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Executive Summary
Executive Summary

Primary energy consumption has increased exponentially in the last decades due to global
economic growth. Energy is necessary for all aspects of modern life and is used in many
sectors, such as electricity, heating and cooling generation, transportation and industry.
However, energy consumption comes at a cost. Conventional energy systems rely on fossil
fuels which have high carbon dioxide (CO,) emissions. As a result, the environment is affected
due to the contribution of CO; emissions to the greenhouse effect and by extension to climate
change. Providing clean energy and tackling climate change are two of the most important
challenges our planet faces. In the last years, the international community took measures to
reduce CO; emissions, such as the Kyoto protocol and more recently the Paris Agreement.
European Union (EU) is implementing an ambitious set of policies in the fields of energy
efficiency, promotion of renewable energy sources (RES) and reduction of CO.. Greece has

also released an ambitious national energy plan recently based on European energy policies.

Moreover, in the last decades global population has increased dramatically, which leads to
increased consumption of resources, including energy. Additionally, it has been calculated
that about 52% of the global population live in cities, with the number expected to rise in the
following decades. Urban areas account to a large share of energy demand, which leads to
several challenges in order to satisfy it. In this context, urban energy systems are expected to
play a significant role. The future urban energy systems need to be redesigned and offer

sustainable solutions.

A solution towards this goal is the development of Distributed Energy Systems (DES). DES
have many advantages, with the most significant one being the local energy generation which
minimizes energy losses. DES can offer better integration between conventional energy
systems and renewables and can satisfy the energy demand at a single building, a complex
of buildings or even up to a whole city with a varied degree of decentralization. A DES can be
designed to satisfy local energy needs in electricity, heating, and cooling. Also, they can lead
to a reduction of total annual cost (TAC) and CO emissions. In the last years, several models
have been proposed for the design of DES, based on mathematical programming. Those
models applied either single- or multi- objective optimization problems with the most common
objective functions being the minimization of TAC (which includes capital, operational and

maintenance costs) and CO; emissions.
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Executive Summary

Designing a DES is a complex problem in which many aspects need to be considered. This
thesis aims to provide a methodology for the optimal design of DES using multi-objective
mixed-integer linear programming (MILP), with TAC and CO; emissions as the objective
functions. The candidate technologies are: (a) cogeneration units, (b) heat pumps, (c)
absorption chillers, (d) boilers, (e) solar thermal collectors, (f) solar photovoltaics, (g) wind
turbines, (h) thermal energy storage, (i) electric energy storage, (j) district heating network
(DHN) and (k) microgrid. The results offer as outputs the selected technologies and their
respective sizes at each building, the layout of the DHN (if formed), the operational profile of
the installed technologies, and the electricity exchange through the microgrid (if selected) and
the national grid. Additionally, in literature all the developed methods can be broadly separated
into two categories, namely: (a) “Method A” in which a simultaneous selection and sizing of
candidate technologies and (b) “Method B” in which the sizes of the candidate technologies

are predefined.

This thesis presents some innovative aspects in the field of optimal design of DES.
Particularly, two approaches for the modelling of technologies are developed, expanding
previous relevant work in literature. In addition, mathematical models for all available
candidate technologies are presented. Those approaches are compared as they offer different
solutions, and their advantages and disadvantages are assessed. Moreover, this thesis
examines the robustness of solutions and it combines multi-objective mathematical

programming with several techniques for optimization under uncertainty.

To examine the benefits of DES and to compare these two methods, a case study was carried
out for a neighbourhood of six buildings in an area in Attica and three scenarios are depicted,
with Scenario 1 being business-as-usual, Scenario 2 — Renewables and Scenario 3 — Green.
The results show that between these three scenarios, Scenario 3 offers the most attractive
solutions. In addition, the comparison between “Method A” and “Method B” shows that
“Method A” offers better results at each solution, specifically between 3% and 11% for TAC,
which was expected due to the higher degrees of freedom it has. Regarding carbon emissions
both methods show similar results. Moreover, several differences exist between each solution
at each method regarding system’s structure, operational profiles of technologies, formation
of DHN and electricity exchange with microgrid and national grid. A recommended strategy
for designing a DES it is suggested to apply “Method A” at first to get a first approximation of
the capacities of technologies, and afterwards, when the capacity bounds become constrained
(which means less combinations and therefore lower computational complexity) apply

“Method B” which will offer more accurate results.
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Executive Summary

Furthermore, this thesis aims to examine the optimal design of DES under uncertainty.
Changes in the values of several parameters can affect the optimal design of a DES, and the
scope of this thesis is to provide a decision-maker (DM) with robust solutions. In this thesis
uncertainty is assumed to exist in energy prices (electricity and natural gas), interest rate,
energy loads (electricity, heating, and cooling), solar radiation, and wind speed. To examine
uncertainty and identify robust solutions four techniques are used, which are in the fields of
robust optimization (RO) and stochastic optimization (SO), namely: (a) objective-wise worst
case, (b) minimax regret criterion (MMR), (c) minimax expected regret (MER) and (d) Monte
Carlo simulations. Those techniques are applied to “Method A” either as multi-objective
optimization problem (objective-wise method) or as single-objective optimization problems
(MMR, MER and Monte Carlo simulations). For the transformation of the multi-objective
deterministic problem to a single-objective one it is assumed that the TAC is the objective

function and carbon emissions becoming a constraint with an upper bound of 100,000 kg/year.

For the application of MMR and MER it is assumed that uncertainty exists only in economic
parameters (interest rate and energy prices) and five scenarios are depicted, namely Scenario
R1 to Scenario R5, where parameters take a high and low value respectively. Regarding the
application of MER, it is assumed that each Scenario R1 to R5 has a specific probability to
occur, which leads to less conservative results. As for the application of objective-wise worst
case and Monte Carlo simulations, two scenarios are depicted for each method, Scenarios
OW1 and OW2 and Scenarios MC1 and MC2, respectively. Scenarios OW1 and MC1 assume
that uncertainty exists in economic parameters, while Scenarios OW2 and MC2 assume
uncertainty in all parameters. Each method generates different solutions, with the worst results
occurring at objective-wise worst-case method as it considers the worst value of the uncertain
parameters. MMR and MER show solutions with small values of regret, indicating that
uncertainty in economic parameters does not affect results significantly. Finally, at the
application of Monte Carlo simulations each parameter is assigned a specific probability
distribution and the results show the range of TAC values at each scenario. It is noted that for
each method the results of system’s configuration and operation profile of technologies are

different.

Overall, these techniques provide solutions that are notably different of the results of the
deterministic approach and can be characterized as robust, highlighting the importance of
considering uncertainty for the design process. This thesis concludes that considering
uncertainty in designing a DES is necessary as the optimal solutions change significantly,

which is very important for the optimal design of the system, its financial viability and
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Executive Summary

operational stability. Finally, it is noted that the developed methodologies are generic and can
be easily adopted and applied according to the preferences of a DM.




Extetouévn Hepidnyn
Exterauévy Hepiinyn

H katavaAwaon TTpwToyeEvVoUG eVEPYEIAG EXEI aUENBET EKOETIKA TIG TEAEUTAIEG DEKAETIEG ECAITIAG
TNG TTAYKOOMIOG OIKOVOUIKNG avdaTtiTuéng. H evépyeia cival ammapaitntn o€ OAa 1a 1redia Tng
ouyxpovng CwNG Kal XpNOILOTTOIEITAl € TTOANOUG TOUEIG, OTTWG TNV TTAPAywYr NAEKTPIOUOU,
BepudTNTAG KaI YUENG, OTIG PETAPOPEG, OTN Blopnyavia Kal o€ TTOAAOUG GAAoUG TopEiG. Ouwg
N KatavaAwaon evépyelag £EpxeTal Jadi JeE CUYKEKPIPEVO KOOTOG KABWGS T GUMBATIKA evepyEIakd
ouoThuaTa Bacifovral o€ OpuUKTa KaUGoIua Kal TTapdyouv UPNAEG eKTTOUTTEG Bl10Eg1diou Tou
avbpaka (COy). AuTto €xel wg atmoTEAeCUa va eTTnPeadeTal To TTEPIBAAAOV, KaBWG O1 EKTTOUTTEG
COz oupBdaAouv aTo @avOuEVO Tou BEPUOKNTTIOU Kal KAT €TTEKTACN GTNV KAIMATIKA aAAayn.
H trapoxn kabapng evépyeiag Kai n avTiJETWITIoON TNG KAIMATIKAS aAAayAg €ival dUo atmod TIig
MEYOAUTEPES TTPOKANCEIG TTOU QVTIMETWTTICEI 0 TTAAVATNG. Ta TeAeuTaia £Tn n dIEBVAG KovoTATA
£xel Aaper yETpa yia tn peiwon Twv ekTTopTwy CO2, 6TTWG TO MPwTdKOAAO TOU KIOTO KOl N
Zupgwvia Tou Mapiciou. H Eupwtraikf ‘Evwon (EE) epapudlel éva @iIAGdoEo TTAqicio
TTONITIKWYV OTa TTEdia TNG e€0IKOVOUNONG EVEPYEIAG, TNG TTPOWONONG TWV AVAVEWGCIHNWY TTNYWV
evépyelag (AMNE) kar TG peiwong Twv ekmmoptmwyv CO2. EmITTAéov N EANGDQ €xel Béoel éva

QINODOED eveEPYEIAKO OXEDIO BACICUEVO OTIG EUPWTTAIKA EVEPYEIAKK TTONITIKN.

Emiong, omig TeAeutaieg Oekaetieg O TTAyKOOUIOG TTANBUOUGS €xel auénBei dpauaTikd,
0dNywvTag o¢ auénuévn KatavaAwon ToOpwy, CUUTTEPIAAPPBAvONEVNG Kal TNG EVEPYEIQG.
EmimAéov, uttohoyicetal 611 TO0 52% TOU TTAYKOOMIOU TTANBUCUOU (gl o€ TTOAEIG, PE QUTO TO
VOUNEPO VA aVAPEVETAI VO auénBei oTIG eTTOEVEG deKAETIEG. O1 AOTIKES TTEPIOXES KATEXOUV v
MEYAAO TTOOOOTO TNG EVEPYEIAKNG CATNONG, HE ATTOTEAECHA N KAAUWN TWV QOPTIWV VA ATTOTEAEI
TPOKANON. Z& QuTO TO TIAQIOIO, TO QOTIKA €EVEPYEIOKA OCUCTAUOTA QVAPEVETOI VA
dladpapariocouv onuavtikd péAo. Eival avaykn ta JEAAOVTIKA AOTIKA EVEPYEIGKA CUOTHMATA

va £TTAVOoXESINOTOUV KAl VO TIPOCPEPOUV BIWTIPES AUCEIG.

Mia AUon yia Tnv KGAuwn autou To oTOXOU €ival N avaTrTugn Twv CUCTNUATWY JIECTTAPUEVNG
Tapaywyng evépyeiag (ZAME). Ta ZAME €xouv TTOAG TTAEOVEKTAUATA PE TO ONUAVTIKOTEPO
va €ival N TTapaywyr EVEPYEIOG OE TOTTIKO ETTITTED0, EAAXICTOTTOIWVTAG £TOI TIG ATTWAEIEG. TaA
ZAMNE ptropolv va TTpoo@EPOouV KAAUTEPN EVOWUATWON METAEU TWV CUMBATIKWY EVEPYEIOKWV
ouoTNPATWYV Kal Twv AlE, Kal gTTopouv va KAAUWOUV TIG EVEPYEIAKEG AVAYKEG EITE TTPOKEITAI
yla éva KTrpIo, éva CUUTTAEYUO KTNPIWV 1) aKOPN Kail i TTOAN, PE TO BaBUO atToKEVTPWONG Vo
olapépel. ‘Eva ZAME ptmopei va oxedlaoTei yia va KOAUTITEI TIG EVEPYEIOKEG AVAYKEG O€
NAEKTPIOWO, BepudTNTA KOl YUEN. ETTioNg, Ta guoTuaTa autd uTmopouV va TTPOCPEPOUV AUCEIG

ME XaunAS €TACIO KOOTOG Kal XAMNAES ekTTOUTTEG CO,. Ta TeAeuTaia Xpdvia otn BiBAIoypagia




Extetouévn Hepidnyn

£Xouv avaTTTuxOei apkeTd HovTéAa yia To oxedlaopo ZAMNE Baoiopéva oTn Xprion paénuatikou
TTPOYPAPUATIONOU. AUuTd T POVTEAD £QApPOovTal EiTE O TTPOPARUATA PHOVO-KPITNPIAKOU )
TTOAU-KPITNPIOKOU HaBNUATIKOU TTPOYPOUMATIONOU, YE TNV €AAXIOTOTTOINCN TOU GUVOAIKOU
£TACIOU KOOTOG (TTOU TTEPIANABAVEI TO KOOTOG KEQAAQiou, AEITOUPYIOG Kal CUVTHPNONG) Kal TIG

eKTTOPTTEG CO2 Va €ival 01 TTIO OUXVEG QVTIKEIMEVIKEG OUVAPTAOEIG.

O oxedlaopog evog ZAMME cival éva TepiTTAoko TTPOBANUA OTO OTTOI0 TTOAAEG TITUXEG TTPETTEI
va AapBavovtal uttown. Authi n d1aTpIRN €XEl OKOTTO va TTapouacidaoel pia pebodoAoyia yia Tov
BéATiIoTO Oxedlaopo ZMAE  XpnoIMOTTIOIWVTAG TTOAU-KPITNPIOKSG HIKTO-OKEPAIO  YPAMMIKO
TpoypappaTiopud (MAIT]) ye avTIKEIMEVIKEG OUVAPTAOEIC TO OUVOAIKO €TNOI0 KOGTOG Kal TIG
eKTTOUTTEG CO2. O1 uTTOWNPIEG TEXVOAOYIEG €ival: (a) HOVADEG TUUTTAPAYWYNG NAEKTPICHOU Kal
BepudTnTag, (B) avriieg BepudTnTag, (y) Movadeg WUEelig pe ammoppo®non, (8) AERnTeg, (€)
NAIOKOi GUAAEKTEG, (OT) QwToPoATaiKG, () avepoyevvATpieg, (n) MovAdeg atmoBhAkeuong
BepudTNTAG, (B) HoVAdeg atmoBrikeuong NAEKTPICHOU, (1) dikTuo diavoung BepudtnTag Kai (K)
MIkpodikTuo. Ta ammoTteAéoparta divouv wg AUCEIG TIG TEXVOAOYIEG TTOU €TTIAEyovTal va
EYKATAOTABOUV o€ KABE KTAPIO Kal TV avTioToIxn 10XU Toug, TN dIdTagn Tou dIKTUOU dIAVOURAG
BepudTNTAG (QV OXNMUATIOTED), TO ETTIXEIPNOIOKS TTPOQIA TWV TEXVOAOYIWY, KAl THV avTaAAayn
NAEKTPICHOU SIOPECOU TOU MIKPODIKTUOU KOBWGS Kal PETALU TwV KTNEiwv Kal Tou €68vIKoU
OIKTUOU nAekTpiopoU. EmimmAéov, o1 avrioToixeg WEAETEG TTOU UTTApYouv oTn BiIRAIoypagia
dlaxwpiovtal oe dUO YeVIKEG KaTnyopieg, (a) otn «MéBodo Ax» &tTou yiveTal TautdXpovn
€MAOYHA Kal 81Ia0TACIOAGYNON TWV UTTOWAPIWY TeEXVOAoyIwv, Kal (B) otn «MéBodo B» étTou ol

OIa0TACEIG TWV TEXVOAOYIWV Eival TTPOKABOPICHEVEG.

Autr] n diatpiB TTapouaidlel ApKETA KAIVOTOMIKA OTOIXEia ava@opikd e Tov BEATIOTO
oxedlaopo XAlME. Yuykekpipéva, TTapouaialovtal dUO TTPOCEYYIOEIG VIO TV JovTEAOTTOINON
TEXVOAOYIWV, ETTEKTEIVOVTAG TNV OXETIKN BIBAIOYypagia. ETriiTAéov, TTapouaialovTal JaBnuaTika
MOVTéAQ yia OAeg o1 dlaBéoiueg TeEXVOAOYieG. AUTEG OI TTPOCEYYIOEIG OUYKpivovTal KaBwg
TTPOCPEPOUV DIAPOPETIKEG AUCEIG, Kal £EETACOVTOI TTAEOVEKTAUATA KAl WEIOVEKTAUATA TTOU
é¢xouv. EmmAéov, n diatpifr) €€etadel TNV eupwaoTia Twv AUCEWV Kal OuvOuUdlel TTOAU-
KPITNPIOKO WOBNUATIKO TTPOYPOUUAATIONO HPE TEXVIKEG yia BEATIOTOTTOINON UTTO OUVOAKEG

aBeBaidTnTaC.

MNa v agloAdynon Twv TTAgovekTNUATWY TTou £€xouv Ta ZAMNE kabwg kal yia 1n oUykpion
METAEU TwV BUO auTWV PEBOBOAOYIWV EXEI EQAPHOTTEI JIa EAETN TTEPITITWONG G HIA YEITOVIA
atroTeAoUevn atro €1 KTHPIO OE Pia TTEPIOXN TNG ATTIKAG, KAl €xouv avaTrTuxBei Tpia oevdpia,
10 Zevdpio 1 — business-as-usual, 10 Zevdpio 2 — AlE kal 1o Zevapio 3 — lMpdoivo. Ta

atroTeAéapaTa deixvouv OTI HETAEU TWV TPIWV QUTWY CEVAPIWY TO ZevApIo 3 TTPOCPEPE! TIG
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KaAUTEPEG AUoeIg. ETTITTAE0V, avagopikd pe Tn ouykpion TNG «MeBodou A» kal «MeBddou By,
Ta ammoteAéopaTa deixvouv Ot n «MEBodog A» divel KOAUTEPEG AUCEIG YIO TO CUVOAIKO €THOI0
KOOTOG, TToU Kupaivovtal petagl 3% kal 11%, KATI TO OTT0i0 avapevotav AOyw Twv
TEPIOOOTEPWY BaBUWYV eAeuBepiag. Ze 0TI agopd TIG eKTTOUTTEG CO2 o1 dUo pEBodoI divouv
TTapouola atroteAéopara. ETmiong, maparnpouvtal diagopés HETatu kdBe AUong ot KABe
MEBOBO avagopikd e TN OlOuOPPWON TOU CUCTHMOTOG, TO ETTIXEIPNOCIOKO TTPOPIA Twv
TEXVOAOYIWY, TN dIATaEN Tou BIKTUOU PETAPOPAS BepudTnTag Kal TNV aviaAlayr NAEKTPIGHOU
METAEU MIKPOBIKTUOU Kal PETAEU €BvIKOU BIKTUOU. Mia TTPOTEIVOUEVN OTPATNYIKI EVEPYEIAKOU
oxedlaocpolu cuotnudtwy ZAMNE Ba Atav va yxpnoigotroieital n MéBodog A yia pia TTpwTn
TTPOOEYYION TWV OIOOTACIOAOYIKWY XOPAKTAPIOTIKWY TWV POVAdWY KAl OTn CUVEXEIQ apoU
TTEPIOPIoTEl TO BlOOTACIOAOYIKO €UpOG (Apa Kal o1 eEeTalduevol ouvOuaoHoi Kal N SUTKOAIa

eTTiAuong), va xpnoiyoTrolcital N péBodog B yia peyaAuTtepn akpipeia.

Mépa o’ autd, n daTpIB €xel wg oKotrd Tov BEATIOTO oXedlaoud ZAME umd ouvbrkeg
apBepaidTnTag. O1 aAAayEG OTIG TINEG TWV TTAPAPETPWY OXEDIACUOU PTTOPOUV VA ETTHPEACOUV
TOoV BEATIOTO OXedlaopud kal autr) n OIOTPIPr) OKOTTEUEl va TTPOCQEPEI GTOV ATTOPACIWY
eUpwOoTeG AUoEIG. 2T0 TTAQioIo TNG dlaTpIBRg utroTiBeTal 6T O TTAPAUETPOI TTOU €ival uTTd
apBeBaidTnTa gival ol TINEG evEPYEIAS (NAEKTPIOKOU Kal QUOIKOU aEPioU), TO ETTITOKIO AVAYWYAG,
Ta evepyelakd @opTia, n nAlakn akTivoBoAia kal n TaxuTnTa Tou avéuou. [Na TNV avTIJETWITION
NG aBeBAIOTNTAG KAl TOV EVIOTOHNO TWV €UPWOTWY AUCEWV XPNOILOTTOIOUVTAl TECOEPIG
TEXVIKEG TTOU avAKOUvV OTO TTedio NG «eUpwaoTng PBeATioToTToiNONG» A TNG «OTOXAOTIKAG
BeAtioTotToinong»: (a) objective-wise worst case, (B) minimax regret criterion (MMR), (y)
minimax expected regret (MER) ka1 (&) avaAuon Monte Carlo. AuTég o1 TEXVIKEG e@apuolovTal
otnv «MEBodo Ay, €iTe WG TTOAU-KPITNPIOKO TTPOBANUA €iTE WG POVO-KPITNPIAKO TTPORANPO
BeATioToTroinONG. MO TOV PETAOXNMOTIOUO TOU TTOAU-KPITNPIGKOU TTPORANMOTOG OE HOVO-
KPITNPIOKO BEWPEITAI WG AVTIKEIMEVIKH) OUVAPTNON N EAAXIOTOTTOINCN TOU GUVOAIKOU €TACIOU
KOOTOUG, HE TIG EKTTOUTTEG CO, va YETATPETTOVTAI O€ TTEPIOPIoUO pE avwTaTo 6pio TiIg 100,000

kg/€ToG.

MNa tnv epappoyr) Tou MMR kai Tou MER yivetal n rapadoxn o1 apefaidtnta uttdpyel Jovo
OTIG TTAPAPETPOUG OIKOVOUIKNAG QUOEWS (ETTOKIO avaywyng Kal TIUEG EVEPYEIAG) Kal
avatrTuooovTal TTévTe oevdpla, 2evapio R1 — Zevdpio R5, 61ToU oI TTOPAPETPOI TTAIPVOUV [Id
uwnAn n xaunAn tiyd avriotoixa. Eidikétepa yia Tnv e@apuoyr TG ueBédou MER vyiveTal n
Tapadoxr o1 yia KaBe Zevdapio R1 — Zevdpio R5 uttdpxel yia ouykekpipgévn mlavétnta va
oupBei, odnywvtag oe Aiyétepo ouvtnpnTikG atmmoteAéoparta. Ooov agopd TNV EQapuoyn TNS
MEBOBOU objective-wise kal yia Tnv avédAuon Monte Carlo, e€etdlovral dUo oevdpio yia KABe

MEBOBO, To Zevdpio OW1 kai OW2, kaBwg Kal To Zevapio MC1 kal Zevapio MC2, avtioToixa.

Xii

—
| —



Extetouévn Hepidnyn

Ta Zevdpia OW1 kai MC1 avagépovTal o€ apepaidTnTa POVO OTIG OIKOVOUIKEG TTAPAUETPOUG,
VW Ta Zevapia OW2 kal MC2 avagépovTal o€ aBeBaidtnTta o€ OAeG TIG TTapapéTpous. H kdBe
HEBODOG Bivel DIAPOPETIKEG AUCEIG, YE TIG TTIO ATTAICIOS0EES va TTPOKUTITOUV aTTo TNV YEB0dOo
objective-wise KaBw¢ AauBAavel UTTOWN TIG XEIPOTEPEG TIMEG TWV AVTIOTOIXWY TTAPAPETPWY. Ol
péBodol MMR kal MER divouv AUOEIG PE HIKPG «KOOTOG» UTTOdEIKVUOVTAG OTI N Bewpnon
aBeBaidTNTAG JOVO OTIG OIKOVOMIKES TTAPAUETPOUG OV ETTNPEACEI TNUAVTIKA Ta ATTOTEAEGUATA.
TéAog, otnv avaAuon Monte Carlo kd0e TTapdueTpog Bewpeital 6Tl AKOAOUBE HIG GUYKEKPIMEVN
Katavoun ToavoTNTAg Kal Ta aTToTEAETHATA Bivouv TO EUPOG TTOU PTTOPET va TTAPEI TO GUVOAIKO
€TACIO KOOTOG. ZnuelwveTal OTI yia KABe pEBodo o1 AUCEIG ava@opikd pe Tn didTagn Tou

OUCTAMOTOG KAl TO ETTIXEIPNTIAKO TTPOPIA TWV TEXVOAOYIWYV DIAPEPOUY.

