
Reduced order models and machine
learning in analysis and optimum design

of structures

Nikolaos Ath. Kallioras

Department of Structural Engineering
School of Civil Engineering

National Technical University of Athens

This dissertation is submitted for the degree of
Doctor of Philosophy

School of Civil Engineering April 2019

Εκτενής Περίληψη Διδακτορικής Διατριβής

1. Γενική Εισαγωγή

Ο βέλτιστος σχεδιασμός κατασκευών αποτέλεσε αντικείμενο έρευνας, πρακτικά, από

την περίοδο που πραγματοποιήθηκαν οι πρώτες ανθρώπινες κατασκευές. Η ανάγκη

για την εύρεση του βέλτιστου σχεδιασμού συνέχισε να αυξάνει με την πάροδο του

χρόνου, με την αύξηση να μπορεί να χαρακτηριστεί ως γεωμετρική καθώς

αυξάνονταν και τα μεγέθη αλλά και η πολυπλοκότητα των κατασκευών. Η ανάλυση

των κατασκευών και ειδικότερα το υπολογιστικό κόστος αυτών, ως ανάλογο του

μεγέθους και της πολυπλοκότητας των κατασκευών, παρουσίασε και αυτό αντίστοιχη

αύξηση. Το γεγονός αυτό συνετέλεσε στην στροφή μεριδίου του ενδιαφέροντος της

έρευνας σε προσεγγιστικές μεθόδους, καθώς οι μέθοδοι ακριβούς υπολογισμού

γίνονταν ιδιαίτερα απαιτητικές. Αποτελεί επίσης αξιοσημείωτο γεγονός πως και οι

διαθέσιμοι υπολογιστικοί πόροι αυξήθηκαν σημαντικά τα τελευταία χρόνια,

ιδιαίτερα με την χρήση των επιταχυντών.

Ενδεικτικά, οι προσεγγιστικές μέθοδοι που χρησιμοποιούνται ευρέως στη διεθνή

βιβλιογραφία είναι τα μοντέλα μειωμένης τάξης, τα τεχνητά νευρωνικά δίκτυα αλλά

και οι gradient-free αλγόριθμοι βελτιστοποίησης. Κάθε μία από τις μεθόδους αυτές

παρουσιάζει ξεχωριστά χαρακτηριστικά, προτερήματα αλλά και μειονεκτήματα. Για

παράδειγμα, η συμπεριφορά των gradient-free αλγόριθμων βελτιστοποίησης

εξαρτάται από το πλήθος των παραμέτρων κάθε προβλήματος, ενώ τα νευρωνικά

δίκτυα είχαν παραγκωνιστεί όσο ήταν αδύνατη η εκπαίδευση βαθιών

αρχιτεκτονικών. Στον αντίποδα, τα τελευταία χρόνια μέσω της επιτυχούς

εκπαίδευσης βαθιών νευρωνικών δικτύων, έχει σημειωθεί εξαιρετική αύξηση του

ερευνητικού ενδιαφέροντος γύρω από αυτά σε τομείς όπως natural language

processing, computer vision και big data. Επιπλέον, τα μοντέλα μειωμένης τάξης

χρησιμοποιούνται ευρέως σε προβλήματα ανάλυσης πολύπλοκων και μεγάλων

μοντέλων.

Η συμβολή της παρούσας διατριβής επικεντρώνεται στον τομέα της ανάλυσης και

του βέλτιστου σχεδιασμού δομικών κατασκευών μέσω της ανάπτυξης νέων

υπολογιστικών μεθόδων συνδυάζοντας ακριβείς και προσεγγιστικές μεθόδους. Η

ροπή προς την εκμετάλλευση μεθόδων soft computing είναι αναπόφευκτη, κατά την

κρίση του συγγραφέα, λόγω της δυσαναλογίας που παρουσιάζεται στην αύξηση του

μεγέθους και της πολυπλοκότητας των σημερινών προβλημάτων που καλείται να

αντιμετωπίσει ο μηχανικός και στην αύξηση της διαθέσιμης υπολογιστικής ισχύος.

Οι ακριβείς μέθοδοι έχουν την ικανότητα να μειώνουν δραστικά την τιμή της

αντικειμενικής συνάρτησης του προβλήματος μετά από ένα σχετικά μικρό πλήθος

επαναλήψεων. Δυστυχώς, όμως, δεν έχουν τη δυνατότητα να αποφύγουν τον

εγκλωβισμό τους σε κάποιο τοπικό ελάχιστο. Πιο συγκεκριμένα, σε προβλήματα

πραγματικής φύσης και κλίμακας, είναι πρακτικά σίγουρο πως η λύση που θα

προτείνει ένας αλγόριθμος αυτής της οικογένειας θα είναι ένα τοπικό βέλτιστο και

όχι το ολικό. Επιπλέον, αξίζει να σημειωθεί πως ο υπολογισμός της παραγώγου

πρώτης και δεύτερης τάξης που χρησιμοποιούν οι ακριβείς μέθοδοι, απαιτούν

σημαντικό υπολογιστικό φόρτο ενώ σε αρκετές περιπτώσεις είναι και αδύνατο να

υπολογιστούν. Οι παραπάνω λόγοι συνεισφέρουν στην ανάπτυξη και χρήση μεθόδων

soft computing σε πληθώρα προβλημάτων πραγματικής φύσης.

Παρουσιάζοντας μια σύντομη ιστορική αναδρομή στην εξέλιξη και χρήση των

μεθόδων soft computing, αξίζει να σημειωθεί η σημαντική ερευνητική προσοχή που

δέχθηκαν στα χρόνια μεταξύ 1970 και 1990, όπου είναι γνωστή και η χρήση τους σε

πολλά προβλήματα πραγματικής κλίμακας. Οι gradient free μέθοδοι, λόγω της

τυχαιότητας που περιλαμβάνουν στη δομή τους έχουν τη δυνατότητα να ξεπερνούν

τυχόν εγκλωβισμούς σε τοπικά ελάχιστα και, πρακτικά, αν δεν έχουν περιορισμό

τερματισμού, εγγυώνται την εύρεση του ολικού ελάχιστου. Βασικό μειονέκτημα

αυτών των μεθόδων είναι η ταχύτητα σύγκλισής τους καθώς απαιτούν σημαντικό

πλήθος επαναληπτικών επιλύσεων. Το τελευταίο οδήγησε και στην μείωση του

ενδιαφέροντος για αυτές τις τεχνικές με την αύξηση της πολυπλοκότητας των

προβλημάτων.

Την τελευταία δεκαετία, συγκεντρώθηκε μεγάλο ενδιαφέρον γύρω από τις μεθόδους

soft computing κυρίως λόγω του μεγάλου όγκου δεδομένων που συλλέγουν και

πρέπει να διαχειριστούν οι εταιρίες online υπηρεσιών. Το ενδιαφέρον αυτό οδήγησε

στην σύλληψη και παρουσίαση νέων μεθόδων, ικανών να διαχειριστούν προβλήματα

αυξημένης πολυπλοκότητας όπως, για παράδειγμα, τα βαθιά νευρωνικά δίκτυα που

πλέον έχουν γίνει γνωστά σε διάφορες πτυχές τόσο της επιστημονικής έρευνας όσο

και της αγοράς. Στην παρούσα διατριβή προτείνονται διάφορες μέθοδοι χρήσης

σύγχρονων τεχνικών soft computing στην επιστήμη του πολιτικού μηχανικού αλλά

και ειδικότερα στην ανάλυση και τον βέλτιστο σχεδιασμό κατασκευών. Ο

υπολογιστικός φόρτος των περισσότερων προβλημάτων στην ανάλυση και τον

σχεδιασμό κατασκευών αφορά την επαναληπτική επίλυση της παρακάτω εξίσωσης:

 { } []*{ }P K U (1.1)

Αυτό οφείλεται στο κόστος υπολογισμού του αντίστροφου μητρώου, του μητρώου

δυσκαμψίας που απαιτείται για την επίλυση της εξίσωσης. Για την αντιμετώπιση του

παραπάνω προβλήματος έχουν παρουσιαστεί διάφορες τεχνικές που σχετίζονται με

τη μείωση του μεγέθους του μητρώου δυσκαμψίας, τη μείωση του απαιτούμενου

αριθμού επίλυσης της εξίσωσης ισορροπίας, την χρήση τεχνικών παράλληλης

επεξεργασίας αλλά και συνδυασμούς των όλων ή μερικών από τις τεχνικές αυτές.

Στην παρούσα διδακτορική διατριβή παρουσιάζονται νέες μέθοδοι που αφορούν τις

τεχνικές αυτές, αλλά και μία μέθοδος που δύναται να χρησιμοποιηθεί στον τομέα

του Generative Design.

Η παρούσα διατριβή είναι χωρισμένη σε επτά κεφάλαια. Στο 1ο κεφάλαιο συναντάται

μία εισαγωγή και σύντομη ανάλυση των περιεχομένων της. Στο 2ο κεφάλαιο

παρουσιάζεται η γενική ιδέα της μαθηματικής διατύπωσης των προβλημάτων

βελτιστοποίησης, μία βιβλιογραφική ανασκόπηση των μεθόδων που

χρησιμοποιούνται στην βελτιστοποίηση αλλά και αναλυτικότερες περιγραφές

αλγορίθμων που έχουν χρησιμοποιηθεί στα πλαίσια της διατριβής. Στη συνέχεια του

κεφαλαίου αυτού παρουσιάζονται εκτενώς μία βελτιωμένη εκδοχή ενός υπάρχοντος

μεταευρετικού αλγορίθμου αλλά και ένας νέος προτεινόμενος μεταευρετικός

αλγόριθμος. Στο 3ο κεφάλαιο παρουσιάζονται μια βιβλιογραφική ανασκόπηση των

βαθιών νευρωνικών δικτύων αλλά και αναλυτική παρουσίαση των τύπων δικτύων

που χρησιμοποιήθηκαν στο πλαίσιο της παρούσας διδακτορικής διατριβής. Στο 4ο

κεφάλαιο παρουσιάζεται μια μέθοδος μείωσης του υπολογιστικού φόρτου της

βελτιστοποίησης τοπολογίας που βασίζεται σε βαθιά νευρωνικά δίκτυα και

αναπτύχθηκε στο πλαίσιο της διδακτορικής διατριβής. Στο 5ο κεφάλαιο

παρουσιάζονται τρεις μέθοδοι παραγωγής μοντέλων μειωμένης τάξης μέσω βαθιών

νευρωνικών δικτύων και η χρήση τους στη βελτιστοποίηση τοπολογίας. Στο 6ο

κεφάλαιο παρουσιάζεται μια μέθοδος που χρησιμοποιεί την βελτιστοποίηση

τοπολογίας και βαθιά νευρωνικά δίκτυα στον τομέα του Generative Design. Τέλος,

στο 7ο κεφάλαιο παρουσιάζονται κάποιες προτάσεις για μελλοντική έρευνα στους

παραπάνω τομείς.

2. Βελτιστοποίηση και απόδοση αλγορίθμων

Ως βελτιστοποίηση, περιγράφεται η βελτίωση μιας συγκεκριμένης λύσης ως προς

προκαθορισμένα κριτήρια και κάτω από συγκεκριμένους περιορισμούς. Στο

αντικείμενο του δομοστατικού μηχανικού η βελτιστοποίηση αποσκοπεί στην εύρεση

του βέλτιστου σχήματος, μεγέθους ή της βέλτιστης τοπολογίας ενός δομικού

συστήματος ως προς το κόστος ή την απόδοση αυτού χωρίς την παραβίαση

καθορισμένων περιορισμών. Οι μέθοδοι που χρησιμοποιούνται μπορούν να

κατηγοριοποιηθούν με διάφορους τρόπους. Οι πιο διαδεδομένες κατηγοριοποιήσεις

είναι:

 Ντετερμινιστικές ή Στοχαστικές μέθοδοι.

 Μέθοδοι Gradient-based ή Gradient-free.

 Μέθοδοι Τοπικής ή Καθολικής αναζήτησης (Local Search, Global Search).

Η γενική διατύπωση ενός προβλήματος βελτιστοποίησης χωρίς περιορισμούς μπορεί

να περιγραφεί ως εξής:

1 2 1

() :

[, ,..., ,]

:

[,]i i

n n

L U

i i i

Minimize F X where

X x x x x

with respect to

x x x

 (1.2)

ενώ στην περίπτωση του προβλήματος βελτιστοποίησης με περιορισμούς

περιγράφεται ως:

1 2 1

() :

[, ,..., ,]

:

() 0, 1,2,...,

1,

() 0, 1,2,..., 1,

[,] i i

n n

k

j

L U

i i i

Minimize F X where

X x x x x

with respect to

g X k m m

l X j s s

x x x

 (1.3)

όπου F(X) είναι η αντικειμενική συνάρτηση που θα βελτιστοποιηθεί, Χ είναι το

διάνυσμα λύσης, g(X) οι ανισοτικοί περιορισμοί, l(X) οι ισοτικοί περιορισμοί και

,i iL U

i ix x τα όρια της xi μεταβλητής.

Οι Gradient-based αλγόριθμοι βασίζονται στην πληροφορία παραγώγου 1ης και

συνήθως 2ης τάξης για την εύρεση της βέλτιστης λύσης. Μερικές από τις πιο γνωστές

μεθόδους είναι οι:

 Steepest descent algorithm [22]

 Conjugate gradient method [67]

 Newton-Raphson method [15]

 Quasi-Newton method [19,37]

Επιπλέον, δύο αλγόριθμοι που χρησιμοποιήθηκαν στο πλαίσιο της παρούσας

διδακτορικής διατριβής είναι οι:

 Optimality criteria algorithm [31]

 Method of moving asymptotes [202]

Οι Gradient-free αλγόριθμοι δεν πραγματοποιούν υπολογισμό παραγώγου και

χρησιμοποιούνται σε περιπτώσεις που δεν είναι δυνατόν να γίνει υπολογισμός της

παραγώγου ή αυτό ‘κοστίζει’ υπερβολικά ή δεν είναι ακριβής ο υπολογισμός [173].

Ξεκινώντας από την μέθοδο SIMPLEX [150] και μέχρι σήμερα υπάρχουν πολλές

εφαρμογές σε διάφορα προβλήματα από δομοστατικής φύσης [109,113,114] μέχρι

ιατρικής φύσης [136].

2.1 Harmony Search και Improved Harmony Search

Ένας από τους ευρέως διαδεδομένους μεταευρετικούς αλγόριθμους είναι ο

Harmony Search (HS) [60] που δημιουργήθηκε από την μοντελοποίηση του

αυτοσχεδιασμού των μουσικών μιας Jazz ορχήστρας. Σύμφωνα με τη διαδικασία

αυτή, κάποιο μέλος της ορχήστρας ξεκινά παίζοντας μία νότα και κάποιο άλλο μέλος

της μπάντας αποφασίζει να παίξει μια νέα νότα είτε επιλέγοντάς την τυχαία είτε

επιλέγοντάς την από τα ακούσματα-μνήμη του είτε επιλέγοντας κάποια με βάση τα

ακούσματά του και παραλλάσσοντάς την λίγο. Για την μαθηματική μοντελοποίηση

του αλγόριθμου, καλό είναι να οριστούν κάποιες αντιστοιχίες: οι μουσικοί

αντιστοιχούν σε μεταβλητές σχεδιασμού, το εύρος κάθε οργάνου στο εύρος κάθε

μεταβλητής, η παραγόμενη μελωδία αντιστοιχεί σε διάνυσμα λύσης και η αποδοχή

της μελωδίας από το κοινό στην ποιότητα της λύσης.

Οι βασικές λειτουργίες του HS είναι α) Αρχικοποίηση μνήμης, β) Παραγωγή νέας

μελωδίας και γ) Ενημέρωση μνήμης. Κατά το πρώτο βήμα, γεμίζει η μνήμη με τυχαία

παραγόμενες λύσεις. Στο δεύτερο βήμα παράγεται μια νέα μελωδία επιλέγοντας

κάθε μέλος του διανύσματος με μία από τις εξής επιλογές: α) Τυχαία, β) Επιλέγοντας

μία από τη μνήμη, γ) Επιλέγοντας μία από τη μνήμη και αλλάζοντάς την λίγο. Τέλος,

στο τρίτο βήμα ελέγχεται, αν η τιμή της αντικειμενικής συνάρτησης που αντιστοιχεί

στο παραχθέν διάνυσμα λύσης είναι καλύτερη από την χειρότερη από όσες είναι

αποθηκευμένες στη μνήμη και αν ναι, τότε την αντικαθιστά. Διαφορετικά,

εγκαταλείπεται. Τα παραπάνω μπορούν να αποτυπωθούν ως εξής:

 1 2

[,] with probability 1-HMCR

[, , ,] with probability HMCR*(1-PAR)

with probability HMCR*PAR

Lower Upper

i i i

New HMS

i i i i i

i

s x x

s s HM s s s

s k

 (1.4)

όπου si είναι το I στοιχείο του διανύσματος λύσης s, HM η μνήμη του αλγόριθμου,

HMCR και PAR είναι παράμετροι αυτού και xi
Lower, xi

Upper τα άνω και κάτω όρια της I

μεταβλητής σχεδιασμού.

Στα πλαίσια της παρούσας διδακτορικής διατριβής διαμορφώθηκε μια νέα,

βελτιωμένη εκδοχή του HS που ονομάζεται Improved Harmony Search (IHS). Οι δύο

βασικές αλλαγές αφορούν: α) την κατάργηση της επιλογής τιμής από τη μνήμη χωρίς

αλλαγή της και β) την παραγωγή ολόκληρου του διανύσματος λύσης από μία από τις

δύο, πλέον, λειτουργίες και όχι κάθε μεταβλητής αυτής ξεχωριστά. Αντίστοιχα, η

εξίσωση που περιγράφει τις νέες λειτουργίες είναι:

1 2

[1,] : [,] with probability 1-HMCR

[1,]: [, , ,] with probability HMCR

Lower Upper

New i i i

HMS

i i i i

i n s x x
s

i n s HM s s s

 (1.5)

Οι παραπάνω αλλαγές πραγματοποιήθηκαν στοχεύοντας στη βελτίωση της

συμπεριφοράς του αλγορίθμου τόσο από άποψη σταθερότητας όσο και από

απόδοσης ως προς την εύρεση του βέλτιστου. Τα παραπάνω επιβεβαιώθηκαν και

μέσω εφαρμογής του HS και του IHS σε πραγματικά προβλήματα βελτιστοποίησης.

Ενδεικτικά, αναφέρεται η βέλτιστη διαμέριση της πόλης της Θεσσαλονίκης σε

περιοχές ευθύνης συνεργείων επιθεώρησης, ώστε σε περίπτωση σεισμικού

συμβάντος να ολοκληρωθεί η επιθεώρηση όσο το δυνατόν ταχύτερα. Εξετάστηκε

τόσο η απόδοση των αλγόριθμων (μικρότερος αναγκαίος χρόνος για την

επιθεώρηση) όσο και η σταθερότητά τους καθώς πραγματοποιήθηκαν 32

διαφορετικές επιλύσεις με 32 διαφορετικά σετ παραμέτρων. Τα αποτελέσματα

φαίνονται στην παρακάτω εικόνα και τον παρακάτω πίνακα:

Από την εικόνα είναι φανερό πως ο IHS συμπεριφέρεται καλύτερα από τον HS

ανεξαρτήτως παραμέτρων.

2.2 Pity Beetle Algorithm

Στα πλαίσια της παρούσας διδακτορικής διατριβής αναπτύχθηκε ένας νέος

μεταευρετικός αλγόριθμος με το όνομα Pity Beetle Algorithm (PBA). Ο αλγόριθμος

αυτός ανήκει στο είδος των εμπνευσμένων από τη φύση αλγόριθμων και στον τύπο

των αλγορίθμων πλήθους (swarm). Για την ακρίβεια, είναι εμπνευσμένος από τις

φυσικές διεργασίες ενός είδους σκαθαριού που ονομάζεται Pityogenes

chalcographus και συναντάται στα δάση της Κεντρικής και Βόρειας Ευρώπης αλλά

και στην Ελλάδα [107,9]. Ο PBA έχει βασιστεί στην χαρακτηριστική συμπεριφορά που

το είδος αυτό επιδεικνύει κατά την αναζήτηση τροφής και κατάλληλων δέντρων

ώστε να δημιουργεί φωλιές, τρεφόμενο από τον φλοιό των κορμών των δέντρων και

δημιουργώντας φωλιές στο εσωτερικό του κορμού.

Το είδος αυτό χαρακτηρίζεται από την ικανότητά του να εποικεί γρήγορα εντός ενός

δάσους και να το καλύπτει ξεκινώντας από μια μικρή αποικία [186]. Συγκεκριμένα,

μια μικρή ομάδα σκαθαριών πετάνε τυχαία εντός του δάσους σε αναζήτηση μη

υγιών δέντρων, ώστε να σχηματίσουν εκεί τις φωλιές τους. Όταν βρεθεί αυτό,

ελευθερώνουν μια φερομόνη ελκύοντας και άλλα άτομα να κινηθούν προς το δέντρο

αυτό. Αν αντίστοιχα έχει δημιουργηθεί υπερπληθυσμός σε μία θέση, τότε εκλύει μια

άλλη φερομόνη που αποτρέπει να κινηθούν άλλα άτομα προς την περιοχή αυτή.

Κατά συνέπεια, γίνεται η δημιουργία αποικίας χτίζοντας φωλιές και προσελκύοντας

θηλυκά άτομα. Επιδεικνύοντας πολυγαμική συμπεριφορά, κάθε αρσενικό θα

δημιουργήσει 3 ως 6 νέες γενιές με διαφορετικά θηλυκά άτομα με κάθε μία από

αυτές να αποτελείται από 70 περίπου νέα άτομα. Οι νέες γενιές θα κινηθούν προς

αναζήτηση νέων μη υγιών δέντρων για να δημιουργήσουν τις δικές τους αποικίες. Η

απόσταση αναζήτησης που μπορούν να καλύψουν εξαρτάται από την ποιότητα

τροφής της αρχικής τους θέσης. Είναι κατανοητό πως μπορούν εύκολα να αυξήσουν

τον πληθυσμό τους σχετικά γρήγορα και όταν υπάρχει ικανός πληθυσμός έχουν τη

δυνατότητα να επιτεθούν και σε υγιή δέντρα.

Ο αλγόριθμος PBA αποτελείται από τρεις κύριες λειτουργίες: α) Αρχικοποίηση, β)

Μέθοδος εύρεσης νέας θέσης και γ) Ενημέρωση θέσεων αποικιών. Αρχικά,

δημιουργείται η πρώτη γενιά με την ομάδα ατόμων που μετακινούνται τυχαία στο

δάσος – πεδίο ορισμού για την εύρεση της θέσης της πρώτης αποικίας. Όταν αυτή

εντοπιστεί δημιουργείται η πρώτη αποικία και κάθε νέα γενιά που θα δημιουργηθεί

ψάχνει για νέες θέσεις με βάση συγκεκριμένους τρόπους μετακίνησης. Όταν

βρεθούν οι νέες θέσεις, ενημερώνεται το αρχείο θέσεων αποικιών. Αυτή η

διαδικασία συνεχίζεται ως ότου ικανοποιηθεί το κριτήριο τερματισμού του

αλγόριθμου.

Η δημιουργία του υπερκύβου των πιθανών διακριτών θέσεων εντός της περιοχής

μετακίνησης γίνεται με τη χρήση μιας Random Sampling τεχνικής (RST) [93]

παρόμοια με την Latin Hypercube Sampling [152]. Η αρχική τυχαία τοποθέτηση των

ατόμων μπορεί να περιγραφεί ως εξής:

(0)

1 2 1 2

(, , ,)

where

[, , ,], [, , ,] and 1,2, ,

j pop

D D pop

x RST L U D N

L L L L U U U U j N

 (1.6)

όπου j είναι το άτομο της (0) γενιάς, x η θέση του, Npop το πλήθος των αρχικών

ατόμων και Li, Di τα ελάχιστα και μέγιστα όρια της i μεταβλητής σχεδιασμού.

Οι τρόποι μετακίνησης των ατόμων στον ΡΒΑ είναι 5:

 Μικρού εύρους μετακίνηση

 Μεσαίου εύρους μετακίνηση

 Μεγάλου εύρους μετακίνηση

 Μετακίνηση με μέγιστο εύρος

 Μετακίνηση με εκμετάλλευση της μνήμης

Οι πρώτες τέσσερις μετακινήσεις είναι ταυτόσημες λειτουργικά και διαφέρουν ως

προς το εύρος ενώ η τελευταία είναι διαφορετική ως προς την λειτουργία. Το εύρος

ορίζεται ως εξής:

() () ()

() () () ()

, ,

(, , ,)

where

, (1), (1)

g g g

j pop

g g g g

i i birth i pat birth i pat

x RST l u D N

l u x f x f

 (1.7)

όπου η παράμετρος fpat ορίζει το εύρος του υπερκύβου κάθε μετακίνησης. Η

διατύπωση του τρόπου επιλογής τρόπου μετακίνησης για κάθε γενιά είναι:

() ()

, ,

() () () ()()
, , , 1,

((1), (1) , ,), 1

(, , ,),

((1), (1) , ,), , () ()

(

g g

birth i nb birth i nb pop

pop un

g g g gg
birth i ms birth i ms pop j k birthj k

birth

RST x f x f D N if k

RST L U D N ifFE FE

RST x f x f D N j f x f xx
else

else RST x
else

() ()

, ,(1), (1) , ,), if

,

1,2, , , 1,2, ,

g g

i ls birth i ls pop

pop

f x f D N r pr

MEM otherwise

i D j N

 (1.8)

Μία σχηματική απεικόνιση του τρόπου μετακίνησης σε δισδιάστατο πρόβλημα με

εννιά άτομα φαίνεται στην ακόλουθη εικόνα:

Η μετακίνηση με εκμετάλλευση της μνήμης πραγματοποιείται επιλέγοντας μία

αποθηκευμένη λύση και πραγματοποιώντας ακτινικές μετακινήσεις ανά μεταβλητή.

Για την εκτίμηση της απόδοσης του ΡΒΑ, πραγματοποιήθηκαν σειρά από τεστ που

προτείνονται στη διεθνή βιβλιογραφία αλλά και ανάλυση ευαισθησίας ως προς τις

παραμέτρους. Στα περισσότερα τεστ παρουσιάζεται και σύγκριση του ΡΒΑ με

διάφορους σύγχρονους μεταευρετικούς αλγόριθμους. Ενδεικτικά, κάποιες από τις

συναρτήσεις που χρησιμοποιήθηκαν στα τεστ είναι:

Test Function Domain Optimum Name

f1(x)

2

1

()
n

i

i

f x x

 [-100, 100]D 0 Sphere

f2(x)

 1

() [sin()]
n

i i

i

f x x x

 [-500, 500]D -418.9829D Schwefel

f3(x)

2

1 1

1
() cos() 1

4000

nn
i

i

i i

x
f x x

i

 [-600, 600]D 0 Griewank

f4(x)

2

1

() 10 [10cos(2)]
n

i i

i

f x n x x

 [-100, 100]D 0 Rastrigin

f5(x)

1
2 2 2

1

1

() [100() (1)]
n

i i i

i

f x x x x

 [-10, 10]D 0 Rosenbrock

f6(x)

2

1 1

1 1
() 20exp(0.20) exp(cos(2)) 20 exp(1)

n n

i i

i i

f x x x
n n

 [-32.768, 32.768]D 0 Ackley

f7(x)

max max

1 0 0

max

() cos(2 (0.5)) [cos(2 *0.5)]

0.5, 3, 20

k kn
k k k k

i

i k k

f x a b x n a b

a b k

[-0.5, 0.5]D 0 Weierstrass

f8(x)

2

1 1

() ()
n i

j

i j

f x x

 [-100, 100]D 0 Quadric

f9(x)

2

1

() (x 0.5)
n

i

i

f x

 [-100, 100]D 0 Step

f10(x)

2

1 1

1 1
() 20exp(0.20) exp(cos(2)) 20 exp(1),

n n

i i

i i

f x y y
n n

y M x

[-32.768, 32.768]D 0

Rotated
Ackley

f11(x)

2

1 1

1
() cos() 1,

4000

nn
i

i

i i

y
f x y

i

y M x

 [-600, 600]D 0

Rotated
Griewank

f12(x)

2

1

() 10 [y 10cos(2)],
n

i i

i

f x n y

y M x

 [-5.12, 5.12]D 0

Rotated
Rastrigin

f13(x)

2

1

() 10 [z 10cos(2)] 330,

()

n

i i

i

f x n z

z x o M

 [-5.12, 5.12]D -330

Shifted –
Rotated
Rastrigin

Κάποια ενδεικτικά αποτελέσματα παρουσιάζονται στον πίνακα που ακολουθεί:

Set Sphere Schwefel's Griewank's Rastrigin's Rosenbrock's Ackley's

1 1.19E-33 -12478.46 0.00E+00 0.00E+00 2.59E+01 7.99E-15

Επίσης, εφαρμόστηκε και το τεστ του διαγωνισμού για single objective unconstrained

optimization του CEC 2014 [127] και τα αποτελέσματα παρουσιάζονται λεπτομερώς

στο αντίστοιχο κεφάλαιο της διδακτορικής διατριβής.

3. Μέθοδοι βαθιάς μηχανικής μάθησης

2 1.01E-83 -12400.32 1.70E-02 0.00E+00 2.88E+01 4.44E-15

3 4.98E-145 -12559.84 0.00E+00 0.00E+00 2.88E+01 8.88E-16

4 2.88E-25 -12460.17 4.02E-02 0.00E+00 2.86E+01 7.19E-14

5 4.36E-18 -12301.16 0.00E+00 0.00E+00 2.60E+01 6.56E-10

6 2.48E-77 -12414.98 1.93E-02 0.00E+00 2.59E+01 4.44E-15

7 3.84E-13 -12416.15 7.76E-13 1.51E-13 2.88E+01 1.25E-07

8 1.47E-25 -12533.16 0.00E+00 0.00E+00 2.71E+01 7.19E-14

9 1.59E-98 -12453.65 0.00E+00 0.00E+00 2.86E+01 2.58E-14

10 1.08E-07 -12558.81 6.70E-02 4.52E-08 2.80E+01 4.87E-05

11 6.01E-65 -12514.33 1.26E-02 0.00E+00 2.58E+01 7.99E-15

12 8.60E-45 -12294.99 1.09E-02 0.00E+00 2.55E+01 7.99E-15

13 5.11E-24 -12332.07 0.00E+00 0.00E+00 2.70E+01 3.42E-13

14 5.30E-21 -12425.66 0.00E+00 0.00E+00 2.88E+01 1.43E-11

15 4.90E-26 -12331.18 1.33E-02 0.00E+00 2.89E+01 5.77E-14

16 4.85E-36 -12437.18 0.00E+00 0.00E+00 2.79E+01 4.44E-15

17 9.55E-23 -12355.17 0.00E+00 0.00E+00 2.61E+01 1.24E-12

18 9.05E-07 -12540.62 3.40E-06 5.08E-07 2.69E+01 2.00E-04

19 9.31E-49 -12561.68 2.85E-02 0.00E+00 2.86E+01 4.44E-15

20 1.04E-15 -12353.39 1.01E-02 4.97E-14 2.56E+01 3.43E-07

21 3.47E-206 -12529.82 0.00E+00 0.00E+00 2.86E+01 3.44E+00

22 3.89E-18 -12353.25 0.00E+00 0.00E+00 2.80E+01 3.50E-10

23 5.69E-09 -12555.03 1.61E-07 1.60E-08 2.71E+01 2.30E-05

24 8.14E-16 -12530.70 1.33E-15 0.00E+00 2.70E+01 5.63E-09

25 1.89E-75 -12474.81 0.00E+00 0.00E+00 2.88E+01 3.58E+00

Average 4.07E-08 -12446.66 8.75E-03 2.27E-08 2.75E+01 2.81E-01

St. Deviation 1.78E-07 86.79 1.58E-02 9.94E-08 1.22E+00 9.53E-01

Minimum 3.47E-206 -12561.68 0.00E+00 0.00E+00 2.55E+01 8.88E-16

Maximum 9.05E-07 -12294.99 6.70E-02 5.08E-07 2.89E+01 3.58E+00

Η μηχανική μάθηση μπορεί να περιγραφεί ως το σύνολο των διαδικασιών εκείνων

που δίνουν στον υπολογιστή την ικανότητα να παίρνει αποφάσεις και να δρα

βασιζόμενος σε κανόνες που ορίζονται από ΄σωστές΄ αποφάσεις ή δράσεις αλλά και

να προσαρμόζεται με βάση τις συνέπειες των σωστών ή λανθασμένων αποφάσεων

σε μια επαναληπτική διαδικασία [137]. Η μηχανική μάθηση χρησιμοποιείται πλέον

σε πληθώρα εφαρμογών όπως διάγνωση ασθενειών, υπολογιστική όραση,

αναγνώριση δομικών προβλημάτων, κλπ. [110, 41,23].

Με βάση τη διαδικασία εκπαίδευσης, οι τεχνικές μηχανικής μάθησης μπορούν να

κατηγοριοποιηθούν ως εξής [137]:

 Επιβλεπόμενη μάθηση (Supervised learning)

 Μη-επιβλεπόμενη μάθηση (Unsupervised learning)

 Ημι-επιβλεπόμενη μάθηση (Semi-supervised learning)

 Ενισχυόμενη μάθηση (Reinforcement learning)

 Εξελικτική μάθηση (Evolutionary learning)

Στα πλαίσια της παρούσας διδακτορικής διατριβής γίνεται χρήση τεχνικών βαθιών

νευρωνικών δικτύων και επιβλεπόμενης μάθησης. Πιο συγκεκριμένα, γίνεται χρήση

των Deep Belief Networks και Deep Convolutional Neural Networks.

3.1 Deep Belief Networks

Τα Deep Belief Networks (DBN) είναι βαθιά νευρωνικά δίκτυα που μορφώνονται από

την σειριακή σύνδεση πολλαπλών δικτύων Restricted Boltzmann Machines (RBM)

[73].

Τα RBM [196] είναι πιθανοτικά γραφικά μοντέλα, που αναφέρονται και ως

στοχαστικά νευρωνικά δίκτυα. Χρησιμοποιούνται κυρίως για την ανακάλυψη

ιδιοτήτων μιας άγνωστης κατανομής πιθανότητας με χρήση δειγμάτων αυτής και

μοντελοποίησής της σε διαφορετικό χώρο.

Η αρχιτεκτονική των δικτύων αυτών διαμορφώνεται από δύο layer, το ορατό (visible)

που αντιστοιχεί στα δεδομένα εισόδου και το κρυφό (hidden) που αντιστοιχεί στους

ανιχνευτές χαρακτηριστικών. Οι κόμβοι του ορατού layer είναι συνδεδεμένοι

συμμετρικά με όλους τους κόμβους του κρυφού layer ενώ δεν υπάρχουν συνδέσεις

μεταξύ κόμβων που ανήκουν στο ίδιο layer. Μία ενδεικτική απεικόνιση ενός RBM

παρουσιάζεται στην παρακάτω εικόνα:

Σε κάθε κατάσταση του δικτύου αντιστοιχεί και μια ενέργεια, η οποία μπορεί να

υπολογιστεί ως εξής [39]:

k max lmax k max lmax

,

1 1 1 1

(,) k k l l k l k l

k l k l

E v h a v b h v h w

 (1.9)

Η ενέργεια αυτή αποτελεί δείκτη της ποιότητας της κατάστασης του δικτύου.

Αντίστοιχα, η συνδυασμένη πιθανότητα του δικτύου για κάθε πιθανό ζεύγος εισόδων

και εξόδων του δικτύου υπολογίζεται από τον νόμο του Boltzmann ως εξής [131]:

(v,h) (v,h)

,

* * * *
* b*h * *

1
(v,h) where (intractable)

1 1
(,) k l k l

E E

v h

a v b h v h w
a v v h w

k l k l

p e Z e
Z

p v h e e e e e e
Z Z

 (1.10)

Όμοια, μπορούν να υπολογιστούν και οι κάτωθι δεσμευμένες πιθανότητες ως εξής:

k max lmax

1 1

(|) (|) and (h | v) (h | v)k l

k l

p v h p v h p p

 (1.11)

Αντίστοιχα, η πιθανότητα να είναι ενεργός κάποιος κόμβος είτε του ορατού είτε του

κρυφού layer δίνεται από:

. . .

. . . .

(b) b (b)

(b) b (b) ()
 (logistic function)

1
(1|) *

1 1 1

l k k l l k k l l k k l

v v v

l k k l l k k l l k k l l k k l

v v v v

v w v w v w

l v w v w v w b v w

e e e
p h v

e e e e

 (1.12)

.()

 (logistic function)
1

(v 1|h)

1
k l k l

h

k h w
p

e

 (1.13)

Η εκπαίδευση ενός RBM γίνεται με στόχο τη μεγιστοποίηση του log-likelihood [74]:

max

(k)

1

log (v)
k

k

P

 (1.14)

με χρήση κάποιου αλγόριθμου βελτιστοποίησης, συνηθέστερα του Gradient ascent

[50] και τη μεθοδολογία Contrastive Divergence [70,71]. Επιπλέον, για την

εκπαίδευση του RBM, μπορεί να εκτιμηθεί και η παράγωγος του λογαρίθμου της

πιθανότητας ενός διανύσματος εισόδου ως προς το βάρος wk,l ως εξής [77]:

input model

,

 (expected average values)
log ()

k l k l

k l

p v
v h v h

w

 (1.15)

όπου
input model

και
k l k l

v h v h εκφράζουν τη συχνότητα με την οποία τα vk, hl είναι

ενεργά ταυτόχρονα στο μοντέλο, όπως προκύπτει από τα δεδομένα εισόδου και στο

ανακατασκευασμένο μοντέλο.

Ακολούθως, γίνεται ενημέρωση των βαρών μέσω της σχέσης:

 : learning rate new

kl kl kl ew w e w (1.16)

Η εκπαίδευση των DBN βασίζεται σε μία διβηματική μέθοδο που προτάθηκε την

τελευταία δεκαετία, καθώς παλιότερα δεν υπήρχε εκπαίδευση με ικανοποιητικά

αποτελέσματα [75]. Στο πρώτο στάδιο της μεθόδου, κάθε RBM που υπάρχει στο DBN

εκπαιδεύεται ανεξάρτητα από τα υπόλοιπα με μη-επιβλεπόμενη εκπαίδευση. Όταν

ολοκληρωθεί αυτό το βήμα, μορφώνεται το DBN από το προ-εκπαιδευμένα RBM και

το όλο δίκτυο πλέον, εκπαιδεύεται με την χρήση του Backpropagation [176] και

Conjugate Gradient [68] με εκπαιδευόμενη μάθηση [74, 75].

Ένα γενικό μοντέλο ενός δικτύου DBN αναπαρίσταται στην παρακάτω εικόνα:

3.2 Convolutional Neural Networks

Τα Convolutional Neural Networks (CNN), εμπνευσμένα από τον τρόπο λειτουργίας

των οργάνων όρασης των ζώων [82,83], αποτελούν ίσως τα πιο ευρέως

χρησιμοποιούμενα βαθιά νευρωνικά δίκτυα. Αν και σε πρώτη μορφή

παρουσιάστηκαν αρκετά χρόνια πριν [56,118,119], η απόδοσή τους σε προβλήματα

αναγνώρισης αντικειμένων σε εικόνες τα τελευταία χρόνια, τα έφερε στο προσκήνιο

[111]. Έκτοτε έχουν προταθεί διάφορες αρχιτεκτονικές (LeNet, ZFNet, GoogLeNet) με

αξιοσημείωτα αποτελέσματα [121,226,203].

Η αρχιτεκτονική των CNN αποτελείται από εν σειρά σύνδεση διαφόρων τύπων

δικτύων. Οι βασικοί τύποι που χρησιμοποιούνται είναι:

 Convolutional layers,

 Pooling layers και

 Fully connected layers

Μία τυπική μορφή ενός CNN, όπως προτάθηκε από τον LeCun (δίκτυο LeNet),

φαίνεται στην παρακάτω εικόνα:

Τα convolutional layers χρησιμοποιούνται ως ανιχνευτές χαρακτηριστικών στα

δεδομένα εισόδου. Η παραπάνω διαδικασία εκτελείται με τη χρήση φίλτρων που

διατρέχουν τα δεδομένα εισόδου πραγματοποιώντας την συνέλιξη. Τα pooling layers

συνήθως ακολουθούν τα convolutional και χρησιμοποιούνται για την μείωση του

μεγέθους των δεδομένων εισόδου. Υπάρχουν τρεις τύποι pooling [63]:

 Max pooling,

 Average pooling και

 L2-norm pooling.

Ο ευρύτερα χρησιμοποιούμενος τύπος pooling είναι ο max pooling, αν και η επιλογή

εξαρτάται από το πρόβλημα αυτό καθαυτό αλλά και από τον τύπο των δεδομένων

εισόδου. Τα fully connected layers χρησιμοποιούνται αντίστοιχα με το πρόβλημα που

καλείται το CNN να διαχειριστεί (classification, regression, κλπ.) και είναι όμοια με

τυπικά layers κλασσικών νευρωνικών δικτύων.

Τα CNN εκπαιδεύονται συνήθως με την χρήση του διαδεδομένου αλγόριθμου

Backpropagation καθώς με την χρήση των convolution και pooling layers μειώνεται

σημαντικά το μέγεθος των fully connected layers και γίνονται διαχειρίσιμα.

4. Εφαρμοσμένη βαθιά μηχανική μάθηση στη

βελτιστοποίηση τοπολογίας

Το συγκεκριμένο κεφάλαιο της διδακτορικής διατριβής είναι αφιερωμένο στην

αναζήτηση νέων μεθόδων για την επιτάχυνση της βελτιστοποίησης τοπολογίας, η

οποία είναι ιδιαίτερα απαιτητική από την άποψη υπολογιστικού φόρτου και χρόνου,

ακόμα και σε επίπεδο ερευνητικής και όχι πραγματικού μεγέθους δουλειάς. Παρά το

γεγονός πως οι διαθέσιμοι υπολογιστικοί πόροι αυξάνονται, η αύξηση της

πολυπλοκότητας και του μεγέθους των προβλημάτων είναι ταχύτερη οδηγώντας σε

αύξηση του ενδιαφέροντος για επιτάχυνση των διαδικασιών αυτών. Κάποιοι

προτεινόμενοι τρόποι αντιμετώπισης του προβλήματος επικεντρώνονται στη χρήση

παράλληλου προγραμματισμού σε CPU ή και GPU [16,24,45,138] ενώ άλλοι στα

μοντέλα μειωμένης τάξης, κλπ.

Η βελτιστοποίηση τοπολογίας είναι μια μαθηματική μέθοδος που αποσκοπεί στην

εύρεση της βέλτιστης τοποθέτησης συγκεκριμένου ποσοστού υλικού εντός

συγκεκριμένου χωρίου υπό συγκεκριμένες συνθήκες στήριξης και φόρτισης με

κριτήριο την στατική απόδοση του συστήματος [194]. Το συνηθέστερα

χρησιμοποιούμενο κριτήριο στατικής απόδοσης του συστήματος είναι το

Compliance. Μία από τις ευρέως χρησιμοποιούμενες μεθόδους στην Βελτιστοποίηση

Τοπολογίας είναι η Solid Isotropic Material with Penalization (SIMP), η οποία συνδέει

την πυκνότητα με το μέτρο ελαστικότητας και παρουσιάστηκε τη δεκαετία του 1990

[12,229,147]. Η διατύπωση ενός προβλήματος βελτιστοποίησης τοπολογίας είναι η

εξής:

0

() * ()

:

()* ()

()

0

 1

T

t

Minimize C x F U x

with respect to

K x U x F

V x
V

V

x

 (1.17)

όπου C(x) είναι το compliance για συγκεκριμένο διάνυσμα πυκνοτήτων, Κ(x) το

μητρώο δυσκαμψίας, F και U(x) τα μητρώα δυνάμεων και μετατοπίσεων, V(x),V0,Vt

είναι ο όγκος με βάση το διάνυσμα πυκνοτήτων x, ο αρχικός όγκος και ο επιθυμητός

όγκος, αντίστοιχα. Το μέτρο ελαστικότητας συνδέεται με την πυκνότητα κάθε

πεπερασμένου στοιχείου μέσω της παρακάτω σχέσης:

 0 0() ()p p

x i i x i iE x x E K x x K (1.18)

Στην παρούσα διδακτορική διατριβή προτείνεται μία νέα μέθοδος επιτάχυνσης των

διαδικασιών επίλυσης προβλημάτων βελτιστοποίησης τοπολογίας, μειώνοντας

δραματικά τον απαιτούμενο υπολογιστικό φόρτο τους. Η νέα μέθοδος που

ονομάζεται DL-TOP βασίζεται στον συνδυασμό σύγχρονων μεθόδων βαθιών

νευρωνικών δικτύων και συγκεκριμένα των DBN και της SIMP. Η κεντρική ιδέα πάνω

στην οποία δημιουργήθηκε το DL-TOP απαρτίζεται από τα εξής:

 Η βελτιστοποίηση τοπολογίας είναι ιδιαίτερα απαιτητική σε υπολογιστικό

φόρτο και η απαίτηση αυτή αυξάνεται σε συνάρτηση με το πλήθος των

πεπερασμένων στοιχείων του πλέγματος

 Τα DBN έχουν αξιοσημείωτες δυνατότητες αναγνώρισης προτύπων που

βρίσκονται κρυμμένα σε μεγάλες βάσεις δεδομένων και δεν είναι ορατά από

τον χρήστη χωρίς εφαρμογή της μεθόδου

 Κάθε πεπερασμένο στοιχείο παρουσιάζει μεταβολή στην πυκνότητά του σε

κάθε επανάληψη της SIMP. Ενδεικτική διακύμανση της πυκνότητας διάφορων

πεπερασμένων στοιχείων μπορεί να παρατηρηθεί στην παρακάτω εικόνα

όπου ο άξονας των x αντιστοιχεί στις επαναλήψεις της SIMP, ο y στην τιμή της

πυκνότητας και με διαφορετικό χρώμα σημειώνονται τα διάφορα

πεπερασμένα στοιχεία:

 Η προτεινόμενη μεθοδολογία πρέπει να είναι ανεξάρτητη των παραμέτρων

του προβλήματος (γεωμετρία, συνθήκες στήριξης και φόρτισης, τελικός

όγκος, κλπ.). Με τον τρόπο αυτό θα αποφευχθεί η αναγκαιότητα

επανεκπαίδευσης του νευρωνικού δικτύου σε κάθε εφαρμογή. Κάτι τέτοιο θα

ήταν ασύμφορο χρονικά και υπολογιστικά.

Η προτεινόμενη μεθοδολογία DL-TOP αποτελείται από τα παρακάτω στάδια:

Φάση I

 Ορισμός του προβλήματος βελτιστοποίησης τοπολογίας

 Εκτέλεση περιορισμένου αριθμού επαναλήψεων της SIMP

 Μόρφωση διανύσματος εισόδου του DBN ανά πεπερασμένο στοιχείο

Φάση II

 Εκτίμηση πιθανής τελικής πυκνότητας κάθε πεπερασμένου στοιχείου από το

DBN

 Μόρφωση του χωρίου με βάση τις προτεινόμενες τιμές πυκνότητας ανά

πεπερασμένο στοιχείο

 Χρήση της SIMP για να πραγματοποιήσει fine-tuning στο αποτέλεσμα του DBN

Το διάγραμμα ροής του DL-TOP παρουσιάζεται στην ακόλουθη εικόνα:

Συγκεκριμένα, το DBN εκπαιδεύεται και χρησιμοποιείται για να πραγματοποιεί ένα

διακριτό άλμα από την πυκνότητα κάθε πεπερασμένου στοιχείου στις πρώτες

επαναλήψεις σε μια τιμή κοντά στην τελική που θα υπολόγιζε η SIMP από μόνη της,

μειώνοντας δραστικά το πλήθος των απαιτούμενων επαναλήψεων της SIMP. Το

παραπάνω φαίνεται και στην ακόλουθη εικόνα:

Για να μπορέσει το DBN να προσφέρει αυτήν την πληροφορία, είναι απαραίτητη η

εκπαίδευσή του σε παρόμοιους συσχετισμούς, δηλαδή δεδομένα εισόδου που είναι

χρονο-ιστορίες τιμών πυκνοτήτων πεπερασμένων στοιχείων ανά επανάληψη της

SIMP (για μικρό πλήθος επαναλήψεων) και τελικές τιμές πυκνότητας των

πεπερασμένων αυτών στοιχείων. Για τον λόγο αυτό κατασκευάστηκαν δύο βάσεις

δεδομένων από δύο κλασικά παραδείγματα βελτιστοποίησης τοπολογίας, μια

μονοπροέχουσα αμφιέρειστη δοκό και έναν πρόβολο όπως φαίνονται στην

παρακάτω εικόνα:

με δύο αναλογίες ύψους/μήκους και οκτώ διαφορετικά πλήθη διακριτοποιήσεων

κυμαινόμενα από 1000 έως 100.000 πεπερασμένα στοιχεία. Συνολικά, κάθε βάση

περιέχει περίπου 400.000 διαφορετικούς συσχετισμούς πυκνοτήτων. Συνεπώς, το

DBN εκπαιδεύτηκε σε δύο διαφορετικές βάσεις ξεχωριστά. Ως κατηγορίες κλάσεων

στην έξοδο του DBN, εξετάζονται δύο διαφορετικές περιπτώσεις, τρεις και έντεκα

διαφορετικές κλάσεις. Για να εκτιμηθεί η συμπεριφορά της μεθοδολογίας DL-TOP,

δοκιμάστηκε σε σειρά παραδειγμάτων δύο διαστάσεων, τριών διαστάσεων, με

δομημένο και μη δομημένο πλέγμα. Η εκτίμηση της απόδοσης έγινε ως προς το

τελικό αποτέλεσμα μείωσης επαναλήψεων της SIMP, γενικότητα εφαρμογής σε

διαφορετικά προβλήματα και σταθερότητα της μεθοδολογίας ως προς τις τιμές των

παραμέτρων της.

Το πρώτο παράδειγμα είναι μία δοκός με τις στηρίξεις και τις φορτίσεις που φαίνεται

στην παρακάτω εικόνα, δομημένο πλέγμα, πλήθος πεπερασμένων στοιχείων 120.000

και τελικό στόχο όγκου ίσο με 40%.

