on GPUs proved that GPU-enabled CFD codes
are advantageous compared to CPU ones, in terms of computational cost and
hardware cost efficiency (lower purchase cost and memory consumption for the
same computational performance). Specifically, the GPU-enabled code proved
to be ∼ 40× faster than the corresponding CPU one, although this figure may
vary depending on the CPU and GPU hardware specifications involved in the
comparison. Even though, developing software running on a GPU cluster is stil
more complicated than developing one for a CPU cluster, the ground laid on GPU
programming of the PUMA code in [182] and exploited/upgraded in this thesis,
proved to be solid enough to allow for new, more complex, features to be fast
and reliably implemented on the GPU. This, in turn, eliminates the additional
cost of CPU to GPU code translation and restructuring for the development of
new methods or ideas in the field of CFD. Additionally, the faster execution of
the GPU implementation of the PUMA code facilitates parametric studies and
validation/verification of new features.

The artificial compressibility (AC) method has been developed for 3D incom-
pressible flows in rotating frames of reference using the multiple reference frame
(MRF) approach. The method proved to be accurate, robust and reliable in a series
of flow simulations, from the field of wind turbines to that of hydraulic turboma-
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chinery. Even for low-speed compressible fluid flows (M < 0.3) the AC method is
preferable, compared to the use of the compressible solver variant with Low-Mach
number preconditioning. The reason is that the AC method for isothermal flows
employs one equation less (no energy equation solved) and, consequently, con-
sumes less memory and computational resources. Compared to other approaches
for solving the incompressible flow equations such as the pressure-correction
method, the AC method is easier to maintain in combination with a solver for
hyperbolic PDEs using time–marching techniques (such as a compressible flow
solver), since the discretization and numerical schemes are the same between the
AC method and the latter. As an example, the compressible and incompressible
flow (based on AC) solver of PUMA share the majority of source code files.

Concerning the optimization methods, the thesis targeted mostly at develop-
ing and extending the applicability of the continuous adjoint approach for use in
a wide range of aerodynamic shape optimization problems. Following the works
presented in [201, 143, 96] the use of adjoint to turbulence models has been ex-
tended to compressible flows. More specifically, the Spalart-Allmaras model has
been developed for compressible and incompressible flows. Earlier works in the
PCOpt/LTT on the continuous adjoint method for compressible flows [136, 6] ne-
glected the effects of variations on turbulent quantities. Incorporating the adjoint
turbulence model by also taking into account variations of the distance from the
wall, a complete and more accurate adjoint formulation for compressible flows
is now available. The differentiation of variable bulk viscosity laws (such as the
Sutherland law) aimed also in extending the applicability of the continuous adjoint
method in flows where the constant bulk viscosity assumption is inappropriate
(e.g. flows through high-pressure turbine blade rows e.t.c. ).

Both the Field Integral (FI) and Surface Integral (SI) adjoint approaches have
been developed, resulting in different expressions for the sensitivity derivatives.
The SI approach results in expressions containing exclusively surface integrals,
while the FI one results in expressions with volume integrals as well. When the
severed-SI approach is used, the accuracy of the computed gradients is potentially
different between the two formulations, depending mainly on the flow physics and
discretization accuracy. The development of both approaches has been carried out
in a way that facilitates the incorporation of different objective functions and/or
flow related constraints, without the need of reformulating the adjoint solver from
scratch. The use of object-oriented programming proved to be of paramount
importance towards this direction.

The idea of the AC method has been extended to the continuous adjoint equa-
tions for incompressible flow problems, resulting in improved convergence char-
acteristics of the adjoint solver without loss in the computed gradient accuracy.
The availability of the adjoint AC method, combined with the adjoint for Low-Mach
Number Preconditioning and a fully differentiated compressible solver resulted in
an adjoint-based optimization tool for all flow regimes. In addition, the GPU im-
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plementation of the adjoint solver proved to bear great computational savings,
even greater than the transfer of the flow solver from CPUs to GPUs. This al-
lowed gradient-based optimization techniques to be applied in industrial scale
applications with reduced optimization turnaround times.