2UVOAIKQA, QUTEC Ol TEXVIKEG TTPOOQPEPOUV AUCEIC TTOAU OIOQOPETIKEG O OXEON ME TNV
VTETEPMIVIOTIKI) TTPOCEYYION TOU TTPORAAMATOG, Ol OTTOIEC PTTOPOUV VO XOPAKTNPICTOUV WG
eUpWOTEG, UTToypapuifovTag Tn onuaaia NG Bswpnong g aBeBaidtnTag katd 1n diadikaaoia
oxedlaopou. H diatpiBry KaTaARyel 0TI N QVTIMETWTTION TNG aBeBaIOTNTAG KATA TOV OXEDIAOUO
evog ZATE gival TToAU onuavTikh KaBwg ol AUoelg aAAACouv onpavTiKE, Kal auTtd £xel IdiaiTepn
onpacia yia Tov BEATIOTO oxXedIAOUS TOU CUCTHUATOG, TNV OIKOVOUIKA TOU BIwoIudTnTa KOBWG
KAl TNV ETTIXEIPNOIOKA Tou oTaBepdTnTa. EV TEAEI, OnueIwveTal 0TI o1 eBodoAoyieg TTou €xouv
avaTrTuyBei €ival yeviKEG Kal PTTOPOUV €UKOAQ va TTPOCAPUOCTOUV KAl VA £QPAPUOCTOUV

oUPPWVA UE TIG TIPOTIUNCEIS TOU ATTOQATI{wV.
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Sets

Nomenclature

Nomenclature

I, the set of buildings of the DES;
d , number of the typical days a year is divided,;

p , number of the periods a typical day d is subdivided;

swit, set of wind turbines.

Parameters regarding the buildings, the time horizon, and the climate:

i, j » the matrix representing the distance between building i and building j [m];

Ny , the number of days a typical d day represents in year;

5p , the duration of time periods p in hours;

Q;, the available surface in building i for the installation of solar photovoltaics and/or

collectors [m?];

d-el dh

idp Gidp df’d’p, are respectively the electric, heating, and cooling energy loads of

building i at period p of day d [kW];

rZH,\)N , the ratio of demand for DHW over the total heating load of building i at period p

of day d;

i5°} , the solar irradiance at period p of day d [kW/m?]

V;V,p , wind speed at period p of day d [m/s]

Parameters regarding technologies (size, cost, efficiency) and DHN:

a, » capital recovery factor for technologies
N | lifetime of technologies [years]

Ssv;t,t , size of wind turbine technologies in set SWt :

Wy a.p » €lECtricity generation of a wind turbine of SWt set at period p of day d [KW];
ub™® | 16" upper and lower bound for the size of CHP [kW]

ub™ | 1b™ | upper and lower bound for the size of heat pumps [KW]

ub®! , b , upper and lower bound for the size of absorption chillers [kKW]




Nomenclature

ub®, 1b®, upper and lower bound for the size of boilers [kW]
ub™ , upper bound for the size of photovoltaics [kW]
ub™ , the maximum thermal energy that can be stored in heat storage technology [kWh]

ubES, the maximum electrical energy that can be stored in heat storage technology
[kWh]

Csvxt , the capital cost of wind turbines of SWI set [€/kW]
cS” | fixed capital cost of CHP [€]

Cﬁ:p , linear capital cost of CHP [€/kW]

c™ , capital cost of heat pumps [€/kW]

¢ , capital cost of absorption chillers [€/kW]

c? , capital cost of boilers [€/kW]

c™v , capital cost of solar photovoltaics [€/kW]

c®T , capital cost of solar thermal collectors [€/m?]

c®® , capital cost of electricity storage technology [€/kWh]

c’ , capital cost of thermal storage technology [€/kWh]

cM¢, capital cost of microgrid controller [€]

cP , capital cost of pipes [€/m]

ﬂlAvlth , maintenance cost of wind turbines of SWI set [€/kWh]
,uCHP , maintenance cost of CHP technologies [€/kWh]
,uHP , maintenance cost of heat pumps [€/kWh]

,UCH , maintenance cost of absorption chillers [€/kWh]

2 . , maintenance cost of boilers [€/kW]

P maintenance cost of solar photovoltaics [€/kW]

y7j
,uSt , maintenance cost of solar thermal collectors [€/m?]

,UTS , maintenance cost of thermal storage technology [€/kWh]
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Nomenclature

kCHP, part load factor for the operation of CHP

UCHP‘el , the electrical efficiency of CHP [%)]

UCHP‘th , the electrical efficiency of CHP [%)]

77B , efficiency of boiler [%)]

77CH , efficiency of absorption chiller [%)]

COPt,Tp, COF’Chp , coefficient of performance of heat pumps for heating and cooling
n " efficiency of solar pv [%]

77St , efficiency of solar thermal collectors [%0]

Ues’in \ Ues’om, charging and discharging efficiency of electric storage [%0]

pVCOf , power density of solar pv [KW/m?]

ﬂp, heat losses through pipes [1/m]

diWT , @ parameter indicating the availability of installing a wind turbine at building i

etl, electricity transmission losses [%]

Other parameters:

r, discount rate [%0]
f ond , carbon emission factor of the national grid [kg CO2/kWh]
" carbon emission factor of natural gas [kg CO2/kwWh]

¢, cost of natural gas [€/kWh]

el _buy

Csp - cost of buying electricity at period p of day d [€/kWh]

Cﬂf-se" , cost of selling electricity from CHP at period p of day d [€/kWh]

C;\;-se" , cost of selling electricity from PV at period p of day d [€/kWh]

Cm—se" , cost of selling electricity from wind turbines at period p of day d [€/kWh]

Positive decision variables:

C " , total annual cost (€)

C¢©, capital cost (€)
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Nomenclature

C©° , operational cost (€)

CM , maintenance cost (€)

CARBON, total carbon emissions (kg/year)
CARBONF, fuel-based carbon emissions (kg/year)

CARBON 7, electricity-based carbon emissions (kg/year)

S size of CHP unit at building i [KW]

SiHP, size of heat pump unit at building i [kW]

HP_h - , . o .
S+ - an auxiliary variable for the linearization of heat pumps operation

SiCH , size of absorption chiller unit at building i [kKW]

SiB, size of boiler unit at building i [kW]

SiPV , Size of photovoltaics at building i [kW]

APV , area of photovoltaics at building i [m?]

AST , Size of solar thermal collectors at building i [m?]

Q" rated electricity storage at building i [kWh]

Q. rated thermal storage at building i [KWh]

Z,sz , primary energy consumption of CHP at building i at period p of day d [kW]

ZiEfd’p , primary energy consumption of boilers at building i at period p of day d [KW]

Ef{;grid , electricity bought from grid at building i at period p of day d [kW]

Efd'ﬁ , total electricity generation of CHP at building i at period p of day d [kW]

Ef;z-b”"d , electricity generation of CHP for use at building i at period p of day d [kW]

Ede";—se" , electricity generation of CHP sold to grid from building i at period p of day d

[kw]

Efgf';-mg , electricity generation of CHP sent to microgrid from building i at period p of
day d [KW]

Qfﬁ, total heating energy generation of CHP at building i at period p of day d [kW]

Qi?;z-b”"d , heating energy generation of CHP used at building i at period p of day d

[kw]
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Nomenclature

QCHP_net
i,d,p

, heating energy generation of CHP sent to DHN from building i at period p of
day d [kW]

Qﬂfﬁh , total heating energy generation of heat pump unit at building i at period p of day
d [kwW]

QHP_h_buiId

id.p , heating energy generation of heat pump used at at building i at period p of

day d [kW]

foghﬁa , heating energy generation of heat pump sent to DHN from building i at period

p of day d [kW]
Qf:f’f, cooling energy generation of heat pump unit at building i at period p of day d
[kw]

Ei'f'dFip, electricity used by heat pump unit at building i at period p of day d [kW]

Qf;‘f, cooling energy generation of absorption chiller at building i at period p of day d

[kw]

Qf;gabs , thermal energy absorbed from absorption chiller at building i at period p of day

d [kW]

Qfd'p, total heating energy generation of boiler at building i at period p of day d [KW]

Q72" heating energy generation of boiler used at building i at period p of day d [kW]

Q%' heating energy generation of boiler sent to DHN from building i at period p of

day d [KW]
E-PV

i,d,p?

(kW]

PV _build
Ei d,p

total electricity generation from photovoltaics at building i at period p of day d

, electricity generation from photovoltaics used at building i at period p of day

d [kw]

Ef(}/’ﬁse” , electricity generation from photovoltaics sold to grid from building i at period
p of day d [kW]

PV _mg
Ei,d,p

period p of day d [KW]

, electricity generation from photovoltaics sent to microgrid from building i at

EiV’VdT’p, total electricity generation from wind turbine at building i at period p of day d

[kw]
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Nomenclature

Emabund , electricity generation from wind turbine used at building i at period p of day
d [kW]

Emgse" , electricity generation from wind turbine sold to grid from building i at period p
of day d [kW]

ELVV({;”‘Q, electricity generation from wind turbine sent to microgrid from building i at

period p of day d [kKW]

Ei'?’(',c?p, electricity received from microgrid at building i at period p of day d [KW]

E_sell

i.d,p» total electricity sold to grid from building i at period p of day d [kW]

QiES , rated electricity storage at building i [KWh]

QiTS, rated thermal storage at building i [KWh]

EiyEdsyp, electricity stored at building i at period p of day d [kWh]
EiTj,p , thermal energy stored at building i at period p of day d [KWh]

Efj—pi”, Efjj’“ﬂ electricity charged and discharged from storage at building i at period

p of day d [kW]
Q%' Q53" thermal energy charged and discharged to storage at building i at

period p of day d [kW]

Binary variables:

Y, | if CHP is installed at building i

Y if wind turbine is installed at building i

Y=Y EN-FET i & supply (and a return pipe) is installed between building i and

building |

yMe i microgrid is installed
HP . .. - .
Yi , if a heat pump is installed at building i
YiB, if a boiler is installed at building i
YiCH , if an absorption chiller is installed at building i

XiCHP, if CHP operates at building i at period p of day d




Nomenclature

Xif'dp-h, if heat pump at building i operates in heating mode at day d

Xif'dpygh, if heat pump at building i operates in heating mode at period p of day d

Xi"*dp—c , if heat pump at building i operates in cooling mode at day d

Xi"*dP’BC , if heat pump at building i operates in cooling mode at period p of day d

Xi‘f'(,j;e" , if electricity is sold to grid from building i at period p of day d
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Abbreviations

Abbreviations

AUGMECON Augmented e-constraint method
CCHP Combined cooling, heating and power
CHP Combined heat and power

CO- Carbon dioxide

DER Distributed energy resources
DES Distributed energy systems
DHN District heating network

DHW Domestic hot water

DM Decision maker

EES Electric energy storage

EU European Union

GHG Greenhouse gas emissions

HP Heat pump

LP Linear programming

LV Low voltage

MCDA Multi-criteria decision analysis]
MER Minimax expected regret

MILP Mixed-Integer linear programming
MMR Minimax regret

OR Operations research

PV Photovoltaics

RES Renewable Energy Sources
RO Robust optimization

SO Stochastic optimization

TAC Total annual cost

TES Thermal energy storage
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Chapter 1: Introduction

This chapter provides the introduction for the doctoral thesis with the background and context
regarding the applications of Distributed Energy Systems. The scope and the novelty of the

thesis are described analytically. Also, the structure of the doctoral thesis is described.
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1.1 Background and context

Energy consumption has been necessary to human development since ancient times. Energy
is consumed in various forms, mainly thermal and electrical energy to perform everyday
activities such as turning on the lights, watching TV or provide heating/cooling during winter
or summer. Energy has various forms and types, the two main categories being primary and
secondary energy. Primary energy refers to energy taken directly from the environment
(natural resources), while secondary energy is converted using technology, into fuel or
electricity, as illustrated in Fig. 1.1. This classification is important in order to understand the
concepts of energy consumption and energy balance. Primary energy is separated into three
main groups, namely: (a) non-renewable energy, such as crude oil, coal, natural gas, (b)
renewables, such as solar energy, wind, biomass, hydropower, geothermal and ocean energy
and (c) waste. Natural gas, petroleum and coal account to approximately 85% of the global
primary energy consumption of fossil fuels [1].

Primary Energy Secondary Energy

-\\\I
J/

Crude oil, Coal, . Petroleum products, J

MNatural gas, Muclear |« manufactured solid = >

A fuels and gases —

—* Electricity and Heat

™
\( Bio fuels

Fig. 1.1. Conversion of primary energy to secondary energy (source: [1])

Transformation
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Hydro, Geothermal

s
\_

|

In the last 120 years the rapid expansion of technology has led to an exponential increase in
the exploitation of natural resources. Fig. 1.2 shows the exponential growth of primary energy
consumption in the world since 1900. It can be seen for the last 60 years oil and natural gas
are the dominant fuels. Energy is highly interconnected with economy and development of
countries [2]. Variations in energy prices and increasing cost of energy affects all economic
sectors. This is more evident in highly developed industrial countries. Also, the increase of
population in the last decades, and the corresponding growth of GDP increased energy

demand, and subsequently energy consumption, significantly [3].
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Fig. 1.2. Primary energy consumption in the world (source: [2])

However, consumption of primary energy and specifically fossil fuels has consequences.
Energy generation (electricity, heating, cooling, transportation) has significant impacts to the
environment, in terms of pollution and associated greenhouse gas (GHG) emissions. Over the
last decades concerns regarding energy related environmental impact have been increased
to a global issue, due to the increases in human population, resources consumption and

industrial activity.

Coal and oil are responsible for increase of anthropogenic GHG, mainly carbon dioxide (CO)
emissions. The accumulation of greenhouse gases in the atmosphere reabsorbs solar
radiation emanating from earth and causes temperature increase. This phenomenon is known
as greenhouse effect or global warming. Greenhouse effect contributes to the climate change
which is one of the major challenges our planet faces. The international community in 1992
signed the Kyoto agreement which aimed to reduce carbon emissions based on 1990 levels
for the period 2008 — 2012. More recently, the Paris Agreement for climate change was signed
in 2016, reflecting the will of international community to take further measures. Governments
agreed to keep the increase of global average temperature well below 2 °C above pre-

industrial levels, aiming to limit the increase to 1.5 °C [4].

Carbon emissions come from many sources, such as industry, agriculture, mining,
transportation, and energy generation. European Union (EU) is implementing policies towards
a cleaner future energy system, through promotion of energy efficiency measures and
renewable energy sources (RES). Specifically, Directive 2009/28/EC introduced the European

2020 energy & climate package with three main targets [5]: (a) a 20% reduction in greenhouse
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gas emissions from 1990 levels; (b) a 20% energy generation from RES and (c) a 20%
improvement in energy efficiency. Recently, EU took a further step, updating these targets in
its new “Energy Strategy and Energy Union”, specifically the “Clean energy for all Europeans”
package, adopted in 2019, setting a target of at least 32% energy generation from renewables
and at least 32.5% energy efficiency target for 2030, with the possibility of an upward revision
in 2023. These measures are expected to lead into a further reduction of CO; emissions by
some 45%, compared to 1990 values [6-8]. Regarding energy planning for Greece, the
Ministry of Environment & Energy carried out a National Energy and Climate plan setting
ambitious targets for the country. Specifically, the goal is to achieve at least a 30% contribution
of RES to gross final energy consumption at 2030, aiming at least a 55% share in final
electricity consumption, a 30% share for heating and cooling and 14% for transport. The target

for energy efficiency is at least 32.5% by 2030 [9].

Furthermore, EU in its Strategic Energy Technology Plan describes the ongoing research
achievements and opportunities in energy systems and technologies, such as photovoltaics,
solar thermal electricity, offshore wind energy, ocean energy and geothermal energy. Also,
EU aims to transform the central energy system into a decentralized one by converting citizens
as active players, in the context of smart cities. EU research is focused on smart grids and
integrated energy systems, and to the promotion of energy efficiency [10].

In Fig. 1.3 carbon emissions by source are presented in EU and Greece respectively. It is
clear that the major source of carbon emissions is the energy sector by more than 90% in EU
and Greece, respectively. The breakdown of the emissions from the energy sector is
presented in Fig. 1.4, where energy industries is the dominant sub-sector, especially in
Greece. The driving factors for carbon emissions from the energy sector, and specifically for
electricity generation in European countries have been studied in [11] showing how the
economic activity drives carbon emissions to increase, and improvements in energy efficiency

contribute to the reduction of carbon emissions.
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Fig. 1.3. Carbon emissions by source in (a) EU — 28 and (b) Greece for the year 2016 (source: [12])
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Fig. 1.4. Carbon emissions from energy sector in (a) EU — 28 and (b) Greece for the year 2016 (source: [12])

Buildings are responsible for some 40% of final energy consumption in EU. Fig. 1.5 shows the
energy consumption by end-use in residential and commercial buildings. Therefore, the need
to redesign energy systems for buildings is a very important task. However, this is also a
challenging task for which decision makers (DM) need to take into consideration many
aspects. The optimal selection of energy technologies or of energy efficiency measures is not
a trivial task as the required investment cost and the reduction of carbon emissions are
conflicting objectives. A DM needs to make the optimal choice amongst a set of available
choices [13].
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Fig. 1.5. World building final energy consumption by end-use in 2010 (source: [14])

Urban areas have an important role to play towards a cleaner energy future as they have a
high concentration of people and economic activities. Some 52% of the global population lives
in urban areas, which is expected to rise up to 66% (estimated at 6.3 billion people) by 2050.
Urban areas dominate global energy demand, hence the design of sustainable urban energy
systems that could help improving energy security along with human health and economic

growth is a very important task [15].

The essential role played by energy is often neglected in daily life, as is the complexity of of
the infrastructure that provides the energy services we use. For instance, when the lights are
turned on there is a whole process taking place, from the extraction and transportation of raw
resources (e.g. gas), generation of electricity and delivery to our homes. Economists define

energy consumption a ‘derived demand’ [16].

In order to understand and model the mechanics of technologies used to supply energy in
cities physical laws can be applied. However, as no single ‘physical’ model exists there are
three different, yet complementary views, of how an urban energy system can be viewed: (a)
Thermodynamic systems, (b) Metabolic systems, and (c) Complex systems. Nevertheless, to
be able to find the potential improvement in energy efficiency of urban energy systems
requires a mix of technical knowledge of cities as thermodynamic, metabolic or complex
systems and an understanding of the broad social and economic factors. Therefore, the task
of finding a definition of urban energy systems which takes into account all these aspects is
challenging. In [16] an urban energy system is defined as ‘the combined processes of

acquiring and using energy to satisfy the energy service demands of a given urban area”.
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In the last years, beyond energy policies implemented at a national (and/or European) level,
cities take their own measures to tackle the increase of greenhouse gas emissions. Several
organizations, such as Energy cities, Fedarene, ICLEI, Climate Alliance, the Covenant of
Mayors, the C40 Climate Leadership Group, Eurocities, and the OECD, aim to the reduction
of greenhouse emissions at a city level. Reports show that 70% of global emissions account
to cities. By also considering that 70% of world’s population is expected to live in cities by
2050 it can be deduced that cities have a major impact and a significant role to play in the
effort against climate change. Hence, the optimal usage of resources, such as energy (and

water, which is connected to energy) with aim towards low carbon is of vital importance [17].

A shift needs to be made towards sustainable development, commonly defined as
“development that meets the needs of the present without compromising the ability of future
generations to meet their own needs” [18]. A new interdisciplinary branch of engineering has
emerged, called sustainable energy engineering aiming to design, develop and promote
sustainable energy-generation systems. To achieve sustainable development there is a need
for sustainable energy strategies and policies, such as by imposing efficiency standards,
supporting energy sector innovation, promotion of energy efficiency and financing large
energy projects. Sustainability is a general term, including energy and resources sustainability,
economic sustainability, environmental sustainability, and social sustainability. To achieve
that, green energy is essential for three main reasons: (a) lower environmental impact
compared to other energy sources, (b) renewables cannot be depleted and (c) system
decentralization is favoured, increasing system’s flexibility and leading to economic benefits.
Green energy technologies are crucial towards sustainability, as they are environmentally

friendly, they enhance energy security and reduce pollution.

In this context, Distributed Energy Systems (DES) could play a major role towards the
sustainable future urban energy system and could be used as the foundation of future urban
and semi-urban energy systems design. DES could be designed either for a single building
up to a whole city, therefore organizing complex buildings into organized energy communities.
This solution can take advantage of the local energy resources (renewables), provide
operational flexibility, and can satisfy the energy needs of end-users (buildings) in electricity,
heating and cooling. Promotion of renewables and/or of other energy efficient and
environmentally friendly technologies can help reducing overall costs and mainly provide a
cleaner alternative with less CO, emissions compared to the conventional energy supply
system. A sketch of a DES is illustrated in Fig. 1.6. DES are expected to offer multiple

environmental and economic benefits, most notable being [18,19]:
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o The diversity of loads at buildings of various sectors could offer lower peak demand
and better load factors if aggregated,;

e Economics of scale in generation, along with better efficiencies and emission profiles;

e Lower operating and maintenance costs;

e General design and more effective operation;

¢ District Heating (DH) provides heating from cleaner and economical technologies;

e Increased feasibilty of thermal energy storage which offers better energy
management;

e Increased fuel flexibility and energy security;

¢ Infrastructure upgrades that provides social benefits such as the creation of new jobs.
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Fig. 1.6. A sketch of a DES configuration (source: [20]).

Conventional technologies that are mainly used are cogeneration units (combined heat and
power — CHP), boilers, heat pumps and chillers. Renewables are mainly solar photovoltaics,
solar thermal collectors, and wind turbines. Also, the degree in which a DES can be
decentralized varies. For instance, a CHP could be centrally installed and provide electricity
and heating to a district, or several smaller units could be installed at buildings (decentralized).
Hence, the selection of technologies, their respective size and the building at which would be
installed needs to be decided. Designing a DES is far from a trivial task. As the number of
buildings increases and the number of available technologies and resources becomes wider,

designing a DES can become a very complex and challenging task.

Mathematical programming techniques can be used to design DES. An optimal design can be
achieved using several criteria, such as minimizing cost, or minimizing carbon emissions, or

maximizing energy efficiency. Applying a combination of those criteria leads to multi-objective
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mathematical programming, which provides a set of efficient or Pareto optimal solutions.
Mathematical programming (or optimization as more commonly known) and multi-criteria
decision analysis (MCDA), have been used extensively in related literature, e.g. for energy
planning problems, assessment of energy projects, optimal sizing of technologies. Examples
of such applications can be found in [21-24]. The most common objectives in the design of

DES is the minimization of total annual cost and carbon emissions.

The knowledge of the values of certain parameters is necessary in order to design an energy
system. Those parameters are the available technologies and their respective technical
characteristics and costs, energy demand of buildings (heating, cooling, and electricity),
climate data (solar irradiation, wind speed), and the carbon emission factors. The importance
of uncertainty and how it affects the implementation of policies and the associated scenarios
in energy planning, considering applications of multi-criteria analysis is highlighted in [25].
Therefore, it is suggested that a DM needs to consider all these parameters and data in order
to make a decision, which leads to the question of which the best solution is and according to

which criterion.

1.1 Scope and Contribution

The purpose of this thesis is to present a methodology for the design of DES using multi-
objective mathematical programming. The objective functions are the total annual cost (TAC),
which includes capital, operational and maintenance costs, and the total annual CO;
emissions. In literature several optimization models have been developed for the design of
DES. Those models are based on two design methods, namely: (a) “Method A” in which a
simultaneous optimization of the size of the candidate technologies is applied, and (b) “Method
B” in which technologies are selected amongst a set with predefined respective sizes.
Therefore, there is a need to examine those two methods and perform an assessment of their
respecting advantages and disadvantages. The developed methods are expanded versions
of previous works in literature, and also three scenarios are constructed with different
technology configurations in order to examine the associated benefits of DES. The contribution
of the thesis is to expand previous methodologies in the field, by developing new methods
consisting of more technologies and with a more detailed approach in the operational aspects
of the system, in a multi-objective optimization approach. Also, the thesis contributes in
comparing two basic design approaches and provides useful outputs for a DM in order to

identify the best solutions.
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The DES is comprised of the following technologies: (a) cogeneration units, (b) heat pumps,
(c) absorption chillers, (d) boilers, (e) solar thermal collectors, (f) solar photovoltaics, (g) wind
turbines, (h) thermal energy storage, (i) electric energy storage, (j) district heating network
(DHN) and (k) microgrid. Therefore, a decision-making tool is provided with the following
outputs:

e The technologies and their respective sizes that will be installed at each building;

¢ The layout of the DHN;

e The operational profile of the installed technologies;

¢ The electricity exchange between the microgrid and the national grid

Moreover, designing a DES is a long-term energy planning problem, based on the values of
several parameters that might affect the optimal solution. These parameters are often
characterized by a degree of uncertainty. Uncertainty in designing DES lies in many
parameters, such as energy prices (electricity and natural gas), interest rates, climate data
(e.g. solar irradiance, wind speed), energy demand etc. Hence, the optimal design of DES
which tackles these uncertainties and offers robust solutions for the decision makers is a major
challenge.

Therefore, this thesis also examines the optimal design of DES under uncertainty, aiming
towards robust solutions, using:
a) Objective-wise worst case;
b) Robust optimization, specifically minimax regret criterion (MMR) and minimax
expected regret (MER);
c) Stochastic programming, specifically using Monte Carlo analysis for scenarios

generation.