Η λύση που προτείνει η SIMP χωρίς το DBN προκύπτει μετά από 372 επαναλήψεις

και τιμή αντικειμενικής συνάρτησης ίση με 85,99. Η τελική τοπολογία που προτείνει

είναι η εξής:

Η προτεινόμενη τοπολογία στην έξοδο του DBN έχοντας διαβάσει τις πρώτες 36

επαναλήψεις της SIMP έχει τιμή αντικειμενικής συνάρτησης ίση με 86,43 και εικόνα:

Το τελικό αποτέλεσμα της μεθοδολογίας DL-TOP μετά από το τελικό της στάδιο το

οποίο είναι το fine-tuning της εξόδου του DBN από τη SIMP (43 επαναλήψεις) έχει

τιμή αντικειμενικής συνάρτησης ίση με 85,66, ελάχιστα μικρότερη από αυτή της SIMP

και οι συνολικές επαναλήψεις που χρειάστηκαν είναι ίσες με 43+36 = 79

επαναλήψεις, οι οποίες αντιστοιχούν στο 21% μόλις αυτών που χρειάζεται η SIMP

από μόνη της. Το τελικό αποτέλεσμα τοπολογίας που προέκυψε από την

μεθοδολογία DL-TOP φαίνεται στο ακόλουθο σχήμα:

Το επόμενο παράδειγμα είναι ένας πρόβολος με την στήριξη και την φόρτιση που

φαίνεται στην παρακάτω εικόνα, μη δομημένο πλέγμα, πλήθος πεπερασμένων

στοιχείων 5.000 και τελικό στόχο όγκου ίσο με 40%.

Η λύση που προτείνει η SIMP χωρίς το DBN προκύπτει μετά από 267 επαναλήψεις

και τιμή αντικειμενικής συνάρτησης ίση με 391,19. Η τελική τοπολογία που προτείνει

είναι η εξής:

Η προτεινόμενη τοπολογία στην έξοδο του DBN έχοντας διαβάσει τις πρώτες 36

επαναλήψεις της SIMP έχει τιμή αντικειμενικής συνάρτησης ίση με 442,65 και εικόνα:

Το τελικό αποτέλεσμα της μεθοδολογίας DL-TOP μετά από το τελικό της στάδιο το

οποίο είναι το fine-tuning της εξόδου του DBN από τη SIMP (43 επαναλήψεις) έχει

τιμή αντικειμενικής συνάρτησης ίση με 394,46, ελάχιστα μεγαλύτερη από αυτή της

SIMP και οι συνολικές επαναλήψεις που χρειάστηκαν είναι ίσες με 30+36 = 66

επαναλήψεις, οι οποίες αντιστοιχούν στο 24,72% μόλις αυτών που χρειάζεται η SIMP

από μόνη της. Το τελικό αποτέλεσμα τοπολογίας που προέκυψε από την

μεθοδολογία DL-TOP φαίνεται στο ακόλουθο σχήμα:

Στο πλήρες κείμενο της διδακτορικής διατριβής παρουσιάζονται αρκετά περισσότερα

παραδείγματα όπου παρατηρείται ακόμα καλύτερη συμπεριφορά της μεθοδολογίας,

ενώ παρουσιάζεται σύγκριση των δύο διαφορετικών βάσεων εκπαίδευσης και

μελέτη της σταθερότητας της μεθοδολογίας σε σχέση με τις παραμέτρους

εκπαίδευσης των RBM.

5. Βαθιά νευρωνικά δίκτυα και μοντέλα μειωμένης τάξης

Το παρόν κεφάλαιο της διδακτορικής διατριβής επικεντρώνεται στην ανάπτυξη νέων

μεθοδολογιών παραγωγής και χρήσης μοντέλων μειωμένης τάξης μέσω βαθιών

νευρωνικών δικτύων στην βελτιστοποίηση κατασκευών. Πιο συγκεκριμένα,

παρουσιάζονται τρεις μέθοδοι παραγωγής μοντέλων μειωμένης τάξης με συνδυασμό

βαθιών νευρωνικών δικτύων (DBN και CNN) και της μεθόδου βελτιστοποίησης

τοπολογίας SIMP. Οι μεθοδολογίες αυτές ονομάζονται:

 DL-SCALE

 DLRM-TOP

 CN-TOP

Κάθε μία από αυτές προτείνει μια διαφορετική τεχνική παραγωγής και χρήσης

μοντέλων μειωμένης τάξης που αποσκοπούν στη δραστική μείωση του χρόνου που

απαιτεί η βελτιστοποίηση τοπολογίας με τις παραδοσιακές μεθόδους.

5.1 DL-SCALE – Upgrade μοντέλου μέσω deep learning

Στόχος του DL-SCALE είναι η επιτάχυνση της διαδικασίας βελτιστοποίησης ενός

προβλήματος μέσω της εκμετάλλευσης γνώσης που παρέχεται από την εφαρμογή

βελτιστοποίησης σε όμοια αλλά σημαντικά πιο αδρά διακριτοποιημένα μοντέλα. Το

παραπάνω μπορεί να επιτευχθεί με την σειριακή εκτέλεση του DL-TOP σε συνδυασμό

με ταυτόχρονη πύκνωση του πλέγματος του χωρίου προς εξέταση.

Ένα πρόβλημα βελτιστοποίησης τοπολογίας TOP0 μπορεί να οριστεί ως εξής:

 (0) (0) (0) (0) (0)

0 [, , ,]: ,xyz c c tL ne VT POP S (1.19)

όπου LXYZ, ne, SC, PC, Vt είναι οι διαστάσεις του χωρίου, το πλήθος των πεπερασμένων

στοιχείων, οι συνθήκες στήριξης και φόρτισης και ο επιθυμητός όγκος αντίστοιχα. Αν

θεωρηθεί πως ο χρόνος εκτέλεσης βελτιστοποίησης τοπολογίας στο παράδειγμα

αυτό είναι ίσος με t0, είναι γνωστό πως ο χρόνος εκτέλεσης του ίδιου προβλήματος

αλλά με διαφορετικό ne = ne(1) εξαρτάται από τον λόγο
(0)

(1)

ne

ne
 . Για την ακρίβεια, η

εξάρτηση αυτή παρουσιάζεται στον ακόλουθο πίνακα:

Έστω ότι πρέπει να εκτελεστεί βελτιστοποίηση τοπολογίας στο πρόβλημα TOPf.

Σύμφωνα με τη μεθοδολογία DL-SCALE δημιουργούνται πέντε πανομοιότυπα

μειωμένης τάξης μοντέλα TOPi
R όπου η μόνη διαφορά με το αρχικό είναι το πλήθος

των πεπερασμένων στοιχείων του πλέγματος.

() (R) () () ()

1 1

() (R) () () ()

2 2

() () () () () () (R) () () ()

3 3

() (R) () ()

4 4

: [, , , ,]

: [, , , ,]

TOP : [, , , ,] : [, , , ,]

: [, , ,

f f f f

xyz c c t

f f f f

xyz c c t

f f f f f f f f f

f xyz c c t xyz c c t

f f f

xyz c c

TOP L ne S P V

TOP L ne S P V

L ne S P V TOP L ne S P V

TOP L ne S P

()

() (R) () () ()

5 5

(R) (R) (R) (R) (R) (R)

1 2 3 4 5

,]

: [, , , ,]

where

f

t

f f f f

xyz c c t

f

V

TOP L ne S P V

ne ne ne ne ne ne

Μορφώνεται το πρόβλημα TOP1
R και σε αυτό εφαρμόζεται η μεθοδολογία DL-TOP.

Ως αποτέλεσμα αυτού προκύπτει η τελική τοπολογία του TOP1
R. Στην τοπολογία αυτή

εφαρμόζεται convolution και στο αποτέλεσμα που προκύπτει εφαρμόζεται πύκνωση

του πλέγματος ώστε να φτάσει το πλήθος πεπερασμένων στοιχείων του TOP2
R. Οι

πυκνότητες του TOP1
R μετά το convolution αντιστοιχίζονται με χωρικά κριτήρια στα

πεπερασμένα στοιχεία του TOP2
R και η παραχθείσα τοπολογία λαμβάνεται ως αρχική

τοπολογία του TOP2
R στο οποίο εφαρμόζεται το DL-TOP. Η διαδικασία αυτή

επαναλαμβάνεται για κάθε TOPi
R μέχρι η πύκνωση να φτάσει στο πλήθος

πεπερασμένων στοιχείων του αρχικού μοντέλου TOP0. Έχοντας πλέον υπολογίσει μια

καλή εκτίμηση για το TOP0, εκτελείται σε αυτό το DL-TOP και λαμβάνεται η τελική

τοπολογία αυτού. Το διάγραμμα ροής του DL-SCALE αποτυπώνεται στην παρακάτω

εικόνα:

Η μεθοδολογία DL-SCALE εφαρμόστηκε σε πλήθος προβλημάτων βελτιστοποίησης

τοπολογίας ώστε να εκτιμηθεί η απόδοση και η σταθερότητά του. Ενδεικτικά

αναφέρονται κάποια παραδείγματα ενώ τα υπόλοιπα συναντώνται στο τεύχος της

διδακτορικής διατριβής.

Το πρώτο παράδειγμα περιγράφεται στην παρακάτω εικόνα.

Οι διακριτοποιήσεις των TOPi
R είναι 3.000, 4.000, 5.000, 7.000 και 10.000

πεπερασμένα στοιχεία και ο τελικός όγκος ίσος με 40% του όλου. Η μεθοδολογία

δοκιμάστηκε σε τέσσερις διαφορετικές τελικές διακριτοποιήσεις ίσες με 20.000,

50.000, 75.000 και 100.000 πεπερασμένα στοιχεία. Η επιτάχυνση που επιτεύχθηκε

παρουσιάζεται στον πίνακα που ακολουθεί.

Οι τελικές διακριτοποιήσεις όπως προτάθηκαν από τη SIMP και την DL-SCALE είναι:

Το δεύτερο παράδειγμα περιγράφεται στην παρακάτω εικόνα.

Οι διακριτοποιήσεις των TOPi
R είναι 1.000, 2.000, 3.000, 4.000 και 5.000

πεπερασμένα στοιχεία και ο τελικός όγκος ίσος με 35% του όλου. Η μεθοδολογία

δοκιμάστηκε σε τέσσερις διαφορετικές τελικές διακριτοποιήσεις ίσες με 20.000,

50.000, 75.000 και 100.000 πεπερασμένα στοιχεία. Η επιτάχυνση που επιτεύχθηκε

παρουσιάζεται στον πίνακα που ακολουθεί.

Οι τελικές τοπολογίες που προτάθηκαν από τη SIMP και την DL-SCALE

παρουσιάζονται στην παρακάτω εικόνα:

5.2 DLRM-TOP – Upscale μοντέλου μέσω deep learning

Η μεθοδολογία DLRM-TOP στοχεύει στην μείωση του απαιτούμενου υπολογιστικού

χρόνου της βελτιστοποίησης τοπολογίας μέσω της χρήσης βαθιών νευρωνικών

δικτύων για την εκμετάλλευση πληροφορίας από τη βελτιστοποίηση αδρά

διακριτοποιημένων μοντέλων.

Σε αντιστοιχία με την μεθοδολογία του DL-SCALE, για την βελτιστοποίηση ενός

μοντέλου, απαιτείται η δημιουργία πέντε όμοιων μοντέλων με μικρότερο πλήθος

πεπερασμένων στοιχείων. Στην προκειμένη περίπτωση όμως κάθε TOPi
R επιλύεται

μέχρι τέλους με τη SIMP και δεν μεσολαβεί το DL-TOP. Οι τελικές τοπολογίες των

επιμέρους TOPi
R επαναδιακριτοποιούνται στο πλήθος πεπερασμένων στοιχείων του

αρχικού μοντέλου και οι πυκνότητές τους προβάλλονται σε αυτό το πλήθος. Με τον

τρόπο αυτό δημιουργείται για κάθε πεπερασμένο στοιχείο του αρχικού μοντέλου μια

σειρά πέντε πυκνοτήτων που έχουν προκύψει από τα πέντε TOPi
R.

()

()

() () () ()

1 2 5

() () ()

1,1 1,2 1,

() () ()

2,1 2,2 2,

() () ()

,1 ,2 ,

()

, , , ,where { } ,{ } , ,{ } ,

and [1,],

f
x

f
x

f f f f
y y y x

d d d

ne

d d d

ne

TOP

d d d

ne ne ne ne

d opt opt opt

i j k l TOP m n TOP b c TOP

f

y

T T T

T T T
D

T T T

T d d d

i ne

 1 1 5 5[1,], [1,], [1,], , [1,], [1,]f

x y x y xj ne k ne l ne b ne c ne

 (1.20)

Αυτή η σειρά Ti,j
(d) χρησιμοποιείται από το DBN για να προβλέψει την τελική

πυκνότητα κάθε πεπερασμένου στοιχείου του αρχικού μοντέλου.

Το διάγραμμα ροής του DLRM-TOP παρουσιάζεται στην παρακάτω εικόνα:

Η χρήση του DLRM-TOP προϋποθέτει την εκπαίδευση του δικτύου μία φορά. Τα

παραδείγματα στα οποία έγινε εκπαίδευση είναι όμοια με αυτά του DL-TOP μόνο

που τα δεδομένα εισόδου είναι διαφορετικά σε αυτήν την περίπτωση. Οι

συσχετισμοί που χρησιμοποιήθηκαν καθώς και τα πλήθη των πεπερασμένων

στοιχείων των μειωμένων (DAT) αλλά και του πλήρους μοντέλου (TOPf) φαίνονται

παρακάτω:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

(1)

1,

(2)

2,

(1

, , , ,

, , , ,

, , , ,

f

f

opt opt opt opt opt

TOP TOP TOP TOP TOP TOP

opt opt opt opt opt

TOP TOP TOP TOP TOP TOP

ne
opt opt opt opt opt

TOP TOP TOP TOP TOP

d d d d d d

d d d d d d

d d d d d

1 2 3 4 5

)

1,

()

,

 Input Targe

, , , ,

1,000 2,000 3,000 4,000

t

(n

5,

e)

000

2

f

f

ne TOP

ne
opt opt opt opt opt

TOP TOP TOP TOP TOP ne TOP

i

d

d d d d d d

DAT

,000 3,000 4,000 5,000 6,000

4,000 5,000 6,000 7,000 8,000

2,000 5,000 7,000 8,000 10,000

6,000 7,000 8,000 9,000 10,000

(ne) 200,000fTOP

 (1.21)

Η μεθοδολογία DLRM-TOP δοκιμάστηκε σε διάφορα προβλήματα βελτιστοποίησης

τοπολογίας όπου εξετάστηκε η απόδοσή της. Ενδεικτικά παρατίθενται τα

αποτελέσματα από δύο από αυτά.

Το πρώτο παράδειγμα περιγράφεται στην παρακάτω εικόνα.

Οι διακριτοποιήσεις των TOPi
R είναι 5.000, 7.000, 10.000, 15.000 και 20.000

πεπερασμένα στοιχεία και ο τελικός όγκος ίσος με 30% του όλου. Η μεθοδολογία

δοκιμάστηκε σε τέσσερις διαφορετικές τελικές διακριτοποιήσεις ίσες με 75.000,

100.000, 150.000 και 200.000 πεπερασμένα στοιχεία. Η επιτάχυνση που επιτεύχθηκε

παρουσιάζεται στον πίνακα που ακολουθεί.

Οι τελικές τοπολογίες που προτάθηκαν από τη SIMP και την DLRM-TOP

παρουσιάζονται στην παρακάτω εικόνα:

Το δεύτερο παράδειγμα περιγράφεται στην παρακάτω εικόνα.

Οι διακριτοποιήσεις των TOPi
R είναι 5.000, 7.000, 10.000, 15.000 και 20.000

πεπερασμένα στοιχεία και ο τελικός όγκος ίσος με 30% του όλου. Η μεθοδολογία

δοκιμάστηκε σε τέσσερις διαφορετικές τελικές διακριτοποιήσεις ίσες με 75.000,

100.000, 150.000 και 200.000 πεπερασμένα στοιχεία. Η επιτάχυνση που επιτεύχθηκε

παρουσιάζεται στον πίνακα που ακολουθεί.

Οι τελικές τοπολογίες που προτάθηκαν από τη SIMP και την DLRM-TOP

παρουσιάζονται στην παρακάτω εικόνα:

5.3 CN-TOP – Enhancing μοντέλου μέσω deep learning

Η τρίτη μεθοδολογία που αναπτύχθηκε στα πλαίσια της παρούσας διδακτορικής

διατριβής αφορά την εκμετάλλευση τεχνικών βελτίωσης της ανάλυσης της εικόνας

στην επιτάχυνση των διαδικασιών βελτιστοποίησης τοπολογίας. Αυτό μπορεί να

επιτευχθεί μέσω της σύνδεσης της ποιότητας της εικόνας με την πυκνότητα του

πλέγματος στην βελτιστοποίηση τοπολογίας. Πιο συγκεκριμένα, χρησιμοποιείται ένα

δίκτυο FSRCNN [43] που έχει εκπαιδευτεί στην ανακάλυψη συσχετισμών ανάμεσα σε

εικόνες από προβλήματα τοπολογίας που επιλύθηκαν με αδρή και με πυκνή

διακριτοποίηση. Τα δεδομένα εκπαίδευσης του FSRCNN αποτελούνται από 10.000

ζεύγη βέλτιστων τοπολογιών που παράχθηκαν με την μέθοδο των Sosnovik και

Oseledets [198] και τους Hunter et al. [84].

Σύμφωνα με την προτεινόμενη μεθοδολογία, για ένα πρόβλημα βελτιστοποίησης

τοπολογίας δημιουργείται ένα όμοιό του αλλά με σαφώς μικρότερο πλήθος

πεπερασμένων στοιχείων. Αυτό επιλύεται από την SIMP και το αποτέλεσμα της SIMP

χρησιμοποιείται ως δεδομένο εισόδου του FSRCNN. Η έξοδος του FSRCNN είναι μια

εικόνα σαφώς υψηλότερης ευκρίνειας, η οποία μετατρέπεται σε μητρώο πυκνοτήτων

και επαναδιακριτοποιείται με τελικό πλήθος πεπερασμένων στοιχείων ίσο με το

επιθυμητό. Αφού γίνει χωρική αντιστοίχηση πυκνοτήτων, το παραγόμενο μητρώο

πυκνοτήτων εισάγεται στη SIMP και βελτιστοποιείται. Ένα διάγραμμα ροής

προτεινόμενης μεθοδολογίας παρουσιάζεται στην παρακάτω εικόνα:

Η CN-TOP μεθοδολογία δοκιμάστηκε σε διάφορα προβλήματα βελτιστοποίησης

τοπολογίας δύο διαστάσεων και τα αποτελέσματά της είναι ιδιαίτερα ενθαρρυντικά.

Ενδεικτικά παρουσιάζεται ένα από αυτά ενώ τα υπόλοιπα περιλαμβάνονται στο

τεύχος της παρούσας διδακτορικής διατριβής.

Το αρχικό πρόβλημα του παραδείγματος περιγράφεται στην εικόνα που ακολουθεί.

Το μειωμένης κλίμακας μοντέλο αποτελείται από 20.000 πεπερασμένα στοιχεία ενώ

το πλήρες από 180.000. Η επιτάχυνση που επιτεύχθηκε παρουσιάζεται στον

ακόλουθο πίνακα.

Τα σχήματα που προέκυψαν από τη SIMP και την CN-TOP παρουσιάζονται στην

εικόνα που ακολουθεί.

6. Generative Design βασισμένο σε βαθιά νευρωνικά

δίκτυα

To Generative Design σκοπεύει στην γρήγορη παραγωγή από τον υπολογιστή

πλήθους σχεδιασμών που σέβονται τους περιορισμούς που έχει θέσει ο χρήστης-

σχεδιαστής χρησιμοποιώντας αλγορίθμους με επαναληπτικές διαδικασίες. Βασική

του χρήση είναι η αντικατάσταση των περιορισμένου πλήθους αρχικών σχεδιασμών

που μπορεί να δημιουργήσει ένας σχεδιαστής από πληθώρα αυτόματα παραχθέντων

σχεδιασμών [5,20,120,130]. Ως τεχνική χρησιμοποιείται πλέον τόσο στη βιομηχανία

[7] όσο και στον κατασκευαστικό κλάδο [8,212]. Στο παρόν τμήμα της διδακτορικής

διατριβής παρουσιάζεται μια μεθοδολογία Generative Design που αναπτύχθηκε στα

πλαίσια αυτής και βασίζεται στα βαθιά νευρωνικά δίκτυα και την βελτιστοποίηση

τοπολογίας. Πιο συγκεκριμένα, αποτελεί συνδυασμό των μεθόδων DL-SCALE, DLRM-

TOP και SIMP. Η προτεινόμενη μεθοδολογία ονομάζεται DzAI .

Η εφαρμογή της μεθοδολογίας αυτής απαιτεί από τον χρήστη τον ορισμό του χωρίου

μέσα στο οποίο θα παραχθεί ο σχεδιασμός, τις στηρίξεις αυτού, τις φορτίσεις αυτού

και αν το επιθυμεί και τον τελικό στόχο όγκου εντός του χωρίου. Ακολούθως, ορίζεται

η επιθυμητή διακριτοποίηση του πλέγματος και δημιουργούνται αυτόματα πέντε

μοντέλα με μόνη διαφορά την σημαντικά πιο αραιή διακριτοποίηση. Καθένα από

αυτά εισάγεται στην SIMP και εκτελούνται 35 επαναλήψεις. Καταγράφεται η

πυκνότητα κάθε πεπερασμένου στοιχείου σε 6 διαφορετικά πλήθη επαναλήψεων.

Κάθε στιγμιότυπο της βελτιστοποίησης στα 6 αυτά διαστήματα

επαναδιακριτοποιείται με πλήθος πεπερασμένων στοιχείων ίσο με το τελικό

επιθυμητό και προβάλλονται σε αυτό με χωρικά κριτήρια οι πυκνότητες κάθε

πεπερασμένου στοιχείου. Με τον τρόπο αυτό παράγονται 6 διαφορετικά μητρώα

όπου σε κάθε στοιχείο αυτών υπάρχει ένα διάνυσμα 5 πυκνοτήτων από τα 5 αραιά

διακριτοποιημένα χωρία. Σε κάθε ένα από αυτά εφαρμόζεται η DLRM-TOP και στις 6

παραχθείσες τοπολογίες εφαρμόζονται 4 διαφορετικά convolution φίλτρα. Τα

παραπάνω δύναται να συνοψιστούν ως εξής:

(f) (f) (f) (f) (f) (f)

() (

1,1 1,2

 TOP : [, , , ,]

 Define where [1,2,3,4,5]

 Record (extrapolated density matrix)

 where [5,10,15,20,25,35] (iterations counter)

 Create

xyz c c t

R

i

i

j

d

k

z

L ne S P V

TOP i

D

j

T T

T

()

()

() () () ()

() () ()

) ()

1,

() () ()

2,1 2,2 2,

() () ()

,1 ,2 ,

()

, , , ,

, [1,2,3,4,5,6]

 { } ,{ } , ,{ } ,

 [1,

f
x

f
x

f f f f
y y y x

i F i F i F
j j j

d d

ne

d d d

ne

d d d

ne ne ne ne

d k k k

i j i j i j i jD D D

T

T T T
k

T T T

where T d d d

and i n

], [1,]

 Apply DBN to each of the 6 T and 4 different convolution filters in the proposed output.

f f

y x

z

e j ne

 (1.22)

Αυτό έχει ως αποτέλεσμα την δημιουργία 24 τοπολογιών, οι οποίες εισάγονται στη

SIMP για fine-tuning. Το διάγραμμα ροής της μεθοδολογίας DzAI παρουσιάζεται

στην παρακάτω εικόνα:

Η μεθοδολογία DzAI δοκιμάστηκε σε σειρά από παραδείγματα εκ των οποίων

παρουσιάζεται το ακόλουθο ενώ τα υπόλοιπα υπάρχουν στο τεύχος της παρούσας

διδακτορικής διατριβής.

Το πρόβλημα του παραδείγματος αυτού ορίζεται όπως φαίνεται στην παρακάτω

εικόνα:

Οι 24 παραχθέντες σχεδιασμοί όπως προέκυψαν από τη χρήση της μεθοδολογίας

DzAI παρουσιάζονται στην παρακάτω εικόνα:

Είναι ορατές οι διαφορές των προτεινόμενων σχεδιασμών όπως προέκυψαν από την

DzAI . Ο χρήστης-σχεδιαστής έχει τη δυνατότητα να επιλέξει όποιον ή όποιους

σχεδιασμούς επιθυμεί ώστε να συνεχίσει την επεξεργασία και να καταλήξει στον

επιθυμητό σχεδιασμό.

I would like to dedicate this thesis to the people who were there
for me during the past years . . . being patient with my absence

N. Ath. Kallioras

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgments.

Nikolaos Ath. Kallioras
April 2019

Acknowledgements

Most educational phases are characterized by a predefined, usually annual, goal. From a
student’s point of view it may be time-consuming, difficult and tiring but the course is set.
The last of these phases is either the diploma or a master’s degree. When deciding to pursue
a Ph.D degree, there is no perception regarding the "education-wise" difference of this step.
In order to broaden one’s horizons, it is necessary for several mountain tops to be conquered
as in all the previous educational goals. The main difference is that neither those tops nor
the fields behind them are visible from the beginning. The path to a Ph.D is a journey on
uncharted territories which are covered in local minima and maxima. Willingness to step
out of the comfort zone and close to infinite persistence are mandatory as new capabilities
must be developed in order to overcome the inevitable large number of failures. Despite the
fact that it is a one-person course, the presence and assistance of key people is also of great
importance.
Since I am approaching the end of my Ph.D, I feel the need to express my most sincere
gratitude to my supervisor Professor Nikolaos D. Lagaros firstly for the inspiration, drive
and guidance he provided. I also feel the need to thank Professor Lagaros for his continuous
willingness to provide support through long lasting, mind-opening discussions both on the
scientific field and every day issues as well. But most of all, I must express my appreciation
for the countless hours of constructive collaboration on setting the path of my Ph.D course.
I also feel obliged to thank Professor Kyriakos Giannakoglou, as member of the Advisory
Committee for the important and useful advices he provided on the various phases of my
dissertation based on his broad field of expertise and the significant insights regarding the
completion of my thesis.
A very significant part on the completion of my dissertation is ode to the useful comments
and suggestions made by Prof. Vlasis Koumousis, Prof. Christos Provatidis, Prof. Evaggelos
Plevris, Prof. Dimos Charmpis and Prof. Georgios Tsiatas as members of the Committee and
I would like to express my gratitude to each one of them.
A sincere thank you must be expressed towards the School of Civil Engineering and its
Personnel for providing the means, space and environment for performing my research and
for hosting me from my graduate years and up to now.

x

I should also thank the other members of Prof. Lagaros’ research team, Dr. Stavros
Chatzieleftheriou and Ph.D candidates Mr. Stefanos Sotiropoulos, Mr. Giorgos Kaza-
kis and Mr. Spyros Damikoukas for the harmonic and productive collaboration. Additionally,
I would like to thank my friends for helping me with carrying on every day each one with his
own way.

A special reference must be made to late Prof. Matthew G. Karlaftis, as due to him, my
first approach on optimization and research was made. His scientific integrity but most of all
his remarkable personality will always be remembered and act as guide for me.

My deepest gratitude is owed to my family, my parents Athanasios Kallioras and
Evaggelia Kalliora, my wife Korina Gouvioti and to my two daughters, Athena and Evaggelia.
Without their never-ending support, understanding and inspiration I would not have been
able to reach up to this day.

Abstract

Even since the first structures where designed by human, finding the optimal design was a
major problem. This need continued to increase in a geometrical manner as structural domain
size and complexity also increased. Analysis of structures and its computational cost is also
depended on the size and complexity of the structural system. The use of approximation
methods increased due to the increase of computational cost of exact methods in analysis
and design of structures. Additionally, a remarkable increase of available computational
hardware was achieved with up to date computer processing units and the use of graphical
processing units in calculations.

Some of the approximation methods used in the past where gradient-free algorithms,
neural networks, reduced order models and combinations of them with each of the above
presenting different advantages and disadvantages. Derivative-free algorithms have proven
to be efficient in handling problems up to a number of parameters while interest on neural
networks deprecated as training of large models was unsuccessful for quite some time. On
the contrary, advances made in the last decade on training deep models have attracted interest
on these methods, mainly on image and video analysis, natural language processing and
big data fields. Surrogate and/or reduced order models are still used in several fields where
analysis of large models is needed.

Work on gradient-free algorithms, surrogate modeling methods, machine learning al-
gorithms and topology optimization is presented in this dissertation. Applications of the
above methodologies and combinations of them in analysis and design of structures are also
presented. In detail, a new, nature-inspired, metaheuristic algorithm is proposed and tested on
NP-hard combinatorial problems while an improved version of Harmony Search Algorithm
(HS) (firstly introduced by Zong Woo Geem) is also presented.

Additionally, the application of different deep neural networks on accelerating topology
optimization procedure was examined and four different approaches are presented. The first
one, DL-TOP uses a deep belief network in order to predict the final result of Solid Isotropic
Material with Penalization (SIMP) method according to a few initial iterations. In a model
upgrading approach, the second proposed solution DL-SCALE, focused on model upgrading,
used a deep belief network to accelerate topology optimization methods by sequentially

xii

providing close-to-final results from less dense discretizations to dense ones. The third
proposed methodology, DLRM-TOP, again uses a deep belief network to predict the final
result of a topology optimization method applied on a dense discretization by providing as
input the results of significantly less dense discretizations. The final proposed methodology,
CN-TOP, focuses on model enhancing by using a deep convolutional neural network to
increase the density of a topology optimization result mesh in order to accelerate necessary
computational time.

The formulated combinations of topology optimization method SIMP and deep learning
methods proposed are modified and used as an AI-driven design of structures methodology,
DzAIN. With DzAIN, a user can almost instantly produce a number of designs without
any drawing input requested from his part, apart from the domain and loading and support
conditions definition.

Table of contents

List of figures xvii

List of tables xxiii

Nomenclature xxv

1 Introduction 1
1.1 Dissertation scope . 1
1.2 Analysis of chapters . 2
1.3 Contribution to international literature . 5

1.3.1 Metaheuristic algorithms . 5
1.3.2 Topology optimization acceleration 6
1.3.3 Model order reduction . 6
1.3.4 Generative design . 8

1.4 Scientific work . 9

2 Mathematical optimization and efficiency of novel algorithms 11
2.1 Mathematical optimization formulation 12
2.2 Gradient-based algorithms . 13

2.2.1 Optimality Criteria Algorithm . 15
2.2.2 Method of Moving Asymptotes 16

2.3 Gradient-free algorithms . 17
2.3.1 Harmony Search and Improved Harmony Search Algorithms 19
2.3.2 Pity beetle algorithm . 22

2.4 Applications . 32
2.4.1 PBA performance . 32
2.4.2 Optimal structures inspection following a seismic event 50

xiv Table of contents

3 Deep Learning methodologies 65
3.1 Machine learning: Types, Methods & Problems 66
3.2 Deep Learning . 69

3.2.1 Restricted Boltzmann Machines 72
3.2.2 Deep Belief Networks . 77
3.2.3 Convolutional Neural Networks 80

4 Applied Deep Learning on Topology Optimization 85
4.1 Topology Optimization . 85

4.1.1 Solid Isotropic Material with Penalization - SIMP method 87
4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 89

4.2.1 DL-TOP methodology description 90
4.2.2 Training dataset . 93
4.2.3 DBN calibration . 96
4.2.4 DL-TOP implementation . 96
4.2.5 Test examples . 98

5 Deep learning in reduced order modeling 121
5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 122

5.1.1 DL-SCALE methodology description 122
5.1.2 Test examples . 125
5.1.3 Results . 127

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 138
5.2.1 DLRM-TOP methodology description 141
5.2.2 DBN calibration - Training dataset 142
5.2.3 DLRM-TOP performance . 144
5.2.4 Results . 145

5.3 CN-TOP - Deep Learning Model Enhancing 152
5.3.1 CN-TOP methodology description 152
5.3.2 CNN calibration - Training dataset 157
5.3.3 CN-TOP performance . 158
5.3.4 Results . 159

6 Generative design based on Deep Learning and Optimization 167
6.1 Generative design . 167
6.2 DzAIN - Generative design by Deep Learning 168

6.2.1 DzAIN method description . 169

Table of contents xv

6.2.2 DzAIN method test examples . 170
6.2.3 DzAIN method results . 171

7 Future Work 185
7.1 Deep Learning in Topology Optimization 186
7.2 Conceptual Design and 3D printing . 187
7.3 Deep Learning in Dynamic Analysis of Structures 188

References 189

List of figures

2.1 Pseudo-code of the pity beetle algorithm. 25
2.2 Random sampling technique (a) before and (b) after correction. 27
2.3 Finding the new population position of pioneer particles - Hypervolume

Selection Patterns. a) Initialization/Global-scale search hypervolume, b)
Neighboring search hypervolume, c) Mid-scale search hypervolume, d)
Large-scale search hypervolume . 30

2.4 Update location of populations. 33
2.5 Performance of the independent runs for different number of function evalu-

ations for the test function (a) sphere for 30 parameters. 40
2.6 Building blocks, Area, fB, AB,max . 52
2.7 City of Patras - Subdivision into building blocks 55
2.8 City of Patras -Inspection time achieved per combination of the parameters 56
2.9 City of Patras - Standard deviation between the inspection crews 56
2.10 City of Patras - Function evaluations for achieving best solution per combi-

nation of the parameters . 57
2.11 City of Patras - Optimal districting solution proposed by IHS (Case A) . . . 57
2.12 City of Patras - Optimal districting solution proposed by IHs 59
2.13 City of Patras - Optimal districting solution proposed by IHS 60
2.14 City of Thessaloniki- Subdivision into building blocks 62
2.15 City of Thessaloniki-Minimum inspection time achieved for each indepen-

dent run . 63
2.16 City of Thessaloniki - Subdivision into inspection areas 64

3.1 Pair separation of a deep network for unsupervised pre-training. 70
3.2 Supervised training of the deep network. 71
3.3 Recurrent neural network and unfolded node. 72
3.4 Boltzmann Machine representation. 73
3.5 Restricted Boltzmann Machine representation. 74

xviii List of figures

3.6 Deep Belief Network example. 78
3.7 Deep Boltzmann Machine example. 79
3.8 Convolutional Neural Network architecture. 81

4.1 Topology optimization formulation. 88
4.2 Fluctuation of density of various finite elements with respect to the SIMP

iterations . 91
4.3 DL-TOP methodology flowchart . 92
4.4 DLTOP methodology implementation for a single FE 92
4.5 Training datasets generation, indicative FE discretization for: (a) 1:2 and (b)

1:3 cantilever beam; (c) 1:2 and (d) 1:3 simply supported beam. 94
4.6 Pseudo-code of DL-TOP methodology . 97
4.7 2D test examples: (a) short-beam (fine), (b) antisymmetric, (c) column, (d)

l-shape and (e) long-beam. 100
4.8 Performance of classification twelve-Iterations: (a) short-beam (fine) test

example, (b) antisymmetric test example, (c) column test example, (d) L-
shape test example and (e) long-beam test example. 102

4.9 Performance of classification twelve-Objective function value: (a) short-
beam (fine) test example, (b) antisymmetric test example, (c) column test
example, (d) L-shape test example and (e) long-beam test example. 103

4.10 Performance of classification three-Iterations: (a) short-beam (fine) test
example, (b) antisymmetric test example, (c) column test example, (d) L-
shape test example and (e) long-beam test example. 104

4.11 Performance of classification three-Objective function value: (a) short-beam
(fine) test example, (b) antisymmetric test example, (c) column test example,
(d) L-shape test example and (e) long-beam test example. 105

4.12 Optimized domain for the short-beam (fine) test example-classification
twelve: (a) original SIMP (objective function: 85.99 - iterations: 372),
(b) DL-TOP Phase I (objective function: 86.43 - iterations: 36), (c) DL-TOP
Phase II (objective function: 85.86 - iterations: 43) and (d) density histories
of selected finite elements located in the center of the domain. 107

4.13 Optimized domain for the antisymmetric test example-classification three:
(a) original SIMP (objective function: 22.64 - iterations: 599), (b) DL-TOP
Phase I (objective function: 22.95 - iterations: 36) and (c) DL-TOP Phase II
(objective function: 22.18 - iterations: 37). 107

List of figures xix

4.14 Optimized domain for the column test example-classification three: (a)
original SIMP (objective function: 145.12 - iterations: 551), (b) DL-TOP
Phase I (objective function: 149.18 - iterations: 36) and (c) DL-TOP Phase
II (objective function: 140.90 - iterations: 15). 108

4.15 Optimized domain for the L-shape test example-classification three: (a)
original SIMP (objective function: 73.06 - iterations: 186), (b) DL-TOP
Phase I (objective function: 71.92 - iterations: 36) and (c) DL-TOP Phase II
(objective function: 71.19 - iterations: 25). 108

4.16 Optimized domain for the long-beam test example-classification three: (a)
original SIMP (objective function: 576936.84 - iterations: 775), (b) DL-TOP
Phase I (objective function: 479,880.00 - iterations: 36) and (c) DL-TOP
Phase II (objective function: 577,826.89 - iterations: 275). 109

4.17 Optimized domain for the short-beam (coarse) test example-MMA: (a) origi-
nal SIMP (objective function: 30.34 - iterations: 91), (b) DL-TOP Phase I
(objective function: 29.77 - iterations: 36) and (c) DL-TOP Phase II (objec-
tive function: 30.33 - iterations: 31). 113

4.18 Optimized domain for the 2-bar test example-classification three: (a) original
domain, (b) original SIMP (objective function: 10.31 - iterations: 54), (c) DL-
TOP Phase I (objective function: 13.33 - iterations: 5), (d) DL-TOP Phase II
(objective function: 10.31 - iterations: 28), (e) original SIMP with threshold
(objective function: 25.16 - iterations: 5) and (f) difference between DL-TOP
and SIMP with threshold. 114

4.19 Optimized domain for the serpentine beam test example-classification three:
(a) original domain [206], (b) original SIMP (objective function: to 391.19 -
iterations: 267), (c) DL-TOP Phase I (objective function: 442.65 - iterations:
36) and (d) DL-TOP Phase II (objective function: 394.46 - iterations: 30). . 115

4.20 3D test examples: (a) L-shape 3D and (b) bridge. 117
4.21 Optimized domain for the 3D bridge test example-classification three: (a)

original SIMP (objective function: to 1,632,305.73 - iterations: 509), (b)
DL-TOP Phase I (objective function: 1,612,500.00 - iterations: 36) and (c)
DL-TOP Phase II (objective function: 1,640,121.40 - iterations: 193). . . . 119

4.22 Optimized domain for the 3D L-shape test example-classification three: (a)
original SIMP (objective function: 15.33 - iterations: 660), (b) DL-TOP
Phase I (objective function: 13.36 - iterations: 36) and (c) DL-TOP Phase II
(objective function: 15.65 - iterations: 93). 120

5.1 Flowchart of DL-SCALE methodology 126

xx List of figures

5.2 Schematic representation of Test-Examples 128
5.3 Optimized domain for Test-Example A for each discretization: (a) SIMP

output, (b) DL-SCALE output. 129
5.4 Optimized domains for each discretization of Test-Example A as exported

from: (a) DBN, (b) Convolution. 130
5.5 Optimized domain for Test-Example B for each discretization: (a) SIMP

output, (b) DL-SCALE output. 132
5.6 Optimized domains for each discretization of Test-Example B as exported

from: (a) DBN, (b) Convolution. 133
5.7 Optimized domain for Test-Example C for each discretization: (a) SIMP

output, (b) DL-SCALE output. 134
5.8 Optimized domains for each discretization of Test-Example C as exported

from: (a) DBN, (b) Convolution. 135
5.9 Optimized domain for Test-Example D for each discretization: (a) SIMP

output, (b) DL-SCALE output. 136
5.10 Optimized domains for each discretization of Test-Example D as exported

from: (a) DBN, (b) Convolution. 137
5.11 Optimized domain for Test-Example E for each discretization: (a) SIMP

output, (b) DL-SCALE output. 139
5.12 Optimized domains for each discretization of Test-Example E as exported

from: (a) DBN, (b) Convolution. 140
5.13 Flowchart of DLRM-TOP methodology 143
5.14 Schematic representation of Test-Examples 146
5.15 Optimized domain for Test-Example A for each discretization: (a) SIMP

output, (b) DL-SCALE output. 147
5.16 Optimized domain for Test-Example B for each discretization: (a) SIMP

output, (b) DL-SCALE output. 149
5.17 Optimized domain for Test-Example C for each discretization: (a) SIMP

output, (b) DLRM-TOP output. 150
5.18 Optimized domain for Test-Example D for each discretization: (a) SIMP

output, (b) DLRM-TOP output. 151
5.19 Optimized domain for Test-Example E for each discretization: (a) SIMP

output, (b) DLRM-TOP output. 153
5.20 Visualization of optimized domain Dv according to Eq. 5.9. 154
5.21 Schematic representation of an FSRCNN. 156
5.22 Flowchart of CN-TOP method. 158

List of figures xxi

5.23 Schematic representation of Test-Examples 160
5.24 Optimized domain for Test-Example A for each discretization: (a) SIMP

output, (b) CN-TOP output, (c) CNN output, (d) Convolution output. 162
5.25 Optimized domain for Test-Example B for each discretization: (a) SIMP

output, (b) CN-TOP output, (c) CNN output, (d) Convolution output. 163
5.26 Optimized domain for Test-Example C for each discretization: (a) SIMP

output, (b) CN-TOP output, (c) CNN output, (d) Convolution output. 164
5.27 Optimized domain for Test-Example D for each discretization: (a) SIMP

output, (b) CN-TOP output, (c) CNN output, (d) Convolution output. 165
5.28 Optimized domain for Test-Example E for each discretization: (a) SIMP

output, (b) CN-TOP output, (c) CNN output, (d) Convolution output. 166

6.1 Flowchart of DzAIN method. 171
6.2 Schematic representation of Test-Examples 172
6.3 a. Generated designs 1-8 for Test-Example A. 173
6.4 b. Generated designs 9-16 for Test-Example A. 174
6.5 c. Generated designs 17-24 for Test-Example A. 175
6.6 a. Generated designs 1-8 for Test-Example B. 176
6.7 b. Generated designs 9-16 for Test-Example B. 177
6.8 c. Generated designs 17-24 for Test-Example B. 178
6.9 a. Generated designs 1-8 for Test-Example C. 179
6.10 b. Generated designs 9-16 for Test-Example C. 180
6.11 c. Generated designs 17-24 for Test-Example C. 181
6.12 a. Generated designs 1-8 for Test-Example D. 182
6.13 b. Generated designs 9-16 for Test-Example D. 183
6.14 c. Generated designs 17-24 for Test-Example D. 184

List of tables

2.1 Algorithmic parameters of PBA and their range 25
2.2 Samples of the algorithmic parameter values used in the sensitivity analysis 34
2.3 Test functions employed in the study . 36
2.4 Statistical analysis for 10-D problems . 37
2.5 Statistical analysis for 30-D problems . 38
2.6 Proposed parameter values . 38
2.7 PBA applied to test-functions 7 to 13 for 30-D problems 39
2.8 Comparative study of PBA with state-of-the-art metaheuristics for test-

functions 1 to 6 and 10-D problems . 42
2.9 Comparative study of PBA with state-of-the-art metaheuristics for test-

functions 1 to 6 and 30-D problems . 43
2.10 Comparative study of PBA with state-of-the-art metaheuristics for 30-D

problems . 44
2.11 Performance of PBA using the CEC 2014 test suite (10-D) 45
2.12 Performance of PBA using the CEC 2014 test suite (30-D) 46
2.13 Performance of PBA using the CEC 2014 test suite (50-D) 47
2.14 Performance of PBA using the CEC 2014 test suite (100-D) 48
2.15 PBA compared to other algorithms – Wilcoxon’s ranksum test 49
2.16 PBA complexity in seconds . 49
2.17 Parameters combinations for sensitivity analysis of IHS, PSO and DE algo-

rithms . 54
2.18 Patras test case - Statistical analysis of IHS, HS, DE, PSO algorithms (Prob-

lem A – 5 Crews) . 59
2.19 Patras test case - Statistical analysis of IHS, HS, DE, PSO algorithms (Prob-

lem B – 15 Crews) . 61
2.20 Computational time for solving the two problems (in seconds) 61

xxiv List of tables

2.21 Thessaloniki test case - Statistical analysis of IHS and HS algorithms (10
Crews) . 63

4.1 RBM pre-training parameter value sets. 102
4.2 Average and variance of classification twelve performance-SB dataset. . . . 103
4.3 Average and variance of classification twelve performance-CB dataset. . . . 104
4.4 Average and variance of classification three performance-SB dataset. 105
4.5 Average and variance of classification three performance-CB dataset. 106
4.6 Average and variance of performance in 2D and 3D test examples. 116

5.1 Mesh density and execution time ratio for SIMP. 123
5.2 DL-SCALE performance in Test-Example A. 127
5.3 DL-SCALE performance in Test-Example B. 131
5.4 DL-SCALE performance in Test-Example C. 131
5.5 DL-SCALE performance in Test-Example D. 131
5.6 DL-SCALE performance in Test-Example E. 138
5.7 DLRM-TOP performance in Test-Example A. 145
5.8 DLRM-TOP performance in Test-Example B. 148
5.9 DLRM-TOP performance in Test-Example C. 148
5.10 DLRM-TOP performance in Test-Example D. 148
5.11 DLRM-TOP performance in Test-Example E. 152
5.12 DLRM-TOP performance in Test-Examples A to E. 161

Nomenclature

Roman Symbols

MEM PBA Memory

FEtotal Maximum Function Evaluations in PBA

TOP Topology Optimization Problem

TOPf Topology Optimization Problem - final

TOP(R)
i ith Reduced Topology Optimization Problem

ABC Artificial Bee Colony Algorithm

ACO Ant Colony Optimization

AI Artificial Intelligence

ANN Artificial Neural Network

BA Bat Algorithm

BARON Branch-And-Reduce Optimization Navigator

BBRBM Bernoulli-Bernoulli Restricted Boltzmann Machine

BFGS Broyden–Fletcher–Goldfarb–Shanno Method

BM Boltzmann Machine

CB12 Cantilever Beam Database with 12 Classes in the OutPut

CB3 Cantilever Beam Database with 3 Classes in the OutPut

CD Contrastive Divergence

xxvi Nomenclature

CG Conjugate Gradient Method

CNN Convolutional Neural Network

CPU Central Processing Unit

CS Cuckoo Search Algorithm

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DE Differential Evolution

DFP Davidon–Fletcher–Powell Method

DIRECT DIvide a hypeRECTangle

DL Deep Learning

ESO Evolutionary Structural Optimization

FA Firefly Algorithm

FE Finite Element

FSRCNN Fast Super-Resolution Convolutional Neural Network

GA Genetic Algorithm

GBRBM Gaussian-Bernoulli Restricted Boltzmann Machine

GD Generative Design

GPU Graphics Processing Unit

HMCR Harmony Memory Consideration Rate

HMS Harmony Memory Size

HS Harmony Search Algorithm

IHS Improved Harmony Search Algorithm

KH Krill herd Algorithm

LHS Latin Hypercube Sampling

Nomenclature xxvii

MFO Moth-Flame Optimization

ML Machine Learning

MMA Moving Asymptotes Method

OC Optimality Criteria Algorithm

OIO Optics Inspired Optimization

PAR Pitch Adjustment Rate

PBA Pity Beetle Algorithm

PCG Preconditioned Conjugate Gradient Method

PS Parameters Set of DBN training

PSO Particle Swarm Optimization

RBM Restricted Boltzmann Machine

RcNN Recursive Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROM Reduced Order Model

RST Random Sampling Technique

SA Simulated Annealing

SB12 Simply Supported Beam Database with 12 Classes in the OutPut

SB3 Simply Supported Beam Database with 3 Classes in the OutPut

SIMP Solid Isotropic Material with Penalization

SRCNN Super-Resolution Convolutional Neural Network

STO Structural Topology Optimization

SVM Support Vector Machine

TO Topology Optimization

WWO Water Wave Optimization

Chapter 1

Introduction

1.1 Dissertation scope

The main scope of the current dissertation is to contribute in the field of optimal structural
analysis and design through developing and implementing new calculus methods by combin-
ing exact and approximation methods. As the size and complexity of analysis and design
models is continuously increasing and the increase in the available computational power is
not analogous, it is inevitable to investigate the exploitation of soft computing techniques.
Exact methods have the ability to radically reduce the objective function of the problem in a
relatively small number of iterations but lack the ability to overcome local minima. Actually,
in real-life problems, it is more probable that the solution provided by exact methods will be
a local minima than the global one. Additionally, the computational cost of calculating first
and second-order derivatives or even the inability to calculate them resulted to examining the
use of soft computing methods.

In a short historical review, it can be witnessed that the use of soft computing tech-
niques grew dramatically from 1970 to 1990. Applications of such methods in real life
problems were performed often and attracted significant research interest. Derivative-free
methods, because of the randomness included, have the ability to overcome local minima
and, practically, guaranty finding the global minima if there is no limitation to population
of iterative solutions. The main drawback of these methods is that a significant amount of
iterations is almost always necessary. Due to the fact that objective function calculation also
became computationally heavy in the following years, the necessity of multiple calculations,
inevitable in soft computing, was an important drawback. The above resulted to a drop of
interest in soft computing as models became too complex for these methods.

In the last decade, research on modern soft computing methods drew a lot of attention,
mainly because of the excessive amount of data generated, but not exploited, by companies

2 Introduction

offering on-line services. That led to generating new methods, able to handle large amounts
of data and extremely complex problem definitions. For example, deep neural networks have
been a major scientific breakthrough in modern research.

The scope of this dissertation is to examine and apply modern soft computing methods in
the fields of optimal analysis and design of structures. Some of the most computationally
heavy problems dealt in structural design and analysis are the ones that include many solutions
of the equation:

{P}= [K]∗{U} (1.1)

as inversing the stiffness matrix is rather time and computational resources consuming. To
deal with this issue, techniques of reducing the size of the stiffness matrix, or minimizing the
necessary iterative solutions’ population or a combination of the previous two must be used.
The core of this thesis is focused on providing new solutions in model order reduction and
iterations population reduction in problems as the previously described ones. Additionally,
parallel processing techniques are also examined in the solutions provided. Finally, a method
for applying machine learning in the field of generative design is also presented.