A geometric modeler for the design and shape parameterization of turboma-
chinery components has been developed, namely the GMTurbo software. This
software has proved valuable in designing and optimizing a wide range of turbo-
machinery shapes ranging from axial to radial and mixed flow ones. The same
software helped in maintaining CAD compatibility throughout the optimization,
providing the optimization results in an appropriate format for subsequent stages
of a product’s development and production chain. Furthermore, the compactness
of the parameterization resulting from the GMTurbo, results in a representation
with directly controllable number of design variables, rendering EA-based opti-
mization a viable option for the design of rotating machinery blade rows. Addi-
tionally, the reduced evaluation cost due to the use of single or multiple GPUs
extended the applicability of EAs as a competitive tool for industrial scale aerody-
namic shape design and optimization.

The volumetric NURBS approach for parameterizing aerodynamic shapes and
deforming CFD meshes built around them has been presented. This enabled
the optimization of geometries whose CAD representation is not available from
the start and are given only in a discrete manner (CFD mesh or collection of
points). At the same time, the same parameterization technique allowed the in-
expensive use (consuming approximately 3% of the optimization total wall-clock
time) of the otherwise increased cost FI continuous adjoint approach in optimiza-
tion loops. With such an approach mesh morphing occurs simultaneously with
the shape modification, further reducing the optimization run time. Extension
of the volumetric NURBS approach for turbomachinery geometries facilitated the
optimization setup for blade rows with unavailable initial CAD representation.

Finally, the ensemble of the aforementioned developments led to an integrated
optimization loop with improved robustness and a wide range of applicability for
computationally expensive CFD based optimization problems.

9.2 Novel Contributions

The novel contributions of this PhD thesis are summarized below:

� The artificial compressibility (AC) method for incompressible flows solved
in a rotating frame of reference with the absolute velocity components as
unknown variables (MRF approach) is presented for the first time in this
thesis. In addition, the GPU implementation of this solver may be considered
novel.
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� The extension of the AC method to the continuous adjoint equations for in-
compressible flows is novel. This is not to be confused with the approach
proposed in [102], where the adjoint equations are derived by the flow equa-
tions after the artificial compressibility has been applied on them. The latter
can be considered as an alternative approach.

� The FI continuous adjoint formulation for turbulent compressible fluid flows
with variable bulk viscosity is presented for the first time.

� To the authors knowledge, the PUMA code is the only GPU implementation
of the continuous adjoint method.

� The extension of the volumetric NURBS technique for turbomachinery ap-
plications. Especially, the ability of the method to undertake the mesh
deformation by maintaining axisymmetry and periodicity is novel.
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9.3 Future Work - Suggestions

This PhD thesis was based on previous works by the PCOpt/LTT and enriched
them with new and novel developments. Hopefully, the work presented within
this thesis will be extended and further developed in future works by PCOpt/LTT.
Some ongoing developments and suggestions concerning future work are exposed
in the following list.

� The continuous adjoint method developed for both compressible and incom-
pressible flows may be extended to multi-disciplinary optimization prob-
lems (MDO), namely aerostructural, aerothermal and aeroacoustic optimiza-
tion. Some steps concerning the aerostructural optimization of wind turbine
blades have been presented by the author in the scope of the integrated re-
search project WIND-FSI, funded by the General Secretariat of Research
and Technology [53]. PCOpt/LTT is actively developing the coupling of the
adjoint solver of PUMA with commercial adjoint structural solvers for the
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aerostructural optimization of aircrafts. Concerning the aerothermal opti-
mization, there is already a PhD thesis under development in PCOpt/LTT
[57] on the development of the adjoint method for Conjugate Heat Trans-
fer problems. This work is based on the open source software OpenFOAM,
but transfer of recent developments on the PUMA software are already in
progress. Finally, concerning aeroacoustic optimization, Computational
Aeroacoustics (CAA) tools are developed in PUMA, together with their ad-
joint counterparts, in the framework of the PhD thesis [127].