The examination of uncertainty in designing a DES is a relatively new approach. The
application and comparison of several techniques is another contribution of this thesis in the
field. Specifically, several scenarios are developed aiming to examine how uncertainty affects
results and provide the DM with robust solutions. Also, the application of MER in the field of

DES is a novelty of this thesis.
Specifically, the contribution of this thesis in the field is:

e The modelling of the DES combining elements from previous studies to incorporate all

candidate technologies and capabilities;

10
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A presentation of two approaches regarding the modelling of technologies’ sizing and
a comparison between them;

A combination of the two approaches as a new strategy for designing a DES;

A case study applied in a Greek area and conditions;

The combined use of the multi-objective approach with a robustness analysis for
energy problems (not only for DES);

The modelling of the minmax regret approach in energy planning problems when
scenarios regarding the uncertain parameters are anticipated;

The modelling of the minimax expected regret scenario when scenarios regarding the
uncertain parameters are anticipated with respective probabilities;

A Monte Carlo simulation approach for DES problems.

1.2 Thesis Structure

This thesis is structured as follows:

Chapter 1: This is the present chapter, which provides an introduction and outlines the
motivation, concept and the scope of the thesis;

Chapter 2: Introduces the concept of urban energy systems and a brief description of
the technologies used in this thesis for designing a DES;

Chapter 3: Presents aspects of mathematical programming, such as linear
programming, mixed-integer linear programming and multi-objective optimization.
Also, a description of methods for optimization under uncertainty is carried out.
Chapter 4: Provides a detailed presentation of the methods developed for the optimal
design of DES. Two methods have been developed for the deterministic scenario and
four methods have been described for optimal design under uncertainty.

Chapter 5: Presents a test case application for examining the developed methods. An
area in Attica, Greece, is selected and the data for the case study are described
analytically.

Chapter 6: Provides the results of the deterministic test case application for both
developed methods. A comparison between the two methods is carried out.

Chapter 7: Provides the results for the test case application of optimal design of DES
under uncertainty, examining four different techniques, either in robust optimization or
stochastic optimization, and comparing the results in order to identify robust solutions.
Chapter 8: This is the final chapter concluding the thesis. The results and the key
findings are summarized. Furthermore, the prospects for future work in the field are

presented.
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Chapter 2:Urban energy and technologies

In this chapter the technologies used for energy generation in urban areas are described.
Energy systems in buildings supply heating, domestic hot water (DHW), cooling and electricity
to satisfy the respective demand. There are many technologies available that can be installed
in residential and commercial buildings, each with specific characteristics (technical efficiency,
cost etc.). The technical characteristics and modelling of technologies used in the
mathematical model of this thesis to supply heating, cooling, and electricity are presented.
Specifically, boilers, heat pumps, absorption chillers, cogeneration technologies, solar
photovoltaics, solar thermal collectors, and wind turbines are presented. Also, a brief
description of microgrids and district heating networks and their associated benefits is

presented.
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2.1 Boilers

A boiler generally is any device used to produce hot water. Boilers represent one of the most
common technologies installed at buildings, used mainly to provide DHW and heating. Heat
is transferred with radiators or via radiant floor. There are two main types of boilers, namely:
(a) the conventional and (b) the condensing boilers. The efficiency of a boiler is defined as the
energy output over the energy input. Condensing boilers have increased efficiency over the
conventional ones, due to the utilization of water latent heat (the lower flue gas temperature

at exit causes the vapour to condense, hence exploiting its latent heat) [26,27].

The efficiency of boilers varies between 79% - 99% and their typical size is between 10 — 33
kWi [26]. Efficiency depends on the type of boiler, the input fuel (natural gas, oil, biomass),
the rate of fuel flow, the inlet and outlet water temperatures and the heating load that needs
to be satisfied.

2.2 Air Conditioners - Heat pumps

Air conditioners have been in use in buildings for many years as a cooling generation
technology. Heat pumps follow the same operating principles, but they are available in many
types and are able to work reversibly to provide heating and cooling. Heat pumps are the only
heat recovery system able to lift the temperature of the waste heat at a useful level (a process

which seems to contradict the 2" law of Thermodynamics).

To allow the transfer of heat from a lower to a higher temperature an amount of work (energy)
is required. Most heat pumps rely on a vapor-compression cycle with four basic components,
namely: (a) an evaporator, (b) a compressor, (c) a condenser and (d) an expansion valve. A
typical configuration of a heat pump system is presented in Fig. 2.1. A working fluid absorbs
heat in the evaporator from the heat source which causes it to evaporate, then goes through
the compressor where is compressed to a higher pressure and temperature. At stage three,
in the condenser the hot vapour releases heat and in the final stage it expands to the
evaporator pressure and temperature, hence returning to its original stage. A reversed

operation of the condenser and evaporator allows the heat pump to work in cooling mode [28].
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Fig. 2.1. A closed cycle electricity driven vapour-compression heat pump (source: [28])

Heat sources for the operation of heat pumps include air, water, soil and geothermal, and solar
energy. Air source heat pumps are the most common. Furthermore, heat pumps can be
classified into six main types:

e water to water;

e water to air;

e airto air;

e air to water;

e ground to water;

e ground to air.

The efficiency of heat pumps is measured through a coefficient of performance (COP), defined

as the ratio of energy out over work (energy input):

_Q 2.1
COoP w (2.1)

2.3 Absorption Chillers

Absorption chillers are based on the principle of heat absorption by liquids or salts of the vapor
of a working fluid. The most common working pairs used in absorption chillers are: (a) water
as working fluid and lithium bromide (LiBr) as refrigerant, and (b) water as working fluid and

ammonia (NHs) as refrigerant. A configuration of an absorption chiller is presented in Fig. 2.2.
The operation of an absorption chiller is similar to the vapor-compression heat pump. The

working fluid is compressed thermally in a solution circuit, consisting of an absorber, a solution

pump, a generator and an expansion valve. The low-pressure vapor from the evaporator is
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absorbed by the absorbent in a process that generates heat. Then, the solution enters the
generator after being pumped to high pressure. In the generator the working fluid is heated
using an external heat source, reaching a high temperature and converted into a vapour. Then,
a condenser is used in which the working fluid is condensed, while the absorbent is through
an expansion valve goes back to the absorber. Heat is supplied at the evaporator and given
off at a medium temperature in the condenser and the absorber. The solution pump might
require a small amount of electricity to operate [28]. Absorption chillers usually have an actual

COP less than 1 and they perform best when the heat supply is at high temperatures [29].

Heat out

Absorber

Heat in

\ Do
\‘ R 4
Expansion valve @®®

Heater
@

Expansion valve

Evaporator Condenser

Fig. 2.2. An absorption chiller (source: [28])

2.4 Cogeneration Technologies

Cogeneration technologies, most commonly known as combined heat and power (CHP),
refers to the simultaneous generation of electricity and heat. Basically, CHP units take
advantage of the wasted heat from power generation. Cogeneration offers increased
efficiency by minimizing heat losses and allowing supply of heat to various applications and
facilities. In Europe cogeneration has been used by many countries for industrial, commercial
and residential applications. CHP technologies offer several benefits, mainly high efficiency,

low emissions and high reliability [18] [30].

In Fig. 2.3 the energy balances between the conventional (separate) generation of power and

heat and cogeneration is presented, showing the increased efficiency of a CHP system.
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Fig. 2.3. A comparison between conventional and cogeneration (source: [31])

The overall thermal efficiency of a CHP system is the sum of the fuel conversion to electricity
plus the fuel conversion to useful thermal energy, and it typically ranges between 65% - 90%:

E+Q,
Nt = Q
F

In recent years cogeneration technologies have been further developed and moved from

(2.2)

industrial to residential applications (micro-cogeneration, mCHP) based on a distributed
energy systems approach as shown in Fig. 2.4. Typically, cogeneration technologies consist
of four basic components, a prime mover, a power generator, a heat recovery system and a
control system. Technologies used for mCHP are based on the following prime movers [32]:

e Steam turbines;

e Gas turbines;

e Reciprocating engines;

e Stirling engines;

e Fuel cells.

EXHAUST .
5-15% v,

F FuEL:
Natural Gas
Propane Bio
Mass Bio
Diesel

100%

ELECTRICITY
Import / Export

Fig. 2.4. Micro-cogeneration in a residence (source: [32])
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Another application of cogeneration is the utilization of generated heat to produce cooling
energy, in a concept called combined cooling, heating and power (CCHP), also known as
polygeneration or trigeneration, as shown in Fig. 2.5. A classic trigeneration system is the
coupling of CHP with an absorption chiller. Trigeneration makes cogeneration more
economically attractive, as the generated heat can also be used in the summer when cooling
is required. Application of cogeneration systems has been studied thoroughly by several

researchers, particularly combined with mathematical programming (e.g. [33—39]).
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Fig. 2.5. A representation of a trigeneration system (source: [32])

2.5 Solar Energy

Solar energy can be used in various applications in energy systems, either for thermal
applications (heating and/or cooling) or for electricity generation. Applications of solar energy
take advantage of solar irradiance, which is dependent on the location. The higher the solar
irradiance the higher the potential is. The solar irradiation for Europe is presented in Fig. 2.6
and it can be seen that southern countries (such as Greece) have a lot of potential to use solar

energy.
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Fig. 2.6. Global Horizontal Irradiation in Europe (source: [40])

2.5.1 Solar water-heating systems

Solar collectors can absorb solar radiation and can be installed to heat water, which can be
then used for heating and/or DHW supply. Basically, a conventional solar water-heating
system comprises of two units, namely the collector and the storage unit. Typically, a
combination of flat-plate collectors (FPCs) is used. There are two modes to transfer water to
an insulated storage tank, namely: (a) the thermosiphon/natural model in which hot water is
transferred by natural convection and (b) forced-circulation mode, in which a pump is used to
circulate water. A schematic of a natural and forced-circulation system is shown in Fig. 2.7
[41].
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P e
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v\ ===t
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= storecge tank
— §

— Inzulated pDipe

“—— Outlet M (1)

tt— Inlet M Q)

L Insulated storage tank

Water Pump Insulated connecting pipe

(a) (b)

Fig. 2.7. A schematic diagram of: (a) A thermosiphon solar water heating system and (b) a forced-circulation

single-loop water heating system [41]

The performance of a solar water heating system depends on the solar radiation absorbed by

the collector, the temperature difference between ambient temperature and the mean plate
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temperature and the efficiency of the collector. The collector efficiency is the ratio of the energy
provided by the collector to the solar radiation on the collector over a period. Efficiency of the
solar collector drops when the mean plate temperature gets high and ambient temperature
and solar radiation get low. The variations of efficiency for different collectors is shown in Fig.
2.8 [42].
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tubes

- o
9 |
[ =
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w
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0.2 \ Glazed black
\ absorber
0 \

0 0.02 0.04 0.06 008 0. 0.2 0.4
(Te-T

Fig. 2.8. Variations of efficiency for various solar collectors (source: [42])

2.5.2 Photovoltaics

Solar energy can be used to produce electricity using photovoltaics, a technology that utilizes
photovoltaic effect. When a photovoltaic material absorbs solar radiation of given wavelengths
the energy of electrons increases allowing them to jump over to the next conduction band and
move freely, thus generating direct current electricity [43]. Several materials are used for solar
cells, such as silicon (monocrystalline silicon, polycrystalline silicon, and ribbon silicon),
cadmium telluride, copper-indium selenide, single crystal, light-absorbing dyes,
organic/polymer, and nanocrystals [41]. The improvement of efficiency for various types of PV
cells over the years is shown in Fig. 2.9. The efficiency of a PV cell is defined as the ratio of
the maximum electricity output to the incident radiation. Typically, it is defined for standard

conditions of cell temperature 25°C and irradiance of 1000 W/m?2.

19

—
| —



Chapter 2: Urban energy and technologies

50
Multiiunction_cslls (2-terminal, monolithic)  Thin-Film Technologies Eew—— FraunholerlSE o Ji‘;‘?;"
A8+ ¥ | hreg-junciion {concentrator) ® Cy(ln,Ga)Se, {metamarghic, 238 | {metamcrphic, 454x] spm.:?.,t flatice maiched,
¥ | nree-junction (non-concentraior) ®Ldlz -Ial:io‘;s:n?chd. Spire 418x)
A |wo-junction (concentrator) © amorphous SiH (stabilized) > Sen—inm;:‘ov
. " i i Hosing-Specticlsb  Basing-Spectralab {metamoiphic,
44 Single-Junction GaAs # Nanao-, micro-, paly-Si {metamorpees, 175) . (metamaratc, 240€) 405)
AsSingle crystal O Multijunction polycrystalline -
40} 4 Concentrator Emerging PV fivested, metamerptic) NFREL finverted,
W Thin film crystal © Dye-sensitized cells NREL "V metamorphic,
" - ® Organic cells (various typas) Boeing- ! I267x)  Shar
Crystalline Si Cells A rgan y ypes) Sp::",':,gh,‘ Spectralab ™M, |Pn1
361 = Singla crystal . Organic tandem cells NREL fimerted, P 4
i i i -] 1 hic, 1sun) o= FhGH
O Multicrystalline Inarganic calls NRELS T = e W Ir._:‘:ff
2 * Thick Si film © Quantum dot calls Japan  Spectmiah o=t
. # Silicon Heterostructuras (HIT)
) Varian NAEL Spectralab
g Varion  (296x) o {40 6mZ, +5ur)
28 EAA ap S
@ Stantord o e N e @emm==sEE.
E - (43 = Ropna e cmsssmsssssssss———sssssssssess==g
i
S 24+ {TJ. Waiscn _-_____.‘".‘“
£ Reseaichcerter) | pmmmm=— UNsw  UNSW=" CuflnGalSe,
w | A== unsws 1 s
20+
- Univessity * - p
16 So. Florida FamPower oo, St o e
Makil . NFEL {zmallarea) £ [Sumthin-  NAEL United Salar - Chemical
sclar T MAELEWSCIS g nolar - film trangler] {CATS/CIS] {aSiincBiincE) ucLa
12+ Sharg NMS, | Sumitemo
N BM -
Matsushita TR
(CTZS8e
g+ clar AL Wanarka e Heliatek
Uniw Linz = ;‘" UCLA
* Uriversity Graringzn o Sumics
- ’
4+ of Maine Plextroricn’” |, M Helimelg o L
RCA Ton ACA TEN Univesity Linz Univessiy Siemers  Dresden NRELY  Tororio
RCA RCA Linz (Zn0VPLSOD) (PES-CD)
oL g S R T N T T T [N N T A T T T T N N T T N T T Ty s T Y
1975 1980 1985 1990 1995 2000 2005 2010 20

Fig. 2.9. Maximum efficiency of laboratory research PV cells of various types as reported by NREL (source: [44])

Photovoltaic cells (PV) can be either connected in series or in parallel to form a module and
generate electricity. A group of pv modules is called a panel and number of interconnected
panels is called a solar PV array. Typically, a PV system includes the following parts [41]:
e a charge controller to regulate the DC voltage and protect the batteries from
overcharging (if are installed) and against overvoltage;
e a PV battery used for electricity storage and supply energy when there is not enough
production (e.g. night);

e an inverter used for the conversion of the DC current into AC current.

PVs can be connected either as direct coupled systems, stand-alone applications, grid-
connected or hybrid connected systems. Moreover, they can be used for various types of
applications, such as: remote site electrification, communications, remote monitoring, water
pumping, charging vehicles batters and as building-integrated photovoltaics (installed in the
facade or roof of a building) [43].

2.6 Wind Energy

Wind energy is a RES which gained rapid development in recent years. To convert wind
energy to electricity wind turbines are used, which are classified into two main categories,
namely: (a) horizontal-axis wind turbines (HAWTs) and (b) vertical-axis wind turbines

(VAWTS). Typically, a wind turbine consists of a tower, rotor blades, an inverter, wind
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generator magnets and charge controllers. Wind turbines offer several benefits, such as low-
cost and environmentally friendly energy supply, however there are some disadvantages too
such as high noise and intermittency. The power generation of a wind turbine depends on the
wind speed, with each turbine having a respective power curve. A typical power curve is shown
in Fig. 2.10. The Weibull distribution is used for wind resource analysis, characterized by a

shape parameter and a mean wind speed parameter.
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Fig. 2.10. Power curve of a wind turbine (source: [45])
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The output of a wind turbine is typically based on the following set of equations:

0, vv,
P (v), v, <v<v,

P(v) = (2.3)
P,V <v<v,

0, v>v
where, V wind velocity, V;,V,,V,,, cut-in, rated and cut-out velocities, Pr is the rated power (in

kw), and Pf (V) is the power fitted to power curve data provided by the manufacturer (typically

a polynomial function).

Large wind turbines have a range of sizes up to 5 MW, a figure which is increasing annually.
There are also small-scale wind turbines with sizes less than 100 kW. Small wind turbines can
be configured as stand-alone systems and provide electricity to houses or remote areas. In
terms of designing wind turbines for built environments though several challenges arise. In
urban environment wind turbines can be installed at the roof of a building, at the sides of a

building or integrated in between buildings. The earth’s characteristics and the roughness of
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the area are important factors to consider [46]. Reviews performed for the assessment of wind
turbines in the urban environment conclude that more research is necessary in order to assess
factors such as turbulence, wind profiles and issues of aerodynamics [47,48]. Nevertheless,
micro wind turbines can be economically viable (if wind speed is greater than 6 m/s), and also
cover the demand of a house or also export surplus electricity to the grid [49].

2.7 Energy Storage

As the name suggests, energy storage is a concept of storing useful energy for use at a later
period. In the context of urban energy systems two categories of energy storage are

significant, namely: (a) thermal energy storage (TES) and (b) electric energy storage (EES).

2.7.1 Thermal energy storage

TES is used for applications such as space heating, hot water, cooling and air-conditioning.
Two main mechanisms exist for storing thermal energy, one based on using sensible heat and
the other based on using latent heat. In sensible heat applications energy is stored by causing
the temperature of a material to rise (absorbing heat) or reduced (releasing heat). Heat is
transferred to another material, or the environment via heat transfer mechanisms of
convection, conduction or radiation. Common systems include rocks, ground and water. In
latent heat applications, energy is stored by causing changes in the state or phase of materials

(e.g. organic materials).

Sensible TES need a storage medium, a container, and input/output devices. Important
parameters for the selection of storage materials is the cost, thermal capacity and the rate at
which heat can be stored or released. In latent heat TES systems heat change is usually
higher compared to sensible heat change. Typically, latent heat systems consist of a heat
storage substance that is able to change phase in the respective temperature range, a

containment and a heat-exchange surface.

There are many factors to consider on selecting a specific type of TES system, such as the
storage period, operational profile, and economic viability. In general, TES offers several
advantages, such as increase generation capacity, better operation of cogeneration plants,
shifting of energy purchases to low-cost periods and increased system reliability [50].
Regarding the combination of cogeneration and TES studies showed several benefits in terms

of energy savings and cost reduction, depending on the type of building [51,52].
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2.7.2 Electric Energy Storage

Electric energy systems have remerged along with the increase usage of renewables, in order
to capture wasted energy for later use. EES can offer several benefits, such as time shifting
(storing at off-peak periods and discharge at peak time), power quality (frequency control) and
emergency supply. Electricity can be stored in various forms such as potential energy,
compressed air, electrochemical energy (batteries), kinetic energy, magnetic fields (inductors)
and electric fields (capacitors). EES systems are classified mainly using two criteria: (a) power
rating and (b) rated energy capacity [53]. In Fig. 2.11 the classification of various EES systems

is presented.
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Fig. 2.11. Classification of EES systems (source: [53]).

The most established EES technology is electrochemical batteries, specifically lithium-ion
technology batteries are the most common for stationary storage, outperforming their inferior
lead-acid counterparts. They have an efficiency range between 80 to 85% and a life of 5000
cycles. Batteries can offer power quality in terms of voltage stability and frequency control and
also are suitable for energy management. In the last years installation of batteries has

expanded. Also, in recent years high temperature sodium-sulphur batteries have also been

installed [53].
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EES are installed in buildings, despite the high cost, due to the benefits they can offer such
as energy security and better energy management. Also, they are expected to play a very
important role in the future smart grids [54-57].

2.8 Microgrids

The deployment of distributed generation has been growing significantly during the last years.
Typically, DG technologies are connected to distribution networks based on the concept of
passive consumer loads and one direction power flows, from the substation to the consumers.
Microgrids are a relatively new concept, developed to better facilitate the integration of
distributed generation. Examples of microgrids concept are depicted in Fig. 2.12. Their
organization relies on the control capabilities of the increasing penetration of distributed
generators, such as microturbines, photovoltaics, coupled with energy storage devices. A
microgrid is defined as [58]:

“Microgrids comprise LV (low voltage) distribution systems with distributed energy resources
(DER) (microturbines, fuel cells, PV, etc.) together with storage devices (flywheels, energy
capacitors and batteries) and flexible loads. Such systems can be operated in a non-
autonomous way, if interconnected to the grid, or in an autonomous way, if disconnected from
the main grid. The operation of microsources in the network can provide distinct benefits to

the overall system performance, if managed and coordinated efficiently”.

From this definition three conclusions can be derived:

a. A microgrid is an integration platform for microgeneration, storage units and
controllable loads, at a local distribution grid. This means a focus is given on local
supply to nearby loads, and that a microgrid operates at a LV level.

b. A microgrid can operate either in on-grid or off-grid, also known as islanded mode.

c. A microgrid differs from a passive grid penetrated by microsources in terms of
management and coordination of resources. A microgrid operator provides load control
and needs to follow specific economic, technical and environmental targets. Also,
microgrid has the advantage of dealing with conflicts of interests of various

stakeholders in order to provide the optimal operation decision.

In literature, several models of the development of microgrids exist in different concepts, e.g.
[59-62].
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Fig. 2.12. Examples of microgrid: (a) as a LV grid; (b) as a LV feeder; (c) as a LV house (source: [58])
2.9 District heating networks

Conventional heating systems rely on local supply of fuels (e.g. natural gas) to individual
energy technologies (e.g. boilers) to convert primary energy into thermal energy and satisfy
local energy demand. DHNs are networks that can transfer heat, either between buildings, or
from large scale plants (e.g. cogeneration plants) that produce waste heat, to residential,
commercial or industrial consumers. Those systems can be designed to transfer either heat
or cold (District heating or District cooling networks). In the EU, there is an increasing number
of local authorities to integrate cogeneration plants with DHN, which also fits the European
long-term energy strategy. The benefits of these systems can be both economical (economy
of scale) and environmental (reduction of carbon emissions associated to energy generation)
[18].
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However, there are some barriers associated with the development of DHNS, such as the high
initial cost to develop the necessary infrastructure. Therefore, energy policies and regulation
for the development of decentralized networks need to be implemented [63].

In Fig. 2.13 a district energy system is illustrated. Part (a) shows the general layout of a district
energy system with a central heat/cold production, the distribution network, the location and
equipment of end-users. Part (b) shows the layout of a district heating system. A CHP, boiler,
or combinations of technologies can be used to produce heat, using available primary energy
sources. Depending on system’s design heat can be transferred as hot water or steam. When
heat reaches the end-users, heat exchangers can be used to satisfy heat demands, either in
space heating, hot water or for industrial processes. Part (c) shows a general district cooling
system. At the central site primary thermal energy is converted into cold thermal energy (e.g.
by using an absorption chiller). A cold thermal energy storage system can also be used.
Regarding costs, the most expensive part is the piping network consisting of pipes made from
a combination of field-insulated and pre-insulated pipes, which are embedded in a concrete
tunnel or buried in the ground (or a combination). Capital cost of pipes is estimated to be
between 50% and 75% of the total cost [18].
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Fig. 2.13. A district energy system: (a) A general layout, (b) flowchart for district heating and (c) flowchart for

district cooling applications (source: [18])
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In this chapter some key aspects of mathematical programming are presented. Specifically,
the basic characteristics of linear programming, mixed-integer linear programming, multi-
objective programming and techniques of optimization under uncertainty are presented. Also,
the e-constraint method (and its expansions) which is used to solve multi-objective
optimization problems is described.

Regarding uncertainty, four techniques are introduced, which are used in this thesis to provide

robust solutions, namely objective-wise uncertainty, robust optimization (MMR and MER), and

stochastic optimization (Monte Carlo simulations).
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3.1 A brief introduction to mathematical programming

Mathematical programming is considered to be a subtopic of Operations Research.
Operations Research (OR) is a scientific method of decision making. The aim is to make the
optimal choice under a specific set of constraints. Roots of OR have been generally attributed
to World War Il, when a scientific method was needed to allocate scarce resources to various
operations, although some work in the field was done earlier. In literature there are a number
of textbooks dedicated to operations research and modelling in mathematical programming,
such as [64—66]. This chapter briefly describes some common mathematical programming

techniques which are used in this thesis.

The most common categories of MP problems are:
e Linear programming;
e Integer programming;
¢ Nonlinear programming;
¢ Mixed-Integer linear programming;
e Dynamic programming;

e Multi-objective programming.

In order to develop any OR model four major concerns apply, namely:
a. Feasibility (can this be done?)
b. Optimality (is this the best choice?)
c. Sensitivity (what happens if input parameters change?)
d. Implementability (can this solution actually be applied?).

3.2 Linear Programming

Linear programming (LP) is a tool developed in OR, perhaps the most important one as it is
highly used and has major scientific impacts. In LP all mathematical functions of the
mathematical model developed to define the problem are linear. The most famous method to
solve LP problems is Simplex method, developed by Dantzig. Generally, an LP problem has
the following form:
min f (X)
st.
g(x)<o
h(X) =0

(3.1)
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where:

. f()_(') represents the objective function

o X e R" represents the vector of decision variables

o Q)()?) €R" and ﬁ()?) € R" represent m inequality and p equality constraints that

define the search space.