1.2 Analysis of chapters

The current dissertation consists of seven chapters, the current one (Chapter 1 - Introduction)
and six additional. In the second chapter, a description of the formulation of mathematical
optimization is given along with a literature review of the state-of-the-art methods in optimiza-
tion. Further along, a description of gradient-based algorithms is given along with detailed
presentation of the two methods used in this dissertation, Optimality criteria algorithm (OC)
[31] and Moving Asymptotes Method (MMA) [202]. Continuing, a thorough presentation
of Improved Harmony Search algorithm (IHS) [94] can be seen. It describes a significant
change that upgrades the performance of Harmony Search (HS), an algorithm presented by
Zong Woo Geem [59].

In the same chapter, an algorithm proposed by Kallioras et al. [93], the Pity Beetle Algo-
rithm (PBA) is also described. It is a swarm-type, nature-inspired, gradient-free algorithm.
PBA was inspired by the aggregation behaviour, nesting and food searching patterns of
the beetle named Pityogenes chalcographus (Six-toothed spruce bark beetle). This species
detects and feeds off weakened trees inside forests. PBA is applied to several NP-hard single
objective, unconstrained optimization problems of various scale, as it presents excellent
results in handling large search spaces and finding the global minimum while avoiding

1.2 Analysis of chapters 3

local minima. In order to investigate its performance, robustness and complexity, PBA was
applied to a series of established benchmark, uni-modal and multi-modal, separable and
non-separable test functions while results of the study are compared to state-of-the-art meta-
heuristic algorithms. In Chapter 3, a thorough presentation of machine learning methods is
recorded where the most established and modern are referenced. Additionally, a large part
of Chapter 3 is devoted on up-to-date deep learning methods and specifically deep neural
networks. In Chapter 3, an analytical description of Restricted Boltzmann Machines (RBM)
[196, 71] is presented. RBMs are probabilistic graphical models, similar to Hopfield net-
works [54]. They can be represented as energy based twin-layer networks where all nodes of
the first layer are symmetrically connected to all nodes of the other layer but no connections
exist between nodes of the same layer[49]. Deep Boltzmann Machines (DBM) and Deep
Belief Networks (DBN) are formed by sequentially connecting a population of RBMs. In
this type of connection, the output of the previous, in line, RBM is also the input of the
following RBM. Such deep models where successfully trained according to Hinton [75]. In
this Chapter a description of Deep Convolutional Neural Networks (CNN) is also presented.
CNNs are a type of deep neural networks inspired by the functionality of animal vision.
They are designed in order to be able to accept as inputs 1D arrays, 2D matrices, or even
3D matrices [121]. Initially CNNs were used for image recognition or image classification
[111]. From a networks architecture point of view, CNNs have hidden layers defined by
their functionality (convolution, pooling, ReLU, normalization, etc.). After their successful
performance in image recognition, CNNs were also applied on different problems such as
natural language processing.

Chapter 4 is focused on proposing a technique for acceleration of topology optimization
method and reducing computational cost of such method. The goal of topology optimization
is to define the optimal performance-wise distribution of a specific volume of material
inside a specific domain under specific loading and support conditions. One of the most
knows topology optimization algorithms is Solid Isotropic Material with Penalization (SIMP)
[12, 229, 147]. In an iterative manner, material volume that does not contribute significantly
to the static system is eliminated. This procedure can be rather computational heavy in
analogy to the finite element (FE) domain discretization and the necessary iterations. In this
chapter of the dissertation, a method combining deep learning and SIMP is proposed in order
to reduce computational cost. This method is called DL-TOP.

In DL-TOP, a DBN network is used in order to minimize necessary iterations of SIMP.
In each element of the FE mesh a material density is calculated per SIMP iteration. This
can be translated into a density time-history per iteration. A DBN is trained once on such
time-histories aiming at reading correlations between a small population of initial time-steps

4 Introduction

and the final density of time-history. This offers the possibility to perform a few iterations
in a topology optimization problem and use the trained DBN to make a discrete jump from
these iterations to a close-to-final solution, reducing dramatically the necessary iterations.

The main topic of Chapter 5 is acceleration of topology optimization methods and
reduction of the computational cost of such methods via reduced order methodologies.
Reduced order methods generated with the use of deep learning are proposed. In detail, three
methods combining deep learning and SIMP are proposed in this dissertation in order to
reduce computational cost. These methods are: DL-SCALE, DLRM-TOP and CN-TOP.

The first method, DL-SCALE, is focused on a model-upgrading approach with the use of
a DBN alongside SIMP. In this method, initial SIMP steps and DBN predictions are used
sequentially and in combination. This is performed iteratively starting from a much less
dense discretization while increasing the discretization density per method step. With the use
of DL-SCALE and sequentially upgrading the model, a significant drop of computational
load is achieved. The second proposed method is DLRM-TOP, again from a model upgrading
point of view. A DBN is used to predict the final output of a dense meshed test case based
on results of a number of different, less dense discretizations, from small density to large.
This data is used as a volume per discretization density for each finite element. This data is
fed to a trained DBN and a close-to-final solution for a significantly more dense FE mesh.
With this method, a large number of ’computationally expensive’ iterations of SIMP are
avoided. The fourth and final method proposed in this chapter is CN-TOP. CN-TOP is
a model-enhancing application. A final output of SIMP with less dense mesh is used as
input for a trained CNN. The CNN enhances the topology image resolution and the higher
definition image is translated into a denser mesh. The enhanced output is then fine-tuned
by SIMP. By using CN-TOP, a large number of SIMP iterations is avoided resulting to
significantly less computational time.

In Chapter 6, work on Generative Design is presented. Firstly, a detailed presentation and
review in up-to-date literature on generative design can be viewed. In generative design, the
goal is to be able to produce almost instantly a number of designs of a structure formed by
a computer. To achieve that, both computational methods like SIMP and machine learning
applications like DBN are needed. A combination of the above are formulated into a
generative design method in this dissertation, called DzAIN. In DzAIN, the designer must
only define the domain and loading and support conditions as well as the non-optimized
areas, if present. More parameters (i.e. the desired volume fraction) can be used as input
but it is not mandatory. The use of SIMP and pretrained DBNs on the initial parameters
defined concludes to several AI-created designs. The user can then select one or more of
the designs as his inspirational or final model. Several AI-created models with the use of

1.3 Contribution to international literature 5

DzAIN are presented in Chapter 6. In the final chapter, Chapter 7, a few thoughts regarding
possible future work are noted. The experience and knowledge gained during the course of
the PhD, has led to an increased interest on deep learning methods and applications in the
analysis and design of structures. More applications of the above-mentioned techniques will
be examined, as for example in mesh-generation and stiffness matrix reduction. Additionally,
DzAIN will be further developed and improved in order to produce more results and take
under consideration more design factors.

1.3 Contribution to international literature

The scientific contribution achieved during the current Ph.D. course can be categorized in
four main fields: i) Metaheuristic algorithms, ii) Topology optimization acceleration, iii)
Reduced order models, iv) Generative design

1.3.1 Metaheuristic algorithms

Contribution in the field of metaheuristic algorithms can be summarized in two main parts, the
proposed improvement on Harmony Search algorithm and the proposed new metaheuristic
Pity Beetle Algorithm. Regarding HS algorithm, a new version named IHS is proposed. The
new formulation reduces complexity of the original one by reducing the possible algorithmic
functions. This has a significant effect on the convergence speed, the computational load
and robustness of the original algorithm. By reducing the algorithmic functions, a reduction
of the parameters of HS is also achieved resulting to improved stability of the algorithm.
IHS is tested on real-life problems and its performance is compared with HS and other
well-established metaheuristics in terms of performance and consistency.

In the second part, a new metaheuristic algorithm called PBA is proposed. PBA is a
nature-inspired, population-based, swarm-type algorithm. Inspiration came from the behavior
of a beetle called Pityogenes chalcographus (Six-toothed spruce bark beetle). PBA has the
ability to investigate large areas of possible solutions for the optimal one while avoiding
entrapment in local optima. The complexity of the proposed algorithm is significantly small
as most of the functions of PBA are similar and the choice of functionality depends on the
quality of the solution generated at the previous position. The area exploration is performed
with a "flight pattern" who’s range is defined as described previously and position definition
inside the search space range is defined with a Random Sampling Technique (RST) similar
to Latin Hypercube Sampling (LHS) [152].

6 Introduction

1.3.2 Topology optimization acceleration

Topology optimization is used by the designer engineer in order to shape the structural
system that satisfies the predefined operating conditions is the best possible way. This is
accomplished by eliminating parts of the initial domain that contribute insignificantly in the
structural behaviour of the domain in an iterative manner. The computational demand of this
procedure is quite high as it depends on the population of elements in the generated mesh.
As a result, the necessary time for optimizing a fine meshed domain can even be equal to a
number of days.

In the current thesis, a methodology called DL- TOP is proposed for minimizing the
computational cost without any loss in terms of final result quality. DL-TOP is a combination
of a topology optimization method (SIMP) and a deep learning method (DBN). In this novel
two-phase methodology, the DBN is used for defining higher order correlations between the
volume of an element in a number of initial SIMP iterations per finite element and the final
density value of that element. The process begins with SIMP performing a few iterations
which act as input for the DBN. Following that, the DBN proposes a value for each element in
the mesh. The DBN proposal is then passed again to SIMP in order to perform a fine-tuning.
The use of this method reduces computational cost in a range of 50 to 95% in all examples
tested, both in 2D and 3D cases. In terms of objective function value (i.e. the compliance of
the system), the values obtained present a difference with SIMP alone application in the range
of [-1,1]%. It is worth mentioning that the DBN is trained once on two typical examples
of topology optimization literature and applied on several examples without any additional
training. Also the executional time of DBN is incomparably small in comparison with one
single iteration of SIMP, especially in meshes of dense discretizations.

1.3.3 Model order reduction

Regarding contribution in model order reduction, three new methods based on deep learning
are presented. These methods are DL-SCALE, DLRM-TOP and CN-TOP. The main idea
behind these applications is to use deep learning in order to be able to extrapolate results of
small scale models to larger ones without loss of quality.

As stated before, applying topology optimization on a domain with a dense mesh is
a computationally heavy procedure. DL-SCALE is proposed as a model order reduction
technique where instead of directly applying topology optimization on the dense-meshed
domain, it is applied on more sparse-meshed ones. An identical domain in terms of dimen-
sions, loading and support conditions, volume target, etc. but with a significantly sparser
mesh is created as initial input of DL-SCALE. A few iterations t of SIMP are performed

1.3 Contribution to international literature 7

and the DBN formulated for DL-TOP is used in order to propose a close to final solution.
A more dense mesh is applied on the DBN-proposed shape where the volume of each new
finite element is set equal to the volume of the closest one, in terms of coordinates from the
previous, sparse-meshed, shape. The output is passed again into SIMP in order to perform
another t iterations. In a similar manner, DBN is used to propose a result for the finner mesh
and the same procedure continues until reaching a final shape with mesh density equal to the
desired one.

As a result, by using DL-SCALE, SIMP is applied on sparse meshes before being applied
on the desired one. Execution times of examples with sparse meshes are extremely smaller
than the ones with a dense mesh. Additionally, when reaching the point of applying topology
optimization in the target shape from mesh density point of view, the input proposed by
DL-SCALE is close to a final one so only a few SIMP iterations are needed resulting to
severely reduced computational time. Summarizing, the use of DL-SCALE allows the user
to exploit results of reduced order models to avoid loss of time and severe computational
loads of real-scale model optimization.

The second methodology proposed in this dissertation is DLRM-TOP. Starting with
the desired mesh density of a topology optimization model, five models of sparser mesh
density are created with identical structural and topology optimization parameters. Each finite
element of the dense mesh is grouped with an element from each of the five sparse-mesh
cases with respect to centers coordinates proximity. This leads to a creation of volume-
density data for each element of the dense mesh. A DBN is trained on two typical, obtained
from literature, examples where the input is the final shape proposed in five sparse meshed
identical domains and the target of DBN training is the per element volume of an identical
but dense meshed problem. The DBN is trained on the grouped volume/discretization per
finite element data of two examples.

In order to use DLRM-TOP on a topology optimization problem, the user needs to apply
SIMP on five identical but "sparsly" meshed problems. The final volumes per element per
mesh are fed as input to the previously trained DBN and the network proposes an almost final
volume value for each element of the dense meshed problem. This output is then fine-tuned
by SIMP performing a small number of iterations. It is worth pointing out that the population
of fine-tuning iterations are not user-defined but a result of the quality of the DBN output. The
SIMP termination criterion is the same with typical SIMP approach. DLRM-TOP, as it can be
witnessed on several test-cases presented in this dissertation achieves a significant reduction
of computational time of topology optimization application by upgrading reduced order
models without needing to retrain the DBN, regardless the optimization problem formulation.

8 Introduction

The third and final methodology proposed in this section of the thesis with respect to
reduced order modeling is CN-TOP. This methodology uses techniques developed for image
handling in order to acquire information from reduced order models and use it to assist
in handling large-scale models in topology optimization. In a 2D topology optimization
problem, the output can be handled as a 2D image. Convolutional neural networks have
been developed for enhancing image quality [42, 122, 105] while training CNNs on topology
optimization results has also been proposed [198]. In this case, we train an image enhancing
CNN with an input of small scale topology optimization results and an output of the same
results but in larger scale.

As a result, SIMP can be applied on a reduced order model until termination criterion
is reached. The output is read by the trained CNN which enhances the "resolution" of the
SIMP results and provides a close to final result for the same problem but with a significantly
finner mesh. This CNN output is fine-tuned by SIMP. As evident in all 2D test-cases
examined, the application of CN-TOP in various topology optimization problems leads to
severe reduction of execution time needed without any loss in terms of final result quality.
Again, the population of fine-tuning iterations are not user-defined but a result of the quality
of the CNN output.

1.3.4 Generative design

The strength of deep learning is the ability to produce a large amount of results in minimum
time even without parallel processing. The time needed for deep neural networks to deliver
an output since acquiring an input is in the scale of seconds even for large scale input and
in serial execution. Another characteristic of deep neural networks is that networks trained
on different examples can derive different results. The strength of combining a topology
optimization method like SIMP and a deep learning method like DBN or CNN for reducing
computational loads is thoroughly studied in the other parts of the dissertation. DBN is used
successfully for making a discrete jump from an initial topology optimization schema to an
almost final design. In a sense, it can be stated that the DBN forms a shape in accordance to
an intuition received from SIMP. The final design is practically a computer generated design
based on an input from SIMP.

The DBN proposed shape depends on the input given by SIMP, the database on which
it was trained and the structure of the database. A large number of networks can be trained
on varying databases as described before. This will result to networks with differentiating
structures. Additionally, the population of SIMP initial iterations and different target volume
percentages before the DBN is used can also produce variating inputs. Once a domain is
defined along with support and loading conditions, DzAIN is used to produce computer

1.4 Scientific work 9

generated designs. SIMP performs a series of iterations which are fed in parallel mode on
several pre-trained DBNs. In minimum time, the DBNs generate forms that are returned to
the designer as computer generated proposed shapes, fine-tuned by SIMP. It then up to the
designer to select and work on one or some of the DzAIN propositions.

1.4 Scientific work

During his Ph.D. course, the author of this thesis has contributed in the completion of 4
publications [91, 93–95] in scientific refereed journals, in writing 4 articles [87, 88, 90, 108]
presented in international conferences and finally in the completion of two chapters [89, 92]
in scientific books published by international publishers.

Chapter 2

Mathematical optimization and
efficiency of novel algorithms

Optimization is the act of upgrading a certain solution with respect to specific criteria
and under predefined limitations. From a structural design point of view, optimization is
dealing with finding the optimal size, shape or topology of a structural system in terms
of minimizing cost and/or maximizing performance goals while respecting set constraints.
Nowadays, the main challenge in engineering is finding optimal solutions in modern, highly
complex, formulations with the assist of advancements in available computational power.
The optimality of the proposed solution is usually a combination of performance-cost criteria
for the duration of the service life of the structure. Though engineering experience is key
in assessment of the quality of each design, the complexity of todays structures imposes
the use of numerical methods for automating the procedure of optimization. Numerous
categorizations of methods for dealing with optimization problems can be found in literature.
A more general one, is the separation in deterministic and stochastic ones according to their
functionality. Another categorization is gradient-based and gradient-free methods according
to the type of information needed to decide on the next search step. These methods are also
separated into local search and global search ones depending on the type of the performed
search. There are many more categories and sub-categories used but the previously mentioned
are the general ones.These categories are explained more analytically in sections below.

12 Mathematical optimization and efficiency of novel algorithms

2.1 Mathematical optimization formulation

A typical unconstrained optimization formulation can be represented as:

Minimize F(X) where

X = [x1,x2, ...,xn−1,xn]

with respect to :

xi ∈ [xLi
i ,x

Ui
i]

(2.1)

where F(X) is the objective function of the problem, X is the solution vector containing
n variables and xLi

i , xUi
i are the lower and upper bounds of the ith variable. Additionally,

the mathematical formulation of a constrained optimization problem can be represented as
follows:

Minimize F(X) where

X = [x1,x2, ...,xn−1,xn]

with respect to :

gk(X)≤ 0, k = 1,2, ...,m−1,m

l j(X) = 0, j = 1,2, ...,s−1,s

x ∈ [xLi
i ,x

Ui
i]

(2.2)

where F(X) is the objective function of the problem, X is the solution vector, g(X) are the m
inequality constraints, l(X) are the s equality constraints, xLi

i , xUi
i are the lower and upper

bounds of the ith variable.
From a historical point of view [170], optimization methods were initially introduced

by Newton, Cauchy and Leibnitz. Additionally, Bernoulli, Euler, Lagrange and Weierstrass
introduced calculus methods for unconstrained and constrained function minimization. After
several years, the next advancement in optimization was by Dantzig and Bellman presenting
the SIMPLEX method for linear programming [34] and the optimality principal [11] respec-
tively. During the same period, Kuhn and Tucker [112] presented their contribution on the
conditions for optimal solution as an extent to work presented by Karush [99]. Several more
contributions were made in the fields of integer programming, stochastic programming and
multi-objective optimization but interest was again raised during 2000 with plenty of work
mainly on gradient-free optimization which will be presented in the following chapters.

2.2 Gradient-based algorithms 13

2.2 Gradient-based algorithms

Gradient-based methods rely on first and/or second order derivative information for finding
the optimal solution of optimization problems which usually is a local optima. The derivatives
are used for defining the influence of variables to objective function values and finding the
variable values that lead to optimal objective function value. The two key features of these
type of algorithms are:

• Decide of the moving direction

• Decide the length of movement

Information acquired from calculation of derivatives is exploited for making the above
decisions. The type of formulation used for taking advantage of derivative information is
what usually differentiates gradient-based algorithms. Some of the most known algorithms
of this type are:

• Steepest descent algorithm

• Conjugate gradient method

• Newton-Raphson method

• Quasi-Newton method

Cauchy introduced steepest descent algorithm [22] two centuries ago for finding the minimum
of non-linear functions. It is based on the fact that a differentiable function reduces its value
when moving stepwise in the direction where the gradient is negative [142]. When attempting
to find the minimum of an objective function f (x) where x ∈ Rn is the variables vector, a
start is made from an initial point xi and the gradient ∇ f (xi) is calculated. The direction of
movement is defined by −∇ f (xi) while the new point xi+1 is given by xi+1 = xi+ai ∗∇ f (xi)

where ai = argmin
a

f (xi + ai−1 ∗∇ f (xi)). This procedure continues in an iterative manner

until a termination criterion is satisfied.
Conjugate gradient method (CG) [67], is actually based on gradient descent. As a type of

line search algorithm, it performs iterative movements from one point to another according to
information received from calculating gradient. The next point (k+1) is calculated according
to [64]:

xk+1 = xk +ak ∗dk (2.3)

14 Mathematical optimization and efficiency of novel algorithms

where ak is the size of the step of movement and dk is the direction of movement. The step
size is calculated via line search and dk is calculated as follows:

dk+1 =−gk+1 +βk ∗dk (2.4)

where gk+1 = ∇ f (xk+1)
T and βk is a parameter of the algorithm. As CG has proven to be

very robust in handling optimization problems with large solution vectors, many variations
of the algorithm have been proposed like Preconditioned conjugate gradient method (PCG)
[55] which focuses on increasing convergence speed. The Newton-Raphson method is again
an iterative method but second-order gradient information is needed. As all gradient-based
algorithms, it performs a descent with direction and step information according to gradient at
a specific point. The basic iteration expression for minimizing objective function f (x), where
x ∈ Rn corresponds to the variables and starting from an initial point xk, with this method is:

xk+1 = xk −ak ∗ (∇2 f (xk))−1 ∗∇ f (xk) (2.5)

where the direction is defined as:

dk =−(∇2 f (xk))−1 ∗∇ f (xk) (2.6)

where ak is the size of the step to be performed [15]. While a local search method, some
variations can be used for global search as well.

When applying the Quasi-Newton method in an optimization problem, the gradient ∇ f (x)
of the objective function f (x) is used for generating estimators Hi for the Hessian matrix
H(x) of f (x) at every iteration needed until converging [65] where:

H(x) =

∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xn−1

∂ 2 f
∂x1∂xn

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2
· · · ∂ 2 f

∂x2∂xn−1

∂ 2 f
∂x2∂xn

...
...

...
∂ 2 f

∂xn∂x1

∂ 2 f
∂xn∂x2

· · · ∂ 2 f
∂xn∂xn−1

∂ 2 f
∂x2

n

 (2.7)

Several variations of this method have been proposed in literature as it is a widely used
algorithm in nonlinear optimization. Two of them are the DFP method [37, 52] and the BFGS
method [19, 51, 62, 187].

2.2 Gradient-based algorithms 15

2.2.1 Optimality Criteria Algorithm

Optimality criteria (OC) algorithm is commonly used for solving structural design optimiza-
tion problems as it has proven to very successful against such problems [31]. In general, it
can be stated that OC is based on the hypothesis that when in optimal position, an objective
functions can be expressed by features that are not present in non-optimal positions. Descrip-
tion of the algorithm will be given based on application on such a problem and specifically,
weight minimization of a structure St [148]. The general expression of the load-displacement
relation is:

[K]∗{U}= {P} (2.8)

where U and P are the vectors of displacements and loads respectively and [K] is the global
stiffness matrix of the structure. The structure’s weight can be calculated as follows:

W (St) =
m

∑
i=1

ρi ∗Ai ∗ li (2.9)

where m is the number of finite elements in the structure, ρi is the mass density of the ith
element and Ai and li are the area and length of the ith element respectively. The p constraints
G of the above formulation could be generalized in the following expression:

G j(Ai) : C j(Ai) − CLower
j ≤ 0 ∀ j = 1, · · · , p (2.10)

where CLower
j is the lower bound of the value of the jth constraint. The Lagrange function of

W (Ai,λ j), with the use of Eq. 2.9 and Eq. 2.10, can be expressed as follows:

W (Ai,λ j) =
m

∑
i=1

ρi ∗Ai ∗ li +
p

∑
j=1

λ j ∗G j(Ai) (2.11)

where λ j are the Lagrangian parameters. By differentiating Eq. 2.11, the optimal criteria
assigned to the optimum are:

ρi ∗ li +
p

∑
j=1

λ j ∗
∂G j(Ai)

∂Ai
= 0 ∀i = 1, · · · ,m (2.12)

where λ j ≥ 0.
OC methodology, currently, is broadly used in the field of topology optimization as it

will be described in following chapters.

16 Mathematical optimization and efficiency of novel algorithms

2.2.2 Method of Moving Asymptotes

The method of moving asymptotes (MMA), introduced by K. Svanberg [202], is an itera-
tive process applied in solving non-linear optimization problems with the use of a convex
approximating subproblem.

MMA description

A general optimization problem with f0(X) being the objective function, can be defined as
follows:

Minimize f0(X) f or X = [x1,x2, ...,xn−1,xn,]

sub ject to :

fi(X)≤ f̂i, i = 1,2, ...,m−1,m

x j ∈ [xL
j , xU

j] j = 1,2, ...,n−1,n

(2.13)

where fi(X)≤ f̂i express existing constraints while xL
j and xU

j are the lower and upper bounds
of the jth element of the solution vector X .

In the implementation of MMA, after an initial solution vector is chosen, iterations are
performed for locating the optimal solution. For the solution vector Xk, created at the kth

iteration, the values of the objective function f0(Xk), the constraint functions fi(Xk) and their
derivatives ∇ fi(Xk) are calculated. The first-order approximations are exploited for defining
the solution vector of the kth +1 step through application of duality method [115]. The value
of fi(Xk) is calculated as follows:

fi(Xk) = rk
i +

n

∑
j=1

(
pk

i j

Uk
j − x j

+
qk

i j

x j −Lk
j
) (2.14)

where:

pk
i j =

(Uk
j − xk

j)
2 ∗ ∂ fi

∂x j
, if ∂ fi

∂x j
≥ 0

0 if ∂ fi
∂x j

≤ 0
(2.15)

pk
i j =

0 if ∂ fi
∂x j

≤ 0

−(x j −Lk
j)

2 ∗ ∂ fi
∂x j

, if ∂ fi
∂x j

≥ 0
(2.16)

and

rk
i = fi(Xk)−

n

∑
j=1

(
pk

i j

Uk
j − x j

+
qk

i j

x j −Lk
j
) (2.17)

2.3 Gradient-free algorithms 17

As f k
i is actually a first-order approximation of fi at xk, the second-order partial derivatives

of fi per x j are:
∂ 2 f k

i
∂x j2

=
2∗ pk

i j

(Uk
j − x j)3

+
2∗qk

i j

(x j −Lk
j)

3
(2.18)

and:

∂ 2 f k
i

∂x j∂xi
= 0 if j ̸= 0 (2.19)

resulting to:

∂ 2 f k
i

∂x j2
=

2∗ ∂ fi
∂x j

Uk
j −xk

j
if ∂ fi

∂x j
≥ 0

−
2∗ ∂ fi

∂x j

xk
j−Lk

j
if ∂ fi

∂x j
≤ 0

(2.20)

It can easily be observed that the second order derivatives are positive while also, the closer
the "moving asymptotes" U j and L j are to x j, the larger the values of the second order partial
derivatives are. According to the above, the subproblem is defined as:

Minimize
n

∑
j=1

(
pk

0 j

Uk
j − x j

+
qk

0 j

x j −Lk
j
)+ rk

0

sub ject to :

fi(X)≤ f̂i, i = 1,2, ...,m−1,m

x j ∈ [xL
j , xU

j] j = 1,2, ...,n−1,n

(2.21)

2.3 Gradient-free algorithms

In several optimization problems, the calculation and/or use of derivatives is not possible
due to several reasons. Either because derivative information is not available or it is too
expensive to calculate or it is not reliable. Such cases are defined as gradient-free optimization
problems and all algorithms used for dealing with these problems are known as gradient-free
algorithms [173]. Ranging from structural engineering [109, 113, 114] to aerodynamics [98]
or even currency portfolios [25] and medical science [136] gradient-free algorithms have a
significantly broad spectrum of applicability.

From a historical point of view, gradient-free algorithms first appeared with Simplex
algorithm [150] in 1965 but ever since, numerous algorithms have been presented incorporat-

18 Mathematical optimization and efficiency of novel algorithms

ing different approaches of gradient-free optimization. In general, gradient-free algorithms
can be divided in two major categories:

• Local search algorithms subdivided into

Direct methods and

Model-based methods

• Global search algorithms subdivided into

Deterministic methods and

Stochastic methods

with each category subdivided into separate types according to the method that describes
their functionality.

Local search algorithms are characterized by moving from one identified solution to
another one belonging in the same neighborhood while respecting well-defined rules [160].
A neighborhood is defined inside the search space X , ∀ x ∈ X and an initial position-solution
xi ∈ X is chosen according to some rule. In an iterative manner, a new solution xn+1 is chosen
from the neighborhood of xn. The best solution found until termination criterion satisfied, is
the local search optimization result.

Direct search method can be defined as sequential testing of trial solutions and comparison
of each trial solution with the best one up to that moment in combination with a "next trial
solution decision" strategy [78, 107]. Some of the most well-known methods of this category
are Simplex [150], Generalized pattern search [107, 209] and Mesh adaptive direct search
[6].

Model-based methods depend on information acquisition from surrogate models of higher
quality. In a typical model-based method, a lower quality surrogate model is created at first
while its quality is continuously increased through updating it according to new solution
positions evaluation. Implicit filtering [61] and trust-region methods [165] are the most
well-established model-based methods in literature.

Contrary to local search algorithms, the global search ones are not focused on exploring a
specific area of the search space but are continuously exploring new areas of the search space
while also perform "local searches" on the newly explored areas according to algorithmic
rules. In order for the above feature to be implemented, most global search algorithms are
population-based.

Deterministic global search algorithms apart from attempting to provide the global optima
of a problem, they also focus on offering additive information regarding the found global
optima, i.e. the bounds of the objective function on the global optima [53]. A few of the most

2.3 Gradient-free algorithms 19

well established deterministic algorithms are Branch-And-Reduce Optimization Navigator
(BARON) [178] and DIvide a hypeRECTangle (DIRECT) [86] algorithms.

Stochastic methods are used for solving global optimization problems by exploiting
stochastic parameters either in the data of the problem or in the algorithmic implementation
or even in both [228]. One category of such numerical methods are nature inspired stochastic
global search algorithms which have proven to be capable of handling NP hard combinatorial
problems by mimicking the evolution and survival-of-the-fittest procedure of species and
specifically the sophisticated "survival" techniques developed by many species.

By studying these behaviors several algorithms referred to as heuristic and metaheuristic
algorithms were inspired. Some modern and well established metaheuristic algorithms are:
genetic algorithms (GA) [143], simulated annealing (SA) [211], particle swarm optimiza-
tion (PSO) [102], differential evolution (DE) [36], harmony search (HS) [59], ant colony
optimization (ACO) [44], artificial bee colony (ABC) algorithm [97], firefly algorithm (FA)
[224], cuckoo search algorithm (CS) [224], bat algorithm (BA) [224], krill herd (KH) [57],
variants of existing methods [183] and recently proposed ones, like improved artificial bee
colony algorithm [191], water wave optimization (WWO) [227], the moth-flame optimization
algorithm (MFO) [145] or the optics inspired optimization (OIO) [100].

Swarm optimization characterize a stochastic, population-based group of algorithms
inspired by the social behaviour of birds flocking, fish schooling etc. [30]. Briefly, an initial
population of particles (birds, fish, etc.) are positioned randomly into the multidimensional
search space examined [30]. Every particle, whose position represents a solution, “travels”
into the search space seeking for a better position/solution. During the iterations of the
algorithm each particle adjusts its position based on its own experience, built by memorizing
the best position encountered, as well as that of neighbouring particles. PSO algorithms
combine local search (self-experience) with global search (neighbouring experience), aiming
to balance exploration and exploitation. This procedure continues until the termination
criterion is satisfied [125]. PSO algorithms have attracted a significant amount of interest in
the past years [155, 210], since they were proved efficient in handling real-world optimization
problems too [161].

2.3.1 Harmony Search and Improved Harmony Search Algorithms

Harmony Search algorithm (HS) [60] was inspired by the natural behavior of Jazz bands
during an improvisation session. In the beginning of this procedure, one of the band members
plays a randomly chosen note. The second band member, after listening to the first note
played will decide to follow up with a second note. The decision on which this note will

20 Mathematical optimization and efficiency of novel algorithms

be chosen is made either randomly or solely based on the musicians’ musical memory
of preferences or, finally, by applying a small change on a memory selected note. This
procedure continues iteratively until a melody is composed. How this melody is received by
the audience is the quality indicator of the improvisation outcome. In this thesis, an improved
version of HS in terms of performance, robustness and computational needs, called IHS, is
presented.

Mathematical formulation of HS

In an attempt to formulate HS in a mathematical manner, musicians are translated as decision
variables, the pitch range of each musical instrument symbolizes the value range of each
variable, the generated melody corresponds to a solution vector and finally, the acceptance
of the audience can be translated as the objective function value [95]. The three main
functions of HS algorithm are: harmony memory initialization, new harmony improvisation
and harmony memory update.

In the harmony memory initialization step, the harmony memory (HM) is filled with a
number of randomly generated solutions equal to the harmony memory size (HMS).

HMS =

s1

1 s1
2 · · · s1

n−1 s1
n

s2
1 s2

2 · · · s2
n−1 s2

n
...

...
...

sHMS
1 sHMS

2 · · · sHMS
n−1 sHMS

n

 (2.22)

where n in the size of the solution vector.
In the new harmony improvisation step, the creation of a new solution vector is performed.
The n elements of the vector are chosen based on three different functions:

• Random selection

• Memory consideration

• Pitch adjustment

In random selection, the value of the si variable is selected randomly with respect to lower
and upper bounds. In memory consideration, the value of the si variable is chosen from a
random position of the memory and finally in the pitch adjustment, the value of the si design
variable is chosen by slightly modifying a value randomly selected from memory. The above
described functionality can be summarized in [95]:

2.3 Gradient-free algorithms 21

sNew
i =

si ∈ [xLower

i ,xU pper
i] with probability 1-HMCR

si ∈ HM = [s1
i ,s

2
i , · · · ,sHMS

i] with probability HMCR*(1-PAR)

si + k with probability HMCR*PAR

(2.23)

where HMCR (Harmony Memory Consideration Rate, 0 ≤ HMCR ≤ 1) and PAR (Pitch
Adjustment Rate, 0 ≤ PAR ≤ 1) are parameters of the algorithm and k is a random number
generated form a Poisson distribution.
Once the creation of a new melody - solution vector is completed, the algorithm moves to

the harmony memory update step where the newly generated solution is compared against
the worst one stored in HM with respect to objective function value. If it is better, it replaces
it, else the algorithm rejects it and continues with iterations until a user-defined termination
criterion is reached.

Mathematical formulation of IHS

It is of great importance for robustness of optimization algorithms to have the minimum
possible number of parameters while it is also crucial in terms of complexity to have as few
as necessary algorithmic functions. It is also important to reduce the necessary computational
needs of an algorithm as much as possible. Under these principles, in this section, an
improved Harmony Search algorithm (IHS) is proposed and tested against HS and other well
established metaheuristics on two real-life problems.

In accordance with the three previously mentioned goals, there are two major differences
in the mathematical formulation of HS and IHS [94]. The first difference is that instead of the
three procedures for formulating a new solution vector in HS, only two are used in IHS. These
procedures are random selection and memory consideration. The pitch adjustment procedure
is incorporated into memory consideration in IHS. Due to this change, the parameter PAR is
not needed in IHS formulation. As a result of the above, algorithmic complexity is reduced
by one less function while also robustness is improved as there is one less parameter to
tune. The second major difference is the way the solution vector is formed. Instead of using
one of the algorithmic functions to propose an element of the vector, each function, solely,
proposes a complete solution vector. Through this change, significantly less function calls
are necessary per iteration while also, the efficiency of the algorithm is greatly improved as it
can be seen in the testing of IHS in the "Application" part.

22 Mathematical optimization and efficiency of novel algorithms

Accordingly, the mathematical formulation of new harmony generation can be seen in
the following equation:

sNew =

∀ i ∈ [1,n] : si ∈ [xLower
i ,xU pper

i] with probability 1-HMCR

∀ i ∈ [1,n] : si ∈ HM = [s1
i ,s

2
i , · · · ,sHMS

i] with probability HMCR
(2.24)

where n is the size of the solution vector.

2.3.2 Pity beetle algorithm

A new metaheuristic, swarm-type and population-based algorithm was developed during this
Ph.D. course. Pity Beetle Algorithm (PBA), was inspired by the sophisticated technique that
Pityogenes chalcographus, (six-toothed spruce bark beetle) (Coleoptera, Scolytinae), has
developed for locating suitable nest hosts and food inside forests. Pity beetle is known for
the ability to initially inhabit a single tree in a forest, spread rapidly by feeding of weakened
trees and infest even the healthy trees once robust enough as a colony, a typical behavior of
the Ipini tribe species [186].

In detail, a small number of male pioneer beetles, search the forest for suitable trees.
Unhealthy trees are preferred for feeding of the bark and creating nests inside them. Once a
weakened host is found, pheromone is spread from the beetles, in order to attract additional
male and female beetles for the first brood to begin. Each of the males creates star-like nests
inside the tree and in a polygamous manner, will mate with one to six females for the creation
of the new generation. It is then time for the offspring to act as pioneer beetles and explore the
forest for more suitable hosts. Once found, the previously described procedure is repeated for
new brood generation. The possible traveling distance of the offspring depends on the quality
of food in their birth position. Population outbreak is easily achieved if weakened trees are
found in proximity. By translating forest into search space, trees as solution vectors and
health of trees as quality of solution, it is noted that PBA is capable of handling large-scale
optimization problems by efficiently searching the solution space in a sophisticated manner,
avoiding local optima for global optima identification.

Further along, a sensitivity analysis with respect to algorithmic parameters is performed
on PBA while also, the performance and robustness of PBA is evaluated and compared
to other established, state-of-the-art metaheuristics with the use of several well-known
benchmark uni-modal and multi-modal, separable and non-separable unconstrained functions.
Further performance evaluation is executed with the use of the CEC 2014 unconstrained
optimization benchmark test-suite [127] along with complexity testing.

2.3 Gradient-free algorithms 23

Pityogenes chalcographus biology

The subfamily of Scolytinae contains a number of the most important forest pests in the world.
Although various species of the subfamily present significant variations, all of them present
an extremely sophisticated system for communicating with the use of pheromone signals.
Bark beetles use such signals in order to succeed in mass population outbreaks which are a
critical risk for the health of forests. Pityogenes chalcographus (Coleoptera, Scolytinae) is an
important and rather common bark beetle in the area of Europe [106] as it usually attacks
Norway spruce (Picea abies), pines (Pinus sp.) and larch (Larix decidua) [186, 163, 159, 220].
Other areas where the main host and in result Pityogenes chalcographus, is present are in
central and northern Europe and it is also present in Elatia, Drama, Greece [9]. It is in most
of its natural distribution bivoltine, producing two generations annually, depending however
on the outside temperature [213]. When under excellent environmental conditions it can
produce a third annual generation but when in higher altitudes, only one annual generation is
possible [163, 151, 232, 231].

Pityogenes chalcographus is characterized by a polygamous behavior, where the male is
mating with 3 to 6 females. The male P. chalcographus bore into the phloem of weakened trees
by excavating a nuptial chamber. During their feeding procedure, pheromones are produced
through transformation of host terpenes. These pheromones are used as female population
attracting signals in order for the male and female beetles to mate in the nuptial chamber.
From this star-like chamber, females start construction of mother galleries, depositing 40-
70 eggs in egg niches [232]. Immediately after their hatching, larvae excavate galleries,
horizontal to the mother galleries that end up in a pupal chamber where their development
procedure is completed.

In an attempt to model the behavior of P. chalcographus, a series of specific stages can be
defined. In the beginning, pioneer beetles search and find a suitable host (searching stage)
by investigating the emission of chemical signals by weakened trees. Feeding on the bark
of the host, an aggregation pheromone is created by pioneer beetles attracting other males
and females (aggregation stage), increasing population in the area. As soon as a specific
population is achieved, the defence mechanisms of the host can no longer resist this mass
infestation, while at this population level, healthy trees can also be suitable hosts. It is also
worth pointing out that an over-crowded host affects the infestation in a negative manner
due to reduced feeding space and possible infectious diseases. To avoid such problems,
when the population density in a host exceeds a certain upper bound, the beetles release
an anti-aggregation pheromone that signals nearby beetles to not attack the specific tree
but other trees in close distance (anti-aggregation stage). Through this process, the beetles

24 Mathematical optimization and efficiency of novel algorithms

expand their territory in the forest by continuously creating groups of infested trees around
the firstly colonized weakened tree.

Numerical implementation of PBA

The general form of an optimization problem can be expressed in standard mathematical
terms as a non-linear programming problem as:

minF(x),x = [x1,x2, ...,xD]
T

Li ≤ xi ≤Ui, i = 1,2, ...,D
(2.25)

where F(x) : RD → R is the real-valued objective function to be optimized (minimized in this
case), x ∈ RD is the D-sized vector containing the design variables while the lower and upper
bounds of the ith design variable are Li and Ui respectively.
The main steps of the numerical simulation of the P. Chalcographus’ remarkable host search
and reproduction behavior, on which PBA is based, are described in detail. In the following
presentation, with the term population, in PBA, the swarm of male and female beetles is
described while each member of the beetles population is named particle. Additionally, the
position vector of a beetle is presented as x(g)j ∈ RD where j is the ID of the population
member, g is the generation (search step) and D is the dimension of the search space. PBA is
characterized by three main steps: Initialization, Host Selection Pattern and Update Location
of Broods. In the initial step of PBA, the first beetle brood is generated in a randomly selected
position inside the search space (first generation). In the following step, members of the
initial brood move to other host trees, in order to create the new broods (second generation).
In every generation, new broods are created while in the third step new broods replace the
previous ones. This procedure is repeated until a user-defined termination criterion such as
maximum function evaluations (FEtotal) or optimization goal (OpTtarget) or executional time
(ETmax) is satisfied. This procedure can be seen in Fig.2.1 in the form of a pseudocode, while
in the next sections analytical descriptions of the algorithmic steps are presented.
where Nbroods is the number of broods that are generated, Npop is the population of pioneer
beetles and FEtotal are the maximum allowed function evaluations which is a termination
criterion. Additionally, in Table 2.1 the range of values of the parameters of PBA are
presented.

Random sampling - Hypervolume generation

The placement of pioneer beetles inside the flight-determined search area is performed
with the use of a random sampling technique (RST). The key aspect of RST is that the

2.3 Gradient-free algorithms 25

1. Begin

2. g:=0

3. Initialize() Eq. (6)

4. Repeat

5. For k := 1 to Nbroods Do Begin

6. For j := 1 to Npop

7. New Hypervolume Selection Pattern()

8. Calculate F()

9. FE := FE +1

10. End

11. Update Population Position()

12. End

13. Until Termination Criterion (FE > FEtotal)

14. End

Fig. 2.1 Pseudo-code of the pity beetle algorithm.

Parameter Description Value Range

Npop Population of pioneer beetles [10, 100]
fnb Neighboring factor [0.01, 0.20]
ftn Fine tuning factor [0.005, 0.05]
fms Mid-scale factor [0.10, 1.00]
fts Large-scale factor [1, 100]
pr Probability for choosing large-scale or memory consideration [0, 1]
fFE Function evaluations multiplication factor [0.05, 0.25]

Table 2.1 Algorithmic parameters of PBA and their range

Npop discrete placement segments created properly represent the entire search space. In
RST, a uniform distribution function for each variable is divided into a number of segments
of equal marginal probability. The samples are defined by randomly selecting shuffled
segments for each variable. To construct a sample, the range of each of the D variables is
divided into Npop non-overlapping equal segments, and then a sample with dimension D is
created by randomly pairing the values of all parameters. In order to produce a sample of
size D, a value is selected from each segment randomly. Following this procedure, Npop

samples are created [93]. Specifically in PBA, in order to randomly place Npop particles

26 Mathematical optimization and efficiency of novel algorithms

into a D− sized space, the generation of D independent uniformly distributed variables
xi, j ∈ [li,ui], i = 1,2, ...,D, j = 1,2, ...,Npop is necessary, resulting in ∏

D
j=1 Npop = ND

pop cells.
The restriction that each hyper-row and column contain a single sample is satisfied by using
the following expression for computing sample values:

xi, j = F−1
x

(
i−1+ rxi/(ui − li)

Npop

)
(2.26)

where rxi ∈ [li,ui] is a random number and Fx is the cumulative distribution function of
the uniform distribution for xi, j. The maximum combinations population of the sampling
procedure for Npop segments and D variables is:

(
Npop−1

∏
d=0

Npop −d)D−1 = (Npop!)D−1 (2.27)

In each movement of each brood in PBA, a different search space length is used as it is
analytically presented in the flight pattern descriptions. All variables are initially defined
inside the search space described in Eq. 2.25 respecting the global lower and upper bounds.
But in the progress of the algorithm, in each movement of a brood, different local bounds
are used. For the gth movement, the lower bound l(g)i and upper bound u(g)i are used for
calculating the ith variable. The maximum flight (sample) distance len(g)max is calculated
accordingly:

len(g)max =
∥∥∥u(g)− l(g)

∥∥∥=√ D

∑
i=1

(u(g)i − l(g)i)
2

(2.28)

while the implementation of the sampling technique for the gth sample will be defined as:

x j = RST (l(g),u(g),D,Npop) (2.29)

Finally, after generating values for each variable in the range [l(g)i ,u(g)i], a check is performed
to test whether global bounds are respected by the generated values, i.e xi, j ∈ [Li,Ui]. In case
a violation occurs, a correction is performed where ∆len = u(g)i − l(g)i as it also described in
Fig.2.2(a) and Fig.2.2(b).

Initialization step

In most of the well known and established population-based metaheuristics, it is usual to
initialize the population via a random procedure [204] while this procedure has proven to be
of significant importance in the overall performance of such algorithms [134]. Poor initial-

2.3 Gradient-free algorithms 27

Fig. 2.2 Random sampling technique (a) before and (b) after correction.

ization usually results to early convergence to a solution of lower quality than when a more
sophisticated initialization procedure is used. In order to not encounter early convergence
problems, RST is used in the initialization step of PBA.
In the first step of PBA application, Npop pioneer particles are positioned in a random manner
inside the global search space with the use of RST, x(0) = [x(0)1 ,x(0)2 , ...,x(0)Npop

]T , while the size
of Npop is a parameter of PBA. The generated hypervolume covers the entire search space
and each positioned particle represents a solution vector for generation g=0 x(0)j ∈ RD. The
initialization step can be summarized as:

x(0)j = RST (L,U,D,Npop)

where
L = [L1,L2, . . . ,LD], U = [U1,U2, . . . ,UD] and j = 1,2, . . . ,Npop

(2.30)

Once all pioneer particles have been placed in a position, the corresponding positions-solution
vectors are compared with respect to objective function value. The particle placed in the
optimal position releases pheromone to attract the rest particles to that position. This leads to
establishing the first population. This step can be seen in Fig. 2.3(a) for Npop equal to 9 and
D equal to 2.
In the optimal position found so far, six different populations, each one having Npop pioneer
particles, will be created from six sequential births. A new flight-hypervolume size pattern is,
then, be selected (one for each population of pioneer particles).

New Hypervolume selection pattern

Each group of new pioneer particles is planned to search inside the search space for other
optimal solutions where new generations will be created. As previously mentioned, several
types of flights (hypercube selection patterns) can be executed by pioneer particles with
respect to hypervolume size. These selection patterns are:

• Neighboring search volume,

28 Mathematical optimization and efficiency of novel algorithms

• Mid-scale search volume,

• Large-scale search volume,

• Global-scale search volume,

• Memory consideration search volume

A thorough presentation of the algorithmic implementation of each pattern is provided below.
Regardless of the selection pattern used, a search space around the birth position is formed.
The difference between each pattern lies on the area size which is controlled by PBA’s
parameter (fpat). The pattern selection formulation for pioneer particles can be described as
follows:

x(g)j = RST (l(g),u(g),D,Npop)

where

l(g)i ,u(g)i ∈
[
x(g)birth,i · (1− fpat),x

(g)
birth,i · (1+ fpat)

] (2.31)

where i denotes the element component of the jth individual solution vector x j, g denotes
the generation (pursuit step), x(g)birth,i is the ith element of the birth position/solution vector,

u(g)i and l(g)i are the upper and lower bounds of the ith dimension for the gth pursuit step,
respectively.

Neighboring search hypervolume

As in nature, it is certain that one or more of the generations created in a specific position
will scavenge for a new suitable hosting position in close range to the birth location either
because particles are not capable of covering a larger distance or there are plenty of suitable
solutions at close distance or lastly due to over population in the birth position. Due to the
previously described facts, the first hypervolume selection pattern is the neighboring search
where a small hypervolume is defined around the initial generation position. The size of the
neighboring search space is calculated with the use of the neighboring factor parameter, fnb,
whose value range is presented in Table 2.1. The hypervolume is defined with the use of Eq.
2.31 by setting fpat = fnb. Similarly to the initialization step, since all pioneer particles are
set in a position, the one in the best position will attract the other ones but only if it is proven
to be better than the starting position as well in terms of objective function value. The above
can be described by Eq. 2.32:

x(g+1)
birth =

{
x(g)birth, ifF(x(g)birth)< F(x(g)j,k),∀ j = 1,2, . . . ,Npop,k = 1,2, . . . ,Nbroods

x(g)j,k ,otherwise

]
(2.32)

2.3 Gradient-free algorithms 29

where g is the generation ID, x(g)birth is the position vector and x(g)j,k is the new position
vector found in k population (k=1,2,. . . ,Nbroods). A 2D example for a neighbouring search
hypervolume with Npop = 9 can be seen in Fig. 2.3(b).

Mid-scale search hypervolume

In the case that neighbouring search hypervolume was unable to locate a position better than
the birth one, repelling pheromones guide the particles to move to larger distances for an
increased possibility of locating solutions of higher quality. In this pattern, the search area
size is defined by the mid-scale factor, fms, parameter with a value range as proposed in
Table 2.1. The hypervolume is created in accordance with Eq. 2.31 by setting fpat = fms.
The Npop found positions are compared and the best one attracts the other pioneer particles
for the creation of a new population. Again, an example of nine pioneer beetles performing a
mid-scale search in a two-dimensional space is presented in Fig. 2.3(c).

Large-scale search hypervolume

Following the case that the neighbouring search pattern has not been able to locate a position
more suitable than the birth one, the more robust members of the pioneer particles will move
beyond the limits set in the mid-scale pattern. These particles will explore an even larger area,
a large-scale hypervolume. This area is define with the use of the large-scale factor parameter
of PBA, fls with value range as described in Table 2.1. As there is a possibility that the
boundaries of the large-scale hypervolume will exceed the global ones, a check is performed
and in such case, the violating boundary is replaced by the global one. In a typical manner,
Npop particles are placed inside the hypervolume and the one with the best objective function
value attracts the rest for the start of new generations. The formulation of the large-scale
hypervolume follows the method described in Eq. 2.31 by replacing fpat by fls. A 2D image
of this hypervolume for nine pioneer particles can be witnessed in Fig.2.3(c).