� The continuous adjoint in PUMA can be extended for unsteady flows. An
interesting field of research is related on the cost reduction of storing/re-
computing intermediate flow solutions, needed to march the adjoint solu-
tion backwards in time and, especially, the GPU implementation of such
cost reduction techniques. Related work is in progress in two PhD theses
[190, 159].

� Concerning the turbomachinery modeler GMTurbo, developed in this PhD
thesis, its differentiation and coupling with the continuous adjoint method
is done within another PhD thesis [51] running in PCOpt/LTT. GMTurbo is,
also, undergoing constant development with the inclusion of more advanced
technological features, common in modern turbomachinery blades, such as
cooling holes, cooling slots, squealers, non-axisymmetric hub and shroud
and many more. The GMTurbo software can be extended to account for
manufacturing imperfections and coupled with Uncertainty Quantification
techniques provide a framework for robust design optimization.

� The method of volumetric NURBS may serve as a framework for Fluid-
Structure Interaction (FSI) problems. The NURBS basis functions can be
used to build an interpolation matrix for transferring information between
non-matching interfaces.

� Another possibility is the extension of the volumetric NURBS technique to be
based upon T-Splines [165, 86] or the latest development of U-Splines [180].
Such techniques, will allow more complicated constraints to be applied of
the movement without the need to introduce a large number of additional
control points.

� An interesting possible development concerns Isogeometric Analysis (IGA)
methods that have attracted a lot of interest for Finite Element applications
[71]. Such methods, use volumetric NURBS or T-Splines for both the geom-
etry description and analysis phase. These are higher-order methods that
have achieved noticeable reduction in computational cost for FEA applica-
tions. There exist a handful of works on the development of IGA methods
for CFD and the Finite Volume technique (e.g. [67]), but the field may well
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be the focus in the next years. The development of the adjoint method for
IGA codes will be even more appealing, since it will maintain CAD compat-
ibility throughout the optimization, eliminating, at the same time, the need
for mesh generation and deformation overall.

� The current PhD thesis is devoted to the subject of aerodynamic shape opti-
mization. Topology optimization is another important field where the adjoint
method has been used extensively. The extension of the adjoint solver of
PUMA for topology optimization is, consequently, a natural next step.
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Appendix A

Extracting GMTurbo parameters from a
CAD or CFD mesh

In this appendix, the process of computing the parameters needed by GMTurbo
to reconstruct a given blade row geometry is presented. It is assumed that the
geometry is given in the form of either a CFD mesh or a CAD model describing it
as a set of NURBS surfaces.

A CFD mesh is comprised of all the nodal coordinates, the connectivity among
the nodes and the description of mesh boundaries through the identification of the
boundary patches of the mesh. Given all these pieces of information, a series of
topological data such as the edges of the mesh connecting the nodes, the edges of
each boundary patch e.t.c. can be extracted. This is a useful piece of information
to be used in the process of reconstructing the row geometry. Without loss of
generality, it is assumed that the boundary of the CFD mesh is described by the
following boundary patches:

� Hub and shroud patches (SH and SS respectively),

� Inlet and outlet patches (SI and SO),

� Two Periodic patches (SP , SP ∗ ),

� Pressure and suction side patches on the blade surface (SPS, SSS) and

� optionally, leading (LE) and trailing edge (TE) patches (SLE, STE) in case one
of these edges is either of blunt, wedge or dovetail shape.