LP has a variety of applications such as production planning, diet problems, allocation
problems, employee scheduling, dynamic production, blending problems, transportation and
assignment problems. Three fundamental assumptions apply to LP problems:

a. Deterministic property;

b. Divisibility;

c. Linearity.

Deterministic property implies that all parameters are known with certainty. Divisibility allows
decision variables to have any value, including real numbers and non-integers. Finally,

linearity means that all expressions (objective function and constraints) are linear.
3.3 Mixed-Integer Linear Programming

Mixed-Integer linear programming (MILP) is an extension of LP in which some but not all
variables are integer. A MILP problem has the general form:
min f (X)
s.t.
g(x)<o (3.2
h(x)=0
X,€eZVjel

where, X; represents the integer decision variables. A special case is when Xx; are binary

variables {0,1} .

MILP problems are useful in cases where a selection needs to be made, such as selecting

machines, buildings, investments, land use, etc..

3.4 Multi-objective programming
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Multi-objective programming problems refer to the case where there are more than one
objective functions. In this context, the term of optimality as defined in the single objective
cases does no longer apply. A DM needs to decide which of the two (or more) criteria is more
important, based on a trade-off between them. Details about multi-objective optimization
techniques and its applications can be found in [67—73]. A general multi-objective optimization

problem can be written as [72]:

(3.3)

where, % e R", f(X)€R*, §(X) €R™, h(X) cR”.

In multi-objective optimization problems there are many solutions, therefore relationships

between solutions are defined as in [72]:

e Avector il dominates a vector )_()2 if: iiis at least as good as )_()2 for all the objectives,

and )?1 is strictly better than )_('2 for at least one objective.

e Avector X € R" is locally optimal in the Pareto sense if there exists areal 6 > 0 such

that there is no vector X' which dominates the vector X with X € R"NB(X,0)

where B()_(',(S) represents a bowl of centre X and of radius 0.

e Avector X € R" is globally optimal in the Pareto sense (or optimal in the Pareto sense)

if there does not exist any vector X’ such that X’ dominates the vector X .

Several methods exist to solve multi-objective optimization problems, such as scalar,
interactive, fuzzy or using metaheuristics (e.g. genetic algorithms). A popular method is the ¢-

constraint method, which is used for the optimal design of DES in this thesis.

3.4.1 The g-constraint method

In the classic e-constraint method a multi-objective optimization problem is transformed into a
single-objective problem using the following approach [72]:

e choose an objective function to be optimized with high priority;

e choose a vector of initial constraints;
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e transform the problem by conserving the objective function to be optimized and
transforming all other objective functions into inequality constraints.

To present the problem using e-constraint method a constraint vector €,1€ 2,...,K ,& >0

is chosen. Then, the problem defined in eq. (3.3) is transformed:
min f (X)
st.
f,(X)<g,
: (3.4)
f,(X)< ¢,
X

h(x)=0

Mavrotas in [74] proposed an improvement to the classic ¢-constraint method, called
augmented e-constraint (AUGMECON), which can effectively be implemented in multi-
objective mathematical programming problems. AUGMECON has the advantages of being
more efficient and can avoid weak Pareto optimal solutions. An improved version of
AUGMECON, called AUGMECON2 was presented by Mavrotas and Florios in [75].
AUGMECONZ2 is found to be more efficient in multi-objective integer programming problems
and can produce the exact Pareto set. An illustration of AUGMECON2 method is presented
in Fig. 3.1.
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Problem P
max [fy (M) + eps % (Sy fry + 1071 5, fry 4.+ 1000 %S, fro)]
St

Create payoff table
(lexmanx f(X], k=1...p) e F
i fulk)=S.= e k=2..p
| Setlowerbounds|b, fork=2...p | where

f.(X) objective functions to be maximized

e, = lby + iy % step,

Iby: lower bound for chjective function k
stepy = /g : step for the objective function k
ry: range of the objective function k

| Calculate rangesr, fork=2...p |

gx: number of intervals for objective function k
Divide r, into g, intervals S,: surplus variable for objective function k
(setnumber of gridpoints =g, +1) F: the feasible region

eps: averysmall number {usually 1073 to 10°5)

Ne: number of Pareto optimal solutions

¥ b= int{Safste pa): bypass coefficient— int() means integer part
Initialize counters:

i=0fork=2..p, n=0

Calculate b
L b= int(S,/step;)

Fig. 3.1. A flowchart of the AUGMECON2 method. (source: [75])

Using AUGMECON2 a multi-objective mathematical programming problem can be redefined

as follows:

. - S B S o S
min | f(X)+epsx| 2+10" x =2 4... 410 * D x 2k
r-2 r3 rk

f,(X)—s, =&, (3.5)

fi (X)—s, =&
g(x)<o0
h(X) =0
where:

e Tr,i€ 2,.,k representthe ranges of objective functions
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e S,i€ 2,..,k ,5 €R" represent the surplus variables of the respective constraints

« eps€[10°,10°7.

In Fig. 3.2 a graphical representation of e-constraint method is presented.

Unreachable domain
due to the constraints

fa

€2

s fi

Fig. 3.2. The e-constraint method (source: [72])

3.5 Optimization under uncertainty

As stated in Section 3.2 a basic assumption used in LP, and generally used in mathematical
programming is deterministic property, i.e. knowing the values of parameters with certainty.
However, in the real world that is usually not the case. For instance, in energy planning
problems parameters such as fuel prices (gas, oil, electricity) are not certain as their value
varies in time. Therefore, dealing with uncertainty is an important task, especially in long-term
planning problems. Generally, there are three main approaches to deal with uncertainty,
namely: (a) Sensitivity analysis, (b) Robust Optimization (RO) and (c) Stochastic Optimization

(SO). Technically, sensitivity analysis is a method used to identify the sensitive parameters
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rather than provide robust solutions. RO and SO aim to provide robust solutions, even though
they are used in different text, and are explained briefly in this section.

3.5.1 Objective-wise uncertainty

Optimization under uncertainty for multi-objective optimization is an area with ongoing
research. Ehgrott et al. in [76] provide several methods for minimax robustness for multi-
objective optimization problems. One such method is objective-wise worst case in which the
supremum of the robust counterpart of an uncertain multi-objective optimization problem is
not considered a multi-objective maximization problem, rather is interpreted as a point instead
of a set. Therefore, is reformulated into a new problem, defined as the objective-wise worst
case:

OWC,,, min f>"(x)

st.xe X

(3.6)

where

sup f,(x, &)

e ) sup f,(x, <)
" X) =| ¢eu

sup f, (x,€)

¢eu

This approach has the advantage of being much easier than solving a multi-objective
optimization problem max f(x,£):£€U as it results to solve a deterministic multi-

objective problem, which then can be solved using any appropriate method.
3.5.2 Robust Optimization

RO is a relatively new approach in optimization with a growing interest, aiming to provide
solutions which are robust and independent of any value of the uncertain parameters. In
literature, there are several methods used in RO, such as minimax regret criterion and robust
counterpart with a variety of applications [77—-83]. In the context of this thesis when the concept
RO is used it refers to the concept of robustness as defined by Kouvelis and Yu in [77]
calculated specifically by the MMR criterion. Regret is defined as the difference between the
result of a decision (cost) and the result of the decision a DM would have made had all the

parameters were known in advance (robust deviation decision). Also, regret can be defined
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as the ratio of these values, which is called relative robust decision. The MMR criterion has
the characteristic of providing risk-averse solutions.

Practically, to calculate the MMR criterion the DM uses scenarios based on the possible values
the respective parameters can take. For the calculations in this thesis the relative MMR
criterion is used which is calculated by eq. (3.7):

Zyvwr = min [y]
S.t.

fs<(+y)-2°,seS (3.7)
A*x <b?®
x>0
where, z° is the optimal value of the s-th scenario and f* is the value of the corresponding

objective function.

Moreover, another criterion used is the minimax expected regret (MER), which is based on

the MMR but with the difference of applying probabilities at each scenario (4 ). This could be

useful in case the DM can have a proper estimation of the probability of a scenario because it
can lead to less conservative solutions. In this thesis MER is defined similarly to [84], based
on the definition of MMR by [77]. Therefore, MER is calculated by eq. (3.8):

Zyer = min [ZasRs]
S.t.
f*<@+R,)-2°,5€S
A’x <b®
Ya =1

x>0

(3.8)

3.5.3 Stochastic Optimization

When uncertain parameters are considered in SO, rather than being assigned a specific value
for each scenario that might occur, it is assumed that they follow a probability distribution. To
solve SO problems Monte Carlo simulation can be used, which is an iterative method using
random generated numbers based on the respective distribution of each uncertain parameter
[85]. In Fig. 3.3 the combination of mathematical programming and Monte Carlo simulation is

shown for three common probability distributions, namely uniform, normal, and triangular.
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Distribution of the optimal
values of the
objective function (z)

MPY

N
P1 | |
A B
P2 Solution of ! =1--1000 - :
—— Distribution of the optimal
MP model values of the decision
variable (x)
IRRA
P3
ESRERSEEEE

Fig. 3.3. Monte Carlo simulation and mathematical programming (source: [86])
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In this Chapter the methods for the optimal design of DES are presented. The first subsection
consists of a detailed literature review of the research in the field and applications of
mathematical programming regarding DES. The context and the significance of DES are

outline and the novelty of the work in this thesis is introduced.

The two methodologies for the deterministic application of multi-objective mathematical
programming for the optimal design and operation of a DES are described analytically. Also,
the application of the optimization techniques aiming to robust solutions and the respective

scenarios of each method are described.
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4.1 Literature Review

Mathematical programming has been used extensively in problems related to energy planning,
energy policy or carbon emissions reduction. Regarding the optimal design of DES several
approaches have been made by researchers. DES have been designed either in single
buildings or for multiple buildings, in the context of a neighbourhood, a complex of buildings
or a small town, using both single-objective and multi-objective optimization. Designing DES
has been often characterized as a complex task due to the large number of decision variables
of the problem, which are separated into three main categories, namely: (a) Synthesis (type
of technology to be used), (b) Design (size of the technologies) and (c) Operation (operational
profiles of technologies). Due to the interaction of these variables the complexity of integrating
them into a single optimization problem increases. A recent study by Goderbauer et al. proved
that and showed how designing a DES is a complex problem which is NP-hard [87].

Ren and Gao in [88] developed a MILP model for the optimal integration and operation of
DES. The objective function was the minimization the overall cost. A case study was
performed for a campus in Japan based on a superstructure approach with several candidate
technologies such as gas engine, gas turbine, micro turbine, fuel cell, photovoltaics and
thermal energy storage, under four scenarios with different configurations. Also, they
performed a sensitivity analysis for energy demand, energy prices and carbon tax. In [89] Ren
et al. developed a multi-objective optimization model for the design of DES with minimization
of total energy cost and carbon emissions as conflicting objective functions, solved using

Chebyshev criterion.

In [90] Buoro et al. developed a MILP optimization model for the energy supply of two
buildings, a standard house and an automated home using technologies such as small CHPs,
heat pumps, boilers, heat storages, solar thermal and photovoltaics. The results showed high
energy savings in both buildings. In [91] Buoro et al. presented a multi-objective MILP model
for the optimal design of a DES in an industrial area with economic and environmental
objectives, based on a superstructure with small CHPs, a solar plant, thermal storage and a
DHN. The problem was solved using the weighted sum method. Another article by Buoro et
al. for application of DES in an industrial area is presented in [92]. The scope of the paper was
to identify the optimal energy supply system and the optimal operational strategy based on
technologies such as a solar thermal plant, CHP, boilers, compression chiller and thermal
storage. A MILP model was formulated in which the objective function was the minimization

of cost.
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Liu et al. in [93] developed a model for the optimal design of energy systems in commercial
buildings using multi-objective MILP with economic and environmental criteria applied to a
supermarket. The available energy technologies where wind turbine, solar photovoltaics,
natural gas and biomass boiler, small and large natural gas CHP, small and large natural gas
CHP, and fuel cell CHP. The problem was solved using eps-constraint method and the results
showed the potential of the proposed framework. In [94] Liu et al. present a DES engineering
framework in residential applications, including the design and operation of microgrid
technology. Their results highlighted the need for operational strategies, especially for the
microgrid. A mathematical programming framewaork for the operational planning of a network
of micro CHP and also an alternative microgrid structure was developed by Kopanos et al. in
[59]. The results showed that the microgeneration networks have advantages over

conventional designs.

The design of DES at a neighbourhood level was also studied by Mehleri et al. in [95]. Their
framework was based on a MILP super-structure model for the optimal configuration of
technologies at a neighbourhood in Athens, using a model of three typical days of a year
(winter, mid-day and summer) and six typical periods. Candidate technologies were micro-
CHP units, photovoltaics, and boilers. Buildings could also form a DHN to exchange heat. The
objective function was the minimization of total annual costs, including a carbon tax to include
the environmental cost. Moreover, a case study for 10 buildings was carried out were
alternative scenarios were compared, such as centralised CHP unit, no heat exchange and
conventional scenario (no distributed technology or network). The results showed the
reduction of cost when DES are implemented compared to the conventional scenario.
Furthermore, in [96] the same authors expanded their work and presented a MILP model for
the optimal design and operation of DES, including a microgrid, with the same objective
function. Candidate technologies were solar photovoltaics, CHP, boilers, DHN and a heat
storage tank. Three scenarios were examined, first being the conventional scenario, the
second with microgrid and the distributed technologies and the third also included the
photovoltaics. Also, a sensitivity analysis was performed to evaluate uncertainty in electricity
and gas prices. The results of the work showed the economic and environmental benefits of
the DES.

Di Somma et al. in [97] presented a model for the optimal design of DES using multi-objective
optimization with total energy costs and exergy efficiency as objective functions. Candidate
technologies are biomass boiler, solar thermal, CCHP, a reversible heat pump and thermal
energy storage. The model was formulated as a MILP multi-objective optimization and solved

using the weighted sum method. Their results showed the variation of operation of the DES at
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each weight combination and demonstrated the overall reduction of energy costs and
improved exergy efficiency compared to conventional technologies. A multi-objective
optimization model for DES using economic environmental impact (carbon emissions) as
objective functions was presented in [98]. The results showed the reduction of both costs and
carbon emissions in various configurations. The same authors presented a multi-objective
MILP mode for a DES including renewables with objective functions the total annual cost and
the exergetic efficiency. Also, in this paper the optimal size of technologies is calculated, and

the variation of efficiencies and costs with sizes is examined.

Weber and Shah in [99] developed a method for the optimization of DES for an eco-town in
the United Kingdom. A MILP tool was presented which calculates the optimal configuration of
technologies with objective of minimizing total annual cost. Decision variables are the type,
size and location of technologies in the district, their operational strategies and the layout of
the DHN. Candidate technologies were categorised as centralized (wind turbine, large heat
pump, CHP) and distributed (photovoltaics, solar thermal collectors, individual heat pump,
individual chiller, and boiler). Different scenarios under various constraints were examined and
the results showed the economic benefits of the DES and the importance of renewables into
the energy mixture. DES have been also studied extensively in [L00—-104] using multi-objective
optimization based on the master and slave decomposition approach. In [100] system’s energy
efficiency, total annual cost and carbon emissions were used as objective functions for the
master optimization using multi-objective mixed-integer non-linear programming (MOMINLP)
and then in slave optimization the energy integration was solved with objective functions the
operating and emission costs, subject to energy balances and heat constraints (MILP). The
model was applied to a case study at a large-scale model (a city similar to Geneva) considering

different scenarios between centralised or decentralised technologies.

In [105] Omu et al. presented a MILP model for the design of DIS using a single-objective
function for minimizing total annual costs, based on a superstructure of conversion
technologies, including natural gas and biomass boiler, gas turbine and reciprocating engine
CHP, air source and ground source heat pump, wind turbine, photovoltaics and solar thermal
collectors. Buildings can exchange heating and electricity between them. Their model was
applied to a case study of six buildings located in the south of England and tested various
scenarios, depending on the degree of decentralization and the conflict of electrified heating
and combined heat and power. The impact of subsidies was also examined. The results
showed that DES have the potential of reducing carbon emissions significantly, while their
economic benefit depends on the considered scenario. A similar approach was provided by

Bracco et al. by the presentation of their tool, called DESOD (Distributed Energy System
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Optimal Design) [106]. Candidate technologies are boilers, reversible heat pumps, absorption
chillers, cogeneration technologies, photovoltaics, solar thermal collectors, electric storage,
and thermal storage. Buildings can be connected via a DHN to exchange heating, but cooling
is provided locally. Also, a microgrid is designed connecting all buildings through a single
connection point to the national grid. Moreover, the authors performed a examined the impact
of the dimensions on a MILP model by performing a computational analysis of different model
sizes. The analysis shows that subdividing into a small number of time intervals leads to a
simpler model which results to lower computational times without affecting the value of

objective function significantly.

A structural and operational optimization model of DES, emphasizing in DHN was presented
by Haikarainen et al. in [107]. Objective function is the minimization of total cost, consisting of
investment and operational costs. The model is flexible and can be adapted for various
scenarios and has been tested in a case study for an urban area in Finland. The same authors
in [108] presented a decomposition MILP model which solves two-dimensional DES design
problems. In this work the size of the initial problem was reduced by clustering network nodes
into sectors, and then an iterative approach is used to increase them. The model was solved
using different approaches, either by minimizing costs or carbon emissions.

Morvaj et al. in [109] developed a multi-objective MILP model for optimizing urban energy
systems performing simultaneous system sizing. Total annual costs and carbon emissions
were the objective functions and the problem was solved using e-constraint method. The
candidate technologies considered were CHP units, gas boiler, photovoltaics, solar thermal
collectors, and thermal storage. Buildings could form a DHN and exchange electricity with
national grid. The model was examined via seven scenarios, which showed that carbon
emissions and cost are conflicting objectives, and also that the integration of DES could
provide reduction to cost and carbon emissions. In [110] Morvaj et al. presented models for
designing urban systems while taking into consideration grid constraints. They presented a
framework to analyse the impacts of integration of DES into distribution grid, in terms of power
flows and voltage stability. This is an important aspect of designing a DES, as some solutions
in conventional models might not be feasible from grid perspective. In a more extensive model

the impact of electric vehicles into distribution grid, along with DES, was also examined [111].

Another model of designing DES is presented in [112] by Yang et al., in which a
superstructure-based MILP model was provided, coupled with heating, cooling and power
distribution networks using the total annual cost as objective function. Five different scenarios

were examined, and a sensitivity analysis was performed on unit capital costs and energy
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subsidies. In [113] same authors developed a MILP model that provides simultaneous
optimization of locations, type and capacity of equipment, structure of networks and
operational strategies.

Opportunities from the development of DES have been examined in [114] and the benefits
regarding electricity reduction and profits were shown. The impact of DES on the energy
system, specifically regarding different DHN connections has been studied by Dominkovi¢ et
al. in [115]. They developed a linear model with hourly intervals and applied it on a case study
in a Danish municipality. The objective function was the minimization of annual socio-
economic cost and the results showed the benefits in terms of energy demand, emissions,
and costs. The economic and environmental impact of DES coupled with district energy
networks (electricity, heating and cooling) has been studied by Li et al. in [116]. A multi-
objective MILP framework with two objective functions, the cost-saving ratio, and the CO;

emission reduction ratio was presented.

In addition, the impact of uncertainty in DES has been studied by several authors, most notably
in recent years and is an area of significant concern. An early work in the field was the energy
planning of a hotel in Greece by Mavrotas et al. [117], in which a linear programming model
was developed examining the uncertainty in fuel costs, which they modelled by incorporating
fuzzy parameters. Mavrotas et al. in [118] developed a model for the energy planning of a
hospital in Greece while taking into account uncertainties in energy demand. They used cost
and the degree of demand satisfaction as objective functions. Also, a minimax regret analysis
was carried out to identify the final solution. Another application of a DES in a hospital was
presented by Mavrotas et al. in [86]. A MILP model was developed with minimization of annual
costs as objective function. Also, three scenarios were examined to examine the effects the
size of the model has on solutions, showing that despite some variations in the sizes of
technology the model size does not affect the value of objective function significantly.
Furthermore, a Monte Carlo simulation was carried out to examine uncertainty in economic
parameters (natural gas price, electricity price, discount rate) using various probability

distributions (uniform, normal, or triangular).

Zhou et al. in [119] developed a two-stage stochastic model for designing DES using genetic
algorithms for the first stage and Monte Carlo simulation for the second stage. Their model
was based on a superstructure approach, using MILP and with total annual cost as the
objective function. Energy demand, solar energy availability and wind energy availability were
chosen as uncertain parameters. For energy demand a normal distribution was assumed

within a range of +20% of the average values. Solar energy availability was assumed to follow
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a normal distribution for each respective period, but a methodology which predicts hourly
global solar radiation was applied at first. Finally, regarding wind energy availability authors
used a three-parameter generalized extreme value distribution, based on the probability
density function of Weibull distribution. The results of the case study showed that the
stochastic and deterministic model have small differences. Similar work has been carried out
by Yang et al. in [120] where they designed a DES for a hospital in China. The results showed
that uncertainties in renewable energy potential and energy prices have little effect on the

solutions, while uncertainties in energy demand have the most significant impact.

In [121] Akbari et al. presented a framework for robust optimization of DES, taking into account
two groups of uncertain parameters, namely demand and financial parameters. The problem
was structured on a MILP model, using total costs as objective function and solved by
implementing the robust counterpart approach. The model was applied on a case study for a
hospital using scenarios for different levels of conservatism and the results showed the
significant increase in the capacity of technologies. Furthermore, Akbari et al. in [122]
presented a method for robust optimization of DES in a neighbourhood. The objective function
was the minimization of total annual costs. Authors reformulated the MILP problem into its
robust counterpart and considered only uncertainties in demands. The results of the case
study showed that the capacity of technologies and the structure of the DHN are highly

sensitive to the level of conservatism considered by the DM.

Another interesting study in optimization of DES under uncertainty has been carried out by
Majewski et al. in [123], where a two-stage robustness trade-off approach (TRusT) was
developed to calculate the trade-off between costs of deterministic scenario and a worst-case
scenario. In [124] same authors developed a model providing robust solutions using multi-
objective optimization based on a MILP model. The objective-wise worst case method
described in [76] was used, with objective functions the minimization of TAC and global
warming impact (GWI). Natural gas prices, electricity prices (buying and selling), GWI of

electricity from the grid, and energy demands were considered the uncertain parameters.

More recently, Mavromatidis et al. in [125] presented an analysis to identify uncertain
parameters regarding the design of DES resulting in a total of 27 parameters in energy prices,
emission factors, investment costs, technical characteristics, energy demand and solar
radiation. Subsequently, they performed a sensitivity analysis to measure the influence of each
parameter which showed that energy prices and demand have the most impact. In [126] a
two-stage stochastic programming approach was carried out for the design of a DES in a

Swiss urban neighbourhood. Energy prices, demand, and solar radiation were considered as
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the uncertain parameters. Authors used Monte Carlo simulation to generate multiple scenarios
using total cost as the objective function and considering multiple strategies for CO, emissions
reduction. The same authors in [127] carried out a comparison of different decision-making
criteria. They used two-stage stochastic programming for the design of a DES and considered
decision criteria such as expectation value, minimin, minimax, Hwrwicz criterion, value-at-risk,
condition value-at-risk and minimax regret. Each criterion resulted into different configuration
and specifically, the minimax regret was considered the “best” choice, due to its ability to offer
risk-averse solutions. In [20] Mavromatidis et al. presented a detailed review of techniques
used to deal with uncertainty in DES. The most significant uncertain parameters were
identified and categorized, and also the approaches used for uncertainty characterisation were
presented. It was shown that uncertainty is a complex and multi-faced subject and also the
impact of parameters at the input of a DES, the DES components or energy demand was

discussed.

The optimal management of micro-scale energy hubs was studied by Roldan-Blay et al. in
[128] by presenting an iterative algorithm along with a simulation tool that calculates energy
flows by minimizing energy cost, depending on available resources, prices and demand. Di
Somma et al. in [129] presented a stochastic model for optimal operation scheduling of a DES,
based on multi-objective optimization using a stochastic economic objective function and a
stochastic environmental objective function. Solar energy availability, electricity price and
energy demand were assumed to be uncertain and modelled by using roulette wheel

mechanism and Monte Carlo simulation.

Yokoyama et al. in [130] presented a robust optimization method using MMR for the design of
DES, considering the hierarchical relationship amongst design and operation variables, and
energy demand. Also, a method for an efficient evaluation of an upper bound for the value of
MMR was presented. In [131] Yokoyama et al. developed a MILP model for the robust optimal

design of DES under uncertainty in energy demands.

Finally, interesting papers regarding uncertainty can be found for a variety of subjects, such
as CHP generation and planning [132,133], energy planning [134-137], and renewables [138—
142].