Global-scale search hypervolume

In the case that a large number of the previously described search types has failed in providing
a better solution than the best found, repelling pheromones are released in all positions of
generations. As a result, new pioneer particles are forced to perform a global search for an
optimal position. The application of Global scale search hypervolume is imposed once a
specific number of unsuccessful function evaluations, FEun, is achieved. This number is a
percentage of the total function evaluations, FEtotal , allowed in the problem definition and is
defined by FEtotal ∗ fFE where fFE is a parameter of the algorithm with value range defined

30 Mathematical optimization and efficiency of novel algorithms

in Table 2.1. The global-scale search pattern can be described as follows:

x(g)j = RST (L,U,D,Npop) (2.33)

Fig. 2.3 Finding the new population position of pioneer particles - Hypervolume Selec-
tion Patterns. a) Initialization/Global-scale search hypervolume, b) Neighboring search
hypervolume, c) Mid-scale search hypervolume, d) Large-scale search hypervolume

2.3 Gradient-free algorithms 31

Memory consideration search hypervolume

According to the biological behavior of the beetle, weakened trees are the most suitable
hosts except for the case that overpopulation is achieved, giving the ability of particles to
attack healthy trees as well. This ability can be witnessed in cases where a large number
of suitable hosts is present in close distance as pheromones will attract a large number of
particles in the specific area. By having the ability to attack all possible hosts in proximity,
the generations move by following a spherical expansion rule. To model this behavior, a
population of Npop best solutions found previously are stored in the algorithmic memory
MEM and are subsequently used in order to produce new positions. It is worth mentioning
that initially, the MEM is filled with the solutions found in the initialization step:

MEM =

x1,1 x1,2 . . . x1,Npop

x2,1 x2,2 . . . x2,Npop
...

...
xD,1 xD,2 . . . xD,Npop

 (2.34)

In the application of this pattern, a search space is created around each solution vector stored
in MEM by this procedure:

• choose a MEM member

• ∀i = 1,2, . . . ,D, changes in the range [Li,Ui] are implemented while others are kept
fixed

• if new found position is better than the worst in MEM, it replaces it

• a local search is performed around the best position found

The local search is performed according to Eq. 2.31 by setting fpat = ftn where ftn is a
parameter of PBA with value range defined in Table 2.1.

Update location of populations

Once new positions are found for all generations of a brood, the birth locations are updated.
This means that past birth places become obsolete and replaced by new ones. The only ones
that remain are the solutions stored in MEM. Additionally, hypervolume search patterns are
chosen for the newborn generations according to the previously described patterns except if
the termination criterion of PBA execution is satisfied. The formulation of all hypervolume

32 Mathematical optimization and efficiency of novel algorithms

patterns selection procedure is presented below in Eq. 2.35 and in Fig. 2.4:

x(g)j,k =

RST (
[
x(g)birth,i · (1− fnb),x

(g)
birth,i · (1+ fnb)

]
,D,Npop), i f k = 1

else

RST (L,U,D,Npop), i f FE > FEun

else

RST (

[
x(g)birth,i · (1− fms),x

(g)
birth,i · (1+ fms)

]
,D,Npop),∃ j, f (x(g)j,k−1)< f (x(g)birth)

else

{
RST (

[
x(g)birth,i · (1− fls),x

(g)
birth,i · (1+ fls)

]
,D,Npop), if r < pr

MEM,otherwise
i = 1,2, . . . ,D, j = 1,2, . . . ,Npop

(2.35)

where r is a randomly generated number, r ∈ (0,1). In Fig. 2.4, the decision routine
for members of the kth population is presented. In detail, the initial population is created
with the neighboring search pattern in line 2 with respect to the starting position quality.
The remaining, up to Nbroods, populations are sequentially created according to lines 4 to
19. A global scale search is performed if the threshold of maximum unsuccessful function
evaluations, FEun, is reached in accordance to line 6. If not, and in case the objective function
value of the previous population is better than the one of the birth position, a mid-scale
pattern is applied for this generation line10. If both the above criteria are not met, either a
large-scale pattern line 13 will be applied or memory consideration line 15 according to a
random rule.

2.4 Applications

In this section, applications of the two proposed algorithms (IHS and PBA) are presented. In
detail, IHS is applied on a districting problem for optimal infrastructure inspection after a
seismic event while PBA is applied on known-to-literature tests for new proposed algorithms.

2.4.1 PBA performance

In this section, an analytical presentation on the sensitivity analysis of PBA regarding the
algorithmic parameters can be viewed along with a thorough examination and comparison of
the performance of PBA against well established, state-of-the-art metaheuristics.

Sensitivity analysis and algorithmic parameters values

It is of great importance to properly define the parameters values of metaheuristics as the
performance of these algorithms is strongly tied with those values. Algorithmic robustness is
defined by the sensitivity of an algorithm with respect to parameter values. As there are no
"one size fits all" solutions in such problems, a sensitivity analysis is used in order to define

2.4 Applications 33

1. For k := 1 to Nbroods Do Begin

2. If k == 1 T hen

3. x(g)j,k = RST (
[
x(g)birth,i · (1− fnb),x

(g)
birth,i · (1+ fnb)

]
,D,Npop)

4. Else

5. If FE > FEun Then

6. x(g)j,k = RST (L,U,D,Npop)

7. Else

8. If f (x(g)j,k−1)< f (x(g)birth) Then

9. x(g)birth := x(g)j,k−1

10. x(g)j,k = RST (
[
x(g)birth,i · (1− fms),x

(g)
birth,i · (1+ fms)

]
,D,Npop)

11. Else

12. If r < pr Then

13. x(g)j,k = RST (
[
x(g)birth,i · (1− fls),x

(g)
birth,i · (1+ fls)

]
,D,Npop)

14. Else

15. x(g)j,k = MEM

16. EndIf

17. EndIf

18. EndIf

19. EndIf

20. End

Fig. 2.4 Update location of populations.

ranges of values for which an optimization algorithm performs well on several different
problems. The procedure followed for finding proper parameter value ranges is the following:
Six test-function are used and 25 sets of combinations of parameter values are created with
the use of random sampling technique. A total of 100 independent runs per test function
and combination of parameter values are performed while best and worst performance with
respect to objective function value, mean objective function value and standard deviation
are calculated. This is necessary as since non-deterministic optimization algorithms do not
yield the same results when restarted with the same parameters [172]. The combinations of
parameter values used can be seen in Table 2.2.

34 Mathematical optimization and efficiency of novel algorithms

Table 2.2 Samples of the algorithmic parameter values used in the sensitivity analysis

Set Npop fnb ftn fms fls pr fFE

1 38 0.075705 0.029182 0.563642 57 0.338595 0.161134
2 24 0.123459 0.037083 0.624188 22 0.408397 0.21086
3 16 0.068691 0.007445 0.999846 34 0.692002 0.24552
4 47 0.045784 0.032992 0.935893 40 0.149911 0.091139
5 46 0.033457 0.045939 0.436588 5 0.905509 0.113425
6 26 0.017896 0.0306 0.81412 6 0.837562 0.214723
7 92 0.134056 0.037759 0.950333 43 0.965924 0.178206
8 52 0.083214 0.017674 0.899109 96 0.340249 0.176398
9 12 0.052221 0.026661 0.274668 18 0.710718 0.187977
10 61 0.195374 0.009146 0.531219 38 0.384507 0.23957
11 21 0.090543 0.020727 0.417393 66 0.008013 0.172095
12 29 0.162232 0.04883 0.493499 49 0.435726 0.079244
13 67 0.178636 0.046596 0.97612 87 0.055815 0.144725
14 65 0.063162 0.034171 0.858121 29 0.196453 0.169105
15 35 0.080927 0.042115 0.511393 84 0.581464 0.134154
16 36 0.031623 0.031709 0.829211 37 0.225093 0.11579
17 45 0.015055 0.049438 0.72741 3 0.502583 0.06186
18 96 0.113653 0.014282 0.862913 69 0.080354 0.202934
19 28 0.070926 0.006222 0.5524 58 0.530035 0.195361
20 32 0.136118 0.043162 0.171538 24 0.128949 0.071422
21 12 0.095019 0.01706 0.686054 7 0.271986 0.124869
22 58 0.087889 0.045057 0.910344 9 0.473968 0.218572
23 86 0.130502 0.010934 0.754645 33 0.620001 0.235528
24 62 0.039123 0.019051 0.78291 86 0.246476 0.056075
25 16 0.125928 0.024675 0.294616 59 0.876725 0.201997

2.4 Applications 35

The objective functions (f1(x) to f6(x)) used in the sensitivity analysis runs are presented
in Table 2.3, along with the objective functions that complete the set used in the comparative
study (f7(x) to f13(x)) presented in the next section. The dimension D of the test functions
considered in the sensitivity analysis study is equal to 10 and 30 while the maximum function
evaluations permitted for defining convergence were set to 100,000 and 200,000 for the two
dimensions, respectively. For each run, record is kept for objective function value and the
minimum and maximum objective function value, average value and standard deviation are
calculated for each test-function and parameter set. The results obtained from the sensitivity
analysis are presented in Tables 2.4 and 2.5, for 10−D and 30−D problems, respectively.
In an attempt to summarize these results, it is worth noting that PBA presents significant
robustness in most test-functions regardless of dimensionality while in most cases it was able
to locate the global minima. Additionally, with respect to standard deviation, it is shown
that for 5 out 6 objective functions the values are significantly low. It must be pointed out
though, that in the case of test function 6, (Rosenbrock’s function) PBA failed to converge
to an acceptable average value of solutions. The result of the sensitivity analysis is a set of
proposed value range per parameter that is presented in Table 2.6.

Investigating PBA performance

PBA performance is evaluated by comparing its results with those of up-to-date state-of-the-
art metaheuristics known in literature [126, 28, 30]. The algorithms used in comparison are:
nine versions of particle swam optimization algorithms [126], including the comprehensive
learning particle swarm optimizer (CLPSO) algorithm proposed [126]: PSO with inertia
weight (PSO-w) [189], PSO with constriction factor (PSO-cf) [189], local version of PSO
with inertia weight (PSO-w-local) [104], local version of PSO with constriction factor
(PSO-cflocal) [104], UPSO ([155], fully informed particle swarm (FIPS) [141], FDR-PSO
[158], CPSO-H [210], and CLPSO [126]; five algorithms taken from the study by 28,
including the IGSO proposed by [28]: SPSO, quantum behaved PSO (QPSO), weighted
QPSO (WQPSO), group search optimizer (GSO) and improved GSO algorithm and nine
particle swarm optimization algorithms taken for the study by [30], including the aging
leader and challengers (ALC-PSO) algorithm proposed [30]: including the global version
PSO (GPSO) with a fixed inertia weight ω = 0.4 [189], the GPSO that decreases the value
of ω linearly from 0.9 to 0.4 [190], the local version PSO with the RPSO [104], the one with
the VPSO [104], FIPS [141], hierarchical PSO with HPSO-TVAC [171], DMS-PSO [129]
and CLPSO [126].

For the first six test function, f1 to f6 in Table 2.3, PBA performance comparison is
executed for dimensionality equal to 10-D and 30-D. In the case of the next seven test

36 Mathematical optimization and efficiency of novel algorithms
Table

2.3
Testfunctions

em
ployed

in
the

study

TestFunction
D

om
ain

O
ptim

um
N

am
e

f1 (x)
f(x)

=
D∑i=

1 x 2i
[−

100
,100

] D
0

Sphere

f2 (x)
f(x)

=
D∑i=

1 [−
xi sin(√

|xi |)]
[−

500
,500

] D
−

418
.9829

D
Schw

efel

f3 (x)
f(x)

=
1

4000 (
D∑i=

1 x 2i −
D∏i=

1 cos (
xi
√

i)
+

1)
[−

600
,600

] D
0

G
riew

ank

f4 (x)
f(x)

=
10D

+
D∑i=

1 [x 2i −
10

cos(2
π

xi)]
[−

100
,100

] D
0

R
astrigin

f5 (x)
f(x)

=
D
−

1
∑i=

1
[100

(xi+
1 −

x 2i) 2
+
(1−

xi) 2]
[−

10
,10

] D
0

R
osenbrock

f6 (x)
f(x)

=
−

20
exp (

−
0
.20 √

1D

D∑i=
1 x 2i)

−
exp (

1D

D∑i=
1 cos(2

π
xi)))

+
20

+
exp(1

)
[−

32.768,32.768
] D

0
A

ckley

f7 (x)
f(x)

=
n∑i=

1 (
km

ax
∑k=

0 [a
kcos(2

π
b

k(xi +
0.5))])

−
n

km
ax

∑k=
0 [a

kcos(2
π

b
k∗

0
.5
)]

a
=

0.5,b
=

3
,km

ax
=

20

[−
0.5,0

.5
] D

0
W

eierstrass

f8 (x)
f(x)

=
n∑i=

1 (
i∑j=

1 x
j) 2

[−
100,100

] D
0

Q
uadric

f9 (x)
f(x)

=
n∑i=

1 (xi +
0
.5
) 2

[−
100,100

] D
0

Step

f10 (x)
f(x)

=
−

20
exp

(−
0
.20 √

1n

n∑i=
1 y 2i)−

exp(
1n

n∑i=
1 cos(2

π
yi))

+
20

+
exp(1

),

y
=

M
·x

[−
32.768

,32
.768

] D
0

R
otated

A
ckley

f11 (x)
f(x)

=
1

4000

n∑i=
1 y 2i −

n∏i=
1 cos(

yi
√

i)
+

1
,

y
=

M
·x

[−
600

,600
] D

0
R

otated
G

riew
ank

f12 (x)
f(x)

=
10n

+
n∑i=

1 [y 2i −
10

cos(2
π

yi)],

y
=

M
·x

[−
5
.12

,5
.12

] D
0

R
otated

R
astrigin

f13 (x)
f(x)

=
10n

+
n∑i=

1 [z 2i −
10

cos(2
π

zi)]−
330

,

z
=
(x−

o)·M

[−
5
.12,5

.12] D
-330

Shifted
–

R
otated

R
astrigin

2.4 Applications 37

Table 2.4 Statistical analysis for 10-D problems

Set Sphere Schwefel’s Griewank’s Rastrigin’s Rosenbrock’s Ackley’s

1 1.05E-29 -4176.76 0.00E+00 0.00E+00 6.21E+00 7.99E-15
2 2.23E-72 -4171.97 1.01E-02 0.00E+00 6.12E+00 4.44E-15
3 3.38E-151 -4188.91 0.00E+00 0.00E+00 8.96E+00 8.88E-16
4 9.91E-24 -4178.68 1.06E-07 0.00E+00 7.17E+00 2.92E-13
5 8.11E-16 -4146.13 1.75E-01 0.00E+00 6.66E+00 6.67E-09
6 4.78E-70 -4168.50 0.00E+00 0.00E+00 8.96E+00 4.44E-15
7 1.31E-13 -4149.97 6.53E-12 2.04E-13 8.93E+00 1.76E-07
8 4.85E-24 -4184.25 1.34E-05 0.00E+00 8.22E-02 3.45E-12
9 5.68E-86 -4176.98 1.11E-01 0.00E+00 5.94E+00 7.99E-15
10 5.08E-08 -4187.64 2.28E-01 6.87E-08 8.03E+00 1.18E-04
11 7.89E-56 -4181.95 1.37E-01 0.00E+00 5.85E+00 4.44E-15
12 3.97E-39 -4169.06 1.04E-01 0.00E+00 5.87E+00 4.44E-15
13 1.61E-23 -4157.17 1.00E-12 0.00E+00 6.82E+00 1.67E-12
14 4.49E-20 -4164.68 2.85E-02 0.00E+00 8.72E+00 7.45E-11
15 4.36E-23 -4159.92 1.43E-01 0.00E+00 8.73E+00 3.61E-12
16 1.70E-32 -4177.25 0.00E+00 0.00E+00 7.13E+00 4.44E-15
17 8.75E-22 -4165.77 9.63E-02 0.00E+00 6.47E+00 1.58E-11
18 4.74E-08 -4184.97 1.38E-02 6.90E-08 7.39E+00 1.90E-04
19 6.23E-43 -4188.82 0.00E+00 0.00E+00 8.92E+00 4.44E-15
20 3.14E-14 -4172.84 6.27E-02 6.22E-14 5.47E+00 3.82E-06
21 4.00E-188 -4185.46 7.78E-02 0.00E+00 5.75E+00 4.44E-15
22 2.25E-17 -4149.44 2.90E-05 0.00E+00 8.74E+00 7.30E-10
23 1.47E-08 -4187.48 6.54E-03 1.04E-08 6.99E+00 3.99E-05
24 8.75E-13 -4181.78 2.37E-01 5.33E-15 7.17E+00 2.18E-08
25 3.38E-66 -4164.91 2.72E-01 0.00E+00 5.13E+00 2.93E-14

Average 4.52E-09 -4172.85 6.81E-02 5.92E-09 6.89E+00 1.41E-05
Standard Deviation 1.35E-08 12.72 8.48E-02 1.87E-08 1.85E+00 4.32E-05

Minimum 4.00E-188 -4188.91 0.00E+00 0.00E+00 8.22E-02 8.88E-16
Maximum 5.08E-08 -4146.13 2.72E-01 6.90E-08 8.96E+00 1.90E-04

38 Mathematical optimization and efficiency of novel algorithms

Table 2.5 Statistical analysis for 30-D problems

Set Sphere Schwefel’s Griewank’s Rastrigin’s Rosenbrock’s Ackley’s

1 1.19E-33 -12478.46 0.00E+00 0.00E+00 2.59E+01 7.99E-15
2 1.01E-83 -12400.32 1.70E-02 0.00E+00 2.88E+01 4.44E-15
3 4.98E-145 -12559.84 0.00E+00 0.00E+00 2.88E+01 8.88E-16
4 2.88E-25 -12460.17 4.02E-02 0.00E+00 2.86E+01 7.19E-14
5 4.36E-18 -12301.16 0.00E+00 0.00E+00 2.60E+01 6.56E-10
6 2.48E-77 -12414.98 1.93E-02 0.00E+00 2.59E+01 4.44E-15
7 3.84E-13 -12416.15 7.76E-13 1.51E-13 2.88E+01 1.25E-07
8 1.47E-25 -12533.16 0.00E+00 0.00E+00 2.71E+01 7.19E-14
9 1.59E-98 -12453.65 0.00E+00 0.00E+00 2.86E+01 2.58E-14

10 1.08E-07 -12558.81 6.70E-02 4.52E-08 2.80E+01 4.87E-05
11 6.01E-65 -12514.33 1.26E-02 0.00E+00 2.58E+01 7.99E-15
12 8.60E-45 -12294.99 1.09E-02 0.00E+00 2.55E+01 7.99E-15
13 5.11E-24 -12332.07 0.00E+00 0.00E+00 2.70E+01 3.42E-13
14 5.30E-21 -12425.66 0.00E+00 0.00E+00 2.88E+01 1.43E-11
15 4.90E-26 -12331.18 1.33E-02 0.00E+00 2.89E+01 5.77E-14
16 4.85E-36 -12437.18 0.00E+00 0.00E+00 2.79E+01 4.44E-15
17 9.55E-23 -12355.17 0.00E+00 0.00E+00 2.61E+01 1.24E-12
18 9.05E-07 -12540.62 3.40E-06 5.08E-07 2.69E+01 2.00E-04
19 9.31E-49 -12561.68 2.85E-02 0.00E+00 2.86E+01 4.44E-15
20 1.04E-15 -12353.39 1.01E-02 4.97E-14 2.56E+01 3.43E-07
21 3.47E-206 -12529.82 0.00E+00 0.00E+00 2.86E+01 3.44E+00
22 3.89E-18 -12353.25 0.00E+00 0.00E+00 2.80E+01 3.50E-10
23 5.69E-09 -12555.03 1.61E-07 1.60E-08 2.71E+01 2.30E-05
24 8.14E-16 -12530.70 1.33E-15 0.00E+00 2.70E+01 5.63E-09
25 1.89E-75 -12474.81 0.00E+00 0.00E+00 2.88E+01 3.58E+00

Average 4.07E-08 -12446.66 8.75E-03 2.27E-08 2.75E+01 2.81E-01
Standard Deviation 1.78E-07 86.79 1.58E-02 9.94E-08 1.22E+00 9.53E-01

Minimum 3.47E-206 -12561.68 0.00E+00 0.00E+00 2.55E+01 8.88E-16
Maximum 9.05E-07 -12294.99 6.70E-02 5.08E-07 2.89E+01 3.58E+00

Table 2.6 Proposed parameter values

Parameter Description Value Range

Npop Population of pioneer patricles [10, 50]
fnb Neighbouring factor [0.01, 0.10]
ftn Fine tuning factor [0.005, 0.05]
fms Mid-scale factor [0.40, 1.00]
fls Large-scale factor [1, 100]
pr Probability for choosing large-scale search or memory consideration [0, 1]

fFE Function evaluations multiplication factor [0.05, 0.25]

2.4 Applications 39

functions, f7 to f13 in Table 2.3, comparison is performed on 30-D case. It must also be
pointed out that initialization is random for all algorithms while the initialization range
is equal to the described in Table 2.3 and not a decreased one as often used in literature.
[126, 28, 30]. For comparison reasons, the termination criterion is the maximum function
evaluations equal to 200,000 for all metaheuristic optimization algorithms [96].

Application of PBA to seven test functions

Wherever a rotation on a test function is mentioned, this points out that a linear, orthogonal
transformation matrix M is applied such that F(M, s) is calculated, where the orthogonal
(rotation) matrix M was generated using standard normally distributed entries by Gram-
Schmidt orthonormalization [182]. The transformation matrix M is a pure rotation that
applies no change to the structure of the function. All results for PBA applied to the test
functions 7 to 13 for 30-D problems are presented in Table 2.7. Similarly to the sensitivity
analysis, the average, standard deviation, minimum and maximum optimized objective
function values achieved for 30 independent runs using the algorithmic parameters that
presented the best performance for every test function examined are presented. These results
are in accordance with the conclusions from the sensitivity analysis results, i.e. that PBA
presents significant robustness and efficiency. In all of the seven test functions the best
solution found is "equal" to the global minimum while even the worst optimization results is
close to acceptable optimized. A convergence graph for test function 1 is presented in Figure
2.5 for the 30-D case while the variance of the optimized objective function value is also
presented, where the fast convergence tendency of PBA is visible.

Table 2.7 PBA applied to test-functions 7 to 13 for 30-D problems

Function Mean Best Minimum Maximum Deviation

Weierstrass 7.11E-16 0.00E+00 1.42E-14 2.81E-15
Quadric 6.66E-23 1.36E-42 2.00E-21 3.58E-22

Step 3.77E-04 2.41E-04 4.95E-04 6.79E-05
Rotated Ackley’s 4.44E-15 4.44E-15 4.44E-15 0.00E+00

Rotated Griewank’s 8.59E-16 0.00E+00 2.55E-14 4.58E-15
Rotated Rastrigin’s 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Shifted - Rotated Rastrigin’s -3.30E+02 -3.30E+02 -3.30E+02 0.00E+00

40 Mathematical optimization and efficiency of novel algorithms

Fig. 2.5 Performance of the independent runs for different number of function evaluations
for the test function (a) sphere for 30 parameters.

Comparison of PBA with state-of-the-art metaheuristics

For comparing PBA with the other metaheuristics, 10-D and 30-D problems are used, maxi-
mum objective function evaluations are set equal to 100,000 and 200,000 respectively while
30 independent runs are performed for each test function using the algorithmic parameters
that had performed better in the previous test. The comparison is performed on the basis
of the mean best objective function value calculated by each algorithm. The results are
presented in Tables 2.8 and 2.9 for 10-D and 30-D problems. It can be seen that for the test
functions used (i.e. f1 to f6) PBA managed to perform equally well or often even better than
the other algorithms for both dimensions examined. In functions f1 - f4 and f6 PBA achieved
better mean best objective function values than the other algorithms and better standard
deviation. Worth mentioning also that with respect to its performance for the Rosenbrock’s
function (f6) performed just as well as the other algorithms both in terms of mean best
objective function value and standard deviation.

PBA is also tested against the algorithms with the best performance in the CEC 2013
competition in the “Special Session and Competition on Real-Parameter Single Objective
Optimization”, iCMAES-ILS and NBIPOP-ACMA-ES [128, 132]. The comparison is done
on the test functions 1, 2, 4, 10, 11 and 12 slightly modified than as presented in Table 2.3. A
real number (Fk) was added in their expression, in particular F1 =−1400 was added to test
function 1, F2 =−100, F4 =−400, F10 =−700, F11 =−500 and F12 =−300 was added to
the rest of the test functions respectively. The results of the comparison are presented in Table

2.4 Applications 41

2.10. The average error values correspond to the errors measured at the maximum number of
function evaluations. Worth mentioning that for some of the test functions the design space
used in CEC 2013 competition was wider while the function evaluations permitted for the
30-D problems employed in this comparative study were 300,000. In particular, in all these
test functions (1, 2, 4, 10, 11 and 12) PBA achieved better performance than those obtained
by the two algorithms.

Performance of PBA based on CEC 2014 benchmarks and complexity evaluation

PBA is also tested on the CEC 2014 test-suite for unconstrained optimization [127] on several
problems with dimensionality equal to 10, 30, 50 and 100. In this suite, 30 test-functions
are used where functions 1 to 3 are unimodal, functions 4 to 16 are multimodal, functions
17 to 22 are hybrid functions while 23 to 30 are composite ones. In these test functions the
boundaries of the search space are [−100,100] ∗D while the maximum allowed function
evaluations are equal to 10,000*D. Following the guidelines of the CEC 2014 competition,
51 independent runs were performed for each test function and the average error values were
obtained. The results achieved for the CEC 2014 test-suite are provided in Tables 2.11, 2.12,
2.13 and 2.14 for the 10-D and 30-D, 50-D and 100-D problems, respectively. As seen in
results, PBA manages to deal successfully with most of the test functions while it does not
perform very well with some. By studying these four Tables, it is obvious that PBA is not
to significantly affected by the dimension of the problem. In particular, with the increase
of the dimensionality it is expected that the performance is decreased, however, this drop
is relatively small to minimal. Some differences in results that are present between some
test-functions used previously and in CEC 2014 test, it must be pointed out that they are the
result of different search space used and different rotation methods defined in CEC 2014.

The Wilcoxon ranksum test [40] is also applied in order to present a more thorough
performance evaluation for PBA against well-established algorithms that were also tested
according to the standards of CEC 2014. In particular, simultaneous optimistic optimization
(SOO) [167], fireworks algorithm with differential mutation (FWA-DM) [225], adaptive
differential evolution (ADE), an improved variant of ADE with the use of partial opposition-
based learning (POBL-ADE) [81] and the L-SHADE [208] algorithms where considered for
this comparative study. The results of the Wilcoxon ranksum test are given in Table 2.15
where Better denotes the number of functions (out of the 30 ones) where a specific algorithm
performs better compared to PBA, Worst denotes the number of functions where it performs
worst and Equal denotes the number of functions where it has the same performance with

42 Mathematical optimization and efficiency of novel algorithms

Table
2.8

C
om

parative
study

ofPB
A

w
ith

state-of-the-artm
etaheuristics

fortest-functions
1

to
6

and
10-D

problem
s

A
lgorithm

Sphere
Function

Schw
efel’sFunction

G
riew

ank’sFunction
R

astrigin’sFunction
R

osenbrock’sFunction
A

ckley’sFunction

M
ean

B
est

St.Var.
M

ean
B

est
St.Var.

M
ean

B
est

St.Var.
M

ean
B

est
St.Var.

M
ean

B
est

St.Var.
M

ean
B

est
St.Var.

PSO
-w

7.96E
-51

N
A

-3.87E
+03

N
A

9.69E
-02

N
A

5.82E
+00

N
A

3.08E
+00

N
A

1.58E
-14

N
A

PSO
-cf

9.84E
-105

N
A

-3.20E
+03

N
A

1.19E
-01

N
A

1.25E
+01

N
A

6.98E
-01

N
A

9.18E
-01

N
A

PSO
-w

-local
2.13E

-35
N

A
-3.86E

+03
N

A
7.80E

-02
N

A
3.88E

+00
N

A
3.92E

+00
N

A
6.04E

-15
N

A
PSO

-cflocal
1.37E

-79
N

A
-3.31E

+03
N

A
2.80E

-02
N

A
9.05E

+00
N

A
8.60E

-01
N

A
5.78E

-02
N

A
U

PSO
9.84E

-118
N

A
-3.11E

+03
N

A
1.04E

-01
N

A
1.17E

+01
N

A
1.40E

+00
N

A
1.33E

+00
N

A
FD

R
-PSO

2.21E
-90

N
A

-3.34E
+03

N
A

9.24E
-02

N
A

7.51E
+00

N
A

8.67E
+00

N
A

3.18E
-14

N
A

FIPS
3.14E

-30
N

A
-4.12E

+03
N

A
1.31E

-01
N

A
2.12E

+00
N

A
2.78E

+00
N

A
3.75E

-15
N

A
C

PSO
-H

4.98E
-40

N
A

-3.98E
+03

N
A

4.07E
-02

N
A

0.00E
+00

N
A

1.53E
+00

N
A

1.49E
-14

N
A

C
L

PSO
5.15E

-29
N

A
-4.19E

+03
N

A
4.56E

-03
N

A
0.00E

+00
N

A
2.46E

+00
N

A
4.32E

-14
N

A
SPSO

3.27E
-18

5.75E
-18

-3.39E
+03

9.06E
+00

8.70E
-02

5.70E
-02

2.45E
+00

1.63E
+00

3.56E
+01

5.69E
+01

N
A

N
A

Q
PSO

7.40E
-104

7.39E
-103

-3.48E
+03

6.04E
+00

3.58E
-04

2.80E
-02

2.31E
+00

2.00E
-02

7.43E
+00

3.20E
-01

N
A

N
A

W
Q

PSO
8.37E

-106
1.08E

-106
-3.77E

+03
4.33E

+00
1.63E

-04
1.63E

-04
1.84E

+00
1.00E

-02
1.04E

+01
2.50E

-01
N

A
N

A
G

SO
6.75E

-18
1.88E

-18
-4.03E

+03
7.10E

+00
1.60E

-01
4.40E

-02
2.57E

+00
1.82E

+00
4.38E

+00
1.97E

+00
N

A
N

A
IG

SO
7.33E

-41
1.89E

-41
-4.19E

+03
3.10E

+00
4.38E

-05
1.40E

-02
6.70E

-01
4.20E

-01
7.60E

-01
5.60E

-01
N

A
N

A
PBA

5.37E
-187

0.00E
+00

-4.19E
+03

1.02E
+00

0.00E
+00

0.00E
+00

0.00E
+00

0.00E
+00

5.81E
+00

1.00E
+00

8.88E
-16

0.00E
+00

2.4 Applications 43

Ta
bl

e
2.

9
C

om
pa

ra
tiv

e
st

ud
y

of
PB

A
w

ith
st

at
e-

of
-t

he
-a

rt
m

et
ah

eu
ri

st
ic

s
fo

rt
es

t-
fu

nc
tio

ns
1

to
6

an
d

30
-D

pr
ob

le
m

s

A
lg

or
ith

m
Sp

he
re

Fu
nc

tio
n

Sc
hw

ef
el

’s
Fu

nc
tio

n
G

ri
ew

an
k’

sF
un

ct
io

n
R

as
tr

ig
in

’s
Fu

nc
tio

n
R

os
en

br
oc

k’
sF

un
ct

io
n

A
ck

le
y’

sF
un

ct
io

n

M
ea

n
B

es
t

St
.V

ar
.

M
ea

n
B

es
t

St
.V

ar
.

M
ea

n
B

es
t

St
.V

ar
.

M
ea

n
B

es
t

St
.V

ar
.

M
ea

n
B

es
t

St
.V

ar
.

M
ea

n
B

es
t

St
.V

ar
.

A
L

C
-P

SO
1.

68
E

-1
61

8.
21

E
-1

61
-1

.2
5E

+0
4

5.
41

E
+0

1
1.

22
E

-0
2

1.
58

E
-0

2
2.

53
E

-1
4

1.
38

E
-1

4
7.

61
E

+0
0

6.
66

E
+0

0
1.

15
E

-1
4

2.
94

E
-1

5
G

PS
O

2.
65

E
-1

61
2.

38
E

-1
61

-8
.8

6E
+0

3
5.

20
E

+0
2

1.
51

E
-0

2
1.

75
E

-0
2

5.
76

E
+0

1
1.

46
E

+0
1

1.
17

E
+0

1
1.

50
E

+0
1

1.
60

E
+0

0
1.

03
E

+0
0

G
PS

O
-2

7.
08

E
-5

3
1.

71
E

-5
2

-1
.1

2E
+0

4
3.

33
E

+0
2

1.
65

E
-0

2
1.

69
E

-0
2

2.
52

E
+0

1
5.

21
E

+0
0

2.
55

E
+0

1
2.

59
E

+0
1

1.
10

E
-1

4
2.

27
E

-1
5

V
PS

O
1.

90
E

-3
8

3.
99

E
-3

8
-9

.8
8E

+0
3

5.
20

E
+0

2
2.

41
E

-0
2

2.
25

E
-0

2
2.

92
E

+0
1

9.
66

E
+0

0
2.

95
E

+0
1

2.
47

E
+0

1
1.

52
E

-1
4

4.
10

E
-1

5
R

PS
O

5.
58

E
-2

9
1.

42
E

-2
8

-9
.6

8E
+0

3
3.

44
E

+0
2

8.
17

E
-0

3
1.

78
E

-0
2

3.
88

E
+0

1
8.

63
E

+0
0

2.
06

E
+0

1
1.

25
E

+0
1

2.
66

E
-1

4
5.

45
E

-1
4

C
L

PS
O

1.
39

E
-2

7
2.

05
E

-2
7

-1
.2

6E
+0

4
3.

61
E

+0
1

2.
01

E
-1

4
8.

67
E

-1
4

2.
44

E
-1

4
5.

98
E

-1
4

1.
70

E
+0

1
1.

28
E

+0
1

2.
49

E
-1

4
4.

18
E

-1
5

H
PS

O
-T

VA
C

1.
45

E
-4

1
4.

64
E

-4
1

-1
.1

0E
+0

4
2.

61
E

+0
2

1.
39

E
-0

2
1.

39
E

-0
2

1.
43

E
+0

0
2.

96
E

+0
0

1.
20

E
+0

1
1.

61
E

+0
1

8.
95

E
-1

1
4.

46
E

-1
0

FI
PS

2.
60

E
-3

0
3.

24
E

-3
0

-1
.0

5E
+0

4
3.

87
E

+0
2

2.
47

E
-0

4
2.

47
E

-0
4

2.
87

E
+0

1
1.

46
E

+0
1

2.
25

E
+0

1
4.

39
E

-0
1

7.
58

E
-1

5
6.

49
E

-1
6

D
M

S-
PS

O
1.

95
E

-5
4

8.
43

E
-5

4
-9

.6
3E

+0
3

4.
78

E
+0

2
1.

07
E

-0
2

1.
60

E
-0

2
2.

78
E

+0
1

7.
57

E
+0

0
1.

95
E

+0
1

1.
20

E
+0

1
9.

23
E

-1
5

1.
79

E
-1

5
PS

O
-w

9.
78

E
-3

0
N

A
-1

.1
5E

+0
4

N
A

8.
13

E
-0

3
N

A
2.

90
E

+0
1

N
A

2.
93

E
+0

1
N

A
3.

94
E

-1
4

N
A

PS
O

-c
f

5.
88

E
-1

00
N

A
-8

.7
9E

+0
3

N
A

2.
06

E
-0

2
N

A
5.

62
E

+0
1

N
A

1.
11

E
+0

1
N

A
1.

12
E

+0
0

N
A

PS
O

-w
-lo

ca
l

5.
35

E
-1

00
N

A
-1

.1
0E

+0
4

N
A

5.
91

E
-0

3
N

A
2.

72
E

+0
1

N
A

2.
39

E
+0

1
N

A
9.

10
E

-0
8

N
A

PS
O

-c
flo

ca
l

7.
70

E
-5

4
N

A
-8

.7
9E

+0
3

N
A

5.
91

E
-0

3
N

A
4.

53
E

+0
1

N
A

1.
71

E
+0

1
N

A
5.

33
E

-1
5

N
A

U
PS

O
4.

17
E

-8
7

N
A

-7
.7

3E
+0

3
N

A
1.

66
E

-0
3

N
A

6.
59

E
+0

1
N

A
1.

51
E

+0
1

N
A

1.
22

E
-1

5
N

A
FD

R
-P

SO
4.

88
E

-1
02

N
A

-8
.9

6E
+0

3
N

A
1.

01
E

-0
2

N
A

2.
84

E
+0

1
N

A
5.

39
E

+0
0

N
A

2.
84

E
-1

4
N

A
FI

PS
2.

69
E

-1
2

N
A

-1
.0

5E
+0

4
N

A
1.

16
E

-0
6

N
A

7.
30

E
+0

1
N

A
2.

45
E

+0
1

N
A

4.
81

E
-0

7
N

A
C

PS
O

-H
1.

16
E

-1
13

N
A

-1
.1

5E
+0

4
N

A
3.

63
E

-0
2

N
A

0.
00

E
+0

0
N

A
7.

08
E

+0
0

N
A

4.
93

E
-1

4
N

A
C

L
PS

O
4.

46
E

-1
4

N
A

-1
.2

6E
+0

4
N

A
3.

14
E

-1
0

N
A

4.
85

E
-1

0
N

A
2.

10
E

+0
1

N
A

0.
00

E
+0

0
N

A
SP

SO
3.

26
E

-1
2

5.
33

E
-1

2
-9

.7
9E

+0
3

4.
20

E
+0

1
1.

60
E

-0
2

9.
00

E
-0

3
2.

92
E

+0
1

1.
11

E
+0

1
2.

13
E

+0
2

2.
80

E
+0

2
N

A
N

A
Q

PS
O

1.
68

E
-5

1
6.

70
E

-5
2

-1
.0

2E
+0

4
3.

11
E

+0
1

5.
47

E
-0

5
1.

40
E

-0
2

1.
60

E
+0

1
2.

00
E

-0
2

5.
35

E
+0

1
1.

87
E

+0
0

N
A

N
A

W
Q

PS
O

3.
56

E
-6

0
2.

74
E

-6
2

-1
.1

2E
+0

4
2.

82
E

+0
1

3.
03

E
-0

5
1.

58
E

-0
5

1.
51

E
+0

1
4.

00
E

-0
2

5.
11

E
+0

1
3.

50
E

-0
1

N
A

N
A

G
SO

8.
78

E
-1

2
2.

13
E

-1
2

-1
.2

3E
+0

4
2.

17
E

+0
1

3.
30

E
-0

2
3.

00
E

-0
3

1.
46

E
+0

1
4.

38
E

+0
0

4.
07

E
+0

1
2.

09
E

+0
1

N
A

N
A

IG
SO

2.
16

E
-2

1
1.

22
E

-2
1

-1
.2

5E
+0

4
9.

17
E

+0
0

4.
09

E
-0

5
1.

40
E

-0
2

8.
79

E
+0

0
2.

33
E

+0
0

1.
05

E
+0

1
1.

37
E

+0
0

N
A

N
A

PB
A

5.
32

E
-2

03
0.

00
E

+0
0

-1
.2

6E
+0

4
1.

87
E

+0
1

0.
00

E
+0

0
0.

00
E

+0
0

0.
00

E
+0

0
0.

00
E

+0
0

2.
48

E
+0

1
4.

93
E

-0
1

3.
73

E
-1

5
1.

45
E

-1
5

44 Mathematical optimization and efficiency of novel algorithms

Table 2.10 Comparative study of PBA with state-of-the-art metaheuristics for 30-D problems

Algorithm iCMAES-ILS NBIACMA PBA

Sphere Function 1.00E-08 1.00E-08 5.32E-203
Schwefel’s Function 7.08E+02 8.10E+02 5.22E+00
Rastrigin’s Function 2.25E+00 3.04E+00 0.00E+00

Rotated Ackley’s Function 2.09E+01 2.09E+01 4.44E-15
Rotated Griewank’s Function 1.00E-08 1.00E-08 8.59E-16
Rotated Rastrigin’s Function 1.72E+00 2.91E+00 0.00E+00

PBA. It should be underlined that PBA appears to be less affected by the dimension of the
problem compared to most of the other algorithms.

The complexity of PBA is also calculated according to the CEC 2014 benchmark suite
guide[127] and is presented in Table 2.16 for all dimensionality cases of the CEC 2014. As
suggested, T0 is the time required to perform the calculations described in Eq. 2.36,

f or i = 1 : 106

x = 0.55+(double)i; x = x+ x; x = x/2;
x = x∗ x; x = sqrt(x); x = log(x);
x = exp(x); x = x/(x+2);
end

(2.36)

T1 is the time needed for executing 200,000 evaluations of test-function No.18 and T2 is the
time the algorithmic procedure needs to perform 200,000 function evaluations of No.18. T1

and T2 are scaled linearly with dimensions as by the linear growth of (T2 −T1)/T0. It must
also be noted that all test runs were performed on a computer with the following specifications:
Windows 7 OS, Intel i7 3610QM CPU, 12GB RAM using Matlab programming language.
The complexity of PBA is presented in Table 2.16. As it can be seen, computational load
of PBA is quite small. It must be pointed out that the time needed for executing 200,000
function evaluations of a 100-D problem is less than 10 seconds.

Advantages of PBA

By following the main practices addressed in modern literature, the advantages of PBA were
tested on three different terms:

• The sensitivity of the performance was assessed with reference to its algorithmic
parameters.

2.4 Applications 45

Table 2.11 Performance of PBA using the CEC 2014 test suite (10-D)

Func. Best Worst Median Mean Std.

F1 1.13E+05 9.16E+06 6.20E+05 1.66E+06 2.06E+067
F2 4.53E+05 5.12E+07 9.27E+06 1.09E+07 8.64E+06
F3 4.11E+02 4.34E+03 1.19E+03 1.26E+03 6.80E+02
F4 4.02E+02 4.43E+02 4.14E+02 4.20E+02 1.49E+01
F5 5.05E+02 5.20E+02 5.20E+02 5.18E+02 4.57E+00
F6 6.02E+02 6.06E+02 6.03E+02 6.03E+02 9.72E-01
F7 7.01E+02 7.02E+02 7.01E+02 7.01E+02 1.68E-01
F8 8.03E+02 8.15E+02 8.07E+02 8.08E+02 2.73E+00
F9 9.06E+02 9.21E+02 9.14E+02 9.15E+02 3.47E+00
F10 1.03E+03 1.39E+03 1.07E+03 1.09E+03 6.25E+01
F11 1.23E+03 1.88E+03 1.48E+03 1.48E+03 1.33E+02
F12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.14E-01
F13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 6.64E-02
F14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 7.34E-02
F15 1.50E+03 1.51E+03 1.50E+03 1.50E+03 8.25E-01
F16 1.60E+03 1.60E+03 1.60E+03 1.60E+03 4.11E-01
F17 2.14E+03 6.13E+05 5.09E+04 1.76E+05 2.08E+05
F18 1.88E+03 2.01E+04 4.46E+03 7.27E+03 5.26E+03
F19 1.90E+03 1.90E+03 1.90E+03 1.90E+03 3.72E-01
F20 2.02E+03 1.14E+04 2.30E+03 3.08E+03 2.18E+03
F21 2.39E+03 3.11E+04 6.33E+03 7.74E+03 5.41E+03
F22 2.21E+03 2.24E+03 2.23E+03 2.23E+03 4.92E+00
F23 2.50E+03 2.63E+03 2.51E+03 2.54E+03 5.44E+01
F24 2.51E+03 2.54E+03 2.52E+03 2.52E+03 5.68E+00
F25 2.61E+03 2.70E+03 2.65E+03 2.66E+03 2.84E+01
F26 2.70E+03 2.70E+03 2.70E+03 2.70E+03 6.96E-02
F27 2.70E+03 3.10E+03 2.71E+03 2.87E+03 1.88E+02
F28 3.18E+03 3.32E+03 3.23E+03 3.23E+03 2.93E+01
F29 3.20E+03 3.79E+03 3.36E+03 3.37E+03 1.23E+02
F30 3.62E+03 4.87E+03 4.04E+03 4.04E+03 2.43E+02

46 Mathematical optimization and efficiency of novel algorithms

Table 2.12 Performance of PBA using the CEC 2014 test suite (30-D)

Func. Best Worst Median Mean Std.

F1 7.09E+06 1.00E+08 2.94E+07 3.50E+07 2.16E+07
F2 4.83E+07 9.61E+08 2.60E+08 3.05E+08 1.89E+08
F3 9.05E+02 2.13E+04 7.07E+03 6.97E+03 3.96E+03
F4 4.97E+02 6.53E+02 5.84E+02 5.78E+02 3.62E+01
F5 5.20E+02 5.21E+02 5.21E+02 5.21E+02 5.26E-02
F6 6.11E+02 6.21E+02 6.16E+02 6.16E+02 2.40E+00
F7 7.01E+02 7.08E+02 7.04E+02 7.04E+02 1.72E+00
F8 8.29E+02 8.94E+02 8.53E+02 8.56E+02 1.48E+01
F9 9.77E+02 1.04E+03 1.01E+03 1.01E+03 1.33E+01

F10 1.30E+03 2.87E+03 1.84E+03 1.89E+03 3.68E+02
F11 3.36E+03 5.45E+03 4.54E+03 4.49E+03 5.35E+02
F12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.43E-01
F13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 9.49E-02
F14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 4.57E-02
F15 1.51E+03 1.53E+03 1.52E+03 1.52E+03 3.36E+00
F16 1.61E+03 1.61E+03 1.61E+03 1.61E+03 3.78E-01
F17 4.94E+05 8.42E+06 2.76E+06 3.40E+06 2.12E+06
F18 1.31E+05 5.23E+06 1.60E+06 1.70E+06 1.06E+06
F19 1.91E+03 1.94E+03 1.91E+03 1.91E+03 5.23E+00
F20 3.26E+03 2.04E+04 7.12E+03 8.77E+03 4.31E+03
F21 4.11E+04 2.09E+06 3.35E+05 4.39E+05 3.40E+05
F22 2.29E+03 2.82E+03 2.53E+03 2.53E+03 1.08E+02
F23 2.50E+03 2.62E+03 2.62E+03 2.60E+03 3.88E+01
F24 2.60E+03 2.62E+03 2.61E+03 2.61E+03 3.98E+00
F25 2.70E+03 2.71E+03 2.70E+03 2.70E+03 1.41E+00
F26 2.70E+03 2.80E+03 2.70E+03 2.70E+03 1.93E+01
F27 3.11E+03 3.42E+03 3.12E+03 3.14E+03 6.53E+01
F28 3.00E+03 4.20E+03 3.94E+03 3.90E+03 2.16E+02
F29 1.16E+04 1.09E+05 2.99E+04 3.59E+04 2.18E+04
F30 7.26E+03 2.93E+04 1.45E+04 1.55E+04 4.24E+03

2.4 Applications 47

Table 2.13 Performance of PBA using the CEC 2014 test suite (50-D)

Func. Best Worst Median Mean Std.

F1 1.37E+07 1.33E+08 3.28E+07 3.67E+07 1.87E+07
F2 1.24E+08 2.04E+09 7.75E+08 8.22E+08 4.71E+08
F3 5.39E+03 3.17E+04 1.54E+04 1.59E+04 4.72E+03
F4 5.86E+02 8.44E+02 7.04E+02 7.03E+02 5.50E+01
F5 5.21E+02 5.21E+02 5.21E+02 5.21E+02 4.56E-02
F6 6.23E+02 6.40E+02 6.32E+02 6.32E+02 3.45E+00
F7 7.03E+02 7.20E+02 7.08E+02 7.09E+02 4.57E+00
F8 8.60E+02 1.00E+03 9.18E+02 9.20E+02 3.28E+01
F9 1.07E+03 1.15E+03 1.13E+03 1.13E+03 1.83E+01

F10 1.88E+03 4.98E+03 3.34E+03 3.36E+03 7.68E+02
F11 6.76E+03 9.65E+03 8.60E+03 8.43E+03 6.21E+02
F12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.67E-01
F13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 8.29E-02
F14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 4.84E-02
F15 1.53E+03 1.57E+03 1.54E+03 1.54E+03 8.71E+00
F16 1.62E+03 1.62E+03 1.62E+03 1.62E+03 4.77E-01
F17 2.00E+06 2.43E+07 7.27E+06 7.72E+06 3.93E+06
F18 2.38E+06 4.58E+07 1.05E+07 1.25E+07 7.99E+06
F19 1.92E+03 2.04E+03 1.95E+03 1.95E+03 2.49E+01
F20 8.94E+03 3.13E+04 1.85E+04 1.76E+04 4.26E+03
F21 5.41E+05 5.81E+06 2.45E+06 2.60E+06 1.34E+06
F22 2.56E+03 3.57E+03 3.18E+03 3.14E+03 2.14E+02
F23 2.51E+03 2.68E+03 2.66E+03 2.64E+03 4.20E+01
F24 2.60E+03 2.67E+03 2.62E+03 2.62E+03 1.06E+01
F25 2.70E+03 2.73E+03 2.70E+03 2.70E+03 3.60E+00
F26 2.70E+03 2.80E+03 2.70E+03 2.70E+03 1.38E+01
F27 3.18E+03 4.05E+03 3.87E+03 3.83E+03 1.49E+02
F28 3.19E+03 5.59E+03 4.86E+03 4.81E+03 3.54E+02
F29 4.23E+04 8.02E+05 2.23E+05 2.87E+05 1.81E+05
F30 2.16E+04 1.11E+05 3.85E+04 4.16E+04 1.53E+04

48 Mathematical optimization and efficiency of novel algorithms

Table 2.14 Performance of PBA using the CEC 2014 test suite (100-D)

Func. Best Worst Median Mean Std.