In what follows, surface patches will be denoted by S. Nodes belonging to
two patches (i.e. lying on shared edges) are denoted by EA,B, where A and B are
the two patches. Similarly, corner nodes shared by three boundary patches are
denoted as CA,B,D. Consequently, given three patches A, B and D the following
relations hold
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EA,B = SA ∩ SB
EA,B ⊂ SA, EA,B ⊂ SB

CA,B,D = EA,B ∩ SD
CA,B,D ⊂ EA,B, CA,B,D ⊂ EA,D, CA,B,D ⊂ EB,D

(A.1)

In order to reconstruct the given geometry, the following data need to be ex-
tracted either from the CFD mesh or the given CAD model:

� meridional contour of the hub and shroud,

� a series of camber lines of the blade at different spanwise positions and

� thickness profiles and spanwise thickness distributions of the blade.

The steps to extract these data are described in the following sections.

A.1 Extraction of the Meridional Contour of the Geometry

In case a CFD mesh is given, the nodal description of the edge EH,P between the
hub and the a periodic patch are identified. Then, these nodes are arranged,
using topological information from the mesh connectivity, starting from CH,P,I
and ending at CH,P,O. The resulting set of nodes is mapped from the 3D Cartesian
space onto the meridional (z, r) plane and, then, is either interpolated or fitted
by a NURBS curve. This process results in the construction of the meridional
projection of the hub generatrix. A similar process is followed for the projection
of the shroud generatrix. In case a tip gap exists, the same process is folllowed
using the nodes share by SPS and ST or SSS and ST , with ST denoting the tip
patch. In this case, the generated meridional curve is extended up to the inlet
and down to the outlet of the CFD mesh.

If a CAD model is given and the hub (or shroud) geometry is described as a
NURBS surface, then an isoparametric curve (at any parameter in the paramet-
ric direction not associated with the direction of revolution) is extracted, points
are created on the this curve, mapped onto the meridional plane and a NURBS
generatrix is created. In many cases, the original CAD model of a row already
contains the hub and shroud meridional generatrices which are, hence, retained
in the GMTurbo description.

A.2 Extraction of Spanwise Blade Sections

Let the generatrices of the hub and shroud in the meridional plane be denoted
as CH and CS, respectively. These two curves are brought to common knot
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(a) (b)

Figure A.1: (a) Intermediate surfaces of revolution at fixed span spositions along the
blade are generated, in order to extract data from each span blade section. (b) The
points where each surface of revolution intersects the blade surfaces (or patches SPS
and SSS ) form airfoils at different span positions.

vectors and degrees using knot insertion and degree elevation algorithms, leading
to curves ĈH and ĈS. Intermediate generatrices are generated between ĈH and
ĈS by linear interpolation along the the spanwise direction and are, afterwards,
used as the basis to construct isospan surfaces of revolution. Let Ri denote the
ith out of these surfaces.

For a given Ri, in case a CFD mesh is available, points on the blade pressure
side surface are generated by intersecting SPS with Ri. The points are arranged
starting from the intersection of Ri with EPS,SS at the LE and ending at the
intersection of Ri with EPS,SS at the TE. If a blunt LE or TE is used, then the
corresponding end-point is identified as the intersection of Ri with EPS,TE or
EPS,LE, respectively (Fig. A.1). The same process is repeated for the suction side
of the blade. The computed points are mapped from 3D Cartesian space onto the
(m, θ)-plane using Eq. 5.2.1, effectively mapping the ith blade section onto (m, θ).

The points along the airfoil are interpolated using a NURBS curve with an
appropriate level of continuity at the LE and TE positions. If any of the LE and
TE is of circular arc type, the radius of the circular arc is computed using the
curvature of the NURBS curve at the corresponding position, taking also into
account Eq. 5.2.3.

Repeating this process for all Ri from hub to shroud, a number of airfoils are
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generated and mapped onto (m, θ)-plane. Since points are already computed on
the LE and TE in the 3D space, these can be mapped onto the meridional plane
and fitted by NURBS curves, yielding the meridional projection of the blade.

A.3 Extraction of Blade Metal and Auxiliary Angles

Having computed the airfoils of the blade at several spanwise positions, the cam-
ber line of these airfoils must be computed, so that spanwise distributions of the
blade’s metal angles can be extracted.