4.2 Description of DES and Methodology

The several optimization models that exist in literature regarding the design of DES, either as

single- or multi- objective, are separated into two main approaches, one being the method

44

—
| —



Chapter 4: Optimal design of DES

which simultaneously optimizes the size of the technologies (“Method A”) and the second
being the method where system components are selected amongst a set of available
technologies with predefined sizes (“Method B”). Therefore, these two approaches are

presented in order to assess their advantages and disadvantages.

The considered DES comprises of different technologies which could be installed at each
building and satisfy end-users energy demands in heating (including domestic hot water
(DHW), cooling or electricity. Candidate energy technologies can be both conventional and
renewables, namely: CHP units, boilers, heat pumps, absorption chillers, solar photovoltaics,
solar collectors, wind turbines, and electric and thermal storage technologies. The concept of
the DES is illustrated in Fig. 4.1. This model is based on the principle that buildings are allowed
to exchange only heat, therefore an optimal DHN configuration is also an output. That means
the optimal interconnections and optimal heat transfer periods will be calculated. Buildings
form a decentralized network where heat could either be consumed or produced, and it is
assumed that any building could be connected with any other one. In terms of electricity,
buildings are allowed to exchange electricity with the grid (buying or selling) or there is the
availability to form a microgrid and exchange electricity [96,106]. Cooling demand is satisfied
locally at each building with no cooling network design.

N
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Fig. 4.1. A sketch of the DES
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The time horizon for the calculations is set to be a typical year, which can be divided into
representative days. Furthermore, the time horizon is further subdivided into typical periods of
each day. The model is generic, and the decision maker could set these parameters according
to his/her preferences.

Both methods are based on a multi-objective MILP framework solved using the € — constraint
method, which is suitable due its ability to generate non-extreme solutions and providing an
efficient trade-off between conflicting objectives [75]. In € — constraint method a multi-objective
problem is reformulated into a single objective one with the TAC being the objective function

and carbon emissions converted into a constraint.
4.3 Optimal design of DES using multi-objective optimization - “Method A”

In “Method A” the optimal configuration of the DES and the respective capacities of the
technologies are the outputs of the model. The DM can select the available energy conversion
technologies and provide their respective economic and technical characteristics, as well as
their lower and upper capacity bounds in order to determine the optimal size and operational

profiles simultaneously.
4.3.1 Objective functions

TAC comprises of the total capital cost for all technologies, the total operational and the total
maintenance cost respectively, as shown in eq. (4.1). Total carbon emissions comprise of the
emissions generated from fuel-based and from electricity-based technologies respectively, as
shown in eq. (4.2).

f(x):C" =C®+C°+C" (4.1)

f,(x): CARBON™ = CARBONF + CARBON® (4.2)

For calculating TAC, the capital cost of the DES refers to the annualized capital cost for each
technology, the cost of laying pipes for the interconnections in DHN design and the cost for

the microgrid, as described in eq. (4.3).

46

—
| —



Chapter 4: Optimal design of DES

a CHP (CE?P 'YiCHP +CICiZnHP A SiCHP) + al"HP ‘CHP . SiHP + anCH 'CCH X SiCH

n

PV PV PV ST ST ST B B B ES ES ES
+a, ¢ .S +a,” ¢ -A +a, -c-S +a, -c-Q

n 1

C¢= (4.3)
2| e ¢ .QF ra T .(zcgg; s -viYg;n]+anMG Me .y v
swt
P HN _SUP HN _RET
| +a, O R A 2 ]
where, a*" is the capital recovery factor calculated by eq. (4.4), which takes into account the

lifespan of the equipment n and the discount rate r:

r(l+r)"
_ran o
l+r)"-1
The operational cost is given by eq. (4.5) and consists of the cost of natural gas for the
operation of fuel-based technologies (CHP and boilers), and the cost of buying and selling

electricity to the grid:

ng CHP B el _buy el _grid
o _2225 N C™(Zigp+Zigp)+Cap  Eidp 4.5)
- — s p ' d _(CPV_seII 'Ei'i;/,ﬁse” 4 oWT _sell Emgwﬂ 4 gCHP_sell .Efdrfz_seu)
Finally, the maintenance cost of the technologies of the DES is calculated by eq. (4.6) as
follows:
P B+ B+ QI

C" =Y T35, N,

22 wB-Qfd,p{zum-Exztp-vi,v:;}w-Ers,p “
swt

+Z(,UPV -SiPV +ﬂST _AST)

For calculating the second objective function, carbon emissions are calculated by eq. (4.7)

and eq. (4.8), for the fuel-based and electricity-based emissions respectively:

CARBON' = Z;Z[gp Ny '(Zde,i + Zi?d,p)' fng} (4.7)
i P
CARBON® = ZZ,Z(SF, Ny By - o (4.8)
i p

4.3.2 Constraints
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Constraints of the model are divided into different categories, such as design and operational
constraints for each technology and energy balances (electricity, heating, and cooling).

4.3.2.1 CHP installation and operation

At first a set of constraints regarding CHP is defined to ensure that a unit operates between
its lower and upper capacity bound, if installed. Also, the power output of the unit will be lower

or equal to its size:

ST <Y, ub®* i (4.9)
S > YL Ib " i (4.10)
ES, <S™ vid,p (4.11)

Moreover, if installed a CHP needs to operate above a minimum part load for technical
reasons. The efficiency of the CHP is considered to be roughly constant above this point,
which consists a valid assumption in order to keep the model linear [109]:

Efd*f'; <C- xfd'ﬁ vi,d,p (4.12)
Sk < Ef;'; +C-(1- xfgff,) Vi, d, p (4.13)

where, C a sufficiently large number.

Regarding the electricity output of the CHP, it is assumed that if a CHP unit is installed and
operational the generated electricity would be available for local consumption (building),

exported to the grid (sale) or exchanged through the microgrid (if it exists):

CHP CHP _build CHP I CHP H
B =Eq- ul +Ei1d,p—5e +Ei,d'p—mg vi,d, p (4.14)

Also, a CHP unit generates heat when is operational, which could be used to satisfy building’s

heat demand or exported to the DHN:

CHP_th

n .
Q|C(;-IF;)) — Qi%z—bu”d +Qi?;:’_net Vi,d, p (4.16)

Finally, the fuel consumption of CHP is calculated by eq. (4.17):

CHP

ZoP = 9P wid, p (4.17)

id,p — CHP_el
p n _
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4.3.2.2 Heat Pumps installation and operation

Heat pumps can be used to produce either heating or cooling. As described earlier many
models of heat pumps are available using different primary energy sources (e.g. air/air,
air/water, water/water etc). In this model heat pumps are reversible air/water heat pumps. The
reason for selecting this type of heat pumps is that air/water heat pumps can generate water
which could be later sent to the network, or stored, in contrast with the air/air heat pumps that
are typically used to satisfy only local needs. However, a heat pump can operate only in
heating or cooling mode at a specific representative day and that is ensured by the set of
constraints given by egs. (4.18) — (4.20):

X4 XF- <Y vi,d (4.18)
> XS <] p|- X §-" vid (4.19)
p
D> X=t<|p|- X vi,d (4.20)
p

Despite the heat pump operating in heating or cooling mode, the generated energy needs to
be lower than its capacity. However, due to its dual mode of operation this would result in non-
linear equations. To avoid this, auxiliary variables are introduced based on the concept of
linearizing the product of a continuous variable (size) and a binary variable (mode of operation)
to maintain the linearity of the model. Therefore, for the heating mode of operation the set of

equations (4.21) - (4.24) is used. A similar set of equations exists for the cooling mode

linearization.
SHPI < U™ X PN i (4.21)
Siap <S8y Vid,p (4.22)
Siap =S —ub™-(1-X7-") vi,d, p (4.23)
Sias " >0Vid,p (4.24)

The size of the heat pump if installed needs to be larger or equal to the generated energy and

between an upper and a lower bound, according to equations (4.25) - (4.28):

Shys - = Qfys" vid, p (4.25)
SiHP_c_aux > Qil‘-|dP’F_)c Vl, d, p (4.26)

49

—
| —



Chapter 4: Optimal design of DES

S =Y. b™ vi (4.27)

S <Y™.ub™ vi (4.28)

The electricity absorbed for heat pumps operation is equal to:
HP_h HP
HP Qi,d,E Qi,d,EC

L= + Vi, d, 4.29
i,d,p (:C)R:p CXDFsz p ( )

Finally, the heat generated from heat pump, if and when is operating in heating mode, is either

used in building or sent to the DHN according to eq. (4.30):

Qijﬁh = QiT‘dP,Eh_bu”d +Qiﬁdﬁﬁh_n8t vi.d, p (4-30)

4.3.2.3 Absorption Chiller

Constraints regarding the installation and operation of absorption chillers are similar to the
ones describing heat pumps:

CH_c
CH _abs Qi,d,P

Q™ ==gr vid,p (4.31)
S >Qf5 vi,d, p (4.32)
S Y Ib™ Vi (4.33)
ST <Y, ub i (4.34)

Furthermore, eq. (4.35) refers to a constraint regarding system’s layout which states that at

most one heat pump or absorption chiller unit can be installed at each building:

Y Y <1V (4.35)

4.3.2.4 Boilers

Equations referring to the operation of a boiler are similar to those regarding chillers with the
difference being that boilers require a fuel source (e.g. natural gas or oil). Also, heating
generated from boilers could be directed to the building or distributed to the DHN:
Q-B
B i,d
Ligp=

d,p r]B

® vi,d,p (4.36)
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S¢>Qf, vid,p (4.37)

Q. =Q% ™ +Q% " vi,d, p (4.38)
SS>Y°-1b® vi (4.39)

S¢S <Y®.ub® vi (4.40)

4.3.2.5 Solar technologies

Solar photovoltaics and solar thermal collectors are the solar technologies used in buildings
to exploit solar energy to produce electricity or hot water, respectively. The constraints
describing the size and operation of photovoltaics are given by equations (4.41) - (4.44).
Moreover, eq. (4.45) states that the generated electricity from photovoltaics could be used at

the building, sold to the grid, or exported to the local microgrid.

s <ub™ vi (4.41)

S’ >E vid,p (4.42)

A =S v Vi (4.43)

Efyp <0™ 1y, A Vid, p (4.44)

Ey =B M +EL S +E ™ vid, p (4.45)

Solar thermal collectors generate heat to satisfy local DHW demand, which is expressed as a
ratio of the total heat demand at building i:

Q, <7 -ify - AT Viyd, p (4.46)
Qlap <hayp iy, Vid,p (4.47)

Also, for the solar technologies, the area used by photovoltaics or solar collectors cannot

exceed the available roof area in each building as described in eq. (4.48):

AV + AT <a Vi (4.48)

4.3.2.6 Wind Turbines

To provide a more accurate and realistic approach the models of wind turbines considered as

candidates to be installed, and their respective technical characteristics, are assumed to be
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predefined. Therefore, their respective power curves are constructed. The electricity
generation from each wind turbine is calculated based on the wind speed (which is calculated
from the available climate data) and provided in the form of a table, for each respective day
and period.

Also, a parameter diWT is introduced to indicate if a building i is available for the installation of

a wind turbine (A" =1) or not (d"" =0) . That provides a more realistic representation at a

neighbourhood level as the installation of a wind turbine is a more complex task and the
availability of a location to host one needs to be examined. The generated electricity from the
wind turbines can be used locally at the building, sold to the grid, or exported to the local
microgrid. Moreover, at most one wind turbine from the available set can be installed at each
building, if that building is suitable to host one, as described in eq. (4.49). Therefore, the

eqguations concerning the installation and operation of the wind turbines are:

D Vi <A Vi (4.49)
swt
Ed, =Yoo Waia, Vi.d,p (4.50)
Ey\iij — Emabuild + Emasell + EI\/\gTBmg Vi,d, p (451)

4.3.2.7 Storage technologies

Regarding storage technologies equations (4.52) and (4.53) state that the rated energy of the
respective technologies does not exceed its maximum value. Moreover, equations (4.54) and
(4.55) determine that the stored energy at the respective time period is lower than the rated
capacity. Furthermore, equations (4.56) and (4.57) describe the operation of the storage
technologies, indicating that for each technology the total energy stored at the end of a period
is equal to the energy stored at the previous time-step, plus the energy charged into storage
minus the energy discharged. Finally, it is assumed that the energy stored at the first period p
of day d is equal to the energy stored at the last period p of day d, to apply more realistic

conditions as described by equations (4.58) and (4.59), respectively.

Q" <ub® Vi (4.52)
Q" <ub®™ Vi (4.53)
E,<Q” vid,p (4.54)
E,<Q" vid,p (4.55)

52

—
| —



Chapter 4: Optimal design of DES

Ei,EdS,p = Eil,zds,pfl-I-Ap '(ﬂiis ) EiI,EdS,_pin _iEs' Ei,EdS,_pOUtJ vi,d, p (4.56)
out

Ef,=El,1t5,-(Q7" —Ql™) vid, p (4.57)

Eiop = Eiep, Vild (4.58)

Ele = Elep, Vild (4.59)

4.3.2.8 DHN

For the design of the DHN a first set of constraints refers to its layout to assure a realistic
approach. Regarding the connections between buildings, an assumption is made that at most
one pipeline can be installed between building i and building j, and that a connection cannot
exist between a building and itself as described in eq. (4.60) and eq. (4.61). Also, eq. (4.62)
states that only one heat source is allowed for each node, which means the network takes the
form of a “forest” in order to avoid the production of cycles and to provide a more simplified,
yet realistic approach. Moreover, to eliminate the creation of loops in the produced network
eg. (4.63) is introduced, which is motivated by the Travelling Salesman Problem [95]. Finally,
a heating return network needs to be installed which is assumed to follow the same structure

as the supply heating network, as given by eq. (4.64).

Y-Sy NS <1 i, | (4.60)

Y- =0 i, (4.61)

D Y- <1 v (4.62)

0, 20, +1-i|-@-Y,-*F) vi, j#i (4.63)
HN _SUP HN _RE HE

Yi,j - :Yi’j - v'aJ (464)

In this type of decentralized network design it is assumed that each building can act both as
prosumer and consumer [109]. Therefore, a building can receive thermal energy from other
buildings to satisfy its demand, store it in a heat storage unit if one exists, serve as a node and
send the respective amount of energy to other buildings, or export thermal energy to the
network. Moreover, in this methodology it is assumed that the technologies which can
distribute thermal energy to the DHN are the CHP, the boiler, and the heat pump. The
operation of the DHN is described by the following equations (4.65) - (4.67):
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Qs <MYy Vi.j.d.p (469
QT 2 QU QY Q™ Vid, p (4.66)
J

SQf, SQE ™+ QL QI (-4 QT vidip (we)
J J

where M, is an appropriate large number calculated as the maximum amount of heat that

technologies exporting heat to the network can produce.

4.3.2.9 Electricity transfer and microgrid

Electricity generated from technologies installed at building i can be used to satisfy local
demand, exported to the microgrid or sold to the grid. Also, in the case of mismatch between
local electricity production and electricity from the microgrid then electricity can be bought from
the national grid to satisfy the demand. Eq. (4.68) defines the existence of a microgrid, where
N is a sufficiently large number which can be calculated as the maximum amount of electricity
that could be generated throughout the year. Eq. (4.69) defines the electricity transfer within
the microgrid in order to maintain power balance. Electricity exchange with the national grid is
described by equations (4.70) - (4.72). Moreover, in order to promote generation from RES
equations (4.71) and (4.72) are used to prevent buying and selling electricity at the same
period p of day d, where Z is a sufficiently large number which can be estimated as the

maximum amount of electricity that can be generated at a period p.

Z;;[Eﬁggm +EfY ;™ +EGR- <Ny e (4.68)
(L—etl)- Z[E“g S ER ST+ EG-™ ] = z E'S, Vd, p (4.69)
B, =El - +E - +ES- vid, p (4.70)

B, <Z X" vid, p (4.71)

Er, <Z-(1- X" vid, p (4.72)

4.3.2.10 Energy balances

Perhaps the most important part of DES design, is the definition of energy balances for
electricity, heating and cooling, which are calculated for each building i, at every period p of a
day d. Electricity balance is given by eq. (4.73), where on the left-hand side is the sum of the

electricity provided from the available technologies for local consumption, electricity
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discharged from the storage unit, plus the electricity that is purchased from the national grid
and the electricity supplied to building i from the microgrid. The right-hand side consists of the
sum of the electricity demand at building i, plus the electricity absorbed by heat pump and
electricity charged to the storage unit.

CHP _build PV _build WT _build ES _out MG buy
E|dp +E|dp +E|dp +Eldp +E|dp+Eldp

_del EHP EES in V|,d,p

|dp |dp i,d,p

(4.73)

Heating balance is calculated by eq. (4.74), where the left-hand side comprises of the thermal
energy generated from the installed technologies, plus the amount of energy arriving from the
DHN, and the right hand side consists of the heating demand at building i, plus the thermal
energy absorbed by the chiller, the storage or supplied to the DHN.

CHP HP_h TS t DHN
Qi,d,p+Qi,d,p +Q|d p+Q|d p |d pOU +Z(1 ﬂp ) Qi,j,d,p

CH_abs | (3TS_in DHN (4.74)
+Q|dp Idp +ZQIJd,p V|,d,p

Finally, the cooling energy balance is given by eq. (4.75), in which the cooling energy produced

from the heat pump and the absorption chiller must satisfy the demand at building i:

Qs +Q s =df, , Vi d, p (4.75)
4.4 Optimal design of DES using multi-objective optimization - “Method B”

The next method for the optimal design of DES is “Method B”, which is similar to “Method A”
with the main difference being that the capacities of the CHP, the heat pumps, the absorption
chillers, and the boilers are predefined into respective sets. At first, the sets of the technologies
are defined as follows:

e Let sco represent the set of cogeneration technologies;

e Let shp represent the set of heat pumps;

e Let sch represent the set of absorption chillers;

o Let sb represent the set of boilers.
The modelling is similar, and the constraints are defined analogously to subsection 4.3.2.

However, constraints regarding system layout, CHP, heat pumps, chillers, boilers, electricity

transfer and energy balances need to be redefined to follow the new structure.
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4.4.1 Obijective functions

The concept of the model is the same as “Method A” and the objective functions are the same
and defined by equations (4.1) and (4.2). However, due to structural differences with the
introduction of sets with predefined capacities of technologies, equations (4.3) and (4.5) - (4.7)

change as follows:

sco

anCHP . Z ((C;:CEP_ fix

CH

CHP_lin
sco

+C

S

CHP
i,sco)

CHP
'Yi,sco

shp
ST |

i,shp

HP HP oQHP HP
)+an > S Y+

CH CH ST
a, " e s +

sch

B B B B ES ~ES ES TS TS TS
a, 'chb'si,sb'Yi,sb"'an -C 'Qi +a, -C ‘Qi +
i sb

WT WT WT WT
a‘n ’ (Z Cswt ' stt 'Yi,swt

swt

P p HN _SUP HN _RET
a, -c -Ii'j -(Yi,j +Y; ] )

oz

sco

Yo +a e st +a e

i,sch

o (4.76)

j_l_anMG 'CMG 'YMG +

CHP
Z

el _buy el _grid
i,sco,d,p +C E

B
+Zzi,sb,d,pj d,p id,p
sb
WT _sell WT _sell
’ Ei,d,p

=YY YA, N,

i d p

PV _sell PV _sell
c gl =

| ACHP_sell CHP _sell
Py B

i,sco,d,p

(4.77)

+C +

SCo

CHP
Z Hseo

sco

CH CH
+ Z lusch ’ Qi,sch,d,p

sch

CHP HP HP
' Ei,sco,d,p + Z/ushp ’ Ei,shp,d,p
shp

WT WT WT
+(Zluswt ' Ei,d,p 'Yi,swt

CM:ZZZ5p.nd. . )
bodoe +Z:usb 'Qi,sb,d,p (4.78)
sh

+Z(’UPV -SiPV + i 'AST)

swt

j"',uTS : EiT,j,p

CHP
Zi,sco,d,p

(4.79)

CARBONF =Zzz{5p-nd O

sCco

+Zzi?sb,d,p)' f ng:|
sb

4.4.2 Constraints

4.4.2.1 CHP installation and operation

CHP modelling follows the same principles as described in subsection 4.3.2.1:

X P <Y v (4.80)

CHP
E

_ = CHP_build CHP _sell CHP_mg
iscod.p = Ei +E +E

i,sco,d,p i,sco,d,p i,sco,d,p

Vi, sco,d, p (4.81)
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CHP_el

CHP CHP n .
Ei,sco,d,p = Qi,sco,d,p ) ?ﬂPJh Vl, SCO,d, p (482)
Sco
CHP CHP _build CHP _net H
Qi,sco,d,p :Qi,sco,a,p +Qi,sco,a,p VI’SCO'd’ p (4-83)
_CHP
Z e = Vi,sco,d, p (4.84)
Sco
CHP |,CHP v/ CHP CHP CHP v/ CHP .
I:)i,sco 'ksco ' Xi,sco,d,p < Ei,sco,d,p < Pi,sco 'xi,sco,d,p VI’SCO’d’ P (4-85)

Also, eq. (4.86) states that only one CHP from the set sco can be installed at each building i:

DY <1V (4.86)

1,0 —
sco

4.4.2.2 Heat pumps

In this Method the modelling of heat pumps is simpler compared to Method “A”. In this case
there are no non-linear terms and all equations can be expressed through MILP modelling
without applying any linearization techniques. Equations (4.87) - (4.93) define the installation

and operation of heat pumps:

Xﬂ?ﬁ,ﬂ + Xi'lia,ﬁ SYi::p Vi,shp,d (4.87)
D Xiwrap I[Pl Xigs Vi shp,d (4.88)
p
D Xismap <IPl-Xigps Vid (4.89)
p
Q.Hp—h Q.HP—C )
HP h i,shp,d, i,shp,d,

Eldp = COIF;th”'E + COIF;C”'E Vi, shp,d, p (4.90)
Q7.0 < Xisrao P Vishp,d, p (4.91)
Qs < Xigpa.o Paw Viishp,d, p (4.92)

Qerap =Qlipa  +Qyper Visshp,d,p (4.93)

4.4.2.3 Absorption chillers

Regarding the installation and operation of absorption chillers the following constraints apply:

CH_c
Qe = Q‘:;“;,“"’ vi,sch,d, p (4.94)

sch
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xi?:c'h,d,p SYi,c;cHh,d,p Vi, sch,d, p (4.95)
Qic,:sth_,g,p < Pi,?:h,d,p : xi(,:si;lh,d,p Vi,sch,d, p (4.96)

Also, similarly to “Method A”, only one heat pump or absorption chiller can be installed at each
building i:
DY+ Y <1vi (4.97)

shp sch

4.4.2.4 Boilers

Equations representing boiler installation and operation are:

Q:
ZiE,;sb,d,p = |;bE;d,p vi,sb,d, p (4.98)
sb
Xisao <Yima, Virsb,d, p (4.99)
Qi,Bsb,d,p < Xil,ssb,d,p ' Pi,Bsb,d,p vi,sh,d, p (4.100)
Qvao =Qnap +Qwap Viish,d,p (4.101)

Also, only one boiler can be selected from the available set, similarly to CHP, heat pumps and

absorption chillers:

D YE <1vi (4.102)
sh

4.4.2.5 Solar Technologies

Constraints described in sub-section 4.3.2.5 apply.

4.4.2.6 Wind Turbines

Constraints described in sub-section 4.3.2.6 apply.

4.4.2.7 Storage Technologies

Constraints described in sub-section 4.3.2.7 apply.
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4.4.2.8 DHN

Constraints defining DHN are the same as those described in sub-section 4.3.2.8, except
constraints (4.66) and (4.67), which are defined as:

DHN CHP _net B _net HP _net H
ZQi,j,d,p ZZ:(?i,sgc,a,p +ZQi,sB,d,p +ZQi,sh5,d,p VI!df p (4103)
i sgc sb shp
DHN CHP t B t HP t
ZQi,j,d,p < ZQi,sgc,a?; +ZQi,sE,nde,p +2Qi,shp_,ze,p+
j b h|
: o i P (4.104)

Z(l_ﬁp 'Ii,i)'Qil,DjT,p vi,d, p

J

4.4.2.9 Electricity transfer

For electricity transfer only equations (4.68) - (4.70) are redefined as:

Z %“ Z{E{g;mg +E 5™+ Efaeay } <N-yYe (4.105)

i p SCO
1—etl)- Z{E{VJEW +Ef ™+ D ESR-™ } =2 Elip vd.p (4.106)
B, =E - +E - +En g Vi,sco,d, p (4.107)

It is noted that equations (4.71) and (4.72) still apply.