F1 7.61E+07 3.03E+08 1.36E+08 1.47E+08 4.65E+07
F2 4.09E+08 6.37E+09 2.04E+09 2.31E+09 1.38E+09
F3 1.46E+04 4.94E+04 2.79E+04 2.96E+04 6.94E+03
F4 8.57E+02 1.38E+03 1.07E+03 1.06E+03 1.30E+02
F5 5.21E+02 5.21E+02 5.21E+02 5.21E+02 3.73E-02
F6 6.55E+02 6.92E+02 6.81E+02 6.78E+02 9.55E+00
F7 7.05E+02 7.66E+02 7.22E+02 7.24E+02 1.45E+01
F8 9.78E+02 1.27E+03 1.12E+03 1.11E+03 6.99E+01
F9 1.34E+03 1.61E+03 1.52E+03 1.51E+03 4.89E+01

F10 4.09E+03 1.22E+04 8.09E+03 7.87E+03 2.00E+03
F11 1.63E+04 2.15E+04 1.94E+04 1.94E+04 1.17E+03
F12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.61E-01
F13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 6.15E-02
F14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 4.82E-02
F15 1.57E+03 1.73E+03 1.59E+03 1.61E+03 3.52E+01
F16 1.64E+03 1.64E+03 1.64E+03 1.64E+03 6.17E-01
F17 1.08E+07 6.82E+07 3.21E+07 3.34E+07 1.26E+07
F18 1.31E+07 1.74E+08 6.45E+07 6.78E+07 3.76E+07
F19 1.96E+03 2.12E+03 2.07E+03 2.07E+03 2.86E+01
F20 3.34E+04 9.53E+04 7.83E+04 7.30E+04 1.69E+04
F21 3.56E+06 3.59E+07 1.43E+07 1.54E+07 6.75E+06
F22 3.88E+03 5.53E+03 4.93E+03 4.87E+03 3.49E+02
F23 2.50E+03 2.75E+03 2.67E+03 2.66E+03 6.40E+01
F24 2.60E+03 2.77E+03 2.65E+03 2.66E+03 2.75E+01
F25 2.70E+03 2.75E+03 2.71E+03 2.71E+03 6.88E+00
F26 2.70E+03 2.80E+03 2.80E+03 2.77E+03 4.65E+01
F27 4.03E+03 5.35E+03 4.87E+03 4.81E+03 2.94E+02
F28 3.45E+03 9.91E+03 7.78E+03 7.70E+03 1.40E+03
F29 1.96E+05 3.63E+06 1.09E+06 1.51E+06 1.06E+06
F30 4.00E+04 7.59E+05 2.58E+05 2.64E+05 1.36E+05

2.4 Applications 49

Table 2.15 PBA compared to other algorithms – Wilcoxon’s ranksum test

With reference to PBA 10-D 30-D 50-D 100-D

Better 12 12 14 13
SOO [49] Worst 17 15 15 16

Equal 1 3 1 1

Better 26 22 21 14
FWA-DM [50] Worst 3 5 7 15

Equal 1 3 2 1

Better - - 16 22
ADE [51] Worst - - 14 8

Equal - - 0 0

Better 27 19 20 22
ADE-POBL [51] Worst 2 8 9 7

Equal 1 3 1 1

Better 27 25 24 24
L-SHADE [52] Worst 2 3 5 5

Equal 1 2 1 1

Table 2.16 PBA complexity in seconds

To T1 T2 (T2-T1)/To

D=10 0.14 1.53 2.52 7.16
D=30 0.14 1.84 3.77 14.00
D=50 0.14 2.2 5.05 20.62
D=100 0.14 3.77 9.27 39.91

50 Mathematical optimization and efficiency of novel algorithms

• The algorithm was assessed in comparison with other state-of-the-art algorithms and
in particular against the best algorithms that were identified during the CEC 2013
competition presented in the “Special Session and Competition on Real-Parameter
Single Objective Optimization” [128].

• The performance of the algorithm was assessed based on the CEC 2014 benchmark
test suite [127].

In general it can be said that the main strength of PBA is its robustness and efficiency.
In particular, as it was identified through these tests the algorithms is not influenced by
the algorithmic parameters, the computational effort required internally is low, it is not
influenced significantly by the increase of the dimensionality while in most of the test
functions outperforms many state-of-the-art metaheuristics. While many variants of existing
evolutionary and swarm algorithms, to the authors’ knowledge there is no similarity with any
other existing algorithm. More specifically, the rules based on which new position vectors
are generated are completely different to existing evolutionary and swarm optimization
algorithms. For example, in PBA there are no crossover/recombination or mutation operators;
while there is also no velocity vector neither exchange of experience using the cognitive and
social parameters. The similarity to PSO and variants is limited to the terms used for the
position vectors (particles).

2.4.2 Optimal structures inspection following a seismic event

Catastrophic events like earthquakes could seriously affect structural and operational con-
dition of civil infrastructures, leading to severe economic losses for the local or national or
even global economy. It is of great importance to mitigate such impacts and risks through
careful planning. Disaster management is a multi-stage process starting with the pre-disaster
planning and system improvement, and extending to post-disaster system response, recovery
and reconstruction. Pre-disaster planning stage involves strategic decision-making for risk
assessment and management, infrastructure improvements to reduce vulnerability, enhanced
human and physical system resilience, and emergency plans. Post-disaster stage involves
tactical and operational decision-making for providing critical emergency, recovery and
re-construction services [10, 26], to support society. Following such disasters, local commu-
nities and search-rescue crews are faced with rapidly degrading infrastructure networks that
may result in much slower response times, delays in population evacuation, and significant
complications in infrastructure repair. Recent advances on computational engineering and
optimization have enabled the transition from traditional trial-and-error procedures to fully

2.4 Applications 51

automated ones, where search algorithms are used. This is mostly attributed to the rapid de-
velopment of metaheuristic search algorithms. Minimizing inspection times in post-disaster
management requires optimal scheduling of the inspection crews which is a complex combi-
natorial problem. In this thesis an improved harmony search algorithm (IHS) is proposed for
solving the districting problem where an urban area is decomposed into optimal areas equal
to the number of available inspection crews. IHS algorithm is applied in two cities:

• the city of Patras and

• the city of Thessaloniki,

both located in Greece. The proposed improved algorithm is compared with three well estab-
lished nature inspired algorithms and the random search (RS) procedure when implemented
for solving the districting problem. In particular, the basic formulation of the harmony search
(HS) [60], the particle swarm optimization (PSO) [103] and the differential evolution (DE)
[201] algorithms are employed.

Defining optimal districting problem

Urban areas are consist of building) blocks (SBk) that can be defined by their nodal coordinates
(Xk,Yk) while there are specific terms related to the construction for each SBk that have to
be respected. Such terms are: the use of land (uL), the building factor (fB), the maximum
built area (AB,max) and the coverage factor (fC). The use of land determines the usage of the
constructions allowed at a specific structural block (houses, factories, etc.). The building
factor is the ratio between the maximum permitted area of constructions for the specific
SBk, divided by the area of the structural block, while the maximum permitted area of
constructions for SBk defines AB,max. For example, if the structural block area is equal to
1000m2 and the corresponding SBk is equal to 1.6, then AB,max is equal to 10001.6 = 1600m2.
Fig. 2.6 depicts an example of neighboring structural blocks with various areas, building
factors and thus different maximum built areas AB,max. The districting problem aims to
partition the urban area into groups of structural blocks, called districts, having almost the
same sum of the corresponding maximum built areas AB,max. As it will be presented in the
next section, the inspection demand Di is used in the formulation that is defined according to
expression:

Di =
n(i)SB

∑
k=1

D(k), i = 1, . . .NIC and D(k) = A(k) · fB(k) (2.37)

where ni
SB is the number of structural blocks assigned to the ith district while the structural

block total area and the corresponding building factor for the kth structural block is equal

52 Mathematical optimization and efficiency of novel algorithms

to A(k) and fB(k). For the current problem, it is assumed that the allowed building factor is
covered as it is the typical situation in Greece.

Fig. 2.6 Building blocks, Area, fB, AB,max

The main objective of the districting problem in post-disaster management is to define
areas of responsibility for available inspection crews; the problem is formulated as a nonlinear
programming optimization problem as follows [91]:

min
NIC

∑
i=1

n(i)SB

∑
k=1

[
D(k)
Uin

+
d(SBk,Ci)

Utr

]
·σIC (2.38)

where NIC is the number of the available inspection crews, n(SBi) is the number of building
blocks assigned to the ith district-inspection crew, d(SBk,Ci) is the distance between the
SBk building block and Ci is the starting block of the crew responsible for the ith group
of structural blocks, Uin is the inspection speed of the inspection crews, and Utr is the
traveling speed of the inspection crews. Dk is inspection “demand” for the kth building block
defined as the product of the building block total area A(k) times the building factor fB(k)
(i.e. the structured percentage of the area) and σIC is the value of the standard deviation
of working hours of all inspection crews. Thus, the districting problem is formulated as a
discrete unconstrained nonlinear optimization problem where the objective is to define which
inspection crew is responsible for which block. Therefore, the design variables are integers
denoting the inspection crew to which each built-up block has been assigned to.

In order to assess the performance of HS, IHS, PSO, DE algorithms and the random
search (RS) procedure, they are implemented into post-disaster management problems. In
particular, two test cases are considered based on an imaginary seismic event for the cities of
Patras and Thessaloniki in Greece. Following this imaginary seismic event, all structures

2.4 Applications 53

need to be inspected for restoration of the urban activities. Therefore, the first step of the
post-disaster management procedure is to optimally assign the structural blocks into the
available inspection crews (districting problem).

Patras is a medium-sized city while Thessaloniki is the second largest city of Greece. The
city of Patras is composed by 112 grouped building blocks while the total built area is equal
to 18559676 m2. On the other hand, the city of Thessaloniki is composed of 471 grouped
building blocks and its built area is equal to 154205128 m2. The difference in size of the two
cities will offer information on the performance of the proposed IHS algorithm in medium
and larger scale problems. For the city of Patras, two problems are examined varying on the
number of available inspection crews. By increasing the number of available inspection crews,
the complexity of the problem is also increased offering us useful information regarding the
performance of the algorithms. In such a problem the computational cost is proportional to
the number of the building blocks; therefore, by grouping the building blocks into larger ones,
significant reduction on the computational demand is achieved. The grouping is applied into
neighboring building blocks with similar build up percentages. For an unbiased comparison
of the algorithms the termination criterion for all implementations examined in this part of
the thesis is the same (200,000 function evaluations).

Post-Disaster management in the city of Patras

The city of Patras is composed by NSB = 112 grouped building blocks with various areas
and built-up percentages (see Figure 2.7). Two different problems (A and B) are examined
with the hypothesis that ten and thirty crews are available for performing the inspection. By
separating them into two 8-hour shift work-groups, NIC = 5, inspection crews are available
for 16 inspection hours per day (denoted as problem A) and NIC = 15, inspection crews are
available for 16 inspection hours per day (denoted as problem B).

In the first part of the study, sensitivity analysis is performed on the problem described
in Eq. 2.38 in order to examine the influence of parameter values on the robustness of the
IHS algorithm in solving the districting problem. In order to increase the quality of the
sensitivity analysis, a sampling method named Latin hypercube sampling (LHS) is used
[152] to generate combinations of the parameters of IHS. LHS ensures that all regions of the
sample space of the parameters will be sampled. For each implementation, 32 independent
runs are carried out, corresponding to the different sets of the parameters. The parameters
sampled with LHS for IHS are HMS and HMCR, Table 2.17 depicts the combinations of the
parameters. HMS defines the size of the memory used by HS for storing solution vectors
defined in the range of [5, 20] while HMCR (0 ≤ HMCR ≤ 1) is the probability for random
selection [94].

54 Mathematical optimization and efficiency of novel algorithms

Table 2.17 Parameters combinations for sensitivity analysis of IHS, PSO and DE algorithms

IHS PSO DE

HMS HMCR NP c1 c2 w NP λ CR F

11 0.09 158 0.648 0.387 0.474 106 0.648 0.387 0.942
20 0.139 109 0.108 0.112 0.362 113 0.108 0.112 0.779
11 0.002 142 0.774 0.184 0.105 139 0.774 0.184 0.187
12 0.098 61 0.408 0.431 0.157 151 0.408 0.431 0.194
15 0.269 119 0.364 0.524 0.541 185 0.364 0.524 0.896
17 0.24 102 0.132 0.716 0.137 200 0.132 0.716 0.653
8 0.049 121 0.97 0.829 0.391 156 0.97 0.829 0.079
6 0.231 150 0.4 0.147 0.491 172 0.4 0.147 0.524

20 0.072 128 0.796 0.976 0.054 56 0.796 0.976 0.71
18 0.186 174 0.314 0.883 0.278 96 0.314 0.883 0.921
9 0.146 179 0.049 0.259 0.664 85 0.049 0.259 0.022

10 0.173 188 0.731 0.075 0.239 176 0.731 0.075 0.118
7 0.25 155 0.281 0.028 0.198 73 0.281 0.028 0.232

16 0.016 96 0.011 0.306 0.209 125 0.011 0.306 0.283
7 0.26 85 0.817 0.595 0.033 148 0.817 0.595 0.404
8 0.208 64 0.562 0.729 0.638 189 0.562 0.729 0.971

15 0.108 70 0.492 0.226 0.42 192 0.492 0.226 0.33
5 0.059 59 0.092 0.451 0.333 64 0.092 0.451 0.555
5 0.044 164 0.459 0.053 0.628 161 0.459 0.053 0.144

16 0.198 133 0.163 0.645 0.698 77 0.163 0.645 0.73
10 0.075 171 0.617 0.313 0.576 118 0.617 0.313 0.565
13 0.165 193 0.907 0.193 0.568 79 0.907 0.193 0.47
12 0.151 197 0.584 0.358 0.446 137 0.584 0.358 0.858
17 0.189 148 0.954 0.562 0.256 178 0.954 0.562 0.371
14 0.289 113 0.247 0.852 0.014 132 0.247 0.852 0.274
9 0.122 82 0.204 0.751 0.414 166 0.204 0.751 0.809

19 0.221 186 0.525 0.475 0.079 68 0.525 0.475 0.824
13 0.128 135 0.299 0.578 0.167 98 0.299 0.578 0.618
6 0.293 99 0.668 0.668 0.339 104 0.668 0.668 0.667

18 0.027 77 0.707 0.967 0.3 123 0.707 0.967 0.428
19 0.272 90 0.881 0.918 0.611 91 0.881 0.918 0.459
14 0.036 52 0.863 0.798 0.514 50 0.863 0.798 0.057

2.4 Applications 55

Fig. 2.7 City of Patras - Subdivision into building blocks

Since the inspection time varies between the crews, the maximum time required between
the inspection crews is considered as the time required for the inspection procedure of the
entire city. Figure 2.8 depicts the time required for the inspection of the building blocks of
the city of Patras for each combination of parameters. These results are used for evaluating
the performance of IHS with respect to parameter values. An indicator of the quality of
the results is the difference between the working hours of the different inspection crews.
As can be seen in Figure 2.8, IHS is not sensitive to the parameters of the algorithm since
it converges to the same optimal solution in almost all the combinations of parameters.
Additionally, Figure 2.10 presents the variance of the inspection time between the crews for
the combination of parameters. IHS algorithm presents small variance values regardless the
parameters used. Figure 2.10 depicts the total number of iterations required for converging
to the optimal solution.

The inspection time of the best solutions found from 1288.55 to 1310.44 hours; the mean
time varies from 1238.17 to 1238.22 hours while the inspection time for all crews varies
from 1145.72 to 1310.44 hours. In particular, Figure 2.11 presents the optimal districting
solution that obtained by IHS for the formulation of Eq. 2.38. The above mentioned results
indicate that IHS is capable of solving the districting problem of Eq. 2.38. In the second part
of the study performed for the city of Patras, four different nature inspired algorithms and a

56 Mathematical optimization and efficiency of novel algorithms

Fig. 2.8 City of Patras -Inspection time achieved per combination of the parameters

Fig. 2.9 City of Patras - Standard deviation between the inspection crews

pure random search are examined with reference to their performance when implemented
to solve the districting problem of the city of Patras. In particular IHS, HS, PSO and DE
algorithms are applied and compared in two problems (A and B) with 5 and 15 inspection

2.4 Applications 57

Fig. 2.10 City of Patras - Function evaluations for achieving best solution per combination of
the parameters

Fig. 2.11 City of Patras - Optimal districting solution proposed by IHS (Case A)

58 Mathematical optimization and efficiency of novel algorithms

crews. A random search procedure is also implemented and compared with the above
mentioned algorithms. The objective function used for all algorithms is the one used in
the formulation of Eq. 2.38. The performance of the metaheuristics is influenced by the
selection of their parameters. In order to study the influence of the parameters for each
metaheuristic algorithm, 32 combinations of the parameters are generated by means of
LHS. The resulting optimization runs for dealing with the districting problem considered
for defining the parameters of the four metaheuristics and the random search procedure are
equal to 5 algorithms × 32 combinations = 160 optimization runs. The termination criterion
used is the maximum number of function evaluations that was set equal to 200,000 for all
algorithms.

The parameters that are identified for each algorithm are: (i) For PSO, the number of
particles NP defined in the range of [50, 200], the inertia weight w defined in the range of
[0.01, 0.7], while the cognitive parameter c1 and social parameter c2 both defined in the
range of [0, 1], the combinations considered are provided in Table 2.17. (ii) For DE, the
population size NP defined in the range of [50, 200], the probability CR, the constant F and
the control variable λ all defined in the range of [0, 1], the combinations considered are
provided in Table 2.17. In order to ensure the properness of the parameter values used for all
the algorithms mentioned before, the combinations of parameters used are generated with the
use of LHS technique. The use of LHS ensures that every area of the sample space of each
parameters will definitely be sampled. LHS generates 32 different sets of the parameters of
each algorithm, one for every test run. Similar to the first part of the study performed for
the city of Patras, the maximum time required between the inspection crews is considered
as the necessary time for completing the inspection of the entire city. In the first problem
examined (Problem A), 5 crews are considered for the inspection of the city of Patras. Figure
2.12 depicts the time required for the inspection of the building blocks of the city for each
algorithm.

The difference between the working hours required for performing the inspection in the 32
different solutions for each algorithm is used in evaluating the quality of the results. In Table
2.18 the maximum, minimum, average, standard deviation and the coefficient of variation
(COV) of the required time is depicted. Although DE is slightly better with reference to
the average inspection time, as it can be seen IHS is not sensitive to the parameters of the
algorithm since it always converges to almost the same optimum solution, contrary to the
other algorithms where significant differences between the optimum solutions are observed.
The inspection time for IHS varies from 1288.55 to 1310.44 hours with an average value
of 1295.01 hours, the standard deviation is equal to 5.45 and COV is equal to 0.42%. For
the case of HS, the inspection time varies from 1249.42 to 1298.97 with an average value

2.4 Applications 59

Fig. 2.12 City of Patras - Optimal districting solution proposed by IHs

of 1282.12 hours, the standard deviation is equal to 14.08 and COV is equal to 1.10%.For
the case of PSO, the inspection time varies from 1250.17 to 2071.43 with an average value
of 1428.25 hours, the standard deviation is equal to 168.60 and COV is equal to 11.81%.
For the case of DE, the inspection time varies from 1250.17 to 1294.94 with an average of
1257.66 hours, the standard deviation is equal to 12.57 and COV is equal to 1.00%.

In the second problem examined (Problem B), 15 crews are considered for the inspection
of the city of Patras. Figure 2.13 depicts the time required for the inspection of the building
blocks of the city for each algorithm.

Table 2.18 Patras test case - Statistical analysis of IHS, HS, DE, PSO algorithms (Problem A
– 5 Crews)

IHS HS DE PSO

Minimum Time (h) 1288.55 1249.42 1250.17 1250.17
Maximum Time (h) 1310.44 1298.97 1294.94 2071.43
Average Time (h) 1295.01 1282.12 1257.66 1428.25

Standard Deviation (h) 5.45 14.08 12.57 168.6
COV (%) 0.45 1.10 1.00 11.80

As it can be seen in Table 2.19, although DE is also slightly better compared to the other
metaheuristics with reference to the average inspection time, similar to problem A, IHS is

60 Mathematical optimization and efficiency of novel algorithms

Fig. 2.13 City of Patras - Optimal districting solution proposed by IHS

not sensitive to the parameters of the algorithm as it concludes to almost the same optimum
solution. The other algorithms present significant differences between the optimum solutions
achieved for the 32 independent runs. The inspection time for IHS varies from 574.17 to
728.29 hours with an average value of 608.77 hours, the standard deviation is equal to 37.49
and COV is equal to 6.16%. For HS, the inspection time varies from 591.66 to 769.62 with an
average value of 647.89, the standard variation is equal to 42.37 and COV is equal to 6.54%.
For the case of PSO, the inspection time varies from 497.77 to 1130.73 with an average value
of 784.60, the standard variation is equal to 143.13 and COV is equal to 18.24%. For the case
of DE, the inspection time varies from 455.010 to 643.51 with an average value of 523.23,
the standard variation is equal to 54.87 and COV is equal to 10.49%. Worth mentioning also
that although the basic HS is slightly better compared to IHS with respect to the average
inspection time for the case of five inspection crews, when the complexity of the problem
increases (i.e. for the case of the 15 inspection crews) the superiority of the proposed IHS
algorithm is obvious.

For the purposes of this tests a personal computer that consists of the Intel Core 2 Quad
Q6600 2.4 GHz with 4 physical cores was used. In the last part of this numerical investigation
the computational cost of the metaheuristics is examined for 200,000 function evaluations.
As it can be seen in Table 2.20 PSO requires more computing time compared to all other
metaheuristics for both Problems A and B while HS and IHS require almost the same time

2.4 Applications 61

Table 2.19 Patras test case - Statistical analysis of IHS, HS, DE, PSO algorithms (Problem B
– 15 Crews)

IHS HS DE PSO

Minimum Time (h) 574.17 591.66 451.01 497.77
Maximum Time (h) 728.29 769.62 643.51 1130.73
Average Time (h) 608.78 647.89 523.23 784.60

Standard Deviation (h) 37.49 42.38 54.87 143.13
COV (%) 6.16 6.54 10.49 18.24

for both problems, while the computing time required for solving Problem B is increased by
10% compared to Problem A.

Table 2.20 Computational time for solving the two problems (in seconds)

Method Problem A Problem B

PSO 354.99 383.85
DE 190.32 210.36
HS 123.36 135.05
IHS 122.91 135.70

Post-Disaster management in the city of Thessaloniki

Thessaloniki is composed by NSB = 471 grouped building blocks with various areas and
built-up percentages (see Figure 2.14). For this test case two different implementations are
examined. In the first one, IHS (districting problem of Eq. 2.38) is implemented while in
the second one, HS is implemented on the same problem. Due to the variance between the
inspection time required by the available crews, the maximum time required by the inspection
crews is also considered as the necessary time for the inspection of the entire city to finish.
In the test case examined, 20 crews are considered for inspecting the city of Thessaloniki.
Assuming that the crews work into two 8-hour shift work-groups, a total of 10 crews are
available for 16 hours inspection per day.

Figure 2.15 depicts the time required for the inspection of the building blocks of the city
for each algorithm. These results are used for evaluating the performance of the algorithms.
The quality of results is indicated by the difference between working hours required for
completing the inspection for the 32 independent runs performed for each algorithm. As can
be seen in Table 7, IHS is not sensitive to the parameters of the algorithm since it converges
to almost the same optimum solution. On the other hand, HS presents significant differences

62 Mathematical optimization and efficiency of novel algorithms

Fig. 2.14 City of Thessaloniki- Subdivision into building blocks

between the optimum solutions achieved. The inspection time for IHS varies from 5478.61
to 6034.62 hours with an average value of 5678.24 hours, the standard deviation is equal
to 154.29 and COV is equal to 2.72%. For the case of HS, the inspection time varies from

2.4 Applications 63

Fig. 2.15 City of Thessaloniki-Minimum inspection time achieved for each independent run

Table 2.21 Thessaloniki test case - Statistical analysis of IHS and HS algorithms (10 Crews)

IHS HS

Minimum Time (h) 5478.61 5751.64
Maximum Time (h) 6034.62 6643.47
Average Time (h) 5678.24 6097.35

Standard Deviation (h) 154.29 260.34
COV (%) 2.72 4.27

5751.64 to 6643.47 with an average value of 6097.35, the standard variation is equal to
260.34 and COV is equal to 4.27%. This larger-scale test case and the results presented
in Figure 2.16 show that IHS can achieve significantly better results compare to HS when
dealing with the districting problem. It can also be seen that IHS produces results of lesser
variation than HS as it appears to be less sensitive to its parameters. This confirms the finding
of the Patras test example that when the complexity of the problem increases the superiority
of the proposed IHS algorithm becomes obvious.

The above mentioned IHS, PBA and their tests have been published in journals [94, 93]
after being reviewed and part of the document is according to the published one.

64 Mathematical optimization and efficiency of novel algorithms

Fig. 2.16 City of Thessaloniki - Subdivision into inspection areas

Chapter 3

Deep Learning methodologies

Machine learning (ML) techniques can be described as procedures that allow computers to
make decision and act according to rules defined by "correct" decisions or actions while
adapting to successful or unsuccessful results of previously made decisions in an iterative
manner [137]. The basic principles of ML can be traced in combined disciplines of biology,
mathematics and physics. The main usage of ML techniques was to exploit data-sets and
produce results according to data included in that set. Nowadays as production, usage and
storage of data grows continuously, interest on such methods also increases accordingly and
it expands on several new sectors. Some of the sectors that ML is used are health care, data
mining, computer vision, autonomous driving, risk assessment, natural language processing,
fraud detection, investment strategies, engineering, etc. Examples of such applications
are medical diagnosis [110], big data exploitation [133], visual recognition [41], visual
perception in driving [27], landslide susceptibility [166], sentiment analysis [135], network
intrusion detection [197], FOREX market prediction [149], structural damage detection [23]
and failure diagnosis [207]. It is also worth mentioning that ML techniques are already
used in many everyday applications used by most people without even knowing. Email
spam filtering, auto-reply and digital personal assistants are ML-based applications while
chat-bots for on-line customer support and route selection along with estimated time of
arrival in GPS systems are also ML-driven. Search engine results and personalized adds
in web-pages are also performed with ML procedures. From an engineer’s point of view,
AI-assisted drone-based 3D modeling and site planning is already at use, energy consumption
predictions with the help of ML are performed by energy companies while also, structural
health monitoring with ML usage are already a reality as well.

66 Deep Learning methodologies

3.1 Machine learning: Types, Methods & Problems

Machine learning can be categorized in many ways according to several categorization
criteria. If the criterion is the learning procedure used, all ML algorithms fall into one of the
categories listed bellow [137]:

• Supervised learning,

• Unsupervised learning,

• Semi-supervised learning,

• Reinforcement learning and

• Evolutionary learning

In supervised learning, algorithms are calibrated (trained) on a dataset with an already known
correct input-output mapping. Based on the achieved "experience", the algorithm can asses
the output of a not-before-seen input. The training dataset can be described as follows:

Training data =

xI

1,1 xI
1,2 . . . xI

1,n xT
1,1 . . . xT

1,m

xI
2,1 xI

2,2 . . . xI
2,n xT

2,1 . . . xT
2,m

...
...

...
xI

d,1 xI
d,2 . . . xI

d,n xT
d,1 . . . xT

d,m

 (3.1)

where d is the population of the n-dimensional input vectors I and the m-dimensional output
vectors T . Some of the most common problems where supervised learning is applied are
regression and classification problems.
Unsupervised learning is used for discovering patterns in input data. There exists no output
data and this type of algorithms are used to match input vectors of similar characteristics. An
expression of unsupervised learning can be formulated as follows:

∀ {X I} ∈ [S] =

xI

1,1 xI
1,2 . . . xI

1,n

xI
2,1 xI

2,2 . . . xI
2,n

...
...

xI
d,1 xI

d,2 . . . xI
d,n

 ∃ C j where {X I} ∈C j (3.2)

where [S] is the input sample containing d input vectors ({X I}), Ck are the k clusters of
similar characteristics and j ∈ [1,k]. A typical case for unsupervised learning use is data
clustering and also data dimensionality reduction.

3.1 Machine learning: Types, Methods & Problems 67

Semi-supervised learning, as implied by the title, refers to the combination of supervised and
unsupervised learning. Usually, a percentage of input vectors have a predefined output while
the rest do not. In can be said in general that it is used in order to increase the learning grade
in comparison to unsupervised learning.
Reinforcement learning can be described as almost-supervised learning. The reason behind
this is that the correct target per training input vector is known but there is no exploitation
of this information regarding correction of wrong estimations. The only information taken
under consideration during the training phase is whether the proposed result is correct or not.
Evolutionary learning, as mentioned earlier in Chapter 2, is a procedure mimicking the evo-
lution of species in nature. Adaptability and survival of the fittest are the main characteristics
of such methods. The quality of solution represented by the particle-solution vector defines
the survival or reproduction probability of the current solution.

Several machine learning methods have been proposed in the past years. Some of the
most well known are [146]:

• Decision trees

• Artificial neural networks (Shallow neural networks, deep neural networks, etc.)

• Bayesian learning (Naive Bayes, bayesian belief networks, etc.)

• Instance-based learning (k-Nearest neighbour, radial basis functions, etc.)

• Kernel methods (Support vector machines (SVM), etc.)

• Metaheuristics (Genetic algorithm, particle swarm optimization, etc.)

Decision tree classifiers [177] are commonly used as decision making applications. The basic
idea behind this method is to divide the decision into a graph of smaller and less complicated
decisions and finding the correct by following a series of answers of these smaller decisions.
A decision tree is designed once the structure is defined, a sub-problem and a decision
strategy is assigned to each node. A training procedure is needed before applying a decision
tree methodology on a specific problem.
Artificial neural networks (ANN), firstly introduced in 1943 [139] are computational models,
originally inspired by the functionality procedure of neurons in the brain. This first ANN
model was reading a set of input x, calculated their weighted sum and returned as output,

68 Deep Learning methodologies

v(x), a value equal to 0 or 1 according to:

v(xt) =

1 i f xt ≥ 0

0 otherwise

where : xt = ∑
j

wi, j ∗ x j(t−1)−µi

(3.3)

where i, j are neurons, wi, j is the connection weight of the two neurons and µi is the
threshold value for neuron i. From simple binary threshold unit to up-to-date complex
networks inspired by visual cortex [119], many different implementations of ANN have been
proposed in various fields. Simple perceptrons, multi-layer networks, recurrent networks are
some of the various ANN proposed [66]. ANN are implemented through training on data
according to a case-study.
Bayesian learning uses preexisting "experience" along with data observation in the learning
procedure of defining probabilities of hypothetical output signals [146]. According to Bayes
theorem, the posterior probability of a hypothetical output u based on training data T D is
calculated as follows:

P(u|T D) =
P(T D|u)∗P(u)

P(T D)
(3.4)

Bayesian learning methods are usually used as classifiers in ML due to their probabilistic
nature.
Instance-based learning takes advantage of memory-stored training instances to handle
learning procedures [2]. This methodology is applied on supervised learning tasks. Each
training instance can be defined by a set of m parameters. By examining differences in these
parameters between a training data input I and a testing data input T , similarity between I and
T can be calculated and T can be properly classified. Evaluation on performed classifications
can be used for upgrading algorithmic performance in future classifications. Ever since
their first appearance [144], they have been applied to several classification problems [32]
while plenty variations have also been proposed [18, 218]. Kernel methods and their main
representative were firstly introduced in 1995 [33]. They are mainly used in supervising
learning methodology for creating relationships between input and output data by taking
advantage of inner products of vectors in higher dimensional spaces in comparison to the
dimensions of the input space [188]. Metaheuristic approaches on machine learning were
presented in detail in Chapter 2 of this thesis.

3.2 Deep Learning 69

3.2 Deep Learning

Deep learning (DL) methods, also known as hierarchical learning methods can be considered
as an evolution of neural networks and their architectures [39]. Shallow neural networks,
ever since their first appearance [139], have been used in several applications for non-linear
transformation of data and discovering relationship between reason (input) and result (output).
Inevitably, as models became larger and more complex, the use of shallow architectures was
inefficient while also, training of multi-layer structures was not possible [185] at least up to
2006 [75, 76, 164] where new architectures in combination with new training techniques
surfaced the research scheme. While several definitions of DL methods are proposed in
literature, according to LeCun et al. [117], deep learning is the group of applications that
allow computational models consisting of several processing layers to learn representations
of data with multiple abstraction levels. Goodfellow et al. [63] suggest that DL is defined
according to the actual learning procedure. AI attempts to "teach" computers from gained ex-
perience without the need of human interaction and give them the ability to suggest solutions
based on the hierarchy of concepts. By "understanding" simpler concepts, knowledge can
be transferred to more complex ones. By designing the multiple layers that formulate the
above procedures it can be seen that it is a deep graph. Hence, this approach in named deep
learning.

The generality and architectural characteristics of DL methods allow them to be applicable
to all machine learning problem types as almost all learning type categories (as described
earlier) are covered by them. Actually, in many modern problems, DL methods are considered
and proven as the most successful methodologies. It is worth mentioning though that different
type of problems may require handling by a separate DL approach as not all methods present
identical advantages and disadvantages. This necessity is also amplified due to different
architecture of DL methods.

The main categories of deep learning methods, based on network architecture differentia-
tion are the following [156]:

• Unsupervised pre-trained networks

• Convolutional neural networks

• Recurrent neural networks

• Recursive neural networks

As mentioned previously, deep architectures could not be trained prior to 2006. According
to the work presented then by Bengio et al. [14], Hinton et al. [75], Poultney et al. [164],

70 Deep Learning methodologies

training of deep architectures could be achieved by a separating the training phase into two
sub-phases. Initially, a greedy layer-wise unsupervised pre-training is performed followed
by the final phase of supervised training. With the use of this technique, all layers of the
network are separated in pairs as it can be seen in Fig. 3.1 and trained in sequential order. In
Fig. 3.1, a deep neural network of m+1 layers is divided in m pairs with the first and final
layer having s and q nodes respectively.

Fig. 3.1 Pair separation of a deep network for unsupervised pre-training.

Once this step is completed, the whole deep structure is trained or actually fine-tuned in a
supervised manner with the use of available database as it can be seen in Fig. 3.2 where the
non-linear correlation between s vectors named d of size n (input) and s vectors named t of
size z (output) are defined by the deep network consisting of m+1 layers L. In general, it
can be said that the pre-training phase assists greatly in the optimization of the performance
of the deep network by offering a better starting point for the optimization procedure of the
supervised training set phase [46]. All unsupervised pre-training networks are formulated
under this architecture. Some of the most widely known methodologies of this type are deep
belief networks and autoencoders. Deep belief networks are thoroughly presented in the
following section of this chapter.

3.2 Deep Learning 71

Convolutional neural networks (CNNs), where firstly introduced by LeCun et al. [119]
in 1989, inspired by the structure and functionality of the visual cortex of animals and are
mainly used for image data studies. A detailed presentation of CNNs can be viewed in the
following sections.

Fig. 3.2 Supervised training of the deep network.

Recurrent neural networks (RNNs) were firstly introduced around 1990 [175, 184]
as a modified version of feedforward networks. The difference lies in the fact that RNNs
introduced the application of time-steps in the network in order to be able to exploit sequential
information. It can be said that RNNs added an extra dimension to feedforward networks
as a node in an RNN is a "folded" value gained after training on several time-steps. This
structure can be seen in Fig. 3.3 where apart from an RNN, an unfolded node in the z
direction is presented, dt is the input value of a timeseries with 3 steps and qt is the output
for each time-step. It can be seen that the finally proposed output takes under consideration
"experience" from neighbouring values of time-steps. RNNs, from an architectural point
of view, are ideal for handling problems with time-depending data as they are trained on
sequential input data and propose an output based on the time-sequence of the input and not
just the current value, by utilizing memory gained from the previous calculations.

Recursive neural networks (RcNNs) were firstly introduced in 1990 [162]. RcNNs are
similar to recurrent neural networks as both have the ability to handle inputs of different
sizes. Contrary to RNNs, RcNNs present a tree-shaped structure where the base represents
inputs and the top represent outputs [156]. The architecture of the networks tree is the basic
problem when applying RcNNs on a problem and several approaches have been proposed
regarding this subject. Usually, the formation of the structure of the RcNN depends of the

72 Deep Learning methodologies

Fig. 3.3 Recurrent neural network and unfolded node.

nature of the problem and the data structure available. RcNNs are mainly used in the fields
of natural language processing and computer vision.

3.2.1 Restricted Boltzmann Machines

In this part of the thesis, a detailed presentation of Restricted Boltzmann Machines (RBMs)
can be found.

RBM architecture

RBMs where initially developed in 1986 by Smolensky [196] as "harmonium". Originat-
ing from Boltzmann Machines (BM), they can be described as energy-based probabilistic
graphical models while they can also be considered as stochastic neural networks [49, 71].
Boltzmann machines (BMs) were initially introduced around 1985 [1, 48, 77]. Similar to
Hopfield networks[79], BMs are networks consisting of fully and symmetrically connected
nodes containing binary stochastic units [181] which behave as neural nets activators with
on/off signals. Boltzmann machines also belong to the class of energy-based models. Energy-
based models are used for defining correlations between sets of data-variables. This is
achieved by using an energy function for evaluating the quality of correlations with respect to
correct or not output. Through training, the energy function is constantly being reevaluated
in order to ensure that correct outputs will have lower energy while wrong ones will have
higher one [120]. A BM network consists of two layers where the first one, named visible
v consists of m nodes and the second one called hidden h consisting of k nodes. As stated
earlier, all nodes of both v and h layers are connected with each other as seen in Fig. 3.4

3.2 Deep Learning 73

where P1,P2 and P3 are the characteristics (weights and biases) of connections between nodes
only in v, only in h and connections between nodes belonging in different layers respectively.
For a given state of the above network can be described as follows:

Fig. 3.4 Boltzmann Machine representation.

E(v,h;θ) =−vT P1h− 1
2

vT P2 −
1
2

hT P3 (3.5)

where θ represents the defined values of P1,P2 and P3, v is the input vector and h is the output
vector. As BMs are probabilistic models, they focus on defining a distribution over v and
model that distribution in another (higher or lower) order with the use of feature detectors h.
The probability distribution [131] of the above model is defined as:

P(v,h;θ) =
e−E(v,h;θ)

Z
(3.6)

where Z is a normalization factor, also known as partition factor and is defined as follows:

Z = ∑
v

∑
h

e−E(v,h;θ)
(3.7)

The BM can be trained with the use of stochastic gradient descent on the negative log-
likelihood of data but due to its architecture and populations of connections, deep networks
present very low training speeds and in some cases very low success rates [72].

74 Deep Learning methodologies

These difficulties inspired the creation of RBMs which are almost identical in terms of
architecture and functionality to BMs. The "restricted" part describes the fact that contrary to
BMs, connections exist only between nodes that belong to a different layer.As RBMs can be
considered as a subcategory of Markov Random Fields, they consist of two layers where the
first one, named visible v consists of m nodes and the second one called hidden h consisting
of k nodes and each node belonging to one of the two, v and h, layers is connected to all
nodes belonging to the other layer as seen in Fig. 3.5 and in comparison to Fig. 3.4. P1 are the
characteristics (weights and biases) of existing connections between nodes. The parameters

Fig. 3.5 Restricted Boltzmann Machine representation.

P of the network include the connection weights wi, j where i ∈ [1,m] and j ∈ [1,k], the
biases bi of the nodes of the visual layer and the biases c j of the hidden layer’s nodes. As
BMs, RBMs are also probabilistic graphical models and an energy function expresses the
quality of a state of the network. As input data can be either binary or real valued, this
function changes as the distribution used changes from Bernoulli to Gaussian respectively
[76]. The most commonly used types of RBMs are Bernoulli-Bernoulli RBM (BBRBM) and
Gaussian-Bernoulli RBM [222]. Due to non existing connections between nodes of the same
layer in RBMs, the energy function described in Eq. 3.5 in transformed to:

E(v,h;θ) =−bT v− cT h− vTWh ⇒ (3.8)

3.2 Deep Learning 75

E(v,h;θ) =−
m

∑
i=1

bivi −
k

∑
j=1

c jh j −
m

∑
i=1

k

∑
j=1

wi jvih j (3.9)

in the case that a BBRBM. In the case of GBRBM, the energy function is described as
follows [39]:

E(v,h;θ) =−1
2

m

∑
i=1

(bi − vi)
2 −

k

∑
j=1

c jh j −
m

∑
i=1

k

∑
j=1

wi jvih j (3.10)

The Gibbs distribution expresses the joint probability distribution for the current model with
the use of Eq. 3.6. As no connections exist between nodes of the same layer:

p(h|v) =
k

∏
j=1

p(h j|v) (3.11)

and

p(v|h) =
m

∏
i=1

p(vi|h) (3.12)

As a result, the conditional probabilities for the case of BBRBM (3.13,3.14) and GBRBM
(3.15,3.16) can be expressed as follows:

p(1|v;θ) = σ(
m

∑
i=1

wi jvi + c j) (3.13)

p(1|h;θ) = σ(
k

∑
j=1

wi jh j +bi) (3.14)

p(1|v;θ) = σ(
m

∑
i=1

wi jvi + c j) (3.15)

p(1|h;θ) = N(
k

∑
j=1

wi jh j +bi,1) (3.16)

where σ(x) = 1
1+exp(−x) is the logistic function and N is the Gaussian N(m,v) with m being

the mean and v the variance.

Training RBM with contrastive divergence

The most common method for training RBMs is based on applying gradient ascent on the
log-likelihood. Since RBMs can be considered as Markov Random Fields, the log-likelihood

76 Deep Learning methodologies

of an RBM similar to the one presented in Fig. 3.5 can be expressed as follows [50]:

ln[L(θ |v)] = ln[p(v|θ)] (3.17)

where the marginal distribution of v is calculated as follows:

p(v|θ) =
k

∑
h=1

p(v,h) =
1
Z

k

∑
h=1

e−E(v,h) (3.18)

where Z = ∑v,h e−E(v,h). Accordingly, Eq. 3.17 is transformed:

ln[p(v|θ)] = ln(
1
Z

k

∑
h=1

e−E(v,h)) = ln(
k

∑
h=1

e−E(v,h))− ln(∑
v,h

e−E(v,h)) (3.19)

The gradient of the log-likelihood can be calculated as follows:

∂ lnL(θ |v)
∂θ

=
∂ (ln∑

k
h=1 e−E(v,h))

∂θ
−

∂ (ln∑v,h e−E(v,h))

∂θ
⇒

∂ lnL(θ |v)
∂θ

=−
k

∑
h=1

p(h|v)∂E(v,h)
∂θ

+∑
v,h

p(v,h)
∂E(v,h)

∂θ

(3.20)

It can be witnessed that the quantities on the right part of the equation are in accordance
to the theorem [21] that the derivative of the log-likelihood of RBM input with respect to
parameters is expressed as:

∂ p(v,h)
∂θ

=−

〈
∂ logE(v,h)

∂θ

〉
0

+

〈
∂ logE(v,h)

∂θ

〉
∞

(3.21)

where the first part is an average, over v and h, with respect to RBM input distribution
multiplied with p(h|v) and the second part is an average with respect to the distribution of
RBM output [116]. The calculation of the second part is extremely computationally heavy. It
can be proven that the partial derivatives of Eq. 3.20 are defined as follows [50]:

∂ lnL(θ |v)
∂wi j

= p(1|v)vi −
m

∑
i=1

p(v)p(1|v)vi (3.22)

∂ lnL(θ |v)
∂bi

= vi −
m

∑
i=1

p(v)vi (3.23)

3.2 Deep Learning 77

∂ lnL(θ |v)
∂c j

= p(1|v)−
m

∑
i=1

p(v)p(1|v) (3.24)

As calculations of the second parts of Eq. 3.22-3.24 are significantly computationally heavy,
Gibbs sampling is used for generating samples of the expectations used for approximation
[75]. In this methodology, known as contrastive divergence (CD) [70, 71], instead of
producing a large number of samples, k samples are generated. According to CD, the
gradient of the log-likelihood is approximated as follows [50]:

CDk(θ ,v0) =−
k

∑
h=1

p(h|v0)
∂E(v0,h)

∂θ
+

k

∑
h=1

p(h|vk)
∂E(vk,h)

∂θ
(3.25)

The above equations concern the binary RBM. The same procedure can also be implemented
for real-valued RBMs [217]. It has been proven in theory and actual applications that even
for k = 1, the results are more than satisfying [14, 76, 179] which accelerates the gradient
estimation even more.

3.2.2 Deep Belief Networks

Deep belief networks (DBNs) are actually considered as the pioneer model of deep learning
practices as, when firstly introduced [76, 73], they were the first deep model that after being
successfully trained, managed to achieve better results than SVMs in a classification problem
[75]. DBNs are probabilistic generative models which contain a population of stochastic,
latent variables. These variables are used as feature detectors of higher order correlations in
training datasets.

A DBN is created when several RBMs are stacked in a sequential manner [72]. In this
architecture is formed by the principle that the hidden layer of RBMi−1 is the visible layer of
RBMi. It is also worth pointing out that in DBNs, all layers have directed connections except
for the last two which have undirected ones [63]. A representation of such a network can be
seen in Fig. 3.6 where a DBN consisting of 4 RBMs is displayed. RBM1 consists of layers
L1 and L2 and the rest RBMs are defined accordingly. Based on the previous description, L2
is the hidden layer of RBM1 while it is also the visual layer of RBM2.

As mentioned before, training of deep networks of such architecture was not possible
until a new training methodology was proposed [75]. This methodology consists of a two-
step training procedure. In the first step, called pre-training, each RBM of the DBN is
trained in an unsupervised manner while in the second step, called fine-tuning, the whole
DBN undergoes supervised training [74, 75]. The pre-training is performed by applying the
contrastive divergence method in each RBM sequentially. For the first one, the visual layer

78 Deep Learning methodologies

Fig. 3.6 Deep Belief Network example.

refers to the actual input while the hidden layer, once trained, will act as the visual layer in
the training of RBM2 as described previously. The weights of the connections of each RBM
are updated as follows:

∂ log p(v;θ)

∂wi j
=
〈
vih j
〉

input −
〈
vih j
〉

model

wnew
i j = wi j + e∆wi j

(3.26)

where e is a parameter defining the desired range of weight change, known as weight learning
rate.

The fine-tuning is performed once pre-training is finished with the use of back propagation
[176] and conjugate gradient algorithm [68]. Through this part, the weights that are proposed
from the unsupervised pre-training are tuned working with the deep neural network as a
whole. Back-propagation is an iterative procedure, which updates weight values according
to the difference between a target output and the networks output for specific weights. CG
method is usually used for adjusting the weights while steepest descent or others can also be
used. For example, in the case of an RBM trained over m samples and with outputs of size n,

3.2 Deep Learning 79

the weight update for all weights in the network is:

W new
all =Wall − c

∂E
∂W

(3.27)

where

E =
1
2

m

∑
i=1

n

∑
j=1

(t i
j −PI

J)
2, (3.28)

m is the number of training samples, n is the size of outputs, t is the target output, p is the
generated output and c is a weight learning rate parameter.

A similar architecture of DBNs are the Deep Boltzmann Machines (DBMs), introduced in
2009 [180], which also are probabilistic graphical models with multiple layers of stochastic
nodes. DBNs and DBMs share many common features in terms of architecture and function-
ality. where the fact that no connections exist between nodes of the same layer and all nodes

Fig. 3.7 Deep Boltzmann Machine example.

of one layer are connected to all nodes of the previous and the following layer.
The main difference is the fact that all layers of a DBMs are undirected. Apart from the

first layer, also known as visible, all other layers of the network are hidden. A simple DBM
with five layers can be seen in Fig. 3.7 As energy-based models, an energy function is used
for defining the joint probability distribution of the variables, similarly to DBNs [63]. The

80 Deep Learning methodologies

energy of a DBM like the one presented in Fig 3.7 can be calculated as follows:

E(v,h1,h2,h3,h4,h5;θ) =−vTW 1h1 −h1W 2h2 −h2W 3h3 −h3W 4h4 −h4W 5h5 (3.29)

while the probability assigned to input v is expressed as:

p(v;θ) =
1
Z ∑

h1:h5

e−E(v,h1,h2,h3,h4,h5;θ) (3.30)

where θ represents the weights and biases of connections between layers of the network. The
training of a DBM is accomplished with the use of a greedy layer-wise pre-training as in the
case of DBNs by decomposing the DBM into RBMs and with using back propagation.

3.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), are probably the most well known deep learning
methodology nowadays, especially in the field of computer vision. The excellent perfor-
mance of CNNs is partially explained by the fact that their architecture was inspired by the
functionality of the visual cortex of animals [82, 83]. Receptive fields are used for detecting
features in the visual input. The first step towards CNNs was the algorithmic translation of
the functionality of receptive fields as an hierarchical neural network for pattern recognition
[56] in 1988. In the following years, significant work on CNNs was presented [118, 119] but
it was not until many years later that CNNs attracted major attention due to their performance
on image recognition [111]. Since then, several deep and complicated CNNs have been
proposed with remarkable results in object recognition, computer vision, etc.. Some of these
networks are LeNet 5 [121], ZFNet [226] and GoogLeNet [203].

CNN architecture and training

CNNs present a general architecture consisting of some basic layers while differentiations
usually refer to the number of layers or their sequence and several in-layer functions that will
be described in the following parts. A typical CNN architecture, as proposed by LeCun for
LeNet, can be seen in Fig. 3.8. The basic layers in a CNN are:

• Convolutional layers

• Pooling layers

• Fully connected layers

3.2 Deep Learning 81

Fig. 3.8 Convolutional Neural Network architecture.

and some more rarely used like regularization layers [63].
Inputs of CNN are matrices D with [x,y, l] dimensions. As mainly used for image

processing, x and y represent the horizontal and vertical number of pixels respectively while
l is equal to three as it represents the three colour channels R,G,B. It is worth pointing out
that it is not a strict rule as CNNs can handle 2D and 1D matrices as well. In the following
part of the chapter, a 2D matrix with dimensions equal to [8,8,1] as seen in Eq. 3.31 will be
used for explaining the various functions of CNN layers.