Let M0 be the LE point. A series of N1 points are generated on one side of the
blade (the choice of the side is irrelevant) denoted as Ai, (i = 1, . . . , N1). For each
Ai, a point Bi must be identified on the opposite blade side, so that AiBi ⊥ t,
where t is the vector tangent to the camber line computed as t = Mi−1M̃i. M̃i

is the midpoint of AiBi. If such a point Bi is identified, then a new point on the
camber line Mi = M̃i results. The process is illustrated in Fig. A.2.

Figure A.2: Illustration of the algorithm employed to compute the camber line of an
airfoil, given its two sides and the LE position. For each point Ai on the one side,
a series of points Bj

i are generated on the opposite side, until the one that matches
the prescribed criteria is encountered. Consequently, several trial points M̃ j are
generated until the new camber line point Mi is found.

The computed camber line points Mi, i = 0, . . . , N1 are then fitted by a cubic
Bezier curve. If the control points of this Bezier curve are denoted as P0, P1, P2

and P3, respectively, the θLE, θTE, βLE, βTE, δLE and δTE angles can be computed as
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θLE = θP0

θTE = θP3

βLE = arctan

(
θP1 − θP0

mP1 −mP0

)
βTE = arctan

(
θP3 − θP2

mP3 −mP2

)
δLE = arctan

(
θP1 − θCM
mP1 −mCM

)
− γ

δTE = arctan

(
θP2 − θCM
mP2 −mCM

)
− γ

γ = arctan

(
θP3 − θP0

mP3 −mP0

)

(A.3.1)

where CM stands for the midpoint of the chord P0P3.
Once the blade angles become available at several spanwise positions, they

are fitted with NURBS curves that define their spanwise distribution.

A.4 Extraction of Thickness Data

Having computed the camber lines at several spanwise positions, the thickness
data can also be extracted. Points are generated along the camber line based
on normalized arc-length positions computed via a stretching function. Common
stretching functions are the hyperbolic trigonometric functions such as the hy-
perbolic tangent. From each point on the camber line, a straigth line is generated
perpendicular to it, intersecting both airfoil sides. The distance from the camber
line point to each intersection point corresponds to the half-thickness value at
this normalized arc-length position, scaled appropriately (Eq. 5.2.3 ). Among the
τ values extracted, the maximum is found and assigned to τmax. All half-thickness
values are then normalized by τmax, yielding pairs of (s, τ̂). Fitting these pairs re-
sults in the normalized thickness profile curve at this spanwise position. Finally,
all values of τmax at different spanwise positions are fitted with a NURBS curve to
yield the spanwise distribution of the half-thickness for each blade side. At this
point it is worth repeating that the half-thickness need not be symmetric for the
two sides of the blade.
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Appendix B

Adapting turbomachinery mesh to
GMTurbo generated geometry

In this appendix, the process of adapting an existing CFD mesh to a geometry gen-
erated by GMTurbo is described. If the GMTurbo parameters have been extracted
by a pre-existing CFD mesh, this process is also used to adapt the CFD mesh
to the reconstructed geometry. In such a case, some additional work is needed,
to obtain the parametric coordinates of the nodes on the corresponding surfaces.
Since the process of adapting a 3D CFD mesh to a reconstructed geometry is more
general than the process of adapting it to a modified one later on, only the former
is presented. At the end, it will be clear which steps of the process are omitted
when deforming the geometry.

The CFD mesh is assumed to be described by the boundary patches listed in
Appendix A. In addition, the following surfaces are made available by GMTurbo:

� a surface for each blade side (GPS and GSS),

� one surface for the hub and one for the shroud (GH and GS),

� a surface for the LE and/or TE if a blunt, wedge or dovetail type edge is used
(GLE and/or GTE), and

� a surface for the tip of the blade, if such a feature is present (GT ).