4.4.2.10 Energy balances

Energy balances for electricity, heating and cooling are given by equations (4.108) - (4.110),

respectively, in the same concept as subsection 4.3.2.10:

Z [ECHP_build | =PV _build | EWT _build | EES_owt | MG pbuy

i,sco,d,p id,p id,p id,p id,p id,p
sco
. (4.108)
| HP ES
= die,d,p +; Ei,d,p + Ei’d’_pm V',d, p
shp
CHP HP_h B ST TS DHN
ZQ"“""”" +ZQ“5“5'°"P +ZQi!Sbld,P +Qlap +Qi,dfp0m +Z(l—ﬂp ‘li,j)'Qi,j,d,p
Sco shp sh i
_ dh CH _abs TS_in DHN Vi d (4-109)
- i,d,p+ZQi,sch,d,p+Qi,d,p +ZQi,j,d,p ,d,p
sch i
HP CH .
ZQi’ShF;ZVP-I-ZQi,SCh_,g,p = dic,d,p Vl,d, p (4.110)
shp sch
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4.5 Optimal design of DES under uncertainty

Methods used in mathematical programming to deal with uncertainty in parameters have been
described in subsection 3.5. Regarding optimal design of DES under uncertainty, despite the
method applied to calculate robust solutions the most typical uncertain parameters are energy
prices (electricity and natural gas), interest rate, energy loads and climate data (solar
irradiance and wind speed) [86,119,120,125]. These values are assumed to be uncertain for
the purposes of this thesis. The uncertainty regarding these parameters can affect the results
significantly, either in terms of operational costs (e.g. high energy prices) or in terms of
possible system’s failure (e.g. higher demand than the existing capacity of technologies).
Hence, the optimal results can be different in terms of synthesis, design, and operation. It is
noted that optimal design of DES under uncertainty is based on the modelling of “Method A”

described in subsection 4.3.

4.5.1 Objective-wise uncertainty

For the method of objective-wise uncertainty two scenarios are constructed:
e Scenario OW1: Uncertainty only in financial parameters (energy prices and interest
rate).
e Scenario OW2: Uncertainty in all parameters (energy prices, interest rate, solar

irradiance, wind speed, and energy demand).

4.5.2 Minimax regret criterion (MMR)

The second method used to provide robust solutions is the MMR, described in subsection
3.5.2, which is applied to a single-objective problem where minimizing TAC is the objective
function, and carbon emissions applied as a constraint with a respective upper bound set by
the DM. At first, the multi-objective problem is solved, and the Pareto front is depicted. Then

the DM chooses an upper bound for carbon emissions based on his/her preferences.

The concept of the application of MMR is that uncertainty lies only in the financial parameters,
i.e. in the energy prices and interest rate which can have high values or low values. It is
assumed that energy prices increase or decrease simultaneously; therefore, five scenarios
are constructed as follows:

e Scenario R1: This is the deterministic BAU scenario;

e Scenario R2: High energy prices and high discount rate;
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e Scenario R3: High energy prices and low discount rate;
e Scenario R4: Low energy prices and high discount rate;

e Scenario R5: Low energy prices and low discount rate.

4.5.3 Minimax expected regret criterion (MER)

The application of MER in optimization of DES under uncertainty is introduced in this work (to
the best of author’'s knowledge). MER has been defined in subsection 3.5.2 and it is noted

that in this case the same scenarios as those defined in the MMR method apply.

4.5.4 Stochastic programming (Monte Carlo Simulation)

As aforementioned Monte Carlo simulation is an iterative method, in which a value of each
uncertain parameter is drawn from the respective distribution at each iteration. Monte Carlo
simulation, is also applied to the single objective optimization problem of minimizing TAC, as
defined in Section 4.5.2. Also, two scenarios are depicted for this method as well:
e Scenario MC1: Uncertainty only in financial parameters (energy prices and interest
rate).
e Scenario MC2: Uncertainty in all parameters (energy prices, interest rate, solar

irradiance, wind speed, and energy demand).
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This Chapter shows the application of the methodologies proposed for DES with the respective
candidate technologies considered in a case study. The developed methods are applied at a
complex of six buildings, located in Attica region, Greece. At first, the application of DES is
examined using multi-objective optimization, based on the models of “Method A” and “Method
B”, as described in subsections 4.3 and 4.4, respectively by developing three Scenarios. Then,
the methods for the optimal design of DES under uncertainty described in subsection 4.5 are
applied in order to examine the impact of uncertainties and provide robust solutions to the DM,
by developing several scenarios for each method.
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5.1 Input Data

In Table 5.1 the distances between buildings are depicted. Regarding time horizon, it is
assumed that a year is divided into three typical days each one representing a season, winter
(day 1, November — February), mid-season (day 2, March — May, October) and summer (day
3, June — September). Buildings il - i4 refer to typical residential dwellings, building i5 is a
small commercial building and building i6 is a small school. Moreover, a typical day is divided
to six typical periods (h7-h9, h9-h12, h12-h13, h13-h18, h18-h22, h22-h7). It is noted that the
model is generic, hence a DM could change it in order to use a more detailed representation
of a typical year. However, this would increase the complexity of the problem and would
require higher computational intensity to solve it. Nevertheless, the results would not change

significantly and this level of analysis is considered adequate [106].

Table 5.1. Distances between buildings (m)

il i2 i3 i4 i5 i6
i1 0 30 40 50 70 40
i2 30 0 30 20 40 80
i3 40 30 0 50 70 80
i4 50 20 50 0 20 80
i5 70 40 70 20 0 20
i6 40 80 80 80 20 0

The energy loads for the buildings for the three respective days are depicted in Fig. 5.1 - Fig.
5.3. The energy loads for the buildings (electricity, heating, and cooling) were based on values
existing in literature (e.g. [95]) or were calculated approximately depending on the energy load
pattern of each respective building (according to its type and size). It is noted that a detailed

calculation of the energy demand is out of the scope of this thesis.
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Fig. 5.1: Electricity demand of district buildings for the three typical days (Dayl: Winter, Day 2: Mid-season, Day
3: summer)
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Fig. 5.2. Heating demand of district buildings for the three typical days (Day1: Winter, Day 2: Mid-season, Day 3:
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Fig. 5.3. Cooling demand of district buildings for Day 3: Summer.

The candidate technologies and their respective capacities are presented in Table 5.2. The
economic characteristics of candidate technologies (capital and maintenance costs) are
presented in Table 5.3. Each technology has a different lifetime, specifically CHP, heat pumps,
chillers, boilers, wind turbines, photovoltaics and solar thermal collectors have a lifetime of 20
years whilst electric and thermal storage units have a lifetime of 15 and 30 years, respectively,
and pipes have a lifetime of 30 years.

Regarding the two candidate wind turbines, their power curves have been constructed as
described in subsection 2.6. The power curves and the relevant technical characteristics of
the wind turbines are described in Appendix A.

The cost of natural gas in Greek market is set to 0.054 €/kWh [96]. The cost of buying
electricity from the grid is calculated for each period based on the residential tariff provided by
the Public Power Corporation [143]. However, the hours of the residential tariff do not match
with the periods of this test case, therefore the tariffs were calculated as weighted averages
of the hours of each respective period and the respective tariff. Electricity prices are presented
in Table 5.4. The price for selling excess electricity to the grid is different for each electricity
generation technology, specifically 0.55 €/kWh for electricity generated from photovoltaics,
0.08785 €/kWh for electricity from CHP, and 0.25 €/kWh for electricity generated from wind
turbines, respectively [144]. The carbon emission factor for natural gas consumption is 0.184
kg/kWh [96]. The carbon emission factor for electricity generation from the grid is 1.12kg/kWh
[143]. Finally, discount rate is set to be 7.5%.
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Table 5.2. Candidate technologies and their respective technical characteristics.

Technology

CHP

Heat Pumps

Chillers

Boilers

Wind Turbines

Photovoltaics

Solar Thermal

Thermal
Storage
Electricity

Storage

Method “A” Method “B”
Capacity L , .
Efficiency | Capacity Efficiency
Bounds
0.25 (el.) 10 kW 0.25 (el.)
5-50 kW
0.50 (th.) 50 kW 0.50 (th.)
copn=35 | 10kW ' copr=35
5-50 kW
COP¢=3.0 50 kW COP¢=3.0
10 kW
5-50 kW 0.87 0.87
50 kW
10 kW
5-50 kW 0.9 0.90
50 kW
6 kW 6 kW
10 kw 10 kW
<10 kW 0.16 <10 kW 0.16
- 0.6 - 0.6
<100 - <100 -
0.9 (in 0.9 (in
<100 (n) <100 (in)
0.85 (out) 0.85 (out)

Table 5.3. Economic data of the available technologies

Technology Capital cost Maintenance cost
CHP Crix: 1000 € 0.027 €/kWh
Cin: 500 €/kW
Heat Pumps 545 €/kW 0.001 €/kWh
Chillers 850 €/kW 0.001 €/kWh
Boilers 100 €/kW 0.0027 €/kWh
Wind Turbines 3000 €/kW 0.01 €/kWh
Photovoltaics 2000 €/kW 14 €/kW/year
Solar Thermal 700 €/kW 18 €/m?/year
Thermal Storage 60 €/kWh 0.01 €/kWh
Electricity Storage 500 €/kWh -
Pipe 100 €/m -
Microgrid controller 1500 € -
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Table 5.4. Electricity purchase price in (€/kWh) for each typical day and time period.

Electricity purchase
. pl p2 p3 p4 pS pé
price (€/kWh)
d1: Winter 0.0804 0.0946 0.0946 0.0832 0.0946 0.0946
d2: Mid-season 0.0875 0.0946 0.0946 0.0889 0.0946 0.0818
d3: Summer 0.0946 0.0946 0.0946 0.0946 0.0946 0.0693

Solar irradiance and wind speed values were taken from available data for the year 2015 from
a meteorological station operated by NTUA. The data were provided as hourly values but
calculated as averages for each respective day and period. In Fig. 5.4 solar irradiance and
wind speed are depicted.
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Solar irradiance (kW/m?2)

Day 1 Day 2 Day 3

mm \Wind speed at 10m height (m/s) ==@=Solar Irradiance (kW/m2)

Fig. 5.4. Average wind speed and solar irradiation for the three typical days, for all periods

Table 5.5 presents the available roof area for installing solar photovoltaics and/or solar thermal

collectors, and the value of parameter diWT which indicates if a wind turbine could be installed

at a building.
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Table 5.5. Area for solar technologies and parameter for wind turbines (diwt=1 means suitable for WT).

Building A; (m?) dart
1 75 0
i2 80 1
i3 67 1
i 70 1
i 90 0
i 100 0

The following assumptions are made:

e The minimum part load of CHP units is assumed to be 50%. It is considered that above
this value the efficiency of the CHP remains constant, and it is consistent with literature
[109]. Also, CHP can be turned on and off without constraints.

e Start-ups and shut-downs of technologies are controlled, which means they can
operate without any time delay.

¢ Heat pumps are assumed to have a constant COP for all typical days. Typically, COP
is calculated based on external temperatures, however for the purposes of this work it
is assumed to be constant.

o National grid has a large capacity and can integrate electricity injected from
technologies (renewables or CHP) without any stability problems. The same
assumption applies to microgrid Also, national grid can satisfy the energy demand if
required.

¢ Photovoltaics are installed and operate at an optimal angle.

e Heating losses are proportional to the distance between buildings and are equal to
0.00015 m*[106].

e Transmission losses between microgrid are equal to 1% [96].

e Capital costs include investment and installation cost.

5.2 Scenarios for the optimal design of DES (Deterministic)

In order to assess the advantages of a DES and analyse the impact they can have in terms of
costs and carbon emissions; three scenarios are depicted as follows:

e Scenario 1 — Business-as-usual (BAU): This is the conventional scenario where

heating demand in buildings is satisfied by boilers and cooling by air condition units.

Also, solar thermal collectors are considered as candidate technology as they are
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widely used in Greece and are assumed to be a conventional technology. Electricity
consumption is satisfied from the national grid.

e Scenario 2 — Renewables: The same as Scenario 1, plus renewables (pv and wind
turbines), absorption chillers and cogeneration technologies. Heat pumps are
assumed to be air/water. Also, electricity exchange with the grid (buying/selling) is
available.

e Scenario 3 - Green: The same as Scenario 2, plus the storage technologies, the ability

to form a microgrid to exchange electricity and a DHN to exchange thermal energy.

Each of these scenarios is applied to both “Method A” and “Method B” to provide a comparison
between each method, regarding values of TAC, carbon emissions, selected technologies and
operational profiles of technologies. This case study was based on [145], with changes on the
location of the problem and some technical characteristics of the candidate technologies.

5.3 Scenarios for the optimal design of DES under uncertainty

The scenarios used for each method of optimization under uncertainty are which were defined
in subsection 4.5 are described here analytically. The methodology for this part of the case

study was based on [146].

5.3.1 Objective-wise uncertainty

For the objective-wise worst-case optimization, it is assumed that the worst-case value of the
uncertain parameters is as follows:

e Interest rate is 10%:;

e Electricity prices are 10% higher;

¢ Natural gas price is 20% higher;

e Energy demand is 10% higher;

e Solar radiation is 10% lower;

e Wind speed is 20% lower.
5.3.2 MMR and MER
Prices of electricity and gas vary by £20% for the high and low scenario, respectively. It is

further assumed that the interest rate varies by £2.5%. Regarding the application of MER,

which is based on the knowledge of probabilities, it is assumed that there is a 50% probability

69

—
| —



Chapter 5: Case study for application of a DES

that Scenario R1 will occur, 20% probability for Scenario R2 and 10% for scenarios R3 to R5,
respectively. The upper bound of CO; emissions (which are applied as constraint) has been
considered to be 100,000 kg/year.

5.3.3 Monte Carlo simulation

For Monte Carlo simulations uncertain parameters follow specific probability distributions. It is
assumed that electricity prices follow a uniform distribution, natural gas price triangular
distribution, interest rate, solar radiation and energy demand follow a normal distribution, and
wind speed follows a Weibull distribution. In Table 5.6 the values for probability distributions
are depicted. Moreover, regarding the range of electricity price value, and the standard
deviation in interest rate, energy demand and solar radiation, respectively, distributions are
applied to a percentage factor by which the respective value of the parameters changes (e.g.
energy loads vary between +10%). This formulation is made for convenience due to the

variations of these values at each respective day d and period p.

Weibull distribution has been converted using the inverse transform method into eq. (5.1) as
described in [147]. A similar cumulative Weibull distribution function has been applied in [119].
In addition, it is assumed that the shape parameter (k) is equal to 2. This assumption can be

considered sufficient for a preliminary estimation, and accordingly, the value of ¢ (which
represents the characteristic wind speed) is equal to 1.13><V§V’ » [148]. Moreover, it is noted

that normal distribution is defined as 6 ~ N(u,0), where u represents the value of each

parameter at the deterministic scenario and ¢ is the standard deviation.

X =c-(—InR)* (5.1)
where,

c is the scale parameter, k the shape parameter and R a uniform distribution random number

in the interval [0,1].
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Table 5.6. Parameters and distributions used in Monte Carlo simulations

Parameter Distribution
Electricity price (€/kWh) Uniform(0.8y,1.2u)
Natural gas price (€/kWh) Triangular(0.0432, 0.06, 0.0648)
Interest rate (%) Normal(y, 0.11p)
Energy demand Normal(y, 0.03p)
Solar radiation Normal(u, 0.03p)
Wind speed Weibull(k, Cd,p)
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In this Chapter the results of the test case application of DES are presented for the two
methods regarding the deterministic application, and also for the optimization under
uncertainty. The multi-objective optimization problem has been solved using AUGMECON2
method. The MILP models have been formulated in GAMS [149] and solved using GUROBI
solver on a PC with a 3 GHz processor and 12 Gb RAM.
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6.1 Multi-objective optimization results

The results for the multi-objective optimization problem are presented and compared for each
scenario. In Fig. 6.1 a flowchart regarding the application of “Method A” and “Method B” is

presented.

Start Method A

Data Collection & Structure:

e  Energy profiles of buildings Optimization model
(typical days, periods,..)

e Distances between buildings

e Available Technologies
(costs, technical
characteristics)

e Energy prices Post-processing phase:

e Pareto Frontiers

e Costs
e  Emissions
e Evaluation
Insert data into
Method “A” model Decision b
DM
Define capacity bounds for End

technologies

@)

Start Method B

Data Collection & Structure:

o Energy profiles of buildings Optimization model
(typical days, periods,..)

o Distances between buildings

o Available Technologies
(costs, technical i
characteristics, SIZES) *  Pareto Frontiers

o  Energy prices o Costs
e Emissions

e Evaluation

Post-processing phase:

Decision b
Insert data into DM
Method “B” model
End

(b)
Fig. 6.1. Technical route diagram for applying: (a) “Method A” and (b) “Method B”
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The Pareto front of the results from the application of multi-objective optimization problem are
depicted in Fig. 6.2. The results show clearly that TAC and carbon emissions are conflicting
objectives, i.e. the higher the TAC is the lower the carbon emissions are. The most expensive
solution, both in terms of costs and carbon emissions is Scenario 1 (BAU). However, it can be
observed that Scenario 1 does not offer a typical Pareto frontier, which can be attributed to
the absence of degrees of freedom. Moreover, comparing Scenario 2 and Scenario 3, it can
be observed that scenario 3 offers the most attractive solutions; specifically, Scenario 3 has

the lowest TAC and carbon emissions in both methods.

Analytically, regarding results of “Method A”, Scenario 2 TAC has a range between 16,284 —
25,503 €/year and carbon emissions between 75,082 — 149,980 kg/year. On the other hand,
in scenario 3 TAC ranges between 15,294 — 43,395 €/year and carbon emissions between
11,249 — 155,282 kglyear. In “Method B”, results follow a similar pattern compared to “Method
A”. Specifically, Scenario 1 provides the solutions with the higher TAC and carbon emissions,
followed by Scenario 2 and Scenario 3, which has the most attractive results. In scenario 2 of
this method, TAC is between 18,110 and 29,927 €/year, while carbon emissions are between
78,412 and 143,546 kglyear. In Scenario 3 TAC is lower and between 16,930 and 44,583
€/year, and carbon emissions between 11,657 and 155,200 kg/year.
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Fig. 6.2. Pareto front of “Method A” and “Method B”, for scenarios 1 — 3 respectively.
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In “Method A”, TAC at Scenario 2 is between -24% and -44% compared to Scenario 1, and at
Scenario 3 between -6% and 70% compared to Scenario 2. Similarly, in “Method B” TAC at
Scenario 2 is between -22% and -37% compared to Scenario 1, and at Scenario 3 between -
7% and 49% compared to Scenario 2. Regarding carbon emissions, there is a significant
reduction in Scenario 3 compared to Scenarios 1 and 2, in both methods. Specifically, in
“Method A” carbon emissions are up to 53% lower in Scenario 2 compared to Scenario 1 and
up to 85% in Scenario 3 compared to Scenario 2. In “Method B”, carbon emissions are up to
51% lower in Scenario 2 compared to Scenario 1, and up to 85% lower in Scenario 3 compared
to Scenario 2. Therefore, it can be concluded that the inclusion of storage units, microgrid and
the DHN network further drives emissions down, and more particularly can provide solutions
in which carbon emissions are approximately up to seven times lower (referring to the best-
case solution of carbon emissions in scenario 2 compared to scenario 3 for both methods),
which is noteworthy. Moreover, to provide a more thorough comparison between the two
methodologies, the Pareto fronts for scenario 3 — DES are depicted in Fig. 6.3. It is shown
more clearly that “Method A” provides more attractive solutions compared to “Method B” in

terms of TAC and carbon emissions.

Computational time for scenario 3 is 2 hours and 14 minutes in “Method A” and 3 hours and
50 minutes in “Method B”, respectively. Computational times for Scenario 1 and 2 are much
lower for both methods. Specifically, 4 and 6 seconds for “Method A”, and 4 and 7 seconds
for “Method B”, respectively. The computational time increases dramatically due to the addition
of more technologies and especially storage, DHN and microgrid which make the models more
complex and leads to a remarkable increase of computational time from the order of some
seconds to the order of a few hours. It is noted that the optimality gap in the model is 3%,
which can be considered small. It is further noted, that regarding Scenario 3 in “Method A”,
the model consists of 6,182 equations, 6,176 variables and 583 binary variables, whereas in

“Method B” the model consists of 7,604 equations, 9,020 variables and 1,399 binary variables.
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Fig. 6.3. Pareto fronts for Scenario 3 in “Method A” and “Method B”.

6.2 Detailed breakdown of solutions

A comparison of the results of objective functions for both methods is presented analytically
in Fig. 6.4 and Fig. 6.5 for TAC and CO2emissions, respectively. The most notable differences
between the two methods are in terms of TAC. Specifically, at the first solution (minimizing
TAC), “Method B” has an 11% higher cost compared to “Method A”. As solutions move
towards the minimization of carbon emissions both methods seem to offer similar results, with
a small difference of approximately 3% in the final solution. As for the comparison of carbon
emissions values, results show that the two methods have very small differences. At the last

solution (minimizing emissions) carbon emissions in “Method B” are 4% higher compared to

“Method A”.
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In Fig. 6.8 - Fig. 6.8 a detailed breakdown of the components of TAC is depicted to present
the differences analytically between each method, for Scenarios 1 — 3 respectively. It can be
observed that the pattern of solutions is similar for each scenario. For instance, in Scenario 1,
operational cost has the largest impact in both methods. On the other hand, in Scenarios 2
and 3, capital cost is the largest component whereas operational cost is negative. This shift
can be attributed to profit from selling excess electricity generated from renewables and/or
CHP units. Moreover, results show that as solutions move towards the last solution
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(minimizing COy) capital cost gets higher due to the selection of more expensive technologies

which increase the value of TAC.
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Fig. 6.6. A detailed breakdown of TAC equation components for Scenario 1, for Method A” and “Method B”,

respectively.
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Fig. 6.7. A detailed breakdown of TAC equation components for Scenario 2, for Method A” and “Method B’,
respectively.
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Fig. 6.8. A detailed breakdown of TAC equation components for Scenario 3, for Method A” and “Method B”,
respectively.

In addition, a detailed breakdown of the solutions regarding carbon emission equation
components of each method is presented in Fig. 6.9 - Fig. 6.11, for Scenarios 1 — 3
respectively. It can be seen that the main source of emissions in all three scenarios of both
methods is electricity from the grid. However, as solutions move towards the area of
minimizing carbon emissions natural gas plays a more significant role. Specifically, in Scenario
3, from solution 8 towards solution 11, natural gas is the main source of emissions in both
methods. This can be attributed to the lower emission factor of natural gas, compared to the

Greek national grid emission factor.
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Fig. 6.9. A detailed breakdown of carbon emission equation components for Scenario 1, for Method A” and
“Method B’, respectively.
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Fig. 6.10. A detailed breakdown of carbon emission equation components for Scenario 2, for Method A” and
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Fig. 6.11. A detailed breakdown of carbon emission equation components for Scenario 3, for Method A” and

“Method B’, respectively.

6.3 Comparison between Scenarios and Methods

Each solution of each method the configuration of the DES and the operational profile of the
installed technologies is different for the respective Scenario. In Table 6.1 - Table 6.3 a
detailed analysis of the configuration of the system for each Method is presented, for
Scenarios 1 — 3 respectively, with the following results: (a) total capacity of each selected

technology, (b) the number of DHN links and (c) the installation (or not) of a microgrid.

It is observed that in Scenario 1 the configuration of the system is similar in both methods. A
notable difference is the increased capacity of solar thermal collectors in solution 11
(minimizing COy). The similar structure of the system is attributed to the small number of
candidate technologies, which leads to less degrees of freedom. On the other hand, in
scenarios 2 and 3 the differences at optimal configuration of the systems are notable. A
common trend is the selection of renewables at every solution. Specifically, the larger wind
turbines are installed at all three available buildings at every solution in both scenarios.
Photovoltaics are installed at full capacity after solution 7, in Scenario 2, and after solution 2
in Scenario 3. Solar thermal collectors are also selected to provide hot water. Regarding CHP
units, those are selected from solution 7 up to solution 11, in both Scenarios 2 and 3, and in
both “Method A” and “Method B”, respectively. It can be observed that the capacity of CHP
units increases as solutions move towards minimizing CO;, showing the benefits of
cogeneration technologies regarding increased energy efficiency and lower carbon emissions.

The same applies for absorption chillers which are not installed at any solution in Scenario 2
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Chapter 6: Results of DES optimization (deterministic case)

but are selected at a few solutions in Scenario 3. Boilers are installed at every solution in both
Scenarios 2 and 3, and both methods. It is noted that the capacity of boilers is significantly
higher at “Method B”, as there is no flexibility regarding the size of the units. Heat pumps which
can satisfy both cooling and heating demand are the preferred technology in Scenario 2, and
also installed at high capacity in Scenario 3. Moreover, as for the energy storage technologies
selection in Scenario 3, it is noted that electricity storage is selected only at the last solution
(minimizing CO>) in both methods (with the exception of solution 5 in “Method B”, where a
storage unit with very small capacity is selected), most probably due to the higher initial cost,
whilst thermal storage is selected at solutions 7 up to 11 in “Method A”, and at every solution
in “Method B”.

Regarding the design of DHN in Scenario 3 it can be noted that there are network links at
every solution of both methods (except solutions 3 and 4 in “Method A”). However, in “Method
B” there are more links compared to “Method A”. The installation of pipes for the design of a
DHN depends on the availability of surplus heat to supply the network. Therefore, it can be
implied that the available technologies supplying heat in “Method B” are “oversized”, and can
generated larger amount of thermal energy, and subsequently higher cost. As for the
microgrid, it can be noted that it is selected at every solution, at both “Method A” and “Method

B”, respectively.