D =

8 2 1 4 5 7 4 2
3 4 5 1 7 0 3 1
2 1 3 1 6 1 9 5
7 9 9 7 5 3 3 3
4 2 2 3 1 4 7 8
1 7 8 2 0 2 6 2
0 5 4 7 9 6 4 4
6 3 1 0 7 8 3 6

(3.31)

Convolutional layers act as feature detectors on the provided input. In order for this to happen,
the initial data are filtered and the convolved matrix Dc with dimensions [m,n] is generated.
The filtering is achieved with the use of a filter kernel f which is also a matrix with [u,h]
dimensions. The filter, in a reading-like sequence, starts from the top left corner of D and
moves to the right with a step equal to s. In each step, a value of Dc is calculated. Once the
filter has been applied to the outer right position of D, the filter moves to the left edge under
the starting edge. This procedure continues until all D has been filtered. It can be seen that
the dimensions of Dc can be user-defined as they depend on the size of s and on they way

82 Deep Learning methodologies

values on the edges of D are treated. The dimensions of Dc can be calculated as follows:

m =
x−u

s
+1

n =
y−h

s
+1

(3.32)

In case the user wishes for D and Dc to have identical dimensions, three approaches can be
applied with each one having different affect on the proposed Dc. According to the first one,
dimensions of D are increased, by adding rows and columns on all edges of D, while the
added data value is equal to zero. With the use of this method, the importance of features
possibly existing in the boundaries of D is reduced. When this methodology is used, the size
of Dc is calculated as follows:

m =
x−u+2z

s
+1

n =
y−h+2z

s
+1

(3.33)

where z is the number of zero-filled rows that are added in one of the edges. The second
method proposes to increase the dimensions of Dc by adding rows and columns on the
ages but the values of the added data is equal to the nearest calculated value. The third
methodology proposed to repeat the outer values of D outside the edges of Dc as many times
as needed. With this method, it is possible to increase importance of features in outer areas of
data which may not be significant. The mathematical expression of convolution via filtering
can be expressed as follows [63]:

Dc(i, j) = (D∗ f)(i, j) (3.34)

For each separate filter f that is applied to D, an extra feature map is created. The hyper-
parameters of a CNN as presented are:

1. the number of filters to be used

2. the size of the filter

3. the step of the filter (stride)

4. the method used for controlling the size of the feature map Dc

Usually, the convolution layer is used along with an activation function. The typical activation
functions used are:

1. Sigmoid function f (x) = s(x) = 1
1+e−x

3.2 Deep Learning 83

2. Hyperbolic tangent function f (x) = tanh(x) = 2
1+e−2x −1

3. Rectified linear unit f (x) = max(0,x)

Rectified linear unit is actually the most commonly used activation function as it offers fast
feature detection.

The pooling layer usually follows the convolution layer and is used for reducing the
size of input. This is performed as not all information existing in D is important for the
network. Additionally, from the perspective of computational cost, it is preferable to perform
calculations on small 3D matrices than large 2D ones. For the above reasons, it is preferable
to reduce the width and height of data handled by the CNN while increasing depth is also
preferable.

The functionality of the pooling layer is similar to the convolution layer. For the values
inside a pooling area P of dimensions [p,p], which moves the way the convolution filter does,
pooling is performed. Supposing that a convolved matrix Dc of size [m,n] is undergoing
pooling where the pooling area P has dimensions [p, p] and the movement step of P is equal
to sp, the size of the pooled feature map Dp is equal to [k, l] where k and l are calculated as
follows:

k =
m− p

sp
+1

l =
n− p

sp
+1

(3.35)

There are three types of pooling usually used [63]:

1. Max pooling, where the max of all values in the pooled area is assigned to the corre-
sponding position of Dp

2. Average pooling, where the mean of all values in the pooled area is assigned to the
corresponding position of Dp

3. L2 −norm pooling, where the L2 −norm of all values in the pooled area is assigned to
the corresponding position of Dp

Among these types, in modern architectures max pooling is mainly preferred.
Fully connected layers resemble typical neural networks where all nodes of one layer are

connected to all nodes of the next layer and an activation function is used according to desired
output data and functionality of the CNN (classification, regression, etc.). In some CNN
architectures, normalization layers are used for to increase training efficiency by reducing
over-fitting. CNNs are trained with the use of back-propagation algorithm, similar to other
neural networks as due to network’s grouped convolution and pooling along with the reduced

84 Deep Learning methodologies

size of fully connected layers, the total population of parameters to be trained is significantly
small with respect to network size.

The previously described DL architectures (DBNs and CNNs) are used in Chapters 4,
5 and 6 with significant success in accelerating topology optimization application and as a
generative design method.

Chapter 4

Applied Deep Learning on Topology
Optimization

This chapter focuses on exploring new methods for obtaining fast and computationally
"cheap" topology optimization (TO) results. It is known that all approaches available for
solving TO problems are significantly computationally heavy even for problem parameters
which are on a research level and not on the detail level necessary in construction. Though
computer hardware available are constantly improving, either in terms of Central Processing
Unit (CPU) and/or Graphics Processing Unit (GPU) with reference to their speed and memory
per core and number of cores, the size and complexity of TO problems remain time and
computational load greedy. As this drawback concerns practically everyone who works in
the field of TO, several approaches have been proposed for reducing the computational load
of TO mainly via incorporating parallel programming in CPU or GPU [16, 24, 45, 138].
In this part of the thesis, the possibility of developing new methods for TO, focused on
accelerating the TO procedure by dramatically reducing its computational cost is examined.
The implemented research focused of taking advantage of the capabilities of up-to-date deep
learning methods in combination with established TO methodologies. In detail, DL-TOP
method is proposed, which focuses on predicting a final output of TO based on premature
TO results.

4.1 Topology Optimization

Topology optimization focuses on discovering the optimal distribution of material inside a
predefined domain and under predefined loading and supporting conditions with respect to
structural performance [194] by integrating mathematics and computational calculus methods.

86 Applied Deep Learning on Topology Optimization

As interest in TO has risen drastically, applications of TO can be found in several fields like
aerospace design [230], implants manufacturing [216], architectural design [35], material
design [192], fluid mechanics [153], structural design [101] and more.

Research interest in TO began to rise after the work presented on the homogenization
method [13]. Since then, several other approaches have been proposed with the basic ones
being [194]:

1. Density method

2. Level-Set method

3. Topological derivative method

4. Phase field method

5. Evolutionary method

Density method and its most well known formulation, Solid Isotropic Material with Penaliza-
tion (SIMP) that was firstly introduced around 1990 [12, 229, 147], is using power-law for
simplifying the homogenization method. TO with density method in structural problems can
be summarized in the following expression:

Minimize F(x)

with respect to :

K ∗U = F

g(x)≤ 0

0 ≤ x ≤ 1

(4.1)

where F(x) is the objective function, usually equal to the compliance of the system, x is
the density variable vector, K is the global stiffness matrix, F and U are the loading and
displacement vectors respectively and g(x) are the problem constraints (volume fraction,
etc.). A more thorough presentation of SIMP can be viewed in a following section.
The Level-Set method [3, 215], is based on the principle that the contour of a scalar function
φ(x), named level-set function, defines the optimized design’s boundaries when set equal
to zero while the optimized domain is defined by areas where the φ(x) is positive. In an
iterative manner, φ(x) is updated through the Hamilton-Jacobi equation as follows:

∂φ

∂ t
= |∇φ | ∗V (4.2)

4.1 Topology Optimization 87

where V , known as speed function, is used for defining the movement step of the contour.
Topological derivative method was firstly introduced by the bubble method [47]. As a method
it is based on defining the affect of inputing an elemental hole inside a domain. Information
acquired, is used for making decision on where holes will be placed.
The phase field approach for topology optimization [17], originating from the natural phe-
nomenon of solid-liquid transition [29], is based on applying a phase field function φ on
the initial domain and separating it into two phases. This separation is based on a constant
variation of the density variables [38].
Evolutionary method uses heuristic information for alternating the presence or absence of
material in a discretized domain in a binary manner. The most well known method of this
genre is Evolutionary Structural Optimization (ESO), proposed in 1993 [221] while many
modified versions have been proposed [169, 168]. In an attempt to formulate TO problems
in an mathematical manner, the following data need to be predefined:

1. Initial domain Ω to be optimized

2. Desired volume fraction of the optimized domain with respect to the initial one vt

3. Boundary conditions Γ and

4. Loading conditions P

The boundary conditions Γ are defined as the total of sub-parts Γ0, Γp, Γs, Γu as follows:

Γ = Γu ∪Γ0 ∪Γp ∪Γs (4.3)

where Γu are the support conditions, Γ0 are the geometric limits of the initial domain Ω, Γp

is the area of Ω where the external loads are applied and Γs is the non-optimizable area. The
above formulation can be seen in Fig. 4.1.

4.1.1 Solid Isotropic Material with Penalization - SIMP method

Solid Isotropic Material with Penalization (SIMP) is one of the most established approaches
in structural topology optimization (STO). As previously stated, the goal of STO is the
optimal distribution of material inside a certain domain under defined loading and support
conditions with respect to performance. The most commonly used performance indicator
is the compliance C of the structure. As the domain Ω is discretized into n finite elements,
the distribution of material is expressed by the xi density values where i ∈ [1, . . . ,n] and
xi ∈ (0,1] with xi = 0 indicating that no material is present on the ith finite element and

88 Applied Deep Learning on Topology Optimization

Fig. 4.1 Topology optimization formulation.

xi = 1 indicating that the ith finite element is filled with material. As a result of the above,
Eq. 4.1 is transformed as follows:

Minimize C(x) = FT ∗U(x)

with respect to :

K(x)∗U(x) = F

V (x)
V0

=Vt

0 < x ≤ 1

(4.4)

where C(x) is the system’s compliance for a given density vector x, K(x) is the global stiffness
matrix F and U(x) are the loading conditions vector and the global displacements vector and
V (x),V0,Vt are the volumes corresponding to density vector x, the initial volume for x = x0

and the targeted volume of the optimized domain. In SIMP approach, the Young modulus E
is correlated via power law to the density value of each finite element as follows:

Ex(xi) = xp
i E0 ⇐⇒ Kx(xi) = xp

i K0 (4.5)

where p is a penalization parameter usually setting p = 3. The above correlation is used for
pushing SIMP towards generating density values xi close to the lower and upper bound of x

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 89

[115]. In Eq. 4.4, the compliance can be calculated as follows:

C(x) = FT ∗U(x) ⇐⇒ C(x) =UT (x)∗K(x)∗U(x) ⇐⇒ C(x) =
n

∑
i=1

xp
i UT

i K0
i Ui (4.6)

Accordingly, Eq. 4.4 can be written as follows:

Minimize C(x) =
n

∑
i=1

xp
i UT

i K0
i Ui

with respect to :

K(x)∗U(x) = F

V (x)
V0

=Vt

0 < x ≤ 1

(4.7)

In literature, the optimization problem described in Eq. 4.7 is handled either by MMA or OC
algorithms that where described in Chapter 2.

4.2 DL-TOP - Deep Learning Accelerated Topology Opti-
mization

Work on this part of the dissertation is targeted at enhancing computational efficiency of
SIMP approach when applied to STO problems. As such problems are extremely heavy in
computational demands, deep neural networks are exploited for accelerating the optimiza-
tion procedure. The capability of Deep Belief Networks (DBNs) in discovering multiple
representational levels of nonlinearity in data in pattern recognition problems, triggered
the development of the methodology proposed, DL-TOP, based on DBNs and SIMP. More
specifically, a DBN is calibrated on transforming the input data containing density fluctuation
pattern of the finite element (FE) discretization provided by the initial steps of the SIMP
approach to a new higher-level representation. This representation corresponds to the final
density values distribution over the domain as obtained by SIMP. DL-TOP results are val-
idated over several benchmark topology optimization test examples where a reduction of
iterations larger than one order of magnitude with respect to the ones that were originally
required by SIMP is achieved. The gain through DL-TOP is analogous to the size of the TO
problem.

90 Applied Deep Learning on Topology Optimization

4.2.1 DL-TOP methodology description

DL-TOP is a specially tailored methodology for accelerating SIMP approach in STO prob-
lems. For this reason, the DBN is used for predicting a close-to-final density value for each
FE of the initial domain, according to initial densities produced in SIMP early iterations.
In order for the prediction to be accurate, the DBN is trained once on a typical topology
optimization problem before being applied to any STO problem regardless differences in
mesh and domain dimensions, mesh type, loading conditions, desired final density, filter
value, etc.
Assuming, without loss of generality, that a structured FE mesh discretization of nex,ney,nez

FEs per axis is implemented on a rectangular domain. The population of created FEs ne given
by ne = nex ∗ney ∗nez. According to SIMP, a density value di is assigned to each nei FE as
an initialization step while di is updated in every iteration of SIMP approach. The fluctuation
of density value di of the ith FE with respect to the iteration step t can be expressed by a
function with respect iteration t:

di = F(t) ∀ i ∈ [1,ne] (4.8)

The fluctuation of density per SIMP iteration for several FEs can be seen in Fig. 4.2. It is
more than obvious that fluctuation varies drastically for different FEs due to their position
in the domain with respect to position of loads, support positions, etc. Each FE presents
a different optimization history of density values per SIMP iteration corresponding to a
sequence of discrete time-data similar to a time-series. Density initialization for each FE is
0.40 which is derived from the targeted volume constraint which is equal to 40% of the initial
volume. The above uniform starting density value for all FEs with respect to the volume
fraction value constraint is a common practice in SIMP implementation [193, 4]. SIMP
computational load depends on the population of FEs resulting to significant loads even for
non-densely discretized domains. This problem is magnified in finer 3D meshes. As an
example, addressing the STO problem of a 3D bridge test case consisting of 83,000 FEs can
take up to 7 hours for performing 200 iterations of SIMP in serial CPU execution while the
same problem executed in parallel GPU environment requires 1 hour [101] even for such a
small number of FEs in the example. DL-TOP methodology can be applied to both serial or
parallel, CPU or GPU execution implementations.
DL-TOP methodology can be described as a two-phase procedure. In the first step, SIMP
performs a small number of initial iterations which are used as input data for the DBN. The
DBN, based on the input, proposes an optimized domain at the end of the first phase. In
the second phase, SIMP performs fine-tuning on the DBN-proposed optimized domain. A

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 91

Fig. 4.2 Fluctuation of density of various finite elements with respect to the SIMP iterations

population of thirty six iterations of SIMP are executed for creating the necessary DBN input
vectors of density per iteration per FE. Once the input is evaluated by the DBN, a discrete
jump from the thirty sixth iteration to a close to final density per FE is made by the DBN. The
methodology completes with the fine-tuning performed by SIMP. A flowchart of DL-TOP
methodology is presented in Fig. 4.3, while the application of the two-phase methodology in
the case of a single finite element is shown in Fig. 4.4. The abscissa of Figure 5(b) represents
the iterations performed by SIMP while the ordinate corresponds to the density value of the
single finite element.
The key feature of DL-TOP is that after training on a simple example, it can be successfully

applied to different cases of STO without need for retraining. This is achieved by the fact
that each finite element is handled separately without no information needed on its position
in the domain, loading and boundary conditions of the domain, etc.
Classification problems are a challenging area of predictive modeling. Contrary to regression
predictive modeling, classification models require information also on the complexity of
a sequence dependence among the input parameters. In the case of STO the early density
values represent the sequence dependence information that needs to be provided as inputs
to the proposed (classification) methodology. The sequence of discrete-time data, i.e. the
density value for every FE and the T iterations are generated by SIMP approach and stored

92 Applied Deep Learning on Topology Optimization

Fig. 4.3 DL-TOP methodology flowchart

Fig. 4.4 DLTOP methodology implementation for a single FE

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 93

in matrix D presented below:

D =

d1,1 d1,2 . . . d1,T

d2,1 d2,2 . . . d2,T
...

...
dne,1 dne,2 . . . dne,T

 (4.9)

where T denotes the maximum iterations needed by SIMP to achieve convergence. A small
part of the optimization procedure equal to the first t iterations is used as time-series input data
for training the DBN while the vector of the final iteration of SIMP approach corresponding
to the Tth column of density matrix D is used as the target vector of DBN training.

d1,1 d1,2 . . . d1,t d1,t+1 . . . d1,T−1 d1,T

d2,1 d2,2 . . . d2,t d2,t+1 . . . d2,T−1 d2,T
...

...
...

...
dne−1,1 dne−1,2 . . . dne−1,t dne−1,t+1 . . . dne−1,T−1 dne−1,T

dne,1 dne,2 . . . dne,t dne,t+1 . . . dne,T−1 dne,T

Training Sample Not Used Target

(4.10)

4.2.2 Training dataset

Classification of certain input data based on an ML-based calculated output is one of the tasks
that DL algorithms show remarkable results. Training on multiple datasets is a prerequisite
for a successful classification execution of DL methods. Data available to the user are
separated into three smaller datasets, each one used in a different phase of the DL application
task. Initially, the DL model is calibrated on a series of data named training dataset; while
successively, the calibrated model (metamodel) is used for generating outputs based on
different input data, named as validation data. In the final step of this procedure, the test
dataset is used for calculating an unbiased assessment of the final model. The construction of
the training dataset of DL-TOP methodology is described in the following section. DL-TOP
performs classification of data consisting of density of FE per SIMP iteration. This is based
on discovering higher order features in the patterns of initial density fluctuations of each FE
and matching these patterns with the several density final values. In this direction, the train-
ing/validations/testing datasets are composed of sequences of the density values derived from
the implementation of SIMP approach. As previously stated, the performance of DL-TOP
methodology is independent of the test example used for developing the training dataset. In or-
der to prove this claim, two distinct training datasets are created and compared with each other.

94 Applied Deep Learning on Topology Optimization

The two databases are constructed by two basic and simple 2D benchmark test examples
of topology optimization, the simply supported beam and the cantilever beam, respectively.
The two test exampled considered for constructing the training datasets are shown in Fig.
4.5 (simply supported beam Fig. 4.5(a) and 4.5(b); cantilever beam Fig. 4.5(c) and 4.5(d)).
In order to derive a well-constructed and diversified training dataset, two height to length

Fig. 4.5 Training datasets generation, indicative FE discretization for: (a) 1:2 and (b) 1:3
cantilever beam; (c) 1:2 and (d) 1:3 simply supported beam.

ratios are implemented (i.e. 1:2 and 1:3) for each test example while eight different FE mesh
discretizations were adopted from sparse to dense meshing. It is worth mentioning that while
increasing mesh density, the size of the unit FE remains the same, thus finer discretization
results into larger domain sizes). Specifically, in order to build the datasets the fol-lowing

discretizations were used D =
[

DK D3K D6K D10K D20K D40K D60K D100K

]T

where DK stands for the samples generated for a FE mesh discretization of the order of 1,000
FEs while D10K stands for meshes consisting of 10,000 FEs. Therefore, the samples used to
derive the two training datasets are composed by the iteration histories of all the FEs when

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 95

SIMP is applied to the following STO problems:

DK

1 : 2

{
nex = 50
ney = 25

1 : 3

{
nex = 60
ney = 20

D10K

1 : 2

{
nex = 145
ney = 73

1 : 3

{
nex = 180
ney = 60

D60K

1 : 2

{
nex = 350
ney = 175

1 : 3

{
nex = 425
ney = 142

D3K

1 : 2

{
nex = 80
ney = 40

1 : 3

{
nex = 105
ney = 35

D20K

1 : 2

{
nex = 200
ney = 100

1 : 3

{
nex = 245
ney = 82

D100K

1 : 2

{
nex = 450
ney = 225

1 : 3

{
nex = 550
ney = 184

D6K

1 : 2

{
nex = 110
ney = 55

1 : 3

{
nex = 135
ney = 45

D40K

1 : 2

{
nex = 285
ney = 143

1 : 3

{
nex = 350
ney = 117

(4.11)
Loading conditions of the two examples used are presented in Fig. 4.5. The desired volume
fraction of the final domain is set equal to 40% of the original one in both examples and a
predefined value of density filter is also used. In the first training test example the radius
chosen is equal to two elements for all discretizations and for the second one the radius
ranges from three elements in the case of the 1,000 elements discretization to fifteen elements
in the 10,000 elements one in order to diversify the database construction method. All results
of the simply supported beam are joined for formulating the first dataset while all results
of the cantilever beam formulate the second dataset. Each dataset contains almost 480,000
density sequences. The population of initial SIMP iterations t was chosen to be equal to
36 based on the 15% of the weighted sum of SIMP iterations needed for convergence with
reference to the FE discretization. Database construction in ML applications is defined the
principle that all patterns and classes existing must be represented equally in the database.
Since DL-TOP is tailored made for TO problems, a different approach is also examined in
this dissertation. According to that, all classes are represented not equally but according
to the frequency of their appearance. In our case, although the values regarding the final
density of finite elements range in (0, 1], comparing the two datasets it can be seen that
they represent two completely different distributions of the density values in this range. The
simply supported beam training dataset mainly consists of values equal to either zero or one
(according to the frequency of their appearance on the final result) while the cantilever beam
training dataset consists of many varying values in the range of [0.1, 0.9], similarly to equal
representation of all classes principle. This difference on the analogies of the classes explains

96 Applied Deep Learning on Topology Optimization

the difference in terms of performance of the two datasets. In an effort to thoroughly examine
the performance of the proposed methodology, it is important to assess both datasets as the
outcome of the classification generated from each one is expected to have differences.

4.2.3 DBN calibration

As in all ML models, DL-TOP is developed according to the calibration and implementation
phases. The calibration phase is performed once for each dataset presented. The DBN used in
DL-TOP methodology identifies the patterns of density fluctuation for each FE with respect
to the final density of the FE as proposed by SIMP. Prior to the training procedure, SIMP is
applied for creating the training samples i.e. solve specific topology optimization problems
as denoted in Eq. 4.11. Then, the training dataset is formed, composed by the inputs (i.e. ne
vectors consisted of the FEs’ densities for the first t iterations) and the target outputs (i.e. a
vector of size ne corresponding to the densities achieved at the Tth final iteration of SIMP).
These training samples are then used for calibrating the DBN as described in the following
expression:

[d1,1 d1,2 . . . d1,t] → d1,T

[d2,1 d2,2 . . . d2,t] → d2,T

...
...

[dne−1,1 dne−1,2 . . . dne−1,t] → dne−1,T

[dne,1 dne,2 . . . dne,t] → dne,T

Input Target

(4.12)

Thus, during the calibration phase DBN is adjusted for generating the non-linear transfor-
mations for each FE from the density fluctuation pattern of the first t iterations to the final
density dDBN

i,T , i = 1,2, . . . ,ne. The DBN output values represent a classification of each FE
of the design domain with respect to the dDBN

i,T density values.

4.2.4 DL-TOP implementation

Once the calibration phase is completed, the DBN metamodel can be used alongside SIMP
in the DL-TOP implementation phase for accelerating the TO procedure according to the
following expression for every test example:

DBN([d]1:ne,1:t)⇒ [d]1:ne,T ∀ [d]1:ne,1:t ,ne, t,T (4.13)

The implementation phase of the DL-TOP methodology is composed by three steps:

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 97

• SIMP generates DBN input

• DBN predicts final volume class according to input

• SIMP fine-tunes DBN proposed result

In the first step, SIMP is used for generating the sequence of t samples for each FE in the
design domain mesh. In the second step, the calibrated DBN is applied for deriving the dDBN

i,T

density value of each FE of the domain. Worth mentioning that the computing requirements
for applying DBN are small (in the order of 1.7E-04 seconds on an i7-3610QM processor),
but in the case of million or even billion of finite elements it might become significant.
However, the application of DBN metamodel is independent for each finite element and
therefore can be performed in parallel without any interprocess communication. In the final
part of DL-TOP, SIMP is fed with the dDBN

i,T density values of the FEs of the design domain.
This step is necessary for correcting any defects present in DBN output. A flowchart of the
DL-TOP methodology is presented in Fig. 4.3 while the pseudocode is presented in Fig. 4.6.
According to the pseudocode of Fig. 4.6, lines #3 to #5 represent the DBN input generation

Fig. 4.6 Pseudo-code of DL-TOP methodology

by SIMP approach of Phase I. These input date are used to feed the DBN and the optimized
domain to be derived. This is presented in lines #7 to #9. The density values of the optimized
domain as proposed by the DBN are fine-tuned by SIMP approach in Phase II and the final
DL-TOP proposed optimized domain is created (lines #11 to #13). The DBN used in this

98 Applied Deep Learning on Topology Optimization

study consists of three RBMs and the framework was developed based on work by Hinton
and Salakhutdinov [76]. The number of training samples is equal to the total number of finite
elements generated by the domains of the topology optimization problems of Eq. 4.11, i.e.
ne input density vectors is equal to 480,000 while length t of each input vector was chosen
equal to 36 recorded initial density calculations. The sizes of the three RBMs are equal to
30, 20 and 12. Two different classes are used, i.e. the output of the classification network is
divided into 12 classes in the first one and in 3 classes in the second one as denoted below:

Classification Case I
di,T = 0

di,T ∈

(0,0.1]⇒ di,T = 0.05
(0.1,0.2]⇒ di,T = 0.15
(0.2,0.3]⇒ di,T = 0.25
(0.3,0.4]⇒ di,T = 0.35
(0.4,0.5]⇒ di,T = 0.45
(0.5,0.6]⇒ di,T = 0.55
(0.6,0.7]⇒ di,T = 0.65
(0.7,0.8]⇒ di,T = 0.75
(0.8,0.9]⇒ di,T = 0.85
(0.9,1)⇒ di,T = 0.95

di,T = 1

(4.14)

Classification Case II

di,T ∈

[0,0.4]⇒ di,T = 0
(0.4,0.7]⇒ di,T = 0.50
(0.7,1]⇒ di,T = 1

(4.15)

4.2.5 Test examples

Testing of DL-TOP methodology performance is divided into two parts. At first, a parametric
investigation is performed with respect to different training datasets, RBM training parameters
and size of output classes. The test examples used in this part are 2D benchmark test from
literature. In the second part, the efficiency and robustness of DL-TOP is evaluated on five
test examples (2D and 3D) aquired from literature. As for the SIMP approach, without loss
of generality OC and MMA algorithms are chosen for solving the topology optimization
problems at hand. The penalization factor is taken equal to 3 and is not changed for all test

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 99

examples. Filtering is implemented by taking into consideration the weighted derivative of the
adjacent elements for the calculation of each elements derivative in both 2D and 3D examples.
Worth mentioning that no thresholding was used in any of the test examples examined below
(i.e. no thresholding has been applied to any of the optimized domains presented in this part
of the thesis). The codes used for solving the TO problem are based on the 88-line code
[4], its 3D variant and the PolyTop [206] code. It should be underlined that the filter type
and radius remain the same in the cases examined in each test example described below, i.e.
both during the implementation of the proposed methodology and the conventional SIMP
approach. Thus, it is confirmed that the compliance values per example are obtained under
exactly the same parametric conditions. The proposed DL-TOP methodology can easily be
integrated with continuation of penalization techniques [58, 174, 124] as DL-TOP only deals
with the volume time-history of each element regardless its position. The above-mentioned
technics can be applied in SIMP Phases of DL-TOP without having to retrain the network.

Description of the five 2D benchmark test examples

Fig. 4.7 depict five 2D benchmark topology optimization test examples that are considered
in order to perform the parametric investigation of DL-TOP while its performance is also
evaluated. In the first example shown in Fig. 4.7(a), named as “short-beam (fine) test
example”, the discretization along the x and y axes is equal to nex = 800 and ney = 150,
while the support conditions are four fixed joints placed at each corner of the domain. The
single loading condition are two concentrated forces P along the y axis and applied in the
middle of the span of the x dimension. The term “fine” is used because subsequently the
same test example is studied using coarser FE mesh discretization. The second example
shown in Fig. 4.7(b) is named as “antisymmetric test example”. The discretization along
the x and y axes is equal to nex = 400 and ney = 400, respectively. Support conditions
refer to two fixed joints placed at the two right corners of the domain while the loading
condition refer to two concentrated forces P along the x axis and applied in the middle of
the span of the y dimension as seen in Fig. 4.7(b). The third one (Fig. 4.7(c)) is named as
“column test example” and the discretization along the x and y axes is equal to nex = 300
and ney = 500, respectively. Support conditions refer to fully fixed boundary conditions
along the x axis and starts at the 3

8ths of the x dimension. The loading conditions refer to
four concentrated forces P along the y axis and applied with distance equal to 1

3rd of the x
dimension. The fourth test example shown in Fig. 4.7(d) is named as “L-shape” and the
discretization along the x and y axes are equal to nex = 400 and ney = 400, respectively.
Support conditions refer to fully fixed boundary conditions along the x axis ending at the
1
2 of the x dimension and the loading condition refer to a concentrated load P along the y

100 Applied Deep Learning on Topology Optimization

Fig. 4.7 2D test examples: (a) short-beam (fine), (b) antisymmetric, (c) column, (d) l-shape
and (e) long-beam.

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 101

axis, applied in the 1
4th of the y dimension (Fig. 4.7). Finally, the fifth test example shown in

Fig. 4.7(e) is named “long-beam test example” with the discretization along the x and y axis
being equal to nex = 400 and ney = 100, respectively while the boundary conditions refer
to five simple supports applied along the x axis with distance equal to 1

6th of the x dimension
between them. The loading conditions refer to distributed force q along the y axis, applied on
the top and bottom of the domain in the y dimension. In these 2D test examples, the volume
fraction of the optimized domain is equal to 40% of the initial one and the filter radius is
set equal to six elements for the short-beam (fine), antisymmetric, column and long-beam
test examples while it is chosen equal to two elements for the L-shape test example. The
standard sensitivity filter is implemented to all five test examples, while it should be stated
that the parametric conditions remain the same for the original topology optimization and the
proposed methodology. For each experiment, a record is kept regarding the total iterations
needed and the objective function value when only SIMP is used and when acceleration by
means of DBN is used.

Evaluation of parameters, training datasets and classification cases

The parametric investigation of DL-TOP methodology is performed with reference to:

• Two different datasets

• Ten different RBM training parameters sets

• Two different sizes of classes

The efficiency of the above factors’ combinations is assessed on the five 2D benchmark
topology optimization problems. As previously described, there are four parameters that
define the learning behaviour of RBMs and in result the behaviour of DBNs. These parameters
are: the learning rates of the weights ew, the biases of the visible nodes ev

b, of the hidden
nodes eh

b and of the weight cost wc. The parameter values used in the RBM pretraining
procedure are presented on Table 4.1 along with all the training characteristics. The ten
different Parameter Sets (PS) defined in Table 1 are labelled as PS1 to PS10. In the back-
propagation algorithm, 50 epochs were performed while in each epoch, 100 CG iterations
were executed. The selected values were chosen accordingly to literature recommendations
[74].
The results of DL-TOP methodology applied on the above test examples can be witnessed in
Fig. 4.8 to 4.11 and Tables 2 to 5 where SB3, SB12, CB3 and CB12 stand for the simply
Sup-ported Beam (SB) and Cantilever Beam (CB) datasets, respectively with 3 and 12 classes.

102 Applied Deep Learning on Topology Optimization

Table 4.1 RBM pre-training parameter value sets.

PS ew ev
b eh

b wc Initial momentum Epochs Final momentum

1 1.00E-02 1.00E-02 1.00E-02 1.00E-04 0.5 500 0.90
2 5.00E-02 5.00E-02 5.00E-02 1.00E-04 0.5 500 0.90
3 1.00E-01 1.00E-01 1.00E-01 1.00E-04 0.5 500 0.90
4 1.00E-03 1.00E-03 1.00E-03 1.00E-04 0.5 500 0.90
5 3.00E-01 3.00E-01 3.00E-01 1.00E-04 0.5 500 0.90
6 1.00E-02 1.00E-02 1.00E-02 1.00E-03 0.5 500 0.90
7 1.00E-02 1.00E-02 1.00E-02 1.00E-02 0.5 500 0.90
8 1.00E-01 1.00E-01 1.00E-01 1.00E-05 0.5 500 0.90
9 6.00E-01 6.00E-01 6.00E-01 1.00E-04 0.5 500 0.90

10 1.00E-02 1.00E-02 1.00E-02 5.00E-05 0.5 500 0.90

Fig. 4.8 Performance of classification twelve-Iterations: (a) short-beam (fine) test example,
(b) antisymmetric test example, (c) column test example, (d) L-shape test example and (e)
long-beam test example.

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 103

Fig. 4.9 Performance of classification twelve-Objective function value: (a) short-beam (fine)
test example, (b) antisymmetric test example, (c) column test example, (d) L-shape test
example and (e) long-beam test example.

Table 4.2 Average and variance of classification twelve performance-SB dataset.

Test Example

Iterations Objective function value

SIMP
DLTOP

SIMP
DLTOP

DLTOP-SIMP Diff. (%)
Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 64 -82.82 16.22 85.99 85 1.55 -1.15
Antisymmetric 425 300 -29.48 43.58 22.60 23.00 0.70 1.77

Column 613 164 -73.18 87.92 145.22 146.00 0.64 0.54
L-shape 412 118 -71.41 62.94 72.89 72.00 1.76 -1.22

Long-beam 775 587 -24.27 11.77 577,015.85 577,237.00 0.48 0.04

104 Applied Deep Learning on Topology Optimization

Fig. 4.10 Performance of classification three-Iterations: (a) short-beam (fine) test example,
(b) antisymmetric test example, (c) column test example, (d) L-shape test example and (e)
long-beam test example.

Table 4.3 Average and variance of classification twelve performance-CB dataset.

Test Example

Iterations Objective function value

SIMP
DLTOP

SIMP
DLTOP

DLTOP-SIMP Diff. (%)
Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 115 -69.01 37.72 85.99 86.00 0.18 0.01
Antisymmetric 425 469 10.40 35.48 22.60 23.00 0.37 1.77

Column 613 446 -27.18 52.70 145.22 146.00 0.45 0.54
L-shape 412 31 -23.42 36.34 72.89 71.00 0.51 -2.59

Long-beam 775 630 -18.68 25.59 577,015.85 576,489.00 0.03 -0.09

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 105

Fig. 4.11 Performance of classification three-Objective function value: (a) short-beam (fine)
test example, (b) antisymmetric test example, (c) column test example, (d) L-shape test
example and (e) long-beam test example.

Table 4.4 Average and variance of classification three performance-SB dataset.

Test Example

Iterations Objective function value

SIMP
DLTOP

SIMP
DLTOP

DLTOP-SIMP Diff. (%)
Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 55 -85.35 20.75 85.99 84.00 2.21 -2.31
Antisymmetric 425 91 -78.56 87.48 22.60 23.00 3.72 1.77

Column 613 58 -90.57 13.08 145.22 144.00 2.58 -0.84
L-shape 412 186 -54.88 173.13 72.89 74.00 5.10 1.52

Long-beam 775 217 -71.96 43.17 577,015.85 625,716.00 11.13 8.44

106 Applied Deep Learning on Topology Optimization

Table 4.5 Average and variance of classification three performance-CB dataset.

Test Example

Iterations Objective function value

SIMP
DLTOP

SIMP
DLTOP

DLTOP-SIMP Diff. (%)
Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 99 -73.49 7.94 85.99 83.00 1.66 -3.48
Antisymmetric 425 184 -56.73 51.27 22.60 22.00 1.67 -2.65

Column 613 96 -84.27 3.63 145.22 140.00 0.42 -3.59
L-shape 412 113 -72.52 24.73 72.89 71.00 0.15 -2.59

Long-beam 775 263 -66.04 20.65 577,015.85 612,929.00 17.15 6.22

Specifically, Fig. 4.8 and 4.10 depict the function evaluations required for DL-TOP
methodology to converge for both databases, both classifications and PS sets. DL-TOP
performance is also compared with SIMP alone with respect to necessary iterations for
convergence (see the green line in Fig. 4.8 and 4.10). Fig. 4.9 and 4.9 illustrate the final
objective function values achieved by DL-TOP, i.e. with reference to the two databases, two
classifications and DBN training parameters; their performances are compared with those
achieved by SIMP alone (see the green line in Fig. 4.9 and 4.11). The results concerning
average objective function value and COV, shown in Tables 2 to 5, were calculated using the
ten different sets of RBM training parameters (i.e. PS1 to PS10) as described previously. By
studying the results presented in Fig. 4.8 and 4.10, it is obvious that the use of three output
classes provides significantly better and more stable results than twelve classes, regardless
of the training parameters of the DBN network. Additionally, the average computational
efficiency performance of the SB dataset is better than the one of the CB dataset while in
terms of objective function value, DL-TOP presents the same results regardless dataset used.
As a general guide, it can be said that the simply supported beam represent the optimal choice
for the database combined with three classes.
In respect to results shown in Fig. 4.12 to 4.16, Figures (a) depict the final outcome of
conventional SIMP implementation, Figures (b) show the output of the DBN (end of Phase I)
while Figures (c) represent the final output of DL-TOP methodology after SIMP fine-tuning
step (end of Phase II).

DLTOP performance for twelve classes

In order to evaluate the performance of DL-TOP methodology with reference to its pa-
rameters, the basis of the comparison needs to be described. As the scope of DL-TOP is
the improvement of computational efficiency of STO, the number of iterations required by
the original SIMP for solving each problem represents the basis of comparison, while the
iterations required by the DL-TOP methodology are those required to feed the calibrated
DBN (part of Phase I) plus those needed by SIMP in Phase II of the methodology. The

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 107

Fig. 4.12 Optimized domain for the short-beam (fine) test example-classification twelve: (a)
original SIMP (objective function: 85.99 - iterations: 372), (b) DL-TOP Phase I (objective
function: 86.43 - iterations: 36), (c) DL-TOP Phase II (objective function: 85.86 - iterations:
43) and (d) density histories of selected finite elements located in the center of the domain.

Fig. 4.13 Optimized domain for the antisymmetric test example-classification three: (a)
original SIMP (objective function: 22.64 - iterations: 599), (b) DL-TOP Phase I (objective
function: 22.95 - iterations: 36) and (c) DL-TOP Phase II (objective function: 22.18 -
iterations: 37).

108 Applied Deep Learning on Topology Optimization

Fig. 4.14 Optimized domain for the column test example-classification three: (a) original
SIMP (objective function: 145.12 - iterations: 551), (b) DL-TOP Phase I (objective function:
149.18 - iterations: 36) and (c) DL-TOP Phase II (objective function: 140.90 - iterations: 15).

Fig. 4.15 Optimized domain for the L-shape test example-classification three: (a) original
SIMP (objective function: 73.06 - iterations: 186), (b) DL-TOP Phase I (objective function:
71.92 - iterations: 36) and (c) DL-TOP Phase II (objective function: 71.19 - iterations: 25).

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 109

Fig. 4.16 Optimized domain for the long-beam test example-classification three: (a) original
SIMP (objective function: 576936.84 - iterations: 775), (b) DL-TOP Phase I (objective func-
tion: 479,880.00 - iterations: 36) and (c) DL-TOP Phase II (objective function: 577,826.89 -
iterations: 275).

110 Applied Deep Learning on Topology Optimization

comparison with reference to the computational performance between the original SIMP
and DL-TOP is presented in Fig. 4.8. Secondly the original approaches versus the proposed
one are also compared with respect to the objective function achieved, this is shown in
Fig. 4.9, while Tables 4.2 and 4.3 also show the computational efficiency and robustness
of DL-TOP as the average number and variation of iterations required and objective func-
tion achieved are presented. Figures 4.8 and 4.9 along with Tables 4.2 and 4.3 present the
computational performance and robustness of the proposed DL-TOP methodology for the
short-beam (fine) test example. As it can be observe from Table 4.2, SB training dataset
on average achieved 83% reduction on the SIMP iterations; the iterations are reduced by
almost one order of magnitude from 370 iterations originally required to only 64 iterations
on average (the corresponding coefficient of variation (COV) is equal to 16%); while the
maximum reduction of the iterations is equal to 87% (see Fig. 4.8(a)). Accordingly, CB
training dataset achieved on average 70% reduction of SIMP iterations, while the maximum
reduction of SIMP iterations is equal to 77% and COV is equal to 38%. With respect to
the objective function value achieved, as it can be seen from Table 4.2, with respect to the
training parameters sets on average 1.15% lower value was obtained compared to the one
originally achieved by SIMP; correspondingly the objective function value obtained when
CB dataset was used is practically equal to the original one.
The optimized domain for the short-beam (fine) test example resulted originally by SIMP
is shown in Fig. 4.12(a) and those obtained from Phases I and II of the proposed DL-TOP
methodology are depicted in Fig. 4.12(b) and 4.12(c), respectively. As it can be seen the
shapes obtained are very similar, while the corresponding objective function values achieved
and iterations required are 85.99 and 372, 86.43 and 36, 85.86 and 43 for original SIMP,
Phases I and II of DL-TOP, respectively. While the density histories of elements in the centre
of the domain are shown in Fig. 4.12(d), where it can be seen the density values of elements’
history do not vary monotonously. In Fig. 4.12(d) it can also be noticed that the proposed
methodology is able to identify those elements whose density tends to be reduced when
approaching the 36th iteration (i.e. purple and orange density lines) of SIMP and generate the
hole in the center of the domain of the DL-TOP output. Accordingly, the optimized domains
for the antisymmetric, column, L-shape and long-beam test example resulted originally by
SIMP and those obtained from Phases I and II of the proposed DL-TOP methodology are
depicted in Fig. 4.13to 4.16, respectively. The performance of DL-TOP methodology for the
rest of the test examples has a similar performance; more specifically, for the SB training
dataset (see Table 4.2 and Fig. 4.8 and 4.9), on average the reduction of SIMP iterations
varies from 24% to 73% while the maximum reduction achieved for all these test cases
exceeds 80%, the corresponding objective function value achieved on average is slightly

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 111

reduced.
In the case of CB training dataset (see Table 4.3 and Fig. 4.8 and 4.9), on average the
reduction of SIMP iterations exceeds 15% while the maximum reduction achieved for all
these test cases exceeds 60%, the corresponding objective function value achieved on average
is also slightly reduced. In general, it should be noted that DL-TOP methodology resulted for
all test cases examined to significant decrease of iterations and with the most proper selection
of RBM training parameters the decrease exceeds 90%. It is also noticeable that the objective
function value is unaffected by the training parameters values and achieving values similar to
plain SIMP application. It was also observed that in the case of classification 12, CB training
dataset is outperformed by the SB one both in terms of computational efficiency (reduction
of SIMP iterations) and robustness.

DLTOP performance for three classes

Similar parametric study is performed for the case of three classes (see Fig. 4.10 and 4.11,
Tables 4.4 and 4.5); where it is observed that in the short-beam (fine) test example (Fig.
4.10(a) and 4.10(a)), the SB training dataset achieved on average 85% reduction of SIMP
iterations and the maximum one is equal to 87% (COV equal to 21%) while the objective
function value achieved is on average 2.31% lower to that originally obtained by SIMP
approach. The CB training dataset achieved on average 83% reduction of iterations with a
maximum reduction equal to 86% (COV equal to 12%) while the objective function value
is on average reduced by 3.48%. Accordingly, the performance of DL-TOP methodology
for the rest of the test examples has a similar outcome; more specifically, for the SB training
dataset (see Table 4.4 and Figures 4.10 and 4.11), on average the reduction of SIMP iterations
varies from 55% to 91% while the maximum reduction achieved for all these test cases
exceeds 91%, the corresponding objective function value achieved on average is slightly
increased.
In the case of CB training dataset (see Table 4.3 and Figures 4.8 and 4.9), on average the
reduction of SIMP iterations varies from 72% to 84% while the maximum reduction achieved
for all these test cases exceeds 85%; the corresponding objective function value achieved on
average is also slightly increased. The optimized domain for the antisymmetric test example
resulted originally by SIMP is shown in Fig. 4.13(a) and those obtained from Phases I and II
of the proposed DL-TOP methodology are depicted in Fig. 4.13(b) and 4.13(c), respectively.
As it can be seen the forms obtained are almost identical, while the corresponding objective
function values achieved and iterations required are equal to 22.64 and 599, 22.95 and 36,
22.18 and 37 for original SIMP, Phases I and II of DL-TOP, respectively. Summarizing
the results obtained for the case of classification 3, it becomes noticeable that DL-TOP

112 Applied Deep Learning on Topology Optimization

methodology for all test examples examined resulted to significant reduction of the iterations
depicting also remarkable performance stability with reference to the training parameters
values. It is also worth noticing that the objective function value is not influenced by these
parameters. In classification 3, SB training dataset performed better compared to CB one in
terms of iterations decrease but not in the case of objective function value and robustness
where CB database performed better than the SB one.
Comparing the classification 3 with the 12 one it can be observed that the latter one is
outperformed by the first one both in terms of computational efficiency (reduction of SIMP
iterations) and robustness for both training datasets considered. In an attempt to explain
this result, it must be pointed out that the classification three procedure is significantly less
demanding in terms of DBN training while the classification 12 is not. Additionally, it should
be stated that, although it is not guaranteed that the DBN results satisfy the volume constraint,
its violation is very limited and a single step of SIMP in Phase II is adequate to correct
the required volume fraction often leading to reduction of the objective function value (e.g.
compliance) compared to the typical SIMP implementation. As a reference it is noticeable
that for a volume fraction equal to 40% the predicted domain achieved for the short-beam
(fine) test example is equal to 38.00%, for the antisymmetric one is equal to 39.42%, for the
column one is equal to 38.70%, for the L-shape one is equal to 39.74% and for the long-beam
one is equal to 42.30%; the corresponding domains are those of Fig. 4.12(b) to 4.16(b),
respectively.

DL-TOP performance in 2D test examples

In order to further evaluate the performance of DL-TOP methodology, three additional 2D test
examples are examined using the parameters that were identified in the previous section. The
first test example is presented to demonstrate the capabilities of the proposed methodology
regarding different update schemes as in this example, the MMA algorithm is used.
The example used is named “short-beam (coarse) test example” described in previous section
(see Fig. 4.7(a)) using coarser FE mesh discretization, the sensitivity filter radius changed
to two elements and an additional density filter with radius of two elements as well. The
new discretization along the x and y axes is equal to nex = 150 and ney = 50, whereas the
results obtained are shown in Fig. 4.17. The next test example is inspired from the 2-bar
problem presented in [194]. The discretization along the x and y axis is equal to nex = 50 and
ney = 20, respectively, the support conditions refer to fully fixed boundary conditions along
the x axis at the base (Fig. 4.18(a)) and the single loading condition refers to one concentrated
forces P along the x axis and applied in the middle of the span of the x dimension as depicted
in Fig. 4.18(a). The preference for final volume is equal to 20% of the initial domain and

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 113

Fig. 4.17 Optimized domain for the short-beam (coarse) test example-MMA: (a) original
SIMP (objective function: 30.34 - iterations: 91), (b) DL-TOP Phase I (objective function:
29.77 - iterations: 36) and (c) DL-TOP Phase II (objective function: 30.33 - iterations: 31).

114 Applied Deep Learning on Topology Optimization

Fig. 4.18 Optimized domain for the 2-bar test example-classification three: (a) original
domain, (b) original SIMP (objective function: 10.31 - iterations: 54), (c) DL-TOP Phase I
(objective function: 13.33 - iterations: 5), (d) DL-TOP Phase II (objective function: 10.31 -
iterations: 28), (e) original SIMP with threshold (objective function: 25.16 - iterations: 5)
and (f) difference between DL-TOP and SIMP with threshold.

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 115

the filter applied is a density and sensitivity filter with radius equal to 1.5 elements; the
results obtained are shown in Fig. 4.18(b) to 4.18(f). The last test example corresponds to
the serpentine beam problem presented in the PolyTop [206]. In particular, it corresponds to
a non-regular design domain discretized with unstructured polygonal finite element mesh
composed by 5,000 elements, the discretization was generated using PolyMesher [205], the
support conditions refer to fully fixed boundary conditions along the y axis on the left side
of the domain (see Fig. 4.19(a)) and the single loading condition refers to one concentrated
force P along the y axis and applied in the pick of the span of the y dimension as depicted
in Fig. 4.19(a). The preference for final volume is equal to 40% of the initial domain and
the filter applied is a density filter as described in [206] with radius equal to 0.25; the results
obtained are shown in Fig. 4.19(b) to 4.19(d). The results obtained when implementing

Fig. 4.19 Optimized domain for the serpentine beam test example-classification three: (a)
original domain [206], (b) original SIMP (objective function: to 391.19 - iterations: 267),
(c) DL-TOP Phase I (objective function: 442.65 - iterations: 36) and (d) DL-TOP Phase II
(objective function: 394.46 - iterations: 30).

DL-TOP methodology for the above described three test examples are presented in Table 4.6.

116 Applied Deep Learning on Topology Optimization

Table 4.6 Average and variance of performance in 2D and 3D test examples.

Test Example

Iterations Objective function value

SIMP

DLTOP

SIMP

DLTOP

Iterations Variation (%) Value DLTOP-SIMP Difference (%)

Short-beam (coarse) 91 67 -26.37 30.34 30.33 -0.03
2-bar 54 33 -38.89 10.31 10.31 0

Serpentine beam 267 66 -75.28 391.19 394.46 0.84
L-shape 3D 660 129 -81 15.33 15.65 2.09
Bridge 3D 509 193 -62.08 1,632,305.73 1,640,121.40 0.48

In particular, regarding the short-beam (coarse) test example, DL-TOP achieved reduction of
more than 25% on the SIMP iterations required originally and the objective function value
achieved is more or less equal to that obtained by SIMP approach. Accordingly, for the 2-bar
test example DL-TOP achieved almost 40% reduction on SIMP iterations and the objective
function value achieved is equal to that originally obtained by the SIMP.
Additionally, in the 2-bar test example, a threshold was applied on the result of SIMP
achieved after performing the same number of iterations with those used as input by DL-TOP
in order to witness the differences in these two applications. The result obtained by using a
thresh-old is presented in Fig. 4.18(e), the result obtained by DL-TOP Phase I is presented
in Fig. 4.18(c) while the difference between these two results is shown in Fig. 4.18(f). In
Fig. 4.18(f), black areas denote the elements present in the DL-TOP Phase I and not in the
threshold and grey areas are the elements present in the threshold and not in the DL-TOP
Phase I. According to DL-TOP methodology material has been added in the outside areas of
both “legs” while it has also removed plenty of material from the inner areas as well. This can
be explained as DL-TOP has identified the tendency of these density values to increase and
decrease accordingly, leading to a result closer to the final one of just implementing SIMP
(i.e. Fig. 4.18(b), 54 iterations). It can be witnessed that in the serpentine beam test example
DL-TOP achieved more than 75% reduction on the SIMP iterations required originally and
the objective function value achieved is more or less equal to that obtained by SIMP approach.
The optimized domains for the all three test example are shown in Fig. 4.17 to 4.19 as well
as the objective functions and compliance for the original topology optimization and Phases
I and II of the DL-TOP.