Since GH , GS and GT are surfaces of revolution, representing them as func-
tions of m and θ proves more handy, especially when it comes to periodicity treat-
ment (periodic nodes retain the samem coordinate and θ differing by the blade row
pitch). The surfaces describing the blade itself retain their initial representation
using the (u, v) parametric coordinate system.

The process of adapting the CFD mesh to the reconstructed geometry is split
into 5 steps which are developed in the following sections.
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B.1 Projecting the CFD Surface Nodes onto the Geometry

The first step concerns the projection of the nodes of each boundary patch of
the mesh on its corresponding surface. Herein, the term projection refers to the
process of finding the closest point P∗ lying on a parametric surface, given a
point P in the 3D space. The algorithm for implementing such a process can be
found in [149]. A by-product of the projection process is that a pair of parametric
coordinates (u, v) or (m, θ) is assigned to P, being the pair that reproduces point
P∗. If P lies on the surface under consideration, then the projection process is
equivalent to inverting the vector valued function representing the surface.

The pair of parametric coordinates assigned to each surface node is a very use-
ful piece of information, since it provides the means of treating the surface mesh
as a planar 2D one in the parametric space. However, since the reconstructed
geometry does not match exactly the CFD mesh, simply projecting the surface
nodes may potentially create gaps or folds in areas where surfaces intersect. For
this reason, these areas are treated in a special way described in the next section.

B.2 Adapting Mesh Nodes onto Surface Intersections

The process of adapting the nodes on the surface intersections will be described
for the intersection of the blade’s pressure side GPS with the hub surface GH .
The same process is repeated for the rest of the surface intersections of the mesh.

Initially, the length of EH,PS is computed from the CFD mesh and a normal-
ized arc-length value ŝ is assigned to each node. Next, a NURBS surface–NURBS
surface intersection algorithm is employed to compute the intersection curves be-
tween GH and GPS. In fact, no unique intersection curve can easily be computed
between to general NURBS surfaces. The intersection curves result as NURBS
curves in the form

GH ∩ GPS ⇒

{
CPS
H (t) : [0, 1]→ (m, θ)H

CH
PS (t) : [0, 1]→ (u, v)PS

(B.2.1)

where parameter t is common between the two intersection curves. Using the ŝ
values computed from the CFD mesh, corresponding values of t are computed
and the mesh nodes in EH,PS are assigned parametric coordinates using the
parametric form of the two intersection curves (Eq. B.2.1).

After adapting the mesh nodes to the surface intersection, folds and gaps are
avoided in these areas. However, since the parametric coordinates of these mesh
nodes may differ from the ones computed by the projection step, each surface
mesh in parametric space needs to be adapted to this repositioning as well. This
is done by employing 2D mesh deformation techniques developed in the past and
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used by the PCOpt/NTUA [182], [96]. Indicatively, some of them are the linear
or torsional spring analogy methods [44, 36], the Laplace PDE-based mesh de-
formation [120] and the elastic medium analogy [39]. These methods propagate
the displacement of the boundary nodes (of the surface mesh mapped onto the
parametric space) into the interior of the mesh. In addition, they allow the treat-
ment of flexible periodic boundaries, free to move in a periodic manner in the θ
direction (applicable for the hub and shroud surface meshes).

This last step, that of retrofitting the parametric mesh of each surface on the
adapted surface intersection nodes, leads to a pair of parametric coordinates (u, v)
or (m, θ) for each surface mesh node, that is used as the non-deformed state for
subsequent mesh adaptations that may be carried out (e.g. during a parametric
study or an optimization process).

B.3 Finalizing the 3D Surface Mesh and Adapting the Volume

Mesh

The final step is the computation of the 3D Cartesian coordinates for each surface
mesh node and the adaptation of the volume mesh. The former is performed
by simply evaluating the points on each NURBS surface (for blade surfaces) for
given (u, v) values previously computed, or evaluating the points on surfaces of
revolution for given (m, θ) values. Using algorithms described in Chapter 4 and
Chapter 5 this process is straightforward.