Table 6.1. Detailed configuration of optimal solutions at Scenario 1 for “Method A” and “Method B’, respectively

HP (kW) B (kW) ST (m2)
# A B A B A B
1 112 140 25 50 12

2 112 140 20 40 16 16
3 112 140 20 40 16 16
4 112 140 25 40 13 16
5 112 140 25 50 13 13
6 112 140 25 50 13 13
7 112 140 75 50 13 13
8 112 140 38 60 13 13
9 112 140 50 100 13 13
10 112 140 74 140 13 13
11 112 140 102 140 362 362

82

—
| —



Chapter 6: Results of DES optimization (deterministic case)

Table 6.2. Detailed configuration of optimal solutions at Scenario 2 for “Method A” and “Method B”, respectively

CHP (kW) HP (kW) | ACH (kW) B (KW) WT (kW) PV (KW) ST (m2)
# A B A B A B A B | A B A B A B
1 0 0 112 140 | © 0 | 25 50 30 30 | 30 40 5 5
2 0 0 112 140 | © 0 | 25 50 30 30 | 40 | 40 7 7
3 0 0 112 140 | © 0 | 20 50 |30 30 | 44 @ 44 | 16 7
4 0 0 112 140 | © 0 | 25 50 30 30 | 45 | 48 7 7
5 0 0 112 140 | © 0 | 20 50 30 30 | 49 52 | 16 7
6 0 0 112 140 | © 0O | 25 50 30 | 30 | 54 @57 7 7
7 5 0 112 140 | © 0O | 25 50 30 30 | 60 | 60 8 13
8 5 10 112 140 | © 0O | 20 50 30 30 | 60 60 | 16 10
9 10 10 112 | 140 0 0O | 25 | 50 30| 30 | 60 | 60 8 11
10 | 11 = 20 | 112 | 140 @ © O | 20 | 40 30| 30 | 60 60 16 A 16
11 | 13 | 20 | 112 | 140 @ © 0O | 29 100 30 | 30 | 60 60 | 13 60

Table 6.3. Detailed configuration of optimal solutions at Scenario 3 for “Method A” and “Method B’, respectively

() HP (kW) () B (KW) (\;VVI) () ST (m2) (wh) TS(KWh) | DHN | MG
# A B A B|/A B A B A B A B A B A B A B A B A B
1]/0/0 112 140 0| 0 |25 30 30 30 46 48 5|5 0 0 0 O 2 /3|1 1
2 0 0 112 140 O 0 |20 /30 /30 /30 5 /58 7 7 0 /0| 0 0 2 3 1 1
3 0 0 112 /140 O 0 30 /30 /30 30 60/ 60 8 8 O 0| 0 O 0/ 3 1 1
4100 112 140 0 | O |25 30 30|30 60 60 16 8 0 O O | O |0 3 1 1
5 0 0 112 140 0O 0 |25 /30 30 30 60 60 8 8 O 1| 0 O 2 /3 1 1
6 0 O 112 140 O 0 (20 20 30 30 60/ 60 16 8 O 0| 0 O 1 4 1 1
7 5 10 101 110 |11 30 |25 20 30 30 60 60 8 8 O O | 9 19 1 4 1 1
8 6 10 100 110 |13 30 15 20 30 (30 60 60 10 8 O O | 2 17 (2 3 1 1
9 10 10 95 110 |18 30 | 25 30 30 30 60 60 10 10 O | O | 1 |36 3 3 1 1
10 | 17|20 104 120 |11 ' 20|25 0 30 30 60|60 11 16 O | O 21 52 2|31 1
11 ' 24|30 152 (220 | 0 | 0 |20 80 30 30 60|60 59 59 87 87 190 223 5 |5 1 1

In Fig. 6.12 - Fig. 6.14 the supply mix of electricity, heating and cooling for “Method A” and

“Method B”, are presented for the whole neighbourhood for Scenarios 1 — 3, respectively. In

Scenario 1, electricity is supplied through the grid. However, in Scenarios 2 and 3 where more

options for electricity supply exist, the results are different. In Scenario 2, electricity supply

from the grid has the largest share, which is gradually reduced at solutions towards minimizing

CO,, and electricity share from CHP and renewables increases. It is noted that in “Method A”,

the share of renewables and CHP is higher compared to the solutions of “Method B”. In
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Chapter 6: Results of DES optimization (deterministic case)

Scenario 3, electricity from the grid is the dominant source at first, but gradually is reduced. At
the last solution, no electricity from the grid is used at either method. It is noted that the
electricity exchange through microgrid and renewable energy, specifically from photovoltaics
have a large share. Overall, results from both methods in Scenario 3 are similar.

Regarding heating generation, in Scenario 1 the results from both methods are similar, with
heat pumps being the main source of heating up until solution 6, after which the boilers have
the largest share. In Scenario 2 heat pumps have the largest share of heating supply in both
methods. CHP units are also installed and generate heat at solutions 7-11 and 8-11, at
“Method A” and “Method B”, respectively. In Scenario 3 results are similar to those of Scenario
2. Both methods follow a similar pattern with heat pumps having the largest share of heat
generation. CHP units supply heat from solution 7 until solution 11 for both methods.
Moreover, boilers have a small share of heat supply, in both Scenarios 2 and 3, and “Method
A” and “Method B”. Finally, solar thermal collectors supply a small percentage of heat at all

Scenarios and at both methods.

As for cooling energy supply, in Scenarios 1 and 2 cooling is satisfied only by heat pumps. In
Scenario 2 where absorption chillers are also available as a candidate technology they are
not selected at any solution. However, in Scenario 3, absorption chillers are selected at

solutions 7 — 10, but overall heat pumps have the largest share of cooling energy supply.
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6.12. Electricity supply mix for “Method A” and “Method B” for: (a) Scenario 1, (b) Scenario 2 and (c)

Scenario 3, respectively.
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Fig. 6.13. Heating supply mix for “Method A” and “Method B” for: (a) Scenario 1, (b) Scenario 2 and (c) Scenario
3, respectively.
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Fig. 6.14. Cooling supply mix for “Method A” and “Method B” for: (a) Scenario 1, (b) Scenario 2 and (c) Scenario
3, respectively.
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Fig. 6.15 illustrates how the electricity generated by CHP units, photovoltaics and wind
turbines is used throughout the year in Scenario 3, for “Method A” and “Method B” respectively.
For CHP units, it can be seen that most of the generated energy is supplied to the respective
buildings for local use or supplied to the microgrid, in both methods. For photovoltaics, at
solutions 1 — 3 (where cost objective function has largest impact) most of generated electricity
is sold to the grid, taking advantage of the high selling prices, and the rest is used locally or
supplied to the microgrid. For solutions 4 — 11, most of generated electricity is used locally or
supplied to the neighbourhood microgrid. Regarding wind turbines, most of the produced
electricity is sold to the grid for solutions 1 — 9, where for the last two solutions a large share
of electricity is used for satisfying local needs or exported to the microgrid. Overall, electricity

generation follows a similar pattern for both methods.
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Fig. 6.15. Electricity generation from CHP, photovoltaics, and wind turbines for Scenario 3, for “Method A” and
“Method B”

Although it can be seen in Fig. 6.11 - Fig. 6.14 that many solutions follow a similar structure
in both methods, the differences between “Method A” and “Method B” are notable. In general,
“Method A” can provide solutions which are more attractive in terms of TAC and carbon
emissions due to the higher degrees of freedom it incorporates which does not influence the
direction of optimization. Therefore, a larger set of design solutions can be provided [109].
However, despite the advantage of “Method A” to generate a larger set of solutions, the sizes
of technologies that occur as outcome might not be available commercially. An argument could
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be made that some technologies are eligible for custom-making (e.g. CHP). However, this is
not considered a viable option as it does not apply to all technologies. On the other hand,
‘Method B” relies on commercially available technologies with specific technical
characteristics (i.e. capacity). Nevertheless, for the design of a DES the task of selecting
technologies with predefined capacity is complex, especially when the set of buildings is large.
Moreover, the complexity increases in case there is the option to form a microgrid or a DHN
as outputs or having the ability to install energy storage technologies. Designing a DES for a

single building is a much easier task compared to the design of a DES for an urban area.

In Fig. 6.16 - Fig. 6.21 an illustration of the system’s structure is depicted for solutions “A”, “B”
and “C” shown in Fig. 6.3, for Scenario 3 of “Method A” and “Method B”, respectively. The
installed technologies at each building, the heat flow through DHN and electricity exchange
with microgrid and national grid are illustrated for comparison. At first glance it is obvious that
the solutions vary significantly between each point and each method; different technologies
are installed at each building and the structure of the DHN is different at each solution.
Specifically, at point “A” (the solution with the lowest TAC) in “Method A” a boiler is installed
at buildings i1, i2, i5 and i6 while in “Method B” a boiler is installed at buildings i1, i4, i5 and i6.
Heat pumps are installed at each building in both methods, and photovoltaics at buildings 1 —
i5. Differences also exist in DHN interconnections, in “Method A” building i5 supplies heat to
building i3, which supplies heat to building i4, on the other hand in “Method B” building 1
supplies heat to building i2, building i5 supplies heat to building i4, which supplies heat to
building i3. Moreover, buildings i1 — i5 exchange electricity with microgrid and with national
grid and building i6 only purchases electricity from the grid in both methods.

At point “B”, there are more differences between each method. For instance, in “Method A” a
CHP unit is installed at building i3, while in “Method B” a CHP unit is installed at building 4. In
“‘Method A”, heat pumps are installed at buildings i1, i3, i5 and 6 and absorption chillers at
buildings i2 and i4, while in “Method B” heat pumps are installed at buildings 4, 5 and 6, and
absorption chillers at buildings i1 — i3. In “Method A” boilers are installed at buildings i1 and
i6, and in “Method B” at buildings i2 and i6. Photovoltaics are installed at all buildings and solar
thermal collectors at building i6. Thermal storage is also installed at buildings i1 and i2 in
“‘Method A”, while in “Method B” only at building i2. Regarding DHN connections, in “Method
A” building i3 supplies heat to buildings i2 and i4 and at “Method B” building i4 supplies heat
to buildings il and i3, and building i1 supplies heat to building i2. In addition, all buildings
exchange electricity with the microgrid, although operational differences exist between each
method. Operational differences also exist regarding buying and selling electricity from the

grid, where in “Method A”, building i1 buys and sell electricity to the grid, buildings i2, i3 and
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i4 only export electricity, and buildings i5 and i6 only buy electricity. In “Method B” results are
similar except at building i6, which buys and sells electricity.

Furthermore, regarding Point “C”, which is the optimal solution in terms of minimizing carbon
emissions, it can be noticed that several technologies are installed at each building in both
methods. In “Method A”, CHP units are installed at buildings i1, i4, i5 and i6, while in “Method
B” at buildings i1, i5 and i6. Heat pumps are installed at all buildings in both methods to satisfy
cooling and/or heating demand. Boilers at “Method A” are installed at buildings i3 and i4, while
at “Method B” at buildings i1 — i4. Solar photovoltaics are installed at all each building in both
methods, and solar thermal collectors at buildings i1, i2, i3, i4 and i6. Thermal storage units
are also selected in both methods, and are installed at buildings i1, i2, i3, i4 and i6 in “Method
A” and at buildings i1 — i5 in “Method B”. It is noted that at point “C”, electrical storage units
are installed at all buildings. Moreover, in both methods DHN interconnections exist, in
“Method “A” building i4 and i5, building i4 and i6 and i3, building i3 and i2, and building i2 and
i1 are connected, and in “Method B”, building i2 and i1, building i3 and i2, i6 and i4, and building
i4 and i5. Finally, it is noteworthy that at illustration points “A”, “B” and “C” wind turbines are
installed at buildings i2, i3 and i4, in both methods. Also, in both methods all buildings
exchange electricity with the microgrid. Regarding, electricity exchange with the grid in both
methods buildings only sell excess electricity, specifically buildings i2, i3 and i4. Therefore,
these illustrations show the differences between each method, and each respective point at
the Pareto front, which are important in terms of system’s configuration and design, and also

for the optimal operation of the selected technologies.
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Fig. 6.16. Layout of DES for solution “A” of “Method A” with heat flow through DHN and electricity exchange
through microgrid and national grid throughout a year.
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Fig. 6.18. Layout of DES for solution “C” of “Method A” with heat flow through DHN and electricity exchange

through microgrid and national grid throughout a year.
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Fig. 6.21. Layout of DES for solution “C” of “Method B” with heat flow through DHN and electricity exchange

through microgrid and national grid throughout a year.

In Fig. 6.22 and Fig. 6.23 the heat and electricity balances at building i1 of solution “B”
Scenario 3, are depicted as illustrative examples for a typical mid-season day (day 2), for
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“Method A” and “Method B” respectively. Heat demand in “Method A” is satisfied exclusively
with heat pumps for all the periods of day 2. On the other hand, in “Method B” heat demand is
satisfied via heat transfer from DHN. Specifically, building i4 supplies heat to building i1, which
is used partially to satisfy local demand and the remaining heat is exported to the network to
satisfy heat demand at building i2 (for periods p1, p2, p4, p5 and p6). Regarding electricity, in
“Method A” demand is satisfied by local generation from photovoltaics for periods pl — p4. At
period p5 electricity is bought from the grid and also received through the microgrid, while at
period p6 electricity demand is mainly satisfied from the microgrid, and a small portion from
photovoltaics. Also, at all periods electricity is consumed for heat pumps operation. At period
pl, excess electricity from photovoltaics is exported to the microgrid while at periods p2 and
p3 excess electricity is sold to the grid. At period p4 a large portion of excess electricity is sold,
and a small portion is exported to the microgrid. Similarly, in “Method B”, photovoltaics supply
electricity to satisfy local demand, however there is no electricity import from the microgrid. At
periods p5 and p6 electricity is bought from the grid. Excess electricity is either exported to

the microgrid or sold to the grid.
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Fig. 6.22. Heat balance for mid-season at building i1 (Scenario 3, solution “B”), for: (a) “Method A” and (b)
“Method B”, respectively.
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Fig. 6.23. Electricity balance for mid-season at building i1 (Scenario 3, solution “B”), for: (a) “Method A” and (b)
“Method B’, respectively.

6.4 Summary of Results and Discussion

The results show that the selection of the design method plays a significant role. The results
between each method vary, not only in terms of system’s configuration but also in terms of
capacity of technologies and operation. Both methods present optimal solutions which can be
used by a DM to choose amongst many available options, with each one of them having

different TAC and carbon footprint. The choice of the preferred solutions relies on several
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factors that can influence the decision, such as the available budget for the project or specific

environmental policy targets for carbon emissions reduction.

Furthermore, as mentioned previously, “Method A” has the advantage of providing a larger set
of design solutions, but those solutions might not correspond to commercially available
technologies. Hence, it is suggested these two methods to be used in parallel, as shown in
the diagram depicted in Fig. 6.24. A DM could first use “Method A” to get a preliminary idea of
the optimal configuration of the DES in terms of design variables. Then, “Method B” could be
applied, in which candidate technologies have sizes close to those provided by “Method A”.
The appropriate definition of the capacity of candidate technologies (or bounds) is a very
important task, which becomes even more important when a DES at an urban level is

designed, and also when multi-objective optimization is applied.

In addition, the differences regarding the results of TAC between the two methods, (as shown
in Fig. 6.9) further show the importance of selecting a design method. A high TAC value affects
the financial viability of a project and could lead a DM to reject it. Therefore, combining these
two methods could be used in real applications, e.g. designing a DES for apartment blocks,
where the capital and operational costs could affect the financial characteristics of the project.
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This Chapter provides the results of optimization under uncertainty for the test case. The
results of the application of each method described in subsection 4.5 are presented, discussed
and compared. Uncertainty analysis is based on Scenario 3 of “Method A” which is referred

from now on as the deterministic scenario.
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7.1 Results of objective-wise uncertainty

The first method examining the optimal design of DES under uncertainty is objective-wise
worst-case uncertainty. Scenarios OW1 and OW2 have been applied to the test case, as
described in subsection 5.3 and the results are depicted in Fig. 7.1. Results show that
uncertainty in parameters in Scenario OW1 provides worse solutions compared to the
deterministic scenario. Scenario OW2, in which all uncertainties are taken into account,
provides the worst solutions compared to all scenarios. Nevertheless, solutions are
characterized as robust because they represent the best solutions of the worst-case
scenarios. Scenario OW1 was solved in 50 seconds and Scenario OW2 in 2 minutes, which
are much lower compared to Scenario 3 in “Method A”. This highlights the significance of
parameters’ values in optimization and its effects in computational load. Analytically, in
Scenario OW1 TAC ranges between 22,155 and 44,462 €/year and carbon emissions
between 12,879 and 156,030 kg/year. In Scenario OW2, TAC is between 28,163 and 53,604
€/year and carbon emissions are between 35,103 and 203,448 kg/year.
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Fig. 7.1. Pareto frontiers for the deterministic scenario, Scenario OW1 and Scenario OW2.
Values of TAC and carbon emissions are presented in Fig. 7.2 for comparison. Compared to
the deterministic scenario, Scenario OW1 has 45% higher TAC at the first solution (minimizing

TAC), reaching a low 2% at the last solution (minimizing carbon emissions). Regarding
Scenario OW2, it has 84% higher TAC at the first solution and 24% at the last. As for carbon
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emissions it is noted that Scenario OW1 has small differences compared to the deterministic
scenario, reaching as high as 14%. On the other hand, in Scenario OW?2 differences in results
are more noticeable, with the increase of carbon emissions being between 31% and 212%,
for the first and last solution, respectively.
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Fig. 7.2. Differences in values of objective functions for Scenario OW1 and Scenario OW2 of: (a) TAC and (b)

Carbon emissions, respectively, compared to the deterministic scenario.

A detailed breakdown of TAC and carbon emissions for each solution is shown analytically in
Fig. 7.3 and Fig. 7.4, respectively, to better assess the differences of each scenario.

Compared to the deterministic scenario, the main differences of Scenario OW1 and Scenario
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OW?2 are in terms of capital and operational cost. Especially in Scenario OW2 operational cost
is significantly higher, indicating not only differences in structural decision variables, but also
in operational ones (e.g. lower sales of excess electricity to the grid). It is obvious that
uncertainties in parameters affect the components of TAC objective function significantly.
Regarding carbon emissions, results follow a similar pattern in all scenarios. Specifically,
electricity is the main source of emissions in most solutions, with natural gas having the largest
share at solutions towards minimization of carbon emissions, due to its lower carbon
emissions’ factor. It is noted that in the last solution of all three scenarios no carbon emissions

are from electricity use (grid).
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Fig. 7.3. TAC components for the deterministic scenario, Scenario OW1 and Scenario OW2, respectively.

102

—
| S—



Chapter 7: Results of DES optimization under uncertainty

250

200

L ]
[ ]
[ ] [ ]
.. ° [ ]
111 l 11
0 II_. II. |

1234567 89101112 3456789101112 34567891011

Thousands

15

o

10

CO2 Emissions (kg/year)
o

5

o

Deterministic Scenario OW1 Scenario OW2

M Electricity Gas @ Total Emissions
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respectively.

In Table 7.1 the DES configuration for the deterministic scenario, Scenario OW1 and Scenario
OW?2 is presented and the structural differences between each scenario are shown. For
instance, the total capacity of CHP units and heat pumps in Scenario OW?2 is higher compared
to Scenario OW1. This can be attributed to the increase of energy demand, hence
technologies with larger capacity are required to satisfy the loads. Also, wind turbines are
selected in Scenario OW1, but not in Scenario OW2 (except in the last solution). A 20%
reduction of wind speed made wind turbines a less attractive choice. Generation from wind
turbines is based on the value of wind speed, which must also be above a specific cut-in
speed. In addition, the total capacity of photovoltaics is lower compared to the deterministic
scenario. Solar thermal collectors are not selected in any solution. Also, the total capacity of
storage technologies is lower compared to the deterministic scenario. Moreover, several
differences exist regarding the configuration of the DHN and the formation of a microgrid. It is
noted that the microgrid is not selected as an optimal choice in the first three solutions of
Scenario OW2.
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Table 7.1. Detailed DES configuration of optimal solutions for Scenario OW1 and Scenario OW?2.
CHP HP ACH WT B PV ST ES TS

W) | (kW) | (kW) | (kW) | (kW) | (kW)  (m2) | (kwh)  (kwh) PHN - MG
Deterministic
1 0 112 | o0 30 25 | 46 | 5 0 0 2 1
2 0 112 | 0 30 20 56 | 7 0 0 2 1
3 0 112 | 0 30 30 60 8 0 0 0 1
4 0 112 0 30 25 60 16 0 0 0 1
5 0 112 0 30 25 60 8 0 0 2 1
6 0 112 | 0 30 20 60 16 0 0 1 1
7 5 101 | 11 | 30 | 25 60 | 8 0 9 1 1
8 6 100 @ 13 | 30 15 60 10 0 20 2 1
9 10 95 | 18 30 25 60 10 0 1 3 1
10 17 104 11 30 25 60 11 0 21 2 1
11 24 152 | 0 30 20 60 59 | 8 | 190 5 1
Scenario OW1
1 0 112 | o0 30 20 | 18 | o0 0 0 1 1
2 0 112 | 0 30 20 20 0 0 0 1 1
3 0 112 | 0 30 20 28 0 0 0 1 1
4 0 112 0 30 20 39 0 0 0 2 1
5 0 12 0 30 25 | 45 0 0 0 0 1
6 0 112 | 0 30 25 55 | 0O 0 0 0 1
7 0 111 | 6 30 22 60 0 0 0 1 1
8 0 11 | 5 30 22 60 0 0 0 1 1
9 5 107 5 30 15 60 0 0 21 1 1
10 9 106 @ 6 30 12 60 0 0 46 4 1
11 17 112 | 0 30 20 60 0 87 | 121 3 1
Scenario OW2
1 0 123 | 0 0 % | 0 0 0 0 0 0
2 0 123 | 0 0 8 | 11 o0 0 2 5 0
3 5 123 | 0 0 20 21 0 0 0 0 0
4 5 123 0 0 20 | 31 0 0 13 0 1
5 0 123 0 0 25 | 43 0 0 0 0 1
6 0 123 | 0 0 2% | 56 0 0 0 0 1
7 5 118 5 0 20 60 0 0 0 2 1
8 6 120 | 7 0 10 60 0 0 6 2 1
9 10 104 | 19 0 15 | 60 0 0 12 2 1
10 18 104 | 21 0 10 60 0 6 46 3 1
11 21 111 14 30 17 60 0 59 95 3 1

7.2 Results of Robust Optimization (MMR and MER)

As described in subsection 5.3.2, the robustness of the problem is examined by taking TAC

as the objective function and the CO, emissions as a constraint with upper bound 100,000
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kg/year, according to Scenarios R1 — R5. The optimal value of TAC for each s-th scenario is
calculated and the results are presented in Table 7.2. The TAC value varies significantly
between each scenario, ranging from a low 11,337 up to 24,332 €/year, i.e. the values of
scenario R2 and scenario R5 respectively.

Table 7.2. Results of TAC at each scenario

Scenario Energy Prices Interest Rate TAC: (€lyear)
R1 BAU BAU 17,734
R2 High High 24,322
R3 High Low 14,608
R4 Low High 20,846
R5 Low Low 11,337

In the next step, the MMR criterion is applied using eq. (3.7) with the optimal value for MMR
calculated to be 0.018 (approximately 2%). The values of each TACswhen MMR is minimized,
are shown in Table 7.3. The application of MMR leads to a very small increase of
approximately 27 €/year in the total annual cost, compared to the BAU solution (Scenario R1).

Table 7.3. Results of TAC at each scenario when MMR is applied

Scenario Energy Prices Interest Rate TAC; (€lyear)
R1 BAU BAU 17,761
R2 High High 24,378
R3 High Low 14,702
R4 Low High 21,215
R5 Low Low 11,538

Moreover, the configuration of the whole neighbourhood for each scenario s is presented in
Table 7.4. The structure of the DES for each scenario is different. For instance, when Scenario
R1 and MMR are compared it can be seen that a boiler is installed at buildings i1, i2, i5 and i6
in Scenario R1 and at buildings i1, i2, i4 and i6 when MMR is applied. Also, minor differences
exist regarding the capacity of photovoltaics in building i1 and the solar thermal collectors’
area at building i6. It is noted that in Scenarios R4 and R5, CHP units and absorption chillers
are installed due to the lower price of natural gas. An interesting remark is the installed
capacity of photovoltaics at some buildings in Scenarios R2 and R4, which is lower than the

maximum upper bound of 10 kW.
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Table 7.4. DES configuration for each scenario and MMR criterion.