DL-TOP performance in 3D test examples

Given the performance evaluation of the training parameters combination for the DBN part of
the DL-TOP methodology, its computational efficiency is also assessed over two 3D topology

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 117

optimization test examples. The first one shown in Fig. 4.20(a) is three-dimensional version
of the L-shape test example, where the discretization along the x, y and z axes is taken equal
to 60, 60 and 20, resulting into 72,000 solid FEs, respectively, the support conditions refer
to fully fixed boundary conditions for the xz plane along the z dimension, ending at the 1

3rd
of the x dimension (Fig. 4.20(a)) and the loading condition refers to a concentrated force P
along the y axis applied at the 1

4th of the y dimension and the middle of the span along the z
dimension. The second 3D test example also shown Fig. 4.20(b) was taken from the example

Fig. 4.20 3D test examples: (a) L-shape 3D and (b) bridge.

examined in [101]. The discretization along the x, y and z axes is taken equal to 160, 40 and
13, respectively, resulting into 83,200 solid finite elements, the support conditions refer to
fully fixed support at the xz plane spanning from the 1

3 to the 1.75
3 of the x dimension and one

element in each size from the center of the z dimension and the loading conditions refer to
distributed loading q along that is applied on the top xz plane along the y dimension (as show
in Fig. 4.20(b)).
In the first 3D test example the preference for final volume is equal to 15% of the initial cubic
domain and the filter radius is equal to 1.2 elements. In the second 3D test example the pref-
erence for the final volume is equal to 40% of the initial domain and the filter radius is equal
to 1.5 elements. For both test examples filtering was implemented using a combination of the
standard sensitivity filtering with the density one. The results obtained when implementing
DL-TOP methodology are presented in Table 4.6. In particular, regarding the L-shape 3D
test example DL-TOP achieved 81% reduction on the SIMP iterations required originally and
the objective function value achieved is basically equal to that obtained by SIMP approach.
Accordingly, for the bridge 3D test example DL-TOP achieved 62% reduction of SIMP
iterations and the objective function value achieved is equal to that originally obtained by

118 Applied Deep Learning on Topology Optimization

the SIMP. The optimized domain for the bridge 3D test example resulted originally by
SIMP is shown in Fig. 4.21(a) and those obtained from Phases I and II of the proposed
DL-TOP methodology are depicted in Fig. 4.21(b) and 4.21(c), respectively. As it can be
seen the forms obtained are almost identical, while the corresponding objective function
values achieved and iterations required are equal to 1,632,305.73 and 509, 1,612,500.00
and 36, 1,640,121.4 and 193 for original SIMP, Phases I and II of DL-TOP, respectively. In
addition, the optimized domain of the L-shape 3D example can be seen in Fig. 4.22 as well
as the objective functions and compliance for the original topology optimization and Phases
I and II of DL-TOP.
The computer hardware platform that was used for the purposes of these tests consists of an
Intel Xeon E5-1620 at 3.70 GHz quad-core (with 8 threads) with 16 GB RAM for the case
of CPU based computations and NVIDIA GeForce 640 with 384 cores and 2 GB RAM for
the case of GPGPU based computations and the operating system was Windows 10 (64bit).
For the bridge 3D test example both sequential and parallel test runs are carried out, and as
it can be seen the computing time required for solving the topology optimization problem
discretized with 83,200 solid finite elements SIMP requires up to 54,287 seconds to carry out
509 SIMP iterations while applying a GPGPU-based acceleration of the structural analysis
procedure the re-quired time is reduced to 8,587 seconds (speedup factor of 6× for GPU
when compared with CPU). The time required by the proposed DL-TOP methodology is
20,910 seconds if the structural analysis part of the SIMP iterations is performed sequentially,
while if a GPGPU-based acceleration of the structural analysis is performed the computing
time is further reduced to 3,256 seconds (speedup factor of 17× for DL-TOP-GPU when
compared with SIMP-CPU).
Worth mentioning that the computational time required for training the network is not in-
cluded in the time requirements described above as the network was not trained on the
specific examples or on any of the test examples presented in the current study. Training of
the network is performed only once based on a database derived using a single test example,
the resulting metamodel through training is unique and is used for any 2D or 3D test examples
without requiring additional training. For this reason, it would be misleading to add the
training time required ones to the comparison between SIMP and DL-TOP for every test
example. Training is performed once and the resulting metamodel can be applied to any
topology optimization problems.

4.2 DL-TOP - Deep Learning Accelerated Topology Optimization 119

Fig. 4.21 Optimized domain for the 3D bridge test example-classification three: (a) original
SIMP (objective function: to 1,632,305.73 - iterations: 509), (b) DL-TOP Phase I (objective
function: 1,612,500.00 - iterations: 36) and (c) DL-TOP Phase II (objective function:
1,640,121.40 - iterations: 193).

120 Applied Deep Learning on Topology Optimization

Fig. 4.22 Optimized domain for the 3D L-shape test example-classification three: (a) original
SIMP (objective function: 15.33 - iterations: 660), (b) DL-TOP Phase I (objective function:
13.36 - iterations: 36) and (c) DL-TOP Phase II (objective function: 15.65 - iterations: 93).

Chapter 5

Deep learning in reduced order modeling

This chapter focuses on exploring new methods of reduced order modeling for minimizing
the computational needs of topology optimization (TO) approaches. All TO approaches
are computationally demanding especially when detail level raises. Although the available
computing power is constantly improving, either in Central Processing Unit (CPU) or
Graphical Processing Unit (GPU) in terms of speed and memory per core and number
of cores, the sizes and complexity of TO problems remain time and computational load
greedy. As this drawback concerns practically everyone who works in the field of TO, several
approaches have been proposed for reducing the necessary execution time of TO mainly via
incorporating parallel programming in CPU or GPU [16, 24, 45, 138]. In this part of the
thesis, the possibility of developing new methods for TO, focused on accelerating the TO
procedure by dramatically reducing its computational cost through reduced order modeling
is examined. The implemented research focused on taking advantage of the capabilities of
up-to-date deep learning methods in combination with established TO methodologies. In
detail, three new methods are presented:

1. DL-SCALE

2. DLRM-TOP

3. CN-TOP

These three methods can be regarded as new reduced order modeling methods, each one with
a different architecture described further along. All the above methods present significant
reduction of computational loads in comparison with typical TO methods.

122 Deep learning in reduced order modeling

5.1 DL-SCALE - Deep Learning Assisted Model Upgrad-
ing

The advanced performance observed by DL-TOP in accelerating topology optimization
application, led us to think additional possibilities to exploit its capabilities on a different
framework. In the previous section, the ability of DBN networks to discover non-linear
correlations between initial values of densities and the final value per FE as calculated by
SIMP was proven. The exploitation of data was based on the principle that density fluctuation
of early SIMP iterations can act as classification input of a DBN with respect to final density
value.
By incorporating the above features in a model upgrading scheme, a new methodology for
performing topology optimization (DL-SCALE) is proposed. This methodology is based on
deep belief networks and SIMP, formulated in a sequential "model optimize and upgrade"
architecture which is analytically described in the following section.

5.1.1 DL-SCALE methodology description

Computing time requirements of topology optimization problems regardless of available
computing power depend heavily on the number of finite elements that are used for the
mesh discretization. This dependency is bound to the "curse of dimensionality" as topol-
ogy optimization applications are based on iterative solutions per finite element. Several
computational approaches have been proposed for reducing the execution time per iteration
through parallel programming and exploitation of the processors present in CPU and/or GPU
[16, 24, 45, 138]. The proposed methodology is focused on using low-cost results of DL
assisted TO results of "sparsely" discretized domains for reducing the computational time of
much denser meshes.
DL-SCALE is formulated as a multi-stage repetitive combination of a number of DL-TOP
phases. As presented in the previous section of this dissertation, DL-TOP can dramatically re-
duce the number of iterations needed by SIMP for solving a structural topology optimization
problem. A small number of iterations of SIMP are fed into a trained DBN network which
predict a close-to-final optimized model while this model is fine-tuned by SIMP. The idea that
generated DL-SCALE, is based on combining low computational times of sparsely meshed
domains in SIMP approach and iteration reduction capabilities of DL-TOP methodology.
By combining the above, a significant reduction of computational times of densely meshed
domains is achieved as it shown in test examples presented in the following sections.
A topology optimization problem TOP0 can be characterized by the following parameters:

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 123

• Domain dimensions Lxyz

• Population of FEs in the mesh ne

• Support conditions Sc

• Loading conditions Pc

• Desired volume Vt

Accordingly, the above parameters of TOP0 can be described as [L(0)
xyz, ne(0), S(0)c , P(0)

c , V (0)
t].

The execution time that SIMP needs for solving TOP0 is equal to t0. It can be stated that the
execution time for solving TOP1 with parameters [L(0)

xyz, ne(1), S(0)c , P(0)
c , V (0)

t] with respect
to t0 depends on the ratio: ne(0)

ne(1)
. A small example of this can be seen in Table 5.1 where

the increase of computational time per iteration for different mesh densities is described.
The TO example used is the 3D Bridge example presented in the previous section. The
specifications of the computer used are: an Intel Xeon E5-1620 at 3.70 GHz quad-core and
16 GB RAM while the SIMP code used is the 3D version of the 88-line code presented by
Andreassen et al. [4]. As witnessed in Table 5.1, mesh density plays an important role in

Table 5.1 Mesh density and execution time ratio for SIMP.

ne(0) ne(1)

ne 406456 63480 32368 16200 8064 4000
ne(0)

ne(1)
1.00 6.40 12.56 25.09 50.40 101.61

t(0)

t(1)
1.00 12.89 27.72 59.35 137.00 374.70

computational time of TO problems. More precisely, if we consider td as the summation
of t(1)i ∀ i ∈ [1,5] of the five ne(1)i mesh discretizations examined, it can be calculated that:
t(0)

t(d)
= 7.12. Thus, performing a number of iterations of sparse meshes is more economical

in terms of execution time than performing one iteration of a dense mesh. It is also worth
mentioning that in general, sparsely meshed domains require less iterations than densely
meshed ones for converging.
DL-SCALE can be described as follows. In case TO is to be performed in a domain meshed in
ne f elements and the parameters of this TOPf are [L(f)

xyz , ne(f), S(f)
c , P(f)

c , V (f)
t], a population

of five reduced order models in terms of ne are created as TOPR
i where i ∈ [1,5]. All the

created TOPi are identical to TOPf with respect to all parameters except for ne(i). As a result,
each of the ith reduced models TOPR can be described as [L(f)

xyz , ne(R)i , S(f)
c , P(f)

c , V (f)
t].

124 Deep learning in reduced order modeling

Regarding discretization densities, it must be pointed out that:

ne(R)1 < ne(R)2 < ne(R)3 < ne(R)4 < ne(R)5 << ne(R)f (5.1)

It is worth pointing out that while all parameters for the five TOP(R)
i are defined, the domain

D of only the first one is formulated. Since the definition of the five TOP(R) is completed,
DL-SCALE application continues with the following procedure. DL-TOP is applied on the
TOP(R)

1 . Hence, SIMP performs 36 iterations on TOPR
1 . The density values per iteration per

FE are used by a trained DBN for predicting a final density value for each FE in TOP(R)
1

domain. It must be pointed out that since the input and output used in DL-SCALE are
identical with the ones used in DL-TOP, the procedure followed for creating a database,
training and calibrating the DBN model is exactly the same as the one described in the
DL-TOP presentation section. Additionally, the DBN architecture is also identical with the
one used in DL-TOP.
Since an optimized domain for TOP(R)

1 is defined, a convolution of this domain is executed.
This convolution is performed according to Eq. 3.34 while the filter used is a Gaussian blur
filter [200]. The dimensions [a f ,b f] of filter f are chosen with respect to dimension of D
([nex,ney]). An example of values of f for a [7,7] filter can be seen in Eq. 5.2:

f =

0 0 0 0.01961 0 0 0
0 0.01961 0.07059 0.12549 0.07059 0.01961 0
0 0.07059 0.25098 0.39216 0.25098 0.07059 0

0.01961 0.12549 0.39216 0.39216 0.39216 0.12549 0.01961
0 0.07059 0.25098 0.39216 0.25098 0.07059 0
0 0.01961 0.07059 0.12549 0.07059 0.01961 0
0 0 0 0.01961 0 0 0

(5.2)

For the convolution step, the size parameters are chosen accordingly in order for the convolved
matrix Dc to be equal to the ones of the initial matrix D. Once convolution is performed,
the convolved matrix Dc is normalized in the [0,1] range. It is worth pointing out that the
above are referring to the case of a 2D domain but the same procedure can be applied to 3D
domains as well.
The Dc matrix represents an optimized domain for TOP(R)

1 . In the next step of DL-SCALE,
Dc is re-meshed with the new population of FEs being equal to the ones of TOP(R)

2 :ne(R)2 .
As coordinates x(1:k)

i , y(1:k)
i of the k edges of each ith FE in TOP(R)

1 and TOP(R)
2 are known,

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 125

the geometric center of each FE can be calculated according to:

xc
i =

1
k

k

∑
j=1

x j
i

yc
i =

1
k

k

∑
j=1

y j
i

(5.3)

The density value of each of the ne(R)2 elements of the TOP(R)
2 is taken equal to the density of

the closest, in terms of geometric center distance, FE of the TOP(R)
1 domain. This projection

of the Dc of TOP(R)
1 in TOP(R)

2 dimensions is regarded as a proposed TO initialization point
instead of the uniform density initialization that is commonly used. In the next step of
DL-SCALE, the generated domain of TOP(R)

2 is passed into SIMP and again a population
of t = 36 iterations of SIMP are performed for generating an input for a second DBN
application. The DBN proposes a final density for each FE in the TOP(R)

2 domain. As with
TOP(R)

1 DBN-proposed model, the TOP(R)
2 proposed model is re-meshed to a population of

FEs equal to ne(R)3 and the volume of each FE of TOP(R)
2 is assigned a value as described in

the previous step of DL-SCALE. The same procedure is repeated for TOP(R)
3 , TOP(R)

4 and
TOP(R)

5 . At the final step of DL-SCALE, the DBN-proposed TOP5 is re-meshed with the
new population of FEs being equal to ne f . Initial densities of each of the ne f FEs are set
equal to the density of the closer TOP(R)

5 element with respect to geometrical center distance.
After applying convolution, as described previously, the produced output is used as SIMP
initialization for TOPf and SIMP performs 36 needed iterations followed by a DBN-based
prediction, as in DL-TOP, of a close-to-final optimized topology. The final output is produced
after fine-tuning by SIMP performing the necessary iterations until convergence. A flowchart
of DL-SCALE can be seen in Fig. 5.1.

5.1.2 Test examples

In order to evaluate the performance of DL-SCALE methodology, a series of 2D test-
examples, known to literature, are used. In detail, five test-cases are solved using SIMP
methodology and record is kept regarding necessary iterations for convergence, objective
function value (compliance) and execution time. The same test-examples are also optimized
with the use of DL-SCALE methodology and the same records are kept. As according to
DL-SCALE, iterations are performed on domains with less dense meshes, the comparison
is based on execution time. In the case of SIMP, the total time from the domain defini-
tion and up to the end of the final iteration is recorder. In the case of DL-SCALE, the
time from the definition of TOP(R)

1 to the end of the final iteration of TOPf is recorded.

126 Deep learning in reduced order modeling

Fig. 5.1 Flowchart of DL-SCALE methodology

The iterations recorded in DL-SCALE are the 36 iterations performed before DBN ap-
plication along with the ones performed following DBN output until convergence. As
DL-SCALE requires the formulation of five domains with reduced population of FEs per
test case, two different samples of [TOPR

i] are used. In the first one, each of the ne(i)’s
is equal to [1000, 2000, 3000, 4000, 5000] respectively while in the second case, each of
the ne(i)’s is equal to [3000, 4000, 5000, 7000, 10000] respectively. Regarding the pop-
ulation of FEs in the final domain of each test-example, four different populations are
examined in order to evaluate the performance of DL-SCALE. These four populations are:
[20,000, 50,000, 75,000, 100,000]. The five test-examples used are described bellow.

Test-Examples description

In Test-Example A, the support conditions refer to two fixed joints placed at the two right
corners of the domain and the loading conditions refer to two concentrated forces P along
the x axis and applied in the left and right middle of the span in the y dimension. The ratio of
nex to ney is equal to 0.5 while the volume fraction is equal to 40%.

In Test-Example B, the support conditions refer to fully fixed boundary condition along
the x axis ending at the half of the x dimension and the loading condition refers to one
concentrated force P along the y axis and applied in the fourth of the y dimension. The ratio
of nex to ney is equal to 0.5 while the volume fraction is equal to 35%.

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 127

In Test-Example C, the support conditions refer to fully fixed boundary conditions along
the x axis, starting at the 3:8ths of the x dimension and the loading conditions refer to four
concentrated forces P along the y axis and applied at intermediate distances equal to 1:3 of
the x dimension. The ratio of nex to ney is equal to 0.5 while the volume fraction is equal to
50%.

In Test-Example D, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y axis, applied in the middle of the y dimension at the base of the structure.
The ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 35%.

In Test-Example E, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y, applied at the half of the y dimension at the top of the structure. The
ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 35%.

It is worth pointing out that a sensitivity filter with radius equal to 3 was chosen in all
cases as SIMP filter. A schematic representation of the test-examples can be seen in Fig. 5.2.

5.1.3 Results

In Test-Example A, DL-SCALE achieved a maximum reduction of computational time equal
to 81.73% in the case of 100,000 elements in TOPf with respect to SIMP while the objective
function value was decreased by 0.40%. All data recorded in this test can be seen in Table
5.2. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DL-SCALE, per discretization can be seen in Fig 5.3(a) and Fig. 5.3(b) respectively. The
shapes produced by the DBN for each discretization and the ones from the convolution stage
per discretization can be seen in Fig. 5.4(a) and Fig. 5.4(b) respectively.

Table 5.2 DL-SCALE performance in Test-Example A.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

20,000 299 20.40 105.74 66 20.08 47.50 55.08 1.54
50,000 308 21.24 289.37 73 21.07 95.82 66.89 0.82
75,000 396 21.71 583.18 77 21.53 143.91 75.32 0.85
100,000 439 21.94 882.32 63 21.85 161.19 81.73 0.40

In Test-Example B, DL-SCALE achieved a maximum reduction of computational time
equal to 81.96% in the case of 100,000 elements in TOPf with respect to SIMP while the
objective function value was decreased by 0.94%. All data recorded in this test can be seen in
Table 5.3. Additionally, the final topologies produced by SIMP alone and the ones proposed
by DL-SCALE, per discretization can be seen in Fig 5.5(a) and Fig. 5.5(b) respectively. The

128 Deep learning in reduced order modeling

Fig. 5.2 Schematic representation of Test-Examples

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 129

Fig. 5.3 Optimized domain for Test-Example A for each discretization: (a) SIMP output, (b)
DL-SCALE output.

130 Deep learning in reduced order modeling

Fig. 5.4 Optimized domains for each discretization of Test-Example A as exported from: (a)
DBN, (b) Convolution.

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 131

shapes produced by the DBN for each discretization and the ones from the convolution stage
per discretization can be seen in Fig. 5.6(a) and Fig. 5.6(b) respectively.

Table 5.3 DL-SCALE performance in Test-Example B.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

20,000 220 144.36 68.03 65 141.31 33.23 51.16 2.11
50,000 322 139.14 259.31 60 136.73 62.32 75.97 1.73
75,000 403 139.46 499.28 59 137.41 88.45 82.28 1.47
100,000 375 138.16 631.16 57 136.86 113.85 81.96 0.94

In Test-Example C, DL-SCALE achieved a maximum reduction of computational time
equal to 82.66% in the case of 100,000 elements in TOPf with respect to SIMP while the
objective function value was decreased by 1.65%. All data recorded in this test can be seen in
Table 5.4. Additionally, the final topologies produced by SIMP alone and the ones proposed
by DL-SCALE, per discretization can be seen in Fig 5.7(a) and Fig. 5.7(b) respectively. The
shapes produced by the DBN for each discretization and the ones from the convolution stage
per discretization can be seen in Fig. 5.8(a) and Fig. 5.8(b) respectively.

Table 5.4 DL-SCALE performance in Test-Example C.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

20,000 49 110.04 17.27 56 106.40 43.68 -153.01 3.31
50,000 147 109.02 131.83 61 107.03 82.11 37.71 1.83
75,000 131 109.84 183.52 90 108.11 155.90 15.05 1.58
100,000 438 111.53 845.44 59 109.70 146.61 82.66 1.65

In Test-Example D, DL-SCALE achieved a maximum reduction of computational time
equal to 76.60% in the case of 100,000 elements in TOPf with respect to SIMP while the
objective function value was decreased by 0.87%. All data recorded in this test can be seen in
Table 5.5. Additionally, the final topologies produced by SIMP alone and the ones proposed
by DL-SCALE, per discretization can be seen in Fig 5.9(a) and Fig. 5.9(b) respectively. The
shapes produced by the DBN for each discretization and the ones from the convolution stage
per discretization can be seen in Fig. 5.10(a) and Fig. 5.10(b) respectively.

Table 5.5 DL-SCALE performance in Test-Example D.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

20,000 219 18.48 69.70 53 18.13 30.13 56.77 1.89
50,000 245 19.00 198.54 64 18.77 68.42 65.54 1.21
75,000 277 19.22 342.51 64 18.99 100.65 70.62 1.20
100,000 321 19.38 540.44 60 19.21 126.45 76.60 0.87

132 Deep learning in reduced order modeling

Fig. 5.5 Optimized domain for Test-Example B for each discretization: (a) SIMP output, (b)
DL-SCALE output.

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 133

Fig. 5.6 Optimized domains for each discretization of Test-Example B as exported from: (a)
DBN, (b) Convolution.

134 Deep learning in reduced order modeling

Fig. 5.7 Optimized domain for Test-Example C for each discretization: (a) SIMP output, (b)
DL-SCALE output.

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 135

Fig. 5.8 Optimized domains for each discretization of Test-Example C as exported from: (a)
DBN, (b) Convolution.

136 Deep learning in reduced order modeling

Fig. 5.9 Optimized domain for Test-Example D for each discretization: (a) SIMP output, (b)
DL-SCALE output.

5.1 DL-SCALE - Deep Learning Assisted Model Upgrading 137

Fig. 5.10 Optimized domains for each discretization of Test-Example D as exported from:
(a) DBN, (b) Convolution.

138 Deep learning in reduced order modeling

In Test-Example E, DL-SCALE achieved a maximum reduction of computational time
equal to 78.04% in the case of 100,000 elements in TOPf with respect to SIMP while the
objective function value was increased by 2.14%. All data recorded in this test can be seen in
Table 5.6. Additionally, the final topologies produced by SIMP alone and the ones proposed
by DL-SCALE, per discretization can be seen in Fig 5.11(a) and Fig. 5.11(b) respectively.
The shapes produced by the DBN for each discretization and the ones from the convolution
stage per discretization can be seen in Fig. 5.12(a) and Fig. 5.12(b) respectively.

Table 5.6 DL-SCALE performance in Test-Example E.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

20,000 186 20.88 59.61 58 20.67 40.45 32.15 0.97
50,000 205 20.95 165.86 59 21.21 72.14 56.50 -1.26
75,000 306 21.04 382.83 57 21.44 97.53 74.52 -1.94

100,000 321 21.17 569.66 56 21.62 125.12 78.04 -2.14

5.2 DLRM-TOP - Deep Learning Reduced Order Model
Upgrading

In the current section of the dissertation, a reduced order methodology, utilizing a deep learn-
ing approach, is proposed for reducing computational load and execution time of topology
optimization problems. Reduced order modeling (ROM) or surrogate modeling, is a tech-
nique used for downscaling a complex model to a simpler and smaller one while preserving
the behavioral aspects of the complex model, targeting to reduced computational needs. The
proposed methodology, DLRM-TOP, was inspired based on observation of the performance
and behaviour of DL-TOP and DL-SCALE. Both these methods present a different approach
to Deep Learning-based, feature learning and prediction in Topology Optimization problems.
As previously stated, TO problems are severely greedy in computational demands while this
is more evident as population of finite elements in the mesh of the domain to be optimized,
increases. For this reason, exploitation of results of simplified models can be very helpful
when dealing with a complex one. Final optimized topologies of simple models can provide
information for determining the final optimized topology of a the complex one. The proposed
methodology is based on this principle while it focuses on reducing computational load as
well.

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 139

Fig. 5.11 Optimized domain for Test-Example E for each discretization: (a) SIMP output, (b)
DL-SCALE output.

140 Deep learning in reduced order modeling

Fig. 5.12 Optimized domains for each discretization of Test-Example E as exported from: (a)
DBN, (b) Convolution.

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 141

5.2.1 DLRM-TOP methodology description

As described in the DL-SCALE presentation section, an STO problem TOPf is defined by
the model properties [L f

xyz, ne f , S f
c , P f

c , V f
t] (domain dimensions, FE population, support

conditions, loading conditions and target volume), where ne f = ne f
x ∗ne f

y ∗ne f
z . Reduced

order STO models with respect to decreased FE population(ne) and identical remaining
properties can be described as: TOPR

(i) : [L f
xyz, ne(i)R , S f

c P f
c , V f

t].
The core procedures of DLRM-TOP methodology are described as follows. Assuming
that STO is to be performed in TOPf , the first necessary step involves generation of five
ROMs, (TOPR

(i)), with the only difference between each one of them and with TOPf being
the population of FEs. The population of FEs follows the rule described in Eq. 5.1. The D(i)

domains for each of the five ROMs are formulated and SIMP is applied to each one of them
separately. Contrary to DL-SCALE, SIMP is applied without premature stopping based on
initial iterations criterion. The procedure finishes for each ROM once SIMP convergence is
achieved and the termination criterion (percentage of change) is satisfied. As a result, the
optimized domain DOPT

(i) is available. Assuming that TOPR
(i) is a 2D domain, its optimized

domain DOPT
(i) can be described as follows:

DOPT
(i) =

dopt

1,1 dopt
1,2 . . . dopt

1,ne(i)x

dopt
2,1 dopt

2,2 . . . dopt

2,ne(i)x
...

...
dopt

ne(i)y ,1
dopt

ne(i)y ,2
. . . dopt

ne(i)y ,ne(i)x

 (5.4)

In the next step, the initial D f of TOPf is created where:

D(0)
f =

d(0)

1,1 d(0)
1,2 . . . d(0)

1,ne(f)
x

d(0)
2,1 d(0)

2,2 . . . d(0)

2,ne(f)
x

...
...

d(0)

ne(f)
y ,1

d(0)

ne(f)
y ,2

. . . d(0)

ne(f)
y ,ne(f)

x

 (5.5)

In the next step, each of the DOPT
(i) is used for generating a topology for D f through interpola-

tion from ne(i)R to ne f . As a result, regarding TOPf , a dataset containing five topologies is

142 Deep learning in reduced order modeling

acquired. This dataset, DTOP, can be represented as:

DTOP =

T (d)

1,1 T (d)
1,2 . . . T (d)

1,ne(f)
x

T (d)
2,1 T (d)

2,2 . . . T (d)

2,ne(f)
x

...
...

T (d)

ne(f)
y ,1

T (d)

ne(f)
y ,2

. . . T (d)

ne(f)
y ,ne(f)

x

where T (d)
i, j =

[
{dk,l}opt

TOP1
, {dm,n}opt

TOP2
, . . . ,{db,c}opt

TOP5

]
, and

i ∈ [1,ne f
y], j ∈ [1,ne f

x], k ∈ [1,ne1
y], l ∈ [1,ne1

x], . . . ,b ∈ [1,ne5
y], c ∈ [1,ne5

x]

(5.6)

As it can be seen in Eq. 5.6, a population of ne f vectors T (d)
i, j are created which vectors

contain the density values of the element of each DOPT
(i) that is closer, in terms of geometric

centers distance, to the element of TOPf that T (d)
i, j describes.

In the following step of DLRM-TOP, a DBN is used for predicting a final density value for
each of the ne f FEs of TOPf , based on its T (d). The output of the DBN is used as SIMP input
and in the final stage, SIMP performs the necessary iterations until achieving convergence. A
flowchart of DLRM-TOP methodology is presented in Fig. 5.13
In order for DBN to be able to discover a correlation between T (d) of each FE and its final
density value in TOP(OPT)

f , a calibration procedure needs to be performed after first creating
a training dataset.

5.2.2 DBN calibration - Training dataset

The training dataset is created by using the two problems presented previously in 4.2.2, the
cantilever beam and the simply supported beam. The two examples can be viewed in Fig.

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 143

Fig. 5.13 Flowchart of DLRM-TOP methodology

4.5. The required form of the dataset in described in Eq. 5.7.[
dopt

TOP1
, dopt

TOP2
, dopt

TOP3
, dopt

TOP4
, dopt

TOP5

](1)
→ d1,TOPf[

dopt
TOP1

, dopt
TOP2

, dopt
TOP3

, dopt
TOP4

, dopt
TOP5

](2)
→ d2,TOPf

...
...[

dopt
TOP1

, dopt
TOP2

, dopt
TOP3

, dopt
TOP4

, dopt
TOP5

](ne−1)
→ dne−1,TOPf[

dopt
TOP1

, dopt
TOP2

, dopt
TOP3

, dopt
TOP4

, dopt
TOP5

](ne)
→ dne,TOPf

Input Target

(5.7)

For each of the test examples, the population of FEs of TOPf is chosen equal to 200,000.
Additionally, 5 different combinations of TOPR

(i) are used while the population of FEs of

144 Deep learning in reduced order modeling

each TOPR in each combination is presented in Eq. 5.8 for test example i:

DATi =

1,000 2,000 3,000 4,000 5,000
2,000 3,000 4,000 5,000 6,000
4,000 5,000 6,000 7,000 8,000
2,000 5,000 7,000 8,000 10,000
6,000 7,000 8,000 9,000 10,000

 (5.8)

Both DAT1 and DAT2 are joined and the training dataset is formulated, consisting of nearly
1,500,000 cases of [T (d)

i, j → d
TOPf
i]. Once calibration is completed, DLRM-TOP can be

applied to any STO problem without the need to recalibrate as density fluctuations of any FE
with respect to model upgrading is examined. The performance of DLRM-TOP is evaluated
against five test examples as presented in the next section.

5.2.3 DLRM-TOP performance

The performance evaluation of DLRM-TOP methodology, is based on a series of five 2D
test-examples, known to literature. The test-cases are solved using SIMP methodology
and record is kept regarding necessary iterations for convergence, objective function value
(compliance) and execution time. The same test-examples are also optimized with the
use of DLRM-TOP methodology and the same records are kept. As according to DLRM-
TOP, iterations are performed on domains with less dense meshes, the comparison is based
solely on execution time while iterations are mentioned just as additional information.
In the case of SIMP, the total time from the domain definition and up to the end of the
final iteration is recorder. In the case of DLRM-TOP, the time from the definition of
DOPT
(i) to the end of the final iteration of D(0)

f is recorded. As DLRM-TOP requires the
formulation of five domains with reduced population of FEs per test case for creating
DOPT
(i) , the population of ne(i)s is equal to [5000, 7000, 10000, 15000, 20000] respectively.

Regarding the population of FEs in the final domain of each test-example, four different
populations are examined in order to evaluate the performance of DLRM-TOP. These four
populations are: [75,000, 100,000, 150,000, 200,000]. The five test-examples used are
described bellow.

Test-Examples description

In Test-Example A, the support conditions refer to fully fixed boundary conditions placed
along the y axis at the left side of the domain and the loading condition refers to two
concentrated forces P along the y axis and applied at the lower and upper corner of the right

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 145

side of the domain. The ratio of nex to ney is equal to 1/3 while the volume fraction is equal
to 30%.

In Test-Example B, the support conditions refer to fully fixed boundary condition along
the x axis ending at the half of the x dimension and the loading condition refers to one
concentrated force P along the y axis and applied in the fourth of the y dimension. The ratio
of nex to ney is equal to 0.5 while the volume fraction is equal to 30%.

In Test-Example C, the support conditions refer to fully fixed boundary conditions along
the x axis, starting at the 3:8ths of the x dimension and the loading conditions refer to four
concentrated forces P along the y axis and applied at intermediate distances equal to 1:3 of
the x dimension. The ratio of nex to ney is equal to 0.5 while the volume fraction is equal to
45%.

In Test-Example D, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y axis, applied in the middle of the y dimension at the base of the structure.
The ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 30%.

In Test-Example E, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y, applied at the half of the y dimension at the top of the structure. The
ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 30%.

It is worth pointing out that a sensitivity filter with radius equal to 3 was chosen in all
cases as SIMP filter. A schematic representation of the test-examples can be seen in Fig.
5.23.

5.2.4 Results

In Test-Example A, DLRM-TOP achieved a maximum reduction of computational time equal
to 80.64% in the case of 200,000 elements in D(0)

f with respect to SIMP while the objective
function value was increased by 0.73%. All data recorded in this test can be seen in Table
5.7. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DLRM-TOP, per discretization can be seen in Fig 5.15(a) and Fig. 5.15(b) respectively.

Table 5.7 DLRM-TOP performance in Test-Example A.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

75,000 251 248.41 404.89 80 249.40 219.40 45.87 -0.40
100,000 331 246.46 736.53 61 247.37 224.06 69.58 -0.37
150,000 340 243.52 1203.95 72 245.15 337.66 71.95 -0.67
200,000 521 242.62 2559.05 86 244.39 495.55 80.64 -0.73

146 Deep learning in reduced order modeling

Fig. 5.14 Schematic representation of Test-Examples

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 147

Fig. 5.15 Optimized domain for Test-Example A for each discretization: (a) SIMP output,
(b) DL-SCALE output.

148 Deep learning in reduced order modeling

In Test-Example B, DLRM-TOP achieved a reduction of computational time equal to
56.91% in the case of 200,000 elements in D(0)

f with respect to SIMP while the objective
function value was decreased by 0.58%. All data recorded in this test can be seen in Table
5.8. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DLRM-TOP, per discretization can be seen in Fig 5.16(a) and Fig. 5.16(b) respectively.

Table 5.8 DLRM-TOP performance in Test-Example B.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

75,000 401 159.86 505.88 79 158.83 292.43 42.19 0.64
100,000 444 158.44 774.02 58 157.83 291.76 62.31 0.38
150,000 514 156.35 1438.26 98 155.73 461.50 67.91 0.40
200,000 367 156.01 1382.55 107 155.10 595.76 56.91 0.58

In Test-Example C, DLRM-TOP achieved a reduction of computational time equal to
78.69% in the case of 200,000 elements in D(0)

f with respect to SIMP while the objective
function value was increased by 0.11%. All data recorded in this test can be seen in Table
5.9. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DLRM-TOP, per discretization can be seen in Fig 5.17(a) and Fig. 5.17(b) respectively.

Table 5.9 DLRM-TOP performance in Test-Example C.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

75,000 131 109.84 225.78 61 109.73 196.48 12.98 0.10
100,000 438 111.53 1025.44 65 111.03 243.43 76.26 0.45
150,000 509 111.52 1888.79 74 21.62 321.29 61.44 0.09
200,000 556 112.51 2838.85 101 112.63 604.94 78.69 -0.11

In Test-Example D, DLRM-TOP achieved a reduction of computational time equal to
60.58% in the case of 200,000 elements in D(0)

f with respect to SIMP while the objective
function value was increased by 0.01%. All data recorded in this test can be seen in Table
5.10. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DLRM-TOP, per discretization can be seen in Fig 5.18(a) and Fig. 5.18(b) respectively.

Table 5.10 DLRM-TOP performance in Test-Example D.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

75,000 261 21.30 330.54 74 21.22 204.30 38.19 0.38
100,000 326 21.45 559.69 79 21.38 252.59 54.87 0.33
150,000 310 21.60 833.30 74 21.62 321.29 61.44 -0.06
200,000 358 21.79 1306.80 99 21.79 515.14 60.58 -0.01

In Test-Example E, DLRM-TOP achieved a reduction of computational time equal to
67.48% in the case of 200,000 elements in D(0)

f with respect to SIMP while the objective

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 149

Fig. 5.16 Optimized domain for Test-Example B for each discretization: (a) SIMP output, (b)
DL-SCALE output.

150 Deep learning in reduced order modeling

Fig. 5.17 Optimized domain for Test-Example C for each discretization: (a) SIMP output, (b)
DLRM-TOP output.

5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading 151

Fig. 5.18 Optimized domain for Test-Example D for each discretization: (a) SIMP output,
(b) DLRM-TOP output.

152 Deep learning in reduced order modeling

function value was decreased by 0.77%. All data recorded in this test can be seen in Table
5.11. Additionally, the final topologies produced by SIMP alone and the ones proposed by
DLRM-TOP, per discretization can be seen in Fig 5.19(a) and Fig. 5.19(b) respectively.

Table 5.11 DLRM-TOP performance in Test-Example E.

ne
SIMP DL-SCALE

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

75,000 314 23.71 462.43 80 23.72 246.44 46.71 -0.05
100,000 393 23.79 813.58 114 23.78 261.53 55.56 0.08
150,000 429 23.99 1396.71 183 23.87 718.71 48.54 0.49
200,000 573 24.16 2538.61 156 23.97 820.53 67.68 0.77

5.3 CN-TOP - Deep Learning Model Enhancing

In recent bibliography, a lot of work is presented on improving image quality and upscaling
image or even video resolution [43, 85, 123, 154, 223] with the use of deep neural net-
works (mainly generative adversarial networks and convolutional neural networks). These
approaches are being used in several forms from object recognition to security identification
applications. Convolutional neural networks have also been applied in TO problems in a
different manner previously [198]. In the current section of the dissertation, the application of
such methodology for reducing computational load of TO in a reduced order model manner.

5.3.1 CN-TOP methodology description

As previously stated, TO result of a 2D problem is a matrix Dv where each value represents
the material density in the current FE. For example, an optimized domain as described in Eq.

5.3 CN-TOP - Deep Learning Model Enhancing 153

Fig. 5.19 Optimized domain for Test-Example E for each discretization: (a) SIMP output, (b)
DLRM-TOP output.

154 Deep learning in reduced order modeling

5.9 is visualized in gray-scale as it can be seen in Fig. 5.20.

Dv =

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 0.86 0.81 0.80 0.79 0.79 0.79
0.27 0.37 0.57 0.75 0.81 0.68 0.46 0.28 0.21 0.20 0.21
0.01 0.03 0.12 0.34 0.62 0.78 0.66 0.38 0.15 0.05 0.02
0.00 0.00 0.01 0.09 0.29 0.57 0.78 0.73 0.49 0.25 0.13
0.00 0.00 0.00 0.01 0.05 0.20 0.47 0.71 0.76 0.59 0.42
0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.36 0.62 0.75 0.73
0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.17 0.45 0.73 0.87
0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.36 0.62 0.75 0.73
0.00 0.00 0.00 0.01 0.05 0.20 0.47 0.71 0.76 0.59 0.42
0.00 0.00 0.01 0.09 0.29 0.57 0.78 0.73 0.49 0.25 0.13
0.01 0.03 0.12 0.34 0.62 0.78 0.66 0.38 0.15 0.05 0.02
0.27 0.37 0.57 0.75 0.81 0.68 0.46 0.28 0.21 0.20 0.21
1.00 1.00 1.00 1.00 1.00 0.86 0.81 0.80 0.79 0.79 0.79
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(5.9)

Fig. 5.20 Visualization of optimized domain Dv according to Eq. 5.9.

5.3 CN-TOP - Deep Learning Model Enhancing 155

Every image, can be described as a matrix with [x,y,z] dimensions where x,y define the
image resolution (i.e. the number of pixels) and z represents the number of colour channels.
By increasing the resolution of an image, magnification of an image is possible with restricted
noise per pixels. In the case of TO, this means that information stored per pixel is increased
resulting to a smoothed image. This can be translated into increasing the mesh of the 2D
domain without adding significant amount of error in the density information for each FE.
Increasing image resolution techniques are divided into two major categories:

• Single-frame super-resolution, where only one frame of an image is used for increasing
the resolution of the same image

• Multi-frame super-resolution, where several frames of the image are used for generating
a super-resolution image

with several methods proposed in each of the above categories. As generating frames in
TO is time-consuming, the first category is more convenient in this case. One of the most
well-known methods for single-frame image super-resolution is the Fast Super-Resolution
Convolutional Neural Network (FSRCNN) [43] which is based on Super-Resolution Convo-
lutional Neural Network (SRCNN) [42] firstly introduced in 2014.

FSRCNN

FSRCNN is a deep convolutional neural network developed for performing single-frame
image super-resolution. FSRCNN which consists of five functional modules [43]. These
modules are:

• Feature extraction (Convolution)

• Downsize (Convolution)

• Mapping (Convolution)

• Upscale (Convolution)

• De-convolution

FSRCNN can be schematically represented as seen in Fig. 5.21.

156 Deep learning in reduced order modeling

Fig. 5.21 Schematic representation of an FSRCNN.

CN-TOP methodology

As previously described, a 2D optimized domain Di of size [ny,nx] can be represented as a
2D matrix as seen in Eq. 5.10.

Di =

d1,1 d1,2 . . . d1,nx

d2,1 d2,2 . . . d2,nx
...

...
dny,1 dny,2 . . . dny,nx

 (5.10)

where di, j is the density value of the [i, j] FE, while the image of this topology can be
described by the Imi matrix presented in Eq. 5.11.

Imi =

v1,1 v1,2 . . . v1,px

v2,1 v2,2 . . . v2,px
...

...
vpy,1 vpy,2 . . . vpy,px

 (5.11)

where vi, j is the pixel colour value of the [i, j] in gray-scale and px, py is the pixel number per
axis. As stated in a previous section, the computational time for applying SIMP is heavily
depended on the number of FEs in the domain. The basic idea behind CN-TOP is to optimize
a coarse domain with SIMP and use a trained FSRCNN network to increase the resolution of
the SIMP result.
The basic steps of CN-TOP are:

5.3 CN-TOP - Deep Learning Model Enhancing 157

• SIMP on coarse domain

• Increased resolution on SIMP output via FSRCNN

• Dense re-meshing of FSRCNN output

• Applying SIMP on re-meshed domain

On the first step, the coarse domain Dc is created with xc ∗ yc number of FEs. This domain
is optimized with the use of SIMP and an optimal topology Dopt

c is acquired. The image
of Dopt

c is then fed into the trained FSRCNN network and the network outputs a topology
image with increased resolution, Imopt

SR in the second step. In the third step, the Imopt
SR image

is translated into a domain Dopt
SR and this domain is re-meshed in a dense manner, resulting

to Dopt
dense with a2 ∗ xc ∗ yc number of FEs where a is the multiplying factor defining the size

proportion between the coarse and the dense domain. The density value of each element
in the dense domain is set equal to the one with the minimum geometric distance from the
coarse domain. Before the fifth step, a convolution is performed on Dopt

dense with the use of a
dilate smoothing filter (d f lt). An example of such a filter can be seen in Eq. 5.12.

d f lt =

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

 (5.12)

In the final step, Dopt
dense is used as SIMP input and optimization is performed until convergence

is achieved and the final topology Dopt
f is acquired. A flowchart of CN-TOP can be seen

in Fig. 5.22. As it can be seen previously, a trained FSRCNN is needed for applying CN-
TOP method. This network needs to be trained in recognizing transformations between TO
problems from coarse to dense meshes. In order for this to be possible, a training set needs
to be defined.

5.3.2 CNN calibration - Training dataset

The calibration of FSRCNN requires the generation of a training dataset that consists of pairs
of input and output optimized topologies where the only difference between member of the
same pair is the population of FEs. In detail, a dataset consisting of 10,000 pairs (20,000
topologies) is generated by using the code presented by Sosnovik and Oseledets [198] and
Hunter et al. [84]. With the use of these codes, 10,000 pairs of optimized topologies where

158 Deep learning in reduced order modeling

Fig. 5.22 Flowchart of CN-TOP method.

xc = yc = 40 and a = 4 where created. The FSRCNN was trained on the above generated
dataset before being used in CN-TOP method.

5.3.3 CN-TOP performance

CN-TOP methodology performance evaluation, is based on five 2D test-examples, known to
literature. The test-cases are solved using SIMP methodology and record is kept regarding
necessary iterations for convergence, objective function value (compliance) and execution
time. The same test-examples are also optimized with the use of CN-TOP methodology and
the same records are kept. As according to CN-TOP, iterations are performed on a domain
with less dense mesh along with the final one, the comparison is based solely on execution
time while iterations are mentioned just as additional information. In the case of SIMP, the
total time from the domain definition and up to the end of the final iteration is recorder. In
the case of CN-TOP, the time from the definition of Dc to the end of the final iteration of
D f is recorded. As CN-TOP requires the formulation of a domain with reduced population
of FEs per test case for creating Dc, the population of nec is equal to 20000. Regarding the
population of FEs in the final domain, it is chosen equal to 180,000, nine times bigger than
the reduced one (a = 3). The five test-examples used are described below.

5.3 CN-TOP - Deep Learning Model Enhancing 159

Test-Examples description

In Test-Example A, the support conditions refer to two fixed joints placed at the two right
corners of the domain and the loading conditions refer to two concentrated forces P along
the x axis and applied in the left and right middle of the span in the y dimension. The ratio of
nex to ney is equal to 0.5 while the volume fraction is equal to 30%.

In Test-Example B, the support conditions refer to fully fixed boundary condition along
the x axis ending at the half of the x dimension and the loading condition refers to one
concentrated force P along the y axis and applied in the fourth of the y dimension. The ratio
of nex to ney is equal to 0.5 while the volume fraction is equal to 30%.

In Test-Example C, the support conditions refer to fully fixed boundary conditions along
the x axis, starting at the 3:8ths of the x dimension and the loading conditions refer to four
concentrated forces P along the y axis and applied at intermediate distances equal to 1:3 of
the x dimension. The ratio of nex to ney is equal to 0.5 while the volume fraction is equal to
50%.

In Test-Example D, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y axis, applied in the middle of the y dimension at the base of the structure.
The ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 30%.

In Test-Example E, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y, applied at the half of the y dimension at the top of the structure. The
ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 30%.

It is worth pointing out that a sensitivity filter with radius equal to 3 was chosen in all
cases as SIMP filter. A schematic representation of the test-examples can be seen in Fig.
5.23.

5.3.4 Results

In Test-Example A, CN-TOP achieved a reduction of computational time equal to 67.90%
with respect to SIMP while the objective function value was decreased by 0.25%. The
final topology produced by SIMP alone, the one proposed by CN-TOP, the CNN proposed
topology and the one exported from convolution can be seen in Fig 5.24(a),(b),(c) and Fig.
5.24(d) respectively. In Test-Example B, CN-TOP achieved a reduction of computational
time equal to 75.22% with respect to SIMP while the objective function value was decreased
by 0.64%. The final topology produced by SIMP alone, the one proposed by CN-TOP,
the CNN proposed topology and the one exported from convolution can be seen in Fig

160 Deep learning in reduced order modeling

Fig. 5.23 Schematic representation of Test-Examples

5.3 CN-TOP - Deep Learning Model Enhancing 161

5.25(a),(b),(c) and Fig. 5.25(d) respectively. In Test-Example C, CN-TOP achieved a
reduction of computational time equal to 71.71% with respect to SIMP while the objective
function value was increased by 0.19%. The final topology produced by SIMP alone, the one
proposed by CN-TOP, the CNN proposed topology and the one exported from convolution
can be seen in Fig 5.26(a),(b),(c) and Fig. 5.26(d) respectively. In Test-Example D, CN-
TOP achieved a reduction of computational time equal to 72.40% with respect to SIMP
while the objective function value was decreased by 0.05%. The final topology produced
by SIMP alone, the one proposed by CN-TOP, the CNN proposed topology and the one
exported from convolution can be seen in Fig 5.27(a),(b),(c) and Fig. 5.27(d) respectively.
In Test-Example E, CN-TOP achieved a reduction of computational time equal to 67.87%
with respect to SIMP while the objective function value was decreased by 0.25%. The
final topology produced by SIMP alone, the one proposed by CN-TOP, the CNN proposed
topology and the one exported from convolution can be seen in Fig 5.28(a),(b),(c) and Fig.
5.28(d) respectively. All data recorded for CN-TOP can be seen in Table 5.12.

Table 5.12 DLRM-TOP performance in Test-Examples A to E.

Test Example
SIMP CN-TOP

Acceleration (%) Obj. Function Value Reduction (%)
Iterations Obj. Function Value Time Iterations Obj. Function Value Time

A 375 242.96 1336.94 108 242.36 429.10 67.90 0.25
B 507 156.77 2025.16 101 155.76 501.74 75.22 0.64
C 517 111.98 2243.77 142 112.19 634.77 71.71 -0.19
D 336 21.67 1347.37 71 21.66 371.94 72.40 0.05
E 310 24.12 1050.74 86 23.85 337.56 67.87 1.11

162 Deep learning in reduced order modeling

Fig. 5.24 Optimized domain for Test-Example A for each discretization: (a) SIMP output,
(b) CN-TOP output, (c) CNN output, (d) Convolution output.

5.3 CN-TOP - Deep Learning Model Enhancing 163

Fig. 5.25 Optimized domain for Test-Example B for each discretization: (a) SIMP output, (b)
CN-TOP output, (c) CNN output, (d) Convolution output.

164 Deep learning in reduced order modeling

Fig. 5.26 Optimized domain for Test-Example C for each discretization: (a) SIMP output, (b)
CN-TOP output, (c) CNN output, (d) Convolution output.

5.3 CN-TOP - Deep Learning Model Enhancing 165

Fig. 5.27 Optimized domain for Test-Example D for each discretization: (a) SIMP output,
(b) CN-TOP output, (c) CNN output, (d) Convolution output.

166 Deep learning in reduced order modeling

Fig. 5.28 Optimized domain for Test-Example E for each discretization: (a) SIMP output, (b)
CN-TOP output, (c) CNN output, (d) Convolution output.