The final adaptation of the 3D volume mesh to the newly computed 3D sur-
face boundaries is carried out using the 3D variants of the mesh deformation
techniques used for adapting the 2D parametric meshes. Again, periodic bound-
aries are allowed to move in a periodic manner.

In case the initial CFD mesh is generated directly on the geometry generated by
the GMTurbo, the projection step is redundant, since the parametric coordinates
of the surface nodes are known by the mesh generation process. This is also the
case when adapting a mesh to any geometry arising during an optimization loop.
The rest of the mesh adaptation steps are still necessary.
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[105] J. Krüger and R. Westermann. Linear Algebra Operators for GPU Implemen-
tation of Numerical Algorithms. ACM Transactions on Graphics, 22(3):908–
916, 2003.

[106] A Kumar, Andy Keane, P.B. Nair, and Shahrokh Shahpar. Efficient robust
design for manufacturing process capability. In Proceedings of the 6th ASMO
UK Conference on Engineering Design Optimization, 2006.



238 Bibliography

[107] S. Kyriacou. Evolutionary Algorithm-based Design-Optimization Methods in
Turbomachinery. PhD thesis, National Technical University of Athens, 2013.

[108] N. Lambropoulos. Multigrid Techniques and Parallel Processing for the Nu-
merical Prediction of Flow Fields through Thermal Turbomachines, using Un-
structured Grids. PhD thesis, National Technical University of Athens, 2005.

[109] NASA Langley Research Center. CFL3D Home Page. https://cfl3d.
larc.nasa.gov/.

[110] NASA Langley Research Center. FUN3D Home Page. https://fun3d.
larc.nasa.gov/.

[111] NASA Langley Research Center. USM3D Home Page. https://tetruss.
larc.nasa.gov/usm3d/.

[112] B. Launder and D. Spalding. The Numerical Computation of Turbulent
Flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269 –
289, 1974.

[113] D. Lee. Local Preconditioning of the Euler and Navier–Stokes Equations. PhD
thesis, Aerospace Engineering, University of Michigan, 1996.

[114] J. Leiva and B. Watson. Automatic Generation of Basis Vectors for
Shape Optimization in the GENESIS Program. In 7th AIAA/USAF/-
NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
St. Louis,MO,USA, 2 September - 4 September 1998.

[115] M. Lesoinne and C. Farhat. Geometric Conservation Laws for Flow Prob-
lems with Moving Boundaries and Deformable meshes, and their Impact
on Aeroelastic Computations. Computer Methods in Applied Mechanics and
Engineering, 134:71–90, 07 1996.

[116] W. Li, X. We, and A. Kaufman. Implementing Lattice Boltzmann Compu-
tation on Graphics Hardware. The Visual Computer, 19(7):444–456, Dec
2003.

[117] J. Lions. Optimal Control of Systems Governed by Partial Differential Equa-
tions. Springer-Verlang, New York, NY, USA, 1971.

[118] Y. Liu, X. Liu, and E. Wu. Real-Time 3D Fluid Simulation on GPU with Com-
plex Obstacles. In Proceedings of the Computer Graphics and Applications,
12th Pacific Conference, pages 247–256, 2004.

[119] C. Lozano, E. Andrés, M. Martin, and P. Bitrián. Domain versus boundary
computation of flow sensitivities with the continuous adjoint method for
aerodynamic shape optimization problems. Numerical Methods in Fluids,
70(10):1305–1323, 2012.

https://cfl3d.larc.nasa.gov/
https://cfl3d.larc.nasa.gov/
https://fun3d.larc.nasa.gov/
https://fun3d.larc.nasa.gov/
https://tetruss.larc.nasa.gov/usm3d/
https://tetruss.larc.nasa.gov/usm3d/


Bibliography 239
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