Building CHP HP | CHILLER | BOILER PV ST ES TS WT DHN
(kW) (kW) (kW) (kW) (kW) (m2) | (kWh) | (kWh) | (kW) | (Yi,))
Scenario R1
il 0 6.4 0 5 10 0 0 0 0 0
i2 0 6.6 0 5 10 0 0 0 10 0
i3 0 5.0 0 0 10 0 0 0 10 0
i4 0 6.2 0 0 10 0 0 0 10 3
i5 0 39.1 0 5 10 0 0 0 0 4
i6 0 48.9 0 5 10 8.4 0 0 0 0
Scenario R2
il 0 6.4 0 5 3.5 0 0 0 0 0
i2 0 6.6 0 5 6.6 0 0 0 10 0
i3 0 5.0 0 5 9 0 0 0 10 4
i4 0 6.2 0 0 10 0 0 0 10 0
i5 0 39.1 0 0 10 0 0 0 0 3
i6 0 48.9 0 5 10 8.4 0 0 0 0
Scenario R3
il 0 6.4 0 5 10 0 0 0 0 0
i2 0 6.6 0 5 10 0 0 0 10 0
i3 0 5 0 0 10 0 0 0 10 4
i4 0 6.2 0 0 10 0 0 0 10 0
i5 0 39.1 0 5 10 0 0 0 0 3
i6 0 48.9 0 5 10 8.4 0 0 0 0
Scenario R4
il 0 6.4 0 5 3.5 0 0 0 0 0
i2 5.2 6.6 0 5 4.4 0 0 0 10 3
i3 0 0 5 0 3.5 0 0 0 10 4
i4 0 0 6.2 0 2.4 0 0 0 10 0
i5 0 39.1 0 0 10.0 0 0 0 0 0
i6 0 48.9 0 5 10.0 7.4 0 0 0 0
Scenario R5
il 0 6.4 0 5 10 0 0 0 0 0
i2 0 6.6 0 5 10 0 0 0 10 0
i3 0 0 5 5 10 0 0 0 10 0
i4 5.1 0 6.2 0 10 0 0 0 10 3
i5 0 39.1 0 0 10 0 0 0 0 4
i6 0 48.9 0 5 10 8.4 0 0 0 0
MMR
il 0 6.4 0 5 8.3 0 0 0 0 0
i2 0 6.6 0 5 9.8 0 0 0 10 0
i3 0 5 0 0 10 0 0 0 10 0
i4 0 6.2 0 5 10 0 0 0 10 3
i5 0 39.1 0 0 10 0 0 0 0 4
i6 0 48.9 0 5 10 7.4 0 0 0 0
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The solutions generated from the application of MMR are considered to be robust as the risk
is minimized from the extreme values of scenarios. Also, the small value of the MMR indicates
that perturbations in economic parameters do not affect TAC significantly, when the resulting
configuration and operational profiles of technologies are selected.

Nevertheless, if the probabilities of each scenario to occur came to be known, results could
change. Therefore, the application of MER using eq. (3.8) has been also examined by
assigning probabilities to each scenario. A 50% probability was assumed for Scenario R1,
20% probability for Scenario R2 and 10% for Scenarios R3 to R5, respectively. These
probabilities are depended on estimations of the DM. The resulting value of MER is 0.002,
which is considerably lower compared to the classic MMR method, which is an indication that
the estimation of probabilities could lead to less conservative results. The results of the DES
configuration when the MER criterion is applied are presented in Table 7.5. The comparison
of the results between MMR and MER shows minor differences regarding the installed
capacity of photovoltaics at building i1 and the solar thermal collectors at building i6, where
the results match those occurring from Scenario R1. In addition, it is noted that electric and
thermal storage units are never installed. Finally, both MMR and MER are not computationally
intensive methods, taking a total of 6 minutes 18 seconds and 2 minutes and 54 seconds,
respectively. Those values refer to the application of MMR and MER only, not taking into

account the time to solve each Scenario R1 — R5.

Table 7.5. DES configuration for each probability scenario when MER is used with probabilities (0.5, 0.2, 0.1, 0.1,

0.1).
suilding CHP | HP | CHILLER | BOILER | PV | ST ES TS | WT | DHN
KW) | (kW) | (kW) kW) | (kW) | (m2) (kWh) (kWh) | (kW)  (Yij)
i1 0 6.4 0 5 10 0 0 0 0 0
i2 0 6.6 0 5 10 0 0 0 10 0
i3 0 5 0 0 10 0 0 0 10 0 .
i4 0 6.2 0 5 10 0 0 0 10 3
i5 0 | 39.1 0 0 10 0 0 0 4
i6 0 | 489 0 5 10 | 84 0 0 0

The configuration of the DES for Scenario R1 (BAU) and Scenario R4 is depicted in Fig. 7.5,
and for the application of MMR and MER in Fig. 7.6, for illustrative purposes and to show their
differences analytically. Despite small differences in system’s structure, the application of RO
techniques leads to different results of operational variables such as heat flow transfer through

the DHN, transfer of electricity to and from microgrid, and also to and from national grid.
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Fig. 7.5. Configuration of DES for: (a) Scenario R1 (BAU) and (b) Scenario R4, respectively.
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7.3 Results of Monte Carlo simulation

The last method used for optimal design of DES under uncertainty was Monte Carlo
simulations, as described in subsection 5.3.3. Monte Carlo simulation was also applied on the
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single-objective optimization problem, with carbon emissions as a constraint having an upper
bound of 100,000 kg/year. The number of iterations has been set to 1000, for both scenarios
MC1 and MC2, taking a total of 2 hours 24 minutes and 3 hours 24 minutes, respectively. The
results of Monte Carlo simulations are illustrated in Fig. 7.7 and Fig. 7.8, for Scenario MC1
and Scenario MC2, respectively. For each solution the values of TAC, the optimal
configuration of the system and the operational variables of the technologies are calculated.
The values of TAC are separated into bins, where each column represents the generation
frequency of each solution. In Scenario MC1 the range of TAC is between approximately
12,000 and 25,000 €/year. On the other hand, in Scenario MC2 the values of TAC vary
significantly, ranging between approximately -33,000 and 32,000 €/year. However, these
“extreme” values are only generated for very few solutions and are attributed to the probability

of very high or very low wind speeds, respectively.

In addition, Pareto charts are depicted to sort the data from the most common to the least
common value (from left to right). This kind of charts is useful as the Pareto line shows the
cumulative percentage of the probability that these results will occur. For instance, in scenario
MC1 where uncertainty exists only in economic parameters, there is a 70% probability that
TAC will be between approximately 16,000 and 20,000 €/year. On the contrary, when all
parameters are uncertain in Scenario MC2, a cumulative probability of 50% is calculated that
the TAC will be between approximately 21,000 and 27,000 €/year.

Furthermore, it is shown that the value of TAC is considerably higher in scenario MC2. It can
be deduced that TAC is underestimated when uncertainty is considered to be only in economic
parameters. In other words, the values of energy demand, solar radiation and wind speed
have a major impact on the results and uncertainty of these parameters must be always taken
into consideration. Therefore, a DM must examine in detail the uncertain parameters and be
sure to consider all scenarios in order to assess the results properly and identify the most

robust solutions.
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Fig. 7.7. Results of Monte Carlo simulation for Scenario MC1: (a) Histogram and (b) Pareto Chart, respectively.
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Fig. 7.8. Results of Monte Carlo simulation for Scenario MC2: (a) Histogram and (b) Pareto Chart, respectively.

Moreover, the configuration of the system in each scenario could offer fruitful conclusions,
specifically about some important key decision variables. The results regarding the installation
of heat pumps and boilers are presented for illustration purposes in Fig. 7.9 and Fig. 7.10, for
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scenario MC1 and MC2, respectively. There is a high probability that heat pumps and boilers

will be installed in both scenarios. Their respective installed total capacity is more likely to be

higher in Scenario MC2, which can most probably be attributed to the higher energy loads.

Furthermore, the effects of variations in wind speed can be seen in Fig. 7.11 which presents

the total capacity of wind turbines in Scenario MC2. Results show a 60% probability of wind

turbines to be installed, which means that a 40% probability exists where wind turbines are

not installed. This value is not negligible and must be examined carefully by the DM. A low

probability reveals the uncertain characteristics of wind speed and the relative low wind

potential of the respective area. On the other hand, the high solar radiation of the area and its

low variability leads to the selection of photovoltaics at every solution.
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Fig. 7.9. Total installed capacity of heat pumps at: (a) Scenario MC1 and (b) Scenario MC2, respectively.
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Fig. 7.10. Total installed capacity of boilers at: (a) Scenario MC1 and (b) Scenario MC2, respectively.
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Fig. 7.11. Total installed capacity of wind turbines at Scenario MC2, respectively

7.4 Summary of results and discussion

This chapter showed the effect that uncertainty in parameters has on the design of a DES.
Several methods were examined, namely objective-wise uncertainty, MMR, MER and Monte
Carlo simulation, based on the construction and examination of respective scenarios for each
method. Energy prices, interest rate, solar radiation, wind speed and energy demand were

chosen as the uncertain parameters.
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Although results between each method vary, several conclusions can be drawn. Firstly, the
application of MMR when considering uncertainty only in economic parameters can provide
robust solutions with minimum risk and a small increase of TAC. If probabilities are known
applying MER can provide less conservative results. In the case of Monte Carlo simulations
when all parameters are considered uncertain (not only the economic parameters, but also
energy demand, wind speed and solar radiation) the results show a significant increase of
TAC. However, the most pessimistic results are taken when objective-wise worst-case
optimization is used as the worst values of the uncertain parameters are considered for the

optimization.

Moreover, it is shown that uncertainty affects the structure and operation profile of
technologies of the DES. Therefore, a DM should examine uncertainty in detail and select the
appropriate tool in order to make an informed decision and identify robust solutions. Hence, it
can be concluded that the optimal design of a DES using the deterministic approach is not a

good choice and could result in bad solutions.
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This Chapter presents the main findings of the thesis. The results regarding the application of
mathematical programming for both deterministic methods and for the techniques for
optimization under uncertainty are summarized and the conclusions are highlighted. Also, the
benefits occurring from the development of DES are clearly shown. The thesis concludes with

a small discussion of future research ideas.
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8.1 Innovation

This thesis examined the optimal design of a distributed energy system, using mathematical
programming, with a focus on robust solutions. DES could play a major role in future energy
systems, especially in urban areas, therefore methods for designing such systems need to be
developed. The advantage of local generation, which minimizes losses can have a major
impact in reducing primary energy consumption and associated carbon emissions of energy

generation.

This thesis has made several contributions in the field of designing DES. Two approaches for
the modelling of technologies have been presented, expanding previous relevant work from
the literature and modelling more candidate technologies. Those approaches have been
compared as they offer different solutions and a new strategy regarding the design of a DES
has been presented. These approaches were examined through a case study applied in a
Greek area, offering insights into how such methods could be applied in Greece and the
benefits that could occur. Moreover, this thesis has focused on the robustness of solutions
and has combined multi-objective optimization with several techniques used to provide robust
solutions. Four techniques for optimization under uncertainty have been modelled and applied

in the case study.

8.2 Main Findings

An MILP optimization framework for the design of a DES has been developed, in which the
total annual cost and carbon emissions are the two objective functions to be minimised. The
scope of the current thesis was to present a methodology for the design of DES using single-
and multi-objective mathematical programming, with the following candidate technologies: (a)
cogeneration units, (b) heat pumps, (c) absorption chillers, (d) boilers, (e) solar thermal
collectors, (f) solar photovoltaics, (g) wind turbines, (h) thermal energy storage, (i) electric
thermal storage, (j) district heating network (DHN) and (k) microgrid. In this context, the
decision-making tool developed, provided as outputs the selected technologies and their
respective capacity, the layout of the DHN, the operational profile of installed technologies and

the electricity exchange through the microgrid and national grid.
For the optimal design of DES two multi-objective optimization methodologies have been

developed in GAMS, namely “Method A” and “Method B”. The first method can perform

simultaneous sizing of available technologies, while the second selects technologies with a

117

—
| —



Chapter 8: Conclusions

specific predefined size from available sets. The methods are based on a generic framework
and could be adapted for application in different districts. The results provide the DM with the
Pareto frontier of the optimal solutions so they could make the best choice according to their
preferences and budget restrictions. The solutions provide the configuration of the DES (which
candidate technology is installed at each building), the capacity of the respective technologies

and its operational profile.

Furthermore, a case study was carried out for a neighbourhood of six buildings in an area in
Attica and three scenarios were depicted to examine the benefits of DES compared to
conventional methods of energy supply in buildings. Scenario 1 was the BAU, in which
conventional technologies were used to supply heating and cooling, with electricity bought
only from the grid. In Scenario 2, heat pumps, absorption chillers and cogeneration
technologies were introduced, along with electricity exchange with the grid (buying/selling).
Scenario 3 was an expansion of Scenario 2 with the addition of storage technologies,

microgrid and DHN.

The results showed that Scenario 3 provided the most attractive solutions, compared to the
other two scenarios, in both methods. Also, it was shown that TAC and carbon emissions are
conflicting objectives. The integration of renewables, CHP units, storage technologies, the
availability to form a microgrid for electricity exchange and the installation of DHN leads to the
reduction of carbon emissions and to an increase of the total annual cost. Specifically, in
“‘Method A” TAC has a range between 16,284 and 25,503 €/year and carbon emissions
between 75,082 and 149,980 kg/year in Scenario 2, while in Scenario 3 TAC has a range
between 15,294 and 43,395 €/year and carbon emissions between 11,249 and 155,282
kglyear. In “Method B”, in Scenario 2 TAC is between 18,110 and 29,927 €/year, and carbon
emissions are between 78,412 and 143,546 kg/year. In Scenario 3 TAC is between 16,930
and 44,583 €/year, and carbon emissions between 11,657 and 155,200 kg/year. Also,
Scenario 3 in “Method A” was solved in 2 hours and 14 minutes, while in “Method B” it took 3
hours and 50 minutes, showing that “Method B” is more computationally intensive, which is
expected as it is based on a combinatorial approach and has less degrees of freedom

compared to “Method A”.

Comparing the results of the two methods it is shown that “Method A” is the one that offers
the most attractive solutions as it is more flexible compared to “Method B”. Results showed
that regarding total annual cost “Method B” provides solutions between 3% and 11% higher
compared to “Method A” in Scenario 3. Regarding carbon emissions for Scenario 3, “Method

A” provides solutions with relatively better results, a small difference of up to some 4% was
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calculated between the two methods. Also, in most solutions a DHN was formed between
buildings to exchange heat and at all solutions a microgrid to exchange electricity. The addition
of storage technologies, microgrid and DHN leads to a significant reduction of carbon

emissions.

However, there is a significant drawback in “Method A”. The solutions generated with this
method might not be available commercially. In this aspect “Method B” which relies on
technologies with predefined sizes could provide more accurate results. In addition, the
comparison of the two methods showed that solutions in each method regarding system
configuration and operational profile of the technologies are different. Therefore, the
combination of the two methods is suggested as an alternative design methodology.
Specifically, applying “Method A” as a first step in the design process to detect the promising
range for each technology, followed by “Method B” with a narrower range for the capacity of

technologies in order to get optimal and simultaneously realistic results.

Subsequently, the second step was to examine the optimal design of DES under uncertainty,
which was the main goal of this thesis. Uncertainty in designing a DES lies in many
parameters, such as energy prices (electricity and natural gas), interest rates, climate data
and energy loads. Several techniques were applied to deal with uncertainty, belonging either
in the field of robust optimization or stochastic optimization. Specifically, four methods were
used, namely: (a) objective-wise uncertainty, (b) minimax regret criterion, (c) minimax
expected regret criterion and (d) Monte Carlo simulations. Moreover, the application of MER
is a technique applied for the first time for the design of a DES. These techniques were applied
to “Method A” and were furthermore distinguished between single- and multi- objective
optimization. Objective-wise worst-case optimization was applied to the multi-objective
problem, using two scenarios, hamely:

e Scenario OW1 which considers uncertainty only in economic parameters, and

e Scenario OW2 which considers all parameters are considered uncertain.

e On the other hand, the other three methods were applied to a single-objective
problem with TAC as the objective function and carbon emissions transformed into a
constraint with a respective upper bound of 100,000 kg/year. For each technique
several scenarios were constructed as follows:

o For MMR and MER five scenarios were depicted, namely Scenario R1 to
Scenario R5, in which only economic parameters were uncertain with ranges

between a low and a high value for each respective parameter.
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o For Monte Carlo simulations, two Scenarios were depicted, namely Scenario
MC1 with only economic parameters as uncertain and Scenario MC2 with all

parameters as uncertain.

The most pessimistic results occurred when objective-wise uncertainty was applied, due to
the characteristics of the method. The objective-wise method was based on “Method A” of the
deterministic approach and it considers the worst-case values of uncertain parameters. The
concept of the method is that by considering the worst-case values of the uncertain
parameters a DM could get robust solutions as they will always considered to be optimal. From
a computational perspective, it took 50 seconds and 2 minutes, to solve Scenario OW1 and
Scenario OW2, respectively. It was observed that both scenarios were solved at a much lower
computational time compared to Scenario 3 in “Method A”, which shows the effects of
parameters’ values in computational load of optimization problems. Regarding the results,
compared to the deterministic scenario, in Scenario OW1 TAC was higher between 2% and
45%. In Scenario OW2 the differences at TAC were more obvious, between 24% and 84%.
Regarding carbon emissions, differences between Scenario OW1 and deterministic are small,
reaching up to 14%, and between Scenario OW2 and deterministic case were between 31%
and 212%. Objective-wise uncertainty method might offer robust solutions, but it does increase
the TAC dramatically. This is expected as the worst values of the parameters are considered
in the calculations. However, from a DM perspective might not be the best approach as these
values might never occur. It could be argued that the results of the objective-wise method are
the more robust, but might be “unrealistic”, increase the cost of the project significantly, and

might lead a DM to a “wrong” conclusion.

As for MMR and MER methods, they can be used when scenarios regarding the evolution of
the respective parameters can be depicted. Those methods are based on the calculation of
the regret between the optimal value and the extreme values of each scenario. The MER
method assumes probabilities for those scenarios, offering a less conservative approach for
the DM. Those methods can provide fruitful results to a DM, as they can calculate the regret
(i.e. cost) between the deterministic approach and optimization under uncertainty, what the
robust technologies are and their respective operational profiles. This is very important in
energy planning problems as installed technologies will operate for years and is also important

to operate them at the most appropriate way to have the lowest cost.
Specifically, the results of MMR method showed differences between each respective

scenario. MMR was calculated to be equal to roughly 2%, which corresponds to approximately

27 €/year compared to the BAU solution. Also, differences were shown regarding DES
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structure and operational profiles of technologies. The configuration of the system at MMR
showed that the preferred technologies were mainly heat pumps, boilers, photovoltaics and
wind turbines. A comparison between Scenario R1 (deterministic scenario) and MMR shows
minor differences regarding the configuration of the DES. It was revealed that most
technologies selected in Scenario R1 are robust, except the boiler at building i5, which at MMR
is installed at building i4. Also, there are differences exist regarding the capacity of
photovoltaics at building i1 and solar thermal collectors’ area at building i6. The application of
MER showed that less conservative results can occur if the respective probabilities of each
scenario are known. The probabilities for each scenario were assumed to be 0.5, 0.2, 0.1, 0.1
and 0.1 for each Scenario R1 to R5, respectively. The resulting value of MER was calculated
to be approximately 0.002. The configuration of the system was similar to MMR, with minor
differences for photovoltaics and solar thermal collectors at building i1 and building i6. MMR
was solved in 6 minutes 18 seconds and MER in 2 minutes 54 seconds, showing that they are
not computationally intensive methods. Nevertheless, the application of MMR and MER
showed that despite the fact they can offer risk-averse solutions, considering uncertainty only
in economic parameters does not affect TAC significantly.

Finally, for Monte Carlo simulations each uncertain parameter is considered to follow a specific
probability distribution, interest rate, energy demand and solar radiation follow normal
distribution, electricity prices follow uniform distribution, natural gas price triangular distribution
and finally, wind speed follows Weibull distribution. Monte Carlo simulation was the most
computationally demanding method for the optimization under uncertainty, taking for 1000
iterations a total of 2 hours 24 minutes and 3 hours 24 minutes, to solve Scenario MC1 and
Scenario MC2 respectively. The results showed significant variations between Scenario MC1
and MC2, specifically in Scenario MC1 TAC is calculated to be between 12,000 and 25,000
€/year and in Scenario MC2 between -33,000 and 32,000 €/year. It was shown that the
application of Monte Carlo simulations generates some extreme solutions which are attributed
to the very high and very low values of some uncertain parameters (specifically wind speed
was shown to affect results significantly). Another significant aspect of applying Monte Carlo
simulations is that important conclusions can be deduced about the candidate technologies.
Monte Carlo simulations do not offer a unique solution, rather a set of solutions based on the
range of the probability distributions of uncertain parameters. Therefore, the values of decision
variables are calculated based on the respective probabilities. For instance, heat pumps and
boilers are selected at both scenarios with a high probability. Also, results show a relatively
low probability for wind turbines which is attributed to the relatively low wind energy potential

of the area of the case study.
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All these techniques highlighted the importance of considering uncertainty in designing DES
and it was shown that each parameter affects results differently. The results from all
techniques showed that considering uncertainty only in economic parameters does not affect
results significantly. Taking into account uncertainties in energy demand, solar radiation and
wind speed caused significant changes in system’s structure and operational profiles of
technologies. Therefore, it can be concluded that it is important to take into account the whole
range of uncertainties. Overall, all these techniques provided solutions characterized as
robust, which are different compared to the deterministic model. When all parameters were
treated as uncertain results showed differences regarding technologies selection and their
respective capacities at each building. This is very important in long-term problems, especially
for the system’s performance and for the financial viability of the project. Making calculations
based only in the deterministic model (current input data) could lead to system’s failure in case
of increased demand or revenue losses if a technology cannot operate (e.g. wind turbines).
Hence, a DM can use the outcome of optimization under uncertainty to make a more informed

decision by considering the long-term aspects of the problem.

In conclusion, the thesis showed the importance of DES as an economically and
environmentally friendly alternative concept of designing future energy systems. The generic
mathematical programming frameworks developed in this thesis could be applied at an urban
level and redesign energy systems, leading to a reduction of energy consumption and carbon
emissions which can be beneficial to the environment and to society. The significant reduction
of carbon emissions and the local supply of energy could lead urban energy systems towards

sustainability.

8.3 Proposals for future work

There are several areas for directing future research regarding the design of DES or urban
energy systems in a more general context. For instance, in this thesis only two objective
functions have been used in the multi-objective optimization framework. Those objective
functions could be increased by considering sustainability criteria in order to provide robust
and sustainable solutions. Sustainability is a general term considering many aspects besides
cost and carbon emissions, such as the creation of jobs, air pollution etc. A multi-criteria
assessment for the design of DES using sustainability indicators could be very useful in the
context of sustainable development [150-152]. Also, the effects of energy loads and their
variability, considering state-of-the-art techniques for energy management of buildings, and/or
the introduction of energy efficiency measures regarding buildings’ envelope could be

examined.
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Moreover, the increase of electric vehicles could be examined as they could be considered
electric storage units. Also, the concept of grid stability needs to be examined. Assumptions
regarding the capacity of the grid to always receive electricity generated locally might need
careful examination. This is more important when renewables are also used as they are
intermittent energy sources. Some work was carried out towards this direction, but it is a field

requiring a more detailed analysis [110,111,153].

Another area for future research is the legal framework regarding the introduction of energy
communities, and the allocation of cost and profits in the implementation and operation of DES
[154]. Finally, another direction for future research is a more detailed analysis regarding
uncertainty, for instance examining the effects of the national grid’s emission factor based on

the scenarios for national energy planning.

In general, the proposed methods can be applied with other building and climate
characteristics, while the uncertainty can be extended to other parameters. The flexibility of
the formulation is suitable for application in different cases of DES examining the robustness

of the solutions across various parameters.
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Appendix A. Wind turbines

The first wind turbine is a 6 kW wind turbine with the following specifications described in Table
A. 1. The power curve is depicted in Fig. A. 1.

Table A. 1. Technical characteristics of the 6kW wind turbine [155]

Rated output power 6 kW at 11.5 m/s, measured after inverter

Cut-in / survival wind speed 2.7 m/s /60 m/s

Rotor diameter / swept area 56 m/24.6 m2

Blades 2 fiberglass-epoxy blades, aluminium root inserts

_ Centrifugal pitch regulator, stalls blades to limit
Power and overspeed regulation _
rotational speed

Dynamic brake, optional tower base forced blade stall
Brake
brake

Rotational speed 80 - 245 rpm

Ppower (kW)

01 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Wind Speed (m/s)

Fig. A. 1. Power curve of the 6kW wind turbine.



Appendix A. Wind turbines

The second wind turbine is a 10 kW wind turbine with the following specifications described in
Table A. 2 The power curve is depicted in Fig. A. 2.

Table A. 2. Technical characteristics of the 10 kW wind turbine [156].

Rated output power 10kW, limited by software
Cut-in / cut-out wind speed 1.85m/s /30 m/s
Rotor diameter / swept area 9.8 m/ 75.4 m?
3 blades, horizontal axis, Fiberglass, flex resin with
Blades
polyurethane
Variable pitch with active control

Power and overspeed regulation _
By wind and power

Brake Electromechanical safety brake
Rotational speed 120 rpm
12
10
8
=
=
o 6
2
o
o
o
4
2
0
0 2 4 6 8 10 12 14 16 18 20

Wind Speed (m/s)

Fig. A. 2. Power curve of the 10 kW wind turbine.
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