Chapter 6

Generative design based on Deep
Learning and Optimization

6.1 Generative design

Generative design (GD) can be described as a methodology of creating a population of
designs with respect to architect/engineer-defined constraints with the use of one or more
algorithms in an iterative manner. GD works as a designer support tool which helps in
expanding possible prototypes for the small number of designer’s experience generated
ones to the large number of computer generated ones. It differs from shape-generating
optimization methods like topology optimization as GD focuses on producing a population
of feasible solutions with respect to constraints and criteria while optimization methods focus
on discovering a single optimal solution according to architect/engineer-defined constraints.
Usually, GD is performed with the use of nature-mimicking procedures like growth, evolution,
etc. In a short historical review, it can be witnessed that GD methods were introduced around
1975 with an effort to algorithmically mimic design patterns in nature like leafs [130] and
dendritic shapes [140]. In the following years up to today, several other approaches have
been proposed [5, 20, 69, 80, 157]. The main sectors where GD is applicable are:

• Product manufacturing

• Automotive industry

• Aerospace industry

• Architectural and construction industry

Some widely used methods in GD in the past in architecture are [195]:

168 Generative design based on Deep Learning and Optimization

• Cellular automata [214, 219]

• L-systems [130]

• Shape grammar [199]

In the recent years commercial software from well-known companies in the field of engineer-
ing software have been presented with some of them being:

• Autodesk’s Fusion 360©

• Altair’s Inspire©

It is also worth pointing out that commercial applications of GD are now a reality. For
example, a part of AIRBUS 320© has been developed with a GD technique based on two
algorithms, Slime Mold and Bone Growth algorithm [7], also the office floor planning
of Autodesk’s Mars© building in Toronto was also designed via GD [8, 212]. Regarding
manufacturing industry, the combination of GD and 3D printing is already being used in
several product types ranging from furniture to bicycle parts and many more.

In the current chapter of the dissertation, a new method for Generative Design inspired by
the combination of SIMP approach and methodologies developed in the framework of this
thesis (i.e. DL-SCALE and DLRM-TOP) is presented. This method presents a significant
ability to propose different designs in a automated way through topology optimization and
deep learning while the only necessary architect/engineer effort is the definition of the
design domain size, loading and support conditions and preferred volume fraction (which
are also parameters that will affect the aesthetic of the designs obtained and represent the
architect/engineer intervention).

6.2 DzAIN - Generative design by Deep Learning

In the current section a method for computer generated design, DzAIN, is described. This
method is based on the form-finding principles of SIMP and the differentiating shape gener-
ation strength of DL-SCALE and DLRM-TOP. SIMP has the ability to define the optimal
volume distribution inside a domain with respect to structural performance, worth mentioning
that the proposed methodology is not limite to SIMP only it is straight forward to imple-
mented either with Level-Set or BESO approaches. As a gradient-based method, a domain
with specific loading and support conditions and identical SIMP parameters (filter, volume
fraction, etc.) will always converge to the same shape. The goal of generative design is to
offer the designer the ability to quickly produce a large number of initial designs without

6.2 DzAIN - Generative design by Deep Learning 169

any architect/engineer interference apart from providing the problem definition parameters.
DL-SCALE and DLRM-TOP have the ability to generate alternate shapes according to the
data used as input. DzAIN, presented in detail below, exploits the combination of the above
features of SIMP, DLRM-TOP and DL-SCALE.

6.2.1 DzAIN method description

An STO problem, as previously mentioned, is characterized by the following model properties
of TOP f :

• Domain dimensions (L f
xyz)

• FE population (ne f)

• Support conditions (S f
c)

• Loading conditions (P f
c)

• Target volume (V f
t)

From the generative design aspect, these properties represent the user input from which sev-
eral shapes must be produced. As described in the DL-SCALE and DLRM-TOP description
sections, the SIMP-generated premature and final topologies of five reduced models with
different ne f s can assist in finding the optimal topology of a model with significantly denser
mesh. It can be witnessed in the results of DLRM-TOP and DL-SCALE that although the
objective function value of DL-based generated topologies is similar to the one generated by
SIMP, worth mentioning that the shapes of the two DL methods present differences with the
ones produced by SIMP. This observation led to the creation of DzAIN method.
According to DzAIN, when designing a specific shape, the model properties of TOP f need to
be defined by the architect/engineer. Accordingly, the model properties of TOPR

1 ,TOPR
2 ,TOPR

3 ,

TOPR
4 and TOPR

5 are defined. SIMP is applied to each of the TOPR
i and 35 iterations are

performed. Record is kept of the density matrix D at 5 different numbers of performed
iterations resulting to Di

j where j ∈ [5,10,15,20,25,35] and i ∈ [1,2,3,4,5]. Those Di
j

matrices are extrapolated to the mesh dimensions of TOP f as described in DL-SCALE and
DLRM-TOP methods, creating Di(F)

j .
Accordingly, six different inputs T k

z are created where k ∈ [1,2,3,4,5,6] by using the

170 Generative design based on Deep Learning and Optimization

extrapolated density matrices for each i. T k
z can be seen in Eq. 6.1.

T k
z =

T (d)

1,1 T (d)
1,2 . . . T (d)

1,ne(f)
x

T (d)
2,1 T (d)

2,2 . . . T (d)

2,ne(f)
x

...
...

T (d)

ne(f)
y ,1

T (d)

ne(f)
y ,2

. . . T (d)

ne(f)
y ,ne(f)

x

where T (d)
i, j =

[
{di, j}k

Di(F)
j

, {di, j}k
Di(F)

j
, . . . ,{di, j}k

Di(F)
j

]
, and

i ∈ [1,ne f
y], j ∈ [1,ne f

x]

(6.1)

Each of the six T k
z is used as input for a trained DBN network as described in DLRM-TOP

section. The output of the network is a proposed topology with ne f FEs. The procedure
continues by applying for different convolution filters in each T k

z and four filtered T k(Filt)
z

density matrices are acquired per k. As a result, a total of 24 proposed density matrices are
acquired. Each one is then passed into SIMP for fine-tuning. The fine-tuning step includes
20 iterations. The final output of fine-tuning are 24 proposed shapes with respect to initial
problem definition. It is worth pointing out that no changes where made in the sensitivity
filter and the volume fraction in order to prove the capabilities of DzAIN with no changes
in the STO problem definition. It is obvious that by including changes in the above two
parameters, the population of proposed shapes can increase rapidly. A flowchart of DzAIN
can be seen in Fig. 6.1.

6.2.2 DzAIN method test examples

DzAIN performance is evaluated on four 2D test-examples known to literature. The FE
populations used in reduced domains are equal to [7,000,10,000,15,000,20,000,25,000]
while the number of FEs in the final domain is equal to 75,000.

In Test-Example A, the support conditions refer to two fixed joints placed at the two right
corners of the domain and the loading conditions refer to two concentrated forces P along
the x axis and applied in the left and right middle of the span in the y dimension. The ratio of
nex to ney is equal to 0.5 while the volume fraction is equal to 60%.

In Test-Example B, the support conditions refer to fully fixed boundary condition along
the x axis ending at the half of the x dimension and the loading condition refers to one

6.2 DzAIN - Generative design by Deep Learning 171

Fig. 6.1 Flowchart of DzAIN method.

concentrated force P along the y axis and applied in the fourth of the y dimension. The ratio
of nex to ney is equal to 0.5 while the volume fraction is equal to 35%.

In Test-Example C, the support conditions refer to two fixed joints placed at both left and
right lower end corners of the domain and the loading conditions refer to one concentrated
force P along the y, applied at the half of the y dimension at the top of the structure. The
ratio of nex to ney is equal to 1/3 while the volume fraction is equal to 50%.

In Test-Example D, the support conditions refer to two fixed joints, the first is placed at
the lower right corner of the domain the second at the 3/5 of the lower edge. The loading
conditions refer to a distributed load P along the y axis and applied along the x dimension.
The ratio of nex to ney is equal to 0.5 while the volume fraction is equal to 45%.

It is worth pointing out that a sensitivity filter with radius equal to 3 was chosen in all
cases as SIMP filter while no symmetry is imposed. A schematic representation of the
test-examples can be seen in Fig. 6.2.

6.2.3 DzAIN method results

In Test-Example A, 24 different designs generated by DzAIN are presented in Fig. 6.3a, 6.4b, 6.5c.
The designs generated for Test-Examples B,C and D can be seen in Fig. 6.6a, 6.7b, 6.8c,

172 Generative design based on Deep Learning and Optimization

Fig. 6.2 Schematic representation of Test-Examples

Fig. 6.9a, 6.10b, 6.11c, and Fig. 6.12a, 6.13b, 6.14c, respectively. These figures present the
variation of the equivalent solution generated by means of DzAIN.

6.2 DzAIN - Generative design by Deep Learning 173

Fig. 6.3 a. Generated designs 1-8 for Test-Example A.

174 Generative design based on Deep Learning and Optimization

Fig. 6.4 b. Generated designs 9-16 for Test-Example A.

6.2 DzAIN - Generative design by Deep Learning 175

Fig. 6.5 c. Generated designs 17-24 for Test-Example A.

176 Generative design based on Deep Learning and Optimization

Fig. 6.6 a. Generated designs 1-8 for Test-Example B.

6.2 DzAIN - Generative design by Deep Learning 177

Fig. 6.7 b. Generated designs 9-16 for Test-Example B.

178 Generative design based on Deep Learning and Optimization

Fig. 6.8 c. Generated designs 17-24 for Test-Example B.

6.2 DzAIN - Generative design by Deep Learning 179

Fig. 6.9 a. Generated designs 1-8 for Test-Example C.

180 Generative design based on Deep Learning and Optimization

Fig. 6.10 b. Generated designs 9-16 for Test-Example C.

6.2 DzAIN - Generative design by Deep Learning 181

Fig. 6.11 c. Generated designs 17-24 for Test-Example C.

182 Generative design based on Deep Learning and Optimization

Fig. 6.12 a. Generated designs 1-8 for Test-Example D.

6.2 DzAIN - Generative design by Deep Learning 183

Fig. 6.13 b. Generated designs 9-16 for Test-Example D.

184 Generative design based on Deep Learning and Optimization

Fig. 6.14 c. Generated designs 17-24 for Test-Example D.

Chapter 7

Future Work

In the course of this dissertation, knowledge and experience was gained in the fields of
metaheuristics, machine learning, topology optimization, generative design and reduced
order modeling while generated work on these fields was presented previously. Dealing
with these topics on an everyday basis, led to the presented work but it, more importantly,
led to new ideas and areas for development and testing. According to the writer’s opinion,
deep learning approaches present important features that can be exploited in problems that
structural engineers face in their everyday practice. These features need to be thoroughly
examined in order to be able to find the specific approach that can be assisted by deep
learning. Additionally, new methods of deep learning usage on civil engineering problems
can be established.
As also discussed and presented previously, deep leaning has proven to be successful in
applications of:

• Computational load reduction

• Shape diversification

• Massive data handling

• Discovery of higher order correlations in data

The above abilities were identified through applications presented in previous chapters of
this dissertation. In the following part of the dissertation, a few thoughts on possible future
work of the writer are denoted.

186 Future Work

7.1 Deep Learning in Topology Optimization

Apart from the work presented previously in the application of deep learning techniques in
TO problems, there are several aspects that could be further examined. These aspects involve:

• Improvement of training dataset used in the methods previously described.

• Creating an on-line application for DL-TOP.

• Applying DL-SCALE and DLRM-TOP in 3D topology optimization problems.

• Further examine possible applications of CNNs in topology optimization problems.

Improvement of training dataset

In DL-TOP, a DBN network is trained in discovering correlations between initial values of
density of a FE and its final value. Two datasets were created and tested with respect to
correct prediction and generality. As described previously, these two databases are different
in terms of distribution of classes. In the training procedure of both databases, the success
rate was in the range of 87% to 92%. According to the writer’s opinion, further tweaking of
DBN training parameters can be examined. By applying these two modifications, the success
rate of training can be increased up to a maximum of 95% which will lead to even better
improvement of DL-TOP performance. According to the writer’s opinion, a rate higher to
95% cannot be achieved realistically as there will always be some elements that alter their
density value in an unpredictable manner.

DL-TOP on-line

As previously presented, DL-TOP performs significantly well regardless of the type of
topology optimization problem. Moreover, the executional time of DL-TOP is minimal,
even on a serial mode of execution. In most cases, the significant part of DL-TOP from the
perspective of time, is the execution of 36 iterations of the original topology optimization
problems. The other two parts of the method (prediction of a close-to-final density per FE
and SIMP fine-tuning) require much less time than the first one. By exploiting this advantage,
an on-line application can be created for applying DL-TOP in any user-applied TO problem.
It is also very important that DL-TOP does not need any information regarding geometry,
loading conditions, support conditions, volume fraction, etc. of the user-defined TO problem.
A user can provide the first 36 results of SIMP (density per iteration per FE) and an on-line
pre-trained DBN will export the close-to-optimal density value for all FEs in the domain.
This export can be fine-tuned by the user through SIMP application.

7.2 Conceptual Design and 3D printing 187

3D DL-SCALE and DLRM-TOP

In this dissertation, the two proposed model-upgrading methods (DL-SCALE and DLRM-
TOP) are proven to be significantly successful in reducing computational load of 2D TO
problems. The current formulation of these two methodologies is applicable in 2D TO
problems. The basic concept of each of them is not restricted to 2D problems but it can also
be applied to 3D ones where acceleration is expected to be even higher. In order for this to
happen, a modification is needed in the way that the initial volume of the FEs of the final
domain is chosen with respect to the ones of the less dense meshed domains. For example,
geometric distance can again be the criterion but in this case, 3D coordinates must be used.
Additionally, the convolution part of both methods also needs to be modified in order to be
applicable on 3D domains. Both the above changes are necessary but doable at the same time.
As a result, it is the writer’s opinion that DL-SCALE and DLRM-TOP can be successfully
applied to 3D TO problems as well.

Exploit CNN applications in Topology optimization

While CNNs are becoming very successful in several complex real-life applications, they are
mostly used in image-related tasks, mainly due to their architecture. Although TO presents
an image-related aspect, as a form-finding method, further applications of CNNs can be
examined which are not image-based. New CNN architectures are being proposed with
increased capabilities and input characteristics. As in structural engineering, almost no
real-life tasks are two-dimensional, it is worth looking for new features in CNNs that can
exploit their advantage of very deep architectures for assisting researchers in the field of
structural engineering.

7.2 Conceptual Design and 3D printing

In Chapter 6, DzAIN, a DL/Optimization approach on Conceptual Design was presented.
With this method, a large number of initial designs can be produced in a very short time while
the designer can select the most preferable one(s) and edit them according to his insights
and intuition. TO has been successfully applied in massive production of mechanical parts
in several structures ranging from car to airplane parts. 3D printing has also assisted in
automating the procedure of exporting the designer’s model to a usable part. For various,
mainly technical and economical reasons, this practice has not been yet applicable to civil
engineering structures.
Recent advances in 3D printing are bringing metal structures and fiber-reinforced concrete

188 Future Work

closer to structural engineering. As this major gap is being bridged, the exploitation of TO
and conceptual design in civil engineering is approaching every-day practices. According to
the writer’s belief, this field of research will attract a lot of interest in the following years.
TO, DL and 3D printing are not only necessary but almost obligatory in this research field.
Either in terms of pre-constructed parts or free-form structures, the above methodologies will
be proven very useful.
As a result, the writer is very interesting in working on defining a prototype framework under
which the previously described methodologies will be used in a collaborative manner in the
field of civil engineering constructions.

7.3 Deep Learning in Dynamic Analysis of Structures

According to the presented work regarding Deep Learning and reduced order models, there
are significant capabilities in this approach. Dynamic structural analysis represent also a
computationally demanding procedure. An attempt to accelerate the procedure through deep
learning will be examined. The computational load of dynamic analysis depends on the
number of nodes in the structural system examined and the number of seismic accelerations
examined. According to the writer’s opinion, a DL approach can be examined on two levels:

• Reduce dimension of acceleration time-series.

• Reduce number of nodes according to seismic behavior.

Both these approaches will be examined in the future.

References

[1] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
boltzmann machines. Cognitive science, 9(1):147–169.

[2] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.
Machine learning, 6(1):37–66.

[3] Allaire, G., Jouve, F., and Toader, A.-M. (2002). A level-set method for shape optimiza-
tion. Comptes Rendus Mathematique, 334(12):1125–1130.

[4] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., and Sigmund, O. (2011).
Efficient topology optimization in matlab using 88 lines of code. Structural and Multidis-
ciplinary Optimization, 43(1):1–16.

[5] Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A. (2009).
Physics-based generative design.

[6] Audet, C. and Dennis, Jr., J. E. (2006). Mesh adaptive direct search algorithms for
constrained optimization. SIAM J. on Optimization, 17(1):188–217.

[7] Autodesk (2018a). Customer stories: Airbus. https://www.autodesk.com/
customer-stories/airbus. Accessed: 2019-03-15.

[8] Autodesk (2018b). Space-planning. https://www.autodesk.com/autodesk-university/
article/Generative-Design-Architectural-Space-Planning-2018. Accessed: 2019-03-15.

[9] Avtzis, D., Arthofer, W., Stauffer, C., Avtzis, N., and Wegensteiner, R. (2010). Pityogenes
chalcographus (coleoptera, scolytinae) at the southernmost borderline of norway spruce in
greece. Entomologia Hellenica, 19:3–13.

[10] Bell, M. G. H. (2000). A game theory approach to measuring the performance reliability
of transport networks. Transportation Research Part B: Methodological, 34(6):533–545.

[11] Bellman, R. E. (1957). Dynamic Programming. Courier Dover Publications.

[12] Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem.
Structural optimization, 1(4):193–202.

[13] Bendsøe, M. P. and Kikuchi, N. (1988). Generating optimal topologies in structural
design using a homogenization method. Computer methods in applied mechanics and
engineering, 71(2):197–224.

https://www.autodesk.com/customer-stories/airbus
https://www.autodesk.com/customer-stories/airbus
https://www.autodesk.com/autodesk-university/article/Generative-Design-Architectural-Space-Planning-2018
https://www.autodesk.com/autodesk-university/article/Generative-Design-Architectural-Space-Planning-2018

190 References

[14] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In Advances in neural information processing systems, pages
153–160.

[15] Bertsekas, D. (1999). Nonlinear Programming. Athena Scientific.

[16] Borrvall, T. and Petersson, J. (2001). Large-scale topology optimization in 3d using
parallel computing. Computer methods in applied mechanics and engineering, 190(46-
47):6201–6229.

[17] Bourdin, B. and Chambolle, A. (2003). Design-dependent loads in topology optimiza-
tion. ESAIM: Control, Optimisation and Calculus of Variations, 9:19–48.

[18] Brighton, H. and Mellish, C. (2002). Advances in instance selection for instance-based
learning algorithms. Data mining and knowledge discovery, 6(2):153–172.

[19] Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathematics, 6(1):76–90.

[20] Caldas, L. (2006). Gene_arch: an evolution-based generative design system for sus-
tainable architecture. In Intelligent computing in engineering and architecture, pages
109–118. Springer.

[21] Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive divergence learning.
In Aistats, volume 10, pages 33–40. Citeseer.

[22] Cauchy, A. (1847). Methodes generales pour la resolution des systemes d’ equations
simultanees. C.R. Acad. Sci. Par., 25:536–538.

[23] Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017). Deep learning-based crack damage
detection using convolutional neural networks. Computer-Aided Civil and Infrastructure
Engineering, 32(5):361–378.

[24] Challis, V. J., Roberts, A. P., and Grotowski, J. F. (2014). High resolution topology
optimization using graphics processing units (gpus). Structural and Multidisciplinary
Optimization, 49(2):315–325.

[25] Chandrinos, S. K. and Lagaros, N. D. (2018). Construction of currency portfolios by
means of an optimized investment strategy. Operations Research Perspectives, 5:32 – 44.

[26] Chang, S. E. and Nojima, N. (2001). Measuring post-disaster transportation system
performance: the 1995 kobe earthquake in comparative perspective. Transportation
Research Part A: Policy and Practice, 35(6):475 – 494.

[27] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015). Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2722–2730.

[28] Chen, D., Wang, J., Zou, F., Hou, W., and Zhao, C. (2012). An improved group search
optimizer with operation of quantum-behaved swarm and its application. Applied Soft
Computing Journal, 12(2):712–725.

References 191

[29] Chen, L.-Q. (2002). Phase-field models for microstructure evolution. Annual review of
materials research, 32(1):113–140.

[30] Chen, W.-N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.-H., Chung, H.-H., Li, Y., and Shi,
Y.-H. (2013). Particle swarm optimization with an aging leader and challengers. IEEE
Transactions on Evolutionary Computation, 17(2):241–258.

[31] Christensen, P. W. and Klarbring, A. (2008). An introduction to structural optimization,
volume 153. Springer Science and Business Media.

[32] Clark, P. (1989). Exemplar-based reasoning in geological prospect appraisal. Citeseer.

[33] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297.

[34] Dantzig, G. B. (1990). Origins of the simplex method. A History of Scientific Computing,
pages 141–151.

[35] Dapogny, C., Faure, A., Michailidis, G., Allaire, G., Couvelas, A., and Estevez, R.
(2017). Geometric constraints for shape and topology optimization in architectural design.
Computational Mechanics, 59(6):933–965.

[36] Das, S. and Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation, 15(1):4–31.

[37] Davidon, W. C. (1991). Variable metric method for minimization. SIAM Journal on
Optimization, 1(1):1–17.

[38] Deaton, J. D. and Grandhi, R. V. (2014). A survey of structural and multidisciplinary
continuum topology optimization: post 2000. Structural and Multidisciplinary Optimiza-
tion, 49(1):1–38.

[39] Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications. Foundations
and Trends® in Signal Processing, 7(3–4):197–387.

[40] Derrac, J., Garcia, S., Molina, D., and Herrera, F. (2011). A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–18.

[41] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pages 647–655.

[42] Dong, C., Loy, C. C., He, K., and Tang, X. (2016a). Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence,
38(2):295–307.

[43] Dong, C., Loy, C. C., and Tang, X. (2016b). Accelerating the super-resolution con-
volutional neural network. In European conference on computer vision, pages 391–407.
Springer.

[44] Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. The MIT Press.

192 References

[45] Duarte, L. S., Celes, W., Pereira, A., Menezes, I. F., and Paulino, G. H. (2015).
Polytop++: an efficient alternative for serial and parallel topology optimization on cpus &
gpus. Structural and Multidisciplinary Optimization, 52(5):845–859.

[46] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.
(2010). Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660.

[47] Eschenauer, H. A., Kobelev, V. V., and Schumacher, A. (1994). Bubble method for
topology and shape optimization of structures. Structural optimization, 8(1):42–51.

[48] Fahlman, S. E., Hinton, G. E., and Sejnowski, T. J. (1983). Massively parallel architec-
tures for al: Netl, thistle, and boltzmann machines. In National Conference on Artificial
Intelligence, AAAI.

[49] Fischer, A. and Igel, C. (2012). An introduction to restricted boltzmann machines. In
Iberoamerican Congress on Pattern Recognition, pages 14–36. Springer.

[50] Fischer, A. and Igel, C. (2014). Training restricted boltzmann machines: An introduc-
tion. Pattern Recognition, 47(1):25–39.

[51] Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer
Journal, 13(3):317–322.

[52] Fletcher, R. and Powell, M. J. (1963). A rapidly convergent descent method for
minimization. The computer journal, 6(2):163–168.

[53] Floudas, C. A. (2000). Deterministic Global Optimization: Theory, Methods and
Applications. Springer-Verlag, Boston, MA.

[54] Freund, Y. and Haussler, D. (1992). Unsupervised learning of distributions on binary
vectors using two layer networks. In Advances in neural information processing systems,
pages 912–919.

[55] Fried, I. (1969). Gradient methods for finite-element eigenproblems. AIAA Journal,
7(4):739–741.

[56] Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural networks, 1(2):119–130.

[57] Gandomi, A. and Alavi, A. (2012). Krill herd: A new bio-inspired optimization
algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12):4831–
4845.

[58] Gao, X., Li, L., and Ma, H. (2017). An adaptive continuation method for topology
optimization of continuum structures considering buckling constraints. International
Journal of Applied Mechanics, 9(07):1750092.

[59] Geem, Z. (2010). Recent advances in harmony search algorithm. Studies in Computa-
tional Intelligence.

[60] Geem, Z. W., Kim, J. H., and Loganathan, G. (2001). A new heuristic optimization
algorithm: Harmony search. SIMULATION, 76(2):60–68.

References 193

[61] Gilmore, P. and Kelley, C. T. (1995). An implicit filtering algorithm for optimization of
functions with many local minima. SIAM J. Optim, 5:269–285.

[62] Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.
Mathematics of computation, 24(109):23–26.

[63] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[64] Hager, W. W. and Zhang, H. (2006). A survey of nonlinear conjugate gradient methods.
Pacific journal of Optimization, 2(1):35–58.

[65] Hennig, P. and Kiefel, M. (2012). Quasi-newton methods: A new direction. Journal of
Machine Learning Research, 14:843–865.

[66] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the theory of neural
computation. Addison-Wesley/Addison Wesley Longman.

[67] Hestenes, M. R. (1956). The conjugate gradient method for solving linear systems. In
Proc. Symp. Appl. Math VI, American Mathematical Society, pages 83–102.

[68] Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems, volume 49. NBS Washington, DC.

[69] Hiller, J. and Lipson, H. (2012). Automatic design and manufacture of soft robots.
IEEE Transactions on Robotics, 28(2):457–466.

[70] Hinton, G. E. (1999). Products of experts. IET.

[71] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.
Neural computation, 14(8):1771–1800.

[72] Hinton, G. E. (2007a). Boltzmann machine. Scholarpedia, 2(5):1668. revision #91076.

[73] Hinton, G. E. (2007b). Learning multiple layers of representation. Trends in cognitive
sciences, 11(10):428–434.

[74] Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In
Neural networks: Tricks of the trade, pages 599–619. Springer.

[75] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554.

[76] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

[77] Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines:
Constraint satisfaction networks that learn. Carnegie-Mellon University, Department of
Computer Science Pittsburgh, PA.

[78] Hooke, R. and Jeeves, T. A. (1961). “ direct search” solution of numerical and statistical
problems. J. ACM, 8(2):212–229.

http://www.deeplearningbook.org

194 References

[79] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558.

[80] Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design
systems for modular physical robots. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4146–
4151. IEEE.

[81] Hu, Z., Bao, Y., and Xiong, T. (2014). Partial opposition-based adaptive differential
evolution algorithms: Evaluation on the cec 2014 benchmark set for real-parameter
optimization. Proceedings of the 2014 IEEE Congress on Evolutionary Computation,
pages 2259–2265.

[82] Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–
154.

[83] Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1):215–243.

[84] Hunter, W. et al. (2017). Topy - topology optimization with python. https://github.com/
williamhunter/topy.

[85] Irani, M. and Peleg, S. (1991). Improving resolution by image registration. CVGIP:
Graphical models and image processing, 53(3):231–239.

[86] Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian optimiza-
tion without the lipschitz constant. Journal of Optimization Theory and Applications,
79(1):157–181.

[87] Kallioras, N., Lagaros, N., and Avtzis, D. (2016). Pity beetle algorithm - a new
metaheuristic inspired by bark beetles for solving engineering problemsk. In 11th HSTAM
International Congress on Mechanics.

[88] Kallioras, N., Lagaros, N., Karlaftis, M., and Pachy, P. (2014a). Harmony search design
optimization of onshore wind farms. In First International Conference on Engineering
and Applied Sciences Optimization Opt-i.

[89] Kallioras, N., Piliounis, G., Karlaftis, M. G., and Lagaros, N. D. (2013). Scheduling
transportation networks and reliability analysis of geostructures using metaheuristics.
In Metaheuristics in Water, Geotechnical and Transport Engineering, pages 345–363.
Elsevier.

[90] Kallioras, N. A., Kazakis, G., and Lagaros, N. (2018a). Deep learning assisted topology
optimization. In The Tenth International Conference on Engineering Computational
Technology.

[91] Kallioras, N. A., Kepaptsoglou, K., and Lagaros, N. D. (2015a). Transit stop inspection
and maintenance scheduling: A gpu accelerated metaheuristics approach. Transportation
Research Part C: Emerging Technologies, 55:246 – 260. Engineering and Applied Sciences
Optimization (OPT-i) - Professor Matthew G. Karlaftis Memorial Issue.

https://github.com/williamhunter/topy
https://github.com/williamhunter/topy

References 195

[92] Kallioras, N. A. and Lagaros, N. D. (2017). A real-time emergency inspection schedul-
ing tool following a seismic event. In Computational Methods in Earthquake Engineering,
pages 405–418. Springer.

[93] Kallioras, N. A., Lagaros, N. D., and Avtzis, D. N. (2018b). Pity beetle algorithm –
a new metaheuristic inspired by the behavior of bark beetles. Advances in Engineering
Software, 121:147 – 166.

[94] Kallioras, N. A., Lagaros, N. D., and Karlaftis, M. G. (2014b). An improved har-
mony search algorithm for emergency inspection scheduling. Engineering Optimization,
46(11):1570–1592.

[95] Kallioras, N. A., Lagaros, N. D., Karlaftis, M. G., and Pachy, P. (2015b). Optimum lay-
out design of onshore wind farms considering stochastic loading. Advances in Engineering
Software, 88:8 – 20.

[96] Kang, F., Li, J., and Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for
accurate global optimization of numerical functions. Information Sciences, 181(16):3508–
3531.

[97] Karaboga, D. and Basturk, B. (2008). On the performance of artificial bee colony (abc)
algorithm. Applied Soft Computing Journal, 8(1):687–697.

[98] Karakasis, M. K., Giotis, A. P., and Giannakoglou, K. C. (2003). Inexact informa-
tion aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization.
International Journal for Numerical Methods in Fluids, 43(10-11):1149–1166.

[99] Karush, W. (1939). Minima of functions of several variables with inequalities as side
constraints. Master’s thesis, Department of Mathematics, Univ. of Chicago, Illinois.

[100] Kashan, H. (2015). A new metaheuristic for optimization: Optics inspired optimization
(oio). Computers and Operations Research, 55:99–125.

[101] Kazakis, G., Kanellopoulos, I., Sotiropoulos, S., and Lagaros, N. D. (2017). Topology
optimization aided structural design: Interpretation, computational aspects and 3d printing.
Heliyon, 3(10):e00431.

[102] Kennedy, J., Eberhart, R., and Shi, Y. (2001). Series in Evolutionary Computation.
Morgan Kaufmann Publishers.

[103] Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings
of the IEEE International Conference on Neural Networks, pages 1942–1948.

[104] Kennedy, J. and Mendes, R. (2002). Population structure and particle swarm per-
formance. In Proceedings of the 2002 Congress on Evolutionary Computation, pages
1671–1676.

[105] Kim, J., Kwon Lee, J., and Mu Lee, K. (2016). Accurate image super-resolution using
very deep convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1646–1654.

196 References

[106] Knizek, M., Stauffer, C., Avtzis, D., and Wegensteiner, R. (2005). Pityogenes
chalcographus. Forestry Compendium.

[107] Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review, 45(3):385–482.

[108] Konstantinidou, M., Kallioras, N., Lagaros, N., Kepaptsoglou, K., and Karlaftis, M.
(2014). Planning post-disaster operations in a high-way network. In First International
Conference on Engineering and Applied Sciences Optimization Opt-i.

[109] Koumousis, V. K. and Katsaras, C. P. (2006). A saw-tooth genetic algorithm combining
the effects of variable population size and reinitialization to enhance performance. IEEE
Transactions on Evolutionary Computation, 10(1):19–28.

[110] Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I.
(2015). Machine learning applications in cancer prognosis and prediction. Computational
and structural biotechnology journal, 13:8–17.

[111] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[112] Kuhn, H. and Tucker, A. (1950). Nonlinear programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492.

[113] Lagaros, N., Plevris, V., and Papadrakakis, M. (2005). Multi-objective design optimiza-
tion using cascade evolutionary computations. Computer Methods in Applied Mechanics
and Engineering, 194:3496–3515.

[114] Lagaros, N. D., Papadrakakis, M., and Kokossalakis, G. (2002). Structural optimiza-
tion using evolutionary algorithms. Computers and Structures, 80(7):571 – 589.

[115] Lagaros, N. D., Vasileiou, N., and Kazakis, G. (2018). A c# code for solving 3d
topology optimization problems using sap2000. Optimization and Engineering.

[116] Le Roux, N. and Bengio, Y. (2008). Representational power of restricted boltzmann
machines and deep belief networks. Neural computation, 20(6):1631–1649.

[117] LeCun, Y., Bengio, Y., and Hinton, G. (2015a). Deep learning. nature, 521(7553):436.

[118] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551.

[119] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E.,
and Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems, pages 396–404.

[120] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A tutorial on
energy-based learning. Predicting structured data, 1(0).

[121] LeCun, Y. et al. (2015b). Lenet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet, page 20.

References 197

[122] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al. (2017a). Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4681–4690.

[123] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al. (2017b). Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4681–4690.

[124] Li, L. and Khandelwal, K. (2015). Volume preserving projection filters and continua-
tion methods in topology optimization. Engineering Structures, 85:144–161.

[125] Li, X. and Yao, X. (2012). Cooperatively coevolving particle swarms for large scale
optimization. IEEE Transactions on Evolutionary Computation, 16(2):210–224.

[126] Liang, J., Qin, A., Suganthan, P., and Baskar, S. (2006). Comprehensive learning parti-
cle swarm optimizer for global optimization of multimodal functions. IEEE Transactions
on Evolutionary Computation, 10(3):281–295.

[127] Liang, J., Qu, B.-Y., and Suganthan, P. (2013a). Problem definitions and evaluation
criteria for the CEC 2014 special session and competition on single objective real-
parameter numerical optimization, Technical Report 201311. Nanyang Technological
University.

[128] Liang, J., Qu, B.-Y., Suganthan, P., and Hernández-Díaz, A. (2013b). Problem def-
initions and evaluation criteria for the CEC 2013 special session and competition on
real-parameter optimization, Technical Report 201212. Nanyang Technological Univer-
sity.

[129] Liang, J. and Suganthan, P. (2005). Dynamic multi-swarm particle swarm optimizer.
In Proceedings of IEEE Swarm Intelligence Symposium SIS 2005, pages 124–129.

[130] Lindenmayer, A. (1975). Developmental algorithms for multicellular organisms: A
survey of l-systems. Journal of Theoretical Biology, 54(1):3–22.

[131] LISA-Lab (2014). Tutorial, deep learning. University of Montreal.

[132] Loshchilov, I., Stuetzle, T., and Liao, T. (2013). Ranking results of cec’13 special
session and competition on real-parameter single objective optimization. In IEEE Congress
on Evolutionary Computation (CEC).

[133] Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y., et al. (2015). Traffic flow prediction
with big data: A deep learning approach. IEEE Trans. Intelligent Transportation Systems,
16(2):865–873.

[134] Maaranen, H., Miettinen, K., and Penttinen, A. (2007). On initial populations of a
genetic algorithm for continuous optimization problems. Journal of Global Optimization,
37:405–436.

198 References

[135] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014).
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pages
55–60.

[136] Marsden, A. L., Feinstein, J. A., and Taylor, C. A. (2008). A computational framework
for derivative-free optimization of cardiovascular geometries. Computer Methods in
Applied Mechanics and Engineering, 197(21):1890 – 1905.

[137] Marsland, S. (2011). Machine learning: an algorithmic perspective. Chapman and
Hall/CRC.

[138] Martínez-Frutos, J. and Herrero-Pérez, D. (2016). Large-scale robust topology op-
timization using multi-gpu systems. Computer Methods in Applied Mechanics and
Engineering, 311:393–414.

[139] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

[140] Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation, 6(2):117–123.

[141] Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm:
Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204–210.

[142] Meza, J. C. (2010). Steepest descent. WIREs Comput. Stat., 2(6):719–722.

[143] Michalewicz, Z. (2012). Genetic Algorithms + Data Structures = Evolution Programs.
Springer.

[144] Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. (1986). The multi-purpose
incremental learning system aq15 and its testing application to three medical domains.
Proc. AAAI 1986, pages 1–041.

[145] Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm. Knowledge-Based Systems, 89:228–249.

[146] Mitchell, T. M. (1997). Machine learning, International Edition. McGraw-Hill Series
in Computer Science. McGraw-Hill.

[147] Mlejnek, H. (1992). Some aspects of the genesis of structures. Structural optimization,
5(1-2):64–69.

[148] N. S. Khot, L. Berke; Venkayya, V. B. (1979). Comparison of optimality criteria
algorithms for minimum weight design of structures. AIAA Journal, 17.

[149] Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., and Ngo, D. C. L. (2015). Text
mining of news-headlines for forex market prediction: A multi-layer dimension reduction
algorithm with semantics and sentiment. Expert Systems with Applications, 42(1):306–
324.

[150] Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The
Computer Journal, 7(4):308–313.

References 199

[151] Novak, V. (1976). Atlas of Insects Harmful to Forest Trees. Elsevier Scientific
Publishing Company.

[152] Olsson, A., Sandberg, G., and Dahlblom, O. (2003). On latin hypercube sampling for
structural reliability analysis. Structural Safety, 25:47–68.

[153] Papoutsis-Kiachagias, E. M. and Giannakoglou, K. C. (2016). Continuous adjoint
methods for turbulent flows, applied to shape and topology optimization: Industrial
applications. Archives of Computational Methods in Engineering, 23(2):255–299.

[154] Park, S. C., Park, M. K., and Kang, M. G. (2003). Super-resolution image reconstruc-
tion: a technical overview. IEEE signal processing magazine, 20(3):21–36.

[155] Parsopoulos, K. and Vrahatis, M. (2004). Upso: A unified particle swarm optimization
scheme. Lecture Series on Computational Sciences, pages 868–873.

[156] Patterson, J. and Gibson, A. (2017). Deep Learning: A Practitioner’s Approach. "
O’Reilly Media, Inc.".

[157] Pedro, H.-T. C. and Kobayashi, M. H. (2011). On a cellular division method for
topology optimization. International Journal for Numerical Methods in Engineering,
88(11):1175–1197.

[158] Peram, T., Veeramachaneni, K., and Mohan, C. (2003). Fitness-distance-ratio based
particle swarm optimization. In Proceedings of IEEE Swarm Intelligence Symposium SIS
2003, pages 124–129.

[159] Pfeffer, A. (1995). Zentral und westpalaarktische Borken und Kernkafer. Pro Ento-
mologia, c/o Naturhistorisches Museum Basel.

[160] Pirlot, M. (1996). General local search methods. European Journal of Operational
Research, 92(3):493 – 511.

[161] Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm
Intelligence, 1(1):33–57.

[162] Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence,
46(1-2):77–105.

[163] Postner, M. (1974). Scolytidae, Borkenkafer. In: Die Forstschädlinge Europas.
Schwenke W. P. Parey.

[164] Poultney, C., Chopra, S., Cun, Y. L., et al. (2007). Efficient learning of sparse
representations with an energy-based model. In Advances in neural information processing
systems, pages 1137–1144.

[165] Powell, M. J. D. (1994). A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation. Springer Netherlands,
Dordrecht.

[166] Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree,
support vector machine and neuro-fuzzy models in landslide susceptibility mapping using
gis. Computers and Geosciences, 51:350–365.

200 References

[167] Preux, P., Munos, R., and Valko, M. (2014). Bandits attack function optimization. In
Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pages 2245–2252.

[168] Querin, O., Steven, G., and Xie, Y. (1998). Evolutionary structural optimisation (eso)
using a bidirectional algorithm. Engineering computations, 15(8):1031–1048.

[169] Querin, O., Steven, G., and Xie, Y. (2000). Evolutionary structural optimisation using
an additive algorithm. Finite Elements in Analysis and Design, 34(3-4):291–308.

[170] Rao, S. S. (2009). Engineering Optimization: Theory and Practice: Fourth Edition.
John Wiley and Sons.

[171] Ratnaweera, A., Halgamuge, S., and Watson, H. (2004). Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation, 8(3):240–255.

[172] Riche, R. L. and Haftka, R. (2012). On global optimization articles in smo. Structural
and Multidiscipli-nary Optimization, 46(5):627–629.

[173] Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free optimization: a review of
algorithms and comparison of software implementations. Journal of Global Optimization,
56(3):1247–1293.

[174] Rojas-Labanda, S. and Stolpe, M. (2015). Automatic penalty continuation in structural
topology optimization. Structural and Multidisciplinary Optimization, 52(6):1205–1221.

[175] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533.

[176] Rumelhart, D. E. and McClelland, J. L. (1986). Parallel distributed processing:
explorations in the microstructure of cognition. volume 1. foundations. MIT Press,
Cambridge, Ma.

[177] Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree classifier method-
ology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674.

[178] Sahinidis, N. V. (1996). Baron: A general purpose global optimization software
package. Journal of Global Optimization, 8(2):201–205.

[179] Salakhutdinov, R. and Hinton, G. (2007). Learning a nonlinear embedding by pre-
serving class neighbourhood structure. In Artificial Intelligence and Statistics, pages
412–419.

[180] Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In van Dyk, D.
and Welling, M., editors, Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages
448–455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA. PMLR.

[181] Salakhutdinov, R. and Hinton, G. (2012). An efficient learning procedure for deep
boltzmann machines. Neural Computation, 24(8):1967–2006.

References 201

[182] Salomon, R. (1996). Re-evaluating genetic algorithm performance under coordinate
rotation of benchmark functions. a survey of some theoretical and practical aspects of
genetic algorithms. BioSystems, 39(3):263–278.

[183] Sarker, R., Elsayed, S., and Ray, T. (2004). Differential evolution with dynamic
parameters selection for optimization problems. IEEE Transactions on Evolutionary
Computation, 18(5):689–707.

[184] Schmidhuber, J. (1993). Habilitation thesis: Netzwerkarchitekturen, zielfunktionen
und kettenregel.

[185] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks, 61:85–117.

[186] Schwerdtfeger, F. (1929). Ein beitrag zur fortpflanzungsbiologie des borkenkafers
pityogenes chalcographus. L. Zeitschrift für angewandte Entomologie, 15:335–427.

[187] Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimiza-
tion. Mathematics of computation, 24(111):647–656.

[188] Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis.
Cambridge university press.

[189] Shi, Y. and Eberhart, R. (1998). Modified particle swarm optimizer. In Proceedings of
the IEEE Conference on Evolutionary Computation, pages 69–73.

[190] Shi, Y. and Eberhart, R. (2001). Particle swarm optimization with fuzzy adaptive
inertia weight. In Proceedings of the Workshop on Particle Swarm Optimization, pages
101–106.

[191] Shi, Y., Pun, C., Hu, H., and Gao, H. (2016). An improved artificial bee colony and its
application. Knowledge-Based Systems, 107:14–31.

[192] Sigmund, O. (1994). Design of material structures using topology optimization. PhD
thesis, Technical University of Denmark Denmark.

[193] Sigmund, O. (2001). A 99 line topology optimization code written in matlab. Structural
and multidisciplinary optimization, 21(2):120–127.

[194] Sigmund, O. and Maute, K. (2013). Topology optimization approaches. Structural
and Multidisciplinary Optimization, 48(6):1031–1055.

[195] Singh, V. and Gu, N. (2012). Towards an integrated generative design framework.
Design studies, 33(2):185–207.

[196] Smolensky, P. (1986). Information processing in dynamical systems: Foundations
of harmony theory. Technical report, COLORADO UNIV AT BOULDER DEPT OF
COMPUTER SCIENCE.

[197] Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine
learning for network intrusion detection. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 305–316. IEEE.

202 References

[198] Sosnovik, I. and Oseledets, I. (2017). Neural networks for topology optimization.
arXiv preprint arXiv:1709.09578.

[199] Stiny, G. (1980). Introduction to shape and shape grammars. Environment and
planning B: planning and design, 7(3):343–351.

[200] Stockman, G. and Shapiro, L. G. (2001). Computer Vision. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition.

[201] Storn, R. and Price, K. (1997). Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. J. of Global Optimization,
11(4):341–359.

[202] Svanberg, K. (1987). The method of moving asymptotes - a new method for structural
optimization. Optimization and Systems Theory, 24(2):359–373.

[203] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1–9.

[204] Talbi, E. (2006). Metaheuristics: From Design to Implementation. John Wiley and
Sons.

[205] Talischi, C., Paulino, G. H., Pereira, A., and Menezes, I. F. (2012a). Polymesher: a
general-purpose mesh generator for polygonal elements written in matlab. Structural and
Multidisciplinary Optimization, 45(3):309–328.

[206] Talischi, C., Paulino, G. H., Pereira, A., and Menezes, I. F. (2012b). Polytop: a
matlab implementation of a general topology optimization framework using unstruc-
tured polygonal finite element meshes. Structural and Multidisciplinary Optimization,
45(3):329–357.

[207] Tamilselvan, P. and Wang, P. (2013). Failure diagnosis using deep belief learning
based health state classification. Reliability Engineering & System Safety, 115:124–135.

[208] Tanabe, R. and Fukunaga, A. (2014). Improving the search performance of shade
using linear population size reduction. In Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, pages 1658–1665.

[209] Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM J. on
Optimization, 7(1):1–25.

[210] van den Bergh, F. and Engelbrecht, A. (2004). A cooperative approach to participle
swam optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–239.

[211] van Laarhoven, P. and Aarts, E. (2010). Simulated Annealing: Theory and Applications
(Mathematics and Its Applications). Kluwer Academic Publishers.

[212] Villaggi, L., Stoddart, J., Nagy, D., and Benjamin, D. (2018). Survey-based simulation
of user satisfaction for generative design in architecture. In Humanizing Digital Reality,
pages 417–430. Springer.

References 203

[213] Vité, J. (1965). Ist die vorbeugende begiftung von fangbäumen zweckmässig? Allge-
meine Forstzeitschrift für Waldwirtschaft and Umweltvorsorge, 20:438–439.

[214] Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951,
pages 1–41.

[215] Wang, M. Y., Wang, X., and Guo, D. (2003). A level set method for structural topology
optimization. Computer methods in applied mechanics and engineering, 192(1-2):227–
246.

[216] Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., and
Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for
bone scaffolds and orthopaedic implants: a review. Biomaterials, 83:127–141.

[217] Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005). Exponential family harmo-
niums with an application to information retrieval. In Advances in neural information
processing systems, pages 1481–1488.

[218] Wilson, D. R. and Martinez, T. R. (2000). Reduction techniques for instance-based
learning algorithms. Machine learning, 38(3):257–286.

[219] Wolfram, S. (2002). A new kind of science, volume 5. Wolfram media Champaign, IL.

[220] Wood, S. and Bright, D. (1992). A catalog of scolytidae and platypodidae (coleoptera).
Great Basin Naturalist Memoirs, 13:1–833, 835–1553.

[221] Xie, Y. M. and Steven, G. P. (1993). A simple evolutionary procedure for structural
optimization. Computers & structures, 49(5):885–896.

[222] Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., and Fujiyoshii, H. (2014). To
be bernoulli or to be gaussian, for a restricted boltzmann machine. In Pattern Recognition
(ICPR), 2014 22nd International Conference on, pages 1520–1525. IEEE.

[223] Yang, J., Wright, J., Huang, T. S., and Ma, Y. (2010). Image super-resolution via
sparse representation. IEEE transactions on image processing, 19(11):2861–2873.

[224] Yang, X. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press.

[225] Yu, C., Kelley, L., Zheng, S., and Tan, Y. (2014). Fireworks algorithm with differential
mutation for solving the cec 2014 competition problems. In Proceedings of the 2014 IEEE
Congress on Evolutionary Computation, pages 3238–3245.

[226] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer.

[227] Zheng, Y. (2015). Water wave optimization: A new nature-inspired metaheuristic.
Computers and Operations Research, 55:1–11.

[228] Zhigljavsky, A. and Žilinskas, A. (2008). Stochastic Global Optimization. Springer,
Boston, MA.

204 References

[229] Zhou, M. and Rozvany, G. (1991). The coc algorithm, part ii: topological, geometrical
and generalized shape optimization. Computer Methods in Applied Mechanics and
Engineering, 89(1-3):309–336.

[230] Zhu, J.-H., Zhang, W.-H., and Xia, L. (2016). Topology optimization in aircraft
and aerospace structures design. Archives of Computational Methods in Engineering,
23(4):595–622.

[231] Zuber, M. (1994). Ökologie der borkenkäfer. Biologie in unserer Zeit, 3:144–152.

[232] Zumr, V. and Zoldán, T. (1981). Reproductive cycles of ips typographus, i. amitinus
and pityogenes chalcographus (coleoptera, scolytidae). Acta Entomologia Bohemoslovaca,
78:280–289.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Dissertation scope
	1.2 Analysis of chapters
	1.3 Contribution to international literature
	1.3.1 Metaheuristic algorithms
	1.3.2 Topology optimization acceleration
	1.3.3 Model order reduction
	1.3.4 Generative design

	1.4 Scientific work

	2 Mathematical optimization and efficiency of novel algorithms
	2.1 Mathematical optimization formulation
	2.2 Gradient-based algorithms
	2.2.1 Optimality Criteria Algorithm
	2.2.2 Method of Moving Asymptotes

	2.3 Gradient-free algorithms
	2.3.1 Harmony Search and Improved Harmony Search Algorithms
	2.3.2 Pity beetle algorithm

	2.4 Applications
	2.4.1 PBA performance
	2.4.2 Optimal structures inspection following a seismic event

	3 Deep Learning methodologies
	3.1 Machine learning: Types, Methods & Problems
	3.2 Deep Learning
	3.2.1 Restricted Boltzmann Machines
	3.2.2 Deep Belief Networks
	3.2.3 Convolutional Neural Networks

	4 Applied Deep Learning on Topology Optimization
	4.1 Topology Optimization
	4.1.1 Solid Isotropic Material with Penalization - SIMP method

	4.2 DL-TOP - Deep Learning Accelerated Topology Optimization
	4.2.1 DL-TOP methodology description
	4.2.2 Training dataset
	4.2.3 DBN calibration
	4.2.4 DL-TOP implementation
	4.2.5 Test examples

	5 Deep learning in reduced order modeling
	5.1 DL-SCALE - Deep Learning Assisted Model Upgrading
	5.1.1 DL-SCALE methodology description
	5.1.2 Test examples
	5.1.3 Results

	5.2 DLRM-TOP - Deep Learning Reduced Order Model Upgrading
	5.2.1 DLRM-TOP methodology description
	5.2.2 DBN calibration - Training dataset
	5.2.3 DLRM-TOP performance
	5.2.4 Results

	5.3 CN-TOP - Deep Learning Model Enhancing
	5.3.1 CN-TOP methodology description
	5.3.2 CNN calibration - Training dataset
	5.3.3 CN-TOP performance
	5.3.4 Results

	6 Generative design based on Deep Learning and Optimization
	6.1 Generative design
	6.2 DzAIN - Generative design by Deep Learning
	6.2.1 DzAIN method description
	6.2.2 DzAIN method test examples
	6.2.3 DzAIN method results

	7 Future Work
	7.1 Deep Learning in Topology Optimization
	7.2 Conceptual Design and 3D printing
	7.3 Deep Learning in Dynamic Analysis of Structures

	References

